RAFT COPY

SUPPLEMENTAL PHASE II SITE INVESTIGATION

RECEIVED

FEB 0 1 2002

DER/HAZ WASTE REMEIFORMER BRAINERD MANUFACTURING
REGION 8 115 NORTH WASHINGTON STREET
EAST ROCHESTER, NEW YORK

OCTOBER 2001

Prepared for:

BOYLAN, BROWN, CODE, VIGDOR & WILSON, LLP 2400 CHASE SQUARE ROCHESTER, NEW YORK 14604

Prepared by:

SEAR-BROWN 85 METRO PARK ROCHESTER, NEW YORK 14623

TRAFICAPY

ARCHITECTURE
ENGINEERING
PLANNING

CONSTRUCTION

85 Metro Park Rochester, NY 14623-2674

716.475.1440 phone 716.272.1814 fax

www.searbrown.com

October 23, 2001

Chip Russell, Esq.
Boylan, Brown, Code, Vigdor & Wilson, LLP
2400 Chase Square
Rochester, New York 14604

RE: Supplemental Phase II Site Investigation

Former Brainerd Manufacturing
115 North Washington Street
East Rochester, New York

16366.02

Dear Chip:

Pursuant to our contractual agreement, please find enclosed Sear-Brown's Supplemental Phase II Site Investigation Report for the former Brainerd Manufacturing facility, located at 115 North Washington Street in the Village of East Rochester, Monroe County, New York (subject property). The report presents the results of the subsurface scope of work conducted at the subject property by Sear-Brown during August 2001. All the information contained herein is true to the best of our knowledge and can be relied upon by Boylan, Brown, Code, Vigdor & Wilson, LLP.

Should you have any questions or require further information, please do not hesitate to call.

Sincerely,

Michael P. Storonsky

Senior Associate

Enclosure

MPS:PHS:N:jobs\1636602\docs\R0001.doc

DEATH LUFY

TABLE OF CONTENTS

Secti	<u>on</u>	Page
1.0	Introduction	1
	1.1 Previous Investigation Findings	
	1.2 Investigation Goals	
2.0	Field Program	3
	2.1 Floor Drain Test	
	2.2 Shallow Soil Coring and Analytical Program	3
	2.3 Soil Boring and Analytical Program	4
	2.3 Well Installation and Analytical Program	5
3.0	Supplemental Subsurface Site Investigation Results	7
	3.1 Hydrogeology	
	3.2 Analytical Results	8
	3.2.1 Soil Analytical Results	8
	3.2.1.1 Volatile Organic Compounds	8
	3.2.1.2 Inorganic Elements and Compounds	9
	3.2.2 Groundwater Analytical Results	
	3.2.2.1 Volatile Organic Compounds	
	3.2.2.2 Inorganic Compounds	
4.0	Conclusions	
Figu Figu Figu Figu Figu Figu Figu	re 5 TCE in Soil (ug/kg) re 6 Chromium in Soil (mg/kg) re 7 Copper in Soil (mg/kg) re 8 Nickel in Soil (mg/kg)	1)
Tabl Tabl Tabl Tabl Tabl Tabl	e 1 - Summary of PID Headspace Readings e 2 - Soil Sample Summary e 3 - Well Completion Summary e 4 - Water Level Summary e 5 - Well Purging Summary	

TABLE OF CONTENTS (continued)

Appendices
Appendix A -

Soil Boring/Monitoring Well Installation Logs AQTESOLV Plots and Geotechnical Laboratory Report Soil Analytical Reports Appendix B -

Appendix C -

Groundwater Analytical Reports Appendix D -

DRAFT COPY

1.0 Introduction

This report presents the findings of a Supplemental Subsurface Site Investigation performed during August 2001 at the former Brainerd Manufacturing facility located in the Village of East Rochester, New York (Figure 1).

1.1 Previous Investigation Findings

In April and May 2001, Sear-Frown conducted a Supplemental Subsurface Site Investigation of the former Brainerd Manufacturing facility. The April-May 2001 investigation involved drilling of a series of shallow soil cores through the floor of the building and installation of three monitoring wells near the southeastern corner of the property. The results of the supplemental investigation indicated the presence of chlorinated volatile organic compounds in soil and groundwater beneath the southern and southeastern portion of the subject property at concentrations above the NYSDEC standards and guidance values. Concentration gradients suggested a source area beneath the old electroplating line room. The trends also suggested preferred migration pathways for the contaminants to the east and west. The controlling mechanisms for the apparent broadening of impacts in the east-west direction were thought to be the size and shape of the original release areas, building features such as floor drains and foundation attributes and/or heterogeneities in the native sandy soil deposits. Review of historic utility maps for the site vicinity indicated that a stormwater collection system containing a series of catch basins formerly existed along the south side of the building (northern side of Monroe Street). This stormwater system may have provided a preferred easterly flow direction for contaminants mobilized through the vadose zone (i.e., the zone of unsaturated soil situated above the water table).

Based upon regional aquifer maps, the local groundwater flow direction is generally to the north along the preglacial Irondogenesee Valley (presently Irondequoit Creek). Sitespecific water level data collected during the April-May 2001 investigation were consistent with this northerly regional groundwater flow direction.

The analytical results from the April-May 2001 subsurface investigation activities performed at the former Brain and Manufacturing facility by Sear-Brown also indicated the presence of industrial-related metals in the flooring and underlying sub-floor soils at concentrations above the NYSDEC soil guidance values. Cyanide was also detected at relatively low levels in the flooring and sub-floor soils. Impacts to groundwater from industrial metals and cyanide appeared to be minimal, however.

1.2 Investigation Goals

Following the April-May 200: field program, Sear-Brown recommended the further delineation of subsurface impacts at the subject property through the following investigative tasks:

- a floor drain investigation to determine the possible point source(s) of solvent-related contaminants and industrial metals. Trench drains are located in the former maintenance and assembly rooms. These drains may have served as primary pathways for contaminant migration to the subfloor soils and groundwater;
- an additional shallow soil coring and analytical program to further define the
 contaminant plume geometry in soil. Additional soil cores were to be drilled
 primarily in the vicinity of the previous soil coring locations exhibiting the greatest
 impacts and along the floor drain systems suspected to be source areas;
- additional monitoring well installations and groundwater analyses to more broadly
 define the site-specific groundwater flow directions beneath a larger portion of the
 site and to further define the extent of impacted groundwaters beneath the building
 footprint; and
- physical hydrogeologic testing at the site to derive estimates of soil permeability in order to determine the groundwater and contaminant migration rates.

2.0 Field Program

Sear-Brown conducted an additional phase of Supplemental Phase II site investigation at the subject property in August 2001 to complete the investigative tasks outlined in Section 1.2 of this report. The methods and results of the investigative tasks are described in the following sections and are integrated with previous data to provide as complete an understanding of site conditions as the collective data sets afford.

2.1 Floor Drain Test

On August 1, 2001, a floor drain test was conducted on the trench drain in the maintenance room, where the most elevated contaminant levels (in soil core GP-103) had been previously detected (Figure 2). Potable water from the facility was introduced into the floor drain in the maintenance room and observed to discharge directly into the 3 ft. x 3 ft. concrete pit in the vater treatment room. There appeared to be no outlet from the concrete pit. Apparatus on the wall including centifugal pump frames and PVC piping indicated that effluent vas pumped from the pit and into secondary containment vessels that are no longer present in the building.

2.2 Shallow Soil Coring and Ana ytical Program

On August 1, 2001, twelve (12) additional soil corings were advanced within the former Brainerd Manufacturing building. Soil corings SC-6 through SC-17 were conducted in the vicinity of the former GP-103 location and the floor drain system. The locations of the interior soil corings are presented in Figure 2.

In order to investigate the soils beneath the concrete floor slab, a portable, dolly-mounted drill, fitted with a water-cooled concrete corer, was used to cut a four-inch diameter hole in the floor at each of the designated coring locations. Once the subslab soil was reached, an electric jackhammer and Goprobe® direct-push sampling equipment were used to obtain continuous soil cores. The soil coring activities were conducted by MARCOR Remediation, Inc. (MARCOR) of Rochester, New York, under the observation of a Sear-Brown geologist.

The Geoprobe® soil sampling equipment was decontaminated prior to use and between sampling locations using an Alconox and potable water wash followed by a potable water rinse. Throughout and after the cleaning processes, direct contact between the equipment and the ground surface was not permitted. Decontamination water was contained and stored on site in a secured 55-zallon drum for future characterization, transportation and disposal.

Following completion of the test corings, drill cuttings were returned to each hole. The holes were then backfilled with a cement mixture to floor grade.

Soil samples were visually logged for color, moisture content and texture and screened for organic vapors at each of the interior soil coring locations. One specific goal was to further delineate the horizontal and vertical extent of a blackened soil layer that contained elevated levels of solvent-related volatile organic compounds (VOCs) and industrial metals in GP-103. Each soil sample was screened for the presence of volatile organic vapors using a calibrated HNu p notoionization detector (PID). Specifically, portions of the core samples were collected and placed in individual sealed containers. The volatile organic vapors that accumulated within the headspace of the containers were screened for volatile organic vapors using the PID. Soil samples were also visually evaluated for indications of staining, oils, fill, etc. PID readings are presented in Table 1. Boring logs are included in Appendix A.

Soil corings were advanced to 4 feet below floor grade. In general, the shallow soil stratigraphy consisted of a fine I rown and gray to black sandy fill layer overlying native brown silty fine sand. The fill layer was generally 3.5 feet thick. Given initially high PID readings along the path of the floor drain, additional borings were drilled to further delineate the extent of soil contamination (see Figure 2). Blackened fill layers were encountered in SC-7, SC-8, SC-11, SC-13, SC-14 and SC-16. High headspace readings did not correlate directly to the degree of staining, however. Elevated PID headspace measurements for all samples ranged from 6.1 ppm (SC-17) to 175 ppm (at SC-7). Staining and elevated PID measurements were generally noted to sharply decrease with depth in underlying native sands.

Based upon field screening, a total of eighteen (18) soil samples were selected from the shallow soil borings for laboratory analysis. A summary of samples submitted for laboratory analysis is presented in Table 2. The samples were submitted to Paradigm Environmental Services, Inc. (Paradigm) of Rochester, New York, a New York State Department of Health (NYS DOH) certified laboratory, for the following analyses:

- United States Environmental Protection Agency (EPA) Target Compound List (TCL)
 VOCs using EPA Method 8260; and
- total concentrations of chromium, copper, nickel, zinc and total cyanide, by various EPA methods.

2.3 Soil Boring and Analytical Pregram

Two deeper subsurface soil bor ngs were advanced to a depth below the water table within the former Brainerd Manufacturing building to further define groundwater flow directions and the extent of impacts to both soil and groundwater to the north. One boring (MW-4) was located in the warehouse area near the midpoint of the north wall. The second soil boring (MW-5) was located near the northwest corner of the assembly room. The MW-5 location is generally downgradient of the former water treatment room. The locations of the new soil borings are presented in Figure 2.

The two interior soil borings were drilled using hollow stem augers and a propane-powered skid mounted drill rig with low clearance capabilities. Soil boring activities were conducted by Nothnagle Erilling Services (Nothnagle) of Scottsville, New York, under the observation of a Sear-Brown geologist. The downhole drilling equipment was steam-cleaned between boring locations. Soil sampling equipment was decontaminated between sampling locations using an Alconox detergent and potable water wash followed by a potable water rinse. Direct contact between the equipment and the ground surface was not permitted during and after the cleaning process. Auger cuttings and decontamination water were contained and stored on site in secured 55-gallon drums for future characterization, transportation and disposal.

In general, soil samples were collected continuously at each of the soil boring locations using a two-inch diameter, two foot long, split-spoon sampler. Each soil sample was screened for the presence of volatile organic vapors using a calibrated PID. Specifically, portions of the core samples were collected and placed in individual, sealed containers. The containers were then screened for volatile organic vapors using the PID. The PID readings are summarized in Table 1. Soil samples were also visually evaluated for indications of staining, oils, fil, etc. Boring logs for MW-4 and MW-5 are also included in Appendix A.

Monitoring wells MW-4 and MW-5 were designed to straddle the water table. Therefore, the most easterly exterior boring, MW-4, was drilled to a depth 28 feet below grade. The MW-5 boring was drilled to a lepth 30 feet below grade. Very uniform, brown, silty fine sand was observed in each of the borings. These native sands extend from 3 to 4 ft. below the concrete floor to the depth of the borings. The top 3 to 4 feet of soils consisted of fill comprised of reworked native material with some gravel. The blackened zone observed at some soil coring locations further south was not observed in borings MW-4 and MW-5.

Two soil samples were selected from each of the deep subsurface borings for laboratory analysis. One sample was selected from the fill zone immediately beneath the concrete floor, and the second soil sample was selected from the approximate depth of the water table. The samples were submitted to Paradigm for analysis of VOCs by USEPA TCL using EPA Method 8260 and total analysis of chromium, copper, nickel, zinc and total cyanide by various EPA methods.

A summary of soil samples submitted for laboratory analysis is presented in Table 2.

2.3 Well Installation and Analytical Program

To further evaluate the magn tude and northward extent of previously identified impacts to groundwater, borings MW 4 and MW-5 were completed with monitoring wells. Each groundwater monitoring well was constructed of two-inch diameter, Schedule-40 PVC riser and 0.010-inch slot well screens. Ten-foot well screens were installed such that they straddle the water table. San I packs were placed in the borehole annulus extending six

inches (6") below and approximately two feet (2') above the well screens. In each well, the sand pack was capped with a bentonite seal and the remaining annulus was grouted to the surface. The wells were completed with locking caps and flush-mounted roadboxes. Well construction details for new and existing wells are summarized in Table 3. Well details are also listed on the incividual boring logs and well design logs contained in Appendix A.

After allowing the bentonite seals to expand, the monitoring wells were developed utilizing dedicated bailers. The wells were developed in an effort to remove sediment from each well and to facilitate groundwater flow through the screened interval from the adjacent aquifer. Evacuated water was contained and stored on site in secured 55-gallon drums for future characterization, transportation and disposal.

The two new wells and the three existing wells were sampled on August 21, 2001. Prior to sampling, water level measurements were obtained from each of the five wells for subsequent evaluation of groundwater flow direction. To obtain representative formation water, each of the monitoring wells were purged of a minimum of three well volumes with a dedicated, disposable bailer and until consecutive pH, specific conductance, and temperature readings of the evacuated water were within 10 percent. Water level measurements and well purging data are summarized in Table 4 and Table 5, respectively.

One groundwater sample was collected from each of the five on-site monitoring wells. The groundwater samples were submitted to Paradigm and analyzed for USEPA TCL VOCs using EPA Method 8260 and chromium, copper, nickel, zinc and total cyanide by various EPA methods. A trip blank was also analyzed for TCL VOCs for QA/QC purposes. A groundwater sample summary is provided in Table 6.

3.0 Supplemental Subsurface Site Investigation Results

3.1 Hydrogeology

Groundwater Flow Direction

Water level data from the five on-site monitoring wells were collected on August 21 and 28, 2001 (see Table 4). These data generally indicate a depth to water of 19 to 24 ft. bgs. These data are believe i to represent late summer seasonal low water table conditions. During the spring high water table condition, water levels may be expected to rise as much as three feet. A water-table contour plot based upon the available water level data indicates that groundwater generally flows in a north-northwesterly direction (Figur: 3). This site-specific flow direction is toward the axis of the Irondogenesee Valley (Irondequoit Creek) and is generally consistent with the direction depicted on regional aquifer maps.

Hydraulic Conductivity

The hydraulic conductivity of the sandy glacial deposits has been estimated using slug testing and grain-size dis ributions. The grain-size method utilized is the Hazen method.

In-situ hydraulic conductivity tests were performed at all on-site monitoring wells using both the rising head and falling head methods. The falling head test data were considered more reliable than the rising head data (i.e., not affected by sandpack gravity drainage) and were, therefore, used to calculate hydraulic conductivity values using the Hyorslev method.

Sear-Brown used AQTESOLV software to generate plots and calculations of hydraulic conductivity. Resultant hydraulic conductivity values are summarized in Table 7. AQTESOLV plots and calculations are provided in Appendix B.

The hydraulic conductivity of the fine sand samples were also estimated based upon grain-size distributions using the Hazen Method. Typical native sand deposits from the 24 to 26 ft. bgs interval from borings MW-4 and MW-5 were submitted for grain-size analyses. The geo echnical laboratory report is presented in Appendix B. The Hazen method, which is based upon the effective grain size or d_{10} on particle distribution plots, yielded hy traulic conductivity values of 1.04×10^{-3} cm/s and 6.00×10^{-4} cm/s (see Table 7). The geometric mean of these values derived from the Hazen Method is 7.9×10^{-4} cm/s, a value that is consistent with the permeability estimates for well-sorted fine sands and is also a value consistent with the slug tests performed on the monitoring wells.

Using the available water level, the average hydraulic conductivity and an average porosity of the on-site soils, an estimated average linear velocity for groundwater flow can be calculated. The equation for the linear velocity is:

 $V = \frac{Ki}{n_e}$ where K= hydraulic conductivity i= hydraulic gradient and n_e = effective porosity

Based upon the Hazen method calculations, the mean hydraulic conductivity value of the native sand deposits is 7.9 × 10⁻⁴ cm/s. Based upon the water level data from August 28, 2001, the hydraulic gradient (i.e. the slope of the water table) is 0.009 ft/ft as measured between wells MW-3 and MW-4. Using representative porosity value of 30 percent, an estimated linear velocity of 2.3 x 10⁻⁵ cm/s is calculated. This value equates to a groundwater flow velocity of roughly 24 feet per year.

3.2 Analytical Results

Based upon field observations and known contaminants of concern, Sear-Brown selected and submitted soil and groundwater samples for laboratory analyses as part of the August 2001 Supplemental Phase II Site Investigation Program. Laboratory analytical results for the submitted soil samples were tabulated and compared to New York State Department of Environmental Conservation (NYSDEC) Division of Technical and Administrative Guidance Memorandum (TAGM 4046) Recommended Soil Cleanup Objectives (January 1994, revised December 2000) and Eastern USA background ranges. Laboratory analytical results for the groun Iwater samples were compared to NYS DEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values (re-issued in June 1998). Soil and groundwater analytical results from the previous subsurface investigation are not included in the comparative tables. However, the previous data have been used in various contour plots depicting concentration gradie ats for various contaminants of concern in order to provide as complete an evaluation of environmental conditions beneath the site as the available data affords.

3.2.1 Soil Analytical Results

3.2.1.1 Volatile Organ c Compounds

The volatile or ganic compounds detected in soil samples collected from the shallow soil cores and the auger borings are summarized in Table 8. The August 2011 soil analytical results indicate concentrations of tetrachloroethene and/or trichloroethene in 17 of the 22 soil samples submitted from the interior shallow soil coring and deeper auger boring locations. Concentrations of tetrachloroethene (PCE) exceeded the NYS DEC Recommended Soil Cleanup Objective of 1,400 ppb at seven soil sample locations: SC-7, SC-8, SC-10, SC-11, SC-13, SC-14 and SC-16

(2 depths). PCE concentrations at these locations ranged from 2,600 to 20,600 ug/kg. A: those locations where two samples were collected to evaluate the vertical extent of impacts, the elevated concentrations of PCE were underlain by notably lower concentrations except at SC-16.

Concentrations of trichloroethene (TCE) exceeded the NYS DEC Recommended Soil Cleanup Objective of 700 ppb in soil samples from eight locations (the same 7 locations as PCE plus SC-17). Detectable concentrations of TCE in soil ranged from 1,400 to 8,740 ug/kg. The August 2001 analytical results for the four submitted deep soil boring samples (MW-4 and MW-5) indicated no contravention of the NYSDEC Recommended Soil Cleanup Objectives for VOCs detected farther south. Thus, the source area for VOCs in soils appears to be limited to the southern half of the building footprint.

Figures 4 and 5 present contour plots that illustrate the lateral trends in reported concentrations of PCE and TCE in soil samples analyzed to date. As stated previously, the contour plots in Figures 4 and 5 are based in part, on data from the April-May 2001 subsurface investigation. The resultant concentration gradients for both PCE and TCE indicate a probable source area in the vicinity of the floor drain system, Buffing Line, and the Clair Room.

3.2.1.2 Inorganic Elements and Compounds

The detected inorganic elements and compounds reported from the August 2001 soil sampling program are summarized in Table 9. Contour plots of chromium, copper, nickel and zinc concentrations in soil are presented in Figures 6, 7, 8 and 9, respectively. Cyanide was not plotted because it was detected only at two locations and at very low concentrations (see Table 9).

The August 2001 soil analytical results indicate chromium, copper, nickel and zinc in soil samples at concentrations in excess of the NYSDEC Recommended Soil Cleanup Objectives. Chromium concentrations were reported above the Soil Cleanup Objective of 50 ppm in samples from SC-6, SC-11 and SC-17. Copper was reported at concentrations above the soil cleanup objective and the Eastern USA background range in 15 samples. Nickel concentrations were reported above the soil cleanup objective and the 25 ppm upper limit of the Eastern USA Background range in nine samples. Zinc concentrations were reported above their respective soil clean-up objective and the 50 ppm upper limit for the Eastern USA Background range in 16 soil samples.

The August 2001 analytical results for the four submitted deep soil boring samples (MW-4 and MW-5) indicate no contravention of the NYS DEC

Recommended Soil Cleanup Objectives for detected inorganic compounds. Thus the source area for elevated metals in soils appears to be limited to the southern half of the building footprint.

3.2.2 Groundwater Analytical Results

3.2.2.1 Volatile Organic Compounds

The laboratory-reported concentrations of detected volatile organic compounds from the August 2001 groundwater sampling program are summarized in Table 10. A contour plot of the total concentration of chlorinated compounds in groundwater is presented in Figure 10. In addition, an overlay of the groundwater plume on an aerial photo is presented in Figure 11.

The August 2001 analytical results indicate that chlorinated volatile organic compounds were detected in groundwater from MW-2, MW-3, MW-4 and MW-5 at concentrations in excess of the NYS DEC Groundwater Standards. The highest concentration of tetrachloroethene (PCE) was detected in the MW-5 groundwater sample (1,200 ug/l). The groundwater standard for PCE is 5 ug/l. In addition, trichloroethene (TCE) was also detected in groundwater samples from MW-2, MW-3, MW-4 and MW-5 at concentrations exceeding the NYS DEC Groundwater Standard of 5 ppb. The highest concentration of TCE was detected in MW-5 (1,100 ppb). MW-5 is believed to be downgradient from the suspected source area.

Figure 10 presents a contour plot that illustrates the trends in total concentrations of chlorinated volatile organic compounds detected within groundwater samples submitted from the wells MW-2, MW-3, MW-4 and MW-5. In addit on, previous data from MW-201 and MW-203 were used to constrain the east-west dimension of the plume. Given the north-northwesterly groundwater flow direction (see Figure 3) and the elevated concentrations of chlorinated solvents in MW-5, the axis of the groundwater plume appears to be oriented along the water treatment room, floor drain system and former degreasing areas.

Figure 11 depic's the chlorinated plume in groundwater overlain on an aerial photo of the facility and the immediate area surrounding the facility. Given that the lighest chlorinated concentrations in groundwater exist at northern property boundary, it is likely that off-site migration of VOCs in groundwater has occurred.

3.2.2.2 Inorganic Compounds

Analytical results for inorganic compounds in groundwater are presented in Table 10. Based upon the results from the August 2001 groundwater sampling program, zinc was detected in each groundwater sample but at concentrations well below groundwater standards. However, chromium was present in one sample, MW-5, at 145 ug/l. The groundwater standard for chromium is 50 ug/l.

4.0 Conclusions

Sear-Brown conducted a Supplemental Phase II Site Investigation at the subject property in August 2001. This program built upon the findings of earlier phases of investigation and included floor drain dye testing, shallow interior soil coring, soil sampling, interior monitoring well installations and groundwater sampling and analyses.

The August 2001 soil analytical results indicate concentrations of tetrachloroethene (PCE) exceeded the NYS DEC Recommended Soil Cleanup Objective of 1,400 ppb at seven shallow soil sample locations: SC-7, SC-8, SC-10, SC-11, SC-13, SC-14 and SC-16 (2 depths). PCE concentrations at these locations ranged from 2,600 to 20,600 ug/kg. At those locations where two samples were collected to evaluate the vertical extent of impacts, the elevated concentrations of PCE were underlain by notably lower concentrations except at SC-16. Concentrations of trichloroethene exceeded the NYS DEC Recommended Soil Cleanup Objective of 700 ppb in soil samples from eight locations (the same seven locations as PCE plus SC-17). Detectable concentrations ranged from 1400 to 8,740 ug/kg. Contour plots of PCE and TCE in soil indicate a source area in the vicinity of the floor drain system, Buffing Line and the Clair Room.

The August 2001 soil analytical results indicate chromium, copper, nickel and zinc in soil samples at concentrations in excess of the NYSDEC Recommended Soil Cleanup Objectives. Chromium concentrations were reported above the Soil Cleanup Objective of 50 ppm in samples from SC-6, SC-11 and SC-17. Copper was reported at concentrations above the soil cleanup objective and the Eastern USA background range in 15 samples. Nickel concentrations were reported above the soil cleanup objective and the 25 ppm upper limit of the Eastern USA Background range in nine samples. Zinc concentrations were reported above their respective soil clean-up objective and the 50 ppm upper limit for the Eastern USA Background range in 16 soil samples.

The August 2001 analytical results in licate that chlorinated volatile organic compounds (PCE and TCE) were detected in groundwa er from wells MW-2, MW-3, MW-4 and MW-5 at concentrations in excess of the NYS DEC Groundwater Standards. The highest concentration of PCE was detected in MW-5 (1,200 ug/l). The highest concentration of TCE was 1,100 ppb also in MW-5. One inorganic compound, chromium, was reported above its respective groundwater standard. Chromium was reported at 145 ppb also in MW-5. MW-5 is believed to be downgradient from the suspected source area.

The trends in total concentrations of chlorinated volatile organic compounds detected in groundwater indicate that the plume sppears to be oriented along the water treatment room, floor drain system and former degreasing areas. Given that the highest chlorinated concentrations in groundwater exist at northern property boundary, it is likely that off-site migration has occurred.

TABLE 1
SUMMARY OF PID HEADSPACE READINGS (ppm)

BOREHOLE	DEPTH (ft BGS)	PEAK (ppm)	PID READINGS SUSTAINED (ppm)	BACKGROUNI (ppm)	
	(It DOS)	(рріп)	(рріп)	(ррш)	
SC-6	1.2-2.8	10.9	6.5	0.5	
	2.8-4.0	1.7	1	0.5	
SC-7	0.5-2.4	12.5	1.6	0.4	
	2.8-3.4	175.0	51	0.4	
	3.4-4.0	22.0	2.5	0.5	
SC-8	2.0-2.8	73.0	32	0.5	
	3.5-4.0	29.0	6.5	0.5	
SC-9	2.5-3.0	71.0	16.8	0.5	
50-7	3.5-4.0	37.0	6.3	0.5	
SC-10	2.0-2.8	73	16	0.5	
50-10	3.5-4.0	42.0	34	0.5	
			6	0.5	
SC-11	0.4-3.5	39 6.8	15	0.5 0.5	
	3.5-4.0		2	0.5	
SC-12	0.4-2.5	9.6	6.5	0.5	
	2.5-4.0	6.5	2.7	0.5	
SC-13	2.0-2.5	132.0	47	0.5	
	2.5-4.0	34.0	11.3	0.5	
SC-14	0.5-3.0	68.0	23	0.5	
	3.0-4.0	11.7	3.7	0.5	
SC-15	0.6-3.5	1.0	0.8	0.5	
	3.5-4.0	0.6	0.5	0.4	
SC-16	0.5-3.0	144.0	50	0.4	
	3.0-4.0	13.0	2.3	0.4	
SC-17	0.5-3.0	6.1	5.8	2.8	
	3.0-4.0	3.1	3.1	2.8	

TABLE 1
SUMMARY OF PID HEADSPACE READINGS (ppm)

BOREHOLE	DEPTH (ft BGS)	PEAK (ppm)	PID READINGS SUSTAINED (ppm)	BACKGROUND (ppm)
	(IL DOS)	(ppiii)	(ppin)	(рріп)
MW-4				
S-1	0-2.0	1.0	0.7	0.5
S-3	4.0-6.0	0.8	0.7	0.5
S-4	6.0-8.0	0.7	0.6	0.5
S-5	8.0-10.0	0.6	0.6	0.5
S-6	10.0-12.0	1.0	0.8	0.5
S-7	12.0-14.0	1.4	0.9	0.5
S-8	14.0-16.0	1.7	0.9	0.5
S-9	16.0-18.0	1.3	1.0	0.5
S-10	18.0-20.0	2.0	1.3	0.5
S-11	20.0-22.0	1.7	1.2	0.5
S-12	22.0-24.0	4.5	2.3	0.5
S-13	24.0-26.0	2.3	1.0	0.5
S-14	26.0-28.0	2.3	1.4	0.5
MW-5				
S-1	0.5-2.0	1.3	S 1.1	0.5
S-2	2.0-4.0	1.6	0.9	0.5
S-3	4.0-6.0	0.9	0.7	0.5
S-4	6.0-8.0	0.7	0.7	0.5
S-5	8.0-10.0	1.2	1.1	0.5
S-6	10.0-12.0	1.5	1.1	0.5
S-7	12.0-14.0	2.2	1.8	0.5
S-8	14.0-16.0	2.2	1.6	0.5
S-9	16.0-18.0	1.8	1.4	0.5
S-10	18.0-20.0	1.9	1.6	0.5
S-11	20.0-22.0	3.4	1.9	0.5
S-12	22.0-24.0	7.8	4.2	0.5
S-13	24.0-26.0	5	4.4	0.5
S-14	26.0-28.0	5.5	3.7	0.5

TABLE 2 SOIL SAMPLE SUMMARY

1.2-2.8 8/1/2001 2.8-4.0 8/1/2001 2.4-2.8 8/1/2001 3.4-4.0 8/1/2001 2.0-2.8 8/1/2001 3.5-4.0 8/1/2001 2.5-3.0 8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid
2.8-4.0 8/1/2001 2.4-2.8 8/1/2001 3.4-4.0 8/1/2001 2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanida
2.4-2.8 8/1/2001 3.4-4.0 8/1/2001 2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid
3.4-4.0 8/1/2001 2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid
3.4-4.0 8/1/2001 2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanid
2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio Chromium, Copper, Nickel, Zinc, Total Cyanio
2.0-2.8 8/1/2001 3.5-4.0 8/1/2001	Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio
3.5-4.0 8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio
3.5-4.0 8/1/2001	Chromium, Copper, Nickel, Zinc, Total Cyanio VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanio
	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanic
	Chromium, Copper, Nickel, Zinc, Total Cyanio
2.5-3.0 8/1/2001	
2.5-3.0 8/1/2001	VOC-1- TD4 M-1- 10000
	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanio
3.5-4.0 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanic
2.0-2.8 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanic
3.5-4.0 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanio
2.5-3.2 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanie
1.0-2.5 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyanic
2.0-2.5 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyani
3.5-4.0 8/1/2001	VOCs by EPA Method 8260
	Chromium, Copper, Nickel, Zinc, Total Cyani
2.0-3.0 8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyani

TABLE 2 SOIL SAMPLE SUMMARY

Sample ID	Sample Depth	Date	Parameters
SC-16	2.0-2.5	8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
SC-16	3.5-4.0	8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
SC-17	0.5-3.0	8/1/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-4	0.5-1.7	[°] 8/15/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-4	20.0-22.0	8/15/2001	Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-4	22.0-24.0	8/15/2001	VOCs by EPA Method 8260
MW-5	0.5-2.0	8/16/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-5	22.0-24.0	8/16/2001	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide

TABLE 3 WELL COMPLETION SUMMARY

Former Brainerd Manufacturing 115 North Washington Street East Rochester, NY

WELL DESIGNATION	REFERENCE ELEVATION (assumed datum)	GROUND ELEVATION (assumed datum)	BENTONITE SEAL ft BGS	SANDPACK INTERVAL ft BGS	SCREENED INTERVAL ft BGS	TOTAL DEPTH ft BGS
Existing Wells		,				
Existing wens						
MW-1	101.42	102.0	51.0 - 53.5	53.5 - 71.8	56.8 - 71.8	71.8
MW-2	103.26	103.7	15.3 - 17.9	17.9 - <mark>3</mark> 5.0	20.0 - 35.0	35.0
MW-3	97.98	98.5	10.0 - 13.0	13.0 - 30.0	15.0 - 30.0	30.0
New Wells						
MW-4	101.33	101.8	12.0 - 15.5	15.5 - 28.0	17.5 - 27.5	28.0
MW-5	101.26	. 101.7	14.9 - 17.3	17.3 - 30.0	19.5 - 29.5	30.0

Notes:

1. Reference elevation based upon an assumed datum of 100.00 ft.; chiseled "x" n'ly b. bolt on fire hyd.

2. ft. BGS = feet below ground surface.

TABLE 4 WATER LEVEL SUMMARY

Former Brainerd Manufacturing 115 North Washington Street East Rochester, New York

WELL	REFERENCE	August	21, 2001	August 28, 2001		
	ELEVATION	(ft btoc)	(Elevation)	(ft btoc)	(Elevation)	
MW-1	101.42	22.72	78.70	22.65	78.77	
MW-2	103.26	23.86	79.40	23.82	79.44	
MW-3	97.98	19.10	78.88	19.00	78.98	
MW-4	101.33	24.06	77.27	24.14	77.19	
MW-5	101.26	24.01	77.25	24.03	77.23	

Notes:

- 1. Reference elevation based upon an assumed datum of 100.00 ft.; chiseled "x" n'ly b. bolt on fire hyd.
- 2. Reference elevations located at top of 2-inch PVC well risers.
- 2. ft. btoc = feet below top of casing.

TABLE 5
WELL PURGING SUMMARY

Former Brainerd Manufacturing 115 North Washington Street East Rochester, New York

Well	Date	Time	Well	pH	Conductivity	Temperature	Turbidity	ORI
			Volume	(su)	(umhos/cm)	(°C)		
MW-1	8/21/2001	13:08	1	7.28	1,128.0	13.4	19.50	-4.0
		13:54		7.13	1,138.0	14.8	13.16	-32.0
		14:15	2 3 4	7.34	1,173.0	13.4	8.12	-48.0
MW-2	8/21/2001	12:25	1	7.55	2,045.0	13.2	>200	176.
		12:31	2 3	7.41	1,844.0	12.7	>200	180.
		12:40	3	7.44	2,132.0	13.4	>200	196.
MW-3	8/21/2001	11:36	1	7.36	3,208.0	14.1	>200	179.
		11:45	2	7.46	3,338.0	15.0	>200	176.
		12:01	3	7.79	3,248.0	14.8	>200	182.
MW-4	8/21/2001	9:54	1	6.71	4,341.0	15.5	>200	131.
		10:00	2	6.76	4,212.0	14.8	>200	123.
		10:05	3	6.86	4,177.0	14.8	>200	136.
		10:10	. 4	7.09	4,176.0	14.8	>200	211.
		10:14	5	7.03	4,169.0	14.5	>200	216
MW-5	8/21/2001	10:36	1	6.87	2,817.0	14.7	>200	249
		10:44	2 3	7.22	2,714.0	14.5	>200	227
		10:49		7.15	2,939.0	14.4	>200	221.
		10:57	4	7.18	2,736.0	14.5	>200	220.
		11:02	5	6.82	2,910.0	14.5	>200	230.

Notes:

- 1. su = standard units.
- 2. umhos/cm = micromhos per centimeter.
- 3. (°F) = degrees Farenheit.

TABLE 6 GROUNDWATER SAMPLE SUMMARY

Sample ID	Date	Method	Parameters
		8	
MW-1	8/21/01	-dedicated bailer	VOCs by EPA Method 8260. Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-2	8/21/01	-dedicated bailer	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-3	8/21/01	-dedicated bailer	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-4	8/21/01	-dedicated bailer	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide
MW-5	8/21/01	-dedicated bailer	VOCs by EPA Method 8260 Chromium, Copper, Nickel, Zinc, Total Cyanide

TABLE 7 SUMMARY OF HYDRAULIC CONDUCTIVITIES

Former Brainerd Manufacturing 115 North Washington East Rochester, NY

Estir	nates Deri	ved from Slug	Γests	
WELLS		RISING HEAD (cm/sec)	FALLING HEAD (cm/sec)	
MW-1	1	6.17E-04	5.81E-04	
MW-2		1.45E-03	3.68E-04	
MW-3		3.18E-06	3.18E-06	
MW-4		3.81E-04	1.68E-04	
MW-5		2.52E-03	2.95E-04	

Note:

- 1. Slug Test Geometric Mean = 1.98E-04.
- 2. cm/sec = centimeters per second.

Estimates Derived from Grain Size Analyses					
WELLS	DEPTH (ft/bgs)	HAZEN METHOD (cm/sec)			
MW-4	24 - 26	6.00E-04			
MW-5	24 - 26	1.04E-03			

3

Note:

- 1. Hazen Method Geometric Mean = 7.9E-04.
- 2. cm/sec = centimeters per second.
- 3. ft/bgs = feet below ground surface.

TABLE 10 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER (ug/L)

Former Brainerd Manufacturing 115 North Washington Street East Rochester, NY

		A	NYSDEC Groundwate			
COMPOUNDS	MW-1	MW-2	MW-3	MW-4	MW-5	Standards and Guidanc Values (*)
EPA 8260					-	
Acetone		i				50
m,p Xylene						5
o Xylene		*				5
Tetrachloroethene	5	10	10	28	1,200	5
Trichloroethene		12	43	190	1,100	5
1,1,1-Trichloroethane						2
Total Chlorinated Compounds	5	22	53	218	2,300	
Metals			* *			
Zinc	25	25	37	85	42	2,000
Chromium					145	50

Notes:

- 1. ug/l = micrograms/liter which is equivalent to parts per billion (ppb).
- 2. (*) = NYSDEC. June 1998. Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (1.1.1).
- 3. Bold = reported concentration above groundwater cleanup standard.
- 4. ** = estimated values.
- 5. *** = acetone suspected to be an artifact of well supply manufacturer.

ENGINEERING PLANNING CONSTRUCTION

Former Brainerd Manufacturing

115 North Washington Street
Village of East Rochester, Monroe County, New York

Site Location Map

Scale: 1:24,000 Source: USGS Topographic Maps: Rochester East, Pittsford, Fairport and Webster Quadrangles (Photorevised 1978)

85 Metro Park Rochester, N.Y. 14623-2674 (716) 475-1440 www.searbrown.com

FROMER BRAINERD MANUFACTURING 115 N. WASHINGTON STREET EAST ROCHESTER, NEW YORK

TITLE OF DRAWNO GROUNDWATER PLUME ON ARIEAL PHOTO

PROJECT NO. 16366.01 DRAWING NO.

FIG. 11

Elevation:

Weather:

Test Boring No. Mw-4

Page / of 7

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Location: East Rochester, NY

Drilling Contractor: Nothnagle Driller: J. Stockholm

Start Date: August 15, 2001 Completion Date: August 15, 2001

Drilling Method: 4-1/4 in. hollow stem augo

Supervisor: P. Smith

]	Blows o	n Samp	ler ·		SAN	PLE		Soil and Rock Information
0	C	0-6"	6-12"		18-24"	PID	Rec.	No.	Depth	Remarks
										Concrete
		11				1.0	15"	1	2.0	
			53						2.0	July The SAND SOME SIN
		,		86				<u> </u>		gray from Fine SAND soute sitt
		68	 			0.8	NR	2	2.0-	No Recovery
-			100/6						3.0	(FILL) 3.
-			 							
- }	-	8				7	21/1/	3	4.0-	Light brum sitty fine SAND, dry
5		0	5			.7	24"	3		I ma shot, any
			3	7					6.0	
1				/	6			1		
		12			9	0.6	12".	. 4	6.0-	(NATIVE)
			14	-			10	17	8.0	- Same, except moist
				14					5.0	,
					10					
		13				1.0	16"	5	F-0-	
			12						10.0	-same
				9						
2				,	10					√6.
		8				1.4	16"	6	10.0-	-Same
1			10						12.0	
-				14						•
-		-			13	- 7	11 h	-		
-		9				1.7	16"	7	12.0	- seme
			9	0				1	-14.0	
t				9	11					
		8				1.3	24"	8	14.0-	†·
5			8						16.0	- Same
				10					70.0	
					17					
		23				2.0	16"	9	16.0-	
			26						18.0	- Same
				33						
		0.0			27	, _		,		
-		26	2.0			1.7	16"	10	18.0	
+			26	2					-20.0	- Same
1				25	25					

N = No. of Blows to Drive $2^{"}$ Spoon $12^{"}$ with 140 lb. Wt. $2^{"}$ Ea. Blow C = No. of Blows to Drive $2^{"}$ Casing with lb. Wt. Ea. Blow

* Note: due to limited clearance, full 30" drop not attained.

Test Boring No. MW-4

Page 2 of 2

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Location: East Rochester, NY

Drilling Contractor: Nothnagle

Driller: J. Stockholm Elevation:

Weather:

Start Date: August 15, 2001 Completion Date: August 15, 2001

Drilling Method: 4-1/4 in. hollow stem auger

Supervisor: P. Smith

Ke.		1	Blows o	n Samp	ler .		SAM	PLE		Soil and Rock Information
120	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		22				1.7	16"	11	20-	-same, except gray brum
			17						22	
				22						wet @ 21.5'
					22					·
		28				4.5	16"	12	22-	- Same
el .			26						24.0	
				28				-		
		-			27		1/ 11	1.3		
		21				2.3	16"	13	24-	- Same
5			30						26.0	
				31						
		- 6			41	- 2	1/ 11	1.7		
		26	2.6			2.3	16"	14	26 -	- Same
			34	34	-			-	28.0	
-		-		34	2.0			+		28,0
	-				30				-	
										Boring terminated at 28.0 Ft Bles.
	-									8
)										6 28.0 FT BGS.
	_									
					-					
			-		-					
	-				-			-		
		-	1		-		-	-		
				-	-			-		

* Note: due to limited cheavance; full 30" drop not attained.

N = No. of Blows to Drive Spoon 12" with 140 lb. Wt. Ea. Blow C = No. of Blows to Drive Land Casing with lb. Wt. Ea. Blow

HOLE DIAMETER:

OVERBURDEN MONITORING WELL

DESIGN DETAILS

PROJECT NAME PROJECT NUMBER CLIENT LOCATION 115 N. Washington	HOLE DESIGNATION DATE COMPLETED DRILLING METHOD GEOLOGIST WELL INSTALLATION MW-4 8-15-01 1+54 4-174 inch Complete Complet
CAPTYPE <u>flush mant</u> wal 6 of PROTECTIVE CASING GROUND	STICK-UP 6 A SURFACE SEAL TYPE concrete
TOP OF SEAL* AT 12.0 ft BOTTOM OF SEAL* AT TOP OF SCREEN* AT 7.5 ft	WELL CASING ANNULUS BACKFILL TYPE: Grout SEAL TYPE: Bentonite Pellets PACK TYPE: - SAND, SIZE
BOTTOM OF SCREEN* AT 27.5 ft BOTTOM OF HOLE* AT 28.0 ft (Rock)	NOTE: ALL DIMENSIONS ARE BELOW GROUND SURFACE (BGS)
SCREEN TYPE: CONTINUOUS SLOT F SCREEN MATERIAL: STAINLESS STEEL	PERFORATED LOUVRE OTHER PVC \(\times \) OTHER
SCREEN LENGTH: ft SCREEN DIAME	TER 2 in SCREEN SLOT SIZE: 0.010

Test Boring No. MW-5

Page 1 of 2

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Location: East Rochester, NY

Drilling Contractor: Nothnagle

Driller: J. Stockholm

Elevation: ______ Weather:

Start Date: August 16, 2001

Completion Date: August 16, 2001

Drilling Method: 4-1/4 in. hollow stem auge:

Supervisor: P. Smith

		I		n Sampl			SAM	-		Soil and Rock Information
0	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
										Concrete 0:
		36					9"	1	0.5 -	Gray brown c- F SAND, some sitt, dry (FILL)
			84						2.0	July 1-
				53						org (FILL)
		10					2"	2	2-	-same
			18						4.0	-serve
				13				-		4.0
					17			-		
5		2					24"	3	4-	Brown silly fine SAND, moist
<u>5</u> _			2						6.0	
			-	3				-	1	NATIVE
					4		C 11	3.	,	NATIVE
		10					6"	4	6-	-same
			20					-	8.0	-same
		-	-	28	26			-	1	
		11	-		26		18"	5		
	-	11	1.0				10	1	100	-same
	_		17	17	-				1 /0.0	
0	-		1	1/	13					-same
_		6			10		18"	6	10 -	0.0
		1	12						12.5	-same
				13] /2.0	
					16					
		7					18 *	7	12-	-same
			11						14.0	3 whice
				13						
					14					
/		13					18"	8	14-	- Sane
15	_		10	1				+	16.0	- Same
	-	-	-	17	-			+	-	
	-	10		-	22		10"	19	11.11.0	
	-	68					10	1	16-1619	- Same
	-	+	100/5		-			-		
	-		1							
	-			1			18"	10	10	
		+					, 4		7/8-	-same
] 20.0	
10				1						

* Note: due to limited clearance, full 30" drop not attained

Weather:

Test Boring No. Mw-5

Page 2 of 2

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Location: East Rochester, NY

Drilling Contractor: Nothnagle

Driller: J. Stockholm
Elevation:

Start Date: August 16, 2001 Completion Date: August 16, 2001

Drilling Method: 4-1/4 in. hollow stem auger

Supervisor: P. Smith

2		I	Blows o	n Sampl	ler		SAN	PLE		Soil and Rock Information
20	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		31				3.4	12"	111	20-	-same
			31						2210	
				34						
					30					
		24				7-8	18"	12	22-	-same, except net
i			40						23.4	
				100/5				1		
-		36				5.0	24"	13	24-	-same
25			56					-	26.0	
				70						
					92			111		
		49	,			5.5	10"	14	26.9	-same
			100/4					-	20,7	
			1					-		
	_							-		
	-									Auger from 28.0 to 30.0
	-									ula Carolis
30	-									sau pung
>0										
	-		-							Boring terminated at
	-								-	30 A. B.S.
	-							1		30 H. BQS
			<u> </u>							
							4-1-1			
.5										
1-								-		
10										

N = No. of Blows to Drive Spoon 12" with 140 lb. Wt. Ea. Blow C = No. of Blows to Drive Casing bits with lb. Wt. Ea. Blow

* Note: due to limited clearance, full 30" drop attained.

OVERBURDEN MONITORING WELL

DESIGN DETAILS

PROJECT NAME PROJECT NUMBER CLIENT LOCATION	Brainard 1636602 115 N. Washing	HOLE DESIGNATION DATE COMPLETED DRILLING METHOD GEOLOGIST WELL INSTALLATION	8-16-01 HSA 4-1414 HSA P.Smith
	mount wal box		4
	GROUNI		SURFACE SEAL TYPE Concorte
TOP OF SEAL* AT 14.9	ft		WELL CASING ANNULUS BACKFILL TYPE: Grout
BOTTOM OF			SEAL TYPE: Bentonite Pellets
SEAL* AT 17.3 TOP OF SCREEN* AT 19.5			PACK TYPE: - SAND, SIZE
BOTTOM OF SCREEN* AT 29.5 BOTTOM OF HOLE* AT 30.0	ft (Rock)		* NOTE: ALL DIMENSIONS ARE BELOW GROUND SURFACE (BGS)
SCREEN TYPE:	CONTINUOUS SLOT	PERFORATED	LOUVRE OTHER
SCREEN MATERIAL:	STAINLESS STEEL	PVC X	OTHER
SCREEN LENGTH:	ft SCREEN D	PLAMETER 2 in	SCREEN SLOT SIZE: 0.010
WELL CASING MATERIAL:	PVC	WELL CAS	ING DIAMETER: 2 in

Finah

HOLE DIAMETER:

Test Boring No. 52-6

Page / of /

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

		I	Blows o	n Samp	ler 😁	512.22				Soil and Rock Information Remarks Concrete	Soil and Rock Information			
0	C			12-18"		PID	Rec.	No.	Depth					
									CORE	ı				
						10,9	26"	1	1,2	Dark gray stained silty Fine SAND (FILL)				
									~ 4.0	SAND (FILL)				
						1.7				Brum silly fine stand, moist				
										(NATIVE)				
			·							Boring terminated at 4.0 Ft BGS				
'														
7														

Test Boring No. SC-7

Page / of /

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 200
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

		1	Blows o	n Samp	ler *		SAM	IPLE		Soil and Rock Information
0	C	0-6"		12-18"		PID	Rec.	No.	Depth	Remarks
										Concrete .
						12.5	29"	1	0,5	,
								i	-4.0	Gray brown silty fine SAND al gravel
										(FILL)
-										
						175				-Same except dark brown to black, strong sheep oder 2
						22				Brown silty Fine SAND
Į.										(NATIVE)
										Boring terminated @ 410 AB
-			·							•
									,	
					•					
							10000			
3							201			-

Test Boring No. SC-8

Page 1 of 1

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

Soil and Rock Information		PLE	SAM		er	n Sampi	slows of	Ŀ		- 1
Remarks	Depth	No.	Rec.	PID	18-24"	12-18"	6-12"	0-6"	C	0
Concrete o.										
Gray to black said al	0.4-		34"							1.
gravel, partially cementer	4.0									
mild odor				-						-
			*****							2
(FILL)										-
				73						F
2,8				13						2
Brun silty fine Sand (stoined from 2.8-3-2 for RGS)										3
from 2.8 - 3-2 fg RGS)										ļ
(NATIVE)										. +
4.0				29						4
Boving terminated @										t
Boring terminated @ 4.0 Ft BGS										-
										5
										-
*										5
										-
										2
										'
										0
										ĭ

Test Boring No. SC-9

Page | of |

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

9		Blows on Sampler				SAMPLE				Soil and Rock Information		
0 C		0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks		
										Concrete	0-4	
1.								,	-4.0	Brum to gray brum STITY fine SAND	1~	
2												
3						71				-strong odor @ 20	s fablus	
4						37				· · · · · · · · · · · · · · · · · · ·	4,0	
5			·				·			Boring terminated @	4.0 ff 84s	
6								-	•			
7					·							
8												

Test Boring No. SC-10

Page 1 of 1

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

3)	Blows o	n Samp	ler ·	SAMPLE				Soil and Rock Information		
0	C	0-6"		12-18"		PID	Rec.	No.	Depth	Remarks		
										Concrete 0.4		
1							34"	1	0.4	Brown silty fine SAND		
3										(FILL)		
2						73						
						.,,,				Brun gray and black coarse Sand, some grant. (FILL)		
3_												
4						42				Brown silty (NATIVE) Pine Saul 410		
										Boring terminated @ 4.0 F7 BGS		
5			•						,			
6												
7												
					•							
8												

Test Boring No. SC-11

Page / of /

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 200
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

23]	Blows o	n Samp	ler ·	SAMPLE				Soil and Rock Information		
0	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks		
										0,3		
1						39	36"	1	0.3 - 4.6	Brunn gray and black stained Silty Fine sand		
2										(FILL)		
3_												
4						6.8				Brown silly fine sand (NATEVE) 4:0		
5							· · · · · · · · · · · · · · · · · · ·			Boring terminated at 4.0 Ft Bas		
6												
7												
8												

Test Boring No. SC-12

Page | of |

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 200
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

Soil and Rock Information			012.22				Blows on Sampler				0 C	
Remarks		Depth	No.	Rec.	PID	18-24"	12-18"	6-12"	0-6"	C	0	
0												
gray brum sand, gravel (FILL)	Brown and	- 4.0		34"	9.6							
stand (FILL)	Silt, ad s		1									
											-	
2,3												
	Brown 5.7/2				6,5						,	
	6 .			• -								
ated at 4.0 ff R45	Boring termin.											
						•						
	-											

Test Boring No. SC- 13

Page 1 of ___

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

			DIOM2 O	I Camp	ICI		D4 M.	ILL		Sou and Rock Information	
0	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks	
										Concrete	0,
							36"	1	015-	Brown sand and sievel	0.
1									4.0	1,	
	•							£		<u></u>	
										(FILL)	
2						132					2.0
										same, except black, slighted	or
											2,5
3						34				Brown silty fine SAND	
						-/-				(NATIVE)	
4										d .	4.0
										Boring terminated at 4.0 FT BG	2
										, d	
5			·						-		
;											
6										· .	

7							4				
					·			. 1			
		- 1000t, mass									
8											

Test Boring No. SC-14

Page / of

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

Blows on Sam					ler "		SAN	PLE		Soil and Rock Information		
0	C	0-6"		12-18"		PID	Rec.	No.	Depth	Remarks		
										Concrete	0.5	
1.						68	36*	1	0.5 -	Brown al 6. Send, no	lack layened SILT,	
								4		(FIL		
2												
3											- ·	
						11.7				Brum silty		
4							·			& (NA	· · · · · · · · · · · · · · · · · · ·	
										i poruj fermia	ated @ 4.0 F7 BUS	
5												
6												
7												
8										-		

Test Boring No. S'C-15

Page 1 of /

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 200
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

]	Blows o	n Samp	ler "		SAN	IPLE		Soil and Rock Information
0	C			12-18"		PID	Rec.	No.	Depth	Remarks
										0
·										Concrete 0.6
1						1.0	24.	1	0.6-	Sing and brum fine sand
								,	4.0	ging and brum fine sand Some gravel
										some grave
2								•		
					-			-		(FILL)
3										·
										3,5
										P 27/ C 2
4						0.6				(XATIVE) 4.0
										Boring ferminated at 4.0 ft B45
										*
5			•							
1										
6										,
7										
-/-										
8										-
0										

Test Boring No. SC-16

Page | of |

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 200
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

		I	Blows o	n Samp	ler "		SAN	IPLE		Soil and F	Rock Information
0	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	I	Remarks
										Concrete	0.
1						144	36"	t	4.0	Brown and bla	ofe gravelly
										SILT, no	edor.
											3,
						13				Brown siltz	SAND
f										Boring terminate	id at 4.0 F BGS
5			•							· ·	
7					·						
3							***************************************			-	

Test Boring No. SC-17

Page ___ of ___

Project: Brainerd Manufacturing

Project #: 16366.02 Client: Allan Shafer

Drilling Contractor: Marcor	Start Date: August 1, 2001
Driller:	Completion Date: August 1, 2001
Elevation:	Drilling Method: Geoprobe
Weather:	Supervisor: P. Smith

			Blows on Sampler			SAMPLE				Soil and Rock Information		
0 C		0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth		Remarks	
										Concri	t .	0.4
						6.1	25"	1	4.0	Black c-1	- sand, some	•
						·		1		silt, n		
-										(6.		
										(Fi	49	
												3
						3.1				Gram silty	Fine sail	
										's . (^	ATIVE)	4.
								-	•			
										-		

SIEVE	PERCENT	SPEC.* PERCENT	PASS? (X=NO)
#40 #40 #40 #60 #100 #200	100.0 99.9 99.9 99.9 99.9 99.9 90.6 30.9		

SANO some Sil	Soil Description t, trace clay, trace grav	vel
SAIND, SQUIC SI	c nace day, daw gra	
PL=	Atterberg Limits	PI=
D ₈₅ = 0.141 D ₃₀ = 0.0738 C _u = 4.44	Coefficients D60= 0.109 D15= 0.0449 C _c = 2.04	D ₅₀ = 0.0973 D ₁₀ = 0.0245
USCS=	Classification AASHT	0=
Sample delivered F.M.=0.09	Remarks i to VanDerHorst on 8	3-31-01

(no specification provided)

Sample No.: 01-1367 Location: MW-4 Source of Sample: Brainard

Date: 9-20-01 Elev/Depth: 24'-26'

VAN DER HORST ENGINEERING

Client: Sear-Brown Engineers

Project: Sear-Brown Materials Testing

Project No: RCH-01-311

Figure Number

01-1367

				The second secon
% COBBLES	% GRAVEL	% SAND	%SILT	%CLAY
0.0	0.0	70.0	24.2	5.8
V.0	0.0			

SIEVE	PERCENT	SPEC.* PERCENT	PASS? (X=NO)
#10 #20 #40 #60 #100 #200	100.0 100.0 100.0 100.0 94.5 30.0		

SAND, some Si	IL trace clay	
PL=	Atterberg Limits	P =
D ₈₅ = 0.137 D ₃₀ = 0.0750 C _u = 3.33	Coefficients D60= 0.108 D15= 0.0516 C _C = 1.62	D ₅₀ = 0.0969 D ₁₀ = 0.0323
USCS=	Classification AASHT	O=
Sample delivere F.M.=0.05	Remarks d to VanDertforst on 8	8-31-01

(no specification provided)

Sample No.: 01-1368

Source of Sample: Brainard

Date: 9-20-01 Elev JDepth: 24'-26'

Location: MW-5

Client: Sear-Brown Engineers

Project: Sear-Brown Materials Testing

Project No: RCH-01-311

Figure Number

01-1368

RISING HEAD TEST

Data Set: N:\JOBS\1636602\data\SlugRisingTestMW-1.aqt

Date: 10/22/01 Time: 13:57:57

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-1 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 48.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

Initial Displacement: 0.64 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 18.3 ft Total Well Penetration Depth: 48.56 ft Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Hvorslev

K = 0.0006172 ft/min y0 = 0.6389 ft

FALLING HEAD TEST MW-1

Data Set: N:\JOBS\1636602\data\SlugFallingTestMW-1.aqt

Date: 10/22/01 Time: 13:54:59

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-1 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 48.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

Initial Displacement: 0.7 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Total Well Penetration Depth: 48.5 ft Screen Length: 18.3 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.0005806 ft/min

y0 = 0.6628 ft

RISING HEAD TEST

Data Set: N:\JOBS\1636602\data\SlugRisingTestMW-2.aqt

Date: 10/22/01 Time: 13:58:18

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-2 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 10.86 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2)

Initial Displacement: 0.14 ft Wellbore Radius: 0.33 ft Screen Length: 17.1 ft Gravel Pack Porosity: 0.3 Casing Radius: 0.083 ft
Well Skin Radius: 0.33 ft
Total Well Penetration Depth: 10.86 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.001453 ft/min y0 = 0.1385 ft

FALLING HEAD TEST

Data Set: N:\JOBS\1636602\data\SlugFallingTestMW-2.aqt

Date: 10/22/01 Time: 13:56:05

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-2 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 10.86 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2)

Initial Displacement: 0.08 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 17.1 ft Total Well Penetration Depth: 10.86 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.0003678 ft/min y0 = 0.06596 ft

RISING HEAD TEST

Data Set: N:\JOBS\1636602\data\SlugRisingTestMW-3.aqt

Date: 10/22/01 Time: 13:58:40

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-3 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 10.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3)

Initial Displacement: 4.98 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 17. ft Total Well Penetration Depth: 10.5 ft Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Hvorslev

K = 3.177E-06 ft/min y0 = 4.933 ft

FALLING HEAD TEST

Data Set: N:\JOBS\1636602\data\SlugFallingTestMW-3.aqt

Date: 10/22/01 Time: 13:56:22

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-3 Test Date: 8-31-01

AQUIFER DATA

Saturated Thickness: 10.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-3)

Initial Displacement: 4.76 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 17. ft Total Well Penetration Depth: 10.5 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 3.177E-06 ft/min y0 = 4.818 ft

RISING HEAD TEST MW-4

Data Set: N:\JOBS\1636602\data\SlugRisingTestMW-4.aqt

Date: 10/22/01 Time: 13:59:04

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-4 Test Date: 8-28-01

AQUIFER DATA

Saturated Thickness: 3.47 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4)

Initial Displacement: 0.12 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 12.5 ft Total Well Penetration Depth: 3.47 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.0003807 ft/min y0 = 0.114 ft

FALLING HEAD TEST MW-4

Data Set: N:\JOBS\1636602\data\SlugFallingTestMW-4.aqt

Date: 10/22/01 Time: 13:56:45

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-4 Test Date: 8-28-01

AQUIFER DATA

Saturated Thickness: 3.47 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4)

Initial Displacement: 0.24 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 12.5 ft Total Well Penetration Depth: 3.47 ft Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Hvorslev

K = 0.000168 ft/min y0 = 0.204 ft

RISING HEAD TEST MW-5

Data Set: N:\JOBS\1636602\data\SlugRisingTestMW-5.aqt

Date: 10/22/01 Time: 13:59:28

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-4 Test Date: 8-28-01

AQUIFER DATA

Saturated Thickness: 5.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5)

Initial Displacement: 0.21 ft Casing Radius: 0.083 ft Wellbore Radius: 0.33 ft Well Skin Radius: 0.33 ft

Screen Length: 12.7 ft Total Well Penetration Depth: 5.5 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.002519 ft/min y0 = 0.2102 ft

FALLING HEAD TEST MW-5

Data Set: N:\JOBS\1636602\data\SlugFallingTestMW-5.aqt

Date: 10/22/01 Time: 13:57:12

PROJECT INFORMATION

Company: Sear-Brown

Client: Former Brainerd Facility

Project: 1636602

Test Location: 115 N Washington St.

Test Well: MW-4 Test Date: 8-28-01

AQUIFER DATA

Saturated Thickness: 5.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5)

Initial Displacement: 0.2 ft

Wellbore Radius: 0.33 ft

Well Skin Radius: 0.33 ft

Screen Length: 12.7 ft Total Well Penetration Depth: 5.5 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.0002948 ft/min y0 = 0.1875 ft

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7108

Client Job No:

1636602

Soil

Field Location:

SC-6, 1.2-2.8'

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

N/A

Date Analyzed:

08/03/01 08/15/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 6.89	Benzene	ND< 6.89
Bromomethane	ND< 6.89	Chlorobenzene	ND< 6.89
Bromoform	ND< 6.89	Ethylbenzene	ND< 6.89
Carbon tetrachloride	ND< 6.89	Toluene	ND< 6.89
Chloroethane	ND< 6.89	m,p - Xylene	ND< 6.89
Chloromethane	ND< 6.89	o - Xylene	ND< 6.89
2-Chloroethyl vinyl ether	ND< 6.89	Styrene	ND< 6.89
Chloroform	ND< 6.89		
Dibromochloromethane	ND< 6.89		
1,1-Dichloroethane	ND< 6.89	4	
1,2-Dichloroethane	ND< 6.89		
1,1-Dichloroethene	ND< 6.89		
cis-1,2-Dichloroethene	ND< 6.89		
trans-1,2-Dichloroethene	ND< 6.89	Ketones & Misc.	
1,2-Dichloropropane	ND< 6.89	Acetone	ND< 34.4
cis-1,3-Dichloropropene	ND< 6.89	Vinyl acetate	ND< 17.2
trans-1,3-Dichloropropene	ND< 6.89	2-Butanone	ND< 17.2
Methylene chloride	ND< 17.2	4-Methyl-2-pentanone	ND< 17.2
1,1,2,2-Tetrachloroethane	ND< 6.89	2-Hexanone	ND< 17.2
Tetrachloroethene	9.81	Carbon disulfide	ND< 17.2
1,1,1-Trichloroethane	ND< 6.89		
1,1,2-Trichloroethane	ND< 6.89		
Trichloroethene	8.24		
Vinyl Chloride	ND< 6.89		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Directo

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7109

Soil

Client Job No:

1636602

Field Location:

SC-6, 2.8-4.0'

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

08/03/01

N/A

Date Analyzed:

08/09/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 9.37	Benzene	ND< 9.37
Bromomethane	ND< 9.37	Chlorobenzene	ND< 9.37
Bromoform	ND< 9.37	Ethylbenzene	ND< 9.37
Carbon tetrachloride	ND< 9.37	Toluene	ND< 9.37
Chloroethane	ND< 9.37	m,p - Xylene	ND< 9.37
Chloromethane	ND< 9.37	o - Xylene	ND< 9.37
2-Chloroethyl vinyl ether	ND< 9.37	Styrene	ND< 9.37
Chloroform	ND< 9.37		
Dibromochloromethane	ND< 9.37		
1,1-Dichloroethane	ND< 9,37	చ	
1,2-Dichloroethane	ND< 9.37		
1,1-Dichloroethene	ND< 9.37		
cis-1,2-Dichloroethene	ND< 9.37		
trans-1,2-Dichloroethene	ND< 9.37	Ketones & Misc.	
1,2-Dichloropropane	ND< 9.37	Acetone	ND< 46.8
cis-1,3-Dichloropropene	ND< 9.37	Vinyl acetate	ND< 23.4
trans-1,3-Dichloropropene	ND< 9.37	2-Butanone	ND< 23.4
Methylene chloride	ND< 23.4	4-Methyl-2-pentanone	ND< 23.4
1,1,2,2-Tetrachloroethane	ND< 9.37	2-Hexanone	ND< 23.4
Tetrachloroethene	ND< 9.37	Carbon disulfide	ND< 23.4
1,1,1-Trichloroethane	ND< 9.37		
1,1,2-Trichloroethane	ND< 9.37		
Trichloroethene	ND< 9.37		
Vinyl Chloride	ND< 9.37		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913V2.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7110

Client Job No:

1636602

Soil

Field Location:

SC-7, 2.4-2.8'

Date Sampled: Date Received: 08/01/01

Field ID No:

N/A

Date Analyzed:

Sample Type:

08/03/01 08/09/01

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 476	Benzene	ND< 476
Bromomethane	ND< 476	Chlorobenzene	ND< 476
Bromoform	ND< 476	Ethylbenzene	ND< 476
Carbon tetrachloride	ND< 476	Toluene	ND< 476
Chloroethane	ND< 476	m,p - Xylene	ND< 476
Chloromethane	ND< 476	o - Xylene	ND< 476
2-Chloroethyl vinyl ether	ND< 476	Styrene	ND< 476
Chloroform	ND< 476		
Dibromochloromethane	ND< 476		
1,1-Dichloroethane	ND< 476	43	
1,2-Dichloroethane	ND< 476		
1,1-Dichloroethene	ND< 476		
cis-1,2-Dichloroethene	ND< 476		
trans-1,2-Dichloroethene	ND< 476	Ketones & Misc.	
1,2-Dichloropropane	ND< 476	Acetone	ND< 2,380
cis-1,3-Dichloropropene	ND< 476	Vinyl acetate	ND< 1,190
trans-1,3-Dichloropropene	ND< 476	2-Butanone	ND< 1,190
Methylene chloride	ND< 1,190	4-Methyl-2-pentanone	ND< 1,190
1,1,2,2-Tetrachloroethane	ND< 476	2-Hexanone	ND< 1,190
Tetrachloroethene	20,600	Carbon disulfide	ND< 1,190
1,1,1-Trichloroethane	ND< 476		
1,1,2-Trichloroethane	ND< 476		
Trichloroethene	8,740		
Vinyl Chloride	ND< 476		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No:

01-1913

Client Job Site:

115 N. Washington

7111

Client Job No:

1636602

Soil

Field Location:

SC-7, 3.4-4.0'

Date Sampled: Date Received:

Sample Type:

08/01/01 08/03/01

Field ID No:

N/A

Date Analyzed:

08/15/01

ž.

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 7.96	Benzene	ND< 7.96
Bromomethane	ND< 7.96	Chlorobenzene	ND< 7.96
Bromoform	ND< 7.96	Ethylbenzene	ND< 7.96
Carbon tetrachloride	ND< 7.96	Toluene	ND< 7.96
Chloroethane	ND< 7.96	m,p - Xylene	ND< 7.96
Chloromethane	ND< 7.96	o - Xylene	ND< 7.96
2-Chloroethyl vinyl ether	ND< 7.96	Styrene	ND< 7.96
Chloroform	ND< 7.96		
Dibromochloromethane	ND< 7.96		
1,1-Dichloroethane	ND< 7.96	di.	
1,2-Dichloroethane	ND< 7.96		
1,1-Dichloroethene	ND< 7.96		
cis-1,2-Dichloroethene	ND< 7.96		
trans-1,2-Dichloroethene	ND< 7.96	Ketones & Misc.	
1,2-Dichloropropane	ND< 7.96	Acetone	ND< 39.8
cis-1,3-Dichloropropene	ND< 7.96	Vinyl acetate	ND< 19.9
trans-1,3-Dichloropropene	ND< 7.96	2-Butanone	ND< 19.9
Methylene chloride	ND< 19.9	4-Methyl-2-pentanone	ND< 19.9
1,1,2,2-Tetrachioroethane	ND< 7.96	2-Hexanone	ND< 19.9
Tetrachloroethene	ND< 7.96	Carbon disulfide	ND< 19.9
1,1,1-Trichloroethane	ND< 7.96		
1,1,2-Trichloroethane	ND< 7.96		
Trichloroethene	ND< 7.96		
Vinyl Chloride	ND< 7.96		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-1913

Client Job Site:

115 N. Washington

Lab Sample No:

7112

Client Job No:

Sample Type:

Soil

1636602

Date Sampled:

08/01/01

Field Location:

SC-8, 2.0-2.8'

Date Received:

08/03/01

Field ID No:

N/A

Date Analyzed: 08/15/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 150	Benzene	ND< 150
Bromomethane	ND< 150	Chlorobenzene	ND< 150
Bromoform	ND< 150	Ethylbenzene	ND< 150
Carbon tetrachloride	ND< 150	Toluene	ND< 150
Chloroethane	ND< 150	m,p - Xylene	ND< 150
Chloromethane	ND< 150	o - Xylene	ND< 150
2-Chloroethyl vinyl ether	ND< 150	Styrene	ND< 150
Chloroform	ND< 150		
Dibromochloromethane	ND< 150		
1,1-Dichloroethane	ND< 150	A.	
1,2-Dichloroethane	ND< 150		
1,1-Dichloroethene	ND< 150		
cis-1,2-Dichloroethene	ND< 150		
trans-1,2-Dichloroethene	ND< 150	Ketones & Misc.	
1,2-Dichloropropane	ND< 150	Acetone	ND< 749
cis-1,3-Dichloropropene	ND< 150	Vinyl acetate	ND< 374
trans-1,3-Dichloropropene	ND< 150	2-Butanone	ND< 374
Methylene chloride	ND< 374	4-Methyl-2-pentanone	ND< 374
1,1,2,2-Tetrachloroethane	ND< 150	2-Hexanone	ND< 374
Tetrachloroethene	11,100	Carbon disulfide	ND< 374
1,1,1-Trichloroethane	ND< 150		
1,1,2-Trichloroethane	ND< 150		
Trichloroethene	6,570		
Vinyl Chloride	ND< 150		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913V5.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7113

Soil

Client Job No:

1636602

Date Sampled:

Sample Type:

08/01/01

Field Location:

SC-8, 3.5-4.0'

Date Received:

08/03/01

Field ID No:

N/A

Date Analyzed:

08/15/01

Bromodichloromethane Bromomethane	110 750		
Bromomothana	ND< 7.59	Benzene	ND< 7.59
Diomonicularie	ND< 7.59	Chlorobenzene	ND< 7.59
Bromoform	ND< 7.59	Ethylbenzene	ND< 7.59
Carbon tetrachloride	ND< 7.59	Toluene	ND< 7.59
Chloroethane	ND< 7.59	m,p - Xylene	ND< 7.59
Chloromethane	ND< 7.59	o - Xylene	ND< 7.59
2-Chloroethyl vinyl ether	ND< 7.59	Styrene	ND< 7.59
Chloroform	ND< 7.59		
Dibromochloromethane	ND< 7.59		
1,1-Dichloroethane	ND< 7.59	45	
1,2-Dichloroethane	ND< 7.59		
1,1-Dichloroethene	ND< 7.59	2 .	
cis-1,2-Dichloroethene	ND< 7.59		
trans-1,2-Dichloroethene	ND< 7.59	Ketones & Misc.	
1,2-Dichloropropane	ND< 7.59	Acetone	ND< 37.9
cis-1,3-Dichloropropene	ND< 7.59	Vinyl acetate	ND< 19.0
trans-1,3-Dichloropropene	ND< 7.59	2-Butanone	ND< 19.0
Methylene chloride	ND< 19.0	4-Methyl-2-pentanone	ND< 19.0
1,1,2,2-Tetrachloroethane	ND< 7.59	2-Hexanone	ND< 19.0
Tetrachloroethene	18.1	Carbon disulfide	ND< 19.0
1,1,1-Trichloroethane	ND< 7.59		
1,1,2-Trichloroethane	ND< 7.59		
Trichloroethene	ND< 7.59		
Vinyl Chloride	ND< 7.59		

Analytical Method:

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913V6.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7114

Client Job No:

1636602

Soil

Field Location:

SC-9, 2.5-3.0'

Date Sampled: Date Received: 08/01/01

Field ID No:

N/A

Date Analyzed:

Sample Type:

08/03/01 08/15/01

1

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 9.55	Benzene	ND< 9.55
Bromomethane	ND< 9.55	Chlorobenzene	ND< 9.55
Bromoform	ND< 9.55	Ethylbenzene	ND< 9.55
Carbon tetrachloride	ND< 9.55	Toluene	ND< 9.55
Chloroethane	ND< 9.55	m,p - Xylene	ND< 9.55
Chloromethane	ND< 9.55	o - Xylene	ND< 9.55
2-Chloroethyl vinyl ether	ND< 9.55	Styrene	ND< 9.55
Chloroform	ND< 9.55		
Dibromochloromethane	ND< 9.55		
1,1-Dichloroethane	ND< 9.55	E.	
1,2-Dichloroethane	ND< 9.55		
1,1-Dichloroethene	ND< 9.55		
cis-1,2-Dichloroethene	ND< 9.55		
trans-1,2-Dichloroethene	ND< 9.55	Ketones & Misc.	
1,2-Dichloropropane	ND< 9.55	Acetone	ND< 47.8
cis-1,3-Dichloropropene	ND< 9.55	Vinyl acetate	ND< 23.9
trans-1,3-Dichloropropene	ND< 9.55	2-Butanone	ND< 23.9
Methylene chloride	ND< 23.9	4-Methyl-2-pentanone	ND< 23.9
1,1,2,2-Tetrachloroethane	ND< 9.55	2-Hexanone	ND< 23.9
Tetrachloroethene	226	Carbon disulfide	ND< 23.9
1,1,1-Trichloroethane	ND< 9.55		
1,1,2-Trichloroethane	ND< 9.55		
Trichloroethene	109		
Vinyl Chloride	ND< 9.55		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913V7.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No:

01-1913

Client Job Site:

115 N. Washington

7115

Soil

Client Job No:

1636602

Field Location:

SC-9, 3.5-4.0°

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

N/A

Date Analyzed:

08/03/01 08/15/01

MATICS RESULTS (ug/Kg
ND< 9.85
rene ND< 9.85
ne ND< 9.85
ND< 9.85
ne ND< 9.85
ND< 9.85
ND< 9.85
4
Misc.
ND< 49.3
nte ND< 24.6
e ND< 24.6
-pentanone ND< 24.6
ne ND< 24.6
sulfide ND< 24.6

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913V8.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7116

Soil

Client Job No:

1636602

Field Location:

SC-10, 2.0-2.8°

Date Sampled: Date Received:

Sample Type:

08/01/01 08/03/01

Field ID No:

N/A

Date Analyzed:

08/15/01

& 08/16/01

i

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 107	Benzene	ND< 107
Bromomethane	ND< 107	Chlorobenzene	ND< 107
Bromoform	ND< 107	Ethylbenzene	ND< 107
Carbon tetrachloride	ND< 107	Toluene	ND< 107
Chloroethane	ND< 107	m,p - Xylene	ND< 107
Chloromethane	ND< 107	o - Xylene	ND< 107
2-Chloroethyl vinyl ether	ND< 107	Styrene	ND< 107
Chloroform	ND< 107		
Dibromochloromethane	ND< 107		
1,1-Dichloroethane	ND< 107	S	
1,2-Dichloroethane	ND< 107		
1,1-Dichloroethene	ND< 107		
cis-1,2-Dichloroethene	ND< 107	*	
trans-1,2-Dichloroethene	ND< 107	Ketones & Misc.	
1,2-Dichloropropane	ND< 107	Acetone	ND< 537
cis-1,3-Dichloropropene	ND< 107	Vinyl acetate	ND< 269
trans-1,3-Dichloropropene	ND< 107	2-Butanone	ND< 269
Methylene chloride	ND< 269	4-Methyl-2-pentanone	ND< 269
1,1,2,2-Tetrachloroethane	ND< 107	2-Hexanone	ND< 269
Tetrachloroethene	5,780	Carbon disulfide	ND< 269
1,1,1-Trichloroethane	ND< 107		
1,1,2-Trichloroethane	ND< 107		
Trichloroethene	5,410		
Vinyl Chloride	ND< 107		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913v9.xls

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7117

Client Job No:

1636602

Soil

Field Location:

SC-10, 3.5-4.0'

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

N/A

Date Analyzed:

08/03/01 08/15/01

ē

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 8.74	Benzene	ND< 8.74
Bromomethane	ND< 8.74	Chlorobenzene	ND< 8.74
Bromoform	ND< 8.74	Ethylbenzene	ND< 8.74
Carbon tetrachloride	ND< 8.74	Toluene	ND< 8.74
Chloroethane	ND< 8.74	m,p - Xylene	ND< 8.74
Chloromethane	ND< 8.74	o - Xylene	ND< 8.74
2-Chloroethyl vinyl ether	ND< 8.74	Styrene	ND< 8.74
Chloroform	ND< 8.74		
Dibromochloromethane	ND< 8.74		
1,1-Dichloroethane	ND< 8.7.4	S. Carlotte	
1,2-Dichloroethane	ND< 8.74		
1,1-Dichloroethene	ND< 8.74	5. 3	
cis-1,2-Dichloroethene	ND< 8.74	* *	
trans-1,2-Dichloroethene	ND< 8.74	Ketones & Misc.	
1,2-Dichloropropane	ND< 8.74	Acetone	ND< 43.7
cis-1,3-Dichloropropene	ND< 8.74	Vinyl acetate	ND< 21.8
trans-1,3-Dichloropropene	ND< 8.74	2-Butanone	ND< 21.8
Methylene chloride	ND< 21.8	4-Methyl-2-pentanone	ND< 21.8
1,1,2,2-Tetrachloroethane	ND< 8.74	2-Hexanone	ND< 21.8
Tetrachloroethene	125	Carbon disulfide	ND< 21.8
1,1,1-Trichloroethane	ND< 8.74		
1,1,2-Trichloroethane	ND< 8.74		
Trichloroethene	115		
Vinyl Chloride	ND< 8.74		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913W1.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-1913

Client Job Site:

115 N. Washington

Lab Sample No: 71

7118

Sample Type:

Soil

Client Job No:

1636602

Date Sampled:

08/01/01

Field Location:

SC-11, 2.5-3.2'

Date Received: Date Analyzed: 08/03/01 08/15/01

Field ID No:

N/A

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 214	Benzene	ND< 214
Bromomethane	ND< 214	Chlorobenzene	ND< 214
Bromoform	ND< 214	Ethylbenzene	ND< 214
Carbon tetrachloride	ND< 214	Toluene	ND< 214
Chloroethane	ND< 214	m,p - Xylene	ND< 214
Chloromethane	ND< 214	o - Xylene	ND< 214
2-Chloroethyl vinyl ether	ND< 214	Styrene	ND< 214
Chloroform	ND< 214		*
Dibromochloromethane	ND< 214		
1,1-Dichloroethane	ND< 214	45	
1,2-Dichloroethane	ND< 214		
1,1-Dichloroethene	ND< 214		
cis-1,2-Dichloroethene	ND< 214		
trans-1,2-Dichloroethene	ND< 214	Ketones & Misc.	
1,2-Dichloropropane	ND< 214	Acetone	ND< 1,070
cis-1,3-Dichloropropene	ND< 214	Vinyl acetate	ND< 535
trans-1,3-Dichloropropene	ND< 214	2-Butanone	ND< 535
Methylene chloride	ND< 535	4-Methyl-2-pentanone	ND< 535
1,1,2,2-Tetrachloroethane	ND< 214	2-Hexanone	ND< 535
Tetrachloroethene	11,400	Carbon disulfide	ND< 535
1,1,1-Trichloroethane	ND< 214		
1,1,2-Trichloroethane	ND< 214		
Trichloroethene	6,940		
Vinyl Chloride	ND< 214		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7119

Client Job No:

1636602

Soil

Field Location:

SC-12, 1.0-2.5

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

N/A

Date Analyzed:

08/03/01 08/15/01

.

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 10.1	Benzene	ND< 10.1
Bromomethane	ND< 10.1	Chlorobenzene	ND< 10.1
Bromoform	ND< 10.1	Ethylbenzene	ND< 10.1
Carbon tetrachloride	ND< 10.1	Toluene	ND< 10.1
Chloroethane	ND< 10.1	m,p - Xylene	ND< 10.1
Chloromethane	ND< 10.1	o - Xylene	ND< 10.1
2-Chloroethyl vinyl ether	ND< 10.1	Styrene	ND< 10.1
Chloroform	ND< 10.1		
Dibromochloromethane	ND< 10.1		
1,1-Dichloroethane	ND< 10.1	vi .	
1,2-Dichloroethane	ND< 10.1		
1,1-Dichloroethene	ND< 10.1		
cis-1,2-Dichloroethene	ND< 10.1		
trans-1,2-Dichloroethene	ND< 10.1	Ketones & Misc.	
1,2-Dichloropropane	ND< 10.1	Acetone	ND< 50.3
cis-1,3-Dichloropropene	ND< 10.1	Vinyl acetate	ND< 25.1
trans-1,3-Dichloropropene	ND< 10.1	2-Butanone	ND< 25.1
Methylene chloride	ND< 25.1	4-Methyl-2-pentanone	ND< 25.1
1,1,2,2-Tetrachloroethane	ND< 10.1	2-Hexanone	ND< 25.1
Tetrachloroethene	108	Carbon disulfide	ND< 25.1
1,1,1-Trichloroethane	ND< 10.1		
1,1,2-Trichloroethane	ND< 10.1		
Trichloroethene	47.9		
Vinyl Chloride	ND< 10.1		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913W3.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-1913

Client Job Site:

Lab Sample No:

7120

115 N. Washington

Sample Type:

Soil

Client Job No:

1636602

Date Sampled:

08/01/01

Field Location:

SC-13, 2.0-2.5'

Date Received:

08/03/01 08/15/01

Field ID No:

N/A

Date Analyzed:

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 191	Benzene	ND< 191
Bromomethane	ND< 191	Chlorobenzene	ND< 191
Bromoform	ND< 191	Ethylbenzene	ND< 191
Carbon tetrachloride	ND< 191	Toluene	ND< 191
Chloroethane	ND< 191	m,p - Xylene	ND< 191
Chloromethane	ND< 191	o - Xylene	ND< 191
2-Chloroethyl vinyl ether	ND< 191	Styrene	ND< 191
Chloroform	ND< 191		
Dibromochloromethane	ND< 191		
1,1-Dichloroethane	ND< 191	viš	
1,2-Dichloroethane	ND< 191		
1,1-Dichloroethene	ND< 191	9	
cis-1,2-Dichloroethene	ND< 191	* *	
trans-1,2-Dichloroethene	ND< 191	Ketones & Misc.	
1,2-Dichloropropane	ND< 191	Acetone	ND< 953
cis-1,3-Dichloropropene	ND< 191	Vinyl acetate	ND< 477
trans-1,3-Dichloropropene	ND< 191	2-Butanone	ND< 477
Methylene chloride	ND< 477	4-Methyl-2-pentanone	ND< 477
1,1,2,2-Tetrachloroethane	ND< 191	2-Hexanone	ND< 477
Tetrachloroethene	14,600	Carbon disulfide	ND< 477
1,1,1-Trichloroethane	ND< 191		
1,1,2-Trichloroethane	ND< 191		
Trichloroethene	5,580		
Vinyl Chloride	ND< 191		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No:

01-1913

Client Job Site:

115 N. Washington

7121

Client Job No:

1636602

Soil

Field Location:

SC-13, 3.5-4.0'

Date Sampled: Date Received:

Sample Type:

08/01/01

Field ID No:

N/A

Date Analyzed:

08/03/01 08/15/01

£

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 7.82	Benzene	ND< 7.82
Bromomethane	ND< 7.82	Chlorobenzene	ND< 7.82
Bromoform	ND< 7.82	Ethylbenzene	ND< 7.82
Carbon tetrachloride	ND< 7.82	Toluene	ND< 7.82
Chloroethane	ND< 7.82	m,p - Xylene	ND< 7.82
Chloromethane	ND< 7.82	o - Xylene	ND< 7.82
2-Chloroethyl vinyl ether	ND< 7.82	Styrene	ND< 7.82
Chloroform	ND< 7.82		
Dibromochloromethane	ND< 7.82		
1,1-Dichloroethane	ND< 7,82	45	
1,2-Dichloroethane	ND< 7.82		
1,1-Dichloroethene	ND< 7.82		
cis-1,2-Dichloroethene	ND< 7.82		
trans-1,2-Dichloroethene	ND< 7.82	Ketones & Misc.	
1,2-Dichloropropane	ND< 7.82	Acetone	44.7
cis-1,3-Dichloropropene	ND< 7.82	Vinyl acetate	ND< 19.6
trans-1,3-Dichloropropene	ND< 7.82	2-Butanone	ND< 19.6
Methylene chloride	ND< 19.6	4-Methyl-2-pentanone	ND< 19.6
1,1,2,2-Tetrachloroethane	ND< 7.82	2-Hexanone	ND< 19.6
Tetrachloroethene	98.7	Carbon disulfide	ND< 19.6
1,1,1-Trichloroethane	ND< 7.82		
1,1,2-Trichloroethane	ND< 7.82		
Trichloroethene	30.0		
Vinyl Chloride	ND< 7.82		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-1913

Client Job Site:

115 N. Washington

Lab Sample No:

7122

Sample Type:

Soil

Client Job No:

1636602

Date Sampled:

08/01/01

Field Location: Field ID No:

SC-14, 2.0-3.0' N/A

Date Received: Date Analyzed: 08/03/01 08/15/01

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg)
Bromodichloromethane	ND< 81.9	Benzene	ND< 81.9
Bromomethane	ND< 81.9	Chlorobenzene	ND< 81.9
Bromoform	ND< 81.9	Ethylbenzene	ND< 81.9
Carbon tetrachloride	ND< 81.9	Toluene	ND< 81.9

1	Di di licalo li licalica la li			
	Bromomethane	ND< 81.9	Chlorobenzene	ND< 81.9
1	Bromoform	ND< 81.9	Ethylbenzene	ND< 81.9
	Carbon tetrachloride	ND< 81.9	Toluene	ND< 81.9
	Chloroethane	ND< 81.9	m,p - Xylene	ND< 81.9
	Chloromethane	ND< 81.9	o - Xylene	ND< 81.9
	2-Chloroethyl vinyl ether	ND< 81.9	Styrene	ND< 81.9
	Chloroform	ND< 81.9		
	Dibromochloromethane	ND< 81.9		
	1,1-Dichloroethane	ND< 81.9	**************************************	
	1,2-Dichloroethane	ND< 81.9		
	1,1-Dichloroethene	ND< 81.9		
	cis-1,2-Dichloroethene	ND< 81.9	* *	
	trans-1,2-Dichloroethene	ND< 81.9	Ketones & Misc.	
	1,2-Dichloropropane	ND< 81.9	Acetone	ND< 410
	cis-1,3-Dichloropropene	ND< 81.9	Vinyl acetate	ND< 205
	trans-1,3-Dichloropropene	ND< 81.9	2-Butanone	ND< 205
	Methylene chloride	ND< 205	4-Methyl-2-pentanone	ND< 205
	1,1,2,2-Tetrachloroethane	ND< 81.9	2-Hexanone	ND< 205
	Tetrachloroethene	2,600	Carbon disulfide	ND< 205
	1,1,1-Trichloroethane	ND< 81.9		
	1,1,2-Trichloroethane	ND< 81.9		
	Trichloroethene	2,740		
	Vinyl Chloride	ND< 81.9		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No: Lab Sample No: 01-1913

Client Job Site:

115 N. Washington

7123

Soil

Client Job No:

1636602

Date Sampled:

08/01/01

Field Location:

SC-16, 2.0-2.5'

Date Received: Date Analyzed:

Sample Type:

08/03/01 08/15/01

Field ID No:

N/A

& 08/16/01

Benzene Chlorobenzene Ethylbenzene Toluene m.p - Xylene o - Xylene Styrene	ND< 111 ND< 111 ND< 111 ND< 111 ND< 111 ND< 111 ND< 111
Ethylbenzene Toluene m,p - Xylene o - Xylene Styrene	ND< 111 ND< 111 ND< 111 ND< 111
Toluene m,p - Xylene o - Xylene Styrene	ND< 111 ND< 111 ND< 111
m,p - Xylene o - Xylene Styrene	ND< 111 ND< 111
o - Xylene Styrene	ND< 111
Styrene	
· · · · · · · · · · · · · · · · · · ·	ND< 111
Ketones & Misc.	
Acetone	ND< 557
Vinyl acetate	ND< 279
2-Butanone	ND< 279
4-Methyl-2-pentanone	ND< 279
2-Hexanone	ND< 279
Carbon disulfide	ND< 279
	2-Hexanone

6

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913w7.xls

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-1913

Soil

Client Job Site:

115 N. Washington

Lab Sample No: 7124

Client Job No:

Sample Type:

1636602

Date Sampled:

08/01/01

Field Location:

SC-16, 3.5-4.0'

Date Received: Date Analyzed: 08/03/01 08/15/01

Field ID No:

N/A

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 194	Benzene	ND< 194
Bromomethane	ND< 194	Chlorobenzene	ND< 194
Bromoform	ND< 194	Ethylbenzene	ND< 194
Carbon tetrachloride	ND< 194	Toluene	ND< 194
Chloroethane	ND< 194	m,p - Xylene	ND< 194
Chloromethane	ND< 194	o - Xylene	ND< 194
2-Chloroethyl vinyl ether	ND< 194	Styrene	ND< 194
Chloroform	ND< 194		
Dibromochloromethane	ND< 194		
1,1-Dichloroethane	ND< 194	1	
1,2-Dichloroethane	ND< 194		
1,1-Dichloroethene	ND< 194		
cis-1,2-Dichloroethene	ND< 194		
trans-1,2-Dichloroethene	ND< 194	Ketones & Misc.	
1,2-Dichloropropane	ND< 194	Acetone	ND< 971
cis-1,3-Dichloropropene	ND< 194	Vinyl acetate	ND< 486
trans-1,3-Dichloropropene	ND< 194	2-Butanone	ND< 486
Methylene chloride	ND< 486	4-Methyl-2-pentanone	ND< 486
1,1,2,2-Tetrachloroethane	ND< 194	2-Hexanone	ND< 486
Tetrachloroethene	11,300	Carbon disulfide	ND< 486
1,1,1-Trichloroethane	ND< 194		
1,1,2-Trichloroethane	ND< 194		
Trichloroethene	ND< 194		
Vinyl Chloride	ND< 194		

5

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

Sample Type:

01-1913

Client Job Site:

115 N. Washington

Lab Sample No:

7125

Soil

Client Job No:

1636602

Date Sampled:

08/01/01

Field Location:

SC-17, 0.5-3.0'

Date Received:

08/03/01

Field ID No:

N/A

Date Analyzed:

08/15/01

& 08/16/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 24.8	Benzene	ND< 24.8
Bromomethane	ND< 24.8	Chlorobenzene	ND< 24.8
Bromoform	ND< 24.8	Ethylbenzene	ND< 24.8
Carbon tetrachloride	ND< 24.8	Toluene	ND< 24.8
Chloroethane	ND< 24.8	m,p - Xylene	ND< 24.8
Chloromethane	ND< 24.8	o - Xylene	ND< 24.8
2-Chloroethyl vinyl ether	ND< 24.8	Styrene	ND< 24.8
Chloroform	ND< 24.8		
Dibromochloromethane	ND< 24.8		
1,1-Dichloroethane	ND< 24.8	3	
1,2-Dichloroethane	ND< 24.8		
1,1-Dichloroethene	ND< 24.8		
cis-1,2-Dichloroethene	ND< 24.8		
trans-1,2-Dichloroethene	ND< 24.8	Ketones & Misc.	
1,2-Dichloropropane	ND< 24.8	Acetone	ND< 124
cis-1,3-Dichloropropene	ND< 24.8	Vinyl acetate	ND< 61.9
trans-1,3-Dichloropropene	ND< 24.8	2-Butanone	ND< 61.9
Methylene chloride	ND< 61.9	4-Methyl-2-pentanone	ND< 61.9
1,1,2,2-Tetrachloroethane	ND< 24.8	2-Hexanone	ND< 61.9
Tetrachloroethene	532	Carbon disulfide	ND< 61.9
1,1,1-Trichloroethane	ND< 24.8		
1,1,2-Trichloroethane	ND< 24.8		
Trichloroethene	1,400		
Vinyl Chloride	ND< 24.8		

6

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011913w9.xls

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7108

Client Job No.:

Sample Type:

Soil

1636602

Date Sampled:

08/01/2001

Field Location: Field ID No.:

SC-6, 1.2-2.8' N/A

Date Received:

08/03/2001

1

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	127
Copper	08/08/2001	SW846 6010	899
Nickel	08/08/2001	SW846 6010	20.6
Zinc	08/08/2001	SW846 6010	779
			18.35
	1	ELABID No :10059	

ELAP ID No.:10958

Comments:

Approved By: _

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7109

Soil

Client Job No.:

1636602

Sample Type:

08/01/2001

Field Location:

SC-6, 2.8-4.0'

Date Sampled: Date Received:

08/03/2001

Field ID No.:

N/A

Analytical Result Parameter Date (mg/kg) Method Analyzed 45.2 08/08/2001 SW846 6010 Chromium 1180 Copper 08/08/2001 SW846 6010 40.5 SW846 6010 08/08/2001 Nickel 542 SW846 6010 08/08/2001 Zinc 4

ELAP ID No.:10958

Comments:

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7110

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-7, 2.4-2.8'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received:

08/03/2001

-

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	15.8
Copper	08/08/2001	SW846 6010	29300
Nickel	08/08/2001	SW846 6010	39.7
Zinc	08/08/2001	SW846 6010	7830
			ব
		51 A D 10 A 10050	

ELAP ID No.:10958

Comments:

Approved By:

PARADIGM

Services, Inc.

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7111

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-7, 3.4-4.0'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	20.9
Copper	08/08/2001	SW846 6010	57.5
Nickel	08/08/2001	SW846 6010	17.9
Zinc	08/08/2001	SW846 6010	59.7
			45
·			

ELAP ID No.:10958

Comments:

Approved By:

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7112

Client Job No.:

1636602

Sample Type: Soil

Date Sampled:

08/01/2001

Field Location: Field ID No.:

SC-8, 2.0-2.8'

N/A

Date Received:

08/03/2001

Date Analyzed	Analytical Method	Result (mg/kg)
08/08/2001	SW846 6010	30.1
08/08/2001	SW846 6010	6710
08/08/2001	SW846 6010	66.0
08/08/2001	SW846 6010	3010
		15
	2	
	08/08/2001 08/08/2001 08/08/2001	Analyzed Method 08/08/2001 SW846 6010 08/08/2001 SW846 6010 08/08/2001 SW846 6010

ELAP ID No.:10958

Comments:

Approved By:

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.:

01-1913

Client Job Site:

115 N. Washington

Lab Sample No.:

7113

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-8, 3.5-4.0'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received:

08/03/2001

Chromium 08/08/2001 SW846 6010 17.9 Copper 08/08/2001 SW846 6010 42.8 Nickel 08/08/2001 SW846 6010 13.6 Zinc 08/08/2001 SW846 6010 50.2	Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Nickel 08/08/2001 SW846 6010 13.6 Zinc 08/08/2001 SW846 6010 50.2	Chromium	08/08/2001	SW846 6010	17.9
Zinc 08/08/2001 SW846 6010 50.2	Copper	08/08/2001	SW846 6010	42.8
2110	Nickel	08/08/2001	SW846 6010	13.6
	Zinc	08/08/2001	SW846 6010	50.2
				ৱ
			3	

ELAP ID No.:10958

Comments:

Approved By:

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7114

Sample Type:

Soil

Client Job No.:

1636602

Date Sampled:

08/01/2001

Field Location:

SC-9, 2.5-3.0'

Date Received:

08/03/2001

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	15.8
Copper	08/08/2001	SW846 6010	863
Nickel	08/08/2001	SW846 6010	23.2
Zinc	08/08/2001	SW846 6010	459
			S.

ELAP ID No.:10958

Comments:

Approved By:

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Lab Sample No.: 7115

Client Job Site:

115 N. Washington

Sample Type:

Soil

Client Job No.:

1636602

Date Sampled:

08/01/2001

Field Location: Field ID No .:

SC-9, 3.5-4.0'

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	13.4
Copper	08/08/2001	SW846 6010	1090
Nickel	08/08/2001	SW846 6010	19.8
Zinc	08/08/2001	SW846 6010	512
			34.75
		*	
		51 4 D 1D 11 40050	

ELAP ID No.:10958

Comments:

Approved By:

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Lab Sample No.: 7116

Client Job Site:

115 N. Washington

Sample Type:

Soil

Client Job No.:

1636602

Date Sampled: Date Received:

08/01/2001 08/03/2001

Field Location:

SC-10, 2.0-2.8'

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	36.6
Copper	08/08/2001	SW846 6010	4680
Nickel	08/08/2001	SW846 6010	158
Zinc	08/08/2001	SW846 6010	1180
			43
		*	

ELAP ID No.:10958

Comments:

Approved By:

Laboratory Director

File ID: 011913

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.:

Soil

7117

Client Job No.:

1636602

Sample Type: Date Sampled:

08/01/2001

Field Location:

SC-10, 3.5-4.0°

Date Received:

08/03/2001

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	14.8
Copper	08/08/2001	SW846 6010	2120
Nickel	08/08/2001	SW846 6010	39.3
Zinc	08/08/2001	SW846 6010	588
			3
			id
		EL AP ID No :10958	

ELAP ID No.:10958

Comments:

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.:

7120

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-13, 2.0-2.5'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received: 08/03/2001

Result Analytical Date Parameter Method (mg/kg) Analyzed 18.0 SW846 6010 08/08/2001 Chromium SW846 6010 910 08/08/2001 Copper 25.5 08/08/2001 SW846 6010 Nickel 298 08/08/2001 SW846 6010 Zinc

8

ELAP ID No.: 10958

Comments:

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7118

Client Job No.:

Sample Type:

Soil

1636602

N/A

Date Sampled:

08/01/2001

Field Location: Field ID No.:

SC-11, 2.5-3.2'

Date Received:

08/03/2001

Parameter	Date Analyzed

Parameter	Date Analyzed	Method	(mg/kg)
Chromium	08/08/2001	SW846 6010	90.5
Copper	08/08/2001	SW846 6010	14000
Nickel	08/08/2001	SW846 6010	363
Zinc	08/08/2001	SW846 6010	5680
			VŠ

ELAP ID No.:10958

Comments:

Approved By:

Laboratory Director

File ID: 011913

PARADIGM

Environmental Services, Inc. 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7121

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-13, 3.5-4.0'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	20.5
Copper	08/08/2001	SW846 6010	14.0
Nickel	08/08/2001	SW846 6010	14.1
Zinc	08/08/2001	SW846 6010	33.8
			క
		*	

ELAP ID No.:10958

Comments:

Approved By:

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913 Lab Sample No.: 7119

Client Job Site:

115 N. Washington

Soil

Client Job No.:

1636602

Sample Type: **Date Sampled:**

08/01/2001

Fleld Location: Field ID No.:

SC-12, 1.0-2.5'

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	8.45
Copper	08/08/2001	SW846 6010	59.5
Nickel	08/08/2001	SW846 6010	11.1
Zinc	08/08/2001	SW846 6010	84.0
	· .		d)
		ELAP ID No :10958	

Comments:

Approved By:

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Lab Sample No.: 7122

Client Job Site:

115 N. Washington

Sample Type:

Soil

Client Job No.:

1636602

Date Sampled:

08/01/2001

Field Location:

SC-14, 2.0-3.0'

Date Received:

08/03/2001

Field ID No.:

N/A

Resuit Analytical Parameter Date Method Analyzed (mg/kg) 27.1 Chromium 08/08/2001 SW846 6010 SW846 6010 5190 Copper 08/08/2001 SW846 6010 103 Nickel 08/08/2001 SW846 6010 2120 Zinc 08/08/2001 3

8

ELAP ID No.:10958

Comments:

Approved By:

PARADIGM Services, Inc.

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

-

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7123

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

Date Sampled:

08/01/2001

Field ID No.:

SC-16, 2.0-2.5'

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	13.4
Copper	08/08/2001	SW846 6010	4920
Nickel	08/08/2001	SW846 6010	22.9
Zinc	08/08/2001	SW846 6010	639
			¥.5
		3	
		FLAD ID No :10059	

ELAP ID No.:10958

Comments:

Approved By:

Services, Inc.

PARADIGM Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7124

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-16, 3.5-4.0'

Date Sampled:

08/01/2001

Field ID No.:

N/A

Date Received:

08/03/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	15.6
Copper	08/08/2001	SW846 6010	5.80
Nickel	08/08/2001	SW846 6010	11.3
Zinc	08/08/2001	SW846 6010	30.0
			*
		4 4	
		*	
		FLAD ID No 1100E0	

ELAP ID No.:10958

Comments:

Approved By:

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

Sear Brown

Lab Project No.: 01-1913

Client Job Site:

115 N. Washington

Lab Sample No.: 7125

Client Job No.:

1636602

Sample Type:

Soil

Field Location:

SC-17, 0.5-3.0'

Date Sampled:

08/01/2001

Field ID No.:

17.4

N/A

Date Received:

08/03/2001

i

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/08/2001	SW846 6010	67.3
Copper	08/08/2001	SW846 6010	2400
Nickel	08/08/2001	SW846 6010	99.6
Zinc	08/08/2001	SW846 6010	1420
			45
		3	
		51 4 5 15 AL 40050	

ELAP ID No.:10958

Comments:

Approved By:

Laboratory Director

File ID: 011913

PARADIGM Environmental

Services, Inc. 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear Brown Group

Client Job Site:

115 N. Washington

Client Job No.:

1636602

Lab Project No.:

01-1913

Sample Type:

Soil

Analytical Method:

EPA 9012

Date Sampled:

08/01/2001

Date Received:

08/03/2001

Lab Sample ID.	Field Location/ Sample ID.	Date Analyzed	Total Cyanide (mg/kg)
7108	SC-6, 1.2-2.8'	8/10/2001	1.8
7109	SC-6, 2.8-4.0	8/10/2001	ND<1
7110	SC-7, 2.4-2.8'	8/10/2001	ND<1
7111	SC-7, 3.4-4.0'	8/10/2001	ND<1
7112	SC-8, 2.0-2.8'	8/10/2001	ND<1
7113	SC-8, 3.5-4.0'	8/10/2001	ND<1
7114	SC-9, 2.5-3.0°	8/10/2001	ND<1
7115	SC-9, 3.5-4.0'	8/10/2001	ND<1
7116	SC-10, 2.0-2.8'	8/10/2001	ND<1
7117	SC-10, 3.5-4.0'	8/10/2001	ND<1
7118	SC-11, 2.5-3.2'	8/10/2001	2.6
7119	SC-12, 1.0-2.5'	8/10/2001	ND<1
7120	SC-13, 2.0-2.5'	8/10/2001	ND<1
7121	SC-13, 3.5-4.0'	8/10/2001	ND<1
7122	SC-14, 2.0-3.0'	8/10/2001	ND<1
7123	SC-16, 2.0-2.5'	8/10/2001	ND<1
7124	SC-16, 3.5-4.0'	8/10/2001	ND<1
7125	SC-17, 0.5-3.0	8/10/2001	ND<1

Comments:

ND denotes Non Detected.

Approved By:

Laboratory Director

File ID: MulSamTCvanide01-1913 xls

FARADIGM

Page 1.62

CHAIN OF CUSTODY

-	-		-			_	
E	N۱	/IF	20	NM	E	NT	AL
S	EF	٩V	IC	ES,	11	1C	

179 Lake Avenue Rochester, NY 14608 (716) 647-2530 * (800) 724-1997 FAY: (716) 647-3311

	,	47-3311
PROJECT	NAME	SITE NAME:
115	N.	WAshington

COMPANY: SEAR-BROWN	COMPANY:	Stme_	LAB PROJECT #:	CLIENT PROJECT #:
ADDRESS: 85 Metro Park	ADDRESS:		01-1913	1636602
CITY: Rochester STATE: NY 141	•23 CITY:	STATE:	ZIP: TURNAROUND TIME	: (WORKING DAYS)
PHONE: 475-1440 FAX: 424-5951	PHONE:	FAX:	(10)	STD OTHE
Milce Storonsky	ATTN:		1 2	3 5 X

DATE	ПМЕ	COMPOSITE	G R A B	SAMPLE LOCATION/FIELD ID	M A T R I	CONTA BINER RS	8260 Cr, Eu, NI, 07 Zn, CN (fotal)	REMARKS	PARADIGM LAB SAMPLE NUMBER
18101	900		~	SC-6 1.2-2.8'	5	2	××		7/08
2	900		1	SC-4, 2.8-4.0'	1				7109
3	930			SC-7, 2.4-2,8'					7110
4	930			SC-7, 3,4-4.0'					7/1/
5	1030			50-8, 2,0-2,81					17/1/2
6	1030			SC-8 3.5- 4.0'					7/13
7	1100			SC-9, 2.5-3-0'					7/14
8	1100			SC-9, 3.5-4.0'	î.				7115
9	1130			SC-10, 200-2,81					7/1/4
10	1130		4	SC-10, 3,5 - 4,6'	V	4	VV		7117

EAD OOL OHE!					·
SAMPLE CONDITION: Check box if acceptable or note deviation:	CONTAINER TYPE:	PRESERVATIONS:	HOLDING TIME:	TEMPERATURE:	中中
Sampled By:	8 1 01 1600	Relinquished By:		Date/Time:	Total Cost:
Relinquished By:	Date/Time:	Received By:		Date/Time:	
I W SULL					

Received By:

Date/Time:

8/2/01/63

Received @ Lab By:

8|3|01@ 9:35

P.I.F.

ENVIRON SERVICE 179 Lake Avenu Rochester, NY 1 (716) 647-2530 * FAX: (716) 647-3	MENTA S, INC. e 4608 (800) 724-19 3311	997	PHONE:	Sear-13 min 85 metro Park state: N 175-1440	- <u>uh</u> 1y 19623	COMPANY ADDRESS: CITY: PHONE: ATTN:	OF USTU	OIGE 1701	ZIP:	LAB PROJECT #: OI~1913 TURNAROUND TIME 10		YS)	
DATE	TIME	COMPOSITE	G R A B	SAMPLE LOCATION/FIELD I	M A T R I X	C O N N T M A B I E N R E R S	8260 Cr. Cu, NS. Zn, CN (bitel)			REMARKS		PARADIG AMPLE N	
1 8-1-01	1200		V	SC-11, 2,5-3.	2' 5		XX					71	18
2	1300			SC-12, 1.0-2.	5'							7/	19
3	1330			SC-13, 2.6-2	-,5'							7/	20
4	1330			SC-13, 3,5-4	f. o'							71	2/
5	1400			SC-14, 200-	3.6							7/	122
6	1430			SC-16, 2.0-	25'							71	23
7	1430			50-16, 3,5-								71	24
8	1720		1	SC-17, 0,5-		V						71	125
9	13		1										
10			V	_									
LAB USE	ONLY	L				l							
SAMPLE COND if acceptable or	ITION: Chec		C	ONTAINER TYPE: PI	RESERVATIONS:	1	HOLDING TH	ME:	TEMPE	RATURE:	14		
Sampled By:	Suit	>		Date/Time:	Relinquished	Ву:			Date/Time		Total Cost:		
Relinquished B	y: 0			Date/Time:	Received By:				Date/Time):			
Received By:	8 mil	no	lais.	Date/Time:	Received @ La	ab By:	Tuela	8/3/01	Date/Time):	P.I.F.		

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No: Lab Sample No: 01-2058

Client Job Site:

115 N. Washington

7638

Client Job No:

1636602

Sample Type:

Soil

Field Location:

Date Sampled: Date Received: 08/15/01

MW-4, S-1, 0.5-1.7'

08/17/01

Field ID No:

N/A

Date Analyzed:

08/23/01

VOLATILE HALOCARBONS	RESULTS (ug/kg)	VOLATILE AROMATICS	RESULTS (ug/kg
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5	18.5	
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5		
1,2-Dichloropropane	ND< 5		
cis-1,3-Dichloropropene	ND< 5	Ketones & Misc.	
trans-1,3-Dichloropropene	ND< 5	Acetone	ND< 10
Methylene chloride	ND< 5	Vinyl acetate	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	2-Butanone	ND< 10
Tetrachloroethene	ND< 5	4-Methyl-2-pentanone	ND< 10
1,1,1-Trichloroethane	ND< 5	2-Hexanone	ND< 10
1,1,2-Trichloroethane	ND< 5	Carbon disulfide	ND< 5
Trichloroethene	ND< 5		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No: 10709

Comments: ND denotes Not Detected

Approved By

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No: Lab Sample No: 01-2058

Client Job Site:

115 N. Washington

7641

Soil

Client Job No:

1636602

.....

Date Sampled:

Sample Type:

08/16/01

Field Location:

MW-5, S-1, 0.5-2'

Date Received:

08/17/01

Field ID No:

N/A

Date Analyzed:

08/23/01

VOLATILE HALOCARBONS	RESULTS (ug/kg)	VOLATILE AROMATICS	RESULTS (ug/kg
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5	vis	
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5		
1,2-Dichloropropane	ND< 5		
cis-1,3-Dichloropropene	ND< 5	Ketones & Misc.	
trans-1,3-Dichloropropene	ND< 5	Acetone	ND< 10
Methylene chloride	ND< 5	Vinyl acetate	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	2-Butanone	ND< 10
Tetrachloroethene	ND< 5	4-Methyl-2-pentanone	ND< 10
1,1,1-Trichloroethane	ND< 5	2-Hexanone	ND< 10
1,1,2-Trichloroethane	ND< 5	Carbon disulfide	ND< 5
Trichloroethene	ND< 5		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No: 10709

Comments: ND denotes Not Detected

Approved By

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No: Lab Sample No: 01-2058

Client Job Site:

115 N. Washington

7642

Sample Type:

Soil

Client Job No:

1636602

Date Sampled:

08/16/01

Field Location:

MW-5, S-12, 22-24'

Date Received:

08/17/01

Field ID No:

N/A

Date Analyzed:

08/23/01

VOLATILE HALOCARBONS	RESULTS (ug/kg)	VOLATILE AROMATICS	RESULTS (ug/kg
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5	vi.	
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5		
1,2-Dichloropropane	ND< 5		
cis-1,3-Dichloropropene	ND< 5	Ketones & Misc.	
trans-1,3-Dichloropropene	ND< 5	Acetone	ND< 10
Methylene chloride	ND< 5	Vinyl acetate	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	2-Butanone	ND< 10
Tetrachloroethene	ND< 5	4-Methyl-2-pentanone	ND< 10
1,1,1-Trichloroethane	ND< 5	2-Hexanone	ND< 10
1,1,2-Trichloroethane	ND< 5	Carbon disulfide	ND< 5
Trichloroethene	ND< 5		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No: 10709

Comments: ND denotes Not Detected

Approved By

PARADIGM Environmental Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-2058

Lab Sample No.: 7641

Client Job Site:

115 N. Washington

Sample Type:

Soil

Client Job No.:

1636602

Date Sampled:

08/16/2001

Field Location:

N/A

Date Received:

08/17/2001

Field ID No.:

MW-5, S-1, 0.5-2'

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Chromium	08/20/2001	SW846 6010	8.81
Copper	08/20/2001	SW846 6010	15.9
Nickel	08/20/2001	SW846 6010	7.62
Zinc	08/20/2001	SW846 6010	49.7
			di .
		4.	
		ELAP ID No :10958	

Comments:

Approved By:

Laboratory Director

CHAIN OF CUSTODY

	MENTA			DEDODE TO:			INIVO	CE TO:					
ENVIRON		4L	COMPANY	REPORT TO:		COMPANY:				LAB PROJECT #:		PROJECT	
SERVICE			ADDRESS			ADDRESS:	-San	le_		01-2058	16	366	02
179 Lake Avenue Rochester, NY 1			CITY: D	ochoster STATE: NY	ZIP:1462	CITY:		STATE:	ZIP:	TURNAROUND TIME: (V	VORKING	DAYS)	
(716) 647-2530 * FAX: (716) 647-3		97	PHONE:	FAY:		PHONE:		FAX:		-	S	D #	OTHER
PROJECT NAME/SITE	NAME:		ATTN:	- 7	751	ATTN:					7 ₃ Г	75	10
1121110	-Braine		COMMEN			1					J. L		1,0
100 and	= (11.	5 N.	Was	hin ston	_A00_g_A02	n de la composition della comp	-OUESTED A	NALVŠIS	5 0	基本证券	4. 沙皇	1 8 3	
	, 2 4		· Ne in			С		TIVALI GIO			12 1		
DATE	TIME	COMPOSITE	G R A B	SAMPLE LOCATION/FIELD ID	M A T R I	VOCS 8260	Cr. Cu. Ni. 2n, CN			REMARKS		PARADIC SAMPLE	
18/15/01	1200		M	MW-4 5-1 .5-1.7	15	2 X	X i					71	038
2 1	1570		1	MW-4 5-11, 20-22	'	1	X					70	030
3	1500			MW-4, 5-12, 22-21		1 ×						70	045
48/16/01	1200			MW-5 5-1,5-2		2 X	X					71	04
5	1500		1	MW-5, 5-12, 22-2		2 x	×	à z				71	046
6				₩'									
7							4						
9					04.								
0													
9													
10 **LAB USE	ONLY**		1										
SAMPLE COND		ck box		CONTAINER TYPE: PRESER	VATIONS:	-1	HOLDING TIME	7	TEM	PERATURE:	21		
if acceptable or	note deviati	on:									.,0	,	
Sampled By:	in			Date/Time:	Relinquished	Ву:			Date/Ti	ne:	otal Co	st:	
Relinguished B	W.		A-1-0	Date/Time: F	Received By:				Date/Ti	me:			
18u	10			8/17/01 11:15am	Received @ L	ah Bv			Date/Ti	ne:	l.F.		
Received By:		1		8/12/01 11:15	_	De De	A 97	wirn	@ 1145				

TABLE 8 SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg)

Former Brainerd Manufacturing 115 North Washington Street East Rochester, NY

COMPOUNDS											SOIL SA	AMPLES											NYSDEC
	SC-6 1.2'-2.8'	SC-6 2.8'-4.0'	SC-7 2.4'-2.8'	SC-7 3.4'-4.0'	SC-8 2.0'-2.8'	SC-8 3.5'-4.0'	SC-9 2.5'-3.0'	SC-9 3.5'-4.0'	SC-10 2.0'-2.8'	SC-10 3.5'-4.0'	SC-11 2.5'-3.2'	SC-12 1.0'-2.5'	SC-13 2.0'-2.5'	SC-13 3.5'-4.0'	SC-14 2.0'-3.0'	SC-16 2.0'-2.5'	SC-16 3.5'-4.0'	SC-17 0.5'-3.0'	MW-4 0.5 - 1.7	MW-4 22.0 - 24.0	MW-5 0.5 - 2.0	MW-5 22.0 - 24.	REC. SOI CLEANU OBJECTIV
Acetone	ND	ND	ND	ND	ND	44.7	ND	ND	ND	ND	ND	ND	ND	ND	200								
Ethylbenzene	ND	ND	ND	ND	ND	5,500																	
m,p Xylene	ND	ND	ND	ND	ND	1,200																	
Tetrachloroethene	9.81	ND 🥍	20,600	ND	11,100	18.1	226	620	5,780	125	11,400	108	14,600	98.7	2,600	6,680	11,300	532	ND	9	ND	ND	1,400
Trichloroethene	6.24	ND	8,740	ND	6,570	ND	109	295	5,410	115	6,940	47.9	5,580	30.0	2,740	2,700	ND	1,400	ND	ND	ND	ND	700
												/											

 ^{* =} NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

- 2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).
- 3. Bold = reported concentration above soil cleanup objective.
- 4. ND = Not Detected.
- 5. No sample from soil core SC-15 was submitted for laboratory analysis

TABLE 9 SUMMARY OF INORGANIC SOIL SAMPLE RESULTS (mg/kg)

Former Brainerd Maunfacturing 115 North Washington Street East Rochester, NY

Analyte	SC-6 1.2 - 2.8	SC-6 2.8-4.0	SC-7 2.4-2.8	SC-7 3.4-4.0	SC-8 2.0-2.8	SC-8 3.5-4.0	SC-9 2.5-3.0	SC-9 3.5-4.0	SC-10 2.0-2.8	SC-10 3.5-4.0	SC-11 2.5-3.2	SC-12 1.0-2.5	SC-13 2.0-2.5	SC-13 3.5-4.0	SC-14 2.0-3.0	SC-16 2.0-2.5	SC-16 3.5-4.0	SC-17 0.5-3.0	MW-4 0.5 - 1.7	MW-4 20 - 22	MW-5 0.5 - 2.0	MW-5 22 - 24	NYSDEC REC. SOIL CLEANUP OBJECTIVE*	EASTERN USA BKGND. RANGE**
Chromium	127	45.2	15.8	20.9	30.1	17.9	15.8	13.4	36.6	14.8	90.5	8.45	18.0	20.5	27.1	13.4	15.6	67.3	12.7	6.56	8.81	7.42	50	1.5 - 40
Copper	899	1,180	29,300	57.5	6,710	42.8	863	1,090	4,680	2,120	14,000	60	910	14.0	5,190	4,920	5.8	2,400	14.5	5.25	15.9	5.26	25 or SB	1 - 50
Nickel	20.6	40.5	39.7	17.9	66	13.6	23.2	19.8	158	39.3	363	11.1	25.5	14.1	103	22.9	11.3	99.6	13.5	5.44	7.62	4.88	13 or SB	0.5 - 25
Zinc	779	542	7830	59.7	3010	50.2	459	512	1180	588	5680	84.0	298	33.8	2120	639	30.0	1420	40.0	13.9	49.7	14.1	20 or SB	9 - 50
Total Cyanide	1.8	ND	ND	2.6	ND	ND	ND	ND	****	N/A														

Notes:

- 1. mg/kg = milligrams per kilogram which is equivalent to parts per million (ppm).
- 2. * = New York State Department of Environmental Conservation. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).
- 3. ** = Eastern USA background concentrations as reported in above referenced NYSDEC TAGM HWR 94-4046 (Revised December 2000).
- 4. Bold = reported concentration above soil cleanup objective and Eastern USA background range
- 5. N/A = Not Available
- 6. ND = Not Detected
- 7. **** = Some forms of cyanides are complex and very stable while other forms are pH dependent and hence are very unstable. Site-specific forms of cyanide should be taken into consideration when establishing soil cleanup objectives.
- 8. No sample from soil core SC-15 was submitted for laboratory analyses.

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear Brown Group

Lab Project No.:

01-2090

Client Job Site:

115 N. Washington

Lab Sample No.:

7797

Client Job No.:

1636602

Sample Type:

Ground Water

Field Location:

MW-1

Date Sampled:

08/21/01

....

Date Received:

08/21/01

Field ID No.:

N/A

Date Analyzed:

08/24/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5		
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5	Acetone	ND< 10
1,2-Dichloropropane	ND< 5	Vinyl acetate 🐇	ND< 10
cis-1,3-Dichloropropene	ND< 5	2-Butanone	ND< 10
trans-1,3-Dichloropropene	ND< 5	4-Methyl-2-pentanone	ND< 10
Methylene chloride	ND< 5	2-Hexanone	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	Carbon disulfide	ND< 5
Tetrachloroethene	5		
1,1,1-Trichloroethane	ND< 5		
1,1,2-Trichloroethane	ND< 5		
Trichloroethene	ND< 5		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No.: 10709

Comments:

ND denotes Not Detected

Approved By

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear Brown Group

Lab Project No.:

01-2090

Client Job Site:

115 N. Washington

Lab Sample No.:

7796

Client Job No.:

1636602

Sample Type:

Ground Water

Field Location:

MW-2

Date Sampled:

08/21/01

N/A

Date Received:

08/21/01

Field ID No.:

Date Analyzed:

08/24/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L)
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5		
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5	Acetone	ND< 10
1,2-Dichloropropane	ND< 5	Vinyl acetate 🥳	ND< 10
cis-1,3-Dichloropropene	ND< 5	2-Butanone	ND< 10
trans-1,3-Dichloropropene	ND< 5	4-Methyl-2-pentanone	ND< 10
Methylene chloride	ND< 5	2-Hexanone	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	Carbon disulfide	ND< 5
Tetrachloroethene	10		
1,1,1-Trichloroethane	ND< 5		
1,1,2-Trichloroethane	ND< 5		
Trichloroethene	12		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No.: 10709

Comments:

ND denotes Not Detected

Approved By

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear Brown Group

Lab Project No.:

01-2090

Client Job Site:

115 N. Washington

Lab Sample No.:

7795

Client Job No.:

1636602

Sample Type:

Ground Water

Field Location:

MW-3

Date Sampled:

08/21/01

Date Received:

08/21/01

Field ID No.:

N/A

Date Analyzed:

08/27/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane	ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl ether	ND< 10		
Chloroform	ND< 5		
Dibromochloromethane	ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5		
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethene	ND< 5	Acetone	ND< 10
1,2-Dichloropropane	ND< 5	Vinyl acetate 6	ND< 10
cis-1,3-Dichloropropene	ND< 5	2-Butanone	ND< 10
trans-1,3-Dichloropropene	ND< 5	4-Methyl-2-pentanone	ND< 10
Methylene chloride	ND< 5	2-Hexanone	ND< 10
1,1,2,2-Tetrachloroethane	ND< 5	Carbon disulfide	ND< 5
Tetrachloroethene	10		
1,1,1-Trichloroethane	ND< 5		
1,1,2-Trichloroethane	ND< 5		
Trichloroethene	43		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No.: 10709

Comments:

ND denotes Not Detected

Approved By

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear Brown Group

Lab Project No.:

01-2090

Client Job Site:

115 N. Washington

Lab Sample No.:

7793

Client Job No.:

1636602

Sample Type:

Ground Water

Field Location:

Date Sampled:

08/21/01

MW-4

Date Received:

08/21/01

Field ID No.:

N/A

Date Analyzed:

08/24/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L)
Bromodichloromethan	e ND< 5	Benzene	ND< 5
Bromomethane	ND< 10	Chlorobenzene	ND< 5
Bromoform	ND< 5	Ethylbenzene	ND< 5
Carbon tetrachloride	ND< 5	Toluene	ND< 5
Chloroethane	ND< 10	Xylenes, Total	ND< 5
Chloromethane	ND< 10		
2-Chloroethyl vinyl eth	er ND< 10		
Chloroform	ND< 5		
Dibromochloromethan	e ND< 5		
1,1-Dichloroethane	ND< 5		
1,2-Dichloroethane	ND< 5		
1,1-Dichloroethene	ND< 5		
Total-1,2-Dichloroethe	ne ND< 5	Acetone	ND< 10
1,2-Dichloropropane	ND< 5	Vinyl acetate 🄞	ND< 10
cis-1,3-Dichloroproper	ne ND< 5	2-Butanone	ND< 10
trans-1,3-Dichloroprop	en∈ ND< 5	4-Methyl-2-pentanone	ND< 10
Methylene chloride	ND< 5	2-Hexanone	ND< 10
1,1,2,2-Tetrachloroeth	ane ND< 5	Carbon disulfide	ND< 5
Tetrachloroethene	28		
1,1,1-Trichloroethane	ND< 5		
1,1,2-Trichloroethane	ND< 5		
Trichloroethene	190		
Vinyl Chloride	ND< 10		

Analytical Method:

EPA 8260

ELAP ID No.: 10709

Comments:

ND denotes Not Detected

Approved By

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

The Sear Brown Group

Lab Project No.:

01-2090

Client Job Site:

115 N. Washington

Lab Sample No.:

7794

Client Job No.:

1636602

Sample Type:

Ground Water

Field Location:

MW-5

Date Sampled:

08/21/01

Date Received:

08/21/01

Field ID No.:

N/A

Date Analyzed:

08/27/01

	SULIS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane Bromomethane Bromoform Carbon tetrachloride Chloroethane Chloromethane 2-Chloroethyl vinyl ether Chloroform Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene Total-1,2-Dichloroethene	SULTS (ug/L) ND< 50 ND< 100 ND< 50 ND< 100 ND< 100 ND< 100 ND< 50 ND< 50	Acetone Vinyl acetate 2-Butanone 4-Methyl-2-pentanone 2-Hexanone Carbon disulfide	ND< 50 ND< 50 ND< 50 ND< 50 ND< 50 ND< 50 ND< 100 ND< 100 ND< 100 ND< 100 ND< 100 ND< 50

Analytical Method:

EPA 8260

ELAP ID No.: 10709

Comments:

ND denotes Not Detected

Approved By

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-2090 Lab Sample No.: 7797

Client Job Site:

115 North Washington

Water Sample Type:

Client Part No.:

1636602

Field Location:

MW-1

Date Sampled: 08/21/2001 08/21/2001 **Date Received:**

Field ID No.:

N/A

Analytical Result (mg/L) **Date Analyzed Parameter** Method < 0.010 EPA 200.7 08/28/2001 Chromium < 0.010 EPA 200.7 08/28/2001 Copper < 0.040 **EPA 200.7** 08/28/2001 Nickel 0.025 EPA 200.7 08/28/2001 Zinc

ELAP ID No.: 10958

Comments:

Samples were filtered through 0.45µm filter prior to digestion.

Approved By: _

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-2090 Lab Sample No.: 7796

Client Job Site:

115 North Washington

Sample Type: Water

Client Part No.:

1636602

Field Location:

MW-2

Date Sampled: 08/21/2001 Date Received: 08/21/2001

Field ID No.:

N/A

8

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Chromium	08/28/2001	EPA 200.7	<0.010
Copper	08/28/2001	EPA 200.7	<0.010
Nickel	08/28/2001	EPA 200.7	<0.040
Zinc	08/28/2001	EPA 200.7	0.025
			₹5

ELAP ID No.: 10958

Comments:

Samples were filtered through 0.45µm filter prior to digestion.

Approved By:

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-2090 Lab Sample No.: 7795

Client Job Site:

115 North Washington

Sample Type: W

Water

Client Part No.:

1636602

Date Sampled:

08/21/2001

Field Location:

MW-3

Date Received:

08/21/2001

Field ID No.:

N/A

1

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Chromium	08/28/2001	EPA 200.7	<0.010
Copper	08/28/2001	EPA 200.7	<0.010
Nickel	08/28/2001	EPA 200.7	<0.040
Zinc	08/28/2001	EPA 200.7	0.037
			ಸ

ELAP ID No.: 10958

Comments:

Samples were filtered through 0.45µm filter prior to digestion.

Approved By:

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-2090 Lab Sample No.: 7793

Client Job Site:

115 North Washington

Sample Type: Water

Client Part No.:

1636602

Field Location:

MW-4

Date Sampled: 08/21/2001 Date Received: 08/21/2001

Field ID No.:

N/A

5

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Chromium	08/28/2001	EPA 200.7	<0.010
Copper	08/28/2001	EPA 200.7	<0.010
Nickel	08/28/2001	EPA 200.7	<0.040
Zinc	08/28/2001	EPA 200.7	0.085
			Š.

ELAP ID No.: 10958

Comments:

Samples were filtered through 0.45µm filter prior to digestion.

Approved By:

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-2090 Lab Sample No.: 7794

Client Job Site:

115 North Washington

Sample Type: Water

Client Part No.:

1636602

Field Location:

MW-5

Date Sampled: 08/21/2001 Date Received: 08/21/2001

Field ID No.:

N/A

Parameter	Date Analyzed	Analytical Method	Result (mg/L)
Chromium	08/28/2001	EPA 200.7	0.145
Copper	08/28/2001	EPA 200.7	<0.010
Nickel	08/28/2001	EPA 200.7	<0.040
Zinc	08/28/2001	EPA 200.7	0.042
			Z.

ELAP ID No.: 10958

Comments:

Samples were filtered through 0.45µm filter prior to digestion.

Approved By:

Client:

The Sear-Brown Group

Lab Project No.:

01-2090

Client Job Site:

Client Job No.:

115 N. Washington

N/A

Sample Type:

Water

Analytical Method:

EPA 335.3

Date Sampled:

08/21/2001

Date Received:

08/21/2001

Date Analyzed:

08/23/2001

Lab Sample ID.	Client Sample ID.	Field Location	Total Cyanide (mg/l)
7793	N/A	MW-4	ND<0.01
7794	N/A	MW-5	ND<0.01
7795	N/A	MW-3	ND<0.01
7796	N/A	MW-2	ND<0.01
7797	N/A	MW-1	ND<0.01
		4	

ELAP ID No. 10709

Comments:

ND denotes Non Detected.

Approved By:

Laberatory Director

File ID: TCyanide01-2090.xls

-AKADIGM

CHAIN OF CUSTODY

1 / 11 0						· III	101 000	TODI		*	,				
ENVIRO	MENT	AL		REPORT TO:	A Comment	114	Kin Case C	INVOICE TO): 41.46	Section 1		20	100		Notice
SERVICE	S, INC		COMPAN	Y: SEAR-BROWNI		COMPA	NY:	same_	The National Control	W. S. C.	LAB PROJECT #:		T PROJE		
179 Lake Aven			ADDRES	85 Metro Paule STATE:		ADDRE	SS:				01-2090	16	341	60	2
Rochester, NY (716) 647-2530	* (800) 724-1	1997	CITY:	K OT LES TEN	ZIP: 14623	CITY:		STA	TE:	ZIP:	TURNAROUND TIME: (WORKING	DAYS)		
FAX: (716) 647-	3311		PHONE:	475-1440 FAX: 424-50	751	PHONE	•	FAX:		*		s	TD	علد	OTHER
PROJECT NAME/SIT			ATTN:	I'ell Junt		ATTN:						73 [5	~	10
115 N. L	Noshing	hm	COMMEN	TS:	6	20	- 1-0-					<u> </u>			1/4
T.			1 1	pls. filter water for	y mar	-	REQUEST	TED ANALY	SIS						1.6
DATE	TIME	C O M P O S I T E	G R A B	SAMPLE LOCATION/FIELD ID	M A T R I X	CONT NTA BIN RE R S	Vocs 8260 Cr. Cu, N; Zn, CN				REMARKS		PARA	ADIGN	M LAB UMBER
18-21-01	10:16		V	MW-4	W	4	XX				· · · · · · · · · · · · · · · · · · ·		7	7	03
2	11:10		1	MW-5.	1	1	1 1				P 11-4-4-1		17	5	au
3	12:07			MW - 3									1	1	ale
4	12 45			MW 2									+	5	2/2
5	14:10		#	MW - 1	1	4							1	7	17
6			1	***		 	7 7						1	/	011/
7													-		
8					f.*.							-	+		
9											:		+		
10												-	-		
LAB USE	ONLY	i									····				
SAMPLE COND if acceptable or			c	ONTAINER TYPE:PRESERVAT	TONS	7	HOLDING	G TIME:	1	TEMPE	RATURE:	18			
Sampled By: Relinquished By	te Su	id		8/21/01 14:00	nquished	Ву:			:	Date/Time	,	otal Cos	ıt:		
Received By:	20	ala.	15	Date/Time: Rec	eived @ La	ab By:	arlois	,	5	Date/Time	1630 P.	l.F.			•

MAY 2001 INTERIOR SOIL CORING LABORATORY ANALYTICAL REPORT

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4161

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-3, S2 (W of GP-103)

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed:

05/15/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 80.7	Benzene	ND< 80.7
Bromomethane	ND< 80.7	Chlorobenzene	ND< 80.7
Bromoform	ND< 80.7	Ethylbenzene	ND< 80.7
Carbon tetrachloride	ND< 80.7	Toluene	ND< 80.7
Chloroethane	ND< 80.7	m,p - Xylene	ND< 80.7
Chloromethane	ND< 80.7	o - Xylene	ND< 80.7
2-Chloroethyl vinyl ether	ND< 80.7	Styrene	ND< 80.7
Chloroform	ND< 80.7	7	110 - 00.7
Dibromochloromethane	ND< 80.7		
1,1-Dichloroethane	ND< 80.7		
1,2-Dichloroethane	ND< 80.7		
1,1-Dichloroethene	ND< 80.7		
cis-1,2-Dichloroethene	ND< 80.7		
trans-1,2-Dichloroethene	ND< 80.7	Ketones & Misc.	
1,2-Dichloropropane	ND< 80,7	Acetone	ND< 404
cis-1,3-Dichloropropene	ND< 80.7	Vinyl acetate	ND< 202
trans-1,3-Dichloropropene	ND< 80.7	2-Butanone	ND< 202
Methylene chloride	ND< 202	4-Methyl-2-pentanone	ND< 202
1,1,2,2-Tetrachloroethane	ND< 80.7	2-Hexanone	ND< 202
Tetrachloroethene	7,490	Carbon disulfide	ND< 202
1,1,1-Trichloroethane	ND< 80.7	out both distance	NU 202
1,1,2-Trichloroethane	ND< 80.7		
Trichloroethene	2,320		
Vinyl Chloride	ND< 80.7		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4162

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-4, S2 (S Of GP-103)

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed: 05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 9.47	Benzene	ND< 9.47
Bromomethane	ND< 9.47	Chlorobenzene	ND< 9.47
Bromoform	ND< 9.47	Ethylbenzene	ND< 9.47
Carbon tetrachloride	ND< 9.47	Toluene	ND< 9.47
Chloroethane	ND< 9.47	m,p - Xylene	ND< 9,47
Chloromethane	ND< 9.47	o - Xylene	ND< 9.47
2-Chloroethyl vinyl ether	ND< 9.47	Styrene	ND< 9.47
Chloroform	ND< 9.47	•	110 . 0.47
Dibromochloromethane	ND< 9.47		
1,1-Dichloroethane	ND< 9.47		
1,2-Dichloroethane	ND< 9.47		
1,1-Dichloroethene	ND< 9.47		
cis-1,2-Dichloroethene	ND< 9.47		
trans-1,2-Dichloroethene	ND< 9.47	Ketones & Misc.	
1,2-Dichloropropane	ND< 9.47	Acetone	ND< 47.3
cis-1,3-Dichloropropene	ND< 9.47	Vinyl acetate	ND< 23.7
trans-1,3-Dichloropropene	ND< 9.47	2-Butanone	ND< 23.7
Methylene chloride	ND< 23.7	4-Methyl-2-pentanone	ND< 23.7
1,1,2,2-Tetrachloroethane	ND< 9.47	2-Hexanone	ND< 23.7
Tetrachioroethene	259	Carbon disulfide	ND< 23.7
1,1,1-Trichloroethane	ND< 9.47		140 - 20.7
1,1,2-Trichloroethane	ND< 9.47		
Trichloroethene	88.0		
Vinyl Chloride	ND< 9.47		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4163

Client Job No:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

SC-5, S2 (N of SC-1)

Date Sampled: Date Received:

05/04/01 05/07/01

Field ID No:

N/A

Date Analyzed:

05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg		
Bromodichloromethane	ND< 10.1	Benzene	ND< 10.1		
Bromomethane	ND< 10.1	Chlorobenzene	ND< 10.1		
Bromoform	ND< 10.1	Ethylbenzene	ND< 10.1		
Carbon tetrachloride	ND< 10.1	Toluene	ND< 10.1		
Chioroethane	ND< 10.1	m,p - Xylene	ND< 10.1		
Chloromethane	ND< 10.1	o - Xylene	ND< 10.1		
2-Chloroethyl vinyl ether	ND< 10.1	Styrene	ND< 10.1		
Chloroform	ND< 10.1		ND< 10.1		
Dibromochloromethane	ND< 10.1				
1,1-Dichloroethane	ND< 10.1				
1,2-Dichloroethane	ND< 10.1				
1,1-Dichloroethene	ND< 10.1				
cis-1,2-Dichloroethene	ND< 10.1				
trans-1,2-Dichloroethene	ND< 10.1	Ketones & Misc.			
1,2-Dichloropropane	ND< 10.1	Acetone	ND - 502		
cis-1,3-Dichloropropene	ND< 10.1	Vinyl acetate	ND< 50.3 ND< 25.2		
trans-1,3-Dichloropropene	ND< 10.1	2-Butanone	ND< 25.2 ND< 25.2		
Methylene chloride	ND< 25.2	4-Methyl-2-pentanone			
1,1,2,2-Tetrachloroethane	ND< 10.1	2-Hexanone	ND< 25.2 ND< 25.2		
Tetrachloroethene	742	Carbon disulfide			
1,1,1-Trichloroethane	ND< 10.1	odi boli disdilide	ND< 25.2		
1,1,2-Trichloroethane	ND< 10,1				
Trichloroethene	414				
Vinyl Chloride	ND< 10.1				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4164

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-3, Top of 6" Slab

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed:

05/14/01

VOLATILE HALOCARBONS	indicate (ug/kg)		RESULTS (ug/Kg		
Bromodichloromethane	ND< 8.00	VOLATILE AROMATICS Benzene	ND< 8.00		
Bromomethane	ND< 8.00	Chlorobenzene	ND< 8.00		
Bromoform	ND< 8.00	Ethylbenzene	ND< 8.00		
Carbon tetrachloride	ND< 8.00	Toluene			
Chloroethane	ND< 8.00	m,p - Xylene	ND< 8.00		
Chloromethane	ND< 8.00	o - Xylene	ND< 8.00		
2-Chloroethyl vinyl ether	ND< 8.00	Styrene	ND< 8.00		
Chloroform	ND< 8.00	-tyl-chic	ND< 8.00		
Dibromochloromethane	ND< 8.00				
1,1-Dichloroethane	ND< 8.00				
1,2-Dichloroethane	ND< 8.00				
1,1-Dichloroethene	ND< 8.00				
cis-1,2-Dichloroethene	ND< 8.00				
trans-1,2-Dichloroethene	ND< 8.00	Ketones & Misc.			
1,2-Dichloropropane	ND< 8.00	Acetone			
cis-1,3-Dichloropropene	ND< 8.00	Vinyl acetate	ND< 40.0		
trans-1,3-Dichloropropene	ND< 8.00	2-Butanone	ND< 20.0		
Methylene chloride	ND< 20.0		ND< 20.0		
1,1,2,2-Tetrachloroethane	ND< 8.00	4-Methyl-2-pentanone 2-Hexanone	ND< 20.0		
Tetrachloroethene	187	Carbon disulfide	ND< 20.0		
1,1,1-Trichloroethane	ND< 8.00	Carbon disulfide	ND< 20.0		
1,1,2-Trichloroethane	ND< 8.00				
Trichloroethene	76.9				
Viriyl Chloride	ND< 8.00				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4165

Client Job No:

East Rochester (Brainerd)

Sample Type:

Soil

1636601

Date Sampled: Date Received:

05/04/01

Field Location: Field ID No:

SC-1, S2A (N of GP-103)

Date Analyzed:

05/07/01 05/15/01

N/A

VOLATILE HALOCARBONS RESULTS (ug/Kg) **VOLATILE AROMATICS** RESULTS (ug/Kg) Bromodichloromethane ND< 98.8 Benzene ND< 98.8 Bromomethane ND< 98.8 Chlorobenzene ND< 98.8 Bromoform ND< 98.8 Ethylbenzene ND< 98.8 Carbon tetrachloride ND< 98.8 Toluene ND< 98.8 Chloroethane ND< 98.8 m,p - Xylene ND< 98.8 Chloromethane ND< 98.8 o - Xylene ND< 98.8 2-Chloroethyl vinyl ether ND< 98.8 Styrene ND< 98.8 Chloroform ND< 98.8 Dibromochloromethane ND< 98.8 1,1-Dichloroethane ND< 98.8 1,2-Dichloroethane ND< 98.8 1,1-Dichloroethene ND< 98.8 cis-1,2-Dichloroethene ND< 98.8 trans-1,2-Dichloroethene ND< 98.8 Ketones & Misc. 1,2-Dichloropropane ND< 98.8 Acetone ND< 494 cis-1,3-Dichloropropene ND< 98.8 Vinyl acetate ND< 247 trans-1,3-Dichloropropene ND< 98.8 2-Butanone ND< 247 Methylene chloride ND< 247 4-Methyl-2-pentanone ND< 247 1,1,2,2-Tetrachloroethane ND< 98.8 2-Hexanone ND< 247

Analytical Method:

Trichloroethene

Vinyl Chloride

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

EPA 8260

6,600

5,450

ND< 98.8

ND< 98.8

ND< 98.8

ELAP ID No: 10958

ND< 247

Carbon disulfide

Comments: ND denotes Not Detected

Approved By

Environmental Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4161

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

Date Sampled:

05/04/2001

W. of GP-103

Date Received:

05/07/2001

Field ID No.:

SC-3, S2

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)			
Arsenic	05/09/2001	SW846 6010	4.87			
Barium	05/09/2001	SW846 6010	73.4			
Cadmium	05/09/2001	SW846 6010	3.64			
Chromium	05/09/2001	SW846 6010	285			
Copper	05/10/2001	SW846 6010	6707			
Lead	05/09/2001	SW846 6010	79.2			
Mercury	05/09/2001	SW846 7471	<0.0969			
Nickel	05/09/2001	SW846 6010	278			
Selenium	05/09/2001	SW846 6010	2.75			
Silver	05/09/2001	SW846 6010	1.03			
Zinc	05/09/2001	SW846 6010	264			

ELAP ID No.:10958

Comments:

approved By:

Laborator Director

Environmental Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4162

East Rochester (Brainerd)

Sample Type:

Client Job No.:

1636601

Date Sampled:

05/04/2001

Soil

Field Location:

S. of GP-103

Date Received:

05/07/2001

Field ID No.:

SC-4, S2

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)			
Arsenic	05/09/2001	SW846 6010	1.32			
Barium	05/09/2001	SW846 6010	38.1			
Cadmium	05/09/2001	SW846 6010	<0.514			
Chromium	05/09/2001	SW846 6010	50.4			
Copper	05/10/2001	SW846 6010	16.4			
Lead	05/09/2001	SW846 6010	4.28			
Mercury	05/09/2001	SW846 7471	<0.0973			
Nickel	05/09/2001	SW846 6010	8.21			
Selenium	05/09/2001	SW846 6010	<0.514			
Silver	05/09/2001	SW846 6010	<1.03			
Zinc	05/09/2001	SW846 6010	28.0			

ELAP ID No.:10958

Comments:

approved By:

Laboratory Director

Environmental Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4163

Client Job No.:

East Rochester (Brainerd)

Sample Type:

Soil

1636601

Date Sampled:

05/04/2001

Field Location:

N. of SC-1

Date Received:

05/07/2001

Field ID No.:

SC-5, S2

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)		
Arsenic	05/09/2001	SW846 6010	4.69		
Barium	05/09/2001	SW846 6010	40.7		
Cadmium	05/09/2001	SW846 6010	0.999		
Chromium	05/09/2001	SW846 6010	73.2		
Copper	05/10/2001	SW846 6010	560		
Lead	05/09/2001	SW846 6010	53.4		
Mercury	05/09/2001	SW846 7471	<0.0971		
Nickel	05/09/2001	SW846 6010	18.9		
Selenium	05/09/2001	SW846 6010	0.910		
Silver	05/09/2001	SW846 6010	<1.05		
Zinc	05/09/2001	SW846 6010	284		

ELAP ID No.: 10958

Comments:

Approved By:

Laboratory Director

3ervices, Inc.

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4164

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

Top of 6" Slab

Date Sampled:

05/04/2001

Field ID No.:

SC-3

Date Received:

05/07/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	05/09/2001	SW846 6010	1.99
Barium	05/09/2001	SW846 6010	83.6
Cadmium	05/09/2001	SW846 6010	8.51
Chromium	05/09/2001	SW846 6010	251
Copper	05/10/2001	SW846 6010	5000
Lead	05/09/2001	SW846 6010	27.7
Mercury	05/09/2001	SW846 7471	<0.0870
Nickel	05/10/2001	SW846 6010	4530
Selenium	05/09/2001	SW846 6010	2.24
Silver	05/09/2001	SW846 6010	2.86
Zinc	05/09/2001	SW846 6010 ELAP ID No :10958	317

ELAP ID No.:10958

Comments:

pproved By:

Laboratory Director

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4165

Client Job No.:

East Rochester (Brainerd)

Sample Type:

Soil

1636601

Date Sampled:

05/04/2001

Field Location:

N. of GP-103

Date Received:

05/07/2001

Field ID No.:

SC-1, S2a

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)				
Arsenic	05/09/2001	SW846 6010	6.95				
Barium	05/09/2001	SW846 6010	71.7				
Cadmium	05/09/2001	SW846 6010	3.01				
Chromium	05/09/2001	SW846 6010	23.9				
Copper	05/10/2001	SW846 6010	1717				
Lead	05/09/2001	SW846 6010	114				
Mercury	05/09/2001	SW846 7471	<0.103				
Nickel	05/09/2001	SW846 6010	38.2				
Selenium	05/09/2001	SW846 6010	0.739				
Silver	05/09/2001	SW846 6010	<0.675				
Zinc	05/09/2001	SW846 6010	1053				

ELAP ID No.:10958

Comments:

Approved By:

Laboratory Director

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.:

01-1059

Client Job Site:

115 N. Washington St.

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No.:

1636601

Analytical Method:

EPA 9012

Date Sampled:

05/04/2001

Date Received:

05/07/2001

Date Analyzed:

05/11/2001

Lab Sample ID.	Client Sample ID.	Field Location	Total Cyanide (mg/kg)
4161	SC-3, S2	W. of GP-103	12
4162	SC-4, S2	S. of GP-103	ND<1
4163	SC-5, S2	N. of SC-1	8.8
4164	SC-3	Top of 6" slab	12
4165	SC-1, S2a	N. of GP-103	2.1

ELAP ID. No.:10709

Comments:

ND denotes Non Detected.

Approved By: ________

Laboratory Director

File ID: VARLOC01-1059

CHA'' OF CUSTODY

ENVIDO	Alba-CAD	TAI	Section Statement			<u>UII</u>	_	0		03	10	זעי		•						11-					
ENVIRO			COMPAN	REPORT TO		Production (H				INV	OICE	TO:				Helph		101	ri.			T. or F		
SERVIC	ES, INC		ADDDE	NY: SEAR-BROWN		. 0	COMPANY: SAME AL REPORT								or a large of the	LAB PROJECT#: CL					LIENT PROJECT#:				
179 Lake Aven	ue		85 Metro Park			1	DDRES	SS:				- 1 -	J Can Bird		4.1		61-1059 1634				alaco (
Rochester, NY	14608		CITY:	ROCHESTER NY	ZIP: (41623	C	ITY:						STATE:		ZIP:			IAROUND							
(716) 647-2530	* (800) 724-	1997	PHONE:	6) 475-1440 FAX: (714)	MON-645	51 6	HONE:					FAX:					-								
PROJECT NAME/SIT	TE NAME:	N ST.	ATTN:	THE STORDHLEY /A	PRI You	A	TTN:										-			7 F	TD		OTH	HE	
STATE HOLH	GSTEEL.	·	COMMEN	NTS:	San Jack	JJS E	,	4	. 4500	•		1						1	2	3	· 5			enanc.	
18 2 10 TEA				Please note ren	wrks -		am	ple		5 0	クロ	kel	oels	, 17	ot ri	ar ·	caps.	5	,			18%			
		С			in the second		C	1	(EQI	JES	IED	ANA	VEYSI	S				Page 1	cut jugar	ied gaza					
DATE	TIME	O M P O S I T E	G R A B	SAMPLE LOCATION/FIELD I		M A T R i	O N U T M A I B R R R S	Salac Voxs	12.84 8/TEN	Marker Li	エルシム, しかな	PANDES TO				٠	REI	MARKS	× 1.3		SAM	RADIGI PLE NI	UMBE		
15-04-01	1130		i. market	50-1, 50b (N. of	GP-103) SE	14	1	. ng. lik	week or	200	e and	-6.5	190		1		1								
2 5-04-01	1106		Love	36-3,52 (W. of			,	w	مة مدة		,			34	- OL	١. ز	rbui	米と	×		1,				
3 5-04-01	1105		1	SC-4, 52 (5.01			1	-	-	-	-		-								4	1	12	1	
4 5-04-01	1205		1	3c-5, 52 (N. of	177		1	10	i	-	Load	Comme !		-	-						- 4	1	la	2	
55-04-01	1000		11	35-3 . Top of 6" 3,		ear.	,	200	for the	-	500	1.00	+	١. الد	1120	50	-401	- Surro	min		4	1	0	-	
65-04-01	0910		V	50-1,52a (N. of		-	,	1	har har	. 4.00	-			17	1.757	משירי	27	axol e Vo	7 34	orture	2 7		10	1	
7				- 1 / JOHN (N. OK	GR103) SO	16	1	4	have to	-	w	4	-	>-	inte	100	Por-	ton o	Fire	ims	at 1.		10	3	
8						-		\vdash	+	-			-			1,7,000									
9						-			-	+-							-,								
10				,		+			-	-			-	1	-			-							
LAB USE	ONLY		لسنسا					Щ								1									
SAMPLE CONDI if acceptable or Sampled By:	note deviati		CC	Date/Time: 5-04-01	Received By		17		НС	LDING	TIME:		U -		Date/		ATURE:	12		OLC P					
Relinquished By	1/1			Date/Time:	Received By	:				, .		Þ	, .		Date/	lime:			L						
Relinquished By		AND THE REAL PROPERTY.	and the second	Date/Time:	Received @	Lab B	v:						:												
•						RR		9	Da	do					5/7/	1	170	0	P.I.F						

APRIL 2001 EXTERIOR SOIL BORING LABORATORY ANALYTICAL REPORT

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK **PARADIGM**

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-0996

Client Job Site:

115 N. Washington St. East Rochester, New York Lab Sample No.: 3978

Client Job No.:

N/A

Sample Type:

Soil

Field Location:

MW-1, S15 (28'-30')

Date Sampled:

04/18/2001

Field ID No.:

NA

Date Received: 04/30/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
T-Cyanide	05/03/2001	EPA 9012	ND<1
	1		

ELAP ID.No.: 10709

Comments:

ND denotes Non Detected.

Approved By:

Laboratory Director

File ID: CN01-0996

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-0996

Client Job Site:

115 N. Washington Street

Lab Sample No.:

3978

Client Job No.:

East Rochester, New York 1636601

Sample Type:

Soil

Field Location:

MW-1, S15 (28'-30')

Date Sampled:

04/18/2001

Field ID No.:

Date Received:

04/30/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/01/2001	SW846 6010	2.16	
Barium	05/01/2001	SW846 6010	15.6	
Cadmium	05/01/2001	SW846 6010	<0.581	
Chromium	05/01/2001	SW846 6010	7.39	
Copper	05/01/2001	SW846 6010	9.36	
Lead	05/01/2001	SW846 6010	3.71	
Mercury	05/03/2001	SW846 7471	<0.0824	
Nickel	05/01/2001	SW846 6010	5.29	
Selenium	05/01/2001	SW846 6010	0.819	
Silver	05/01/2001	SW846 6010	<1.16	
Zinc	05/01/2001	SW846 6010 ELAP ID No.:10958	15.4	

ELAP ID No.:10958

Comments:

pproved By:

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

Client Job No:

E. Roch. (Brainerd) 1636601

Sample Type:

Soil

3977

Field Location:

MW-1, S5(8'-10')

Date Sampled: Date Received:

04/18/01 04/30/01

Field ID No:

N/A

Date Analyzed:

04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg		
Bromodichloromethane	ND< 8.66	Benzene	ND< 8.66		
Bromomethane	ND< 8.66	Chlorobenzene	ND< 8.66		
Bromoform	ND< 8.66	Ethylbenzene	ND< 8.66		
Carbon tetrachloride	ND< 8.66	Toluene	ND< 8.66		
Chloroethane	ND< 8.66	m,p - Xylene	ND< 8.66		
Chloromethane	ND< 8.66	o - Xylene	ND< 8.66		
2-Chloroethyl vinyl ether	ND< 8.66	Styrene	ND< 8.66		
Chloroform	ND< 8.66	· ·	NU< 8.00		
Dibromochloromethane	ND< 8.66				
1,1-Dichloroethane	ND< 8.66				
1,2-Dichloroethane	ND< 8.66				
1,1-Dichloroethene	ND< 8.66				
cis-1,2-Dichloroethene	ND< 8.66				
trans-1,2-Dichloroethene	ND< 8.66	Ketones & Misc.			
1,2-Dichloropropane	ND< 8.66	Acetone	110		
cis-1,3-Dichloropropene	ND< 8.66	Vinyl acetate	ND< 43.3		
trans-1,3-Dichloropropene	ND< 8.66	2-Butanone	ND< 21.6		
Methylene chloride	ND< 21.6	4-Methyl-2-pentanone	ND< 21.6		
1,1,2,2-Tetrachloroethane	ND< 8.66	2-Hexanone	ND< 21.6		
Tetrachloroethene	10.8	Carbon disulfide	ND< 21.6		
1,1,1-Trichloroethane	ND< 8.66	Cal boll disuifige	ND< 21.6		
1,1,2-Trichloroethane	ND< 8.66				
Trichloroethene	ND< 8.66				
Vinyl Chloride	ND< 8.66				

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

3979

E. Roch. (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

04/19/01

Field Location:

MW-2, S11(20'-22')

Date Received:

04/30/01

Field ID No:

N/A

Date Analyzed: 04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg)
Bromodichloromethane	ND< 8.66	Benzene	
Bromomethane	ND< 8.66	Chlorobenzene	ND< 8.66
Bromoform	ND< 8.66	Ethylbenzene	ND< 8.66
Carbon tetrachloride	ND< 8.66		ND< 8.66
Chloroethane	MD - 0.00	Toluene	ND< 8.66

1	Bromoform	ND< 8.66	Ethylbenzene	ND - B cc	
	Carbon tetrachloride	ND< 8.66	Toluene	ND< 8.66	
	Chloroethane	ND< 8.66	m,p - Xylene	ND< 8.66	
1	Chloromethane	ND< 8.66	o - Xylene	21.3	
	2-Chloroethyl vinyl ether	ND< 8.66	Styrene	ND< 8.66	
	Chloroform	ND< 8.66	Stylene	ND< 8.66	
	Dibromochloromethane	ND< 8.66			
	1,1-Dichloroethane	ND< 8.66			
	1,2-Dichloroethane	ND< 8.66			
	1,1-Dichloroethene	ND< 8.66			
	cis-1,2-Dichloroethene	ND< 8.66			
	trans-1,2-Dichloroethene	ND< 8.66	Votonoo 2 Min		
	1,2-Dichloropropane	ND< 8.66	Ketones & Misc.	44-100	
	cis-1,3-Dichloropropene	ND< 8.66	Acetone	ND< 43.3	
	trans-1,3-Dichloropropene	ND< 8.66	Vinyl acetate	ND< 21.6	
	Methylene chloride	ND< 21.6	2-Butanone	ND< 21.6	
	1,1,2,2-Tetrachloroethane	ND< 8.66	4-Methyl-2-pentanone	ND< 21.6	
	Tetrachloroethene	ND< 8.66	2-Hexanone	ND< 21.6	
	1,1,1-Trichloroethane	ND< 8.66	Carbon disulfide	ND< 21.6	
	1,1,2-Trichloroethane	ND< 8.66			
	Trichloroethene	ND< 8.66			
1					1

Analytical Method:

Vinyl Chloride

EPA 8260

ND< 8.66

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

3980

......

E. Roch. (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

04/20/01

Field Location:

MW-3, S12(24'-26')

Date Received:

04/30/01

Field ID No:

N/A

Date Analyzed:

04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 10.1	Benzene	ND< 10.1
Bromomethane	ND< 10.1	Chlorobenzene	ND< 10.1
Bromoform	ND< 10.1	Ethylbenzene	ND< 10.1
Carbon tetrachloride	ND< 10.1	Toluene	ND< 10.1
Chloroethane	ND< 10.1	m,p - Xylene	16.1
Chloromethane	ND< 10.1	o - Xylene	ND< 10.1
2-Chloroethyl vinyl ether	ND< 10.1	Styrene	ND< 10.1
Chloroform	ND< 10.1		110 - 10.1
Dibromochloromethane	ND< 10.1		
1,1-Dichloroethane	ND< 10.1		
1,2-Dichloroethane	ND< 10.1		
1,1-Dichloroethene	ND< 10.1		
cis-1,2-Dichloroethene	ND< 10.1		
trans-1,2-Dichloroethene	ND< 10.1	Ketones & Misc.	
1,2-Dichloropropane	ND< 10.1	Acetone	ND< 50.3
cis-1,3-Dichloropropene	ND< 10.1	Vinyl acetate	ND< 25.2
trans-1,3-Dichloropropene	ND< 10.1	2-Butanone	ND< 25.2
Methylene chloride	ND< 25.2	4-Methyl-2-pentanone	ND< 25.2
1,1,2,2-Tetrachloroethane	ND< 10.1	2-Hexanone	ND< 25.2
Tetrachioroethene	ND< 10.1	Carbon disulfide	ND< 25.2
1,1,1-Trichloroethane	ND< 10.1	and an arrange	140 20.2
1,1,2-Trichloroethane	ND< 10.1		
Trichloroetherie	ND< 10.1		
Vinyl Chloride	ND< 10.1		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By _

PARADIGM

CH' Y OF CUSTODY

ENVIRO				REPORTITO			e istale:	idove abd	i i i i i i i i i i i i i i i i i i i	Y4122-02	- 1.8) Sept.	Patrio	el el l'electe recier i		27 484 91 (884)070	1	STREET	4
SERVICE	ES, INC		COMPA	NY: SEAR-BROWN		COMPA	ANY:				DE TO:			LAB PROJECT #:	lcuir	NT PRO	IECT.	
179 Lake Avenu	ue			as Maria Day		ADDRE	SS:			11-16	ASS	KE	PORT			le Bla		
Rochester, NY	14608		CITY:	ROCHESTER STATE: Z	IP: 623	CITY:					STATE:		ZIP:	TURNAROUND TI	ME: WORKI	NG DAYS	(01)	}
(716) 647-2530	* (800) 724-1	997	PHONE:	10 1440 110 1200	Eac.	PHONE				FA	X;				(110)	10 0/10	,	
PROJECT NAME/SIT			ATTN:	TIVE STORONELY /A		ATTN:	-					•				STD		OTH
٠. ١	E. ROCH	1.	COMMEN	VIS PLEASE RILL R.	Me	-	N		ond	1	1			1 2	3	5		<u></u>
				PLEASE RUN BY		US,	f	SEOI	JEST	ED:A	NALYS	ことに	TIME h	exp	IRE"	*	VALUE AND ADDRESS OF THE PARTY	Marie San San
DATE	TIME	C O M P O S I T E	G R A	SAMPLE LOCATION/FIELD ID	M A T R I X	C O N T A I N B I N E R R R R	Vacs	J	TOTAL TOTAL	ZINC, TOTAL	o local			REMARKS		PAF	RADIGN	
14-18-01	0940		V	MW-1, \$5 (8-10)	Soil	. ,	1	11							1			
2 4-18-01	1235		V	MW-1, \$15 (28-30')	Soil	-							MENS	E RUN	By		<u>, M</u>	
3 4-19-01	0735		1-000	MW-2, \$11 (20-22)		1		00		VV		-	HOLDING	TIME WILL	EXPIRE	. 3	19	73
4 4-20-01	10.52		4	MW-3, \$12 (24'-26')	SOIL	1	w/	-	+	-			-			. 7	1	1
5		" .), , , , , , , , , , , , , , , , , , ,	Sbit.		+	_						***		3	13	11/
6							H	- -					-					
7								-	H	-								
8					-		H		\square									
9							H		+									
10					-		-	-	\vdash	4								
*LAB USE	ONLY**							Щ,										
SAMPLE CONDI facceptable or r	TION: Check note deviatio	box n:	cc	ONTAINER TYPE: PRESERVATION	IS:			НО	DING T	TME:	The Land	-	TEMPERAT	TURE:				
Sampled By:	A Fra	un	gi har	4-20-01	ed By:		- 60 B		· .7		ang.		Date/Time:		Total Co	st:		
Relinquished By	A Sia	ed L		Date/Time: AO 55 avr Receiv	Beth			. 6	130	olor	w	15.	Date/Time:					
			, ,	Date/Time: Receive	ed @ Lab	Ву:							Date/Time:		P.I.F.			

MAY 2001 INTERIOR SOIL CORING LABORATORY ANALYTICAL REPORT

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4161

Client Job No:

East Rochester (Brainerd)

Sample Type:

Soil

1636601

Date Sampled:

05/04/01

Field Location:

SC-3, S2 (W of GP-103)

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed:

05/15/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg		
Bromodichloromethane	ND< 80.7	Benzene	ND< 80.7		
Bromomethane	ND< 80.7	Chlorobenzene	ND< 80.7		
Bromoform	ND< 80.7	Ethylbenzene	ND< 80.7		
Carbon tetrachloride	ND< 80.7	Toluene	ND< 80.7		
Chloroethane	ND< 80.7	m,p - Xylene	ND< 80.7		
Chloromethane	ND< 80.7	o - Xylene	ND< 80.7		
2-Chloroethyl vinyl ether	ND< 80.7	Styrene	ND< 80.7		
Chloroform	ND< 80.7	7,200	140 00.7		
Dibromochloromethane	ND< 80.7				
1,1-Dichloroethane	ND< 80.7				
1,2-Dichloroethane	ND< 80.7				
1,1-Dichloroethene	ND< 80.7				
cis-1,2-Dichloroethene	ND< 80.7				
trans-1,2-Dichloroethene	ND< 80.7	Ketones & Misc.			
1,2-Dichloropropane	ND< 80.7	Acetone	ND< 404		
cis-1,3-Dichloropropene	ND< 80.7	Vinyl acetate			
trans-1,3-Dichloropropene	ND< 80.7	2-Butanone	ND< 202		
Methylene chloride	ND< 202	4-Methyl-2-pentanone	ND< 202		
1,1,2,2-Tetrachloroethane	ND< 80.7	2-Hexanone	ND< 202		
Tetrachloroethene	7,490	Carbon disulfide	ND< 202		
1,1,1-Trichloroethane	ND< 80.7	our port disdiffice	ND< 202		
1,1,2-Trichloroethane	ND< 80.7				
Trichloroethene	2,320				
Vinyl Chloride	ND< 80.7				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4162

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-4, S2 (S Of GP-103)

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed:

05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg		
Bromodichloromethane	ND< 9.47	Benzene	ND< 9,47		
Bromomethane	ND< 9.47	Chlorobenzene	ND< 9.47		
Bromoform	ND< 9.47	Ethylbenzene	ND< 9.47		
Carbon tetrachloride	ND< 9.47	Toluene	ND< 9,47		
Chloroethane	ND< 9.47	m,p - Xylene	ND< 9.47		
Chloromethane	ND< 9.47	o - Xylene	ND< 9.47		
2-Chloroethyl vinyl ether	ND< 9.47	Styrene	ND< 9.47		
Chloroform	ND< 9.47				
Dibromochloromethane	ND< 9.47				
1,1-Dichloroethane	ND< 9.47				
1,2-Dichloroethane	ND< 9.47				
1,1-Dichloroethene	ND< 9.47				
cis-1,2-Dichloroethene	ND< 9.47				
trans-1,2-Dichloroethene	ND< 9.47	Ketones & Misc.			
1,2-Dichloropropane	ND< 9.47	Acetone	ND< 47.3		
cis-1,3-Dichloropropene	ND< 9.47	Vinyl acetate	ND< 23,7		
trans-1,3-Dichloropropene	ND< 9.47	2-Butanone	ND< 23.7		
Methylene chloride	ND< 23.7	4-Methyl-2-pentanone	ND< 23.7		
1,1,2,2-Tetrachloroethane	ND< 9.47	2-Hexanone	ND< 23.7		
Tetrachloroethene	259	Carbon disulfide	ND< 23.7		
1,1,1-Trichloroethane	ND< 9.47				
1,1,2-Trichloroethane	ND< 9.47	•			
Trichloroethene	88.0				
Vinyl Chloride	ND< 9.47				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4163

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-5, S2 (N of SC-1)

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed: 05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/K		
Bromodichloromethane	ND< 10.1	Benzene	ND< 10.1		
Bromomethane	ND< 10.1	Chlorobenzene	ND< 10.1		
Bromoform	ND< 10.1	Ethylbenzene	ND< 10.1		
Carbon tetrachloride	ND< 10.1	Toluene	ND< 10.1		
Chioroethane	ND< 10.1	m,p - Xylene	ND< 10.1		
Chloromethane	ND< 10.1	o - Xylene	ND< 10.1		
2-Chloroethyl vinyl ether	ND< 10.1	Styrene	ND< 10.1		
Chloroform	ND< 10.1		110 - 10.1		
Dibromochloromethane	ND< 10.1				
1,1-Dichloroethane	ND< 10.1				
1,2-Dichloroethane	ND< 10.1				
1,1-Dichloroethene	ND< 10.1				
cis-1,2-Dichloroethene	ND< 10.1				
trans-1,2-Dichloroethene	ND< 10.1	Ketones & Misc.			
1,2-Dichloropropane	ND< 10.1	Acetone	ND< 50.3		
cis-1,3-Dichloropropene	ND< 10.1	Vinyl acetate	ND< 25.2		
trans-1,3-Dichloropropene	ND< 10.1	2-Butanone	ND< 25.2		
Methylene chloride	ND< 25.2	4-Methyl-2-pentanone	ND< 25.2		
1,1,2,2-Tetrachloroethane	ND< 10,1	2-Hexanone	ND< 25.2		
Tetrachloroethene	742	Carbon disulfide			
1,1,1-Trichloroethane	ND< 10.1	Carbon disultide	ND< 25.2		
1,1,2-Trichloroethane	ND< 10.1				
Trichloroethene	414				
Vinyl Chloride	ND< 10.1				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Director

011059V3.XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4164

-.....

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

05/04/01

Field Location:

SC-3, Top of 6" Slab

Date Received:

05/07/01

Field ID No:

N/A

Date Analyzed:

05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg	
Bromodichloromethane	ND< 8.00	Benzene	ND< 8.00	
Bromomethane	ND< 8.00	Chlorobenzene	ND< 8.00	
Bromoform	ND< 8.00	Ethylbenzene	ND< 8.00	
Carbon tetrachloride	ND< 8.00	Toluene	ND< 8.00	
Chloroethane	ND< 8.00	m,p - Xylene	ND< 8.00	
Chloromethane	ND< 8.00	o - Xylene	ND< 8.00	
2-Chloroethyl vinyl ether	ND< 8.00	Styrene	ND< 8.00	
Chloroform	ND< 8.00		115 4 0.00	
Dibromochloromethane	ND< 8.00			
1,1-Dichloroethane	ND< 8.00			
1,2-Dichloroethane	ND< 8.00			
1,1-Dichloroethene	ND< 8.00			
cis-1,2-Dichloroethene	ND< 8.00			
trans-1,2-Dichloroethene	ND< 8.00	Ketones & Misc.		
1,2-Dichloropropane	ND< 8.00	Acetone	ND< 40.0	
cis-1,3-Dichloropropene	ND< 8.00	Vinyl acetate	ND< 20.0	
trans-1,3-Dichloropropene	ND< 8.00	2-Butanone	ND< 20.0	
Methylene chloride	ND< 20.0	4-Methyl-2-pentanone	ND< 20.0	
1,1,2,2-Tetrachloroethane	ND< 8.00	2-Hexanone	ND< 20.0	
Tetrachloroethene	187	Carbon disulfide	ND< 20.0	
1,1,1-Trichloroethane	ND< 8.00		110 \ 20.0	
1,1,2-Trichloroethane	ND< 8.00			
Trichloroethene	76.9			
Vinyl Chloride	ND< 8.00			

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

The Sear-Brown Group

Lab Project No:

01-1059

Client Job Site:

115 N Washington St

Lab Sample No:

4165

Client Job No:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

SC-1, S2A (N of GP-103)

Date Sampled: Date Received:

05/04/01 05/07/01

Field ID No:

N/A

Date Analyzed:

05/15/01

Bromodichloromethane Bromomethane Bromoform Carbon tetrachloride	ND< 98.8 ND< 98.8 ND< 98.8	VOLATILE AROMATICS Benzene	RESULTS (ug/Kg
Bromoform			ND< 98.8
	ND< 988	Chlorobenzene	
Carbon tetrachloride	110 - 30.0	Ethylbenzene	ND< 98.8
	ND< 98.8	Toluene	ND< 98.8
Chloroethane	ND< 98.8	m,p - Xylene	ND< 98.8
Chloromethane	ND< 98.8	o - Xylene	ND< 98.8
2-Chloroethyl vinyl ether	ND< 98.8	Styrene	ND< 98.8
Chloroform	ND< 98.8	oty, one	ND< 98.8
Dibromochloromethane	ND< 98.8		
1,1-Dichloroethane	ND< 98.8		
1,2-Dichloroethane	ND< 98.8		
1,1-Dichloroethene	ND< 98.8		
cis-1,2-Dichloroethene	ND< 98.8		
trans-1,2-Dichloroethene	ND< 98.8	Ketoner ? Mice	
1,2-Dichloropropane	ND< 98.8	Ketones & Misc. Acetone	
cis-1,3-Dichloropropene	ND< 98.8	Vinyl acetate	ND< 494
trans-1,3-Dichloropropene	ND< 98.8	2-Butanone	ND< 247
Methylene chloride	ND< 247		ND< 247
1,1,2,2-Tetrachloroethane	ND< 98.8	4-Methyl-2-pentanone 2-Hexanone	ND< 247
Tetrachloroethene	6,600		ND< 247
1,1,1-Trichloroethane	ND< 98.8	Carbon disulfide	ND< 247
1,1,2-Trichloroethane	ND< 98.8		
Trichloroethene	5,450		
Vinyl Chloride	ND< 98.8		

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

PARADIGM Services, Inc.

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4161

East Rochester (Brainerd)

Sample Type:

Soil

Client Job No.:

1636601

Date Sampled:

05/04/2001

Field Location:

W. of GP-103

Date Received:

05/07/2001

Field ID No.:

SC-3, S2

Parameter Date Analytical Result Analyzed Method (mg/kg) Arsenic 05/09/2001 SW846 6010 4.87 Barium 05/09/2001 SW846 6010 73.4 Cadmium 05/09/2001 SW846 6010 3.64 Chromium 05/09/2001 SW846 6010 285 Copper 05/10/2001 SW846 6010 6707 Lead 05/09/2001 SW846 6010 79.2 Mercury 05/09/2001 SW846 7471 < 0.0969 **Nickel** 05/09/2001 SW846 6010 278 Selenium 05/09/2001 SW846 6010 2.75 Silver 05/09/2001 SW846 6010 1.03 Zinc SW846 6010 05/09/2001 264

ELAP ID No.:10958

Comments:

approved By:

Laborator Director

PARADIGM

Environmental 3ervices, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4162

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

Date Sampled:

05/04/2001

S. of GP-103

Date Received:

05/07/2001

Field ID No.:

SC-4, S2

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/09/2001	SW846 6010	1.32	
Barium	05/09/2001	SW846 6010	38.1	
Cadmium	05/09/2001	SW846 6010	<0.514	
Chromium	05/09/2001	SW846 6010	50.4	
Copper	05/10/2001	SW846 6010	16.4	
Lead	05/09/2001	SW846 6010	4.28	
Mercury	05/09/2001	SW846 7471	<0.0973	
Nickel	05/09/2001	SW846 6010		
Selenium	05/09/2001	SW846 6010	<0.514	
Silver	05/09/2001	SW846 6010	<1.03	
Zinc	05/09/2001	SW846 6010	28.0	

ELAP ID No.:10958

Comments:

-approved By:

Laboratory Director

PARADIGM

Environmental Services, Inc.

179 Lake Avenue Rochester. New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4163

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Date Sampled:

05/04/2001

Field Location:

N. of SC-1

Date Received:

05/07/2001

Field ID No.:

SC-5, S2

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/09/2001	SW846 6010	4.69	
Barium	05/09/2001	SW846 6010	40.7	
Cadmium	05/09/2001	SW846 6010	0.999	
Chromium	05/09/2001	SW846 6010	73.2 560	
Copper	05/10/2001	SW846 6010		
Lead	05/09/2001	SW846 6010	53.4	
Mercury	05/09/2001	SW846 7471	<0.0971	
Nickel	05/09/2001	SW846 6010	18.9	
Selenium	05/09/2001	SW846 6010	0.910	
Silver	05/09/2001	SW846 6010	<1.05	
Zinc	05/09/2001	SW846 6010	284	

ELAP ID No.:10958

Comments:

Approved By:

Laboratory Director

PARADIGM Environmental

Bervices, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4164

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Date Sampled:

05/04/2001

Field Location:

Top of 6" Slab

Date Received:

05/07/2001

F2 - 1 - 1	-		
Field	ID	NO.:	

SC-3

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/09/2001	SW846 6010	1.99	
Barium	05/09/2001	SW846 6010	83.6	
Cadmium	05/09/2001	SW846 6010	8.51	
Chromium	05/09/2001	SW846 6010	251	
Copper	05/10/2001	SW846 6010	5000	
Lead	05/09/2001	SW846 6010	27.7	
Mercury	05/09/2001	SW846 7471	<0.0870	
Nickel	05/10/2001	SW846 6010	4530	
Selenium	05/09/2001	SW846 6010	2.24	
Silver	05/09/2001	SW846 6010	2.86	
Zinc	05/09/2001	SW846 6010	317	

ELAP ID No.:10958

Comments:

pproved By:

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-1059

Client Job Site:

115 N. Washington Street

Lab Sample No.: 4165

Client Job No.:

East Rochester (Brainerd) 1636601

Sample Type:

Soil

Field Location:

Date Sampled:

05/04/2001

Field ID No.:

N. of GP-103 SC-1, S2a

Date Received:

05/07/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/09/2001	SW846 6010	6.95	
Barium	05/09/2001	SW846 6010	71.7	
Cadmium	05/09/2001	SW846 6010	3.01	
Chromium	05/09/2001	SW846 6010	23.9	
Copper	05/10/2001	SW846 6010	1717	
Lead	05/09/2001	SW846 6010	114	
Mercury	05/09/2001	SW846 7471	<0.103	
Nickel	05/09/2001	SW846 6010	38.2	
Selenium	05/09/2001	SW846 6010		
Silver	05/09/2001	SW846 6010	<0.675	
Zinc	05/09/2001	SW846 6010	1053	

ELAP ID No.:10958

Comments:

approved By:

Laboratory Director

PARADIGM Environmental

Services, Inc.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.:

01-1059

Client Job Site:

Client Job No.:

115 N. Washington St.

East Rochester (Brainerd)

1636601

Sample Type:

Soil

Analytical Method:

EPA 9012

Date Sampled:

05/04/2001

Date Received:

05/07/2001

Date Analyzed:

05/11/2001

Lab Sample ID.	Client Sample ID.	Field Location	Total Cyanide (mg/kg)
4161	SC-3, S2	W. of GP-103	12
4162	SC-4, S2	S. of GP-103	ND<1
4163	SC-5, S2	N. of SC-1	8.8
4164	SC-3	Top of 6" slab	12
4165	SC-1, S2a	N. of GP-103	2.1

ELAP ID. No.:10709

Comments:

ND denotes Non Detected.

Approved By: ________

Laboratory Director

File ID: VARLOC01-1059

PARADIGM

CHA' OF CUSTODY

ENVIRO			100	REPORT TO	Tangkin da kumpatén dan da					artina a service		White presum	Sauteral Sec	J. D. Slovensky	i.			P.
SERVICI	ES, INC).	COMPA	NY: SEAR-BROWN		COMPA	ANY:			CE TO	mandalan ing managara (ing		LAB PROJE	CT#:	CLIENT	PROJE	CT	
179 Lake Aven	ue		ADDRES	85 METRO PARK		ADDRE	SS:	-344		15 1	Carpor	2.7				Blak		,
Rochester, NY	14608		CITY:	ROCHESTER NY	ZIP: 14623	CITY:				STAT	E;	ZIP:	01-/05 TURNAROU	IND TIME: (WO			GAL 7	
(716) 647-2530	* (800) 724-	1997	PHONE:	6 475-1440 FAX: (714)	Man-6451	PHONE			F	AX:			-	, , , , , , , , , , , , , , , , , , , ,		27.10		•
PROJECT NAME/SIT	E NAME:	N ST.	ATTN:	TIKE STOROUSEY /A	PRIL France	ATTN:							-		ST	D	0	THE
HAST BOOK	GETER.		COMMEN	NTS.	L. LAUS	45	1	Pm.		1 1	3		1	2	3	5		CECAMAN
			den estad.	Please note ren	Marks -	-22W	iple pe	OFF	on Ten i	labe	S, Da	ot riar	cause	·	ANA CONTRACTOR IN SECOND	AT 100 Page 1	1964	
DATE	TIME	C O M P O S I T E	G R A B	SAMPLE LOCATION/FIELD (D A T R I X	C O N N U T M A B I E N R E R S	1	Corner Tord	Z115c, 1000	MANDES TON			REMARKS	3,			DIGM L E NUM	
15-09/01	1130		E. sustante	56-1, 520 (N. of	GRIOS) SOIL		44 4		S STATE OF	and secures in	- 1	Chall fo	rl :	· · · · · ·				_
25-04-01	1186		land o		GP-103 SOIL		200 200	-	1	-	34	CIO	this =	* *		-		-
3 5-04-01	1105		1	SC-4, 52 (5.00			VW	iv	1		╅					4	12	1
45-04-01	1205		V	30-5, 32 (N. o	Ne		200	00			++					4	(0)	12
55-04-01	1000		Insert	36-3 . Top of 6" 3.	- 3	_	60 60			+	- 12-	£ 1005 €	tale s	20 5712 2000		7	(4)	1 -
65-04-01	0910		V	50-1,50a (N. ol		1	-		-	1	17	7000 701	late t	oth su	rla e	Ш	القا	11
7				7	UTIOS SOIL	-	in har	20 20	600 6		*-	interior	Por-tran	of sed	inent	4.	4	5
8										++								
9				:														
10						-				+	44							
LAB USE	ONLY					<u> </u>												
SAMPLE CONDI if acceptable or i Sampled By:			CC	ONTAINER TYPE: L PR	ESERVATIONS:	La-		HOLDING	TIME:	Ŀ	Market Selections	TEMPE	RATURE:	200 1	ali	, pri		
Relinquished By	1	11421 11421		5-04-01 Date/Time: 5-04-01 /505	Received By:					9 In.	5-7	Date/Time	Si O gining		l Cost:		٠	
Relinquished By				Date/Time:	Received @ Lal	b By:	9.6	redo	a			Date/Time		P.I.F.	,			

APRIL 2001 EXTERIOR SOIL BORING LABORATORY ANALYTICAL REPORT

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK **PARADIGM**

Environmental 179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311 Services, Inc.

Client:

The Sear-Brown Group

Lab Project No.: 01-0996

Client Job Site:

115 N. Washington St. East Rochester, New York Lab Sample No.: 3978

Client Job No.:

NA

Sample Type:

Soil

Field Location:

MW-1, S15 (28'-30')

Date Sampled:

04/18/2001

Field ID No.:

Date Received: 04/30/2001

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
T-Cyanide	05/03/2001	EPA 9012	ND<1
	,		
		-	

ELAP ID.No.: 10709

Comments:

ND denotes Non Detected.

Approved By: _

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716- 647-3311

Client:

The Sear-Brown Group

Lab Project No.: 01-0996

Client Job Site:

115 N. Washington Street

Lab Sample No.: 3978

East Rochester, New York

Sample Type:

Soil

Client Job No.:

1636601

Date Sampled:

04/18/2001

Field Location:

MW-1, S15 (28'-30')

Date Received:

04/30/2001

Field ID No.:

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)	
Arsenic	05/01/2001	SW846 6010	2.16	
Barium	05/01/2001	SW846 6010	15.6	
Cadmium	05/01/2001	SW846 6010	<0.581	
Chromium	05/01/2001	SW846 6010	7.39	
Copper	05/01/2001	SW846 6010	9.36	
Lead	05/01/2001	SW846 6010	3.71	
Mercury	05/03/2001	SW846 7471	<0.0824	
Nickel	05/01/2001	SW846 6010	5.29 0.819	
Selenium	05/01/2001	SW846 6010		
Silver	05/01/2001	SW846 6010	<1.16	
Zinc	05/01/2001	SW846 6010	15.4	

ELAP ID No.:10958

Comments:

pproved By:

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

3977

Client Job No:

E. Roch. (Brainerd) 1636601

Sample Type:

Soil

Field Location:

MW-1, S5(8'-10')

Date Sampled: Date Received:

04/18/01 04/30/01

Field ID No:

N/A

Date Analyzed:

04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 8.66	Benzene	ND< 8.66
Bromomethane	ND< 8.66	Chlorobenzene	ND< 8.66
Bromoform	ND< 8.66	Ethylbenzene	
Carbon tetrachloride	ND< 8.66	Toluene	ND< 8.66
Chloroethane	ND< 8.66	m,p - Xylene	ND< 8.66
Chloromethane	ND< 8.66	o - Xylene	ND< 8.66
2-Chloroethyl vinyl ether	ND< 8.66	Styrene	ND< 8.66
Chloroform	ND< 8.66	otyrene	ND< 8.66
Dibromochloromethane	ND< 8.66		
1,1-Dichloroethane	ND< 8.66		
1,2-Dichloroethane	ND< 8.66		
1,1-Dichloroethene	ND< 8.66		
cis-1,2-Dichloroethene	ND< 8.66		
trans-1,2-Dichloroethene	ND< 8.66	Ketones & Misc.	
1,2-Dichloropropane	ND< 8.66	Acetone	ND 400
cis-1,3-Dichloropropene	ND< 8.66	Vinyl acetate	ND< 43.3
trans-1,3-Dichloropropene	ND< 8.66	2-Butanone	ND< 21.6
Methylene chloride	ND< 21.6	4-Methyl-2-pentanone	ND< 21.6
1,1,2,2-Tetrachloroethane	ND< 8.66	2-Hexanone	ND< 21.6
Tetrachloroethene	10.8	Carbon disulfide	ND< 21.6
1,1,1-Trichloroethane	ND< 8.66	Odison distinge	ND< 21.6
1,1,2-Trichloroethane	ND< 8.66		
Trichloroethene	ND< 8.66		
Vinyl Chloride	ND< 8.66		

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

Laboratory Dicector

010996V1_XLS

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

3979

E. Roch. (Brainerd)

Sample Type:

Soil

Client Job No:

1636601

Date Sampled:

04/19/01

Field Location:

MW-2, S11(20'-22')

Date Received:

04/30/01

Field ID No:

N/A

Date Analyzed:

04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg		
Bromodichloromethane	ND< 8.66	Benzene	ND< 8.66		
Bromomethane	ND< 8.66	Chlorobenzene	ND< 8.66		
Bromoform	ND< 8.66	Ethylbenzene	ND< 8.66		
Carbon tetrachloride	ND< 8.66	Toluene	ND< 8.66		
Chloroethane	ND< 8.66	m,p - Xylene	21.3		
Chloromethane	ND< 8.66	o - Xylene	ND< 8.66		
2-Chloroethyl vinyl ether	ND< 8.66	Styrene	ND< 8.66		
Chloroform	ND< 8.66		115 - 0.00		
Dibromochloromethane	ND< 8.66				
1,1-Dichloroethane	ND< 8.66				
1,2-Dichloroethane	ND< 8.66				
1,1-Dichloroethene	ND< 8.66				
cis-1,2-Dichloroethene	ND< 8.66				
trans-1,2-Dichloroethene	ND< 8.66	Ketones & Misc.			
1,2-Dichloropropane	ND< 8.66	Acetone	ND< 43.3		
cis-1,3-Dichloropropene	ND< 8.66	Vinyl acetate	ND< 21.6		
trans-1,3-Dichloropropene	ND< 8.66	2-Butanone	ND< 21.6		
Methylene chloride	ND< 21.6	4-Methyl-2-pentanone	ND< 21.6		
1,1,2,2-Tetrachloroethane	ND< 8.66	2-Hexanone	ND< 21.6		
Tetrachloroethene	ND< 8.66	Carbon disulfide	ND< 21.6		
1,1,1-Trichloroethane	ND< 8.66		110 21.0		
1,1,2-Trichloroethane	ND< 8.66				
Trichloroethene	ND< 8.66				
Vinyl Chloride	ND< 8.66				

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Organic Compound Laboratory Analysis Report For Soil/Sludge

Client:

Sear-Brown

Lab Project No:

01-0996

Client Job Site:

115 N. Washington St.

Lab Sample No:

3980

Client Job No:

E. Roch. (Brainerd) 1636601

Sample Type:

Soil

Date Sampled:

04/20/01

Field Location: Field ID No:

MW-3, S12(24'-26') N/A

Date Received:

04/30/01

Date Analyzed:

04/30/01

VOLATILE HALOCARBONS	RESULTS (ug/Kg)	VOLATILE AROMATICS	RESULTS (ug/Kg
Bromodichloromethane	ND< 10.1	Benzene	ND< 10.1
Bromomethane	ND< 10.1	Chlorobenzene	ND< 10.1
Bromoform	ND< 10.1	Ethylbenzene	ND< 10.1
Carbon tetrachloride	ND< 10.1	Toluene	ND< 10.1
Chloroetharie	ND< 10.1	m,p - Xylene	16.1
Chloromethane	ND< 10.1	o - Xylene	ND< 10.1
2-Chloroethyl vinyl ether	ND< 10.1	Styrene	ND< 10.1
Chloroform	ND< 10.1	•	
Dibromochloromethane	ND< 10.1		
1,1-Dichloroethane	ND< 10.1		
1,2-Dichloroethane	ND< 10.1		
1,1-Dichloroethene	ND< 10.1		
cis-1,2-Dichloroethene	ND< 10.1		
trans-1,2-Dichloroethene	ND< 10.1	Ketones & Misc.	
1,2-Dichloropropane	ND< 10.1	Acetone	ND< 50.3
cis-1,3-Dichloropropene	ND< 10.1	Vinyl acetate	ND< 25.2
trans-1,3-Dichloropropene	ND< 10.1	2-Butanone	ND< 25.2
Methylene chloride	ND< 25.2	4-Methyl-2-pentanone	ND< 25.2
1,1,2,2-Tetrachioroethane	ND< 10.1	2-Hexanone	ND< 25.2
Tetrachloroethene	ND< 10.1	Carbon disulfide	ND< 25.2
1,1,1-Trichloroethane	ND< 10.1		110 1 20.2
1,1,2-Trichloroethane	ND< 10.1		
Trichloroethene	ND< 10.1		
Vinyl Chloride	ND< 10.1		

Analytical Method:

EPA 8260

ELAP ID No: 10958

Comments: ND denotes Not Detected

Approved By _

PARATIGM

CH' Y OF CUSTODY

ENVIRO			\$ 6.34	REPORT TO:		alosis				alvis, 2	الكسال تعربون	المراثان	THE WAY	The said the said the	STATE OF THE BALLETIN				NAME OF
SERVICE	ES, INC		COMPA	NY: SEAR-BROWN		COMPA	NY:			INV	-				LAB PROJECT	e Jeu	NT DE	OJECT /	
179 Lake Avenu	ıe		ADDRES	85 METRO PARK		ADDRES	SS:			Ø}-1€	= #	1 25	KE	POET	-			درماء	
Rochester, NY	14608		CITY:	ROCHESTER STATE: ZIP	23	CITY:						TATE:		ZIP:	TURNAROUND	TIME: IWORKI	VG DAY	SI	
(716) 647-2530	(800) 724-1	997	PHONE:	いりょう レン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		PHONE:		-			FAX:			· · · · · · · · · · · · · · · · · · ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,	
THE PERSON AND REPORT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED	E. ROCK	NO 1.	ATTN:	MIKE STORONSKY APRIL K		ATTN:	M	AV	2110	1	11				1	2 3	STD	i	ОТН
CL ETERTIFIE	entitle in the second		Linux est vi		TELETINE .	Section (de la	₹ E @	UES	TED	ANA	LYS	IS IS	IIME N	ELL EXF	IRE	米		S (12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DATE	TIME	C O M P O S I T E	G R A B	SAMPLE LOCATION/FIELD ID	M A T R I X	CONNUT MABIEN RER	5 VCCS	TOTAL	NVV TOTAL	TAL	TAC				REMARKS		P/	ARADIG MPLE N	M LAB
14-18-01	0940		1/	MW-1, \$5 (8-10)	Soil		1	1-3-	-		-	-	-		· 7.	•			1 1
2 4-18-01	1235		V	MW-1, \$15 (28-30')	SOIL	C) .	-				-	-	++	FLEAS	E RUN	Ey		54	
3 14-19-01	0735		User	MW-2, \$11 (20-22)		1	1		-	V		+	\vdash	HOLDING	TIME WIL	r exerse		39	7
4 14-20-01			~	MW-3, \$12 (24'-26')	Sail.	1	0	-+	+	\vdash	-	+	-					2 34	1
5), , , , , , , , , , , , , , , , , , ,	≤-b(c.		-	-	+	\vdash	_	+						39	15/
6							\vdash	-	-	\vdash	-	-							
7				·				-	+		_	-							
8								-	+	\sqcup	-								
9								4	+										
10																			
LAB USE	ONLY																		
SAMPLE CONDITION If acceptable or research	FION: Checl note deviation	k box on:	CC	ONTAINER TYPE: PRESERVATIONS	^_			н	DLDING	TIME:	100			TEMPERA	TURE:		·		
Relinquished By	sold for		3. **** 	Date/Time: Receive Date/Time: AC 55 on Receive	d By:	Agais.	100 mg		1		***			Date/Time:	, .	Total Co	st:		
Relinquished By:	1	ede.		- N	Bella			. (13	00	SI_		15	355					
				Date/Time: Receive	u @ Lab	ву:								Date/Time:		P.I.F.			

MAY 2001 INTERIOR SOIL CORING LOGS

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK

SOIL BORING LOG

Test Boring No. Monitoring Well ID: NA

Project No.: 1636601

Drilling Contractor: MARCOR Remediation

Start Date/Time: 5-04-01 0910

Project Name:

115 N. Washington Street

Driller: J. Agar Completion Date/Time: 5-04-01 1130

East Rochester, NY

Drilling Method: Concrete corer and Geoprobe Equip. Sampling Method: 2" x 4' Macro-core

Elevation: NA

Client:

Boylan, Brown, et. al.

Supervisor: A. Krause, Sear-Brown

Weather: Sunny, Low/mid 80s

Ft. B.G					ample Info				Soil	Soil and Rock Information	Well
0	С	San	ple Inte	rvat	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Design
									CONCRETE	Four-inch concrete core - no apparent staining	Design
		0.3	- 0.6 f	t.		7	4	S1a		Dry, brown and black, very fine SAND, some SILT -	-
		0.6	- 1.0 fl	t.		23	8	S1b	VERY FINE	block stoicing/compated and it	
2							-	010	SAND AND	black staining/cemented material	
		1.0	- 2.5 fl	1	_	58.7	20	00	SILT		
- 3	-	2.5	- 3.0 ft				22	S2a		S.A.A.	1
		2.5	- 3.U II	l.		56	24	S2b	FINE SAND	Dry, brown and black, very fine and fine SAND, trace	1
									& GRAVEL	GRAVEL	1
4		3.0	- 4.0 ft	t.		14	13	S2c	FINE SAND	Dry, orange, fine SAND - black/gray streaking	-
		Macro-co	re: 1-4	ft. B.G.	18"				1	End of and a O A R. D. O	1
										End of coring @ 4 ft. B.G.]
			_								
6	-		_	-]		
•	-										
ļ											
- 1											
I											
8											1
			-	_					1		
-	-		-	-							
0			1								
T											
ı											
1			-		-						
a -	-		-								
2	_		-								
1											
L											
4						-					
-			_	+							
- 1-	-		-	-							
-	_		-								
6											
-	-		-	+							
8	-		-	1			-				
0	-		-	-							
-											
						-					
-			1-	1							
-	-		-	-							
-	_		-								
L											
L											
1											
-	-	_		1			-				
\vdash											
-	_		-								
											,
-											
-	-		-								
+											
					-						
1											

Notes:

ft. B.G. = feet Below Grade

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

SC-2 NA

Project No.: 1636601

Project

Name:

Client:

115 N. Washington Street East Rochester, NY

Drilling Contractor: MARCOR Remediation

Driller: J. Agar

Start Date/Time: 5-04-01 0930 Completion Date/Time: 5-04-01 1115

Drilling Method: Sampling Method: 2" x 4' Macro-core

Concrete corer and Geoprobe Equip.

Elevation: NA

Boylan, Brown, et. al. Supervisor:

A. Krause, Sear-Brown

Weather: Sunny, Low/mid 80s

L B.G.						ample Inf				Soil	Soil and Rock Information	18/-11
0	С	S	ample	Interv	al	Rec.	PID" Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Well
										CONCRETE	Four-inch concrete core - no apparent staining	Desig
										CONCRETE	Chi in the concrete core - no apparent staining	
		-	18-1	1.0 ft.			7	-	- 04		Six-inch concrete core - slight discolor. (0.25") @ joint	
2				i.o it.		-	7	5	S1		Dry, brown and black, very fine SAND, some SiLT	
2										VERY FINE		
										SAND & SILT		
I												
- I		1	0 2	3.5 ft.		-	10			TO FINE	Dry, brown and black, very fine SAND, some orange,	
. 1			.0 - 3	.5 IL.			16	9.2	S2a	SAND	fine SAND	
4		3	.0 - 4	.0 ft.			2.5	2	S2b		Dry, orange, fine SAND	
		Macro-	core:	1-4 ft.	B.G.	12"					End of an in Out & D.O.	
- 1		T			1						End of coring @ 4 ft. B.G.	
- 1		_	-		-	-	1					
6		1										
										1		
1		-	-		-	-						
-	-	_	-			-						
L												
8												
-				-		-						
-	_		-	_								
0												
											·	
	-	_	-			-						
-	-											
										1		
2												
									,			
-	-		-	-								
-	-	_	_									
4										İ		
\vdash		_	-	_						1		
\vdash	-	-		-								
_	_									1		
6												
			-	-								
-	-	-	-	-								
_	\rightarrow											
В												
			-	-	_							
	-		-	-								
)												
				T								
-		-	-									
-			-	_								
2												
			-									
-	-		-	-								
									-			
				-	-							
-	-		-	-	-							
1	-	-										
			1		-							
-	-	-	-	-	-							
-		-	-	-	-					1		
		1							1	1		
-	-				-							

Notes:

ft. B.G. = feet Below Grade

SOIL BORING LOG

Test Boring No. SC-3 Monitoring Well ID: NA

Project No.: 1636601

115 N. Washington Street

Drilling Contractor: MARCOR Remediation

Start Date/Time: 5-04-01 1000

Project Name: East Rochester, NY

Driller: J. Agar

Drilling Method:

Completion Date/Time: 5-04-01 1125

Client: Boylan, Brown, et. al.

Concrete corer and Geoprobe Equip. Sampling Method: 2" x 4' Macro-core Supervisor: A. Krause, Sear-Brown

Elevation: NA

Weather: Sunny, Low/mid 80s

Ft. B.G.		-			Sa	mple Info				Soil	Soil and Rock Information		
0	C		Sampl	e Interv	al	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Well	
										CONCRETE	One- & Four-inch concrete core - no apparent staining	Design	
										- CONTRACTE	Civilinate a Poul-Inch concrete core - no apparent staining		
			0.8 -	1.0 ft.			NM	NM	· S1	-	Six-inch concrete core - rusty discolor. (0.25") @ joint	1	
2				1.0	_		IAIM	INIVI	51		Dry, brown and black, GRAVELS	1	
-	-	-	1.0	256						FILL			
			1.0 -	2.5 ft.			104	78	S2		Dry, black, GRAVELS - discoloration	1	
		масго	-core:	1-2.5	ft. B.G.	2"					End of coring @ 2.5 ft. B.G Refusal	-	
												1	
4										1			
										-			
- 1													
1	-			-									
-				-									
6													
- [1			
										1			
1													
8			-	_	1								
-			-		-								
-													
L													
10													
1													
-													
12	_	-		-						1			
12													
-										1			
				-									
4													
		-			-								
-	-	_	-	_									
-	_	_											
6													
Г										1			
8	-	-	-										
-	-			_									
-	_	_	_	-									
											i		
0													
T													
	-		-	-									
, -	-	-	-	-									
2		_											
1													
	+	-	+		-								
-	-	-	-	-									
-			_										
L													
				-	-	-	-						
-	+	-	-	-	-	-01							
-	-	-	-		_								
										1			
		-											

Notes:

ft. B.G. = feet Below Grade

NM = Not Measured

SOIL BORING LOG

Test Boring No. Monitoring Well ID: NA

Project No.: 1636601

Project

115 N. Washington Street

Drilling Contractor: MARCOR Remediation

J. Agar

Start Date/Time: 5-04-01 0930

Completion Date/Time: 5-04-01 1115

Name: East Rochester, NY

Drilling Method:

Concrete corer and Geoprobe Equip. Sampling Method: 2" x 4' Macro-core

Elevation: NA

Client: Boylan, Brown, et. al.

Supervisor:

A. Krause, Sear-Brown

Weather: Sunny, Low/mid 80s

Ft. B.G.						mple Info	rmation			Soil	Soil and Rock Information	Well
0	C		Sampl	e Inter	val	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Design
										CONCRETE	Four-inch concrete core - no apparent staining	Design
									-	Johnstein	Six inch concrete core - no apparent staining	_
			-						-		Six-inch concrete core - no apparent staining	1
2		-	0.8.	2.0 ft.			12	6	C4	-		
-			0.0 -	2.0 11.			12	6	S1		Dry, brown and black, very fine and fine SAND	
1		_								VERY FINE		-1
ļ										AND FINE		
- 1										SAND	Dry, brown, fine SAND, some very fine SAND -	
4			2.0 -	4.0 ft.			23.8	13	S2	(VARIABLE)	purplish discoloration	
										(VIALDICE)	porplish discoloration	
1			4.0 -5	0 ft			25	11	00			
1		Mace	2.000	1 5 6	t. B.G.	24"	20		S3		Dry, orange, fine SAND	
-		Maci	-core	1-51	l. D.G.	24					End of coring @ 5 ft. B.G.	
6												-
ſ												
8												
-	-			-	-							
-					+							
L												
10												
-					1							
-			-		-							
40					-							
12												
										1		
Γ												
14												
-									_			
- 1					-							
-					-							
16												
												1
												1
18												
	-			-						1		
-	-											
-	-									1		
20												
												1
	1								-			
22	-	-	-					-				
	-	-	-									
-	-											
L												
24												
												1
			-	-		-						
-	-	-+	-		-							
6	_	-										
8	1								-			
-	-		-									
-	-	-	-							1		1
-		_										1
										1		
0												

Notes:

ft. B.G. = feet Below Grade

SOIL BORING LOG

Test Boring No. Monitoring Well ID: NA

Project No.: 1636601

115 N. Washington Street

Driller:

Drilling Contractor: MARCOR Remediation J. Agar

Start Date/Time: 5-04-01 1205 Completion Date/Time: 5-04-01 1120

Project Name:

Client:

East Rochester, NY

Boylan, Brown, et. al.

Drilling Method: Sampling Method:

Supervisor:

Concrete corer and Geoprobe Equip.

2" x 4' Macro-core

A. Krause, Sear-Brown

Elevation: NA

Weather: Sunny, Low/mid 80s

0	С			3		formation			Soil	Soil and Rock Information	1 100.00
U	-	Sai	mple Inte	erval	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Weil
									CONCRETE	Four-inch concrete core - no apparent staining	Design
	\vdash		2 1 =							apparent staining	-
•	\vdash	0	3 - 1.5 1	ft.		39	15	· S1		Dry, brown and gray, fine SAND, trace fine GRAVEL -	
2									FINE SAND	staining	
	\vdash								AND		
	\vdash								GRAVEL	Dry, brown and orange, very fine and fine SAND, little	1
	\vdash	- 4								medium GRAVEL, trace coarse GRAVEL - gray	1
4		1.5	- 4.0 f	t.		73	30	S2		streaking	
		Macro-cor	e: 0.3-4	4 ft. B.G	. 24"					End of coring @ 4 ft. B.G.	1
											4
6											
0	-		_								
-											1
1				-							
. -	-										
			-						1		
-	-										
1	-		-								
. 1										•	
2	-		-								
-	-		-								
-	-	-	-								
, -	-		-								
2			-								
-	_	_	-								
-	-		-				-				
-			-								
1	-		-	-							
-	-		-								
-	_		-								
-	_		-								
1	-		-	-							
-			-	1							
-	-	-	-	-							
-	-		-	\vdash							
-		-	-								
-	_	_	-	-							
-	-	_	-								
-			-								
+	_	-	-						1		
-	-	-	-								
-	-	-	-								
-	-			-							
+	_	-									
-	_										
-	-	_								·	
-	-			-							
-	-										
-	_	-		-							
-	+	_			-						
-	-										
-	-										
-	-	-									
-	-	-		-							
-	-	-							1		
-	-	-									
-	-	-	-								
-	-	+									
-	-	+									
	1	1									

Notes:

ft. B.G. = feet Below Grade

APRIL 2001 EXTERIOR SOIL BORING/MONITORING WELL INSTALLATION LOGS

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

MW-1 MW-1

Project No.: 1636601

Project

Name:

Client:

115 N. Washington Street

East Rochester, NY

Boylan, Brown, et. al.

Drilling Method:

Supervisor:

Sampling Method:

Driller:

Drilling Contractor: Nothnagle Drilling

Neal

Mite-E-Mite/ 4.25" HSA

2" x 2' Split-spoon A. Krause, Sear-Brown

Start Date/Time: 4-18-01 0920 Completion Date/Time: 4-20-01 0900

Elevation: NA

Weather: Ptly Cloudy, Brisk,

Hi 40s/Low 50s

t. B.G		DIO	ws on	Samp	oler (N		Sample In	nformatio	n	Soil	Soil and Rock Information	101
0	C	0-6	6-12	12-1	8118-2	4° Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Wel
		-	-	-	_					ASPHAL"	Asphalt	Desig
	-	-	3	-	-							
•	-		-	3	-						Dry, brown, fine SAND	-
2	-	-	-	-	3	8"	52	26	S1		Dry, orange, fine SAND	₩
	<u> </u>	3	+-	-						7	0.1	***
		-	4		-							
4	_		-	3	-	-				FINE		
*		4	-	-	3	4"	45.4	22	S2	SAND	Moist, orange, fine SAND	
	-	4	5	-	-	-						
	_		1 3	3	-					1		***
6			-	3	5	404	110	-		1		***
-	_	5	-	-	3	12"	116	80	S3	1		***
		-	6	-								***
			-	7	-	-				GRAVEL	Moist, black, fine and medium GRAVEL	***
В		-		1	9	24"	005				Moist to dry, orange, fine SAND	***
		4			9	24	235	96	S4			
-		-	6							1		
1				6	-					1		***
0				-	6	12"	1162	404	05	1		***
		9			-	12	1102	461	S5	4	Moist to dry, orange-brown, fine SAND - iron banding	
ŀ			10							-		***
1				11						-		
2					12	16"	889	580	S6	-		
		12				10	003	300	30		Moist to dry, orange-brown, very fine SAND	
			12									₩ !
				13								***
4					16	24"	111	111	S7		Day Sahahanan S. Carre	***
		16							- 01	LAYERED	Dry, light brown, medium SAND	₩
			18							FINE	1	***
				25						SAND,	1	
6					27	15*	181	50	S8	MEDIUM	Dry, light brown, fine SAND - layered	※
1		40								SAND	151), "girt brown, tine SAND - layered	₩ 1
-	_	_	29							AND SILT		₩ J
. -	_			29						(VARIABLE		₩ 1
	-	47	-		6	24"	333	130	S9	THICKNESS/	Dry, light brown, fine to medium SAND, trace SILT -	XX [
-	-	17	05	_	_					LENSES)	layered	₩ 1
-	_	-	25	20	_							₩ 1
-	-	\rightarrow	-	30	20	100						
+	-	14	-	-	30	12"	374	150	S10		S.A.A.	₩
-	-		20	-	-							
-		-	20	27	-							
-	-	-	-	21	28	16"	224	25.0	244			₩ 1
+		25		-	20	10	234	25.2	S11		Wet, light brown, medium SAND, trace SILT	
-			22		-						88	
	1			25	-						Depth to water measured @ 23.22 ft. B.G. with augers	
					24	24"	107	43	S12		in place	
T		22						70	312		S.A.A.	
			22									3 8
				27								
					29	24"	13	6	S13		Saturated light house	
	1	18							3.0		Saturated, light brown, medium SAND, little SILT	8 8
			21									3 8
				27								#
					32	16"	15.2	7	S14		Saturated light house 6 Carry	8
		7									Saturated, light brown, fine SAND	8 8
			15								greenish discoloration noted at 28-29'	8 8
-				22						1	3- serian discoloration noted at 28-29	8 8
-	_	_			25	24"						

Notes:

ft. B.G. = feet Below Grade

S.A.A. = Same As Above

NS = No Sustained reading

PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV) ** = Headspace measured using a Hnu 10.2 eV PID

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

MW-1 MW-1

Project No.: 1636601

Project

Name:

Client:

115 N. Washington Street

East Rochester, NY

Boylan, Brown, et. al.

Drilling Contractor: Nothnagle Drilling

Driller: Neal

Drilling Method: Mite-E-Mite/ 4.25" HSA

Sampling Method: 2" x 2' Split-spoon Supervisor: A. Krause, Sear-Brown

Start Date/Time: 4-18-01 0920 Completion Date/Time: 4-20-01 0900

Elevation: NA

Weather: Ptly Cloudy, Brisk, Hi 40s/Low 50s

Ft. B.G.	1	Blov	vs on S	Sampl	er (N)		Sample	Informatio	n	Soil	Soil and Rock Information Wel				
30	С	0-6"	6-12"	12-18	18-24	Rec.		k PID* Sust.	ID No.	Profile	Observations and Remarks	Wel Design			
		6	40								Saturated, brown, medium SAND - greenish discolor.	SSSS Design			
	-		10	16	-	-									
32				10	18	16"	2.5	2.5	S16	-	Wet, gray-brown, fine SAND, little to some SILT	***			
		4			10	10	2.5	2.5	310	-					
Ì			4							1		****			
				8								***			
34					16	24"	0.8	0.8	S17		Saturated, gray-brown, medium SAND - iron banding	***			
-		4	6							LAYERED		***			
-			0	11	-		-	-		FINE					
36					13	16"	3.9	2.2	S18	SAND,	Cohumbad II late a late				
		5					0.0	2.2	310	MEDIUM	Saturated, light to dark brown, medium SAND, SILT	***			
			7						_	AND SILT	SIC1				
				8						(VARIABLE					
38	-	4	-		17	14"	132	NS	S19	THICKNESS	/ S.A.A				
H	-	4	5				-			LENSES)					
- 1			-	5		-	-								
40					14	12"	11	11	S20	1	S.A.A.				
		7							220	1					
1			15												
42	-			21]	iron banding at 41-42°	***			
42	\dashv	6		-	23	24"	24.7	4.8	S21		S.A.A.				
-		-	12	-	-										
		-		18					_						
44					22	18"	7.3	2	S22		Saturated, gray, fine SAND, some SILT				
-		11									January, Into Orano, Joine Sie				
-	-	_	13	40							·				
46	-	-	-	13	15	16"	0	7.5	200		Land.				
-		10	-		15	10	8	7.5	S23		S.A.A.				
			10												
				10											
48					12	14"	0.7/1.6**	0.7/1.6**	S24		Saturated, gray, fine SAND and SILT				
-	-	4	E	-							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-	+		5	7	-										
50				-	12	14"	0.8**	0.8**	S25		C 4 4				
		7					0.0	0.0	323	FINE	S.A.A.				
		T	11							SAND					
52	-		-	19	20	0.00	0.70			AND SILT					
-	-	9	-	-	28	24"	0.7/0.7**	0.7/0.7**	S26		S.A.A.				
			10	-	+										
				13											
54					16	14"	0.4**	0.4**	S27		S.A.A.				
-	-	4													
-	-		4	7	-										
6	-	-			12	14"	0.4**	0.4**	S28		0.14				
		6			-	17	0.4	0.4	328		S.A.A.				
			7												
				12											
8	-	1			14	14"	0.4**	0.4**	S29		S.A.A.				
-	-	4	7	+											
-		-		8	-										
					13	12"						I Company			

Notes:

ft. B.G. = feet Below Grade

S.A.A. = Same As Above

NS = No Sustained reading

*PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV) ** = Headspace measured using a Hnu 10.2 eV PID

SOIL BORING LOG

Test Boring No. MW-1 Monitoring Well ID: MW-1

Project No.: 1636601

Name:

Client:

Project

115 N. Washington Street East Rochester, NY

Boylan, Brown, et. al.

Drilling Contractor: Nothnagle Drilling

Neal

Mite-E-Mite/ 4.25" HSA

Drilling Method: Sampling Method: Supervisor:

Driller:

2" x 2' Split-spoon A. Krause, Sear-Brown Start Date/Time: 4-18-01 0920

Completion Date/Time: 4-20-01 0900 Elevation: NA

Weather: Ptly Cloudy, Brisk,

Hi 40s/Low 50s Ft. B.G. Blows on Sampler (N) Sample Information Soil Soil and Rock Information 60 0-6" | 6-12" | 12-18 | 18-24 PID* Peak PID* Sust. Weil ID No. Profile Observations and Remarks 10 Design Saturated, gray, very fine SAND and SILT 10 14 62 16 12" 31 31 S31 S.A.A 3 2 VERY 8 FINE 64 9 6" 41 2 S32 SAND S.A.A 10 AND SILT 11 12 66 10 14" 1.3 1.3 S33 S.A.A 6 7 68 10 14" 1.0** 1.0** S34 S.A.A 10 11 11 70 18 24" 0.9** 0.9** S35 S.A.A. 12 14 18 16" NS S36 72 SILT & CLAY Wet, gray, SILT and CLAY at 71.4 - 71.8' End of boring @ 71.8 ft. B.G. - Refusal (bedrock) 74 See Overburden Monitoring Well Log for Design Details/As-Builts 76 78 80 82 84 86 88 90

Notes:

ft. B.G. = feet Below Grade

S.A.A. = Same As Above

NS = No Sustained reading

*PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV) ** = Headspace measured using a Hnu 10.2 eV PID

OVERBURDEN MONITORING WELL

DESIGN DETAILS

PROJEC	CT NAME 115 North Washington Street	HOLE DESIGNATION MW-1	
PROJECT	NUMBER 1636601	DATE COMPLETED 4/20/01	
	CLIENT Boylan, Brown, et. al.	DRILLING METHOD Mite-E-Mite/ 4.25" HSA	
Lo	OCATION 115 North Washington Street	GEOLOGIST A. Krause, Sear-Brown	
	East Rochester, New York	WELL INSTALLATION Nothnagle Drilling	
CAP TYPE	J-plug	·	
	PROTECTIVE CASING		
		STICK-UP NA	ft
	GROUND	8" Flush-moo	77
	GROOND	THE THE PARTY OF T	
		SURFACE SEAL TYPE	Quick-krete
		WELL CASING	
OP OF		ANNULUS BACKFILL	
EAL* AT	fl	TYPE: Grout	
OTTOM OF		SEAL TYPE: Bentonite Po	ellets
AL* AT			
P OF		PACK TYPE: - SAND, SIZE	
REEN* AT			-
TTO COR			
OTTOM OF	<u>.</u>		
REEN* AT	71.8 ft		
TTOM OF			
TTOM OF LE* AT	71.8 ft (Rock)	NOTE:	
	71.8 ft (Rock)	ALL DIMENSIONS ARE	
2001 (D. Gnage)		BELOW GROUND SURFACE	(BGS)
tom of Hole sounde	d: 69.80 ft		
	втос		
LEEN TYPE:	CONTINUOUS SLOT	PERFORATED LOUVRE OTHE	R
LEEN MATERIAL:	STAINLESS STEEL		-
LEEN LENGTH:	15 ft SCREEN DIAM	TER 2 in SCREEN SLOTS	SIZE: 0.010
LL CASING MATE	RIAL: PVC	WELL CASING DIAMETER: 2	
E DIAMETER:		WELL CASING DIAMETER: 2	in
Ju und I ER	4 inches		
L DEVELOPMEN	T: METHOD: Foot valve/ Dadi		
	1: METHOD: Foot valve/ Dedi	eated Tubing VOLUME: 77	gallons
(01 (D. Gnage)	DTB: 70.00 ft (NM)		
	DTW: 21.87 ft		

85 Metro Park Rochester, NY 14623 (716) 475-1440

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

MW-2 MW-2

Project No.: 1636601

Name:

Client:

Project 115 N. Washington Street

East Rochester, NY

Boylan, Brown, et. al.

Drilling Contractor: Nothnagle Drilling Driller:

Drilling Method:

Kevin B. BK-81/ 4.25" HSA

Sampling Method: Supervisor:

2" x 2' Split-spoon A. Krause, Sear-Brown

Start Date/Time: 4-19-01 0830 Completion Date/Time: 4-19-01 1315

Elevation: NA

Weather: Sunny, Breezy Low 50s

Ft.B.G.	0.0	vs on	Samp	oler (N	0)	Sample II	nformation	1	Soil	Soil and Rock Information	100.00	
0	C		6-12	12-1	8 18-2	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Well
	-	6	14	-	1						Concrete and GRAVEL	Design
	-		14	9	-					FILL		
2				1 3	8	14"	25	-				
		4		1	-	14	25	5	S1		Dry, orange, medium SAND, some fine GRAVEL	
			4							-		
				3						1		
4					1	12"	7	3.7	S2	1	S.A.A.	
-		2	_							MEDIUM		
-	-		2	1	-					TO FINE		
6 1				-	1	6"	CE	45		SAND AND		
		1	-		+	- 0	65	15	S3	VARIABLE	Moist to wet, gray, coarse GRAVEL and orange,	
			1		-	-				GRAVELS	medium SAND	
8	WH											
8					1	4"	28.9	9.7	S4		Moiet to day assessment in a country	
_		1	1		1						Moist to dry, orange, medium SAND, some fine GRAVEL	
-	-		1	1400								
10	-		_	WH	1	0.4	000				, .	
-		2			1	8*	35.9	9.7	S5		Dry, orange, medium SAND, trace COBBLES	
		_	4			-		-				
				5								
12					6	16"	8.5	2	S6		Day owners for CANID	
12 2	2									Dry, orange, fine SAND		
-	-		3									
	-	-	5	-								
14 2	2	-		6	16"	10	5.5	S7		S.A.A.		
	-	5										
				4				-				⊤ ‱ ⊗
16					5	18"	10.7	4	S8		Dry light house 5 - Oaks	0000
_		3									Dry, light brown, fine SAND	
_	+		7	40								
18	+	-	-	10	9	400	70.5				Tage.	
	-	3	-	-	9	18"	72.5	10	S9		S.A.A.	
			9							FILE		
				13						FINE SAND		
0					13	18"	124	80	S10		S.A.A.	
	+	4								ľ	S.A.A.	
-	-	-	11	40								
2	-	+	-	13	15	40#	433					
-	-	3	-	-	15	12"	177	NS	S11		S.A.A.	
		_	8							-		
				12								
4					15	14"	30.7	5	S12		Vet, brown, fine SAND	
		3							012	1*	vet, brown, fine SAND	
_	-		8									
, -	+	-	-	14	14	4.45						
-	1	3	-	-	14	14"	118	17	S13	S	Saturated, brown, fine SAND	
	+		5	-								
	-		15	-								
					17	10"	55.1	29	S14			
	6								-17	S	A.A.	
_		1	6									
	-	-	1	8								
					16	16"	22	17 5	315	9	A.A.	

Notes:

ft. B.G. = feet Below Grade

S.A.A. = Same As Above

NS = No Sustained reading

WH = Weight of Hammer

*PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV)

85 Metro Park Rochester, NY 14623 (716) 475-1440

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

MW-2 MW-2

Project No.: 1636601

Client:

Project 115 N. Washington Street Name:

East Rochester, NY

Boylan, Brown, et. al.

Drilling Contractor: Nothnagle Drilling

Driller: Kevin B.

BK-81/ 4.25" HSA **Drilling Method:**

Sampling Method: 2" x 2" Split-spoon Supervisor: A. Krause, Sear-Brown

Start Date/Time: 4-19-01 0830 Completion Date/Time: 4-19-01 1315

Elevation: NA

Weather: Sunny, Breezy

Low 50s

Ft. B.G. 30 C		Blov	s on S	Sampl	er (N)			formation		Soil	Soil and Rock Information	Well
30	C	0-6"	6-12"	12-18	18-24	Rec.	PIO* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Design
		5									Saturated, brown, fine SAND	Design
			9									
	11 14 10 14					FINE						
32					14	16"	11.2	4.2	S16	SAND	S.A.A.	
34												
											End of boring @ 35 ft. B.G.	· · · · · · · · · · · · · · · · · · ·
36												
												See Overburg
												Monitoring W
												Log for Design
38												Details/As-Bu
												Delans/As-Du
1												
40												İ
.			_									
	-	_		_								
42	_											
-												
-												
	_		_									
44	-											
-				_								
-	-											
	-		_	_								
46				_								
-	-			_								
-	_	_	-	-								
	-											
48	_	_										
-	_		_									
-	-			-								
-	-	-	-	_	_							
50	-	-		-	_							
-	\rightarrow		-	-	-							
-	-	-	-	-	-							
2	-	-	-	-	-						·	
-	-	-	-									
-	-	-	-	-	-							
-	-	-	-	-	-							
4	_		-	-	-							
-	-	-	-	-	_		-					
-	-	-		-	-							
-	-			-	-							
6	_	-	-									
-	-		-	-								
-	-			-								
-	-	-	-	-	-							
3	-	-	-	-	-	-						
-		-	-	-	-							
	-	_	-	-	-							
-		-	-	-								
-	-	-	-	-	-							
. 11	- 1											

Notes:

ft. B.G. = feet Below Grade

S.A.A. = Same As Above

NS = No Sustained reading

WH = Weight of Hammer

*PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV)

** = Headspace measured using a Hnu 10.2 eV PID

OVERBURDEN MONITORING WELL DESIGN DETAILS

PROJECT NAME 115 North Washington Street PROJECT NUMBER 1636601 CLIENT Boylan, Brown, et. al. LOCATION 115 North Washington Street East Rochester, New York	HOLE DESIGNATION DATE COMPLETED DRILLING METHOD GEOLOGIST WELL INSTALLATION	4/19/ BK-81/ 4.25" A. Krause, Sea	01 ' HSA ar-Brown	
CAP TYPE				
GROUND		STICK-UP SURFACE SE		ft ount Road Box Quick-krete

PROTE	CTIVE CASING				
	GROUI	ND.	STICK-UP	NA ft 8" Flush-mount Road	l Box
			SURFACE S	SEAL TYPE Quic	k-krete
TOP OF			WELL CASI	NG	
			ANNULUS I	BACKFILL	
SEAL* AT 15.3	ft		TY	PE: Grout	
BOTTOM OF		1111111	SEAL TYPE		
SEAL* AT 17.9	ft		SEAL TIPE	Bentonite Chips	
TOP OF			DACK TYPE	0.4375 0.005	
SCREEN* AT 20	ft		PACK TYPE	: - SAND, SIZE _	
BOTTOM OF					
SCREEN* AT 35	ft				
BOTTOM OF					
HOLE* AT 35	ft		NOTE:		
	11		ALL DIMENS		
5/7/2001 (D. Gnage)			BELOW GRO	OUND SURFACE (BGS)	
	3.75 ft BTOC				
SCREEN TYPE:	CONTINUOUS SLOT	PERFORATED	LOUVRE	OTHER	
CREEN MATERIAL:	STAINLESS STEEL	PVC X		_	
CREEN LENGTH: 15	ft SCREEN D	IAMETER 2	in	SCREEN SLOT SIZE:	0.010
VELL CASING MATERIAL:	PVC		WELL CASING DIAMETE	R: 2	in
IOLE DIAMETER:	4 inches				

WELL DEVELOPMENT: METHOD: Foot valve/ Dedicated Tubing VOLUME: 20 gallons

5/04/01 (D. Gnage)

DTB: 35.00 ft (NM)

DTW: 22.88 ft

Water Column: 12.12 ft

(0.16 gal/ft) = 1.94 gallons per well volume (10 volumes) = 19.4 gallons = 20 gallons purged

85 Metro Park Rochester, NY 14623 (716) 475-1440

SOIL BORING LOG

Test Boring No. Monitoring Well ID:

MW-3 MW-3

Project No.: 1636601

Project

Name:

Client:

115 N. Washington Street

Boylan, Brown, et. al.

East Rochester, NY

Drilling Contractor: Nothnagle Drilling

Oriller: Neal

Drilling Method: Mite-E-Mite/ 4.25" HSA Sampling Method: 2" x 2" Split-spoon

Supervisor: A. Krause, Sear-Brown

Start Date/Time: 4-20-01 0915 Completion Date/Time: 4-20-01 1230

Elevation: NA Weather: Sunny, Hi 60s

Ft. B.G.	_				ler (N)			formation		Soil	Soil and Rock Information	Wel
0	С		6-12	12-18	18-24	Rec.	PID* Peak	PID* Sust.	ID No.	Profile	Observations and Remarks	Desig
-		5	1	-						ASPHALT	Asphalt and concrete	
-		-	3	1	-							10000
2			-	3	3	12"	00.0	44	- 64		Dry, orange, fine SAND, little SILT	
-	-	5		-	3	12	90.6	11	S1			
H	_	-	7		1		-					
+		-	-	8	-		-			SILTY		
4			_	-	10	8"	97	50	S2	FINE		
		7			10	-	37	30	32	SAND	Dry, orange, fine and very fine SAND	18881
-			8	-						MEDIUM		
				11						SAND		
6					10	NR				- Shite	COBBLE in shoe - No recovery	
		5								1	OCCUPITY STOR - NO TRECOVERY	
			7							1		
				10						1		
8					9	14"	5.3	3	S3	1	Dry, orange, fine and medium SAND	
-		3										
			4									
			-	4								***
10		0			5	18"	4.8	4.8	S4		Dry, light brown, medium SAND	
-		6	8									
-	-		O	10						1		
12			-	10	11	16"	10.2	2	05			
-	-	5			- 11	10	10.2		S5		Dry, light brown, fine and medium SAND, little SILT	
	-	-	8	-								
	1			12			1					
4				-	13	20"	8.2	4.6	S6		Doublet house and in OAND HALLOUT	
		5					0.2	7.0	- 50	LAYERED	Dry, light brown, medium SAND, little SILT	
			7							FINE		
				9						SAND,		***
6					8	18"	9	3.7	S7	MEDIUM	Dry, light brown, fine and medium SAND	
		6								SAND	The state of the s	
	_		8							AND SILT		-
	-			10	140	4	-			(VARIABLE		
8	-	2		-	13	16"	25.5	11.8	S8	THICKNESS/	Wet, brown, fine and medium SAND	
-	-	2	8							LENSES)		
-	-	-	0	7	-							
0	-			-	11	18"	29.3	24	00			
-		3					20.0	24	S9		Saturated, brown, very fine and fine SAND, little SILT,	
			3								trace CLAY	
				13								**
2					14	16"	60.7	40	S10		Saturated, brown, very fine and fine SAND, little SILT	
		5									and mile Sittle Sittle	
			11									
				12								***
4		-			16	14"	9999***	42	S11		Moist, light brown, medium SAND, little SILT	
-	+	5	10									
-	-		12	15								
6	+	-	-	15	17	12"	270	200	046			
-	+	12	-		17	12	270	260	S12		Saturated, brown, fine SAND and SILT	
-	+		14		-							
-	-		•	15								***
3	1	1	-	-	22	14"	97.3	93	S13		Wat began madium CAND	***
		12					07.0	33	313		Wet, brown, medium SAND and SILT	
			14									
				18								
)					19	12"	193	183	S14		Wet to saturated, fine and medium SAND and SILT	
											End of boring @ 30 ft. B.G.	See Overbu
es:	ft	RG	= feet	Relow	Grade		9	.A.A. = Sa	4- 4	Contract Con	NR = No Recovery	Monitoring

S.A.A. = Same As Above

NR = No Recovery

Monitoring Well Log for Design Details/As-Builts

*PID = Headspace measurements of volatile organic compound vapors in parts per million (ppm), using a MiniRAE2000 (10.6 eV) ** = Headspace measured using a Hnu 10.2 eV PID *** = Moisture interference suspected

OVERBURDEN MONITORING WELL

DESIGN DETAILS

PROJECT PROJECT	CT NAME 115 North Washingt NUMBER 1636601 CLIENT Boylan, Brown, et. a		HOLE DESIGNATION DATE COMPLETED	MW 4/20/	01
L	OCATION 115 North Washingt East Rochester, New	on Street	DRILLING METHOD GEOLOGIST A WELL INSTALLATION 1	A. Krause, Se	ar-Brown
CAP TYPE	J-plug				
	PROTECTIVE CASING	GROUND	s s	TICK-UP	NA ft 8" Flush-mount Road Box
			s	URFACE SE	AL TYPE Quick-krete
TOP OF			PROPERTY OF THE PROPERTY OF TH	ELL CASING	
SEAL* AT	10 ft				E: Grout/Portland Type I Cem.
BOTTOM OF		www.	********		
EAL* AT			SI	EAL TYPE:	Bentonite Pellets/Chips
OP OF			P/	ACK TYPE:	- SAND, SIZE
CREEN* AT	ft			ion IIIL.	SAND, SIZE
ОТТОМ ОБ					
CREEN* AT	30 ft				
OTTOM OF					
OLE* AT	30 ft		Mark Control of Winds Control	OTE:	
				L DIMENSI	
7/2001 (D. Gnage)			DE	LOW GROO	ND SURFACE (BGS)
ttom of Hole sounde	d: 27.00 ft BTOC				
REEN TYPE:	CONTINUOU	S SLOT PERFORAT	TED	LOUVRE	OTHER
REEN MATERIAL:	STAINLESS STE	EL	PVC X OT	HER	
REEN LENGTH:	15 ft	SCREEN DIAMETER	2 in	S	CREEN SLOT SIZE: 0.010
LL CASING MATE	RIAL:	PVC	WELL CASING		-
LE DIAMETER:	4 inches		Wall Cranto	DIAMETER.	2 in
ELL DEVELOPMEN	T: METHOD:	Foot valve/ Dedicated Tubing	g VO	LUME:	20 gallons
4/01 (D. Gnage) (C. Shea)	DTB: 30.00 ft (NM) DTW: 18.03 ft				20 ganons

MAY 7, 2001 GROUNDWATER SAMPLING EVENT LABORATORY ANALYTICAL REPORT

FORMER BRAINERD MANUFACTURING 115 NORTH WASHINGTON STREET EAST ROCHESTER, NEW YORK

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Sear-Brown

Client Job Site:

Brainard

Lab Project No.:

01-1058

Lab Sample No.:

4157

Client Job No.:

16366.01

Sample Type:

Water

Field Location:

MW1 - 5/01

Date Sampled:

05/07/01

Field ID No.:

N/A

Date Received:

05/07/01

Date Analyzed:

05/11/01

& 05/14/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane	ND< 2.00	Benzene	ND< 2.00
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroethane	ND< 2.00	m,p - Xylene	ND< 2.00
Chloromethane	ND< 2.00	o - Xylene	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00	1,2-Dichlorobenzene	ND< 2.00
Dibromochloromethane	ND< 2.00		110 - 2.00
1,1-Dichloroethane	ND< 2.00		
1,2-Dichloroethane	ND< 2.00		
1,1-Dichloroethene	ND< 2.00		
cis-1,2-Dichloroethene	ND< 2.00	Ketones & Misc.	
trans-1,2-Dichloroethene	ND< 2.00	Acetone	2,580
1,2-Dichloropropane	ND< 2.00	Vinyl acetate	ND< 5.00
cis-1,3-Dichloropropene	ND< 2.00	2-Butanone	ND< 5.00
trans-1,3-Dichloropropen	ND< 2.00	4-Methyl-2-pentanone	ND< 5.00
Methylene chloride	ND< 5.00	2-Hexanone	ND< 5.00
1,1,2,2-Tetrachloroethan	ND< 2.00	Carbon disulfide	ND< 5.00
Tetrachloroethene	ND< 2.00		110 1 0.00
1,1,1-Trichloroethane	ND< 2.00	•	
1,1,2-Trichloroethane	ND< 2.00		
Trichloroethene	4.92		
Vinyl Chloride	ND< 2.00		

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laporatory Director

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Sear-Brown

Lab Project No.:

01-1058

Client Job Site:

Brainard

Lab Sample No.:

4158

Client Job No.:

16366.01

Sample Type:

Water

Field Location:

MW2 - 5/01

Date Sampled:

05/07/01

Field ID No .:

N/A

Date Received:

05/07/01

Date Analyzed:

05/11/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane Bromomethane Bromoform Carbon tetrachloride Chloroethane Chloromethane 2-Chloroethyl vinyl ether Chloroform Dibromochloromethane 1,1-Dichloroethane	ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00	Benzene Chlorobenzene Ethylbenzene Toluene m,p - Xylene o - Xylene Styrene	ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00
1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl Chloride	ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 11.6 ND< 2.00	Ketones & Misc. Acetone Vinyl acetate 2-Butanone 4-Methyl-2-pentanone 2-Hexanone Carbon disulfide	ND< 10.0 ND< 5.00 ND< 5.00 ND< 5.00 ND< 5.00 ND< 5.00

Analytical Method:

EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Sear-Brown

Lab Project No.:

01-1058

Client Job Site:

Brainard

Lab Sample No.:

4159

Client Job No.:

16366.01

Sample Type:

Water

Field Location:

MW3 - 5/01

Date Sampled:

05/07/01

Field ID No.:

N/A

Date Received:

05/07/01

IN/A

Date Analyzed:

05/11/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane Bromomethane Bromoform Carbon tetrachloride Chloroethane Chloromethane 2-Chloroethyl vinyl ether Chloroform Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00	Benzene Chlorobenzene Ethylbenzene Toluene m,p - Xylene o - Xylene Styrene Ketones & Misc. Acetone Vinyl acetate 2-Butanone 4-Methyl-2-pentanone	ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 2.00 ND< 5.00 ND< 5.00 ND< 5.00 ND< 5.00
Methylene chloride	ND< 5.00	4-Metnyl-2-pentanone 2-Hexanone	ND< 5.00 ND< 5.00
1,1,2,2-Tetrachloroethan Tetrachloroethene	ND< 2.00 9.13	Carbon disulfide	ND< 5.00
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl Chloride	2.95 ND< 2.00 48.4 ND< 2.00		`

Analytical Method:

EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

PARADIGM ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 716-647-2530 FAX 716-647-3311

Volatile Laboratory Analysis Report For Non-Potable Water

Client:

Sear-Brown

Lab Project No.:

01-1058

Client Job Site:

Brainard

Lab Sample No.:

4160

Client Job No.:

16366.01

Sample Type:

Water

Field Location:

Trip Blank

Date Sampled:

05/07/01

Field ID No.:

N/A

Date Received:

05/07/01

Date Analyzed:

05/11/01

VOLATILE HALOCARBONS	RESULTS (ug/L)	VOLATILE AROMATICS	RESULTS (ug/L
Bromodichloromethane	ND< 2.00	Benzene	ND< 2.00
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroethane	ND< 2.00	m,p - Xylene	ND< 2.00
Chloromethane	ND< 2.00	o - Xylene	ND< 2.00
2-Chloroethyl vinyl ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00	on, one	110 < 2.00
Dibromochloromethane	ND< 2.00		
1,1-Dichloroethane	ND< 2.00		
1,2-Dichloroethane	ND< 2.00		
1,1-Dichloroethene	ND< 2.00		
cis-1,2-Dichloroethene	ND< 2.00	Ketones & Misc.	
trans-1,2-Dichloroethene	ND< 2.00	Acetone	ND< 10.0
1,2-Dichloropropane	ND< 2.00	Vinyl acetate	ND< 5.00
cis-1,3-Dichloropropene	ND< 2.00	2-Butanone	ND< 5.00
trans-1,3-Dichloropropen	ND< 2.00	4-Methyl-2-pentanone	ND< 5.00
Methylene chloride	ND< 5.00	2-Hexanone	ND< 5.00
1,1,2,2-Tetrachloroethan	ND< 2.00	Carbon disulfide	ND< 5.00
Tetrachloroethene	ND< 2.00	oarbon disdinge	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00		`
1,1,2-Trichloroethane	ND< 2.00	•	
Trichloroethene	ND< 2.00		
Vinyl Chloride	ND< 2.00		

Analytical Method:

EPA 8260

ELAP ID No.: 10958

Comments:

ND denotes Not Detected

Approved By

Laboratory Director

PARADIGM

CH/' 'N OF CUSTODY

					<u>U</u>		VOI	UC	3/6	JUT									* =
ENVIRO				REPORT TO:				79. m=4	INV	OICE	тю			ar pare in		Mich G	, it is	eli (se	
SERVIC	ES, INC	3.	COMPA	NYSea Bang		COMPA	NY:				<u> </u>			LAB PROJECT #	c	LIENT PE	ROJEC	T#;	
179 Lake Aven	Ue		ADDRES	\$5 Met 10 Pal	H	ADDRE	ADDRESS:							01-1053	3000	1631	lile.	1	1
Rochester, NY	14608		CITY:	Rochocter STATE: M	1962 P	CITY:	CITY: STATE: ZIP:							TURNAROUND TIME: (WORKING DAYS)					
(716) 647-2530	* (800) 724-	1997	PHONE:	16:475-1440 AX: 716 4	115-3951	PHONE	:			FAX:						-			
PROJECT NAME/SI	TE NAME:		A	Title Storousky/April	/ Krausp	ATTN:		· .						1 , n		STD		C	OTHE
16366	6.01		COMME	NTS:											3	4	5		****
Verezione State					Sulvar et rass	e alvain	R	EQUI	STE	ANA	LYSI	all to		open a service		State Contract	er Live et	SON COLLEGE	Mark Brank
		C				C	3			SCOTING.	1-1-21								
DATE	TIME	M P O	. G R A	SAMPLE LOCATION/FIELD ID	M, A T.	N N U T M A B I	5 1626							REMARKS			PARAD	DIGM	
		T E	В		x	E N R E R S	1000	4					:	· · · · · · · · · · · · · · · · · · ·			AMPLE		
1:5/101	10 75		X.	MW1-501	¥ be	2	X	1			Fa.					+	pl.	1 1	7
2	1150		16	MW2-801		1	X				1			,		4	4/	0	1
3	1115		X	MN3-5/01	V	2	Z				1					-	$\frac{1}{i}$	- 2	3 3
4				Temp Blowt		1	\forall						1	· · · · · · · · · · · · · · · · · · ·		-	1 1		7 7
5				Teip Blanks		1	X				++	-	-			+-	1 (i	-	1. 10
6								.,				-	-			+-	1 1	1	0 3
7											\dashv					++	+	+	
8										+	+-	-				++	+	_	_
9		A.Ja														-	-	+	_
10					** - 7						++						_	+	
LAB USE	ONLY		ند				1-1-				1, 1		L;	,				\perp	
SAMPLE COND	ITION: Che	ck box	С	ONTAINER TYPE: PRESE	RVATIONS:	tor all	after.	1101			1. 1.	Laber Co.	<u> </u>						
if acceptable or	note deviat	ion:				*24		HOLI	ING TIME				TEMPER	ATURE:		di			
Sampled By: /	#			Date/Time:										W.C.	RESPONDED.	de C			
En of	11/ Jones	and 2		3/2/01 1710	Received By:	174				117.0		-	Date/Time		Total (Cost:			
Relinquished By	y: 1			Date/Time:	Received By:	The same of the same of the same of	-) m	Date/Time	15.10					
Relinquished By	y:			Date/Time: F	Received @ Lal	n Bur								•					
			<u> </u>		Me	Q.	200	loco	رع			5	Date/Time		P.I.F.				