Periodic Review Report

Former Brainerd Manufacturing Facility East Rochester, New York NYSDEC Site No. V00519-8

March 2021

0040-002-400

Prepared For:

Despatch Industries, Inc.

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York | P: (716) 856-0599 | F: (716) 856-0583

PERIODIC REVIEW REPORT

FORMER BRAINERD MANUFACTURING FACILITY SITE (VOLUNTARY CLEANUP SITE NO. V00519-8)

EAST ROCHESTER, NEW YORK

March 2021

0040-002-400

Prepared for:

Despatch Industries, Inc.

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

PERIODIC REVIEW REPORT Former Brainerd Manufacturing Facility Site Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	1
	1.2	Remedial History	2
		1.2.3 Final Remedial Measure	4
		1.2.4 Corrective Measures	5
	1.3	Semi-Annual Groundwater Monitoring	6
	1.4	Compliance and Recommendations	6
2.0	SITI	E OVERVIEW	7
3.0	Siti	E MANAGEMENT PLAN	8
	3.1	Operation, Monitoring and Maintenance Plan	8
		3.1.1 Active Sub-slab Depressurization System	
		3.1.2 Groundwater Collection, Treatment, Discharge or Reinjection and Monitoring Data	9
		3.1.3 Annual Inspection and Certification Program	9
	3.2	Soil/Fill Management Plan	10
	3.3	Engineering and Institutional Control Requirements and Compliance	10
		3.3.1 Institutional Controls	
		3.3.2 Engineering Controls	
4.0	Con	ICLUSIONS AND RECOMMENDATIONS	12
5.0	DEC	CLARATION/LIMITATION	13

PERIODIC REVIEW REPORT Former Brainerd Manufacturing Facility Site Table of Contents

TABLE

 Table 1
 Summary of Groundwater Analytical Results

FIGURES

Figure 1 Site Location and Vicinity Map	
---	--

Figure 2 Site Plan (Aerial)

Figure 3 Groundwater Isopotential Map (December 2020)

APPENDICIES

- Appendix A IC/EC Certification Forms
- Appendix B Well Decommission Logs
- Appendix C Site Photolog
- Appendix D ASD Periodic Inspection Log
- Appendix E cVOC Trend Charts
- Appendix F Groundwater Monitoring Data

1.0 INTRODUCTION

Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this Periodic Review Report (PRR), on behalf of Despatch Industries, Inc. (Despatch) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) Site No. V00519-8, located in East Rochester, Monroe County, New York (Site; see Figure 1), commonly referred to as the Former Brainerd Manufacturing Facility site ("Site").

This PRR has been prepared for the Site in accordance with NYSDEC DER-10/*Technical Guidance for Site Investigation and Remediation* (May 3, 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspections form has been completed for the postremedial activities at the Site for the period from February 28, 2020 to February 28, 2021.

1.1 Site Background

Despatch Industries, Inc. entered into Voluntary Cleanup Agreement (VCA) Site # V00519-8 with the New York State Department of Environmental Conservation (NYSDEC) in February 2002, to investigate and remediate a 3.3-acre property consisting of two parcels located in East Rochester, Monroe County, New York. The property was remediated to restricted commercial use and has been vacant and unoccupied except for periodic maintenance by the building owner until October 2019. On March 18, 2016, 107/115 North Washington Street, LLC purchased the Site from Despatch. Despatch remains responsible for environmental obligations at the Site as they pertain to the subject VCP, with access to the Site provided by the new owner to fulfill those obligations. In Spring through Fall of 2020, the building was remodeled by 107/115 North Washington Street, LLC and is currently used as a self-storage building; consistent with Institutional Control land-use restrictions.

The Site is located in the County of Monroe, New York and is comprised of two parcels: an approximate 3.0-acre parcel identified as 115 North Washington Street on the East Rochester Tax Map #139.69-1-17 improved with a 73,400 square foot self-storage building; and an approximately 0.3-acre parcel, comprised of an asphalt parking lot (Tax Map#139.69-1-19). The Site is bounded by residential properties, a Rochester Gas and Electric (RG&E) substation and a pre-cast concrete product manufacturing building owned by E.J. Delmonte

to the north, Monroe Street, Rochester Lumber Company and A.J. Interiors to the south, North Washington Street to the east, and light industrial properties, railway and green space to the west (see Figure 2).

The Site was operated as an industrial facility for nearly 100 years prior to relocation of Brainerd's operations in 1998. Historic uses of the Site included the manufacture of hardware and decorative metal products using various metal finishing processes. The property was subsequently operated under lease by an office furniture reconditioning and sales company beginning in 2004, however that business terminated its lease and left the Site in fall of 2017.

In May 2002, Despatch Industries, Inc. signed a voluntary agreement with the New York State Department of Environmental Conservation (NYSDEC) to investigate and cleanup the Site. Environmental site investigations were conducted by Benchmark which identified the following:

- The uppermost water bearing zone consists of a poorly graded sand and is contaminated with chlorinated volatile organic compounds (cVOCs) suspected to originate from former plating operations and released via a sump interior to the Site building (the sump has been sealed). The primary cVOCs are perchloroethylene (PCE), trichloroethene (TCE), and to a lesser degree 1,1,1-trichloroethane. A narrow groundwater plume developed from the area of the source and traveled to the northwest.
- A localized area (approximately 20 feet by 25 feet) of the surficial soils along the western portion of the Site were contaminated with metals (i.e., lead, barium).

1.2 Remedial History

After acceptance into the VCP in May 2002, there were two interim remedial measures (IRMs) undertaken for this project: 1) groundwater pumping, pretreatment, and conveyance to the Monroe County Sewer System; and 2) installation of an on-site subslab depressurization system. A more detailed discussion of these IRMs is provided below.

1.2.1 Groundwater Pumping and Pretreatment

Site investigation data supported the need for an IRM to address groundwater impacts at the Site and to cut-off contaminated groundwater from further impacts off-site. The IRM was constructed during the period of June through August 2004. The IRM groundwater collection and pretreatment system involved recovery of contaminated groundwater from a

pumping well with concurrent on-site batch treatment of the recovered groundwater via a lowprofile air stripper with discharge of the pretreated water to the Monroe County Department of Environmental Services. Beginning in August 2004, cVOC-impacted groundwater was collected by pumping well PW-1 (PW-1R replaced PW-1 in this capacity in November 2011¹) on a nearly continuous basis through mid-2018 except for maintenance shutdowns and the issue with the pumping well PW-1. From August 2004 through May 2018, approximately 31,228,652 gallons of groundwater were collected, pre-treated, and discharged to the Monroe County Sewer System under Sewer Use Permit 883. Treated groundwater (effluent) from the air stripper was tested monthly for PCE, toluene, and TCE and compared to the permitted discharge limit (PDL) of <2.13 mg/L. All effluent samples were below the PDL. The system was temporarily shut down in May of 2018 and remained shut down until April of 2020 to evaluate the efficacy of subsequent remedial measures. The pretreatment system was decommissioned April 2020 upon NYSDEC approval, as further discussed herein. The groundwater isopotential map for December 2020 water level measurements is shown on Figure 3.

1.2.2 Sub-Slab Depressurization

The second IRM involved installation of a sub-slab depressurization (SSD) system on a design-build basis with post-installation performance testing to confirm adequate system performance. Initial communication testing of the sub-slab was performed by Benchmark personnel to evaluate the number of extraction points and type of exhaust fans required to optimize the systems performance under the specific Site conditions. The SSD system was installed by Mitigation Tech, a Rochester, New York based vapor control (and radon) experienced contractor. The system consists of 28 extraction points (EP-1 through EP-28) and six RadonAway GP Series 501 fans distributed strategically throughout the building under the agreed design criteria established with the NYSDEC and NYSDOH. Six roof mounted fans are fitted with interior manometers. The system began operation in November 2010 and has operated continuously since that time except for temporary shutdowns in February 2018 to March 2018 to replace two exhaust fans which were damaged during a loss of heat to the

¹ The PW-1 pump became lodged in the well during routine pump maintenance. Several attempts were made to recover the pump and repair the well. However, it became apparent that sand had intruded the well likely through the well screen suggesting that the well could not be repaired effectively.

building, causing a sprinkler line to rupture and resulting in the flooding of the floor near some of the ASD extraction points, and December 2019 to January 2020 due to electrical disconnections associated with the interior building renovation work.

1.2.3 Final Remedial Measure

The Site was remediated in accordance with the preferred remedy and as approved by the NYSDEC in the RAWP dated December 2011. The following are the components of the selected remedy:

- 1. Construction and maintenance of a soil cover system consisting of a demarcation layer followed by a minimum of 12 inches of NYSDOT-approved type 2 backfill material to prevent human exposure to contaminated soil/fill remaining at the site.
- 2. Continued operation of a previously constructed IRM groundwater pump and treat system in which groundwater is transferred from a pumping well (PW-1R) to an influent storage tank. The untreated groundwater is then pumped into a low-profile air stripper for treatment and subsequent discharge to the sanitary sewer.
- 3. Continued operation of a previously constructed IRM sub-slab depressurization system comprised of a series of fans mounted to sub-slab piping to prevent migration of VOC-impacted vapors into the building.
- 4. Enhancement of the IRM groundwater pump and treat system with a second pumping well (PW-2) and subsequent addition of sodium bisulfite (SBS) after air stripping to reduce the dissolved oxygen concentration. Pretreated groundwater was then either discharged to the Monroe County sewer system or further treated by the addition of hydrogen gas via the groundwater Pressurized Remediation Optimizer Low Pressure system (gPRO® LP system) for reinjection of hydrogen gas upgradient of the source area. The hydrogenated water flowed under gravity to the three upgradient reinjection wells (RW-1, RW-2, and RW-3) located along Monroe Street (Figure 3). The system was operated and monitored on a continuous basis beginning in early 2012 until 2016. It was shut down in mid-2016 due to clogging of the reinjection wells.
- 5. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site.
- 6. Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.
- 7. Periodic certification of the institutional and engineering controls listed above.

1.2.4 Corrective Measures

As per the SMP, if any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Plan will be submitted to the NYSDEC for approval.

Due to gPRO injection well failure, a Corrective Action Plan was submitted and approved by the Department in April 2017. The Corrective Action Plan identified the scope of planned corrective actions and the method and means by which it would be completed. The planned corrective action chosen for the Site involved the remediation of chlorinated VOCs in groundwater in the vicinity of monitoring wells MW-6 and MW-5 and pumping well PW-1R by creating a continuous *in situ* passive barrier system with Regenesis' PlumeStop[®] liquid activated carbon. Groundwater flows through the barrier system while at the same time the barrier extracts and destroys contaminants from groundwater.

Injection of the liquid activated carbon occurred in October 2017. Details of the injection program were described in correspondence to the Department dated May 14, 2018. Post injection groundwater samples were collected from monitoring wells MW-5, MW-6 and pumping well PW-1R in November 2017, February 2018, June 2018, August 2018 (MW-6 only) and October 2018 (MW-6 only).

Benchmark performed additional corrective measure in the source area based on the post injection groundwater samples results collected between November 2017 and October 2018. On January 11 and 14, 2019, Benchmark injected a total of 400 pounds (equivalent to 48 gallons) of PlumeStop mixed with water directly into monitoring well MW-6. Over a 13-hour period between these two days, a total of approximately 230 gallons of PlumeStop/water was injected. Injection over two days was necessary because of daylighting of the PlumeStop mixture. Benchmark redeveloped well MW-6 on February 8 and collected a sampled from MW-6 on February 22 for analysis of Target Compound List (TCL) volatile organic compounds (VOCs).

Routine post injection groundwater samples continued to be collected from monitoring wells MW-4, MW-5, MW-6 and pumping well PW-1R in July 2019, and November 2019 (except PW-1R). Source area well PW-1R was not sampled on November 25 due to a temporary power interruption associated with interior renovation activities; therefore, Benchmark returned on December 11 to resample the well via a bailer in lieu of running the well pump. MW-5 was also resampled at that time due to suspected anomalous data from the November 25 sample.

On October 22, 2019, Nothnagel Drilling, Inc. decommissioned the gPro groundwater treatment systems and three associated reinjection wells (grouted in place) located along Monroe Street (Figure 2).

Based upon the success of the PlumeStop the NYSDEC issued correspondence on April 7, 2020, approving decommissioning of the IRM pump and treat system with continued monitoring of wells MW-5, MW-6, and MW-12 for three additional semi-annual groundwater monitoring events and grouting the unused wells in place per NYSDEC CP-43 guidance.

From April 14 to April 22, 2020, Nothnagel Drilling, Inc. decommissioned and grouted in-place 16 unused pumping wells, observation wells, and monitoring wells associated with the IRM pump and treat system per NYSDEC CP-43 guidance (Figure 2). Appendix B provides well decommissioning logs.

April 23 to April 24, 2020 the pretreatment system equipment (i.e., day tank, air stripper, and pumps) was removed from the facility by Benchmark and all associated discharge piping was terminated. The Monroe County Sewer Use Permit 883 was terminated May 28, 2020.

1.3 Semi-Annual Groundwater Monitoring

Benchmark completed the first and second of three above-referenced semi-annual groundwater monitoring events at the Site on June 11, 2020 and December 1, 2020. Groundwater sampling results are discussed in Section 3.1.2. Benchmark plans to perform the final round of semi-annual groundwater monitoring in June 2021. Groundwater sampling results are discussed in Section 3.1.2.

1.4 Compliance and Recommendations

At the time of the Site inspection on February 4, 2021, the Site remedial components were compliant with the Department's approved SMP. A photo log is included in Appendix C.

2.0 SITE OVERVIEW

The Site is located in East Rochester County of Monroe, New York and is identified as 115 North Washington Street (SBL Nos. 139.69-1-17 and 139.69-1-19) on the Monroe County Tax Map. An open gravel lot comprises the western side of the larger parcel, with the former manufacturing building situated on the eastern side of the parcel adjacent to North Washington Street. Surrounding property is mixed use, primarily characterized by light industrial and railroad properties, and residential properties. The Site is an approximately 3.3acre area bounded by residential properties to the north/northeast; a Rochester Gas and Electric (RG&E) substation and a pre-cast concrete product manufacturing building owned by E.J. Delmonte to the northwest; Monroe Street to the south; North Washington Street to the east; and light industrial properties, railway, and green space to the west (see Figure 2).

In May 2002, Despatch Industries, Inc. signed a voluntary agreement with the NYSDEC to investigate and cleanup the Site (DEC Site No. VCP 00519-8). The investigations and IRMs were conducted through New York State's VCP (Index #B8-0609-02-02). Remedial activities were completed in 2013. The FER and SMP for the Site were approved by the Department in December 2013. The Release and Covenant Not to Sue was issued for the Site on November 24, 2014. On March 18, 2016, 107/115 North Washington Street, LLC purchased the Site from Despatch. Despatch remains responsible for environmental obligations at the Site as they pertain to the subject VCP, with access to the Site provided by the new owner to fulfill those obligations.

3.0 SITE MANAGEMENT PLAN

A SMP was prepared for the Site and approved by the Department in December 2013. The SMP includes an Operation, Monitoring and Maintenance (OM&M) Plan, a Soil/Fill Management Plan (SFMP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

3.1 Operation, Monitoring and Maintenance Plan

The OM&M Plan consists of three major components: including the Active Sub-slab Depressurization System (ASD); the groundwater recovery, treatment, and reinjection system; and the Annual Inspection & Certification Program.

3.1.1 Active Sub-slab Depressurization System

An ASD system was installed within the existing building consisting of 28 extraction points (EP-1 through EP-28) and six RadonAway GP Series 501 fans distributed strategically throughout the building under the design criteria established with the NYSDEC and NYSDOH. Six roof mounted fans outfitted with interior manometers are visually inspected on a monthly basis. The system began operation in November 2010 and has operated continuously since that time except for temporary shutdowns in February 2018 to March 2018 to replace two exhaust fans which were damaged during a loss of heat to the building, causing a sprinkler line to rupture and resulting in the flooding of the floor near some of the ASD extraction points, and December 2019 to January 2020 due to electrical disconnections associated with the interior building renovation work. As required by the Departmentapproved SMP, the ASD system must: (1) be operated continuously to maintain a negative pressure (below ambient atmospheric) under the floor slab; (2) be visually inspected monthly to verify proper operation; and (3) annually inspected and certified that the system is performing properly and remains an effective engineering control (EC). The interior ASD manometers are inspected on a monthly basis by management staff but a record is not maintained. Benchmark has instructed staff to keep a log of the manometer readings moving forward.

During the annual Site Inspection performed on February 4, 2021, the inspector verified that the ASD system was operating properly, as indicated by the readings on the vacuum gauges. At the time of the Site inspection ASD system Manometer 6 was inaccessible

as it was locked inside an occupied storage unit. In Spring 2021, a redundant manometer will be installed on the same extraction leg in a more readily accessible location. A summary of the ASD periodic inspection readings for February 2021 are included in Appendix D.

3.1.2 Groundwater Collection, Treatment, Discharge or Reinjection and Monitoring Data

A letter from the NYSDEC, dated April 7, 2020, approved decommissioning of the IRM pump and treat system with continued monitoring of wells MW-5, MW-6, and MW-12 for three additional semi-annual groundwater monitoring events. Benchmark completed the first and second of three semi-annual groundwater monitoring events at the Site on June 11, 2020 and December 1, 2020. The final round of semi-annual groundwater monitoring will be performed in June 2021.

As indicated on Table 1, tetrachloroethene (PCE) and trichloroethene (TCE) were not detected during the most recent event at source area well MW-5 and detected at estimated concentrations well below their respective GWQSs at source area well MW-6. The total cVOC result for MW-5 during the most recent event is non-detect, consistent with November 2019 results. A minor increase of total cVOCs was observed in MW-6; however, concentrations remain well below historic pre-injection levels. The December 2020 PCE and cis-1,2 DCE concentrations in well MW-12 (36 ug/L and 5.3 ug/L, respectively) are consistent with the June 2020 results and remain below November 2019 and prior results.

Charts illustrating total chlorinated VOC (cVOC) concentrations vs time from groundwater monitoring wells MW-5, MW-6, and MW-12 are included in Appendix E.

Analytical data for the post injection groundwater sampling results not previously submitted to the NYSDEC is contained in Appendix F.

3.1.3 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The annual inspection was performed by Mr. Thomas Forbes, P.E. of Benchmark Environmental Engineering & Science, PLLC on February 4, 2021.

At the time of the annual inspection, the property was utilized as a self-storage facility. No observable indication of ground-intrusive activities was noted during the Site inspection. The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the Site inspection, including ASD manometers, is included in Appendix C.

3.2 Soil/Fill Management Plan

A SFMP was included in the approved-SMP for the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive actives.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

3.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the BCAs for the Site.

3.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited; and
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use; and
- Implementation of the SMP including the OM&M Plan and SFMP.

3.3.2 Engineering Controls

• Vapor Mitigation – ASD System has been operated continuously with exception of a brief shutdown from February 2018 to March 2018 to replace two exhaust fans which were damaged during a loss of heat to the building, causing a sprinkler line to rupture and resulting in the flooding of the floor near some of the ASD extraction points, and from December 2019 to January 2020 due to building renovation work. During the annual Site inspection, Manometer 6 was inaccessible as it was locked inside an occupied storage unit. In Spring 2021, a redundant manometer will be installed on the same extraction leg in a more readily accessible location.

- Groundwater Collection and Pretreatment Systems The groundwater collection and pretreatment systems were operated continuously with minimal interruption for maintenance since they were first installed in 2004. At the recommendation of the NYSDEC, the system was shut down in May 2018 and remained shut down until April 2020 to avoid removing any of the PlumeStop[®] amendment from the aquifer. A letter from the NYSDEC, dated April 7, 2020, approved decommissioning of the IRM pump and treat system with continued monitoring of wells MW-5, MW-6, and MW-12 for three additional semi-annual groundwater monitoring events. From April 23 to April 24, 2020, the pretreatment system equipment (i.e., day tank, air stripper, and pumps) was removed from the facility by Benchmark and all associated discharge piping was terminated. On May 28, 2020, the Monroe County Sewer Use Permit 883 was terminated.
- The gPRO reinjection system was shut down and decommissioned, with the PlumeStop® injection employed as a corrective measure for source area control. The gPRO groundwater treatment system and three reinjection wells (grouted inplace) located along Monroe Street were decommissioned on October 22, 2019.
- Groundwater Monitoring Groundwater monitoring (12 events) was completed between July 2017 and December 2020. Benchmark plans to perform the final round of semi-annual groundwater monitoring in June 2021.
- Cover System The cover system, including building foundations, concrete sidewalks, asphalt and gravel driveways and parking areas, and a nominal 25-foot long by 20-foot-wide engineered cover area are all being maintained in compliance with the SMP.

At the time of the February 4, 2021 site inspection, the Site was fully compliant with all institutional control requirements and all engineering controls (or NYSDEC-approved modifications thereto) as discussed above.

4.0 CONCLUSIONS AND RECOMMENDATIONS

As of the date of the most recent site inspection, the Site is fully compliant with the Institutional Controls including land-use restrictions, groundwater-use restrictions, and the soil/fill management plan component, and fully compliant with the Engineering Controls or approved modifications thereto. The following recommendations will be implemented with DEC approval:

- Termination of groundwater monitoring, following the final semi-annual June 2021 event, in accordance with Section 2.2.2.1 of the 2013 Site Management Plan (SMP), and submission of a brief summary report for decommissioning of the remaining and monitoring wells. This will require NYSDEC concurrence at the time of the June 2021 data submittal.
- Installation of a redundant Manometer 6 in a more readily accessible location.

5.0 DECLARATION/LIMITATION

Benchmark Environmental Engineering and Science, PLLC, personnel conducted the annual site inspection for Voluntary Cleanup Program Site No. V00519-8, East Rochester, New York, according to generally accepted practices. This report complied with the scope of work provided to Despatch Industries, Inc. by Benchmark Environmental Engineering and Science, PLLC.

This report has been prepared for the exclusive use of Despatch Industries, Inc. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Despatch Industries, Inc. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark Environmental Engineering and Science, PLLC.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Brainerd Manufacturing Facility East Rochester, New York

					6					MW-2 ⁶				6						MW-4 ⁶				
Parameter ¹	GWQS/GV ³				MW-1 °				Historic	Cur	rent		MV	V-3 °			H	Historic Grou	undwater Sa	npling Event	s		Cu	rrent
		08/18/06	01/31/12	09/25/13	12/04/13	6/4/14	6/4/15	6/28/16	08/18/06	07/30/19	11/25/19	08/21/06	6/4/14	6/4/15	6/28/16	08/22/06	01/30/12	09/25/13	12/04/13	6/4/2014	6/4/2015	6/28/2016	07/23/19	11/25/19
TCL Volatile Organic Compou	nds (ug/L)																							
Acetone	50	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.2	4.5 J	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	0.75	11	ND	ND	ND	ND	ND	1.4	1.4	1.2	ND	2.8	2.3	1.3	1.1	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	0.42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	23	ND	0.91 J	1.2	0.59 J	ND	7	6.3	4.7	0.86 J	11	15	12	6.5	1.2	1.3	3.2	6.5
Dibromochloromethane	5	ND	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.56 J	ND	ND	ND	ND	ND
Tetrachloroethene	5	3.1 J	53	83	150	70	65	ND	8.2	11	10	ND	2	3.5	2.6	87	11	28	13	22	16	17	27	26
Trichloroethene	5	0.78 J	19	15	65	17	30	0.91 J	6.3	2	1.9	11	2.5	3.2	3.1	240	90	46	33	37	16	16	42	36
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.74 J	ND	ND	ND	2.6 J	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Site COCs (cVOCs) ⁴	NA	3.9	72	98	215	87	95	0.9	15	13	11.9	11	4.5	6.7	5.7	327	101	74	46	59	32	33	69	62

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. MS/MSD collected at PW-1.

NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

4. Sum of chlorinated VOCs means adding the concentrations of tetrachloroethene, trichloroethene, cis & trans-1,2-dichlorethene, and 1,1-dichloroethene.

5. Sampling occurred following 1/11/2019 injection of PlumeStop directly into well MW-6 and redevelopment on 2/8/19.

6. Well decommissioned April 2020.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ND = parameter not detected above laboratory detection limit.

NR = parameter not regulated by 6NYCRR TOGS 1.1.1 Part 703

NA = not available; parameter not included on tabulated summary provided by NYSDEC.

N* = Indicates the spike or duplicate analysis is not within the quality control limits

"--" = Not analyzed

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Brainerd Manufacturing Facility East Rochester, New York

										MW-5								
Parameter ¹	GWQS/GV ³				Historic Gro	undwater Sam	pling Events				Pre-Injection				Post-Injection			
		08/22/06	01/30/12	03/05/13	06/26/13	9/25/13	12/04/13	06/04/14	06/04/15	06/28/16	07/10/17	11/30/17	02/27/18	06/04/18	07/23/19	12/11/19	06/11/20	12/01/20
TCL Volatile Organic Compour	nds (ug/L)																	
Acetone	50	ND	ND	ND	ND	ND	3.4 J	3.3 J	ND	ND	7.3 J	200	200	63 J	ND	6.8 J	6.9 J	ND
Bromodichloromethane	5	ND	ND	0.51 J	ND	ND	ND	ND	ND	0.54 J	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	71 J	320	45 J	ND	ND	ND	ND
Carbon Disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5 J	ND	ND	ND
Chloroform	7	1.4 J	1.3	18	ND	ND	ND	ND	ND	0.98 J	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	NR	ND	ND	ND	ND	ND	ND	4.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	0.51 J	0.71 J	ND	ND	ND	ND < 5.1	ND < 5.1	ND < 5.1	ND	ND	ND	ND
Tetrachloroethene	5	1,600	2,800	590	400	150	110	50	40	530 D	14	ND	ND	ND	ND	ND	0.41 J	ND
Trichloroethene	5	1,400	1,500	260	240	59	52	23	20	330 D	8.5	ND	ND	ND	ND	ND	0.56 J	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethene	5	0.56 J	0.67 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethene	5	0.80 J	0.95 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 9.0	ND < 9.0	ND < 9.0	ND	ND	ND	ND
1,1,1-Trichloroethane	5	11	6.3 J	1.3	ND	ND	ND	ND	ND	1.5	ND	ND < 8.2	ND < 8.2	ND < 8.2	ND	ND	ND	ND
1,1,2-Trichloroethane	1	1.5 J	ND	ND	ND	ND	ND	ND	ND	0.57 J	ND	ND < 2.3	ND < 2.3	ND < 2.3	ND	ND	ND	ND
1,1 Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Site COCs (cVOCs) ⁴	NA	3,000	4,302	850	640	209	162	73	60	860	23	0	0	0	0	0	1	0

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. MS/MSD collected at PW-1.

NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

4. Sum of chlorinated VOCs means adding the concentrations of tetrachloroethene, trichloroethene, cis & trans-1,2-dichlorethene, and 1,1-dichloroethene.

5. Sampling occurred following 1/11/2019 injection of PlumeStop directly into well MW-6 and redevelopment on 2/8/19.

6. Well decommissioned April 2020.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ND = parameter not detected above laboratory detection limit.

NR = parameter not regulated by 6NYCRR TOGS 1.1.1 Part 703

NA = not available; parameter not included on tabulated summary provided by NYSDEC.

N* = Indicates the spike or duplicate analysis is not within the quality control limits

"--" = Not analyzed

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Brainerd Manufacturing Facility East Rochester, New York

											м	W-6											
Parameter ¹	GWQS/GV ³				Historic Gro	oundwater Sam	pling Events				Pre- Injection					Post-Ir	njection					MW-7 °	MW-8 °
		08/22/06	01/30/12	03/05/13	06/26/13	09/25/13	12/04/13	06/04/14	06/04/15	06/28/16	07/10/17	11/30/17	02/27/18	06/04/18	08/08/18	10/29/18	2/22/19 ⁵	07/23/19	11/25/19	06/11/20	12/01/20	8/21/06	8/21/06
TCL Volatile Organic Compou	ınds (ug/L)								_														
Acetone	50	ND	ND	ND	ND	ND	5.0 J	ND	ND	ND	ND	ND < 150	49	12 J	ND	ND	ND	ND	ND	5.4 J	ND	ND	ND
Bromodichloromethane	5	ND	4.4	0.47 J	ND	ND	ND	ND	ND	ND	ND	ND < 20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND < 120	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 66	8.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	14	2	ND	ND	0.51 J	ND	ND	ND	ND	ND < 17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	87	ND	ND	ND	ND < 22	ND	ND	3.8 J	3.8 J	3.4 J	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	3.2 J	0.95 J	ND	ND	ND	1.6	ND	ND	ND	ND	ND < 26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	3,100	1,700	410	1,600	1,300	1,600	1,500	570	1,200	390	90	3.5 J	120	290	170	ND<1.4	0.45 J	ND	0.43 J	0.97 J	ND	13
Trichloroethene	5	1,500	660	95	520	450	570	560	130	340	110	51	4.9	88	130	140	ND<1.8	0.66 J	ND	ND	0.8 J	6.0	20
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 41	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	16 J	4	ND	ND	ND	3.8	ND	ND	ND	ND	ND < 41	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND < 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Site COCs (cVOCs) ⁴	NA	4,600	2,360	505	2,120	1,750	2,170	2,060	700	1,540	500	141	8.4	208	420	310	0	1.1	0	0.43	1.77	6.0	33

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. MS/MSD collected at PW-1.

3. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

Sum of chlorinated VOCs means adding the concentrations of tetrachloroethene, trichloroethene, cis & trans-1,2-dichlorethene, and 1,1-dichloroethene.
 Sampling occurred following 1/11/2019 injection of PlumeStop directly into well MW-6 and redevelopment on 2/8/19.

6. Well decommissioned April 2020.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ND = parameter not detected above laboratory detection limit.

NR = parameter not regulated by 6NYCRR TOGS 1.1.1 Part 703

NA = not available; parameter not included on tabulated summary provided by NYSDEC.

N* = Indicates the spike or duplicate analysis is not within the quality control limits

"--" = Not analyzed

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Brainerd Manufacturing Facility East Rochester, New York

							MV	V-9 ⁶										MW-12		
Parameter ¹	GWQS/GV ³				Histo	oric Groundwa	ter Sampling E	vents				Cu	rrent	MW-10 °	MW-11 °	Historic		Cur	rent	
		8/21/06	Blind Dup 8-21-06	9/12/07	1/31/12	6/26/13	9/25/13	12/4/13	6/4/14	6/4/15	6/28/16	7/23/19	11/25/19	8/21/06	03/10/08	03/10/08	7/23/19	11/25/19	6/11/20	12/1/20
TCL Volatile Organic Compou	inds (ug/L)																			
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.1 J	4.8 J	ND	ND	5.1	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.99	0.82 J	ND	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	0.94 J	ND	ND	ND	ND
Chloroform	7	2 J	2.1 J	0.9 J	ND	ND	ND	0.82 J	ND	ND	ND	ND	ND	ND	1.7	1.6	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	90	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Methyl Acetate	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Tetrachloroethene	5	3,100	2,800	2,600	390	870	900	1,000	1,300	920	300	33	51	17	ND	300 D	71	68	31	36
Trichloroethene	5	2,700	2,500	1,900	230	400	590	780	810	570	100	4.7	38	15	ND	270 D	14	12	4.2	5.3
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND
1,1 Dichloroethene	5	3.5 J	3.9 J	1.3	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorethene	5	3.2 J	3.2 J	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.66 J	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND
1,1,1-Trichloroethane	5	34	36	12	1.6	ND	ND	4.6	ND	ND	ND	ND	ND	0.60 J	ND	2.0	ND	ND	ND	ND
1,1,2-Trichloroethane	1	3.8 J	3.7 J	1.9	0.5 J	ND	ND	0.74 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethane	5	0.62 J	0.57 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Site COCs (cVOCs) ⁴	NA	5,800	5,300	4,503	620	1,270	1,490	1,780	2,110	1,490	400	38	89	32	0	571	85	80	35	41

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. MS/MSD collected at PW-1.

3. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

Sum of chlorinated VOCs means adding the concentrations of tetrachloroethene, trichloroethene, cis & trans-1,2-dichlorethene, and 1,1-dichloroethene.
 Sampling occurred following 1/11/2019 injection of PlumeStop directly into well MW-6 and redevelopment on 2/8/19.

6. Well decommissioned April 2020.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ND = parameter not detected above laboratory detection limit.

NR = parameter not regulated by 6NYCRR TOGS 1.1.1 Part 703

NA = not available; parameter not included on tabulated summary provided by NYSDEC.

N* = Indicates the spike or duplicate analysis is not within the quality control limits

"--" = Not analyzed

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Periodic Review Report Former Brainerd Manufacturing Facility East Rochester, New York

		6					PW-	1R ⁶							. 6			
Parameter ¹	GWQS/GV ³	PW-1 °	Histo	ric Groundwat	er Sampling Ev	vents	Pre-Injection			Post-Injection				PW	-2 °		OW-1 °	OW-2 °
		8/22/06	1/30/12	6/4/14	6/4/15	6/28/16	07/10/17	11/30/17	02/27/18	06/04/18	07/23/19	12/11/19	1/30/12	6/4/14	6/4/15	6/28/16	8-22-06	8-22-06
TCL Volatile Organic Compour	nds (ug/L)																	
Acetone	50	ND	ND	ND	13	6.9 J	ND	30 J	6.0 J	8.2 J	ND	ND	8.1 J	0.46 J	12 J	8.7 J	ND	ND
Bromodichloromethane	5	ND	ND	1.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47	ND	ND	ND
Bromoform	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	0.55 J	1.1	1.3 J	0.72 J	ND	ND	ND	0.44 J	ND	ND	ND	2.3	2.2	1.3	0.96 J	0.58 J	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	12	ND	ND	ND	2.4 J	ND	ND	ND	ND	0.56 J	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7 J	0.43 J	0.23 J	ND	ND
Methyl Acetate	NR	ND	ND	3.5 J	2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND
Toluene	5	1.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	0.52	0.55 J	ND	ND
Tetrachloroethene	5	780	360	92	160	120	100	ND	0.74 J	2.9	6.7	10	1.3	20	18	11	570	0.82 J
Trichloroethene	5	540	220	75	94	71	70	ND	4.7	13	18	22	3.3	25	16	12	470	320
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND
cis-1,2-Dichlorethene	5	1.3 J	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	0.86 J	ND	ND	0.65 J	4 J
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J
1,1,1-Trichloroethane	5	3.6 J	0.96 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.4	ND
1,1,2-Trichloroethane	1	0.51 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1 Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Site COCs (cVOCs) ⁴	NA	1,320	580	167	254	191	170	0	5.4	16	27	32	4.6	46	34	23	1,040	321

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. MS/MSD collected at PW-1.

NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

4. Sum of chlorinated VOCs means adding the concentrations of tetrachloroethene, trichloroethene, cis & trans-1,2-dichlorethene, and 1,1-dichloroethene.

5. Sampling occurred following 1/11/2019 injection of PlumeStop directly into well MW-6 and redevelopment on 2/8/19.

6. Well decommissioned April 2020.

Definitions:

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

ND = parameter not detected above laboratory detection limit.

NR = parameter not regulated by 6NYCRR TOGS 1.1.1 Part 703

NA = not available; parameter not included on tabulated summary provided by NYSDEC.

N* = Indicates the spike or duplicate analysis is not within the quality control limits

"--" = Not analyzed

FIGURES

FIGURE 1

iate: February : Irafted by: Rfl//

	γ	Lund many	
		MW-12	
		(389.68)	
		A started and the started and) <mark>390</mark>
		MW-11	
		human	
			W. WALNU
	ANATION		MW-10
	PROPERTY BOUNDARY	harden a star	<u> </u>
	OFF-SITE BUILDING STRUCTURE		
PW-1 🗣	DECOMMISSIONED PUMPING WELL LOCATION - GROUTED IN-PLACE	• • • • • • • • • • • • • • • • • • •	
OW-1 🔶	DECOMMISSIONED OBSERVATION WELL LOCATION - GROUTED IN-PLACE		(392.96)
RW-1 🔶	DECOMMISSIONED REINJECTION WELL - GROUTED IN-PLACE		PW-1
MW-1 🔶	DECOMMISSIONED WELL LOCATION - GROUTED IN-PLACE	OW-2	• PW-1R
MW-5 🔶	MONITORING WELL LOCATION		
(392.96)	GROUNDWATER ELEVATION (MEASURED 12/1/2020)		294
392	GROUNDWATER CONTOUR		(394.42)
—	GROUNDWATER FLOW DIRECTION		MW-1 MV
		RW-1	
NOTE: 1. GROUNDWATE	ER CONTOURS BASED ON LINEAR INTERPOLATION AND	MONRO	♥RW-2 ♥ RW-3 <u>ESTREET</u>
ON DATE INDIC	CATED.		
			MW-2 🔶
	$\hat{\Lambda}$		

SCALE: 1 INCH = 100 FEET SCALE IN FEET (approximate)

DATE: FEBRUARY 2021 DRAFTED BY: CCB/RFL

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORM

•

şĒ

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details	Box 1
Site No. V00519	
Site Name Former Brainerd Manufacturing Site	
Site Address: 115 North Washington Street Zip Code: 14445- City/Town: East Rochester County: Monroe Site Acreage: 3.300	
Reporting Period: February 28, 2020 to February 28, 2021	
	YES NO
1. Is the information above correct?	
If NO, include handwritten above or on a separate sheet.	
 Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 	
 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? Operation as a self-storage facility began during reporting period 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for an at the preparty during this Reporting Period? 	
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.	
Interior renovations completed Fall of 2020	
	Box 2 YES NO
6. Is the current site use consistent with the use(s) listed below?	
7. Are all ICs in place and functioning as designed?	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address the	nd ese issues.
Signature of Owner, Remedial Party or Designated Representative Date	

SITE NO. V00519		Box 3
Description of Institu	utional Controls	<i></i>
Parcel	Owner	Institutional Control
139.69-1-17	Alan Shaffer Sean Donohoe	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
		Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Environmental Easement e Property use restricted to Implement a Site manage Groundwater shall not be Monitor groundwater on a 139.69-1-19	executed on 5/1/14. commercial or industrial. ment plan that includes periodic certification. used as a potable source of water. regular basis as approved by the Department <u>Alan Shaffer</u> Sean Donohoe	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Environmental Easement e Property use restricted to Implement a Site manage Groundwater shall not be Monitor groundwater on a	executed on 5/1/14. commercial or industrial. ment plan that includes periodic certification. used as a potable source of water. regular basis as approved by the Department	
		Box 4
Description of Engi	neering Controls	
Parcel 139.69-1-17	Engineering Control	
	Groundwater Treatment System Vapor Mitigation Groundwater Treatment System Vapor Mitigation Cover System Cover System	m
Operate, maintain, and mo Department approves moo Operate, maintain, and mo modification or shutdown. Maintain site cover. 139.69-1-19	onitor a hydrogen injection groundwater treatm dification or shutdown. onitor a sub-slab depressurization system until	ent system until the the Department approves
Maintain site cover	Cover System	

	Box 5
	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

	and the second	
	IC CERTIFICATION SITE NO. V00519	IS Box 6
n an	an a	
SITE OWNI certify that all information a	ER OR DESIGNATED REPRES nd statements in Boxes 1,2, an inishable as a Class "A" misden	SENTATIVE SIGNATURE d 3 are true. I understand that a false neanor, pursuant to Section 210.45 of the
Penal Law.	Despatch Inc	dustries, Inc.
· · · · · · · · · · · · · · · · · · ·	4301 Military	Rd NW, Apt 312, Washington,
Alan Shaffer	at DC 20015	· · · · · · · · · · · · · · · · · · ·
	atorint b	usiness address
print name Romod	ial Party	
Remeu	air aity	(Owner or Remedial Party)
am centifying as		
for the Site named in the Sit	e Details Section of this form.	
Mathi	\supset	3/3/20
Univer The	ial Party, or Designated Repres	sentative Date

	EC CERTIFICATIONS
	Box 7
	Professional Engineer Signature
ertify that all information in Bo nishable as a Class "A" misde	xes 4 and 5 are true. I understand that a false statement made herein meanor, pursuant to Section 210.45 of the Penal Law.
Thomas Forbes	Benchmark Environmental Engineering at 2558 Hamburg Turnpike, Buffalo NY 14218
print name	print business address
n certifying as a Professional I	Engineer for the(Owner or Remedial Party)
Ron F.	CONTROL OF NEW CONTRO
0	

•

APPENDIX B

WELL DECOMMISSIONING LOGS

WELL DECOMMISSIONING RECORD NYSDEC NPL Sites

 $\left| \frac{1}{2} \right|^2 + 1$

Site Name: Former Brainerd MFG.	Well I.D.: MW-1
Site Location: Ext. Brainerd Bldg-	Driller: T.mlangefrida
Drilling Co.: Nothnagle Drilling	Inspector: N. Suraci
	Date: 4-14-20

(Fill in all that apply)	Depth
OVERDRILLING	
Interval Drilled	Q'- PVCyff
Drilling Method(s)	coro
Borehole Dia. (in.)	
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	
Casing type/dia. (in.)	
	- (nest
CASING PUT LING	
Method employed	40 -
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	100 -
Equipment used	
Number of perforations/foot	
Size of perforations	
Interval perforated	Ta-
GROUTTING	80 -
Interval grouted (FBLS)	
# of batches prepared	
For each batch record:	
Quantity of water used (gal.)	
Quantity of cement used (lbs.) 94	
Cement type Type I	
Quantity of bentonite used (lbs.)	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	
A otimite of Riori riser (Rar.)	

COMMENTS: Tremie grout abandoned in Place. Surface Completion Removed and PVC Cut off 2'565.

larr

hon

 Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

EICLIDE 2	1
	v.
WELL DECOMMISSIONING RECORD	
Site Names Frank (Praine (ME12.	WellID: MW-15
She Name: Port Standard Dut	Dille Interesida
Site Location: 999 Linder AVE	Driller:
Drilling Co.: Nothrach Drilling	Inspector: N. SUCALI
Ŭ (U	Date: 4-20-20
	WELL COUEMATIC*
(Fill in all that apply)	Denth WELL SCHEIMATIC
(FIII III all that apply)	(feet)
OVERDRILLING	
Interval Drilled	7' PIK
Drilling Method(s)	CAR /
Borehole Dia. (in.)	017
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	10
Casing type/dia. (in.)	
	- Irost
CASING PULLING	- /
Method employed	20 - 1
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	20 -
Equipment used	202'- Sottor
Size of perforations	3
Interval perforated	
GROUTING	
Interval grouted (FBLS) 30.2'-1'	
# of batches prepared	
For each batch record:	
Quantity of water used (gal.) 7.8	
Cement type	
Quantity of bentonite used (lbs.)	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.) 1D	
Volume of grout used (gal.)	
COMMENTS: Tremie a cort abandoned	* Sketch in all relevant decommissioning data, including:
in place. FVC Cut off 2'865	interval overdrilled, interval grouted, casing left in hole,
Suchase (moletar isacstilled with	well stickup, etc.

Q 10
sh

÷.

Department Representative
EICLIDE 2				
FIGURE 3				
WELL DECOMMISSIONING RECOR	D			
	22.01		0 0.00	1 . 0
Site Name: Former Braingro	YIJF0	Well I.D.:	FUMP WE	IK
Site Location: Int. Brainerd B	lolg-	Driller:	Timanget	rida
Drilling Co.: Nothnagle Drillin-	7 0	Inspector:	N. SUPA.	CÍ
0	0	Date:	4-21-20	
DECOMMISSIONING DAT	A	V	VELL SCHEMAT	TIC*
(Fill in all that apply)	-	Depth		, 11
((feet)	1	LYPVC
OVERDRILLING		O		
Interval Drilled		2'	PVC	
Drilling Method(s)		<i>a</i> –	CUTER	HDRE
Borehole Dia. (in.)				
Temporary Casing Installed? (y/n)		10		HUROP
Depth temporary casing installed		10	_	Line
Mathad of installing		3	_	
			-	
CASING PULLING			-	1 art
Method employed		20	\neg	1-0-00
Casing retrieved (feet)				
Casing type/dia. (in)				A
			- 1	1
CASING PERFORATING		20		11
Equipment used		30		
Number of perforations/foot			- SZ TOPOT	1 DUMP
Size of perforations			Pump	11
Interval perforated		10		
GROUTING		40	-	Thout
Interval grouted (FBLS)	-1/		-	F
# of batches prepared	4		-	
For each batch record:		23	-	\square
Quantity of water used (gal.)	7.8	CO	-	2
Quantity of cement used (lbs.)	94	20		6
Cement type Ty	PET			1
Quantity of bentonite used (lbs.)	9	55'		atom
Quantity of calcium chloride used (lbs.)	-	5		-150
Volume of grout prepared (gal.)	72	- 9	-	
volume of grout used (gal.)	50			
COMMENTS: 5 h ame station	ulell unable	4 PH		
to contribute Tomie acout - h	notanell'a dire	* Sketch in all n	elevant decommissioning o	lata, including:
Pile and HAPE I and as at	all Jak	interval overdr	illed, interval grouted, casi	ng left in hole,
Suffect Completion Real PETIL	PA WIGDECON	well stickup, e	tc.	
Surface confriction Das The	un willow	0		

Department Representative

The B. Marth-

42

FIGURE 3			
WELL DECOMMISSIONING REC	CORD		
	1	J	
Site Name: Former Brainer	-d MFG.	Well I.D.: MW-10	
Site Location: 49 Walnut St.		Driller: T. Mange Rida	
Drilling Co.: Nothrage Dri	ling	Inspector: N. Jurgei	
\bigcirc	D	Date: 4-20-20	
DECOMMISSIONING	DATA		
(Fill in all that appl		WELL SCHEMATIC*	
(Fill ill all ulat appl	y)	(feet)	1.1
OVERDRILLING			pve
Interval Drilled			
Drilling Method(s)		2 Put in T	
Borehole Dia. (in.)		- oft	
Temporary Casing Installed? (y/n)			
Depth temporary casing installed			
Method of installing			
Nicthod of histaining			
CASING PULLING			
Method employed		20 - /	
Casing retrieved (feet)			
Casing type/dia. (in)			
CASING PERFORATING			
Equipment used		30 - /	
Number of perforations/foot			1
Size of perforations		235	Hor
Interval perforated			
GROUTING			4
Interval grouted (FBLS)	33.5-11		
# of batches prepared			1
For each batch record:			
Quantity of water used (gal.)	7.8		
Quantity of cement used (lbs.)	94		
Cement type	TYPEI		
Quantity of calcium chloride used (lbc.)	5.7		
Volume of grout prepared (gal)	ID		
Volume of grout used (gal.)	5.5		
COMMENTS: Tremie grout o	bandomed in	* Sketch in all relevant decommissioning data, including	
place. PVC Eutoff	22'BGS .	interval overdrilled, interval grouted, casing left in hole.	
Surface Completion B.	ack filled with	well stickup, etc.	

well stickup, etc.

Surface Completion Back Filed Concrete and finished to match The Drilling Contractor

k

FIGURE 3 WELL DECOMMISSIONING RECORD	
Site Name: Former Brainerd MFG. Site Location: 939 Linden Ave Drilling Co.: Notnagle Drilling	Well I.D.: MW-13 Driller: T. Mangefrida Inspector: N. Suracio Date: 4-20-20
DECOMMISSIONING DATA (Fill in all that apply) OVERDRILLING Interval Drilled Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing CASING PULLING Method employed Casing type/dia. (in) CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated	WELL SCHEMATIC* Depth (feet) 20 20 20 20 20 20 20 20 20 20
GROUTING Interval grouted (FBLS) # of batches prepared For each batch record: Quantity of water used (gal.) Quantity of cement used (lbs.) Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Quantity of grout prepared (gal.) Volume of grout used (gal.) Volume of grout used (gal.) Volume of grout used (gal.) Image: The provide the set of th	* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole,

and finished to match.

Department Representative

Drilling Contractor

Concrete

FIGURE 3	7
WELL DECOMMISSIONING DECODD	
WELL DECOMINISSIONING RECORD	
Site Name: Former Brainerd MFG.	Well I.D.: MW-14
Site Location: 930 Linden Ave.	Driller: T. Mangefrida
Drilling Co.: Nothnask Doilling	Inspector: N SUCALO
0 0	Date: 4-20-20
	Dute. / C
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth
	(feet) ,2 PVC
UVERDRILLING	
Drilling Method(s)	2'- COF 7
Borehole Dia (in)	- PVC
Temporary Casing Installed? (v/n)	
Depth temporary casing installed	10 7
Casing type/dia. (in.)	
Method of installing	
CASING PULLING	
Method employed	
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	
Equipment used	30 - /
Number of perforations/foot	and' a tom
Size of perforations	3240 - Bollo
Interval perforated	
GROUTING	
Interval grouted (FBLS) <u>Sd. 6 - 1</u>	_
For each batch record:	
Quantity of water used (gal.)	
Quantity of cement used (lbs.)	
Cement type Type]	
Quantity of bentonite used (lbs.) 3.9	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	
Volume of grout used (gal.) 5.5	
	7
COMMENTS: Tremie growt abandoned in pla	* Sketch in all relevant decommissioning data, including:
Surface completion Removed and	interval overdrilled, interval grouted, casing left in hole,
Backfilled with topsoil RUC Cut	well stickup, etc.
off 2'Blas	

Drilling Contractor

Ab.

0

0

2

FIGURE 3	CUBD	
WELL DECOMMISSIONING REG	CORD	J.
Site Name: Former Braine	rd mfg-	Well I.D.: MW-16
Site Location: 938 Linden Av	L. 0	Driller: In Mansefride
Drilling Co.: Nothnaale Noi	Dina	Inspector: N. Succes
	0	Date: 4-20 - 20
	0	Date. 7 5 5 5
DECOMMISSIONING	DATA	WELL SCHEMATIC*
(Fill in all that app	ly)	Depth
OVERDRILLING		(feet) - Fove
Interval Drilled		
Drilling Method(s)		2 - cutoff T
Borehole Dia. (in.)		
Temporary Casing Installed? (y/n)		
Depth temporary casing installed		
Method of installing		
inteniou of instanting		- /_ Corov
CASING PULLING		
Method employed		20 - /
Casing retrieved (feet)		
Casing type/dia. (in)		- 2
CASING PERFORATING		
Equipment used		30 - 1/2
Number of perforations/foot		
Size of perforations		33.9
Interval perforated		15011-
GROUTING		
Interval grouted (FBLS)	33.9-1	
# of batches prepared		
For each batch record:		
Quantity of water used (gal.)	7.8	
Cament type	94	
Quantity of bentonite used (lbs)	Za	
Quantity of calcium chloride used (lbs.)	-	
Volume of grout prepared (gal.)	10	
Volume of grout used (gal.)	6	
COMMENTS:	eol - ol	* Sketch in all relevant decommissioning data, including:
I renne grovt abandon	mMace	interval overdrilled, interval grouted, casing left in hole,
and see FClind	DIC CUT OF 7 2010	well stickup, etc.
ningary Filler WIJOPSOI)	10 WIGHT & ISU	

Department Representative

Drilling Contractor

1

20

70

FIGURE 3 WELL DECOMMISSIONING RECORD	
Site Name: Farmer Brains (MEL)	WellID: Pmp Well # 7
Site Location: Int. Brainerd Bldg.	Driller: I Mange Frida
Drilling Co.: Nothnagle Drilling	Inspector: N/ Curaci
0	Date: 4-21-20
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth ut/all
	(feet)
OVERDRILLING Interval Drilled	
Drilling Method(s)	2_ Cutoff
Borehole Dia. (in.)	
Temporary Casing Installed? (y/n)	
Casing type/dia (in)	
Method of installing	- /
	_
CASING PULLING	70 - 1
Casing retrieved (feet)	
Casing type/dia. (in)	
	- //
CASING PERFORATING	70 -
Equipment used	
Size of perforations	- /
Interval perforated	
	40 -
GROUTING Interval grouted (EPLS)	
# of batches prepared 4	_ //
For each batch record:	- /
Quantity of water used (gal.) 7.8	CO
Quantity of cement used (lbs.) 94	
Quantity of bentonite used (lbs)	_ /
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.) 10	10 395 1/
Volume of grout used (gal.) 40	<u> </u>
COMMENTS.	
CUMMENTS: Iremil grou abandered in	* Sketch in all relevant decommissioning data, including:

Dace OVE BUT OF DIRLAS Surface	_
Frace	
Completion, Bactfilled with Concrete	2
and finished to match	
Drilling Contractor	

法

* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

FIGURE 3	
WELL DECOMMISSIONING RECORD]
Site Name: Former Brainerd MFG.	Well I.D.: MW-9
Site Location: EJ Delmonte	Driller: T Mangetrida
Drilling Co.: Nathnaale Drilling	Inspector: N. SULACO
	Date: 4-20-20
	Date. / P
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth , Z'AC
OVERDRILLING	(feet)
Interval Drilled	
Drilling Method(s)	2 Cut I
Borehole Dia. (in.)	off /,
Temporary Casing Installed? (y/n)	10 - /.
Casing type/dia (in)	
Method of installing	
CASING PULLING	
Method employed	
Casing retrieved (feet)	-lorov'
CASING PERFORATING	
Equipment used	30
Number of perforations/foot	i torn
Size of perforations	335- 6010
GROUTING	
Interval grouted (FBLS) 33.5-1'	
# of batches prepared	
For each batch record:	
Quantity of water used (gat.) 7.8	
Cement type Type I	
Quantity of bentonite used (lbs.) 3.9	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	
volume of grout used (gal.) 5,2	
COMMENTS: Tramie and abandoned in	* Sketch in all relevant decommissioning data including
Place, PVC CUT D'BUS.	interval overdrilled, interval grouted, casing left in hole.

well stickup, etc.

Surface Completion Backfilled with Concrete and finished to match The A: Marth Drilling Contractor

42

FIGURE 3	7
WELL DECOMMISSIONING RECORD	±
Site Name E complete P on inside ME/2	
Site Name: For the Standard 19760,	Well I.D.: Yr W - V
Site Location: ES Del martie	Driller: 7. Mangetrida
Drilling Co.: Noth nage Drilling	Inspector: N. Sufaci
0 0	Date: 4-20-20
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth 2"
OVERDRULINIC	(feet)
Interval Drilled	
Drilling Method(s)	2 105 7
Borehole Dia. (in.)	- OFF
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	
Casing type/dia. (in.)	
Method of installing	
CASING PULLING	
Method employed	20 - 1-0.00
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	
Equipment used	30 - /
Number of perforations/foot	
Size of perforations	34.5 Botto
Interval perforated	
GROUTING	
Interval grouted (FBLS) 34.5'-1'	
# of batches prepared	
Ouantity of water used (gal) 7.5	
Quantity of cement used (lbs.)	
Cement type Type I	-
Quantity of bentonite used (lbs.) 3.9	
Quantity of calcium chloride used (lbs.)	
Volume of grout used (gal.)	
volume of grout used (gal.)	

COMMEN	TS: Tremie grout abandoned in_
Plac	. PUC Cut, Ooff Z'B6S, Surface
Comp	pletion Backfilled with Concrete
and	Finished to match,
-10	Im to Manghit
Drilling Contra	tor

· Jul

42

* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

Site Name: Former Brainerd MFG.	Well I.D.: Pompwell #]
Site Location: Int. Brainerd Bldg.	Driller: T. Mangefrida
Drilling Co .: Nothnage Drilling	Inspector: N. Suraci
0 0	Date: 4-22-20
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth
OVERDRILLING	(feet)
Interval Drilled	
Drilling Method(s)	- a fift
Borehole Dia. (in.)	- CV - LI NPE
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	10 _
Casing type/dia. (in.)	
	- brow
CASING PULLING	
Method employed	20 - 01
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	
Equipment used	
Number of perforations/foot	
Size of perforations	
GROUTING	40 -
Interval grouted (FBLS)	
# of batches prepared	
For each batch record:	-45 ML PUTT
Quantity of water used (gal.)	50 - 11
Cement type	
Quantity of bentonite used (lbs)	- Boilin
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	
Volume of grout used (gal.) 33	
COMMENTS: Sub Pump stuck in well unable	* Sketch in all relevant decommissioning data including
Retrieve. Tremie grovtabandoned in	interval overdrilled interval grouted casing left in hole
place. PVC and HBPE dropling put 2	BO well stickup, etc.
Surface Comp. Backfilled with Concren	e
to Am 11	

2				
FIGURE 3 WELL DECOMMISSIONING RECO	RD			
Site Name: Commer Braint	d mci-	Wall I D	· Bh1-7	
Site Location: Int. Prainkid R	Ida	Duillou	On a	
Drilling Co: 1/2 th haste Drill		Increated	1. Marigeni	-
Drining Co	5	Data	2.51.70	
	l	Date:	7-21-20	
DECOMMISSIONING DA (Fill in all that apply)	ATA	Depth	WELL SCHEMATIC*	1
OVERDRILLING		(Teet)	F P	/0
Interval Drilled Drilling Method(s) Borehole Dia. (in.) Temporary Casing Installed? (y/n) Depth temporary casing installed Casing type/dia. (in.) Method of installing		20	-2' PVC	rest
CASING PULLING Method employed Casing retrieved (feet) Casing type/dia. (in)		40		
CASING PERFORATING Equipment used Number of perforations/foot Size of perforations Interval perforated		60	- 64' / Bo	Hom
GROUTING Interval grouted (FBLS) # of batches prepared For each batch record: Quantity of water used (gal.) Quantity of cement used (lbs.) Cement type Quantity of bentonite used (lbs.) Quantity of calcium chloride used (lbs.) Volume of grout prepared (gal.) Volume of grout used (gal.)	7.8 94 TVPRT 3.9 10 11			
COMMENTS: Tremie grout at	and oned in	* Sketch in al	Il relevant decommissioning data, including	;;

Pla	ice. PVC cutoff 2'BUS.
50	Face Competion Backfilled with
Con	acrete and finished to match
-1	thank. Marth
Drilling Con	itractor

40

* Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

FIGURE 3	
WELL DECOMMISSIONING RECORD	
Site Name: Former Brainerd n)fG.	Well I.D.: OW-1
Site Location: Int. Brainerd Blog.	Driller: T. Mangefrida
Drilling Co .: Nothnagk Drilling	Inspector: N. Suraci
	Date: 4-21-20
DECOMMUNIC DATA	
(Fill in all that apply)	WELL SCHEMATIC*
(1 m m an and appro)	(feet)
OVERDRILLING	0
Interval Drilled	-2'PVC
Borehole Dia, (in.)	
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	10
Casing type/dia. (in.)	_ /
	—
CASING PULLING	no
Method employed	20
Casing type/dia (in)	- 1/
	- //
CASING PERFORATING	26 -
Equipment used	/
Size of perforations	
Interval perforated	- /
GROUTING	
# of batches prepared	- 17
For each batch record:	
Quantity of water used (gal.) 7.8	co - //
Quantity of cement used (lbs.) 94	
Quantity of bentonite used (lbs.)	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	100 - 58.8 Borro
Volume of grout used (gal.)	
COMMENTS: Tramie growt abandoned in D. 11	* Sketch in all relevant decommissioning data including
PVC Cut off 2' Rbs. Surface	interval overdrilled, interval grouted, casing left in hole
Completion Backfilled with Concrete	well stickup, etc.
and finished to Match	

Department Representative

h Drilling Contractor W/a

FIGURE 3	
WELL DECOMINISSIONING RECORD	00412
Site Name: Former Israining Pipe	Well I.D.: Triou-3
Site Location: Znr. Brainerg Slorg-	Driller: 7 Trange Fire
Drilling Co.: Noth nagle Drolling	Inspector: N-Sulaci
0	Date: 4-22-20
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth
OVERDRULING	(feet)
OVERDRILLING Interval Drilled	
Drilling Method(s)	-anc -
Borehole Dia. (in.)	- Coff
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	10 Incout
Casing type/dia. (in.)	- /
	- 2
CASING PULLING	
Method employed	20 1
Casing retrieved (feet)	
Casing type/dia. (in)	
CASING PERFORATING	20 - 27' Z Bottom
Equipment used	50 -
Number of perforations/foot	
Size of perforations	
Interval perforated	
GROUTING	
Interval grouted (FBLS)	
# of batches prepared	
For each batch record:	
Quantity of water used (gal.) 7.8	
Coment type	
Ouantity of bentonite used (lbs.) $2,9$	
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.) 10	
Volume of grout used (gal.) 4.5	
COMMENTS: Tremil grout abandoned in	* Sketch in all relevant decommissioning data, including:

0	
place. PVC Cuto	off 2'365.
Surface Completi	on Back Filled with
Concrete and Fir	ished to match
The A. Ma	Al
Drilling Contractor	-pr-

1

1

ait.

interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

FIGURE 3	
WELL DECOMMISSIONING RECORD	
Site Name: Former Brainero MFG.	Well I.D.: MW-4
Site Location: Ext. Brainerd Blog.	Driller: T. Mangefrida
Drilling Co.: Nothnagle Drilling	Inspector: N. Suraci
0 0	Date: 4-22-20
DECOMMISSIONING DATA	WELL SCHEMATIC*
(Fill in all that apply)	Depth 17" off
OVERDRULING	(feet)
Interval Drilled	
Drilling Method(s)	- a' pre
Borehole Dia. (in.)	- CUFF /
Temporary Casing Installed? (y/n)	
Depth temporary casing installed	10 - /
Casing type/dia. (in.)	
Method of installing	
CASING PULLING	
Method employed	20 - /
Casing retrieved (feet)	——— — [/]
Casing type/dia. (in)	- //
CASING PERFORATING	30 - Q' laton
Equipment used	130/101
Number of perforations/foot	
Interval perforated	
GROUTING	-
Interval grouted (FBLS)	
# of batches prepared /	
For each batch record:	
Quantity of water used (gal.) 7.8	
Compart type	
Quantity of bentonite used (lbs)	_
Quantity of calcium chloride used (lbs.)	
Volume of grout prepared (gal.)	-
Volume of grout used (gal.)	
COMMENTS: Tremie grovt abandoned in	* Sketch in all relevant decommissioning data, including:
Place, RVC Cut AFF 2'R/DS	interval overdrilled interval grouted ensing left in hele

Place. F	VC CUT	off 2	ROUND
Concret	complet	mished 7	o mates
Thom	H. Ma	mfik	
Drilling Contractor		11	

 Sketch in all relevant decommissioning data, including: interval overdrilled, interval grouted, casing left in hole, well stickup, etc.

FIGURE 3			÷
WELL DECOMMISSIONING REC	CORD		
Site Name: Former Brainer	2 MFB	Well I.D	: mw-7
Site Location: E.J. Delmonter	roperty	Driller:	T.Mangefrida
Drilling Co .: Nothnagk Dri	Iling	Inspector	" NJ. Suraci
0	Û	Date:	4-22-20
DECOMMISSIONING	ΠΑΤΑ		WELL SCHEMATIC*
(Fill in all that apply	y)	Depth	welle semewiatic
		(feet)	12puc
UVERDRILLING Interval Drilled			
Drilling Method(s)			-200
Borehole Dia. (in.)			- OFF
Temporary Casing Installed? (y/n)		10	
Casing type/dia. (in.)			- 1-12rout
Method of installing			
CASING PULLING			
Method employed		20	- //
Casing retrieved (feet)			
Casing type/dia. (in)			- //
CASING PERFORATING		20	- 2
Equipment used			
Size of perforations			-L33.5 A Bottom
Interval perforated			
CROUTING			
Interval grouted (FBLS)	32511		-
# of batches prepared	3357		
For each batch record:			
Quantity of water used (gal.) Quantity of cement used (lbs.)	9.1		
Cement type	TYPEI		-
Quantity of bentonite used (lbs.)	3.9		
Volume of grout prepared (gal.)	10		-
Volume of grout used (gal.)	5.5		
COMMENTS	handland in		
Place, PVC Cut APC 2	RGS. Sudace	* Sketch in al	Il relevant decommissioning data, including:
Completion reveloped an	J reach Cled with	well stickup	etc

Drilling Contractor

nosoi

0

APPENDIX C

SITE PHOTOLOG

Client Name	:	Site Location:	Project No.:
Despatch Indust	ries, Inc	East Rochester, NY	0040-002-400
Photo No.	Date		
1	2/4/2021		
Direction Photo Taken: Northwest			
Description:			LF STORAGE
Façade along M	onroe Street.		

Client Name:		Site Location:	Project No.:
Despatch Indust	tries, Inc	East Rochester, NY	0040-002-400
Photo No.	Date		
3	2/4/2021		
Direction Photo Taken: Typical			1 185
Typical Description: Storage units.			

Page 2 of 5 Prepared By: _____ THF

	Site Location:	Project No.:
ries, Inc	East Rochester, NY	0040-002-400
Date		
2/4/2021		7
Taken:		
and extraction		
er 2).		
	A Contraction of the second seco	and the second se
	ries, Inc Date 2/4/2021 • Taken:	Site Location: ries, Inc East Rochester, NY Date 2/4/2021 o Taken: Image: Comparison of the second secon

Client Name:		Site Location:	Project No.:
Despatch Indust	ries, Inc	East Rochester, NY	0040-002-400
Photo No.	Date		
7	2/4/2021		
Direction Photo Taken: North			
Description: ASD Manometer point (Manometer	r and extraction er 3).	SUB-SLAB EXHAU	

Page 4 of 5 Prepared By: ______THF

Client Name:		Site Location:	Project No.:
Despatch Indust	ries, Inc	East Rochester, NY	0040-002-400
Photo No.	Date		A de
9	2/4/2021	5 (4 h	CHE SE
Direction Photo Northwest	o Taken:		We-
Description:			
Cover area.			

Photo No.	Date	
10	2/4/2021	
Direction Photo East	o Taken:	
Description:		
Building and for system.	mer gPRO	

Page 5 of 5 Prepared By: ______

APPENDIX D

ASD PERIODIC INSPECTION LOGS

MONTHLY LOG SHEET ASD SYSTEM Former Brainerd Manufacturing Facility East Rochester, NY

	Vacuum Gauge Number											
Date	Vacuum G Air St	auge 1 Near ripper	Vacuum Base	Gauge 2 ment	Vacuum Hal	Gauge 3 Iway	Vacuum Wood	Gauge 4 I Shop	Vacuum Of	Gauge 5	Vacuum Ga Ro	auge 6 Paint oom
Date 7/25/16 8/11/16 9/2/16 10/18/16 11/28/16 12/5/16 3/1/17 5/23/17 7/26/17 10/20/17 11/30/17 2/27/18 4/30/18 12/12/18 1/11/19 2/27/2020 2/4/2021	Time of Reading	Vacuum Reading (in. Water)	Time of Reading	Vacuum Reading (in. Water)	Time of Reading	Vacuum Reading (in. Water)	Time of Reading	Vacuum Reading (in. Water)	Time of Reading	Vacuum Reading (in. Water)	Time of Reading	Vacuum Reading (in. Water)
7/25/16	11:12	1.2	11:15	3.5	11:12	3.4	11:13	2.1	11:14	1.0	11:13	2.2
8/11/16	10:00	1.2	10:15	3.6	10:05	3.3	10:10	2.1	10:14	0.9	10:13	2.2
9/2/16	11:00	1.2	11:06	3.6	11:01	3.4	11:03	2.1	11:04	1.0	11:02	2.2
10/18/16	10:30	1.2	10:38	3.6	10:32	3.4	10:36	2.1	10:35	1.0	10:34	2.1
11/28/16	12:30	1.2	12:35	3.5	12:31	3.4	12:34	2.1	12:33	1.0	12:32	2.2
12/5/16	12:00	1.1	12:06	3.5	12:02	3.4	12:05	2.1	12:04	0.9	12:03	2.0
3/1/17	11:30	1.1	11:36	3.3	11:31	3.4	11:35	2.1	11:33	0.9	11:32	2.0
5/23/17	11:00	1.3	11:06	3.5	11:01	3.4	11:37	2.0	11:38	1.0	11:02	2.0
7/26/17	10:30	1.2	10:35	3.5	10:31	3.4	10:37	2.0	10:33	1.0	10:32	2.0
10/20/17	10:30	1.2	10:35	3.5	10:31	3.4	10:37	2.0	10:33	1.0	10:32	2.0
11/30/17	12:29	1.2	12:35	3.5	12:31	3.4	12:34	2.0	12:33	1.0	12:32	2.1
2/27/18	13:28	1.2	13:35	3.5	13:31	3.4	13:34	2.0	13:33	1.0	13:32	2.1
4/30/18	13:28	0.4	13:35	3.0	13:31	3.0	13:34	2.0	13:33	0.8	13:32	1.0
12/12/18	10:45	0.25	10:40	2.75	10:55	3.0	10:59	1.9	10:35	0.8	10:56	1.0
1/11/19	9:25	0.30	12:01	2.70	9:24	3.0	9:21	1.9	9:22	0.8	9:23	1.0
2/27/2020	13:00	0.2	13:05	2.95	13:10	2.1	13:15	1.9	13:20	1.25	13:25	1.4
2/4/2021	11:04	0.3	10:35	3.15	11:06	1.7	10:23	1.9	10:38	0.9		

Notes:

No ASD manometer readings collected March 2020 to January 2021 due to interior renovation work, COVID-19 related restrictions, and adjustment to new site operations.
 On February 4, 2021 Vacuum Gauge 6 was inaccessible as it was locked inside an occupied storage unit. In Spring 2021, a redundant manometer will be installed on the same extraction leg in a more readily accessible location.

APPENDIX E

CVOC TREND CHARTS

APPENDIX F

GROUNDWATER ANALYTICAL LABORATORY REPORTS

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-171236-1

Client Project/Site: Benchmark - Despatch site

For:

Benchmark Env. Eng. & Science, PLLC 2558 Hamburg Turnpike Suite 300 Lackawanna, New York 14218

Attn: Ms. Lori E. Riker

Authorized for release by: 6/22/2020 2:48:38 PM

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

3

Qualifiers

GC/MS VOA Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossany

		_
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Glossary		 6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 480-171236-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-171236-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 6/16/2020 11:20 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-536617 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was below the reporting limit (RL) and/or not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: MW-6 (480-171236-2) and MW-12 (480-171236-3).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-536617 recovered above the upper control limit for Acetone. The samples associated with this CCV were below the reporting limit (RL) and/or non-detect for the affected analyte; therefore, the data have been reported. The associated samples are impacted: MW-6 (480-171236-2) and MW-12 (480-171236-3).

Method 8260C: The continuing calibration verification (CCVIS) associated with batch 480-536831 recovered outside acceptance criteria, low biased, for Cyclohexane and Methylcyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for this analyte, the data have been reported. The associated sample is: MW-5 (480-171236-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: MW-5 Lab Sample ID: 480-171236-1 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 6.9 J 10 8260C Acetone 3.0 ug/L 1 Total/NA Tetrachloroethene 0.41 J 1.0 0.36 ug/L 1 8260C Total/NA Trichloroethene 0.56 J 8260C Total/NA 1.0 0.46 ug/L 1 Client Sample ID: MW-6 Lab Sample ID: 480-171236-2 Prep Type Analyte Result Qualifier RL MDL Unit Dil Fac D Method 5.4 J* 10 8260C Acetone 3.0 ug/L 1 Total/NA Tetrachloroethene 0.43 J 1.0 0.36 ug/L 1 8260C Total/NA **Client Sample ID: MW-12** Lab Sample ID: 480-171236-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	5.1	J *	10	3.0	ug/L	1	_	8260C	Total/NA
Tetrachloroethene	31		1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	4.2		1.0	0.46	ug/L	1		8260C	Total/NA

Client Sample ID: MW-5 Date Collected: 06/11/20 12:00 Date Received: 06/16/20 11:20

Lab Sample ID: 480-171236-1

Matrix: Water

5

6

	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			06/18/20 11:29	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			06/18/20 11:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			06/18/20 11:29	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			06/18/20 11:29	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			06/18/20 11:29	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			06/18/20 11:29	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			06/18/20 11:29	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			06/18/20 11:29	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			06/18/20 11:29	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			06/18/20 11:29	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			06/18/20 11:29	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			06/18/20 11:29	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			06/18/20 11:29	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			06/18/20 11:29	1
2-Butanone (MEK)	ND	10	1.3	ug/L			06/18/20 11:29	1
2-Hexanone	ND	5.0	1.2	ug/L			06/18/20 11:29	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			06/18/20 11:29	1
Acetone	6.9 J	10	3.0	ug/L			06/18/20 11:29	1
Benzene	ND	1.0	0.41	ug/L			06/18/20 11:29	1
Bromodichloromethane	ND	1.0	0.39	ug/L			06/18/20 11:29	1
Bromoform	ND	1.0	0.26	ug/L			06/18/20 11:29	1
Bromomethane	ND	1.0	0.69	ug/L			06/18/20 11:29	1
Carbon disulfide	ND	1.0	0.19	ug/L			06/18/20 11:29	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			06/18/20 11:29	1
Chlorobenzene	ND	1.0	0.75	ug/L			06/18/20 11:29	1
Chloroethane	ND	1.0	0.32	ug/L			06/18/20 11:29	1
Chloroform	ND	1.0	0.34	ug/L			06/18/20 11:29	1
Chloromethane	ND	1.0	0.35	ug/L			06/18/20 11:29	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			06/18/20 11:29	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			06/18/20 11:29	1
Cyclohexane	ND	1.0	0.18	ug/L			06/18/20 11:29	1
Dibromochloromethane	ND	1.0	0.32	ug/L			06/18/20 11:29	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			06/18/20 11:29	1
Ethylbenzene	ND	1.0	0.74	ug/L			06/18/20 11:29	1
Isopropylbenzene	ND	1.0	0.79	ug/L			06/18/20 11:29	1
Methyl acetate	ND	2.5	1.3	ug/L			06/18/20 11:29	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			06/18/20 11:29	1
Methylcyclohexane	ND	1.0	0.16	ug/L			06/18/20 11:29	1
Methylene Chloride	ND	1.0	0.44	ug/L			06/18/20 11:29	1
Styrene	ND	1.0	0.73	ug/L			06/18/20 11:29	1
Tetrachloroethene	0.41 J	1.0	0.36	ug/L			06/18/20 11:29	1
Toluene	ND	1.0	0.51	ug/L			06/18/20 11:29	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			06/18/20 11:29	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			06/18/20 11:29	1
Trichloroethene	0.56 J	1.0	0.46	ug/L			06/18/20 11:29	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			06/18/20 11:29	1
Vinyl chloride	ND	1.0	0.90	ug/L			06/18/20 11:29	1
Xylenes, Total	ND	2.0	0.66	ug/L			06/18/20 11:29	1

75 - 123

80 - 120

111

106

Client Sample ID: MW-5 Date Collected: 06/11/20 12:00 Date Received: 06/16/20 11:20

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Surrogate

Lab Sample	ID:	480-171236-1
		Matrix: Water

06/18/20 11:29

06/18/20 11:29

					interest int	. mater	
%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac	5
112		77 - 120			06/18/20 11:29	1	
88		73 - 120			06/18/20 11:29	1	

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-6 Date Collected: 06/11/20 13:00 Date Received: 06/16/20 11:20

Lab Sample ID: 480-171236-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			06/17/20 14:17	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/17/20 14:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			06/17/20 14:17	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			06/17/20 14:17	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			06/17/20 14:17	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/17/20 14:17	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/17/20 14:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			06/17/20 14:17	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			06/17/20 14:17	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/17/20 14:17	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/17/20 14:17	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/17/20 14:17	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/17/20 14:17	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/17/20 14:17	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/17/20 14:17	1
2-Hexanone	ND		5.0	1.2	ug/L			06/17/20 14:17	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			06/17/20 14:17	1
Acetone	5.4	J *	10	3.0	ug/L			06/17/20 14:17	1
Benzene	ND		1.0	0.41	ug/L			06/17/20 14:17	1
Bromodichloromethane	ND		1.0	0.39	ug/L			06/17/20 14:17	1
Bromoform	ND		1.0	0.26	ug/L			06/17/20 14:17	1
Bromomethane	ND		1.0	0.69	ug/L			06/17/20 14:17	1
Carbon disulfide	ND		1.0	0.19	ug/L			06/17/20 14:17	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/17/20 14:17	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/17/20 14:17	1
Chloroethane	ND		1.0	0.32	ug/L			06/17/20 14:17	1
Chloroform	ND		1.0	0.34	ug/L			06/17/20 14:17	1
Chloromethane	ND		1.0	0.35	ug/L			06/17/20 14:17	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/17/20 14:17	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/17/20 14:17	1
Cyclohexane	ND		1.0	0.18	ug/L			06/17/20 14:17	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/17/20 14:17	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/17/20 14:17	1
Ethylbenzene	ND		1.0	0.74	ug/L			06/17/20 14:17	1
Isopropylbenzene	ND		1.0	0.79	ug/L			06/17/20 14:17	1
Methyl acetate	ND		2.5	1.3	ug/L			06/17/20 14:17	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			06/17/20 14:17	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/17/20 14:17	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/17/20 14:17	1
Styrene	ND		1.0	0.73	ug/L			06/17/20 14:17	
Tetrachloroethene	0.43	J	1.0	0.36	ug/L			06/17/20 14:17	1
Toluene	ND		1.0	0.51	ug/L			06/17/20 14:17	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/17/20 14:17	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			06/17/20 14:17	1
Trichloroethene	ND		1.0	0.46	ug/L			06/17/20 14:17	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			06/17/20 14:17	1
Vinyl chloride	ND		1.0	0.90	ug/L			06/17/20 14:17	1
Xylenes, Total	ND		2.0	0.66	ug/L			06/17/20 14:17	1

Client Sample ID: MW-6 Date Collected: 06/11/20 13:00 Date Received: 06/16/20 11:20

Lab Sample ID: 480-171236-2 Matrix: Water

5 6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		06/17/20 14:17	1
4-Bromofluorobenzene (Surr)	90		73 - 120		06/17/20 14:17	1
Dibromofluoromethane (Surr)	109		75 - 123		06/17/20 14:17	1
Toluene-d8 (Surr)	98		80 - 120		06/17/20 14:17	1

Eurofins TestAmerica, Buffalo
Client Sample ID: MW-12 Date Collected: 06/11/20 14:00 Date Received: 06/16/20 11:20

Lab Sample ID: 480-171236-3

Matrix: Water

5

6

Method: 8260C - Volatile Organic	Compounds b	y GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			06/17/20 14:42	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			06/17/20 14:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			06/17/20 14:42	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			06/17/20 14:42	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			06/17/20 14:42	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/17/20 14:42	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			06/17/20 14:42	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			06/17/20 14:42	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			06/17/20 14:42	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			06/17/20 14:42	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/17/20 14:42	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			06/17/20 14:42	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			06/17/20 14:42	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			06/17/20 14:42	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/17/20 14:42	1
2-Hexanone	ND		5.0	1.2	ug/L			06/17/20 14:42	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			06/17/20 14:42	1
Acetone	5.1	J *	10	3.0	ug/L			06/17/20 14:42	1
Benzene	ND		1.0	0.41	ug/L			06/17/20 14:42	1
Bromodichloromethane	ND		1.0	0.39	ug/L			06/17/20 14:42	1
Bromoform	ND		1.0	0.26	ug/L			06/17/20 14:42	1
Bromomethane	ND		1.0	0.69	ug/L			06/17/20 14:42	1
Carbon disulfide	ND		1.0	0.19	ug/L			06/17/20 14:42	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/17/20 14:42	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/17/20 14:42	1
Chloroethane	ND		1.0	0.32	ug/L			06/17/20 14:42	1
Chloroform	ND		1.0	0.34	ug/L			06/17/20 14:42	1
Chloromethane	ND		1.0	0.35	ug/L			06/17/20 14:42	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/17/20 14:42	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/17/20 14:42	1
Cyclohexane	ND		1.0	0.18	ug/L			06/17/20 14:42	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/17/20 14:42	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/17/20 14:42	1
Ethylbenzene	ND		1.0	0.74	ug/L			06/17/20 14:42	1
lsopropylbenzene	ND		1.0	0.79	ug/L			06/17/20 14:42	1
Methyl acetate	ND		2.5	1.3	ug/L			06/17/20 14:42	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			06/17/20 14:42	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/17/20 14:42	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/17/20 14:42	1
Styrene	ND		1.0	0.73	ug/L			06/17/20 14:42	1
Tetrachloroethene	31		1.0	0.36	ug/L			06/17/20 14:42	1
Toluene	ND		1.0	0.51	ug/L			06/17/20 14:42	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/17/20 14:42	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			06/17/20 14:42	1
Trichloroethene	4.2		1.0	0.46	ug/L			06/17/20 14:42	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			06/17/20 14:42	1
Vinyl chloride	ND		1.0	0.90	ug/L			06/17/20 14:42	1
Xylenes, Total	ND		2.0	0.66	ug/L			06/17/20 14:42	1

Client Sample ID: MW-12 Date Collected: 06/11/20 14:00 Date Received: 06/16/20 11:20

ï

Lab Sample ID: 480-171236-3 Matrix: Water

itrix: Wate

5 6

Surrogate	%Recovery	Qualifier Limit		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	77 - 1	20		06/17/20 14:42	1
4-Bromofluorobenzene (Surr)	99	73 - 1	20		06/17/20 14:42	1
Dibromofluoromethane (Surr)	108	75 - 1	23		06/17/20 14:42	1
Toluene-d8 (Surr)	99	80 - 1	20		06/17/20 14:42	1

Job ID: 480-171236-1

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) DCA BFB DBFM TOL (77-120) (73-120) (75-123) (80-120) Lab Sample ID **Client Sample ID** 480-171236-1 MW-5 112 88 111 106 480-171236-2 MW-6 98 101 90 109 480-171236-3 MW-12 100 99 108 99 LCS 480-536617/5 Lab Control Sample 99 99 106 100 LCS 480-536831/5 98 Lab Control Sample 109 106 108 MB 480-536617/7 Method Blank 97 93 104 96 MB 480-536831/7 Method Blank 111 105 110 98

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

RL

MDL Unit

D

Prepared

Lab Sample ID: MB 480-536617/7

Matrix: Water

Analyte

Vinyl Xylenes, Total

Analysis Batch: 536617

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Result Qualifier

Analyzed

Client Sample ID: Method Blank Prep Type: Total/NA

Dil Fac

1,1,1-Trichloroethane	ND	1.0	0.82	ug/L	06/17/20 11:06 1	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L	06/17/20 11:06 1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L	06/17/20 11:06 1	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L	06/17/20 11:06 1	
1,1-Dichloroethane	ND	1.0	0.38	ug/L	06/17/20 11:06 1	
1,1-Dichloroethene	ND	1.0	0.29	ug/L	06/17/20 11:06 1	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L	06/17/20 11:06 1	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L	06/17/20 11:06 1	
1,2-Dibromoethane	ND	1.0	0.73	ug/L	06/17/20 11:06 1	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L	06/17/20 11:06 1	
1,2-Dichloroethane	ND	1.0	0.21	ug/L	06/17/20 11:06 1	
1,2-Dichloropropane	ND	1.0	0.72	ug/L	06/17/20 11:06 1	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L	06/17/20 11:06 1	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L	06/17/20 11:06 1	
2-Butanone (MEK)	ND	10	1.3	ug/L	06/17/20 11:06 1	
2-Hexanone	ND	5.0	1.2	ug/L	06/17/20 11:06 1	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L	06/17/20 11:06 1	
Acetone	ND	10	3.0	ug/L	06/17/20 11:06 1	
Benzene	ND	1.0	0.41	ug/L	06/17/20 11:06 1	
Bromodichloromethane	ND	1.0	0.39	ug/L	06/17/20 11:06 1	
Bromoform	ND	1.0	0.26	ug/L	06/17/20 11:06 1	
Bromomethane	ND	1.0	0.69	ug/L	06/17/20 11:06 1	
Carbon disulfide	ND	1.0	0.19	ug/L	06/17/20 11:06 1	
Carbon tetrachloride	ND	1.0	0.27	ug/L	06/17/20 11:06 1	
Chlorobenzene	ND	1.0	0.75	ug/L	06/17/20 11:06 1	
Chloroethane	ND	1.0	0.32	ug/L	06/17/20 11:06 1	
Chloroform	ND	1.0	0.34	ug/L	06/17/20 11:06 1	
Chloromethane	ND	1.0	0.35	ug/L	06/17/20 11:06 1	
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L	06/17/20 11:06 1	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L	06/17/20 11:06 1	
Cyclohexane	ND	1.0	0.18	ug/L	06/17/20 11:06 1	
Dibromochloromethane	ND	1.0	0.32	ug/L	06/17/20 11:06 1	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L	06/17/20 11:06 1	
Ethylbenzene	ND	1.0	0.74	ug/L	06/17/20 11:06 1	
Isopropylbenzene	ND	1.0	0.79	ug/L	06/17/20 11:06 1	
Methyl acetate	ND	2.5	1.3	ug/L	06/17/20 11:06 1	
Methyl tert-butyl ether	ND	1.0	0.16	ug/L	06/17/20 11:06 1	
Methylcyclohexane	ND	1.0	0.16	ug/L	06/17/20 11:06 1	
Methylene Chloride	ND	1.0	0.44	ug/L	06/17/20 11:06 1	
Styrene	ND	1.0	0.73	ug/L	06/17/20 11:06 1	
Tetrachloroethene	ND	1.0	0.36	ug/L	06/17/20 11:06 1	
Toluene	ND	1.0	0.51	ug/L	06/17/20 11:06 1	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L	06/17/20 11:06 1	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L	06/17/20 11:06 1	
Trichloroethene	ND	1.0	0.46	ug/L	06/17/20 11:06 1	
Trichlorofluoromethane	ND	1.0	0.88	ug/L	06/17/20 11:06 1	
Vinyl chloride	ND	1.0	0.90	ug/L	06/17/20 11:06 1	

Eurofins TestAmerica, Buffalo

06/17/20 11:06

2.0

0.66 ug/L

ND

1

Lab Sample ID: MB 480-536617/7

Methylcyclohexane

Client Sample ID: Method Blank

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Prep Type: Total/NA Matrix: Water Analysis Batch: 536617 MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 06/17/20 11:06 1,2-Dichloroethane-d4 (Surr) 97 77 - 120 1 4-Bromofluorobenzene (Surr) 93 73 - 120 06/17/20 11:06 1 Dibromofluoromethane (Surr) 104 75 - 123 06/17/20 11:06 1 Toluene-d8 (Surr) 96 80 - 120 06/17/20 11:06 1 Lab Sample ID: LCS 480-536617/5 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 536617 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits 1,1,1-Trichloroethane 25.0 25.5 ug/L 102 73 - 126 25.0 1,1,2,2-Tetrachloroethane 254 ug/L 102 76 - 120 61 - 148 25.0 24.4 ug/L 97 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 25.0 25.7 ug/L 103 76 - 122 25.0 25.3 101 77 - 120 1 1-Dichloroethane ug/L 1,1-Dichloroethene 25.0 24.3 ug/L 97 66 - 127 1,2,4-Trichlorobenzene 25.0 26.2 105 79 - 122 ug/L 1,2-Dibromo-3-Chloropropane 25.0 22.1 ug/L 88 56 - 134 1,2-Dibromoethane 25.0 24.9 ug/L 100 77 - 120 1,2-Dichlorobenzene 25.0 24.8 ug/L 99 80 - 124 1,2-Dichloroethane 25.0 25.1 ug/L 100 75 - 120 1,2-Dichloropropane 25.0 76 - 120 28.9 ug/L 115 77 - 120 1,3-Dichlorobenzene 25.0 24.4 ug/L 98 1,4-Dichlorobenzene 25.0 24 2 97 80 - 120 ug/L 2-Butanone (MEK) 125 136 109 57 - 140 ug/L 125 120 96 65 - 127 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) 125 118 ug/L 94 71 - 125 ug/L Acetone 125 220 176 56 - 142 71 - 124 Benzene 25.0 26.9 ug/L 108 Bromodichloromethane 25.0 27.7 ug/L 111 80 - 122 25.0 Bromoform 26.4 ug/L 106 61 - 132 Bromomethane 25.0 23.6 ug/L 94 55 - 144 Carbon disulfide 25.0 59 _ 134 25.3 ug/L 101 Carbon tetrachloride 25.0 25.2 101 ug/L 72 - 134 Chlorobenzene 25.0 24.2 ug/L 97 80 - 120 Chloroethane 25.0 98 24.5 ug/L 69 _ 136 Chloroform 25.0 25.7 ug/L 103 73 - 127 Chloromethane 25.0 25.4 ug/L 102 68 - 124 cis-1,2-Dichloroethene 25.0 74 - 124 27.0 ug/L 108 cis-1,3-Dichloropropene 25.0 29.9 120 74 - 124 ug/L Cyclohexane 25.0 23.2 93 59 - 135 ug/L Dibromochloromethane 25.0 27.1 ug/L 108 75 - 125 Dichlorodifluoromethane 25.0 23.9 ug/L 96 59 - 135 25.0 23.2 93 77 - 123 Ethylbenzene ug/L Isopropylbenzene 25.0 25.0 ug/L 100 77 - 122 50.0 59.4 ug/L Methyl acetate 119 74 - 133 Methyl tert-butyl ether 25.0 29.1 ug/L 116 77 - 120

1236-1

5

8

Eurofins TestAmerica, Buffalo

68 - 134

95

23.7

ug/L

25.0

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-536617/5

Matrix: Water Analysis Batch: 536617

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methylene Chloride		28.7		ug/L		115	75 - 124
Styrene	25.0	24.0		ug/L		96	80 - 120
Tetrachloroethene	25.0	24.7		ug/L		99	74 - 122
Toluene	25.0	24.9		ug/L		100	80 - 122
rans-1,2-Dichloroethene	25.0	25.7		ug/L		103	73 ₋ 127
rans-1,3-Dichloropropene	25.0	27.1		ug/L		108	80 - 120
Frichloroethene	25.0	26.6		ug/L		106	74 - 123
Frichlorofluoromethane	25.0	24.0		ug/L		96	62 - 150
Vinyl chloride	25.0	23.7		ug/L		95	65 - 133

	203	203	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	106		75 - 123
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: MB 480-536831/7 Matrix: Water Analysis Batch: 536831

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 06/18/20 10:56 1 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 06/18/20 10:56 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 0.31 ug/L 06/18/20 10:56 1 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 06/18/20 10:56 1 1,1-Dichloroethane ND 1.0 0.38 ug/L 06/18/20 10:56 1 1.1-Dichloroethene ND 0.29 ug/L 06/18/20 10:56 1.0 1 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 06/18/20 10:56 1 1,2-Dibromo-3-Chloropropane ND 1.0 06/18/20 10:56 0.39 ug/L 1 1,2-Dibromoethane ND 1.0 0.73 ug/L 06/18/20 10:56 1 1,2-Dichlorobenzene ND 06/18/20 10:56 1.0 0.79 ug/L 1 1,2-Dichloroethane ND 1.0 0.21 ug/L 06/18/20 10:56 1 1,2-Dichloropropane ND 1.0 0.72 ug/L 06/18/20 10:56 1 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 06/18/20 10:56 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 06/18/20 10:56 1 2-Butanone (MEK) ND 10 1.3 ug/L 06/18/20 10:56 1 2-Hexanone ND 5.0 1.2 ug/L 06/18/20 10:56 1 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 06/18/20 10:56 1 Acetone ND 10 3.0 ug/L 06/18/20 10:56 1 Benzene ND 1.0 0.41 ug/L 06/18/20 10:56 1 Bromodichloromethane ND 1.0 0.39 ug/L 06/18/20 10:56 Bromoform ND 1.0 06/18/20 10:56 0.26 ug/L 1 Bromomethane ND 1.0 0.69 ug/L 06/18/20 10:56 Carbon disulfide ND 1.0 0.19 ug/L 06/18/20 10:56 1 Carbon tetrachloride ND 1.0 0.27 ug/L 06/18/20 10:56 Chlorobenzene ND 1.0 0.75 ug/L 06/18/20 10:56 1 Chloroethane ND 1.0 0.32 ug/L 06/18/20 10:56 1 Chloroform ND 06/18/20 10:56 1.0 0.34 ug/L 1

Eurofins TestAmerica, Buffalo

8

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

5

8

Client Sample ID: Method Blank

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-536831/7

Matrix: Water Analysis Batch: 536831

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.35	ug/L			06/18/20 10:56	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			06/18/20 10:56	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			06/18/20 10:56	1
Cyclohexane	ND		1.0	0.18	ug/L			06/18/20 10:56	1
Dibromochloromethane	ND		1.0	0.32	ug/L			06/18/20 10:56	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			06/18/20 10:56	1
Ethylbenzene	ND		1.0	0.74	ug/L			06/18/20 10:56	1
Isopropylbenzene	ND		1.0	0.79	ug/L			06/18/20 10:56	1
Methyl acetate	ND		2.5	1.3	ug/L			06/18/20 10:56	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			06/18/20 10:56	1
Methylcyclohexane	ND		1.0	0.16	ug/L			06/18/20 10:56	1
Methylene Chloride	ND		1.0	0.44	ug/L			06/18/20 10:56	1
Styrene	ND		1.0	0.73	ug/L			06/18/20 10:56	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/18/20 10:56	1
Toluene	ND		1.0	0.51	ug/L			06/18/20 10:56	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			06/18/20 10:56	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			06/18/20 10:56	1
Trichloroethene	ND		1.0	0.46	ug/L			06/18/20 10:56	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			06/18/20 10:56	1
Vinyl chloride	ND		1.0	0.90	ug/L			06/18/20 10:56	1
Xylenes, Total	ND		2.0	0.66	ug/L			06/18/20 10:56	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			77 - 120		06/18/20 10:56	1
4-Bromofluorobenzene (Surr)	105		73 - 120		06/18/20 10:56	1
Dibromofluoromethane (Surr)	110		75 - 123		06/18/20 10:56	1
Toluene-d8 (Surr)	98		80 - 120		06/18/20 10:56	1

Lab Sample ID: LCS 480-536831/5 Matrix: Water

Analysis Batch: 536831

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	25.5		ug/L		102	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.0		ug/L		92	76 ₋ 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	19.7		ug/L		79	61 - 148	
ne								
1,1,2-Trichloroethane	25.0	23.1		ug/L		93	76 - 122	
1,1-Dichloroethane	25.0	21.9		ug/L		88	77 _ 120	
1,1-Dichloroethene	25.0	20.0		ug/L		80	66 - 127	
1,2,4-Trichlorobenzene	25.0	23.3		ug/L		93	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	25.3		ug/L		101	56 - 134	
1,2-Dibromoethane	25.0	25.0		ug/L		100	77 _ 120	
1,2-Dichlorobenzene	25.0	22.7		ug/L		91	80 ₋ 124	
1,2-Dichloroethane	25.0	26.7		ug/L		107	75 ₋ 120	
1,2-Dichloropropane	25.0	21.9		ug/L		87	76 - 120	
1,3-Dichlorobenzene	25.0	22.4		ug/L		90	77 ₋ 120	
1,4-Dichlorobenzene	25.0	22.3		ug/L		89	80 - 120	
2-Butanone (MEK)	125	129		ug/L		103	57 _ 140	

Page 16 of 24

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

108

98

Lab Sample ID: LCS 480-536831/5

Matrix: Water Analysis Batch: 536831

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Hexanone			125	126		ug/L		101	65 - 127	
4-Methyl-2-pentanone (MIBK)			125	124		ug/L		99	71 - 125	
Acetone			125	146		ug/L		117	56 - 142	
Benzene			25.0	21.3		ug/L		85	71 ₋ 124	
Bromodichloromethane			25.0	25.9		ug/L		104	80 - 122	
Bromoform			25.0	28.2		ug/L		113	61 ₋ 132	
Bromomethane			25.0	25.3		ug/L		101	55 - 144	
Carbon disulfide			25.0	19.7		ug/L		79	59 ₋ 134	
Carbon tetrachloride			25.0	24.3		ug/L		97	72 ₋ 134	
Chlorobenzene			25.0	21.9		ug/L		88	80 - 120	
Chloroethane			25.0	25.3		ug/L		101	69 ₋ 136	
Chloroform			25.0	23.9		ug/L		95	73 - 127	
Chloromethane			25.0	21.2		ug/L		85	68 - 124	
cis-1,2-Dichloroethene			25.0	22.5		ug/L		90	74 ₋ 124	
cis-1,3-Dichloropropene			25.0	24.2		ug/L		97	74 ₋ 124	
Cyclohexane			25.0	18.8		ug/L		75	59 ₋ 135	
Dibromochloromethane			25.0	26.2		ug/L		105	75 - 125	
Dichlorodifluoromethane			25.0	20.5		ug/L		82	59 ₋ 135	
Ethylbenzene			25.0	22.0		ug/L		88	77 - 123	
Isopropylbenzene			25.0	21.2		ug/L		85	77 _ 122	
Methyl acetate			50.0	48.7		ug/L		97	74 ₋ 133	
Methyl tert-butyl ether			25.0	25.1		ug/L		100	77 - 120	
Methylcyclohexane			25.0	18.7		ug/L		75	68 ₋ 134	
Methylene Chloride			25.0	21.7		ug/L		87	75 ₋ 124	
Styrene			25.0	23.3		ug/L		93	80 _ 120	
Tetrachloroethene			25.0	22.2		ug/L		89	74 ₋ 122	
Toluene			25.0	21.0		ug/L		84	80 - 122	
trans-1,2-Dichloroethene			25.0	21.5		ug/L		86	73 ₋ 127	
trans-1,3-Dichloropropene			25.0	25.7		ug/L		103	80 - 120	
Trichloroethene			25.0	22.4		ug/L		89	74 - 123	
Trichlorofluoromethane			25.0	27.4		ug/L		110	62 - 150	
Vinyl chloride			25.0	22.4		ug/L		90	65 - 133	
	105	LCS								
Surrogate %	Recoverv	Qualifier	Limits							
1.2-Dichloroethane-d4 (Surr)	109		77 - 120							
4-Bromofluorobenzene (Surr)	106		73 - 120							

75 ₋ 123 80 - 120

GC/MS VOA

Analysis Batch: 536617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171236-2		Total/NA	Water	8260C	
480-171236-3	MW-12	Total/NA	Water	8260C	
MB 480-536617/7	Method Blank	Total/NA	Water	8260C	
LCS 480-536617/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 536831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171236-1	MW-5	Total/NA	Water	8260C	
MB 480-536831/7	Method Blank	Total/NA	Water	8260C	
LCS 480-536831/5	Lab Control Sample	Total/NA	Water	8260C	

Lab Sample ID: 480-171236-1

Client Sample ID: MW-5 Date Collected: 06/11/20 12:00

Date Collected:	: 06/11/20 12:0	0							Matrix: Water
Date Received:	06/16/20 11:20)							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	536831	06/18/20 11:29	OMI	TAL BUF	
Client Samp	le ID: MW-6						Lal	b Sample II): 480-171236-2
Date Collected	: 06/11/20 13:0	0							Matrix: Water
Date Received:	06/16/20 11:20	0							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	536617	06/17/20 14:17	CRL	TAL BUF	
Client Samp	le ID: MW-12	2					La	b Sample II	0: 480-171236-3
Date Collected	: 06/11/20 14:0	0							Matrix: Water
Date Received:	06/16/20 11:20	0							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	536617	06/17/20 14:42	CRL	TAL BUF	

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site Job ID: 480-171236-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-02-21

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-171236-1	MW-5	Water	06/11/20 12:00	06/16/20 11:20	
480-171236-2	MW-6	Water	06/11/20 13:00	06/16/20 11:20	
480-171236-3	MW-12	Water	06/11/20 14:00	06/16/20 11:20	

Client: Benchmark Env. Eng. & Science, PLLC

Login Number: 171236 List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.4 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	Benchmark
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178885-1

Client Project/Site: Benchmark - Despatch site

For:

Benchmark Env. Eng. & Science, PLLC 2558 Hamburg Turnpike Suite 300 Lackawanna, New York 14218

Attn: Ms. Lori E. Riker

Authorized for release by: 12/8/2020 9:20:38 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 Brian.Fischer@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	Ο
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 480-178885-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178885-1

Comments

No additional comments.

Receipt

The samples were received on 12/2/2020 10:20 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.1° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-561827 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-6 (480-178885-1), MW-5 (480-178885-2) and MW-12 (480-178885-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-178885-1

Lab Sample ID: 480-178885-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	0.97		1.0	0.36	ug/L	1	8260C	Total/NA
Trichloroethene	0.80	J	1.0	0.46	ug/L	1	8260C	Total/NA
Client Sample ID: MW-5						Lab	Sample ID:	480-178885-2

Client Sample ID: MW-5

Client Sample ID: MW-6

No Detections.

Client Sample ID: MW-12

Lab Sample ID: 480-178885-	3
----------------------------	---

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Tetrachloroethene	36	1.0	0.36 ug/L	1	8260C	Total/NA
Trichloroethene	5.3	1.0	0.46 ug/L	1	8260C	Total/NA

Client Sample ID: MW-6 Date Collected: 12/01/20 00:00

Date Received: 12/02/20 10:20

Method: 8260C - Volatile Organic	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/04/20 01:02	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/04/20 01:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/04/20 01:02	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/04/20 01:02	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/04/20 01:02	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/04/20 01:02	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/04/20 01:02	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/04/20 01:02	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/04/20 01:02	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/04/20 01:02	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/04/20 01:02	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/04/20 01:02	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/04/20 01:02	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/04/20 01:02	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/04/20 01:02	1
2-Hexanone	ND	5.0	1.2	ug/L			12/04/20 01:02	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/04/20 01:02	1
Acetone	ND	10	3.0	ug/L			12/04/20 01:02	1
Benzene	ND	1.0	0.41	ug/L			12/04/20 01:02	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/04/20 01:02	1
Bromoform	ND	1.0	0.26	ug/L			12/04/20 01:02	1
Bromomethane	ND	1.0	0.69	ug/L			12/04/20 01:02	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/04/20 01:02	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/04/20 01:02	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/04/20 01:02	1
Chloroethane	ND	1.0	0.32	ug/L			12/04/20 01:02	1
Chloroform	ND	1.0	0.34	ug/L			12/04/20 01:02	1
Chloromethane	ND	1.0	0.35	ug/L			12/04/20 01:02	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/04/20 01:02	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/04/20 01:02	1
Cyclohexane	ND	1.0	0.18	ug/L			12/04/20 01:02	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/04/20 01:02	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/04/20 01:02	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/04/20 01:02	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/04/20 01:02	1
Methyl acetate	ND	2.5	1.3	ug/L			12/04/20 01:02	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/04/20 01:02	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/04/20 01:02	1
Methylene Chloride	ND	1.0	0.44	ug/L			12/04/20 01:02	1
Styrene	ND	1.0	0.73	ug/L			12/04/20 01:02	1
Tetrachloroethene	0.97 J	1.0	0.36	ug/L			12/04/20 01:02	1
Toluene	ND	1.0	0.51	ug/L			12/04/20 01:02	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/04/20 01:02	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/04/20 01:02	1
Trichloroethene	0.80 J	1.0	0.46	ug/L			12/04/20 01:02	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/04/20 01:02	1
Vinyl chloride	ND	1.0	0.90	ug/L			12/04/20 01:02	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/04/20 01:02	1

Lab Sample ID: 480-178885-1

Matrix: Water

5

6

Lab Sample ID: 480-178885-1

Client Sample ID: MW-6 Date Collected: 12/01/20 00:00

Date Received: 12/02/20 10:20

Surrogate

			Matrix: Water	
 %Recovery 108	Qualifier	Limits	Prepared Analyzed Dil Fac 12/04/20 01:02 1	5
102 105		73 ₋ 120 75 ₋ 123	12/04/20 01:02 1 12/04/20 01:02 1	6

1,2-Dichloroethane-d4 (Surr)	108	77 - 120	12/04/20 01:02	1
4-Bromofluorobenzene (Surr)	102	73 - 120	12/04/20 01:02	1
Dibromofluoromethane (Surr)	105	75 - 123	12/04/20 01:02	1
Toluene-d8 (Surr)	99	80 - 120	12/04/20 01:02	1

Client Sample ID: MW-5 Date Collected: 12/01/20 00:00

Date Received: 12/02/20 10:20

Method: 8260C - Volatile Organic	Compounds by GC/MS	i						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/04/20 01:27	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/04/20 01:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/04/20 01:27	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/04/20 01:27	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/04/20 01:27	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/04/20 01:27	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/04/20 01:27	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/04/20 01:27	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/04/20 01:27	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/04/20 01:27	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/04/20 01:27	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/04/20 01:27	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/04/20 01:27	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/04/20 01:27	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/04/20 01:27	1
2-Hexanone	ND	5.0	1.2	ug/L			12/04/20 01:27	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/04/20 01:27	1
Acetone	ND	10	3.0	ug/L			12/04/20 01:27	1
Benzene	ND	1.0	0.41	ug/L			12/04/20 01:27	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/04/20 01:27	1
Bromoform	ND	1.0	0.26	ug/L			12/04/20 01:27	1
Bromomethane	ND	1.0	0.69	ug/L			12/04/20 01:27	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/04/20 01:27	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/04/20 01:27	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/04/20 01:27	1
Chloroethane	ND	1.0	0.32	ug/L			12/04/20 01:27	1
Chloroform	ND	1.0	0.34	ug/L			12/04/20 01:27	1
Chloromethane	ND	1.0	0.35	ug/L			12/04/20 01:27	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/04/20 01:27	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/04/20 01:27	1
Cyclohexane	ND	1.0	0.18	ug/L			12/04/20 01:27	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/04/20 01:27	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/04/20 01:27	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/04/20 01:27	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/04/20 01:27	1
Methyl acetate	ND	2.5	1.3	ug/L			12/04/20 01:27	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/04/20 01:27	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/04/20 01:27	1
Methylene Chloride	ND	1.0	0.44	ug/L			12/04/20 01:27	1
Styrene	ND	1.0	0.73	ug/L			12/04/20 01:27	1
Tetrachloroethene	ND	1.0	0.36	ug/L			12/04/20 01:27	1
Toluene	ND	1.0	0.51	ug/L			12/04/20 01:27	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/04/20 01:27	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/04/20 01:27	1
Trichloroethene	ND	1.0	0.46	ug/L			12/04/20 01:27	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/04/20 01:27	1
Vinyl chloride	ND	1.0	0.90	ug/L			12/04/20 01:27	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/04/20 01:27	1

Job ID: 480-178885-1

Lab Sample ID: 480-178885-2

Matrix: Water

5

6

Matrix: Water

5 6

Lab Sample ID: 480-178885-2

Client Sample ID: MW-5 Date Collected: 12/01/20 00:00

Date Received: 12/02/20 10:20

Surrogate	%Recovery	Qualifier	l imits	Prenared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	105	<u>quanter</u>	77 - 120		12/04/20 01:27	1
4-Bromofluorobenzene (Surr)	96		73 - 120		12/04/20 01:27	1
Dibromofluoromethane (Surr)	103		75 - 123		12/04/20 01:27	1
Toluene-d8 (Surr)	98		80 - 120		12/04/20 01:27	1

Client Sample ID: MW-12 Date Collected: 12/01/20 00:00

Date Received: 12/02/20 10:20

Method: 8260C - Volatile Organic	Compounds b	oy GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/04/20 01:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/04/20 01:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/04/20 01:52	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/04/20 01:52	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/04/20 01:52	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/04/20 01:52	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/04/20 01:52	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/04/20 01:52	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/04/20 01:52	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/04/20 01:52	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/04/20 01:52	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/04/20 01:52	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/04/20 01:52	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/04/20 01:52	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/04/20 01:52	1
2-Hexanone	ND		5.0	1.2	ug/L			12/04/20 01:52	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/04/20 01:52	1
Acetone	ND		10	3.0	ug/L			12/04/20 01:52	1
Benzene	ND		1.0	0.41	ug/L			12/04/20 01:52	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/04/20 01:52	1
Bromoform	ND		1.0	0.26	ug/L			12/04/20 01:52	1
Bromomethane	ND		1.0	0.69	ug/L			12/04/20 01:52	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/04/20 01:52	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/04/20 01:52	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/04/20 01:52	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 01:52	1
Chloroform	ND		1.0	0.34	ug/L			12/04/20 01:52	1
Chloromethane	ND		1.0	0.35	ug/L			12/04/20 01:52	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/04/20 01:52	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/04/20 01:52	1
Cyclohexane	ND		1.0	0.18	ug/L			12/04/20 01:52	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/04/20 01:52	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/04/20 01:52	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/04/20 01:52	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/04/20 01:52	1
Methyl acetate	ND		2.5	1.3	ug/L			12/04/20 01:52	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/04/20 01:52	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/04/20 01:52	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/04/20 01:52	1
Styrene	ND		1.0	0.73	ug/L			12/04/20 01:52	1
Tetrachloroethene	36		1.0	0.36	ug/L			12/04/20 01:52	1
Toluene	ND		1.0	0.51	ug/L			12/04/20 01:52	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/04/20 01:52	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/04/20 01:52	1
Trichloroethene	5.3		1.0	0.46	ug/L			12/04/20 01:52	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/04/20 01:52	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/04/20 01:52	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/04/20 01:52	1

Lab Sample ID: 480-178885-3

Matrix: Water

5

6

Client Sample ID: MW-12 Date Collected: 12/01/20 00:00 Date Received: 12/02/20 10:20

Lab Sample ID: 480-178885-3 Matrix: Water

5 6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120		12/04/20 01:52	1
4-Bromofluorobenzene (Surr)	97		73 - 120		12/04/20 01:52	1
Dibromofluoromethane (Surr)	105		75 - 123		12/04/20 01:52	1
Toluene-d8 (Surr)	96		80 - 120		12/04/20 01:52	1

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

				Percent Su	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-178885-1	MW-6	108	102	105	99
480-178885-2	MW-5	105	96	103	98
480-178885-3	MW-12	107	97	105	96
LCS 480-561827/5	Lab Control Sample	105	101	101	98
MB 480-561827/7	Method Blank	106	97	102	95

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Job ID: 480-178885-1

Prep Type: Total/NA

Prep Type: Total/NA

5

8 9

Client Sample ID: Method Blank

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-561827/7 Matrix: Water

Analysis Batch: 561827

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/03/20 22:56	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/03/20 22:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/03/20 22:56	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/03/20 22:56	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/03/20 22:56	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/03/20 22:56	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/03/20 22:56	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/03/20 22:56	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/03/20 22:56	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/03/20 22:56	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/03/20 22:56	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/03/20 22:56	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/03/20 22:56	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/03/20 22:56	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/03/20 22:56	1
2-Hexanone	ND		5.0	1.2	ug/L			12/03/20 22:56	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/03/20 22:56	1
Acetone	ND		10	3.0	ug/L			12/03/20 22:56	1
Benzene	ND		1.0	0.41	ug/L			12/03/20 22:56	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/03/20 22:56	1
Bromoform	ND		1.0	0.26	ug/L			12/03/20 22:56	1
Bromomethane	ND		1.0	0.69	ug/L			12/03/20 22:56	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/03/20 22:56	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/03/20 22:56	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/03/20 22:56	1
Chloroethane	ND		1.0	0.32	ug/L			12/03/20 22:56	1
Chloroform	ND		1.0	0.34	ug/L			12/03/20 22:56	1
Chloromethane	ND		1.0	0.35	ug/L			12/03/20 22:56	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/03/20 22:56	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/03/20 22:56	1
Cyclohexane	ND		1.0	0.18	ug/L			12/03/20 22:56	1
Dibromochloromethane	ND		1.0	0.32	ua/L			12/03/20 22:56	1
Dichlorodifluoromethane	ND		1.0	0.68	ua/L			12/03/20 22:56	1
Ethvlbenzene	ND		1.0	0.74	ua/L			12/03/20 22:56	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/03/20 22:56	1
Methyl acetate	ND		2.5	1.3	ua/L			12/03/20 22:56	1
Methyl tert-butyl ether	ND		1.0	0.16	ua/L			12/03/20 22:56	1
Methylcyclohexane	ND		1.0	0.16	ua/L			12/03/20 22:56	1
Methylene Chloride	ND		1.0	0.44	ua/L			12/03/20 22:56	1
Stvrene	ND		1.0	0.73	ua/L			12/03/20 22:56	1
Tetrachloroethene	ND		1.0	0.36	ua/L			12/03/20 22:56	1
Toluene	ND		1.0	0.51	ua/L			12/03/20 22:56	1
trans-1 2-Dichloroethene	ND		10	0.90	ua/l			12/03/20 22:56	
trans-1.3-Dichloropropene	ND		1.0	0.37	ua/L			12/03/20 22:56	1
Trichloroethene	ND		1.0	0.46	ua/L			12/03/20 22:56	1
Trichlorofluoromethane	ND		1.0	0.88	ua/L			12/03/20 22:56	· · · · · · · 1
Vinvl chloride			1.0	0.90	ua/L			12/03/20 22:56	1
Xvlenes Total			2.0	0.00	ч <u>9</u> , – ца/I			12/03/20 22:56	1
regionoo, rotai	ND		2.0	0.00	ч <u>9</u> , г			12/00/20 22.00	1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-561827/7 Matrix: Water

Analysis Batch: 561827

Client Sample ID: Method Blank
Prep Type: Total/NA

	МВ					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 _ 120		12/03/20 22:56	1
4-Bromofluorobenzene (Surr)	97		73 - 120		12/03/20 22:56	1
Dibromofluoromethane (Surr)	102		75 - 123		12/03/20 22:56	1
Toluene-d8 (Surr)	95		80 - 120		12/03/20 22:56	1

Lab Sample ID: LCS 480-561827/5 Matrix: Water

Analysis Batch: 561827

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane		26.7		ug/L		107	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	21.1		ug/L		84	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.0		ug/L		112	61 ₋ 148	
ne								
1,1,2-Trichloroethane	25.0	23.6		ug/L		94	76 ₋ 122	
1,1-Dichloroethane	25.0	26.1		ug/L		104	77 - 120	
1,1-Dichloroethene	25.0	25.9		ug/L		103	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.2		ug/L		97	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	20.5		ug/L		82	56 - 134	
1,2-Dibromoethane	25.0	24.1		ug/L		96	77 _ 120	
1,2-Dichlorobenzene	25.0	24.4		ug/L		97	80 - 124	
1,2-Dichloroethane	25.0	25.7		ug/L		103	75 ₋ 120	
1,2-Dichloropropane	25.0	25.0		ug/L		100	76 ₋ 120	
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	77 _ 120	
1,4-Dichlorobenzene	25.0	24.1		ug/L		96	80 - 120	
2-Butanone (MEK)	125	118		ug/L		95	57 - 140	
2-Hexanone	125	122		ug/L		98	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	120		ug/L		96	71 - 125	
Acetone	125	117		ug/L		93	56 - 142	
Benzene	25.0	24.9		ug/L		100	71 ₋ 124	
Bromodichloromethane	25.0	26.3		ug/L		105	80 - 122	
Bromoform	25.0	22.2		ug/L		89	61 - 132	
Bromomethane	25.0	22.8		ug/L		91	55 - 144	
Carbon disulfide	25.0	25.7		ug/L		103	59 ₋ 134	
Carbon tetrachloride	25.0	26.3		ug/L		105	72 - 134	
Chlorobenzene	25.0	24.2		ug/L		97	80 ₋ 120	
Chloroethane	25.0	23.1		ug/L		93	69 ₋ 136	
Chloroform	25.0	24.1		ug/L		96	73 ₋ 127	
Chloromethane	25.0	20.2		ug/L		81	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	25.9		ug/L		104	74 ₋ 124	
cis-1,3-Dichloropropene	25.0	23.8		ug/L		95	74 - 124	
Cyclohexane	25.0	26.6		ug/L		106	59 ₋ 135	
Dibromochloromethane	25.0	25.7		ug/L		103	75 - 125	
Dichlorodifluoromethane	25.0	26.3		ug/L		105	59 ₋ 135	
Ethylbenzene	25.0	25.4		ug/L		101	77 ₋ 123	
Isopropylbenzene	25.0	26.0		ug/L		104	77 ₋ 122	
Methyl acetate	50.0	43.8		ug/L		88	74 ₋ 133	
Methyl tert-butyl ether	25.0	25.9		ug/L		104	77 - 120	
Methylcyclohexane	25.0	25.9		ug/L		104	68 ₋ 134	

Eurofins TestAmerica, Buffalo

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

98

Lab Sample ID: LCS 480-561827/5 Matrix: Water

Toluene-d8 (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 561827										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride			25.0	24.7		ug/L		99	75 _ 124	
Styrene			25.0	27.0		ug/L		108	80 - 120	
Tetrachloroethene			25.0	25.6		ug/L		102	74 ₋ 122	
Toluene			25.0	24.7		ug/L		99	80 - 122	
trans-1,2-Dichloroethene			25.0	25.4		ug/L		102	73 ₋ 127	
trans-1,3-Dichloropropene			25.0	23.4		ug/L		94	80 - 120	
Trichloroethene			25.0	25.4		ug/L		101	74 - 123	
Trichlorofluoromethane			25.0	25.7		ug/L		103	62 ₋ 150	
Vinyl chloride			25.0	20.8		ug/L		83	65 - 133	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	105		77 _ 120							
4-Bromofluorobenzene (Surr)	101		73 _ 120							
Dibromofluoromethane (Surr)	101		75 - 123							

80 - 120

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site Job ID: 480-178885-1

GC/MS VOA

Analysis Batch: 561827

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-178885-1	MW-6	Total/NA	Water	8260C	
480-178885-2	MW-5	Total/NA	Water	8260C	
480-178885-3	MW-12	Total/NA	Water	8260C	
MB 480-561827/7	Method Blank	Total/NA	Water	8260C	
LCS 480-561827/5	Lab Control Sample	Total/NA	Water	8260C	

Matrix: Water

Lab Sample ID: 480-178885-1

Client Sample ID: MW-6 Date Collected: 12/01/20 00:00

Date	Received:	12/02/20	10:20
------	------------------	----------	-------

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	561827	12/04/20 01:02	CRL	TAL BUF	
Client Samp	le ID: MW-5						Lat	o Sample ID	: 480-178885-2
Date Collected	: 12/01/20 00:0)							Matrix: Water
Date Received	: 12/02/20 10:20)							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	561827	12/04/20 01:27	CRL	TAL BUF	
Client Samp	le ID: MW-12						Lat	o Sample ID	: 480-178885-3
Date Collected	: 12/01/20 00:0)						-	Matrix: Water
Date Received	: 12/02/20 10:20)							
	Detab	Detah		Dilution	Detab	Durant			
	Batch	Batch	_	Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	561827	12/04/20 01:52	CRL	TAL BUF	

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site Job ID: 480-178885-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark - Despatch site

Lab Sample ID Client Samp	le ID	Matrix	Collected	Received	Asset ID
480-178885-1 MW-6		Water	12/01/20 00:00	12/02/20 10:20	
480-178885-2 MW-5		Water	12/01/20 00:00	12/02/20 10:20	
480-178885-3 MW-12		Water	12/01/20 00:00	12/02/20 10:20	

Chain of Custody Record

miner Multic Curturi Prove Multic - 715.5 Fund minery Exp(ch/Infull_Pf1Mn/RMrVe1_P	State of Origin: Page: Job #: Job #: Job #: Preservation Code
Martine Bench filmet Productions fragment faire noni- toring. One Durg al. My 1/21/B Intervented (n) Intervented (n) Standing Date Simple Date Simple (n) Intervented (n) Simple (n) Simple (n) No Intervented (n) Simple (n) No No Intervented (n) Simple (n) No No Interv	e note): Job #: Preservation Code
Analysis R Analysis R The Contract (197) The Request of the Contract (197) Analysis R The Contract (197) The Contract (197) The Request (197) The Contract (197) The Contract (197) The Request (197) The Contract (197) The Contract (197) The Request (197) The Contract (197) The Contract (197) The Request (197) The Contract (197) The Contract (197) The Request (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) Sample Identification Sample Date The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) Sample Identification Sample Date Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197) The Contract (197)	Preservation Code
OP OutPrate W Y21B S. Yan, Juli Yan	Analysis Requested
Плике Лу-3133 Рок ВОО400-002-400 Rink Д. П.К. (С. О. П.)-7.(B. NACH B. NACH C. ZA Acetate D. Nitic Acid E. NaHSCA
Children Wahr Complexity Sample Identification Sample Identification Sint Note: NS: Art KL Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification In Thu- S Three Identification Sample Identification Sample Identification Three Identification Sample Identification Sample Identification Sample Identification Three Identification Sample Identification Sample Identification Sample Identification Three Identification Sample Identification Sample Identification Sample Identification Three Identidentification Three Identification <t< td=""><td>F - MeOH G - Amchor H - Ascorbic Acid</td></t<>	F - MeOH G - Amchor H - Ascorbic Acid
Site Simple Identification Sample Date Sample Matrix Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification InflW-G InflW-G InflW-G InflW-G InflW-G InflW-G InflW-G <	U Water K-EDTA
Sample Identification Sample Date Sample Control Name Sample Matrix Sample	of con
IDW-6 I2//I/2 I0:00 6 I/2 K IDW-12 I1:00 6 W K IDW-12 I1:00 6 W K IDM-12 IDM-12 I2:00 K K IDM-12 IDM-12 IDM-12 K K IDM-12 IDM-12 IDM-12 K K IDM-12 IDM-12 K K K IDM-12 IDM-12 K K K IDM-12 </td <td>Total Number of Number of</td>	Total Number of
M/W-6 N/V/6 N/V/6 N/V/6 m/W-5 m/V/6 k k m/V/2 k k k m/V/2 k k k m/V/2 k k k m/V/2 k k k m/V/12 k k k m/V/2 k k k m/V/12 k k m/V/12 k	
mw.rs mw.rs <th< td=""><td></td></th<>	
mml m	
View Since laboratory accreditations are subject to change. TestAmerica Laboratories. Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. Curr and another and the signed table in the signed table table in the signed table in the signed table in the signed tabl	
Vote: Since laboratory accreditations are subject to change. TestAmerica Laboratories. Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. Loc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance upon out subcontract laboratories. Loc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance upon out subcontract laboratories. Loc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to restAmerica Laboratories. Inc. Possible Hazard [Gamilfication File::minable Sample Disposal (A fee may be instructions with complicance to File Disposal (A fee may be instructions). Cat 0, HLJMLCMM. Possible Requested: 1, ii, III, W, Other (specify) Cat 0, HLJMLCMM. Date: Time: Empty Kit Relinquished by: Time: Date: Time:	
480-1788 Vote: Since laboratory acceditations are subject to change. TestAmerica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. Vote: Since laboratory acceditations are subject to change. TestAmerica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. Currently maintain accreditation in the State of Origin listed above for analysis/itestSimator, being analyzed, the samples must be shipped back to the TestAmerica Laboratories, inc. Possible Hazard Iocantification Possible Hazard Iocantification Deliverable Requested: 1, ii, III, N, Other (specify) Deliverable Requested: 1, ii, III, N, Other (specify) Deliverable Requested: 1, ii, III, N, Other (specify) Date: Date: Empty Kit Relinquished by: Time: Date:	
Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories. Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. currently maintain accreditations are subject to change. TestAmerica Laboratories. Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance upon out subcontract laboratories. Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance upon out subcontrons with the same test and the second state of the second state	480-178885 Chain of Custody
Note: Since laboratory accreditations are subject to change. Test/merica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. currently maintain accreditations in the State of Origin listed above for analysis/rests/matrix being analyzed, the samples must be shipped back to the Test/America Laboratory or other instructions will have a marked accreditations are current to date, return the signed Chain of Custody attesting to said compliance upon out subcontract laboratories, inc. Possible Hazard Tocentification Deliverable Requested: 1, 8, 111, N, Other (specify) Caft 0, MLJM, CMM, Date: Empty Kit Relinquished by: Empty Kit Relinquished by: Time:	
Possible Hazard Identification Sample Disposal (A fee may be in the indentification) Sample Disposal (A fee may be indentification) Image: Deliverable Requested: 1, ii, IV, Other (specify) Deliverable Requested: 1, ii, IV, Other (specify) Deliverable Requested: 1, ii, IV, Other (specify) Empty Kit Relinquished by: Date: Date: Time:	ritract laboratories. This sample shipment is forwarded under chain-of-custody. If the instructions will be provided. Any changes to accreditation status should be broadones inc.
Deliverable Requested: I, II, IV, Other (specify) Cat D, HJDI, URV, Date: Special Instructions/OC Requirem Empty Kit Relinquished by:	(A fee may be assessed if samples are retained longer than 1 i
Empty Kit Relinquished by: Date: Trime:	¢/QC Requirements:
	Method of Shipment
Relinquished by Company Received by Receiv	DateTime:
Relinquisited by: Company Received by:	Date/Time:
Relinquished by Company Received by Receiv	Date/Time: 17.12.17.1 102.0
Custody Seals Intact: Custody Srai No.:	e(s) °C and Other Remarks:
Client: Benchmark Env. Eng. & Science, PLLC

Login Number: 178885 List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.1 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

List Source: Eurofins TestAmerica, Buffalo