

Periodic Review Report

Review Period July 2023 – August 2024

Swivelier Company

33 Route 304, Nanuet, Rockland County, New York 10954

NYSDEC Site Nos. 3-44-036 & V00520

Submitted to:

S.F. Properties, LLC 627 South Main Street New City, New York 10956

Submitted by:

EWMA 800 Lanidex Plaza, Suite 200 Parsippany, NJ 07054 (973) 560-1400

August 2024

Project 202530 Volume 1 of 1

Jawlattain

Prepared by Jacob M. Strauss, PE Senior Project Engineer

Table of Contents

Cer	tificatio	n	iv
1.	Exec	utive Summary	v
	1.1	Containment Conditions and Remedial History	v
	1.2	Effectiveness of the Remedial Program	vi
	1.3	Compliance Status	vii
	1.4	Conclusions and Recommendations	vii
2.	Site	Overview	8
	2.1	Description	8
	2.2	Chronology, Remedy Components, Remediation Goals, and Remedy	
		Changes	8
	2.3	Remedy Performance, Effectiveness and Protectiveness	11
3.	IC/EC	C Plan Compliance Report	13
	3.1	IC/EC Requirements and Compliance	13
		3.1.1 Cover System	13
		3.1.2 Sub-Slab Depressurization System (SSDS)	13
		3.1.3 Institutional and Engineering Controls	14
	3.2	IC/EC Certification	14
4.	Moni	toring Plan Compliance Report	15
	4.1	Components of the Monitoring Plan	15
		4.1.1 Cover System Monitoring	15
		4.1.2 Vapor Intrusion Control System Monitoring	15
		4.1.3 Groundwater Monitoring	15
	4.2	Summary of Monitoring Completed During the Reporting Period	16
	4.3	Comparison with Remedial Objectives	16
	4.4	Monitoring Deficiencies	16
	4.5	Conclusions	16
5.	Oper	ation and Maintenance Plan (O&M) Compliance Report	17
	5.1	Components of the O&M Plan	17
		5.1.1 Summary of O&M Activities and Data Collected During the	
		Reporting Period	17
		5.1.2 O&M Deficiencies	17
	5.2	Conclusions and Recommendations for Improvements	17
6.	Over	all PRR Conclusions and Recommendations	18
	6.1	Compliance with SMP	18
	6.2	Performance and Effectiveness of the Remedy	18

6.3 Future PRR Submittals

Tables

- 1. June 2024 Groundwater Results Summary
- 2. Historical Groundwater Results Summary

Figures

- 1. Site Location Map
- 2. Well Location Map
- 3. Sub-Slab Depressurization System & Vacuum Readings June 2024

Appendices

- 1. IC/EC Certifications
- 2. Annual Inspection of Cover System and Vapor Intrusion Control System
- 3. Laboratory Analytical Packages
- 4. Purge Guides

Certification

I, Jacob M. Strauss, certify that I am currently a New York State Registered Professional Engineer. In accordance with the DER Technical Guidance for Site Remediation (DER-10) Section 1.5 Certification Requirement 1.5(b)5, for each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

(a) the institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by NYSDEC;

(b) nothing has occurred that would impair the ability of such control to protect public health and the environment;

(c) nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;

(d) access to the Site will continue to be provided to NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control.

By: EWMA Engineering Services LLC

NYS Certificate of Authorization No. 0016891

Jacol M. attanus 8/7/2024

Jacob M. Strauss, NYSPE No. 097765

EWMA Project No. 202530

Note: It is a violation of Article 145 of New York State Education Law for any person, unless he is acting under the direction of a licensed professional engineer, to alter an item of this Periodic Review Report in any way. If an item is altered, the altering engineer shall affix to the item his seal and the notation "altered by" followed by his signature and the date of such alteration, and a specific description of the alteration.

1. Executive Summary

1.1 Containment Conditions and Remedial History

The Property, which housed the former Swivelier Company, is listed as a Class 2 site on the New York State Registry of Inactive Disposal Waste Sites. The Property is located at 33 Route 304 in an industrial/commercial area of Nanuet, Rockland County, New York. A 132,000 square-foot building is located on a six-acre parcel surrounded by paved parking lots. The Site is zoned commercial and industrial and is currently utilized for commercial and industrial uses.

The Swivelier Company operated in a portion of the building for the assembly, manufacture, warehousing and distribution of lighting fixtures from 1956 to 1997. Non-contact process water and cooling water, as well as wastewater from the building floor drain system, was discharged to a drainage ditch on the western portion of the property. In 1979, the Rockland County Department of Health received a complaint citing discolored water flowing in the ditch. Samples collected by the Spring Valley Water Company in 1980 from the outfall pipe and in the surface waters indicated total volatile organic compounds (VOC) of 14,425 parts per billion (ppb) and 8,962 ppb, respectively. In 1980, Swivelier eliminated the use of the VOC compounds TCE and methylene chloride (MCl) in their processes and directed the site process, process waters, and waste waters to the municipal sewer system rather than to the on-site drainage ditch.

In 1991, the Rockland County Department of Health (RCDH) collected groundwater samples from several businesses and residential wells in this area. TCE was detected at 5,400 ppb in a sample from the L.A. Woman nightclub, located 0.4 miles to the south of the Property. Several other wells in the vicinity of L.A. Woman also contained TCE, but at lower concentrations. The RCDH identified numerous potential sources, including Swivelier, for the TCE contamination in the L.A. Woman well. The New York State Department of Environmental Conservation (NYSDEC) listed the Property on the New York State Registry of Inactive Waste Sites in July 1991 as a Class 2 site.

The NYSDEC retained Camp Dresser & McKee (CDM) to perform a Remedial Investigation/Feasibility Study (RI/FS) at the Property. The RI/FS was completed in two separate phases in 1994 and 1995. The results of the RI/FS identified VOC contaminated soils in the drainage ditch (discharge area) and VOC contamination in the underlying bedrock aquifer.

A hot spot excavation and soil removal was performed at the source area (on-site drainage ditch) in June 1999 by CDM. Soils were excavated within and adjacent to the ditch to the zone of saturation, approximately 8-feet below ground surface (bgs). All soils were transported off-site and disposed of at a licensed waste handling facility.

Post excavation sample results of 1,100 parts per million (ppm) indicated that a small area of impacted soils approximately 10 by 10-feet by the former discharge pipe location remained in the subsurface soils below the water table. No further remediation activities were carried out at this location by CDM. S.F. Properties, LLC (S.F. Properties) entered into a Voluntary Cleanup Agreement (VCA) in April 2002 with the NYSDEC to remediate the site.

In-Situ Oxidation Technologies, Inc. (ISOTEC) in-situ chemox treatment processes were conducted in November 2002 for the field pilot study, and again in May 2005 for the full-scale treatment program, to remediate subsurface contamination via injection of peroxide and proprietary catalysts, thereby oxidizing contamination using Fenton's Reaction.

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building. The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

Long-term monitored natural attenuation (MNA) of groundwater within the overburden aquifers is currently being utilized, relying on natural attenuation processes to achieve applicable groundwater remediation standards.

This Periodic Review Report (PRR) is issued for the July 2023 through August 2024 review period.

1.2 Effectiveness of the Remedial Program

The impacted media are now either beneath the existing buildings or have been excavated to the groundwater table, a depth of approximately 8-feet bgs in the former drainage ditch (CDM Supplemental Investigation Report, July 2000). The remaining area of the drainage ditch and exposed soils onsite have been covered with either an asphalt parking lot, landscaping, or buildings. The storm water that flowed from the site through an open ditch has been diverted through underground storm sewers to the off-site surface water body. The

exposure pathways have been eliminated on-site by engineering controls, which removed the point of exposure from surficial contact. However, impacted subsurface soil remains on site and constitutes a potential point of exposure through vapor intrusion.

Impacted groundwater at the site can be found within the overlying unconsolidated sediments and within the underlying bedrock. The groundwater is found at depths of 8-feet or greater at the site. No wells, either potable or industrial exist at the site. No groundwater discharge points exist on the site. Groundwater, and dissolved contaminants associated with the groundwater, flows in the subsurface toward the south-southwest. The contamination appears to be within the unconsolidated sediments, which are not considered a major aquifer in the area, and within the deep underlying bedrock aquifer, which is utilized as a potable water source off-site. Therefore, there are no points of exposure related to the on-site groundwater, except through potential vapor intrusion.

The approved ROD included No Action, (i.e. natural attenuation for treatment of the groundwater contamination in the on-site overburden aquifers). Continued natural attenuation of the groundwater within the overburden aquifers is proposed based upon the current contamination concentrations.

1.3 Compliance Status

The Site is being managed in compliance with the NYSDEC approved SMP. EWMA conducted a site inspection on June 19, 2024 and confirmed that the SSDS remained fully operational and effective following repairs in September 2022.

1.4 Conclusions and Recommendations

During the review period from July 2023 to August 2024, the SMP has been implemented and the remedy, along with the institutional and engineering controls, continues to be protective of human health and the environment.

Other SMP Elements – Operation and monitoring information as specified in the SMP for this PRR period is detailed in this document.

Periodic Review Report Schedule – The next PRR will be prepared to cover the August 2024 to August 2025 reporting period.

Site Management Plan Implementation – Based on the continued need for institutional controls and engineering controls, it is recommended that the SMP remain in effect.

2. Site Overview

2.1 Description

The approximately six-acre Site contains a 132,000 square-foot building surrounded by paved parking lots. The Site is zoned commercial and industrial and is currently utilized for commercial and industrial uses. The Site is bordered by Demarest Mill Road to the north; Route 304 to the east; West Nyack Road to the south; and Teplitz Inc., an auto salvage facility to the west, **Figure 1**. Commercial enterprises, including a gas station and an automobile dealership, are located along the eastern side of Route 304. A bakery, delicatessen, and commercial buildings are located to the North across Demarest Road. An abandoned house is located on the southeast corner of Route 304 and Nyack Road, and an auto repair shop is located along Nyack Road directly adjacent to the Property. Apartment buildings are located to the south across Nyack Road. Directly adjacent to the Property on the west is Teplitz Salvage Yard. Further west of Teplitz along Nyack Road are additional automobile salvage/repair shops and trucking/shipping companies.

The Swivelier Company operated in a portion of the building for the assembly, manufacture, warehousing, and distribution of lighting fixtures from 1956 to 1997. Non-contact process water and cooling water, as well as wastewater from the building floor drain system, was discharged to a drainage ditch on the western portion of the property.

2.2 Chronology, Remedy Components, Remediation Goals, and Remedy Changes

A chronology of significant site compliance milestones is provided as follows:

In 1979, the Rockland County Department of Health received a complaint citing discolored water flowing in the ditch. Samples collected by the Spring Valley Water Company in 1980 from the outfall pipe and in the surface waters indicated total volatile organic compounds (VOC) of 14,425 parts per billion (ppb)and 8,962 ppb, respectively. In 1980, Swivelier eliminated the use of the VOC compounds TCE and methylene chloride (MCl) in their processes and directed the site process, process waters, and waste waters to the municipal sewer system rather than to the on-site drainage ditch.

In 1991, the Rockland County Department of Health (RCDH) collected groundwater samples from several businesses and residential wells in this area. TCE was detected at 5,400 ppb in a sample from the L.A. Woman nightclub, located 0.4 miles to the south of the Property. Several other wells in the vicinity of L.A. Woman also contained TCE, but at lower concentrations. The RCDH identified numerous potential sources, including Swivelier, for the TCE contamination in the L.A. Woman well. The New York State Department of Environmental Conservation (NYSDEC) listed the Property on the New York State Registry of Inactive Waste Sites in July 1991 as a Class 2 site.

The NYSDEC retained Camp Dresser & McKee (CDM) to perform a Remedial Investigation/Feasibility Study (RI/FS) at the Property. The RI/FS was completed in two separate phases in 1994 and 1995. The results of the RI/FS identified VOC contaminated soils in the drainage ditch (discharge area) and VOC contamination in the underlying bedrock aquifer.

In 1995 two concrete lined pits located in a retail store on the Property were identified as containing TCE and 1,2-DCE and the contents were subsequently removed. A soil gas survey was performed at the concrete lined pits and based on this survey the NYSDEC required no further action at this area. Soils in the drainage ditch located on the western portion of the Property were identified as a source area for the VOC contamination to the underlying bedrock aquifer. In addition, sediments carried to the drainage ditch located across Nyack Road were identified as being above the NYSDEC action levels. The on-site drainage ditch and the off-site drainage ditch were identified as environmental areas of concern. Groundwater within the shallow unconsolidated zone and the deeper bedrock aquifer were identified as areas of environmental concern. Groundwater in the shallow unconsolidated zone was identified as moving slowly south-southeast. Petroleum impacts to the shallow groundwater were attributed to the Teplitz auto salvage facility on the adjacent property to the southwest. A plume of contaminated groundwater was identified in the deeper bedrock aquifer and was noted to be moving in a south-southwest direction. NYSDEC concluded that this plume was not the cause of the VOC contamination discovered in the L.A. Woman well. No receptors of the groundwater contamination from the subject were identified in the vicinity.

In March 1996, the NYSDEC presented a selected remedial action for the Property in a ROD. The approved ROD included No Action, i.e. natural attenuation for treatment of the groundwater contamination in the on-site overburden aquifers. The drainage ditch is shallow pathway designed to transport with no known recreational uses. CDM completed a remediation of the sediments by excavating impacted sediments and constructing a temporary streambed in June 1999. Post excavation analysis indicated that the remaining sediments were below NY SCC.

A hot spot excavation and soil removal was performed at the source area (on-site drainage ditch) in June 1999 by CDM. Soils were excavated within and adjacent to the ditch to the zone of saturation, approximately 8-feet below ground surface (bgs). All soils were transported off-site and disposed of at a licensed waste handling facility. Post excavation sample results of 1,100 parts per million (ppm) indicated that a small area of impacted soils approximately 10 by 10-feet by the former discharge pipe location remained in the subsurface soils below the water table. No further remediation activities were carried out at this location by CDM.

Groundwater samples were collected in November 1999 by CDM. TCE was identified in MW-3S, 3I, 6I, 6R, 8DI, 9ID, and 9D at concentrations of 22, 18, 130, 200, 160, 68, and 13,300 ppb, respectively. Based upon the results of the November 1999 post-excavation well sampling, CDM performed a Supplemental Groundwater Investigation from April 19, 2000 to May 25, 2000. The supplemental investigation consisted of the installation of MW-10D and collection of groundwater samples from MW-

6I, 6R, 8I, 9I, 9D and 10D. TCE was identified in all samples with concentrations of 56, 25, 200, 33, 5,300 and 3,100 ppb, respectively.

In-Situ Oxidation Technologies, Inc. (ISOTEC) in-situ chemox treatment processes were conducted in November 2002 for the field pilot study, and again in May 2005 for the full-scale treatment program, to remediate subsurface contamination via injection of peroxide and proprietary catalysts, thereby oxidizing contamination using Fenton's Reaction.

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building. The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

The impacted media are now either beneath the existing buildings or have been excavated to the groundwater table, a depth of approximately 8-feet bgs in the former drainage ditch (CDM Supplemental Investigation Report, July 2000). The remaining area of the drainage ditch and exposed soils onsite have been covered with either an asphalt parking lot, landscaping, or buildings. The storm water that flowed from the site through an open ditch has been diverted through underground storm sewers to the off-site surface water body. However, impacted subsurface soil remains on site and constitutes a potential point of exposure through vapor intrusion, as discussed later.

Impacted groundwater at the site can be found within the overlying unconsolidated sediments and within the underlying bedrock. The groundwater is found at depths of 8-feet or greater at the site. No wells, either potable or industrial exist at the site. No groundwater discharge points on the site. Groundwater, and dissolved contaminants associated with the groundwater, flows in the subsurface toward the south-southwest in the overburden, and the east-northeast in the shallow bedrock. The contamination appears to be within the unconsolidated sediments, which are not considered a major aquifer in the area, and within the deep underlying bedrock aquifer, which is utilized as a potable water source off-site. Therefore, there are no points of exposure related to the on-site groundwater, except through potential vapor intrusion, as discussed later.

Long-term monitored natural attenuation (MNA) of groundwater within the overburden aquifers is currently being utilized, relying on natural attenuation processes to achieve applicable groundwater remediation standards.

Site activities have been documented in the following reports; Final Remediation Report prepared by CDM dated February 2000; a Supplemental Investigation Report prepared by CDM dated July 2000; five Voluntary Cleanup Program Remedial Action Workplan-Groundwater prepared by EWMA dated June 18, 2002, February 2003, July 2003, November 2004 and December 2004; an Environmental Status Update prepared by EWMA dated June 7, 2013; a Voluntary Cleanup Program Remedial Action Workplan

prepared by EWMA dated August 2013, a Voluntary Cleanup Program RAW Addendum prepared by EWMA dated November 25, 2013; two Voluntary Cleanup Program Revised RI Progress Report prepared by EWMA dated May 4, 2015 and August 16, 2015; a Voluntary Cleanup Program revised Supplemental RI Progress Report prepared by EWMA dated August 26, 2015; a Site Management Plan prepared by EWMA dated June 2018; Field Sampling Plan prepared by EWMA dated November 2018; Annual Inspection Report prepared by EWMA dated January 24, 2019; Periodic Review Report prepared by EWMA dated August 2023.

The key components of the remedy were excavation with end-point soil sampling, backfilling with certified clean fill, groundwater sampling and annual engineering inspections, engineering controls that include a cover system, a sub-slab depressurization system, and compliance with the SMP.

The goals of the remedy were:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils onsite;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

In summary, during the July 2023 through August 2024 PRR period, the following deliverables were submitted and the following activities occurred:

- A site-wide inspection was conducted in June 2024 and the findings confirmed that IC/ECs, including the sub-slab vapor intrusion (VIC) system, are performing properly and remain effective.
- A site-wide inspection was conducted in June 2024 and the findings confirmed that IC/ECs, including the sub-slab vapor intrusion (VIC) system, continue to perform properly and remain effective.
- Sampling of monitoring wells MW-10D, 11D and 13D in June 2024, (Section 4.1.3); and
- This PRR was prepared for the July 2023 August 2024 period.

Refer to Figure 2 for the current monitoring well locations as of the date of this PRR.

The sub-slab vapor mitigation control system (installed beneath the building) was subjected to quality assurance testing and remains effective. The annual inspection results are provided in **Appendix 2**.

2.3 Remedy Performance, Effectiveness and Protectiveness

As of the date of this PRR submittal, the remedy has been performed as required and has been effective and protective in achieving the remedy goals as follows:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils onsite;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

Supportive data is provided in the figures and appendices to this PRR for the purpose of demonstrating the remedy performance, effectiveness and protectiveness.

Periodic Review Report – Review Period July 2023 to August 2024 Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. Nos. 3-44-036 & V00520

3. IC/EC Plan Compliance Report

3.1 IC/EC Requirements and Compliance

To address residual contaminated soil, groundwater and soil vapor beneath the Site, the SMP provided for several ECs and ICs to protect human health and the environment. ECs include a cover system and a Sub-Slab Depressurization System (SSDS). ICs include implementation, maintenance and monitoring of all ECs, compliance with the SMP, permitted uses of the property, limited disturbance of the remaining impacts in the subsurface, inspections, media monitoring, and reporting of data.

3.1.1 Cover System

Exposure to remaining contamination in groundwater at the site is prevented by asphalt pavement, concrete-covered sidewalks, and concrete building slabs. The cover system is a permanent EC designed to prevent exposure to soil contamination.

The cover system is inspected annually by a licensed professional engineer, including a Site walk, visual examination of cover integrity, and interviews with personnel familiar with Site operations. A summary of the annual inspection results is provided in **Appendix 2**. See Section 4.1.1 below, for a discussion of the recent inspection of the composite cover system.

3.1.2 Sub-Slab Depressurization System (SSDS)

In accordance with the November 2004 RAWP, an SSDS was installed in March 2008 to address concerns regarding a potential source of vapor intrusion beneath the building.

The results of the diagnostic field pilot test, conducted by EWMA on August 23, 2004, provided a basis to determine the locations and number of extraction points necessary to achieve adequate depressurization underneath the entire building. Upon instructions from the property representative, all SSDS installation activities were conducted within the empty warehouse portion of the building.

The following provides a summary of the SSDS design:

• Two (2) separate SSDSs are installed along the western and eastern portions of the building and connected to vacuum blower #1 and #2, respectively, which are located on the roof of the building;

• Each SSDS consists of a 4-inch PVC main header pipe installed along the ceiling in order to connect all extraction points to the header pipe, and extending to the outside of the building into the vacuum blower;

• A total of nine (9) extraction points were connected to the western SSDS and eight (8) extraction points were connected to the eastern SSDS, each via 2-inch PVC connecting pipes extending upwards from the extraction points along the walls and corner and along the ceiling to the 4-inch PVC main header pipe;

• Extraction point connecter pipes and main header inlets to the vacuum blowers were equipped with ball valves and sampling ports in order to optimize the vacuum and flow through all points, and collect flow readings and air samples, as necessary;

• The vacuum blowers are 7.5 HP Regenerative Blowers capable of providing a total flow rate of 250 to 300 CFM.

Vapor intrusion controls beneath the subject building slab and above-slab mechanical portion of the system (piping, suction blowers, and valves) have been installed, and the SSDS is currently operational. See **Appendix 2** for a discussion of the recent inspection of the SSDS. Vapor intrusion controls will be integrated with all future building construction at the Site.

3.1.3 Institutional and Engineering Controls

- Cover System
- Sub-Slab Depressurization System

These ICs/ECs remain in place and are being implemented at the Site and annual testing was completed during this PRR period. Currently, the building is occupied and the VIC system is operating in accordance with the SMP.

3.2 IC/EC Certification

The required IC/EC Certifications are provided in Appendix 1 of this PRR.

4. Monitoring Plan Compliance Report

4.1 Components of the Monitoring Plan

The components of the monitoring plan are set forth below. A summary of the monitoring efforts specific to each monitoring plan component is provided below, along with the location of the associated monitoring data within this PRR:

- *Cover System* The cover was monitored visually for integrity during an annual inspection in June 2024 (see **Appendix 2** for annual inspection results);
- *Sub-Slab Depressurization System* The Sub-Slab Depressurization System (SSDS) is currently operating. Monitoring is ongoing and inspections are conducted on an annual basis to ensure proper functionality (see **Appendix 2** for annual inspection results); the most recent inspection was conducted in June 2024.
- Sampling of Monitoring Wells Groundwater monitoring wells associated with natural attenuation (MW-10D, 11D and 13D) were sampled in June 2024.

4.1.1 Cover System Monitoring

The quality and integrity of the cover system was inspected (monitored) annually and deemed intact and protective by the EWMA Certifying Engineer of Record.

4.1.2 Vapor Intrusion Control System Monitoring

The construction and effectiveness of the vapor intrusion control system installed beneath the building was inspected by qualified EWMA field technicians to ensure proper functionality. The system components and monitoring points have been inspected in June 2024, vacuum and air flow measurements confirm that the system is operating in conformance with the design requirements (see **Appendix 2 and Figure 3**), and the system has been certified.

4.1.3 Groundwater Monitoring

On June 18 and 19, 2024, EWMA collected ground water samples from on-site monitoring wells MW-10D, MW-11D, and MW-13D and analyzed for TCL VO + 15. Figure 2 depicts the wells at the Site and **Table 1** illustrates the sample results. The ground water sampling activities were conducted in accordance with the ground water monitoring program approved by the NYSDEC.

The monitoring wells were purged utilizing a Grundfos Redi-Flo 2-inch diameter submersible pump equipped with a variable speed control box via three-volume purge rate to purge the monitoring wells. The Redi-Flow pump and electrical line was field decontaminated between each well in accordance with pump decontamination procedures. No sheen or free phase product was observed and no odors were detected

during the June 2024 ground water sampling event. The field sampling observations are summarized on the Purge Guide provided in **Appendix 4**.

As illustrated on **Table 1**, analytical results for MW-11D were all reported as non-detect or below the New York State Ambient Water Quality Standards and Guidance Values. MW-10D reported vinyl chloride, trans-1,2-dichloroethene, cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, and 1,2-dichlorobenzene at concentrations exceeding the New Work State Ambient Water Quality Standard (AWQS) for each compound. MW-13D reported vinyl chloride, trans-1,2-dichloroethene, cis-1,2-dichloroethene, 1,4-dichlorobenzene, and 1,2-dichlorobenzene at concentrations exceeding the AWQS for each compound. The laboratory analytical packages are provided in **Appendix 3**.

As illustrated on the Historic Ground Water Results Table (**Table 2**), historically, MW-10D, MW-11D, and MW-13D have had fluctuating chlorinated solvent concentrations. However, recent sampling events have shown an increasing trend in VOC concentrations in MW-10D and MW-13D. Current and historical groundwater contour maps show that groundwater flow in the -D wells is to the east/northeast, indicating that the increasing concentrations in MW-10D and MW-13D are the result of contamination migrating from an upgradient off-site source.

4.2 Summary of Monitoring Completed During the Reporting Period

The monitoring during the reporting period was completed as set forth above. The monitoring data is presented in the figures and appendices of this PRR.

4.3 Comparison with Remedial Objectives

Based on the monitoring data collected during the reporting period and presented in the figures and appendices of this PRR, the remedial objectives are being met. The cover system is effectively preventing exposure to residual contamination; and the VIC system is maintaining sub-slab de-pressurization and operating in conformance with the design and as required by NYSDOH and NYSDEC.

4.4 Monitoring Deficiencies

There are currently no known monitoring deficiencies. During the most recent site inspection in June 2024, it was confirmed that the SSDS remained functional and effective following repairs in September 2022.

4.5 Conclusions

All monitoring was performed in accordance with the NYSDEC approved SMP and pursuant to subsequent work plans and monitoring enhancements that have been approved by the NYSDEC.

5. Operation and Maintenance Plan (O&M) Compliance Report

5.1 Components of the O&M Plan

The components of the O&M Plan include inspections and completion of inspection forms.

5.1.1 Summary of O&M Activities and Data Collected During the Reporting Period

The inspection forms and records that were generated for the Site during the reporting period include the following:

• Annual Inspection of Cover System and VIC System (Appendix 2).

5.1.2 O&M Deficiencies

EWMA conducted a site inspection on June 19, 2024 and confirmed the SSDS remains functional and effective following repairs in September 2022. No new deficiencies were noted during this inspection.

5.2 Conclusions and Recommendations for Improvements

Project Review Report Schedule – The next PRR will be prepared to cover the July 2024 through August 2025 reporting period.

Site Management Plan Implementation – Based on the continued need for institutional controls and engineering controls, it is recommended that the SMP remain in effect.

6. Overall PRR Conclusions and Recommendations

6.1 Compliance with SMP

As of the date of this PRR, the remedy has been performed as required under the SMP and has been effective and protective in achieving the remedy goals as follows:

- 1. Reducing, controlling, or eliminating the contamination present within the on-site soils and sediments;
- 2. Eliminating the threat to surface waters by remediating any contaminated sediments and soils onsite;
- 3. Eliminating the potential for direct human or animal contact with contaminated soils, sediments and groundwater on-site; and
- 4. Mitigating continuing impacts to contaminated groundwater.

Supportive data is provided in the tables, figures and appendices to this PRR for the purpose of demonstrating the remedy performance, effectiveness and protectiveness.

6.2 Performance and Effectiveness of the Remedy

The performance and effectiveness of the remedy are in conformance with the project objectives.

6.3 Future PRR Submittals

The next PRR to be prepared and submitted will cover the period from July 2024 through August 2025.

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Table 1 – June 2024 Groundwater Results Summary

Table 1June 2024 Groundwater Analytical Results Summary
Swivelier Company33 Route 304, Nanuet, New York
EWMA Project No. 202530
NYSDEC Site Nos. 3-44-036 V00520

Sample #:	1	TOGs - Table 1		MW	/-10D			MW-11D			MW-	13D	
Field ID:		Ambient Water Quality											
Lab ID:		Standards And		0212	28-001			02128-002		(02128	8-003	
Date Sampled:		Guidance Values		06/18	8/2024			06/19/2024		C)6/19/	2024	
Depth(ft):		(ug/L)											
	CAS												
Volatiles (ug/L)		_	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q	RL	MDL
Dichlorodifluoromethane	75-71-8	5	ND		50.0	27.6	ND	1.00	0.552	ND		50.0	27.6
Chloromethane	74-87-3	5	ND	1_	25.0	15.5	ND	0.500	0.309	ND	_	25.0	15.5
Vinyl chloride	75-01-4	2	44.8	D	25.0	17.6	ND	0.500	0.352	49.7	D	25.0	17.6
Bromomethane	74-83-9	5	ND		25.0	19.3	ND	0.500	0.386	ND		25.0	19.3
Chloroethane	75-00-3	5	ND		25.0	16.2	ND	0.500	0.324	ND		25.0	16.2
I richlorofluoromethane	75-69-4	5	ND		50.0	25.2	ND	1.00	0.503	ND		50.0	25.2
1,1-Dichloroethene	75-35-4	0.07	ND		25.0	18.2	ND	0.500	0.363	ND		25.0	18.2
Acetone	67-64-1	NS	ND		50.0	50.0	ND	1.00	1.00	ND		50.0	50.0
Carbon disulfide	75-15-0	NS	ND		25.0	20.2	ND	0.500	0.403	ND		25.0	20.2
	75-09-2	5		1	50.0	25.0	ND	1.00	0.500			50.0	25.0
trans-1,2-Dichloroethene	156-60-5	5	21.8	DJ	25.0	18.0	ND	0.500	0.372	24.7	DJ	25.0	18.0
Methyl tert-butyl ether (MTBE)	1634-04-4	NS	ND		25.0	12.3	ND	0.500	0.245	ND		25.0	12.3
1,1-Dichloroethane	75-34-3	5	ND	1 -	25.0	14.3	ND	0.500	0.285	ND	_	25.0	14.3
cis-1,2-Dichloroethene	156-59-2	5	7740	D	25.0	13.9	1.38	0.500	0.277	7700	D	25.0	13.9
2-Butanone (MEK)	78-93-3	NS	ND		50.0	40.1	ND	1.00	0.802	ND		50.0	40.1
Bromochloromethane	74-97-5	NS	ND		25.0	19.0	ND	0.500	0.379	ND		25.0	19.0
Chloroform	67-66-3	7	ND		25.0	14.3	ND	0.500	0.285	ND		25.0	14.3
1,1,1-Trichloroethane	71-55-6	5	ND		25.0	19.1	ND	0.500	0.381	ND		25.0	19.1
Carbon tetrachloride	56-23-5	0.4	ND		25.0	17.5	ND	0.500	0.349	ND		25.0	17.5
1,2-Dichloroethane (EDC)	107-06-2	0.6	ND		25.0	13.7	ND	0.500	0.273	ND		25.0	13.7
Benzene	71-43-2	NS	ND	1_	25.0	13.5	ND	0.500	0.270	ND	_	25.0	13.5
Trichloroethene	79-01-6	5	12800	D	50.0	34.7	1.55	0.500	0.347	15000	D	50.0	34.7
1,2-Dichloropropane	78-87-5	1	ND		25.0	13.6	ND	0.500	0.272	ND		25.0	13.6
Bromodichloromethane	75-27-4	50	ND		25.0	12.9	ND	0.500	0.258	ND		25.0	12.9
cis-1,3-Dichloropropene	10061-01-5	NS	ND		25.0	13.2	ND	0.500	0.264	ND		25.0	13.2
4-Methyl-2-pentanone (MIBK)	108-10-1	NS NS	ND		50.0 25 0	30.6	ND	1.00	0.011			20.0	30.6
trong 1.2 Dichloronronono	108-88-3	NS NS	ND		25.0	15.1	ND	0.500	0.302			25.0	15.1
1 1 2-Trichloroethane	79-00-5	NS 1	ND		25.0	15.5		0.500	0.330			25.0	16.5
Tetrachloroethene	127-18-4	0.7	13.8	П	25.0	18.3	ND	0.500	0.365	13.2	п	25.0	18.3
	501 79 6	0.7	43.0 ND		23.0	10.3		1.00	0.303	43.2 ND	U	2 3.0	10.3
Dibromochloromethane	124-48-1	50	ND		25.0	13.2	ND	0.500	0.010	ND		25.0	13.2
1 2-Dibromoethane (EDB)	106-93-4	NS	ND		25.0	14.5	ND	0.500	0.200	ND		25.0	14.5
Chlorobenzene	108-90-7	5	ND		25.0	15.2	ND	0.500	0.304	ND		25.0	15.2
Ethylbenzene	100-41-4	NS	ND		25.0	15.7	ND	0.500	0.313	ND		25.0	15.7
Total Xylenes	1330-20-7	NS	ND		50.0	17.3	ND	1.00	0.345	ND		50.0	17.3
Styrene	100-42-5	NS	ND		25.0	15.9	ND	0.500	0.317	ND		25.0	15.9
Bromoform	75-25-2	50	ND		25.0	16.4	ND	0.500	0.328	ND		25.0	16.4
Isopropylbenzene	98-82-8	NS	ND		25.0	16.6	ND	0.500	0.332	ND		25.0	16.6
1,1,2,2-Tetrachloroethane	79-34-5	0.2	ND		25.0	14.2	ND	0.500	0.284	ND		25.0	14.2
1,3-Dichlorobenzene	541-73-1	3	ND		25.0	19.3	ND	0.500	0.386	ND		25.0	19.3
1,4-Dichlorobenzene	106-46-7	3	ND		25.0	19.9	ND	0.500	0.397	29.2	D	25.0	19.9
1,2-Dichlorobenzene	95-50-1	3	66.6	D	25.0	17.7	ND	0.500	0.354	154	D	25.0	17.7
1,2-Dibromo-3-chloropropane	96-12-8	NS	ND		25.0	20.5	ND	0.500	0.410	ND		25.0	20.5
1,2,4-Trichlorobenzene	120-82-1	NS	ND		25.0	17.9	ND	0.500	0.358	ND		25.0	17.9
1,2,3-Trichlorobenzene	87-61-6	NS	ND		25.0	20.3	ND	0.500	0.406	ND		25.0	20.3
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	ND		50.0	26.9	ND	1.00	0.538	ND		50.0	26.9
Methyl acetate	79-20-9	NS	ND		25.0	17.3	ND	0.500	0.345	ND		25.0	17.3
Cyclohexane	110-82-7	NS	66.5	D	50.0	23.5	ND	1.00	0.469	ND		50.0	23.5
Methylcyclohexane	108-87-2	NS	ND		25.0	21.1	ND	0.500	0.421	ND		25.0	21.1
1,3-Dichloropropene (cis- and trans-)	542-75-6	NS	ND		25.0	13.2	ND	0.500	0.264	ND		25.0	13.2
TOTAL VO's:		NS	20800	DJ		NA	2.93		NA	23000	DJ		NA
TOTAL TIC's:		NS	ND			NA	ND		NA	ND			NA
TOTAL VO's & TIC's:		NS	20800	DJ		NA	2.93		NA	23000	DJ		NA

New York State Division of Water Technical and Operational Guidance Series (TOGS), Issued October 22, 1993, Reissued June 1998.

 BOLD Conc
 Indicates a concentration that exceeds the applicable criteria.

 BOLD RL
 Indicates RL that exceeds applicable criteria.

 BOLD MDL
 Indicates MDL that exceeds applicable criteria.

 NS = No Standard Available
 Indicates MDL that exceeds applicable criteria.

 ND = Analyzed for but Not Detected at the MDL
 J = Indicates an estimated value either

when the concentration in the sample is

greater than MDL and less than RL, or for qualification of TICs

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

N = Presumptive evidence of a compound from the use of GC/MS library search.

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Table 2 – Historical Groundwater Results Summary

Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 202530

Well Information (ft.)	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Acetone	Chloroethane	Chloroform	2-Butanone	Methyl tert-butyl ether (MTBE)	Benzene	Bromodichloromethane	1,4-Dichlorobenzene	1,2-Dichlorobenzene	Toluene	1,1-Dichloroethene	TOTAL VO's:	TOTAL TIC's:	TOTAL VO's & TIC's:
TOGS 1.1.1 GW STANDARDS GA CLASS		5	5	5	5	2	50*	5	7	50*	NS	1	50*	3	3	5	5	NS	NS	NS
MW-10D	9/2/2005	ND	249	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	2.03	ND	ND	262	97	359
	12/21/2005	ND	14500	4390	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18,900	ND	18,900
	8/9/2006	ND	131	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.13	ND	ND	132	44.0	176
	3/14/2007	32.6	10900	ND	73	ND	23.4	ND	ND	ND	ND	ND	ND	12.9	95.7	ND	ND	11,100	NA	NA
	10/16/2007	ND	861	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	861	232	861
	5/5/2008	ND	330	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	58.0	388
	10/29/2008	ND	2920	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,920	875	3,800
	5/14/2009	ND	4260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,260	1,800	6,060
	11/10/2009	ND	2700	2010				ND	ND	ND	ND	ND	ND	ND	ND	ND		7,010	ND	7,010
	4/29/2014		3700	1960	9.0													5,430 6 380	NA NA	NA NA
	5/18/2017	24.6	7480	3760	29.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0,380	NA	NA
	11/21/2017	ND	7210	3620	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.800	ND	10.800
	11/27/2018	ND	4950	2960	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	7910	NA	NA
	6/9/2022	27.8	6260	2990	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9280	ND	9280
	7/26/2023	ND	11200	5970	48.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	17200	ND	17200
	6/18/2024	44.8	12800	7740	21.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	66.6	ND	ND	20800	ND	20800
MW-11D	11/19/2002	4.24	617	91	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.12	9.4	2.66	ND	635	91	726
	9/2/2005	ND	<u>6.86</u>	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	6.86	27.8	34.7
	12/21/2005	ND	10.9	13.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24.5	6.8	31.3
	8/9/2006	ND	2.82	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.82	201	204
	3/14/2007	ND	8.72	ND	ND	ND	11.3	ND	ND	13.0	ND	ND	ND	ND	ND	ND	ND	33.0	NA	NA
	10/16/2007	ND	25.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25.0	99.4	124
	5/5/2008	ND	5.29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.29	ND	5.29
	5/14/2009		6.00		ND				ND		ND	ND	ND		ND	ND		6.00		6.00
	11/10/2009	ND	17.0	2.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.1	ND	19.1
	4/29/2014	ND	3.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.37	NA	NA
	10/16/2015	ND	3.08	2.69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.77	NA	NA
	5/18/2017	ND	4.64	1.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.59	NA	NA
	11/21/2017	ND	1.84	1.72	ND	ND	ND	ND	ND	ND	0.575	ND	ND	ND	ND	ND	ND	4.14	ND	4.14
	11/28/2018	ND	7.79	1.58	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	9.37	NA	NA
	5/9/2022 7/26/2023		1.47	1.16							0.33		ND	ND	ND	ND		2.96		2.96
	6/19/2024	ND	1.10	1.38	ND	ND	ND	ND	ND	ND	0.343 ND	ND	ND	ND	ND	ND	ND	2.93	ND	2.93
MW-12D	11/19/2002	ND	9.45	9.7	ND	ND	ND	ND	ND	ND	222	ND	ND	ND	0.35	ND	ND	9.8	232	242
	9/2/2005	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	23.1	23.1
	12/21/2005	ND	2.09	1.59	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.68	82.2	85.9
	8/9/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21.1	21.1
	3/13/2007	ND	1.14	ND	ND	ND	8.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.19	NA	NA
	10/16/2007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/2/2008																			
	5/14/2009	ND	0.587	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.587	5.50	6.09
	11/21/2017	ND	3.90	3.33	ND	ND	ND	ND	ND	ND	0.733	ND	ND	ND	ND	ND	ND	7.69	ND	7.69

Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 202530

Well Information (ft.)	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Acetone	Chloroethane	Chloroform	2-Butanone	Methyl tert-butyl ether (MTBE)	Benzene	Bromodichloromethane	1,4-Dichlorobenzene	1,2-Dichlorobenzene	Toluene	1,1-Dichloroethene	TOTAL VO's:	TOTAL TIC's:	TOTAL VO's & TIC's:
TOGS 1.1.1 GW STANDARDS GA CLASS		5	5	5	5	2	50*	5	7	50*	NS	1	50*	3	3	5	5	NS	NS	NS
MW-13D	11/19/2002	ND	255	58.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.14	ND	ND	257	58.5	316
	9/2/2005	ND	39.4	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	39	5.8	45.2
	12/21/2005	ND	9.00	1.95	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11.0	ND 0.00	11.0
	8/9/2006 2/12/2007		32.0		1 75		2.12								1.57			32.0	9.00	41.0 NA
	3/13/2007	0.722	200		1.75 ND	0.637									1.57			214 133	NA 86.2	1NA 210
	5/2/2008	ND	22.0		ND	0.037 ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.0	10.6	32.6
	10/29/2008	ND	4120	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4120	1130	5250
	5/14/2009	2	337	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	339	309	648
	11/10/2009	ND	1.72	24.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	26.1	ND	26.1
	4/29/2014	ND	36.1	15.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	51.3	NA	NA
	10/16/2015	ND	4300	1750	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6050	NA	NA
	5/18/2017	16.2	3910	1830	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5790	NA	NA
	11/20/2017	ND	1350	517	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1870	ND	1870
	11/29/2018	61	13000	5920	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	143	NA	ND	19100	NA	NA
	5/1/2022 7/26/2022	42.5	9980	4020		43.3		ND						ND	101			14700	ND	14700
	6/19/2023	43.2	15000	7700	24 7	43.0		ND	ND	ND	ND	ND	ND	29.2	154	ND	ND	23000	ND	23000
MW-1B	9/2/2005	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	23000 ND	ND	23000 ND
	12/21/2005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/9/2006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27.2	27.2
	3/13/2007	ND	0.770	ND	ND	ND	2.76	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.53	NA	NA
	11/22/2017	ND	0.531	ND	ND	ND	ND	ND	ND	ND	3.26	ND	ND	ND	ND	ND	ND	3.79	ND	3.79
WIW-61	9/2/2005	ND	54.7	NA 452	ND		ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	54.7	ND	54.7
	8/9/2006		24.0			15.1		0.011										230	ND 65.4	230
	3/14/2007	ND	1.95	ND	ND	4.04	4.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10.5	NA	NA
	11/21/2017	ND	17.2	170	ND	121	ND	ND	ND	ND	0.940	ND	ND	ND	ND	ND	0.546	310	ND	310
MW-6R	9/2/2005	ND	ND	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/21/2005	ND	83.6	22.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	106	58.5	165
	8/9/2006	ND	8.14	ND	ND	ND	ND	ND	0.929	ND	ND	ND	0.33	ND	ND	ND	ND	9.40	55.1	64.5
	3/13/2007	ND	6.54		ND	ND	186	ND	0.776	6.88	ND 0.00	2.12	ND	ND	ND	ND	ND	202	NA	NA 07.5
	11/21/2017	ND	10.2	7.39	ND	ND	ND	ND	ND	ND	8.29	0.544	ND	ND	ND	1.09	ND	27.5	ND	27.5
MW-1N	11/22/2017	ND	ND	5 12	ND	ND	ND	ND	ND	ND	1 37	ND	ND	ND	ND	ND	ND	6 49	ND	6 4 9
	11/27/2018	ND	ND	3.45	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	3.45	NA	NA
MW-1S	11/22/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-1SE	11/22/2017	ND	0.719	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.719	ND	0.719
MW-21	11/22/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.43	ND	ND	ND	ND	ND	ND	6.43	ND	6.43
MW-2N	11/22/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	0 504	ND	ND	ND	ND	ND	ND	0.504	30 /	30.0
101 00 - 21 V	11/27/2018	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	ND	ND	ND	NA	ND	ND	NA	NA

Historic Groundwater Results Former Swivelier Site Route 304, Nanuet NY EWMA Project No. 202530

Well Information (ft.)	Sampling Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Acetone	Chloroethane	Chloroform	2-Butanone	Methyl tert-butyl ether (MTBE)	Benzene	Bromodichloromethane	1,4-Dichlorobenzene	1,2-Dichlorobenzene	Toluene	1,1-Dichloroethene	TOTAL VO's:	TOTAL TIC's:	TOTAL VO's & TIC's:
TOGS 1.1.1 GW STANDARDS GA CLASS		5	5	5	5	2	50*	5	7	50*	NS	1	50*	3	3	5	5	NS	NS	NS
MW-2S	11/22/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-3N	11/22/2017 11/28/2018	ND ND	ND 0.32J	9.93 7.89	ND ND	2.08 ND	ND NA	ND ND	ND ND	ND NA	2.47 NA	ND NA	ND ND	ND ND	ND ND	ND NA	1.39 ND	15.9 9.4 J	131 NA	147 NA
MW-4I	11/22/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	66.6	ND	ND	ND	ND	ND	ND	66.6	14.7	81.3
MW-4S	11/21/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.7	ND	ND	ND	ND	ND	ND	13.7	ND	13.7
MW-7I	11/21/2017	ND	1.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.31	ND	1.31
MW-7SE	11/21/2017	ND	ND	4.50	ND	1.20	ND	ND	ND	ND	7.32	ND	ND	ND	ND	ND	ND	13.0	ND	13.0
MW-7SW	11/21/2017 11/28/2018	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND NA	46.2 NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND ND	46.2 ND	ND NA	46.2 NA
MW-8DI	11/21/2017 11/28/2018	ND ND	3780 143	1660 68.1	ND 0.514	17.9 ND	ND NA	ND ND	ND ND	ND NA	90.8 NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND 0.554	5550 212	ND NA	5550 NA
MW-9D	11/21/2017 11/28/2018	ND ND	84.2 1080	6.79 212	ND ND	ND ND	15.7 NA	ND ND	ND ND	ND NA	ND NA	ND NA	ND ND	ND ND	ND ND	ND NA	ND ND	107 1290	ND NA	107 NA
MW-9DI	11/21/2017	ND	82.9	1.37	ND	ND	ND	ND	ND	ND	58.4	ND	ND	ND	ND	ND	ND	143	ND	143
MW-9SI	11/21/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.53	ND	ND	ND	ND	ND	ND	3.53	ND	3.53
TW-1	4/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TW-2	4/29/2014	ND	4.95	1.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.09	ND	ND
TW-3	4/29/2014	ND	3.48	4.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.81	ND	ND
TW-4	4/29/2014	ND	0.993	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.49	ND	ND
TW-5	4/29/2014	ND	15	<u>5.21</u>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20.2	ND	ND
TW-6	4/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TW-7	4/29/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TW-8	4/29/2014	ND	0.48	3.61	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.09	ND	ND

ND = Not detected NA = Not analyzed for

EWMA, LLC.

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 1 – Site Location Map

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 2 – Well Location Map

Environmental Waste Management Associates, LLCSCALE: AS SHOWNPROJECT# 202530
P.O. B0X 3430 DRAWN BY: Parsippany, NJ 07054 CHECKED BY: Tel: (973) 560-1400 FILE: k:\drawings\202000\202530\202530\202530C

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Figure 3 – Sub-Slab Depressurization System & Vacuum Readings June 2024

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 1 – IC/EC Certifications

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. V00520	Box 1	
Sit	e Name Swivelier Company		
Sit Cit Co Sit	e Address: 33 Route 304 Zip Code: 10954 y/Town: Nanuet unty: Rockland e Acreage:		
Re	porting Period: July 1, 2023 to August 1, 2024		
		YES	NO
1.	Is the information above correct?	\checkmark	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		✓
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		√
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		✓
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		✓
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Industrial	✓	
7.	Are all ICs/ECs in place and functioning as designed?	✓	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	d	
A	Corrective Measures Work Plan must be submitted along with this form to address th	ese issu	ies.
- Sic	nature of Owner. Remedial Party or Designated Representative		

SITE NO. V00520		Box 3
Description of Institut	tional Controls	
Parcel	<u>Owner</u> S.F Properties LLC	Institutional Control Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Surface Water Use Restriction Monitoring Plan
Commercial development, L	and and GW restrictions Soil Mana	Site Management Plan O&M Plan IC/EC Plan gement Plan under SMP Box 4
Description of Engine	ering Controls	
Parcel	Engineering Control	
	Vapor Mitigation Cover System Fencing/Access Cont Monitoring Wells	rol
Controlled access, SSDS op pavement	erational in building, Monitoring we	Il sampling, Cover system with asphalt

			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and gener	n this ce ally acc	rtification epted
	engineering practices; and the information presented is accurate and compete.	YES	NO
		\checkmark	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:	each Ins t all of th	stitutional e
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is since the date that the Control was put in-place, or was last approved by the Dep	s unchai partment	nged ;;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the	
	(d) nothing has occurred that would constitute a violation or failure to comply wit Site Management Plan for this Control; and	h the	
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the	r the site ne docur	e, the nent.
		YES	NO
		\checkmark	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

SITE OWNER OF	R DESIGNATED REPRESENT	Box 6
SITE OWNER OF	R DESIGNATED REPRESENT	
herein is punishat	tements in Boxes 1,2, and 3 ar ble as a Class "A" misdemeand	re true. I understand that a false or, pursuant to Section 210.45 of the
b M. Strauss	at <u>EWMA, 800 Lanidex I</u> print busine	Plaza, Parsippany, New Jersey 07054,
Designated Represe	entative of Owner	(Owner or Remedial Party
	b M. Strauss t name Designated Represe ed in the Site Deta	b M. Straussat <u>EWMA, 800 Lanidex I</u> t nameprint busine Designated Representative of Owner ed in the Site Details Section of this form.

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Periodic Review Report – Review Period July 2023 to August 2024

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 2 – Annual Inspection of Cover System and Vapor Intrusion Control System

August 2024

Provided as Appendix 2 to the July 2023 – August 2024 Periodic Review Report

August 7, 2024

Mr. Matthew Hubicki Project Manager NYSDEC Division of Environmental Remediation Remedial Bureau C 625 Broadway, 11th Floor Albany, NY 12233-7014

Re: Annual Inspection Report for Vapor Mitigation System & Cover System Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 11101 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Dear Mr. Priore:

EWMA is submitting this Annual Inspection Report, prepared in accordance with NYSDEC and Site Management Plan (SMP) requirements, for the vapor mitigation system (VMS) and cover system at the Former Swivelier Company site (Property).

The VMS for the subject building includes sub-slab de-pressurization, and is fully operational on continuous duty. EWMA conducted initial site inspections on June 19, 2024 and confirmed that the SSDS remained fully operational following repairs in September 2022. Additionally, eight new permanent sub-slab monitoring points were installed on September 22 and 23, 2022 and detailed in EWMA's previous Annual Inspection Report.

The VMS is performing in compliance with SMP requirements, NYSDOH guidelines, and good vapor intrusion control practices. During the June 19, 2024 inspection, vacuum measurements in inches of water column (inch wc) were obtained at permanent sub-slab monitoring points as follows:

Vapor Mitigation System (VMS) Sub-Slab Vacuum Measurements				
Monitoring Point ID	Location	Vacuum (inch wc)		
MP-1	Subzi Mandi	-0.054		
MP-2	Subzi Mandi	-0.008		
MP-3	Construction Hallway	-0.193		
MP-4	Chrysler Dodge Showroom	-0.004		

Appendix 2 – Periodic Review Report – July 2023 to August 2024 Annual Inspection Report for Vapor Mitigation System & Cover System Swivelier Company 33 Route 304, Nanuet, Rockland County, New York 11101 NYSDEC Site Nos. 3-44-036 & V00520

MP-5	Chrysler Dodge Maintenance Garage	-0.198
MP-6	Ashley Furniture Electrical Closet	-0.008
MP-7	Powerhouse Gym Break Room	-0.023
MP-8	Gymnastics Academy Utility Closet	-0.021

The cover system for the Property consists of asphalt pavement, concrete sidewalks, and concrete building slabs, and was found to be intact and functional during our annual inspection.

If you have any questions or require any additional information please feel free to contact the undersigned at our Parsippany, New Jersey office, (973) 560-1400, ext. 195.

Sincerely,

EWMA

and thuis

Jacob Strauss, PE Senior Project Engineer

- Att.: Site Inspection Checklist
- Cc: NYSDEC NYSDOH Client Cathy Bryant, Director, EWMA

APPENDIX 2

FORMER SWIVELIER COMPANY

ANNUAL SITE INSPECTION REPORT/CHECKLIST

Date:June 19, 2024Inspector:Jacob Strauss, EWMA, Sr. Project EngineerReason for Inspection:2024 Annual Site Inspection Checklist

- 1. Is the Site compliant with all Institutional Controls, including Site usage (yes/no)? Yes. If no, describe:
- 2. Provide a general evaluation of Site conditions:

The site was secure and in good condition. The subject building is approximately 32,000 square feet, consisting of multiple commercial and light industrial office tenants, and is surrounded by paved asphalt parking areas.

- 3. *Provide a general evaluation of the condition and effectiveness of composite cover systems:* The cover system for the Property consists of asphalt pavement, concrete sidewalks, and concrete building slabs, and was found to be intact and functional during our annual inspection.
- 4. Provide a general evaluation of the condition and effectiveness of Vapor Intrusion Controls: The vapor mitigation system (VMS) is performing in compliance with SMP requirements, NYSDOH guidelines, and good vapor intrusion control practices. See attached Annual Inspection Report for sub-slab vacuum measurements.
- 5. *Provide a general evaluation of the condition of monitoring wells:* All monitoring wells located onsite are in good condition.
- 6. Are Site management activities being conducted according to Site Management Plan (yes/no)? Yes. If no, describe:
- 7. *Is Site documentation as required by the Site Management Plan up to date (yes/no)?* Yes. *If no, describe:*
- 8. Are any changes to the monitoring program recommended (yes/no)? No. *If yes, describe:*

Periodic Review Report – Review Period July 2023 to August 2024

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 3 – Laboratory Analytical Packages

August 2024

ANALYTICAL DATA REPORT

Environmental Waste Management Associates, LLC. Lanidex Center 100 Misty Lane Parsippany, NJ 07054

> Project Name: SWIVELIER - 202530 IAL Case Number: E24-02128

> > These data have been reviewed and accepted by:

nich

Michael H. Left, Ph.D. Laboratory Director

This report shall not be reproduced, except in its entirety, without the written consent of Integrated Analytical Laboratories, LLC. The test results included in this report relate only to the samples analyzed. The results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

273 Franklin Road Randolph, NJ 07869 Phone: 973 361 4252

Integrated Analytical Laboratories - Table of Contents

Sample Summary	1
Qualifiers Reference	2
Case Narrative	3
Results Summary Report	6
Analytical Results	8
Volatiles	36
Volatile Organic QC Summary	37
Volatile Organic Sample Data	78
Sample Tracking	136
LAST PAGE OF DOCUMENT	141

INTEGRATED ANALYTICAL LABORATORIES, LLC

Lab ID	Client Sample ID	Depth Top/Bottom	Sampling Time	Matrix	<u>Container</u>
02128-001	MW-10D	n/a	6/18/2024@16:40	Aqueous	3
02128-002	MW-11D	n/a	6/19/2024@13:40	Aqueous	3
02128-003	MW-13D	n/a	6/19/2024@13:15	Aqueous	3
02128-004	DUP-1	n/a	6/19/2024@13:20	Aqueous	3
02128-005	FB-1-061824	n/a	6/18/2024@15:20	Aqueous	2
02128-006	FB-2-061924	n/a	6/19/2024@13:40	Aqueous	2
02128-007	TB-061824	n/a	6/18/2024	Aqueous	2

Page 1 of I

Jun 27, 2024 @ 02:01

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

DATA QUALIFIERS AND FLAGS

- B Indicates the analyte found in the associated method blank and in the sample due to potential lab contamination.
- **C** Indicates analyte is a common laboratory contaminant.
- D Indicates analyte was reported from diluted analysis.
- E Identifies a compound concentration that exceeds the upper level of the calibration range of the instrument
- J Indicates an estimated value either when the concentration in the sample is less than the RL or for qualification of TICs
- J1 Indicates an estimated value when ICC or CCV did not meet the criteria.
- M Indicates matrix interference
- N Presumptive evidence of a compound from the use of GC/MS library search.
- T Sample analyzed outside of holding time
- X Indicates samples analyzed for total and dissolved metals differ at ≤20% RPD.
- Y Indicates DO depletion in the BOD blank is >0.20ppm
- Z Indicates internal standard failure. Sample results are either biased high or biased low.
- \$ Value outside NJDEP DKQP Limits
- * Result outside of QC limits

PROJECT NOTES

- All results for soils, solids, and sludges are reported on a dry-weight basis except where noted
- All test results and QC are compliant with TNI or other applicable state agency requirements/guidance unless otherwise notated in the case narrative and/or project information page.
- The case narrative for this SDG should be consulted to determine any non-conformances.
- Any samples with 15-minute or "analyze immediately" holding times (e.g. pH, Dissolved Oxygen, Sulfite, etc.) which are analyzed in the laboratory are considered out of holding time.
- IAL is a NELAP/TNI certified laboratory (TNI ID# TNI01284). IAL retains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).
- Certification is not required to perform analyses in the following states: AL, CO, DE, GA, HI, ID, IN, KY, MD, MI, MS, MO, MT, NE, NM, SD and TN. IAL can perform all analyses, except Drinking Water, within its scope of capabilities in these states.

CFU	Colony Forming Unit	ND	Indicates analyte was analyzed for but not detected
CCB	Continuing Calibration Blank		at MDL or RL (only if MDL is not used)
CCV	Continuing Calibration Verification	NTU	Nephelometric Turbidity Units
DF	Dilution Factor	ppb	Parts per billion. Reported as µg/L or µg/kg
DL	Attached as a suffix to a diluted sample	ppm	Parts per million. Reported as mg/L, µg/mL or mg/kg
DUP	Duplicate	QC	Quality Control
ICB	Initial Calibration Blank	% Rec	Percent Recovery
ICC	Initial Calibration Curve		Reporting Limit. The RL is typically determined by
ICV	Initial Calibration Verification	RL	the concentration of the lowest standard in the
kg	kilogram		calibration curve
L	Liter	RPD	Relative Percent Difference
LCS	Laboratory Control Sample	RSD	Relative Standard Deviation
LCSD	Laboratory Control Sample Duplicate	RT	Retention Time
MDI	Method Detection Limit as determined according to	SU	Standard Units
	40 CFR Part 136 Appendix B	TIC	Tentatively Identified Compound AKA Library Search
MF	Membrane Filter		Compounds
mg	milligram (1000mg = 1g)		The NELAC (National Environmental Laboratory
μg	microgram (1000µg = 1mg)		Accreditation Council) Institute
ml	milliliter (1000ml = 1L)	TNTC	Too numerous to count
μί	microliter (1000µl = 1ml)	*	When attached to a compound name, indicates this
µmhos	Conductivity units - resistance expressed in ohms		analyte was analyzed by Method SW-846 8270 SIM
MPN	Most Probable Number		When attached to a compound name, indicates this
MS	Matrix Spike	^	analyte was analyzed by Method SW-846 8011 or
MSD	Matrix Spike Duplicate		EPA 504.1
NA	Not applicable	~ ~	Less than; In conjunction with a numerical value,
NC	Not calculated		indicates a concentration less than the RL or MDL

ACRONYMS AND ABBREVIATIONS

SAMPLE DELIVERY GROUP CASE NARRATIVE (Conformance / Non-Conformance Summary)

INTEGRATED ANALYTICAL LABORATORIES, LLC

SAMPLE DELIVERY GROUP CASE NARRATIVE

SDG#: E24-02128

Integrated Analytical Laboratories, LLC. received seven (7) samples** from EWMA - HQ (IAL SDG# **E24-02128**, Project: SWIVELIER - 202530) on June 19, 2024 for the analysis of :

(7) TCL VO + 15

**Number of samples listed above may be greater than what is listed on the chain of custody. Any samples that require in-house filtration or splitting will be counted as separate samples.

Samples were received in good condition with documentation in order. Cooler temperature was acceptable at 4 ± 2 degree C.

Volatiles By	SW 8260D		Batch: 240624-01,0625-02	Matrix: Aqueous
QC	- Calibration curve met QC	criteria.		
	- Internal standards recover	ery met Q	C criteria.	
	- Surrogate percent recover	ery met Q	C criteria.	
	- Method blank met QC cr	iteria.		
	- LCS percent recovery me	et QC crite	eria. NJDEP DKQP criteria not met.	
	- MS/MSD RPD met QC c	riteria.		
	- MS/MSD percent recover	ry met QC	criteria. NJDEP DKQP criteria not met	
E24-02128	- All samples were receive	d within h	olding time.	
	- All samples were analyze	ed within h	nolding time.	
	Dilution Summary:			
	Sample ID	DF(s)	Dilution For	
	E24-02128-001	50;100	Target compound(s).	
	E24-02128-002	1	NA	
	E24-02128-003	50;100	Target compound(s).	
	E24-02128-004	50;100	Target compound(s).	
	E24-02128-005	1	NA	
	E24-02128-006	1	NA	
	E24-02128-007	1	NA	

A review of the QA/QC measures for the analysis of the sample(s) contained in this report has been performed by:

Reviewed by

7/8/2024

Date

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Integrated Analytical Laboratories *Client:* Environmental Waste Management Associates, LLC.
Project Location: SWIVELIER - 202530 *IAL Project #:* E24-02128 *IAL Sample ID(s):* E24-02128-001 ~ -007
Sampling Date(s): 6/18/2024

List of DKQP Method Used:

TCL VO by 8260D

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information is provided in the case narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Data of Known Quality."

		YES	NO	N/A
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the NJDEP Data of Known Quality performance standards?	x		
1A	Were the method specified handling, preservation, and holding time requirements met?	x		
1B	EPH Method: Was the EPH method conducted without significant modifications? (see Section 11.3 of respective DKQ methods)			x
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	x		
3	Were samples received at an appropriate temperature (4±2° C)?	x		
4	Were all QA/QC performance criteria specified in the NJDEP DKQP standards achieved?		x	
5A	Were reporting limits specified or referenced on the chain-of-custody or communicated to the laboratory prior to sample receipt?	x		
5B	Were these reporting limits met?	Х		
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the DKQP documents and/or site-specific QAPP?	x		
7	Are project-specific matrix spikes and/or laboratory duplicates included in this data set?		x	

RESULTS SUMMARY REPORT

INTEGRATED ANALYTICAL LABORATORIES, LLC

	Lab Case No.: E24-02128												
DADAMETED/IL // X	Lab ID: Client ID: Matrix: Sampled Date	02128-001 MW-10D Aqueous 6/18/24		02128-002 MW-11D Aqueous 6/19/24		02128-003 MW-13D Aqueous 6/19/24		02128-004 DUP-1 Aqueous 6/19/24					
PARAMETER(Units)		Conc	Q	MDL	Conc	Q	MDL	Conc	Q	MDL	Colle	Q	WIDL
Volatiles (Units)		(ug/L)		(ug/L)		(ug/L))	(ug/L)			
Vinyl chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Cyclohexane TOTAL VO's: TOTAL TIC's: TOTAL VO's & TIC's:		44.8 21.8 7740 12800 43.8 ND 66.6 66.5 20800 ND 20800	DJ DJ DJ	17.6 18.6 13.9 34.7 18.3 19.9 17.7 23.5	ND ND 1.38 1.55 ND ND ND ND 2.93 ND 2.93		0.352 0.372 0.277 0.347 0.365 0.397 0.354 0.469	49.7 24.7 7700 15000 43.2 29.2 154 ND 23000 ND 23000	D DJ D D D D DJ DJ	17.6 18.6 13.9 34.7 18.3 19.9 17.7 23.5	58.8 ND 8130 15000 39.9 ND 175 ND 23400 ND 23400	D D D D D D D	17.6 18.6 13.9 34.7 18.3 19.9 17.7 23.5
PARAMETER(Units)	Lab ID: Client ID: Matrix: Sampled Date	02128-005 FB-1-061824 Aqueous 6/18/24 Conc Q MDL		02128-006 FB-2-061924 Aqueous 6/19/24 Conc Q MDL		006 1924 ous 24 MDL	02128-007 TB-061824 Aqueous 6/18/24 Conc Q MDL		007 824 us 24 MDL				
Volatiles (Units)		((ug/L)		(ug/L)		(ug/L,)			
TOTAL VO's: TOTAL TIC's: TOTAL VO's & TIC's:		ND ND ND			ND ND ND			ND ND ND					

SUMMARY REPORT Client: Environmental Waste Management Associates, LLC. Project: SWIVELIER - 202530 Lab Case No : E24-02128

ND = Analyzed for but Not Detected at the MDL

D = The compound was reported from the Diluted analysis

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

J = Indicates an estimated value either when the concentration in the sample is greater than MDL and less than RL, or for qualification of TICs

ANALYTICAL RESULTS

Lab ID: E24-02128-001 Client ID: MW-10D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9536.D 06/24/2024 18:18 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		50.0	27.6
Chloromethane	ND		25.0	15.5
Vinyl chloride	44.8	D	25.0	17.6
Bromomethane	ND		25.0	19.3
Chloroethane	ND		25.0	16.2
Trichlorofluoromethane	ND		50.0	25.2
1,1-Dichloroethene	ND		25.0	18.2
Acetone	ND		50.0	50.0
Carbon disulfide	ND		25.0	20.2
Methylene chloride	ND		50.0	25.0
trans-1.2-Dichloroethene	21.8	DJ	25.0	18.6
Methyl tert-butyl ether (MTBE)	ND		25.0	12.3
1,1-Dichloroethane	ND		25.0	14.3
cis-1,2-Dichloroethene	7740	D	25.0	13.9
2-Butanone (MEK)	ND		50.0	40.1
Bromochloromethane	ND		25.0	19.0
Chloroform	ND		25.0	14.3
1,1,1-Trichloroethane	ND		25.0	19.1
Carbon tetrachloride	ND		25.0	17.5
1,2-Dichloroethane (EDC)	ND		25.0	13.7
Benzene	ND		25.0	13.5
Trichloroethene	12900	E	25.0	17.4
1,2-Dichloropropane	ND		25.0	13.6
Bromodichloromethane	ND		25.0	12.9
cis-1,3-Dichloropropene	ND		25.0	13.2
4-Methyl-2-pentanone (MIBK)	ND		50.0	30.6

Lab ID: E24-02128-001 Client ID: MW-10D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9536.D 06/24/2024 18:18 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Toluene	ND		25.0	15.1
trans-1,3-Dichloropropene	ND		25.0	16.5
1,1,2-Trichloroethane	ND		25.0	15.7
Tetrachloroethene	43.8	D	25.0	18.3
2-Hexanone	ND		50.0	40.9
Dibromochloromethane	ND		25.0	13.2
1.2-Dibromoethane (EDB)	ND		25.0	14.5
Chlorobenzene	ND		25.0	15.2
Ethylbenzene	ND		25.0	15.7
Total Xylenes	ND		50.0	17.3
Styrene	ND		25.0	15.9
Bromoform	ND		25.0	16.4
Isopropylbenzene	ND		25.0	16.6
1.1.2.2-Tetrachloroethane	ND		25.0	14.2
1.3-Dichlorobenzene	ND		25.0	19.3
1.4-Dichlorobenzene	ND		25.0	19.9
1.2-Dichlorobenzene	66.6	D	25.0	17.7
1.2-Dibromo-3-chloropropane	ND		25.0	20.5
1.2.4-Trichlorobenzene	ND		25.0	17.9
1.2.3-Trichlorobenzene	ND		25.0	20.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50.0	26.9
Methyl acetate	ND		25.0	17.3
Cyclohexane	66.5	D	50.0	23.5
Methylcyclohexane	ND		25.0	21.1
1,3-Dichloropropene (cis- and trans-)	ND		25.0	13.2
Total Target Compounds (51):	20900	DEJ		

D --- Dilution Performed

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

CAS #	Compound	Concentration Q	Time				
		Estimated	Retention				
Date File: 1	E9536.D	% Moisture: 100					
Date Analy	zed: 06/24/2024	Dilution Factor: 50					
Date Receiv	red: 06/19/2024	Matrix-Units: Aqu	Matrix-Units: Aqueous-µg/L				
Client ID: 1	MW-10D	Sample wt/vol: 0.1	mL				
Lab ID: E2	4-02128-001	GC/MS Column: D	GC/MS Column: DB-624				

No peaks detected

Total TICs =

D --- Dilution Performed

J --- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E24-02128-001DL Client ID: MW-10D Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9565.D 06/25/2024 20:34 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		100	55.2
Chloromethane	ND		50.0	30.9
Vinyl chloride	ND		50.0	35.2
Bromomethane	ND		50.0	38.6
Chloroethane	ND		50.0	32.4
Trichlorofluoromethane	ND		100	50.3
1,1-Dichloroethene	ND		50.0	36.3
Acetone	ND		100	100
Carbon disulfide	ND		50.0	40.3
Methylene chloride	ND		100	50.0
trans-1,2-Dichloroethene	ND		50.0	37.2
Methyl tert-butyl ether (MTBE)	ND		50.0	24.5
1,1-Dichloroethane	ND		50.0	28.5
cis-1,2-Dichloroethene	7610	D	50.0	27.7
2-Butanone (MEK)	ND		100	80.2
Bromochloromethane	ND		50.0	37.9
Chloroform	ND		50.0	28.5
1,1,1-Trichloroethane	ND		50.0	38.1
Carbon tetrachloride	ND		50.0	34.9
1,2-Dichloroethane (EDC)	ND		50.0	27.3
Benzene	ND		50.0	27.0
Trichloroethene	12800	D	50.0	34.7
1,2-Dichloropropane	ND		50.0	27.2
Bromodichloromethane	ND		50.0	25.8
cis-1,3-Dichloropropene	ND		50.0	26.4
4-Methyl-2-pentanone (MIBK)	ND		100	61.1

Lab ID: E24-02128-001DL Client ID: MW-10D Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9565.D 06/25/2024 20:34

GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Toluene	ND		50.0	30.2
trans-1,3-Dichloropropene	ND		50.0	33.0
1,1,2-Trichloroethane	ND		50.0	31.3
Tetrachloroethene	ND		50.0	36.5
2-Hexanone	ND		100	81.8
Dibromochloromethane	ND		50.0	26.3
1,2-Dibromoethane (EDB)	ND		50.0	28.9
Chlorobenzene	ND		50.0	30.4
Ethylbenzene	ND		50.0	31.3
Total Xylenes	ND		100	34.5
Styrene	ND		50.0	31.7
Bromoform	ND		50.0	32.8
Isopropylbenzene	ND		50.0	33.2
1,1,2,2-Tetrachloroethane	ND		50.0	28.4
1,3-Dichlorobenzene	ND		50.0	38.6
1,4-Dichlorobenzene	ND		50.0	39.7
1,2-Dichlorobenzene	ND		50.0	35.4
1,2-Dibromo-3-chloropropane	ND		50.0	41.0
1,2,4-Trichlorobenzene	ND		50.0	35.8
1.2.3-Trichlorobenzene	ND		50.0	40.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	53.8
Methyl acetate	ND		50.0	34.5
Cvclohexane	ND		100	46.9
Methylcyclohexane	ND		50.0	42.1
1,3-Dichloropropene (cis- and trans-)	ND		50.0	26.4
Total Target Compounds (51):	20400	D		

D --- Dilution Performed

J --- Value Less than RL & greater than MDL

B --- Compound detected in Blank C --- Common laboratory contamination

E --- Exceeds upper level of Calibration curve

Lab ID: E24-02128-002 Client ID: MW-11D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9535.D 06/24/2024 17:50 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinyl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1,1-Dichloroethene	ND		0.500	0.363
Acetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
trans-1,2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1.1-Dichloroethane	ND		0.500	0.285
cis-1,2-Dichloroethene	1.38		0.500	0.277
2-Butanone (MEK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1,1,1-Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1,2-Dichloroethane (EDC)	ND		0.500	0.273
Benzene	ND		0.500	0.270
Trichloroethene	1.55		0.500	0.347
1,2-Dichloropropane	ND		0.500	0.272
Bromodichloromethane	ND		0.500	0.258
cis-1,3-Dichloropropene	ND		0.500	0.264
4-Methyl-2-pentanone (MIBK)	ND		1.00	0.611

Lab ID: E24-02128-002 Client ID: MW-11D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9535.D 06/24/2024 17:50 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1,3-Dichloropropene	ND		0.500	0.330
1,1,2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1,2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1,1,2,2-Tetrachloroethane	ND		0.500	0.284
1,3-Dichlorobenzene	ND		0.500	0.386
1,4-Dichlorobenzene	ND		0.500	0.397
1,2-Dichlorobenzene	ND		0.500	0.354
1,2-Dibromo-3-chloropropane	ND		0.500	0.410
1,2,4-Trichlorobenzene	ND		0.500	0.358
1,2,3-Trichlorobenzene	ND		0.500	0.406
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.00	0.538
Methyl acetate	ND		0.500	0.345
Cvclohexane	ND		1.00	0.469
Methylcyclohexane	ND		0.500	0.421
1,3-Dichloropropene (cis- and trans-)	ND		0.500	0.264
Total Target Compounds (51):	2.93			

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

Page 2 of 2

VOLATILE ORGANICS Tentatively Identified Compounds

CAS # Compound	Estimated Retention Concentration Q Time				
Date File: E9535.D	% Moisture: 100				
Date Analyzed: 06/24/2024	Dilution Factor: 1				
Date Received: 06/19/2024	Matrix-Units: Aqueous-µg/L				
Client ID: MW-11D	Sample wt/vol: 5mL				
Lab ID: E24-02128-002	GC/MS Column: DB-624				

No peaks detected

Total TICs =

D --- Dilution Performed

J --- Estimated concentration for TICs

0

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E24-02128-003 Client ID: MW-13D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9537.D 06/24/2024 18:45 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		50.0	27.6
Chloromethane	ND		25.0	15.5
Vinyl chloride	49.7	D	25.0	17.6
Bromomethane	ND		25.0	19.3
Chloroethane	ND		25.0	16.2
Trichlorofluoromethane	ND		50.0	25.2
1.1-Dichloroethene	ND		25.0	18.2
Acetone	ND		50.0	50.0
Carbon disulfide	ND		25.0	20.2
Methylene chloride	ND		50.0	25.0
trans-1.2-Dichloroethene	24.7	DJ	25.0	18.6
Methyl tert-butyl ether (MTBE)	ND		25.0	12.3
1.1-Dichloroethane	ND		25.0	14.3
cis-1,2-Dichloroethene	7700	D	25.0	13.9
2-Butanone (MEK)	ND		50.0	40.1
Bromochloromethane	ND		25.0	19.0
Chloroform	ND		25.0	14.3
1,1,1-Trichloroethane	ND		25.0	19.1
Carbon tetrachloride	ND		25.0	17.5
1.2-Dichloroethane (EDC)	ND		25.0	13.7
Benzene	ND		25.0	13.5
Trichloroethene	14500	E	25.0	17.4
1.2-Dichloropropane	ND		25.0	13.6
Bromodichloromethane	ND		25.0	12.9
cis-1,3-Dichloropropene	ND		25.0	13.2
4-Methyl-2-pentanone (MIBK)	ND		50.0	30.6

Lab ID: E24-02128-003 Client ID: MW-13D Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9537.D 06/24/2024 18:45 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Toluene	ND		25.0	15.1
trans-1,3-Dichloropropene	ND		25.0	16.5
1,1,2-Trichloroethane	ND		25.0	15.7
Tetrachloroethene	43.2	D	25.0	18.3
2-Hexanone	ND		50.0	40.9
Dibromochloromethane	ND		25.0	13.2
1,2-Dibromoethane (EDB)	ND		25.0	14.5
Chlorobenzene	ND		25.0	15.2
Ethylbenzene	ND		25.0	15.7
Total Xylenes	ND		50.0	17.3
Styrene	ND		25.0	15.9
Bromoform	ND		25.0	16.4
Isopropylbenzene	ND		25.0	16.6
1,1,2,2-Tetrachloroethane	ND		25.0	14.2
1,3-Dichlorobenzene	ND		25.0	19.3
1,4-Dichlorobenzene	29.2	D	25.0	19.9
1,2-Dichlorobenzene	154	D	25.0	17.7
1,2-Dibromo-3-chloropropane	ND		25.0	20.5
1,2,4-Trichlorobenzene	ND		25.0	17.9
1,2,3-Trichlorobenzene	ND		25.0	20.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50.0	26.9
Methyl acetate	ND		25.0	17.3
Cyclohexane	ND		50.0	23.5
Methylcyclohexane	ND		25.0	21.1
1,3-Dichloropropene (cis- and trans-)	ND		25.0	13.2
Total Target Compounds (51):	22500	DEJ		

D --- Dilution Performed

B --- Compound detected in Blank

J ---- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

Page 2 of 2

VOLATILE ORGANICS Tentatively Identified Compounds

CAS # Compound	Estimated Retention Concentration Q Time
Lab ID: E24-02128-003	GC/MS Column: DB-624
Client ID: MW-13D	Sample wt/vol: 0.1mL
Date Received: 06/19/2024	Matrix-Units: Aqueous-µg/L
Date Analyzed: 06/24/2024	Dilution Factor: 50
Date File: E9537.D	% Moisture: 100

No peaks detected

Total TICs = 0

D --- Dilution Performed

J --- Estimated concentration for TICs

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E24-02128-003DL Client ID: MW-13D Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9566.D 06/25/2024 21:02 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		100	55.2
Chloromethane	ND		50.0	30.9
Vinyl chloride	57.7	D	50.0	35.2
Bromomethane	ND		50.0	38.6
Chloroethane	ND		50.0	32.4
Trichlorofluoromethane	ND		100	50.3
1,1-Dichloroethene	ND		50.0	36.3
Acetone	ND		100	100
Carbon disulfide	ND		50.0	40.3
Methylene chloride	ND		100	50.0
trans-1,2-Dichloroethene	42.3	DJ	50.0	37.2
Methyl tert-butyl ether (MTBE)	ND		50.0	24.5
1,1-Dichloroethane	ND		50.0	28.5
cis-1,2-Dichloroethene	7800	D	50.0	27.7
2-Butanone (MEK)	ND		100	80.2
Bromochloromethane	ND		50.0	37.9
Chloroform	ND		50.0	28.5
1,1,1-Trichloroethane	ND		50.0	38.1
Carbon tetrachloride	ND		50.0	34.9
1,2-Dichloroethane (EDC)	ND		50.0	27.3
Benzene	ND		50.0	27.0
Trichloroethene	15000	D	50.0	34.7
1,2-Dichloropropane	ND		50.0	27.2
Bromodichloromethane	ND		50.0	25.8
cis-1,3-Dichloropropene	ND		50.0	26.4
4-Methyl-2-pentanone (MIBK)	ND		100	61.1

Lab ID: E24-02128-003DL Client ID: MW-13D Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9566.D 06/25/2024 21:02 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Toluene	ND		50.0	30.2
trans-1,3-Dichloropropene	ND		50.0	33.0
1,1,2-Trichloroethane	ND		50.0	31.3
Tetrachloroethene	46.0	DJ	50.0	36.5
2-Hexanone	ND		100	81.8
Dibromochloromethane	ND		50.0	26.3
1,2-Dibromoethane (EDB)	ND		50.0	28.9
Chlorobenzene	ND		50.0	30.4
Ethylbenzene	ND		50.0	31.3
Total Xylenes	ND		100	34.5
Styrene	ND		50.0	31.7
Bromoform	ND		50.0	32.8
Isopropylbenzene	ND		50.0	33.2
1.1.2.2-Tetrachloroethane	ND		50.0	28.4
1,3-Dichlorobenzene	ND		50.0	38.6
1.4-Dichlorobenzene	ND		50.0	39.7
1.2-Dichlorobenzene	183	D	50.0	35.4
1,2-Dibromo-3-chloropropane	ND		50.0	41.0
1.2.4-Trichlorobenzene	ND		50.0	35.8
1,2,3-Trichlorobenzene	ND		50.0	40.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	53.8
Methyl acetate	ND		50.0	34.5
Cvclohexane	ND		100	46.9
Methylcyclohexane	ND		50.0	42.1
1,3-Dichloropropene (cis- and trans-)	ND		50.0	26.4
Total Target Compounds (51):	23100	DJ		

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

Lab ID: E24-02128-004 Client ID: DUP-1 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9538.D 06/24/2024 19:12 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		50.0	27.6
Chloromethane	ND		25.0	15.5
Vinvl chloride	58.8	D	25.0	17.6
Bromomethane	ND		25.0	19.3
Chloroethane	ND		25.0	16.2
Trichlorofluoromethane	ND		50.0	25.2
1.1-Dichloroethene	ND		25.0	18.2
Acetone	ND		50.0	50.0
Carbon disulfide	ND		25.0	20.2
Methylene chloride	ND		50.0	25.0
trans-1.2-Dichloroethene	ND		25.0	18.6
Methyl tert-butyl ether (MTBE)	ND		25.0	12.3
1.1-Dichloroethane	ND		25.0	14.3
cis-1.2-Dichloroethene	8130	D	25.0	13.9
2-Butanone (MEK)	ND		50.0	40.1
Bromochloromethane	ND		25.0	19.0
Chloroform	ND		25.0	14.3
1.1.1-Trichloroethane	ND		25.0	19.1
Carbon tetrachloride	ND		25.0	17.5
1.2-Dichloroethane (EDC)	ND		25.0	13.7
Benzene	ND		25.0	13.5
Trichloroethene	15400	E	25.0	17.4
1.2-Dichloropropane	ND		25.0	13.6
Bromodichloromethane	ND		25.0	12.9
cis-1,3-Dichloropropene	ND		25.0	13.2
4-Methyl-2-pentanone (MIBK)	ND		50.0	30.6

Lab ID: E24-02128-004 Client ID: DUP-1 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9538.D 06/24/2024 19:12 GC/MS Column: DB-624 Sample wt/vol: 0.1mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 50

Compound	Concentration	Q	RL	MDL
Toluene	ND		25.0	15.1
trans-1.3-Dichloropropene	ND		25.0	16.5
1.1.2-Trichloroethane	ND		25.0	15.7
Tetrachloroethene	39.9	D	25.0	18.3
2-Hexanone	ND		50.0	40.9
Dibromochloromethane	ND		25.0	13.2
1.2-Dibromoethane (EDB)	ND		25.0	14.5
Chlorobenzene	ND		25.0	15.2
Ethvlbenzene	ND		25.0	15.7
Total Xylenes	ND		50.0	17.3
Styrene	ND		25.0	15.9
Bromoform	ND		25.0	16.4
Isopropylbenzene	ND		25.0	16.6
1.1.2.2-Tetrachloroethane	ND		25.0	14.2
1.3-Dichlorobenzene	ND		25.0	19.3
1.4-Dichlorobenzene	ND		25.0	19.9
1.2-Dichlorobenzene	175	D	25.0	17.7
1.2-Dibromo-3-chloropropane	ND		25.0	20.5
1.2.4-Trichlorobenzene	ND		25.0	17.9
1.2.3-Trichlorobenzene	ND		25.0	20.3
1 1 2-Trichloro-1.2.2-trifluoroethane	ND		50.0	26.9
Methyl acetate	ND		25.0	17.3
Cyclohexane	ND		50.0	23.5
Methylcyclohexane	ND		25.0	21.1
1,3-Dichloropropene (cis- and trans-)	ND		25.0	13.2
Total Target Compounds (51):	23800	DE		

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

CAS #	Compound	Estimated Retent Concentration Q Tin		
Lab ID: E24	4-02128-004	GC/MS Column: DB-624		
Client ID: E	DUP-1	Sample wt/vol: 0.1mL		
Date Receiv	ed: 06/19/2024	Matrix-Units: Aqueous-µg/L		
Date Analyz	ged: 06/24/2024	Dilution Factor: 50		
Date File: E	g9538.D	% Moisture: 100		

No peaks detected

Total TICs = 0

D --- Dilution Performed

J --- Estimated concentration for TICs

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

Lab ID: E24-02128-004DL Client ID: DUP-1 Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9567.D 06/25/2024 21:30 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		100	55.2
Chloromethane	ND		50.0	30.9
Vinyl chloride	54.1	D	50.0	35.2
Bromomethane	ND		50.0	38.6
Chloroethane	ND		50.0	32.4
Trichlorofluoromethane	ND		100	50.3
1,1-Dichloroethene	ND		50.0	36.3
Acetone	ND		100	100
Carbon disulfide	ND		50.0	40.3
Methylene chloride	ND		100	50.0
trans-1,2-Dichloroethene	ND		50.0	37.2
Methyl tert-butyl ether (MTBE)	ND		50.0	24.5
1,1-Dichloroethane	ND		50.0	28.5
cis-1,2-Dichloroethene	7800	D	50.0	27.7
2-Butanone (MEK)	ND		100	80.2
Bromochloromethane	ND		50.0	37.9
Chloroform	ND		50.0	28.5
1,1,1-Trichloroethane	ND		50.0	38.1
Carbon tetrachloride	ND		50.0	34.9
1,2-Dichloroethane (EDC)	ND		50.0	27.3
Benzene	ND		50.0	27.0
Trichloroethene	15000	D	50.0	34.7
1,2-Dichloropropane	ND		50.0	27.2
Bromodichloromethane	ND		50.0	25.8
cis-1,3-Dichloropropene	ND		50.0	26.4
4-Methyl-2-pentanone (MIBK)	ND		100	61.1

Lab ID: E24-02128-004DL Client ID: DUP-1 Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9567.D 06/25/2024 21:30 GC/MS Column: DB-624 Sample wt/vol: 0.05mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 100

Compound	Concentration	Q	RL	MDL
Toluene	ND		50.0	30.2
trans-1,3-Dichloropropene	ND		50.0	33.0
1,1,2-Trichloroethane	ND		50.0	31.3
Tetrachloroethene	44.0	DJ	50.0	36.5
2-Hexanone	ND		100	81.8
Dibromochloromethane	ND		50.0	26.3
1,2-Dibromoethane (EDB)	ND		50.0	28.9
Chlorobenzene	ND		50.0	30.4
Ethylbenzene	ND		50.0	31.3
Total Xylenes	ND		100	34.5
Styrene	ND		50.0	31.7
Bromoform	ND		50.0	32.8
Isopropylbenzene	ND		50.0	33.2
1,1,2,2-Tetrachloroethane	ND		50.0	28.4
1,3-Dichlorobenzene	ND		50.0	38.6
1,4-Dichlorobenzene	ND		50.0	39.7
1,2-Dichlorobenzene	156	D	50.0	35.4
1,2-Dibromo-3-chloropropane	ND		50.0	41.0
1,2,4-Trichlorobenzene	ND		50.0	35.8
1,2,3-Trichlorobenzene	ND		50.0	40.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	53.8
Methyl acetate	ND		50.0	34.5
Cyclohexane	ND		100	46.9
Methylcyclohexane	ND		50.0	42.1
1,3-Dichloropropene (cis- and trans-)	ND		50.0	26.4
Total Target Compounds (51):	23100	DJ		

D --- Dilution Performed

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

Page 2 of 2

Lab ID: E24-02128-005 Client ID: FB-1-061824 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9523.D 06/24/2024 12:21 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinvl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1 1-Dichloroethene	ND		0.500	0.363
Acetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
trans-1.2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1 1-Dichloroethane	ND		0.500	0.285
cis-1.2-Dichloroethene	ND		0.500	0.277
2-Butanone (MEK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1 1 1-Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1 2-Dichloroethane (EDC)	ND		0.500	0.273
Benzene	ND		0.500	0.270
Trichloroethene	ND		0.500	0.347
1 2-Dichloropropane	ND		0.500	0.272
Bromodichloromethane	ND		0.500	0.258
cis-1 3-Dichloropropene	ND		0.500	0.264
4-Methyl-2-pentanone (MIBK)	ND		1.00	0.611
VOLATILE ORGANICS

Lab ID: E24-02128-005 Client ID: FB-1-061824 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9523.D 06/24/2024 12:21 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1.3-Dichloropropene	ND		0.500	0.330
1.1.2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1.2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1.1.2.2-Tetrachloroethane	ND		0.500	0.284
1.3-Dichlorobenzene	ND		0.500	0.386
1.4-Dichlorobenzene	ND		0.500	0.397
1.2-Dichlorobenzene	ND		0.500	0.354
1.2-Dibromo-3-chloropropane	ND		0.500	0.410
1.2.4-Trichlorobenzene	ND		0.500	0.358
1 2 3-Trichlorobenzene	ND		0.500	0.406
1 1 2-Trichloro-1.2.2-trifluoroethane	ND		1.00	0.538
Methyl acetate	ND		0.500	0.345
Cyclohexane	ND		1.00	0.469
Methylcyclohexane	ND		0.500	0.421
1,3-Dichloropropene (cis- and trans-)	ND		0.500	0.264

Total Target Compounds (51):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL E --- Exceeds upper level of Calibration curve B --- Compound detected in Blank C --- Common laboratory contamination

Page 2 of 2

VOLATILE ORGANICS Tentatively Identified Compounds

CAS #	Compound	Estimated Concentration	Retention 2 Time
Lab ID: E2 Client ID: H Date Receiv Date Analyz Date File: H	4-02128-005 FB-1-061824 red: 06/19/2024 zed: 06/24/2024 E9523.D	GC/MS Column: I Sample wt/vol: 5n Matrix-Units: Aqu Dilution Factor: 1 % Moisture: 100	DB-624 hL leous-µg/L

No peaks detected

Total TICs = 0

D --- Dilution Performed

J --- Estimated concentration for TICs

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

VOLATILE ORGANICS

Lab ID: E24-02128-006 Client ID: FB-2-061924 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9524.D 06/24/2024 12:49 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinyl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1.1-Dichloroethene	ND		0.500	0.363
Acetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
trans-1,2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1.1-Dichloroethane	ND		0.500	0.285
cis-1,2-Dichloroethene	ND		0.500	0.277
2-Butanone (MEK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1,1,1-Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1.2-Dichloroethane (EDC)	ND		0.500	0.273
Benzene	ND		0.500	0.270
Trichloroethene	ND		0.500	0.347
1.2-Dichloropropane	ND		0.500	0.272
Bromodichloromethane	ND		0.500	0.258
cis-1,3-Dichloropropene	ND		0.500	0.264
4-Methyl-2-pentanone (MIBK)	ND		1.00	0.611

VOLATILE ORGANICS

Lab ID: E24-02128-006 Client ID: FB-2-061924 Date Received: 06/19/2024 Date Analyzed: 06/24/2024 Data file: E9524.D 06/24/2024 12:49 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1 3-Dichloropropene	ND		0.500	0.330
1 1.2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1 2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1 1 2 2-Tetrachloroethane	ND		0.500	0.284
1.3-Dichlorobenzene	ND		0.500	0.386
1,3-Dichlorobenzene	ND		0.500	0.397
1.2 Dichlorobenzene	ND		0.500	0.354
1.2-Dibromo-3-chloropropane	ND		0.500	0.410
1.2.4.Trichlorobenzene	ND		0.500	0.358
1,2,3-Trichlorobenzene	ND		0.500	0.406
1,1,2, Trichloro-1,2,2-trifluoroethane	ND		1.00	0.538
Nethyl acetate	ND		0.500	0.345
Cyclobevane	ND		1.00	0.469
Mothylovalobevane	ND		0.500	0.421
1.2 Dichloronronene (cis_ and trans_)	ND		0.500	0.264
1,5-Diemotopiopene (eis- and trans-)				
Total Target Compounds (51)	: 0			

D --- Dilution Performed

B --- Compound detected in Blank

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

	•						
CAS #	Compound	Concentration Q	Time				
		Estimated	Retention				
Date File: I	E9524.D	% Moisture: 100					
Date Analyzed: 06/24/2024		Dilution Factor: 1	Dilution Factor: 1				
Date Received: 06/19/2024		Matrix-Units: Aqueous-µg/L					
Client ID: FB-2-061924		Sample wt/vol: 5mL					
Lab ID: E2	4-02128-006	GC/MS Column: DB-624					

No peaks detected

Total TICs =

D --- Dilution Performed

J --- Estimated concentration for TICs

0

N ---- Presumptive evidence of a compound from the use of GC/MS NIST library search

VOLATILE ORGANICS

Lab ID: E24-02128-007 Client ID: TB-061824 Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9551.D 06/25/2024 14:09 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinyl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1,1-Dichloroethene	ND		0.500	0.363
Acetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
trans-1,2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1,1-Dichloroethane	ND		0.500	0.285
cis-1,2-Dichloroethene	ND		0.500	0.277
2-Butanone (MEK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1,1,1-Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1,2-Dichloroethane (EDC)	ND		0.500	0.273
Benzene	ND		0.500	0.270
Trichloroethene	ND		0.500	0.347
1,2-Dichloropropane	ND		0.500	0.272
Bromodichloromethane	ND		0.500	0.258
cis-1,3-Dichloropropene	ND		0.500	0.264
4-Methyl-2-pentanone (MIBK)	ND		1.00	0.611

VOLATILE ORGANICS

Lab ID: E24-02128-007 Client ID: TB-061824 Date Received: 06/19/2024 Date Analyzed: 06/25/2024 Data file: E9551.D 06/25/2024 14:09 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1,3-Dichloropropene	ND		0.500	0.330
1,1,2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1,2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1,1,2,2-Tetrachloroethane	ND		0.500	0.284
1.3-Dichlorobenzene	ND		0.500	0.386
1.4-Dichlorobenzene	ND		0.500	0.397
1.2-Dichlorobenzene	ND		0.500	0.354
1.2-Dibromo-3-chloropropane	ND		0.500	0.410
1.2.4-Trichlorobenzene	ND		0.500	0.358
1.2.3-Trichlorobenzene	ND		0.500	0.406
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.00	0.538
Methyl acetate	ND		0.500	0.345
Cyclohexane	ND		1.00	0.469
Methylcyclohexane	ND		0.500	0.421
1.3-Dichloropropene (cis- and trans-)	ND		0.500	0.264

Total Target Compounds (51):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

CAS#	Compound	Concentration					
C L C II	Comment	Concentration C	Time				
		Estimated	Retention				
Date File: E9551.D		% Moisture: 100					
Date Analyzed: 06/25/2024		Dilution Factor: 1					
Date Receiv	red: 06/19/2024	Matrix-Units: Aqueous-µg/L					
Client ID:	ГВ-061824	Sample wt/vol: 5m	iL				
Lab ID: E2	4-02128-007	GC/MS Column: I	GC/MS Column: DB-624				

No peaks detected

Total TICs = 0

D --- Dilution Performed

J --- Estimated concentration for TICs

N --- Presumptive evidence of a compound from the use of GC/MS NIST library search

VOLATILE ORGANICS

VOLATILE ORGANICS QC SUMMARY

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 06/24/2024

Lab Sample ID	Matrix	File ID	SMC1 #	# SMC2	# SMC3 #
BLKA240624-01	AQUEOUS	E9520.D	99	101	100
E24-02091-005	AQUEOUS	E9521.D	104	101	99
E24-02091-004	AQUEOUS	E9522.D	103	101	100
E24-02128-005	AQUEOUS	E9523.D	104	102	100
E24-02128-006	AQUEOUS	E9524.D	106	102	102
E24-02124-006	AQUEOUS	E9525.D	110	101	97
E24-02124-005	AQUEOUS	E9526.D	109	101	98
E24-02091-001	AQUEOUS	E9527.D	109	101	100
E24-02091-001DUP	AQUEOUS	E9528.D	109	101	100
E24-02091-002	AQUEOUS	E9529.D	108	102	101
E24-02091-003	AQUEOUS	E9530.D	107	102	97
E24-02124-001	AQUEOUS	E9531.D	108	103	98
E24-02124-002	AQUEOUS	E9532.D	114	100	103
E24-02124-003	AQUEOUS	E9533.D	107	99	100
E24-02124-004	AQUEOUS	E9534.D	107	103	101
E24-02128-002	AQUEOUS	E9535.D	119	99	103
E24-02128-001	AQUEOUS	E9536.D	110	103	104
E24-02128-003	AQUEOUS	E9537.D	112	99	101
E24-02128-004	AQUEOUS	E9538.D	111	101	102
E24-02132-004	AQUEOUS	E9539.D	108	102	100
E24-02107-005DL	AQUEOUS	E9540.D	109	104	107
E24-02107-012	AQUEOUS	E9541.D	107	101	101
LCSA_240624-01	AQUEOUS	E9542.D	108	108	104
2124-004MS	AQUEOUS	E9543.D	104	102	107
				Leachate	
		Concentration	DKQPs	Aqueous	Soil
SMC1 = 1,2-Dichloroe	thane-d4	50 ppb	70-130	70-131	51-148
SMC2 = Toluene-d8		50 ppb	70-130	70-130	53-149

50 ppb

Column used to flag recovery values that did not meet criteria

* Values outside of QC limits

SMC3 = Bromofluorobenzene

- \$ Values outside of NJ DKQP limits
- D Surrogate diluted out
- M Matrix interference

FORM 2

70-130 70-130 57-147

VOLATILE SURROGATE PERCENT RECOVERY SUMMARY

Date Analyzed: 06/25/2024

Lab Sample ID	Matrix	File ID	SMC1 #	SMC2	# SMC3 #
BLKA240625-01	AQUEOUS	E9550.D	103	101	101
E24-02128-007	AQUEOUS	E9551.D	105	101	100
E24-02133-010	AQUEOUS	E9552.D	106	101	102
E24-02133-008	AQUEOUS	E9553.D	107	100	103
E24-02148-011	AQUEOUS	E9554.D	105	101	101
E24-02148-010	AQUEOUS	E9555.D	103	101	101
E24-02148-009	AQUEOUS	E9556.D	108	100	102
E24-02148-001	AQUEOUS	E9557.D	106	103	101
E24-02148-001DUP	AQUEOUS	E9558.D	107	101	101
E24-02148-002	AQUEOUS	E9559.D	106	101	101
E24-02148-004	AQUEOUS	E9560.D	108	99	103
E24-02148-003	AQUEOUS	E9561.D	113	102	101
E24-02148-006	AQUEOUS	E9562.D	104	101	104
E24-02142-022	AQUEOUS	E9563.D	107	100	102
E24-02142-023	AQUEOUS	E9564.D	105	102	105
E24-02128-001DL	AQUEOUS	E9565.D	105	101	102
E24-02128-003DL	AQUEOUS	E9566.D	103	102	104
E24-02128-004DL	AQUEOUS	E9567.D	105	104	104
E24-02148-007	AQUEOUS	E9568.D	105	101	100
E24-02148-008	AQUEOUS	E9569.D	108	103	108
E24-02148-005	AQUEOUS	E9570.D	109	103	107
E24-02142-024	AQUEOUS	E9571.D	99	101	102
LCSA 240625-01	AQUEOUS	E9572.D	105	105	106
2148-004MS	AQUEOUS	E9573.D	100	105	106
				Leachate	
		Concentration	DKQPs	Aqueous	Soil
SMC1 = 1,2-Dichloro	ethane-d4	50 ppb	70-130	70-131	51-148
SMC2 = Toluene-d8		50 ppb	70-130	70-130	53-149
SMC3 = Bromofluoro	benzene	50 ppb	70-130	70-130	57-147

Column used to flag recovery values that did not meet criteria

* Values outside of QC limits

\$ Values outside of NJ DKQP limits

D Surrogate diluted out

M Matrix interference

8260

LCS ACCURACY REPORT

Lab ID: LCSA_240624-01 Date Received: 06/10/2024 Date Analyzed: 06/17/2024 LCS Data file: E9542.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

		Conc.	%Rec.		
Compound	Conc. Add	LCS	LCS	#	Limits
Dichlorodifluoromethane	50.0	37.8	76		55-148
Chloromethane	50.0	50.8	102		46-136
Vinyl chloride	50.0	54.5	109		64-134
Bromomethane	50.0	53.4	107		62-142
Chloroethane	50.0	56.4	113		80-127
Trichlorofluoromethane	50.0	59.9	120		68-144
Acrolein	150	710.8	474	*\$	10-171
1,1-Dichloroethene	50.0	60.9	122		75-134
Acetone	100	137.5	138	\$	48-142
Carbon disulfide	50.0	53.6	107		64-134
Vinyl acetate	50.0	52.0	104		43-151
Methylene chloride	50.0	36.0	72		71-132
Acrylonitrile	150.0	321.4	214	\$	10-223
tert-Butyl alcohol (TBA)	100.0	123.2	123		64-131
trans-1,2-Dichloroethene	50.0	54.3	109		75-126
Methyl tert-butyl ether (MTBE)	50.0	56.9	114		69-133
1,1-Dichloroethane	50.0	57.5	115		79-125
Diisopropyl ether (DIPE)	50.0	60.8	122	*	79-120
cis-1,2-Dichloroethene	50.0	57.4	115		80-126
2,2-Dichloropropane	50.0	104.0	208	*\$	36-160
2-Butanone (MEK)	100	105.3	105		66-130
Bromochloromethane	50.0	56.8	114		66-132
Chloroform	50.0	55.5	111		75-139
1,1,1-Trichloroethane	50.0	57.9	116		68-151
Carbon tetrachloride	50.0	60.3	121		76-140
1,1-Dichloropropene	50.0	58.8	118		80-134
1,2-Dichloroethane (EDC)	50.0	56.5	113		72-139
Benzene	50.0	55.1	110		80-120
Trichloroethene	50.0	55.6	111		74-139
1,2-Dichloropropane	50:0	59.0	118		73-122
Dibromomethane	50.0	54.6	109		78-136
1,4-Dioxane	1500	0	0	*\$	52-136
Bromodichloromethane	50.0	55.3	111		74-141
2-Chloroethyl vinyl ether	100	119.9	120		73-122
cis-1,3-Dichloropropene	50.0	61.2	122		73-129
4-Methyl-2-pentanone (MIBK)	100	117.9	118		77-124
Toluene	50.0	57.5	115		78-129
trans-1,3-Dichloropropene	50.0	60.7	121		66-135
1,1,2-Trichloroethane	50.0	56.8	114		78-120
Tetrachloroethene	50.0	60.6	121		65-145
1,3-Dichloropropane	50.0	55.9	112		80-122

LCS ACCURACY REPORT

Lab ID: LCSA_240624-01 Date Received: 06/10/2024 Date Analyzed: 06/17/2024 LCS Data file: E9542.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

	Conc.	Conc.	%Rec.	1997		
Compound	Add	LCS	LCS	#	Limits	
2-Hexanone	100	119.8	120		66-134	
Dibromochloromethane	50.0	52.8	106		73-140	
1,2-Dibromoethane (EDB)	50.0	54.5	109		73-137	
Chlorobenzene	50.0	51.5	103		80-120	
1,1,1,2-Tetrachloroethane	50.0	50.0	100		79-130	
Ethylbenzene	50.0	55.7	111		80-124	
m,p-Xylene	100.0	109.0	109		80-129	
o-Xylene	50.0	55.1	110		80-128	
Styrene	50.0	57.8	116		80-129	
Bromoform	50.0	47.5	95		79-123	
Isopropylbenzene	50.0	57.5	115		80-137	
1,1,2,2-Tetrachloroethane	50.0	53.1	106		52-128	
Bromobenzene	50.0	50.5	101		80-124	
1,2,3-Trichloropropane	50.0	48.6	97		77-120	
n-Propylbenzene	50.0	59.5	119		80-130	
2-Chlorotoluene	50.0	56.6	113		76-136	
1,3,5-Trimethylbenzene	50.0	56.0	112		76-140	
4-Chlorotoluene	50.0	54.2	108		75-135	
tert-Butylbenzene	50.0	57.1	114		78-142	
1,2,4-Trimethylbenzene	50.0	56.9	114		74-143	
sec-Butylbenzene	50.0	58.4	117		80-133	
1,3-Dichlorobenzene	50.0	48.8	98		71-129	
4-Isopropyltoluene	50.0	57.2	114		79-136	
1,4-Dichlorobenzene	50.0	52.1	104		71-131	
n-Butylbenzene	50.0	61.1	122		77-122	
1,2-Dichlorobenzene	50.0	51.8	104		70-125	
1,2-Dibromo-3-chloropropane	50.0	48.3	97		49-126	
1,2,4-Trichlorobenzene	50.0	49.3	99		27-132	
Hexachlorobutadiene	50.0	45.1	90		18-141	
Naphthalene	50.0	51.7	103		38-140	
1,2,3-Trichlorobenzene	50.0	47.8	96		47-131	
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	52.1	104		68-140	
Methyl acetate	50.0	45.6	91		53-124	
Cyclohexane	50.0	50.6	101		61-132	
Methylcyclohexane	50.0	51.0	102		61-144	

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

\$ Values outside of NJ DKQP limits

LCS ACCURACY REPORT

Lab ID: LCSA_240624-01 Date Received: 06/10/2024 Date Analyzed: 06/17/2024 LCS Data file: E9542.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Conc. Add	LCS	MS Conc.	%Rec	#	

As per SW-846 8260C, up to 10% of the compounds may be out , but must be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

> Leachate Aqueous/Meoh Soil/Sediment 70-130 70-130

LCS ACCURACY (%REC)

Column used to flag recovery values that did not meet criteria

- * Values outside of QC limits
- \$ Values outside of NJ DKQP limits
- NC Not calculable

8260

LCS ACCURACY REPORT

Lab ID: LCSA_240625-01 Date Received: NA Date Analyzed: 06/25/2024 LCS Data file: E9572.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

		Conc.	%Rec.		
Compound	Conc. Add	LCS	LCS	#	Limits
Dichlorodifluoromethane	50.0	34.3	69	S	55-148
Chloromethane	50.0	46.7	93		46-136
Vinyl chloride	50.0	53.6	107		64-134
Bromomethane	50.0	53.3	107		62-142
Chloroethane	50.0	61.9	124		80-127
Trichlorofluoromethane	50.0	60.8	122		68-144
Acrolein	150	644.6	430	*\$	10-171
1,1-Dichloroethene	50.0	59.9	120		75-134
Acetone	100	135.0	135	S	48-142
Carbon disulfide	50.0	54.1	108		64-134
Vinvl acetate	50.0	57.6	115		43-151
Methylene chloride	50.0	56.2	112		71-132
Acrylonitrile	150.0	274.2	183	\$	10-223
tert-Butyl alcohol (TBA)	100.0	116.7	117		64-131
trans-1.2-Dichloroethene	50.0	57.7	115		75-126
Methyl tert-butyl ether (MTBE)	50.0	59.0	118		69-133
1 1-Dichloroethane	50.0	59.8	120		79-125
Diisopropyl ether (DIPE)	50.0	63.5	127	*	79-120
cis-1.2-Dichloroethene	50.0	58.6	117		80-126
2.2-Dichloropropane	50.0	105.6	211	*\$	36-160
2-Butanone (MEK)	100	126.1	126		66-130
Bromochloromethane	50.0	60.6	121		66-132
Chloroform	50.0	55.9	112		75-139
1.1.1-Trichloroethane	50.0	59.8	120		68-151
Carbon tetrachloride	50.0	61.1	122		76-140
L 1-Dichloropropene	50.0	59.0	118		80-134
1 2-Dichloroethane (EDC)	50.0	58.1	116		72-139
Benzene	50.0	55.7	111		80-120
Trichloroethene	50.0	54.4	109		74-139
1.2-Dichloropropane	50.0	57.7	115		73-122
Dibromomethane	50.0	55.2	110		78-136
1 4-Dioxane	1500	0	0	*\$	52-136
Bromodichloromethane	50.0	57.2	114		74-141
2-Chloroethyl vinyl ether	100	121.6	122		73-122
cis-1 3-Dichloropropene	50.0	62.6	125		73-129
4-Methyl-2-pentanous (MIBK)	100	121.7	122		77-124
Toluene	50.0	59.2	118		78-129
trans-1 3-Dichloropropene	50.0	61.2	122		66-135
1.1.2-Trichloroethane	50.0	56.7	113		78-120
Tetrachloroethene	50.0	61.7	123		65-145
1,3-Dichloropropane	50.0	55.8	112		80-122

Page 1 of 3

LCS ACCURACY REPORT

Lab ID: LCSA_240625-01 Date Received: NA Date Analyzed: 06/25/2024 LCS Data file: E9572.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

	Conc.	Conc.	%Rec.		
Compound	Add	LCS	LCS	#	Limits
2-Hexanone	100	121.0	121		66-134
Dibromochloromethane	50.0	55.6	111		73-140
1.2-Dibromoethane (EDB)	50.0	55.8	112		73-137
Chlorobenzene	50.0	52.2	104		80-120
1.1.1.2-Tetrachloroethane	50.0	50.8	102		79-130
Ethylbenzene	50.0	56.3	113		80-124
m.p-Xvlene	100.0	113.1	113		80-129
o-Xylene	50.0	56.5	113		80-128
Styrene	50.0	58.9	118		80-129
Bromoform	50.0	50.7	101		79-123
Isopropylbenzene	50.0	59.6	119		80-137
1.1.2.2-Tetrachloroethane	50.0	54.5	109		52-128
Bromobenzene	50.0	52.6	105		80-124
1.2.3-Trichloropropane	50.0	48.5	97		77-120
n-Propylbenzene	50.0	63.3	127		80-130
2-Chlorotoluene	50.0	59.0	118		76-136
1,3,5-Trimethylbenzene	50.0	59.0	118		76-140
4-Chlorotoluene	50.0	55.5	111		75-135
tert-Butylbenzene	50.0	61.7	123		78-142
1,2,4-Trimethylbenzene	50.0	60.6	121		74-143
sec-Butylbenzene	50.0	62.4	125		80-133
1,3-Dichlorobenzene	50.0	51.3	103		71-129
4-Isopropyltoluene	50.0	62.7	125		79-136
1,4-Dichlorobenzene	50.0	54.7	109		71-131
n-Butylbenzene	50.0	68.0	136	*\$	77-122
1,2-Dichlorobenzene	50.0	55.7	111		70-125
1,2-Dibromo-3-chloropropane	50.0	51.4	103		49-126
1,2,4-Trichlorobenzene	50.0	58.5	117		27-132
Hexachlorobutadiene	50.0	54.8	110		18-141
Naphthalene	50.0	58.8	118		38-140
1,2,3-Trichlorobenzene	50.0	55.5	111		47-131
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	51.5	103		68-140
Methyl acetate	50.0	50.3	101		55-124
Cyclohexane	50.0	51.1	102		61-132
Methylcyclohexane	50.0	50.8	102		01-144

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

\$ Values outside of NJ DKQP limits

Page 2 of 3

LCS ACCURACY REPORT

Compound	Conc. Add	LCS	MS Conc.	%Rec	#
Lab ID: LCSA_240625-01 Date Received: NA Date Analyzed: 06/25/2024 LCS Data file: E9572.D			GC/MS Colun Sample wt/vol Matrix-Units: % Moisture: Dilution Facto	nn: DB-624 : 5mL Aqueous-µg/ 100 or: 1	′L

As per SW-846 8260C, up to 10% of the compounds may be out , but must be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

> Leachate Aqueous/Meoh Soil/Sediment 70-130 70-130

LCS ACCURACY (%REC)

Column used to flag recovery values that did not meet criteria

- * Values outside of QC limits
- \$ Values outside of NJ DKQP limits

NC Not calculable

8260

SAMPLE MS RESULTS SUMMARY

_ab ID: E24-02124-004 GC/MS GCC/MS GCC/MS GC/MS GC/MS GC/MS GC/MS GC/MS GC/MS			MS Column: DB-624			
Client ID: W-2			Sample w	/t/vol: :	5mL	
Date Received: NA			Matrix-U	nits: A	queou	s-μg/L
Date Analyzed: 06/24/2024			% Moistu	ire: 100)	
Sample Data file: E9534.D			Dilution	Factor:	1	
Sample MS Data file: E9543.I)		Dilution	Factor:	1	
	Conc.		Conc.	%Rec	•	
Compound	Add	Sample	MS	MS	#	Rec. Limits
Dichlorodifluoromethane	50.0	0.00	39.80	80		51-153
Chloromethane	50.0	0.00	47.00	94		61-146
Vinyl chloride	50.0	0.00	54.60	109		66-164
Bromomethane	50.0	0.00	49.30	99		56-159
Chloroethane	50.0	0.00	56.10	112		67-152
Trichlorofluoromethane	50.0	0.00	60.60	121		57-167
Acrolein	150.0	0.00	533.00	355	*\$	10-186
1,1-Dichloroethene	50.0	0.00	59.10	118		63-156
Acetone	100.0	0.00	106.90	107		39-168
Carbon disulfide	50.0	0.00	51.80	104		61-144
Vinyl acetate	50.0	0.00	42.40	85		31-152
Methylene chloride	50.0	0.00	51.70	103		66-133
Acrylonitrile	150.0	0.00	274.00	183	*\$	59-141
tert-Butyl alcohol (TBA)	100.0	0.00	114.40	114		61-137
trans-1,2-Dichloroethene	50.0	0.00	53.50	107		70-144
Methyl tert-butyl ether (MTBE	50.0	0.00	53.30	107		70-133
1,1-Dichloroethane	50.0	0.00	55.10	110		69-148
Diisopropyl ether (DIPE)	50.0	0.00	57.30	115		69-145
cis-1,2-Dichloroethene	50.0	0.00	55.70	111		70-140
2,2-Dichloropropane	50.0	0.00	99.50	199	*\$	37-149
2-Butanone (MEK)	100.0	0.00	104.60	105		65-147
Bromochloromethane	50.0	0.00	55.10	110		70-136
Chloroform	50.0	0.00	52.60	105		70-143
1,1,1-Trichloroethane	50.0	0.00	55.90	112		70-158
Carbon tetrachloride	50.0	0.00	58.50	117		59-174
1,1-Dichloropropene	50.0	0.00	55.30	111		70-148
1,2-Dichloroethane (EDC)	50.0	0.00	53.30	107		70-141
Benzene	50.0	0.00	50.70	101		70-131
Trichloroethene	50.0	0.00	48.20	96		56-160
1,2-Dichloropropane	50.0	0.00	53.00	106		68-134
Dibromomethane	50.0	0.00	48.30	97		70-130
1,4-Dioxane	1500.0	0.00	0.00	0	*\$	67-132
Bromodichloromethane	50.0	0.00	51.10	102		70-135
2-Chloroethyl vinyl ether	100.0	0.00	0.00	0	\$	0-132
cis-1,3-Dichloropropene	50.0	0.00	57.30	115		70-131
4-Methyl-2-pentanone (MIBK	100.0	0.00	107.10	107		70-130
Toluene	50.0	0.00	53.50	107		70-130
trans-1,3-Dichloropropene	50.0	0.00	56.00	112		70-130
1,1,2-Trichloroethane	50.0	0.00	51.10	102		70-130
Tetrachloroethene	50.0	0.00	54.30	109		70-133
1,3-Dichloropropane	50.0	0.00	51.80	104		70-130

Page 1 of 3

SAMPLE MS RESULTS SUMMARY

Lab ID: E24-02124-004	GC/MS Column: DB-624				-624	
Client ID: W-2	Sample wt/vol: 5mL					
Date Received: NA			Matrix-U	nits: Ac	lneor	ıs-µg/L
Date Analyzed: 06/24/2024			% Moistu	re: 100		
Sample Data file: E9534.D			Dilution l	Factor:	1	
Sample MS Data file: E9543.D)		Dilution I	Factor:	1	
	Conc.		Conc.	%Rec.		
Compound	Add	Sample	MS	MS	#	Rec. Limits
2-Hexanone	100	0.00	106.80	107		68-144
Dibromochloromethane	50	0.00	48.40	97		70-140
1,2-Dibromoethane (EDB)	50	0.00	49.20	98		63-137
Chlorobenzene	50	0.00	49.10	98		70-130
1,1,1,2-Tetrachloroethane	50	0.00	47.90	96		68-132
Ethylbenzene	50	0.00	52.70	105		70-131
m,p-Xylene	100	0.00	105.00	105		70-136
o-Xylene	50	0.00	52.90	106		70-130
Styrene	50	0.00	54.30	109		70-139
Bromoform	50	0.00	46.10	92		65-138
Isopropylbenzene	50	0.00	55.60	111		70-133
1.1.2.2-Tetrachloroethane	50	0.00	54.20	108		34-147
Bromobenzene	50	0.00	48.30	97		70-132
1.2.3-Trichloropropane	50	0.00	45.30	91		63-130
n-Propylbenzene	50	0.00	57.20	114		70-130
2-Chlorotoluene	50	0.00	53.80	108		70-130
1,3,5-Trimethylbenzene	50	0.00	53.60	107		70-130
4-Chlorotoluene	50	0.00	52.00	104		70-130
tert-Butylbenzene	50	0.00	55.50	111		70-130
1,2,4-Trimethylbenzene	50	0.00	54.20	108		70-130
sec-Butylbenzene	50	0.00	56.10	112		70-130
1,3-Dichlorobenzene	50	0.00	45.90	92		70-130
4-Isopropyltoluene	50	0.00	56.40	113		70-130
1,4-Dichlorobenzene	50	0.00	48.90	98		70-130
n-Butylbenzene	50	0.00	58.30	117		70-130
1,2-Dichlorobenzene	50	0.00	49.20	98		59-132
1,2-Dibromo-3-chloropropane	50	0.00	48.90	98		63-130
1,2,4-Trichlorobenzene	50	0.00	44.50	89		70-130
Hexachlorobutadiene	50	0.00	44.20	88		52-137
Naphthalene	50	0.00	48.10	96		49-151
1,2,3-Trichlorobenzene	50	0.00	44.10	88		59-130
1,1,2-Trichloro-1,2,2-trifluoro	50	0.00	56.30	113		59-156
Methyl acetate	50	0.00	38.10	76		58-134
Cyclohexane	50	0.00	53.00	106		61-151
Methylcyclohexane	50	0.00	54.50	109		63-142

Leachate

Aqueous/Meoh Soil/Sediment

70-130 70-130

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

MS Recovery Limits (DKQP)

\$ Values outside of NJ DKQP limits

NC Not calculable

SAMPLE MS RESULTS SUMMARY

Lab ID: E24-02124-004			GC/MS (Column:	DB-62	24
Client ID: W-2			Sample w	vt/vol: 5	mL	
Date Received: NA			Matrix-U	nits: Ac	jueous-	μg/L
Date Analyzed: 06/24/2024			% Moistu	ire: 100		
Sample Data file: E9534.D			Dilution	Factor:	1	
Sample MS Data file: E9543.D			Dilution	Factor:	1	
	Conc.		Conc.	%Rec.		
Compound	Add	Sample	MS	MS	#	Rec. Limits

2-Chloroethyl vinyl ether has zero spike recovery in the MS. This is due to the HCL acid preservation used on the samples. It is a known phenomenon, that this compound decomposes in the presence of acid.

As per SW-846 8260C, up to 10% of the compounds may be out, but may be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

Leachate

70-130

Aqueous/Meoh Soil/Sediment

70-130

MS Recovery Limits (DKQP)

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

\$ Values outside of NJ DKQP limits

NC Not calculable

Page 3 of 3

8260

SAMPLE MS RESULTS SUMMARY

Lab ID: E24-02148-004	GC/MS Column: DB-624				24	
Client ID: MW-5	t ID: MW-5 Sample wt/vol: 5mL					
Date Received: NA M				nits: Ac	queous	-μg/L
Date Analyzed: 06/26/2024			% Moistu	re: 100		
Sample Data file: E9560.D			Dilution F	factor:	1	
Sample MS Data file: E9573.D	1		Dilution F	Factor:	1	
	Conc.		Conc.	%Rec.		
Compound	Add	Sample	MS	MS	#	Rec. Limits
Dichlorodifluoromethane	50.0	0.00	36.60	73		51-153
Chloromethane	50.0	0.00	49.10	98		61-146
Vinyl chloride	50.0	0.00	54.20	108		66-164
Bromomethane	50.0	0.00	50.80	102		56-159
Chloroethane	50.0	0.00	54.10	108		67-152
Trichlorofluoromethane	50.0	0.00	61.10	122		57-167
Acrolein	150.0	0.00	461.00	307	*\$	10-186
1,1-Dichloroethene	50.0	0.00	61.60	123		63-156
Acetone	100.0	0.00	111.40	111		39-168
Carbon disulfide	50.0	0.00	55.00	110		61-144
Vinyl acetate	50.0	0.00	46.50	93		31-152
Methylene chloride	50.0	0.00	55.30	111		66-133
Acrylonitrile	150.0	0.00	270.00	180	*\$	59-141
tert-Butyl alcohol (TBA)	100.0	92.40	204.80	112		61-137
trans-1,2-Dichloroethene	50.0	0.00	55.60	111		70-144
Methyl tert-butyl ether (MTBE	50.0	83.30	134.30	102		70-133
1,1-Dichloroethane	50.0	0.00	58.30	117		69-148
Dijsopropyl ether (DIPE)	50.0	0.00	60.90	122		69-145
cis-1,2-Dichloroethene	50.0	0.00	57.10	114		70-140
2.2-Dichloropropane	50.0	0.00	93.20	186	*\$	37-149
2-Butanone (MEK)	100.0	0.00	116.80	117		65-147
Bromochloromethane	50.0	0.00	56.90	114		70-136
Chloroform	50.0	0.00	53.90	108		70-143
1,1,1-Trichloroethane	50.0	0.00	57.10	114		70-158
Carbon tetrachloride	50.0	0.00	58.30	117		59-174
1,1-Dichloropropene	50.0	0.00	57.30	115		70-148
1,2-Dichloroethane (EDC)	50.0	0.00	55.20	110		70-141
Benzene	50.0	0.00	53.90	108		70-131
Trichloroethene	50.0	0.00	51.40	103		56-160
1.2-Dichloropropane	50.0	0.00	57.00	114		68-134
Dibromomethane	50.0	0.00	51.20	102		70-130
1.4-Dioxane	1500.0	0.00	0.00	0	*\$	67-132
Bromodichloromethane	50.0	0.00	55.30	111		70-135
2-Chloroethyl vinyl ether	100.0	0.00	0.00	0	\$	0-132
cis-1,3-Dichloropropene	50.0	0.00	57.50	115		70-131
4-Methyl-2-pentanone (MIBK	100.0	0.00	115.70	116		70-130
Toluene	50.0	0.00	56.20	112		70-130
trans-1,3-Dichloropropene	50.0	0.00	58.20	116		70-130
1,1,2-Trichloroethane	50.0	0.00	55.30	111		70-130
Tetrachloroethene	50.0	0.00	58.30	117		70-133
1,3-Dichloropropane	50.0	0.00	54.40	109		70-130

Page 1 of 3

SAMPLE MS RESULTS SUMMARY

Lab ID: E24-02148-004	GC/MS Column: DB-624				624	
Client ID: MW-5	Sample wt/vol: 5mL					
Date Received: NA Matrix-Units: Aqueous-µg/L					ıs-μg/L	
Date Analyzed: 06/26/2024			% Moistu	re: 100		
Sample Data file: E9560.D			Dilution H	actor:	i	
Sample MS Data file: E9573.D)		Dilution I	Factor:	1	
	Conc.		Conc.	%Rec.		
Compound	Add	Sample	MS	MS	#	Rec. Limits
2-Hexanone	100	0.00	120.40	120		68-144
Dibromochloromethane	50	0.00	52.50	105		70-140
1,2-Dibromoethane (EDB)	50	0.00	52.20	104		63-137
Chlorobenzene	50	0.00	49.90	100		70-130
1,1,1,2-Tetrachloroethane	50	0.00	49.40	99		68-132
Ethylbenzene	50	0.00	53.90	108		70-131
m,p-Xylenc	100	0.00	108.40	108		70-136
o-Xylene	50	0.00	54.40	109		70-130
Styrene	50	0.00	57.30	115		70-139
Bromoform	50	0.00	48.20	96		65-138
Isopropylbenzene	50	0.00	56.30	113		70-133
1,1,2,2-Tetrachloroethane	50	0.00	55.30	111		34-147
Bromobenzene	50	0.00	49.30	99		70-132
1,2,3-Trichloropropane	50	0.00	46.60	93		63-130
n-Propylbenzene	50	0.00	59.00	118		70-130
2-Chlorotoluene	50	0.00	55.80	112		70-130
1,3,5-Trimethylbenzene	50	0.00	55.00	110		70-130
4-Chlorotoluene	50	0.00	52.50	105		70-130
tert-Butylbenzene	50	0.00	57.20	114		70-130
1,2,4-Trimethylbenzene	50	0.00	56.40	113		70-130
sec-Butylbenzene	50	0.00	58.10	116		70-130
1,3-Dichlorobenzene	50	0.00	47.60	95		70-130
4-Isopropyltoluene	50	0.00	58.70	117		70-130
1,4-Dichlorobenzene	50	0.00	50.80	102		70-130
n-Butylbenzene	50	0.00	60.30	121		70-130
1,2-Dichlorobenzene	50	0.00	51.00	102		59-132
1,2-Dibromo-3-chloropropane	50	0.00	48.80	98		63-130
1,2,4-Trichlorobenzene	50	0.00	47.00	94		70-130
Hexachlorobutadiene	50	0.00	48.00	96		52-137
Naphthalene	50	0.00	49.10	98		49-151
1,2,3-Trichlorobenzene	50	0.00	44.20	88		59-130
1,1,2-Trichloro-1,2,2-trifluoro	50	0.00	52.00	104		59-156
Methyl acetate	50	0.00	40.50	81		58-134
Cyclohexane	50	0.00	54.60	109		61-151
Methylcyclohexane	50	0.00	55.70	111		63-142

Leachate

Aqueous/Meoh Soil/Sediment

MS Recovery Limits (DKQP)

70-130 70-130

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

\$ Values outside of NJ DKQP limits

NC Not calculable

SAMPLE MS RESULTS SUMMARY

Compound	Add	Sample	MS	MS	#	Rec. Limits
	Conc.		Conc.	%Rec.		
Sample MS Data file: E9573.E)		Dilution	Factor:	1	
Sample Data file: E9560.D			Dilution	Factor:	1	
Date Analyzed: 06/26/2024			% Moistu	ure: 100		
Date Received: NA			Matrix-U	Inits: Ad	queou	s-µg/L
Client ID: MW-5			Sample v	vt/vol: 5	mL	
Lab ID: E24-02148-004			GC/MS (Column:	DB-0	624

2-Chloroethyl vinyl ether has zero spike recovery in the MS. This is due to the HCL acid preservation used on the samples. It is a known phenomenon, that this compound decomposes in the presence of acid.

As per SW-846 8260C, up to 10% of the compounds may be out, but may be within 40-160% As per NJDEP DKQPs, only the following compounds may be in the 40-160% range: Acetone; Bromomethane; 2-Butanone (MEK); Carbon disulfide; Chloroethane; Chloromethane 1,2-Dibromo-3-chloropropane; Dichlorodifluoromethane; 1,4-Dioxane; 2-Hexanone Naphthalene; 4-Methyl-2-pentanone (MIBK); Trichlorofluoromethane

Leachate Aqucous/Meoh Soil/Sediment 70-130 70-130

Column used to flag recovery and RPD values that did not meet criteria

* Values outside of QC limits

MS Recovery Limits (DKQP)

\$ Values outside of NJ DKQP limits

NC Not calculable

Page 3 of 3

SAMPLE DUPLICATE RESULTS SUMMARY

Lab ID: E24-02091-001 Client ID: MW-1RRR Date Received: 06/14/2024 Date Analyzed: 06/24/2024 Sample Data file: E9527.D Sample Dup Data file: E9528.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1 Dilution Factor: 1

Dichlorodifluoromethane 0.00 0.00 NC 30 Chloromethane 0.00 0.00 NC 30 Vinyl chloride 0.00 0.00 NC 30 Bromomethane 0.00 0.00 NC 30 Trichlorofluoromethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Acctone 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 J1-Dichloroethene 0.00 0.00 NC 30 J1,1-Dichloroethene 0.00 0.00 NC 30	Compound	Sample Conc.	Sample Dup Conc.	% RPD #	RPD Limits
Chioromethane 0.00 0.00 NC 30 Vinyl chloride 0.00 0.00 NC 30 Bromomethane 0.00 0.00 NC 30 Trichlorofluoromethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acctone 0.00 0.00 NC 30 Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Methylenc chloride 0.00 0.00 NC 30 Methylacckel (TBA) 0.00 0.00 NC 30 J.1-Dickloroethane 0.00 0.00 NC 30 Methyl lether (MTBE) 0.00 0.00 NC 30 J.1-Dickloroethane 0.00 0.00 NC 30 Z-2-Dichloropropane 0.00 0.00 NC 30	Dichlorodifluoromethane	0.00	0.00	NC	30
Vinyl chloride 0.00 0.00 NC 30 Bromomethane 0.00 0.00 NC 30 Chloroethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Actolein 0.00 0.00 NC 30 Actone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 trans-1,2-Dichloroethene 0.00 0.00 NC 30 jisopropyl ether (DIPE) 0.00 0.00 NC 30 jisopropylene 0.00 0.00 NC 30 Z-2-Dichloroethane 0.00 0.00 NC 30	Chloromethane	0.00	0.00	NC	30
Bromomethane 0.00 0.00 NC 30 Chloroethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Argylonitrile 0.00 0.00 NC 30 Methyler chloroethene 0.00 0.00 NC 30 J_1-Dichloroethane 0.00 0.00 NC 30 J_2-Dichloroethane 0.00 0.00 NC 30 J_2-Dichloroethane 0.00 0.00 NC 30	Vinyl chloride	0.00	0.00	NC	30
Chloroethane 0.00 0.00 NC 30 Trichlorofluoromethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Actolein 0.00 0.00 NC 30 Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Vinyl acetate 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 JDichloroethane 0.00 0.00 NC 30 JJDichloroethane 0.00 0.00 NC 30 2Dichloroethane 0.00 0.00 NC 30 2Dichloroethane 0.00 0.00 NC 30 2Dichloroethane 0.00 0.00 NC 30 <td>Bromomethane</td> <td>0.00</td> <td>0.00</td> <td>NC</td> <td>30</td>	Bromomethane	0.00	0.00	NC	30
Trichtorofluoromethane 0.00 0.00 NC 30 Acrolein 0.00 0.00 NC 30 Actole 0.00 0.00 NC 30 Actone 0.00 0.00 NC 30 Actone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Actylonitrile 0.00 0.00 NC 30 Atrians-1,2-Dichloroethene 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloroppane 0.00 0.00 NC 30 2,2-Dichloroptnane 0.00 0.00 NC 3	Chloroethane	0.00	0.00	NC	30
Acrolein 0.00 0.00 NC 30 1,1-Dichloroethene 0.00 0.00 NC 30 Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Actylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 derthyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 2,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 1,1-Tichloroethane 0.00 0.00	Trichlorofluoromethane	0.00	0.00	NC	30
1,1-Dichloroethene 0.00 0.00 NC 30 Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Vinyl acetate 0.00 0.00 NC 30 Actrylonitrile 0.00 0.00 NC 30 Actrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 Disopropyl ether (DIPE) 0.00 0.00 NC 30 Disopropyl ether (DIPE) 0.00 0.00 NC 30 2.2-Dichloroethene 0.00 0.00 NC 30 2.2-Dichloropropane 0.00 0.00 NC 30 1,1-Trichloroethane 0.00 0.00	Acrolein	0.00	0.00	NC	30
Acetone 0.00 0.00 NC 30 Carbon disulfide 0.00 0.00 NC 30 Vinyl acetate 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Actylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloroothene 0.00 0.00 NC 30 2,2-Dichloroothene 0.00 0.00 NC 30 2,2-Dichloroothane 0.00 0.00 NC 30 1,1,1-Trichloroothane 0.00 0.00 NC 30 1,1,1-Trichloroothane 0.00 0.00 </td <td>1,1-Dichloroethene</td> <td>0.00</td> <td>0.00</td> <td>NC</td> <td>30</td>	1,1-Dichloroethene	0.00	0.00	NC	30
Carbon disulfide 0.00 0.00 NC 30 Vinyl acetate 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 2.2-Dichloroethene 0.00 0.00 NC 30 2.3-Dichloropropane 0.00 0.00 NC 30 2.2-Dichloropropane 0.00 0.00 NC 30 2.3-Dichloroethane 0.00 0.00 NC 30 2.4-Dichloroethane 0.00 0.00 NC 30 2.5-Dichloropropene 0.00 0.00 NC 30 1.1-Dichloropropene 0.00 <	Acetone	0.00	0.00	NC	30
Vinyl acetate 0.00 0.00 NC 30 Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 trans-1,2-Dichloroethene 0.00 0.00 NC 30 1,1-Dichloroethane 0.00 0.00 NC 30 0isopropyl ether (DIPE) 0.00 0.00 NC 30 cis-1,2-Dichloroethene 0.00 0.00 NC 30 cis-1,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 <	Carbon disulfide	0.00	0.00	NC	30
Methylene chloride 0.00 0.00 NC 30 Acrylonitrile 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 I_1-Dichloroethane 0.00 0.00 NC 30 0 0.00 0.00 NC 30 2,-Dichloroethane 0.00 0.00 NC 30 2,-Dichloropropane 0.00 0.00 NC 30 2,-Dichloropropane 0.00 0.00 NC 30 2,-Dichloropthane 0.00 0.00 NC 30 2,-Dichloropthane 0.00 0.00 NC 30 1,1,1-Trichloroethane 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropthane 0.00 0.00	Vinyl acetate	0.00	0.00	NC	30
Acrylonitrile0.000.00NC30tert-Butyl alcohol (TBA)0.000.00NC30trans-1,2-Dichloroethene0.000.00NC30Methyl tert-butyl ether (MTBE)0.000.00NC30Diisopropyl ether (DIPE)0.000.00NC302,2-Dichloroethene0.000.00NC302,2-Dichloroethene0.000.00NC302,2-Dichloroethene0.000.00NC302,2-Dichloropropane0.000.00NC302-Butanone (MEK)0.000.00NC30Bromochloromethane0.000.00NC30Chloroform0.000.00NC291,1-Trichloroethane0.000.00NC301,1-Dichloropopane0.000.00NC301,1-Dichloropropene0.000.00NC301,1-Dichloropropene0.000.00NC301,2-Dichloropropene0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC301,2-Dichloropropane0.000.00NC30 <td>Methylene chloride</td> <td>0.00</td> <td>0.00</td> <td>NC</td> <td>30</td>	Methylene chloride	0.00	0.00	NC	30
tert-Butyl alcohol (TBA) 0.00 0.00 NC 30 trans-1,2-Dichloroethene 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 1,1-Dichloroethane 0.00 0.00 NC 30 1,1-Dichloroethane 0.00 0.00 NC 30 cis-1,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloroppane 0.00 0.00 NC 30 2,2-Dichloroppane 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 30 1,1-Trichloroethane 0.00 0.00 NC 30 1,1-Dichloroptopene 0.00 0.00 NC 30 1,2-Dichloroptopene 0.00 0.00 NC	Acrylonitrile	0.00	0.00	NC	30
trans-1,2-Dichloroethene 0.00 0.00 NC 30 Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 Jilospropyl ether (DIPE) 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 2,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1-Trichloroethane 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 0.00 NC 29 Trichloroethane (EDC) 0.00 0.00 NC 30 1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 <t< td=""><td>tert-Butyl alcohol (TBA)</td><td>0.00</td><td>0.00</td><td>NC</td><td>30</td></t<>	tert-Butyl alcohol (TBA)	0.00	0.00	NC	30
Methyl tert-butyl ether (MTBE) 0.00 0.00 NC 30 1,1-Dichloroethane 0.00 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 cis-1,2-Dichloroethane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropropane 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 30 Dibromomethane 0.00 0.00	trans-1,2-Dichloroethene	0.00	0.00	NC	30
1,1-Dichloroethane 0.00 NC 30 Diisopropyl ether (DIPE) 0.00 0.00 NC 30 cis-1,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloroethene 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloropropane 0.00 0.00 NC 30 1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC	Methyl tert-butyl ether (MTBE)	0.00	0.00	NC	30
Disopropyl ether (DIPE) 0.00 0.00 NC 30 cis-1,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 $1,1,1$ -Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 $1,1$ -Dichloropropene 0.00 0.00 NC 30 $1,2$ -Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 30 Trichloroethene 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 J-4-Dioxane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroptopene 0.00 0.00 NC 30 2-Chloroptopene 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroptopene 0.00 0.00 NC 30 2-Chloroptopene 0.00 0.00 NC 30 2-Chlor	1,1-Dichloroethane	0.00	. 0.00	NC	30
cis-1,2-Dichloroethene 0.00 0.00 NC 30 2,2-Dichloropropane 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 N	Diisopropyl ether (DIPE)	0.00	0.00	NC	30
2,2-Dichloropropane 0.00 0.00 NC 30 2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloroptopene 0.00 0.00 NC 30 1,2-Dichloroptopene 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroptopane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 3	cis-1,2-Dichloroethene	0.00	0.00	NC	30
2-Butanone (MEK) 0.00 0.00 NC 30 Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 29 Trichloroethane 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 30 J2-Dichloropropane 0.00 0.00 NC 30 J4-Dioxane 0.00 0.00 NC 30 J4-Dioxane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC	2,2-Dichloropropane	0.00	0.00	NC	30
Bromochloromethane 0.00 0.00 NC 30 Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC <td>2-Butanone (MEK)</td> <td>0.00</td> <td>0.00</td> <td>NC</td> <td>30</td>	2-Butanone (MEK)	0.00	0.00	NC	30
Chloroform 0.00 0.00 NC 29 1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00	Bromochloromethane	0.00	0.00	NC	30
1,1,1-Trichloroethane 0.00 0.00 NC 29 Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 29 Trichloroethane (EDC) 0.00 0.00 NC 29 Trichloroethane 0.00 0.00 NC 29 Trichloroethane 0.00 0.00 NC 29 Trichloroethane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 J.4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloropropene 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloropropene 0.00 0.00 NC 30 1,1,2-Trichloropropene 0.00 0.00 <	Chloroform	0.00	0.00	NC	29
Carbon tetrachloride 0.00 0.00 NC 30 1,1-Dichloropropene 0.00 0.00 NC 30 1,2-Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 27 1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 J,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00	1,1,1-Trichloroethane	0.00	0.00	NC	29
1,1-Dichloropropene0.000.00NC301,2-Dichloroethane (EDC)0.000.00NC30Benzene0.000.00NC29Trichloroethene0.000.00NC271,2-Dichloropropane0.000.00NC30Dibromomethane0.000.00NC301,4-Dioxane0.000.00NC30Bromodichloromethane0.000.00NC302-Chloroethyl vinyl ether0.000.00NC302-Chloropropene0.000.00NC304-Methyl-2-pentanone (MIBK)0.000.00NC30Toluene0.000.00NC301,1,2-Trichloroptopene0.000.00NC301,1,2-Trichloroethane0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichloropropene0.000.00NC301,3-Dichlo	Carbon tetrachloride	0.00	0.00	NC	30
1,2-Dichloroethane (EDC) 0.00 0.00 NC 30 Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 27 1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 1,3-Dichloropropane 0.00 0.00	1,1-Dichloropropene	0.00	0.00	NC	- 30
Benzene 0.00 0.00 NC 29 Trichloroethene 0.00 0.00 NC 27 1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1, 3-Dichloropropane 0.00	1,2-Dichloroethane (EDC)	0.00	0.00	NC	30
Trichloroethene0.000.00NC271,2-Dichloropropane0.000.00NC30Dibromomethane0.000.00NC301,4-Dioxane0.000.00NC30Bromodichloromethane0.000.00NC302-Chloroethyl vinyl ether0.000.00NC302-Chloroethyl vinyl ether0.000.00NC30cis-1,3-Dichloropropene0.000.00NC304-Methyl-2-pentanone (MIBK)0.000.00NC30Toluene0.000.00NC301,1,2-Trichloroethane0.000.00NC301,1,2-Trichloroethane0.000.00NC301,3-Dichloropropane0.000.00NC301,3-Dichloropropane0.000.00NC301,3-Dichloropropane0.000.00NC30	Benzene	0.00	0.00	NC	29
1,2-Dichloropropane 0.00 0.00 NC 30 Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 30 1,1,2-Trichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 1,3-Dichloropropane 0.00 0.00 NC 30	Trichloroethene	0.00	0.00	NC	27
Dibromomethane 0.00 0.00 NC 30 1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 2-Chloroptyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 30 1,1,2-Trichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 30 1 3-Dichloropropane 0.00 0.00 NC 30	1.2-Dichloropropane	0.00	0.00	NC	30
1,4-Dioxane 0.00 0.00 NC 30 Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	Dibromomethane	0.00	0.00	NC	30
Bromodichloromethane 0.00 0.00 NC 30 2-Chloroethyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	1.4-Dioxane	0.00	0.00	NC	30
2-Chloroethyl vinyl ether 0.00 0.00 NC 30 cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	Bromodichloromethane	0.00	0.00	NC	30
cis-1,3-Dichloropropene 0.00 0.00 NC 30 4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	2-Chloroethyl vinyl ether	0.00	0.00	NC	30
4-Methyl-2-pentanone (MIBK) 0.00 0.00 NC 30 Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	cis-1 3-Dichloropropene	0.00	0.00	NC	30
Toluene 0.00 0.00 NC 27 trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	4-Methyl-2-pentanone (MIBK)	0.00	0.00	NC	30
trans-1,3-Dichloropropene 0.00 0.00 NC 30 1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	Toluene	0.00	0.00	NC	27
1,1,2-Trichloroethane 0.00 0.00 NC 30 Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	trans-1.3-Dichloropropene	0.00	0.00	NC	30
Tetrachloroethene 0.00 0.00 NC 25 1 3-Dichloropropane 0.00 0.00 NC 30	1 1.2-Trichloroethane	0.00	0.00	NC	30
1 3-Dichloropropane 0.00 0.00 NC 30	Tetrachloroethene	0.00	0.00	NC	25
	1.3-Dichloropropane	0.00	0.00	NC	30

Page 1 of 2

SAMPLE DUPLICATE RESULTS SUMMARY

Lab ID: E24-02091-001	GC/MS Column: DB-624
Client ID: MW-1RRR	Sample wt/vol: 5mL
Date Received: 06/14/2024	Matrix-Units: Aqueous-µg/L
Date Analyzed: 06/24/2024	% Moisture: 100
Sample Data file: E9527.D	Dilution Factor: 1
Sample Dup Data file: E9528.D	Dilution Factor: 1

Compound	Sample Conc.	Sample Dup Conc.	% RPD #	RPD Limits
2-Hexanone	0.00	0.00	NC	30
Dibromochloromethane	0.00	0.00	NC	30
1,2-Dibromoethane (EDB)	0.00	0.00	NC	30
Chlorobenzene	0.00	0.00	NC	29
1,1,1,2-Tetrachloroethane	0.00	0.00	NC	30
Ethylbenzene	0.00	0.00	NC	30
m,p-Xylene	0.00	0.00	NC	30
o-Xylene	0.00	0.00	NC	30
Styrene	0.00	0.00	NC	30
Bromoform	0.00	0.00	NC	30
Isopropylbenzene	0.00	0.00	NC	29
1,1,2,2-Tetrachloroethane	0.00	0.00	NC	30
Bromobenzene	0.00	0.00	NC	30
1,2,3-Trichloropropane	0.00	0.00	NC	30
n-Propylbenzene	0.00	0.00	NC	30
2-Chlorotoluene	0.00	0.00	NC	30
1,3,5-Trimethylbenzene	0.00	0.00	NC	30
4-Chlorotoluene	0.00	0.00	NC	30
tert-Butylbenzene	0.00	0.00	NC	30
1,2,4-Trimethylbenzene	0.00	0.00	NC	30
sec-Butylbenzene	0.00	0.00	NC	30
1,3-Dichlorobenzene	0.00	0.00	NC	30
4-Isopropyltoluene	0.00	0.00	NC	30
1,4-Dichlorobenzene	0.00	0.00	NC	32
n-Butylbenzene	0.00	0.00	NC	30
1,2-Dichlorobenzene	0.00	0.00	NC	32
1,2-Dibromo-3-chloropropane	0.00	0.00	NC	30
1,2,4-Trichlorobenzene	0.00	0.00	NC	30
Hexachlorobutadiene	0.00	0.00	NC	30
Naphthalene	0.00	0.00	NC	30
1,2,3-Trichlorobenzene	0.00	0.00	NC	30
1,1,2-Trichloro-1,2,2-trifluoroethane	.0.00	0.00	NC	30
Methyl acetate	0.00	0.00	NC	30
Cyclohexane	0.00	0.00	NC	29
Methylcyclohexane	0.00	0.00	NC	29

Column used to flag RPD values that did not meet criteria

* Values outside of QC limits

NC Not calculable

SAMPLE DUPLICATE RESULTS SUMMARY

Lab ID: E24-02148-001 Client ID: MW-1 Date Received: 06/21/2024 Date Analyzed: 06/25/2024 Sample Data file: E9557.D Sample Dup Data file: E9558.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1 Dilution Factor: 1

Compound	Sample Conc.	Sample Dup Conc.	% RPD #	RPD Limits
Dichlorodifluoromethane	0.00	0.00	NC	30
Chloromethane	0.00	0.00	NC	30
Vinyl chloride	0.00	0.00	NC	30
Bromomethane	0.00	0.00	NC	30
Chloroethane	0.00	0.00	NC	30
Trichlorofluoromethane	0.00	0.00	NC	30
Acrolein	0.00	0.00	NC	30
1,1-Dichloroethene	0.00	0.00	NC	30
Acetone	0.00	0.00	NC	30
Carbon disulfide	0.00	0.00	NC	30
Vinyl acetate	0.00	0.00	NC	30
Methylene chloride	0.00	0.00	NC	30
Acrylonitrile	0.00	0.00	NC	30
tert-Butyl alcohol (TBA)	0.00	0.00	NC	30
trans-1,2-Dichloroethene	0.00	0.00	NC	30
Methyl tert-butyl ether (MTBE)	0.00	0.00	NC	30
1,1-Dichloroethane	0.00	0.00	NC	30
Diisopropyl ether (DIPE)	0.00	0.00	NC	30
cis-1,2-Dichloroethene	0.00	0.00	NC	30
2.2-Dichloropropane	0.00	0.00	NC	30
2-Butanone (MEK)	0.00	0.00	NC	30
Bromochloromethane	0.00	0.00	NC	30
Chloroform	0.00	0.00	NC	29
1.1.1-Trichloroethane	0.00	0.00	NC	29
Carbon tetrachloride	0.00	0.00	NC	30
1 1-Dichloropropene	0.00	0.00	NC	30
1.2-Dichloroethane (EDC)	0.00	0.00	NC	30
Benzene	0.00	0.00	NC	29
Trichloroethene	0.00	0.00	NC	27
1.2-Dichloropropane	0.00	0.00	NC	30
Dibromomethaue	0.00	0.00	NC	30
1 4-Diovane	0.00	0.00	NC	30
Bromodichloromethane	0.00	0.00	NC	30
2 Chloroethyl vinyl ether	0.00	0.00	NC	30
ois 1.3 Dichloropropene	0.00	0.00	NC	30
4 Mathyl 2 pentanone (MIBK)	0.00	0.00	NC	30
Teluene	0.00	0.00	NC	27
trong 1.2 Dichloropropene	0.00	0.00	NC	30
L 1.2 Tricklareethere	0.00	0.00	NC	30
1,1,2-1 fichioroethane	0.00	0.00	NC	25
l etrachioroethene	0.00	0.00	NC	30
1,3-Dichloropropane	0.00	0.00		

Page 1 of 2

SAMPLE DUPLICATE RESULTS SUMMARY

Lab ID: E24-02148-001 Client ID: MW-1 Date Received: 06/21/2024 Date Analyzed: 06/25/2024 Sample Data file: E9557.D Sample Dup Data file: E9558.D GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1 Dilution Factor: 1

Сотроил	Sample Conc.	Sample Dup Conc.	% RPD #	RPD Limits
2-Hexanone	0.00	0.00	NC	30
Dibromochloromethane	0.00	0.00	NC	30
1 2-Dibromoethane (EDB)	0.00	0.00	NC	30
Chlorobenzene	0.00	0.00	NC	29
1.1.1.2-Tetrachloroethane	0.00	0.00	NC	30
Ethylbenzene	0.00	0.00	NC	30
m.p-Xvlene	0.00	0.00	NC	30
o-Xvlene	0.00	0.00	NC	30
Styrene	0.00	0.00	NC	30
Bromoform	0.00	0.00	NC	30
Isopropylbenzene	0.00	0.00	NC	29
1,1,2,2-Tetrachloroethane	0.00	0.00	NC	30
Bromobenzene	0.00	0.00	NC	30
1,2,3-Trichloropropane	0.00	0.00	NC	30
n-Propylbenzene	0.00	0.00	NC	30
2-Chlorotoluene	0.00	0.00	NC	30
1.3.5-Trimethylbenzene	0.00	0.00	NC	30
4-Chlorotoluene	0.00	0.00	NC	30
tert-Butylbenzene	0.00	0.00	NC	30
1,2,4-Trimethylbenzene	0.00	0.00	NC	30
sec-Butylbenzene	0.00	0.00	NC	30
1,3-Dichlorobenzene	0.00	0.00	NC	30
4-Isopropyltoluene	0.00	0.00	NC	30
1,4-Dichlorobenzene	0.00	0.00	NC	32
n-Butylbenzene	0.00	0.00	NC	30
1,2-Dichlorobenzene	0.00	0.00	NC	32
1,2-Dibromo-3-chloropropane	0.00	0.00	NC	30
1,2,4-Trichlorobenzene	0.00	0.00	NC	30
Hexachlorobutadiene	0.00	0.00	NC	30
Naphthalene	0.00	0.00	NC	30
1,2,3-Trichlorobenzene	0.00	0.00	NC	30
1,1,2-Trichloro-1,2,2-trifluoroethan	e 0.00	0.00	NC	30
Methyl acetate	0.00	0.00	NC	30
Cyclohexane	0.00	0.00	NC	29
Methylcyclohexane	0.00	0.00	NC	29

Column used to flag RPD values that did not meet criteria

* Values outside of QC limits

NC Not calculable

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>E9520.D</u>	Instrument ID:	<u>MSD_E</u>
Date Analyzed:	06/24/2024	Time Analyzed:	<u>10:58</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
ТВ	E24-02091-005	06/24/2024	11:26
FΒ	E24-02091-004	06/24/2024	11:53
FB-1-061824	E24-02128-005	06/24/2024	12:21
FB-2-061924	E24-02128-006	06/24/2024	12:49
ТВ	E24-02124-006	06/24/2024	13:16
FB-1	E24-02124-005	06/24/2024	13:44
MW-1RRR	E24-02091-001	06/24/2024	14:11
MW-1RRR	E24-02091-001DUP	06/24/2024	14:38
MW-1RR	E24-02091-002	06/24/2024	15:06
MW-4RR	E24-02091-003	06/24/2024	15:33
MW-2	E24-02124-001	06/24/2024	16:00
W-4	E24-02124-002	06/24/2024	16:28
MW-1	E24-02124-003	06/24/2024	16:55
W-2	E24-02124-004	06/24/2024	17:23
MW-11D	E24-02128-002	06/24/2024	17:50
MW-10D	E24-02128-001	06/24/2024	18:18
MW-13D	E24-02128-003	06/24/2024	18:45
DUP-1	E24-02128-004	06/24/2024	19:12
MW-4/8.73	E24-02132-004	06/24/2024	19:40
MW-6	E24-02107-005DL	06/24/2024	20:07
MW-8D	E24-02107-012	06/24/2024	20:35
LCSA_50PPB	LCSA_240624-01	06/24/2024	21:02
2124-004MS	2124-004MS	06/24/2024	21:30

VOLATILE METHOD BLANK SUMMARY

Lab File ID:	<u>E9550.D</u>	Instrument ID:	<u>MSD_E</u>
Date Analyzed:	06/25/2024	Time Analyzed:	13:42

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS & MSD:

		Date	Time
Client ID	Lab Sample ID	Analyzed	Analyzed
TB-061824	E24-02128-007	06/25/2024	14:09
TRIP BLANK-	E24-02133-010	06/25/2024	14:37
FIELD BLANK	E24-02133-008	06/25/2024	15:04
TRIP. BLANK	E24-02148-011	06/25/2024	15:32
FIELD BLANK	E24-02148-010	06/25/2024	15:59
FIELD BLANK	E24-02148-009	06/25/2024	16:27
MW-1	E24-02148-001	06/25/2024	16:54
MW-1	E24-02148-001DUP	06/25/2024	17:22
MW-2	E24-02148-002	06/25/2024	17:49
MW-5	E24-02148-004	06/25/2024	18:16
MW-3	E24-02148-003	06/25/2024	18:44
MW-7	E24-02148-006	06/25/2024	19:11
TW-1	E24-02142-022	06/25/2024	19:39
TW-2	E24-02142-023	06/25/2024	20:06
MW-10D	E24-02128-001DL	06/25/2024	20:34
MW-13D	E24-02128-003DL	06/25/2024	21:02
DUP-1	E24-02128-004DL	06/25/2024	21:30
MW-9	E24-02148-007	06/25/2024	21:57
MW-10	E24-02148-008	06/25/2024	22:25
MW-6	E24-02148-005	06/25/2024	22:52
TW-3	E24-02142-024	06/25/2024	23:20
LCSA 50PPB	LCSA_240625-01	06/25/2024	23:48
2148-004MS	2148-004MS	06/26/2024	0:16

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>E9258.D</u>	BFB Injection Date:	06/16/20	24
Inst ID:	MSD_E	BFB Injection Time:	15:56	
m/z	lon Abudance Criteria	%Relative Abundanc	e	
1				
95	50 - 200% of mass 174	100		
96	5.0 - 9.0% of mass 95	7.4		
173	Less than 2.0% of mass 174	2.4 (1.8)1
174	50 - 200% of mass 95	74.6		
175	5.0 - 9.0% of mass 174	4.8 (6.5)1
176	95.0 - 105.0% of mass 174	75.3 (101.0)1
177	5.0 - 10.0% of mass 176	4.0 (5.3)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
ICC240616-01	ICC100	E9266.D	06/16/2024	19:35	
ICC240616-01	ICC00.5	E9259.D	06/16/2024	16:23	
ICC240616-01	ICC001	E9260.D	06/16/2024	16:50	
ICC240616-01	ICC005	E9261.D	06/16/2024	17:17	
ICC240616-01	ICC020	E9262.D	06/16/2024	17:44	
ICC240616-01	ICC150	E9263.D	06/16/2024	18:12	
ICC240616-01	ICC200	E9264.D	06/16/2024	18:40	
ICV240615-01	ICV100	E9267.D	06/16/2024	20:03	
BLKA240616-01	BLKA240616-01	E9268.D	06/16/2024	20:30	
FIELD	E24-02039-006	E9269.D	06/16/2024	20:57	
TRIP	E24-02037-006	E9270.D	06/16/2024	21:25	
FIELD	E24-02037-005	E9271.D	06/16/2024	21:52	
MW-1	E24-02037-001	E9272.D	06/16/2024	22:19	
MW-1	E24-02037-001DL	E9273.D	06/16/2024	22:47	
MW-2	E24-02037-002	E9274.D	06/16/2024	23:14	
MW-3	E24-02037-003	E9275.D	06/16/2024	23:42	
MW-4	E24-02037-004	E9276.D	06/17/2024	0:10	
MW-4	E24-02039-001	E9277.D	06/17/2024	0:37	
MW-3	E24-02039-002	E9278.D	06/17/2024	1:04	
MW-3D	E24-02039-003	E9279.D	06/17/2024	1:32	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	E9258.D	BFB Injection Date :	06/16/202	2
Inst ID:	MSD_E	BFB Injection Time:	15:56	
m/z	lon Abudance Criteria	%Relative Abundance		
50		15.4		
:75		57.6		
95	50 - 200% of mass 174	100.0		
96	5.0 - 9.0% of mass 95	7.4		
173	Less than 2.0% of mass 174	2.4 (1.8)1
174	50 - 200% of mass 95	74.6		
175	5.0 - 9.0% of mass 174	4.8 (6.5)1
176	95.0 - 105.0% of mass 174	75.3 (101.0)1
177	5.0 - 10.0% of mass 176	4.0 (5.3)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
MW-5	E24-02039-004	E9280.D	06/17/2024	1:59	
MW-5DD	E24-02039-005	E9281.D	06/17/2024	2:27	
LCSA 50PPB	LCSA_240616-01	E9282.D	06/17/2024	2:54	
2039-001MS	2039-001MS	E9283.D	06/17/2024	3:21	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	F9517 D	RFR Injection Date:	06/24/20	124
Euc r no ie.	<u> </u>	DI D'Injection Date.	00/24/20	121
Inst ID:	MSD_E	BFB Injection Time:	<u>9:36</u>	
m/z	Ion Abudance Criteria	%Relative Abundanc	e	
95	50 - 200% of mass 174	100		
96	5.0 - 9.0% of mass 95	7.2		
173	Less than 2.0% of mass 174	2.2 (1.6)1
174	50 - 200% of mass 95	72.5		
175	5.0 - 9.0% of mass 174	6.2 (8.6)1
176	95.0 - 105.0% of mass 174	72.7 (100.3)1
177	5.0 - 10.0% of mass 176	5.0 (6.9)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
CCV240624-01	CCV100	E9518.D	06/24/2024	10:04	
BLKA240624-01	BLKA240624-01	E9520.D	06/24/2024	10:58	
TB	E24-02091-005	E9521.D	06/24/2024	11:26	
FB	E24-02091-004	E9522.D	06/24/2024	11:53	
FB-1-061824	E24-02128-005	E9523.D	06/24/2024	12:21	
FB-2-061924	E24-02128-006	E9524.D	06/24/2024	12:49	
ТВ	E24-02124-006	E9525.D	06/24/2024	13:16	
FB-1	E24-02124-005	E9526.D	06/24/2024	13:44	
MW-1RRR	E24-02091-001	E9527.D	06/24/2024	14:11	
MW-1RRR	E24-02091-001DL	E9528.D	06/24/2024	14:38	
MW-1RR	E24-02091-002	E9529.D	06/24/2024	15:06	
MW-4RR	E24-02091-003	E9530.D	06/24/2024	15:33	
MW-2	E24-02124-001	E9531.D	06/24/2024	16:00	
W-4	E24-02124-002	E9532.D	06/24/2024	16:28	
MW-1	E24-02124-003	E9533.D	06/24/2024	16:55	
W-2	E24-02124-004	E9534.D	06/24/2024	17:23	
MW-11D	E24-02128-002	E9535.D	06/24/2024	17:50	
MW-10D	E24-02128-001	E9536.D	06/24/2024	18:18	
MW-13D	E24-02128-003	E9537.D	06/24/2024	18:45	
DUP-1	E24-02128-004	E9538.D	06/24/2024	19:12	

Page 1 of 2

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>E9517.D</u>	BFB Injection Date :	06/24/20	2
Inst ID:	MSD_E	BFB Injection Time:	<u>9:36</u>	
m/z	Ion Abudance Criteria	%Relative Abundance		
50		17.8		
75		53.0		
95	50 - 200% of mass 174	100.0		
96	5.0 - 9.0% of mass 95	7.2		
173	Less than 2.0% of mass 174	2.2 (1.6)1
174	50 - 200% of mass 95	72.5		
175	5.0 - 9.0% of mass 174	6.2 (8.6)1
176	95.0 - 105.0% of mass 174	72.7 (100.3)1
177	5.0 - 10.0% of mass 176	5.0 (6.9)2
	1-Value is % mass 174	2-Value is % mass 17	6	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed
MW-4/8.73	E24-02132-004	E9539.D	06/24/2024	19:40
MW-6	E24-02107-005DL	E9540.D	06/24/2024	20:07
MW-8D	E24-02107-012	E9541.D	06/24/2024	20:35
LCSA_50PPB	LCSA_240624-01	E9542.D	06/24/2024	21:02
2124-004MS	2124-004MS	E9543.D	06/24/2024	21:30

I.

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>E9547.D</u>	BFB Injection Date:	06/25/20	024
Inst ID:	MSD_E	BFB Injection Time:	12:20	
m/z	Ion Abudance Criteria	%Relative Abundance		
95	50 - 200% of mass 174	100		
96	5.0 - 9.0% of mass 95	6.5		
173	Less than 2.0% of mass 174	1.5	(1.0)1
174	50 - 200% of mass 95	66.7		
175	5.0 - 9.0% of mass 174	5.3	(8.0)1
176	95.0 - 105.0% of mass 174	65.2	(97.8)1
177	5.0 - 10.0% of mass 176	4.5	(6.9)2
	1-Value is % mass 174	2-Value is % mass 1	76	

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
CCV240625-01	CCV100	E9548.D	06/25/2024	12:47	
BLKA240625-01	BLKA240625-01	E9550.D	06/25/2024	13:42	
TB-061824	E24-02128-007	E9551.D	06/25/2024	14:09	
TRIP BLANK	E24-02133-010	E9552.D	06/25/2024	14:37	
FIELD BLANK	E24-02133-008	E9553.D	06/25/2024	15:04	
TRIP BLANK	E24-02148-011	E9554.D	06/25/2024	15:32	
FIELD BLANK	E24-02148-010	E9555.D	06/25/2024	15:59	
FIELD BLANK	E24-02148-009	E9556.D	06/25/2024	16:27	
MW-1	E24-02148-001	E9557.D	06/25/2024	16:54	
MW-1	E24-02148-001DL	E9558.D	06/25/2024	17:22	
MW-2	E24-02148-002	E9559.D	06/25/2024	17:49	
MW-5	E24-02148-004	E9560.D	06/25/2024	18:16	
MW-3	E24-02148-003	E9561.D	06/25/2024	18:44	
MW-7	E24-02148-006	E9562.D	06/25/2024	19:11	
TW-1	E24-02142-022	E9563.D	06/25/2024	19:39	
TW-2	E24-02142-023	E9564.D	06/25/2024	20:06	
MW-10D	E24-02128-001DL	E9565.D	06/25/2024	20:34	
MW-13D	E24-02128-003DL	E9566.D	06/25/2024	21:02	
DUP-1	E24-02128-004DL	E9567.D	06/25/2024	21:30	
MW-9	E24-02148-007	E9568.D	06/25/2024	21:57	

Page 1 of 2

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK

Lab File ID:	<u>E9547.D</u>	BFB Injection Date	06/25/	202	
Inst ID:	MSD_E	BFB Injection Time:	<u>12:20</u>		
m/z	Ion Abudance Criteria	%Relative Abundance			
50		19.7			
75		37.0			
95	50 - 200% of mass 174	100.0			
96	5.0 - 9.0% of mass 95	6.5			
173	Less than 2.0% of mass 174	1.5 ((1.0))))	
174	50 - 200% of mass 95	66.7			
175	5.0 - 9.0% of mass 174	5.3 ((8.0))))	
176	95.0 - 105.0% of mass 174	65.2	(97.	8)1	
177	5.0 - 10.0% of mass 176	4.5	6.9)2	
	1-Value is % mass 174	2-Value is % mass 17	76		

This check applies to the following SAMPLES, MS, MSD, BLANKS and STANDARDS:

			Date	Time	
Client ID	Lab Sample ID	File ID	Analyzed	Analyzed	
MW-10	E24-02148-008	E9569.D	06/25/2024	22:25	
MW-6	E24-02148-005	E9570.D	06/25/2024	22:52	
TW-3	E24-02142-024	E9571.D	06/25/2024	23:20	
LCSA 50PPB	LCSA_240625-01	E9572.D	06/25/2024	23:48	
2148-004MS	2148-004MS	E9573.D	06/26/2024	0:16	
Response Factor Report MSD_E

Me Me Ti La Re	thod thod tle st Up spons	Path : C:\MSDCHEM File : E8240616.M : VOLATILE ORGA odate : Mon Jun 17 se Via : Initial Ca	NICS E 09:14	HODS\ BY EPA 1:40 20 zion	METHOI)24	82601	D				
Ca	libra	ation Files									
0.	5 = E 9	9259.D 1.0 =E9	260.D		$5.0 = E_{2}^{0}$	9261.D			2264 D		
20	. =ES	9262.D 100 = ES	#266.D		150 = ES	9263.D	4	200 = E:	9264.D		
	(Compound 0.5	1.	.0 5	.0 20). l(10 19	50 20	7A 00	vg	%RSD
100											22
- \	-	D (()				топи					
1)	1	Pentafluorobenzene	2	0 574	0 718	0 623	0 651	0 613	0 638	0 636	7 53
2)	P	Chloromethane	0.505	0.461	0.547	0.497	0.538	0.551	0.583	0.526	7.79
4)	C	Vinyl chloride	0.628	0.547	0.490	0.498	0.576	0.555	0.574	0.552	8.64
5)	Т	Bromomethane	0.459	0.290	0.361	0.327	0.354	0.371	0.383	0.364	14.44
6)	Т	Chloroethane	0.410	0.321	0.283	0.296	0.333	0.348	0 346	0.334	12.41
7)	Т	Trichlorofluorome		0.856	1.121	1.027	1.168	1.073	1 108	1.059	10.37
9)	MC	1,1-Dichloroethen	0.420	0.463	0.511	0.461	0.531	0.507	0 377	0.489	12 55
11)	т Т	Carbon disulfide	4 652	3.084	3.145	2.891	3.279	3.252	3.366	3.381	17.19
12)	T	Vinvl acetate	0.908	0.551	0.639	0.599	0.638	0.632	0.691	0.665	17.27
13)	Т	Methylene chlorid		0.706	0.667	0.595	0.643	0.655	0.659	0.654	5.51
14)	Т	Acrylonitrile	0.292	0.254	0.244	0.265	0.240	0.285	0 👷 2 2 6	0.258	9.32
15)	Т	tert-Butyl alcoho		0.079	0.119	0.101	0.107	0.103	0.096	0.101	13.20
16)	Т	trans-1,2-Dichlor	0.727	0.510	0.559	0.530	0.561	0.560	0,571	0.574	12.32
17)	T D	Methyl tert-butyl	2.740	1 003	2.128	2.106	2.203	2.212	2.224	2.197	13.74 9.39
19)	Р T	Diisopropyl ether	1 552	0 966	1.346	1.358	1.496	1.499	1.525	1.392	14.67
20)	Ť	cis-1.2-Dichloroe	0.643	0.499	0.614	0.570	0.622	0.615	0.632	0.599	8.32
21)	Т	2,2-Dichloropropa	0.555	0.370	0.409	0.362	0.362	0.350	0.363	0.396	18.34
22)	т	2-Butanone (MEK)	0.431	0.333	0.403	0.392	0.405	0.437	0.498	0.414	12.13
23)	Т	Bromochloromethan	0.185	0.279	0.242	0.241	0.256	0.259	0.259	0.246	12.06
25)	С	Chloroform	1.549	1.520	1.390	1.234	1.341	1.345	1.352	1.390	7.90
26)	T	1,1,1-Trichloroet	1.734	1.064	1.209	1.174	1.277	1.266	1 050	1.287	16.43 a 71
27) 28)	т Т	1 1-Dichloroprope	1, 121	0.845	0 861	0.920	0.959	0.942	0.962	0.959	15.53
29)	T	1,2-Dichloroethan	1.504	1.238	1.223	1.156	1.190	1.210	1.201	1.246	9.36
30)	S	1,2-Dichloroethan	0.811	0.840	0.863	0.856	0.803	0.829	0.790	0.828	3.32
31)	I	1.4-Difluorobenzer	ie -			ISTI	D				
32)	Μ	Benzene	2.236	1.537	1.693	1.567	1.709	1.749	1.744	1.748	13.21
33)	М	Trichloroethene	0.535	0.442	0.470	0.431	0.483	0.483	0.478	0.474	7.04
34)	С	1,2-Dichloropropa	0.499	0.273	0.369	0.349	0.397	0.407	0.408	0.386	17.79
35)	Т	Dibromomethane	0.351	0.289	0.303	0.265	0.287	0.294	0.292	0.297	8.8/
3/)	T	Bromodicniorometh	0.702	0.213	0.642 0.274	0.024	0.329	0.701	0.703	0.007	15.50
30) 39)	T	cis-1.3-Dichlorop	0.702	0.488	0.537	0.559	0.651	0.684	0.683	0.615	13.87
40)	Ť	4-Methyl-2-pentan	0.603	0.512	0.516	0.530	0.598	0.616	0.605	0.568	8.20
41)	S	Toluene-d8	1.130	1,115	1.152	1.148	1.158	1.184	1.175	1.152	2.07
42)	MC	Toluene	1.334	0.927	0.957	0.975	1.084	1.122	1.112	1.073	12.99
43)	Т	trans-1,3-Dichlor	0.755	0.508	0.550	0.574	0.674	0.698	0.711	0.638	14.66
44)	Т	1,1,2-Trichloroet	0.316	0::346	0.313	0.293	0.338	0.346	0.342	0.328	17 16
45)	T	Tetrachloroethene	0.446	0.682	0.362	0.332	0.783	0.396	0.390	0.373	13.11
46) 47)	T	2-Hexanone	0.521	0.379	0.407	0.419	0.471	0.500	0.487	0.455	11.69
48)	T	Dibromochlorometh	0.528	0.350	0.356	0.371	0.423	0.444	0.439	0.416	15.14
49)	Т	1,2-Dibromoethane	0.508	0.381	0.374	0.361	0.415	0.425	0.425	0.413	11.95
50)	I	Chlorobenzene-d5	-			ISTI	D				
, 51)	MP	Chlorobenzene	1.364	1.073	1.167	1.079	1.167	1.173	1.180	1.172	8.21
52)	Т	1,1,1,2-Tetrachlo	0.517	0.409	0.483	0.422	0.460	0.467	0.467	0.461	7.83
53)	С	Ethylbenzene	2.727	1,907	2.113	2.218	2.426	2.465	2.455	2.330	11.61
54)	Т	m,p-Xylene	0.891	0.108	0.774	U./68	0.82/	0.844	0.839	0.807	1.53

33) 1 51.307 51.317 51.317 51.317 51.317 51.3137 51.337 51.337	CC)	T	o Vylene	0 858	0 602	0 767	0 782	0 826	0 847	0.841	0.789	11.30
507) P Bromoform 0.396 0.242 0.298 0.311 0.367 0.374 0.338 16.42 58) T Isopropylbenzene 2.092 1.658 1.926 1.943 2.197 2.177 2.184 2.025 9.75 59) S Bromofluorobenzen 0.622 0.640 0.652 0.665 0.667 0.669 0.655 0.241 01) P 1,1,2,2-Tetrachlo 0.753 0.609 0.644 0.487 0.493 0.495 0.495 14.26 62) T 1,2,3-Trichloropr 1.245 0.871 0.833 0.764 0.803 0.809 0.790 0.874 19.15 63) T n-Propylbenzene 2.429 1.887 2.321 2.344 0.487 0.493 0.495 0.495 14.26 641 T 2-Chlorotoluene 2.302 1.670 1.800 1.583 2.007 2.004 1.865 7.41 66) T 4-Chlorotoluene 2.011 1.490 1.614 1.583 1.535 1.561 1.406 10.60 68) T 1,2,4-Trimethylbe </td <td>561</td> <td>т Т</td> <td>Styrene</td> <td>1 227</td> <td>0 942</td> <td>1 114</td> <td>1 183</td> <td>1.367</td> <td>1.407</td> <td>1.427</td> <td>1.238</td> <td>14.26</td>	561	т Т	Styrene	1 227	0 942	1 114	1 183	1.367	1.407	1.427	1.238	14.26
SN T Isopropylbenzene 2.092 1.658 1.943 2.197 2.177 2.184 2.025 9.75 SN T Isopropylbenzene 0.622 0.640 0.652 0.665 0.665 0.655 0.651 2.41 GO P 1,1,2,2-Tetrachlo 0.753 0.609 0.647 0.664 0.665 0.6650 0.6650 0.6650 0.6650 0.6650 0.6650 0.6651 0.446 GO P 1,2,2-Tetrachlo 0.753 0.609 0.647 0.649 0.651 0.467 0.489 0.495 0.495 0.442 GO P 1,2,3-Trichloropr 1.245 0.871 0.833 0.764 0.803 0.809 0.790 0.874 19.15 GO T Propylbenzene 2.429 1.897 2.312 2.342 2.013 2.012 2.041 1.805 1.32 1.975 2.007 2.004 1.865 7.41 GO T 4-chlorotoluene 2.011 1.490 1.614 1.583 1.719 1.742 1.734 1.699	57)	D	Bromoform	0 396	0 242	0 298	0.311	0.367	0.376	0.374	0.338	16.42
50) 1 Display production Display production <td>58)</td> <td>T</td> <td>Isopropylbenzene</td> <td>2 092</td> <td>1 658</td> <td>1 926</td> <td>1.943</td> <td>2.197</td> <td>2.177</td> <td>2.184</td> <td>2.025</td> <td>9.75</td>	58)	T	Isopropylbenzene	2 092	1 658	1 926	1.943	2.197	2.177	2.184	2.025	9.75
b) 1,1,2,2-Tetrachlo 0.753 0.609 0.647 0.649 0.651 0.670 0.664 0.663 6.64 61) T Bromobenzene 0.645 0.451 0.456 0.434 0.487 0.493 0.495 0.455 0.455 0.416 0.565 0.414 0.61 0.657 0.491 1.4106 0.561 0.561	59)	S	Bromofluorobenzen	0 622	0.640	0.652	0.665	0.657	0.669	0.655	0.651	2.41
600 1 Bromobenzene 0.645 0.4456 0.4434 0.487 0.493 0.495 0.495 14.26 62) T 1,2,3-Trichloropr 1.245 0.871 0.833 0.764 0.803 0.809 0.790 0.874 19.15 63) T n-Propylbenzene 2.429 1.897 2.321 2.344 2.613 2.635 2.657 2.414 11.06 64) T 2-Chlorotoluene 2.302 1.670 1.800 1.583 2.007 2.004 1.865 7.41 66) T 4-Chlorotoluene 2.011 1.490 1.614 1.583 1.719 1.742 1.734 1.699 9.78 67) T tert-Butylbenzene 1.249 1.89 1.362 1.402 1.543 1.535 1.561 1.406 10.60 68) T 1,2,4-Trimethylbe 1.656 1.395 1.696 1.816 1.889 1.945 1.969 1.767 11.45 69) T sec-Butylbenzene 1.937 0.777 0.761 <td< td=""><td>50)</td><td>Þ</td><td>1 1 2 2-Tetrachlo</td><td>0.753</td><td>0.609</td><td>0.647</td><td>0.649</td><td>0.651</td><td>0.670</td><td>0.664</td><td>0.663</td><td>6.64</td></td<>	50)	Þ	1 1 2 2-Tetrachlo	0.753	0.609	0.647	0.649	0.651	0.670	0.664	0.663	6.64
1 Distribution 1.245 0.871 0.833 0.764 0.803 0.809 0.790 0.874 19.15 63) T n-Propylbenzene 2.429 1.897 2.321 2.344 2.613 2.635 2.657 2.414 11.06 64) T 2-Chlorotoluene 2.302 1.670 1.800 1.583 2.002 2.086 2.083 1.935 1.332 65) T 1.3,5-Trimethylbe 1.875 1.630 1.765 1.823 1.953 2.007 2.004 1.865 7.41 66) T 4-Chlorotoluene 2.011 1.490 1.614 1.583 1.719 1.742 1.734 1.699 9.78 67) T tert-Butylbenzene 1.249 1.189 1.362 1.402 1.543 1.535 1.561 1.406 10.60 68) T 1.2,4-Trimethylbe 1.656 1.395 1.696 1.816 1.889 1.945 1.969 1.767 11.45 69) T sc-seutylbenzene 1.037 0.761 <t< td=""><td>61)</td><td>Ť</td><td>Bromobenzene</td><td>0 645</td><td>0 451</td><td>0.456</td><td>0.434</td><td>0.487</td><td>0.493</td><td>0.495</td><td>0.495</td><td>14.26</td></t<>	61)	Ť	Bromobenzene	0 645	0 451	0.456	0.434	0.487	0.493	0.495	0.495	14.26
3) T n-Propylbenzene 2.429 1.897 2.321 2.344 2.613 2.635 2.657 2.414 11.06 64) T 2-Chlorotoluene 2.302 1.670 1.800 1.583 2.020 2.086 2.083 1.935 13.32 65) T 1,3,5-Trimethylbe 1.875 1.630 1.765 1.823 1.953 2.007 2.004 1.865 7.41 66) T 4-Chlorotoluene 2.011 1.490 1.614 1.583 1.719 1.742 1.734 1.699 9.78 67) T tert-Butylbenzene 1.249 1.891 1.362 1.402 1.543 1.551 1.611 1.406 10.60 68) T 1.2,4-Trimethylbe 1.656 1.395 1.696 1.816 1.889 1.945 1.969 1.767 11.45 69) T sec-Butylbenzene 1.981 1.567 1.961 2.005 2.233 2.249 2.289 2.041 12.30 70) T 1,3-Dichlorobenze 1.037 0.777 0.761 0.771 0.792 0.795 0.784	62)	Ť	1 2 3-Trichloropr	1.245	0.871	0.833	0.764	0.803	0.809	0.790	0.874	19.15
63) T 2-Chlorotoluene 2.302 1.670 1.800 1.583 2.020 2.086 2.083 1.935 13.32 65) T 1,3,5-Trimethylbe 1.875 1.630 1.765 1.823 1.953 2.007 2.004 1.865 7.41 66) T 4-Chlorotoluene 2.011 1.490 1.614 1.583 1.719 1.742 1.734 1.699 9.78 67) T tert-Butylbenzene 1.249 1.189 1.362 1.402 1.543 1.535 1.561 1.406 10.60 68) T 1,2,4-Trimethylbe 1.656 1.395 1.6961 2.005 2.233 2.249 2.2041 12.30 70) T 1,3-Dichlorobenze 1.037 0.777 0.761 0.745 0.825 0.850 0.886 11.82 71) T 4-Isopropyltoluen 1.443 0.966 1.424 1.441 1.610 1.662 1.667 1.459 16.61 72) T 1,4-Dichlorobenze 1.037 0.683 0.700 0.707 0.771 0.792 0.795 0.784 15.43	63)	Ť	n-Propylbenzene	2.429	1.897	2.321	2.344	2.613	2.635	2.657	2.414	11.06
61)11 <t< td=""><td>64)</td><td>Ť</td><td>2-Chlorotoluene</td><td>2.302</td><td>1.670</td><td>1.800</td><td>1.583</td><td>2.020</td><td>2.086</td><td>2.083</td><td>1.935</td><td>13.32</td></t<>	64)	Ť	2-Chlorotoluene	2.302	1.670	1.800	1.583	2.020	2.086	2.083	1.935	13.32
63)11,3,7,91,11,1,1,21,11,1,21,121,121,	65)	т	1 3 5-Trimethylbe	1.875	1.630	1.765	1.823	1.953	2.007	2.004	1.865	7.41
637)Ttert-Butylbenzene1.2491.1891.3621.4021.5431.5351.5611.40610.6068)T1,2,4-Trimethylbe1.6561.3951.6961.8161.8891.9451.9691.76711.4569)Tsec-Butylbenzene1.9811.5671.9612.0052.2332.2492.2892.04112.3070)T1,3-Dichlorobenze1.0370.7770.7610.7450.8250.8500.8580.83611.8271)T4-Isopropyltoluen1.4430.9661.4241.4411.6101.6621.6671.45916.6172)T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373)Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674)T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575)T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177)Hexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978)TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179)T1,2,3-Trichlorobe0.5	66)	Ť	4-Chlorotoluene	2.011	1.490	1.614	1.583	1.719	1.742	1.734	1.699	9.78
68)T1,2,4-Trimethylbe1.6561.3951.6961.8161.8891.9451.9691.76711.4569)Tsec-Butylbenzene1.9811.5671.9612.0052.2332.2492.2892.04112.3070)T1,3-Dichlorobenze1.0370.7770.7610.7450.8250.8500.8580.83611.8271)T4-Isopropyltoluen1.4430.9661.4241.4411.6101.6621.6671.45916.6172)T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373)Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674)T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575)T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177)THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978)TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179)T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580)T1,1,2-Trichloro-1 <td>67)</td> <td>Ť</td> <td>tert-Butylbenzene</td> <td>1.249</td> <td>1.189</td> <td>1.362</td> <td>1.402</td> <td>1.543</td> <td>1.535</td> <td>1.561</td> <td>1.406</td> <td>10.60</td>	67)	Ť	tert-Butylbenzene	1.249	1.189	1.362	1.402	1.543	1.535	1.561	1.406	10.60
69) Tsec-Butylbenzene1.9811.5671.9612.0052.2332.2492.2892.04112.3070) T1,3-Dichlorobenze1.0370.7770.7610.7450.8250.8500.8580.83611.8271) T4-Isopropyltoluen1.4430.9661.4241.4411.6101.6621.6671.45916.6172) T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373) Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674) T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.3810.3897.1480) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.389 <td>68)</td> <td>Ť</td> <td>1.2.4-Trimethylbe</td> <td>1.656</td> <td>1.395</td> <td>1.696</td> <td>1.816</td> <td>1.889</td> <td>1.945</td> <td>1.969</td> <td>1.767</td> <td>11.45</td>	68)	Ť	1.2.4-Trimethylbe	1.656	1.395	1.696	1.816	1.889	1.945	1.969	1.767	11.45
70) T1,3-Dichlorobenze1.0370.7770.7610.7450.8250.8500.8580.83611.8271) T4-Isopropyltoluen1.4430.9661.4241.4411.6101.6621.6671.45916.6172) T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373) Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674) T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.525	69)	T	sec-Butylbenzene	1.981	1.567	1.961	2.005	2.233	2.249	2.289	2.041	12.30
71) T4-Isopropyltoluen1.4430.9661.4241.4411.6101.6621.6671.45916.6172) T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373) Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674) T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513	70)	Ť	1.3-Dichlorobenze	1.037	0.777	0.761	0.745	0.825	0.850	0.858	0.836	11.82
72) T1,4-Dichlorobenze1.0370.6830.7000.7070.7710.7920.7950.78415.4373) Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674) T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	71)	T	4-Isopropyltoluen	1.443	0.966	1.424	1.441	1.610	1.662	1.667	1.459	16.61
73) Tn-Butylbenzene1.2331.1701.3311.4261.7241.7441.7851.48717.4674) T1,2-Dichlorobenze1.0160.6320.7670.7530.8080.8400.8340.80714.3575) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	72)	Ť	1.4-Dichlorobenze	1.037	0.683	0.700	0.707	0.771	0.792	0.795	0.784	15.43
74) T 1,2-Dichlorobenze 1.016 0.632 0.767 0.753 0.808 0.840 0.834 0.807 14.35 75) T 1,2-Dibromo-3-chl 0.268 0.224 0.236 0.218 0.260 0.263 0.259 0.247 8.27 76) T 1,2,4-Trichlorobe 0.531 0.404 0.411 0.433 0.545 0.558 0.567 0.493 14.81 77) T Hexachlorobutadie 0.281 0.278 0.266 0.298 0.307 0.290 0.287 5.19 78) T Naphthalene 1.807 1.192 1.261 1.515 1.869 1.897 1.884 1.632 18.81 79) T 1,2,3-Trichlorobe 0.546 0.347 0.389 0.421 0.519 0.534 0.533 0.470 17.45 80) T 1,1,2-Trichloro-1 0.383 0.418 0.364 0.427 0.360 0.381 0.389 7.14 81) T Methyl acetate 0.739 0.457 0.517 0.473 0.490 0.481 0.516 0.525 18.50	73)	T	n-Butylbenzene	1.233	1.170	1.331	1.426	1.724	1.744	1.785	1.487	17.46
75) T1,2-Dibromo-3-chl0.2680.2240.2360.2180.2600.2630.2590.2478.2776) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	74)	т	1.2-Dichlorobenze	1.016	0.632	0.767	0.753	0.808	0.840	0.834	0.807	14.35
76) T1,2,4-Trichlorobe0.5310.4040.4110.4330.5450.5580.5670.49314.8177) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.7980.6730.6990.7550.6560.6780.7107.7683) TMethylcyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	75)	T	1.2-Dibromo-3-chl	0.268	0.224	0.236	0.218	0.260	0.263	0.259	0.247	8.27
77) THexachlorobutadie0.2810.2780.2660.2980.3070.2900.2875.1978) TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.7980.6730.6990.7550.6560.6780.7107.7683) TMethylcyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	76)	т	1.2.4-Trichlorobe	0.531	0.404	0.411	0.433	0.545	0.558	0.567	0.493	14.81
78)TNaphthalene1.8071.1921.2611.5151.8691.8971.8841.63218.8179)T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580)T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481)TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082)TCyclohexane0.7980.6730.6990.7550.6560.6780.7107.7683)TMethylcyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	77)	т	Hexachlorobutadie		0.281	0.278	0.266	0.298	0.307	0.290	0.287	5.19
79) T1,2,3-Trichlorobe0.5460.3470.3890.4210.5190.5340.5330.47017.4580) T1,1,2-Trichloro-10.3830.4180.3640.4270.3600.3810.3897.1481) TMethyl acetate0.7390.4570.5170.4730.4900.4810.5160.52518.5082) TCyclohexane0.7980.6730.6990.7550.6560.6780.7107.7683) TMethylcyclohexane0.9440.6510.7090.6750.8280.7250.7560.75513.38	78)	т	Naphthalene	1.807	1.192	1.261	1.515	1.869	1.897	1.884	1.632	18.81
80) T 1,1,2-Trichloro-1 0.383 0.418 0.364 0.427 0.360 0.381 0.389 7.14 81) T Methyl acetate 0.739 0.457 0.517 0.473 0.490 0.481 0.516 0.525 18.50 82) T Cyclohexane 0.798 0.673 0.699 0.755 0.656 0.678 0.710 7.76 83) T Methylcyclohexane 0.944 0.651 0.709 0.675 0.828 0.725 0.756 0.755 13.38	79)	Т	1,2,3-Trichlorobe	0.546	0.347	0.389	0.421	0.519	0.534	0.533	0.470	17.45
81) T Methyl acetate 0.739 0.457 0.517 0.473 0.490 0.481 0.516 0.525 18.50 82) T Cyclohexane 0.798 0.673 0.699 0.755 0.656 0.678 0.710 7.76 83) T Methylcyclohexane 0.944 0.651 0.709 0.675 0.828 0.725 0.756 0.755 13.38	80)	Т	1,1,2-Trichloro-1		0.383	0.418	0.364	0.427	0.360	0.381	0.389	7.14
82) T Cyclohexane 0.798 0.673 0.699 0.755 0.656 0.678 0.710 7.76 83) T Methylcyclohexane 0.944 0.651 0.709 0.675 0.828 0.725 0.756 0.755 13.38	81)	т	Methvl acetate	0.739	0.457	0.517	0.473	0.490	0.481	0.516	0.525	18.50
83) T Methylcyclohexane 0.944 0.651 0.709 0.675 0.828 0.725 0.756 0.755 13.38	82)	т	Cyclohexane		0.798	0.673	0.699	0.755	0.656	0.678	0.710	7.76
	83)	Т	Methylcyclohexane	0.944	0.651	0.709	0.675	0.828	0.725	0.756	0.755	13.38
	10,00,00											

(#) = Out of Range ### Number of calibration levels exceeded format ###

E8240616.M Mon Jun 17 09:30:35 2024 1

Evaluate Continuing Calibration Report

Data Path	C:\MSDCHEM\1\DATA\E\24-06-15\
Data File	E9267.D
Acq On	16 Jun 2024 20:03
Operator	Sylvia
Sample	ICV240615-01, ICV100, A, 5mL, 100
Misc	NA, NA, NA, 1
ALS Vial	: 9 Sample Multiplier: 1
Quant Time	e: Jun 17 09:29:50 2024
Quant Meth	nod : C:\MSDCHEM\1\METHODS\E8240616.M
Quant Titl	e : VOLATILE ORGANICS BY EPA METHOD 8260D
QLast Upda	te : Mon Jun 17 09:14:40 2024
Response v	ia : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0	98	0.00
2	Т	Dichlorodifluoromethane	0.636	0.518	18.6	78	0.00
3	Р	Chloromethane	0.526	0.452	14.1	82	0.00
4	С	Vinyl chloride	0.552	0.472	14.5	80	0.01
5	Т	Bromomethane	0.364	0.300	17.6	83	0.00
6	Т	Chloroethane	0.334	0.316	5.4	93	0.00
7	Т	Trichlorofluoromethane	1.059	1.056	0.3	88	0.00
9	MC	1,1-Dichloroethene	0.489	0.489	0.0	90	0.00
10	т	Acetone	0.323	0.387	-19.8	120	0.00
11	Т	Carbon disulfide	3.381	2.930	13.3	87	0.01
12	Т	Vinyl acetate	0.665	0.776	-16.7	119	0.00
13	Т	Methylene chloride	0.654	0.627	4.1	96	-0.04
14	Т	Acrylonitrile	0.258	0.256	0.8	104	-0.02
15	Т	tert-Butyl alcohol (TBA)	0.101	0.107	-5.9	98	0.00
16	т	trans-1,2-Dichloroethene	0.574	0.555	3.3	97	0.00
17	Т	Methyl tert-butyl ether (MT	2.197	2.300	-4.7	100	0.00
18	Ρ	1,1-Dichloroethane	1.178	1.220	-3.6	99	0.00
19	Т	Diisopropyl ether (DIPE)	1.392	1.497	-7.5	98	0.00
20	T	cis-1,2-Dichloroethene	0.599	0.617	-3.0	97	0.00
22	T	2-Butanone (MEK)	0.414	0.444	-7.2	107	0.00
23	T	Bromochloromethane	0.246	0.259	-5.3	99	0.00
25	Ċ	Chloroform	1.390	1.368	1.6	100	0.00
26	т	1.1.1-Trichloroethane	1.287	1.260	2.1	97	0.00
27	Т	Carbon tetrachloride	1.004	1.029	-2.5	94	0.00
2.8	T	1.1-Dichloropropene	0.959	0.957	0.2	98	0.00
29	T	1.2-Dichloroethane (EDC)	1.246	1.270	-1.9	104	0.00
30	S	1,2-Dichloroethane-d4	0.828	0.818	1.2	100	0.00
31	I	1,4-Difluorobenzene	1.000	1.000	0.0	95	0.00
32	M	Benzene	1.748	1.779	-1.8	98	0.00
33	M	Trichloroethene	0.474	0.557	-17.5	109	-0.02
34	С	1.2-Dichloropropane	0.386	0.414	-7.3	99	0.00
35	т	Dibromomethane	0.297	0.300	-l.0	99	-0.02
37	Ť	Bromodichloromethane	0.667	0.700	-4.9	97	0.00
38	Ť	2-Chloroethyl vinvl ether	0.296	0.332	-12.2	95	0.00
39	Ť	cis-1.3-Dichloropropene	0.615	0.562	8.6	82	0.00
40	Ť	4-Methyl-2-pentanone (MIBK)	0.568	0.619	-9.0	98	0.00
41	S	Toluene-d8	1.152	1.156	-0.3	94	0.00
42	MC	Toluene	1.073	1.122	-4.6	98	0.00
12	т	trans-1 3-Dichloropropene	0.638	0.568	11.0	80	0.00
	т Т	1 1 2-Trichloroethane	0.328	0.344	-4.9	97	0.00
15	Ť	Tetrachloroethene	0.375	0.395	-5.3	94	0.00
1 F	Ť	1 3-Dichloropropane	0.784	0.821	-4.7	99	0.00
47	Ť	2-Hexanone	0.455	0.491	-7.9	99	0.00
10	т Т	Dibromochloromethane	0.416	0.411	1.2	92	0.00
19	Ť	1.2-Dibromoethane (EDB)	0.413	0.421	-1.9	96	0.01
ェン	-						

			1 0 0 0	1 000	00	96	0 00
50	I	Chlorobenzene-d5	1.000	1 199	-1-5	97	0.00
51	MP	Chlorobenzene	1.1/2	1.109	-1.7	97	0.00
52	Т	1,1,1,2-Tetrachloroethane	0.461	0.409	-8.5	100	0.00
53	С	Ethylbenzene	2.330	2.520	-63	99	0.00
54	Т	m,p-Xylene	0.807	0.858	11 2	101	0.00
55	Т	o-Xylene	0.789	1 742	- 11.2	201	0.00
56	Т	Styrene	1.238	1.343	-0.5	24	0.00
57	Р	Bromoform	0.338	0.334	1.2	100	0.00
58	Т	Isopropylbenzene	2.025	2.303	-13.7	TOO	0.00
59	S	Bromofluorobenzene	0.651	0.656	-0.8	20	0.00
60	Р	1,1,2,2-Tetrachloroethane	0.663	0.542	18.3	80	0.00
61	Т	Bromobenzene	0.495	0.506	-2.2	99	0.00
62	Т	1,2,3-Trichloropropane	0.874	0.835	4.5	99	0.00
63	Т	n-Propylbenzene	2.414	2.764	-14.5	TOT	0.00
64	Т	2-Chlorotoluene	1.935	2.135	-10.3	TOT	0.00
65	Т	1,3,5-Trimethylbenzene	1.865	2.078	-11.4	102	0.00
66	Т	4-Chlorotoluene	1.699	1.812	-6.7	101	0.00
67	Т	tert-Butylbenzene	1.406	1.621	-15.3	100	0.00
68	Т	1,2,4-Trimethylbenzene	1.767	1.995	-12.9	101	0.01
69	Т	sec-Butylbenzene	2.041	2.334	-14.4	100	0.00
70	Т	1,3-Dichlorobenzene	0.836	0.785	6.1	91	-0.01
71	Т	4-Isopropyltoluene	1.459	1.674	-14.7	99	0.00
72	Т	1,4-Dichlorobenzene	0.784	0.785	-0.1	97	≈0.01
73	Т	n-Butylbenzene	1.487	1.708	-14.9	95	0.00
74	т	1,2-Dichlorobenzene	0.807	0.851	-5.5	101	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.247	0.254	-2.8	93	0.01
76	Т	1,2,4-Trichlorobenzene	0.493	0.512	-3.9	90	0.00
77	Т	Hexachlorobutadiene	0.287	0.278	3 . 1	89	0.00
78	т	Naphthalene	1.632	1.764	-8.1	90	0.00
79	Т	1,2,3-Trichlorobenzene	0.470	0.479	-1.9	88	0.00
80	т	1.1.2-Trichloro-1,2,2-trifl	0.389	0.391	-0.5	87	0.00
81	Ť	Methvl acetate	0.525	0.610	-16.2	119	0.00
82	Ť	Cyclohexane	0.710	0.727	-2.4	92	0.00
83	Ť	Methylcyclohexane	0.755	0.791	-4.8	91	0.00

(#) = Out of Range

E8240616.M Mon Jun 17 09:31:21 2024 1

Evaluate Continuing Calibration Report

Da Da Ac Of Sa Sa Mi AI Qu Qu Qu Qu Qu Re	ata Pa ata F: cq On perato ample isc isc isc Via ant f iant f iant f iant f iast N	<pre>ath : C:\MSDChem\1\DATA\E\24-0 ile : E9518.D</pre>	06-24\ nL,100 L \E8240616 EPA METH 2024	.M IOD 8260D			
Mi Ma	in. RI ax. RI	RF : 0.000 Min. Rèl. An RF Dev : 20% Max. Rel. An	rea : 50 rea : 200	1% Max. 1%	R.T. Dev	0.50	Omin
23		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0	128	0.00
2	Т	Dichlorodifluoromethane	0.636	0.515	19.0	102	0.00
3	P	Chloromethane	0.526	0.496	5.7	118	0.00
4	С	Vinyl chloride	0.552	0.510	7.6	114	0.01
5	т	Bromomethane	0.364	0.357	1.9	130	0.00
6	Т	Chloroethane	0.334	0.326	2.4	126	0.01
7	Т	Trichlorofluoromethane	1.059	1.119	-5.7	123	0.00
9	MC	1,1-Dichloroethene	0.489	0.511	-4.5	124	0.03
10	т	Acetone	0.323	0.325	-0.6	132	0.00
11	т	Carbon disulfide	3.381	3.288	2.8	129	0.02
12	т	Vinyl acetate	0.665	0.682	-2.6	137	0.00
13	т	Methylene chloride	0.654	0.661	-1.1	132	0.01
14	т	Acrylonitrile	0.258	0.292	-13.2	156	-0.02
15	Т	tert-Butvl alcohol (TBA)	0.101	0.111	-9.9	134	0.00
16	T	trans-1,2-Dichloroethene	0.574	0.557	3.0	127	0.00
17	Т	Methyl tert-butyl ether (MT	2.197	2.262	-3.0	129	0.00
18	P	1.1-Dichloroethane	1.178	1.199	-1.8	127	0.00
19	- Т	Diisopropyl ether (DIPE)	1.392	1.513	-8.7	130	0.00
2.0	Ť	cis-1.2-Dichloroethene	0.599	0.626	-4.5	129	0.00
22	Т	2-Butanone (MEK)	0.414	0.441	-6.5	140	0.00
23	T	Bromochloromethane	0.246	0.254	-3.3	127	0.00
25	Ĉ	Chloroform	1.390	1.339	3.7	128	0.00
26	т	1.1.1-Trichloroethane	1.287	1.291	-0.3	130	0.00
27	Ť	Carbon tetrachloride	1.004	1.037	-3.3	124	0.00
28	Ť	1 1-Dichloropropene	0.959	0.976	-1.8	131	0.01
29	Ť	1 2-Dichloroethane (EDC)	1.246	1.239	0.6	134	0.00
30	ŝ	1.2-Dichloroethane-d4	0.828	0.817	1.3	131	0.00
31	I	1,4-Difluorobenzene	1.000	1.000	0.0	125	0.00
32	М	Benzene	1.748	1.759	-0.6	128	0.00
33	М	Trichloroethene	0.474	0.457	3.6	118	-0.01
34	С	1.2-Dichloropropane	0.386	0.404	-4.7	127	0.00
35	т	Dibromomethane	0.297	0.297	0.0	129	-0.02
37	т	Bromodichloromethane	0.667	0.708	-6.1	129	0.00
38	Т	2-Chloroethyl vinyl ether	0.296	0.339	-14.5	128	0.00
3.9	т	cis-1,3-Dichloropropene	0.615	0.690	-12.2	132	0.00
40	Т	4-Methyl-2-pentanone (MIBK)	0.568	0.640	-12.7	134	0.00
41	S	Toluene-d8	1.152	1.180	-2.4	127	0.00
42	MC	Toluene	1.073	1.109	-3.4	128	0.00
43	Т	trans-1,3-Dichloropropene	0.638	0.752	-17.9	139	0.00
44	т	1,1,2-Trichloroethane	0.328	0.351	-7.0	130	0.00
4.5	T	Tetrachloroethene	0.375	0.408	-8.8	128	0.00
46	- T	1.3-Dichloropropane	0.784	0.822	-4.8	131	0.00
47	T	2-Hexanone	0.455	0.503	10.5	133	0.00
48	T	Dibromochloromethane	0.416	0.433	-4.1	128	0.00
49	- Т	1,2-Dibromoethane (EDB)	0.413	0.427	-3.4	129	0.01

50	т	Chlorobenzene-d5	1.000	1.000	0.0	130	0.00
51	MP	Chlorobenzene	1.172	1.179	-0.6	131	0.01
52	т	1,1,1,2-Tetrachloroethane	0.461	0.444	3.7	125	0.00
53	C	Ethylbenzene	2.330	2.472	-6.1	132	0.00
54	Т	m,p-Xylene	0.807	0.848	-5.1	133	0.00
55	т	o-Xylene	0.789	0.831	-5.3	130	0.00
56	т	Styrene	1.238	1.426	-15.2	135	0.00
57	Р	Bromoform	0.338	0.357	-5.6	126	0.01
58	т	Isopropylbenzene	2.025	2.144	-5.9	127	0.00
59	S	Bromofluorobenzene	0.651	0.678	-4.1	134	0.00
60	Р	1,1,2,2-Tetrachloroethane	0.663	0.728	-9.8	145	0.00
61	т	Bromobenzene	0.495	0.496	-0.2	132	0.00
62	т	1,2,3-Trichloropropane	0.874	0.824	5.7	133	0.00
63	Т	n-Propylbenzene	2.414	2.668	-10.5	132	0.00
64	т	2-Chlorotoluene	1.935	2.089	-8.0	134	0.00
65	т	1,3,5-Trimethylbenzene	1.865	1.906	-2.2	127	0.00
66	т	4-Chlorotoluene	1.699	1.738	-2.3	131	0.00
67	т	tert-Butylbenzene	1.406	1.408	-0.1	118	0.00
68	т	1,2,4-Trimethylbenzene	1.767	1.864	-5.5	128	0.01
69	т	sec-Butylbenzene	2.041	2.115	-3.6	123	0.00
70	т	1,3-Dichlorobenzene	0.836	0.796	4.8	125	0.00
71	т	4-Isopropyltoluene	1.459	1.532	-5.0	123	0.00
72	т	1,4-Dichlorobenzene	0.784	0.796	-1.5	134	0.00
73	Т	n-Butylbenzene	1.487	1.743	-17.2	131	0.00
74	т	1,2-Dichlorobenzene	0.807	0.817	-1.2	131	0.00
75	т	1,2-Dibromo-3-chloropropane	0.247	0.258	-4.5	129	0.01
76	т	1,2,4-Trichlorobenzene	0.493	0.543	-10.1	129	0.00
77	т	Hexachlorobutadiene	0.287	0.283	1.4	123	0.00
78	т	Naphthalene	1.632	1.854	-13.6	129	0.00
79	т	1,2,3-Trichlorobenzene	0.470	0.504	-7.2	126	0.00
80	т	1,1,2-Trichloro-1,2,2-trifl	0.389	0.396	-1.8	120	0.00
81	т	Methyl acetate	0.525	0.519	1.1	137	0.00
82	т	Cyclohexane	0.710	0.708	0.3	122	0.01
83	т	Methylcyclohexane	0.755	0.806	-6.8	126	0.00
2.21				والمراجد بتداعد بتداعد عراجه والم			

(#) = Out of Range

E8240616.M Tue Jun 25 12:06:21 2024 1

Evaluate Continuing Calibration Report

Da Da Ac Op Sa Mi AL Qu Qu Qu Qu Qu Re	ta Pa ta Fi q On eratc mple sc S Via ant T ant M ant T ast U spons	<pre>th : C:\MSDChem\l\DATA\E\24-0 le : E9548.D</pre>	D6-25\ nL,100 L E8240616 EPA METH 2024	.M OD 82601))mi n
Mi Ma	n. RF x. RF	RF : 0.000 Min. Rel. A RF Dev : 20% Max. Rel. A	rea : 50 rea : 200	* Max.	R.I. Dev	0.50	
		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1	I	Pentafluorobenzene	1.000	1.000	0.0	115	0.00
2	Т	Dichlorodifluoromethane	0.636	0.550	13.5	97	0.00
3	P	Chloromethane	0.526	0.513	2.5	110	=0.02
4	С	Vinyl chloride	0.552	0.515	6.7	103	0.01
5	Т	Bromomethane	0.364	0.377	-3.0	118	0.00
6	Т	Chloroethane	1 059	1 205	-13 8	119	0.00
0	T	1 1 Dichloroethene	0 489	1.205	-9.6	116	0.02
10	мс т	I, I-DICHIOIOECHEHE	0.323	0.315	2.5	115	0.00
11	T	Carbon disulfide	3.381	3.422	-1.2	120	0.01
12	т Т	Vinvl acetate	0.665	0.739	-11.1	133	0.00
13	T	Methylene chloride	0.654	0.693	-6.0	124	0.00
14	т Т	Acrylonitrile	0.258	0.271	-5.0	130	-0.01
15	T	tert-Butvl alcohol (TBA)	0.101	0.108	-6.9	117	0.01
16	Ť	trans-1.2-Dichloroethene	0.574	0.616	-7.3	126	-0.01
17	T	Methyl tert-butyl ether (MT	2.197	2.496	-13.6	128	0.00
18	Р	1,1-Dichloroethane	1.178	1.318	-11.9	125	0.00
20	Т	cis-1,2-Dichloroethene	0.599	0.675	-12.7	125	0.00
22	т	2-Butanone (MEK)	0.414	0.445	-7.5	127	0.00
23	Т	Bromochloromethane	0.246	0.284	-15.4	128	0.00
25	С	Chloroform	1.390	1.486	-6.9	128	0.00
26	Т	1,1,1-Trichloroethane	1.287	1.410	-9.6	127	0.00
27	Т	Carbon tetrachloride	1.004	1.145	-14.0	123	0.00
28	Т	1,1-Dichloropropene	0.959	1.057	-10.2	127	0.01
29	Т	1,2-Dichloroethane (EDC)	1.246	1.377	-10.5	133	0.00
30	S	1,2-Dichloroethane-d4	0.828	0.882	-6.5	126	0.00
31	I	1,4-Difluorobenzene	1.000	1.000	0.0	120	0.00
32	М	Benzene	1.748	1.780	-1.8	125	0.00
33	Μ	Trichloroethene	0.474	0.470	0 - 8	117	-0.01
34	С	1,2-Dichloropropane	0.386	0.427	-10.6	129	0.00
35	Т	Dibromomethane	0.297	0.304	-2.4	127	-0.02
37	Т	Bromodichloromethane	0.667	0.735	-10-2	130	0.00
38	Т	2-Chloroethyl vinyl ether	0.296	0.293	1.0	107	0.00
39	Т	cis-1,3-Dichloropropene	0.615	0.681	-10.7	120	0.00
40	Т	4-Methyl-2-pentanone (MIBK)	0.568	0.604	- to - 3 - co - co	100	0.00
41	S	Toluene-d8	1.152	1 160	- 2 . 3 _ Q Q	120	0.00
42	MC	Toluene	1.0/3	T, TOA	-0-9 -0 8	115	0.00
43	T	trans-1,3-Dichloropropene	0 2020	0.045	- 9% 1	127	0.00
44	.L.	I, I, Z-Trichloroethane	0.320	0 420	-12-0	127	0.00
45	Т	Tetrachioroethene	0.784	0.859	-9.6	132	0.00
46	T	2 Hovanone	0.455	0.499	-9.7	127	0.00
4.7	T	2-nexamone Dibromochloromethane	0.416	0.459	-10.3	130	0.00
48	1 T	1 2-Dibromoethane (EDB)	0.413	0.449	-8.7	130	0.01
エフ	±	-, - Distance (,					

50	I	Chlorobenzene-d5	1.000	1.000	0.0	131	0.00
51	MP	Chlorobenzene	1.172	1.170	0 + 2	131	0.01
52	Т	1,1,1,2-Tetrachloroethane	0.461	0.459	0.4	131	0.00
53	С	Ethylbenzene	2.330	2.480	-6.4	134	0.00
54	Т	m,p-Xylene	0.807	0.855	-5.9	135	0.00
55	Т	o-Xylene	0.789	0.846	-7.2	134	0.00
56	Т	Styrene	1.238	1.425	-15.1	137	0.00
57	P	Bromoform	0.338	0.359	-6.2	128	0.01
58	Т	Isopropylbenzene	2.025	2.256	-11.4	135	0.00
59	S	Bromofluorobenzene	0.651	0.683	-4.9	136	0.00
60	P	1,1,2,2-Tetrachloroethane	0.663	0.734	-10.7	148	0.00
61	Т	Bromobenzene	0.495	0.497	-0.4	134	0.00
62	Т	1,2,3-Trichloropropane	0.874	0.822	5.9	134	0.00
63	Т	n-Propylbenzene	2.414	2.809	-16.4	141	0.00
64	Т	2-Chlorotoluene	1.935	2.208	-14.1	143	0.00
65	Т	1,3,5-Trimethylbenzene	1.865	2.087	-11.9	140	0.00
66	Т	4-Chlorotoluene	1.699	1.819	-7.1	139	0.00
67	т	tert-Butylbenzene	1.406	1.580	-12.4	134	0.00
68	Т	1,2,4-Trimethylbenzene	1.767	2.025	-14.6	140	0.01
69	Т	sec-Butylbenzene	2.041	2.354	-15.3	138	0.00
70	Т	1,3-Dichlorobenzene	0.836	0.833	0.4	132	-0.01
71	Т	4-Isopropyltoluene	1.459	1.716	-17.6	140	0.00
72	Т	1,4-Dichlorobenzene	0.784	0.833	-6.2	141	-0.01
74	Т	1,2-Dichlorobenzene	0.807	0.862	-6.8	140	0.00
75	Т	1,2-Dibromo-3-chloropropane	0.247	0.265	-7.3	134	0.01
76	Т	1,2,4-Trichlorobenzene	0.493	0.565	-14.6	136	0.00
77	Т	Hexachlorobutadiene	0.287	0.291	-1.4	128	0.00
78	Т	Naphthalene	1.632	1.900	-16.4	133	0.00
79	Т	1,2,3-Trichlorobenzene	0.470	0.518	-10.2	131	0.00
80	Т	1,1,2-Trichloro-1,2,2-trifl	0.389	0.389	0.0	119	0.00
81	Т	Methyl acetate	0.525	0.499	5.0	133	0.00
82	Т	Cyclohexane	0.710	0.674	5.1	117	0.00
83	Т	Methylcyclohexane	0.755	0.787	-4.2	124	0.00
-							

(#) = Out of Range

E8240616.M Wed Jun 26 13:43:07 2024 1

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): E9266.D Instrument ID:

MSD_E

Date Analyzed: 06/16/2024

Time Analyzed: 19:35

50UG/L	IS1		IS2		1S3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	110164	6.20	163631	7.02	143499	10.38
UPPER LIMIT	220328	6.70	327262	7.52	286998	10.88
LOWER LIMIT	55082	5.70	81815.5	6.52	71749.5	9.88
LAB SAMPLE						
ID						
01 ICC00.5	105783	6.20	149786	7.02	129868	10.38
02 ICC001	102353	6.20	146326	7.02	123488	10.38
03 ICC005	102211	6.20	147947	7.02	126483	10.38
04 ICC020	103195	6.20	152826	7.02	130758	10.38
05 ICC150	108306	6.19	156681	7.02	142257	10.38
06 ICC200	111121	6.19	166063	7.02	148812	10.38
07 ICV100	107757	6.19	154788	7.02	137102	10.38
08 BLKA240616-01	102415	6.20	150118	7.02	123848	10.38
09 E24-02039-006	96879	6.20	144496	7.02	119307	10.38
10 E24-02037-006	98652	6.20	148853	7.02	121040	10.38
11 E24-02037-005	98020	6.19	147145	7.02	120704	10.38
12 E24-02037-001	104027	6.20	153396	7.02	124995	10.38
13 E24-02037-001DUP	96279	6.20	145750	7.02	119606	10.38
14 E24-02037-002	97491	6.20	146069	7.02	123258	10.38
15 E24-02037-003	96555	6.20	144196	7.02	116393	10.38
16 E24-02037-004	97149	6.20	143161	7.02	124029	10.38
17 E24-02039-001	96953	6.20	146117	7.02	122000	10.37
18 E24-02039-002	94400	6.20	139890	7.02	115784	10.37
19 E24-02039-003	97239	6.20	143654	7.02	123422	10.38
20 E24-02039-004	99048	6.19	144437	7.02	116456	10.37
21 E24-02039-005	97720	6.20	145505	7.02	123656	10.38
22 LCSA_240616-01	98106	6.20	145640	7.02	126393	10.38

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 1 of 2

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): E9266.D

Instrument ID:

MSD E

Date Analyzed: 06/16/2024

Time Analyzed: 19:35

50UG/L	IS1 ARFA #	RT #	IS2 ARFA #	RT #	IS3 AREA #	RT #
12 HOUR STD	110164	6.20	163631	7.02	143499	10.38
	220328	6.70	327262	7.52	286998	10.88
LOWER LIMIT	55082	5.70	81815.5	6.52	71749.5	9.88
LAB SAMPLE						
	101534	6.20	152236	7.02	135276	10.38
23/2039-0011013	101334	0.20	102200	1.02	100210	10.00
24						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
38						
39						
40						
41						
42						
43						
14						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 2 of 2

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard) E9518.D Instrument ID:

MSD E

Date Analyzed: 06/24/2024

Time Analyzed: 10:04

	50UG/L	IS1		IS2		IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	141458	6.20	204210	7.02	186160	10.39
	UPPER LIMIT	282916	6.70	408420	7.52	372320	10.89
	LOWER LIMIT	70729	5.70	102105	6.52	93080	9.89
	LAB SAMPLE						
	ID						·
01	BLKA240624-01	130771	6.20	191571	7.02	175736	10.38
02	E24-02091-005	128002	6.20	185990	7.02	176948	10.38
03	E24-02091-004	125457	6.20	191156	7.02	173273	10.38
04	E24-02128-005	122584	6.20	186090	7.02	171222	10.38
05	E24-02128-006	121196	6.20	183140	7.02	169505	10.38
06	E24-02124-006	120805	6.20	183784	7.02	171851	10.38
07	E24-02124-005	120251	6.20	185463	7.02	167976	10.38
08	E24-02091-001	118094	6.20	179150	7.02	167676	10.38
09	E24-02091-001DUP	116954	6.20	179836	7.02	165446	10.38
10	E24-02091-002	117180	6.20	178826	7.02	165794	10.38
11	E24-02091-003	113985	6.20	174906	7.02	164439	10.38
12	E24-02124-001	120197	6.20	182935	7.02	172661	10.38
13	E24-02124-002	113371	6.20	177867	7.02	161341	10.38
14	E24-02124-003	115290	6.20	177899	7.02	164232	10.38
15	E24-02124-004	112164	6.20	172980	7.02	159743	10.38
16	E24-02128-002	112716	6.20	180715	7.02	162096	10.38
17	E24-02128-001	114731	6.20	174674	7.02	162735	10.38
18	E24-02128-003	116099	6.20	179569	7.02	162331	10.38
19	E24-02128-004	118480	6.20	179313	7.02	164922	10.38
20	E24-02132-004	114794	6.20	172669	7.02	162244	10.38
21	E24-02107-005DL	113967	6.20	178610	7.02	166670	10.38
22	E24-02107-012	126473	6.20	192773	7.02	183004	10.38

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT_LOWER_LIMIT = -0.50 minutes of internal standard_RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard) E9518.D

Date Analyzed: 06/24/2024

Instrument ID:

MSD_E

Time Analyzed: 10:04

ſ	50UG/L	IS1	-1.	IS2		IS3	
	1	AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	141458	6.20	204210	7.02	186160	10.39
	UPPER LIMIT	282916	6.70	408420	7.52	372320	10.89
	LOWER LIMIT	70729	5.70	102105	6.52	93080	9.89
	LAB SAMPLE						
	ID						
23	_CSA_240624-01	126644	6.20	190818	7.02	183132	10.38
24	2124-004MS	128585	6.20	198749	7.02	181633	10.38
25							
26							
27							
28							h
29							
21							
32							
32							
34							
35							
36							
37							
38							
39							
40			-				
41							
42							
43							
44							

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 2 of 2

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

 Lab File ID (Standard):
 E9548.D
 Date Analyzed:
 06/25/2024

 Instrument ID:
 MSD_E
 Time Analyzed:
 12:47

50UG/L	IS1		IS2		IS3	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	126877	6.20	196620	7.02	187958	10.38
UPPER LIMIT	253754	6.70	393240	7.52	375916	10.88
LOWER LIMIT	63438.5	5.70	98310	6.52	93979	9.88
LAB SAMPLE						
ID						
1 BLKA240625-01	120726	6.20	183779	7.02	174070	10.38
2 E24-02128-007	119729	6.20	181779	7.02	170427	10.38
3 E24-02133-010	119261	6.20	179268	7.02	166586	10.38
4 E24-02133-008	118642	6.20	183101	7.02	170137	10.38
5 E24-02148-011	119631	6.20	181213	7.02	167768	10.38
6 E24-02148-010	117734	6.19	179390	7.02	166102	10.38
)7 E24-02148-009	113784	6.20	176067	7.02	163328	10.38
8 E24-02148-001	112081	6.20	168202	7.02	160037	10.38
9 E24-02148-001DUP	115333	6.20	174886	7.02	162067	10.38
0 E24-02148-002	114281	6.20	171703	7.02	165411	10.38
1 E24-02148-004	117674	6.20	179876	7.02	165503	10.38
2 E24-02148-003	111613	6.20	172366	7.02	166297	10.38
3 E24-02148-006	115574	6.20	175320	7.02	163263	10.38
4 E24-02142-022	115247	6.20	176569	7.02	162813	10.38
5 E24-02142-023	112007	6.20	171490	7.02	159495	10.38
16 E24-02128-001DL	112783	6.20	170587	7.02	163734	10.38
7 E24-02128-003DL	115535	6.20	171946	7.02	162193	10.38
18 E24-02128-004DL	114661	6.20	173239	7.02	162793	10.38
19 E24-02148-007	115973	6.20	175741	7.02	165810	10.38
20 E24-02148-008	114341	6.20	177159	7.02	167288	10.38
21 E24-02148-005	121126	6.20	185735	7.02	178233	10.38
22 E24-02142-024	123703	6.20	186365	7.02	177615	10.38

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 1 of 2

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab File ID (Standard): E9548.D

Date Analyzed: 06/25/2024

Instrument ID:

MSD E

ime Analyzed: 12:47

50UG/L	IS1	DT #	IS2	RT #	IS3 AREA #	RT #
	AREA #	KI #		7.00		10.38
12 HOUR STD	126877	6.20	196620	7.02	187956	10.30
UPPER LIMIT	253754	6.70	393240	7.52	375916	10.88
LOWER LIMIT	63438.5	5.70	98310	6.52	93979	9.88
LAB SAMPLE						
ID						
23 LCSA_240625-01	126798	6.20	191339	7.02	184385-	10.38
24 2148-004MS	129101	6.20	194599	7.02	188138	10.38
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41				11		
42						
43						
44						

IS1 = PENTAFLUOROBENZENE

IS2 = 1,4-DIFLUOROBENZENE

IS3 = CHLOROBENZENE-D5

AREA UPPER LIMIT = +200% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

Page 2 of 2

VOLATILE ORGANICS SAMPLE DATA

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\l\DATA Data File : E9536.D Acq On : 24 Jun 2024 18:1 Operator : Sylvia Sample : MW-10D,E24-02128- Misc : EWMA/SWIVELIER ALS Vial : 20 Sample Multi	\E\24-06-24 8 001,A,0.1mI 2,06/18/24, plier: 1	,100 06/19/	/24,50			
Quant Time: Jun 26 13:22:46 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jun 17 09: Response via : Initial Calibr	024 ETHODS\E824 ICS BY EPA 14:40 2024 ation	10616.N METHOI	4 D 8260D			
Internal Standards	R.T.	QIon	Response	Conc Ur	its Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 7.02 10.38	168 114 117	114731 174674 162735	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4	6.52 Bange 80	65	104790 Recove	55.19	UG 110.38%	0.00
41) Toluene-d8 Spiked Amount 50.000	Range 80 8.71 Range 80	98 - 120	207848 Recove	51.65 ery =	UG 103.30%	0.00
59) Bromofluorobenzene Spiked Amount 50.000	11.78 Range 80	95 - 120	109951 Recove	51.86 ery =	UG 103.72%	0.00
Target Compounds			6	142	Qv	alue
 4) Vinyl chloride 16) trans-1,2-Dichloroethene 20) cis-1,2-Dichloroethene 33) Trichloroethene 40) 4-Methyl-2-pentanone (M 45) Tetrachloroethene 	2.06 4.41 5.59 7.32 MIBK 8.70 9.43	62 96 95 43 166	1134m 573 212956 Ø 428127 1062 1146	0.89 0.44 154.87 258.30 0.53 0.88	UG # UG # UG # UG # UG #	94 99 100 85 97
74) 1,2-Dichlorobenzene 82) Cyclohexane	13.69 6.20	146 56	3496 3070	1.33	UG #	55

(#) = qualifier out of range (m) = manual integration (+) = signals summed

E8240616.M Wed Jun 26 13:22:51 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\l\DATA\E\24-06-24\ Data File : E9536.D Acq On : 24 Jun 2024 18:18 Operator : Sylvia Sample : MW-10D,E24-02128-001,A,0.1mL,100 Misc : EWMA/SWIVELIER_-2,06/18/24,06/19/24,50 ALS Vial : 20 Sample Multiplier: 1 Quant Time: Jun 26 13:22:46 2024 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

LSC Area Percent Report

Data Data Acq Ope: Samj Miso ALS	a Path a File On rator ple C Vial	: C:\M : E953 : 24 J : Sylv : MW-1 : EWMA : 20	SDChe 6.D un 20 ia OD,E2 /SWIV Samp	m\1\D 24 1 4-021 YELIER DIE Mu	ATA\E 8:18 28-00 2, 	24-06-24 01,A,0.1mL 06/18/24, .ier: 1	\ ,100 06/19/24,	50			
Integration Parameters: LSCINT.P Integrator: RTE Smoothing: ON Sampling: 1 Start Thrs: 0.07 Stop Thrs: 0.2 Filtering: 5 Min Area: 1 % of largest Peak Max Peaks: 100 Peak Location: TOP Filtering: 5 Min Area: 1 % of largest Peak Max Peaks: 100 Peak Location: TOP										st Peak	
If	If leading or trailing edge < 100 prefer < Baseline drop else tangent >										
Pea	Peak separation: 10										
Met Tit	hod le	: C:\N : Voly	ISDCHE	M\1\M ORGAN	IETHOI	DS\E824061 BY EPA MET	.6.M Thod 8260D)			
Sig	nal	: TIC	2								
peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of		
#	min	scan	scan	scan	TY	height	area	% max.	total		
1	5.588	727	744	762	rBV	468973	1002318	43.93%	16.362%		
2	6.196	847	860	874	rBV	189348	404296	17.72%	6.600%		
3	6.521	911	922	936	rBV	113413	237263	10.40%	3.873%		
4	7.024	1006	1018	1040	rBV2	231413	476387	20.88%	7.777%		
5	7.323	1062	1075	1107	rBV2	1115915	2281500	100.00%	37.244%		
6	8.707	1325	1339	1358	rBV	290606	573896	25.15%	9.369%		
7	10.380	1647	1658	1678	rBV	315161	605532	26.54%	9.885%		
8	11.785	1916	1926	1946	rBB	287988	544552	23.87%	8.890%		

Sum of corrected areas: 6125744

E8240616.M Tue Jun 25 09:16:34 2024 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9536.D Acq On : 24 Jun 2024 18:18 Operator : Sylvia Sample : MW-10D,E24-02128-001,A,0.1mL,100 Misc : EWMA/SWIVELIER_-2,06/18/24,06/19/24,50 ALS Vial : 20 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\E\24-06-24\\ Data Filè : E9536.D Acq On : 24 Jun 2024 18:188 Operator : Sÿlviàa Sample : MW-10D,E24-02128-001,A,0.1mL,1000 Misc : EWMA/SWIVELIER - 2;06/18/24,06/19/24,500 ALS Vial : 20 Sample Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.MM Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response # RT Resp Conc

E8240616.M Tue Jun 25 09:16:35 2024 1

Page: 3

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\ Data File : E9565.D Acq On : 25 Jun 2024 20:34 Operator : Sylvia Sample : MW-10D,E24-02128-0 Misc : EWMA/SWIVELIER2 ALS Vial : 22 Sample Multip	E\24-06-25 01DL,A,0.0 ,06/18/24, lier: 1	5 95mL,10 06/19/	00 /24,100			
Quant Time: Jun 26 09:08:08 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	24 THODS\E824 CS BY EPA 4:40 2024 tion	0616.M METHOI	4 D 8260D			
Internal Standards	R.T.	QIon	Response	Conc Ur	its Dev	(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.20 7.02 10.38	168 114 117	112783 170587 163734	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000	6.52 Range 80 8.70 Range 80	65 - 120 98 - 120	98355 Recove 198668 Recove	52.69 ry = 50.55 ry =	UG 105.38% UG 101.10%	0.00
59) Bromofluorobenzene Spiked Amount 50.000	11.78 Range 80	95 - 120	108929 Recove	51.07 ery =	UG 102.14%	0.00
Target Compounds 20) cis-1,2-Dichloroethene 33) Trichloroethene	5.59 7.32	96 95	102846 207728	76.08 128.33	Qva UG # UG #	alue 98 100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\
Data File : E9565.D
Acq On : 25 Jun 2024 20:34
Operator : Sylvia
Sample : MW-10D,E24-02128-001DL,A,0.05mL,100
Misc : EWMA/SWIVELIER_-_2,06/18/24,06/19/24,100
ALS Vial : 22 Sample Multiplier: 1
Quant Time: Jun 26 09:08:08 2024

Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\1 Data File : E9535.D Acq On : 24 Jun 2024 17:50 Operator : Sylvia Sample : MW-11D,E24-02128-0 Misc : EWMA/SWIVELIER2 ALS Vial : 19 Sample Multip	E\24-06-24 02,A,5mL,1 ,06/19/24, lier: 1	\ .00 06/19/	24,1			
Quant Time: Jun 25 09:01:41 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	24 THODS\E824 CS BY EPA 4:40 2024 tion	0616.M METHOI	1 0 8260D			(77)
Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 7.02 10.38	168 114 117	112716 180715 162096	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	6.52 Range 80	65 - 120	111361 Recove	59.69 ery =	UG 119.38 UG	0.00
41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	8.70 Range 80 11.78 Range 80	98 - 120 95 - 120	205724 Recove 108611 Recove	ery = 51.43 ery =	98.84 UG 102.86	0.00 38 38
Target Compounds 20) cis-1,2-Dichloroethene	5.58	96	1857	1.37	UG #)value \$ 95 \$ 100
33) Trichloroethene	7.33	95	2652	1.55	UG 7	F 100

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9535.D Acq On : 24 Jun 2024 17:50 Operator : Sylvia Sample : MW-11D,E24-02128-002,A,5mL,100 Misc : EWMA/SWIVELIER_-2,06/19/24,06/19/24,1 ALS Vial : 19 Sample Multiplier: 1 Quant Time: Jun 25 09:01:41 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M

Quant Method : C: (MSDCHEM (1 (METHODS (18240010.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Dat Dat Acq Ope Sam Mis ALS	a Path a File On rator ple c Vial	: C:\M : E953 : 24 J : Sylv : MW-1 : EWMA : 19	ISDChe 5.D Tun 20 ria .1D,E2 A/SWIV Samp	m\l\D 24 1 24-021 VELIER Dle Mu	ATA\E .7:50 .28-00 2 - 2, .1tip]	2\24-06-24 02,A,5mL,2 06/19/24, Lier: 1	⊾\ LOO ,06/19/24,	1			
Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Sampling : 1 Start Thrs: 0.07 Stop Thrs : 0.2 Integrator: Filtering: 5 Min Area: 1 % of largest Peak Max Peaks: 100 Peak Location: TOP											
If Pea Met Tit	If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10 Method : C:\MSDCHEM\1\METHODS\E8240616.M										
Sig	nal	: TIC	2								
peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of		
- #	min	scan	scan	scan	TY	height	area	% max.	total		
-											
1	5.588	738	744	752	rVB4	3939	8836	1.48%	0.3098		
2	6.196	849	860	879	rBV2	188507	403477	67.498	14.1318		
3	6.516	910	921	951	rBV	110949	246984	41.318	8.6506		
4	7.024	1007	1018	1035	rBV	233894	481931	80.618	10.8/98		
5	5 7.323 1067 1075 1084 rBB4 6679 12812 2.14% 0.449%										
6	8.702	1326	1338	1369	rBV2	287170	571084	95.53%	20.001%		
7	10.380	1646	1658	1687	rBV	307689	597832	100.00%	20.938%		
8	11,785	1915	1926	1947	rBB2	280310	532253	89.03%	18.641%		

Sum of corrected areas: 2855209

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9535.D : 24 Jun 2024 17:50 Acq On Operator : Sylvia MW-11D,E24-02128-002,A,5mL,100 Sample : EWMA/SWIVELIER_-_2,06/19/24,06/19/24,1 Misc Sample Multiplier: 1 ALS Vial : 19 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M : VOLATILE ORGANICS BY EPA METHOD 8260D Quant Title

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\E\24-06-24\\ Data File : E9535.D Acq On : 24 Jun 2024 17:500 Operator : Sylviaa Sample : MW-11D,E24-02128-002;A,5mL,1000 Misc : EWMA/SWIVELIER - 2;06/19/24,06/19/24,11 ALS Vial : 19 Sample Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.MM Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response $\begin{vmatrix} --Internal Standard-- # RT Resp Conc \end{vmatrix}$

E8240616.M Tue Jun 25 09:01:59 2024 1

Page: 3

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA Data File : E9537.D Acq On : 24 Jun 2024 18:4 Operator : Sylvia Sample : MW-13D,E24-02128- Misc : EWMA/SWIVELIER ALS Vial : 21 Sample Multi	<pre>\E\24-06-24 5 003,A,0.1mI 2,06/19/24, plier: 1</pre>	,100 06/19/	/24,50			
Quant Time: Jun 26 13:24:24 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jun 17 09: Response via : Initial Calibr	024 IETHODS\E824 IICS BY EPA 14:40 2024 Tation	0616.N METHOI	4 5 8260D			
Internal Standards	R.T.	QIon	Response	Conc Un	lits Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 7.02 10.38	168 114 117	116099 179569 162331	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000	6.52 Range 80	65 - 120	107629 Recove	56.01 ery =	UG 112.02%	0.00
41) Toluene-d8	8.71	98	205246	49.62	UG	0.00
Spiked Amount 50.000	Range 80	- 120 95	107265	50.72	UG	0.00
Spiked Amount 50.000	Range 80	- 120	Recov	ery =	101.44%	
Toward Compounds	2			aun	Qv	alue
4) Vinyl chloride	2.08	62	1274m	0.99	UG	
16) trans-1,2-Dichloroether	ne 4.41	96	659 (0.49	UG #	95
20) cis-1,2-Dichloroethene	5.59	96	214410	154.09	UG #	100
33) Trichloroethene	7.32	95	495241	290.65	UG #	100
45) Tetrachloroethene	9.42	166	1163	0.86	UG	98
72) 1,4-Dichlorobenzene	13.23	146	1483	0.58		9/
74) 1,2-Dichlorobenzene	13.69 	146 	8084 	2.09 		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9537.D Acq On : 24 Jun 2024 18:45 Operator : Sylvia Sample : MW-13D,E24-02128-003,A,0.1mL,100 Misc : EWMA/SWIVELIER_-2,06/19/24,06/19/24,50 ALS Vial : 21 Sample Multiplier: 1 Quant Time: Jun 26 13:24:24 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

Quant Title : VOLATILE ORGANICS of MrA Mindo Close QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

FINALIZED 07/09/2024

LSC Area Percent Report

Dat Dat Acq Ope Sam Mis ALS	Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9537.D Acq On : 24 Jun 2024 18:45 Operator : Sylvia Sample : MW-13D,E24-02128-003,A,0.1mL,100 Misc : EWMA/SWIVELIER2,06/19/24,06/19/24,50 ALS Vial : 21 Sample Multiplier: 1										
Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Sampling : 1 Start Thrs: 0.07 Stop Thrs : 0.2 Integrator: Peak Location: TOP											
If Pea	If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10										
Met Tit	chod le	: C:\N : Voly	ISDCHI ATILE	EM\1\N ORGAN	NETHOI NICS I	DS\E824061 BY EPA MET	L6.M THOD 8260I)			
sig	ynal	: TIC	2								
pea} #	c R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total		
1 2 3 4	5.588 6.196 6.521 7.024	727 845 911 1006	744 860 922 1018	787 877 954 1035	rBV rBV2 rBV rBV	471305 189833 109833 241423	10471774044262438364791472605937	40.188 15.528 9.368 18.398	16.068% 6.206% 3.741% 7.352% 39.986%		
5 6 7 8 9	8.707 10.380 11.785	1328 1645 1916 2281	1339 1658 1926 2289	1354 1676 1945 2298	rBV rBV rBV rBB	289005 310461 281635 19435	569242 599614 529584 38144	21.84% 23.01% 20.32% 1.46%	8.735% 9.201% 8.126% 0.585%		

Sum of corrected areas: 6517107

Page: 1

E8240616.M Tue Jun 25 09:18:15 2024 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9537.D Acq On : 24 Jun 2024 18:45 Operator : Sylvia Sample : MW-13D,E24-02128-003,A,0.1mL,100 Misc : EWMA/SWIVELIER - 2,06/19/24,06/19/24,50 ALS Vial : 21 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path⁻: C:\MSDChem\l\DATA\E\24-06-24\\ Data Filē : E9537.D Acq On : 24 Jun 2024 18:455 Operator : Sÿlviaa Samplē : MW-13D,E24-02128-003;A,0:1mL,1000 Misc : EWMA/SWIVELIER - 2;06/19/24,06/19/24,500 ALS Vial⁻ : 21 Samplē Multiplier: 11 Quant Method⁻: C:\MSDCHEM\l\METHODS\E8240616.MM Quant Titlē : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response | --Internal Standard---# RT Resp Conc|

E8240616.M Tue Jun 25 09:18:15 2024 1

Page: 3

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\ Data File : E9566.D Acq On : 25 Jun 2024 21:02 Operator : Sylvia Sample : MW-13D,E24-02128-0 Misc : EWMA/SWIVELIER2 ALS Vial : 23 Sample Multip	E\24-06-25 03DL,A,0.0 ,06/19/24, lier: 1	5\ 05mL,10 06/19/	00 ⁄24,100			
Quant Time: Jun 26 09:09:52 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	24 THODS\E824 CS BY EPA 4:40 2024 tion	40616.N METHOI	4 5 8260D	Con a II		r (Min)
Internal Standards	R.T.	Qlon	Response		IILS Dev	
1) Pentafluorobenzene	6.20	168	115535	50.00	UG	0.00
31) 1,4-Difluorobenzene	7.02	114	171946	50.00	UG	0.00
50) Chlorobenzene-d5	10.38	117	162193	50.00	UG	0.00
a i di sulur Comerciala						
System Monitoring Compounds	6 52	65	98046	51.27	UG	0.00
So) 1,2-Dichiotoechane da	Range 80	- 120	Recove	rv =	102.54	ĥ
41) Toluene-d8	8.71	98	201681	50.92	UG	0.00
Spiked Amount 50.000	Range 80	- 120	Recove	ry =	101.849	alo alo
59) Bromofluorobenzene	11.78	95	109721	51.93	UG	0.00
Spiked Amount 50.000	Range 80	- 120	Recove	ry =	103.86%	20
-				NOID	01	
Target Compounds	0.05	60	72 Cm	1.60 50	UC V	varue
4) Vinyl chloride	2.05	04	750m	0.42	UG	
16) trans-1,2-Dichloroethene	2 4.41 E E Q	90	108008 (78.00	UG #	99
20) Cis-1,2-Dichioroethene	2.22	95	244112	149.62	UG #	100
45) Trichioroethene	9 43	166	593m 4	0.46	UG	
74) 1 2-Dichlorobenzene	13.69	146	4798	/ 1.83	UG	96
, i, i, z bienterezendene						

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\ Data File : E9566.D Acq On : 25 Jun 2024 21:02 Operator : Sylvia Sample : MW-13D,E24-02128-003DL,A,0.05mL,100 Misc : EWMA/SWIVELIER_-2,06/19/24,06/19/24,100 ALS Vial : 23 Sample Multiplier: 1 Quant Time: Jun 26 09:09:52 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

FINALIZED 07/09/2024

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\l\DATA\ Data File : E9538.D Acq On : 24 Jun 2024 19:12 Operator : Sylvia Sample : DUP-1,E24-02128-00 Misc : EWMA/SWIVELIER2 ALS Vial : 22 Sample Multip Quant Time: Jun 25 09:19:26 20 Quant Method : C:\MSDCHEM\l\ME Quant Title : VOLATILE ORGANI QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	E\24-06-24 4,A,0.1mL, ,06/19/24, lier: 1 24 THODS\E824 CS BY EPA 4:40 2024 tion	\ 100 06/19/ 0616.M METHOI	'24,50 1 0 8260D			
Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	6.20	168	118480	50.00	UG	0.00
31) 1.4-Difluorobenzene	7.02	114	179313	50.00	UG	0.00
50) Chlorobenzene-d5	10.38	117	164922	50.00	UG	0.00
System Monitoring Compounds						
30) 1,2-Dichloroethane-d4	6.52	65	108926	55.55	UG	0.00
Spiked Amount 50.000	Range 80	- 120	Recov	ery =	111.10%	0 00
41) Toluene-d8	8.71	98	208137	50.39	UG 100 708	0.00
Spiked Amount 50.000	Range 80	- 120	100127	ELY =	100.70%	0.00
59) Bromofluorobenzene	Pange 80	- 120	Recov	erv =	101.58%	0.00
Spiked Allount 50.000	Range 00	120	1.000			
Target Compounds				GINA	Qv	alue
4) Vinyl chloride	2.07	62	1539m	1.18	UG	
20) cis-1,2-Dichloroethene	5.59	96	230782	0162.52	UG #	100
33) Trichloroethene	7.32	95	523571	307.72	UG #	99
45) Tetrachloroethene	9.42	146	9320	3,50	UG	98
(4) 1,2-Dichtoropenzene	13.00	THO	220	5.50		

(#) = qualifier out of range (m) = manual integration (+) = signals summed

E8240616.M Tue Jun 25 09:19:31 2024 1

Page: 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9538.D Acq On : 24 Jun 2024 19:12 Operator : Sylvia Sample : DUP-1,E24-02128-004,A,0.1mL,100 Misc : EWMA/SWIVELIER_-2,06/19/24,06/19/24,50 ALS Vial : 22 Sample Multiplier: 1 Quant Time: Jun 25 09:19:26 2024

Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Data	a Path	: C:\M	SDChe	m\1\D	ATA\E	\24-06-24	\mathbf{N}			
Data	a File	: E953	8.D	04 1	0.10					
Acq	On	: 24 J	un 20)24 I	9:12					
Ope:		: SYIV	1 E24	-0212	8-004	.A.0.1mL.	100			
Mie	a btc	EWMA	/SWTV	/ELTER	- 2.	06/19/24,	06/19/24,	50		
ALS	Vial	: 22	Samp	ole Mu	Itipl	ier: 1				
			-		-					
Int	egratic	on Para	meter	s: LS	CINT.	P				
Int	egrator	: RTE					Tiltor	ing. E		
Smo	othing	: ON					Filter Min A	Tud: 2	of larges	t Peak
Sam	pling	: 1					Mar De	ska: 100	OI TAIGCE	,c icun
Sta	rt Thrs	s: 0.07	1			T	Man re	ion. TOP		
Sto	p Thrs	: 0.2				F	Peak Docat	.1011. 101		
тf	If leading or trailing edge < 100 prefer < Baseline drop else tangent >									
Pea	k separ	ation:	10		,					
1.000										
Met	hod	: C:\N	ISDCHE	EM/1/M	IETHOI	DS\E824061	L6.M			
Tit	le	: VOLA	TILE	ORGAN	NICS I	BY EPA MET	THOD 82601)		
a '	-	mT	-							
Sig	nal	: 110	<i>.</i>							
neak	R.T.	first	max	last	PK	peak	corr.	corr.	% of	
#	min	scan	scan	scan	ΤY	height	area	% max.	total	
1				-						
1	5.588	725	744	789	rBV	507910	1109931	39.96%	16.336%	
2	6.196	849	860	873	rBV	196356	411096	14.80%	6.051%	
3	6.516	911	921	948	rBV	110996	247534	8.91%	3.643%	
4	7.024	1005	1018	1037	rBV	233538	485926	17.50%	7.152%	
5	7.323	1062	1075	1112	rBV	1363439	2777267	100.00%	40.8768	
~		1000	1000	1262	wD17	296224	578550	20 83%	8.515%	
6	8.702	1520	1050	1670		212905	605394	21 80%	8.910%	
1	11 70E	104/	1006	10/7	rBB2	278278	536576	19.32%	7.897%	
Ø	12 600	1913	1920	22941	rBB2	22692	42032	1.51%	0.619%	
9	TJ . 000	4401	2203	2212		22022				

Sum of corrected areas: 6794306

E8240616.M Tue Jun 25 09:19:42 2024 1

LSC Report - Integrated Chromatogram

```
Data Path : C:\MSDChem\1\DATA\E\24-06-24\
Data File : E9538.D
          : 24 Jun 2024 19:12
Acq On
Operator : Sylvia
          DUP-1,E24-02128-004,A,0.1mL,100
Sample
          : EWMA/SWIVELIER_-_2,06/19/24,06/19/24,50
Misc
                 Sample Multiplier: 1
ALS Vial
          : 22
Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M
            : VOLATILE ORGANICS BY EPA METHOD 8260D
Quant Title
            : C:\DATABASE\NIST05A.L
TIC Library
```

TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\E\24-06-24\\ Data Filè : E9538.D Acq On : 24 Jun 2024 19:122 Operator : Sylviaa Sample : DUP-1,E24-02128-004,A,0.1mL,1000 Misc : EWMA/SWIVELIER - 2,06/19/24,06/19/24,500 ALS Vial : 22 Sample Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.MM Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NIST05A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response | --Internal Standard---# RT Resp Conc|

E8240616.M Tue Jun 25 09:19:42 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\ Data File : E9567.D Acq On : 25 Jun 2024 21:30 Operator : Sylvia Sample : DUP-1,E24-02128-00 Misc : EWMA/SWIVELIER2 ALS Vial : 24 Sample Multip Quant Time: Jun 26 09:11:11 20 Quant Method : C:\MSDCHEM\1\MH Quant Title : VOLATILE ORGANJ QLast Update : Mon Jun 17 09:2 Besponse via : Initial Calibra	E\24-06-25 04DL,A,0.05 2,06/19/24, 01ier: 1 024 ETHODS\E824 ICS BY EPA 14:40 2024	5 6mL,100 06/19/ 40616.M METHOI) '24,100 4 0 8260D			
Internal Standards	R.T.	OTon	Response	Conc Ur	nits Dev	(Min)
Incernar Scandards						
1) Pentafluorobenzene	6.20	168	114661	50.00	UG	0.00
31) 1.4-Difluorobenzene	7.02	114	173239	50.00	UG	0.00
50) Chlorobenzene-d5	10.38	117	162793	50.00	UG	0.00
a la Maritan Compounda						
System Monitoring Compounds	6 52	65	99260	52 31	UG	0.00
Gribed Arount E0 000	Pange 80	- 120	Recove	rv =	104 62%	0.00
41) Teluene de	Range 00 8 70	98	207115	51.90	UG	0.00
AI) IOIdene-do	Range 80	- 120	Recove	rv =	103.80%	
50) Promofluorobenzene	11 78	95	110743	52.22	UG	0.00
Spiked Amount 50.000	Range 80	- 120	Recove	ery =	104.44%	
			/	Nol C	0.17	2110
Target Compounds	0.00	60	COEmt	NO EA	110	aruc
4) Vinyl chloride	2.06	6Z	107100	W 78 00	UG #	aa
20) cis-1,2-Dichloroethene	5.59	96	10/190	150.00	UG #	100
33) Trichloroethene	1.32	166	240939	h 0 44		TOO
45) Tetrachioroethene	9.42 12 69	146	4089	1 56		98
(4) 1,2-Dichlorobenzene	13.09					

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\ Data File : E9567.D Acq On : 25 Jun 2024 21:30 Operator : Sylvia Sample : DUP-1,E24-02128-004DL,A,0.05mL,100 Misc : EWMA/SWIVELIER - 2,06/19/24,06/19/24,100 ALS Vial : 24 Sample Multiplier: 1 Quant Time: Jun 26 09:11:11 2024

Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\ Data File : E9523.D Acq On : 24 Jun 2024 12:21 Operator : Sylvia Sample : FB-1-061824,E24-02 Misc : EWMA/SWIVELIER2 ALS Vial : 7 Sample Multipl	E\24-06-24\ 128-005,A,5mL,10 .06/18/24,06/19/ ier: 1	0 24,1			
Quant Time: Jun 25 08:34:10 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANI QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	24 THODS\E8240616.M CS BY EPA METHOD 4:40 2024 ation	I 0 8260D			
Internal Standards	R.T. QION	Response Con	c Uni	ts Dev(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 168 7.02 114 10.38 117	122584 50 186090 50 171222 50	.00 U .00 U .00 U	iG iG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.52 65 Range 80 = 120 8.71 98 Range 80 - 120 11.78 95 Range 80 = 120	105467 51 Recovery 219070 51 Recovery 111995 50 Recovery	98 U = 1 10 U = 1).21 U = 1	JG .03.96% JG .02.20% JG .00.42%	0.00 0.00 0.00
Target Compounds				Qva	lue
(#) = qualifier out of range	(m) = manual int	tegration (+)	= sig	nals su	ummed

E8240616.M Tue Jun 25 08:34:15 2024 1

Page: 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9523.D Acq On : 24 Jun 2024 12:21 Operator : Sylvia Sample : FB-1-061824,E24-02128-005,A,5mL,100 Misc : EWMA/SWIVELIER_-2,06/18/24,06/19/24,1 ALS Vial : 7 Sample Multiplier: 1

Quant Time: Jun 25 08:34:10 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Data Data Acq Oper Samp Miso ALS	Path File On cator ole Vial	: C:\M : E952 : 24 J : Sylv : FB-1 : EWMA : 7	SDChe 3.D un 20 ria -0618 /SWIV Sampl	m\1\D 24 1 24,E2 TELIER e Mul	ATA\E 2:21 4-021 2, 2, 2,	2\24-06-24 .28-005,A, 06/18/24, .er: 1	5mL,100 06/19/24,	1		
Inte Inte Smoo Samp Sta: Stop	egratic egrator othing oling rt Thrs o Thrs	on Para : RTE : ON : 1 s: 0.07 : 0.2	umeter	s: LS	CINT	P	Filter Min A Max Pe Peak Locat	ing: 5 rea: 1 % aks: 100 ion: TOP	of larges	st Peak
If Peal Met Tit	leading k separ hod le	g or tr cation: : C:\M : VOLA	cailir : 10 MSDCHE ATILE	ng edg EM\1\N ORGAN	ge < 3 METHOI NICS 3	100 prefei DS\E824063 BY EPA MET	c < Baseli L6.M THOD 8260D	ne drop	else tange	ent >
Sig	nal	: TIC	2							
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	5.540 6.196 6.516 7.024 8.707	726 848 910 1006 1326	735 860 921 1018 1339	747 874 950 1040 1358	rBV3 rBV rBV rBV rBV	3195 201759 110371 243607 303848	9399 429679 248757 499342 597401	1.51% 68.81% 39.83% 79.96% 95.66%	0.318% 14.536% 8.415% 16.893% 20.210%	
6 7	10.380 11.785	1645 1916	1658 1926	1686 1943	rBB rVB	319435 300406	624487 546910	100.00% 87.58%	21.126% 18.502%	

Sum of corrected areas: 2955975

E8240616.M Tue Jun 25 08:34:27 2024 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9523.D Acq On : 24 Jun 2024 12:21 Operator : Sylvia Sample : FB-1-061824,E24-02128-005,A,5mL,100 Misc : EWMA/SWIVELIER - 2,06/18/24,06/19/24,1 ALS Vial : 7 Sample Multiplier: 1 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDCHem\l\DATA\E\24-06-24\\ Data Filë : E9523.D Acq On : 24 Jun 2024 12:211 Operator : Sýlviáa Sample : FB-1-061824,E24-02128-005,A,5mL,1000 Misc : EWMA/SWIVELIER - 2;06/18/24,06/19/24,11 ALS Vial : 7 Sample Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.MM Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NIST05A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response # RT Resp Conc

E8240616.M Tue Jun 25 08:34:28 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\ Data File : E9524.D Acq On : 24 Jun 2024 12:49 Operator : Sylvia Sample : FB-2-061924,E24-02 Misc : EWMA/SWIVELIER2 ALS Vial : 8 Sample Multipl	E\24-06-24\ 128-006,A,5mL,1 2,06/19/24,06/19 ier: 1	00 /24,1	
Quant Time: Jun 25 08:35:17 20 Quant Method : C:\MSDCHEM\1\ME Quant Title : VOLATILE ORGANJ QLast Update : Mon Jun 17 09:1 Response via : Initial Calibra	024 ETHODS\E8240616. CS BY EPA METHC 4:40 2024 tion	M D 8260D	
Internal Standards	R.T. QION	Response Conc	Units Dev(Min)
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.20 168 7.02 114 10.38 117	121196 50.0 183140 50.0 169505 50.0	00 UG 0.00 00 UG 0.00 00 UG 0.00 00 UG 0.00 00 UG 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.52 65 Range 80 - 120 8.71 98 Range 80 - 120 11.79 95 Range 80 - 120	106443 53.0 Recovery 215852 51.3 Recovery 212280 50.3 Recovery 212280 50.3	D7 UG 0.00 = 106.14% 16 UG 0.00 = 102.32% 84 UG 0.00 = 101.68%
Target Compounds			Qvalue
(#) = qualifier out of range	(m) = manual in	ntegration (+) =	signals summed

E8240616.M Tue Jun 25 08:35:22 2024 1

Page: 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9524.D Acq On : 24 Jun 2024 12:49 Operator : Sylvia Sample : FB-2-061924,E24-02128-006,A,5mL,100 Misc : EWMA/SWIVELIER_-2,06/19/24,06/19/24,1 ALS Vial : 8 Sample Multiplier: 1 Quant Time: Jun 25 08:35:17 2024

Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Data Data Acq Oper Samp Misc ALS	Path File On rator ole Vial	: C:\M : E952 : 24 J : Sylv : FB-2 : EWMA : 8	SDChe 4.D Tun 20 ria -0619 A/SWIV Sampl	m\l\D 24 l 24,E2 TELIER e Mul	ATA\E 2:49 4-021 22, tipli	24-06-24 28-006,A, 06/19/24, er: 1	5mL,100 ,06/19/24,	1		
Inte Inte Smoo Sam Sta Sto	egratic egrator othing oling rt Thrs o Thrs	on Para : RTE : ON : 1 5: 0.07 : 0.2	umeter	s: LS	CINT .	.P	Filter Min A Max Pe Peak Locat	ing: 5 rea: 1 % aks: 100 ion: TOP	of larges	: Peak
If Peal Met Tit	leading k separ hod le	g or tr ration: : C:\N : VOL2	cailir : 10 MSDCHE ATILE	ng edg EM\1\M ORGAN	JE < 1 NETHOI NICS I	100 prefe: DS\E82406 BY EPA ME	r < Baseli 16.M THOD 8260I	ne drop	else tange	nt >
Sig	nal	: TIC	2							
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	5.541 6.196 6.516 7.024 8.707	724 848 909 1007 1327	735 860 921 1018 1339	745 876 954 1040 1363	rBV2 rBV2 rBV rBV rBV	2420 198047 108391 236248 298038	6827 419681 244892 494691 595979	1.11% 68.12% 39.75% 80.29% 96.73%	0.233% 14.333% 8.363% 16.894% 20.353%	
6 7	10.380 11.785	1648 1914	1658 1926	1677 1946	rBV rBB2	317786 289263	616131 549940	100.00% 89.26%	21.042% 18.781%	

Sum of corrected areas: 2928141

E8240616.M Tue Jun 25 08:35:37 2024 1

Page: 1

LSC Report - Integrated Chromatogram

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9524.D : 24 Jun 2024 12:49 Acq On : Sylvia Operator : FB-2-061924,E24-02128-006,A,5mL,100 Sample : EWMA/SWIVELIER_-_2,06/19/24,06/19/24,1 Misc Sample Multiplier: 1 ALS Vial : 8 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M : VOLATILE ORGANICS BY EPA METHOD 8260D Quant Title

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDChem\l\DATA\E\24-06-24\\ Data Filè : E9524.D Acq On : 24 Jun 2024 12:499 Operator : Sÿlviaa Sample : FB-2-061924,E24-02128-006,A,5mL,1000 Misc : EWMA/SWIVELIER - 2;06/19/24,06/19/24,11 ALS Vial : 8 Sample Multiplier: 11 Quant Method : C:\MSDCHEM\l\METHODS\E8240616.MM Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response | --Internal Standard---# RT Resp Conc|

E8240616.M Tue Jun 25 08:35:37 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\ Data File : E9551.D Acq On : 25 Jun 2024 14:09 Operator : Sylvia	E\24-06-25\			
Sample : TB-061824,E24-0212	28-007, A, 5mL, 10	0		
Misc : EWMA/SWIVELIER2	2,06/18/24,06/1	9/24,1		
ALS Vial : 7 Sample Multip	lier: 1			
Quant Time: Jun 26 08:28:29 20 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jun 17 09:3 Response via : Initial Calibra	024 ETHODS\E8240616 ICS BY EPA METH L4:40 2024 Ation	.M Od 8260D		
Internal Standards	R.T. QION	Response Cond	: Units	Dev(Min)
		110000 50		
1) Pentafluorobenzene	6,20 168	101770 50	OU UG	0.00
31) 1,4-Difluorobenzene	7.02 114	170427 50		0.00
50) Chlorobenzene-d5	10.38 11/	1/042/ 50	.00 00	0.00
Suctem Monitoring Compounds				
30) 1 2-Dichloroethane-d4	6.52 65	104355 52	.66 UG	0.00
Spiked Amount 50,000	Range 80 - 12	0 Recovery	= 105	.32%
41) Toluene-d8	8.70 98	212019 50	.63 UG	0.00
Spiked Amount 50,000	Range 80 - 12	0 Recovery	= 101	.26%
59) Bromofluorobenzene	11.79 95	110853 49	.93 UG	0.00
Spiked Amount 50.000	Range 80 - 12	0 Recovery	= 99	.86%
	_			0372] 110
Target Compounds				

(#) = qualifier out of range (m) = manual integration (+) = signals summed

E8240616.M Wed Jun 26 08:29:18 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\ Data File : E9551.D Acq On : 25 Jun 2024 14:09 Operator : Sylvia Sample : TB-061824,E24-02128-007,A,5mL,100 Misc : EWMA/SWIVELIER_-2,06/18/24,06/19/24,1 ALS Vial : 7 Sample Multiplier: 1 Quant Time: Jun 26 08:28:29 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Dat Dat Acq Ope Sam Mis ALS	a Path a File On rator ple c Vial	: C:\M : E955 : 25 J : Sylv : TB-C : EWMA : 7	ISDCHE 51.D Tun 20 ria 061824 A/SWIV Sampl	M\1\C 24 1 ,E24- YELIER .e Mul	OATA\H -4:09 -02128 22, -tip1	2\24-06-25 3-007,A,5m ,06/18/24, ier: 1	L,100 06/19/24,	1		
Int Int Smo Sam Sta Sto	egratic egrator othing pling rt Thrs p Thrs	on Para : RTE : ON : 1 s: 0.07 : 0.2	nmeter	s: LS	SCINT	.P	Filter Min A Max Pe Peak Locat	ing: 5 rea: 1 % aks: 100 ion: TOP	of larges	st Peak
If Pea Met Tit	leading k separ hod le	g or tration: : C:\N : VOL4	railir : 10 MSDCHI ATILE	ng edg EM\1\N ORGAN	ge < 3 METHOI NICS 1	100 prefei DS\E824061 BY EPA MET	c < Baseli L6.M THOD 8260I	ne drop	else tange	ent >
Sig	nal	: TIC	2							
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	5.541 6.196 6.516 7.024 8.707	724 848 908 1006 1323	735 860 921 1018 1339	750 875 941 1031 1364	rBV rBV rBV rBV rBV	9154 195911 109883 231234 291569	29713 419347 238823 489869 583528	4.81% 67.90% 38.67% 79.32% 94.49%	1.017% 14.347% 8.171% 16.760% 19.964%	
6 7	10.380 11.785	1644 1915	1658 1926	1692 1948	rBB rBB2	312277 278721	617567 544000	100.00% 88.09%	21.129% 18.612%	

Sum of corrected areas: 2922847

LSC Report - Integrated Chromatogram

```
Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\
Data File : E9551.D
Acq On : 25 Jun 2024 14:09
Operator : Sylvia
Sample : TB-061824,E24-02128-007,A,5mL,100
Misc : EWMA/SWIVELIER - 2,06/18/24,06/19/24,1
ALS Vial : 7 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M
Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D
```

TIC Library : C:\DATABASE\NIST05A.L TIC Integration Parameters: LSCINT.P

Tentatively Identified Compound (LSC) summary

Data Path : C:\MSDCHEM\1\DATA\E\24-06-25\\ Data Filē : E9551.D Acq On : 25 Jun 2024 14:099 Operator : Sÿlviaa Samplē : TB-061824,E24-02128-007,A,5mL,1000 Misc : EWMA/SWIVELIER - 2,06/18/24,06/19/24,11 ALS Vial : 7 Samplē Multiplier: 11 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.MM Quant Titlē : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP TIC Top Hit name RT EstConc Units Response | --Internal Standard---# RT Resp Conc

E8240616.M Wed Jun 26 08:29:33 2024 1

VOLATILE ORGANICS

Lab ID: BLKA240624-01 Client ID: BLKA240624-01 Date Received: NA Date Analyzed: 06/24/2024 Data file: E9520.D 06/24/2024 10:58 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinyl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1,1-Dichloroethene	ND		0.500	0.363
Acetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
trans-1,2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1,1-Dichloroethane	ND		0.500	0.285
cis-1,2-Dichloroethene	ND		0.500	0.277
2-Butanone (MEK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1,1,1-Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1,2-Dichloroethane (EDC)	ND		0.500	0.273
Benzene	ND		0.500	0.270
Trichloroethene	ND		0.500	0.347
1,2-Dichloropropane	ND		0.500	0.272
Bromodichloromethane	ND		0.500	0.258
cis-1,3-Dichloropropene	ND		0.500	0.264
4-Methyl-2-pentanone (MIBK)	ND		1.00	0.611

VOLATILE ORGANICS

Lab ID: BLKA240624-01 Client ID: BLKA240624-01 Date Received: NA Date Analyzed: 06/24/2024 Data file: E9520.D 06/24/2024 10:58 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1,3-Dichloropropene	ND		0.500	0.330
1,1,2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1,2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1,1,2,2-Tetrachloroethane	ND		0.500	0.284
1,3-Dichlorobenzene	ND		0.500	0.386
1,4-Dichlorobenzene	ND		0.500	0.397
1,2-Dichlorobenzene	ND		0.500	0.354
1,2-Dibromo-3-chloropropane	ND		0.500	0.410
1,2,4-Trichlorobenzene	ND		0.500	0.358
1,2,3-Trichlorobenzene	ND		0.500	0.406
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.00	0.538
Methyl acetate	ND		0.500	0.345
Cyclohexane	ND		1.00	0.469
Methylcyclohexane	ND		0.500	0.421
1,3-Dichloropropene (cis- and trans-)	ND		0.500	0.264

Total Target Compounds (51):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank

C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

Lab ID: BLKA240624-01	GC/MS Column: DB-624
Client ID: BLKA240624-01	Sample wt/vol: 5mL
Date Received: NA	Matrix-Units: Aqueous-µg/L
Date Analyzed: 06/24/2024	Dilution Factor: 1
Data file: E9520.D 06/24/2024 10:58	% Moisture: 100

		Estimated		Retention
CAS #	Compound	Concentration	Q	Time

No peaks detected

Total TICs = 0

VOLATILE ORGANICS

Lab ID: BLKA240625-01 Client ID: BLKA240625-01 Date Received: NA Date Analyzed: 06/25/2024 Data file: E9550.D 06/25/2024 13:42 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Dichlorodifluoromethane	ND		1.00	0.552
Chloromethane	ND		0.500	0.309
Vinvl chloride	ND		0.500	0.352
Bromomethane	ND		0.500	0.386
Chloroethane	ND		0.500	0.324
Trichlorofluoromethane	ND		1.00	0.503
1 1-Dichloroethene	ND		0.500	0.363
A cetone	ND		1.00	1.00
Carbon disulfide	ND		0.500	0.403
Methylene chloride	ND		1.00	0.500
tert-Butyl alcohol (TBA)	ND		2.00	1.16
trans-1 2-Dichloroethene	ND		0.500	0.372
Methyl tert-butyl ether (MTBE)	ND		0.500	0.245
1 1-Dichloroethane	ND		0.500	0.285
cis 1.2-Dichloroethene	ND		0.500	0.277
2 Butanone (MFK)	ND		1.00	0.802
Bromochloromethane	ND		0.500	0.379
Chloroform	ND		0.500	0.285
1.1.1 Trichloroethane	ND		0.500	0.381
Carbon tetrachloride	ND		0.500	0.349
1.2 Dichloroethane (FDC)	ND		0.500	0.273
Panzana	ND		0.500	0.270
Delizene	ND		0.500	0.347
1 2 Dichleronronana	ND		0.500	0.272
1,2-Dichloropiopalie	ND		0.500	0.258
sis 1.2 Dishloronronene	ND		0.500	0.264
4 Mathul 2 poptanone (MIRK)	ND		1.00	0.611
4-Methyl-2-pentanone (MIDK)	ND			

VOLATILE ORGANICS

Lab ID: BLKA240625-01 Client ID: BLKA240625-01 Date Received: NA Date Analyzed: 06/25/2024 Data file: E9550.D 06/25/2024 13:42 GC/MS Column: DB-624 Sample wt/vol: 5mL Matrix-Units: Aqueous-µg/L % Moisture: 100 Dilution Factor: 1

Compound	Concentration	Q	RL	MDL
Toluene	ND		0.500	0.302
trans-1,3-Dichloropropene	ND		0.500	0.330
1.1.2-Trichloroethane	ND		0.500	0.313
Tetrachloroethene	ND		0.500	0.365
2-Hexanone	ND		1.00	0.818
Dibromochloromethane	ND		0.500	0.263
1.2-Dibromoethane (EDB)	ND		0.500	0.289
Chlorobenzene	ND		0.500	0.304
Ethylbenzene	ND		0.500	0.313
Total Xylenes	ND		1.00	0.345
Styrene	ND		0.500	0.317
Bromoform	ND		0.500	0.328
Isopropylbenzene	ND		0.500	0.332
1,1,2,2-Tetrachloroethane	ND		0.500	0.284
1,3-Dichlorobenzene	ND		0.500	0.386
1,4-Dichlorobenzene	ND		0.500	0.397
1,2-Dichlorobenzene	ND		0.500	0.354
1,2-Dibromo-3-chloropropane	ND		0.500	0.410
1,2,4-Trichlorobenzene	ND		0.500	0.358
1,2,3-Trichlorobenzene	ND		0.500	0.406
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.00	0.538
Methyl acetate	ND		0.500	0.345
Cyclohexane	ND		1.00	0.469
Methylcyclohexane	ND		0.500	0.421
1,3-Dichloropropene (cis- and trans-)	ND		0.500	0.264

Total Target Compounds (52):

0

D --- Dilution Performed

J --- Value Less than RL & greater than MDL

E --- Exceeds upper level of Calibration curve

B --- Compound detected in Blank C --- Common laboratory contamination

VOLATILE ORGANICS Tentatively Identified Compounds

Lab ID: BLKA240625-01	GC/MS Column: DB-624
Client ID: BLKA240625-01	Sample wt/vol: 5mL
Date Received: NA	Matrix-Units: Aqueous-µg/L
Date Analyzed: 06/25/2024	Dilution Factor: 1
Data file: E9550.D 06/25/2024 13:42	% Moisture: 100

		Estimated		Retention	
CAS #	Compound	Concentration	Q	Time	

No peaks detected

Total TICs = 0

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\l\DATA Data File : E9520.D Acq On : 24 Jun 2024 10:5 Operator : Sylvia Sample : BLKA240624-01,BLK Misc : NA,NA,NA,1 ALS Vial : 4 Sample Multip	\E\24-06-24\ 8 A240624-01,7 lier: 1	\ 5mL,1	00			
Quant Time: Jun 25 12:00:24 2 Quant Method : C:\MSDCHEM\1\M Quant Title : VOLATILE ORGAN QLast Update : Mon Jun 17 09: Response via : Initial Calibra	024 ETHODS\E8240 ICS BY EPA M 14:40 2024 ation)616.M 4ETHOD	8260D			
Internal Standards	R.T. Ç	lon R	esponse C	onc Ur	nits Dev((Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 	6.20 7.02 10.38	168 114 117	130771 191571 175736	50.00 50.00 50.00	UG UG UG	0.00 0.00 0.00
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.52 Range 80 - 8.71 Range 80 - 11.78 Range 80 -	65 - 120 98 - 120 95 - 120	106630 Recovery 223477 Recovery 114059 Recovery	49.27 = 50.64 = 49.82	UG 98.54% UG 101.28% UG 99.64%	0.00
Target Compounds					Qva	lue

(#) = qualifier out of range (m) = manual integration (+) = signals summed

E8240616.M Tue Jun 25 12:00:32 2024 1

Quantitation Report (QT Reviewed)

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9520.D Acq On : 24 Jun 2024 10:58 Operator : Sylvia Sample : BLKA240624-01,BLKA240624-01,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 4 Sample Multiplier: 1 Quant Time: Jun 25 12:00:24 2024

Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration

LSC Area Percent Report

Data Path : C:\MSDChem\1\DATA\E\24-06-24\ Data File : E9520.D : 24 Jun 2024 10:58 Acq On Operator : Sylvia Sample : BLKA240624-01, BLKA240624-01, A, 5mL, 100 Misc : NA, ŃA, NA, 1 ALS Vial : 4 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Smoothing : ON Filtering: 5 Sampling : 1 Min Area: 1 % of largest Peak Max Peaks: 100 Start Thrs: 0.07 Stop Thrs : 0.2 Peak Location: TOP If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10 Method : C:\MSDCHEM\1\METHODS\E8240616.M Title : VOLATILE ORGANICS BY EPA METHOD 8260D Signal : TIC peak peak R.T. first max last PK corr. corr. % of # min scan scan scan TY height area % max. total 6.196 846 860 882 rBV 6.516 908 921 938 rBV --------------209870 448035 70.44% 14.833% 113308 246991 30 00° -----1 2 7.024 1004 1018 1046 rBV 255468 515336 81.02% 17.061% 3 8.707 1328 1339 1367 rBV 306493 611741 96.18% 20.252% 4 5 10.380 1647 1658 1678 rBV 327556 636036 100.00% 21.056%

Sum of corrected areas: 3020617

292069

562478 88.43% 18.621%

E8240616.M Tue Jun 25 12:01:13 2024 1

6 11.785 1915 1926 1948 rBB

LSC Report - Integrated Chromatogram

```
Data Path : C:\MSDChem\1\DATA\E\24-06-24\
Data File : E9520.D
Acq On : 24 Jun 2024 10:58
Operator : Sylvia
Sample : BLKA240624-01,BLKA240624-01,A,5mL,100
Misc : NA,NA,NA,1
ALS Vial : 4 Sample Multiplier: 1
Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M
```

Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D

```
TIC Library : C:\DATABASE\NISTO5A.L
TIC Integration Parameters: LSCINT.P
```


Tentatively Identified Compound (LSC) summary

Data Path^{*}: C:\MSDChem\1\DATA\E\24-06-24\\ Data File^{*}: E9520.D Acq On^{*}: 24 Jun 2024 10:588 Operator^{*}: Sylviaa Sample^{*}: BLKA240624-01, BLKA240624-01, A, 5mL, 1000 Misc^{*}: NA, NA, NA, 11 ALS Vial^{*}: 4 Sample^{*} Multiplier: 11 Quant Method^{*}: C:\MSDCHEM\1\METHODS\E8240616.MM Quant Title^{*}: VOLATILE ORGANICS BY EPA METHOD 8260DD TIC^{*}Library^{*}: C:\DATABASE\NIST05A.LL TIC^{*}Integration Parameters: LSCINT.PP

E8240616.M Tue Jun 25 12:01:13 2024 1

Page: 3

Quantitation Report (QT Reviewed)

Data Path : C:\MSDCHEM\1\DATA\ Data File : E9550.D Acq On : 25 Jun 2024 13:42 Operator : Sylvia Sample : BLKA240625-01,BLKA Misc : NA,NA,NA,1 ALS Vial : 6 Sample Multipl	E\24-06-25\ 240625-01,A,5mL ier: 1	,100					
Quant Time: Jun 26 08:08:28 2024 Quant Method : C:\MSDCHEM\1\METHODS\E8240616.M Quant Title : VOLATILE ORGANICS BY EPA METHOD 8260D QLast Update : Mon Jun 17 09:14:40 2024 Response via : Initial Calibration							
Internal Standards	R.T. QION	Response Conc	Units Dev((Min)			
1) Pentafluorobenzene 31) 1,4-Difluorobenzene 50) Chlorobenzene-d5	6.20 168 7.02 114 10.38 117	120726 50. 183779 50. 174070 50.	00 UG 00 UG 00 UG	0 • 00 0 • 00 0 • 00			
System Monitoring Compounds 30) 1,2-Dichloroethane-d4 Spiked Amount 50.000 41) Toluene-d8 Spiked Amount 50.000 59) Bromofluorobenzene Spiked Amount 50.000	6.52 65 Range 80 = 120 8.70 98 Range 80 = 120 11.78 95 Range 80 = 120	102445 51. Recovery 214793 50. Recovery 114530 50. Recovery	27 UG = 102.54% 73 UG = 101.46% 50 UG = 101.00%	0.00			
Target Compounds	2	-	Qva	alue			

(#) \equiv qualifier out of range (m) \equiv manual integration (+) \equiv signals summed

E8240616.M Wed Jun 26 08:08:33 2024 1

Quantitation Report (QT Reviewed)

LSC Area Percent Report

Data Path C:\MSDCHEM\1\DATA\E\24-06-25\ Data File : E9550.D Acq On : 25 Jun 2024 13:42 Operator : Sylvia Sample : BLKA240625-01,BLKA240625-01,A,5mL,100 Misc : NA,NA,NA,1 ALS Vial : 6 Sample Multiplier: 1 Integration Parameters: LSCINT.P Integrator: RTE Filtering: 5 Smoothing : ON Min Area: 1 % of largest Peak Max Peaks: 100 Sampling : 1 Start Thrs: 0.07 Peak Location: TOP Stop Thrs : 0.2 If leading or trailing edge < 100 prefer < Baseline drop else tangent > Peak separation: 10 C:\MSDCHEM\1\METHODS\E8240616.M Method Title : VOLATILE ORGANICS BY EPA METHOD 8260D : TIC Signal eak R.T. first max last PK peak corr. corr. % of # min scan scan scan TY height area % max. total peak R.T. first max last PK peak -------------------6.196847860880rBV219854642278167.28%14.447%6.521911922936rBV10620423448637.32%8.013%7.024100410181036rBV24378649197178.29%16.812% 1 2 3 8.707 1324 1339 1363 rBV 289156 586164 93.29% 20.030% 4 5 10.380 1648 1658 1689 rBB 322231 628357 100.00% 21.472%

6 11.785 1915 1926 1947 rBB 304229 562608 89.54% 19.225%

Sum of corrected areas: 2926367

E8240616.M Wed Jun 26 12:56:41 2024 1

LSC Report - Integrated Chromatogram

Tentatively Identified Compound (LSC) summary

Data Path': C:\MSDCHEM\1\DATA\E\24-06-25\\ Data Filē : E9550.D Acq On : 25 Jun 2024 13:422 Operator : Sýlviáa Samplě : BLKA240625-01, BLKA240625-01, A, 5mL, 1000 Misc : NA, NA, NA, 11 ALS Vial' : 6 Samplě Multiplièr: 11 Quant Method': C:\MSDCHEM\1\METHODS\E8240616.MM Quant Titlè : VOLATILE ORGANICS BY EPA METHOD 8260DD TIC Library : C:\DATABASE\NISTO5A.LL TIC Integration Parameters: LSCINT.PP --Internal Standard---TIC Top Hit name RT EstConc Units Response # RT Resp Conc

.

E8240616.M Wed Jun 26 12:56:42 2024 1
SAMPLE TRACKING

A 273 Fra. Apred Lahoratories LLC Customer Informatio	inklin Road ph, NJ 07869 M		Reporting Check here if s	Cha Informati	iin of on mer Informatio	Cus	tody R "Rush TAT Charge 24 hr - 100%	Cord Surchage ma NJ, CT, PA	iverables y apply for regulatory NY		EDDs NJ SRP	Contact Us: 973 Web: www.ial Concentrations Low Med	361-4252 online.com Expected: High
17-620-14		REPORT TO: Address:	5AA	4			48 hr - 75% 72 hr - 50% 96 hr - 35% 5 day - 25% 6-9 day - 10%	Results Only (Level 1) Reduced (Level 1011) Capulatory/ Fu	ASP Categor		YSDEC EQUIS pproved custom EDD IO EDD REQ'D	Known Ha YES Describe:	ard:
Lathy Bry	eart	Attn:						Turn-Around	Time (TAT)		Regul	atory Requireme	nt
Sryant@ El	WMA COM	INVOICE TO: Address:	VV			Sta Ru	andard (10 bu sh/date needed	isiness days) Ver			New Jersey	New Yo	rk Cable 1)
Suivelier			SHP	4		<u>ı</u>	ard Copy: S	tandard 3 wee	k Other - call	for price	MSI 🗆		able 5)
I (State): NY		Attn:					Petroleum	Hydrocarbons -	Selection is REC	DUIRED	□ sks	Part 375-6.8(a) -	Unrestricted
BO 1063		-7 # od	12800				NJ EPH-DR	0 - Category 1	AT for PHC, If ther than 2 weeks :		Ecological	Part 375-6.8(b) -	Restricted
to"/"Involce To" same as	s above	Quote #	4 90	2026	30		NJ EPH-C4	0 - Category 2			Ma 🗆	CP-51 Table 2 of required)	3 (selection
1. 01 1.			Samp	le Matrix			NU EPH-Fr	ectionated - Cat 2	DRO-8015		🗆 SPLP	Other States /	Criteria
BY IAL:	2	DW - Drinking	Water C	01 - Oil Soil			- AN	ALYTICAL PARA	METERS (please n	note if contin	gent)	Dennsylvania /	let 2
mpling Equipme	ent Rental	GW - Groundw SW - Surface V	vater S	SED - Sedimer	nt becify)		51					CT RCSA 22a-1	33k1-k3
WPLE INFORMATI	ION	LIQ - Liquid (sp M - Multiphasic	becify) S	kL - Sludge V - Wipe			+					TSCA PCBs	
	Depth (ft only)	Sampl	ing	Matrix	# containers	IAL#	00					OTHER Regulatory F specify in cor Sample Specifi	equirements - ments c Notes
0		6/18/24	(14:41)	62	~		X						
0		42/1/9	1340	_		c	8						
0			1315			m	<u>ب</u>						
4		ł	1330)	3	t	لا						
2618a4		76/8//g	15:21	017	ų	10	X						
961924		6/19/24	1340	LZQ	-	6	X						
46819		Helen/9	8,00	LIQ	>	2	x						
usly analyzed by IAL?		Container		Presel	rvative (use	code)	d					FOR LAB USE ON	LY
/ NO	Preservative Code:	Code:		Containe	r Type (use	code)	2						(
legibly and fill out 2 iamples cannot be 3 the turnaround time 4	2 = None 2 = HCI 3 = HNO3 4 = MeOH 5 = NoOH	A = Amber Glass B = Plastic C = Vial D = Glass	Special Inst	tructions/Q(Requirem	ents & Co	omments:					SDG #:	28 °
ave been resolved.	6 = H2SO4	E = EnCore T = Terracore	Reling	Juished by (S)	gnature and (Company)	Da	te Time	Receive	od by (Signature	and Company)	Date	Time
The following day Control of the following day Control of the control of the control of the following day Control of the following	Zarrier (check one	;;;	mat	Home 1	5		019	14.14	V	1112	X	6/12/an	16730
A CONDITIONS COC, BE BOUND BY & CONDITIONS		ar Jrier Ss***	2						(WC)	100	2	6/11/20	1111
If of pink copy).	**Tracking #:												
TE & YELLOW; CLIENT COP	y - PINK		Ő	ertification IDs:	TNI (TNI0128	4); CT (PH-(0699); NJ (14751); NY (11402); PA (68	-00773).			PAGE: of	

INTEGRATED ANALYTICAL LABORATORIES, LLC

PROJECT INFORMATION E24-02128: SWIVELIER - 202530

To: Cathy Bryant EWMA - HQ Fax: EMail: Cathy.Bryant@ewma.com

Report To

EWMA - HQ Lanidex Center 100 Misty Lane Parsippany, NJ 07054 Attn: Cathy Bryant

Bill To

EWMA - HQ Lanidex Center 100 Misty Lane Parsippany, NJ 07054 Attn: Cathy Bryant

Report Format	P.O. #	Received At Lab	PHC Due	Verbal Due	Hardcopy Due	
Reduced	L-12809	Jun 19, 2024 @ 17:19	NA	Jul 08, 2024	Jul 15, 2024 *	
	* Any Conditions	I an II all states a still 1 1 C and a				

* Any Conditional or Hold status will delay final hardcopy report sent date.

Diskette Req. NYSDEC

Criteria Requirement: NY TOGS Tbl1&Tbl5

Lab ID	Client Sample ID	<u>Depth</u>	Sampling Time	Matrix	Unit	Field pH/Temp
02128-001	MW-10D	NA	06/18/24@16:40	Aqueous	ug/L (ppb)	
02128-002	MW-11D	NA	06/19/24@13:40	Aqueous	ug/L (ppb)	C. T. M. Boo John Stranger
02128-003	MW-13D	NA	06/19/24@13:15	Aqueous	ug/L (ppb)	Contraction of the local design of the local d
02128-004	DUP-1	NA	06/19/24@13:20	Aqueous	ug/L (ppb)	and the second second
02128-005	FB-1-061824	NA	06/18/24@15:20	Aqueous	ug/L (ppb)	
02128-006	FB-2-061924	NA	06/19/24@13:40	Aqueous	ug/L (ppb)	
02128-007	TB-061824	NA	06/18/24	Aqueous	ug/L (ppb)	A CALL CONTRACTOR OF THE CALL OF THE

		* No Cert = IAL does not hold certification for this test/method					
Sample #	Test	Status	Analytical Method	TAT	Holding Time Expires		
001	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/2/2024		
002	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/3/2024		
003	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/3/2024		
004	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/3/2024		
005	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/2/2024		
006	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/3/2024		
007	TCL VO + 15	Analyze	8260D	STD/2 WKS	7/2/2024		

Project Notes:

NOTE 2 taken by Mark on 06/21/2024 09:07 PER CATHY BRYAN, PLEASE PROVIDE NYSDEC EDD

273 Franklin Road Randolph, NJ 07869 Phone: 973 361 4252 www.ialonline.com

Page 1 of 1

Jun 21, 2024 @ 09:31

IAL is a NELAP accredited lab (TNI01284) and maintains certification in Connecticut (PH-0699), New Jersey (14751), New York (11402), and Pennsylvania (68-00773).

INTEGRATED ANALYTICAL LABORATORIES, LLC

SAMPLE RECEIPT VERIFICA	ATION
-------------------------	-------

CASE NO: E 24 02128	CLIENT: EWMA
COOLER TEMPERATURE: 2° - 6°C: COC: COMPLETE / INCOMPLETE KEY KEY KEY KEY	✓ (See Chain of Custody) Comments VOA received: Encore IGW - Methanol (check one) Terra Core
 ✓ Bottles Intact ✓ no-Missing Bottles ✓ no-Extra Bottles 	
 Sufficient Sample Volume no-headspace/bubbles in VOs Labels intact/correct pH Check¹ (refer to Receipt pH Log) Correct bottles/preservative Sufficient Holding/Prep Time¹ Multiphasic Sample Sample to be Subcontracted Chain of Custody is Clear ¹ All samples with "Analyze Immediately" holding times will the following tests: pH, Temperature, Free Residual Chlor ADDITIONAL COMMENTS: 	be analyzed by this laboratory past the holding time. This includes but is not limited to ine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
SAMPLE(S) VERIFIED BY: INITIAL	CRONK DATE G19124 : YES see BELOW, NO X
If COC is NOT clear, <u>STOP</u> until you ge	et client to authorize/clarify work.
CLIENT NOTIFIED: YES PROJECT CONTACT: SUBCONTRACTED LAB: DATE SHIPPED: ADDITIONAL COMMENTS:	Date/ Time: NO
VERIFIED/TAKEN BY: INITIAL	DATE 6/20/24

	Laboratory	, Custo	dy Chron	icle		
IAL Case No.		Clier	t <u>EWMA - H</u>	IQ		
E24-02128		Projec	st <u>SWIVELII</u>	ER - 202530		
	R	eceived Oi	<u>6/19/2024</u>	@17:19		
Department: Volatiles			Prep. Date	Analyst	Analysis Date	Analyst
TCL VO + 15	02128-001	Aqueous	n/a	n/a	6/24/24	Sylvia
u .	-002	"	n/a	n/a	6/24/24	Sylvia
	-003		n/a	n/a	6/24/24	Sylvia
	-004	ii	n/a	n/a	6/24/24	Sylvia
	-005	"	n/a	n/a	6/24/24	Sylvia

....

....

n/a

n/a

n/a

n/a

6/24/24

6/24/24

Sylvia

Sylvia

-006

-007

Page 1 of 1

Jun 27, 2024 @ 02:01

NOTE: All soil, sediment, sludge, and solid samples are reported on a dry-weight basis.

Integrated Analytical Labs ~ 273 Franklin Road, Randolph, NJ 07869 ~ (973) 361-4252

0

LAST PAGE OF DOCUMENT

Periodic Review Report – Review Period July 2023 to August 2024

Property Known As:

Swivelier Company 33 Route 304 Nanuet, Rockland County, New York 10954 NYSDEC Site Nos. 3-44-036 & V00520 EWMA Project No. 202530

Appendix 4 – Purge Guides

August 2024

100 Misty Lane Parsippany, NJ (973) 560-1400 Job Name: Swivelier Job Number: 202530

Personnel: Matt G

Weather: 80s, sunny Date: 6/18 to 6/19/2024 ____

PD (ppm): 0.0 393.7 0.3 Depth or Poduct (feet): N/A	WELL INFORMATION	MW-11D	MW-10D	MW-13D					
Construct (feet): NA	PID (ppm).	0.0	393.7	0.3					
Depth of Well (feet): 123.18 77.07 110.81 Image: Constraint of the sector of th	Depth to Product (feet)	0.0 N/A	N/A	0.5 N/A					
Depth to To of Screen (feet): 11.19 10.45 14.71 Depth to Your (feet) 11.19 10.45 14.71 Well Diameter (inches): 6 4 6 Yolume in Well (gal): 164.51 43.50 141.17 0.00 0.00 0.00 0.00 PRE - PURGE DATA 9:41 12:28 10:09 Purge Start: 9:41 12:28 10:09 <td>Depth of Well (feet):</td> <td>123.18</td> <td>77.07</td> <td>110.81</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Depth of Well (feet):	123.18	77.07	110.81					
Depth to Water (feet) 11.19 10.45 14.71 Image: transmitted of the system o	Depth to Top of Screen (feet):	120110	///0/	110101					
Well Diameter (inches): 6 4 6 10 Odume in Well (gal): 164.51 43.50 141.17 0.00 0.00 0.00 PRE - PURGE DATA 164.51 43.50 141.17 0.00 0.00 0.00 0.00 Purge Start: $9:41$ $12:28$ $10:09$ $10:09$ $10:00$ 0.00 0.00 0.00 ORP (mV) 159 146 $.44$ $10:09$ $10:00$ $10:00$ 0.00 0.00 Specific Conductivity: 0.508 0.937 0.978 $10:00$ $0:00$ <th< td=""><td>Depth to Water (feet)</td><td>11.19</td><td>10.45</td><td>14.71</td><td></td><td></td><td></td><td></td><td></td></th<>	Depth to Water (feet)	11.19	10.45	14.71					
Volume in Well (gal): 164.51 43.50 141.17 0.00 <th< td=""><td>Well Diameter (inches):</td><td>6</td><td>4</td><td>6</td><td></td><td></td><td></td><td></td><td></td></th<>	Well Diameter (inches):	6	4	6					
PRE - PURGE DATA 9:41 12:28 10:09	Volume in Well (gal):	164.51	43.50	141.17	0.00	0.00	0.00	0.00	0.00
Purge Start: 9:41 12:28 10:09 Image: Construct of the system of t	PRE - PURGE DATA			<u>ا</u>			ļ		
Temperature (deg. C): 18.94 16.99 15.71 Image: Constraint of the second	Purge Start:	9:41	12:28	10:09					
pH: 9.13 7.36 7.34	Temperature (deg. C):	18.94	16.99	15.71					
ORP (mV) 159 146 -44 Specific Conductivity: 0.508 0.937 0.978	pH:	9.13	7.36	7.34					
Specific Conductivity: 0.508 0.937 0.978 Turbidity (NTU) 889 276 356 Dissolved Oxygen (mg/): 2.49 7.12 0.81 Purge End: 13:21 14:39 13:06 Elapsed Time: 3:40 2:11 2:57 0:00 0:00 0:00 0:00 POST-PURGE DATA	ORP (mV)	159	146	-44					
Turbidity (NTU) 889 276 356 Image Instructure Dissolved Oxygen (mg/l): 2.49 7.12 0.81 Image Instructure Bapsed Time: 13:21 14:39 13:06 Image Instructure Bapsed Time: 3:40 2:11 2:57 0:00 0:00 0:00 0:00 POST-PURGE DATA Temperature (deg. C): 15:78 21.89 14.65 Image Instructure Image Instructure <t< td=""><td>Specific Conductivity:</td><td>0.508</td><td>0.937</td><td>0.978</td><td></td><td></td><td></td><td></td><td></td></t<>	Specific Conductivity:	0.508	0.937	0.978					
Dissolved Oxygen (mg/l): 2.49 7.12 0.81 Image: Constraint of the system of the	Turbidity (NTU)	889	276	356					
Purge End: 13:21 14:39 13:06 Image: Marcol Structure Elapsed Time: 3:40 2:11 2:57 0:00 0:00 0:00 0:00 POST-PURGE DATA Image: Structure 33.93 71.24 21.41 Image: Structure 0:00 0:00 0:00 0:00 Depth to Water (feet): 33.93 71.24 21.41 Image: Structure Image: Structure <thimage: structure<="" th=""> Image: Structure<td>Dissolved Oxygen (mg/l):</td><td>2.49</td><td>7.12</td><td>0.81</td><td></td><td></td><td></td><td></td><td></td></thimage:>	Dissolved Oxygen (mg/l):	2.49	7.12	0.81					
Elapsed Time: 3:40 2:11 2:57 0:00 0:00 0:00 0:00 0:00 POST-PURGE DATA	Purge End:	13:21	14:39	13:06					
POST-PURGE DATA Depth to Water (feet): 33.93 71.24 21.41 Image: Constraint of the second sec	Elapsed Time:	3:40	2:11	2:57	0:00	0:00	0:00	0:00	0:00
Depth to Water (feet): 33.93 71.24 21.41	POST-PURGE DATA								
Temperature (deg. C): 15.78 21.89 14.65 pH: 8.14 7.30 7.26 ORP (mV) -78 82 15 Specific Conductivity: 0.469 0.892 1.360 Turbidity (NTU) 171 907 16.6 Dissolved Oxygen (mg/l): 0.00 3.79 0.00 Minimum Purge Vol. Req. (gal): 493.5 130.5 423.5 0.0 0.0 0.0 0.0 0.0 0.00	Depth to Water (feet):	33.93	71.24	21.41					
pH: 8.14 7.30 7.26	Temperature (deg. C):	15.78	21.89	14.65					
ORP (mV) 78 82 15	pH:	8.14	7.30	7.26					
Specific Conductivity: 0.469 0.892 1.360	ORP (mV)	-78	82	15					
Turbidity (NTU) 171 907 16.6 Dissolved Oxygen (mg/l): 0.00 3.79 0.00 Minimum Purge Vol. Req. (gal): 493.5 130.5 423.5 0.0 0.0 0.0 0.0 Rate of Purge: (gal/min) 2.25 1 2.5 Actual Total Volume Purged (gal): 495 131 443 0.00 0.00 0.00 0.00 Sample Method: Redi-Flow Redi-Flow Redi-Flow Sample Method: Redi-Flow Redi-Flow Redi-Flow Depth to Water (feet): 33.99 34.11 21.42 PH: 8.12 7.34 7.26 <t< td=""><td>Specific Conductivity:</td><td>0.469</td><td>0.892</td><td>1.360</td><td></td><td></td><td></td><td></td><td></td></t<>	Specific Conductivity:	0.469	0.892	1.360					
Dissolved Oxygen (mg/l): 0.00 3.79 0.00 0.0 0.0 0.0 Minimum Purge Vol. Req. (gal): 493.5 130.5 423.5 0.0 0.0 0.0 0.0 Rate of Purge: (gal/min) 2.25 1 2.5 Actual Total Volume Purged (gal): 495 131 443 0.00 0.00 0.00 0.00 Purge Method: 495 131 443 0.00 0.00 0.00 0.00 Sample Time: 33.40 16:40 13:15 Sample Method: 13:40 16:40 13:15 Depth to Water (feet): 15.95 17.39 14.71	Turbidity (NTU)	171	907	16.6					
Minimum Purge Vol. Req. (gal): 493.5 130.5 423.5 0.0 <td>Dissolved Oxygen (mg/l):</td> <td>0.00</td> <td>3.79</td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dissolved Oxygen (mg/l):	0.00	3.79	0.00					
Rate of Purge: (gal/min) 2.25 1 2.5 Actual Total Volume Purged (gal): 495 131 443 0.00 0.00 0.00 0.00 Purge Method: Redi-Flow Redi-Flow Redi-Flow Redi-Flow Sample Time: 13:40 16:40 13:15 Sample Method: Redi-Flow Redi-Flow Redi-Flow Sample Method: 13:40 16:40 13:15 Depth to Water (feet): 33.99 34.11 21.42 Fil: 8.12 7.34 7.26	Minimum Purge Vol. Req. (gal):	493.5	130.5	423.5	0.0	0.0	0.0	0.0	0.0
Actual Total Volume Purged (gal): 495 131 443 0.00	Rate of Purge: (gal/min)	2.25	1	2.5					
Purge Method: Redi-Flow	Actual Total Volume Purged (gal):	495	131	443	0.00	0.00	0.00	0.00	0.00
SAMPLE DATA Sample Time: 13:40 16:40 13:15 Sample Method: Redi-Flow Redi-Flow Redi-Flow	Purge Method:	Redi-Flow	Redi-Flow	Redi-Flow					
Sample Time: 13:40 15:40 13:15 Image: Constraint of the system o	SAMPLE DATA	12.10	1 4 10	12.15		1	1		
Sample Method: Redr-Flow Redr-Flow Redr-Flow Redr-Flow Redr-Flow Depth to Water (feet): 33.99 34.11 21.42	Sample Time:	13:40	16:40	13:15					
Depin to water (reet): 33.99 34.11 21.42	Sample Method:	Redi-Flow	Redi-Flow	Redi-Flow					
15.95 17.39 14.71	Depth to Water (feet):	33.99	34.11	21.42					
Bits 8.12 7.34 7.26 Image: Constraint of the state	Temperature (deg. C):	15.95	17.39	14.71					
-84 30 16 16 16 Specific Conductivity: 0.478 0.828 0.964 16 Turbidity (NTU) 138 88.7 138 16 16 Dissolved Oxygen (mg/l): 0.00 2.15 2.28 16 16 Odor: None None None 16 16 16 Drawdown: (ft) 22.74 60.79 6.70 0.00 0.00 0.00 NOTES: ND = Non-Detect 16 16 16 16 16	pH:	8.12	/.34	1.20					
Specific Conductivity: 0.478 0.964 1.964 Turbidity (NTU) 138 88.7 138 Dissolved Oxygen (mg/l): 0.00 2.15 2.28 Odor: None None None Turbidity: Slight Clear 1.964 Drawdown: (ft) 22.74 60.79 6.70 0.00 0.00 0.00 NOTES: ND = Non-Detect 1.964 1.964 1.964 1.964	ORP (mv)	-84	30	16					
136 66.7 136 136 Dissolved Oxygen (mg/l): 0.00 2.15 2.28 136 Odor: None None None 136 Turbidity: Slight Clear 136 136 Drawdown: (ft) 22.74 60.79 6.70 0.00 0.00 0.00 NOTES: ND = Non-Detect 136 136 136 136 136	Turbidity (NTLI)	0.4/8	0.828	0.904					
Dissolved Oxygen (high). 0.00 2.13 2.23 1.13 0.00	Dissolved Oxygen (mg/l):	158	00.7	138					
None None <t< td=""><td>Odor:</td><td>0.00 None</td><td>2.13 None</td><td>2.20 None</td><td></td><td></td><td></td><td></td><td></td></t<>	Odor:	0.00 None	2.13 None	2.20 None					
Slight Clear <	Turbidity:	Slight	Clear	Clear					
NOTES: ND - Non-Detect	Drawdown: (ft)	22 74	60 70	6 70	0.00	0.00	0.00	0.00	0.00
	NOTES.	ND = Nor	Detect	0.70	0.00	0.00	0.00	0.00	0.00

Dry - No water/Not enough water to purge

NA - No data collected