DATA SUMMARY REPORT FOR REMEDIAL INVESTIGATION ACTIVITIES AT THE PELHAM FORMER GAS WORKS SITE

Site No. V00565

Pelham Manor, New York

Prepared For:

Consolidated Edison Company of New York, Inc.

31-01 20th Avenue Long Island City, NY 11105

Prepared By:

PARSONS

Boston, Massachusetts 02110

FEBRUARY 2010

TABLE OF CONTENTS

	PAGE
1.0	INTRODUCTION
2.0	SEDIMENT INVESTIGATION ACTIVITIES
3.0	SEDIMENT INVESTIGATION RESULTS
	LIST OF TABLES
Table 1	Sediment Probing Locations with Penetration Depths
Table 2	Sediment Coring Locations with Percent Recovery Data
Table 3	Sample Summary
Table 4	Validated Sediment Analytical Data – Detected Compound Summary
Table 5	Geotechnical Test Results Summary
	LIST OF FIGURES
Figure 1	Site Location Map
Figure 2	Sample Location Map
Figure 3	Sediment Probing Samples Locations with Penetration Depths
Figure 4	Sediment Coring Locations with Percent Recovery Data
	LIST OF APPENDICES
Appendi	x A Sediment Coring Logs
Appendi	x B Photo Log

1.0 INTRODUCTION

The Pelham Former Gas Works Site (Site) is located almost entirely at 847 Pelham Parkway in the Village of Pelham Manor, New York (Figure 1). An off-site Remedial Investigation (RI) was conducted to evaluate the presence and extent of MGP residuals that may have migrated from the Pelham Former MGP Site to Eastchester Creek. This Data Summary Report presents the preliminary analytical data from the RI activities completed in Eastchester Creek adjacent to the Site between October and November 2009. The investigation activities were conducted in accordance with the protocols and procedures set forth in the New York State Department of Environmental Conservation (NYSDEC) approved Remedial Investigation Work Plan (Parsons, 2009). The RI activities are briefly described in the sections below followed by a summary of the results. Note that the proposed RI activities at the adjacent Getty property have not yet been conducted.

2.0 SEDIMENT INVESTIGATION ACTIVITIES

The scope of the sediment investigation included sediment probing and sediment sampling using Vibracore technology. All sampling locations are shown on Figure 2. Sediment investigation was conducted in two phases: Phase I – Sediment Probing and Phase II – Sediment Sampling.

Phase I – Sediment Probing

Sediment probing was conducted from October 27 through October 29, 2009 by Ocean Surveys, Inc. (Ocean Surveys) of Old Saybrook, Connecticut. Sediment probing was conducted in a grid pattern within Eastchester Creek adjacent to the Site prior to collection of sediment samples to identify locations with significant sediment deposits indicating historic outfall locations. Sediment probing was conducted at 28 locations by manually advancing a steel probing rod through the water column and into the sediment until resistance was encountered that prohibited additional manual advancement of the rod.

Sediment probing locations with penetration depths are included in Table 1 and Figure 3.

Phase II – Sediment Sampling

Once the Phase I sediment probing was completed, sediment sampling was conducted from November 2 through November 8, 2009 by Ocean Surveys using Vibracore technology in Eastchester Creek.

Sediment cores were collected at 19 locations (OS-SD-1 through OS-SD-19) to characterize potential impacts from the former MGP Site. Sediment coring locations and the percent recovery data are included in Table 2 and Figure 4. Each sediment core was visually classified using Burmeister soil classification system for soil type, grain size, texture, moisture content, and visible evidence of staining or impacts and screened for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID). These observations are noted in sediment coring logs included in Appendix A. A photo log of the sediment cores is included in Appendix B.

In each core collected for impact characterization, samples were collected and submitted from four depth intervals: 0 to 6 inches below sediment surface (bss), 6 to 12 inches bss, 1 to 2 feet bss, and at a deeper depth (not to exceed 20 feet bss) which was

determined in the field based on visual or olfactory observations. Sediment samples were submitted to Chemtech of Mountainside, NJ to be analyzed for VOCs, semivolatile compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), target analyte list (TAL) metals, cyanide, and total organic carbon. SVOCs were analyzed on an accelerated turn around time (TAT) of 5 business days. The SVOC data was reviewed by Parsons and the fingerprinting consultant, NewFields Companies, LLC of Rockland, MA (NewFields), and locations for fingerprinting analysis were selected based on the SVOC results. The samples for fingerprinting were submitted to Alpha Analytical of Mansfield, MA and coordinated by NewFields.

In addition, a subset of samples (19 samples) was submitted to Chemtech for geotechnical analysis including grain size, moisture content, total organic content, and Atterberg limits. A summary of sediment samples collected and submitted for laboratory analyses is included in Table 3.

A second set of cores (3 cores per location) were collected to a depth of approximately 12 feet at four locations (OS-SD-6, OS-SD-7, OS-SD-13 and OS-SD-18) for radioisotope dating to evaluate sediment deposition rates adjacent to the Site by assigning time periods to different segments of an intact sediment core. A representative from Battelle Marine Sciences Laboratory was on site from November 9 through November 11, 2009 to process the dating cores, and these activities were coordinated by NewFields. Out of the three cores collected at each of the four locations, one core (identified as the most undisturbed core at that location) was sliced into 2-cm vertical segments and sent to the laboratory for frozen archiving for future radioisotope analysis. The second core was divided into 2-foot sections and submitted to laboratory for frozen archiving for future fingerprinting analysis. The third most disturbed core was not used for any sampling and was discarded as investigation derived waste (IDW). The radioisotope samples were submitted to Battelle to be analyzed for Pb-210 and Cs-137 isotopes.

Twenty sediment samples were submitted for fingerprinting analysis. Ten of these samples were collected from the same cores as the samples for the chemical and geotechnical analyses. The sediment core and depth interval selected for fingerprinting analysis were based on PAH concentrations. The other ten samples will be subsampled from the cores sent to the lab for frozen archiving for future fingerprinting analysis. The fingerprinting samples were submitted to Alpha Laboratories to be analyzed for GC/FID fingerprint and TPH by EPA Method 8100M and for PAHs, alkylated PAHs, and selected petroleum biomarkers by GC/MS by EPA Method 8270M.

3.0 SEDIMENT INVESTIGATION RESULTS

Sediment Analytical Results

A total of 77 sediment samples plus 4 duplicates were collected from the sediment cores completed as part of the RI activities. In general, soil samples were analyzed for TCL VOCs, SVOCs including PAHs, TAL metals, cyanide, and total organic carbon. In addition, 19 samples were analyzed for geotechnical parameters including grain size, moisture content, total organic content, and Atterberg limits. The analytical results of the sediment samples collected for impact characterization are summarized in Table 4. A summary of geotechnical test results is provided in Table 5.

VOCs

A summary of VOC results for sediment samples collected during the field investigation activities is presented in Table 4. VOCs were detected in samples collected at all the 19 core locations. A total of 21 VOCs were detected at least once in the sediment samples collected during the field investigation. Total VOC concentrations in all sediment samples ranged from non-detect to 177 milligrams per kilogram (mg/kg). The highest total VOC concentrations were detected in a sample collected from a depth range of 7 to 7.6 feet bss at sediment coring location OS-SD-14.

SVOCs

A summary of SVOC results for sediment samples collected during the field investigation activities is presented in Table 4. SVOCs were detected in samples collected at all the 19 core locations. A total of 22 SVOCs were detected at least once in the sediment samples collected during the field investigation. Total SVOC concentrations in all sediment samples ranged from non-detect to 5,049 mg/kg. The highest total SVOC concentrations were detected in a sample collected from a depth range of 6 to 6.5 feet bss at sediment coring location OS-SD-10.

Metals and Cyanide

Table 4 summarizes the analytical results for metals including cyanide detected in sediments. A total of 22 metals including cyanide were detected at least once in the sediment samples collected during the field investigation.

Total Organic Carbon

Table 4 summarizes the analytical results for total organic carbon (TOC) detected in sediments. Concentrations detected for TOC ranged from 440 mg/kg to 15,000 mg/kg. In general, TOC concentrations were greater in the shallow sample depth intervals (0-0.5'bss, 0.5-1.0' bss, and 1-2' bss) than the deeper sample depth intervals.

Geotechnical Parameters

Table 5 summarizes the geotechnical results for sediment samples collected during the field investigation. General descriptions of the soil encountered in the sediment investigations conducted during the off-site remedial investigation are presented below.

Based on the grain size analysis, color and USCS classification, nine of the samples (OS-OD-1, 2, 3, 4, 7, 8, 9, 11 and 13) showed a general consistency in their color (dark gray to black), and also indicated a higher silt content. These sediments were collected at depths between 1 foot and 9 feet bss (collected from OS-SD-08 and OS-SD-9, respectively) and were classified primarily as dark gray to black, medium to fine grained Sands with varying amounts of silt (2.9 to 45.3 percent) and gravel (0.5 to 27.3 percent). At two locations (OS-SD-9 and OS-SD-11), these sediments were classified as "Silt and Sand, with trace gravel". Clay was present only in trace quantities in all of these samples and ranged in percentages from 0.8 to 7.2. The USCS classification of these sediments included SP, SM, SW-SM and ML. The organic content of these sediments ranged from 0.7 to 8.2 percent and the moisture content of the sediments varied from 16.5 to 105 percent. These sediments did not indicate any plasticity as these were primarily Sands. The coring logs indicated the presence of decaying organic matter (leaves and sticks) in

sediments between the depths of 0 to 4 feet bss. The coring logs also indicated various forms of fill material which included: plastic, glass, aluminum foil, and trash.

Ten of the remaining samples collected from the following cores: OS-OD-5, 6, 10, 12, 14, 15, 16, 17, 18 and 19 characterized the sediments as having a lighter color (dark gray to gray) and lower silt content compared to the sediments described above. These sediment samples were collected at depths between 4.5 to 16 feet bss and were found to underlie the sediments described in the above paragraph. These sediments were classified as dark gray to gray, medium to fine grained Sands with varying amounts of silt (2 to 34.8 percent) and gravel (1.2 to 29.3 percent). At one location (OS-SD-12 at 4.5-8 feet bss), the sediment was classified as "coarse Gravel, with some sand, silt". Clay was present only in trace quantities in all of the samples and ranged in percentages from 0.8 to 9.1. The USCS classification of these sediments included SP, SM, SW-SM, SP-SM and GM. The organic content of the sediments ranged from 0.0 to 8.6 percent and the moisture content of the sediments varied from 11.8 to 42.4 percent. The sediments did not indicate any plasticity as these were primarily sands.

Fingerprinting Data Summary

Ten samples collected from the same cores as the samples for the chemical and geotechnical analyses were submitted for forensic characterization. Preliminary results of the fingerprinting analysis indicted that the regional hydrocarbon signature consists of weathered middle and heavy range petroleum hydrocarbons mixed with pyrogenic PAHs with highly variable PAH source signatures. Weathered coal tar pitch or creosote appeared up and downstream of the Site. The samples collected near the Site exhibited carbureted water gas (CWG) tar in some surface and deep samples. Lower concentrations of CWG tar appeared in isolated locations up and downstream with a different signature. Additional data evaluation is ongoing and a final conclusion can not yet be made.

NAPL

During sediment coring operations, the outside of the sediment core liners were inspected on the barge for evidence of MGP-related impacts [e.g., odors, staining, sheens, non-aqueous phase liquid (NAPL)]. Black stained sediments were observed on the outside of the core liners, and/or petroleum odors were noted to be emanating from cores collected at OS-SD-1, OS-SD-3, OS-SD-5, OS-SD-16, OS-SD-17, OS-SD-18, and OS-SD-19. In addition, blebs of NAPL and/or sheen were observed outside the core liners for cores collected at OS-SD-7, OS-SD-9, OS-SD-10, and OS-SD-13 (Rad). However, NAPL was not observed inside these cores during the sample processing, as described below.

During sediment core processing each sediment core was inspected for the presence of NAPL. NAPL was not observed in any of the sediment cores; however, staining and/or NAPL odor was observed in sediment cores collected at OS-SD-5, OS-SD-9, OS-SD-10, OS-SD-11, OS-SD-14, and OS-SD-16 at depths ranging from 3.75 to 18 feet bss.

TABLES

Table 1
Sediment Probing Locations with Penetration Depths
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Sediment Probing	Depth of Water Column	Depth of Penetration
Location ID	(ft)	(ft)
PB-1	7.35	9.35
PB-2	3.65	3.35
PB-3	5.20	4.3
PB-4	4.95	9.55
PB-5	2.30	2.4
PB-6	3.90	9.7
PB-7	3.20	2.3
PB-8	2.80	3.2
PB-9	4.20	4.9
PB-10	1.00	5.5
PB-11	1.40	2.8
PB-12	7.90	1.8
PB-13	11.20	8.9
PB-14	10.50	10.5
PB-15	11.20	6.8
PB-16	15.30	6.9
PB-17	15.00	6.2
PB-18	14.40	7.5
PB-19	15.10	5.6
PB-20	10.25	10
PB-21	9.10	9.5
PB-22	9.70	7.3
PB-23	9.40	8.1
PB-24	4.60	8.8
PB-25	4.00	11.6
PB-26	9.80	10.8
PB-27	9.60	9.5
PB-28	13.00	9.25

Table 2
Sediment Coring Locations with Percent Recovery Data
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Sediment Coring Location ID	Depth of Water Column (ft)	Targeted Depth of Core (ft)	Actual Depth of Penetration (ft)	% Core Recovery
OS-SD-1	1.2	12	12	81%
OS-SD-2	10.5	12	12	73%
OS-SB-3	8.5	12	7.8	71%
OS-SD-4	12.4	12	12	89%
OS-SD-5	11.2	12	12	88%
OS-SD-6	9.1	12	12	93%
OS-SD-7	9.0	20	16	92%
OS-SD-8	16.3	20	19	71%
OS-SD-9	5.4	20	19	92%
OS-SD-10	9.1	20	14.9	85%
OS-SD-11	7.4	20	19	93%
OS-SD-12	12.2	20	18.5	74%
OS-SD-13	10.6	20	19	99%
OS-SD-14	16.4	20	14.4	72%
OS-SD-15	7.3	20	18	91%
OS-SD-16	14.8	20	19	91%
OS-SD-17	10.8	12	12.5	100%
OS-SD-18	10.6	12	12	91%
OS-SD-19	17.8	12	12	68%

Table 3 Sample Summary Data Summary Report - Off-Site Remedial Investigation Pelham Fomer MGP Site - Pelham, NY

Location	Sample ID	Depth (bss)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	Total Organic Carbon	Grain Size	Moisture Content	Atterberg Limit	Total Organic Content	Hydrocarbon Fingerprint
	OC CD 04 (0! C!!)	Sedim 0 - 6"				- V		1	1	1	1	
	OS-SD-01 (0" - 6") OS-SD-01 (6" - 12")	6 - 12"	X	X	X	X	X					
OS-SD-01	OS-SD-01 (0' - 12')	1 - 2'	X	X	X	X	X					
	OS-SD-01 (8' - 8.5')	8 - 8.5'	Х	X	Х	X	X					
	OS-SD-01	6.5-9'						Х	Х	Х	Χ	
	OS-SD-02 (0 - 6")	0 - 6"	Χ	Х	Χ	Х	Х					
	OS-SD-02 (6 - 12")	6 - 12"	Χ	Х	Χ	Х	Х					
OS-SD-02	OS-SD-02 (1 - 2')	1 - 2'	Χ	Х	Χ	Х	Х					
	OS-SD-02 (8' - 8.6')	8 - 8.6'	Χ	Х	Χ	Х	Х					X
	OS-SD-02	4-7'						Χ	Χ	Х	Χ	
	OS-SD-03 (0" - 6")	0 - 6"	Χ	Х	Χ	Х	Х					X
	OS-SD-03 (6" - 12")	6 - 12"	Х	Х	Х	Х	Х					
OS-SD-03	OS-SD-03 (1' - 2')	1 - 2'	Х	X	Х	X	X					
	OS-SD-03 (4.5 - 5')	4.5 - 5'	Х	Х	Х	Х	Х				· ·	
	OS-SD-03	2-4.5'	.,		.,		.,	Х	Х	Х	Х	
	OS-SD-04 (0 - 6")	0 - 6"	X	X	X	X	X					
OS-SD-04	OS-SD-04 (6" - 12") OS-SD-04 (1' - 2')	6 - 12" 1 - 2'	X	X	X	X	X			-		
US-SD-04	OS-SD-04 (1 - 2)	8 - 8.5'	X	X	X	X	X					
	OS-SD-04 (6 - 6.5)	5-7'	_^	^	_^	^		Х	Х	Х	Х	
	OS-SD-05 (0 - 6")	0 - 6"	Х	Х	Х	Х	Х	_ ^				
	OS-SD-05 (6" - 12")	6 - 12"	X	X	X	X	X					
OS-SD-05	OS-SD-05 (0' - 12')	1 - 2'	X	X	X	X	X					
00 02 00	OS-SD-05 (9 - 9.5')	9 - 9.5'	Х	X	Х	X	X					
	OS-SD-05	5-6.5'						Х	Х	Х	Х	
	OS-SD-06 (0" - 6")	0 - 6"	Χ	Х	Χ	Х	Х					Х
	OS-SD-06 (6" - 12")	6 - 12"	Х	Х	Х	Х	Х					
OS-SD-06	OS-SD-06 (1' - 2')	1 - 2'	Х	Х	Х	Х	Х					
	OS-SD-06 (8.5' - 9')	8.5 - 9'	Χ	Х	Χ	Х	X					
	OS-SD-06	5-8.5'						Χ	Χ	Х	Χ	
	OS-SD-07 (0" - 6")	0 - 6"	Χ	Х	Χ	Х	X					
	OS-SD-07 (6" - 12")	6 - 12"	Х	Х	Х	Х	X					
OS-SD-07	OS-SD-07 (1' - 2')	1 - 2'	Х	Х	Х	Х	Х					Х
	OS-SD-07 (14' - 14.5')	14 - 14.5'	X	Х	Х	X	X					
	OS-SD-07D (14 - 14.5')	14 - 14.5'	Х	Х	Х	Х	Х	\ \ \	\ \ \		V	
	OS-SD-07	8-9'						Х	Х	Х	Х	
	OS-SD-08 (0 - 6")	0 - 6"	X	X	X	X	X					
OS-SD-08	OS-SD-08 (6" - 12") OS-SD-08 (1' - 2')	6 - 12" 1 - 2'	X	X	X	X	X					
O3-3D-00	OS-SD-08 (9.5' - 10')	9.5 - 10'	X	X	X	X	X					
	OS-SD-08	1-2'						Х	Х	Х	Х	
	OS-SD-09 (0 - 6")	0 - 6"	Х	Х	Х	Х	Х	<u> </u>	l ·	l i	<u> </u>	
	OS-SD-09 (6" - 12")	6 - 12"	X	X	X	X	X					Х
OS-SD-09	OS-SD-09 (1' - 2')	1 - 2'	Х	X	Х	X	X					- `
	OS-SD-09 (17' - 17.5')	17 - 17.5'	Χ			Х	Х					
	OS-SD-09	3-4'						Х	Χ	Х	Χ	
	OS-SD-10 (0 - 6")	0 - 6"										
	OS-SD-10 (6 - 12")	6 - 12"	Χ	Χ	Χ	Χ	Х					
	OS-SD-10 (1 - 2')	1 - 2'	Χ	Χ	Χ	Χ	X					
OS-SD-10	OS-SD-10 (6 - 6.5')	6 - 6.5'	Χ	Χ	Χ	Χ	X					X
	OS-SD-10D (6 - 6.5')	6 - 6.5'	X	X	X	X	X					
	OS-SD-10 (8.5 - 9')	8.5 - 9'	Х	Х	Х	Х	Х	.,	,,		.,	
	OS-SD-10	10.5-11'				<u> </u>		Χ	Χ	Χ	Χ	

Table 3 Sample Summary Data Summary Report - Off-Site Remedial Investigation Pelham Fomer MGP Site - Pelham, NY

Location	Sample ID	Depth (bss)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	Total Organic Carbon	Grain Size	Moisture Content	Atterberg Limit	Total Organic Content	Hydrocarbon Fingerprint
	OS-SD-11 (0" - 6")	0 - 6"	Χ	Х	Χ	Χ	X					
	OS-SD-11 (6" - 12")	6 - 12"	Х	Х	Х	Х	Х					
OS-SD-11	OS-SD-11 (1' - 2')	1 - 2'	X	X	X	X	X					
	OS-SD-11 (15.5' - 16')	15.5 - 16'	Χ	Χ	Χ	Χ	Χ					Χ
	OS-SD-11	9-13'						Х	Х	Х	Х	
	OS-SD-12 (0 - 6")	0 - 6"	X	Х	X	Х	X					
OC CD 40	OS-SD-12 (6 - 12")	6 - 12"	X	X	X	X	X					
OS-SD-12	OS-SD-12 (1 - 2')	1 - 2'	X	X	X	X	X					
	OS-SD-12 (8 - 8.6')	8 - 8.6'	Χ	Х	Х	Χ	Χ	Х	Х	Х	Х	
	OS-SD-12	4.5-8'	.,					Х	Х	Χ	Х	
	OS-SD-13 (0 - 6")	0 - 6"	X	X	X	Х	X					
	OS-SD-13 (6 - 12")	6 - 12"	X	X	X	X	X					
OS-SD-13	OS-SD-13 (1 - 2')	1 - 2'	X	X	X	X	X					
	OS-SD-13 (12 - 13')	12 - 13'	X	X	X	X	X					
	OS-SD-13D (12 - 13')	12 - 13'	Х	Х	Х	Х	Х	Х	Х		Х	
	OS-SD-13	7.5-10.5'	.,					٨	Λ	Х	Λ	
	OS-SD-14 (0 - 6")	0 - 6"	X	Х	X	Х	X					
00.00.44	OS-SD-14 (6 - 12")	6 - 12"	X	X	X	X	X					
OS-SD-14	OS-SD-14 (1 - 2')	1 - 2'	X	X	X	X	X					V
	OS-SD-14 (7 - 7.6') OS-SD-14	7 - 7.6' 7-9'	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х
			V				V/	_ ^	_ ^	^	^	
	OS-SD-15 (0 - 6")	0 - 6" 6 - 12"	X	X	X	X	X					
OS-SD-15	OS-SD-15 (6 - 12") OS-SD-15 (1 - 2')	1 - 2'	X	X	X	X	X					
03-30-15	OS-SD-15 (1 - 2)	14 - 14.6'	X	X	X	X	X					
	OS-SD-15 (14 - 14.6)	12-14'	^	^	^	^	^	Х	Х	Х	Х	
						V	V/	_ ^	_ ^		^	
	OS-SD-16 (0 - 6") OS-SD-16 (6 - 12")	0 - 6" 6 - 12"	X	X	X	X	X					
OS-SD-16	OS-SD-16 (6 - 12)	1 - 2'	X	X	X	X	X					
03-3D-10	OS-SD-16 (1 - 2) OS-SD-16 (8 - 8.6')	8 - 8.6'	X	X	X	X	X					
	OS-SD-16 (6 - 6.6)	12-16'	^	^	^	^		Х	Х	Х	Х	
	OS-SD-17 (0 - 6")	0 - 6"	X	Х	Х	Χ	X					
	OS-SD-17 (6 - 12")	6 - 12"	X	X	X	X	X					
	OS-SD-17 (0 - 12)	1 - 2'	X	X	X	X	X					
OS-SD-17	OS-SD-17 (8.6 - 9')	8.6 - 9'	X	Х	Х	Х	X					
	OS-SD-17D (8.6 - 9')	8.6 - 9'	X	Х	Х	Х	X					
	OS-SD-17 <i>D</i> (0.0 - 3)	8-10.5'		Ĥ				Х	Х	Х	Х	
	OS-SD-18 (0 - 6")	0 - 6"	Х	Х	Х	Χ	Χ					
	OS-SD-18 (6 - 12")	6 - 12"	X	X	X	X	X	l -	l -			
OS-SD-18	OS-SD-18 (1 - 2')	1 - 2'	X	X	X	X	X					Х
32 22 10	OS-SD-18 (10 - 10.9')	10 - 10.9'	X	X	Х	X	X					
	OS-SD-18	6-9'						Х	Х	Х	Х	
	OS-SD-19 (0 - 6")	0 - 6"	Χ	Χ	Χ	Х	Х					Х
	OS-SD-19 (6 - 12")	6 - 12"	X	X	X	X	X					
OS-SD-19	OS-SD-19 (1 - 2')	1 - 2'	X	X	X	X	X					
1 32 .3	OS-SD-19 (7 - 8')	7 - 8'	X	X	X	X	X					
	OS-SD-19 (6 - 8')	6-8'	-`	<u> </u>	Ľ`	Ľ`	- ``	Х	Х	Х	Х	

Note:

bss - Below sediment surface

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Consolidated	Edicon	Sample ID:	OS-SD-01 (0-6)	OS-SD-01 (6-12)	OS-SD-01 (1-2)	OS-SD-01 (8-8.5)	OS-SD-02 (0-6)	OS-SD-02 (6-12)	OS-SD-02 (1-2)	OS-SD-02 (8-8.6)	OS-SD-03 (0-6)
Pelham Offsi		Lab Sample Id:	A5017-05	A5017-06	A5017-07	A5017-08	A5002-24	A5002-25	A5002-26	A5002-27	A5017-01
	diment Analytical Data	Depth:	0-0.5'	0.5-1'	1-2'	8-8.5'	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'
	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
Detected Col	Ilpouliu Sullillary	SDG:	A5017	A5017	A5017	A5017	A5002	A5002	A5002	A5002	A5017
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/5/2009
CAS NO.	COMPOUND	UNITS:	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/5/2009
CAS NO.	VOLATILES	ONTO.									
67-64-1	Acetone	ug/Kg	ND	ND	ND	130	ND	ND	ND	ND	ND
71-43-2	Benzene	ug/Kg	ND	ND	ND	6.5 J	ND	ND	ND	ND	320 J
78-93-3	2-Butanone	ug/Kg	ND	ND	ND	74	ND	ND	ND	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	ND	ND	ND	12	ND	ND	ND	ND	43 J
108-90-7	Chlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	24 J
110-82-7	Cyclohexane	ug/Kg	ND	ND	ND	30	ND	ND	ND	ND	640 J
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	23 J
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	26 J
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	32 J
100-41-4	Ethyl Benzene	ug/Kg	ND	ND	ND	46	ND	ND	ND	ND	26 J
591-78-6	2-Hexanone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	90 J
98-82-8	Isopropylbenzene	ug/Kg	ND	ND	ND	15	ND	ND ND	ND ND	ND ND	480 J
79-20-9	Methyl Acetate	ug/Kg	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
108-87-2	Methylcyclohexane	ug/Kg	ND ND	ND	ND	37	ND	ND ND	ND	ND	100 J
75-09-2	Methylene Chloride	ug/Kg	ND ND	ND ND	ND ND	ND	4.1 J	10 J	3 J	ND ND	ND
100-42-5	Styrene	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	12 J
108-88-3	Toluene		ND ND	ND ND	ND ND	ND ND	8.6	ND ND	ND ND	ND ND	45 J
120-82-1	1,2,4-Trichlorobenzene	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	45 J 36 J
	m/p-Xylenes	ug/Kg	ND ND	ND ND	ND ND	47	ND ND	ND ND	ND ND		36 J 32 J
130777-61-2		ug/Kg	ND ND	ND ND	ND ND	61	ND ND	ND ND	ND ND	ND ND	32 J 6 J
1330-20-7	o-Xylene	ug/Kg	ND	I ND	ND	01	ND	I ND	ND	ND	6.3
	Total VOCs	ug/Kg	ND	ND	ND	458.5 J	12.7 J	10 J	3 J	ND	1,935 J
	SEMIVOLATILES										
83-32-9	Acenaphthene	ug/Kg	ND	ND	ND	660 J	ND	ND	ND	ND	ND
208-96-8	Acenaphthylene	ug/Kg	ND	ND	ND	630 J	ND	ND	ND	2,900 J	ND
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Anthracene	ug/Kg	ND	ND	750 J	1,200 J	ND	ND	ND	1,300 J	ND
120-12-7	Benzo(a)anthracene	ug/Kg	830 J	1,600 J	2,300 J	3,700 J	ND	1,400 J	420 J	13,000	2,600 J
50-32-8	Benzo(a)pyrene	ug/Kg	970 J	1,500 J	2,000 J	3,300 J	ND	1,400 J	ND	11,000	2,200 J
205-99-2	Benzo(b)fluoranthene	ug/Kg	1,500 J	2,300 J	2,900 J	5,000 J	ND	2,200 J	480 J	11,000	2,700 J
191-24-2	Benzo(g,h,i)perylene	ug/Kg	790 J	1,100 J	1,400 J	2,200 J	ND	1,200 J	ND	5,100	1,400 J
207-08-9	Benzo(k)fluoranthene	ug/Kg	480 J	730 J	790 J	1,100 J	ND	ND	ND	4,200 J	1,200 J
92-52-4	1,1-Biphenyl	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	2,800 J	5,500 J	8,300	15,000	600 J	4,900 J	930 J	1,200 J	4,400 J
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	970 J	1,900 J	2,500 J	4,300 J	ND	1,700 J	390 J	12,000	2,700 J
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	ND	ND	590 J	ND	ND	ND	1,100 J	ND
132-64-9	Dibenzofuran	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
206-44-0	Fluoranthene	ug/Kg	1,900 J	3,600 J	4,300 J	8,200	ND	2,800 J	830 J	23,000	5,600 J
86-73-7	Fluorene	ug/Kg	ND	ND	ND	790 J	ND	ND	ND	ND	ND
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	710 J	1,000 J	1,200 J	1,900 J	ND	980 J	ND	4,900	1,200 J
91-57-6	2-Methylnaphthalene	ug/Kg	ND	ND	ND	1,300 J	ND	ND	ND	ND	ND
91-20-3	Naphthalene	ug/Kg	ND	ND	ND	1,100 J	ND	ND	ND	560 J	ND
85-01-8	Phenanthrene	ug/Kg	640 J	880 J	1,200 J	3,800 J	ND	ND ND	420 J	1,600 J	2,400 J
129-00-0	Pyrene	ug/Kg	1,800 J	3,300 J	4,700 J	7,700	ND	2,700 J	890 J	29,000	5,200 J
	Total SVOCs		13,390 J	23,410 J	32,340 J	62,470 J	600 J	19,280 J	4,360 J	121,860 J	31,600 J
<u> </u>	1.510.0.00		. 0,000 0			J2,7100	0000	.0,2000	-1,000 0	,000 0	01,000 0

Table 4 Validated Sediment Analytical Results - Detected Compound Summary Data Summary Report - Off-Site Remedial Investigation Pelham Former MGP Site - Pelham, NY

Consolidated	Edison	Sample ID:	OS-SD-01 (0-6)	OS-SD-01 (6-12)	OS-SD-01 (1-2)	OS-SD-01 (8-8.5)	OS-SD-02 (0-6)	OS-SD-02 (6-12)	OS-SD-02 (1-2)	OS-SD-02 (8-8.6)	OS-SD-03 (0-6)
Pelham Offsi	te RI	Lab Sample Id:	A5017-05	A5017-06	A5017-07	A5017-08	A5002-24	A5002-25	A5002-26	A5002-27	A5017-01
Validated Se	diment Analytical Data	Depth:	0-0.5'	0.5-1'	1-2'	8-8.5'	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'
Detected Co	npound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	·	SDG:	A5017	A5017	A5017	A5017	A5002	A5002	A5002	A5002	A5017
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/5/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	7,410	11,200 J	8,130	9,950	1,010	13,800 J	1,780	9,640	10,300 J
7440-36-0	Antimony	mg/Kg	1.48 J	2.41 J	1 J	1.79 J	0.54 J	3.65 J	0.5 J	2.43 J	3.12 J
7440-38-2	Arsenic	mg/Kg	3.86	6.7 J	4.51	7.03	0.82 J	13.7 J	2.37	12.4	4.92 J
7440-39-3	Barium	mg/Kg	61	105 J	82.9	103	6.27	110 J	9.14	114	107 J
7440-41-7	Beryllium	mg/Kg	0.42	0.67 J	0.46	0.57	0.08 J	0.69 J	0.13 J	0.5	0.6 J
7440-43-9	Cadmium	mg/Kg	8.68	14.6 J	12.6	15.1	0.57	8.51 J	0.75	2.89	8 J
7440-70-2	Calcium	mg/Kg	5,840	25,900 J	8,120	9,230	55,500	12,300 J	51,600	6,230	14,200 J
7440-47-3	Chromium	mg/Kg	65.1	154 J	79.7	116	3.79	94.7 J	14.1	33.3	78 J
7440-48-4	Cobalt	mg/Kg	9.58	11.3 J	9.05	9.33	1.24 J	13.3 J	3.1	9.3	12.9 J
7440-50-8	Copper	mg/Kg	174	351 J	231	301	17.5	257 J	457	137	239 J
7439-89-6	Iron	mg/Kg	21,800	28,500 J	21,400	26,500	3,840	30,900 J	6,140	24,100	28,500 J
7439-92-1	Lead	mg/Kg	329	619 J	550	877	34.8	469 J	28	416	430 J
7439-95-4	Magnesium	mg/Kg	6,450	19,100 J	7,930	8,660	32,800	12,100 J	30,700	6,540	10,500 J
7439-96-5	Manganese	mg/Kg	185	280 J	184	208	67.1	269 J	80.1	224	227 J
7439-97-6	Mercury	mg/Kg	0.357 J	0.796 J	0.517 J	0.535 J	0.016	0.621 J	0.027	2.3	0.437 J
7440-02-0	Nickel	mg/Kg	45	73 J	47.7	58.5	4.44	60.9 J	7.89	30.4	66.4 J
7440-09-7	Potassium	mg/Kg	1,800	2,770 J	2,010	2,710	325	3,520 J	482	2,270	2,380 J
7782-49-2	Selenium	mg/Kg	2.12	2.46 J	1.96	2.89	ND	2.33 J	0.37 J	2.27	3.53 J
7440-22-4	Silver	mg/Kg	ND	0.5 J	0.22 J	0.52 J	ND	3.72 J	ND	3.03	ND
7440-23-5	Sodium	mg/Kg	4,260	5,190 J	3,120	6,350	1,360	13,600 J	734	1,080	1,980 J
7440-28-0	Thallium	mg/Kg	0.53 J	0.48 J	0.79 J	ND	ND	0.66 J	ND	ND	ND
7440-62-2	Vanadium	mg/Kg	37.6	48.5 J	38.8	51.9	5.12	55.3 J	10.4	27.9	49.5 J
7440-66-6	Zinc	mg/Kg	590	1,010 J	611	797	40 J	866 J	39 J	522 J	701 J
57-12-5	Cyanide	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	8,900	14,000 J	10,000	12,000	8,600	12,000 J	3,200	3,500	14,000 J

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.(3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Consolidated	Edison	Sample ID:	OS-SD-03 (6-12)	OS-SD-03 (1-2)	OS-SD-03 (4.5-5)	OS-SD-04 (0-6)	OS-SD-04 (6-12)	OS-SD-04 (1-2)	OS-SD-04 (8-8.5)	OS-SD-05 (0-6)	OS-SD-05 (6-12)
Pelham Offsit		Lab Sample Id:	A5017-02	A5017-03	A5017-04	A5038-06	A5038-07	A5040-09/A5038-08		A5038-14	A5038-15
	diment Analytical Data	Depth:	0.5-1'	1-2'	4.5-5'	0-0.5'	0.5-1'	1-2'	8-8.5'	0-0.5'	0.5-1'
	npound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	pouna cummany	SDG:	A5017	A5017	A5017	A5038	A5038	A5040/A5038	A5038	A5038	A5038
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/5/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009
CAS NO.	COMPOUND	UNITS:	117672000	1 17 07 2 0 0 0	1 1/0/2000	1 17 67 2 6 6 6	1 17 67 2 6 6 6	1 17 07 2 0 0 0	1 17 67 2 6 6 6	1 17 9/2000	1 17 07 2000
	VOLATILES										
67-64-1	Acetone	ug/Kg	ND	R	ND	95 J	76 J	140 J	ND	39 J	46 J
71-43-2	Benzene	ug/Kg	270 J	ND	12	ND	10 J	7.6 J	ND	ND	ND
78-93-3	2-Butanone	ug/Kg	ND	ND	ND	ND	30 J	55 J	ND	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	16 J	ND	ND	21 J	19 J	18 J	7.4	ND	ND
108-90-7	Chlorobenzene	ug/Kg	ND	ND	ND	9 J	ND	ND	ND	ND	ND
110-82-7	Cyclohexane	ug/Kg	4,200 J	ND	89	9.8 J	ND	9.4 J	ND	ND	ND
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	ND	R	R	R	ND	ND	ND
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	R	R	R	ND	ND	ND
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	ND	ND	R	R	R	ND	ND	ND
100-41-4	Ethyl Benzene	ug/Kg	ND	ND	ND	8.7 J	22 J	14 J	ND	ND	ND
591-78-6	2-Hexanone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
98-82-8	Isopropylbenzene	ug/Kg	3,400 J	ND	18	7.7 J	11 J	14 J	ND	ND	ND
79-20-9	Methyl Acetate	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND	ND	ND	ND	11 J	11 J	ND	ND	ND
108-87-2	Methylcyclohexane	ug/Kg	3,500 J	ND	12	ND	ND	ND	ND	ND	ND
75-09-2	Methylene Chloride	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
100-42-5	Styrene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
108-88-3	Toluene	ug/Kg	6.2 J	ND	ND	ND	53 J	ND	ND	ND	ND
120-82-1	1,2,4-Trichlorobenzene	ug/Kg	ND	ND	ND	R	R	R	ND	ND	ND
136777-61-2	m/p-Xylenes	ug/Kg	9.8 J	ND	ND	ND	15 J	11 J	ND	ND	ND
1330-20-7	o-Xylene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Total VOCs	ug/Kg	11,402 J	ND	131	151.2 J	247 J	280 J	7.4	39 J	46 J
	SEMIVOLATILES		,								
83-32-9	Acenaphthene	ug/Kg	1,100 J	700 J	ND	ND	ND	ND	ND	ND	ND
208-96-8	Acenaphthylene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Anthracene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Benzo(a)anthracene	ug/Kg	1,200 J	630 J	1,400 J	ND	ND	870 J	ND	970 J	ND
50-32-8	Benzo(a)pyrene	ug/Kg	1,100 J	570 J	1,300 J	ND	ND	850 J	ND	ND	ND
205-99-2	Benzo(b)fluoranthene	ug/Kg	1,700 J	810 J	2,000 J	1,400 J	1,400 J	1,200 J	ND	1,400 J	950 J
191-24-2	Benzo(g,h,i)perylene	ug/Kg	940 J	520 J	1,100 J	ND	ND	ND	ND	ND	ND
207-08-9	Benzo(k)fluoranthene	ug/Kg	ND	ND	710 J	ND	ND	ND	ND	ND	ND
92-52-4	1,1-Biphenyl	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	3,800 J	1,200 J	5,200 J	ND	ND	ND	ND	ND	ND
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	1,500 J	750 J	1,600 J	ND	ND	1,100 J	ND	1,100 J	ND
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
132-64-9	Dibenzofuran	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
206-44-0	Fluoranthene	ug/Kg	2,600 J	1,600 J	2,800 J	2,400 J	2,100 J	1,700 J	ND	1,900 J	1,300 J
86-73-7	Fluorene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	840 J	440 J	880 J	ND	ND	ND	ND	ND	ND
91-57-6	2-Methylnaphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
91-20-3	Naphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
85-01-8	Phenanthrene	ug/Kg	960 J	430 J	780 J	ND	ND	ND	ND	ND	ND
129-00-0	Pyrene	ug/Kg	2,400 J	1,500 J	3,500 J	2,300 J	1,800 J	1,500 J	750 J	1,600 J	1100 J
	Total SVOCs		18,140 J	9,150 J	21,270 J	6,100 J	5,300 J	7,220 J	750 J	6,970 J	3,350 J

Table 4 Validated Sediment Analytical Results - Detected Compound Summary Data Summary Report - Off-Site Remedial Investigation Pelham Former MGP Site - Pelham, NY

Consolidated		Sample ID:	OS-SD-03 (6-12)	OS-SD-03 (1-2)	OS-SD-03 (4.5-5)	OS-SD-04 (0-6)	OS-SD-04 (6-12)	OS-SD-04 (1-2)	OS-SD-04 (8-8.5)	OS-SD-05 (0-6)	OS-SD-05 (6-12)
Pelham Offs	ite RI	Lab Sample Id:	A5017-02	A5017-03	A5017-04	A5038-06	A5038-07	A5040-09/A5038-08	A5038-09	A5038-14	A5038-15
Validated Se	diment Analytical Data	Depth:	0.5-1'	1-2'	4.5-5'	0-0.5'	0.5-1'	1-2'	8-8.5'	0-0.5'	0.5-1'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	•	SDG:	A5017	A5017	A5017	A5038	A5038	A5040/A5038	A5038	A5038	A5038
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/5/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	8,150 J	2,570	6,930	11,400 J	13,400 J	11,000 J	1,750	12,300 J	14,100 J
7440-36-0	Antimony	mg/Kg	1.49 J	0.61 J	1 J	4.01 J	3.64 J	1.57 J	ND	2.77 J	1.82 J
7440-38-2	Arsenic	mg/Kg	2.79 J	0.95 J	3.57	5.43 J	5.45 J	4.22 J	0.64 J	4.82 J	7.45 J
7440-39-3	Barium	mg/Kg	101 J	28	96.6	136 J	135 J	98.4 J	11.6	114 J	131 J
7440-41-7	Beryllium	mg/Kg	0.48 J	0.2 J	0.45 J	0.6 J	0.74 J	0.56 J	0.09 J	0.59 J	0.73 J
7440-43-9	Cadmium	mg/Kg	6.63 J	1.93	9.75	7.52 J	10.6 J	10.3 J	0.06 J	8.76 J	9.57 J
7440-70-2	Calcium	mg/Kg	13,500 J	41,700	14,800	13,200 J	15,200 J	12,400 J	759	11,500 J	12,700 J
7440-47-3	Chromium	mg/Kg	76.2 J	15.2	91.9	87.5 J	84.7 J	72.4 J	5.71	82.6 J	86.3 J
7440-48-4	Cobalt	mg/Kg	9.69 J	2.58	7.02	16.7 J	18.1 J	12.3 J	1.71	14.4 J	14.9 J
7440-50-8	Copper	mg/Kg	190 J	54.1	204	227 J	261 J	202 J	8.83	241 J	268 J
7439-89-6	Iron	mg/Kg	22,600 J	8,700	20,300	31,200 J	34,600 J	26,700 J	4,960	31,100 J	32,300 J
7439-92-1	Lead	mg/Kg	418 J	89.8	393	440 J	483 J	398 J	7.18	463 J	525 J
7439-95-4	Magnesium	mg/Kg	9,530 J	26,000	9,970	11,900 J	13,100 J	10,300 J	1,040	11,700 J	12,500 J
7439-96-5	Manganese	mg/Kg	216 J	101	257	254 J	303 J	238 J	61.6	251 J	319 J
7439-97-6	Mercury	mg/Kg	0.507 J	0.216 J	0.436 J	0.318 J	0.635 J	0.503 J	0.039	0.528 J	0.572 J
7440-02-0	Nickel	mg/Kg	52.8 J	12.9	50.7	102 J	103 J	65.8 J	4.45	77 J	75 J
7440-09-7	Potassium	mg/Kg	2,020 J	656	1,780	3,210 J	3,370 J	2,640 J	631	3,540 J	3,680 J
7782-49-2	Selenium	mg/Kg	3.09 J	0.88 J	2.46	4.02 J	4.22 J	2.73 J	0.58 J	3.33 J	3.03 J
7440-22-4	Silver	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
7440-23-5	Sodium	mg/Kg	1,230 J	345	632	17,200 J	13,000 J	5,020 J	284	15,100 J	12,100 J
7440-28-0	Thallium	mg/Kg	ND	ND	ND	ND	ND	0.75 J	ND	ND	0.8 J
7440-62-2	Vanadium	mg/Kg	37.9 J	11.6	32.5	55.6 J	63.7 J	44.4 J	6.61	54.6 J	56.8 J
7440-66-6	Zinc	mg/Kg	581 J	116	563	690 J	775 J	640 J	20	750 J	797 J
57-12-5	Cyanide	mg/Kg	ND	ND	ND	22 J	15 J	5.58 J	ND	8.75 J	3.99 J
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	12,000 J	5,900	11,000	12,000 J	14,000 J	13,000 J	440 J	14,000 J	13,000 J

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.(3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Consolidated		Sample ID:	OS-SD-05(1-2)	OS-SD-05(9-9.5)	OS-SD-06 (0-6)	OS-SD-06 (6-12)	OS-SD-06 (1-2)	OS-SD-06 (8.5-9.0)	OS-SD-07 (0-6)	OS-SD-07 (6-12)	OS-SD-07 (1-2)
Pelham Offsit		Lab Sample Id:	A5051-01/11	A5051-02/12	A5017-13	A5017-14	A5017-15	A5017-16	A5017-17	A5017-18	A5017-19
	liment Analytical Data	Depth:	1-2'	9-9.5'	0-0.5'	0.5-1'	1-2'	8.5-9'	0-0.5'	0.5-1'	1-2'
Detected Con	npound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
		SDG:	A5051	A5051	A5017	A5017	A5017	A5017	A5017	A5017	A5017
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/6/2009	11/6/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
67-64-1	Acetone	ug/Kg	32 J	ND	160 J	65 J	ND	ND	330 J	ND	ND
71-43-2	Benzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
78-93-3	2-Butanone	ug/Kg	ND	ND	44 J	ND	ND	ND	54 J	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	ND	ND	25 J	15 J	ND	ND	21 J	ND	ND
108-90-7	Chlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
110-82-7	Cyclohexane	ug/Kg	ND	ND	ND	ND	ND	7.5	ND	ND	ND
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
100-41-4	Ethyl Benzene	ug/Kg	ND	ND	9.5 J	ND	ND	ND	24 J	34 J	21 J
591-78-6	2-Hexanone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
98-82-8	Isopropylbenzene	ug/Kg	ND	ND	ND	ND	ND	31	ND	12 J	7.3 J
79-20-9	Methyl Acetate	ug/Kg	ND	ND	ND	ND	9 J	ND	ND	5.7 J	18 J
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND	ND	ND	11 J	7.8 J	ND	ND	ND	ND
108-87-2	Methylcyclohexane	ug/Kg	ND	ND	ND	ND ND	ND	5.5 J	ND	ND	ND
75-09-2	Methylene Chloride	ug/Kg	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
100-42-5	Styrene	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
108-88-3	Toluene	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
120-82-1	1,2,4-Trichlorobenzene		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
		ug/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.1 J
	m/p-Xylenes	ug/Kg	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.1 J ND
1330-20-7	o-Xylene	ug/Kg	ND	I ND	ND	ND	ND	IND	ND	ND	ND
	Total VOCs	ug/Kg	32 J	ND	238.5 J	91 J	16.8 J	44 J	429 J	51.7 J	51.4 J
	SEMIVOLATILES										
83-32-9	Acenaphthene	ug/Kg	ND	ND	ND	ND	ND	ND	1,300 J	1,800 J	2,600 J
208-96-8	Acenaphthylene	ug/Kg	ND	ND	ND	ND	ND	ND	1,100 J	1,000 J	1,000 J
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Anthracene	ug/Kg	ND	ND	1,100 J	ND	ND	ND	1,500 J	1,700 J	2,300 J
120-12-7	Benzo(a)anthracene	ug/Kg	1,300 J	ND	3,000 J	ND	ND	ND	2,500 J	2,500 J	2,700 J
50-32-8	Benzo(a)pyrene	ug/Kg	1,200 J	ND	2,600 J	ND	ND	ND	1,900 J	2,200 J	2,100 J
205-99-2	Benzo(b)fluoranthene	ug/Kg	1,900 J	ND	3,700 J	100 J	ND	ND	2,200 J	2,400 J	2,400 J
191-24-2	Benzo(g,h,i)perylene	ug/Kg	950 J	ND	1,900 J	ND	ND	ND	1,200 J	1,300 J	1,300 J
207-08-9	Benzo(k)fluoranthene	ug/Kg	ND	ND	1,300 J	ND	ND	ND	ND	750 J	870 J
92-52-4	1,1-Biphenyl	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	3,900 J	ND	6,600 J	230 J	2,100 J	ND	1,800 J	2,000 J	2,500 J
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	1,700 J	ND	3,400 J	ND J	ND	ND	2,300 J	2,500 J	2,900 J
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
132-64-9	Dibenzofuran	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
206-44-0	Fluoranthene	ug/Kg	3,000 J	ND	6,300 J	150 J	890 J	ND	3,500 J	3,600 J	4,500 J
86-73-7	Fluorene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	1,200 J	1,500 J
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	900 J	ND	1,900 J	ND	ND	ND	1,100 J	1,100 J	1,100 J
91-57-6	2-Methylnaphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
91-20-3	Naphthalene	ug/Kg	ND	ND	ND	ND ND	ND	ND ND	ND	ND	1,500 J
85-01-8	Phenanthrene	ug/Kg	1,100 J	ND ND	2,700 J	ND ND	ND	ND ND	3,700 J	4,700 J	7,100 J
129-00-0	Pyrene	ug/Kg	2,600 J	ND ND	5,800 J	120 J	ND	420 J	4,800 J	5,200 J	5,800 J
1.20 00 0	, ,,,,,,,,	49/119	2,000 0		0,000 0		110	1200	7,000 0	0,200 0	0,000 0
	Total SVOCs		18,550 J	ND	40,300 J	600 J	2,990 J	420 J	28,900 J	33,950 J	42,170 J

Table 4 Validated Sediment Analytical Results - Detected Compound Summary Data Summary Report - Off-Site Remedial Investigation Pelham Former MGP Site - Pelham, NY

Consolidated	l Edison	Sample ID:	OS-SD-05(1-2)	OS-SD-05(9-9.5)	OS-SD-06 (0-6)	OS-SD-06 (6-12)	OS-SD-06 (1-2)	OS-SD-06 (8.5-9.0)	OS-SD-07 (0-6)	OS-SD-07 (6-12)	OS-SD-07 (1-2)
Pelham Offs	ite RI	Lab Sample Id:	A5051-01/11	A5051-02/12	A5017-13	A5017-14	A5017-15	A5017-16	A5017-17	A5017-18	A5017-19
Validated Se	diment Analytical Data	Depth:	1-2'	9-9.5'	0-0.5'	0.5-1'	1-2'	8.5-9'	0-0.5'	0.5-1'	1-2'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
		SDG:	A5051	A5051	A5017	A5017	A5017	A5017	A5017	A5017	A5017
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/6/2009	11/6/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009	11/5/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	14,400 J	2,460	11,500 J	11,600 J	11,900 J	3,520	8,900 J	14,700 J	12,200 J
7440-36-0	Antimony	mg/Kg	3.6 J	ND	2.65 J	2.34 J	1.94 J	1.76 J	ND	1.21 J	1.77 J
7440-38-2	Arsenic	mg/Kg	12.4 J	ND	5.57 J	5.61 J	6.7 J	ND	1.55 J	13.4 J	8.1 J
7440-39-3	Barium	mg/Kg	134 J	22 J	102 J	103 J	112 J	33.1	49.6 J	131 J	104 J
7440-41-7	Beryllium	mg/Kg	0.66 J	0.14 J	0.62 J	0.64 J	0.64 J	0.21 J	0.45 J	0.88 J	0.74 J
7440-43-9	Cadmium	mg/Kg	8.98 J	ND	7.29 J	6.88 J	12.7 J	0.54	1.05 J	10.5 J	7.71 J
7440-70-2	Calcium	mg/Kg	13,200 J	981 J	11,700 J	12,600 J	11,400 J	3,850	94,900 J	8,390 J	10,700 J
7440-47-3	Chromium	mg/Kg	95.5 J	ND	80 J	79.7 J	129 J	10.6	40.9 J	132 J	92.5 J
7440-48-4	Cobalt	mg/Kg	17.5 J	2.7	13.9 J	13.1 J	11.6 J	3.54	3.18 J	13.4 J	12.4 J
7440-50-8	Copper	mg/Kg	275 J	7.84	244 J	249 J	348 J	28.9	49.4 J	340 J	260 J
7439-89-6	Iron	mg/Kg	34,700 J	5,620 J	29,700 J	28,600 J	30,500 J	9,780	10,300 J	37,300 J	33,700 J
7439-92-1	Lead	mg/Kg	540 J	1.95	422 J	390 J	582 J	71.8	76.2 J	703 J	465 J
7439-95-4	Magnesium	mg/Kg	12,700 J	1,600 J	11,800 J	11,600 J	10,600 J	3,350	22,500 J	9,940 J	9,990 J
7439-96-5	Manganese	mg/Kg	289 J	54.1 J	239 J	244 J	261 J	97.9	320 J	648 J	404 J
7439-97-6	Mercury	mg/Kg	0.534 J	ND	0.647 J	0.701 J	0.772 J	1.5 J	3 J	4.4 J	1.8 J
7440-02-0	Nickel	mg/Kg	93.6 J	8.35	67.1 J	66 J	67.2 J	11.8	20 J	69.1 J	55.7 J
7440-09-7	Potassium	mg/Kg	3,680 J	998	3,170 J	3,110 J	2,960 J	806	1,130 J	3,230 J	3,240 J
7782-49-2	Selenium	mg/Kg	2.37 J	0.41 J	3.06 J	3.51 J	3.42 J	0.81 J	2.15 J	4.41 J	3.69 J
7440-22-4	Silver	mg/Kg	2.57 J	ND	ND	0.82 J	1.03 J	ND	ND	1.84 J	ND
7440-23-5	Sodium	mg/Kg	15,100 J	445 J	14,100 J	10,700 J	5,000 J	204	15,800 J	10,300 J	10,400 J
7440-28-0	Thallium	mg/Kg	ND	ND	ND	0.67 J	0.64 J	ND	ND	1.17 J	1.32 J
7440-62-2	Vanadium	mg/Kg	57.8 J	9.5	51.3 J	50.4 J	49 J	10.5	27.4 J	54.6 J	49.8 J
7440-66-6	Zinc	mg/Kg	904 J	14	759 J	771 J	1,020 J	102	130 J	918 J	741 J
57-12-5	Cyanide	mg/Kg	20 J	ND	1.92 J	11 J	ND	ND	ND	2.42 J	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	12,000 J	ND	8,600 J	11,000 J	12,000 J	11,000	13,000 J	11,000 J	8,900 J

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.(3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Dup of OS-SD-07(14-14.5)

				OS-SD-07(14-14.5)							
Consolidated	Edison	Sample ID:	OS-SD-07(14-14.5)	OS-SD-07D(14-14.5)	OS-SD-08 (0-6)	OS-SD-08 (6-12)	OS-SD-08 (1-2)	OS-SD-08 (9.5-10)	OS-SD-09 (0-6)	OS-SD-09 (6-12)	OS-SD-09 (1-2)
Pelham Offsit	te RI	Lab Sample Id:	A5017-20	A5017-23	A5038-10	A5038-11	A5038-12	A5038-13	A5038-02	A5038-03	A5038-04
Validated Sec	diment Analytical Data	Depth:	14-14.5'	14-14.5'	0-0.5'	0.5-1'	1-2'	9.5-10'	0-0.5'	0.5-1'	1-2'
	npound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	pouria Guriniary	SDG:	A5017	A5017	A5038	A5038	A5038	A5038	A5038	A5038	A5038
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
			11/5/2009	11/5/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009
CACNO	I COMPOLINID	Sampled:	1 1/5/2009	11/5/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
67-64-1	Acetone	ug/Kg	ND	ND	120 J	300 J	100 J	ND	ND	ND	ND
71-43-2	Benzene	ug/Kg	ND	ND	7.6 J	19 J	32 J	ND	ND	ND	ND
78-93-3	2-Butanone	ug/Kg	ND	ND	31 J	120 J	40 J	ND	ND	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	ND	ND	6.7 J	17 J	5.6 J	ND	ND	ND	ND
108-90-7	Chlorobenzene	ug/Kg	ND	ND	ND	9.6 J	15 J	ND	ND	ND	ND
110-82-7	Cyclohexane	ug/Kg	ND	ND	ND	15 J	18 J	ND	ND	ND	ND
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	ND	ND	17 J	23 J	ND	ND	ND	ND
100-41-4	Ethyl Benzene	ug/Kg	ND	ND ND	ND ND	ND ND	6.4 J	ND	17 J	ND ND	ND
591-78-6	2-Hexanone	ug/Kg ug/Kg	ND ND	ND ND	ND ND	ND ND	0.4 J ND	ND ND	ND	ND ND	ND ND
										ND ND	
98-82-8	Isopropylbenzene	ug/Kg	ND	ND	25 J	1,100 J	610 J	ND	16 J		ND ND
79-20-9	Methyl Acetate	ug/Kg	ND	ND	ND	ND	ND 5.4.1	ND	ND	ND	ND
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND	ND	ND	5.3 J	5.4 J	ND	ND	ND	ND
108-87-2	Methylcyclohexane	ug/Kg	ND	ND	ND	9.1 J	9.9 J	ND	ND	ND	ND
75-09-2	Methylene Chloride	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
100-42-5	Styrene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
108-88-3	Toluene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-82-1	1,2,4-Trichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
136777-61-2	m/p-Xylenes	ug/Kg	ND	ND	ND	43 J	61 J	ND	11 J	ND	ND
1330-20-7	o-Xylene	ug/Kg	ND	ND	ND	29 J	34 J	ND	6.4 J	ND	ND
	Total VOCs	ug/Kg	ND	ND	190.3 J	1,684 J	960.3 J	ND	50.4 J	ND	ND
	SEMIVOLATILES										
83-32-9	Acenaphthene	ug/Kg	ND	110 J	ND	ND	ND	ND	1,500 J	7,800 J	650 J
208-96-8	Acenaphthylene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	3,300 J
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	700 J
120-12-7	Anthracene	ug/Kg	ND	86 J	ND	ND	ND	ND	1,200 J	4,400 J	1,600 J
120-12-7	Benzo(a)anthracene	ug/Kg	ND	58 J	1,300 J	1,300 J	1,900 J	ND	1,500 J	5,500 J	7,300
50-32-8	Benzo(a)pyrene	ug/Kg	ND	ND	1,300 J	1,100 J	1,800 J	ND	1,500 J	5,200 J	6,200
205-99-2	Benzo(b)fluoranthene	ug/Kg	ND	ND	1,800 J	1,600 J	2,800 J	ND	1,600 J	5,800 J	7,800
191-24-2	Benzo(g,h,i)perylene	ug/Kg	ND	ND	1,100 J	840 J	1,300 J	ND	970 J	3,400 J	5,200 J
207-08-9	Benzo(k)fluoranthene		ND ND	ND ND	1,100 3 ND	ND	1,000 J	ND ND	ND	3,400 3 ND	2,400 J
92-52-4		ug/Kg	ND ND	ND ND	ND ND	ND ND	1,000 J ND	ND ND	ND ND	ND ND	2,400 J ND
	1,1-Biphenyl	ug/Kg									
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	ND	63 J	1,700 J	1,400 J	2,200 J	ND	1,500 J	5,900 J	7,400
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	1,100 J
132-64-9	Dibenzofuran	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
206-44-0	Fluoranthene	ug/Kg	ND	110 J	3,400 J	2,900 J	4,200 J	ND	2,800 J	11,000 J	9,600
86-73-7	Fluorene	ug/Kg	ND	62 J	ND	ND	ND	ND	ND	3,400 J	ND
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	ND	ND	ND	ND	1,300 J	ND	ND	3,000 J	4,200 J
91-57-6	2-Methylnaphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	960 J	ND	2,300 J
91-20-3	Naphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	1,600 J	6,500 J	7,500
85-01-8	Phenanthrene	ug/Kg	ND	310 J	1,600 J	1,100 J	1,400 J	ND	3,100 J	13,000 J	2,700 J
129-00-0	Pyrene	ug/Kg	ND	180 J	2,900 J	2,300 J	3,000 J	ND	3,200 J	11,000 J	15,000
1		1		I		1		I			

Table 4 Validated Sediment Analytical Results - Detected Compound Summary **Data Summary Report - Off-Site Remedial Investigation** Pelham Former MGP Site - Pelham, NY

				Dup of							
				OS-SD-07(14-14.5)							
Consolidated	l Edison	Sample ID:	OS-SD-07(14-14.5)	OS-SD-07D(14-14.5)	OS-SD-08 (0-6)	OS-SD-08 (6-12)	OS-SD-08 (1-2)	OS-SD-08 (9.5-10)	OS-SD-09 (0-6)	OS-SD-09 (6-12)	OS-SD-09 (1-2)
Pelham Offs	ite RI	Lab Sample Id:	A5017-20	A5017-23	A5038-10	A5038-11	A5038-12	A5038-13	A5038-02	A5038-03	A5038-04
Validated Sediment Analytical Data Depth: 14-14.5'			14-14.5'	14-14.5'	0-0.5'	0.5-1'	1-2'	9.5-10'	0-0.5'	0.5-1'	1-2'
Detected Compound Summary		Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
		SDG:	A5017	A5017	A5038	A5038	A5038	A5038	A5038	A5038	A5038
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	3,120	3,480	11,100 J	10,000 J	10,600 J	2,730	13,200 J	4,480	7,040
7440-36-0	Antimony	mg/Kg	ND	ND	2.51 J	1.17 J	2.3 J	ND	1.47 J	ND	1.23 J
7440-38-2	Arsenic	mg/Kg	ND	ND	3.18 J	5.88 J	4 J	ND	5.21 J	1.78	12.2
7440-39-3	Barium	mg/Kg	20.1	23.3	127 J	105 J	116 J	21.5	120 J	49.4	78.2
7440-41-7	Beryllium	mg/Kg	0.17 J	0.16 J	0.6 J	0.59 J	0.6 J	0.13 J	0.72 J	0.39 J	0.77
7440-43-9	Cadmium	mg/Kg	0.16 J	0.15 J	5.39 J	9.19 J	5.58 J	0.2 J	5.41 J	0.85	1.03
7440-70-2	Calcium	mg/Kg	ND	ND	20,600 J	10,600 J	14,600 J	11,900	25,300 J	3,430	2,940
7440-47-3	Chromium	mg/Kg	12.6	11	68.5 J	116 J	75.4 J	9.92	67.9 J	24.2	29.6
7440-48-4	Cobalt	mg/Kg	3.7	4.04	10.7 J	9.37 J	9.98 J	3.8	13.5 J	4.77	7.25
7440-50-8	Copper	mg/Kg	18.4	19	213 J	291 J	224 J	14.9	297 J	69.4	117
7439-89-6	Iron	mg/Kg	9,120	7,800	29,700 J	27,700 J	29,600 J	7,140	34,800 J	16,100	22,900
7439-92-1	Lead	mg/Kg	2.33	2.5	418 J	431 J	370 J	2.39	323 J	129	398
7439-95-4	Magnesium	mg/Kg	2,140	2,440	11,800 J	7,970 J	9,910 J	9,160	14,000 J	3,320	3,620
7439-96-5	Manganese	mg/Kg	64.7	61.7	265 J	260 J	251 J	64.5	313 J	131	344
7439-97-6	Mercury	mg/Kg	0.007 J	0.007 J	0.458 J	0.701 J	0.61 J	ND	1.2 J	0.563	1.1
7440-02-0	Nickel	mg/Kg	10.9	12.6	75.6 J	55.6 J	44.9 J	12.6	52.4 J	16.6	25.4
7440-09-7	Potassium	mg/Kg	1,370	1,620	2,690 J	2,270 J	2,580 J	1,240	3,400 J	1,620	1,750
7782-49-2	Selenium	mg/Kg	0.98 J	0.5 J	3.56 J	3.02 J	3.81 J	0.61 J	3.07 J	1.55	2.72
7440-22-4	Silver	mg/Kg	ND	ND	0.36 J	0.47 J	2.8 J	ND	ND	ND	ND
7440-23-5	Sodium	mg/Kg	338	381	5,480 J	1,590 J	2,180 J	245	5,450 J	632	1,190
7440-28-0	Thallium	mg/Kg	0.35 J	ND	0.7 J	0.72 J	ND	ND	1.47 J	ND	0.7 J
7440-62-2	Vanadium	mg/Kg	13.7	11.3	50 J	46 J	49.2 J	9.64	56.4 J	21.1	37.1
7440-66-6	Zinc	mg/Kg	25	21	860 J	807 J	809 J	15	588 J	148	269
57-12-5	Cyanide	mg/Kg	ND	ND	3.56 J	ND	ND	ND	ND	ND	1.11
	OTHER	T T									
7440-44-0	Total Organic Carbon	mg/Kg	ND	ND	15,000 J	9,500 J	15,000 J	940 J	12,000 J	12,000 J	13,000 J

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.
- (3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Dup of OS-SD-10(6-6.5) OS-SD-10(6-12) OS-SD-10(1-2) Consolidated Edison OS-SD-09(17-17.5) OS-SD-10(0-6) OS-SD-10(6-6.5) OS-SD-10D(6-6.5) OS-SD-11 (6-12) Sample ID: OS-SD-10(8.5-9) OS-SD-11 (0-6) Pelham Offsite RI Lab Sample Id: A5038-05 A5051-03/13 A5051-04/14 A5051-05/15 A5051-06/16 A5051-07/17 A5051-08/18 A5017-09 A5017-10 17-17.5' 0-0.5' 0.5-1' 0-0.5' Validated Sediment Analytical Data Depth: 1-2' 6-6.5' 6-6.5' 8.5-9' 0.5-1' Detected Compound Summary Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Source: SDG: A5038 A5051 A5051 A5051 A5051 A5051 A5051 A5017 A5017 **SEDIMENT** Matrix: **SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT** 11/6/2009 11/6/2009 11/6/2009 11/6/2009 11/6/2009 11/6/2009 11/6/2009 11/5/2009 11/5/2009 Sampled: COMPOUND CAS NO. UNITS: VOLATILES 67-64-1 ND 62 J 71 J 200 J 18 J R R 80 J 44 J Acetone ug/Kg 71-43-2 ND 720 J 1,900 J ND ND Benzene ug/Kg 1,600 J 16 J ND 7.5 J 78-93-3 ND ND ND 64 J ND ND ND ND ND 2-Butanone ug/Kg Carbon Disulfide 75-15-0 ND ND ND ND ND ND ug/Kg 7.5 J 8.3 J 9.8 J 108-90-7 Chlorobenzene ug/Kg ND ND ND 11 J ND ND ND ND ND 110-82-7 ND 6.4 J 11 J 20 J ND ND ND ND ND Cyclohexane ug/Kg 95-50-1 1,2-Dichlorobenzene ug/Kg ND 541-73-1 1,3-Dichlorobenzene ug/Kg ND ND ND ND ND ND ND ND 106-46-7 ND ND ND ND ND ND ND ND 1,4-Dichlorobenzene 31 J ug/Kg 100-41-4 Ethyl Benzene ND 330 J 150 J 130 J 8,000 J 240 J ND ND 8.5 J ug/Kg ND ND 591-78-6 2-Hexanone ug/Kg ND ND ND ND ND ND ND 98-82-8 Isopropylbenzene ug/Kg ND 1,900 J 5,900 J 9,000 J 5,500 J 380 J ND ND 9.3 J 79-20-9 Methyl Acetate ug/Kg ND 1634-04-4 Methyl tert-butyl Ether 22 J 48 J ND ND ND ND ug/Kg 19 J Methylcyclohexane ND ND 108-87-2 16 J 2.6 J 3.4 J ND ND ug/Kg 13 J 14 J 75-09-2 Methylene Chloride ug/Kg ND ND ND ND ND ND ND ND ND 100-42-5 Styrene ug/Kg ND ND ND ND 4.3 J ND ND ND ND 108-88-3 Toluene ug/Kg ND 17 J 26 J 42 J 3.3 J ND ND ND ND ND 120-82-1 1,2,4-Trichlorobenzene ug/Kg ND ND ND ND ND ND ND ND ND 200 J ND ND ND 136777-61-2 m/p-Xylenes ug/Kg 75 J 450 J 150 J 29 J 1330-20-7 ND 74 J 160 J 2,200 J 100 J ND ND ND o-Xylene 65 J ug/Kg Total VOCs ND 3,210.4 J 8,367 J 11,777.5 J 15,894.2 J 752.4 J ND 88.3 J 79.1 J ug/Kg SEMIVOLATILES 83-32-9 ND 2,200 J 1,200 J 1,500 J 370,000 J 70,000 J 45 J ND ND Acenaphthene ug/Kg 208-96-8 ND ND ND ND 87,000 J 15,000 J ND ND ND Acenaphthylene ug/Kg 98-86-2 ND ND ND ND ND ND ND ND ND Acetophenone ug/Kg ND 2,300 J ND ND 120-12-7 Anthracene ug/Kg 1,200 J ND 380,000 J 83,000 J 50 J 120-12-7 ND 2,600 J 1,100 J ND 210,000 J 38,000 J ND ND ND Benzo(a)anthracene ug/Kg 50-32-8 ND Benzo(a)pyrene ug/Kg 2,300 J 1,100 J ND 160,000 J 29,000 J ND ND ND 205-99-2 ND 2,500 J ND 1,400 J 1,100 J 120,000 J 23,000 J ND ND Benzo(b)fluoranthene ug/Kg 191-24-2 ND 1,400 J ND 11,000 J ND ND ND Benzo(g,h,i)perylene ug/Kg ND 55,000 J 207-08-9 Benzo(k)fluoranthene ND 1.100 J ND ND 43,000 J 6.900 J ND ND ND ug/Kg 92-52-4 ND ND ND 35,000 J 4,800 J ND ND ND 1,1-Biphenyl ug/Kg ND 117-81-7 Bis(2-ethylhexyl)phthalate ND 2,000 J 1,700 J 2,800 J ND ND ND 1,700 J 2,000 J ug/Kg 86-74-8 Carbazole ug/Kg ND ND ND ND 5,300 J ND ND ND ND Chrysene ND 2,700 J 36,000 J 218-01-9 1,200 J ND 180,000 J ND ND ND ug/Kg 53-70-3 ND ND ND 16,000 J 2,800 J ND ND ND Dibenz(a,h)anthracene ND ug/Kg 132-64-9 Dibenzofuran ug/Kg ND ND ND ND 39.000 J 5.400 J ND ND ND 206-44-0 ND 4,800 J 2,100 J 1,500 J 380,000 J 69,000 J ND ND 1,100 J Fluoranthene ug/Kg 86-73-7 ug/Kg ND 1,000 J ND ND 270,000 J 37,000 J ND ND ND Fluorene 193-39-5 ND ND 9,600 J ND Indeno(1,2,3-cd)pyrene ug/Kg 1,300 J ND 49,000 J ND ND ND 91-57-6 ND 1,200 J 26,000 J ND ND ND 2-Methylnaphthalene ND 130,000 J ug/Kg 91-20-3 Naphthalene ND 1,900 J 3,600 J 2,100 J 840,000 J 100,000 J ND ND ND ug/Kg 85-01-8 Phenanthrene ND 5,100 J 2,000 J ND 1,200,000 J 210,000 J 99 J ND ND ug/Kg 129-00-0 ND 6,100 J 2,600 J 1,400 J 480,000 J 100,000 J 64 J 1,100 J 1,000 J Pyrene ug/Kg

ND

39,300 J

19,200 J

11,600 J

5,049,300 J

876,500 J

258 J

2,800 J

Total SVOCs

4,100 J

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

								Dup of			
								OS-SD-10(6-6.5)			
Consolidated		Sample ID:	OS-SD-09(17-17.5)	OS-SD-10(0-6)	OS-SD-10(6-12)	OS-SD-10(1-2)	OS-SD-10(6-6.5)	OS-SD-10D(6-6.5)	OS-SD-10(8.5-9)	OS-SD-11 (0-6)	OS-SD-11 (6-12)
Pelham Offsi		Lab Sample Id:		A5051-03/13	A5051-04/14	A5051-05/15	A5051-06/16	A5051-07/17	A5051-08/18	A5017-09	A5017-10
Validated Se	diment Analytical Data	Depth:	17-17.5'	0-0.5'	0.5-1'	1-2'	6-6.5'	6-6.5'	8.5-9'	0-0.5'	0.5-1'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech			Chemtech
		SDG:	A5038	A5051	A5051	A5051	A5051	A5051	A5051	A5017	A5017
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/6/2009	11/5/2009	11/5/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	2,230	13,600 J	15,800 J	14,700 J	2,210	2,880	2,890	12,900 J	13,300 J
7440-36-0	Antimony	mg/Kg	ND	2.68 J	3.4 J	3.47 J	ND	ND	ND	2.56 J	1.61 J
7440-38-2	Arsenic	mg/Kg	ND	14.1 J	19.5 J	13.5 J	ND	ND	ND	8.02 J	9.43 J
7440-39-3	Barium	mg/Kg	22.6	164 J	169 J	239 J	38.7 J	54.1 J	46.2 J	105 J	112 J
7440-41-7	Beryllium	mg/Kg	0.11 J	0.78 J	0.86 J	0.74 J	0.08 J	0.11 J	0.13 J	0.73 J	0.73 J
7440-43-9	Cadmium	mg/Kg	0.22	5.89 J	4.6 J	8.96 J	ND	ND	0.07 J	7.37 J	7.82 J
7440-70-2	Calcium	mg/Kg	14,000	10,700 J	9,730 J	16,100 J	682 J	1,030 J	4,230 J	10,700 J	12,300 J
7440-47-3	Chromium	mg/Kg	5.37	91.5 J	77.4 J	103 J	ND	ND	ND	90.8 J	95.3 J
7440-48-4	Cobalt	mg/Kg	2.83	13.9 J	14.6 J	14.4 J	2.6	3.47	6.35	12.4 J	13.1 J
7440-50-8	Copper	mg/Kg	11.7	218 J	230 J	281 J	5.9	8.05	9.52	271 J	278 J
7439-89-6	Iron	mg/Kg	6,450	36,700 J	36,800 J	38,800 J	5,660 J	6,750 J	8,100 J	32,900 J	32,300 J
7439-92-1	Lead	mg/Kg	2.74	479 J	625 J	494 J	2.59	2.24	1.94	444 J	451 J
7439-95-4	Magnesium	mg/Kg	9,370	9,210 J	8,700 J	11,500 J	1,410 J	1,870 J	3,850 J	11,900 J	12,400 J
7439-96-5	Manganese	mg/Kg	145	297 J	254 J	283 J	39.4 J	56 J	80.7 J	264 J	276 J
7439-97-6	Mercury	mg/Kg	ND	0.625 J	3.2 J	0.528 J	ND	ND	ND	1.3 J	1.1 J
7440-02-0	Nickel	mg/Kg	6.6	55.1 J	54.2 J	64.2 J	6.29	8.39	12.4	55.7 J	62.6 J
7440-09-7	Potassium	mg/Kg	625	3,130 J	2,750 J	3,100 J	710	1,190	1,010	3,610 J	3,640 J
7782-49-2	Selenium	mg/Kg	0.3 J	3.04 J	2.81 J	3.12 J	0.76 J	0.95 J	0.78 J	3.02 J	3.76 J
7440-22-4	Silver	mg/Kg	ND	2.97 J	2.69 J	5.07 J	ND	ND	ND	ND	0.37 J
7440-23-5	Sodium	mg/Kg	317	3,520 J	3,240 J	2,690 J	340 J	433 J	518 J	16,300 J	14,000 J
7440-28-0	Thallium	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	0.87 J
7440-62-2	Vanadium	mg/Kg	7.06	56.4 J	62 J	63.1 J	7.66	10.5	9.73	53.9 J	55.2 J
7440-66-6	Zinc	mg/Kg	12	664 J	665 J	968 J	14	18	19	813 J	895 J
57-12-5	Cyanide	mg/Kg	ND	18 J	9.8 J	21 J	ND	ND	ND	ND	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	1,100 J	14,000 J	12,000 J	15,000 J	3,200 J	4,500 J	580 J	10,000 J	12,000 J

- (1) ND indicates compound was not detected.
- (2) J indicates an estimated concentration.
- (3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

	ite RI diment Analytical Data mpound Summary	Lab Sample Id: Depth: Source:	A5017-11 1-2'	A5017-12 15.5-16'	A5002-13	A5002-14	A5002-15	A5002-16	A5002-17	A5002-18	A5002-19
			1-2'	15 5-16'	0 0 5						
Detected Co	mpound Summary			13.3-10	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'	0.5-1'	1-2'
	Detected Compound Summary		Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
		SDG:	A5017	A5017	A5002						
1		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
67-64-1	Acetone	ug/Kg	73 J	ND	120 J	180 J	130 J	ND	28 J	40 J	23 J
71-43-2	Benzene	ug/Kg	ND	ND	1,200 J	710 J	540 J	ND	ND	ND	3.8 J
78-93-3	2-Butanone	ug/Kg	ND	ND	53 J	74 J	42 J	ND	ND	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	3.1 J	ND	12 J	17 J	13 J	ND	8.7 J	ND	3.7 J
108-90-7	Chlorobenzene	ug/Kg	ND	ND	27 J	14 J	8.4 J	ND	9.5 J	ND	ND
110-82-7	Cyclohexane	ug/Kg	ND	ND	37 J	44 J	27 J	ND	ND	ND	ND
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	13 J	ND	ND	ND	R	R	R
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	R	R	R
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	ND	9.8 J	ND	ND	ND	R	R	R
100-41-4	Ethyl Benzene	ug/Kg	ND	ND	1,800 J	180 J	83 J	ND	44 J	19 J	4.1 J
591-78-6	2-Hexanone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
98-82-8	Isopropylbenzene	ug/Kg	ND	ND	160 J	65 J	70 J	ND	53 J	16 J	29 J
79-20-9	Methyl Acetate	ug/Kg	13 J	ND	ND	ND	ND	ND	ND	ND	ND
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND	ND	18 J	26 J	31 J	ND	ND	ND	ND
108-87-2	Methylcyclohexane	ug/Kg	ND	ND	28 J	25 J	19 J	ND	ND	ND	ND
75-09-2	Methylene Chloride	ug/Kg	ND	ND	10 J	10 J	8.9 J	2.6 J	7 J	ND	3.9 J
100-42-5	Styrene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
108-88-3	Toluene	ug/Kg	ND	ND	16 J	8.3 J	ND	ND	ND	ND	ND
120-82-1	1,2,4-Trichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	R	R	R
136777-61-2		ug/Kg	ND	ND	63 J	20 J	13 J	ND	13 J	ND	ND
1330-20-7	o-Xylene	ug/Kg	ND	ND	42 J	ND	ND	ND	ND	ND	ND
	Total VOCs	ug/Kg	89.1 J	ND	3,608.8 J	1,373.3 J	985.3 J	2.6 J	163.2 J	75 J	67.5 J
	SEMIVOLATILES	9			5,000.0	1,01010				100	0110
83-32-9	Acenaphthene	ug/Kg	ND	17,000	3,300 J	1,200 J	1,900 J	ND	ND	ND	ND
208-96-8	Acenaphthylene	ug/Kg	ND	6,800	ND						
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Anthracene	ug/Kg	ND	21,000	ND	ND	ND	ND	1,100 J	ND	ND
120-12-7	Benzo(a)anthracene	ug/Kg	ND	18,000	ND	ND	ND	ND	1,600 J	ND	ND
50-32-8	Benzo(a)pyrene	ug/Kg	ND	15,000	ND	ND	ND	ND	1,400 J	ND	ND
205-99-2	Benzo(b)fluoranthene	ug/Kg	ND	12,000	1,100 J	ND	ND	ND	1,800 J	ND	440 J
191-24-2	Benzo(g,h,i)perylene	ug/Kg	ND	6,100	ND	ND	ND	ND	1,000 J	ND	ND
207-08-9	Benzo(k)fluoranthene	ug/Kg	ND	4,000 J	ND						
92-52-4	1,1-Biphenyl	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	1,800 J	ND	2,900 J	1,800 J	1,400 J	ND	2,500 J	1,900 J	950 J
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	ND	16,000	ND	ND J	ND	ND	1,700 J	ND	460 J
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	1,500 J	ND	ND ND	ND	ND	ND	ND	ND
132-64-9	Dibenzofuran	ug/Kg	ND	2,900 J	ND						
206-44-0	Fluoranthene	ug/Kg	1,100 J	33,000	1,500 J	ND	ND	ND	2,900 J	ND	650 J
86-73-7	Fluorene	ug/Kg	ND	7,700	ND						
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	ND	5,300	ND						
91-57-6	2-Methylnaphthalene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Naphthalene	ug/Kg	ND	2,100 J	ND	ND ND	ND	ND ND	ND	ND	ND
191-20-3			ND	3,900 J	ND	ND	ND	ND	1,400 J	ND	ND
91-20-3 85-01-8	IPhenanthrene	(1(1/1\(1)	IND	1 3.5000 1							
91-20-3 85-01-8 129-00-0	Phenanthrene Pyrene	ug/Kg ug/Kg	990 J	50,000	1,300 J	ND	ND	ND	3,300 J	ND	670 J

Table 4 Validated Sediment Analytical Results - Detected Compound Summary Data Summary Report - Off-Site Remedial Investigation Pelham Former MGP Site - Pelham, NY

Consolidated	Edison	Sample ID:	OS-SD-11 (1-2)	OS-SD-11(15.5-16)	OS-SD-12 (0-6)	OS-SD-12 (6-12)	OS-SD-12 (1-2)	OS-SD-12 (8-8.6)	OS-SD-13 (0-6)	OS-SD-13 (6-12)	OS-SD-13 (1-2)
Pelham Offsi	te RI	Lab Sample Id:	A5017-11	A5017-12	A5002-13	A5002-14	A5002-15	A5002-16	A5002-17	A5002-19	
Validated Se	diment Analytical Data	Depth:	1-2'	15.5-16'	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'	0.5-1'	1-2'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
			A5017	A5017	A5002	A5002	A5002	A5002	A5002	A5002	A5002
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/5/2009	11/5/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	13,700 J	2,220	12,600 J	14,400 J	14,700 J	1,650	15,200 J	13,400 J	1,720
7440-36-0	Antimony	mg/Kg	2.38 J	ND	3.78 J	4.12 J	3.9 J	ND	4.4 J	3.41 J	0.74 J
7440-38-2	Arsenic	mg/Kg	7.85 J	0.28 J	10.7 J	13 J	13.6 J	ND	14.8 J	9.93 J	1.91
7440-39-3	Barium	mg/Kg	115 J	13.5	124 J	146 J	149 J	7.14	120 J	118 J	14.4
7440-41-7	Beryllium	mg/Kg	0.76 J	0.12 J	0.64 J	0.75 J	0.73 J	0.05 J	0.76 J	0.88 J	0.12 J
7440-43-9	Cadmium	mg/Kg	8.56 J	0.26	8.73 J	11.7 J	13.5 J	0.05 J	8.17 J	8.09 J	1.06
7440-70-2	Calcium mg/		12,700 J	15,100	14,800 J	14,800 J	14,500 J	614	11,200 J	12,400 J	58,900
7440-47-3	Chromium	mg/Kg 95.6 J 7.53		101 J	126 J	126 J	4.98	101 J	104 J	8.43	
7440-48-4	Cobalt	mg/Kg	13 J	4.79	13 J	13.8 J	14 J	2.2	16 J	13.3 J	2.7
7440-50-8	Copper	mg/Kg	291 J	12.3	275 J	323 J	330 J	7.34	266 J	270 J	27.9
7439-89-6	Iron	mg/Kg	33,500 J	7,450	36,800 J	37,600 J	39,100 J	3,430	39,500 J	32,400 J	6,410
7439-92-1	Lead	mg/Kg	483 J	2.05	463 J	521 J	536 J	1.5	481 J	413 J	88.6
7439-95-4	Magnesium	mg/Kg	12,700 J	10,300	10,600 J	10,900 J	10,800 J	1,110	12,600 J	12,200 J	35,400
7439-96-5	Manganese	mg/Kg	285 J	72.4	288 J	335 J	337 J	23.1	311 J	293 J	85
7439-97-6	Mercury	mg/Kg	0.828 J	0.011 J	0.836 J	0.919 J	0.861 J	ND	1.3 J	1.1 J	0.054
7440-02-0	Nickel	mg/Kg	59.8 J	8.14	65.4 J	68.7 J	66.4 J	5.36	64.7 J	58.7 J	14.7
7440-09-7	Potassium	mg/Kg	3,750 J	672	2,680 J	2,950 J	2,920 J	379	4,020 J	3,740 J	504
7782-49-2	Selenium	mg/Kg	3.47 J	ND	3 J	3.79 J	3.61 J	0.41 J	3.79 J	3.58 J	1 J
7440-22-4	Silver	mg/Kg	0.99 J	ND	3.21 J	3.84 J	4.22 J	ND	2.87 J	3.24 J	ND
7440-23-5	Sodium	mg/Kg	11,400 J	114	1,730 J	1,330 J	1,210 J	242	15,600 J	16,200 J	1,410
7440-28-0	Thallium	mg/Kg	0.86 J	ND	ND	ND	ND	ND	ND	ND	ND
7440-62-2	Vanadium	mg/Kg	56.7 J	7.98	52.8 J	57 J	55.9 J	4.3	60.4 J	52.2 J	7.49
7440-66-6	Zinc	mg/Kg	962 J	14	912 J	1,080 J	1,080 J	9 J	843 J	879 J	78 J
57-12-5	Cyanide	mg/Kg	ND	ND	ND	ND	ND	ND	6.68 J	3.21 J	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	12,000 J	2,200	10,000 J	8,800 J	11,000 J	ND	13,000 J	13,000 J	8,400

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.(3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham. NY

Dup of OS-SD-13(12-13) OS-SD-14 (1-2) OS-SD-14 (7-7.6) OS-SD-15 (0-6) Consolidated Edison OS-SD-13(12-13) OS-SD-13D(12-13) OS-SD-14 (0-6) OS-SD-14 (6-12) Sample ID: OS-SD-15 (6-12) OS-SD-15 (1-2) Pelham Offsite RI Lab Sample Id: A5002-20 A5002-21 A5002-09 A5002-10 A5002-11 A5002-12 A5002-01 A5002-02 A5002-03 0.5-1' Validated Sediment Analytical Data Depth: 12-13' 12-13' 0-0.5' 0.5-1' 1-2' 7-7.6' 0-0.5' 1-2' Detected Compound Summary Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Source: SDG: A5002 A5002 A5002 A5002 A5002 A5002 A5002 A5002 A5002 SEDIMENT Matrix: **SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT** 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/3/2009 11/3/2009 11/3/2009 Sampled: COMPOUND CAS NO. UNITS: VOLATILES 67-64-1 26 J ND 79 J 150 J 210 J ND 150 J 170 J 140 J Acetone ug/Kg 71-43-2 24 J 7.2 J ND 5,200 J ND 7.4 J Benzene ug/Kg 53 J 14 J 6.3 J 78-93-3 ND 27 J ND 47 J 65 J 2-Butanone ug/Kg ND 61 J 71 J 30 J Carbon Disulfide 75-15-0 ND 8.5 J ND 24 J 9.9 J ug/Kg 3.4 J 15 J 10 J 7 J 108-90-7 Chlorobenzene ug/Kg ND ND 48 J 86 J 110 J ND 6.8 J 8.9 J ND 110-82-7 ND ND 53 J 110 J 170 J ND ND 8.4 J ND Cyclohexane ug/Kg 95-50-1 1,2-Dichlorobenzene ug/Kg ND ND ND 16 J 19 J ND ND ND ND ND ND 541-73-1 1,3-Dichlorobenzene ug/Kg ND ND R ND ND ND ND 106-46-7 ND ND 16 J 9.7 J 22 J ND 9.6 J 12 J 1,4-Dichlorobenzene 10 J ug/Kg 100-41-4 Ethyl Benzene 12 J ND 27 J ND ND 85,000 J 13 J 12 J 7.1 J ug/Kg ND 591-78-6 2-Hexanone ug/Kg ND ND ND ND ND ND ND ND 98-82-8 Isopropylbenzene ug/Kg 19 J 8.1 J 120 J 84 J 130 J 11,000 J 14 J 30 J 15 J 79-20-9 Methyl Acetate ug/Kg ND ND ND ND ND ND ND ND ND 1634-04-4 Methyl tert-butyl Ether 2.8 J ND 53 J 48 J 76 J ND 29 J 34 J ug/Kg 9.1 J Methylcyclohexane ND ND 3.200 J 108-87-2 ND 14 J ND ND ND ug/Kg 19 J 75-09-2 Methylene Chloride ug/Kg ND ND ND ND 8.6 J ND ND ND 7.4 J 100-42-5 Styrene ug/Kg ND ND ND ND ND ND ND ND ND 108-88-3 Toluene ug/Kg ND ND ND ND ND 820 J ND ND ND 120-82-1 1,2,4-Trichlorobenzene ug/Kg ND ND ND ND R ND ND ND ND ND ND 23 J 40,000 J 136777-61-2 m/p-Xylenes ug/Kg 4.2 J 17 J 8.1 J 6.8 J 12 J 1330-20-7 ND ND 16 J 32,000 J ND ND o-Xylene 5 J 10 J 5.4 J ug/Kg Total VOCs 125.4 J 22.1 J 482.5 J 600.9 J 884.6 J 177,220 J 281.6 J 359.4 J 274.2 J ug/Kg SEMIVOLATILES 83-32-9 ND ND ND 1,100 J ND 440,000 J ND ND ND Acenaphthene ug/Kg ND 39,000 J 208-96-8 ND ND ND ND ND ND Acenaphthylene ug/Kg ND 98-86-2 ug/Kg ND ND ND ND ND ND ND ND ND Acetophenone ND ND ND ND 300,000 J ND ND 120-12-7 Anthracene ug/Kg ND ND 120-12-7 ug/Kg ND ND ND ND ND 180,000 J 1,100 J ND ND Benzo(a)anthracene 50-32-8 ND Benzo(a)pyrene ug/Kg ND ND ND ND 140,000 J 1,100 J ND ND 205-99-2 ND 950 J ND 1,100 J 1,100 J 130,000 J 1,200 J 1,700 J ND Benzo(b)fluoranthene ug/Kg 191-24-2 ND ND ND ND 63,000 J ND Benzo(g,h,i)perylene ug/Kg ND ND ND 207-08-9 Benzo(k)fluoranthene ND ND ND ND ND 32,000 J ND ND ND ug/Kg 92-52-4 ND ND ND ND ND 78,000 J ND ND ND 1,1-Biphenyl ug/Kg 117-81-7 Bis(2-ethylhexyl)phthalate ND ND 2,900 J 2,800 J 2,600 J ND 3,100 J 3,900 J 1,400 J ug/Kg 86-74-8 Carbazole ug/Kg ND ND ND ND ND 4,400 J ND ND ND Chrysene ND 1,000 J 150,000 J 218-01-9 ND 1,000 J ND 1,400 J 1,300 J ND ug/Kg 53-70-3 ND ND ND ND 15,000 J ND ND ND Dibenz(a,h)anthracene ND ug/Kg 132-64-9 Dibenzofuran ug/Kg ND ND ND ND ND 22.000 J ND ND ND 206-44-0 ND ND 1,600 J 1,600 J 1,500 J 340,000 J 2,200 J 2,400 J 1,000 J Fluoranthene ug/Kg 86-73-7 ug/Kg ND ND ND ND ND 240,000 J ND ND ND Fluorene 193-39-5 ND ND ND ND ND Indeno(1,2,3-cd)pyrene ug/Kg ND 51,000 J ND ND ND 91-57-6 2-Methylnaphthalene ND ND ND 630,000 J ND ND 56 J ND ug/Kg 91-20-3 Naphthalene ND 72 J ND ND ND 640,000 J ND ND ND ug/Kg 85-01-8 Phenanthrene ND ND ND ND ND 900,000 J ND ND ND ug/Kg

ug/Kg

ND

ND

ND

128 J

1,500 J

8,100 J

1,600 J

8,200 J

1,400 J

7,450 J

510,000 J

4,904,400 J

2,200 J

12,300 J

2,100 J

11,400 J

129-00-0

Pyrene

Total SVOCs

930 J

3,330 J

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Dup of OS-SD-13(12-13) Consolidated Edison OS-SD-13(12-13) OS-SD-13D(12-13) OS-SD-14 (0-6) OS-SD-14 (6-12) OS-SD-14 (1-2) OS-SD-14 (7-7.6) OS-SD-15 (0-6) OS-SD-15 (6-12) OS-SD-15 (1-2) Sample ID: A5002-11 A5002-03 Pelham Offsite RI Lab Sample Id: A5002-20 A5002-21 A5002-09 A5002-10 A5002-12 A5002-01 A5002-02 Validated Sediment Analytical Data 12-13' 0-0.5' 0.5-1' 0-0.5 0.5-1' 1-2' Depth: 12-13' 1-2' 7-7.6' Detected Compound Summary Source: Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech SDG: A5002 A5002 A5002 A5002 A5002 A5002 A5002 A5002 A5002 Matrix: **SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT** 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/4/2009 11/3/2009 11/3/2009 11/3/2009 Sampled: CAS NO. COMPOUND UNITS: INORGANICS 7429-90-5 Aluminum mg/Kg 5,990 5,910 11,800 J 14,600 J 11,700 J 14,400 J 15,300 J 13,800 J 13,900 J 3.44 J 7440-36-0 ND ND 3.38 J 8.69 J 3.58 J 4.58 J 4.18 J 3.13 J Antimony mg/Kg 7440-38-2 9.84 J 1.35 1.05 J 7.2 J 13.3 J 11.2 J 15.2 J 12.2 J 13 J mg/Kg Arsenic 7440-39-3 36.9 32.1 121 J 170 J 107 J 301 J 121 J 124 J 117 J Barium mg/Kg 7440-41-7 Beryllium mg/Kg 0.27 J 0.31 J 0.55 J 0.73 J 0.6 J 0.74 J 0.68 J 0.66 J 0.68 J 7440-43-9 Cadmium mg/Kg 0.5 0.44 5.75 J 9.76 J 9.47 J 4.65 J 8.17 J 8.07 J 12.6 J 7440-70-2 Calcium mg/Kg 5,250 4,220 15,400 J 15,500 J 12,400 J 5,090 J 13,100 J 12,400 J 13,400 J 7440-47-3 Chromium mg/Kg 20.8 18.9 85.2 J 117 J 119 J 49.9 J 94.2 J 91.3 J 98.6 J 7440-48-4 8.97 8.21 15.2 J Cobalt mg/Kg 13.4 J 14.2 J 11.7 J 14 J 15.7 J 12.6 J 7440-50-8 mg/Kg 23.2 23.9 225 J 320 J 286 J 242 J 263 J 273 J 909 J Copper 7439-89-6 13.300 13.000 30.700 J 37.700 J 31.300 J 31.200 J 35.700 J 34.500 J 31.500 J Iron mg/Kg 7439-92-1 Lead mg/Kg 8.09 7.43 376 J 513 J 463 J 723 J 458 J 478 J 442 J 5,220 11,700 J 7,060 J 13,500 J 12,500 J 7439-95-4 Magnesium mg/Kg 5,850 10,600 J 9,640 J 11,800 J 148 7439-96-5 318 J Manganese 142 250 J 252 J 252 J 298 J 255 J 289 J mg/Kg 7439-97-6 0.003 J 0.004 J 0.872 J 0.979 J 0.896 J 0.719 J 0.664 J 0.984 J Mercury 0.743 J mg/Kg 7440-02-0 Nickel mg/Kg 20.1 18.9 60.6 J 65.3 J 57.9 J 45.3 J 63.1 J 76.3 J 53.2 J 7440-09-7 Potassium mg/Kg 1,900 1,770 2,660 J 3,140 J 2,570 J 3,030 J 4,040 J 3,720 J 3,630 J 7782-49-2 Selenium mg/Kg 1.14 J 0.95 J 2.58 J 3.63 J 2.24 J 4.61 J 2.97 J 3.64 J 2.79 J 7440-22-4 Silver mg/Kg ND ND 2.5 J 3.94 J 3.13 J 12.9 J 2.75 J 2.65 J 3.28 J 7440-23-5 289 257 1,290 J 1,670 J 16,500 J 10,900 J Sodium mg/Kg 1,550 J 794 J 16,800 J 7440-28-0 Thallium ND ND ND ND ND 1.05 J ND 0.68 J mg/Kg ND 7440-62-2 53.5 J 54.2 J Vanadium mg/Kg 25.5 24.9 58.1 J 48 J 44.2 J 61 J 52 J 7440-66-6 Zinc 43 J 40 J 787 J 1,040 J 939 J 846 J 897 J 947 J mg/Kg 1,270 J 57-12-5 4.29 J Cyanide mg/Kg ND ND 1.8 J 3.55 J ND ND 9.15 J ND OTHER

9,500 J

11,000 J

8,500 J

11,000 J

12,000 J

11,000 J

Notes:

7440-44-0

(1) ND indicates compound was not detected.

Total Organic Carbon

- (2) J indicates an estimated concentration.
- (3) R indicates a rejected value.

mg/Kg

3,700

2,700

11,000 J

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Consolidated	Edison	Sample ID:	OS-SD-15(14-14.6)	OS-SD-16 (0-6)	OS-SD-16 (6-12)	OS-SD-16 (1-2)	OS-SD-16 (8-8.6)	OS-SD-17 (0-6)	OS-SD-17 (6-12)	OS-SD-17 (1-2)	OS-SD-17 (8.6-9)
Pelham Offsit	e RI	Lab Sample Id:	A5002-04	A5002-05	A5002-06	A5002-07	A5002-08	A4971-11	A4971-12	A4971-13	A4971-14
Validated Sec	liment Analytical Data	Depth:	14-14.6'	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'	0.5-1'	1-2'	8.6-9'
Detected Con	npound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	•	SDG:	A5002	A5002	A5002	A5002	A5002	A4971	A4971	A4971	A4971
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009
CAS NO.	COMPOUND	UNITS:									
	VOLATILES										
67-64-1	Acetone	ug/Kg	48	120 J	110 J	85 J	ND	200 J	34 J	ND	97
71-43-2	Benzene	ug/Kg	ND	8.3 J	9.2 J	11 J	ND	ND	ND	ND	ND
78-93-3	2-Butanone	ug/Kg	ND	40 J	39 J	26 J	ND	46 J	ND	ND	ND
75-15-0	Carbon Disulfide	ug/Kg	ND	15 J	ND	11 J	ND	31 J	ND	ND	ND
108-90-7	Chlorobenzene	ug/Kg	ND	12 J	6.1 J	8.2 J	ND	ND	ND	ND	ND
110-82-7	Cyclohexane	ug/Kg	ND	9.3 J	ND	7.4 J	40	ND	ND	ND	ND
95-50-1	1,2-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
541-73-1	1,3-Dichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
106-46-7	1,4-Dichlorobenzene	ug/Kg	ND	9.5 J	8 J	13 J	ND	ND	ND	ND	ND
100-41-4	Ethyl Benzene	ug/Kg	ND	17 J	ND	10 J	51	ND	ND	ND	ND
591-78-6	2-Hexanone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
98-82-8	Isopropylbenzene	ug/Kg	ND	18 J	14 J	15 J	46	ND	ND	ND	4.1 J
79-20-9	Methyl Acetate	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
1634-04-4	Methyl tert-butyl Ether	ug/Kg	ND	51 J	58 J	71 J	ND	ND	ND	4.6 J	ND
108-87-2	Methylcyclohexane	ug/Kg	ND	ND	ND	ND	13	ND	ND	ND	18 J
75-09-2	Methylene Chloride	ug/Kg	ND	ND	ND	5.7 J	ND	ND	ND	ND	ND
100-42-5	Styrene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
108-88-3	Toluene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-82-1	1,2,4-Trichlorobenzene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
136777-61-2	m/p-Xylenes	ug/Kg	ND	12 J	8.5 J	11 J	5.5 J	ND	ND	ND	3.2 J
1330-20-7	o-Xylene	ug/Kg	ND	7.6 J	ND	ND	12	ND	ND	ND	ND
	Total VOCs	ug/Kg	48	319.7 J	252.8 J	274.3 J	167.5 J	277 J	34 J	4.6 J	122.3 J
	SEMIVOLATILES										
83-32-9	Acenaphthene	ug/Kg	150 J	ND	ND	ND	6,800	ND	ND	ND	72 J
208-96-8	Acenaphthylene	ug/Kg	200 J	ND	ND	ND	520 J	ND	ND	ND	ND
98-86-2	Acetophenone	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
120-12-7	Anthracene	ug/Kg	180 J	ND	ND	ND	2,800 J	ND	ND	ND	ND
120-12-7	Benzo(a)anthracene	ug/Kg	88 J	ND	920 J	1,100 J	1,900 J	1,100 J	ND	1,000 J	ND
50-32-8	Benzo(a)pyrene	ug/Kg	60 J	ND	ND	1,000 J	1,600 J	ND	ND	920 J	ND
205-99-2	Benzo(b)fluoranthene	ug/Kg	49 J	ND	1,300 J	1,400 J	1,500 J	1,200 J	ND	1,300 J	ND
191-24-2	Benzo(g,h,i)perylene	ug/Kg	ND	ND	ND	ND	770 J	ND	ND	730 J	ND
207-08-9	Benzo(k)fluoranthene	ug/Kg	ND	ND	ND	ND	560 J	ND	ND	ND	ND
92-52-4	1,1-Biphenyl	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
117-81-7	Bis(2-ethylhexyl)phthalate	ug/Kg	ND	2,300 J	2,300 J	2,700 J	680 J	1,700 J	1,600 J	2,600 J	120 J
86-74-8	Carbazole	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
218-01-9	Chrysene	ug/Kg	81 J	ND	1,200 J	1,300 J	1,900 J	1,100 J	ND	1,400 J	ND
53-70-3	Dibenz(a,h)anthracene	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
132-64-9	Dibenzofuran	ug/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
206-44-0	Fluoranthene	ug/Kg	160 J	ND	2,400 J	2,500 J	3,500 J	1,800 J	1,000 J	1,900 J	ND
86-73-7	Fluorene	ug/Kg	100 J	ND	ND	ND	2,700 J	ND	ND	ND	ND
193-39-5	Indeno(1,2,3-cd)pyrene	ug/Kg	ND	ND	ND	ND	730 J	ND	ND	ND	ND
91-57-6	2-Methylnaphthalene	ug/Kg	43 J	ND	ND	ND	6,500	ND	ND	ND	ND
91-20-3	Naphthalene	ug/Kg	580	ND	ND	ND	6,800	ND	ND	ND	ND
85-01-8	Phenanthrene	ug/Kg	520	ND	950 J	ND	8,900	1,700 J	ND	690 J	ND
129-00-0	Pyrene	ug/Kg	240 J	1,000 J	2,000 J	2,000 J	4,900	2,400 J	1,000 J	1,800 J	ND
	Total SVOCs	1	2,451 J	3,300 J	11,070 J	12,000 J	53,060 J	11,000 J	3,600 J	12,340 J	192 J

Table 4 Validated Sediment Analytical Results - Detected Compound Summary Data Summary Report - Off-Site Remedial Investigation Pelham Former MGP Site - Pelham, NY

Consolidate		Sample ID:	OS-SD-15(14-14.6)	OS-SD-16 (0-6)	OS-SD-16 (6-12)	OS-SD-16 (1-2)	OS-SD-16 (8-8.6)	OS-SD-17 (0-6)	OS-SD-17 (6-12)	OS-SD-17 (1-2)	OS-SD-17 (8.6-9)
Pelham Offs	ite RI						A4971-12	A4971-13	A4971-14		
Validated Se	diment Analytical Data	Depth:	14-14.6'	0-0.5'	0.5-1'	1-2'	8-8.6'	0-0.5'	0.5-1'	1-2'	8.6-9'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
	•	SDG:	A5002	A5002	A5002	A5002	A5002	A4971	A4971	A4971	A4971
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/4/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	6,230	13,400 J	13,600 J	12,900 J	2,090	12,900 J	11,300 J	8,170 J	6,660
7440-36-0	Antimony	mg/Kg	ND	2.75 J	3.11 J	3.32 J	ND	3.54 J	3.47 J	2.09 J	ND
7440-38-2	Arsenic	mg/Kg	0.9 J	10.9 J	11.8 J	12.1 J	ND	10 J	11.1 J	7.63 J	0.45 J
7440-39-3	Barium	mg/Kg	45.8	119 J	131 J	114 J	16	119 J	98.6 J	76.2 J	47.7
7440-41-7	Beryllium	mg/Kg	0.3 J	0.61 J	0.68 J	0.64 J	0.09 J	0.61 J	0.57 J	0.46 J	0.31 J
7440-43-9	Cadmium	mg/Kg	0.62	8.63 J	8.43 J	9.67 J	0.14 J	7.7 J	7.49 J	6.26 J	0.64
7440-70-2	Calcium	mg/Kg	10,900	12,800 J	13,600 J	14,300 J	1,140	13,000 J	12,500 J	12,800 J	10,300
7440-47-3	Chromium	mg/Kg	17.9	99.5 J	103 J	111 J	8.27	88.6 J	84.5 J	72.1 J	21.2
7440-48-4	Cobalt	mg/Kg	9.46	12.9 J	12.8 J	13.6 J	2.08	16.7 J	11.7 J	8.22 J	9.28
7440-50-8	Copper	mg/Kg	19	266 J	280 J	275 J	8.73	250 J	239 J	186 J	21
7439-89-6	Iron	mg/Kg	15,900	31,900 J	32,600 J	34,600 J	6,150	31,600 J	28,200 J	22,200 J	15,500
7439-92-1	Lead	mg/Kg	5.89	452 J	436 J	459 J	8.67	489 J	377 J	305 J	7.23
7439-95-4	Magnesium	mg/Kg	9,720	11,800 J	11,700 J	11,700 J	1,540	12,000 J	10,900 J	9,340 J	9,470
7439-96-5	Manganese	mg/Kg	129 J	271 J	278 J	282 J	44.1 J	251 J	238 J	185 J	162
7439-97-6	Mercury	mg/Kg	0.005 J	0.835 J	0.892 J	1 J	0.032	0.745 J	1.3 J	0.848 J	ND
7440-02-0	Nickel	mg/Kg	18.7	59.7 J	57.6 J	61.7 J	5.44	81.4 J	55.2 J	43 J	21.4
7440-09-7	Potassium	mg/Kg	2,050	3,530 J	3,550 J	3,410 J	767	3,310 J	3,030 J	2,240 J	2,030
7782-49-2	Selenium	mg/Kg	0.92 J	3.1 J	3.1 J	2.72 J	0.63 J	3.07 J	2.38 J	1.84 J	0.97 J
7440-22-4	Silver	mg/Kg	ND	3.36 J	3.6 J	3.39 J	ND	2.49 J	2.56 J	2.09 J	ND
7440-23-5	Sodium	mg/Kg	1,440	11,900 J	6,180 J	4,360 J	173	14,800 J	12,000 J	6,740 J	348
7440-28-0	Thallium	mg/Kg	ND	ND	ND	ND	ND	ND	ND	ND	ND
7440-62-2	Vanadium	mg/Kg	24.4	50.9 J	53 J	51.3 J	9.19	51.9 J	45.1 J	31.3 J	24.8
7440-66-6	Zinc	mg/Kg	41 J	905 J	904 J	987 J	22 J	807 J	780 J	660 J	41
57-12-5	Cyanide	mg/Kg	ND	2.25 J	ND	ND	ND	15 J	10 J	2.06 J	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	1,800	8,200 J	13,000 J	10,000 J	2,900	9,600 J	11,000 J	8,500 J	6,100

- (1) ND indicates compound was not detected.(2) J indicates an estimated concentration.(3) R indicates a rejected value.

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

Dup of OS-SD-17 (8.6-9) Consolidated Edison OS-SD-17D (8.6-9) OS-SD-18 (0-6) OS-SD-18 (6-12) OS-SD-18 (1-2) OS-SD-18(10-10.9) OS-SD-19 (1-2) Sample ID: OS-SD-19 (0-6) OS-SD-19 (6-12) OS-SD-19 (7-8) A4971-03 Pelham Offsite RI Lab Sample Id: A4971-17 A4971-06 A4971-07 A4971-08 A4971-10 A4971-01 A4971-02 A4971-05 0-0.5' 0.5-1' 10-10.9' 0-0.5' Validated Sediment Analytical Data Depth: 8.6-9' 1-2' 0.5-1' 1-2' 7-8' Detected Compound Summary Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Chemtech Source: Chemtech SDG: A4971 A4971 A4971 A4971 A4971 A4971 A4971 A4971 A4971 **SEDIMENT** Matrix: **SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT SEDIMENT** 11/3/2009 11/3/2009 11/3/2009 11/3/2009 11/3/2009 11/3/2009 11/3/2009 11/3/2009 11/3/2009 Sampled: COMPOUND CAS NO. UNITS: VOLATILES 67-64-1 60 89 J 57 ND ND ND 28 24 J ND Acetone ug/Kg 71-43-2 34 J ND ND ND ND ND ND ND Benzene ug/Kg 11 J 78-93-3 ND ND ND ND ND ND ND ND 2-Butanone ug/Kg ND Carbon Disulfide 75-15-0 ND ND ND ND ND ND ND ug/Kg 19 J 4.6 J 108-90-7 Chlorobenzene ug/Kg ND ND ND ND ND ND ND ND ND 110-82-7 7.5 J ND ND 57 J ND ND ND ND ND Cyclohexane ug/Kg 95-50-1 1,2-Dichlorobenzene ug/Kg ND 541-73-1 1,3-Dichlorobenzene ug/Kg ND ND ND ND ND ND ND ND 106-46-7 ND ND ND ND ND ND ND ND ND 1,4-Dichlorobenzene ug/Kg 100-41-4 Ethyl Benzene ND ND ND 28 J ND ND ND ND ND ug/Kg ND ND ND ND ND ND 591-78-6 2-Hexanone ug/Kg ND ND ND 98-82-8 Isopropylbenzene ug/Kg 4.8 J ND ND 280 J ND ND ND ND ND 79-20-9 Methyl Acetate ug/Kg ND 1634-04-4 Methyl tert-butyl Ether 12 J 6.6 J ND ND ND ND ND ug/Kg 5 J Methylcyclohexane ND ND ND 108-87-2 9.8 J ND 140 J ND ND ND ug/Kg 75-09-2 Methylene Chloride ug/Kg ND ND ND ND ND ND ND ND ND 100-42-5 Styrene ug/Kg ND ND ND ND ND ND ND ND ND 108-88-3 Toluene ug/Kg ND ND ND ND ND ND ND ND ND 120-82-1 1,2,4-Trichlorobenzene ug/Kg ND 136777-61-2 m/p-Xylenes ug/Kg 6.1 J ND 36 J ND 1330-20-7 ND ND ND 23 J ND ND ND ND ND o-Xylene ug/Kg Total VOCs 134.2 J 95.6 J 62 J 594 J ND ND 32.6 J 24 J ND ug/Kg SEMIVOLATILES 83-32-9 87 J ND 4,600 J 11,000 230 J 690 J ND ND ND Acenaphthene ug/Kg ND 208-96-8 ND 4,000 J ND ND ND ND ND Acenaphthylene ug/Kg ND 98-86-2 Acetophenone ug/Kg ND 140 J ND ND ND 120-12-7 Anthracene ug/Kg ND 1,600 J 15,000 3,400 J 120-12-7 ug/Kg ND ND 1,600 J 17,000 99 J 5,400 660 J ND ND Benzo(a)anthracene 50-32-8 ND Benzo(a)pyrene ug/Kg ND 1,400 J 14,000 84 J 4,600 930 J ND ND 205-99-2 ND ND 13,000 73 J 4,700 940 J ND ND Benzo(b)fluoranthene ug/Kg 1,600 J 191-24-2 ND ND 2.300 J 640 J ND ND Benzo(g,h,i)perylene ug/Kg 1,000 J 7,500 50 J 207-08-9 Benzo(k)fluoranthene ND ND 740 J 4.100 J ND 1.600 J 390 J ND ND ug/Kg 92-52-4 ND ND ND ND ND ND ND ND 1,1-Biphenyl ug/Kg ND 117-81-7 Bis(2-ethylhexyl)phthalate 54 J 1,900 J 2,600 J ND 140 J 1,900 J 2,000 J ND 62 J ug/Kg 86-74-8 Carbazole ug/Kg ND ND ND ND ND ND ND ND ND Chrysene ND ND 218-01-9 ND 1,700 J 16,000 96 J 5,500 640 J ND ug/Kg 53-70-3 ND ND ND 1,600 J ND 620 J ND ND ND Dibenz(a,h)anthracene ug/Kg 132-64-9 Dibenzofuran ug/Kg ND ND ND 950 J ND ND ND ND ND 206-44-0 ND ND 3,200 J 28,000 180 J 9,500 1,100 J ND ND Fluoranthene ug/Kg 86-73-7 ug/Kg ND ND 710 J 7,600 110 J 820 J ND ND ND Fluorene 193-39-5 ND 5,800 ND 1,800 J ND ND Indeno(1,2,3-cd)pyrene ug/Kg ND 800 J 540 J 91-57-6 ND ND 300 J ND ND 2-Methylnaphthalene ND 7,900 ND ND ug/Kg 91-20-3 Naphthalene ND ND ND 1,800 J 320 J ND ND ND ND ug/Kg 85-01-8 Phenanthrene ND ND 3,800 J 42,000 470 5,500 490 J ND ND ug/Kg 129-00-0 ND 1,200 J 4,400 J 43,000 300 J 14,000 1,600 J 870 J ND Pyrene ug/Kg

141 J

3,100 J

29,750 J

240,250 J

2,592 J

62,330 J

9,930 J

870 J

Total SVOCs

62 J

Table 4
Validated Sediment Analytical Results - Detected Compound Summary
Data Summary Report - Off-Site Remedial Investigation
Pelham Former MGP Site - Pelham, NY

			Dup of								
			OS-SD-17 (8.6-9)								
Consolidated		Sample ID:	OS-SD-17D (8.6-9)	OS-SD-18 (0-6)	OS-SD-18 (6-12)	OS-SD-18 (1-2)	OS-SD-18(10-10.9)	OS-SD-19 (0-6)	OS-SD-19 (6-12)	OS-SD-19 (1-2)	OS-SD-19 (7-8)
Pelham Offs	ite RI	Lab Sample Id:	A4971-17	A4971-06	A4971-07	A4971-08	A4971-10	A4971-01	A4971-02	A4971-03	A4971-05
Validated Se	ediment Analytical Data	Depth:	8.6-9'	0-0.5'	0.5-1'	1-2'	10-10.9'	0-0.5'	0.5-1'	1-2'	7-8'
Detected Co	mpound Summary	Source:	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech	Chemtech
		SDG:	A4971	A4971	A4971	A4971	A4971	A4971	A4971	A4971	A4971
		Matrix:	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
		Sampled:	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009
CAS NO.	COMPOUND	UNITS:									
	INORGANICS										
7429-90-5	Aluminum	mg/Kg	5,940	12,000 J	6,810	6,450	5,630	4,220	2,330	2,020	2,020
7440-36-0	Antimony	mg/Kg	ND	4.04 J	2.19 J	1.39 J	0.57 J	1.39 J	0.86 J	0.62 J	ND
7440-38-2	Arsenic	mg/Kg	0.83 J	9.33 J	4.74	4.91	ND	3.68	10.1	1.34	ND
7440-39-3	Barium	mg/Kg	43.3	103 J	60	90.5	20.9	23.8	18.3	13.1	14.1
7440-41-7	Beryllium	mg/Kg	0.29	0.61 J	0.4 J	0.34	0.24 J	0.17 J	0.21 J	0.15 J	0.09 J
7440-43-9			0.74	6.01 J	2.93	1.5	0.35	1.3	1.54	0.61	0.06 J
7440-70-2	Calcium	mg/Kg	9,360	15,100 J	9,970	1,910	1,390	34,600	82,100	33,500	7,780
7440-47-3			18.5	84.7 J	46.3	21.8	20.6	18.2	12.1	11.7	7.08
7440-48-4	Cobalt	mg/Kg	9.19	12 J	6.65	5.56	5.81	4.45	2.9	2.64	1.99
7440-50-8	Copper	mg/Kg	20.4	232 J	126	70.4	12.3	43	32.2	29	4.39
7439-89-6	Iron	mg/Kg	14,700	31,200 J	21,800	14,600	12,900	18,100	23,500	11,200	4,020
7439-92-1	Lead	mg/Kg	6.58	370 J	186	211	3.48	70.5	30.8	64.7	1.95
7439-95-4	Magnesium	mg/Kg	8,390	12,200 J	7,320	3,290	4,020	12,800	7,280	2,200	5,350
7439-96-5	Manganese	mg/Kg	150	239 J	158	114	212	191	372	148	53.5
7439-97-6	Mercury	mg/Kg	0.004 J	0.716 J	0.417	0.821	ND	0.11	0.074	0.066	ND
7440-02-0	Nickel	mg/Kg	19.9	62.9 J	52.5	16.5	16.9	16.5	11.1	9.17	5.62
7440-09-7	Potassium	mg/Kg	1,750	3,140 J	1,770	1,520	1,800	488	706	472	696
7782-49-2	Selenium	mg/Kg	0.63 J	3.08 J	1.97	1.22	0.84 J	0.76 J	0.55 J	ND	0.46 J
7440-22-4	Silver	mg/Kg	ND	1.76 J	1.32	1.77	ND	ND	ND	ND	ND
7440-23-5	Sodium	mg/Kg	346	11,700 J	4,660	1,920	153	1,530	812	610	1,240
7440-28-0	Thallium	mg/Kg	ND	ND	ND	ND	0.45 J	ND	0.59 J	ND	ND
7440-62-2	Vanadium	mg/Kg	23.1	51.3 J	27.5	19.4	22.8	13	8.2	6.53	7.63
7440-66-6	Zinc	mg/Kg	38	738 J	532	303	34	167	74	72	12
57-12-5	Cyanide	mg/Kg	ND	19 J	13	ND	ND	1.95	ND	ND	ND
	OTHER										
7440-44-0	Total Organic Carbon	mg/Kg	5,800	9,500 J	9,400	10,000	ND	6,000	6,700	2,000	1,400

- (1) ND indicates compound was not detected.
- (2) J indicates an estimated concentration.
- (3) R indicates a rejected value.

BORING	SAMPLE ID	SAMPLE DEPTH (feet)	USCS (ASTM D2487)		GRADATION ANALYSIS (ASTM D422) SIEVE SIZES (% PASSING)											ATTERBERG LIMITS (ASTM D4318)			TS	ORGANIC CONTENT (ASTM D2974 C)	MOISTURE CONTENT (ASTM D2216)	
				2.0"	1.5"	1.0"	3/4"	1/2"	3/8"	#4	#10	#20	#40	#60	#100	#200	LL	PL	PI	LI	%	%
OS-OD-01	OS-OD-01	6.5 to 9	SM	-	-	-	100.0	96.4	-	90.1	85.7	83.4	79.2	70.9	60.8	47.5	NV	NP	NP	-	6.3	60.3
OS-OD-02	OS-OD-02	4 to 7	SM	-	-	100.0	93.2	89.0	70.7	72.7	65.3	59.0	48.6	36.4	28.5	21.3	NV	NP	NP	-	5.1	39.6
OS-OD-03	OS-OD-03	2 to 4.5	SM	-	-	-	-	100.0	96.5	91.5	83.2	73.3	62.3	48.7	38.0	28.0	NV	NP	NP	-	6.1	62.0
OS-OD-04	OS-OD-04	5 to 7	SM	-	-	-	-	-	100.0	99.5	97.4	91.2	81.5	70.1	59.5	47.0	NV	NP	NP	-	7.8	102.6
OS-OD-05	OS-OD-05	5 to 6.5	SM	-	-	-	-	100.0	96.8	85.5	67.6	62.3	52.1	40.7	32.4	23.9	NV	NP	NP	-	0.7	20.0
OS-OD-06	OS-OD-06	5 to 8.5	SW-SM	-	100.0	77.0	-	75.8	73.3	70.7	67.8	41.1	19.0	11.2	8.6	6.6	NV	NP	NP	-	2.8	39.8
OS-OD-07	OS-OD-07	8 to 9	SW-SM	-	-	100.0	92.7	91.1	86.9	82.8	74.8	62.1	42.1	24.7	14.6	9.1	NV	NP	NP	-	0.7	16.5
OS-OD-08	OS-OD-08	1 to 2	SM	-	-	-	100.0	93.9	91.8	88.2	83.4	68.9	40.6	24.7	17.7	13.3	NV	NP	NP	-	8.2	44.3
OS-OD-09	OS-OD-09	3 to 4	ML	-	-	-	-	-	100.0	98.6	96.7	95.0	87.4	79.0	70.8	61.7	NV	NP	NP	-	7.4	105.0
OS-OD-10	OS-OD-10	10.5 to 11	SM	-	-	-	100.0	97.5	93.4	86.9	80.0	71.9	60.6	48.2	36.2	23.1	NV	NP	NP	-	0.3	11.8
OS-OD-11	OS-OD-11	9 to 13	ML	-	-	-	-	-	100.0	98.6	96.9	95.2	85.9	68.1	60.1	54.5	NV	NP	NP	-	6.0	68.8
OS-OD-12	OS-OD-12	4.5 to 8	GM	100	61.7	-	-	-	60.2	57.8	51.9	49.2	44.0	39.1	35.8	30.7	NV	NP	NP	-	8.6	12.8
OS-OD-13	OS-OD-13	7.5 to 10.5	SP	-	-	-	-	-	100.0	98.6	95.9	69.7	31.9	15.5	8.3	3.7	NV	NP	NP	-	5.7	43.8
OS-OD-14	OS-OD-14	7 to 9	SM	-	-	100.0	86.3	82.4	79.8	77.4	72.4	60.7	49.1	40.3	33.1	25.6	NV	NP	NP	-	6.9	42.4
OS-OD-15	OS-OD-15	12 to 14	SP-SM	-	-	-	100.0	96.9	-	95.3	88.7	78.4	54.2	28.5	14.8	8.8	NV	NP	NP	-	0.0	20.1
OS-OD-16	OS-OD-16	12 to 16	SM	-	-	-	-	100.0	97.2	96.4	93.9	85.9	74.8	60.3	48.4	36.9	NV	NP	NP	-	5.3	31.4
OS-OD-17	OS-OD-17	8 to 10.5	SM	-	-	-	-	100.0	91.6	84.1	78.1	65.5	46.8	31.8	26.1	21.8	NV	NP	NP	-	5.3	30.0
OS-OD-18	OS-OD-18	6 to 9	SM	-	-	-	100.0	98.6	98.0	97.3	94.7	88.6	76.0	60.2	45.7	35.2	NV	NP	NP	-	7.9	31.4
OS-OD-19	OS-OD-19	6 to 8	SP	-	-	-	-	-	100.0	98.8	96.9	90.0	62.1	25.1	7.4	3.0	NV	NP	NP	-	6.0	20.7

(1) NV = No Value (2) NP = Non Plastic (3) Abbreviations:

LL - Liquid Limit

PL - Plastic Limit

PI - Plasticity Index

LI - Liquidity Index

GM - Silty Gravel
SW - Well Graded Sand
SP - Poorly Graded Sand
SM - Silty Sand
ML - Silt

FIGURES

APPROXIMATE SCALE IN MILES 0 0.12 0.25 0.5

Site Location Map

Pelham Former MGP Site Pelham, New York Data Summary Report - Off-Site RI

PARSONS

100 HIGH ST, BOSTON, MA 02110 PHONE: (617) 946-9400

LEGEND:

OS-SD-1

SEDIMENT CORING LOCATIONS

OS-SD-18(RAD) ▲

RADIOISOTOPE SEDIMENT CORE LOCATIONS

PB-16

SEDIMENT PROBING LOCATIONS

PELHAM FORMER MGP SITE
DATA SUMMARY REPORT - OFF-SITE RI

Title:

FIGURE 2 SEDIMENT CORING AND PROBING LOCATIONS

Scale: 1" = 200' Date: NOVEMBER 2009 Rev: _

LEGEND:

SEDIMENT PROBING LOCATION & PENETRATION DEPTH (FT)

PROPERTY BOUNDARY

PELHAM FORMER MGP SITE
DATA SUMMARY REPORT - OFF-SITE RI

Title:

FIGURE 3 SEDIMENT PROBING SAMPLE LOCATIONS WITH PENETRATION DEPTHS

Scale: 1" = 60'

Date: NOVEMBER 2009 Rev: _

LEGEND:

OS-SD-1

OS-SD-18(RAD) ▲ SEDIMENT CORING LOCATIONS

RADIOISOTOPE SEDIMENT CORE LOCATIONS

Sediment Coring Location ID	Depth of Water Column (ft)	Targeted Depth of Core (ft)	Actual Depth of Penetration (ft)	% Core Recovery
OS-SD-1	1.2	12	12	81%
OS-SD-2	10.5	12	12	73%
OS-SB-3	8.5	12	7.8	71%
OS-SD-4	12.4	12	12	89%
OS-SD-5	11.2	12	12	88%
OS-SD-6	9.1	12	12	93%
OS-SD-7	9.0	20	16	92%
OS-SD-8	16.3	20	19	71%
OS-SD-9	5.4	20	19	92%
OS-SD-10	9.1	20	14.9	85%
OS-SD-11	7.4	20	19	93%
OS-SD-12	12.2	20	18.5	74%
OS-SD-13	10.6	20	19	99%
OS-SD-14	16.4	20	14.4	72%
OS-SD-15	7.3	20	18	91%
OS-SD-16	14.8	20	19	91%
OS-SD-17	10.8	12	12.5	100%
OS-SD-18	10.6	12	12	91%
OS-SD-19	17.8	12	12	68%

PARSONS

Project:

Project:
PELHAM FORMER MGP SITE
DATA SUMMARY REPORT - OFF-SITE RI

Title:

FIGURE 4
SEDIMENT CORING
LOCATIONS WITH
PERCENT RECOVERY DATA

Scale: 1" = 200' Date: NOVEMBER 2009 Rev: _

APPENDIX A **SEDIMENT CORING LOGS**

Contract	or:	OSI			DI	PARSO RILLING/VIBRAC			WELL NO. os-	
Driller:		Steve G SD/BM			DDOJECT NAME.	Dalham Sadimant	Off Sita invastigation		Northing 75206	
Inspector Rig Type		Vibraco			PROJECT NAME: PROJECT NUMBER		Off Site investigation		Easting 67984	
	E WATER OBSER	VATION	S		Start Date	11/4/2009			Location Plan	+
Water					Start Time	9:32				N
Depth Date	1.2 11/4/09				Finish Date Finish Time	11/4/2009 9:35			See Site Plan	1
Time	9:32				Weather	9.33			See Site Fiai	1
Sample			In. Rec.					1		
Depth (ft)	Sample I.D.	SPT	Per 24 in.	PID (ppm)	FIELI) IDENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS
					Depths are measured					
	0.0 0.0 0.1 (0.11 (11)				Wet, black, decaying leaves and trash.	organic matter,	some Silt and Sai	nd, trace	EH I	
0	OS-SD-01 (0"-6")			0	Moist, dark grey, SII	T and Sand sor	ne angular Grave	1 (ML)	FILL	
	OS-SD-01 (6"-12")			0	Wioist, dark grey, Sir	Zi ana Sana, soi	ne angular Grave	i (iviL).		
1	OS-SD-01 (1'-2')			0						
				0						
2				0					ML	
				0	Same as above (SAA	.).				
3				0						
				0]					
4				0	1					
•				0	Wet, dark grey, SILT	and Sand, trace	angular Gravel,	interbedded		
_					Clay.					
5				0						
				0	-					
6				2.1	G (G A A	`			_	
				0.8	Same as above (SAA	.).			ML/SM	
7				1						
				1						
8	OS-SD-01(8-8.5')			12		Piece of plastic	@ 8.5'.			
				2	Same as above (SAA					
9				0	1		inium foil @ 9.5'			
					EOB @ 9.5'.					
10					-					
11					1					
					-					
12					-					
13]					
14					_					
]					
15					_					
16					-					
10]					
17										
	SAMPLING METHO	D			COMMENTS:					
	SS = SPLIT SPOON AA= AUGERS				Geotech sample @ 6.5'-9	.0'				
	C = CORED				STP - Standard Penetration	on Test WOH - W	eight of Rods and Ham	mer. WOR - We	eight of Rods.	·

Contract	or:	OSI			DR	PARSO ILLING/VIBRAC			BORING/ WELL NO. os	Sheet 1 of 1 S-SD-02
Driller:		Steve G	i.						Location Description	on:
Inspector	:	SD/BM	I/MH		PROJECT NAME: 1	Pelham Sediment -	Off Site investigation		Northing 75	2005.2746
Rig Type	:	Vibraco	ore		PROJECT NUMBER 4	45436			Easting 68	0254.9238
	E WATER OBSER	VATION	IS		Start Date	11/4/2009			Location Plan	†
Water 12. Depth	4				Start Time Finish Date	10:39 11/4/2009			_	N
Date	11/4/09				Finish Time	10:45			See Site Pla	n
Time	10:39				Weather					
Sample			In. Rec.							
Depth	Sample	SPT	Per	PID	FIELD	IDENTIFICATION	ON OF MATERIAL		STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)	TIEED	DEIVIN ICITIO	A CI METILIME			COMMENTS
					Depths are measured	from mud/wat	er interface.			
					Wet, black, decaying			nd. trace		
0	OS-SD-02 (0"-6")			0	leaves and trash.			.,		
	OS-SD-02 (6"-12")			0	Wet, dark grey, coarse			ace fine		
1	OS-SD-02 (1'-2')			0	subangular cobbles, pl	astic, leaves. (F	ILL)			
1	O3-3D-02 (1 -2)			0	-				FILL	
					Same as above. (SAA)			FILL	
2			-	0	Same as accio. (SAA	,				
			1	0.0						
3				0						
				0.0						
					Wet, grey, SILT and	Sand, little orga	nics & leaves, trac	ce sticks	FILL	
4				0	& plastic.				TILL	
				0	Wet, grey angular GR				GM	
5				0	Wet, dark grey, SILT	and Sand, trace	Gravel.			
				0						
6				0	1				ML	
U					-					
				0	Wet, dark grey, coarse	e to medium SA	ND some silt (S	M)		
7				0	Wei, dark grey, cours	e to inculain 52	irvD, some sin (s	141).		
				0						
8	OS-SD-02 (8-8.6')			0					SM	
				0						
9				0						
					EOB @ 9.4'.					
10										
10										
			+	 	1					
11			-	-	1					
			1		-					
12										
13										
14					1					
		1			1					
15		1		<u> </u>	1					
15		+	+	-	1					
			1	 	-					
16		1	1							
17										
					COMMENTS:					
	SAMPLING METHOI SS = SPLIT SPOON)			Geotech sample @ 4'-7'.					
	AA= AUGERS				George Sample (W, 4 - 1'.					
	C = CORED				STP - Standard Penetration	Test WOH - Weigh	t of Rods and Hammer	. WOR - Weight	of Rods.	

Contract	tor:	OSI			DR	PARSO ILLING/VIBRAC				Sheet 1 of 1 OS-SD-03
Driller:		Steve G							Location Descript	
Inspecto		SD/BM			PROJECT NAME:		Off Site investigation	n		1864
Rig Type	2:	Vibraco	re		PROJECT NUMBER	445436			Easting 680	0056.2
SURFAC	E WATER OBSER	RVATIO	NS		Start Date	11/4/2009			Location Plan	A
Water 8.	5	8.5	9.2		Start Time	11:39				N
Depth					Finish Date	11/4/2009				l
Date	11/4/09	11/4/09			Finish Time	13:03:00 PM			See Site Pl	an
Time	11:39	12:19	12:56		Weather					
Sample			In. Rec.					Į.		
Depth	Sample	SPT	Per	PID	EIEI D	IDENTIFICATION	ON OF MATERIAI		STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)	THE LEE	DENTIFICATION	ON OF MATERIAL	-	5111111	COMMENTS
(11)	1.0.			(FF)	D 41	- 1 C 1/				
-					Depths are measure			1 4		4
0	OS-SD-03 (0"-6")			0	Wet, black, decaying	g organic matter	, some Siit and S	and, trace		
	OS-SD-03 (6"-12")			0	leaves and trash.					
1				0						
1	OS-SD-03 (1'-2')				Wet, black, SILT an	d Sand same C	ranias trasa nis	estic (ML)		+
ļ			1	0	WCL, DIACK, SIL I all	u Banu, Sulle C	rgames, mace pla	istic (IVIL).		
2			<u></u>	0					ML	
				0						
					Wet, grey,angular G	RAVEL some	Silt (GM)		GM	1
3	<u> </u>		1	0			* *	M/)	GM	4
				0	Wet, dark grey, SIL	i and Sand, son	ne ime Gravei (S.	IVI).		
4				0					SM	
	OS-SD-03 (4.5-5')			0	1					
-	US-SD-03 (4.5-5°)			U						=
5					EOB @ 5'.					
6										
					1					
7										
8										
0					1					
9										
10										
10										
ļ					-					
11]					
I										
12			1		1					
12			1		1					
					-					
13			<u></u>							
l										
.					1					
14			1		-					
					_					
15										
					1					
			 		1					
16		<u> </u>			-					
17										
					COMMENTS:					1
	SAMPLING METHO	D								
	SS = SPLIT SPOON AA= AUGERS				Geotech sample @ 2'-4.5	•				
	C = CORED				STP - Standard Penetration	on Test WOH - W	eight of Rods and Ham	mer. WOR - W	eight of Rods.	

Contract	or:	OSI			DR	PARSO RILLING/VIBRAC			BORING/ WELL NO.	Sheet 1 of 1 OS-SD-04
Driller:		Steve G	j						Location Descrip	
Inspector	r:	SD/MH			PROJECT NAME:	Pelham Sediment -	Off Site investigation	n		1747.76
Rig Type	:	Vibraco	ore		PROJECT NUMBER				Easting 67	9823.7872
SURFAC	E WATER OBSER	VATIO	NS		Start Date	11/5/2009			Location Plan	*
Water 12.	4				Start Time	12:36			200000011100	N
Depth					Finish Date	11/4/2009				
Date	11/5/09				Finish Time	12:39			See Site P	lan
Time	12:36				Weather					
Sample			In. Rec.					1		
Depth	Sample	SPT	Per	PID	FIELE	DENTIFICATION	ON OF MATERIAL		STRATA	COMMENTS
(ft)	LD.		24 in.	(ppm)		DE VIII ICITII	or or market	•		COMMENTS
(10)	12.			41 /	Dougth a one massaum	ad Grame many d/may	stan intantaa			
					Depths are measur Wet, black, decaying			and trace		-
0	OS-SD-04 (0"-6")			0	leaves and trash.	g organic matter	, some sin and s	and, trace	FILL	
	OS-SD-04 (6"-12")			0	leaves and trasn.				122	
1				0	Wet, black, SILT, so	ome Sand (ML)				
1	OS-SD-04 (1'-2')					, ,				
			<u> </u>	0						
2			<u> </u>	0					ML	
				0					WIL	
Sama as above (SAA)								1		
3			1	0	Same as above (SAI	-1.				
			1	0						_
4				0	Wet, black, SILT an	d Sand, some G	ravel & Organics	s, trace leaves		
-					& trash (ML).					
				0	-					
5				0						
				0					ML	
6				0	Same as above (SAA	A).				
U					•	,				
				0						
7				0						
				0	Wet, dark grey, coar	rse to medium S	AND, some Silt,	some		
					subrounded Gravel					
8	OS-SD-04 (8-8.5')			0	-					
				0					SM	
9				0					5.112	
				0	Same as above (SAA	A).				
					Ì					
10				0						
					EOB @ 10.5'.					
11										
			1		1					
			1		1					
12			1							
		<u> </u>	<u></u>							
13										
10					1					
			1		-					
14										
I]						
15			1		1					
15			1	-	1					
16										
					1					
			+	 	1					
17					COMPANYO				<u> </u>	
GAMBUNG METUOD					COMMENTS:					
SAMPLING METHOD SS = SPLIT SPOON					Castach cample @ \$! 7!					
SS – SPLIT SPOON AA= AUGERS					Geotech sample @ 5'-7'.					
	C = CORED				STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - Weight of Rods.					

Contract	or:	OSI			DR	PARSO SILLING/VIBRAG				Sheet 1 of 1 DS-SD-05			
Driller:	.	Steve G	ì		Div	ELLIO, VIDRIC	OKE KECOKE		Location Descripti				
Inspector	:	SD/MH			PROJECT NAME:	Pelham Sediment -	Off Site investigation	n		1512.24			
Rig Type		Vibraco		_	PROJECT NUMBER					9707.98			
SLIDEAC	E WATER OBSER	WATIO	NIC		Start Date	11/5/2009		Τ	Location Plan	<u> </u>			
Water 11	2	VAIIO			Start Date Start Time	11:40			Location 1 ian	N N			
Depth					Finish Date	11/5/2009			1	ļ			
Date	11/5/09				Finish Time	11:45			See Site Pla	n			
Time	11:40				Weather								
Sample			In. Rec.					<u> </u>					
Depth	Sample	SPT	Per	PID	EIEI C	IDENTIFICATION	ON OF MATERIAL		STRATA	COMMENTS			
(ft)	I.D.	51.1	24 in.	(ppm)	FIELL	DENTIFICATION	ON OF MATERIAL	•	SIMILI	COMMENTS			
(11)	1,1),		2	(PPIII)	D 4	1.6 1/							
					Depths are measure			1 4					
0	OS-SD-05 (0"-6")			0	Wet, black, decaying	g organic matter	, some Silt and S	and, trace					
	OS-SD-05 (6"-12")			0	leaves and trash.								
1					1								
1	OS-SD-05 (1'-2')			0					EII I				
				0					FILL				
2			<u></u>	0	Same as above (SAA	A).			1				
				0									
2					1								
3			-	0	Wat doub	an to Cu - CART) sama C	tula sile (CNA)	1				
			ļ	0	Wet, dark grey, coar	se to fine SANI	, some Gravel, li	ille siit (SM).	1				
4				0					SM				
				0	7								
					1	chemical	odor						
5				0.3									
				0	Wet, dark grey, coar		AND, some Silt,	little					
6				0	subrounded fine Gra	ivel (SM).							
				0									
7				0									
				0	Same as above (SAA	A).			SM				
8				0					SIVI				
U					1								
				0									
9	OS-SD-05 (9-9.5')			0									
				0	Same as above (SAA	A).							
10				0									
10					EOD 0 40 51								
					EOB @ 10.5'.								
11			ļ		_				1				
									1				
12					1								
14			 		1				1				
			 		4								
13			ļ		_				1				
Ţ									1				
1.4					1								
14			<u> </u>		1				1				
			ļ	-	1								
15		<u></u>	<u> </u>]				1				
17					1			1					
16		-	1	-	-								
			<u> </u>		1	1							
17									1				
					COMMENTS:								
	SAMPLING METHO	D											
	SS = SPLIT SPOON				Geotech sample @ 5'-6.5'	-							
	AA= AUGERS C = CORED				STP - Standard Penetration	on Test WOH - W	eight of Rods and Ham	mer WOR - We	ght of Rods				
					Junuara i chedata		on an around and ridin		٠. ٠. ٠.٠٠٠٠٠٠	STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - Weight of Rods.			

Contract	or:	OSI			PARSONS DRILLING/VIBRACORE RECORD	BORING/ WELL NO.	Sheet 1 of 1 OS-SD-06		
Driller:		Steve C				Location Descript			
Inspector		SD/ME			PROJECT NAME: Pelham Sediment - Off Site investigation	Northing 751			
Rig Type	2:	Vibraco	ore		PROJECT NUMBER 445436	Easting 679	598.9272		
SURFAC	E WATER OBSER	VATIO	NS		Start Date 11/5/2009	Location Plan	*		
Water 9.1					Start Time 10:47		N		
Depth					Finish Date 11/5/2009		ļ		
Date	11/5/09				Finish Time 10:50	See Site Pla	n		
Time	10:47				Weather				
Sample			In. Rec.						
Depth	Sample	SPT	Per	PID	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS		
(ft)	I.D.		24 in.	(ppm)					
					Depths are measured from mud/water interface.				
					Wet, black, decaying organic matter, some Silt and Sand, trace				
0	OS-SD-06 (0"-6")			0	leaves and trash.				
	OS-SD-06 (6"-12")			0	icaves and trasm.	FILL			
1	OS-SD-06 (1'-2')			0		FILL			
	33 52 33 (2 2)								
			 	0	Wet, dark grey, SILT and Sand, some coarse to medium Sand, little	1	1		
2				0	Organics (ML).	1			
				0	O'I SMILLO	1			
3				0		1			
-			1	0	1	ML			
					Same as above (SAA).	-			
4				1	Same as above (SAA).				
				1					
5				0.8					
-					Wet, dark grey, coarse to medium SAND, some Silt, little				
				0.8	subrounded fine Gravel (SM).				
6				2.8	(-)				
				0		SM			
7				0		SIVI			
•					Wet, dark grey, SAND and Gravel, some Silt, trace cobbles (SM).	1			
				0	Tree, dark grey, or tree and Graver, some one, trace coordes (Six).				
8				0					
	OS-SD-06 (8.5-9')			4.2	Wet, light grey, SILT and Sand, little Gravel (ML).	ML			
9				0	Wet, light grey, coarse to medium SAND, some Silt (SM).				
,									
				0		SM			
10				0					
				0					
11					EOB @ 11.5'.		1		
11					100 C 110 I	1			
			1						
12						1			
13						1			
13			 						
						1			
14			1			1			
]					
15									
15			1						
						1			
16									
						1			
17					1	1			
17	<u> </u>	1	1		COMMENTS	<u> </u>	<u> </u>		
	SAMPLING METHO	D			COMMENTS:				
SAMPLING METHOD SS = SPLIT SPOON					Geotech sample @ 5'-8.5'.				
	AA= AUGERS				Georeen sample (a) 5'-8.5'.				
	C = CORED				STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - Wei	ght of Rods.			

Contract	or:	OSI			DF	PARSO RILLING/VIBRAG			BORING/ WELL NO.	Sheet 1 of 1 OS-SD-07
Driller:	- •	Steve G			DI				Location Descripti	
Inspector	r:	SD/BM			PROJECT NAME:	Pelham Sediment -	Off Site investigation		Northing 751	059.587
Rig Type	::	Vibraco	ore	-	PROJECT NUMBER	445436			Easting 679	470.5137
CLIDEAC	E WATER OBSER	VATION	S		Start Date	11/5/2009		T	Location Plan	
Water 9	L WATER ODSER	AHON			Start Date Start Time	9:36			Location Fian	∳ N
Depth					Finish Date	11/5/2009			1	
Date	11/5/09				Finish Time	9:44			See Site Pla	ın
Time	9:36				Weather					
Sample			In. Rec.					ı		
Depth	Sample	SPT	Per	PID	FIELI	DIDENTIFICATION	ON OF MATERIAL		STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)						
					Depths are measure	d from mud/wat				
					Wet, black, decaying	organic matter	some Silt and Sar	nd. trace leaves		†
0	OS-SD-07 (0"-6")			0	and trash.	organie matter,	some sin una sur	ia, iluce leuves	ML	
	OS-SD-07 (6"-12")			0						
1	OS-SD-07 (1'-2')			0.4	Wet, dark grey, SILT	and Sand, some	e gravel, trace org	anic matter		
				0	(ML).					
_					1					
2			 	0	1					
				0	g			ML		
3				0	Same as above (SAA	.).				
				0						
4					=					
4				0	-					
				0	***					_
5				0	Wet, dark grey, SILT	, some medium	to fine Sand, trac	e gravel		
				0	(ML).					
6				0						
0					plastic at 6.5'					
				0	_	`			ML	
7				0	Same as above (SAA	.).				
				1.8						
8				3						
О					†					
				1.8	Wet, grey, coarse to	madium CAND			-	
9				3.5	wei, giey, coarse to	illediulii SAND,	inthe sin (SW).			
				3.7						
10				0						
					1					
			 	0	Same as above (SAA)			1	
11			1	0	Same as above (SAA					
				0					SM	
12				0						
				0						
10			†		1					
13		-	-	0	Same as above (SAA)			-	
				0	Same as above (SAA	.J.				
14	OS-SD-07 (14-14.5')		<u> </u>	5.6]
					EOB @ 14.5'.					
15			1		1					
15			 		1					
			1		4					
16					_					
17					1					
1/					COMMENTS:		<u> </u>	<u> </u>		
SAMPLING METHOD					COMMENTS:					
	SS = SPLIT SPOON				Geotech sample @ 8'-9'.	-		-		
	AA= AUGERS				CTD C411 D	m Toot WOU W	night of D - J - 111	mor WOD W.	aht of D - J-	
	C = CORED				STP - Standard Penetration	m rest WOH - Wo	eight of Rods and Ham	mer. WOR - Wei	giii 01 KOds.	

Imagestor:	Contract	or:	OSI			DR	PARSO RILLING/VIBRAC				Sheet 1 of 1 OS-SD-08
Rig Type: Videous PROJECT NUMBER-84545 Esting 67943791.	Driller:		Steve C			DD O VE CETALLA VE	D.II. G.II.	omai: : .: .:			
Supple S								Off Site investigation	n		
Sample 3	Kig Type	•	Vibracc	пе		PROJECT NUMBER	443430			Easting 0	/943 / .91
Sample 3	SURFAC	E WATER OBSER	VATIO	NS		Start Date	11/5/2009			Location Plan	+
Diago	Water 16.					Start Time					N N
Time											ļ
						1	14:15			See Site Pla	an
Depth Sample Sa	1 ime	14:00		1		weatner					
Depth Sample Sa	Sample			In. Rec.					1		
Chi		Sample	SPT		PID	FIELD	DENTIFICATION	ON OF MATERIAL	,	STRATA	COMMENTS
Depths are measured from mud/water interface. 2.9 Wet, black, decaying organic matter, some Silt and Sand, trace leaves and trash. 1		•		24 in.							
O O O O O O O O O O	Ì					Denthe are measur	ed from mud/w	ater interface			
Oossaba((a',1'p')									and trace		_
O SSB-08 (12-27)	0	OS-SD-08 (0"-6")			2.9		g organic matter	, some one and o	and, trace		
Comments Comments		OS-SD-08 (6"-12")			0	leaves and trasm.					
Comments Comments	1	OS-SD-08 (1'-2')			0						
Same as above (SAA).	_	00 02 00 (2 2)									
Comments Comments				1		Same as above (SA)	1)			-	
	2				0	Same as above (SAF	1).			FILL	
				<u></u>	0						
	3				0						
4						1					
						CAA				-	
S	4				0	SAA.					
SAMPLING METHOD SS SS SPLIT SPOON AA-AUGGESS SMED SMED					0						
SAMPLING METHOD SS SS SPLIT SPOON AA-AUGGESS SMED SMED	5				0	Wet,grey, coarse to	medium SAND,	some Silt, some	Gravel (SM).		
SM									, , ,		
					0	4					
Toleran	6				0						
Toleran					0					SM	
	7					SAA.					
8											
0 Wet, brown, coarse to medium poorely graded SAND, some interbedded Silt lenses (SM/SP). SM/SP					0						
SM/SP	8				0						
SMSP					0			ely graded SANI), some		
OS-SD-08 (9.5-10')	0					interbedded Silt lens	ses (SM/SP).			CM/CD	
10	9									SIVI/SP	
Wet, grey, coarse to medium SAND, little Silt, trace subrounded Gravel and small cobbles (SM). SM		OS-SD-08 (9.5-10')			0	=					
Gravel and small cobbles (SM). 12	10				0						
11 SM SM 12 SAA. 13 EOB @ 13.5'. 14 IS IS IS IS IS IS 15 IS IS IS IS IS IS 16 IS IS IS IS IS IS SAMPLING METHOD SS = SPLIT SPOON AA= ALGERS COMMENTS: Geotech sample @ 1'-2'.						Wet, grey, coarse to	medium SAND	, little Silt, trace	subrounded		
12	11			1		Gravel and small col	bbles (SM).				
12	11				-	1					
12				1		1				SM	
13	12				<u></u>					_]	
EOB @ 13.5'. 14						SAA.					
EOB @ 13.5'. 14	12			1		1					
14	13			1	-					1	-
15 16 17 17 18 19 19 19 19 19 19 19						EOB @ 13.5'.					
16	14										
16											
16						1					
17	15			1	1	4					
17						1					
17	16										
COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 1'-2'. AA= AUGERS						1					
COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 1'-2'. AA= AUGERS					-	†					
SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 1'-2'. AA= AUGERS	17			<u> </u>	<u> </u>	GOLD FELTER				1	
SS = SPLIT SPOON AA= AUGERS Geotech sample @ 1'-2'.		CAMBI INC MEETS	n.			COMMENTS:					
AA= AUGERS			עי			Geotech sample @ 1'-2'					
						states sample to 1 2.					
C = CORED STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - Weight of Rods.		C = CORED				STP - Standard Penetration	on Test WOH - W	eight of Rods and Ham	mer. WOR - We	ight of Rods.	

Contract	or:	OSI			DF	PARSO RILLING/VIBRAG			BORING/ WELL NO.	Sheet 1 of 1 OS-SD-09
Driller:		Steve G						_	Location Descrip	
Inspector		SD/MH					Off Site investigation			50845.991
Rig Type	:	Vibraco	re		PROJECT NUMBER	445456			Easting 6	579362.4
SURFAC	E WATER OBSER	VATION	S		Start Date	11/5/2009			Location Plan	A
Water 5	.4				Start Time	8:30		1		N
Depth	11/5/00				Finish Date	11/5/2009			g g:- T	
Date Time	11/5/09 8:30				Finish Time Weather	8:35		1	See Site I	rian
. 11110	0.50				vi califer					
Sample Depth	Sample	SPT	In. Rec. Per	PID	FIELI) IDENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)						
					Depths are measure					
0	OS-SD-09 (0"-6")			0	Wet, black, decaying	organic matter,	some Silt and Sar	id, trace leaves		
	OS-SD-09 (6"-12")			0	and trash.					
1				0	Wet, black, SILT and	gravel (ML).				
1	OS-SD-09 (1'-2')									
				0	-				ML	
2				0	***					_
				0	Wet, dark grey, SILT		e Gravel, little me	dium fine Sand		
3				0	(ML). Leaves throug	hout.				
-					1					
				0	-					
4				0	TX7 . 1	16 -	1 2	. 1		
				0	Wet, dark grey, SILT	and Sand, trace	e angular Gravel, i	nterbedded		
5				0	Clay.					
				0	-					
6				0	G				ML	
				0	SAA.					
7				0						
				0						
					1					
8				0	SAA.				-	
				0	SAA.					
9				0						
				0						
10										
10				0	Wet, grey, coarse to	medium SAND	some Silt trace (Gravel (SM)		
				0	Thei, grey, coarse to	modium BAND,	Joine Bin, nace	514 VOI (DIVI).		
11				0						
				0						
12				0	1	slight chemic	al odor.			
					SAA.					
		<u> </u>		0						
13				0						
				0]				SM	
14				0		slight chemi	cal odor.		31/1	
•				0	SAA.				1	
					-					
15				0	-					
				0						
16				0		slight chemic	al odor.			
				0	SAA.				1	
					1	slight chemic	al odor.			
17	OS-SD-09(17-17.5')]		1					<u> </u>	
					EOB @ 17.5'.					
		_			COMMENTS:					
	SAMPLING METHO SS = SPLIT SPOON	D			Geotech sample @ 3'-4'.					
	AA= AUGERS				Ocoteon sample (a), 3 -4'.					
	C = CORED				STP - Standard Penetration	on Test WOH - W	eight of Rods and Ham	mer. WOR - Wei	ght of Rods	

						PARSO			BORING/	Sheet 1 of 1
Contract	or:	OSI			Di	RILLING/VIBRAC	ORE RECORD			OS-SD-10
Driller: Inspector		Steve G SD/MH			PROJECT NAME:	Palham Sadiment	Off Site investigation		Northing 750	on: 867.096
Rig Type		Vibraco			PROJECT NAME: PROJECT NUMBER		Jii Site investigation			322.832
	E WATER OBSER	VATION	S	T	Start Date	1			Location Plan	+
Water 9 Depth	.1				Start Time Finish Date	9:03 11/6/2009			1	N
Date	11/6/09				Finish Time	9:10			See Site Pla	ın
Time	9:03				Weather					
								<u>l</u>		
Sample		SPT	In. Rec. Per						STRATA	
Depth (ft)	Sample I.D.	Sri	24 in.	PID (ppm)	FIEL	D IDENTIFICATIO	ON OF MATERIAL		SIKAIA	COMMENTS
(11)	1.D.		24 111.	(ppm)	P 4	1.0 1/				
					Depths are measure Wet, black, decaying			d translances		
0	OS-SD-10 (0"-6")			0	and trash.	g organic matter,	some sin and san	iu, irace leaves		
	OS-SD-10 (6"-12")			0	and trasm.					
1	OS-SD-10 (1'-2')			0						
	,			0						
-				0	Same as above.				1	
2					1				EILI	
				0	4				FILL	
3				0						
				0	Wet, black, decaying	g organic matter,	some Sand, little	Clay.		
4				0						
				10	1					
_					†					
5				20	Wet, dark grey, coar	se to medium SA	ND some Silt li	ttle		
				10	subrounded fine Gra		ivD, some sitt, ii	ttic		
				18	Staining on liner @		GP-like odor			
6	OS-SD-10 (6'-6.5')			38.5	- Stanning on micr (c)	5 7.5 . Buong 14	or incodor.			
				38	=				SM	
7				25.8						
				32	Same as above (SAA	A).				
8				20.5						
	OS-SD-10 (8.5'-9')			35	Wet, dark grey, SAN	ID, some silt (SN	1).			
	OS-SD-10 (8.5 -9)				Staining on liner @ 8	8'-9.5'. Strong MC	GP-like odor.		G3.4	
9				18					SM	
				11.8	-					
10				0						
				0	Wet, stiff, brown, CI	LAY and Silt, litt	le fine sand (ML/	CL).	ML/CL	
11				0						
				6.8	Wet, dark grey, SAN	ND and Silt, some	e Gravel (SM).		SM	
12				0	Staining on liner @	11.5'-12.5'.				
					EOB @ 12.5'					1
					LOD @ 12.5					
13					-					
					-					
14										
]					
15										
					1					
17					1					
16					1					
					-					
17										
	SAMPLING METHO	nD.			COMMENTS:					
	SS = SPLIT SPOON	· ·			Geotech sample @ 10.5'-	11.5'.				
	AA= AUGERS				Density of the soil sample	e is based on the field				ere collected.
	C = CORED				STP - Standard Penetrati	on Test WOH - We	eight of Rods and Ham	mer. WOR - Wei	ght of Rods.	

Contract	or:	OSI			DR	PARSO CILLING/VIBRAC			BORING/ WELL NO.	Sheet 1 of 1 OS-SD-11
Driller:		Steve G			DDO IECT MAME	D-11 C-4:	000014-1		Location Descrip	
Inspector		SD/MH			PROJECT NAME: PROJECT NUMBER		Off Site investigation			50698.4 79316.81
Rig Type	::	Vibraco	ie		PROJECT NUMBER	443436			Easting 0	/9310.81
SURFAC	E WATER OBSER	VATION	S		Start Date	11/4/2009			Location Plan	A
Water 7	.4				Start Time	14:28				N
Depth					Finish Date	11/4/2009				•
Date	11/4/09				Finish Time	14:33			See Site I	Plan
Time	14:28				Weather					
Sample Depth	Sample	SPT	In. Rec. Per 24 in.	PID	FIELD	DIDENTIFICATION	ON OF MATERIAL		STRATA	COMMENTS
(ft)	I.D.		24 111.	(ppm)						
					Depths are measured			1 / 1		_
0	OS-SD-11 (0"-6")			0	Wet, black, decaying	organic matter,	some Silt and San	d, trace leaves		
	OS-SD-11 (6"-12")			0	and trash.				FILL	
1					1					
1	OS-SD-11 (1'-2')			0	Wet, black, SILT, son	me Organic mat	ter_trace Sand (M	1)		
				0	- Wet, black, BIL1, sol	me Organie mai	ici, trace Sand (Wi	L).		
2				0					ML	
_				0						
3				0	Wet, dark grey SILT	and Sand, some	Clay, trace Grave	el (ML).		7
<u>.</u>			 		1	,	÷ .	• /		
			<u> </u>	0	-					
4				0						
				0						
_				0	Same as above (SAA).			†	
5						,-				
				0						
6				0						
				0	=	A piece of plas	tic @ 6.5'.			
					SAA.				ML	
7				0	57 17 1.		075			
				0		A piece of plas	tic @ 7.5°.			
8				0						
				0						
					SAA.				1	
9				1						
				3.1						
10				2.8						
				5.8						
					1					
11			 	10	Wet, grey, coarse to f	fina CANID a	o gilt (CM) marth	alana lilsa		\dashv
			ļ	3	(moth ball) odor.	ilie sand, som	ic siit (Sivi), naptha	aiche like		
12			<u></u>	7.8	(mour barr) buor.					
				8					SM	
12					1					
13			-	12	SAA.				+	
			ļ	7.6			A.1			_
14				18	Wet, brown, coarse to	o fine SAND, so	me Silt (SM).			
				18						
15			1	15	Wet, grey, medium to	o fine SAND, so	me Silt (SM).		†	
15			1		1	,,,,,	· /		G3.#	
	OS-SD-11 (15.5-16')		ļ	25.7		. 15 51 5 5			SM	
16				8.9	staining on the liner @	y 15.5'-16'				
				12.3						
17					staining on the liner @	0 17'-17.5'				
17		<u> </u>	1	18					1	
					EOB @ 17.5'.					
	CAMBI INC MERCO	D			COMMENTS:					
	SAMPLING METHO SS = SPLIT SPOON	ע			Geotech sample @ 9'-13'.					
	AA= AUGERS				Scotteri sumple (a) 7-13.					
	C = CORED				STP - Standard Penetratio	n Test WOH - Wo	eight of Rods and Hamr	ner. WOR - Wei	ght of Rods.	

ROJECT NAME: PROJECT NAME: PROJECT NAME: Project PROJECT NAME: Project PROJECT NAME: Project PROJECT NAME: Project	Contract	or:	OSI			DF	PARSO RILLING/VIBRAC				Sheet 1 of 1 OS-SD-12
A	Driller:						D. H. G. H.	omati i i i			
Start Time	_		_					Off Site investigation	l .		
Sample Start Time 143.05 See Size Flinish Date Flini											
Thinks Date 11/2009 See Size Plan See			RVATIO	NS	1	_				Location Plan	
Martine 14-36 Martine 14-36 Martine Martine	Depth	_								1	Î
Name	Date						14:41			See Site Pla	ın
Depth Depth Sample Depth Per P	Time	14:36			1	Weather					
Depths are measured from mud/water interface. Wet, black, decaying organic matter, some Silt and Sand, trace leaves and trash Sand Sand, trace leaves Sand Sand Sand, trace leaves Sand Sand Sand Sand Sand, trace leaves Sand Sand Sand Sand Sand Sand Sand Sand	Sample Depth	=	SPT	Per		FIELI) IDENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS
O	(ft)	I.D.		24 in.	(ppm)						
OSSAD-12 (#-127)										_	
1	0	OS-SD-12 (0"-6")			0		organic matter,	some Siit and Sar	id, trace leaves		
Net		OS-SD-12 (6"-12")			0	and trasm.					
Comments Comments	1	OS-SD-12 (1'-2')			0						
Same as above (SAA). SP/SM SP/SM					0						
SAMPLING METHOD SAMPLING M	2					Wet, black, ORGAN	IC sediment, soi	ne coarse to medi	ium	E11.1	
1								edium to fine San	d, glass,	FILL	
Wet, black, ORGANIC sediment with moderate plasticity and siffness, some medium subrounded gravel, little Silt, micaceous, leaves, plastics.						plastic, leaves, strong	decay odor.			1	
	3					Wet black ODGAN	IC sediment wit	n moderate plastic	pity and	+	
Leaves, plastics. Leav				1	0					1	
	4						in suorounaea g	auvei, intile Bitt, in	neuccous,		
Clay	-						and Sand, trace	angular Gravel. i	interbedded		†
SAA. SAMPLING METHOD SSYSTER SENTITION AA-ALGERS Same as above (SAA). SP/SM SP/SM SP/SM SP/SM SP/SM SP/SM SAA. SAMPLING METHOD SSY SP/SFITSPOON AA-ALGERS SAME SAME AS SAME SAME AS SAME SAME AS SAME								8,			
SAA SAMPLING METHOD SAMP	5				0	1					
					0	1					
	6				0					SP/SM	
SMPLING METHOD SSS-12 (8-8.57)					0	Same as above (SAA	.).			22,23.2	
SMPLING METHOD SS SPILIT SPOON AA=ALGGBS SMPLING METHOD SS SS = SPILIT SPOON AA=ALGGBS SMPLING METHOD SS SMPLING METHOD SS = SPILIT SPOON AA=ALGGBS SMPLING METHOD SS = SPILIT SPOON AA=ALGGBS Method SAND, some Silt, micaceous (SM). SM SM SM SM SM SM SM S	7				0						
SMPLING METHOD SS SPILIT SPOON AA=ALGGBS SMPLING METHOD SS SS = SPILIT SPOON AA=ALGGBS SMPLING METHOD SS SMPLING METHOD SS = SPILIT SPOON AA=ALGGBS SMPLING METHOD SS = SPILIT SPOON AA=ALGGBS Method SAND, some Silt, micaceous (SM). SM SM SM SM SM SM SM S					0						
Wet, grey, medium to fine SAND, some Silt, micaceous (SM).	0	00.00.40.00.50				1					
SM		US-SD-12 (8-8.5°)				Wet grev medium to	o fine SAND so	me Silt_micaceou	ıs (SM)		-
10						1, 8, ,	,,	,,	(33.2)		
10	9				0	1				SM	
SAMPLING METHOD SS = SPLIT SPOON AA-AUGERS Some cobbles (1.5" to 2.5"), little loose Silt, some coarse to fine Gravel (SM). SM					0						1
11	10				0						
11					0		2.3), fittle 100:	se siit, soille coars	se to fine		
12	11										
13						1				SM	
13	12					SAA.				1	
EOB @ 13.4'. 14						1					
EOB @ 13.4'. 14	4-					1					
14	13			-							1
15 16 17 17 18 18 19 19 19 19 19 19				-		EOB @ 13.4'.				1	
16	14					4					
16						1				1	
17 COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS Geotech sample @ 4.5'-8.0'.	15									1	
17 COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS Geotech sample @ 4.5'-8.0'.										1	
17 COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS Geotech sample @ 4.5'-8.0'.	16					1					
COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS	20					1				1	
COMMENTS: SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS				1		1				1	
SAMPLING METHOD SS = SPLIT SPOON Geotech sample @ 4.5'-8.0'. AA= AUGERS	17		<u> </u>		1	COMMENTS				<u> </u>	
SS = SPLIT SPOON AA= AUGERS Geotech sample @ 4.5'-8.0'.		SAMPLING METH	OD			COMMENTS:					
		SS = SPLIT SPOON				Geotech sample @ 4.5'-8	.0'.				
		AA= AUGERS C = CORED				STP - Standard Danatratio	on Test WOU W	aight of Rode and Uam	mer WOD Was	ight of Rode	

Contract	or:	OSI			PARSONS DRILLING/VIBRACORE RECORD	BORING/ Sheet 1 of 2 WELL NO. OS-SD-13			
Driller:		Steve G	ł.			Location Description			
Inspector		SD/BM			PROJECT NAME: Pelham Sediment - Off Site investigation	Northing 750632.8095 Easting 679296.3428			
Rig Type	2:	Vibraco	ore		PROJECT NUMBER 445436				
SURFAC	E WATER OBSE	RVATIO	NS		Start Date 11/3/2009	Location Plan	4		
Water 10.		T T T T T T T T T T T T T T T T T T T			Start Time 13:05	Location 1 ian	N I		
Depth					Finish Date 11/3/2009		•		
Date	11/3/09				Finish Time 13:10	See Site Pla	n		
Time	13:05		+		Weather				
Sample			In. Rec.						
Depth (ft)	Sample I.D.	SPT	Per 24 in.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	STRATA	COMMENTS		
					Depths are measured from mud/water interface.				
0	OS-SD-13 (0"-6")			0	Wet, black, decaying organic matter, some Silt and Sand, trace leaves				
					and trash.				
	OS-SD-13 (6"-12")			0					
1	OS-SD-13 (1'-2')			0					
				0		FILL			
2				0	Same as above (SAA).				
				0					
2			1		1				
3			-	0	Wet, black, highly ORGANIC decaying matter, trace Silt and Sand	+			
			1	0	(OL/PT).				
4				0	(02/11).				
				0					
-				0					
5					SAA.	-			
			-	0	JAA.				
6				0					
1				0		OL/PT			
7				0					
					SAA.	-			
			+	0					
8				0					
1				0	SAA some small cobbles.				
9				0					
				0	Wet, grey, coarse to medium SAND, little interbedded Silt and Clay				
10			-	0	lenses. (SM)				
			1	0	<u> </u>				
11				0					
				0		SM			
10	Off (FP 12 111111		1		SAA.	7			
12	OS-SD-12 (12'-13')		+	0	-				
		<u> </u>		0	-				
13				0					
				0	Wet, dark grey, SILT and Sand, some Clay (ML).				
14				0	1	ML			
1-7			1		1	WILL			
		<u> </u>	+	0	-				
15				0					
			<u> </u>	0	Wet, grey, coarse to medium SAND, some silt (SM).				
16				0		SM			
			<u> </u>		†	5.72			
			+	0	-				
17			<u> </u>	0	GOLD MANAGE				
	CAMPI INC APPEAR	ND.			COMMENTS:				
	SAMPLING METHO SS = SPLIT SPOON	ענ			Geotech sample @ 7.5'-10.5'.				
	AA= AUGERS								
					STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - Weight of F				

			PARSO	NS		BORING/ Sheet 2 of 2				
Contract	or:	OSI			DI	RILLING/VIBRAC			WELL NOS-SD	
Driller:									Location Description	
Inspector		Scott Di					Off Site investigation		Northing	
Rig Type	:	Vibraco	re		PROJECT NUMBER	!			Easting	
CLIDEAC	E WATER OBSI	EDVATION	VIC.		Start Date	11/3/2009		1	Location Plan	
Water	E WATER OBSI	SKVATIO	10		Start Date Start Time	13:05			Location 1 ian	♦ N
Depth					Finish Date	11/3/2009				Ĩ
Depth Date					Finish Time	13:10			See Site Plan	1
Time					Weather					
G ,			T D							
Sample Depth	Sample	SPT	In. Rec. Per	PID	FIELI	DIDENTIFICATION	ON OF MATERIAL		SCHEMATIC	COMMENTS
(ft)	I.D.	51.1	24 in.	(ppm)		DENTH TEATT	or or marieman		Bellewillie	COMMENTS
					SAA.				SM	
18				0						
				0	EOB @ 18.3'					
19				0						
				0						
20				0						
				0						
21				0						
				0						
22				0						
				0						
23				0						
				0						
24				0						
				0						
25				0						
				0						
26				0						
				0						
27				0						
				0						
28				0						
				0						
29				0						
				0						
30				0						
				0						
31				0						
				0						
32				0						
				0						
33				0						
				0						
34				0						
				0						
35				0						
	G.3.MY 13:0.3	ron.			COMMENTS:					
	SAMPLING METH SS = SPLIT SPOON	IOD								
	AA= AUGERS									
	C = CORED				STP - Standard Penetration	Test WOH - Weig	nt of Rods and Hammer	WOR - Weight o	f Rods.	

Contractor: OSI Dvillov					DR	PARSO ILLING/VIBRAC				Sheet 1 of 1 OS-SD-14
Driller:		Steve G				PROJECT NAME: Pelham Sediment - Off Site investigation Location Description: Northing 750647.452				
Inspector		SD/BM					Off Site investigation	1		0647.452
Rig Type	:	Vibraco	re		PROJECT NUMBER	445436		Easting 679258.4069		
SURFAC	E WATER OBSE	RVATI	ONS		Start Date	11/3/2009			Location Plan	A
Water 16	7	16.8	16.4		Start Time	10:04				Ŋ
Depth					Finish Date 11/3/2009					
Date	11/3/09	11/3/09			Finish Time	11:44			See Site Pl	lan
Time	10:04	0.43	0.4833		Weather					
Sample			In. Rec.					I.		
Depth	Sample	SPT	Per	PID	FIELD	IDENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)		101111111111111111111111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0011111111111
(==)					Donath a ana masa ann	ad frame	tom intomfooo			
					Depths are measure			and trace		
0	OS-SD-14 (0"-6")			0	Wet, black, decaying	g organic matter	, some sin and s	and, trace		
	OS-SD-14 (6"-12")			0	leaves and trash.					
-										
1	OS-SD-14 (1'-2')			0	-					
				0						
2				0	Same as above (SAA	A).				
				0.0						
					1					
3				0	-					
				0.0					FILL	
4				0	SAA.					
					-					
				0	-					
5				0						
				0	Wet, black, ORGAN	IIC sediment, so	me plastic like m	aterial, some		
					coarse to medium Sa	and.				
6				0	-					
				0						
7	OS-SD-14 (7-7.5')			78.2						
	, ,			0	Wet, grey, coarse to	fine SAND, sor	ne fine subround	ed Gravel,		
				U	trace Silt, cobbles.	,		,		
8				0	, ´					
				0					SM	
9				0					5111	
					SAA.					
				0	<i>Or Lt 1.</i>					
10				0						
					EOB @ 10.2'					
11			1		1					
11			1		-					
12										
					1					
13					-					
			<u></u>							
14										
1-7			1		1					
			1		-					
15										
1.0					1					
16			1		-					
17										
			•		COMMENTS:				*	•
	SAMPLING METH	OD			-					
	SS = SPLIT SPOON				Geotech sample @ 7'-9'.					
	AA= AUGERS C = CORED				CTD Standard Danst	on Tact WOU W	aight of Pods and II	mar WOD W-	ight of Pada	
	C - COKED				STP - Standard Penetration	mitest WOH - W	eight of Rods and Ham	nor. wok-we	ight of Rods.	

Contractor: OSI					PARSONS DRILLING/VIBRACORE RECORD	BORING/ Sheet 1 of 1 WELL NO. OS-SD-15			
Driller:		Steve C				Location Description:			
Inspector		SD/BM			PROJECT NAME: Pelham Sediment - Off Site investigation		481.53		
Rig Type	:	Vibraco	ore		PROJECT NUMBEF 445436	Easting 679257.9973			
SURFAC	E WATER OBSE	RVATIO	ONS		Start Date 11/2/2009	Location Plan	4		
Water 7.3					Start Time 15:09		N		
Depth Date	11/2/09				Finish Date 11/2/2009 Finish Time 15:13	See Site Pla	l Dlan		
Time	15:09				Weather	See Site 1 is			
							1		
Sample	g ,	SPT	In. Rec. Per	n m	THE PARTY WAS A WAY OF THE PARTY	STRATA	GOLGANIZA		
Depth (ft)	Sample I.D.	SFI	24 in.	PID (ppm)	FIELD IDENTIFICATION OF MATERIAL	SIKAIA	COMMENTS		
(11)	1.D.		24 111.	(ppm)	Donths are measured from mud/water interfere				
					Depths are measured from mud/water interface. Wet, black, decaying organic matter, some Silt and Sand, trace		-		
0	OS-SD-15 (0"-6")			0	leaves and trash.				
-	OS-SD-15 (6"-12")			0					
1	OS-SD-15 (1'-2')			0					
				0					
2				0	Same as above (SAA).				
				0					
3				0		FILL			
				0	Wet, black, ORGANIC sediment, trace Gravel.				
_					, ,				
4				0					
				0					
5				0					
				0					
6				0	Wet, grey, organic CLAY (OL/OH).				
				0		OL/OH			
7				0					
				0					
8				0					
					Wet, grey, coarse to fine SAND, micaceous, some loose Silt,				
_				0	interbeded Clay lenses (SM/SC).				
9				0					
				0		SM/SC			
10				0					
				0	SAA.				
11				0			<u> </u>		
				0	Wet, grey, coarse to fine SAND, some Silt, micaceous, little sub				
12				0	rounded Gravel (SM/SC).	SP/SM			
				0					
13				0	Wet, grey, SILT, interbedded with fine Sand and Clay (ML/CL).		1 		
				0	1	ML/CL			
1.	00.00.45				Strong odor @ 14-14.5'	MIL/CL			
14	OS-SD-15 (14-14.5')			0					
				0	SAA.	+	 		
15				0	D. M. S.				
				0			<u> </u>		
16					EOB @ 16'				
17						<u></u>			
					COMMENTS:				
	SAMPLING METHO SS = SPLIT SPOON	OD			Geotech sample @ 12'-14'.				
	AA= AUGERS								
	C = CORED				STP - Standard Penetration Test WOH - Weight of Rods and Hammer. WOR - W	eight of Rods.			

Contractor: OSI					DR	BORING/ WELL NO.	Sheet 1 of 1 OS-SD-16			
Driller:		Steve C							Location Descri	
Inspector Rig Type		SD/BM Vibraco			PROJECT NAME: PROJECT NUMBER		Off Site investigation	n		50495.592 79215.1661
SURFAC Water 14	E WATER OBSE 8	RVATIO	ONS		Start Date Start Time	11/3/2009 8:54			Location Plan	♦ N
Depth					Finish Date	11/3/2009			1	N
Date	11/3/09				Finish Time	8:56		See Site	Plan	
Time	8:54				Weather					
Sample			In. Rec.							
Depth	Sample	SPT	Per	PID	FIELD	DENTIFICATION	ON OF MATERIAL	_	STRATA	COMMENTS
(ft)	I.D.		24 in.	(ppm)						
					Depths are measure Wet, black, decaying			and traca		_
0	OS-SD-16 (0"-6")			0	leaves and trash.	g organic matter	, some sin and s	and, trace		
	OS-SD-16 (6"-12")			0	- leaves and trash.					
1	OS-SD-16 (1'-2')			0						
				0						
2				0]	
				0	Wet, black, ORGAN	VIC sediment, so	me Sand, trace C	Gravel.		
3				0						
				0	1				FILL	
4				0	=					
-				0	Wet, dark grey, SIL	T and Sand, trac	e angular Gravel	l, interbedded		
					Clay.			,		
5				0	_					
				0	1					
6				0	<u> </u>					
				0	777 /	1: CAND	4 6 1/6	A (CD)		
7				0	Wet, grey, coarse to				SM/SP	
				0	Wet, black, ORGAN medium Gravel, plas				SP	
8				0						
				0	Wet, grey, coarse to	fine SAND, we	ll rounded Grave	l, some Silt,		
9				0	micaceous (SM).					
				0						
10				0						
				0	SAA.					
11				0	1					
44				0	1				SM	
12			<u> </u>	0	1					
14				0	Wet, grey, coarse to	fine SAND, sor	ne well rounded	fine Gravel.	†	
12					some Silt (SM).	, , , , , , , , , , , , , , , , , , , ,		,		
13				0	-					
				0	-					
14			1	0	Wet, grey, SAND ar	d Cilt. some Cl	ov (SM/MT)			
			-	0	wei, giey, SAND ar	iu siii, soille Cla	iy (Sivi/ivil.).			
15				0	-					
				0	_				SM/ML	
16				0					_	
					SAA.					
17		<u> </u>	<u> </u>		EOB @ 17.2'.					
	GAMPI PIG	0.0			COMMENTS:					
	SAMPLING METH SS = SPLIT SPOON	OD			Geotech sample @ 12'-16	7.				
	AA= AUGERS									
	C = CORED				STP - Standard Penetration	on Test WOH - Wo	eight of Rods and Ham	mer. WOR - Wei	ight of Rods.	

Contractor: OSI					DR	PARSO RILLING/VIBRAG			BORING/ Sheet 1 of WELL NO. OS-SD-17			
Driller:	•	Steve G	i						Location Description:			
Inspector		SD/BM	/JS		PROJECT NAME: Pelham Sediment - Off Site investigation Northing 679221.85					9221.8577		
Rig Type	:	Vibraco	ore		PROJECT NUMBER	445436		Easting 750326.0502				
	E WATER OBSE	ERVATI	ONS	1	Start Date	11/2/2009			Location Plan			
Water 10	8				Start Time	14:00			_	N 		
Depth Date	11/2/09				Finish Date 11/2/2009					lan		
Time	14:00				Weather	14.00			See Site 1			
Sample Depth	Sample	SPT	In. Rec. Per	PID	FIELD	D IDENTIFICATION	ON OF MATERIAL	,	STRATA	COMMENTS		
(ft)	I.D.		24 in.	(ppm)								
					Depths are measur			1 .		_		
0	OS-SD-19 (0"-6")			33	Wet, black, decaying leaves and trash.	g organic matter	, some Silt and S	and, trace				
	OS-SD-19 (6"-12")			0	leaves and trasii.							
1	OS-SD-19 (1'-2')			0								
				0]							
2				0					FILL			
				0.0	Wet, black, ORGAN	VICs and SAND	, some sub round	ed Gravel.				
3				0	1							
				0.0	†							
4				0	†							
7				0	Wet, dark grey, SIL	T and Sand, trac	e angular Gravel	, interbedded				
					Clay.	,	C	,	an ia a			
5				0	†				SP/SC			
				0	Wet, grey, coarse to	fine SAND cor	na Silt littla fina	sub rounded		_		
6				0	Gravel, cobble (SM)		ne sin, intie inie	sub founded				
				0	,							
7				0	 				SM			
				0	<u> </u>							
8				0								
	OS-SD-17 (8.5-9')			11.1	Wet, grey, SILT and	l Clay (organic)	some fine Sand	(ML/CL).				
9				0]							
				0								
10				0	1				N 107			
				0	Same as above (SAA	A).			ML/CL			
11				5.8	†							
				0.9	†							
12				0.9	†							
14					EOB @ 12.5'.					1		
12				<u> </u>	LOD @ 12.3.							
13				 	1							
					-							
14					-							
				-	-							
15				-	-							
					-							
16					1							
17												
	CAMBI INC MEET	IOD _			COMMENTS:							
	SAMPLING METH SS = SPLIT SPOON	עטט			Geotech sample @ 8'-10.	5'						
	AA= AUGERS						night of D - d 177	mar WOD W	ight of D - J-			
	C = CORED				STP - Standard Penetration	on rest WOH - W	eight of Rods and Ham	mer. w OK - We	ight of Rods.			

Contractor: OSI					DF	PARSO RILLING/VIBRAC			BORING/ Sheet 1 of 1 WELL NO. OS-SD-18			
Driller:		Steve G			PROJECT NAME: Pelham Sediment - Off Site investigation Location Description: Northing 750031.47							
Inspecto		SD/BM					Off Site investigation	1		0031.47		
Rig Type	:	Vibraco	ore		PROJECT NUMBER	445436			Easting 67	9173.86		
SURFAC	E WATER OBSER	VATIO	NS		Start Date	11/2/2009			A			
Water 10	6				Start Time	12:23			Location Plan	Ņ		
Depth					Finish Date					I		
Date	11/2/09				Finish Time	12:26		See Site Pla	n			
Time	12:23				Weather							
Sample			In. Rec.					L		I		
Depth	Sample	SPT	Per	PID	FIFLI	DENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS		
(ft)	I.D.	~	24 in.	(ppm)	THE STATE OF THE S	DENTIFICATION	OF MATERIAL	•	2	COMMENTS		
(11)	i.D.			(FF)	D 41	- 1 C 1/						
					Depths are measur			and tuans				
0	OS-SD-18 (0"-6")			0	Wet, black, decaying	g organic matter	, some siit and s	and, trace				
	OS-SD-18 (6"-12")			1.1	leaves and trash.				****			
1				15.3	Moist, grey, ORGA	NIC and CLAY	with high plastic	ity.	FILL			
1	OS-SD-18 (1'-2')				1 70 37		0 1	•				
				20.9			AT 177 (AT)					
2				60.7	Moist, low plasticity	, grey, organic (JLAY (OL).					
				31.6								
					1							
3			1	18.6	Dotmolou 1				OL			
				18.6	Petroleum odor				1			
4				3.6	Same as above (SAA	A).						
				3.6								
					Wet, grey, coarse to	fine SAND bri	ok some Silt (SM	U.				
5				0	wei, grey, coarse to	ilic SAND, on	ck, some sin (siv	1).	SM			
				0								
6				0	Wet, grey, SAND at	nd Silt, some Cla	y in the bottom (SM/ML).				
-					1							
				0								
7				0								
				0								
8				0	SAA.				1			
-									SM/ML			
				0								
9				0								
				0								
10	OS-SD-18 (10-10.9')			0								
				0								
11					EOB @ 10.9'							
					1							
			 		1							
12			1		-							
			1									
13												
					1							
					†							
14			1		-							
]							
15]										
			1		1							
		-			-							
16					1							
17			İ		1							
-1/	<u> </u>	1	<u> </u>	1	COMMENTS:				1	<u> </u>		
	SAMPLING METHO	D			COMMISSIO.							
	SS = SPLIT SPOON				Geotech sample @ 6'-9'.			_				
	AA= AUGERS											
L	C = CORED				STP - Standard Penetration	on Test WOH - Wo	eight of Rods and Ham	mer. WOR - We	eight of Rods.			

Contractor: OSI					DF	PARSO RILLING/VIBRAC				Sheet 1 of 1 OS-SD-19	
Driller:		Steve C			PROJECT NAME: Pelham Sediment - Off Site investigation Location Description: Northing 749828.305						
Inspector		SD/BM					Off Site investigation	1		828.305 099.747	
Rig Type	:	Vibraco	ore		PROJECT NUMBER	PROJECT NUMBEF 445436 Easting					
SURFAC	E WATER OBSE	RVATI	ONS		Start Date	11/2/2009		1	Location Plan	*	
Water 17.	8				Start Time					N	
Depth					Finish Date					I	
Date	11/2/09				Finish Time				See Site P	lan	
Time	10:05				Weather						
Sample			In. Rec.					1			
Depth	Sample	SPT	Per	PID	EIEI I) IDENTIFICATIO	ON OF MATERIAL		STRATA	COMMENTS	
(ft)	I.D.	51.1	24 in.	(ppm)	FIELI	DENTIFICATION	ON OF WIATERIAL	•	Jimiii	COMMENTS	
(11)	1,D.		24 111.	(ppm)	D d	1.0 1/					
					Depths are measur				-		
0	OS-SD-19 (0"-6")			0	Wet, black, decayin	g organic matter	, some Silt and S	and, trace			
	OS-SD-19 (6"-12")			0	leaves and trash.						
					1				G2 5 (G2)		
1	OS-SD-19 (1'-2')			0	-				SM/SP		
				0							
2				0	PEAT (PT).				PT		
				0	Wet, high plasticity,	, black, CLAY a	nd Silt, trace fine	Sand (OH).	ОН		
	1		+		Wet, grey, coarse to				OII	=	
3			1	0	bricks (SM/SP).	modiani SAND	, some suo round	ou oravel,	SM/SP		
				0	oricks (Sivi/Si).						
4				0	Wet, grey, coarse to		, some Silt, trace	rounded			
-					Gravel, micaceous (SP).					
				0	-						
5				0							
				0					G.D.		
6				0	Same as above.				SP		
0				U	1						
				0							
7	OS-SD-19 (7'-8')			0							
				0							
					707.04						
8			-	0	EOB @ 8'.						
9											
					1						
					-						
10					4						
11											
			1		1				1		
			+		1						
12					1				1		
13]				1		
15			1		1				1		
_			1	1	4				1		
14									1		
15					1				1		
15			1		1						
			1		4						
16									1		
					1				1		
			+		1						
17		<u> </u>			00105						
	GAMPI DIG ST	OD			COMMENTS:						
	SAMPLING METH SS = SPLIT SPOON	עט			Geotech sample @ 6'-8'.						
	AA= AUGERS				Secretar sumple to 0 -0.						
	C = CORED				STP - Standard Penetration	on Test WOH - Wo	eight of Rods and Ham	mer. WOR - Wo	eight of Rods.		
			·		·					<u> </u>	