

PHASE II ENVIRONMENTAL SITE ASSESSMENT OF THE CLOSED ALUMAX EXTRUSION FACILITY 320 SOUTH ROBERTS ROAD DUNKIRK, NEW YORK

Prepared for

ALCOA

July 19, 1999

IT CORPORATION
Gateway View Plaza
1600 West Carson Street
Pittsburgh, Pennsylvania 15219

Storm sewers - No water sample collect high TCE in South sewer sediment high Brex in North sower sediment GW- highest results VDC - TCE @ MW-11 Well depth MW-9 6'bys to MW-12 17'bys suggest Elev. MW-9 99'7- to MW-12 96.55 forthe confirm gradiant No GW der, on site well PW-1 ADNY WALL-SSOI - BTEX elevated ADNY FM-5501 - TCE 670 CO.8 clean-up value. ADNY Swale SSOI - PCBs 13,000 IT Contracted-to Clean South side Swale-Clean Sewer catch basins -Soil boring around mw-11 is one well appradicent

JUL 2 9 1999

NYSDEC - REG. 9 __REL__UNREL

PHASE II ENVIRONMENTAL SITE ASSESSMENT OF THE CLOSED ALUMAX EXTRUSION FACILITY 320 SOUTH ROBERTS ROAD DUNKIRK, NEW YORK

Prepared for

ALCOA

July 19, 1999

IT CORPORATION
Gateway View Plaza
1600 West Carson Street
Pittsburgh, Pennsylvania 15219

PHASE II ENVIRONMENTAL SITE ASSESSMENT OF THE CLOSED ALUMAX EXTRUSION FACILITY 320 SOUTH ROBERTS ROAD DUNKIRK, NEW YORK

Prepared for

ALCOA

Prepared by

IT CORPORATION
Pittsburgh, Pennsylvania 15219

July 19, 1999

TABLE OF CONTENTS

Section	n l	Page
EXEC	CUTIVE SUMMARY	ES-1
1.0	INTRODUCTION	1-1
	1.1 OVERVIEW AND APPROACH	1-1
2.0	PHASE II - SCOPE OF WORK	2-1
	2.1 TASK 1 - CHARACTERIZATION OF CATCH BASIN SEDIMENTS 2.2 TASK 2 - FILL MATERIAL EVALUATION 2.3 TASK 3 - SOILS EVALUATION 2.4 TASK 4 - ASBESTOS AND LEAD PAINT ANALYSIS 2.5 TASK 5 - GROUNDWATER EVALUATION 2.6 TASK 6 - RADIATION SURVEY	2-1 2-3 2-4
3.0	PHASE II - RESULTS	3-1
	 TASK 1 – CHARACTERIZATION OF CATCH BASIN SEDIMENTS. TASK 2 – POTENTIAL FILL MATERIAL EVALUATION. TASK 3 – SOILS EVALUATION. TASK 4 – ASBESTOS AND LEAD PAINT ANALYSIS. TASK 5 – GROUNDWATER EVALUATION. TASK 6 – RADIATION SURVEY. 	3-1 3-6 3-13
4.0	CONCLUSIONS AND RECOMMENDATIONS	4-1
5.0	REFERENCES	5-1
Figure	<u>List of Figures</u>	Page
Figure	1 Site Location	1-2
Figure		
Figure		
Figure		
Figure Figure	i C	
Figure	·	
	List of Tables	
Table	Dist of Labies	Page
Table	l North/South Sewers Analytical Results	3-2
Table		
Table		
Table	Water Sample Results	3-1

Appendices

Appendix A Catch Basin Descriptions
Appendix B Laboratory Data Packages
Appendix C Description of Borings

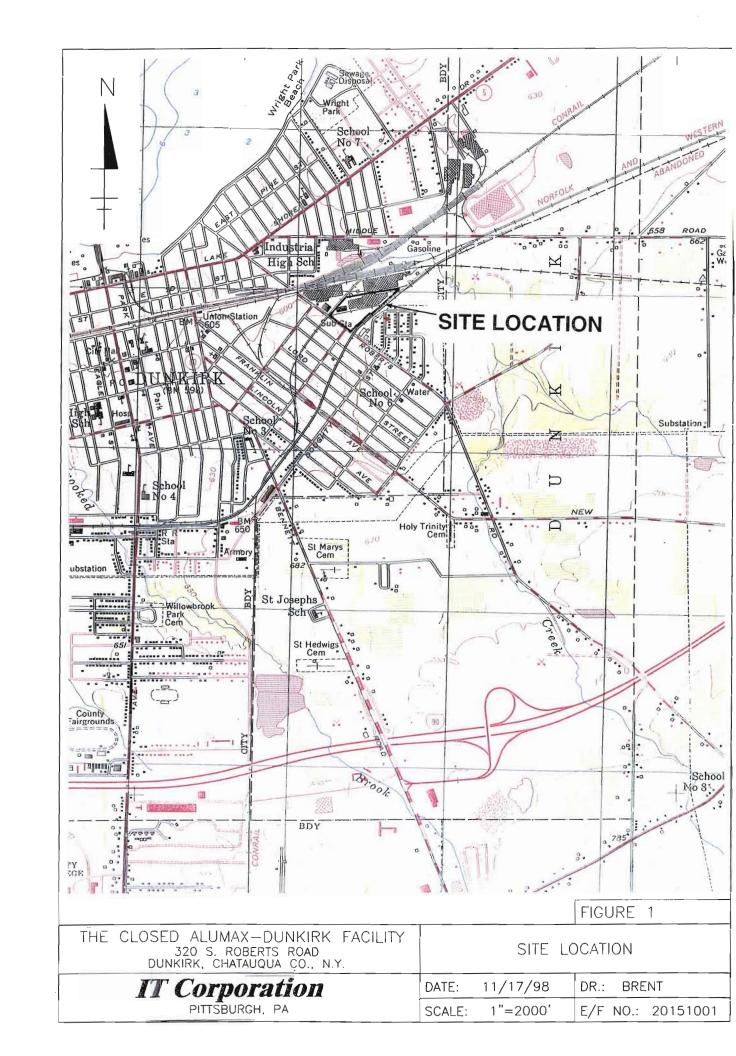
EXECUTIVE SUMMARY

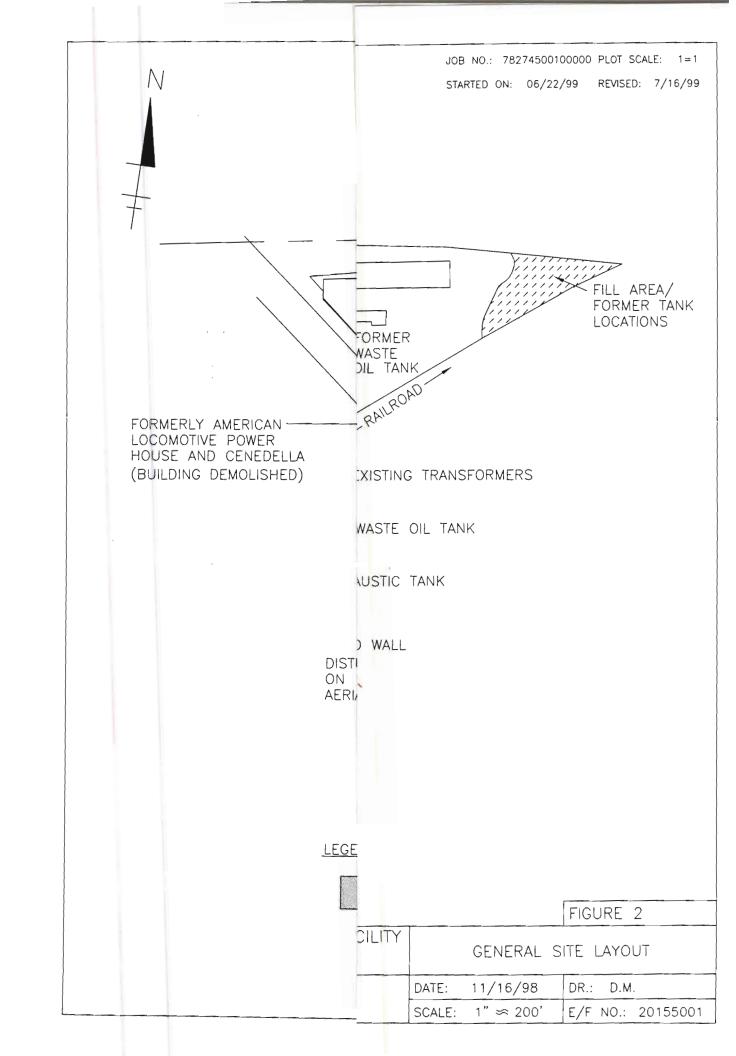
IT Corporation (IT) performed a Phase II Environmental Assessment of the closed Alumax Extrusions, Inc. property located at 320 South Roberts Road, Dunkirk, New York (Site). This assessment addressed potential environmental issues documented in a report entitled, "Phase I Environmental Site Assessment of 320 South Roberts Road, Dunkirk, New York" (ICF Kaiser, 1998). The Phase II Environmental Site Assessment and this documenting report were performed in general accordance with the ASTM Standard E 1903-97 "Standard Guide for Environmental Site Assessment: Phase II Environmental Site Assessment Process". The results of the Phase II site assessment indicated the following:

- Environmental Assessment indicated concentrations of semi-volatile organic compounds (SVOCs) exceeding the New York Department of Environmental Conservation's Recommended Soil Clean-up Criteria and concentrations of metals exceeding the default statewide background concentrations. Based on the sample results, it appears that the sitewide soils may be addressed via the New York State Voluntary Clean-up Program. Under this program a risk-based approach could be implemented to seek a release from liability for the Site or portions of the Site. Industrial zoning along with the limited groundwater usage in the site area also favors a risk-based approach. Additionally, most of the site is paved with either concrete or asphalt that limits both contact and infiltration. Specific areas of investigation are discussed below.
- Combination Sewer Catch Basins: Sediments found within sewer catch basins are impacted by trichloroethylene, ethylbenzene, 1,2-dichloroethene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and metals at concentrations which, if released from the sewer system, would exceed the New York State (NYS)-recommended soil clean-up objectives. However, the sediments are contained within the sewer system and thus are not subject to the soil clean-up criteria. IT recommends the removal, characterization and proper disposal of impacted sediments within the sewer catch basins. Additionally, soils in the vicinity of the catch basins should be evaluated for potential impacts.
- Swale: Soil within the swale on the north side of the Site contains polychlorinated biphenyls (PCBs)and SVOCs that exceed the NYS recommended soil clean-up objectives and metals exceed the default statewide background values. This swale is unpaved and appears to primarily receive drainage from the railroad right-of-way on the adjacent property. A conservative estimate of soil volume contained within this swale is 9 cubic yards and includes all sediment in swale. Based on the small volume of material, Alcoa may choose to excavate and properly manage this material.
- Transformer Oil Dust Control: PCBs were detected in a single soil sample in an area under brick pavement at a concentration of 1.7 mg/kg which exceeds the NYS recommended surface soil clean-up objective (1.0 mg/kg), but below the subsurface soil clean-up objective (10 mg/kg). Bricks were missing from some areas of the pavement, exposing soils. Soils with PCBs marginally exceeding surface clean up standards suggest a possibility for further delineation or reestablishment of the protective cap formerly provided by the brick surface.
- Railroad Retaining Wall Fill: The retaining wall fill consists of a pile of soil and rock fragments at the base of a retaining wall located along the railroad right-of-way. No pavement is present in this area. Four SVOCs in a retaining wall fill sample exceeded NYS soil clean-up objectives. Six metals detected in the retaining wall fill sample exceeded the default statewide background values. The

- volume of fill is estimated to be 16 cubic yards. The nature of the constituents identified in this fill is generally consistent with the analytical results found throughout the Site.
- Fill Material in the Southwest Corner of Building: Arsenic, chromium, copper, iron, mercury, nickel, and zinc detected in the fill material soil in this area exceed default statewide background values for soils. Trichloroethylene, phenanthrene, fluoranthene, and pyrene were detected in this sample below the NYS recommended soil clean-up objectives. The metal concentrations associated with this fill material were generally consistent with analytical results from other area of the Site and therefore may be within the range of Site background. This area is unpaved; however, the material appears to be contained within a concrete structure.
- Southern Disturbed Area: Two soil samples were collected from an apparent disturbed area identified on historical aerial photographs (1938 and 1956). Fill material containing coal and slag was identified in one boring in this area. Ten (10) SVOCs exceeded NYS recommended soil clean-up objectives. Nine (9) metals were detected exceeding default statewide background concentrations. The SVOCs detected are generally associated with coal and coal tar derivatives. This is consistent with historical site use as a coal storage area and a locomotive plant. The metal results are generally consistent with Site-wide analytical results. This area is paved.
- Decommissioned Waste Oil Tank Area: This tank is an above ground storage tank which formerly contained Waste Oil. The tank is situated on a concrete pad; however, a strip of sparsely vegetated, unpaved soil is present around the perimeter of the pad. Two near surface soil samples were collected in the vicinity of the decommissioned waste oil tank located near the north east corner of the Main building. The sample results indicated up to 3,600 mg/kg of total petroleum hydrocarbons (diesel organic compounds). Benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(ghi)perylene exceeded the NYS recommended soil clean-up objectives. Arsenic, beryllium, chromium, copper, mercury, nickel, and zinc exceeded the default statewide soil background values. This was also in close proximity to an area on the Roblin Steel property where an oil spill was noted in a previous report. Metals were elevated compared to sitewide analytical results. The elevated chromium and nickel concentrations may be related to electric arc furnaces formerly operated by Roblin Steel and Allegheny Ludlum on the adjacent property.
- Former Waste Oil Tank/Existing Transformer: A water sample was collected from the transformer pad sump located near the northeast corner of the Main building. This pad overlapped the secondary containment of a former aboveground waste oil tank. This sump contained gravel and little soil was present. Volatile organic compounds (VOCs), SVOCs, and PCBs were not detected in this sample. Total recoverable petroleum hydrocarbons were detected at 210 mg/l. All metals were below the respective Federal Primary Drinking Water Standard. This entire area is concrete paved with a pavement thickness exceeding 12 inches.
- Former Utility Samples: Soil samples collected west of the building indicated arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeding the statewide default soil background values. However, the metals concentrations were generally consistent with Site-wide analytical results. This area paved with concrete.
- Asbestos Containing Materials: The transite siding on the southern bay of the main building was identified as asbestos containing material. Flooring in the office area was also identified as asbestos containing material. This material appeared in good condition. NYS regulations require special handling if asbestos containing material is removed or otherwise disturbed.

■ Lead Containing Paint: Based on the sample results, the green and white paint located on the walls of the middle and north bays of the main building are considered to be lead-containing, based on the USEPA and HUD definitions of lead paint. Yellow paint sampled in the former paint room also tested as lead containing. Portions of both the green and white paint were peeling. Occupational standards apply to the abatement and handling of lead paint.


The sample results did not indicate on-site concerns related to the existing groundwater well, the Niagara Mohawk Substation, the former transformer, or the former diesel tank. The radiation survey did not indicate any areas exceeding background.


1.0 INTRODUCTION

IT Corporation (IT) was retained by the Alcoa, Inc. (Alcoa) to complete a Phase II Environmental Site Assessment (Phase II ESA) of the closed Alumax Extrusions, Inc. facility (Site), located at 320 South Roberts Road, Dunkirk, Chautauqua County, New York. Figure I and 2 show the Site Location and Site Layout, respectively. This report presents the findings of the Phase II Environmental Assessment.

1.1 OVERVIEW AND APPROACH

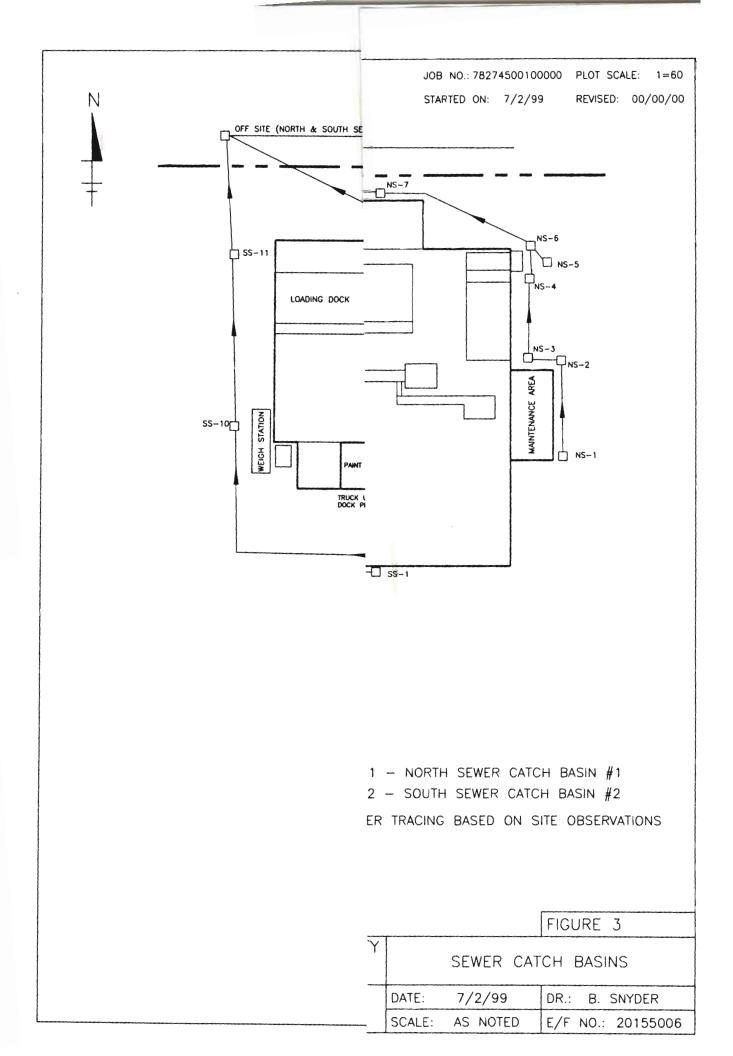
The Phase II ESA was completed to further assess the potential environmental issues identified in the report entitled "Phase I Environmental Site Assessment of 320 South Roberts Road, Dunkirk, New York" (ICF Kaiser, 1998) and follows the scope of work presented in a Scope and Budget Estimate (ICF Kaiser) dated December 17, 1998. The scope of work performed during this Phase II investigation is presented in Section 2.0.

2.0 PHASE II - SCOPE OF WORK

The scope of work was divided into 6 tasks, which are discussed below. Samples were analyzed by Quanterra Environmental Services, North Canton, Ohio with the exception of the lead and asbestos samples that were analyzed by International Asbestos Testing Laboratories (IATL), Mount Laurel, New Jersey.

2.1 TASK 1 - CHARACTERIZATION OF CATCH BASIN SEDIMENTS

Nineteen catch basins were identified during the Phase II ESA (Figure 3). These catch basins were divided into two areas: 1) the North Sewers System, catch basins receiving drainage from the northeast portion of the Site; and 2) the South Sewer System, catch basins receiving drainage from the southern and western portions of the Site. The volume of sediment within each catch basin was assessed using a hand driven bucket auger. Sediment samples were screened using an organic vapor meter and a gamma radiation meter. Composite samples were collected, one from the south sewer catch basins and one from the north sewer catch basins. Composite sediment samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs), Target Analyte List (TAL) metals, and polychlorinated biphenyls (PCBs). Additionally, two discrete volatile organic compound (VOCs) samples, one from the South Sewer System and one from the North Sewer System, were collected as grab samples using Encore® samplers. The VOC sample locations, NS-8 and SS-11 on Figure 3, were chosen based on field screening using an organic vapor meter with a photoionization detector (PID).


2.2 TASK 2 - FILL MATERIAL EVALUATION

The fill material evaluation focused on three areas, fill material identified below a railroad retaining wall, a disturbed area identified on historical aerial photographs (1938 and 1956), and fill material of unknown origin located inside the southwest corner of the building (Figure 2).

The fill material located below the railroad retaining wall was evaluated by collecting one grab sample via hand auger techniques. This sample was analyzed for TCL VOC, TCL SVOC, TAL metals, and PCBs.

The disturbed area identified in the southern portion of the Site on historical aerial photographs (1938 and 1956) was evaluated by advancing four hand auger borings to bedrock. Two composite samples from this area were sent for laboratory analysis (TCL VOCs, TCL SVOC, TAL metals, and PCB analyses). VOC samples were collected as grab samples.

The fill material identified in the southwest corner of the Main Building was assessed via one hand auger boring. A composite sample collected from this boring was analyzed for TCL SVOCs, TAL metals, and PCBs. A TCL VOC sample was also collected from this location from a discrete location within the soil column in order to prevent loss of volatile organic compounds due to mixing.

2.3 TASK 3 - SOILS EVALUATION

The soil evaluation focused on the following eight areas (Figure 2):

- Stormwater Swale: Soils in the swale located along the southern side of the Site was evaluated via the collection of one grab sample collected using a hand auger. To assess the sample collection location, three borings were advanced to bedrock along the centerline of the swale. One sample was analyzed for TCL VOCs, TCL SVOCs, TAL metals, and PCBs.
- Former Transformer: Near surface soils in the vicinity of a former transformer on the north side of the building was sampled for PCBs using a hand driven bucket auger.
- Suspected Transformer Oil Dust Control Area: One sample was collected from an area in the northwest portion of the Site to evaluate a former owner's use of transformer oil for dust control. This near surface sample was collected using a hand driven bucket auger and analyzed for PCBs.
- Niagara Mohawk Substation: One boring was advanced in the vicinity of a former Niagara Mohawk substation, located on the adjacent property to the south of the Site. One soil sample was collected from this boring to determine the potential impact on the Site by potential PCB use on this adjacent property.
- Former Utilities: Soils in the vicinity of former utilities were evaluated via three soil borings. Two of these borings were located west of the building and the third was located along the north side of the building. Additional samples were planned; however, it was determined in the field that these utilities are actually located on the adjacent property to the north. The samples from these areas were analyzed for TCL VOCs, TCL SVOCs, TAL metals, and PCBs.
- Decommissioned Waste Oil Tank Area: Near surface soil samples (2) were collected on the north and east side of the above ground waste oil tank located on the north side of the building. These samples were analyzed for TCL VOCs, TCL SVOCs, TAL Metals, Total Petroleum Hydrocarbons (TPH), and PCBs.
- Former Fuel Oil Tank: One soil sample was collected from the base of the fuel oil tank excavation. This sample was analyzed for TCL VOCs, TCL SVOCs, TAL Metals, TPH, and PCBs.
- Former Waste Oil Tank/Existing Transformers: One water sample was collected from an area backfilled with gravel contained in a concrete foundation around the base of the transformer to assess potential leaks from the transformer and former waste oil tank. The secondary containment for the above ground waste oil storage tank, formerly located on the east side of the building, was connected to this gravel filled transformer sump therefore allowing material potentially spilled from either the former waste oil tank or the transformer to accumulate in this structure. The water sample was analyzed for TCL VOCs, TCL SVOCs, TAL metals, TPH, and PCBs. A water sample was collected because the concrete in this area was too thick to easily access soils and insufficient soil was present in this structure to allow the collection of a soil sample.

2.4 TASK 4 - ASBESTOS AND LEAD PAINT ANALYSIS

Samples of suspected asbestos containing materials and potentially lead containing paint chips identified and collected during the Phase I Site Assessment were submitted to International Asbestos Testing Laboratories, Mt. Laurel, New Jersey. The asbestos samples were submitted for bulk asbestos analysis via polarized light microscopy. This analysis is in accordance with USEPA protocol. New York State requires electron microscopy for non-friable materials, such as floor tiles and mastic. This additional analysis is recommended if these non-friable materials are to be removed. The asbestos samples have been archived at the laboratory if this additional analysis is required. The paint samples were analyzed for lead content (% by weight).

2.5 TASK 5 - GROUNDWATER EVALUATION

A single groundwater well was identified on the Site. This well was sampled for TCL VOCs, TCL SVOCs, TAL metals, PCBs, and radiological parameters (gamma isotropic, gross alpha, and gross beta radiation). The well was purged using the low flow sampling method. This method required the evacuation of at least 6/10 of the water column and stabilization of the following parameters: pH, specific conductance, turbidity, dissolved oxygen, temperature, and reduction-oxidation potential.

2.6 TASK 6 - RADIATION SURVEY

A radiation survey was performed within the Main building and selected areas outside the Main building using a gamma-scintillation meter. Selected exterior areas and soil samples were also screened using the gamma-scintillation meter. These areas included the sewer catch basins and the suspected fill areas.

3.1 TASK 1 – CHARACTERIZATION OF CATCH BASIN SEDIMENTS

Eight catch basins (NS-1 through NS-8) were included in the north sewer system and eleven catch basins (SS-1 through SS-11) were included in the south sewer system (Figure 3). Appendix A includes descriptions of each catch basin. These two sewer systems join at a manhole located on an adjacent property to the north. The TCL VOC sediment samples were taken from NS-8 at a depth of approximately 38 inches and SS-11 at a depth of approximately 30 inches. The TCL VOC sediment sample was collected from NS-8 because it had the highest PID reading (maximum 150 ppm) of the sediments in the north sewer. No volatile organic vapors were detected via the PID in the south sewer sediment; therefore, the sample was collected from SS-11 because it appeared visually stained and all drainage from the south sewer would be expected to pass through this catch basin. One composite sediment sample from the north sewer catch basins and one composite sediment sample from the south sewer catch basins were collected and analyzed for TCL SVOC, TAL metals, PCBs, and total solids. Each sample was comprised of equal parts from each catch basin that contained sediment from either the north or south sewer system. However, it should be noted that NS-6 and SS-10 could not be accessed due to difficulty removing cover plate and were not sampled.

As shown on Table 1, VOCs were detected in samples from the North Sewer System: ethylbenzene (11,000 ug/kg), xylene (72,000 ug/kg), and 1,2-dichloroethene (2,300 ug/kg). SVOCs were also detected in these samples, including: phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(a)pyrene. Aroclor 1260 (a PCB) was detected at a concentration of 140 ug/kg. Most of the TAL metals were also identified in the North Sewer system catch basin sediment. The total volume of sediment in the North Sewer catch basins is estimated to be 10 cubic yards.

The analytical results (Table 1) indicated the following VOC's in the samples from the South Sewer System: trichloroethylene (1,800 ug/kg), and 1,2-dichloroethene (290 ug/kg). SVOCs detected in these samples include: Bis(2-ehtylhexyl)phthalate, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. Aroclor 1254 (a PCB) was detected at a concentration of 120 ug/kg. Most of the TAL metals were also identified in the North Sewer system. The total volume of sediment in the South Sewer catch basins is estimated to be 5 cubic yards.

Discussion of Results

The sample results indicate VOCs, SVOCs, and metals concentrations which may warrant removal and proper disposal.

3.2 TASK 2 – POTENTIAL FILL MATERIAL EVALUATION

Three areas were evaluated as part of the fill material evaluation: 1) the known fill material placed at the foot of a railroad retaining wall, 2) the Southern Disturbed Area, a disturbed area identified on historical aerial photographs, and 3) fill material located in the southwest corner of the building (Figure 4).

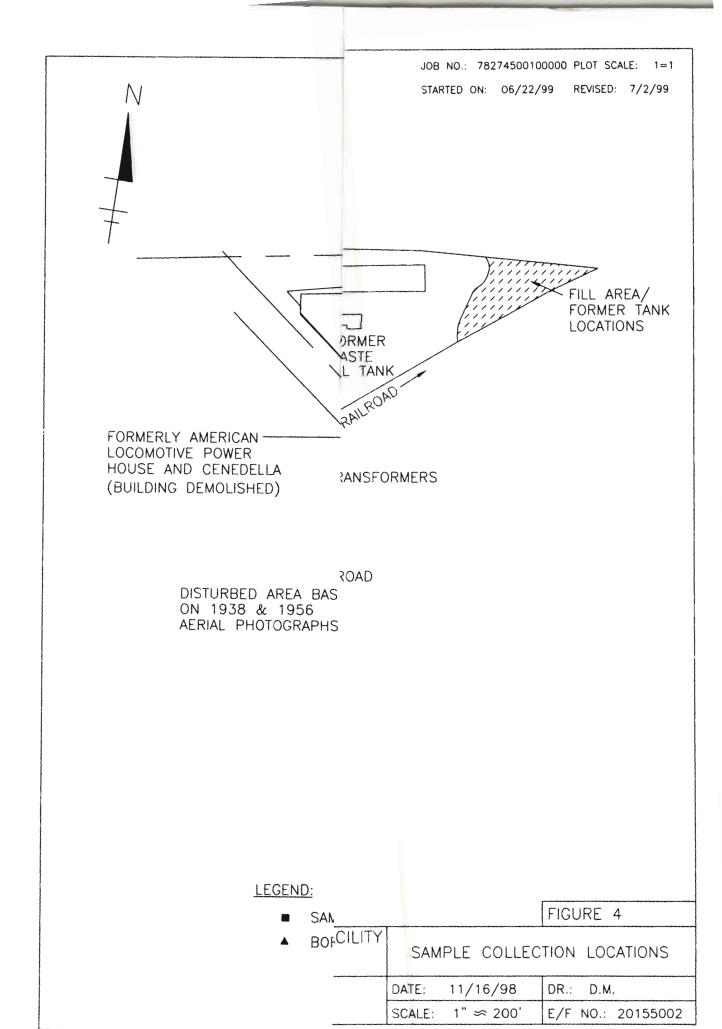

Mera & results?

TABLE 1 NORTH/SOUTH SEWERS-COMPOSITE CATCH BASIN SAMPLES ANALYTICAL RESULTS ALUMAX EXTRUSIONS, INC. DUNKIRK, NEW YORK

Sample Location	North Sewers	South Sewers
Sample Designation	ADNY-NS-SD01A	ADNY-SS-SD01
Sample Matrix	Sediment	Sediment
Volatile Organic Compound ug/kg		
Acetone	ND(<6,000)	ND(<1,100)
Trichloroethylene	ND(<1,500)	1,800
Ethylbenzene	11,000	ND(<290)
Xylenes (total)	72,000	ND(<570)
1,2-Dichloroethene	2,300	290
Semi-Volatile Organic Compounds ug/kg		
Bis(2-ethylhexyl)phthalate	ND(<4,600)	4,100
Phenanthrene	13,000	13,000
Fluoranthene	14,000	16,000
Pyrene	14,000	13,000
Benzo(a)anthracene	7,000	6,500
Chrysene	7,000	6,800
Benzo(b)fluoranthene	8,100 ND(<4.600)	7,000
Benzo(k)fluoranthene	ND(<4,600) 5,700	3,200 5,000
Benzo(a) pyrene Benzo(ghi)perylene	ND(<4,600)	ND(<2,900)
Dibenz(a,h)anthracene	ND(<4,600)	ND(<2,900)
Ideno(1,2,3-cd)pyrene	ND(<4,600)	ND(<2,900)
2-Methylnaphthalene	ND(<4,600)	ND(<2,900)
2-Wettry maphinateric	110(<4,000)	110((2,700)
Metals mg/kg		
Aluminum	16,000	9,200
Antimony	ND (<8.3) J	ND (<7.8) J
Arsenic	9	11.5
Barium	210	113
Beryllium	1.4	ND (<0.65)
Cadmium	1.9	1.9
Calcium	60,600 J	19,800 J
Chromium	174 J	51.7 J
Cobalt	8.1	11.1
Copper	136 J	99.2 J
Iron	39.300	29,300
Lead	158 J	182 J
Magnesium	14,500	52,900
Manganese	1,490	629
Mercury	1.5	0.15
Nickel	158	520
Potassium	1110	1,320
Selenium	0.88	1.2
Silver	ND (<1.4)	1.6 J
Sodium	ND(<690)	ND(<650)
Thallium Vanadium	ND(<1.4)	ND(<1.3)
Zinc	17.9 920 J	762 J
ZIIIC	920 J	702 3
PCBs ug/kg		
Aroclor 1016	ND(<46)	ND(<43)
Aroclor 1221	ND(<46)	ND(<43)
Aroclor 1232	ND(<46)	ND(<43)
Aroclor 1242	ND(<46)	ND(<43)
Aroclor 1248	ND(<46)	ND(<43)
Aroclor 1254	ND(<46)	120
Aroclor 1260	140	ND(<43)
Total PCBs	140	120
	7	
Percent Solids	72.50%	76.90%

Note:

ND = Not Detected Above Detection Limit

Railroad Retaining Wall Fill

One sample (ADNY-WALL-SS01) was collected from approximately the center of the fill material below the railroad retaining wall. The area was screened with a magnetic locator (Schonstedt, Model GA-52B). The magnetic locator indicated the presence of metal associated with this fill material. Surface metal and iron reinforcing within the retaining wall could account for all the metal indicated by the magnetic locator. The fill material is sparsely vegetated and unpaved.

The retaining wall fill material is a wedge shape approximately 5 feet high at wall by 12 feet wide at the base by 52 feet long. The sample was taken at a depth of approximately 2 to 2.5 feet into the center of the pile. The material encountered was over 50 percent shale. As initially collected, the sample consisted of shale mixed with medium brown organic clay. However, to the extent practicable, the shale fragments were removed from the sample prior to placement in the sample containers.

The analytical results for sample for ADNY-WALL-SS01 indicated the presence of ethyl benzene (380 ug/kg), xylene (1,700 ug/kg), phenanthrene (1,200 ug/kg), fluoranthene (3,100 ug/kg), pyrene(4,200 ug/kg), benzo(a)anthracene (1,900 ug/kg), chrysene (2,100 ug/kg), benzo(b)fluoranthene (2,200 ug/kg), benzo(a)pyrene (2,100 ug/kg), benzo(ghi)pery/ene (1,300 ug/kg), and ideno(1,2,3-cd)pyrene (1,100 ug/kg). PCBs were detected at a concentration of 57 ug/kg (Aroclor 1254). Most of the TAL metals were also detected (see Table 2).

The VOCs and PCBs results did not exceed the soil clean-up objectives. Four SVOCs exceed the soil clean-up objectives: benzo(a)anthracene (1,900 vs. 224 ug/kg), chrysene (2,100 vs. 40 ug/kg), benzo(b)fluoranthene (2,200 vs. 1,100 ug/kg), and Benzo(a)pyrene (2100 vs. 61 ug/kg). Metals results were compared to the default background concentrations presented in the guidance document; however, the recommended soil clean-up objective is site background and further evaluation of site background may be appropriate. The following metals exceed the default background concentrations: arsenic, beryllium, chromium, copper, iron, magnesium.

Discussion of Results

Four SVOC exceeded the recommended NYS soil clean-up objectives. Six metals exceed the default statewide background value. The types of constituents and nature of the site would indicate that an alternative clean-up objective is appropriate; however, the derivation of an alternative clean-up standard would require NYS DEC review.

Southern Disturbed Area

Four hand auger borings were completed to bedrock on the southern portion of the site. Only one of these borings (SDA-B1) contained apparent fill material. This boring contained a layer from 8 to 13 inches in depth which contained coal and slag. The presence of coal and slag is consistent with historical references indicating coal storage in this area. Descriptive logs of soil borings SDA-1 through 4 are provided in Appendix B. Gray shale bedrock was encountered at less than 19 inches in each boring. Soil samples were collected from SDA-B1 (Sample Number ADNY-SDA-SS01, from the layer containing coal and slag) and SDA-B2 (Sample Number ADNY-SDA-SS02). These samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, PCBs, and total solids.

Acetone was the only VOC detected in the soil samples from the Southern Disturbed Area and was detected below the NYS recommended soil clean-up objective. Ten (10) SVOCs exceed the NYS recommended soil

14 ALO-22015

Sample Location Soil Soil	Soil
Volatile Organic Compound (ug/kg) Acetone Trichloroethylene Ethylbenzene ND(<5. Ethylbenzene ND(<5. 1.2-Dichloroethene Semi-Volatile Organic Compounds (ug/kg) ND(<5. 1.2-Dichloroethene Semi-Volatile Organic Compounds (ug/kg) ND(<40 Anthracene ND(<40 Phenanthrene ND(<40 Pyrene ND(<40 Pyrene ND(<40 Benzo(a)anthracene ND(<40 Benzo(b)fluoranthene ND(<40 Benzo(b)fluoranthene ND(<40 Benzo(a) pyrene ND(<40 Benzo(a) pyrene ND(<40 Benzo(a) pyrene ND(<40 Benzo(b)fluoranthene ND(<40 Benzo(a) pyrene ND(<40	0) ND(<17) 1) ND(<4.1) 1) ND(<4.1) 1) ND(<4.1) 1) ND(<4.1) 1) ND(<4.1) 1) ND(<4.1) 0) ND(<370) 00 ND(<370) 00 ND(<370) 00 ND(<370) 00 ND(<370) 00 ND(<370)
ND(<20	ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<370) ND(
Acetone NDC<5. Trickloroethylene NDC<5.	ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<370) ND(
Acetone NDC<5. Trickloroethylene NDC<5.	ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<4.1) ND(<370) ND(
Ethylbenzene	1) ND(<4.1) 1) ND(<4.1) 10) ND(<370)
Xylenes (total) ND(<5. 1,2-Dichloroethene Semi-Volatile Organic Compounds (ug/kg) ND(<40 Anthracene	1) ND(<4.1) ND(<370) ND(<370) ND(<370) ND(<370) ND(<370) ND(<370) ND(<370) ND(<370)
1.2-Dichloroethene	(ND) ND(<370) (ND) 380 (ND) ND(<370) (ND) ND(<370) (ND) ND(<370) (ND) ND(<370) (ND) ND(<370)
Semi-Volatile Organic Compounds (ug/kg) ND(<40	00) 380 00) ND(<370) 00) ND(<370) 00) ND(<370) 00) ND(<370)
Anthracene ND(<40 bis(2-ethylhexyl)phthalate ND(<40 bis(2-ethylhexyl)phthalate Phenanthrene ND(<40 bis(2-ethylhexyl)phthalate	00) 380 00) ND(<370) 00) ND(<370) 00) ND(<370) 00) ND(<370)
Anthracene ND(<40 bis(2-ethylhexyl)phthalate ND(<40 bis(2-ethylhexyl)phthalate Phenanthrene ND(<40 bis(2-ethylhexyl)phthalate	00) 380 00) ND(<370) 00) ND(<370) 00) ND(<370) 00) ND(<370)
Bis(2-ethylhexyl)phthalate ND(<40	00) ND(<370) 00) ND(<370) 00) ND(<370)
Fluoranthene	00) ND(<370) 00) ND(<370)
Pyrene	ND(<370)
ND(<40 ND(<40	
ND(<40 ND(<40	(C) (C)
Benzo(b)fluoranthene ND(<40 Benzo(k)fluoranthene ND(<40	00) ND(<370)
Benzo(k)fluoranthene ND(<40 Benzo(a) pyrene ND(<40	
Benzo(a) pyrene ND(<40	ND(<370)
Benzo(ghi)perylene ND(<40	
Dibenz(a,h)anthracene ND(<40	
Ideno(1.2,3-cd)pyrene ND(<40	01 ND(<370)
2-Methylnaphthalene	
The same of the sa	
Metals (mg/kg) 10,700	
Aluminum ND(<7.3	
Antimony 10.7 Assente	14.1
Arsenic 149 Barium ND(<0.6	
Beryllium ND(<0.6	
Cadmium 15,100	
Calcium 17.5 J	11.8 J
Chromium 11.9	9.2
Cobalt 44 I	33.2 J
Copper 24,600 Iron 19.7 J	27.300 16.9 J
TOIL TOIL	3,480
Lead 5,610 Magnesium 872	1,020
Manganese ND(<0.1	
Mercury 33.4	30.1
Nickel 1,660	1,180
Potassium ND(<0.6 Selenium ND(<1.2	
NO. 400	
Silver ND(<000 Sodium ND(<1.2	
Thallium 18 7	14.2
Vanadium 83.2 J	139 J
Zinc	
ND/-40	
PCBs (ug/kg) ND(<4()	The state of the s
Aroclor 1016 ND(<40) Aroclor 1221 ND(<40)	the same of the sa
Alociol 1221	
Aroclor 1232 ND(<40) Aroclor 1242 ND(<40)	
Aroclor 1242 Aroclor 1248 ND(<40	
Aroclor 1254 ND(<40)) ND(<37)
Aroclor 1260 ND	ND
Total PCBs	
Total Petroleum Hydrocarbons (make) NA	4.6
Total Petroleum Hydrocarbons (mg/kg) NA TPH (418.1) NA	19
TPH (Deisel Range Organics)	
82.20%	88.30%
Percent Solids	

Notes.

J = Estimated Value
NA = Not Analyzed
ND = Not Detected Above Detection Lin

clean-up objectives (Table 2). PCBs were detected in both samples from the southern disturbed areas (67 and 85 ug/kg). Arsenic, beryllium, chromium, copper, iron, magnesium, mercury, nickel, and zinc exceed the default statewide background values for soils.

Discussion of Results

Ten (10) SVOCs exceeded the NYS recommended soil clean-up objectives. Metals were detected exceeding the default statewide background values. These are generic screening values and site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Fill Material - Southwest Corner of Building

Fill material of unknown origin was identified in the southwest corner of Main Building. This material comprised an area approximately 20 ft. X 7 ft. located in the southwest corner of the building contained fill material. The boring indicated that this material was approximately 3 ft. deep, resulting in a calculated volume of approximately 16 cubic yards. This fill material is unpaved and appeared to be contained within a concrete structure constructed to house a fire hydrant. Neither the PID nor the gamma scintillation meter readings exceeded background.

The boring indicated that the top 15 inches consisted of yellow sand. Medium brown loam with some coal and shale fragments was identified from 15-36 inches deep. The auger could not be advanced past 36 inches. One sample was collected from this boring (ADNY-FM-SS01).

Trichloroethylene (670 ug/kg) was the only VOC detected in sample ADNY-FM-SS01. Phenanthrene, fluoranthene, and pyrene were the only SVOCs detected. SVOCs and VOCs were not detected above the NYSDEC recommended soil clean-up objectives. PCBs were not detected. Arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeded the default statewide background concentrations.

Discussion of Results

Seven (7) metals exceeded the default statewide background values in soils. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable. VOCs, SVOCs, and PCBs were below the recommended soil clean-up objectives

3.3 TASK 3 – SOILS EVALUATION

The soils investigation included the following areas: the stormwater swale, the former transformer, transformer dust control area, the Niagara Mohawk electrical substation, former utilities, decommissioned waste oil tank, former fuel oil tank, former waste oil tank/transformer (Figure 4).

Stormwater Swale

The borings completed in the stormwater swale located along the southside of the property indicated no soil was present on the west side of the swale increasing to approximately 18 inches on the west side of the swale. The swale was measured to be approximately 175 feet long and is unpaved.

Boring Swale A was taken at the west end of the swale material in this area was approximately 18 inches deep. The depth to bedrock was approximately 8 inches and 3 inches in boring Swale B and C, respectively. Boring Swale B was located 50 feet east and boring Swale C was located 100 feet east of Swale A. The soil sample was collected from boring Swale A.

The sample results indicated that all VOCs were below detection limits. The following SVOCs exceeded the respective NYS recommended soil clean-up objective: benzo(a)anthracene (2,900 ug/kg) chrysene (3,600 ug/kg), benzo(b)anthracene (4,700 ug/kg), benzo(k)fluoranthene (1,600 ug/kg), and benzo(b)pyrene (8,200 ug/kg). PCBs (Aroclor 1254) were detected at 13 mg/kg.

Arsenic (20.7 vs. 7.5 mg/kg), chromium (32.8 vs. 10 mg/kg), copper (125 vs. 25 mg/kg), iron (43,400 vs. 2,000 mg/kg), mercury (0.38 vs. 0.1 mg/kg), nickel (97.4 vs. 13 mg/kg), and zinc (510 vs. 20 mg/kg) exceed the default statewide background values.

Discussion of Results

PCBs (13 mg/kg) and SSVOCs in the sample from the swale exceed the NYS soil clean-up objectives and may require further action. An on-Site source of the PCBs and SVOCs identified in this sample are not apparent; however, it appears that this swale primarily receives runoff from the railroad right-of-way that borders on the southside of the site.

Metals were detected above the statewide background values. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Former Transformer

One sample was collected from beneath the concrete in the vicinity of former transformer located on the north side of the building. This sample was comprised of near surface soils beneath a cracked portion of the concrete. It should be noted that the concrete in this area appeared to be in generally good condition and no staining was noted. No PCBs were detected in the sample taken from this area (Table 3).

Discussion of Results

PCBs were not detected. No further action is warranted.

Transformer Oil Dust Control Area

This sample was taken from a 1/2-1 foot depth interval below a depression in a brick paved area. This soil in this area was comprised of dark brown sand with some gravel. However, gray staining was also noted. The sample results indicated the presence of PCBs (Aroclor 1248) at a concentration of 1.7 mg/kg (Table 3).

Discussion of Results

The sample results indicated the presence of PCBs at a concentration of 1.7 mg/kg. This concentration exceeds the NYS soil clean-up objective of 1 mg/kg in surface soil samples, but is below the subsurface soil clean-up objective of 10 mg/kg. This indicated that PCBs are present in the area where the former owner stated that he used PCB oils as a dust control agent. The subsurface soil clean-up objective appears to apply to the sample area. However, some bricks were missing in this general area and soils are present at the surface in these areas. It should be noted that the PCB congener (Aroclor 1248) is different than those identified in other portions of the site (Aroclor 1254 and 1260).

ALUMAX EXTRUSIONS, INC. DUNKIRK, NEW YORK TABLE 3
PCB SOIL RESULTS

Sample Location		Niagara Mohawk	Potential Transformer Oil	Former Transformer Area
Sample Designation	Soil Clean-up	ADNY-NIMO-SS01	ADNY-PTO-SSI	ADNY-TI-SS01
Sample Matrix	Objectives	Soil	Soil	Soil
PCBs ug/kg				
Aroclor 1016		ND (<38)	ND(<360)	ND(<39)
Aroclor 1221		ND (<38)	ND(<360)	ND(<39)
Aroclor 1232		ND (<38)	ND(<360)	ND(<39)
Aroclor 1242		ND (<38)	ND(<360)	ND(<39)
Aroclor 1248		ND (<38)	1,700	ND(<39)
Aroclor 1254		ND (<38)	ND(<360)	ND(<39)
Aroclor 1260		ND (<38)	ND(<360)	ND(<39)
Total PCBs	1,000 at surface	QN	1,700	ND
	10,000 subsurface			

Note: ND = Not Detected Above Detection Limit

Niagara Mohawk Substation

One composite sample (ADNY-NIMO-SS01) was collected from a hand boring along the property line. The PID did not detect the presence of organic vapors in the boring. Gamma scintillation readings were within the range of background. No soil staining was observed. The analytical results did not indicate the presence of PCBs (Table 3).

Discussion of Results

No indication of PCB contamination was identified on the Site in association with the Niagara Mohawk substation.

Former Utilities

Soils in the vicinity of former utilities were evaluated via three soil borings. Two of these borings (ADNY-UT-SS01 and ADNY-UT-SS02) were located in a concrete paved area west of the building and the third (ADNY-UT-SS03) was located in an open utility sump or trench along the north side of the building.

Samples ADNY-UT-SS01 were located approximately 80 feet west of the Main Building just south of the suspected location of a former steam tunnel. The assumed location of this tunnel was based on the known location of the tunnel within the Main building projected to the location of the former power house located on the adjacent property to the west. ADNY-UT-SS02 was located 21 feet north of ADNY-UT-SS01. Bedrock was encountered at a depth of 66 and 26 inches in ADNY-UT-SS01 and -UT-SS02, respectively. A layer of cinders and slag was encountered from approximately ½ to 1-½ feet in both borings. The cinders were underlain by gray clay in both borings. The PID did not detect the presence of organic vapors in either boring. Gamma scintillation readings were within the range of background.

The sample results from ADNY-UT-SS01 and ADNY-UT-SS02 did not indicate the presence of VOCs, SVOCs, or PCBs. Arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeded the default statewide soil background levels.

ADNY-UT-SS03 was collected from the soil accumulated in a utility sump or an open end in a utility trench on the north side of the building. This utility run was approximately 3 feet deep and was filled with medium brown clay with some gravel (approximately 10 percent). VOCs, SVOCs, and PCBs were not detected above detection limits. Arsenic, chromium, copper, nickel, and zinc were detected above the default statewide soil background value.

Discussion of Results

VOCs, SVOCs, and PCBs were below the NYS recommended soil clean-up objectives. Five (5) metals were detected above the default statewide background concentrations. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Decommissioned Waste Oil Tank Area

Near surface soil samples (2) were collected on the north (sample ADNY-WOT-SS01) and east (sample ADNY-WOT-SS02) sides of the decommissioned above ground waste oil tank located on the north side of the building. These samples were analyzed for TCL VOCs, TCL SVOCs, TAL Metals, Total Petroleum Hydrocarbons (TPH), and PCBs.

The analytical results did not indicate the presence of VOCs. The following SVOCs were detected above the soil clean-up objectives: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(ghi)perylene. Arsenic, beryllium, chromium, copper, mercury, nickel, and zinc exceeded the default statewide background soil value. PCBs (Aroclor 1260) were also detected in these soil samples at concentrations of 120 and 96 ug/kg. These results are below the soil clean-up objective of 1 mg/kg in surface soils. TPH were also detected in these soils samples, maximum concentrations of 260 mg/kg (method 418.1) and 3,600 mg/kg (TPH-diesel range organic compounds).

Discussion of Results

SVOCs and metals were detected at concentrations exceeding the soil clean-up objectives. TPH was also detected. NYS relies on the VOC and SVOC constituents within the TPH and does not have a recommended soil clean-up objective for TPH. The recommended soil clean-up objectives are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Former Diesel Tank

One soil sample was collected from the base of the fuel oil tank excavation. The analytical results from this sample did not detect VOCs or PCBs above detection limits. Bis(2-ethylhexyl)phthalate was the only SVOC detected and the sample results were below the soil clean-up objectives. Relatively low concentrations of TPH were also detected (4.6 mg/kg via method 418.1 and 19 mg/kg via TPH-diesel range organic compounds). Arsenic, chromium, copper, nickel, and zinc exceeded the default statewide soil background values.

Discussion of Results

The sample results did not indicate a substantial release from the former diesel tank. TPH was detected at concentrations of 4.6 and 19 mg/kg which may be indicative of background levels based on the history of the site.

Former Waste Oil Tank/Existing Transformer

One sample (ADNY-SUMP-001) was collected from an area backfilled with gravel around the base of the transformer (Table 4). The secondary containment for the waste oil tank, formerly located on the eastside of the building, was connected to this gravel filled transformer sump therefore allowing material potentially spilled from either the former waste oil tank or the transformer to accumulate in this structure (Figure 5). The water sample was analyzed for TCL VOCs, TCL SVOCs, TAL metals, TPH, and PCBs. Volatile organic compounds (VOCs), SVOCs, and PCBs were not detected in this sample. Total recoverable petroleum hydrocarbons were detected at 210 mg/l. All metals were below the respective Federal Primary Drinking Water Standard.

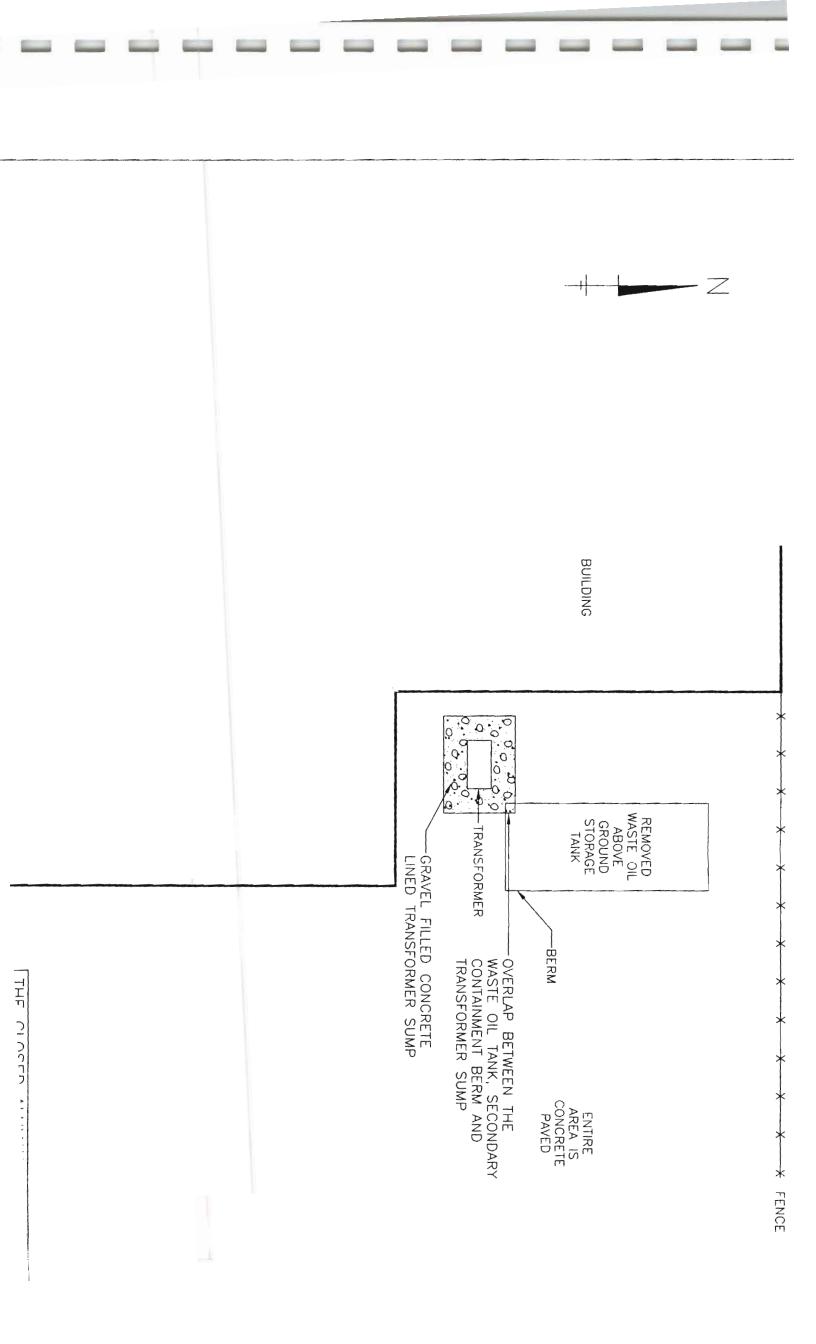
Discussion of Results

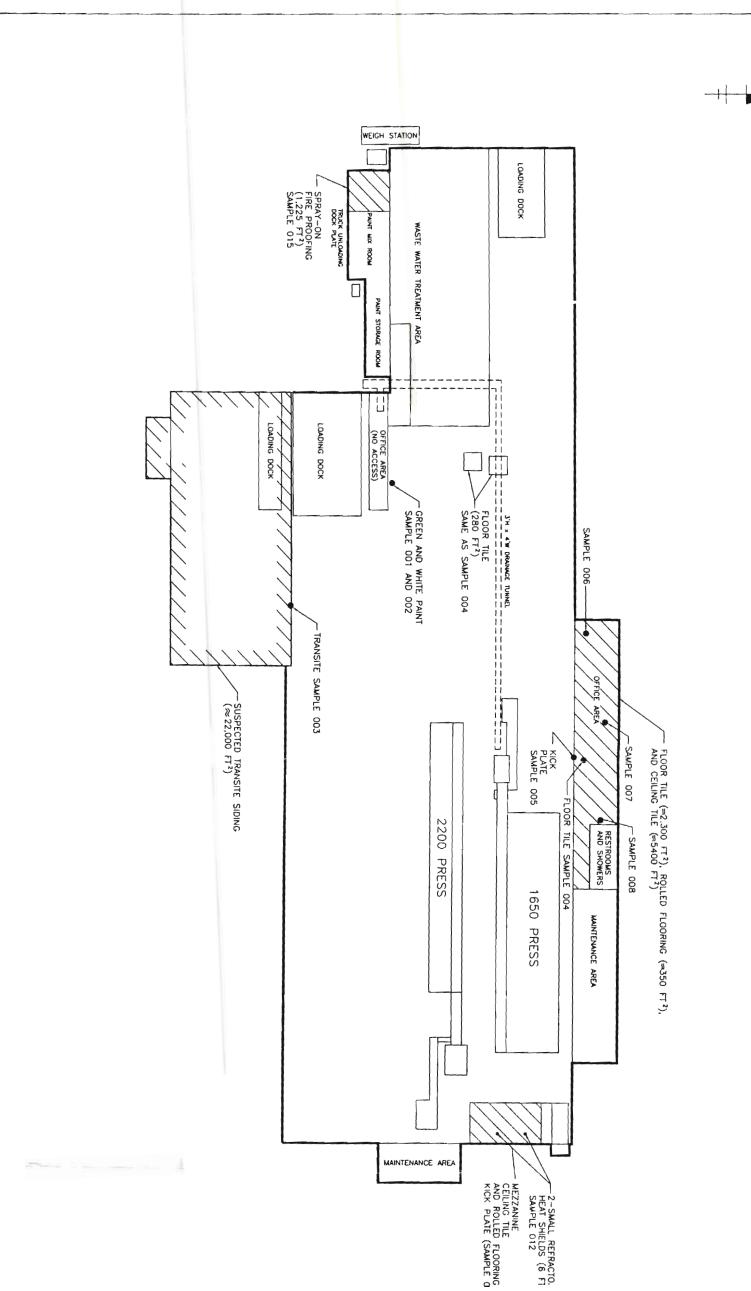
Only TPH was detected at concentrations of 210 mg/l in this sample. This sample was collected from a concrete lined structure which is expected to act as containment for this material.

TABLE 4 WATER SAMPLE RESULTS ALUMAX EXTRUSIONS, INC. DUNKIRK, NEW YORK

	T W. W. D	T 6 6
Sample Location	ADNY-PWI	Transformer Sump
Sample Designation		ADNY-Sump-001
Sample Matrix	Groundwater	Water
Valatila Organia Companyal yall	 	
Volatile Organic Compound ug/L Acetone	ND (-20)	ND (<20)
Trichloroethylene	ND (<20) ND (<5)	ND (<5)
Ethylbenzene	ND (<5)	ND (<5)
Xylenes (total)	ND (<5)	ND (<5)
1,2-Dichloroethene	ND (<5)	ND (<5)
,	1.0 (3)	1.2 (43)
Semi-Volatile Organic Compounds ug/L		
Bis(2-ethylhexyl)phthalate	ND (<10)	ND (<200)
Phenanthrene	ND (<10)	ND (<200)
Fluoranthene	ND (<10)	ND (<200)
Pyrene	ND (<10)	ND (<200)
Benzo(a)anthracene	ND (<10)	ND (<200)
Chrysene	ND (<10)	ND (<200)
Benzo(b)fluoranthene	ND (<10)	ND (<200)
Benzo(k)fluoranthene	ND (<10)	ND (<200)
Benzo(a) pyrene	ND (<10)	ND (<200)
Benzo(ghi)perylene	ND (<10)	ND (<200)
Dibenz(a,h)anthracene	ND (<10)	ND (<200)
Ideno(1,2,3-cd)pyrene	ND (<10)	ND (<200)
2-Methylnaphthalene	ND (<10)	ND (<200)
Metals mg/L	ND(-0.20)	0717
Aluminum	ND(<0.20)	0.71 J
Antimony Arsenic	ND(<0.060) ND(<0.010)	ND(<0.060) ND(<0.010)
Barium	ND(<0.010)	0.2
Beryllium	ND(<0.0050)	ND(<0.0050)
Cadmium	ND(<0.0050)	ND(<0.0050)
Calcium	128	75.9
Chromium	ND(<0.010)	0.015
Cobalt	ND(<0.050)	ND(<0.050)
Copper	ND(<0.025)	ND(<0.025)
Iron	3.6	7.1 J
Lead	ND(<0.0030)	0.0078
Magnesium	24.9	12.8
Manganese	0.41	2.2
Mercury	ND(0.00020)	ND(<0.00020)
Nickel	ND(<0.040)	ND(<0.040)
Potassium	ND(<5.0)	8.1
Selenium	ND(<0.0050)	ND(<0.0050)
Silver	ND(<0.010)	ND(<0.010)
Sodium	233	23.8
Thallium	ND(<0.010)	ND(<0.010)
Vanadium	ND(<0.050)	ND(<0.050)
Zinc	ND(<0.020)	0.35
DCDo		
PCBs ug/L Aroclor 1016	ND(<1.0)	ND(-10)
Aroclor 1016 Aroclor 1221	ND(<1.0)	ND(<1.0) ND(<1.0)
Aroctor 1221 Aroctor 1232	ND(<1.0)	ND(<1.0)
Aroclor 1232 Aroclor 1242	ND(<1.0)	ND(<1.0)
Aroclor 1242 Aroclor 1248	ND(<1.0)	ND(<1.0)
Aroclor 1254	ND(<1.0)	ND(<1.0)
Aroclor 1260	ND(<1.0)	ND(<1.0)
Total PCBs	ND ND	ND ND
Total Petroleum Hydrocarbons mg/L		
TPH (418.1)	NA	210
TPH (Deisel Range Organics)		29

Notes:


J = Estimated Value


NA = Not Analyzed

ND = Not Detected Above Detection Limits

Parameters Shown on Table is Limited to Constituents

Dectected in Either the Sample or Other Samples Collected During Phase II Assessment

clean-up objectives (Table 2). PCBs were detected in both samples from the southern disturbed areas (67 and 85 ug/kg). Arsenic, beryllium, chromium, copper, iron, magnesium, mercury, nickel, and zinc exceed the default statewide background values for soils.

Discussion of Results

Ten (10) SVOCs exceeded the NYS recommended soil clean-up objectives. Metals were detected exceeding the default statewide background values. These are generic screening values and site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Fill Material - Southwest Corner of Building

Fill material of unknown origin was identified in the southwest corner of Main Building. This material comprised an area approximately 20 ft. X 7 ft. located in the southwest corner of the building contained fill material. The boring indicated that this material was approximately 3 ft. deep, resulting in a calculated volume of approximately 16 cubic yards. This fill material is unpaved and appeared to be contained within a concrete structure constructed to house a fire hydrant. Neither the PID nor the gamma scintillation meter readings exceeded background.

The boring indicated that the top 15 inches consisted of yellow sand. Medium brown loam with some coal and shale fragments was identified from 15-36 inches deep. The auger could not be advanced past 36 inches. One sample was collected from this boring (ADNY-FM-SS01).

Trichloroethylene (670 ug/kg) was the only VOC detected in sample ADNY-FM-SS01. Phenanthrene, fluoranthene, and pyrene were the only SVOCs detected. SVOCs and VOCs were not detected above the NYSDEC recommended soil clean-up objectives. PCBs were not detected. Arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeded the default statewide background concentrations.

Discussion of Results

Seven (7) metals exceeded the default statewide background values in soils. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable. VOCs, SVOCs, and PCBs were below the recommended soil clean-up objectives

3.3 TASK 3 – SOILS EVALUATION

The soils investigation included the following areas: the stormwater swale, the former transformer, transformer dust control area, the Niagara Mohawk electrical substation, former utilities, decommissioned waste oil tank, former fuel oil tank, former waste oil tank/transformer (Figure 4).

Stormwater Swale

The borings completed in the stormwater swale located along the southside of the property indicated no soil was present on the west side of the swale increasing to approximately 18 inches on the west side of the swale. The swale was measured to be approximately 175 feet long and is unpaved.

Boring Swale A was taken at the west end of the swale material in this area was approximately 18 inches deep. The depth to bedrock was approximately 8 inches and 3 inches in boring Swale B and C, respectively. Boring Swale B was located 50 feet east and boring Swale C was located 100 feet east of Swale A. The soil sample was collected from boring Swale A.

The sample results indicated that all VOCs were below detection limits. The following SVOCs exceeded the respective NYS recommended soil clean-up objective: benzo(a)anthracene (2,900 ug/kg) chrysene (3,600 ug/kg), benzo(b)anthracene (4,700 ug/kg), benzo(k)fluoranthene (1,600 ug/kg), and benzo(b)pyrene (8,200 ug/kg). PCBs (Aroclor 1254) were detected at 13 mg/kg.

Arsenic (20.7 vs. 7.5 mg/kg), chromium (32.8 vs. 10 mg/kg), copper (125 vs. 25 mg/kg), iron (43,400 vs. 2,000 mg/kg), mercury (0.38 vs. 0.1 mg/kg), nickel (97.4 vs. 13 mg/kg), and zinc (510 vs. 20 mg/kg) exceed the default statewide background values.

Discussion of Results

PCBs (13 mg/kg) and SSVOCs in the sample from the swale exceed the NYS soil clean-up objectives and may require further action. An on-Site source of the PCBs and SVOCs identified in this sample are not apparent; however, it appears that this swale primarily receives runoff from the railroad right-of-way that borders on the southside of the site.

Metals were detected above the statewide background values. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Former Transformer

One sample was collected from beneath the concrete in the vicinity of former transformer located on the north side of the building. This sample was comprised of near surface soils beneath a cracked portion of the concrete. It should be noted that the concrete in this area appeared to be in generally good condition and no staining was noted. No PCBs were detected in the sample taken from this area (Table 3).

Discussion of Results

PCBs were not detected. No further action is warranted.

Transformer Oil Dust Control Area

This sample was taken from a 1/2-1 foot depth interval below a depression in a brick paved area. This soil in this area was comprised of dark brown sand with some gravel. However, gray staining was also noted. The sample results indicated the presence of PCBs (Aroclor 1248) at a concentration of 1.7 mg/kg (Table 3).

Discussion of Results

The sample results indicated the presence of PCBs at a concentration of 1.7 mg/kg. This concentration exceeds the NYS soil clean-up objective of 1 mg/kg in surface soil samples, but is below the subsurface soil clean-up objective of 10 mg/kg. This indicated that PCBs are present in the area where the former owner stated that he used PCB oils as a dust control agent. The subsurface soil clean-up objective appears to apply to the sample area. However, some bricks were missing in this general area and soils are present at the surface in these areas. It should be noted that the PCB congener (Aroclor 1248) is different than those identified in other portions of the site (Aroclor 1254 and 1260).

TABLE 3
PCB SOIL RESULTS
ALUMAX EXTRUSIONS, INC.
DUNKIRK, NEW YORK

Sample Location		Niagara Mohawk	Potential Transformer Oil	Former Transformer Area
Sample Designation	Soil Clean-up	ADNY-NIMO-SS01	ADNY-PTO-SS1	ADNY-T1-SS01
Sample Matrix	Objectives	Soil	Soil	Soil
PCBs ug/kg				
Aroclor 1016		ND (<38)	ND(<360)	ND(<39)
Aroclor 1221		ND (<38)	ND(<360)	ND(<39)
Aroclor 1232		ND (<38)	ND(<360)	ND(<39)
Aroclor 1242		ND (<38)	ND(<360)	ND(<39)
Aroclor 1248		ND (<38)	1,700	ND(<39)
Aroclor 1254		ND (<38)	ND(<360)	ND(<39)
Aroclor 1260		ND (<38)	ND(<360)	ND(<39)
Total PCBs	1,000 at surface	ND	1,700	ND
	10,000 subsurface			

Note: ND = Not Detected Above Detection Limit

Niagara Mohawk Substation

One composite sample (ADNY-NIMO-SS01) was collected from a hand boring along the property line. The PID did not detect the presence of organic vapors in the boring. Gamma scintillation readings were within the range of background. No soil staining was observed. The analytical results did not indicate the presence of PCBs (Table 3).

Discussion of Results

No indication of PCB contamination was identified on the Site in association with the Niagara Mohawk substation.

Former Utilities

Soils in the vicinity of former utilities were evaluated via three soil borings. Two of these borings (ADNY-UT-SS01 and ADNY-UT-SS02) were located in a concrete paved area west of the building and the third (ADNY-UT-SS03) was located in an open utility sump or trench along the north side of the building.

Samples ADNY-UT-SS01 were located approximately 80 feet west of the Main Building just south of the suspected location of a former steam tunnel. The assumed location of this tunnel was based on the known location of the tunnel within the Main building projected to the location of the former power house located on the adjacent property to the west. ADNY-UT-SS02 was located 21 feet north of ADNY-UT-SS01. Bedrock was encountered at a depth of 66 and 26 inches in ADNY-UT-SS01 and -UT-SS02, respectively. A layer of cinders and slag was encountered from approximately ½ to 1-½ feet in both borings. The cinders were underlain by gray clay in both borings. The PID did not detect the presence of organic vapors in either boring. Gamma scintillation readings were within the range of background.

The sample results from ADNY-UT-SS01 and ADNY-UT-SS02 did not indicate the presence of VOCs, SVOCs, or PCBs. Arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeded the default statewide soil background levels.

ADNY-UT-SS03 was collected from the soil accumulated in a utility sump or an open end in a utility trench on the north side of the building. This utility run was approximately 3 feet deep and was filled with medium brown clay with some gravel (approximately 10 percent). VOCs, SVOCs, and PCBs were not detected above detection limits. Arsenic, chromium, copper, nickel, and zinc were detected above the default statewide soil background value.

Discussion of Results

VOCs, SVOCs, and PCBs were below the NYS recommended soil clean-up objectives. Five (5) metals were detected above the default statewide background concentrations. These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Decommissioned Waste Oil Tank Area

Near surface soil samples (2) were collected on the north (sample ADNY-WOT-SS01) and east (sample ADNY-WOT-SS02) sides of the decommissioned above ground waste oil tank located on the north side of the building. These samples were analyzed for TCL VOCs, TCL SVOCs, TAL Metals, Total Petroleum Hydrocarbons (TPH), and PCBs.

The analytical results did not indicate the presence of VOCs. The following SVOCs were detected above the soil clean-up objectives: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(ghi)perylene. Arsenic, beryllium, chromium, copper, mercury, nickel, and zinc exceeded the default statewide background soil value. PCBs (Aroclor 1260) were also detected in these soil samples at concentrations of 120 and 96 ug/kg. These results are below the soil clean-up objective of 1 mg/kg in surface soils. TPH were also detected in these soils samples, maximum concentrations of 260 mg/kg (method 418.1) and 3,600 mg/kg (TPH-diesel range organic compounds).

Discussion of Results

SVOCs and metals were detected at concentrations exceeding the soil clean-up objectives. TPH was also detected. NYS relies on the VOC and SVOC constituents within the TPH and does not have a recommended soil clean-up objective for TPH. The recommended soil clean-up objectives are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Former Diesel Tank

One soil sample was collected from the base of the fuel oil tank excavation. The analytical results from this sample did not detect VOCs or PCBs above detection limits. Bis(2-ethylhexyl)phthalate was the only SVOC detected and the sample results were below the soil clean-up objectives. Relatively low concentrations of TPH were also detected (4.6 mg/kg via method 418.1 and 19 mg/kg via TPH-diesel range organic compounds). Arsenic, chromium, copper, nickel, and zinc exceeded the default statewide soil background values.

Discussion of Results

The sample results did not indicate a substantial release from the former diesel tank. TPH was detected at concentrations of 4.6 and 19 mg/kg which may be indicative of background levels based on the history of the site.

Former Waste Oil Tank/Existing Transformer

One sample (ADNY-SUMP-001) was collected from an area backfilled with gravel around the base of the transformer (Table 4). The secondary containment for the waste oil tank, formerly located on the eastside of the building, was connected to this gravel filled transformer sump therefore allowing material potentially spilled from either the former waste oil tank or the transformer to accumulate in this structure (Figure 5). The water sample was analyzed for TCL VOCs, TCL SVOCs, TAL metals, TPH, and PCBs. Volatile organic compounds (VOCs), SVOCs, and PCBs were not detected in this sample. Total recoverable petroleum hydrocarbons were detected at 210 mg/l. All metals were below the respective Federal Primary Drinking Water Standard.

Discussion of Results

Only TPH was detected at concentrations of 210 mg/l in this sample. This sample was collected from a concrete lined structure which is expected to act as containment for this material.

TABLE 4 WATER SAMPLE RESULTS ALUMAX EXTRUSIONS, INC. DUNKIRK, NEW YORK

Sample Location Sample Designation Sample Matrix Volatile Organic Compound ug/L Acetone Trichloroethylene Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene Pyrene	Water Well ADNY-PW1 Groundwater ND (<20) ND (<5) ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10) ND (<10) ND (<10)	Transformer Sump ADNY-Sump-001 Water ND (<20) ND (<5) ND (<5) ND (<5) ND (<5) ND (<5) ND (<5) ND (<20) ND (<200) ND (<200)
Volatile Organic Compound ug/L Acetone Trichloroethylene Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<20) ND (<5) ND (<5) ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	Water ND (<20) ND (<5) ND (<5) ND (<5) ND (<5) ND (<5) ND (<5)
Acetone Trichloroethylene Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5) ND (<5) ND (<5) ND (<5) ND (<5)
Acetone Trichloroethylene Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5) ND (<5) ND (<5) ND (<5) ND (<5)
Trichloroethylene Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5) ND (<5) ND (<5) ND (<5) ND (<5)
Ethylbenzene Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5) ND (<5) ND (<5) ND (<200)
Xylenes (total) 1,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5) ND (<5) ND (<200)
I,2-Dichloroethene Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<5) ND (<10) ND (<10) ND (<10)	ND (<5)
Semi-Volatile Organic Compounds ug/L Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<10) ND (<10) ND (<10)	ND (<200)
Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<10) ND (<10)	
Bis(2-ethylhexyl)phthalate Phenanthrene Fluoranthene	ND (<10) ND (<10)	
Phenanthrene Fluoranthene	ND (<10) ND (<10)	
Fluoranthene	ND (<10)	110 (~200)
		ND (<200)
		ND (<200)
Benzo(a)anthracene	ND (<10)	ND (<200)
Chrysene	ND (<10)	ND (<200)
Benzo(b)fluoranthene	ND (<10)	ND (<200)
Benzo(k)fluoranthene	ND (<10)	ND (<200)
Benzo(a) pyrene	ND (<10)	ND (<200)
Benzo(ghi)perylene	ND (<10)	ND (<200)
Dibenz(a,h)anthracene	ND (<10)	ND (<200)
Ideno(1,2,3-cd)pyrene	ND (<10)	ND (<200)
2-Methylnaphthalene	ND (<10)	ND (<200)
Metals mg/L	ND/ 0.00	0.7.
Aluminum	ND(<0.20)	0.71 J
Antimony	ND(<0.060)	ND(<0.060) ND(<0.010)
Arsenic	ND(<0.010) ND(<0.20)	0.2
Barium Beryllium	ND(<0.0050)	ND(<0.0050)
Cadmium	ND(<0.0050)	ND(<0.0050)
Calcium	128	75.9
Chromium	ND(<0.010)	0.015
Cobalt	ND(<0.050)	ND(<0.050)
Copper	ND(<0.025)	ND(<0.025)
Iron	3.6	7.1 J
Lead	ND(<0.0030)	0.0078
Magnesium	24.9	12.8
Manganese	0.41	2.2
Mercury	ND(0.00020)	ND(<0.00020)
Nickel	ND(<0.040)	ND(<0.040)
Potassium	ND(<5.0)	8.1
Selenium	ND(<0.0050)	ND(<0.0050)
Silver	ND(<0.010)	ND(<0.010)
Sodium	233	23.8
Thallium	ND(<0.010)	ND(<0.010)
Vanadium	ND(<0.050)	ND(<0.050)
Zinc	ND(<0.020)	0.35
PCBs ug/L		-
Aroclor 1016	ND(<1.0)	ND(<1.0)
Aroclor 1221	ND(<1.0)	ND(<1.0)
Aroclor 1232	ND(<1.0)	ND(<1.0)
Aroclor 1242	ND(<1.0)	ND(<1.0)
Aroclor 1248	ND(<1.0)	ND(<1.0)
Aroclor 1254	ND(<1.0)	ND(<1.0)
Aroclor 1260	ND(<1.0)	ND(<1.0)
Total PCBs	_ND	ND_
		
Total Patroloum Hudross-hars w-7		
Total Petroleum Hydrocarbons mg/L TPH (418.1)	NA	210
TPH (418.1) TPH (Deisel Range Organics)	NA NA	29

Notes:

J = Estimated Value

NA = Not Analyzed

ND = Not Detected Above Detection Limits

Parameters Shown on Table is Limited to Constituents

Dectected in Either the Sample or Other Samples Collected During Phase II Assessment

3.4 TASK 4 – ASBESTOS AND LEAD PAINT ANALYSIS

Samples of suspected asbestos containing materials and paint samples collected during the Phase I – ESA was sent for laboratory analysis (Figure 6). The analytical results indicated that the following materials contained asbestos: corrugated transite siding found on the south bay (20% chrysotile asbestos), beige mottled floor tile found in the west end of the office area (trace (<1%) chrysotile asbestos), and brown rolled flooring found in the east end of the office area (20% chrysotile asbestos). The beige mottled floor tile was estimated to cover approximately 1,750 square feet and the brown rolled flooring was estimated to cover approximately 326 square feet. The sample of the beige mottled flooring contained less than 1 percent chrysotile. However, it is recommended that additional samples of this material be collected and analyzed for a better determination of the asbestos content.

The samples were analyzed for asbestos via polarized light microscopy, which is the method recommended by the USEPA; however, New York State requires electron microscopy for final determination of asbestos content of floor tiles (required for only when microscopy does not detect asbestos).

Green and white paint chips found in the central and north bay's were analyzed for lead and respectively contained 1.5 and 2.6 percent lead by weight. Blue and yellow paint chips from the former paint room were also analyzed for lead and respectively contained 0.31 and 1.9 percent by weight.

Discussion of Results

Corrugated transite siding on the south bay of the Main building and brown rolled flooring found in a portion of the office located on the north side of the Main building. Mottled beige floor tiles contained trace amounts of asbestos and additional analysis is recommended. These materials appeared in good condition at the time of the site visit. Additionally, these materials are considered to be non-friable except during removal or demolition.

The regulatory limit for lead (USEPA/HUD) is 0.5% in schools and residential buildings. This limit does not apply to industrial buildings; however, occupational regulations do affect the abatement of lead containing paint. The white, green, and yellow paint chips collected in the main building are all considered to be lead containing paints. Areas of the green and white paint are peeling.

3.5 TASK 5 – GROUNDWATER EVALUATION

The groundwater investigation consisted of the collection of a groundwater sample from the existing Site well using low flow sampling methods. The well is approximately 74 ft deep relative to ground surface with a water level approximately 4 feet below ground surface. Twelve-inch steel surface casing extends to a depth of approximately 6 feet below ground surface with the remainder of the well completed as an open hole. The pump intake was situated at a depth of approximately 39 feet below ground surface.

The groundwater analytical results did not identify any VOCs, SVOCs, or PCBs exceeding the detection limit (Table 5 and Appendix B). Calcium, magnesium, manganese, and sodium were the only metals detected above detection limits. These metals are all naturally occurring. The radiological parameters (gross alpha, gross beta, and gamma) were either non-detected or below the minimal detectable activity. The field measurements stabilized as follows:

pH=7.1 standard units Specific Conductance = 1.9 mS/cm Turbidity = <10 NTU Dissolved Oxygen = 0.2 mg/l Temperature = 16 degrees C Oxidation-Reduction Potential = -230 mV

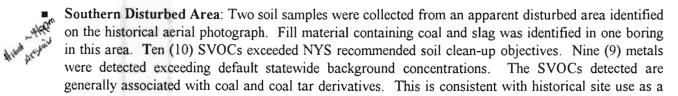
Discussion of Results

The groundwater results met the Federal Drinking Water Standards.

3.6 TASK 6 - RADIATION SURVEY

The interior of the building was screened with a gamma scintillation meter. The path taken during the radiation survey is shown in Figure 7. Additionally, readings were taken on cracks, seams, drains, and railroad tracks in the flooring that may act as accumulation points. Readings generally ranged 10 to 20 uR/hr, which was within background ranges. Soil screening and a screening survey on the exterior of the building were all within background values (10 to 20 uR/hr).

Discussion of Results


No indication of an anomalous radiation source was encountered during the gamma scintillation survey of the Site.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The sample analyses indicated the presence of SVOCs exceeding the NYS recommended soil clean-up criteria and metals exceeding the default statewide background values at locations distrubuted over most of the site. These constituents are consistent with the former site usage: coal storage (SVOCs and metals), locomotive manufacturing (oils – lubricants and fuel), brass and iron foundry (heavy metals). These are generic screening values and Site specific evaluation/risk assessment may indicate that the concentrations identified are acceptable.

Evaluation of areas targeted during the Phase II environmental assessment indicated the following:

- Sewer Catch Basins: Sediments found within sewer catch basins are impacted by trichloroethylene, ethylbenzene, 1,2-dichloroethene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and metals at concentrations which exceed the New York State (NYS) recommended soil clean-up objectives. However, the sediments are contained within the sewer system and are not subject to the soil clean-up criteria.
- Swale: Soils within the swale on the north side of the Site contains PCBs and SVOCs that exceed the NYS recommended soil clean-up objectives and metals exceed the default statewide background value. This swale appears to primarily receive drainage from the railroad right-of-way on the adjacent property. The soil within this swale a conservative estimate of sediment volume contained within this swale is 9 cubic yards and includes all sediment in swale.
- Transformer Oil Dust Control: PCB concentrations which exceed the NYS recommended surface soil clean-up objective, but are below the subsurface soil clean-up objective were detected in a sample from an area under brick pavement. However, the bricks were missing from some areas of the pavement exposing soils. The extent of the PCBs was not assessed.
- Railroad Retaining Wall Fill: Four semi-volatile organic compounds (SVOCs) detected in retaining wall fill sample exceed NYS soil clean-up objectives. Six metals detected in the retaining wall fill sample exceed the default statewide background values. The volume of fill is estimated to be 16 cubic yards. The nature of the constituents identified in this fill is generally consistent with the Site-wide analytical results.
- Fill Material in the Southwest Corner of Building: Arsenic, chromium, copper, iron, mercury, nickel, and zinc detected in the fill material soil exceed default statewide background value for soils. Trichloroethylene, phenanthrene, fluoranthene, and pyrene were detected in this sample below the NYS recommended soil clean-up objectives. The metal concentrations associated with this fill material were generally consistent with Site-wide analytical results and therefore may be within the range of Site background.

coal storage area and a locomotive plant. The metal results are generally consistent with sitewide analytical results. This area is paved.

- Decommissioned Waste Oil Tank Area: Two near surface soil samples were collected in the vicinity of the decommissioned, above ground waste oil storage tank located near the north east corner of the Main building. The sample results indicated up to 3,600 mg/kg of total petroleum hydrocarbons (diesel range organic compounds). Benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(ghi)perylene exceeded the NYS recommended soil clean-up objectives. Arsenic, beryllium, chromium, copper, mercury, nickel, and zinc exceeded the default statewide soil background values. This was also in close proximity to an area on the Roblin Steel property where an oil spill was noted in a previous report. Metals were elevated compared to sitewide analytical results. The elevated chromium and nickel concentrations may be related to electric arc furnaces formerly operated by Roblin Steel and Allegheny Ludlum on the adjacent property.
- Former Waste Oil Tank/Existing Transformer: A water sample was collected from the transformer pad sump located near the northeast corner of the Main building. This pad overlapped the secondary containment of a former aboveground waste oil tank. This sump contained gravel and little soil was present. Volatile organic compounds (VOCs), SVOCs, and PCBs were not detected in this sample. Total recoverable petroleum hydrocarbons were detected at 210 mg/l. All metals were below the respective Federal Primary Drinking Water Standard.
- Former Utility Samples: Soil samples collected west of the building indicated arsenic, chromium, copper, iron, mercury, nickel, and zinc exceeding the statewide default soil background values. The metals concentrations were generally consistent with Site-wide analytical results.
- Asbestos Containing Materials: The transite siding on the southern bay of the main building was identified as asbestos containing material. Flooring in the office area was also identified as asbestos containing material. This material appeared in good condition. NYS regulations require special handling if asbestos containing material is removed or otherwise disturbed.
- Lead Containing Paint: Based on the sample results, the green and white paint located on the walls of the middle and north bays of the main building are considered to be lead containing, based on the USEPA and HUD definitions of lead paint. Yellow paint sampled in the former paint room also tested as lead containing. Portions of both the green and white paint were peeling. Occupational standards apply to the abatement and handling of lead paint.

The sample results did not indicate on-site concerns related to the existing groundwater well, the Niagara Mohawk Substation, the former transformer, or the former diesel tank. The radiation survey did not indicate any areas exceeding background.

Recommendations

The following recommendations are offered:

1. Site-wide Soils: Soil areas with analytical results exceeding default statewide background for metals or exceeding NYS recommended soil clean-up objectives for SVOCs should be evaluated further via an abbreviated human health risk assessment. This approach is utilized by the NYS Voluntary Clean-up Program. Areas included in this analysis should include the railroad retaining wall fill, the southern

- disturbed area, the former utilities samples, the decommissioned waste oil tank, and the fill material in the southwest corner of the building.
- 2. Swale: PCB and SVOC concentrations in swale soil sample results exceed the NYS recommended soil clean-up objectives. The extent of the PCBs in this area may need to be evaluated further. However, impacted sediments appear to be limited and could be excavated. If sediments are excavated they should be properly managed in accordance with local, state, and federal regulations.
- 3. Transformer Oil Dust Control Area: The extent of PCB contaminated soil should be delineated. The sample analyzed indicated that PCBs are present at concentrations above the recommended soil clean-up objective for surface soil but below the soil clean-up objective for subsurface soils. Soils with PCB marginally exceeding surface clean up standards suggest a possibility for further delineation or reestablishment of the protective cap formerly provided by the brick surface.
- 4. Sewers: Sediment within the sewer catch basins should be removed and properly managed to prevent potential releases to the environment.

5.0 REFERENCES

- ICF Kaiser Engineers, Inc., 1998. "Phase I Environmental Assessment of 320 South Roberts Road, Dunkirk, New York". December 15, 1998.
- New York Department of Environmental Conservation (NYSDEC), 1994. "Technical and Administrative Guidance Memorandum: Determination of Soil Clean-up Objectives and Clean-up levels". January 24, 1994.

APPENDIX A

CATCH BASIN DESCRIPTIONS

SS-6

Dimensions: 48 inches-diameter Depth of Sediment: 14 inches

Construction: Metal

Sediment Description: Gray Sand and Gravel

PID: 0 ppm

Gamma Meter: Background (20 uR/hr)

SS-7

Dimensions: 36 inches X 30 inches X 32 inches deep

Depth of Sediment: 12 inches Construction: Cinder Block

Sediment Description: Dark brown clay with gray mottles

PID: 0 ppm

Gamma Meter: Background (20 uR/hr)

SS-8

Dimensions: 36 inches X 36 inches X 80 inches deep

Depth of Sediment: 18 inches Construction: Poured concrete

Sediment Description: Black stained sand and gravel

PID: 0 ppm

Gamma Meter: Background (20 uR/hr)

SS-9

Dimensions: 35 inches X 39 inches X 18 inches deep (L-shaped)

Depth of Sediment: 6 inches

Construction: metal Sediment Description

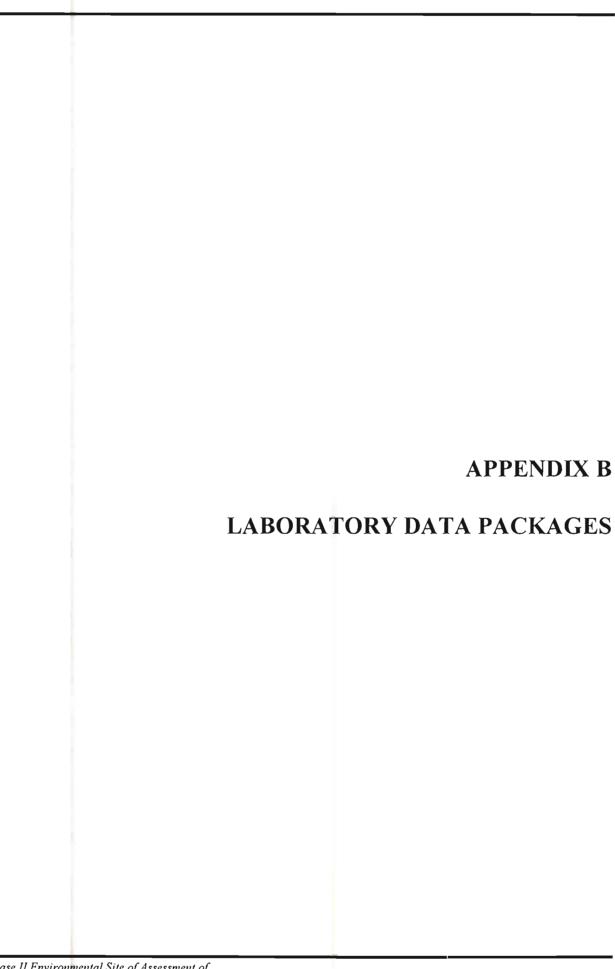
PID: 0 ppm

Gamma Meter: Background (20 uR/hr)

SS-10

No access, could not remove lid

SS-11


Dimensions: 26 inches X 26 inches X 37 inches deep

Depth of Sediment: 15 inches Construction: Poured Concrete

Sediment Description: Dark gray-black stained sand and gravel with some clay

PID: 0 ppm

Gamma Meter: Background (20 uR/hr)

RELEASE OF VALIDATED DATA

Project:

Alumax - Buffalo

Date:

June 23, 1999

SDG:

A9E210127

Reviewer:

Edward SedImyer

Validation was performed on the volatile, semivolatile, PCB, extractable petrole hydrocarbons, total recoverable petroleum hydrocarbons, and metal analytical aqueous sample collected at the Alumax project site. Quanterra Inc. (North Canalyzed the samples using SW-846 methods. The data validation was perfor accordance with the National Functional Guidelines (Organics and Inorganics 2/9 SW-846 methodology. Samples in this SDG included:

Field Sample ID	Lab Sample ID	Field Sample ID	Lau Jampio
ADNY-SUMP-001	A9E210127-001		

The data package contained only QC summary forms so raw data review and quantification verification could not be performed. The following QC parameters were reviewed:

VOLATILE ORGANICS

Method: SW-846 Method 8260B

<u>Holding Time</u>: The holding time requirements are 7 days for unpreserved aqueous samples and 14 days for preserved aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No compounds were detected in the method blank associated with this data package.

<u>Surrogates</u>: All surrogate recoveries met criteria for samples associated with this data package.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

Reported CRQLs: All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The volatile results were acceptable as reported and no qualification of the data was necessary.

SEMIVOLATILE ORGANICS

<u>Holding Time</u>: The technical holding time requirements are 7 days to extraction and 40 days from extraction to analysis for aqueous samples. All samples were extracted and analyzed within the technical holding time criteria.

<u>Laboratory Blanks</u>: No compounds were detected in the method blank associated with this data package.

<u>Surrogates</u>: All surrogate recoveries met criteria for samples associated with this data package.

<u>Matrix Spike/Duplicate</u>: The MS/MSD associated with this data package met accuracy and precision criteria.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

<u>Reported CRQLs</u>: Sample ADNY-SUMP-001 required a dilution due to high concentrations of non-target compounds. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The semivolatile results were acceptable as reported and no qualification of the data was necessary.

PCBs

Method: SW-846 Method 8082.

<u>Holding Time</u>: The holding time requirements are 7 days to extraction for aqueous samples (preserved or unpreserved), 14 days to extraction for soil samples, and 40 days from extraction to analysis for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No PCBs were detected in the method blank associated with this data package.

<u>Surrogates</u>: All surrogate recoveries met criteria for samples associated with this data package.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

Reported CRQLs: All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The PCB results were acceptable as reported and no qualification of the data was necessary.

EXTRACTABLE PETROLEUM HYDROCARBONS

Method: SW-846 Method 8015B.

<u>Holding Time</u>: The holding time requirements are 7 days to extraction for aqueous samples (preserved or unpreserved), 14 days to extraction for soil samples, and 40 days from extraction to analysis for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No petroleum hydrocarbons were detected in the method blank associated with this data package.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

<u>Reported CRQLs</u>: Sample ADNY-SUMP-001 required a dilution due to high concentrations of petroleum hydrocarbons. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The petroleum hydrocarbon results were acceptable as reported and no qualification of the data was necessary.

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Method: MCAWW 418.1.

<u>Holding Time</u>: The holding time requirements are 28 days for aqueous samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No petroleum hydrocarbons were detected in the method blank associated with this data package.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

<u>Reported CRQLs</u>: Sample ADNY-SUMP-001 required a dilution due to high concentrations of petroleum hydrocarbons. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The petroleum hydrocarbon results were acceptable as reported and no qualification of the data was necessary.

METALS

<u>Holding Time</u>: The technical holding time requirement is 28 days for mercury and 180 days for all other metals. All of the samples were analyzed within the holding times.

<u>Laboratory Blanks</u>: No metals greater than the reporting limits were detected in any method blanks associated with this data package.

<u>Laboratory Control Sample</u>: The metals LCSs associated with these samples met the laboratory recovery criteria.

Matrix Spike Recovery: The MS/MSD associated with this data package had recoveries outside of the 80-120% criteria for aluminum (121%) and iron (69% and 40%). The aluminum and iron results have been qualified "J" as estimated for all samples.

Reported CRQLs: All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

Summary: The metals results were qualified as follows:

Metal	Samples	Qualifier
Aluminum	All samples	J
Iron	All samples	J

Quanterra Incorporated 4101 Shuffel Drive, NW North Canton, Ohio 44720

330 497-9396 Telephone 330 497-0772 Fax

ANALYTICAL REPORT

ALUMAX BUFFALO

Lot #: A9B210127

Larry Martin

IT Group/ICF Kaiser Engineers,

QUANTERRA INCORPORATED

Project Manager

June 9, 1999

CASE NARRATIVE

The following report contains the analytical results for one water sample submitted to Quanterra-North Canton by IT Corporation from the Alumax Buffalo site. The sample was received May 20, 1999, according to documented sample acceptance procedures.

Sample submitted for total recoverable petroleum hydrocarbon and total petroleum hydrocarbondiesel range organics analyses was extracted after the recommended holding time had been exceeded.

Quanterra-North Canton utilizes USEPA approved methods in all analytical work. The sample presented in this report was analyzed for the parameters listed on the method reference page in accordance with the method indicated.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

Supplemental QC Information

GC/MS SEMIVOLATILES

Sample ADNY-SUMP-001 had elevated reporting limits due to sample matrix.

METALS

Matrix spike/spike duplicate recoveries were outside the acceptance limits for some analytes. The acceptable LCS analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes which will be flagged with a "N".

GENERAL CHEMISTRY

There are samples reported with dilutions due to limited sample volume.

ANALYTICAL METHODS SUMMARY

A9E210127

PARAMETER			ANALYT METHOI	
Inductive Mercury i PCBs Semivolat Total Rec Trace Ind	le Petroleum Hydrocarbons ly Coupled Plasma (ICP) Metals n Liquid Waste (Manual Cold-Va ile Organic Compounds by GC/MS overable Petroleum Hydrocarbon uctively Coupled Plasma (ICP) Organics by GC/MS	apor) S ns	SW846 SW846 SW846 SW846 SW846 MCAWW SW846 SW846	6010B 7470A 8082 8270C 418.1 6010B
Reference	s:			
MCAWW	"Methods for Chemical Analyst EPA-600/4-79-020, March 1983			•
SW846	"Test Methods for Evaluating Methods", Third Edition, Nove		_	

SAMPLE SUMMARY

A9B210127

 WO #
 SAMPLE#
 CLIENT SAMPLE ID
 DATE
 TIME

 CW30F
 001
 ADNY-SUMP-001
 05/18/99
 09:30

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: ADNY-SUMP-001

GC/MS Volatiles

Lot-Sample #...: A9E210127-001 Work Order #...: CW30F102 Matrix....: WATER

Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99 Prep Date....: 05/28/99 Analysis Date..: 05/28/99

Prep Batch #...: 9152256

Dilution Factor: 1 Method.....: SW846 8260B

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	10	ug/L
Bromomethane	ND	10	ug/L
Vinyl chloride	ND	10	ug/L
Chloroethane	ND	10	ug/L
Methylene chloride	ND	5.0	ug/L
Acetone	ND	20	ug/L
Carbon disulfide	ND	5.0	ug/L
1,1-Dichloroethene	ND	5.0	ug/L
1,1-Dichloroethane	ND	5.0	ug/L
1,2-Dichloroethene	ND	5.0	ug/L
(total)			_
Chloroform	ND	5.0	ug/L
1,2-Dichloroethane	ND	5.0	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5.0	ug/L
Carbon tetrachloride	ND	5.0	ug/L
Bromodichloromethane	ND	5.0	ug/L
1,2-Dichloropropane	ND	5.0	ug/L
cis-1,3-Dichloropropene	ND	5.0	ug/L
Trichloroethene	ND	5.0	ug/L
Dibromochloromethane	ND	5.0	ug/L
1,1,2-Trichloroethane	ND	5.0	ug/L
Benzene	ND	5.0	ug/L
trans-1,3-Dichloropropene	ND	5.0	ug/L
Bromoform	ND	5.0	ug/L
4-Methyl-2-pentanone	ND	20	ug/L
2-Hexanone	ND	20	ug/L
Tetrachloroethene	ND	5.0	ug/L
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L
Toluene	ND	5.0	ug/L
Chlorobenzene	ND	5.0	ug/L
Ethylbenzene	ND	5.0	ug/L
Styrene	ND	5.0	ug/L
Xylenes (total)	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	96	(80 - 12	0)
Toluene-d8	97	(88 - 11	0)
Bromofluorobenzene	107	(86 - 11	5)
Dibromofluoromethane	89	(86 - 11	8)

Client Sample ID: ADNY-SUMP-001

GC/MS Semivolatiles

Lot-Sample #...: A9E210127-001 Work Order #...: CW30F101 Matrix..... WATER

Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99
Prep Date....: 05/22/99 Analysis Date..: 06/01/99

Prep Batch #...: 9142108

Dilution Factor: 20 Method.....: SW846 8270C

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	200	ug/L
bis(2-Chloroethyl)-	ND	200	ug/L
ether			
2-Chlorophenol	ND	200	ug/L
1,3-Dichlorobenzene	ND	200	ug/L
1,4-Dichlorobenzene	ND	200	ug/L
1,2-Dichlorobenzene	ND	200	ug/L
2-Methylphenol	ND	200	ug/L
2,2'-oxybis(1-Chloro- propane)	ND	200	ug/L
4-Methylphenol	ND	200	ug/L
N-Nitrosodi-n-propyl-	ND	200	ug/L
amine			J .
Hexachloroethane	ND	200	ug/L
Nitrobenzene	ND	200	ug/L
Isophorone	ND	200	ug/L
2-Nitrophenol	ND	200	ug/L
2,4-Dimethylphenol	ND	200	ug/L
bis(2-Chloroethoxy) methane	ND	200	ug/L
2,4-Dichlorophenol	ND	200	ug/L
1,2,4-Trichlorobenzene	ND	200	ug/L
Naphthalene	ND	200	ug/L
4-Chloroaniline	ND	200	ug/L
Hexachlorobutadiene	ND	200	ug/L
4-Chloro-3-methylphenol	ND	200	ug/L
2-Methylnaphthalene	ND	200	ug/L
Hexachlorocyclopenta- diene	ND	1000	ug/L
2,4,6-Trichlorophenol	ND	200	ug/L
2,4,5-Trichlorophenol	ND	200	ug/L
2-Chloronaphthalene	ND	200	ug/L
2-Nitroaniline	ND	1000	ug/L
Dimethyl phthalate	ND	200	ug/L
Acenaphthylene	ND	200	ug/L
2,6-Dinitrotoluene	ND	200	ug/L
3-Nitroaniline	ND	1000	ug/L
Acenaphthene	ND	200	ug/L
2,4-Dinitrophenol	ND	1000	ug/L

(Continued on next page)

Client Sample ID: ADNY-SUMP-001

GC/MS Semivolatiles

Tot Comple H	NOTO10107 001	Work Order	# GW2001101	35-4	****
Lot-Sample #:	A9E21012/-001	work Order	# : CW30F101	Matrix	- WATER

		REPORTIN	_
PARAMETER	RESULT_	LIMIT	_ UN
Nitrophenol	ND	1000	ug
Dibenzofuran	ND	200	ug
2,4-Dinitrotoluene	ND	200	ug/
Diethyl phthalate	ND	200	ug/
4-Chlorophenyl phenyl ether	ND	200	ug/I
Fluorene	ND	200	ug/L
4-Nitroaniline	ND	1000	ug/L
4,6-Dinitro-	ND	1000	ug/L
2-methylphenol			
N-Nitrosodiphenylamine	ND	200	ug/L
4-Bromophenyl phenyl ether	ND	200	ug/L
Hexachlorobenzene	ND	200	ug/L
Pentachlorophenol	ND	200	ug/L
Phenanthrene	ND	200	ug/L
Anthracene	ND	200	ug/L
Carbazole	ND	200	ug/L
Di-n-butyl phthalate	ND	200	ug/L
Fluoranthene	ND	200	ug/L
Pyrene	ND	200	ug/L
Butyl benzyl phthalate	ND	200	ug/L
3,3'-Dichlorobenzidine	ND	1000	ug/L
Benzo(a)anthracene	ND	200	ug/L
Chrysene	ND	200	ug/L
ois(2-Ethylhexyl) phthalate	ND	200	ug/L
Di-n-octyl phthalate	ND	200	ug/L
Benzo(b) fluoranthene	ND	200	ug/L
Benzo(k)fluoranthene	ND	200	ug/L
Benzo(a)pyrene	ND	200	ug/L
Indeno(1,2,3-cd)pyrene	ND	200	ug/L
Dibenz(a,h)anthracene	ND	200	ug/L
Benzo(ghi)perylene	ND	200	ug/L
GVIDDOGA TER	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	76 DIL	(40 - 11	
2-Fluorobiphenyl	89 DIL	(45 - 11	
Terphenyl-d14	71 DIL	(33 - 14	
Phenol-d5	66 DIL	(17 - 10	
2-Fluorophenol	74 DIL	(21 - 10	
2,4,6-Tribromophenol	60 DIL	(16 - 12	۵١

Client Sample ID: ADNY-SUMP-001

GC Semivolatiles

Lot-Sample #...: A9E210127-001 Work Order #...: CW30F10V Matrix..... WATER

Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99
Prep Date.....: 05/27/99 Analysis Date..: 06/03/99

Prep Batch #...: 9147120

Dilution Factor: 20 Method.....: SW846 8015B

REPORTING

PARAMETER RESULT LIMIT UNITS
Total Petroleum 29000 2000 ug/L

Hydrocarbons-Extractable

Client Sample ID: ADNY-SUMP-001

GC Semivolatiles

Lot-Sample #: A9E210127-001	Work Order #:	CW30F103	Matrix WATER
-----------------------------	---------------	----------	--------------

Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99
Prep Date....: 05/24/99 Analysis Date..: 06/02/99

Prep Batch #...: 9144134

Dilution Factor: 1 Method.....: SW846 8082

		REPORTIN	r G
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	60	(10 - 13	0)
Decachlorobiphenyl	31	(10 - 11	6)

Client Sample ID: ADNY-SUMP-001

TOTAL Metals

Lot-Sample #...: A9E210127-001 Matrix....: WATER Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99 REPORTING PREPARATION-WORK UNITS RESULT LIMIT METHOD ANALYSIS DATE ORDER # Prep Batch #...: 9144110 Aluminum 0.71 0.20 mg/L SW846 6010B 05/24-05/25/99 CW30F108 Dilution Factor: 1 Arsenic ND 0.010 mq/L SW846 6010B 05/24-05/27/99 CW30F104 Dilution Factor: 1 0.0030 05/24-05/27/99 CW30F105 Lead 0.0078 SW846 6010B mg/L Dilution Factor: 1 ND 0.060 SW846 6010B 05/24-05/25/99 CW30F109 Antimony mg/L Dilution Factor: 1 Barium 0.33 0.20 mg/L SW846 6010B 05/24-05/25/99 CW30F10A Dilution Factor: 1 Selenium ND 0.0050 mg/L SW846 6010B 05/24-05/27/99 CW30F106 Dilution Factor: 1 05/24-05/25/99 CW30F10C Beryllium ND 0.0050 mg/L SW846 6010B Dilution Factor: 1 05/24-05/27/99 CW30F107 ND 0.010 SW846 6010B Thallium mg/L Dilution Factor: 1 Cadmium ND 0.0050 mg/L SW846 6010B 05/24-05/27/99 CW30F10D Dilution Factor: 1 Calcium 75.9 5.0 mq/L SW846 6010B 05/24-05/25/99 CW30F10E Dilution Factor: 1 Chromium 0.015 0.010 SW846 6010B 05/24-05/25/99 CW30F10F mg/L Dilution Factor: 1 Cobalt ND 0.050 mg/L SW846 6010B 05/24-05/25/99 CW30F10G Dilution Factor: 1 05/24-05/25/99 CW30F10H Copper ND 0.025 mg/L SW846 6010B Dilution Factor: 1 05/24-05/25/99 CW30F10J Iron 7.1 0.10 mg/L SW846 6010B Dilution Factor: 1

(Continued on next page)

Client Sample ID: ADNY-SUMP-001

TOTAL Metals

Matrix....: WATER

Lot-Sample #...: A9E210127-001

Dilution Factor: 1

REPORTING PREPARATION-WORK LIMIT PARAMETER RESULT UNITS METHOD ANALYSIS DATE ORDER # Magnesium 12.8 5.0 mg/L SW846 6010B 05/24-05/25/99 CW30F10K Dilution Factor: 1 0.015 SW846 6010B 05/24-05/25/99 CW30F10L Manganese 2.2 mg/L Dilution Factor: 1 0.040 Nickel NDmg/L SW846 6010B 05/24-05/25/99 CW30F10M Dilution Factor: 1 05/24-05/25/99 CW30F10N Potassium 8.1 5.0 mg/L SW846 6010B Dilution Factor: 1 Silver ND 0.010 mg/L SW846 6010B 05/24-05/25/99 CW30F10P Dilution Factor: 1 Sodium 5.0 23.8 SW846 6010B 05/24-05/25/99 CW30F10Q mg/L Dilution Factor: 1 Vanadium ND 0.050 SW846 6010B 05/24-05/25/99 CW30F10R mg/L Dilution Factor: 1 Mercury 0.00020 05/24-05/25/99 CW30F10U ND mg/L SW846 7470A Dilution Factor: 1 Zinc 0.35 0.020 mg/L SW846 6010B 05/24-05/25/99 CW30F10T

Client Sample ID: ADNY-SUMP-001

General Chemistry

Lot-Sample #...: A9E210127-001 Work Order #...: CW30F Matrix.....: WATER

Date Sampled...: 05/18/99 09:30 Date Received..: 05/20/99

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Total Recoverable
 210
 52
 mg/L
 MCAWW 418.1
 06/07/99
 9158206

Petroleum Hydrocarbons

Dilution Factor: 52

QUALITY CONTROL SECTION

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

Quanterra® Incorporated conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. Quanterra requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). Failure of the RPDs to fall within the laboratory-generated acceptance windows requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the MS/MSD RPDs are within acceptance criteria, the batch is acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except for the common laboratory contaminants indicated below.

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	<u>Metals</u>
Methylene chloride Acetone 2-Butanone	Phthalate Esters	Copper Iron Zinc
2 Dutanone		Lead*

^{*} for analyses run on TJA Trace ICP or GFAA only

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

The listed volatile and semivolatile compounds may be present in concentrations up to 5 times the reporting limits. The listed metals may be present in concentrations up to 2 times the reporting limit or must be twenty fold less than the results of the environmental samples. Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. When these values fail to meet acceptance criteria, the data is reviewed to determine the cause. If, in the analyst's judgment, sample matrix effects are indicated, no corrective action is performed. Otherwise, the MS/MSD and the environmental sample used to prepare them are reprepared and reanalyzed.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample are spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

The acceptance criteria do not apply to samples that are diluted. If the dilution is more than 5X, the recoveries will be reported as diluted out. All other surrogate recoveries will be reported. If the LCS, LCSD, or the Method Blank surrogates fail to meet recovery criteria (exception for dilutions), the entire batch of samples is reprepared and reanalyzed.

If the surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank and the associated sample(s) are ND, the batch is acceptable. If the surrogate recoveries are outside criteria for environmental or MS/MSD samples, the batch may be acceptable based on the analyst's judgment that sample matrix effects are indicated.

For the GC/MS BNA methods, the surrogate criteria is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide/PCB, PAH, TPH, and Herbicide methods, the surrogate criteria is that one of two surrogate compounds meet acceptance criteria.

GC/MS Volatiles

Matrix..... WATER Client Lot #...: A9E210127 Work Order #...: CWDWA102-LCS

LCS Lot-Sample#: A9F010000-256 CWDWA103-LCSD

Prep Date....: 05/28/99

Analysis Date..: 05/28/99

Prep Batch #...: 9152256

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
1,1-Dichloroethene	98	(70 - 122)		SW846 8260B
	96	(70 - 122)	2.8 (0-26)	SW846 8260B
Trichloroethene	96	(82 - 112)		SW846 8260B
	9 5	(82 - 112)	0.16 (0-15)	SW846 8260B
Benzene	100	(83 - 110)		SW846 8260B
	100	(83 - 110)	0.28 (0-13)	SW846 8260B
Toluene	102	(86 - 119)		SW846 8260B
	101	(86 - 119)	0.21 (0-16)	SW846 8260B
Chlorobenzene	96	(85 - 115)		SW846 8260B
	97	(85 - 115)	0.23 (0-15)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
1,2-Dichloroethane-d4		91	(80 - 120)	
		93	(80 - 120)	
Toluene-d8		96	(88 - 110)	
		98	(88 - 110)	
Bromofluorobenzene		105	(86 - 115)	
		110	(86 - 115)	
Dibromofluoromethane		90	(86 - 118)	
		92	(86 - 118)	

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9E210127 Work Order #...: CW4HQ102 Matrix...... WATER

LCS Lot-Sample#: A9E220000-108

Prep Date....: 05/22/99 Analysis Date..: 06/01/99

Prep Batch #...: 9142108

Dilution Factor: 1

PARAMETER RECOVERY LIMITS METHOD		PERCENT	RECOVERY	
1,2,4-Trichlorobenzene	PARAMETER			METHOD
Acenaphthene 56 (47 - 145) SW846 8270C 2,4-Dinitrotoluene 65 (60 - 134) SW846 8270C Pyrene 73 (68 - 131) SW846 8270C N-Nitrosodi-n-propyl- 52 (10 - 230) SW846 8270C amine 1,4-Dichlorobenzene 51 (20 - 124) SW846 8270C Pentachlorophenol 41 (14 - 176) SW846 8270C Phenol 51 (10 - 112) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 2-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C SURROGATE RECOVERY Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)				
2,4-Dinitrotoluene 65 (60 - 134) SW846 8270C Pyrene 73 (68 - 131) SW846 8270C N-Nitrosodi-n-propyl- 52 (10 - 230) SW846 8270C amine 1,4-Dichlorobenzene 51 (20 - 124) SW846 8270C Pentachlorophenol 41 (14 - 176) SW846 8270C Phenol 51 (10 - 112) SW846 8270C Phenol 55 (23 - 134) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY SURROGATE Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)		56	(47 - 145)	SW846 8270C
N-Nitrosodi-n-propyl- amine 1,4-Dichlorobenzene 51 (20 - 124) SW846 8270C Pentachlorophenol 41 (14 - 176) SW846 8270C Phenol 51 (10 - 112) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY SURROGATE Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 Phenol-d5 59 (17 - 101) 2-Fluorophenol	_	65	(60 - 134)	SW846 8270C
amine 1,4-Dichlorobenzene 51 (20 - 124) SW846 8270C Pentachlorophenol 41 (14 - 176) SW846 8270C Phenol 51 (10 - 112) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	Pyrene	73	(68 - 131)	SW846 8270C
Pentachlorophenol 41 (14 - 176) SW846 8270C Phenol 51 (10 - 112) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)		52	(10 - 230)	SW846 8270C
Phenol 51 (10 - 112) SW846 8270C 2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	1,4-Dichlorobenzene	51	(20 - 124)	SW846 8270C
2-Chlorophenol 56 (23 - 134) SW846 8270C 4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY SURROGATE RECOVERY Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	Pentachlorophenol	41	(14 - 176)	SW846 8270C
4-Chloro-3-methylphenol 53 (22 - 147) SW846 8270C 4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY SURROGATE Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	Phenol	51	(10 - 112)	SW846 8270C
4-Nitrophenol 46 (30 - 162) SW846 8270C PERCENT RECOVERY SURROGATE RECOVERY LIMITS Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	2-Chlorophenol	56	(23 - 134)	SW846 8270C
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	4-Chloro-3-methylphenol	53	(22 - 147)	SW846 8270C
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	4-Nitrophenol	46	(30 - 162)	SW846 8270C
SURROGATE RECOVERY LIMITS Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)				
Nitrobenzene-d5 60 (40 - 114) 2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)			PERCENT	RECOVERY
2-Fluorobiphenyl 55 (45 - 118) Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	SURROGATE		RECOVERY	LIMITS
Terphenyl-d14 74 (33 - 141) Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	Nitrobenzene-d5		60	(40 - 114)
Phenol-d5 59 (17 - 101) 2-Fluorophenol 57 (21 - 100)	2-Fluorobiphenyl		55	(45 - 118)
2-Fluorophenol 57 (21 - 100)	Terphenyl-d14		74	(33 - 141)
	Phenol-d5		59	(17 - 101)
2,4,6-Tribromophenol 43 (16 - 129)	2-Fluorophenol		57	(21 - 100)
	2,4,6-Tribromophenol		43	(16 - 129)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E210127 Work Order #...: CW98C102-LCS Matrix..... WATER

LCS Lot-Sample#: A9E270000-120 CW98C103-LCSD

Prep Date....: 05/27/99 Analysis Date..: 06/01/99

Prep Batch #...: 9147120

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Total Petroleum	85	(17 - 110)			SW846 8015B
Hydrocarbons-Extractable					
	78	(17 - 110)	8.1	(0-77)	SW846 8015B

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E210127 Work Order #...: CW5Q0102-LCS Matrix..... WATER

LCS Lot-Sample#: A9E240000-134 CW5Q0103-LCSD

Prep Date....: 05/24/99 Analysis Date..: 06/01/99

Prep Batch #...: 9144134

Dilution Factor: 2

RECOVERY	LIMITS	DDD TIMITHO	
	<u> </u>	RPD LIMITS	METHOD
79	(66 - 111)		SW846 8082
84	(66 - 111)	6.2 (0-23)	SW846 8082
88	(65 - 111)		SW846 8082
96	(65 - 111)	8.0 (0-23)	SW846 8082
	PERCENT	RECOVERY	
	RECOVERY	LIMITS	
	79	(10 - 130)	
	81	(10 - 130)	
	76	(10 - 116)	
	84	(10 - 116)	
8	38	96 (65 - 111) PERCENT RECOVERY 79 81 76	PERCENT RECOVERY RECOVERY DIMITS TO (10 - 130) R1 (10 - 136) R6 (10 - 116)

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #:	A9E210127			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Barium	96	110 Prep Ba (87 - 110) Lution Factor: 1	tch #: 9144110 SW846 6010B	05/24-05/25/99	CW5NP12N
Beryllium	96 Di	(85 - 110) Lution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12P
Cadmium	102 Dil	(89 - 115) Lution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12Q
Calcium		(86 - 109) Lution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12R
Chromium		(86 - 112) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12T
Cobalt	94 Dil	(83 - 107) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12U
Copper	101 Dil	(84 - 112) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12V
Iron	95 Dil	(80 - 120) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12W
Magnesium	97 Dil	(88 - 112) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP12X
Selenium	100 Dil	(80 - 120) ution Factor: 1	SW846 6010B	05/24-05/27/99	CW5NP13A
Thallium	97	(80 - 120) ution Factor: 1	SW846 6010B	05/24-05/27/99	CW5NP13C
Aluminum	100 Dil	(87 - 115) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP13D
Antimony	100 Dil	(87 - 108) ution Factor: 1	SW846 6010B	05/24-05/25/99	CW5NP13E
Manganese ,	96 Dil	(88 - 117) ution Factor: 1	SW846 601 <mark>0</mark> B	05/24-05/25/99	CW5NP130

(Continued on next page)

TOTAL Metals

Client Lot #: A9E210127	Matrix WATER
-------------------------	--------------

į.		PERCENT	RECOVERY		PREPARATION-	
ġ.	PARAMETER	RECOVERY	LIMITS	METHOD	ANALYSIS DATE	
ľ	Nickel	9 9	(85 - 116)	SW846 6010B	05/24-05/25/99	CW5NP131
į.		Di	lution Factor: 1			
ĭ	Potassium	93	(87 - 106)	SW846 6010B	05/24-05/25/99	CW5NP132
l		Di	lution Factor: 1			
	Silver	96	(93 - 120)	SW846 6010B	05/24-05/25/99	CW5NP133
ľ		Di	lution Factor: 1		,,	
Į.						
	Sodium	103	(88 - 107)	SW846 6010B	05/24-05/25/99	CW5ND134
Ĺ	50014		lution Factor: 1	24040 00100	05/24-05/25/55	CHOMPIST
ľ		01	tution ractor.			
•	Vanadium	97	(06 111)	CM046 6010D	05/04 05/05/00	CHENDI DE
	vanadium			SW846 6010B	05/24-05/25/99	CWSNPI35
Ì.		Di	lution Factor: 1			
ļ.			(
	Zinc	102	•	SW846 6010B	05/24-05/25/99	CW5NP136
į.		Di	lution Factor: 1			
ı						
•	Mercury	96	(80 - 120)	SW846 7470A	05/24-05/25/99	CW5NP137
		Di	lution Factor: 1			
1						
l.	Arsenic	98	(80 - 120)	SW846 6010B	05/24-05/27/99	CW5NP138
		Di	lution Factor: 1			
,						
1	Lead	90	(80 - 120)	SW846 6010B	05/24-05/27/99	CW5NP139
		Di	lution Factor: 1		,, /	
1	NOTE (S):					

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Lot-Sample #...: A9E210127 Matrix.....: WATER

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	BATCH #
Total Recove	rable	WO#:CWKDK10	2-LCS/CWK	DK103-LCSD L	CS Lot-Sample#: A9F0	70000-206
Petroleum 1	Hydrocarbo	ns				
	80	(75 - 125)		MCAWW 418.1	06/07/99	9158206
	90	(75 - 125) 11	(0-20)	MCAWW 418.1	06/07/99	9158206
		Dilution Factor:	1			

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: A9E210127

Work Order #...: CWDWA101

Matrix..... WATER

MB Lot-Sample #: A9F010000-256

Prep Date....: 05/28/99
Prep Batch #...: 9152256

Analysis Date..: 05/28/99

Dilution Factor: 1

REPORTING

		REPORTI	REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD		
Chloromethane	ND	10	ug/L	SW846 8260B		
Bromomethane	ND	10	ug/L	SW846 8260B		
Vinyl chloride	ND	10	ug/L	SW846 8260B		
Chloroethane	ND	10	ug/L	SW846 8260B		
Methylene chloride	ND	5.0	ug/L	SW846 8260B		
Acetone	ND	20	ug/L	SW846 8260B		
Carbon disulfide	ND	5.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	5.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	5.0	ug/L	SW846 8260B		
<pre>1,2-Dichloroethene (total)</pre>	ND	5.0	ug/L	SW846 8260B		
Chloroform	ND	5.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	5.0	ug/L	SW846 8260B		
2-Butanone	ND	20	ug/L	SW846 8260B		
1,1,1-Trichloroethane	ND	5.0	ug/L	SW846 8260B		
Carbon tetrachloride	ND	5.0	ug/L	SW846 8260B		
Bromodichloromethane	ND	5.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	5.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B		
Trichloroethene	ND	5.0	ug/L	SW846 8260B		
Dibromochloromethane	ND	5.0	ug/L	SW846 8260B		
1,1,2-Trichloroethane	ND	5.0	ug/L	SW846 8260B		
Benzene	ND	5.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B		
Bromoform	ND	5.0	ug/L	SW846 8260B		
4-Methyl-2-pentanone	ND	20	ug/L	SW846 8260B		
2-Hexanone	ND	20	ug/L	SW846 8260B		
Tetrachloroethene	ND	5.0	ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	SW846 8260B		
Toluene	ND	5.0	ug/L	SW846 8260B		
Chlorobenzene	ND	5.0	ug/L	SW846 8260B		
Ethylbenzene	ND	5.0	ug/L	SW846 8260B		
Styrene	ND	5.0	ug/L	SW846 8260B		
Xylenes (total)	ND	5.0	ug/L	SW846 8260B		
	PERCENT	RECOVER	Y			
SURROGATE	RECOVERY	LIMITS				
1,2-Dichloroethane-d4	91	(80 - 1:	20)			
Toluene-d8	96	(88 - 1				
Bromofluorobenzene	110	(86 - 1	-			
Dibromofluoromethane	89	(86 - 1	-			
<u></u>		, , , ,	,			

NOTE(S):

GC/MS Semivolatiles

Client Lot #...: A9E210127

Work Order #...: CW4HQ101

Matrix....: WATER

MB Lot-Sample #: A9E220000-108

Prep Date....: 05/22/99

Analysis Date..: 06/01/99

Prep Batch #...: 9142108

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Phenol	ND	10	ug/L	SW846 8270C
bis(2-Chloroethyl)-	ND	10	ug/L	SW846 8270C
ether				
2-Chlorophenol	ND	10	ug/L	SW846 8270C
1,3-Dichlorobenzene	ND	10	ug/L	SW846 8270C
1,4-Dichlorobenzene	ND	10	ug/L	SW846 8270C
1,2-Dichlorobenzene	ND	10	ug/L	SW846 8270C
2-Methylphenol	ND	10	ug/L	SW846 8270C
2,2'-oxybis(1-Chloro-	ND	10	ug/L	SW846 8270C
propane)				
4-Methylphenol	ND	10	ug/L	SW846 8270C
N-Nitrosodi-n-propyl-	ND	10	ug/L	SW846 8270C
amine				
Hexachloroethane	ND	10	ug/L	SW846 8270C
Nitrobenzene	ND	10	ug/L	SW846 8270C
Isophorone	ND	10	ug/L	SW846 8270C
2-Nitrophenol	ND	10	ug/L	SW846 8270C
2,4-Dimethylphenol	ND	10	ug/L	SW846 8270C
bis(2-Chloroethoxy)	ND	10	ug/L	SW846 8270C
methane				
2,4-Dichlorophenol	ND	10	ug/L	SW846 8270C
1,2,4-Trichlorobenzene	ND	10	ug/L	SW846 8270C
Naphthalene	ND	10	ug/L	SW846 8270C
4-Chloroaniline	ND	10	ug/L	SW846 8270C
Hexachlorobutadiene	ND	10	ug/L	SW846 8270C
4-Chloro-3-methylphenol	ND	10	ug/L	SW846 8270C
2-Methylnaphthalene	ND	10	ug/L	SW846 8270C
Hexachlorocyclopenta-	ND	50	ug/L	SW846 8270C
diene				
2,4,6-Trichlorophenol	ND	10	ug/L	SW846 8270C
2,4,5-Trichlorophenol	ND	10	ug/L	SW846 8270C
2-Chloronaphthalene	ND	10	ug/L	SW846 8270C
2-Nitroaniline	ND	50	ug/L	SW846 8270C
Dimethyl phthalate	ND	10	ug/L	SW846 8270C
Acenaphthylene	ND	10	ug/L	SW846 8270C
2,6-Dinitrotoluene	ND	10	ug/L	SW846 8270C
3-Nitroaniline	ND	50	ug/L	SW846 8270C
Acenaphthene	ND	10	ug/L	SW846 8270C
2,4-Dinitrophenol	ND	50	ug/L	SW846 8270C
4-Nitrophenol	ND	50	ug/L	SW846 8270C
Dibenzofuran	ND	10	ug/L	SW846 8270C

GC/MS Semivolatiles

Client Lot #: A9E210127	Work Order	#: CW4HQ	Matrix WATER	
		REPORTING		
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHOD
2,4-Dinitrotoluene	ND	10	ug/L	SW846 8270C
Diethyl phthalate	ND	10	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	10	ug/L	SW846 8270C
ether				
Fluorene	ND	10	ug/L	SW846 8270C
4-Nitroaniline	ND	50	ug/L	SW846 8270C
4,6-Dinitro-	ND	50	ug/L	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	10	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	10	ug/L	SW846 8270C
ether			-	
Hexachlorobenzene	ND	10	ug/L	SW846 8270C
Pentachlorophenol	ND	10	ug/L	SW846 8270C
Phenanthrene	ND	10	ug/L	SW846 8270C
Anthracene	ND	10	ug/L	SW846 8270C
Carbazole	ND	10	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	10	ug/L	SW846 8270C
Fluoranthene	ND	10	ug/L	SW846 8270C
Pyrene	ND	10	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	10	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	50	ug/L	SW846 8270C
Benzo(a)anthracene	ND	10	ug/L	SW846 8270C
Chrysene	ND	10	ug/L	SW846 8270C
bis(2-Ethylhexyl)	ND	10	ug/L	SW846 8270C
phthalate			-3, -	2
Di-n-octyl phthalate	ND	10	ug/L	SW846 8270C
Benzo(b) fluoranthene	ND	10	ug/L	SW846 8270C
Benzo(k) fluoranthene	ND	10	ug/L	SW846 8270C
Benzo(a) pyrene	ND	10	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	SW846 8270C
Dibenz (a,h) anthracene	ND	10	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	10	ug/L	SW846 8270C
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	73	(40 - 1:	14)	
2-Fluorobiphenyl	68	(4 5 - 1:		
Terphenyl-d14	86	(33 - 14		
Phenol-d5	70	(17 - 10	•	
2-Fluorophenol	68	(21 - 10		
2,4,6-Tribromophenol	48	(16 - 1:		
•		,	<i>'</i>	

NOTE (S):

GC Semivolatiles

Client Lot #...: A9E210127

Work Order #...: CW98C101

Matrix..... WATER

METHOD

MB Lot-Sample #: A9E270000-120

Prep Date....: 05/27/99

Prep Batch #...: 9147120

Analysis Date..: 06/01/99 Dilution Factor: 1

REPORTING

PARAMETER RESULT LIMIT UNITS Total Petroleum

ND100 ug/L SW846 8015B

Hydrocarbons-Extractable

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E210127

Work Order #...: CW5Q0101

Matrix..... WATER

MB Lot-Sample #: A9E240000-134

Prep Date....: 05/24/99

Analysis Date..: 06/01/99 Prep Batch #...: 9144134

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Aroclor 1016	ND	1.0	ug/L	SW846 8082
Aroclor 1221	ND	1.0	ug/L	SW846 8082
Aroclor 1232	ND	1.0	ug/L	SW846 8082
Aroclor 1242	ND	1.0	ug/L	SW846 8082
Aroclor 1248	ND	1.0	ug/L	SW846 8082
Aroclor 1254	ND	1.0	ug/L	SW846 8082
Aroclor 1260	ND	1.0	ug/L	SW846 8082
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Tetrachloro-m-xylene	76	(10 - 130	1)	
Decachlorobiphenyl	96	(10 - 116	;)	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #...: A9E210127

Matrix....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MD Y (# DODG400	00 110 Prom Bo	tan dia	27.4.4.7.1.0		
Aluminum	ND	00-110 Prep Ba 0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP12E
Arsenic	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/27/99	CW5NP129
Antimony	ND	0.060 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP12F
Lead	ND	0.0030 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/27/99	CW5NP12A
Barium	ND	0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11P
Selenium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/27/99	CW5NP12C
Beryllium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11Q
Thallium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/27/99	CW5NP12D
Cadmium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11R
Calcium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11T
Chromium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11U
Cobalt	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11V
Copper	ND	0.025 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11W
Iron	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP11X
Magnesium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP120

TOTAL Metals

Client Lot #...: A9E210127

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Manganese	ND ND	0.015 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	_
Nickel	ND	0.040 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP122
Potassium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP123
Silver	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP124
Sodium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP125
Vanadium	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP126
Mercury	ND	0.00020 Dilution Factor: 1	mg/L	SW846 7470A	05/24-05/25/99	CW5NP128
Zinc	ND	0.020 Dilution Factor: 1	mg/L	SW846 6010B	05/24-05/25/99	CW5NP127
NOTE (S):						

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: A9E210127

Matrix..... WATER

REPORTING
PARAMETER
RESULT
LIMIT
UNITS
METHOD
ANALYSIS DATE
BATCH #

Total Recoverable
Petroleum Hydrocarbons
ND
1.0
mg/L
MCAWW 418.1
PREPARATIONPREP
ANALYSIS DATE
BATCH #

METHOD
ANALYSIS DATE
APF070000-206
BATCH #

MCAWW 418.1
06/07/99
9158206

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9E210127 Work Order #...: CW44612H-MS Matrix..... WATER

MS Lot-Sample #: A9E210236-011 CW44612J-MSD

Date Sampled...: 05/19/99 14:20 Date Received..: 05/21/99 Prep Date....: 05/22/99 Analysis Date..: 06/01/99

Prep Batch #...: 9142108

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,2,4-Trichlorobenzene	45	(44 - 142)			SW846 8270C
	50	(44 - 142)	9.9	(0-28)	SW846 8270C
Acenaphthene	53	(47 - 145)			SW846 8270C
-	54	(47 - 145)	2.6	(0-28)	SW846 8270C
2,4-Dinitrotoluene	69	(39 - 139)			SW846 8270C
	68	(39 - 139)	0.76	(0-22)	SW846 8270C
Pyrene	84	(52 - 115)			SW846 8270C
	79	(52 - 115)	7.0	(0-25)	SW846 8270C
N-Nitrosodi-n-propyl- amine	54	(10 - 230)			SW846 8270C
	54	(10 - 230)	0.06	(0-55)	SW846 8270C
1,4-Dichlorobenzene	46	(20 - 124)			SW846 8270C
	51	(20 - 124)	10	(0-32)	SW846 8270C
Pentachlorophenol	56	(14 - 176)			SW846 8270C
	52	(14 - 176)	6.2	(0-49)	SW846 8270C
Phenol	48	(10 - 112)			SW846 8270C
	52	(10 - 112)	7.8	(0-23)	SW846 8270C
2-Chlorophenol	53	(23 - 134)			SW846 8270C
	57	(23 - 134)	8.0	(0-29)	SW846 8270C
4-Chloro-3-methylphenol	54	(22 - 147)			SW846 8270C
	54	(22 - 147)	0.33	(0-37)	SW846 8270C
4-Nitrophenol	65	(10 - 132)			SW846 8270C
	58	(10 - 132)	12	(0-47)	SW846 8270C
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	
Nitrobenzene-d5		56		(40 - 11	4)
		60		(40 - 11	4)
2-Fluorobiphenyl		52		(45 - 11	8)
		54		(45 - 11	8)
Terphenyl-d14		86		(33 - 14	1)
		78		(33 - 14	1)
Phenol-d5		55		(17 - 10	·
		59		(17 - 10	
2-Fluorophenol		52		(21 - 10	
		57		(21 - 10	
2,4,6-Tribromophenol		44		(16 - 12	•
		45		(16 - 12	9)

NOTE (S):

TOTAL Metals

Client Lot : Date Sample		10127 0/99 07:27 Date Received	: 05/22/99	Matrix: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Samp	le #: A9E22 121 N 114	20183-001 Prep Batch #. (80 - 120) (80 - 120) 2.6 (0-20) Dilution Factor: 1	SW846 6010B	05/24-05/25/99 CW5GE15E 05/24-05/25/99 CW5GE15F
Antimony	95 92	(80 - 120) (80 - 120) 3.1 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE15H 05/24-05/25/99 CW5GE15J
Arsenic	95 94	(80 - 120) (80 - 120) 0.49 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/27/99 CW5GE151 05/24-05/27/99 CW5GE152
Barium	93 91	(80 - 120) (80 - 120) 2.0 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13A 05/24-05/25/99 CW5GE13C
Beryllium	92 89	(80 - 120) (80 - 120) 3.3 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13E 05/24-05/25/99 CW5GE13F
Cadmium	9 4 90	(80 - 120) (80 - 120) 5.2 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13H 05/24-05/25/99 CW5GE13J
Calcium	92 87	(80 - 120) (80 - 120) 4.4 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13L 05/24-05/25/99 CW5GE13M
Chromium	96 95	(80 - 120) (80 - 120) 0.35 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/27/99 CW5GE13P 05/24-05/27/99 CW5GE13Q
Cobalt	91 88	(80 - 120) (80 - 120) 3.2 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13T 05/24-05/25/99 CW5GE13U
Copper	96 94	(80 - 120) (80 - 120) 1.8 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE13W 05/24-05/25/99 CW5GE13X
Iron	69 N 40 N	(80 - 120) (80 - 120) 7.3 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/24-05/25/99 CW5GE141 05/24-05/25/99 CW5GE142

TOTAL Metals

Client Lot #...: A9E210127 Matrix.....: WATER

Date Sampled...: 05/20/99 07:27 Date Received..: 05/22/99

	PERCENT	RECOVERY	RPD	Marion	PREPARATION-	WORK
PARAMETER	RECOVERY		<u>LIMITS</u>	METHOD	ANALYSIS DATE	
Lead	92	(80 - 120)	(0.00)	SW846 6010B	05/24-05/27/99	
	92	(80 - 120) 0.32 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/27/99	CW5GE155
Magnesium	96	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE144
	95	(80 - 120) 0.96 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE145
Manganese	90	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE147
-	86	(80 - 120) 3.8 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE148
Mercury	104	(80 - 120)		SW846 7470A	05/24-05/25/99	CW5GE14W
-	103	(80 - 120) 1.2 Dilution Factor: 1	(0-20)	SW846 7470A	05/24-05/25/99	CW5GE14X
Nickel	95	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE14A
	91	(80 - 120) 4.1 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE14C
Potassium	94	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE14E
	93	(80 - 120) 0.52 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE14F
Selenium	95	(80 - 120)		SW846 6010B	05/24-05/27/99	CW5GE157
	95	(80 - 120) 0.07 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/27/99	CW5GE158
Silver	97	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE14H
	97	(80 - 120) 0.0 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE14J
Sodium	95	(80 - 120)		SW846 6010B	05/24-05/25/99	CW5GE14L
	94	(80 - 120) 0.83 Dilution Factor: 1	(0-20)	SW <mark>8</mark> 46 6010B	05/24-05/25/99	CW5GE14M
Thallium	97	(80 - 120)		SW846 6010B	05/24-05/27/99	CW5GE15A
	97	(80 - 120) 0.07	(0-20)	SW846 6010B	05/24-05/27/99	CW5GE15C
		Dilution Factor: 1				
Vanadium	93	(80 - 120)		SW846 6010B	05/24-05/25/99	
	90	(80 - 120) 2.6 Dilution Factor: 1	(0-20)	SW846 6010B	05/24-05/25/99	CW5GE14Q

TOTAL Metals

Client Lot #...: A9E210127 Matrix.....: WATER

Date Sampled...: 05/20/99 07:27 Date Received..: 05/22/99

PERCENT RECOVERY RPD PREPARATION-WORK PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER # 92 (80 - 120) Zinc SW846 6010B 05/24-05/25/99 CW5GE14T 93 (80 - 120) 0.67 (0-20) SW846 6010B 05/24-05/25/99 CW5GE14U

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

ICF KAISER ENGINEERS

5147

ž

Received by: (Signature) Received by: (Signature) REMARKS Date/Time Date/Time Remarks Relinquished by: (Signature) Relinquished by: (Signature) 5-20.99 9:15 Date/Time **CHAIN OF CUSTODY RECORD** TAINERS SON Ö Ы 0 Received for Laboratory by: (Signature) Received by: (Signature) Received by: (Signature) STATION LOCATION 200 X ADNY-SUMP-001 2/19/99 10:00 SAMPLERS: (Signature) Date/Time Date/Time PROJECT NAME 8AA9 COMP A BNY - 501 5/19/5 07:30 TIME Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) DATE PROJ. NO. STA. NO.

820-5

RELEASE OF VALIDATED DATA

Project: Alumax – Buffalo

Date: June 23, 1999

SDG: A9E070141

Reviewer: Edward SedImyer

Validation was performed on the volatile, semivolatile, PCB, extractable petroleum hydrocarbons, total recoverable petroleum hydrocarbons, and metal analytical results for 17 soil and 2 aqueous samples collected at the Alumax project site. Quanterra Inc. (North Canton, OH) analyzed the samples using SW-846 methods. The data validation was performed in accordance with the *National Functional Guidelines (Organics and Inorganics* 2/94), as applied to SW-846 methodology. Samples in this SDG included:

Field Sample ID	Lab Sample ID	Field Sample ID	Lab Sample ID
ADNY-SWALE-SS01	A9E070141-001	TRIP BLANK TB01	A9E070141-002
ADNY-NIMO-SS01	A9E070141-003	ADNY-WALL-SS01	A9E070141-004
ADNY-PW1	A9E070141-005	ADNY-NS-SD01A	A9E070141-006
ADNY-SS-SD001	A9E070141-007	ADNY-SDA-SS01	A9E070141-008
ADNY-SDA-SS02	A9E070141-009	ADNY-PTO-SS1	A9E070141-010
ADNY-T1-SS01	A9E070141-011	ADNY-WOT-SS01	A9E070141-012
ADNY-WOT-SS02	A9E070141-013	EB-1 (Equipment blank)	A9E070141-014
ADNY-FM-SS01	A9E070141-015	ADNY-UT-SS01	A9E070141-016
ADNY-UT-SS02	A9E070141-017	ADNY-DTK-SS01	A9E070141-018
ADNY-UT-SS03	A9E070141-019		

The data package contained only QC summary forms so raw data review and quantification verification could not be performed. The following QC parameters were reviewed:

VOLATILE ORGANICS

Method: SW-846 Method 8260B

<u>Holding Time</u>: The holding time requirements are 7 days for unpreserved aqueous samples and 14 days for preserved aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No compounds were detected in the method blank associated with this data package.

<u>Surrogates</u>: The following samples had surrogates outside of criteria and have been qualified "J" accordingly:

TRIP BLANK TB01 – had a low dibromofluoromethane recovery (69%, below the 86-118% criteria). All results have been qualified "J" as estimated.

ADNY-SWALE-SS01 – had low toluene-d8 and bromofluorobenzene recoveries (74%, below the 86-122% criteria and 59%, below the 60-137% criteria, respectively). All results have been qualified "J" as estimated.

ADNY-SDA-SS01 – had high toluene-d8 and bromofluorobenzene recoveries (176%, above the 86-122% criteria and 152%, above the 60-137% criteria, respectively). All detects have been qualified "J" as estimated, no action was taken on the non-detects.

ADNY-SDA-SS02 - had high toluene-d8 and bromofluorobenzene recoveries (134%, above the 86-122% criteria and 140%, above the 60-137% criteria, respectively). All detects have been qualified "J" as estimated, no action was taken on the non-detects.

ADNY-UT-SS03 – had high toluene-d8 recovery (134%, above the 86-122% criteria). No detects were reported so no action was taken on the high surrogate recovery.

All other surrogate recoveries met criteria for samples associated with this data package.

Matrix Spike/Duplicate: The MS/MSD associated with batch 9138132 had high recoveries for 1,1-dichloroethene (118% and 127%) and trichloroethene (120%) above the 75-113% criteria. No action was taken since the LCS met recovery criteria.

The MS/MSD associated with batch 9139168 had a high recovery for trichloroethene (114%, above the 75-113% criteria). No action was taken since the LCS met recovery criteria.

The MS/MSD associated with batch 9131235 had low recoveries for chlorobenzene (78% and 79%, below the 81-113% criteria). No action was taken since the LCS met recovery criteria.

<u>Laboratory Control Sample</u>: The LCSs associated with this data package met accuracy criteria.

<u>Reported CRQLs</u>: Samples ADNY-WALL-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, and ADNY-WOT-SS02 required dilutions for target and non-target compounds. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

Summary: The volatile results were acceptable as reported with the following qualifications:

Compound	Sample	Qualifier
All compounds	TRIP BLANK TB01 and ADNY-SWALE- SS01	J
All detections	ADNY-SDA-SS01 and ADNY-SDA-SS02	J

SEMIVOLATILE ORGANICS

<u>Holding Time</u>: The holding time requirements are 7 days to extraction for aqueous samples (preserved or unpreserved), 14 days to extraction for soil samples, and 40 days from extraction to analysis for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No compounds were detected in the method blanks associated with this data package.

<u>Surrogates</u>: All surrogate recoveries met criteria for samples associated with this data package.

<u>Matrix Spike/Duplicate</u>: The MS/MSDs associated with this data package met accuracy and precision criteria.

<u>Laboratory Control Sample</u>: The LCSs associated with this data package met accuracy criteria.

Reported CRQLs: Sample AADNY-WALL-SS01, ADNY-NS-SD01A, and ADNY-SS-SD001, ADNY-SDA-SS02, ADNY-WOT-SS01, ADNY-WOT-SS02 required a dilution due to high concentrations of target and non-target compounds. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The semivolatile results were acceptable as reported and no qualification of the data was necessary.

PCBs

Method: SW-846 Method 8082.

<u>Holding Time</u>: The holding time requirements are 7 days to extraction for aqueous samples (preserved or unpreserved), 14 days to extraction for soil samples, and 40 days from extraction to analysis for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No PCBs were detected in the method blanks associated with this data package.

<u>Surrogates</u>: Sample ADNY-SWALE-SS01 had a high decachlorobiphenyl recovery (143%, above the 10-138% criteria). All detections have been qualified "J" as estimated.

Sample ADNY-NS-SD01A had a high decachlorobiphenyl recovery (152%, above the 10-138% criteria). All detections have been qualified "J" as estimated.

Sample ADNY-WOT-SS02 had a high decachlorobiphenyl recovery (408%, above the 10-138% criteria). All detections have been qualified "J" as estimated.

<u>Matrix Spike/Duplicate</u>: The spike recoveries for the MS/MSD associated with this data package could not be calculated due to a dilution. No action was necessary.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

<u>Reported CRQLs</u>: Sample ADNY-PTO-SS1 required a dilution due to a high concentration of a target compound. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The PCB results were acceptable as reported and no qualification of the data was necessary.

EXTRACTABLE PETROLEUM HYDROCARBONS

Method: SW-846 Method 8015B.

<u>Holding Time</u>: The holding time requirements are 7 days to extraction for aqueous samples (preserved or unpreserved), 14 days to extraction for soil samples, and 40 days from extraction to analysis for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Matrix Spike/Duplicate</u>: The spike recoveries for the MS/MSD associated with this data package could not be calculated due to a dilution. No action was necessary.

<u>Laboratory Blanks</u>: No petroleum hydrocarbons were detected in the method blank associated with this data package.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

Reported CRQLs: Sample ADNY-WOT-SS01 and ADNY-WOT-SS02 required dilutions due to high concentrations of petroleum hydrocarbons. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The petroleum hydrocarbon results were acceptable as reported and no qualification of the data was necessary.

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Method: MCAWW 418.1.

<u>Holding Time</u>: The holding time requirements are 28 days for aqueous and soil samples. All samples were analyzed within the holding time criteria.

<u>Laboratory Blanks</u>: No petroleum hydrocarbons were detected in the method blank associated with this data package.

<u>Matrix Spike/Duplicate</u>: The MS/MSD associated with this data package had low recoveries (7.5% and 16.0%, below the 75-125% criteria). No action was taken since the LCS met recovery criteria.

<u>Laboratory Control Sample</u>: The LCS associated with this data package met accuracy criteria.

Reported CRQLs: Sample ADNY-WOT-SS01 and ADNY-WOT-SS02 required a dilution due to high concentrations of petroleum hydrocarbons. All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The petroleum hydrocarbon results were acceptable as reported and no qualification of the data was necessary.

METALS

<u>Holding Time</u>: The technical holding time requirement is 28 days for mercury and 180 days for all other metals. All of the samples were analyzed within the holding times.

<u>Laboratory Blanks</u>: Zinc (0.034 mg/L) was detected in the method blank associated with batch# 9130113. However, zinc was not detected in any associated samples so no qualification of the data was necessary.

No other metals greater than the reporting limits were detected in the method blanks associated with this data package.

<u>Laboratory Control Sample</u>: Silver had a high recovery (152%, above the 81-120% criteria). The detected silver results for sample ADNY-SS-SD001 has been qualified "J" as estimated.

Matrix Spike Recovery: The MS/MSD performed on sample ADNY-SWALE-SS01 had recoveries outside of the 80-120% criteria for antimony (73% and 72%), lead (13% and 0%), calcium (48%), chromium (140%), copper (456%), and zinc (147%). The RPDs were outside of the 20% for lead (200%), chromium (28%), and copper (75%). The following results have been qualified "J" as estimated:

Antimony – All samples except ADNY-PW1 and EB1.

Lead - All samples except ADNY-PW1 and EB1.

Calcium – All samples except ADNY-PW1 and EB1.

Chromium – ADNY-SWALE-SS01, ADNY-Wall-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, ADNY-SDA-SS01, ADNY-SDA-SS02, ADNY-WOT-SS01, ADNY-WOT-SS02, ADNY-UT-SS01, ADNY-UT-SS03, ADNY-DTK-SS01, and ADNY-UT-SS03.

Copper – ADNY-SWALE-SS01, ADNY-Wall-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, ADNY-SDA-SS01, ADNY-SDA-SS02, ADNY-WOT-SS01, ADNY-WOT-SS02, ADNY-FM-SS01, ADNY-UT-SS01, ADNY-UT-SS03.

Zinc - ADNY-SWALE-SS01, ADNY-Wall-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, ADNY-SDA-SS01, ADNY-SDA-SS02, ADNY-WOT-SS01, ADNY-WOT-SS02, ADNY-HSS01, ADNY-UT-SS01, ADNY-UT-SS03.

Reported CRQLs: All quantitation limits were reported correctly.

<u>Sample Paperwork</u>: The chain-of-custody was properly completed, and all samples were properly preserved and received in good condition.

<u>Summary</u>: The metals results were qualified as follows:

Metal	Samples	Qualifier
Silver	ADNY-SS-SD001	J
Antimony, lead, calcium	All samples except ADNY-PW1 and EB1	J
Chromium, copper, zinc	ADNY-SWALE-SS01, ADNY-WALL-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, ADNY-SDA-SS01, ADNY-WOT-SS02, ADNY-WOT-SS02, ADNY-FM-SS01, ADNY-UT-SS01, ADNY-UT-SS03, ADNY-UT-SS03	J

Quanterra Incorporated 4101 Shuffel Drive, NW North Canton, Ohio 44720

330 497-9396 Telephone 330 497-0772 Fax

ANALYTICAL REPORT

PROJECT NO. ADNY/782745

ADNY

Lot #: A9E070141

Larry Martin

IT Group/ICF Kaiser Engineers,

QUANTERRA INCORPORATED

Gary L. Wood Project Manager

June 18, 1999

CASE NARRATIVE

The following report contains the analytical results for seventeen solid samples and two water samples submitted to Quanterra-North Canton by IT Group/ICF Kaiser Engineers, Inc. from the ADNY site, project number 782745. The samples were received May 6, 7, and 8, 1999, according to documented sample acceptance procedures.

Samples submitted for gross alpha, gross beta, and gamma spectroscopy analyses were performed at Quanterra-St. Louis. These results are presented in this report.

Quanterra-North Canton utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the method reference page in accordance with the method indicated. Results were provided by facsimile transmission to Bill Randall on May 18 and 25, 1999.

The results included in this report have been reviewed for compliance with the laboratory QA/QC plan. All data have been found to be compliant with laboratory protocol.

The samples were received at the laboratory at temperatures of 2.9, 1.0, and 0.6° C.

Supplemental QC Information

GC/MS VOLATILES

The MS/MSD failed recovery criteria associated with batch 9138132. The check sample associated with this batch was in control. This is believed to be a matrix effect; therefore, no further corrective action was taken.

Surrogate recovery is out in sample TRIP BLANK TB01. Reextraction and/or reanalysis was performed in accordance with exceeded criteria corrective action required by QAPjP. Reextraction and/or reanalysis achieved similar results; therefore, the best data is reported.

Surrogate recovery is out in sample ADNY-SWALE-SS01. The associated QC was acceptable. No further corrective action taken. Surrogates were out due to probable matrix effect.

Internal standard areas were outside acceptance limits for samples ADNY-UT-SS02, ADNY-UT-SS03, ADNY-SDA-SS02, ADNY-WOT-SS01, and ADNY-SDA-SS01 due to matrix effects.

Samples ADNY-WA11-SS01, ADNY-NS-SD01A, ADNY-SS-SD001, and ADNY-WOT-SS02 were diluted during analysis due to high concentrations of unlisted compounds (TICs) in this sample.

CASE NARRATIVE (CONTINUED)

GC/MS SEMIVOLATILES

Samples ADNY-NS-SD01A, ADNY-WOT-SS01, and ADNY-WOT-SS02 had elevated reporting limits due to sample matrix or TICs.

METALS

Method blank contamination occurred. All affected analytes which were not detected in the sample at levels greater than the reporting limits are flagged with "MBE".

Matrix spike/spike duplicate recoveries were outside the acceptance limits for some analytes. The acceptable LCS analysis data indicated that the analytical system was operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Report for the affected analytes which will be flagged with a "N".

Matrix spike recovery and relative percent difference (RPD) data were not calculated for some analytes due to the sample concentration reading greater than four times the spike amount. See the Matrix Spike Report for the affected analytes which will be flagged with NC, MSB.

Matrix spike/spike duplicate relative percent difference (RPD) exceeded the acceptance limits for some analytes. The imprecision may be attributed to sample heterogeneity. See the Matrix Spike Report for the affected analytes which will be flagged with "*".

Dilutions were performed on sample(s) in this lot due to high non-target constituent concentrations. Results will be flagged with "G" on the Report Pages.

Dilutions were performed on sample(s) in this lot due to high target constituent concentrations. See Report Pages for the dilution performed on each element.

Due to a problem with the * spike program, not all elements are included on the Matrix Spike Sample Report. The Matrix Spike Sample Report for the batch is included to prove that we perform a Matrix Spike/Matrix Spike Duplicate per QC batch requirements.

The LCS for silver associated with batch 9133259 exceeded control limits. Since all associated results are ND, the results were accepted.

CASE NARRATIVE (CONTINUED)

GENERAL CHEMISTRY

Matrix spike/matrix spike duplicate (MS/MSD) percent recoveries were outside the acceptance limits for some parameters. The acceptable laboratory control sample analysis data indicated that the analytical systems were operating within control and this condition is most likely due to matrix interference. See the Matrix Spike Sample Evaluation Reports for the affected parameters which will be flagged with N.

There are samples reported with dilutions due to either high target analytes or matrix interference.

ANALYTICAL METHODS SUMMARY

A9E070141

PARAMETER	ANALYTICAL METHOD
Extractable Petroleum Hydrocarbons	SW846 8015B
Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A
Mercury in Solid Waste (Manual Cold-Vapor)	SW846 7471A
PCBs	SW846 8082
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Total Recoverable Petroleum Hydrocarbons	MCAWW 418.1
Total Residue as Percent Solids	MCAWW 160.3 MOD
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Volatile Organics by GC/MS	SW846 8260B

References:

MCAWW	"Methods	for Cher	mical A	malysi	s of	Water	and	Wastes",
	EPA-600/4	4-79-020	, March	1983	and	subsequ	lent	revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A9E070141

<u>wo #</u>	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
CVHT1	001	ADNY-SWALE-SS01	05/05/99	10:00
CVHT3	002	TRIP BLANK TB01	05/05/99	
CVHT4	003	ADNY-NIMO-SS01	05/05/99	11:10
CVHT7	004	ADNY-WA11-SS01	05/05/99	12:30
CVHT9	005	ADNY - PW1	05/05/99	15:20
CVHTD	006	ADNY-NS-SD01A	05/05/99	17:50
CVHTN	007	ADNY-SS-SD001	05/06/99	09:40
CVHTQ	008	ADNY-SDA-SS01	05/06/99	12:50
CVHTV	009	ADNY-SDA-SS02	05/06/99	13:35
CVHTW	010	ADNY-PTO-SS1	05/06/99	14:25
CVHV2	011	ADNY-T1-SS01	05/06/99	14:55
CVHV5	012	ADNY-WOT-SS01	05/06/99	15:40
CVHV8	013	ADNY-WOT-SS02	05/06/99	17:15
CVKLK	014	EB-1 (EQUIPMENT BLANK)	05/07/99	07:45
CVKLL	015	ADNY-FM-SS01	05/07/99	08:10
CVKLM	016	ADNY-UT-SS01	05/07/99	09:50
CVKLN	017	ADNY-UT-SS02	05/07/99	10:45
CVKLP	018	ADNY-DTK-SS01	05/07/99	13:40
CVKLQ	019	ADNY-UT-SS03	05/07/99	15:45

NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: ADNY-SWALE-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-001 Work Order #...: CVHT1103 Matrix.....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 1.01

*** Moisture....:** 53 **Method.....:** SW846 8260B

		REPORTIN	rG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane		22	ug/kg
Bromomethane	ND	22	ug/kg
Vinyl chloride	ND	22	ug/kg
Chloroethane	ND	22	ug/kg
Methylene chloride	ND	11	ug/kg
Acetone	ND	43	ug/kg
Carbon disulfide	ND	11	ug/kg
1,1-Dichloroethene	ND	11	ug/kg
1,1-Dichloroethane	ND	11	ug/kg
1,2-Dichloroethene (total)	ND	11	ug/kg
Chloroform	ND	11	ug/kg
1,2-Dichloroethane	ND	11	ug/kg
2-Butanone	ND	43	ug/kg
1,1,1-Trichloroethane	ND	11	ug/kg
Carbon tetrachloride	ND	11	ug/kg
Bromodichloromethane	ND	11	ug/kg
1,2-Dichloropropane	ND	11	ug/kg
cis-1,3-Dichloropropene	ND	11	ug/kg
Trichloroethene	ND	11	ug/kg
Dibromochloromethane	ND	11	ug/kg
1,1,2-Trichloroethane	ND	11	ug/kg
Benzene	ND	11	ug/kg
trans-1,3-Dichloropropene	ND	11	ug/kg
Bromoform	ND	11	ug/kg
4-Methyl-2-pentanone	ND	43	ug/kg
2-Hexanone	ND	43	ug/kg
Tetrachloroethene	ND	11	ug/kg
1,1,2,2-Tetrachloroethane	ND	11	ug/kg
Toluene	ND	11	ug/kg
Chlorobenzene	ND	11	ug/kg
Ethylbenzene	ND	11	ug/kg
Styrene	ND	11	ug/kg
Xylenes (total)	ND	22	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroeth <mark>an</mark> e-d4	.78	(75 - 11	•
Toluene-d8	74 *	(86 - 12	
Bromofluorobenz <mark>en</mark> e	59 *	(60 - 13	
Dibromofluoromethane	73	(70 - 13	5)

Client Sample ID: ADNY-SWALE-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-001 Work Order #...: CVHT1103 Matrix.....: SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-SWALE-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-001 Work Order #...: CVHT1102 Matrix.....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/20/99

Prep Batch #...: 9131122

Dilution Factor: 1

* Moisture....: 53 Method.....: SW846 8270C

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	710	ug/kg
bis(2-Chloroethyl)-	ND	710	ug/kg
ether			
2-Chlorophenol	ND	710	ug/kg
1,3-Dichlorobenzene	ND	710	ug/kg
1,4-Dichlorobenzene	ND	710	ug/kg
1,2-Dichlorobenzene	ND	710	ug/kg
2-Methylphenol	ND	710	ug/kg
2,2'-oxybis(1-Chloro-	ND	710	ug/kg
propane)			
4-Methylphenol	ND	710	ug/kg
N-Nitrosodi-n-propyl-	ND	710	ug/kg
amine			
Hexachloroethane	ND	710	ug/kg
Nitrobenzene	ND	710	ug/kg
Isophorone	ND	710	ug/kg
2-Nitrophenol	ND	710	ug/kg
2,4-Dimethylphenol	ND	710	ug/kg
bis(2-Chloroethoxy)	ND	710	ug/kg
methane			
2,4-Dichlorophenol	ND	710	ug/kg
1,2,4-Trichlorobenzene	ND	710	ug/kg
Naphthalene	ND	710	ug/kg
4-Chloroaniline	ND	710	ug/kg
Hexachlorobutadiene	ND	710	ug/kg
4-Chloro-3-methylphenol	ND	710	ug/kg
2-Methylnaphthalene	ND	710	ug/kg
Hexachlorocyclopenta- diene	ND	3400	ug/kg
2,4,6-Trichlorophenol	ND	710	ug/kg
2,4,5-Trichlorophenol	ND	710	ug/kg
2-Chloronaphthalene	ND	710	ug/kg
2-Nitroaniline	ND	3400	ug/kg
Dimethyl phthalate	ND	710	ug/kg
Acenaphthylene	ND	710	ug/kg
2,6-Dinitrotoluene	ND	710	ug/kg
3-Nitroaniline	ND	3400	ug/kg
Acenaphthene	ND	710	ug/kg

Client Sample ID: ADNY-SWALE-SS01

GC/MS Semivolatiles

Lot-Sample #:	A9E070141-001	Work Order #	: CVHT1102	Matrix SOLID
---------------	---------------	--------------	------------	--------------

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	3400	ug/kg
4-Nitrophenol	ND	3400	ug/kg
Dibenzofuran	ND	710	ug/kg
2,4-Dinitrotoluene	ND	710	ug/kg
Diethyl phthalate	ND	710	ug/kg
4-Chlorophenyl phenyl ether	ND	710	ug/kg
Fluorene	ND	710	ug/kg
4-Nitroaniline	ND	3400	ug/kg
4,6-Dinitro-	ND	3400	ug/kg
2-methylphenol			3, 3
N-Nitrosodiphenylamine	ND	710	ug/kg
4-Bromophenyl phenyl	ND	710	ug/kg
ether			J. J
Hexachlorobenzene	ND	710	ug/kg
Pentachlorophenol	ND	710	ug/kg
Phenanthrene	2500	710	ug/kg
Anthracene	710	710	ug/kg
Carbazole	ND	710	ug/kg
Di-n-butyl phthalate	ND	710	ug/kg
Fluoranthene	5000	710	ug/kg
Pyrene	4600	710	ug/kg
Butyl benzyl phthalate	ND	710	ug/kg
3,3'-Dichlorobenzidine	ND	3400	ug/kg
Benzo(a)anthracene	2900	710	ug/kg
Chrysene	3600	710	ug/kg
bis(2-Ethylhexyl) phthalate	ND	710	ug/kg
Di-n-octyl phthalate	ND	710	ug/kg
Benzo (b) fluoranthene	4700	710	ug/kg
Benzo(k) fluoranthene	1600	710	ug/kg
Benzo(a) pyrene	3200	710	ug/kg
Indeno(1,2,3-cd)pyrene	2000	710	ug/kg
Dibenz(a,h)anthracene	ND	710	ug/kg
Benzo(ghi)perylene	2000	710	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	70	(23 - 12	
2-Fluorobiphenyl	83	(30 - 11	
Terphenyl-d14	104	(18 - 13	
Phenol-d5	64	(24 - 11	
2-Fluorophenol	71	(25 - 12	
2,4,6-Tribromophenol	91	(19 - 12	2)

Client Sample ID: ADNY-SWALE-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-001 Work Order #...: CVHT1102 Matrix.....: SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

- This value represents a probable combination of 3-Methylphenol (m- cresol) and 4-methylphenol (p-cresol).

Client Sample ID: ADNY-SWALE-SS01

GC Semivolatiles

Lot-Sample #: A9E070141-001	Work Order #: CVHT1104	Matrix SOLID
-----------------------------	------------------------	--------------

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 20

*** Moisture....:** 53 **Method.....:** SW846 8082

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1400	ug/kg
Aroclor 1221	ND	1400	ug/kg
Aroclor 1232	ND	1400	ug/kg
Aroclor 1242	ND	1400	ug/kg
Aroclor 1248	ND	1400	ug/kg
Aroclor 1254	13000	1400	ug/kg
Aroclor 1260	ND	1400	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Tetrachloro-m-xylene	72 DIL	(10 - 129)	
Decachlorobiphenyl	143 DIL,*	(10 - 138)	

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-SWALE-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-001 Matrix....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99

*** Moisture....:** 53

•							
	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
	Prep Batch #:	9133259 10300	42.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT1109
	Arsenic	29.7	2.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT1105
	Lead	299	0.64 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT1106
	Antimony	ND	12.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT110A
	Barium	138	42.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110C
	Selenium	1.5	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT1107
	Beryllium	ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110D
	Thallium	ND	2.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT1108
	Cadmium	ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT110E
	Calcium	15100	1070 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110F
	Chromium	32.8	2.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHT110G
	Cobalt	ND	10.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110H
	Copper	120	5.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110J
	Iron	43400	21.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHT110K

Client Sample ID: ADMY-SWALE-SS01

TOTAL Metals

Lot-Sample #.	Lot-Sample #: A9E070141-001				Matrix: SOLID
PARAMETER Magnesium	RESULT 3940	REPORTING LIMIT 1070 Dilution Factor: 1	UNITS mg/kg	METHOD SW846 6010B	PREPARATION- WORK ANALYSIS DATE ORDER # 05/14-05/16/99 CVHT110L
Manganese	1250	3.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110M
Nickel	97.4	8 _ 6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110N
Potassium	1220	1070 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110P
Silver	ND	2.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110Q
Sodium	ND	1070 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110R
Vanadium	25.3	10.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110T
Mercury	0.38	0.21 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99 CVHT110V
Zinc	510	4.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT110U

Results and reporting limits have been adjusted for dry weight.

NOTE (S):

Client Sample ID: ADNY-SWALE-SS01

General Chemistry

Matrix..... SOLID

Lot-Sample #...: A9E070141-001 Work Order #...: CVHT1

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99

% Moisture....: 53

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 46.7
 0.10
 %
 MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: TRIP BLANK TB01

GC/MS Volatiles

Lot-Sample #...: A9E070141-002 Work Order #...: CVHT3101 Matrix...... WATER

Date Sampled...: 05/05/99 Date Received..: 05/06/99
Prep Date....: 05/18/99 Analysis Date..: 05/18/99

Prep Batch #...: 9139168

Dilution Factor: 1 Method....: SW846 8260B

		REPORTIN	
PARAMETER	RESULT	LIMIT	_ UNITS
Chloromethane	ND	10	ug/L
Bromomethane	ND	10	ug/L
Vinyl chloride	ND .	10	ug/L
Chloroethane	ND	10	ug/L
Methylene chloride	ND	5.0	ug/L
Acetone	ND	20	ug/L
Carbon disulfide	ND	5.0	ug/L
1,1-Dichloroethene	ND	5.0	ug/L
1,1-Dichloroethane	ND	5.0	ug/L
1,2-Dichloroethene	ND	5.0	ug/L
(total)	NTO	5 0	~ /T
Chloroform	ND	5.0	ug/L
1,2-Dichloroethane	ND	5.0	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5.0	ug/L
Carbon tetrachloride	ND	5.0	ug/L
Bromodichloromethane	ND	5.0	ug/L
1,2-Dichloropropane	ND	5.0	ug/L
cis-1,3-Dichloropropene	ND	5.0	ug/L
Trichloroethene	ND	5.0	ug/L
Dibromochloromethane	ND	5.0	ug/L
1,1,2-Trichloroethane	ND	5.0	ug/L
Benzene	ND	5.0	ug/L
trans-1,3-Dichloropropene	ND	5.0	ug/L
Bromoform	ND	5.0	ug/L
4-Methyl-2-pentanone	ND	20	ug/L
2-Hexanone	ND	20	ug/L
Tetrachloroethene	ND	5.0	ug/L
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L
Toluene	ND	5.0	ug/L
Chlorobenzene	ND	5.0	ug/L
Ethylbenzene	ND	5.0	ug/L
Styrene	ND	5.0	ug/L
Xylenes (total)	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	91	(80 - 12	0)
Toluene-d8	95	(88 - 11	
Bromofluorobenzene	102	(86 - 11	•
Dibromofluoromethane	69 *	(86 - 11	
DIDIOMOLIGOTOMECHATIC		(50 - 11	,

Client Sample ID: TRIP BLANK TB01

GC/MS Volatiles

Lot-Sample #...: A9E070141-002 Work Order #...: CVHT3101 Matrix..... WATER

NOTE(S):

Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-NIMO-SS01

GC Semivolatiles

Lot-Sample #	A9E070141-003	Work Order	: CVHT4102	Matrix	: SOLID
--------------	---------------	------------	------------	--------	---------

Date Sampled...: 05/05/99 11:10 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 14 **Method**.....: SW846 8082

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	38	ug/kg
Aroclor 1221	ND	38	ug/kg
Aroclor 1232	ND	38	ug/kg
Aroclor 1242	ND	38	ug/kg
Aroclor 1248	ND	38	ug/kg
Aroclor 1254	ND	38	ug/kg
Aroclor 1260	ND	38	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	52	(10 - 129)	
Decachlorobiphenyl	91	(10 - 138)	

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: ADNY-NIMO-SS01

General Chemistry

Lot-Sample #...: A9E070141-003

Work Order #...: CVHT4

Matrix....: SOLID

Date Sampled...: 05/05/99 11:10 Date Received..: 05/06/99

% Moisture....: 14

PREPARATION-PREP

RL PARAMETER RESULT METHOD ANALYSIS DATE BATCH # 0.10 * 05/17-05/18/99 9137276 Percent Solids 86.3 MCAWW 160.3 MOD

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: ADNY-WAll-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-004 Work Order #...: CVHT7103 Matrix.....: SOLID

Date Sampled...: 05/05/99 12:30 Date Received..: 05/06/99 Prep Date....: 05/06/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131221 Dilution Factor: 0.99

Bromofluorobenzene

Dibromofluoromethane

% Moisture....: 13 **Method.....:** SW846 8260B

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	1100	ug/kg
Benzene	ND	290	ug/kg
Bromodichloromethane	ND	290	ug/kg
Bromoform	ND	290	ug/kg
Bromomethane	ND	570	ug/kg
2-Butanone	ND	1100	ug/kg
Carbon disulfide	ND	290	ug/kg
Carbon tetrachloride	ND	290	ug/kg
Chlorobenzene	ND	290	ug/kg
Dibromochloromethane	ND	290	ug/kg
Chloroethane	ND	5 70	ug/kg
Chloroform	ND	290	ug/kg
Chloromethane	ND	570	ug/kg
1,1-Dichloroethane	ND	290	ug/kg
1,2-Dichloroethane	ND	290	ug/kg
1,1-Dichloroethene	ND	290	ug/kg
1,2-Dichloroethene	ND	290	ug/kg
(total)			
1,2-Dichloropropane	ND	290	ug/kg
cis-1,3-Dichloropropene	ND	290	ug/kg
trans-1,3-Dichloropropene	ND	290	ug/kg
Ethylbenzene	380	290	ug/kg
2-Hexanone	ND	1100	ug/kg
Methylene chloride	ND	290	ug/kg
4-Methyl-2-pentanone	ND	1100	ug/kg
Styrene	ND	290	ug/kg
1,1,2,2-Tetrachloroethane	ND	290	ug/kg
Tetrachloroethene	ND	290	ug/kg
Toluene	ND	290	ug/kg
1,1,1-Trichloroethane	ND	290	ug/kg
1,1,2-Trichloroethane	ND	290	ug/kg
Trichloroethene	ND	290	ug/kg
Vinyl chloride	ND	5 70	ug/kg
Xylenes (total)	1700	570	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	69	(51 - 12	4)
Toluene-d8	86	(58 - 11	6)

67

86

(Continued on next page)

(53 - 122)

(49 - 119)

Client Sample ID: ADNY-WA11-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-004 Work Order #...: CVHT7103

Matrix..... SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to TICs.

Client Sample ID: ADNY-WA11-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-004 Work Order #...: CVHT7102 Matrix.....: SOLID

Date Sampled...: 05/05/99 12:30 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/21/99

Prep Batch #...: 9131122

Dilution Factor: 2

% Moisture....: 13 **Method.....:** SW846 8270C

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	MD — —	760	ug/kg
ois(2-Chloroethyl)-	ND	760	ug/kg
ether			
-Chlorophenol	ND	760	ug/kg
,3-Dichlorobenzene	ND	760	ug/kg
,4-Dichlorobenzene	ND	760	ug/kg
,2-Dichlorobenzene	ND	760	ug/kg
-Methylphenol	ND	760	ug/kg
,2'-oxybis(1-Chloro-	ND	760	ug/kg
propane)			4-
-Methylphenol	ND	760	ug/kg
-Nitrosodi-n-propyl- amine	ND	760	ug/kg
exachloroethane	ND	760	ug/kg
itrobenzene	ND	760	ug/kg
sophorone	ND	760	ug/kg
-Nitrophenol	ND	760	ug/kg
,4-Dimethylphenol	ND	760	ug/kg
is (2-Chloroethoxy)	ND	760	ug/kg
methane			3, 3
,4-Dichlorophenol	ND	760	ug/kg
,2,4-Trichlorobenzene	ND	760	ug/kg
aphthalene	ND	760	ug/kg
-Chloroaniline	ND	760	ug/kg
exachlorobutadiene	ND	760	ug/kg
-Chloro-3-methylphenol	ND	760	ug/kg
-Methylnaphthalene	ND	760	ug/kg
exachlorocyclopenta- diene	ND	3700	ug/kg
2,4,6-Trichlorophenol	ND	760	ug/kg
2,4,5-Trichlorophenol	ND	760	ug/kg
-Chloronaphthalene	ND	760	ug/kg
-Nitroaniline	ND	3700	ug/kg
imethyl phthalate	ND	760	ug/kg
cenaphthylene	ND	760	ug/kg
,6-Dinitrotoluene	ND	760	ug/kg
3-Nitroaniline	ND	3700	ug/kg
Acenaphthene	ND	760	ug/kg

Client Sample ID: ADNY-WA11-SS01

GC/MS Semivolatiles

Lot-Sample #	A9E070141-004	Work Order #:	CVHT7102	Matrix:	SOLID
--------------	---------------	---------------	----------	---------	-------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	3700	ug/kg
4-Nitrophenol	ND	3700	ug/kg
Dibenzofuran	ND	760	ug/kg
2,4-Dinitrotoluene	ND	760	ug/kg
Diethyl phthalate	ND	760	ug/kg
4-Chlorophenyl phenyl ether	ND	760	ug/kg
Fluorene	ND	760	110 /lea
4-Nitroaniline	ND		ug/kg
4,6-Dinitro-	ND	3700	ug/kg
	ND	3700	ug/kg
2-methylphenol	NTO	7.60	/1
N-Nitrosodiphenylamine	ND	760	ug/kg
4-Bromophenyl phenyl ether	ND	760	ug/kg
Hexachlorobenzen <mark>e</mark>	ND	760	ug/kg
Pentachlorophenol	ND	760	ug/kg
Phenanthrene	1200	760	ug/kg
Anthracene	ND	760	ug/kg
Carbazole	ND	760	ug/kg
Di-n-butyl phthalate	ND	760	ug/kg
Fluoranthene	3100	760	ug/kg
Pyrene	4200	760	ug/kg
Butyl benzyl phthalate	ND	760	ug/kg
3,3'-Dichlorobenzidine	ND	3700	ug/kg
Benzo(a)anthracene	1900	760	ug/kg
Chrysene	2100	760	ug/kg
bis(2-Ethylhexyl)	ND	760	ug/kg
phthalate			5, 5
Di-n-octyl phthalate	ND	760	ug/kg
Benzo(b) fluoranthene	2200	760	ug/kg
Benzo(k) fluoranthene	ND	760	ug/kg
Benzo (a) pyrene	2100	760	ug/kg
Indeno(1,2,3-cd)pyrene	1100	760	ug/kg
Dibenz (a, h) anthracene	ND	760	ug/kg
Benzo(ghi)perylene	1300	760	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	70 DIL	(23 - 120)	-
2-Fluorobiphenyl	82 DIL	(30 - 115)	
Terphenyl-d14	103 DIL	(18 - 137)	
Phenol-d5	64 DIL	(24 - 113)	
2-Fluorophenol	70 DIL	(25 - 121)	
2,4,6-Tribromophenol	86 DIL	(19 - 122)	
=, =, 0 ===============================	50 DIL	(1) - 122)	

Client Sample ID: ADNY-WA11-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-004 Work Order #...: CVHT7102 Matrix.....: SOLID

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: ADNY-WA11-SS01

GC Semivolatiles

Lot-Sample #:	A9E070141-004	Work Order #:	CVHT7104	Matrix:	SOLID
		_			

Date Sampled...: 05/05/99 12:30 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

*** Moisture....:** 13 **Method.....:** SW846 8082

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	38	ug/kg
Aroclor 1221	ND	38	ug/kg
Aroclor 1232	ND	38	ug/kg
Aroclor 1242	ND	38	ug/kg
Aroclor 1248	ND	38	ug/kg
Aroclor 1254	57	38	ug/kg
Aroclor 1260	ND	38	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	65	(10 - 129	9)
Decachlorobiphenyl	83	(10 - 138	8)

NOTE (S):

Client Sample ID: ADNY-WA11-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-004 Matrix....: SOLID

Date Sampled...: 05/05/99 12:30 Date Received..: 05/06/99

% Moisture....: 13

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 913325 10800	9 23.0 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT7109
Arsenic	26.6	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT7105
Lead	137	0.35 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT7106
Antimony	ND	6.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT710A
Barium	152	23.0 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT710C
Selenium	0.73	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT7107
Beryllium	0.83	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT710D
Thallium	ND	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT7108
Cadmium	ND	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT710E
Calcium	28100	576 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT710F
Chromium	32.6	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHT710G
Cobalt	9.4	5.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 СУНТ710Н
Copper	67.4	2.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT710J
Iron	30100	11.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHT710K

Client Sample ID: ADNY-WAll-SS01

TOTAL Metals

Lot-Sample #: A9E070141-004	Matrix: SOLID
-----------------------------	---------------

		REPORTING	;		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	
Magnesium	6200	576	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710L
		Dilution Factor: 1				
Manganese	1190	1.7	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710M
		Dilution Factor: 1				
Nickel	97.1	4.6	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710N
		Dilution Factor: 1				
Potassium	994	576	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710P
		Dilution Factor: 1				
Silver	ND	1.2	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710Q
		Dilution Factor: 1				
Sodium	ND	576	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710R
		Dilution Factor: 1				
Vanadium	12.5	5.8	nng/kg	SW846 6010B	05/14-05/16/99	CVHT710T
		Dilution Factor: 1				
Mercury	ND	0.12	mg/kg	SW846 7471A	05/14-05/18/99	CVHT710V
		Dilution Factor: 1				
Zinc	114	2.3	mg/kg	SW846 6010B	05/14-05/16/99	CVHT710U
		Dilution Factor: 1				
NOTE (S):						

Client Sample ID: ADNY-WA11-SS01

General Chemistry

Matrix..... SOLID

Lot-Sample #...: A9E070141-004 Work Order #...: CVHT7

Date Sampled...: 05/05/99 12:30 Date Received..: 05/06/99

% Moisture....: 13

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 86.8
 0.10
 \$ MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-PW1

GC/MS Volatiles

Lot-Sample #...: A9E070141-005 Work Order #...: CVHT9102 Matrix..... WATER

Date Sampled...: 05/05/99 15:20 Date Received..: 05/06/99 Prep Date....: 05/17/99 Analysis Date..: 05/17/99

Prep Batch #...: 9138132

Dilution Factor: 1 Method....: SW846 8260B

		REPORTIN	rG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	10	ug/L
Bromomethane	ND	10	ug/L
Vinyl chloride	ND	10	ug/L
Chloroethane	ND	10	ug/L
Methylene chloride	ND	5.0	ug/L
Acetone	ND	20	ug/L
Carbon disulfide	ND	5.0	ug/L
1,1-Dichloroethene	ND	5.0	ug/L
1,1-Dichloroethane	ND	5.0	ug/L
1,2-Dichloroethene (total)	ND	5.0	ug/L
Chloroform	ND	5.0	ug/L
1,2-Dichloroethane	ND	5.0	ug/L
2-Butanone	ND	20	ug/L
1,1,1-Trichloroethane	ND	5.0	ug/L
Carbon tetrachloride	ND	5.0	ug/L
Bromodichloromethane	ND	5.0	ug/L
1,2-Dichloropropane	ND	5.0	ug/L
cis-1,3-Dichloropropene	ND	5.0	ug/L
Trichloroethene	ND	5.0	ug/L
Dibromochloromethane	ND	5.0	ug/L
1,1,2-Trichloroethane	ND	5.0	ug/L
Benzene	ND	5.0	ug/L
trans-1,3-Dichloropropene	ND	5.0	ug/L
Bromoform	ND	5.0	ug/L
4-Methyl-2-pentanone	ND	20	ug/L
2-Hexanone	ND	20	ug/L
Tetrachloroethene	ND	5.0	ug/L
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L
Toluene	ND	5.0	ug/L
Chlorobenzene	ND	5.0	ug/L
Ethylbenzene	ND	5.0	ug/L
Styrene	ND	5.0	ug/L
Xylenes (total)	ND	5.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	116	(80 - 12	
Toluene-d8	103	(88 - 11	
Bromofluorobenzene	93	(86 - 11	
Dibromofluoromethane	109	(86 - 11	L8)

Client Sample ID: ADNY-PW1

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-005 Work Order #...: CVHT9101 Matrix...... WATER

Date Sampled...: 05/05/99 15:20 Date Received..: 05/06/99 Prep Date....: 05/10/99 Analysis Date..: 05/14/99

Prep Batch #...: 9130114

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	MD ND	10	ug/L
bis(2-Chloroethyl)-	ND	10	ug/L
ether			
2-Chlorophenol	ND	10	ug/L
1,3-Dichlorobenzene	ND	10	ug/L
1,4-Dichlorobenzene	ND	10	ug/L
1,2-Dichlorobenzene	ND	10	ug/L
2-Methylphenol	ND	10	ug/L
2,2'-oxybis(1-Chloro-	ND	10	ug/L
propane)			
4-Methylphenol	ND	10	ug/L
N-Nitrosodi-n-propyl-	ND	10	ug/L
amine			
Hexachloroethane	ND	10	ug/L
Nitrobenzene	ND	10	ug/L
Isophorone	ND	10	ug/L
2-Nitrophenol	ND	10	ug/L
2,4-Dimethylphenol	ND	10	ug/L
<pre>bis(2-Chloroethoxy) methane</pre>	ND	10	ug/L
2,4-Dichlorophenol	ND	10	ug/L
1,2,4-Trichlorobenzene	ND	10	ug/L
Naphthalene	ND	10	ug/L
4-Chloroaniline	ND	10	ug/L
Hexachlorobutadiene	ND	10	ug/L
4-Chloro-3-methylphenol	ND	10	ug/L
2-Methylnaphthalene	ND	10	ug/L
Hexachlorocyclopenta-	ND	50	ug/L
diene			
2,4,6-Trichlorophenol	ND	10	ug/L
2,4,5-Trichlorophenol	ND	10	ug/L
2-Chloronaphthalene	ND	10	ug/L
2-Nitroaniline	ND	50	ug/L
Dimethyl phthalate	ND	10	ug/L
Acenaphthylene	ND	10	ug/L
2,6-Dinitrotoluene	ND	10	ug/L
3-Nitroaniline	ND	50	ug/L
Acenaphthene	ND	10	ug/L
2,4-Dinitrophenol	ND	50	ug/L

Client Sample ID: ADNY-PW1

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-005 Work Order #...: CVHT9101 Matrix..... WATER

		REPORTIN	
PARAMETER	RESULT	LIMIT	_ UNITS
1-Nitrophenol	ND	50	ug/L
Dibenzofuran	ND	10	ug/L
2,4-Dinitrotoluene	ND	10	ug/L
Diethyl phthalate	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Fluorene	ND	10	ug/L
4-Nitroaniline	ND	50	ug/L
4,6-Dinitro-	ND	50	ug/L
2-methylphenol			•
N-Nitrosodiphenylamine	ND	10	ug/L
4-Bromophenyl phenyl	ND	10	ug/L
ether			_
Hexachlorobenzene	ND	10	ug/L
Pentachlorophenol	ND	10	ug/L
Phenanthrene	ND	10	ug/L
Anthracene	ND	10	ug/L
Carbazole	ND	10	ug/L
Di-n-butyl phthalate	ND	10	ug/L
Fluoranthene	ND	10	ug/L
Pyrene	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
Benzo(a)anthracene	ND	10	ug/L
Chrysene	ND	10	ug/L
bis(2-Ethylhexyl)	ND	10	ug/L
phthalate			<u> </u>
Di-n-octyl phthalate	ND	10	ug/L
Benzo(b) fluoranthene	ND	10	ug/L
Benzo(k) fluoranthene	ND	10	ug/L
Benzo (a) pyrene	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Dibenz(a,h)anthracene	ND	10	ug/L
Benzo(ghi)perylene	ND	10	ug/L
(3, Porl route	*1 <i>w</i>	-0	~5/ -1
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	69	(40 - 11	.4)
2-Fluorobiphenyl	64	(45 - 11	.8)
Terphenyl-d14	80	(33 - 14	1)
Phenol-d5	58	(17 - 10	1)
2-Fluorophenol	59	(21 - 10	
2,4,6-Tribromophenol	76	(16 - 12	

Client Sample ID: ADNY-PW1

GC Semivolatiles

Lot-Sample #: A9E070141-005	Work Order #: CVHT9103	Matrix: WATER
-----------------------------	------------------------	---------------

Date Sampled...: 05/05/99 15:20 Date Received..: 05/06/99 Prep Date.....: 05/10/99 Analysis Date..: 05/16/99

Prep Batch #...: 9130104

Dilution Factor: 1 Method.....: SW846 8082

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	1.0	ug/L
Aroclor 1221	ND	1.0	ug/L
Aroclor 1232	ND	1.0	ug/L
Aroclor 1242	ND	1.0	ug/L
Aroclor 1248	ND	1.0	ug/L
Aroclor 1254	ND	1.0	ug/L
Aroclor 1260	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	77	(10 - 13	0)
Decachlorobiphenyl	84	(10 - 11	6)

Client Sample ID: ADNY-PW1

TOTAL Metals

Lot-Sample #...: A9E070141-005 Matrix.....: WATER

Date Sampled...: 05/05/99 15:20 Date Received..: 05/06/99

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	<u>METHOD</u>	ANALYSIS DATE	ORDER #
Prep Batch #			-			
Aluminum	ND	0.20	mg/L	SW846 6010B	05/10-05/12/99	CVHT9108
		Dilution Factor: 1				
	(v =		-			
Arsenic	ND	0.010	mg/L	SW846 6010B	05/10-05/12/99	CVHT9104
		Dilution Factor: 1				
Tood	NID	0.0030	/T	CM046 6010B	05/10 05/10/00	CITIMO 1 O C
Lead	ND		mg/L	SW846 6010B	05/10-05/12/99	CAHIBIOS
		Dilution Factor: 1				
Antimone	NID	0.060	mg/L	SW846 6010B	05/10-05/12/99	CTUTO 1 00
Antimony	ND	Dilution Factor: 1	mg/L	2M040 0010D	05/10-05/12/99	CVHIJIUJ
		Ditution Factor: 1				
Barium	ND	0.20	mg/L	SW846 6010B	05/10-05/12/99	CVHT910A
Darran	112	Dilution Factor: 1	9/ _	5.1010 00105	03,10 03,12,33	CV252011
		D1144101114401011				
Selenium	ND	0.0050	mg/L	SW846 6010B	05/10-05/12/99	CVHT9106
		Dilution Factor: 1	3/ —	\$	20, 20 20, 22, 33	
Beryllium	ND	0.0050	mg/L	SW846 6010B	05/10-05/12/99	CVHT910C
•		Dilution Factor: 1	J ,			
Thallium	ND	0.010	mg/L	SW846 6010B	05/10-05/12/99	CVHT9107
		Dilution Factor: 1				
Cadmium	ND	0.0050	mg/L	SW846 6010B	05/10-05/12/99	CVHT910D
		Dilution Factor: 1				
Calcium	128	5.0	mg/L	SW846 6010B	05/10-05/12/99	CVHT910E
		Dilution Factor: 1				
en 1			-			
Chromium	ND	0.010	mg/L	SW846 6010B	05/10-05/12/99	CVHT910F
		Dilution Factor: 1				
Cobalt	NTO	0.050		CM046 6010D	05/10-05/12/99	CT TUTO 1 OC
CODATE	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/33	CANTAIOG
		Ditution Factor: 1				
Copper	ND	0.025	mg/L	SW846 6010B	05/10-05/12/99	CVHT910H
copper	140	Dilution Factor: 1	g/ II	SHOTO OLIUD	03/10/03/12/99	CVIIIJIUII
		Ditation (actor, 1				
Iron	3.6	0.10	mg/L	SW846 6010B	05/10-05/12/99	CVHT910J
		Dilution Factor: 1	-5, -	2010 00102	,,,,,,,,,	

Client Sample ID: ADNY-PW1

TOTAL Metals

Lot-Sample #: A9E070141-005	Matrix WATER
-----------------------------	--------------

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Magnesium	24.9	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	
Manganese	0.41	0.015 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVHT910L
Nickel	ND	0.040 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVHT910M
Potassium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/14/99	CVHT910N
Silver	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVHT910P
Sodium	233	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/14/99	CVHT910Q
Vanadium	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVHT910R
Mercury	ND	0.00020 Dilution Factor: 1	mg/L	SW846 7470A	05/10-05/13/99	CVHT910U
Zinc	ND MBE	0.020 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVHT910T
NOTE (S) ·						

MBE This analyte is present in the associated method blank.

Client Sample ID: ADNY-WOT-SS01

General Chemistry

Lot-Sample #...: A9E070141-012 Work Order #...: CVHV5 Matrix.....: SOLID

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99

% Moisture....: 9.7

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	90.3 Diluti	0.10 on Factor: 1	.*	MCAWW 160.3 MOD	05/18-05/19/99	9138134
Total Recoverable Petroleum Hydroca		550	mg/kg	MCAWW 418.1	05/19-05/20/99	9139119

Dilution Factor: 50

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-WOT-SS02

GC/MS Volatiles

Lot-Sample #...: A9E070141-013 Work Order #...: CVHV8103 Matrix...... SOLID

Date Sampled...: 05/06/99 17:15 Date Received..: 05/07/99 Prep Date....: 05/07/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131225

Dilution Factor: 0.81

% Moisture....: 12 Method.....: SW846 8260B

			REPORTING		
PARA	METER	RESULT	LIMIT	UNITS	
Acet	one	ND	920	ug/kg	
Benz	ene	ND	230	ug/kg	
Brom	odichloromethane	ND	230	ug/kg	
Brom	oform	ND	230	ug/kg	
Brom	omethane	ND	460	ug/kg	
2-Bu	tanone	ND	920	ug/kg	
Carb	on disulfide	ND	230	ug/kg	
Carb	on tetrachloride	ND	230	ug/kg	
Chlo	robenzene	ND	230	ug/kg	
Dibr	omochloromethane	ND	230	ug/kg	
Chlo	roethane	ND	460	ug/kg	
Chlo	roform	ND	230	ug/kg	
Chlo	romethane	ND	460	ug/kg	
1,1-	Dichloroethane	ND	230	ug/kg	
1,2-	Dichloroethane	ND	230	ug/kg	
1,1-	Dichloroethene	ND	230	ug/kg	
	Dichloroethene total)	ND	230	ug/kg	
1,2-	Dichloropropane	ND	230	ug/kg	
	1,3-Dichloropropene	ND	230	ug/kg	
tran	s-1,3-Dichloropropene	ND	230	ug/kg	
Ethy	lbenzene	ND	230	ug/kg	
_	xanone	ND	920	ug/kg	
Meth	ylene chloride	ND	230	ug/kg	
	thyl-2-pentanone	ND	920	ug/kg	
Styr	rene	ND	230	ug/kg	
1,1,	2,2-Tetrachloroethane	ND	230	ug/kg	
Tetr	achloroethene	ND	230	ug/kg	
Tolu	iene	ND	230	ug/kg	
1,1,	1-Trichloroethane	ND	230	ug/kg	
1,1,	2-Trichloroethane	ND	230	ug/kg	
Tric	chloroethene	ND	230	ug/kg	
Viny	'l chloride	ND	460	ug/kg	
Xyle	enes (total)	ND	460	ug/kg	
		PERCENT	RECOVERY		
	ROGATE	RECOVERY	LIMITS_		
1,2-	Dichloroethane-d4	78	(51 - 12		
Tolu	iene-d8	81	(58 - 11		
Brom	nofluorobenzene	73	(53 - 12	2)	
Dibr	comofluoromethane	83	(49 - 11	9)	

Client Sample ID: ADNY-WOT-SS02

GC/MS Semivolatiles

Lot-Sample #:	A9E070141-013	Work Order	#: CVHV8102	Matrix	: SOLID
---------------	---------------	------------	-------------	--------	---------

		REPORTIN	C
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND ND	6100	ug/kg
4-Nitrophenol	ND	6100	ug/kg
Dibenzofuran	ND	1200	ug/kg
2,4-Dinitrotoluene	ND	1200	ug/kg
Diethyl phthalate	ND	1200	ug/kg
4-Chlorophenyl phenyl	ND	1200	ug/kg
ether			
Fluorene	ND	1200	ug/kg
4-Nitroaniline	ND	6100	ug/kg
4,6-Dinitro-	ND	6100	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	1200	ug/kg
4-Bromophenyl phenyl	ND	1200	ug/kg
ether			
Hexachlorobenzene	ND	1200	ug/kg
Pentachlorophenol	ND	1200	ug/kg
Phenanthrene	ND	1200	ug/kg
Anthracene	ND	1200	ug/kg
Carbazole	ND	1200	ug/kg
Di-n-butyl phthalate	ND	1200	ug/kg
Fluoranthene	1700	1200	ug/kg
Pyrene	1400	1200	ug/kg
Butyl benzyl phthalate	ND	1200	ug/kg
3,3'-Dichlorobenzidine	ND	6100	ug/kg
Benzo(a) anthracene	ND	1200	ug/kg
Chrysene	ND	1200	ug/kg
bis(2-Ethylhexyl)	ND	1200	ug/kg
phthalate			3. 3
Di-n-octyl phthalate	ND	1200	ug/kg
Benzo(b) fluoranthene	1300	1200	ug/kg
Benzo(k)fluoranthene	ND	1200	ug/kg
Benzo(a)pyrene	ND	1200	ug/kg
Indeno(1,2,3-cd)pyrene	ND	1200	ug/kg
Dibenz(a,h)anthracene	ND	1200	ug/kg
Benzo(ghi)perylene	ND	1200	ug/kg
			· 3. 3
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	74 DIL	(23 - 12	
2-Fluorobiphenyl	86 DIL	(30 - 11	5)
Terphenyl-d14	108 DIL	(18 - 13	7)
Phenol-d5	64 DIL	(24 - 11	
2-Fluorophenol	79 DIL	(25 - 12	1)
2,4,6-Tribromophenol	85 DIL	(19 - 12	2)

Client Sample ID: ADNY-WOT-SS02

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-013 Work Order #...: CVHV8102 Matrix.....: SOLID

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: ADNY-WOT-SS02

GC Semivolatiles

Lot-Sample #: A9E070141-013	Work Order #: CVHV8104	Matrix: SOLID
-----------------------------	------------------------	---------------

Date Sampled...: 05/06/99 17:15 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 12 Method.....: SW846 8082

		REPORTIN	IG .
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	38	ug/kg
Aroclor 1221	ND	38	ug/kg
Aroclor 1232	ND	38	ug/kg
Aroclor 1242	ND	38	ug/kg
Aroclor 1248	ND	38	ug/kg
Aroclor 1254	ND	38	ug/kg
Aroclor 1260	96	38	ug/kg
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	66	(10 - 12	9)
Decachlorobiphenyl	408 *	(10 - 13	8)

NOTE(S):

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-WOT-SS02

GC Semivolatiles

Lot-Sample #...: A9E070141-013 Work Order #...: CVHV810W Matrix.....: SOLID

Date Sampled...: 05/06/99 17:15 Date Received..: 05/07/99 Prep Date....: 05/12/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131347

Dilution Factor: 5

% Moisture....: 12 Method.....: SW846 8015B

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (Extractables) 200 17 mg/kg

NOTE(S):

Client Sample ID: ADNY-WOT-SS02

TOTAL Metals

Lot-Sample #: A9E070141-013	Matrix: SOLID
-----------------------------	---------------

	REPORTING	;		PREPARATION-	WORK
RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
10300	569 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810L
1740	1.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810M
180	4.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810N
719	569 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810P
ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810Q
ND	569 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810R
22.3	5.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810T
0.12	0.11 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVHV810V
855	2.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHV810U
	10300 1740 180 719 ND ND 22.3	RESULT LIMIT 10300 569 Dilution Factor: 1 1740 1.7 Dilution Factor: 1 180 4.5 Dilution Factor: 1 179 569 Dilution Factor: 1 1 ND 1.1 Dilution Factor: 1 1 ND 569 Dilution Factor: 1 1 22.3 5.7 Dilution Factor: 1 1 1 1 1 1 1 1 1 1	10300 569 mg/kg Dilution Factor: 1 1740 1.7 mg/kg Dilution Factor: 1 180 4.5 mg/kg Dilution Factor: 1 719 569 mg/kg Dilution Factor: 1 ND 1.1 mg/kg Dilution Factor: 1 ND 569 mg/kg Dilution Factor: 1 22.3 5.7 mg/kg Dilution Factor: 1 0.12 0.11 mg/kg Dilution Factor: 1 855 2.3 mg/kg	RESULT LIMIT UNITS METHOD	RESULT

NOTE (S):

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: ADNY-WOT-SS02

General Chemistry

Lot-Sample #...: A9E070141-013

Work Order #...: CVHV8

Matrix..... SOLID

Date Sampled...: 05/06/99 17:15 Date Received..: 05/07/99

% Moisture....: 12

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	87.9 Dilution	0.10 Factor: 1	*	MCAWW 160.3 MOD	05/18-05/19/99	9138134
Total Recoverable Petroleum Hydrocar	2100 bons	280	mg/kg	MCAWW 418.1	05/19-05/20/99	9139119

Dilution Factor: 25

NOTE (S):

RL Reporting Limit

Client Sample ID: KB-1 (EQUIPMENT BLANK)

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-014 Work Order #...: CVKLK101 Matrix..... WATER

Date Sampled...: 05/07/99 07:45 Date Received..: 05/08/99 Prep Date....: 05/10/99 Analysis Date..: 05/14/99

Prep Batch #...: 9130114

Dilution Factor: 1 Method.....: SW846 8270C

		REPORTIN	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS		
Phenol	ND	10	ug/L		
bis(2-Chloroethyl)-	ND	10	ug/L		
ether					
2-Chlorophenol	ND	10	ug/L		
1,3-Dichlorobenzene	ND	10	ug/L		
1,4-Dichlorobenzene	ND	10	ug/L		
1,2-Dichlorobenzene	ND	10	ug/L		
2-Methylphenol	ND	10	ug/L		
2,2'-oxybis(1-Chloro- propane)	ND	10	ug/L		
4-Methylphenol	ND	10	ug/L		
N-Nitrosodi-n-propyl-	ND	10	ug/L		
amine			2.		
Hexachloroethane	ND	10	ug/L		
Nitrobenzene	ND	10	ug/L		
Isophorone	ND	10	ug/L		
2-Nitrophenol	ND	10	ug/L		
2,4-Dimethylphenol	ND	10	ug/L		
bis(2-Chloroethoxy)	ND	10	ug/L		
methane					
2,4-Dichlorophenol	ND	10	ug/L		
1,2,4-Trichlorobenzene	ND	10	ug/L		
Naphthalene	ND	10	ug/L		
4-Chloroaniline	ND	10	ug/L		
Hexachlorobutadiene	ND	10	ug/L		
4-Chloro-3-methylphenol	ND	10	ug/L		
2-Methylnaphthalene	ND	10	ug/L		
Hexachlorocyclopenta-	ND	50	ug/L		
diene					
2,4,6-Trichlorophenol	ND	10	ug/L		
2,4,5-Trichlorophenol	ND	10	ug/L		
2-Chloronaphthalene	ND	10	ug/L		
2-Nitroaniline	ND	50	ug/L		
Dimethyl phthalate	ND	10	ug/L		
Acenaphthylene	ND	10	ug/L		
2,6-Dinitrotoluene	ND	10	ug/L		
3-Nitroaniline	ND	50	ug/L		
Acenaphthene	ND	10	ug/L		
2,4-Dinitrophenol	ND	50	ug/L		

Client Sample ID: KB-1 (EQUIPMENT BLANK)

GC/MS Semivolatiles

		REPORTIN	
PARAMETER	RESULT	LIMIT	UNITS
4-Nitrophenol	ND	50	ug/L
Dibenzofuran	ND	10	ug/L
2,4-Dinitrotoluene	ND	10	\mathtt{ug}/\mathtt{L}
Diethyl phthalate	ND	10	ug/L
4-Chlorophenyl phenyl ether	ND	10	ug/L
Fluorene	ND	10	ug/L
4-Nitroaniline	ND	50	ug/L
4,6-Dinitro-	ND	50	ug/L
2-methylphenol			3, -
N-Nitrosodiphenylamine	ND	10	ug/L
4-Bromophenyl phenyl	ND	10	ug/L
ether			
Hexachlorobenzene	ND	10	ug/L
Pentachlorophenol	ND	10	ug/L
Phenanthrene	ND	10	ug/L
Anthracene	ND	10	ug/L
Carbazole	ND	10	ug/L
Di-n-butyl phthalate	ND	10	\mathtt{ug}/\mathtt{L}
Fluoranthene	ND	10	ug/L
Pyrene	ND	10	ug/L
Butyl benzyl phthalate	ND	10	ug/L
3,3'-Dichlorobenzidine	ND	50	ug/L
Benzo(a) anthracene	ND	10	ug/L
Chrysene	ND	10	ug/L
bis(2-Ethylhexyl)	ND	10	ug/L
phthalate			3,
Di-n-octyl phthalate	ND	10	ug/L
Benzo(b) fluoranthene	ND	10	ug/L
Benzo(k) fluoranthene	ND	10	ug/L
Benzo(a) pyrene	ND	10	ug/L
Indeno(1,2,3-cd)pyrene	ND	10	ug/L
Dibenz (a, h) anthracene	ND	10	ug/L
Benzo (ghi) perylene	ND	10	ug/L
penzo (aut) bet atene	MD	10	ug/L
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	74	(40 - 11	<u> </u>
2-Fluorobiphenyl	68	(45 - 13	
Terphenyl-d14	107	(33 - 14	11)
Phenol-d5	66	(17 - 10	
2-Fluorophenol	63	(21 - 10	
2,4,6-Tribromophenol	62	(16 - 12	
-, -, 0 111210021101101		,10 12	,

Client Sample ID: KB-1 (EQUIPMENT BLANK)

TOTAL Metals

Lot-Sample #...: A9E070141-014 Matrix....: WATER

Date Sampled...: 05/07/99 07:45 Date Received..: 05/08/99

		REPORTING			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS_	METHOD	ANALYSIS DATE ORDER #
Prep Batch # Aluminum	.: 913011 ND	3 0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK108
Arsenic	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK104
Lead	ND	0.0030 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK105
Antimony	ND	0.060 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK109
Barium	ND	0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10A
Selenium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK106
Beryllium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10C
Thallium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK107
Cadmium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10D
Calcium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10E
Chromium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10F
Cobalt	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10G
Copper	ND	0.025 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10H
Iron	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99 CVKLK10J

Client Sample ID: KB-1 (EQUIPMENT BLANK)

TOTAL Metals

Lot-Sample #...: A9E070141-014 Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Magnesium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	
Manganese	ND	0.015 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKLK10L
Nickel	ND	0.040 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKLK10M
Potassium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/14/99	CVKLK10N
Silver	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKLK10P
Sodium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/14/99	CVKLK10Q
Vanadium	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKLK10R
Mercury	ND	0.00020 Dilution Factor: 1	mg/L	SW846 7470A	05/10-05/13/99	CVKLK10U
Zinc	ND MBE	0.020 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKLK10T
NOTE (S):						

MBE This analyte is present in the associated method blank.

Client Sample ID: ADNY-FM-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-015 Work Order #...: CVKLL103 Matrix.....: SOLID

Date Sampled...: 05/07/99 08:10 Date Received..: 05/08/99
Prep Date....: 05/08/99 Analysis Date..: 05/18/99

Prep Batch #...: 9131235

Dilution Factor: 1.04

% Moisture....: 18 Method.....: SW846 8260B

		REPORTIN	'G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	1300	ug/kg
Benzene	ND	320	ug/kg
Bromodichloromethane	ND	320	ug/kg
Bromoform	ND	320	ug/kg
Bromomethane	ND	640	ug/kg
2-Butanone	ND	1300	ug/kg
Carbon disulfide	ND	320	ug/kg
Carbon tetrachloride	ND	320	ug/kg
Chlorobenzene	ND	320	ug/kg
Dibromochloromethane	ND	320	ug/kg
Chloroethane	ND	640	ug/kg
Chloroform	ND	320	ug/kg
Chloromethane	ND	640	ug/kg
1,1-Dichloroethane	ND	320	ug/kg
1,2-Dichloroethane	ND	320	ug/kg
1,1-Dichloroethene	ND	320	ug/kg
1,2-Dichloroethene	ND	320	ug/kg
(total)			5,5
1,2-Dichloropropane	ND	320	ug/kg
cis-1,3-Dichloropropene	ND	320	ug/kg
trans-1,3-Dichloropropene	ND	320	ug/kg
Ethylbenzene	ND	320	ug/kg
2-Hexanone	ND	1300	ug/kg
Methylene chloride	ND	320	ug/kg
4-Methyl-2-pentanone	ND	1300	ug/kg
Styrene	ND	320	ug/kg
1,1,2,2-Tetrachloroethane	ND	320	ug/kg
Tetrachloroethene	ND	320	ug/kg
Toluene	ND	320	ug/kg
1,1,1-Trichloroethane	ND	320	ug/kg
1,1,2-Trichloroethane	ND	320	ug/kg
Trichloroethene	670	320	ug/kg
Vinyl chloride	ND	640	ug/kg
Xylenes (total)	ND	640	ug/kg
	PERCENT	RECOVERY	7
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	87	(51 - 12	24)
Toluene-d8	83	(58 - 11	
Bromofluorobenzene	91	(53 - 12	
Dibromofluoromethane	81	(49 - 11	

Client Sample ID: ADNY-FM-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-015 Work Order #...: CVKLL103 Matrix.....: SOLID

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to TICs.

Client Sample ID: ADNY-FM-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-015 Work Order #...: CVKLL102 Matrix......: SOLID

Date Sampled...: 05/07/99 08:10 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131122

Dilution Factor: 1

*** Moisture....:** 18 **Method.....:** SW846 8270C

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	400	ug/kg
bis(2-Chloroethyl)-	ND	400	ug/kg
ether			
2-Chlorophenol	ND	400	ug/kg
1,3-Dichlorobenzene	ND	400	ug/kg
1,4-Dichlorobenzene	ND	400	ug/kg
1,2-Dichlorobenzene	ND	400	ug/kg
2-Methylphenol	ND	400	ug/kg
2,2'-oxybis(1-Chloro- propane)	ND	400	ug/kg
4-Methylphenol	ND	400	ug/kg
N-Nitrosodi-n-propyl- amine	ND	400	ug/kg
Hexachloroethane	ND	400	ug/kg
Nitrobenzene	ND	400	ug/kg
Isophorone	ND	400	ug/kg
2-Nitrophenol	ND	400	ug/kg
2,4-Dimethylphenol	ND	400	ug/kg
bis(2-Chloroethoxy) methane	ND	400	ug/kg
2,4-Dichlorophenol	ND	400	ug/kg
1,2,4-Trichlorobenzene	ND	400	ug/kg
Naphthalene	ND	400	ug/kg
4-Chloroaniline	ND	400	ug/kg
Hexachlorobutadiene	ND	400	ug/kg
4-Chloro-3-methylphenol	ND	400	ug/kg
2-Methylnaphthalene	ND	400	ug/kg
Hexachlorocyclopenta- diene	ND	2000	ug/kg
2,4,6-Trichlorophenol	ND	400	ug/kg
2,4,5-Trichlorophenol	ND	400	ug/kg
2-Chloronaphthalene	ND	400	ug/kg
2-Nitroaniline	ND	2000	ug/kg
Dimethyl phthalate	ND	400	ug/kg
Acenaphthylene	ND	400	ug/kg
2,6-Dinitrotoluene	ND	400	ug/kg
3-Nitroaniline	ND	2000	ug/kg
Acenaphthene	ND	400	ug/kg

Client Sample ID: ADNY-FM-SS01

GC/MS Semivolatiles

Lot-Sample # • A9E0	170141-015 Work	Order # CVKI.I.1	02 Matrix	 SOT.TD

		DEBORES	.
	DD0177	REPORTIN	_
PARAMETER	RESULT	LIMIT	<u>UNITS</u>
2,4-Dinitrophenol	ND	2000	ug/kg
4-Nitrophenol	ND	2000	ug/kg
Dibenzofuran	ND	400	ug/kg
2,4-Dinitrotoluene	ND	400	ug/kg
Diethyl phthalate	ND	400	ug/kg
4-Chlorophenyl phenyl ether	ND	400	ug/kg
Fluorene	ND	400	ug/kg
4-Nitroaniline	ND	2000	ug/kg
4,6-Dinitro-	ND	2000	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	400	ug/kg
4-Bromophenyl phenyl	ND	400	ug/kg
ether			2. 2
Hexachlorobenzene	ND	400	ug/kg
Pentachlorophenol	ND	400	ug/kg
Phenanthrene	770	400	ug/kg
Anthracene	ND	400	ug/kg
Carbazole	ND	400	ug/kg
Di-n-butyl phthalate	ND	400	ug/kg
Fluoranthene	680	400	ug/kg
Pyrene	490	400	ug/kg
Butyl benzyl phthalate	ND	400	ug/kg
3,3'-Dichlorobenzidine	ND	2000	ug/kg
Benzo(a)anthracene	ND	400	ug/kg
Chrysene	ND	400	ug/kg
bis(2-Ethylhexyl)	ND	400	ug/kg
phthalate			
Di-n-octyl phthalate	ND	400	ug/kg
Benzo(b) fluoranthene	ND	400	ug/kg
Benzo(k) fluoranthene	ND	400	ug/kg
Benzo(a)pyrene	ND	400	ug/kg
Indeno(1,2,3-cd)pyrene	ND	400	ug/kg
Dibenz(a,h)anthracene	ND	400	ug/kg
Benzo(ghi)perylene	ND	400	ug/kg
	PERCENT	RECOVERS	<i>T</i>
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	62	(23 - 12	20)
2-Fluorobiphenyl	70	(30 - 11	15)
Terphenyl-d14	87	(18 - 13	37)
Pheno1-d5	62	(24 - 11	13)
2-Fluorophenol	60	(25 - 12	21)
2,4,6-Tribromophenol	79	(19 - 12	22)
270mm (g)			

NOTE (S):

Client Sample ID: ADNY-FM-SS01

GC Semivolatiles

Lot-Sample #:	A9E070141-015	Work Order #:	CVKLL104	Matrix	- SOLID

Date Sampled...: 05/07/99 08:10 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	40	ug/kg
Aroclor 1221	ND	40	ug/kg
Aroclor 1232	ND	40	ug/kg
Aroclor 1242	ND	40	ug/kg
Aroclor 1248	ND	40	ug/kg
Aroclor 1254	ND	40	ug/kg
Aroclor 1260	ND	40	ug/kg
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	54	(10 - 12	29)
Decachlorobiphenyl	79	(10 - 13	8)

NOTE(S):

Client Sample ID: ADNY-FM-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-015 Matrix.....: SOLID

Date Sampled...: 05/07/99 08:10 Date Received..: 05/08/99

*** Moisture....:** 18

		REPORTING			PREPARATION- WORK			
PARAMETER	RESULT	<u>LIMIT</u>	UNITS	METHOD	ANALYSIS DATE ORDER #			
Prep Batch #: 9133259								
Aluminum	1500		/b-	CHOAC COLOR	05 /14 05 /16 /00 GWG 7100			
Aluminum	1500	24.5	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL109			
		Dilution Factor: 1						
Arsenic	10 5	1.0	/	014046 6010D	05/11/ 05/110/00 @##**105			
Arsenic	12.5	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL105			
		Ditution Factor: 1						
Lead	54.6	0.37	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL106			
Dead	34.6	Dilution Factor: 1	шулку	2#846 6010B	03/14-03/18/33 CVXIM106			
		Ditution Factor: 1						
Antimony	ND	7.4	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL10A			
Architotry	ND	Dilution Factor: 1	mg/kg	3W040 0010B	03/14-03/18/33 CVRDD10A			
		Ditacton ractor. 1						
Barium	39.2	24.5	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10C			
Durium	33.2	Dilution Factor: 1		54010 00105	03/11 03/10/33 CVICIDIDE			
		breacton ractor: 1						
Selenium	ND	0.61	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL107			
	-10	Dilution Factor: 1	3/ 1-3	5010 00102	03,11 03,10,33 0112210,			
		D110110111100011111						
Beryllium	ND	0.61	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10D			
		Dilution Factor: 1	3,3	2				
Thallium	ND	1.2	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL108			
		Dilution Factor: 1	3. 3					
Cadmium	ND	0.61	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL10E			
		Dilution Factor: 1						
Calcium	762	613	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10F			
		Dilution Factor: 1						
Chromium	13.9	1.2	mg/kg	SW846 6010B	05/14-05/18/99 CVKLL10G			
		Dilution Factor: 1						
C-1-1+		<i>c</i> 1		0110.46 604.00	05/14 05/16/00 @#####			
Cobalt	ND	6.1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10H			
		Dilution Factor: 1						
Copper	60.7	3.1	ma/ka	CW046 6010D	0E/14-0E/16/09 CTWTT10T			
cobber	60.7	3.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10J			
		Ditution Factor: 1			•			
Iron	28700	12.3	mg/kg	SW846 6010B	05/14-05/16/99 CVKLL10K			
2100	20700	Dilution Factor: 1	mg/ kg	SMOJO OLIVD	03/14-03/10/33 CAUTITUK			
		Ditacton Factor:						

Client Sample ID: ADNY-FM-SS01

TOTAL Metals

Matrix....: SOLID

SW846 6010B 05/14-05/16/99 CVKLL10U

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
	Magnesium	ND	613	mg/kg	SW846 6010B	05/14-05/16/99	
			Dilution Factor: 1			, , ,	
1	Manganese	254	1.8	mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10M
			Dilution Factor: 1				
ì	Nickel	115	4.9	mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10N
			Dilution Factor: 1				
	Potassium	ND		mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10P
			Dilution Factor: 1				
	Silver	NID	1.2	mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10Q
			Dilution Factor: 1				
	Sodium	ND	613	mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10R
			Dilution Factor: 1				
	Vanadium	10.9	6.1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLL10T
ì			Dilution Factor: 1				
	Mercury	0.16	0.12	mg/kg	SW846 7471A	05/14-05/18/99	CAKTT10A
			Dilution Factor: 1				

mg/kg

Results and reporting limits have been adjusted for dry weight.

28.5

2.5

Dilution Factor: 1

Zinc

NOTE (S):

Lot-Sample #...: A9E070141-015

Client Sample ID: ADNY-FM-SS01

General Chemistry

Matrix.... SOLID

Lot-Sample #...: A9E070141-015 Work Order #...: CVKLL

Date Sampled...: 05/07/99 08:10 Date Received..: 05/08/99

% Moisture....: 18

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Percent Solids	81.6 Dilution	0.10 Factor: 1	*	MCAWW 160.3 MOD	05/18-05/19/99	9138134

NOTE(S):

RL Reporting Limit

Client Sample ID: ADNY-UT-SS01

GC/MS Volatiles

Lot-Sample #: A9E070141-0	6 Work Order #: CVKLM103	Matrix: SOLID
---------------------------	--------------------------	---------------

Date Sampled...: 05/07/99 09:50 Date Received..: 05/08/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 0.86

% Moisture....: 24 **Method.....:** SW846 8260B

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	11	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.6	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	ND	5.6	ug/kg
1,1-Dichloroethene	ND	5.6	ug/kg
1,1-Dichloroethane	ND	5.6	ug/kg
1,2-Dichloroethene (total)	ND	5.6	ug/kg
Chloroform	ND	5.6	ug/kg
1,2-Dichloroethane	ND	5.6	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.6	ug/kg
Carbon tetrachloride	ND	5.6	ug/kg
Bromodichloromethane	ND	5.6	ug/kg
1,2-Dichloropropane	ND	5.6	ug/kg
cis-1,3-Dichloropropene	ND	5.6	ug/kg
Trichloroethene	ND	5.6	ug/kg
Dibromochloromethane	ND	5.6	ug/kg
1,1,2-Trichloroethane	ND	5.6	ug/kg
Benzene	ND	5.6	ug/kg
trans-1,3-Dichloropropene	ND	5.6	ug/kg
Bromoform	ND	5.6	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
2-Hexanone	ND	23	ug/kg
Tetrachloroethene	ND	5.6	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.6	ug/kg
Toluene	ND	5.6	ug/kg
Chlorobenzene	ND	5.6	ug/kg
Ethylbenzene	ND	5.6	ug/kg
Styrene	ND	5.6	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
1,2-Dichloroethane-d4	100	(75 - 117	7)
Toluene-d8	118	(86 - 122	2)
Bromofluorobenzene	109	(60 - 137	
Dibromofluoromethane	97	(70 - 135	5)

Client Sample ID: ADNY-UT-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-016 Work Order #...: CVKLM103 Matrix.....: SOLID

NOTE(S):

Client Sample ID: ADNY-UT-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-016 Work Order #...: CVKLM102 Matrix.....: SOLID

Date Sampled...: 05/07/99 09:50 Date Received..: 05/08/99
Prep Date....: 05/11/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131122

Dilution Factor: 1

% Moisture....: 24 **Method.....:** SW846 8270C

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND ND	430	ug/kg
bis(2-Chloroethyl)-	ND	430	ug/kg
ether			-5,5
2-Chlorophenol	ND	430	ug/kg
1,3-Dichlorobenzene	ND	430	ug/kg
1,4-Dichlorobenzene	ND	430	ug/kg
1,2-Dichlorobenzene	ND	430	ug/kg
2-Methylphenol	ND	430	ug/kg
2,2'-oxybis(1-Chloro- propane)	ND	430	ug/kg
4-Methylphenol	ND	430	ug/kg
N-Nitrosodi-n-propyl-	ND	430	ug/kg
amine	ND	430	dg/kg
Hexachloroethane	ND	430	ug/kg
Nitrobenzene	ND	430	ug/kg
Isophorone	ND	430	ug/kg
2-Nitrophenol	ND	430	ug/kg
2,4-Dimethylphenol	ND	430	ug/kg
bis(2-Chloroethoxy)	ND	430	ug/kg
methane			
2,4-Dichlorophenol	ND	430	ug/kg
1,2,4-Trichlorobenzene	ND	430	ug/kg
Naphthalene	ND	430	ug/kg
4-Chloroaniline	ND	430	ug/kg
Hexachlorobutadiene	ND	430	ug/kg
4-Chloro-3-methylphenol	ND	430	ug/kg
2-Methylnaphthalene	ND	430	ug/kg
Hexachlorocyclopenta- diene	ND	2100	ug/kg
2,4,6-Trichlorophenol	ND	430	ug/kg
2,4,5-Trichlorophenol	ND	430	ug/kg
2-Chloronaphthalene	ND	430	ug/kg
2-Nitroaniline	ND	2100	ug/kg
Dimethyl phthalate	ND	430	ug/kg
Acenaphthylene	ND	430	ug/kg
2,6-Dinitrotoluene	ND	430	ug/kg
3-Nitroaniline	ND	2 100	ug/kg
Acenaphthene	ND	430	ug/kg
nochaphenene	ND	3 3 0	ug/kg

Client Sample ID: ADNY-UT-SS01

GC/MS Semivolatiles

Lot-Sample #: A9E070141-0	16 Work Order #	.: CVKLM102	Matrix: SOLID
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	MD — — —	2100	ug/kg
4-Nitrophenol	ND	2100	ug/kg
Dibenzofuran	ND	430	ug/kg
2,4-Dinitrotoluene	ND	430	ug/kg
Diethyl phthalate	ND	430	ug/kg
4-Chlorophenyl phenyl ether	ND	430	ug/kg
Fluorene	ND	430	ug/kg
4-Nitroaniline	ND	2100	ug/kg
4,6-Dinitro- 2-methylphenol	ND	2100	ug/kg
N-Nitrosodiphenylamine	ND	430	ug/kg
4-Bromophenyl phenyl ether	ND	430	ug/kg
Hexachlorobenzene	ND	430	ug/kg
Pentachlorophenol	ND	430	ug/kg
Phenanthrene	ND	430	ug/kg
Anthracene	ND	430	ug/kg
Carbazole	ND	430	ug/kg
Di-n-butyl phthalate	ND	430	ug/kg
Fluoranthene	ND	430	ug/kg
Pyrene	ND	430	ug/kg
Butyl benzyl phthalate	ND	430	ug/kg
3,3'-Dichlorobenzidine	ND	2100	ug/kg
Benzo(a)anthracene	ND	430	ug/kg
Chrysene	ND	430	ug/kg
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	430	ug/kg
Di-n-octyl phthalate	ND	430	ug/kg
Benzo(b)fluoranthene	ND	430	ug/kg
Benzo(k)fluoranthene	ND	430	ug/kg
Benzo(a)pyrene	ND	430	ug/kg
Indeno(1,2,3-cd)pyrene	ND	430	ug/kg
Dibenz(a,h)anthracene	ND	430	ug/kg
Benzo(ghi)perylene	ND	430	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Nitrobenzene-d5	61	(23 - 120)	-
2-Fluorobiphenyl	68	(30 - 115)	
Terphenyl-d14	100	(18 - 137)	
Phenol-d5	60	(24 - 113)	
2-Fluorophenol	60	(25 - 121)	
2,4,6-Tribromophenol	77	(19 - 122)	

NOTE (S):

Client Sample ID: ADNY-UT-SS01

GC Semivolatiles

Lot-Sample #: A9E070141-01	Work Order #:	CVKLM104	Matrix:	SOLID
----------------------------	---------------	----------	---------	-------

Date Sampled...: 05/07/99 09:50 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 24 Method.....: SW846 8082

		REPORTIN	IG
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	43	ug/kg
Aroclor 1221	ND	43	ug/kg
Aroclor 1232	ND	43	ug/kg
Aroclor 1242	ND	43	ug/kg
Aroclor 1248	ND	43	ug/kg
Aroclor 1254	ND	43	ug/kg
Aroclor 1260	ND	43	ug/kg
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	42	(10 - 12	29)
Decachlorobiphenyl	93	(10 - 13	88)

NOTE(S):

Client Sample ID: ADNY-UT-SS01

TOTAL Metals

Lot-Sample # Date Sampled % Moisture	.: 05/07/	1 4 1-016 99 09:50 Date F	leceived	: 05/08/99	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch # Aluminum	.: 913325 13700	9 26.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM109
Arsenic	10.8	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM105
Lead	16.9	0.39 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM106
Antimony	ND	7.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM10A
Barium	261	26.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKIM10C
Selenium	ND	0.65 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM107
Beryllium	ND	0.65 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM10D
Thallium	ND	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM108
Cadmium	ND	0.65 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM10E
Calcium	2930	654 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM10F
Chromium	20.1	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVKLM10G
Cobalt	13.1	6.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM10H
Copper	38.2	3.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM10J
Iron	28000	13.1	mg/kg	SW846 6010B	05/14-05/16/99 CVKLM10K

(Continued on next page)

Dilution Factor: 1

Client Sample ID: ADNY-UT-SS01

TOTAL Metals

Matrix..... SOLID

05/14-05/16/99 CVKLM10R

05/14-05/16/99 CVKLM10T

05/14-05/18/99 CVKLM10V

05/14-05/16/99 CVKLM10U

	PARAMETER Magnesium	RESULT 5350	REPORTING LIMIT 654 Dilution Factor: 1	UNITS mg/kg	METHOD SW846 6010B	PREPARATION - ANALYSIS DATE 05/14-05/16/99	WORK ORDER # CVKLM10L
	Manganese	252	2.0 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKIMI 0M
	Nickel	39.5	5.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLM10N
	Potassium	946	654 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLM10P
i	Silver	ND	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLM10Q

mg/kg

mg/kg

mg/kg

mg/kg

654 Dilution Factor: 1

6.5

Dilution Factor: 1

0.13

Dilution Factor: 1

2.6

Dilution Factor: 1

SW846 6010B

SW846 6010B

SW846 7471A

SW846 6010B

NOTE(S):

Sodium

Vanadium

Mercury

Zinc

Results and reporting limits have been adjusted for dry weight.

22.2

ND

72.2

Lot-Sample #...: A9E070141-016

Client Sample ID: ADNY-UT-SS01

General Chemistry

Lot-Sample #...: A9E070141-016 Work Order #...: CVKLM Matrix.....: SOLID

Date Sampled...: 05/07/99 09:50 Date Received..: 05/08/99

% Moisture....: 24

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 76.4
 0.10
 \$ MCAWW 160.3 MOD
 05/18-05/19/99
 9138134

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-UT-SS02

GC/MS Volatiles

Lot-Sample #...: A9E070141-017 Work Order #...: CVKLN103 Matrix.....: SOLID

Date Sampled...: 05/07/99 10:45 Date Received..: 05/08/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 0.88

% Moisture....: 20 Method.....: \$W846 8260B

		REPORTIN	rG
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	1 1	ug/kg
Vinyl chloride	ND	11	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.5	ug/kg
Acetone	ND	22	ug/kg
Carbon disulfide	ND	5 . 5	ug/kg
1,1-Dichloroethene	ND	5.5	ug/kg
1,1-Dichloroethane	ND	5.5	ug/kg
1,2-Dichloroethene	ND	5.5	ug/kg
(total)			
Chloroform	ND	5 .5	ug/kg
1,2-Dichloroethane	ND	5.5	ug/kg
2-Butanone	ND	22	ug/kg
1,1,1-Trichloroethane	ND	5.5	ug/kg
Carbon tetrachloride	ND	5.5	ug/kg
Bromodichloromethane	ND	5.5	ug/kg
1,2-Dichloropropane	ND	5.5	ug/kg
cis-1,3-Dichloropropene	ND	5.5	ug/kg
Trichloroethene	ND	5.5	ug/kg
Dibromochloromethane	ND	5.5	ug/kg
1,1,2-Trichloroethane	ND	5.5	ug/kg
Benzene	ND	5.5	ug/kg
trans-1,3-Dichloropropene	ND	5.5	ug/kg
Bromoform	ND	5.5	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
2-Hexanone	ND	22	ug/kg
Tetrachloroethene	ND	5.5	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.5	ug/kg
Toluene	ND	5.5	ug/kg
Chlorobenzene	ND	5.5	ug/kg
Ethylbenzene	ND	5.5	ug/kg
Styrene	ND	5.5	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	(
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	101	(75 - 11	•
Toluene-d8	110	(86 - 12	
Bromofluorobenzene	98	(60 - 13	
Dibromofluoromethane	104	(70 - 13	35)

Client Sample ID: ADNY-UT-SS02

GC/MS Volatiles

Lot-Sample #...: A9E070141-017 Work Order #...: CVKLN103 Matrix...... SOLID

NOTE(S):

Client Sample ID: ADNY-UT-SS02

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-017 Work Order #...: CVKLN102 Matrix.....: SOLID

Date Sampled...: 05/07/99 10:45 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131122

Dilution Factor: 1

% Moisture....: 20 **Method.....:** SW846 8270C

		REPORTIN	1G
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	410	ug/kg
bis(2-Chloroethyl)-	ND	410	ug/kg
ether			
2-Chlorophenol	ND	410	ug/kg
1,3-Dichlorobenzene	ND	410	ug/kg
1,4-Dichlorobenzene	ND	410	ug/kg
1,2-Dichlorobenzene	ND	410	ug/kg
2-Methylphenol	ND	410	ug/kg
2,2'-oxybis(1-Chloro- propane)	ND	410	ug/kg
4-Methylphenol	ND	410	ug/kg
N-Nitrosodi-n-propyl- amine	ND	410	ug/kg
Hexachloroethane	ND	410	ug/kg
Nitrobenzene	ND	410	ug/kg
Isophorone	ND	410	ug/kg
2-Nitrophenol	ND	410	ug/kg
2,4-Dimethylphenol	ND	410	ug/kg
bis (2-Chloroethoxy)	ND	410	ug/kg
methane	ND	410	
2,4-Dichlorophenol	ND	410	ug/kg
1,2,4-Trichlorobenzene	ND	410	ug/kg
Naphthalene	ND	410	ug/kg
4-Chloroaniline	ND	410	ug/kg
Hexachlorobutadiene	ND	410	ug/kg
4-Chloro-3-methylphenol	ND	410	ug/kg
2-Methylnaphthalene	ND	410	ug/kg
Hexachlorocyclopenta- diene	ND	2000	ug/kg
2,4,6-Trichlorophenol	ND	410	ug/kg
2,4,5-Trichlorophenol	ND	410	ug/kg
2-Chloronaphthalene	ND	410	ug/kg
2-Nitroaniline	ND	2000	ug/kg
Dimethyl phthalate	ND	410	ug/kg
Acenaphthylene	ND	410	ug/kg
2,6-Dinitrotoluene	ND	410	ug/kg
3-Nitroaniline	ND	2000	ug/kg
Acenaphthene	ND	410	ug/kg

Client Sample ID: ADNY-UT-SS02

GC/MS Semivolatiles

Lot-Sample #:	A9E070141-017	Work Order #:	CVKLN102	Matrix: SOLID

		REPORTING	;
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	2000	ug/kg
4-Nitrophenol	ND	2000	ug/kg
Dibenzofuran	ND	410	ug/kg
2,4-Dinitrotoluene	ND	410	ug/kg
Diethyl phthalate	ND	410	ug/kg
4-Chlorophenyl phenyl	ND	410	ug/kg
ether	170		/1
Fluorene	ND	410	ug/kg
4-Nitroaniline	ND	2000	ug/kg
4,6-Dinitro-	ND	2000	ug/kg
2-methylphenol			4-
N-Nitrosodiphenylamine	ND	410	ug/kg
4-Bromophenyl phenyl ether	ND	410	ug/kg
Hexachlorobenzene	ND	410	ug/kg
Pentachlorophenol	ND	410	ug/kg
Phenanthrene	ND	410	ug/kg
Anthracene	ND	410	ug/kg
Carbazole	ND	410	ug/kg
Di-n-butyl phthalate	ND	410	ug/kg
Fluoranthene	ND	410	ug/kg
Pyrene	ND	410	ug/kg
Butyl benzyl phthalate	ND	410	ug/kg ug/kg
3,3'-Dichlorobenzidine	ND	2000	
			ug/kg
Benzo(a) anthracene	ND	410	ug/kg
Chrysene	ND	410	ug/kg
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	410	ug/kg
Di-n-octyl phthalate	ND	410	ug/kg
Benzo(b)fluoranthene	ND	410	ug/kg
Benzo(k)fluoranthene	ND	410	ug/kg
Benzo(a)pyrene	ND	410	ug/kg
Indeno(1,2,3-cd)pyrene	ND	410	ug/kg
Dibenz(a,h)anthracene	ND	410	ug/kg
Benzo(ghi)perylene	ND	410	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	56	(23 - 120)
2-Fluorobiphenyl	67	(30 - 115	
Terphenyl-d14	91	(18 - 137	
Phenol-d5	56	(24 - 113	
2-Fluorophenol	5 5	(25 - 121	
2,4,6-Tribromophenol	78	(19 - 122	•
NOTE (S):			

Client Sample ID: ADNY-UT-SS02

GC Semivolatiles

Lot-Sample #: A9E	070141-017 Work Ord	er #: CVKLN104	Matrix:	SOLID
-------------------	---------------------	----------------	---------	-------

Date Sampled...: 05/07/99 10:45 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 20 Method.....: SW846 8082

		REPORTIN	'G
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	41	ug/kg
Aroclor 1221	ND	41	ug/kg
Aroclor 1232	ND	41	ug/kg
Aroclor 1242	ND	41	ug/kg
Aroclor 1248	ND	41	ug/kg
Aroclor 1254	ND	41	ug/kg
Aroclor 1260	ND	41	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	71	(10 - 12	9)
Decachlorobiphenyl	91	(10 - 13	8)

NOTE(S):

Client Sample ID: ADNY-UT-SS02

TOTAL Metals

Lot-Sample #...: A9E070141-017 Matrix..... SOLID Date Sampled...: 05/07/99 10:45 Date Received..: 05/08/99 * Moisture....: 20 REPORTING PREPARATION-WORK LIMIT UNITS METHOD ANALYSIS DATE ORDER # PARAMETER RESULT Prep Batch #...: 9133259 Aluminum 10100 25.0 mg/kg SW846 6010B 05/14-05/16/99 CVKLN109 Dilution Factor: 1 1.2 SW846 6010B 05/14-05/18/99 CVKLN105 Arsenic 11.9 mg/kg Dilution Factor: 1 Lead 46.5 0.37 mg/kg SW846 6010B 05/14-05/18/99 CVKLN106 Dilution Factor: 1 05/14-05/18/99 CVKLN10A 7.5 SW846 6010B Antimony ND mg/kg Dilution Factor: 1 SW846 6010B Barium 131 25.0 mg/kg 05/14-05/16/99 CVKLN10C Dilution Factor: 1 0.62 SW846 6010B 05/14-05/18/99 CVKLN107 Selenium ND mg/kg Dilution Factor: 1 05/14-05/16/99 CVKLN10D 0.62 SW846 6010B Beryllium ND mg/kg Dilution Factor: 1 Thallium 1.2 SW846 6010B 05/14-05/18/99 CVKLN108 ND mg/kg Dilution Factor: 1 Cadmium ND 0.62 mg/kg SW846 6010B 05/14-05/18/99 CVKLN10E Dilution Factor: 1 05/14-05/16/99 CVKLN10F 624 SW846 6010B 3100 mg/kg Calcium Dilution Factor: 1 Chronium 15.8 1.2 mg/kg SW846 6010B 05/14-05/18/99 CVKLN10G Dilution Factor: 1

(Continued on next page)

mg/kg

mg/kg

mg/kg

SW846 6010B

SW846 6010B

SW846 6010B

05/14-05/16/99 CVKLN10H

05/14-05/16/99 CVKLN10J

05/14-05/18/99 CVKLN10K

6.2

Dilution Factor: 1

3.1

Dilution Factor: 1

12.5

Dilution Factor: 1

10.8

52.2

26500

Cobalt

Copper

Iron

Client Sample ID: ADNY-UT-SS02

TOTAL Metals

	_
Lot-Sample #: A9E070141-017	Matrix SOLID

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Magnesium	2800	624 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	
Manganese	714	1.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLN10M
Nickel	30.6	5.0 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CAKTW10N
Potassium	1020	624 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLN10P
Silver	ND	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLN10Q
Sodium	ND	624 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLN10R
Vanadium	20.0	6.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLN10T
Mercury	0.29	0.12 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CAKTM10A
Zinc	93.9	2.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CAKTN100
NOTE (S):						

Client Sample ID: ADNY-UT-SS02

General Chemistry

Lot-Sample #...: A9E070141-017

Work Order #...: CVKLN

Matrix....: SOLID

*** Moisture....:** 20

Date Sampled...: 05/07/99 10:45 Date Received..: 05/08/99

PREPARATION-

PARAMETER

Percent Solids

RESULT

RL UNITS METHOD

ANALYSIS DATE BATCH #

PREP

80.1

0.10

MCAWW 160.3 MOD

05/18-05/19/99 9138134

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

Client Sample ID: ADNY-DTK-SS01

GC/MS Volatiles

Lot-Sample #: A9E070141-018	Work Order #: CVKLP103	Matrix: SOLID
-----------------------------	------------------------	---------------

Date Sampled...: 05/07/99 13:40 Date Received..: 05/08/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 0.73

% Moisture....: 12 **Method.....:** SW846 8260B

			REPORTING	
	PARAMETER	RESULT	LIMIT	UNITS
	Chloromethane	ND	8.3	ug/kg
	Bromomethane	ND	8.3	ug/kg
	Vinyl chloride	ND	8.3	ug/kg
	Chloroethane	ND	8.3	ug/kg
	Methylene chloride	ND	4.1	ug/kg
Ġ.	Acetone	ND	17	ug/kg
į.	Carbon disulfide	ND	4.1	ug/kg
	1,1-Dichloroethene	ND	4.1	ug/kg
	1,1-Dichloroethane	ND	4.1	ug/kg
	1,2-Dichloroethene	ND	4.1	ug/kg
	(total)			
	Chloroform	ND	4.1	ug/kg
	1,2-Dichloroethane	ND	4.1	ug/kg
	2-Butanone	ND	17	ug/kg
	1,1,1-Trichloroethane	ND	4.1	ug/kg
	Carbon tetrachloride	ND	4.1	ug/kg
	Bromodichloromethane	ND	4.1	ug/kg
	1,2-Dichloropropane	ND	4.1	ug/kg
	cis-1,3-Dichloropropene	ND	4.1	ug/kg
	Trichloroethene	ND	4.1	ug/kg
	Dibromochloromethane	ND	4.1	ug/kg
	1,1,2-Trichloroethane	ND	4.1	ug/kg
	Benzene	ND	4.1	ug/kg
	trans-1,3-Dichloropropene	ND	4.1	ug/kg
	Bromoform	ND	4.1	ug/kg
	4-Methyl-2-pentanone	ND	17	ug/kg
	2-Hexanone	ND	17	ug/kg
	Tetrachloroethene	ND	4.1	ug/kg
	1,1,2,2-Tetrachloroethane	ND	4.1	ug/kg
	Toluene	ND	4.1	ug/kg
	Chlorobenzene	ND	4.1	ug/kg
	Ethylbenzene	ND	4.1	ug/kg
	Styrene	ND	4.1	ug/kg
	Xylenes (total)	ND	8.3	ug/kg
		PERCENT	RECOVERY	
	SURROGATE	RECOVERY	LIMITS	_
	1,2-Dichloroethane-d4	101	(75 - 117)	
	Toluene-d8	103	(86 - 122)	
	Bromofluorobenzene	100	(60 - 137)	
	Dibromofluoromethane	98	(70 - 135)	

Client Sample ID: ADNY-NS-SD01A

GC/MS Volatiles

Lot-Sample #...: A9E070141-006 Work Order #...: CVHTD103 Matrix.....: SOLID

Date Sampled...: 05/05/99 17:50 Date Received..: 05/06/99 Prep Date....: 05/06/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131221

Dilution Factor: 4.36

% Moisture....: 27 **Method.....:** SW846 8260B

		REPORTIN	rc
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	6000	ug/kg
Benzene	ND	1500	ug/kg
Bromodichloromethane	ND	1500	ug/kg
Bromoform	ND	1500	ug/kg
Bromomethane	ND	3000	ug/kg
2-Butanone	ND	6000	ug/kg
Carbon disulfide	ND	1500	ug/kg
Carbon tetrachloride	ND	1500	ug/kg
Chlorobenzene	ND	1500	ug/kg
Dibromochloromethane	ND	1500	ug/kg
Chloroethane	ND	3000	ug/kg
Chloroform	ND	1500	ug/kg
Chloromethane	ND	3000	ug/kg
1,1-Dichloroethane	ND	1500	ug/kg
1,2-Dichloroethane	ND	1500	ug/kg
1,1-Dichloroethene	ND	1500	ug/kg
1,2-Dichloroethene	2300	1500	ug/kg
(total)	2300	1300	49/149
,2-Dichloropropane	ND	1500	ug/kg
is-1,3-Dichloropropene	ND	1500	ug/kg
trans-1,3-Dichloropropene	ND	1500	ug/kg
athylbenzene	11000	1500	ug/kg
-Hexanone	ND	6000	ug/kg
Methylene chloride	ND	1500	ug/kg
4-Methyl-2-pentanone	ND	6000	ug/kg
vrene	ND	1500	ug/kg
1,2,2-Tetrachloroethane	ND	1500	ug/kg
Tetrachloroethene	ND	1500	ug/kg
Tiuene	ND	1500	ug/kg
i,1-Trichloroethane	ND	1500	ug/kg
1,1,2-Trichloroethane	ND	1500	ug/kg
Trichloroethene	ND	1500	ug/kg
V yl chloride	ND	3000	ug/kg
Xyrenes (total)	72000	3000	ug/kg
72 S S S S S S S S S S S S S S S S S S S			31.3
	PERCENT	RECOVERY	•
il- COGATE	RECOVERY	LIMITS	
,2-Dichloroethane-d4	64 DIL	(51 - 12	4)
o ene-d8	78 DIL	(58 - 11	
re ofluorobenzene	84 DIL	(53 - 12	
itromofluoromethane	80 DIL	(49 - 11	

Client Sample ID: ADNY-NS-SD01A

GC Semivolatiles

Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	05/05/99 17:50 05/11/99 9131114 1	Work Order #: Date Received: Analysis Date:	05/06/99 05/16/99	Matrix: SOLID
* Moisture:	27	Method:	SW846 8082	
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Aroclor 1016		ND	46	ug/kg
Aroclor 1221		ND	46	ug/kg
Aroclor 1232		ND	46	ug/kg
Aroclor 1242		ND	46	ug/kg
Aroclor 1248		ND	46	ug/kg
Aroclor 1254		ND	46	ug/kg
Aroclor 1260		140	46	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xy	lene	66	(10 - 129)	
Decachlorobiphen	yl	152 *	(10 - 138)	

NOTE (S):

^{*} Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-NS-SD01A

TOTAL Metals

Lot-Sample #...: A9E070141-006 Matrix....: SOLID

Date Sampled...: 05/05/99 17:50 Date Received..: 05/06/99

% Moisture....: 27

ŀ	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
	Prep Batch #:	9133259 16000	27.6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD109
l	Arsenic	9.0	1.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD105
	Lead	158	0.41 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD106
1	Antimony	ND	8.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD10A
	Barium	210	27.6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10C
ļ	Selenium	0.88	0.69 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD107
	Beryllium	1.4	0.69 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10D
	Thallium	ND	1.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD108
1	Cadmium	1.9	0.69 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD10E
	Calcium	60600	690 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10F
	Chromium	174	1.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTD10G
ľ	Cobalt	8.1	6.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10H
	Copper	136	3.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10J
i	Iron	39300	13.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10K

Client Sample ID: ADNY-NS-SD01A

TOTAL Metals

Lot-Sample #.	: A9E070:	141-006			Matrix	.: SOLID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION -	
Magnesium	14500	690 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHID10L
Manganese	1490	2.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10M
Nickel	158	5.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10N
Potassium	1110	690 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10P
Silver	ND	1.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10Q
Sodium	ND	690 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10R
Vanadium	17.9	6.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10T
Mercury	1.5	0.14 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CAHLD10A
Zinc	920	2.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTD10U

Results and reporting limits have been adjusted for dry weight.

NOTE (S):

Client Sample ID: ADNY-NS-SD01A

General Chemistry

Lot-Sample #...: A9E070141-006

Work Order #...: CVHTD

Matrix....: SOLID

Date Sampled...: 05/05/99 17:50 Date Received..: 05/06/99

% Moisture....: 27

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 72.5
 0.10
 %
 MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-SS-SD001

GC/MS Volatiles

Lot-Sample #: A9E070141-	07 Work Order #: CVHTN103	Matrix SOLID
--------------------------	---------------------------	--------------

Date Sampled...: 05/06/99 09:40 Date Received..: 05/07/99
Prep Date....: 05/07/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131225

Dilution Factor: 0.88

*** Moisture....:** 23 **Method.....:** SW846 8260B

		REPORTIN	REPORTING		
PARAMETER	RESULT_	LIMIT	UNITS		
Acetone	ND	1100	ug/kg		
Benzene	ND	290	ug/kg		
Bromodichloromethane	ND	290	ug/kg		
Bromoform	ND	290	ug/kg		
Bromomethane	ND	570	ug/kg		
2-Butanone	ND	1100	ug/kg		
Carbon disulfide	ND	290	ug/kg		
Carbon tetrachloride	ND	290	ug/kg		
Chlorobenzene	ND	290	ug/kg		
Dibromochloromethane	ND	290	ug/kg		
Chloroethane	ND	570	ug/kg		
Chloroform	ND	290	ug/kg		
Chloromethane	ND	570	ug/kg		
1,1-Dichloroethane	ND	290	ug/kg		
1,2-Dichloroethane	ND	290	ug/kg		
1,1-Dichloroethene	ND	290	ug/kg		
1,2-Dichloroethene	290	290	ug/kg		
(total)					
1,2-Dichloropropane	ND	290	ug/kg		
cis-1,3-Dichloropropene	ND	290	ug/kg		
trans-1,3-Dichloropropene	ND	290	ug/kg		
Ethylbenzene	ND	290	ug/kg		
2-Hexanone	ND	1100	ug/kg		
Methylene chloride	ND	290	ug/kg		
4-Methyl-2-pentanone	ND	1100	ug/kg		
Styrene	ND	290	ug/kg		
1,1,2,2-Tetrachloroethane	ND	290	ug/kg		
Tetrachloroethene	ND	290	ug/kg		
Toluene	ND	290	ug/kg		
1,1,1-Trichloroethane	ND	290	ug/kg		
1,1,2-Trichloroethane	ND	290	ug/kg		
Trichloroethene	1800	290	ug/kg		
Vinyl chloride	ND	570	ug/kg		
Xylenes (total)	ND	570	ug/kg		
Table 1			- -		
	PERCENT	RECOVERY	?		
SURROGATE	RECOVERY	LIMITS			
1,2-Dichloroethane-d4	80	(51 - 12	24)		
Toluene-d8	81	(58 - 11			
Bromofluorobenzene	73	(53 - 12			
Dibromofluoromethane	85	(49 - 11			

Client Sample ID: ADNY-SS-SD001

GC/MS Volatiles

Lot-Sample #...: A9E070141-007 Work Order #...: CVHTN103

Matrix....: SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Elevated reporting limits due to TICs.

Client Sample ID: ADNY-SS-SD001

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-007 Work Order #...: CVHTN102 Matrix.....: SOLID

Date Sampled...: 05/06/99 09:40 Date Received..: 05/07/99
Prep Date.....: 05/11/99 Analysis Date..: 05/21/99

Prep Batch #...: 9131122

Dilution Factor: 6.66

*** Moisture....:** 23 **Method.....:** SW846 8270C

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	2900	ug/kg
bis(2-Chloroethyl)-	ND	2900	ug/kg
ether			
2-Chlorophenol	ND	2900	ug/kg
1,3-Dichlorobenzene	ND	2900	ug/kg
1,4-Dichlorobenzene	ND	2900	ug/kg
1,2-Dichlorobenzene	ND	2900	ug/kg
2-Methylphenol	ND	2900	ug/kg
2,2'-oxybis(1-Chloro-	ND	2900	ug/kg
propane)			
4-Methylphenol	ND	2900	ug/kg
N-Nitrosodi-n-propyl-	ND	2900	ug/kg
amine			
Hexachloroethane	ND	2900	ug/kg
Nitrobenzene	ND	2900	ug/kg
Isophorone	ND	2900	ug/kg
2-Nitrophenol	ND	2900	ug/kg
2,4-Dimethylphenol	ND	2900	ug/kg
bis(2-Chloroethoxy)	ND	2900	ug/kg
methane			
2,4-Dichlorophenol	ND	2900	ug/kg
1,2,4-Trichlorobenzene	ND	2900	ug/kg
Naphthalene	ND	2900	ug/kg
4-Chloroaniline	ND	2900	ug/kg
Hexachlorobutadiene	ND	2900	ug/kg
4-Chloro-3-methylphenol	ND	2900	ug/kg
2-Methylnaphthalene	ND	2900	ug/kg
Hexachlorocyclopenta- diene	ND	14000	ug/kg
2,4,6-Trichlorophenol	ND	2900	ug/kg
2,4,5-Trichlorophenol	ND	2900	ug/kg
2-Chloronaphthalene	ND	2900	ug/kg
2-Nitroaniline	ND	14000	ug/kg
Dimethyl phthalate	ND	2900	ug/kg
Acenaphthylene	ND	2900	ug/kg
2,6-Dinitrotoluene	ND	2900	ug/kg
3-Nitroaniline	ND	14000	ug/kg
Acenaphthene	ND	2900	ug/kg

Client Sample ID: ADNY-SS-SD001

GC/MS Semivolatiles

		REPORTING	7
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	14000	ug/kg
4-Nitrophenol	ND	14000	ug/kg
Dibenzofuran	ND	2900	ug/kg
2,4-Dinitrotoluene	ND	2900	ug/kg
Diethyl phthalate	ND	2900	ug/kg
4-Chlorophenyl phenyl	ND	2900	ug/kg
ether			
Fluorene	ND	2900	ug/kg
4-Nitroaniline	ND	14000	ug/kg
4,6-Dinitro-	ND	14000	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	2900	ug/kg
4-Bromophenyl phenyl	ND	2900	ug/kg
ether			
Hexachlorobenzene	ND	2900	ug/kg
Pentachlorophenol	ND	2900	ug/kg
Phenanthrene	13000	2900	ug/kg
Anthracene	ND	2900	ug/kg
Carbazole	ND	2900	ug/kg
Di-n-butyl phthalate	ND	2900	ug/kg
Fluoranthene	16000	2900	ug/kg
Pyrene	13000	2900	ug/kg
Butyl benzyl phthalate	ND	2900	ug/kg
3,3'-Dichlorobenzidine	ND	14000	ug/kg
Benzo(a) anthracene	6500	2900	ug/kg
Chrysene	6800	2900	ug/kg
bis(2-Ethylhexyl)	4100	2900	ug/kg
phthalate			-3,3
Di-n-octyl phthalate	ND	2900	ug/kg
Benzo(b) fluoranthene	7000	2900	ug/kg
Benzo(k) fluoranthene	3200	2900	ug/kg
Benzo(a) pyrene	5000	2900	ug/kg
Indeno(1,2,3-cd)pyrene	ND	2900	ug/kg
Dibenz(a,h)anthracene	ND	2900	ug/kg
Benzo(ghi)perylene	ND	2900	ug/kg
201120 (5111) 2011 20110	1,5	2500	ag/ ng
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	66 DIL	(23 - 120	<u>))</u>
2-Fluorobiphenyl	79 DIL	(30 - 115	
Terphenyl-d14	107 DIL	(18 - 13	
Phenol-d5	56 DIL	(24 - 113	
2-Fluorophenol	72 DIL	(25 - 12)	
2,4,6-Tribromophenol	68 DIL	(19 - 12)	
2,1,0 IIIDIOMOPHENOI	00 DIH	(1) - 124	<i>4</i> /

Client Sample ID: ADNY-SS-SD001

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-007 Work Order #...: CVHTN102 Matrix.....: SOLID

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: ADNY-SS-SD001

GC Semivolatiles

Lot-Sample #:	A9E070141-007	Work Order #:	CVHTN104	Matrix: SOLID
Date Sampled:	05/06/99 09:40	Date Received:	05/07/99	
Prep Date:	05/11/99	Analysis Date:	05/16/99	
Prep Batch #:	9131114			
Dilution Factor:	1			
* Moisture:	23	Method:	SW846 8082	
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Aroclor 1016		ND	43	ug/kg
Aroglar 1221		NID	43	ua/ka

ND	43 ug/kg
ND	43 ug/kg
120	43 ug/kg
ND	43 ug/kg
PERCENT	RECOVERY
RECOVERY	LIMITS
64	(10 - 129)
82	(10 - 138)
	ND ND ND 120 ND PERCENT RECOVERY 64

NOTE(S):

Client Sample ID: ADNY-SS-SD001

TOTAL Metals

Lot-Sample #...: A9E070141-007 Matrix....: SOLID

Date Sampled...: 05/06/99 09:40 Date Received..: 05/07/99

% Moisture....: 23

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
				-		
Prep Batch #	: 9133259	•				
Aluminum	9200	26.0	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN109
		Dilution Factor: 1				
		•				
Arsenic	11.5	1.3	mg/kg	SW846 6010B	05/14-05/18/99	CVHTN105
		Dilution Factor: 1				
Lead	182	0.39	mg/kg	SW846 6010B	05/14-05/18/99	CVHTN106
		Dilution Factor: 1				
Antimony	ND	7.8	mg/kg	SW846 6010B	05/14-05/18/99	CVHTN10A
		Dilution Factor: 1				
Barium	113	26.0	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10C
		Dilution Factor: 1				
Selenium	1.2	0.65	mg/kg	SW846 6010B	05/14-05/18/99	CVHIN107
		Dilution Factor: 1				
			/1		05 /24 05 /26 /00	C1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Beryllium	ND	0.65	mg/kg	SW846 6010B	05/14-05/16/99	CAHINIOD
		Dilution Factor: 1				
mb = 1.1 days	MD	1.3	ma /lea	CWOAC COLOR	05/14-05/18/99	CTTITINI 1 O O
Thallium	ND	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/33	CANINIOS
		Ditution Factor: 1				
Cadmium	1.9	0.65	mg/kg	SW846 6010B	05/14-05/18/99	CANTANA UE
Cacinitum	1.3	Dilution Factor: 1	шу/ ку	S#840 0010B	03/14-03/10/33	CALLETOR
		prediction ractor.				
Calcium	19800	650	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10F
		Dilution Factor: 1	575	5.1.5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	00, 00,-0,00	
Chromium	51.7	1.3	mg/kg	SW846 6010B	05/14-05/18/99	CVHTN10G
		Dilution Factor: 1				
Cobalt	11.1	6.5	mg/kg	SW846 6010B	05/14-05/16/99	CVHIN10H
		Dilution Factor: 1				
Copper	99.2	3.3	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10J
		Dilution Factor: 1				
Iron	29300	13.0	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10K
		Dilution Factor: 1				

Client Sample ID: ADNY-SS-SD001

TOTAL Metals

Lot-Sample #: A9E070141-007	Matrix: SOLID

	DDGIII M	REPORTING		METHOD	PREPARATION-	WORK
PARAMETER Magnesium	RESULT 5290	LIMIT 650	<u>UNITS</u> mg/kg	SW846 6010B	ANALYSIS DATE 05/14-05/16/99	ORDER #
	5	Dilution Factor: 1	_3,3	2	00,11 00,10,00	
Manganese	629	2.0	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10M
		Dilution Factor: 1				
Nickel	520	5.2	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10N
		Dilution Factor: 1				
Potassium	1320	650	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10P
		Dilution Factor: 1				
Silver	1.6	1.3	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10Q
		Dilution Factor: 1				
Sodium	ND	650	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10R
		Dilution Factor: 1				
Vanadium	11.4	6.5	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10T
		Dilution Factor: 1				
Mercury	0.15	0.13	mg/kg	SW846 7471A	05/14-05/18/99	CVHTN10V
		Dilution Factor: 1				
Zinc	762	2.6	mg/kg	SW846 6010B	05/14-05/16/99	CVHTN10U
		Dilution Factor: 1				
NOTE(S):						

Client Sample ID: ADNY-SS-SD001

General Chemistry

Matrix..... SOLID

Lot-Sample #...: A9E070141-007 Work Order #...: CVHTN

Date Sampled...: 05/06/99 09:40 Date Received..: 05/07/99

% Moisture....: 23

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Percent Solids
 76.9
 0.10
 %
 MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-SDA-SS01

GC/MS Volatiles

Lot-Sample #: A9	9E070141-008 Work	Order #:	CVHTQ103	Matrix:	SOLID
------------------	-------------------	----------	----------	---------	-------

Date Sampled...: 05/06/99 12:50 Date Received..: 05/07/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 1.22

% Moisture....: 21 Method....: \$W846 8260B

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	15	ug/kg
Bromomethane	ND	15	ug/kg
Vinyl chloride	ND	15	ug/kg
Chloroethane	ND	15	ug/kg
Methylene chloride	ND	7.7	ug/kg
Acetone	34	31	ug/kg
Carbon disulfide	ND	7.7	ug/kg
1,1-Dichloroethene	ND	7.7	ug/kg
1,1-Dichloroethane	ND	7.7	ug/kg
1,2-Dichloroethene	ND	7.7	ug/kg
(total)			
Chloroform	ND	7.7	ug/kg
1,2-Dichloroethane	ND	7.7	ug/kg
2-Butanone	ND	31	ug/kg
1,1,1-Trichloroethane	ND	7.7	ug/kg
Carbon tetrachloride	ND	7.7	ug/kg
Bromodichloromethane	ND	7.7	ug/kg
1,2-Dichloropropane	ND	7.7	ug/kg
cis-1,3-Dichloropropene	ND	7.7	ug/kg
Trichloroethene	ND	7.7	ug/kg
Dibromochloromethane	ND	7.7	ug/kg
1,1,2-Trichloroethane	ND	7.7	ug/kg
Benzene	ND	7.7	ug/kg
trans-1,3-Dichloropropene	ND	7.7	ug/kg
Bromoform	ND	7.7	ug/kg
4-Methyl-2-pentanone	ND	31	ug/kg
2-Hexanone	ND	31	ug/kg
Tetrachloroethene	ND	7.7	ug/kg
1,1,2,2-Tetrachloroethane	ND	7.7	ug/kg
Toluene	ND	7.7	ug/kg
Chlorobenzene	ND	7.7	ug/kg
Ethylbenzene	ND	7.7	ug/kg
Styrene	ND	7.7	ug/kg
Xylenes (total)	ND	15	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
1,2-Dichloroethane-d4	96	(75 - 117)	
Toluene-d8	176 *	(86 - 122)	
Bromofluorobenzene	152 *	(60 - 137)	
Dibromofluoromethane	104	(70 - 135)	

Client Sample ID: ADNY-SDA-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-008 Work Order #...: CVHTQ103 Matrix.....: SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-SDA-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-008 Work Order #...: CVHTQ102 Matrix.....: SOLID

Date Sampled...: 05/06/99 12:50 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/21/99

Prep Batch #...: 9131122

Dilution Factor: 1

*** Moisture....:** 21 **Method.....:** SW846 8270C

		REPORTI	REPORTING	
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	
Phenol	ND	420	ug/kg	
bis(2-Chloroethyl)-	ND	420	ug/kg	
ether				
2-Chlorophenol	ND	420	ug/kg	
1,3-Dichlorobenzene	ND	420	ug/kg	
1,4-Dichlorobenzene	ND	420	ug/kg	
1,2-Dichlorobenzene	ND	420	ug/kg	
2-Methylphenol	ND	420	ug/kg	
2,2'-oxybis(1-Chloro- propane)	ND	420	ug/kg	
4-Methylphenol	ND	420	ug/kg	
N-Nitrosodi-n-propyl- amine	ND	420	ug/kg	
Hexachloroethane	ND	420	ug/kg	
Nitrobenzene	ND	420	ug/kg	
Isophorone	ND	420	ug/kg	
2-Nitrophenol	ND	420	ug/kg	
2,4-Dimethylphenol	ND	420	ug/kg	
bis(2-Chloroethoxy) methane	ND	420	ug/kg	
2,4-Dichlorophenol	ND	420	ug/kg	
1,2,4-Trichlorobenzene	ND	420	ug/kg	
Naphthalene	ND	420	ug/kg	
4-Chloroaniline	ND	420	ug/kg	
Hexachlorobutadiene	ND	420	ug/kg	
4-Chloro-3-methylphenol	ND	420	ug/kg	
2-Methylnaphthalene	450	420	ug/kg	
Hexachlorocyclopenta- diene	ND	2000	ug/kg	
2,4,6-Trichlorophenol	ND	420	ug/kg	
2,4,5-Trichlorophenol	ND	420	ug/kg	
2-Chloronaphthalene	ND	420	ug/kg	
2-Nitroaniline	ND	2000	ug/kg	
Dimethyl phthalate	ND	420	ug/kg	
Acenaphthylene	ND	420	ug/kg	
2,6-Dinitrotoluene	ND	420	ug/kg	
3-Nitroaniline	ND	2000	ug/kg	
Acenaphthene	ND	420	ug/kg	

Client Sample ID: ADNY-SDA-SS01

GC/MS Semivolatiles

Lot-Sample #: A9E070141-008	Work Order #:	CVHTQ102	Matrix: SOLID
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	2000	ug/kg
4-Nitrophenol	ND	2000	ug/kg
Dibenzofuran	ND	420	ug/kg
2,4-Dinitrotoluene	ND	420	ug/kg
Diethyl phthalate	ND	420	ug/kg
4-Chlorophenyl phenyl	ND	420	ug/kg
ether			
Fluorene	ND	420	ug/kg
4-Nitroaniline	ND	2000	ug/kg
4,6-Dinitro-	ND	2000	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	420	ug/kg
4-Bromophenyl phenyl	ND	420	ug/kg
ether			
Hexachlorobenzene	ND	420	ug/kg
Pentachlorophenol	ND	420	ug/kg
Phenanthrene	710	420	ug/kg
Anthracene	ND	420	ug/kg
Carbazole	ND	420	ug/kg
Di-n-butyl phthalate	ND	420	ug/kg
Fluoranthene	1000	420	ug/kg
Pyrene	930	420	ug/kg
Butyl benzyl phthalate	ND	420	ug/kg
3,3'-Dichlorobenzidine	ND	2000	ug/kg
Benzo(a)anthracene	570	420	ug/kg
Chrysene	810	420	ug/kg
bis(2-Ethylhexyl)	ND	420	ug/kg
phthalate			
Di-n-octyl phthalate	ND	420	ug/kg
Benzo(b) fluoranthene	1100	420	ug/kg
Benzo(k) fluoranthene	450	420	ug/kg
Benzo(a) pyrene	710	420	ug/kg
Indeno (1,2,3-cd) pyrene	520	420	ug/kg
Dibenz(a,h)anthracene	ND	420	ug/kg
Benzo(ghi)perylene	600	420	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	62	(23 - 120)	
2-Fluorobiphenyl	76	(30 - 115)	
Terphenyl-d14	93	(30 - 113) (18 - 137)	
Phenol-d5	60	(24 - 113)	
2-Fluorophenol	62	(25 - 121)	
2,4,6-Tribromophenol	84	(19 - 122)	
_, _, _ 1_111101101101	••	122/	

Client Sample ID: ADNY-SDA-SS01

GC Semivolatiles

Lot-Sample #: A9E070141-008	Work Order #: CVHTQ104	Matrix SOLID
-----------------------------	------------------------	--------------

Date Sampled...: 05/06/99 12:50 Date Received..: 05/07/99
Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

*** Moisture....:** 21 **Method.....:** SW846 8082

-	T 7		'n	7	7	NC
ĸ	н. :	Ρί.) н		1	INC ·

PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	42	ug/kg
Aroclor 1221	ND	42	ug/kg
Aroclor 1232	ND	42	ug/kg
Aroclor 1242	ND	42	ug/kg
Aroclor 1248	ND	42	ug/kg
Aroclor 1254	67	42	ug/kg
Aroclor 1260	ND	42	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Tetrachloro-m-xylene	68	(10 - 129)	
Decachlorobiphenyl	90	(10 - 138)	

NOTE (S):

Client Sample ID: ADNY-SDA-SS01

TOTAL Metals

Lot-Sample #. Date Sampled. Moisture	: 05/06/9	141-008 99 12:50 Date F	eceived.	.: 05/07/99	Matrix: SOLID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 9133259	Э			
Aluminum	4320	25.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ109
Arsenic	44.0	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ105
Lead	74.5	0.38 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ106
Antimony	ND	7.6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ10A
Barium	98.0	25.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10C
Selenium	1.2	0.63 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ107
Beryllium	ND	0.63 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10D
Thallium	ND	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ108
Cadmium	ND	0.63 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ10E
Calcium	2420	632 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10F
Chromium	27.2	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHTQ10G
Cobalt	ND	6.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10H
Copper	80.5	3.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10J
Iron	31500	12.6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHTQ10K

Client Sample ID: ADNY-SDA-SS01

TOTAL Metals

Lot-Sample #: A9E070141-008	Matrix SOLID
-----------------------------	--------------

ļ			5=505==114				
	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION-	WORK
Ì	Magnesium	1490	632	mg/kg	SW846 6010B	ANALYSIS DATE 05/14-05/16/99	
	Bagnesium	1430	Dilution Factor: 1	шу/ ку	24040 0010D	03/14-03/16/33	CAHIOTOR
	Manganese	221	1.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10M
	Nickel	43.5	5.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10N
ľ	Potassium	ND	632 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10P
	Silver	ND	1.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10Q
	Sodium	ND	632 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10R
	Vanadium	14.8	6.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTQ10T
	Mercury	0.20	0.13 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVHTQ10V
	Zinc	124	2.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CAHLÖ100
ĺ	NOTE (S) ·						

Client Sample ID: ADNY-SDA-SS01

General Chemistry

Lot-Sample #...: A9E070141-008

Work Order #...: CVHTQ

Matrix....: SOLID

Date Sampled...: 05/06/99 12:50 Date Received..: 05/07/99

* Moisture....: 21

PREPARATION-PREP RESULT RLUNITS METHOD ANALYSIS DATE BATCH #

PARAMETER MCAWW 160.3 MOD Percent Solids 79.1 0.10 05/17-05/18/99 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-SDA-SS02

GC/MS Volatiles

Lot-Sample #: A9E070141-0	9 Work Order #: CVHTV103	Matrix: SOLID
---------------------------	--------------------------	---------------

Date Sampled...: 05/06/99 13:35 Date Received..: 05/07/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 0.92

% Moisture....: 14 Method.....: SW846 8260B

		REPORTING	}
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	11	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.4	ug/kg
Acetone	24	22	ug/kg
Carbon disulfide	ND	5.4	ug/kg
1,1-Dichloroethene	ND	5.4	ug/kg
1,1-Dichloroethane	ND	5.4	ug/kg
<pre>1,2-Dichloroethene (total)</pre>	ND	5.4	ug/kg
Chloroform	ND	5.4	ug/kg
1,2-Dichloroethane	ND	5.4	ug/kg
2-Butanone	ND	22	ug/kg
1,1,1-Trichloroethane	ND	5.4	ug/kg
Carbon tetrachloride	ND	5.4	ug/kg
Bromodichloromethane	ND	5.4	ug/kg
1,2-Dichloropropane	ND	5.4	ug/kg
cis-1,3-Dichloropropene	ND	5.4	ug/kg
Trichloroethene	ND	5.4	ug/kg
Dibromochloromethane	ND	5.4	ug/kg
1,1,2-Trichloroethane	ND	5.4	ug/kg
Benzene	ND	5.4	ug/kg
trans-1,3-Dichloropropene	ND	5.4	ug/kg
Bromoform	ND	5.4	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
2-Hexanone	ND	22	ug/kg
Tetrachloroethene	ND	5.4	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.4	ug/kg
Toluene	ND	5.4	ug/kg
Chlorobenzene	ND	5.4	ug/kg
Ethylbenzene	ND	5.4	ug/kg
Styrene	ND	5.4	ug/kg
Xylenes (total)	ND	11	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	99	(75 - 117	<u>')</u>
Toluene-d8	134 *	(86 - 122	
Bromofluorobenzene	140 *	(60 - 137	
Dibromofluoromethane	99	(70 - 135	-

Client Sample ID: ADNY-SDA-SS02

GC/MS Volatiles

Lot-Sample #...: A9E070141-009 Work Order #...: CVHTV103 Matrix.....: SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Surrogate recovery is outside stated control limits.

Client Sample ID: ADNY-SDA-SS02

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-009 Work Order #...: CVHTV102 Matrix.....: SOLID

Date Sampled...: 05/06/99 13:35 Date Received..: 05/07/99
Prep Date....: 05/11/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131122

Dilution Factor: 8

% Moisture....: 14 **Method.....:** SW846 8270C

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Phenol	ND	3100	ug/kg
bis(2-Chloroethyl)-	ND	3100	ug/kg
ether			5. 5
2-Chlorophenol	ND	3100	ug/kg
1,3-Dichlorobenzene	ND	3100	ug/kg
1,4-Dichlorobenzene	ND	3100	ug/kg
1,2-Dichlorobenzene	ND	3100	ug/kg
2-Methylphenol	ND	3100	ug/kg
2,2'-oxybis(1-Chloro-	ND	3100	ug/kg
propane)			5. 5
4-Methylphenol	ND	3100	ug/kg
N-Nitrosodi-n-propyl-	ND	3100	ug/kg
amine			5. 5
Hexachloroethane	ND	3100	ug/kg
Nitrobenzene	ND	3100	ug/kg
Isophorone	ND .	3100	ug/kg
2-Nitrophenol	ND	3100	ug/kg
2,4-Dimethylphenol	ND	3100	ug/kg
bis (2-Chloroethoxy)	ND	3100	ug/kg
methane			3, 3
2,4-Dichlorophenol	ND	3100	ug/kg
1,2,4-Trichlorobenzene	ND	3100	ug/kg
Naphthalene	ND	3100	ug/kg
4-Chloroaniline	ND	3100	ug/kg
Hexachlorobutadiene	ND	3100	ug/kg
4-Chloro-3-methylphenol	ND	3100	ug/kg
2-Methylnaphthalene	ND	3100	ug/kg
Hexachlorocyclopenta-	ND	15000	ug/kg
diene			
2,4,6-Trichlorophenol	ND	3100	ug/kg
2,4,5-Trichlorophenol	ND	3100	ug/kg
2-Chloronaphthalene	ND	3100	ug/kg
2-Nitroaniline	ND	15000	ug/kg
Dimethyl phthalate	ND	3100	ug/kg
Acenaphthylene	ND	3100	ug/kg
2,6-Dinitrotoluene	ND	3100	ug/kg
3-Nitroaniline	ND	15000	ug/kg
Acenaphthene	ND	3100	ug/kg

Client Sample ID: ADNY-SDA-SS02

GC/MS Semivolatiles

Lot-Sample #: A9E070141-009	Work Order #:	CVHTV102	Matrix: SOLID
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	15000	ug/kg
4-Nitrophenol	ND	15000	ug/kg
Dibenzofuran	ND	3100	ug/kg
2,4-Dinitrotoluene	ND	3100	ug/kg
Diethyl phthalate	ND	3100	ug/kg
4-Chlorophenyl phenyl	ND	3100	ug/kg
ether			
Fluorene	ND	3100	ug/kg
4-Nitroaniline	ND	15000	ug/kg
4,6-Dinitro-	ND	15000	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	3100	ug/kg
4-Bromophenyl phenyl ether	ND	3100	ug/kg
Hexachlorobenzene	ND	3100	ug/kg
Pentachlorophenol	ND	3100	ug/kg
Phenanthrene	6000	3100	ug/kg
Anthracene	ND	3100	ug/kg
Carbazole	ND	3100	ug/kg
	ND	3100	ug/kg
Di-n-butyl phthalate	17000	3100	ug/kg
Fluoranthene	15000	3100	ug/kg
Pyrene		3100	ug/kg
Butyl benzyl phthalate	ND		ug/kg
3,3'-Dichlorobenzidine	ND	15000 3100	
Benzo(a) anthracene	10000		ug/kg
Chrysene	9900	3100	ug/kg
<pre>bis(2-Ethylhexyl) phthalate</pre>	ND	3100	ug/kg
Di-n-octyl phthalate	ND	3100	ug/kg
Benzo(b) fluoranthene	13000	3100	ug/kg
Benzo(k) fluoranthene	5400	3100	ug/kg
Benzo(a)pyrene	8600	3100	ug/kg
Indeno (1,2,3-cd) pyrene	4400	3100	ug/kg
Dibenz(a,h)anthracene	ND	3100	ug/kg
Benzo(ghi)perylene	4300	3100	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	72 DIL	(23 - 120)	
2-Fluorobiphenyl	88 DIL	(30 - 115)	
Terphenyl-d14	111 DIL	(18 - 137)	
Phenol-d5	71 DIL	(24 - 113)	
2-Fluorophenol	72 DIL	(25 - 121)	
2,4,6-Tribromophenol	86 DIL	(19 - 122)	

(Continued on next page)

Client Sample ID: ADNY-SDA-SS02

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-009 Work Order #...: CVHTV102 Matrix.....: SOLID

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: ADNY-SDA-SS02

GC Semivolatiles

Date Sampled: Prep Date: Prep Batch #:	05/06/99 13:35 05/11/99 9131114	Work Order #: Date Received: Analysis Date:	05/07/99	Matrix: SOLID
Dilution Factor: % Moisture:		Method:	SW846 8082	
• Boiscure	11	Hethod	3#040 0002	
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Aroclor 1016		ND	39	ug/kg
Aroclor 1221		ND	39	ug/kg
Aroclor 1232		ND	39	ug/kg
Aroclor 1242		ND	39	ug/kg
Aroclor 1248		ND	39	ug/kg
Aroclor 1254		85	39	ug/kg
Aroclor 1260		ND	39	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Tetrachloro-m-xy	lene	64	(10 - 129)	
Decachlorobiphen	yl	92	(10 - 138)	

NOTE (S):

Client Sample ID: ADNY-SDA-SS02

TOTAL Metals

Matrix....: SOLID

Lot-Sample #...: A9E070141-009

Date Sampled		9 13:35 Date R	eceived:	05/07/99		
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch # Aluminum	: 9133 2 59 14900	23.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV109
Arsenic	45.0	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV105
Lead	297	0.35 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV106
Antimony	ND	7.0 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV10A
Barium	184	23.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10C
Selenium	0.65	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV107
Beryllium	1.1	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10D
Thallium	ND	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV108
Cadmium	ND	0.58 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV10E
Calcium	39300	584 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10F
Chromium	27.7	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVHTV10G
Cobalt	10.3	5.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10H
Copper	67.6	2.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CARLA101
Iron	31000	11.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CAHLA10K
		(0				

Client Sample ID: ADNY-SDA-SS02

TOTAL Metals

Lot-Sample #.	: A9E070	141-009			Matrix	.: SOLID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #
Magnesium	7620	584 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	
Manganese	1650	1.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10M
Nickel	80.1	4.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10N
Potassium	1750	584 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10P
Silver	ND	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10Q
Sodium	ND	584 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10R
Vanadium	19.0	5.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10T
Mercury	0.22	0.12 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVHTV10V
Zinc	166	2.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVHTV10U

Client Sample ID: ADNY-SDA-SS02

General Chemistry

Matrix..... SOLID

Lot-Sample #...: A9E070141-009 Work Order #...: CVHTV

Date Sampled...: 05/06/99 13:35 Date Received..: 05/07/99

* Moisture....: 14

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 85.6
 0.10
 \$ MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-PTO-SS1

GC Semivolatiles

Lot-Sample #: A9E070141-010	Work Order #: CVHTW1	02 Matrix: SOLID
-----------------------------	----------------------	------------------

Date Sampled...: 05/06/99 14:25 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 10

*** Moisture....:** 8.7 **Method.....:** SW846 8082

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	360	ug/kg
Aroclor 1221	ND	360	ug/kg
Aroclor 1232	ND	360	ug/kg
Aroclor 1242	ND	360	ug/kg
Aroclor 1248	1700	360	ug/kg
Aroclor 1254	ND	360	ug/kg
Aroclor 1260	ND	360	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	45 DIL	(10 - 129	9)
Decachlorobiphenyl	86 DIL	(10 - 138	3)

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: ADNY-PTO-SS1

General Chemistry

Lot-Sample #...: A9E070141-010 Work Order #...: CVHTW Matrix.....: SOLID

Date Sampled...: 05/06/99 14:25 Date Received..: 05/07/99

% Moisture....: 8.7

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 91.3
 0.10
 \$ MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-T1-SS01

GC Semivolatiles

Lot-Sa	mple ‡	ŧ:	A9E070141-011	Work Order	#:	CVHV2102	Matrix:	SOLID
--------	--------	----	---------------	------------	----	----------	---------	-------

Date Sampled...: 05/06/99 14:55 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

*** Moisture....:** 15 **Method.....:** SW846 8082

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	3.9	ug/kg
Aroclor 1221	ND	39	ug/kg
Aroclor 1232	ND	39	ug/kg
Aroclor 1242	ND	39	ug/kg
Aroclor 1248	ND	39	ug/kg
Aroclor 1254	ND	39	ug/kg
Aroclor 1260	ND	39	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Tetrachloro-m-xylene	55	(10 - 129)	_
Decachlorobiphenyl	91	(10 - 138)	

NOTE (S):

Client Sample ID: ADNY-T1-SS01

General Chemistry

Lot-Sample #...: A9E070141-011 Work Order #...: CVHV2 Matrix.....: SOLID

Date Sampled...: 05/06/99 14:55 Date Received..: 05/07/99

* Moisture....: 15

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 84.6
 0.10
 %
 MCAWW 160.3 MOD
 05/17-05/18/99
 9137276

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-WOT-SS01

GC/MS Volatiles

Lot-Sample #: A9E070141-01	Work Order #: CVHV5103	Matrix: SOLID
----------------------------	------------------------	---------------

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240 Dilution Factor: 0.87

% Moisture....: 9.7 **Method.....:** SW846 8260B

		REPORTING	G
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	9.6	ug/kg
Bromomethane	ND	9.6	ug/kg
Vinyl chloride	ND	9.6	ug/kg
Chloroethane	ND	9.6	ug/kg
Methylene chloride	ND	4.8	ug/kg
Acetone	ND	19	ug/kg
Carbon disulfide	ND	4.8	ug/kg
1,1-Dichloroethene	ND	4.8	ug/kg
1,1-Dichloroethane	ND	4.8	ug/kg
1,2-Dichloroethene (total)	ND	4.8	ug/kg
Chloroform	ND	4.8	ug/kg
1,2-Dichloroethane	ND	4.8	ug/kg
2-Butanone	ND	19	ug/kg
1,1,1-Trichloroethane	ND	4.8	ug/kg
Carbon tetrachloride	ND	4.8	ug/kg
Bromodichloromethane	ND	4.8	ug/kg
1,2-Dichloropropane	ND	4.8	ug/kg
cis-1,3-Dichloropropene	ND	4.8	ug/kg
Trichloroethene	ND	4.8	ug/kg
Dibromochloromethane	ND	4.8	ug/kg
1,1,2-Trichloroethane	ND	4.8	ug/kg
Benzene	ND	4.8	ug/kg
trans-1,3-Dichloropropene	ND	4.8	ug/kg
Bromoform	ND	4.8	ug/kg
4-Methyl-2-pentanone	ND	19	ug/kg
2-Hexanone	ND	19	ug/kg
Tetrachloroethene	ND	4.8	ug/kg
1,1,2,2-Tetrachloroethane	ND	4.8	ug/kg
Toluene	ND	4.8	ug/kg
Chlorobenzene	ND	4.8	ug/kg
Ethylbenzene	ND	4.8	ug/kg
Styrene	ND	4.8	ug/kg
Xylenes (total)	ND	9.6	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	111	(75 - 11	7)
Toluene-d8	116	(86 - 12	2)
Bromofluorobenzene	134	(60 - 13	7)
Dibromofluoromethane	101	(70 - 13	5)

Client Sample ID: ADNY-WOT-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-012 Work Order #...: CVHV5103 Matrix..... SOLID

NOTE(S):

Client Sample ID: ADNY-WOT-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-012 Work Order #...: CVHV5102 Matrix.....: SOLID

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/21/99

Prep Batch #...: 9131122

Dilution Factor: 6.66

*** Moisture....:** 9.7 **Method.....:** SW846 8270C

PARAMETER			REPORTIN	G
bis (2-Chloroethyl) - ether 2-Chlorophenol ND 2400 ug/kg 1,3-Dichlorobenzene ND 2400 ug/kg 1,4-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl- ND 2400 ug/kg 3-Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg 15(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Mitroaniline ND 2400 ug/kg 2-Mitroaniline ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg		RESULT	LIMIT_	
ether 2-Chlorophenol ND 2400 ug/kg 1,3-Dichlorobenzene ND 2400 ug/kg 1,4-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl- amine Hexachloroethane ND 2400 ug/kg NItrobenzene ND 2400 ug/kg NItrobenzene ND 2400 ug/kg NItrobenzene ND 2400 ug/kg Sephorone ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg 1s-chlorophenol ND 2400 ug/kg 2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg		ND	2400	
2-Chlorophenol ND 2400 ug/kg 1,3-Dichlorobenzene ND 2400 ug/kg 1,4-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl- amine Hexachloroethane ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Isophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 1-2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg	bis(2-Chloroethyl)-	ND	2400	ug/kg
1,3-Dichlorobenzene ND 2400 ug/kg 1,4-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 2.2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloro- ND 2400 ug/kg 2,2'-oxybis(1-Chloro- ND 2400 ug/kg propane) 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl- ND 2400 ug/kg Mitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Sophorone ND 2400 ug/kg 1sophorone ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kgMethylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg Hexachlorocyclopenta- ND 2400 ug/kgMethylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kgChloronaphthalene ND 2400 ug/kgNitroaniline ND 2400 ug/kg				
1,4-Dichlorobenzene ND 2400 ug/kg 1,2-Dichlorobenzene ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloropropane) ND 2400 ug/kg 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl-amine ND 2400 ug/kg N-Nitrosodi-n-propyl-amine ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Sophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorophenol ND 2400 ug/kg 1,2,4-Trichlorophenol ND 2400 ug/kg 4-Chloro-a-methylphenol ND 2400 ug/kg 4-Chloro-a-methylphenol ND 2400 ug/kg	2-Chlorophenol	ND	2400	ug/kg
1,2-Dichlorobenzene ND 2400 ug/kg 2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloro-prophis) ND 2400 ug/kg propane) ND 2400 ug/kg N-Nitrosodi-n-propyl-amine ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Isophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Trichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg	1,3-Dichlorobenzene	ND	2400	
2-Methylphenol ND 2400 ug/kg 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl- mine Hexachloroethane ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Sephorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2-4-Dichlorophenol ND 2400 ug/kg Naphthalene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobtadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg Hexachlorobtadiene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 2400 ug/kg 2-4,5-Trichlorophenol ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-4,4-5-Trichlorophenol ND 2400 ug/kg Dimethyl phthalate ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg	1,4-Dichlorobenzene	ND	2400	ug/kg
2,2'-oxybis(1-Chloropropane) ND 2400 ug/kg 4-Methylphenol ND 2400 ug/kg N-Nitrosodi-n-propyl-amine ND 2400 ug/kg N-Nitrosedi-n-propyl-amine ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Nitrobenzene ND 2400 ug/kg Isophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta-diene ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>2400</td> <td>ug/kg</td>	1,2-Dichlorobenzene	ND	2400	ug/kg
### Propane 4-Methylphenol ND	2-Methylphenol	ND	2400	ug/kg
N-Nitrosodi-n-propyl-		ND	2400	ug/kg
## A samine ## A s	4-Methylphenol	ND	2400	ug/kg
Nitrobenzene ND 2400 ug/kg Isophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis (2-Chloroethoxy) ND 2400 ug/kg methane ND 2400 ug/kg 1,2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta-diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg		ND	2400	ug/kg
Nitrobenzene ND 2400 ug/kg Isophorone ND 2400 ug/kg 2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane ND 2400 ug/kg 1,2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Ai-6-Trichlorophenol ND 2400 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 2400 ug/kg Dimet	Hexachloroethane	ND	2400	ug/kg
2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta-diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	Nitrobenzene	ND	2400	
2-Nitrophenol ND 2400 ug/kg 2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane ND 2400 ug/kg 1,2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta-diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	Isophorone	ND	2400	ug/kg
2,4-Dimethylphenol ND 2400 ug/kg bis(2-Chloroethoxy) ND 2400 ug/kg methane ND 2400 ug/kg 1,2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- ND 12000 ug/kg diene 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	2-Nitrophenol	ND	2400	
bis(2-Chloroethoxy) ND 2400 ug/kg methane 2,4-Dichlorophenol ND 2400 ug/kg 1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg 2-Methylnaphthalene ND 12000 ug/kg Hexachlorocyclopenta- ND 12000 ug/kg diene 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 12000 ug/kg 3-Nitroaniline ND 12000 ug/kg	-	ND	2400	
1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 2400 ug/kg	bis(2-Chloroethoxy)	ND	2400	ug/kg
1,2,4-Trichlorobenzene ND 2400 ug/kg Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 2400 ug/kg	2,4-Dichlorophenol	ND	2400	ug/kg
Naphthalene ND 2400 ug/kg 4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- ND 12000 ug/kg diene 2.4.6-Trichlorophenol ND 2400 ug/kg 2.4.5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2.6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg		ND	2400	
4-Chloroaniline ND 2400 ug/kg Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg				
Hexachlorobutadiene ND 2400 ug/kg 4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	-			
4-Chloro-3-methylphenol ND 2400 ug/kg 2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	Hexachlorobutadiene	ND		
2-Methylnaphthalene ND 2400 ug/kg Hexachlorocyclopenta- diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg				
Hexachlorocyclopenta-diene ND 12000 ug/kg 2,4,6-Trichlorophenol ND 2400 ug/kg 2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg		ND		
2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	Hexachlorocyclopenta-			
2,4,5-Trichlorophenol ND 2400 ug/kg 2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	2,4,6-Trichlorophenol	ND	2400	ug/kg
2-Chloronaphthalene ND 2400 ug/kg 2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg		ND		
2-Nitroaniline ND 12000 ug/kg Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	7	ND		
Dimethyl phthalate ND 2400 ug/kg Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	-	ND		
Acenaphthylene ND 2400 ug/kg 2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg	Dimethyl phthalate	ND		
2,6-Dinitrotoluene ND 2400 ug/kg 3-Nitroaniline ND 12000 ug/kg		ND		
3-Nitroaniline ND 12000 ug/kg		ND		
				•
	Acenaphthene		2400	ug/kg

Client Sample ID: ADNY-WOT-SS01

GC/MS Semivolatiles

Lot-Sample #: A9E0701	41-012 Work Order	#: CVHV5102	Matrix S	SOLID
-----------------------	-------------------	-------------	----------	-------

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2,4-Dinitrophenol	ND	12000	ug/kg
4-Nitrophenol	ND	12000	ug/kg
Dibenzofuran	ND	2400	ug/kg
2,4-Dinitrotoluene	ND	2400	ug/kg
Diethyl phthalate	ND	2400	ug/kg
4-Chlorophenyl phenyl ether	ND	2400	ug/kg
Fluorene	ND	2400	ug/kg
4-Nitroaniline	ND	12000	ug/kg
4,6-Dinitro-	ND	12000	ug/kg
2-methylphenol			
N-Nitrosodiphenylamine	ND	2400	ug/kg
4-Bromophenyl phenyl	ND	2400	ug/kg
ether			_
Hexachlorobenzene	ND	2400	ug/kg
Pentachlorophenol	ND	2400	ug/kg
Phenanthrene	3900	2400	ug/kg
Anthracene	ND	2400	ug/kg
Carbazole	ND	2400	ug/kg
Di-n-butyl phthalate	ND	2400	ug/kg
Fluoranthene	6200	2400	ug/kg
Pyrene	5000	2400	ug/kg
Butyl benzyl phthalate	ND	2400	ug/kg
3,3'-Dichlorobenzidine	ND	12000	ug/kg
Benzo(a)anthracene	2900	2400	ug/kg
Chrysene	3200	2400	ug/kg
bis(2-Ethylhexyl)	ND	2400	ug/kg
phthalate			
Di-n-octyl phthalate	ND	2400	ug/kg
Benzo (b) fluoranthene	3700	2400	ug/kg
Benzo(k)fluoranthene	ND	2400	ug/kg
Benzo(a)pyrene	2700	2400	ug/kg
Indeno(1,2,3-cd)pyrene	ND	2400	ug/kg
Dibenz(a,h)anthracene	ND	2400	ug/kg
Benzo(ghi)perylene	ND	2400	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	67 DIL	(23 - 120)	
2-Fluorobiphenyl	79 DIL	(30 - 115)	
Terphenyl-d14	106 DIL	(18 - 137)	
Phenol-d5	59 DIL	(24 - 113)	
2-Fluorophenol	75 DIL	(25 - 121)	
2,4,6-Tribromophenol	71 DIL	(19 - 122)	
2,4,6-Tribromophenol	71 DIL	(19 - 122)	

Client Sample ID: ADNY-WOT-SS01

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-012 Work Order #...: CVHV5102 Matrix.....: SOLID

NOTE (S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: ADNY-WOT-SS01

GC Semivolatiles

Lot-Sample #:	A9E070141-012	Work Order	#: CVHV5104	Matrix:	SOLID
---------------	---------------	------------	-------------	---------	-------

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 9.7 **Method.....:** SW846 8082

		REPORTIN	īG
PARAMETER	RESULT	LIMIT	UNITS
Aroclor 1016	ND	37	ug/kg
Aroclor 1221	ND	37	ug/kg
Aroclor 1232	ND	37	ug/kg
Aroclor 1242	ND	37	ug/kg
Aroclor 1248	ND	37	ug/kg
Aroclor 1254	ND	37	ug/kg
Aroclor 1260	120	37	ug/kg
	PERCENT	RECOVERY	?
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	65	(10 - 12	29)
Decachlorobiphenyl	132	(10 - 13	88)

NOTE(S):

Client Sample ID: ADNY-WOT-SS01

GC Semivolatiles

Lot-Sample #...: A9E070141-012 Work Order #...: CVHV510W Matrix.....: SOLID

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99 Prep Date....: 05/12/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131347

Dilution Factor: 10

Method.....: SW846 8015B

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (Extractables) 260 33 mg/kg

NOTE(S):

Client Sample ID: ADNY-WOT-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-012 Matrix.....: SOLID

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99

% Moisture....: 9.7

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #. Aluminum	: 913325 12200	9 22.1	/h	SW846 6010B	05/14 05/16/00 (77777100
Aluminum	12200	Dilution Factor: 1	mg/kg	2M940 GOIDD	05/14-05/16/99 CVHV5109
Arsenic	9.9	1.1	mg/kg	SW846 6010B	05/14-05/18/99 CVHV5105
		Dilution Factor: 1			
Lead	67.0	0.33	mg/kg	SW846 6010B	05/14-05/18/99 CVHV5106
		Dilution Factor: 1			
Antimony	ND	6.6	mg/kg	SW846 6010B	05/14-05/18/99 CVHV510A
Parezmony	N.D	Dilution Factor: 1	97 1.59	511010 00105	03/11/03/10/33 00/10/31
			4-		
Barium	101	22.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV5100
		prederion ractor.			
Selenium	ND	0.55	mg/kg	SW846 6010B	05/14-05/18/99 CVHV5107
		Dilution Factor: 1			
Beryllium	1.5	0.55	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510E
_		Dilution Factor: 1			
Thallium	ND	1.1	mg/kg	SW846 6010B	05/14-05/18/99 CVHV5108
111011110111	112	Dilution Factor: 1	g/ 1.2	511010 00105	03,11 03,10,33 00003100
			4-		
Cadmium	0.96	0.55 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99 CVHV510E
		breacton ractor. T			
Calcium	67500	554	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510F
		Dilution Factor: 1			
Chromium	155	1.1	mg/kg	SW846 6010B	05/14-05/18/99 CVHV510G
		Dilution Factor: 1			
Cobalt	9.0	5.5	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510H
3		Dilution Factor: 1	-373	5520 55252	00,11 00,10,00
			<i>t</i> -		
Copper	84.4	2.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510J
		Divación lactor.			
Iron	61400	554	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510R
		Dilution Factor: 1			

Client Sample ID: ADNY-WOT-SS01

TOTAL Metals

# afame2-toI	- A9E070141-012	Matrix - SOLIT	`
1015am016 4	: A76U/U141-U14	Matter Solid	,

PARAMETER Magnesium	<u>RESULT</u> 14700	REPORTING LIMIT 554 Dilution Factor: 1	UNITS mg/kg	METHOD SW846 6010B	PREPARATION - WORK ANALYSIS DATE ORDER # 05/14-05/16/99 CVHV510L
Manganese	1670	1.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510M
Nickel	125	4.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510N
Potassium	748	554 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510P
Silver	ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510Q
Sodium	ND	554 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510R
Vanadium	28.6	5 ₋ 5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510T
Mercury	0.27	0.11 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99 CVHV510V
Zinc	706	2.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99 CVHV510U
Mouta (a)					

Client Sample ID: ADNY-DTK-SS01

GC/MS Volatiles

Lot-Sample #...: A9E070141-018 Work Order #...: CVKLP103 Matrix.....: SOLID

NOTE(S):

Client Sample ID: ADNY-DTK-SS01

GC Semivolatiles

Lot-Sample #...: A9E070141-018 Work Order #...: CVKLP10W Matrix...... SOLID

Date Sampled...: 05/07/99 13:40 Date Received..: 05/08/99 Prep Date....: 05/12/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131347

Dilution Factor: 1

% Moisture....: 12 Method.....: SW846 8015B

REPORTING

PARAMETER RESULT LIMIT UNITS
TPH (Extractables) 4.6 3.4 mg/kg

NOTE(S):

Client Sample ID: ADNY-DTK-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-018 Matrix....: SOLID

Date Sampled...: 05/07/99 13:40 Date Received..: 05/08/99

*** Moisture....:** 12

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	.: 9133259)				
Aluminum	9190	22.6	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP109
		Dilution Factor: 1				
Arsenic	14.4	1.1	mg/kg	SW846 6010B	05/14-05/18/99	CURT DI OF
Arsenic	14.4	Dilution Factor: 1	шдукд	24040 0010D	03/14-03/16/33	CAKIIPIUS
Lead	16.9	0.34	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP106
		Dilution Factor: 1				
Antimony	ND	6.8	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP10A
•		Dilution Factor: 1	3, -3		, , , , , , , , , , , , , , , , , , , ,	
			4-			
Barium	240	22.6 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CAKTING
		predefor ractor.				
Selenium	ND	0.57	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP107
		Dilution Factor: 1				
Beryllium	ND	0.57	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10D
-01/1110		Dilution Factor: 1	979		03, == 03, =0, 33	
Thallium	ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP108
		production ractor. 1				
Cadmium	ND	0.57	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP10E
		Dilution Factor: 1				
Calcium	2120	566	mg/kg	SW846 6010B	05/14-05/16/99	CVKT-P10P
041014	2220	Dilution Factor: 1	579	5.010 00102	03/11 03/10/33	07111111111
·						
Chromium	11.8	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CAKTT-10G
		, predefinit radion.				
Cobalt	9.2	5.7	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10H
		Dilution Factor: 1				
Copper	33.2	2.8	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10J
		Dilution Factor: 1	-313		, 33,, 33	
_			<i>f</i> -			
Iron	27300	11.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVKLP10K
		prediction ractor. 1				

Client Sample ID: ADNY-DTK-SS01

TOTAL Metals

Lot-Sample #...: A9E070141-018 Matrix.....: SOLID

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION-	WORK
Magnesium	3480	566 Dilution Factor: 1	mg/kg	SW846 6010B	ANALYSIS DATE 05/14-05/16/99	
Manganese	1020	1.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10M
Nickel	30.1	4.5 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10N
Potassium	1180	566 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10P
Silver	ND	1.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10Q
Sodium	ND	566 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10R
Vanadium	14.2	5.7 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10T
Mercury	ND	0.11 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVKLP10V
Zinc	139	2.3 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLP10U
NOTE (S):						

Client Sample ID: ADNY-DTK-SS01

General Chemistry

Lot-Sample #...: A9E070141-018 Work Order #...: CVKLP Matrix.....: SOLID

Date Sampled...: 05/07/99 13:40 Date Received..: 05/08/99

* Moisture....: 12

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Percent Solids
 88.3
 0.10
 \$ MCAWW 160.3 MOD
 05/18-05/19/99
 9138134

Dilution Factor: 1

Total Recoverable 19 11 mg/kg MCAWW 418.1 05/19-05/20/99 9139119

Petroleum Hydrocarbons

Dilution Factor: 1

NOTE (S):

RL Reporting Limit

Client Sample ID: ADNY-UT-SS03

GC/MS Volatiles

Lot-Sample #: A9E070141-019	Work Order #: CVKLQ103	Matrix: SOLID
-----------------------------	------------------------	---------------

Date Sampled...: 05/07/99 15:45 Date Received..: 05/08/99 Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240 Dilution Factor: 0.84

% Moisture....: 18 Method.....: SW846 8260B

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	10	ug/kg
Bromomethane	ND	10	ug/kg
Vinyl chloride	ND	10	ug/kg
Chloroethane	ND	10	ug/kg
Methylene chloride	ND	5.1	ug/kg
Acetone	ND	20	ug/kg
Carbon disulfide	ND	5.1	ug/kg
1,1-Dichloroethene	ND	5.1	ug/kg
1,1-Dichloroethane	ND	5.1	ug/kg
1,2-Dichloroethene (total)	ND	5.1	ug/kg
Chloroform	ND	5.1	ug/kg
1,2-Dichloroethane	ND	5.1	ug/kg
2-Butanone	ND	20	ug/kg
1,1,1-Trichloroethane	ND	5.1	ug/kg
Carbon tetrachloride	ND	5.1	ug/kg
Bromodichloromethane	ND	5.1	ug/kg
1,2-Dichloropropane	ND	5.1	ug/kg
cis-1,3-Dichloropropene	ND	5.1	ug/kg
Trichloroethene	ND	5.1	ug/kg
Dibromochloromethane	ND	5.1	ug/kg
1,1,2-Trichloroethane	ND	5.1	ug/kg
Benzene	ND	5.1	ug/kg
trans-1,3-Dichloropropene	ND	5.1	ug/kg
Bromoform	ND	5.1	ug/kg
4-Methyl-2-pentanone	ND	20	ug/kg
2-Hexanone	ND	20	ug/kg
Tetrachloroethene	ND	5.1	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.1	ug/kg
Toluene	ND	5.1	ug/kg
Chlorobenzene	ND	5.1	ug/kg
Ethylbenzene	ND	5.1	ug/kg
Styrene	ND	5.1	ug/kg
Xylenes (total)	ND	10	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dichloroethane-d4	108	(75 - 11	
Toluene-d8	134 *	<mark>(86 - 12</mark>	
Bromofluorobenzene	127	<mark>(</mark> 60 - 13	
Dibromofluoromethane	105	(70 - 13	5)

Client Sample ID: ADNY-UT-SS03

GC/MS Volatiles

Lot-Sample #...: A9E070141-019 Work Order #...: CVKLQ103

Matrix..... SOLID

NOTE(S):

* Surrogate recovery is outside stated control limits.

Results and reporting limits have been adjusted for dry weight.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Client Sample ID: ADNY-UT-SS03

GC/MS Semivolatiles

Lot-Sample #...: A9E070141-019 Work Order #...: CVKLQ102 Matrix.....: SOLID

Date Sampled...: 05/07/99 15:45 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131122

Dilution Factor: 1

*** Moisture....:** 18 **Method.....:** SW846 8270C

PARAMETER			REPORTING	
bis(2-Chloroethyl) - ether 2-Chlorophenol ND 400 ug/kg 1,3-Dichlorobenzene ND 400 ug/kg 1,4-Dichlorobenzene ND 400 ug/kg 1,2-Dichlorobenzene ND 400 ug/kg 2-Methylphenol ND 400 ug/kg 2-Methylphenol ND 400 ug/kg 2-Nitrosaline ND 400 ug/kg Mitrobenzene ND 400 ug/kg N-Nitrosodi-n-propyl- ND 400 ug/kg Mitrobenzene ND 400 ug/kg Nitrobenzene ND 400 ug/kg Nitrobenzene ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 3-Airichlorophenol ND 400 ug/kg 2-1-Inichlorophenol ND 400 ug/kg 2-1-Inichlorophenol ND 400 ug/kg 2-1-Inichlorophenol ND 400 ug/kg 3-Chloroa-Inichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroa-Inichlorophenol ND 400 ug/kg 4-Chloroaphthalene ND 400 ug/kg	PARAMETER	RESULT	LIMIT	UNITS
### action	Phenol	ND	400	ug/kg
ether 2-Chlorophenol ND 400 ug/kg 1,3-Dichlorobenzene ND 400 ug/kg 1,4-Dichlorobenzene ND 400 ug/kg 1,2-Dichlorobenzene ND 400 ug/kg 2-Methylphenol ND 400 ug/kg 2,2'-oxybis(1-Chloro- ND 400 ug/kg propane) 4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl- ND 400 ug/kg Nitrobenzene ND 400 ug/kg Nitrobenzene ND 400 ug/kg Nitrobenzene ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane 2,4-Dichlorophenol ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg 3-Nitroaniline ND 400 ug/kg	bis(2-Chloroethyl)-	ND	400	ug/kg
1,3-Dichlorobenzene				
1,4-Dichlorobenzene	2-Chlorophenol	ND	400	ug/kg
1,4-Dichlorobenzene ND 400 ug/kg 1,2-Dichlorobenzene ND 400 ug/kg 2-Methylphenol ND 400 ug/kg 2,2'-oxybis(1-Chloro- propane) ND 400 ug/kg 4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl- amine ND 400 ug/kg Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg 1sophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorophenol ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg H	1,3-Dichlorobenzene	ND	400	ug/kg
2-Methylphenol ND 400 ug/kg 2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl- Amine Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg 1.sophorone ND 400 ug/kg 2.Nitrophenol ND 400 ug/kg 2.Nitrophenol ND 400 ug/kg 2.4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane 2,4-Dichlorophenol ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 4-Ch-Trichlorophenol ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- diene 2,4,6-Trichlorophenol ND 400 ug/kg 4-Chloronaphthalene ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 4-Chloronaphthalene ND 400 ug/kg 4-Chloronaphthylene ND 400 ug/kg 4-Chloronaphthylene ND 400 ug/kg		ND	400	ug/kg
2,2'-oxybis(1-Chloro- propane) 4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl- amine Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg Isophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2-4-Dimethylphenol ND 400 ug/kg methane 2,4-Dichloroethoxy) ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg C-4-Frichlorophenol ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg C-Methylnaphthalene ND 400 ug/kg C-4-Frichlorophenol ND 400 ug/kg C-Methylnaphthalene ND 400 ug/kg C-Aloronaphthalene ND 400 ug/kg C-Aloronaphthalene ND 400 ug/kg C-Aloronaphthalene ND 400 ug/kg C-Chloronaphthalene ND 400 ug/kg	1,2-Dichlorobenzene	ND	400	ug/kg
2,2'-oxybis(1-Chloropropane) ND	2-Methylphenol	ND	400	ug/kg
4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl-amine ND 400 ug/kg Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg Isophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane ND 400 ug/kg 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloroa-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND <td></td> <td>ND</td> <td>400</td> <td>ug/kg</td>		ND	400	ug/kg
4-Methylphenol ND 400 ug/kg N-Nitrosodi-n-propyl-amine ND 400 ug/kg Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg Isophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane ND 400 ug/kg 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloroa-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND <td>propane)</td> <td></td> <td></td> <td></td>	propane)			
N-Nitrosodi-n-propyl-amine	4-Methylphenol	ND	400	ug/kg
Hexachloroethane ND 400 ug/kg Nitrobenzene ND 400 ug/kg Isophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg 2-4,6-Trichlorophenol ND 400 ug/kg 2-A,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate	N-Nitrosodi-n-propyl-	ND	400	ug/kg
Nitrobenzene ND 400 ug/kg Isophorone ND 400 ug/kg 2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane ND 400 ug/kg 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- diene ND 400 ug/kg 2,4,6-Trichlorophenol ND 400 ug/kg 2,-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg 2-Nitroaniline	amine			
Isophorone	Hexachloroethane	ND	400	ug/kg
2-Nitrophenol ND 400 ug/kg 2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg 3-Nitroaniline ND 400 ug/kg 3-Nitroaniline ND 400 ug/kg	Nitrobenzene	ND	400	ug/kg
2,4-Dimethylphenol ND 400 ug/kg bis(2-Chloroethoxy) ND 400 ug/kg methane ND 400 ug/kg 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	Isophorone	ND	400	ug/kg
bis(2-Chloroethoxy) ND 400 ug/kg methane 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	2-Nitrophenol	ND	400	ug/kg
methane 2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg ciene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	2,4-Dimethylphenol	ND	400	ug/kg
2,4-Dichlorophenol ND 400 ug/kg 1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2-Aitroaniline ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphtylene ND 400 ug/kg 3-Nitroaniline ND 400 ug/kg	bis(2-Chloroethoxy)	ND	400	ug/kg
1,2,4-Trichlorobenzene ND 400 ug/kg Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	methane			
Naphthalene ND 400 ug/kg 4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2.4.6-Trichlorophenol ND 400 ug/kg 2.4.5-Trichlorophenol ND 400 ug/kg 2-Nitroaniline ND 400 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	2,4-Dichlorophenol	ND	400	ug/kg
4-Chloroaniline ND 400 ug/kg Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2-Ke-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	1,2,4-Trichlorobenzene	ND	400	ug/kg
Hexachlorobutadiene ND 400 ug/kg 4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- ND 1900 ug/kg diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	Naphthalene	ND	400	ug/kg
4-Chloro-3-methylphenol ND 400 ug/kg 2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	4-Chloroaniline	ND	400	ug/kg
2-Methylnaphthalene ND 400 ug/kg Hexachlorocyclopenta- diene ND 1900 ug/kg 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	Hexachlorobutadiene	ND	400	ug/kg
Hexachlorocyclopenta- diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	4-Chloro-3-methylphenol	ND	400	ug/kg
diene 2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	2-Methylnaphthalene	ND	400	ug/kg
2,4,6-Trichlorophenol ND 400 ug/kg 2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	Hexachlorocyclopenta-	ND	1900	ug/kg
2,4,5-Trichlorophenol ND 400 ug/kg 2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg				
2-Chloronaphthalene ND 400 ug/kg 2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg		ND	400	ug/kg
2-Nitroaniline ND 1900 ug/kg Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	The state of the s			
Dimethyl phthalate ND 400 ug/kg Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	_	ND	400	
Acenaphthylene ND 400 ug/kg 2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg		ND		
2,6-Dinitrotoluene ND 400 ug/kg 3-Nitroaniline ND 1900 ug/kg	Dimethyl phthalate	ND	400	ug/kg
3-Nitroaniline ND 1900 ug/kg	_ •	ND	400	ug/kg
er e	2,6-Dinitrotoluene	ND	400	ug/kg
Acenaphthene ND 400 ug/kg	3-Nitroaniline	ND	1900	ug/kg
	Acenaphthene	ND	400	ug/kg

Client Sample ID: ADNY-UT-SS03

GC/MS Semivolatiles

Lot-Sample #: A9E070141-019 Work (Order #: (CVKLO102	Matrix:	SOLID
------------------------------------	------------	----------	---------	-------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
2,4-Dinitrophenol	ND	1900	ug/kg	
4-Nitrophenol	ND	1900	ug/kg	
Dibenzofuran	ND	400	ug/kg	
2,4-Dinitrotoluene	ND	400	ug/kg	
Diethyl phthalate	ND	400	ug/kg	
4-Chlorophenyl phenyl	ND	400	ug/kg	
ether				
Fluorene	ND	400	ug/kg	
4-Nitroaniline	ND	1900	ug/kg	
4,6-Dinitro-	ND	1900	ug/kg	
2-methylphenol		-200	-57.05	
N-Nitrosodiphenylamine	ND	400	ug/kg	
4-Bromophenyl phenyl	ND	400	ug/kg	
ether		100	۵9/ ۲۰۶	
Hexachlorobenzene	ND	400	ug/kg	
Pentachlorophenol	ND	400	ug/kg	
Phenanthrene	ND	400	ug/kg	
Anthracene	ND	400	ug/kg	
Carbazole	ND	400	ug/kg	
Di-n-butyl phthalate	ND	400	ug/kg	
Fluoranthene	ND	400	ug/kg	
Pyrene	ND	400	ug/kg	
Butyl benzyl phthalate	ND	400	ug/kg	
3,3'-Dichlorobenzidine	ND	1900	ug/kg	
Benzo(a) anthracene	ND	400	ug/kg	
Chrysene	ND	400	ug/kg	
bis(2-Ethylhexyl)	ND	400	ug/kg	
phthalate			57 5	
Di-n-octyl phthalate	ND	400	ug/kg	
Benzo(b) fluoranthene	ND	400	ug/kg	
Benzo(k) fluoranthene	ND	400	ug/kg	
Benzo(a)pyrene	ND	400	ug/kg	
Indeno(1,2,3-cd)pyrene	ND	400	ug/kg	
Dibenz (a, h) anthracene	ND	400	ug/kg	
Benzo(ghi)perylene	ND	400	ug/kg	
	DEDGES	DEGO:	•	
SURROGATE	PERCENT RECOVERY	RECOVERY		
Nitrobenzene-d5	RECOVERY 68	LIMITS (23 - 12	20)	
2-Fluorobiphenyl	75			
Terphenyl-d14		(30 - 11		
Phenol-d5	98	(18 - 13		
2-Fluorophenol	65	(24 - 11		
-	64	(25 - 12		
2,4,6-Tribromophenol	76	(19 - 12	22)	

Client Sample ID: ADNY-UT-SS03

GC Semivolatiles

Lot-Sample #:	A9E070141-019	Work Order #:	CVKLO104	Matrix:	SOLID
---------------	---------------	---------------	----------	---------	-------

Date Sampled...: 05/07/99 15:45 Date Received..: 05/08/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

% Moisture....: 18 Method.....: SW846 8082

		REPORTIN	IG .
PARAMETER	RESULT	LIMIT_	UNITS
Aroclor 1016	ND	40	ug/kg
Aroclor 1221	ND	40	ug/kg
Aroclor 1232	ND	40	ug/kg
Aroclor 1242	ND	40	ug/kg
Aroclor 1248	ND	40	ug/kg
Aroclor 1254	ND	40	ug/kg
Aroclor 1260	ND	40	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Tetrachloro-m-xylene	63	(10 - 12	(9)
Decachlorobiphenyl	95	(10 - 13	8)

NOTE(S):

Client Sample ID: ADNY-UT-SS03

TOTAL Metals

Lot-Sample #...: A9E070141-019 Matrix..... SOLID Date Sampled...: 05/07/99 15:45 Date Received..: 05/08/99 *** Moisture....:** 18 REPORTING PREPARATION-WORK PARAMETER LIMIT METHOD RESULT UNITS ANALYSIS DATE ORDER # Prep Batch #...: 9133259 Aluminum 10700 24.3 mg/kg SW846 6010B 05/14-05/16/99 CVKLQ109 Dilution Factor: 1 Arsenic 10.7 1.2 mg/kg SW846 6010B 05/14-05/18/99 CVKLQ105 Dilution Factor: 1 Lead 19.7 0.36 mg/kg SW846 6010B 05/14-05/18/99 CVKLQ106 Dilution Factor: 1 Antimony 7.3 ND mg/kg SW846 6010B 05/14-05/18/99 CVKLQ10A Dilution Factor: 1 Barium 24.3 149 mg/kg SW846 6010B 05/14-05/16/99 CVKLQ10C Dilution Factor: 1 Selenium ND 0.61 mg/kg SW846 6010B 05/14-05/18/99 CVKLQ107 Dilution Factor: 1 Beryllium ND 0.61 mg/kg SW846 6010B 05/14-05/16/99 CVKLQ10D Dilution Factor: 1 Thallium ND SW846 6010B mg/kg 05/14-05/18/99 CVKLQ108 Dilution Factor: 1 Cadmium ND 0.61 SW846 6010B mg/kg 05/14-05/18/99 CVKLQ10E Dilution Factor: 1 Calcium 15100 608 05/14-05/16/99 CVKLQ10F mg/kg SW846 6010B Dilution Factor: 1 Chromium 17.5 1.2 mg/kg SW846 6010B 05/14-05/18/99 CVKLQ10G Dilution Factor: 1 Cobalt 11.9 6.1 mg/kg SW846 6010B 05/14-05/16/99 CVKLQ10H Dilution Factor: 1 44.0 Copper 3.0 mg/kg SW846 6010B 05/14-05/16/99 CVKLQ10J Dilution Factor: 1 Iron 24600 12.2 SW846 6010B 05/14-05/18/99 CVKLQ10K mg/kg Dilution Factor: 1

IT GROUP/ICF KAISER ENGINEERS, INC

Client Sample ID: ADNY-UT-SS03

TOTAL Metals

Lot-Sample #: A9E070141-019	Matrix SOLID
TOC-SOUDIC # BYEU/OITITE	BALLIA SOLID

PARAMETER	RESULT	REPORTING LIMIT	; UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Magnesium	5610	608 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	
Manganese	372	1.8 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10M
Nickel	33.4	4.9 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10N
Potassium	1660	608 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10P
Silver	ND	1.2 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10Q
Sodium	ND	608 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10R
Vanadium	18.7	6.1 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10T
Mercury	ND	0.12 Dilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVKLQ10V
Zinc	83.2	2.4 Dilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVKLQ10U
NOTE (S):						

Results and reporting limits have been adjusted for dry weight.

IT GROUP/ICF KAISER ENGINEERS, INC

Client Sample ID: ADNY-UT-SS03

General Chemistry

Lot-Sample #...: A9E070141-019 Work Order #...: CVKLQ Matrix.....: SOLID

Date Sampled...: 05/07/99 15:45 Date Received..: 05/08/99

% Moisture....: 18

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Percent Solids	82.2 Dilution	0.10 Factor: 1	ŧ	MCAWW 160.3 MOD	05/18-05/19/99	9138134

Ditation lactor

NOTE (S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

Quanterra Incorporated 13715 Rider Trail North Earth City, Missouri 63045

314 298-8566 Telephone 314 298-8757 Fax

CASE NARRATIVE

Quanterra, North Canton

4101 Shuffel Drive, N.W. North Canton, OH 44720

June 15, 1999

Attention: Gary Wood

Quanterra Project Number : 614.20 Login/SDG Number : 21329

Date Received : May 11, 1999

Number of Samples : One (1)
Sample Type : Water
Lot Number : A9E070141

I. Introduction

On May 11, 1999, one (1) water sample was received at Quanterra Environmental Services at St. Louis from Quanterra North Canton. The list of analytical tests performed, as well as receipt and analysis, can be found in the attached report. The sample was labeled as follows:

CLIENT SAMPLE ID QUANTERRA SAMPLE ID

A9E070141-005

21329-001

II. Analytical Results/Methodology

The analytical results for this report are presented by analytical tests. Each set of data will include sample identification information, the analytical results, and the appropriate detection limits.

The analysis requested includes:

Gross Alpha Beta by EPA Method 9310 Gamma by EPA Method HASL 300

Quanterra Project Number: 614.20

June 15, 1999

Login Number: 21329

Page 2 of 3

III. Quality Control

The QA/QC information can be found immediately following the analytical data. The QA/QC data is used to assess the laboratory's accuracy and precision during the analytical procedure.

Explanation of qualifiers and abbreviations:

NC = No criteria at this time

NA = Not applicable ND = Non - detect

PCI/L = Picocuries per liter
PCI/G = Picocuries per gram
MG/L = Milligrams per liter
UG/L = Micrograms per liter
MG/KG = Milligrams per kilogram
UG/G = Micrograms per gram
%REC = Percent Recovery

QCBLK = Method Blank

RPD = Relative Percent Difference
IDL = Instrument detection limit

DL = PQL

J = Estimated Value

D = Diluted

U = Non - Detect

MDA = Minimal detectable activity

B = Value greater than IDL but less than CRDL

E = Exceeds calibration

IV. Comments/Nonconformances

The Condition Upon Receipt was faxed on 5-18-99.

Samples were received at 2° C.

Preliminary results were faxed on 6-10-99.

Quanterra Project Number: 614.20

June 15, 1999

Login Number: 21329

Page 3 of 3

Gross Alpha Beta

QC for this analytical batch included a Blank, an LCS for alpha and beta, and an LCS duplicate for alpha and beta. The LCS for alpha and the LCS/LCS DUP for beta all have a low Percent Recovery.

The LCS for alpha is below the QC limit (72%) at 70%, and the LCS and LCS DUP for beta are below the QC limit (69%) at 64% and 69%, respectively.

Careful examination of the results indicate that if the sample results were bias in like fashion, the results would still be less than or equal to the achieved MDA. Nonconformance memo 5525 was generated to cover this.

This sample has an MDA greater than the CRDL due to high dissolved solid content of the sample requiring reduction of the sample volume analyzed to keep the residue mass within drinking water guidelines, and the self absorption curve for the detector. The data is accepted with MDA's achieved.

<u>Gamma</u>

There are no comments or nonconformances associated with this analysis.

Alee Wor

I certify that this Case Narrative is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his/her designee, as verified by the following signature.

Reviewed and approved:

Diane W. Mueller Project Manager

									Category:	Category: Gamma Spec.	
Client ID	Laboratory ID	Matrix	Date Date Matrix Sampled Receive	Date Received	Prep Date	Date Analyzed	Parameter	Result	Sigma Error (+/-)	MDA	Units
A9E070141-005	21329-001	Water	05/05/99 05/11/99	05/11/99	66/0/90	66/10/90	Cesium-137	QN QN	;	18.3	PCI/L
NA	QCBLK200609-1	Water	NA	NA	66/10/90	66/50/90	Cesium-137	Ð		18.2	PCI/L
NA	QCLCS200609-1	Water	NA	NA	66/01/90	66/50/90	Americium-241	101	;	;	*REC
							Cesium-137	105	;	1 1	*REC
							Cobalt-60	105	;	;	*REC

									Category:	Category: Gross Alpha/Beta	/Beta
Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Prep Date	Date Analyzed	Parameter	Result	Sigma Error (+/-)	МДА	Units
A9E070141-005	21329-001	Water	05/05/99 05/11/99	05/11/99	06/04/99	66/50/90	Gross Alpha	1.76	1.81	2.90	PCI/L
							Gross Beta	4.98	5.09	8.46	PCI/L
NA	QCBLK200457-1	Water	NA	NA	06/04/99	66/50/90	Gross Alpha	-0.008	0.29	0.60	PCI/L
							Gross Beta	-0.38	0.92	1.64	PCI/L
NA	QCLCS200457-1	Water	NA	NA	06/04/99	66/50/90	Gross Alpha	92) ;	1	*REC
							Gross Beta	64	;	:	*REC

Did You Know?

Quanterra provides technical presentations on a number of topics that should be of interest.

An example is "Chemical Measurements of Environmental Samples: Key Concepts for Effective Data Generation". This presentation focuses on fundamental measurement concepts that will improve the quality of the laboratory effort and the effectiveness of the interaction with the laboratory. Major components of the presentation include planning laboratory analyses, selecting laboratory methods and QC samples, and evaluating laboratory data. Planning the laboratory analyses addresses analyte and parameter selection to meet various EPA regulations, selecting the right type of QC samples for analysis, and establishing measurement quality objectives.

Selecting the right method is perhaps the most critical part of a data generation method. The selection should address both the measurement quality objectives and the service needs of the project, balancing a multitude of factors. After the laboratory report is received, much remains to be done. EPA has published guidance on the expected level of quality needed for decision making (QA3). Data of this quality should be evaluated relative to the reliability of the analyte identification and quantitation and to determine the analytical error.

If you are interested in this presentation or a list of other presentation topics, please call Marty Cahill.

Environmental

Quanterra Environmental Services 13715 Rider Trail North Earth City, Missouri 63045

Telephone: FAX:

314-298-8566

314-298-8757

DATE			DATE
------	--	--	------

COMPANY:

FAX NUMBER:

FROM:

NUMBER OF PAGES: (INCLUDING COVER)

☐ Urgent

☐ Please Reply

☐ For review

☐ Please Comment

MESSAGE:

ABT + GAMMA FOR LOT AG E070141-005

Did You Know?

Quanterra provides technical presentations on a number of topics that should be of interest.

An example is "Chemical Measurements of Environmental Samples: Key Concepts for Effective Data Generation". This presentation focuses on fundamental measurement concepts that will improve the quality of the laboratory effort and the effectiveness of the interaction with the laboratory. Major components of the presentation include planning laboratory analyses, selecting laboratory methods and QC samples, and evaluating laboratory data. Planning the laboratory analyses addresses analyte and parameter selection to meet various EPA regulations, selecting the right type of QC samples for analysis, and establishing measurement quality objectives.

Selecting the right method is perhaps the most critical part of a data generation method. The selection should address both the measurement quality objectives and the service needs of the project, balancing a multitude of factors. After the laboratory report is received, much remains to be done. EPA has published guidance on the expected level of quality needed for decision making (QA3). Data of this quality should be evaluated relative to the reliability of the analyte identification and quantitation and to determine the analytical error.

If you are interested in this presentation or a list of other presentation topics, please call Marty Cahill.

Environmental

Quanterra Environmental Services

13715 Rider Trail North Earth City, Missouri 63045

Telephone:

314-298-8566

FAX:

314-298-8757

TDATE: 5/8-9

COMPANY:

FROM:

NUMBER OF PAGES: (INCLUDING COVER)

Urgent

☐ Please Reply

☐ For review

☐ Please Comment

MESSAGE:

Cendition Upon Receipt Project # 614.20 Login 21329

roleck Manager: D. Mueller

ample Header Template:

Account: 11092 Project: 614.20 Quanterra North Canton QAS No. 614.2 Rev. 5
Master Sample Login: 21329

Reviewed by and Date: Manuel

No.	(s:t Filled)	Screening not Required	1:98 443332:97) 1:98 443332:97)
Rad Category Rad Sample No.	(Container Numbers: Filled)	1 Screening	(443330:99 443331:98 443332:97) (443330:99 443331:98 443332:97)
Due Shipper	Hold Date Site	5-MAY-99 AIRBORNE	07-NOV-99 S6C 03-NOV-99 S6C
Received	Class Preservative Anal. Due Date Hold Date Site	05-MAY-99 00:00 11-MAY-99 07:45 25-MAY-99 AIRBORNE	23-MAY-99 23-MAY-99
Date: Collected	Class Preservativ	05-MAY-99 00:00	S HNO3
C-Matrix D	Analysis	· Water	ABT/9310/04 RAD/GAMMA/04
Client ID		A9E070141-005	ī
sample No.	Container Type Jata:	1329-001	3 PN - Plastic-1L

!**Sample has not been rad screened.

Quanterra Incorporated
SAMPLE ANALYSIS REQUISITION

I.	
LABORATORY:	Quanterra Inc - St Louis MO 13715 Rider Trail North Earth City MO 63045-1205,E NEED ANALYTICAL REPORT BY 5/19/99
	Earth City MO 63045-1205, E TOTAL SE016036 MO 63045-1205, E MO 63045-1205, E
ATTN:	12 nuclous
BAB PURCHASE OR	
CLIENT CODE:	406511 PROJECT MANAGER: Gary L. Wood
NUMBER OF SA	406511 PROJECT MANAGER: Gary L. Wood MPLES IN LOT: 0000 Proxid Name: ALCO ALUMAX/ DUNKING
SAMPLE I.D. A9E070141-005	Site SAMPLING DATE ANALYSIS REQUIRED 5/05/99 Gross Alpha (9310) Site
CVHT9-1-0V	(RGAB) METHOD: 9310 U Gamma
A9E070141-005	5/05/99 Gross Beta (9310) Olpha (RGAB) METHOD: 9310 Beta
A9E070141-005 CVHT9-1-0X	5/05/99
	all Gary wood is questions
	the elanguage of
NEED DETECTION	N LIMIT AND ANALYSIS DATE INCLUDED IN REPORT.
SHIPPING METH	DD: AIRBORNE DATE: 5/07/99
SEND REPORT T	D: GARY WOOD 330 - 497-9396
SAMPLE RECEIVE	DATE: 5/07/99 DATE: 5/07/99 TAT — 14/3445 DATE: — DATE: — DATE: — DATE: — DATE: — ABT 100.00 ANGLIDE - ABT 3
PLEASE SEND A	SIGNED COPY OF THIS FORM WITH REPORT AT COMPLETION OF ANALYSIS. Provet
THANK YOU.	Name one
	Quanterra - North Canton INT: (A0 5/07/99 11:10:52) Oughtorra Ing - St Louis MO
	Quanterra Inc - St Louis MO 13715 Rider Trail North
	Earth City MO 63045-1205, E
	Butch & Cya
RELINQUISHED B	1: Bow DATE/TIME: 5-10-99 9 JAM (OA THU
RELINQUISHED B	Y: DATE/TIME:
RECEIVED FOR L	AB BY: Suportatie Sithel DATE/TIME: 5-11-99 0745

PLEASE RETURN ORIGINAL SAMPLE ANALYSIS REQUISITION

Login No.:____

Condition Upon Receipt Variance Report	
St. Louis Laboratory	

	ct No	OLTH CANTON: 614.20 :: AIRBOLINE 5456195-20	H2=20	Initia	ited by	- 0 10 0
		Variance (Check all that apply):				
1.		Sample received broken/leaking. Sumple received without proper preservative. Cooler temperature not within 4-C ± 2 Record temperature:		8.		Sample ID on container does not match sample ID on paperwork. Explain:
		□ рН		9.		All coolers on airbill not received with shipment.
Ĭ		other:		10.		Other (explain below):
3.		Sample received in improper container.				
4.		Sample received without proper paperwork. Exp	lain:			
1			_			
5.		Paperwork received without sample.				
6.		No sample ID on sample container.				
7.		Custody tape disturbed/broken/missing/not tampe	r evident (circle	all tha	t apply	· · · · · · · · · · · · · · · · · · ·
Temp	eratur	variances were noted during sample receipt. e Variance Does Not Affect the Following Analys				ipon Receipt:
Corre	ctive A	ction:				
	C	lient's Name:	Informed verba	illy on:	_	Ву:
	C	lient's Name:	Informed in wr	iting o	n: _	Ву:
0	Comm	ents: ample(s) on hold until:			If	released, notify:
Sample	: Contr	rol Supervisor Review			Date:	5.11-99
Projec	Mana	gement Review: Dano W M	weller		Date:	5-17.99

SIGNED ORIGINAL MUST BE RETAINED IN THE PROJECT FILE

SL-ADMIN-0004, Revised 3/17/99

QUALITY CONTROL SECTION

QUALITY CONTROL ELEMENTS OF SW-846 METHODS

Quanterra® Incorporated conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data.

QC BATCH

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. Quanterra requires that each environmental sample be associated with a QC batch.

Several quality control samples are included in each QC batch and are processed identically to the twenty environmental samples. These QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the LCS recoveries are biased high and the associated sample is ND for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). Failure of the RPDs to fall within the laboratory-generated acceptance windows requires the repreparation and reanalysis of all samples in the QC batch. The only exception is that if the MS/MSD RPDs are within acceptance criteria, the batch is acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except for the common laboratory contaminants indicated below.

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals
Methylene chloride Acetone 2-Butanone	Phthalate Esters	Copper Iron Zinc
		Lead*

^{*} for analyses run on TJA Trace ICP or GFAA only

QUALITY CONTROL ELEMENTS OF SW-846 METHODS (Continued)

The listed volatile and semivolatile compounds may be present in concentrations up to 5 times the reporting limits. The listed metals may be present in concentrations up to 2 times the reporting limit or must be twenty fold less than the results of the environmental samples. Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. When these values fail to meet acceptance criteria, the data is reviewed to determine the cause. If, in the analyst's judgment, sample matrix effects are indicated, no corrective action is performed. Otherwise, the MS/MSD and the environmental sample used to prepare them are reprepared and reanalyzed.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample are spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

The acceptance criteria do not apply to samples that are diluted. If the dilution is more than 5X, the recoveries will be reported as diluted out. All other surrogate recoveries will be reported. If the LCS, LCSD, or the Method Blank surrogates fail to meet recovery criteria (exception for dilutions), the entire batch of samples is reprepared and reanalyzed.

If the surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank and the associated sample(s) are ND, the batch is acceptable. If the surrogate recoveries are outside criteria for environmental or MS/MSD samples, the batch may be acceptable based on the analyst's judgment that sample matrix effects are indicated.

For the GC/MS BNA methods, the surrogate criteria is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide/PCB, PAH, TPH, and Herbicide methods, the surrogate criteria is that one of two surrogate compounds meet acceptance criteria.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVM6L102 Matrix.....: SOLID

LCS Lot-Sample#: A9E110000-221

Prep Date....: 05/06/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131221

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Trichloroethene	96	(73 - 113)	SW846 8260B
Benzene	95	(64 - 122)	SW846 8260B
Toluene	89	(76 - 116)	SW846 8260B
Chlorobenzene	91	(81 ~ 113)	SW846 8260B
1,1-Dichloroethene	89	(33 - 137)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Dibromofluoromethane		98	(49 - 119)
1,2-Dichloroethane-d4		104	(51 - 124)
Toluene-d8		95	(58 - 116)
Bromofluorobenzene		100	(53 - 122)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVWEC102-LCS Matrix.....: SOLID

LCS Lot-Sample#: A9E180000-240 CVWEC103-LCSD

Prep Date....: 05/14/99 Analysis Date..: 05/14/99

Prep Batch #...: 9138240

Dilution Factor: 1

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
1,1-Dichloroethene	109	(76 - 128)		SW846 8260B
	105	(76 - 128)	3.5 (0-17)	SW846 8260B
Trichloroethene	100	(86 - 116)		SW846 8260B
	99	(86 - 116)	1.3 (0-17)	SW846 8260B
Benzene	109	(85 - 120)		SW846 8260B
	103	(85 - 120)	5.3 (0-13)	SW846 8260B
Toluene	102	(86 - 118)		SW846 8260B
	101	(86 - 118)	0.61 (0-23)	SW846 8260B
Chlorobenzene	101	(88 - 119)		SW846 8260B
	98	(88 - 119)	3.1 (0-22)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
1,2-Dichloroethane-d4		109	(75 - 117)	
		104	(75 - 117)	
Toluene-d8		112	(86 - 122)	
		109	(86 - 122)	
Bromofluorobenzene		114	(60 - 137)	
		110	(60 - 137)	
Dibromofluoromethane		106	(70 - 135)	
		101	(70 - 135)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVM7E102-LCS Matrix..... SOLID

LCS Lot-Sample#: A9E110000-225 CVM7E103-LCSD

Prep Date....: 05/07/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131225

Dilution Factor: 1

DADAMEMED	PERCENT	RECOVERY	RPD	Marian
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
1,1-Dichloroethene	78	(33 - 137)		SW846 8260B
	83	(33 - 137)	6.3 (0-14)	SW846 8260B
Trichloroethene	83	(73 - 113)		SW846 8260B
	89	(73 - 113)	6.3 (0-11)	SW846 8260B
Benzene	93	(64 - 122)		SW846 8260B
	90	(64 - 122)	2.6 (0-10)	SW846 8260B
Toluene	102	(76 - 116)		SW846 8260B
	100	(76 - 116)	1.7 (0-10)	SW846 8260B
Chlorobenzene	94	(81 - 113)		SW846 8260B
	94	(81 - 113)	0.090 (0-11)	SW846 8260B
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
1,2-Dichloroethane-d4		90	(51 - 124)	
		88	(51 - 124)	
Toluene-d8		89	(58 - 116)	
1010000		93	(58 - 116)	
Bromofluorobenzene		96	(53 - 122)	
DI OMOI I MOI ODENZENE		94	(53 - 122)	
Dibuses flores abban-				
Dibromofluoromethane		88	(49 - 119)	
		91	(49 - 119)	

NOTE (S)

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVW9P102 Matrix..... WATER

LCS Lot-Sample#: A9E180000-218

Prep Date....: 05/17/99 Analysis Date..: 05/17/99

Prep Batch #...: 9138218

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	98	(70 - 122)	SW846 8260B
Trichloroethene	99	(82 - 112)	SW846 8260B
Benzene	103	(83 - 110)	SW846 8260B
Toluene	100	(86 - 119)	SW846 8260B
Chlorobenzene	102	(85 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
1,2-Dichloroethane-d4		99	(80 - 120)
Toluene-d8		95	(88 - 110)
Bromofluorobenzene		104	(86 - 115)
Dibromofluoromethane		94	(86 - 118)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVWL1102 Matrix..... WATER

LCS Lot-Sample#: A9E180000-132

Prep Date....: 05/17/99 Analysis Date..: 05/17/99

Prep Batch #...: 9138132

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	110	(70 - 122)	SW846 8260B
Trichloroethene	98	(82 - 112)	SW846 8260B
Benzene	99	(83 - 110)	SW846 8260B
Toluene	103	(86 - 119)	SW846 8260B
Chlorobenzene	101	(85 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
1,2-Dichloroethane-d4		103	(80 - 120)
Toluene-d8		105	(88 - 110)
Bromofluorobenzene		92	(86 - 115)
Dibromofluoromethane		102	(86 - 118)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVX7X102 Matrix..... WATER

LCS Lot-Sample#: A9E190000-168

Prep Date....: 05/18/99 Analysis Date..: 05/18/99

Prep Batch #...: 9139168

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	93	(70 - 122)	SW846 8260B
Trichloroethene	97	(82 - 112)	SW846 8260B
Benzene	99	(83 - 110)	SW846 8260B
Toluene	98	(86 - 119)	SW846 8260B
Chlorobenzene	95	(85 - 115)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
1,2-Dichloroethane-d4		90	(80 - 120)
Toluene-d8		99	(88 - 1 10)
Bromofluorobenzene		97	(86 - 115)
Dibromofluoromethane		100	(86 - 118)

NOTE (S)

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVM86102-LCS Matrix.....: SOLID

LCS Lot-Sample#: A9E110000-235 CVM86103-LCSD

Prep Date....: 05/08/99 Analysis Date..: 05/18/99

Prep Batch #...: 9131235

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	94	(33 - 137)			SW846 8260B
	94	(33 - 137)	0.16	(0-14)	SW846 8260B
Trichloroethene	97	(73 - 113)			SW846 8260B
	94	(73 - 113)	3.7	(0-11)	SW846 8260B
Benzene	109	(64 - 122)			SW846 8260B
	106	(64 - 122)	3.2	(0-10)	SW846 8260B
Toluene	107	(76 - 116)			SW846 8260B
	100	(76 - 116)	6.8	(0-10)	SW846 8260B
Chlorobenzene	105	(81 - 113)			SW846 8260B
	98	(81 - 113)	6.9	(0-11)	SW846 8260B
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
1,2-Dichloroethane-d4		111	(51 -	124)	
		102	(51 -	124)	
Toluene-d8		105	(58 -	116)	
		102	(58 -	116)	
Bromofluorobenzene		122	(53 -	122)	
		115	(53 -	122)	
Dibromofluoromethane		101	(49 -	119)	
		96	(49 -	119)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVKT0102 Matrix...... WATER

LCS Lot-Sample#: A9E100000-114

Prep Date....: 05/10/99 Analysis Date..: 05/13/99

Prep Batch #...: 9130114

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,2,4-Trichlorobenzene	51	(44 - 142)	SW846 8270C
Acenaphthene	56	(47 - 145)	SW846 8270C
1,4-Dichlorobenzene	47	(20 - 124)	SW846 8270C
Pentachlorophenol	54	(14 - 176)	SW846 8270C
2,4-Dinitrotoluene	72	(60 - 134)	SW846 8270C
Pyrene	72	(68 - 131)	SW846 8270C
N-Nitrosodi-n-propyl-	53	(10 - 230)	SW846 8270C
amine			
Phenol	45	(10 - 112)	SW846 8270C
2-Chlorophenol	53	(23 - 134)	SW846 8270C
4-Chloro-3-methylphenol	57	(22 - 147)	SW846 8270C
4-Nitrophenol	63	(30 - 162)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Nitrobenzene-d5		61	(40 - 114)
2-Fluorobiphenyl		55	(45 - 118)
Terphenyl-d14		78	(33 - 141)
Phenol-d5		53	(17 - 101)
2-Fluorophenol		52	(21 - 100)
2,4,6-Tribromophenol		67	(16 - 129)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVLPF102 Matrix.....: SOLID

LCS Lot-Sample#: A9E110000-122

Prep Date....: 05/11/99 Analysis Date..: 05/18/99

Prep Batch #...: 9131122

Dilution Factor: 1

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,2,4-Trichlorobenzene	72	(51 - 101)	SW846 8270C
Acenaphthene	70	(53 - 101)	SW846 8270C
2,4-Dinitrotoluene	89	(54 - 129)	SW846 8270C
Pyrene	71	(46 - 147)	SW846 8270C
N-Nitrosodi-n-propyl-	70	(39 - 95)	SW846 8270C
amine			
1,4-Dichlorobenzene	68	(51 - 95)	SW846 8270C
Pentachlorophenol	60	(24 - 115)	SW846 8270C
Phenol	68	(36 - 103)	SW846 8270C
2-Chlorophenol	67	(44 - 103)	SW846 8270C
4-Chloro-3-methylphenol	73	(46 - 106)	SW846 8270C
4-Nitrophenol	7 5	(16 - 192)	SW846 8270C
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
Nitrobenzene-d5		69	(23 - 120)
2-Fluorobiphenyl		73	(30 - 115)
Terphenyl-d14		87	(18 - 137)
Phenol-d5		69	(24 - 113)
2-Fluorophenol		67	(25 - 121)
2,4,6-Tribromophenol		79	(19 - 122)

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVLP3102 Matrix.....: SOLID

LCS Lot-Sample#: A9E110000-114

Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

Dilution Factor: 1

 PERCENT
 RECOVERY

 PARAMETER
 RECOVERY
 LIMITS
 METHOD

 Aroclor 1016
 82
 (60 - 133)
 SW846 8082

Aroclor 1260 103 (59 - 129) SW846 8082

 SURROGATE
 RECOVERY

 Tetrachloro-m-xylene
 82
 (10 - 129)

 Decachlorobiphenyl
 115
 (10 - 138)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVKRC102-LCS Matrix..... WATER

LCS Lot-Sample#: A9E100000-104 CVKRC103-LCSD

Prep Date....: 05/10/99 **Analysis Date..:** 05/16/99

Prep Batch #...: 9130104

Dilution Factor: 2

PARAMETER Aroclor 1016	PERCENT RECOVERY 75 83	RECOVERY LIMITS (66 - 111) (66 - 111)	RPD LIMITS 9.5 (0-23)	METHOD SW846 8082 SW846 8082
Aroclor 1260	91 89	(65 - 111) (65 - 111) PERCENT	2.1 (0-23) RECOVERY	SW846 8082 SW846 8082
SURROGATE Tetrachloro-m-xylene		RECOVERY 75 84	LIMITS (10 - 130) (10 - 130)	
Decachlorobiphenyl		95 50	(10 - 116) (10 - 116)	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVMT6102 Matrix.....: SOLID

LCS Lot-Sample#: A9E110000-347

Prep Date....: 05/12/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131347

Dilution Factor: 1

PERCENT RECOVERY

PARAMETER RECOVERY LIMITS METHOD

Total Petroleum 57 (38 - 120) SW846 8015B

Hydrocarbons-Extractable

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #:	A9E070141			Matrix	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
ICS Lot-Sample#: Mercury	90	113 Prep Ba (80 - 120) lution Factor: 1	t ch #: 9130113 SW846 7470A	05/10-05/13/99	CVKRX11H
Barium		(87 - 110) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13L
Beryllium	98 Dil	(85 - 110) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13M
Cadmium	97 Dil	(89 - 115) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13N
Calcium	95 Dil	(86 - 109) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13P
Chromium	99 Dil	(86 - 112) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13Q
Cobalt	95 Dil	(83 - 107) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13R
Iron	105 Dil	(80 - 120) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13T
Magnesium	91 Dil	(88 - 112) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13U
Manganese	100 Dil	(88 - 117) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13V
Nickel		(85 - 116) Lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX13W
Potassium	92 Dil	(87 - 106) ution Factor: 1	SW846 6010B	05/10-05/13/99	CVKRX13X
Copper	97 Dil	(84 - 112) ution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX132
Silver	106 Dil	(93 - 120) ution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX140

(Continued on next page)

Matrix....: WATER

TOTAL Metals

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Sodium	100 Di	(88 - 107) lution Factor: 1	SW846 6010B	05/10-05/13/99	
Vanadium	96 Di	(86 - 111) lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX142
Zinc	103 Di	(83 - 120) lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX143
Arsenic	99 Di	(80 - 120) lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX144
Lead	96 Di	(80 - 120) lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX145
Selenium	97 Di	(80 - 120) lution Factor: 1	SW846 6010B	05/10-05/12/99	CVKRX146
Thallium	101	(80 - 120)	SW846 6010B	05/10-05/12/99	CVKRX147

(87 - 115) SW846 6010B 05/10-05/12/99 CVKRX148

(87 - 108) SW846 6010B 05/10-05/12/99 CVKRX149

NOTE(S):

Aluminum

Antimony

Client Lot #...: A9E070141

Calculations are performed before rounding to avoid round-off errors in calculated results.

97

98

Dilution Factor: 1

Dilution Factor: 1

Dilution Factor: 1

TOTAL Metals

Client Lot #:	A9E070141			Matrix	: SOLID
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Antimony	96	259 Prep Ba (80 - 104) Lution Factor: 1	tch #: 9133259 SW846 6010B	05/14-05/18/99	CVQ9510R
Barium		(80 - 109) Lution Factor: 1	SW846 6010B	05/14-05/16/99	CVQ9510T
Beryllium		(80 - 105) Lution Factor: 1	SW846 6010B	05/14-05/16/99	CVQ9510U
Cadmium	99 Dil	(80 - 112) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9510V
Calcium	92 Dil	(80 - 109) Lution Factor: 1	SW846 6010B	05/14-05/16/99	CVQ9510W
Chromium	101 Dil	(81 - 116) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9510X
Zinc	90 Dil	(80 - 120) Lution Factor: 1	SW846 6010B	05/14-05/16/99	CVQ9511A
Mercury	84 Dil	(70 - 130) Lution Factor: 1	SW846 7471A	05/14-05/18/99	CVQ9511C
Arsenic	97 Dil	(80 - 120) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9511D
Lead	97 Dil	(80 - 120) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9511E
Selenium		(80 - 120) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9511F
Thallium	98 Dil	(80 - 120) Lution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ9511G
Aluminum	93 Dil	(80 - 113) ution Factor: 1	SW846 6010B	05/14-05/16/99	CVQ9511H
Cobalt	94 Dil	(80 - 104) ution Factor: 1	SW846 6010B	05/14-05/18/99	CVQ95110

(Continued on next page)

TOTAL Metals

Client Lot #: A9E070141	Matrix SOLID
-------------------------	--------------

	PERCENT	RECOVERY			PREPARATION-	
PARAMETER	RECOVERY	LIMITS	METHOD)	ANALYSIS DATE	WORK ORDER #
Copper	94	(80 - 113)	SW846	6010B	05/14-05/16/99	CV095111
		ilution Factor: 1			,,,,	
Iron	87	(80 - 120)	CMOAC	C01 0D	05/14 05/16/00	CT1005110
11011			2W040	60106	05/14-05/16/99	CVQ95112
		ilution Factor: 1				
Magnesium	97	(80 - 109)	SW846	6010B	05/14-05/16/99	CVQ95113
	D	ilution Factor: 1				
Manganese	92	(80 - 114)	SW846	6010B	05/14-05/16/99	CVQ95114
	0	ilution Factor: 1				
Nickel	91	(80 - 112)	SW846	6010B	05/14-05/16/99	CV095115
		Oilution Factor: 1	0.1010	00102	03/14 03/10/33	C V Q J J I I J
		reaction ractor.				
Potassium	92	(00 702)	CMOAC	6010D	05/14 05/16/00	G1100 E 1 1 6
Potassium		(80 - 103)	SW846	6010B	05/14-05/16/99	CVQ95116
	D	ilution Factor: 1				
Silver	152 N	(81 - 120)	SW846	6010B	05/14-05/18/99	CVQ95117
	D	ilution Factor: 1				
Sodium	97	(80 - 107)	SW846	6010B	05/14-05/16/99	CVQ95118
	0	ilution Factor: 1				~
Vanadium	99	(80 - 111)	SW846	6010B	05/14-05/18/99	CV095119
		Oilution Factor: 1	2.1010	00200	03/14-03/10/33	C4577TT7
	U	ritation ractor: 1				

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

General Chemistry

Client Lot #...: A9E070141

Matrix..... SOLID

PERCENT

RECOVERY LIMITS

PREPARATION-

PREP

PARAMETER RECOVERY METHOD

ANALYSIS DATE

BATCH #

Total Recoverable

Work Order #: CVX4R102 LCS Lot-Sample#: A9E190000-119

Petroleum Hydrocarbons

110

(75 - 125) MCAWW 418.1

05/19-05/20/99

9139119

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVM6L101

Matrix..... SOLID

MB Lot-Sample #: A9E110000-221

Prep Date....: 05/06/99

Analysis Date..: 05/13/99

Prep Batch #...: 9131221

Dilution Factor: 1

REPO	RTING
------	-------

		REFORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Acetone	ND	1000	ug/kg	SW846 8260B	
Benzene	ND	250	ug/kg	SW846 8260B	
Bromodichloromethane	ND	250	ug/kg	SW846 8260B	
Bromoform	ND	250	ug/kg	SW846 8260B	
Bromomethane	ND	500	ug/kg	SW846 8260B	
2-Butanone	ND	1000	ug/kg	SW846 8260B	
Carbon disulfide	ND	250	ug/kg	SW846 8260B	
Carbon tetrachloride	ND	250	ug/kg	SW846 8260B	
Chlorobenzene	ND	250	ug/kg	SW846 8260B	
Dibromochloromethane	ND	250	ug/kg	SW846 8260B	
Chloroethane	ND	500	ug/kg	SW846 8260B	
Chloroform	ND	250	ug/kg	SW846 8260B	
Chloromethane	ND	500	ug/kg	SW846 8260B	
1,1-Dichloroethane	ND	250	ug/kg	SW846 8260B	
1,2-Dichloroethane	ND	250	ug/kg	SW846 8260B	
1,1-Dichloroethene	ND	250	ug/kg	SW846 8260B	
1,2-Dichloroethene	ND	250	ug/kg	SW846 8260B	
(total)			3. 3		
1,2-Dichloropropane	ND	250	ug/kg	SW846 8260B	
cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B	
trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B	
Ethylbenzene	ND	250	ug/kg	SW846 8260B	
2-Hexanone	ND	1000	ug/kg	SW846 8260B	
Methylene chloride	ND	250	ug/kg	SW846 8260B	
4-Methyl-2-pentanone	ND	1000	ug/kg	SW846 8260B	
Styrene	ND	250	ug/kg	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	250	ug/kg	SW846 8260B	
Tetrachloroethene	ND	250	ug/kg	SW846 8260B	
Toluene	ND	250	ug/kg	SW846 8260B	
1,1,1-Trichloroethane	ND	250	ug/kg	SW846 8260B	
1,1,2-Trichloroethane	ND	250	ug/kg	SW846 8260B	
Trichloroethene	ND	250	ug/kg	SW846 8260B	
Vinyl chloride	ND	500	ug/kg	SW846 8260B	
Xylenes (total)	ND	500	ug/kg	SW846 8260B	
ļ.					
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
1,2-Dichloroethane-d4	96	(51 - 1			
Toluene-d8	89	(58 - 1	•		
Bromofluorobenzene	95	(53 - 1			
Dibromofluoromethane	95	(49 - 1	19)		

GC/MS Volatiles

Client Lot #...: A9E070141

MB Lot-Sample #: A9E110000-225

Work Order #...: CVM7E101

Matrix..... SOLID

Analysis Date..: 05/16/99

Dilution Factor: 1

Prep Date....: 05/07/99
Prep Batch #...: 9131225

REPORTING

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	1000	ug/kg	SW846 8260B
Benzene	ND	250	ug/kg	SW846 8260B
Bromodichloromethane	ND	250	ug/kg	SW846 8260B
Bromoform	ND	250	ug/kg	SW846 8260B
Bromomethane	ND	500	ug/kg	SW846 8260B
2-Butanone	ND	1000	ug/kg	SW846 8260B
Carbon disulfide	ND	250	ug/kg	SW846 8260B
Carbon tetrachloride	ND	250	ug/kg	SW846 8260B
Chlorobenzene	ND	250	ug/kg	SW846 8260B
Dibromochloromethane	ND	250	ug/kg	SW846 8260B
Chloroethane	ND	500	ug/kg	SW846 8260B
Chloroform	ND	250	ug/kg	SW846 8260B
Chloromethane	ND	500	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	250	ug/kg	SW846 8260B
1,2-Dichloroethene	ND	250	ug/kg	SW846 8260B
(total)				
1,2-Dichloropropane	ND	250	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
Ethylbenzene	ND	250	ug/kg	SW846 8260B
2-Hexanone	ND	1000	ug/kg	SW846 8260B
Methylene chloride	ND	250	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	1000	ug/kg	SW846 8260B
Styrene	ND	250	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	250	ug/kg	SW846 8260B
Tetrachloroethene	ND	250	ug/kg	SW846 8260B
Toluene	ND	250	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	250	ug/kg	SW846 8260B
1,1,2-Trichloroethane	ND	250	ug/kg	SW846 8260B
Trichloroethene	ND	250	ug/kg	SW846 8260B
Vinyl chloride	ND	500	ug/kg	SW846 8260B
Xylenes (total)	ND	500	ug/kg	SW846 8260B
•	PERCENT	RECO <mark>VER</mark>	Y	
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	81	(51 - 1	24)	
Toluene-d8	89	(58 - 1		
Bromofluorobenzene	90	(53 - 1		
Dibromofluoromethane	87	(49 - 1	19)	

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVM86101

Matrix....: SOLID

MB Lot-Sample #: A9E110000-235

Prep Date....: 05/08/99

Analysis Date..: 05/18/99 Prep Batch #...: 9131235

Dilution Factor: 1

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acetone	ND	1000	ug/kg	SW846 8260B
Benzene	ND	250	ug/kg	SW846 8260B
Bromodichloromethane	ND	250	ug/kg	SW846 8260B
Bromoform	ND	250	ug/kg	SW846 8260B
Bromomethane	ND	500	ug/kg	SW846 8260B
2-Butanone	ND	1000	ug/kg	SW846 8260B
Carbon disulfide	ND	250	ug/kg	SW846 8260B
Carbon tetrachloride	ND	250	ug/kg	SW846 8260B
Chlorobenzene	ND	250	ug/kg	SW846 8260B
Dibromochloromethane	ND	250	ug/kg	SW846 8260B
Chloroethane	ND	500	ug/kg	SW846 8260B
Chloroform	ND	250	ug/kg	SW846 8260B
Chloromethane	ND	500	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	250	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	250	ug/kg	SW846 8260B
1,2-Dichloroethene	ND	250	ug/kg	SW846 8260B
(total)				
1,2-Dichloropropane	ND	250	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260B
Ethylbenzene	ND	250	ug/kg	SW846 8260B
2-Hexanone	ND	1000	ug/kg	SW846 8260B
Methylene chloride	ND	250	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	1000	ug/kg	SW846 8260B
Styrene	ND	250	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	250	ug/kg	SW846 8260B
Tetrachloroethene	ND	250	ug/kg	SW846 8260B
Toluene	ND	250	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	250	ug/kg	SW846 8260B
1,1,2-Trichloroethane	ND	250	ug/kg	SW846 8260B
Trichloroethene	ND	250	ug/kg	SW846 8260B
Vinyl chloride	ND	500	ug/kg	SW846 8260B
Xylenes (total)	ND	500	ug/kg	SW846 8260B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	108	(51 - 12	24)	
Toluene-d8	110	(58 - 13		
Bromofluorobenzene	120	(53 - 122)		
Dibromofluoromethane	100	(49 - 13	19)	

NOTE (S):

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVWEC101

Matrix....: SOLID

MB Lot-Sample #: A9E180000-240

Prep Date....: 05/14/99
Prep Batch #...: 9138240

REPORTING

Analysis Date..: 05/14/99

Dilution Factor: 1

		KLITOKIII	.40	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	10	ug/kg	SW846 8260B
Bromomethane	ND	10	ug/kg	SW846 8260B
Vinyl chloride	ND	10	ug/kg	SW846 8260B
Chloroethane	ND	10	ug/kg	SW846 8260B
Methylene chloride	ND	5.0	ug/kg	SW846 8260B
Acetone	ND	20	ug/kg	SW846 8260B
Carbon disulfide	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260B
(total)				
Chloroform	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260B
2-Butanone	ND	20	ug/kg	SW846 8260B
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260B
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Trichloroethene	ND	5.0	ug/kg	SW846 8260B
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260B
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260B
Benzene	ND	5.0	ug/kg	SW846 8260B
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260B
Bromoform	ND	5.0	ug/kg	SW846 8260B
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260B
2-Hexanone	ND	20	ug/kg	SW846 8260B
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Chlorobenzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Styrene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	10	ug/kg	SW846 8260B

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	105	(75 - 117)		
Toluene-d8	114	(86 - 122)		
Bromofluorobenzene	124	(60 - 137)		
Dibromofluoromethane	105	(70 - 135)		

NOTE(S):

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVWL1101

Matrix....: WATER

MB Lot-Sample #: A9E180000-132

Prep Date....: 05/17/99

Analysis Date..: 05/17/99

Prep Batch #...: 9138132

Dilution Factor: 1

REPORTIN	G
----------	---

		KILL OK LI	110	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	10	ug/L	SW846 8260B
Bromomethane	ND	10	ug/L	SW846 8260B
Vinyl chloride	ND	10	ug/L	SW846 8260B
Chloroethane	ND	10	ug/L	SW846 8260B
Methylene chloride	ND	5.0	ug/L	SW846 8260B
Acetone	ND	20	ug/L	SW846 8260B
Carbon disulfide	ND	5.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	5.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/L	SW846 8260B
Chloroform	ND	5.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/L	SW846 8260B
2-Butanone	ND	20	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	5.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/L	SW846 8260B
Bromodichloromethane	ND	5.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B
Trichloroethene	ND	5.0	ug/L	SW846 8260B
Dibromochloromethane	ND	5.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	5.0	ug/L	SW846 8260B
Benzene	ND	5.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B
Bromoform	ND	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	20	ug/L	SW846 8260B
2-Hexanone	ND	20	ug/L	SW846 8260B
Tetrachloroethene	ND	5.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	SW846 8260B
Toluene	ND	5.0	ug/L	SW846 8260B
Chlorobenzene	ND	5.0	ug/L	SW846 8260B
Ethylbenzene	ND	5.0	ug/L	SW846 8260B
Styrene	ND	5.0	ug/L	SW846 8260B
Xylenes (total)	ND	5.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	103	(80 - 1	20)	
Toluene-d8	103	(88 - 1	10)	
Bromofluorobenzene	96	(86 - 1	15)	
Dibromofluoromethane	104	(86 - 1	18)	
			-	

NOTE(S):

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVW9P101

Matrix....: WATER

MB Lot-Sample #: A9E180000-218

Prep Date....: 05/17/99

Analysis Date..: 05/17/99

Prep Batch #...: 9138218

Dilution Factor: 1

1	EPORTING
]	TIMI

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Chloromethane	ND	10	ug/L	SW846 8260B
Bromomethane	ND	10	ug/L	SW846 8260B
Vinyl chloride	ND	10	ug/L	SW846 8260B
Chloroethane	ND	10	ug/L	SW846 8260B
Methylene chloride	ND	5.0	ug/L	SW846 8260B
Acetone	ND	20	ug/L	SW846 8260B
Carbon disulfide	ND	5.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	5.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	5.0	ug/L	SW846 8260B
1,2-Dichloroethene	ND	5.0	ug/L	SW846 8260B
(total)			-	
Chloroform	ND	5.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	5.0	ug/L	SW846 8260B
2-Butanone	ND	20	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	5.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	5.0	ug/L	SW846 8260B
Bromodichloromethane	ND	5.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	5.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B
Trichloroethene	ND	5.0	ug/L	SW846 8260B
Dibromochloromethane	ND	5.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	5.0	ug/L	SW846 8260B
Benzene	ND	5.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	5.0	ug/L	SW846 8260B
Bromoform	ND	5.0	ug/L	SW846 8260B
4-Methyl-2-pentanone	ND	20	ug/L	SW846 8260B
2-Hexanone	ND	20	ug/L	SW846 8260B
Tetrachloroethene	ND	5.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	SW846 8260B
Toluene	ND	5.0	ug/L	SW846 8260B
Chlorobenzene	ND	5.0	ug/L	SW846 8260B
Ethylbenzene	ND	5.0	ug/L	SW846 8260B
Styrene	ND	5.0	ug/L	SW846 8260B
Xylenes (total)	ND	5.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
1.2-Dichloroethane-d4	104	(80 - 1	20)	

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dichloroethane-d4	104	(80 - 120)		
Toluene-d8	97	(88 - 110)		
Bromofluorobenzene	107	(86 - 115)		
Dibromofluoromethane	94	(86 - 118)		

NOTE(S):

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVX7X101 Matrix..... WATER

MB Lot-Sample #: A9E190000-168

Prep Date....: 05/18/99
Prep Batch #...: 9139168

Analysis Date..: 05/18/99 Dilution Factor: 1

REPORTING

	KEPOKILI	NG	
RESULT	LIMIT	UNITS	METHOD
ND	10	ug/L	SW846 8260B
ND	10	ug/L	SW846 8260B
ND	10	ug/L	SW846 8260B
ND	10	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	20	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
		_	SW846 8260B
ND	20	_	SW846 8260B
ND	5.0	_	SW846 8260B
ND		-	SW846 8260B
		-	SW846 8260B
ND			SW846 8260B
ND	5.0	_	SW846 8260B
ND	5.0	_	SW846 8260B
ND	5.0	_	SW846 8260B
ND	5.0	_	SW846 8260B
ND	5.0	-	SW846 8260B
ND	5.0	_	SW846 8260B
ND	5.0	_	SW846 8260B
ND	20	ug/L	SW846 8260B
ND	20	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
ND	5.0	ug/L	SW846 8260B
PERCENT	RECOVER	Y	
RECOVERY	LIMITS		
102	(80 - 1	20)	
96	(88 - 1	10)	
99	(86 - 1	15)	
100	(86 - 1	18)	
	ND N	RESULT	ND 10 ug/L ND 5.0 ug/L

GC/MS Semivolatiles

Client Lot #...: A9E070141

Work Order #...: CVKT0101

Matrix....: WATER

SW846 8270C

ug/L

MB Lot-Sample #: A9E100000-114

Prep Date....: 05/10/99

Analysis Date..: 05/13/99

Prep Batch #...: 9130114

Dilution Factor: 1

Dibenzofuran

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Phenol	ND	10	ug/L	SW846 8270C	
bis(2-Chloroethyl)-	ND	10	ug/L	SW846 8270C	
ether			•		
2-Chlorophenol	ND	10	ug/L	SW846 8270C	
1,3-Dichlorobenzene	ND	10	ug/L	SW846 8270C	
1,4-Dichlorobenzene	ND	10	ug/L	SW846 8270C	
1,2-Dichlorobenzene	ND	10	ug/L	SW846 8270C	
2-Methylphenol	ND	10	ug/L	SW846 8270C	
2,2'-oxybis(1-Chloro- propane)	ND	10	ug/L	SW846 8270C	
4-Methylphenol	ND	10	ug/L	SW846 8270C	
N-Nitrosodi-n-propyl-	ND	10	ug/L	SW846 8270C	
amine		- ₹	-3,-		
Hexachloroethane	ND	10	ug/L	SW846 8270C	
Nitrobenzene	ND	10	ug/L	SW846 8270C	
Isophorone	ND	10	ug/L	SW846 8270C	
2-Nitrophenol	ND	10	ug/L	SW846 8270C	
2,4-Dimethylphenol	ND	10	ug/L	SW846 8270C	
bis(2-Chloroethoxy)	ND	10	ug/L	SW846 8270C	
methane			-5, -		
2,4-Dichlorophenol	ND	10	ug/L	SW846 8270C	
1,2,4-Trichlorobenzene	ND	10	ug/L	SW846 8270C	
Naphthalene	ND	10	ug/L	SW846 8270C	
4-Chloroaniline	ND	10	ug/L	SW846 8270C	
Hexachlorobutadiene	ND	10	ug/L	SW846 8270C	
4-Chloro-3-methylphenol	ND	10	ug/L	SW846 8270C	
2-Methylnaphthalene	ND	10	ug/L	SW846 8270C	
Hexachlorocyclopenta-	ND	50	ug/L	SW846 8270C	
diene			5 ·		
2,4,6-Trichlorophenol	ND	10	ug/L	SW846 8270C	
2,4,5-Trichlorophenol	ND	10	ug/L	SW846 8270C	
2-Chloronaphthalene	ND	10	ug/L	SW846 8270C	
2-Nitroaniline	ND	50	ug/L	SW846 8270C	
Dimethyl phthalate	ND	10	ug/L	SW846 8270C	
Acenaphthylene	ND	10	ug/L	SW846 8270C	
2,6-Dinitrotoluene	ND	10	ug/L	SW846 8270C	
3-Nitroaniline	ND	50	ug/L	SW846 8270C	
Acenaphthene	ND	10	ug/L	SW846 8270C	
2,4-Dinitrophenol	ND	50	ug/L	SW846 8270C	
4-Nitrophenol	ND	5 0	ug/L	SW846 8270C	
Dibanatuum	NTO	1 0	_ /=	011046 00700	

(Continued on next page)

10

ND

GC/MS Semivolatiles

Client Lot #: A9E070141	Work Order #.	: CVKT010	1	Matrix WATER
		REPORTING	;	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrotoluene	ND	10	ug/L	SW846 8270C
Diethyl phthalate	ND	10	ug/L	SW846 8270C
4-Chlorophenyl phenyl	ND	10	ug/L	SW846 8270C
ether				
Fluorene	ND	10	ug/L	SW846 8270C
4-Nitroaniline	ND	50	ug/L	SW846 8270C
4,6-Dinitro-	ND	50	ug/L	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	10	ug/L	SW846 8270C
4-Bromophenyl phenyl	ND	10	ug/L	SW846 8270C
ether				
Hexachlorobenzene	ND	10	ug/L	SW846 8270C
Pentachlorophenol	ND	10	ug/L	SW846 8270C
Phenanthrene	ND	10	ug/L	SW846 8270C
Anthracene	ND	10	ug/L	SW846 8270C
Carbazole	ND	10	ug/L	SW846 8270C
Di-n-butyl phthalate	ND	10	ug/L	SW846 8270C
Fluoranthene	ND	10	ug/L	SW846 8270C
Pyrene	ND	10	ug/L	SW846 8270C
Butyl benzyl phthalate	ND	10	ug/L	SW846 8270C
3,3'-Dichlorobenzidine	ND	50	ug/L	SW846 8270C
Benzo(a) anthracene	ND	10	ug/L	SW846 8270C
Chrysene	ND	10	ug/L	SW846 8270C
bis(2-Ethylhexyl)	ND	10	ug/L	SW846 8270C
phthalate				
Di-n-octyl phthalate	ND	10	ug/L	SW846 8270C
Benzo(b)fluoranthene	ND	10	ug/L	SW846 8270C
Benzo(k)fluoranthene	ND	10	ug/L	SW846 8270C
Benzo(a)pyrene	ND	10	ug/L	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	SW846 8270C
Dibenz(a,h)anthracene	ND	10	ug/L	SW846 8270C
Benzo(ghi)perylene	ND	10	ug/L	SW846 8270C
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Nitrobenzene-d5	63	(40 - 114)	
2-Fluorobiphenyl	58	(45 - 118		
Terphenyl-d14	75	(33 - 141)	
Phenol-d5	56	(17 - 101		
2-Fluorophenol	54	(21 - 100		
2,4,6-Tribromophenol	59	(<mark>16 - 129</mark>)	

GC/MS Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVLPF101 Matrix.....: SOLID

MB Lot-Sample #: A9E110000-122

Prep Date....: 05/11/99

Dilution Factor: 1

REPORTING

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Phenol	ND	330	ug/kg	SW846 8270C	
bis(2-Chloroethyl)-	ND	330	ug/kg	SW846 8270C	
ether					
2-Chlorophenol	ND	330	ug/kg	SW846 8270C	
1,3-Dichlorobenzene	ND	330	ug/kg	SW846 8270C	
1,4-Dichlorobenzene	ND	330	ug/kg	SW846 8270C	
1,2-Dichlorobenzene	ND	330	ug/kg	SW846 8270C	
2-Methylphenol	ND	330	ug/kg	SW846 8270C	
2,2'-oxybis(1-Chloro-	ND	330	ug/kg	SW846 8270C	
propane)					
4-Methylphenol	ND	330	ug/kg	SW846 8270C	
N-Nitrosodi-n-propyl-	ND	330	ug/kg	SW846 8270C	
amine					
Hexachloroethane	ND	330	ug/kg	SW846 8270C	
Nitrobenzene	ND	330	ug/kg	SW846 8270C	
Isophorone	ND	330	ug/kg	SW846 8270C	
2-Nitrophenol	ND	330	ug/kg	SW846 8270C	
2,4-Dimethylphenol	ND	330	ug/kg	SW846 8270C	
bis(2-Chloroethoxy)	ND	330	ug/kg	SW846 8270C	
methane					
2,4-Dichlorophenol	ND	330	ug/kg	SW846 8270C	
1,2,4-Trichlorobenzene	ND	330	ug/kg	SW846 8270C	
Naphthalene	ND	330	ug/kg	SW846 8270C	
4-Chloroaniline	ND	330	ug/kg	SW846 8270C	
Hexachlorobutadiene	ND	330	ug/kg	SW846 8270C	
4-Chloro-3-methylphenol	ND	330	ug/kg	SW846 8270C	
2-Methylnaphthalene	ND	330	ug/kg	SW846 8270C	
Hexachlorocyclopenta-	ND	1600	ug/kg	SW846 8270C	
diene					
2,4,6-Trichlorophenol	ND	330	ug/kg	SW846 8270C	
2,4,5-Trichlorophenol	ND	330	ug/kg	SW846 8270C	
2-Chloronaphthalene	ND	330	ug/kg	SW846 8270C	
2-Nitroaniline	ND	1600	ug/kg	SW846 8270C	
Dimethyl phthalate	ND	330	ug/kg	SW846 8270C	
Acenaphthylene	ND	330	ug/kg	SW846 8270C	
2,6-Dinitrotoluene	ND	330	ug/kg	SW846 8270C	
3-Nitroaniline	ND	1600	ug/kg	SW846 8270C	
Acenaphthene	ND	330	ug/kg	SW846 8270C	
2,4-Dinitrophenol	ND	1600	ug/kg	SW846 8270C	
4-Nitrophenol	ND	1600	ug/kg	SW846 8270C	
Dibenzofuran	ND	330	ug/kg	SW846 8270C	

(Continued on next page)

GC/MS Semivolatiles

Client Lot #:	A9E070141	Work Order #:	CVLPF101	Matrix:	SOLID
---------------	-----------	---------------	----------	---------	-------

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
2,4-Dinitrotoluene	ND	330	ug/kg	SW846 8270C
Diethyl phthalate	ND	330	ug/kg	SW846 8270C
4-Chlorophenyl phenyl	ND	330	ug/kg	SW846 8270C
ether				
Fluorene	ND	330	ug/kg	SW846 8270C
4-Nitroaniline	ND	1600	ug/kg	SW846 8270C
4,6-Dinitro-	ND	1600	ug/kg	SW846 8270C
2-methylphenol				
N-Nitrosodiphenylamine	ND	330	ug/kg	SW846 8270C
4-Bromophenyl phenyl	ND	330	ug/kg	SW846 8270C
ether				
Hexachlorobenzene	ND	330	ug/kg	SW846 8270C
Pentachlorophenol	ND	330	ug/kg	SW846 8270C
Phenanthrene	ND	330	ug/kg	SW846 8270C
Anthracene	ND	330	ug/kg	SW846 8270C
Carbazole	ND	330	ug/kg	SW846 8270C
Di-n-butyl phthalate	ND	330	ug/kg	SW846 8270C
Fluoranthene	ND	330	ug/kg	SW846 8270C
Pyrene	ND	330	ug/kg	SW846 8270C
Butyl benzyl phthalate	ND	330	ug/kg	SW846 8270C
3,3'-Dichlorobenzidine	ND	1600	ug/kg	SW846 8270C
Benzo(a) anthracene	ND	330	ug/kg	SW846 8270C
Chrysene	ND	330	ug/kg	SW846 8270C
bis(2-Ethylhexyl)	ND	330	ug/kg	SW846 8270C
phthalate				
Di-n-octyl phthalate	ND	330	ug/kg	SW846 8270C
Benzo(b) fluoranthene	ND	330	ug/kg	SW846 8270C
Benzo(k)fluoranthene	ND	330	ug/kg	SW846 8270C
Benzo(a)pyrene	ND	330	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	330	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	ND	330	ug/kg	SW846 8270C
Benzo(ghi)perylene	ND	330	ug/kg	SW846 8270C
3				
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	55	(23 - 1	20)	
2-Fluorobiphenyl	58	(30 - 1	15)	
Terphenyl-d14	91	(18 - 1	37)	
Phenol-d5	54	(24 - 1	13)	
2-Fluorophenol 🕒	54	(25 - 1	21)	
2,4,6-Tribromophenol	56	(19 - 1	22)	

GC Semivolatiles

Client Lot #...: A9E070141

Work Order #...: CVLP3101

Matrix..... SOLID

MB Lot-Sample #: A9E110000-114

Prep Date....: 05/11/99

REPORTING

Dilution Factor: 1

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Aroclor 1016	ND	33	ug/kg	SW846 8082
Aroclor 1221	ND	33	ug/kg	SW846 8082
Aroclor 1232	ND	33	ug/kg	SW846 8082
Aroclor 1242	ND	33	ug/kg	SW846 8082
Aroclor 1248	ND	33	ug/kg	SW846 8082
Aroclor 1254	ND	33	ug/kg	SW846 8082
Aroclor 1260	ND	33	ug/kg	SW846 8082

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Tetrachloro-m-xylene	87	(10 - 129)
Decachlorobiphenyl	113	(10 - 138)

NOTE (S) :

GC Semivolatiles

Client Lot #...: A9E070141

Work Order #...: CVKRC101

Matrix..... WATER

MB Lot-Sample #: A9E100000-104

Prep Date....: 05/10/99

Analysis Date..: 05/16/99

Prep Batch #...: 9130104

Dilution Factor: 1

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Aroclor 1016	ND	1.0	ug/L	SW846 8082
Aroclor 1221	ND	1.0	ug/L	SW846 8082
Aroclor 1232	ND	1.0	ug/L	SW846 8082
Aroclor 1242	ND	1.0	ug/L	SW846 8082
Aroclor 1248	ND	1.0	ug/L	SW846 8082
Aroclor 1254	ND	1.0	ug/L	SW846 8082
Aroclor 1260	ND	1.0	ug/L	SW846 8082
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Tetrachloro-m-xylene	75	(10 - 1	30)	
Decachlorobiphenyl	85	(10 - 1	16)	

NOTE (S)

GC Semivolatiles

Client Lot #...: A9E070141

Work Order #...: CVMT6101

Matrix....: SOLID

MB Lot-Sample #: A9E110000-347

Analysis Date..: 05/13/99

Prep Date....: 05/12/99

Prep Batch #...: 9131347

Dilution Factor: 1

REPORTING

PARAMETER RESULT LIMIT UNITS METHOD

TPH (Extractables) ND 3.0 mg/kg SW846 8015B

NOTE(S):

TOTAL Metals

Client Lot #...: A9E070141

Matrix..... WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Tot-Sample #	- A9E100	000-113 Prep Ba	tch #	9120112		
Aluminum	ND	0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12U
Arsenic	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12P
Antimony	ND	0.060 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12V
Lead	ND	0.0030 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12Q
Barium	ND	0.20 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX127
Selenium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12R
Beryllium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX128
Thallium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12T
Cadmium	ND	0.0050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX129
Calcium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12A
Chromium	ND	0.010 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12C
Cobalt	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12D
Copper	ND	0.025 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX11J
Iron	ND	0.10 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12E
Magnesium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12F

(Continued on next page)

TOTAL Metals

Client Lot #...: A9E070141

Matrix....: WATER

ì			REPORTING			PREPARATION-	WORK
ı	PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
7	Manganese	ND	0.015	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12G
n			Dilution Factor: 1				
Ļ	Nickel	ND	0.040	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12H
n			Dilution Factor: 1				
Į	Potassium	ND	5.0	mg/L	SW846 6010B	05/10-05/13/99	CVKRX12J
Da.			Dilution Factor: 1				
l	Silver	ND		mg/L	SW846 6010B	05/10-05/12/99	CVKRX12K
			Dilution Factor: 1				
Ì	Sodium	ND	5.0 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/13/99	CVKRX12L
•			Ditution Factor: 1				
Ì	Vanadium	ND	0.050 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12M
Ö	Mercury	ND	0.00020 Dilution Factor: 1	mg/L	SW846 7470A	05/10-05/13/99	CVKRX10Q
ļ							
	Zinc	0.034	0.020 Dilution Factor: 1	mg/L	SW846 6010B	05/10-05/12/99	CVKRX12N
			Ditution Factor: I				
51	NOTE (S):						

NOTE (S) :

TOTAL Metals

Client Lot #...: A9E070141

Matrix..... SOLID

PARAMETER		EPORTING	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
					AMADISTS DATE	JIDEK #
MB Lot-Sample	: A9E130000-259	Prep Bat	ch #: 9	133259		
Aluminum	ND 20		mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510Q
Arsenic	ND 1.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510L
Antimony	ND 3.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ95101
Lead	ND 0.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510M
Barium	ND 20		mg/kg	SW846 6010B	05/14-05/16/99	CVQ95102
Selenium	ND 0.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510N
Beryllium	ND 0 Dilution		mg/kg	SW846 6010B	05/14-05/16/99	CVQ95103
Thallium	ND 1.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510P
Cadmium	ND 0		mg/kg	SW846 6010B	05/14-05/18/99	CVQ95104
Calcium	ND 50		mg/kg	SW846 6010B	05/14-05/16/99	CVQ95105
Chromium	ND 1.		mg/kg	SW846 6010B	05/14-05/18/99	CVQ95106
Cobalt	ND 5		mg/kg	SW846 6010B	05/14-05/18/99	CVQ95107
Copper	ND 2.		mg/kg	SW846 6010B	05/14-05/16/99	CVQ95108
Iron	ND 10 Dilution		mg/kg	SW846 6010B	05/14-05/16/99	CVQ95109
Magnesium	ND 50		mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510A
		/ C = - 1- 1				

(Continued on next page)

TOTAL Metals

Client Lot #...: A9E070141

Matrix....: SOLID

PARAMETER Manganese	RESULT ND	REPORTING LIMIT 1.5	UNITS mg/kg	METHOD SW846 6010B	PREPARATION- ANALYSIS DATE 05/14-05/16/99	
_	D	ilution Factor: 1				
Nickel	ND D	4.0 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510D
Potassium	ND D	500 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510E
Silver	ND D	1.0 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510F
Sodium	ND D	500 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510G
Vanadium	IND D	5.0 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/18/99	CVQ9510H
Mercury	IND D	0.10 ilution Factor: 1	mg/kg	SW846 7471A	05/14-05/18/99	CVQ9510K
Zinc	ND D	2.0 ilution Factor: 1	mg/kg	SW846 6010B	05/14-05/16/99	CVQ9510J
MOUNT (C)						

NOTE (S):

General Chemistry

Client Lot #...: A9E070141

Matrix....: SOLID

	REPORTING	3		PREPARATION-	PREP
PARAMETER RESUI	LT LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Percent Solids	Work Order	#: CVVGJ101	MB Lot-Sample #:	A9E170000-276	
ND	0.10	ક	MCAWW 160.3 MOD	05/17-05/18/99	9137276
	Dilution Factor: 1				
Percent Solids	Work Order	#: CVVWV101	MB Lot-Sample #:		
ND	0.10	ક	MCAWW 160.3 MOD	05/18-05/19/99	9138134
	Dilution Factor: 1				
Total Recoverable Petroleum Hydrocarbons		#: CVX4R101	MB Lot-Sample #:	A9E190000-119	
ND	10	mg/kg	MCAWW 418.1	05/19-05/20/99	9139119
	Dilution Factor: 1				

NOTE (S):

GC/MS Volatiles

Client Lot #...: A9E070141

Work Order #...: CVGEQ103-MS

......

MS Lot-Sample #: A9E060162-015

CVGEQ104-MSD

Matrix..... WATER

Date Sampled...: 05/04/99 Prep Date....: 05/17/99 Date Received..: 05/06/99 Analysis Date..: 05/17/99

Prep Batch #...: 9138132

Dilution Factor: 1

ĺ	PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHOI)
υ.	1,1-Dichloroethene	118 a	(75 - 113)			SW846	
		127 a	(75 - 113)	7.0	(0-20)	SW846	8260B
ı	Trichloroethene	120 a	(71 - 110)			SW846	8260B
g)		98	(71 - 110)	20	(0-22)	SW846	8260B
	Chlorobenzene	102	(81 - 115)			SW846	8260B
l		102	(81 - 115)	0.07	(0-18)	SW846	8260B
	Toluene	104	(78 - 126)			SW846	8260B
		104	(78 - 126)	0.08	(0-24)	SW846	8260B
ľ	Benzene	99	(78 - 117)			SW846	8260B
ı		99	(78 - 117)	0.37	(0-17)	SW846	8260B
•							
			PERCENT		RECOVERY		
ľ	SURROGATE		RECOVERY		LIMITS_	_	
į.	1,2-Dichloroethane-d4		111		(80 - 120)		
			102		(80 - 120)		
ı	Toluene-d8		106		(88 - 110)		
Į.			106		(88 - 110)		
	Bromofluorobenzene		88		(86 - 115)		
1			91		(86 - 115)		
ı	Dibromofluoromethane		86		(86 - 118)		
			103		(86 - 118)		

NOTE (S)

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVHMP10V-MS Matrix..... WATER

MS Lot-Sample #: A9E070125-005 CVHMP10W-MSD

Date Sampled...: 05/05/99 15:30 Date Received..: 05/07/99 Prep Date....: 05/18/99 Analysis Date..: 05/18/99

Prep Batch #...: 9139168 Dilution Factor: 2.5

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	D
1,1-Dichloroethene	91	(75 - 113)			SW846	8260B
	84	(75 - 113)	8.1	(0-20)	SW846	8260B
Trichloroethene	114 a	(71 - 110)			SW846	8260B
	98	(71 - 110)	14	(0-22)	SW846	8260B
Benzene	100	(78 - 117)			SW846	8260B
	98	(78 - 117)	2.0	(0-17)	SW846	8260B
Toluene	96	(78 - 126)			SW846	8260B
	93	(78 - 126)	3.3	(0-24)	SW846	8260B
Chlorobenzene	94	(81 - 115)			SW846	8260B
	93	(81 - 115)	1.0	(0-18)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Dibromofluoromethane		89		(86 - 118)	
		93		(86 - 118)	
1,2-Dichloroethane-d4		97		(80 - 120)	
		82		(80 - 120)	
Toluene-d8		98		(88 - 110)	
		95		(88 - 110		
Bromofluorobenzene		105		(86 - 115		
		109		(86 - 115)	
Bromofluorobenzene		105		(86 - 115)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVK4F10F-MS Matrix.....: SOLID

MS Lot-Sample #: A9E080101-020 CVK4F10G-MSD

Date Sampled...: 05/07/99 11:50 Date Received..: 05/08/99 Prep Date....: 05/08/99 Analysis Date..: 05/18/99

Prep Batch #...: 9131235

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	0
1,1-Dichloroethene	79	(33 - 137)			SW846	8260B
	79	(33 - 137)	0.59	(0-14)	SW846	8260B
Trichloroethene	87	(73 - 113)			SW846	8260B
	86	(73 - 113)	1.0	(0-11)	SW846	8260B
Chlorobenzene	78 a	(81 - 113)			SW846	8260B
	79 a	(81 - 113)	0.48	(0-11)	SW846	8260B
Toluene	78	(76 - 116)			SW846	8260B
	78	(76 - 116)	0.83	(0-10)	SW846	8260B
Benzene	81	(64 - 122)			SW846	8260B
	82	(64 - 122)	1.3	(0-10)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
1,2-Dichloroethane-d4	_	72		(51 - 124	1)	
		74		(51 - 124	1)	
Toluene-d8		80		(58 - 116	5)	
		80		(58 - 116	5)	
Bromofluorobenzene		79		(53 - 122	2)	
		83		(53 - 122	2)	
Dibromofluoromethane		81		(49 - 119	9)	
, =====================================		83		(49 - 119	9)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

a Spiked analyte recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVK5T12L-MS Matrix.....: SOLID

MS Lot-Sample #: A9E080106-003 CVK5T12M-MSD

Date Sampled...: 05/07/99 09:00 Date Received..: 05/08/99 Prep Date....: 05/08/99 Analysis Date..: 05/19/99

Prep Batch #...: 9131235

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	
1,1-Dichloroethene	72	(33 - 137)			SW846	
1	72	(33 - 137)	0.91	(0-14)	SW846	
Trichloroethene	82	(73 - 113)			SW846	
*	84	(73 - 113)	2.6	(0-11)	SW846	
Benzene	88	(64 - 122)			SW846	
	85	(64 - 122)	2.8	(0-10)	SW846	8260B
Toluene	85	(76 - 116)			SW846	8260B
	87	(76 - 116)	2.4	(0-10)	SW846	8260B
Chlorobenzene	86	(81 - 113)			SW846	8260B
	83	(81 - 113)	3.5	(0-11)	SW846	8260B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS	_	
1,2-Dichloroethane-d4		77		(51 - 124))	
		70		(51 - 124))	
Toluene-d8		87		(58 - 116))	
		92		(58 - 116))	
Bromofluorobenzene		87		(53 - 122))	
		85		(53 - 122))	
Dibromofluoromethane		75		(49 - 119))	
		77		(49 - 119))	

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Volatiles

Client Lot #...: A9E070141 Work Order #...: CVMAJ102-MS Matrix..... WATER

MS Lot-Sample #: A9E110161-001 CVMAJ103-MSD

Date Sampled...: 05/07/99 11:30 Date Received..: 05/11/99 Prep Date....: 05/17/99 Analysis Date..: 05/17/99

Prep Batch #...: 9138218

Dilution Factor: 1

PARAMETER 1,1-Dichloroethene	PERCENT RECOVERY 82 87	RECOVERY LIMITS (75 - 113) (75 - 113)	RPD 5.7	RPD LIMITS (0-20)	METHOD SW846 8260B SW846 8260B	
Trichloroethene	86 92 93	(71 - 110) (71 - 110) (78 - 117)	7.0	(0-22)	SW846 8260B SW846 8260B SW846 8260B	
Benzene Toluene	99 87	(78 - 117) (78 - 126)	6.2	(0-17)	SW846 8260B SW846 8260B	
Chlorobenzene	92 89 96	(78 - 126) (81 - 115) (81 - 115)	6.6	(0-24) (0-18)	SW846 8260B SW846 8260B SW846 8260B	
SURROGATE Dibromofluoromethane	-	PERCENT RECOVERY 95		RECOVERY LIMITS (86 - 118	<u>)</u>	
1,2-Dichloroethane-d4		94 106 107		(86 - 118 (80 - 120 (80 - 120)	
Toluene-d8		92 92		(88 - 110 (88 - 110)	
Bromofluorobenzene		103 101		(86 - 115 (86 - 115		

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

GC/MS Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVHT210D-MS Matrix..... WATER

MS Lot-Sample #: A9E070140-001 CVHT210E-MSD

Date Sampled...: 05/06/99 08:30 Date Received..: 05/07/99 Prep Date....: 05/10/99 Analysis Date..: 05/13/99

Prep Batch #...: 9130114

Dilution Factor: 1

	PERCENT	RECOVERY		RPD	
ARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
,2,4-Trichlorobenzene	55	(44 - 142)			SW846 8270C
	53	(44 - 142)	2.2	(0-28)	SW846 8270C
cenaphthene	57	(47 - 145)			SW846 8270C
	57	(47 - 145)	1.1	(0-28)	SW846 8270C
,4-Dinitrotoluene	68	(39 - 139)			SW846 8270C
	70	(39 - 139)	1.8	(0-22)	SW846 8270C
yrene	77	(52 - 115)			SW846 8270C
	79	(52 - 115)	2.1	(0-25)	SW846 8270C
-Nitrosodi-n-pr <mark>opyl</mark> - amine	52	(10 - 230)			SW846 8270C
	51	(10 - 230)	2.1	(0-55)	SW846 8270C
,4-Dichlorobenzene	51	(20 - 124)			SW846 8270C
	50	(20 - 124)	2.3	(0-32)	SW846 8270C
entachlorophenol	66	(14 - 176)			SW846 8270C
	64	(14 - 176)	3.5	(0-49)	SW846 8270C
henol	46	(10 - 112)			SW846 8270C
	45	(10 - 112)	1.3	(0-23)	SW846 8270C
-Chlorophenol	54	(23 - 134)			SW846 8270C
	53	(23 - 134)	1.9	(0-29)	SW846 8270C
-Chloro-3-methylphenol	59	(22 - 147)			SW846 8270C
	58	(22 - 147)	2.7	(0-37)	SW846 8270C
-Nitrophenol	65	(10 - 132)			SW846 8270C
	65	(10 - 132)	0.22	(0-47)	SW846 8270C
		PERCENT		RECOVERY	
URROGATE	-	RECOVERY		LIMITS	
itrobenzene-d5		61		(40 - 114	
		58		(40 - 114	
-Fluorobiphenyl		59		(45 - 118	
		54		(45 - 118	-
erphenyl-d14		85		(33 - 141	
		85		(33 - 141	
henol -d5		53		(17 - 101	
		51		(17 - 101	
-Fluorophenol		51		(21 - 100	1)
		49		(21 - 100))
,4,6-Tribromophenol		68		(16 - 129)
		66		(16 - 129)

NOTE (S):

GC/MS Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVHT510E-MS Matrix.....: SOLID

MS Lot-Sample #: A9E070140-002 CVHT510F-MSD

Date Sampled...: 05/06/99 09:45 Date Received..: 05/07/99 Prep Date....: 05/11/99 Analysis Date..: 05/18/99

Prep Batch #...: 9131122

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,2,4-Trichlorobenzene	51	(44 - 142)			SW846 8270C
	55	(44 - 142)	7.6	(0-28)	SW846 8270C
Acenaphthene	54	(47 - 145)			SW846 8270C
	58	(47 - 145)	7.5	(0-28)	SW846 8270C
2,4-Dinitrotoluene	65	(39 - 139)			SW846 8270C
	68	(39 - 139)	4.3	(0-22)	SW846 8270C
Pyrene	53	(52 - 115)			SW846 8270C
	56	(52 - 115)	6.3	(0-25)	SW846 8270C
N-Nitrosodi-n-propyl- amine	52	(10 - 230)			SW846 8270C
	56	(10 - 230)	7.4	(0-55)	SW846 8270C
1,4-Dichlorobenzene	44	(20 - 124)			SW846 8270C
	52	(20 - 124)	18	(0-32)	SW846 8270C
Pentachlorophenol	42	(14 - 176)			SW846 8270C
	33	(14 - 176)	22	(0-49)	SW846 8270C
Phenol	51	(10 - 112)			SW846 8270C
	55	(10 - 112)	6.0	(0-23)	SW846 8270C
2-Chlorophenol	51	(23 - 134)			SW846 8270C
	54	(23 - 134)	6.1	(0-29)	SW846 8270C
4-Chloro-3-methylphenol	56	(22 - 147)			SW846 8270C
	60	(22 - 147)	6.8	(0-37)	SW846 8270C
4-Nitrophenol	57	(10 - 132)			SW846 8270C
	52	(10 - 132)	8.6	(0-47)	SW846 8270C
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	
Nitrobenzene-d5		49		(23 - 120	
0. 12		53		(23 - 120	
2-Fluorobiphenyl		54 59		(30 - 115 (30 - 115	
Terphenyl-d14		60		(18 - 137	
z z priorij z uz z		67		(18 - 137	
Phenol-d5		51		(24 - 113	
		54		(24 - 113	
2-Fluorophenol		48		(25 - 121	
-		52		(25 - 121	the state of the s
2,4,6-Tribromophenol		60		(19 - 122	
z, 4, 6-IIIDIOMOPREMOI		0.0		(

(Continued on next page)

GC/MS Semivolatiles

Client Lot #...: A9E070141

Work Order #...: CVHT510E-MS

Matrix..... SOLID

MS Lot-Sample #: A9E070140-002

CVHT510F-MSD

PERCENT

RECOVERY

SURROGATE

RECOVERY

LIMITS

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVHT110W-MS Matrix.....: SOLID

MS Lot-Sample #: A9E070141-001 CVHT110X-MSD

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99 Prep Date....: 05/11/99 Analysis Date..: 05/16/99

Prep Batch #...: 9131114

PARAMETER Aroclor 1016	PERCENT RECOVERY 88 DIL 87 DIL	RECOVERY LIMITS (44 - 139) (44 - 139)	RPD 1.4	RPD LIMITS (0-28)	METHOI SW846 SW846	8082
Aroclor 1260	0.0 DIL,a	(44 - 139)			SW846	8082
	0.0 DIL,a	(44 - 139)	0.0	(0-28)	SW846	8082
SURROGATE Tetrachloro-m-xylene	-	PERCENT RECOVERY 86 DIL		RECOVERY LIMITS (10 - 129	•	
Dogaghlorohinhonyl		80 DIL		(10 - 129	•	
Decachlorobiphenyl	Qualifie	147 rs: DIL,*		(10 - 138)	
		145		(10 - 138)	
	Qualifie	rs: DIL,*				

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

- * Surrogate recovery is outside stated control limits.
- a Spiked analyte recovery is outside stated control limits.

GC Semivolatiles

Client Lot #...: A9E070141 Work Order #...: CVHV5110-MS Matrix.....: SOLID

MS Lot-Sample #: A9E070141-012 CVHV5111-MSD

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99
Prep Date....: 05/12/99 Analysis Date..: 05/13/99

Prep Batch #...: 9131347

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Total Petroleum	0.0 DIL,a	(10 - 114)			SW846 8015B
Hydrocarbons-Extractal	ole				
	0.0 DIL,a	(10 - 114)	0.0	(0-49)	SW846 8015B

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

a Spiked analyte recovery is outside stated control limits.

TOTAL Metals

Client Lot #...: A9E070141 Matrix.....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samo	le #: A9E07	70141-001 Prep B	atch #	.: 9133259		
Aluminum	NC, MSB	(80 - 120)		SW846 6010B	05/14-05/16/99	CVHT112F
	NC,MSB	(80 - 120) Dilution Factor: 1		SW846 6010B	05/14-05/16/99	CVHT112G
Arsenic	92	(80 - 120)		SW846 6010B	05/14-05/18/99	CVHT1126
Arsenic	90	(80 - 120) 2.0	(0-20)		05/14-05/18/99	
		Dilution Factor: 1				
Antimony	73 N	(80 - 120)		SW846 6010B	05/14-05/18/99	CVHT1110
	72 N	(80 ~ 120) 1.7 Dilution Factor: 1		SW846 6010B	05/14-05/18/99	CVHT1111
Lead	13 N	(80 - 120)		SW846 6010B	05/14-05/18/99	CVHT1128
2000	0.0 N,*	(80 - 120) 200	(0-20)		05/14-05/18/99	
		Dilution Factor: 1	l			
Barium	90	(80 - 120)		SW846 6010B	05/14-05/16/99	
	95	(80 - 120) 3.9 Dilution Factor: 1		SW846 6010B	05/14-05/16/99	CVHT1113
Selenium	89	(80 - 120)		SW846 6010B	05/14-05/18/99	CVHT112A
	87	(80 - 120) 1.2	(0-20)	SW846 6010B	05/14-05/18/99	
		Dilution Factor: 1	I			
Beryllium	84	(80 - 120)		SW846 6010B	05/14-05/16/99	
	89	(80 - 120) 5.6 Dilution Factor: 1		SW846 6010B	05/14-05/16/99	CVHT1115
Thallium	90	(80 - 120)		SW846 6010B	05/14-05/18/99	CVHT112D
	90	(80 - 120) 0.71	(0-20)	SW846 6010B	05/14-05/18/99	
		Dilution Factor:	I			
Cadmium	95	(80 - 120)		SW846 6010B	05/14-05/18/99	
	95	(80 - 120) 0.40 Dilution Factor: 1		SW846 6010B	05/14-05/18/99	CVHT1117
		Ditution Factor:	•			
Calcium	48 N	(80 - 120)		SW846 6010B	05/14-05/16/99	
	86	(80 - 120) 18	(0-20)	SW846 6010B	05/14-05/16/99	CVHT1119
	1	Dilution Factor: 1	I			
Chromium	140 N	(80 - 120)		SW846 6010B	05/14-05/18/99	
	86 *	(80 - 120) 28	(0-20)	SW846 6010B	05/14-05/18/99	CVHT111C
		Dilution Factor: '	I			

(Continued on next page)

TOTAL Metals

Client Lot #...: A9E070141 Matrix....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD		PREPARATION - ANALYSIS DATE	WORK ORDER #
Cobalt	87	(80 - 120)		SW846 601		05/14-05/16/99	
CODATE	87	(80 - 120) 0.75	(0-20)	SW846 601		05/14-05/16/99	
	67	Dilution Factor: 1	(0 20)	54010 001			
Copper	85	(80 - 120)		SW846 601		05/14-05/16/99	
	456 N,*	(80 - 120) 75 Dilution Factor: 1	(0-20)	SW846 601		05/14-05/16/99	
Iron	NC, MSB	(80 - 120)		SW846 601	10B	05/14-05/16/99	CVHT111H
	NC, MSB	(80 - 120)	(0-20)	SW846 601	10B	05/14-05/16/99	CVHT111J
		Dilution Factor: 1					
Magnesium	87	(80 - 120)		SW846 603		05/14-05/16/99	
	93	(80 - 120) 4.5 Dilution Factor: 1	(0-20)	SW846 601	10B	05/14-05/16/99	
Manganese	NC, MSB	(80 - 120)		SW846 603	10B	05/14-05/16/99	
	NC, MSB	(80 - 120) Dilution Factor: 1	(0-20)	SW846 60	10B	05/14-05/16/99	CVHT111N
Nickel	81	(80 - 120)		SW846 60:	10B	05/14-05/16/99	CVHT111P
ri	88	(80 - 120) 3.6 Dilution Factor: 1	(0-20)	SW846 60	10B	05/14-05/16/99	CVHT111Q
Potassium	88	(80 - 120)		SW846 60:	10B	05/14-05/16/99	CVHT111R
	90	(80 - 120) 2.2 Dilution Factor: 1		SW846 60	10B	05/14-05/16/99	CVHT111T
Silver	100	(80 - 120)		SW846 60	10B	05/14-05/16/99	CVHT111U
	101	(80 - 120) 0.79 Dilution Factor: 1		SW846 60	10B	05/14-05/16/99	CVHT111V
Sodium	95	(80 - 120)		SW846 60	10B	05/14-05/16/99	CVHT111W
	95	(80 - 120) 0.46 Dilution Factor: 1		SW846 60	10B	05/14-05/16/99	CVHT111X
Vanadium	93	(80 - 120)		SW846 60	10B	05/14-05/16/99	CVHT1120
	89	(80 - 120) 3.2 Dilution Factor: 1		SW846 60	10B	05/14-05/16/99	CVHT1121
Mercury	108	(70 - 130)		SW846 74	71A	05/14-05/18/99	CVHT1124
	96	(70 - 130) 6.0	(0-20)	SW846 74		05/14-05/18/99	
		Dilution Factor: 1					

(Continued on next page)

TOTAL Metals

Client Lot #...: A9E070141

Matrix....: SOLID

Date Sampled...: 05/05/99 10:00 Date Received..: 05/06/99

	PERCENT	RECOVERY		RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS F	RPD	LIMITS	METHOD	ANALYSIS DATE	ORDER #
Zinc	147 N	(80 - 120)			SW846 6010B	05/14-05/16/99	CVHT1122
	101	(80 - 120) 7	7.6	(0-20)	SW846 6010B	05/14-05/16/99	CVHT1123
		5 11 4 1 F	4				

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Results and reporting limits have been adjusted for dry weight.

NC The recovery and/or RPD were not calculated.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

- * Relative percent difference (RPD) is outside stated control limits.
- N Spiked analyte recovery is outside stated control limits.

TOTAL Metals

Client Lot #...: A9E070141 Matrix..... WATER Date Sampled...: 05/03/99 15:02 Date Received..: 05/05/99 PERCENT RECOVERY RPD PREPARATION-WORK PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE ORDER # MS Lot-Sample #: A9E070186-004 Prep Batch #...: 9130113 Aluminum 103 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ7815K 113 (80 - 120) 6.3 (0-20) SW846 6010B 05/10-05/12/99 CVJ7815L Dilution Factor: 1 Antimony 94 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ7815N (80 - 120) 6.6 (0-20) SW846 6010B 101 05/10-05/12/99 CVJ7815P Dilution Factor: 1 (80 - 120)Beryllium SW846 6010B 05/10-05/12/99 CVJ7814D 92 (80 - 120) 6.6 (0-20) SW846 6010B 98 05/10-05/12/99 CVJ7814E Dilution Factor: 1 (80 - 120)Calcium 68 N SW846 6010B 05/10-05/12/99 CVJ7814G (80 - 120) 7.7 (0-20) SW846 6010B 94 05/10-05/12/99 CVJ7814H Dilution Factor: 1 05/10-05/12/99 CVJ7814K (80 - 120)SW846 6010B Cobalt 88 94 (80 - 120) 6.6 (0-20) SW846 6010B 05/10-05/12/99 CVJ7814L Dilution Factor: 1 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ7812G Copper 93 (80 - 120) 6.0 (0-20) SW846 6010B 99 05/10-05/12/99 CVJ7812H Dilution Factor: 1 (80 - 120)05/10-05/12/99 CVJ7814N 90 SW846 6010B Iron 106 (80 - 120) 7.0 (0-20) SW846 6010B 05/10-05/12/99 CVJ7814P Dilution Factor: 1 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ7814R Magnesium 84 (80 - 120) 7.1 (0-20) SW846 6010B 05/10-05/12/99 CVJ7814T 93 Dilution Factor: 1 Manganese 89 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ7814V (80 - 120) 6.9 (0-20) SW846 6010B 99 05/10-05/12/99 CVJ7814W Dilution Factor: 1 Mercury 95 (80 - 120)SW846 7470A 05/10-05/13/99 CVJ78128 (80 - 120) 8.3 (0-20) SW846 7470A 87 05/10-05/13/99 CVJ78129 Dilution Factor: 1 Nickel 89 (80 - 120)SW846 6010B 05/10-05/12/99 CVJ78150 94 (80 - 120) 6.2 (0-20) SW846 6010B 05/10-05/12/99 CVJ78151 Dilution Factor: 1

(Continued on next page)

TOTAL Metals

Client Lot #...: A9E070141 Matrix....: WATER

Date Sampled...: 05/03/99 15:02 Date Received..: 05/05/99

PERCENT PARAMETER RECOVERY Potassium 87 96	RECOVERY RPD LIMITS RPD LIMITS (80 - 120) (80 - 120) 9.7 (0-20) Dilution Factor: 1	METHOD SW846 6010B SW846 6010B	PREPARATION- WORK ANALYSIS DATE ORDER # 05/10-05/13/99 CVJ78153 05/10-05/13/99 CVJ78154
Sodium 86 96	(80 - 120) (80 - 120) 6.0 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/10-05/13/99 CVJ78156 05/10-05/13/99 CVJ78157
Thallium 94 101	(80 - 120) (80 - 120) 7.1 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/10-05/12/99 CVJ7815G 05/10-05/12/99 CVJ7815H
Vanadium 91 97	(80 - 120) (80 - 120) 6.4 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/10-05/12/99 CVJ78159 05/10-05/12/99 CVJ7815A
Zinc 94 101	(80 - 120) (80 - 120) 7.5 (0-20) Dilution Factor: 1	SW846 6010B SW846 6010B	05/10-05/12/99 CVJ7815D 05/10-05/12/99 CVJ7815E

N Spiked analyte recovery is outside stated control limits.

General Chemistry

Client Lot #...: A9E070141

Matrix....: SOLID

Date Sampled...: 05/06/99 15:40 Date Received..: 05/07/99

PERCENT RECOVERY RPD PREPARATION-PREP

PARAMETER RECOVERY LIMITS RPD LIMITS METHOD ANALYSIS DATE BATCH # WO#: CVHV5112-MS/CVHV5113-MSD MS Lot-Sample #: A9E070141-012 Total Recoverable

Petroleum Hydrocarbons

7.5 N (75 - 125) MCAWW 418.1 05/19-05/20/99 9139119

16 N (75 - 125) 7.8 (0-20) MCAWW 418.1 05/19-05/20/99 9139119

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9E070141

Work Order #...: CVFNN-SMP

Matrix..... SOLID

CVFNN-DUP

Date Sampled...: 05/04/99 14:15 Date Received..: 05/05/99

* Moisture....: 24

DUPLICATE RPD PREPARATION-PREP LIMIT PARAM RESULT METHOD ANALYSIS DATE BATCH # RESULT UNITS RPD SD Lot-Sample #: A9E060101-001 Percent Solids 75.5 ક 0.89 (0-20) MCAWW 160.3 MOD 05/17-05/18/99 9137276 76.2

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9E070141 Work Order #...: CVFP8-SMP Matrix.....: SOLID

CVFP8-DUP

Date Sampled...: 05/04/99 16:50 Date Received..: 05/06/99

% Moisture..... 20

DUPLICATE RPD PREPARATION-PREP LIMIT UNITS RPD ANALYSIS DATE BATCH # PARAM RESULT RESULT METHOD Percent Solids SD Lot-Sample #: A9E060102-001 79.6 79.0 0.71 (0-20)MCAWW 160.3 MOD 05/18-05/19/99 9138134

Dilution Factor: 1

NOTE (S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: A9E070141 Work Order #...: CVHV2-SMP Matrix.....: SOLID

CVHV2 - DUP

Date Sampled...: 05/06/99 14:55 Date Received..: 05/07/99

* Moisture....: 15

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Percent Solids					SD Lot-Sample #:	A9E070141-011	
84.6	84.5	%	0.11	(0-20)	MCAWW 160.3 MOD	05/17-05/18/99	9137276
	Dilut	ion Factor:	1				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Custody Record

Chain of

Chain Of Custody Number 62114 of Analysis Page 701 2005 5-5-49 Condition on Receipt Lab Number (412)497-2403 Suchithus Preservative 36/25 Pare 12. Containers Telephone Number (Area Code)/Fax Number Type 350 this 19/45 412-487-2000 Total Volume 1 7. L. K Site Contact
Bill Rendall Lorry Mertin 202 3 Carrier/Waybill Number Sample Type Project Manager 12:30 1750 01:11 00:00 Time 5-5-99 55-99 5-5-34 Date Zip Code Sample I.D. No. and Description Project Name / 792745 - NS -SPOIR ADDY-52,6-550 1600 W. Curson Street ADNY-DEMO-5501 # DNY - WALL - 5501 Corpora Lion - PW1 Special Instructions O: Hsbuch ADNY

ossible Hazard Identification				Sample Disposal			
Non-Hazard Flammable	Skin Irritant	Poison B	N Unknown	Return To Client	Disposal By Lab	Archive For	Months
urn Around Time Required		OC Level		Project Specific (Specify)			
Normal 🗀 Rush		ď	t.	A1600	•		(1111)
Relinquished By 0		Date	Date Time	1/ Received By		Date	Z Comit
W-Th. Wordell		5-5			lasa	440506	を を さ ら ら
. Relinquished By		Date	Тітө	2. Received By		Date	The
. Relinquished By		Date	Time	3. Received By		Date	Time
omments							

DISTRIBUTION: WHITE - Stays with Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Chain of Custody Record

DUA-4124													
Slient 77		<u>q</u>	Project Manager	Markin				Date	1-99	Chair	Chain Of Custody Number	Number GO11E	
		Te	Ē	er (Area Code	//Fax Number			Lab Numb	Lab Number				$\overline{}$
1600 W. Carson St			412 49	497-2000	0					Page	-	04	
City 7-L State	Zip Code	S	Site Contact	" 1 0							Analysis		, ,
Sparan				Landel						(1	(
Aldmay, Purkirk NY	(40 MY)	Ö	Carrier/Waybill Number	umber					2700	2/4/5	1.81		
Contract/Purchase Orden/Quòte No.									19 -) 11 59 W 7	1:15		
Sample I.D. No. and Description	Date		Sample Type	Total Volume	Containers Type N	0	Preservative	Condition on Receipt	771	177 197	7 L		
10014-55-50001		0h: b	301	490 1 1- work 7 3 1697	19 12 19 L	7	Morr		ヘメ	X	×		
105 ×	5-6-47	12:50	50;	}	\(\text{\tin}\xi\text{\texi}\text{\text{\ti}\titt{\text{\text{\texi}\text{\texitit{\text{\ti}\titt{\text{\texi}\text{\texit{\texit{\texit{\texi}\texit{\texi{\texi{\texi{\texi}\titt{\texitit}}\\texitit{\texitit{\texi{\texi{\texi	Va			L	スメ	Z		, ,
RDNY - 50R -5502		13.35	5,1	ミシ	7	7			χX	× ×	ત્ર		
ADNY - PTO-551		14.25	50,1	120 M	19/08	*		<i>'</i> '''		X	٧	PCB out	
ADNY - TI - 5001			54.1	12001	15 1609					×	×		
~ Wor ~			5.:1	720 p anon	3 charles	6			X	XXX	メメ		
1		17:15	50:1	`)		8			×	XXX	か×		,
-									-				
												+	,
Special Instructions													
Possible Hazard Identification Non-Hazard Flammable S	Skin Irritani	Poison B	Hunkaawa	- Acceptance	Sample Disposal	mple Disposal		Disposal By Lab		Archive For	Mooths	34	
Required Bush		00	OC Level	11.	Project Sp	Project Specific (Specify,	specity)]				
1. Relinquished By LALK		Date	66-69	Time 19:00		Received By	teop			Date	Date 5-7-99	Time 10:30	,
2. Relinduished By		Date	. 93	Time	2. Received By	ed By				Da	Je Je	Time	
3. Relinquished By		Date	e)	Time	3. Received By	ed By				Date	10	Time	
Comments					-								

DISTRIBUTION: WHITE - Stays with Sample; CANARY - Returned to Client with Report; PINK - Field Copy

	cord
5	dy Re
Cilaii	Custo

Client -		Project Manager	1			Date	'	Chain Of Custody I	Number
+ 1 Corporation		LACOT	Martin			2-1	- 1 /		52116
Address / C. S. S.		Telephone Number (Area Code)/Fax Number $(4.2 - 46)7 - 20.3$	er (Area Code)/F - 497-2	$\frac{20de}{7-20a}$		Lab Number		Page /	1
o w. anound	Zip Code	Site Contact		771	200			Analysis	
P: Hysourh PA		11:8	11 Kon	Kondall (412) 447-2403	111-240	3		(
Project Name		Carrier/Waybill Number	١.				5147 70	1'81 (0)	
Contract/Purchase Order/Quote No.							10.5 0/1 -	4) 1 (1) 1 (5) 1	
Sample I.D. No. and Description	Date Time	Sample Type	Total	ine	Preservative	Condition on Receipt	10 10 10 10 10	1d1 1d1 1d1	
- 1	\neg		0,	Type No.	-		- 2	-	
18. (The Chest Block)				2. 1000 0 2	asnela		× ,	>	
0 0 1/4 - 1/4 - 5 5 5 1	016 66-1-7	5.11	GOD I From	5 1.) }		× × × × × ×	<u></u>	
1	X-1-90 10-15	50.		7 0 1			×		
1		53.1	1000 ml terran Story terras	ross tenor &			XXXX	×××	
1 41	5-7-94 15:45	, ,	Gosal Ferting Solves form				-		
	-							+	
Special Instructions									
		7		Sample Disposal					
Required Such	Osin man Coson D	C Level		Project Specific (Specify)	(Specify)	Usposal by cab		World N	
THE		-7-99	Time	(m)	Whil	and		GCOSOB BOSOB	Time, 30
2. Relinquished By		Date	Time	2. Received By	<i>></i>	•		Date	Time
3. Relinquished By		Date	Time	3. Received By				Date	Time
Comments									

DISTRIBUTION: WHITE - Stays with Sample; CANARY - Returned to Client with Report; PINK - Field Copy

16000 Horizon Way Unit 100 Mt. Laurel, NJ 08054

Telephone: 609-231-9449 Fax: 609-231-9818

CERTIFICATE OF ANALYSIS

Client:

IT Corporation

Gateway Plaza, 1600 W. Carson St

Pittsburgh

PA 15219-1031

Report Date:

05/27/1999

Report Number:

909188

Project:

ALUMAX, Dunkirk, NY, 11-5-98

Project Number:

05166

LEAD PAINT SAMPLE ANALYSIS SUMMARY

Lab No	o. <u>Client #</u>	Description / Location					Concentration Lead By Weight (%)
909188	3 001	Green Paint Chips Tracking#:782745-001					1.5000
		Date Received: 05-20-99	Date Analyzed:	05-21-99	Analyst:	Napolitan	
909189	002	White Paint Chips Tracking#:782745-001	Date Analyzed:	05-21-99	Analyst:	Napolitan	2.6000
909190	013	Blue Paint Chips Tracking#:782745-001	Paint Room	05-21-99	Analyst:	Napolitan	0.3100
909191	014	Yellow Paint Chips Tracking#:782745-001	Paint Room				1.9000
		Date Received: 05-20-99	Date Analyzed:	05-21-99	Analy≰t:	Napolitan	

NATIONAL LEAD LABORATORY ACCREDITATION PROGRAM (NLLAP)

AIHA-ELPAT-NIOSH No. 7008 / NYSDOH-ELAP No. 11021

Analysis Methods: ASTM D335-85A "Standard Method To Test For Low Concentrations Of Lead In Paint By Atomic Absorption Spectrophotometry" EPA SW846-(7420/7421) "Standard Method To Test For Low Concentrations Of Lead In Soils, Sludges and Sediments By AAS"

Regulatory limit by EPA/HUD guidelines is 0.5% lead by weight in paint. Limit of detection based upon 0.01 mg lead. Recommend multiple sampling for all samples less than regulatory limit for confirmation.

* Insufficient sample provided to perform QC reanalysis (< 200mg)

Approved By:

Comments:

DAILY QUALITY CONTROL DATA

LEAD SAMPLE ANALYSIS

05-21-99

Run Number	Standard *	Total Lead (mg)	Percent Recovery **
QC990521	Reagent Blank	0.000	N/A
	Blank Spike	0.50	98.0
	LCS Std * 1579	1.380	103.0
	Matrix Spike - LBP	1.520	99.0
	Matrix Spike - Wipe	1.270	102.0
	Matrix Spike - Soil	0.254	108.0
	Matrix Spike - Air	0.050	100.0
	2.5 ppm Standard	0.25	96.0
	10.0 ppm Standard	1.0	99.0
	40.0 ppm Standard	4.0	100.0

ELPAT No. 07008 AIHA Lab No. 444

NIOSH PAT No. 07008

NYS-DOH No. 11021

Analysis Method: ASTM D335-85A "Standard Method To Test For Low Concentrations Of Lead In Paint By Atomic Absorption Spectrophotometry" EPA SW846 3050 7420/21

Comments:

Date:

IATL assumes that all of the sampling methods and data upon which these results are based have been supplied by the client.

Detection limit based upon sample size. Limit of quantitation is 0.01 mg total lead.

Regulatory limit by EPA/HUD guidelines is 0.5% lead by weight in paint.

Recommend multiple sampling for all samples less than regulatory limit for confirmation.

* NIST Traceable

MAY 2 1 1999

** 80-120% acceptable limits

Analysis Performed By:

John A. Napolitan

Approved By:

, i	FKAI	ICF KAISER-ENGINEERS	ENG	11/1	ERS	CHAIN	OF CUST	CHAIN OF CUSTODY RECORD	000	Nº 5148
PROJ. NO.	ON.	PROJECT NAME	A/ 14 MAX	AX X	Durker	5	9	The state of the s	1 / / / Track	1 3
SAMPLERS: (Signature)	S: (Sign	nature)			1		F	The state of the s	1 / / / 6	P.o.jut #: 782745-60100000
Stu	Stue Sproull	1) ~	-				- NOO		///	REMARKS
STA. NO.	DATE	TIME	COMP	ваяв	STATIC	STATION LOCATION STATION	TAINERS			
100	11/5/44	35.11 8		X	319	1.5	/	×	Green Pain	L Chips
002		11.56	20	<	81618	89 2.6 m		.×	(1/hite Pa	intChirs
500		12:07	,	, >			1	×	5,0km, (C	oraya h. U
COL		17.45		×				×	Floor 11/4	(Burge)
500		12:47	_	X			,	*	Kick Mile	10/ 11/05/10
900		12:49		×			,	×	Floor Tile.	Beige Mothers)
100		(2:5)	_	×				X	F/60- Tile	(Bize)
800		13:00		\times				×	Brown colle	of flowing
000		13.20		×		_	7	·×	White, Cell	Woste, CT
010	-	1441		×				×	Rellet Floor	ins lunch sound Posnic
011		14:42	211	\times				×	Kick Plate	(unchroning
013		15:30		\succ	909190	0 0,31	. \	×	Point Rom,	Shic
2/0	,	14:54		\times			/	X	Heat Board	
410		15.34	-	×	90919	11 1,9 me	<i>j</i>	×	Yellow Paint	Paint Room
015	<i>!</i> \	15:36	9	X			/	×	Fire Profins,	Paint Room
Relinquished by: (Signature)	S) :(S	ignature)			Date/Time	Received by: (Signature)		Relinquished by: (Signature)		Received by: (Signature)
W. K	\Rightarrow	-		1,	5/19/49 17:05					
Relinquished by: (Signature)	ed by: (S	signature)		= =	Date/Time	Received by: (Signature)		Relinquished by: (Signature)	e) Date/Time	Received by: (Signature)
	2	№ 7 2 0 1999	6							11/1/ CASON
Relinquished by: (Signature)	ed by: (S	ignature)		·	Date/Time	Received for Laboratory by: (Signature)	by:	Date/Time	Remarks Sand result	, to: (
. 1			!						1 (11 Kenda) I	o W. Carson St.
820-5	250	G-	ribution	: Onigin	nal Accompanies Shipm	Distribution: Original Accompanies Shipment; Goty to Coordinator Field Files. $550/99$		12879 fax	4.9. 174-C/4:	350mh Pt. 15219-1031
					,					Į.

16.33

CERTIFICATE OF ANALYSIS

Client:

IT Corporation

Gateway Plaza, 1600 W. Carson St

Pittsburgh

PA

15219-1031

Report Date: 05/28/1999

Project:

Alumax, Dunkirk, NY, TN782745-001

Project No.: 05166

BULK SAMPLE ANALYSIS SUMMARY

Lab No. Client No.: 909229

003

Material Description:

Gray Transite

Location:

Siding (Corrugated)

% Asbestos 20

Туре Chrysotile % Non-Asbestos Fibrous Material None Detected

Туре None Detected % Non-Fibrous Material 80

Lab No.

909230

Client No.: 004

Material Description:

Tan Floor Tile

Location:

w/Yellow Mastic

% Asbestos None Detected

Туре None Detected % Non-Asbestos Fibrous Material

Туре

% Non-Fibrous Material

None Detected

None Detected

100

Lab No.

909230

Client No.:

004

Tan Floor Tile

Location:

w/Yellow Mastic

% Asbestos

Туре

% Non-Asbestos Fibrous Material

Туре

% Non-Fibrous Material

None Detected

None Detected

None Detected

None Detected

100

Yellow Mastic

From Above

Lab No. Client No.: 909231

005

Material Description:

Material Description:

Brown Rubber

Location:

Kick Plate

w/Tan/Brown Mastic

% Asbestos

Туре

% Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

None Detected

None Detected

None Detected

None Detected

100

NIST-NVLAP No. 1165

NY-DOH No. 11021

AIHA Lab No. 444

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP or any agency of the U.S. government.

Analysis Method: EPA 600/R-93/116

(PC) Indicates Stratified Point Count Method performed. Method not performed unless stated. PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Before this material can be considered or treated as non-asbestos containing, confirmation must be made by quantitative TEM.

Analysis Performed By:

MAY 7 5 1989

Approved By:

E Elmofellan Frank E. Ehrenfeld, III Laboratory Director

CERTIFICATE OF ANALYSIS

Client:

IT Corporation

Gateway Plaza, 1600 W. Carson St

Pittsburgh

PA

Location:

Location:

15219-1031

Report Date: 05/28/1999

Project:

Alumax, Dunkirk, NY, TN782745-001

Project No.: 05166

BULK SAMPLE ANALYSIS SUMMARY

Lab No. Client No.: 909231

005

Material Description:

Kick Plate

Brown Rubber

w/Tan/Brown Mastic

% Asbestos

None Detected

% Non-Asbestos Fibrous Material

Туре

% Non-Fibrous Material

None Detected

From Above

% Asbestos

PC Trace

Type

None Detected

None Detected

100

Tan/Brown Mastic

Lab No.

909232

Client No.:

006

Type Chrysotile Material Description:

Tan/Brown Floor Tile

Mottled

w/Tan/Yellow Mastic

% Non-Asbestos Fibrous Material

Туре

% Non-Fibrous Material 100

None Detected None Detected

Lab No.

909232

Client No.:

006

Material Description:

Tan/Brown Floor Tile

Location:

Mottled

w/Tan/Yellow Mastic

% Asbestos

Type None Detected % Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

None Detected

None Detected

None Detected

100

Tan/Yellow Mastic

From Above

Lab No. Client No.: 909233

007

Material Description:

Brown Floor Tile

Location:

% Asbestos

Туре None Detected % Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

E Shandshare

None Detected (No Mastic)

None Detected

None Detected

100

NIST-NVLAP No. 1165

NY-DOH No. 11021

AIHA Lab No. 444

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP or any agency of the U.S. government.

Analysis Method: EPA 600/R-93/116

Comments: (PC) Indicates Stratified Point Count Method performed. Method not performed unless stated. PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Before this material can be considered or treated as non-asbestos containing, confirmation must be made by quantitative TEM.

Analysis Performed By:

Date:

MXY 5 2 1000

Approved By:

CERTIFICATE OF ANALYSIS

Client:

IT Corporation

Gateway Plaza, 1600 W. Carson St

Pittsburgh

PA

15219-1031

Report Date: 05/28/1999

Project:

Alumax, Dunkirk, NY, TN782745-001

Project No.: 05166

BULK SAMPLE ANALYSIS SUMMARY

Lab No. Client No.: 909234

800

Material Description:

Brown/Gray Linoleum

Location:

Rolled Flooring

% Asbestos 20

Type Chrysotile % Non-Asbestos Fibrous Material 10

Type Cellulose % Non-Fibrous Material

70

Lab No.

909235

Client No.: 009

Material Description:

Tan/White

Ceiling Tile

Cellulosic CT

% Asbestos None Detected

Type None Detected % Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

25

Mineral Wool

35

40

Cellulose

Lab No.

909236

010 Client No.:

Material Description:

Tan/Brown Linoleum

Location:

Location:

Rolled Flooring

Lunch Rm

% Asbestos

None Detected

Type None Detected % Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material 70

2

Wollastonite

Synthetic

25

Cellulose

Lab No.

909237

Client No.:

011

Material Description:

Brown Rubber

Location:

Kick Plate; Lunch Rm

w/Tan/Brown Mastic

% Asbestos

Type

% Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

None Detected

None Detected

None Detected

None Detected

100

NIST-NVLAP No. 1165

NY-DOH No. 11021

AIHA Lab No. 444

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP or any agency of the U.S. government

Analysis Method: EPA 600/R-93/116

Comments: (PC) Indicates Stratified Point Count Method performed. Method not performed unless stated. PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Before this material can be considered or treated as non-asbestos containing, confirmation must be made by quantitative TEM.

Analysis Performed By:

Date:

÷ + -1-046

John Haroman

CERTIFICATE OF ANALYSIS

Client:

IT Corporation

Gateway Plaza, 1600 W. Carson St

Pittsburgh

PA 15219-1031 Report Date: 05/28/1999

Project:

Alumax, Dunkirk, NY, TN782745-001

Project No.: 05166

BULK SAMPLE ANALYSIS SUMMARY

Lab No. Client No.: 909237

011

Material Description:

Location:

Brown Rubber

Kick Plate; Lunch Rm

w/Tan/Brown Mastic

% Asbestos

None Detected

Туре None Detected % Non-Asbestos Fibrous Material None Detected

Type

None Detected

Tan/Brown Mastic

From Above

909238 Lab No.

012 Client No.:

Material Description:

White Insulation

Location:

Heat Board

% Asbestos None Detected

Туре None Detected % Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material 70

% Non-Fibrous Material

100

20 10 Cellulose

Wollastonite

Lab No.

909239 015

Client No.:

Material Description:

White Insulation

Location:

Fireproofing

Paint Room

% Asbestos

Type

% Non-Asbestos Fibrous Material

Type

% Non-Fibrous Material

None Detected

None Detected

Mineral Wool

15

NIST-NVLAP No. 1165

NY-DOH No. 11021

AIHA Lab No. 444

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP or any agency of the U.S. government.

Analysis Method: EPA 600/R-93/116

(PC) Indicates Stratified Point Count Method performed. Method not performed unless stated. PLM is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Before this material can be considered or treated as non-asbestos containing, confirmation must be made by quantitative TEM.

Analysis Performed By:

ru* : 👬 Date:

Approved By:

-	
ij	
NEERS	
١n	
- 21	
n-	
- %	
- to	
- 54	
i i i	
_	
•	
•	
l h	
u	
~	-
_	
- 7	
uı	
EN	
ים	
_	
- Ur	
~	
١n	_
- 1	
•	١
•	١.
	,
	t
- ≪	1
-1-	٠
L)	
-	
- 1 -	
ICF KAISER!	

N 5/15/48		1 / Tracking No: 782745-001	// Projut #: 782745-00100000	/ / REMARKS		Green Print Chips	ichite Point China	5, ding (6,000 hill)	Flow Tile (Pinge)	Lick Plate in Mashie	Flantile (Baige Matrice)	Floor Tile (Begge)	Brown polled flowing	ichite, Cellalosic CT	Brilled Floring land point Main	Kick Plate " hundren	Point Rocks, Bleec	1-sut Russel	William Paint, Paint Koon	Fire Prosting Paint Keen	Date/Time Received by: (Signature)		Date/Time Received by: (Signalure)	Scriet rescults to.	1500 10 1 10 10 10 10 10 10 10 10 10 10 10
	OF CUSTODY RECORD						У-	X	<i>Y</i>	×		<i>λ</i> .			X	X	× 😸		メ	<i>></i>	Relinquished by: (Signature)		Relinquished by: (Signature)	Date/Time Remarks	`:
	AN	P. 2 0 1999		Lajos slad con-	STATION LOCATION (050) TAINERS			999259	0.0000	6.49.3	000030	999230	0.99.934	909235	98366	90,9237		008238		60833	Date/Time Received by: (Signature)	5/19/49 17:05	Date/Time Received by: (Signature)	Date/Time Received for Laboratory by: (Signature)	Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files
ICF-KAISER-ENGINEERS	-	PROJ. NO. PROJECT NAME	SAMPLERS: (Signature)	Stuc Spiriti	STA. NO. DATE TIME S E	大 55 H 6357H 1 30	X 3211 1 500	X 23.71 5.00	X 24.7/ Yes	025 1247 X	2006 1245 X	00 7 (2:55 X	X 00:81 X 300	2009 (3.20 X	N 1441 X	011 /4.42 X	X 25.30 . 15.30	X 75:71 ~10	514 X X	NS 15:36 X	Relinquished by: (Signature)	W. Kall 51.	Relinquished by: (<i>Signature</i>)	Relinquished by: (Signature)	820-5 Distribution: Original Ac

(411) 497-2000

En an i 1,199

STATE OF NEW YORK - DEPARTIVENT OF LABOR **DIVISION OF SAFETY AND HEALTH** License and Certificate Unit BUILDING 12, STATE CAMPUS ALBANY, NY 12240

13

ASBESTOS HANDLING LICENSE

98-071 LICENSE NUMBER:

11/25/98 66/30/99 DATE OF ISSUE:

EXPIRATION DATE:

Gary E. Wyrwa Duly Authorized Representative:

Somerset NJ 08873-1248 2200 Cottontail Lane

IT Corporation

Contractor:

Address:

This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material

displayed at the asbestos project worksite. The licensee verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they This license is valid only for the contractor named above and this license or a photocopy must be prominently perform, by the New York State Department of Labor.

FOR THE COMMISSIONER OF LABOR Richard Cucolo, Director

APPENDIX C
DESCRIPTION OF BORINGS

APPENDIX C

Boring and Sample Descriptions

Swale A/Sample ADNY-SWALE-SS01

Depth

0-10 inches Dark brown (organic) mixed clay and silt with 30-40% gravel

10-14 inches Light brown sand (40%), clay (30%), and gravel (30%), water encountered.

14-18 inches rounded gravelly (20%), clayey (20%) sand (60%).

18 inches Refusal (black shale fragments)

HNU=0

Sample ADNY-SWALE-SS01 taken from 0-10 inch interval

Swale B/ No Sample

Depth

0-8 inches Dark brown organic clay with dark shale fragments

8 inches Refusal, dark gray shale

Swale C/No Sample

Depth

0-3 inches Gray shale fragments 3 inches Refusal – gray shale

Niagara Mohawk/Sample ADNY-NIMO-SS01

(Composite)

Depth

0-7 inches Light Brown gravelly (40%), clayey (20%) sand (40%)

7-8 inches Dark gray shale

8-38 inches Medium brown clay with orange and gray mottles

38 inches Refusal – dark gray shale

HNU(PID) = 0 PPM

Railroad Retaining Wall Fill/ADNY-WALL-SS01

ADNY-WALL-SS01 taken at a depth of 2-2.5 feet.

From approximate center of pile

Boring drilled perpendicular to slope.

0-2.5 feet Medium brown organic clay (40%) with shale (60%)

HNU = 0 ppm

Radmeter = Background 20 uR/hr

Southern Disturbed Area/ADNY-SDA-SS01

Depth (inches)

0-2 Macadam

2-8 light brown clay (30%), sand (30%), and gravel (30%)

8-13 clay (15%), sand (30%), and gravel (55%) with slag and coal.

13-19 medium brown clay

19 Refusal – Shale

HNU = 0 ppm

Radmeter = Background

Sample collected from 8-13 inch interval

Southern Disturbed Area/ADNY-SDA-SS02

Depth (inches)

0-2 Macadam

2-13 Light brown clay (25%), sand (35%) and gravel (40%)

13-20 Gray clay with shale fragments

20 Gray shale

HNU = 0 ppm

Radmeter = Background

Southern Disturbed Area/Boring SDA-A/No Sample

Depth (inches)

0-12 light brown clay (20%), sand (30%), and gavel (50%)

12 Refusal, Shale

HNU = 0 ppm

Radmeter = Background

Southern Disturbed Area/Boring SDA-B

Depth (inches)

0-15 medium brown sand (45%), clay (15%), and gravel (40%)

15 Refusal, gray shale

HNU = 0

Radmeter = Background

Former Transformer/ADNY-T1-SS01

Depth (inches)

0-5 concrete

5-11 slag

11-12 sandy loam (25%) and gravel (75%)

HNU = 0 PPM

Radmeter = Background

Sample taken from 11-12 inch interval

Staining Not Noted

Potential Transformer Oil/ADNY-PTO-SS01

Depth (inches)

0-6 Brick

6-12 Slightly discolored, dark brown sand with some gravel

HNU = 0 PPM

Radmeter = Background

Waste Oil Tank/ADNY-WOT-SS01

Depth (inches)

0-12 Dark brown loam with gravel

No apparent staining

HNU = 0 PPM

Radmeter = **B**ackground <20 uR/hr

Waste Oil Tank/ADNY-WOT-SS02

Depth (inches)

0-6 Dark brown loam

No apparent staining

HNU = 0 PPM

Radmeter = Background

Fill Material/ADNY-FM-SS01

Depth (inches)

0-15 yellow brown sand

15-36 medium brown loam with coal and shale fragments

36 Refusal

HNU = 0 PPM

Radmeter = Background

Sample collected from 15 to 36 interval

Former Utility Location/ADNY-UT-SS01

Depth (inches)

0-6 Concrete

6-18 Black crushed slag

18-66 gray clay with orange and yellow mottles

66 Refusal, shale bedrock

HNU = 0 PPM

Radmeter = Background

Sample from 60 to 66 inches

Former Utility Location/ADNY-UT-SS02

Depth (inches)

0-6 Concrete

6-18 Black crushed slag and cinders

18-26 gray clay

26 Refusal, shale bedrock

HNU = 0 PPM

Radmeter = Background

VOC from top of clay

All other parameters are a composite of 6-26 depth interval

Former Utility Location/ADNY-UT-SS03

Depth (inches)

0-36 medium brown clay with <10% gravel

36 Refusal

VOC from bottom 6 inches

Other parameters are a composite of the whole boring

Removed Diesel Tank/ADNY-DTK-SS01

Depth (inches)

0-4 Concrete

4-80 clay with cobbles

80 refusal, shale bedrock

HNU = 0 PPM

Radmeter = Background

Sample from 74-80 inch depth interval