

### 2017 Periodic Review Report

#### Location:

Former Alumax Extrusions Site 440 and 320 South Roberts Road, Dunkirk, New York VCP Site No. V00589-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

LaBella Project No. 2160148

March 2018

#### **Table of Contents**

| EXEUL | JTIVE SUMMARY                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site  | Summary                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Effe  | ctiveness of Remedial Program                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Con   | npliance                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rec   | ommendations                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | -                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.1.1 |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.1.2 | Groundwater Use Restrictions                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1.3 | Soils Management Plan                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.1.4 | Groundwater Monitoring                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Eng   | ineering Controls                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2.1 | Surface Cover System                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2.2 | Sub-Slab Vapor Mitigation                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IC/E  | EC Certification                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | <u> </u>                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.2.1 | · · · · · ·                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.2.2 |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.2.3 | Quality Assurance/Quality Control                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.2.4 | Analytical Results                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Con   | nparisons with Remedial Objectives                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mor   | nitoring Deficiencies                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Con   | clusions and Recommendations                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Site Effe Con Rec SITE C Site Ren EFFEC INSTIT Inst 1.1.1 1.1.2 1.1.3 1.1.4 Eng 1.2.1 1.2.2 IC/E MONIT Req Gro 5.2.1 5.2.2 5.2.3 5.2.4 Con Mor Con CONCILIMITA | Site Summary  Effectiveness of Remedial Program  Compliance  Recommendations  SITE OVERVIEW  Site Background  Remedial Program Overview  EFFECTIVENESS OF THE REMEDIAL PROGRAM  INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT  Institutional Controls  1.1.1 Site Use Restrictions  1.1.2 Groundwater Use Restrictions  1.1.3 Soils Management Plan  1.1.4 Groundwater Monitoring  Engineering Controls  1.2.1 Surface Cover System  1.2.2 Sub-Slab Vapor Mitigation  IC/EC Certification  MONITORING PLAN COMPLIANCE REPORT  Requirements  Groundwater Monitoring  5.2.1 Sampling Procedure  5.2.2 Sample Preservation and Handling  5.2.3 Quality Assurance/Quality Control  5.2.4 Analytical Results  Comparisons with Remedial Objectives  Monitoring Deficiencies |

#### **TABLE OF CONTENTS**

Continued

Figures Figure 1 – Site Location Map

Figure 2 - Site Plan Map

 Table
 Table 1 – Summary of Analytical Results-Groundwater Samples

**Appendix 1** November 2004 Deed Restrictions/Property Information

Appendix 2 Photographs

Appendix 3 Site Management Periodic Review Report Notice-Institutional and Engineering

Controls Certification Form

Appendix 4 Groundwater Sampling Logs
Appendix 5 Laboratory Analytical Results

#### 1.0 EXECUTIVE SUMMARY

#### 1.1 Site Summary

The former Alumax Extrusions, Inc. Facility (hereinafter referred to as the "Site") consists of two adjoining tax parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, City of Dunkirk, New York (Figure 1). The Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road. Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeast-southwest general direction. Parcel A, located at 440 South Roberts Road and owned by Cliffstar Corporation, contains an approximately 7,200-square foot office building while the remainder of the parcel consists of parking areas for employees. Parcel B, located at 320 South Roberts Road and owned by Chautauqua County, formerly contained a 140,000-square foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time.

An environmental investigation conducted at the Site revealed that contamination, likely associated with historical operations, had impacted the Site, necessitating remedial activities. Subsequent remedial activities conducted at the Site included in-situ chemical treatment using zero valent iron (ZVI) in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000) and installation of a sub-slab vapor (SSV) mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 Combined Institution Control Plan and Operations and Maintenance Plan (CICP/OMP) which provides guidance concerning the surface cover, soil/fill excavation and management, groundwater use and routine monitoring for the groundwater within the residual source area.

#### 1.2 Effectiveness of Remedial Program

Per the requirements of the CICP/OMP, on-site excavation activities and soil disturbances associated with the construction of the Progress Drive project were handled in accordance with the Soils Management Plan (SMP). Furthermore, the cover system elements that were installed on the Site in conjunction with the aforementioned roadway project are consistent with the requirements outlined in the CICP/OMP.

The results of the groundwater monitoring revealed that total chlorinated, volatile organic compound (VOC) concentrations in two of the three monitoring wells (AL-2 and AL-7) that comprise the required monitoring network for the Site were below the 100 micrograms per liter (ug/L) threshold specified in the CICP/OMP. Total chlorinated VOC concentrations in AL-1 have decreased slightly since the last sampling event and are significantly lower than the pre-remedial sample results from January 2003; however, total concentrations were still in exceedance of 100 ug/L. As a result, sampling of the three wells will continue until all are below the specified threshold for chlorinated VOCs.

Overall, the remedial program is viewed to be effective in achieving the remedial objectives of the Site. The Site will continue to be monitored based on the CICP/OMP.

#### 1.3 Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this Periodic Review Report (PRR).

#### 1.4 Recommendations

No recommended changes to the CICP/OMP were identified during this PRR.

#### 2.0 SITE OVERVIEW

#### 2.1 Site Background

Industrial development of the project Site was initiated around 1920, when the American Locomotive Company expanded its Dunkirk operations onto the project Site. The Site use has varied over time and uses have included a foundry, coal storage, locomotive manufacturing and finned heat exchanger fabrication. In 1976, the facility was acquired by Alumax, Inc. (Alumax), which operated an aluminum extrusion business at the Site until 1993, operating as Alumax Extrusions, Inc. Alcoa's acquisition of Alumax in 1998 included the idle Dunkirk facility.

The project Site consists of two adjoining parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, within the City of Dunkirk, New York (Figure 1). The project Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road. Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeastsouthwest general direction. Parcel A, located at 440 South Roberts Road and owned by Cliffstar Corporation, contains an approximately 7,200-square foot office building while the remainder of the parcel consists of parking areas for employees. Parcel B, located at 320 South Roberts Road and owned by Chautaugua County, formerly contained a 140,000-square foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time. Parcel B has remained vacant and undeveloped with the exception of the construction of a new segment of Progress Drive that transects the Site. The plans for the new roadway were developed and carried out in accordance with the CICP/OMP. During construction of the new roadway, select portions of the former building concrete slabs were crushed and spread out on the surface of the Site outside of the new roadway limits. Construction of the new roadway was completed in Fall 2014. Parcels A and B are identified in the November 2004 Deed Restriction (Appendix 1) and are depicted on Figure 2. Figure 2 also identifies section, block and lot (SBL) numbers for these parcels.

On October 6, 2016, a portion of the concrete slab on the Site was utilized for the inspection of trucks transporting excavation spoils originating from the roadway project from a stockpile on the adjacent former Roblin Steel Site to the Chautauqua County Landfill. The use of this area of the Site for this purpose was in accordance with a NYSDEC-approved Truck Tracking Prevention & Control Plan (TTPCP) developed for the stockpile removal operation on the former Roblin Steel Site. Per the TTPCP, a temporary area was designated on the Alumax concrete pad proximate southeast of AL-2, where trucks leaving the Roblin property could have their tires visually inspected for dirt/mud and cleaned as needed. Based upon visual observations, no dirt/mud was identified on any of the truck wheels during the transport of the remaining spoils from the Roblin stockpile on October 6, 2016. As a result, no spoils or rinse water were deposited or discharged on the Alumax concrete pad.

#### 2.2 Remedial Program Overview

An environmental investigation conducted at the Site revealed that contamination, likely associated with the historical operations, had impacted the Site, necessitating remedial activities. Constituents of potential concern (COPCs) identified within soil/fill at the Site consisted primarily of chlorinated hydrocarbons (specifically trichloroethene (TCE) and its degradation products), polycyclic aromatic

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals. A residual source area containing concentrations of TCE and its degradation products was identified in the groundwater on the northwestern portion of the Site. With the exception of the chlorinated hydrocarbons, groundwater has not shown impacts from the COCPs identified in the soil/fill.

Subsequent remedial activities conducted at the Site included in-situ chemical treatment using ZVI in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000s) and installation of a SSV mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 CICP/OMP which provides guidance concerning the surface cover, soil/fill excavation and management, groundwater use, and routine monitoring for the groundwater within the residual source area.

Additionally, as indicated previously, the 140,000-square foot building formerly located on Parcel B was demolished in early 2009. The project was publicly bid by the Chautauqua County Department of Public Facilities (CCDPF). Cambria Contracting, Inc. of Lockport, New York, was the low bidder and was subsequently awarded the work. Prior to the demolition, the asbestos-containing-materials (ACMs) within the former Site building were abated in accordance with the requirements outlined in 12 NYCRR Part 56 or New York State Department of Labor (NYSDOL) Industrial Code Rule 56 (ICR 56). The abatement work was completed between November and December of 2008. Demolition of the building occurred in January and February of 2009.

#### 3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

Remedial goals for the Site were accomplished through in-situ chemical treatment using ZVI in the residual source area; the removal and off-site disposal of sediments within the two catch basins at the Site; the installation of a sub-slab venting system; and the development of deed restrictions and the June 2004 CICP/OMP, which provides guidance concerning the surface cover, soil/fill excavation and management, groundwater use, and routine monitoring for the groundwater within the residual source area.

As indicated in the December 15, 2014, Corrective Measures Summary Report (CMSR), cover system requirements were satisfied within the newly constructed Progress Drive corridor that transects the Site. Such included at a minimum, six inches of material (asphalt and sub-base) for the roadway and 12 inches of clean DER-10, approved soil underlain by a demarcation layer (orange fencing) beneath road shoulders and parallel storm water ditches associated with the new roadway. Review of construction as-builts confirmed that all applicable minimum cover system thicknesses were met within the new road corridor.

Based on the comparison of the pre-remedial and the post-remedial analytical results, the enhanced natural attenuation appears to be achieving the goal of reducing the concentrations of chlorinated solvents in the groundwater.

#### 4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

#### 4.1 Institutional Controls

#### 4.1.1 Site Use Restrictions

In accordance with the deed restrictions and the CICP/OMP, the Site is to be used for restricted commercial or restricted industrial uses only. The CICP/OMP presents the following definitions for these use categories:

- Restricted Commercial-Residential uses are not allowed under this category. Commercial
  uses are allowed but require engineering controls and/or institutional controls. Some types
  of "commercial" uses that could create "residential" types of exposures are excluded, such
  as day-care and health-care facilities. Retail stores, warehouse/distribution centers, service
  facilities and offices would be included in the commercial definition.
- Restricted Industrial-Residential and commercial uses are not allowed. Industrial uses are allowed but they require engineering controls and/or institutional controls. Metal working, manufacturing and other industrial uses are included in this category.

The building in the northwest corner of Parcel A is utilized as office space with the remainder of the Site being use for parking; therefore, this use meets the definition of Restricted Commercial use. Parcel B is vacant and undeveloped. Both parcels are now transected by a new segment of Progress Drive, which was constructed in late 2014.

#### 4.1.2 Groundwater Use Restrictions

Previous investigations conducted at the Site and adjacent properties have determined that groundwater resources are limited, particularly within the uppermost groundwater-bearing zone at the Site. Groundwater is not generally used in the vicinity of the Site, nor would it be expected to be used in the future, given the industrial character of the area, the availability of a municipal water supply line in the area and the construction of the new roadway. The clayey soils and shale bedrock have low hydraulic conductivity and produce limited quantities of water. The most productive zone is the top five feet of the shale bedrock, which is fractured and weathered. This zone is also considered to be perched and may be laterally limited. Groundwater in the north-central portion of the Site (i.e. residual source area) is impacted with chlorinated hydrocarbons. Low concentrations of petroleum-related constituents were encountered in other wells. The residual source area was addressed via in-situ treatment technology; however, low-level impacts to groundwater may linger due to the low conductivity and the potential dissolution of chlorinated constituents adsorbed to the clayey soils. Therefore, groundwater use restrictions were implemented at the Site to limit potential exposure to impacted groundwater and are identified in the deed restrictions recorded with the Site deed.

Although groundwater use is not prohibited, it is restricted. Should a future owner or operator determine that groundwater use is beneficial to their operations, permission from the New York State Department of Environmental Conservation (NYSDEC) must be obtained. Additionally, the owner or operator must conduct an evaluation of the suitability for the potential use of the groundwater and define the ultimate point of discharge (e.g. sanitary sewer, surface water, or reinjection) for any once-through water or blowdown from any recirculation system(s). Use of groundwater may require appropriate treatment to meet water quality requirements for use and discharge. Groundwater extracted for testing, monitoring and remediation, while excluded from the

provisions of this groundwater use restriction, must meet local, state and federal disposal requirements.

#### 4.1.3 Soils Management Plan

The SMP was prepared to identify environmental guidelines for the management of subsurface soil/fill and long-term maintenance of the cover system. The SMP includes requirements that address the following key components:

- Any breach of the cover system;
- Surface erosion and storm water runoff control;
- Management of excavated soil/fill;
- Allowable reuse of excavated soil/fill;
- Requirements for off-site fill and grading materials:
- Notification requirements; and,
- Annual reporting and certification results.

#### 4.1.4 Groundwater Monitoring

Groundwater monitoring is required for evaluating the efficacy of ZVI application in the residual source area that was completed in December 2004. This monitoring consists of sampling and analysis of groundwater collected from Monitoring wells AL-1, AL-2 and AL-7 (see Figure 2). The samples are analyzed for USEPA Target Compound List (TCL) VOCs. Annual groundwater monitoring is performed in conjunction with the annual review of the institutional control plan. In accordance with the CICP/OMP, this annual monitoring will occur until total concentrations of chlorinated VOCs fall below 100 ug/L in all three monitoring wells. The sample analysis from AL-1 in 2016 revealed that total VOC concentrations in this well exceeded the 100 ug/L concentration threshold. Therefore, groundwater samples were collected during the reporting period and the results, which are compared with pre-remedial analytical results, are summarized in Section 5.2 of this report.

#### 4.2 Engineering Controls

#### 4.2.1 Surface Cover System

The long history of industrial use of the Site has resulted in widespread, low-level impacts of Site-wide soils. To limit casual exposures to the Site soils, a surface soil cover system consisting of clean soil, pavement, and/or concrete will be constructed as the Site is developed. The purpose of the surface cover system will be to eliminate the potential for human contact with fill material and eliminate the potential for contaminated runoff from the Site. The cover system will consist of one or more of the following types of clean material:

- Soil: 12 inches of vegetated soil cover underlain by a demarcation layer in outdoor vegetated areas.
- Asphalt: A minimum of six inches of material (asphalt and sub-base material) in areas that will become roads, sidewalks and parking lots.
- Concrete: A minimum of six inches of material (concrete and sub-base material) in areas that will become slab-on-grade structures or for roads, sidewalks, and parking lots in lieu of asphalt.

In the Summer/Fall of 2014, a new public roadway and associated storm water drainage ditches were constructed across a portion of the Site. Construction details implemented for the roadway included a 12-inch sub-base followed by a 6-inch base course, 2-inch binder course and 1.5-inch top course of asphalt. Between 2-3 feet of clean, NYSDEC Division of Environmental Remediation (DER)-10 approved soil, underlain by a demarcation layer (orange fencing), was placed along the margins of the roadway. The drainage ditches were then constructed within the clean soil to depths of a minimum of 12-inches above the demarcation layer.

On February 1, 2018, Ms. Shannon Dalton of LaBella Associates, D.P.C. (LaBella) conducted the annual inspection, which included traversing the Site on foot to observe the current conditions. Parcel A contained an approximately 7,200-square foot building and related parking areas, as well as a portion of Progress Drive. Parcel B was vacant and undeveloped with the exception of Progress Drive, which transects the parcel in a northeast-southwest direction. At the time of the Site inspection, the asphalt cover occurring within the Progress Drive corridor was in very good condition and no areas of exposed sub-base were observed. The floor and walls of the roadside ditches were covered with coarse, low-lying vegetation. No evidence of erosion or exposed synthetic erosion control fabric was observed within the storm water ditches. The remainder of Parcel B consisted of portions of intact concrete building slabs that remain following demolition of the former on-site buildings and rubblized concrete.

Appendix 2 includes photographs taken during the Site inspection.

#### 4.2.2 Sub-Slab Vapor Mitigation

The former building that occupied the Site contained a sub-slab venting system that was located over the residual source area. The building and sub slab venting system were demolished in early 2009. Therefore, the continued maintenance and operation of this system is no longer required.

For slab-on-grade structures, an 8-milliliter (mil) polyethylene barrier will be placed beneath the concrete for new structures built in the portion of the Site identified as the residual source area. The vapor barrier is not required in areas other than the residual source area because VOCs were not found in significant quantities on any other portion of the Site.

#### 4.3 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the CICP/OMP. Appendix 3 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

#### 5.0 MONITORING PLAN COMPLIANCE REPORT

#### 5.1 Requirements

The Operations and Maintenance Plan (O&M Plan) is included in Section 3.0 of the CICP/OMP and includes groundwater monitoring requirements associated with the performance monitoring of the in-situ remedial measures for the chlorinated hydrocarbons, the maintenance of the sub-slab venting system, and the annual certification of the implementation of the Institutional Control Plan.

#### 5.2 Groundwater Monitoring

Groundwater Monitoring is required for evaluating the effectiveness of the ZVI application in the residual source area that was completed in December 2004. In accordance with the CICP/OMP, this annual monitoring will occur until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

#### 5.2.1 Sampling Procedure

Three groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the July 15, 2003, Interim Remedial Measures Work Plan and the October 6, and 24, 2013, addendums. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included in Appendix 4. Other observations (e.g., well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Per the O&M Plan included in Section 3.0 of the CICP/OMP, if a well is purged dry then the well will be sampled once sufficient volume has recovered in the well. Well purging consisted of the evacuation of one well volume from AL-2 and AL-7 and two well volumes from AL-1 using NYSDEC-approved low-flow purging procedures via a Geotech Geopump II AC/DC Peristaltic Pump. Each of the three wells was purged dry after either the first or second purge. The samples were then collected within three hours of completion of well development using the low-flow method previously identified. Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

#### 5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Test America Laboratories, Inc., a New York State Department of Health, Environmental Laboratory Accreditation Program certified laboratory for analysis. The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and complete analytical laboratory report are included in Appendix 5.

#### 5.2.3 Quality Assurance/Quality Control

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs. Well sampling at the Site and adjoining, former Roblin Steel Site were conducted in conjunction with one another on February 2, 2018, and the samples from both sites were submitted to the laboratory together in one batch and recorded on one COC. As such, the blind field duplicate collected from the former Alumax Extrusions Site (collected from AL-2) and trip blank associated with the samples from both sites were utilized to evaluate the effectiveness of the QA/QC procedures for the Site.

#### 5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance Values (SCGs) applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to applicable water quality standards. Figure 2 depicts the locations of the monitoring wells.

Groundwater flow is generally to the north/northwest in the area containing the Site. However, according the CICP/OMP for the Site, localized flow direction in the vicinity of these wells is generally to the southwest. Due to the influence of building foundations and subsurface utilities in the area of these wells, however, the water level data from these wells are not likely suitable for determining groundwater flow direction. It should be noted that foundations and utilities were not removed during the building demolition; therefore, flow conditions in this area likely continue to be influenced by these subsurface features.

#### 5.3 Comparisons with Remedial Objectives

The groundwater analytical data for this monitoring event indicate that total chlorinated, VOC concentrations in AL-2 and AL-7 were below the 100 micrograms per liter (ug/L) threshold specified in the CICP/OMP. However, the total chlorinated VOC concentration in AL-1 exceeded this threshold. The results from each of the monitoring wells are further discussed below.

Total VOC concentrations in AL-1 have significantly decreased and are at their lowest concentration since the initial post-remedial sampling event in February 2009. While Cis-1, 2-Dichloroethene, trichloroethene and vinyl chloride were detected at concentrations above NYSDEC TOGS Standards, these concentrations were less than the last sampling event and are still significantly lower than the pre-remedial sample results recorded in January 2003. Benzene, cylcohexane and methylcyclohexane were also detected in AL-1 at concentrations above NYSDEC TOGS Standards; however, these concentrations are still significantly lower than the pre-remedial sample results recorded in January 2003. Continued monitoring of this location is warranted.

Total VOC concentrations in AL-2 have significantly decreased and are at their lowest concentration since the initial post-remedial sampling event in February 2009. Benzene was detected at a concentration above NYSDEC TOGS Standards; however, the benzene level was significantly lower than the last sampling event and lower than the pre-remedial sample results recorded in January 2003.

Total VOC concentrations in AL-7 have been generally decreasing since the pre-remedial sampling event in February 2004 and are at their lowest concentrations since monitoring began at this location. The concentration of Cis-1, 2-Dichloroethene exceeded NYSDEC TOGS Standards, but was significantly lower than the pre-remedial sample results recorded in February 2004 and was the lowest ever recorded.

A comparison of the results from AL-2 with the blind field duplicate indicates that the data generally coincide (i.e. a majority of the concentrations for the duplicate were within 1.5 times of the detected concentrations of the original sample). Exceptions to this are as follows:

- Benzene was detected within the duplicate at a concentration more than three times the concentration detected in AL-2.
- Cyclohexane was detected within AL-2 at a concentration more than three times the concentration detected within the duplicate.
- Methylcyclohexane and vinyl chloride were detected within AL-2 and not detected within the duplicate.

In addition, no VOC detections were identified within the Trip Blank analysis.

#### 5.4 Monitoring Deficiencies

No monitoring deficiencies were noted during the completion of the PRR and annual sampling event.

#### 5.5 Conclusions and Recommendations

Groundwater monitoring is required for evaluating the effectiveness of the ZVI application in the residual source area that was completed in December 2004. Based upon current analytical results, total chlorinated VOC concentrations in AL-2 and AL-7 are well below the CICP/OMP threshold of 100 ug/L. Total chlorinated VOC concentrations in AL-1 have decreased slightly since the last sampling event and are significantly lower than the pre-remedial sample results from January 2003; however, total concentrations were still in exceedance of 100 ug/L. In accordance with the CICP/OMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells. No changes to the Monitoring Plan or the CICP/OMP are recommended at this time.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

At the time of the Site inspection, the Site was found to be in compliance with the CICP/OMP.

No issues relating to the condition or integrity of the Progress Drive cover system components were noted as a result of the Site inspection conducted by LaBella.

Based upon current analytical results, total chlorinated VOC concentrations in two of the three groundwater wells (AL-2 and AL-7) that comprise the Site's monitoring network were below the CICP/OMP threshold of 100 ug/L. Based upon these results, it appears that natural attenuation is occurring at the Site and the remedial objectives are being achieved. However, in accordance with the CICP/OMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

No changes to the Monitoring Plan, the CICP/OMP or the PRR frequency are recommended at this time. The next groundwater sampling event and PRR will be completed in 2018.

#### 7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the

Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

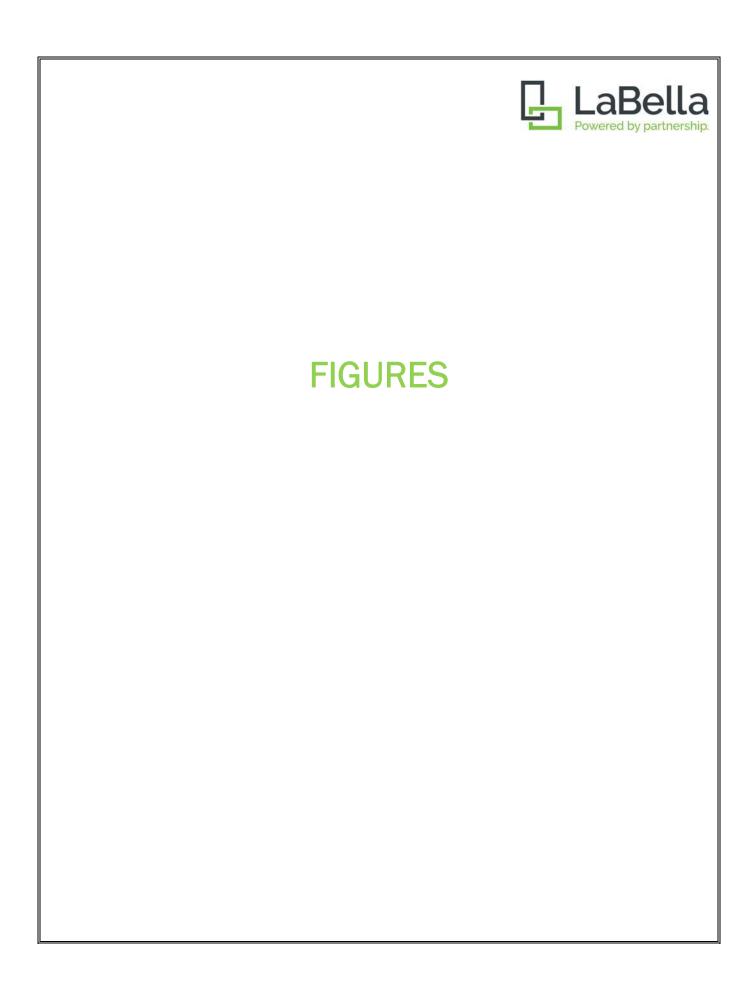
This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action except where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

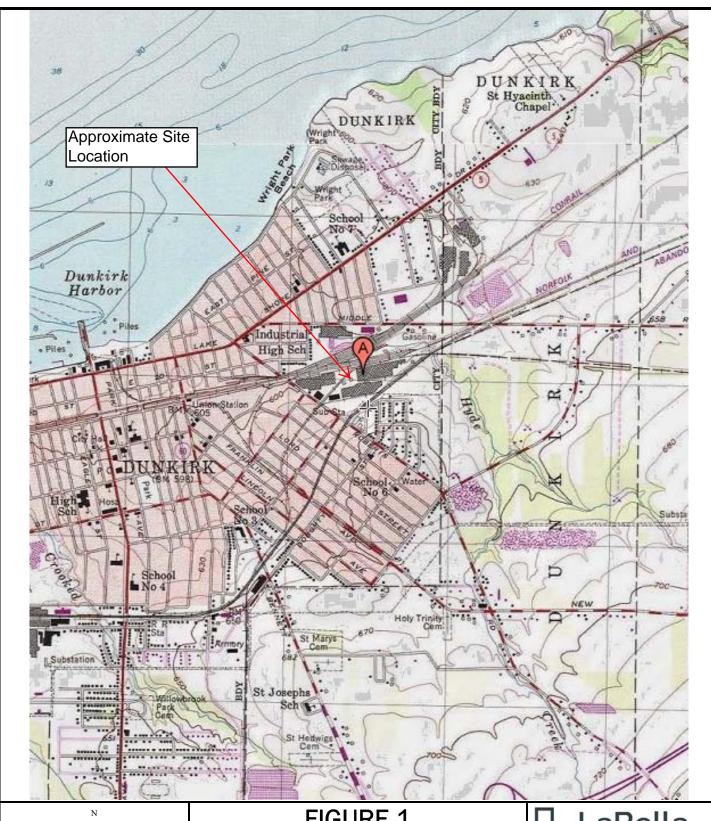
This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk.

#### 8.0 REFERENCES

Declaration of Covenants and Restrictions, Deed Book 02560, Page 0509, Chautauqua County Clerk, November 22, 2004

DER-10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010


Voluntary Clean-Up Program, Combined Institutional Control Plan/Operations and Maintenance Plan, URS Corp., June 23, 2004


Voluntary Clean-Up Program, Interim Remedial Measures Completion Report, Alumax Extrusions, Inc., URS Corp., April 30, 2004

Periodic Review Report, Former Alumax Extrusions Site, LaBella Associates, D.P.C., December 2016

Corrective Measures Summary Report, Former Alumax Extrusions, Inc. Facility, KHEOPS Architecture, Engineering and Survey, DPC, December 15, 2014

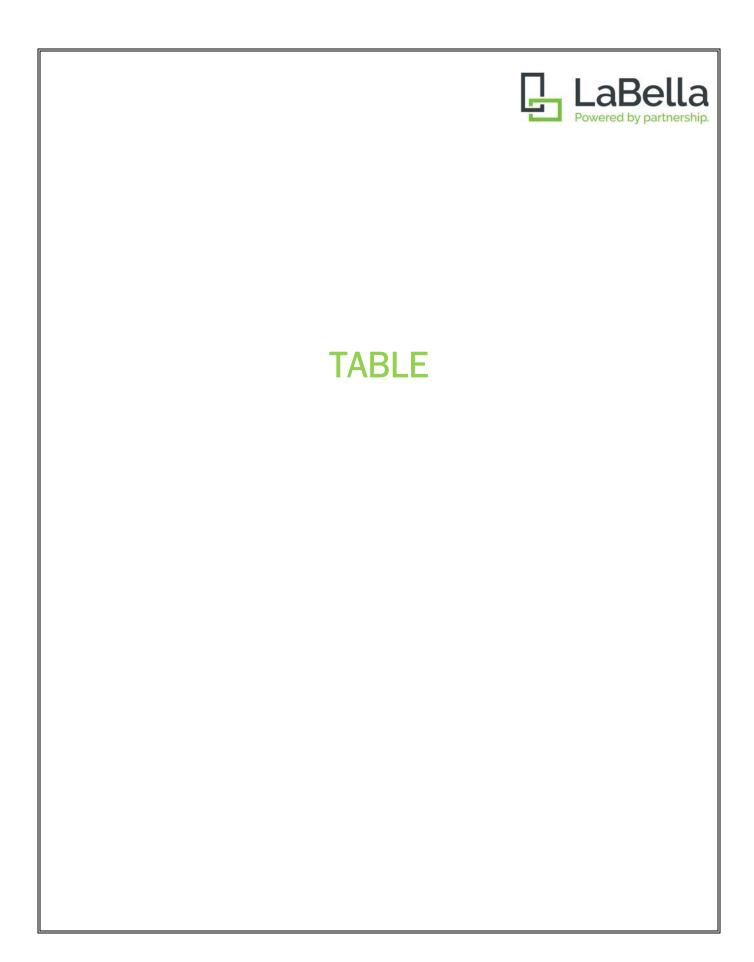
I:\CHAUTAUQUA COUNTY\2160148 - ANNUAL BROWNFIELD INSPECTION\REPORTS\ALUMAX 2017 PRR\ALUMAX.2017 PRR.3.2.18.DOCX







# FIGURE 1 SITE LOCATION MAP


Former Alumax Extrusions, Inc. Facility 320 and 440 South Roberts Road Dunkirk, New York



PROJECT NO. 2160148



I:\Chautauqua County\2160148 - Annual Brownfield Inspection\Reports\Alumax 2017 PRR\Figures\FIGURE 2 ALUMAX GW.mxd



# Table 1 Former Alumax Extrusions Site Summary of Analytical Results

|                                  |                     |           |                      |           |              |            |             |                                                                           |              |                 |            |                      | Grou         | Groundwater Samples | amples      |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
|----------------------------------|---------------------|-----------|----------------------|-----------|--------------|------------|-------------|---------------------------------------------------------------------------|--------------|-----------------|------------|----------------------|--------------|---------------------|-------------|-----------------------------------------------------------------------|-----------------------|------------|------------|----------|-------------------------|-------------|--------------|-------------|-----------------------|--------------------------------------------------------------------------------|------------|-------------|
| PARAMETER                        | REGULATORY<br>VALUE | ,         |                      |           |              |            | AL-1        |                                                                           |              |                 |            |                      |              |                     |             | AL-2                                                                  |                       |            |            |          |                         |             |              | AI          | AL-7                  |                                                                                |            |             |
| Collection Date                  |                     | 5/31/00   | 1/16/03              | 2/10/09 2 | 7/22/2011 7. | 8 2102/61/ | 3/15/2013 7 | 5/31/00 17/16/03 2/10/09 2/22/2011 7/19/2012 8/15/2013 7/15/2014 12/12/20 | 2/12/2015 12 | 15 12/14/2016 2 | 2/2/2018 5 | /1 00/18/5           | 1/16/03 2/10 | 7/09 2/22/2         | 3011 7/19/2 | 2/10/09 2/22/2011 7/19/2012 8/15/2013 7/15/2014 12/15/2015 12/14/2016 | 13 7/15/2014          | 12/15/2015 | 12/14/2016 | 2/2/2018 | 2/25/04                 | 2/10/09 2/2 | 2/2011 7/19/ | 2/51/8/2102 | 313 7/15/20           | 2/10/09 2/22/2011 7/19/2012 8/15/2013 7/15/2014 12/15/2015 12/14/2016 2/2/2018 | 12/14/2010 | 8 102/2/2 9 |
|                                  |                     | Pre-Remed | Pre-Remedial Results |           |              |            | Post-Rem    | Post-Remedial Results                                                     |              |                 |            | Pre-Remedial Results | sailts       |                     |             | Post                                                                  | Post-Remedial Results |            |            |          | Pre-Remedial<br>Results |             |              | e.          | Post-Remedial Results | ilts                                                                           |            |             |
| Volatile Organic Compounds (ug/I | (nds (nd/L)         |           |                      |           |              |            |             |                                                                           |              |                 |            |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
| 1,1-Dichloroethene               | S                   |           | 73                   |           | ſ            | 9.3        |             | ĺ                                                                         | 24           | ŀ               | 2.2        |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             | 4.2          | 2           |                       |                                                                                |            |             |
| cis-1,2-Dichloroethene           | S                   | 1,500     | 9,400                | 1,280     | 1,140        | 1,000      | 196         | 1,820                                                                     | 3,200        | 2,500           | 850        |                      | 9:36         | 36 6.94             | 2.3         | 394                                                                   | 1160                  | 8.7        |            | 0.87     | 1,100                   | 009         | 473 30       | 300 517     | 124                   | 42                                                                             | 7          | 6.5         |
| trans-1,2-Dichloroethene         | S                   |           | 39                   |           |              | 3.9        |             |                                                                           | 10           |                 | 2.4        |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              | 6.1         |                       | 0.4                                                                            |            |             |
| Acetone                          | 20                  |           |                      |           |              |            |             |                                                                           |              |                 | 9.7        |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              | 138         | 17.9                  | 1.3                                                                            |            |             |
| Benzene                          | _                   |           | 38                   | 9.77      | 17.1         | 17         | 14.9        |                                                                           | 9.5          |                 | 18         |                      | 12 6.1       | .1 16.1             | .1          | 5.47                                                                  |                       | 5.5        | 6          | 4.1      |                         |             |              |             |                       | 0.23                                                                           |            |             |
| Carbon Disulfide                 | 09                  |           |                      |           |              | l          |             |                                                                           |              |                 | 0.45       |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
| Cyclohexane                      | 2                   |           | 64                   | l         |              | 180        |             |                                                                           | 5.2          |                 | 17         |                      | 2            |                     | 34          |                                                                       |                       | 4.2        |            | 2.4      |                         |             |              | 14          |                       | 0.73                                                                           |            |             |
| Ethylbenzene                     | s                   |           | 9                    |           |              | 2.5        |             |                                                                           |              |                 | 1.1        |                      | 4            |                     |             |                                                                       |                       | 0.23       |            |          |                         |             |              |             |                       |                                                                                |            |             |
| Isopropylbenzene                 | 2                   |           |                      | l         |              | 5.9        |             |                                                                           |              |                 |            |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
| Methylcyclohexane                | S                   |           | 41                   | l         |              | 120        |             |                                                                           |              |                 | 91         |                      |              |                     |             |                                                                       |                       | 1.5        |            | 0.5      |                         |             | 2            | 27          |                       | 0.55                                                                           |            |             |
| Methylene Chloride               | S                   |           |                      |           |              |            |             |                                                                           |              | 45              |            |                      |              |                     |             |                                                                       |                       |            | 12         |          |                         |             |              |             |                       |                                                                                |            |             |
| Toluene                          | S                   |           | 43                   |           |              | 2.2        |             |                                                                           | 3.1          |                 | 18.0       |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
| m,p-Xylene                       | S                   |           |                      | l         |              | 4.5        |             |                                                                           |              |                 |            |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       |                                                                                |            |             |
| o-Xyle ne                        | 2                   |           |                      | l         |              | 7.9        |             |                                                                           | 2.4          |                 |            |                      |              |                     |             |                                                                       |                       |            |            |          |                         |             |              |             |                       | 0.31                                                                           |            |             |
| Total Xylenes                    | s                   |           | 13                   |           | ſ            | 12.4       |             |                                                                           |              |                 | 3.3        |                      |              |                     |             |                                                                       |                       |            |            |          | 59                      |             |              |             |                       |                                                                                |            |             |
| Trichloroethene                  | s                   | 2,400     | 4,600                | 118       | 197          | 100        | 192         | 278                                                                       | 88           | 130             | 22         |                      |              |                     |             |                                                                       |                       | 1.5        |            |          | 3,000                   | 154         | 138 5        | 55 109      | 9.26                  | 6.7                                                                            | 2          | 96'0        |
| Vinyl chloride                   | 2                   | 240       | 740                  | 626       | 825          | 460        | 416         | 1040                                                                      | 820          | 820             | 150        |                      | 3            | 3.7                 |             | 246                                                                   | 104                   | 2.7        |            | 1.2      | 160                     | 331         | 271 15       | 190 247     | 17.1                  | 4.8                                                                            |            |             |
| BTEX Compounds                   |                     | 0         | 87                   | 10        | 17           | 34         | 1.5         | 0                                                                         | 1.5          | 0               | 20         | 0                    | 9 91         | 91 9                | 13          | 2                                                                     | 0                     | 9          | 6          | 4        | 0                       | 0           | 0            | 0           | 0                     | -                                                                              | 0          | 0           |
| Total VOCs                       |                     | 4.140     | 15.057               | 2.385     | 2.179        | 1.913      | 1.584       | 3.138                                                                     | 4.192        | 3.525           | 1.124      | 0                    | 18           | 19 23               | 49          | 645                                                                   | 1.264                 | 24         | 21         | 6        | 4.289                   | 1.085       | 882 26       | 110.1       | 168                   | 25                                                                             | 6          | 7.46        |



# **APPENDIX 1**

November 2004 Deed Restrictions/Property Information

#### Chautauqua County Clerk

#### Return To:

PUBLIC ABSTRACT CORPORATION
DEFAULT SERVICES
31 E MAIN ST 3RD FL
ROCHESTER NY 14614

ALCOA INC

NEW YORK STATE DEPARTMENT OF E NVIRONMENTAL CONSERV ATION

Index DEED BOOK

Book 02560 Page 0509

No. Pages 0007

Instrument DECLAR-DEEDS

Date: 11/22/2004

Time: 2:20:53

Control # 200411220133

INST#

DE 2004 007426

Employee ID LORENZOT

| COUNTY     | \$       | 27.00 |
|------------|----------|-------|
|            | \$       | .00   |
| ST ED DEPT | \$       | 4.75  |
|            | \$       | .00   |
|            | \$       | .00   |
|            | \$<br>\$ | .00   |
|            |          | .00   |
| CEA        | \$       | 14.25 |
|            | \$       | .00   |
| Total:     | \$       | 46.00 |

STATE OF NEW YORK Chautauqua County Clerk

WARNING: THIS SHEET CONSTITUTES THE CLERK'S ENDORSEMENT, REQUIRED BY SECTION 316-a(5) & SECTION 319 OF THE REAL PROPERTY LAW OF THE STATE OF NEW YORK. DO NOT DETACH.

Sandra K. Sopak County Clerk TRANSFER TAX

CONSIDERATN \$ .00

Transfer Tax \$ .00



#### DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT is made the 3rd day of November 2004, by ALCOA INC., a Pennsylvania corporation, as successor in interest to Alumax Inc., a Delaware corporation, whose address is Alcoa Corporate Center, 201 Isabella Street, Pittsburgh, Pennsylvania 15212-5858 ("Alcoa").

WHEREAS Alcoa is the subject of Voluntary Agreement Index No. B9-0616-02-06, dated 08 August 2002 (the "Agreement") executed by Robert S. Bear (on behalf of Alcoa) and Susan I. Taluto, Deputy Commissioner – NYSDEC Water Quality and Environmental Remediation as part of the New York State Department of Environmental Conservation's (the "Department's) Voluntary Cleanup Program, namely that parcel of real property located at 320 South Roberts Road in the City of Dunkirk, County of Chautauqua, State of New York, which is part of lands conveyed by:

Warranty Deed made by Alumax Inc. to Alcoa, dated November 3, 2004 and recorded on November 22, 2004 in Liber 251.0 of Deeds at page 505;

and being more particularly described in Appendix "A," attached to this declaration and made a part hereof, and hereinafter referred to as "the Property"; and

WHEREAS, the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Property and such remedy requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, Alcoa, for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as shown on a map attached to this declaration as Appendix "B" and made a part hereof, and consists of:

#### PARCEL A

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13

feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

#### PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING in the center line of the existing 30.3 foot pavement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, there shall be no construction, use or occupancy; disturbance or excavation of the Property that is inconsistent with the approved "Combined Institutional Control Plan and Operations and Maintenance Plan – Former Alumax Extrusions Site," Site No. V00589-9 (Combined Plan) and that results in unacceptable human exposure to contaminated soils.

Third, the owner of the Property shall be responsible to implement the Combined Plan or implementing any modifications to the Combined Plan after obtaining the written approval of the Relevant Agency.

Fourth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for restricted industrial or restricted commercial use without the express written waiver of such prohibition by the Relevant Agency.

Fifth, the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Sixth, the owner of the Property shall continue in full force and effect the prohibition against uses other than restricted commercial and/or industrial uses, and shall assure that any construction, use, occupancy, disturbance or excavation on the property shall be in conformance with the "Combined Plan" as institutional and engineering controls required under the Agreement, and shall continue to implement and annually report on the status, results and effectiveness of the operation, monitoring and maintenance requirements to the Relevant Agency unless the owner first obtains permission to discontinue to do so.

Seventh, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Relevant Agency of the prohibitions, restrictions and requirements set out in this Covenant, the Agreement, and the Combined Plan, and hereby covenant not to contest the authority of the Relevant Agency to seek enforcement.

Eighth, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day first above written.

ALCOA INC.

Russell W. Porter, Jr.

Vice President

Date: November 3, 2004

| STATE OF PENNSYLVANIA | )     |
|-----------------------|-------|
|                       | ) SS: |
| COUNTY OF ALLEGHENY   | )     |

Personally appeared before me, the undersigned authority in and for the said county and state, on this 3<sup>M</sup> day of November, 2004, within my jurisdiction, the within named Russell W. Porter, Ir., who acknowledged that he is a Vice President of Alcoa Inc., a Pennsylvania corporation, and that for and on behalf of the said corporation, and as its act and deed, he executed the above and foregoing instrument, after first having been duly authorized by said corporation so to do.

My Commission Expires:

Noterial Seal

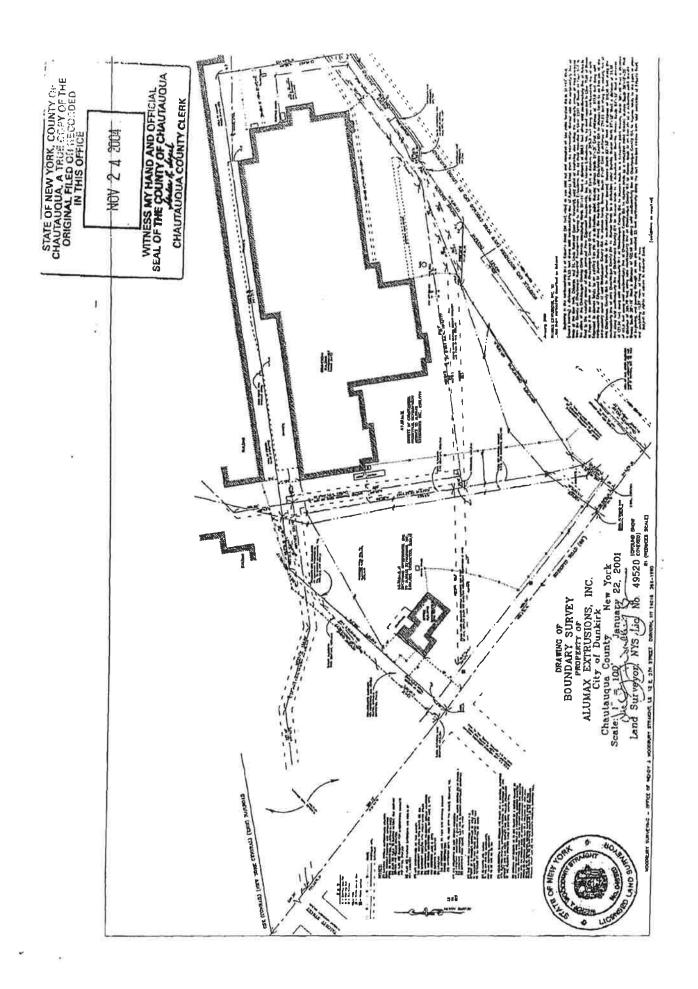
Jacqueline L. Murtha, Notary Public
City Of Pittsburgh, Allegherry County
My Commission Expires Jan. 24, 2007

Member, Pennsylvania Association Of Notaries

(SEAL)

#### APPENDIX "A"

#### PARCEL A


ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13 feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

#### PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING in the center line of the existing 30.3 foot payement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

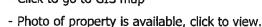


#### Chautauqua County, NEW YORK Web Mapping P Property Information O Identify Advanced V Property Information B New Tax No. 79.16-2-5 Old Tax No. 30-1-7.2.1 Swis (Muni): (060300) Dunkirk Owner: County of Chautaugua Mailing Address: 3 Erie St Mayville NY 14757 Property Address: 320 S Roberts Rd Zoning: M2 Property Class: 330 Total Assessment: \$115800 Land Assessment: \$12600 **Building Style:** Living Area: (sq ft): Year Built: Grade: School District: 060300 Condition: Deed Page: 219 Deed Book: 2656 Frontage: 0 Depth: 0 Acreage: 8.82 Last Sale Date: 7/10/2008 4:10:18 PM Last Sale Price: \$1 Description#1: Description #2: Description #3: 30-1-7.2.1 ▼ Scale: V Satellite View On A Print To PDF My Bookmarks 👬 Property / Street Search Save As Image Clear All C Link Location M Email Location ⊌ Help

#### Chautauqua County, NEW YORK Web Mapping (1) Identify Advanced & P Property Information Full Extent Property Information New Tax No. 79.16-2-4 Old Tax No. 30-1-7.3 Swis (Muni): (060300) Dunkirk Owner: Cliffstar LLO Mailing Address: 1 Cliffstar Ave Dunkirk NY 14048 Property Address: 440 S Roberts Rd Zoning: M2 Property Class: 464 Total Assessment: \$204240 Land Assessment: \$16400 **Building Style:** Living Area: (sq fl): Year Built: Grade: School District: 060300 Condition: Deed Page: 360 Deed Book: 2688 Frontage: 0 Depth: 0 Acreage: 3.22 Last Sale Date: 10/30/2009 2:25:11 PM Last Sale Price: \$1000000 Description #1: Description #2: Description #3: 30-1-7.3 1:6,000 ADP of Inira 🧂 Property / Street Search 🖺 Save As Image My Bookmarks Clear All Email Location Link Location ( Help



Created By:




#### City of Dunkirk, NY

#### OARS Main Page



- Click to go to GIS map



**Improvements** Exemptions Tax Bill

#### \*\* Commercial Property \*\* PROPERTY INFORMATION

**Current Owner Name CLIFFSTAR LLC** 

Property Address 440 ROBERTS RD

Town Name Dunkirk

Total Assessed Value \$204,240

(85.44% of Market Value)

Full Market Value \$239,000

Land Assessed Value \$16,400

Property Type 464 - Office bldg.

Lot Size Acres: 3.22 Front: 0 Depth: 0

Mailing Address 1 1 CLIFFSTAR AVE

Mailing Address 2

Mailing City, State DUNKIRK, NY

Mailing Zip Code 14048

Section, Block Lot # 79.16-2-4

Neighborhood Code 200

School District 60300

Swiss Code 060300

Parcel Status Active

County Taxable \$204,240

**Town Taxable \$204,240** School Taxable \$204,240

Village Taxable \$0

**Tax Code** 

**Bank Code** 

#### PHYSICAL INFORMATION

# of Bedrooms 0

# of Baths 0

# of Fireplaces 0

# of Kitchens 0

#### HISTORICAL SALE INFORMATION

|   | Owner History          | Deed Book | Deed Page | Sale Date  | Valid Sale | Sale Price  |
|---|------------------------|-----------|-----------|------------|------------|-------------|
| ı | CLIFFSTAR LLC          | 2705      | 426       | 8/17/2010  | NO         | \$1         |
|   | Cliffstar Corporation, | 2688      | 360       | 10/30/2009 | NO         | \$1,000,000 |
|   | Star Wine LLC,         | 2587      | 453       | 11/16/2005 | YES        | \$400,000   |

#### COMMERCIAL INFORMATION

Property Class 464 - Office bldg.

**Building Sq. Footage** 5,902

Assessment Per Sq. Foot \$34.61

**Property Use USED AS** 

E03 - Profssnl off

RENTABLE SQ. FT.

5,902 5,902

F04 - Cold storage

Site No. 1

Bldg No. 1

**Actual Year Built 1990** Effective Year Built 0

Site No. 1 Use No. 1 Used As E03 - Profssnl off

Acres 3 22

**Acres** 3.22

Valuation Dist 0 Rentable Sq. Ft. 5,902 Unit Code -

Total Number Of Units
Total Rent \$0

Site No. 1
Use No. 2
Used As F04 - Cold storage
Acres 3.22
Valuation Dist 0
Rentable Sq. Ft. 5,902

Unit Code -Total Number Of Units

Total Rent \$0

Rent Type -Lease Begin Lease Length <sup>0</sup> yrs

Total Eff / 1 Bed Sq. Ft.
Number Of 1 Bed Units
Total 2 Bedroom Sq. Ft.
Number Of 2 Bed Units
Total 3 Bedroom Sq. Ft.
Number Of 3 Bed Units

Rent Type Lease Begin
Lease Length <sup>0</sup> yrs
Total Eff / 1 Bed Sq. Ft.
Number Of 1 Bed Units
Total 2 Bedroom Sq. Ft.
Number Of 2 Bed Units
Total 3 Bedroom Sq. Ft.
Number Of 3 Bed Units



Created By:



#### City of Dunkirk, NY

#### OARS Main Page



- Click to go to GIS map

**Improvements Exemptions** Tax Bill

- Photo of property is available, click to view.

#### \*\* Commercial Property \*\* **PROPERTY INFORMATION**

**Current Owner Name COUNTY OF CHAUTAUQUA** 

Property Address 320 ROBERTS RD

Town Name Dunkirk

Total Assessed Value \$115,800

(85.44% of Market Value)

Full Market Value \$135,500

Land Assessed Value \$12,600

Property Type 330 - Vacant comm

Lot Size Acres: 8.82 Front: 0 Depth: 0

Mailing Address 1 3 ERIE ST

Mailing Address 2

Mailing City, State MAYVILLE, NY

Mailing Zip Code 14757

Section, Block Lot #79.16-2-5

Neighborhood Code 200

**School District** 60300

Swiss Code 060300

**Parcel Status Active** 

**County Taxable \$0** 

Town Taxable \$0

School Taxable \$0 Village Taxable \$0

**Tax Code** 

**Bank Code** 

#### PHYSICAL INFORMATION

# of Bedrooms 0

# of Baths 0

# of Fireplaces 0

# of Kitchens 0

#### HISTORICAL SALE INFORMATION

| Owner History        | <b>Deed Book</b> | Deed Page | Sale Date | Valid Sale | Sale Price |
|----------------------|------------------|-----------|-----------|------------|------------|
| COUNTY OF CHAUTAUQUA | 2656             | 219       | 7/10/2008 | NO         | \$1        |
| Alcoa, Inc.,         | 2560             | 505       | 11/3/2004 | YES        | \$700,000  |

#### **COMMERCIAL INFORMATION**

Property Class 330 - Vacant comm **Building Sq. Footage** 

Assessment Per Sq. Foot \$0.00

**Property Use USED AS** 

F09 - Light mfg

RENTABLE SQ. FT.

153,993

Site No. 1

Use No. 1

Used As F09 - Light mfg

**Acres** 8.82

Rent Type -

Lease Begin

Lease Length 0 yrs

Total Eff / 1 Bed Sq. Ft.

Valuation Dist <sup>0</sup>
Rentable Sq. Ft. <sup>153</sup>,993
Unit Code <sup>10</sup> - Bays
Total Number Of Units <sup>12</sup>
Total Rent <sup>\$0</sup>

Number Of 1 Bed Units Total 2 Bedroom Sq. Ft. Number Of 2 Bed Units Total 3 Bedroom Sq. Ft. Number Of 3 Bed Units



# **APPENDIX 2**

Photographs



Ditch located south of Progress Drive on the southern portion of Site facing east



Southern portion of the Site facing east



Ditch located south of Progress Drive on southern portion of Site facing west



Ditch located north of Progress Drive on central portion of Site facing east



Ditch located north of Progress Drive on central portion of Site facing west



Office building on western portion of Site







Western portion of Site facing west



Central portion of Site facing west



Central portion of Site facing east



Central portion of Site facing north









# **APPENDIX 3**

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form



# Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| s    | Site No.                 | V00589                                                                         | Site Details                                                                          | Box 1 |               |  |  |
|------|--------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------|---------------|--|--|
| s    | ite Name                 | e Closed Alumax Extrusions, Inc                                                | c. Facility                                                                           |       |               |  |  |
| C    | city/Town:<br>county: Cl | ess: 320 South Roberts Road<br>: Dunkirk (C)<br>thautauqua<br>age: 12.0        | Zip Code: 14048-                                                                      | 9.    |               |  |  |
| R    | eporting                 | Period: December 7, 2016 thro                                                  | ough February 1, 2018                                                                 |       |               |  |  |
|      |                          |                                                                                |                                                                                       | YES   | NO            |  |  |
| 1.   | . Is the i               | information above correct?                                                     |                                                                                       | X.    |               |  |  |
|      | If NO,                   | include handwritten above or on a                                              | separate sheet.                                                                       |       |               |  |  |
| 2.   | Has so<br>tax ma         | ome or all of the site property been ap amendment during this Reporting        | sold, subdivided, merged, or undergone a g Period?                                    |       | ×             |  |  |
| 3.   | Has the                  | nere been any change of use at the sNYCRR 375-1.11(d))?                        | site during this Reporting Period                                                     | 8     | ×             |  |  |
| 4.   | Have a<br>for or a       | any federal, state, and/or local perm<br>at the property during this Reporting | nits (e.g., building, discharge) been issued g Period?                                |       | *             |  |  |
|      | If you that de           | answered YES to questions 2 throcumentation has been previous                  | ru 4, include documentation or evidence<br>ly submitted with this certification form. |       | <b>(</b> * ** |  |  |
| 5.   | Is the s                 | site currently undergoing developme                                            | ent?                                                                                  |       | X             |  |  |
|      |                          |                                                                                |                                                                                       | Box 2 |               |  |  |
|      |                          |                                                                                |                                                                                       | YES   | NO            |  |  |
| 6.   |                          | current site use consistent with the decrial and Industrial                    | use(s) listed below?                                                                  | ×     |               |  |  |
| 7.   | Are all                  | ICs/ECs in place and functioning as                                            | s designed?                                                                           | ×     |               |  |  |
|      | IF                       | THE ANSWER TO EITHER QUEST<br>DO NOT COMPLETE THE REST                         | TION 6 OR 7 IS NO, sign and date below and OF THIS FORM. Otherwise continue.          |       |               |  |  |
| Corr | ective Me                | easures Work Plan must be submit                                               | tted along with this form to address these issu                                       | les.  |               |  |  |
| Siç  | gnature of               | f Owner, Remedial Party or Designate                                           | led Representative Date                                                               |       |               |  |  |

SITE NO. V00589

Box 3

#### **Description of Institutional Controls**

Parcel

Owner

79.16-2-4

Cliffstar Corp.

Institutional Control

Ground Water Use Restriction

Soil Management Plan

Landuse Restriction Monitoring Plan

**O&M Plan** 

Combined Institutional Control Plan/ Operations and Maintenance Plan (6/23/2004) and Deed Restriction (filed 11/3/2004):

- Landuse Restriction: Restricted Industrial or Restricted Commercial.
- 2) Ground water use restriction.
- 3) Soils Management Plan.
- 4) Surface Cover System.
- 5) Ground water monitoring.
- 6) Sub-Slab venting system.

79.16-2-5

Chautauqua County

Ground Water Use Restriction Landuse Restriction

Soil Management Plan Monitoring Plan

O&M Plan

Combined Institutional Control Plan/ Operations and Maintenance Plan (6/23/2004) and Deed Restriction (filed 11/3/2004):

- Landuse Restriction: Restricted Industrial or Restricted Commercial.
- 2) Ground water use restriction.
- 3) Soils Management Plan.
- 4) Surface Cover System.
- 5) Ground water monitoring.
- Sub-Slab venting system.

Box 4

#### **Description of Engineering Controls**

Parcel

**Engineering Control** 

79.16-2-4

Vapor Mitigation Cover System

79.16-2-5

Vapor Mitigation Cover System

| D | _ |   | _ |
|---|---|---|---|
| 0 | u | ж | U |

|      | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                           |              |                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|
| 1. 1 | certify by checking "YES" below that:                                                                                                                                                                                                                           |              |                      |
|      | <ul> <li>a) the Periodic Review report and all attachments were prepared under the<br/>reviewed by, the party making the certification;</li> </ul>                                                                                                              | direction of | f, and               |
|      | <ul> <li>b) to the best of my knowledge and belief, the work and conclusions describ<br/>are in accordance with the requirements of the site remedial program, and go<br/>engineering practices; and the information presented is accurate and compe</li> </ul> | enerally ac  | ertificati<br>cepted |
|      | engineering practices, and the information presented is accurate and compe                                                                                                                                                                                      | YES          | NO                   |
|      |                                                                                                                                                                                                                                                                 | X            |                      |
| (    | f this site has an IC/EC Plan (or equivalent as required in the Decision Document), or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below collowing statements are true:                                                         |              |                      |
|      | (a) the Institutional Control and/or Engineering Control(s) employed at this si the date that the Control was put in-place, or was last approved by the Depart                                                                                                  |              | anged si             |
|      | <ul><li>(b) nothing has occurred that would impair the ability of such Control, to prot<br/>the environment;</li></ul>                                                                                                                                          | ect public I | nealth ar            |
|      | <ul> <li>(c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control;</li> </ul>                                                                                  | ate the rer  | nedy,                |
|      | <ul> <li>(d) nothing has occurred that would constitute a violation or failure to comply<br/>Management Plan for this Control; and</li> </ul>                                                                                                                   | with the S   | ite                  |
|      | (e) if a financial assurance mechanism is required by the oversight documen<br>mechanism remains valid and sufficient for its intended purpose established in                                                                                                   |              |                      |
|      | * ×                                                                                                                                                                                                                                                             | YES          | NO                   |
|      |                                                                                                                                                                                                                                                                 | ×            |                      |
|      | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu                                                                                                                                             |              |                      |
| AC   | corrective Measures Work Plan must be submitted along with this form to addres                                                                                                                                                                                  | s these iss  | ues.                 |
| Sig  | nature of Owner, Remedial Party or Designated Representative Date                                                                                                                                                                                               | 9            |                      |
|      |                                                                                                                                                                                                                                                                 |              |                      |

#### IC CERTIFICATIONS SITE NO. V00589

Box 6

#### SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

| print name at 454 N. WORK S                                 | TREET FALCONERNY 14       |
|-------------------------------------------------------------|---------------------------|
| Owner's representative                                      | (Owner or Remedial Party) |
|                                                             |                           |
|                                                             |                           |
| or the Site named in the Site Details Section of this form. |                           |
| or the Site named in the Site Details Section of this form. | 2-22-18                   |

#### IC/EC CERTIFICATIONS

Box 7

#### **Qualified Environmental Professional Signature**

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LaBella Associates at 300 STATE ST ROCHESTER NY print business address OWNER

am certifying as a Qualified Environmental Professional for the

Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

(Required for PE)



# **APPENDIX 4**

**Groundwater Sampling Logs** 

| LABELLA ASSOCIAT                               |                            |                   |                     |                     |              |           |         |
|------------------------------------------------|----------------------------|-------------------|---------------------|---------------------|--------------|-----------|---------|
| Environmental Engin                            | 178.7                      |                   |                     |                     |              | Well I.D. | ALI     |
| Site Location:                                 | Alumax                     | Extrus            | ons Site            |                     |              | Job No.   | 2160148 |
| Sample Date:                                   | 2-2-18                     |                   | •                   |                     |              |           |         |
| _aBella Representative;                        |                            |                   |                     |                     |              |           |         |
|                                                | Initial                    | 1 Well            | 2 Well              | 3 Well              |              | Post      |         |
| Well I.D.                                      | Readings                   | Volume            | Volumes             | Volume              | Sample       | Sample    | Details |
| Гіте                                           | 8:25                       | 8:45              | 9:00                |                     | 11:30        |           |         |
| Depth of well                                  |                            |                   |                     |                     |              |           |         |
| Depth to water                                 |                            |                   |                     | dry                 |              |           |         |
| Well diameter                                  |                            |                   |                     | <u>@</u>            |              |           |         |
| Well volume (gallons)                          |                            |                   |                     | 3 <del>9</del> 01   |              |           |         |
| Purging device                                 |                            |                   |                     |                     |              |           |         |
| Containment device                             |                            |                   |                     |                     |              |           |         |
| Purge time                                     |                            |                   |                     |                     |              |           |         |
| Gallons purged                                 |                            | 1.312             | 2.624               |                     |              |           |         |
| Sample device                                  |                            |                   |                     |                     |              |           |         |
| Field Parameters                               |                            |                   |                     |                     |              |           |         |
| emperature                                     | 1.3                        | 6.4               | 6,1                 |                     | nsufficient  | -         |         |
| H measurement                                  | 7.44                       | 7.54              | 8.39                |                     | olume/       |           |         |
| Conductivity (mS/cm)                           | 6.012                      | 6.422             | 0.005               |                     |              |           |         |
| ORP/Eh (mV)                                    | 193.6                      | 73.2              | 92.5                |                     |              |           |         |
| urbidity (NTUs)                                | 2.7                        | 16.7              | 10.4                |                     |              |           |         |
| VEATHER:<br>IOTES/FIELD OBSERVAT               | IONS:                      |                   |                     |                     |              |           |         |
| O ILS/I ILLD OBSLITVAT                         | iONS,                      |                   |                     |                     |              |           |         |
|                                                |                            |                   |                     |                     |              |           |         |
| Vell Volume Purge: 1 Well Vol                  | ume = (Total '             | Well Depth-       | Static Depth        | To Water) X         | Well Capacit | v         |         |
| only if applicable)                            | = (ft.                     |                   | ft = 0.3056 g       |                     |              | •         |         |
| Vell Capacity (Gallons per Foot): 0.7          |                            | =0.04 1.5"=       | =0.092 <b>2"=</b> 0 | .16 <b>3"=</b> 0.37 |              |           |         |
| "=0.65 5"=1.02 6"=1.47  1. Stabilization Crite | 12"=5.88<br>eria for range | of variation a    | of last three co    | onsecutive Re       | adings       |           |         |
| A. SURVINGRATION CITY                          | ioi imige                  | or the indicate ( | 1800 (11100 0       |                     |              |           |         |

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

pH; ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

| LABELLA ASSOCIAT                                          |                         |                              |                  |               |              |           |         |
|-----------------------------------------------------------|-------------------------|------------------------------|------------------|---------------|--------------|-----------|---------|
| Environmental Engine                                      | ering Co                | nsultants                    |                  |               |              | Well I.D. | AL7     |
| Site Location:                                            | Alumax                  | Extrusi                      | ions site        |               | •:           | Job No.   | 2160148 |
| Sample Date:                                              | 2-2-18                  |                              |                  |               |              |           |         |
| _aBella Representative:                                   |                         |                              |                  |               |              |           |         |
|                                                           | Initial                 | 1 Well                       | 2 Well           | 3 Well        |              | Post      |         |
| Well I.D.                                                 | Readings                | Volume                       | Volumes          | Volume        | Sample       | Sample    | Details |
| Time                                                      | 9:45                    | 9:55                         |                  |               | 10:35        |           |         |
| Depth of well                                             | 11.3                    |                              |                  |               |              |           |         |
| Depth to water                                            | 3.7                     |                              |                  |               |              |           |         |
| Well diameter                                             | 2"                      |                              | dry              |               |              |           |         |
| Well volume (gallons)                                     | 1.216                   |                              | @ 1.3 ga         | Š             | -            |           |         |
| Purging device                                            |                         |                              |                  |               |              |           |         |
| Containment device                                        |                         |                              |                  |               |              |           |         |
| ourge time                                                |                         |                              |                  |               |              |           |         |
| Gallons purged                                            |                         | 1.216                        |                  |               |              |           |         |
| Sample device                                             |                         |                              |                  |               |              |           |         |
| Field Parameters                                          |                         |                              |                  |               |              |           |         |
| Гетрегаture                                               | 3.9                     | 4.9                          |                  |               | 2.7          |           |         |
| oH measurement                                            | 8.72                    | 8.60                         |                  |               | 8.29         |           |         |
| Conductivity (mS/cm)                                      | 0.160                   | 0.126                        |                  |               | 0.1          |           |         |
| ORP/Eh (mV)                                               | 86.1                    | 60                           |                  |               | 65.3         |           |         |
| Furbidity (NTUs)                                          | 2,1385                  | 5063                         |                  |               | 2,080        |           |         |
| WEATHER:<br>NOTES/FIELD OBSERVAT                          | IONS:                   |                              |                  |               |              |           |         |
|                                                           |                         |                              |                  |               |              |           |         |
|                                                           |                         |                              |                  |               |              |           |         |
| Well Volume Purge: 1 Well Vol                             |                         |                              |                  |               | Well Capacit | ty        |         |
| only if applicable) Vell Capacity (Gallons per Foot): 0.7 |                         | ft.) X . gal/<br>=0.04 1.5"= |                  |               | 7            |           |         |
|                                                           | 75"=0.02 1"<br>12"=5.88 | -0.04 1.5″=                  | 0.032 Z"=0.      | .10 5 = 0.3   | r            |           |         |
| 1. Stabilization Crite                                    |                         | of variation o               | of last three co | onsecutive Re | eadings      |           |         |

pH; ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

#### LABELLA ASSOCIATES, D.P.C. **Environmental Engineering Consultants** Well I.D. AL 2 Job No. 2160148 Site Location: Alumax Extrusions Sik 2-2-18 Sample Date: LaBella Representative: 1 Well 2 Well 3 Well Post Initial Volume Volumes Volume Sample Sample Details Well I.D. Readings 11:20 11:00 11:10 Time 19.9 Depth of well Depth to water 211 Well diameter 936 Well volume (gallons) Purging device Containment device Purge time 1,936 Gallons purged Sample device Field Parameters 5.0 7.4 Temperature 7.68 7.73 7.51 pH measurement 6.938 0.455 0.026 Conductivity (mS/cm) -68.1 ORP/Eh (mV) 197.8 40.7 Turbidity (NTUs) WEATHER: NOTES/FIELD OBSERVATIONS: slight Sulfer odor DUP 6 11.25 Well Volume Purge: 1 Well Volume = (Total Well Depth-Static Depth To Water) X Well Capacity (only if applicable) = $(ft, -ft.) X \cdot gal/ft = 0.3056 gallons$ Well Capacity (Gallons per Foot): 0.75"=0.02 1"=0.04 1.5"=0.092 2"=0.16 **6"=**1.47 12"=5.88 Stabilization Criteria for range of variation of last three consecutive Readings

pH: +0.2 units; Temperature: +0.5°C; Specific Conductance: +10%; Turbidity: <50 NTU

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.



# **APPENDIX 5**

**Laboratory Analytical Results** 

2

3

7

9

12

11

13



THE LEADER IN ENVIRONMENTAL TESTING

# ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-130902-1

Client Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

Revision: 1

For:

LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Attn: Chris Kibler

Melisso Deyo

Authorized for release by: 2/16/2018 10:57:43 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 24 |
| QC Sample Results      | 25 |
| QC Association Summary | 38 |
| Lab Chronicle          | 39 |
| Certification Summary  | 42 |
| Method Summary         | 43 |
| Sample Summary         | 44 |
| Chain of Custody       | 45 |
| Receipt Checklists     | 47 |

4

6

8

10

11

13

14

# **Definitions/Glossary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 480-130902-1

#### **Qualifiers**

#### **GC/MS VOA**

RL

RPD

TEF

TEQ

| Qualitier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |

TestAmerica Buffalo

3

8

1 1

12

13

14

#### **Case Narrative**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Job ID: 480-130902-1

Laboratory: TestAmerica Buffalo

**Narrative** 

Job Narrative 480-130902-1

#### Revision I

This report was revised to include additional sample which were originally on hold and to correct a sample ID.

#### Receipt

The samples were received on 2/2/2018 5:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.7° C.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-398560 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and Trichlorofluoromethane . The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: AL-2 (480-130902-1), AL-1 (480-130902-2), DUP (480-130902-4), EX-MW-11R (480-130902-6), MW-2R (480-130902-7), MW-7R (480-130902-10), MW-09 (480-130902-11) and TRIP BLANK (480-130902-13).

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-7R (480-130902-10). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: EX-MW-11R (480-130902-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: AL-1 (480-130902-2), MW-09 (480-130902-11), (480-130902-B-11 MS) and (480-130902-B-11 MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-399926 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted: EX-MW-12 (480-130902-5), MW-1 (480-130902-8), MW-4 (480-130902-9) and MW-12 (480-130902-12).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

F

6

7

8

9

11

1 /

TestAmerica Job ID: 480-130902-1

Client: LaBella Associates DPC Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Client Sample ID: AL-2

| Lab | Samo | le II | D: 48 | 0-13 | 0902-1 |
|-----|------|-------|-------|------|--------|
|     |      |       |       |      |        |

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene                | 4.1    |           | 1.0 | 0.41 | ug/L | 1       | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 0.87   | J         | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane            | 2.4    |           | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane      | 0.50   | J         | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 1.2    |           | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |

Client Sample ID: AL-1

### Lab Sample ID: 480-130902-2

| Analyte                     | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|-----------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 1,1-Dichloroethene          | 2.2    |           | 1.0 | 0.29 | ug/L | 1       | _ | 8260C  | Total/NA  |
| Acetone                     | 7.6    | J         | 10  | 3.0  | ug/L | 1       |   | 8260C  | Total/NA  |
| Benzene                     | 18     |           | 1.0 | 0.41 | ug/L | 1       |   | 8260C  | Total/NA  |
| Carbon disulfide            | 0.45   | J         | 1.0 | 0.19 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane                 | 17     |           | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Ethylbenzene                | 1.1    |           | 1.0 | 0.74 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane           | 16     |           | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Toluene                     | 0.81   | J         | 1.0 | 0.51 | ug/L | 1       |   | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene    | 2.4    |           | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene             | 55     |           | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |
| Xylenes, Total              | 3.3    |           | 2.0 | 0.66 | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene - DL | 850    |           | 10  | 8.1  | ug/L | 10      |   | 8260C  | Total/NA  |
| Vinyl chloride - DL         | 150    |           | 10  | 9.0  | ug/L | 10      |   | 8260C  | Total/NA  |

Client Sample ID: AL-7

#### Lab Sample ID: 480-130902-3

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| cis-1,2-Dichloroethene | 6.5    |           | 1.0 | 0.81 | ug/L | 1       | _ | 8260C  | Total/NA  |
| Trichloroethene        | 0.96   | J         | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |

**Client Sample ID: DUP** 

#### Lab Sample ID: 480-130902-4

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene                | 15     |           | 1.0 | 0.41 | ug/L | 1       | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 0.91   | J         | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane            | 0.75   | J         | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |

Client Sample ID: EX-MW-12

#### Lab Sample ID: 480-130902-5

No Detections.

#### Client Sample ID: EX-MW-11R

#### Lab Sample ID: 480-130902-6

| Analyte                  | Result Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|--------------------------|------------------|-----|------|------|---------|---|--------|-----------|
| 1,1-Dichloroethene       | 5.8              | 1.0 | 0.29 | ug/L |         | _ | 8260C  | Total/NA  |
| Benzene                  | 3.7              | 1.0 | 0.41 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane              | 22               | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Ethylbenzene             | 1.6              | 1.0 | 0.74 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane        | 23               | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Toluene                  | 0.81 J           | 1.0 | 0.51 | ug/L | 1       |   | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene | 4.4              | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene          | 23               | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

2/16/2018 (Rev. 1)

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Lab Sample ID: 480-130902-6

| Client Sample ID: EX-M | W-11R (Continued) |  |
|------------------------|-------------------|--|
| Analyte                | Result Qualifier  |  |

| Analyte                     | Result Qualifier | RL  | MDL Unit  | Dil Fac D | Method | Prep Type |
|-----------------------------|------------------|-----|-----------|-----------|--------|-----------|
| Xylenes, Total              | 2.6              | 2.0 | 0.66 ug/L |           | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene - DL | 1500             | 20  | 16 ug/L   | 20        | 8260C  | Total/NA  |
| Vinyl chloride - DL         | 950              | 20  | 18 ug/L   | 20        | 8260C  | Total/NA  |

Client Sample ID: MW-2R

| Lab Sa | ample | ID: | 480-1 | 30902-7 |
|--------|-------|-----|-------|---------|
|--------|-------|-----|-------|---------|

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene                | 5.6    |           | 1.0 | 0.41 | ug/L | 1       | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 13     |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane            | 7.9    |           | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane      | 2.0    |           | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 27     |           | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |

Client Sample ID: MW-1

Lab Sample ID: 480-130902-8

No Detections.

Client Sample ID: MW-4

Lab Sample ID: 480-130902-9

No Detections.

Client Sample ID: MW-7R

| Lab Sample | ID: 480 | -130902-10 |
|------------|---------|------------|
|------------|---------|------------|

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| cis-1,2-Dichloroethene | 190    |           | 2.0 | 1.6  | ug/L | 2       | _ | 8260C  | Total/NA  |
| Trichloroethene        | 3.7    |           | 2.0 | 0.92 | ug/L | 2       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 75     |           | 2.0 | 1.8  | ug/L | 2       |   | 8260C  | Total/NA  |

Client Sample ID: MW-09R

#### Lab Sample ID: 480-130902-11

| Analyte                     | Result Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|-----------------------------|------------------|-----|------|------|---------|---|--------|-----------|
| 1,1-Dichloroethene          | 1.2              | 1.0 | 0.29 | ug/L | 1       | _ | 8260C  | Total/NA  |
| Benzene                     | 2.2              | 1.0 | 0.41 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane                 | 9.4              | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane           | 7.5              | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene    | 4.2              | 1.0 | 0.90 | ug/L | 1       |   | 8260C  | Total/NA  |
| Trichloroethene             | 39               | 1.0 | 0.46 | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene - DL | 410              | 10  | 8.1  | ug/L | 10      |   | 8260C  | Total/NA  |
| Vinyl chloride - DL         | 93               | 10  | 9.0  | ug/L | 10      |   | 8260C  | Total/NA  |

Client Sample ID: MW-12

Lab Sample ID: 480-130902-12

No Detections.

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-130902-13

No Detections.

This Detection Summary does not include radiochemical test results.

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

Lab Sample ID: 480-130902-1

Matrix: Water

Client Sample ID: AL-2
Date Collected: 02/02/18 11:20

Date Received: 02/02/18 17:55

| Analyte                               | Result   | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|----------|-----------|-----|------|------|---|----------|----------------|--------|
| I,1,1-Trichloroethane                 | ND       |           | 1.0 | 0.82 | ug/L |   |          | 02/05/18 15:07 |        |
| I,1,2,2-Tetrachloroethane             | ND       |           | 1.0 | 0.21 | ug/L |   |          | 02/05/18 15:07 |        |
| I,1,2-Trichloroethane                 | ND       |           | 1.0 | 0.23 | ug/L |   |          | 02/05/18 15:07 |        |
| I,1,2-Trichloro-1,2,2-trifluoroethane | ND       |           | 1.0 | 0.31 | ug/L |   |          | 02/05/18 15:07 |        |
| I,1-Dichloroethane                    | ND       |           | 1.0 | 0.38 | ug/L |   |          | 02/05/18 15:07 |        |
| I,1-Dichloroethene                    | ND       |           | 1.0 | 0.29 | ug/L |   |          | 02/05/18 15:07 |        |
| I,2,4-Trichlorobenzene                | ND       |           | 1.0 | 0.41 | ug/L |   |          | 02/05/18 15:07 |        |
| 1,2-Dibromo-3-Chloropropane           | ND       |           | 1.0 | 0.39 | ug/L |   |          | 02/05/18 15:07 |        |
| 1,2-Dichlorobenzene                   | ND       |           | 1.0 | 0.79 | ug/L |   |          | 02/05/18 15:07 |        |
| I,2-Dichloroethane                    | ND       |           | 1.0 | 0.21 |      |   |          | 02/05/18 15:07 |        |
| I,2-Dichloropropane                   | ND       |           | 1.0 | 0.72 |      |   |          | 02/05/18 15:07 |        |
| I,3-Dichlorobenzene                   | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| I,4-Dichlorobenzene                   | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| 2-Butanone (MEK)                      | ND       |           | 10  |      | ug/L |   |          | 02/05/18 15:07 |        |
| 2-Hexanone                            | ND       |           | 5.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| I-Methyl-2-pentanone (MIBK)           | ND       |           | 5.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Acetone                               | ND       |           | 10  |      | ug/L |   |          | 02/05/18 15:07 |        |
| Benzene                               | 4.1      |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Bromodichloromethane                  | ND       |           | 1.0 | 0.39 |      |   |          | 02/05/18 15:07 |        |
| Bromoform                             | ND       |           | 1.0 | 0.26 |      |   |          | 02/05/18 15:07 |        |
| Bromomethane                          | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Carbon disulfide                      | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Carbon tetrachloride                  | ND       |           | 1.0 | 0.19 |      |   |          | 02/05/18 15:07 |        |
| Chlorobenzene                         | ND<br>ND |           | 1.0 | 0.27 |      |   |          | 02/05/18 15:07 |        |
| Dibromochloromethane                  | ND       |           | 1.0 |      |      |   |          | 02/05/18 15:07 |        |
|                                       |          |           |     |      | ug/L |   |          |                |        |
| Chloroethane                          | ND       |           | 1.0 | 0.32 | -    |   |          | 02/05/18 15:07 |        |
| Chloroform                            | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Chloromethane                         | ND       |           | 1.0 | 0.35 |      |   |          | 02/05/18 15:07 |        |
| cis-1,2-Dichloroethene                | 0.87     | J         | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| cis-1,3-Dichloropropene               | ND       |           | 1.0 | 0.36 |      |   |          | 02/05/18 15:07 |        |
| Cyclohexane                           | 2.4      |           | 1.0 | 0.18 |      |   |          | 02/05/18 15:07 |        |
| Dichlorodifluoromethane               | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Ethylbenzene                          | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| I,2-Dibromoethane                     | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| sopropylbenzene                       | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Methyl acetate                        | ND       |           | 2.5 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Methyl tert-butyl ether               | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Methylcyclohexane                     | 0.50     | J         | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Methylene Chloride                    | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Styrene                               | ND       |           | 1.0 | 0.73 | ug/L |   |          | 02/05/18 15:07 |        |
| Γetrachloroethene                     | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Гoluene                               | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| rans-1,2-Dichloroethene               | ND       |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 15:07 |        |
| rans-1,3-Dichloropropene              | ND       |           | 1.0 |      | ug/L |   |          | 02/05/18 15:07 |        |
| Frichloroethene                       | ND       |           | 1.0 | 0.46 | ug/L |   |          | 02/05/18 15:07 |        |
| Frichlorofluoromethane                | ND       |           | 1.0 | 0.88 | ug/L |   |          | 02/05/18 15:07 |        |
| /inyl chloride                        | 1.2      |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 15:07 |        |
| Kylenes, Total                        | ND       |           | 2.0 | 0.66 | ug/L |   |          | 02/05/18 15:07 |        |

TestAmerica Buffalo

2

6

8

9

11

13

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

Lab Sample ID: 480-130902-1

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: AL-2

Date Collected: 02/02/18 11:20 Date Received: 02/02/18 17:55

| Surrogate                    | %Recovery Qua | alifier Limits | Prepared Analyzed | Dil Fac |
|------------------------------|---------------|----------------|-------------------|---------|
| Toluene-d8 (Surr)            | 109           | 80 - 120       | 02/05/18 15:0     | 7 1     |
| 1,2-Dichloroethane-d4 (Surr) | 103           | 77 - 120       | 02/05/18 15:0     | 7 1     |
| 4-Bromofluorobenzene (Surr)  | 107           | 73 - 120       | 02/05/18 15:0     | 7 1     |
| Dibromofluoromethane (Surr)  | 107           | 75 - 123       | 02/05/18 15:0     | 7 1     |

Client Sample ID: AL-1 Lab Sample ID: 480-130902-2

Date Collected: 02/02/18 11:30 Matrix: Water

Date Received: 02/02/18 17:55

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,1-Dichloroethene                    | 2.2              | 1.0 | 0.29 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L |   |          | 02/05/18 15:30 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |   |          | 02/05/18 15:30 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L |   |          | 02/05/18 15:30 | 1       |
| Acetone                               | 7.6 J            | 10  | 3.0  | ug/L |   |          | 02/05/18 15:30 | 1       |
| Benzene                               | 18               | 1.0 | 0.41 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Bromoform                             | ND               | 1.0 | 0.26 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Bromomethane                          | ND               | 1.0 | 0.69 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Carbon disulfide                      | 0.45 J           | 1.0 | 0.19 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 | 0.27 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Chlorobenzene                         | ND               | 1.0 | 0.75 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Chloroethane                          | ND               | 1.0 | 0.32 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Chloroform                            | ND               | 1.0 | 0.34 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Chloromethane                         | ND               | 1.0 | 0.35 | ug/L |   |          | 02/05/18 15:30 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Cyclohexane                           | 17               | 1.0 | 0.18 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Dichlorodifluoromethane               | ND               | 1.0 | 0.68 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Ethylbenzene                          | 1.1              | 1.0 | 0.74 | ug/L |   |          | 02/05/18 15:30 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Isopropylbenzene                      | ND               | 1.0 | 0.79 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L |   |          | 02/05/18 15:30 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | -    |   |          | 02/05/18 15:30 | 1       |
| Methylcyclohexane                     | 16               | 1.0 | 0.16 |      |   |          | 02/05/18 15:30 | 1       |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | •    |   |          | 02/05/18 15:30 | 1       |
| Styrene                               | ND               | 1.0 | 0.73 | •    |   |          | 02/05/18 15:30 | 1       |

TestAmerica Buffalo

3

4

5

\_

8

10

1 1

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-2

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: AL-1 Date Collected: 02/02/18 11:30

Date Received: 02/02/18 17:55

| Analyte                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Tetrachloroethene         | ND     |           | 1.0 | 0.36 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Toluene                   | 0.81   | J         | 1.0 | 0.51 | ug/L |   |          | 02/05/18 15:30 | 1       |
| trans-1,2-Dichloroethene  | 2.4    |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 15:30 | 1       |
| trans-1,3-Dichloropropene | ND     |           | 1.0 | 0.37 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Trichloroethene           | 55     |           | 1.0 | 0.46 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Trichlorofluoromethane    | ND     |           | 1.0 | 0.88 | ug/L |   |          | 02/05/18 15:30 | 1       |
| Xylenes, Total            | 3.3    |           | 2.0 | 0.66 | ug/L |   |          | 02/05/18 15:30 | 1       |

| Surrogate                    | %Recovery | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|------------------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 104       | 80 - 120         |          | 02/05/18 15:30 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 109       | 77 - 120         |          | 02/05/18 15:30 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       | 73 - 120         |          | 02/05/18 15:30 | 1       |
| Dibromofluoromethane (Surr)  | 106       | 75 - 123         |          | 02/05/18 15:30 | 1       |

| Analyte                      | nic Compounds | Qualifier   | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------|-------------|----------|-----|------|---|----------|----------------|---------|
| cis-1,2-Dichloroethene       | 850           | - Qualifier | 10       |     | ug/L |   | ricparca | 02/06/18 14:09 | 10      |
| cis-1,2-Dichioroethene       | 000           |             |          | 0.1 | ug/L |   |          | 02/00/10 14.09 | 10      |
| Vinyl chloride               | 150           |             | 10       | 9.0 | ug/L |   |          | 02/06/18 14:09 | 10      |
| Surrogate                    | %Recovery     | Qualifier   | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 108           |             | 80 - 120 |     |      |   |          | 02/06/18 14:09 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 102           |             | 77 - 120 |     |      |   |          | 02/06/18 14:09 | 10      |
| 4-Bromofluorobenzene (Surr)  | 106           |             | 73 - 120 |     |      |   |          | 02/06/18 14:09 | 10      |
|                              |               |             |          |     |      |   |          |                |         |

Client Sample ID: AL-7 Lab Sample ID: 480-130902-3

Date Collected: 02/02/18 10:35 Date Received: 02/02/18 17:55

Acetone

Benzene

Bromodichloromethane

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 02/05/18 22:52 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 02/05/18 22:52 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 02/05/18 22:52 | 1       |

TestAmerica Buffalo

10

1.0

1.0

3.0 ug/L

0.41 ug/L

0.39 ug/L

ND

ND

ND

Matrix: Water

02/05/18 22:52

02/05/18 22:52

02/05/18 22:52

TestAmerica Job ID: 480-130902-1

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

Client Sample ID: AL-7

Client: LaBella Associates DPC

Lab Sample ID: 480-130902-3

Date Collected: 02/02/18 10:35 Matrix: Water Date Received: 02/02/18 17:55

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Bromoform                    | ND        |           | 1.0      | 0.26 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Bromomethane                 | ND        |           | 1.0      | 0.69 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Carbon disulfide             | ND        |           | 1.0      | 0.19 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Carbon tetrachloride         | ND        |           | 1.0      | 0.27 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Chlorobenzene                | ND        |           | 1.0      | 0.75 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Dibromochloromethane         | ND        |           | 1.0      | 0.32 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Chloroethane                 | ND        |           | 1.0      | 0.32 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Chloroform                   | ND        |           | 1.0      | 0.34 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Chloromethane                | ND        |           | 1.0      | 0.35 | ug/L |   |          | 02/05/18 22:52 | 1       |
| cis-1,2-Dichloroethene       | 6.5       |           | 1.0      | 0.81 | ug/L |   |          | 02/05/18 22:52 | 1       |
| cis-1,3-Dichloropropene      | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Cyclohexane                  | ND        |           | 1.0      | 0.18 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Dichlorodifluoromethane      | ND        |           | 1.0      | 0.68 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/05/18 22:52 | 1       |
| 1,2-Dibromoethane            | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Isopropylbenzene             | ND        |           | 1.0      | 0.79 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Methyl acetate               | ND        |           | 2.5      | 1.3  | ug/L |   |          | 02/05/18 22:52 | 1       |
| Methyl tert-butyl ether      | ND        |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Methylcyclohexane            | ND        |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Methylene Chloride           | ND        |           | 1.0      | 0.44 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Styrene                      | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Tetrachloroethene            | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/05/18 22:52 | 1       |
| trans-1,2-Dichloroethene     | ND        |           | 1.0      | 0.90 | ug/L |   |          | 02/05/18 22:52 | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 1.0      | 0.37 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Trichloroethene              | 0.96      | J         | 1.0      | 0.46 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Trichlorofluoromethane       | ND        |           | 1.0      | 0.88 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Vinyl chloride               | ND        |           | 1.0      | 0.90 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/05/18 22:52 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 101       |           | 80 - 120 |      |      | _ |          | 02/05/18 22:52 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 77 - 120 |      |      |   |          | 02/05/18 22:52 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 73 - 120 |      |      |   |          | 02/05/18 22:52 | 1       |
| Dibromofluoromethane (Surr)  | 107       |           | 75 - 123 |      |      |   |          | 02/05/18 22:52 | 1       |

**Client Sample ID: DUP** 

Lab Sample ID: 480-130902-4 Date Collected: 02/02/18 11:25 Matrix: Water

Date Received: 02/02/18 17:55

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 02/05/18 16:17 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 16:17 | 1       |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-4

TestAmerica Job ID: 480-130902-1

Client Sample ID: DUP

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,3-Dichloropropene

Date Collected: 02/02/18 11:25 Date Received: 02/02/18 17:55

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **MDL** Unit D Dil Fac Analyte Result Qualifier Prepared Analyzed ND 1.0 0.79 02/05/18 16:17 1,2-Dichlorobenzene ug/L ND 1,2-Dichloroethane 1.0 02/05/18 16:17 0.21 ug/L 1,2-Dichloropropane ND 1.0 0.72 ug/L 02/05/18 16:17 ND 02/05/18 16:17 1,3-Dichlorobenzene 1.0 0.78 ug/L 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 02/05/18 16:17 ND 10 2-Butanone (MEK) 1.3 ug/L 02/05/18 16:17 2-Hexanone ND 5.0 1.2 ug/L 02/05/18 16:17 ND 5.0 2.1 02/05/18 16:17 4-Methyl-2-pentanone (MIBK) ug/L Acetone ND 10 3.0 ug/L 02/05/18 16:17 15 1.0 0.41 ug/L 02/05/18 16:17 Benzene ND Bromodichloromethane 1.0 0.39 ug/L 02/05/18 16:17 ND Bromoform 1.0 0.26 ug/L 02/05/18 16:17 Bromomethane ND 1.0 0.69 ug/L 02/05/18 16:17 Carbon disulfide ND 1.0 0.19 ug/L 02/05/18 16:17 Carbon tetrachloride ND ug/L 02/05/18 16:17 1.0 0.27 ND 1.0 0.75 ug/L 02/05/18 16:17 Chlorobenzene ug/L Dibromochloromethane ND 1.0 0.32 02/05/18 16:17 Chloroethane ND 1.0 0.32 02/05/18 16:17 ug/L Chloroform ND 1.0 0.34 ug/L 02/05/18 16:17 Chloromethane ND 1.0 0.35 ug/L 02/05/18 16:17 1.0 0.81 ug/L 02/05/18 16:17 cis-1,2-Dichloroethene 0.91 J cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 02/05/18 16:17 1.0 0.18 ug/L 02/05/18 16:17 0.75 Cyclohexane Dichlorodifluoromethane ND 1.0 0.68 ug/L 02/05/18 16:17 Ethylbenzene ND 1.0 0.74 ug/L 02/05/18 16:17 0.73 1,2-Dibromoethane ND 1.0 02/05/18 16:17 ug/L Isopropylbenzene 02/05/18 16:17 1.0 0.79 ug/L Methyl acetate ND 2.5 02/05/18 16:17 1.3 ug/L Methyl tert-butyl ether ND 1.0 0.16 ug/L 02/05/18 16:17 ND Methylcyclohexane 1.0 02/05/18 16:17 0.16 ug/L Methylene Chloride ND 1.0 0.44 ug/L 02/05/18 16:17 Styrene ND 1.0 0.73 ug/L 02/05/18 16:17 Tetrachloroethene ND 1.0 0.36 ug/L 02/05/18 16:17 ug/L Toluene ND 1.0 0.51 02/05/18 16:17

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 105       |           | 80 - 120 |          | 02/05/18 16:17 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 106       |           | 77 - 120 |          | 02/05/18 16:17 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |          | 02/05/18 16:17 | 1       |
| Dibromofluoromethane (Surr)  | 107       |           | 75 - 123 |          | 02/05/18 16:17 | 1       |

1.0

1.0

1.0

1.0

1.0

2.0

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

ND

ND

ND

ND

ND

ND

02/05/18 16:17

02/05/18 16:17

02/05/18 16:17

02/05/18 16:17

02/05/18 16:17

02/05/18 16:17

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-5

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: EX-MW-12

Date Collected: 02/02/18 12:10 Date Received: 02/02/18 17:55

Method: 8260C - Volatile Organic Compounds by GC/MS RL MDL Unit Dil Fac Result Qualifier D Prepared Analyzed ND 1.0 02/14/18 21:30 1,1,1-Trichloroethane 0.82 ug/L ND 1.0 02/14/18 21:30 1,1,2,2-Tetrachloroethane 0.21 ug/L 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 02/14/18 21:30 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 0.31 02/14/18 21:30 ug/L 1,1-Dichloroethane ND 1.0 0.38 ug/L 02/14/18 21:30 1 1-Dichloroethene ND 10 0.29 ug/L 02/14/18 21:30 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 02/14/18 21:30 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 02/14/18 21:30 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 02/14/18 21:30 1,2-Dichloroethane ND 1.0 0.21 ug/L 02/14/18 21:30 1,2-Dichloropropane ND 1.0 0.72 ug/L 02/14/18 21:30 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 02/14/18 21:30 1.4-Dichlorobenzene ND 1.0 0.84 ug/L 02/14/18 21:30 2-Butanone (MEK) ND 10 1.3 ug/L 02/14/18 21:30 ND 5.0 2-Hexanone 1.2 ug/L 02/14/18 21:30 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 02/14/18 21:30 ug/L ND 10 02/14/18 21:30 Acetone 3.0 ug/L ND 1.0 0.41 02/14/18 21:30 Benzene ug/L ND 02/14/18 21:30 Bromodichloromethane 1.0 0.39 ug/L Bromoform ND 1.0 0.26 ug/L 02/14/18 21:30 Bromomethane ND 1.0 0.69 ua/L 02/14/18 21:30 ND Carbon disulfide 1.0 0.19 ug/L 02/14/18 21:30 Carbon tetrachloride ND 1.0 0.27 02/14/18 21:30 ug/L Chlorobenzene ND 1.0 0.75 ug/L 02/14/18 21:30 Dibromochloromethane ND 1.0 0.32 ug/L 02/14/18 21:30 Chloroethane ND 1.0 0.32 ug/L 02/14/18 21:30 Chloroform ND 1.0 0.34 ug/L 02/14/18 21:30 Chloromethane ND 1.0 0.35 ug/L 02/14/18 21:30 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 02/14/18 21:30 ND cis-1,3-Dichloropropene 1.0 0.36 ug/L 02/14/18 21:30 Cyclohexane ND 1.0 0.18 ug/L 02/14/18 21:30 Dichlorodifluoromethane ND 1.0 0.68 ug/L 02/14/18 21:30 Ethylbenzene ND 1.0 0.74 ug/L 02/14/18 21:30 ug/L 1,2-Dibromoethane ND 1.0 0.73 02/14/18 21:30 Isopropylbenzene ND 1.0 0.79 ug/L 02/14/18 21:30 Methyl acetate ND 2.5 1.3 ug/L 02/14/18 21:30 ND Methyl tert-butyl ether 1.0 0.16 ug/L 02/14/18 21:30 Methylcyclohexane ND 1.0 0.16 ug/L 02/14/18 21:30 Methylene Chloride ND 1.0 0.44 ug/L 02/14/18 21:30 ND Styrene 1.0 0.73 ug/L 02/14/18 21:30 ug/L Tetrachloroethene ND 1.0 0.36 02/14/18 21:30 Toluene ND 1.0 0.51 ug/L 02/14/18 21:30 0.90 trans-1 2-Dichloroethene ND 1.0 ug/L 02/14/18 21:30 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 02/14/18 21:30 Trichloroethene ND 1.0 0.46 ug/L 02/14/18 21:30 Trichlorofluoromethane ND 1.0 88.0 ug/L 02/14/18 21:30 Vinyl chloride ND 1.0 0.90 ug/L 02/14/18 21:30 Xylenes, Total ND 2.0 0.66 ug/L 02/14/18 21:30

TestAmerica Buffalo

2

1

6

9

11

12

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-5

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: EX-MW-12

Date Collected: 02/02/18 12:10 Date Received: 02/02/18 17:55

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 95        |           | 80 - 120 |          | 02/14/18 21:30 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |          | 02/14/18 21:30 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |          | 02/14/18 21:30 | 1       |
| Dibromofluoromethane (Surr)  | 98        |           | 75 - 123 |          | 02/14/18 21:30 | 1       |

Client Sample ID: EX-MW-11R Lab Sample ID: 480-130902-6

Date Collected: 02/02/18 12:30

Date Received: 02/02/18 17:55

| Lab | Jampie | ID. | <del>1</del> 00- | 130   | 302-0 |  |
|-----|--------|-----|------------------|-------|-------|--|
|     |        |     | Ma               | trix: | Water |  |

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND —             | 1.0 | 0.82 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,1-Dichloroethene                    | 5.8              | 1.0 | 0.29 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L |   |          | 02/05/18 16:40 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |   |          | 02/05/18 16:40 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L |   |          | 02/05/18 16:40 | 1       |
| Acetone                               | ND               | 10  | 3.0  | ug/L |   |          | 02/05/18 16:40 | 1       |
| Benzene                               | 3.7              | 1.0 | 0.41 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Bromoform                             | ND               | 1.0 | 0.26 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Bromomethane                          | ND               | 1.0 | 0.69 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Carbon disulfide                      | ND               | 1.0 | 0.19 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Carbon tetrachloride                  | ND               | 1.0 | 0.27 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Chlorobenzene                         | ND               | 1.0 | 0.75 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Dibromochloromethane                  | ND               | 1.0 | 0.32 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Chloroethane                          | ND               | 1.0 | 0.32 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Chloroform                            | ND               | 1.0 | 0.34 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Chloromethane                         | ND               | 1.0 | 0.35 | ug/L |   |          | 02/05/18 16:40 | 1       |
| cis-1,3-Dichloropropene               | ND               | 1.0 | 0.36 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Cyclohexane                           | 22               | 1.0 | 0.18 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Dichlorodifluoromethane               | ND               | 1.0 | 0.68 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Ethylbenzene                          | 1.6              | 1.0 | 0.74 | ug/L |   |          | 02/05/18 16:40 | 1       |
| 1,2-Dibromoethane                     | ND               | 1.0 | 0.73 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Isopropylbenzene                      | ND               | 1.0 | 0.79 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Methyl acetate                        | ND               | 2.5 | 1.3  | ug/L |   |          | 02/05/18 16:40 | 1       |
| Methyl tert-butyl ether               | ND               | 1.0 | 0.16 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Methylcyclohexane                     | 23               | 1.0 | 0.16 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Methylene Chloride                    | ND               | 1.0 | 0.44 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Styrene                               | ND               | 1.0 | 0.73 | ug/L |   |          | 02/05/18 16:40 | 1       |

TestAmerica Buffalo

2

1

5

b

8

9

11

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-6

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: EX-MW-11R

Date Collected: 02/02/18 12:30 Date Received: 02/02/18 17:55

| Analyte                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Tetrachloroethene         | ND     |           | 1.0 | 0.36 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Toluene                   | 0.81   | J         | 1.0 | 0.51 | ug/L |   |          | 02/05/18 16:40 | 1       |
| trans-1,2-Dichloroethene  | 4.4    |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 16:40 | 1       |
| trans-1,3-Dichloropropene | ND     |           | 1.0 | 0.37 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Trichloroethene           | 23     |           | 1.0 | 0.46 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Trichlorofluoromethane    | ND     |           | 1.0 | 0.88 | ug/L |   |          | 02/05/18 16:40 | 1       |
| Xylenes, Total            | 2.6    |           | 2.0 | 0.66 | ug/L |   |          | 02/05/18 16:40 | 1       |

| Surrogate                    | %Recovery | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|------------------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 103       | 80 - 120         |          | 02/05/18 16:40 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 104       | 77 - 120         |          | 02/05/18 16:40 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       | 73 - 120         |          | 02/05/18 16:40 | 1       |
| Dibromofluoromethane (Surr)  | 103       | 75 - 123         |          | 02/05/18 16:40 | 1       |

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| cis-1,2-Dichloroethene       | 1500      |           | 20       | 16  | ug/L |   |          | 02/05/18 23:15 | 20      |
| Vinyl chloride               | 950       |           | 20       | 18  | ug/L |   |          | 02/05/18 23:15 | 20      |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 104       |           | 80 - 120 |     |      | - |          | 02/05/18 23:15 | 20      |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |     |      |   |          | 02/05/18 23:15 | 20      |
|                              |           |           |          |     |      |   |          |                |         |

75 - 123

105

Client Sample ID: MW-2R

Date Collected: 02/02/18 13:35

Dibromofluoromethane (Surr)

Date Received: 02/02/18 17:55

|--|

02/05/18 23:15

Matrix: Water

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND               | 1.0 | 0.82 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L |   |          | 02/05/18 17:03 | 1       |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L |   |          | 02/05/18 17:03 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L |   |          | 02/05/18 17:03 | 1       |
| Acetone                               | ND               | 10  | 3.0  | ug/L |   |          | 02/05/18 17:03 | 1       |
| Benzene                               | 5.6              | 1.0 | 0.41 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Bromodichloromethane                  | ND               | 1.0 | 0.39 | ug/L |   |          | 02/05/18 17:03 | 1       |

TestAmerica Buffalo

2

1

5

7

9

11

12

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Lab Sample ID: 480-130902-7

Matrix: Water

Client Sample ID: MW-2R Date Collected: 02/02/18 13:35

Date Received: 02/02/18 17:55

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| Bromoform                    | ND        |           | 1.0      | 0.26 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Bromomethane                 | ND        |           | 1.0      | 0.69 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Carbon disulfide             | ND        |           | 1.0      | 0.19 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Carbon tetrachloride         | ND        |           | 1.0      | 0.27 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Chlorobenzene                | ND        |           | 1.0      | 0.75 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Dibromochloromethane         | ND        |           | 1.0      | 0.32 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Chloroethane                 | ND        |           | 1.0      | 0.32 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Chloroform                   | ND        |           | 1.0      | 0.34 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Chloromethane                | ND        |           | 1.0      | 0.35 | ug/L |   |          | 02/05/18 17:03 | 1       |
| cis-1,2-Dichloroethene       | 13        |           | 1.0      | 0.81 | ug/L |   |          | 02/05/18 17:03 | 1       |
| cis-1,3-Dichloropropene      | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Cyclohexane                  | 7.9       |           | 1.0      | 0.18 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Dichlorodifluoromethane      | ND        |           | 1.0      | 0.68 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/05/18 17:03 | 1       |
| 1,2-Dibromoethane            | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Isopropylbenzene             | ND        |           | 1.0      | 0.79 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Methyl acetate               | ND        |           | 2.5      | 1.3  | ug/L |   |          | 02/05/18 17:03 | 1       |
| Methyl tert-butyl ether      | ND        |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Methylcyclohexane            | 2.0       |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Methylene Chloride           | ND        |           | 1.0      | 0.44 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Styrene                      | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Tetrachloroethene            | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/05/18 17:03 | 1       |
| trans-1,2-Dichloroethene     | ND        |           | 1.0      | 0.90 | ug/L |   |          | 02/05/18 17:03 | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 1.0      | 0.37 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Trichloroethene              | ND        |           | 1.0      | 0.46 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Trichlorofluoromethane       | ND        |           | 1.0      | 0.88 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Vinyl chloride               | 27        |           | 1.0      | 0.90 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/05/18 17:03 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 103       |           | 80 - 120 |      |      | - |          | 02/05/18 17:03 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |      |      |   |          | 02/05/18 17:03 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |      |      |   |          | 02/05/18 17:03 | 1       |
| Dibromofluoromethane (Surr)  | 103       |           | 75 - 123 |      |      |   |          | 02/05/18 17:03 | 1       |

**Client Sample ID: MW-1** 

Date Collected: 02/02/18 14:10 Date Received: 02/02/18 17:55 Lab Sample ID: 480-130902-8

Matrix: Water

| Analyte                               | Result C | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|----------|-----------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND       |           | 1.0 | 0.82 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND       |           | 1.0 | 0.21 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,1,2-Trichloroethane                 | ND       |           | 1.0 | 0.23 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |           | 1.0 | 0.31 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,1-Dichloroethane                    | ND       |           | 1.0 | 0.38 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,1-Dichloroethene                    | ND       |           | 1.0 | 0.29 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,2,4-Trichlorobenzene                | ND       |           | 1.0 | 0.41 | ug/L |   |          | 02/14/18 21:53 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND       |           | 1.0 | 0.39 | ug/L |   |          | 02/14/18 21:53 | 1       |

TestAmerica Buffalo

2

1

5

7

9

11

16

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Client Sample ID: MW-1

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Received: 02/02/18 17:55

Lab Sample ID: 480-130902-8 Date Collected: 02/02/18 14:10

Matrix: Water

| Analyte                                | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed                         | Dil Fac                               |
|----------------------------------------|-----------|-----------|----------|------|------|---|----------|----------------------------------|---------------------------------------|
| 1,2-Dichlorobenzene                    | ND        |           | 1.0      | 0.79 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 1,2-Dichloroethane                     | ND        |           | 1.0      | 0.21 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 1,2-Dichloropropane                    | ND        |           | 1.0      | 0.72 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 1,3-Dichlorobenzene                    | ND        |           | 1.0      | 0.78 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 1,4-Dichlorobenzene                    | ND        |           | 1.0      | 0.84 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 2-Butanone (MEK)                       | ND        |           | 10       | 1.3  | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 2-Hexanone                             | ND        |           | 5.0      | 1.2  | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| 4-Methyl-2-pentanone (MIBK)            | ND        |           | 5.0      | 2.1  | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Acetone                                | ND        |           | 10       | 3.0  | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Benzene                                | ND        |           | 1.0      | 0.41 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Bromodichloromethane                   | ND        |           | 1.0      | 0.39 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Bromoform                              | ND        |           | 1.0      | 0.26 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Bromomethane                           | ND        |           | 1.0      | 0.69 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Carbon disulfide                       | ND        |           | 1.0      | 0.19 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Carbon tetrachloride                   | ND        |           | 1.0      | 0.27 |      |   |          | 02/14/18 21:53                   | 1                                     |
| Chlorobenzene                          | ND        |           | 1.0      | 0.75 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Dibromochloromethane                   | ND        |           | 1.0      | 0.32 |      |   |          | 02/14/18 21:53                   | 1                                     |
| Chloroethane                           | ND        |           | 1.0      | 0.32 |      |   |          | 02/14/18 21:53                   | 1                                     |
| Chloroform                             | ND        |           | 1.0      | 0.34 |      |   |          | 02/14/18 21:53                   | 1                                     |
| Chloromethane                          | ND        |           | 1.0      | 0.35 |      |   |          | 02/14/18 21:53                   | 1                                     |
| cis-1,2-Dichloroethene                 | ND        |           | 1.0      | 0.81 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| cis-1,3-Dichloropropene                | ND        |           | 1.0      | 0.36 |      |   |          | 02/14/18 21:53                   | 1                                     |
| Cyclohexane                            | ND        |           | 1.0      | 0.18 |      |   |          | 02/14/18 21:53                   |                                       |
| Dichlorodifluoromethane                | ND        |           | 1.0      | 0.68 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| Ethylbenzene                           | ND        |           | 1.0      | 0.74 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| 1,2-Dibromoethane                      | ND        |           | 1.0      | 0.73 |      |   |          | 02/14/18 21:53                   |                                       |
| Isopropylbenzene                       | ND        |           | 1.0      | 0.79 | _    |   |          | 02/14/18 21:53                   | 1                                     |
| Methyl acetate                         | ND        |           | 2.5      |      | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Methyl tert-butyl ether                | ND        |           | 1.0      | 0.16 |      |   |          | 02/14/18 21:53                   | · · · · · · · · · · · · · · · · · · · |
| Methylcyclohexane                      | ND        |           | 1.0      | 0.16 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| Methylene Chloride                     | ND        |           | 1.0      | 0.44 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| Styrene                                | ND        |           | 1.0      | 0.73 |      |   |          | 02/14/18 21:53                   |                                       |
| Tetrachloroethene                      | ND        |           | 1.0      | 0.36 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| Toluene                                | ND        |           | 1.0      | 0.51 |      |   |          | 02/14/18 21:53                   | 1                                     |
| trans-1,2-Dichloroethene               | ND        |           | 1.0      | 0.90 |      |   |          | 02/14/18 21:53                   |                                       |
| trans-1,3-Dichloropropene              | ND<br>ND  |           | 1.0      | 0.90 |      |   |          | 02/14/18 21:53                   | 1                                     |
|                                        | ND<br>ND  |           | 1.0      |      |      |   |          |                                  | 1                                     |
| Trichloroethene Trichlorofluoromethane | ND        |           |          | 0.46 | ug/L |   |          | 02/14/18 21:53<br>02/14/18 21:53 | ا<br>1                                |
|                                        |           |           | 1.0      |      | -    |   |          |                                  |                                       |
| Vinyl chloride                         | ND        |           | 1.0      | 0.90 | -    |   |          | 02/14/18 21:53                   | 1                                     |
| Xylenes, Total                         | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/14/18 21:53                   | 1                                     |
| Surrogate                              | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed                         | Dil Fac                               |
| Toluene-d8 (Surr)                      | 97        |           | 80 - 120 |      |      | - |          | 02/14/18 21:53                   | 1                                     |
|                                        |           |           |          |      |      |   |          |                                  |                                       |

TestAmerica Buffalo

02/14/18 21:53

02/14/18 21:53

02/14/18 21:53

77 - 120

73 - 120

75 - 123

102

104

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-9

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: MW-4

Date Collected: 02/02/18 14:40 Date Received: 02/02/18 17:55

| Analyte                               | Result Qualifier | RL  |      | Unit         | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|------------------|-----|------|--------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                 | ND ND            | 1.0 | 0.82 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2-Dichlorobenzene                   | ND               | 1.0 | 0.79 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2-Dichloroethane                    | ND               | 1.0 | 0.21 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2-Dichloropropane                   | ND               | 1.0 | 0.72 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,3-Dichlorobenzene                   | ND               | 1.0 | 0.78 | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,4-Dichlorobenzene                   | ND               | 1.0 | 0.84 | ug/L         |   |          | 02/14/18 22:17 |        |
| 2-Butanone (MEK)                      | ND               | 10  | 1.3  | ug/L         |   |          | 02/14/18 22:17 |        |
| 2-Hexanone                            | ND               | 5.0 | 1.2  | ug/L         |   |          | 02/14/18 22:17 |        |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 5.0 | 2.1  | ug/L         |   |          | 02/14/18 22:17 |        |
| Acetone                               | ND               | 10  | 3.0  | ug/L         |   |          | 02/14/18 22:17 |        |
| Benzene                               | ND               | 1.0 | 0.41 | ug/L         |   |          | 02/14/18 22:17 |        |
| Bromodichloromethane                  | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Bromoform                             | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Bromomethane                          | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Carbon disulfide                      | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Carbon tetrachloride                  | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Chlorobenzene                         | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Dibromochloromethane                  | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Chloroethane                          | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Chloroform                            | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Chloromethane                         | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| cis-1,2-Dichloroethene                | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| cis-1,3-Dichloropropene               | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Cyclohexane                           | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Dichlorodifluoromethane               | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Ethylbenzene                          | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| 1,2-Dibromoethane                     | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Isopropylbenzene                      | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Methyl acetate                        | ND               | 2.5 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Methyl tert-butyl ether               | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Methylcyclohexane                     | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Methylene Chloride                    | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Styrene                               | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Tetrachloroethene                     | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Toluene                               | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| trans-1,2-Dichloroethene              | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| trans-1,3-Dichloropropene             | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Trichloroethene                       | ND               | 1.0 |      | ug/L         |   |          | 02/14/18 22:17 |        |
| Trichlorofluoromethane                | ND               | 1.0 |      | ug/L<br>ug/L |   |          | 02/14/18 22:17 |        |
| Vinyl chloride                        | ND               | 1.0 |      | ug/L<br>ug/L |   |          | 02/14/18 22:17 |        |
| Xylenes, Total                        | ND               | 2.0 |      | ug/L<br>ug/L |   |          | 02/14/18 22:17 |        |

TestAmerica Buffalo

2

Λ

5

7

9

11

13

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-9

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: MW-4

Date Collected: 02/02/18 14:40 Date Received: 02/02/18 17:55

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97        |           | 80 - 120 |          | 02/14/18 22:17 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 77 - 120 |          | 02/14/18 22:17 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |          | 02/14/18 22:17 | 1       |
| Dibromofluoromethane (Surr)  | 101       |           | 75 - 123 |          | 02/14/18 22:17 | 1       |

Client Sample ID: MW-7R Lab Sample ID: 480-130902-10

Date Collected: 02/02/18 15:10 Matrix: Water

Date Received: 02/02/18 17:55

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND -             | 2.0 | 1.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,1,2,2-Tetrachloroethane             | ND               | 2.0 | 0.42 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,1,2-Trichloroethane                 | ND               | 2.0 | 0.46 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 2.0 | 0.62 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,1-Dichloroethane                    | ND               | 2.0 | 0.76 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,1-Dichloroethene                    | ND               | 2.0 | 0.58 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2,4-Trichlorobenzene                | ND               | 2.0 | 0.82 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 2.0 | 0.78 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2-Dichlorobenzene                   | ND               | 2.0 | 1.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2-Dichloroethane                    | ND               | 2.0 | 0.42 | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2-Dichloropropane                   | ND               | 2.0 | 1.4  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,3-Dichlorobenzene                   | ND               | 2.0 | 1.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,4-Dichlorobenzene                   | ND               | 2.0 | 1.7  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 2-Butanone (MEK)                      | ND               | 20  | 2.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 2-Hexanone                            | ND               | 10  | 2.5  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 4-Methyl-2-pentanone (MIBK)           | ND               | 10  | 4.2  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Acetone                               | ND               | 20  | 6.0  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Benzene                               | ND               | 2.0 | 0.82 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Bromodichloromethane                  | ND               | 2.0 | 0.78 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Bromoform                             | ND               | 2.0 | 0.52 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Bromomethane                          | ND               | 2.0 | 1.4  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Carbon disulfide                      | ND               | 2.0 | 0.38 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Carbon tetrachloride                  | ND               | 2.0 | 0.54 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Chlorobenzene                         | ND               | 2.0 | 1.5  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Dibromochloromethane                  | ND               | 2.0 | 0.64 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Chloroethane                          | ND               | 2.0 | 0.64 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Chloroform                            | ND               | 2.0 | 0.68 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Chloromethane                         | ND               | 2.0 | 0.70 | ug/L |   |          | 02/05/18 17:26 | 2       |
| cis-1,2-Dichloroethene                | 190              | 2.0 | 1.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| cis-1,3-Dichloropropene               | ND               | 2.0 | 0.72 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Cyclohexane                           | ND               | 2.0 | 0.36 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Dichlorodifluoromethane               | ND               | 2.0 | 1.4  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Ethylbenzene                          | ND               | 2.0 | 1.5  | ug/L |   |          | 02/05/18 17:26 | 2       |
| 1,2-Dibromoethane                     | ND               | 2.0 | 1.5  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Isopropylbenzene                      | ND               | 2.0 | 1.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Methyl acetate                        | ND               | 5.0 | 2.6  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Methyl tert-butyl ether               | ND               | 2.0 | 0.32 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Methylcyclohexane                     | ND               | 2.0 | 0.32 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Methylene Chloride                    | ND               | 2.0 | 0.88 | ug/L |   |          | 02/05/18 17:26 | 2       |

TestAmerica Buffalo

2

4

5

7

8

9

11

3

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-10

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: MW-7R Date Collected: 02/02/18 15:10

Date Received: 02/02/18 17:55

| Analyte                   | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| Styrene                   | ND ND            | 2.0 | 1.5  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Tetrachloroethene         | ND               | 2.0 | 0.72 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Toluene                   | ND               | 2.0 | 1.0  | ug/L |   |          | 02/05/18 17:26 | 2       |
| trans-1,2-Dichloroethene  | ND               | 2.0 | 1.8  | ug/L |   |          | 02/05/18 17:26 | 2       |
| trans-1,3-Dichloropropene | ND               | 2.0 | 0.74 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Trichloroethene           | 3.7              | 2.0 | 0.92 | ug/L |   |          | 02/05/18 17:26 | 2       |
| Trichlorofluoromethane    | ND               | 2.0 | 1.8  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Vinyl chloride            | 75               | 2.0 | 1.8  | ug/L |   |          | 02/05/18 17:26 | 2       |
| Xylenes, Total            | ND               | 4.0 | 1.3  | ug/L |   |          | 02/05/18 17:26 | 2       |

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 105                 | 80 - 120 |          | 02/05/18 17:26 | 2       |
| 1,2-Dichloroethane-d4 (Surr) | 106                 | 77 - 120 |          | 02/05/18 17:26 | 2       |
| 4-Bromofluorobenzene (Surr)  | 103                 | 73 - 120 |          | 02/05/18 17:26 | 2       |
| Dibromofluoromethane (Surr)  | 105                 | 75 - 123 |          | 02/05/18 17:26 | 2       |

**Client Sample ID: MW-09R** 

Date Collected: 02/02/18 15:50

Date Received: 02/02/18 17:55

| Lab | Sample | ID: | 480-130902-11 |
|-----|--------|-----|---------------|
|     |        |     | Matrix: Water |

Matrix: Water

11

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,1-Dichloroethene                    | 1.2    |           | 1.0 | 0.29 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 02/05/18 17:49 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 02/05/18 17:49 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 02/05/18 17:49 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 02/05/18 17:49 | 1       |
| Benzene                               | 2.2    |           | 1.0 | 0.41 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 02/05/18 17:49 | 1       |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-11

o campic 15: 400-100302-11

02/05/18 17:49

TestAmerica Job ID: 480-130902-1

Matrix: Water

Client Sample ID: MW-09R Date Collected: 02/02/18 15:50

Date Received: 02/02/18 17:55

| Analyte                      | Result    | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|------|------|---|----------|----------------|---------|
| cis-1,3-Dichloropropene      | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Cyclohexane                  | 9.4       |           | 1.0      | 0.18 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Dichlorodifluoromethane      | ND        |           | 1.0      | 0.68 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Ethylbenzene                 | ND        |           | 1.0      | 0.74 | ug/L |   |          | 02/05/18 17:49 | 1       |
| 1,2-Dibromoethane            | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Isopropylbenzene             | ND        |           | 1.0      | 0.79 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Methyl acetate               | ND        |           | 2.5      | 1.3  | ug/L |   |          | 02/05/18 17:49 | 1       |
| Methyl tert-butyl ether      | ND        |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Methylcyclohexane            | 7.5       |           | 1.0      | 0.16 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Methylene Chloride           | ND        |           | 1.0      | 0.44 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Styrene                      | ND        |           | 1.0      | 0.73 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Tetrachloroethene            | ND        |           | 1.0      | 0.36 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Toluene                      | ND        |           | 1.0      | 0.51 | ug/L |   |          | 02/05/18 17:49 | 1       |
| trans-1,2-Dichloroethene     | 4.2       |           | 1.0      | 0.90 | ug/L |   |          | 02/05/18 17:49 | 1       |
| trans-1,3-Dichloropropene    | ND        |           | 1.0      | 0.37 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Trichloroethene              | 39        |           | 1.0      | 0.46 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Trichlorofluoromethane       | ND        |           | 1.0      | 0.88 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Xylenes, Total               | ND        |           | 2.0      | 0.66 | ug/L |   |          | 02/05/18 17:49 | 1       |
| Surrogate                    | %Recovery | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 104       |           | 80 - 120 |      |      | - |          | 02/05/18 17:49 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 77 - 120 |      |      |   |          | 02/05/18 17:49 | 1       |

| Dibromofluoromethane (Surr)        | 105             |            | 75 - 123 |     |      |   |          | 02/05/18 17:49 | 1       |
|------------------------------------|-----------------|------------|----------|-----|------|---|----------|----------------|---------|
| -<br>Method: 8260C - Volatile Orga | nic Compounds I | by GC/MS - | DL       |     |      |   |          |                |         |
| Analyte                            | Result          | Qualifier  | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| cis-1,2-Dichloroethene             | 410             |            | 10       | 8.1 | ug/L |   |          | 02/06/18 14:36 | 10      |
| Vinyl chloride                     | 93              |            | 10       | 9.0 | ug/L |   |          | 02/06/18 14:36 | 10      |
| Surrogate                          | %Recovery       | Qualifier  | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)                  | 106             | -          | 80 - 120 |     |      | = |          | 02/06/18 14:36 | 10      |
| 1,2-Dichloroethane-d4 (Surr)       | 100             |            | 77 - 120 |     |      |   |          | 02/06/18 14:36 | 10      |
| 4-Bromofluorobenzene (Surr)        | 102             |            | 73 - 120 |     |      |   |          | 02/06/18 14:36 | 10      |
| Dibromofluoromethane (Surr)        | 105             |            | 75 - 123 |     |      |   |          | 02/06/18 14:36 | 10      |

73 - 120

102

Client Sample ID: MW-12

Date Collected: 02/02/18 16:30

Lab Sample ID: 480-130902-12

Matrix: Water

Date Received: 02/02/18 17:55

4-Bromofluorobenzene (Surr)

| Analyte                               | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND -             | 1.0 | 0.82 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND               | 1.0 | 0.21 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,1,2-Trichloroethane                 | ND               | 1.0 | 0.23 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND               | 1.0 | 0.31 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,1-Dichloroethane                    | ND               | 1.0 | 0.38 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,1-Dichloroethene                    | ND               | 1.0 | 0.29 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,2,4-Trichlorobenzene                | ND               | 1.0 | 0.41 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND               | 1.0 | 0.39 | ug/L |   |          | 02/14/18 22:41 | 1       |

TestAmerica Buffalo

2

4

6

8

10

12

. .

14

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-12

TestAmerica Job ID: 480-130902-1

**Client Sample ID: MW-12** 

Date Collected: 02/02/18 16:30 Date Received: 02/02/18 17:55

Matrix: Water

| Analyte                     | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,2-Dichlorobenzene         | ND ND            | 1.0 | 0.79 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,2-Dichloroethane          | ND               | 1.0 | 0.21 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,2-Dichloropropane         | ND               | 1.0 | 0.72 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,3-Dichlorobenzene         | ND               | 1.0 | 0.78 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,4-Dichlorobenzene         | ND               | 1.0 | 0.84 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 2-Butanone (MEK)            | ND               | 10  | 1.3  | ug/L |   |          | 02/14/18 22:41 | 1       |
| 2-Hexanone                  | ND               | 5.0 | 1.2  | ug/L |   |          | 02/14/18 22:41 | 1       |
| 4-Methyl-2-pentanone (MIBK) | ND               | 5.0 | 2.1  | ug/L |   |          | 02/14/18 22:41 | 1       |
| Acetone                     | ND               | 10  | 3.0  | ug/L |   |          | 02/14/18 22:41 | 1       |
| Benzene                     | ND               | 1.0 | 0.41 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Bromodichloromethane        | ND               | 1.0 | 0.39 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Bromoform                   | ND               | 1.0 | 0.26 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Bromomethane                | ND               | 1.0 | 0.69 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Carbon disulfide            | ND               | 1.0 | 0.19 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Carbon tetrachloride        | ND               | 1.0 | 0.27 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Chlorobenzene               | ND               | 1.0 | 0.75 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Dibromochloromethane        | ND               | 1.0 | 0.32 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Chloroethane                | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Chloroform                  | ND               | 1.0 | 0.34 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Chloromethane               | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| cis-1,2-Dichloroethene      | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| cis-1,3-Dichloropropene     | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Cyclohexane                 | ND               | 1.0 | 0.18 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Dichlorodifluoromethane     | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Ethylbenzene                | ND               | 1.0 | 0.74 | ug/L |   |          | 02/14/18 22:41 | 1       |
| 1,2-Dibromoethane           | ND               | 1.0 | 0.73 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Isopropylbenzene            | ND               | 1.0 | 0.79 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Methyl acetate              | ND               | 2.5 | 1.3  | ug/L |   |          | 02/14/18 22:41 | 1       |
| Methyl tert-butyl ether     | ND               | 1.0 | 0.16 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Methylcyclohexane           | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Methylene Chloride          | ND               | 1.0 | 0.44 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Styrene                     | ND               | 1.0 | 0.73 | ug/L |   |          | 02/14/18 22:41 | 1       |
| Tetrachloroethene           | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Toluene                     | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| trans-1,2-Dichloroethene    | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| trans-1,3-Dichloropropene   | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Trichloroethene             | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Trichlorofluoromethane      | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Vinyl chloride              | ND               | 1.0 |      | ug/L |   |          | 02/14/18 22:41 | 1       |
| Xylenes, Total              | ND               | 2.0 |      | ug/L |   |          | 02/14/18 22:41 | . 1     |

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 02/14/18 22:41 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 100                 | 77 - 120 |          | 02/14/18 22:41 | 1       |
| 4-Bromofluorobenzene (Surr)  | 107                 | 73 - 120 |          | 02/14/18 22:41 | 1       |
| Dibromofluoromethane (Surr)  | 100                 | 75 - 123 |          | 02/14/18 22:41 | 1       |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-13

TestAmerica Job ID: 480-130902-1

**Client Sample ID: TRIP BLANK** 

Date Collected: 02/02/18 00:00 Date Received: 02/02/18 17:55 Matrix: Water

| Analyte                                 | Result   | Qualifier | RL  | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fa |
|-----------------------------------------|----------|-----------|-----|------|--------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                   | ND       |           | 1.0 | 0.82 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,1,2,2-Tetrachloroethane               | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,1,2-Trichloroethane                   | ND       |           | 1.0 | 0.23 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | ND       |           | 1.0 | 0.31 | ug/L         |   |          | 02/05/18 18:13 |        |
| I,1-Dichloroethane                      | ND       |           | 1.0 | 0.38 | ug/L         |   |          | 02/05/18 18:13 |        |
| I,1-Dichloroethene                      | ND       |           | 1.0 | 0.29 | ug/L         |   |          | 02/05/18 18:13 |        |
| I,2,4-Trichlorobenzene                  | ND       |           | 1.0 | 0.41 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,2-Dibromo-3-Chloropropane             | ND       |           | 1.0 | 0.39 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,2-Dichlorobenzene                     | ND       |           | 1.0 | 0.79 | ug/L         |   |          | 02/05/18 18:13 |        |
| I,2-Dichloroethane                      | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,2-Dichloropropane                     | ND       |           | 1.0 | 0.72 | ug/L         |   |          | 02/05/18 18:13 |        |
| 1,3-Dichlorobenzene                     | ND       |           | 1.0 | 0.78 | ug/L         |   |          | 02/05/18 18:13 |        |
| I,4-Dichlorobenzene                     | ND       |           | 1.0 | 0.84 | ug/L         |   |          | 02/05/18 18:13 |        |
| 2-Butanone (MEK)                        | ND       |           | 10  |      | ug/L         |   |          | 02/05/18 18:13 |        |
| 2-Hexanone                              | ND       |           | 5.0 | 1.2  | ug/L         |   |          | 02/05/18 18:13 |        |
| 1-Methyl-2-pentanone (MIBK)             | ND       |           | 5.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Acetone                                 | ND       |           | 10  |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Benzene                                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Bromodichloromethane                    | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Bromoform                               | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Bromomethane                            | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Carbon disulfide                        | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Carbon tetrachloride                    | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Chlorobenzene                           | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Dibromochloromethane                    | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Chloroethane                            | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Chloroform                              | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Chloromethane                           | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| cis-1,2-Dichloroethene                  | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| sis-1,3-Dichloropropene                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Cyclohexane                             | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Dichlorodifluoromethane                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Ethylbenzene                            | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| I,2-Dibromoethane                       | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| sopropylbenzene                         | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Methyl acetate                          | ND<br>ND |           | 2.5 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Methyl tert-butyl ether                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
|                                         | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Methylcyclohexane<br>Methylene Chloride | ND<br>ND |           | 1.0 |      | ug/L<br>ug/L |   |          | 02/05/18 18:13 |        |
|                                         |          |           |     |      |              |   |          |                |        |
| Styrene                                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Fetrachloroethene                       | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Foluene                                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| rans-1,2-Dichloroethene                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| rans-1,3-Dichloropropene                | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Frichloroethene                         | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| Frichlorofluoromethane                  | ND       |           | 1.0 |      | ug/L         |   |          | 02/05/18 18:13 |        |
| /inyl chloride                          | ND       |           | 1.0 | 0.90 | ug/L         |   |          | 02/05/18 18:13 |        |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Lab Sample ID: 480-130902-13

Matrix: Water

**Client Sample ID: TRIP BLANK** 

Date Collected: 02/02/18 00:00 Date Received: 02/02/18 17:55

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 106       |           | 80 - 120 |          | 02/05/18 18:13 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 77 - 120 |          | 02/05/18 18:13 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |          | 02/05/18 18:13 | 1       |
| Dibromofluoromethane (Surr)  | 104       |           | 75 - 123 |          | 02/05/18 18:13 | 1       |
|                              |           |           |          |          |                |         |

# **Surrogate Summary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

| _                 |                    |          |          | Percent Sui | rrogate Reco |
|-------------------|--------------------|----------|----------|-------------|--------------|
|                   |                    | TOL      | DCA      | BFB         | DBFM         |
| Lab Sample ID     | Client Sample ID   | (80-120) | (77-120) | (73-120)    | (75-123)     |
| 480-130902-1      | AL-2               | 109      | 103      | 107         | 107          |
| 480-130902-2      | AL-1               | 104      | 109      | 105         | 106          |
| 480-130902-2 - DL | AL-1               | 108      | 102      | 106         | 109          |
| 480-130902-3      | AL-7               | 101      | 109      | 99          | 107          |
| 480-130902-4      | DUP                | 105      | 106      | 102         | 107          |
| 480-130902-5      | EX-MW-12           | 95       | 100      | 102         | 98           |
| 480-130902-6      | EX-MW-11R          | 103      | 104      | 103         | 103          |
| 480-130902-6 - DL | EX-MW-11R          | 104      | 102      | 103         | 105          |
| 480-130902-7      | MW-2R              | 103      | 102      | 102         | 103          |
| 480-130902-8      | MW-1               | 97       | 102      | 104         | 101          |
| 480-130902-9      | MW-4               | 97       | 101      | 105         | 101          |
| 180-130902-10     | MW-7R              | 105      | 106      | 103         | 105          |
| 80-130902-11      | MW-09R             | 104      | 103      | 102         | 105          |
| 80-130902-11 - DL | MW-09R             | 106      | 100      | 102         | 105          |
| 180-130902-11 MS  | MW-09R             | 104      | 96       | 100         | 101          |
| 180-130902-11 MSD | MW-09R             | 102      | 93       | 97          | 102          |
| 180-130902-12     | MW-12              | 97       | 100      | 107         | 100          |
| 180-130902-13     | TRIP BLANK         | 106      | 102      | 105         | 104          |
| _CS 480-398560/5  | Lab Control Sample | 106      | 102      | 108         | 109          |
| CS 480-398666/4   | Lab Control Sample | 106      | 100      | 105         | 107          |
| LCS 480-398707/5  | Lab Control Sample | 100      | 95       | 100         | 101          |
| CS 480-399926/4   | Lab Control Sample | 95       | 95       | 101         | 99           |
| MB 480-398560/7   | Method Blank       | 107      | 103      | 109         | 106          |
| MB 480-398666/6   | Method Blank       | 105      | 107      | 105         | 104          |
| MB 480-398707/7   | Method Blank       | 103      | 100      | 99          | 102          |
| MB 480-399926/6   | Method Blank       | 96       | 98       | 102         | 99           |

#### Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

#### QC Sample Results

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-398560/7

**Matrix: Water** 

Analysis Batch: 398560

4-Methyl-2-pentanone (MIBK)

Chloroethane

Client Sample ID: Method Blank Prep Type: Total/NA

02/05/18 10:59

02/05/18 10:59

Dil Fac

Result Qualifier RL MDL Unit D Analyte Prepared Analyzed 1,1,1-Trichloroethane ND 1.0 0.82 ug/L 02/05/18 10:59 1,1,2,2-Tetrachloroethane ND 1.0 02/05/18 10:59 0.21 ug/L 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 02/05/18 10:59 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 0.31 ug/L

02/05/18 10:59 02/05/18 10:59 02/05/18 10:59

1,1-Dichloroethane ND 1.0 0.38 ug/L 1,1-Dichloroethene ND 1.0 0.29 ug/L 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 02/05/18 10:59 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 02/05/18 10:59 ug/L ND 1.0 0.79 1,2-Dichlorobenzene 02/05/18 10:59

ND 1,2-Dichloroethane 1.0 0.21 ug/L 02/05/18 10:59 1,2-Dichloropropane ND 1.0 0.72 ug/L 02/05/18 10:59 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 02/05/18 10:59 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 02/05/18 10:59 2-Butanone (MEK) ND 10 1.3 ug/L 02/05/18 10:59 ND 5.0 2-Hexanone 1.2 ug/L 02/05/18 10:59

5.0

2.1 ug/L

0.32 ug/L

0.68 ug/L

Acetone ND 10 02/05/18 10:59 3.0 ug/L Benzene ND 1.0 0.41 ug/L 02/05/18 10:59 Bromodichloromethane ND 1.0 0.39 ug/L 02/05/18 10:59 Bromoform ND 1.0 0.26 ug/L 02/05/18 10:59

ND

ND

Bromomethane ND 1.0 0.69 ug/L 02/05/18 10:59 ND Carbon disulfide 1.0 0.19 ug/L 02/05/18 10:59 ND Carbon tetrachloride 1.0 0.27 ug/L 02/05/18 10:59 ND Chlorobenzene 1.0 0.75 ug/L 02/05/18 10:59 Dibromochloromethane ND 1.0 0.32 ug/L 02/05/18 10:59

Chloroform ND 1.0 0.34 ug/L 02/05/18 10:59 ND 1.0 Chloromethane 0.35 ug/L 02/05/18 10:59 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 02/05/18 10:59 cis-1,3-Dichloropropene ND 1.0 02/05/18 10:59 0.36 ug/L Cyclohexane ND 1.0 0.18 ug/L 02/05/18 10:59 Dichlorodifluoromethane ND 1.0 02/05/18 10:59

1.0

Ethylbenzene ND 1.0 0.74 ug/L 02/05/18 10:59 1,2-Dibromoethane ND 1.0 0.73 ug/L 02/05/18 10:59 ND Isopropylbenzene 1.0 0.79 ug/L 02/05/18 10:59 ND 2.5 Methyl acetate 1.3 ug/L 02/05/18 10:59 0.16 ug/L Methyl tert-butyl ether ND 1.0 02/05/18 10:59

Methylcyclohexane 02/05/18 10:59 ND 1.0 0.16 ug/L ND ug/L Methylene Chloride 1.0 0.44 02/05/18 10:59 Styrene ND 1.0 0.73 ug/L 02/05/18 10:59 Tetrachloroethene ND 1.0 0.36 ug/L 02/05/18 10:59 ND 1.0 0.51 02/05/18 10:59 ug/L ND 1.0 0.90 02/05/18 10:59 trans-1.2-Dichloroethene ug/L

trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 02/05/18 10:59 Trichloroethene ND 1.0 0.46 ug/L 02/05/18 10:59 0.88 Trichlorofluoromethane ND 1.0 ug/L 02/05/18 10:59 Vinyl chloride ND 1.0 0.90 ug/L 02/05/18 10:59 Xylenes, Total ND 02/05/18 10:59 2.0 0.66 ug/L

# **QC Sample Results**

Client: LaBella Associates DPC

Tetrachloroethene

trans-1,2-Dichloroethene

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

| Surrogate                    | %Recovery Qualifi | ier Limits | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|-------------------|------------|----------|----------------|---------|--|
| Toluene-d8 (Surr)            | 107               | 80 - 120   |          | 02/05/18 10:59 | 1       |  |
| 1,2-Dichloroethane-d4 (Surr) | 103               | 77 - 120   |          | 02/05/18 10:59 | 1       |  |
| 4-Bromofluorobenzene (Surr)  | 109               | 73 - 120   |          | 02/05/18 10:59 | 1       |  |
| Dibromofluoromethane (Surr)  | 106               | 75 - 123   |          | 02/05/18 10:59 | 1       |  |

Lab Sample ID: LCS 480-398560/5 Client Sample ID: Lab Control Sample **Matrix: Water** 

Prep Type: Total/NA

| Watrix. Water                       |       |      |           |      |   |      | Fieb Type           | e. Total/NA |
|-------------------------------------|-------|------|-----------|------|---|------|---------------------|-------------|
| Analysis Batch: 398560              |       |      |           |      |   |      |                     |             |
|                                     | Spike |      | LCS       |      |   |      | %Rec.               |             |
| Analyte                             | Added |      | Qualifier | Unit | D | %Rec | Limits              |             |
| 1,1,1-Trichloroethane               | 25.0  | 24.1 |           | ug/L |   | 96   | 73 - 126            |             |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 22.7 |           | ug/L |   | 91   | 76 - 120            |             |
| 1,1,2-Trichloroethane               | 25.0  | 26.4 |           | ug/L |   | 106  | 76 - 122            |             |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 27.9 |           | ug/L |   | 111  | 61 - 148            |             |
| ne                                  | 05.0  | 00.0 |           | ,,   |   | 404  | 77 400              |             |
| 1,1-Dichloroethane                  | 25.0  | 26.0 |           | ug/L |   | 104  | 77 - 120            |             |
| 1,1-Dichloroethene                  | 25.0  | 26.3 |           | ug/L |   | 105  | 66 - 127            |             |
| 1,2,4-Trichlorobenzene              | 25.0  | 24.7 |           | ug/L |   | 99   | 79 - 122            |             |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 19.1 |           | ug/L |   | 76   | 56 - 134            |             |
| 1,2-Dichlorobenzene                 | 25.0  | 25.2 |           | ug/L |   | 101  | 80 - 124            |             |
| 1,2-Dichloroethane                  | 25.0  | 24.8 |           | ug/L |   | 99   | 75 - 120            |             |
| 1,2-Dichloropropane                 | 25.0  | 26.0 |           | ug/L |   | 104  | 76 _ 120            |             |
| 1,3-Dichlorobenzene                 | 25.0  | 24.3 |           | ug/L |   | 97   | 77 _ 120            |             |
| 1,4-Dichlorobenzene                 | 25.0  | 24.2 |           | ug/L |   | 97   | 80 - 120            |             |
| 2-Butanone (MEK)                    | 125   | 112  |           | ug/L |   | 89   | 57 - 140            |             |
| 2-Hexanone                          | 125   | 114  |           | ug/L |   | 91   | 65 - 127            |             |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 123  |           | ug/L |   | 98   | 71 - 125            |             |
| Acetone                             | 125   | 108  |           | ug/L |   | 86   | 56 - 142            |             |
| Benzene                             | 25.0  | 26.2 |           | ug/L |   | 105  | 71 - 124            |             |
| Bromodichloromethane                | 25.0  | 24.3 |           | ug/L |   | 97   | 80 - 122            |             |
| Bromoform                           | 25.0  | 24.1 |           | ug/L |   | 96   | 61 - 132            |             |
| Bromomethane                        | 25.0  | 27.5 |           | ug/L |   | 110  | 55 - 144            |             |
| Carbon disulfide                    | 25.0  | 23.8 |           | ug/L |   | 95   | 59 - 134            |             |
| Carbon tetrachloride                | 25.0  | 24.2 |           | ug/L |   | 97   | 72 - 134            |             |
| Chlorobenzene                       | 25.0  | 26.5 |           | ug/L |   | 106  | 80 - 120            |             |
| Dibromochloromethane                | 25.0  | 25.5 |           | ug/L |   | 102  | 75 - 125            |             |
| Chloroethane                        | 25.0  | 29.2 |           | ug/L |   | 117  | 69 - 136            |             |
| Chloroform                          | 25.0  | 25.2 |           | ug/L |   | 101  | 73 - 127            |             |
| Chloromethane                       | 25.0  | 23.9 |           | ug/L |   | 95   | 68 - 124            |             |
| cis-1,2-Dichloroethene              | 25.0  | 26.7 |           | ug/L |   | 107  | 74 - 124            |             |
| cis-1,3-Dichloropropene             | 25.0  | 25.3 |           | ug/L |   | 101  | 74 - 124            |             |
| Cyclohexane                         | 25.0  | 24.4 |           | ug/L |   | 97   | 59 - 135            |             |
| Dichlorodifluoromethane             | 25.0  | 25.9 |           | ug/L |   | 103  | 59 - 135            |             |
| Ethylbenzene                        | 25.0  | 25.2 |           | ug/L |   | 101  | 77 - 123            |             |
| 1,2-Dibromoethane                   | 25.0  | 26.2 |           | ug/L |   | 105  | 77 - 120            |             |
| Isopropylbenzene                    | 25.0  | 23.0 |           | ug/L |   | 92   | 77 - 122            |             |
| Methyl acetate                      | 50.0  | 50.3 |           | ug/L |   | 101  | 74 - 133            |             |
| Methyl tert-butyl ether             | 25.0  | 25.6 |           | ug/L |   | 102  | 77 _ 120            |             |
| Methylcyclohexane                   | 25.0  | 26.8 |           | ug/L |   | 107  | 68 <sub>-</sub> 134 |             |
| Methylene Chloride                  | 25.0  | 24.2 |           | ug/L |   | 97   | 75 - 124            |             |
| Styrene                             | 25.0  | 25.5 |           | ug/L |   | 102  | 80 _ 120            |             |
|                                     |       |      |           | -    |   |      |                     |             |

TestAmerica Buffalo

108

102

104

74 - 122

80 - 122

73 - 127

27.0

25.6

25.9

ug/L

ug/L

ug/L

25.0

25.0

25.0

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-398560/5

Lab Sample ID: MB 480-398666/6

**Matrix: Water** 

**Matrix: Water** 

Cyclohexane

Dichlorodifluoromethane

Analysis Batch: 398560

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

%Rec

| • • • • • • • • • • • • • • • • • • • • | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|-----------------------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                                 | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| trans-1,3-Dichloropropene               | 25.0  | 24.5   |           | ug/L |   | 98   | 80 - 120 |
| Trichloroethene                         | 25.0  | 25.2   |           | ug/L |   | 101  | 74 - 123 |
| Trichlorofluoromethane                  | 25.0  | 29.3   |           | ug/L |   | 117  | 62 - 150 |
| Vinyl chloride                          | 25.0  | 26.7   |           | ug/L |   | 107  | 65 - 133 |
|                                         |       |        |           |      |   |      |          |

LCS LCS %Recovery Qualifier Surrogate Limits Toluene-d8 (Surr) 106 80 - 120 1,2-Dichloroethane-d4 (Surr) 102 77 - 120 4-Bromofluorobenzene (Surr) 108 73 - 120 Dibromofluoromethane (Surr) 109 75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

| Analysis Batch: 398666                | MD | МВ        |     |      |      |          |          |                |         |
|---------------------------------------|----|-----------|-----|------|------|----------|----------|----------------|---------|
| Analyte                               |    | Qualifier | RL  | MDL  | Unit | D        | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND |           | 1.0 | 0.82 | ug/L | <u> </u> |          | 02/05/18 21:30 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND |           | 1.0 | 0.21 |      |          |          | 02/05/18 21:30 | 1       |
| 1,1,2-Trichloroethane                 | ND |           | 1.0 | 0.23 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND |           | 1.0 | 0.31 |      |          |          | 02/05/18 21:30 | 1       |
| 1,1-Dichloroethane                    | ND |           | 1.0 | 0.38 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,1-Dichloroethene                    | ND |           | 1.0 | 0.29 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,2,4-Trichlorobenzene                | ND |           | 1.0 | 0.41 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND |           | 1.0 | 0.39 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,2-Dichlorobenzene                   | ND |           | 1.0 | 0.79 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,2-Dichloroethane                    | ND |           | 1.0 | 0.21 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,2-Dichloropropane                   | ND |           | 1.0 | 0.72 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,3-Dichlorobenzene                   | ND |           | 1.0 | 0.78 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 1,4-Dichlorobenzene                   | ND |           | 1.0 | 0.84 | ug/L |          |          | 02/05/18 21:30 | 1       |
| 2-Butanone (MEK)                      | ND |           | 10  | 1.3  | ug/L |          |          | 02/05/18 21:30 | 1       |
| 2-Hexanone                            | ND |           | 5.0 | 1.2  | ug/L |          |          | 02/05/18 21:30 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND |           | 5.0 | 2.1  | ug/L |          |          | 02/05/18 21:30 | 1       |
| Acetone                               | ND |           | 10  | 3.0  | ug/L |          |          | 02/05/18 21:30 | 1       |
| Benzene                               | ND |           | 1.0 | 0.41 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Bromodichloromethane                  | ND |           | 1.0 | 0.39 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Bromoform                             | ND |           | 1.0 | 0.26 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Bromomethane                          | ND |           | 1.0 | 0.69 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Carbon disulfide                      | ND |           | 1.0 | 0.19 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Carbon tetrachloride                  | ND |           | 1.0 | 0.27 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Chlorobenzene                         | ND |           | 1.0 | 0.75 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Dibromochloromethane                  | ND |           | 1.0 | 0.32 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Chloroethane                          | ND |           | 1.0 | 0.32 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Chloroform                            | ND |           | 1.0 | 0.34 | ug/L |          |          | 02/05/18 21:30 | 1       |
| Chloromethane                         | ND |           | 1.0 | 0.35 | ug/L |          |          | 02/05/18 21:30 | 1       |
| cis-1,2-Dichloroethene                | ND |           | 1.0 | 0.81 | ug/L |          |          | 02/05/18 21:30 | 1       |
| cis-1,3-Dichloropropene               | ND |           | 1.0 | 0.36 | ug/L |          |          | 02/05/18 21:30 | 1       |
|                                       |    |           |     |      |      |          |          |                |         |

TestAmerica Buffalo

02/05/18 21:30

02/05/18 21:30

1.0

1.0

0.18 ug/L

0.68 ug/L

ND

ND

Client: LaBella Associates DPC Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-398666/6

**Matrix: Water** 

Analysis Batch: 398666

**Client Sample ID: Method Blank** Prep Type: Total/NA

|                           | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                   | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Ethylbenzene              | ND     |           | 1.0 | 0.74 | ug/L |   |          | 02/05/18 21:30 | 1       |
| 1,2-Dibromoethane         | ND     |           | 1.0 | 0.73 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Isopropylbenzene          | ND     |           | 1.0 | 0.79 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Methyl acetate            | ND     |           | 2.5 | 1.3  | ug/L |   |          | 02/05/18 21:30 | 1       |
| Methyl tert-butyl ether   | ND     |           | 1.0 | 0.16 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Methylcyclohexane         | ND     |           | 1.0 | 0.16 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Methylene Chloride        | ND     |           | 1.0 | 0.44 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Styrene                   | ND     |           | 1.0 | 0.73 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Tetrachloroethene         | ND     |           | 1.0 | 0.36 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Toluene                   | ND     |           | 1.0 | 0.51 | ug/L |   |          | 02/05/18 21:30 | 1       |
| trans-1,2-Dichloroethene  | ND     |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 21:30 | 1       |
| trans-1,3-Dichloropropene | ND     |           | 1.0 | 0.37 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Trichloroethene           | ND     |           | 1.0 | 0.46 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Trichlorofluoromethane    | ND     |           | 1.0 | 0.88 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Vinyl chloride            | ND     |           | 1.0 | 0.90 | ug/L |   |          | 02/05/18 21:30 | 1       |
| Xylenes, Total            | ND     |           | 2.0 | 0.66 | ug/L |   |          | 02/05/18 21:30 | 1       |

мв мв

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 105                 | 80 - 120 |          | 02/05/18 21:30 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 107                 | 77 - 120 |          | 02/05/18 21:30 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105                 | 73 - 120 |          | 02/05/18 21:30 | 1       |
| Dibromofluoromethane (Surr)  | 104                 | 75 - 123 |          | 02/05/18 21:30 | 1       |

Lab Sample ID: LCS 480-398666/4

**Matrix: Water** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

| Analysis Batch: 398666              |       |        |           |      |   |      |          |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|
|                                     | Spike | LCS    | LCS       |      |   |      | %Rec.    |
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| 1,1,1-Trichloroethane               | 25.0  | 24.0   |           | ug/L |   | 96   | 73 - 126 |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 22.6   |           | ug/L |   | 90   | 76 - 120 |
| 1,1,2-Trichloroethane               | 25.0  | 25.7   |           | ug/L |   | 103  | 76 - 122 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 25.6   |           | ug/L |   | 103  | 61 - 148 |
| ne                                  |       |        |           |      |   |      |          |
| 1,1-Dichloroethane                  | 25.0  | 26.1   |           | ug/L |   | 104  | 77 - 120 |
| 1,1-Dichloroethene                  | 25.0  | 25.5   |           | ug/L |   | 102  | 66 - 127 |
| 1,2,4-Trichlorobenzene              | 25.0  | 24.5   |           | ug/L |   | 98   | 79 - 122 |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 16.8   |           | ug/L |   | 67   | 56 - 134 |
| ,2-Dichlorobenzene                  | 25.0  | 25.1   |           | ug/L |   | 100  | 80 - 124 |
| 1,2-Dichloroethane                  | 25.0  | 25.2   |           | ug/L |   | 101  | 75 - 120 |
| ,2-Dichloropropane                  | 25.0  | 26.4   |           | ug/L |   | 106  | 76 - 120 |
| 1,3-Dichlorobenzene                 | 25.0  | 25.3   |           | ug/L |   | 101  | 77 - 120 |
| ,4-Dichlorobenzene                  | 25.0  | 24.6   |           | ug/L |   | 98   | 80 - 120 |
| 2-Butanone (MEK)                    | 125   | 127    |           | ug/L |   | 102  | 57 - 140 |
| 2-Hexanone                          | 125   | 112    |           | ug/L |   | 90   | 65 - 127 |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 117    |           | ug/L |   | 93   | 71 - 125 |
| Acetone                             | 125   | 99.4   |           | ug/L |   | 80   | 56 - 142 |
| Benzene                             | 25.0  | 26.3   |           | ug/L |   | 105  | 71 - 124 |
| Bromodichloromethane                | 25.0  | 23.7   |           | ug/L |   | 95   | 80 - 122 |
|                                     |       |        |           |      |   |      |          |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-398666/4

**Matrix: Water** 

Analysis Batch: 398666

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

|                           | Spike | LCS    | LCS       |      |   |      | %Rec.    |
|---------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Bromoform                 | 25.0  | 22.2   |           | ug/L |   | 89   | 61 - 132 |
| Bromomethane              | 25.0  | 26.8   |           | ug/L |   | 107  | 55 - 144 |
| Carbon disulfide          | 25.0  | 22.9   |           | ug/L |   | 92   | 59 - 134 |
| Carbon tetrachloride      | 25.0  | 23.4   |           | ug/L |   | 94   | 72 - 134 |
| Chlorobenzene             | 25.0  | 25.9   |           | ug/L |   | 103  | 80 - 120 |
| Dibromochloromethane      | 25.0  | 24.4   |           | ug/L |   | 98   | 75 - 125 |
| Chloroethane              | 25.0  | 27.6   |           | ug/L |   | 111  | 69 - 136 |
| Chloroform                | 25.0  | 26.2   |           | ug/L |   | 105  | 73 - 127 |
| Chloromethane             | 25.0  | 22.6   |           | ug/L |   | 91   | 68 - 124 |
| cis-1,2-Dichloroethene    | 25.0  | 26.6   |           | ug/L |   | 107  | 74 - 124 |
| cis-1,3-Dichloropropene   | 25.0  | 24.6   |           | ug/L |   | 99   | 74 - 124 |
| Cyclohexane               | 25.0  | 23.1   |           | ug/L |   | 92   | 59 - 135 |
| Dichlorodifluoromethane   | 25.0  | 22.1   |           | ug/L |   | 88   | 59 - 135 |
| Ethylbenzene              | 25.0  | 24.9   |           | ug/L |   | 100  | 77 - 123 |
| 1,2-Dibromoethane         | 25.0  | 24.9   |           | ug/L |   | 100  | 77 - 120 |
| Isopropylbenzene          | 25.0  | 23.2   |           | ug/L |   | 93   | 77 - 122 |
| Methyl acetate            | 50.0  | 47.8   |           | ug/L |   | 96   | 74 - 133 |
| Methyl tert-butyl ether   | 25.0  | 24.7   |           | ug/L |   | 99   | 77 - 120 |
| Methylcyclohexane         | 25.0  | 24.2   |           | ug/L |   | 97   | 68 - 134 |
| Methylene Chloride        | 25.0  | 24.6   |           | ug/L |   | 98   | 75 - 124 |
| Styrene                   | 25.0  | 24.6   |           | ug/L |   | 98   | 80 - 120 |
| Tetrachloroethene         | 25.0  | 27.0   |           | ug/L |   | 108  | 74 - 122 |
| Toluene                   | 25.0  | 24.8   |           | ug/L |   | 99   | 80 - 122 |
| trans-1,2-Dichloroethene  | 25.0  | 26.2   |           | ug/L |   | 105  | 73 - 127 |
| trans-1,3-Dichloropropene | 25.0  | 23.5   |           | ug/L |   | 94   | 80 - 120 |
| Trichloroethene           | 25.0  | 25.0   |           | ug/L |   | 100  | 74 - 123 |
| Trichlorofluoromethane    | 25.0  | 27.6   |           | ug/L |   | 111  | 62 - 150 |
| Vinyl chloride            | 25.0  | 25.0   |           | ug/L |   | 100  | 65 - 133 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 106       |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 105       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 107       |           | 75 - 123 |

Lab Sample ID: MB 480-398707/7

**Matrix: Water** 

Analysis Batch: 398707

Client Sample ID: Method Blank

Prep Type: Total/NA

|                                       | IVID   | IVID      |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/06/18 12:05 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/06/18 12:05 | 1       |
| I                                     |        |           |     |      |      |   |          |                |         |

Page 29 of 47

Client: LaBella Associates DPC Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-398707/7

**Matrix: Water** 

Analysis Batch: 398707

Client Sample ID: Method Blank

Prep Type: Total/NA

|                             | MB I     |           |     |      |              |   |          |                |         |
|-----------------------------|----------|-----------|-----|------|--------------|---|----------|----------------|---------|
| Analyte                     | Result   | Qualifier | RL  | MDL  |              | D | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichlorobenzene         | ND       |           | 1.0 | 0.79 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 1,2-Dichloroethane          | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 1,2-Dichloropropane         | ND       |           | 1.0 | 0.72 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 1,3-Dichlorobenzene         | ND       |           | 1.0 | 0.78 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 1,4-Dichlorobenzene         | ND       |           | 1.0 | 0.84 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 2-Butanone (MEK)            | ND       |           | 10  | 1.3  | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 2-Hexanone                  | ND       |           | 5.0 | 1.2  | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 4-Methyl-2-pentanone (MIBK) | ND       |           | 5.0 | 2.1  | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Acetone                     | ND       |           | 10  | 3.0  | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Benzene                     | ND       |           | 1.0 | 0.41 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Bromodichloromethane        | ND       |           | 1.0 | 0.39 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Bromoform                   | ND       |           | 1.0 | 0.26 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Bromomethane                | ND       |           | 1.0 | 0.69 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Carbon disulfide            | ND       |           | 1.0 | 0.19 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Carbon tetrachloride        | ND       |           | 1.0 | 0.27 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Chlorobenzene               | ND       |           | 1.0 | 0.75 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Dibromochloromethane        | ND       |           | 1.0 | 0.32 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Chloroethane                | ND       |           | 1.0 | 0.32 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Chloroform                  | ND       |           | 1.0 | 0.34 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Chloromethane               | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| cis-1,2-Dichloroethene      | ND       |           | 1.0 | 0.81 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| cis-1,3-Dichloropropene     | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Cyclohexane                 | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Dichlorodifluoromethane     | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Ethylbenzene                | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| 1,2-Dibromoethane           | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Isopropylbenzene            | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Methyl acetate              | ND       |           | 2.5 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Methyl tert-butyl ether     | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Methylcyclohexane           | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Methylene Chloride          | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Styrene                     | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Tetrachloroethene           | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Toluene                     | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| trans-1,2-Dichloroethene    | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| trans-1,3-Dichloropropene   | ND       |           | 1.0 |      | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Trichloroethene             | ND<br>ND |           | 1.0 |      | ug/L<br>ug/L |   |          | 02/06/18 12:05 | 1       |
| Trichlorofluoromethane      | ND       |           | 1.0 |      | ug/L<br>ug/L |   |          | 02/06/18 12:05 | ı<br>1  |
|                             |          |           |     |      | -            |   |          |                | -       |
| Vinyl chloride              | ND       |           | 1.0 | 0.90 | ug/L         |   |          | 02/06/18 12:05 | 1       |
| Xylenes, Total              | ND       |           | 2.0 | 0.66 | ug/L         |   |          | 02/06/18 12:05 | 1       |

| ΜВ | MB   |  |
|----|------|--|
|    | IVIB |  |

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepar | ed Analyzed    | Dil Fac |
|------------------------------|-----------|-----------|----------|--------|----------------|---------|
| Toluene-d8 (Surr)            | 103       |           | 80 - 120 |        | 02/06/18 12:05 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 100       |           | 77 - 120 |        | 02/06/18 12:05 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 73 - 120 |        | 02/06/18 12:05 | 1       |
| Dibromofluoromethane (Surr)  | 102       |           | 75 - 123 |        | 02/06/18 12:05 | 1       |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-398707/5

**Matrix: Water** 

Client Sample ID: Lab Control Sample Prep Type: Total/NA

|                                            | Spike        | LCS          | LCS       |              |   |      | %Rec.                                      |  |
|--------------------------------------------|--------------|--------------|-----------|--------------|---|------|--------------------------------------------|--|
| Analyte                                    | Added        | Result       | Qualifier | Unit         | D | %Rec | Limits                                     |  |
| 1,1,1-Trichloroethane                      | 25.0         | 23.4         |           | ug/L         |   | 94   | 73 - 126                                   |  |
| 1,1,2,2-Tetrachloroethane                  | 25.0         | 24.4         |           | ug/L         |   | 98   | 76 - 120                                   |  |
| 1,1,2-Trichloroethane                      | 25.0         | 24.7         |           | ug/L         |   | 99   | 76 - 122                                   |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha        | 25.0         | 24.5         |           | ug/L         |   | 98   | 61 - 148                                   |  |
| ne                                         |              |              |           |              |   |      |                                            |  |
| 1,1-Dichloroethane                         | 25.0         | 23.9         |           | ug/L         |   | 96   | 77 - 120                                   |  |
| 1,1-Dichloroethene                         | 25.0         | 22.5         |           | ug/L         |   | 90   | 66 - 127                                   |  |
| 1,2,4-Trichlorobenzene                     | 25.0         | 27.7         |           | ug/L         |   | 111  | 79 - 122                                   |  |
| 1,2-Dibromo-3-Chloropropane                | 25.0         | 25.2         |           | ug/L         |   | 101  | 56 - 134                                   |  |
| 1,2-Dichlorobenzene                        | 25.0         | 26.3         |           | ug/L         |   | 105  | 80 - 124                                   |  |
| 1,2-Dichloroethane                         | 25.0         | 22.7         |           | ug/L         |   | 91   | 75 - 120                                   |  |
| 1,2-Dichloropropane                        | 25.0         | 25.3         |           | ug/L         |   | 101  | 76 - 120                                   |  |
| 1,3-Dichlorobenzene                        | 25.0         | 26.0         |           | ug/L         |   | 104  | 77 <sub>-</sub> 120                        |  |
| 1,4-Dichlorobenzene                        | 25.0         | 25.6         |           | ug/L         |   | 102  | 80 - 120                                   |  |
| 2-Butanone (MEK)                           | 125          | 95.8         |           | ug/L         |   | 77   | 57 - 140                                   |  |
| 2-Hexanone                                 | 125          | 101          |           | ug/L         |   | 81   | 65 - 127                                   |  |
| 4-Methyl-2-pentanone (MIBK)                | 125          | 108          |           | ug/L         |   | 87   | 71 - 125                                   |  |
| Acetone                                    | 125          | 94.1         |           | ug/L         |   | 75   | 56 - 142                                   |  |
| Benzene                                    | 25.0         | 23.6         |           | ug/L         |   | 94   | 71 - 124                                   |  |
| Bromodichloromethane                       | 25.0         | 24.7         |           | ug/L         |   | 99   | 80 - 122                                   |  |
| Bromoform                                  | 25.0         | 23.6         |           | ug/L         |   | 95   | 61 - 132                                   |  |
| Bromomethane                               | 25.0         | 20.8         |           | ug/L         |   | 83   | 55 - 144                                   |  |
| Carbon disulfide                           | 25.0         | 22.9         |           | ug/L         |   | 92   | 59 - 134                                   |  |
| Carbon tetrachloride                       | 25.0         | 24.1         |           | ug/L         |   | 96   | 72 - 134                                   |  |
| Chlorobenzene                              | 25.0         | 24.6         |           | ug/L         |   | 98   | 80 - 120                                   |  |
| Dibromochloromethane                       | 25.0         | 25.0         |           | ug/L         |   | 100  | 75 - 125                                   |  |
| Chloroethane                               | 25.0         | 20.9         |           | ug/L         |   | 84   | 69 - 136                                   |  |
| Chloroform                                 | 25.0         | 23.5         |           | ug/L         |   | 94   | 73 _ 127                                   |  |
| Chloromethane                              | 25.0         | 19.5         |           | ug/L         |   | 78   | 68 - 124                                   |  |
| cis-1,2-Dichloroethene                     | 25.0         | 24.5         |           | ug/L         |   | 98   | 74 - 124                                   |  |
| cis-1,3-Dichloropropene                    | 25.0         | 25.0         |           | ug/L         |   | 100  | 74 - 124                                   |  |
| Cyclohexane                                | 25.0         | 24.3         |           | ug/L         |   | 97   | 59 - 135                                   |  |
| Dichlorodifluoromethane                    | 25.0         | 17.0         |           | ug/L         |   | 68   | 59 <sub>-</sub> 135                        |  |
| Ethylbenzene                               | 25.0         | 24.1         |           | ug/L         |   | 96   | 77 - 123                                   |  |
| 1,2-Dibromoethane                          | 25.0         | 24.7         |           | ug/L         |   | 99   | 77 - 120                                   |  |
| sopropylbenzene                            | 25.0         | 25.0         |           | ug/L         |   | 100  | 77 - 122                                   |  |
| Methyl acetate                             | 50.0         | 39.4         |           | ug/L         |   | 79   | 74 - 133                                   |  |
| Methyl tert-butyl ether                    | 25.0         | 23.6         |           | ug/L         |   | 94   | 77 - 120                                   |  |
| Methylcyclohexane                          | 25.0         | 24.2         |           | ug/L         |   | 97   | 68 - 134                                   |  |
| Methylene Chloride                         | 25.0         | 23.9         |           | ug/L         |   | 96   | 75 - 124                                   |  |
| Styrene                                    | 25.0         | 25.5         |           | ug/L         |   | 102  | 80 - 120                                   |  |
| Tetrachloroethene                          | 25.0         | 23.4         |           | ug/L         |   | 94   | 74 - 122                                   |  |
| Toluene                                    | 25.0         | 23.4         |           | ug/L         |   | 93   | 80 <sub>-</sub> 122                        |  |
| rans-1,2-Dichloroethene                    | 25.0         | 23.4         |           | ug/L         |   | 93   | 73 - 127                                   |  |
| rans-1,2-Dichloroethene                    | 25.0         | 25.8         |           | ug/L<br>ug/L |   | 103  | 80 <sub>-</sub> 120                        |  |
| Trans-1,3-Dichloropropene  Trichloroethene | 25.0<br>25.0 | 23.2         |           | -            |   | 93   | 74 <sub>-</sub> 123                        |  |
|                                            |              |              |           | ug/L         |   |      |                                            |  |
| Trichlorofluoromethane                     | 25.0<br>25.0 | 21.0<br>19.2 |           | ug/L         |   | 84   | 62 <sub>-</sub> 150<br>65 <sub>-</sub> 133 |  |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-398707/5

Lab Sample ID: 480-130902-11 MS

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 398707

Analysis Batch: 398707

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 100       |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 95        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 101       |           | 75 - 123 |

Client Sample ID: MW-09R

Prep Type: Total/NA

%Rec.

MS MS Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1,1,1-Trichloroethane ND 250 269 73 - 126 ug/L 107 1,1,2,2-Tetrachloroethane ND 250 243 ug/L 97 76 - 120 1,1,2-Trichloroethane ND 250 253 ug/L 101 76 - 122

| 1,1,2 Thomoroculano                 | ND  | 200  | 200  | ug/L  | 101 | 10 - 122            |  |
|-------------------------------------|-----|------|------|-------|-----|---------------------|--|
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND  | 250  | 275  | ug/L  | 110 | 61 - 148            |  |
| ne                                  |     |      |      |       |     |                     |  |
| 1,1-Dichloroethane                  | ND  | 250  | 258  | ug/L  | 103 | 77 - 120            |  |
| 1,1-Dichloroethene                  | ND  | 250  | 265  | ug/L  | 106 | 66 - 127            |  |
| 1,2,4-Trichlorobenzene              | ND  | 250  | 288  | ug/L  | 115 | 79 - 122            |  |
| 1,2-Dibromo-3-Chloropropane         | ND  | 250  | 241  | ug/L  | 96  | 56 - 134            |  |
| 1,2-Dichlorobenzene                 | ND  | 250  | 271  | ug/L  | 109 | 80 - 124            |  |
| 1,2-Dichloroethane                  | ND  | 250  | 226  | ug/L  | 90  | 75 - 120            |  |
| 1,2-Dichloropropane                 | ND  | 250  | 254  | ug/L  | 102 | 76 - 120            |  |
| 1,3-Dichlorobenzene                 | ND  | 250  | 265  | ug/L  | 106 | 77 - 120            |  |
| 1,4-Dichlorobenzene                 | ND  | 250  | 260  | ug/L  | 104 | 78 - 124            |  |
| 2-Butanone (MEK)                    | ND  | 1250 | 994  | ug/L  | 80  | 57 - 140            |  |
| 2-Hexanone                          | ND  | 1250 | 1060 | ug/L  | 84  | 65 _ 127            |  |
| 4-Methyl-2-pentanone (MIBK)         | ND  | 1250 | 1120 | ug/L  | 90  | 71 - 125            |  |
| Acetone                             | ND  | 1250 | 1020 | ug/L  | 82  | 56 - 142            |  |
| Benzene                             | ND  | 250  | 253  | ug/L  | 101 | 71 - 124            |  |
| Bromodichloromethane                | ND  | 250  | 247  | ug/L  | 99  | 80 - 122            |  |
| Bromoform                           | ND  | 250  | 225  | ug/L  | 90  | 61 - 132            |  |
| Bromomethane                        | ND  | 250  | 225  | ug/L  | 90  | 55 - 144            |  |
| Carbon disulfide                    | ND  | 250  | 246  | ug/L  | 98  | 59 - 134            |  |
| Carbon tetrachloride                | ND  | 250  | 265  | ug/L  | 106 | 72 - 134            |  |
| Chlorobenzene                       | ND  | 250  | 264  | ug/L  | 106 | 80 - 120            |  |
| Dibromochloromethane                | ND  | 250  | 248  | ug/L  | 99  | 75 - 125            |  |
| Chloroethane                        | ND  | 250  | 245  | ug/L  | 98  | 69 - 136            |  |
| Chloroform                          | ND  | 250  | 247  | ug/L  | 99  | 73 - 127            |  |
| Chloromethane                       | ND  | 250  | 232  | ug/L  | 93  | 68 - 124            |  |
| cis-1,2-Dichloroethene              | 410 | 250  | 636  | ug/L  | 91  | 74 - 124            |  |
| cis-1,3-Dichloropropene             | ND  | 250  | 239  | ug/L  | 96  | 74 - 124            |  |
| Cyclohexane                         | 10  | 250  | 292  | ug/L  | 112 | 59 - 135            |  |
| Dichlorodifluoromethane             | ND  | 250  | 224  | ug/L  | 90  | 59 <sub>-</sub> 135 |  |
| Ethylbenzene                        | ND  | 250  | 264  | ug/L  | 106 | 77 - 123            |  |
| 1,2-Dibromoethane                   | ND  | 250  | 250  | ug/L  | 100 | 77 - 120            |  |
| Isopropylbenzene                    | ND  | 250  | 272  | ug/L  | 109 | 77 - 122            |  |
| Methyl acetate                      | ND  | 500  | 403  | ug/L  | 81  | 74 - 133            |  |
| Methyl tert-butyl ether             | ND  | 250  | 236  | ug/L  | 94  | 77 - 120            |  |
|                                     | 112 | 200  | 200  | 49, L | J-1 | 120                 |  |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-130902-11 MS

**Matrix: Water** 

Analysis Batch: 398707

Client Sample ID: MW-09R Prep Type: Total/NA

|                           | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec.    |  |
|---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                   | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Methylcyclohexane         | 7.4    | J         | 250   | 281    |           | ug/L |   | 110  | 68 - 134 |  |
| Methylene Chloride        | ND     |           | 250   | 248    |           | ug/L |   | 99   | 75 - 124 |  |
| Styrene                   | ND     |           | 250   | 263    |           | ug/L |   | 105  | 80 - 120 |  |
| Tetrachloroethene         | ND     |           | 250   | 270    |           | ug/L |   | 108  | 74 - 122 |  |
| Toluene                   | ND     |           | 250   | 257    |           | ug/L |   | 103  | 80 - 122 |  |
| trans-1,2-Dichloroethene  | ND     |           | 250   | 265    |           | ug/L |   | 106  | 73 - 127 |  |
| trans-1,3-Dichloropropene | ND     |           | 250   | 252    |           | ug/L |   | 101  | 80 - 120 |  |
| Trichloroethene           | 35     |           | 250   | 282    |           | ug/L |   | 99   | 74 - 123 |  |
| Trichlorofluoromethane    | ND     |           | 250   | 262    |           | ug/L |   | 105  | 62 - 150 |  |
| Vinyl chloride            | 93     |           | 250   | 325    |           | ug/L |   | 93   | 65 - 133 |  |
|                           |        |           |       |        |           |      |   |      |          |  |

MS MS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 104       |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 96        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 101       |           | 75 - 123 |

Lab Sample ID: 480-130902-11 MSD

Matrix: Water

| Client | Samp   | le ID: | MW-09R   |  |
|--------|--------|--------|----------|--|
|        | Drop 1 | wno:   | Total/NA |  |

| Analysis Batch: 398707              |        |           |       |        |           |      |   |      |          |     |       |
|-------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
|                                     | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
| Analyte                             | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,1,1-Trichloroethane               | ND     |           | 250   | 266    |           | ug/L |   | 107  | 73 - 126 | 1   | 15    |
| 1,1,2,2-Tetrachloroethane           | ND     |           | 250   | 245    |           | ug/L |   | 98   | 76 - 120 | 1   | 15    |
| 1,1,2-Trichloroethane               | ND     |           | 250   | 247    |           | ug/L |   | 99   | 76 - 122 | 3   | 15    |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 250   | 293    |           | ug/L |   | 117  | 61 - 148 | 6   | 20    |
| ne                                  |        |           |       |        |           |      |   |      |          |     |       |
| 1,1-Dichloroethane                  | ND     |           | 250   | 257    |           | ug/L |   | 103  | 77 - 120 | 1   | 20    |
| 1,1-Dichloroethene                  | ND     |           | 250   | 257    |           | ug/L |   | 103  | 66 - 127 | 3   | 16    |
| 1,2,4-Trichlorobenzene              | ND     |           | 250   | 285    |           | ug/L |   | 114  | 79 - 122 | 1   | 20    |
| 1,2-Dibromo-3-Chloropropane         | ND     |           | 250   | 247    |           | ug/L |   | 99   | 56 - 134 | 3   | 15    |
| 1,2-Dichlorobenzene                 | ND     |           | 250   | 265    |           | ug/L |   | 106  | 80 - 124 | 2   | 20    |
| 1,2-Dichloroethane                  | ND     |           | 250   | 224    |           | ug/L |   | 90   | 75 - 120 | 1   | 20    |
| 1,2-Dichloropropane                 | ND     |           | 250   | 261    |           | ug/L |   | 104  | 76 - 120 | 3   | 20    |
| 1,3-Dichlorobenzene                 | ND     |           | 250   | 263    |           | ug/L |   | 105  | 77 - 120 | 1   | 20    |
| 1,4-Dichlorobenzene                 | ND     |           | 250   | 265    |           | ug/L |   | 106  | 78 - 124 | 2   | 20    |
| 2-Butanone (MEK)                    | ND     |           | 1250  | 1010   |           | ug/L |   | 81   | 57 - 140 | 1   | 20    |
| 2-Hexanone                          | ND     |           | 1250  | 1040   |           | ug/L |   | 83   | 65 - 127 | 2   | 15    |
| 4-Methyl-2-pentanone (MIBK)         | ND     |           | 1250  | 1100   |           | ug/L |   | 88   | 71 - 125 | 2   | 35    |
| Acetone                             | ND     |           | 1250  | 1020   |           | ug/L |   | 82   | 56 - 142 | 0   | 15    |
| Benzene                             | ND     |           | 250   | 253    |           | ug/L |   | 101  | 71 - 124 | 0   | 13    |
| Bromodichloromethane                | ND     |           | 250   | 245    |           | ug/L |   | 98   | 80 - 122 | 1   | 15    |
| Bromoform                           | ND     |           | 250   | 230    |           | ug/L |   | 92   | 61 - 132 | 2   | 15    |
| Bromomethane                        | ND     |           | 250   | 233    |           | ug/L |   | 93   | 55 - 144 | 4   | 15    |
| Carbon disulfide                    | ND     |           | 250   | 244    |           | ug/L |   | 98   | 59 - 134 | 1   | 15    |
| Carbon tetrachloride                | ND     |           | 250   | 263    |           | ug/L |   | 105  | 72 - 134 | 1   | 15    |
| Chlorobenzene                       | ND     |           | 250   | 253    |           | ug/L |   | 101  | 80 - 120 | 4   | 25    |
| Dibromochloromethane                | ND     |           | 250   | 246    |           | ug/L |   | 98   | 75 - 125 | 1   | 15    |
|                                     |        |           |       |        |           | •    |   |      |          |     |       |

Client: LaBella Associates DPC Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-130902-11 MSD

**Matrix: Water** 

Analysis Batch: 398707

Client Sample ID: MW-09R

Prep Type: Total/NA

|                           | Sample | Sample    | Spike | MSD    | MSD       |      |   |      | %Rec.    |     | RPD   |
|---------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                   | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Chloroethane              | ND     |           | 250   | 241    |           | ug/L |   | 96   | 69 - 136 | 2   | 15    |
| Chloroform                | ND     |           | 250   | 243    |           | ug/L |   | 97   | 73 - 127 | 2   | 20    |
| Chloromethane             | ND     |           | 250   | 229    |           | ug/L |   | 92   | 68 - 124 | 1   | 15    |
| cis-1,2-Dichloroethene    | 410    |           | 250   | 632    |           | ug/L |   | 89   | 74 - 124 | 1   | 15    |
| cis-1,3-Dichloropropene   | ND     |           | 250   | 239    |           | ug/L |   | 96   | 74 - 124 | 0   | 15    |
| Cyclohexane               | 10     |           | 250   | 297    |           | ug/L |   | 115  | 59 - 135 | 2   | 20    |
| Dichlorodifluoromethane   | ND     |           | 250   | 223    |           | ug/L |   | 89   | 59 - 135 | 0   | 20    |
| Ethylbenzene              | ND     |           | 250   | 259    |           | ug/L |   | 104  | 77 - 123 | 2   | 15    |
| 1,2-Dibromoethane         | ND     |           | 250   | 241    |           | ug/L |   | 96   | 77 - 120 | 4   | 15    |
| Isopropylbenzene          | ND     |           | 250   | 271    |           | ug/L |   | 108  | 77 - 122 | 1   | 20    |
| Methyl acetate            | ND     |           | 500   | 401    |           | ug/L |   | 80   | 74 - 133 | 0   | 20    |
| Methyl tert-butyl ether   | ND     |           | 250   | 233    |           | ug/L |   | 93   | 77 - 120 | 1   | 37    |
| Methylcyclohexane         | 7.4    | J         | 250   | 293    |           | ug/L |   | 114  | 68 - 134 | 4   | 20    |
| Methylene Chloride        | ND     |           | 250   | 245    |           | ug/L |   | 98   | 75 - 124 | 1   | 15    |
| Styrene                   | ND     |           | 250   | 265    |           | ug/L |   | 106  | 80 - 120 | 1   | 20    |
| Tetrachloroethene         | ND     |           | 250   | 264    |           | ug/L |   | 106  | 74 - 122 | 2   | 20    |
| Toluene                   | ND     |           | 250   | 253    |           | ug/L |   | 101  | 80 - 122 | 2   | 15    |
| trans-1,2-Dichloroethene  | ND     |           | 250   | 256    |           | ug/L |   | 103  | 73 - 127 | 3   | 20    |
| trans-1,3-Dichloropropene | ND     |           | 250   | 245    |           | ug/L |   | 98   | 80 - 120 | 3   | 15    |
| Trichloroethene           | 35     |           | 250   | 286    |           | ug/L |   | 100  | 74 - 123 | 1   | 16    |
| Trichlorofluoromethane    | ND     |           | 250   | 270    |           | ug/L |   | 108  | 62 - 150 | 3   | 20    |
| Vinyl chloride            | 93     |           | 250   | 323    |           | ug/L |   | 92   | 65 _ 133 | 0   | 15    |

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 102       |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 93        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 97        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 102       |           | 75 123   |

Lab Sample ID: MB 480-399926/6

**Matrix: Water** 

Analysis Batch: 399926

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 02/14/18 20:51 | 1       |

TestAmerica Buffalo

Page 34 of 47

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-399926/6

**Matrix: Water** 

Analysis Batch: 399926

Client Sample ID: Method Blank

Prep Type: Total/NA

|                             | MB     | MB        |     |      |      |   |          |                |         |
|-----------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                     | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 2-Hexanone                  | ND     |           | 5.0 | 1.2  | ug/L |   |          | 02/14/18 20:51 | 1       |
| 4-Methyl-2-pentanone (MIBK) | ND     |           | 5.0 | 2.1  | ug/L |   |          | 02/14/18 20:51 | 1       |
| Acetone                     | ND     |           | 10  | 3.0  | ug/L |   |          | 02/14/18 20:51 | 1       |
| Benzene                     | ND     |           | 1.0 | 0.41 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Bromodichloromethane        | ND     |           | 1.0 | 0.39 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Bromoform                   | ND     |           | 1.0 | 0.26 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Bromomethane                | ND     |           | 1.0 | 0.69 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Carbon disulfide            | ND     |           | 1.0 | 0.19 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Carbon tetrachloride        | ND     |           | 1.0 | 0.27 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Chlorobenzene               | ND     |           | 1.0 | 0.75 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Dibromochloromethane        | ND     |           | 1.0 | 0.32 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Chloroethane                | ND     |           | 1.0 | 0.32 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Chloroform                  | ND     |           | 1.0 | 0.34 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Chloromethane               | ND     |           | 1.0 | 0.35 | ug/L |   |          | 02/14/18 20:51 | 1       |
| cis-1,2-Dichloroethene      | ND     |           | 1.0 | 0.81 | ug/L |   |          | 02/14/18 20:51 | 1       |
| cis-1,3-Dichloropropene     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Cyclohexane                 | ND     |           | 1.0 | 0.18 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Dichlorodifluoromethane     | ND     |           | 1.0 | 0.68 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Ethylbenzene                | ND     |           | 1.0 | 0.74 | ug/L |   |          | 02/14/18 20:51 | 1       |
| 1,2-Dibromoethane           | ND     |           | 1.0 | 0.73 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Isopropylbenzene            | ND     |           | 1.0 | 0.79 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Methyl acetate              | ND     |           | 2.5 | 1.3  | ug/L |   |          | 02/14/18 20:51 | 1       |
| Methyl tert-butyl ether     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Methylcyclohexane           | ND     |           | 1.0 | 0.16 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Methylene Chloride          | ND     |           | 1.0 | 0.44 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Styrene                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Tetrachloroethene           | ND     |           | 1.0 | 0.36 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Toluene                     | ND     |           | 1.0 | 0.51 | ug/L |   |          | 02/14/18 20:51 | 1       |
| trans-1,2-Dichloroethene    | ND     |           | 1.0 | 0.90 | ug/L |   |          | 02/14/18 20:51 | 1       |
| trans-1,3-Dichloropropene   | ND     |           | 1.0 | 0.37 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Trichloroethene             | ND     |           | 1.0 | 0.46 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Trichlorofluoromethane      | ND     |           | 1.0 | 0.88 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Vinyl chloride              | ND     |           | 1.0 | 0.90 | ug/L |   |          | 02/14/18 20:51 | 1       |
| Xylenes, Total              | ND     |           | 2.0 | 0.66 | ug/L |   |          | 02/14/18 20:51 | 1       |

| Surrogate                    | %Recovery | Qualifier | Limits   |   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|---|----------|----------------|---------|
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 | - |          | 02/14/18 20:51 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 77 - 120 |   |          | 02/14/18 20:51 | 1       |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |   |          | 02/14/18 20:51 | 1       |
| Dibromofluoromethane (Surr)  | 99        |           | 75 - 123 |   |          | 02/14/18 20:51 | 1       |

Lab Sample ID: LCS 480-399926/4

**Matrix: Water** 

Analysis Batch: 399926

|                           | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|---------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,1,1-Trichloroethane     | 25.0  | 25.8   |           | ug/L |   | 103  | 73 - 126 |  |
| 1,1,2,2-Tetrachloroethane | 25.0  | 21.4   |           | ug/L |   | 86   | 76 - 120 |  |

TestAmerica Buffalo

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Page 35 of 47

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-399926/4

**Matrix: Water** 

| Client Sample II | D: L | _ab | Contro | ol Sample |
|------------------|------|-----|--------|-----------|
|                  | P    | rep | Type:  | Total/NA  |

|                                     | Spike | LCS    | LCS       |              |   |          | %Rec.               |  |
|-------------------------------------|-------|--------|-----------|--------------|---|----------|---------------------|--|
| Analyte                             | Added | Result | Qualifier | Unit         | D | %Rec     | Limits              |  |
| 1,1,2-Trichloroethane               | 25.0  | 23.3   |           | ug/L         |   | 93       | 76 - 122            |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 27.8   |           | ug/L         |   | 111      | 61 - 148            |  |
| ne                                  |       |        |           |              |   |          |                     |  |
| 1,1-Dichloroethane                  | 25.0  | 25.3   |           | ug/L         |   | 101      | 77 _ 120            |  |
| 1,1-Dichloroethene                  | 25.0  | 25.3   |           | ug/L         |   | 101      | 66 - 127            |  |
| 1,2,4-Trichlorobenzene              | 25.0  | 25.0   |           | ug/L         |   | 100      | 79 - 122            |  |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 17.9   |           | ug/L         |   | 72       | 56 - 134            |  |
| 1,2-Dichlorobenzene                 | 25.0  | 25.7   |           | ug/L         |   | 103      | 80 _ 124            |  |
| 1,2-Dichloroethane                  | 25.0  | 25.1   |           | ug/L         |   | 101      | 75 - 120            |  |
| 1,2-Dichloropropane                 | 25.0  | 23.6   |           | ug/L         |   | 94       | 76 - 120            |  |
| 1,3-Dichlorobenzene                 | 25.0  | 25.6   |           | ug/L         |   | 102      | 77 - 120            |  |
| 1,4-Dichlorobenzene                 | 25.0  | 25.2   |           | ug/L         |   | 101      | 80 - 120            |  |
| 2-Butanone (MEK)                    | 125   | 120    |           | ug/L         |   | 96       | 57 - 140            |  |
| 2-Hexanone                          | 125   | 112    |           | ug/L         |   | 89       | 65 - 127            |  |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 111    |           | ug/L         |   | 89       | 71 <sub>-</sub> 125 |  |
| Acetone                             | 125   | 119    |           | ug/L         |   | 95       | 56 - 142            |  |
| Benzene                             | 25.0  | 26.3   |           | ug/L         |   | 105      | 71 - 124            |  |
| Bromodichloromethane                | 25.0  | 24.0   |           | ug/L         |   | 96       | 80 - 122            |  |
| Bromoform                           | 25.0  | 20.7   |           | ug/L         |   | 83       | 61 - 132            |  |
| Bromomethane                        | 25.0  | 23.2   |           | ug/L         |   | 93       | 55 - 144            |  |
| Carbon disulfide                    | 25.0  | 24.0   |           | ug/L         |   | 96       | 59 - 134            |  |
| Carbon tetrachloride                | 25.0  | 25.4   |           | ug/L         |   | 102      | 72 - 134            |  |
| Chlorobenzene                       | 25.0  | 25.6   |           | ug/L         |   | 102      | 80 - 120            |  |
| Dibromochloromethane                | 25.0  | 22.9   |           | ug/L         |   | 92       | 75 - 125            |  |
| Chloroethane                        | 25.0  | 21.2   |           | ug/L         |   | 85       | 69 - 136            |  |
| Chloroform                          | 25.0  | 24.1   |           | ug/L         |   | 97       | 73 - 127            |  |
| Chloromethane                       | 25.0  | 19.2   |           | ug/L         |   | 77       | 68 _ 124            |  |
| cis-1,2-Dichloroethene              | 25.0  | 25.5   |           | ug/L         |   | 102      | 74 - 124            |  |
| cis-1,3-Dichloropropene             | 25.0  | 24.5   |           | ug/L         |   | 98       | 74 - 124            |  |
| Cyclohexane                         | 25.0  | 24.8   |           | ug/L         |   | 99       | 59 _ 135            |  |
| Dichlorodifluoromethane             | 25.0  | 16.7   |           | ug/L         |   | 67       | 59 - 135            |  |
| Ethylbenzene                        | 25.0  | 24.7   |           | ug/L         |   | 99       | 77 - 123            |  |
| 1,2-Dibromoethane                   | 25.0  | 24.2   |           | ug/L         |   | 97       | 77 - 120            |  |
| Isopropylbenzene                    | 25.0  | 24.2   |           | ug/L         |   | 97       | 77 - 122            |  |
| Methyl acetate                      | 50.0  | 44.3   |           | ug/L         |   | 89       | 74 - 133            |  |
| Methyl tert-butyl ether             | 25.0  | 24.4   |           | ug/L         |   | 98       | 77 - 120            |  |
| Methylcyclohexane                   | 25.0  | 24.9   |           | ug/L         |   | 99       | 68 _ 134            |  |
| Methylene Chloride                  | 25.0  | 24.0   |           | ug/L         |   | 96       | 75 - 124            |  |
| Styrene                             | 25.0  | 24.8   |           | ug/L         |   | 99       | 80 - 120            |  |
| Tetrachloroethene                   | 25.0  | 27.9   |           | ug/L         |   | 112      | 74 - 122            |  |
| Toluene                             | 25.0  | 25.5   |           | ug/L         |   | 102      | 80 - 122            |  |
| trans-1,2-Dichloroethene            | 25.0  | 25.4   |           | ug/L<br>ug/L |   | 102      | 73 - 127            |  |
| trans-1,3-Dichloropropene           | 25.0  | 23.2   |           | ug/L<br>ug/L |   | 93       | 80 - 120            |  |
| Trichloroethene                     | 25.0  | 25.9   |           | ug/L<br>ug/L |   | 104      | 74 - 123            |  |
| Trichlorofluoromethane              | 25.0  | 22.6   |           | ug/L<br>ug/L |   | 90       | 62 - 150            |  |
| Vinyl chloride                      | 25.0  | 19.9   |           | ug/L<br>ug/L |   | 90<br>80 | 65 - 133            |  |

TestAmerica Buffalo

2

<u>5</u>

5

8

46

11

13

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-399926/4

**Matrix: Water** 

Analysis Batch: 399926

| Client Sample | ID: Lab | Contro | I Sample |
|---------------|---------|--------|----------|
|               | Prep    | Type:  | Total/NA |

Prep Type: Total/

|                              | LCS       |           |          |  |  |
|------------------------------|-----------|-----------|----------|--|--|
| Surrogate                    | %Recovery | Qualifier | r Limits |  |  |
| Toluene-d8 (Surr)            | 95        |           | 80 - 120 |  |  |
| 1,2-Dichloroethane-d4 (Surr) | 95        |           | 77 - 120 |  |  |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |  |  |
| Dibromofluoromethane (Surr)  | 99        |           | 75 - 123 |  |  |

8

40

11

13

14

# **QC Association Summary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

#### **GC/MS VOA**

#### Analysis Batch: 398560

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-130902-1     | AL-2               | Total/NA  | Water  | 8260C  | _          |
| 480-130902-2     | AL-1               | Total/NA  | Water  | 8260C  |            |
| 480-130902-4     | DUP                | Total/NA  | Water  | 8260C  |            |
| 480-130902-6     | EX-MW-11R          | Total/NA  | Water  | 8260C  |            |
| 480-130902-7     | MW-2R              | Total/NA  | Water  | 8260C  |            |
| 480-130902-10    | MW-7R              | Total/NA  | Water  | 8260C  |            |
| 480-130902-11    | MW-09R             | Total/NA  | Water  | 8260C  |            |
| 480-130902-13    | TRIP BLANK         | Total/NA  | Water  | 8260C  |            |
| MB 480-398560/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-398560/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### Analysis Batch: 398666

| Lab Sample ID     | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 480-130902-3      | AL-7               | Total/NA  | Water  | 8260C  |            |
| 480-130902-6 - DL | EX-MW-11R          | Total/NA  | Water  | 8260C  |            |
| MB 480-398666/6   | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-398666/4  | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### Analysis Batch: 398707

| Client Sample ID   | Prep Type                                          | Matrix                                                                                          | Method                                                                                                                                                                                                                                                | Prep Batch                                                                                                                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL-1               | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                           |
| MW-09R             | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| Method Blank       | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| Lab Control Sample | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| MW-09R             | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| MW-09R             | Total/NA                                           | Water                                                                                           | 8260C                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
|                    | AL-1 MW-09R Method Blank Lab Control Sample MW-09R | AL-1 Total/NA MW-09R Total/NA Method Blank Total/NA Lab Control Sample Total/NA MW-09R Total/NA | AL-1         Total/NA         Water           MW-09R         Total/NA         Water           Method Blank         Total/NA         Water           Lab Control Sample         Total/NA         Water           MW-09R         Total/NA         Water | AL-1         Total/NA         Water         8260C           MW-09R         Total/NA         Water         8260C           Method Blank         Total/NA         Water         8260C           Lab Control Sample         Total/NA         Water         8260C           MW-09R         Total/NA         Water         8260C |

## Analysis Batch: 399926

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-130902-5     | EX-MW-12           | Total/NA  | Water  | 8260C  |            |
| 480-130902-8     | MW-1               | Total/NA  | Water  | 8260C  |            |
| 480-130902-9     | MW-4               | Total/NA  | Water  | 8260C  |            |
| 480-130902-12    | MW-12              | Total/NA  | Water  | 8260C  |            |
| MB 480-399926/6  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-399926/4 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Lab Sample ID: 480-130902-1

**Matrix: Water** 

Date Collected: 02/02/18 11:20 Date Received: 02/02/18 17:55

Client Sample ID: AL-2

Client Sample ID: AL-1

Date Collected: 02/02/18 11:30

Date Received: 02/02/18 17:55

| l |           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|---|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
|   | Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
|   | Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 15:07 | ARS     | TAL BUF |

Lab Sample ID: 480-130902-2

Matrix: Water

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  | DL  | 10       | 398707 | 02/06/18 14:09 | ARS     | TAL BUF |
| Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 15:30 | ARS     | TAL BUF |

Client Sample ID: AL-7 Lab Sample ID: 480-130902-3

**Matrix: Water** 

TAL BUF

Date Collected: 02/02/18 10:35 Date Received: 02/02/18 17:55

Analysis

8260C

Total/NA

Batch Batch Dilution Batch Prepared Method Number Prep Type Factor or Analyzed Type Run Analyst Lab

**Client Sample ID: DUP** Lab Sample ID: 480-130902-4

398666

02/05/18 22:52

AMM

Date Collected: 02/02/18 11:25 **Matrix: Water** Date Received: 02/02/18 17:55

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 16:17 | ARS     | TAL BUF |

Client Sample ID: EX-MW-12 Lab Sample ID: 480-130902-5

Date Collected: 02/02/18 12:10 **Matrix: Water** 

Date Received: 02/02/18 17:55

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 1        | 399926 | 02/14/18 21:30 | RRS     | TAL BUF |

Client Sample ID: EX-MW-11R Lab Sample ID: 480-130902-6

Date Collected: 02/02/18 12:30 Matrix: Water

Date Received: 02/02/18 17:55

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 16:40 | ARS     | TAL BUF |
| Total/NA  | Analysis | 8260C  | DL  | 20       | 398666 | 02/05/18 23:15 | AMM     | TAL BUF |

10

**Matrix: Water** 

Matrix: Water

**Matrix: Water** 

Matrix: Water

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

Client Sample ID: MW-2R Lab Sample ID: 480-130902-7

Date Collected: 02/02/18 13:35 **Matrix: Water** 

Date Received: 02/02/18 17:55

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260C 398560 02/05/18 17:03 ARS TAL BUF

Client Sample ID: MW-1 Lab Sample ID: 480-130902-8

Date Collected: 02/02/18 14:10

Matrix: Water

Date Received: 02/02/18 17:55 Batch Batch

Dilution Batch Prepared Method Number Prep Type Туре Run Factor or Analyzed Lab Analyst TAL BUF Total/NA Analysis 8260C 399926 02/14/18 21:53 RRS

Client Sample ID: MW-4 Lab Sample ID: 480-130902-9

Date Collected: 02/02/18 14:40

Date Received: 02/02/18 17:55

Batch Dilution Batch Prepared Batch Method Number or Analyzed Prep Type Туре Run Factor Analyst Lab TAL BUF Total/NA Analysis 8260C 399926 02/14/18 22:17 RRS

Client Sample ID: MW-7R Lab Sample ID: 480-130902-10

Date Collected: 02/02/18 15:10

Date Received: 02/02/18 17:55

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 2 398560 02/05/18 17:26 ARS

Client Sample ID: MW-09R Lab Sample ID: 480-130902-11

Date Collected: 02/02/18 15:50

Date Received: 02/02/18 17:55

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  | DL  | 10       | 398707 | 02/06/18 14:36 | ARS     | TAL BUF |
| Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 17:49 | ARS     | TAL BUF |

Client Sample ID: MW-12 Lab Sample ID: 480-130902-12

Date Collected: 02/02/18 16:30

Date Received: 02/02/18 17:55

| _         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 1        | 399926 | 02/14/18 22:41 | RRS     | TAL BUF |

#### **Lab Chronicle**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

Lab Sample ID: 480-130902-13

Matrix: Water

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 02/02/18 00:00

Date Received: 02/02/18 17:55

|   |           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|---|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
|   | Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Į | Total/NA  | Analysis | 8260C  |     | 1        | 398560 | 02/05/18 18:13 | ARS     | TAL BUF |

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

10

12

# **Accreditation/Certification Summary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

#### Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

| Authority | Program | EPA Region | Identification Number | Expiration Date |
|-----------|---------|------------|-----------------------|-----------------|
| New York  | NELAP   | 2          | 10026                 | 03-31-18 *      |

4

5

7

10

11

13

14

<sup>\*</sup> Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Buffalo

# **Method Summary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk, NY

TestAmerica Job ID: 480-130902-1

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

6

0

9

11

12

14

# **Sample Summary**

Client: LaBella Associates DPC

Project/Site: Phase 2 - 320 S. Roberts Rd., Dunkirk,NY

TestAmerica Job ID: 480-130902-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-130902-1  | AL-2             | Water  | 02/02/18 11:20 | 02/02/18 17:55 |
| 480-130902-2  | AL-1             | Water  | 02/02/18 11:30 | 02/02/18 17:55 |
| 480-130902-3  | AL-7             | Water  | 02/02/18 10:35 | 02/02/18 17:55 |
| 480-130902-4  | DUP              | Water  | 02/02/18 11:25 | 02/02/18 17:55 |
| 480-130902-5  | EX-MW-12         | Water  | 02/02/18 12:10 | 02/02/18 17:55 |
| 480-130902-6  | EX-MW-11R        | Water  | 02/02/18 12:30 | 02/02/18 17:55 |
| 480-130902-7  | MW-2R            | Water  | 02/02/18 13:35 | 02/02/18 17:55 |
| 480-130902-8  | MW-1             | Water  | 02/02/18 14:10 | 02/02/18 17:55 |
| 480-130902-9  | MW-4             | Water  | 02/02/18 14:40 | 02/02/18 17:55 |
| 480-130902-10 | MW-7R            | Water  | 02/02/18 15:10 | 02/02/18 17:55 |
| 480-130902-11 | MW-09R           | Water  | 02/02/18 15:50 | 02/02/18 17:55 |
| 480-130902-12 | MW-12            | Water  | 02/02/18 16:30 | 02/02/18 17:55 |
| 480-130902-13 | TRIP BLANK       | Water  | 02/02/18 00:00 | 02/02/18 17:55 |

\_\_

9

10

11

13

14

Date/Time:

Company:

Received in Laboratory by:

Date/Time:

Company

# TestAmerica Buffalo

**TestAmerica** 

240172

Chain of Custody Record

TestAmerica Laboratories, Inc. THE LEADER IN ENVIRONMENTAL TESTING

10 Hazeluood Orive

Anherst, NY 14228 Phone: 716.691.26

|     | Regula       |   |
|-----|--------------|---|
|     | 716.691.7991 |   |
|     | Fax:         | ١ |
| 4 4 | 6.691.2600   |   |
|     | e: 716.6     |   |
| 1   | one:         | ١ |

TAL-8210 (0713) Sample Specific Notes: COCs Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Therm ID No.: For Lab Use Only: 20 Months ab Sampling: Walk-in Client: Job / SDG No. o COC No: 20 Sampler: 20 20 Archive for 480-130902 COC Company Disposal by Lab Cooler Temp. (°C): Obs'd: Carrier Date: Other: Return to Client today Received by Received By Site Contact: Lab Contact: RCRA Filtered Sample (Y/N)
Perform MS / MSD (Y/N) Date/Time: 755 Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the NPDES # of Cont. WORKING DAYS 7000WW Matrix 30 - JECHONIL Service Contraction GW 30 30 NE SE SW ME DW Analysis Turnaround Time Type (C=Comp, G=Grab) Sample company: Labella Assoc. tory Program: TAT if different from Below Project Manager: Action 2 weeks 5 6 1 week 2 days 1 day 2-2-19 15:50 Sample 0.39 D 07-1-18 14.7C 2-2-18 13:35 27.815.10 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 11.30 CALENDAR DAYS 2-2-18 14:10 Custody Seal No. Poison B 3-7-7 7,7-18 Sample Date 8-7-1 Company Tel/Fax: Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample PARI atteimkaner Sample Identification Client Contact Possible Hazard Identification: a Bella MAN COP -MW-X Custody Seals Intact MW-JR Project Name: 3,20 20 -3 X Relinquished by: 7446/5018 (Rev. 1) Company Name: MW NE-17 linguished by: 125 Non-Hazard City/State/Zip: Digital ーノニン A Address: Phone: # O d Site: Fax: Page 45 of 47

| 10 Hazelwood Drive<br>Amherst, NY 14228-2298<br>Physic (718) 841-2800 Eav (718) 691-7991 | Cha                           | in of (  | Chain of Custody Record | y Rec                      | ord            |                                                         |                        |                     | THE LEADER BY                                                                        | HELLENDER SHEWINGSMENTAL TESTING        |
|------------------------------------------------------------------------------------------|-------------------------------|----------|-------------------------|----------------------------|----------------|---------------------------------------------------------|------------------------|---------------------|--------------------------------------------------------------------------------------|-----------------------------------------|
| Client Information                                                                       | 8                             | Salle    |                         | Lab PM:<br>Devo, Me        | Issa L         |                                                         | Carrier Tracking No(s) | No(s):              | COC No: 480-108964-25354.2                                                           | 354.2                                   |
| Client Contact.<br>Shannon Dalton                                                        | Phone:                        | 2043     |                         | E-Mail:<br>melissa.deyo@te | eyo@testar     | E-Mail:<br>melissa.deyo@testamericainc.com              | 1                      |                     | Page:<br>Page 2 of 2                                                                 |                                         |
| Сотрату:<br>LaBella Associates DPC                                                       |                               |          |                         | -                          |                | Analysis Requested                                      | Requested              |                     | Job #:                                                                               |                                         |
| Address:<br>300 Pearl Street Suite 130                                                   | Due Date Requested:           |          |                         |                            | 31000          |                                                         |                        |                     | Preservation Codes:                                                                  | des:                                    |
| Gity:<br>Buffalo                                                                         | TAT Requested (days):         |          |                         |                            |                |                                                         |                        |                     | B - NaOH<br>C - Zn Acetate                                                           | N - None<br>O - AsNaO2                  |
| State, Z.p.:<br>NY, 14202                                                                | 3000                          |          |                         |                            | CACAGO III     |                                                         |                        |                     | E - NaHSO4                                                                           | P - Na204S<br>Q - Na2SO3<br>R - Na2S2O3 |
| Phone:                                                                                   | Po#. Purchase Order Requested | nested   |                         | (0                         | and the second |                                                         |                        |                     | G - Amchlor<br>H - Ascorbic Acid                                                     | S - H2SO4<br>T - TSP Dodecahydrate      |
| Email:<br>SDalton@LaBellaPC.com                                                          | WO#                           |          |                         |                            | lon            |                                                         |                        |                     |                                                                                      | U - Acetone<br>V - MCAA                 |
| Project Name:<br>Phase 2 - 320 S. Roberts Rd., Dunkirk,NY                                | Project #:<br>48017502        |          |                         |                            | 10 50          |                                                         |                        |                     |                                                                                      | Z - other (specify)                     |
| 370 S. ROZETE Rd DWKYKNY                                                                 |                               |          |                         |                            |                |                                                         |                        |                     | of cor                                                                               |                                         |
|                                                                                          |                               |          |                         | beld Filtered              | seoc - TCL VC  |                                                         |                        |                     | nedmuM lato                                                                          |                                         |
| Sample Identification                                                                    | Sample Date                   | all land | Preservation Code:      | - X                        | _              |                                                         |                        |                     |                                                                                      | Special Instructions/Note:              |
| TOTA STOR                                                                                | 2-2-10                        | 1        | Water                   | ter                        | ×              |                                                         |                        |                     |                                                                                      |                                         |
| 1 2 2                                                                                    |                               |          | Water                   | fer                        |                |                                                         |                        |                     |                                                                                      |                                         |
|                                                                                          |                               |          | -                       | Ŧ                          | +              |                                                         | -                      |                     |                                                                                      |                                         |
|                                                                                          |                               | -        | +                       | T                          | -              |                                                         | +                      |                     |                                                                                      |                                         |
|                                                                                          |                               |          |                         | F                          | -              |                                                         |                        |                     | 1 105                                                                                |                                         |
|                                                                                          |                               |          | -                       | F                          |                |                                                         |                        |                     |                                                                                      |                                         |
|                                                                                          |                               |          |                         |                            |                |                                                         |                        |                     |                                                                                      |                                         |
|                                                                                          |                               |          | +                       | 7                          |                |                                                         |                        |                     |                                                                                      |                                         |
|                                                                                          |                               | +        |                         | +                          |                |                                                         |                        |                     |                                                                                      |                                         |
|                                                                                          |                               | -        |                         | Ŧ                          |                |                                                         |                        |                     | 39 88                                                                                |                                         |
| Possible Hazard Identification                                                           |                               |          |                         |                            | Sample Dis     | posal ( A fee may                                       | be assessed if s       | samples are re      | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | 1 month)                                |
| Other (specify)                                                                          | Poison B Onknown              |          | radiological            |                            | Special Inst   | Special Instructions/QC Requirements:                   | ments:                 | ap                  | Alchive For                                                                          | Months                                  |
| Empty Kit Relinquished by:                                                               | Date:                         |          |                         | Time:                      | e:             | ,                                                       | Method o               | Method of Shipment: |                                                                                      |                                         |
| Reflicement Burn                                                                         | 2/2/18/17                     | 55:1     | Company                 | λu                         | Received by:   | Milling                                                 | S S                    | Date/Time:          | 18 1755                                                                              | S Company S                             |
|                                                                                          | Date/Time:                    |          | Company                 | λu                         | Received by    | , Ac                                                    | >                      | Date/Time:          |                                                                                      | Company                                 |
|                                                                                          | Date/Time:                    |          | Company                 | ν̈́                        | Received by    | py:                                                     |                        | Date/Time:          |                                                                                      | Company                                 |
| Custody Seals Intact: Custody Seal No.:                                                  |                               |          |                         |                            | Cooler Te      | Cooler Temperature(s) <sup>°</sup> C and Other Remarks: | er Remarks:            | Dot                 | /CF                                                                                  | カ衆                                      |
|                                                                                          |                               |          |                         |                            | -              |                                                         | )                      |                     |                                                                                      | Ver. 08/04/2016                         |

<u>TestAmerica</u>

## **Login Sample Receipt Checklist**

Client: LaBella Associates DPC Job Number: 480-130902-1

Login Number: 130902 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | LABELLA |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |

3

4

6

9

111

13

\_\_\_\_