

2022 Periodic Review Report

Location:

Former Alumax Extrusions Site 440 and 320 South Roberts Road, Dunkirk, New York VCP Site No. V00589-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

LaBella Project No. 2200014

February 14, 2023

Olympic Towers, 300 Pearl Street, Suite 130 | Buffalo, NY 14202 | p 716-551-6281 | f 716-551-6282

Table of Contents

1.0 1.1		JTIVE SUMMARY	
1.2		ectiveness of Remedial Program	
1.3		npliance	
1.4		commendations	
2.0	SITE C	OVERVIEW	2
2.1		Background	
2.2		nedial Program Overview	
3.0 4.0 4.1	INSTIT	CTIVENESS OF THE REMEDIAL PROGRAM FUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT	4
4	1.1.1	Site Use Restrictions	4
4	.1.2	Groundwater Use Restrictions	4
4	.1.3	Excavation Work Plan	5
4	1.4	Groundwater Monitoring	5
4.2	Eng	gineering Controls	5
4	.2.1	Surface Cover System	5
4	.2.2	Sub-Slab Vapor Mitigation	6
4.3		EC Certification	
5.0 5.1		TORING PLAN COMPLIANCE REPORT	
5.2	Gro	undwater Monitoring	7
5	5.2.1	Sampling Procedure	7
5	5.2.2	Sample Preservation and Handling	7
5	5.2.3	Quality Assurance/Quality Control	7
5	5.2.4	Analytical Results	8
5.3	Cor	nparisons with Remedial Objectives	8
5.4	Mo	nitoring Deficiencies	9
5.5	Cor	nclusions and Recommendations	9
6.0		LUSIONS AND RECOMMENDATIONS	
7.0 8.0		ATIONS	

TABLE OF CONTENTS

Continued

Figures	Figure 1 – Site Location Map Figure 2 – Site Plan
Table	Table 1 – Summary of Analytical Results - Groundwater Samples
Appendix 1 Appendix 2 Appendix 3	November 2004 Deed Restrictions/Property Information Photographs Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form
Appendix 4 Appendix 5	Groundwater Sampling Logs Laboratory Analytical Results

1.0 EXECUTIVE SUMMARY

1.1 Site Summary

The former Alumax Extrusions, Inc. Facility (hereinafter referred to as the "Site") consists of two adjoining tax parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, City of Dunkirk, New York (Figure 1). According to Chautauqua County and City of Dunkirk online assessment records, the Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road (see Appendix 1). Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeast-southwest general direction. Parcel A, located at 440 South Roberts Road and owned by 440 Roberts Road, LLC, contains an approximately 7,200 square-foot office building while the remainder of the parcel consists of a parking area. Parcel B, located at 320 South Roberts Road and owned by Chautauqua County, formerly contained a 140,000 square-foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time.

An environmental investigation conducted at the Site revealed that contamination, likely associated with historical operations, had impacted the Site, necessitating remedial activities. Subsequent remedial activities conducted at the Site included in-situ chemical treatment using zero valent iron (ZVI) in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000) and installation of a sub-slab vapor (SSV) mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 Combined Institution Control Plan and Operations and Maintenance Plan (CICP/OMP), which provides initial guidance concerning the surface cover, soil/fill excavation and management, groundwater use and routine monitoring for the groundwater within the residual source area. Such guidance has since been updated in the agency-approved November 2021 LaBella Associates, D.P.C. (LaBella) Site Management Plan (SMP).

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the cover system elements that are currently present on the Site are intact and functioning as intended on the Site. The anticipated construction of the new driveway through the 440 South Roberts Road parcel should be completed in compliance with the SMP's Excavation Work Plan (EWP).

Overall, the remedial program is viewed to be effective in achieving the remedial objectives of the Site. The Site will continue to be monitored in accordance with the SMP. Based upon current analytical results, total chlorinated VOC concentrations in two of the three groundwater wells (AL-2 and AL-7) that comprise the Site's monitoring network were below the SMP threshold of 100 micrograms per liter (ug/L). Analytical results dating back to post remediation suggest that natural attenuation is occurring at the Site. However, the total VOC concentrations at AL-1 were in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

1.3 Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this Periodic Review Report (PRR).

1.4 Recommendations

No recommended changes to SMP were identified during this PRR.

2.0 SITE OVERVIEW

2.1 Site Background

Industrial development of the project Site was initiated around 1920, when the American Locomotive Company expanded its Dunkirk operations onto the project Site. The Site use has varied over time and uses have included a foundry, coal storage, locomotive manufacturing and finned heat exchanger fabrication. In 1976, the facility was acquired by Alumax, Inc. (Alumax), which operated an aluminum extrusion business at the Site until 1993, operating as Alumax Extrusions, Inc. Alcoa's acquisition of Alumax in 1998 included the idle Dunkirk facility.

The project Site consists of two adjoining parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, within the City of Dunkirk, New York (Figure 1). According to Chautaugua County and City of Dunkirk online assessment records, the Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road (see Appendix 1). Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeastsouthwest general direction. Parcel A, located at 440 South Roberts Road and owned by 440 Roberts Road, LLC, contains an approximately 7,200 square-foot office building while the remainder of the parcel consists of parking areas. Parcel B, located at 320 South Roberts Road and owned by Chautauqua County, formerly contained a 140,000 square-foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time. Parcel B has remained vacant and undeveloped with the exception of the construction of a segment of Progress Drive that transects the Site. The plans for the construction of this roadway were developed and carried out in accordance with the CICP/OMP. During construction of the roadway, select portions of the former building concrete slabs were crushed and spread out on the surface of the Site outside of the new roadway limits. Construction of the roadway was completed in Fall 2014. Parcels A and B are identified in the November 2004 Deed Restriction (Appendix 1) and are depicted on Figure 2.

A Notice of Intrusive Activities (NIA) was submitted for the 440 South Roberts Road parcel only, to the NYSDEC, on November 11, 2022 (Revised December 1, 2022). 440 Roberts Road, LLC recently took ownership of this parcel from Chautauqua County. The intent of the NIA was to inform the NYSDEC of the proposed construction of a new driveway through the parcel, connecting the north adjacent Edgewood Warehouse property to the south abutting thoroughfare (Progress Drive). On January 3, 2023, a Change-of-Use (COU) form was submitted by 440 Roberts Road, LLC, for the construction of this new driveway to take place. As of the date of this PRR, construction of the new driveway has not commenced. A copy of the COU form is included in Appendix 3.

2.2 Remedial Program Overview

An environmental investigation conducted at the Site revealed that contamination, likely associated with the historical operations, had impacted the Site, necessitating remedial activities. Constituents of potential concern (COPCs) identified within soil/fill at the Site consisted primarily of chlorinated hydrocarbons (specifically trichloroethene (TCE) and its degradation products), polycyclic aromatic hydrocarbons, polychlorinated biphenyls and metals. A residual source area containing concentrations of TCE and its degradation products was identified in the subsurface on the north-central portion of the Site.

With the exception of the chlorinated hydrocarbons, groundwater has not shown impacts from the COCPs identified in the soil/fill.

Subsequent remedial activities conducted at the Site included in-situ chemical treatment of groundwater using ZVI in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000s) and installation of a SSV mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 CICP/OMP, which provides initial guidance concerning the surface cover, soil/fill excavation and management, groundwater use, and routine monitoring for the groundwater within the residual source area.

Such guidance has since been updated in the agency-approved November 2021 LaBella SMP.

Additionally, as indicated previously, the 140,000 square-foot building formerly located on Parcel B was demolished in early 2009. Prior to the demolition, the asbestos-containing-materials within the former Site building were abated in accordance with the requirements outlined in12 NYCRR Part 56 of New York State Department of Labor Industrial Code Rule 56 (ICR 56). The abatement work was completed between November and December of 2008. Demolition of the building occurred in January and February of 2009. Operation of the SSV mitigation system associated with the building ceased in conjunction with the demolition project and this system no longer exists.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

Remedial goals for the Site were accomplished through in-situ chemical treatment of groundwater using ZVI in the residual source area; the removal and off-site disposal of sediments within the two catch basins at the Site; the installation of a sub-slab venting system; and the development of deed restrictions and the June 2004 CICP/OMP.

As indicated in the December 15, 2014 Corrective Measures Summary Report, cover system requirements were satisfied within the Progress Drive corridor that transects the Site. Such included at a minimum, six inches of material (asphalt and sub-base) for the roadway and 12 inches of clean New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER)-10 approved soil underlain by a demarcation layer (orange fencing) beneath road shoulders and parallel storm water ditches associated with the roadway. Review of construction asbuilts confirmed that all applicable minimum cover system thicknesses were met within the road corridor.

Based on the comparison of the pre-remedial and the post-remedial groundwater analytical results, the enhanced natural attenuation appears to be achieving the goal of reducing the concentrations of chlorinated hydrocarbons in the groundwater. However, the total VOC concentrations at AL-1 and AL-2 were in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

4.1 Institutional Controls

4.1.1 Site Use Restrictions

In accordance with the deed restrictions and the SMP, the Site is to be used for restricted commercial or restricted industrial uses only. The SMP presents the following definitions for these use categories:

- Restricted Commercial-Residential uses are not allowed under this category. Commercial uses are allowed but require engineering controls and/or institutional controls. Some types of "commercial" uses that could create "residential" types of exposures are excluded, such as day-care and health-care facilities. Retail stores, warehouse/distribution centers, service facilities and offices would be included in the commercial definition.
- Restricted Industrial-Residential and commercial uses are not allowed. Industrial uses are allowed but they require engineering controls and/or institutional controls. Metal working, manufacturing and other industrial uses are included in this category.

The office building on Parcel A is currently vacant, but was formerly used for commercial office purposes, while the remainder of the Site was used for office-related parking. The use of Parcel A meets the definition of Restricted Commercial use. Parcel B is vacant and undeveloped. Both parcels are now transected by a segment of Progress Drive, which was constructed in late 2014.

4.1.2 Groundwater Use Restrictions

Previous investigations conducted at the Site and adjacent properties have determined that groundwater resources are limited, particularly within the uppermost groundwater-bearing zone at the Site. Groundwater is not generally used in the vicinity of the Site, nor would it be expected to be used in the future, given the industrial character of the area, the availability of a municipal water supply in the area and the construction of the roadway. The clayey soils and shale bedrock have low hydraulic conductivities and produce limited quantities of water. The most productive zone is the top five feet of the shale bedrock, which is fractured and weathered. This zone is also considered to be perched and may be laterally limited. Groundwater in the north-central portion of the Site (i.e. residual source area) is impacted with chlorinated hydrocarbons. Low concentrations of petroleum-related constituents were encountered in other wells. The residual source area was addressed via in-situ treatment technology; however, low-level impacts to groundwater may linger due to the low conductivity and the potential dissolution of chlorinated constituents adsorbed to the clayey soils. Therefore, groundwater use restrictions were implemented at the Site to limit potential exposure to impacted groundwater and are identified in the deed restrictions recorded with the Site deed.

Although groundwater use is not prohibited, it is restricted. Should a future owner or operator determine that groundwater use is beneficial to their operations, permission from the NYSDEC must be obtained. Additionally, the owner or operator must conduct an evaluation of the suitability for the potential use of the groundwater and define the ultimate point of discharge (e.g. sanitary sewer, surface water, or reinjection) for any once-through water or blowdown from any recirculation system(s). Use of groundwater may require appropriate treatment to meet water quality requirements for use and discharge. Groundwater extracted for testing, monitoring and remediation, while excluded from the provisions of this groundwater use restriction, must meet local, state and federal disposal requirements.

4.1.3 Excavation Work Plan

The EWP was prepared to identify environmental guidelines for the management of subsurface soil/fill and long-term maintenance of the cover system. The EWP includes requirements that address the following key components:

- Any breach of the cover system;
- Surface erosion and storm water runoff control;
- Management of excavated soil/fill;
- Allowable reuse of excavated soil/fill;
- Requirements for off-site fill and grading materials;
- Notification requirements; and,
- Annual reporting and certification results.

4.1.4 Groundwater Monitoring

Groundwater monitoring is required for evaluating the effectiveness of ZVI application in the residual source area that was completed in December 2004. This monitoring consists of sampling and analysis of groundwater collected from Monitoring wells AL-1, AL-2 and AL-7 (see Figure 2). The samples are analyzed for United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs. Annual groundwater monitoring is performed in conjunction with the annual review of the institutional and engineering controls. In accordance with the SMP, this annual monitoring wells. Groundwater monitoring conducted in 2021 revealed that total VOC concentrations in well AL-1 exceeded the 100 ug/L concentration threshold. Therefore, groundwater samples were collected from all three wells during the current reporting period and the results, which are compared with the aforementioned threshold for total VOCs and the pre-remedial analytical results, are summarized in Section 5.2 of this report.

4.2 Engineering Controls

4.2.1 Surface Cover System

The long history of industrial use of the Site has resulted in widespread, low-level impacts of Sitewide soils. To limit casual exposure to the Site soils, a surface soil cover system consisting of clean soil, pavement, and/or concrete will be constructed as the Site is developed. The purpose of the surface cover system will be to eliminate the potential for human contact with fill material and eliminate the potential for contaminated runoff from the Site. The cover system will consist of one or more of the following types of clean material:

- Soil: 12 inches of vegetated soil cover underlain by a demarcation layer in outdoor vegetated areas.
- Asphalt: A minimum of six inches of material (asphalt and sub-base material) in areas that will become roads, sidewalks and parking lots.
- Concrete: A minimum of six inches of material (concrete and sub-base material) in areas that will become slab-on-grade structures or for roads, sidewalks, and parking lots in lieu of asphalt.

In the Summer/Fall of 2014, a new public roadway and associated storm water drainage ditches were constructed across a portion of the Site. Construction details implemented for the roadway included a 12-inch sub-base followed by a 6-inch base course, 2-inch binder course and 1.5-inch top course of asphalt. Between 2-3 feet of clean, NYSDEC DER-10 approved soil, underlain by a demarcation layer (orange fencing), was placed along the margins of the roadway. The drainage ditches were then constructed within the clean soil to depths of a minimum of 12-inches above the demarcation layer.

On December 13, 2022, Mr. Andrew Koons of LaBella conducted the annual inspection, which included traversing the Site on foot to observe the current conditions. Parcel A contained an approximately 7,200 square-foot building and related parking areas, as well as a portion of Progress Drive. Parcel B was vacant and undeveloped with the exception of Progress Drive, which transects the parcel in a northeast-southwest direction.

At the time of the Site inspection, the asphalt cover occurring within the Progress Drive corridor was in good condition and no areas of exposed sub-base were observed. The floor and walls of the roadside ditches were covered with coarse, low-lying vegetation. No evidence of erosion or exposed synthetic erosion control fabric was observed within the storm water ditches. The remainder of Parcel B consisted of portions of intact concrete building slabs that remain following demolition of the former on-site buildings and rubblized concrete.

Given the current extent of cover, the limited area that currently lacks cover and the vacant nature of the Site, as it's currently unused, no current sources of surface soil contamination are present at this time.

Appendix 2 includes photographs taken during the Site inspection.

4.2.2 Sub-Slab Vapor Mitigation

The former building that occupied the Site contained a sub-slab venting system that was located over the residual source area. The building and sub slab venting system were demolished in early 2009. Therefore, the continued maintenance and operation of this system is no longer required.

For slab-on-grade structures, an 8-millimeter polyethylene barrier will be placed beneath the concrete for new structures built in the portion of the Site identified as the residual source area. The vapor barrier is not required in areas other than the residual source area because VOCs were not found in significant quantities on any other portion of the Site. A soil vapor intrusion assessment will be completed for any new construction near the residual source area.

4.3 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. Appendix 3 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.0 MONITORING PLAN COMPLIANCE REPORT

5.1 Requirements

Sections 4.0 and 7.0 of the SMP include groundwater monitoring requirements associated with the performance monitoring of the in-situ remedial measures for the chlorinated hydrocarbons and the annual certification of the implementation of the Institutional Control Plan, respectively.

5.2 Groundwater Monitoring

Groundwater Monitoring is required for evaluating the effectiveness of the ZVI application in the residual source area that was completed in December 2004. In accordance with the SMP, this annual monitoring will occur at three well locations (AL-1, AL-2 and AL-7) until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

5.2.1 Sampling Procedure

The three groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the SMP. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included in Appendix 4.

Other observations (e.g., well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Per Section 4.3.1 of the SMP, if a well was purged dry then the well was sampled once sufficient volume recovered in the well. Well purging consisted of the evacuation of select well volumes from AL-1, AL-2 and AL-7 using NYSDEC-approved low-flow purging procedures via a Geotech Geopump II Pump. The samples were then collected within three hours of completion of well purging using the low-flow method previously identified. Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Test America Laboratories, Inc., a New York State Department of Health, Environmental Laboratory Accreditation Program certified laboratory for analysis. The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and the complete analytical laboratory report are included in Appendix 5.

5.2.3 Quality Assurance/Quality Control

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs.

Well sampling at the Site and adjoining former Roblin Steel Site were conducted in conjunction with one another on December 13, 2022, and the samples from both sites were submitted to the laboratory together in one batch and recorded on one COC. As such, the blind field duplicate collected from the former Roblin Steel Site (collected from MW-02R) and trip blank associated with the samples from both sites were utilized to evaluate the effectiveness of the QA/QC procedures for the Site.

5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance Values applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to applicable water quality standards. Figure 2 depicts the locations of the monitoring wells.

Groundwater flow is generally to the north/northwest in the area containing the Site. However, according to the SMP for the Site, localized flow direction in the vicinity of these wells is generally to the southwest.

Due to the influence of building foundations and subsurface utilities in the area of these wells; however, the water level data from these wells are not likely suitable for determining groundwater flow direction. It should be noted that foundations and utilities were not removed during the building demolition; therefore, flow conditions in this area likely continue to be influenced by these subsurface features.

5.3 Comparisons with Remedial Objectives

The groundwater analytical data for this monitoring event indicate that total chlorinated VOC concentrations in AL-2 and AL-7 were below the 100 ug/L threshold specified in the SMP. However, the total chlorinated VOC concentration in AL-1 exceeded this threshold. The results from each of the monitoring wells are further discussed below.

While five VOCs were identified within AL-1, including three VOCs above NYSDEC TOGS Standards; at 706 ug/L, the total VOC concentration in AL-1 was found to be significantly lower than the preremedial sample results recorded in January 2003. However, given that the total VOC concentration in AL-1 exceeds the site-specific threshold, continued monitoring of this location is warranted.

Three VOCs were identified in AL-2, including one VOC above NYSDEC TOGS Standards; at 6.2 ug/L. The total VOC concentration in AL-2 has slightly decreased since the December 2021 sampling event and is well below the site-specific threshold prescribed in the SMP.

Three VOCs were identified in AL-7, including one VOC above NYSDEC TOGS Standards; at 5.3 ug/L. The total VOC concentration in AL-7 was found to be significantly lower than the initial post-remedial sampling event in February 2009 and is well below the site-specific threshold prescribed in the SMP.

A comparison of the results from MW-02R on the adjacent Roblin Steel Site with the blind field duplicate indicates that the data coincide. No VOCs were identified within the trip blank.

5.4 Monitoring Deficiencies

No monitoring deficiencies were noted during the completion of the PRR and annual sampling event.

5.5 Conclusions and Recommendations

Groundwater monitoring is required for evaluating the effectiveness of the ZVI application that was completed in the residual source area in December 2004. Based upon current analytical results, total chlorinated VOC concentrations in AL-2 and AL-7 are well below the SMP threshold of 100 ug/L. The total chlorinated VOC concentration in AL-1 is significantly lower than the pre-remedial sample results from January 2003. Given that the total VOC concentrations at AL-1 (706 ug/L ug/L) were in exceedance of the 100 ug/L threshold, in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells. No changes to the Monitoring Plan or the SMP are recommended at this time.

6.0 CONCLUSIONS AND RECOMMENDATIONS

At the time of the Site inspection, the Site was found to be in compliance with the SMP.

No issues relating to the condition or integrity of the Progress Drive cover system components were noted as a result of the Site inspection conducted by LaBella. The anticipated construction of the new driveway through the 440 South Roberts Road parcel should be completed in compliance with the SMP's EWP.

Based upon current analytical results, total chlorinated VOC concentrations in two of the three groundwater wells (AL-2 and AL-7) that comprise the Site's monitoring network were below the SMP threshold of 100 ug/L. Analytical results dating back to post remediation suggest that natural attenuation is occurring at the Site. However, the total VOC concentrations at AL-1 were in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

No changes to the Monitoring Plan, the SMP or the PRR frequency are recommended at this time. The next groundwater sampling event and PRR will occur in December 2023.

7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action except where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk.

8.0 **REFERENCES**

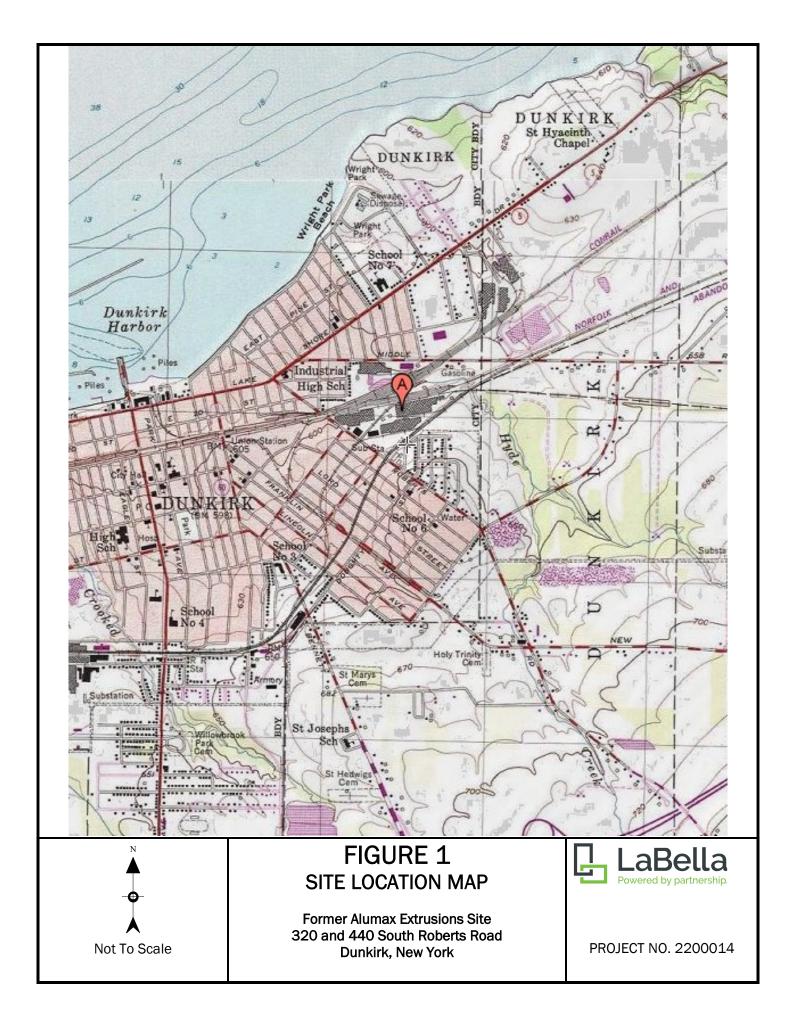
Declaration of Covenants and Restrictions, Deed Book 02560, Page 0509, Chautauqua County Clerk, November 22, 2004

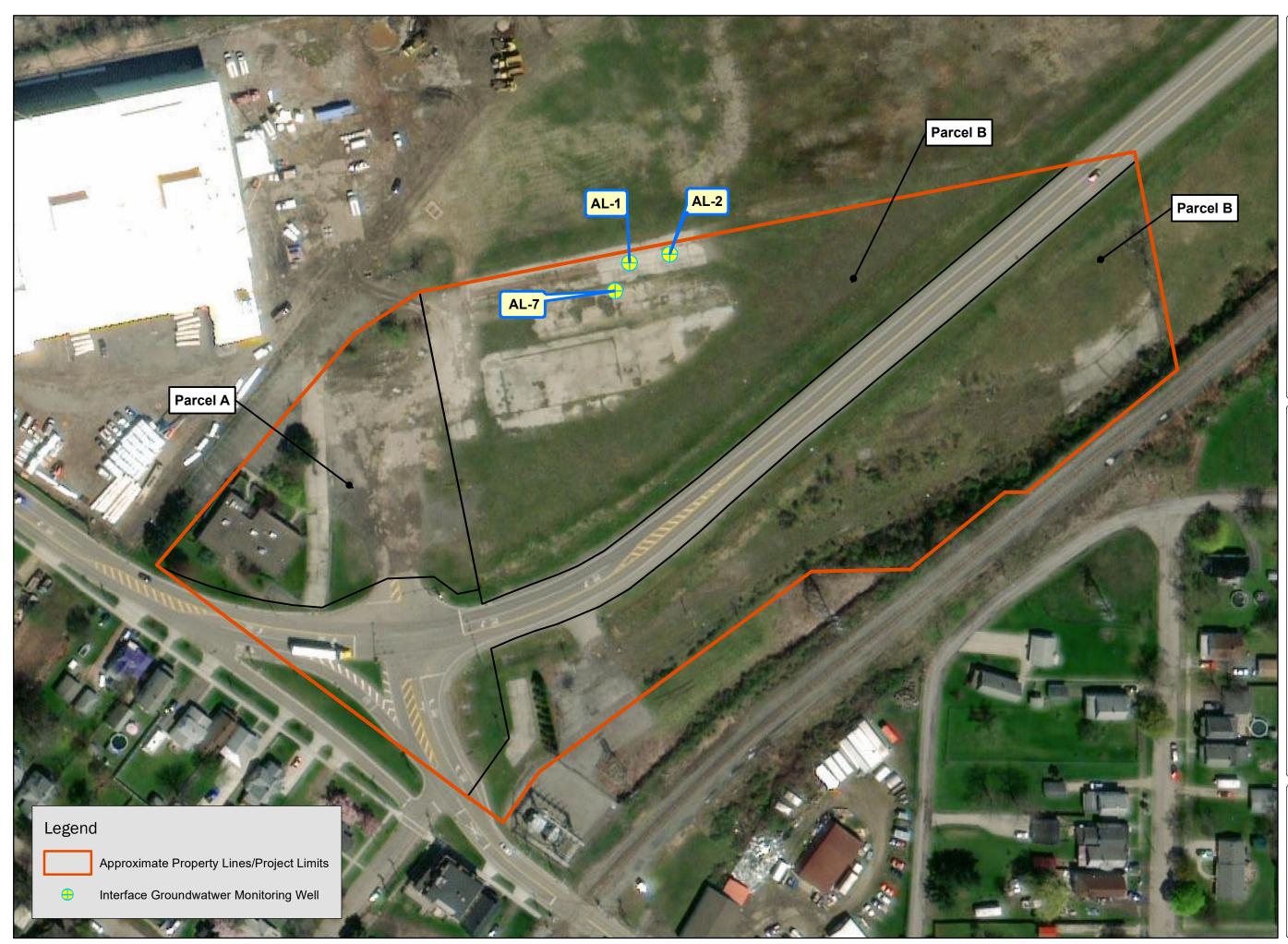
DER-10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Voluntary Clean-Up Program, Combined Institutional Control Plan/Operations and Maintenance Plan, URS Corp., June 23, 2004

Voluntary Clean-Up Program, Interim Remedial Measures Completion Report, Alumax Extrusions, Inc., URS Corp., April 30, 2004

Corrective Measures Summary Report, Former Alumax Extrusions, Inc. Facility, KHEOPS Architecture, Engineering and Survey, DPC, December 15, 2014


Periodic Review Report, Former Alumax Extrusions Site, LaBella Associates, D.P.C., January 2020


Site Management Plan, Closed Alumax Extrusions Inc., Facility, LaBella Associates, D.P.C., November 2021

I:\CHAUTAUQUA COUNTY\2200014 - DUNKIRK BROWNFIELD MONITORING\REPORTS\EVENT_DECEMBER 2022\ALUMAX 2022\ALUMAX 2022 PRR_2.14.23.DOCX

FIGURES

I:\Chautauqua County\2200014 - Dunkirk Brownfield Monitoring\Reports\Event_December 2021\Alumax December 2021\Fig 2 Alumax Site Plan.mxd

1 inch = 100 feet

INTENDED TO PRINT AS: 11" X 17"

PROJECT:

FORMER ALUMAX EXTRUSIONS SITE

DRAWING NAME:

SITE PLAN

Source: Chautauqua County; Labella 2021.

PROJECT #/DRAWING #/ DATE

2200014

FIGURE 2

1/6/2022

TABLE

Table 1 Former Alumax Extrusions Site Summary of Analytical Results Groundwater Samples

	REGULAT																																												
PARAMETER	VALU								A	L-1														AL-2					r					r					AL-7				······································		
Collection Date		5/31/	00 1/16/03	2/10/09	2/22/11 7/19/	12 8,	3/15/13	7/15/14	12/12/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22	5/31/00	1/16/03	2/10/09	2/22/11	7/19/12	8/15/13	7/15/14 12	2/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22	2/25/04	2/10/09	2/22/11	7/19/12	8/15/13	7/15/14	12/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22
			medial Results							Post-Remedia	l Results						Pre-Remedia	al Results							Post-Remedial F	Results						Pre-Remedial Results							Post-Remedial	Results					
Volatile Organic Comp	ounds (ug/L	'L)																																									1	_	
1,1-Dichloroethene	5		73		9.3				24		2.2																								4.2										
cis-1,2-Dichloroethene	5	1,50	0 9,400	1,280	1,140 1,00	0	961	1,820	3,200	2,500	850	1,100	180	240	26	450			9.36	6.94	2.3	394	1160	8.7		0.87	4.3	14	25	1.6		1,100	600	473	300	517	124	42	7	6.5	7.2	2	3.4	3.7	5.3
trans-1,2-Dichloroethen	ie 5		39		3.9	-			10		2.4																								1.9			0.4							
Acetone	50										7.6																									138	17.9	1.3					-	1	
Benzene	1		38	9.77	17.1 17		14.9		9.5		18	14	33	6.8	29	25		12	6.1	16.1	13	5.47		5.5	9	4.1	7	11	8.6	23	6.2							0.23							
Carbon Disulfide	60										0.45																																-	1	
Chloromethane	5																																												0.99 J
Cyclohexane	NL		64		180)			5.2		17	11	37	4	56	21		2			34			4.2		2.4	3.6	1.8	1.4	6.9	1.3				14			0.73			0.54	1			
Ethylbenzene	5		6		2.5						1.1							4						0.23																			-	1	
Isopropylbenzene	5				5.9																																						-	1	
Isopropylbenzene Methyl Chloride	5																																										-	1	
	NL		41		120)					16	6.3	24	1.3	27	10								1.5		0.5	0.34	0.25		2.3	0.251				27			0.55				0.33		I	
Methyl Cyclohexane Methylene Chloride	5									45															12																				
Toluene	5		43		2.2				3.1		0.81		4.9																																
m,p-Xylene	5				4.5																																								
o-Xylene	5				7.9	-			2.4																													0.31							
Total Xylenes	5		13		12	4					3.3		4.2		22															4.9		29													
Trichloroethene	5	2,40	0 4,600	118	197 100)	192	278	88	130	55													1.5								3,000	154	138	55	109	9.26	6.7	2	0.96					
Vinyl chloride	2	240	740	977	825 460)	416	1040	850	850	150	540	160	230		200			3.7			246	104	2.7		1.2		4.6	7			160	331	271	190	247	17.1	4.8			1.4	1.4	1.3		1.4
BTEX Compounds	-	0	87	10	17 34		15	0	15	0	20	14	38	7	29	25	0	16	6	16	13	5	0	6	9	4	7	11	9	23		0	0	0	0	0	0	1	0	0	0	0	0	0	. 0
Total VOCs		4,14	15,057	2,385	2,179 1,91	3	1,584	3,138	4,192	3,525	1,124	1,671	443	482	160	706	0	18	19	23	49	645	1,264	24	21	9	15	32	42	39	8	4,289	1,085	882	592	1,011	168	57	9	7.46	9.14	4.73	4.7	3.7	7.69

Note: Regulatory values are derived from NYS Ambient Water Quality Standards TOCS 1.1.1 (Source of Drinking Water, groundwater). (r) – No regulatory value is associated with this compound. Shaded values represent exceedance or a the regulatory value. urg).4 – Micrograms per Liter (quavalent to parts per billion (ppb)). Only compound with one or more defaustions are shown. YWE - Regulatory value not litered for parameter Bank spaces indicates that the analyter was not defacted.

APPENDIX 1

November 2004 Deed Restrictions/Property Information

Chautauqua County Clerk

Return To:

PUBLIC ABSTRA	CT CORPORATION
DEFAULT SERVI	CES
31 E MAIN ST	3RD FL
ROCHESTER	NY 14614

ALCOA INC

NEW YORK STATE DEPARTMENT OF E NVIRONMENTAL CONSERV ATION

Index	DEED BO	OK	
Book	02560	Page	0509
No, Pa	ges 00	07	
Instru	ment DE	CLAR-D	EEDS
Date :	11/22	/2004	
Time :	2:20	:53	
Control	L# 20	041122	0133
INST#	:	DE 200	4 007426

Employee ID LORENZOT

COUNTY	\$	27.00
ST ED DEPT	\$ \$	4.75
	\$ \$.00 .00
273	\$ \$.00.
CEA	\$ \$	14.25 .00
Total:	\$	46.00

STATE OF NEW YORK Chautauqua County Clerk

WARNING: THIS SHEET CONSTITUTES THE CLERK'S ENDORSEMENT, REQUIRED BY SECTION 316-a(5) & SECTION 319 OF THE REAL PROPERTY LAW OF THE STATE OF NEW YORK. DO NOT DETACH.

> Sandra K. Sopak County Clerk

TRANSFER TAX

CONSIDERATN	\$.00
Transfer Tax	\$.00

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT is made the <u>3nd</u> day of November 2004, by ALCOA INC., a Pennsylvania corporation, as successor in interest to Alumax Inc., a Delaware corporation, whose address is Alcoa Corporate Center, 201 Isabella Street, Pittsburgh, Pennsylvania 15212-5858 ("Alcoa").

WHEREAS Alcoa is the subject of Voluntary Agreement Index No. B9-0616-02-06, dated 08 August 2002 (the "Agreement") executed by Robert S. Bear (on behalf of Alcoa) and Susan I. Taluto, Deputy Commissioner – NYSDEC Water Quality and Environmental Remediation as part of the New York State Department of Environmental Conservation's (the "Department's) Voluntary Cleanup Program, namely that parcel of real property located at 320 South Roberts Road in the City of Dunkirk, County of Chautauqua, State of New York, which is part of lands conveyed by:

Warranty Deed made by Alumax Inc. to Alcoa, dated November 3, 2004 and recorded on November <u>22</u>, 2004 in Liber <u>251.0</u> of Deeds at page <u>505</u>;

and being more particularly described in Appendix "A," attached to this declaration and made a part hereof, and hereinafter referred to as "the Property"; and

WHEREAS, the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Property and such remedy requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, Alcoa, for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as shown on a map attached to this declaration as Appendix "B" and made a part hereof, and consists of:

PARCEL A

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13

feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING in the center line of the existing 30.3 foot pavement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, there shall be no construction, use or occupancy; disturbance or excavation of the Property that is inconsistent with the approved "Combined Institutional Control Plan and Operations and Maintenance Plan – Former Alumax Extrusions Site," Site No. V00589-9 (Combined Plan) and that results in unacceptable human exposure to contaminated soils.

Third, the owner of the Property shall be responsible to implement the Combined Plan or implementing any modifications to the Combined Plan after obtaining the written approval of the Relevant Agency. Fourth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for restricted industrial or restricted commercial use without the express written waiver of such prohibition by the Relevant Agency.

Fifth, the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Sixth, the owner of the Property shall continue in full force and effect the prohibition against uses other than restricted commercial and/or industrial uses, and shall assure that any construction, use, occupancy, disturbance or excavation on the property shall be in conformance with the "Combined Plan" as institutional and engineering controls required under the Agreement, and shall continue to implement and annually report on the status, results and effectiveness of the operation, monitoring and maintenance requirements to the Relevant Agency unless the owner first obtains permission to discontinue to do so.

Seventh, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Relevant Agency of the prohibitions, restrictions and requirements set out in this Covenant, the Agreement, and the Combined Plan, and hereby covenant not to contest the authority of the Relevant Agency to seek enforcement.

Eighth, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day first above written.

ALCOA INC.

Russell W. Porter, Jr. Vice President

Date: November 3, 2004

STATE OF PENNSYLVANIA

COUNTY OF ALLEGHENY

Personally appeared before me, the undersigned authority in and for the said county and state, on this 3^{AC} day of November, 2004, within my jurisdiction, the within named Russell W. Porter, Jr., who acknowledged that he is a Vice President of Alcoa Inc., a Pennsylvania corporation, and that for and on behalf of the said corporation, and as its act and deed, he executed the above and foregoing instrument, after first having been duly authorized by said corporation so to do.

)) SS:

)

Notary Public & Mar Hu

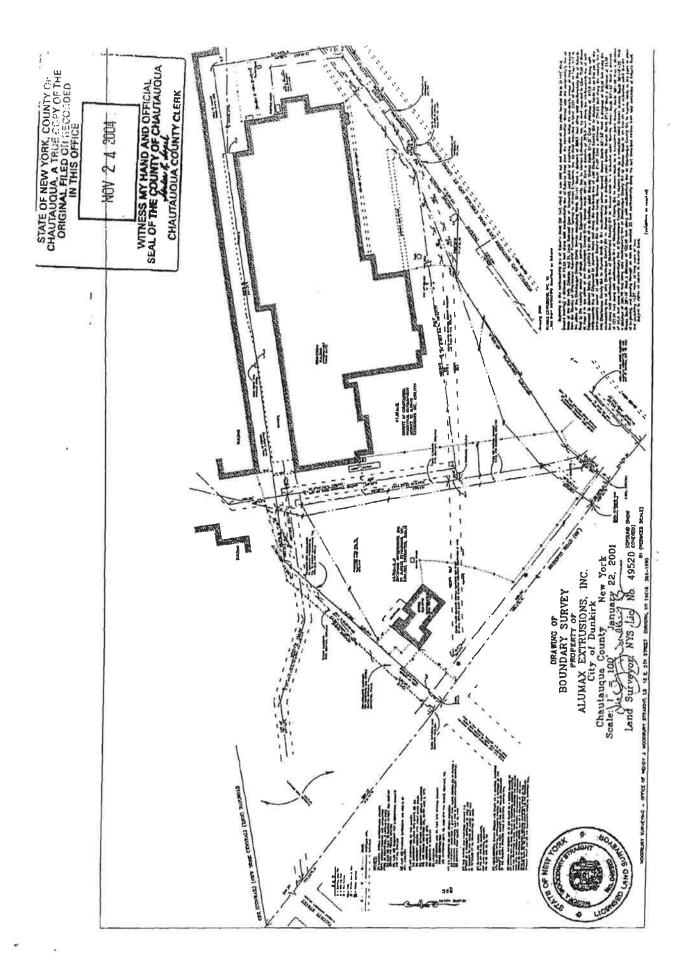
My Commission Expires:

 Notarial Seal Jacqueline L. Muitha, Notary Public City Of Pittsburgh, Allegheny County My Commission Expires Jan. 24, 2007
Member, Pennsylvania Association Of Notarie

(SEAL)

APPENDIX "A"

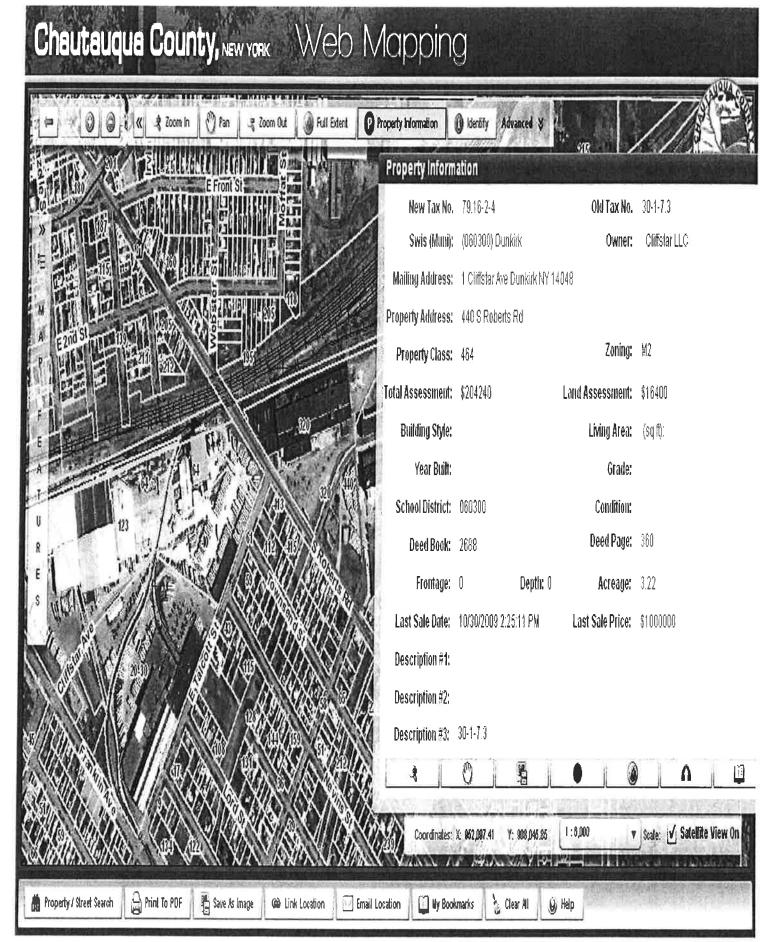
PARCEL A


ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13 feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:


BEGINNING in the center line of the existing 30.3 foot payement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

Chautauqua County - Property Viewer

Chautauqua County, NEW YORK Web Mapping P Property Information O Identify Advanced S 2 Zoom Out Full Extent 2 Zoom In Pan i dolt is an and Property Information 16 New Tax No. 79.16-2-5 Old Tax No. 30-1-7.2.1 Swis (Muni): (060300) Dunkirk Owner: County of Chautauqua Mailing Address: 3 Erie St Mayville NY 14757 Property Address: 320 S Roberts Rd Zoning: M2 Property Class: 330 Total Assessment: \$115800 Land Assessment: \$12600 **Building Style:** Living Area: (sq ft): Year Built: Grade: School District: 060300 Condition: Deed Page: 219 Deed Book: 2656 Frontage: 0 Depth: 0 Acreage: 8.82 Last Sale Date: 7/10/2008 4:10:13 PM Last Sale Price: \$1 Description #1: Description #2: Description #3: 30-1-7.2.1 Δ 0 1:6,000 V Scale: V Satellite View On oordinates. A Print To PDF 🗐 My Bookmarks 👬 Property / Street Search Save As Image 👌 Clear All Link Location M Email Location 🖌 Help

Chautauqua County - Property Viewer

http://gis.co.chautauqua.ny.us:8080/parcels/default.htm

Online Assessment Roll System

Created By:

City of Dunkirk, NY

💐 - Click to go to G	SIS map				Improvemen
	rty is available, click to	view.			<u>Exemptio</u> Tax
		** Commercial	Broparby **		
		PROPERTY INF			
Current Ow	ner Name CLIFFSTAR LI	_C	Section,	Block Lot # 79.16-2	-4
Propert	Address 440 ROBERTS	SRD	Neighbo	rhood Code 200	
Το	own Name Dunkirk			nool District 60300	
	sed Value \$204,240			Swiss Code 060300	
(85.44% of Mar	ket Value)			arcel Status Active	
Full Mar	r ket Value \$239,000			nty Taxable \$204,24	
Land Asses	sed Value \$16,400			wn Taxable \$204,24	
Ргор	erty Type 464 - Office b	ldg.		ool Taxable \$204,24	10
	Lot Size Acres: 3.22 F	Front: 0 Depth: 0	Villa	age Taxable ^{\$0}	
Mailing /	Address 1 1 CLIFFSTAR	AVE		Tax Code	
Mailing /	Address 2			Bank Code	
Mailing C	City, State DUNKIRK, NY				
Mailing	Zip Code 14048				
		PHYSICAL INFO	ORMATION		
# of I	Bedrooms ⁰				
	t of Baths ⁰				
# of F	Fireplaces ⁰				
# of F					
# of F	Fireplaces 0 f Kitchens 0	ISTORICAL SALE I	INFORMATION		
# of F # of	Fireplaces 0 f Kitchens 0	<i>ISTORICAL SALE I</i> Deed Page	INFORMATION Sale Date	Valid Sale	Sale Price
# of F	Fireplaces 0 f Kítchens 0 H.			Valid Sale NO	Sale Price
# of F # of Wuner History LIFFSTAR LLC iffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book	Deed Page 426 360	Sale Date		\$1 \$1,000,000
# of F # of .uwner History .IFFSTAR LLC iffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705	Deed Page 426	Sale Date 8/17/2010	NO	\$1
# of F # of Wuner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587	Deed Page 426 360	Sale Date 8/17/2010 10/30/2009 11/16/2005	NO NO	\$1 \$1,000,000
# of F # of Wwner History	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587	Deed Page 426 360 453	Sale Date 8/17/2010 10/30/2009 11/16/2005	NO NO	\$1 \$1,000,000
# of F # of Wuner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587	Deed Page 426 360 453 COMMERCIAL INA	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg.	NO NO	\$1 \$1,000,000
# of F # of Dwner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587 Build	Deed Page 426 360 453 COMMERCIAL IN Property Class 464	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg. 02	NO NO	\$1 \$1,000,000
# of F # of Wuner History LIFFSTAR LLC iffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587 Build	Deed Page 426 360 453 COMMERCIAL INA Property Class 464 ling Sq. Footage 5,90	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg. 02 .61	NO NO YES	\$1 \$1,000,000
# of F # of Dwner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587 Build	Deed Page 426 360 453 COMMERCIAL IN Property Class 464 ling Sq. Footage 5,90 ent Per Sq. Foot \$34 Property Use us	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg. 02 .61	NO NO YES	\$1 \$1,000,000 \$400,000
# of F # of Wuner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587 Build	Deed Page 426 360 453 COMMERCIAL INA Property Class 464 ling Sq. Footage 5,99 ent Per Sq. Foot \$34 Property Use US E01	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg. 02 6.61 SED AS	NO NO YES	\$1 \$1,000,000 \$400,000
# of F # of Dwner History LIFFSTAR LLC liffstar Corporation,	Fireplaces 0 f Kitchens 0 H. Deed Book 2705 2688 2587 Build	Deed Page 426 360 453 COMMERCIAL INA Property Class 464 ling Sq. Footage 5,99 ent Per Sq. Foot \$34 Property Use US E01	Sale Date 8/17/2010 10/30/2009 11/16/2005 FORMATION - Office bldg. 02 - 6.61 SED AS 3 - Profssnl off 4 - Cold storage	NO NO YES	\$1 \$1,000,000 \$400,000 NTABLE SQ. FT. 5,902

- Site No. 1 Use No. 1 Used As E03 - Profssnl off Acres 3.22 Valuation Dist 0 Rentable Sq. Ft. 5,902 Unit Code -Total Number Of Units Total Rent \$0
- Site No. 1 Use No. 2 Used As F04 - Cold storage Acres 3.22 Valuation Dist 0 Rentable Sq. Ft. 5,902 Unit Code -Total Number Of Units Total Rent \$0

- Rent Type -Lease Begin Lease Length ⁰ yrs Total Eff / 1 Bed Sq. Ft. Number Of 1 Bed Units Total 2 Bedroom Sq. Ft. Number Of 2 Bed Units Total 3 Bedroom Sq. Ft. Number Of 3 Bed Units
- Rent Type -Lease Begin Lease Length ⁰ yrs Total Eff / 1 Bed Sq. Ft. Number Of 1 Bed Units Total 2 Bedroom Sq. Ft. Number Of 2 Bed Units Total 3 Bedroom Sq. Ft. Number Of 3 Bed Units

Online Assessment Roll System

Created By:

City of Dunkirk, NY

OARS Main Page					
🥞 - Click to go to GIS m	ар				Improvemen
- Photo of property is	available, click to view				<u>Exemptio</u> Tax B
		Commercial Pro			
Current Owner	Name COUNTY OF CHAUT			ck Lot # 79.16-2-5	;
Property Ad	dress 320 ROBERTS RD			od Code 200	
Town	Name Dunkirk		Schoo	I District 60300	
Total Assessed	Value \$115,800		Sw	viss Code 060300	
(85.44% of Market V	/alue)			el Status Active	
	Value \$135,500		-	Taxable \$0	
Land Assessed				Taxable \$0	
	Type 330 - Vacant comm			Taxable ^{\$0}	
Lo	t Size Acres: 8.82 Front: 0) Depth: 0	-	Taxable ^{\$0}	
Mailing Addr	ress 1 3 Erie st		-	Tax Code	
Mailing Addr			Ba	nk Code	
	State MAYVILLE, NY				
Mailing Zip	Code 14757				
rianny zip					
# of Bedro	PH ooms ⁰ Baths ⁰ laces ⁰	YSICAL INFORM	IATION		
# of Bedro # of I # of Firep	PH ooms ⁰ Baths ⁰ laces ⁰ chens ⁰	YSICAL INFORM			
# of Bedro # of I # of Firep	PH ooms ⁰ Baths ⁰ laces ⁰ chens ⁰			Valid Sale	Sale Price
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book 2656	RICAL SALE INF Deed Page 219	ORMATION Sale Date 7/10/2008	NO	\$1
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book	<i>RICAL SALE INF</i> Deed Page	<i>ORMATION</i> Sale Date		
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book 2656 2560	RICAL SALE INF Deed Page 219	ORMATION Sale Date 7/10/2008 11/3/2004	NO	\$1
# of Bedro # of I # of Firep # of Kitc	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book 2656 2560	RICAL SALE INF Deed Page 219 505	ORMATION Sale Date 7/10/2008 11/3/2004	NO	\$1
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book 2656 2560 <i>COM</i>	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR	ORMATION Sale Date 7/10/2008 11/3/2004	NO	\$1
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTO</i> Deed Book 2656 2560 <i>COM</i> Proj Building S	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class 330 - Va	ORMATION Sale Date 7/10/2008 11/3/2004	NO	\$1
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTOL</i> 2656 2560 <i>COM</i> Proj Building S Assessment P	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class ^{330 - Va} iq. Footage	ORMATION Sale Date 7/10/2008 11/3/2004 PMATION cant comm	NO YES	\$1
# of Bedro # of I # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTOL</i> 2656 2560 <i>COM</i> Proj Building S Assessment P	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class 330 - Va 5q. Footage er Sq. Foot \$0.00	ORMATION Sale Date 7/10/2008 11/3/2004 CMATION cant comm	NO YES RENTA	\$1 \$700,000
# of Bedro # of F # of Firep # of Kitc Dwner History COUNTY OF CHAUTAUQUA Alcoa, Inc.,	PH ooms 0 Baths 0 laces 0 chens 0 Deed Book 2656 2560 COM Prop Building S Assessment Prop	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class 330 - Va iq. Footage er Sq. Foot \$0.00 operty Use USED A	ORMATION Sale Date 7/10/2008 11/3/2004 CMATION cant comm	NO YES RENTA	\$1 \$700,000 ABLE SQ. FT.
# of Bedro # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA Alcoa, Inc.,	PH ooms 0 Baths 0 laces 0 chens 0 <i>HISTOL</i> 2656 2560 <i>COM</i> Proj Building S Assessment P	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class 330 - Va iq. Footage er Sq. Foot \$0.00 operty Use USED A	ORMATION Sale Date 7/10/2008 11/3/2004 PMATION cant comm	NO YES RENTA	\$1 \$700,000 ABLE SQ. FT.
# of Bedro # of Firep # of Kitc Owner History COUNTY OF CHAUTAUQUA Alcoa, Inc., Site Use	PH ooms 0 Baths 0 Jaces 0 chens 0 <i>HISTO</i> Deed Book 2656 2560 <i>COM</i> Proj Building S Assessment P Pro	RICAL SALE INFO Deed Page 219 505 MERCIAL INFOR perty Class 330 - Va iq. Footage er Sq. Foot \$0.00 operty Use USED A	ORMATION Sale Date 7/10/2008 11/3/2004 PMATION cant comm as ght mfg Re Leas	NO YES RENTA	\$1 \$700,000 ABLE SQ. FT.

OARS - Subject Property Information

Valuation Dist 0 Rentable Sq. Ft. 153,993 Unit Code 10 - Bays Total Number Of Units 12 Total Rent \$0

APPENDIX 2

Photographs

Northern view of Site and ditch

Southern view of Site and ditch

View of concrete pad and onsite wells facing west

View of AL-2 and concrete pad facing east

2022 Periodic Review Report Former Alumax Extrusions Site 320 and 440 S. Roberts Road, Dunkirk, New York

APPENDIX 3

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	V00589	Site Details		Box 1	
Sit	e Name Cl	osed Alumax Extrusior	ıs, Inc. Facility			
Cit Co	e Address: y/Town: Du unty: Chauta e Acreage:	auqua	Zip Code: 14048-			
Re	porting Peri	od: December 15, 2021	to December 15, 2022			
					YES	NO
1.		mation above correct?			Å	
	If NO, inclu	ude handwritten above or	r on a separate sheet.			
2.		or all of the site property nendment during this Re	been sold, subdivided, me porting Period?	rged, or undergone a	X	
3.		been any change of use CRR 375-1.11(d))?	at the site during this Repo	orting Period	X	
4.		federal, state, and/or loca e property during this Re	al permits (e.g., building, di porting Period?	scharge) been issued		X
			s 2 thru 4, include docum viously submitted with t			
5.	Is the site	currently undergoing dev	elopment?			X
					Box 2	
					YES	NO
6.		ent site use consistent wi al and Industrial	th the use(s) listed below?		X	
7.	Are all ICs	in place and functioning	as designed?	X		
	IF T		QUESTION 6 OR 7 IS NO, HE REST OF THIS FORM.	-	nd	
AC	Corrective N	leasures Work Plan mus	t be submitted along with	this form to address th	iese issi	ues.
Sia	nature of Ov	vner, Remedial Party or Do	esignated Representative	Date	<u>.</u>	

SITE NO. V00589		Box 3
Description of I	Institutional Controls	
Parcel	Owner	Institutional Control
79.16-2-4	440 Roberts Rock, L	
Site Management Pla	n (11/01/2021)and Deed Restriction (f	iled 11/3/2004):
Commercial. 2) Ground water use	t Plan/Excavation Work Plan.	Ground Water Use Restriction Landuse Restriction Soil Management Plan Monitoring Plan O&M Plan
 Landuse Restiction Commercial. Ground water use 	t Plan/Excavation Work Plan. stem.	filed 11/3/2004):
		Box 4
Description of I	Engineering Controls	
Parcel 79.16-2-4	Engineering Cont	<u>rol</u>
Cover system to be pl	aced once site redeveloped	
79.16-2-5	Vapor Mitigation Cover System	
Soil vapor intrusion ev	valuation required for any new or exist	ng building onsite
Cover system to be pl	aced once site redeveloped	

		Box 5
Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
a) the Periodic Review report and all attachments were prepared under the d reviewed by, the party making the Engineering Control certification;	irection of,	and
b) to the best of my knowledge and belief, the work and conclusions describe are in accordance with the requirements of the site remedial program, and gel engineering practices; and the information presented is accurate and compete.		
	YES	NO
	X	
2. For each Engineering control listed in Box 4, I certify by checking "YES" below that a following statements are true:	all of the	
(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the I	Departmer	ıt;
(b) nothing has occurred that would impair the ability of such Control, to prote the environment;	ect public h	ealth and
(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Contr		
(d) nothing has occurred that would constitute a violation or failure to comply Site Management Plan for this Control; and	with the	
(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in		
	YES	NO
	X	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu		
A Corrective Measures Work Plan must be submitted along with this form to addres	s these is:	sues.
Signature of Owner, Remedial Party or Designated Representative Date	9	

IC CERTIFICATIONS SITE NO. V00589

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 Mark Geise at 440 S. Roberts Rd., Punkirk, NY, print name print business address

am certifying as ___ Owner

(Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

rean

Signature of Owner, Remedial Party, or Designated Representative **Rendering Certification**

1/13/23 Date

EC CERTIFICA	TIONS
Qualified Environmental P	Box 7 rofessional Signature
	ection 210.45 of the Penal Law. Associates, D.P.C.
Iatat	te Street, Rochester, NY
print name pri	nt business address
am certifying as a Qualified Environmental Professional	for the <u>Owner</u> (Owner or Remedial Party)
DJ 7. 111	1/13/2023
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification	Stamp Date (Required for PE)

	NEW YOI 6	10-Day Advance Notification of Site Change of Use, Transfer of Certificate of Completion, and/or Ownership Required by 6NYCRR Part 375-1.11(d) and 375-1.9(f)
Т	o be submitted	at least 60 days prior to change of use to:
N D		Department of Environmental Conservation ironmental Remediation, 625 Broadway
[.	Site Name:	Closed Alumax Extrusions, Inc. Facility DEC Site ID No. V00589-9
11.		Cormation of Person Submitting Notification: Scott Fairbrother - on behalf of 440 Roberts Road, LLC.
		Centre Drive
		Drchard Park, NY 14127
	Phone: $\overline{7}$	16-667-1234 E-mail: sfairbrother@kroggrp.com
IV.	 ✓ Other (e. Proposed Da Description parcel infor 	 of Certificate of Completion (CoC) .g., any physical alteration or other change of use) ate of Change (mm/dd/yyyy): Sep 14, 2022 n: Describe proposed change(s) indicated above and attach maps, drawings, and/or rmation. of R&D Building from the County of Chautauqua Industrial Development Agency who took
	ownership fr	rom Refresco Beverages US Inc. successor by merger with Cliffstar LLC.
		the description must explain and advise the Department how such change may or may
	not affect t needed).	the site's proposed, ongoing, or completed remedial program (attach additional sheets if
	not affect t needed). As per the N	the site's proposed, ongoing, or completed remedial program (attach additional sheets if IYSDEC-approved Notification of Intrusive Activities date 11/11/2022; the proposed
	not affect t needed). As per the N	the site's proposed, ongoing, or completed remedial program (attach additional sheets if

v. Certification Statement: Where the change of use results in a change in ownership or in responsibility for the proposed, ongoing, or completed remedial program for the site, the following certification must be completed (by owner or designated representative; see §375-1.11(d)(3)(i)):

I hereby certify that the prospective purchaser and/or remedial party has been provided a copy of any order, agreement, Site Management Plan, or State Assistance Contract regarding the Site's remedial program as well as a copy of all approved remedial work plans and reports.

	Name:	(Signature)	m	(Date)
		Richard Dixon (Print Name)		
	Address1:	201 West Third Street, Suite 11	5	
	Address2:	Jamestown, NY 14701		
	Phone:	716.661.8905 I	E-mail:	dixonr@ccida.com
VI.	there will I informatio Manageme (IC/ECs), ✓ Prospe	be a new remedial party, idention. If the site is subject to an E ent Plan requiring periodic cert	ify the p Environn tification ying par Remedia	
	Name: Address1:	4 Centre Drive	<u>.</u>	
	Address1: Address2:	Orchard Park, NY 14127		
	Phone:	716-667-1234	E-mail:	plkrog@kroggrp.com
		Party Name: Richard Dixon 201 West Third Street, Suite 11		
	Address1:			
	Address2: Phone:		E-mail:	dixonr@ccida.com

VII. Agreement to Notify DEC after Transfer: If Section VI applies, and all or part of the site will be sold, a letter to notify the DEC of the completion of the transfer must be provided. If the current owner is also the holder of the CoC for the site, the CoC should be transferred to the new owner using DEC's form found at <u>http://www.dec.ny.gov/chemical/54736.html</u>. This form has its own filing requirements (see 6NYCRR Part 375-1.9(f)).

Signing below indicates that these notices will be provided to the DEC within the specified time frames. If the sale of the site also includes the transfer of a CoC, the DEC agrees to accept the notice given in VII.3 below in satisfaction of the notice required by VII.1 below (which normally must be submitted within 15 days of the sale of the site).

Within 30 days of the sale of the site, I agree to submit to the DEC:

- 1. the name and contact information for the new owner(s) (see §375-1.11(d)(3)(ii));
- 2. the name and contact information for any owner representative; and
- 3. a notice of transfer using the DEC's form found at <u>http://www.dec.ny.gov/chemical/54736.html</u> (see §375-1.9(f)),

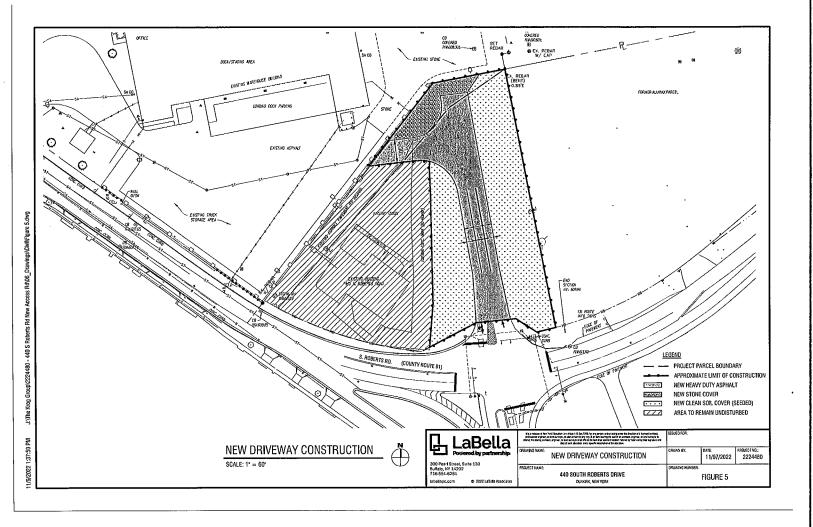
Name:

3575-1.5(1)), MEMP
(Signature)

(Date)

Richard Dixon

(Print Name)


Address1: 201 West Third Street, Suite 115

Address2: Jamestown, NY 14701

716.661.8905

Phone:

E-mail: dixonr@ccida.com

APPENDIX 4

Groundwater Sampling Logs

LABELLA ASSOCIATE Environmental Engine Site Location:		nsultants	6			Well I.D.	2200014
Sample Date: LaBella Representative:	12/13/2	2	-		97		
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details
Time	1530	0835	DEVIS	02415	0850		
Depth of well	200)				5)		
Depth to water	7.57						
Well diameter	211						
Well volume (gallons)	20						
Purging device							
Containment device							
Purge time							
Gallons purged	O'	20	in.6	60			
Sample device							
Field Parameters							
Temperature	11.4	12.8	13.2	13.2		13.2	
pH measurement	7.22	7.29	7.48	ティテ		7.30	
Conductivity (mS/cm)	1 200	0. Jan	S.TMO	.746		4.017	
ORP/Eh (mV)	- 14.5	-99.4	-7477	-72.1		-73-6	
Turbidity (NTUs)	16.55	10 59	118.34	2712 2		225.21	
WEATHER: NOTES/FIELD OBSERVAT	IONS:						
Well Volume Purge: 1 Well Vol (only if applicable)		Well Depth – . –ft.) X . gal			Well Capaci	ty	
Well Capacity (Gallons per Foot): 0.	75"=0.02 1"		=0.092 2" =0				
4"=0.65 5"=1.02 6"=1.47 1. Stabilization Crite	12"=5.88 eria for range	of variation	of last three c	onsecutive Re	adings		
pH: ± 0.2 units; Temperatu	re: + 0.5 [°] C; 5	Specific Cond	luctance: + 10	%; Turbidity:	≤ 50 NTU		
A minimum of three well volumes event that groundwater recharge is returned to its pre-purge level (or and does not reach its pre-purge level degree of recharge indicated in fie	and a maximus slow, the pur within a maximus evel within two	um of five wel ging process v num of two ho o hours, then s	l volumes are will continue u ours), samples samples can be	to be removed ntil the well is will be collect collected afte	from each w purged "dry' ed. If the wat	'. After the wat er level is slow	er level has to recharge

1

LABELLA ASSOCIATE							11 0
Environmental Engine			5			Well I.D.	41.2
Site Location:	Alum					Job No.	2200014
Sample Date:	12/13/22	2	2				
LaBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	800	OBUT	aliu	6820	and the second s	D828	
Depth of well	19,0						
Depth to water	6.70						
Well diameter	2"						
Well volume (gallons)	1.9						
Purging device							
Containment device							
Purge time							
Gallons purged							
Sample device	, D	1.9	3.8	5.7			
Field Parameters	*						
Temperature	81	11.5	12.2	12.6	-	12.4	
pH measurement	7.46	7.30	7.31	7.35	-	7.43	
Conductivity (mS/cm)	.845	13. 852	0-854		5	.855	
ORP/Eh (mV)	- 85.5	-97.5	-105,2	- 131.8	-	-132.4	
Turbidity (NTUs)	12.23	28.07	37.90	43.45	/	33.26	1
WEATHER: NOTES/FIELD OBSERVAT	IONS [.]						
Well Volume Purge: 1 Well Volume (only if applicable)	ume = (Total '		Static Depth /ft = 0.3056 g		Well Capacit	у	
Well Capacity (Gallons per Foot): 0.		=0.04 1.5"=	=0.092 2" =0	0.16 3"= 0.37			
4"=0.65 5"=1.02 6"=1.47 1. Stabilization Crite	12"=5.88 eria for range	of variation (of last three co	onsecutive Re	adings		
	0.0	and the second second second		0/ 700 100	- FA 1/8/1		
pH: ± 0.2 units; Temperatu	re: $\pm 0.5^{\circ}C;$ S	Specific Cond	uctance: ± 10	%; Turbidity	$\leq 50 \text{ NTU}$		
A minimum of three well volumes event that groundwater recharge is returned to its pre-purge level (or and does not reach its pre-purge le degree of recharge indicated in fie	s slow, the purg within a maxim evel within two	ging process v num of two ho hours, then s	vill continue u ours), samples amples can be	ntil the well is will be collect collected afte	purged "dry" ed. If the wate	. After the wat er level is slow	er level has to recharge
Landers of section of indicates in he							

LABELLA ASSOCIAT							
Environmental Engine			5			Well I.D. 🏒	
Site Location:	Aluma				1	Job No.	2200014
Sample Date:	12/13/2	n	2				
LaBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	0856	0901	09100		0916		
Depth of well	114						
Depth to water	5 . 1						
Well diameter	21					4	
Well volume (gallons)	10 8						
Purging device							
Containment device							
Purge time							
Gallons purged	(Jan)	1.8	3.60				
Sample device							
Field Parameters				- A			
Temperature	1.4	9.3	9.2	9.7 -	7		
pH measurement	7.50	7.07	208	7.11 -	>		
Conductivity (mS/cm)	0.329	0.290	. 265	,136-	-3		
ORP/Eh (mV)	-146.9	-119,9	-169	-101.38	→		
Turbidity (NTUs)	28.52	46.27	135.0)	141.785			
WEATHER: NOTES/FIELD OBSERVAT							
well dry aft	10N3.	Gals					
waited 10 m		3	- Alberton	ace la	1		
Well Volume Purge: 1 Well Vol	lume = (Total	Well Depth -	Static Depth	To Water) X	/ Well Capaci	ty	
(only if applicable)		. –ft.) X. gal			•		
Well Capacity (Gallons per Foot): 0.		e=0.04 1.5"	=0.092 2" =0	3"=0 ,3	7		
4"=0.65 5"= 1.02 6"= 1.47 1. Stabilization Crit	12"=5.88 eria for range	of variation (of last three co	onsecutive Re	adings		
pH: ± 0.2 units; Temperatu	Ire: $\pm 0.5^{\circ}$ C; \pm	Specific Cond	uctance: ± 10	%; Turbidity	$\leq 50 \text{ NTU}$	BID STREET	
A minimum of three well volume	a and a	m of fire and	l volumos are	to be removed	from each w	ell prior to sam	nling In the
event that groundwater recharge i	s and a maximum is slow, the pur	ging process v	vill continue u	ntil the well is	s purged "dry'	'. After the wat	er level has
returned to its pre-purge level (or	within a maxin	num of two ho	ours), samples	will be collec	ted. If the wat	er level is slow	to recharge

and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

APPENDIX 5

Laboratory Analytical Results

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202 Generated 12/19/2022 3:48:01 PM

JOB DESCRIPTION

Alumax & Roblin Periodic Review Reports

JOB NUMBER

480-204719-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/19/2022 3:48:01 PM

Authorized for release by Brian Fischer, Manager of Project Management Brian.Fischer@et.eurofinsus.com (716)504-9835

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	30
	31
QC Association Summary	34
Lab Chronicle	35
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Receipt Checklists	41

Definitions/Glossary

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

TNTC Too Numerous To Count

Job ID: 480-204719-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-204719-1

Comments

No additional comments.

Receipt

The samples were received on 12/13/2022 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

Receipt Exceptions

MW-13 listed on COCs twice. Only included in login once.

AL-2 (480-204719-1), AL-1 (480-204719-2), AL-7 (480-204719-3), MW-9R (480-204719-4), EX-MW-11R (480-204719-5), MW-02R (480-204719-6), EX-MW-12 (480-204719-7), MW-04 (480-204719-8), MW-07R (480-204719-9), MW-13 (480-204719-10), DUP (480-204719-11) and TRIP BLANK (480-204719-12)

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-653342 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: AL-2 (480-204719-1), AL-1 (480-204719-2), AL-7 (480-204719-3), MW-9R (480-204719-4), EX-MW-11R (480-204719-5), MW-02R (480-204719-6), EX-MW-12 (480-204719-7), MW-04 (480-204719-8), MW-07R (480-204719-9), DUP (480-204719-11) and TRIP BLANK (480-204719-12).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: AL-1 (480-204719-2), MW-9R (480-204719-4), EX-MW-11R (480-204719-5), MW-02R (480-204719-6), MW-07R (480-204719-9) and DUP (480-204719-11). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-204719-1

Detection Summary

Client: LaBella Assoc Project/Site: Alumax

lient Sample ID: AL-2						Lat	o S	ample ID:	480-204719-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	6.2		1.0		ug/L	1	_	8260C	Total/NA
Cyclohexane	1.3		1.0		ug/L	1		8260C	Total/NA
Methylcyclohexane	0.25	J	1.0		ug/L	1		8260C	Total/NA
lient Sample ID: AL-1						Lat	o S	ample ID:	480-204719-
Analyte	Result	Qualifier	RL	мы	Unit	Dil Fac	р	Method	Prep Type
Benzene	25		10	4.1	ug/L		_	8260C	Total/NA
cis-1,2-Dichloroethene	450		10	8.1	ug/L	10		8260C	Total/NA
Cyclohexane	21		10		ug/L	10		8260C	Total/NA
Methylcyclohexane	10		10		ug/L	10		8260C	Total/NA
Vinyl chloride	200		10		ug/L	10		8260C	Total/NA
lient Sample ID: AL-7						Lat	o S	ample ID:	480-204719
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloromethane	0.99		1.0	0.35	ug/L	1	_	8260C	Total/NA
cis-1,2-Dichloroethene	5.3		1.0		ug/L	1		8260C	Total/NA
Vinyl chloride	1.4		1.0	0.90	ug/L	1		8260C	Total/NA
lient Sample ID: MW-9R						Lat	o S	ample ID:	480-204719-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	180		10	8.1	ug/L	10	_	8260C	Total/NA
Cyclohexane	22		10	1.8	ug/L	10		8260C	Total/NA
Methylcyclohexane	20		10	1.6	ug/L	10		8260C	Total/NA
Vinyl chloride	430		10	9.0	ug/L	10		8260C	Total/NA
lient Sample ID: EX-MW-11R						Lat	o S	ample ID:	480-204719
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3600		100	81	ug/L	100	_	8260C	Total/NA
Methylcyclohexane	16	J	100	16	ug/L	100		8260C	Total/NA
Trichloroethene	600		100	46	ug/L	100		8260C	Total/NA
Vinyl chloride	1100		100	90	ug/L	100		8260C	Total/NA
lient Sample ID: MW-02R						Lat	o S	ample ID:	480-204719-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	2.5	J	5.0	2.1	ug/L	5	_	8260C	Total/NA
cis-1,2-Dichloroethene	130		5.0	4.1	ug/L	5		8260C	Total/NA
Cyclohexane	4.5	J	5.0	0.90	ug/L	5		8260C	Total/NA
Methylcyclohexane	3.2	J	5.0	0.80	ug/L	5		8260C	Total/NA
Vinyl chloride	150		5.0		ug/L	5		8260C	Total/NA
Client Sample ID: EX-MW-12						Lat	o S	ample ID:	480-204719
No Detections.									
Client Sample ID: MW-04						Lat	o S	ample ID:	480-204719
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloromethane	0.51	· · · ·	1.0		ug/L	1	_	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

Detection Summary

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	400		10	8.1	ug/L		8260C	Total/NA
Vinyl chloride	140		10	9.0	ug/L	10	8260C	Total/NA
Client Sample ID: DUP						Lab Sa	ample ID: 4	480-204719-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
, analy to								T 1 1/010
Benzene	2.5	J	5.0	2.1	ug/L	5	8260C	Total/NA
	2.5 150	J	5.0 5.0		ug/L ug/L	5 5	8260C 8260C	Total/NA Total/NA
Benzene		J			ug/L	-		
Benzene cis-1,2-Dichloroethene	150		5.0	4.1	ug/L ug/L	5	8260C	Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

Lab Sample ID: 480-204719-1

Matrix: Water

5

6

Date Collected: 12/13/22 08:25 Date Received: 12/13/22 14:00

Client Sample ID: AL-2

Method: SW846 8260C - Volatile (Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		12/14/22 13:59	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21			12/14/22 13:59	1
1,1,2-Trichloroethane	ND	1.0	0.23			12/14/22 13:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31			12/14/22 13:59	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		12/14/22 13:59	1
1,1-Dichloroethene	ND	1.0	0.29			12/14/22 13:59	1
1,2,4-Trichlorobenzene	ND	1.0	0.41			12/14/22 13:59	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		12/14/22 13:59	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		12/14/22 13:59	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		12/14/22 13:59	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		12/14/22 13:59	1
1,3-Dichlorobenzene	ND	1.0	0.78			12/14/22 13:59	1
1,4-Dichlorobenzene	ND	1.0	0.84			12/14/22 13:59	1
2-Butanone (MEK)	ND	10		ug/L		12/14/22 13:59	1
2-Hexanone	ND	5.0		ug/L		12/14/22 13:59	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L		12/14/22 13:59	1
Acetone	ND	10		ug/L		12/14/22 13:59	1
Benzene	6.2	1.0	0.41			12/14/22 13:59	1
Bromodichloromethane	ND	1.0	0.39			12/14/22 13:59	
Bromoform	ND	1.0	0.26			12/14/22 13:59	1
Bromomethane	ND	1.0	0.69			12/14/22 13:59	1
Carbon disulfide	ND	1.0	0.19			12/14/22 13:59	
Carbon tetrachloride	ND	1.0	0.27			12/14/22 13:59	1
Chlorobenzene	ND	1.0	0.75			12/14/22 13:59	1
Dibromochloromethane	ND	1.0	0.32			12/14/22 13:59	
Chloroethane	ND	1.0	0.32			12/14/22 13:59	1
Chloroform	ND	1.0	0.34			12/14/22 13:59	1
Chloromethane	ND	1.0	0.35			12/14/22 13:59	
cis-1,2-Dichloroethene	ND	1.0	0.81			12/14/22 13:59	1
cis-1,3-Dichloropropene	ND	1.0	0.36			12/14/22 13:59	1
Cyclohexane	1.3	1.0	0.18			12/14/22 13:59	
Dichlorodifluoromethane	ND	1.0	0.68			12/14/22 13:59	1
Ethylbenzene	ND	1.0	0.74	-		12/14/22 13:59	1
1,2-Dibromoethane	ND	1.0	0.73			12/14/22 13:59	
Isopropylbenzene	ND	1.0		ug/L		12/14/22 13:59	1
Methyl acetate	ND	2.5		ug/L		12/14/22 13:59	1
Methyl tert-butyl ether	ND	1.0	0.16			12/14/22 13:59	
Methylcyclohexane	0.25 J	1.0	0.16	-		12/14/22 13:59	1
Methylene Chloride	ND	1.0	0.44			12/14/22 13:59	1
Styrene	ND	1.0	0.73			12/14/22 13:59	· · · · · · · 1
Tetrachloroethene	ND	1.0	0.36			12/14/22 13:59	1
Toluene	ND	1.0	0.50	-		12/14/22 13:59	1
trans-1,2-Dichloroethene	ND	1.0	0.90			12/14/22 13:59	· · · · · · 1
trans-1,3-Dichloropropene	ND	1.0	0.30	°		12/14/22 13:59	1
Trichloroethene	ND	1.0	0.46	-		12/14/22 13:59	1
Trichlorofluoromethane	ND	1.0	0.40			12/14/22 13:59	
Vinyl chloride	ND	1.0	0.88	-		12/14/22 13:59	1
Xylenes, Total	ND	2.0	0.66	-		12/14/22 13:59	1

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-1

Client Sample ID: AL-2 Date Collected: 12/13/22 08:25

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120	1	2/14/22 13:59	1
1,2-Dichloroethane-d4 (Surr)	104	77 _ 120	1.	2/14/22 13:59	1
4-Bromofluorobenzene (Surr)	91	73 - 120	1.	2/14/22 13:59	1
Dibromofluoromethane (Surr)	97	75 - 123	1:	2/14/22 13:59	1

5

6

Lab Sample ID: 480-204719-2 Matrix: Water

Date Collected: 12/13/22 08:50 Date Received: 12/13/22 14:00

Client Sample ID: AL-1

Method: SW846 8260C - Volatile (Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	10		ug/L		12/14/22 14:21	10
1,1,2,2-Tetrachloroethane	ND	10		ug/L		12/14/22 14:21	10
1,1,2-Trichloroethane	ND	10		ug/L		12/14/22 14:21	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10		ug/L		12/14/22 14:21	10
1,1-Dichloroethane	ND	10		ug/L		12/14/22 14:21	10
1,1-Dichloroethene	ND	10		ug/L		12/14/22 14:21	10
1,2,4-Trichlorobenzene	ND	10		ug/L		12/14/22 14:21	10
1,2-Dibromo-3-Chloropropane	ND	10		ug/L		12/14/22 14:21	10
1,2-Dichlorobenzene	ND	10	7.9	ug/L		12/14/22 14:21	10
1,2-Dichloroethane	ND	10	2.1	ug/L		12/14/22 14:21	10
1,2-Dichloropropane	ND	10	7.2	ug/L		12/14/22 14:21	10
1,3-Dichlorobenzene	ND	10		ug/L		12/14/22 14:21	10
1,4-Dichlorobenzene	ND	10	8.4	ug/L		12/14/22 14:21	10
2-Butanone (MEK)	ND	100		ug/L		12/14/22 14:21	10
2-Hexanone	ND	50		ug/L		12/14/22 14:21	10
4-Methyl-2-pentanone (MIBK)	ND	50		ug/L		12/14/22 14:21	10
Acetone	ND	100		ug/L		12/14/22 14:21	10
Benzene	25	10		ug/L		12/14/22 14:21	10
Bromodichloromethane	ND	10		ug/L		12/14/22 14:21	10
Bromoform	ND	10		ug/L		12/14/22 14:21	10
Bromomethane	ND	10		ug/L		12/14/22 14:21	10
Carbon disulfide	ND	10		ug/L		12/14/22 14:21	10
Carbon tetrachloride	ND	10		ug/L		12/14/22 14:21	10
Chlorobenzene	ND	10		ug/L		12/14/22 14:21	10
Dibromochloromethane	ND	10		ug/L		12/14/22 14:21	10
Chloroethane	ND	10		ug/L		12/14/22 14:21	10
Chloroform	ND	10		ug/L		12/14/22 14:21	10
Chloromethane	ND	10		ug/L		12/14/22 14:21	10
cis-1,2-Dichloroethene	450	10		ug/L		12/14/22 14:21	10
cis-1,3-Dichloropropene	ND	10		ug/L		12/14/22 14:21	10
Cyclohexane	21	10		ug/L		12/14/22 14:21	10
Dichlorodifluoromethane	ND	10		ug/L		12/14/22 14:21	10
Ethylbenzene	ND	10		ug/L		12/14/22 14:21	10
1,2-Dibromoethane	ND	10		ug/L		12/14/22 14:21	10
Isopropylbenzene	ND	10		ug/L		12/14/22 14:21	10
Methyl acetate	ND	25		ug/L		12/14/22 14:21	10
Methyl tert-butyl ether	ND	10		ug/L		12/14/22 14:21	10
Methylcyclohexane	10	10		ug/L		12/14/22 14:21	10
Methylene Chloride	ND	10		ug/L		12/14/22 14:21	10
Styrene	ND	10		ug/L		12/14/22 14:21	10
Tetrachloroethene	ND	10		ug/L		12/14/22 14:21	10
Toluene	ND	10		ug/L		12/14/22 14:21	10
trans-1,2-Dichloroethene	ND	10		ug/L		12/14/22 14:21	10
trans-1,3-Dichloropropene	ND	10		ug/L		12/14/22 14:21	10
Trichloroethene	ND	10		ug/L		12/14/22 14:21	10
Trichlorofluoromethane	ND	10		ug/L		12/14/22 14:21	10
Vinyl chloride	200	10		ug/L		12/14/22 14:21	10
Xylenes, Total	ND	20		ug/L		12/14/22 14:21	10

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-2

Client Sample ID: AL-1 Date Collected: 12/13/22 08:50

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92	80 - 120		12/14/22 14:21	10
1,2-Dichloroethane-d4 (Surr)	102	77 _ 120		12/14/22 14:21	10
4-Bromofluorobenzene (Surr)	89	73 - 120		12/14/22 14:21	10
Dibromofluoromethane (Surr)	96	75 - 123		12/14/22 14:21	10

Lab Sample ID: 480-204719-3

Matrix: Water

5

6

Client Sample ID: AL-7 Date Collected: 12/13/22 09:16 Date Received: 12/13/22 14:00

Analyte	Result Qualifier	RL	MDL	Unit	DF	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/14/22 14:43	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/14/22 14:43	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/14/22 14:43	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/14/22 14:43	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/14/22 14:43	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/14/22 14:43	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/14/22 14:43	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/14/22 14:43	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/14/22 14:43	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/14/22 14:43	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/14/22 14:43	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/14/22 14:43	
1,4-Dichlorobenzene	ND	1.0		ug/L			12/14/22 14:43	
2-Butanone (MEK)	ND	10		ug/L			12/14/22 14:43	
2-Hexanone	ND	5.0		ug/L			12/14/22 14:43	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/14/22 14:43	
Acetone	ND	10	3.0	ug/L			12/14/22 14:43	
Benzene	ND	1.0		ug/L			12/14/22 14:43	
Bromodichloromethane	ND	1.0	0.39	ug/L			12/14/22 14:43	
Bromoform	ND	1.0		ug/L			12/14/22 14:43	
Bromomethane	ND	1.0	0.69	ug/L			12/14/22 14:43	
Carbon disulfide	ND	1.0		ug/L			12/14/22 14:43	
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/14/22 14:43	
Chlorobenzene	ND	1.0	0.75	ug/L			12/14/22 14:43	
Dibromochloromethane	ND	1.0	0.32	ug/L			12/14/22 14:43	
Chloroethane	ND	1.0	0.32	ug/L			12/14/22 14:43	
Chloroform	ND	1.0		ug/L			12/14/22 14:43	
Chloromethane	0.99 J	1.0	0.35	ug/L			12/14/22 14:43	
cis-1,2-Dichloroethene	5.3	1.0	0.81				12/14/22 14:43	
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/14/22 14:43	
Cyclohexane	ND	1.0	0.18	ug/L			12/14/22 14:43	
Dichlorodifluoromethane	ND	1.0	0.68				12/14/22 14:43	
Ethylbenzene	ND	1.0	0.74	ug/L			12/14/22 14:43	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/14/22 14:43	
lsopropylbenzene	ND	1.0		ug/L			12/14/22 14:43	
Methyl acetate	ND	2.5	1.3	ug/L			12/14/22 14:43	
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/14/22 14:43	
Methylcyclohexane	ND	1.0		ug/L			12/14/22 14:43	
Methylene Chloride	ND	1.0		ug/L			12/14/22 14:43	
Styrene	ND	1.0	0.73	ug/L			12/14/22 14:43	
Tetrachloroethene	ND	1.0		ug/L			12/14/22 14:43	
Toluene	ND	1.0		ug/L			12/14/22 14:43	
rans-1,2-Dichloroethene	ND	1.0		ug/L			12/14/22 14:43	
rans-1,3-Dichloropropene	ND	1.0		ug/L			12/14/22 14:43	
Frichloroethene	ND	1.0		ug/L			12/14/22 14:43	
Trichlorofluoromethane	ND	1.0		ug/L			12/14/22 14:43	
Vinyl chloride	1.4	1.0		ug/L			12/14/22 14:43	
Xylenes, Total	ND	2.0		ug/L			12/14/22 14:43	

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-3

Client Sample ID: AL-7 Date Collected: 12/13/22 09:16

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120		12/14/22 14:43	1
1,2-Dichloroethane-d4 (Surr)	102	77 _ 120		12/14/22 14:43	1
4-Bromofluorobenzene (Surr)	89	73 - 120		12/14/22 14:43	1
Dibromofluoromethane (Surr)	95	75 - 123		12/14/22 14:43	1

Client Sample ID: MW-9R Date Collected: 12/13/22 09:50

Date Received: 12/13/22 14:00

Method: SW846 8260C - Volatile	Organic Comp	ounds by GC	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			12/14/22 15:05	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			12/14/22 15:05	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			12/14/22 15:05	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			12/14/22 15:05	10
1,1-Dichloroethane	ND		10	3.8	ug/L			12/14/22 15:05	10
1,1-Dichloroethene	ND		10	2.9	ug/L			12/14/22 15:05	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			12/14/22 15:05	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			12/14/22 15:05	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			12/14/22 15:05	10
1,2-Dichloroethane	ND		10	2.1	ug/L			12/14/22 15:05	10
1,2-Dichloropropane	ND		10	7.2	ug/L			12/14/22 15:05	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			12/14/22 15:05	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			12/14/22 15:05	10
2-Butanone (MEK)	ND		100	13	ug/L			12/14/22 15:05	10
2-Hexanone	ND		50	12	ug/L			12/14/22 15:05	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			12/14/22 15:05	10
Acetone	ND		100	30	ug/L			12/14/22 15:05	10
Benzene	ND		10	4.1	ug/L			12/14/22 15:05	10
Bromodichloromethane	ND		10	3.9	ug/L			12/14/22 15:05	10
Bromoform	ND		10	2.6	ug/L			12/14/22 15:05	10
Bromomethane	ND		10		ug/L			12/14/22 15:05	10
Carbon disulfide	ND		10	1.9	ug/L			12/14/22 15:05	10
Carbon tetrachloride	ND		10	2.7	ug/L			12/14/22 15:05	10
Chlorobenzene	ND		10		ug/L			12/14/22 15:05	10
Dibromochloromethane	ND		10		ug/L			12/14/22 15:05	10
Chloroethane	ND		10	3.2	ug/L			12/14/22 15:05	10
Chloroform	ND		10		ug/L			12/14/22 15:05	10
Chloromethane	ND		10	3.5	ug/L			12/14/22 15:05	10
cis-1,2-Dichloroethene	180		10	8.1	ug/L			12/14/22 15:05	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			12/14/22 15:05	10
Cyclohexane	22		10	1.8	ug/L			12/14/22 15:05	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			12/14/22 15:05	10
Ethylbenzene	ND		10		ug/L			12/14/22 15:05	10
1,2-Dibromoethane	ND		10	7.3	ug/L			12/14/22 15:05	10
lsopropylbenzene	ND		10		ug/L			12/14/22 15:05	10
Methyl acetate	ND		25	13	ug/L			12/14/22 15:05	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			12/14/22 15:05	10
Methylcyclohexane	20		10	1.6	ug/L			12/14/22 15:05	10
Methylene Chloride	ND		10		ug/L			12/14/22 15:05	10
Styrene	ND		10		ug/L			12/14/22 15:05	10
Tetrachloroethene	ND		10		ug/L			12/14/22 15:05	10
Toluene	ND		10		ug/L			12/14/22 15:05	10
trans-1,2-Dichloroethene	ND		10		ug/L			12/14/22 15:05	10
trans-1,3-Dichloropropene	ND		10		ug/L			12/14/22 15:05	10
Trichloroethene	ND		10		ug/L			12/14/22 15:05	10
Trichlorofluoromethane	ND		10		ug/L			12/14/22 15:05	10
Vinyl chloride	430		10		ug/L			12/14/22 15:05	10
Xylenes, Total	ND		20		ug/L			12/14/22 15:05	10
- ,					5				

Lab Sample ID: 480-204719-4

Matrix: Water

5

6

Eurofins Buffalo

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-4

Client Sample ID: MW-9R Date Collected: 12/13/22 09:50

Surrogate	%Recovery Qualifier	· Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92	80 - 120		12/14/22 15:05	10
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		12/14/22 15:05	10
4-Bromofluorobenzene (Surr)	89	73 - 120		12/14/22 15:05	10
Dibromofluoromethane (Surr)	97	75 - 123		12/14/22 15:05	10

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-11R

Date Collected: 12/13/22 10:20 Date Received: 12/13/22 14:00

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100	82	ug/L		12/14/22 15:27	100
1,1,2,2-Tetrachloroethane	ND	100	21	ug/L		12/14/22 15:27	100
1,1,2-Trichloroethane	ND	100	23	ug/L		12/14/22 15:27	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L		12/14/22 15:27	100
1,1-Dichloroethane	ND	100	38	ug/L		12/14/22 15:27	100
1,1-Dichloroethene	ND	100	29	ug/L		12/14/22 15:27	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L		12/14/22 15:27	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L		12/14/22 15:27	100
1,2-Dichlorobenzene	ND	100	79	ug/L		12/14/22 15:27	100
1,2-Dichloroethane	ND	100	21	ug/L		12/14/22 15:27	100
1,2-Dichloropropane	ND	100	72	ug/L		12/14/22 15:27	100
1,3-Dichlorobenzene	ND	100		ug/L		12/14/22 15:27	100
1,4-Dichlorobenzene	ND	100		ug/L		12/14/22 15:27	100
2-Butanone (MEK)	ND	1000		ug/L		12/14/22 15:27	100
2-Hexanone	ND	500		ug/L		12/14/22 15:27	100
4-Methyl-2-pentanone (MIBK)	ND	500		ug/L		12/14/22 15:27	100
Acetone	ND	1000	300	-		12/14/22 15:27	100
Benzene	ND	100	41	•		12/14/22 15:27	100
Bromodichloromethane	ND	100		ug/L		12/14/22 15:27	100
Bromoform	ND	100		ug/L		12/14/22 15:27	100
Bromomethane	ND	100		ug/L		12/14/22 15:27	100
Carbon disulfide	ND	100		ug/L		12/14/22 15:27	100
Carbon tetrachloride	ND	100		ug/L		12/14/22 15:27	100
Chlorobenzene	ND	100		-		12/14/22 15:27	100
Dibromochloromethane	ND	100		ug/L		12/14/22 15:27	100
Chloroethane	ND	100		ug/L		12/14/22 15:27	
				ug/L			100
Chloroform	ND	100		ug/L		12/14/22 15:27	100
Chloromethane	ND	100		ug/L		12/14/22 15:27	100
cis-1,2-Dichloroethene	3600	100	81	•		12/14/22 15:27	100
cis-1,3-Dichloropropene	ND	100		ug/L		12/14/22 15:27	100
Cyclohexane	ND	100		ug/L		12/14/22 15:27	100
Dichlorodifluoromethane	ND	100		ug/L		12/14/22 15:27	100
Ethylbenzene	ND	100		ug/L		12/14/22 15:27	100
1,2-Dibromoethane	ND	100		ug/L		12/14/22 15:27	100
Isopropylbenzene	ND	100		ug/L		12/14/22 15:27	100
Methyl acetate	ND	250		ug/L		12/14/22 15:27	100
Methyl tert-butyl ether	ND	100		ug/L		12/14/22 15:27	100
Methylcyclohexane	16 J	100		ug/L		12/14/22 15:27	100
Methylene Chloride	ND	100	44	ug/L		12/14/22 15:27	100
Styrene	ND	100		ug/L		12/14/22 15:27	100
Tetrachloroethene	ND	100	36	ug/L		12/14/22 15:27	100
Toluene	ND	100	51	ug/L		12/14/22 15:27	100
trans-1,2-Dichloroethene	ND	100	90	ug/L		12/14/22 15:27	100
trans-1,3-Dichloropropene	ND	100	37	ug/L		12/14/22 15:27	100
Trichloroethene	600	100	46	ug/L		12/14/22 15:27	100
Trichlorofluoromethane	ND	100	88	ug/L		12/14/22 15:27	100
Vinyl chloride	1100	100	90	ug/L		12/14/22 15:27	100
Xylenes, Total	ND	200	66	ug/L		12/14/22 15:27	100

Lab Sample ID: 480-204719-5

Matrix: Water

5

6

Eurofins Buffalo

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

5

6

Lab Sample ID: 480-204719-5

Client Sample ID: EX-MW-11R Date Collected: 12/13/22 10:20

Date Received: 12/13/22 14:00

Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120		12/14/22 15:27	100
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		12/14/22 15:27	100
4-Bromofluorobenzene (Surr)	88	73 - 120		12/14/22 15:27	100
Dibromofluoromethane (Surr)	97	75 - 123		12/14/22 15:27	100

Eurofins Buffalo

Client Sample ID: MW-02R

Date Collected: 12/13/22 10:45 Date Received: 12/13/22 14:00

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 5.0 4.1 ug/L 12/14/22 15:49 5 1,1,2-Tetrachloroethane ND 5.0 1.1 ug/L 12/14/22 15:49 5 1,1,2-Trichloroethane ND 5.0 1.2 ug/L 12/14/22 15:49 5 1,1,2-Trichloroethane ND 5.0 1.6 ug/L 12/14/22 15:49 5 1,1,2-Trichloroethane ND 5.0 1.6 ug/L 12/14/22 15:49 5 1,1-Dichloroethane ND 5.0 1.9 ug/L 12/14/22 15:49 5 1,1-Dichloroethane ND 5.0 1.5 ug/L 12/14/22 15:49 5 1,2,4-Trichlorobenzene ND 5.0 2.1 ug/L 12/14/22 15:49 5 1,2,2-Dichlorobenzene ND 5.0 2.0 ug/L
1,1,2,2-TetrachloroethaneND5.01.1ug/L12/14/22 15:4951,1,2-TrichloroethaneND5.01.2ug/L12/14/22 15:4951,1,2-Trichloro-1,2,2-trifluoroethaneND5.01.6ug/L12/14/22 15:4951,1-DichloroethaneND5.01.9ug/L12/14/22 15:4951,1-DichloroethaneND5.01.5ug/L12/14/22 15:4951,1-DichloroethaneND5.01.5ug/L12/14/22 15:4951,2-TrichlorobenzeneND5.02.1ug/L12/14/22 15:4951,2-Dibromo-3-ChloropropaneND5.02.0ug/L12/14/22 15:4951,2-DichlorobenzeneND5.04.0ug/L12/14/22 15:495
1,1,2-TrichloroethaneND5.01.2ug/L12/14/2215:4951,1,2-Trichloro-1,2,2-trifluoroethaneND5.01.6ug/L12/14/2215:4951,1-DichloroethaneND5.01.9ug/L12/14/2215:4951,1-DichloroethaneND5.01.5ug/L12/14/2215:4951,1-DichloroetheneND5.01.5ug/L12/14/2215:4951,2,4-TrichlorobenzeneND5.02.1ug/L12/14/2215:4951,2-Dibromo-3-ChloropropaneND5.02.0ug/L12/14/2215:4951,2-DichlorobenzeneND5.04.0ug/L12/14/2215:495
ND 5.0 1.6 ug/L 12/14/22 15:49 5 1,1-Dichloroethane ND 5.0 1.9 ug/L 12/14/22 15:49 5 1,1-Dichloroethane ND 5.0 1.9 ug/L 12/14/22 15:49 5 1,1-Dichloroethane ND 5.0 1.5 ug/L 12/14/22 15:49 5 1,2-A-Trichlorobenzene ND 5.0 2.1 ug/L 12/14/22 15:49 5 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 ug/L 12/14/22 15:49 5 1,2-Dichlorobenzene ND 5.0 2.0 ug/L 12/14/22 15:49 5 1,2-Dichlorobenzene ND 5.0 2.0 ug/L 12/14/22 15:49 5 1,2-Dichlorobenzene ND 5.0 4.0 ug/L 12/14/22 15:49 5
1,1-DichloroethaneND5.01.9ug/L12/14/22 15:4951,1-DichloroetheneND5.01.5ug/L12/14/22 15:4951,2,4-TrichlorobenzeneND5.02.1ug/L12/14/22 15:4951,2-Dibromo-3-ChloropropaneND5.02.0ug/L12/14/22 15:4951,2-DichlorobenzeneND5.04.0ug/L12/14/22 15:495
1,1-DichloroetheneND5.01.5ug/L12/14/22 15:4951,2,4-TrichlorobenzeneND5.02.1ug/L12/14/22 15:4951,2-Dibromo-3-ChloropropaneND5.02.0ug/L12/14/22 15:4951,2-DichlorobenzeneND5.04.0ug/L12/14/22 15:495
1,2,4-Trichlorobenzene ND 5.0 2.1 ug/L 12/14/22 15:49 5 1,2-Dibromo-3-Chloropropane ND 5.0 2.0 ug/L 12/14/22 15:49 5 1,2-Dichlorobenzene ND 5.0 4.0 ug/L 12/14/22 15:49 5
1,2-Dibromo-3-Chloropropane ND 5.0 2.0 ug/L 12/14/22 15:49 5 1,2-Dichlorobenzene ND 5.0 4.0 ug/L 12/14/22 15:49 5
ND 5.0 4.0 ug/L 12/14/22 15:49 5
·
1.2-Dichloroethane ND 5.0 1.1 ug/L 12/14/22 15:49 5
1,2-Dichloropropane ND 5.0 3.6 ug/L 12/14/22 15:49 5
1,3-Dichlorobenzene ND 5.0 3.9 ug/L 12/14/22 15:49 5
1,4-Dichlorobenzene ND 5.0 4.2 ug/L 12/14/22 15:49 5
2-Butanone (MEK) ND 50 6.6 ug/L 12/14/22 15:49 5
2-Hexanone ND 25 6.2 ug/L 12/14/22 15:49 5
4-Methyl-2-pentanone (MIBK) ND 25 11 ug/L 12/14/22 15:49 5
Acetone ND 50 15 ug/L 12/14/22 15:49 5
Benzene 2.5 J 5.0 2.1 ug/L 12/14/22 15:49 5
Bromodichloromethane ND 5.0 2.0 ug/L 12/14/22 15:49 5
Bromoform ND 5.0 1.3 ug/L 12/14/22 15:49 5
Bromomethane ND 5.0 3.5 ug/L 12/14/22 15:49 5
Carbon disulfide ND 5.0 0.95 ug/L 12/14/22 15:49 5
Carbon tetrachloride ND 5.0 1.4 ug/L 12/14/22 15:49 5
Chlorobenzene ND 5.0 3.8 ug/L 12/14/22 15:49 5
Dibromochloromethane ND 5.0 1.6 ug/L 12/14/22 15:49 5
Chloroethane ND 5.0 1.6 ug/L 12/14/22 15:49 5
Chloroform ND 5.0 1.7 ug/L 12/14/22 15:49 5
Chloromethane ND 5.0 1.8 ug/L 12/14/22 15:49 5
cis-1,2-Dichloroethene 130 5.0 4.1 ug/L 12/14/22 15:49 5
cis-1,3-Dichloropropene ND 5.0 1.8 ug/L 12/14/22 15:49 5
Cyclohexane 4.5 J 5.0 0.90 ug/L 12/14/22 15:49 5
Dichlorodifluoromethane ND 5.0 3.4 ug/L 12/14/22 15:49 5
Ethylbenzene ND 5.0 3.7 ug/L 12/14/22 15:49 5
1,2-Dibromoethane ND 5.0 3.7 ug/L 12/14/22 15:49 5
Isopropylbenzene ND 5.0 4.0 ug/L 12/14/22 15:49 5
Methyl acetate ND 13 6.5 ug/L 12/14/22 15:49 5
Methyl tert-butyl ether ND 5.0 0.80 ug/L 12/14/22 15:49 5
Methylcyclohexane 3.2 J 5.0 0.80 ug/L 12/14/22 15:49 5
Methylene Chloride ND 5.0 2.2 ug/L 12/14/22 15:49 5
Styrene ND 5.0 3.7 ug/L 12/14/22 15:49 5
Tetrachloroethene ND 5.0 1.8 ug/L 12/14/22 15:49 5
Toluene ND 5.0 2.6 ug/L 12/14/22 15:49 5
trans-1,2-Dichloroethene ND 5.0 4.5 ug/L 12/14/22 15:49 5
trans-1,3-Dichloropropene ND 5.0 1.9 ug/L 12/14/22 15:49 5
Trichloroethene ND 5.0 2.3 ug/L 12/14/22 15:49 5
Trichlorofluoromethane ND 5.0 4.4 ug/L 12/14/22 15:49 5
Vinyl chloride 150 5.0 4.5 ug/L 12/14/22 15:49 5
Xylenes, Total ND 10 3.3 ug/L 12/14/22 15:49 5

Job ID: 480-204719-1

Lab Sample ID: 480-204719-6 Matrix: Water

Page 18 of 41

5 6

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

Lab Sample ID: 480-204719-6

Client Sample ID: MW-02R Date Collected: 12/13/22 10:45

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		80 - 120		12/14/22 15:49	5
1,2-Dichloroethane-d4 (Surr)	104		77 - 120		12/14/22 15:49	5
4-Bromofluorobenzene (Surr)	90		73 - 120		12/14/22 15:49	5
Dibromofluoromethane (Surr)	99		75 - 123		12/14/22 15:49	5

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12

Date Collected: 12/13/22 11:25 Date Received: 12/13/22 14:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/14/22 16:11	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/14/22 16:11	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/14/22 16:11	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/14/22 16:11	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/14/22 16:11	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/14/22 16:11	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/14/22 16:11	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/14/22 16:11	
I,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/14/22 16:11	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/14/22 16:11	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/14/22 16:11	
I,3-Dichlorobenzene	ND	1.0	0.78	-			12/14/22 16:11	
1,4-Dichlorobenzene	ND	1.0		ug/L			12/14/22 16:11	
2-Butanone (MEK)	ND	10		ug/L			12/14/22 16:11	
2-Hexanone	ND	5.0		ug/L			12/14/22 16:11	
I-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/14/22 16:11	
Acetone	ND	10		ug/L			12/14/22 16:11	
Benzene	ND	1.0	0.41	-			12/14/22 16:11	
Bromodichloromethane	ND	1.0	0.39				12/14/22 16:11	
Bromoform	ND	1.0	0.35				12/14/22 16:11	
Bromomethane	ND	1.0		-			12/14/22 10:11	
carbon disulfide	ND		0.69					
		1.0	0.19	-			12/14/22 16:11	
Carbon tetrachloride	ND	1.0	0.27	-			12/14/22 16:11	-
Chlorobenzene	ND	1.0		ug/L			12/14/22 16:11	
Dibromochloromethane	ND	1.0		ug/L			12/14/22 16:11	-
Chloroethane	ND	1.0	0.32	-			12/14/22 16:11	-
Chloroform	ND	1.0	0.34				12/14/22 16:11	•
Chloromethane	ND	1.0		ug/L			12/14/22 16:11	
is-1,2-Dichloroethene	ND	1.0	0.81	-			12/14/22 16:11	~
is-1,3-Dichloropropene	ND	1.0		ug/L			12/14/22 16:11	• • • • • • • •
Cyclohexane	ND	1.0		ug/L			12/14/22 16:11	
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/14/22 16:11	
Ethylbenzene	ND	1.0	0.74	ug/L			12/14/22 16:11	
,2-Dibromoethane	ND	1.0	0.73	ug/L			12/14/22 16:11	
sopropylbenzene	ND	1.0	0.79	-			12/14/22 16:11	
lethyl acetate	ND	2.5	1.3	ug/L			12/14/22 16:11	
lethyl tert-butyl ether	ND	1.0	0.16	ug/L			12/14/22 16:11	
lethylcyclohexane	ND	1.0	0.16	ug/L			12/14/22 16:11	
lethylene Chloride	ND	1.0	0.44	ug/L			12/14/22 16:11	
styrene	ND	1.0	0.73	ug/L			12/14/22 16:11	
etrachloroethene	ND	1.0	0.36	ug/L			12/14/22 16:11	
oluene	ND	1.0	0.51	ug/L			12/14/22 16:11	
ans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/14/22 16:11	
ans-1,3-Dichloropropene	ND	1.0	0.37				12/14/22 16:11	
richloroethene	ND	1.0	0.46				12/14/22 16:11	
richlorofluoromethane	ND	1.0	0.88				12/14/22 16:11	
/inyl chloride	ND	1.0	0.90	-			12/14/22 16:11	
Kylenes, Total	ND	2.0	0.66	-			12/14/22 16:11	

Eurofins Buffalo

Job ID: 480-204719-1

Matrix: Water

Lab Sample ID: 480-204719-7

2 3 4 5 6 7 8 9

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

5

6

Lab Sample ID: 480-204719-7

Client Sample ID: EX-MW-12 Date Collected: 12/13/22 11:25

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90	80 - 120		12/14/22 16:11	1
1,2-Dichloroethane-d4 (Surr)	105	77 _ 120		12/14/22 16:11	1
4-Bromofluorobenzene (Surr)	87	73 - 120		12/14/22 16:11	1
Dibromofluoromethane (Surr)	100	75 - 123		12/14/22 16:11	1

Date Received: 12/13/22 14:00

Method: SW846 8260C - Volatile C Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		12/14/22 16:33	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	-		12/14/22 16:33	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		12/14/22 16:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		12/14/22 16:33	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		12/14/22 16:33	1
1,1-Dichloroethene	ND	1.0	0.29			12/14/22 16:33	1
1,2,4-Trichlorobenzene	ND	1.0	0.41			12/14/22 16:33	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	-		12/14/22 16:33	1
1,2-Dichlorobenzene	ND	1.0	0.79	-		12/14/22 16:33	1
1,2-Dichloroethane	ND	1.0	0.21			12/14/22 16:33	1
1,2-Dichloropropane	ND	1.0	0.72			12/14/22 16:33	1
1,3-Dichlorobenzene	ND	1.0	0.78			12/14/22 16:33	1
1,4-Dichlorobenzene	ND	1.0	0.84			12/14/22 16:33	
2-Butanone (MEK)	ND	10		ug/L		12/14/22 16:33	1
2-Hexanone	ND	5.0		ug/L		12/14/22 16:33	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L		12/14/22 16:33	· · · · · · · · · · · · · · · · · · ·
Acetone	ND	10		ug/L		12/14/22 16:33	1
Benzene	ND	1.0	0.41			12/14/22 16:33	1
Bromodichloromethane	ND	1.0	0.39			12/14/22 16:33	
Bromoform	ND	1.0	0.35			12/14/22 16:33	1
Bromomethane	ND	1.0	0.20			12/14/22 10:33	1
Carbon disulfide	ND	1.0	0.09			12/14/22 16:33	
Carbon tetrachloride				0			
	ND	1.0	0.27	-		12/14/22 16:33	1
Chlorobenzene Dibromochloromethane	ND	1.0	0.75			12/14/22 16:33	· · · · · · · · · · · · · · · · · · ·
	ND	1.0	0.32	-		12/14/22 16:33	-
Chloroethane	ND	1.0	0.32	-		12/14/22 16:33	1
Chloroform	ND	1.0	0.34			12/14/22 16:33	1
Chloromethane	0.51 J	1.0	0.35	-		12/14/22 16:33	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-		12/14/22 16:33	1
cis-1,3-Dichloropropene	ND	1.0	0.36			12/14/22 16:33	1
Cyclohexane	ND	1.0	0.18	-		12/14/22 16:33	1
Dichlorodifluoromethane	ND	1.0	0.68	-		12/14/22 16:33	1
Ethylbenzene	ND	1.0	0.74			12/14/22 16:33	1
1,2-Dibromoethane	ND	1.0	0.73	-		12/14/22 16:33	1
Isopropylbenzene	ND	1.0	0.79	-		12/14/22 16:33	1
Methyl acetate	ND	2.5		ug/L		12/14/22 16:33	1
Methyl tert-butyl ether	ND	1.0	0.16			12/14/22 16:33	1
Methylcyclohexane	ND	1.0	0.16			12/14/22 16:33	1
Methylene Chloride	ND	1.0	0.44			12/14/22 16:33	1
Styrene	ND	1.0	0.73	•		12/14/22 16:33	1
Tetrachloroethene	ND	1.0	0.36	ug/L		12/14/22 16:33	1
Toluene	ND	1.0	0.51	ug/L		12/14/22 16:33	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L		12/14/22 16:33	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L		12/14/22 16:33	1
Trichloroethene	ND	1.0	0.46	ug/L		12/14/22 16:33	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L		12/14/22 16:33	1
Vinyl chloride	ND	1.0	0.90	ug/L		12/14/22 16:33	1
Xylenes, Total	ND	2.0	0.66	ug/L		12/14/22 16:33	1

Lab Sample ID: 480-204719-8

Matrix: Water

5

6

Eurofins Buffalo

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-8

Client Sample ID: MW-04 Date Collected: 12/13/22 11:55

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120		12/14/22 16:33	1
1,2-Dichloroethane-d4 (Surr)	105	77 - 120		12/14/22 16:33	1
4-Bromofluorobenzene (Surr)	87	73 - 120		12/14/22 16:33	1
Dibromofluoromethane (Surr)	98	75 - 123		12/14/22 16:33	1

Client Sample ID: MW-07R

Date Collected: 12/13/22 12:35 Date Received: 12/13/22 14:00

Analyte Result Qualifier RL MDL Unit D Propared Analyzed DIFac 1.1,1-Trichloroethane ND 10 8.2 ugl. 12/14/22 16.54 100 1.1,2-Trichloroethane ND 10 2.3 ugl. 12/14/22 16.54 100 1.1,2-Trichloroethane ND 10 3.4 ugl. 12/14/22 16.54 100 1.1,2-Trichloroethane ND 10 3.4 ugl. 12/14/22 16.54 100 1.1,D-Ichloroethane ND 10 2.9 ugl. 12/14/22 16.54 100 1.2-A-Trichlorobenzene ND 10 4.1 ugl. 12/14/22 16.54 100 1.2-Dichlorobenzene ND 10 7.9 ugl. 12/14/22 16.54 100 1.2-Dichlorobenzene ND 10 7.4 ugl. 12/14/22 16.54 100 1.2-Dichlorobenzene ND 10 7.4 ugl. 12/14/22 16.54 100 1.2-Dichlorobenzene	Method: SW846 8260C - Volatile Orga	anic Compo	ounds by GC/	MS						
1,1,2.2-Tetrachloroethane ND 10 2.1 ug/L 12/14/22 16.54 10 1,1,2.Trichloroethane ND 10 2.3 ug/L 12/14/22 16.54 10 1,1.2.Trichloroethane ND 10 3.8 ug/L 12/14/22 16.54 10 1,1.Dichloroethane ND 10 3.8 ug/L 12/14/22 16.54 10 1,2.4-Trichlorobenzene ND 10 4.1 ug/L 12/14/22 16.54 10 1,2.4-Dichloroethane ND 10 4.1 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 10 13.4 ug/L 12/14/22 16.54 10 1,2-Dichlorobenzene ND 1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.1.2-Trichloroethane ND 10 2.3 ug/L 12/14/22 16.54 10 1.1.2-Trichloro-1,2,2-trifluoroethane ND 10 3.1 ug/L 12/14/22 16.54 10 1.1-Dichloroethane ND 10 3.8 ug/L 12/14/22 16.54 10 1.1-Dichloroethane ND 0 2.9 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 4.1 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 7.9 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 7.9 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 7.2 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 7.8 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 13 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10 13 ug/L 12/14/22 16.54 10 1.2-Dichloroethane ND 10	1,1,1-Trichloroethane	ND		10	8.2	ug/L			12/14/22 16:54	10
1.1.2-Trichioro-1.2.2-trifluoroethane ND 10 3.1 ug/L 12/14/22 16.54 10 1.1-Dichioroethane ND 10 2.8 ug/L 12/14/22 16.54 10 1.1-Dichioroethane ND 10 2.9 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 4.1 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 7.9 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 7.2 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 7.2 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 7.8 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 8.4 ug/L 12/14/22 16.54 10 1.2-Dichioroberzene ND 10 13.ug/L 12/14/22 16.54 </td <td>1,1,2,2-Tetrachloroethane</td> <td>ND</td> <td></td> <td>10</td> <td>2.1</td> <td>ug/L</td> <td></td> <td></td> <td>12/14/22 16:54</td> <td>10</td>	1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			12/14/22 16:54	10
1.1-Dichloroethane ND 10 3.8 ug/L 12/14/22 16:54 10 1.1-Dichloroethene ND 10 2.9 ug/L 12/14/22 16:54 10 1.2.4-Trichlorobenzene ND 10 3.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 100 7.8 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 100 3.9 ug/L 12/14/22 16:54 10 2-Bokronoenkenke ND 100 3.0 ug/L 12/14/22 16:54 10 2-Hexanone ND 10 3.9 </td <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>10</td> <td>2.3</td> <td>ug/L</td> <td></td> <td></td> <td>12/14/22 16:54</td> <td>10</td>	1,1,2-Trichloroethane	ND		10	2.3	ug/L			12/14/22 16:54	10
1,1-Dichloroethene ND 10 2.9 ug/L 12/14/22 16:54 10 1,2,4-Trichlorobenzene ND 10 4.1 ug/L 12/14/22 16:54 10 1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1,2-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1,4-Dichlorobenzene ND 10 8.4 ug/L 12/14/22 16:54 10 1,4-Dichlorobenzene ND 100 8.4 ug/L 12/14/22 16:54 10 1,4-Dichlorobenzene ND 100 13 ug/L 12/14/22 16:54 10 2-Butanone (MEK) ND 100 13 ug/L 12/14/22 16:54 10 2-Hexanone ND 100 30 ug/L 12/14/22 16:54 10 Benzene ND 10 3.9 <td< td=""><td>1,1,2-Trichloro-1,2,2-trifluoroethane</td><td>ND</td><td></td><td>10</td><td>3.1</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></td<>	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			12/14/22 16:54	10
1,2,4-Trichlorobenzene ND 10 4.1 ug/L 12/14/22 16:54 10 1,2-Dibromo-3-Chloropropane ND 10 3.9 ug/L 12/14/22 16:54 10 1,2-Dibromo-3-Chloropropane ND 10 7.9 ug/L 12/14/22 16:54 10 1,2-Dichloroethane ND 10 7.2 ug/L 12/14/22 16:54 10 1,2-Dichloropropane ND 10 7.2 ug/L 12/14/22 16:54 10 1,3-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1,4-Dichlorobenzene ND 10 8.4 ug/L 12/14/22 16:54 10 2-Hexanone ND 50 12 ug/L 12/14/22 16:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 100 30 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.9 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>10</td><td>3.8</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></t<>	1,1-Dichloroethane	ND		10	3.8	ug/L			12/14/22 16:54	10
J.2-Ditorono-3-Chloropropane ND 10 3.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 2.1 ug/L 12/14/22 16:54 10 1.2-Dichlorobenzene ND 10 7.2 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 100 8.4 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 100 13 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 50 12 ug/L 12/14/22 16:54 10 2-Hexanone ND 50 21 ug/L 12/14/22 16:54 10 A-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Berzene ND 10 4.1 ug/L <td< td=""><td>1,1-Dichloroethene</td><td>ND</td><td></td><td>10</td><td>2.9</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></td<>	1,1-Dichloroethene	ND		10	2.9	ug/L			12/14/22 16:54	10
1,2-Dichlorobenzene ND 10 7.9 ug/L 12/14/22 16:54 10 1,2-Dichloropethane ND 0 7.2 ug/L 12/14/22 16:54 10 1,2-Dichloropethane ND 0 7.2 ug/L 12/14/22 16:54 10 1,3-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 10 8.4 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 100 13 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 100 13 ug/L 12/14/22 16:54 10 2-Butanone (MEK) ND 50 2.1 ug/L 12/14/22 16:54 10 2-Hexanone ND 100 30 ug/L 12/14/22 16:54 10 Berzene ND 100 3.9 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 7.5 ug/L<	1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			12/14/22 16:54	10
1.2-Dichloroethane ND 10 2.1 ug/L 12/14/22 16:54 10 1.2-Dichloropropane ND 10 7.2 ug/L 12/14/22 16:54 10 1.3-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1.4-Dichlorobenzene ND 10 8.4 ug/L 12/14/22 16:54 10 2-Butanone (MEK) ND 100 13 ug/L 12/14/22 16:54 10 2-Hexanone ND 50 12 ug/L 12/14/22 16:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Acetone ND 100 30 ug/L 12/14/22 16:54 10 Berzene ND 10 4.1 ug/L 12/14/22 16:54 10 Bromoform ND 10 2.6 ug/L 12/14/22 16:54 10 Grato disulfide ND 10 2.9 ug/L 12/14/22 16:54 10 <td>1,2-Dibromo-3-Chloropropane</td> <td>ND</td> <td></td> <td>10</td> <td>3.9</td> <td>ug/L</td> <td></td> <td></td> <td>12/14/22 16:54</td> <td>10</td>	1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			12/14/22 16:54	10
1.2-DichloropropaneND107.2y/L12/14/2216:54101.3-DichlorobenzeneND107.8y/L12/14/2216:54101.4-DichlorobenzeneND108.4ug/L12/14/2216:54102-Butanone (MEK)ND10013ug/L12/14/2216:54102-HexanoneND5012ug/L12/14/2216:54102-HexanoneND5021ug/L12/14/2216:54104-Methyl-2-pentanone (MIBK)ND5021ug/L12/14/2216:5410AcetoneND1030ug/L12/14/2216:5410BenzeneND103.9ug/L12/14/2216:5410BromodichloromethaneND103.9ug/L12/14/2216:5410BromodichloromethaneND103.9ug/L12/14/2216:5410Carbon disulfideND101.9ug/L12/14/2216:5410Carbon tetrachlorideND102.7ug/L12/14/2216:5410DibromochloromethaneND103.2ug/L12/14/2216:5410ChlorobenzeneND103.2ug/L12/14/2216:5410ChlorobenzeneND103.2ug/L12/14/2216:5410ChlorobenzeneND103.2ug/L <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>10</td><td>7.9</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></td<>	1,2-Dichlorobenzene	ND		10	7.9	ug/L			12/14/22 16:54	10
1,3-Dichlorobenzene ND 10 7.8 ug/L 12/14/22 16:54 10 1,4-Dichlorobenzene ND 100 13 ug/L 12/14/22 16:54 10 2-Butanone (MEK) ND 100 13 ug/L 12/14/22 16:54 10 2-Hexanone ND 50 12 ug/L 12/14/22 16:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Acetone ND 100 30 ug/L 12/14/22 16:54 10 Benzene ND 10 30 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 39 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 39 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 29 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 29 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 2.9 ug/L <td< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>10</td><td>2.1</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></td<>	1,2-Dichloroethane	ND		10	2.1	ug/L			12/14/22 16:54	10
1.4-DichlorobenzeneND108.4ug/L12/14/22 16:54102-Butanone (MEK)ND10013ug/L12/14/22 16:54102-HexanoneND5012ug/L12/14/22 16:54104-Methyl-2-pentanone (MIBK)ND5021ug/L12/14/22 16:5410AcetoneND10030ug/L12/14/22 16:5410BenzeneND104.1ug/L12/14/22 16:5410BromodichloromethaneND103.9ug/L12/14/22 16:5410BromodichloromethaneND102.6ug/L12/14/22 16:5410BromodichloromethaneND102.6ug/L12/14/22 16:5410BromodichloromethaneND102.6ug/L12/14/22 16:5410Carbon disulfideND101.9ug/L12/14/22 16:5410Carbon disulfideND102.7ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.4ug/L12/14/22 16:5410ChloroformND103.5ug/L12/14/22 16:5410ChloroformND103.5ug/L12/14/22 16:54 </td <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>10</td> <td>7.2</td> <td>ug/L</td> <td></td> <td></td> <td>12/14/22 16:54</td> <td>10</td>	1,2-Dichloropropane	ND		10	7.2	ug/L			12/14/22 16:54	10
2-Butanone (MEK) ND 100 13 ug/L 12/14/22 16:54 10 2-Hexanone ND 50 12 ug/L 12/14/22 16:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Acetone ND 100 30 ug/L 12/14/22 16:54 10 Benzene ND 10 4.1 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 3.9 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 2.7 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 3.2 ug/L	1,3-Dichlorobenzene	ND		10	7.8	ug/L			12/14/22 16:54	10
2-Hexanone ND 50 12 ug/L 12/14/22 16:54 10 4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Acetone ND 100 30 ug/L 12/14/22 16:54 10 Benzene ND 10 4.1 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 4.9 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 6.9 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 7.5 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.4 ug/L <t< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td>10</td><td>8.4</td><td>ug/L</td><td></td><td></td><td>12/14/22 16:54</td><td>10</td></t<>	1,4-Dichlorobenzene	ND		10	8.4	ug/L			12/14/22 16:54	10
4-Methyl-2-pentanone (MIBK) ND 50 21 ug/L 12/14/22 16:54 10 Acetone ND 100 30 ug/L 12/14/22 16:54 10 Benzene ND 10 4.1 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 3.9 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 6.9 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 2.7 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 7.5 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.4 ug/L <	2-Butanone (MEK)	ND		100	13	ug/L			12/14/22 16:54	10
AcetoneND10030ug/L12/14/22 16:5410BenzeneND104.1ug/L12/14/22 16:5410BromodichloromethaneND103.9ug/L12/14/22 16:5410BromodichloromethaneND102.6ug/L12/14/22 16:5410BromodichloromethaneND106.9ug/L12/14/22 16:5410BromothaneND106.9ug/L12/14/22 16:5410Carbon disulfideND101.9ug/L12/14/22 16:5410Carbon tetrachlorideND102.7ug/L12/14/22 16:5410ChlorobenzeneND107.5ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410ChloroformND103.4ug/L12/14/22 16:5410ChloroformND103.5ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410ChloroformND103.6ug/L12/14/22 16:5410ChloromethaneND103.6ug/L12/14/22 16:5410ChloropropeneND103.6ug/L12/14/22 16:5410	2-Hexanone	ND		50	12	ug/L			12/14/22 16:54	10
Benzene ND 10 4.1 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 3.9 ug/L 12/14/22 16:54 10 Bromodichloromethane ND 10 2.6 ug/L 12/14/22 16:54 10 Bromoform ND 10 2.6 ug/L 12/14/22 16:54 10 Bromoethane ND 10 6.9 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Carbon tetrachloride ND 10 1.9 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 2.7 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 7.5 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.4 ug/L 12/14/22 16:54 10 </td <td>4-Methyl-2-pentanone (MIBK)</td> <td>ND</td> <td></td> <td>50</td> <td>21</td> <td>ug/L</td> <td></td> <td></td> <td>12/14/22 16:54</td> <td>10</td>	4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			12/14/22 16:54	10
Bromodichloromethane ND 10 3.9 ug/L 12/14/22 16:54 10 Bromoform ND 10 2.6 ug/L 12/14/22 16:54 10 Bromoform ND 10 2.6 ug/L 12/14/22 16:54 10 Bromomethane ND 10 6.9 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Carbon tetrachloride ND 10 1.9 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 2.7 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 7.5 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroethane ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 <	Acetone	ND		100	30	ug/L			12/14/22 16:54	10
Bromoform ND 10 2.6 ug/L 12/14/22 16:54 10 Bromomethane ND 10 6.9 ug/L 12/14/22 16:54 10 Carbon disulfide ND 10 1.9 ug/L 12/14/22 16:54 10 Carbon tetrachloride ND 10 2.7 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 7.5 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 7.5 ug/L 12/14/22 16:54 10 Chlorobenzene ND 10 3.2 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 Cis-1,2-Dichloroethene ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 8.6 ug/L	Benzene	ND		10	4.1	ug/L			12/14/22 16:54	10
BromomethaneND106.9ug/L12/14/22 16:5410Carbon disulfideND101.9ug/L12/14/22 16:5410Carbon tetrachlorideND102.7ug/L12/14/22 16:5410ChlorobenzeneND107.5ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410DibromochloromethaneND103.4ug/L12/14/22 16:5410ChloroformND103.4ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410ChloromethaneND103.6ug/L12/14/22 16:5410cis-1,3-DichloroptopeneND103.6ug/L12/14/22 16:5410	Bromodichloromethane	ND		10	3.9	ug/L			12/14/22 16:54	10
Carbon disulfideND101.9ug/L12/14/22 16:5410Carbon tetrachlorideND102.7ug/L12/14/22 16:5410ChlorobenzeneND107.5ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChloroformND103.4ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410cis-1,2-Dichloroethene400108.1ug/L12/14/22 16:5410cis-1,3-DichloropropeneND103.6ug/L12/14/22 16:5410	Bromoform	ND		10	2.6	ug/L			12/14/22 16:54	10
Carbon tetrachlorideND102.7ug/L12/14/22 16:5410ChlorobenzeneND107.5ug/L12/14/22 16:5410DibromochloromethaneND103.2ug/L12/14/22 16:5410ChlorobenzeneND103.2ug/L12/14/22 16:5410ChloroothaneND103.4ug/L12/14/22 16:5410ChlorooformND103.4ug/L12/14/22 16:5410ChloromethaneND103.5ug/L12/14/22 16:5410cis-1,2-Dichloroethene400108.1ug/L12/14/22 16:5410cis-1,3-DichloropropeneND103.6ug/L12/14/22 16:5410	Bromomethane	ND		10	6.9	ug/L			12/14/22 16:54	10
ND 10 7.5 ug/L 12/14/22 16:54 10 Dibromochloromethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroethane ND 10 3.4 ug/L 12/14/22 16:54 10 Chloroethane ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Carbon disulfide	ND		10	1.9	ug/L			12/14/22 16:54	10
Dibromochloromethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chlorooform ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Carbon tetrachloride	ND		10	2.7	ug/L			12/14/22 16:54	10
Chloroethane ND 10 3.2 ug/L 12/14/22 16:54 10 Chloroform ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 8.6 ug/L 12/14/22 16:54 10	Chlorobenzene	ND		10	7.5	ug/L			12/14/22 16:54	10
Chloroform ND 10 3.4 ug/L 12/14/22 16:54 10 Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Dibromochloromethane	ND		10	3.2	ug/L			12/14/22 16:54	10
Chloromethane ND 10 3.5 ug/L 12/14/22 16:54 10 cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Chloroethane	ND		10	3.2	ug/L			12/14/22 16:54	10
cis-1,2-Dichloroethene 400 10 8.1 ug/L 12/14/22 16:54 10 cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Chloroform	ND		10	3.4	ug/L			12/14/22 16:54	10
cis-1,3-Dichloropropene ND 10 3.6 ug/L 12/14/22 16:54 10	Chloromethane	ND		10	3.5	ug/L			12/14/22 16:54	10
	cis-1,2-Dichloroethene	400		10	8.1	ug/L			12/14/22 16:54	10
Cyclohexane ND 10 1.8 ug/L 12/14/22 16:54 10	cis-1,3-Dichloropropene	ND		10	3.6	ug/L			12/14/22 16:54	10
	Cyclohexane	ND		10	1.8	ug/L			12/14/22 16:54	10
Dichlorodifluoromethane ND 10 6.8 ug/L 12/14/22 16:54 10	Dichlorodifluoromethane	ND		10	6.8	ug/L			12/14/22 16:54	10
Ethylbenzene ND 10 7.4 ug/L 12/14/22 16:54 10	Ethylbenzene	ND		10	7.4	ug/L			12/14/22 16:54	10
1,2-Dibromoethane ND 10 7.3 ug/L 12/14/22 16:54 10	1,2-Dibromoethane	ND		10	7.3	ug/L			12/14/22 16:54	10
Isopropylbenzene ND 10 7.9 ug/L 12/14/22 16:54 10	Isopropylbenzene	ND		10	7.9	ug/L			12/14/22 16:54	10
Methyl acetate ND 25 13 ug/L 12/14/22 16:54 10	Methyl acetate	ND		25					12/14/22 16:54	10
Methyl tert-butyl ether ND 10 1.6 ug/L 12/14/22 16:54 10	Methyl tert-butyl ether	ND		10	1.6	ug/L			12/14/22 16:54	10
Methylcyclohexane ND 10 1.6 ug/L 12/14/22 16:54 10	Methylcyclohexane	ND		10	1.6	ug/L			12/14/22 16:54	10
Methylene Chloride ND 10 4.4 ug/L 12/14/22 16:54 10	Methylene Chloride	ND		10	4.4	ug/L			12/14/22 16:54	10
Styrene ND 10 7.3 ug/L 12/14/22 16:54 10	Styrene	ND		10	7.3	ug/L			12/14/22 16:54	10
Tetrachloroethene ND 10 3.6 ug/L 12/14/22 16:54 10	Tetrachloroethene	ND		10	3.6	ug/L			12/14/22 16:54	10
Toluene ND 10 5.1 ug/L 12/14/22 16:54 10	Toluene	ND		10	5.1	ug/L			12/14/22 16:54	10
trans-1,2-Dichloroethene ND 10 9.0 ug/L 12/14/22 16:54 10	trans-1,2-Dichloroethene	ND		10					12/14/22 16:54	10
trans-1,3-Dichloropropene ND 10 3.7 ug/L 12/14/22 16:54 10	trans-1,3-Dichloropropene	ND		10	3.7	ug/L			12/14/22 16:54	10
Trichloroethene ND 10 4.6 ug/L 12/14/22 16:54 10	Trichloroethene	ND		10					12/14/22 16:54	10
Trichlorofluoromethane ND 10 8.8 ug/L 12/14/22 16:54 10	Trichlorofluoromethane	ND		10	8.8	ug/L			12/14/22 16:54	10
Vinyl chloride 140 10 9.0 ug/L 12/14/22 16:54 10	Vinyl chloride	140		10	9.0	ug/L			12/14/22 16:54	10
Xylenes, Total ND 20 6.6 ug/L 12/14/22 16:54 10	Xylenes, Total	ND		20	6.6	ug/L			12/14/22 16:54	10

Job ID: 480-204719-1

Lab Sample ID: 480-204719-9

Matrix: Water

5

6

Client Sample Results

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

Lab Sample ID: 480-204719-9

Client Sample ID: MW-07R Date Collected: 12/13/22 12:35

Date Received: 12/13/22 14:00

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120		12/14/22 16:54	10
1,2-Dichloroethane-d4 (Surr)	104	77 - 120		12/14/22 16:54	10
4-Bromofluorobenzene (Surr)	87	73 - 120		12/14/22 16:54	10
Dibromofluoromethane (Surr)	96	75 - 123		12/14/22 16:54	10

Client Sample ID: DUP Date Collected: 12/13/22 00:00

Date Received: 12/13/22 14:00

6

Lab Sample ID: 480-204719-11 Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	4.1	ug/L			12/14/22 17:38	
1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/L			12/14/22 17:38	
1,1,2-Trichloroethane	ND	5.0	1.2	ug/L			12/14/22 17:38	-
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.6	ug/L			12/14/22 17:38	
1,1-Dichloroethane	ND	5.0	1.9	ug/L			12/14/22 17:38	-
1,1-Dichloroethene	ND	5.0	1.5	ug/L			12/14/22 17:38	
1,2,4-Trichlorobenzene	ND	5.0	2.1	ug/L			12/14/22 17:38	
1,2-Dibromo-3-Chloropropane	ND	5.0	2.0	ug/L			12/14/22 17:38	1
1,2-Dichlorobenzene	ND	5.0	4.0	ug/L			12/14/22 17:38	-
1,2-Dichloroethane	ND	5.0	1.1	ug/L			12/14/22 17:38	
1,2-Dichloropropane	ND	5.0	3.6	ug/L			12/14/22 17:38	
1,3-Dichlorobenzene	ND	5.0	3.9	ug/L			12/14/22 17:38	
1,4-Dichlorobenzene	ND	5.0	4.2	ug/L			12/14/22 17:38	
2-Butanone (MEK)	ND	50	6.6	ug/L			12/14/22 17:38	
2-Hexanone	ND	25	6.2	ug/L			12/14/22 17:38	
4-Methyl-2-pentanone (MIBK)	ND	25	11	ug/L			12/14/22 17:38	
Acetone	ND	50	15	ug/L			12/14/22 17:38	
Benzene	2.5 J	5.0	2.1	ug/L			12/14/22 17:38	
Bromodichloromethane	ND	5.0	2.0	ug/L			12/14/22 17:38	
Bromoform	ND	5.0	1.3	ug/L			12/14/22 17:38	
Bromomethane	ND	5.0	3.5	ug/L			12/14/22 17:38	
Carbon disulfide	ND	5.0	0.95	ug/L			12/14/22 17:38	
Carbon tetrachloride	ND	5.0	1.4	ug/L			12/14/22 17:38	
Chlorobenzene	ND	5.0	3.8	ug/L			12/14/22 17:38	
Dibromochloromethane	ND	5.0	1.6	ug/L			12/14/22 17:38	
Chloroethane	ND	5.0	1.6	ug/L			12/14/22 17:38	
Chloroform	ND	5.0	1.7	ug/L			12/14/22 17:38	
Chloromethane	ND	5.0	1.8	ug/L			12/14/22 17:38	
cis-1,2-Dichloroethene	150	5.0	4.1	ug/L			12/14/22 17:38	
cis-1,3-Dichloropropene	ND	5.0	1.8	ug/L			12/14/22 17:38	-
Cyclohexane	5.2	5.0	0.90	ug/L			12/14/22 17:38	
Dichlorodifluoromethane	ND	5.0	3.4	ug/L			12/14/22 17:38	-
Ethylbenzene	ND	5.0	3.7	ug/L			12/14/22 17:38	
1,2-Dibromoethane	ND	5.0	3.7	ug/L			12/14/22 17:38	
sopropylbenzene	ND	5.0	4.0	ug/L			12/14/22 17:38	
Methyl acetate	ND	13	6.5	ug/L			12/14/22 17:38	
Methyl tert-butyl ether	ND	5.0		ug/L			12/14/22 17:38	
Methylcyclohexane	4.1 J	5.0	0.80	ug/L			12/14/22 17:38	
Methylene Chloride	ND	5.0	2.2	ug/L			12/14/22 17:38	
Styrene	ND	5.0	3.7	ug/L			12/14/22 17:38	
Tetrachloroethene	ND	5.0	1.8	ug/L			12/14/22 17:38	
Toluene	ND	5.0	2.6	ug/L			12/14/22 17:38	
rans-1,2-Dichloroethene	ND	5.0		ug/L			12/14/22 17:38	
rans-1,3-Dichloropropene	ND	5.0					12/14/22 17:38	
Trichloroethene	ND	5.0		ug/L			12/14/22 17:38	
Trichlorofluoromethane	ND	5.0		ug/L			12/14/22 17:38	
/inyl chloride	180	5.0		ug/L			12/14/22 17:38	
Xylenes, Total	ND	10		ug/L			12/14/22 17:38	

Job ID: 480-204719-1

Matrix: Water

5 6

Lab Sample ID: 480-204719-11

Client Sample ID: DUP Date Collected: 12/13/22 00:00

Date Received: 12/13/22 14:00

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120		12/14/22 17:38	5
1,2-Dichloroethane-d4 (Surr)	105	77 - 120		12/14/22 17:38	5
4-Bromofluorobenzene (Surr)	90	73 - 120		12/14/22 17:38	5
Dibromofluoromethane (Surr)	98	75 - 123		12/14/22 17:38	5

Client Sample ID: TRIP BLANK

Date Collected: 12/13/22 00:00 Date Received: 12/13/22 14:00

Analyte	Result Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		12/14/22 18:00	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		12/14/22 18:00	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		12/14/22 18:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		12/14/22 18:00	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		12/14/22 18:00	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		12/14/22 18:00	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L		12/14/22 18:00	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		12/14/22 18:00	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		12/14/22 18:00	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		12/14/22 18:00	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		12/14/22 18:00	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L		12/14/22 18:00	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		12/14/22 18:00	1
2-Butanone (MEK)	ND	10	1.3	ug/L		12/14/22 18:00	1
2-Hexanone	ND	5.0	1.2	ug/L		12/14/22 18:00	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		12/14/22 18:00	1
Acetone	ND	10	3.0	ug/L		12/14/22 18:00	1
Benzene	ND	1.0	0.41	ug/L		12/14/22 18:00	1
Bromodichloromethane	ND	1.0	0.39	ug/L		12/14/22 18:00	1
Bromoform	ND	1.0	0.26	ug/L		12/14/22 18:00	1
Bromomethane	ND	1.0	0.69	ug/L		12/14/22 18:00	1
Carbon disulfide	ND	1.0	0.19	ug/L		12/14/22 18:00	1
Carbon tetrachloride	ND	1.0	0.27	ug/L		12/14/22 18:00	1
Chlorobenzene	ND	1.0	0.75	ug/L		12/14/22 18:00	1
Dibromochloromethane	ND	1.0	0.32	ug/L		12/14/22 18:00	1
Chloroethane	ND	1.0	0.32			12/14/22 18:00	1
Chloroform	ND	1.0	0.34			12/14/22 18:00	1
Chloromethane	ND	1.0	0.35	ug/L		12/14/22 18:00	1
sis-1,2-Dichloroethene	ND	1.0	0.81			12/14/22 18:00	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		12/14/22 18:00	1
Cyclohexane	ND	1.0	0.18	ug/L		12/14/22 18:00	1
- Dichlorodifluoromethane	ND	1.0	0.68			12/14/22 18:00	1
Ethylbenzene	ND	1.0	0.74			12/14/22 18:00	1
1,2-Dibromoethane	ND	1.0	0.73			12/14/22 18:00	1
sopropylbenzene	ND	1.0	0.79	ug/L		12/14/22 18:00	1
Methyl acetate	ND	2.5	1.3	ug/L		12/14/22 18:00	1
Methyl tert-butyl ether	ND	1.0		ug/L		12/14/22 18:00	1
Methylcyclohexane	ND	1.0	0.16	ug/L		12/14/22 18:00	1
Methylene Chloride	ND	1.0	0.44			12/14/22 18:00	1
Styrene	ND	1.0	0.73			12/14/22 18:00	1
Fetrachloroethene	ND	1.0	0.36			12/14/22 18:00	1
Toluene	ND	1.0	0.51	•		12/14/22 18:00	1
rans-1,2-Dichloroethene	ND	1.0		ug/L		12/14/22 18:00	1
rans-1,3-Dichloropropene	ND	1.0	0.37	U U		12/14/22 18:00	1
Trichloroethene	ND	1.0	0.46	-		12/14/22 18:00	1
Trichlorofluoromethane	ND	1.0		ug/L		12/14/22 18:00	
/inyl chloride	ND	1.0		ug/L		12/14/22 18:00	1
Xylenes, Total	ND	2.0		ug/L		12/14/22 18:00	1

Matrix: Water

Lab Sample ID: 480-204719-12

3 4 5 6 7 8 9

Client Sample Results

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

Matrix: Water

Lab Sample ID: 480-204719-12

Client Sample ID: TRIP BLANK Date Collected: 12/13/22 00:00

Date Received: 12/13/22 14:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120		12/14/22 18:00	1
1,2-Dichloroethane-d4 (Surr)	105	77 _ 120		12/14/22 18:00	1
4-Bromofluorobenzene (Surr)	90	73 - 120		12/14/22 18:00	1
Dibromofluoromethane (Surr)	98	75 - 123		12/14/22 18:00	1

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

Percent Surrogate Recovery (Acceptance Limits) TOL DCA BFB DBFM Client Sample ID (80-120) (77-120) (73-120) (75-123) Lab Sample ID 480-204719-1 AL-2 91 104 91 97 480-204719-2 AL-1 92 102 89 96 480-204719-3 AL-7 91 102 89 95 480-204719-4 MW-9R 92 104 89 97 480-204719-5 EX-MW-11R 91 104 88 97 480-204719-6 MW-02R 93 104 90 99 480-204719-7 EX-MW-12 90 105 87 100 480-204719-8 MW-04 91 105 87 98 480-204719-9 MW-07R 93 104 87 96 480-204719-11 DUP 93 105 90 98 480-204719-12 TRIP BLANK 93 105 90 98 97 LCS 480-653342/5 Lab Control Sample 94 106 87 MB 480-653342/7 Method Blank 91 106 87 100

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-204719-1

Prep Type: Total/NA

1 2 3 4 5 6 7 8 9 10

Lab Sample ID: MB 480-653342/7

Matrix: Water Analysis Batch: 653342

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/14/22 11:17	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/14/22 11:17	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/14/22 11:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/14/22 11:17	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/14/22 11:17	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/14/22 11:17	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/14/22 11:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/14/22 11:17	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/14/22 11:17	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/14/22 11:17	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/14/22 11:17	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/14/22 11:17	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/14/22 11:17	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/14/22 11:17	1
2-Hexanone	ND		5.0	1.2	ug/L			12/14/22 11:17	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/14/22 11:17	1
Acetone	ND		10	3.0	ug/L			12/14/22 11:17	1
Benzene	ND		1.0	0.41	ug/L			12/14/22 11:17	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/14/22 11:17	1
Bromoform	ND		1.0	0.26				12/14/22 11:17	1
Bromomethane	ND		1.0	0.69				12/14/22 11:17	1
Carbon disulfide	ND		1.0		ug/L			12/14/22 11:17	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/14/22 11:17	1
Chlorobenzene	ND		1.0	0.75	-			12/14/22 11:17	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/14/22 11:17	1
Chloroethane	ND		1.0	0.32				12/14/22 11:17	1
Chloroform	ND		1.0	0.34				12/14/22 11:17	1
Chloromethane	ND		1.0	0.35	ug/L			12/14/22 11:17	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/14/22 11:17	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/14/22 11:17	1
Cyclohexane	ND		1.0	0.18	ug/L			12/14/22 11:17	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/14/22 11:17	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/14/22 11:17	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/14/22 11:17	1
Isopropylbenzene	ND		1.0		ug/L			12/14/22 11:17	1
Methyl acetate	ND		2.5	1.3	ug/L			12/14/22 11:17	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/14/22 11:17	1
Methylcyclohexane	ND		1.0	0.16				12/14/22 11:17	1
Methylene Chloride	ND		1.0	0.44				12/14/22 11:17	1
Styrene	ND		1.0	0.73	ug/L			12/14/22 11:17	1
Tetrachloroethene	ND		1.0	0.36				12/14/22 11:17	1
Toluene	ND		1.0		ug/L			12/14/22 11:17	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/14/22 11:17	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/14/22 11:17	1
Trichloroethene	ND		1.0		ug/L			12/14/22 11:17	1
Trichlorofluoromethane	ND		1.0		ug/L			12/14/22 11:17	1
Vinyl chloride	ND		1.0		ug/L			12/14/22 11:17	1
Xylenes, Total	ND		2.0		ug/L			12/14/22 11:17	1
			~		J				

Eurofins Buffalo

Prep Type: Total/NA

Client Sample ID: Method Blank

8

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-653342/7

Matrix: Water Analysis Batch: 653342

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91		80 - 120		12/14/22 11:17	1
1,2-Dichloroethane-d4 (Surr)	106		77 _ 120		12/14/22 11:17	1
4-Bromofluorobenzene (Surr)	87		73 - 120		12/14/22 11:17	1
Dibromofluoromethane (Surr)	100		75 - 123		12/14/22 11:17	1

Lab Sample ID: LCS 480-653342/5 Matrix: Water

Analysis Batch: 653342

Analysis Batch: 653342	. "							
• • /	Spike		LCS		_	a/ 5	%Rec	
	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	
1,1,1-Trichloroethane	25.0	25.0		ug/L		100	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.9		ug/L		104	76 - 120	
1,1,2-Trichloroethane	25.0	22.8		ug/L		91	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.6		ug/L		98	61 - 148	
ne 1,1-Dichloroethane	25.0	23.1		ug/L		92	77 - 120	
1,1-Dichloroethene	25.0	22.2		ug/L		89	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.3		ug/L		97	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	29.3		ug/L		117	56 - 134	
1,2-Dichlorobenzene	25.0	24.2		ug/L		97	80 - 124	
1,2-Dichloroethane	25.0	24.6		ug/L		98	75 - 120	
1,2-Dichloropropane	25.0	22.0		ug/L		88	76 - 120	
1,3-Dichlorobenzene	25.0	23.2		ug/L		93	77 - 120	
1,4-Dichlorobenzene	25.0	23.0		ug/L		92	80 - 120	
2-Butanone (MEK)	125	132		ug/L		105	57 - 140	
2-Hexanone	125	150		ug/L		120	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	144		ug/L		115	71 - 125	
Acetone	125	139		ug/L		112	56 - 142	
Benzene	25.0	21.8		ug/L		87	71 - 124	
Bromodichloromethane	25.0	24.8		ug/L		99	80 - 122	
Bromoform	25.0	24.8		ug/L		99	61 - 132	
Bromomethane	25.0	25.4		ug/L		102	55 - 144	
Carbon disulfide	25.0	23.4		ug/L		94	59 - 134	
Carbon tetrachloride	25.0	25.8		ug/L		103	72 - 134	
Chlorobenzene	25.0	21.5		ug/L		86	80 - 120	
Dibromochloromethane	25.0	25.4		ug/L		102	75 - 125	
Chloroethane	25.0	23.9		ug/L		96	69 - 136	
Chloroform	25.0	23.3		ug/L		93	73 - 127	
Chloromethane	25.0	28.5		ug/L		114	68 - 124	
cis-1,2-Dichloroethene	25.0	22.1		ug/L		89	74 - 124	
cis-1,3-Dichloropropene	25.0	23.0		ug/L		92	74 - 124	
Cyclohexane	25.0	25.1		ug/L		100	59 ₋ 135	
Dichlorodifluoromethane	25.0	32.1		ug/L		128	59 - 135	
Ethylbenzene	25.0	22.6		ug/L		90	77 _ 123	
1,2-Dibromoethane	25.0	23.0		ug/L		92	77 _ 120	
Isopropylbenzene	25.0	24.4		ug/L		97	77 _ 122	
Methyl acetate	50.0	55.1		ug/L		110	74 - 133	
Methyl tert-butyl ether	25.0	23.6		ug/L		95	77 - 120	
Methylcyclohexane	25.0	23.0		ug/L		92	68 - 134	

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

87

97

Lab Sample ID: LCS 480-653342/5

Matrix: Water Analysis Batch: 653342

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 653342 Spike LCS LCS %Rec Analyte Added **Result Qualifier** Unit %Rec Limits D Methylene Chloride 25.0 22.9 ug/L 92 75 - 124 Styrene ug/L 25.0 22.3 89 80 - 120 Tetrachloroethene 25.0 87 74 - 122 21.9 ug/L Toluene 25.0 21.8 ug/L 87 80 - 122 trans-1,2-Dichloroethene 25.0 22.4 ug/L 90 73 - 127 trans-1,3-Dichloropropene 25.0 24.7 ug/L 99 80 - 120 Trichloroethene 25.0 22.2 ug/L 89 74 - 123 Trichlorofluoromethane 25.0 30.4 ug/L 122 62 - 150 Vinyl chloride 25.0 103 25.7 ug/L 65 - 133 LCS LCS %Recovery Qualifier Surrogate Limits 80 - 120 Toluene-d8 (Surr) 94 106 77 - 120 1,2-Dichloroethane-d4 (Surr)

73 - 120

75 - 123

QC Association Summary

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-1

GC/MS VOA

Analysis Batch: 653342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-204719-1	AL-2	Total/NA	Water	8260C	
480-204719-2	AL-1	Total/NA	Water	8260C	
480-204719-3	AL-7	Total/NA	Water	8260C	
480-204719-4	MW-9R	Total/NA	Water	8260C	
480-204719-5	EX-MW-11R	Total/NA	Water	8260C	
480-204719-6	MW-02R	Total/NA	Water	8260C	
480-204719-7	EX-MW-12	Total/NA	Water	8260C	
480-204719-8	MW-04	Total/NA	Water	8260C	
480-204719-9	MW-07R	Total/NA	Water	8260C	
480-204719-11	DUP	Total/NA	Water	8260C	
480-204719-12	TRIP BLANK	Total/NA	Water	8260C	
MB 480-653342/7	Method Blank	Total/NA	Water	8260C	
LCS 480-653342/5	Lab Control Sample	Total/NA	Water	8260C	

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2

Lab Sample ID: 480-204719-1

3 4 5 6 7 8 10

	Batch	Batch		Dilution	Batch			Prepared	
	12/13/22 14:00	1							
Date Collected: [•] Date Received: [•]									Matrix: Wat
Client Sample								Lab Sample ID:	
_	-			0	000042		227 001		
Prep Type Total/NA	Type Analysis	_ Method 8260C	Run	_ Factor5	653342		EET BUF	or Analyzed 12/14/22 15:49	
Dren Tur-	Batch	Batch	D	Dilution	Batch	Analist	Lah	Prepared	
_									
Date Received: '									
Date Collected:								Las campio ID.	Matrix: Wa
Client Sample		R						Lab Sample ID:	480-204710
Total/NA	Analysis	8260C		100	653342	AXK	EET BUF	12/14/22 15:27	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
_	Batch	Batch		Dilution	Batch			Prepared	
Date Received: '									
Date Collected:								Lus Gumple ID.	Matrix: Wa
_ Client Sample		/-11R						Lab Sample ID:	480-204710
Total/NA	Analysis	8260C		10	653342		EET BUF	12/14/22 15:05	
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
_	Batch	Batch		Dilution	Batch			Prepared	
Date Received: '									
Date Collected:								Lus Gumple ID.	Matrix: Wa
- Client Sample	2 ID∙ WW_0⊑	?						Lab Sample ID:	480-204710
Total/NA	Analysis	8260C		1	653342		EET BUF	12/14/22 14:43	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
-	Batch	Batch		Dilution	Batch			Prepared	
Date Received: '	12/13/22 14:00)							
Date Collected:		6							Matrix: Wa
Client Sample	D: AL-7							Lab Sample ID:	480-204719
Total/NA	Analysis	8260C		10	653342	AXK	EET BUF	12/14/22 14:21	
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
_	Batch	Batch		Dilution	Batch			Prepared	
Date Received: '	12/13/22 14:00)							
Date Collected:)							Matrix: Wa
Client Sample	D: AL-1							Lab Sample ID:	480-204719
Total/NA	Analysis	8260C		1	653342	AXK	EET BUF	12/14/22 13:59	
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
	Batch	Batch		Dilution	Batch			Prepared	

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04

Lab Sample ID: 480-204719-8

	Prepared			Batch	Dilution		Batch	Batch	-
	or Analyzed	Lab	Analyst	Number	Factor	Run	Method	Туре	Ргер Туре
	12/14/22 16:33	EET BUF	AXK	653342	1		8260C	Analysis	Total/NA
480-204719-9	ab Sample ID:	L					′R	e ID: MW-07	lient Sampl
Matrix: Water							5	12/13/22 12:3	ate Collected:
							D	12/13/22 14:00	Date Received:
	Prepared			Batch	Dilution		Batch	Batch	-
	or Analyzed	Lab	Analyst	Number	Factor	Run	Method	Туре	Ргер Туре
	12/14/22 16:54	EET BUF	AXK	653342	10		8260C	Analysis	Total/NA
80-204719-11	ab Sample ID: 4	La						e ID: DUP	Client Sampl
Matrix: Water							0	12/13/22 00:00	ate Collected:
							D	12/13/22 14:00	ate Received:
	Prepared			Batch	Dilution		Batch	Batch	-
	or Analyzed	Lab	Analyst	Number	Factor	Run	Method	Туре	Ргер Туре
	12/14/22 17:38	EET BUF	AXK	653342	5		8260C	Analysis	Total/NA
80-204719-12	b Sample ID: 4	La					BLANK	e ID: TRIP B	Client Sampl
Matrix: Water							0	12/13/22 00:00	ate Collected:
watrix: water							0	12/13/22 14:00	Date Received:
									_
	Prepared			Batch	Dilution		Batch	Batch	
	Prepared or Analyzed	Lab	Analyst	Batch Number	Dilution Factor	Run	Batch Method	Batch Type	Ргер Туре

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports Job ID: 480-204719-1

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-23

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: LaBella Associates DPC Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-204719-1	AL-2	Water	12/13/22 08:25	12/13/22 14:00
480-204719-2	AL-1	Water	12/13/22 08:50	12/13/22 14:00
480-204719-3	AL-7	Water	12/13/22 09:16	12/13/22 14:00
480-204719-4	MW-9R	Water	12/13/22 09:50	12/13/22 14:00
480-204719-5	EX-MW-11R	Water	12/13/22 10:20	12/13/22 14:00
480-204719-6	MW-02R	Water	12/13/22 10:45	12/13/22 14:00
480-204719-7	EX-MW-12	Water	12/13/22 11:25	12/13/22 14:00
480-204719-8	MW-04	Water	12/13/22 11:55	12/13/22 14:00
480-204719-9	MW-07R	Water	12/13/22 12:35	12/13/22 14:00
480-204719-11	DUP	Water	12/13/22 00:00	12/13/22 14:00
480-204719-12	TRIP BLANK	Water	12/13/22 00:00	12/13/22 14:00

Eurofins Buffalo

10 Hazelwood Drive

0

Amherst, NY 14228-2223

Chain of Custody Record

Regulatory Program: DW NPDES RCRA Other: **Eurofins Environment Testing America** phone 716.691.2600 fax 716.691.7991 COC No: Project Manager: Chris Kibler of COCs Site Contact: Date: 12/13/22 Email: ckibler@labellapc.com **Client Contact** TALS Project #: Tel/Fax: Lab Contact: Carrier: LaBella Associates **Analysis Turnaround Time** Sampler: 300 Pearl Street Suite 130 CALENDAR DAYS WORKING DAYS For Lab Use Only: Buffalo, NY Walk-in Client: TAT if different from Below (716) 551-6281 Phone z Lab Sampling: 2 weeks Project Name: Former Roblin Steel and Alumax Sites Standard 1 week MSD Site: 2 days 00 Job / SDG No. MS / I PO# 1 day Sample Туре Sample Sample R (C=Comp. # of -Date Time Matrix Cont Sample Specific Notes: Sample Identification G=Grab) TU 11177 ibis #70 3 101 OBIS ÂĹ 1413 G 3 Ht0 -0850 age 0916 7 AL-MW-9R 8 0950 EX-MW-IIR 1020 1045 MW-02R 480-204719 Chain of Custody Ex- MW-12 25 MW-04 1155 V 235 MW-07R 315 MUL 1 DUP J. Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Flammable Skin Irritant Poison B Unknown Return to Client Archive for Months Disposal by Lab Special Instructions/QC Requirements & Comments: Phalyze Trip blank for VOCS - 8260 Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No. Custody Seals Intact. Custody Seal No. Yes No No Relinquished by Company: Date/Time: Received by: Company Date/Time: 09/ SP.112 ne 12/13/22 Relinguished by: Company: Date/Time: Received by: Company: Date/Time: Date/Time: Received in Laboratory b Company: Relinguished by: Company: Date/Time: 1440 1213-22 А