

2023 Periodic Review Report

Location:

Former Alumax Extrusions Site 440 and 320 South Roberts Road, Dunkirk, New York VCP Site No. V00589-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

LaBella Project No. 2200014

February 22, 2024

Table of Contents

1.0	EXECL	ITIVE SUMMARY	1
1.1	Site	Summary	1
1.2	Effe	ctiveness of Remedial Program	1
1.3	Con	npliance	2
1.4	Rec	ommendations	2
2.0		VERVIEW	
2.1		Background	
2.2		nedial Program Overview	
3.0 4.0		TIVENESS OF THE REMEDIAL PROGRAM UTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT	
4.1		itutional Controls	
4	.1.1	Site Use Restrictions	4
4	.1.2	Groundwater Use Restrictions	4
4	.1.3	Excavation Work Plan	5
4	.1.4	Groundwater Monitoring	5
4.2	Eng	ineering Controls	6
4	.2.1	Surface Cover System	6
4	.2.2	Sub-Slab Vapor Mitigation	7
4.3	IC/E	EC Certification	7
5.0		ORING PLAN COMPLIANCE REPORT	
5.1		uirements	
5.2		undwater Monitoring	
	.2.1	Sampling Procedure	
	.2.2	Sample Preservation and Handling	
	.2.3	Quality Assurance/Quality Control	
5	.2.4	Analytical Results	8
5.3		nparisons with Remedial Objectives	
5.4		nitoring Deficiencies	
5.5		clusions and Recommendations	
6.0 7.0		LUSIONS AND RECOMMENDATIONS	
8.0		NTIONSRENCES	

TABLE OF CONTENTS

Continued

Figure 2 – Site Plan
Figure 3 – New Driveway Construction
Figure 4 – 2004 Soil Cover & Paving Plan

Table

Table 1 – Summary of Analytical Results - Groundwater Samples

Appendix 1 November 2004 Deed Restrictions/Property Information

Appendix 2 Photographs

Appendix 3 Site Management Periodic Review Report Notice –

Institutional and Engineering Controls Certification Form

Appendix 4 Groundwater Sampling Logs

Appendix 5 Laboratory Analytical Results
Appendix 6 Historical Monitoring Well Data and Trendlines

Figure 1 - Site Location Map

Figures

1.0 EXECUTIVE SUMMARY

1.1 Site Summary

The former Alumax Extrusions, Inc. Facility (hereinafter referred to as the "Site") consists of two adjoining tax parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, City of Dunkirk, New York (Figure 1). According to Chautauqua County and City of Dunkirk online assessment records, the Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road (see Appendix 1). Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeast-southwest general direction. Parcel A, located at 440 South Roberts Road and owned by 440 Roberts Road, LLC, contains an approximately 7,200 square-foot office building while the remainder of the parcel consists of a parking area. Parcel B, located at 320 South Roberts Road and owned by Chautauqua County, formerly contained a 140,000 square-foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time.

An environmental investigation conducted at the Site revealed that contamination, likely associated with historical operations, had impacted the Site, necessitating remedial activities. Subsequent remedial activities conducted at the Site included in-situ chemical treatment using zero valent iron (ZVI) in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000) and installation of a sub-slab vapor (SSV) mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 Combined Institution Control Plan and Operations and Maintenance Plan (CICP/OMP), which provides initial guidance concerning the surface cover, soil/fill excavation and management, groundwater use and routine monitoring for the groundwater within the residual source area. Such guidance has since been updated in the agency-approved November 2021 LaBella Associates, D.P.C. (LaBella) Site Management Plan (SMP).

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the cover system elements that are currently present on the Site are intact and functioning as intended on the Site. The anticipated construction of the new driveway through the 440 South Roberts Road parcel should be completed in compliance with the SMP's Excavation Work Plan (EWP).

Overall, the remedial program is viewed to be effective in achieving the remedial objectives of the Site. The Site will continue to be monitored in accordance with the SMP. Based upon current analytical results, total chlorinated volatile organic compound (VOC) concentrations in two of the three groundwater wells (AL-2 and AL-7) that comprise the Site's monitoring network were below the SMP threshold of 100 micrograms per liter (ug/L). Analytical results dating back to post remediation suggest that natural attenuation is occurring at the Site. However, the total VOC concentrations at AL-1 were in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

1.3 Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this Periodic Review Report (PRR). No change of use, groundwater use, excavations or imports occurred during the certifying period.

1.4 Recommendations

No recommended changes to SMP were identified during this PRR.

2.0 SITE OVERVIEW

2.1 Site Background

Industrial development of the project Site was initiated around 1920, when the American Locomotive Company expanded its Dunkirk operations onto the project Site. The Site use has varied over time and uses have included a foundry, coal storage, locomotive manufacturing and finned heat exchanger fabrication. In 1976, the facility was acquired by Alumax, Inc. (Alumax), which operated an aluminum extrusion business at the Site until 1993, operating as Alumax Extrusions, Inc. Alcoa's acquisition of Alumax in 1998 included the idle Dunkirk facility.

The project Site consists of two adjoining parcels located at 440 and 320 South Roberts Road, Parcels A and B respectively, within the City of Dunkirk, New York (Figure 1). According to Chautauqua County online assessment records, the Site is comprised of approximately 12 acres of land situated on the north side of South Roberts Road (see Appendix 1). Progress Drive, constructed in 2014, transects both parcels associated with the Site in a northeast-southwest general direction. Parcel A, located at 440 South Roberts Road and owned by 440 Roberts Road, LLC, contains an approximately 7,200 square-foot office building while the remainder of the parcel consists of parking areas. Parcel B, located at 320 South Roberts Road and owned by Chautauqua County, formerly contained a 140,000 square-foot building that was demolished in early 2009. It should be noted that the concrete floor slabs were left-in-place at that time. Parcel B has remained vacant and undeveloped with the exception of the construction of a segment of Progress Drive that transects the Site. The plans for the construction of this roadway were developed and carried out in accordance with the CICP/OMP. During construction of the roadway, select portions of the former building concrete slabs were crushed and spread out on the surface of the Site outside of the new roadway limits. Construction of the roadway was completed in Fall 2014. Parcels A and B are identified in the November 2004 Deed Restriction (Appendix 1) and are depicted on Figure 2. It should be noted that the parcels detailed in the Deed Restriction are different than the current Chautauqua County parcel boundaries, since the Deed Restriction was written prior to construction of the roadway.

A Notice of Intrusive Activities (NIA) was submitted for the 440 South Roberts Road parcel only, to the New York State Department of Environmental Conservation (NYSDEC), on November 11, 2022 (Revised December 1, 2022). 440 Roberts Road, LLC took ownership of this parcel from Chautauqua County in 2022. The intent of the NIA was to inform the NYSDEC of the proposed construction of a new driveway through the parcel, connecting the north adjacent Edgewood Warehouse property to the south abutting thoroughfare (Progress Drive). On January 3, 2023, a Change-of-Use (COU) form was submitted by 440 Roberts Road, LLC, for the construction of this new driveway to take place. As of the date of this PRR, construction of the new driveway has not commenced and 440 Roberts Road, LLC has indicated that there is currently no confirmed schedule for construction of the new driveway.

An illustration of the proposed new driveway is presented in Figure 3.

2.2 Remedial Program Overview

An environmental investigation conducted at the Site revealed that contamination, likely associated with the historical operations, had impacted the Site, necessitating remedial activities. Constituents of potential concern (COPCs) identified within soil/fill at the Site consisted primarily of chlorinated hydrocarbons (specifically trichloroethene (TCE) and its degradation products), polycyclic aromatic hydrocarbons, polychlorinated biphenyls and metals.

A residual source area containing concentrations of TCE, and its degradation products was identified in the subsurface on the north-central portion of the Site.

With the exception of the chlorinated hydrocarbons, groundwater has not shown impacts from the COCPs identified in the soil/fill.

Subsequent remedial activities conducted at the Site included in-situ chemical treatment of groundwater using ZVI in the residual source area (December 2004), removal and off-site disposal of sediments within two catch basins at the Site (mid-2000s) and installation of a SSV mitigation system (December 2003). The remedial efforts also included the development of deed restrictions and the June 2004 CICP/OMP, which provides initial guidance concerning the surface cover, soil/fill excavation and management, groundwater use, and routine monitoring for the groundwater within the residual source area. Such guidance has since been updated in the agency-approved November 2021 LaBella SMP.

Additionally, as indicated previously, the 140,000 square-foot building formerly located on Parcel B was demolished in early 2009. Prior to the demolition, the asbestos-containing-materials within the former Site building were abated in accordance with the requirements outlined in 12 NYCRR Part 56 of New York State Department of Labor Industrial Code Rule 56 (ICR 56). The abatement work was completed between November and December of 2008. Demolition of the building occurred in January and February of 2009. Operation of the SSV mitigation system associated with the building ceased in conjunction with the demolition project and this system no longer exists.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

Remedial goals for the Site were accomplished through in-situ chemical treatment of groundwater using ZVI in the residual source area; the removal and off-site disposal of sediments within the two catch basins at the Site; the installation of a sub-slab venting system; and the development of deed restrictions and the June 2004 CICP/OMP.

As indicated in the December 15, 2014, Corrective Measures Summary Report, cover system requirements were satisfied within the Progress Drive corridor that transects the Site. Such included at a minimum, six inches of material (asphalt and sub-base) for the roadway and 12 inches of clean NYSDEC Division of Environmental Remediation (DER)-10 approved soil underlain by a demarcation layer (orange fencing) beneath road shoulders and parallel storm water ditches associated with the roadway. Review of construction as-builts confirmed that all applicable minimum cover system thicknesses were met within the road corridor.

Based on the comparison of the pre-remedial and the post-remedial groundwater analytical results, the enhanced natural attenuation appears to be achieving the goal of reducing the concentrations of chlorinated hydrocarbons in the groundwater. However, the total VOC concentrations at AL-1 were in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

4.1 Institutional Controls

4.1.1 Site Use Restrictions

In accordance with the deed restrictions and the SMP, the Site is to be used for restricted commercial or restricted industrial uses only. The SMP presents the following definitions for these use categories:

- Restricted Commercial-Residential uses are not allowed under this category. Commercial
 uses are allowed but require engineering controls and/or institutional controls. Some types
 of "commercial" uses that could create "residential" types of exposures are excluded, such
 as day-care and health-care facilities. Retail stores, warehouse/distribution centers, service
 facilities and offices would be included in the commercial definition.
- Restricted Industrial-Residential and commercial uses are not allowed. Industrial uses are allowed but they require engineering controls and/or institutional controls. Metal working, manufacturing and other industrial uses are included in this category.

The office building on Parcel A is currently vacant, but was formerly used for commercial office purposes, while the remainder of the Site was used for office-related parking. The use of Parcel A meets the definition of Restricted Commercial use. Parcel B is vacant and undeveloped. Both parcels are now transected by a segment of Progress Drive, which was constructed in late 2014.

4.1.2 Groundwater Use Restrictions

Previous investigations conducted at the Site and adjacent properties have determined that groundwater resources are limited, particularly within the uppermost groundwater-bearing zone at the Site. Groundwater is not generally used in the vicinity of the Site, nor would it be expected to be used in the future, given the industrial character of the area, the availability of a municipal water supply in the area and the construction of the roadway. The clayey soils and shale bedrock have low hydraulic conductivities and produce limited quantities of water. The most productive zone is the top five feet of the shale bedrock, which is fractured and weathered. This zone is also considered to be perched and may be laterally limited. Groundwater in the north-central portion of the Site (i.e. residual source area) is impacted with chlorinated hydrocarbons. Low concentrations of petroleum-related constituents were encountered in other wells. The residual source area was addressed via in-situ treatment technology; however, low-level impacts to groundwater may linger due to the low conductivity and the potential dissolution of chlorinated constituents adsorbed to the clayey soils. Therefore, groundwater use restrictions were implemented at the Site to limit potential exposure to impacted groundwater and are identified in the deed restrictions recorded with the Site deed.

Although groundwater use is not prohibited, it is restricted. Should a future owner or operator determine that groundwater use is beneficial to their operations, permission from the NYSDEC must be obtained. Additionally, the owner or operator must conduct an evaluation of the suitability for the potential use of the groundwater and define the ultimate point of discharge (e.g. sanitary sewer, surface water, or reinjection) for any once-through water or blowdown from any recirculation system(s). Use of groundwater may require appropriate treatment to meet water quality requirements for use and discharge. Groundwater extracted for testing, monitoring and remediation, while excluded from the provisions of this groundwater use restriction, must meet local, state and federal disposal requirements.

4.1.3 Excavation Work Plan

The EWP was prepared to identify environmental guidelines for the management of subsurface soil/fill and long-term maintenance of the cover system. The EWP includes requirements that address the following key components:

- Any breach of the cover system;
- Surface erosion and storm water runoff control:
- Management of excavated soil/fill;
- Allowable reuse of excavated soil/fill;
- Requirements for off-site fill and grading materials;
- Notification requirements; and.
- Annual reporting and certification results.

4.1.4 Groundwater Monitoring

Groundwater monitoring is required for evaluating the effectiveness of ZVI application in the residual source area that was completed in December 2004. This monitoring consists of sampling and analysis of groundwater collected from Monitoring wells AL-1, AL-2 and AL-7 (see Figure 2). The samples are analyzed for United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs. Annual groundwater monitoring is performed in conjunction with the annual review of the institutional and engineering controls. In accordance with the SMP, this annual monitoring will occur until total concentrations of chlorinated VOCs fall below 100 ug/L in all three monitoring wells. Groundwater monitoring conducted in 2022 revealed that total VOC concentrations in well AL-1 exceeded the 100 ug/L concentration threshold. Therefore, groundwater samples were collected from all three wells during the current reporting period and the results, which are compared with the aforementioned threshold for total VOCs and the pre-remedial analytical results, are summarized in Section 5.2 of this report.

Groundwater elevation data for this reporting period and monitoring well details are presented in the table below.

Well ID	Top of Casing (ft)	Depth to Water (ft bgs)	Groundwater Elevation (ft AMSL)
AL-1	615.66	7.59	608.07
AL-2	617.63	6.65	610.98
AL-7	611.27	1.95	609.32

- L. Ft bgs = Feet below the ground surface
- 2. AMSL = Above mean sea level
- 3. Top of casing elevation data was sourced from the August 2011 TVGA Consultants PRR.

4.2 Engineering Controls

4.2.1 Surface Cover System

The long history of industrial use of the Site has resulted in widespread, low-level impacts of Site-wide soils. To limit casual exposure to the Site soils, a surface soil cover system consisting of clean soil, pavement, and/or concrete will be constructed as the Site is developed. The purpose of the surface cover system will be to eliminate the potential for human contact with fill material and eliminate the potential for contaminated runoff from the Site. The cover system will consist of one or more of the following types of clean material:

- Soil: 12 inches of vegetated soil cover underlain by a demarcation layer in outdoor vegetated areas.
- Asphalt: A minimum of six inches of material (asphalt and sub-base material) in areas that will become roads, sidewalks and parking lots.
- Concrete: A minimum of six inches of material (concrete and sub-base material) in areas that will become slab-on-grade structures or for roads, sidewalks, and parking lots in lieu of asphalt.

In the Summer/Fall of 2014, a new public roadway and associated storm water drainage ditches were constructed across a portion of the Site. Construction details implemented for the roadway included a 12-inch sub-base followed by a 6-inch base course, 2-inch binder course and 1.5-inch top course of asphalt. Between 2-3 feet of clean, NYSDEC DER-10 approved soil, underlain by a demarcation layer (orange fencing), was placed along the margins of the roadway. The drainage ditches were then constructed within the clean soil to depths of a minimum of 12-inches above the demarcation layer. Figure 4 details the 2004 Soil Cover and Paving Plan extracted from the projects November 2021 LaBella SMP.

On December 12, 2023, Mr. Andrew Koons of LaBella conducted the annual inspection, which included traversing the Site on foot to observe the current conditions. Parcel A contained an approximately 7,200 square-foot building and related parking areas, as well as a portion of Progress Drive. Parcel B was vacant and undeveloped with the exception of Progress Drive, which transects the parcel in a northeast-southwest direction.

At the time of the Site inspection, the asphalt cover occurring within the Progress Drive corridor was in good condition and no areas of exposed sub-base were observed. The floor and walls of the roadside ditches were covered with coarse, low-lying vegetation. No evidence of erosion or exposed synthetic erosion control fabric was observed within the storm water ditches. The remainder of Parcel B consisted of portions of intact concrete building slabs that remain following demolition of the former on-site buildings and rubblized concrete.

Given the current extent of cover, the limited area that currently lacks cover and the vacant nature of the Site, as it's currently unused, no current sources of surface soil contamination are present at this time.

Appendix 2 includes photographs taken during the Site inspection.

4.2.2 Sub-Slab Vapor Mitigation

The former building that occupied the Site contained a sub-slab venting system that was located over the residual source area. The building and sub slab venting system were demolished in early 2009. Therefore, the continued maintenance and operation of this system is no longer required.

For slab-on-grade structures, an 8-millimeter polyethylene barrier will be placed beneath the concrete for new structures built in the portion of the Site identified as the residual source area. The vapor barrier is not required in areas other than the residual source area because VOCs were not found in significant quantities on any other portion of the Site. A soil vapor intrusion assessment will be completed for any new construction near the residual source area.

4.3 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. No change of use, groundwater use, excavations or imports occurred during the certifying period. Appendix 3 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.0 MONITORING PLAN COMPLIANCE REPORT

5.1 Requirements

Sections 4.0 and 7.0 of the SMP include groundwater monitoring requirements associated with the performance monitoring of the in-situ remedial measures for the chlorinated hydrocarbons and the annual certification of the implementation of the Institutional Control Plan, respectively.

5.2 Groundwater Monitoring

Groundwater Monitoring is required for evaluating the effectiveness of the ZVI application in the residual source area that was completed in December 2004. In accordance with the SMP, this annual monitoring will occur at three well locations (AL-1, AL-2 and AL-7) until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

5.2.1 Sampling Procedure

The three groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the SMP. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included in Appendix 4.

Other observations (e.g., well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Per Section 4.3.1 of the SMP, if a well was purged dry then the well was sampled once sufficient volume recovered in the well. Well purging consisted of the evacuation of select well volumes from AL-1, AL-2 and AL-7 using NYSDEC-approved low-flow purging procedures via a Geotech Geopump II Pump. The samples were then collected within three hours of completion of well purging using the low-flow method previously identified.

Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Eurofins/Test America Laboratories, Inc., a New York State Department of Health, Environmental Laboratory Accreditation Program certified laboratory for analysis. The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and the complete analytical laboratory report are included in Appendix 5.

5.2.3 Quality Assurance/Quality Control

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs.

Well sampling at the Site and adjoining former Roblin Steel Site were conducted in conjunction with one another on December 12, 2023, and the samples from both sites were submitted to the laboratory together in one batch and recorded on one COC. As such, the blind field duplicate collected from the former Roblin Steel Site (collected from MW-09R) and trip blank associated with the samples from both sites were utilized to evaluate the effectiveness of the QA/QC procedures for the Site.

5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance Values applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to applicable water quality standards. Figure 2 depicts the locations of the monitoring wells.

Groundwater flow is generally to the north/northwest in the area containing the Site. However, according to the SMP for the Site, localized flow direction in the vicinity of these wells is generally to the southwest.

Due to the influence of building foundations and subsurface utilities in the area of these wells; however, the water level data from these wells are not likely suitable for determining groundwater flow direction. It should be noted that foundations and utilities were not removed during the building demolition; therefore, flow conditions in this area likely continue to be influenced by these subsurface features.

5.3 Comparisons with Remedial Objectives

The groundwater analytical data for this monitoring event indicate that total chlorinated VOC concentrations in AL-2 and AL-7 were below the 100 ug/L threshold specified in the SMP. However, the total chlorinated VOC concentration in AL-1 exceeded this threshold. The results from each of the monitoring wells are further discussed below. Historical monitoring well data and trendlines are included in Appendix 6.

While six VOCs were identified within AL-1, including four VOCs above NYSDEC TOGS Standards; at 356 ug/L, the total VOC concentration in AL-1 was found to be significantly lower than the pre-remedial sample results recorded in January 2003. However, given that the total VOC concentration in AL-1 exceeds the site-specific threshold, continued monitoring of this location is warranted.

Three VOCs were identified in AL-2, including one VOC above NYSDEC TOGS Standards; at 42.5 ug/L. While, the total VOC concentration in AL-2 has slightly increased since the December 2022 sampling event, such is well below the site-specific threshold prescribed in the SMP.

Three VOCs were identified in AL-7 at 10.9 ug/L. While, the total VOC concentration in AL-7 has slightly increased since the December 2022 sampling event, the total VOC concentration in AL-7 was found to be significantly lower than the initial post-remedial sampling event in February 2009 and is well below the site-specific threshold prescribed in the SMP.

A comparison of the results from MW-09R on the adjacent Roblin Steel Site with the blind field duplicate indicates that the data coincide. No VOCs were identified within the trip blank.

5.4 Monitoring Deficiencies

No monitoring deficiencies were noted during the completion of the PRR and annual sampling event.

5.5 Conclusions and Recommendations

Groundwater monitoring is required for evaluating the effectiveness of the ZVI application that was completed in the residual source area in December 2004. Based upon current analytical results, total chlorinated VOC concentrations in AL-2 and AL-7 are well below the SMP threshold of 100 ug/L. The total chlorinated VOC concentration in AL-1 is significantly lower than the pre-remedial sample results from January 2003. However, given that the total VOC concentration in AL-1 (356 ug/L) was in exceedance of the 100 ug/L threshold, in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells. No changes to the Monitoring Plan or the SMP are recommended at this time.

6.0 CONCLUSIONS AND RECOMMENDATIONS

At the time of the Site inspection, the Site was found to be in compliance with the SMP.

No issues relating to the condition or integrity of the Progress Drive cover system components were noted as a result of the Site inspection conducted by LaBella. The anticipated construction of the new driveway through the 440 South Roberts Road parcel should be completed in compliance with the SMP's, EWP.

Based upon current analytical results, total chlorinated VOC concentrations in two of the three groundwater wells (AL-2 and AL-7) that comprise the Site's monitoring network were below the SMP threshold of 100 ug/L. Analytical results dating back to post remediation suggest that natural attenuation is occurring at the Site. However, the total VOC concentration in AL-1 was in exceedance of the 100 ug/L threshold. As such and in accordance with the SMP, annual groundwater monitoring will continue until total concentrations of chlorinated VOCs fall below 100 ug/L in all three wells.

No changes to the Monitoring Plan, the SMP or the PRR frequency are recommended at this time. The next groundwater sampling event and PRR will occur in December 2024.

7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impact of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action except where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report should not be construed as legal advice.

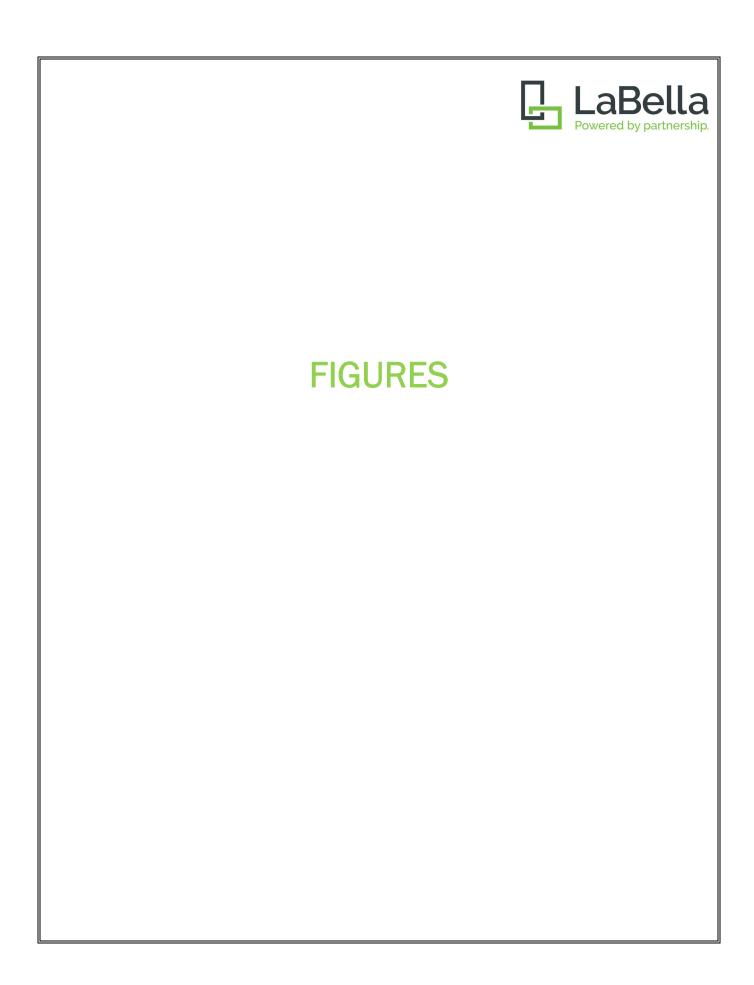
This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk.

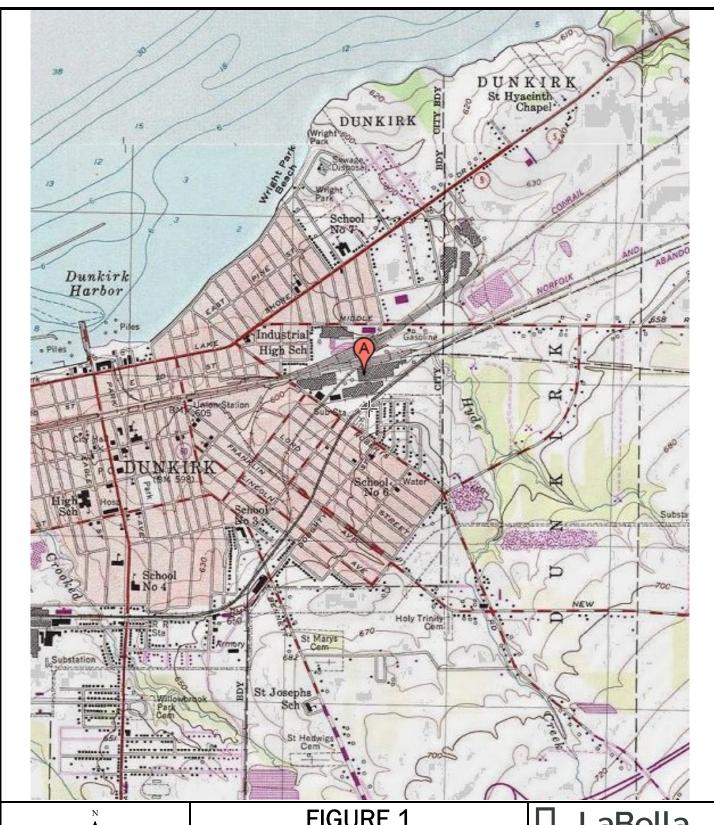
8.0 REFERENCES

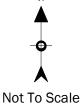
Declaration of Covenants and Restrictions, Deed Book 02560, Page 0509, Chautauqua County Clerk, November 22, 2004

DER-10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Voluntary Clean-Up Program, Combined Institutional Control Plan/Operations and Maintenance Plan, URS Corp., June 23, 2004


Voluntary Clean-Up Program, Interim Remedial Measures Completion Report, Alumax Extrusions, Inc., URS Corp., April 30, 2004

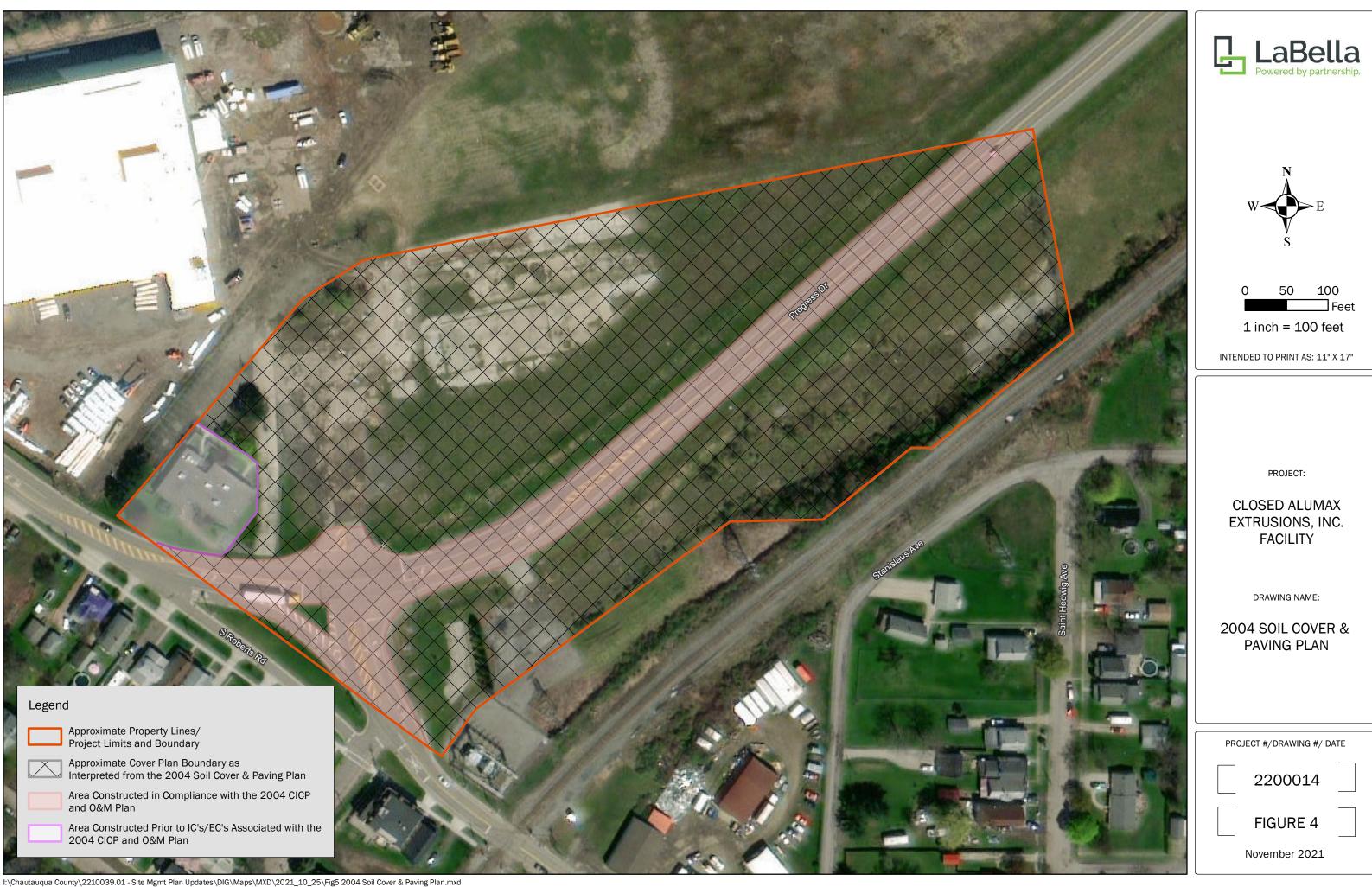

Periodic Review Report, Former Alumax Extrusions Site, TVGA Consultants, August 2011

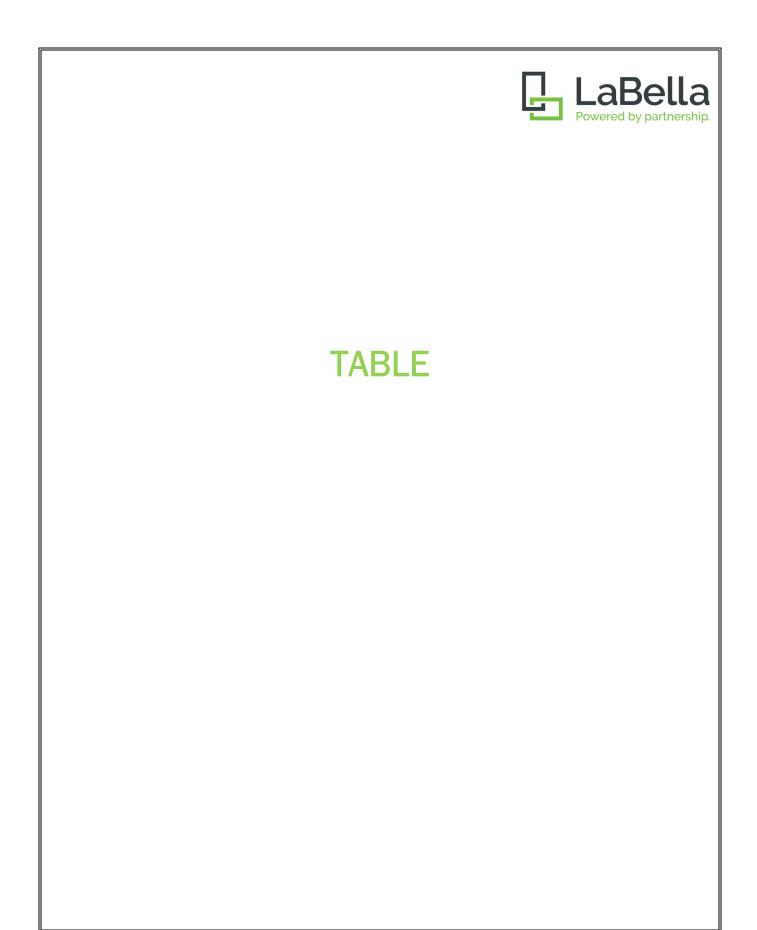

Corrective Measures Summary Report, Former Alumax Extrusions, Inc. Facility, KHEOPS Architecture, Engineering and Survey, DPC, December 15, 2014

Site Management Plan, Closed Alumax Extrusions Inc., Facility, LaBella Associates, D.P.C., November 2021

Periodic Review Report, Former Alumax Extrusions Site, LaBella Associates, D.P.C., February 2023




FIGURE 1 SITE LOCATION MAP


Former Alumax Extrusions Site 320 and 440 South Roberts Road Dunkirk, New York

PROJECT NO. 2200014

_																																														
	REGULATORY	Y																																												
PARAMETER	VALUE								AL-1																	AL-2														AL-7						
Collection Date		5/31/00	1/16/03	2/10/09 2/2	2/11 7/	19/12 8/	/15/13 7/15	/14 12/1	2/15 12	2/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22	12/12/23	5/31/00	1/16/03	2/10/09	2/22/11	7/19/12	8/15/13	7/15/14	12/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22	12/12/23 2/25/	2/10/0	9 2/22/11	7/19/12	8/15/13	7/15/14	12/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	12/2/21	12/13/22 12/12/23
		Pre-Reme				•					nedial Results			•			•	Pre-Remer									emedial Results		•				Pre-Reme	dial		•					Remedial Results					
			Jan Kesults							TOX-NEII	reutal Results							TTE-KEINE	Jimi Neaulta							10314	enreum results						Result	s						101111	iemedia kesuits					l
Volatile Organic Compo	ounds (ug/L)																																													
1,1-Dichloroethene	5		73			9.3		2	!4		2.2																									4.2										
cis-1,2-Dichloroethene	5	1,500	9,400	1,280 1,			961 1,82	20 3,2	200	2,500	850	1,100	180	240	26	450	140			9.36	6.94	2.3	394	1160	8.7		0.87	4.3	14	25	1.6		1,10	600	473	300	517	124		7	6.5	7.2	2	3.4	3.7	5.3 2
trans-1,2-Dichloroethene	e 5		39			3.9		1	0		2.4																									1.9			0.4							
2-Butanone	50																																							 '						1.6 J
Acetone	50		2.0						5		7.6				20	2.5	27					13			5.5		4 1	7			23		2.0				138	17.9	1.3						$\overline{}$	7.3 J
Carbon Disulfide			38	9.77 1	7.1	17	14.9	9	.5		0.45	14	33	6.8	29	25	21		12	6.1	16.1	13	5.4/		5.5	9	4.1	/		8.6	23	6.2	30						0.23						$\overline{}$	
Chloromethane	- 60										0.45					-				-																				+			+		+	0.001
Cyclohexane		_	64			180		5	3		17	- 11	27	4	56	21	33	-				24			4.2		2.4	3.6	1.8	1.4	6.9	1.2	11			14			0.73	 '		0.54	-			0.99 J
Ethylbenzene	INL E		6			2.5		- 3	.2		17		3/	4	30	21	33		4	-		34			0.23		2.4	3.0	1.0	1.4	6.9	1.3				14			0.73	+		0.54			+	
Isopropylbenzene		_	- 0			5.9					- 1.1				-	_		-	-						0.23					-										 '			+			
Methyl Chloride	5					3.5																																			++				+	
	MI		41			120					16	6.3	24	1.3	27	10	10								1.5		0.5	0.34	0.25		2.3	0.25 I	1.5			27			0.55		++		0.33		+	
Methyl Cyclohexane Methylene Chloride	, IVL	_	41			120				45	10	0.3	24	1.3	27	10	10	-							1.3	12	0.3	0.34	0.23	-	2.3	0.233	1.3			- 27			0.33	 '			0.33			
Toluene	5		43			2.2		3	1	-13	0.81		4 9																												++				+	
m,p-Xylene	5					4.5																																		 				-		
o-Xylene	5					7.9		2	.4																														0.31							
Total Xylenes	5		13			12.4					3.3		4.2		22		7.6														4.9		29													
Trichloroethene	5	2,400	4,600	118 1	97	100	192 27	8 8	88	130	55														1.5								3,00	154	138	55	109	9.26	6.7	2	0.96					-
Vinyl chloride	2	240	740	977 8	25	460	416 104	10 8	50	850	150	540	160	230		200	130			3.7			246	104	2.7		1.2		4.6	7			160	331	271	190	247	17.1	4.8	4		1.4	1.4	1.3		1.4
BTEX Compounds	-	0	87	10	7	34	15 0	1	5	0	20	14	38	7	29	25	35	0	16	6	16	13	5	0	6	9	4	7	11	9	23	6	30 0	0	0	0	0	0	1	0	0	0	0	0	0	0 0
Total VOCs	-	4,140	15,057	2,385 2,	179 1	,913 1	1,584 3,13	38 4,1	192	3,525	1,124	1,671	443	482	160	706	356	0	18	19	23	49	645	1,264	24	21	9	15	32	42	39	8	42.5 4,28	1,085	882	592	1,011	168	57	9	7.46	9.14	4.73	4.7	3.7	7.69 10.9

Note:

Regulatory values are derived from NYS Ambiest Water Quality Standards 10CS 1.1.1 Gource of Drinking Water, groundwater).

() = No regulatory value is associated with this compound.

Analysis of the projection of the projection of the projection value.

ugh. = Monograms per time (equivalent to parts per billion (pelpi).

Only compounds vision one round extension are thous.

"AL" = Regulatory value not listed for parameter

Basis spaces violente that is analyse was or detected.

APPENDIX 1

November 2004 Deed Restrictions/Property Information

Chautauqua County Clerk

Return To:

PUBLIC ABSTRACT CORPORATION
DEFAULT SERVICES
31 E MAIN ST 3RD FL
ROCHESTER NY 14614

ALCOA INC

NEW YORK STATE DEPARTMENT OF E NVIRONMENTAL CONSERV ATION

Index DEED BOOK

Book 02560 Page 0509

No. Pages 0007

Instrument DECLAR-DEEDS

Date: 11/22/2004

Time: 2:20:53

Control # 200411220133

INST#

DE 2004 007426

Employee ID LORENZOT

COUNTY	\$	27.00
	\$.00
ST ED DEPT	\$	4.75
	\$.00
	\$.00
	\$.00
	\$.00
CEA	\$	14.25
	\$.00
Total:	.\$	46.00

STATE OF NEW YORK Chautauqua County Clerk

WARNING: THIS SHEET CONSTITUTES THE CLERK'S ENDORSEMENT, REQUIRED BY SECTION 316-a(5) & SECTION 319 OF THE REAL PROPERTY LAW OF THE STATE OF NEW YORK. DO NOT DETACH.

Sandra K. Sopak County Clerk TRANSFER TAX

CONSIDERATN \$.00

Transfer Tax \$.00

DECLARATION of COVENANTS and RESTRICTIONS

THIS COVENANT is made the 3rd day of November 2004, by ALCOA INC., a Pennsylvania corporation, as successor in interest to Alumax Inc., a Delaware corporation, whose address is Alcoa Corporate Center, 201 Isabella Street, Pittsburgh, Pennsylvania 15212-5858 ("Alcoa").

WHEREAS Alcoa is the subject of Voluntary Agreement Index No. B9-0616-02-06, dated 08 August 2002 (the "Agreement") executed by Robert S. Bear (on behalf of Alcoa) and Susan I. Taluto, Deputy Commissioner – NYSDEC Water Quality and Environmental Remediation as part of the New York State Department of Environmental Conservation's (the "Department's) Voluntary Cleanup Program, namely that parcel of real property located at 320 South Roberts Road in the City of Dunkirk, County of Chautauqua, State of New York, which is part of lands conveyed by:

Warranty Deed made by Alumax Inc. to Alcoa, dated November 3, 2004 and recorded on November 22, 2004 in Liber 25100 of Deeds at page 505;

and being more particularly described in Appendix "A," attached to this declaration and made a part hereof, and hereinafter referred to as "the Property"; and

WHEREAS, the Department approved a remedy to eliminate or mitigate all significant threats to the environment presented by the contamination disposed at the Property and such remedy requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, Alcoa, for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as shown on a map attached to this declaration as Appendix "B" and made a part hereof, and consists of:

PARCEL A

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13

feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING in the center line of the existing 30.3 foot pavement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

Second, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, there shall be no construction, use or occupancy; disturbance or excavation of the Property that is inconsistent with the approved "Combined Institutional Control Plan and Operations and Maintenance Plan – Former Alumax Extrusions Site," Site No. V00589-9 (Combined Plan) and that results in unacceptable human exposure to contaminated soils.

Third, the owner of the Property shall be responsible to implement the Combined Plan or implementing any modifications to the Combined Plan after obtaining the written approval of the Relevant Agency.

Fourth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for restricted industrial or restricted commercial use without the express written waiver of such prohibition by the Relevant Agency.

Fifth, the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Sixth, the owner of the Property shall continue in full force and effect the prohibition against uses other than restricted commercial and/or industrial uses, and shall assure that any construction, use, occupancy, disturbance or excavation on the property shall be in conformance with the "Combined Plan" as institutional and engineering controls required under the Agreement, and shall continue to implement and annually report on the status, results and effectiveness of the operation, monitoring and maintenance requirements to the Relevant Agency unless the owner first obtains permission to discontinue to do so.

Seventh, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property, and shall provide that the owner and its successors and assigns consent to enforcement by the Relevant Agency of the prohibitions, restrictions and requirements set out in this Covenant, the Agreement, and the Combined Plan, and hereby covenant not to contest the authority of the Relevant Agency to seek enforcement.

Eighth, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day first above written.

ALCOA INC.

Russell W. Porter, Jr.

Vice President

Date: November 3, 2004

STATE OF PENNSYLVANIA)
) SS:
COUNTY OF ALLEGHENY)

Personally appeared before me, the undersigned authority in and for the said county and state, on this 3^M day of November, 2004, within my jurisdiction, the within named Russell W. Porter, Jr., who acknowledged that he is a Vice President of Alcoa Inc., a Pennsylvania corporation, and that for and on behalf of the said corporation, and as its act and deed, he executed the above and foregoing instrument, after first having been duly authorized by said corporation so to do.

My Commission Expires:

Noterial Seal

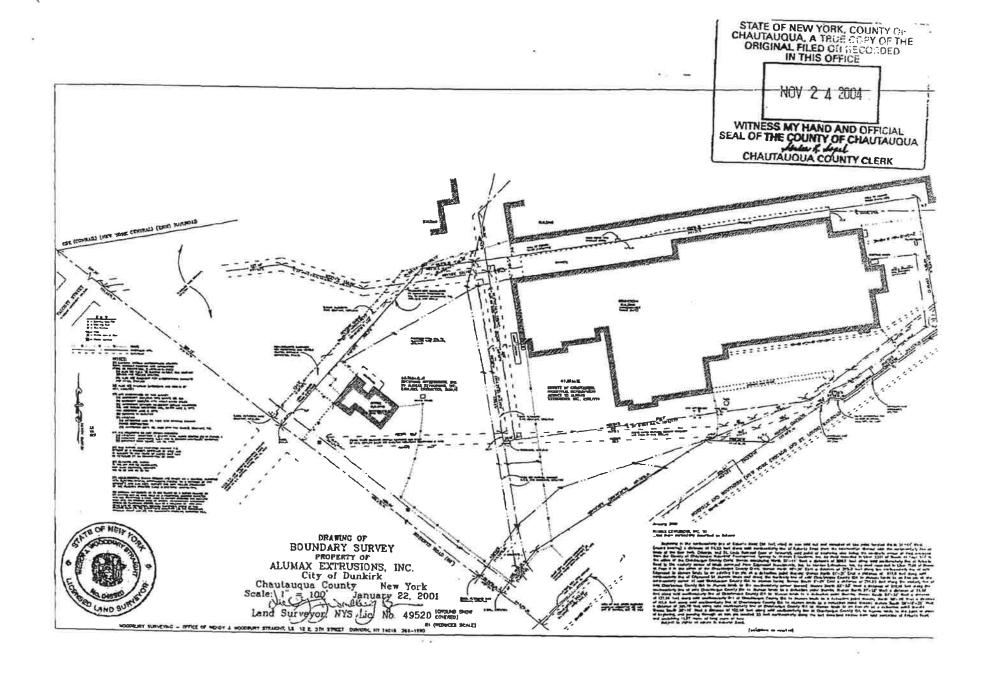
Jacqueline L. Murtha, Notary Public
City Of Pittsburgh, Allegheny County
My Commission Expires Jan. 24, 2007

Member, Pennsylvania Association Of Notaries

(SEAL)

APPENDIX "A"

PARCEL A


ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING on the centerline of Roberts Road at the point located 601.13 feet northwesterly along said centerline from the northerly line of lands of the Norfolk and Western Railroad, (former New York, Chicago and St. Louis Railroad); thence north 40° 28' east (assumed bearing) a distance of 396.0 feet to a point; thence north 81° 31' east a distance of 95.9 feet to a point; thence south 8° 39' east a distance of 514.37 feet to an iron pin; thence south 38° 16' west a distance of 114.28 feet to said centerline of Roberts Road; thence north 51° 44' west a distance of 456.6 feet along said centerline to the point or place of beginning.

PARCEL B

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Dunkirk, County of Chautauqua and State of New York and more particularly described as follows:

BEGINNING in the center line of the existing 30.3 foot payement in Roberts Road at a point located 94.53 feet northwesterly along said centerline from the northwesterly line of lands of the New York, Chicago & St. Louis Railroad Company; thence north 51° 44' west along said centerline a distance of 50 feet to a point on line of lands now or formerly of Plymouth Tube Company; thence north 38° 16' east a distance of 114.28 feet to an iron pin and passing through an iron pin located 33 feet northeasterly along the last described course from the centerline of Roberts Road; thence north 8° 39' west a distance of 514.37 feet to an iron pin on point of lands now or formerly of Roblin Industries, Inc.; thence continuing along line of lands of Roblin Industries, north 81° 31' east a distance of 822 feet to an iron pin and south 8° 29' east 251.95 feet to a point on line of lands now or formerly of said Railroad Company; thence south 53° 33' west 219.15 feet to a monument; thence north 87° 18' west 24.88 feet to a monument; thence south 53° 33' west 137.59 feet to an iron pin; thence north 88° 30' west 111.6 feet to an iron pin; thence south 56° 19' 32" west 381.7 feet to a monument; thence south 38° 16' west, 102.49 feet to the point or place of beginning, and passing through an iron pin located 33 feet northeasterly along the last described course from the place of beginning.

Chautauqua County - Parcel Report

Parcel Information: DUNKIRK - C 79.16-2-5

School District: 320 Roberts Rd **School District:** 60300 - Dunkirk

Acres: 8.81 Tract: Sub Land Sep.:

Frontage: 0 Lot: Prop Class: Vacant comm

Depth: 0 Section: Sub Div. Lot

Township: Filed Map No.:

Range: Filed Date:

Merge Reques	st Note:	
Note:		

Current Owi	nership:							
<u>Last</u>	<u>First</u>	<u>Middle</u>	Suffix	Liber	<u>Page</u>	Deed Date	<u>Sale Price</u>	<u>Deed</u> <u>Has</u> <u>Note</u>
County of Chautauqua				2656	219	7/10/2008	1	

Historic Ow	nership:							
<u>Last</u>	<u>First</u>	<u>Middle</u>	<u>Suffix</u>	<u>Liber</u>	<u>Page</u>	Deed Date	<u>Sale Price</u>	<u>Deed</u> <u>Has</u> <u>Note</u>
Alcoa	Inc.		·	2560	505	11/3/2004	700000	

CHAUTAUQUA COUNTY PROPERTY INFORMATION

LOCATION: 320 S Roberts Rd, Dunkirk SBL (NEW): 79.16-2-5 (OLD): 30-1-7.2.1

☐ PROPERTY INFOR	MATION		
Owner Name	County of Chautauqua	Neighborhood Code	200
Total Assessed Value (73.00% Market)	\$115,800	School District Code	060300
Full Market Value	\$158,600	SWIS Code	060300
Land Value	\$12,600	Parcel Status	ACTIVE
Property Type	330 - Vacant comm	County Taxable	\$0
Lot Size	Acres: 8, Front:0, Depth:0	Town Taxable	\$0
Mailing Address 1	N 3 Erie St	School Taxable	\$0
Mailing Address 2		Village Taxable	\$0
Mailing City, State	Mayville, NY	Tax Code	
Mailing ZIP Code	14757	Bank Code	
Description #1		Deed Book	2656
Description #2		Deed Page	219
Description #3	30-1-7.2.1	Year Built	-
Roll Year	2021	Last Sale Date	7/10/2008

PHYSICAL INFORM	MATION	
# of Bedrooms		Home/Building Style -
# of Baths	-	Structure Year Built -
# of Fireplaces		Square Footage
# of Kitchens		1st Story Sq. Ft.
# of Stories		2nd Story Sq. Ft.
Construction Quality	-	Additional Story Sq. Ft.
Utilities	Gas & elec	1/2 Story Sq. Ft.
Sewer Type	Comm/public	3/4 Story Sq. Ft.
Water Type	Comm/public	Finished Over Garage Sq. Ft.
Waterfront Type	-	Finished Attic Sq. Ft.
Overall Condition	-	Finished Basement Sq. Ft.
Exterior Wall	-	Unfinished 1/2 Story Sq. Ft.
Basement Type	-	Unfinished 3/4 Story Sq. Ft.
Heat Type	-	Unfinished Room Sq. Ft.
Fuel Type	-	Unfinished Over Garage Sq. Ft.
Central Air	-	Total Living Area
Road Type		Finished Rec Room Sq. Ft.

1 of 4 1/4/2024, 10:39 AM

\$ CURRENT TAXES

See current taxes on the Chautauqua County Real Property Services web site

LATEST OWNER

See latest property owner on the Chautauqua County Parcel History Database

TT COMMERCIAL INFORMATION

Property Class: Vac		2	ldg Sq Ft: -1		Assessment/So	1
Buildings:	Site #	Bldg	# Ac	. Yr. Built	Eff. Yr.	Built
Property Use: Click on site's row	Site #	Use #	Used As	Rent Sq Ft	Acres	Rent Type
for details	1	1	Light mfg	153,993	9	

HISTORICAL INFORMATION

Owner History	Deed Book	Deed Page	Sale Date	Valid Sale	Sale Price
County of Chautauqua	2656	219	7/10/2008	NO	\$1
Alcoa, Inc	2560	505	11/3/2004	NO	\$700,000

▶ IMPROVEMENT INFORMATION

Structure	Size	Grade	Condition	Year Built
Shed-machine	6.00 x 8.00	Average	Normal	1960
Shed-machine	7.00 x 10.00	Average	Normal	1960

EXEMPTIONS

Code Description	Amount	Exempt Percent	Start Year	End Year
CO PROPTY	115800	0	2010	

2 of 4 1/4/2024, 10:39 AM

PHOTO

Image Not Available

MAP

TOMPARABLE SALES

Comparable sales not available for this property.

COMPARABLE ASSESSMENTS

Comparable assessments not available for this property.

3 of 4 1/4/2024, 10:39 AM

Chautauqua County - Parcel Report

Parcel Information: DUNKIRK - C 79.16-2-4

Street:440 Roberts RdSchool District:60300 - Dunkirk

Acres: 2.22 Tract: Sub Land Sep.:

Frontage: O Lot: Prop Class: Office bldg.

Depth: 0 Section: Sub Div. Lot

Township: Filed Map No.:

Range: Filed Date:

Merge Reques	t Note:	
Note:		

Current Ownership:								
<u>Last</u>	<u>First</u>	<u>Middle</u>	<u>Suffix</u>	<u>Liber</u>	<u>Page</u>	Deed Date	<u>Sale Price</u>	<u>Deed</u> <u>Has</u> <u>Note</u>
440 Roberts Road LLC				2022	6012	9/14/2022	275,000	

Historic Ownership:								
<u>Last</u>	<u>First</u>	<u>Middle</u>	Suffix	<u>Liber</u>	<u>Page</u>	<u>Deed Date</u>	Sale Price	Deed Has Note
County of Chaut. IDA				2022	5223	8/19/2022	275,000	
Cliffstar LLC				2012	5226	9/13/2012	150,000	Х
Cliffstar LLC				2705	426	8/24/2010	0	
Cliffstar LLC				2013	6243	10/17/2013	0	Х
Cliffstar Corporation				2688	360	11/09/2009	1000000	
Star Wine	LLC			2587	453	11/16/2005	400000	Х
Alcoa	Inc			2560	505	11/22/2004		

CHAUTAUQUA COUNTY PROPERTY INFORMATION

LOCATION: 440 S Roberts Rd, Dunkirk SBL (NEW): 79.16-2-4 (OLD): 30-1-7.3

☐ PROPERTY INFORM	MATION		
Owner Name	Cliffstar LLC	Neighborhood Code	200
Total Assessed Value (73.00% Market)	\$199,340	School District Code	060300
Full Market Value	\$273,100	SWIS Code	060300
Land Value	\$11,500	Parcel Status	ACTIVE
Property Type	464 - Office bldg.	County Taxable	\$199,340
Lot Size	Acres: 2, Front:0, Depth:0	Town Taxable	\$199,340
Mailing Address 1	1 Cliffstar Dr	School Taxable	\$199,340
Mailing Address 2		Village Taxable	\$0
Mailing City, State	Dunkirk, NY	Tax Code	
Mailing ZIP Code	14048	Bank Code	
Description #1		Deed Book	2022
Description #2		Deed Page	6012
Description #3	30-1-7.3	Year Built	-
Roll Year	2021	Last Sale Date	8/17/2010

PHYSICAL INFOR	MATION	
# of Bedrooms		Home/Building Style -
# of Baths	-	Structure Year Built -
# of Fireplaces		Square Footage
# of Kitchens		1st Story Sq. Ft.
# of Stories		2nd Story Sq. Ft.
Construction Quality	-	Additional Story Sq. Ft.
Utilities	Gas & elec	1/2 Story Sq. Ft.
Sewer Type	Comm/public	3/4 Story Sq. Ft.
Water Type	Comm/public	Finished Over Garage Sq. Ft.
Waterfront Type	-	Finished Attic Sq. Ft.
Overall Condition	-	Finished Basement Sq. Ft.
Exterior Wall	-	Unfinished 1/2 Story Sq. Ft.
Basement Type	-	Unfinished 3/4 Story Sq. Ft.
Heat Type	-	Unfinished Room Sq. Ft.
Fuel Type	-	Unfinished Over Garage Sq. Ft.
Central Air	-	Total Living Area
Road Type		Finished Rec Room Sq. Ft.

1 of 4 1/4/2024, 10:44 AM

\$ CURRENT TAXES

See current taxes on the Chautauqua County Real Property Services web site

LATEST OWNER

See latest property owner on the Chautauqua County Parcel History Database

T COMMERCIAL INFORMATION

Property Class:	Office bldg.	Bldg Sq F	t: 5,902	Assessment/Sq Ft: 46	
Buildings:	Site #	Bldg #	Act. Yr. Built	Eff. Yr. Built	
	1	1	1990		

Property Use:Click on site's row
for details

Site #	Use #	Used As	Rent Sq Ft	Acres	Rent Type
1	1	Profssnl off	5,902	2	
1	2	Cold str/Rfrg/W	5,902	2	

HISTORICAL INFORMATION

Owner History	Deed Book	Deed Page	Sale Date	Valid Sale	Sale Price
Cliffstar Corporation	2688	360	10/30/2009	NO	\$1,000,000
Cliffstar LLC	2705	426	8/17/2010	NO	\$1
Star Wine, LLC	2587	453	11/16/2005	NO	\$400,000

▶ IMPROVEMENT INFORMATION

Structure Size Grade Condition Year Built	
---	--

EXEMPTIONS

Code Description	Amount	Exempt Percent	Start Year	End Year
Code Description	Aillouit	Exempt reitent	Juli Cicai	Liiu icai

2 of 4 1/4/2024, 10:44 AM

Image Not Available

MAP

TOMPARABLE SALES

Comparable sales not available for this property.

COMPARABLE ASSESSMENTS

Comparable assessments not available for this property.

3 of 4 1/4/2024, 10:44 AM

APPENDIX 2

Photographs

View of AL-1 and AL-2

View of AL-7

View of ditch along Progress Drive

View of cover and concrete pad

APPENDIX 3

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. V00589	Box 1	
Sit	e Name Closed Alumax Extrusions, Inc. Facility		
Cit _y	440& e Address: 320 South Roberts Road Zip Code: 14048- y/Town: Dunkirk (C) unty: Chautauqua e Acreage: 12.040		
Re	porting Period: December 15, 2022 to December 15, 2023		
		YES	NO
1.	Is the information above correct?	×	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		×
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	×	
7.	Are all ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
Α (Corrective Measures Work Plan must be submitted along with this form to address th	nese iss	ues.
 Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. V00589 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

79.16-2-4 440 Roberts Road, LLC

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

O&M Plan

Site Management Plan (11/01/2021) and Deed Restriction (filed 11/3/2004):

- 1) Landuse Restriction: Restricted Industrial or Restricted Commercial.
- 2) Ground water use restriction.
- 3) Soils Management Plan/Excavation Work Plan.
- 4) Surface Cover System.

79.16-2-5 Chautauqua County

Ground Water Use Restriction

Landuse Restriction Soil Management Plan Monitoring Plan

O&M Plan

Site Management Plan (11/01/2021) and Deed Restriction (filed 11/3/2004):

- 1) Landuse Restriction: Restricted Industrial or Restricted Commercial.
- 2) Ground water use restriction.
- 3) Soils Management Plan/Excavation Work Plan.
- 4) Surface Cover System.
- 5) Ground water monitoring.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

79.16-2-4

Cover System

Cover system to be placed once site redeveloped

79.16-2-5

Vapor Mitigation Cover System

Soil vapor intrusion evaluation required for any new or existing building onsite

Cover system to be placed once site redeveloped

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	×
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	×
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
4	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
;	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00589

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Tim Card at 454 print name	N. Work St., Falconer, MY 14733, print business address
am certifying as Remedial Party	(Owner or Remedial Party)
for the Site named in the Site Details Section of this	form. 1/4/24
Signature of Owner, Remedial Party, or Designated Rendering Certification	Representative Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LaBella Associates, DPC

I Daniel Noll at 300 State Street, Rochester, NY

print name print business address

am certifying as a Qualified Environmental Professional for the _______

(Owner or Remedial Party)

AO OBISS ONLY TO

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification 1.9.2024 mp Date

Stamp (Required for PE)

APPENDIX 4

Groundwater Sampling Logs

WELL I.D.:

Measuring Point:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Alumax PRR

Location: Former Alumax Site

Project No.: 2200014

Sampled By: A. Koons Date: 12/12/2023

Weather: Cloudy, 34°F

WFII	SAMPI	ING	INFORM	IATION

Well Diameter: 2.0" Depth of Well: 20.0' Static Water Level: 7.59' Length of Well Screen:

Depth to Top of Pump:

Tubing Type:

Top of inner casing Pump Type: Peri-pump

AL-1

⅓″ OD

FIELD PARAMETER MEASUREMENT

	I AIVAIVIL I LIV IVI	LACCIVILIVI								
	Time	Pump Rate	Gallons Purged	Temp ∘C	Conductivity (mS/cm)	рН	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Comments
L		(mL/min)			+/- 3%	+/- 0.1	+/- 10 mV	+/- 10%	+/- 10%	
	8:10	1,000	0	12.3	1.335	6.88	-17.2	7.34	5.28	
	8:17	1,000	2.0	13.4	0.773	7.37	-81.9	11.37	4.73	
	8:21	1,000	4.0	13.2	0.719	7.42	-38.1	12.43	4.82	
L										
L										
L										
L										
L										
L										
L										
L										
Ļ										
L										
L										

	Total _	4.0	Gallons Purged			
Purge Time Start:		8:10	Purge Time End:	8:21	Final Static Water Level:	

OBSERVATIONS

Sampled @ 8:30

Well going dry after 2 well volumes

WELL I.D.:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Alumax PRR

Location: Former Alumax Site

Project No.: 2200014

Sampled By: A. Koons Date: 12/12/2023

Weather: Cloudy, 34°F

WFII	SAMPI	ING	INFORMATIO	N
***				/ I N

Well Diameter: 2.0" Depth of Well: 19.4

AL-2

Static Water Level: 6.65'

Length of Well Screen: Depth to Top of Pump:

Measuring Point: Top of inner casing

Tubing Type: 1/4" OD

Pump Type: Peri-pump

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons Purged	Temp °C	Conductivity (mS/cm)	рН	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Comments
	(mL/min)			+/- 3%	+/- 0.1	+/- 10 mV	+/- 10%	+/- 10%	
9:10	1,000	0.0	12.8	0.843	7.19	-93.2	19.70	6.69	
9:17	1,000	2.0	12.9	0.847	7.33	-166.7	33.76	5.67	
9:24	1,000	4.0	13.5	0.854	7.43	-188.6	17.48	4.24	

	Total	4.0	Gallons Purged			
Purge Time Start:		9:10	Purge Time End:	9:24	Final Static Water Level:	

OBSERVATIONS

Sampled @ 9:35

Well going dry after 2 well volumes

WELL I.D.:

Measuring Point:

Pump Type:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Alumax PRR

Location: Former Alumax Site

A. Koons

Project No.: 2200014

Date: 12/12/2023

Weather: Cloudy, 34°F

Sampled By:

WELL	SAMPL	ING	INFORMATION

Well Diameter: 2.0"

Depth of Well: 11.5'

AL-7

Static Water Level: 1.95'

1/4" OD

Length of Well Screen: Depth to Top of Pump:

Top of inner casing Depth to Top of Pump:
Peri-pump Tubing Type:

FIELD PARAMETER MEASUREMENT

	Time	Pump Rate	Gallons Purged	Temp °C	Conductivity (mS/cm)	рН	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Comments
		(mL/min)			+/- 3%	+/- 0.1	+/- 10 mV	+/- 10%	+/- 10%	
Î	8:37	1,000	0.0	11.5	0.309	7.50	-133.3	356.99	4.71	
Ī	8:42	1,000	1.5	10.8	0.208	7.16	-96.6	24.55	4.56	
Î	8:47	1,000	3.0	10.2	0.282	7.19	-58.9	12.56	6.75	
Ī										
I										
Į										
ļ										
ļ										
ļ										
ļ										
ļ										
ļ										
ł										

	Total	3.0	Gallons Purged			
Purge Time Start:		8:37	Purge Time End:	8:47	Final Static Water Level:	

OBSERVATIONS

Sampled @ 8:55

Well going dry after 2 well volumes

APPENDIX 5

Laboratory Analytical Results

14

113

ANALYTICAL REPORT

PREPARED FOR

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Generated 12/22/2023 11:51:51 AM

JOB DESCRIPTION

Alumax & Roblin Periodic Review Reports

JOB NUMBER

480-215658-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/22/2023 11:51:51 AM

Authorized for release by
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@et.eurofinsus.com
Designee for
Brian Fischer, Manager of Project Management
Brian.Fischer@et.eurofinsus.com
(716)504-9835

2

А

O

8

9

1 1

12

13

2

3

4

5

6

g

10

12

14

T _	I_ I	_	_ _	0-	4 -	1-
12	nı	e	OT		nte	nts
ıu	N I	\mathbf{C}	VI.			

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	33
QC Sample Results	34
QC Association Summary	42
Lab Chronicle	43
Certification Summary	45
Method Summary	46
Sample Summary	47
·	48
Receipt Checklists	50

Definitions/Glossary

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Qualifiers

GC/MS VOA	G	C/I	VIS	VC	A
-----------	---	-----	------------	----	---

Qualifier	Qualifier Description
E	Result exceeded calibration range.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

Method Detection Limit
Minimum Level (Dioxin)
Most Probable Number
Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL

Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 50

Case Narrative

Client: LaBella Associates DPC Job ID: 480-215658-1

Project: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1 Eurofins Buffalo

Job Narrative 480-215658-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/13/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.9°C

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695216 recovered outside acceptance criteria, low biased, for 2-Butanone (MEK). A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated samples are impacted: AL-7 (480-215658-2), AL-2 (480-215658-3), MW-09R (480-215658-4), MW-02R (480-215658-6), EX-MW-12 (480-215658-7), MW-04 (480-215658-8), MW-13 (480-215658-9), MW-07R (480-215658-10) and TRIP BLANK (480-215658-12).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-09R (480-215658-4), MW-02R (480-215658-6) and MW-07R (480-215658-10). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: EX-MW-12 (480-215658-7), MW-04 (480-215658-8) and MW-13 (480-215658-9). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: AL-7 (480-215658-2).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695377 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated samples are impacted: AL-1 (480-215658-1), EX-MW-11R (480-215658-5), MW-07R (480-215658-10) and DUP (480-215658-11).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: AL-1 (480-215658-1), EX-MW-11R (480-215658-5), MW-07R (480-215658-10), DUP (480-215658-11), (480-215658-B-11 MS) and (480-215658-B-11 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 50

9

3

4

7

10

12

13

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1 Lab Sample ID: 480-215658-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	27		2.0	0.82	ug/L	2	_	8260C	Total/NA
cis-1,2-Dichloroethene	140		2.0	1.6	ug/L	2		8260C	Total/NA
Cyclohexane	33		2.0	0.36	ug/L	2		8260C	Total/NA
Methylcyclohexane	18		2.0	0.32	ug/L	2		8260C	Total/NA
Vinyl chloride	130		2.0	1.8	ug/L	2		8260C	Total/NA
Xylenes, Total	7.6		4.0	1.3	ug/L	2		8260C	Total/NA

Client Sample ID: AL-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	1.6	J	10	1.3	ug/L	1	_	8260C	Total/NA
Acetone	7.3	J	10	3.0	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	2.0		1.0	0.81	ug/L	1		8260C	Total/NA

Client Sample ID: AL-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	30		1.0	0.41	ug/L	1	_	8260C	Total/NA
Cyclohexane	11		1.0	0.18	ug/L	1		8260C	Total/NA
Methylcyclohexane	1.5		1.0	0.16	ug/L	1		8260C	Total/NA

Client Sample ID: MW-09R

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	75		10	8.1	ug/L	10	8260C	Total/NA
Cyclohexane	37		10	1.8	ug/L	10	8260C	Total/NA
Methylcyclohexane	34		10	1.6	ug/L	10	8260C	Total/NA
Vinyl chloride	310		10	9.0	ug/L	10	8260C	Total/NA

Client Sample ID: EX-MW-11R

Analyte	Posult	Qualifier	RL	MDL	Unit	Dil Fac	n	Method	Prep Type
cis-1.2-Dichloroethene		Qualifier					_	8260C	Total/NA
,	1700		50		ug/L	50			
Cyclohexane	13	J	50	9.0	ug/L	50		8260C	Total/NA
Methylcyclohexane	17	J	50	8.0	ug/L	50		8260C	Total/NA
Trichloroethene	44	J	50	23	ug/L	50		8260C	Total/NA
Vinyl chloride	1100		50	45	ug/L	50		8260C	Total/NA

Client Sample ID: MW-02R

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	2.7	J	5.0	2.1	ug/L		8260C	Total/NA
cis-1,2-Dichloroethene	320		5.0	4.1	ug/L	5	8260C	Total/NA
Cyclohexane	7.7		5.0	0.90	ug/L	5	8260C	Total/NA
Methylcyclohexane	7.7		5.0	0.80	ug/L	5	8260C	Total/NA
Trichloroethene	3.6	J	5.0	2.3	ug/L	5	8260C	Total/NA
Vinyl chloride	280		5.0	4.5	ug/L	5	8260C	Total/NA

Client Sample ID: EX-MW-12

No Detections.

Client Sample ID: MW-04 Lab Sample ID: 480-215658-8

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

Page 6 of 50

Job ID: 480-215658-1

Lab Sample ID: 480-215658-2

Lab Sample ID: 480-215658-3

Lab Sample ID: 480-215658-4

Lab Sample ID: 480-215658-5

Lab Sample ID: 480-215658-6

Lab Sample ID: 480-215658-7

Detection Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	2.1	J	4.0	1.6	ug/L	4	_	8260C	Total/NA
Cyclohexane	6.1		4.0	0.72	ug/L	4		8260C	Total/NA
Methylcyclohexane	6.8		4.0	0.64	ug/L	4		8260C	Total/NA
Toluene	3.0	J	4.0	2.0	ug/L	4		8260C	Total/NA
Xylenes, Total	5.0	J	8.0	2.6	ug/L	4		8260C	Total/NA

Client Sample ID: MW-07R Lab Sample ID: 480-215658-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	12		10	2.9	ug/L	10	_	8260C	Total/NA
cis-1,2-Dichloroethene	3200	E	10	8.1	ug/L	10		8260C	Total/NA
trans-1,2-Dichloroethene	9.6	J	10	9.0	ug/L	10		8260C	Total/NA
Trichloroethene	21		10	4.6	ug/L	10		8260C	Total/NA
Vinyl chloride	690	F1	10	9.0	ug/L	10		8260C	Total/NA
cis-1,2-Dichloroethene - DL	3400		80	65	ug/L	80		8260C	Total/NA
Vinyl chloride - DL	780		80	72	ug/L	80		8260C	Total/NA

Client Sample ID: DUP Lab Sample ID: 480-215658-11

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
cis-1,2-Dichloroethene	99	10	8.1	ug/L	10	82	260C	Total/NA
Cyclohexane	39	10	1.8	ug/L	10	83	260C	Total/NA
Methylcyclohexane	37	10	1.6	ug/L	10	83	260C	Total/NA
Vinyl chloride	360 F1	10	9.0	ug/L	10	8	260C	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-215658-12

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

12/22/2023

Job ID: 480-215658-1

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1
Date Collected: 12/12/23 08:30

Lab Sample ID: 480-215658-1

Matrix: Water

Date Received: 12/13/23 09:00	

Result	Qualifier	RL			D	Prepared	Analyzed	Dil Fa
ND		2.0	1.6	ug/L			12/14/23 11:48	
ND		2.0	0.42	ug/L			12/14/23 11:48	
ND		2.0	0.46	ug/L			12/14/23 11:48	
ND		2.0	0.62	ug/L			12/14/23 11:48	
ND		2.0	0.76	ug/L			12/14/23 11:48	
ND		2.0	0.58	ug/L			12/14/23 11:48	
ND		2.0	0.82	ug/L			12/14/23 11:48	
ND		2.0	0.78	ug/L			12/14/23 11:48	
ND		2.0	1.6	ug/L			12/14/23 11:48	
ND		2.0	0.42	ug/L			12/14/23 11:48	
ND		2.0	1.4	ug/L			12/14/23 11:48	
ND		2.0		-			12/14/23 11:48	
ND		2.0					12/14/23 11:48	
				-				
ND		10		-			12/14/23 11:48	
				-				
				-				
				-				
				_				
				-				
				_				
				_				
				-				
ND		2.0		-			12/14/23 11:48	
ND		2.0		•			12/14/23 11:48	
ND		2.0	0.92	ug/L			12/14/23 11:48	
ND		2.0		-			12/14/23 11:48	
130		2.0	1.8	ua/l			12/14/23 11:48	
	ND N	ND N	ND 2.0 ND 10 ND 20 ND 10 ND 2.0 ND	ND	ND	ND	ND	ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 0.42 ug/L 12/14/23 11:48 ND 2.0 0.46 ug/L 12/14/23 11:48 ND 2.0 0.62 ug/L 12/14/23 11:48 ND 2.0 0.62 ug/L 12/14/23 11:48 ND 2.0 0.76 ug/L 12/14/23 11:48 ND 2.0 0.76 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.4 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.8 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.8 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.79 ug/L 12/14/23 11:48

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1 Lab Sample ID: 480-215658-1

Date Collected: 12/12/23 08:30 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/14/23 11:48	2
1,2-Dichloroethane-d4 (Surr)	83	77 - 120		12/14/23 11:48	2
4-Bromofluorobenzene (Surr)	97	73 - 120		12/14/23 11:48	2
Dibromofluoromethane (Surr)	88	75 - 123		12/14/23 11:48	2

5

6

8

10

12

4 4

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-7

Lab Sample ID: 480-215658-2

Matrix: Water

Date Collected: 12/12/23 08:55 Date Received: 12/13/23 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/13/23 13:57	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/13/23 13:57	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/13/23 13:57	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/13/23 13:57	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/13/23 13:57	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/13/23 13:57	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/13/23 13:57	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/13/23 13:57	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/13/23 13:57	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/13/23 13:57	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/13/23 13:57	
1,3-Dichlorobenzene	ND		1.0		ug/L			12/13/23 13:57	
1,4-Dichlorobenzene	ND		1.0		ug/L			12/13/23 13:57	
2-Butanone (MEK)	1.6	J	10		ug/L			12/13/23 13:57	
2-Hexanone	ND	-	5.0		ug/L			12/13/23 13:57	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/13/23 13:57	
Acetone	7.3	a .	10		ug/L			12/13/23 13:57	
Benzene	ND		1.0		ug/L			12/13/23 13:57	
Bromodichloromethane	ND		1.0		ug/L			12/13/23 13:57	
Bromoform	ND		1.0		ug/L			12/13/23 13:57	
Bromomethane	ND		1.0		ug/L			12/13/23 13:57	
Carbon disulfide	ND		1.0		ug/L			12/13/23 13:57	
Carbon tetrachloride	ND		1.0		ug/L			12/13/23 13:57	
Chlorobenzene	ND		1.0		ug/L			12/13/23 13:57	
Dibromochloromethane	ND		1.0		ug/L			12/13/23 13:57	
Chloroethane	ND		1.0		ug/L			12/13/23 13:57	
Chloroform	ND		1.0		ug/L			12/13/23 13:57	
Chloromethane	ND		1.0		ug/L			12/13/23 13:57	
cis-1,2-Dichloroethene	2.0		1.0		ug/L			12/13/23 13:57	
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 13:57	
Cyclohexane	ND		1.0		ug/L			12/13/23 13:57	
Dichlorodifluoromethane	ND		1.0		ug/L			12/13/23 13:57	
Ethylbenzene	ND		1.0		ug/L			12/13/23 13:57	
1,2-Dibromoethane	ND		1.0		ug/L ug/L			12/13/23 13:57	
sopropylbenzene	ND ND		1.0		ug/L			12/13/23 13:57	
• • • •									
Methyl acetate Methyl tert-butyl ether	ND ND		2.5		ug/L ug/L			12/13/23 13:57	
			1.0					12/13/23 13:57	
Methylcyclohexane	ND ND		1.0		ug/L			12/13/23 13:57	
Methylene Chloride			1.0		ug/L			12/13/23 13:57	
Styrene	ND		1.0		ug/L			12/13/23 13:57	
Tetrachloroethene	ND		1.0		ug/L			12/13/23 13:57	
Toluene	ND ND		1.0		ug/L			12/13/23 13:57	
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/13/23 13:57	
rans-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 13:57	
Trichloroethene	ND		1.0		ug/L			12/13/23 13:57	
Trichlorofluoromethane	ND		1.0		ug/L			12/13/23 13:57	
√inyl chloride Xylenes, Total	ND		1.0	0.90	ug/L			12/13/23 13:57	

Eurofins Buffalo

2

4

6

8

10

12

1 1

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-7 Lab Sample ID: 480-215658-2

Date Collected: 12/12/23 08:55 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/13/23 13:57	1
1,2-Dichloroethane-d4 (Surr)	90	77 - 120		12/13/23 13:57	1
4-Bromofluorobenzene (Surr)	99	73 - 120		12/13/23 13:57	1
Dibromofluoromethane (Surr)	87	75 - 123		12/13/23 13:57	1

4

6

0

9

11

14

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2

Lab Sample ID: 480-215658-3

Matrix: Water

Date Collected: 12/12/23 09:35 Date Received: 12/13/23 09:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			12/13/23 14:19	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/13/23 14:19	•
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/13/23 14:19	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/13/23 14:19	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/13/23 14:19	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/13/23 14:19	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/13/23 14:19	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/13/23 14:19	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/13/23 14:19	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/13/23 14:19	
1,2-Dichloropropane	ND	1.0		ug/L			12/13/23 14:19	
1,3-Dichlorobenzene	ND	1.0		ug/L			12/13/23 14:19	
1,4-Dichlorobenzene	ND	1.0		ug/L			12/13/23 14:19	
2-Butanone (MEK)	ND	10		ug/L			12/13/23 14:19	
2-Hexanone	ND	5.0		ug/L			12/13/23 14:19	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/13/23 14:19	
Acetone	ND	10	3.0	_			12/13/23 14:19	
Benzene	30	1.0		ug/L			12/13/23 14:19	
Bromodichloromethane	ND	1.0	0.39				12/13/23 14:19	
Bromoform	ND	1.0		ug/L			12/13/23 14:19	
Bromomethane	ND	1.0		ug/L			12/13/23 14:19	
Carbon disulfide	ND	1.0					12/13/23 14:19	
Carbon distillide Carbon tetrachloride				ug/L				
	ND	1.0		ug/L			12/13/23 14:19	
Chlorobenzene Dibromochloromethane	ND	1.0		ug/L			12/13/23 14:19	
	ND	1.0		ug/L			12/13/23 14:19	
Chloroethane	ND	1.0		ug/L			12/13/23 14:19	
Chloroform	ND	1.0		ug/L			12/13/23 14:19	
Chloromethane	ND	1.0		ug/L			12/13/23 14:19	
cis-1,2-Dichloroethene	ND	1.0		ug/L			12/13/23 14:19	
cis-1,3-Dichloropropene	ND	1.0		ug/L			12/13/23 14:19	
Cyclohexane	11	1.0		ug/L			12/13/23 14:19	
Dichlorodifluoromethane	ND	1.0		ug/L			12/13/23 14:19	
Ethylbenzene	ND	1.0		ug/L			12/13/23 14:19	
1,2-Dibromoethane	ND	1.0		ug/L			12/13/23 14:19	•
Isopropylbenzene	ND	1.0		ug/L			12/13/23 14:19	•
Methyl acetate	ND	2.5		ug/L			12/13/23 14:19	
Methyl tert-butyl ether	ND	1.0		ug/L			12/13/23 14:19	•
Methylcyclohexane	1.5	1.0	0.16	ug/L			12/13/23 14:19	
Methylene Chloride	ND	1.0		ug/L			12/13/23 14:19	
Styrene	ND	1.0	0.73	ug/L			12/13/23 14:19	
Tetrachloroethene	ND	1.0		ug/L			12/13/23 14:19	
Toluene	ND	1.0	0.51	ug/L			12/13/23 14:19	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/13/23 14:19	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/13/23 14:19	
Trichloroethene	ND	1.0	0.46	ug/L			12/13/23 14:19	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/13/23 14:19	
Vinyl chloride	ND	1.0	0.90	ug/L			12/13/23 14:19	
Xylenes, Total	ND	2.0	0.66	ug/L			12/13/23 14:19	

Eurofins Buffalo

4

6

8

9

11

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2 Lab Sample ID: 480-215658-3

Date Collected: 12/12/23 09:35 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		12/13/23 14:19	1
1,2-Dichloroethane-d4 (Surr)	88	77 - 120		12/13/23 14:19	1
4-Bromofluorobenzene (Surr)	99	73 - 120		12/13/23 14:19	1
Dibromofluoromethane (Surr)	88	75 - 123		12/13/23 14:19	1

4

5

6

8

10

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-09R Date Collected: 12/12/23 10:15

Lab Sample ID: 480-215658-4

Matrix: Water

Date Received: 12/13/23 09:00 Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			12/13/23 14:41	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			12/13/23 14:41	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			12/13/23 14:41	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			12/13/23 14:41	10
1,1-Dichloroethane	ND		10	3.8	ug/L			12/13/23 14:41	10
1,1-Dichloroethene	ND		10	2.9	ug/L			12/13/23 14:41	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			12/13/23 14:41	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			12/13/23 14:41	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			12/13/23 14:41	10
1,2-Dichloroethane	ND		10	2.1	ug/L			12/13/23 14:41	10
1,2-Dichloropropane	ND		10	7.2	ug/L			12/13/23 14:41	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			12/13/23 14:41	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			12/13/23 14:41	10
2-Butanone (MEK)	ND		100	13	ug/L			12/13/23 14:41	10
2-Hexanone	ND		50	12	ug/L			12/13/23 14:41	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			12/13/23 14:41	10
Acetone	ND		100	30	ug/L			12/13/23 14:41	10
Benzene	ND		10	4.1	ug/L			12/13/23 14:41	10
Bromodichloromethane	ND		10	3.9	ug/L			12/13/23 14:41	10
Bromoform	ND		10	2.6	ug/L			12/13/23 14:41	10
Bromomethane	ND		10	6.9	ug/L			12/13/23 14:41	10
Carbon disulfide	ND		10	1.9	ug/L			12/13/23 14:41	10
Carbon tetrachloride	ND		10	2.7	ug/L			12/13/23 14:41	10
Chlorobenzene	ND		10		ug/L			12/13/23 14:41	10
Dibromochloromethane	ND		10	3.2	ug/L			12/13/23 14:41	10
Chloroethane	ND		10	3.2	ug/L			12/13/23 14:41	10
Chloroform	ND		10	3.4	ug/L			12/13/23 14:41	10
Chloromethane	ND		10	3.5	ug/L			12/13/23 14:41	10
cis-1,2-Dichloroethene	75		10	8.1	ug/L			12/13/23 14:41	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			12/13/23 14:41	10
Cyclohexane	37		10	1.8	ug/L			12/13/23 14:41	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			12/13/23 14:41	10
Ethylbenzene	ND		10	7.4	ug/L			12/13/23 14:41	10
1,2-Dibromoethane	ND		10	7.3	ug/L			12/13/23 14:41	10
Isopropylbenzene	ND		10	7.9	ug/L			12/13/23 14:41	10
Methyl acetate	ND		25		ug/L			12/13/23 14:41	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			12/13/23 14:41	10
Methylcyclohexane	34		10		ug/L			12/13/23 14:41	10
Methylene Chloride	ND		10		ug/L			12/13/23 14:41	10
Styrene	ND		10		ug/L			12/13/23 14:41	10
Tetrachloroethene	ND		10		ug/L			12/13/23 14:41	10
Toluene	ND		10		ug/L			12/13/23 14:41	10
trans-1,2-Dichloroethene	ND		10		ug/L			12/13/23 14:41	10
trans-1,3-Dichloropropene	ND		10		ug/L			12/13/23 14:41	10
Trichloroethene	ND		10		ug/L			12/13/23 14:41	10
Trichlorofluoromethane	ND		10		ug/L			12/13/23 14:41	10
Vinyl chloride	310		10		ug/L			12/13/23 14:41	10
Xylenes, Total	ND		20		ug/L			12/13/23 14:41	10

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-09R Lab Sample ID: 480-215658-4

Date Collected: 12/12/23 10:15 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/13/23 14:41	10
1,2-Dichloroethane-d4 (Surr)	92	77 - 120		12/13/23 14:41	10
4-Bromofluorobenzene (Surr)	98	73 - 120		12/13/23 14:41	10
Dibromofluoromethane (Surr)	92	75 - 123		12/13/23 14:41	10

4

5

7

9

10

12

4 4

1!

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-11R

Lab Sample ID: 480-215658-5 Date Collected: 12/12/23 10:45

Matrix: Water

	. gp	ounds by GC/							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND		50	41	ug/L			12/14/23 12:11	5
1,1,2,2-Tetrachloroethane	ND		50	11	ug/L			12/14/23 12:11	5
1,1,2-Trichloroethane	ND		50	12	ug/L			12/14/23 12:11	5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50	16	ug/L			12/14/23 12:11	5
I,1-Dichloroethane	ND		50	19	ug/L			12/14/23 12:11	5
1,1-Dichloroethene	ND		50	15	ug/L			12/14/23 12:11	5
1,2,4-Trichlorobenzene	ND		50	21	ug/L			12/14/23 12:11	5
1,2-Dibromo-3-Chloropropane	ND		50	20	ug/L			12/14/23 12:11	5
1,2-Dichlorobenzene	ND		50	40	ug/L			12/14/23 12:11	5
I,2-Dichloroethane	ND		50	11	ug/L			12/14/23 12:11	5
I,2-Dichloropropane	ND		50	36	ug/L			12/14/23 12:11	5
I,3-Dichlorobenzene	ND		50	39	ug/L			12/14/23 12:11	5
I,4-Dichlorobenzene	ND		50	42	ug/L			12/14/23 12:11	5
2-Butanone (MEK)	ND		500	66	ug/L			12/14/23 12:11	5
2-Hexanone	ND		250	62	ug/L			12/14/23 12:11	5
1-Methyl-2-pentanone (MIBK)	ND		250	110	ug/L			12/14/23 12:11	5
Acetone	ND		500		ug/L			12/14/23 12:11	5
Benzene	ND		50		ug/L			12/14/23 12:11	5
Bromodichloromethane	ND		50	20	ug/L			12/14/23 12:11	5
Bromoform	ND		50		ug/L			12/14/23 12:11	5
Bromomethane	ND		50		ug/L			12/14/23 12:11	5
Carbon disulfide	ND		50		ug/L			12/14/23 12:11	5
Carbon tetrachloride	ND		50		ug/L			12/14/23 12:11	5
Chlorobenzene	ND		50		ug/L			12/14/23 12:11	5
Dibromochloromethane	ND		50		ug/L			12/14/23 12:11	5
Chloroethane	ND		50		ug/L			12/14/23 12:11	5
Chloroform	ND		50		ug/L			12/14/23 12:11	5
Chloromethane	ND		50		ug/L			12/14/23 12:11	5
cis-1,2-Dichloroethene	1700		50		ug/L			12/14/23 12:11	5
cis-1,3-Dichloropropene	ND		50		ug/L			12/14/23 12:11	5
Cyclohexane	13		50		ug/L			12/14/23 12:11	5
Dichlorodifluoromethane	ND	•	50		ug/L			12/14/23 12:11	5
Ethylbenzene	ND		50		ug/L			12/14/23 12:11	5
I,2-Dibromoethane	ND		50		ug/L			12/14/23 12:11	5
sopropylbenzene	ND		50		ug/L			12/14/23 12:11	5
Methyl acetate	ND		130		ug/L			12/14/23 12:11	5
Methyl tert-butyl ether	ND		50		ug/L			12/14/23 12:11	5
Methylcyclohexane	17		50		ug/L			12/14/23 12:11	5
Methylene Chloride	ND	•	50		ug/L ug/L			12/14/23 12:11	5
Styrene	ND		50		ug/L ug/L			12/14/23 12:11	5
Fetrachloroethene	ND		50		ug/L ug/L			12/14/23 12:11	5
Foluene	ND ND		50 50		-				5
					ug/L			12/14/23 12:11	
rans-1,2-Dichloroethene	ND ND		50 50		ug/L			12/14/23 12:11	5
rans-1,3-Dichloropropene			50 50		ug/L			12/14/23 12:11	5
Frichland for a second to a se	44 ND	J	50		ug/L			12/14/23 12:11	5
Frichlorofluoromethane	ND		50	44	ug/L			12/14/23 12:11	5
/inyl chloride	1100		50		ug/L			12/14/23 12:11	5

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-11R Lab Sample ID: 480-215658-5

Date Collected: 12/12/23 10:45

Date Received: 12/13/23 09:00

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		12/14/23 12:11	50
1,2-Dichloroethane-d4 (Surr)	88	77 - 120		12/14/23 12:11	50
4-Bromofluorobenzene (Surr)	98	73 - 120		12/14/23 12:11	50
Dibromofluoromethane (Surr)	86	75 - 123		12/14/23 12:11	50

5

6

8

46

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-02R Date Collected: 12/12/23 11:25

Date Received: 12/13/23 09:00

Lab Sample ID: 480-215658-6

Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 5.0 1,1,1-Trichloroethane ND 4.1 ug/L 12/13/23 15:25 5 5 1,1,2,2-Tetrachloroethane ND 5.0 1.1 ug/L 12/13/23 15:25 1,1,2-Trichloroethane ND 5.0 1.2 ug/L 12/13/23 15:25 5 1,1,2-Trichloro-1,2,2-trifluoroethane 5 ND 5.0 1.6 ug/L 12/13/23 15:25 1,1-Dichloroethane ND 5.0 1.9 ug/L 12/13/23 15:25 5 1,1-Dichloroethene 5 ND 5.0 1.5 ug/L 12/13/23 15:25 1,2,4-Trichlorobenzene ND 5.0 2.1 ug/L 12/13/23 15:25 5

1,2-Dibromo-3-Chloropropane	ND	5.0	2.0	ug/L	12/13/23 15:25	5
1,2-Dichlorobenzene	ND	5.0	4.0	ug/L	12/13/23 15:25	5
1,2-Dichloroethane	ND	5.0	1.1	ug/L	12/13/23 15:25	5
1,2-Dichloropropane	ND	5.0	3.6	ug/L	12/13/23 15:25	5
1,3-Dichlorobenzene	ND	5.0	3.9	ug/L	12/13/23 15:25	5
1,4-Dichlorobenzene	ND	5.0	4.2	ug/L	12/13/23 15:25	5
2-Butanone (MEK)	ND	50	6.6	ug/L	12/13/23 15:25	5
2-Hexanone	ND	25	6.2	ug/L	12/13/23 15:25	5
4-Methyl-2-pentanone (MIBK)	ND	25	11	ug/L	12/13/23 15:25	5
Acetone	ND	50	15	ug/L	12/13/23 15:25	5
Benzene	2.7 J	5.0	2.1	ug/L	12/13/23 15:25	5
Bromodichloromethane	ND	5.0	2.0	ug/L	12/13/23 15:25	5
Bromoform	ND	5.0	1.3	ug/L	12/13/23 15:25	5
Bromomethane	ND	5.0	3.5	ug/L	12/13/23 15:25	5
Carbon disulfide	ND	5.0	0.95	ug/L	12/13/23 15:25	5
Carbon tetrachloride	ND	5.0	1.4	ug/L	12/13/23 15:25	5
Chlorobenzene	ND	5.0	3.8	ug/L	12/13/23 15:25	5
Dibromochloromethane	ND	5.0	1.6	ug/L	12/13/23 15:25	5
Chloroethane	ND	5.0	1.6	ug/L	12/13/23 15:25	5
Chloroform	ND	5.0	1.7	ug/L	12/13/23 15:25	5
Chloromethane	ND	5.0	1.8	ug/L	12/13/23 15:25	5
cis-1,2-Dichloroethene	320	5.0	4.1	ug/L	12/13/23 15:25	5
cis-1,3-Dichloropropene	ND	5.0	1.8	ug/L	12/13/23 15:25	5
Cyclohexane	7.7	5.0	0.90	ug/L	12/13/23 15:25	5
Dichlorodifluoromethane	ND	5.0	3.4	ug/L	12/13/23 15:25	5
Ethylbenzene	ND	5.0	3.7	ug/L	12/13/23 15:25	5
1,2-Dibromoethane	ND	5.0	3.7	ug/L	12/13/23 15:25	5
Isopropylbenzene	ND	5.0	4.0	ug/L	12/13/23 15:25	5
Methyl acetate	ND	13	6.5	ug/L	12/13/23 15:25	5
Methyl tert-butyl ether	ND	5.0	0.80	ug/L	12/13/23 15:25	5
Methylcyclohexane	7.7	5.0	0.80	ug/L	12/13/23 15:25	5
Methylene Chloride	ND	5.0	2.2	ug/L	12/13/23 15:25	5
Styrene	ND	5.0	3.7	ug/L	12/13/23 15:25	5
Tetrachloroethene	ND	5.0	1.8	ug/L	12/13/23 15:25	5
Toluene	ND	5.0	2.6	ug/L	12/13/23 15:25	5
trans-1,2-Dichloroethene	ND	5.0	4.5	ug/L	12/13/23 15:25	5
trans-1,3-Dichloropropene	ND	5.0	1.9	ug/L	12/13/23 15:25	5
Trichloroethene	3.6 J	5.0	2.3	ug/L	12/13/23 15:25	5
Trichlorofluoromethane	ND	5.0	4.4	ug/L	12/13/23 15:25	5
Vinyl chloride	280	5.0	4.5	ug/L	12/13/23 15:25	5
Xylenes, Total	ND	10	3.3	ug/L	12/13/23 15:25	5

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-02R Lab Sample ID: 480-215658-6

Date Collected: 12/12/23 11:25 Matrix: Water

Date Received: 12/13/23 09:00

;	Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
7	Toluene-d8 (Surr)	97	80 - 120		12/13/23 15:25	5
	1,2-Dichloroethane-d4 (Surr)	90	77 - 120		12/13/23 15:25	5
.	4-Bromofluorobenzene (Surr)	99	73 - 120		12/13/23 15:25	5
	Dibromofluoromethane (Surr)	91	75 ₋ 123		12/13/23 15:25	5

3

5

6

8

9

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12 Date Collected: 12/12/23 12:10

Lab Sample ID: 480-215658-7

Matrix: Water

Date Received: 12/13/23 09:00 Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 4.0 3.3 ug/L 12/13/23 15:48 ND 1,1,2,2-Tetrachloroethane 4.0 0.84 ug/L 12/13/23 15:48

1,1,2-Trichloroethane	ND	4.0	0.92	ug/L	12/13/23 15:48	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L	12/13/23 15:48	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L	12/13/23 15:48	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L	12/13/23 15:48	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L	12/13/23 15:48	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L	12/13/23 15:48	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L	12/13/23 15:48	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L	12/13/23 15:48	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L	12/13/23 15:48	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L	12/13/23 15:48	4
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L	12/13/23 15:48	4
2-Butanone (MEK)	ND	40	5.3	ug/L	12/13/23 15:48	4
2-Hexanone	ND	20	5.0	ug/L	12/13/23 15:48	4
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L	12/13/23 15:48	4
Acetone	ND	40	12	ug/L	12/13/23 15:48	4
Benzene	ND	4.0	1.6	ug/L	12/13/23 15:48	4
Bromodichloromethane	ND	4.0	1.6	ug/L	12/13/23 15:48	4
Bromoform	ND	4.0	1.0	ug/L	12/13/23 15:48	4
Bromomethane	ND	4.0	2.8	ug/L	12/13/23 15:48	4
Carbon disulfide	ND	4.0	0.76	ug/L	12/13/23 15:48	4
Carbon tetrachloride	ND	4.0	1.1	ug/L	12/13/23 15:48	4
Chlorobenzene	ND	4.0	3.0	ug/L	12/13/23 15:48	4
Dibromochloromethane	ND	4.0	1.3	ug/L	12/13/23 15:48	4
Chloroethane	ND	4.0	1.3	ug/L	12/13/23 15:48	4
Chloroform	ND	4.0	1.4	ug/L	12/13/23 15:48	4
Chloromethane	ND	4.0	1.4	ug/L	12/13/23 15:48	4
cis-1,2-Dichloroethene	ND	4.0	3.2	ug/L	12/13/23 15:48	4
cis-1,3-Dichloropropene	ND	4.0	1.4	ug/L	12/13/23 15:48	4
Cyclohexane	ND	4.0	0.72	ug/L	12/13/23 15:48	4
Dichlorodifluoromethane	ND	4.0	2.7	ug/L	12/13/23 15:48	4
Ethylbenzene	ND	4.0	3.0	ug/L	12/13/23 15:48	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L	12/13/23 15:48	4
Isopropylbenzene	ND	4.0	3.2	ug/L	12/13/23 15:48	4
Methyl acetate	ND	10	5.2	ug/L	12/13/23 15:48	4
Methyl tert-butyl ether	ND	4.0	0.64	ug/L	12/13/23 15:48	4
Methylcyclohexane	ND	4.0	0.64	ug/L	12/13/23 15:48	4
Methylene Chloride	ND	4.0	1.8	ug/L	12/13/23 15:48	4
Styrene	ND	4.0	2.9	ug/L	12/13/23 15:48	4
Tetrachloroethene	ND	4.0	1.4	ug/L	12/13/23 15:48	4
Toluene	ND	4.0	2.0	ug/L	12/13/23 15:48	4
trans-1,2-Dichloroethene	ND	4.0	3.6	ug/L	12/13/23 15:48	4
trans-1,3-Dichloropropene	ND	4.0	1.5	ug/L	12/13/23 15:48	4
Trichloroethene	ND	4.0	1.8	ug/L	12/13/23 15:48	4
Trichlorofluoromethane	ND	4.0	3.5	ug/L	12/13/23 15:48	4
Vinyl chloride	ND	4.0	3.6	ug/L	12/13/23 15:48	4
Xylenes, Total	ND	8.0	2.6	ug/L	12/13/23 15:48	4

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12 Lab Sample ID: 480-215658-7

Date Collected: 12/12/23 12:10 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120	12/13/23 15	:48 4
1,2-Dichloroethane-d4 (Surr)	89	77 - 120	12/13/23 15	:48 4
4-Bromofluorobenzene (Surr)	99	73 - 120	12/13/23 15	:48 4
Dibromofluoromethane (Surr)	93	75 ₋ 123	12/13/23 15	:48 4

4

5

7

8

10

12

13

4 -

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04 Date Collected: 12/12/23 12:45

mple ID: MW-04 Lab Sample ID: 480-215658-8

Matrix: Water

Date Received: 12/13/23 09:00

Mothod: SW846 8260C Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			12/13/23 16:10	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			12/13/23 16:10	
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			12/13/23 16:10	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			12/13/23 16:10	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			12/13/23 16:10	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			12/13/23 16:10	
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			12/13/23 16:10	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			12/13/23 16:10	
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			12/13/23 16:10	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			12/13/23 16:10	
1,2-Dichloropropane	ND		4.0	2.9	ug/L			12/13/23 16:10	
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			12/13/23 16:10	
1,4-Dichlorobenzene	ND		4.0		ug/L			12/13/23 16:10	
2-Butanone (MEK)	ND		40		ug/L			12/13/23 16:10	
2-Hexanone	ND		20		ug/L			12/13/23 16:10	
4-Methyl-2-pentanone (MIBK)	ND		20		ug/L			12/13/23 16:10	
Acetone	ND		40		ug/L			12/13/23 16:10	
Benzene	ND		4.0		ug/L			12/13/23 16:10	
Bromodichloromethane	ND		4.0		ug/L			12/13/23 16:10	
Bromoform	ND		4.0		ug/L			12/13/23 16:10	
Bromomethane	ND		4.0		ug/L			12/13/23 16:10	
Carbon disulfide	ND		4.0		ug/L ug/L			12/13/23 16:10	
Carbon tetrachloride	ND		4.0		ug/L			12/13/23 16:10	
Chlorobenzene	ND ND		4.0		-			12/13/23 16:10	
Dibromochloromethane	ND ND		4.0		ug/L ug/L			12/13/23 16:10	
Chloroethane	ND ND		4.0					12/13/23 16:10	
Chloroform	ND ND		4.0		ug/L			12/13/23 16:10	
					ug/L				
Chloromethane	ND		4.0		ug/L			12/13/23 16:10	
cis-1,2-Dichloroethene	ND		4.0		ug/L			12/13/23 16:10	
cis-1,3-Dichloropropene	ND		4.0		ug/L			12/13/23 16:10	
Cyclohexane	ND		4.0		ug/L			12/13/23 16:10	
Dichlorodifluoromethane	ND		4.0		ug/L			12/13/23 16:10	
Ethylbenzene	ND		4.0		ug/L			12/13/23 16:10	
1,2-Dibromoethane	ND		4.0		ug/L			12/13/23 16:10	
Isopropylbenzene	ND		4.0		ug/L			12/13/23 16:10	
Methyl acetate	ND		10		ug/L			12/13/23 16:10	
Methyl tert-butyl ether	ND		4.0		ug/L			12/13/23 16:10	
Methylcyclohexane	ND		4.0		ug/L			12/13/23 16:10	
Methylene Chloride	ND		4.0	1.8	ug/L			12/13/23 16:10	
Styrene	ND		4.0	2.9	ug/L			12/13/23 16:10	
Tetrachloroethene	ND		4.0	1.4	ug/L			12/13/23 16:10	
Toluene	ND		4.0	2.0	ug/L			12/13/23 16:10	
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			12/13/23 16:10	
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			12/13/23 16:10	
Trichloroethene	ND		4.0	1.8	ug/L			12/13/23 16:10	
Trichlorofluoromethane	ND		4.0	3.5	ug/L			12/13/23 16:10	
Vinyl chloride	ND		4.0	3.6	ug/L			12/13/23 16:10	
Xylenes, Total	ND		8.0	2.6	ug/L			12/13/23 16:10	

Eurofins Buffalo

12/22/2023

6

0

4 6

11

13

Le

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04 Lab Sample ID: 480-215658-8

Date Collected: 12/12/23 12:45 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/13/23 16:10	4
1,2-Dichloroethane-d4 (Surr)	90	77 - 120		12/13/23 16:10	4
4-Bromofluorobenzene (Surr)	97	73 - 120		12/13/23 16:10	4
Dibromofluoromethane (Surr)	90	75 - 123		12/13/23 16:10	4

3

5

6

R

9

11

12

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Date Collected: 12/12/23 13:30 Lab Sample ID: 480-215658-9

Matrix: Water

Date Received: 12/13/23 09:00

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			12/13/23 16:32	
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			12/13/23 16:32	
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			12/13/23 16:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			12/13/23 16:32	
1,1-Dichloroethane	ND	4.0	1.5	ug/L			12/13/23 16:32	
1,1-Dichloroethene	ND	4.0	1.2	ug/L			12/13/23 16:32	
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			12/13/23 16:32	
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			12/13/23 16:32	
I,2-Dichlorobenzene	ND	4.0	3.2	ug/L			12/13/23 16:32	
I,2-Dichloroethane	ND	4.0	0.84	ug/L			12/13/23 16:32	
1,2-Dichloropropane	ND	4.0	2.9	ug/L			12/13/23 16:32	
I,3-Dichlorobenzene	ND	4.0	3.1	ug/L			12/13/23 16:32	
I,4-Dichlorobenzene	ND	4.0	3.4	ug/L			12/13/23 16:32	
2-Butanone (MEK)	ND	40		ug/L			12/13/23 16:32	
2-Hexanone	ND	20		ug/L			12/13/23 16:32	
1-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			12/13/23 16:32	
Acetone	ND	40		ug/L			12/13/23 16:32	
Benzene	2.1 J	4.0		ug/L			12/13/23 16:32	
Bromodichloromethane	ND	4.0		ug/L			12/13/23 16:32	
Bromoform	ND	4.0		ug/L			12/13/23 16:32	
Bromomethane	ND	4.0		ug/L			12/13/23 16:32	
Carbon disulfide	ND	4.0		ug/L			12/13/23 16:32	
Carbon tetrachloride	ND	4.0		ug/L			12/13/23 16:32	
Chlorobenzene	ND	4.0		ug/L			12/13/23 16:32	
)ibromochloromethane	ND	4.0		ug/L			12/13/23 16:32	
Chloroethane	ND	4.0		ug/L			12/13/23 16:32	
Chloroform	ND	4.0		ug/L			12/13/23 16:32	
Chloromethane	ND	4.0		ug/L			12/13/23 16:32	
is-1,2-Dichloroethene	ND	4.0		ug/L			12/13/23 16:32	
sis-1,3-Dichloropropene	ND	4.0		ug/L			12/13/23 16:32	
Cyclohexane	6.1	4.0		ug/L			12/13/23 16:32	
Dichlorodifluoromethane	ND	4.0		ug/L			12/13/23 16:32	
Ethylbenzene	ND	4.0		ug/L			12/13/23 16:32	
,2-Dibromoethane	ND	4.0		ug/L			12/13/23 16:32	
sopropylbenzene	ND	4.0		ug/L			12/13/23 16:32	
Methyl acetate	ND	10		ug/L			12/13/23 16:32	
Nethyl tert-butyl ether	ND	4.0		ug/L			12/13/23 16:32	
Methylcyclohexane	6.8	4.0		ug/L			12/13/23 16:32	
Methylene Chloride	ND	4.0		ug/L			12/13/23 16:32	
Styrene	ND	4.0		ug/L			12/13/23 16:32	
etrachloroethene	ND	4.0		ug/L			12/13/23 16:32	
oluene	3.0 J	4.0		ug/L			12/13/23 16:32	
rans-1,2-Dichloroethene	ND	4.0		ug/L			12/13/23 16:32	
rans-1,3-Dichloropropene	ND	4.0		ug/L			12/13/23 16:32	
richloroethene	ND ND	4.0		ug/L ug/L			12/13/23 16:32	
richlorofluoromethane	ND ND	4.0		ug/L ug/L			12/13/23 16:32	
	ND ND	4.0		ug/L ug/L			12/13/23 16:32	
/inyl chloride Kylenes, Total	5.0 J	4.0 8.0		ug/L ug/L			12/13/23 16:32	

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

Date Collected: 12/12/23 13:30 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		12/13/23 16:32	4
1,2-Dichloroethane-d4 (Surr)	89	77 - 120		12/13/23 16:32	4
4-Bromofluorobenzene (Surr)	98	73 - 120		12/13/23 16:32	4
Dibromofluoromethane (Surr)	92	75 - 123		12/13/23 16:32	4

5

6

8

10

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-07R Date Collected: 12/12/23 14:05 Lab Sample ID: 480-215658-10

Matrix: Water

Date Received: 12/13/23 09:00

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		10	8.2	ug/L			12/13/23 16:54	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			12/13/23 16:54	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			12/13/23 16:54	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			12/13/23 16:54	10
1,1-Dichloroethane	ND		10	3.8	ug/L			12/13/23 16:54	10
1,1-Dichloroethene	12		10	2.9	ug/L			12/13/23 16:54	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			12/13/23 16:54	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			12/13/23 16:54	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			12/13/23 16:54	10
1,2-Dichloroethane	ND		10	2.1	ug/L			12/13/23 16:54	10
1,2-Dichloropropane	ND		10	7.2	ug/L			12/13/23 16:54	10
1,3-Dichlorobenzene	ND		10		ug/L			12/13/23 16:54	10
1,4-Dichlorobenzene	ND		10		ug/L			12/13/23 16:54	10
2-Butanone (MEK)	ND		100		ug/L			12/13/23 16:54	10
2-Hexanone	ND		50		ug/L			12/13/23 16:54	10
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			12/13/23 16:54	10
Acetone	ND		100		ug/L			12/13/23 16:54	10
Benzene	ND		10		ug/L			12/13/23 16:54	10
Bromodichloromethane	ND		10		ug/L			12/13/23 16:54	10
Bromoform	ND		10		ug/L			12/13/23 16:54	10
Bromomethane	ND		10		ug/L			12/13/23 16:54	10
Carbon disulfide	ND		10		ug/L			12/13/23 16:54	10
Carbon tetrachloride	ND		10		ug/L			12/13/23 16:54	10
Chlorobenzene	ND		10		ug/L			12/13/23 16:54	10
Dibromochloromethane	ND		10		ug/L			12/13/23 16:54	
Chloroethane	ND		10		ug/L			12/13/23 16:54	1
Chloroform	ND ND		10		ug/L ug/L			12/13/23 16:54	10
Chloromethane	ND		10					12/13/23 16:54	
		-	10		ug/L			12/13/23 16:54	10
cis-1,2-Dichloroethene	3200 I ND	E	10		ug/L			12/13/23 16:54	10
cis-1,3-Dichloropropene					ug/L				
Cyclohexane Dichlorodifluoromethane	ND		10		ug/L			12/13/23 16:54	10
	ND		10		ug/L			12/13/23 16:54	10
Ethylbenzene 1,2-Dibromoethane	ND ND		10		ug/L			12/13/23 16:54	10
	ND ND		10 10		ug/L			12/13/23 16:54	10
Isopropylbenzene					ug/L			12/13/23 16:54	
Methyl acetate	ND		25		ug/L			12/13/23 16:54	10
Methyl tert-butyl ether	ND		10		ug/L			12/13/23 16:54	1
Methylcyclohexane	ND		10		ug/L			12/13/23 16:54	10
Methylene Chloride	ND		10		ug/L			12/13/23 16:54	10
Styrene	ND		10		ug/L			12/13/23 16:54	10
Tetrachloroethene	ND		10		ug/L			12/13/23 16:54	1
Toluene	ND		10		ug/L			12/13/23 16:54	10
trans-1,2-Dichloroethene	9.6	J	10		ug/L			12/13/23 16:54	10
trans-1,3-Dichloropropene	ND		10		ug/L			12/13/23 16:54	1
Trichloroethene	21		10		ug/L			12/13/23 16:54	10
Trichlorofluoromethane	ND		10		ug/L			12/13/23 16:54	10
Vinyl chloride Xylenes, Total	690	F1	10	9.0 6.6	ug/L			12/13/23 16:54 12/13/23 16:54	10

Eurofins Buffalo

_

Λ

_

Ω

10

12

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-07R

Lab Sample ID: 480-215658-10

Matrix: Water

Date Collected: 12/12/23 14:05 Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/13/23 16:54	10
1,2-Dichloroethane-d4 (Surr)	88	77 - 120		12/13/23 16:54	10
4-Bromofluorobenzene (Surr)	99	73 - 120		12/13/23 16:54	10
Dibromofluoromethane (Surr)	89	75 - 123		12/13/23 16:54	10

Dibromofluoromethane (Surr)	89		75 - 123					12/13/23 16:54	10
Method: SW846 8260C - Volatile O	rganic Comp	ounds by G	C/MS - DL						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		80	66	ug/L			12/14/23 12:33	80
1,1,2,2-Tetrachloroethane	ND		80	17	ug/L			12/14/23 12:33	80
1,1,2-Trichloroethane	ND		80	18	ug/L			12/14/23 12:33	80
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		80	25	ug/L			12/14/23 12:33	80
1,1-Dichloroethane	ND		80	30	ug/L			12/14/23 12:33	80
1,1-Dichloroethene	ND		80	23	ug/L			12/14/23 12:33	80
1,2,4-Trichlorobenzene	ND		80	33	ug/L			12/14/23 12:33	80
1,2-Dibromo-3-Chloropropane	ND		80	31	ug/L			12/14/23 12:33	80
1,2-Dichlorobenzene	ND		80	63	ug/L			12/14/23 12:33	80
1,2-Dichloroethane	ND		80	17	ug/L			12/14/23 12:33	80
1,2-Dichloropropane	ND		80	58	ug/L			12/14/23 12:33	80
1,3-Dichlorobenzene	ND		80	62	ug/L			12/14/23 12:33	80
1,4-Dichlorobenzene	ND		80	67	ug/L			12/14/23 12:33	80
2-Butanone (MEK)	ND		800	110	ug/L			12/14/23 12:33	80
2-Hexanone	ND		400	99	ug/L			12/14/23 12:33	80
4-Methyl-2-pentanone (MIBK)	ND		400	170	ug/L			12/14/23 12:33	80
Acetone	ND		800	240	ug/L			12/14/23 12:33	80
Benzene	ND		80	33	ug/L			12/14/23 12:33	80
Bromodichloromethane	ND		80	31	ug/L			12/14/23 12:33	80
Bromoform	ND		80	21	ug/L			12/14/23 12:33	80
Bromomethane	ND		80	55	ug/L			12/14/23 12:33	80
Carbon disulfide	ND		80	15	ug/L			12/14/23 12:33	80
Carbon tetrachloride	ND		80		ug/L			12/14/23 12:33	80
Chlorobenzene	ND		80	60	ug/L			12/14/23 12:33	80
Dibromochloromethane	ND		80		ug/L			12/14/23 12:33	80
Chloroethane	ND		80		ug/L			12/14/23 12:33	80
Chloroform	ND		80		ug/L			12/14/23 12:33	80
Chloromethane	ND		80		ug/L			12/14/23 12:33	80
cis-1,2-Dichloroethene	3400		80		ug/L			12/14/23 12:33	80
cis-1,3-Dichloropropene	ND		80		ug/L			12/14/23 12:33	80
Cyclohexane	ND		80		ug/L			12/14/23 12:33	80
Dichlorodifluoromethane	ND		80		ug/L			12/14/23 12:33	80
Ethylbenzene	ND		80		ug/L			12/14/23 12:33	80
1,2-Dibromoethane	ND		80		ug/L			12/14/23 12:33	80
Isopropylbenzene	ND		80		ug/L			12/14/23 12:33	80
Methyl acetate	ND		200		ug/L			12/14/23 12:33	80
Methyl tert-butyl ether	ND		80		ug/L			12/14/23 12:33	80
Methylcyclohexane	ND		80		ug/L			12/14/23 12:33	80
Methylene Chloride	ND		80		ug/L			12/14/23 12:33	80
Styrene	ND		80						80
Tetrachloroethene	ND ND				ug/L ug/L			12/14/23 12:33	
	ND ND		80		-			12/14/23 12:33	80 80
Toluene			80		ug/L			12/14/23 12:33	
trans-1,2-Dichloroethene	ND		80	12	ug/L			12/14/23 12:33	80

Eurofins Buffalo

3

4

6

9

11

12

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-07R

Lab Sample ID: 480-215658-10

Matrix: Water

Date Collected: 12/12/23 14:05 Date Received: 12/13/23 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	MD		80	30	ug/L			12/14/23 12:33	80
Trichloroethene	ND		80	37	ug/L			12/14/23 12:33	80
Trichlorofluoromethane	ND		80	70	ug/L			12/14/23 12:33	80
Vinyl chloride	780		80	72	ug/L			12/14/23 12:33	80
Xylenes, Total	ND		160	53	ug/L			12/14/23 12:33	80
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			=		12/14/23 12:33	80
1,2-Dichloroethane-d4 (Surr)	90		77 - 120					12/14/23 12:33	80
4-Bromofluorobenzene (Surr)	104		73 - 120					12/14/23 12:33	80
Dibromofluoromethane (Surr)	92		75 - 123					12/14/23 12:33	80

0

4

6

0

10

12

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: DUP

Lab Sample ID: 480-215658-11

Matrix: Water

Date Collected: 12/12/23 00:00 Date Received: 12/13/23 09:00

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		10	8.2	ug/L			12/14/23 12:56	1
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			12/14/23 12:56	1
1,1,2-Trichloroethane	ND		10	2.3	ug/L			12/14/23 12:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			12/14/23 12:56	1
1,1-Dichloroethane	ND		10	3.8	ug/L			12/14/23 12:56	1
1,1-Dichloroethene	ND		10	2.9	ug/L			12/14/23 12:56	1
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			12/14/23 12:56	1
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			12/14/23 12:56	1
1,2-Dichlorobenzene	ND		10	7.9	ug/L			12/14/23 12:56	1
1,2-Dichloroethane	ND		10	2.1	ug/L			12/14/23 12:56	1
1,2-Dichloropropane	ND		10	7.2	ug/L			12/14/23 12:56	1
1,3-Dichlorobenzene	ND		10		ug/L			12/14/23 12:56	1
1,4-Dichlorobenzene	ND		10		ug/L			12/14/23 12:56	1
2-Butanone (MEK)	ND		100		ug/L			12/14/23 12:56	1
2-Hexanone	ND		50		ug/L			12/14/23 12:56	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			12/14/23 12:56	1
Acetone	ND		100		ug/L			12/14/23 12:56	1
Benzene	ND		10		ug/L			12/14/23 12:56	1
Bromodichloromethane	ND		10		ug/L			12/14/23 12:56	1
Bromoform	ND		10		ug/L			12/14/23 12:56	1
Bromomethane	ND I	F2	10		ug/L			12/14/23 12:56	1
Carbon disulfide	ND .		10		ug/L			12/14/23 12:56	
Carbon tetrachloride	ND		10		ug/L			12/14/23 12:56	1
Chlorobenzene	ND		10		ug/L			12/14/23 12:56	1
Dibromochloromethane	ND		10		ug/L			12/14/23 12:56	
Chloroethane	ND I	E2	10		ug/L			12/14/23 12:56	1
Chloroform	ND ND	1 2	10		ug/L ug/L			12/14/23 12:56	1
Chloromethane	ND		10		ug/L ug/L			12/14/23 12:56	
			10		ug/L ug/L			12/14/23 12:56	1
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	99 ND		10		ug/L ug/L			12/14/23 12:56	' 1
Cyclohexane			10		ug/L			12/14/23 12:56	
Dichlorodifluoromethane	39 ND		10		ug/L ug/L			12/14/23 12:56	1
Ethylbenzene	ND				ug/L			12/14/23 12:56	1
1,2-Dibromoethane	ND		10		ug/L ug/L			12/14/23 12:56	
	ND ND		10		ug/L ug/L			12/14/23 12:56	1
sopropylbenzene					•				
Methyl text histid other	ND ND		25		ug/L			12/14/23 12:56	
Methyl tert-butyl ether	ND		10		ug/L			12/14/23 12:56	1
Methylcyclohexane	37		10		ug/L			12/14/23 12:56	1
Methylene Chloride	ND		10		ug/L			12/14/23 12:56	1
Styrene	ND		10		ug/L			12/14/23 12:56	1
Tetrachloroethene	ND		10		ug/L			12/14/23 12:56	1
Toluene	ND		10		ug/L			12/14/23 12:56	
trans-1,2-Dichloroethene	ND		10		ug/L			12/14/23 12:56	1
trans-1,3-Dichloropropene	ND		10		ug/L			12/14/23 12:56	1
Trichloroethene	ND		10		ug/L			12/14/23 12:56	1
Trichlorofluoromethane	ND		10		ug/L			12/14/23 12:56	1
Vinyl chloride Xylenes, Total	360	F1	10 20		ug/L ug/L			12/14/23 12:56 12/14/23 12:56	1

Eurofins Buffalo

2

_

6

9

11

13

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: DUP Lab Sample ID: 480-215658-11

Date Collected: 12/12/23 00:00 Matrix: Water

Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	80 - 120		12/14/23 12:56	10
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		12/14/23 12:56	10
4-Bromofluorobenzene (Surr)	100	73 - 120		12/14/23 12:56	10
Dibromofluoromethane (Surr)	97	75 - 123		12/14/23 12:56	10

2

4

5

7

10

12

. .

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-215658-12 Date Collected: 12/12/23 00:00

Matrix: Water

Date Received: 12/13/23 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/13/23 17:39	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/13/23 17:39	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/13/23 17:39	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/13/23 17:39	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/13/23 17:39	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/13/23 17:39	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/13/23 17:39	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/13/23 17:39	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/13/23 17:39	
1,2-Dichloroethane	ND		1.0		ug/L			12/13/23 17:39	
1,2-Dichloropropane	ND		1.0		ug/L			12/13/23 17:39	
1,3-Dichlorobenzene	ND		1.0		ug/L			12/13/23 17:39	
1,4-Dichlorobenzene	ND		1.0		ug/L			12/13/23 17:39	
2-Butanone (MEK)	ND		10		ug/L			12/13/23 17:39	
2-Hexanone	ND		5.0		ug/L			12/13/23 17:39	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/13/23 17:39	
Acetone	ND		10		ug/L			12/13/23 17:39	
Benzene	ND		1.0		ug/L			12/13/23 17:39	
Bromodichloromethane	ND		1.0		ug/L ug/L			12/13/23 17:39	
Bromoform	ND		1.0		ug/L ug/L			12/13/23 17:39	
Bromomethane	ND		1.0					12/13/23 17:39	
Carbon disulfide					ug/L				
	ND		1.0		ug/L			12/13/23 17:39	
Carbon tetrachloride	ND		1.0		ug/L			12/13/23 17:39	
Chlorobenzene	ND		1.0		ug/L			12/13/23 17:39	
Dibromochloromethane	ND		1.0		ug/L			12/13/23 17:39	
Chloroethane	ND		1.0		ug/L			12/13/23 17:39	
Chloroform	ND		1.0		ug/L			12/13/23 17:39	
Chloromethane	ND		1.0		ug/L			12/13/23 17:39	
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/13/23 17:39	
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 17:39	
Cyclohexane	ND		1.0		ug/L			12/13/23 17:39	
Dichlorodifluoromethane	ND		1.0		ug/L			12/13/23 17:39	
Ethylbenzene	ND		1.0	0.74	ug/L			12/13/23 17:39	
1,2-Dibromoethane	ND		1.0		ug/L			12/13/23 17:39	
Isopropylbenzene	ND		1.0	0.79	ug/L			12/13/23 17:39	
Methyl acetate	ND		2.5		ug/L			12/13/23 17:39	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/13/23 17:39	
Methylcyclohexane	ND		1.0	0.16	ug/L			12/13/23 17:39	
Methylene Chloride	ND		1.0	0.44	ug/L			12/13/23 17:39	
Styrene	ND		1.0	0.73	ug/L			12/13/23 17:39	
Tetrachloroethene	ND		1.0	0.36	ug/L			12/13/23 17:39	
Toluene	ND		1.0	0.51	ug/L			12/13/23 17:39	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/13/23 17:39	
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 17:39	
Trichloroethene	ND		1.0		ug/L			12/13/23 17:39	
Trichlorofluoromethane	ND		1.0		ug/L			12/13/23 17:39	
Vinyl chloride	ND		1.0		ug/L			12/13/23 17:39	
Xylenes, Total	ND		2.0		ug/L			12/13/23 17:39	

Eurofins Buffalo

12/22/2023

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-215658-12

Matrix: Water

Date Collected: 12/12/23 00:00 Date Received: 12/13/23 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		12/13/23 17:39	1
1,2-Dichloroethane-d4 (Surr)	93	77 - 120		12/13/23 17:39	1
4-Bromofluorobenzene (Surr)	100	73 - 120		12/13/23 17:39	1
Dibromofluoromethane (Surr)	92	75 - 123		12/13/23 17:39	1

4

5

b

8

9

11

12

1 <u>/</u>

Surrogate Summary

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Reco	very (Accep
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-215658-1	AL-1	97	83	97	88	
480-215658-2	AL-7	97	90	99	87	
480-215658-3	AL-2	99	88	99	88	
480-215658-4	MW-09R	97	92	98	92	
480-215658-5	EX-MW-11R	99	88	98	86	
480-215658-6	MW-02R	97	90	99	91	
480-215658-7	EX-MW-12	96	89	99	93	
480-215658-8	MW-04	97	90	97	90	
480-215658-9	MW-13	100	89	98	92	
480-215658-10	MW-07R	97	88	99	89	
480-215658-10 - DL	MW-07R	98	90	104	92	
480-215658-11	DUP	95	97	100	97	
480-215658-11 MS	DUP	95	89	100	92	
480-215658-11 MSD	DUP	96	87	106	90	
480-215658-12	TRIP BLANK	99	93	100	92	
LCS 480-695216/6	Lab Control Sample	96	87	98	89	
LCS 480-695377/6	Lab Control Sample	97	84	102	88	
MB 480-695216/8	Method Blank	97	89	98	91	
MB 480-695377/8	Method Blank	98	87	104	93	

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

-

3

4

6

ė

9

11

14

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-695216/8

Matrix: Water

Analysis Batch: 695216

Client Sample ID: Method Blanl	(
Prep Type: Total/NA	4

	MB					_			B.: -
Analyte		Qualifier	RL _	MDL		<u>D</u> -	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			12/13/23 11:40	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			12/13/23 11:40	1
1,1,2-Trichloroethane	ND		1.0		ug/L			12/13/23 11:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			12/13/23 11:40	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/13/23 11:40	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/13/23 11:40	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/13/23 11:40	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/13/23 11:40	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/13/23 11:40	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/13/23 11:40	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/13/23 11:40	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/13/23 11:40	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/13/23 11:40	
2-Butanone (MEK)	ND		10		ug/L			12/13/23 11:40	1
2-Hexanone	ND		5.0	1.2	ug/L			12/13/23 11:40	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/13/23 11:40	1
Acetone	ND		10		ug/L			12/13/23 11:40	1
Benzene	ND		1.0		ug/L			12/13/23 11:40	1
Bromodichloromethane	ND		1.0		ug/L			12/13/23 11:40	· · · · · · · · · · 1
Bromoform	ND		1.0		ug/L			12/13/23 11:40	1
Bromomethane	ND		1.0		ug/L			12/13/23 11:40	1
Carbon disulfide	ND		1.0		ug/L			12/13/23 11:40	
Carbon tetrachloride	ND		1.0		ug/L ug/L			12/13/23 11:40	1
					_				
Chlorobenzene	ND		1.0		ug/L			12/13/23 11:40	
Dibromochloromethane	ND		1.0		ug/L			12/13/23 11:40	1
Chloroethane	ND		1.0	0.32	-			12/13/23 11:40	1
Chloroform	ND		1.0		ug/L			12/13/23 11:40	1
Chloromethane	ND		1.0		ug/L			12/13/23 11:40	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/13/23 11:40	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 11:40	1
Cyclohexane	ND		1.0		ug/L			12/13/23 11:40	1
Dichlorodifluoromethane	ND		1.0		ug/L			12/13/23 11:40	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/13/23 11:40	1
1,2-Dibromoethane	ND		1.0		ug/L			12/13/23 11:40	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/13/23 11:40	1
Methyl acetate	ND		2.5	1.3	ug/L			12/13/23 11:40	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/13/23 11:40	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/13/23 11:40	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/13/23 11:40	1
Styrene	ND		1.0	0.73	ug/L			12/13/23 11:40	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/13/23 11:40	1
Toluene	ND		1.0	0.51	ug/L			12/13/23 11:40	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/13/23 11:40	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/13/23 11:40	1
Trichloroethene	ND		1.0		ug/L			12/13/23 11:40	1
Trichlorofluoromethane	ND		1.0		ug/L			12/13/23 11:40	 1
Vinyl chloride	ND		1.0		ug/L			12/13/23 11:40	1
Xylenes, Total	ND		2.0		ug/L			12/13/23 11:40	1

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-695216/8

Matrix: Water

Analysis Batch: 695216

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-215658-1

MB MB Dil Fac %Recovery Surrogate Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 97 80 - 120 12/13/23 11:40 1,2-Dichloroethane-d4 (Surr) 89 77 - 120 12/13/23 11:40 4-Bromofluorobenzene (Surr) 98 73 - 120 12/13/23 11:40 Dibromofluoromethane (Surr) 91 75 - 123 12/13/23 11:40

Lab Sample ID: LCS 480-695216/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methyl acetate

Dichlorodifluoromethane

Analysis Batch: 695216

25.0 25.0 25.0 25.0 25.0 25.0	26.5 25.9 24.8 25.3	Qualifier	ug/L ug/L ug/L	<u>D</u> .	106 104	Limits 73 - 126 76 - 120
25.0 25.0 25.0 25.0 25.0	25.9 24.8 25.3		ug/L ug/L		104	
25.0 25.0 25.0 25.0	24.8 25.3		ug/L			76 - 120
25.0 25.0 25.0	25.3					
25.0 25.0			//		99	76 - 122
25.0	24 0		ug/L		101	61 - 148
25.0	24 0					
			ug/L		96	77 - 120
25.0	22.4		ug/L		90	66 - 127
25.0	23.7		ug/L		95	79 - 122
25.0	27.7		ug/L		111	56 - 134
25.0	24.8		ug/L		99	80 - 124
25.0	23.2		ug/L		93	75 - 120
25.0	25.5		ug/L		102	76 - 120
25.0	24.8		ug/L		99	77 _ 120
25.0	23.9		ug/L		96	80 - 120
125	106		ug/L		85	57 _ 140
125	113		ug/L		91	65 - 127
125	114		ug/L		91	71 - 125
125	104		ug/L		83	56 - 142
25.0	24.7		ug/L		99	71 - 124
25.0	26.8		ug/L		107	80 - 122
25.0	25.1		ug/L		100	61 - 132
25.0	25.4		ug/L		102	55 - 144
25.0	21.6		ug/L		87	59 - 134
25.0	29.2		ug/L		117	72 - 134
25.0	25.2		ug/L		101	80 - 120
25.0	25.1		ug/L		101	75 - 125
25.0	24.9		ug/L		100	69 - 136
25.0	24.6		ug/L		98	73 - 127
25.0	24.0					
20.0	24.0		ug/L		96	68 - 124
25.0	24.0		ug/L ug/L		96 98	68 ₋ 124 74 ₋ 124
	125 125 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	125 114 125 104 25.0 26.8 25.0 25.1 25.0 25.4 25.0 21.6 25.0 29.2 25.0 25.2 25.0 25.1 25.0 24.9 25.0 24.6	125 114 125 104 25.0 24.7 25.0 26.8 25.0 25.1 25.0 25.4 25.0 21.6 25.0 29.2 25.0 25.2 25.0 25.1 25.0 24.9 25.0 24.6	125 114 ug/L 125 104 ug/L 25.0 24.7 ug/L 25.0 26.8 ug/L 25.0 25.1 ug/L 25.0 25.4 ug/L 25.0 21.6 ug/L 25.0 29.2 ug/L 25.0 25.1 ug/L 25.0 25.1 ug/L 25.0 24.9 ug/L 25.0 24.6 ug/L	125 114 ug/L 125 104 ug/L 25.0 24.7 ug/L 25.0 26.8 ug/L 25.0 25.1 ug/L 25.0 25.4 ug/L 25.0 21.6 ug/L 25.0 29.2 ug/L 25.0 25.1 ug/L 25.0 25.1 ug/L 25.0 24.9 ug/L 25.0 24.6 ug/L	125 114 ug/L 91 125 104 ug/L 83 25.0 24.7 ug/L 99 25.0 26.8 ug/L 107 25.0 25.1 ug/L 100 25.0 25.4 ug/L 102 25.0 21.6 ug/L 87 25.0 29.2 ug/L 117 25.0 25.2 ug/L 101 25.0 25.1 ug/L 101 25.0 24.9 ug/L 100 25.0 24.6 ug/L 98

Eurofins Buffalo

Page 35 of 50

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

24.0

27.6

23.8

26.6

27.9

49.7

24.1

26.1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

96

110

95

106

112

99

97

104

59 - 135

59 - 135

77 - 123

77 - 120

77 - 122

74 - 133

77 - 120

68 - 134

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-695216/6

Matrix: Water

Analysis Batch: 695216

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-215658-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	25.6		ug/L		102	75 - 124	
Styrene	25.0	24.7		ug/L		99	80 - 120	
Tetrachloroethene	25.0	25.5		ug/L		102	74 - 122	
Toluene	25.0	25.9		ug/L		104	80 - 122	
trans-1,2-Dichloroethene	25.0	23.3		ug/L		93	73 - 127	
trans-1,3-Dichloropropene	25.0	28.3		ug/L		113	80 - 120	
Trichloroethene	25.0	25.5		ug/L		102	74 - 123	
Trichlorofluoromethane	25.0	26.4		ug/L		106	62 _ 150	
Vinyl chloride	25.0	26.3		ug/L		105	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		80 - 120
1,2-Dichloroethane-d4 (Surr)	87		77 - 120
4-Bromofluorobenzene (Surr)	98		73 - 120
Dibromofluoromethane (Surr)	89		75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 695377

Matrix: Water

Lab Sample ID: MB 480-695377/8

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/14/23 11:16	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/14/23 11:16	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/14/23 11:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/14/23 11:16	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/14/23 11:16	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/14/23 11:16	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/14/23 11:16	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/14/23 11:16	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/14/23 11:16	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/14/23 11:16	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/14/23 11:16	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/14/23 11:16	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/14/23 11:16	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/14/23 11:16	1
2-Hexanone	ND		5.0	1.2	ug/L			12/14/23 11:16	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/14/23 11:16	1
Acetone	ND		10	3.0	ug/L			12/14/23 11:16	1
Benzene	ND		1.0	0.41	ug/L			12/14/23 11:16	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/14/23 11:16	1
Bromoform	ND		1.0	0.26	ug/L			12/14/23 11:16	1
Bromomethane	ND		1.0	0.69	ug/L			12/14/23 11:16	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/14/23 11:16	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/14/23 11:16	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/14/23 11:16	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/14/23 11:16	1
Chloroethane	ND		1.0	0.32	ug/L			12/14/23 11:16	1
Chloroform	ND		1.0	0.34	ug/L			12/14/23 11:16	1

Client: LaBella Associates DPC

Lab Sample ID: MB 480-695377/8

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 695377

Client Sample ID: Method Blank

12/14/23 11:16

12/14/23 11:16

Client Sample ID: Lab Control Sample

%Rec

98

91

92

80 - 120

57 - 140

65 - 127

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 480-215658-1

мв мв Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 1.0 Chloromethane 0.35 ug/L 12/14/23 11:16 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 12/14/23 11:16 ND cis-1,3-Dichloropropene 1.0 0.36 ug/L 12/14/23 11:16 Cyclohexane ND 1.0 0.18 ug/L 12/14/23 11:16 Dichlorodifluoromethane ND 1.0 12/14/23 11:16 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 12/14/23 11:16 1,2-Dibromoethane ND 0.73 ug/L 12/14/23 11:16 1.0 Isopropylbenzene ND 1.0 0.79 ug/L 12/14/23 11:16 1.3 ug/L Methyl acetate ND 2.5 12/14/23 11:16 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/14/23 11:16 Methylcyclohexane ND 1.0 0.16 ug/L 12/14/23 11:16 ND Methylene Chloride 1.0 0.44 ug/L 12/14/23 11:16 Styrene ND 1.0 0.73 ug/L 12/14/23 11:16 Tetrachloroethene ND 1.0 0.36 ug/L 12/14/23 11:16 ND Toluene 1.0 0.51 ug/L 12/14/23 11:16 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 12/14/23 11:16 trans-1,3-Dichloropropene ND 12/14/23 11:16 1.0 0.37 ug/L Trichloroethene ND 1.0 ug/L 12/14/23 11:16 0.46 Trichlorofluoromethane ND 1.0 88.0 ug/L 12/14/23 11:16

MB MB

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac						
Toluene-d8 (Surr)	98		80 - 120		12/14/23 11:16	1						
1,2-Dichloroethane-d4 (Surr)	87		77 - 120		12/14/23 11:16	1						
4-Bromofluorobenzene (Surr)	104		73 - 120		12/14/23 11:16	1						
Dibromofluoromethane (Surr)	93		75 - 123		12/14/23 11:16	1						

1.0

2.0

0.90 ug/L

0.66 ug/L

LCS LCS

24.5

114

116

ug/L

ug/L

ug/L

Lab Sample ID: LCS 480-695377/6

Matrix: Water

1,4-Dichlorobenzene

2-Butanone (MEK)

2-Hexanone

Vinyl chloride

Xylenes, Total

Analysis Batch: 695377

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	27.2		ug/L		109	73 - 126
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	76 - 120
1,1,2-Trichloroethane	25.0	25.3		ug/L		101	76 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.8		ug/L		99	61 - 148
ne							
1,1-Dichloroethane	25.0	23.9		ug/L		96	77 - 120
1,1-Dichloroethene	25.0	22.9		ug/L		92	66 - 127
1,2,4-Trichlorobenzene	25.0	25.7		ug/L		103	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	28.1		ug/L		113	56 - 134
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	80 - 124
1,2-Dichloroethane	25.0	23.2		ug/L		93	75 - 120
1,2-Dichloropropane	25.0	24.3		ug/L		97	76 - 120
1,3-Dichlorobenzene	25.0	25.4		ug/L		102	77 - 120

Spike

Eurofins Buffalo

Page 37 of 50

25.0

125

125

2

3

5

R

9

11

13

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water

Analysis Batch: 695377

Lab Sample ID: LCS 480-695377/6

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-215658-1

Analysis Daten. 000077	Spike	LCS I	_cs		%Rec	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	122	ug/L	97	71 - 125	
Acetone	125	136	ug/L	109	56 - 142	
Benzene	25.0	24.4	ug/L	98	71 - 124	
Bromodichloromethane	25.0	26.0	ug/L	104	80 - 122	
Bromoform	25.0	25.7	ug/L	103	61 - 132	
Bromomethane	25.0	22.2	ug/L	89	55 - 144	
Carbon disulfide	25.0	21.4	ug/L	86	59 - 134	
Carbon tetrachloride	25.0	30.3	ug/L	121	72 - 134	
Chlorobenzene	25.0	25.3	ug/L	101	80 - 120	
Dibromochloromethane	25.0	26.8	ug/L	107	75 - 125	
Chloroethane	25.0	25.1	ug/L	100	69 - 136	
Chloroform	25.0	24.8	ug/L	99	73 - 127	
Chloromethane	25.0	20.3	ug/L	81	68 - 124	
cis-1,2-Dichloroethene	25.0	25.1	ug/L	100	74 - 124	
cis-1,3-Dichloropropene	25.0	26.9	ug/L	108	74 - 124	
Cyclohexane	25.0	24.1	ug/L	96	59 - 135	
Dichlorodifluoromethane	25.0	15.5	ug/L	62	59 - 135	
Ethylbenzene	25.0	24.8	ug/L	99	77 _ 123	
1,2-Dibromoethane	25.0	26.2	ug/L	105	77 - 120	
Isopropylbenzene	25.0	29.3	ug/L	117	77 _ 122	
Methyl acetate	50.0	51.7	ug/L	103	74 - 133	
Methyl tert-butyl ether	25.0	25.2	ug/L	101	77 - 120	
Methylcyclohexane	25.0	26.5	ug/L	106	68 - 134	
Methylene Chloride	25.0	26.0	ug/L	104	75 - 124	
Styrene	25.0	25.3	ug/L	101	80 - 120	
Tetrachloroethene	25.0	27.0	ug/L	108	74 - 122	
Toluene	25.0	26.4	ug/L	106	80 - 122	
trans-1,2-Dichloroethene	25.0	23.7	ug/L	95	73 - 127	
trans-1,3-Dichloropropene	25.0	28.6	ug/L	114	80 - 120	
Trichloroethene	25.0	24.6	ug/L	99	74 - 123	
Trichlorofluoromethane	25.0	25.6	ug/L	102	62 - 150	
Vinyl chloride	25.0	23.1	ug/L	93	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	84		77 - 120
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	88		75 - 123

Lab Sample ID: 480-215658-11 MS

Matrix: Water

Analysis Batch: 695377

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		250	274		ug/L		109	73 - 126	
1,1,2,2-Tetrachloroethane	ND		250	260		ug/L		104	76 - 120	
1,1,2-Trichloroethane	ND		250	255		ug/L		102	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		250	266		ug/L		106	61 - 148	
ne										

Eurofins Buffalo

Client Sample ID: DUP

Prep Type: Total/NA

Page 38 of 50

Spike

MS MS

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Lab Sample ID: 480-215658-11 MS

Matrix: Water

Toluene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Analysis Batch: 695377

Client Sample ID: DUP

%Rec

Prep Type: Total/NA

			- P					701100	
Analyte	Result	Qualifier	Added	Result	Qualifier Uni	t D	%Rec	Limits	
1,1-Dichloroethane	ND		250	248	ug/l		99	77 - 120	
1,1-Dichloroethene	ND		250	224	ug/l	L	90	66 - 127	
1,2,4-Trichlorobenzene	ND		250	257	ug/l	L	103	79 - 122	
1,2-Dibromo-3-Chloropropane	ND		250	262	ug/l	L	105	56 - 134	
1,2-Dichlorobenzene	ND		250	255	ug/l	L	102	80 - 124	
1,2-Dichloroethane	ND		250	241	ug/l	L	96	75 - 120	
1,2-Dichloropropane	ND		250	260	ug/l	L	104	76 - 120	
1,3-Dichlorobenzene	ND		250	259	ug/l	L	104	77 - 120	
1,4-Dichlorobenzene	ND		250	249	ug/l	<u> </u>	100	78 - 124	
2-Butanone (MEK)	ND		1250	1200	ug/l	L	96	57 - 140	
2-Hexanone	ND		1250	1190	ug/l	L	95	65 - 127	
4-Methyl-2-pentanone (MIBK)	ND		1250	1170	ug/l	<u> </u>	93	71 - 125	
Acetone	ND		1250	1330	ug/l	L	106	56 - 142	
Benzene	ND		250	257	ug/l	L	103	71 - 124	
Bromodichloromethane	ND		250	272	ug/l	_	109	80 - 122	
Bromoform	ND		250	234	ug/l	L	93	61 - 132	
Bromomethane	ND	F2	250	193	ug/l	L	77	55 - 144	
Carbon disulfide	ND		250	195	ug/l	_	78	59 - 134	
Carbon tetrachloride	ND		250	297	ug/l	L	119	72 - 134	
Chlorobenzene	ND		250	254	ug/l	L	101	80 - 120	
Dibromochloromethane	ND		250	248	ug/l	_	99	75 - 125	
Chloroethane	ND	F2	250	196	ug/l	L	79	69 - 136	
Chloroform	ND		250	263	ug/l	L	105	73 - 127	
Chloromethane	ND		250	199	ug/l	<u>_</u>	80	68 - 124	
cis-1,2-Dichloroethene	99		250	337	ug/l	L	95	74 - 124	
cis-1,3-Dichloropropene	ND		250	270	ug/l	L	108	74 - 124	
Cyclohexane	39		250	276	ug/l	L	95	59 - 135	
Dichlorodifluoromethane	ND		250	152	ug/l	L	61	59 - 135	
Ethylbenzene	ND		250	251	ug/l	L	100	77 - 123	
1,2-Dibromoethane	ND		250	256	ug/l	_	102	77 - 120	
Isopropylbenzene	ND		250	291	ug/l	L	117	77 - 122	
Methyl acetate	ND		500	544	ug/l	L	109	74 - 133	
Methyl tert-butyl ether	ND		250	248	ug/l	_ _	99	77 - 120	
Methylcyclohexane	37		250	298	ug/l	L	104	68 - 134	
Methylene Chloride	ND		250	256	ug/l	L	103	75 - 124	
Styrene	ND		250	253	ug/l		101	80 - 120	
Tetrachloroethene	ND		250	270	ug/l	L	108	74 - 122	
				_					

250

250

250

250

250

250

262

239

272

258

262

489 F1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

105

96

109

103

105

80 - 122

73 - 127

80 - 120

74 - 123

62 - 150

65 - 133

/IS	MS	
//S	IVIS	

ND

ND

ND

ND

ND

360 F1

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
1,2-Dichloroethane-d4 (Surr)	89		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215658-11 MS

Matrix: Water

Analysis Batch: 695377

Client Sample ID: DUP Prep Type: Total/NA

MS MS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 92 75 - 123

Lab Sample ID: 480-215658-11 MSD

Matrix: Water

Tetrachloroethene

Analysis Batch: 695377

Client Sample ID: DUP

Prep Type: Total/NA

Job ID: 480-215658-1

Analysis Batch: 695377											
	-	Sample	Spike	MSD					%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		250	269		ug/L		108	73 - 126	2	15
1,1,2,2-Tetrachloroethane	ND		250	262		ug/L		105	76 - 120	1	15
1,1,2-Trichloroethane	ND		250	255		ug/L		102	76 - 122	0	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		250	262		ug/L		105	61 - 148	1	20
1,1-Dichloroethane	ND		250	248		ug/L		99	77 - 120	0	20
1,1-Dichloroethene	ND		250	227		ug/L		91	66 - 127	1	16
1,2,4-Trichlorobenzene	ND		250	255		ug/L		102	79 - 122	1	20
1,2-Dibromo-3-Chloropropane	ND		250	267		ug/L		107	56 - 134	2	15
1,2-Dichlorobenzene	ND		250	246		ug/L		98	80 - 124	4	20
1,2-Dichloroethane	ND		250	241		ug/L		97	75 - 120	0	20
1,2-Dichloropropane	ND		250	276		ug/L		111	76 - 120	6	20
1,3-Dichlorobenzene	ND		250	261		ug/L		104	77 - 120	1	20
1,4-Dichlorobenzene	ND		250	248		ug/L		99	78 - 124	0	20
2-Butanone (MEK)	ND		1250	1250		ug/L		100	57 - 140	3	20
2-Hexanone	ND		1250	1190		ug/L		95	65 - 127	0	15
4-Methyl-2-pentanone (MIBK)	ND		1250	1240		ug/L		99	71 - 125	6	35
Acetone	ND		1250	1320		ug/L		106	56 - 142	0	15
Benzene	ND		250	255		ug/L		102	71 - 124	1	13
Bromodichloromethane	ND		250	266		ug/L		106	80 - 122	2	15
Bromoform	ND		250	235		ug/L		94	61 - 132	1	15
Bromomethane	ND	F2	250	226	F2	ug/L		91	55 - 144	16	15
Carbon disulfide	ND		250	195		ug/L		78	59 - 134	0	15
Carbon tetrachloride	ND		250	306		ug/L		123	72 - 134	3	15
Chlorobenzene	ND		250	253		ug/L		101	80 - 120	0	25
Dibromochloromethane	ND		250	260		ug/L		104	75 - 125	5	15
Chloroethane	ND	F2	250	244	F2	ug/L		98	69 - 136	22	15
Chloroform	ND		250	255		ug/L		102	73 - 127	3	20
Chloromethane	ND		250	187		ug/L		75	68 - 124	6	15
cis-1,2-Dichloroethene	99		250	342		ug/L		97	74 - 124	2	15
cis-1,3-Dichloropropene	ND		250	265		ug/L		106	74 - 124	2	15
Cyclohexane	39		250	271		ug/L		93	59 - 135	2	20
Dichlorodifluoromethane	ND		250	157		ug/L		63	59 ₋ 135	4	20
Ethylbenzene	ND		250	251		ug/L		100	77 - 123	0	15
1,2-Dibromoethane	ND		250	262		ug/L		105	77 - 120	2	15
Isopropylbenzene	ND		250	291		ug/L		116	77 - 122	0	20
Methyl acetate	ND		500	556		ug/L		111	74 - 133	2	20
Methyl tert-butyl ether	ND		250	254		ug/L		102	77 - 120	3	37
Methylcyclohexane	37		250	292		ug/L		102	68 - 134	2	20
Methylene Chloride	ND		250	260		ug/L		104	75 - 124	1	15
Styrene	ND		250	252		ug/L		101	80 - 120	0	20
Gtyrene	ND		200	232		ug/L		101	00 - 120	U	20

Eurofins Buffalo

3

20

Page 40 of 50

277

ug/L

111

74 - 122

250

ND

12/22/2023

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215658-11 MSD

Matrix: Water

Analysis Batch: 695377

Client Sample ID: DUP Prep Type: Total/NA

Job ID: 480-215658-1

:	Sample Samp	ple Spike	MSD	MSD				%Rec		RPD
Analyte	Result Quali	ifier Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	ND	250	256		ug/L		102	80 - 122	2	15
trans-1,2-Dichloroethene	ND	250	240		ug/L		96	73 - 127	0	20
trans-1,3-Dichloropropene	ND	250	277		ug/L		111	80 - 120	2	15
Trichloroethene	ND	250	265		ug/L		106	74 - 123	3	16
Trichlorofluoromethane	ND	250	254		ug/L		102	62 - 150	3	20
Vinyl chloride	360 F1	250	488	F1	ug/L		52	65 - 133	0	15

Rec	Limits	RPD	Limit
102	80 - 122	2	15
96	73 - 127	0	20
111	80 - 120	2	15
106	74 - 123	3	16

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		80 - 120
1,2-Dichloroethane-d4 (Surr)	87		77 - 120
4-Bromofluorobenzene (Surr)	106		73 - 120
Dibromofluoromethane (Surr)	90		75 123

QC Association Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1

GC/MS VOA

Analysis Batch: 695216

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215658-2	AL-7	Total/NA	Water	8260C	
480-215658-3	AL-2	Total/NA	Water	8260C	
480-215658-4	MW-09R	Total/NA	Water	8260C	
480-215658-6	MW-02R	Total/NA	Water	8260C	
480-215658-7	EX-MW-12	Total/NA	Water	8260C	
480-215658-8	MW-04	Total/NA	Water	8260C	
480-215658-9	MW-13	Total/NA	Water	8260C	
480-215658-10	MW-07R	Total/NA	Water	8260C	
480-215658-12	TRIP BLANK	Total/NA	Water	8260C	
MB 480-695216/8	Method Blank	Total/NA	Water	8260C	
LCS 480-695216/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 695377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215658-1	AL-1	Total/NA	Water	8260C	
480-215658-5	EX-MW-11R	Total/NA	Water	8260C	
480-215658-10 - DL	MW-07R	Total/NA	Water	8260C	
480-215658-11	DUP	Total/NA	Water	8260C	
MB 480-695377/8	Method Blank	Total/NA	Water	8260C	
LCS 480-695377/6	Lab Control Sample	Total/NA	Water	8260C	
480-215658-11 MS	DUP	Total/NA	Water	8260C	
480-215658-11 MSD	DUP	Total/NA	Water	8260C	

Job ID: 480-215658-1

Client Sample ID: AL-1

Date Collected: 12/12/23 08:30 Date Received: 12/13/23 09:00 Lab Sample ID: 480-215658-1

Matrix: Water

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	8260C		2	695377	CR	EET BUF	12/14/23 11:48

Client Sample ID: AL-7 Lab Sample ID: 480-215658-2

Matrix: Water

Date Collected: 12/12/23 08:55 Date Received: 12/13/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			695216	CR	EET BUF	12/13/23 13:57

Client Sample ID: AL-2 Lab Sample ID: 480-215658-3

Date Collected: 12/12/23 09:35 Matrix: Water

Date Received: 12/13/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695216	CR	EET BUF	12/13/23 14:19

Client Sample ID: MW-09R Lab Sample ID: 480-215658-4

Date Collected: 12/12/23 10:15 Matrix: Water

Date Received: 12/13/23 09:00

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Type Run Factor Number Analyst Lab EET BUF 12/13/23 14:41 Total/NA 8260C 10 695216 CR Analysis

Client Sample ID: EX-MW-11R Lab Sample ID: 480-215658-5

Date Collected: 12/12/23 10:45
Date Received: 12/13/23 09:00
Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		50	695377	CR	EET BUF	12/14/23 12:11

Client Sample ID: MW-02R Lab Sample ID: 480-215658-6

Date Collected: 12/12/23 11:25 Matrix: Water

Date Received: 12/13/23 09:00

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			695216 CR	FET BUE	12/13/23 15:25

Client Sample ID: EX-MW-12 Lab Sample ID: 480-215658-7

Date Collected: 12/12/23 12:10 Matrix: Water

Date Received: 12/13/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	695216	CR	EET BUF	12/13/23 15:48

Lab Chronicle

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID: 480-215658-8 Client Sample ID: MW-04

Job ID: 480-215658-1

Date Collected: 12/12/23 12:45 **Matrix: Water** Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab 12/13/23 16:10 Total/NA Analysis 8260C 695216 CR EET BUF

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

Date Collected: 12/12/23 13:30 **Matrix: Water**

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared Prep Type Method Number Analyst or Analyzed Туре Run Factor Lab CR EET BUF 12/13/23 16:32

8260C 695216 Total/NA Analysis 4

Client Sample ID: MW-07R Lab Sample ID: 480-215658-10 Date Collected: 12/12/23 14:05 **Matrix: Water**

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed 8260C 695216 CR EET BUF 12/13/23 16:54 Total/NA Analysis 10 Total/NA Analysis 695377 CR **EET BUF** 12/14/23 12:33 8260C DL 80

Client Sample ID: DUP Lab Sample ID: 480-215658-11

Date Collected: 12/12/23 00:00 **Matrix: Water**

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 8260C 10 695377 CR EET BUF 12/14/23 12:56

Client Sample ID: TRIP BLANK Lab Sample ID: 480-215658-12

Date Collected: 12/12/23 00:00 **Matrix: Water**

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Туре Run Analyst Lab 695216 12/13/23 17:39 8260C CR EET BUF Total/NA Analysis

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Accreditation/Certification Summary

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-24

3

А

4

6

8

10

11

13

14

Method Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846EET BUF5030CPurge and TrapSW846EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Job ID: 480-215658-1

3

4

9

11

16

14

Sample Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-215658-1	AL-1	Water	12/12/23 08:30	12/13/23 09:00
480-215658-2	AL-7	Water	12/12/23 08:55	12/13/23 09:00
480-215658-3	AL-2	Water	12/12/23 09:35	12/13/23 09:00
480-215658-4	MW-09R	Water	12/12/23 10:15	12/13/23 09:00
480-215658-5	EX-MW-11R	Water	12/12/23 10:45	12/13/23 09:00
480-215658-6	MW-02R	Water	12/12/23 11:25	12/13/23 09:00
480-215658-7	EX-MW-12	Water	12/12/23 12:10	12/13/23 09:00
480-215658-8	MW-04	Water	12/12/23 12:45	12/13/23 09:00
480-215658-9	MW-13	Water	12/12/23 13:30	12/13/23 09:00
480-215658-10	MW-07R	Water	12/12/23 14:05	12/13/23 09:00
480-215658-11	DUP	Water	12/12/23 00:00	12/13/23 09:00
480-215658-12	TRIP BLANK	Water	12/12/23 00:00	12/13/23 09:00

Job ID: 480-215658-1

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Chain of Cus	ain of Custody Record		Seurofins Environment Testing
rmation	Sampler: 1, Koons	Lab PM: Fischer Brian I	Carrier Tracking No(s):	COC No:
Client Contact: Chris Kibler	Phone: 16,417 9, 76	E-Mail:	State of Origin:	480-190974-40138.1 Page:
Company: LaBella Associates DPC		Dirail.riscilei@el.euroimsus.com		Page 1 of 2 Job #:
Address: 300 Pearl Street Suite 130	Due Date Requested:		Alialysis Requested	Preservation Codes:
	TAT Requested (days):			
State, Zip: NY, 14202	Z Z Z			
Phone:	- 1 9			E - NaHSO4 R - NaZSO3 F - MeOH R - NaZSO3
Email: CKibler@labellapc.com	WO#:	والمحميدات ويرطيعا	of Custody	H - Ascorbic Acid U - Acetone V McAAA
ic Review Reports	Project #: 48015183	×50)		J - DI Water K - EDTA
	SSOW#:	- P		Other:
	Sample	S ben SM/SN		Po Ted
nla idantification	Sample			muV is
The second secon	Sample Date Time G=grab)	ation Code		Special Instructions/Note:
AL-1	12 112127 00830 C		L. T. C. Line box and R. L. L. St.	Walker The Control of
イト- 」	0855	Water		
AL-2	5260	Water		- Company
marode	1615	Water		(Fig. 12)
EX-MU-118	10618	Water		and the second s
Med 22 MW-028	1125	Water		
3	1210	Water	We keep comments	of many
Mw-04	1421	Water		
MW -13	1336	Water		
Mw-OJR	10105	Water		
ひいや	+ 	Water		The state of the s
Possible Hazard Identification Non-Hazard Flammable Skin Intiant Poison B	n B		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ained longer than 1 month)
, III, IV, Other (specify)			irements:	Archive For Months
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Relinquished by: Relinquished by:	Date/Time: 1530	els.	Date/Time:	Company Company
Relinantehad bu:	Date/Time:	Company Received by:	Dale/Time:	Company
	Date/Time:	Company Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	Entered State of the Party of the State of t	Cooler Temperaturate 0º (s) and Cooler Temperaturates		

Ver: 06/08/2021

N - None
O - Ashabo
P - Na204S
Q - Na203
R - Na2503
R - Na25203
R - Na25204
I - TSP Dedecalydrate
U - Acetone
W - PH - 4-5
Y - Trizma Special Instructions/Note: Z - other (specify) Company TAR Sompany Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-190974-40138.2 Page: Page 2 of 2 Job #: Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 900 I - Ice J - DI Water K - EDTA L - EDA Archive For Total Number of containers Date/Time: Date/Time: Method of Shipment: Carrier Tracking No(s): State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements Lab PM: Fischer, Brian J E-Mail: Brian.Fischer@et.eurofinsus.com Received by: Received by: Received by: 8260C - TCL VOC8 Field Filtered Sample (New Ortho) Time: Company BT=Tissue, A=Air) Preservation Code: Water Matrix Company 2516 Radiological Type (C=comp, G=grab) Sample 530 PWSID: J KORNY Compliance Project: △ Yes △ No 16-417 Purchase Order Requested Sample Time Poison B Unknown AT Requested (days): Due Date Requested: Phase Sample Date 12/12/12 Date/Time: Project #: 48015183 SSOW#: Date/Time: Date/Time Phone: ₩O₩ Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. Blank Project Name: Alumax & Roblin Periodic Review Reports Non-Hazard Flammable Possible Hazard Identification 300 Pearl Street Suite 130 Empty Kit Relinquished by: Sompany: LaBella Associates DPC Client Information CKibler@labellapc.com Sample Identification 5 Relinquished by: elinquished by: elinquished by: State, Zip: NY, 14202 Chris Kibler City: Buffalo

Environment Testing

🔅 eurofins

Chain of Custody Record

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

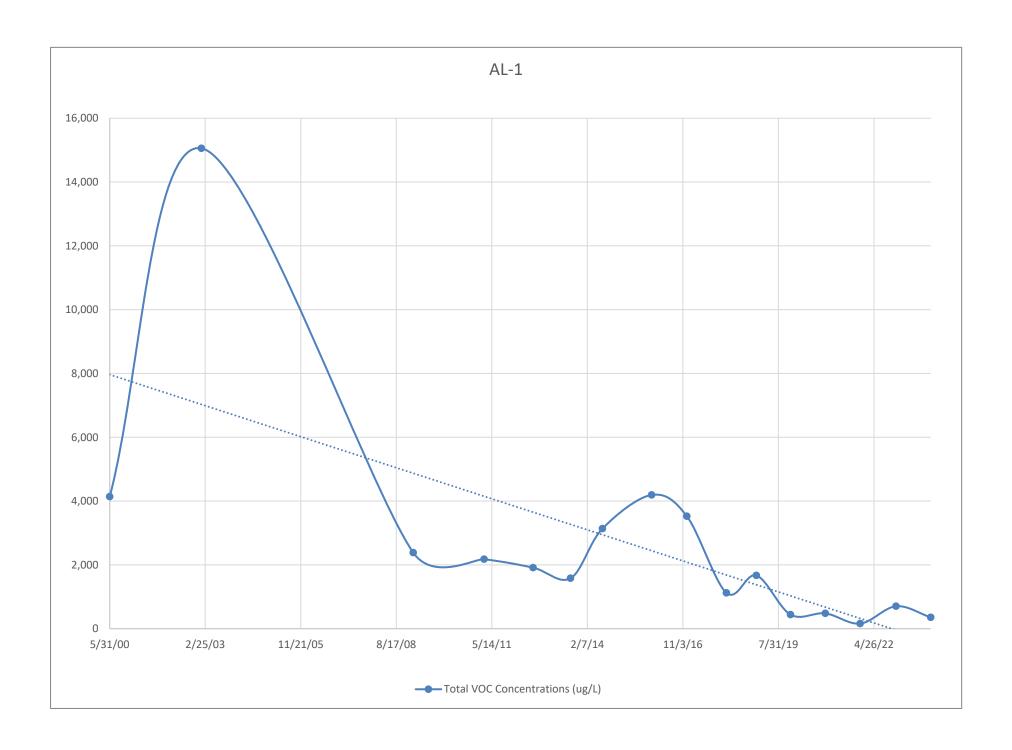
Eurofins Buffalo

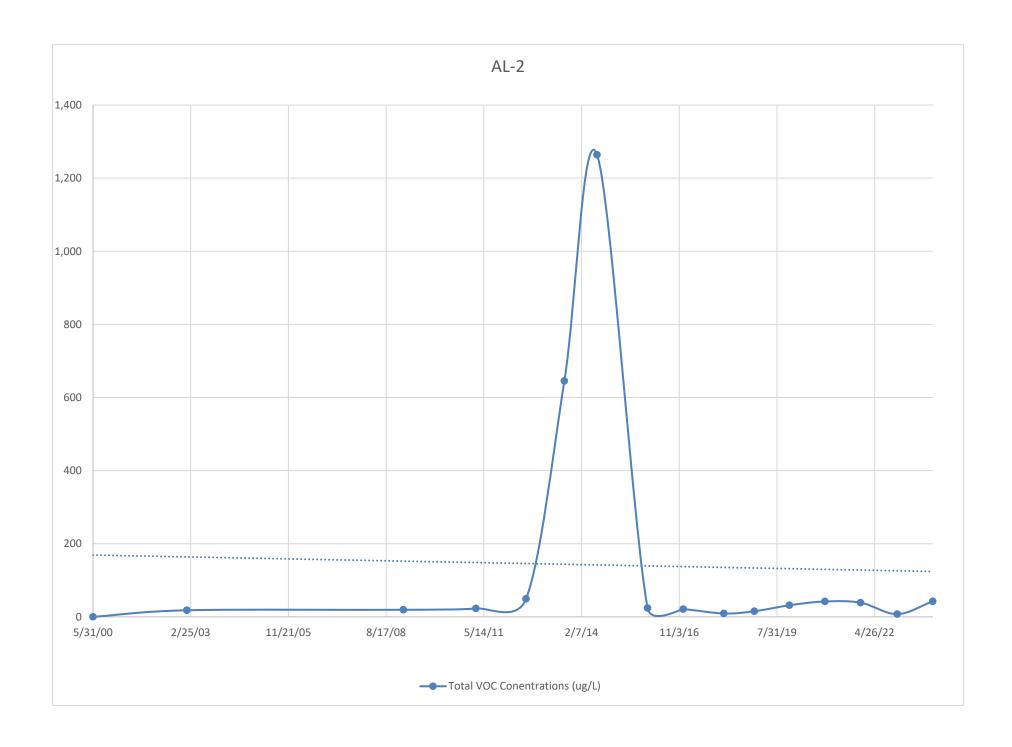
10 Hazelwood Drive

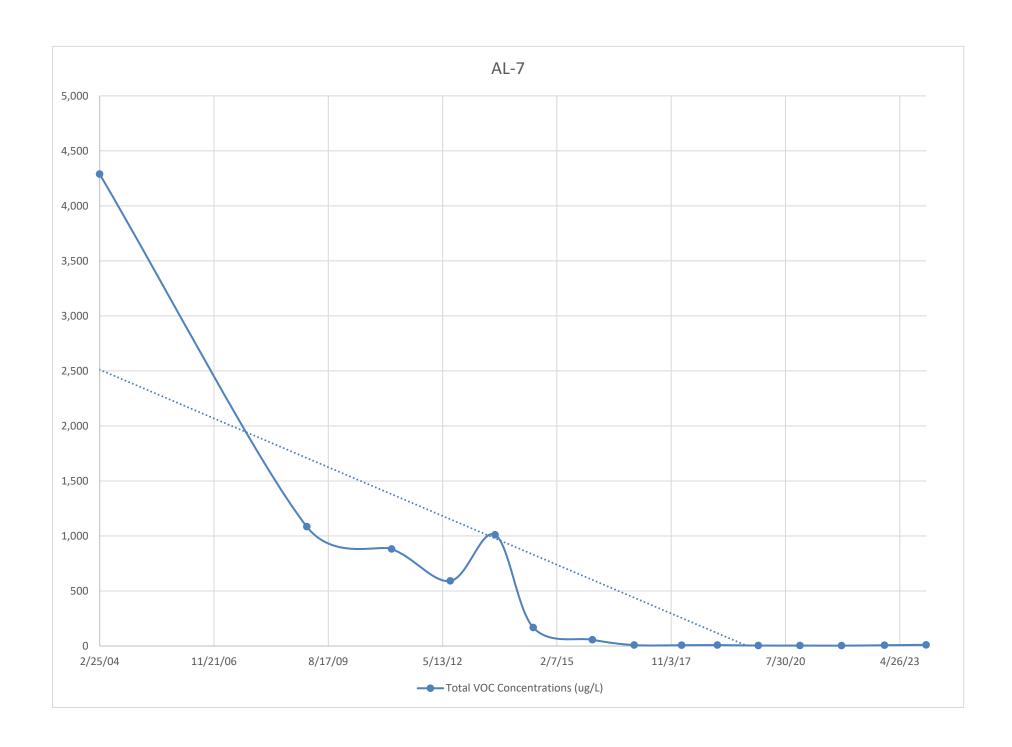
Client: LaBella Associates DPC

Job Number: 480-215658-1

Login Number: 215658 List Source: Eurofins Buffalo


List Number: 1 Creator: Stopa, Erik S


Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	LABELLA
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	



APPENDIX 6

Historical Monitoring Well Data and Trendlines

