FINAL

Soil Vapor Extraction Cells Decommissioning Work Plan for the Wyoming County Fire Training Area Wethersfield, New York

Prepared For:

Wyoming County 143 North Main Street Warsaw, New York 14569

Prepared By:

URS Corporation 77 Goodell Street Buffalo, New York 14203

September 2007

FINAL

SOIL VAPOR EXTRACTION CELL DECOMMISSIONING WORK PLAN

FOR THE

WYOMING COUNTY FIRE TRAINING CENTER

WETHERSFIELD, NEW YORK

VOLUNTARY CLEANUP (SITE V-00604)

PREPARED FOR:

WYOMING COUNTY

143 NORTH MAIN STREET

WARSAW, NEW YORK 14569

PREPARED BY:

URS CORPORATION

77 GOODELL STREET

BUFFALO, NEW YORK 14203

ROBERT R. HENSCHEL, P.G.

PROJECT MANAGER

(716) 856-5636

SEPTEMBER 2007

TABLE OF CONTENTS

Page No.

1.0	INTR	RODUCTION	1-1
	1.1	General	1-1
	1.2	Purpose	1-2
2.0	SVE	CELLS	2-1
	2.1	Construction and Operation	2-1
	2.2	Monitoring Results	2-2
3.0	SVE	CELL DECOMMISSIONING PROCEDURES	3-1
	3.1	General	
	3.2	Removal of Geomembrane Cover	
	3.3	Handling of Treated Soil	
	3.4	Removal of Geomembrane Liner	
4.0	CON	TRACTOR'S SCOPE OF WORK	4-1
	4.1	Mobilization & Site Control	4-1
	4.2	Temporary Facilities	4-1
	4.3	Erosion and Sediment Control	4-1
	4.4	Community Air Monitoring Plan	4-2
5.0	COR	RUGATED PLASTIC PIPE	5-1

LIST OF FIGURES

Figure 1-1	Site Location Map	1-1
Figure 1-2	Site Plan	1-1
Figure 2-1	SVE Cells – Soil Sampling Location Plan (January 2006)	2-2
Figure 2-2	SVE Cells – Soil Sampling Location Plan (September 2006)	2-3
Figure 3-1	Proposed Treated Soil Disposal Area	3-1
Figure 5-1	Drain Pipe Alignment	5-1

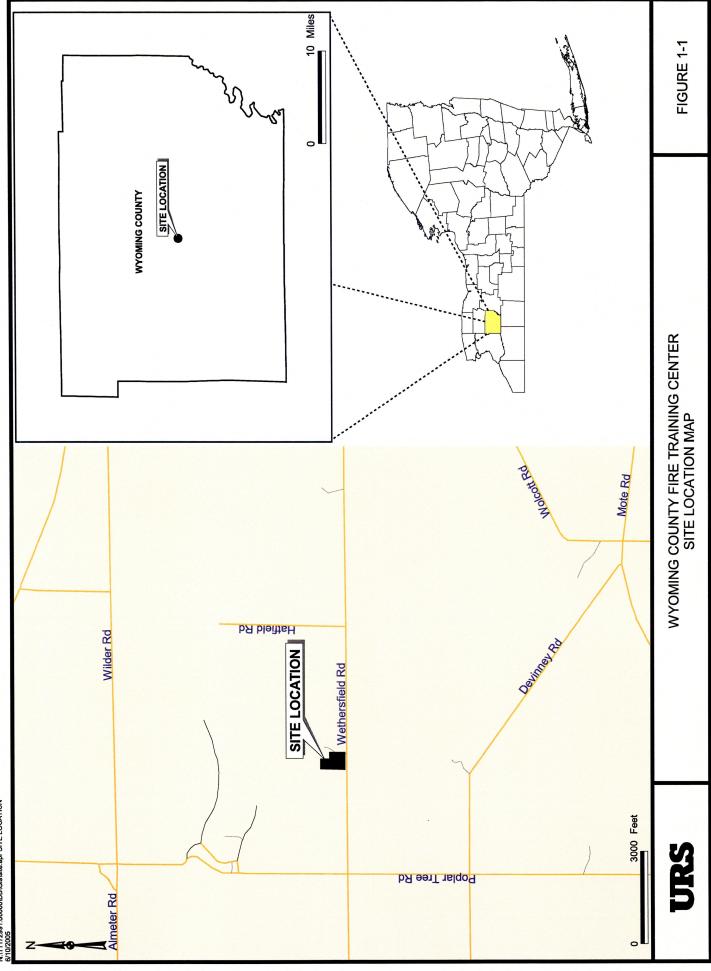
LIST OF TABLES

Table 2-1	Summary of Soil Sample Analytical Data	2-3
14010 2 1	Summary of Son Sumple That floar Data	

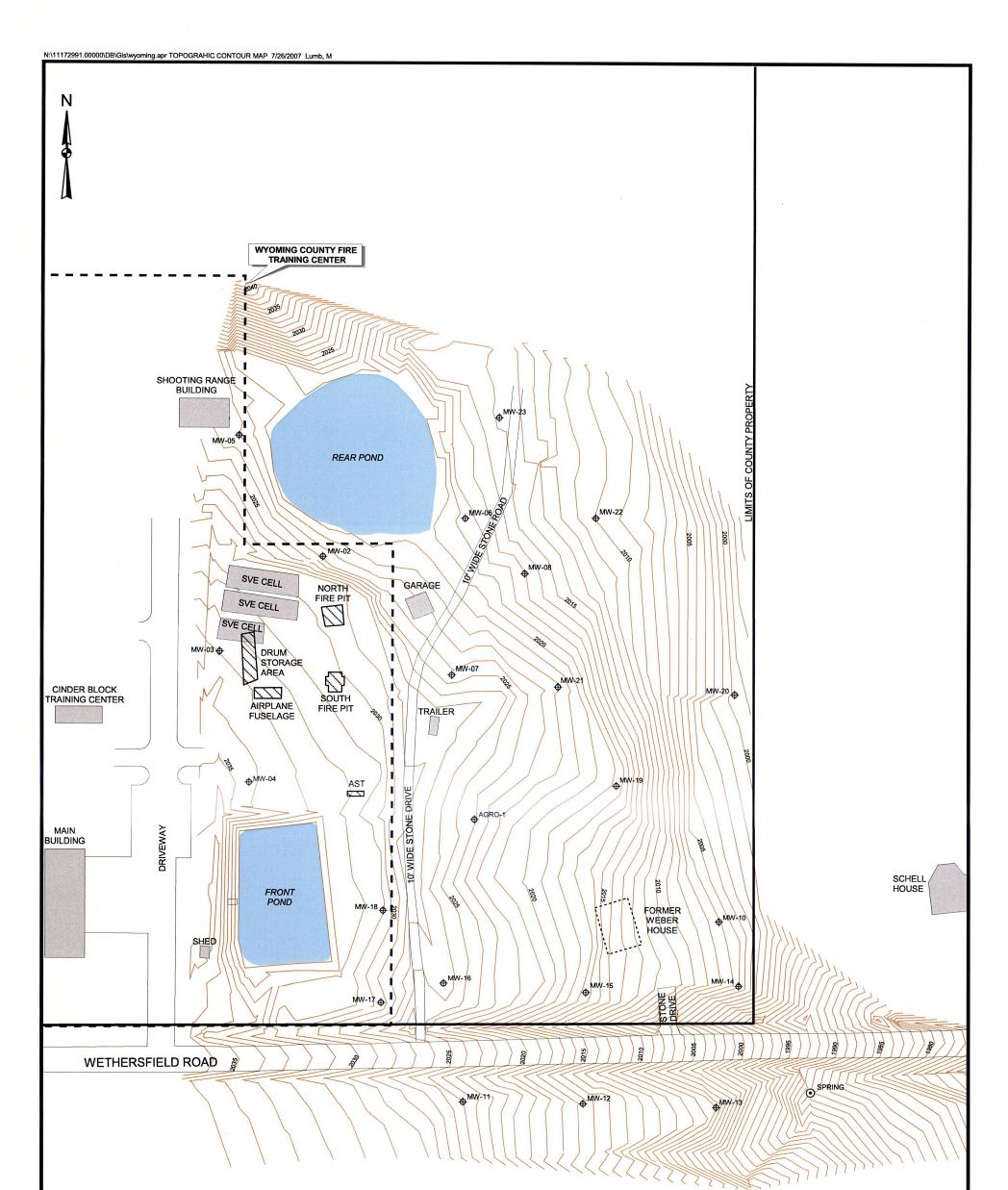
APPENDICES

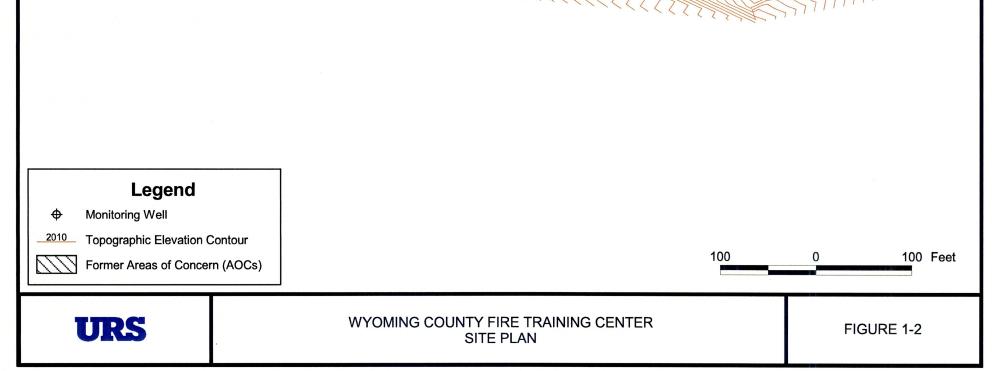
Appendix A	Influent/Effluent Air Quality Data
Appendix B	PID Readings for Soil in SVE Cells
Appendix C	Analytical Data for Treated Soil Samples From SVE Cells

1.0 INTRODUCTION


1.1 <u>General</u>

Wyoming County (County) previously operated a Fire Training Center (WCFTC) located at 3651 Wethersfield Road in the Town of Wethersfield, New York (Figure 1-1).


In 2002, the County executed a Voluntary Cleanup Agreement (VCA) with the state of New York to address the site. Subsequent to signing of the VCA, URS developed an, "Interim Remedial Measure Work Plan for Contaminated Soil Removal at the Wyoming County Fire Training Center" and submitted it to the NYSDEC in May 2003. The Work Plan subsequently was approved by the NYSDEC on July 29, 2003. As outlined in the Work Plan, the primary objectives of the IRM at the site were as follows:


- To excavate contaminated soils to reduce and/or eliminate the potential for contaminants in the soils to affect groundwater.
- To treat the soils onsite such that contaminant levels are below TAGM 4046 criteria for subsequent reuse onsite, or, to levels for off-site non-hazardous disposal.

URS conducted the IRM consisting of the removal of contaminated soil in the four AOCs in September – November, 2003. The VOC-contaminated soils from the four AOCs were placed in three Soil Vapor Extraction (SVE) cells constructed in the northwestern corner of the site, north of the Drum Storage Area (Figure 1-2). The three SVE Cells were operated from January 2004 up until the present. Samples collected in September 2006 from the SVE cells indicate that the VOC concentrations in soil in all three cells are below the TAGM 4046 criteria. Consequently, the goals of the IRM have been met and the SVE cells can be decommissioned.

N:\11172991.00000\DB\Gis\site.apr SITE LOCATION

1.2 <u>Purpose</u>

Now that the VOC-contaminated soils have been remediated the SVE Cells are no longer necessary. Consequently, URS has prepared this Soil Vapor Extraction (SVE) Cell Decommissioning Work Plan (Work Plan) to provide guidelines for decommissioning the three SVE cells and removing a previously identified related corrugated plastic pipe.

URS will serve as the lead engineer (Engineer) for this project. Nature's Way Environmental Consultants and Contractors (NWECC), of Crittenden, New York, will serve as the construction contractor (Contractor) responsible for conducting the majority of the SVE system decommissioning.

2.0 SVE CELLS

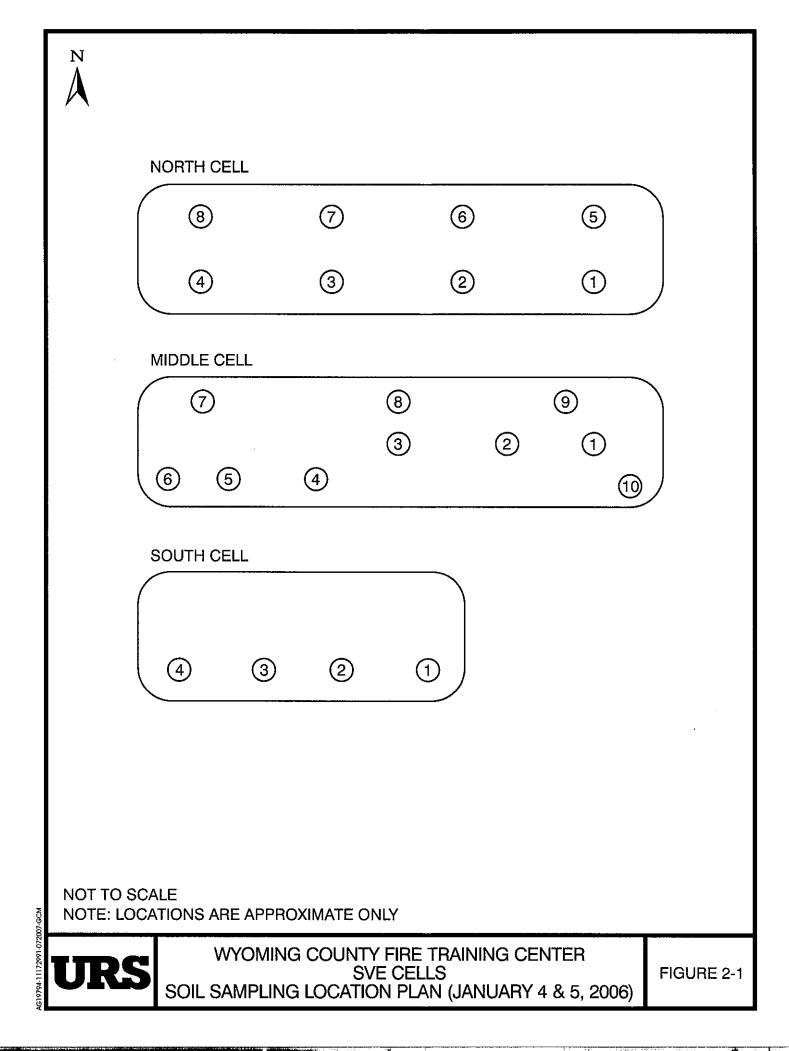
2.1 <u>Construction and Operation</u>

Ex-Situ remediation of VOC-impacted soils utilizing SVE technology as the contaminant removal/reduction mechanism involves the use of vacuum blower(s) to produce a negative pressure gradient within the pore spaces surrounding the soil particles, which induces airflow through the waste matrix. The induced airflow causes movement (partitioning) of volatile organic contaminants, in vapor form, into the air stream. The VOC-laden air stream is transported to a treatment device (i.e., Granular Activated Carbon filter) for contaminant removal and concentration for recycling, and/or destruction. Airflow is discharged after treatment.

As indicated, three SVE cells were constructed on site. The cells measure approximately $80.0' L \ge 20.0' W \ge 7.0' H$. A detailed description of the methods and procedures used to construct the cells is provided in the, "Interim Remedial Measures and Supplemental Hydrogeologic Investigation Report of the Wyoming County Fire training Area" prepared by URS and dated November 2004 (Revised January 2005).

Work was initiated in September 2003 and was essentially completed by late November. Approximately 975 cubic yards (cy) of VOC-impacted soil was excavated from the four AOCs and placed in the three SVE Cells for treatment.

Following construction and filling of the treatment cells, the SVE system was placed into operation on January 13, 2004. The SVE cells have been operated intermittently up until the present. In general, the blowers are shut down during the winter months and re-started in the late spring and continued throughout the warmer summer months.


2.2 <u>Monitoring Results</u>

Air effluent sampling and analysis was performed consistent with the NYSDECapproved work plan; at weekly intervals for the first month. Thereafter air effluent analysis was performed periodically to determine whether or not emission controls were still required to meet regulatory limitations. In addition, laboratory analysis of SVE system influent air (before carbon) air was conducted to evaluate contaminant removal rates and quantities, as well as to gauge remedial progress.

Organic Vapor Analyzer (OVA) readings were obtained periodically from the air lines between the cells and the first carbon canister, between the first and second carbon canisters, and again on the discharge line after the second carbon canister (Appendix A). Consistent with the IRM Work Plan, soil samples also were collected and analyzed when the influent air OVA readings indicated that remediation of the soils under treatment might be complete (i.e. OVA readings less than 5.0 ppm above background).

The initial round of soil sampling was performed in January 2005. A geoprobe rig was utilized to install 8 holes in the north cell, 10 holes in the middle cell and 4 holes in the south cell at the approximate locations shown on Figure 2-1. At each location, a flap was cut in the geomembrane to expose the treated soil. The sampling probe was pushed into the soil to a maximum depth of 2.0 feet. The sampler was opened and each 6-inch interval of soil was screened with a PID to determine the relative concentration of VOCs present, if any. Each screened interval was identified as A, B, C and D, based on increasing depth. A summary of the PID readings is contained in Appendix B.

Soil samples were collected from those intervals that exhibited elevated PID readings, (i.e. > 10 ppm) and submitted for analysis of VOCs. If no samples exhibited elevated readings, then those intervals with the highest detectable VOC concentrations were submitted to the lab for analysis. A total of 10 samples were submitted for analysis.

The analytical results are contained in Appendix C and summarized in Table 2-1. The VOC concentrations subsequently were compared with the recommended soil cleanup objectives listed in the NYSDEC Technical and Administrative Guidance Memorandum HWR-94-4046 (TAGM 4046). As indicated on the Table, only samples 7D and 8D from the North cell and 4C from the South cell exhibited concentrations for one or more VOCs that exceeded the TAGM 4046 criteria, hence, operation of the SVE Cells continued.

A second round of soil samples was collected from the three cells on September 14, 2006. A hand-held power auger drill was used to advance holes at the approximate locations shown on Figure 2-2. A bucket auger was used to collect soil samples at selected depths ranging from about 2 - 8 feet. Inasmuch as the previous sampling had shown that only the deeper soils in the pile still contained elevated concentrations of VOCs, the intent was to collect samples from near the base of the piles. One of the sampling locations was positioned in the North Cell in the vicinity of former samples 7D and 8D and one was positioned in the South cell near former sample 4C (where VOC concentrations exceeded TAGM 4046 criteria). The third sampling location was located in the eastern portion of the Middle Cell. The soil samples were screened with a PID to determine the relative VOC concentration present, if any. Based on the PID results, one sample from each cell was selected and submitted to the lab for VOC analysis.

The analytical results are contained in Appendix C and summarized in Table 2-1. As indicated, all of the detected VOC concentrations are below the TAGM 4046 criteria. This indicates that the SVE treatment has been successfully completed and that the soils are essentially "clean" and suitable for unrestricted use on, or off, the site.

As an added measure to reduce any potential residual VOC concentrations in the soils, a solution of 7% hydrogen peroxide and potassium persulfate (Klozur) was injected into the three SVE cells on September 21-22, 2006, during implementation of the in-situ chemical oxidation portion of the Remedial Action Work Plan at the WCFTC. This mixture is specifically designed to chemically oxidize any residual organic compounds in the soils.

N	
NORTH CELL	
O S4	
MIDDLE CELL	
(SEE NOTE 1)	
SOUTH CELL O S1	
NOT TO SCALE NOTES: 1) SAMPLE NOT COLLECTED AS SOIL WAS MOSTLY GRAVEL 2) SAMPLING LOCATIONS ARE APPROXIMATE ONLY	
2) SAMPLING LOCATIONS ARE APPROXIMATE ONLY WYOMING COUNTY FIRE TRAINING CENTER SVE CELLS SOIL SAMPLING LOCATION PLAN (SEPTEMBER 14, 2006)	FIGURE 2-2

TABLE 2-1

SUMMARY OF SOIL SAMPLE ANALYTICAL DATA

		SOUTH	I SVE CELL			
		0	1/05/05			09/14/06
TAGM 4046 (μg/kg)	Compound	2C (µg/kg)	4C (µg/kg)			S1 2.5'- 3.5' (μg/kg)
800	1,1,1-Trichloroethane		7,340			
200	1,2-Dichloroethane		2980			
300	cis-1,2- Dichloroethene	2.65 J	2,980			13.5
200	Acetone	3.37 JB				
5,500	Ethylbenzene		10,500			
1,200	m,p-Xylene		46,100			
1,200	o-Xylene		16,700			
1,400	Tetrachloroethene	138	492,000 E			711
1,500	Toluene		9,260			
700	Trichloroethene					35.6
	Xylenes, Total		62,800			
			H SVE CELL			
			1/05/05			09/14/06
TAGM 4046 (μg/kg)	Compound	4D (µg/kg)	5A (μg/kg)	7D (µg/kg)	8D (µg/kg)	S4 5'-6' (μg/kg)
800	1,1,1-Trichloroethane			150,000	31,800	
300	cis-1,2-	98.2		,	- ,	
	Dichloroethene					
200	Acetone		3.84			
5,500	Ethylbenzene			3,680 J		
1,200	m,p-Xylene			11,500		
1,200	o-Xylene			6,070		
1,400	Tetrachloroethene	638 E	207	1,410,000 E	363,000	14.2
1,500	Toluene			1,640,000 E	479,000	
700	Trichloroethene	14.7				
	Xylenes, Total			16,500		
		MIDDL	E SVE CELL			
		0	1/05/05			09/14/06
TAGM 4046 (μg/kg)	Compound	1C (µg/kg)	3B (µg/kg)	6D (μg/kg)	7B (µg/kg)	S3 7'-8 (μg/kg)
800	1,1,1-Trichloroethane			2.00 J		
300	cis-1,2- Dichloroethene				2.52 J	
200	Acetone		4.56 JB	5.65 J		1
1,400	Tetrachloroethene	45.1	1.56 J	279 E	136	32.6
-,			1.000		0.836 J	22.0

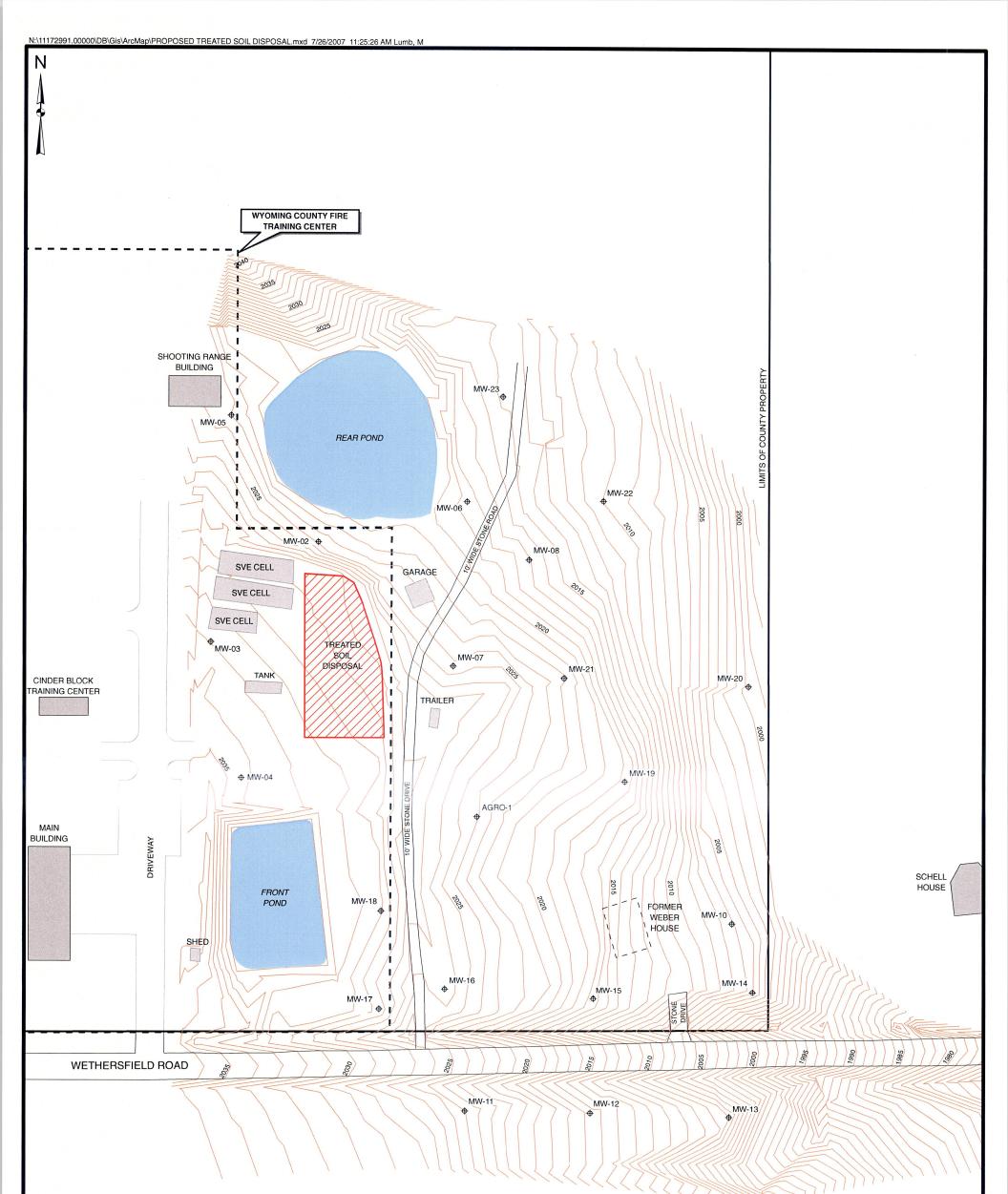
- A total of 244 gallons of the hydrogen peroxide/potassium persulfate mixture was injected into the four-inch under drain and the top vent pipe of the North SVE Cell.
- A total of 368 gallons of the hydrogen peroxide/potassium persulfate mixture was injected into the four-inch under drain and the top vent pipe of the South SVE Cell.
- A total of 244 gallons of the hydrogen peroxide/potassium persulfate mixture was injected into the four-inch under drain and the top vent pipe of the Middle SVE Cell.

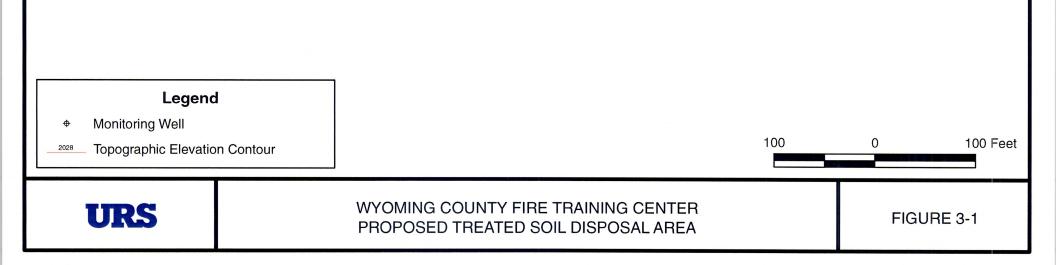
Following injection, the hydrogen peroxide/potassium persulfate solution was recirculated through each SVE cell by pumping the liquid out of the underdrain pipe and reinjecting it into the cell through the uppermost vent pipe. This process was continued until no further off-gassing (i.e. bubbling) of the hydrogen peroxide/persulfate mixture was noted.

Based on the discussions above, it is recommended that the SVE Cells be decommissioned and that the treated soils be spread onsite in the vicinity of the former fire pits, and seeded to minimize erosion.

3.0 SVE CELL DECOMMISSIONING PROCEDURES

3.1 <u>General</u>


The three SVE cells will be decommissioned by removing the geomembrane cover on each of the SVE cells, relocating the treated soil to the open area in the vicinity of the former North and South Fire Pits, and spreading the treated soil on the ground. The proposed treated soil disposal area is shown on Figure 3-1. During removal of the treated soil from the SVE Cells, the soil will be screened with a PID to determine if any VOCs are still present.


3.2 <u>Removal of Geomembrane Cover</u>

The SVE piping system that runs to each of the SVE cells will be disconnected and placed in a roll-off container staged by the SVE cells. The geomembrane cover on each SVE cell will then be cut into manageable pieces, removed, and placed in the roll-off container. The SVE piping and the geomembrane cover will be disposed of at a landfill as non-hazardous solid waste.

3.3 Handling of Treated Soil

Following the removal of the geomembrane covers and the SVE piping system, an excavator will be used to remove the treated soil from each cell. The treated soils will be removed from each SVE Cell sequentially. As the treated soil is removed from the SVE cells, the soil will be screened with a PID for volatile organic vapors. Soil with PID readings ≤ 10 ppm above background will be placed in dump trucks and transported to the open area in the vicinity of the former North and South Fire Pits where it will be dumped and spread by dozer an average thickness of 12-18 inches. The soils will be graded to maintain positive site drainage. Once all of the acceptable treated soil has been spread, grass seed will be broadcast over the area.

Soil with PID readings >10 ppm above background will be segregated and placed on polyethylene sheeting. The amount of stockpiled soils with PID readings >10 ppm will be assessed continuously. If it appears that the volume of soils is fairly large, then the 3^{rd} SVE Cell won't be completely dismantled. The treated soils will be removed, but the lower gravel layer and piping will be left intact. This will allow the soils with elevated PID readings to be placed back in the cell for additional treatment, as warranted

Alternatively, if the volume of soil with PID readings >10 ppm is small, then the SVE cells will be completely dismantled and the contaminated soil disposed offsite in a permitted facility. If offsite disposal is required, selected samples will be collected from the temporary stockpile and submitted for analysis of required landfill disposal parameters. The number of samples will be determined in the field based on the volume of stockpiled soil and discussions with the onsite NYSDEC representative.

SVE piping encountered during the removal of treated soil from the SVE cells will be recovered and placed in the roll-off container. The SVE piping will be disposed of at a landfill as non-hazardous solid waste. The gravel bedding in the lower portion of each cell also will be screened and removed and placed in the same areas as the treated soils.

3.4 <u>Removal of Geomembrane Liner</u>

Following removal of the treated soil and gravel bedding, the underlying geomembrane liner will be cut into manageable size pieces, removed, and placed in the roll-off container. The geomembrane liner will be disposed of at a landfill as non-hazardous solid waste. The existing soil berms that were constructed around each SVE cell will be pushed into the SVE Cell footprint and re-graded to provide positive drainage. If additional materials are required to restore the area to original conditions, the treated soils will be utilized. The area will be re-seeded to minimize erosion.

The geomembrane material, process piping and/or contaminated soils will be transported by licensed waste haulers under appropriate Non-hazardous Waste Manifests or Bills of Lading.

4.0 CONTRACTOR'S SCOPE OF WORK

4.1 Mobilization & Site Control

The Contractor (Nature's Way Environmental Consultants and Contractors) will be responsible for mobilization and site setup. The Contractor will procure and transport the necessary resources to accommodate the project requirements (i.e. labor, materials, and equipment). The requirements include, but are not limited to, the information provided in this section. Other requirements not specifically provided herein, but necessary for the successful conduct and completion of the work, will be provided by the County or URS to the Contractor.

4.2 <u>Temporary Facilities</u>

The County will make space available within the WCFTC building for a small Site Office/Work Area to be used by Project Management and NYSDEC personnel during work On-Site. Site workers will have access to, and may utilize, existing WCFTC bathroom and potable water facilities during SVE cell decommissioning operations.

4.3 Erosion and Sediment Control

In accordance with *New York Guidelines for Urban Erosion and Sediment Control* (New York 1997), an erosion and sediment control plan must be prepared for any construction activity that exceeds 1 acre in size. Because the total proposed soil disposal area is less than 1 acre in size, it is not anticipated that the Contractor will need to submit a Notice of Intent to the NYSDEC Division of Water to obtain coverage under the State Pollution Discharge Elimination System (SPDES) General Permit #GP-02-01 for stormwater discharges associated with construction activities. Sediment and erosion controls will be incorporated into the overall scope of work as a Best Management Practice and to re-establish vegetation.

4.4 <u>Community Air Monitoring Plan</u>

Residences within one-half mile of the WCFTC will be notified, in writing, at least one week prior to the SVE cell decommissioning. Based on the size, location, and setting of the WCFTC, no impact to nearby residents is expected as a result of the SVE cell decommissioning work. Notification, continuous downwind air monitoring for VOC's during SVE cell decommissioning work, and fugitive emissions control measures will assure that there will be no impact to residents.

It is expected that all SVE cell decommissioning work will be completed in USEPA Level D personal protective equipment.

Air monitoring procedures outlined in the Health and Safety Plan contained in the previous IRM Work Plan for Contaminated Soil Removal (URS – August 2003) will be utilized.

5.0 CORRUGATED PLASTIC PIPE

A 4-inch diameter corrugated plastic pipe extends from just north of the north Fire Pit about 80 feet to the northwest, under the northeast corner of the northernmost SVE cell (Figure 5-1). This pipe is to be removed and disposed offsite.

Once the SVE cells are removed, excavation of the corrugated pipe will proceed. The excavation will be initiated at the eastern end of the pipe and progress northwest. A small trackhoe will be used to excavate a trench approximately 1 - 2 feet wide to expose the pipe. The excavated soils will be visually examined for any evidence of petroleum contamination (i.e. staining, discoloration, odor, etc.) and screened with a PID to determine if any VOCs and/or petroleum are present in the excavated soils. "Clean" soils (i.e. PID readings \leq 5ppm above background and no visual evidence of contamination) will be staged alongside the excavation for use as backfill. Any soils exhibiting elevated PID readings (i.e. > 5 ppm above background) or visual evidence of contamination, will be segregated and placed on polyethylene sheeting in a temporary stockpile. The soils will be handled using the same procedures outlined in Section 3.3. The pipe will be removed and placed in a roll-off for offsite disposal as non-hazardous waste.

APPENDIX A

INFLUENT/EFFLUENT AIR QUALITY DATA

SYSTEM START-UP

JANUARY 13, 2004

		Vacuum Reading "H2O	OVM/PID Reading Before Carbon Treatment	OVM/PED Reading After first Carbon Drum	OVM / PID Reading After Second Carbon Drum
		*	70.2	0.0	0.0
1/14/04		1	20.0 influent		0.0 effluent
1/15/04		60	17.7	0.0	0.0
1/22/04	system off on arrival	·	32.6	0.0	0.0
	system off on arrival-restart	80			-
	15minutes	66	6.0	0.0	0.0
	25 minutes	63	12.8		0.0
T		47	13.8	0.0	0.0
3/12/04	system running on anival	6	9.0	0.0	0.0
	system running on arrival	6	3.3	0.0	0.0
	system running on arrival	3	25.5	0.7	0.6
	system running on arrival	4	26.0	16,0	0.0
	system off on arrival	3	14.0	0.4	0.0
	system muning on arrival	-	14.2	1.1	0.0
States and the second s					

Wyoming County Fire Training Center Wethersfield, New York System Data Table

Nov 08 04 08:21a

Nature's Way

716-937-9360

p. 2

:

herstield, New York	tem Data Table (Cells)
Vether	System]
	Vethersfield, New York

		North Cell	Cell			Middl	Middle Cell			South Cell	L Cell	
	Influent Top (ppm)	Influent Bottom (ppm)	Vac Top ("H2O)	Vac Bottom ("H2O)	Influent Top (ppm)	Influent Bottom (ppm)	Vac Top ("H2O)	Vac Bottom ("H2O)	Influent Top (ppm)	Influent Bottom (ppm)	Vac Top ("H2O)	Vac Bottom ("H2O)
7/13/04	7.2	5.6	ı	l	42	7.0		F	28.0	N/A	1	N/A
9/1/04	0.1-0.0	0.01/0.0	1.0-2.0	1.0-2.0	0.0/0.0	0.0/8.0	1.0-2.0	1.0-2.0	30.0- 41.8	N/A	1.0-2.0	N/A
9/30/04	9/30/04 0.0/0.0 0.0/3.3	0.0/3.3	3.0	3.0	0.0/0.0	0.0/6.2	3.0	3.0	23.0	NA	3.0	N/A

initial reading / only valve open reading

Į

I,

р₇ З

PARADIGM ENV

Results in mg / m3 ND< 2.00 ND< 2.00

ND< 2.00

ND< 2.00

Results in mg / m3 ND< 10.0 ND< 5.00 ND< 5.00 ND< 5.00

Results in Mg / m3 ND< 5.00 ND< 5.00

PARADIGM

179 Lake Avonus Rochaster, New York 14508 (585) 647 - 2530 FAX (585) 647 - 331

Volatile Analysis Report for Air Samples

Client: Nature's Way Environmental

Client Job Site:	Wyoming Center Fire	Lab Project Number:	04-0203
	Training Venter	Lab Sample Number:	1325
Client Job Number: Field Location: Field ID Number: Sample Type:	N/A Before Carbon Filter N/A Air	Date Sampled: Date Received: Date Analyzed:	01/13/2004 01/15/2004 01/28/2004

		(and the second
Halocarbons	Results in mg / m3	Aromatics
Bramodichloramethane	ND< 2.00	Benzene
Bramomelhane	ND< 2.00	Chlorobenzene
Bromolorm	ND< 2.00	Ethylbenzene
C letrachloride	ND< 2.00	Toluene
Gnicidethane	ND< 2.00	m.p - Xylene
Chioromelhane	ND< 2.00	a - Xylene
Z-Chiorcelhyl vinyl ether	ND< 2.00	Styrene
Chloroform	ND< 2.00	1,2-Dichlorobenzene
Die: emochloromethane	ND< 2.00	1,3-Dichlorobenzene
1.1-Dichloroelhane	ND< 2.00	1.4-Dichlorebenzene
1.2-Dichloroelhane	ND< 2.00	
1,1-Dicilcrcethene	ND< 2.00	Ketones
cis-1.2-Dickloroethene	ND< 2.00	Acelone
trans-1.2-Dichloroethene	ND< 2.00	2-Bulanone
1.2-Dichloropropane	ND< 2.00	2-Hexanone
	ND< 2.00	4-Methyl-2-pentanone
cis-1.3-Dichloropropene Irans-1,3-Dichloropropene	ND< 2.00	
	ND< 5.00	Miscellaneous
Methylena chloride	ND< 2.00	Carbon disulfide
1.1.2.2-Tetrachloroethene	17.1	Vinyl acclate
Telrachlordeinche	13.0	
1,1,1-Trichloroelhane		
1.1.2-Trichlomelhane	ND< 2.00	
Trichioroelhene	ND< 200	
Trichlorofiuoromethane	ND< 2.00	
Viny! Chloride	ND< 2.00	
ELAP Number 10709	Melhod: EPA 8260	B Modified for Tedlar Bag

Comments:

Signature:

ND denotes Non Detect

mg / m3 = milligrem per Cubic Meter

Enuce Hoogesteger, Technical Director

01<u>/25/200</u>/ 14:47 15856473311

PARADIGM ENV

PAR ADIGI

179 Lake Averue Rochester, Now York 14008 (\$85) 647 - 2530 FAX (535) 647 - 3311

Volatile Analysis Report for Air Samples

Client: Nature's Way Environmental

	_	۱.	
Client Job Sile:	Wyoming Center Fire Training Venter	Lab Project Numbor: Lab Sample Numbor:	04-0203 1326
Cilen: J ob Number: Field Loca tion: Field ID Number: Somple T ype:	N/A Afler First Filler N/A Air	Date Sampled: Date Received: Date Analyzed:	01/13/2004 01/15/2004 01/28/2004

	Results in mg / m3	Aromatics	Results in ma
alocarbons		Seczene	ND< 2.0
Bremedichloromethane	ND< 2.00	Chiorobenzene	ND< 2.0
Bromomelhane	ND< 2.00	Ethylbenzene	ND< 2.0
Bromotorm	ND< 2.00	Toluene	ND< 2.0
Childon leirechloride	ND< 2.00	m,p-Xylena	ND< 2.0
Cilluroathane	ND< 2.00	o - Xylene	ND< 2.0
Chloromethane	ND< 2.00		ND< 2.0
2-Chloroethyl vinyl ether	ND< 2.00	Siyrene 1.2-Dichlorobenze ve	ND< 2.0
Chloroform	ND< 2.00	1,3-Dichlorobenzene	ND< 2.0
Dibromochloromelhane	ND< 2.00	1,4-Dichlorobenzene	ND< 2.0
1.1-Dichleroelhane	ND< 2.00	1,GrDictacionenicorio	
1.2-Dichloroethane	ND< 2.00		Results in m
1,1-Dichloroethene	ND< 2.00	Ketones	ND< 10.
cis-1.2-Dichloroethene	ND< 2.00	Acetona	ND< 5.0
irans-1.2-Dichloroethene	ND< 2.00	2-Sulanone	ND< 5.0 ND< 5.0
1,2-Dichloropropane	ND< 2.00	2-Hexanone	ND< 5.0
cis-1.3-Dichloropropene	ND< 2.00	4-Methyl-2-pentanone	NUK O.C
irans-1,3-Dichloropropene	ND< 2.00		
Melhylene chloride	ND< 5.00	Miscellaneous	Results in #
1.1.2.2-Telrachiorcelhana	ND< 2.00	Carbon disulfide	ND< 5.0
Terschloroethene	ND 4 2.00	Vinyi acetale	ND< 5.0
1,1,1-Trichloroethane	ND< 2.00		
1.1.2-Trichloraethane	ND< 2.00		
Trichloroethene	ND< 2.00		
Trichloroficoromethane	ND< 2.00		
Vinyl Chloride	ND< 2.00		
ELAP Number 10709		E Modified for Tediar Bag	

Comments:

NC denotes Non Detect mg / m3 = milligforn per Cubic Meter

Sigmeture:

Bruce Hoojectoger: Technical Director

FILL IN DEMONSTRATING YES

12222

01/29/2004 14:47 15856473311

5

PARADIGM ENV

PAR THE DESIGNAL SERVICES. DO

179 Letter Avenue Rochester, New York 14508 (595) 647 - 2530 FAX (585) 847 - 3011

Volatile Analysis Report for Air Samples

Client: Nature's Way Environmental

Client Job Site:	Wyoming Center Fire	Lab Project Number:	04- 0203
	Training Venter	Lab Semple Number:	1327
Client Job Number: Field Location: Field ID Number: Sample Type:	N/A After 2nd Filler N/A Air	Date Sampled: Date Received: Date Analyzed:	01/13/2004 01/15/2004 01/28/2004

		Aromatics	Results in mg / mi
Halocarbuits	Results in mg / m3	Benzehe	ND< 2.00
Bromediohioromelhane	ND< 2.90	Chlorobenzene	ND< 2.00
Bromomelhane	ND< 2.00		ND< 2.00
Bromelorm	ND< 200	Elityibenzene Toluene	ND< 2.00
Carbon Isirachloride	ND< 2.00	•	ND< 2.00
Chiercethane	ND< 2.00	m,p - Xylene	ND< 2.00
Chloromethane	ND< 2.00	o - Xylene	ND< 2.00
2-Chieroelhyi vinyi ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00	1,2-Dichlorobenzene	ND< 2.00
Dibromachloromethane	ND< 2.00	1,3-Dichlorobenzane	ND< 2.00
1.1-Dichloroelhane	ND< 2.00	1,4-Dichlorobenzene	NO 2.00
7.2-Dichleroethane	ND< 2.09		
1,1-Dichloroelhene	ND< 2.00	Ketones	Results in mg / n
cis . 2. Dichloroeihene	ND< 2.00	Acetone	ND< 10.0
irarss-1,2-Dichloroelhane	ND< 2.00	2-Butanone	ND< 5.00
1.2-Dichloropropane	ND< 2.00	2-Hexanone	ND< 5.00
cis-1.3-Dichlompropene	ND< 2.00	4-Melhyl-2-pentanone	ND< 5,00
laster, S-Dichloropropene	ND< 2.00		
Sobylene chioride	ND< 5.00	Miscellaneous	Results in mg / a
1,1,2,2-Tetrachloroelhane	ND< 2.00	Carbon disulfide	ND< 5.00
Tetrachloroethene	4.95	Vinyi acetale	ND< 5.00
1,1,1.Trichloroethane	ND< 2.00		
	ND< 2.00	l l	
1,1,2-Trichloroethane Trichloroethene	ND< 2.00		
Trichicroflucromethane	ND< 2.00		
	ND< 2.00	i ł	
Vinyl Chlaride		3 Modified for Tedler Bog	
ELAP Number 10709		the second state of the second second	

Gernments:

ND denotes Non Detect mg / m3 = milligram per Cubic Meter

Bruce Hoogastoger; Jechnical Director

Signature;

FIL IN GAOZOSVE,XLS

CHAIN OF CUSTODY

PARADIGM	MOIC				Ö	HAIN	CHAIN OF CUSIUUN			の一般の主要なななない。	
FNVIRONMENTAL	NENTAL						j, M				PROVEDT A:
SERVICES, INC.	INC.	in a	SOLAPIANY I	1965 1NA1	ENVY PONONANT'A L-	(CELEPAN	Ĩ	WAY		EUCU-TN	
174 Lake Avenue		Ę	圈】	CRIHENDE	30,		ATTACHERS : 553 C.A.	Carl HENDER RO	U PENDER	TURNERGUND TIME: (WORKING DAVE)	
Roctwellor, NY 14608 (R85) 647-2530 * (600) 724-1987 Eax: (565) 647-3311	08 300) 724-1987 11			N.V.	14036		ALTERNOR A	2) PAR 987. 6360		Ĩ	
		5	5(9)	6537 (216 17.2)	The second second second	Armi	Correction Charles	3		3 0 5	جا
PROJECT NAMEBUTE WHAT		_K	CALCS CALCS	CO WEBBER			3				
County Fister	E TAANNING	5									
						0 Ø Z 7	J				
SEOTI	and N	2 2 2 2	Q 85 4	00012 ////JUK2211870/1870/1870	i < > % '					BHLWWE	paredion langer Bandion langer
		6 - F N					8253				110101
	╀	+	Ţ	Rahane CARADA F.	Filten Alk	-					
	(h. i , wi	+	T	6.045 Ful	ten Ain	- v	1				1 33 6
tall		1		17 ONC		R P					133
10/01/10			ſ						-+		
4		T				_					
0 00					-+	-					
~					+	+					
0					╋	+					
0	+					+					
10	THING SUI AT				-						
SAMPLE CON	SAMPLE CONDITION: Check box	X Dox		OCKTAINER TYPE:	FREAERVATIONS:	E	IGH	HDLDUH AME	tex(perature)		X
If acceptable {	if acceptable or neite deviation: A	Ë -	•						and the second se	Tedal Cost	losti
Sarphill By	1.1			03/4/1/ms: 1.1.1.1.1. 0.1/2	Relinquished By:	hed By:			e in 1919/19		
Ń	IN ANY		1		Repaired By:	By:			Date/Thme:		
Relifiquestion	PV: NLA	41		1/13/04-14:20		An Lah B			Cate/TIme:	BLF	
Received	197			1/13/04/14:2	20 Pamela	Inela	m. Bylak	late.	1)15/04 @ 10:00	00:01	
	the second se										

PAGE 05/05 900 🕅

D1/29/2884 14:41 T28264/3311

^{02/02/2004 08:53} FAX

INFLUENT/EFFLUENT AIR READINGS

APRIL 15, 2004

/27/2004 07:1	G FAX		,			002
1/27/2004 07:	13 15850	5473311			PAGE	02/0
ARADIGM						
TEOPERATUL SERVICES, FRE.	178.4	ake Avenue Rocheger, New York 14608	(585) 047 - 2530 FAX (585) 8	647 - 3311		
		<u>Volatile Analysis R</u>	<u>eport for Air</u>			
Client: <u>NWEC</u>	AC. Inc					
Cleant	Job Site:	Wyoming County Fire	Lab Project Number:	04-1035		
Chairs	JUD Bire.	Training Center	Lab Sample Number:	4044		
Client	Job Number:	N/A				
Field L	ocation:	Between Carbon 1 & Carbon 2	Date Sampled:	04/15/2004		
Fleid II	Number:	N/A	Date Received:	04/16/2004		
Sample	e Type:	Air	Date Analyzed:	04/26/2004		
				•		
· · ·						
Halocarbon	1	Results in ms / ms	romatics	Results in mg / m3		
Bramodichio	and the second se		enzetto	ND< 2.00		
Bromornelha			Chlorobenzene	ND< 2.00		
Bramolorm			Hylberizene	ND< 2.00		
Carbon Tetra	onloride	ND< 2.00	oluene	ND< 2.00		
Chlometham		ND< 2.00	n,p-Xylene	ND< 2.00		
Chlorometha		ND< 2.00	-Xylene	ND< 2.00		
2-Chloroethy	i vinyi Esher	· · · · · · · · · · · · · · · · · · ·	byrene	ND< 2.00	1	
Chieroform			,2-Dichlorobenzene	ND< 2.00		
Dibromochia		, j j	,3-Dichlorobenzane	ND< 2.00		
1,1-Dichlered			.4-Dichiorobenzéne	ND< 2,00		
1,2-Dichlarot		ND< 2.00				
1,1-Dichloret	:		(etones	Results in mg i m3		
cis-1,2-Dichl			leetone	ND< 10.0		
trans-1,2-Dic			Butanone	ND< 5,00		
1,2-Dichieror		···	Hexanone	ND< 5.00		
cis-1,3-Dichh		· · · · · · · · · · · · · · · · · · ·	Methyl-2-peritanone	ND< 5.00		
	hioropropene			literative in man I and		
Methylene ch	1 1		liscellaneous	Results in mg / m3		
	chloroethane		Carbon disullide	ND< 5.00		
Tetrachloroe			/inyl acelate	ND< 5.00	1	
1,1.1-Trichlo		ND< 2.00			ł	
1,1,2-Trichler		ND< 2.00				
Trichloroethe	i	NO< 2,00				
Trichlorofiuor						

Data File; 20594.D

ackietad in ite antimete. Chain of Criettete providet additional sample information, including con vience

Commenta:

Vinyl chloride

ELAP Number 10955

ND denotes Non Detect mg / m3 = Intiligram per Cubic Mater

Eruce Hoogesleght. Technical Director

4.

ND4 2.00

Method: EFA 8260B Modified for Tediar Bag

Signature:

04/27/2004 07:16 FAX

1

Client: <u>NWEC&C Inc</u> Client Job Site: Client Job Number; Field Location;	<u>Volatile Analvs</u>	s Report for Air	
Client Job Site: Client Job Number;			
Client Job Site: Client Job Number;			
Client Job Number;			
· · · · · · · · · · · · · · · · · · ·	Wyoming County Fire	Lab Project Number:	04-1035
· · · · · · · · · · · · · · · · · · ·	T raining Center N/A	Lab Sample Number:	4045
	Carbon Effluent	Date Sampled:	04/15/2004
Field (D Number: Sample Type:	n/a Aif	Date Received: Date Analyzed:	04/16/2004 04/26/2004
Halocarbons	Results in mg / m3	Aromatics	Results in mg / m3
Bromodichloromethane	ND< 2.00	Benzene	ND< 2.00
Bramomelhane Bramoform	ND< 2.00 ND< 2.00	Chlorobenzene Ethylbenzene	ND< 2,00 ND< 2,00
Carbon Tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroelhone	ND< 2.00	m,p-Xylene	ND< 2.00
Chloromethane 2-Chloroethyl vinyl Ether	ND< 2.00 ND< 2.00	o-Xylen o Styrene	ND< 2.00 ND< 2.00
Chloreform	ND< 2.00	1,2-Dichlorobenzene	ND< 2,00
Dibromochloromethane	ND< 2.00	1,3-Dichiorobenzene	ND< 2.00
1,1-Dichloroethans 1,2-Dichloroethans	ND< 2.00 ND< 2.00	1,4-Dicitionabenzene	ND< 2.00
1,1-Dichlorzethene	ND< 2.00	Ketonez	Results in mg / m3
cla-1.2-Dichloroelhana	ND< 2.00	Acetone	ND< 10.0
Intra-7,2-Dichloroethene	ND< 2.00	2-Butanone	ND< 5.00
1.2-Dichlorophopane cis-1.3-Dichlorophopane	ND< 2.00 ND< 2.00	2-Hexanone <u>4-Methyl-2-penianone</u>	ND< 5.00 ND< 5.00
trans-1,3-Dichioropropens	ND< 2.00	T- HELIVIZ-DOLINGHOL	
Methylene chlaride	ND< 5,00	Miscellaneous	Results in mg / m3
1,1,2,2-Tetrachlonoethane Teirachloroethene	ND< 2.00	Carbon disulfide	ND< 5.00
1,1,1-Trichlorsethane	ND∢ 2,00 ND< 2,00	Vînyi acelate	ND< 5,00
1,1,2-Trichlorsethane	ND< 2.00		
Trichloroethene Trichlorofluonomethane	ND< 2.00		
Vinyi chloride	ND< 2.00 ND< 2.00		
ELAP Number 10958	Method: EPA 52608 M	lodified for Tedlar Bag	Data File: 20095,0
Comments: ND denotes Non	Deloct		
• • • • • •	m per Cubic Maler		
Signature:	h		

wild antic he accelerated in the antibated. Chain of Custoria conditional contribution information, including com Liange

Total Cost: TERGERATURE Date/Time: DataTimer 2 HOLDING TIME: Relinquistred By: Received By: PRESERVATION B: Date Time CONTAINER TYPE: SAMPLE CONDITION: Cheak bay **LAB USE ONLY** shed B **Bampled** Roll

1

11.1

DatarTime:

Rocelyk

700 🕅

12822

81:20 \$\$\Z<u>\</u>\S007

Selved By

XVA 21:10 #002/12/#0

INFLUENT/EFFLUENT AIR READINGS

MAY 7, 2004

179 Lake Avenue Rochester, New York 14608 [585] 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Air

Client: NWECILC

Client Job Site:	Wyeming County Fire Training	Lab Project Number: Lab Sample Number:	04-1249 4760
Client Job Number:	NA		
Field Location:	Pre Carbon Influent	Date Sampled:	05/07/2004
Field ID Number:	N/A	Date Received:	05/10/2004
Sample Type:	Air	Date Analyzed:	05/14/2004

Halocarbons	Results in mg / m3	Aromatics	Results in mg / m
Bromodichloromethane	ND< 2.00	Benzene	ND< 2.00
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon Tetrachloride	ND< 2.00	Taluene	ND< 2.00
Chloroethane	NO< 2.00	m,p-Xylene	ND< 2.00
Chloromethane	ND< 2.00	o-Xylene	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00	Styrene	ND< 2.00
Chloratorm	ND< 2.00	1,2-Dichlorobenzene	ND< 2.00
Dibromochioromethana	ND< 2.00	1,3-Dichlorobenzene	ND< 2.00
1,1-Dickloroethane	ND< 2,00	1.4-Dichlorobenzene	ND< 2.00
1,2-Dichloroethane	ND< 2.00		
1,1-Dichloroethene	ND< 2.00	Ketones	Results in mg / m
cls-1,2-Dichlorosthene	ND< 2.00	Acelone	ND< 10.0
trans-1,2-Dichloroethene	ND< 2.00	2-Butarione	ND< 5.00
1.2-Dichloropropane	ND< 2.00	2-Hexanone	ND< 5.00
cis-1,3-Dichloropropene	ND< 2.00	4-Methyl-2-pentanona	ND< 5.00
trans-1,3-Dichloropropene	ND< 2.00		
Methylenc chloride	ND< 5.00	Miscellaneous	Results in mg / m
1,1,2,2-Tetrachloroelhane	ND< 2.00	Carbon disulfide	ND< 5.00
Tetrachlomeihene	15.2	Vinyi acetate	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00		
1,1,2-Trichlorosthana	ND< 2.00		
Trichloroethene	ND< 2.00		
Trichlorofluoromethane	ND< 2.00		
Vinyl chloride	ND< 2.00		
ELAP Number 10958	Method: EPA 8260	a Modified for Tedlar Bag	Data File: 21226.D

Comments:

Signatura:

ND denotes Non Datect mg / m3 = milligram per cubic mater

Bruce Hacgesteger: Technical Olrector

PARADIGM ENVIDONMENTAL	DIGM				and a state of the	Я	AIN	OF	CHAIN OF CUSTODY	101	X	an a		A STATE OF A			
SERVICES, INC.	S, INC.		COLLENNY:	Aluethe.			CONFAM.	1991 I	SAME	劉乙							
179 Laka Avenua Ruchestor, NY 14	809		-	2553 CVHVDer	Ed m		numero (1			ATATE.			H-IATI	in National States of National S		1
(585) 047-2580 * (800) 724-1937 FAX: (585) 647-3311	(800) 724-1937 111				N 14032	2	PICONE:			FAX		.		Structur			-
PROJECT MUNERALE NUME	NAMEI	ſ	9 9	30	2000 4-1 2 2-01		ATTN										Ĩ ₹
MYDHING COUNTY		501	i internet	average Alexand	w Resul	F											
ELYO	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	фж«да		2ABPLGLOCATD2APDELO ID	alon	以んてれ ~ ス	の対すれて、ないないない。	TILGATE					₩	RELARKS	erea Integ	Paramits Links	S
WLCI			E	RECREDIN IN	WALLENT	2		4							Ц	d a L h	10
2																	
9																	
4																	
5																	
9																	
7																	
60																	- 1
æ		4															
10			_													_	
LAB USE ONLY	ALY**																
SANPLE CONDITION: Check box if acceptable or note deviation:	rion: Check bo Iota devlatian:	×	C090	CODITAINER TYPE:	PRESERVATIONS:		2		Holaing Time:	Щиц C			TICHPERATURE				
Sumpled By:	N. A. tet-	-		Date/Tirse:	Relinquished By:	shed B	Ľ						DateMine:	Total Coat:	oat:		
Hathania By				Shin -	Repeived By:	ay: عاد				Ĭ			Cale/Fime:				
A beauting				Latertine:	Received @ Lab By:	i Quat	BY	- Pri	Reandall Sholoy	5/m/	01		Date/Time:	PIE			
					₹ 					1							Į

EØ/EØ 3103

02/11/5004 08:22 EVX

APPENDIX B

PID READINGS FOR SOIL IN SVE CELLS

N:\11172991.00000\WORD\Final SVE Cell Decom PLan.doc

WYD. COUNTY FIRE FRAINING CENTER . . . HOLES MARKED 9 ß -C J-B EC LEVEN-SMALL PILE

Ø8-16-'06 07:36 FROM-NWECC Inc.

716-937-9360

Wyoming County Fire Training Center

PID Scanning results of samples secured on 1/4/05 - 1/5/05

Samples Secured by:

Kevin Donnelly and Eric Laurienzo

Please see attached site map for sample locations.

Cell ID	Sample ID	PID Reading
North	1A	0.4
North	1B	0.1
North	1C	0.1
North	1D	0.2
North	2A	0.2
North	2B	0.2
North	2C	0.1
North	2D	0.1
North	3A	0.1
North	3B	0
North	3C	0.2
North	3D	0.2
North	4A	0.1
North	4B	0.1
North	4C	0.2
North	<u>4D</u>	2.5
North	5A	1.2
North	5B	0.3
North	5C	0.8
North	5D	0.2
North	6A	0.2
North	6B	0.4
North	6C	0.4
North	6D	0.3
North	7A	0.3
North	7B	0.4
North	<u>7C</u>	51.4
North	<u>70</u> T	201
North	8A	1.3
North	8B	1
North	8C	1.3
North	8D +	131

Cell ID	Sample ID	PID Reading	1
Middle	1A	0	
Middle	1B	2.9	
Middle	<u>1C</u>	2.9	\$5.9
Middle	3A	9	
Middle	3B	(1.5	$\left(\right)$
Middle	3C	0	
Middle	3D	0	
Middle	4A	0	
Middle	4B	0	
Middle	4C	0	
Middle	4D	0	
Middle	5A	0	
Middle	5B	0	
Middle	5C	0	
Middle	5D	0	
Middle	6A	0	
Middle	<u>6B</u>	2.9	X
Middle	6C	0	
Middle	<u>6D</u> +	2.9	
Middle	7A	0	
Middle	<u>7B</u>	2.9	
Middle	7C	0	
Middle	7D ·	1.5	
Middle	8A	0	
Middle	8B	0	
Middle	8C	0	
Middle	8D	0	
Middle	9A	0	
Middle	9B	0	
Middle	10A	0	
Middle	10B	0	

Sample ID that are underlined and bolded and have a bolded PID Reading indicate samples that were submitted for analysis.

,08-16-'06 07:36 FROM-NWECC Inc.

716-937-9360

Wyoming County Fire Training Center

PID Scanning results of samples secured on 1/4/05 - 1/5/05

Samples Secured by:

, ·

Kevin Donnelly and Eric Laurienzo

Please see attached site map for sample locations.

Cell ID	Sample ID	PID Reading
South	1A	7.1
South	1B	4.7
South	10	8.5
South	2A	3.4
South	2B	1,9
South	2C	10.3
South	2D	5,6
South	3A	3.1
South	3B	3.3
South	3C	5.3
South	3D	7
South	4 A	6.2
South	4B	10.7
South	4C +	426
South	4D	418

Sample ID that are underlined and bolded and have a bolded PID Reading indicate samples that were submitted for analysis.

APPENDIX C

ANALYTICAL DATA FOR TREATED SOIL SAMPLES

FROM SVE CELLS

N:\11172991.00000\WORD\Final SVE Cell Decom PLan.doc

SOIL ANALYTICAL RESULTS

JANUARY 4 & 5, 2005

N:\11172991.00000\WORD\Final SVE Cell Decom PLan.doc

						ory Result: 31.AP 1D#: 1048 c: (716) 685-808	6
Client: Natures Way Envi	ronnental			Client S	ample ID: SOUT	H 2-C	
Lab Order: 0501075					Client ID:		
Project: Wyoming Co. Fire	Training Center			Collec	tion Date: 1/5/20	05 %	6 Moist: 10.9(
Lab ID: 0501075-01A	Sample Type: SAMP	Mai	trix: Soil		Test Code: 1_	8260B_S	
VOLATILE ORGANIC COMPO	UNDS BY METHOD 8260B		M	lethod:	SW8260B	Prep Method: S	W5030B
• • • • •							
Analyte	Result Q	RI.	Units	DF	Date Analyze	d Run Batch II	D Analyst
1,1,1-Trichloroethano	ND	5.5G	ualka dar		1 1/13/2005 5:25:00 17	VI HANK_050113A	AW1
1,1,2,2-Tetrachioroethane	ND	5.56	μg/Kg dry μg/Kg-dry	-	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I (CONTIN_DOUGLADAY)	F319.4
1.1.2-Trichloroothane	ND ND	5.56			•		
1.1-Dichloroethane	ND	5.56	µg/Kg-dry µg/Kg-dry		1		
1,1-Dichloroethene	ND	5.56	µg/Kg-dry µg/Kg-dry	-	•		
1,2-Dichlorobonzene	ND	5.56	µg/Kg-dry	-	1		
1,2-Dichloroethane	ND	5.56	µg/Kg-dry	-	1		
1,2-Dichloroothone, Total	2.65 J	5.56	µg/Kg-dry	•	< Marm		
1,2-Dichloropone	ND	5.56	μg/Kg-dry	•			
1,3-Dichlorobenzene	ND	5.56	µg/Kg∙dry				
1,4-Dichlorobanzano	ND	5,56	µg/Kg-dry	1			
2-Butanone	ND	11.1	µg/Kg-dry	-			
2-Chloroethyl vinyl ether	ND	11.1	µg/Kg-dry		· 		
2-Hexanone	ND	11.1	µg/Kg-dry	4			
4-Methyl-2-pontanone	ND	11.1	µg/Kg-dry				
Acetone	3.37 JB	11.1	ug/Kg-dry	1	2 PAGA		
Benzene	ND	5.56	ug/Kg-dry	1			
Bromodichloromethane	ND	5.56	µg/Kg-dry	1			
Bromotorm	ND	5.56	µg/Kg-dry	1			
Bromomethane	ND	17.1	µg/Kg-dry	1			
Carbon disultide	NĎ	6.66	µg/Kg-dry	1			
Carbon tetrachloride	ND	5.56	µg/Kg-dry	1			
Chlorobenzene	ND	5.56	µg/Kg-dry	1			
Chloroethane	ND	11.1	µg/Kg-dry	1			
Chleroform	NĎ	5.56	µg/Kg-dry	1			
Chloromethane	ND	11.1	µg/Kg-dry	1			
bis-1,2-Dichloroethene	2.65 J	5.56	µg/Kg-dry	1	< PAGM		
cis-1,3-Dichloropropene	ND	5.56	µg/Kg-dry	1			
Dibromochloromethane	NĐ	5.56	µg/Kg-dry	1			
Ethylbonzene	ND	5.56	ug/Kg-dry	1			
n,p-Xylene	ND	5.56	µg/Kg-dry	. 1			
Aethylene chloride	ND	5.56	µg/Kg-dry	1			
-Xylene	ND	5.56	µg/Kg-dry	1			
Styrenn	ND	5.56	µg/Kg-dry	1			
etrachloroethene	138	5.56	µg/Kg-dry	1			
oluene	ND	5.56	µg/Kg-dry	1	< 1796m		
ans-1,2-Dichloroethene	ND	5.56	µg/Kg-dry	1			
ans-1,3-Dichloropropene	ND	5.56	µg/Kg-dry	1			
efinitions:				-			··· · ·
	. .						
 Receivery outside QC[*] lander DF - Dduction Factor 	B Analyte found in Me ISBN 1 Distance Trading	ethyad bilazak				ria or extended target convenues	
 Value Exceeds Moximum Construment Level 	1981 - 1964 (a) Egnite 3 - Estimated value				•	nrieg finn (typ) standard or ICP (huear carget
 Sangle Coloner Analysis 	NC Not Calculated				M - Man ix Spike Recov ND - Net Defected at fl	•	
4P - Petroleom Patero is not present	P Post Spike Recovery	y ontside Idoi	**		R - RPD miniple presson	•	18
							тÓ

too too. Adaptive state of the sound

and the second second

San 27 00 IUI708 Havure's way	716-937-9360 p.3
Analytical Services Cente International Specialists in Environmental Analysi	· · · · · · · · · · · · · · · · · · ·
Added and Added Added Avenue	NYS ELAP 1D#: 10486 Phone: (716) 685-8080
Client: Natures Way Environmental	Client Sample ID: SOUTH 2-C
Lab Order; 0501075	Alt. Client ID:
Project: Wyoming Co. Fire Training Center	Collection Date: 1/5/2005 % Moist: 10.90
Lab ID: 0501075-01A Sample Type: SAMP	Matrix: Soil Test Code: 1_8260B_S
VOLATILE ORGANIC COMPOUNDS BY METHOD 8260B	Method: \$W8260B Prep Method: \$W5030B
	·

µg/Kg-dry

µg/Kg-dry

µg/Kg-dry

µg/Kg-dry

µg/Kg-dry

%HEC

%REC

%REC

%REC

1

ŧ

1

1

ŧ

1

1

1

1

5.56

5.56

11.1

11.1

5.56

77 - 119

88 - 124

83 + 117

84 - 119

Natumo'e Hau

NQ

ND

ND

ND

ND

91

98

98

105

Definitions:

* Recovery outside QC linuts

DF Dilution Factor

720

Trichtoroothene

Vinyl acetate

Vinyl chloride

Xylenes, Total

Trichtorofluoromothano

Surr;Toluone-d8

Surr:1,2-Dichloroethane-d4

Surr.4-Bromofluorobenzene

Surr:Dibromofluoromethane

24

05

10:43a

El Value Exoceds Minimum Consuminant Level

N - Sagle Column Analysis

NP - Petroleum Pattero is not prescut

LIMPONEMENT 050495 1015

- B Analyte Annal is Method bluttle
- DNI Did not Ignite
- J Estimated value
- NC Non-Calculated

.

P - Post Spike Recovery outside links

13 · Diluted due to mastrix or extended target compounds

- B. Result above quantitation hazar (high sometime or R.99 freeor campe).
- M Matrix Spike Recovery outside limits
- ND Nor Decented at the Reporting Lanat

716-997-9960

1/13/2005 5:25:00 PM HANK 050113A-

. .

RMJ

19

R RPD outside recovery hulls

... ... Printed. Marches into youth the state to bet

Jan 24 05 10:43:					716-937-93	60	p.4
	ical Services Cent Specialists in Environmental Anal				Laborato	ry Results	
A 4493 Walder					NYS EI Phone:	LAP 10#: 10486 : (716) 685-8080	
Client: Natures Way Envir Lab Order: 0501075	ronmental	<u> </u>	<u></u>		Sample ID: NORTH . Client ID:	I 5-A	
Project: Wyoming Co. Fire	: Training Center	1		•	ction Date: 1/5/2004	1 % N	Moist: 12.3 (
Lab ID: 0501075-02A	Sample Type: SAMP	Ma	trix: Soil		Test Code: 1_82		10131
VOLATILE ORGANIC COMPOU		· · · · · · · · · · · · · · · · · · ·		lethod:		Prep Method: SW5	5030B
Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-1 nobloroethane							· · · · · ·
,1,1-1 richloroethane ,1,2,2-Tetrachloroethane	ND	5.68 5.00	µg/Kg-dry		1 1/13/2005 6:37:00 PM	HANK (050113A	RMJ
,1,2-Trichloroethane	ND	5.68	µg∕Kg-dry		1		
, 1,2-1 richloroethane , 1-Dichloroethane	ND	5.68	µg∕Kg-dry		1		
,1-Dichloroethane		5.68	µg/Kg-dry		1		
1,1-Dichloroethene 1,2-Dichlorobenzene	ND	5.68	µg/Kg-dry		1		
	ND	5.68	µg/Kg-dry		1		
1.2-Dichloroethane	ND	5.68	µg/Kg-dry		1		
1.2 Dichloroothono, Total	ND	5.68	hð\Kð-qià		1		
1,2-Dichloropropane 1.3-Dichloroportzone	ND	5.68	µg/Kg-dry	•	1		
1,3-Dichlorobouzene 1.4-Dichlorobouzena	ND	5.68	µg/Kg-dry	1	1		
1,4-Dichlorobonzene 2-Butanone	ND	5.68	µg/Kg-dry	1	1		
2-Butanone 2-Chloroothd vind otkor	ND	11.4	µg∕Kg-dry	•	1		
2-Chloroethyl vinyl ether 2-Hexanone	ND	11.4	μα/Kg-dry		1		
	ND	11.4	µg∕Kg-dry		1		
4-Methyl-2-pentanone Acetone	ND	11.4	µg/Kg-dry	1	1 min		
Acetone Benzene	3.84 JB	11.4	µg/Kg-dry	1	2 P4 6 m		
Benzene Bromodichloromethane	ND	5.68	µg/Kg-dry	1	I		
Bromodichioromethano Bromotorm	ND ND	5.68 5.00	µg∕Kg-dry	1	1		
Bromoroith Bromomethano	ND	5.68	µg/Kg-dry	1	-		
Sromomelnano Carbon disulfide	ND	11.4	µg/Kg-dry	1	-		
Sarbon tetrachioride	ND	5.68	µg/Kg-dry	1	•		
Danoon tetrachionde Chlorobenzene	ND	5.68	ug/Kg-dry	1	£		
Chloroethane	ND	5.68	µg/Kg-dry	1	ł		
Chloroform	ND	11.4	µg/Kg-dry	1	1		
Chloromethane	ND ND	5.68	µg/Kg-dry	1	1		
znorometnane zis-1,2-Dichloroothene	ND ND	11.4	µg/Kg-dry	1			
as-1,2-Dichlorophene lis-1,3-Dichloropropene	ND ND		ug/Kg-dry	- 1			
Dibromochteromethane		5.68	µg/Kg-dry	1			
Sittyibenzere		5.68	µg/Kg-dry	1.			
n,p-Xylene	ND ND		µg/Kg-dry	1			
fethylene chloride	ND ND		µg/Kg-dry	1			
-Xylene	ND ND		µg/Kg-dry µg/Kg-dry	1			
ityrene			µg/Kg-dry ug/Kg-day	1			
otrachloroethenu	ND 207		µg/Kg-dry	1	< AGM		
Oluona	207 ND		µg/Kg∙dry ₩//Kg-dry	1	< /7.		
ans-1.2-Dichloroothene			µg/Kg-dry ug/Kg-dry	1			
ans-1,3-Dichloropropeno	ND		µg/Kg-úry 90/Ka-dry	ة 1			
efinitions:	1925 	5.00	µg/Kg-dry	· <u></u>		· · ·	
- Recovery outside CC* insuls	1 B Audore found in Merit	···· · · · · ·························					
927 - Eritatous Facur	B Analyte found in Ment DNI - Did put lysite	a'ai biarus			D - Diluted for to maxim of E. Decub shows constitution		
- Value Execute Maximum Constantinum Lawe	1. Pistormied value					a limit (lögh standard to RP linear ra aartale lován	(mage)
1 - Single Column Analysis	P Post Failed value NG Not Calculated P Post Spike Recovery o				M - Matrix Spike Recovery or ND - Not Denoted to the Rep		
If + Perceleura Pattern is not present.	1				\$787 Ahre are swarted or carries and	summer and successive sectors and sector	

LIMS version is a finiting stars

Printed: Monday, finitary 17 (20)8 (64%, 55 (55)

•••••

26 • •

.

Analytical Services Center International Specialists in Environmental Analysis 4493 Walden Avenue ecology and anvirus unsuit int. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Prep Method: SW5030B

Client: Natures Way E	nvironmental	:	Client Sample ID: NORTH 5-A	
Lab Order: 0501075			Alt. Client ID:	
Project: Wyoming Co. f	Fire Training Center		Collection Date: 1/5/2004	% Moist:12.30
Lab ID: 0501075-02A	Sample Type: SAMP	Matrix: Soil	Test Code: 1 8260B_S	

VOLATILE ORGANIC COMPOUNDS BY METHOD 8260B

Analyte	Result Q	RI. L	Jnifs .	DFDate	Analyzed	Run Batch I	DAnalyst
Trichloroethene	ND	5,68 µg/	/Kg-dry	1			
Trichlorofluoromethane	ND	5.68 µg/	/Kg-dry	1			
Vinyl acetate	ND		/Kg-dry	1			
Vinyi chloride	ND	11.4 µg/	/Kg-dry	1			
Xylenes, Total	ND	5,68 µg/	/Kg-dry	1			
Surr:1,2-Dichloroethane-d4	92	77 • 119	%REC	1 1/13/200	5 6:37:00 PM 1	HANK_050113A	RMJ
Surr:4-Bromofluorobenzene	103	88 - 124	%REC	1			
SumDibromolluoromethane	100	83 117	%REC	1			
Surr:Toluene-d8	107	84 - 119	%REC	1			

Method: SW8260B

Definitions:		•••=	·	·· -·	
 Recovery outside QC hashs Dilation Factor Dilation Factor Value dynamic Contamulant Level Vingle Colomo Analysis NP - Petroleum Patern is not present 	 B. Analyte found in Method block DNI - Dat not figure J. Estimated value NC Not Calculated POST Spike Recovery cartisite hourts 		D) Dijuted doe to nexter on exter R - Resolt above quantitation find M Matrix Spike Recovery outside ND Not Detroited of the Report R - RFD outside recovery lipit;	(high standard or ICP linear)) fonds	սպե). Դ7
1.3 VIS Version #; (250105-1015	· · · · · · · · · · · · ·	· ·	international and the form	; and 10 1000 at 1 a 1 4	<i>ا</i> کے محمد

Analytical Services Center International Specialists in Environmental Analysis

Laboratory Results

NYS ELAP ID#: 10486

Phone: (716) 685-8080

and anviounment, inc. Lancaster, New York 14086 Natures Way Environmental Client: Lab Order: 0501075

4493 Walden Avenue

Wyoming Co. Fire Training Center Project:

Lab 1D: 0501075-03A

Sample Type: SAMP Matrix: Soil Collection Date: 1/4/2004 Test Code: 1_8260B_\$

Alt. Client ID:

Method: SW8260B

Client Sample ID: MIDDLE 3-B

Prep Method: SW5030B

VOLATILE ORGANIC COMPOUNDS BY METHOD 8260B

Analyte	Resul	t Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane	ND		5.35	µg/Kg-dry	1	1/15/2005 11:57:00 AM	BANK 050115A	GP
1,1,2,2-Tetrachloroethane	ND		5.35	µg/Kg-dry	1			
1,1,2-Trichloroethane	ND		5.35	µg/Kg-dry	1			
1,1-Dichloroethane	ND		5.35	µg/Kg-dry	1			
1,1-Dichloroethene	ND		5.35	µg/Kg-dry	1			
1,2-Dichlorobenzeno	ND		5.35	µg/Kg-dry	1			
1,2-Dichlorouthane	ND		5.35	µg/Kg-dry	1			
1,2-Dichloroethene, Total	ND		5.35	µg/Kg-dry	1			
1,2-Dichloropropano	ND		5.35	µg/Kg-dry	1			
1,3-Dichlorobenzene	UN CIN		5.35	µg/Kg-dry	1			
1,4-Dichlorobenzene	ND		5.35	µg/Kg-dry	, 1			
2-Butanone			10.7	μg/Kg-dry μg/Kg-dry	-			
			10.7		1			
2-Chloroethyl vinyl ether	ND			µg/Kg-dry	1			
2-Hexanone	ND		10.7	µg/Kg∙dry ug/Kg-dry				
4-Methyl-2-pontanone	ND	10	10.7	µg/Kg-dry	1	2 MGM		
Acetono	4.56	JB	10.7	µg/Kg-dry		- /		
Benzene	ND		5.35	µg/Kg-dry	1			
Bromodichloromothane	ND		5.35	µg/Kg-dry	1			
Bromotorm	ND		5.35	µg/Kg-dry	1			
Bromomethane	ND		10.7	µg/Kg-dry	1			
Carbon disulide	ND		5.35	µg/Kg-dry	1			
Carbon tetrachlorido	ND		5.35	µg/Kg-dry	1			
Chlorobenzene	ND		5.35	µg∕Kg-dry	1			
Chloroethane	ND		10.7	µg/Kg-dıy	1			
Chloroform	ND		5.35	µg/Kg-dry	1			
Chloromethano	ND		10.7	µg/Kg-dry	1			
cis-1,2-Dichloroethene	ND		5.35	µg/Kg-dry	1			
cis-1,3-Dichloropropena	ND		5.35	µg/Kg-dry	1			α.
Dibromochloromethane	ND		5.35	µg/Kg-dry	1			
Ethylbenzene	ND		5,35	µǥ∕Kg-dry	1			
m,p-Xylene	ND		5.35	µg/Kg-dry	t			
Mothylene chloride	ND		5,35	µg/Kg-dry	1			
o-Xylene	ND		5.35	µg/Kg-dry	1			
Styrene	ND		5,35	µg/Kg-dry	1			
Tetrachloroethene	1.56	J	5.35	µg/Kg-dry	1	< TAG M		
Toluene	ND		5.35	µg/Kg-dry	1			
trans-1,2-Dichloroethene	ND		5.35	µg/Kg-dry	1			
trans-1,3-Dichloropropene	ND		5.35	µg/Ky-dry	1			
Definitions:								
* Recovery oughte QC hunts		B · Analyte from S	a Method black			Diluted due to maxtrix or	extended target compounds	
DE - Dilution Factor		DNI Dia not lgr	ijte.			E Result above quantitation	tmit (fligh standard or fCP lines	ա քանիչը)
H Value Exceeds Maximum Contaminant Level		J • Estimated valu	к.			M · Matrix Spike Recovery o		
N - Single Column Analysis		NC Not Calenda				ND + Not Detented at the Rep		
NP - Perioleun Faieri is iei prozidi		P · Post Spike Re	covery outside lim	it.		R RPD outside recovery liar	ut s	33
1.1MS Weesloop #1 - 0501(+ 1018			· -·			Printed: Monstay	, factory 17, 2008 (6:45) *3	- PM

% Moist:8.15

Analytical Services Center International Specialists in Environmental Analysis 4493 Walden Avenue Secondary und environmental Analysis

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Prep Method:

Client Sample ID: MIDDLE 3-B

Alt. Client ID:

Collection Date: 1/4/2004

% Maist:8-15

\$W5030B

Project: Wyoming Co. Fire Training Center

Client:

Lab Order: 0501075

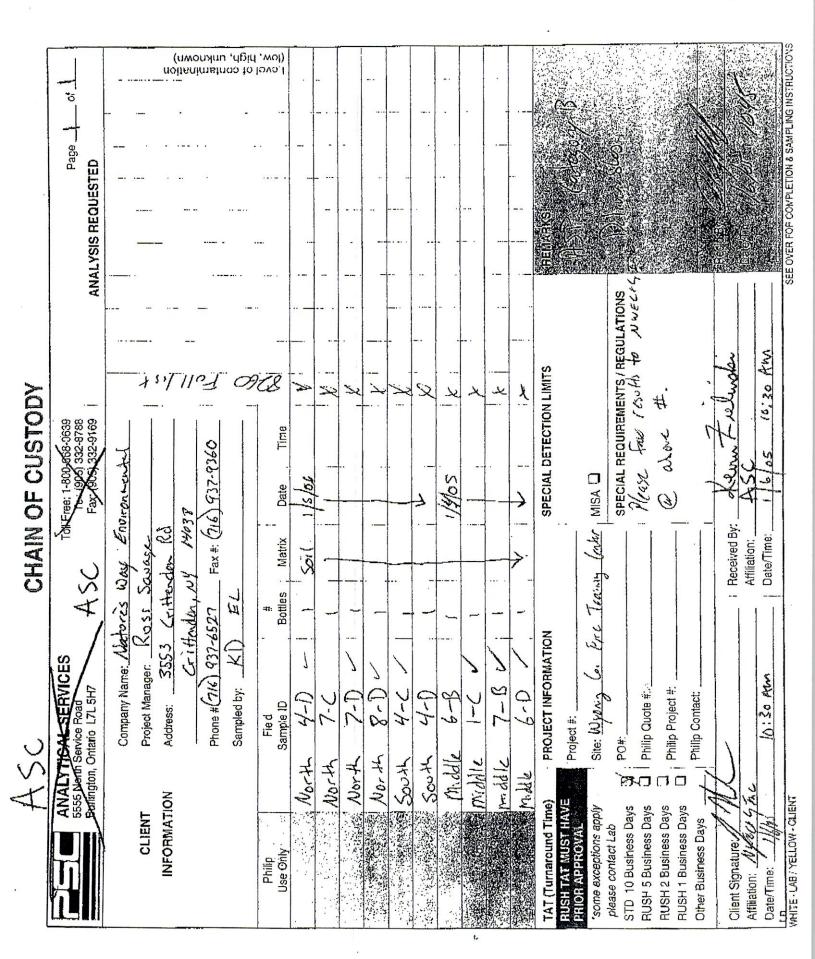
Lab 1D: 0501075-03A

Natures Way Environmental

Sample Type: SAMP

Test Code: 1_8260B_S Method: SW8260B Prep M

the second se		
VOLATILE ORGANIC	COMPOUNDS BY METHOD 826	0B


A nalyte	Result Q	RL	Units	DF	Date Analyzed Run Batch ID Analyst
Trichloroethene	ND	6.35	µg/Kg-dry	1	
Trichlorolluoromethane	ND	5.35	µg/Kg-dry	1	
Vinyl acotate	ND	10.7	µg/Kg-dry	1	
Vinyl chloride	ND	10.7	pg/Kg-dry	1	
Xylenes, Total	ND	5.35	µg/Kg-dry	1	· · · · · · · · · · · · · · · · · · ·
Surr.1,2-Dichloroethano-d4	87	77 - 119	%REC	1	1/15/2005 11:57:00 AM HANK_050115A GP
Surr:4-Bromofluorobonzene	95	88 - 124	%REC	1	
SurrDibromofluoromethane	96	83 - 117	%REC	1	
Sur:Tolueno-d8	101	84 - 119	%REC	1	

Matrix: Soil

Definitions * - Recovery outside QC limits 11 Analyte found in Method blank D Diluted due to maximiz or extended target congaronds DF Libboth Factor E Result above quantitation limit (high standard or R P Incor range) DNI - Did not Iguite M. Matrix Spike Recovery outside limits H - Value Exceeds Maximum Continuum Level 1 - Estimated value ND - Not Detected at the Reporting Land N - Supre Column Analysis NC - Not Calculated NP · Petroleum Pattoro ocnor present R - RFD outside recovery basis P. Post Spike Recovery outside limits .. ••• ----

TANIS Version & 555465, 1165

Printed: Manhay Frances (* 1988) with 25 PM

Jan 24 05 10:43a Natur

Nature's Way

716-937-9360

p.8

Analytical Services Center International Specialists in Environmental Analysis Lancaster, New York 14086-Phone: (716) 685-8080 Fax: (716) 685-0852 NYS ELAP ID#: 10486

CLIENT: Project: Lab Order: Date Received: .ab Sample ID	Natures Way Environmental Wyoming Co. Fire Training 0501070 1/6/2005		Work Order Sample Summar					
Lab Sample ID	Client Sample ID		Alt. Client Id	Collection Date				
0501070-01A	NORTH 4-D			1/5/2005				
0501070-02A	NORTH 7-C			1/5/2005				
0501070-03A	NORTH 7-D			1/5/2005				
0501070-04A	NORTH 8-D			1/5/2005				
0501070-05A	SOUTH 4-C			1/5/2005				
0501070-06A	SOUTH 4-D			1/5/2005				
0501070-07A	MIDDLE 6-B			1/5/2005				
0501070-08A	MIDDLE 1-C			1/4/2005				
0501070-09A	MIDDLR 7-B	•		1/4/2005				
0501070-10A	MIDDLE 6-D			1/4/2005				

Ecology & Environment Inc. LIMS Version 050119_1130

Analytical Services Center International Specialists in Environmental Analysis decology and environment, inc. Lancaster, New York 14086

Laboratory Results

NYS ELAP ID#: 10486 Phone: (716) 685-8080

Client:	NATURES WAY ENVIRONMENTAL	
Project: Lab Order:	Wyoming Co. Fire Training Center 0501070	CASE NARRATIVE

SAMPLE MANAGEMENT

Samples were received un-secured and at an ambient temperature.

GCMS VOLATILES

A DB 624 column and a trap packed with OV-1, Tenax, silica gel and activated charcoal was used for the volatile analysis.

Sample analysis

Unless stated otherwise, methanol-extracted soil volatile results account for the theoretical increase in the extract volume resulting from the water content of the soil sample.

All samples were analyzed within hold time.

Samples NORTH 7-D, NORTH 8-D, and SOUTH 4-C were analyzed as medium level soils due to the elevated amount of target analytes present.

Samples NORTH 4-D, MIDDLE 6-D, NORTH 7-D, NORTH 8-D, and SOUTH 4-C were analyzed at secondary dilutions due to the elevated amounts of target analytes present. Both sets of data have been reported here.

Calibration and Tunes All initial and continuing calibrations were acceptable. There were no manual integrations required.

QC

All surrogate recoveries were within acceptable limits.

All blank analyses were acceptable.

All matrix spike/spike duplicate (MS/MSD) recoveries and RPD values were acceptable.

All laboratory control sample/duplicate (LCS/LCSD) recoveries and RPD values were acceptable.

All internal standard area responses were acceptable.

GENERAL ANALYTICAL CHEMISTRY

PMOIST

Sample Analysis

The report page presents % moisture. The QC criteria are versus % solids. Subtract % moisture from 100 to obtain % solids. The % solids RPD are acceptable. All samples were analyzed within hold time.

QC

The matrix duplicates (MD) were acceptable.

LIMS Version #: 050119 1130

. .

p.11

Analytic International S 4493 Walder				Laborator NYS ELA	P ID#: 10486		
ecology and austrament, int. Lancaster, N	low York 14086		-		Phone:	(716) 685-8080	
Client: Natures Way Envir	ronmental		1		ample ID: NORTH	4-D	
Lab Order: 0501070				Alt. (Client ID:		
Project: Wyoming Co. Fire	Training Center			Collect	ion Date: 1/5/2005	% M	loist:10.00
Lab ID: 0501070-01A	Sample Type: SAMP	Ma	trix: Soil		Test Code: 1_826	08_S	
VOLATILE ORGANIC COMPO	UNDS BY METHOD 8260B	ı	M	ethod:	SW8260B P	rep Method: SW6	030B
Analyte	Result Q	RL	Units	DF	Dale Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethano	ND	5.48	µg/Kg dry	1	1/12/2005 216:00 PM	HANK, 050112A	RMJ
1,1,2,2-Tetrachloroothane	ND	5.48	µg/Kg-dry	ť			
1,1,2-Trichloroethane	ND	5.48	µg/Kg-dry	1			
1,1-Dichloroethano	ND	5.48	µg/Kg-dry	1			
1,1-Dichloroethene	ND	5.48	µg/Kg-dry	1			• .
1.2-Dichlorobenzene	ND	5.48	µg/Kg-dry	1			
1,2-Dichloroethane	ND	5.48	µg/Kg-dry	1			
1,2-Dichloroethene, Total	98.2	5.48	µg/Kg-dry	1	< MGM		
1,2-Dichloropropane	ND	5.48	µg/Kg-dry	. 1			
1,3 Dichlorobenzene	ND	5.48	µg/Kg-dry	1			
1,4-Dichlorobonzone	ND	5,48	pg/Kg-dry	, 1			
2-Butanone	ND	11.0	µg/Kg-dry	1			
2-Chloroethyl vinyl ether	ND	11.0	µg/Kg-dry	1			
2-Hexanone	ND	11.0	µg/Kg-dry				
4-Methyl-2-pontanone	ND	11.0	μg/Kg-dry	י 1			
Acetone	ND	11.0	μg/Kg-dry	4			
Banzene	ND	5.48	µg/Kg-dry	1			
Bromodichloromethane	ND	5,48	µg/Kg-dry				
Bromotom	ND	5,48	μǥ/Kg₂dry μg/Kg₂dry	1			
Bromomothane	ND	5, 4 5 11.0		1			
Carbon disulfide	ND	5.48	µg/Kg-dry				
Carbon tetrachloride	ND		µg/Kg-dry ₩/Kg-dry	1			
Chlorobenzene		5.48	µg/Kg-dry u≂∕Ku dav	1			
Chloroethanc		5.48	µg/Kg-dry	1			
Chlorotorm		11.0	µg/Kg-d₁y	1			
Chloromethane	ND ND	5.48	µg/Kg-dry	1			
sis-1,2-Dichloroothene	98.2	11.0	µg/Kg-dıy w≂/K= dev	1	< THEM		
sis-1,3-Dichloropropene	ND	5.48	µg/Kg-dry				
Dibromochloromethane	ND	5.48	µg∕Kg-dry v=″≤= d=v	1			
Ethylbenzene		5.48	µg/Kg-dry	-			
n.p-Xylene	ND	5.48 5.48	µg/Kg-dry	1			
Methylene chloride	ND	5.48	µg/Kg-dry	1			
>-Xylene	ND	5.48	µg/Kg-dry	1			
Styrene	ND	5.48	µg/Kg-dry	1			
Tetrachloroethene	ND	5.48	µg∕Kg-dry	1	< MGM		
Foluene	638 E	5.48	µg/Kg-dry	1	2 /// - /	<i>,</i>	
rans-1,2-Dichloroethene	ND	5.48	µig/Kg-dry	1			
rans-1,3-Dichloropropene	ND ND	5.48 5.48	µg/Kg-dry µg/Kg-dry	1			
)elimitions:	••••			•	· ••	<u> </u>	
* - Recovery unlike QC limits	B Analyte found in M	tland black			D. Diluted due to associa or	estended target componinds	
1967 - Dilution Factor	DNI - Ltid nut Igaute				 Result above quantitation 	land thigh standard or B.P. liness	រ ណេក្រទ)
 Value Directals Marginaan Constantinant Level Marginaan Constantinant Level 	1 listnessed volue				M · Matrix Spike Recovery o		
N Single Column Analysis NIC Peterbean Balters in act manual	NC Not Cohordered				NET Not Denoted at the Rep		
NI ¹ Petroleam Pattern is not present	P - Post Spike Recover	y outside lan	ite		R RPD outside recovery lim	it#	35

÷

LAMS Version &: 050(19-11-0)

Printed: Womenday, Jonary 19, 2603 (1997) (\$1931)

		1			716-937-9		p.12
						ory Results LAP 1D#: 10486 :: (716) 685-8080	
Client: Natures Way Enviror		-		lient San	nple ID: NORT	H 4-D	
ab Order: 0501070	montat		-	Alt, CI	üent ID:		
Project: Wyoming Co. Fire Ti	raining Center)		Collectio	m Date: 1/5/200		Moist:10.00
.ab H): 0501070-01A	Sample Type: SAM	P Mati	rix: Soil		Test Code: 1.8		
OLATILE ORGANIC COMPOUN	IDS BY METHOD 826	0B	M	ethod: S	W8260B	Prep Method: SV	V5030B
Analyte	Result Q	RL	Units	DF	Date Analyze	d Run Batch ID	Analyst
irichloroethene	14.7	5.48	µg/Kg-dry	1	< THEM		
Frichlorofluoromethane	ND	5.48	µg/Kg-dry	1	-		
/inyl acetate	ND	11.0	µg/Kg-dry	. 1			
/inyl chiloride	ND	11.0	µg/Kg-dry ug/Kg-dry	1			
(ylenes, Total	ND	5.48 77 - 119	µg/Kg-dry %REC	····· '···· 1	1/19/2005 9.16:00 PM	 7_HANK_050112A	-,, -, RMJ
Surr: 1,2-Dichloroethano-d4 Surr: 4-Bromofluorobenzone	91 104	88 - 124	%REC	, 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Sur:Dibromofluoromethane	99	83 - 117	%REC	1			
Surr:Toluene-d8	109	84 _T 119	%REC	1			
		1					
	•						
		:					
		1					
		÷					
		: 	,		Laker	, , , , , , , , , , , , , , , , ,	
Pellations:				•	-	:	
Recovery outside QC limits	•	gd ja Method blank				aris or extended target compounds	
DF - Dilution Factor Ef - Value Exceptis Maximum Contaminant Cevili	DNE Did not 1 - listimated v	•			11 – Kesult alsove quan M - Matrix Spike Reco	ierien hini (high samdard or RCP) way outside linuts	uncar range)
 Value Excepts Machinen Containmant Level N - Single Cohum Analysis 	NC - Not Lak				ND Not Percent at	3	
NP Provlemm Pattern is not present		Recovery quasile to	115		R = RHO outside recov	ery litrus	36
		!.		*****			
AMS Version 9: 040419 1730					Fundap W	edu Ariga Leonary (9, 2005) (

÷

International Speciali 4493 Walden Ave activity and anatominest, the Lancaster, New Y Client: Natures Way Environme Lab Order: 0501070 Project: Wyoming Co. Fire Train Lab ID: 0501070-03A Sa VOLATILE ORGANIC COMPOUNDS A palyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetono Benzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon tetrachloride	enue York 14086 ental ning Center ample Type 5 BY METH 5 BY METH 150000 ND ND ND ND ND ND ND ND ND ND ND ND ND	6 e: SAMP IOD 8260B		trix: Soil	Alt. C	NYS ELA Phone: mple ID: NORTH ? lient ID: on Date: 1/5/2005 Test Code: 1_826 SW8260B P Date Analyzed 1/18/2005 1:45:00 AM	(716) 685-8080 7-D % N	Moist: 16.70 5030B_ME Analyst GP
Lab Order: 0501070 Project: Wyoming Co. Fire Train Lab ID: 0501070-03A Sa VOLATILE ORGANIC COMPOUNDS Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Choroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetona Benzene Bromodichloromethane Bromoform Bromoform	ning Center ample Type 3 BY METH Result 150000 ND ND ND ND ND ND ND ND ND ND ND ND ND	e: SAMP IOD 8260B	RL 3950 3950 3950 3950 3950 3950 3950 3950	Units Units Units Ug/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	Alt. C Collecti lethod: S DF S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Client ID: on Date: 1/5/2005 Test Code: 1_826 SW8260B P Date Analyzed	% N 10B_MEOH rep Method: SW Run Batch ID	5030B_ME Analyst
Project: Wyoming Co. Fire Train Lab ID: 0501070-03A Sa VOLATILE ORGANIC COMPOUNDS Analyte 1,1,1-Trichloroothane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chtoroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetone 3ormodichloromethane 3romodichloromethane 3romodorn 3romodorn 3romodorn 3romodorn	ample Type 3 BY METH Result 150000 ND ND ND ND ND ND ND ND ND ND	e: SAMP IOD 8260B	RL 3950 3950 3950 3950 3950 3950 3950 3950	Units Units ug/Kg-dry	Collecti lethod: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	on Date: 1/5/2005 Test Code: 1_826 SW8260B P Date Analyzed	08_MEOH rep Method: SW Run Batch ID	5030B_ME Analyst
Lab ID: 0501070-03A Sa VOLATILE ORGANIC COMPOUNDS Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetono Benzane Bromodichloromethane Bromoform Bromoform Bromoform	ample Type 3 BY METH Result 150000 ND ND ND ND ND ND ND ND ND ND	e: SAMP IOD 8260B	RL 3950 3950 3950 3950 3950 3950 3950 3950	Units Units ug/Kg-dry	tethod: 5 DF 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Test Code: 1_826 SW8260B P Date Analyzed	08_MEOH rep Method: SW Run Batch ID	5030B_ME Analyst
VOLATILE ORGANIC COMPOUNDS Analyte	B BY METHO Result 150000 ND ND ND ND ND ND ND ND ND ND ND ND ND	OD 8260B	RL 3950 3950 3950 3950 3950 3950 3950 3950	Units Units ug/Kg-dry	DF 5 5 5 5 5 5 5 5 5 5 5 5	SW8260B P Date Analyzed	rep Method: SW Run Batch ID	Analyst
A nalyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetong Benzene Bromodichloromethane Bromoform Bromoform Bromoform Bromothane Carbon disulfide	Result 150000 ND ND ND ND ND ND ND ND ND ND	<u> </u>	3950 3950 3950 3950 3950 3950 3950 3950	Units µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	DF 5 5 5 5 5 5 5 5 5 5 5 5	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetono Benzene Bromodichloromethane Bromoform Bromoform	150000 ND ND ND ND ND ND ND ND ND ND ND ND ND		3950 3950 3950 3950 3950 3950 3950 3950	µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ ឆ	,		•• •
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetong Benzene Bromodichlorornethane Bromodichlorornethane Bromoform Bromoform Bromothane Carbon disulfide	ND ND ND ND ND ND ND ND ND ND ND ND	> 7464	3950 3950 3950 3950 3950 3950 3950 3950	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	55555555555555555555555555555555555555	1/18/2005 1:45:00 AM	HANK 050117A	GP
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetong Benzene Bromodichlorornethane Bromodichlorornethane Bromoform Bromoform Bromothane Carbon disulfide	ND ND ND ND ND ND ND ND ND ND ND ND	~ [**-	3950 3950 3950 3950 3950 3950 3950 3950	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	55555555555555555555555555555555555555			5
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane, Total 1,2-Dichloroethane, Total 1,2-Dichloroethane 1,3-Dichloroethane 2-Butanone 2-Butanone 2-Chloroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetona Benzane Bromodichloromethane Bromoform Bromoform	ND ND ND ND ND ND ND ND ND ND ND		3950 3950 3950 3950 3950 3950 3950 3950	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	5 5 5 5 5 5 5 5 5 5			
1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane, Total 1,2-Dichloroethane, Total 1,2-Dichloroethane, Total 1,3-Dichloroethane 2-Butanone 2-Butanone 2-Chloroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetone Benzane Bromodichloromethane Bromoform Bromoform	ND ND ND ND ND ND ND ND ND ND		3950 3950 3950 3950 3950 3950 3950 3950	Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry Hg/Kg-dry	5 5 5 5 5 5 5 5 5 5			
1,1-Dichloroethene 1,2-Dichloroethene, Total 1,2-Dichloroethene, Total 1,2-Dichloroethene, Total 1,2-Dichloroethene, Total 1,2-Dichloroethene, Total 1,3-Dichloroethene, Total 1,3-Dichloroethene, Total 1,4-Dichloroethene, Total 1,4-Dichloroethene, Total 2-Butanone 2-Oktoroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetong Benzene Bromodichloromethane Bromoform Bromoform Bromoform	ND ND ND ND ND ND ND ND ND ND		3950 3950 3950 3950 3950 3950 3950 7650 7650 7650 7650	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	5 5 5 5 5 5 5 5 5			
1,2-Dichloronthane 1,2-Dichloronthane, Total 1,2-Dichloropoane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetone Benzene Bromodichloromethane Bromoform Bromoform Bromothane Carbon disulfide	00 00 00 00 00 00 00 00 00 00 00 00		3950 3950 3950 3950 3950 3950 7650 7650 7650 7650	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	ប៍ ទ ទ ឆ ទ ទ ទ ទ ទ ទ			
1,2-Dichloronthane 1,2-Dichloronthane, Total 1,2-Dichloropoane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetone Benzene Bromodichloromethane Bromoform Bromoform Bromothane Carbon disulfide	ND ND ND ND ND ND ND ND ND		3950 3950 3950 3950 3950 7650 7650 7650 7650	µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	5 ទ ទ ទ ទ ទ ទ ទ			
1,2-Dichloroethene, Total 1,2-Dichlorobenzone 1,3-Dichlorobenzone 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetong Benzene Bromodichloromethane Bromoform Bromoform Bromothane Carbon disulfide	ND ND ND ND ND ND ND ND		3950 3950 3950 3950 7650 7650 7650 7650	µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	ស 5 5 5 5 5			
1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pentanono Acetone 3enzene 3romodichloromethane 3romoform 3romoform 3romothane 2arbon disulfide	ND ND ND ND ND ND ND		3950 3950 3950 7650 7650 7650 7650	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	5 5 5 5 5 5			
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone 2-Chloroethyl vlnyl ether 2-Hexanone 4-Methyl-2-pontanono Acetone Benzene 3romodichloromethane Bromoform Bromoform Bromothane Carbon disulfide	ND ND ND ND ND ND ND		3950 3950 7650 7650 7650 7650	µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	5 5 5 5 5			
1,4-Dichloroberizena 2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetona Benzene 3romodichloromethane Bromoform Bromoform Carbon disulfide	ND ND ND ND ND ND		3950 7650 7650 7650 7650	µg/Kg-diy µg/Kg-diy µg/Kg-diy µg/Kg-diy	5 5 5 5			
2-Butanone 2-Chloroethyl vinyl ether 2-Hexanone 4-Methyl-2-pontanono Acetono Benzene 3romodichloromethane 3romoform 3romoform 3romothane Carbon disulfide	ND ND ND ND ND ND		7650 7650 7650 7650	µg/Kg-dry µg/Kg-dry µg/Kg-dry	5 5 5			
2-Hexanone 4-Methyl-2-pontanono Acatono 3enzene 3romodichloromethane Bromoform 3romoform 3romomothane 2arbon disulfide	ND ND ND ND		7650 7650 7650	µg/Kg-dry µg/Kg-dry	5 5			
2-Hexanone 4-Methyl-2-pontanono Acetono Benzene Bromodichloromethane Bromoform Bromomothane Carbon disulfide	ND ND ND ND		7650 7650	µg/Kg-dry	5			
Acetong Benzene Bromodichloromethane Bromoform Bromomothane Darbon disulfide	ND ND ND		7650				1	
Benzene Bromodichloromethane Bromoform Bromomothane Darbon disulfide	ND ND			F0	5		ŀ	
Bromodichloromethane Bromoform Bromomothane Darbon disulfide	ND		/000	µg/Kg-dry	5			
Bromoform Bromomothane Darbon disulfide			3950	µg/Kg₊dry	5		2	
Bromomothane Carbon disuffide	ND		3950	µg/Kg-dry	5		i.	
Carbon disulfide	QIA		3950	µg/Kg-dry	5			
	ND		7650	µg/Kg-dry	5			
Carbon tetrachloride	NÐ		3950	µg/Kg-dry	5			
	ND		3950	µg/Kg-dry	5			
Chlorobonzono	ND		3950	µg/Kg-dry	5			
Chloroethane	ND		7650	µg/Kg-dry	5			
Chloroform	ND		3950	µg∕Kg-dry	5		÷ 1	
Chloromethane	ND		7650	µg/Kg-dry	5		2	
sts-1,2-Dichloroethene	ND		3950	µg/Kg-dry	5		:	
vis-1,3-Dichloropropone	ND		3950	µg/Kg-dry	5			
Dibromochloromethane	ND		3950	µg/Kg-dry	- 5			
21bylbenZene	3680 ,	J < mcm	3950	µg/Kg-dry	5			
n,p-Xyłene	11500	> man	3950	µg/Kg-dry	5			
fethylene chloride	ND		3950	µg/Kg-dry	5			
-Xylone	6070	> 164	3950	µg/Kg-dry	5			
tyrene	ND		3950	μο/Kg-dry	5			
	410000 E	E > Man	3920	µg/Kg-dry	5		1	
	640000 E	E > Mam	3950	µg/Kg-dry	5		-	
ans-1,2-Oichloroethene	ND		3950	µg/Kg-dry	5		1	
ans-1,3-Dichloropropeno	ND		3950	µg/Kg-dry	5			
e Guiddons:	, . 	- ·· ·				· · · ·	,	
- Recursey anticle QC lugits	H . A.	I a house to be)				8	
PF+ Dilution Factor		amilyte fionaal ju Mr. - List not fynite	allianta fottatile			D Diluted due to maximix or e by Receive basis communication to		
Value Baceste Maximum Contaminant Level		Souted rates				 h - Result above quantitation to M - Motrix Spike Recovery out 		s confic)
- Single Colorus Analysis		Not Calculated				ND Not Detected at the Repo		
P - Perrolemon Pottern is not present	P Pos	ost Spike Broovery	outsale limi	14		K - RPD untside recovery limits		49
A AL IN MA		<u></u> .				••••••••••••••••••••••••••••••••••••••		42
MS Version #(= 050149 1140						Printed: Modesed	en di wange 197 5605 (199 5	स मन

Analytical S International Specialis 4493 Walden Aver Speciology und environment inc. Lancaster, New Yo		Laboratory Results NYS ELAP ID#: 10486 Phone: (716) 685-8080							
Client: Natures Way Environmen Lab Order: 0501070 Project: Wyoming Co. Fire Traini	ing Center		Client Sample ID: NORTH 7-D Alt. Client ID: Collection Date: 1/5/2005 Atrix: Soil Test Code: 1_8260B_MEQH				% Moist:16.70		
Lab ID: 0501070-03A Sa	mple Type: SAI	MP Matr	ix: Soil			<u> </u>	<u> </u>		
VOLATILE ORGANIC COMPOUNDS	BY METHOD 82	60B	Me	ethod: S	W8260B Pro	ep Method: SV	V50308_MEO		
Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst		
Trichloroethene Trichlorofluoromuthane Vinyl acetate Vinyl chloride Xylenes, Total	ND ND ND 16500 > 74	3950 3950 7650 7050 6M 3950	µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	5 5 5 5 5					
Surr:1,2-Dichloroethane-d4 Surr:4-Bromofluorobenzene Surr:Dibromolluoromothane Surr:Toluene-d8	81 102 92 105	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	%REC %REC %REC %REC %REC	5 5 5 5 5	(/18/2005 1:45:00 AM HA	ANK_050117A	GP		
• • •		-							
) 2							
		ŀ							
Definitions:	·····			. <u> </u>) 197 0 , 1990, 199			
 Restoracy outside QC lindts DF - Diduga Pactor N - Valor Eureeds Maximum Configurations (2002) N Single Coloupt Analysis NP - Patroloum Patteru is not present 	DNI - Did not J - Estimated NC - Not Cal	value	5		D Diluted due to association of R - Result above quantitation I M - Matrix Spike Recovery on ND - Not Densited as the Repo R - RPD outside recovery limit	lither (high standard or ICP 1) uside limits orting Loout	uwar cango). 50		
LEMS Version #c - 650(19) 1(20				-	Printed: Wedge of	liy Roman o Geotory	,		

į

716-937-9360

p.14

Jan 24 05 10:48a Nature's Way

780015444

-

Client: Natures Way Enviro Lab Order: 0501070 Project: Wyoming Co. Fire T Lab ID: 0501070-04A VOLATILE ORGANIC COMPOUN Analyte	ew York 14086 onmental Training Center Sample Type	e: DL	alysis			Laborator NYS ELA Phone: umple ID: NORTH	AP ID#: 10486 (716) 685-8080	
Client: Natures Way Enviro Lab Order: 0501070 Project: Wyoming Co. Fire T Lah ID: 0501070-04A VOLATILE ORGANIC COMPOUN Analyte	ew York 14086 onmental Training Center Sample Type	e: DL				Phone:	(716) 685-8080	
Client: Natures Way Enviro Lab Order: 0501070 Project: Wyoming Co. Fire T Lab ID: 0501070-04A VOLATILE ORGANIC COMPOUN Analyte	onmental Training Center Sample Type	e: DL	Ma			**************************************	· · · · · · · · · · · · · · · · · · ·	
Lab Order: 0501070 Project: Wyoming Co. Fire T Lab ID: 0501070-04A VOLATILE ORGANIC COMPOUN Analyte	Training Center Sample Type	e: DI.	Ma			mple ID: NORTH.	8-D	
Project: Wyoming Co. Fire T Lab ID: 0501070-04A VOLATILE ORGANIC COMPOUN Analyte	Sample Type	e: DI.	Ma					
Lab ID: 0501070-04A VOLATILE ORGANIC COMPOU Analyte	Sample Type	e: DI.	Ma			Client ID: ion Date: 1/5/2005	<i>171_</i> 1*	- • • • • • • •
Analyte	_ •*		· · · · · · · · · · · · · · · · · · ·	atrix; Soil	Lynces.	Test Code: 1826		Moist: 19 .10
Analyte		•			Method: 8	· · · · · · · · · · · · · · · · · · ·	Prep Method: SW5	5030B ME
· · · · · · · · · · · · · · · · · · ·					······			
· ·	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
1,1,1-Trichlorgethane	31800	> PAGM	20300) µg/Kg-dry	25	1/18/2005 2:29:00 PM		5357367
1,1,2,2-Tetrachloroothane	ND	· · ·	20300				HANK_050118A	DWW
1,1,2-Trichloroethane	ND		20300		25 25			
1,1-Dichloroethane	ND		20300		25			
1.1-Dichloroethene	ND		20300	µg/Kg∙dry	25			
1,2-Dichlorobenzene 1,2-Dichlorosthana	ND		20300	µg/Kg-dry	25			
1.2-Dichloroethane 1.2-Dichloroethene Total	ND		20300	µg/Kg-dry	25			
1,2-Dichloroethene, Total 1,2-Dichloropropane	ND		20300		25			
1,2-Dichlorobenzene	ND ND		20300		25			
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND		20300 20300	µg/Kg-dry ug/Kg-dry	25			
2-Butanone	ND ND		20300 39300	µg/Kg-dry µg/Kg-dov	25 25			
2-Chlorocthyl vinyl ether			39300 39300	µg/Kg-dry µg/Kg-dry	25 25			
2-Hexanone	ND		39300 39300	µg/Kg-dry µg/Kg-dry	25 25			
I-Mathyl-2-pentanone	ND		39300	µg/Kg-ory µg/Kg-ory	25 25			
Acetone	ND		39300	µg/Kg-dry µg/Kg-dry	20 25			
Benzene	ND		20300	μg/Kg-dry	25 25			
Bromodichloromethane	ND		20300	µg/Kg-dry	25			
Bromoform	ND		20300	µg/Kg-dry	25			
Bromomethane Sarbon disulfide	ND		39300	µg/Kg-dry	25			
arbon disulfide Jarbon tetrachloride	ND		20300	µg/Kg-dry	25			
vanon tetrachioride Dhioroberizene	ND ND		20300	µg/Kg-dry	25			
Chloroethanc	ND ND		20300	µg/Kg-dry µg/Kg-dry	25			
Chloroform	ND ND		39300 20300	µg/Kg-dry ug/Kg-dry	25 25			
Chloromothano			20300 39300	µg/Kg-dry µg/Kg-dry	25 25			
cis-1,2-Dichloroethene	ND		39300 20300	µg/Kg-dry µg/Kg-dry	25 25			
is-1,3-Dichloropropone	ND		20300	µg/Kg-ary µg/Kg-dry	25 25			
Dibromochloromethane	ND		20300	µg/Kg-ary µg/Kg-dry	25 25			
Ethylbonzene n. p. Xidene	ND		20300	µg/Kg∙dry	25 25			
n.p-Xylene Aviational and a state	ND		20300	µg/Kg-dry	25			
felinylene chlorido - Xviece	ND	2	20300	µg/Kg-dry	25			
-Xylene tyrene	ND	2	20300	µg/Kg-dry	25			
tyrene etrachloroethene	ND agagoo >	1719 A. M.	20300	µg/Kg-dry	20			
oluene Oluene	000000	· · · · ·		µg/Kg-dry	25			
ans-1,2-Dichloroethene	479000 >. ND			µg/Kg-dry µa/Ka-dry	25			
ans-1,3-Dichloropropone	ND ND			µg/Kg-dry µg/Kg-dry	25 25			
	· · · · ·					•••••		
- Recovery outside QC limits	14 - Au	- dia Me						
F Libason Pactor		ndyte fennel in Mett Diel nor Lynine	oud blank			 D Diluted due to unintrix or ex E. Result along quantization in 	stended target compounds	
Value Exceeds Maximum Comunismu Level		but not ignore	:			 E Reput arave quantitation in M - Matrix Spike Recovery outs 	inút (Ingli Standard og RCP linger g. Iside lindis	-mh**).
Surgle Column Analysis	NC - N	Sor Calculated	:			M - Matrix Spike Recovery outs ND - Not Detected at the Report		
P - Potrokulti Petraina rai pyreent		a Spike Recovery o	ouiside Gamitr	. K		R - SPD subsule recovery librars		97

Jan 24 05 10:48a	Nature's I	ฟอษ			716-937-9:	360	P+1	16
]	Laborato NYS El Phone:	.AP 1D#: 104	186	
Client: Natures Way Environ Lab Order: 0501070 Project: Wyoming Co. Fire Tr Lab ID; 0501070-04A	aining Center Sample Type: DI.		ix: Soil	Alt. Cli Collection	n Date: 1/5/2003 Test Code: 1_8	5 260B_MEOH	% Moist:1	
VOLATILE ORGANIC COMPOUN	DS BY METHOD 8260	₿	 .	ethod: S ¹		Prep Method:	· ·	
Analyte	Result Q	RL	Units	DF	Date Analyzed	I Run Batch		alyst
Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chlorido Xytenes, Total Surr:1,2-Dichloroethane-d4	ND ND ND ND ND ND 85	20300 20300 39300 20300 20300 70 - 130	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry %REC	25 25 25 25 25 25 25	1/18/2005 2:29:00 PM	1 HANK_050118A	 C	 wwc
Surr:4-Bromofluorobenzene Surr:Dibromofluorometharie Surr:Toluene-d8	93 94 100	70 - 130 70 - 130 70 - 130 70 - 130	%rec %rec %rec	25 25 25				
)						
		1						
)						
		1						

ŝ

Definitions:

* - Recovery outside QC tonies

DF - Libbuison fiastor

H - Vulue Exceeds Maximum Concarningua Cavel

N - Single Column Analysis NP - Pennleom Fattern is not present

LIMIS Version 8: 050119 (130

B. - Analyte found in Method blank
 DNI Did not lguite
 J. Estimated value
 NC: Not Calculated
 Post Spike Recovery outside limits

D) Differed due to construity or extended target components.
 B) - Reads above quantization linet (high standard or ICP functor compo)
 M) - Matrix Spike Receivery outside hums.
 ND - Not Detected in the Reporting Lindi.

R - RPD outside recovery limits

Primeds, beed and as damary 19, and 3 for of PM

Laboratory Results

Cology and Unvironment, mi. Lancaster, Ne			212			NYS F Phone		1486 1080	
Client: Natures Way Enviro	mmental	· · · · · · · · · · · · · · · · · · ·		C	lient Sa	umple ID: SOUT	H 4-C		
Lab Order: 0501070					Alt. 🤇	Client ID:			
Project: Wyoming Co. Fire '	fraining Center				Collect	ion Date: 1/5/200)5	% M	loist:18.80
Lab ID: 0501070-05A	Sample Type	: SAMP	Mat	rix: Soil		Test Code: 1_8	3260B_MEOH		
VOLATILE ORGANIC COMPOU	NDS BY METH	OD 8260B	:	Me	ethod:	SW8260B	Prep Method:	SW6	030B_ME
Analyte	Result		RL	Units	DF	Date Analyze	d Run Bate	h ID	Analyst
1,1,1-Trichloroethane	7340	> MGM	808	µg∕Kg-dry	1	1/18/2005 4:03:00 At	A HANK 050	1174	GP
1,1,2,2-Tetrachloroethane	DИ		808	µg/Kg-dry	1	i			
1,1,2-Trichloroethane	ND		808	µg∕Kg-dry	1	E			
1,1-Dichloroothane	ND		808	µg/Kg-dry	1	(
1,1-Dichloroothene	ND		808	µg∕Kg-dry	1	*			
1,2-Dichlorobanzenc	ND		808	µg/Kg-dry	1	•			
1,2-Dichloroethane	ND	. 0.40.00	808	pg/Kg-dry	1	l			
1,2-Dichloroethene, Total	2980	> PAGM	808	µg/Kg-dry	-	t			
1,2-Dichloropropane	ND		808	µg/Kg-dry	1	1			
1,3-Dichlorobenzene	ND		808	µg/Kg-dry	7	t			
4-Dichlorobenzene	ND		808	µg/Kg-dry	۱	1			
2-Butanone	ND		1560	µg/Kg-dry	1	1			
2-Chloroethyl vinyl ether	DN		1560	µg/Kg-dry	1	t			
2-Hoxanone	ND		1560	µg/Kg-dry	-	1			
4-Methyl-2-penianono	ND		1560	µg∕Kg-dry	1	1			
Acetono	ND		1560	µg/Kg-dry	1	1			
Benzone	ND		808	µg∕Kg-dry	•	1			
Bromodichloromethane	ND		808	µg/Kg-dry	-	1			
Bromoform	DND		808	µg/Kg-dry	-	1			
Bromomethane	ND		1560	µg/Kg-dry		1			
Carbon disulfide	ND		808	µg/Kg-dry		1			
Carbon tetrachioride	ND		808	µg/K <u>g</u> -diy		1			
Chiorobenzene	ND		808	µg/Kg-dry		1			
Chloroethanc	ND		1560	µg∕Kg-dry		1			
Chloroform	ND		808	µg/Kg-dry	•	1			
Chloromethane	NĎ	A A	1560	µg/Kg-dry		1			
cis-1,2-Dichloroothene	2980	> 146 m	808	µg ∕Kg-d ry		1			
cis-1,3-Dichloroptopene	ND		808	µg/Kg-dry		1			
Dibromochloromethano	ND	~ <i>* * *</i>	608	µg/Kg-dry		1			
Ethylbenzene	10500	> Mom	808	µg/Kg•dry		1			
n,p-Xylene	46100	> m6m	808	µg∕Kg-dry		1			
Methylene chloride	ND	0000	808	µg∕Kg∙dry		1			
o-Xylene	. 16700	> Mem	808	µg∕Kg-dry		1			
Styreno	ÓИ I	.	808	µg∕Kg-dry	•	1			
Tetrachloroethene	492000	E > MGM	808	µg/Kg-dry		1			
Toluene	9260	> MGM	808	µg∕Kg-dry		1			
trans-1,2-Dichlorouthene	ND		808	µg∕Kg-dry		1			
irans-1,3-Dichloropropene	ND		808	µg∕Kg-dry		1			·····
Definitions:				·					
* - Recovery outside (X) tanks	1	Analyte found in N	લ્લોઝનો મિઝાર્ગ			D - Diluted due to not	strig or extended target con	annuda	
1014 Dilution Factor		NI Did not Igtilte					rjtation lävät flägji stuudand		пазацуе).
R - Volue Insteeds Moximum Contaminant Level		Refinanced volum				M - Matrix Spike Rea	overy outside liquits		
N Single Column Analysis	N	C + Not Calculated			-	ND - Not Detected at			
NP - Petroleman Pattern is and present	1 P	· Post Spike Recove	ry outside hu	nins		R RPD ontside reco	very limits		108

ALC: NO. OF TAXABLE

Client Sample ID: SOUTH 4-C

Collection Date: 1/5/2005

Alt. Client ID:

Method: SW8260B

Laboratory Results

NYS ELAP ID#:

Phone:

Test Code: 1_8260B_MEOH

% Moist:18.80

10486

Prep Method: SW5030B_MEO

(716) 685-8080

Analytical Services Center

International Specialists in Environmental Analysis 4493 Walden Avenue

togy underwinnent, int. Lancaster, New York 14086

Client: Natures Way Environmental

Lab Order: 0501070

Lah 1D: 0501070-05A

Project: Wyoming Co. Fire Training Center

Sample Type: SAMP

Matrix: Soil

VOLATH F ORGANIC COMPOUNDS	C RV MELHOD X7608
VALATE FINGARIG CONFOUNDS	

Analyte	Result Q		Units	DF	Date Analyzed Run Batch ID Analyst
I richloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total Surr:1,2-Dichloroethane-d4 Surr:1,2-Dichloroethane-d4 Surr:Tobernofluorobenzeno Surr:Dibromofluoromethane Surr:Tobene-d8	ND ND ND 62800 > 744 82 93 92 105	808 908 1560 1560 70 - 130 70 - 130 70 - 130 70 - 130	%REC %REC	1 1 1 1 1 1 1	1/18/2005 4:03:00 AM HANK_050117A GP

Definitions:

Recovery outside QC limits
 DF Dilution Factor
 Value Exceeds Maximum Contanáguas Level
 N - Single Colum Analysis

NP - Proofeun Pattern is not present

LIMS Version 8: 050119 1130

B - Analyze found in Method blank
DNI - Did not Ignate
J - Entimated value
NG - Non Calculated
P - Post Spike Recovery outside limits

Diluted due to materix or extended target compromits
 Result above quantitation limit (ling) Mandard or R^{*}t^{*} linear mage).
 M - Matrix Spike Recovery outside limits
 NO - Not Detected at the Reporting Limit
 R - R142 outside metovery limits

Pristed: Wednesday, Country, 795, 11143450

p.19

Analytical Services Center International Specialists in Environmental Analysis

4493 Walden Avenue country and anvironment, inc. Lancaster, New York 14086

Client: Natures Way Environmental

Lab Order: 0501070

Lab ID: 0501070-08A

Wyoming Co. Fire Training Center **Project:**

Laboratory Results

NYS ELAP ID#: 10486 (716) 685-8080 Phone:

Client Sample ID: MIDDLE 1-C Alt. Client ID:

Collection Date: 1/4/2005

Method: SW8260B

% Moist:2.33

Prep Method: SW5030B

Sample Type: SAMP Matrix: Soil

DNL Did on Ignite

NC Nut Calculated

P. Post Spike Recovery outside limits

J - 15stimated value

- -----

Test Code: 1_82608_S

VOLATILE ORGANIC COMPOUNDS BY METHOD 8260B

Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analy
1, 1, 1-Trichloroethane	ND		5.19	рд/Кд-длу	1	1/12/2005 Z 35:00 PM	HANK 050117A	RMJ
1,1,2,2-Totractiloroethane	ND		5.19	µg/Kg-dry	1			
1.1.2-Trichloroethane	ND		5.10	µg/Kg-dry	, 1			
1,1-Dichloroethane	ND		5.19	µg/Kg-dry	1		A. C. The second se	
1.1-Dichloroethene	ND		5.19	µg/Kg∙dry	1			
1,2-Dichlorobenzené	ND		5.19	µg/Kg-dry	1			
1,2-Dichloroethane	ND		5.19	µg/Kg-dry	. 1			
1,2-Dichloroethene, Total	ND		5.19	µg/Kg-dry	1			
1,2-Dichloropropano	ND		5.19	μg/Kg-dry	1			
1,3-Dichlorobenzene	ND		5.19	µg/Kg-dry	1			
1,4-Dichlorobenzene	ND		5.19	µg/Kg-dry	1			
2-Butanone	ND		10.4	µg/Kg-dry	1			
2-Chloroethyl vinyl ethor	ND		10.4	µg/Kg-dry	1			
2-Hexanone	ND		10.4	µg/Kg-dry	1			
4-Methyl-2-pontanone	ND		10.4	µg/Kg-dry	1			
Acetono	ND		10.4	µg/Kg-dry	1			
Benzene	ND		5.19	µg/Kg-dry	1			
Bromodichloromethane	ND		5.19	µg/Kg-dry	1			
molomot	ND		5.19	µg/Kg-dry	1			
Sromomethane	ND		10.4	µg/Kg-dry	1			
Carbon disulfide	ND		5.19	µg/Kg-dry	1			
Darbon tetrachloride	ND		5.19	µg/Kg-dry	1			
Chlorobenzene	ND		5.19	µg/Kg-dry	1			
Chloroethane	ND		10.4	µg/Kg-dry	1			
Chloroform	ND		5.19	µg/Kg-dry	1			
hloromethane	ND		10.4	µg∕Kg-dry	1			
is•1,2•Dichloroethene	ND		5.19	µg/Kg-dry	1			
is-1,3-Dichloropropene	ND		5.19	µg/Kg-dry	1			
Dibromochioromethane	ND		5.19	µg/Kg-dry	1			
thylbenzene	ND		5.19	µg/Kg-dry	1			
1,p-Xylone	ND		5.19	µg/Kg-dry	ŧ			
fethylene chloride	ND		5,19	µg/Kg-dry	1		:	
-Xylene	ND		5.19	µg/Kg-dry	1			
tyrene	ND		5.19	µg/Kg-dry	1			
etrachloroetheno	45.1	< MGA	5.19	µg/Kg-dry	1			
oluene	ND		5.19	µg/Kg-dry	1			
ans-1,2-Dichloroethene	ND		5.19	µg/Kg∙dry	1		3	
ans-1,3-Dichloropropene	ND		5.19	µg/Kg-dry	1			

DF - Dahum Foetro

- H Value Exceeds Maximum Contonnant Level N - Single Column Analysis
- NP Petroleum Pattern is not present

LTMS Version #1 050(19-1424)

D. Diluted due to instatrix or extended target companyols H - Result above quantitation linkit (high standard or ICT factor range) M - Matrix Spake Recovery ontside limits ND - Not Detected at the Reporting Limit R - RPD outside recovery limits

Polioted: Wirdersday, Jeanapp (9, 1903) 7/10034333

¹³⁹

Trichloroethene ND 5,19 µg/Kg-dry 1 Trichlorofluoromethane ND 5.19 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl chloride ND 10.4 µg/Kg-dry 1 Xylenos, Total ND 5.19 µg/Kg-dry 1	client: Natures Way Env. ab Order: 0501070	/ironmental	Phone: (716) 685-8080 Client Sample ID: MIDDLE 1-C Alt. Client ID:					
Analyte Result Q RL Units DF Date Analyzed Run Batch ID Analyse Frichloroethene ND 5.19 µg/Kg-dry 1 Trichlorofluoromethane ND 5.19 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl chloride ND 5.19 µg/Kg-dry 1 Kylenos, Total ND 5.19 µg/Kg-dry 1 Surr:1,2-Dichloroethane-d4 92 77 - 119 %REC 1 Surr:4-Bromofluorobenzene 102 88 - 124 %REC 1 Surr:Dibromofluoromethane 100 83 - 117 %REC 1	•	-	Mat	rix: Soil	Conect			/10181:2.55
Trichloroethene ND 5.19 µg/Kg-dry 1 Trichlorofluoromethane ND 5.19 µg/Kg-dry 1 Trichlorofluoromethane ND 5.19 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl chloride ND 10.4 µg/Kg-dry 1 Kylenos, Total ND 5.19 µg/Kg-dry 1 Surr:1,2-Dichloroethane-d4 92 77 - 119 %REC 1 Surr:4-Bromofluorobenzene 102 88 - 124 %REC 1 Surr:Dibromofluoroethane 100 83 - 117 %REC 1	· · · · · · · · · · · · · · · · · · ·				thod:	SW8260B	Prep Method: SW	5030B
Trichlorofluoromethane ND 5.19 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl acetate ND 10.4 µg/Kg-dry 1 Vinyl chloride ND 10.4 µg/Kg-dry 1 Xylenos, Total ND 5.19 µg/Kg-dry 1 Surr:1,2-Dichloroethane-d4 92 77 - 119 %REC 1 1/12/2005 7:35:00 PM HANK_050112A HMJ Surr:4-Bromofluorobenzene 102 88 - 124 %REC 1 HMJ Surr:Dibromofluoromethane 100 83 - 117 %REC 1 1	nalyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
Surr:4-Bromofluorobenzene 102 88 - 124 %REC 1 Surr:Dibromofluoromethane 100 83 - 117 %REC 1	richtorofluoromethane Inyl acetate Inyl chloride	ND ND ND	5.19 10.4 10.4	µg/Kg-dry µg/Kg-dry µg/Kg-dry	1	 		
	Surr:4-Bromofluorobenzene Surr:Dibromofluoromethane	102 100	88 - 124 83 - 117	%REC %R€C	1	 	HANK_050112A	LМН
			:					

Definitions:	99 - 99 - 99 - 99 - 99 - 99 - 99 - 99	1 4 1		·,.		
 Recuvery noiside QC limits 	B - Analyse firmul in Mer	thod blank	Ď	· Diluteri due to maxime or exter	ided target componists	
DP Dilution Panao	DNI - Did not ignite		15	· Result above quantitation tunit	(tuply standard or TCP line	ar coga)
¥1 - Value Exceeds Maximum Conturninant Level	J · Estimated value		м	Matria Späce Recovery outside	: Harnies	
N - Single Column Analysis	NC - Not Calculated		N) Not Detected at the Reportin	g Lanit	
bor Petroleum Pattern is not present	P Post Spike Recovery	ourside linnts	ж	- RPD outside recovery limits		
**						

LAMS Version #: 030419_1130

30

Printed: Wettersday, 40,0005 7:22:34 PM

.....

		nnenial Analy				Laborato NYS EL Phone:	ry Results	
Client: Natures Way Env	ironmental					ample ID: MIDDL	[§ 7-В	
Lab Order: 0501070				·		Client ID:		ar
Project: Wyoming Co. Fire					Collect	tion Date: 1/4/2005		Aoist:18.70
Lab ID: 0501070-09А	Sample Typ		Mat	trix: Soil		Test Code: 1_82		
	OUNDS BY METH	OD 8260B	2	M	lethod:	SW8260B	Prep Method: SW	5030B
Analyte	Result	Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analys
1,1,1-Trichloroethane	ND		6.04	μŋ/Kg-dry	1	1/13/2005 2:58:00 PM	HANK 050113A	HMJ
1,1,2,2-Tetrachloroethano	ND		6.04	µg/Kg-dry	1	1		
1,1,2-Trichloroethane	ND		6.04	µg/Kg-dry	1	t		
1,1-Dichloroethane	ND		6.04	µg/Kg∳dry	1	ł		
I,1-Dichloroethene	ND		6.04	µg/Kg-dry	1	f		
1,2-Dichlorobenzene	ND		6.04	µg/Kg-dry	1	1		
,2-Dichloroethane	NÐ		6.04	µg/Kg-dry	ា	İ		
,2-Dichloroethene, Total	2.52	J < 746M	6.04	µg/Kg-dry	1	l		
,2-Dichloropropane	ND		6.04	µg/Kg-dry	1	i .		
,3-Dichlorobenzene	ND		6.04	µg/Kg-dry	1	l		
4-Dichlorobenzene	ND		6.04	µg/Kg-dry	1	l		
-Butanone	ND		12.1	µg/Kg-dry	1	I		
2-Chloroethyl vinyl ethor	ND		12.1	µg/Kg-dry	1			
2-Hexanone	ND		12.1	µg/Kg-dry	1	ļ		
I-Methyl-2-pontanone	ND		12.1	µg/Kg-dry	1			
Acelono Remaine	ND	•	12.1	µg/Kg-dry	1			
Benzeno Bromodichloromethane	ND		6.04	µg/Kg-dry	1			
Biomodici il Di Di Malinaria Biomoform	ND		6.04	µg/Kg-dry	1			
Bromomelihane	ND ND		6.04	hů/Ků-dry	1			
Carbon disulfide	ND		12.1	µg/Kg-dry	1			
Sarbon tetrachloride	ND		6.04	µg/Kg-dry	1		•	
chlorobenzene	ND		6.04 6.04	pg/Kg-dry	1			
Shoroethane			6.04	µg/Kg-dry		i		
hloroform	ND		12.1 6.04	µg/Kg-dry	1			
hloromethane	ND		12.1	µg/Kg-dry	1			
is-1,2-Dichloroethene	2.52	3 < MGM	6.04	µg/Kg-dry	1			
is-1,3-Dichloropropene	ND	5 1 1	6.04	µg/Kg-dry	1			
libromochloromethane	ND		6.04	µg/Kg-dry µg/Kg-dry	1			
ihylbenzene	ND		6.04	µg/Kg-dry µg/Kg-dry	-			
n,p-Xylene	ND		6.04	µg/Kg-dry µg/Kg-dry	1			
lethylene chloride	ND		6.04	µg/Kg-dry	4			
-Xylene	ND		6.04	µg/Kg-dry	1			
lyreno	ND		6.04	µg/Kg-dry	t			
etrachioroethene		= MAGM	6.04	µg/Kg-dry	, 1			
olueno	ND	•	6.04	µg/Kg-dry	1			
ans-1,2-Dichloroethone	ND		6.04	µg/Kg-dry	1			
ans-1,3-Dichloropropene	ND		6.04	µg/Kg-dry	1			
efinitions:				· · · · · · · · · · · · · · · · · · ·	- · -		···· ··· · ···	··•• ··•· ·
- Recovery conside QC limits	-	• unitari • • • • • •				A		
Freedowery musule QC lanus		Analyte Jourd in Me 1951 nor Ignite	લહ્મના કારણાં				or extended larger compounds	
Value Exceeds Maxarann Contambrail Level		stinated value				M Marz Späce Recovery	ou how thigh seatched on R Y five contacte funite	to turd.s.r.
- Stogle Column Analysis		- Not Calculated				ND Not Department of the h		
Petroleum Pattern is test present		'est Spike Recovery	: antorio lam			R + BPD outside recovery I		14

فالمعتقب والمعتر والمعالم والمعاد والمتشاطر والمعالم

ale of a sub-free strength of the
Analytics International Spectro of Advanced and Analytics Advanced and Analytics Advanced and Analytics An		Laboratory Results NYS ELAP ID#: 10486 Phone: (716) 685-8080						
Client: Naturos Way Enviro Lab Order: 0501070 Project: Wyoming Co. Fire T Lab ID: 0501070-09A			Matr	rix: Soil	Alt. Cl	aple ID: MIDDLi ient ID: on Date: 1/4/2005 Test Code: 182		% Moist:18.70
VOLATILE ORGANIC COMPOU	NDS BY METH	IOD 8260B		M	ethod: S	W8260B	Prep Method:	SW5030B
VOLATILE ORGANIC COMPOU	NDS BY METH Result		RL	Mo Units	ethod: S DF	W8260B Date Analyzed	Prep Method: Run Batcl	
Analyte	· · · ·		<u>RL</u> 6,04					
A naiyte	Result U.836 ND	Q	6,04 6_04	Units µg/Kg-dıy µg/Kg-dıy				
A nalyte Trichloroothene Trichlorofluoromethane Vinyl acetate	Result 0.836 ND ND	Q	6,04 6.04 12.1	Units µg/Kg-dry µg/Kg-dry µg/Kg-dry				
A nalyte Trichloroothene Trichlorofluoromethane Vinyl acetate Vinyl chloride	Result 0.836 ND ND ND ND	Q	6,04 6.04 12.1 12.1	Units µg/Kg-dıy µg/Kg-dıy µg/Kg-dıy µg/Kg-dıy				
A nalyte Trichloroothene Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenas, Total	Result U.836 ND ND ND ND	Q J < <i>[H6M</i>	6,04 8.04 12.1 12.1 6.04	Units µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry		Date Analyzeď	Run Batel	h ID Analyst
A nalyte Trichloroathene Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total Surr: 1,2-Dichloroethane-d4	Result U.836 ND ND ND ND 89	Q J < <i>[]</i> #6#1	6.04 6.04 12.1 12.1 6.04 7 - 119	Units µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry %REC			Run Batel	
A nalyte Trichlorocthene Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total	Result U.836 ND ND ND ND	Q J < <i>[]</i> #6#1	6,04 8.04 12.1 12.1 6.04	Units µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry		Date Analyzeď	Run Batel	h ID Analyst

Nature's Way

Definitions:

Recovery ourside QC hubbs
 Diboron Factor
 Volue Exceeds Maximum Contandonan Level
 N Single Column Analysis
 NP - Petroleum Patra a is not present

Jan 24 05 10:52a

E.(AIS Version #1 - 0.51115 1030

B. Analyte bound in Method blank.
 DNI - Did not ignine
 J. Retinnated value
 Not Calculated
 P. Forst Spike Resovery outside litenta

D. Dijored due to noverze or extended target composities
 E. Respli alarce quantitation himb (high standard or R/P hower coupe).
 M. Matrix Spike Reservery outside hours
 ND. Not Detected at the Reporting Linut.

R - RPD outside recovery limits

716-937-9360

p.22

146

Printed: Wednesday, Jammey ev. 3995 7-50:53 194

Analyti and anvirunment, were Lancuster, 1		nmental Anal	ter Iysis			Laborator NYS EL Phone:		₽•23
Client: Natures Way Envi Lab Order: 0501070	ironmental	Ì			,	ample ID: MIDDLE	C 6-D	
Project: Wyoming Co. Fire	n "I'meni eni en d'Anned a e	i				Client ID:		
					Collec	tion Date: 1/4/2005	% [Vioist:27.3(
Lab ID: 0501070-10A	Sample Type	· · · ·	Mu	trix: Şoil		Test Code: 1_826	50B_S	
VOLATILE ORGANIC COMPO	UNDS BY METH	OD 8260B			Method:	\$W8260B F	rep Method: SW	5030B
				- -				
Analyte	Result	<u>Q</u>	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst
4 4 4 T -1-1-1			5	1			· · · · · · · · · · · · · · · · · · ·	
1, 1, 1-Trichloroethane 1, 1, 2, 2-Tetrachloroethane	2.00	J < TAGM	6.85	µg∕Kg-dry		1/12/2005 9 19:00 PM	HARK 050112A	RMJ
	ND		6.85	µg/Kģ-dry		[
1,1,2-Trichloroethane 1,1-Dichloroethane	ND		6.85	µg/Kg-dry				
1,1-Dichloroethene	ND		6.85	µg/Kg-dry				
1,2-Dichlorobanzene	ND		6.85	µg∕Kg-dry				
1,2-Dichloroethane	ND		6.85	µg/Kg-dry	1			
1,2-Dichleroethene, Total	ND		6,85	hð\Kð-quà	1			
1,2-Dichloropropano	ND		6.85	µg/Kg-dry	1			
1.3-Dichlorobenzone	ND		6.85	µg∕Kg-dry	1			
1,4-Dichlorobenzene	ND		6.85	µg∕Kg-dry	1			
2-Butanone	ND		6,85	µg∕K _i g-dry	1			
2-Chloroelhyl vinyl ether	ND		13.7	µg/Kุg-dry	1			
2-Hexanone	ND		13.7	µg/Kg-dry	1			
4-Methyl-2-pentanone	ND		13.7	µg/Kg-dry	1			
Acetone	ND		13.7	µg/Kg-d≀y	. 1			
Benzene		J < MGM	13.7	µg/Kg-dry	1			
Bromodichloromethane	ND		6.85	µg∕Kg-dry	1			
Bromotorm	ND		6.85	µg∕Kg-dry	1			
Bromomethane	ND		6.85	µg/Kg-dry	1			
Carbon disulfide	ND		13,7	pg/Kg-dry	1			
Carbon tetrachloride	ND		6.85	µg/Kg-dry	1			
Shlorobenzene	ND		6.85	µg∕Kg-dry	1			
Chloroethano	ND		6.85	µg/Kg-dry	1			
Chloroform	ND		13.7	µg/Kg-dry	1			
hloromethane	ND		6.85	µ9/Kg-dry	1			
is-1,2-Dichloroethene	ND		13.7	µg/Kg-dry	1			
is-1,3-Dichloropropene	ND		6.85	µg∕Kg-dry	1			
ibromochloromethane	ND		6.85	µg/Kg-dry	1			
thylbonzone	ND		6.85	µg/Kg-dry	1			
t.p-Xylene	ND		6.85	μ g/Kg-d ry	1			
ethylene chloride	ND		6.85	µg/Kg-dry	1			
-Xylene	ND		6.85	µg/Kg-diy	1			
lyrano	ND		6.85	µg/Kg-dry	1			
ofrachloroethone	ND	1 Dar. m	G.85	µg/Kg-ary	1			
duene		<td>6.85</td> <td>µg/Kg-dry</td> <td>1</td> <td></td> <td></td> <td></td>	6.85	µg/Kg-dry	1			
ans-1,2-Dichloroothene	ND		6.85	µg/Kg-dry	1			
ans-1,3-Dichloropropene	ND		6.85	µg/Kg-dry	1			
finitions:	ND		6.85	µg/Kg-dry		<u></u>		
						· · · · · · · · · · · · · · · · · · ·		
 Receivery outside QC timors F-Diffusion locator 		alyte found in Meth	and blook			D. Diluted due to maritize or 6	steaded target compounds	
- Vider Baserids Mitrations Constantinged Level		Ind not fignite			•		unt (high standard or ICP Jamar	rappe)
 Single Coloma Analysis 		anaidel Value				M + Matzix Spike Recovery au	side larats.	•
* - Periodenni Potreni is not present		hii Cakalandi 8 Spike Recovery ()				ND - Nor Detented at the Rept		
		5 11198C DUCOVELV (1	DATES IN TRADID			R - RPD outside recovery limit:		153

man - In the second state of the second state

-

.

Client:

Project:

Lab Order: 0501070

Lab 1D; 0501070-10A

Laboratory Results

716-937-9360

Analytical Services Center International Specialists in Environmental Analysis 4493 Walden Avenue mend inc. Lancaster, New York 14086

NYS ELAP ID#: 10486

(716) 685-8080 Phone:

Client Sample ID: MIDDLE 6-D

Alt. Client ID:

% Moist:27.30 Collection Date: 1/4/2005

Wyoming Co. Fire Training Center

Natures Way Environmental

Sample Type: SAMP

Matrix: Soil

Method: SW8260B

Test Code: 1_8260B_S Prep Method: SW5030B

METHOD 8260B	 00441 004400	9141 - 2	Onder	~****	VUL

Analyte	Result Q	RL	Units	DF	Date Analyzed	Run Batch ID	Analyst									
Trichloroethene Trichlorofluoromethana Vinyl acetate Vinyl chloride Xylenes, Total	ND ND ND ND ND ND	6.85 6.85 13.7 13.7 6.85	μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1 1 2												
Surr:1,2-Dichloroethane-d4 Surr:4-Bromofluorobenzene Surr:Dibromofluoromofhane Surr:Toluene-d8	91 102 99 108	77 - 119 88 - 124 83 - 117 84 - 119	%REC %REC %REC %REC	1 t 1 1	1/12/2005 9:19:00 PM F	IANK_050112A	ΗМЈ									

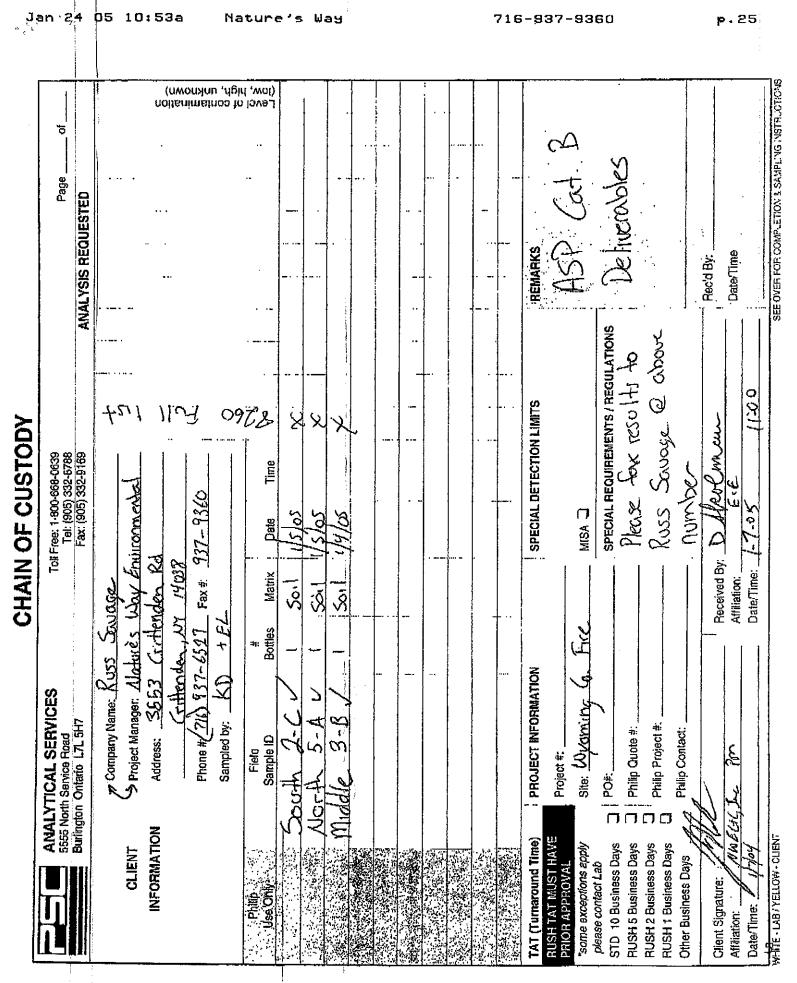
Definitions:

· Recovery conside QC family

DI Dilation Factor

H Value Escends Maximum Containinent Level

N Single Colorm Analysis


MP Petroleum Patrem is not present

LAMS Version #: 050(12-1130

B - Analyte provel in Method blank DNL Did not Ignite J. Estimated whith NC - Net Cakelated P Post Spice Recovery outside limits

1) Diluted due to apartific or extended target compounds I) - Result above quantitation limit (high standard or ICP linear range). M - Matrix Spike Recovery outside huits ND - Not Detected at the Reporting Long. 154 R RPD outside necessary lines.

Printed: Weilmedes, January 19, 2003 (2003) PM

10:53a

٥s

Nature's Way

716-937-9360

p.25

SOIL ANALYTICAL RESULTS

SEPTEMBER 14, 2006

N:\11172991.00000\WORD\Final SVE Cell Decom PLan.doc

716-937-9360

حتى ذ

<u>e lahaligi</u>m

ENTERNITAL BURNES, US. 176 Lake Avenus Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: <u>NWECAC</u>

Client Jeb S)te:	WOFTC	Lob Project Number: Lab Sample Number:	
Glient Job Number: Field Locatlon: Field ID Number: Bample Type:	04-136 S cell,W end,S1,2.5-3.5 N/A Soil	Date Sampled; Date Received: Date Analyzed;	09/14/2008 09/22/2006 09/22/2008

BromomethaneND< 10.9	Blocarbons	Results in up / Kg	Aromatica	Results in up / Kg
BromoformND< 10.9EthylbenzeneND< 10.9Carbon TetrachlorideND< 10.9	romodichloromethane		Benzene	ND< 10.9
Carbon TetrachtorideND< 10.9TolueneND< 10.9ChloroethaneND< 10.9	romomethane	ND< 10.9	Chlorobenzene	ND< 10.9
ChloroetheneND< 70.9m.p-XyleneND< 10.9Chloroethyl vinyl EtherND< 10.9	moiom .	ND< 10.9	Ethylbenzene	NO< 10,9
ChloromethaneND< 10.9o-XyleneND< 10.92-Chlorosthyl vinyl EthorND< 10.9	arbon Tetrachlorldo	ND< 10.9	้ไปเรกอ	ND< 10,9
2-Chloroethyl vinyl EtherND< 10.9StyreneND< 10.9ChloroformND< 10.9	hioroethene	ND< 10.9	m.p-Xylene	ND< 10.9
ChloroformND< 10.91,2-DichlorobenzeneND< 10.9DibromochloromethaneND< 10.9	hloromethane	ND< 10,9	o-Xylene	ND< 10,9
ChloroformND< 10.91,2-DichlorobenzeneND< 10.9DibromochloromethaneND< 10.9	-Chloroethyl vinyl Ether	ND< 10.9	Styrene	ND< 16,9
1,1-DichloroethaneND< 10.91,4-DichlorobenzeneND< 10.91,2-DichloroethaneND< 10.9	hloroform	ND< 10.9	1,2-Dichlorobenzene	ND< 10,0
1,2-DichloroethaneND< 10.91,1-DichloroethaneND< 10.9	bromochloromethene	ND< 10.9		ND< 10.9
1,1-DickloroetheneND< 10.9KetonesResults in up /cis-1,2-Dickloroethene13.5AcetoneND< 54.3	,1-Dicivioroethane	ND< 10.9	1,4-Dichlorobenzene	ND< 10.9
clis-1,2-Dichloroethene13.5AcetoneND< 54.3trans-1,2-DichloroetheneND< 10.9	2-Dichloroethane	ND< 10.9		
clis-1,2-Dichloroethane13,5AcetoneND< 54,3trans-1,2-DichloroethaneND< 10.9	1-Dichloroethene	ND< 10.9	Ketones	Results in up / Kg
trans-1,2-DichloroethaneND< 10.92-ButanoneND< 27.21,2-DichloropropaneND< 10.9	s-1,2-Dichloroethene	13.5		ND< 54.3
1.2-DichloropropaneND< 10.92-l-lexanoneND< 27.2cis-1.3-DichloropropaneND< 10.9	ans-1,2-Dichloroethene	ND< 10.9	2-Butanone	ND< 27.2
cis-1.3-Dichloropropene ND< 10.9 4-Methyl-2-pentanone ND< 27.2 Mathylene chloride ND< 27.2	2-Dichloropropane	ND< 10.9		ND< 27.2
trans-1,3-Dichloropropene ND< 10.9 Mathylene chloride ND< 27.2	9-1.3-Dichloropropone	ND< 10.9		ND< 27.2
1,1,2,2-Tetrachloroethane ND< 10.9		ND< 10.9		
1,1,2,2-Tetrachloroethane ND< 10.9 Carbon disulfide NO< 27.2 Tetrachloroethane 711 Vinyl acetate NO< 27.2	sthylene chloride	ND< 27.2	Miscollaneous	Results in vo / Ko
3,1,1-Trichloroethane ND< 10.9 1,1,2-Trichloroethane ND< 10.9 Frichloroethane 35.6 Frichlorofluoromethane ND< 10.9	1,2,2-Tetrachloroethane	ND< 10.9		NO< 27.2
1,1,2-Trichloroethane ND< 10.9 Frichloroethane 35.6 Frichlorofluoromethane ND< 10.9	enedieoclicente	711	Vinyl acetate	ND< 27.2
Trichloroethene 35.6 Trichlorofluorometherie ND< 10.9	1.1-Trichloroethane	ND< 10.9	-	
Trichloroethene 35.6 Trichlorofluorometherie ND< 10.9	1,2-Trichloroethane	ND< 10.9		
		35.6		
field adda date Attended Attende	ichlurofluoromethane	ND< 10.9		
Any chonde MUS 10.9	nyl chloride	ND< 10.5	· · ·	

ELAP Number 10958

75 10 10 Method: EPA 82608

Oata File: V39441.0

تخفيفا فيغد ومفتوس تأمر بالبشاء

Commente: ND denotes Non Detect vg / Kg = microgram per Kilogram

Signaturo:

Bruce Hoogesteger Pechnical Director

This repart is used of a multipage documpent and should only by avaluated in its antimity. Chain of Cusicaly provided additional internation, industria compliance with sample condition regulations upon resetter.

716-937-9360

<u>e leanalitsini</u>

ENVIOLATIONAL ELINICIA. 128. 178 Lake Avenue Rochester, New York 14608 (583) 647 - 2530 FAX (585) 647 - 3311

Volstile Analysis Report for Soils/Solids/Sludges

Client: <u>NWEC&C</u>

Client Job Site:	WOFTC	Lab Project Number: Lab Semple Number:	08-2875 9538
Client Job Number: Field Location:	04-136 Mid coll,E end,93 .7-6 '	Date Sampled:	09/14/2006
Field ID Number;	N/A	Date Received:	09/22/2006
Sample Type:	Soil	Date Analyzed:	09/22/2006

Halocarbong	Results in ug / Kg	Aromatica	Results in up
Bromodichloromethane	ND< 8,11	Benzene	ND< 8,11
Bromomethane	ND4 9,11	Chlorobenzene	ND< 8.11
Bromoform	ND< 8.11	Ethylbenzene	ND< 8.11
Carbon Tetrachloride	ND< 8,11	Toluene	ND< 9,11
Chioroethane	ND< 8.11	m,p-Xylena	ND< 8.11
Chioromethane	ND< 0.11	o-Xylene	ND< 8.11
2-Chloroethyl vinyl Ether	ND< 8.11	Styrene	ND< 8.11
Chloroform	ND< 8.11	1,2-Dichlorobenzene	ND< 8.11
Dibromochloromethene	ND< 8.11	1.3-Dichlorobanzene	ND< 8.11
1,1-Dichloroethane	ND< 0.11	1.4-Dichlorobenzene	ND= 8.11
1,2-Dichloroethene	ND< 8,11		
1,1-Dickloroethene	ND< 8,11	Ketones	Results in ug /
cis-1,2-Dichloroethene	ND< 8,11	Acetone	ND< 40.6
bans-1,2-Dichloroethene	ND< 8.11	2-Butanone	ND< 20.3
1.2-Dichloropropane	ND< 8.11	2-Hexanone	ND< 20.3
cis-1,3-Dichloropropene	ND< 8.11	4-Methyl-2-pentanone	ND< 20.3
trans-1,3-Olchloropropene	ND< 8.11		
Methylene chloride	ND< 20.3	Miscollanaous	Results in ug /
1,1,2,2-Tetrachloroethane	NO< 8.11	Carbon disulfide	ND< 20.3
Tetrachlo roo thene	32.6	Vinyi acetate	ND< 20.3
1,1,1-Trichloroelhane	ND< 8,11		
1,1,2-Yrichloroethane	ND< 8.11		
Trichloroethene	ND< 8.11		
Trichlorofluoromethane	ND< 8.11		
Vinyl chloride	ND< 8.11		
ELAP Number 10958	Method:	EPA 82608	Data File: V3

rlap number 10958

Signature;

Method; EPA 82608

Data File: V39446.D

Comments: ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Feannical Director

This report is part of a multipage document and should only be avaluated in its antisety. Chain of Custody provides additional information, including completance with semple condition requirements upon reports.

716-937-9360

C PARALIKIN

25-100

ENTERDUCINE MAVEET. ISE 179 Lake Avenue Rochester, New York 14808 (585) 847 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Sollds/Sludges

Cliont: NWECAC

Client Job Site:	WCFTC	Lab Project Number:	
Client Job Number;	04-138	Lab Sample Number:	9539
Field Location:	N cell,W and,S4,5-6'	Date Sampled:	09/14/2006
Field ID Number:	N/A	Data Received:	09/22/2006
Sample Type:	Soll	Date Analyzed:	09/22/2006

Halocarbons	Results in up / Kg	Aromatics	Results in ug / Kg
Bromodichloromethene	ND< 10.5	Benzene	ND< 10.5
Bromo metha ne	ND< 10,5	Chlorobenzene	ND< 10.5
Bromolorm	ND< 10.5	Ethylbenzene	ND< 10.5
Carbon Tetrachloride	ND< 10.5	Toluana	ND< 10.5
Chlaroethene	ND< 10.5	m.p-Xylene	ND< 10.5
Chloromethane	NO< 10.5	a-Xylene	ND< 10.5
2-Chloroethyl vinyl Ether	ND< 10.5	Styreno	ND< 10.5
Chioroform	ND< 10,5	1,2-Dichlorobenzene	ND< 10.5
Dibromochloromethane	ND< 10.5	1,3-Dichlorobenzene	ND< 10.5
1,1-Dichloroethans	ND< 10,5	1.4-Dichlorobenzene	ND< 10.5
1,2-Dichloroethane	ND< 10,5		
1,1-Dichloroelhene	ND< 10.5	Ketones	Results in ug / Kg
cis-1.2-Dichloroethene	ND< 10.5	Acelone	ND< 52.7
trans-1,2-Dichloroethene	ND< 10.5	2-Butanona	ND< 28.3
1,2-Dichloropropane	ND< 10.5	2-Hexanone	ND< 28.3
cis-1,3-Dichloropropens	ND< 10.5	4-Methyl=2-pentanone	NO< 26.3
trans-1,3-Dichloropropone	ND< 10.5		
Methylene chloride	ND< 28.3	Miscellancous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 10.5	Carbon disulfide	ND< 26.3
Tetrachloroethene	14,2	Vinyl acetate	ND< 26.3
1,1,1-Trichloroethene	ND< 10.5	-	
1,1,2-Trichloroethane	ND< 10.5		
Trichloroethans	ND< 10.5		
Frichlorofluoromethans	ND< 10.5		
/inyl chloride	ND< 10.5		
ELAP Number 10958	Method:	EPA 8280P	Deta Ella: \/30445 11

ELAP Number 10958

Method: EPA 82669

Data File: V38445.D

Comments: NO denotes Non Detect vg / Kg ≂ microgram per Kilogram

Signature:

Bruce Hoogestager: Technical Director

This report is part of a multipage decument and should daily be evaluated in the endroy. Chain of Cuolody provides additional information, including campulance with sample consisten requirements upon receipt. 08267843,20,5

AN OF (NSTODY	
	0	

1		24-136	STO OTHER	17 17	<i>⊾A</i> M.	SAGADIGH LAB		9537	0 9 9 0 0) v.							Producer and the]
	La suncert & Let	06-2875	Kurl		Udre Uts Ma	Reharks		h g - g	Story Wards							· .	Total Coet:	250	910 81.F	6
		STATE: ZBP:	fau:						uerer 102							9/11/m	emine Parting	1 Patentine	9/22/06 0	DateVilme
		RECRESS:	WHORE: AFTRE			NO/E NO O Oronoi NO TO RITO RITO RITO RITO RITO RITO RITO RI											the	2 a a Dower	a the	5
	and a second	end the	116537 3360			2 ≪ ← E = ×		5) 9512 C	S 7-81 S	24,520' 5						ALLE A	A CONTRACT	A PUNC	Classific and a second of the Bu	
	"MURCHC	Eller Ling	16937623	the second the second		SANAPLE LOCATIONNELD ED	1 11 310 B	Scell Work	Mid coll. E con	12 cell; went					12422231244	WELAC Compliance	} {			
	S S	800) 724-1987 24-1987				ی ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	P.,77) 4		12:59 2	x 05.50		**************************************			Service Condition: Per NELACIE AP 210/24/24/24/24/24/24/24/24/24/24/24/24/24/	n varianteror Econiteiner Type:	Presenzation:	Robits Time:	Varippedure.	
PARADIGN		Lo 179 Lake Avenue Co Richester, NY 14603 Co (503) 547-2530 • (800) 724-1997 Lo FAX: (565) 647-3311		S.	-T	ų Š	E6-28	2 5 4 4	3 91115	2000 10 10 10 10 10 10 10 10 10 10 10 10) (g)	1	TACK TRACE	F/1100/05-141	- b err		0 90 ,	-9Z-6	Corrusals:	