FILE NAME

 $"Report.VCP.v00615.2007-07-23.RIR_Site1_pt2.pdf"$

NOTE

- Contains folded images. Images must be copied in their entirety.
- Images may contain color.
- Documents must be returned in the same arrangement in which they were received.

Please return electronic copies to Sally Dewes

The Port Authority of New York and New Jersey

Comprehensive Remedial Investigation Report Site 1 (VCP Site V00615-2)

HHMT - Port Ivory Facility
July 2007

and other semi-impervious material, which will function as an environmental cap throughout the entire site. This action will tend to stabilize contaminants present in soil and historic fill material by impeding infiltration, thereby reducing the potential for contaminants in soil to leach from the unsaturated zone to groundwater. In addition, the placement of such materials will safeguard the public by preventing exposure to contaminants in soil and groundwater. Additional information pertaining to development actions is provided in Section 13.

12.2 Completed Remedial Actions

To accommodate site redevelopment efforts, hot spot excavation was performed at locations within Site 1. A summary of the excavation and sampling at 1 is presented by AOC in the following Sections. Excavation and sampling were performed in accordance with NYSDEC protocols. Continuous field screening, utilizing a photoionization detector (PID) was performed through excavation and sampling efforts. The limits of the hotspot excavation areas and the locations of samples are provided on Figure 21 and a summary of sampling is presented in Table 12.

12.2.1 FS-1 Area

The Area FS-1 measured approximately 100 feet in length (east to west) and 83 feet in width (north to south) and extended approximately 5.0 feet in depth, just above the groundwater table. No readings above background were recorded on the PID. The Area FS-1B excavation is located to the southwest of the Area GW-14 excavation. The majority of the excavation is located on Site 1, with approximately one-quarter of the excavation in Site 2A. Visually impacted soils located from within the limits of the excavation consisted of a mix of cinder, ash, lime sludge/by-product fill material, sand, tree timbers and concrete sections.

During the soil removal effort, a concrete structure was encountered at the southeast corner. No visual indications of contaminants were noted and no readings above background were recorded on the PID. The concrete structure was removed from the excavation for off-site disposal along with other concrete demolition debris.

Eight soil samples were collected from the excavation; two from each sidewall and submitted for PAH compound (8260) and VOC (8270) analyses. VOCs were either not detected or were detected at concentrations below the corresponding RSCO. None of the samples exceeded the guidance threshold of 10 mg/kg for total VOCs. Four PAH compounds were detected at concentrations in excess of corresponding RSCOs in several samples collected from Area FS-1B excavation. Benzo(a)anthracene was detected in excess of its RSCO in three samples with concentrations ranging from 0.27 mg/kg in sample FS1-1 to 2.2 mg/kg in sample FS1-4. Benzo(a)pyrene was detected in excess of its RSCO in six samples ranging in concentrations from 0.18 mg/kg in sample FS1-8 to 1.7

Table 12 Summary of Remedial Actions and Sampling Site 1: -HHMT Port Ivory Facility

Initial SI AOC	SI Soil Boring Location	Description of Issues	Description of Actions and Sampling	Analytical Parameters
FS-1 Area	FS-1B	The RI investigation delineated impacted soil surrounding soil boring FS-1B.	The delineated area surrounding FS-1B was excavated to the groundwater table to address potential petroleum impacted soil. Soil samples were collected from the 0.0-0.5 foot interval above the groundwater table.	VOC 8270; BN 8260
			The excavation measured 100 feet by 83 feet. Eight confirmation soil samples were collected: FS1-1, FS1-2, FS1-3, FS1-4, FS1-5, FS1-6, FS1-7, and FS1-8. Soil samples were taken at the base of the sidewalls at the 0.0-0.5 foot interval above the groundwater table (approximately 4.5-5 feet bgs). Excavated soil was stockpiled onsite pending off-site disposal.	
			The majority of this excavation is located on Site 1, with only a small area at Site 2A	
Area A	A-2 and A-5	The RI investigation delineated impacted soil at locations A-2 and A-5 at Area A.	An excavation was conducted at A-5 and A-2; the excavation at these two areas was combined into a single excavation area based upon field observations. The excavation was extended to groundwater to address visual signs of petroleum impacts. Soil samples were collected from 3.0 to 3.5 feet below ground surface.	VOC 8270; BN 8260
			The excavation measured approximately 170 feet by 147 feet wide. Additional excavation, measuring approximately 68 feet by 32 feet, was performed off the northwest corner to address visual signs of potential petroleum impacts. Eight confirmation samples were collected from the A-5 excavation: A5-1, A5-2, A5-3, A5-4, A5-5, A5-6, A5-7, and A5-8. Samples were taken from the base of the sidewalls at the 0.0 - 0.5 foot interval above the groundwater table. Excavated soil was stockpiled on site awaiting off-site disposal.	
			The majority of this excavation is located on Site 1, with only a small area at Site 2A.	

Table 12 Summary of Remedial Actions and Sampling Site 1: -HHMT Port Ivory Facility

Initial SI AOC	SI Soil Boring Location	Description of Issues	Description of Actions and Sampling	Analytical Parameters
UST – 2 Area	UST-2	The RI investigation delineated impacted soil at UST-2.	Due to on-going demolition activities the remedial actions for this area were not performed in 2002/2003. The appropriate remedial action for this area is being reviewed with respect to proposed development activities.	Not Applicable
Wood Yard	Wood-5	The RI investigation delineated impacted soil at Wood-5.	The delineated area surrounding Wood-5 was excavated to the groundwater table. The excavation area measured 30 feet by 30 feet and was extended to the limits defined by the RI. No samples were collected from the resultant excavation based on field observations as well as analytical results from the RI which had revealed few detections of VOCs or PAH Compounds.	Not Applicable

mg/kg in san ple FS1-4. Benzo(b)flouranthene was detected in excess of its RSCO in one sample, FS1-4 at 2.0 mg/kg. Chrysene was detected in excess of its RSCO in three samples ranging in concentrations from 0.41 mg/kg in sample FS1-1 to 2.3 mg/kg in sample FS1-4. None of the samples exhibited concentrations in excess of the guidance threshold of 500 mg/kg for total PAH Compounds. Analytical results are presented in Table 13A and 13B.

12.2.2 Area A-2/A-5

The Area A-5 excavation measured approximately 170 feet in length (east to west) and 150 feet in width (north to south) and extended 3.5 feet in depth, including location A-2. No readings above background were recorded on the PID. The northeastern corner of the Area A-5 excavation overlaps the southwestern excavation of the Area GW-14 (Area B-3/B-2) excavation. The majority of the excavation is located on Site 1, with approximately one-quarter of the excavation in Site 2A. Access to the underlying soils was possible after the removal of railroad tracks and concrete slabs. Visually impacted soils located from within the limits of the excavation consisted of a mix of cinder, ash, lime sludge/by-product fill, fine black sand and tan sand. The depth of the excavation was limited by the presence of groundwater (3.5 feet bgs) as well as the presence of lime sludge/by-product fill and numerous tree trunks (4 feet to 15 feet bgs).

Eight soil samples were collected from the interface of the sidewalls/ground water table. All samples were analyzed for PAH compounds (8260) and VOCs (8270). No VOCs were detected at concentrations above corresponding RSCOs and no sample exceeded the total VOC guidance threshold of 10 mg/kg. PAH compounds were either not detected or detected at concentrations below the RSCO in all but one sample. Benzo(a)pyrene was detected at 0.14 mg/kg in Sample A5-5. None of the samples collected exceeded the guidance threshold of 500 mg/kg for total PAH compounds. Please refer to Tables 14A and 14B for a summary of the analytical results.

12.2.3 Area B-3/B-2/Area GW-14

The Area B-3/B-2 excavation was extended to address visual indications of petroleum impacts resulting in the joining of the Area B-3/B-2 excavation and the Area GW-14 excavation. The Area GW-14 excavation extended approximately 305 feet in length (north to south) and 110 feet in width (east to west). The excavation was extended to a depth of approximately 3.5 feet; the excavation activities encountered groundwater at some locations. The majority (approximately three-quarters) of the excavation is located on Site 2A, with the remainder (approximately one-quarter) is located in Site 1. Visually impacted soils located from within the limits of the excavation ranged from cinder and ash fill, red clays, silts and sands. PID readings were continuously recorded

Table 13A Soil Analytical Results FS1 Area

Volatile Organic Compounds Site 1 - HHMT- Port Ivory Facility

Location	Recommended	FS1-1	FS1-2	FS1-3	FS1-4	FS1-5	FS1-6	FS1-7	FS1-8
Sample Date	Soil Cleanup	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002
Sample Depth (ft)	Objective	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0
Units	mg/kg	mg/kg	mg/k g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
1,3,5-trimethlybenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
4-isopropyltoluene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0022	0.0020U	0.0016U
Benzene	0.06	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Ethylbenzene	5.5	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Isopropylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
M&p-Xylenes	1.2*	0.0012U	0.0028U	0.0032U	0.0039U	0.0035U	0.0025U	0.0040U	0.0032U
Methyl-t-butyl ether	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Naphthalene	13	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
N-butylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
N-Propylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
O-Xylene	1.2*	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Sec-butylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
T-Butlybenzene	NS	- 0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Toluene	1.5	0.0031	0.0037	0.0016U	0.0020U	0.0028	0.0025	0.0023	0.0016U
Total VOCs	10	0.0031	0.0037	ND	ND	0.0028	0.0047	0.0023	ND

U Undetectable Levels

ND Not Detected

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 13B Soil Analytical Results FS1 Area PAH Compounds

Site 1 - HHMT-Port Ivory Facility

Location	Recommended	FS1-1	FS1-2	FS1-3	FS1-4	FS1-5	FS1-6	FS1-7	FS1-8
Sample Date	Soil Cleanup	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002
Sample Depth (ft)	Objective	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.045J	0.47U	0.52U	2.0U	0.58U	0.42U	0.27J	0.54U
Anthracene	50	0.12J	0.47U	0.52U	2.0U	0.58U	0.42U	0.67	0.063J
Benzo(a)anthracene	0.224 or MDL	₩0.27J	0.47U	0.1J	2.2	0.19J·	0.071J	1.4	0.22J
Benzo(a)pyrene	0.061 or MDL	0.36J	0.47U	0.21J	1.7J	0.24J	0.059J	1	0.18J
Benzo(b)fluoranthene	1.1	0.6	0.47U	0.36J	2	0.29J	0.10J	0.96	0.31Ј
Benzo(g,h,i)perylene	50	0.13J	0.47U	0.52U	0.69J	0.58U	0.42U	0.2J	0.54U
Benzo(k)fluoranthene	1.1	0.27J	0.47 U	0.087J	0.52J	0.069J	0.42U	0.43J	0.54U
Chrysene	0.4	0.41J	0.14J	0.15J	2.3	0.35J	0.092J	1.5	0.32J
Dibenzo(a,h)Anthracene	0.014 or MDL	0.42U	0.47U	0.52U	2.0U	0.58U	0.42U	0.67U	0.54U
Fluoranthene	50	0.66	0.47U	0.17J	0.82J	0.24J	0.11J	1.9	0.28J
Fluorene	50	0.055J	0.47U	0.52U	2.0U	0.58U	0.42U	0.29J	0.54U
Indeno(1,2,3-cd)pyrene	3.2	0.13J	0.47U	0.52U	0.55J	0.58U	0.42U	0.18J	0.54U
Napthalene	13	0.14J	0.16J	0.082J	0.52J	0.58U	0.045J	2.2	0.19J
Phenanthrene	50	0.54	0.19J	0.16J	0.66J	0.20J	0.089J	3.5	0.35J
Pyrene	50	0.81	0.47U	0.17J	2	0.35J	0.11J	3.3	0.41J
Total PAH Coumpounds	500	4.54	0.49	1.489	13.96	1.929	1.516	17.8	2.323

U Undetectable Levels

MDL Method Detection Limit

Table 14A Soil Analytical Results A5 Area

Volatile Organic Compounds Site 1 - HHMT-Port Ivory Facility

Location		A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7	A5-8
Sample Date	Recommended	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Soil Cleanup Objective mg/kg	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	Objective mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
1,3,5-trimethlybenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
4-isopropyltoluene	NS	0.0039	0.0046	0.0035	0.012	0.0084	0.0013U	0.0014U	0.0012U
Benzene	0.06	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Ethylbenzene	5.5	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Isopropylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
M&P-Xylenes	1.2*	0.0031U	0.0027U	0.0027U	0.00 29 U	0.0025U	0.0026U	0.0027U	0.0025U
Methyl-t-butyl ether	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Naphthalene	13	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
N-butylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
N-Propylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
O-Xylene	1.2*	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Sec-butylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Toluene	1.5	0.033	0.014	0.012	0.0065	0.021	0.031	0.018	0.02
Total VOCs	10	0.0072	0.0186	0.0155	0.0185	0.0294	0.031	0.018	0.02

U Undetectable Levels

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 14B Soil Analytical Results A5 Area PAH Compounds

Site 1 - HHMT- Port Ivory Facility

Location		A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7	A5-8
Sample Date	Recommended	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Soil Cleanup Objective mg/kg	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	Objective mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Anthracene	50	0.77U	0.68U	0.67U	0.71U	0.043J	0.66U	0.68U	0.62U
Benzo(a)anthracene	0.224 or MDL	0.77U	0.68U	0.67U	0.076J	0.15J	0.66U	0.68U	0.62U
Benzo(a)pyrene	0.061 or MDL	0.77U	0.68U	0.67U	0.71U	0.14J	0.66U	0.68U	0.62U
Benzo(b)fluoranthene	1.1	0.77U	0.68U	0.67U	0.71U	0.22J	0.66U	0.68U	0.62U
Benzo(g,h,i)perylene	50	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Benzo(k)fluoranthene	1.1	0.77U	0.68U	0.67 U	0.71U	0.083J	0.66U	0.68U	0.62U
Chrysene	0.4	0.77U	0.68U	0.67U	0.087J	0.18J	0.075J	0.68U	0.62U
Dibenzo(a,h)Anthracene	0.014 or MDL	0.77U	0.68U	0.67 U	0.71U	0.40U	0.66U	0.68U	0.62U
Fluoranthene	50	0.77U	0.68U	0.67U	0.13J	0.26J	0.19J	0.14J	0.13J
Fluorene	50	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Indeno(1,2,3-cd)pyrene	3.2	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Napthalene	13	0.83	0.68U	0.67U	0.091J	0.070J	0.66Ú	0.68U	0.62U
Phenanthrene	50	0.77U	0.68U	0.67U	0.12J	0.20Ј	0.14J	0.68U	0.62U
Pyrene	50	0 .77U	0.68U	0.67U	0.12J	0.30J	0.14J	0.10J	0.093J
Total PAH Compounds	500	0.83	ND	ND	0.624	1.646	0.545	0.24	0.223

U Undetectable Levels

ND Not Detected

MDL Method Detection Limit

and ranged from not detected to 1500 parts per million (ppm). No measurable free product was observed to be present or to form on groundwater, where present.

During the removal of soil, piping was noted extending north to south along the eastern portion of the excavation. All piping was removed from the excavation. Based on field observations and historical site maps, it appears that the piping was associated with a former storm sewer line. Additional piping was uncovered in the northern corner of the excavation. The piping was traced and noted to extend to the north. The expansion of the excavation revealed the presence of a UST measuring 4 feet wide by 8 feet long by 6 feet in diameter. Based on historical information, it appeared that the UST was utilized as part of a former oil/water separator system. The UST appeared intact and additional efforts were undertaken to inspect and removed the vessel. Inspection of the tank and the underlying soil did not reveal the presence of residual materials or visually impacted soils. Field screening did not reveal the any readings above background. Due to the presence of the UST, the excavation was expanded in an easterly direction. The extension revealed the presence of three concrete tubs. The tubs were connected with piping and appeared to be part of the oil/water separators system. The system was removed from the excavation for off-site disposal.

Twelve soil samples were collected from the sidewalls of the excavation at the soil/ground water interface (3-3.5 feet bgs). All soil samples were analyzed for PAH compounds (8260) and VOCs (8270). VOCs were either not detected or were detected at concentrations below corresponding RSCOs. No samples exceeded the RSCO of 10 mg/kg for total VOCs. Only two PAH compounds, benzo(a)anthracene and benzo(a)pyrene, were detected above corresponding RSCOs. Benzo(a)anthracene was detected at concentrations in excess of its RSCO in three samples ranging from 0.26 mg/kg in sample GW14-10 to 0.27 mg/kg in samples GW14-8 and GW14-12. Benzo(a)pyrene was detected at concentrations in excess of its RSCO in six samples ranging from 0.062 mg/kg in sample GW14-3 to 0.24 mg/kg in sample GW14-12. None of the samples were noted to exceed 50 mg/kg guidance for individual PAH compounds or the 500 mg/kg guidance criteria for total PAH compounds. Please refer to Tables 15A and 15B for a summary of all analytical results.

12.2.4 Area Wood-5

The Area Wood-5 excavation was extended to the locations of the RI soil borings, which were located approximately 15 feet to the north, east, south and west of location Wood-5. The excavation was advanced to a depth of approximately 3.5 feet bgs. Field screening did not identify the presence of petroleum impacts along sidewalls and limited evidence of such impacts were observed with respect to removed soil. Inspection of excavation sidewalls noted the presence or yellow-tan sands with some fine brown silt/clays with limited

Table 15A Soil Analytical Results GW14 Area

Volatile Organic Compounds

Site 1 - HHMT-Port Ivory Facility

Location	Recommended	GW14-1	GW14-2	GW14-3	GW14-4	GW14-5	GW14-6
Sample Date	Soil Cleanup	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0014U	0.0013U	0.0012U	0.001 2 U	0.0012U	0.0013U
1,3,5-trimethlybenzene	NS	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
4-isopropyltoluene	NS	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0024
Benzene	0.06	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Ethylbenzene	5.5	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Isopropylbenzene	NS	0.0014U	0.0013U	0.0048	0.0012U	0.0012U	0.0013U
M&p-Xylenes	1.2*	0.0028U	0.0026U	0.0024U	0.0025U	0.0024U	0.0025U
Methyl-t-butyl ether	NS	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Naphthalene	13	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
N-butylbenzene	NS	0.0014U	0.0013U	0.0013	0.0012U	0.0012U	0.0013U
N-Propylbenzene	NS	0.0014U	0.0013U	0.0047	0.0012U	0.0012U	0.0013U
O-Xylene	1.2*	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Sec-butylbenzene	NS	0.0014U	0.0013U	0.0046	0.0012U	0.0012U	0.0013U
T-butylbenzene	NS	0.0014U	0.0013U	0.0049	0.0012U	0.0012U	0.0013U
Toluene	1.5	0.011	0.0084	0.011	0.0084	0.0076	0.0099
Total VOCs	10	0.011	0.0084	0.0313	0.0084	0.0076	0.0123

U Undetectable Levels

ND Not Detected

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 15A Soil Analytical Results GW14 Area

Volatile Organic Compounds Site 1 - HHMT-Port Ivory Facility

Location	Recommended	GW14-7	GW14-8	GW14-9	GW14-10	GW14-11	GW14-12
Sample Date	Soil Cleanup	4/9/2003	4/9/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
1,3,5-trimethlybenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
4-isopropyltoluene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0088	0.0086
Benzene	0.06	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Ethylbenzene	5.5	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Isopropylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
M&p-Xylenes	1.2*	0.0029U	0.0025U	0.0028U	0.0022U	0.0022U	0.0022U
Methyl-t-butyl ether	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Naphthalene	13	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
N-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
N-Propylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
O-Xylene	1.2*	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Sec-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
T-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Toluene	1.5	0.015	0.0054	0.0014U	0.0011U	0.0011U	0.0011U
Total VOCs	10	0.015	0.0054	ND	ND	0.0088	0.0086

U Undetectable Levels

ND Not Detected

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 15B Soil Analytical Results GW14 Area PAH Compounds

Site 1 - HHMT-Port Ivory, Facility

Location	Recommended	GW14-1	GW14-2	GW14-3	GW14-4	GW14-5	GW14-6	GW14-7	GW14-8	GW14-9	GW14-10	GW14-11	GW14-12
Sample Date	Soil Cleanup	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.09 6 J	0.14J	0.69U	0.14J	0.088J	0.079J
Anthracene	50	0.69U	0.64U	0.61U	0.11J	0.60U	0.63U	0.71U	0.62U	0.69U	0.15J	0.062J	0.12J
Benzo(a)anthracene	0.224 or MDL	0.69U	0.64U	0.086J	0.16J	0.60U	0.082J	0.084J	-0.27J	0.69U	0.26J	0.13J	0.27J
Benzo(a)pyrene	0.061 or MDL	0.69U	0.64U	.0.062J	-:0.11J	0.60U	0.63U	0.71U	0.23J	0.69U	0.17J	0.10J	0.24J
Benzo(b)fluoranthene	1.1	0.69U	0.64U	0.14J	0.16J	0.60U	0.084J	0.18J	0.53J	0.69U	0.36J	0.18J	0.35J
Benzo(g,h,i)perylene	50	0.6 9 U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.093J	0.69U	0.56U	0.54J	0.081J
Benzo(k)fluoranthene	1.1	0.69U	0.64U	0.61U	0.070J	0.60U	0.63U	0.71U	0.14J	0.69U	0.12J	0.54J	0.12J
Chrysene	0.4	0.69U	0.64U	0.11J	0.18J	0.60U	0.075J	0.12J	0.37J	0.69U	0.31J	0.14J	0.29J
Dibenzo(a,h)Anthracene	0.014 or MDL	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.62U	0.69U	0.56U	0.54U	0.56U
Fluoranthene	50	0.69U	0.64U	0.20J	0.35J	0.60U	0.21J	2.4	8.7	0.15J	0.91	0.37Ј	0.86
Fluorene	50	0.69U	0.64U	0.61U	0.080J	0.60U	0.63U	0.71U	0.62U	0.69U	0.12J	0.071J	0.098J
Indeno(1,2,3-cd)pyrene	3.2	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.099J	0.69U	0.56U	0.54U	0.0793
Napthalene	13	0.074J	0.64U	0.61U	0.62U	0.60U	0.63U	0.16J	0.15J	0.095J	0.20J	0.083J	0.089J
Phenanthrene	50	0.69U	0.64U	0.15J	0.19J	0.60U	0.19J	1.5	0.62U	0.16J	0.79	0.24J	0.76
Pyrene	50	0.69U	0.64U	0.18J	0.30J	0.60U	0.17J	0.22J	0.84	0.10J	0.61	0.33J	0.55J
Total PAH Compounds	500	0.074	ND	0.928	1.71	ND	0.811	4.76	11.562	0.505	4.14	2.874	3.986

U Undetectable Levels

ND Not Detected

MDL Method Detection Limit

observation of cinders. Based on a visual review and analytical results from RI sampling, the issue at this location appears to have been associated with residual cinder material (ubiquitous to the fill material) rather than petroleum. Thus, no confirmation samples were warranted or obtained for Area Wood-5.

12.2.5 Area UST2

No excavation activities have been performed at Area UST2. This area is currently undergoing geotechnical review with respect to proposed redevelopment. As such, the Port Authority will provide additional information pertaining to remedial actions at Area UST2 under separate cover.

13.0 SUMMARY OF PROPOSED SITE DEVELOPMENT ACTIONS

The Port Authority is currently redeveloping Site 1 for use as an intermodal facility, which will function as part of the larger container terminal/intermodal facility including the entire HHMT-Port Ivory Facility. The findings from the assessment/investigation actions have revealed that the Port Authority's planned usage of the site as an intermodal facility and container terminal is not inconsistent with the levels of contamination noted to be present in site soil and groundwater and that contamination can be addressed through site redevelopment.

The Port Authority had developed Preliminary Site Plans for the proposed redevelopment of Sites 1 and 2A/2B. Please refer to Appendix E for information related to site development including a Preliminary Site Plan dated January 2003 and a Preliminary Site Plan with Phasing, also dated January 2003. Additional site development information is provided on a schematic drawing designated as SK16 and dated October 13, 2003; drawing SK16 is also provided in Appendix E. At this time, no buildings are located at Site 1 and current development plans do not include the construction of any buildings within the limits of Site 1. To address structural issues presented by the presence of fill material, the Port Authority's development plan includes a process of surcharging portions of Site 1 and Site 2A/2B, with geotechnically suitable clean fill, to achieve a stable base for future construction. Figure SK1, Sequencing of Surcharge Areas along with an associated schedule, is provided in Appendix E.

As part of the geotechnical site preparation work, the Port Authority performed a surcharge pilot study at an area of Site 1 in 2002/2203. The study included the systematic placement of soil/fill over an area measuring approximately 75 feet by 75 feet and the measurement of settlement. As part of the pilot study, the Port Authority reviewed potential environmental impacts to groundwater and Bridge Creek. The environmental review for groundwater included the installation and sampling of nested monitoring well pairs (one shallow and one deep well) at four locations around the pilot study area. The wells were constructed approximately 15 feet

from the edge of the surcharge material pile. Groundwater samples were collected from the eight newly installed wells as well as from two additional existing well locations, PG-CS-7 and PG-RS-1. Three rounds of groundwater sampling were performed on the two existing wells with all rounds including phenols and BTEX (benzene, toluene, ethylbenzene and xylenes) and one round including phenols, BTEX, TAL Metals and pH. One round of groundwater sampling was performed for the eight newly installed wells with analysis for TAL Metals and pH. A summary of analytical results is provided in Tables 16A (BTEX), 16B (phenols), and 16 (TAL Metals and pH). The pilot study area and well locations are presented on Figure 22. In addition, exceedences of applicable groundwater SVGs are also presented, by location, on Figure 22. A summary of analytical results is presented in Tables 16A-16C.

With respect to Bridge Creek, the environmental review included the inspection of the eastern bank of Bridge Creek for the presence of seeps, precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. In addition, two rounds of surface water sampling were performed as part of the surcharge pilot study. Five samples were collected from representative locations during both rounds and samples were analyzed for TAL Metals and pH. The surface water locations and associated analytical results are presented on Figure 22 and Table 16C. Given the purpose of the study, the surface water samples were compared to applicable groundwater SVGs.

Overall, the environmental evaluation performed as part of the pilot study did not reveal any adverse impacts as a result of the compaction process. Inspection of the eastern bank did not reveal the presence of seeps, additional/increased occurrence of precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. Analytical results from surface water and groundwater sampling did not reveal any increased contaminant concentrations over the period of study. It should be noted that m&p xylenes (reported as a combined concentration) was/were detected in the groundwater sample from the third round of sampling of PG-CS-7 but not in the first or second rounds. This is not regarded as increase in contaminant concentration during the pilot study since xylenes were detected at a higher concentration in the SI sampling round performed in November 2000. As shown on the surcharging phasing study and schedule, surcharging has been completed at the two areas labeled Phase 1A has been completed and has been initiated at the area labeled Phase 1B North. Although the pilot study did not reveal the presence of adverse impacts to groundwater or Bridge Creek, additional monitoring efforts are proposed to confirm the findings of the pilot study. The proposed actions will mimic those performed during the pilot study but will utilize five existing monitoring wells situated in both Site 1 and Site 2A at locations adjacent to Bridge Creek; the proposed locations include EW-1 (Site 2A), MW-5 (Site 1) MW-6/MW-6D (Site 2A) and CS-7 (Site 2A). The proposed monitoring program will also include sampling of

T:
Surcharge Pilot Study - Groundwater Results
BTEX

Site 1: HHMT - Port Ivory Facility

Location			CS-7	RS-1	FB-1	TB-1	CS-7	RS-1	TB-1	FB-1	ТВ-1	CS-7	RS-1
Date	Recommended Groundwater	Recommended Groundwater	10/15/2002	10/15/2002	10/15/2002	10/15/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/7/2002	12/2/2002	12/2/2002
LAB ID#	Cleanup Standard	Cleanup Guidance	AB70453	AB70455	AB70457	AB70459	AB72292	AB72294	AB72304	AB72305	AB72397	AB74079	AB74081
Concentration	UG/L	UG/L	UG/L	UG/L .	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
						ļ							
Benzene	1	NG	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U
Ethylbenzene	5	NG	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	2.4	0.63U
m&p-xylenes	5&5	NG	1.10	1.10	1.1U	1.10	1.10	1.1U	1.1U	1.10	1.1U	7	1.10
O-xylenes	5	NG	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U
Toluene	5	NG ³	0.79U	0.79U	0.79U	0.79U	0.79U	0.79U	0.79U	0.79U	0.790	0.790	0.79U

U Undetectable Levels

NG No Guidance

Surcharge Pilot Study - Groundwater Results Acid Extractables

Site 1: HHMT Port Ivory Facility

Location	Recommended	Recommended	CS-7	RS-1	FB-1	CS-7
Date	Groundwater	Groundwater	10/15/2002	10/15/2002	10/15/2002	11/6/2002
Lab ID	Cleanup	Cleanup	AB70453	AB70455	AB70457	AB72292
Concentration	Standard UG/L	Guidance UG/L	UG/L	UG/L	UG/L	UG/L
2,4,5-trichlorophenol	NS	NG	0.6U	0.6U	0.6U	0.6U
2,4,6-trichlorophenol	NS	NG	0.65U	0.65U	0.65U	0.65U
2,4-dichlorophenol	5	NG	0.57U	0.57U	0.57U	0.57U
2,4-dimethylphenol	NS	50	0.49U	0.49U	0.49U	0.49U
2,4-dinitrophenol	NS	10	3.1U	3.1U	3.1U	3.1U
2-chlorophenol	NS	NG	0.49U	0.49U	0.49U	0.49U
2-methylphenol	NS	NG	0.61U	0.61U	0.61U	0.61U
2-nitrophenol	NS	NG	0.64U	0.64U	0.64U	0.64U
3&4-methylphenol	NS	NG	5.4U	1.1J	5.4U	5.4U
4,6-dinitro-2-methylphenol	NS	NG	0.36U	0.36U	0.36U	0.36U
4-chloro-3-methylphenol	NS	NG	0.38U	0.38U	0.38U	0.38U
4-nitrophenol	NS	NG	0.27U	0.27U	0.27U	0.27U
pentachlorophenol	1 (total phenols)	NG	0.57U	0.57U	0.57U	0.57U
phenol	1 (total phenols)	NG	0.14U	0.14U	0.14U	0.14U
Total phenols	1	NG	ND	1.1	ND	ND

U Undetectable Levels

NS No Standard

NG No Guidance

ND Not Detected

note 16B

Surcharge Pilot Study - Groundwater Results Acid Extractables

Site 1: HHMT Port Ivory Facility

Location	Recommended	Recommended	RS-1	FB-1	CS-7	RS-1
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	12/2/2002	12/2/2002
Lab ID	Cleanup	Cleanup	AB72294	AB72305	AB74079	AB74081
Concentration	Standard UG/L	Guidance UG/L	UG/L	UG/L	UG/L	UG/L
2,4,5-trichlorophenol	NS	NG	0.6U	0.6U	0.6U	0.6U
2,4,6-trichlorophenol	NS	NG	0.65U	0.65U	0.65U	0.65U
2,4-dichlorophenol	5	NG	0.57U	0.57U	0.57U	0.57U
2,4-dimethylphenol	NS	50	0.49U	0.49U	0.49U	0.49U
2,4-dinitrophenol	NS	10	3.1U	3.1U	3.1U	3.1U
2-chlorophenol	NS	NG	0.49U	0.49U	0.49U	0.49U
2-methylphenol	NS	NG :	0.61U	0.61U	0.61U	0.61U
2-nitrophenol	NS	NG	0.64U	0.64U	0.64U	0.64U
3&4-methylphenol	NS	NG	5.4U	5.4U	5.4U	3.8J
4,6-dinitro-2-methylphenol	NS	NG	0.36U	0.36U	0.36U	0.36U
4-chloro-3-methylphenol	NS	NG	0.38U	0.38U	0.38U	0.38U
4-nitrophenol	NS	NG	0.27U	0.27U	0.27U	0.27U
pentachlorophenol	1 (total phenols)	NG	0.57U ·	0.57U	0.57U	0.57U
phenol	l (total phenols)	NG	0.14U	0.14U	0.14U	3
Total phenois	11	NG	ND	ND	ND	6.8

U Undetectable Levels

NS No Standard

NG No Guidance

ND Not Detected

Tal

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 1: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-SW1	ST-SW2	ST-SW3	ST-SW4	ST-SW5	CS-7	CS-7	RS-1
Date	Groundwater	Groundwater	10/21/2002	10/21/2002	10/21/2002	10/21/2002	10/21/2002	10/15/2002	10/15/2002	l I
Lab ID	Cleanup	Cleanup	AB70895	AB70896	AB70460	AB70897	AB70898	i	ì	10/15/2002
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	Į.	UG/L	AB70453	AB70454	AB70455
Filtered or Unfiltered	UG/L	UG/L	0 0/2	I GG/L	IOU/L	JUG/L	UG/L	UG/L	UG/L	UG/L
Aluminum	NS	NG	570	400	140	190	330	unfiltered	filtered	unfiltered
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U			100U	
Arsenic	25	NG	4.0U	5.4	4.0U				7.5U	
Barium	1000	NG	27	25U	4.00		25U	4.0U	4.0U	
Beryllium	NS	3	4.0U	4.0U	4.0U			25U	25U	
Cadmium	5	NG	2.5	2.5	2.0U	2.5	4.0U	4.0U	4.0U	4.0U
Calcium	NS	NG	150000	160000	93000			2.0U	2.0U	
Chromium	50	NG	25U	25U	25U				120000	120000
Cobalt	NS	NG	10U	10U	10U			25U	25U	
Copper	200	NG	25U	25U				10U	10U	
Iron	300***	NG	610***	280***				25U	25U	25U
Lead	25	NG	5.0U	5.0U		1000	150U	210		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Magnesium	NS	35000	600000	630000				5.0U	5.0U	
Manganese	300***	NG	82***	69***	260***	67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	276 253 47 274,176	120 TO 100 TO 10	
Nickel	100	NG	25U	25U	25U		61 25U	25U	25U	
Potassium	NS	NG	250000	260000	58000			25U	25U	
Selemum	10	NG	25U	25U				13000	15000	
Silver	50	NG	4800000	10U	10U		10U	25U	25U	
Sodium	20000	NG	50000U	5100000	1300000			10U 79000	10U	1
Thallium	NS	0.5	5.0U	5.0U	5.0U	436 11 (14)	- 200 NOVE 1997 (TIES	2 Kind A 20 C T T T T T T T T T T T T T T T T T T	89000	
Vanadium	NS	NG	25U	25U	25U			5.0U	5.0U	-
Zinc	NS	2000	47	34	25U			25U	25U	
Mercury	0.7	NG	0.2U	0.2U	0.2U			64	67	<u> </u>
pН	NS	NG	7.5					0.2U	0.2U	
	~			1	<u> </u>	7.0	/.0	<u> </u>	7	7.2

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

ST-SW1 through ST-SW5 represents samples collected from surface water

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

Tal

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 1: HHMT - Port Ivory Facility

Location	Recommended	Recommended	RS-1	FB-1	FB-1	ST-SW1	ST-SW2	ST-SW3	ST-SW4	ST-SW5
Date	Groundwater	Groundwater	10/15/2002	10/15/2002	10/15/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002
Lab ID	Cleanup	Cleanup	AB70456	AB70457	AB70458	AB72569	AB72570	AB72571	AB72572	AB72573
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	ug/l	ug/l	ug/l	ug/l	ug/l
Filtered or Unfiltered	UG/L	UG/L	filtered	unfiltered	filtered		_			
Aluminum	NS	NG	· 100U	100U	100U	430	420	340	550	290
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	" NG	1.0U	4.0U	4.0U	4.0U	4.0U	4.1	5.4	4.0U
Barium	1000	NG	52	25U	25U	28	25U	37	25U	25U
Beryllium	NS	3	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U
Cadmium	5	NG	2.0U	2.0U	2.0U	2.6		2.6	2.8	2.8
Calcium	NS	NG	130000		1000U	160000	170000	170000	180000	180000
Chromium	50	NG	25 U			25U	25U	25U	25U	25U
Cobalt	NS	NG	10U		10U	10U	10U	10U	100	10U
Copper	200	NG	25U		25U	25U	25U	25U	25U	25U
Iron	300***	NG	380***	150U	150U			360***	460***	150U
Lead	25	NG	5.0U	5.0U	5.0U	5U	5U	5U	J 5U	5U
Magnesium	NS	35000	26000		1000U	620000	* 680000	610000	710000	730000
Manganese	300***	NG	170***			72***	53	100***	48***	36
Nickel	100	NG	25U	25U	25U	25U	25U	25U	251	25U
Potassium	NS	NG	5500	2500L	2500U	300000	340000	300000	360000	380000
Selenium	10	NG	25U	25U	25L	J 25U	25U	25L	J 25U	J 25U
Silver	50	NG	10L	100	10L	J 10L	100	100	100	J 10U
Sodium	20000	NG	28000	25000L	25000L	5100000	5500000	5000000	550000	5900000
Thallium	NS	0.5	5.0U	5.00	5.0L	J 5U	5L	5U	J 5U	J 5U
Vanadium	NS	NG	25L	25U	25L	J 25L	25L	250	250	J 25U
Zinc	NS	2000	25L	25L	250	J 26	25L	28	3 250	25U
Mercury	0.7	NG	0.21	0.20	0.20	0.20	0.21	0.21	0.21	·
рН	NS	NG	7.2	4.2	4.2	7.7	7.6	7.	7 7.	

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

ST-SW1 through ST-SW5 represents samples collected from

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

Ta

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 1: HHMT - Port Ivory Facility

Location	Recommended	Recommended	CS-7	CS-7	RS-1	RS-1	ST-4S	ST-4S	ST-4D	ST-4D
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002
Lab ID	Cleanup	Cleanup	AB72292	AB72293	AB72294	AB722945	AB72296	AB72297	AB72298	AB72299
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
Aluminum	NS	NG	100U	100U			970	2300	140	
Antimony	3	NG	7.5U	7.5U			7.5U	75		7.5U
Arsenic	25	NG	7.5	5.9		4.6			8.1	8.3
Barium	1000	NG	25U	25U	78			2,879	780	
Beryllium	NS	3	4U	4U		 			4.U	4U
Cadmium	5	NG	2U	2U	2U				2U	2U
Calcium	NS	NG	83000	81000		120000			290000	
Chromium	50	NG	25U	. 25U				46	25U	25U
Cobalt	NS	NG	10U	10U		10U		220		
Copper	200	NG	25U	25U				160	25U	
Iron	300***	NG	150U	150U		950***		550***	22000***	
Lead	25	NG	5U	5U	and the second of the second o	CONTRACT THE PARTY	100	5U	22000 5U	
Magnesium	NS	35000	34000	34000				52000	97000	
Manganese	300***	NG	25U	25U		170***	28***	150***	5200***	The Section of the Control of the Co
Nickel	100	NG	25U	25U					200 Maria - C. 184 A. 4	3" 3495.42
Potassium	NS	NG	ND	ND	ND				ND ND	+
Selenium	10	NG	25U	25U		<u> </u>		25U	25U	25U
Silver	50	NG	. 10U	10U		10U	10U	10U	100	
Sodium	20000	NG	130000	130000					2100000	
Thallium	NS	0.5	5U	5U	Committee of the second second second	22 Table 2000 Car 2 (12 Table 20 Table	200 may 200 ma	42	210000 5U	
Vanadium	NS	NG	25U	25U	25U	25U		25U	28	
Zinc	NS	2000	49					920		
Mercury	0.7	NG	0.2U	0.2U		0.2U		0.2U	25U	25U
рН	NS	NG	8	 				0.20	0.2U	0.2U

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

ST-SW1 through ST-SW5 represents samples collected from

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

Tal

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 1: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-1S	ST-1S	ST-1D	ST-1D	FB-1	FB-1	FB-1	FB-1
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/7/2002	11/7/2002
Lab ID	Cleanup	Cleanup	AB72300	AB72301	AB72302	AB72303	AB72305	AB72306	AB72395	AB72396
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
Aluminum	NS	NG	3200	350	910	140	100U	100U	100U	100U
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	NG	90	53	8	6.2	4U	4U	4U	4U
Barium	1000	NG	190	150	84	74	25U	25U	25U	25U
Beryllium	NS	3	4U	4U	4U	4U	4U	4U	4U	4U
Cadmium	5	NG	3.2	2.5	2U			2U	2U	2 U
Calcium	NS	NG	690000	350000	74000	74000	1000U	1000U	1000U	1000U
Chromium	50	NG	25U	25U	25U	25U	25U	25U	25U	25U
Cobalt	NS	NG	10U	10U	10U		10U		10U	10U
Copper	200	NG	25 U	25 U	25U		25U	25U	25U	25U
Iron	300***	NG	2200***		5200***		150U		150U	150U
Lead	25	NG	5U		<u> </u>			5U	. 5U	5U
Magnesium	NS	35000	12000		58000	59000	1000U	1000U	1000L	1000U
Manganese	300***	NG	54***		120***	110***	25U	25U	250	25U
Nickel	100	NG NG	92	110	25U	25U	25U	25U	25L	25U
Potassium	NS	NG	ND	ND ND	ND	ND	ND	NE	NI	ND ND
Selenium	10	NG	25U	25U	25U	25U	2 5U	25L	250	J 25U
Silver	50	NG	10U	1	100	100	100	100	J01	J 10U
Sodium	20000	NG	1500000	1600000	660000	720000	2500U	25000	25001	J 2500U
Thallium	NS	0.5	5L	5L	5U	J SU	5U	5L	J 5U	J 5U
Vanadium	NS	NG	32	25L	25U	3 26	25L	251	J 25U	J 25U
Zinc	NS	2000	44	250	250	J 25L	250	251	251	
Mercury	0.7	NG	0.20	0.21	0.20	0.21	J 0.2U	0.21	0.20	
рН	NS	NG	13	13	7.3	7.3	6.5	6.5	6.8	

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

ST-SW1 through ST-SW5 represents samples collected from

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

Tai.

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 1: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-2S	ST-2S	ST-2D	ST-2D	ST-3D	OTE AT	COT OC	T
Date	Groundwater		11/7/2002	11/7/2002	11/7/2002	11/7/2002		ST-3D	ST-3S	ST-3S
Lab ID	Cleanup	Cleanup	AB72398	AB72398	1	1	11/7/2002	11/7/2002	11/7/2002	11/7/2002
Concentration	Standard	-	UG/L	UG/L	AB72400	AB72401	AB72402	AB72403	AB72404	AB72405
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Aluminum	NS NS	NG	2400		unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
Antimony	3	NG		800				100U	4400	420
Arsenic	25	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Barium	1000	NG	28 160	23	8.2	6.2	8.2	4U	61	9.7
Beryllium	NS	3	4U	180		110		83	510	430
Cadmium	5	NG	2U	4U 2U	4U	4U	4U	4U	4U	4U
Calcium	NS	NG	420000		2U	2U	2 U	2 U	2.7	2U
Chromium	50	NG		420000	120000		220000	220000	880000	430000
Cobalt	NS	NG	25U	25U	25U	25U	25U	25 U	25U	25U
Copper	200	NG	10U 25U	10U	10U	10U	10U	10U	10U	10U
Iron	300***	NG	1100***	25U	25U	25U	25U	25U	25U	25U
Lead	25	NG	6.7	150U	6600***	4900***	8500***	8200***	2100***	150U
Magnesium	NS NS	35000	2400	1000U	5U		5U	5U	5U	
Manganese	300***	NG	25U		83000	82000	130000	140000	13000	1000U
Nickel	100	NG .	39U	25U	*30***	400***	2300***	2500***	58***	25U
Potassium	NS	NG .	52000	57000	25U	25U	25U	25U	. 39	25U
Selenium	10	NG		57000	23000			74000	250000	2500
Silver	50	NG	25U 10U	25U	25U	25U	. 25U	25U	25U	25U
Sodium	20000	NG	780000	10U	10U	10U	10U	10U	10U	10U
Thallium	NS	0.5	7 80000 5U	0.0000	740000	*** * * Z. ** * * * * * * * * * * * * *	2200000	2300000	2100000	25000
Vanadium	NS NS	NG		5U	5U	5U	5U	. 5U	7.1	5U
Zinc	NS NS	2000	27	25U	25U	25U	55	52	27	25U
Mercury	0.7	NG	56	25U	25U	25U	25U	25U	130	25U
pH	NS	NG	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	1.7	0.2U
n.,	I NO	NG	13	13	7.8	7.8	7.2	7.2	13	13

ND No Data

U Urdetectable Levels

NS No Standard

NG No Guidance

ST-SW1 through ST-SW5 represents samples collected from

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

two sets of wells (MW-15/MW-15D located on Site 2A and MW-1/MW-1D located at Site 1) to provide additional groundwater information. The samples will be analyzed for TCL VOCs, phenols, TAL Metals and pH. Based on current information, four rounds of sampling will be performed over the next 12 months with collection occurring once per quarter.

The monitoring program will include a review of conditions at Bridge Creek and the sampling of both surface water and sediment/precipitate. The proposed sediment/surface water sampling will be performed in conjunction with the proposed groundwater sampling events and will include samples from five locations. Sediment and surface water samples also will be analyzed for TCL VOCs, phenols, TAL Metals and pH. In addition, monthly inspection will be performed to document conditions along the eastern bank of Bridge Creek. The inspections will be performed during low tide and will note the presence of seeps, precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. All sampling will be performed in accordance with NYSDEC protocol and laboratory analysis will be performed by a NYSDEC certified laboratory. Again, information from the pilot study has not identified any adverse impacts to groundwater or Bridge Creek, however, the Port Authority intends to confirm these findings through the above-described program.

14.0 CONCLUSIONS

This report presents a summary of assessment, investigation, delineation and remedial actions which have been undertaken at Site 1 from 2000 through 2003. By and large, assessment and investigation efforts identified relatively few environmental issues with respect to Site 1. Generally, the issues involved the presence of fill material, previously closed USTs and the presence of a few petroleum-impacted areas. As described herein, the environmental conditions at Site 1 as well as Sites 2A/2B and 3 of the HHMT-Port Ivory Facility have been evaluated with respect to the HHMT-Port Ivory Facility's proposed usage. Further, the Port Authority has undertaken actions to address residual petroleum related contamination through source removal. The actions undertaken at these areas also have included the removal of a previously closed UST (closed in place by P&G) and an abandoned oil/water separator system from Site 1. With regard to the presence of fill material, the SI/RI activities identified the presence of contaminants at Site 1, which are typical to urban sites in the New York Metropolitan region. The presence of the fill material and residual levels of fill-related contaminants in soil does not appear to have adversely impacted groundwater quality at Site 1 or Bridge Creek, situated adjacent to the western property boundary of Site 1 and Site 2A/2B.

Overall, industrial/commercial usage such as the Port Authority's planned usage of the site as an intermodal facility and container terminal is not inconsistent with the residual levels of contamination noted to be present in site soil and groundwater. The Port Authority has addressed several petroleum-impacted areas through source removal and will address fill material and residual contamination (associated with the fill material and prior industrial usage of the site by P&G) through site redevelopment including the use of engineering and institutional controls, which will minimize potential impacts to human health and the environment. Specifically, the Port Authority intends to install material such as pavement and other semi-impervious material, which will function as an environmental cap at Site 1 and the entire HHMT-Port Ivory Facility. This action will tend to stabilize contaminants present in soil and fill material by impeding infiltration, thereby reducing the potential for contaminants in soil to leach from the unsaturated zone to groundwater. Further, the placement of such materials will safeguard the public by preventing exposure to contaminants in soil and groundwater.

P:\232952wmd\Operable Unit Reports\Operable Unit 1\Post VCP Revisions\Uuly 2004 Revised Report\Revised Report 8-31-04\Final Draft Site 1 Report - 092104.doc

New York State Department of Environmental Conservation

Division of Environmental Remediation

eau of Hazardous Site Control, 11th Floor 625 Broadway, Albany, New York 12233-7014

Phone: (518) 402-9564 • FAX: (518) 402-9557

Website: www.dec.state.ny.us

RECEIVED

KILLAM GROUP, INC. 27 BLEEKER ST., MILLBURN NI 07041

MRR 27 2002

REFER: DATE SEEN:

REFER BACK TO: .

March 25, 2002

Mr. Charles Springer Killam Associates 27 Bleeker Street PO Box 1008 Millburn, NJ 07041-1008

Dear Mr. Springer:

Re:

Proctor & Gamble Site, Western Ave. Staten Island, Richmond County, NY

This letter is to confirm our phone conversation of earlier today regarding the Proctor and Gamble Site located on Western Avenue in Staten Island, New York. The site was formerly listed on the New York State Registry of Inactive Hazardous Waste Disposal Sites (site # 243002). It was removed from the registry due to the lack of disposal of a consequential amount hazardous waste. In addition, the site is currently not designated a site on the Inventory of Hazardous Substance Waste Disposal Sites. The Proctor & Gamble site was considered for, but not included in this inventory.

Please feel free to call me at the above number or e-mail me at emzuk@gw.dec.state.ny.us. if you have any further questions.

Sincerely,

Elaine M. Zuk

Senior Engineering Geologist

Eastern Investigation Section

GEOPHYSICAL SURVEY PROCTOR & GAMBLE PORT IVORY FACILITY STATEN ISLAND, NEW YORK

Prepared for:

Killam Associates 27 Bleeker Street PO Box 1008 Millburn, New Jersey 07041-1008

Prepared by:

Hager-Richter Geoscience, Inc. 8 Industrial Way - D10 Salem, New Hampshire 03079

File 00D59 December, 2000

©2000 Hager-Richter Geoscience, Inc.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59
December, 2000

0. EXECUTIVE SUMMARY

Hager-Richter Geoscience, Inc. conducted a geophysical survey at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York for Killam Associates (Killam)in October and November, 2000. The scope of the project and areas of interest were specified by Killam. The geophysical survey is part of a environmental investigation of the site being conducted by Killam on behalf of the Port Authority of New York and New Jersey.

The site is a large inactive industrial facility located in the northwestern portion of Staten Island. The Site consists of several buildings, gravel and paved parking areas, rail spurs, foundations and slabs of demolished buildings, and open areas. Hager-Richter was contracted by Killam to locate utilities in the vicinity of as many as 210 proposed boring locations and to locate possible USTs that may be present at nine locations identified at the Site by Killam. The locations of utilities detected as part of the boring program were marked on site as specified by Killam, and are not discussed further.

According to information provided by Killam, as many as 19 USTs might be present in nine areas of the site, designated by Killam UST Area 1 through UST Area 9. Four of the nine areas may contain multiple USTs, and five areas may contain a single UST.

The objective of the geophysical survey was to detect possible USTs in each of the nine areas of interest specified by Killam, and if any were detected, to determine the locations of each.

The geophysical survey consisted of time domain electromagnetic induction metal detector (EM61) surveys followed by focused GPR surveys in each of the areas of interest. The EM61 data were acquired at approximately 8-inch intervals along profile lines spaced 5 feet apart across the accessible portions of the areas of interest. In order to aid in the identification of the objects, a focused GPR survey was conducted at the locations of anomalies detected with the EM.

The results of the geophysical survey conducted at the Proctor & Gamble Port Ivory Facility can be summarized as follows:

• Several areas of buried metal were detected in the nine areas of interest at the site on the basis of the EM61 data. None of the identified areas of buried metal could be definitively identified as a UST due to the limited GPR signal penetration and/or surface features such as concrete slabs, metal piping, and rail spurs. Whether the buried metal is a UST is present cannot be determined on the basis of the geophysical data alone.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

• Several other EM61 anomalies are interpreted as possible utilities.

TABLE OF CONTENTS

0.	Executive Summary								
1.	Introduction								
2.	Equipment and Procedures 2 2.1 General 2 2.2 EM61 2 2.3 GPR 2 2.4 Site Specific 4								
3.	Results and Discussion 5 3.1 General 5 3.2 UST Area 1 5 3.3 UST Area 2 6 3.4 UST Area 3 6 3.5 UST Area 4 7 3.6 UST Area 5 7 3.7 UST Area 6 8 3.8 UST Area 7 8 3.9 UST Area 8 9 3.10 UST Area 9 9								
4.	Conclusions 10								
5.	Limitations 11								
	FIGURES								
1. 2. 3. 4. 5. 6.	Site Location EM61 - UST Area 1 GPR survey & Integrated Interpretation - UST Area 1 EM61 - UST Area 2 GPR survey & Integrated Interpretation - UST Area 2 EM61 - UST Area 3 GPR survey & Integrated Interpretation - UST Area 3								

HAGER-RICHTER GEOSCIENCE, INC.

8. EM61 - UST Area 4
9. GPR survey & Integrated Interpretation - UST Area 4
10. EM61 - UST Area 5
11. GPR survey & Integrated Interpretation - UST Area 5

12. EM61 - UST Area 613. GPR survey & Integrated Interpretation - UST Area 6

14. EM61 - UST Area 7

15. GPR survey & Integrated Interpretation - UST Area 7

16. EM61 - UST Area 8

17. GPR survey & Integrated Interpretation - UST Area 8

18. EM61 - UST Area 9

19 GPR survey & Integrated Interpretation - UST Area 9

PLATE

1. Site Plan

APPENDIX

1. EM61 Surveys

2. GPR Surveys

1. INTRODUCTION

Hager-Richter Geoscience, Inc. conducted a geophysical survey at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York for Killam Associates (Killam) October 25 - November 15, 2000. The scope of the project and areas of interest were specified by Killam. The geophysical survey is part of a environmental investigation of the site being conducted by Killam on behalf of the Port Authority of New York and New Jersey.

The site is a large inactive industrial facility located in the northwestern portion of Staten Island. The general location of the Site is shown in Figure 1, and Plate 1 is a site plan. The Site consists of several buildings, gravel and paved parking areas, rail spurs, foundations and slabs of demolished buildings, and open areas. Hager-Richter was contracted by Killam to locate utilities in the vicinity of as many as 210 proposed boring locations and to locate possible USTs that may be present at nine locations identified at the Site by Killam. The locations of utilities detected as part of the boring program were marked on site as specified by Killam, and are not discussed further.

According to information provided by Killam, as many as 19 USTs might be present in nine areas of the site, designated by Killam as UST Area 1 through UST Area 9. Four of the nine areas may contain multiple USTs, and five areas may contain a single UST. The locations of the nine areas specified by Killam are shown as hatched areas on Plate 1.

The objective of the geophysical survey was to detect possible USTs in each of the nine areas of interest specified by Killam, and if any were detected, to determine the locations of each.

The geophysical survey consisted of time domain electromagnetic induction metal detector (EM61) surveys followed by focused GPR surveys in each of the areas of interest. The EM61 survey detects and outlines areas containing buried metal. However, the EM method cannot provide information on the type of objects causing the EM anomaly. In order to aid in the identification of the objects, a focused GPR survey was conducted at the locations of anomalies detected with the EM61.

James Coffman, Jeffrey Reid, P.G., and Jeffrey Sullivan of Hager-Richter conducted the field operations on October 30, November 8, 9, 14, and 15, 2000. The project was coordinated with Ms. Jennifer Kohlsaat of Killam. Mr. Daniel Davis and Mr. Charles Springer, both of Killam, specified the areas of interest for the survey and were present for portions of the field work.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

2. EQUIPMENT AND PROCEDURES

2.1 General

The equipment, limitations, and general procedures of EM61 high sensitivity metal detector and GPR surveys are described below. Details specific to this project are given in the Site Specific section below.

2.2 EM61

Equipment. The EM survey was conducted using a Geonics Model EM61 time domain electromagnetic induction metal detector, the industry standard for this type of geophysical survey. The EM61 produces a pulsed primary magnetic field in the earth that induces eddy currents in the ground and in nearby metal objects. The receiver is timed to measure the secondary magnetic field produced by eddy currents after those in the ground have dissipated, i.e., only the current in the metal objects. The data are recorded on a digital data logger. The EM61 is relatively insensitive to nearby cultural interferences such as buildings.

Limitations of the Method. The data from an EM61 survey are affected by surface metal debris in the survey area, and its depth sensitivity is limited to about 15 feet. The instrument is relatively cumbersome, and works best where the 1-meter square transmit and receive coils can be hand pulled in a small trailer.

Detection and identification should be clearly differentiated. Detection is the recognition of the presence of a metal object, and the electromagnetic method is excellent for such purposes. Identification, on the other hand, is determination of the nature of the causative body (i.e., what is the body -- a cache of drums, UST, automobile, white goods, etc.?). Although the EM61 data cannot be used to *identify* all buried metal objects, they provide excellent guides to the identification of some objects. For example, buried metal utilities produce anomalies with lengths many times their widths.

2.3 **GPR**

Equipment. The GPR survey was conducted using a Geophysical Survey Systems SIR-2 digital GPR system equipped with a survey wheel to trigger recording of data at equal horizontal distances. The GPR system was used with a 500 MHz antenna and a 60 nsec time window. The GPR traverses were spaced approximately 5 feet apart, and were conducted at the locations of EM61 anomalies.

Limitations of the Method. There are limitations of the GPR technique as used to detect and/or locate targets such as those of the subject Site: (1) surface conditions, (2) electrical conductivity of the ground, (3) contrast of the electrical conductivities of the targets and the ground, and (4) spacing between lines. Of these limitations, only the fourth, line spacing, is controlled by the operator.

The condition of the ground surface can affect the quality of the GPR data and the depth of penetration of the GPR signal. Sites covered with high grass, bushes, landscape structures, debris, obstacles, soil mounds, etc. limit the survey access and the coupling of the GPR antenna with the ground. In many cases, the GPR signal will not penetrate below concrete pavement, especially inside of buildings, and a target may not be detectable.

The electrical conductivity of the ground determines the attenuation of the GPR signals, and thereby limits the maximum depth of exploration. The GPR signal does not penetrate clay-rich soils, and targets buried in clay can be missed.

A definite contrast in the electrical conductivities of the ground and the target is required to obtain a reflection of the GPR signal. If the contrast is too small, possibly due to construction details or extremely corroded conditions of metal targets, then the reflection may be too weak to recognize, and the target can be missed.

The spacing between lines is under control of the GPR operator, and the design of the survey is based on the dimensions of the smallest feature of interest. Targets with dimensions smaller than the spacing between GPR survey lines can be missed.

2.4 Site Specific

As noted in the Introduction, Killam specified nine areas of interest for the geophysical survey. A local survey grid was established in each of the UST survey areas and tied to fixed landmarks.

EM61 data were acquired at approximately 8-inch intervals along lines spaced 5 feet apart in the accessible portions of each area. The EM61 was operated with the 1-meter square transmit/receive coils mounted on a hand-drawn trailer with a survey wheel that measures distance and triggers data collection at equal intervals. The EM61 data were recorded digitally and processed in the field using software provided by the manufacturer. A color contour plot of the data was generated using commercially available software (Geosoft)

A focused GPR survey was conducted at the locations of anomalies detected by the EM61 survey to attempt to identify the causative body(ies). GPR traverses were located along the same

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

lines as the EM61 survey and spacing was variable based on the size of the EM anomalies and surface conditions. The GPR antenna was pulled by hand for all traverses.

GPR data were acquired with a 300 MHz antenna and a 60 nsec time window. GPR signal penetration varied significantly at the Site. Based on handbook values of time-to-depth conversions for the GPR signal in average soils, the GPR signal penetration is estimated to have varied from about 1 foot to about 5 feet.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

3. RESULTS AND DISCUSSION

3.1 General

The geophysical survey consisted of a time domain electromagnetic induction metal detector (EM61) survey followed by a focused GPR survey where the EM61 survey indicated possible buried metal. Plate 1 is a Site Plan provided by Killam showing the locations of the survey areas.

Interpretation of EM61 data is based on the *relative* response (in millivolts) of the top and bottom instrument coils to local conditions. The differential response, the difference between the top and bottom coils, is typically used as the best indication of the location of buried metal objects, and is shown in the figures for this report. The instrument is not calibrated to provide an absolute measure of a particular property, such as the conductivity of the soil or of buried metal objects. Subsurface metal objects produce sharply defined positive anomalies when the EM61 is positioned directly over them. Such anomalies are colored red and pink on the color plots presented herein. Acquiring data at short intervals along closely spaced lines, as was done at the present site, provides high spatial resolution of the location and footprint of the targets. Thus, buried metal is recognized in contour plots of EM61 data by positive anomalies (red or pink zones) roughly corresponding to the dimensions of the buried metal.

Many surface metal objects and objects containing metal are present in the UST survey areas such as manhole covers, railroad tracks, fences, and reinforced concrete. The locations of such objects are shown on the figures for each of the areas. Because these objects contain metal, they can produce significant EM anomalies. The presence or absence of buried metal in these areas cannot be determined due to the anomalies caused by such surface objects.

In general, GPR signal penetration at the site was limited, with reflections received for less than about 30 nsec. The limited signal penetration is likely due to conductive soils, and in many places, concrete at the surface. Based on handbook time-to-depth conversions for the GPR signal in average soils, the GPR signal penetration is estimated to have been no more than about 2 to 3 feet for most of the areas of interest.

3.2 **UST Area 1**

UST Area 1 is located on the north side of Building 20, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 2 is a color contour plot of the EM61 data for UST Area 1, and Figure 3 shows the locations of the GPR traverses and the

interpretation of both the EM61 and GPR data. Five areas of possible buried metal were detected within the survey area, and their locations are shown on Figure 3. GPR traverses were conducted in the central portion of the area. GPR signal penetration was limited to less than 2 feet. Therefore, no additional information regarding the causative bodies was determined for this area with the GPR traverse.

Based on the shapes and sizes of the EM anomalies for UST Area 1, we infer that a utility and several other buried objects are present. Whether the objects are USTs cannot be determined on the basis of the geophysical data alone. If any of the buried metal objects is a UST, its capacity is likely 1000 gallons or less.

3.3 UST Area 2

UST Area 2 is located south of a wood shavings stockpile area, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 4 is a color contour plot of the EM61 data for UST Area 2, and Figure 5 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. One area of possible buried metal was detected within the survey area. The area is located about 35 feet south of a concrete pad. GPR traverses were conducted over the location of the EM anomaly. GPR signal penetration is estimated to have been about 4 to 5 feet for this area, but GPR reflections typical of a UST were not detected in the area included in the GPR survey.

Based on the presence of the EM anomaly in UST Area 2, we infer that a buried metal object is present. Whether the object is a UST cannot be determined on the basis of the geophysical data alone. Because no GPR reflections typical of a UST were observed in the records for the effective depth of penetration of the GPR signal (about 5 feet), and the EM anomaly is small in amplitude, we conclude that if a UST is present, it would likely be located at a depth greater than 5 feet.

3.4 UST Area 3

UST Area 3 is located north of the northeast corner of Building 13, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 6 is a color contour plot of the EM61 data for UST Area 3, and Figure 7 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Two areas of possible buried metal were detected within the survey area as well as a possible utility. One buried metal object is located about 25 feet east of a trailer, the other is located about 60 feet east of the trailer, and the locations of both are shown on Figure 7.

GPR signal penetration is estimated to have been about 2 to 3 feet for this area. GPR reflections typical of a UST were not detected in the area included in the GPR survey. GPR reflections typical of a flat structure, such as a concrete pad, are present at the location of the southern end of the EM anomaly closer to the trailer.

Based on the presence of the EM anomalies in UST Area 2, we infer that two buried metal objects are present. The GPR data indicate that at least part of one of the EM anomalies may be related to a flat concrete-like structure. Whether the concrete object is a UST cannot be determined on the basis of the geophysical data alone.

3.5 UST Area 4

UST Area 4 is located west of Buildings 34 and 38 and north of a former floor slab for a demolished building, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 8 is a color contour plot of the EM61 data for UST Area 4, and Figure 9 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data.

The western portion of the survey area is covered by a concrete pad. Three significant EM anomalies are present in this portion of the survey area and one large EM anomaly is present along the southeast edge of the survey area. The areas of the EM anomalies are shown as areas of buried metal on Figure 9. The large EM anomalies may be caused by structures located under the concrete slab. The GPR signal penetration over the concrete slab is limited to less than about 1 foot and GPR reflections typical of USTs were not detected. Whether USTs are located under the slab cannot be determined on the basis of the geophysical data alone. The remaining portion of UST Area 4 is generally free of buried metal.

3.6 UST Area 5

UST Area 5 is located along a rail spur southwest of Building 17, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 10 is a color contour plot of the EM61 data for UST Area 5, and Figure 11 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Two rail spurs and a reinforced concrete surface drainage swale are present in the area. High amplitude EM anomalies are present near the concrete drainage swale and low amplitude negative EM anomalies are observed for the rail spurs.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59

December, 2000

GPR traverses were conducted in the northwest corner of the survey area, but the GPR signal penetration was limited to less than about 1 foot and no GPR reflection typical for a UST were detected.

3.7 UST Area 6

UST Area 6 is located along a rail spur west of Building 17, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 12 is a color contour plot of the EM61 data for UST Area 6, and Figure 13 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. A rail spur and iron rimmed surface drain are present along the east side of the survey area.

Five EM anomalies not related to the surface features were identified, and their locations are shown on Figure 13. The two large circular anomalies located in the northeast portion of the survey area are likely caused by buried concrete. A small portion of a slab was visible on site and its presence was confirmed with the GPR. The remaining three anomalies are low amplitude and small in extent and are likely too small to be caused by USTs.

3.8 UST Area 7

UST Area 7 is located south of Building S-#35, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 14 is a color contour plot of the EM61 data for UST Area 7, and Figure 15 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Surface objects such as a rail spur, a concrete loading dock, a steel plate, transformers, and a tower are present in the survey area. The EM data were adversely affected at such locations.

Four EM anomalies not related to the surface features were identified, and their locations are shown on Figure 15. A large EM anomaly is present in the central portion of the survey area. The GPR data for the area of the large anomaly indicate the presence of a shallow buried reinforced concrete slab or structure at a depth of about 1 foot in the southern part of the anomaly. GPR records for the traverses conducted in the vicinity of the remaining anomalies contain no reflections characteristic of USTs. Such areas are shown as areas of buried metal. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

3.9 UST Area 8

UST Area 8 is located at the northeast corner of Building 55, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 16 is a color contour plot of the EM61 data for UST Area 8, and Figure 17 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Surface objects such as a concrete pad and vertical pipes cut at grade are present in the survey area and such objects are shown on Figure 17.

Three anomalies attributed to buried metal objects were identified by the EM survey and their locations are shown on Figure 17. EM anomalies attributed to subsurface utilities were also identified. GPR signal penetration in the areas of the EM anomalies was limited to a depth of about 1 foot and no GPR reflections typical of a UST were detected. Therefore, no information regarding the causative bodies could be determined. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

3.10 UST Area 9

UST Area 9 is located between Buildings 52 and 53, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 18 is a color contour plot of the EM61 data for UST Area 9, and Figure 19 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data.

Several surface metal objects, such as valve box covers, transformers, and overhead pipes are present in the survey area. Four 4-inch pipes, cut at the surface, are present in the southeast corner of the survey area. Significant EM anomalies are present at the locations of the surface features and may mask the presence of buried metal objects, if any, at such locations.

Three anomalies not associated with surface metal were identified by the EM survey. These anomalies have been attributed to buried metal objects. GPR signal penetration in the areas of the EM anomalies was limited to a depth of about 1 foot and no GPR reflections typical of a UST were detected. Therefore, no information regarding the causative bodies could be determined. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

4. CONCLUSIONS

Based on the geophysical survey conducted at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York, we conclude:

- Several areas of buried metal were detected in the nine areas of interest at the site on the basis of the EM61 data. None of the identified areas of buried metal could be definitively identified as a UST due to the limited GPR signal penetration and/or surface features such as concrete slabs, metal piping, and rail spurs. Whether the buried metal is a UST is present cannot be determined on the basis of the geophysical data alone.
- Several other EM61 anomalies are interpreted as possible utilities.

5. LIMITATIONS

This letter report was prepared for the exclusive use of Killam Associates and the Port Authority of New York and New Jersey (Client). No other party shall be entitled to rely on this Report or any information, documents, records, data, interpretations, advice or opinions given to Client by Hager-Richter Geoscience, Inc. (H-R) in the performance of its work. The Report relates solely to the specific project for which H-R has been retained and shall not be used or relied upon by Client or any third party for any variation or extension of this project, any other project or any other purpose without the express written permission of H-R. Any unpermitted use by Client or any third party shall be at Client's or such third party's own risk and without any liability to H-R.

H-R has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by H-R should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

The detection of subsurface utilities and/or other subsurface objects was not an objective of this portion of the geophysical survey, and the survey was not designed to detect such. However, some utilities and/or other subsurface objects were detected and their locations are provided as a courtesy. Other utilities and/or other subsurface objects may be present and the Client or any third party shall not rely on this report for information on such.

Except as expressly provided in this limitations section, H-R makes no other representation or warranty of any kind whatsoever, oral or written, expressed or implied; and all implied warranties of merchantability and fitness for a particular purpose, are hereby disclaimed.

Figure 1 General Site Location Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

BUILDING #20

LEGEND

EM DATA STATION

WATER VALVE

THYDRANT

0

SCALE (feet)

10 20

NOTES:

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 2

EM61 Survey - UST Area 1 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

NOTES:

1. Site sketch generated from field notes.

2. Contour Interval = 20 mV.

EM DATA STATION

WATER VALVE

MONITORING WELL

Figure 4
EM61 Survey - UST Area 2
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

GPR TRAVERSE

AREA OF POSSIBLE BURIED METAL

EM ANOMALY ATTRIBUTED TO EFFECTS OF SURFACE OBJECTS. THE PRESENCE OR ABSENCE OF BURIED METAL WITHIN THIS AREA CANNOT BE DETERMINED ON THE BASIS OF THE GEOPHYSICAL DATA ALONE.

NOTE:

Site sketch generated from field notes.

₩ATER VALVE

MONITORING WELL

Figure 5
GPR Survey & Integrated
Interpretation — UST Area 2
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

EM DATA STATION

NOTES

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 6 EM61 Survey — UST Area 3 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

<u>LEGEND</u>

EM DATA STATION

NOTES:

- 1. Site sketch generated from field notes.
- $2^{1/2}$ Contour Interval = 20 mV.

Figure 8
EM61 Survey - UST Area 4
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

BUILDING #38

NOTES:

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 10
EM61 Survey - UST Area 5
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

<u>LEGEND</u>

EM DATA STATION
RAILROAD TRACK

SCALE (feet)

0 10 20

EM DATA STATION

0

MANHOLE

©

CATCH BASIN

RAILROAD TRACK

NOTES:

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 12
EM61 Survey — UST Area 6
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

SCALE (feet)

NOTES:

1. Site sketch generated from field notes.

2. Contour Interval = 20 mV.

EM DATA STATION MANHOLE

HYDRANT

RAILROAD TRACK

Figure 14
EM61 Survey - UST Area 7
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

BUILDING #55

<u>LEGEND</u>

EM DATA STATION

PIP PIP

NOTES:

- _ 1. Site sketch generated from field notes.
 - 2. Contour Interval = 20 mV.

Figure 16
EM61 Survey - UST Area 8
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

BUILDING #55 CONCRETE PAD **②** CONCRETE PAD

<u>LEGEND</u>

GPR TRAVERSE

AREA OF POSSIBLE BURIED METAL

P

VERTICAL PIPE. CUT AT GRADE

<u>NOTE</u>:

Site sketch generated from field notes.

Figure 17
GPR Survey & Integrated
Interpretation — UST Area 8
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

<u>LEGEND</u>

EM DATA STATION

) PII

OVERHEAD SUPPORT

NOTES:

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 18 EM61 Survey — UST Area 9 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00059

December, 2000

GPR TRAVERSE

AREA OF POSSIBLE BURIED METAL

EM ANOMALY ATTRIBUTED TO EFFECTS OF SURFACE OBJECTS. THE PRESENCE OR ABSENCE OF BURIED METAL WITHIN THIS AREA CANNOT BE DETERMINED ON THE BASIS OF THE GEOPHYSICAL DATA ALONE.

D VERTICAL PIPE, CUT AT GRADE

OVERHEAD SUPPORT.

NOTE:

Site sketch generated from field notes.

Figure 19
GPR Survey & Integrated
Interpretation — UST Area 9
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

APPENDIX EM61 Metal Detector Surveys

Equipment. The Geonics EM61Metal Detector is a time-domain electromagnetic induction type instrument designed solely for detecting buried metal objects. The manufacturer's specifications are attached. An air-cored 1-meter square transmitter coil generates a pulsed primary magnetic field in the earth, thereby inducing eddy currents in nearby metal objects. The decay of the eddy current produces a secondary magnetic field that is sensed by two receiver coils, one coincident with the transmitter and one positioned 40 cm above the main coil. By measuring the secondary magnetic field after the current in the ground has dissipated but before the current in metal objects has dissipated, the instrument responds only to the secondary magnetic field produced by metal objects. Two channels of secondary response are measured in mV and are recorded on a digital data logger. The system is generally operated by pulling the coils as a trailer with an odometer mounted on the axle to trigger the data logger automatically at 20-cm intervals.

Data Analysis and Interpretation. EM61 survey data are most commonly plotted as color contour plots of Channel 2, the lower of the two receiver coils, and the difference between Channel 1 and Channel 2. The differential plot suppresses the effects of surface metal objects.

A buried metal object produces a single, sharply defined, positive peak response when the EM61 is located directly over the object. Thus, the interpretation of the plotted data is relatively straightforward in terms of the presence and location of buried metal objects. The depth of metal objects can be estimated by the width or "footprint" of the peak response.

According to the manufacturer's literature, the EM61 can detect a single 55-gallon drum buried at a depth of 10 feet. The instrument provides excellent lateral location accuracy and discrimination of multiple targets due to the data density (20 cm) possible along each traverse. The EM61 is not as affected by interference from surface metal and electrical objects as other geophysical methods and has the advantage of detecting both ferrous and non-ferrous metal objects.

Limitations of the Method. The EM61 detects metal objects that are present below the 1-meter square coils of the instrument, but it is not very sensitive to the presence of small metal objects located to the sides of the coils. It is possible, then, that metal objects could be missed in an EM61 survey if the survey data are collected at intervals greater than 1 meter.

Detection and identification should be clearly differentiated. Detection in this context is the recognition of the presence of a metal object, and the EM61 is excellent for such purposes. Identification, on the other hand, is determination of the nature of the causative body (i.e., what is the body -- a cache of drums, UST, automobile, white goods, etc.?), and the EM61 cannot identify the buried metal object.

APPENDIX GROUND PENETRATING RADAR SURVEYS

Field Work. A Geophysical Survey Systems, Inc. Model SIR-2 ground penetrating radar system was used for this survey. The SIR-2 is a fully digital system and includes a color monitor, grey-scale thermal printer, and 10-Gbyte digital tape backup system. The transmit/receive antenna is housed in a box that is moved across the surface. The antenna transmits electromagnetic signals into the subsurface and then detects, amplifies, and displays reflections of the signals in real-time on the color monitor. The result is a radar record of the subsurface.

The maximum depth of penetration of the GPR signal and the resolution of the reflections are controlled in part by the frequency of the antenna used and in part by the electrical properties of the subsurface. Hager-Richter owns antennas with the following center frequencies: 120 MHz, 300 MHz, 500 MHz, and 1000 MHz. The total time during which radar signals are recorded can be varied from a few to 1,000 nanoseconds (nsec). However, there is a trade-off between total time, corresponding to depth range, and resolution. As the total time of recording is increased, the resolution of the GPR records decreases. For a given site, the total time window is set to detect features located somewhat below the maximum expected target depths.

Interpretation. The horizontal axis of a GPR record represents distance across the surface and the vertical axis represents round-trip travel time of the radar signal. The round-trip travel time can be converted to approximate depth by correlating with reflections from targets of known depth or by using handbook values of velocities for materials in the subsurface. For those sites where the subsurface is electrically heterogeneous, the travel times of the radar signal may be different in the various materials, and the vertical scale for the radar records is not necessarily uniform with depth.

The reflections in a GPR record are produced by spatial changes in the physical properties (e.g., type of material, subsurface fluids, porosity, etc.) and related changes in the electrical properties (dielectric constant) of the subsurface materials in the path of the signals. The greater the difference in electrical properties between two materials in the subsurface, the stronger the reflection observed in the GPR record.

The size, shape, and amplitude of the GPR reflections are the characteristics that are considered in the interpretation of the data from any site. Because the electrical properties of metal USTs, utilities, and conduits different significantly from those of the soils in which they are buried, such objects produce GPR reflections with high amplitude and distinctive shapes that permit identification with a high degree of reliability. Most other objects, although readily detectable, require "ground truth" for identification. Only excavations provide positive identification for most objects identified in GPR surveys.

For GPR profiles oriented perpendicular to the long axis of a tank, the signature is similar to a hyperbola, the shape of which is a function of the diameter and depth of burial of the tank. For GPR profiles oriented parallel to the long axis of a tank, the signature is a set of parallel, high amplitude reflections that terminate sharply at the ends of the tank. GPR, then, is useful for determining the exact location and dimensions of USTs.

Limitations of the Method. The maximum depth to which GPR signals can penetrate depends on the electrical properties of the subsurface materials. The higher the electrical conductivity of the subsurface materials, the lower the radar signal penetration. Clay minerals and/or brackish water in the subsurface, for example, attenuate the GPR signal, so reflections are not received from materials at greater depths.

There are limitations of the GPR technique as used to detect and/or locate particular . targets: (1) surface conditions, (2) electrical conductivity of the ground, (3) contrast of the electrical conductivities of the targets and the ground, and (4) spacing between lines. Of these limitations, only the fourth, line spacing, is controlled by the operator.

The condition of the ground surface can affect the quality of the GPR data and the depth of penetration of the GPR signal. Sites covered with high grass, bushes, landscape structures, debris, obstacles, soil mounds, etc. limit the survey access and the coupling of the GPR antenna with the ground. In many cases, the GPR signal will not penetrate below concrete pavement, and a target may not be detectable.

The electrical conductivity of the ground determines the attenuation of the GPR signals, and thereby limits the maximum depth of exploration. The GPR signal does not penetrate clayrich soils, and targets buried in clay can be missed.

A contrast in the electrical conductivities of the ground and the target is required to obtain a reflection of the GPR signal. If the contrast is too small, possibly due to extremely corroded conditions of a metal target, then the reflection may be too weak to recognize, and the target can be missed.

The spacing between lines is under control of the GPR operator, and the design of the survey is based on the dimensions of the smallest target of interest. Targets with dimensions smaller than the spacing between GPR survey lines can be missed.

Accurate determination of the depth to any interface requires calibration of the site specific GPR signal velocity. Where targets of a known depth are not available at a site, the time-to-depth conversion of the GPR signal can be estimated from handbook values, but such depth estimations might contain significant error.

Interpretation of GPR data is subjective. As noted above, "ground truth" through correlation with borings and excavations is required for positive identification of most objects detected on the basis of GPR data.

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division **Materials Engineering Section**

					BORING REPORT	3				
PROJECT	POUT T	Ducy	P+6		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.					
LOCATION		1-A			O CONTRACT NO DATE	100				
SPOON	- >/	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL					
<u> 3 </u>	O.D. 21/8_	1.D. Dugor			Date Time Depth Remarks					
HAMMER	SAPI	HAMMER	# FALL		12/4/00 7:45 B,O DURING 3PLIT-SPOONING					
DRILLER	547									
INSPECTOR	houlie	Spring	20V							
CASING BLOWS/FT		SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.	² SAMPLE DESCRIPTION AND REMARKSLINE LOCATES CHANGE OF PROFILE					
HA.		HA.	FOI	١						
				1	Ground u/ Soud SILT MATVIX					
				28		रु अड़				
					diotonshors Earth white	475				
- 1	5		}	$\overline{}$	2010/4 3/43 24011	1//				
V		J	V	3	Cintors + Govel Block					
2		78	15"	4						
		129		1						
		9 7	13"	~	SAME					
	 	3 3		5						
	→ (0 ◄	76	20"		A second					
	 -	53	W	b	SAME, WITH 41 LANGE DIATOMACQUUS BARTH TOP OF					
		31	3"	-	SAME					
		23		/	H'	-				
	15	21	14"	0	BROWN PEAT					
V		12		8	V.	Ø				
. ~					1					
-					BUTTOM OF BORING	-				
	 									
	 				All and the second second					
	20		-	,	- ALL SAMPLES SCREENED WITH PID METER					
· · · · · · · · · · · · · · · · · · ·	\vdash \vdash \dashv				- SAMPLE # 2 SANED FOR ENTIRONMENTAL TEST	<u>NG</u>				
		· · · · · · · · · · · · · · · · · · ·			- HU REMAINING SAMPLES TUSCARDED					
.——						. —				
	▶ ∢		<u> </u>							

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

				·					SHEET OF 3
PROJECT		0 1 0		· · · · ·	NAME OF CONTI	RACTOR		BORING NO.	SURFACE ELEV.
Port I	Vory	P & G	<u> </u>		Craia di	cillina		A - 3	
LOCATION	. لد				. J	J		CONTRACT NO.	DATE
A	s laid	out in H	he fie	lol				426-99-006	11-16-00
SPOON		CASING SI		TYPE				OUND WATER LEVEL	
3 .	D.D. 2 3/8	1.D. Augers		<u> </u>	Date	Time	Depth	Re	marks
HAMMER Q	safety_	HAMMER		_ }	, , ,	cm	۱ , ,	1 Canal #9	
140 #	FALL 3	0 '	FALL		11-16-00	ス: 05'	2.0	Sample #2	
DNILLER	G.Mc A	Danie		-					
INSPECTOR		J							
	7.7	ARKS		,					
CASING	7	SPOON	RE- 1	SAMP.2	[3SA	MPLE DE	SCRIPTION AND REMARK	s .
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.		LI	NE LOCA	TES CHANGE OF PROFILI	E ' . o. o'
Handargu	0	Cutter Head	Full Re				concre	te	0.6
- -					 - - - - 				
	<u> </u>		\vdash	- 1 -	Fill grey	<u>c-13/</u>	41111 a	nd Gravel, tr. SI	Ľ — — — - ,
				, A	SAM	16 1			
			Fo	2^	Fill grevis		en Si	Ht. tr. m- C SAN	10 4.0
	-	 	 	<u> </u>	Till greyis	sh - gree	ev 5/	It, fr. m- 1 3A1	
	5 √		 					,	
		1		3	till are	rish b	lack	Silf & CLAY	
		1 /			7			· ,	
AUGERS	- -	b - 6		/ *	 				
NGO ENV		8_10	24"	4	Fill blo	ock -	SIII	2 CIAY	8.0
	·	72			* **		· G		
		7 - 0	9/	5			4110		7).1
	10 <	9-15	24		Till Grey	C-}_	スタアア	, greenish - White	Trecomoceous -
		14-5		/ ×	L		<u></u> _		
		1 1	24"	6	Fill whit	2 grey DC	SAND	Grave Diators	ereally 12.0
	- -	D - D	A-7		- 111 VILL		411197	THURST THE TOTAL	N. C.
	 	2-2	 	7				¬ı'————	
	<u></u>	13-4	2011		til ble	nck S	i 14 (buy some	chunks
		, ,		7			7	— — ———	
	► 15 <		0 /11	2	411			- -	
		1-2	24"	<u>ں</u>	- TILL	black		/ Si/T	
		2-2			•			लेख	
	<u> </u>	2-2	24"	9	SAI	VI			
	_	b .	. 24		<u> </u>	- ニー			
		1-2			<u> </u>				1 <u>9:</u> ø
ا التوني	40	2-2	24"	10	Brown	\ P	EAT	-	. [
I	20				- 'V' (2 W) I	<u> </u>			
	<u> </u>]	 		+		
		٠			Note: 3 9	samples	Squed	for testing	
					All	other sa	mples -	screened with	Bottom of Bara
						<u>nets</u>	y disc	orard — — —	- norrow of ward
					L	. 			
							. –		
		I			i				

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

.....

THE PORT AUTHORITY OF MY SINJ

Engineering Department
Construction Division
Materials Engineering Section

BORING REPORT

											SHEET	1 OF 3	
PROJECT		2 1 0			N/	AME OF CONT			BO	RING NO.	SURFA	CE ELEV.	\neg
	voru	D & (t			1	Craig c	drilling			A - 4			
LOCATION	vury	'] ' —			Ь.	5.4.9 -			CO	NTRACT NO.	DATE		\dashv
	1. 1.	1 . 1	().	1.1		•	•			26-99-006		6-00	
	ts laic	out in H	ne fie	'IOI		r	-				111 - 1	8-00	\dashv
SPOON	41	CASING SE	1	TYPE		ļ			NUC	D WATER LEVEL			
3 0		1.D. Augers	اا			Date	Time	Depth		Re	marks		
HAMMER S	1 fety	HAMMER							,Τ				
	FALL 30		FALL	- 1		11-16-00	11:2 <i>_[</i> :A th	3.0	1	SAMPLE #	2		- 1
DRILLER	<u> </u>	 "				11-10-00			一	<u> </u>		 _	\neg
1	Mc An	010		1									
INSPECTOR	· IL nn	en y				<u> </u>		ļ	\dashv				\dashv
MOPECIUM,	77 1			}		, !					•		
<u> </u>	1. Lark							L					
CASING	J	SPOON	RE- 1	SAMP.2	1					IPTION AND REMARK			1
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.	<u> </u>	- _	LI!			CHANGE OF PROFILI	E :	0.,	
CutterHead	0	Cutter Head	Full Rec		<u> </u>	·		D	GAI	8 C			2.5
├		1		<u></u>	⊨			_COM					1.1
↓				1	M	isc Fill gr	anish block	429-2	ND	& Grave to Silt Coal	Pindore		
HAND AUGER		HANDAUGER	- - -		٣	130 1111 7/10	A rue nomen	وربات	u.L.		PHILIPITY.	PARTIE PERSON	
	!			1 _	L								
				2	Г	SAME							
┝┈┼┈┼		 	 	~	Ļ	SWIF							
	F .				477								- 1
 	- 5 ◄	 	 	7	H-				—				\dashv
_ *_		•	V	3	1	SAME_							\Box
<i>[</i>		1 1		*									
		4 - 4			<u></u>								_
SIEH		3 - 3	18"	4		SAME	5					*	
Augers		<u> </u>	10		\vdash	_ 2/1,	<u> </u>		—				\dashv
0		4-3			1	-		•		. ;			
		·	/ 11	5		CAML			_				\neg
_ _	10 <	3-3	14"		<u> </u>	SAML'	·						
		/ _ 2		,	l					-		•	
		4-2		. ,	\vdash				—				\dashv
1 1	-	3-4	20"	6.	Ì	SAME					,		- {
		, ,			\vdash		. — —						\neg
	_	4-6			$oxed{L}$								_
		<i>L 1.</i>	20	7 *	} .	SAME							
 		6-4	<u>~U</u>		├-								\dashv
	- 15 ◀	2-2		′	-	SAME							4.8
	> 13 4		18"	උ			7	- =					
Y		2-2	18			Brown	PEAT			·		<u></u>	6,5
 			,		_								1
 					<u> </u>							<i> 7</i>	-
[ĺ	ĺ			N	ote: Samul	es # 1 1	L 47		saved for testin	. 0	\sim	:
					۳,		~_F_1	-++		- COLON COLON	J		\neg
					L	AIIH	er samp	5SC	een	ed with 'PID me	ter		
	►.				<u> </u>	<u>&_d</u>	iscarde	ø				_/	\dashv
· •	.]				ĺ			•		Puff	am -	Boring	, [
					\vdash						≈#T_(֏	\vdash
1	ł						-					,	
				,					_				\neg
					L						<u> </u>		_
, (•	· ·										
	<u> </u>				<u> </u>		- 						\dashv
· 1			ı		Ī								
	→				Ь								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

					SHEET 1 OF 3
PROJECT C	· -		. 0		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
· · · · · · · · · · · · · · · · · · ·	Port Iv	oru P	26		Craig drilling A-5
LOCATION			۸		CONTRACT NO. DATE
	As laid	out/in H	ne fi	eld.	426-99-006 11-14-00
SPOON		out in H	ZE HOLE	TYPE	GROUND WATER LEVEL
3 "	o.d. 23/8	1.D. Auger	5		Date Time Depth Remarks
		HAMMER			
140	FALL 3	0	FALL		11-15-00 7:46 8.0' Sample #5
	J) V	1			
	D. Osuc	<u> </u>			
INSPECTOR	7 7	7		1	
	<u> </u>	arks	<u></u>		
CASING	25211	SPOON	RE- 1	SAMP.2	
BLOWS/FT.	DEPTH -	BLOWS/6"	COV'D	NO.	LINE LOCATES CHANGE OF PROFILE 0.0
Handauger	<u></u>	Handauger			Fill dark brown c - [SAN) Grave tr Sill, cinders
	T			1	
	 	 	 - 		SAME
	<u> </u>		<u> </u>	*	
				2	Fill greyish-black c-f SAND, Growel, tr. Sill, cinders, coal
- 	 	 	 	-~ -	Till graftsh - block c- 1 - hiv, troubly, tr. siii, cinders, cocci
	- 5 ◄				
.				3	LSAME
	 	- 0			
	 -	5-8			<u></u>
Aucers		12-17	12"	4	Misc Till greyish black c-f SAND, Gravel, tr. Sitt, cinders, wood, con
,,	<u> </u>	1 1			
	 	7-8	- 11		
	10 -	7-9	20°	5	LSAME
	7 /0 \	12-6	ļ		
	 -	14- 8	, 11	6	CAMI
<i>.</i>	<u> </u>	6-7	24"	N	SAME
- 1		10 - 11	ľ] '	
	 		12"	-	CAME
	<u> </u>	11 - 14	12	L- <i>I</i>	SAME 14.8
	15	4-3			SAME 14.8
	T 12 7	2 /	24*	8	R. D. J. HILL CHE CLAY
	 - -	<u> </u>	14	<u> </u>	Brown PEAT little Silty Clay
		, ,			
					Notes Comple # 9. Control 0 - Locking
	 				Note: sample # 21 saved for testing
		<u> </u>			All samples were screened with PID mutes
	600	•			All samples were screened with PID meter of Boring
1	> 20 <				
	 				
	 -				
		: .			
		,			
	▶ ◀	<u> </u>		لــــــــــــــــــــــــــــــــــــــ	<u></u>

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / UF 3
PROJECT					NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
POYT	Tuary	PdG SiTe			Craix	<i>7</i> 1 .		R-6	
I LOCATION	,				U	- 1111105		CONTRACT NO.	DATE
P - 1	Tof RIJ	/ 11 1	21.1	140	11			426-99-06	11/10/00 -11/11
L 47/	101 110	S 1 H CASING SE	J1006	1700	LOT/			<u></u>	ווניי שטיטוויו
				. 1				OUND WATER LEVEL	
<u> </u>	o.d. 23/	8 "1.D.		L	Date	Time	Depth	Rer	narks
HAMMER		HAMMER				16		1 1 1	
DRILLER	FALL 30		FALL	•	11/10/00	45	6,0	while Mand	Husering
DRILLER									-
	5	Burns			11/11/00	1:05	6.5	Sample # 4	
INSPECTOR					1 1 00		- F -		
	· Y	Moue 1	J. Zar	Le			,	·	
CASING	I .	SPOON	RE-	SAMP.		3CA	UDI E DE	SCRIPTION AND REMARKS	2
BLOWS/FT.	DEPTH	BLOWS/6"	COA,D	NO.				TES CHANGE OF PROFILE	
	0								
Hard	L _	Hard Augr	Ful/		Crusho,	<u>15Ton</u>	0 14	TLO MISEFIL	V-Ippy
Huger			\						
1,2	 - -	 	 	1 1					
					1 Mix Fi	11 Cud	ns Gra	est Sand Brick, E	<u>عرب</u>
	<u> </u>				T				
\longrightarrow	<u> </u>	 		2			 -		
1 1	_		1 1	~	Sam	_	•		
<u> </u>	> 2 <	 	 	-		e			
<u> </u>		<u> </u>	<u> </u>	3	San	<u> </u>			
		/, 2]					
H T	├- ˙	14 - 3		/	<u> </u>			<u></u>	
به الماري ا		13-6	20"	4	54	ME_			
Augers			- XX		<i></i>				
4	<u> </u>	4 - 5			<u></u>				
	10	6-6	20"	5	50	ME	* .		
 	- 10 -		LU	- ~ -	 	n 12			
		6-8		,					
		1	24"	6	SAM	c			
	<u> </u>	6-11		<u> </u>	- 34H	<u> </u>			
		18 - 18			1				
	_		18"	1 7		11 0. 1	·, -	1 0 5 1 11 7	
		12-3	10		Misc ti	11 Linde	irs, bl	ack c-f SAND	browel etc 140
		/N ~						, '	• •
	> 15 <	W. D	4 / n	٥	<u> </u>	ত –			
V		H 1	24"	8	Drown	1 LEVI	. 501	me grey Silty	LIAY 16.0
	- · · -							0 0	7
		ļ			}		- -		
									7 1
					 				Bottom of Boring
					L	- 			
	> 2€ ◀				 				
						A-11 S	amale	s checked with	OID Mater
								10.7	
					<u> </u>	<u> </u>	-2_2	alpd tor 1-1/1/1	
								•	
					 				
						ample ±	£8	saved (On hold	loc testing
	\Box					——— —			7
	25	l			L	<u> </u>			

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

							SHEET / OF)
PROJECT					NAME OF CONTRACTOR	BORING NO.	SURFACE ELEV.
PorT	IVOIN	PtG S	<i>Te</i>		Craig Orilling	1 F1-3	
LOCATION		_				CONTRACT NO.	DATE
Westo	f Blds	38 CASING SI	Block	1400	Lot 1	486-99-006	11/10/00-11/11/0
SPOON		CASING SI		TYPE		OUND WATER LEVEL	
3 0	D.D. 2.3/8	1.0. Auger	s d	1_	Date Time Depti		emarks
HAMMER		HAMMER			11/10 3 45 513	1	
140 #	FALL 30	. .	FALL		11/10 3 513	open hol	0
DRILLER						, ,	
	<u>S</u>	BURNS			11/11 10:15 AM 1.6	Open hale	
INSPECTOR	γ	77/	¬ ->	,]			
		Moue /	J. Zar	ks			
CASING	1		RE- 1	SAMP.		ESCRIPTION AND REMARK	
BLOWS/FT.	DEPTH <	BLOWS/6*	COA.D	NO.		TES CHANGE OF PROFIL	
Xand		Mand Augar	FII	L '	CHIShood STONE		1.0
Augr		1	1		5,2,	211 AA	
אקטנו	-	 	 - 	1 1			
	<u> </u>	 			MiscFill- Sand Grad	of Cobbles, Brick,	(Indous, ETC 10
					MiscFill- Sand Grad	n IDA	·
	 -	 	 -	2		***	
	5 4				Fill Gray Filter N	14 Joral, Ir Black	FILTON MATOREY SU
	ر	1 1		i		,	·
					FU-DF	<u> </u>	
			—	3	Fill - Dia Tormaceus	Ecrit, 1641/0/	;
₩		1 V		$\overline{}$			
Hollow		1 1		, , , , , , , , , , , , , , , , , , ,			
Augers	<u> </u>	1=		/			
nagers	- 10 -	1-1	24"	4	SAME (gray &	White	
	,,,	WOH-1					
		701-1	9 / !!	5			
	<u> </u>	1-1	24"	<u> </u>	SAME		
		1-1		١,			
- ·		, ,	24"	6	SAME		
			44	<u> </u>			
	15	1-1					
		, ,	24"	7	SAME		
9 -		1-1	L/H	- /			
-		1-1		_ A:	SAME		17.0
: J		1 - 4	24	a 8	Brown PEAT liffle b	and organia clav	امما
	. —		~~		WOWN I LAY JUILLE D	ACK O'HANIC CIN !	10.0
<u>ś.</u>	<u> </u>						
£. 12. 13. 13.							クト
	> 20				A-11 C . 41	1/1/1	
·	<u> </u>					checked with P	11 14 0 M 11 -
					5+12°	Salad for Tosting	bottom of
							Boring
					Sample #8 Saved	for lesting (Un	- noid
						<u>, </u>	
	> 25 ◀	ļ—————— <u> </u>					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

		•					,	ſ	SHEET OF 3	1
ROJECT		0 . 0			NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.	1
Port	Ivory	Y & G			Craig o	drilling		UST6-2		
OCATION		L) p	וומ	ຄ		· · · · · · · · · · · · · · · · · · ·		CONTRACT NO.	DATE	
± 150) M of	center of	DICI HOLE	7 6	lock 1400	Lot I	1	426-99-006	11-21-00/11-28	1
POON	3/0	1		TYPE	Data T	Time		UND WATER LEVEL	narks	┨
3 "	O.D. 2 -/C	3 "I.D. Auger	<u>'S</u>		Date	Time	Depth	Ken	larks	1
,	FALL 3		# FALL		11-28-00	12 - /A BH	1.81	Open hole.		١
RILLER					1. 20-00	- A A A A A A A A		THE THE		1
	7 Cra	iQ							· · · · · · · · · · · · · · · · · · ·	
NSPECTOR	. J	4								
CACING	1.6	SPOON	RE- 1	SAMP.2		3C A I	ADI E DESC	CRIPTION AND REMARKS	<u> </u>	1
CASING LOWS/FT	DEPTH	BLOWS/6"	COA,D	NO.				ES CHANGE OF PROFILE	· 0.0	ļ,
andange	~ 0 ^	HANDAUGER	Full		DCAB	£ (rushed R	ock	0.3	ľ
- -	 -		 		 				·	ł
	 	ļ			Fill grey	ish beau	10 <u>-6-</u>	FSAND & Gravel,	tc. Si [[
ļi.					SAME			· · · · · · · · · · · · · · · · · · ·	3.0	1
	T -			2		0.4011	diakan	0.0000		I
	 		 	~_	Fill light	- greg	otherom	IOCEOWS	· 	1
	→ 5 <	◀	 	*	<u> </u>		·	 	·	┨
	L	j j	*	3	SAM	<u> </u>	—		·	
to llo		WoH - o								l
ugers	 		20"	4	Fill whi	<u> </u>			·	1
1	 -	0 -1	10		[11] Wh	re an	<u>scoma</u>	LCLOWS		ł
	<u> </u>	1-0	<u> </u>	>						
	10	1-0	24"	5	till w	hite o	die tom	vaceous.	*	
	, ,	1 0								
	 	1 - 3	20"	j`	CAME		· 			
	 	10	10	6	_SAME					
	<u> </u>	1-0				. 			. <u> </u>	
		1 - 0	24"	7	SAME			•		l
		1	~							
- 	15	Wo		۵	- TI -					
	<u> -</u>	H - 0	24"	8_	SAME		. 		· ·	1
		Wo		9*			· .		·	
		H o	24"	J	Fill bri	NAID 9	Lahito	dietomaceo		
1	 		~~		SAME	<u> </u>	WILLIA .	_ urewinaces	18.5	; ′
	 	2 - 2	1 29	1						1
	20 -	3 - 3	24"	10	Brown	PEAT			20.0	
-	~ ~				•	_			**	
<u> </u>	 				11 1			0		
<u> </u>	_					<i>:</i> 1		for testing		
		·			All_	other san	nples_c	hecked with potto	m of Boring	
						meter			•	
' ,						······································	-X	waixen.		ĺ

Engineering Department Construction Division **Materials Engineering Section**

				•	BC	DRING F	REPORT	"				SHEET	/ OF	-2, -
PROJECT		0 ! .	· · · · · · · · · · · · · · · · · · ·		N/	ME OF CONT	RACTOR		BORING	NO.		SURFACE	<u>'</u>	-
,-	Portfo	my - P & G			L	Craix			437	6-3	· 			
LOCATION,	West of	Blds 17							CONTRA 420	CT NO.	106	11/23	9/00)
SPOON	1/0	CASING SI		TYPE				GRO	DUND W	ATER LE				
3" -0		1.D. OUSING		-		Date	Time	Depth			Rer	marks		
	FALL 30		FALL			11/20/00	10:45A	3.2	' ,	In S	- 2	··-		
DRILLER	D. Cool	kı									· · ·			
INSPECTOR	T. 60	an.				·								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.			3SAI	MPLE DE	SCRIPTION TES CHA	ON AND	REMARK: PROFILE	s :		
	0	Haml	Full	I A	7	ill-Ba	M-FSa-S	l & Gran	vel, l	ttle	Brick	t Sta	<u>l_</u>	محدا
		auger	Rec	1		21- Cintu	10, Sod	Granel						
		\ \	Λ.				• '							
				1										
			.			San	 ,							
	>		V	\ \frac{A}{8}		ang & Blank		us hel						2.2
aus		N9#/		11	L	Sam	<u> </u>							
1		24"	24"	4								·		
		Wat/				_Sam	Ⅎ	· · -						
	→ 19 ◀	/24"	18"	5					· ·					
		NOH/18-		,	L	<u>Sem</u>	<u></u>							
	<u> </u>	1 1	19"	6							·			
		NOH/	•	7		Som	ŧ '						•	
		118-1	20"	7										
	<u> </u>	1/1211		•		Sone	W Gre	en Si	<i>u</i> t					
V	_ 13 _	1/12"	17"	8			- 							
		HOW		οA		San	N			4.5			13	-04
		2411	9	9 A		In Peat								3.4
													1	
										otton	of Bo	ruis -	7	
	> 20 ◀				-						7 —	- U -		
No.								. — -						
					$\overline{\gamma}$	1.t. S	an ple 1	± 1B	- š - 8	wer	1 saus	Short	ista	c:
		_			a	Worth	somple	were	scrien	W/	P10	the	dis) <u> </u>
		·			6	ended.				/-		,		

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

ROJECT						NAME OF CONTI	RACTOR		BORING NO.	SHEET	I OF 3	\dashv
Dar	T Ivor	, Pa	+6 5.7	6	• • • •	Craiq		9	UST 5- 2			- 1
OCATION	Tenty o	f Bi	silding	= 17		-		<i>σ</i>	CONTRACT NO.	DATE	1/200	
POON			CASING S	IZE HO	LE TYPE			GRO	UND WATER LEVEL	<u> </u>		ヿ
3 .0	o.p. 4 ³	8-1.D.	Augur		1	Date	Time	Depth		lemarks		
AMMER	Saf	-14	HAMMER	# FALL	•	ון ארגנון	1345	5.0				
RHIFR	David											
SPECTOR	Madh	iu f	ratel									
CASING LOWS/FT.	DEPTH		POON DWS/6"	RE-					SCRIPTION AND REMAR ES CHANGE OF PROFIL		0.0	,
		1 11 15			;	Conc	rate				0,7	\bigcap
13.1		V.	Buy	F.I	,							ヺ
and Avel		Pano	Hojor	F01/	- 2	1011 · C	mb G	ravels	, Rocks, et	<u> </u>		
					3		- — —		Diatomacaca	u Ec	wst	
1/		,	V			maknia	e, tr	ace c	Ley			
Au		1		24	4	INOT W	hile 1		Diatamaca	cous	eart	\exists
		ર	1			materia	<u> </u>					_
		ļ <u> </u>	<u>о</u> Н	16'	5	<u> </u>		ME				\dashv
	10	ī	<u>'</u>	18"	- 6			AMO				
		_1	l .									╝
		2	ı	20	7		5	3AM C				
		ı	1		7 ′		·				14.	긻
	— — ► 15 ~	2	3	22'	-	Dark G	3 rown	Orga	nic SILT, 's	rith o	leam pu	T
	> (> <	1	1		8	Moo d					16.0	- 1
		•				. 30	ithem or	p Hol	a at 16.0'			7
							311 5-	moke	checkeal u	iH 1	מבים	
							Comple	M #	3 sovel	for En	ismela	
									lunainly so			2
					_		. — —	·				
												_
	_											_

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

											SHEET	1 ⁰ 5
PROJECT						NA	ME OF CONT	RACTOR	T	BORING NO:	SURFAC	E ELEV.
Port I		D 7 1	()			11	raiq d	rilling	ĺ	UST 2-1		
LOCATION .	vory	1-9	<u>v</u>				1419	<u> </u>		CONTRACT NO.	DATE	
+	וווום ו	CTO	١ ٨	RI-I	/	_	11.	V		426-99-00	, [2
110W of	DII: N	31 4-	1 7	Block	7775	ρ	loti					30-00
SPOON	\ _ z/		ASING SI	ZE HOLE	ITPE			•		UND WATER LEVEL		
3 0	.D. 2 3/1 afety	8 1.D.	luger	SI		ll	Date	Time	Depth		Remarks	
HAMMER S	afety	H.	AMMÉR									
140 +	FALL .	30 .		FALL	•		11-30-00	11:15 AM	7.01	Sample #	$A \wedge$	
DRILLER									1	1		
	D. Coo	k o								j		
INSPECTOR		,,,,,				t						
	77	arks								A		
	. 							30.4		ODIDEION AND DE		
CASING BLOWS/FT.	DEPTH	SPO		RE- 1	SAMP. ² NO.	1				CRIPTION AND REPES CHANGE OF PR		
SLUWS/FI.	► DEPIN			Full	NO.	┼		Lif	AE LOCATI	ES CHANGE OF PA	OFILE	·
Handaugu	-	Handou	ger	TALL !								
		1	Ĭ			7	- " prown -				- ·	
						⊥t.	il dec	omposed	MO	<u> </u>		
			1]		1.		1				
		+	 	├}	a							
					2	F:	brown	ado con	. N. W.O.	d & tr. gree	dietoma	cous. La
			î.			1			1	3.0)	
	5 -		·		7							
] . ;	L		3	In.			D 9	ND tr. Gravel	1- CITT	
		 			-~	1 41	cange - c	TLONIU C	- + 20	ir or aver	_ <u>,</u>	
		4 -	4 .		٠, ٨	ا م	reuish- b	lask. c-	C SAN	D, tr. Gravel, t Growel, tr. Si	Sill son	ne Coal.
		1 -		4/1	4 × 8	1		0 0 1 0 1	{	نوبرمستر پي		
		5_	- と	24"	<u> 78</u>	↓_Ъ	ייסדאטר יכי	<u>. L</u> SAN	U_tr.	broughtr S	IJ <u>Ŀ</u>	
į		1.	1.	1		1		1	,	•	14	1000
		14-	4	- 1	r ±	-						
· .		』8-	- 10	24"		LG,	revish.l	slack c.	.1 SAN	D tr. Grovel	tr.S111 T	ne oder
	- 10 -	,	-						· f	—		
		4 -		<u> </u>	1	<u> </u>		- 				
•		5	7	20"	6	1	SAME				1400	۱,۸۸
	<u> </u>	 				†	<u> </u>				· Ł	·
_ ·		14-	4			<u>L</u>						
		•		. 11	7		SAME				12.80	p.M 14.a
		٦-	<u></u>	20"		1					1200	7 14.0
· ·]			4	NA	te:25AMp	les sound	for toe	lina	, .	
	- 15-						All	<u></u>	T	Ja:	- -	一一 看
		 		ļļ			<u> کااک</u> _	amples c	hecked_	w. PiD meter.	·	
ļ		1					π.	her sam	ولا ممال	المواجعة وا		/
		 	····	 		-		n el som	brez Gri	>corosa		
ļ		1]]		1					Dottom	of Boring
					•							コーコ
		 							<u>:</u>			
									•			
	>	•										
					٠,							
		 				<u> </u>						
*						1		•				
		 				\vdash						
		1				L		_				
	-			Ll		<u></u>				 		

THE PORT AUTHORITY OF RAY & REJ

Engineering Department Construction Division Materials Engineering Section

DO			^		En	^	DT
BO	ĸ	N	G	ĸ	E٢	U	n ı

				·					SHEET OF 3
PROJECT		0 1 0			NAME OF CONT			BORING NO.	SURFACE ELEV.
Port]	Lvory	4 f G			Craia d	rillina		UST 2-1 A	· 1
LOCATION	- J n				U	· ·	. ,	CONTRACT NO.	DATE
± 1001	Lo WZ	Bldg 12 CASING S	<u>/</u> _		Bloc	1400	Loti	426-99-006	11-30-00
SPOON		CASING S	IZE HOLE	TYPE				UND WATER LEVEL	
<u>ኣ</u>	o.p. 9 -5/A	1.D. Auger	5 1		Date	Time	Depth	R	emarks
HAMMER (Salety	HAMMER							
HAMMER 9	FALL 3	0 -	# FALL						
DRILLER		1				•			
	D. Coc	ke							
INSPECTOR		arks							
CASING	J	SPOON	RE- 1	SAMP.2	[3SA	MPLE DES	CRIPTION AND REMAR	KS
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.		U	NE LOCAT	ES CHANGE OF PROFIL	E
Handunger		Hand auga	Full			•		•	
	 	 	 	1 1 ^					
					till brow	wo_dec	ompos	ed wood.	
•		L		ぇ	Fil oran	2	law di	intomocous s	Le brown dec mark of
	<u> </u>		 '	- 'Ŭ	111 9129	- yel	- ;-	2 C C C C C C C C C C C C C C C C C C C	L brown dec. was
						ACKET	L <u>ㄷ_</u> _	0651 KUCI	10N 2
	ر م								
	► 5 ◄				NOTE:				
			 		sample	_Soved	_ \or_	testing	Bottom of Borin
					Obstructi	on duri	na has	dauger.	Bottom of Borin
							7		
			ļ						
					4,45				
					1.24		•		
	► 10 ◄								
		<u> </u>				· —— ——			
	_	<u> </u>							
	<u> </u>		 						
							•.	•	j
	15 ₹		 						
			<u> </u>					·	
	_ '-		\vdash	}	······				
<u></u>									
			\vdash	ŀ					
				Į					
[.						
				}					-
						- 			
a	İ			ļ				•	
			 	ł					
				Į.					
		ļ		ŀ					
	-		<u>. </u>						

Engineering Department Construction Division Materials Engineering Section

BO	D	١ħ	16		FD	1	D'	r
DU	וחי	ш	·	nı		v	n	ı

									SHEET 1 OF 3
OJECT		010			NAME OF CONTI			ORING NO.	SURFACE ELEV.
ort I	vory	P&G			Craig d	rilling		1ST 2-1 B	<u> </u>
CATION	6 8"	UST2-1 A	RI	ank i	400 lot 1	J		00000000000000000000000000000000000000	DATE
2 W.	ol DH	CASING S	IZE HOLE	TYPE	400 101 1			ND WATER LEVEL	11 - 30-00
	9.3/8	1.D. Auger		1	Date	Time	Depth	7	lemarks
	salety	HAMMER	3						
/	FALL 3	.	# FALL						
SILLER -	. Cooke								
SPECTOR		arks							
CASING .OWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.				RIPTION AND REMAR S CHANGE OF PROFIL	
AND AUGE		Hand AUGER	Full		·				
	_			1 1	Fill Land	- de a		1	
			 	 	Fill brow	U OFC	ompose	al — <u>woool</u> :	
		 	 	*	<u> </u>				
· · · · · · · · · · · · · · · · · · ·	<u> </u>			2	Fill bray	un deco	mposed	wood & greyist	white dietom acou
!	· -			١ ـ ـ	Brown C	- C SAN	D' tr. Gro	wal tr. Silli	
Ţ.	5 -	•	Į.	31	Greyish black	C F CAND	tr Grand	tr Silt. tr Silt. Fuel odo	r. 5.5
7		 	 	1	j			_	-
-		ļ	 	1	Note: 2	<u>samples</u>	Source_	for testing.	ケー
	<u> </u>		ļ	1	<u>STo</u>	P Handau	ger beca	ruse of obstruc	tion
			<u> </u>]				. ,	Bottom of Boring
			}						7
	<u>> 10 ≺</u>			1					
	-		 -						
			ļ						
				j				·	
		·							
		 	 						
	► 15 <		 -						
			ļ				- 		
	İ ,								
							ೆತಿ		
			 			·			
	- -		 						
	▶. ◀		ļ						
[•								1
			1						
			 						
		<u> </u>	 			·			
1		•			1				•

THE PORTAUTHORITY OF RIY & RIJ

Engineering Department Construction Division **Materials Engineering Section**

					BC	DRING I	REPORT				
		·							. <u></u>		OF 3
PROJECT	C	יוֹר				ME OF CONT			ORING NO.	SURFACE ELEV	<i>'</i> .
Port I	vory 1) { G				Craig .	drilling		IST 2-2	10075	
LOCATION	(U 0 T	- '	RI.I.	1/2		الما	J		00 00 00 00 00 00 00 00 00 00 00 00 00	DATE	
251S SPOON	of USI	Z-I	Block IZE HOLE	TYPE	0	Lot 1				11 - 30 -	00
_	o.p. 13/8		- 1	1		Date	Time	Depth	ND WATER LEVEL	lemarks	
HAMMER	o.d. 1 3/8	"I.D. ALGER	<u> </u>	1		Date	11110	Deptil	<u> </u>	icina ka	
,	FALL 30	1	# FALL			11.30.00	2: 15 pm	7.0'	Sample # 4		
DRILLER						11 30.00			3000		
	D. Cook	e									
INSPECTOR		1									
	1. 60	irks	· · · · · · · · · · · · · · · · · · ·					<u> </u>			
CASING	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	2				RIPTION AND REMAR S CHANGE OF PROFIL		
BLOWS/FT. Handauger	► OEPIH <	Handauger	Full	NU.	-	-11 L	decomp				<u>0.0</u>
11-11-1-1-1	<u> </u>	"and anger			上	Drawr	akcoin	70210	Wood Some gre		
			1 1	1	7	ll Loove	~ P SAI	ND to Geo	weltr. Silt, som	a Cabbles e l	mink.
	 	<u> </u>	-		Τ'	П Тото м е	-e-1 - 2 11	متح، بينگور	24 CT-11 (-) 2011		
	 	· · · · · · · · · · · · · · · · · · ·	 		-						
	<u> </u>			2_	Mi	sc til o	renish - bi	own c-L	SAND & Bravel to	il Cinders Cox	brie
							1 3	1	,	, ,,	,
	5 <		 	7 *	<u></u>	- 		0.0441	N 0 1 0 0 1		
<u> </u>	<u> </u>	T	<u> </u>	3	ļŭi.	se till grey	jish-black	c- J. JAW	Defravel, tr. Sill	cindes, cool, b	nciek 5
No Casing used		7-11		ĺ	l	• (. (
			12"	4	E	<u> </u>		. 061	Na Caral	C:H o: 1	
	 	7-5	14		$\frac{1}{1}$	11 yellow	ish - grey	C-1 2H	ND tr. Gravel, tr	311 CIVORY	
	L _	7 - 9	ļ		L		_				
	10	8-4	10"	5	-(SAME			•	•	
	10			/*					- 		
		<u> </u>			-				T. 0.1=	— — 	
	<u> </u>	2-2	10"	U	M	sc.till gr	ey c-1 SI	AND & Gra	vel to Silt wood a	indeu Coal.	12.4
		• •			NA	() +e · 9) 	wed for	testing		A
					1.0						ーナ
			· -		-				vith PID meter		ーケ
							discorded	· 	<u>.</u>	<u> </u>	_/_
					H					<i></i> /-	
				•	<u> </u>				. <u> </u>	Bolton _	of Bori
			•								1
	. –						<u> </u>	- 			
		······································			 						
· 					<u>L</u> .				. 		<u> </u>
					1				••		
			-		<u> </u>						
					<u> </u>				·	_ _	
<u>.</u>											
									· 		
					 			· —			
					l						

Engineering Department Construction Division Materials Engineering Section

BORING REPORT	\neg	D 1		$\neg \land$	DT
DUDING DEFUDI					
	DU		ne		nı

)		SHEET OF Z		
PROJECT		0 1 0			NA	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
Port	Tvory	P & G			<u>l</u>	Craig	drilling		UST 2-2 A	
LOCATION			RI	ock	ıZ.	101			CONTRACT NO.	DATE
41 W SPOON	of u	ST 2-2 casing s			14	oo Lot			426 - 99 - 006 JND WATER LEVEL	11-30-00
).D.	1.D. Handan		1		Date	Time	Depth		emarks
HAMMER	Hondaug	HAMMER	F~ 1							
	FALL	-	# FALL							
DRILLER	DC	ooke								
INSPECTOR	7	Zarks								·
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.			3SAI LII	MPLE DESC NE LOCATE	CRIPTION AND REMARIES CHANGE OF PROFIL	(S E 0.8
Handanger		Handauger	Full	_	Fi	11 decom	posed Wo	od	,	• 36
	_			7					ravel, tr SIT, cobb	
		 			113	II Drown	SAME		•	es bricks cinaus
		<u> </u>	- · ·				C	PNCRETE	_ OBSTRUCTION	
										om of Boring
-			<u> </u>		-			- 		
					L					
	▶ ◀									
					├					
			-		<u> </u>					
		•			L					
										
	→		 							
			ļ		<u> </u>		-			
		,	:						,	
										
					\vdash					
	→				<u> </u>					
							-			
<u> </u>				i	 		- 			
			 		<u> </u>					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

				•			· · · · · · · · · · · · · · · · · · ·			SHEET OF 2
PROJECT					NAB	ME OF CONT	RACTOR	B	DRING NO.	SURFACE ELEV.
Port	Ivory	P&G					drilling	y 1	IST 2-2B	
LOCATION			1 /			7		<i>]</i>	ONTRACT NO.	DATE
5'5	3 of USI	2-2 Bl		so Lo	<u>st</u>	<u> </u>			26-99-006	11-30-00
SPOON	T	CASING SI		TYPE	L		•	GROU	ND WATER LEVEL	
	*O.D.	TI.D. Handa	igen		L	Date	Time	Depth	R	emarks
HAMMER	Handauger			_						
DRILLER	# FALL		# FALL		-					
	<u>J). Co</u>	oke			L					
INSPECTO	" T. Z	arks								* .
CASING 3LOWS/F	T. DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.			3SA	MPLE DESC	RIPTION AND REMARKS CHANGE OF PROFIL	_ 1
Handen		Handanger	Full		_£il	Писта			GNAE 2-5 SAND	e 0,0 9.5
	- -	 		1 .	-	<u>,</u>	0 CA	111	n	
		 	 	 			c-1 24		bravel tr. sill, c	inders, roal, brick.
		<u> </u>	1	2	3	SAME			<u> </u>	
							١	Concret	e Obstruction	2n
]						<i>-</i>
	> 5 -					· 				
			ļ							/-
	 	ļ								tom of Boring
	<u> </u>								·	
										· ·
-	10.									
-	10									
	 								·	· · · · · · · · · · · · · · · · · · ·
 										
	├ -									
	⊥ _							. 		
]							
	→ ◆							 .		-
	 			}						
·							-			
	7 '		•							
	 								·	
	+ -		ļ	}				 -		
···	→ •								<u></u>	
	+			 						
<u> </u>	+ -							·		
						•	•			
								·	· · · · · · · · · · · · · · · · · · ·	
	→ <		<u>. </u>	<u>1</u>						

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

							טי	Jillita i	illi Oili			SHEET OF 3
PROJECT							N/	AME OF CONT	RACTOR	т	BORING NO.	SURFACE ELEV.
	Ivory	F) J C	•				Craig c			UST 2 - 3	
LOCATION	77014	1	- 1 - V				Ь-	-, wig -	y		CONTRACT NO.	DATE
11501)	y of BY	da 12	Center C	oncr	de R	oadwa	.u -	Block 14	ioo lot 1		426-99-006	12-01-00
SPOON		. 1	CASING S	IZE	HOLE	TYPE	7				UND WATER LEVEL	
_ 3 *	0.D. 2 3/1 Autom	8 "I.D.	Auge	rs		<u> </u>		Date	Time	Depth	Re	marks
			HAMMER							, ,	1 , , -	
	# FALL ?	00	ļ <u>.</u>	# FAI	<u>.L_</u>			12-1-00	9:45	6.0	SAMPLE #3	
DRILLER -	D. Coo	ke										
INSPECTOR		arks										
CASING	TJ-6		POON	F	RE- 1	SAMP.	2	L	3548	API E DES	CRIPTION AND REMARK	· ·
BLOWS/FT.	DEPTH	BLO	DWS/6"	CO	D'V	NO.		· 			ES CHANGE OF PROFILE	
Outter Head			Head.	Ful	l R				ſ	- L -		
Handauger	+ -	Tand	langer	+-	 		<u> </u>			rete		
_	<u> </u>		1	 			ЦM	نعد أالط	ark Greyish-	black c	- SAND some Gravel	+ Sitt Cinders, Coal Brice
		ĺ			İ		.	r	JJ		1	,
	 	1	1	1	·	ぇ*		SAME		-		
-	 		+	┼		<u> </u>	+-	SAME_				
	L = .						L					
,	5	1.	↓	,		`3	0	SAME				· · · · · · · · · · · · · · · · · · ·
Hollow	 	 _ _	-	 	· -		Γ					
ST	 	5	- 13	-		,	 	SAME_			Fuel.	
Auc		10	- 3	L١	8"	4	Ė	ill arenis	white de	etamar.	eow	7.6
			•			A	T	SAME			•	
	 	 	<u></u>	_		₹ .	-				<u>r wood.</u>	<u></u>
	10-	√ 3-	- 3	1 2	0"	_ ⊃ <u>e</u>	4 1	sc Fill	greyish-	brown	Clayey SilTx-fS	AND, ciadeas (True)
		2	- 1			,	1	***	a n		''	
·	T .	,	,	ء	11	6	7	=11		11	ieto macous	(F 1)
		+	- 	<u>C</u>		<u> </u>	┼-	rii Gre	<u> </u>	mire d	ier machers	ruel .) Some braze
	<u> </u>	12-	14	<u> </u>		×	_			·		
↓		Wo	_ H	2	4"	· / ·	F	brown	PEAT	Æ	aloder)	14.0
-	<u> </u>	""	- 1'				-007	E.				
	15-	┫	•	-		•					or testing	- — — — — —
	L -			L				U sampl	es chec	ked w	PID meter	
		1.							other			
	- -	- · ·		 	\dashv		\vdash	- EC 1912	olver	عودهـ	<u> </u>	Bottom of Bori
λ.	<u> </u>	<u> </u>		<u> </u>			<u> </u>					
:												
		1						- ·	 			
<u> </u>	-	←										
	<u> </u>					:	L					
												<u> </u>
	-	+			\dashv		 					-
<u> </u>				<u> </u>					·		·	
					7							
		1	,		\dashv	ļ	\vdash				- 	. — — — —
				<u> </u>								

Engineering Department Construction Division **Materials Engineering Section** PODING PEROPT

					DUNING	REPUR			SHEET OF
·					T			20110 110	SURFACE ELEV.
PROJECT	Ρέ(· •-			NAME OF CONT	HACTOR	_	oring no. Wood – 1	SURFACE ELEV.
HH	17	·	 		Crais			ONTRACT NO.	DATE
LOCATION As laid	out ±1	6' East of 6	muegos	ct Was	dsia (B	lock 140	6) 4	24-99-006	11/7/00
SPOON		CASING S	IZE HOLE	TYPE			GROU	ND WATER LEVEL	
•	O.D.	″I.D.		1	Date	Time	Depth		Remarks
HAMMER	FALL	HAMMER	# FALL		11/7/00	10.35m		1/2 water	encountered.
DRILLER		<u> </u>	# FALL		1117100	10.2%		778 223	<i>y</i>
INSPECTOR	1.Osu	ch_	···		 	 			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The	an						·	
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	2	3SAI LII	MPLE DESC NE LOCATES	RIPTION AND REMA S CHANGE OF PRO	ARKS FILE
	0	Hand Olever	Tull	. 4	Till-Gr	wel so	me Sand	& Cules	/:8 *
			Ric	1 8	Till-B	FSod	Little	Siet	
				_	Till-B	1M-FSm	J & Cund	lers Little G	rovel
				2	Conco	124			3.S 4.o'
									1
	,						it Coner	te- Botto	n of Boring J
		,			See Born	m-Wood	Q-1A.		n of Boring -
				}		0			
							· · · · · · · · · · · · · · · · · · ·		
	- 10 -]					
	_ /]							
							·		
	<u> </u>	<u> </u>							·
	- 14								
	- 13 - 	<u> </u>							
			<u> </u>		<u> </u>		. 		· 3 *
		ļ <u>.</u>			<u> </u>		·		
				•	<u> </u>				
	· •				<u></u>				
		ļ				5A			A -M
					Mrte:	// b Da	mples	were save	A Moved
			ļ		Boring	. Hee	<u> </u>	Wood 1A	
_		ļ			<u> </u>				
` [1	}		}				

Engineering Department Construction Division
Materials Engineering Section PARING PERART

					D	Julia i	REPURI			SHEET / OF Z
		 								
PROJECT	01/				N	AME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
<u> </u>	PEG				L	Nai	δ		Wood - /A	
LOCATION			0 . (.			.	• • • •		CONTRACT NO.	DATE
a laid	nut ± 3' \	E. of Wood	X-1 (=1	8 last	1	sonveyor al	(Wood Site)	1400	426-99-006	11/7/00
SPOON		CASING S	IZE HOLE	TYPE	0	U		GRO	UND WATER LEVEL	
	o.b. ·	"I.D.		L		Date	Time	Depth	R	emarks
HAMMER		HAMMER			1				11/11/	1
	FALL		# FALL			11/7/00	1		No Water en	recontered
DRILLER			TIMEL		1	1444		<u> </u>		
	D DA	w.L								
INSPECTOR		^			1		 	<u> </u>		
INGF LOTON	7	<i>V</i> .					İ			
	<u>, , , , , , , , , , , , , , , , , , , </u>		T	1	<u>.</u>	l				
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	"]				CRIPTION AND REMAR ES CHANGE OF PROFII	
BLOWS/F1.	► "0"<		 	110.	+_	41 (-,	
	L _	Hand	Full	A	17	M- Gra	vel some	Jand C	indus, little Cla	y 1.0'
		auger	Rec	1 8		ull-Ri	F Sand	1.11	Sit	ر ۲۰۵
	 -	19,	1	-	†₹	- 4 4 4		· ,	1 100	
	 		 	27	<u> </u>	- JS	M-FSa		des little Gron	
	<u> </u>	V	V	<u> </u>	بلا	till-6	ravel, s	ome Ce	adus little San	I (R.R. Bellest) 35'
					1		·			1
	> > -			1	Г					
	-	 	 	1	-		- - 1/-+	0	R.H.	<u> </u>
	 			-	-		140	Cone -	Bottom of k	
									<u> </u>	
]	j	•							
	T -		· ·	1						
	→ 10 →		 		-					
	 		 	ļ ·	-					
	<u> </u>				L					
					1					
]	<u> </u>					
	<u> </u>				<u>_</u>					
	[,]		i	}						
	1		 		<u> </u>					
	<u> </u>	······································			L					
					ì				•	
		<u> </u>	 		-					
					L					
						,				
			 		-	7A +-	- 7/		-+11	
			1 .		1	1100.	: //0/4	annl	estaken. Me	ved Boring.
	1				Г	* (~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	D 4		estaken. Me	
			ļ		L	- see	13/1-	1000	<u> </u>	
					1					
	- -		 		-					
				}	L					
					Γ	,				
			 		-			. — —		
		ı			ļ					

Engineering Department Construction Division **Materials Engineering Section**

						B	ORIN	IG F	REPORT	Γ	1	۳ ا
												SHEET OF C
PROJECT	PÉ	(_				N.			RACTOR		BORING NO.	SURFACE ELEV.
LOCATION	19	<u> </u>			west of	BI	RC 13	arg		Block	CONTRACT NO.	DATE 1
± 10 1	north	of BI	4. Wood	1 (± /	6 last	010	niver	mat	Wood Site	1400	426-99-006	11/7/00
SPOON		U	CASING S	IZE HOL	E TYPE	7				GR	OUND WATER LEVEL	
-0	D.D.	*I.D).]		1		Da	te	Time	Depth	R	emarks
HAMMER			HAMMER]	1				1 1	- 4-1
	FALL		#	# FALL	•		11/4/	00			No water	encountered
DRILLER	D. O.	uch										
INSPECTOR	1	- Ro				}						
CASING	T	10	SPOON	RE-	SAMP.	2	ł.,	1	3SAI	MPLE DE	SCRIPTION AND REMAR	KS
BLOWS/FT.	DEPTI	H <mark>◀ B</mark>	LOWS/6"	COA.D							TES CHANGE OF PROFIL	<u>E</u>
	0		and	Fred] ,	1	<u> 14 - </u>	<u>Gra</u>	wel an	ne Sou	d Cinders	· · · · · · · · · · · · · · · · · · ·
			ances	Rec	1						the Silt	
			6] 2						e Bouldes.	
		1	业	<u> </u>	1	上			-			
	_	+		 	†	-						7-
	> 5	4	· · -	 	-	-			170		- Q H 7 1	
	-			 	-	-		4	us con	creci_	- Bottom of B	
			·	 	_[-						
					1							
				<u> </u>								
	- 10				1							
					1	T						
				 	-{	-		- —			<u> </u>	
		+-		 	-{	-						
				ļ	4	<u></u>			·			
	- 15			<u> </u>]							
·			•									
	 .] -	7							
		1			1							
		_	***************************************	 	1	-	Al A	-		,		
				 	. .	1	700	<u>, </u>	Janpe		re later & then	auscarded as
	>	_			1	<u>_</u>	per	KU	Key	b. C. A	pringer. Will M	tun to this_
				<u> </u>]	L	area	at	anotte	tim	retake of them pringer. Will re	
								,				
	_		·		1	\vdash			· 			
				 	1	\vdash				. — –		
- 🕶		+		 	1	-		-				
		٦		ļ		j						

THE PORT AUTHORITY OF RIY & RAJ

Engineering Department Construction Division **Materials Engineering Section**

					R	JHING F	KEPOK I			SHEET / OF 3
PROJECT	DI				N.	AME OF CONT			BORING NO.	SURFACE ELEV.
HH-	- PE(<u> </u>			L	Chang	·		wood-1c	
LOCATION	, ,	n '0. +1/1	1	10.0	, .	(11)	1		CONTRACT NO.	DATE 9
Smith	nd of woo	CASING SI	5. W. o	1 13/05	13	L (Block	1400)		426-95-006	11/7/00
SPOON	3/	CASING SI	ZE HOLE	TYPE V		·			OND WATER LEVEL	
) · (0.D. C	HAMMER	H2 7		·	Date	Time	Depth		emarks
		\ 1		_		11/9/00	1:10 pm	7.5'	Ins#4	
DRILLER	FALL 3		FALL			11 17 100	7.27.	1.3	1 de 2	
	10 Dac	ch]				
INSPECTOR	-0				Ì			L	<u> </u>	
	TK									
CASING		SPOON	RE- 1	SAMP.	1		3SAI	MPLE DESC	CRIPTION AND REMARK	(S
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.				NE LOCATE	S CHANGE OF PROFIL	
	70	Hand	Jull		<u>-</u>		4.4	4)0	00	,
	 	++*		1 /		lill-Ga	y Clay			
	<u> </u>	Ouzer	Ruc.	<u> </u>	10	inders_				
				ł		Same				
	 			2	\vdash					
	 	 	 		╄					
	L < .			_	L	Some				
		V	V	3						
1	 	.1.2	—		†-	San				
als	 	4-3		4	\vdash	- Jerr	*			
		4-4	12"		1_					
		6-5			T	San	₹			
- 1 -	-		12'	5	\vdash					
	10 -	2-3	10		 		- 	ı — —	- _ 	_
		15-6		. ,	ı	Jane	W/ D	hun è	odon	
		4-4	14"	6			_ 			12.0'
		7-3	· · · · · · · · · · · · · · · · · · ·	~		Dat	3,5 ppm			
	-			7	\vdash	1 000	3,36124			
		2-2	14"		ļ				_ 	
	15	3-3	12'	8		Peat	0.9000	Λ		150'
	_						* •			7
	_ ~		·9 %		一				QH- 1A	
	-				<u> </u>				Bottom of B	
		<u> </u>	3		L					
									•	
		·			Г					
-	-	——		i	1	7 = -		- 		
	<u> </u>				\sqcup	104: 7	ample	<u>s#4</u>	f 6 vere soved b! all other. discorded.	on Teating
	, -				ŀ.	Small	#4~	HOL	1! all other.	somelen wer
					ا	7		المعالم	<u>, , , , , , , , , , , , , , , , , , , </u>	
	<u> </u>				1	cruma	MY LID	& Jum	discardia.	
					L					
]	· – – –				

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

						•	SHEET UF 3
PROJECT	0 '				NAME OF CONTRACTOR	BORING NO.	SURFACE ELEV.
	tort	Ivory f	2 + G	SILE		Wood-3	,
LOCATION					C.550 0	CONTRACT NO.	DATE
LOCATION	Sm.H.	F Bowild	iry 1	A /	ا رمی	476-99.006	1112912000
							1117717
SPOON	2,	CASING SI		TYPE	GROU	IND WATER LEVEL	
3 -	0.D. 2 3/8	-1.0. Auga		<u> </u>	Date Time Depth	Re	marks
HAMMER	Salt						
146 #	FALL 30		FALL		1129/200 1600 6.5		
DRILLER	I MLL 30	<u>'</u>	1744		 	 	
JUNELLA	Davis	d cook	s]]		
							
INSPECTOR	M. Pat	-d					
	11. 754	- G /				<u> </u>	
CASING		SPOON	RE- 1	SAMP.2	3SAMPLE DESC	RIPTION AND REMARK	S
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.		S CHANGE OF PROFILE	
	7		- FUI)		Yzbya/1-		
Hand		Hund		1			
Ayu		Auger			Fil- 11 5x+ Brown emp	SAND, SITH, P	licks mond ata
	<u> </u>		 - 		 		2
				20	light Brown and Dark	Gray CML SA	UD, little miz
	 	 		?			
					Gravel, by stone, comore		
	_				Some in	thite platam	acen earl
	▶ 5− √			3		Pierra	
🚣	-]			_	makmal		·
			100				
- Cor	<u> </u>	1,1	24	-24€	same		
				1 4	 		-
				· ·			j
		1, 1				<u> </u>	
			12''		Same		
		6.6	12'	·	Same		9.0
		6.6	12''	5	Same	THE CON SON	
	10	6.6 5.4		·		THE CON SON	
	 - 10 <	6.6	12"	5	Same	THE CM Sen	
	10	6.6 5,4 4,4		·	some some conf GRAVEL, 7	THE CM Sen	
	→ 10 <	6.6 5.4	18"	5	Same DONK CHE GRAVBL, 7 SAME	THE CM Sen	
	- 10 <	6.6 5.4 4,4 6.5		5	Same DOWN CONF GRAVEL, T SAME		y circle Rock
	10	6.6 5,4 4,4	18"	5	Same DOWN CONF GRAVEL, T SAME		y circle Rock
	10	6.6 5,4 4,4 6,5	18"	5	Same DOMK CHE GRAVEL, TO SAME SAME SAME SAME SAME	- un decompo	y circle Rock
	10	6.6 5.4 4,4 6.5	18"	5	Same DOMK CHE GRAVEL, TO SAME SAME SAME SAME SAME	- un decompo	y circle Rock
		6.6 5,4 4,4 6,5	18"	5	Same DONK CHE GRAVBL, 7 SAME	- un decompo	y circle Rock
	10	6.6 5,4 4,4 6,5	18"	5	Same DOMK CHE GRAVEL, TO SAME SAME SAME SAME SAME	- un decompo	y circle Rock
		6.6 5,4 4,4 6,5	18"	5	Same Donk chy GRAVEL, 7 SAME SAME SAME Brown Organic sill Bathan of the	un decompo	y circle Rock
		6.6 5,4 4,4 6,5	18"	5	Same Donk chy GRAVEL, 7 SAME SAME SAME Brown Organic sill Bathan of the	un decompo	y circle Rock
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Brown organic sill Bathan of the	on decomposed the ples about	y circle Rock 130 140' 140'
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Brown organic sill Bathan of the	on decomposed the ples about	y circle Rock 130 140' 140'
		6.6 5,4 4,4 6,5	18"	5	Same Donk conf GRAVEL, 7 SAME SAME SAME Bothon of the All soil son PID meters.	of decomposition of the ples check. Somple M	130 140 140 1 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Brown organic sill Bathan of the	of decomposition of the ples check. Somple M	130 140 140 1 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Donk conf GRAVEL, 9 SAME SAME SAME Bothon of the All soil som PID meters. eve saved	ples aheak. Somple M For Environ	130 140' 140' 140' 140' 140' 140' 140' 140'
		6.6 5,4 4,4 6,5	18"	5	Same Donk conf GRAVEL, 7 SAME SAME SAME Bothon of the All soil son PID meters.	ples aheak. Somple M For Environ	130 140' 140' 140' 140' 140' 140' 140' 140'
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Donk conf GRAVEL, 9 SAME SAME SAME Bothon of the All soil som PID meters. eve saved	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4
		6.6 5,4 4,4 6,5	18"	5	Same Dank conf GRAVBL, 7 SAME SAME SAME Bothon of the All soil son PID meters ere saved Remains Som	ples aheake Somple M For Environ	130 140 140 140 Late 1, 2 and 4

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

																inec i	<u> </u>	UP /	L
PROJECT PON P+G Ste.							NAME OF CONTRACTOR Coaig Driling Contract No.							3 4	s	URFA	CE ELEV	<i>1</i> .	-
LOCATION				<u> </u>								CONTI	RACT NO) .		ATE			\neg
Sal	uth of	Bu	سرنه ان	r 1	A.							424	-99-6	۵۶_		11) 3	7/20	N)	
SPOON			CASING SI	ZE HOL	E TYPE	\Box					GRO	DUND 1	VATER	LEVEL					
3 0	.D. 23/g	"I.D.	Auge	r	.		Dat	te	Tim	e	Depth				Rema	rks			
	FALL 3		HAMMER					1,00	1100		6								
	FALL 3	•		FALL	•	l	11)29	100	1,00		Dry							<u>-</u>	
DRILLER	David	C	ouks	٠.															
INSPECTOR	M. Pat	e																	
CASING BLOWS/FT.	DEPTH	SP	OON WS/6"	RE- COV'D	1 SAMP.2	Γ								ID REMA					
	- <			_ Eui		1	ALP	hall	_						-				
Hwa		H	and a		· ·	-		- 17-62		4 L/3	7-		- C	- cm	7 - 4	CIL		 .	£1914
17			14-	1	1	۲		""	-1 b.		- U	~ ₹ 1~	٠٠٠	· -	0 .		, ,— - 	cin	
											MAN								
						-			- 73	075	m of		te-	-/WA	杨	6	15 h	uch	ian,
				<u> </u>	1	\vdash													-
	▶ ◀		 ;		1	-					 -								
			-	ļ <u>.</u>	-	-													-
			<u> </u>			-					 -								\dashv
				<u> </u>	1	-													
					+	 											 -		\dashv
	▶ ◀				┨	 		- —							 .				-
					1	<u> </u>									 ·				\dashv
					1 .	┝													\neg
					1.	-													\dashv
·					1	-	-								 -				\dashv
	>		 -		1	 -								 ·					\dashv
					1	<u> </u>									 -				\dashv
	_				1	 		<u> </u>							 .				\dashv
					1	<u> </u>									 .				
<u> </u>	_		· · · · · · · · · · · · · · · · · · ·		1														\dashv
	► ◀				1									 , -					-
	- - 				-	-				—	 -				 .				
	_	·			-											 ·			\dashv
		·			-									:					
		-			-										<u> </u>	 -		—	
						•													

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division

							eering Se						
					BC	RING	REPOF	RT				1	
					1				1		SHEET	OF	<u> </u>
PROJECT	ry At -	P&G			NA	ME OF CON	tractor L		BORI	NG NO.	SURFAC	E ELEV.	
	U	8' South of	Bld. I	A	r.	loch 140	0			RACT NO.	DATE	10/0	0
SPOON		CASINGSI	ZE HOLE	TYPE	74	CICALIAN	• /	G		WATER LEVEL	1 1 1		
	D.D.	*1.D.		L		Date	Time	Dep			lemarks		
HAMMER		HAMMER				11/10		pr					
DRILLER	FALL Druc		# FALL			71110	 		y				
INSPECTOR							 						
INOT EOTON	TR												
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP. ² NO.						TION AND REMAR HANGE OF PROFI			.,
restor	0	4								PHACT			0,5
1600		Hand	741		7	11-12	MIFSE	d tot	77/24				7.5
j		anger	Ric	1		PAU CE		× ,					2.6
	1		Ī							القام بالتي التي مي مي التي التي التي التي التي التي التي الت			
	- -			2	-					1 01 0.0			_,
		Ψ	W	~	Ļ₩	ise. till	black s	<u>- SA</u>	ND, lit	le Clayey Silt,	coal cini	ders	40
							<u> </u>						ž
_	,							\mathcal{L}	a Do	m of Bour		_	
									かくけい	m of Boiling	4.2 S/	<u> </u>	
					<u> </u>				<u> </u>	<u> </u>			
					<u> </u>			<u> </u>		 <u>-</u> _			
					-								
	10				Ľ.								
	_	l:			l							· · · · · · · · · · · · · · · · · · ·	
						7							
					\vdash								
													
								_ <u>`</u>				— —	
	11	·	·		L								
	()												
					\vdash					 			
					-								7,
					<u> </u>								
					<u> </u>								
<u> </u>													
\													
	—. ⊢				 _								
									 -				
		·											
			İ			•					_		
				,									

Engineering Department Construction Division Materials Engineering Section

					BC	ORING I	REPORT			SHEET / OF				
PROJECT HH	- PiG				NA	ME OF CONT	RACTOR	8	BORING NO.	SURFACE ELEV.				
LOCATION				/ .		())	9 1		CONTRACT NO.	DATE,				
aslaid	nt = 80	South of Bl	ds 1.B	S Book	(t)	(Block 1	400)		426-99-006	11/7/60				
SPOON	73/4	South of Bl CASHG SI "I.D. Quyero	ZE HOLE	TYPE			T =		ND WATER LEVEL	Remarks				
HAMMER	O.D. 610	"I.D. Queens				Date		Depth	- C / -					
	FALL 3		# FALL	-		11/7/00	2:30 Pm	5.8'	I InS#3					
DRILLER	D.O pue	•												
INSPECTOR														
CASING BLOWS/FT.		SPOON BLOWS/6"	RE- 1	SAMP.			³ SAI	MPLE DESC NE LOCATE	RIPTION AND REMA S CHANGE OF PROF	RKS				
	0	Hand	Tull	110				101	211C	0.3				
	_	aures	Rec	. *	7	itt-Br	M-FSan	1, lit	th sitt	7.0'				
		1)	_ 4.	Fill-Cinders to Sand									
				2										
				7 `		San	A CONTRACTOR OF THE PARTY OF TH							
	>	V	V	3										
ans	_	4-3		4		San	4							
		3-3	19"	1	L									
	_	4-3		5		Son	w/ lit	the wood	<u> </u>					
	10	8-10	15"		_					10.01				
	<u> </u>	6-15		6		Woo	dult	conders						
	<u> </u>	12-13	8.	Ψ.	_				_,					
	<u> </u>	13-8		7		<u>San</u>	<u>~</u>							
$\overline{}$	<u> </u>	12-12	7''		_					140'				
	→ 1⊀ →	3-3		8		Peat,	little	org si	etz Clay					
	┡ _	3-4	18"			-	·	<u> </u>	2.56pm	K.o '				
			_											
	-								Botton	& Boring -				
	-	<u> </u>			_									
					7	Into:				vere saved Other				
				:										
	<u> </u>													
					L									

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET OF U			
PROJECT	٠	_			NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.			
PORT II	Jory Pd	G 5,1e			Crais	Drilling		PAMW-1				
LOCATION	. ,		Λ.			v		CONTRACT NO.	DATE			
NW CO	ornerot	SiT-, Noas	· Kcl	move	TITY BL	act 1400	LUT/	426-99-006	11/22/00			
SPOON	_	CASING SI	ZE HOLE	TYPE			GRO	UND WATER LEVEL				
3 .	.D. 018	"I.D. HUSEN	177	Horu Par	Date	Time	Depth	R	temarks			
	Safat FALL 30	7	FALL		11/22	100	415	while Hand	Ausering			
DRILLER		5 Craix										
INSPECTOR		D Nowe										
CASING		SPOON	RE- 1	SAMP.2		3SA	MPLE DES	CRIPTION AND REMAR	KS			
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.				ES CHANGE OF PROFIL				
Hard		Hard Augo	Full									
Augr		1	1		Crusho	1 STane	Grave	1, Savol, Cindry	ETC			
1									3,0			
1				\ ;	Fill- W	hite D.	19Toma	cows Early	ph-7			
			1									
	2			2	Fill Whited Gry Digtomacrows Early Phi)							
Y.		1-1	_		0/24 1/2011/40000 2 1/1 //							
STam		1-1	341	3	Fill Cry DaTo macdons GarTh Ph-7							
Aigs		1-/		4								
7		1-/	241	7	FUI - White & Gray Diatomacous Barry Ph-7							
	> W <	1-0		-								
		0-0	16"	21	Same Ph-13							
\		1-0	_	,		_						
		1-0	20"	6	San	<u> </u>			Ph-17			
	- 15 -	1-0		7								
\bigvee	_ '	0-0	24"	/	San	<u> </u>			Ph-13			
		1-1		Q A	Fill- Brow	N. Creen	Gray	white Pigtomaced	WS ENT #1-13 170			
	_ · _	3-4	184	B	Brown				Ph7 180			
		Í							スコ			
	20							Bottom of Burin				
				ſ								
						17-11	Samuel	los checkal wi	Th PID			
				-	MeTer, 5# 1,2,5 +88 Sawed for							
					ENUMO TOTTING, Romanny Samples							
	7					Pisc	ardol					
	~ ~ ~ ~											

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Well Installation F	Report			Sheet Z of y
POIT I VOIY	PHG SITU	Block 1400 Let 1	,	CONTRACT NO. 476-99-006
Ne Corner of	Site Near Rice	homoud Terr		CONTRACTOR Cray On 1/12
WELL NO.	WELL TYPE	INSPECTOR OF MOLES	DRILLER CYOUS	DATE 1//22/co

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE 14/00 WATER LEVEL BEFORE 7,5 WATER LEVEL AFTER 10.1 TAKEN 10 MINUTES AFTER

3'' " dia. PVC pipe w/steel locking cap $L1 = \frac{3.0}{}$ L1 L2 = 310 Top of surface L3 = 12.0' & cement grout Top of bentonite seal L2 Top of well gravel filter openings .020 L3 Bottom of well **Bottom of boring** Cap. 74 Boring diameter

Hule Beatfilled 15-18' with Bon Tarite

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									•	SHEET / OF 5
PROJECT		2)			N/	AME OF CONT			BORING NO.	SURFACE ELEV.
PUY]	LVOIY	PAG S.T	`		<u> </u>	Craix	Drilling		PAMUL 10	
LOCATION	•		•	_		9	U		CONTRACT NO.	11/20/00
₹/O	Northol	PA MW-	SIDE HOLE	COYNEY	o F	-8,10, 84	oct 1900 i	<u>∞τι</u>	486-99-006	11188100
3POON	0.0. 13/s Safet	TI.D. HU	12 HOLE	an Jou		Date	Time	Depth	OUND WATER LEVEL	emarks
HAMMER	Cofe T	/ HAMMER		40000		,		- Dopan		
140 #	FALL 30	· -	# FALL			11/22	3 p	40	while Hard	Braylon
DRILLER		J Craix								
INSPECTOR		Dolowe								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.					SCRIPTION AND REMARI TES CHANGE OF PROFIL	
Xand	0	Kard Augu	Full			-				
Dign	-	1	1	1			For	STEATE	0-18' See Le	- Cor
1,0%	_	 	+		\vdash				<u> </u>	55
		 	1-1-		\vdash		PAM	<u> </u>		
				}	L					
	> 5 ◀			1	Г					
7					-					
Cashis										
70										
					一					
	► 15 ◄				<u> </u>					
					<u> </u>					
										180'
		110.	- 		7	2 8	· · · · · · · · · · · · · · · · · · ·			
<u>v</u> ,		Won	- 		<u> </u>	J.8 ppw				
Dr. 11	20	Н	201		L	Brown (reat_		<u> </u>	
Bhend		Woy		_	L	4.800~				
WITH		H	204	5		Same	,			
ROCEVI		1			:	3.120~	= 			
1027		2-1-	7 11	3.	<u> </u>				n 7	
		2-1-	1911	2	<u> </u>	_ Same	<u> </u>		<u>Pb-7</u>	
	- 25	7	<u> </u>		L					7510
]	2-3		,,			•		<u> </u>	
		4-3	1411	4	Т	M-1= 12.				
		<u> </u>	+-'			!' <u>-</u> 'D)	Cun De	ercol 1	Tr Gravel Irsu	
			 							
_ 🖳				ļ			<u> </u>		<u></u>	
	3,,]									

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					SHEET	2 OF (5
PROJECT	<u> </u>	0)		-	NAME OF CONTRACTOR BORING NO. SURFACE E	LEV.
POY	1101-1	PJG 517	2	 	Crais Orilling PANIL-10	
LOCATION	,			,	CONTRACT NO. DATE	./
#10' No	vThat PA	CASING SI	U COYNS	201517	Te, Block 1400 LOT/ 486-99-006 11/29	1100
SPOON	.3,	CASING SI	ZE HOLE		GROUND WATER LEVEL	
		1.D. ROLLOT	- 179' N	ON JON	Date Time Depth Remarks	
HAMMER 14c #	Sefer FALL 30	/ HAMMER	FALL			
DRILLER		J Craix				
INSPECTOR		DHoup	•			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2	3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE	30.0
Prill	30	3-4	COVE			<u> </u>
				5		
Ahoud		4-4	16"		M-FGray Sand, Ir Gravel Ir SIII	
いげり					, , ,	
Rawi			-			
1						
	> 35-					
		3 - 3		6		
		4-5	12"		FGray Sand Trsilti Tr Gravel	32,0
					FGray Sand, TrSiTT, TrGravel FRed Brown Sonder Typet Spean I	
-+					- I NOD Drown Sond in 1 part Speak	
	uo.					
	> 40 ◀	4-7		<u> </u>	Ph-7	
		70	104	フ		
	_ '-	1-8	10.		I-Brown Sand Tr Silly IV Ground	
-+		· · · · · · · · · · · · · · · · · · ·				
	-42					
	_ ' _1	1-4		\sim		
		5-4	141	8	M-F Brown Sand, TrS, IT, TV Grave 1	
_			' ' '		17. 1 0.000 200, 1.3111/11 0100.	
						48.0
		·			Rods chatTeriny	
1 (,		
	S0 -	9-18			No Ph Randing	
- - 			C 3:	9	No 14 Roading	
		32-39	811		Red Brown Clayer Sili, LIDIO FS and, Ir Gro	wef_
-, , , -+						
V	- ~ -					

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

					·	SHEET 3 OF 6
PROJECT PORT	Thosa d	PHGSITE			NAME OF CONTRACTOR Craig Drilling BORING NO. PA INIW-10	SURFACÉ ELEV.
LOCATION	20014	7003174			CONTRACT NO.	DATE
	w.Th.of	PANW-1	NW C	oxua at		11/24/00
SPOON	3	CASING SI	ZE HOLE	TYPE	SITY Block 1400 LOT/ 476-95-006 GROUND WATER LEVEL	
J .0	.o. 1%	"I.D. ROWIT	- '&'/	Mouston		lemarks
HAMMER)식() #	Safal	HAMMER	FALL			
DRILLER		J Crais				
INSPECTOR		DXoure				
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2	³ SAMPLE DESCRIPTION AND REMAR LINE LOCATES CHANGE OF PROFI	
Dill	55	30-108- 41			No Ph Reading LIDIO M	
Dhead		24-26	11"	10	Decomposed Red Shale, LIDE Red Brown Sta	
		*			1300m 10300 100 31410 CIUIS 100 UTOUL -10	yo ysi11 f
with					<u></u>	
RUNT						<u> </u>
	- 60 -					600
		37-311			No Ph Rocaling	
	- . 	36-40	13"	11	•	
		36 10	13		M-F Red Brown Sand, LITTLE Red Sholy Tr Cla	
	· -		_			
	- 65 -					65.0
	- ;	37-46		12	No Ph Rocding	Trsut_
1	is.	36-42	7"	12	Decomposed Red Shelo, LITLE M-F &	ad Avous Soud
7						
						
	- 70 ◀	109/24 20/1	v	13	- Recomposed Bot Shote, Ir FSand	70.2
	_	12 38		[
				. ,	Refusion Buttom of B	oring
	-75			į		
	/3]
				ļ		
				ļ		
	- ' -			}		
				}		
	- 80	1				

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

* 30016 Hammur used

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Wall Installation Report		Sheet 4 of 5
POT TUDIN PAG-SITE		CONTRACT NO. 426-98-006
LOCATION Flo' North of PH MW-1D		Crong Dr. 16mg
WELL NO. PA DXW-ID WELL TYPE "H" MONITON	INSPECTOR DRILLER D'HOWE TOYO	DATE 11/24/co

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE

WATER LEVEL BEFORE ______ WATER LEVEL AFTER ______ TAKEN _____ MINUTES AFTER

Hole Back filled :55.0-70.2 with Hole Plus

11 11 47.7-55:0 With well Graves

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET OF
PROJECT					N/A	ME OF CONTI			BORING NO.	SURFACE ELEV.
POYT.	Wor-1	PJG SITE				Crais	Dr. 11/2	رى	PAMU-5	
LOCATION		<u> </u>				- 8		8	CONTRACT NO.	DATE /
Fast	side of	RRCOX SC	م ا و	Rlock	19	100 Los	<u>-</u> /		426-99-006	11/9/00
SPOON),,, , , , , , , , , , , , , , , , , , 	RR CON SCO	ZE HOLE	TYPE	i	İ		GR	OUND WATER LEVEL	
3 .	D. 2%	"I.D. Dugers	(Y)	Mariter/		Date	Time	Depth		Remarks
HAMMER	Safat	/ HAMMER				f	0~			
140 #	FALL 30	· .	FALL			11/9/00	3 Pm	4,0	while dan	d Argring
DRILLER	S	Burns								
INSPECTOR	Į L	Hove								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2		<u></u>			SCRIPTION AND REMARTES CHANGE OF PROFI	RKS
	► 0 <			1.0.	c	rushed Sta		IL LOOK	TEO ONAITOE OF THOSE	LE 0,0
Hond		Mand Busar	FUI)						
Augr	1)		!	1	Misc Fill	-CINde	15 AS	hos, Grown ETC	0.1
1		 			<u> </u>		_ 	-/		
	<u> </u>			2	├-					
			1			Same				0.1
	> 2 <			3	-					
. W	_		<u> </u>		L	Same				<u> 3 </u>
)		5-3		y A	1	Some				
		2-1	フリ	1 4 <u>~</u>	1					<i>75</i>
SJam		0 /		B	١.,	F111- VI	9 Jumgo	eas E	1 2 7 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7). (<u>8</u> .c
Augs		3-1				Brown 6		BSN.		8.2
ĵ		1-2	73"	5 1						7.1 9.5
	> 10 <		03			FIII-DIOTO	maceous.	BALTA	unit (ان الاحل
		WOH-1		6	L					
		0-1	14"			Brown	Pest	4.	700M	120
						01000	<u> </u>		TO THE TOTAL PROPERTY OF THE TOTAL PROPERTY	4
					<u> </u>					
									Bo Donof B.	ox/us
				[
	> 15 <									
·					<u> </u>					
13. 4]		A-11 50	- مامیر	chart 11.17	1 PID Water
	_				 		7 29	2	100000000000000000000000000000000000000	h PIP Mitor To Botostar
					<u> </u>		7 7 7 3	<u> </u>	of to Jesting S	المحدادة العلاما
ļ					1		Remains	Sum	Ales Oscardof	,
		· · · · · · · · · · · · · · · · · · ·					· ·····		# # # # # # # # # # # # # #	
	> 30 ◀				⊢–					
		<u> </u>			L					
										
										
-, -										
	25									

<u> Engineering Department - Mate</u>	enais Division	•
Wal Installation Report		Sheet 2 of 4
POT Ivory PtG Site		CONTRACT NO. 426-99-006
EGST of KR Car Scale		Charge Drilling
WELL TYPE WELL TYPE MOUNT	av INSPECTOR I	S Burns DATE 11/7/20
•	ER LEVEL READINGS FROM TOP OF PVC)	
DATE 11910C WATER LEVEL BEFORE 7.1	water Level After 7, 4	TAKEN (C) MINUTES AFTER
_ ∂'' " dia. PVC pipe w/steel lock	ing cap ——	· · · · · · · · · · · · · · · · · · ·
		· ·
L1 = 3.0 $L2 = 3.0$		
L2 = 30		
L3 = 70'	0,0	Top of surface & cement grout
L2		Top of bentonite seal
		স্কু Top of well gravel filter
	openings .020	
L3		
•		÷
د		lao Bottom of well
	Cap	12,0 Bottom of boring
	Boring diameter	

Hels Back filled 10-12' with Bentonto of

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

									SHEET / OF
PROJECT					NAME OF CONTE			BORING NO.	SURFACE ELEV.
POVT	Ivary	PHG SIT	۵.		Craix	Drilling		PA-MW-G	
LOCATION	7-41				U	_	1	CONTRACT NO.	DATE / /
West	side of	CASING SI	W XXIXC	Ramo	Block 1	400 Lo	11	476-99-006	11/7/00
				TYPE			GRO	UND WATER LEVEL	
3 %	.D. 0 1/2 STF07	I.D. BUCH	<u>s</u> 2	1 . I	Date	Time	Depth		emarks
HAMMER	Sefat	HAMMER				200		5#5	
140.	FALL 30	, i	FALL		11/7/00	136	90	5" 5	
DRILLER		S Burus				,			
INSPECTOR		D Howe							
CASING		SPOON	RE-	SAMP.2	1	3SA	MPLE DES	CRIPTION AND REMARK	(S
BLOWS/FT.	DEPTH	BLOWS/6"	COV.D	NO.				ES CHANGE OF PROFIL	
	0	\/ . /n.	+-11		195pha IT				0,2
Hand		Hord Augr	Full	┥	DGABC				
Auger		<u> </u>		J	L			· · · · · · · · · · · · · · · · · · ·	
				1	Misc Fill-	Cudors	Cos1, 1	Brick Wood San	d ETC
				2	Misc Fill	1 Cird	ers Ds	Les, Groupl, ET	·
				 	{		,		
	>2			3	Sa	rme_			
,		5-56	-V						
<u>ke</u>		8-6		у	<u> </u>				
STOM		5-5	18	/	Misc Fil	CIND	ors A	shos, ETC	
		2-0			Same		7		
Hugh		0-20	- 1/	57					
	10 <	1-2	24"		FF	Max M	5 Toriol	(wh.To) Distan	aceous Earth
		WOH					, ,		
			24"	6					
		WOH-1	84		Sanne	. —			_
1 1		WOR-WOH		7					
		1-2	24"	/				 	
			1		Samo				
	15	1-2		ا رے ا	BUL BU	Tax Xa	<u> </u>	uhit-), Distoma	SCJOUS EGYTY
	, ,	2-2	2411	8				11 Be Dan of Sar	
- - 	- . -				<u> </u>	· 2.27 2		11 ~ AND AND A 200	
		WOH-1		C			- -		
<u> </u>		0 ~/	241	7	FIII-FID	MaJorie	1, (leh.1	-+ Gray Astomo	cooks Early 18.0
		3-3		,			/	• /	
		4-4	20"	10	Brown	0.7			20,0
	> 90 ◀	• • •			קשייט	T-041		0 0 0 0	- 300
								Ballomof Bori	<u>'Ng</u>
					11	Samol	es cho	taluiTh PID	
				i	\(\sigma\)	7-5	Salle	for Ecvope T.	esting (realant
				ŀ					_ <u>~~~</u>
	- ` <u>-</u>				<u> </u>	untre o	21/911	_ 	
	25								
	<u> </u>								

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

stallation Report	•	Sheet 2 of 4
PAMU-6 PORT Ilury PAG SiTURIATION LOST SIDE OF WOOD DU LOST SIDE OF WELLTYPE 'A" Mo	mping Ramp Block 140c Las INSPECTOR DRILLER NITON D'Acure S.A.	CONTRACT NO. 436-91-006 CONTRACTOR Craix DATE
	E: WATER LEVEL READINGS FROM TOP OF PVC)	Burns 11 Hlac
1/8/00 WATER LEVEL BEFORE	8.0 WATER LEVEL AFTER 8.0	TAKEN 60 MINUTES AFTER
2'(" dia. PVC pipe w/ loc	le cover ————————————————————————————————————	
L1 = <u>0.3</u>	Top o	of surface ment grout
$L2 = \frac{3.7}{14.0}$ $L3 = \frac{14.0}{1}$		of bentonite seal
	₩ Jiơ' Top o	of well gravel filter
L3	openings 020	
۷	200	m of well m of boring
	Boring diameter	

PA 547 6-90

THE PORT AUTHORITY OF RIVE RU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

						_						SHEET	OF (
PROJECT						N/	AME OF CONT	RACTOR		BORING NO.		SURFACE ELE	EV.
0 -	Ti,	רש	たっか	,			Crai	Drillin	[PB-MW-61	ว ท.		
POT) LOCATION	100rc/	y o	C > 112				-iuip	Ulling	y	CONTRACT NO.	7 140	DATE , ,	
LOCATION	,		Δ						LOT!			DATE //	
Waster	vood Ovn	4/2014	Kamp	, > 1	5' North	تان	PAMU-G	Bkc E140	ac '	426-99-ccl	,	11/7/0	,
LOCATION LIPSTOF	 	0	CASING S	ZE H	OLE TYPE	T			GRO	UND WATER LEVEL			
				1	1		Date	Time	Depth			narks	
" 0	. <u>v.</u>	"I.D.	HAMMER		_ <u> </u>	1	3	7,1110	- Jopan		. 1631		
HAMMER		i				1	11/1		Dry	/			
	FALL			# FALL		1	111		יען				
DRILLER						1			/				
	S B	UYNS				1			1				
INSPECTOR						1	<u> </u>		 				
	\mathcal{D}	How	•			1	1		[
			`	T	4								
CASING			POON	RE		*				SCRIPTION AND REA			_
BLOWS/FT.	DEPTH	BL(OWS/6"	COV	'D NO.	ا			NE LOCAT	ES CHANGE OF PR	OFILE	<u> </u>	Co
ſ				ļ	1	P	Sphart						45
				 							- —		
· 1	`1			1			DGABC						2,0
-				†	[MISC FIL-	Cindons O	YCICHI S	and ER			24
ļ				L									_1)_
										RT 10			フー
				L		L.				Bo Domot Bo ObsTruction,	1/1/	<u> </u>	
j	. }		r	ļ	ļ	1				abotente	PA	T Course I	cl.L
	> 5 ◀			├				- 		00211001100	. '	4 (000/3/	23/89
	_]	- 1	1		No S	comple	Savod			
				1		-			- # -				
				l		L				·			
				1									
				<u> </u>		—							
	ì			l		1							1
						-							
Ł	ا ، ر				J								
	- (U ◀												
<u>}</u>													
- 7	7				1	1							1
						\vdash					-		
1	1				1	1							
}		 -		 	 	-	_ 						
Ì	j]	J				-				
				<u> </u>									<u> </u>
							<u>. </u>						
7	12			l									
						\vdash						· —— ——	
1	ļ			ł	1	1			•				j
+				 -		\vdash							— —
j	}			1	1								
				<u> </u>									
				<u> </u>									
	1				1			· —					
b	> > > ✓			 		-							
ſ				ł									
	+			 		\vdash						·	— —
ļ	1			1	ļ	1							
								 			-,	· —— ——	$ \neg$
				L		L							
					7	Г							7
						 							
į	1				1	1		•					j
	اسدو			· ·	1	1							

PA 547 6-90

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									<u> </u>			SILLE! (U	
PROJECT			-			NA	ME OF CONT	RACTOR	8	ORING NO.		SURFACE ELEV.	
Part	I have I	PAG C	,T_				Cray)	Dr. 11.	1 :	PAMW-6DB	?		
POT]]	1017	100-31	116			1	-141	VIIIIXX		ONTRACT NO.		DATE	
LOCATION	•			,				U	ا		ļ	DATE	
West of SPOON	Wood aum	n Rama	, \$10°	No	shot K	AN	ru-6 Bl	at 140c C	OTI	476-95-006		11/8/00	l
SPOON		CAS	ING SIZE	HOLE	TYPE				GROU	ND WATER LEVE			
				1)	ŀ		Time	Depth			narks	
10	.D.	"I.D.				- 1	Date	ime	- Depur	 	nen	141 A3	
HAMMER		HAN	AMER			1	ulc		Ω .	1			
	FALL		# F#	LL		H	1118		Dry	1			
DRILLER						1			1	1			
J	S	Burus			j	- 1					•		
		COINS						· · · · · · · · · · · · · · · · · · ·	 	 			
INSPECTOR	1/1	1				İ	,		· '	1			
	ν_{I}	House			- 1	i			1	1			
CASING		SPOO	N	RE- 1	SAMP.2	Π		3SA	MPLE DESC	RIPTION AND RE	MARKS		
BLOWS/FT.	DEPTH	BLOWS		O'V	NO.			u	NE LOCATE	S CHANGE OF PR	OFILE		Oct
	>					n.	nhatt						85
	_				}	1-2	Aire						
					1		OGABC						115
	1				j								
					1		M. P		/, h.	(
1					1	<u></u>	I LISC FE	11 - CINO	US BIL	os, Grand, El	<u>/C</u>	`	
1	l				l	1			•	•			}
ļ				'	l	<u> </u>							-u, -
}	_ !		1			ļ							416
	> 5				İ	\vdash					<u> </u>		- /)
			J			j				Bollom of	Bal	r/nx -	/
					İ							·	
	ŀ		İ			ļ				dpsJIvJ(or	L, <u>C</u> o	ucreTe,	
					1					0 1/ -	7, 7		
					1	<u> </u>				Battom of abstrution Possible S	<u>lab</u>		
1	ł		- 1		ł	l							
					1	┝							
1]							İ
	► 10					 							
1						i				•			
						\vdash							
l	1					1						,	
					1								
						<u>L</u> .							l
1	. 7		1			ľ]
						Ь							
j			}			1							
}	► 15 					 							
1			.,			1							
						 						· 	
	İ							•					
1													
	1					L						. 	
T	T												ļ
						<u> </u>							
J	j		j										
	> 20 ◀					├						·	
Ì	-		1			l				•			
						-					- ,		
. [ĺ												ļ
						L						. <u> </u>	
						<u> </u>				- 			
Ţ	آ ر		7	. 7			···· ···· .]
	5< ◀					Ĺ							

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					S	HEET / OF 5
PROJECT	T., .	DIC CT	`_			URFACE ELEV.
POIT.	JUUV-/	PAG SIT	٧		Block 1400 LOT / CONTRACT NO. D	ATE ,
LOCATION		0	+ +	-1	block 1400 Lot / CONTRACT NO.	11/8/00
SPOON	wood W	mply Kom		5 04/1	h of P8-1246-6 426-99-006 GROUND WATER LEVEL	1110100
		1.D. HW		kw. Tor	GROUND WATER LEVEL Date Time Depth Remai	
HAMMER	D.D. 178	HAMMER	147 17	KON 101	Date (sine Deput Nema	i Ko
	FALL 30	i	FALL			
DRILLER	TALL 70		T TALL	<u>-</u>		
ı	S	BURNS		ļ		
INSPECTOR	\mathcal{L}) House				
CASING		SPOON	RE- 1	SAMP.2	3SAMPLE DESCRIPTION AND REMARKS	
BLOWS/FT.	DEPTH	BLOWS/6"	COA,D	NO.	LINE LOCATES CHANGE OF PROFILE	0.0
Mard		Hand Bugy				
Aucor		1			No Samples Taken for STrate Soules for PAMW-b	0-20
""					C (C p)	<u> </u>
	<u> </u>	ļ	<u> </u>		Soe Log tor MW-6	
]		
	5			1		
V		——————————————————————————————————————	-			
C45118						
	10					
Prill	— 19 —					20.1
	> 20 ◀	14				
Brad	- -	WOH-1		1		
with	· -	1-2	24"		Brown Poat	
Revort		WOH-1				
		1-1	24	2	Samo	2400
	- m	8-8				
	> 32 <	8-8	144	3	I-Gray Sand, Tr S715	
		6-6		11		· .
		7-9	16"	4	P Gray Sand, LITTL SITT	
		7-11		P	F Gray & DE Gray Sand, Tr SITT F Reddish Brown Sand, LITTLE SITT	29.0
	- 3 <i>c</i> ∕ -	9-6	144	SB	F Reddish Brown Sand LITTLE SITT	30,0
		6-7		,		
	_	8-9	144	6	F Red Brown Sond Some Sili	
		9-10				
		1)-[[17"	7	Same	
×/		10-13	18"	8	Some	
	- //					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					Sheet 2 Gr	5				
PROJECT					NAME OF CONTRACTOR BORING NO. SURFACE ELEV.					
PORT IVOIN POG SITE					Crais Drilling PAMW-6D					
LOCATION					CONTRACT NO. DATE					
LOCATION	10	0 1	م اس	/)		,				
Wastall	nood Mi	mp kamp t	<u>/2/200</u>	1407						
SPOON	.3, .	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL					
ه. ک	.D. 118	"I.D. Rewit	- H'M	UNTOY	Date Time Depth Remarks					
HAMMER	SafeT FALL 30	HAMMER				İ				
140 .	FALL BU	/ • l •	FALL							
DRILLER										
	<	Burns				1				
INSPECTOR										
MIST ECTOR		O Howe								
				1						
CASING	55571	SPOON	RE- 1	SAMP.2		ì				
BLOWS/FT.	DEPTH ◀	BLOWS/6"		NO.	LINE LOCATES CHANGE OF PROFILE					
Drill	4 3	15-16	18"	&	FRed Brown Sand, Same SilT					
			<u> </u>		The second of th					
Bhogd		15-20		9	Note! After 5th Casing advanced from 19 to 34					
with		18-18	171	7	Same					
			<u> </u>		1	, —				
ROUNT		16-20		10	Note after 5#10 cosus advanced from 34'-39					
} }		21-21	181	ιO	Same					
	- 40 <		1 0	 						
		13-13		1/						
		17-19	18"	_ '/	Same					
, ,		16-15		10						
		13-13	17"	12	Same					
		9-9	, ,							
	> 45 <		1.51	B		~, <i>-</i> ,				
1 1		9-12	19"		FRed Brawn Sand, Tr Clayay SiTT	46.0				
		6-6		14						
		8-8	15"		Control Control	1//50				
			13.		GIN Clayer SITI, LITTLE FSquel, TY Gravel	48.0				
		5-13		15						
	50	16-25	13"		M-F Red Brown Sand, 4TTO Gravel, Tr ClayerSilT					
J T		11-15	,	16		1				
		16-21	13'1		FRed Brown Sand, Little Sill Tr Gravel	52.0				
		10-14			DID CITIES TO THE					
		/	1.1.	17	Red Brown Clayer Sill LITTLE FS and Ir Grows I Leve of F Brown Sand in modelle at Sample	* —				
	_	13-29	16"		1 Leve of F Brown Sand i modelle at Sample					
	- 35	17-17		18						
<u>. [</u>	_	12-12	7"		Red Brown Clayey SIT, LITTLE M-F Sand LITTLE Growel, IN F.	Brown				
		7-10		19						
		16-32	15"		Red Brown day SIT LATURES 11 THE COUNTY	$\overline{}$				
		90.96	1,		Red Brown Clayer SIT, LITTLE Franch, LITTLE Gravel, Rod Brown Clayer SIT, LITTLE Franch LITTLE Gravel,					
- - - - - - - - - -	- , +	26-34	2//	90	Tr Documposal Rad Stale					
	-60	00 37	<i>∵</i> .		Ir Vocc/mposal Rod 196					

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

^{2 —} U = undisturbed; A = auger; OER = open end rod; V = vane 3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division
Materials Engineering Section

BORING REPORT

									SHEET 3 OF 4
PROJECT	: ~				NAME OF CONTRAC	CTOR		BORING NO.	SURFACE ELEV.
PORT IVORY PAGSITE					Craig Orilling			PANW 6D	
LOCATION West of wood Dunging Ramp \$15' Scath of PP SPOON CASING SIZE HOLE TYPE					•			CONTRACT NO.	DATE
Westofu	rood Dum	pine Ramp, +	=151 Sec	Thof Pr	XIXU-6 Black	1400 L	UT1	426-99-006	11/9/00
SPOON	,3,	CASING'SI	ZE HOLE	TYPE				UND WATER LEVEL	
2 .0	.D. 1 1/8	*1.D. Novo17	וי אין ו	Yav IJOI	Date	Time	Depth		emarks
HAMMER SOFOTY HAMMER 140 # FALL 30 # FALL "									
DRILLER S BUYNS									
INSPECTOR D HOUR									
CASING BLOWS/FT.	CASING SPOON RE- 1 SAMP.			SAMP.2 NO.	3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE				
Orill	DEPTH <	18-14			•	<u></u>			
thend	_	15-21	15"	21	Red Brown	, Clayo	4511,	LITTO FSand, LI	Tle Grow!
Ly ROUNT	<u> </u>	16-14		22	· 		·		
		74-19	6"		Same				_,
	65 ◀	12-12	181	23	Ned Brow	w clas	Jey Si	IT, LITTLE FSAN	66.0
		12100 32	10		LIVE DA	compos		Shala Tr Grace	
					<u> </u>		<u> </u>	Fusal, Soo Prilling	Report _
 									
	- 70 ◀							 -	
									71.0
									1
								RT AB	
	_					<u>·</u>	·	Bo Dom of Bo	1x/N
						·	· :		
			İ						
	75								
				 					
				ŀ					
	- 8℃ ◀								
							. <u></u>		
				[
				ŀ					
				. [
				ſ					
	- 85								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

* 300 lb Hammer Used

PA 2255 6-90

Engineering Department Construction Division **Materials Engineering Section**

DRILLING REPORT											
PROJECT					l	CONTRACTOR	BORING NO.	SHEETOF			
POTT	Ivory	Ptc	Site		C	rais Drilling	PA-MW- 6 D CONTRACT NO.				
LOCATION	•			,		•		DATE			
Wastot	wood	Dumping	Ramp +1	5 Southof	PAME	-6- Block 1400 Let	1 426-99-006	11/9/8			
WOST of WOOd Dumping Ramp + 17 Southof TYPE OF DRILL RIG. COE BARRI						DOUBLE TUBE					
	Mobile	B-58	H START CORING	DRILLE	TUBE	TUBE 7 WIL	INSPECTOR	Good			
	TOM CASING	DEP	660	DHILLE	H.	SBURES	O Ho				
			Τ					wę .			
Start	TIME 1 DEPTH		DRILL 2 BEHAVIOR	WASH ³ WATER	4	4 ROCK—DESCRIPTION AND REMARKS LINE LOCATED END OF RUN					
7		66						660			
<u></u>	MINIFT	 	STondy	Full Rod							
9		<u> </u>				<u> </u>	dsholo, Seamy,	Fractured			
10	1 1	}		1 1			, , ,				
6	1 1	- -	1 -1								
		- -	 	 							
6		71		V		· · · · · · · · · · · · · · · · · · ·		71,0			
		- "]			•		1			
	 	-	·				Q TT A D				
		 	 		<u> </u>	 ,	Bullomot Bo	<u> </u>			
<u></u>		<u> </u>	<u> </u>								
			-								
	 			<u> </u>							
<u> </u>	 	76 -									
	<u> </u>	L '									
	1		1								
	1		1								
	 		 								
	l										
		81 -									
		- -	 	· · · · · · · · · · · · · · · · · · ·							
	<u></u>										
			ļ			k.					
	 		 								
ļ			<u> </u>								
		86 -						J			
·			- 	1 51,051		I FLORE BEGALES	A DECOMPOSE	No proces			
	RUN NO.	FROM	то	LENGTH DR		LENGTH RECOVERED	% RECOVERED	NO. PIECES			
NATES	1 1	66.0	71.0'	510	1	510'	100%	14 Places + Frags			
NOTES			 			†					
ON	<u> </u>		<u> </u>								
DRILL											
RUNS	 	<u> </u>	 					 			
		<u></u>	 					 			
1			1			}					
	1		ı i			1	1	i			

NOTES: 1 — Record the time to start and end of each foot of drilling 2 — Log drill behavior (i.e., steady, chatter, grinding, etc.)

 ^{3 —} Log wash water return (i.e., color, loss, blocking, etc.)
 4 — Log type, color and condition of rock (i.e., broken, soft, seamy, hard, etc.), log character of wash return solids

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

W. Constallation Down					
We installation Report					Sheet 5 of 5
PRO. POTT IVORY PAG SITE					476-99-006 CONTRACTOR
West of wood Damping A WELL NO. WELL TYPE	2 xmm +15'S	OUTH OF PAI	Mu-6	Block 1400 LCTI DRILLER S BUYUS	Craix
WELL TYPE		INSPECTOR		DRILLER C	11/9/co
PAMUED "B" M	wildy	V 1100	ve	Block 1400 WTI DRILLER S BUYUS	1/17(6)
	TE: WATER LEVEL REAL	DINGS FROM TOP OF F			
DATE WATER LEVEL BEFORE		WATER LEVEL AFTER		TAKEN	MINUTES AFTER
7" dia. Manh			,		
ð * dia. PVC pipe w/ lo	cking cap ——	\ \			
	T	الاستهجاد		— Top of surface	•
L1 = 0.3'	*			& cement grout	
L2 = 35.7' $L3 = 10.0'$			32.0	Top of bentonite	seal
$L3 = \frac{10.0}{}$			34,0	Top of well grave	l filler
	*				y
				1	
L3		openings 020			
	·				
·			460	– Bottom of well	
	Cap	4 1/2"	71.0	- Bottom of boring	·
	k— Bor	ing diameter			
Hule Back filled 50-71	with Ha	le plus			
Hule Back filled 50-71	WITH Wal	Gravel			

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

								•		SHEET OF 3
PROJECT	· ————	010			N/	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
Port !	vory	P& G			\prod	raig c	Irillina	<u>}</u>	PD & (FS)	<u> </u>
LOCATION				61		J.	J		CONTRACT NO.	DATE
22' E of	NE Core	ner of Blog	17	Bloc	K	1400	ot!		426-99-006	11-29-00
SPOON	7.1.	EASING SI	E HOLE	TYPE			: 		UND WATER LEVEL	
3 .0	.в. <u>೩ %</u>	1.D. Auger				Date	Time	Depth	Re	marks
	Safety	HAMMER					44	- 1	C 144	
	FALL 7	0 -	FALL			11-28-00	11.00	3.0	Sample # 2	
DRILLER	Δ K.	des	•							·
INSPECTOR	Λ . $N_{\rm II}$	465								
	7.7	arks								
CASING	J. =	SPOON	RE- 1	SAMP.2	די	· · · · · · · · · · · · · · · · · · ·	3SAI	MPLE DES	CRIPTION AND REMARK	S
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.				IE LOCAT	ES CHANGE OF PROFIL	
Handanger		CULES HE DE HAND AUGER	Full Rea		_			CONCI	RETE	0.6
	- -	112001	 				DG A	عجر ا		
			 		Ti	L greyish	i black c	1 4. 24	ND & Gravel , tr. Sill	, cinders, coal, brick
			[#		0 0		3		
				່ນ		SAME_			į.	
	-	 	 	μ.μ	1					
	> 5 ◀				_	SAME_				
		1 1		3	6,	revish - b	mwin c - (SAND	tr. Gravel in	Sill
Ho		c =	_			<u> </u>	,), tr. Gravel, tr	
AUGERS		5 - 5		/.	}					
MUGENS		3-2	10"	4	15	AME		<u>98.</u>	<u> </u>	
		2 - 3		×	1					
			• -10	「	1					
	► 10 ◀	5-5	2011		1	AME			<u> </u>	
		3-2			L					
		2-2	121	6.] ,	SAME	•	150	1,2	
					 	المالك الم				
		3-2			H-				— — — — —	
		8 - 6	24"			SAME_		<u> 132</u>	<u> </u>	
		3 - 3		,						
	> 15 ◀			8	1			111	u	
 		4-3	so	-		AME		· /		-,
		3-1			L	SAME		۱۵۱ز	(y	17.0
	-	3 - 4	24"	9 th			n PEAT	•		180
 ▼ - 			P.A.		1	Brow				4
					No.	IE: 3 San	oples_sou	ed fo	or testing	
						All sa	moles chec	hed wi	th PID meter _	
						تحصر منتیب ۱۱ از	ا ا	علاء حصد . منام		Bottom of Boring
					-	_ the off	<u>her sample</u>	L_qisc	orges	
				,	L					
,_		-			1				. —	İ
								· -		
				,	<u> </u>					
		<u> </u>								
	-									

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

•											SHEET) OF 3
PROJECT		> 1 D				AME OF CONT	. 2		BORING N	o.	SURFACE ELEV.
Port Iv	ory	<u> </u>			Ц	raig dr	illina		PD	9	
LOCATION	1 V	7	1 . /	1		7	7		CONTRAC	T NO.	DATE
	o Bla	917 Blo	ck 40	so Lo	<u>st</u>	1			<u> 426 - 9</u>	9-006	12-4-00
SPOON	1	J CASING S	1	TYPE		<u></u>	·	GRO	UND WAT	ER LEVEL	
3 "0).D. 2 3/	8 . I.D. Auge	rs	1		Date	Time	Depth			Remarks
	Safety	HAMMER					. A. 2 C PA	1	94	4MPle	#-6
140 #	FALL V3	<u> </u>	# FALL			112-4-00	12:35PA	7.01		THIP IC	<u>π ¬</u>
UNILLEN	DO	ske									
INSPECTOR		1				 		L			·
, .	7.2	arks		}		j					
CASING	J	SPOON	RE- 1	SAMP.2	T	<u> </u>				AND REMA	
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.	L	<u></u>			ES CHAN	GE OF PRO	FILE O.O
Culter Hood Houndanger		Cutter Head HANDAUGER	Full Rec			C	ONCRETE				. 1.0
nowa waye		RANDAGER	1-1-	1.		-11	0 0 4 44	`	<u> </u>	0 111	
			 -	 	H	till_grey_	c = } 2AN	D, some	prove	Lobbles	1. Sill:
]	L		<u> </u>				
				2	T:	11	U.L.	O CAN	III: G	Grave	L,tc.SIT
		 	1 1		٣	n dieden	_DIGCN	t-mu	السرعد	<u></u>	
	► . ₿ -	4	 -	7 *	-			· ·		,	
*		•		3	1	ill grenis	sh <u>-black</u>	1-2-	SAND	1- Grave	I, tr SilT
Ha		2 - 2				. 0 1		ł	,		,
-6			 		1						OCIUD TO TICIT
Augers		2-2	10"	4	ļΝ	isc_till_	gregish	-black	9 On	ange co	2 SAND, to Grayer to SIT
		1-1-1		-*	L						
		, 9	12"	5		SAME				,	
	10	4	1/4		┝		<u>. </u>				
		2-5	 	6	 - -						
		6-4	24"	6	L	SAME			-		
					Γ	- , - ,					
		1 - 1 - 1 - 1	4"	-	\vdash	SAME					
		11-1	4		_			:_			
	15	1 - 2		,	L	SAME					15.0
	13	2 - 2	18"	පි			Bro		PEAT	-	16.0
-		1	'-		=		~ 7.03				74
			 		۱N	ole: 25	amples_S	aved _	Joc tes	ing —	——— <i>—</i>
		ļ			L	<u>All</u>	Samples	checker	<u>al w</u> [115 meter	/_
						D _a .	maining	Sa	۱	iscardod	
		<u> </u>			\vdash	021	THE THE PERSON NAMED OF	יול עניאני	<u></u> -		
	•	┥			<u> </u>						Bollom of Boring
		1		·	L						<u>-</u>
		-									
		†	 	٠	-						
		-									
		1									
							- 		 .		
b	▶ ∢		لـــــــــــــــــــــــــــــــــــــ		L						

Engineering Department

					Ma		construction rials Engine		on			
. =							DRING F	_			,	
											SHEET OF 3	_
PROJECT		ρ	£ 6-			N/	ME OF CONTI	RACTOR		BORING NO.	SURFACE ELEV.	
LOCATION	front	- 12	5		1	Ļ	Cravis			CONTRACT NO.	DATE	
	porth	of B	Alde 16	Blo	ick	14	100 Lot	: \		426-55-006	11/28/00	
SPOON	Pooc	0	OASING SI			<u>'</u>		<u></u>	GRO	OUND WATER LEVEL		_
		18 1.0	. Augar				Date	Time	Depth		Remarks	
HAMMER	عى	f4 30	HAMMER		_		11/28/00	2:15 pm	5.0'	An 5-2		
リサロ # DRILLER、	FALL	30	<u>" </u>	FALL			11/20/00	<i>- </i>		413		
<u> </u>	Coop)										
INSPECTOR	TIG	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
CASING BLOWS/FT.	DEPTI	, E	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.				IE LOCAT	SCRIPTION AND REMAR	LE	. 1
	0			4 44						NOUL	0.2	_
			and llay	Re		7	ill-Br	M-F Soe	te	u little to C	obble.	_
) :	1	2*	1	Lill-B	M-FS	al. l	tthe Bravel		
					2	Γ						
							San	N		•		
	5	1	V	V	3							
a so			1-1		4*	7	il-w	hite Ai	atema	cas Soil w/ Gr	ren Layers.	_
			1-1	20"	4							
			1-1		5		ful- 4	shite A	estens	cu Soi		
	10		1/12"	18"	7	L						
			1-1		/		Sant					
		•	~0H/12"	/8"	6							
			1 - WOH/		1		Samo			·		
			-112	19"	7							
	L 11	1	w04/		a	1	Son	0				
	15		/24"	20"	%							
		h	181/1811		90		San	2			7-6	_
			1	16"	1 9	132	1. Al Ook w	one often	·		/ / . 3	
		\neg	1, 1					San	ed		19.	-
		\top	1,1	18''		F	Sark Br	Or Pu	Janie	silf of Pier	ces of deconfil-0	
	> 20	1				-						_
		_				n	15	Sac	1 1 th	78414		
	_						TIET :	C	A.	2 & 4 ven &	ma la	_
	<u> </u>	-				1	DIA 10	1. 10 C	may	wan peer wer	X HOVELWOX W	_
	I	ı		i i		. 1	1 3 // 1	KIL NA	ean H D	¥مرا		

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division
Materials Engineering Section

BORING REPORT

									SHEET \ OF 3
PROJECT	Ivor	1. Ptc si	Tá	<u> </u>	NAME OF CONTR			BORING NO. PD-11	SURFACE ELEV.
LOCATION	yth of	Building	5-	16		-		CONTRACT NO. 476-99-000	DATE 11) 27)2000
SPOON		1000000					GRO	UND WATER LEVEL	· · · · · · · · · · · · · · · · · · ·
3 .0	.D. 2 3/8	"I.D. Divers	1 1	ן	Date	Time	Depth		marks
HAMMER	Saft FALL 32	HAMMER	# FALL		11/27/00	1000	5.5		
DRILLER		d cook	5					·	·
INSPECTOR	Madi	lu Patel							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.				CRIPTION AND REMARK ES CHANGE OF PROFILI	_
	^	• • • • • • • • • • • • • • • • • • • •			Concrate				6.7
Hand Acco	_ · _	Vard Aug	Fe!	1	MISAL 900	y A Bla	ick c	ME SAND, SO	we emf grave
		- 1		P		So	me		
	- s-			3	<i>₩</i>		sane		
		<u> </u>	<u> </u>						<u> </u>
1	_	W .0 H	34	4	White.			caus earth	
		MOH	24			· ——	SAME SAME		
	→ 10 →	1, 1		5					
		३, २ ३, ८	१ 4	6	<u> </u>		SAM E		
			. 0.		uet Blac		SAME	Rualc, gravel	Sell- e La
		3,3	18	フ・	, ,			a Macaono ca	14.01
		2,2	16	8			am e		
		2,2			wet. whi	te pi	atam	acaceon ear	th material
		ωo	10	9			Sam +	<u> </u>	
		Н							18.0
_	_	2,2	12_	10				organie SAF,	trace & sample
<u> </u>	20	3,4						e Hule out a	<u> </u>
								oles collectes	
	- +							10. No. 3 Se	_ 1
0		-		ľ				My Remain	
						vicad			

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PA 547 6-90

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET J OF /
PROJECT		>			NAME OF CONTI	RACTOR		BORING NO.	SURFACE ELEV.
: Po	of Ilva	ry PJGS.7	0		Crais	Drilling	<u></u>	PD-11A	
		•						CONTRACT NO.	DATE
NETT	L of 1	Building S	5-16					476-99-006	1112712000
SPOON		CASING SE	ZE HOLE	TYPE			GRO	UND WATER LEVEL	
3 0	.p. 23/8	3 1.D. Abjer	- 1	ſ	Date	Time	Depth		emarks
HAMMER					9		0	'	
140 #	FALL	HAMMER	FALL	-	11/27/00		Dry		
DRILLER	Davis	d Cooks			·		. 7		
INSPECTOR	Ma	dhu Patel							
CASING		SPOON	RE- 1	SAMP.2 NO.				CRIPTION AND REMARI ES CHANGE OF PROFIL	
BLOWS/FT.	DEPTH	BLOWS/6"	COVD	NO.			NE LOCAT	ES CHANGE OF PROFIL	·
THE AUT.				 		rate			0,7
10		Hand Duga	Full	١.	light gray	18 Blac	k cm F	CAND, Some	cmf Grovel
		1,,440 1081	1	 	4) Pieco	- 4(- 0	ock -	-tc	
				2				_ 	
[,			1	, ~	· ·	Sal	MR	•	سرر
		 	1	3	c 5 ame	 ⁄			
	- 5 -								
	•	1			1	•	Batta	crose Slab	Drustice
		1					- 425 4.		
<u> </u>					ļ			UCTODE Slab	
								•	j
				,					
					 				
	- 10.]			l				
	- 10 -								
		<u> </u>			 				
						-			
			<u> </u>		 				
	> 12 <								
	÷				•				
 									
					<u> </u>				
	> 20 -	<u> </u>							
	•								1
						- — —			
									_'
							. 		
	- 26-								

Engineering Department Construction Division **Materials Engineering Section**

						R	JHING	REPUR	1		
						T					SHEET / OF /
PROJECT	_ A1 N	~~	PE	ř		N/	/ \	NTRACTOR		BORING NO.	SURFACE ELEV.
LOCATION ,	1, 4	₩ <u>₩</u>	14				Cra	\		CONTRACT NO.	DATE 1
	louth	1/ .7	lam	+150'5	1.1 .1	۲.	1 //	~ Bldy 17		424-59-006	11/28/00
SPOON	1001307	100	CASING S	ZE HOLE	TYPE	3.	1	· pear 17	GPO	OUND WATER LEVEL	17750700
	v.D.	*I.D.					Date	Time	Depth	OND WATER ELVEL	Remarks
HAMMER		1.0.	HAMMER					 			
	FALL			# FALL				į		·	
DRILLER	Crohe										
INSPECTOR	T. Ra										
CASING	U	S	POON	RE- 1	SAMP.			³SA	MPLE DES	CRIPTION AND REMA	RKS
BLOWS/FT.	DERTH ◀	BLO	DWS/6"	COV.D	NO.	ļ		LI	NE LOCAT	ES CHANGE OF PROF	TLE ,
		Ī				-				ricus	0.6
				1	1						
				 		 	11.1	O.L.	7	(1 7 P.	
				 		-	700	10001 4	1	Conduit Pipe	
						-	Corc.	1 mo was	- TH 7	= aunpt.	
	► 5 ◀			<u> </u>							Tottom of
											Bornic -
											(
	·										
				 							
			 			-	1. 4. :	7	V. 1	7 -0-0	
	- 10					<u>-</u>	110 u	now ho	<u>~ rui</u>	an did allen	pats # P0-12 &
· ·				<u> </u>		L	12-12	<u> </u>			
		_					<u> </u>				
						į					[
											
						一					
	- 15	_	·			├					
						<u> </u>			- 		
		-		ļ		<u> </u>					
						L					
ſ						[
	_							_			
	- 20 ◀										
			·			 					
						<u> </u>					
	_					ļ					
				<u> </u>			<u> </u>				

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					SHEET 1 OF 3	\neg
PROJECT		0 '	^		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.	\dashv
Port	Ivory	bf	G		Craig drilling RR8]
LOCATION					CONTRACT NO. DATE	\neg
25'E .	Wire Fe	nce betw.	15t & 2nd R	مناحمها	1 tracks Block 1400 lot 1 426-99-006 12-01-00 GROUND WATER LEVEL	
CDOON	1	CASIN	G SIZE HOLE	TYPE	GROUND WATER LEVEL	
3 0	D.D. 2 3/	8-1.D. Aug	aers	1	Date Time Depth Remarks	
HAMMER A			ER			
	FALL 3	0 -	# FALL		12-1-00 11:45 2.5' Sample #2	ᅴ
DRILLER	1 1					ł
<u> </u>	1 lool	<u>se</u>	 ,			\dashv
INSPECTOR	7	7		ĺ		- 1
	1.6	arks			30 AMBLE DECORDETION AND DESIGNATION	ᅱ
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6	RE- 1	SAMP. ² NO.	3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE	
Handauger	- "o" <	Handauge		- ::-		_
	<u> </u>		Tun vec	1		_
					Misc Fill black c- [SAND & Gravel load Linders Brick	
				*		ヿ
		 	- -	4		\dashv
				2	L SAME	
	5		- - 	7		ㅓ
		<u> </u>	<u> </u>	3	LSAME	_
He		1		*	*	
Augrs		 	12.	1 / 1	SAME	\exists
- q		1-1	12	4	SAME 8.	의
		3-2				- 1
		2-2	14"	5	Brown PEAT 10	
	> 10 <	1 2 - 2	14			2
					Note: 2 samples saved for testing.	7
				ļ	All samples checked with PID meter	
	<u> </u>	 		i	THE SAMPLES CHEEKED WITH THE PROPERTY OF	⊣
					The other samples discarded Bottom of Bo	
	•					٠
				i .		コ
	- 15 -	1				\dashv
·		İ	Ì			
	 	 		}		ᅱ
				Į		_
				Ì		- 1
		 				╗
<u> </u>	▶ ∢	ļ——		ł		4
<u> </u>			}			_ {
			<u> </u>			コ
		<u> </u>				\dashv
						╛
						7
- 						\dashv
						\Box

Engineering Department Construction Division Materials Engineering Section

					BORING F	REPORT	T		
									SHEET OF 3
PROJECT Down	TIV	ory PA	46		NAME OF CONT	RACTOR	14	BORING NO. RR-10	SURFACE ELEV.
LUCATION		•						CONTRACT NO.	DATE
	V BL	713						contract no. 426-99-006	15/5/00
SPOON	>3/c	CASING SI	ZE HOLE	TYPE	<u> </u>	T		UND WATER LEVEL	
HAMMER).D. 2/8	HAMMER			Date	Time	Depth		marks
HAMMER してひ #	<i>جور</i> ي 13 FALL		# FALL		12/2/00	1200	4,5		
DRILLER									
5.	M	Fuch							
INSPECTOR	nouve '	Springer							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.		[]	NE LOCAT	CRIPTION AND REMARK ES CHANGE OF PROFIL	
μA	•	НД	Full		Gravel 4/5	and note	.×		;9
7		 			Come w/	CANE MAY	<u> </u>		
		ļ <i>l</i>		<u> </u>	C'N 2005/0	WWL B	box CV	17 MUTE	3.5
				5 .	4				
		1 1		2x	Circles	+ Grove	L	Some Slog Sand SUT nother	_
)				KUTON TSIZBIAR	
T.	> 5 ◀		J	3	Sene			WEEL WHIN EIN	CHOSE PROSE
41		7-10	1.81						
AM		12-19		4	Sine				
		12-11	1'	SX					
	 > 10 <	7-6		'n	Sine				
	,0	8-17	2	1					
		13-9		6	Sane		- — –		
·		14-10	21	7					
		6-4		/	Sane			_ <u> </u>	
	► 15 <	3-3	1.11	8				<u> </u>	
		3-3			Sane				16.0
						Event	Bour	& 1x	
	<u> </u>								
	-		·		_			condul PI	3
	> 20 ◀							Sind For	
						41 Kom	<u>~~~ ~</u>	upls Disco	109 G
								<u> </u>	
		·	,						
				}					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					Sheet (or 5
PROJECT		- 1 0			NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
Port	Ivory	₽ ₹ <i>(</i> }			Craig drilling PD-6
LOCATION		1	۸ - ۱		J CONTRACT NO. DATE
+201	WOL NV	Corner of Casing Size	Blde	9 17	Block 1400 lot1 426-99-006 11-21-00
SPOON		CASING SI	E HOLE	TYPE	GROUND WATER LEVEL
3 "0	.D. 23/8	1.D. Auge	rs 1		Date Time Depth Remarks
HAMMER		HAMMER			
140 #	FALL 3	2 - 1	FALL	•	11-21-00 2:30pm 2.7 Sample #2
DRILLER					
	1. Crai	a			
INSPECTOR	J	J.			
	1.4	arks			
CASING	$\mathbf{\mathcal{I}}$	SPOON	RE- 1	SAMP.2	
BLOWS/FT.	DEPTH ◀	BLOWS/6"	COA.D	NO.	LINE LOCATES CHANGE OF PROFILE
Cutter-Head	- 0	Cutter Head	Fell		CANADETE
	-			١ ،	CONCRETE
					
				Í	Fill grey c- f SAND & Gravel, tr. SilT
				۱ ,	
		ļ	—	2	
	<u> </u>				
	> 5 ◀			3	TIL O OCAND O O I
		Ţ	7		Fill grey c-f SAND & Gravel tr dietomaceous 6
Ho		W - 0		,*	
Augers			14"	4	Fill arey Dietomaceous
		Hammer	ויי		Fill grey Diatomaceous
		W.O			
		Hammer	1211	5	SAME
 	► 10 <]	· · /~		
		1-1		,	
		1-1	4"	16	Fill yellowish - grey C- SAND to Gravel to Sitt cincle
					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	-	1-0		_ *	t <u></u>
		1 1 - 0 1	12	7	Greenish-grey Sitty CLAY
	- -				
	> 15 ◀	1-1		_	
		0 - 1	4"	8	<u> </u>
			•		
		W .o		٥	SAME
₩ .		Hammer	6"	9	Brown PEAT w. libers, some Clay 18
					7
					<u> </u>
	> 20∢				Note: 2 Samples saved for testing
	,,,,,,				All atter complex consent with
					PiD meter & disearded Bottom of Bor
					PiD meter & discarded Bottom of Bor
	> ◀		L	l	<u> </u>

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF 3
PROJECT	Ibory	PAG SiTe			N/	Craig D	RACTOR		BORING NO.	SURFACE ELEV.
LOCATION	/				Т.		Rim	+ Nep	CONTRACT NO.	DATE
110.7	Side	SITO Non	Para	NorTh	hait	woodch	ina 1	e 14ce eTI	426-99-006	12/2/00
SPOON	20000	SITE Near CASING SI	ZE HOLE	TYPE		- Jo Chip	· · · · ·		OUND WATER LEVEL	· · · · · · · · · · · · · · · · · · ·
3 .0	1.0. み後	TI.D. Aucore	, 4	L		Date	Time	Depth		emarks
HAMMER	Safet FALL 30	HAMMER	FALL			Izlzke	130	3,5'		
DRILLER			TALL					7,5	Will De Flanc	
INSPECTOR		Burus				 	L			
WHOTE CON		OHour								·
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.	<u>"</u>				SCRIPTION AND REMARK TES CHANGE OF PROFIL	
Yard	- U 4	Hand Brox	Full			Crushon	1 STone			1,0
Auger	·		1	,	Γ					
						MiscE	1 6.1	ve Com	und led T n +	
	<u> </u>	 			+					acons Earth 30
-+-			 	2	<u>_</u>	_t_111 _G	reyt	while	Piatomaceas	<u> ==vT4</u>
	~ 5	 		3	-					
		V			<u>_</u>	_ <u>Sam</u>	<u> </u>			
N w	_	WOH		,,						
5 Jan		1-1	241	4		Samo	·			
Buyers		4-HOD		5	L					
	> 10 <	1-/	2411		Ĺ	Fill-w	hiTe + Gn	ey Oi	atomaceous Ear	m
	_ ,5 ~	Wox		/				. <u>. </u>		
		1-1	J-3"	6		15,11-0	whiTe b	24 Ton	eseous Barth	
		2-1		_						
		2-1	234	_ /		Same	 			
	<u> </u>	MONS		a						
V	, ¬	4-2	244	8		Fill-whit	e Piaton	4 40003	EANTH IN Gray Actor	macous Borth
		woy.	•	a A		Sam	<u> </u>			
		2-3	2-31	$9\frac{A}{B}$		Brown	Post			18:0
	_							B	o Dam of Boxic	44 7
	> 20 <				\vdash	- <u>¥</u>	HI Sam	polo c	hocked with A	DID Motor
	_					S	# 12	کے کے	hocked with Fraud for Eveno	Testing
							2 malu	ns Sa	mples Oscarda	1
	_				_				<i>y</i> — — — —	
				1						
	► Z'S ◀	<u> </u>			Ц					

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

											SHEET OF 3			
PROJECT		0) -				N/	ME OF CONT			BORING NO.	SURFACE ELEV.			
	Ivor-1	PJG	SiTe				Crais	Orilling		H/R-2				
LOCATION	•				<u>ہ</u>	,	·	•		CONTRACT NO.	DATE			
NWC	YENYO	Noor	Force	e Line	<u>e_B</u>	10c	£ 1400	LOT!		426-99-006	11/10/00			
SPOON	,3,	CAS	ING SIZE	HOLE	TYPE		<i>I</i> ,		GRO	OUND WATER LEVEL				
	.D. 1%	*1.D. 1)	LUCYS AMER	11	·		Date	Time	Depth	Re	marks			
	Safin FALL 30	HAN		FALL	•		nlio	3	612	cpan hole				
DRILLER	S	Burns					11/11	9:38 ^{AM}	5.2	Open hole				
INSPECTOR	07	Nowe												
CASING BLOWS/FT.	DEPTH	SPOO BLOWS		RE- 1 COV'D	SAMP. ² NO.		3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE							
Hand		Hand A	tugr	Full	\mathcal{C}		Misc Fil	1 - C120	Levs S.	and Grouply Bruck	ETC			
Augur	<u> </u>													
	_				2	_	F.11-01-	Tomace	eas E	Earth (white Hirs	=/}			
						_					<u> </u>			
	> 5 <													
	- 3 -	. 1												
				\dashv		\vdash								
					3	L	_	_ 						
V					7		SAME	•						
Hollow		, **	, 	. *		Г								
STEM Augers	- -		' 	<u>, / I</u>	£	-	SAME							
	- 10 ◀		-	24	7_	├	SAME	<u> </u>						
		1 -			4	_								
		1-1		24"	5		SAME	<u> </u>						
		ı wi	OR		_									
		- "	<u> </u>	24"	6	Г	SAME							
		11	_+	N4	<u>v</u>	╁								
	► 15 <	<u>W -</u>	0	24"	7	\vdash	SAME							
	<u>. </u>	Н -		N4		 								
		1-	1		A	_	SAME			·	17.0			
ý		1-	<u>گ</u>		<u>8</u> 1	_	Brown	PEAT	[lil	ttle black organic	Claver Sill 18.			
			T				•		7	J	1			
		· · · · · · · · · · · · · · · · · · ·				H								
	> 20 ◀					⊢					/			
						L		1711 Sa	mples	checked with a	PID MODIN /			
								(H1H>	V 5	/For Tooting				
						_				W 1 1- 17 PUL)				
						<u> </u>				_ B	atton of Borin			
							Sa	emple #	<u>გ</u> გ	saved (on hold)	for Testing			
								- 4-	<u>م</u> ليهميه.		7-7-			
	> 2<													

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET	
PROJECT					NAME OF CONT			BORING NO.	SURFACE ELEV.	
Port	Tuony	PAG S	Te		Crair	Drillin	10	H1R-3		
							-	CONTRACT NO.	DATE / ,	
NW	Carre	CASING S	my F.		a RILL	1400 L	aT1	426-99-006	11/10/00	انت نا 🗸
SPOON	CUINZY	CACING	IZE HOLE	TYPE	L VICE	. , -0 -		UND WATER LEVEL	1 .,,,,,,,	/"-"
3 "	2 3 to	"I.D. DUCAY		1	Date	Time	7		Remarks	
HAMMER	ט.ט. 🎤 אַ	1.U. 17U(11)	<u> </u>	<u> </u>	Date	Inte	Depth		TOTHER NO	
I AMMEH		B		1	11/10/00	1100	50	1 , 1, 1 ×	-1 n	ł
140 *	FALL 30	2	# FALL		11110100	17	1 300	While Max	od Augustay	
DRILLER		Spurs) .		4.6	1 0- 11	_	
) BUINS			11/11	8:10 AM	4.6	Open hol	<u>c </u>	
INSPECTOR	1) W 1~	7	1						
	<u> </u>	Nouse [JZa	Y155		L	ļ			
CASING		SPOON	RE- 1	SAMP.2				CRIPTION AND REMAR		
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.		LII	NE LOCAT	ES CHANGE OF PROFI	<u>LE</u>	0,0
Hand		Hand Auger	FU	}	Crushed	STare	, ,	ovel, Sand, ETT		Ç,3
	 	עיפטה ויייוון	+	 	MISC FI	11 - (120	1119 (1)	coup, sand, tett		1,0
Augor	:	/	1 /	_			-			
, O	Γ –	1		12				2 (1 1 = 1		
			++-			210m4C	ocus Ex	wTh, (white)		
]]]]] }]	J			` ,		
 	- -	 	 -	3						(
	~ 5 <	LL		~	_ SAM	_t				
	3	1 <i> </i>]
	- -	 	├ 	ł .,						
		(4						
				1 ′	Samo					
V		W	<u> </u>		_ some					
Hollow STEM		Watt-1								
Augers		WOT-1	1.1	5		_ — —				
4	10	1-1	24"		SAMÉ					
	> 10 <	0 9						·		
	-	2 - 2	 	/	<u> </u>					
·		1 -1	24"	6	Till Dial	tomaceci	us En	th (White » 1	ight grey 1.	[
		,	1						4 7 J	
		1 ~ 1	 	ا ہ					<u> </u>	
		1-1	24"		SAME	_	-			1
	_		_~	_ '		<u> </u>				
	- 15 ◀	2-1	<u> </u>	_						
	()	1-3	24"	පි	SAM	1F				ł
				H		<u>' </u>				
		1 - WO.R				4: ≤~				
			24"	9	- SAM	1E -				17.7
♥		1-3	24	<u> </u>				· · · · · · · · · · · · · · · · · · ·		
•				4	-Yellawich	braun	c _0 0	SAND some Clay	uen Silt 1:116	
			 		4/eliomian	N I OWIT	· <u></u> .}-	SINA SOUR CAN	7-51 - 111 1 - 6	1,721
						H11 5a	edam	checked WITI	H PID IXATA	Y
	> 7€ <					C# 1 -	200	1 Car Tor	C442 72 hat	a.T.
						ے کے ات	22 <u>qu</u>	101 101 105) Les,) 100 10 10 10 10	المعاري
. [Remain	· 5a	checked uits of fer Testics, S myls Descarded	/	1
·		<u> </u>				<u> </u>	79-79	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<i>h</i>	
						<u> </u>			/	
						A		ם . וו	(BX	1
	- -					-'		Bottom o	4 to 1147	
L	\ <u> </u>			[1
	ァ ん)		L							

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORTAUTHORITY OF INTIGATED

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET	OF
PROJECT	T	חות				AME OF CON			BORING NO.	SURFACE E	LEV.
Port	Lvory	P & G			Γ_{\parallel}	Craig c	drillina		FS-1		
LOCATION	• • •		,						CONTRACT NO.	DATE	
±15	3' S of	Bldg 12	(Front s	ide) t	ماد	ck 140	o lot 1	4	426-99-006	11-17-	00
SPOON	1	MASING S	IZE HOLE	TYPE		ck 14e		GRO	UND WATER LEVEL		
	O.D.	″1.D.		1		Date	Time	Depth		Remarks	
HAMMER		HAMMER									
	FALL	•	# FALL	-							
DRILLER	SB	urns									
INSPECTOR		arks									
CASING	7	SPOON	RE- 1	SAMP.2	T	<u></u>	²SA	MPLE DES	CRIPTION AND REMA	ARKS	
BLOWS/FT.	DEPTH	BLOWS/6*	COV.D	NO.			LI	NE LOCAT	ES CHANGE OF PRO	FILE	4,1
HANDAL CE		HANDAUGER	Full Rec		=	u 11. 1.	dark bro	A\$	SAND Some G	TP L	<u> </u>
HANDAUGE	_	HANDAUGEK	1 can rec		_						
	⊢ –		1	1 8	Fi	ll reddisl	hrown S	isity_CIAY	Y with c-f SAI	VD & Grave	L·
				٥	٥	AME		•	•		
4		y	V	2	_	<u>. </u>					5.5
	 										
	- 5 -]					Conc	rete	SIAB - abs	truction	5_
	~ ~ `				П						
-	 		ļ		<u> </u>						-/-
	<u> </u>				匚						- [2 -
	٠.				·		•			Bottom	of Borin
					\vdash						
		ļ	ļ								
•						•					
	^										
		<u> </u>			⊩						-
										<u> </u>	
	-		 		┢				 ·		
					L						
										•	
	~		 								
	<u> </u>		 		_		<u> </u>			· — —	.
]				·		٠					
											·
		 	 								·
			<u> </u>								
											-
	▶ { ◄	 			-						
	_ ` _										
ŀ											ĺ
		ļ					 —				
	•	ĺ									
		,		ł					- -		

PA 547 6-90

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF
PROJECT	т	กเก			N/	AME OF CONT	. 11		BORING NO.	SURFACE ELEV.
Port	Lvory	P & G			1	Craia	drilling		FS-1 A	
LOCATION				1 .		J			CONTRACT NO.	DATE
±17'5	of Bldg	13 Block	IZE HOLE	Joh	1				426-99-006	11-17-00
SPOON	1	CASING S	IZE HOLE	TYPE				GRO	OUND WATER LEVEL	1
3 "	o.p. 2 3/6	HAMMER	crs	1		Date	Time	Depth		emarks
HAMMER	Safety FALL 3	HAMMER								
140	FALL J3	0 -	# FALL	•						
	S Bur									
INSPECTOR										
<u> </u>	1, 4	arks	1		T	L	<u> </u>	<u></u>	<u> </u>	
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.			*SA	MPLE DE: NE LOCAT	SCRIPTION AND REMARI TES CHANGE OF PROFIL	e
	- 0 -		+	1	\models					
Handauger	_	Handauger	Full Rec	l	E	ull dark br	on <u>u c-l </u>	ANDSom	e Gravel, tr. SIT, coal, c	inders brick
	İ		1	lı.	1		i		with c-f SAND and	
	_			 	Η	ייי <u>הפאטוי</u> ייי	7. 5. 1. 1. 21	ייש_ביית ב	MIET - T AUGN BIND	
	⊢ -	 	┼┼	ļ	<u> </u>					
<u> </u>				2		SAM	E			
										5.0
	> 5 ◀		-	·	-					3.0
			·							
						. (ancral	· C	lab - obstruction	2n
	 . - -				-	`	20110161	دلاسې	AN - COSTINCIT	<u></u>
, ,	<u> </u>				_		<u> </u>			
										Bottom of Boring
				,						
	> 10 ◀		ļ							
-			i							
		<u> </u>		İ						
				ļ	-					
	► 15 <			ļ						
				Ì						
								· -		
									 	
										
				ł						
	> 20 ◀									
	~~]								•	
				}						
·	_									
				Į					•	1
,		· · · · · · · · · · · · · · · · · · ·	*	1					_ 	
	_			-				. <u> </u>		
	لے ا			__						_ [
	-									

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF 3
PROJECT	,	0 1 0			N/	AME OF CONT	1		BORING NO.	SURFACE ELEV.
۲,	rt Ivo	ry P& G			\perp	Craig	drilling		151B	
LOCATION	111 (HU FC L	1. 21.	0	Δ1	, V	, ,)	1 1 .	CONTRACT NO.	DATE
40	> M of	BH-FSI b	ELW. DICI	112 Z	DIG	1913 Blo	<u>ock 1400</u>		426-99-006	11-17-00
SPOON	a 3			TPE		Date	Ties		UND WATER LEVEL	
	ე.p. <u>ე</u> ვ	18 1.D. Auger	S.I.I			Date	Time	Depth	Re	marks
	Safety FALL	30	# FALL			11-17-00	11:20	7.0	Sample #4	
DRILLER	C D									
	$\supset \Gamma$	urns								
INSPECTOR	ブ フ	arks								
CASING		SPOON	RE- 1	SAMP.		1	3SA1	MPLE DES	CRIPTION AND REMARK	s
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.				NE LOCAT	ES CHANGE OF PROFILE	
Handauge		Handauger	Full Rec		\vdash			ASPH		
	_			1 1	E	il grey, sh-	back c-	SAND,	Gravel to Sill, Cinders Silly CIAY, cinders,	, coal, wood . 1.3
 	├	 	 		¥	till gregish.	Aellom c - L &	THE THE	Silly CIAY - cinders ,	maoq coop
					_		:			
				<u></u> 2	F	11 greyish	- black 6	مع لعسوا	me c- f SAND, tr Si	Cinders
	_					0 0		,		
1.	5			3	-	FiII .	1 11 1 (D CAND.	SIT cinders 6.0
ע		T	₩	*	1	11 greyis	h black L	distances	Some C - P SAND to	Cinders wood LE
	<u> </u>	4 - 7	ļ ,,	/ ^	-	`				
Augers		4-3	18"	48	Ī	ill graus	h-black	Gravel	some c- (SAND to	SilT cinder
	-	1 _ 1.				0 0			7:	
	_	 	244	5	7		1 1111	<u> </u>		0.0402 = 0
	10 -	1-0	14		نئــا	n Bushie	The Multe	<u> Pieti</u>	omaceous - with grey	C. SAND & Gravel
	<u> </u>	wight of		/	 		0		_ 	
		HAMMER	.0."	6		Sample fa				
		W.O.H.	18"	* 1	Fi	Il grey .	<u>Dietomace</u>	aus -	with grey c- & SAN	D & Gravel 13.5
		18" 730 unce	100/0"	7						7
		— ——	# D."	-1	-	 				
	- 15 -				⊢					
		 							Refusal - Botto	m of Boring
	٠ ب				N	ote: 3	SAMPles	save	d for testing	
						Ali	anmala c	60.20	ened with PIBn	netec
						/W .I	n n	. <u>_</u> ay .e i		
	. -	 			_	the	other	sample	s discarded	
	- 20 -				L.					
										
		 								
. 🕶										
	_	<u> </u>								
	_									

Engineering Department Construction Division

						_	ering Sect			
				ė.		itiita i	ILI VIII	•		SHEET OF 3
PROJECT	_	01.0	1.0		NA	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
Brt]	vory	P&G				Gara o	Irilling		FS-2	
OCATION	J	1 2 1	ล I <i>เ</i>	,	,	J	J	į	CONTRACT NO.	DATE
<u> ± 50</u>	NE 0	Bldg 12 OASING SI	Plock	1400	Lo	st 1			426-99-006	11-17-00
POON 3 "(, , 3/	3 1.D. Auge		: ITPE		Date	Time	GRO Depth	UND WATER LEVEL	Remarks
AMMER 9	safety	HAMMER	7121 .			Date	Time	Deptil		AGINAL KS
•	FALL	30 1	FALL	•	İ	11-17-00	PM	7.0	Sample#4	•
RILLER						- 27	1			-
	<u>S. B.</u>	urns					1			· .
ISPECTOR	7 7	ARKS					A.,			•
CASING	J	SPOON	RE- 1	SAMP.2			3CA	MDI E DEG	SCRIPTION AND REMAR	ake .
LOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.			Li	NE LOCAT	ES CHANGE OF PROFI	
	0	HANDAUCE	Full W	C	-		Cr\	ushed R	och DGABC	
	, <u>-</u>	1 1		1.	-	D A 11 4 6				·
				 	<u> </u>		5T - Cr			
				_ x	L	l red-b	rown C	C S	AND tr. Gravel	te_Si/T
			1	\ \mathcal{\chi}*		Same.		T		,
						<u> </u>				
	> 5 -	4		7	-	CAME				
		4	Ψ	3	lacksquare	<u>SAME</u>				<u> </u>
00	_	3 - 3			-					
Augus		3 - 4	12"	4	Fi	1 0000	1 5	AND	to Gravel, to S	Sitt
		0 0	12	*	ш	n Liet	- <u>~ - </u>	- ATTA	TILIBIANSE THE S	<u> </u>
	- -	8 - 9		آ ج	-			- 		
	10	9-10	24"	5		<u>Sam</u>	<u> </u>	widh_ x	bood splin Eus)	
	. 0	5-3							•	·
		8 - 25	20"	6		CAM	E	w.il.	<u> </u>	
			10		_	تناعمي ـ	<u> </u>	~ <u>~~</u>	<u> </u>	
		40-28	/ 15	_,					<u></u>	
		38-25	24"		Li	11_arey	c-1 5A	MD X	Grovel tr. Si	Wood_
ł		Ro - 12		,		· 4 J	i		, ,	
	15	18 - 27	20"	8		SAME				
	· . -		٨٥	, A	F	ال مديندا	black o	X 2 ⁻⁷ -3	ND & Gravet Fr. 5	III & wood .
		24-38		0		0.3				
₩	<u> </u>	68-88	24°	x J B	Gr	eyish - gr	een c-	CSAN	<i>N</i>	
						9		1		4
					.					
	> 20 <					•	- I	_	for Testing	-
	·			<u>ا</u>	٠	AL other	L Samo	les s	creened with _	Botton of Bo
			- 1			PINL	retes &	Alter	Led	7
				Ì				1		
				 			 			
				ļ <u></u>		· — —	. <u> </u>			

Engineering Department Construction Division **Materials Engineering Section** Revision

BORING REPORT

						:				SHEET OF	3
PROJECT	. +-	6 '	^		N.	AME OF CONT			BORING NO.	SURFACE ELEV.	
1 P	art Iva	oru Pk	(}]	Craig	drilling		175-203		
LOCATION	· ·	. J		1 1		J)		CONTRACT NO.	DATE	
	As laid	d out in	the L	ielo					426-99-006	11-15-00	ļ
SPOON		CASING SE	ZE I HOLE	TYPE				GRO	OUND WATER LEVEL		
3 0	D.D. 2 3/6	HAMMER	5 1			Date	Time	Depth		narks	
HAMMER .		HAMMER									
140 *	FALL 3	0 -	FALL			11-15-00	11:45	8.5	Sample # 5		
DRILLER	<u> </u>										
	J).Usi	uch									
INSPECTOR							}				
	1.70	arks									
CASING	7	SPOON	RE- 1	SAMP.	1	•			SCRIPTION AND REMARKS		
BLOWS/FT.	DEPTH <	BLOWS/6"	COA.D	NO.	↓_				TES CHANGE OF PROFILE		<u> </u>
Handauger		Handauger	Full Rec	j	-		DGABC		And the second s		
		1	<u> </u>	١,	1	_ 		<u> </u>	CANNOCLICAT		
 			 		Hi	isc till gr	<u>eyish-blac</u>	r c-t	SANDA Gravel, tr. SiT, c	inders, wood <u>, co</u> a	lec.
						J	•	•	•		•
				9 ^	F	<u> </u>	1001	NIN I	$\frac{C}{C} = \frac{1}{1} \cdot \frac{C \cdot M}{C \cdot M} \cdot \frac{OI}{OI}$	11/1 0 1	
 		 	-	~	ļΓ	TT prowu	c-+ 38	בועש, ז רי	Gravel , tr. Silty Cl.	47, tr. Coal	
	5 4				L		<u> </u>				
	3			3	Г	SAME					
, .		, ,	- \	· · · ·	П	71111-					-51
		4 - 4		/ ×							
AUGERS		5-5	14"	4	1	11 11	ch	- CLAY	YEY SIT; Little	C CAND to	Grand
HUGENS			1/3		٣	m Tream	TI THE COM	1)(<u> </u>	Le 1-vill - mile		.0.40
		4-4			<u> </u>						
		17 14	9.11	5	1	SAME					10.0
	► 10 <										
 		4-5		1	<u> </u>					·	
		6-5	204	6	F	ال ال	wn e-C	SAN	D AND Red-brow	in Claver SILL	UHLG.
					6	SAME	7				2.8
- 		2-2	- 10	_ *	_		10		- 1 - 1 /		
*		3-4	24 °			Brown	PEAT	Sam C	grey CIAY	· · · · · · · · · · · · · · · · · · ·	14.0
	_		,	7	Ī				V -3		1
	► 15 <		,		┢		_ 				5
					Ŀ	Note: So	umples_2	:4_P_	7 were soved	or testing /	<u>'</u>
						الہ	Samples	were.	screened with	In maters	
					-	_ and t	he other s	amples	were discarde	d	$\overline{}$
				1	ĺ						_
									Bot	tom of Bor	ina
	> .◀				├						→
	_										
					├						
	-										
					-						\dashv
											1

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					SHEET 1 OF 3
PROJECT) I T	0	^ ^		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
	ort 1	Voru P	& G		Craig drilling FS-4
		J,	0		CONTRACT NO. DATE
	s laid	out in t		ield	126-99-006 11-15 -00
SPOON	a 3/0	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL
3 (0.D. L 16	"I.D. Auger	SI		Date Time Depth Remarks
140	FALL 30	nammen	# FALL	_	11-15-00 1:40 PM 8.0 Sample #5 (top)
DRILLER			FALL		11-15-00 1: 40 B.O Sample # 5 (top)
	0.0s	uch			
INSPECTOR	- -				
	1. 4	arks			
CASING	J	SPOON	RE- 1	SAMP.	
BLOWS/FT.		BLOWS/6"	COA.D	NO.	LINE LOCATES CHANGE OF PROFILE 0.0
HANDAUG	ia –	HAND AUGER	Full Rec	*	DCABC 6.8
	 			۱ ،	EU CAND IC LICHT
 	 -	 	 		Fill grey c- & SAND and Growel , tr. SIIT .
			<u> </u>	₩	
				2	Fill grayish black a- [SAND some Browel to Sill cinders, coal, me
	├ <u>-</u> -				ALS ALSO DE LOS CONTRACTOR DE LA CONTRAC
	5 -			7	
			•	3	<u> </u>
Å .		4-5	1	,	
Auger	 		/11	4	CAME
	 - -	5-5	24"		SAME
	<u> </u>	4-4			
		9-9	20"	5	SAME (wood)
	10 -		~~		
	<u> </u>	8 - 12		1	
	<u>L</u> _	8-6	8"	6	SAME (wood)
		9-9			
	-			7	
	├	4-4	2"		SAME
	L 10 -	2-2		· *	
	15	2-2	20"	8	Brown Peat to gray Silty CLAY
. V.	 	 	10		Brown Peak, to gray Silty CLAY
	<u> </u>				L
	1				Note: Samples 1:218 saved for testing
	<u> </u>	1			All all Die by
	├ -				All samples screened with Pid meter
	> 20 -				and discarded Bottom of Boung
]			
	 	 -			
	├ -	ļ			<u> </u>
	<u> </u>				
,					
	- ·	 			

43404

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET OF 3
PROJECT	·	D: -			N/	AME OF CONT			BORING NO.	SURFACE ELEV.
P	oul Iv	ory P+6 5	NO			Chair '	Duilling	£	FS-7	
LOCATION						0		J	CONTRACT NO.	DATE 12/1 100
V		RLU 55			_		,		416-99.00(12/1100
SPOON			ZE HOLE	TYPE				GRO	OUND WATER LEVEL	
3 ·o	.D. 2/19	5 TI.D. Augul				Date	Time	Depth		Remarks
HAMMER	FALL 30	CASING SIZE				12/1/00	0825	5'	HA.	İ
140 .	FALL 30) · * •	FALL	•		17170	000	13	יעו	
DRILLER	مریس	-		Ì			}			
	F CVA	<u> አ</u>				<u> </u>	<u> </u>	 		
INSPECTOR	1.4.1	e Spring	o ()	i		1	}			
	- NAVI	1 0		0025		1	10.00	MOLENT	CONTION AND DESCRIP	
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.					SCRIPTION AND REMAR TES CHANGE OF PROFIL	
	≻ ''' <				1	unciore				.55′
HINDAUEV		Hand Auger	Full	1		HAWL FILL	with we m	attra -		
					\Box					
 				1	1	TWO TO MA	4 SIW	Than	SIT/Same Gurel	D. w8
			-)*	Ŀ			- 17472	SUI /Same GUNGL	- UNEDVOUN
			1					•	•	40
					Π					
 - 	- 5 -	 		3	-					
V		V	1		L	FINES	ind T	VACA	SILT_ LT	Brown
		8-14	2/	11						
				4	\vdash					
		11-10	-		┺	Sanc_				
		12-14	21	57						
1	► 10 ◄	16-18			L	Some				
		4-6	7/	1						
		10-7		6		Sine		· ·	· — - — —	120
						1	2 - 270	a E	Bar : 11 0-	
	_				\vdash		POTIUM		Bov.up	
					L				`	
	. ~									
	► 15 <					- All Ci	colos c	ــ ـــــ ــ ايمييمون	WPTD	
		<u> </u>			H	_ <u></u>	1123 SC	· PMC	WPCD lovad For En	1 X - Vie
, 3					L	- Sample	<u>ウム, ン</u>	<u> </u>	ovec rover	<u> </u>
		_				-011	Renori	8 Sx1	plos Discurd	od
							`	_ `		
					H					
	> 20 ◀						·			
[
					Г		 			
					\vdash					
					Г					
					\vdash	- 				
					_					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

								•	SHEET / OF	3
PROJECT	- · ·				NAME OF CO	NTRACTOR	E	BORING NO.	SURFACE ELEV.	
Houles	d Hock	Pert ILLORY	PAG	SiTo	Crai	Wrilling		ĦN-/		
LOCATION	- 1001	1		200	Babo	e Vrilling	TIC	CONTRACT NO.	DATE / /	
1 12 751	SouTh	was T of 1	Truck	Scale	Near.	South Gat	e	426-99-006	11/7/00	j
SPOON	 	casine si	ZE HOLE	TYPE	1			IND WATER LEVEL		
ه. و	.D. 1%	"I.D. HAMMER	. d		Date	Time	Depth		emarks	
HAMMER		HAMMER			1.1	25	1			
140 #	FALL 30	- -	# FALL		11/7/0) 9 꽃	3.0	while Hand	Accrine	į
DRILLER		Burus								
INSPECTOR		Phone	,							
CASING		SPOON	RE- 1	SAMP.2	T	304	MDI E DECC	CRIPTION AND REMARK	/C	
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.	·			S CHANGE OF PROFIL		Oc CIS
	O		 		Crushoo	5 Tous				0,5
Kand		Hond Digy	Full	1						
Augr)			Fill- N	-F Brown	Soud.	TrSit, Tr Gush	alsToro	ĺ
1					 		1			
		ļ		ے				_ <u></u>	 	
[])]	1 1		M-	= Brown	Sand I	アクンナ		J
					 -			<u> </u>		
 -}	> 2 <		 	>	<u> </u>					
				3	So	me_			•	1
		4-3	•			<u> </u>				7.0
- 30				4						
STATON		3-3	1911		<u>M</u>	F Grey	Sand II	<u> </u>		
Augus		3-3		5	No	e 5#	4-	Taken wim 3	L' Spoor	
ı ı	→ 10 <	6-12	18"	>				Sand LIDLO SITI		
		7-9		,						
		13-11	1811	6	F.	Brown !	Sand	Tr SIT		
		6-11	1-			<u> </u>	- 4 70-			
		11-14	16"	7	<u> </u>		·			
-V		11-17	10'		<u> </u>	me_				
į	10	4-6		_	Sa	me			en en en en en en en en en en en en en e	150
	- 15	7-9	144	δ	M-FC	TAY SQUO	Little Sil	iT		15.5
		/ /	17'		□ Bro	un sond,	some SII			1618
				** *					•	71
								Bo Damot Bo		
	<u> </u>							_ YOUNGE DO	<u> </u>	
	- 20 -				THE P	11 Samala	chaci	taluith PID	MeTer.	
					<u> </u>	外しょう	Saus	For Envire	Tostiar.	$\overline{}$
	- ·					<u> </u>		A. V		
	- -					making	3 - samy	Abs Discerole	d	
										
, 🔼 📗		<u> </u>				•				-
										
	> 25 →								<u> </u>	

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / OF S
PROJECT		·····			NAME OF CON	TRACTOR		BORING NO.	SURFACE ELEV.
PR	octor.	& GAME	BLE		CRAI	6	ĺ	FILL-Z	1
LOCATION		•						CONTRACT NO.	DATE
As	MARKET	D OUT IN	THE	FIELD	BY KI	Clipu A	ssoc.	426-99-006	11-3.00
CDOOM		CACINO	17E UA: E	TYPE			GRO	UND WATER LEVEL	
3 0	n 73/2	110 1/5 A	2015		Date	Time	Depth		lemarks
HAMMER (S	alatu	HAMMER	7-1			1			
140 #	102, 87	- I	# FALL		11-3	Am	4:1'	found in	S#3
DRILLER			FIALL			1	' ' '	7-57-5	
	$\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}$	Pennell						•	
INSPECTOR		_							
	Μ.	Oudel			İ	•			
CASING		SPOON	RE- 1	SAMP.2		3SA	MPLE DES	CRIPTION AND REMAR	KS
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.				ES CHANGE OF PROFIL	
15.			1			Asyna		ement	077
1		HAND	Full					Sock	0.3'
AUGERS		AUGER	rart	l <i>1</i>	Fill- doile	train co	1 SANT	some Gravel trace	Silt frau Cousted Pock
1		,		1			9 — —		
			$+-\!$	ļ					
		<u> </u>	1 1		Fill - Drow	r c-1	SAND.	trace Gravel, to	race Silt
				2			-		
	-5 -	<u> </u>	┼-┼					 	
		↓	↓	1					
		4-4	20"		<u> </u>		5 A		
-		1 /	100	3	Fill-		_ <u> </u>	<u> </u>	
		6-7							
		5-6	∂₀"		5.11		5.	In E	
			00	4	Fill-			<u>me</u>	
	- 10 ∢	10-12	L						
1 [. •	8-11	24"		Fill-	•	54	mE	
			1-1-	5					
		14-17	ļ <u></u>	<u> </u>				 	
1 1		10-10	24"		Fill-		4	AME	
			/_	6		-			
		13-15			<u> </u>	$- \rightarrow -$		 	<u> </u>
		9-11	24"		Fill-)	S .	<u>ame</u>	
	-15 -			7					
·		18-22	 	-					16.0'
									
									Dottom
			 						26110M
									Joring _
					nil c	alar	2	Sama	0 0
	> 20 ◀		 	· ·	` `	ar pics	werp_		
					in Z	ore st.	JARS 5	Sover	
]		, -	7-			
		· · · · · · · · · · · · · · · · · · ·	 						
		-	 						
	25	e.	L l						

THE PORT AUTHORITY OF RYSKY

Engineering Department Construction Division **Materials Engineering Section**

		•			BU	HING I	KEPUK			SHEET OF
PROJECT	PtG				NAI	ME OF CONT	RACTOR	В	ORING NO. +W#3	SURFACE ELEV.
LOCATION		les Killia	n ass	soc (/**\\	V.	BLOCK 140		ONTRACT NO. 26-99-006	DATE // 4/10
SPOON	> 3/0	"LD. HS-QUE		TYPE		- 0	- V		ND WATER LEVEL	
HAMMER	D.D. 2/8	HAMMER	<u> </u>	-		Date / /	Time	Depth	1	Remarks
	FALL 30) .	# FALL			11/6/00	10:05A	7.5'	Ju 5#4	
DRILLER	J. Craic							1		
INSPECTOR	T. Ra									
CASING BLOWS/FT.	DEPTH <	SPOON BLOWS/6"	RE- '	SAMP.				NE LOCATES	RIPTION AND REMARES CHANGE OF PROF	
	-	Hand	Tull	1	71	in Till-	sand, Cu	du Bu	ik (ore	
		augen	Rec		 	Sam	It	w/./		
				2		·	-4-x-2			
	- ₹5 -	, v		3-1	I			ATTENTO		50'
1	· .	7-15	TV.			San		4	et, to Ga	
7		1-27	17"		550-4	jī,	† \	- . 		
		13-31		-		Sam				
	10	54-45	22"	5	<u> </u>	·				
1		7-11		,		Sun	<u> </u>		. 	
		18-31	20"	6	<u> </u>				·	
		11-17		7	Ĺ	San	<u> </u>		. <u> </u>	
		22-28	14"			· . 				
		4-10	12"	3		San	D .	·		1501
	[•			. •			<u> </u>
						-		•	. Rotto	of Boring]
				. *			1			
					Ţ_,	· 				3 6
					7	Toto:	Sample	pt 1-4	were same	for testa, all
					ot	ther san	ples we	N'acrée	w/ P1047	ter discarded.
					[ampl	#4	was De	wed & place	In testing all In discarded.
		·			<u> </u>					
		·			<u>.</u>					
	-									

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

X-Tanks have been removed, foundation only exists.

Engineering Department Construction Division Materials Engineering Section

					BORING F	REPORT	1		SHEET / OF 3
PROJECT	0 ' 6				NAME OF CONT	RACTOR	E	BORING NO.	SURFACE ELEV.
HH			· · · · · · · · · · · · · · · · · · ·		Cranj			7001	
LOCATION	id out	CASING SI	Da	201 (±	103'So. H (ud(12)	BLOCK	CONTRACT NO. 124-55-006	11/4/00
SPOON	-3/	CASING SI	ZE HOLE	TYPE		0	GROU	ND WATER LEVEL	
HAMMER	o.o. 278	"I.D. Ougens	(H\$) 2		4 Date	Time	Depth	 	Remarks
140,	FALL 3	_	# FALL		11/ 100	1:40 pm	5.9'	Jn 5#3	
DRILLER	Λ	nell						·	
INSPECTOR	T	Ra-							
CASING BLOWS/FT.	DERTH	OSPOON BLOWS/6"	RE- 1	SAMP.		38AN LIN	APLE DESC IE LOCATE	CRIPTION AND REMAR S CHANGE OF PROFI	EKS (Gove Kovered)
•		Hand	Tell		Till-Cin	dus Sand	little	Br. little G	laso'
		anjes	Pec	1			, •	· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	<u> </u>	1	7	Sane			<u> </u>	
				2					
				3	Samo				5.0'
	_ > _	V	V	2	FILL-BAM-F	Sand lit	the sil	t. t. Grovel	
Pro	<u> </u>	2-3	ļ	U	Same	·			, and the second
	<u> </u>	3-6	19"		Ry FSand	por Sil	t, por	to Gavel	ong.odon)
		1-1			Bann F	Sand, to	Sut	to Gravel.	
	÷ /0 ◀	2-2	17"	7		 -	·		
		1-2		,	Same	<u> </u>			
		2-2	13"	6					
		10-15		7	Sono				
$\sqrt{}$		11-15	24"	7		- 	·		
	1	11-14	12"	8	Same				/5-0'
	()		i						
							·		
				-				Bottom o	(Boring)
								7	y — — —
									
•		100	:						
						 		 .	
					71.7.	Samuele	#1-	5 were save	I for excusion
				ı	Testin	OP At		sles were se	
					1 +H	De das De	J Sa	7.45	ed & Jacob on hold
	NOTE	S: 1 — Length re	covered: 0)" — Los	s of Sample. T —	Trap used	, 	per S was san	an a process of the contract
		2 - U = undi	sturbed; A	= auge	r; OER = open e	nd rod; V =	vane artesian wa	iter, sand heave in casi	ing, etc.

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF 3
PROJECT		0 1 0				ME OF CONT			BORING NO.	SURFACE ELEV.
Port I	vory	7 8 6			\perp	<u>Crain</u> d	<u>lrilling</u>		till 5	
LOCATION	٠ - ر٠				L.	J	J		CONTRACT NO. 426 - 99 - 006	DATE
# 180 1	L of t	bldg 12 - Bloc	K 140	TYPE	<u> </u>	<u> </u>			······································	11-18-00
	o.p. 2.3/8	"I.D. Auger				Date	Time	GRO Depth	UND WATER LEVEL	marks
	Safety	HAMMER	<u> </u>					Sepul	1.	
. /	1 J		FALL	.]		11-18-00	12:30 PM	7.5	Bottom of	Sample # 4
DRILLER	James	Finch							1 1	
INSPECTOR	7 7					<u> </u>		· .		
	1. 4	arks '	•	,		<u> </u>				
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.		•			CRIPTION AND REMARK TES CHANGE OF PROFILE	
Handauger	→	HANDAUGER	Full Rec						k + DGABC	0.5
 	 	 	 -	1 .	-	<u> </u>				
	<u> </u>	 	 	 	 t	نلا _عدمهند	ih_brown	-C-#SA	ND, little Bravel, tr.	silt cinder
				*	_	- — <u> </u>	- 			_,
	<u> </u>			2	F.	11 reddish	- brown	c-lst	AND to bravel to S	ult_woool
	5 .∢							l	, ,	
	~ ~ ~			3	Γ	SA	ME			
¥ in the second		5 - 5		*	1	/_	L <u>—</u> —			
5. 2M		, ,	20"	4	7	11 1	000	4117	1 (- 1 0	ith bl. organic fibers
AUGERS	- -	1 2	1.0	-	ш	וי הנסאו	- 	ישויים,	II.OLONEY + 1 JILL	ITT DI. Proprie to bell
		4-3	и	5	-		'			
	10	3-5	20		_	SAME	<u>. — — </u>			
	<u> </u>	3-4		/	L		- 			
		7-11	18,	6		SAME	<u>,</u>			
		11 - 13								
		15-21	24"	7	F	ll greu	& brown	c. (SAND, tr Grave	of tr.Sill
			~ .		Γ'	" " "	~ _ <u>~.</u> ~ <u>.</u> W.ll		4. 4.1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
	- 15 -	10 - 13	, /, 11	8	7		0 0 0 1	7 -	Grapel , tr. Si	IT 16.0'
y .	-	10 - 13	44		۲	rey c-	1 DAM	W , T	11. 51	16.0
					 -		'			
					μ				L for testing	
					L		other so			
						PID	meter &	die	ام مام م	
	> 20 <					14/-	JIECUL L.		Bottom	of Boring
					 					ナーナー
					-			·		
	, · 							. 		
	_ , _					· · · · · · · · · · · · · · · · · · ·	· — —			
						,				
	-							-		

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

		•							SHEET) OF 3
PROJECT	<u> </u>	b 1			NAME OF CONT		_	ORING NO.	SURFACE ELEV.
torl	Luory	PtG SIT.			Craig	Orilling		Fi11-7	
LOCATION	4	1-1	QI I	114	_	0	-	ontract no. 426–99-006	DATE 12/4/00
SPOON	1 60001	Chipper Casing Si	<i>U[∞.k</i> ZE HOLE	TYPE	61 /			ND WATER LEVEL	1 12/1100
3 .	D.D. 23g	"I.D. HOUSE		<u>1</u>	Date	Time	Depth	· · · · · · · · · · · · · · · · · · ·	emarks
MARKED	\sim \sim	HAMMER			3.14	905	16.0	5#6	
140 .	FALL 30	<u> </u>	FALL		124	7	10.0	3'6	
DRILLER		S Burns							
INSPECTOR		Oxocore	_						
CASING		SPOON	RE- 1	SAMP.2				RIPTION AND REMARI	(S
BLOWS/FT.	DEPTH ◀	BLOWS/6"	COV.D	NO.	Con cri		NE LOCATE	S CHANGE OF PROFIL	E 00
				ļ					
Hard	<u> </u>	Hand Auger	FUI	1%	MIX FILL	Sand, G	raus / CIA	ders, wood, Sill	-,Eic
Augr				<u> </u>	 	,	,		,
4				2	Sam	 _			4,0
			1-1-	<u>'</u>					
	Z <	 		3 🕏	<u> </u>			<u> </u>	
- X -		<u> </u>	dr_		Misc F. 1	1 Grad	ors brau	<u>// E7c</u>	
- Ju		16-11		У	L		·		
STem		16-18	19"	7	Same			•	
Duyes		17-9		, j		-			
1		4-3	So.	5	Same				100
	► 10 <	3-2	- T	,			········		
		1-/	244	6	F//~ v	ihita K	2 Tan	across Earl	
		WOH				2°1112°E	.,		
		lease	241	フ					
			0.7			me_	· —— —		
	- 15 <	W0H-1	001	8		 ,			
		2-2	23"		Sa	me		- 	
		2-2		Ω					
\ \ \		5-5	2411	9	Sa	me			
		9-18							
		25-45	15"	lo	E/1 1.1 7	0 T		· — — — —	
	> 20 <	7-3	13		Fill- While	VI - Januar	cous E	avily LIDYA CADA	1 Cravel
		7-7-	184	17	E.11-10.1.T	- 	0 7	mecaus Earl	
	_	3-2	10	И	_	20127	LINIAI	Macrons Lay	
		J-2	104.1	12 8	Sam	<u> </u>	·		23.0
		1-/	18,1	<u> </u>	Brow.	Pent		·	240
	25					·	Bot	Jam of Borin	

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

2 — U = undisturbed; A = auger; OER = open end rod; V = vane

3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PI Samples Checkel with PID MeTel 3 to 1,366 Sauel

for English Total Romain in Sauella Occambio

THE PORTAUTHORITY OF RIYERLI

Engineering Department Construction Division Materials Engineering Section /

BORING REPORT

_								SHEET OF 3
PROJECT		0.			NAME OF CONTRACTO		BORING NO.	SURFACE ELEV.
POY	Lyon	PHC SITE			Craig Vil	ling	F111-8	
LOCATION	•				. 0		CONTRACT NO.	DATE
Nu C	OYNUY OT	STe, 75 South	hot PA.	MW-1	Block 1400		486-99-006	Rkloc
SPOON 'O	23/	CASING SIZ	ZE HOLE	TYPE			UND WATER LEVEL	
HAMMER	.b. 0/8	"I.D. HAMMER	<u> </u>	<u> </u>	Date Tin		· H	emarks
HAMMER 14C #	EALL 24		FALL		12/2 11	3.0	while Hand	Arcablas.
DRILLER	_		FALL		110	7 70	- City France	130221110
	S	Burns		ı				•
INSPECTOR		Nowe						
<u> </u>			, 		<u> </u>			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.		SAMPLE DES	SCRIPTION AND REMARI TES CHANGE OF PROFIL	KS E のり
	►ეე∢			NO.		LINE LOCA!	LS CHANGE OF FROME	<u> </u>
Hand		Hand Broger	FUH)			_ 	
Buser			1		. Misc Fill-	- Sand S	11, Brek, Grave	/ MoTal ER
١	-							, (
				2				
	 -	 						4,0
	→ ¬			2				
	5			3	Fill-Grey	Ratome	cook Earth Little	MacRill
11 11		1-1						
		 	104	4				
וחפונ		1-1	19"		1-111 - Gray	Viator	cows Earth	<u> </u>
Augus		woy			· · ·			
		wood	234	5	Fill -late To	+ 6. 0.	Turnacous EarT	2
	> ko <	WoH			1111 2011 10	<u> </u>	WHAC POUS C-11	
			- 4-	6	 			
		HOW	724		Same	·		
		le c y						
		WOH	721.	・フ	Same			
	-		00					
- 	12 4	WOX		8				
/_		MOA	294		Same			
<i>;</i>		WOH		- P	Same_	•	• .	n
		WON-1	244	9 🗇				
				, B	Black Post		0 0	
						<u></u>	Bottomal Bura	¥
	× 20 <				<u> </u>			
	32							
						11 6		1 210 1/2
						1 Jampe	es checkedull aued for Enu	n rie Mojn
				į	<u> </u>	124 5	aved for Enu	K TOSTWE
					Rad	malalla	Samples Uscon	del
				ŀ			Action of the second	<u> </u>
	- 26		<u></u> l					

THE PORTAUTHORITY OF MYSMIJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

									SHEET OF
PROJECT	TTIME	by P+6	5/1/2)	NAME OF CON			BORING NO.	SURFACE ELEV.
To) VI VC	in 1+0	2116	٢.	Chais	Lulling	-	F/HO_	
LOCATION		0.5						CONTRACT NO.	DATE
	outh o	FBLD 7	2					426.99.006	12/1/00
SPOON	_2/	CASING SI	ZE HOLE	TYPE			GRO	UND WATER LEVEL	
3 .	.o. 278	1.0. Augel			Date	Time	Depth	Re	marks
HAMMER	SIFT	"I.D. Augel			141/00	1025	5.8'		
140 .	FALL 34		# FALL		17100	+	1.0		· .
DRILLER	eff Cu	dis						•	
INSPECTOR	howe	Spungor	,						
CASING		SPOON	RE- 1	SAMP.2	Γ	3SA	MPLE DES	CRIPTION AND REMARK	(S
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.	<u> </u>			ES CHANGE OF PROFILI	
H. A.		H.A.	Full	1		50/0-7/0			0,2
T		1	1	1		, —			-
			 	<u> </u>	PUNE ST	& some	SILT_	Rod Brur_	
				っ^					3
				メイン	King S	SINCE COM	W SILT	- u/aunc	Rad Bus
		 	-	/''	' <i></i>		_~		
	S ◀			3	 				
		Ą	1						
V		5-8	1,3'	11.0	Cardy	1011111	-/a.Jus	(0,10,14) 0 2 11/00	
4000		5-23		4.8		Slich	ht m	Concrete, woo	e - DACK
- Y -		-	37		1				
		4-4	21	5	-Pest-				
	- 10	4-4				and the Continue of			lau
						FA	NOF	Bourg 101	
٦					,				
	_ · _		-		<u> </u>				
			<u> </u>					_ 	
						- RII SA	4940S	Screened my	(PDU
Į	- 15				-	- Saugh	032	b+4 Soual F	PDD EVENISMY
								c Suplos D	
						~~			
			ļi						
									
ļ		-							
									
	20								
	-								
	`								
						<u>`</u> — —			
				·	<u> </u>		<u> </u>		
	لے ا		<u> </u>						

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

							*				SHEET OF 3
PROJECT	RT 1	VOR	Del.	SINE	/	N/	DAIL	PACTOR PRILLIN	1.	BORING NO.	SURFACE ELEV.
LOCATION		Ant.	176	2116		L	CANIG	New		CONTRACT NO.	DATE
7	block 1	400	BORING SI	BI /	NEST ()F	BUILDIN	16 # 31		426-99-006	12/4/00
SPOON	73		CASING SI	ZE HOLE	TYPE		<u></u>			OUND WATER LEVEL	
<u> 3 </u>	o.d. 7^3			- 1			Date	Time	Depth	R	emarks
HAMMER 140	FALL	AFET	HAMMER	FALL	•		12/4/00	1230	101012		
DRILLER	JI	M .	FINEH								
INSPECTOR		H	DAVIS								
CASING BLOWS/FT			SPOON BLOWS/6"	RE- 1	SAMP.2	Γ	L			SCRIPTION AND REMARITES CHANGE OF PROFIL	
		" •				\vdash	0) 4://				
	+-	_		 		\vdash	CONCRETE	·			
	<u></u>										20
Hong Ave	*		tong AUGER	Fur	2*		CIATERS V	and Sma	n Gran	ia	
					1						115
	<u> </u>				7 A		SAME				4.5
	> 5	1			$3^{\prime\prime}_{B}$	12	GODISH Brow	W CLANEY	SIUT, LI	1916 GRAVE	
7	<u> </u>	-	34	16"	, 44			·			
	 -	+	56	10	4*	۲	<u> </u>				
		+	3 5	15"	CA	<u> </u>	SAME	- — —			9.0
	T.,	J	7 8	13	5 B		BLACK FIN	E SAND, T	PACE SHIT		
	10		3 4	14"	j		SAME				11.0
			46		6.		BROWN F	INE TO M	NEDIUM !	SAND, TRACE SILT	120
	<u> </u>	1	78	8"	7		BROWN	PEAT_			
	_		9 11		7					· · · · · · · · · · · · · · · · · · ·	14.0
	15	_			•		-1-				
	L''	4				<u> </u>	IBor	Tom O	<u> </u>	oring	
	.9 %	+				L_		<u>:</u>			
	 	1				<u> </u>					
	 	+			1	-	-Bu	Some	<u>ES S</u>	CREENED WITH &	PID METER
	- 20	+				<u> </u>		oves 2	<u> 4</u> -	AND SB SAVE	ID YOR
	 	_				<u> </u>				<u> </u>	
	_	_					- Au	REMA	NING S	AMPLES DISCAR	050
	_	+				-	- <u>,</u>				_ — — — —
	_	_				<u> </u>		. 	<u> </u>		_ — — — —

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / OF 3
PROJECT		216 27	·			ONTRACTOR		BORING NO.	SURFACE ELEV.
Por!	Wary	PAG SIT	e		Chai	8 Drilling		B.2	
LOCATION	, ,,	1 0 t	21.4. 5	_				CONTRACT NO.	DATE
SPOON	Hrea	West of B	Ide 3	7	- 1			426-99-006	11/10/ac-11/16/0
SPOON	9.3/	CASING SI	ZE HOLE	1				OUND WATER LEVEL	
3 "	501. 1/2	8 1.D. Auger	\$1	ط	Date	Time	Depth	Re	emarks
/	ده	1	# FALL		11-16	10 9:08 AM	9.0	Sample #5	
DRILLER		Bures					5.2		:
INSPECTOR		Howe /	7 7	arks	'		۵.۲	- Post IIvio	
CASING	T	SPOON	RE-	SAMP.		304	MDI E DEG	SCRIPTION AND REMARK	/e
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.		LII	NE LOCAT	TES CHANGE OF PROFIL	
Entles Head		Cutter Head	Full Rec		FILL BEGAN	Cal SAND to	DGARC .	CRUSHED Rock	A.L. 0.8
	 -		1	1 .		' - -			
TAND HUCE	<u> </u>				Conc	rete Sla	b w.	ribars	2.0
WAND RUCE	1	HAND AUGER		*					İ
<u> </u>	 			2			- — _n	1 0 4 644 0	0:11.0
	├- -	+	-	1-6	- Till gre	yish-block	s c=f	JANY & Grovel, +	r. Silt, Cinders, Coal, br
	1					<u> </u>	'		
4	5	7 1		3	SAME				
	 		-	 	10.000				
MUGERS	 - -	5 - 5	. ,	/ *	<u></u>	225.8 pp	<u>~~</u>		[
1	<u></u>	6-6	24	4	<u>A</u> M	1E _ w/	<u>/oil</u> _		
		8 - 19				123.90	^^^		
	-		18"	1 5	CANA		1		
 	10	13-15		<u> </u>	ALY C	<u>E_w/</u>	<u> </u>		
<u> </u>	 -	100/3"	3" ([/					
				16					<i>5</i> 1
			1	1					
	├ -			 					B. L. fa
·	<u> </u>	- 		1	<u> </u>			<u>Ket'usal.</u>	Botton of Born
·	Lin.] .			Nato	: 9.5AMD	lec	soved for teached with F	tina
	15			1 .		All other	- -	1 1 1 1 1 1	
	 - -	 		1		_HIL Sam	ples -	Checkeol WITH I	11 meles
ļ	┡ -			l		2 disc	acdeo	L	
				1		•			į
	 	1	ļ	1					
	├ -	<u> </u>		{					_ — — — ;—
	20-				·	·			`
-									
 	 			1	 ·				
	<u> </u>				<u> </u>				
	}					•			
	-				·				
	- -				<u> </u>				
	26		·						

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET OF 3
PROJECT		0 0 0					RACTOR		BORING NO.	SURFACE ELEV.
Port I	voru	P & G			Crai	a d	rilling		B-2 A	
LOCATION						J			CONTRACT NO.	DATE
10'5	~(' B	H.B-2							426-99-006	11-16-00
00001		H.B-2 CASING SI	ZE HOLE	TYPE				GRO	UND WATER LEVEL	
3 .	o.o. <u>გ 3/</u>	8 1.D. Auge	rs		D	ate	Time	Depth	1	Remarks
HAMMER C	safety	8 "I.D. Auge				_				
140	FALL 3	0 "	FALL		11-	16-00	10:30	5,1	Sample #	3
DRILLER	\cap M	A							•	
 	U. I'lc	. Aneny								
INSPECTOR	7 7	arks			· ·	,				
040000	11.4	arks			-	117,20	3040	181 5 050	ODIDTION AND DEMAS	
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.			SAN	APLE DES IE LOCATI	CRIPTION AND REMAF ES CHANGE OF PRÖFI	iks LE
Cuttor Head	- -0	Cutter Head	Full .							
 	 	+	-+-		 			· <u></u>		<u></u>
<u> </u>	ļ ·			1	1			•		
HENDLEGER	-	HANDAUGER			<u> </u>				trata o.o' =	
- 	 	+		۱ ,	 					
	<u> </u>	1		2			see	Berin	g report P	5.H_2
				1		_		-	J 1	
	5 -	1	 	3	 					
	<u> </u>	—		3	·					
# (3)	ľ	/	-	1						
Anger	_	_		1 /						
	 -	•								
<u> </u>	<u> </u>	4-5	<u> </u>	*		<i>ئىيا ئا_</i>	8 ppn_	. 		
1		7-8	20"	5	Misc	Fill	black c.	r SANT) same Graveltr	Sill Cinders Coal we
V	10 -	100/34								
	-			-6	SAME		700~			<i></i>
				,		_ .	\bb~_	. <u></u>		/_
		ĺ		,	Nat		eample	4R	sound o	Cusal Botton of
						·	200.161			fusal - Bolton of Baring
						}	or testi	<u> 19. –</u>	III _acher sample	the management
					Screen	ed I	or PiDre	adina	s X discard	led
						7			,	
										
				:			-			
								•		
7										
	<u> </u>									
		0.00							•	
	_									
	- -		*		` ;					
					144					
						. .				
			——			 :				
						244	1987 Jan 19			
		j							Topic State	•
	▶ ∢						3: <u></u>		31.44 <u>**</u>	· VS

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF
PROJECT	~	0 1	$\overline{\cap}$		N/	ME OF CONT	RACTOR	I	BORING NO.	SURFACE ELEV.
Port	Ivoru	, 7 &	F.		1	L'rai a	drilling	<u>, </u>	B - 3	ŀ'
LOCATION	_ :	1 · L						7 1	CONTRACT NO.	DATE ,
4015	ا مالم ا	L & 200 11 1	Blda 27	A RI	00	1600	lat 1		426-99-006	12-4-00
SPOON	1 1210 V	6 \$ 200 W of CASING SI	ZE HOLE	TYPE	<u>ت د</u>	1700	1001		UND WATER LEVEL	
3. "0	.D. 2 3/8	Δ	, re	, -		Date	Time	Depth		marks
HAMMER	.u. ~ /o	1.D. Auge	.15	1		Date	Time	Оерин	nei	ildi na
	7 .			_		/	د 1 . 0	7 - 1	C. 1 14 9	
	FALL 30) '	FALL			12-4-00	9:30	3.5	Sample # 2	<u>'</u>
DRILLER _	D. Cool			l						
	D. Cool	<u> </u>								
INSPECTOR	7	3							İ	•
	1.40	rks			_	<u> </u>				
CASING	J	SPOON	RE- 1	SAMP.	Ί.				CRIPTION AND REMARK	
BLOWS/FT.	► DEPTH <	BLOWS/6"	COV.D	NO.	ايا	Gravel			ES CHANGE OF PROFILE	0.0
Handauger		Handauger	Full Rec				C	ONCRET	<u> </u>	a.9
├				١.	1	=,				
			i		Lt	غالطمعا	s arev	<u>i c</u> 1	SAND tr. braue	el to Sill conders co
	-		1				7	J 7	———	
		 	 	*	-					
	•			2		SAME_				İ
						ـــما لينيب				
	> 5 ◀				L_	_:_ _				
		1	1	ス	15	SAME				· ·
V "		V			-	0171112				
		2-3		*			<u> </u>			
A-JERS		, ,	20"	/		0	CIAND	TO	ave , tr Sill,	and a
		3-3	20	4_	11	1'-c-}		Trur	ave to sill,	CINGERS, COOL
		12-18				,		·		i
			- ///	5		61	ME			
	> 10 ◀	22 - 24	24"	\Box	ļ		115			
		6-6							•	
	- -	V - S	- / 14	/	\vdash		NT			
		7-7	24	_6_	_	<u>⊃A</u>	<u>ME _</u>			
		6 .2		_	1		_	_		İ
		0-14	- 11	_	H_					
		12-15	_າດ"	_7_	L^{\leq}	SAME				
		-		F				·,		
	- 15 ₹	3 - 5		0	<u> </u>					
[_	6-7	20"	8	ľ	SAME				
		, ,							 	
		4 - 4		9	احر	AME-				
1 1	l	4 - 4	20"	L	با		0 . 1			18.0
		7 - 7	- 100		-	Brown				
		·			No	Le: 25am	ples sou	ed for	Jestina	
										7
	- 20 ◀		——		<u> </u>	AI _\$0	amples_c	hecked	w. P.D meter	/_
						remois	Jing Sam	oles die	carded	/
					┢		- 1948I	1 == =================================	CYCLES	Boltom of Boring
	- ;				<u> </u>		· — ·		_ 	
4	·				1					• -
	- · - 				-					
					L					
										
b	- ◀				<u> </u>				·	

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF 3
PROJECT () ,	^ ′			N/	ME OF CONT			BORING NO.	SURFACE ELEV.
	DRT VOI	y P+6	SITE			(RAIG	DRIVIN	6	BOHING NO. B4	*
LOCATION						_			CONTRACT NO.	DATE
<u>West</u>	OF BUIL	CASING	BLICK	1408		Blod	c 1400		426-99-006	12/4/00
SPOON 0	23/	CASING	SIZE HOLE	TYPE				GRO	OUND WATER LEVEL	
3 .0	.D. 118	"I.D. AUGER				Date	Time	Depth	Re	emarks
HAMMER	SAFETY FALL 3	HAMMER				12/4/00	2:00	41.5	PURING HAMP I	Aucerinc
	FALL 3		# FALL			1 1 1 1 1	///			
DRILLER	Sim Fin	vH					}			
INSPECTOR	$\overline{}$									
	JAN.	LAVIS					l			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.					SCRIPTION AND REMARM TES CHANGE OF PROFIL	
	> "<	· · · · · · · · · · · · · · · · · · ·	+			Asphalt AN)		TE EUOA		
Hong Alber		Hong ALLER	┧	1 A	\vdash			 -		t. s
				B	Po	CINDERS I	AND GRAI	15 <u>L</u>		
				1 1 *		- PETROLE	ivm odar			
				12	Γ		150-	40000	<u> </u>	
			+ -		\vdash			_ ' F _		
	>	 		3 A	1	Carlor	CATO THE	a/ C	Occanting and	5.0
_ 🚣	_	L V		7 15	710	CHM HAE	Shini) 4		- Papulum Door	50-40060
2		56	15"	11 00	Fil	REDOUT BR	OUN CLAYE	YSILT		7.3
- 1		65	T -	1 ' ' ' ' ' ' ' ' ' ' ' ' ' '	14		THE SOMD,		<u> </u>	7.5
		33	2"		 "	_	HE MAY	10000		
			+~		┝	SAME				
	- 10 ◄	58	 		_	SAME			 	10.5
	_ `	44	10"	6		BROWN PE	77			10.9
V		711				BROWN F	INE SAN	D. TO	BORING	12.8
						1		-		
					<u> </u>	- — t	2	· · · ·	7-0-V	
	- /-	<u> </u>	+		\vdash	-	Dallaw	<u>or</u>	JEACINO	
	- 15 -		 		\vdash					
					L		<u> </u>			
						- Au	SAMPI	ies c	CREENED WITH	PID METER
			1		Г				3B AND YM SAVE	
			 		 					×
									TESTING	
	- 20 -				L		W REW	MININE	SAMPLES DI	SCARDED _
										
			 						 	-
		· · · · · · · · · · · · · · · · · · ·	 		ļ			. 		
			<u> </u>							

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

									SHEET) OF 3
PROJECT	^				NAME OF CONT	_		BORING NO.	SURFACE ELEV.
HHMI	- POIT	Ivary 5	urchan	TosT	Cray	Or, May		PG-ST-15	
LOCATION		_ ′						CONTRACT NO.	DATE 10/23/02
HS Car	doutin	FIELD TS POL	Proces	Y DE	Varity 9, Le	· · · · · · · · · · · · · · · · · · ·		426-99-006	10/23/02
SPOON	- 13/2	CASING S	יאלי אין	MULTER	Date	Time	Depth	UND WATER LEVEL	Remarks
HAMMER	A.J.	*I.D. Duspys		Plar					
	FALL 30		FALL	- 1	10/27/02	12 25	3.7	Lehilo Kan	1 Acque
DRILLER		O Cocke				,	•		
INSPECTOR		Vyoue							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.	-			CRIPTION AND REMAP ES CHANGE OF PROFI	
Hand		Mard Argu	RI	1.					•
Auger					Fill - R	CB · R	revelod	Course Bes	
1	-	1 1		2 B					3.c
				2 5		usled ST	-		
 	-	 	 		1111- 21	OSher JJ	ene _		
	× 5 ≺		 	3	<u> </u>	. — —			— — — <u>— </u> —
V		<u> </u>	1		Samo	 -			6.0
Hollan		1- Wolf		11			·		
SDay		WOH	19"	4	Fill who	To 2 Gra	1 4me	stone Strong	
Bung		le							
		H	23"	2	Same		· 		
	► 10 	l v				· — —			
		<u> </u>		6				- 	
		, H	24"		Same				
		(L)							
		H	247	7	Same				
		4							
	- 12	Н	241	8	Same				
		4							
	-	G H	201	9	Same				
		ho		10 B	Fill-Gr				19.0
	20	H	16"	10 8	Black 1		102-0	, way	
	-00		10		U / CE	2011			700
								la Danof Ba	— —— <i>—</i> ——
				Ĺ	<u>#11 50</u>	amplach	releas (WITH PID Metoc	ر ــــــــــــــــــــــــــــــــــــ
	25							11 Discarday	
		_				,	7		

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

Well Installation Report	•		Sheet 2 of 3
PROJECT HHMT-POIT Don, Surcherse To	T		CONTRACT NO. 426-99-006
LOCATION ASLAND CUTIN FIELD AS POR DICKING			Cross Drilling
WELL NO. WELL TYPE PG-ST-15 'A" MONTOR	INSPECTOR	DRILLER D Cooke	DATE 10/24/02

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

1 1 1 2 1 2 2	DATE				,		1	·
		10780.	WATER LEVEL BEFORE	00	WATER LEVEL AFTER	laic	TAKEN 20	MINUTES AFTER

L1 = 30 L2 = 3,0 ' L3 = 15,5'

Holo Bock fulled 18.5- 20,0' With Boutoutio

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

		,			Sheet 3 of
PROJECT:	HH MT- Po,	TIVORY SU	rcherge Tast		
BORING N	o. PG SI	- 15			PID Model: Mich RDE
FIELD REA	DINGS BY:	OHou	000000000000000000000000000000000000000		PID Model: MILI REE
ТІМЕ	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	G REMARKS
AX	1.		0.0		
1	2 A		O.c		
1	23	·	0.0		
PN	3		00	•	
1	4		U.O.		
	5		0.0		
	6		0.0		
	7		0.0		
	8		00		
	9		0.0		
	WA		0.0	,	
	log		0.3		PacT
				Ì	
			·		
					· · · · · · · · · · · · · · · · · · ·
	·				
•		1	1	- 1	•

PA 547

THE PORT AUTHORITY OF RMS RU

Engineering Department Construction Division Materials Engineering Section

											SHEET OF
PROJECT						N	AME OF CONT			BORING NO.	SURFACE ELEV.
TMKK	- POIT IL	ioni	Surcher	e Tost	-	1	Craig D	rillies		PG-5T-10	
LOCATION		,					•	7		CONTRACT NO.	DATE
1 As Laid	Oct in f	ald 4	SAL Drag	ener	NorTI	h 5,	26			426-79-CCG	10/24/02
SPOON	3.		CASING SI	ZE HOLI	ETYPE				GR	OUND WATER LEVEL	
9 ~	0.0. 13/8	*1.D.	He	B.	MUNIJON	l	Dale	Time	Depth		Remarks
HAMMER			HAMMER				,	34.			
140 ,	FALL 30			# FALL	•		(0/24	1035	5,0	while Head B	Solid
DRILLER											
	<u> </u>	oke.									
INSPECTOR	DH	ouc						Í			
CASING BLOWS/FT.	DEPTH		POON OWS/6"	RE-	SAMP.					SCRIPTION AND REMA	
	0				1.01	 					
Hand		Man	1 Burn	Full	1						
Auger		}	1 "	1 1	_ '		F/11- 8	CA R	cycle	1 Curvato Deg	
1-1-9			1						- /		
	<u> </u>		 	 	2	-				 .	
		<u> </u>				4	Same				4,0
	,		7								
	5		 		3	-					
	_ 6 _		<u> </u>	J		_	_F <u>,IIC</u>	roshed, ST	200 S1	17, Sand ETC.	
TAIW								,	,	,	
								- 	,	- / (0/ 57	- 10
Casing						<u> </u>)Jr,/a (220	Sep Lyfor PG-ST	-43
						•					
	> 20 ◀	 			<u> </u>						
		1-	- 0		4	<u>L</u>	- 				
1 1 1		1 -	- / l	&'	/		Black 1	2 tour	Part		
		11.0				 		_ ' <i>e.l.su</i>			
			1-1		5						
		2	-2	234			Sa	me_			
		11.	2 H-1								
 	> 3€ <	1	1		6						
		2	2	. 119			Sam	e			2651
		3	-3	7							
	_			101	7						
			-5	194			- Cray.	Sand Tr	- <u>Si 1F</u> _		
					Ì						
	- 30. -										
			-5		8						
		6	-7	10"	0		Same				
	- -										
	7				ſ			· 			
	► 35 ⁻ -4										

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = varie 3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PA 547

THE PORT AUTHORITY OF NY 5 MJ

Engineering Department Construction Division Materials Engineering Section

		·								SHEET 2 OF 4
PROJECT						ME OF CONT			BORING NO.	SURFACE ELEV.
MAK	T- POIT I	Every Sur	hango J	آوم	10	rais Dri	llex		PG-57-10	
LOCATION			,						CONTRACT NO.	DATE
Ds Laid	CUTIN FIC	ld as Nos D	raujas	NoiTh	Sid	6			426-99-00C	10/24/02
SPOON	.3/.	-1.D. HW	SIZE HOLE			,		GR	OUND WATER LEVEL	
2 -0		1.D. He	8	MULITON		Date	Time	Depth	R	emarks
HAMMER	Awo	HAMMER			} }	* * .		ĺ		
140 #	FALL 30	"	# FALL	-	-			<u> </u>		
ORILLER		O Coole								
INSPECTOR		D House								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	COV'D	SAMP.2 NO.					SCRIPTION AND REMARK TES CHANGE OF PROFIL	
Hw	32	4-4		9						
Casing		5-5	110	/		M-F B	Rewy Sa	. of the	Sitt	370
1,5/1.0 9	_		 		-		TOWN 2 41		7.7	OI.
			 		-	<u> </u>				
					l				Bottom of Bor.	ies -6
,										
	-40		 		-	70.1	$\overline{}$,-		
		·	 		<u> </u>		Sample	5_Ch2	sked with 010 Ms	Tov
					L	No	Sample	Sque.	sked with PID Me	/
							<i>y</i>		7	
				'			·			
			ļ	j						
	- 42 -			Ì						
	,,	•								
			 	t						
				ļ						
_				ļ						
			-	}						
	- SU -			}						
	-		}	ļ						
				Ī						
			 -	-						
	_			.]						
				ľ				~		
	-22-			F						
	_			. }						
						_			•	
				1	_					
	- Em	j	_							

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing. etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

weil installation report	Sheet Z of 9
PROJECT	CONTRACT NO.
HAMT- Port Ivory Surchange Tost	426-99-006
LOCATION	CONTRACTOR
As Landoutin field as por Promise	Crave Orllian

LOCATION

As Laid out in field as por Drowing

WELL TYPE

PG ST-10

B' Maritor

Contractor

Craig Of Illian

INSPECTOR

DRILLER

DATE

10/21/62

Well Development Report 6

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE	V128/01	15:1	15.1	10
	10/28/06	WATER LEVEL BEFORE 131	WATER LEVEL AFTER	TAKEN MINUTES AFTER

2 " dia. PVC pipe w/steel locking cap $L1 = \frac{3.0}{}$ L1 L2 = <u>27.0</u> Top of surface L3 = 10.0 1 & cement grout Top of bentonite seal L2 26.0' Top of well gravel filter openings L3 37.0' Bottom of well 37,0 Bottom of boring Cap-Boring diameter

iks:

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 4 of 4

PROJECT:	PROJECT: HUMT- POIT IVORY Surcharge T-ST										
BORING N	o. PG- 57	1. 20			DATE: 10/24/02						
FIELD REA	DINGS BY:	D How			PID Model: Ming RALE						
		พ-รทบ	HEAD-	BREATHI							
TIME	SAMPLE No.	Split Spoon Reading	Space Reading	Zone Reading	REMARKS						
AM	1.		0.0								
1	2		00								
	3		00								
	4		0.0								
1	5		00								
PM	6		0.0								
	<u> </u>		0.0								
	૪		0.0								
	9	·	0.0								
				·							
		·									
•											
		· · · · · · · · · · · · · · · · · · ·	.								
			<u>.</u>								

PA 547 **4-90**

THE PORTAUTHORITY OF MYS MJ

Engineering Department Construction Division Materials Engineering Section

•									SHEET	OF	3_
PROJECT					NAME OF CONT	A		BORING NO.	SURFACE	ELEV.	
TMKH	- POITI	wory Surcha	ited Tos	<u> </u>	Crois Orilly PG ST 25 CONTRACT NO.				-		
LOCATION		,	,			DATE	_/.				
Hs Laid	ow) in t	iold 91 por a	rawing	Was	T 5,80			426-99-006	1019	5/02	
SPOON	13/		1		l	CHOOM WALLET LE					
2 -0	D.D. 178	"I.D. HUGES	<i>\</i>	MONTOR	Date	Time	Depth	Re	marks		
HAMMER #	AUTO	I			(0/25/02	8 75	3,0	while Hond	' h	•	~ é
DRILLER	FALL 30		# FALL .		VI 23102	<u> </u>	7,0	Wills olded	MISOFIA	<i>//</i>	
	0	Coole						•			
INSPECTOR		Howe									
				SAMP.		3SAI	MPLE DESC	CRIPTION AND REMARK	S		
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.				S CHANGE OF PROFILE		····	00
Hand	0 -	Hand Auga	Full	$\frac{1}{B}$	F.11- (12	days Grav	el Court	led STone, Coccrate,	ETC		1.0
Auger	_		\perp \downarrow	B				OSTONE STUTY			
1					T						
		 	1 1-	2							
	·	 	 		Same						
	- 5 -			-	<u> </u>						
	- ') '	1	1	3	Sama			,		•	
orollow		W		,		. 					
	 ,	T U XI	241	1 4	Same	· —— —	·		- 		. —
STOM		1.	0 7	· · ·	- same						
Augus		4	ļ	5							
	► 10 ◄	H	74"	ر	Same						
	- 10 -	2-2									
		1-1	721	6		T :					
			02		ame	_Dr.ko	oud				
		1-0	<u>-</u>	フ		<u>-</u> _					
		1-/	23"		Same						
	-10:-	4-2		8			,				
	-15	1-2	5	8	5	Ir of	1		· 		
		W					W000				
				9							_
___		H	127		Same					/	180
		2-1]	, 7							
	- 20 -	1-2	75	10	Blackd	Brown	Post			70	Ca
						146		Battomet Bo	rius	1	
								· —— —— —— —— ——			
	_			1	RIIC		1 6 1.	. The PIP NO			
				}	<u> </u>	rights C	VERAL (NOTO PID MOTOS	·		\rightarrow
				ļ	<u>14 5</u>	Seleger Sa	was HI	11 Uis cardod			
	25				·	0	•				

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

weii installation R	ероп			Sheet Zof 3
HAMI. POIT I	Lugy Surchary T	ost	·	CONTRACT NO. 426-95-006
LOCATION				GONTRACTOR
As Landow in fr	ald 95 per Proving U	VOST Sido		Crais Orlling
WELL NO.	WELL TYPE	INSPECTOR	DAILLEA	DATE
PC- ST 25	'A' MANTER	1 O House	P.Gh	10/25/02.

Boring diameter

Holo Back filled 18.0-700 WOG BONTONIN

P.11

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION

THE PORT AUTHORITY OF N.Y & N.J.

LN AN HA

PID READINGS

			• •	o ranging	•	Shee	t 3 or 3
PROJECT	HAMT. F	POIT IVORY	Surchaise	Tosx			/
BORING N	10. PG- ST	25			DATE: PID Model:	10/25/62	
FIELD REA	DINGS BY:	N Now	88:00000000000000000000000000000000000		PID Model:)	Min PAE	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHII Zone Reading	-	REMARKS	
AM	1.A	- 8	00				
)	18		00				
. 4	2		0.0				
	3		00	·			
-	4		0.0				
	5		00				
	6		0.0	·			
	7		00				
	8		0.0				
	9		0.0	•			
1	10		0.7		Post	1	
				•	·	•	
						•	
-	, i						
							· ·
	·						
•	1	1	1				

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

									SHEET OF 3
PROJECT					NAME OF CONT		E	BORING NO.	SURFACE ELEV.
HHMT	- Port	Ivory Sc	rcharge	TOST	Cray D	rilling		PG-5T-20	
LOCATION		7			U		i	CONTRACT NO.	DATE
Aslaco	low In f	casing s)row we	وصيا	5.da			426-95-0CG	10/25/02
SPOON	. 3.	CASING S					GROU	IND WATER LEVEL	
8 -0	0.0. 13/8	1.D. HU	B.W	oniTor	Date	Time	Depth		Remarks '
HAMMER	A.Jo	HAMMER		Ì		, pre	7	1 11 1	. ^
140 #	FALL 30		# FALL		025		3.0	while Hand	Husping
DRILLER	D	Cocka				_			J J
INSPECTOR	0)	love							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	COV.D	SAMP.2 NO.				RIPTION AND REMAR	
Hand	0	Hord Buy	Pull	L B	Fill-Cra	larg Growl,	Crushod	Stone, Send, ETC	
Huser		1	1	B	Fill Whi	Co' of Grave	Louista	- Shire	
17087		 	1 /			2000	معدر عصب		
		 	 	1 3 1					
				2	Same	,			
						-			
+	> 5		 	3		·			
	- 4 -	<u> </u>	1		Some_				
100	۴.		}	}					
Car						<u> </u>	<u> </u>	- / C 000	
CASING				}		SLE-JA C	2-20-	toplay for PG5	
								· ·	
_	l		[•			
	> 20 ◀	14 - 14							
		wod		4					
		1-1	14"	_ ' .	Block &	Brown Po	a T		
		1-2		'n	Same				23.0
			18°	5 🏲					Ø 3.C.
		2-2	17	5	MF B	lack Sac	d, Trs	v 🚛 💶 💶	
	~]		ĺ	1			•		25.0
	-52	2-2							
				6				. — — —	
		3 -5	7'1		F-Gran	Soud, I	4511T		
				Γ	. — 	 			
				-					
				<u> </u>					
	30		}		B-11 Sa	males ch	ockod wi	th PIO MOTIN	
	- 20					م الم	<u> </u>	de la la la la la la la la la la la la la	
				}	140 20	amples Ja	wed) - H	1) Discarded	
		·				······································			3z.o
•	1	2-3	1	_					
		5-4	94	フト	En.		150	,	34.0
					1 Broc	uu Saro	17157		
	- 35							BOTTOM of BOI	رندن رخل

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Well Installation	Report				Sheet 2 of 3
PROJECT					CONTRACT NO.
XXMT-Pors I	you Surcharge To	スア·	·		426-99-006
LOCATION					CONTRACTOR
Aslandows in	field as per Orac	eine le	105T Sido		Craix Orilla:
WELL NO.	WELL TYPE		INSPECTOR	DRILLER	DATE
PG-ST-20	B"MONITON		V House	1 D Cocks	10/28/02

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE				·
	10/28/01	WATER LEVEL BEFORE 14.0	WATER LEVEL AFTER 14.0	TAKEN /C MINUTES AFTER
		<u> </u>		<u> </u>

L1 = 3.0 L2 = 34.0, L3 = 10.0

PH NY NJ

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

PROJECT: HH MT- Parl Ivary Surcharge Tor
BORING No. PG 55 20

DATE: 10/25/02

PID Model: Mini PA #

BORING No	· PG 5	7 20			DATE: 10175102			
HELD READ	INGS BY:	Охочь			PID Model: MINI PAE			
		IN-SITU	HEAD-	BREATHIN	G C			
TIME	SAMPLE No.	Split Spoon Reading		Zone Reading	REMARKS			
PM	1.4		0.0		- é·			
	18		0.0	,				
	2_		0.0					
٠.	3		0.0					
	4		0,2		PORT			
	5A		0.3					
	SB		OC					
į	6		00					
	7		0.0					
•	e d							
			·					
	·							
				1				

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

		•		•						SHEET / OF 3
PROJECT					N/	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
HAMI	- POIT I	Lery Su	rchaice J	DST		Craix D	rillian		PG-57 - 35	_]
LOCATION		•	•			•	-		CONTRACT NO.	DATE
As Laid	LOUTING	CASING	Drawis	<u>, So</u> ,	17ر	Sicke			426-99-006	10/22/02
SPOON	. 3,							GRO	OUND WATER LEVEL	
7 .	D.D. 11/8	T.D. HOW	ere Br	MariTor	}	Date	Time	Depth		Remarks
HAMMER	かける	HAMM	R		ļ		- 15	1 -	1, ,,	
140 "	FALL 30		# FALL			10/20/02	872	5/2	While House	Augorius
DRILLER	Ø	Cooke								<i>o</i> •
INSPECTOR		House								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- COV'D	SAMP.					SCRIPTION AND REMAR TES CHANGE OF PROFI	
Hand	0	Hand Aug	, F41							
Arger		8				F11-Cr	skal sto	45.15	Crowl Cubblez	ETC 20
[]		1								
	- -			12						
					}—	1-11- 6	rey tu	16.13 1	LimesTone Sturr	/
1	5			3	<u> </u>					
Hollow		wa	1		-	Same				
STem		O H	24	14	\vdash					
Bucarc		4	- 01	<u> </u>		Same				
Dog Ar	,	Oy	741	5	一	Same				
	> le ◀	h.		,						
		. 4	1 727	6	-	Same	· — —	- 		
		404		7						
		1-1	201	7		Sama				
	15	4		8						
	_ , _	<u> </u>	12+	8		Sama				
		4		G B		Same				
		Y	18"	7 1		B/4c/- 1	Post			180
										. 9
]								Bottemet	1 Barin
	> 2c ◀									
						P1	Samo	by ches	taluith BID M	eta
						_ No	Sample	. 59h	Ly Dh Discord	61
									/	
	- 5<									:

NOTES: 1 — Length recovered: 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger: OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Vell Installation Report			Sheet Z of 3
PROJECT HHMT-POIT LVOYY			CONTRACT NO. 4726-99 006
LOCATION	_		CONTRACTOR
As Laid out in field as por Drowing	South Side		Crois Delliar
WELL TYPE	INSPECTOR	DRILLER	DATE
PG-ST 35 "A" MONITOS	Dolone	1 O Cocto	10/22/02

Well Development Report

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE] i		1, -1	
- 3	10/23/02	WATER LEVEL BEFORE 40	WATER LEVEL AFTER 9.7	TAKEN / 5 MINUTES AFTER

L1 = 30 L2 = 3.0' L3 = 14.5

Hule Backfiller 17.5-18,0' with Bentonito

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

			P	ID READINGS	i	Sheet	3 or 3
PROJECT:	HIMI- 6	OIT TUOIY	Surchers	x Tost			
BORING N	o. PG-51	- 35			DATE:	Nul Rpc	
FIELD REA	DINGS BY:	Odows	853 300 a concessor (100		PID Model:	MILL ROE	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHIN Zone Reading	G	REMARKS	
AN			60				
1	2,		00				
	3		0.0				
	Ý		.00				
7	5		0.0		·		·
	6		G.o				
	7		0.0				
	8		0.0				
	91		Ob				
V	98		0.2		Post		
·							
	•				·		
•						•	
	ğ				·		
·			· .				
	·						
1	j	1	1 1	1			4

PA 547 6-90

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

		•								SHEET 1 OF 2
PROJECT						ME OF CONT			BORING NO.	SURFACE ELEV.
HHM	T-POIT	Ivon/				Craix VI	1/1/44		PG-5T-30	
LOCATION		•	^			U			CONTRACT NO.	DATE
Boland	louting	field as por casing s	Vrou 12	<u>, Swi</u>	14	5,20			426-99-00G	IU/ 22/02
			IZE HOLE	ETYPE					OUND WATER LEVEL	
	0.0.1/8		B	Mauja		Date	Time	Depth	- A	lemarks
HAMMER 140 #	FALL 30		# FALL			10/2/02	1100	215	while Hard	Austrice
DRILLER	\mathcal{D}	Coole	•							
INSPECTOR	^	House								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP.2 NO.					SCRIPTION AND REMAR	
Hand		Hard Diger	Fil							
Augar				[Fill- Cr	ushels.	See Sil	T, Growl, Sand Lea	1, ETC 2.0
10			1. 1. :							·
				5	1	F.11 - Co	+1.1.7	\ / \ /	os Jone Slury	
	<u> </u>		 		<u> </u>	<u> </u>	7010411	<u> </u>	Diene Tioned -	
- 	► 5 ◄	 	 	3				·	_ 	
	6 -)		<u>Sa</u>				
						For s	TroTa 6-	1/8' 3	Seeles for Pb-	51-35
Cosus.										
1	-18-	Wall				·				
		J.	15	4		Blacks	+ Brown	Post		
	≻ 2ల ≺	4011				<u> </u>				<u> </u>
		Н	13	5		San	ve			
	,	1-/								
		23	23	6		<u> </u>	The		Soudin tipos?	200
-								1)/90	E JOIN IN 1 DOS	poor 24.0
	- 35-			フト						_
_	_	2-2	711			F Bra	en Gray	Sand I	× 5,11	
			1	ļ		114	Samuelas	charle	Columb PID M	o To-
						ħ/-		1 - L	Ly HA Discarde	
				. }		1110	Sample	_200a	the hiscords	·/
	30								. 	
		3-5	*	200						_
	j	8-8	7"	8		12 Crey	Said	Tu 5.1	T	
						— <u>"</u>	20 may	15		
-		7 - 2								
		2-3		9						
Ψ	- 35-	6-1	12"			Sam	£			35,0

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

2 — U = undisturbed; A = auger; OER = open end rod; V = vane

3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

Vell Installation	Report			Sheet 2 of 3
HAMT- Por	TLUONI Surchar	o Tost		CONTRACT NO. 426- 99-666
LOCATION	7			CONTRACTOR
As Laid OUTIN	Fieldes per Prouse	· South Side		Craig Orlling
WELL NO.	WELL TYPE	INSPECTOR	DAILLER	DATE
PG-ST-30	B' Musta	0 House	O Cook	10/23/02

Well Development Report

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE 10/23/02 WATER SEVEN 13/5 WATER SEVEN 13.5 TAKEN 15 MANUTER SETTER					,
14/73/62 human rest proper 13/3	DATE				
1 1/1/2/10 husten correspondent 1/12 husten michaeten (/// itaren 1/2) hinden arten		14/22/42	13.1	1 1 7	\ \C_{\circ}
WATER LEVEL BEFORE WINDLES AFTER	į.	10 27100	WATER LEVEL BEFORE	WATER LEVEL AFTER	TAKEN 13 MINUTES AFTER

Boring diameter

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

PROJECT: HIMMT- POIT TVONY Surcharge Tost

BORING No. PG-SJ-30

DATE: 10/22/02

BORING No.	PG-57	r. 30			DATE: 10/22/02
HELD READINGS BY:		DHour			PID Model: MINI RAE
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	G REMARKS
PM	·/:.		0.0		
	2_		0.0		
	3	·	0.0		
	4		0.0		
	5		0.0		
PM	6		Co		
)	7 1		G.C		· · · · · · · · · · · · · · · · · · ·
	8		0.0		
	9		CO		•
·					
	<u>,</u>				
	·				

PA 547 6-90

THE PORTAUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

									SHEET OF 3
PROJECT					NAME OF CONT			BORING NO.	SURFACE ELEV.
1-TMKK	POTT IVOI	y Surcher	u TOT		Crair	Urilling		P6-51-45	<u> </u>
LOCATION			•					CONTRACT NO.	DATE
AsLand	outin f	CASING SI	louis	<u>, Eq</u>	sJ Sido	<u></u>		476-99-006	10/18/02
					ļ		GRO	UND WATER LEVEL	
7 .0	D.D. 1/8	1.D. Auch	· 'A' /	KupiTer	Date	Time	Depth	F	lemarks
I .	FIVAG	i		_	10/18	1135	3.0	1 1/2 / 1 / 1	
DRILLER	FALL 30		# FALL		(0118)			while Hood Au	31,416
DRILLER	D.	Coolea							
INSPECTOR		Marie							
CASING		SPOON	RE- 1	SAMP.2		*SA!	MPLE DESC	CRIPTION AND REMAR	KS
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.		LI	E LOCATE	S CHANGE OF PROFIL	E 60
Hord	. 0	Mard Auga	RII	1 \$	Fill - PCE	+ Recy	clad co	Nereto Ago	1.0
Disor		/ .	1	$\frac{1}{B}$	Fill- Crus	had street	5.11.5	and Curciale, ETC	
1		1 1		B			/ =1/9.5	and the state of t	
				2 2	5 am			<u> </u>	3.c
		<u> </u>		<u> </u>	Fill Whi	To & Gray	Linesto	no Sturny	
						′		,	
	-5-			3					
	,	Ψ	at.		Same	:			
May		1-/		L.					
STON		WOH	214	9	Same			•	
Augo		1,							
170817		110	کاری،	5		·			
	- 10 -	01	84		Samo				
1_1		WOH		, [·
7		1-1	110	6	Same				
	-	W	-						
				フト					
		H	94		Same				
		h [-						•
	-15-	H	17"	8		· ,			
 									
		40		9					
		H	157		Samo				
		woy		10					19.0
		1-1	201	10	n ,	<i>A</i>		<u> </u>	
 	- 20 -		80	B	Black	Pool			200
								Bottomos	Boring 7
				1					-
	-7			Γ	יונמ	Samolos	chal	/ WITH PIN h	1 oTes
				 		Carlos	Sell Her Kil		<i>ver</i>
				·		remples	Sallary	Auth PID A	′ — — —
	2 NOTES					<u> </u>			
	ر ح								

^{1 —} Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Well Installat	tion Report			Sheet 2 of 3
ROJECT		· · · · · · · · · · · · · · · · · · ·		CONTRACT NO.
HAMI-PO	TIVOLY Surchange Tost	•		426-95-00C
LOCATION				CONTRACTOR
As LandouTi	n fidd as por Drowing E	95T S.do		Crais Drillian
WELL NO.	WELLTYPE	INSPECTOR	DRILLER	DATE
PG-5T-4	5 B' MONITOR	Dlove	Voorte	10/18/cz

Well Development Report

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

			
DATE	l.		ł
المداما	77	1 7 7	1.0
10/18/02	WATER LEVEL BEFORE	WATER LEVEL AFTER	TAKEN MINUTES AFTER
(

?" " dia. PVC pipe w/steel locking cap -L1 = 2,6 L1 Top of surface L3 = 160' & cement grout Z. O 'Top of bentonite seal L2 2.5' Top of well gravel filter L3 - Bottom of well 20.0' Bottom of boring

Mole Beck filled 19,4-20,0 WITH BUNTONITE

Boring diameter

Cap-

ENGINEERING DEPARTMENT

				PID READINGS		Sheet	3 01 7
PROJECT	: HYMT-	Port Ivor	y Surch	1945 Tost			/_
BORING I	vo. PG-5	5T-45	/		DATE:	Min RADE	
RELD REA	ADINGS BY:	OHouse			PID Model:	MILL RADE	
		IN-SITU	HEAD-	BREATHI			
ПМЕ	SAMPLE No.	Split Spoor		Zone	1	REMARKS	
AM	1 B		0.0		± \$r		
	118		0.0				
	2A		00				
	28		00				
•	3		0.0				,
	4		0.0			•	
	5		0.0				
N.W.	6		0.0	·			
	7		0.0				:
	8		0.0				
	9		0.0	,	·		
	los		00	·	·		•
	108		0.0				
·							
·							
	į				,		·
							į.

PA: 547 6-90

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

									SHEET / OF 2
PROJECT				_	NAME OF CONTI	•		BORING NO.	SURFACE ELEV.
HHMI	- PorTIL	iory Sure	A +150	1-055	Craix	Vrilling		PG-ST-40	
LOCATION		1	•				19	CONTRACT NO.	DATE
As Lein	100Tindi	old GS POR OF	acei'm	Eas	5,de			426-99-006	20/16/01
		1 1 4						IND WATER LEVEL	
		·1.0. Hu	8 %	lavior	Date	Time	Depth	R	emarks
HAMMER	Auto	HAMMER		į	sulmites.	9~	2 -	1111	
	FALL 30		FALL		10/21/02	7	3.0	while Hand Any	e till
DRILLER	0	<i>~</i> ,	- k*		1		ļ		
	<i>V</i>	Cocke					 		
INSPECTOR	0	House		Í	j				
·	,	,						<u> </u>	
CASING BLOWS/FT.	NEBTU:	SPOON BLOWS/6"	RE- '	SAMP.				RIPTION AND REMARI S CHANGE OF PROFIL	
	DEBTH-								
Hard		Hand Augu	Fill	1 1	F.11- RC	A Ro	Lelay-	cucrete Des	1.0
)	1	B	Fill Cros	6.192	· ·		
Auger		 	_				~ ~ ~		
				5 v		tme			3.0
i	•		1	B	Fill wh	Ted Gu.	, line of	Para strain	
						· · · · · · · · · · · · · · · · · · ·	4 - 11 - 12 - 12 - 12 - 12 - 12 - 12 - 1		
	> 5 <			3					
<i> </i>	. (. []	7	Same				
- 4	<u> </u>		_\$					_ 	
Casing			1		,				•
1						1-5	1/ / /		
						c James	10 kg 6-1	to See les fer	<u> </u>
	20.				<u> </u>	G ST !	15 for	Tratz 6-20'	
	-,00	40.71							
				9				·	
		1-2	₽3"		Broand	Black	Post		
		1-2	T	<u> </u>					
			724	5				. 	
		2-3	35. □		Same Ti	FOKO	nex Soud	10 Tipot spoor	24.0
· _ [MOH		,			, -	,	
	<u>-</u> S25 →		1611	6			· —— ——	. 	
		hed-2	194		FDKGL	~ Sond	INSI		
1					Au S	amala c	hacked i	TI PID N.T.	
				· [المرابع		DI Oscorbel	
				ļ		apples.	sawol,	HII Viscorded	
				ļ		•	•		
				Ī					
	- 30 ◀								30,0
		2-3		っし					
		4-3	12"	/ [F Brown	5. /	Tu C :-		
					vrown	-1908/-	1211	<u></u>	
_ :	_ 22								
	- 33 -	3 ~ 3	_]	_					
			1211	8 1			, 		
W	- 35-	S - 8	13"		12 Brown C	+ Uray S	and, Tr	2,11	35.0
			wood or		of Comple T	P			A

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Vell Installation Report			•	Sheet 2 of 7
HAMT · POIT INDIN	Surchasse To	<i>τ</i>		CONTRACT NO. 426-99-066
LOCATION	as Per Drawing	E+37 SIL		Charge Orillians
WELL NO. WELL TY		INSPECTOR D. House	DAILLER D'Coche	DATE (c/2, los.

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

(5.7F			T	
DATE	10/21/02	WATER LEVEL BEFORE 13.T	WATER LEVEL AFTER	TAKEN / S MINUTES AFTER
L	10101101			111111111111111111111111111111111111111

L1 = 3, 3' L2 = 247 L3 = 10.01

9735657649

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet	2	of	3
	,	• •	_

PROJE	CT:	-IMKK	Port Ivan	Surching	. Tost		
BORING	G No	. PG- ST	Port Ivory - 40			DATE: 10/2/12	
RELD F	READ	INGS BY:	Pola			PID Model: Mn, PAE	
MIT	E	SAMPLE No.	IN-SITU Split Spoor Reading	HEAD- Space Reading	BREATHIN Zone Reading	REMARKS	
Вin		1.4		0.0			
. (18		0.0			
		2A		0.0			
. 1		28		0.0			
•		3		0.0			
	7	4		0.2		Pat	
	\top	5		0.3		Pat	
	\top	6		0.0			
		7		0.0			
1	T	8		0.0			
	\top						
	1						
	1						
							\cdot
		Ĩ					
		·					

MATERIALS ENGINEERING DIVISION

WELL MONITORING DATA SHEET

PRO IECT.	PROJECT: HH - PORT IVORY P&G SITE JOBNO: 501-233-295											
WELL DES	IGNATION	- ALL D	5-2-	11/6		1-24-00	55-275					
	30x FOR			(41)=			4 Inch					
I IT AGE	SON FOR	Derente	CULV	760		KK-UP DISTA	Ile o					
STATICWATE	RLEVEL C	DITIONS:	2003	48	1011	CAULVOIA	NLE U.U					
<u>= 11,111,111,111,111</u>		trs co	OKD.	LOI	VG:		红:					
•		• [DISTANC	FROM TO	OP OF PIPE	TO:						
		TIME	WATER		PRODUCT							
PRE-PURG	E:	11.24A	6.00									
POST PUR		12:1apm	6.70		-							
	DEPTH OF WELL 6.02 FEET											
	DEPTH TO	WATER			7.20		FEET					
	DEPTH OF	WATER C	OLUMN		1./8		FEET					
i	FACTO	R # .		X	2.471	٠						
WELL PURGE VOLUME TO BEREMOVED 2.92												
	VOLUE											
TIME	рH	TEMP	CONDUC		SALINITY	TURBIDIT						
	(SU)	(C)	(umohs		(0/00)		(mg/l)					
11:30An	8.56	14.10	1883	<u> </u>	1.0	<u> </u>						
11.40Am	8.57	16.60	1844		0.9	270						
11:47AM	8.54	16.7°	1840	2	0.9	250						
						150 🛪	·					
 												
				• • • • • • • • • • • • • • • • • • • •								
ļ			<u> </u>	·	 							
·					 							
<u> </u>	 -						7					
ļ					 							
 					 							
 	 				 							
ļ					 							
ļ	 				 							
	 				 		 					
					 							
	 	 			 							
 	 	 			 							
ļ	 	 	 	······································	 							
L		<u> </u>	1		<u> </u>							
SAMPLED	BY:	···	R6. /	EM.								
MENT	<u>'S:</u>	no.	1 52	mpkel	@ 12:	03 PM						
_		×	Metals	Ficto	ered							
.*												

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

WELL DES	GNATION	TW -	1		DATE:	11/29/06	<u> </u>					
CHECKE	BOXFOR	LOWFLOW	12 RATE	(HL):	CASING D	IAMETER: 2'	' Inch					
WEATH	ER CON	OHIONS:			151	CK-UP DISTANCE	•					
WEATHI STATIC WATE	RLEVEL	PS CC	ORD'S	LOI	V(7:	LAT.						
•		.	DISTANC	E EDON T	OP OF PIPE							
		TIME	WATER		PRODUCT							
PRE-PURG	E:	11:35	6.10	1. 22.17	, noboo.	(, 22./	•					
POST PUR					 							
DEPTH OF WELL 13.90 FEET DEPTH TO WATER C.10 FEET												
		WATER C	· OLUMB		10		FEET					
					80		FEET					
WELL PURGE	WELL PLINGE / X. D.G.B.											
***************************************	KOLUM	ie to bef	REMOVED		t.8 ·							
TIME	рΗ	TEMP	CONDUC		SALINITY	TURBIDITY	DISS. O2					
	(SU)	(C)		tem) m 5	(0/00)		(mg/l)					
11:45	7.62	13.9	1.4		0.7	Error (to h.	xh)24					
11:55	7.05	14.5	18		0.9							
11:05	7.12	10,3			1-0,9	F2	-					
					1							
					1							
	<u> </u>	}			<u> </u>							
		 	 		 		,					
	 	 	<u> </u>		 							
.}	 	ļ			 	····································						
	 	 			1							
	ļ	1			 							
	<u> </u>	<u> </u>			ļ							
ļ	 	 	ļ	····	<u> </u>							
	 	 	 		 							
L	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	 :	1							
SAMPLED	BY:											
T LALD	_ 											
MENT	rs:	13 San	of for 1	Metak S	Hered	in the field	_					
			1		<u> </u>							
							•					

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

WELL DES	IGNATION:	DO	-1	>1/E	DATE:	11/24	. 33-29 1100	5		
	SOX FOR			(ML):	CASING DI	AMETER:	4	Inch		
WEATH	ER CONI	DHIONS			1.511	K-UP DUST	dive:	11.51		
WEATHI STATIC WATE	RLEVEL	-PSCC	ORD'	:10	1)(z:	NATA A	AT			
-	1.5	· · · · · · · · · · · · · · · · · · ·								
·		70.25			OP OF PIPE					
PRE-PURG	r.	TIME 14:50	WATER	(FEE I.) -64	PRODUCT	•				
POST PUR		16:20		75				•		
		(0)20						•		
	DEPTH OF	WELL			16.0	84		FEET		
	DEPTH TO				4-1			FEET		
	DEPTH OF		OLUMN			20	<u></u>	FEET		
	FACTO	R #	·	<u>X</u> _	2.4					
WELL PURGE VOLUMETOBEREMOVED 30.14										
TIME	рН	TEMP	CONDUC		SALINITY	TURBIC	OITY	DISS. O2		
	(SU)	(C)	(umohs	/cm)	(0/00)			(mg/l)		
	15:23 9.02 13.2				0.3	955				
15:30	10.60	15.0	7	10	0.3	310				
15.52	11.24	15.1	7	78 74	0-1	188	<u></u>			
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.69			37	1					
		· · · · · ·								
						· 				
 		ļ	ļ							
 								-}		
	 				-}	·····	<u> </u>			
	· · · · ·				11		·			
}	 	 			1			1		
		 	 				· 			
		ļ		·						
ļ	<u> </u>	 	ļ		1					
L	<u> </u>	<u> </u>	<u> </u>	······································				<u> </u>		
SAMPLED	BY:	A	ered r	<u>P</u>				·		
MMENT	īs:	Fil4	ered m	etals						
·										

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

MATERIALS ENGINEERING DIVISION

WELL MONITORING DATA SHEET

WELL DES	IGNATION:	VA	MW-21)	DATE:		130/00				
	30x FOR				CASING D	IAMETER:	130/00	Inch			
WEATH	ER CON)Hions.		× · · · · · · · · · · · · · · · · · · ·		CK-UP DIST	dive:				
STATIC WATE	RLEVEL C	-P< C ~	SORD'S	: Lon	1/=:	יי דע אר אה!	ATI				
-	1.50						<u> </u>				
·					OP OF PIPE						
PRE-PURG	е.	TIME 11:29	WATER		PRODUCT	(FEET)	·	•			
POST PUR		12:58	13	26				•			
. <u>551101</u>	<u> </u>	12118	1.	<u> </u>	<u> </u>						
DEPTH OF WELL 45-85 FEET											
	DEPTH TO	WATER				26		FEET			
	DEPTH OF	WATER C	OLUMN			59		FEET			
. •	FACTO	R # .		X		6.18	·				
WELL PURGE VOLUME TO BEREMOVED 23-23											
TIME	pН	TEMP	CONDUC		SALINITY	TURBIC	OITY	DISS. O2			
	(SU)	(C)	(umohs		(0/00)			(mg/l)			
1:46	7.04	16.2		19810	11.8		6	 - 			
12:16	7.10	16.6		200	13.2		40	-			
12:29	7.08	16.8		300	13-5	3.	7 . 6				
122	1,00	- 1 to 0		700	(3.)		· e	1			
											
				·							
	 				 						
ļ	ļ				 		,£				
			<u> </u>		 		-				
	 	 	 		 						
	 	ļ	 								
***************************************							~	1			
	 	<u> </u>	<u> </u>		 						
ļ 	 	 	 	·							
L	<u> </u>	<u> </u>	<u> </u>	·	<u> </u>						
SAMPLED	BY:	A	2 \$	E.M.							
COMMENT	rs:	5/m	recove	2				•			
THE IN	<u> </u>	1100	1ELOVE	- }				· · · · · · · · · · · · · · · · · · ·			
											
							,				
	•					······································					

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

IDPO IECT	UU - P	OF T	017	(.==	LIOP NO:	0.1.0.0	0.0					
WELL DEC	HH - Pa IGNATION:	VALUE	y P&G	> 17 E	JOB NO: DATE:	501-233-2	75					
				//\•	CASING D	11127100						
CHICK	BOXFOR	LOWFLOW	JA IKALE	(HL):			Inch					
WEATH	ER CONI	THONS:	·		[37]	KK-UP DISTANCE:						
STATIC WATE	ERLEVEL	-PS CC	PORD'S	:LOI	V(7:	LAT.:						
•		- • i			OP OF PIPE							
ſ		TIME	WATER		PRODUCT							
PRE-PURG	iF:	10:30	7.68	11	T. NODOO!	1. 22.1/						
POST PUR		11:55 16.05			 	· · · · · · · · · · · · · · · · · · ·						
			10.0									
	DEPTH OF	WELL	· · · · · · · · · · · · · · · · · · ·	17.80			FEET					
	DEPTH TO			7.68	,		FEET					
	DEPTH OF		OLUMN	10.13	2		FEET					
FACTOR * 2 X O.618												
WELL PURGE VOLUMETOBEREMOVED C.25												
	WOLUM	etokei	<u>KIMOVED</u>	<u> </u>	٠ 45.							
TIME	рH	TEMP	CONDUC	TIVITY	SALINITY	TURBIDITY	DISS. O2					
	(SU)	(C)	(umohs	/em)MS	(0/00)		(mg/t)					
0:30	10.59	19.0	4.54		2.5	FR - 3						
11:20	16.95	19.7	4.6	5	2.5	ER -3						
11:35	11.36	19.7	4.78	3	2.6	ER -3 ER -3						
		•			1.							
				<u> </u>		···						
						. 5						
<u> </u>		1				·						
		<u> </u>		4.5								
			1									
<u> </u>	1	<u> </u>										
	1	 										
	1	1	1		1							
	1	 	 		1							
	1	 	 		 							
I				<u> </u>	<u> </u>							
SAMPLED	BY:	\mathcal{L}) (*	と ら /		unbil ity.						
		1	ر <u> </u>	1 ^		1						
MEN	<u>TS:</u>	Damola	for met	als is 31	Hered, 7	urbil iti.						
												
						······································						
		•										
_												

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASTNG

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

PROJECT:	HH - PA			SITE	JOB NO:		233-29	5]	
	BOX FOR			(HI):	DATE:	//-24-00 NAMETER:	2	. Inch	ł	
				30° €		KK-UP DIST			}	
STATIC WATE	ER CON	-P5 CC	ORD's	160	1)/5:	<u> </u>	1	•		
-					OP OF PIPE	· · · · · · · · · · · · · · · · · · ·	AT.:		ł.	
		TIME	WATER		PRODUCT					
PRE-PURG		1:18 pm	7.0			(1.22.1)	·	•		
POST PUR	GE:	1:59 PM	7.1	6						
	DEPTH OF	= VANCI I		 	/700				1	
	DEPTH TO			 	/ 32 0 7.03			FEET FEET	·	
		WATER C	OLUMN	l	B 6,18			FEET		
	FACTO	R # .		X	0.618	· ·			. 4	
WELL PURGE		LETOBEL	REMOVED		3.81				T	,
TIME	pH	TEMP	CONDUC		SALINITY	TURBIC	OITY	DISS. 02	Ī	•
	(SU)	(C)	(umohs		(0/00)			(mg/l)	}	
30PM		13.60	869		0.6	Er	3	_	}	
137P	6.87	14.70	1045		0.5	32	<u> </u>			
1:54Pm	6.76	14.8°	1048	<u></u>	0.5	45	- 100	inother	Volume(074)
1.200	 				 		AFIRE	1001961	VOIDME(
							·····		:	
					1					
. }	 		 		 		· 	 		
<u> </u>	 		 		 		ş	-	·	
	 							1		•
							·			
ļ	 		 		:			-g =		
<u></u>	 	<u> </u>	 		-\				ł	
	 	 		· · · · · · · · · · · · · · · · · · ·	 			 		
	 		 						Ī	
]	•
 		<u> </u>	 		_			-{		
L	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u>.L</u>	}	
SAMPLED	BY:		Rb.	E.M.		4				٠,
			ĺ		1 1		75	. /	- 	1 flant
COMMEN	<u>TS:</u>			evaluati	ci all	ming.		Volume	\	From 250
		Resov		374 Vo	fune Re	rovid (Flow @	~ 200ML	(min)	4
		<u> 6 000</u>	Recover		@ 198	10.			-	4) ts
		u	211 54	mp/cel	250 / 7 1	17/7			-	
Y CA.	οΩ - /	7/10			—			_	e (*	20014 20014
* FACTO		1.018	rok ,	LINCH	DIAMET	ER YEL	LCAS	ING		74.5
於 □ A . ←	~~									

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

			ES VALLE IV	IONITORI	NG DATA SE	ICEI		•		
PROJECT:	HH-Pa	RTIVOR	Y PIG	SITE	JOB NO:	501-2	33-29	5		
WELL DES	IGNATION:	<i>PA</i>	MW-1		DATE:	111	28100			
CHECK	30x FOR	LOWFLOW	13 IRATE	(HL):	CASING D		2"	Inch		
WEATH	<u>ER CONI</u>	DITIONS:	<u> </u>		137	CK-UP DIST				
STATIC WATE	RLEVEL C	795 CC	ORD'	: LO	N(T:	<u>_</u>	AT.:			
-					OP OF PIPE	TO:				
TIME WATER (FEET) PRODUCT (FEET)										
PRE-PURG		10:54		164			. •			
POST PUR	GE:	12:34	13	.32						
,	DEPTH OF	- \A8-11				0.5				
	DEPTH OF				15.	· 7 5 • 6 4		FEET		
		WATER C	OLUMN			129		FEET		
4	FACTO			X		18				
WELL PURGE		ETOBES	2 KM N/FO		. 6.					
		_								
TIME	pH (SU)	TEMP	CONDUC		SALINITY	TURBID	ıπΥ	DISS. O2		
(1:04	11.85	(C)	(umohs		(0/00)	ĒĆ.	2	(mg/l)		
11:28	12.25	16.5		70	1.2	E13	2	 		
11:45	12.35	16-4	97	00	1, 4	F13				
11:55	12.35	16.4	27	129	1-4	EI	}	- 1		
					-		· · · · · · · · · · · · · · · · · · ·	ļ <u>.</u>		
				· ·	-}			 		
						······································		 		
	 				11		- 9	 		
	İ							1		
							:			
								ļ		
	 		}		4			ļl		
	 					E(3=	Over F	large		
				· · · · · · · · · · · · · · · · · · ·				 		
	 	<u> </u>	<u> </u>							
		ļ	1	4						
	1	 		· · · · · · · · · · · · · · · · · · ·						
SAMPLED	BY:	A	2 1 E	M						
MENT	<u>ιs:</u>		Well goes dry between volume - Slow recovery							
			•			·				
		Fi/1	silh.	metas	<u></u>		 			
	4	Gren	511 kg .	valei						

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

PROJECT:	HH- Y	RTIVOR	y PAG 51	TE	JOB NO:	501-233-	295	I
WELL DESI	GNATION:	: PAMW -	1D		DATE:	11/89/00		···
CHECKE	OXFOR	LOWFLOW	is RATECH	μ):		IAMETÉR: 2"	Inch	1
				,	151	CK-UP DISTANCE:		ł
WEAT-HE STATIC WATE	RLEVEL	-8500	ORD's	100	1/	LAT.		
_	17						·	,
		*	DISTANCE F	ROM TO	POF PIPE	TO:		
		TIME	WATER (F	EET)	PRODUCT	(FEET)		
PRE-PURGI	E:	1245	12.62				•	
POST PURC		1355	12.61		·			•
					L	······································		
ī	DEPTH OF	WELL		56.7	ζ		FEET	1
	DEPTH TO			12.6			FEET	
		WATER C	OLLIMN :	44.1			FEET	ì
1						<u></u>	LEE1	i i
	FACTO	K #	2" .	\times 0.0				<u>"</u>
WELL PURGE	VOLUM	LETORER	REMOVED	27	1.3			ì
				10737	SAL MISSAL	THOD IDEN	15100 65	í
TIME	РΗ	TEMP	CONDUCTI		SALINITY	TURBIDITY	DISS. O2	
	(SU)	(C)	(um ohs/c n	n)M)	(0/00)		(mg/l)	
3:20	7.06	15.4	4.2		2.2	11.3		12
13:32	7.05	15.6	4.8		2.6	9.09		ŀ
13:45	7.07	15.6	4.9		2.6	5,6		
			·					
			· · · · · · · · · · · · · · · · · · ·					
			` ·					
	*							
						۶		
							.	
						:		
		<u> </u>						
		 						i
		 						
	 	 	 		 			ŀ
		 						l
		·}	}		 		·	ł
	 	 	 	·	 		 	ŧ
L	<u> </u>	1	1		<u> </u>	L		·
				• '				
SAMPLED	BY:						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
•								
COMMENT	<u>'S:</u>							
								•
_								-
								-
						·		-

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

& C A . Z . ~

THE MONITORING DATA STILL!										
PROJECT: H	H-Po	RT IVOR	Y PAG	SITE	JOB NO:	501-233	-295			
WELL DESIGN	ATION:	MW-	EW-6		DATE:	11/24/01				
CHECK BOX	(FOR	LOWFLOW	13 RATE	(HL):	CASING D	AMETER:	II Inch			
WEATHER	CONT	MIONS:			151	CK-UP DISTANC	<i>t</i> :			
STATIC WATER LE	VEL (-8500	2080'	:10	11/-:	LA				
-	1.52	_			•		l			
					OP OF PIPE					
		TIME	WATER		PRODUCT	(FEET)	4			
PRE-PURGE:		9:20	10.20							
POST PURGE:		10:55/		96						
r										
	PTH OF					1.96	FEET			
		WATER		ļ		-20	FEET			
		WATER C	OLUMN			1.76	FEET			
1F.	ACTO	<u>R * ·</u>		X		471	_			
WELL PURGE	LUM	ETOBER	REMOVED		24	1.12				
TIME 1, 2	ØH (SID	TEMP	CONDUC	TIVITY	SALINITY	TURBIDITY	DISS. O2			
	(SU)	(C)	(umohs	/cm)	(0/00)		(mg/l)			
1155 27		15.3	35	96	2-4	19				
	83	12.9	79		5.4	8.1	-5			
	2-80	17.4	72		4-8	6.9				
	2-78	17-3	75	30	4-9	7.0				
10:34 1	2-81	17-1	\$600		5-4	5-4				
10:45 1	2.82	17-0	771	00	5.4	5.5				
		i		·	1					
					<u> </u>					
							9			
I										
				·	_		<u> </u>			
			•							
		 								
 										
										
 				•						
	·	<u> </u>	<u> </u>	·						
SAMPLED BY	<u>:</u>	12	¢ BP	·						
MENTS:			·····							
										

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

MATERIALS ENGINEERING DIVISION

WELL MONITORING DATA SHEET

PROJECT:	GIGNATION:	KILVOR	Y PAG	> 17E	JOB NO:		33-29				
					DATE:		24/00				
CHECKI	BOXFOR	LOWFLOW	12 IRATE		IAMETER:		'' Inch				
LIEATU	ER CON	Trais.		159	KK-UP DIST	ANYF:					
STATIC WATE	ERLEVEL	-PS ()	080%	: 100	3/-:	-UXIXIVI	AT.:				
-	1.5.				• .	•	<u> </u>				
					OP OF PIPE	TO:					
		TIME	WATER		PRODUCT	(FEET)		_			
PRE-PURG		13:15		3-41	l			•			
POST PUR	GE:	14:30	7	193							
	DEPTH OF WELL				17.	90	FEET				
	DEPTH TO WATER				13.		FEET				
	DEPTH OF WATER COLUMN				4.	FEET					
	FACTOR #			X	0.6						
WELL PURGE	7) CAAcilm								
	WOLUM	etobes	CITIONED	<u> </u>	· Ł (<u>' ' </u>					
TIME	pН	TEMP CONDUC		TIVITY	SALINITY	TURBID	DITY	DISS. 02			
	(SU)	(C)	(umohs		(0/00)			(mg/l)			
13:31	8.27	14.9	14	61	0.7	3	30	-			
13:45	8.20	15.0		49	0.8		35	-			
13:58		15-2	170	2	0-8	9	7	_			
			· · · · · · · · · · · · · · · · · · ·								
							ş				
1	1										
							·				
	1										
	1							1			
	1	l			1						
	1	1						1			
	1	 					·	1			
	1				1		`	- 			
 	 				1			1			
	 	 	ļ -	·	1			1			
L		<u> </u>	<u> </u>			L		.1			
SAMPLED	RY.	Δ7	dnp								
SAMPLED	UI.	AZ	4 V I					······			
MARCAC	re.			0 11.		<i>I.</i>	16	./			
MMEN	10.	very a	vent d	2 year	one vo	10 me -	very	PGV_			
_		reneva	<u>~</u>				.				
				,							

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

MATERIALS ENGINEERING DIVISION
WELL MONITORING DATA SHEET

PROJECT: HH - PORT IVORY P&G SITE JOB NO: SO1-233-2 WELL DESIGNATION: MU CS 7 DATE: (1-24-00								95		
			DATE: // 24-00 CASING DIAMETER: 2 In							
CHECK		/. 3								
WEATHER CONDITIONS: SUMY 28" STYL-UPDISTANCE:										
STATIC WATER LEVEL GPS COORD'S : LONG: LAT:										
DISTANCE FROM TOP OF PIPE TO:										
		TIME	WATER (FEET)		PRODUCT	(FEET)				
PRE-PURG	9.18AM	10.9					•			
POST PUR	GE:	10:571M	13.43		<u> </u>					
	promi of	- 146544								
	DEPTH OF				14.3			FEET		
		WATER	COLUMN		10.9	<u>6</u>	FEET			
j			CECINICI	× 0.618						
WELL PURGE	FACTO		2644							
	WOLUP	letobel	LLMOVED	<u></u>	2.0	8				
TIME	рН	TEMP	CONDUC		SALINITY	TURBIDITY		DISS. O2		
	(SU)	(C)	(umohs		(0/00)			(mg/l)		
-daam	9,45	/3.80	15%		<i>D. 8</i>	30				
9:33Am	9.41	13.60	148		0.8 0.7	25 23				
8.38 MM			141	Volume.	<u> </u>	<u> </u>				
TOPE WEI	evacues	a. au	7 5 -	vorone,						
										
			!							
			·				ş			
 	 									
	 	ļ					<u>:</u>	_		
	 	 			 					
 	 		 		-					
<u> </u>	 	 			 					
	 		}		·					
	 				1					
	· · · · · · · · · · · · · · · · · · ·			•	<u> </u>					
SAMPLED BY: R.G. R.M. SAMPLED BY: Well Squarted at 9:55AM										
MMENT	<u>s:</u>	We	11 54	mapled	at	9:55AM	1			

4.0 SRI REPORT

The Port Authority of New York and New Jersey

Supplemental Remedial Investigation Report Site 1(VCP Site 00615-2) HHMT - Port Ivory Facility April 2006

40 Western Avenue, Staten Island, New York

1.0 2.0	EXECUTIVE SUMMARYINTRODUCTION	0
2.1	Previous Environmental Investigations at Site 1	
	.1.1 Potential Underground Storage Tanks (USTs)	10
	.1.3 Previously Identified Soil and Groundwater Contamination	
	.1.4 Railroad Tracks and Siding.	
	.1.5 Groundwater	
	.1.6 Pits and Drains	
2.2		
	BACKGROUND	
3.0 3.1	HHMT-Port Ivory Facility – Location and Description	
3.2	Site 1 Location and History	24
3.3	Regional and Local Hydrogeologic Setting.	27
3	.3.1 Regional Hydrogeologic Setting	
	.3.2 Local Hydrogeologic Setting	
4.0	SRI SCOPE OF WORK	
5.0 5.1	SRI – FIELD INVESTIGATION. Drilling Methods – Soil Borings.	
5.2	Soil Sampling Methods.	
5.3	Installation of Temporary Wells	
5.4	Groundwater Sampling Methods	
6.0	SRI – RESULTS AND FIELD OBSERVATIONS	38
6.1	Results of the Fieldwork Portion of the SRI	
6	.1.1 SRI Field Observations	38
6	.1.2 SRI Analytical Results and Appropriate NYSDEC Standards and Guidance Values	41
6.2	Data Evaluation Portion of the SRI	60
6	2.1 Previous Groundwater, Surface Water, and Sediment Analytical Results	
	2.2 Previous Soil and Groundwater Analytical Results – Former Hydrogen Holders	
7.0	DISCUSSION OF DATA. Discussion of Data – AOC-UST2.	
7.1		
	.1.1 Data Related to Objective 1	
	1.2 Data Related to Objective 2	
	1.4 Data Related to Objective 4	
	1.5 Data Related to Objective 5	88
	1.6 Data Related to Objective 6	
7.2	Discussion of Data – Open Areas/Issues	
	2.1 Data Related to the Effect of Groundwater Impacts on Bridge Creek	
7. 8 .0	2.2 Data Related to Former Hydrogen Holders	
U.U	COLICEODIO IO ALID INCOMMENDATION D	

TO:	im		06
r	lgt	ĮΓ	C3
	_		_

Figure 1 – Site Location Map	7
Figure 2 – Current Site 1 Layout and AOCs Map	9
Figure 3 – Summary of Post-Excavation/Confirmatory Soil Sampling Analytical Data – Wood Chip	
Removal, Wood Yard	17
Figure 4 – Soil and Groundwater Sampling Locations and Analytical Results Map – AOC-UST-2	34
Figure 5 – Soil Conditions, Cross Section.	4(
Figure 6 – Soil and Groundwater Sampling Locations and Analytical Results Map – Hydrogen Holder	:S
AOC	64
<u>Tables</u>	
Table 1 – Confirmatory Soil Sampling Analytical Results – Wood Chip Excavation	18
Table 2A – Soil Sampling Analytical Program	36
Table 2B – Groundwater Sampling Analytical Program	37
Table 3A – Summary of Soil Analytical Results AOC-UST2 – VOCs.	42
Table 3B – Summary of Soil Analytical Results AOC-UST2 – SVOCs	48
Table 4A – Summary of Groundwater Analytical Results AOC-UST2 – VOCs	53
Table 4B – Summary of Groundwater Analytical Results AOC-UST2 – SVOCs	56
Table 5A – Summary of Soil Analytical Results Hydrogen Holders AOC – VOCs	.65
Table 5B – Summary of Soil Analytical Results Hydrogen Holders AOC – SVOCs	.68
Table 5C - Summary of Soil Analytical Results Hydrogen Holders AOC - Pesticides and PCBs	72
Table 5D - Summary of Soil Analytical Results Hydrogen Holders AOC - Metals and TPHC	75
Table 6A - Summary of Groundwater Analytical Results Hydrogen Holders AOC - VOCs	.79
Table 6B – Summary of Groundwater Analytical Results Hydrogen Holders AOC – SVOCs	80
Table 6C – Summary of Groundwater Analytical Results Hydrogen Holders AOC –	
Pesticides and PCBs	82
Table 6D – Summary of Groundwater Analytical Results Hydrogen Holders AOC –	
Metals and TPHC	83

Appendices

- Appendix A Soil Boring Logs
- Appendix B Summary of NYSDEC Sediment Sampling Locations and Analytical Data, Bridge Creek
- Appendix C Summary of Previous (SI and RI) Groundwater, Surface Water, and Sediment Sampling Locations and Analytical Data

1.0 EXECUTIVE SUMMARY

The Port Authority of New York and New Jersey (Port Authority) is currently redeveloping the former Procter & Gamble (P&G) Port Ivory Facility, now known as the Howland Hook Marine Terminal (HHMT) – Port Ivory Facility. The HHMT-Port Ivory Facility is located at 40 Western Avenue in Staten Island, Richmond County, New York and consists of three parcels: Block 1309, Lot 10; Block 1338, Lot 1; and, Block 1400, Lot 1. This report addresses conditions at only the northwestern portion of Block 1400, Lot 1. This portion of the HHMT-Port Ivory Facility is also known as Site 1.

On behalf of the Port Authority, Hatch Mott MacDonald (HMM) has conducted various phases of environmental investigation at Site 1 between calendar years 2000 and 2005. The overall goal of these investigations was to determine the appropriate remedial actions, if any, for environmental media given the proposed site redevelopment for commercial (intermodal facility) purposes. The following media have been investigated at Site 1: soil; groundwater; surface water in Bridge Creek; and, sediments along the eastern bank/bed of Bridge Creek. Indoor air quality has not been investigated because no occupied buildings exist or are proposed subsequent to the redevelopment of Site 1. For the purposes of this document, an intermodal facility is defined as a commercial site where products are received via one mode of transportation and are ultimately distributed via a different mode of transportation.

HMM's environmental investigation efforts at Site 1 have included the performance of a Phase I Environmental Site Assessment (Phase I ESA) with a supplemental file review, a Site Investigation (SI), a Remedial Investigation (RI), and a Supplemental Remedial Investigation (SRI). The results of the Phase I ESA, SI, and RI are summarized in the report entitled *Site Investigation and Conceptual Remedial Action Workplan, Site 1* and dated September 2004, which has been submitted to the NYSDEC. As such, this report summarizes only the scope of work and findings of the SRI conducted at Site 1 during May 2005. Please note, information from adjacent Sites or previous investigations at Site 1 has been included herein as necessary for clarity and overall site understanding.

In the Phase I ESA, HMM identified Areas of Concern (AOCs) at Site 1. The AOCs were generally grouped into the following categories: Potential Underground Storage Tanks (USTs); Fill Material; Previously Identified Soil and Groundwater Contamination; Railroad Tracks and Siding; Groundwater; Pits and Drains; and, Former Structures. In addition, the HHMT-Port Ivory Facility, which includes Site 1, was listed in several Environmental Databases.

The HHMT-Port Ivory Facility is situated within an industrial section of Staten Island that was reclaimed from marshland by the use of fill and is bordered by railroads, ports, and roadways. Based on the industrial land use, the environmental quality of surface water, sediment, groundwater, and soil have been impacted on a regional scale. Therefore, neither the soil nor the groundwater at the HHMT-Port Ivory Facility are currently or will be used as natural resources and the surface water and sediment in Bridge Creek and the Arthur Kill are also not high quality. Therefore, while media are referred to as "impacted" throughout this report if the concentration of a regulated substance in the medium exceeds NYSDEC standards or guidance values, it is important to realize that the impacts, if any, attributable to P&G's operations only negligibly worsen already degraded environmental quality and that the "impacts" believed to be attributable to former P&G operations may be attributable instead to regional contamination.

Findings of Pre-SRI Environmental Investigations and Soil Removal Actions

Prior to the Port Authority's purchase of the property, P&G implemented a soil removal action at an AOC, identified as F1, which is located at Site 1. Because the P&G investigation efforts and soil removal actions were complete primarily in the 1990s, the Port Authority investigated soil at all AOCs and AOC categories identified during the Phase I ESA, except for Groundwater and the Environmental Databases AOC Categories, during the SI and/or RI. The Groundwater AOC was investigated through the collection of groundwater, surface water, and sediment samples during the SI. The Listing of the Site in Environmental Databases AOC was addressed by the Port Authority as part of its property acquisition activities.

Based on the results of the soil investigation component of the SI and RI, the Port Authority implemented additional soil removal actions at AOCs associated with Potential Underground Storage Tanks, Previously Identified Soil and Groundwater Contamination, and Former Structures. Based on the results of the SI and RI efforts and the post-excavation/confirmatory soil sampling, the remaining soil impacts at Site 1 are generally limited to low levels of polycyclic aromatic hydrocarbon (PAH) compounds and metals that have been detected at similar concentrations throughout the HHMT-Port Ivory Facility and are believed to be attributable to the prior placement of fill at the Facility by P&G.

Groundwater analytical data from the SI and the Surcharge Pilot Study, conducted as a component of the 2003/2004 RI, revealed minimal impacts to groundwater. Some of the organic compounds in

groundwater have decreased in concentration by approximately 60% and 67% between November 2000 and December 2002. In addition, the presence of arsenic, the primary metal of concern, in groundwater at Site 1 is attributable to the presence of treated wood chips in the Wood Yard. These wood chips were removed in 2004. It is not currently anticipated that any remedial actions are warranted with respect to groundwater at Site 1.

The quality of surface water and sediment in Bridge Creek has been adequately characterized with respect to metals and pH. The analytical data collected to date do not confirm that the groundwater impacts at Site 1 are adversely affecting surface water and/or sediment quality in Bridge Creek.

Based on the above discussion, it is believed that the remaining soil impacts (except those detected at AOC-UST2, see Summary of the SRI below) at Site 1 have been adequately characterized and do not require remedial actions other than the capping of much of Site 1 by impervious materials during redevelopment and the recording of a Deed Notice for Site 1. Groundwater impacts at Site 1 appear to be minimal and do not appear to have impacted surface water or sediment quality in Bridge Creek. Any groundwater impacts that may potentially impact surface water and/or sediment quality are anticipated to be less severe following the redevelopment of Site 1. Therefore, remedial actions are not necessary with regard to groundwater, surface water, or sediment quality. Additional surface water and sediment samples will be collected in conjunction with a groundwater monitoring program that will be initiated following the redevelopment of Site 1.

Summary of the SRI

As noted above, it was determined that petroleum-impacted soil encountered at AOC-UST2 warranted removal (i.e., excavation and off-site disposal). The excavation activities were initiated on April 18, 2005. During excavation, light, non-aqueous phase liquid (LNAPL) was observed in a larger area than anticipated based upon prior delineation efforts. As a result, the removal effort was halted so that the Port Authority could determine the extent and mobility of the LNAPL. In addition, efforts were undertaken to identify the effect of the LNAPL on soil quality, to delineate the extent of impacted soil, and to assess the potential for groundwater impacts. The Site 1 SRI effort was conducted at AOC-UST2 between May 13 and 23, 2005.

The Site 1 SRI at AOC-UST2 included an evaluation of both soil and groundwater. Specifically, the SRI consisted of the drilling of 14 soil borings, collection of seventeen soil samples from the soil borings,

conversion of six of the soil borings to temporary wells, and collection of one groundwater sample from each of the temporary wells. The temporary wells were installed in two parallel transects across AOC-UST2 such that each transect included an upgradient well, a well installed immediately downgradient of the area where LNAPL and/or impacted soil was observed (LNAPL area), and a downgradient well between the LNAPL area and Bridge Creek. Soil samples collected during the SRI were analyzed for the following parameters: volatile organic compounds (VOCs) with a 15-compound library search (VOC+15) via method 8260; semivolatile organic compounds (SVOCs) with a 25-compund library search (SVOC+25); and, total petroleum hydrocarbons (TPHC) via method 418.1. Groundwater samples were analyzed for VOC+15 via method 624 and for SVOC+25 via method 625.

Potentially impacted soil was observed at only four of the 14 soil boring locations. Specifically, discolored soil, a sheen, and/or discrete nodules of LNAPL were observed at soil boring locations TWP-1, UST-4, UST2-4A, and UST2-5. As measured using a photoionization detector (PID), the concentration of volatile organic vapors in the soil ranged from 0 (at various depths and locations) to 18 parts per million (at 6-8 feet below ground surface at location UST2-4). Based on field observations, the horizontal extent of the LNAPL and/or impacted soil is approximately 255 feet north-south by 173 feet east-west. Please note, LNAPL and/or impacted soil were present below the western portion of the soil surcharge stockpile that was located along the Site 1-Site 2A boundary.

Analytical results for soil samples collected at AOC-UST2 during the SRI revealed the presence of twelve SVOCs and two VOCs at concentrations in excess of corresponding NYSDEC Recommended Soil Cleanup Objectives (RSCOs). Except for the soil sample collected at location TWP-1A, these concentrations of SVOCs and VOCs are attributable to laboratory contamination of the samples and/or fill materials placed at the Facility by P&G. The concentration of TPHC at location UST2-4 was also elevated (it was more than four times as great at UST2-4 than at any other location), and may indicate the presence of a mobile phase of LNAPL. The elevated concentration of SVOCs at location TWP-1A and of TPHC at UST2-4 require additional investigation.

Groundwater analytical data from the SRI indicate that groundwater impacts are limited to naphthalene and phenol, both SVOCs. These compounds were detected at concentrations slightly greater than their respective NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSGV) in the groundwater sample collected from temporary well TWP-1A. In addition, phenol was detected at a concentration slightly greater than its NYSDEC AWQSGV at temporary well TWP-2. No other VOCs or

SVOCs were detected at concentrations greater than their respective AWQSGV in any groundwater sample collected during the SRI. The elevated concentration of naphthalene in groundwater in the vicinity of well TWP-1A is likely due to the presence of creosoted wood at this location. However, regardless of the source, the naphthalene is delineated at TWP-2, located approximately 110 feet downgradient of TWP-1A. The elevated concentrations of phenol at TWP-1A and TWP-2 are potentially attributable to upgradient source areas, including the decay of naturally-occurring marsh deposits that have been observed beneath the fill at portions of Site 1. Regardless of the source, the phenol is delineated at TWP-3, located approximately 65 feet downgradient of TWP-2. Based on the SRI, the groundwater impacted by naphthalene and/or phenol is not anticipated to discharge into Bridge Creek. Groundwater at Site 1 is not currently, and is not anticipated to be, utilized as a source of potable water. Therefore, no investigative or remedial actions are warranted with respect to groundwater at AOC-UST2.

LNAPL did not accumulate within any of the temporary well points, including wells installed immediately downgradient of observed LNAPL. Therefore, except possibly at location UST2-4, the LNAPL appears to be present at a residual saturation (i.e., the LNAPL is immobile) at AOC-UST2.

Overall Conclusions - Additional Remedial Actions

Based upon the results of the SRI and of previous environmental investigations, the Port Authority has determined that further investigative efforts are warranted only for soil at locations UST2-4 and TWP-1A. Soil removal efforts conducted to date by P&G and the Port Authority have resulted in the excavation and disposal of more than 9,400 cubic yards of impacted soil from Site 1 and a layer of wood chips from the Wood Yard. Also, the Port Authority has removed two underground storage tanks, UST-5 and UST-6, which were abandoned in place by P&G.

Additional remedial actions, beyond the redevelopment of Site 1 and institution of a Deed Notice at Site 1, are not warranted for any portion of Site 1 except (possibly) at locations UST2-4 and TWP-1A, both located at AOC-UST2. Subsequent groundwater monitoring, in conjunction with surface water and sediment sampling, is warranted to confirm the effectiveness of the removal efforts conducted to date at Site 1, the remedial action that will be conducted at AOC-UST2, and the redevelopment of Site 1. The remedial actions (if any) and groundwater monitoring programs are beyond the scope of this report and will be described in a forthcoming Remedial Action Work Plan.

2.0 INTRODUCTION

The Port Authority Howland Hook Marine Terminal (HHMT)-Port Ivory Facility is located at 40 Western Avenue in Staten Island, Richmond County, New York, as presented on Figure 1. The HHMT-Port Ivory Facility consists of three parcels; Block 1309, Lot 10; Block 1338, Lot 1; and Block 1400, Lot 1, which were purchased from Procter and Gamble (P&G) in 2000. The HHMT-Port Ivory Facility is bordered by Bridge Creek to the west, Arthur Kill to the north, wetlands and undeveloped land to the east, and an unnamed railway to the south. Public roadways separate the three parcels: Western Avenue separates Block 1400, Lot 1 from Block 1338, Lot 1 and Richmond Terrace separates Block 1309, Lot 10 from Block 1338, Lot 1 and Block 1400, Lot 1.

The Port Authority is in the process of redeveloping the HHMT-Port Ivory Facility for a commercial end use; specifically, the Port Authority intends to utilize the Facility as an intermodal facility. With regard to the HHMT-Port Ivory Facility, an intermodal facility is defined as a facility where cargo transported by ship is transferred to intermediate and final destinations via rail or truck. Following redevelopment, approximately 90% of the Facility will be paved or otherwise covered with impermeable or low permeability materials.

As part of the HHMT-Port Ivory Facility redevelopment, the Port Authority entered into the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) in June 2004. The Port Authority's objective for entering into the VCP program with NYSDEC was to address the presence of contamination attributable to prior operations at the Facility. These operations were unrelated to the Port Authority. The Port Authority has established different redevelopment schedules for different portions of the HHMT-Port Ivory Facility. To accommodate the Port Authority's redevelopment schedule, the NYSDEC agreed to expedite the review of information pertaining to certain portions of the HHMT-Port Ivory Facility. Thus, the Port Authority agreed to address the HHMT-Port Ivory Facility as four "Sites" and to present assessment, investigation, and remedial action information/documentation for each individual Site. Please note, to date, the VCP agreements have been executed for only three of the four Sites; the fourth Site is referred to as a "Future Site" pending inclusion, as necessary, in a NYSDEC regulatory program. The Sites have been defined as follows: Site 1 consists of the northwestern portion of Block 1400, Lot 1; Site 2A/2B consists of the eastern and southern portions of Block 1400, Lot 1 (Site 2A) and the southern portion of Block 1338, Lot 1 (Site 2B); Site 3 consists of the central and northern portions of Block 1338, Lot 1; and, Future Site 4 consists of Block 1309, Lot 10.

This report has been prepared as part of the ongoing compliance with the NYSDEC VCP agreement for VCP Site V-00615-2 (Site 1) and includes information associated with only Site 1. Information associated with adjacent Sites or previous assessments/investigations at Site 1 has been included as necessary for clarity and overall understanding. Figure 1 depicts the location of Site 1 in relation to the locations of Site 2A/2B, Site 3, and Future Site 4. Figure 2 depicts the easements located at the HHMT-Port Ivory Facility, including those at Site 1. Section 2.1 summarizes the results of previous investigative and soil removal efforts at Site 1. This background information is useful for understanding the scope of the SRI at Site 1. Section 2.2 summarizes the organization of this report.

2.1 Previous Environmental Investigations at Site 1

On behalf of the Port Authority, Hatch Mott MacDonald (HMM) has completed several phases of investigation at the site, including a Phase I Environmental Site Assessment with a supplemental file review (Phase I ESA), Site Investigation (SI), Remedial Investigation (RI), and Supplemental Remedial Investigation (SRI). The Phase I ESA and SI were conducted to identify and characterize Areas of Concern (AOCs) at Site 1 prior to the Port Authority's purchase of the Facility in December 2000. The RI and SRI were conducted subsequent to the transfer of the property from P&G to the Port Authority. In general, the RI focused on the investigation of petroleum-impacted soil encountered at various AOCs at Site 1 during the SI. The RI also included a study designed to determine the effect, if any, that surcharging the soil at Site 1 would have on the extent of groundwater impacts at Site 1. The Port Authority planned to surcharge soil at Site 1 in preparation for the redevelopment effort. The SRI, which is the subject of this report, included efforts to further assess the following: the potential petroleum impacts to both soil and groundwater at AOC-UST2 and the impacts, if any, to soil and/or groundwater (determined based on previous soil and groundwater analytical data) that may have resulted from P&G's former use of hydrogen holders at Site 1. The presence of the hydrogen holders was raised as a potential environmental concern by the NYSDEC during a telephone conversation of December 23, 2004 and in subsequent telephone conversations. In addition, previous groundwater and surface water data was reevaluated subsequent to the removal of wood chips from the Wood Yard AOC.

The remainder of this section summarizes the findings of the previous environmental investigations, including the work conducted by P&G and their consultants. Previous soil and groundwater analytical results were presented in detail in the reports entitled *Site Investigation and Conceptual Remedial Action Workplan, Site 1* (dated April 2003) and *Revised-Site Investigation and Conceptual Remedial Action Workplan, Site 1* and (dated September 2004). The September 2004 document was a revision of the April

2003 version; the revisions were made based on an NYSDEC comment letter dated July 2, 2004. As such, analytical results from the SI and RI that are referenced below are not provided in summary tables and/or maps associated with this report.

During the Phase I ESA, HMM identified several Areas of Concern (AOCs) at Site 1. The AOCs were grouped into the following categories:

- Potential Underground Storage Tanks (USTs);
- Fill Material;
- Previously Identified Soil and Groundwater Contamination;
- Railroad Tracks and Siding;
- Groundwater;
- Pits and Drains;
- Former Structures; and,
- Listing of the HHMT-Port Ivory Site in Environmental Databases

Soil at all AOCs and AOC categories identified during the Port Authority's Phase I ESA, except for Groundwater and Listing of the Site in Environmental Databases, was investigated during the SI and/or RI. The Groundwater AOC was investigated through the collection of groundwater samples during the SI. The Listing of the Site in Environmental Databases AOC was addressed by the Port Authority as part of its property acquisition activities. Based upon the results of previous environmental investigations, the Port Authority determined that further investigative efforts were not warranted for any medium at any AOC in Site 1, although a removal effort with respect to petroleum-impacted soil was deemed to be warranted at AOC-UST2.

Removal efforts conducted by P&G and the Port Authority prior to the SRI resulted in the excavation and disposal of more than 9,400 cubic yards of impacted soil. In addition, the Port Authority removed a layer of wood chips from the Wood Yard and two AOCs, UST-5 and UST-6, associated with USTs that were abandoned in place by P&G. The scope and effectiveness of each soil removal effort are summarized below in Sections 2.1.1 through 2.1.7, organized according to AOC category.

2.1.1 Potential Underground Storage Tanks (USTs)

Historical mapping identified potential USTs at three areas at Site 1. The AOCs associated with these three potential USTs were designated AOC-UST2, AOC-UST5, and AOC-UST6. As part of the SI,

geophysical surveys, conducted using electromagnetic survey methods, were completed at each of the potential UST AOCs. The geophysical surveys were inconclusive due to interference and thus did not confirm the presence or absence of a UST at any of these three AOCs. USTs that were abandoned in place were subsequently encountered at AOC-UST5 and AOC-UST6; no UST was encountered at AOC-UST2 during the SI or RI. The UST encountered at AOC-UST5 was determined to be part of an oil-water separator system; the system, including both the UST and appurtenant tank components, was decommissioned by P&G. The UST at AOC-UST6 was determined to be a single toluene tank, contained within a concrete vault which was decommissioned by P&G. The Port Authority has removed the previously decommissioned tanks. Based on the above, no known USTs are currently located at Site 1. A summary of information pertaining to each to each potential UST area is provided below.

AOC-UST2

The presence of discolored soil, odors, and elevated concentrations of VOC vapors (as measured using a photoionization detector, or PID) were observed in soil at AOC-UST2 during the SI and RI. In addition, a sheen was observed on the groundwater surface in temporary well TMW-02. Despite these field observations, the concentrations of regulated compounds and metals detected in soil and groundwater samples were generally similar to the concentrations of the same compounds and metals detected in soil throughout the HHMT-Port Ivory Facility. The presence of these compounds/metals is associated with fill placed at the Facility, including Site 1, by P&G. Notwithstanding the above and based on field observations and measurements, the Port Authority determined that a removal effort with respect to petroleum-impacted soil would be appropriate at AOC-UST2.

The removal effort was to consist of the excavation and off-Site disposal of impacted soil, as identified based on the field observations listed above, previously encountered at soil borings. All excavated soil was to be disposed of at an appropriate off-site facility. The removal effort was initiated on April 18, 2005. However, during excavation, LNAPL and/or impacted soil was observed at locations beyond the proposed excavation limits. Therefore, the Port Authority halted the removal effort and implemented horizontal and vertical delineation activities. The delineation of soil and the investigation of groundwater impacts at AOC-UST2 is included in this report, and is detailed in Sections 4.0 et seq.

AOC-UST5

The excavation of soil at Area B and Area GW-14 (the two excavations merged into one as described Section 2.1.3, below) revealed the presence of a former oil/water separator system. The system included

three interconnected concrete structures and a UST within a concrete vault. The UST and the concrete structures were excavated in 2003. Neither visual inspection nor field screening indicated that the soils surrounding the oil-water separator system were impacted. No sampling was performed since the "closed" tank was noted to be situated within a concrete vault and field screening did not reveal any indications of contamination. The SI did not identify the presence of compounds or metals at concentrations above levels that were detected in soil samples throughout the HHMT-Port Ivory Facility. These generally low levels of compounds and metals are considered to be attributable to fill formerly placed at the Facility by P&G. Given the above, no additional investigative and/or remedial actions are/were deemed warranted at AOC-UST5.

AOC-UST6

In conjunction with site demolition in 2002, contractors retained by the Port Authority removed building footings and slabs in the vicinity of Building 17 at the northern portion of Site 1. Those efforts allowed for a review of the subsurface in the vicinity of AOC-UST6. A UST filled with inert materials (brick, stone, and sand) was situated within a concrete vault at this AOC. A review of available records revealed that the UST was used by P&G and formerly contained toluene. Based on information provided by P&G, the NYSDEC had allowed P&G to leave the tank in place and issued a spill case closure letter (August 1990) in response to P&G's decommissioning effort. Although the NYSDEC had not required P&G to remove the tank, the Port Authority elected to implement a removal effort to fully address this AOC.

In 2003, the Port Authority removed the previously decommissioned UST and surrounding concrete vault. Field observations/screenings did not reveal any indications of contamination of soil or groundwater. No soil sampling was performed based on the results of field screening and prior NYSDEC case closure approval. Analytical results from the SI did not reveal the presence of regulated compounds and metals at concentrations above the generally low levels that were detected in soil samples throughout the HHMT-Port Ivory Facility; generally the low levels of contaminants present at the Site are attributable to fill formerly placed at the Facility by P&G. Given the above, no additional investigation and/or remedial actions are/were deemed warranted at AOC-UST6.

2.1.2 Fill Material

Fill material has been encountered throughout the HHMT-Port Ivory Facility, and therefore has been investigated on a Facility-wide basis. The character of the fill is variable, and the fill at any location throughout the HHMT-Port Ivory Facility may be composed of one or more of the following materials:

soil, vegetative debris, wood, brick fragments, glass, concrete fragments, cinders, ash, slag, carbonaceous materials, and diatomaceous earth. Based on field observations, the fill materials were categorized into the following three categories: urban fill, cinder fill, and by-product fill. The cinder fill consists primarily of cinders, ash, and/or slag. The by-product fill includes calcium carbonate, spent diatomaceous earth, and spent carbonaceous filter material generated as by-products of P&G's manufacturing processes. The urban fill is comprised of all other fill materials, generally soil, vegetative debris, and construction debris. Two or all three types of fill were present in several soil borings at Site 1.

The SI and RI included characterization of the physical extent and chemical nature of the fill material. Analytical results for samples collected from fill materials indicate that the urban fill and cinder fill materials contain low concentrations of various metals and organic compounds, primarily Polycyclic Aromatic Hydrocarbons (PAHs). However, the by-product fill appears to be comprised primarily of innocuous metals such as calcium and magnesium. Based on the findings of the SI and RI, it was determined that additional investigation of the fill material was not warranted. In addition, since the low concentrations of metals and PAHs in the urban and cinder fill materials do not appear to have impacted groundwater, it was determined that no remedial actions beyond the proposed Site 1 redevelopment and the institution of a Deed Notice are warranted for the fill material.

2.1.3 Previously Identified Soil and Groundwater Contamination

Since groundwater issues are discussed separately under Section 2.1.7, below, this section will address only soil impacts at portions of Site 1 that P&G had determined to be AOCs. The following five AOCs located at Site 1 were previously identified and evaluated by P&G: Area A, Area C, Area F1, Area H/R, and the Wood Yard. Area A, the West Tank Field, was located southwest of Building 16. Area C, the Former Oleum AST and Acid Wastewater area, was located to the north of the Wood Yard. Area F1, the Spent Nickel Catalyst Drum Storage Area, was located southwest of Building 17. Area H/R indicates an overlapping AOC comprised of (initially distinct AOCs) Area H and Area R. Area H, the Former Rosin Storage Area, and Area R, the Northwest Corner of the Soap Manufacturing Area, were located in the northwestern portion of Site 1. The Wood Yard denotes the area that P&G used to store and chip wood used to fuel a wood-fueled furnace located to the west of Buildings 12 and 13. Based on the results of its environmental investigations, P&G did not perform soil removal at Area A, Area C, Area H/R, and the Wood Yard. Rather, P&G asserted that contaminants detected in soil at these AOCs are relatively immobile (i.e., the compounds and metals are neither highly soluble nor highly volatile) and that human exposure would be minimal. P&G did, however, implement removal efforts at Area F1.

Given the length of time which had elapsed since P&G's investigative and soil removal efforts at these AOCs (the majority of the investigation was completed during the early 1990s), the Port Authority included the P&G AOCs in its SI. The SI was conducted at these AOCs to confirm P&G's conclusions regarding the mobility of the remaining contaminants. Based on the results of soil and groundwater samples analyzed during the Port Authority's SI, no additional investigative or soil removal activities were required at Area C and Area H/R. However, based upon the presence of petroleum-impacted soil at Area A, Area F1, and the Wood Yard, additional investigation was deemed necessary to confirm the success of the P&G removal actions performed at these AOCs. This additional investigation was performed as part of the Port Authority's RI at Site 1.

Based on the RI data, the petroleum-impacted soil at AOCs Area A, Area F1, and the Wood Yard was successfully delineated. Soil in the vicinity of AOC Area F1, previously addressed by P&G's soil removal effort, was deemed to have limited impacts based on field observations and analytical results from the SI and RI. The Port Authority excavated potentially impacted soil at AOCs Area A and the Wood Yard. Based on the relatively low levels of contamination in soil and the general absence of organic compounds other than phenol (commonly encountered as a decay product of naturally-occurring organic matter) in groundwater, it was determined that installing impervious cover (macadam, concrete, etc.) across most of Site 1 and instituting a Deed Notice at Site 1 would constitute an adequate remedial action with regard to soil. The installation of impervious cover is currently proposed as part of the redevelopment of Site 1.

The extents and results of the P&G soil removal effort at AOC Area F1 and the Port Authority's removal efforts at AOCs Area A and the Wood Yard are summarized in the September 2004 Revised Site Investigation and Conceptual Remedial Action Workplan, prepared by HMM on behalf of the Port Authority. However, to facilitate review of this document, summaries of these removal efforts are presented below.

Area A (also known as Area A-5)

Approximately 3,300 cubic yards of soil were excavated from Area A-5. Although the majority of the removal effort was conducted at Site 1, a portion of the excavation extended onto Site 2A. Post-excavation soil samples were collected from the sidewalls and bottom of the excavation after completion of soil removal activities. The only compound detected at a concentration greater than its respective

RSCO was benzo(a)pyrene, which exceeded its RSCO in only one post-excavation soil sample. In addition, the concentration reported for benzo(a)pyrene in this sample was similar to concentrations of benzo(a)pyrene detected in soil throughout the HHMT-Port Ivory Facility. The presence of benzo(a)pyrene in the sample is therefore attributable to fill present at the HHMT-Port Ivory Facility.

Area F1

Area F1 is located in the north-central portion of Site 1. According to a March 1993 report, *Area F Soil Remediation Report*, prepared by Recon Systems, Inc., P&G excavated soil and performed confirmatory post-excavation soil sampling to address previously delineated PCB-impacted soil at Area F1. Excavation activities were performed in February 1993. The excavation was extended to a depth of approximately 3 feet bgs. Approximately 150 cubic yards (221 tons) of soil was excavated and nine post-excavation soil samples were collected from the resultant excavation area. PCBs were not detected in five of the post-excavation soil samples. The analytical results for the remaining four soil samples indicated the presence of the PCB Arochlor-1254. The greatest concentration of Arochlor-1254 in these four samples was 0.49 mg/kg, which is well below the RSCO for PCBs in shallow soil (1 mg/kg). Based on the analytical results, P&G did not propose any further action for this area.

Analytical results for soil samples collected at Area F1 during the Port Authority's SI and RI indicate that, although the concentrations of xylenes, dibromochloromethane, the PAH compounds benzo(a)anthracene and benzo(a)pyrene, phenol, and various metals exceed the NYSDEC RSCOs, the soil impacted by PCBs has been successfully remediated. Given the above, no additional investigation and/or remedial actions (beyond the paving of Area F1 as part of the redevelopment of Site 1 and establishment of a Deed Notice at Site 1) are/were deemed warranted at Area F1.

Wood Yard

The Port Authority removed approximately 120 cubic yards of soil from the vicinity of sample location Wood-5. Based on a visual review and analytical results from RI sampling, the soil impacts at this location appear to have been associated with residual cinder material (ubiquitous to the fill material) rather than petroleum. Thus, no confirmation samples were warranted or collected for Area Wood-5. Given the successful completion of the soil removal effort, no additional investigative or remedial activities are/were deemed warranted for soil at Wood-5.

In 2004, the Port Authority removed wood chips that P&G had previously stockpiled in the Wood Yard. Shallow soil was also removed along with the wood chips. This effort was undertaken since treated/creosoted wood sometimes contains elevated concentrations of the metals arsenic, chromium, and copper and arsenic was detected in several soil and groundwater samples collected from within and downgradient of the Wood Yard. Following the removal effort, six confirmatory soil samples were collected from the 0-0.5 foot depth interval below the new ground surface in the area where the wood chips had been stockpiled by P&G see Figure 3. Confirmatory soil sampling analytical results are summarized in Table 1. In general, the concentrations of arsenic and other metals in the confirmatory soil samples were below their respective RSCOs, or exceeded the RSCOs slightly (i.e., were within an order of magnitude of their respective RSCOs). In particular, the concentration of arsenic exceeded its RSCO (7.5 mg/kg or soil background) in only one soil sample, WC-PT1-092104-20-1, in which the arsenic concentration was 25 mg/kg. The concentrations of metals in the confirmatory soil samples were similar to those in soil samples collected at other portions of the facility; therefore, the presence of these metals in soil is considered to be attributable to the former placement of fill materials by P&G. Additional investigation and remedial/removal efforts are not warranted at the Wood Yard beyond the redevelopment of Site 1 and the institution of a Deed Notice at Site 1.

Soil Removal Efforts - Site 2A

In addition to the above-described AOCs, the Port Authority also performed soil removal at Area B, the P&G designation for an AST area at Site 2A. Although the majority (approximately three-quarters) of the excavation is located in Site 2A, the remainder (approximately one-quarter) included an area along the eastern part of Site 1. The Port Authority excavated approximately 4,350 cubic yards of soil in the vicinity of two soil borings, designated B-2 and B-3, based on potential petroleum impacts. All piping encountered during excavation also was removed as part of the removal effort. The excavation area merged with the Area GW-14 excavation; for the purposes of this summary, the two excavations will be referred to as the Area B excavation.

Post-excavation soil samples were collected from the sidewalls of the Area B excavation at the soil-ground water interface (3-3.5 feet below ground surface, or bgs). The analytical results confirmed that the excavation successfully removed the impacted soil. Only two PAH compounds were detected at concentrations greater than their respective RSCOs, and the detected concentrations for these two PAH compounds was similar to those reported for soil samples collected at other portions of the HHMT-Port Ivory Facility. The presence of these compounds is therefore attributable to fill material previously

TABLE 1 SUMMARY OF POST-EXCAVATION SAMPLING ANALYTICAL RESULTS - WOOD CHIP EXCAVATION HHMT - PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PT-1	PT-2	PT-3	PT-4	PT-5	PT-6
Field ID		WC-PT1-092104-20-1	WC-PT2-092104-20-1	WC-PT3-092104-20-1	WC-PT4-092104-20-1	WC-PT5-092104-20-1	WC-PT6-092104-20-1
Sampling Date	NYSDEC RSCO (MG/KG)	9/21/2004	9/21/2004	9/21/2004	9/21/2004	9/21/2004	9/21/2004
Matrix		Soil	Soil	Soil	Soil	Soil	Soil
Sample Depth		Note 1	Note 1	Note 1	Note 1	Note 1	Note 1
Units		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
METALS		Conc	Conc	Conc	Conc	Conc	Conc
Antimony	SB	ND	ND	ND	· ND	ND	ND
Arsenic	7.5 or SB	/ 25 k → ^	ND	7.6	10 10	4.9	ND
Barium	300 or SB	890	14	80	120	67	42
Beryllium	0.16 (HEAST) or SB	ND	ND	ND	ND	ND	ND
Cadmium	1 or SB	ND	ND	ND	ND ·	ND	ND
Chromium	10 or SB	13	8.3	TO IN THE STATE OF	18	15	6.8
Copper	25 or SB	29	6.5	7 26 €	÷ 33 🤲	20	9.3
Lead	500 *	87	ND	110	190	76	ND ND
Nickel	. 13 or SB	7.9	ND	ND	ND	ND	ND
Selenium	2 or SB	ND	ND	ND	ND	ND	ND
Silver	SB	ND	ND	ND	ND	. ND	ND
Thallium	SB	ND	ND	ND	ND	ND	ND
Zinc	20 or SB	590	ND	93 -	140	110	ND
Mercury	0.1	0.12	ND	ND	ND	· ND	ND

Notes and Abbreviations:

MG/KG = milligrams per kilogram

NYSDEC = New York State Department of Environmental Conservation

RSCO = Recommended Soil Cleanup Objective

Conc = Concentration

ND = Not detected

SB = Site Background

* = No RSCO is available for the metal. The value provided is the Eastern USA Background.

Note 1: All soil samples were collected from the top half foot (i.e., from 0-0.5 feet below ground surface) of the soil column after removal of the layer of wood chips.

Note 2: Bold values in shaded cells exceed the RSCO for the metal.

Note 3: Since no site background concentrations have been established for these metals, the analytical data have been compared to the Eastern USA Background value provided in TAGM 4046 when these data are available.

emplaced at the HHMT-Port Ivory Facility. Based on the IRM, no further investigative or remedial actions were deemed warranted at Area B.

2.1.4 Railroad Tracks and Siding

Site inspections at Site 1 revealed the presence of railroad tracks and sidings, and review of historical records identified additional tracks and sidings that were formerly present at Site 1. As such, it was proposed to obtain samples from locations adjacent to portions of the current and former on-site railroad system to confirm that the railroad system had not impacted soil at Site 1. Based on the analytical results for soil samples collected along railroad sidings at Site 1 during the SI, no further investigative or remedial activities were deemed warranted with respect to the Railroad Tracks and Siding at Site 1.

2.1.5 Groundwater

Environmental investigation activities performed at Site 1 prior to the Port Authority's purchase of the HHMT-Port Ivory Facility identified the presence of contaminants and elevated pH in groundwater. As the majority of the groundwater sampling presented in the P&G reports was performed in the early 1990s, it was proposed to perform a groundwater investigation to confirm current groundwater quality. During the SI, groundwater samples were collected at eight shallow monitoring wells and two deep monitoring wells located at Site 1. Groundwater samples were also collected during a Pilot Study to determine the effects of the surcharge pile on the distribution and mobility of groundwater impacts at Site 1. The Pilot Study was conducted as part of the RI. During the SRI, groundwater samples were collected from temporary wells installed at AOC-UST2.

Both the SI and RI efforts included sampling of surface water and sediment in conjunction with the groundwater samples to characterize the chemistry of these media in close proximity to a "white material" previously observed in Bridge Creek and to confirm whether or not groundwater may potentially impact surface water quality in Bridge Creek. The groundwater samples were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, Target Analyte List (TAL) metals, TPHC, oil and grease (O&G), total cyanide, and total phenolics. Surface water and sediment samples were analyzed for TAL metals, and the pH of the surface water was measured using a portable pH meter.

For this project, the groundwater analytical results have been compared, as appropriate, to current NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSGVs). The AWQSGVs assume that groundwater is classified as GA, a potential drinking water source. Given the location of the

Site and the high potential for water to be saline, the published AWQSGVs are not appropriate for use at this Site. However, at this time, these represent the only guidance available for ambient groundwater. Please note, the reference to these standards in this report does not represent any agreement or concurrence that the same are appropriate for use at this Site or the HHMT-Port Ivory Facility.

The analytical results for the groundwater at Site 1 indicate that the only substances detected at concentrations greater than the NYSDEC AWQSGVs were ethylbenzene, xylene, phenol, 2-benzphenanthracene, benzo(a)anthracene, and the metals arsenic and cadmium. As noted above, the surface water and sediment samples were not analyzed for organic compounds. Neither arsenic nor cadmium was detected at a concentration greater than its NYSDEC Recommended Surface Water Cleanup Standard (RSWCS) in any of the three surface water samples. All five sediment samples contained arsenic at concentrations greater than the NYSDEC Lower Effects Level (LEL) but below the Severe Effects Level (SEL). The concentration of arsenic in sediment did not increase either upstream or downstream, and the source of this metal is not known. Cadmium was detected at a concentration slightly greater than the NYSDEC LEL in only one of the five sediment samples. Based on the analytical data for metals, it does not appear that the groundwater impacted by arsenic and cadmium is affecting the quality of surface water in Bridge Creek. The sediment data are less conclusive, and the source of the arsenic and cadmium in sediment appear to be impacted sediment in Bridge Creek upstream of Site 1. The upstream sediment data are presented in Appendix B and are discussed in Section 7.2.1.

Although there are no quantitative analytical results for the concentration of organic compounds in Bridge Creek, it is not anticipated that the surface water or sediment quality is being impacted by the organic compounds detected in groundwater at Site 1. Ethylbenzene and xylene are both VOCs, and are expected to volatilize soon after entering Bridge Creek (if groundwater impacted with these compounds is discharging into the creek). Phenol, as noted above, is a common product of the degradation of organic matter, including naturally-occurring organic matter. Since marsh deposits are present throughout this portion of Staten Island, naturally-occurring organic matter is plentiful. The solubility of 2-benzphenanthracene and benzo(a)anthracene is low at neutral pH (measured to be between 7.5 and 8.2 in Bridge Creek). Although groundwater impacted by organic compounds is not anticipated to affect the quality of surface water in Bridge Creek, there are no data available to corroborate this theory.

Notwithstanding the above, the groundwater chemistry is anticipated to change following the redevelopment of Site 1, which will be implemented in the near future. As a result, the surface water

and/or sediment chemistry may also change. Therefore, a groundwater monitoring program that will include the monitoring of surface water and sediment quality, will be implemented subsequent to completion of Site 1 redevelopment.

2.1.6 Pits and Drains

Pits and drains were observed at two buildings, Building 1A and Building 17, which have since been razed by the Port Authority. Soil samples were collected as part of the SI, to investigate soil quality adjacent to these structures. In addition, a groundwater sample was collected from monitoring well PAMW-5 to investigate the quality of groundwater at this portion of Site 1.

Overall, the analytical results indicate the presence of various PAH compounds and various metals in soil samples collected to evaluate Pits and Drains. The concentrations detected were noted to be similar to those detected in soil at other portions of the HHMT-Port Ivory Facility and are attributable to the former placement of fill materials by P&G. A few non-fill related contaminants (toluene, dieldrin, endrin, and heptachlor epoxide) were detected at concentrations above their respective RSCOs at only one soil sampling location, PD-8. The pesticides may relate to fill material at this portion of the site and/or to typical usage of such materials for pest control. These types of materials were not used or generated as part of process operations by P&G and the presence of residual concentrations of same was not considered a concern at PD-8. As previously stated, P&G performed closure activities for a 10,000 gallon UST formally containing toluene. The NYSDEC issued a spill Case Closure to P&G in August of 1990. Subsequently, the Port Authority removed the decommissioned UST (UST-6); the NYSDEC allowed P&G to decommission the UST in place. The analytical results from the groundwater sample collected at PAMW-5 did not indicate that pits and drains had impacted the groundwater. Therefore, no additional investigation of soil associated with pits and drains formerly located at Site 1 was determined to be warranted.

2.1.7 Former Structures

Review of Sanborn Maps and aerial photographs identified former structures at various locations throughout Site 1. The former structures included buildings and tanks at the Wood Yard and portions of Buildings 12 and 13, as well as ASTs to the west of Buildings 12 and 13 (buildings and structures immediately north, east, and south of Buildings 12 and 13 are located at Site 2A). One building (or several smaller buildings) was located west of Buildings 12 and 13, near the southern portion of Site 1. Historical mapping indicates that this building was utilized as a metal shop. In addition, Building S-16

and a building north of S-16 were located at Site 1, along with ASTs at Area A. Building S-17 and structures extending from or immediately adjacent to Building S-17 were also located at Site 1. Railroad tracks and sidings were visible on the aerial photographs; however, the railroad tracks and sidings are addressed as a separate AOC (see Section 2.1.4). In addition, the status of Area A is discussed above in Section 2.1.3. Please note, all of the structures identified above, with the exception of parts of railroad tracks and sidings, were razed by P&G. However, Buildings 1A and 17 and aboveground conveyor belt systems and supports were removed by the Port Authority.

Soil samples were collected near the former structures during the SI in order to identify if soil had been impacted by P&G's former industrial/commercial activities at the structures. In addition, soil excavation was performed at AOCs FS-1 and the Wood Yard; the removal effort for the FS-1 AOC is summarized below and the removal effort for the Wood Yard is summarized in Section 2.1.3. Analytical results for soil samples collected in the vicinity of former structures other than FS-1 and the Wood Yard identified compounds and metals that were detected at similar concentrations in soil throughout the facility. Based on the their widespread distribution at the Facility, these soil impacts have been attributed to the former placement of historic fill at the facility. As such, no additional investigative and/or remedial activities were deemed warranted with respect to the former structures at Site 1.

Removal Action at FS-1

Soil excavation was completed in the vicinity of former sampling location FS-1 in November-December 2002. Approximately 1,500 cubic yards of soil were removed from the vicinity of FS-1. The excavation area was primarily located at Site 1 but extended onto Site 2A. Post-excavation soil samples were collected following soil excavation. The only compounds detected at concentrations greater than their respective RSCOs in the post-excavation soil samples were four PAHs considered to be attributable to fill material. The PAH compounds were detected at concentrations similar to those detected at other areas of the HHMT-Port Ivory Facility (historic fill discussion). As such, no additional investigative and/or remedial/removal efforts were deemed warranted at FS-1.

2.2 Report Objectives and Organization

This report documents the scope of work completed, methods utilized, and results of the SRI for Site 1. To facilitate review of the report, background information (e.g., Site 1 history, hydrogeology, etc.) is provided in Section 3. The scope of work completed and methods utilized during the SRI are described in Sections 4 and 5, respectively. A summary of the soil sampling and analytical program is presented in

Table 2A and the groundwater sampling and analytical program is summarized in Table 2B. The field observations and analytical data generated during the SRI are summarized in Section 6, tabulated in Tables 3A, 3B, 4A, and 4B, and presented on Figure 4. A discussion of the SRI results is presented in Section 7 and conclusions and recommendations regarding the environmental quality of soil and groundwater at Site 1, as well as the need for additional investigative and/or remedial efforts, are provided in Section 8.

Please note that the need for additional remedial actions proposed in this report is based on a predetermined end-use for Site 1. As previously stated, the Port Authority is redeveloping Site 1 for use as an intermodal facility. As such, most of Site 1 will be finished with impervious cover, precluding direct contact with underlying fill material.

3.0 BACKGROUND

This section includes general information pertaining to the location and operating history of the entire HHMT-Port Ivory Facility, specific information regarding the previous and current land use of Site 1, and a summary of regional and local hydrogeology. These three topics are discussed in Sections 3.1 through 3.3, respectively. Please note, this information was previously submitted to NYSDEC in a report entitled Revised - Site Investigation and Conceptual Remedial Action Workplan, Site 1 and dated September 2004; however, this information is repeated in this report as a courtesy to the reader.

3.1 HHMT-Port Ivory Facility – Location and Description

The HHMT-Port Ivory Facility is located at 40 Western Avenue, Staten Island, Richmond County, New York and is comprised of the three following tax blocks/lots: Block 1309, Lot 10, Block 1338, Lot 1 and Block 1400, Lot 1. Together, these three parcels encompass 123.75 acres. The latitude/longitude of the HHMT-Port Ivory Facility, as determined from the center of the Facility, is 40 degrees 38 minutes 15 seconds North / 74 degrees 10 minutes 50 seconds West. At the time of the Phase I ESA and SI activities, the HHMT-Port Ivory Facility was owned by P&G; the Port Authority purchased the Facility from P&G in December 2000 and it is now known as the HHMT-Port Ivory Facility. Subsequent to the purchase of the HHMT-Port Ivory Facility, the Port Authority performed RI, SRI, and IRM activities.

The HHMT-Port Ivory Facility can be accessed via driveways located along Western Avenue and Richmond Terrace. Western Avenue extends in a north-south direction between Block 1400, Lot 1 (Sites

1 and 2A) and Block 1338, Lot 1 (Sites 2B and 3) and terminates at Richmond Terrace. One of the three parcels, Block 1309, Lot 10 (Future Site 4) is situated north of Richmond Terrace and the two remaining parcels, Block 1400, Lot 1 (Sites 1 and 2A) and Block 1338, Lot 1 (Sites 2B and 3), are situated south of Richmond Terrace. The overall layout of HHMT-Port Ivory Facility is presented on Figure 1.

The HHMT-Port Ivory Facility is and has been serviced by connections to the potable water and sanitary sewer system of New York City. No septic systems, potable water wells, or dry wells are reported to be or to have been located on the subject site. Stormwater generated on the site is directed via sheet flow to on-site catch basins. These catch basins discharge to pipes that comprise the HHMT-Port Ivory Facility's underground stormwater sewer system. Ultimately, stormwater discharges to permitted outfalls located along the adjacent waterways, roadways, and marshland areas. Electrical service is supplied to the subject site via connection to the Consolidated Edison system servicing this section of Staten Island.

In addition to the utility infrastructure maintained by the HHMT-Port Ivory Facility, several utility easements, both active and inactive, traverse the Facility. Colonial Pipeline and Exxon (now ExxonMobil) maintain easements that traverse Site 1. Colonial Pipeline maintains a 10-foot pipeline easement that extends in a north/south direction along the western property boundary of Site 1. The easement originates south of Site 2A, traverses through that Site entering the southwestern corner of Site 1, continues across Richmond Terrace and through the western portion of Future Site 4 (Block1309, Lot 10), and finally terminates at the northern end of Future Site 4. ExxonMobil maintains an 18-foot easement that is located east of the Colonial Pipeline easement. This easement parallels the Colonial Pipeline easement throughout Site 1; however, this easement extends in an easterly direction along the southern boundary of Future Site 4 beyond Richmond Terrace. The locations of these easements are presented on Figure 2.

3.2 Site 1 Location and History

Site 1 includes the northwestern portion of Block 1400, Lot 1 and constitutes 14.95 acres of the 123.75-acre HHMT-Port Ivory Facility. Site 1 is bordered by Site 2A to the east and south, Richmond Terrace to the north, and Bridge Creek to the west. Vehicular access to the northern portion of Site 1 is provided from Richmond Terrace; access to the remaining portion of Site 1 is provided by a paved access road which extends from Western Avenue through site 2A; of the current layout of Site 1. No structures are currently located on Site 1. Site 1 generally consists of flat, unpaved, and unvegetated land. However, a soil pile, approximately 15-16 feet high in the vicinity of AOC-UST2, is currently located along the

eastern boundary of Site 1; this soil pile was used for surcharging purposes and will be regraded or transported off site during redevelopment of Site 1.

In the early 1900s, P&G developed portions of the current HHMT-Port Ivory Facility for use as a consumer goods manufacturing Facility. The consumer goods manufactured included soap, detergent, and foodstuffs. The specific consumer goods produced at the Facility and the operations/activities performed at specific site areas changed over time based upon corporate requirements. Manufacturing operations ceased in approximately 1991.

According to representatives of P&G and information provided in reports supplied by same, P&G constructed the initial Port Ivory manufacturing Facility at this location in 1906-1907. The original 77-acre Facility included portions of Sites 1, 2A, and Future Site 4, and was developed on an open, vegetated, marshy area. Over the years, P&G acquired additional acreage (Sites 2B and 3) and emplaced fill materials at low-lying areas of Sites 1, 2A/2B, 3 and Future Site 4, expanding the original Facility to include the current site limits, as shown on Figure 1. The fill used by P&G in conjunction with site development is reported to have included the following: sand, silt, gravel mixed with debris, cinders generated from on-site coal-fired boilers, and manufacturing by-products (i.e. calcium carbonate, carbonate salts from soap productions, diatomaceous filter earth from vegetable oil refining operations, carbonaceous filter material from glycerin recovery operations, etc.). Visual review of subsurface conditions during SI, RI and IRM activities indicates that all of the above-listed types of fill materials may have been emplaced at Site 1.

Review of Sanborn Maps and aerial photographs identified former structures at various locations throughout Site 1. The former structures included buildings and tanks at the Wood Yard, portions of buildings 12 and 13, ASTs to the west of Buildings 12 and 13 (buildings and structures immediately north, east, and south of Buildings 12 and 13 are located at Site 2A), and railroad tracks siding traversing Site 1. One building (or several smaller buildings) was located west of Buildings 12 and 13, near the southern portion of Site 1. Historical maps indicate that this building was utilized as a metal shop. In addition, Building S-16 and a building north of S-16 were located at Site 1, along with ASTs at Area A. Sanborn maps indicate the locations of former hydrogen holders; the nature of these hydrogen holders is discussed below. Building S-17 and structures extending from or immediately adjacent to Building S-17 were also located at Site 1. Please note, all of the structures identified above, with the exception of parts

of railroad tracks and sidings, were razed by P&G. In addition, Buildings 1A and 17 and aboveground conveyor belt systems and supports were removed by the Port Authority.

Based on historical mapping and information provided in reports prepared by P&G, the following materials were stored in ASTs present at Site 1 and/or were maintained at storage areas at Site 1: caustics, various vegetable and fish oils, fuel oil, waste oil, hydrogen, soap, spent acids, spent nickel catalyst, grease, coke and rosin. Storage methods are not identified on the maps. A few of the ASTs on the Block 1400, Lot 1 parcel (Sites 1 and 2A) were labeled on historical Sanborn Maps as being "hydrogen holders". As discussed below, these tanks are believed to have been used for the storage of hydrogen for use in fat and oil hydrogenation.

Historical maps also identify the potential presence of tanks, possibly USTs, at the Facility, including three areas (referenced herein as AOC-UST2, AOC-UST5 and AOC-UST6) on Site 1. Historical information indicates the following tank contents: oil in one or more tanks at Areas UST2 and UST5 and toluene in a tank at Area UST6. No UST was encountered in AOC-UST2, but the Port Authority has removed the previously decommissioned tanks at AOC-UST5 and AOC-UST6.

Historical information sources indicate some variability in the operations performed at specific site locations throughout P&G's operation of the Facility. However, in general, Sites 1 and 2A (Block 1400, Lot 1) were utilized as a single Facility for soap and glycerin manufacturing and utility functions (i.e. boiler houses, wood processing for the boilers, locomotive maintenance, etc.). The activities performed specifically at Site 1 consisted primarily of wood processing and storage. However, some office, machine shop, and soap manufacturing activities may have been performed in Buildings S-16 and 17 and in an additional building formerly located north of Building S-16. The locations of the former structures are indicated on Figure 2.

As noted above, ASTs referred to as "hydrogen holders" were observed on Sanborn Maps. HMM researched the usage and storage methods of hydrogen in industrial settings and determined that hydrogen is often used in the hydrogenation of oils and fats for foodstuffs and other commercial products. This is the most likely use for hydrogen at the former P&G Facility, given the nature of former Facility operations. Hydrogen can be stored as a gas under pressure, as a liquid under near-absolute zero temperature conditions, or bonded to metal and liquid hydrides and carbon compounds. Based on prior operations, it is likely that hydrogen was stored in liquid form at the former P&G Facility. Therefore, it is

unlikely that the presence of the former hydrogen holders impacted soil or groundwater quality at Site 1. Rather, appurtenant equipment that may have been present at Site 1 to pressurize the hydrogen is more likely to have impacted soil or groundwater quality since such equipment was likely powered by fuel oil. Because the location (and even the presence) of specific equipment, if any, is not confirmed on Sanborn or other historical maps, HMM has evaluated previous analytical data for those soil and groundwater samples collected in closest proximity to the hydrogen holders.

Analytical results from soil samples collected approximately 50 to 60 feet from the former tank locations during the SI and RI did not reveal the presence of substances related to the storage/usage of hydrogen (i.e., relatively high concentrations of metals that may be bonded to hydrogen for storage purposes were not present in the vicinity of the tanks). The nearest groundwater sample was collected from well PG-PA-MW-6, which is situated downgradient of the former hydrogen holder area. Analytical results for this sample indicated that only phenol and arsenic were detected at concentrations greater than their respective AWQSGVs. The elevated concentrations of arsenic appear to be related to the wood chips previously stockpiled in the Wood Yard. As indicated in Section 2.1.5, the wood chips have been removed, and the effect of the removal of the wood chips on groundwater quality will be determined during a groundwater monitoring program subsequent to the redevelopment of Site 1. The presence of phenol in the groundwater sample collected at PG-PA-MW-6 is likely related to the decay of naturally-occurring organic material that is present in the marsh deposits observed in the soil column at several locations at the Facility, including at Site 1. As such, it does not appear that the presence of the hydrogen holders has impacted soil or groundwater quality.

3.3 Regional and Local Hydrogeologic Setting

The following sections summarize the geology and hydrogeology of Staten Island and the HHMT-Port Ivory Facility, respectively.

3.3.1 Regional Hydrogeologic Setting

Physiographic provinces within Staten Island include both the Atlantic Coastal Plain and the Triassic lowlands section of the Piedmont physiographic province. The Precambrian-Cretaceous unconformity defines the boundary between these two physiographic provinces extending northeastward from Fresh Kills to north of Stapleton and continuing eastward across Long Island. The northwestern portion of Staten Island is underlain by bedrock of the Piedmont physiographic province, while Coastal Plain sediments are present in the southeastern portion of Staten Island.

Coastal Plain sediments include interlayered clay, silt, sand, and gravel deposits of the Raritan formation that thicken downdip (i.e., to the southeast). The bedrock in the Piedmont physiographic province includes shales, mudstones, and siltstones of the Stockton, Lockatong, and Passaic formations and intrusive diabase dikes. Less frequent sandstones and conglomerates occur in the Passaic formation and occasional limestones occur in the Lockatong formation. Basement rock underlying both the Coastal Plain sediment and bedrock of the Stockton, Lockatong, and Passaic formations is metamorphic rock of the Manhattan Prong.

In the extreme northeast portion of Staten Island, bedrock of the Passaic formation is overlain by glacial outwash deposits in turn overlain by finer-grained tidal marsh deposits. The glacial outwash deposits consist chiefly of stratified fine to coarse sand and gravel. The thicknesses of the glacial outwash deposits vary from approximately 20 feet to more than 50 feet. The overlying marsh deposits consist of primarily of organic silts and clays with occasional lenses of sand that represent stream channels and/or storm deposits. The marsh deposits are generally thin (i.e., likely no thicker than 15 feet).

Groundwater flow in the Raritan formation is anticipated to be seaward. In places where silts and clays overlie sands, groundwater may exist under confined conditions; otherwise, groundwater is anticipated to be under water table (i.e., unconfined) conditions. Groundwater flow occurs through the interstices between the individual soil grains. Although silts and clays have relatively high porosities, the mobility of groundwater through the pores is limited because the pore spaces are relatively small. Therefore, groundwater flow velocity is faster through the coarser-grained deposits than through the finer-grained deposits and most groundwater flow occurs through the sand layer.

Groundwater flow through the Lockatong, Stockton, and Passaic formations is expected to be seaward and occurs primarily through secondary porosity (e.g., bedding plane partings, fractures, etc.). In sandstone and conglomerate deposits, however, groundwater flow can occur through porosity in the rock itself, particularly if the cement that holds the individual sand and gravel grains together has been weathered and eroded. Water in these formations occurs under unconfined or confined conditions, depending on the frequency of vertical fractures in the interbedded shales, mudstones, siltstones, and coarser-grained deposits. The fractures become less frequent and narrower with depth so that the likelihood of groundwater being under confined conditions also increases with depth. The diabase dikes

exhibit very low hydraulic conductivity and therefore tend to act as hydraulic barriers to groundwater flow.

Groundwater in the glacial outwash and marsh deposits that overlie bedrock in the northwestern portion of Staten Island is generally anticipated to flow seaward. However, the groundwater may also be tidally influenced, and surface water may flow into confined aquifers or aquifers that have been subjected to pumping. Groundwater flow is similar to that through the Coastal Plain sediments in that it occurs through interstices between soil grains and occurs more rapidly through deposits of coarser-grained sediments that through deposits of finer-grained sediments. Groundwater in the glacial outwash deposits can be under confined or water table conditions, depending in part upon the thickness and vertical hydraulic characteristics of the overlying deposits. The horizontal flow is estimated to range from less than 0.1 to approximately 1.5 feet/day in glacial deposits comprised of sand and gravel. Where overlying deposits are thick and have low hydraulic conductivities, groundwater in the glacial outwash deposits is more likely to be under confined conditions. Groundwater in the overlying marsh deposits is under water table conditions.

Groundwater is not currently used for public water supply on Staten Island. Estimates of groundwater recharge rates on Staten Island are comparable to Kings and Queens Counties, approximately 0.25 to 0.5 million gallons per day per square mile. Before 1970, the surface water supply from upstate New York was supplemented by pumping a maximum of 5 million gallons per day of groundwater from aquifers beneath Staten Island. Higher pumping rates induced saline groundwater infiltration. Due to saline intrusion of aquifers in the area caused by former groundwater use, future development of aquifers for potable purposes in the general area is unlikely.

3.3.2 Local Hydrogeologic Setting

As noted above, the Passaic Formation underlies Site 1 and consists of reddish-brown to grayish-red siltstone and shale with a maximum thickness of 3,600 meters. According to available technical literature, the Passaic Formation in the vicinity of Site 1 strikes approximately north 50 degrees east and dips approximately of 9 to 15 degrees to the northwest. The Port Authority installed two deep monitoring wells, PG-PA-MW-1D and PG-PA-MW-6D, at Site 1 in November 2000. Both PG-MW-1D and PG-PA-MW-6D are located adjacent to shallow wells, and each therefore represents half of a well pair. According to the boring logs, bedrock of the Passaic Formation was encountered at approximately 70 feet

below ground surface (bgs) at both deep well locations. The bedrock encountered was described as red shale, confirming that it is bedrock of the Passaic Formation.

The hydrogeologic character of the Passaic Formation is anticipated to be as described in Section 3.3.1. The depth to groundwater in the deep aquifer is approximately eight to ten feet bgs at deep wells PG-MW-1D and PG-PA-MW-6D. According to previous environmental investigations, as well as limited information from the SI, tidal fluctuations were not observed in bedrock of the Passaic Formation. Based on calculated groundwater elevations at deep wells throughout the HHMT-Port Ivory Facility, the direction of the horizontal hydraulic gradient in the deep aquifer is north to northwest. The vertical hydraulic gradient is downward, and appears to be greater in magnitude further away from surface water bodies. Because the groundwater in the bedrock aquifer is anticipated to flow through secondary porosity in the bedrock, the actual direction of groundwater flow may not be parallel to the direction of the hydraulic gradient. However, as noted above, groundwater in the bedrock aquifer is anticipated to be towards Bridge Creek and/or the Arthur Kill.

The overburden materials at Site 1, as well as the remainder of the site, include a complex of stratified drift, glacial till, and tidal marsh deposits consisting of glacial outwash, marsh deposits, and anthropogenic fill. Based on the results of the SRI and previous investigations, the following strata have been encountered at Site 1 (strata are listed from the land surface downwards): (1) fill consisting of sand, silt, clay, and gravel in a generally loose condition mixed with carbonaceous material and/or vegetative, wood, brick, concrete, and glass debris that is present throughout Site 1 with a maximum thickness of about 19.5 feet; (2) organic clays and peats, consisting of soft and highly compressible tidal marsh deposits, to a maximum thickness of approximately 27 feet; (3) sand deposits consisting of loose to medium dense sand from marine or glacio-fluvial deposits ranging in thickness from 5 to 16 feet; (4) glacial clay and silt deposits with lenses of sand and gravel ranging in thickness from less than 10 to approximately 60 feet; and, (5) weathered shale. Essentially, the SI and the RI confirmed that the soil strata of Site 1 are consistent with documented regional conditions.

The hydrogeologic character of the overburden materials is anticipated to be as described in Section 3.3.1. The depth to groundwater in the overburden aquifer is approximately three to eight feet bgs at Site 1. According to previous environmental investigations as well as limited information from the SI, tidal fluctuations were not observed in the shallow aquifer. Based on calculated groundwater elevations at shallow wells throughout the HHMT-Port Ivory Facility, the direction of the horizontal hydraulic gradient

in the shallow aquifer at Site 1 and Site 2A varies, but is generally towards the north, northwest, or west. The hydraulic gradient indicates that the shallow aquifer is influenced by the presence of Bridge Creek to a greater extent than the deep aquifer. As noted above, the vertical hydraulic gradient is downward, and appears to be greater in magnitude further away from surface water bodies. Although the groundwater flow direction may or may not be parallel to the hydraulic gradient depending on the degree of anisotropy in the overburden aquifer, groundwater in the shallow aquifer is anticipated to be towards Bridge Creek and/or the Arthur Kill.

4.0 SRI SCOPE OF WORK

As noted above, the SRI effort was targeted to the AOC-UST2 area only; however, the SRI also included an evaluation of existing groundwater, surface water, and sediment analytical data with respect to whether groundwater impacts were affecting surface water quality in Bridge Creek and, in response to the NYSDEC concern regarding the former presence of hydrogen holders at Site 1, an evaluation of existing soil and groundwater data for impacts (if any) that may be attributable to the former hydrogen holders. Based on the results of the SI and RI at Site 1, a soil removal effort consisting of soil excavation and offsite disposal or recycling was proposed for AOC-UST2. The soil excavation effort was initiated on April 18, 2005. During excavation, field observations indicated that additional delineation was required to determine the extent of soil potentially impacted by petroleum. As such, the Port Authority discontinued the soil removal efforts and initiated the horizontal and vertical delineation of the observed impacted soil (i.e., initiated the SRI). The six objectives of the SRI were as follows: 1) to determine the impact (if any) the LNAPL has on soil quality; 2) to delineate the extent of the LNAPL and impacted soil; 3) to identify if the soil is acting as a source area for groundwater impacts; 4) to delineate the groundwater impacts (if any); 5) to determine whether LNAPL could discharge into Bridge Creek; and, 6) to determine whether impacted groundwater could discharge into Bridge Creek. The scope of work for the SRI at AOC-UST2 included the sampling of soil and groundwater. Specifically, the SRI consisted of the following: advancement of 14 soil borings, the collection of seventeen soil samples from these soil boring locations, the conversion of six soil borings to temporary wells, and the collection of one groundwater sample from each temporary well. All soil samples were analyzed for VOCs, SVOCs, and TPHC. All groundwater samples were analyzed for VOCs and SVOCs. The analytical laboratory was Veritech Laboratories, Fairfield, New Jersey, a New York State-certified laboratory (New York Laboratory Certification No. 11408).

The scope of work for the Site 1 SRI was designed to collect data sufficient to achieve the objectives listed above. Field observations made during drilling and the soil analytical results were evaluated in order to address the Objective Nos. 1 and 2. The presence/absence of LNAPL within the temporary wells was confirmed in order to address Objective No. 5. The groundwater analytical results were evaluated in order to address Objective Nos. 3, 4, and 6.

The methods and materials utilized during completion of field activities are summarized below in Section 5. Fieldwork was completed in accordance with applicable and relevant NYSDEC regulations and guidance. LNAPL samples were not collected because, during drilling, the LNAPL could not be separated from the soil and because LNAPL did not accumulate in any of the six temporary wells. The fieldwork was performed as proposed in the document entitled *Site Investigation Workplan Addendum – Sites 1 and 2A/2B* (Workplan Addendum) and dated March 24, 2005. Please note, the Workplan Addendum dated March 24, 2005 was a revision to a previous document of the same name dated March 9, 2005. NYSDEC issued comments regarding the March 9, 2005 Workplan Addendum, and conditionally approved the document pending minor edits. The March 9, 2005 Workplan Addendum was edited in accordance with NYSDEC requirements and resubmitted on March 24, 2005. Thus, the March 24 Workplan Addendum is considered the relevant NYSDEC approved document.

5.0 SRI – FIELD INVESTIGATION

This section describes the Site 1 SRI activities conducted between April and May 2005. As noted above, most Site 1 AOCs were investigated during the SI and RI. However, one AOC at Site 1 (AOC-UST2) required additional remedial investigation. Descriptions of the methods used to complete the SRI activities, including the performance of geophysical surveys, the drilling of soil borings, the installation of temporary wells, and the collection of soil and groundwater samples are provided below in Sections 5.1 through 5.4, respectively.

5.1 Drilling Methods – Soil Borings

Fourteen soil borings, including three step-out soil borings and six soil borings that were converted to temporary wells, were drilled at Site 1 between May 13 and 24, 2005. The step-out soil borings were drilled to delineate the presence of LNAPL and as well as to allow collection of subsurface soil samples. Each step-out boring was advanced at an interval of approximately 25 feet from the soil boring where LNAPL and/or petroleum-impacted soil were observed. Two step-out borings (UST2-4A and UST2-4B)

were drilled to the north of soil boring location UST2-4; one step-out soil boring (UST2-5A) was drilled to the east of soil boring location UST2-5; and, one soil boring (TWP-1A) was drilled to the east of soil boring location TWP-1. Figure 4 depicts the locations of soil borings drilled in AOC-UST2 during the SRI.

All soil borings were drilled in accordance with NYSDEC regulations and guidance documents. Manual drilling methods were used at all soil boring locations to a minimum depth of six feet below ground surface (bgs) for utility clearance purposes. Hollow stem auger drilling methods were used at deeper depths at all locations except for soil boring location UST2-6, where manual drilling methods were utilized to the completion depth (six feet bgs). Manual drilling methods included use of post-hole diggers and/or soil augers to advance the borehole and to collect six-inch-long soil cores for inspection.

Hollow stem auger drilling methods included the use of 4 ¼-inch augers, center rods with floating plugs, and a 3-inch inner diameter split spoon sampler. Following manual drilling to six feet bgs, the floating plug was inserted into the bottom auger, and the augers were advanced to approximately six feet bgs in order to remove all soil from the borehole advanced manually. The floating plug was removed, and the split spoon was driven two feet below the bottom of the auger using a 140-pound hammer that was repeatedly dropped approximately 30 inches onto rods connected to the split spoon. The split spoon was retrieved and the soil column was logged. The floating plug was inserted back into the augers, and the augers were advanced an additional two feet. The floating plug was removed, the split spoon was inserted into the augers, and an additional two feet of the soil column were recovered. This process continued until the soil boring was completed. Completion depths varied, but the soil borings were advanced to the shallower of the bottom of the impacted soil or at least one foot below the water table unless auger refusal was encountered. If auger refusal was encountered, the borehole was abandoned and a new soil boring was drilled adjacent to the abandoned boring location.

The soil column was logged continuously at all soil boring locations for (at a minimum) the following conditions: color; texture; moisture content; and, indications of impacted soil, including elevated concentrations of volatile organic vapors as measured using a photoionization detector (PID), discolored soil, sheen, LNAPL, and odor. Boring logs are included in Appendix A. Soil boring locations are shown on Figure 4.

5.2 Soil Sampling Methods

Seventeen soil samples were collected from 14 soil borings (for rationale, see Tables 2A and 2B), including three step-out soil borings and six soil borings that were subsequently converted to temporary wells, between May 13 and 24, 2005. At soil boring locations where LNAPL impacts were not observed, one soil sample was collected from directly above the water table. At soil boring locations where LNAPL impacts were observed, a sample was collected from the zone exhibiting the greatest indications of contamination, based on field observations, and a second sample was collected from the shallowest depth interval where the soil appeared to be clean (as based on the absence of the indicators listed above).

Soil samples were collected using a stainless steel trowel that was decontaminated between samples; using the trowel, soil was transferred from the sampling device (i.e., the split spoon, hand auger, or post-hole digger) directly into sampling jars. Decontamination efforts included rinsing the trowel and the coring device between uses with laboratory-grade DI water and an Alconox-water solution. The samples were labeled and placed on ice in a cooler. All soil samples were transported to the analytical laboratory under chain-of-custody documentation and analyzed for VOC+10, SVOC+25, and TPHC.

5.3 Installation of Temporary Wells

Six soil borings drilled at Site 1 were converted to temporary wells. Temporary wells TWP-1A and TWP-2 through 6 were constructed of 2-inch diameter PVC screen and riser. The screen for each temporary well consisted of 0.020-inch slot size. In each case, the screened interval extended from approximately two feet above groundwater to the bottom of the borehole. The sand pack for each well consisted of No. 1 sand, and was installed to a depth of approximately one to two feet above the top of the screen. Bentonite pellets were installed above the sand pack in all temporary wells to prevent stormwater or perched water from entering the sand pack. In all cases, the PVC riser was allowed to remain one to three feet above ground surface.

5.4 Groundwater Sampling Methods

As indicated above, one groundwater sample was collected from each of the six temporary wells installed at Site 1. Groundwater sampling was performed in accordance with NYSDEC requirements and guidance documents.

The presence/absence of LNAPL was recorded and the depth to water in the well was measured using an electronic oil-water interface meter. The volume of water within the well was calculated. The well was

TABLE 2A SOIL SAMPLING ANALYTICAL PROGRAM HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location	LNAPL	PID (ppm)	'	Sampling Depth (ft bgs)	Laboratory Analyses
UST2-4	NE	18 ¹	6.0	6-8	SVOC + 25; VOC + 10; TPHC
	NE	0		9-10	SVOC + 25; VOC + 10; TPHC
UST2-4A	6-8 ft bgs	0.6 1	5.0	6.5-7	SVOC + 25; VOC + 10; TPHC
UST2-4B	NE	0	6.5	6-6.5	SVOC + 25; VOC + 10; TPHC
UST2-5	Note 3	0	5.0	7.5-8	SVOC + 25; VOC + 10; TPHC
UST2-5A	NE	0	5.0	4.5-5	SVOC + 25; VOC + 10; TPHC
UST2-6	ZE	0	5.0	4.5-5	SVOC + 25; VOC + 10; TPHC
UST2-7	NE	0	4.5	4-4.5	SVOC + 25; VOC + 10; TPHC
TWP-1	Note 4	0	3.5	6-6.5	SVOC + 25; VOC + 10; TPHC
	NE	0		9.5-10	SVOC + 25; VOC + 10; TPHC
TWP-1A	NE	0	4.5	4-4.5	SVOC + 25; VOC + 10; TPHC
TWP-2	Note 5	0	5.0	8-8.5	SVOC + 25; VOC + 10; TPHC
	NE	0	-	9-9.5	SVOC + 25; VOC + 10; TPHC
TWP-3	NE	0	5.0	4.5-5	SVOC + 25; VOC + 10; TPHC
TWP-4	NE	0	3.0	5.5-6	SVOC + 25; VOC + 10; TPHC
TWP-5	NE	0	5.0	4.3-4.8	SVOC + 25; VOC + 10; TPHC
TWP-6	NE	0	5.0	8.5-9	SVOC + 25; VOC + 10; TPHC

Notes and Abbreviations:

LNAPL: light, non-aqueous phase liquid

PID: photoionization detector

ppm: parts per million above background

ft bgs: feet below ground surface

SVOC + 25: semivolatile organic compounds with a 25-

compound library search

VOC + 10: volatile organic compounds with a 10-compound

library search

TPHC: total petroleum hydrocarbons

NE: not encountered bgs: below ground surface

- 1: Petroleum odors also noted at approximately 7 feet bgs at these locations.
- 2: Soil borings UST2-5, UST2-5A, TWP-1, TWP-1A, and TWP-4 were located on top of the surcharge pile. The reference point for the depth at these locations is the land surface adjacent to the surcharge pile, considered to be approximately equivalent to the original (pre-surcharge) land surface that is now covered.
- 3: Sheen and odor noted at 7-8 ft bgs. Discontinuous LNAPL observed.
- 4: Sheen observed from 6-8 ft bgs.
- 5: Sheen, possibly due to decay of naturally-occurring organic matter (the sheen was thick and film-like), noted at 8-9.5 ft bgs.

TABLE 2B GROUNDWATER SAMPLING ANALYTICAL PROGRAM HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location	LNAPL	Depth to Water (ft bgs)	Screen Interval (ft bgs)	Laboratory Analyses
TWP-1A	None observed	4.5	-1.5 to 8.5	SVOC + 25; VOC + 10; TPHC
TWP-2	None observed	5.0	3 to 10.5	SVOC + 25; VOC + 10; TPHC
TWP-3	None observed	6.5	3 to 10	SVOC + 25; VOC + 10; TPHC
TWP-4	None observed	5.0	3 to 10	SVOC + 25; VOC + 10; TPHC
TWP-5	None observed	4.5	2.5 to 11.5	SVOC + 25; VOC + 10; TPHC
TWP-6	None observed	5.0		SVOC + 25; VOC + 10; TPHC

Notes and Abbreviations:

LNAPL: light, non-aqueous phase liquid

ft bgs: feet below ground surface

SVOC + 25: semivolatile organic compounds with a 25-compound library search

VOC + 10: volatile organic compounds with a 10-compound library search

TPHC: total petroleum hydrocarbons

bgs: below ground surface NE: None encountered

1: Temporary well TWP-1A was installed in a soil boring that was a step-out location from proposed location TWP-1. The step-out soil boring was drilled because LNAPL was observed at soil boring location TWP-1 and the temporary was intended to be installed upgradient of LNAPL.

2: Temporary wells TWP-1A and TWP-4 were located on top of the surcharge pile (i.e, approximately 15 to 16 feet above surrounding grade). The reference point for the depth at these locations is the land surface adjacent to the surcharge pile, considered to be approximately equivalent to the original (pre-surcharge) land surface that is now covered.

purged of three to five times the calculated volume of water using a centrifugal pump. After the water level recovered, a dedicated Teflon bailer was lowered into the well, allowed to fill with water, and was removed from the well. The groundwater sample was transferred from the bailer into laboratory-prepared sampling jars. The samples were labeled and placed on ice in a cooler. All soil samples were transported to the analytical laboratory (Veritech) under chain-of-custody documentation and analyzed for VOC+10 and SVOC+25.

6.0 SRI – RESULTS AND FIELD OBSERVATIONS

The SRI conducted at Site 1 included the following components: drilling of soil borings, collection of soil samples, installation of temporary wells, collection of groundwater samples, and evaluation of previous soil, groundwater, surface water, and sediment analytical data. The results of the fieldwork implemented during the SRI are provided in Section 6.1. During implementation of each fieldwork component, field observations and measurements were recorded. In addition, soil and groundwater samples were analyzed for the parameters specified in Section 5. The results of the fieldwork portion of the SRI are presented below in Sections 6.1.1 (field observations) and 6.1.2 (analytical results). Section 6.2 is a summary of HMM's evaluation of previous analytical data associated with the effect of impacted groundwater on the quality of surface water and sediment in Bridge Creek (Section 6.2.1) and the presence of the former hydrogen holders (Section 6.2.2).

6.1 Results of the Fieldwork Portion of the SRI

The fieldwork portion of the SRI, including the drilling of 14 soil borings, the collection and analysis of seventeen soil samples from those soil borings, the conversion of six of the soil borings to temporary wells, and the collection and analysis of one groundwater sample from each temporary well, was conducted between May 13 and 24, 2005. Fieldwork was conducted only at AOC-UST2. The results of this portion of the SRI are discussed in the sections below.

6.1.1 SRI Field Observations

The SRI included a visual examination of soil and groundwater conditions and measurements of the concentrations of volatile organic vapors in soil. Field observations were made to delineate the extent of LNAPL and impacted soil and to identify any indications that groundwater had been impacted by the LNAPL and/or impacted soil. The overburden materials encountered at this AOC during the implementation of the SRI were consistent with those previously observed throughout Site 1. In general,

fill material, including the soil surcharge pile, was encountered overlying organic clays and peat. The soil surcharge pile was present at locations UST2-5, UST2-5A, TWP-1, and TWP-1A. In these four soil boring locations, depths are provided relative to the land surface adjacent to the western side of the surcharge pile. Fill material was encountered at all locations and consisted of one or more of the following types of fill: urban fill; cinder fill; and, byproduct fill. The classification system for the fill is provided in Section 2.1.2, above. Native materials, consisting of organic fine-grained (i.e., primarily silts and clays) soil and peat, were encountered at only locations TWP-5 (at 11.5 feet bgs) and TWP-6 (at nine feet bgs).

Groundwater was encountered in the temporary wells at elevations ranging from approximately sea level to 5 feet above mean sea level (AMSL). The groundwater elevations confirmed that the direction of the horizontal component of the hydraulic gradient is to the west towards Bridge Creek. The groundwater flow direction is anticipated to be approximately perpendicular to the direction of the horizontal hydraulic gradient. To provide a visual presentation of the relationship between the water table, LNAPL/impacted soil, and overburden materials encountered at AOC-UST2, HMM prepared a cross-section through AOC-UST2, which is presented as Figure 5.

Potentially impacted soil was observed at only four of the 14 soil boring locations. Specifically, the presence of sheen, elevated concentrations of volatile organic vapors, petroleum odor, and/or LNAPL were observed at soil boring locations TWP-1, UST-4, UST2-4A, and UST2-5. As measured using a photoionization detector (PID), the concentration of volatile organic vapors in the soil ranged from 0 (at various depths and locations) to 18 parts per million (at 6-8 feet below ground surface at location UST2-4). The LNAPL appeared as sheen on, or as discrete nodules within, the soil and/or groundwater at locations TWP-1, UST2-4A, and UST2-5. Petroleum odor was noted at approximately seven feet bgs at UST2-4 and UST2-4A.

Based on field observations, the horizontal extent of the LNAPL and/or impacted soil is approximately 235 feet north-south by 170 feet east-west. Please note, LNAPL and/or impacted soil were present at locations UST2-5 and TWP-1, drilled at the top of the soil surcharge stockpile and immediately west of the Site 1-Site 2A boundary. Impacted soil is therefore present beneath the western portion of the soil surcharge stockpile.

6.1.2 SRI Analytical Results and Appropriate NYSDEC Standards and Guidance Values

Seventeen soil and six groundwater samples were collected from AOC-UST2. The analytical results for these samples are tabulated in Tables 3A and 3B (soil sampling results) and Tables 4A and 4B (groundwater sampling results) and are summarized below. The spatial distribution of compounds detected at concentrations greater than the applicable standards are shown on Figure 4.

Summary of Soil Sampling Analytical Results and Appropriate NYSDEC Guidance Values

As noted above, seventeen soil samples were collected from 14 soil borings drilled at AOC-UST2 between May 13 and May 24, 2005. The date of sample collection, depth interval sampled, and the rationale for selecting the depth interval are provided in Table 2A. Soil samples were collected to determine the impact (if any) of the LNAPL on soil quality and to delineate the extent of impacted soil. The sampling locations and a summary of the results are shown on Figure 4. A summary of the analytical results is provided in Tables 3A and 3B.

For discussion purposes, the soil sampling results have been compared to current NYSDEC regulatory criteria. The criteria utilized are the Recommended Soil Cleanup Objective (RSCO) criteria as set forth in the January 1994 NYSDEC Division of Technical and Administrative Guidance Memorandum (TAGM 4046). Please note, reference to the RSCOs in this report does not represent any agreement or concurrence that the same are appropriate for usage at this site.

The sampling program for AOC-UST2 included the collection of one soil sample from the zone directly above the water table at soil boring locations with no indications of LNAPL, and the collection of two soil samples (one from the most impacted depth interval and a deeper sample from soil that appeared clean) at soil boring locations with indications of LNAPL. All soil samples were analyzed for VOCs, SVOCs, and TPHC.

Only one of the 17 soil samples collected during the SRI contained one or more VOCs at concentrations greater than their respective RSCOs. The soil sample collected from the 1.5-2 foot bgs depth interval at location UST2-5A contained slightly elevated concentrations of methylene chloride and trans-1,2-dichloroethene. Methylene chloride, a common laboratory solvent, was detected at a concentration of 0.19 mg/kg, slightly greater than its RSCO of 0.1 mg/kg. Trans-1,2-dichloroethene was detected at a concentration of 0.62 mg/kg, slightly greater than its RSCO of 0.3 mg/kg. No other VOC was detected at a concentration greater than its respective RSCO in any soil sample collected during the SRI.

1.1.1.7-fertachloroethane														
Act Test Act Test Act Test Act Test Act Test Act Test Act Test Act Test Act Test Act A	Sample Location			UST2-4		1	UST2-4			UST2-4A			UST2-4B	
Samping Date NYS.)LEC VISCUS Siri 32005 Siri 32005 Siri 32005 Sol Samping Depth Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Siri 32005 Sol Samping Sol Samping Siri 32005 Sol Samping Sol Samp	Field ID		PI-US	T2-4-05130	5S013	PI-US1	2-4-051305	S014B	PI-US	T2-4A05160	5SO13	PI-US1	72-4B05160	5SO13
Sampling Date (mg/Kg) 5/19/2005 5/	Lab Sample No.	NVEDEC BECO	1 /	AC17613-00	2	ļ <i>4</i>	C17613-003	3		AC17643-00	1	Α .	C17643-00	2
Matrix Sample Depth	Sampling Date			5/13/2005			5/13/2005		ľ	5/16/2005			5/16/2005	
Units	Matrix	(97.9)		Soil			Soil			Soit		1	Soil	
Units	Sample Depth			6'-8' bgs		ŀ	9'-10' bgs			6.5'-7' bgs			6'-6.5' bas	
Value Conc MOL Conc	Units		i	_		1	mg/Kg			mg/Kg		Į.	-	
1,1-1:richtooethane	VOLATILE ORGANIC COMPOUNDS (VOCs)		Conc	MDL	Qua	Conc	MDL	Qual	Conc	MDL	Qual	Conc		Qual
1.1.2.7-Intrachforoethane	1,1,1,2-Tetrachloroethane	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	T
1,12-inclinoreshane	1,1,1-Trichloroethane	0.8 (Note 1)	ND	0.032		ND	0.0089	ľ	ND	0.0098	T	ND	0.0067	T
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	0.6 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
1,1-Dichloroethene	1,1,2-Trichloroethane	6.0 (Note 1)	ND	0.032	T	ND	0.0089		ND	0.0098		ND	0.0067	
2.2Dichloroethane	1,1-Dichloroethane	0.2 (Note 1)	ND	0.032	T	ND	0.0089	T	ND	0.0098	T	ND	0.0067	
1.2-Dichloropropane	1,1-Dichloroethene	0.4 (Note 1)	ND	0.032	1	ND	0.0089		ND	0.0098		ND	0.0067	T
2-Butanone 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 2-Chioroethylwinylether NS ND 0.032 ND 0.0098 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0097 ND 0.0098 ND 0.0097 ND 0.0097 ND 0.0098 ND 0.0097 ND 0.0098	1,2-Dichloroethane	0.1 (Note 1)	ND	0.032	1	ND	0.0089		ND	0.0098		ND	0.0067	1
2-Chloroethywinylether	1,2-Dichloropropane		ND	0.032		ND	0.0089				1			1
2-Chloroethylvinylether	2-Butanone	0.3 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098	1	ND	0.0067	1
E-Hesanone	2-Chloroethylvinylether	NS	ND	0.032		ND	0.0089		ND		1			1
Acetone	2-Hexanone	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Acetone	4-Methyl-2-Pentanone	1.0 (Note 1)	ND	0.032	Π	ND	0.0089		ND		1			T
Acrytonitrile	Acetone	0.2 (Note 1)	0.16			0.064			0.056			0.034		\dagger
Berizene	Acrolein	NS	ND	0.16	<u> </u>	ND	0.045		ND	0,049	1		0.033	1
Benzene	Acrylonitrile	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	† · ·
Bromodichloromethane		0.06 (Note 1)	ND	0.0064		ND	0.0018				† <u> </u>			1
Bromoform	Bromodichloromethane		ND	0.032	1	ND								†
Bromomethane	Bromoform	NS	ND	0.032		ND	0.0089		ND		†			1
Carbon disulfide	Bromomethane	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	1
Carbon tetrachloride	Carbon disulfide	2.7 (Note 1)	ND	0.032		0.0061		J	ND	0.0098		ND	0.0067	
Chlorobenzene			ND				0.0089							
Chloroform	Shlorobenzene	1.7 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Chloromethane	nloroethane	1.9 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Cis-1,2-Dichloroethene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Cis-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Dibromochloromethane NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Ethylbenzene 5.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 M&p-Xylenes 1.2 (Note 1) ND 0.013 ND 0.0036 ND 0.0039 ND 0.0027 Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 0.018 O-Xylene 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.5 (Note 1) ND	Chloroform	0.3 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Cis-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Dibromochloromethane NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Ethylbenzene 5.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 M&P-Xylenes 1.2 (Note 1) ND 0.013 ND 0.0366 ND 0.0039 ND 0.0027 Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 0.018 O-Xylene 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND	Chloromethane	NS	ND	0.032	-	ND	0.0089		ND	0.0098		ND	0.0067	
Cis-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Dibromochloromethane NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Ethylbenzene 5.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 M&p-Xylenes 1.2 (Note 1) ND 0.013 ND 0.0366 ND 0.0039 ND 0.0027 Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 ND 0.0029 ND 0.0027 Methylene chloride 0.1 (Note 1) ND 0.0064 ND 0.0018 ND 0.0039 ND 0.0027 Methylene chloride 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 <t< td=""><td>Cis-1,2-Dichloroethene</td><td>NS</td><td>ND</td><td>0.032</td><td></td><td>ND</td><td>0.0089</td><td></td><td>ND</td><td>0.0098</td><td></td><td>ND</td><td>0.0067</td><td></td></t<>	Cis-1,2-Dichloroethene	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Ethylbenzene	Cis-1,3-Dichloropropene	NS	ND	0.032		ND	0.0089		ND	0.0098		ND		
Ethylbenzene 5.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 M&p-Xylenes 1.2 (Note 1) ND 0.013 ND 0.0036 ND 0.0039 ND 0.0027 Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 O-Xylene 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.0098 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0067 Trans-1,2-Dichloroethene 0.3 (No	Dibromochloromethane	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	П
M&p-Xylenes 1.2 (Note 1) ND 0.013 ND 0.0036 ND 0.0039 ND 0.0027 Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 O-Xylene 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0098 <td< td=""><td>Ethylbenzene</td><td>5.5 (Note 1)</td><td>ND</td><td>0.0064</td><td></td><td>ND</td><td>0.0018</td><td></td><td>ND</td><td>0.002</td><td></td><td>ND</td><td></td><td>П</td></td<>	Ethylbenzene	5.5 (Note 1)	ND	0.0064		ND	0.0018		ND	0.002		ND		П
Methylene chloride 0.1 (Note 1) 0.094 0.04 0.034 0.018 O-Xylene 1.2 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0067 Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Vinyl chloride 0.7 (Note 1) ND	M&p-Xylenes	1.2 (Note 1)	ND	0.013		ND	0.0036		ND	0.0039		ND	0.0027	
Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Vinyl chloride 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 D		0.1 (Note 1)	0.094			0.04			0.034					
Styrene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Vinyl chloride 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 D	O-Xylene	1.2 (Note 1)	ND.	0.0064		ND	0.0018	\Box	ND	0.002		ND	0.0013	
Tetrachloroethene 1.4 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Toluene 1.5 (Note 1) ND 0.0064 ND 0.0018 ND 0.002 ND 0.0013 Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Vinyl chloride: 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 D Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1206 J 0.1206 J <td>Styrene</td> <td>NS</td> <td>ND</td> <td>0.032</td> <td></td> <td>ND</td> <td>0.0089</td> <td></td> <td>ND</td> <td>0.0098</td> <td></td> <td>ND</td> <td>0.0067</td> <td></td>	Styrene	NS	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	
Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Vinyl chloride: 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1206 J	Tetrachloroethene	1.4 (Note 1)	ND	0.032		ND	0.0089		ND					
Trans-1,2-Dichloroethene 0.3 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0098 ND 0.0067 Vinyl chloride: 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 ND 0.0067 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 0.052 Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1266 J J 0.1266 J J 0.1266 J J 0.1266 J J 0.1266 J J 0.1266 J J 0.1266 J J <td>Toluene</td> <td>1.5 (Note 1)</td> <td>ND</td> <td>0.0064</td> <td></td> <td>ND</td> <td>0.0018</td> <td></td> <td>ND</td> <td>0.002</td> <td></td> <td>ND</td> <td>0.0013</td> <td></td>	Toluene	1.5 (Note 1)	ND	0.0064		ND	0.0018		ND	0.002		ND	0.0013	
Trans-1,3-Dichloropropene NS ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Trichloroethene 0.7 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Vinyl chloride 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0098 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 0.052 Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1266 J	Trans-1,2-Dichloroethene	0.3 (Note 1)	ND	0.032		ND	0.0089		ND					ГΠ
Vinyl chloride 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.09 0.052 Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1206 J	Trans-1,3-Dichloropropene	NS	ND	0.032		ND .	0.0089		ND				0.0067	
Vinyl chloride 0.2 (Note 1) ND 0.032 ND 0.0089 ND 0.0098 ND 0.0067 Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.09 0.052 Total Volatile Organic TICs NS 11.54 J 0.196 J 11.54 J 0.1206 J	Trichloroethene	0.7 (Note 1)	ND	0.032		ND	0.0089		ND	0.0098		ND	0.0067	\Box
Total Confident VOCs 10 (Note 2) 0.254 0.104 0.09 0.052 0.052 Total Volatile Organic TICs NS , 11.54 J 0.196 J 11.54 J 0.1206 J 0.1206 J	Vinyl chloride:		ND			ND								
Total Volatile Organic TICs NS , 11.54 J 0.196 J 11.54 J 0.1206 J	Total Confident VOCs	10 (Note 2)	0.254	-		0.104			0.09					\vdash
	Total Volatile Organic TICs		11.54		J	0.196		J	11.54		J			j
#10tal Fett Oteuri in YOU (CATOURS 11 PNC)	Total Petroleum Hydrocarbons (TPHC)	NS	48000			360	-	-	4100			150		$\dot{oldsymbol{}}$

							•						
Sample Location		1	UST2-5			UST2-5A		l	UST2-6			UST2-7	
Field ID			2-5-05160			2-5A051705			2-6-05130		ì	2-7-05170	
Lab Sample No.	NYSDEC RSCO	A	C17643-00	3	A	C17665-00	1	A	C17613-00	11	A	C17665-00	2
Sampling Date	(mg/Kg)		5/16/2005		ļ	5/17/2005			5/13/2005			5/17/2005	
Matrix	1 ' 5 5'		Soil			Soil		ļ	Soil			Soil	
Sample Depth			7.5'-8' bgs		l	4.5'-5' bgs			4.5'-5' bgs		l	4'-4.5' bgs	
Units		<u> </u>	mg/Kg		<u> </u>	mg/Kg		<u>l</u>	mg/Kg		L.	mg/Kg	
VOLATILE ORGANIC COMPOUNDS (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qua
1,1,1,2-Tetrachloroethane	NS	ND	0.0077		ND	0.43	<u> </u>	ND	0.0064	<u> </u>	ND	0.0076	
1,1,1-Trichloroethane	0.8 (Note 1)	ND	0.0077	<u> </u>	ND	0.43		ND	0.0064	<u> </u>	ND	0.0076	
1,1,2,2-Tetrachloroethane	0.6 (Note 1)	ND	0.0077	<u>l</u>	ND	0.43	<u> </u>	ND	0.0064	<u> </u>	ND	0.0076	
1,1,2-Trichloroethane	6.0 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
1,1-Dichloroethane	0.2 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
1,1-Dichloroethene	0.4 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
1,2-Dichloroethane	0.1 (Note 1)	ND	0.0077	I	ND	0.43		ND	0.0064		ND	0.0076	
1,2-Dichloropropane	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
2-Butanone	0.3 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
2-Chloroethylvinylether	NS	ND	0.0077		ND	1.1		ND	0.0064		ND	0.0076	L
2-Hexanone	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	T
4-Methyl-2-Pentanone	1.0 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Acetone	0.2 (Note 1)	0.045			ND	0.43		0.032			ND	0.038	
Acrolein	NS	ND	0.038		ND	0.43		ND	0.032		ND	0.038	
Acrylonitrile	NS	ND	0.0077		0.15		J	ND	0.0064		ND	0.0076	
Benzene	0.06 (Note 1)	ND	0.0015		ND	0.43		ND	0.0013		ND	0.0015	
Bromodichloromethane	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	1
Bromoform	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	1
Bromomethane	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Carbon disulfide	2.7 (Note 1)	0.01			ND	0.43		0.0022		J	0.0021		J
Carbon tetrachloride	0.6 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	T
Chlorobenzene	1.7 (Note 1)	ND	0.0077		ND	1.1		ND	0.0064		ND	0.0076	
Chloroethane	1.9 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND:	0.0076	
Chloroform	0.3 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Chloromethane	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Cis-1,2-Dichloroethene	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Cis-1,3-Dichloropropene	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Dibromochloromethane	NS	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Ethylbenzene	5.5 (Note 1)	ND	0.0015		0.049			ND	0.0013		ND	0.0015	
M&p-Xylenes	1.2 (Note 1)	ND	0.0031		ND	0.43		ND	0.0026		ND	0.003	
Methylene chloride	0.1 (Note 1)	0.027			∜0.19 ∳		J	0.021			0.0096		
O-Xylene	1.2 (Note 1)	ND	0.0015		ND	0.43		ND	0.0013		ND	0.0015	
Styrene	NS	ND	0.0077		0.81	0.43		ND	0.0064		ND	0.0076	
Tetrachloroethene	1.4 (Note 1)	ND	0.0077		0.81	0.43		ND	0.0064		ND	0.0076	
Toluene	1.5 (Note 1)	ND	0.0015		1			ND	0.0013		ND	0.0015	
Trans-1,2-Dichloroethene	0.3 (Note 1)	ND	0.0077		≠0.62 °			ND	0.0064	,	ND	0.0076	
Trans-1,3-Dichloropropene	NS	ND	0.0077		0.41		J	ND	0.0064		ND	0.0076	
Trichloroethene	0.7 (Note 1)	ND	0.0077		ND	0.43		ND	0.0064		ND	0.0076	
Vinyl chloride	0.2 (Note 1)	ND	0.0077	\neg	ND	0.43		ND	0.0064		ND	0.0076	
Total Confident VOCs	10 (Note 2)	0.082			1.669			0.053			0.0096		
Total Volatile Organic TICs	NS	0.1315		J	0.0498		J	0.0354		J	0.0343		J
Total Petroleum Hydrocarbons (TPHC)	NS	4100			860			46			97		

	 	T	TIA/E :		1	TAY 2 :		т	TME 11		T		
Sample Location	1		TWP-1		J	TWP-1		l	TWP-1A		I	TWP-2	
Field ID	1		P-1-05230			VP-1-05230			/P-1-05230		1		
Lab Sample No.	NYSDEC RSCO	l ^	C17758-00	12	1 '	AC17758-00	5	1 '	AC17758-00	11		17870-00	11
Sampling Date	(mg/Kg)		5/23/2005		1	5/23/2005			5/23/2005		'	5/19/2005	
Matrix	1	l	Soil		1	Soil			Soil			Soil	
Sample Depth			6'-6.5' bgs		1	9.5'-10' bgs			4'-4.5' bgs		1 8	3'-8.5' bgs	
Units		<u> </u>	mg/Kg		<u> </u>	mg/Kg			mg/Kg		<u> </u>	mg/Kg	
VOLATILE ORGANIC COMPOUNDS (VOCs)		Conc	MDL	Qua		MDL	Qual		MDL	Qual	Conc	MDL	Qual
1,1,1,2-Tetrachloroethane	NS	ND	0.0093	ļ	ND	0.006	ļ	ND	0.0077	<u> </u>	ND	0.0077	<u> </u>
1,1,1-Trichloroethane	0.8 (Note 1)	ND	0.0093		ND	0.006		ND	0.0077	lacksquare	ND	0.0077	<u> </u>
1,1,2,2-Tetrachloroethane	0.6 (Note 1)	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077	Ь_	ND	0.0077	<u> </u>
1,1,2-Trichloroethane	6.0 (Note 1)	ND	0.0093	ļ	ND	0.006	ļ	ND	0.0077	L.	ND	0.0077	ļ
1,1-Dichloroethane	0.2 (Note 1)	ND	0.0093	<u> </u>	ND	0.006	L	ND	0.0077		ND	0.0077	
1,1-Dichloroethene	0.4 (Note 1)	ND	0.0093	ļ	ND	0.006	ļ	ND	0.0077	L	ND	0.0077	L.
1,2-Dichloroethane	0.1 (Note 1)	ND	0.0093	L	ND	0.006		ND	0.0077	اـــــا	ND	0.0077	<u> </u>
1,2-Dichloropropane	NS	ND	0.0093	ļ	ND	0.006	ļ	ND	0.0077		ND	0.0077	ļ
2-Butanone	0.3 (Note 1)	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077		ND	0.0077	
2-Chloroethylvinylether	NS	ND	0.0093	<u> </u>	ND	0.006	ļ	ND	0.0077		ND	0.0077	ļ
2-Hexanone	NS	ND	0.0093	_	ND	0.006	<u> </u>	ND	0.0077	Ш	ND	0.0077	
4-Methyl-2-Pentanone	1.0 (Note 1)	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077		ND	0.0077	Ш
Acetone	0.2 (Note 1)	0.037		J	0.018		J	0.033		J	0.045	ļ	
Acrolein	NS	ND	0.046	L.	ND	0.03		ND	0.038		ND	0.038	Ш
Acrylonitrile	NS	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077	\sqcup	ND	0.0077	Щ
Benzene	0.06 (Note 1)	ND	0.0019	_	ND	0.0012	<u> </u>	ND	0.0015	igsquare	ND	0.0015	Ш
Bromodichloromethane	NS	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077	<u> </u>	ND	0.0077	Ш
Bromoform	NS	ND	0,0093		ND	0.006		ND	0.0077	ļ	ND	0.0077	
Bromomethane	NS	ND	0.0093	—	ND	0.006		ND	0.0077		ND	0.0077	
Carbon disulfide	2.7 (Note 1)	0.002		J	ND	0.006		ND	0.0077		0.01		ļ
Carbon tetrachloride	0.6 (Note 1)	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077	├ ─	ND	0.0077	
Chlorobenzene	1.7 (Note 1)	ND	0.0093	 	ND	0.006	4	ND	0.0077	<u> </u>	ND	0.0077	
Chloroethane	1.9 (Note 1)	ND	0.0093	<u> </u>	ND	0.006		ND	0.0077		ND	0.0077	igsqcut
Chloroform	0.3 (Note 1)	ND	0.0093		ND	0.006		ND	0.0077		ND	0.0077	
Chloromethane	NS	ND	0.0093		ND	0.006		ND	0.0077		ND	0.0077	\square
Cis-1,2-Dichloroethene	NS	ND	0.0093	\vdash	ND	0.006		ND	0.0077	 	ND	0.0077	
Cis-1,3-Dichloropropene	NS	ND	0.0093		ND	0.006		ND	0.0077		ND	0.0077	
Dibromochloromethane	NS 5.5 (No. 4)	ND	0.0093		ND	0.006		ND	0.0077		ND	0.0077	
Ethylbenzene	5.5 (Note 1)	ND	0.0019	\vdash	ND	0.0012		ND	0.0015		ND	0.0015	\vdash
M&p-Xylenes	1.2 (Note 1)	ND	0.0037	\vdash	ND	0.0024		ND 0.004	0.0031		ND	0.0031	
Methylene chloride	0.1 (Note 1)	0.027	0.0010	-	0.027	0.0042		0.024 ND	0.0045		0.027	0.0045	
O-Xylene	1.2 (Note 1)	ND ND	0.0019		ND ND	0.0012			0.0015 0.0077		ND	0.0015	
Styrene	NS	ND ND		\vdash	ND ND	0.006		ND			ND	0.0077	
Tetrachloroethene	1.4 (Note 1)	ND ND	0.0093		ND	0.006		ND ND	0.0077 0.0015		ND	0.0077	-
Toluene	1.5 (Note 1)		0.0019		ND	0.0012	\dashv				ND	0.0015	
Trans-1,2-Dichloroethene	0.3 (Note 1) NS	ND ND	0.0093	\vdash	ND	0.006		ND ND	0.0077		ND ND	0.0077	
Trans-1,3-Dichloropropene		ND DN	0.0093	\vdash	ND	0.006		ND ND	0.0077		ND ND	0.0077	
Trichloroethene Vinvl chloride	0.7 (Note 1) 0.2 (Note 1)	ND ND	0.0093		ND	0.006		ND ND	0.0077		ND ND	0.0077	
			0.0083	-	0.027	0.006		0.024	0.0077	\rightarrow		0.0077	
Total Confident VOCs	10 (Note 2) NS	0.027		J	0.027						0.082		
Total Volatile Organic TICs		0.103		٠,			J	0.111		J	0.249		J
Total Petroleum Hydrocarbons (TPHC)	NS	2700			150			9600			580	i	

0		T	TWP-2		Т .	TWP-3			TWP-4			TWP-5	
Sample Location		I	1 VV P-2 VP-2-05190!		0.70	P-3-05180	-0040		7-4-05240				
Field ID												P-5-051905	
Lab Sample No.	· NYSDEC RSCC) ′	AC17870-00	12		C17675-00	17		17774-0		1 '	C17870-00	3
Sampling Date	(mg/Kg)		5/19/2005		1	5/18/2005		'	5/24/2005		ŀ	5/19/2005	
Matrix		l	Soil		1	Soil		l .	Soil		ŀ	Soil	
Sample Depth		l	9'-9.5' bgs		1	4.5'-5' bgs		!	5.5'-6' bgs			4.3'-4.8' bgs	i
Units		 	mg/Kg	To .	1	mg/Kg	Τ		mg/Kg	T	1	mg/Kg	12-
VOLATILE ORGANIC COMPOUNDS (VOCs)		Conc	MDL	Qua	+	MDL	Qual		MDL	Qua		MDL	Qua
1,1,1,2-Tetrachloroethane	0.8 (Note 1)	ND ND	0.006	 	ND ND	0.006	╄	ND ND	0.0068	+	ND	0.0061	┼┈
1,1,1-Trichloroethane		1 — —	+	+	+	+	 		+	┿	ND	0.0061	+-
1,1,2,2-Tetrachloroethane	0.6 (Note 1)	ND	0.006	┼─	ND	0.006	+	ND	0.0068	+	ND	0.0061	
1,1,2-Trichloroethane	6.0 (Note 1)	ND	0.006	+	ND	0.006	+	ND	0.0068	┼	ND	0.0061	
1,1-Dichloroethane	0.2 (Note 1)	ND	0.006	+	ND	0.006	ļ	ND	0.0068	┿	ND	0.0061	+
1,1-Dichloroethene	0.4 (Note 1)	ND	0.006	∔	ND	0.006		ND	0.0068	╄	ND	0.0061	┼
1,2-Dichloroethane	0.1 (Note 1)	ND	0.006	 	ND	0.006		ND	0.0068	-	ND	0.0061	+
1,2-Dichloropropane	NS	ND	0.006	┼—	ND	0.006	\vdash	ND	0.0068	₩	ND	0.0061	
2-Butanone	0.3 (Note 1)	ND	0.006	₩	ND	0.006	-	ND	0.0068		ND	0.0061	
2-Chloroethylvinylether	NS	ND	0.006	┼	ND	0.006	ļ	ND	0.0068	 	ND	0.0061	1
2-Hexanone	NS	ND	0.006	↓	ND	0.006	\sqcup	ND	0.0068	 	ND	0.0061	↓
4-Methyl-2-Pentanone	1.0 (Note 1)	ND	0.006	₩	ND	0.006		ND	0.0068	—	ND	0.0061	
Acetone	0.2 (Note 1)	0.062		<u> </u>	0.024	<u> </u>	J	0.035	↓	Ļ	0.044	ļ	
Acrolein	NS	ND	0.03		ND	0.03	\sqcup	ND	0.034	↓	ND	0.03	
Acrylonitrile	NS	ND	0.006	L	ND	0.006		ND	0.0068	<u> </u>	ND	0.0061	<u> </u>
Benzene	0.06 (Note 1)	ND	0.0012	<u> </u>	ND	0.0012	.	ND	0.0014		ND	0.0012	
Bromodichloromethane	NS	ND	0.006	ļ	ND	0.006		NĐ	0.0068	<u> </u>	ND	0.0061	
Bromoform	NS	ND	0.006	ļ	ND	0.006		ND	0.0068		ND	0.0061	
Bromomethane	NS	ND	0.006		ND	0.006		NĐ	0.0068	L	ND	0.0061	
Carbon disulfide	2.7 (Note 1)	ND	0.006	<u> </u>	ND	0.006		ND	0.0068	<u> </u>	ND	0.0061	
Carbon tetrachloride	0.6 (Note 1)	ND	0.006		ND	0.006		ND	0.0068	L	ND	0.0061	<u> </u>
Chlorobenzene	1.7 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Chloroethane	1.9 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Chloroform	0.3 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Chloromethane	, NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Cis-1,2-Dichloroethene	NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Cis-1,3-Dichloropropene	NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Dibromochloromethane	NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Ethylbenzene	5.5 (Note 1)	ND	0.0012		ND	0.0012		ND	0.0014		ND	0.0012	
M&p-Xylenes	1.2 (Note 1)	ND	0.0024		ND	0.0024		NĐ	0.0027		ND	0.0024	
Methylene chloride	0.1 (Note 1)	0.022			0.017			0.034			0.026		
O-Xylene	1.2 (Note 1)	ND	0.0012		ND	0.0012		ND	0.0014		ND	0.0012	
Styrene	NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Tetrachloroethene	1.4 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Toluene	1.5 (Note 1)	ND	0.0012		ND	0.0012		ND	0.0014		ND	0.0012	
Trans-1,2-Dichloroethene	0.3 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Trans-1,3-Dichloropropene	NS	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	
Trichloroethene	0.7 (Note 1)	ND	0.006		ND	0.006		ND	0.0068		ND	0.0061	М
Vinyl chloride	0.2 (Note 1)	ND	0.006		ND	0.006	$\neg \uparrow$	ND	0.0068		ND	0.0061	
Total Confident VOCs	10 (Note 2)	0.084			0.017			0.069			0.07		
Total Volatile Organic TICs	NS	0.138		J	0.0593		J	0.0392		J	0.1199		J
Total Petroleum Hydrocarbons (TPHC)	NS	ND	40	\vdash	150		\dashv	330			ND	41	\vdash

Sample Location	[T	TWP-6		1	FB			FB.			FB	
Field ID		פעת ום	-6-05180	ECO40	DI ED	-01-051305	M/O04	0150	-01-051605	M/O04	DI 50	-01-051705	MOO4
Lab Sample No.			17675-00		1	C17613-00		1	C17643-00			AC17665-00	1
The state of the s	NYSDEC RSCO		6/18/2005	2	1 ′	5/13/2005	•	'	5/16/2005	•	l '	5/17/2005	
Sampling Date	(mg/Kg)		Soil			Aqueous		ļ	Aqueous				
Matrix	Į.	١.			•	•			•			Aqueous	
Sample Depth	İ	٩ ١	1.5'-9' bgs mg/Kg			none mg/Kg		i	none mg/Kg		1	none mg/Kg	
Units	<u> </u>	0		Louis		MDL	Ound	Conc		Qual	Conc		Tour
VOLATILE ORGANIC COMPOUNDS (VOCs)		Conc	MDL	Qual			Qual		MDL	Quai		MDL	Qual
1,1,1,2-Tetrachloroethane	NS	ND	0.007	 	ND	5	<u> </u>	ND	5	-	ND	5	
1,1,1-Trichloroethane	0.8 (Note 1)	ND	0.007	-	ND	5	<u> </u>	ND	5		ND	5	
1,1,2,2-Tetrachloroethane	0.6 (Note 1)	ND	0.007	↓	ND	5	ļ	ND	5		ND	5	-
1,1,2-Trichloroethane	6.0 (Note 1)	ND	0.007	ļ	ND	5		ND	5		ND	5	4
1,1-Dichloroethane	0.2 (Note 1)	ND	0.007	ļ	ND	5		ND	5		ND	5	ļ
1,1-Dichloroethene	0.4 (Note 1)	ND	0.007	↓	ND	5	ļ	ND	5	ļ	ND	5	ļi
1,2-Dichloroethane	0.1 (Note 1)	ND	0.007	├	ND	5	ļ	ND	5		ND	5	├
1,2-Dichloropropane	NS	ND	0.007	<u> </u>	ND	5		ND	5	 	ND	5	
2-Butanone	0.3 (Note 1)	ND	0.007	 	ND	5		ND	5		ND	5	ļ
2-Chloroethylvinylether	NS	ND	0.007	├	ND	5		ND	5	\vdash	ND	5	1
2-Hexanone	NS	ND	0.007	_	ND	5		ND	5	\vdash	ND	5	1
4-Methyl-2-Pentanone	1.0 (Note 1)	ND	0.007		ND	5	L	ND	5		ND	5	ш
Acetone	0.2 (Note 1)	ND	0.035	ļ	ND	25	L	ND	25		ND	25	\vdash
Acrolein	NS	ND	0.035		ND	25		ND	25		ND	25	
Acrylonitrile	NS	ND	0.007		ND	5		ND	5		ND	5	
Benzene	0.06 (Note 1)	ND	0.0014		ND	1		ND	1		ND	1	
Bromodichloromethane	NS	ND	0.007		ND	5		ND	5		ND	5	\sqcup
Bromoform	NS	ND	0.007		ND	5	· ·	ND	5		ND	5	ш
Bromomethane	NS	ND	0.007		ND	5		ND	5		ND	5	\vdash
Carbon disulfide	2.7 (Note 1)	ND	0.007		ND	5		ND	5		ND	5	\vdash
Carbon tetrachloride	0.6 (Note 1)	ND	0.007	<u> </u>	ND	5		ND	5		ND	5	Ш
Chlorobenzene	1.7 (Note 1)	ND	0.007		ND	5		ND	5		ND	5	\sqcup
Chloroethane	1.9 (Note 1)	ND	0.007	<u> </u>	ND	5	\Box	ND	5		ND	5	
Chloroform	0.3 (Note 1)	ND	0.007		ND	5		ND	5	-	ND	5	Ь—Н
Chloromethane	NS	ND	0.007	ļ	ND	5		ND	5		ND	5	
Cis-1,2-Dichloroethene	NS	ND	0.007		ND	5		ND	5	 	ND	5	Щ
Cis-1,3-Dichloropropene	NS	ND	0.007		ND	5		ND	5	\sqcup	ND	5	
Dibromochloromethane	NS	ND	0.007		ND	5		ND	5		ND	5	├ —-
Ethylbenzene	5.5 (Note 1)	ND	0.0014		ND	1		ND	1		ND	1	oxdot
M&p-Xylenes	1.2 (Note 1)	ND	0.0028		ND	2		ND	2		ND	2	\vdash
Methylene chloride	0.1 (Note 1)	0:011			ND	5		ND	5		ND	5	
O-Xylene	1.2 (Note 1)	ND	0.0014		ND	1		ND	1		ND	1	├ ─┤
Styrene	NS	ND	0.007	 	ND	5		ND	5		ND	5	
Tetrachloroethene	1.4 (Note 1)	ND	0.007	 	ND	5		ND	5		ND	5	igspace
Toluene	1.5 (Note 1)	ND	0.0014	 	ND	1		ND	1		ND	1	
Trans-1,2-Dichloroethene	0.3 (Note 1)	ND	0.007		ND	5		ND	5		ND	5	ļ
Trans-1,3-Dichloropropene	NS	ND	0.007		ND	. 5		ND	5		ND	5	igwdapprox
Trichloroethene	0.7 (Note 1)	ND	0.007		ND	5		ND	5		ND	5	igsquare
Vinyl chloride	0.2 (Note 1)	ND	0.007		ND	5		ND	5		ND	5	
Total Confident VOCs	10 (Note 2)	0.011			ND			ND			ND	,	
Total Volatile Organic TICs	NS	0.0748		J	ND			ND			ND		igsqcut
Total Petroleum Hydrocarbons (TPHC)	NS	89			NA			NA			NA		

Notes and Abbreviations:

NYSDEC = New York State Department of Environmental Conservation

RSCO = Recommended Soil Cleanup Objective

bgs = feet below ground surface (see Note 3)

Conc = Concentration

mg/Kg = milligrams per kilogram (all units reported in mg/Kg)

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NS = No standard

ND = Not detected

NA = Not analyzed

J = Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration provided is an approximate value.

VOCs = Volatile Organic Compounds

TICs = Tentatively Identified Compounds

Shaded values depicted in bold font exceed the NYSDEC RSCO.

Note 1: New York State Cleanup Objective is based on the Soil Cleanup Objective to Protect Groundwater Quality.

Note 2: As per TAGM #4046, the RSCO for Total Volatile Organic Compounds is 10 parts per million (equivalent to 10 mg/Kg).

Note 3: Soil borings UST2-5, UST2-5A, TWP-1, TWP-1A, and TWP-4 were located on top of the soil surcharge pile. The reference point for the depth at these locations is the land surface adjacent to the surcharge pile, considered to be approximately equivalent to the original (pre-surcharge) land surface that is now covered.

			IAI EN I	OLAI.	1D, INL	W YORK							
Sample Location			UST2-4			UST2-4			UST2-4A			UST2-4B	
Field ID	l	PI-UST2	2-4-051305	S013	PI-U	ST2-4-051305	S014B	PI-US	ST2-4A05160	5SO13	PI-US	T2-4B05160	5\$013
Lab Sample No.	NYSDEC RSCO	AC	17613-002	!	l	AC17613-003	3	ļ.	AC17643-00	1		AC17643-00	2
Sampling Date	(mg/Kg)	5	/13/2005		ł	5/13/2005		l	5/16/2005		1 .	5/16/2005	
Matrix	1]	Soil		1	Soil			Soil		1	Soil	
Sample Depth	1		6'-8' bgs		l	9'-10' bgs		l	6.5'-7' bgs		I	6'-6.5' bgs	
Units	<u> </u>		mg/Kg		<u> </u>	mg/Kg		<u></u>	mg/Kg		<u> </u>	mg/Kg	
SEMIVOLATILE ORGANIC COM		Conc	MDL	Qua			Qual		MDL	Qual		MDL	Qua
1,2,4-Trichlorobenzene	NS	ND	2.1		ND	0.6	—	ND	0.65		ND	0.44	
1,2-Dichlorobenzene	NS	ND	2.1	∔	ND	0.6	 	ND	0.65	┿	ND	0.44	—
1,2-Diphenylhydrazine	NS NS	ND ND	2.1	 	ND ND	0.6	-	ND ND	0.65 0.65	+	ND ND	0.44	┼—
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NS NS	ND	2.1	╁	ND	0.6	 	ND	0.65	+	ND	0.44	+-
2,4,5-Trichlorophenol	0.1 (Note 3)	ND	2.1	+	ND	0.6	╁╌╌	ND	0.65	+	ND	0.44	+-
2,4,6-Trichlorophenol	NS	ND	2.1	 	ND	0.6	1	ND	0.65		ND	0.44	+-
2,4-Dichlorophenol	0.4 (Note 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
2,4-Dimethylphenol	NS	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
2,4-Dinitrophenol	0.200 (Notes 1,3)	ND	5.3	<u> </u>	ND	1.5	<u> </u>	ND	1.6	ļ	ND	1.1	
2,4-Dinitrotolyene	NS NS	ND	2.1	ــ	ND	0.6	├	ND	0.65	 	ND	0.44	┼
2,6-Dinitrotoluene	1 (Note 3) NS	ND ND	2.1	-	ND ND	0.6	┼─	ND ND	0.65 0.65	┼	ND ND	0.44	+
2-Chloronaphthalene 2-Chlorophenol	0.8 (Note 3)	ND	2.1	+-	ND	0.6	 	ND	0.65	+	ND	0.44	+-
2-Methylnaphthalene	36.4 (Note 3)	1.4	<u> </u>	J	0.11	 	J	ND	1.6	†	ND	1,1	+-
2-Methylphenol	0.100 (Notes 1, 3)	ND	2.1	T -	ND	0.6	Ť	ND	0.65	1	ND	0.44	+
2-Nitroaniline	0.430 (Notes 1, 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	I
2-Nitrophenol	0.330 (Notes 1, 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
3&4-Methylphenol	0.9 (Note 3)	ND	2.1		ND	0.6		ND	0.65	$oxedsymbol{oxed}$	ND	0.44	
3,3'-Dichlorobenzidine	NS	ND	2.1	ļ	ND	0.6	ļ	ND	0.65		ND	0.44	
3-Nitroaniline	0.500 (Notes 1, 3)	ND	2.1 5.3	├	ND	0.6 1.5	-	ND	0.65	 -	ND	0.44	┼—
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	NS NS	ND ND	2.1	┼	ND ND	0.6	-	ND ND	1.6 0.65	-	ND ND	1.1 0.44	
4-Chloro-3-methylphenol	0.240 (Notes 1, 3)	ND	2.1	\vdash	ND	0.6	-	ND	0.65	 	ND	0.44	+-
4-Chloroaniline	0.220 (Notes 1, 3)	ND	2.1		ND	0.6		ND	0.65	1	ND	0.44	+
4-Chlorophenyl-phenylether	NS .	ND	2.1		ND	0.6		ND	0.65		ND	0.44	†
4-Nitroaniline	NS	ND	2.1		ND	0.6		ND	0.65		ND	0.44	1
4-Nitrophenol	0.100 (Notes 1, 3)	ND	2.1		ND	0.6		DA	0.65		ND	0.44	
Acenaphthene	50 (Notes 2, 3)	1.3		!	ND	0.6	<u> </u>	ND	0.65		ND	0.44	<u> </u>
Acenaphthylene	41 (Note 3)	ND	2.1		ND	0.6	L	ND	0.65	_	ND	0.44	↓
Anthracene Benzidine	50 (Notes 2, 3)	1.3 ND		-	ND ND	0.6	\vdash	ND ND	0.65 0.65	ļI	ND ND	0.44	├ ─
Benzo(a)anthracene	NS 0.224 (Notes 1, 3)	2.81	2.1		ND	0.6	\vdash	ND	0.65		0.049	0.44	J
Benzo[a]pyrene	0.061 (Notes 1, 3)	1.6		J	ND	0.6	\vdash	ND	0.65		0.055		j
Benzo[b]fluoranthene	1.1 (Note 3)	1.3		J	ND	0.6		ND	0.65		0.092		Ĵ
Benzo[g,h,i]perylene	50 (Notes 2, 3)	1.7		J	ND	0.6		ND	0.65		0.078		J
Benzo[k]fluoranthene	1.1 (Note 3)	0.32		J	ND	0.6		ND	0.65		ND	0.44	
Benzyl alcohol	NS	ND	2.1		ND	0.6	igsquare	ND	0.65		ND	0.44	
Bis(2-Chloroethoxy)methane	NS	ND	2.1		ND	0.6	 	ND	0.65		ND	0.44	.
Bis(2-Chloroethyl)Ether	NS	ND ND	2.1		ND ND	0.6		ND	0.65	-	ND	0.44	
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	NS 50 (Notes 2, 3)	ND ND	2.1		0.93	0.0	H	ND ND	0.65		ND 0.057	0.44	J
Butylbenzylphthalate	50 (Notes 2, 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	٣
Carbazole	NS	ND	2.1		ND	0.6		· ND	0.65		ND	0.44	
Chrysene	0.4 (Note 3)	4.6			ND	0.6		ND	0.65		0.065		J
Dibenzo[a,h]Anthracene	0.014 (Notes 1, 3)	0.61		٦	ND	0.6		ND ·	0.65		ND	0.44	
Dibenzofuran	6.2 (Note 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
Diethylphthalate	7.1 (Note 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
Dimethylphthalate	2.0 (Note 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	\vdash
Di-n-butylphthalate DI-n-octylphthalate	8.1 (Note 3)	ND ND	2.1		0.06		J	ND ND	0.65 0.65	-	ND	0.44	
luoranthene	50 (Notes 2, 3) 50 (Notes 2, 3)	1.5	<u> </u>		ND	0.6	-	ND	0.65		ND 0.08	0.44	
luorene	50 (Notes 2, 3)	1.6			ND	0.6		ND	0.65		ND ND	0.44	
lexachlorobenzene	0.41 (Note 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
lexachlorobutadiene	NS	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
lexachlorocyclopentadiene	NS	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
lexachloroethane	NS	ND	2.1		ND	0.6	$\Box \Box$	ND	0.65		ND	0.44	
ndeno[1,2,3-cd]pyrene	3.2 (Note 3)	0.53			ND	0.6		ND	0.65		0.061		J
sophorone	4.40 (Note 3)	ND 0.70	2.1		ND	0.6		ND	0.65		ND	0.44	
laphthalene Vitrobenzene	13.0 (Note 3)	0.79 ND	21		ND	1.5		ND	1.6		ND	1.1	
Ntropenzene N-Nitrosodimethylamine	0.200 (Notes 1, 3) NS	ND ND	2.1		ND ND	0.6 0.6		ND ND	0.65 0.65		ND	0.44	
N-Nitroso-Di-N-Propylamine	NS NS	ND ND	2.1		ND	0.6	- 	ND	0.65		ND ND	0.44 0.44	-
I-Nitrosodiphenylamine	NS	ND	2.1		ND	0.6	- 1	ND	0.65		ND	0.44	
Pentachlorophenol	1.0 (Notes 1, 3)	ND	5.3		ND	1.5		ND	1.6		ND	1.1	
henanthrene	50 (Notes 2, 3)	6.5			0.062		J	ND	0.65	_	ND	0.44	
Phenol	0.03 (Notes 1, 3)	ND	2.1		ND	0.6		ND	0.65		ND	0.44	
Pyrene	50 (Notes 2, 3)	6.6			ND	0.6		ND	0.65		0.071		J
otal Confident SVOCs	500 (Note 4)	27.52	I		0.93		\bot I	0			0		
otal Semi-Volatile TICs	NS	304.80	I		10.41	7	T	33.86			11.75		

	•		· · ·	10, 112	W YORK								
Sample Location			UST2-5			UST2-5A			UST2-6			UST2-7	
Field ID		PI-US	T2-5-05160	5\$004	PI-US	ST2-5A05170	05SO03	PI-U	ST2-6-05130	5S010	PI-US	T2-7-05170	55009
Lab Sample No.	NYSDEC RSCO	1 1	AC17643-00	3		AC17665-00	01		AC17613-00)1		AC17665-00	01
Sampling Date	(mg/Kg)		5/16/2005			5/17/2005		1	5/13/2005			5/17/2005	
Matrix		İ	Soil		l	Soil		1	Soil			Soil	
Sample Depth			7.5'-8' bgs		1	4.5'-5' bgs		ı	4.5'-5' bgs		i i	4'-4.5' bgs	i
Units	<u> </u>	<u> </u>	mg/Kg		<u> </u>	mg/Kg		<u> </u>	mg/Kg		<u> </u>	mg/Kg	
SEMIVOLATILE ORGANIC COM		Conc	MDL	Qua			Qua			Qua		MDL	Qua
1,2,4-Trichlorobenzene	NS NS	0.22 ND	0.51	J	ND ND	0.43 0.43	+	ND ND	0.43	+	ND	0.51	
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	NS NS	ND	0.51	+-	ND	0.43	+-	ND	0.43	+	ND ND	0.51	┽
1,3-Dichlorobenzene	NS	0.29	0.01	J	ND	0.43	+	ND	0.43	 	ND	0.51	+
1,4-Dichlorobenzene	NS	0.33		J	ND	0.43		ND	0.43		ND	0.51	
2,4,5-Trichlorophenol	0.1 (Note 3)	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
2,4,6-Trichlorophenol	NS NS	ND	0.51	ļ	ND	0.43		ND	0.43	1	ND	0.51	
2,4-Dichlorophenol	0.4 (Note 3) NS	ND ND	0.51 0.51	+-	ND ND	0.43	+	ND ND	0.43	┼	ND ND	0.51 0.51	+-
2,4-Dimethylphenol 2,4-Dinitrophenol	0.200 (Notes 1,3)	ND	1.3	 	ND	1.1	+	ND	1.1	 	ND	1.3	+
2,4-Dinitrotoluene	NS	ND	0.51	1	ND	0.43	+	ND	0.43	+	ND	0.51	+
2,6-Dinitrotoluene	1 (Note 3)	ND	0.51	1	ND	0.43		ND	0.43		ND	0.51	+
2-Chloronaphthalene	NS	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
2-Chlorophenol	0.8 (Note 3)	ND	0.51	<u> </u>	ND	0.43		ND	0.43	↓	ND	0.51	1
2-Methylnaphthalene	36.4 (Note 3)	ND ND	1.3	-	0.15 ND	0.42	J	0.12 ND	0.40	J	0.18 ND		J
2-Methylphenol 2-Nitroaniline	0.100 (Notes 1, 3) 0.430 (Notes 1, 3)	ND	0.51 0.51	 	ND ND	0.43	+-	ND ND	0.43	+	ND ND	0.51 0.51	+
2-Nitrophenol	0.430 (Notes 1, 3)	ND	0.51	1	ND	0.43	 	ND	0.43	+-	ND	0.51	+-
3&4-Methylphenol	0.9 (Note 3)	ND	0.51		ND	0.43		ND	0.43	1	ND	0.51	1
3,3'-Dichlorobenzidine	NS	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
3-Nitroaniline	0.500 (Notes 1, 3)	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
4,6-Dinitro-2-methylphenol	NS NS	ND	1.3	 	ND	1.1		ND	1.1	 	ND	1.3	
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	NS 0.240 (Notes 1, 3)	ND ND	0.51 0.51	 	ND ND	0.43	╅	ND ND	0.43	1	ND ND	0.51 0.51	-
4-Chloroaniline	0.220 (Notes 1, 3)	ND	0.51	 	ND	0.43		ND	0.43	┼	ND	0.51	
4-Chlorophenyl-phenylether	NS	ND	0.51	1	ND	0.43		ND	0.43	† · · · ·	ND	0.51	1
4-Nitroaniline	NS	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
4-Nitrophenol	0.100 (Notes 1, 3)	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
Acenaphthene	50 (Notes 2, 3)	0.12	0.54	J	0.049	0.10	1.	ND	0.43	ļ	ND	0.51	├
Acenaphthylene Anthracene	41 (Note 3) 50 (Notes 2, 3)	ND 0.24	0.51	J	ND 0.19	0.43	+ -	ND ND	0.43	├	ND ND	0.51 0.51	╂
Benzidine	NS NS	ND	0.51	 - -	ND	0.43	╅	ND	0.43	 	ND	0.51	┼
Benzo[a]anthracene	0.224 (Notes 1, 3)	40.97			¥0,81∢		1	0.055		J	₩0.25*		J
Benzo[a]pyrene	0.061 (Notes 1, 3)	÷0.75×			0.81			0.052		J	0.24		J
Benzo[b]fluoranthene	1.1 (Note 3)	0.77			1		1	0.075	ļ	J	0.45		J
Benzo[g,h,i]perylene Benzo[k]fluoranthene	50 (Notes 2, 3)	0.59		 	0.62 0.41		+	0.048	0.42	J	0.14		J
Benzyl alcohol	1.1 (Note 3) NS	ND ND	0.51	-	ND	0.43	+-	ND ND	0.43		0.18 ND	0.51	J
Bis(2-Chloroethoxy)methane	NS	ND	0.51	-	ND	0.43		ND	0.43	 	ND	0.51	
Bis(2-Chloroethyl)Ether	· NS	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
Bis(2-Chloroisopropyl)ether	NS	ND	0.51		S	0.43		ND	0.43		ND	0.51	
Bis(2-Ethylhexyl)phthalate	50 (Notes 2, 3)	0.23		J	0.11		J	0.051		J	0.12	0.51	ļ
Butylbenzylphthalate	50 (Notes 2, 3) NS	ND ND	0.51 0.51		ND 0.051	0.43	1	ND ND	0.43 0.43	-	ND ND	0.51	ļļ
Carbazole Chrysène	0.4 (Note 3)	₹0.65	0.51		1		+ -	ND	0.43	_	0.39	0.51 0.51	\vdash
Dibenzo[a,h]Anthracene	0.014 (Notes 1, 3)	0.19		J	ND	0.43	\vdash	ND	0.43		ND	0.51	
Dibenzofuran	6.2 (Note 3)	0.058		J	0.058		J	ND	0.43		0.053	0.51	
Diethylphthalate	7.1 (Note 3)	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
Dimethylphthalate	2.0 (Note 3)	ND	0.51		ND	0.43	1	ND	0.43		ND	0.51	
Di-n-butylphthalate DI-n-octylphthalate	8.1 (Note 3) 50 (Notes 2, 3)	ND 0.082	0.51	J	ND ND	0.43 0.43	\vdash	ND ND	0.43 0.43		ND ND	0.51 0.51	\vdash
Fluoranthene	50 (Notes 2, 3)	2.4		<u> </u>	1	0.43		ND	0.43		0.4	0.31	J
luorene	50 (Notes 2, 3)	0.065		J	0.068	· · · · · · · · · · · · · · · · · · ·	J	ND	0.43		ND	0.51	۳
Hexachlorobenzene	0.41 (Note 3)	ND	0.51		ND	0.43	1	ND	0.43		ND	0.51	
Hexachlorobutadiene	NS	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
Hexachlorocyclopentadiene	NS NS	ND	0.51		ND	0.43	1	ND	0.43		ND	0.51	
dexachloroethane	NS 3.2 (Note 3)	ND 0.47	0.51	J	ND 0.48	0.43	┼┈┨	ND ND	0.43 0.43		ND 0.12	0.51	J
sophorone	4.40 (Note 3)	ND	0.51		ND	0.43	┼	ND	0.43		ND	0.51	
Vaphthalene	13.0 (Note 3)	0.32		J	0.14		J	0.058	2	J	0.11	3.5.	j
Nitrobenzene	0.200 (Notes 1, 3)	ND	0.51		ND	0.43		ND	0.43		ND	0.51	
N-Nitrosodimethylamine	NS	ND	0.51	\Box	ND	0.43	\Box	ND	0.43		ND	0.51	
N-Nitroso-Di-N-Propylamine	NS	ND	0.51		ND	0.43	 	ND	0.43	I	ND	0.51	
N-Nitrosodiphenylamine Pentachlorophenol	NS 1.0 (Notes 1, 3)	ND ND	0.51 1.3		ND ND	0.43 1.1		ND.	0.43	_	ND ND	0.51	
Phenanthrene	50 (Notes 2, 3)	0.32	1.0	J	0.86	1.1	 	0.13	1.1		0.24	1.3	J
Phenol	0.03 (Notes 1, 3)	ND	0.51		ND	0.43		ND	0.43		ND ND	0.51	\dashv
yrene	50 (Notes 2, 3)	3.3			2			ND	0.43		0.41		J
otal Confident SVOCs otal Semi-Volatile TICs	500 (Note 4) NS	9.43 48.34			8 24.97			90.68	1	I	0		l

Fige Fig. First									,					
Lab Sampling Date NYSDEC RISCO (reg/Rg)	I			TWP-1			TWP-1		1				TWP-2	
Sample Open	į.	,	•									1		
Martis Sol	1 '	NYSDEC RSCO	^			1 ^			1			1 '		
Sample Depth	1 ' -	(mg/Kg)	1						ľ			1		
Units			İ			,			4					
SEMPOLATILE ORGANIC COMPOUNDS (SVOCS)				-		1	_	•	1	_			-	
12.4-Pintoriochemene		MPOUNDS (SVOCs)	Conc		Qua	Conc		Qua	Conc		Qua	Conc		Qua
13.0 Dipole-physicazine	1,2,4-Trichlorobenzene	NS NS		0.62	Ì	ND	0.4		ND	10		ND	0.43	
1.3-Delnovolentenen							+							
1.4-DeNopolement				+	-		+	1-			₩		+	-}
24.6-Frichtopophenol			_		+			+			+			
2.4-Definityphenical					\top			+-			\vdash			
2.4-Dimitryphenor	2,4,6-Trichlorophenol	NS	ND	0.62		ND	0.4		ND	10		ND	0.43	
24-Deniropiement			_					ļ			 	_		_
24-Dinifordusere					<u> </u>			 	+		╁—			
2.6-Dimirotoueme					┼			+	1	1	 	-		┿
2-Cherophened					 			 	+		 			+
2-Metryphrenion			ND	0.62			0.4		-	10		ND		
2-Methyphenian										10				
2-Ntropaniline					 			 		10	1			1
2-Nivropinen 0.330 Nivres 1.3)					┼─			+-			┼			+
34.4-Nethypichend					 			+-			†	+		+
3-Mitrosaniline			ND	0.62		ND	0.4		ND			ND		L
4.6-Dintro-Z-methylphenol														
4-Bromophenyl-phenylephenyl NS ND 0.62 ND 0.4 ND 10 ND 0.43								<u> </u>			<u> </u>			\vdash
4-Chicro-3-methylphenol 0.240 (Notes 1, 3) ND 0.62 ND 0.4 ND 10 ND 0.43					-			 			-			
4-Chicropalmie 0 220 (Notes 1, 3) ND 0 0.2 ND 0.4 ND 10 ND 0.43 4-Kitropalmie NS ND 0.62 ND 0.4 ND 10 ND 0.43 4-Kitrophenid NS ND 0.62 ND 0.4 ND 10 ND 0.43 4-Kitrophenid 0.100 (Notes 1, 3) ND 1.5 ND 0.4 ND 10 ND 0.43 4-Kitrophenid 0.100 (Notes 1, 3) ND 1.5 ND 0.4 ND 10 ND 0.43 A-Kitrophenid 0.100 (Notes 1, 3) ND 0.52 ND 0.4 ND 10 ND 0.43 ND 0.43 A-Kitrophenid 0.100 (Notes 1, 3) ND 0.52 ND 0.4 ND 10 ND 0.43 ND 0.43 A-Cenaphthene 41 (Note 3) ND 0.62 ND 0.4 ND 10 ND 0.43 A-Cenaphthene 41 (Note 3) ND 0.52 ND 0.4 ND 10 ND 0.43 A-Cenaphthene 50 (Notes 2, 3) 0.54 ND 0.5 ND 0.4 ND 10 ND 0.43 A-Cenaphthene NS ND 1.5 ND 0.4 ND 10 ND 0.43 Benzigliantracene 0.224 (Notes 1, 3) 10.6483 10.75378 10.753					\vdash			_			 			+
A-Nirocaniline										_				ţ
A-Nitrophenol 0.100 (Notes 1, 3) ND 1.5 ND 0.4 ND 10 ND 0.43 A-Renaphthene 50 (Notes 2, 3) 0.25 ND 0.4 ND 10 ND 0.43 A-Renaphthyene 41 (Note 3) ND 0.62 ND 0.4 ND 10 ND 0.43 A-Renaphthyene 50 (Notes 2, 3) 0.54 J ND 0.4 ND 10 ND 0.43 A-Renaphthyene 50 (Notes 2, 3) 0.54 J ND 0.4 ND 10 ND 0.43 ND 0.43 ND 0.62 ND 0.4 ND 10 ND 0.43 ND 0.63 ND 0.64 ND 10 ND 0.43 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.64 ND 0.65 ND 0.64 ND 0.65 ND														
Acenaphthene					<u> </u>			<u> </u>			· ·			↓
Acenaphtylene				1.5	 			├		10	-			
Anthracene				0.62	۲-			├		10	 			
Benzo a anthracene	Anthracene				J			J				_		
Bernzolalpyrene	Benzidine			1.5			0.4			10			0.43	
Berzolphilluoranthene					L .							1,000		
Benzolg h.i)perylene 50 (Notes 2, 3) 0.3 J 0.31 J 46 0.13 J Denzolg h.i)perylene 1.1 (Notes 3) 0.18 J 0.16 J 29			C20 21 22 2 2 11 11					J				W. V. V. V. V. V. V. V. V. V. V. V. V. V.		+
Benzo(k) Buoranthene					_			J						
Bis(2-Chloroethoxy)methane	Benzo[k]fluoranthene		0.18		J	0.16		J				ND	0.43	
Bis(2-Chlorosthyl)Ether NS ND 0.62 ND 0.4 ND 10 ND 0.43	Benzyl alcohol													
Bis(2-Chloroisopropyl)ether NS ND 0.62 ND 0.4 ND 10 ND 0.43														-
Bis(2-Ethylhexyl)phthalate 50 (Notes 2, 3)					 -						-			├
Butylbenzylphthalate													0.43	1
Chrysene	Butylbenzylphthalate												0.43	
Dibenzo[a,h]Anthracene	Carbazole			0.62			0.4				7		0.43	
Diberzofuran 6.2 (Note 3) 0.072 J ND 0.4 28	Chrysene							<u> </u>						J
Diethylphthalate							0.4	屵ᅩᅴ			-	_		
Dimethylphthalate				0.62	۳					10				
Din-octylphthalate 50 (Notes 2, 3) 0.066 J 0.071 J ND 10 0.047 J	Dimethylphthalate		-											
Solution Solution	Di-n-butylphthalate			0.62			0.4							
Fluorene 50 (Notes 2, 3) 0.21 J ND 0.4 45 ND 0.43 Hexachlorobenzene 0.41 (Note 3) ND 0.62 ND 0.4 ND 10 ND 0.43 Hexachlorobutadiene NS ND 0.62 ND 0.4 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.99 ND 26 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND 0.62 ND 0.44 ND 10 ND 0.43 Hexachlorocyclopentadiene NS ND					J			J		10				
No. No.				· -			0.4						0.42	
NS ND 0.62 ND 0.4 ND 10 ND 0.43	Hexachlorobenzene		-	0.62	-			\dashv		10		_		
NS ND 0.62 ND 0.99 ND 26 ND 0.43	Hexachlorobutadiene													
Name	Hexachlorocyclopentadiene													
Sophorone 4.40 (Note 3) ND 0.62 ND 0.4 ND 10 ND 0.43				0.62			0.4			10	L		0.43	
Naphthalene				0.62		-	-04	J		10			0.42	J
No. No.	Naphthalene			J.UZ	J					-10				\vdash
N-Nitrosodimethylamine NS ND 1.5 ND 0.4 ND 10 ND 0.43 N-Nitroso-Di-N-Propylamine NS ND 0.62 ND 0.4 ND 10 ND 0.43 N-Nitrosodiphenylamine NS ND 0.62 ND 0.4 ND 10 ND 0.43 N-Nitrosodiphenylamine NS ND 0.62 ND 0.4 ND 10 ND 0.43 ND 0.43 ND 1.5 ND 0.4 ND 10 ND 0.43 ND 0.43 ND 0.44 ND 10 ND 0.43 ND 0.44 ND 10 ND 0.43 ND 0.45	Nitrobenzene		$\overline{}$	0.62						10				\vdash
N-Nitrosodiphenylamine NS ND 0.62 ND 0.4 ND 10 ND 0.43 Pentachlorophenol 1.0 (Notes 1, 3) ND 1.5 ND 0.4 ND 10 ND 0.43 Pentachlorophenol 50 (Notes 2, 3) 0.83 0.35 J 170 0.065 J Phenol 0.03 (Notes 1, 3) ND 0.62 ND 0.4 ND 10 ND 0.43 Pyrene 50 (Notes 2, 3) 1.4 0.7 190 0.35 J 0.35 J 0.35 J 0.35 J 0.35 J 0.35 J 0.35 J 0.35 J 0.35 ND 0.35	N-Nitrosodimethylamine											ND	0.43	
Pentachlorophenol														
Denoising the property Denoising the prope														
Phenol 0.03 (Notes 1, 3) ND 0.62 ND 0.4 ND 10 ND 0.43 Pyrene 50 (Notes 2, 3) 1.4 0.7 130 0.35 J Total Confident SVOCs 500 (Note 4) 5.49 2.25 174 0	Phenanthrene			1,0			0.4	- , 		10			0.43	 -
Pyrene 50 (Notes 2, 3) 1.4 0.7 190 0.35 J otal Confident SVOCs 500 (Note 4) 5.49 2.25 1174 0	Phenol			0.62			0.4	<u> </u>	11111	10			0.43	<u> </u>
Chal Comit Volettie 710	Pyrene	50 (Notes 2, 3)												J
Otal Semi-Volatile TICs NS 242.60 638.89 3452.20 10.0	Total Confident SVOCs											0		
	otal Semi-Volatile TICs	NS	242.60			638.89			3452.20			10.0		

Sample Location	T	_	TWP-2		ī	TWP-3		T .	TWP-4		1	TWP-5		1	TWP-6	
Sample Location		PI-T	1 VVP-2 WP-2-05190	55019	PI-T\	1 VVP-3 VP-3-051805	SO10	PI-TV	VP-4-05240	5 S 010	PI-TV	VP-5-05190	5501	PI-TWI	1 VVP-6 P-6-05180	58010
Sample No.	NIVEDEC DOOG	1	AC17870-00		1	AC17675-00			AC17774-00			AC17870-00			C17675-00	
campling Date	NYSDEC RSCO (mg/Kg)	<u> </u>	5/19/2005			5/18/2005		İ	5/24/2005		1	5/19/2005		1	5/18/2005	
Matrix	(99)	1	Soil		1	Soil			Soil		ı	Soil			Soil	
Sample Depth			9'-9.5' bgs		1	4.5'-5' bgs		ı	5.5'-6' bgs	;		4.3'-4.8' bgs	;		8.5 '-9 ' bgs	
Units	10011100 (0)(00.1	<u> </u>	mg/Kg	101	1 0	mg/Kg	TA	1 0	mg/Kg	10	1	mg/Kg	10		mg/Kg	TA .
SEMIVOLATILE ORGANIC COM 1.2.4-Trichlorobenzene	NS NS	Conc	MDL 0.4	Qual	Conc	MDL 0.4	Qua	I Conc	MDL 0.45	Qua	Conc	MDL 0.41	Qu	I Conc	MDL 0.47	Qua
1,2,4-Thichlorobenzene	NS NS	ND	0.4	+	ND	0.4	+	ND	0.45	+	ND	0.41	+	ND	0.47	+
1,2-Diphenylhydrazine	NS	ND	0.4		ND	0.4	1	ND	0.45		ND	0.41		ND	0.47	\top
1,3-Dichlorobenzene	NS	ND	0.4		ND	0.4	<u></u>	ND	0,45	L	ND	0.41	I	ND	0.47	1
1,4-Dichlorobenzene	NS 0.4 (Note 2)	ND ND	0.4	 	ND ND	0.4	 	ND ND	0.45	+	ND ND	0.41	┼	ND ND	0.47	—
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0.1 (Note 3) NS	ND	0.4	╁	ND	0.4	┼─	ND	0.45	+	ND	0.41	╁	ND	0.47	+
2,4-Dichlorophenol	0.4 (Note 3)	ND	0.4		ND	0.4	 	ND	0.45		ND	0.41	T	ND	0.47	+
2,4-Dimethylphenol	NS	ND	0.4		ND	0.4		ND	0.45	- v	ND	0.41		ND	0.47	
2,4-Dinitrophenol	0.200 (Notes 1,3)	ND	0.99		ND	2		ND	2.3		ND	1	_	ND	1.2	4
2,4-Dinitrotoluene 2.6-Dinitrotoluene	NS 1 (Note 3)	ND ND	0.4	ļ	ND ND	0.4		ND ND	0.45 0.45		ND ND	0.41	+-	ND ND	0.47	+
2-Chloronaphthalene	NS NS	ND	0.4	 	ND	0.4	├─	ND	0.45	┼~~	ND	0.41	+-	ND	0.47	+
2-Chlorophenol	0.8 (Note 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
2-Methylnaphthalene	36.4 (Note 3)	ND	2		0.16		J	0.12		J	ND	2	1	1.2	ļ <u>.</u>	
2-Methylphenol 2-Nitroaniline	0.100 (Notes 1, 3) 0.430 (Notes 1, 3)	ND ND	0.4		ND ND	0.4		ND ND	0.45 0.45	+	ND ND	0.41	 	ND ND	0.47	+
2-Nitrophenol	0.430 (Notes 1, 3)	ND	0.4	\vdash	ND	0.4		ND	0.45	 	ND	0.41	\vdash	ND	0.47	+-
3&4-Methylphenol	0.9 (Note 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
3,3'-Dichlorobenzidine	NS	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
3-Nitroaniline	0.500 (Notes 1, 3) NS	ND ND	0.4 0.4		ND ND	0.4	<u> </u>	ND ND	0.45 1.1	┼	ND ND	0.41	\vdash	ND ND	0.47	-
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	NS NS	ND	0.4		ND	0.4	 	ND	0.45	 	ND	0.41	\vdash	ND ND	1.2 0.47	+
4-Chloro-3-methylphenol	0.240 (Notes 1, 3)	ND	0.4		ND	0.4	l	ND	0.45		ND	0.41	1	ND	0.47	1
4-Chloroaniline	0.220 (Notes 1, 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
4-Chlorophenyl-phenylether	NS NS	ND ND	0.4	ļ	ND ND	0.4	ļ	ND	0.45	<u> </u>	ND	0.41	├	ND	0.47	ļ
4-Nitroaniline 4-Nitrophenol	NS 0.100 (Notes 1, 3)	ND DN	0.4	\vdash	ND	0.4		ND ND	0.45 0.45	\vdash	ND ND	0.41	├	ND ND	0.47 0.47	-
aphthene	50 (Notes 2, 3)	ND	0.4		ND	0.4	 	ND	0.45	 	ND	0.41	\vdash	ND	0.47	
naphthylene	41 (Note 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		0.061		J
Anthracene	50 (Notes 2, 3) NS	ND	0.4		ND ND	0.4		0.11 ND	0.45	J	ND	0.41	ـــــا	0.084		J
Benzidine Benzo(a)anthracene	0.224 (Notes 1, 3)	ND ND	0.4		0.052	0.4	J	0.59	0.45	-	ND 0.044	0.41		ND 0.41	0.47	
Benzo[a]pyrene	0.061 (Notes 1, 3)	ND	0.4		0.051		J	0.78			ND	0.41	Ť	® 0.39 ♀		J
Benzo[b]fluoranthene	1.1 (Note 3)	ND	0.4		0.12		J	1			0.05		J	0.86		
Benzo(g,h,i]perylene	50 (Notes 2, 3)	ND ND	0.4		ND ND	0.4		0.3		<u> </u>	ND	0.41	_	0.35		J
Benzo[k]fluoranthene Benzvl alcohol	1.1 (Note 3) NS	ND	0.4		ND	0.4		ND	0.45	-	ND ND	0.41	 	0.21 ND	0.47	J
Bis(2-Chloroethoxy)methane	NS	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
Bis(2-Chloroethyl)Ether	NS	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
Bis(2-Chloroisopropyl)ether	NS	ND	0.4		ND 0.13	0.4		ND	0.45	 	ND	0.41	<u> </u>	ND	0.47	<u> </u>
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	50 (Notes 2, 3) 50 (Notes 2, 3)	ND ND	0.4		ND	0.4	J	0.17 ND	0.45	J	0.12 ND	0.41	J	0.25 ND	0.47	J
Carbazole	NS NS	ND	0.4		ND	0.4		ND	0.45	\vdash	ND	0.41		0.064	J.71	j
Chrysene	0.4 (Note 3)	ND	0.4		0.11		J	0.73			0.047		J	₹0.73 1		
Dibenzo[a,h]Anthracene	0.014 (Notes 1, 3)	ND	0.4		ND	0.4		0,25 €		J	ND	0.41		0.14		7
Dibenzofuran Diethylphthalate	6,2 (Note 3) 7,1 (Note 3)	ND ND	0.4		ND ND	0.4 0.4		0.06 ND	0.45	J	ND ND	0.41 0.41		0.23 ND	0.47	J
Dimethylphthalate	2.0 (Note 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	\vdash
Di-n-butylphthalate	8.1 (Note 3)	ND	0.99		ND	0.4		0.085		J	ND	1		ND	0.47	
DI-n-octylphthalate	50 (Notes 2, 3)	ND	0.4		ND 0.11	1]	0.06		J	ND	0.41		ND 0.47	0.47	
Fluoranthene Fluorene	50 (Notes 2, 3) 50 (Notes 2, 3)	ND ND	0.4		0.11 ND	0.4	J	0.65		J	0.069 ND	0.41	J	0.47 ND	0.47	\vdash
Hexachlorobenzene	0.41 (Note 3)	ND	0.4		ND	0.4		ND	0.45	\vdash	ND	0.41		ND	0.47	
Hexachlorobutadiene	NS	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
Hexachlorocyclopentadiene	NS	ND	0.4		ND	0.4		ND	1.1		ND	0.41		ND	0.47	
Hexachloroethane Indeno[1,2,3-cd]pyrene	NS 3.2 (Note 3)	ND ND	0.4		ND ND	0.4		ND 0.71	0.45		ND ND	0.41		ND 0.3	0.47	
Isophorone	4.40 (Note 3)	ND	0.4		ND	0.4	\dashv	ND	0.45		ND	0.41 0.41		ND ND	0.47	
Naphthalene	13.0 (Note 3)	ND	0.99		0.1		J	0.23		J	ND	1		0.41	1	J
Nitrobenzene	0.200 (Notes 1, 3)	ND	0.4	\Box	ND	0.4		ND	0.45		ND	0.41		ND	0.47	
N-Nitrosodimethylamine	NS NS	ND	0.4		ND	2		ND	0.45		ND	0.41		ND	0.47]
so-Di-N-Propylamine	NS NS	ND ND	0.4	\dashv	ND ND	0.4		ND ND	0.45 0.45		ND ND	0.41		ND ND	0.47 0.47	
Pentachlorophenol	1.0 (Notes 1, 3)	ND	0.4	\dashv	ND	0.4	-	ND	0.45		ND	0.41		ND	1.2	
Phenanthrene	50 (Notes 2, 3)	ND	0.4		0.096		J	0.57			0.074		J	0.69		
Phenol	0.03 (Notes 1, 3)	ND	0.4		ND	0.4		ND	0.45		ND	0.41		ND	0.47	
Pyrene Total Confident SVOCs	50 (Notes 2, 3)	ND	0.4		0.1		J	0.95			0.089		J	0.95		
Total Semi-Volatile TICs	500 (Note 4) NS	6.04		+	215.0			7.08			0			4.9		
TOTAL DEIMI-ADIATILE LICS	143	0.04	1		410.0	_ [- 1	23.0	İ	ı	3.81	- 1		560.29	f	- 1

Notes and Abbreviations:

mg/Kg = milligrams per kilogram

bgs = feet below ground surface (see Note 5)

NYSDEC = New York State Department of Environmental Conservation

RSCO = Recommended Soil Cleanup Objective

Conc = Concentration

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NA = Not analyzed

NS = No standard

ND = Not detected

TICs = Tentatively Identified Compounds

J = Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Note 1: Results compared to NYSDEC RSCO or laboratory MDL, whichever value is more stringent.

Note 2: Health-based criterion exceed the 50 mg/Kg maximum for individual semi-volatile contaminants.

Note 3: NYSDEC RSCO is based on the Soil Cleanup Objective to Protect Groundwater Quality.

Note 4: As per TAGM #4046, the RSCO for Total Semi-volatile Organic Compounds is 500 ppm (equivalent to 500 mg/Kg).

Note 5: Soil borings UST2-5, UST2-5A, TWP-1, TWP-1A, and TWP-4 were located on the soil surcharge pile. The reference point for the depth at these locations is the land surface adjacent to the pile, considered to be approximately equivalent to the original (pre-surcharge) land surface that is now covered.

0	· · · · · · · · · · · · · · · · · · ·		TWP-1		_	TWP-2			TWP-3			TWP-4	
Sample Location	Recommended	DILTIM		WC04	PLTA	P-2-051905	WG01	PLTV	/P-3-05180	5WG01	PI-TW	P-4-05240	5WG01
Field ID	Groundwater		C17758-00			C17870-00			AC17675-0			C17774-0	
Lab Sample No.	Cleanup	_ ^		13	l ′	5/19/2005	-	· '	5/18/200		,	5/24/2005	-
Sampling Date	Standard/Guidance		5/23/2005		1			ł				Aqueous	'
Matrix	Value (RGCS/G)*	Ì	Aqueous		1	Aqueous		ľ	Aqueous	•		ug/L	
Units		<u> </u>	ug/L_			ug/L_		_	ug/L	T .	_		T 0
VOLATILE ORGANIC COMPOUNI		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
1,1,1,2-Tetrachloroethane	5	ND	0.37		ND	0.44	 	ND	0.19	ļ	ND	0.6	├ ──
1,1,1-Trichloroethane	5	ND	0.45	<u> </u>	ND	0.53	<u> </u>	ND	0.44		ND	0.6	
1,1,2,2-Tetrachloroethane	5	ND	0.18	<u> </u>	ND	0.21	<u> </u>	ND	0.36		ND	0.6	↓—
1,1,2-Trichloroethane	1	ND	0.39		ND	0.46		ND	0.31		ND	0.6	├ ──
1,1-Dichloroethane	5	ND	0.31		ИD	0.37		ND	0.19		ND	0.6	
1,1-Dichloroethene	5	ND	1.4		ND	1.6	<u> </u>	ND	1.7		ND	0.6	↓ —
1,2-Dichloroethane	0.6	ND	1.7		ND	2		ND	0.83		ND	0.6	↓
1,2-Dichloropropane	11	ND	1.2	<u> </u>	ND	1,5		ND_	1.5		ND	0.6	┼──
2-Butanone	50	ND	1.2		ND	1.4	├	ND	0.93		ND	0.6	├ ──
2-Chloroethylvinylether	NS/NG	ND	0.98	<u> </u>	ND	1.2		ND	2		ND	1.5	├ ──
2-Hexanone	NS/NG	ND	0.5		ND	0.6	 	ND	0.39		ND	0.6	├ ──
4-Methyl-2-Pentanone	NS/NG	ND	0.34		ND	0.4		ND	0.5	-	ND	0.6	} -
Acetone	50	ND	0.43		ND	0.51	<u> </u>	ND	0.12	_	ND	0.6	
Acrolein	5	ND	0.67		ND	0.8		ND	2	<u> </u>	ND	0.6	
Acrylonitrile	5		1		ND	1.2	L	ND	1.9		ND	1.5	1
Benzene	1	ND	2.2		ND	2.7		ND	4.1		ND	0.6	├ ──┤
Bromodichloromethane	50	ИD	1.5		סא	1.8	<u> </u>	ИD	1.4	-	ND	0.6	
Bromoform	50	ND	1.3		ND	1.6		ND	1.4		ND	0.6	+
Bromomethane	5	ND	2.7		1.9	3.2	└	ND	4.1		ND	0.6	├ -
Carbon disulfide	NS/NG	ND	4.2		ND	5	\vdash	ND	1.9	!	ND	0.6	├ ──
Carbon tetrachloride	5	ND	2.7		ND	3.2		ND	2.8	Li	ND	0.6	1
Chlorobenzene	5	ND	1.2		ND	1.5	\vdash	ND	2.1		ND	1.5	
Chloroethane	5	ND	0.49		ND	0.58		ND	0.45		ND	0.6	
Chloroform	7	ND	2		ND	2.4		ND	2.2		ND	0.6	
Chloromethane	NS/NG	ND	7		ND	8.3	L	ND	7.5		ND	0.6	
Cis-1,2-Dichloroethene	5	ND	0.39		ND	0.46		ND	0.31		ND	0.6	
Cis-1,3-Dichloropropene	0.4 (Total)	ND	2.4		ND	2.9	<u> </u>	ND	1.6		ND	0.6	
Dibromochloromethane	50	ND	1.1		ND	1.4	Щ-	ND	1.6		ND	0.6	├ ──
Ethylbenzene	5	2.5	0.36		ND	0.42		ND	0.18		ND	0.6	├ ──┤
M&p-Xylenes	5	ND	0.2		ND	0.24		ND	0.17		ND	0.6	├ ──┤
Methylene chloride	5	ND	0.25	ļ	ND	0.3	\vdash	ND	0.22		ND	0.6	├ -
O-Xylene	5	ND	0.58		ND	0.69	 	ND	11		ND	0.6	├
Styrene	5	ND	0.42	L	ND	0.5		ND	0.15		ND	0.6	├ ─┤
Tetrachloroethene	5	ND	0.45		ND	0.53	\vdash	ND	0.18_		ND	0.6	├ ──┤
Toluene	5	ND	0.51		ND	0.61	\vdash	ND	0.31		ND	0.6	├ ──
Trans-1,2-Dichloroethene	5	ND	0.36		ND	0.43		ND	0.16		ND	0.6	├ ——-
Trans-1,3-Dichloropropene	0.4 (Total)	ND	0.46		ND	0.55	\Box	ND	0.38		ND	0.6	├ ──┤
Trichlorgethene	5	ND	0.29		ND	0.35		ND	0.26	-	ND	0.6	├ ──┤
Vinyl chloride	2	ND	0.39		ND	0.46		ND	0.49		ND	0.6	— Н
Total Confident VOCs	10	0			0			0			0		
Total VOC TICs	NS/NG	0			1.7		J	2.2		J	0		↓ .
Total Petroleum Hydrocarbons	NS/NG	ND	0.41		P.	0.49		ND	0.3		ND	0.6	

* = RGCS/G values are based on the New York State Title 6 CRR (Codes, Rules and Regulations) Part 703 Surface and Groundwater Quality Standards. A guidance value is used where a standard has not been adopted for a substance. ug/L = micrograms per liter (all concentrations are given in ug/L).

VOCs = Volatile Organic Compounds

Conc = Concentration

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NS = No standard

NG = No guidance value

ND = Not detected

B = The analyte was found in the laboratory blank as well as the sample, indicating possible laboratory contamination of the sample.

TICs = Tentatively Identified Compounds

J = Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided.

Sample Location	T	TWP-5						1	FB		FB			
Field ID	Recommended	PLTM	/P-5-05190	5WG01	PLTV	TWP-6 VP-6-0518		PLEE	3-01-051805	WO01				
Lab Sample No.	Groundwater		AC17870-0			AC17675-			AC 17675-00		AC17870-006			
Sampling Date	Cleanup	· '	5/19/2005			5/18/200		i '	5/18/2005		5/19/2005			
	Standard/Guidance				İ		_	ľ			İ			
Matrix Units	Value (RGCS/G)*		Aqueous ug/L			Aqueou: ug/L	S		Aqueous ug/L		l .	Aqueous ug/L		
	2011122 (120)			10.0	<u> </u>	,	Loui			Ta .		 	T	
VOLATILE ORGANIC COM		Conc	MDL	Qual		MDL	Qual	Conc	MDL	Qual	-		Qual	
1,1,1,2-Tetrachloroethane	5	ND	0.37	₩	ND	0.19		ND	0.2	-	ND	0.2	 	
1,1,1-Trichloroethane	5	ND	0.45	-	ND	0.44	├ ─	ND	0.19	-	ND	0.19	—	
1,1,2,2-Tetrachloroethane	5	ND	0.18	<u> </u>	ND	0.36	 	ND	0.19	ļ	ND	0.19	↓	
1,1,2-Trichloroethane	1	ND	0.39	ļ	ND	0.31	↓	ND	0.27	ļ	ND	0.27	—	
1,1-Dichloroethane	5	ND	0.31	ļ	ND	0.19	↓	ND	0.31		ND	0.31	↓	
1,1-Dichloroethene	5	ND	1.4	L	ND	1.7	_	ND	0.24		ND	0.24	 	
1,2-Dichloroethane	0.6	ND	1.7	<u> </u>	ND	0.83	 	ND	0.25		ND	0.25	↓	
1,2-Dichloropropane	1	ND	1.2	<u> </u>	ND	1.5	ļ	ND	0.29	<u> </u>	ND	0.29	↓	
2-Butanone	50	ND	1.2	<u> </u>	ND	0.93	↓	ND	0.44		ND	0.44	\perp	
2-Chloroethylvinylether	NS/NG	ND	0.98	<u> </u>	ND	2	⊢ —	ND	0.39	Ļ,	ND	0.39	 	
2-Hexanone	NS/NG	ND	0.5	ļ	ND	0.39		ND	0.45	\vdash	ND	0.45	↓	
4-Methyl-2-Pentanone	NS/NG	ND	0.34		ND	0.5	<u> </u>	ND	0.22	Щ	ND	0.22		
Acetone	50	ND	0.43		ND	0.12		ND	3.1		ND	3.1		
Acrolein	5	ND	0.67	<u> </u>	ND	2	L	ND	3.1		ND	3.1		
Acrylonitrile	5	ND	1		ND	1.9	<u> </u>	ND	0.63		ND	0.63		
Benzene	1	ND	2.2		ND	4.1	<u> </u>	ND	0.23	Ш	ND	0.23		
Bromodichloromethane	50	ND	1.5	$oxed{oxed}$	ND	1.4	<u></u>	ND	0.21	$oxed{oxed}$	ND	0.21		
Bromoform	50	ND	1.3		ND	1.4	<u> </u>	ND	0.33	L	ND	0.33	L	
Bromomethane	5	ND	2.7		ND	4.1		ND	0.54		ND	0.54		
Carbon disulfide	NS/NG	ND	4.2	\sqcup	ND	1.9		ND	0.37		ND	0.37		
Carbon tetrachloride	5	ND	2.7		ND	2.8		ND	0.24		ND	0.24	1	
Chlorobenzene	5	ND	1.2		ND	2.1		ND	0.19		ND	0.19		
Chloroethane	5	ND	0.49		ND	0.45	<u> </u>	ND	0.37		ND	0.37		
Chloroform	7	ND	2		ND	2.2	<u></u> i	ND	0.22		ND	0.22		
Chloromethane	NS/NG	ND	7		ND	7.5		ND	0.36		ND	0.36		
Cis-1,2-Dichloroethene	5	ND	0.39		ND	0.31		ND	0.18		ND	0.18	Ш	
Cis-1,3-Dichloropropene	0.4 (Total)	ND	2.4		ND	1.6	L	ND	0.17		ND	0.17		
Dibromochloromethane	50	ND	1.1		ND	1.6		ND	0.37		ND	0.37	<u>اــــا</u>	
Ethylbenzene	5	ND	0.36		ND	0.18		ND	0.45	I	ND	0.45		
M&p-Xylenes	5	ND	0.2		ND	0.17	<u> </u>	ND	0.47		ND	0.47		
Methylene chloride	5	ND	0.25		ND	0.22		ND	0.84		1.7	0.84	В	
O-Xylene	5	ВD	0.58		ND	11		ND	0.3		ND	0.3		
Styrene	5	ND	0.42		ND	0.15		ND	0.097		ND	0.097		
Tetrachloroethene	5	ND	0.45		ND	0.18		ND	0.28		ND	0.28		
Toluene	5	ND	0.51	I	ND	0.31		ND	0.15	[ND	0.15		
Trans-1,2-Dichloroethene	5	ND	0.36		ND	0.16		ND	0.34	I	ND	0.34		
Trans-1,3-Dichloropropene	0.4 (Total)	ND	0.46	\Box	ND	0.38		ND	0.14	I	ND	0.14		
Trichloroethene	5	ND	0.29		ND	0.26		ND	0.21		ND	0.21		
Vinyl chloride	· 2	ND	0.39	I	ND	0.49		ND	0.51		ND	0.51		
Total Confident VOCs	10	0			0			0			1.7			
Total VOC TICs	NS/NG	1.4		J	2.2		J	0			0			
Total Petroleum Hydrocart	NS/NG	ND	0.41		ND	0.3		NA		\neg	NA			

Notes and Abbreviations:

* = RGCS/G values are based on the New York State Title 6 CRR (Codes, Rules and Regulations) Part 703 Surface and Groundwater Quality Standards. A guidance value is used where a standard has not been adopted for a substance.

ug/L = micrograms per liter (all concentrations are given in ug/L).

VOCs = Volatile Organic Compounds

Conc = Concentration

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NS = No standard

NG = No guidance value

ND = Not detected

B = The analyte was found in the laboratory blank as well as the sample, indicating possible laboratory contamination of the sample.

TICs = Tentatively Identified Compounds

 $\label{eq:Jacobian} \textbf{J} = \textbf{Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided.}$

Sample Location	<u> </u>	т—	FB			FB		
Field ID	Decemberd	PLEE	-01-052305V	NO01	PI-FB-01-052405WQ01			
Lab Sample No.	Recommended Groundwater Cleanup		AC17758-004		AC17774-002			
Sampling Date	Standard/Guidance	l '	5/23/2005	•	5/24/2005			
Matrix	Value (RGCS/G)*		Aqueous					
Units			ug/L		Aqueous ug/L			
VOLATILE ORGANIC COMPOUNDS	(\(\(\C_{-}\)	Conc	MDL	Ousi	Conc	MDL	Qual	
				Quai			Quai	
1,1,1,2-Tetrachloroethane	5 5	ND	0.63	 	ND	0.22	╁	
1,1,1-Trichloroethane		ND	0.46		ND	0.18	+-	
1,1,2,2-Tetrachloroethane	5	ND	0.27	_	ND	0.24	 	
1.1,2-Trichloroethane	<u>1</u> 5	ND	0.33		2 2	0.23	·	
1,1-Dichloroethane	5	ND	0.47	ļ	ND	0.25	┼	
1,1-Dichloroethene		ND	0.31			1 040		
1,2-Dichloroethane	0.6 1	ND	0.23	-	ND	0.18	-	
1,2-Dichloropropane	50	ND	0.57	\vdash	ND	0.41	├	
2-Butanone		ND	0.75	\vdash	ND	0.52	 	
2-Chloroethylvinylether	NS/NG	ND	0.3	$\vdash\vdash\vdash$	ND	0.31	-	
2-Hexanone	NS/NG	ND	0.45		ND	0.2		
4-Methyl-2-Pentanone	NS/NG	ON	0.36		ND	0.28	-	
Acetone	50	ND	3.4		ND	5.6	₩	
Acrolein	5	ND	3.6		ND	2.3	-	
Acrylonitrile	5	ND	1.1		ND	1.1		
Benzene	11	ND	0.24		ND	0.14	 	
Bromodichloromethane	50	ND	0.45		ND	0.2	-	
Bromoform	50	ND	0.52		ND	0.23	ł	
Bromomethane	5	ND	0.46		ND	0.34		
Carbon disulfide	NS/NG	ND	0.51		ND	0.29		
Carbon tetrachloride	5	ND	0.91		ND	0.21		
Chlorobenzene	5 5	ND ND	0.2		ND ND	0.37	┝╌┤	
Chloroethane	7							
Chloroform		ND	0.25	\dashv	ND	0.36	\vdash	
Chloromethane	NS/NG	ND	0.82		ND	0.36	 	
Cis-1,2-Dichloroethene	5 0.4 (Total)	ND ND	0.36	-	ND ND	0.3	\vdash	
Cis-1,3-Dichloropropene	0.4 (Total)			-	_		\vdash	
Dibromochloromethane 5thylbogropp	50 5	ND ND	0.62		ND ND	0.27		
Ethylbenzene	5			∤	\rightarrow		$\vdash \vdash$	
M&p-Xylenes	5	ND ND	0.81		ND 1	0.54	$\vdash \vdash \vdash$	
Methylene chloride	5	ND	0.63		1.1 ND	0.49		
O-Xylene Styrene	5	ND	0.17		ND	0.14	$\vdash \vdash \vdash$	
Tetrachloroethene	5	ND	0.15	-+	ND	0.22		
Toluene	5	ND	0.41		ND	0.28		
Trans-1,2-Dichloroethene	5	ND	0.18	\dashv	ND	0.22		
Trans-1,3-Dichloropropene	0.4 (Total)	ND	0.32	\dashv	ND	0.13		
Trichloroethene	0.4 (Total) 5	ND	0.37		ND	0.13		
Vinyl chloride	2	ND	0.47		ND	0.42	$\vdash \vdash \vdash$	
Total Confident VOCs	10	0	0.02			0.42		
Total VOC TICs	NS/NG	0		\dashv	0		\dashv	
Total Petroleum Hydrocarbons	NS/NG	NA			NA			

Notes and Abbreviations:

*= RGCS/G values are based on the New York State Title 6 CRR (Codes, Rules and Regulations) Part 703 Surface and Groundwater Quality Standards. A guidance value is used where a standard has not been adopted for a substance.

ug/L = micrograms per liter (all concentrations are given in ug/L).

VOCs = Volatile Organic Compounds

Conc = Concentration

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NS = No standard

NG = No guidance value

ND = Not detected

 ${\bf B}={\sf The}$ analyte was found in the laboratory blank as well as the sample, indicating possible laboratory contamination of the sample.

TICs = Tentatively Identified Compounds

 $\label{eq:J} \textbf{J} = \textbf{Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided.}$

e ;

TABLE 4B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS AOC-UST2 - SVOCS HHMT-PORT FACILITY, SITE 1 STATEN IS ADD, NEW YORK

Sample Location		7	WP-1			TWP-2			TWP-3			TWP-4			TWP-5			TWP-6	
Field ID	Recommended	PI-TWP-1	-052305	WG01	Pi-TW	P-2-051905	WG01	PI-TWP	-3-051805\	NG01	PI-TWP	4-052405	NG01	PI-TWF	P-5-051905	5WG01	PI-TWP	-6 -051805	5WG01
Lab Sample No.	Groundwater Cleanup Standard/	AC1	7758-00	3	Α	C17870-004	4	AC	17675-003	3	AC	17774-003	,	A	C17870-00)5	AC	17675-00)4
Sampling Date	Guidance Value	5/:	23/2005			5/19/2005		5/18/2005			5/24/2005			5/19/2005			5/18/2005		
Matrix	(RGCS)*	Ā	queous		i	Aqueous			Aqueous	i		Aqueous		Aqueous			Aqueous		
Units			ug/L		ug/L			ug/L			ug/L			ug/L			ug/L		
Semi-Volatile Organic Compo	ound (SVOCs)	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
1.2.4-Trichlorobenzene	5	ND	0.37		ND	0.44	T	ND	0.19		ND	0.6		ND	0.37	\vdash	ND	0.19	+-
1.2-Dichlorobenzene	3	ND	0.45		ND	0.53		ND	0.44	\vdash	ND	0.6	<u> </u>	ND	0.45	 	ND	0.44	+-
1,2-Diphenylhydrazine	NS/NG	ND	0.18	\vdash	ND	0.21	\vdash	ND	0.36		ND	0.6		ND	0.18	†	ND	0.36	+
1.3-Dichlorobenzene	3	ND	0.39		ND	0.46	 	ND	0.31	_	ND	0.6	_	ND	0.39	+	ND	0.31	+-
1,4-Dichlorobenzene	3	ND	0.31		ND	0.37	1	ND	0.19	 	ND	0.6	 	ND	0.31	 	ND	0.19	+-
2.4.5-Trichlorophenol	NS/NG	ND	1.4	\vdash	ND	1.6	 	ND	1,7	\vdash	ND	0.6		ND	1.4	+	ND	1.7	+
2,4,6-Trichlorophenol	NS/NG	ND	1.7		ND	2	\vdash	ND	0.83	\vdash	ND	0.6	 	ND	1.7	+-	ND	0.83	+
2,4-Dichlorophenol	5	ND	1.2	t —	ND	1,5	\vdash	ND	1.5	1-	ND	0.6	 	ND	1,2	+	ND	1,5	+
2,4-Dimethylphenol	50	ND	1.2		ND	1.4	 	ND	0.93	 	ND	0.6	_	ND	1.2	+	ND	0.93	+
2.4-Dinitrophenol	10	ND	0.98		ND	1.2	\vdash	ND	2	\vdash	ND	1.5	_	ND	0.98	┪┈	ND	2	+
2,4-Dinitrotoluene	5	ND	0.5		ND	0.6	 	ND	0.39	\vdash	ND	0.6	 	ND	0.5	1	ND	0.39	+
2.6-Dinitrotoluene	5	ND	0.34		ND	0.4	1	ND	0.5	 	ND	0.6	1	ND	0.34	+	ND	0.5	+
2-Chloronaphthalene	10	ND	0.43		ND	0.51		ND	0.12	_	ND	0.6		ND	0.43	+-	ND	0.12	+-
2-Chlorophenol	NS/NG	ND	0.67		QN	0.8	 	ND	2	 	ND	0.6	\vdash	ND	0.43	┼	ND	2	+-
2-Methylnaphthalene	NS/NG	1.0	1.0		ND	1.2	1	ND	1.9	\vdash	ND	1.5	\vdash	ND	1	+-	ND	1.9	+
2-Methylphenol	NS/NG	ND	2.2	⊢ <u> </u>	ND	2.7	_	ND	4.1	_	ND	0.6	 	ND	2.2	+	ND	4.1	+-
2-Nitroaniline	5	ND	1.5	†	ND	1.8	 	ND	1.4	\vdash	ND	0.6		ND	1.5	 	ND	1.4	+-
2-Nitrophenol	NS/NG	ND	1.3		ND	1.6	1	ND	1.4		ND	0.6	†	ND	1.3	 	ND	1.4	+-
3&4-Methylphenol	NS/NG	ND	2.7		1.9	3.2	\vdash	ND	4.1	\vdash	ND	0.6	\vdash	ND	2.7	+-	ND	4.1	1
3,3'-Dichlorobenzidine	5	ND	4.2		ND	5	1	ND	1.9		ND	0.6		ND	4.2	7	ND	1,9	+
3-Nitroaniline	5	ND	2.7	1	ND	3.2	T	ND	2.8	\vdash	ND	0.6		ND	2.7	1	ND	2.8	+
4,6-Dinitro-2-methylphenol	NS/NG	ND	1.2		ND	1.5		ND	2.1	1	ND	1.5		ND	1.2	_	ND	2.1	\top
4-Bromophenyl-phenylether	NS/NG	ND	0.49		ND	0.58		ND	0.45	\vdash	ND	0.6	1	ND	0.49	\top	ND	0.45	+-
4-Chloro-3-methylphenol	NS/NG	ND	2		ND	2.4		ND	2.2	T	ND	0.6		ND	2		ND	2.2	+
4-Chloroaniline	5	ND	7		ND	8.3		ND	7.5	T^{T}	ND	0.6		ND	7	1	ND	7.5	_
4-Chlorophenyl-phenylether	NS/NG	ND	0.39		ND	0.46	Τ	ND	0.31	Т	ND	0.6		ND	0.39	\top	ND	0.31	\top
4-Nitroaniline	5	ND	2.4		ND	2.9	\top	ND	1.6	T	ND	0.6	1	ND	2.4	\top	ND	1.6	1
4-Nitrophenol	NS/NG	ND	1.1		ND	1.4	T	ND	1.6	T^{T}	ND	0.6		ND	1.1	1	ND	1.6	+
Acenaphthene	20	2.5	0.36	\Box	ND	0.42	1	ND	0.18	T^-	ND	0.6	\vdash	ND	0.36	—	ND	0.18	+-
Acenaphthylene	NS/NG	ND	0.2		ND	0.24	1	ND	0.17	Τ'''	ND	0.6	1	ND	0.2	—	ND	0.17	+-
Anthracene	50	ND	0.25	1	ND	0.3		ND	0.22		ND	0,6	1	ND	0.25	1	ND	0.22	+-
Benzidine	5,	ND	0.58	\Box	ND	0.69	T -	ND	11	T	ND	0.6		ND	0.58	1	ND	11	+-
Benzo(a)anthracene	0.002	ND	0.42	\vdash	ND	0.5	T	ND	0.15	\vdash	ND	0.6	1	ND	0.42	\top	ND	0.15	\top
Benzo[a]pyrene	MDL	ND	0.45	1	ND	0.53	\top	ND	0.18	1	ND	0.6	T	ND	0.45		ND	0.18	\top
Benzo[b]fluoranthene	0.002	ND	0.51	1	ND	0.61	\top	ND	0.31	1	ND	0.6	1	ND	0.51		ND	0.31	+-
Benzo[g,h,i]perylene	NS/NG	ND	0.36	1	ND	0.43	1	ND	0.16	1	ND	0.6	T	ND	0.36		ND	0.16	\top
Benzo(k)fluoranthene	0.002	ND	0.46		ND	0.55	\top	ND	0.38	1	ND	0.6	†	ND	0.46	\top	ND	0.38	+
Bis(2-Chloroethoxy)methane	5	ND	0.29	\top	ND.	0.35		ND	0.26	T^{-}	ND	0.6	 	ND	0.29		ND	0.26	+
Bis(2-Chloroethyl)Ether	1	ND	0.39	1	ND	0.46	†	ND	0.49	1	ND	0.6	†	ND	0.39	 	ND	0.49	+-
Bis(2-Chloroisopropyl)ether	NS/NG	ND	0.3	1	ND	0.35	t	ND	0.23	T	1.5	0.6	1	ND	0.3	+-	ND	0.43	+
Bis(2-Ethylhexyl)phthalate	5	ND	0.27	\vdash	1.7	0.32	†	2.2	0.7	_	ND	0.6	 	1.4	0.27	+	2.2	0.7	+

TABLE 4B SUMMARY OF GROUNDWATER AN CAL RESULTS AOC-UST2 - SVOCS HHMT-PORT IVO ACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location			WP-1	_		TWP-2			TWP-3	_		TWP-4			TWP-5			TWP-6	
Field ID	Recommended			WG01	PI-TWE	-2-051905	WG01	i e		NGD1	PI-TWP-4-052405WG0			DI-TW		wco.	DI-TWD		wgg.
Lab Sample No.	Groundwater	1	7758-00			C17870-004						17774-003			AC17870-005		AC17675-004		
Sampling Date	Cleanup Standard/	ı	23/2005	•		5/19/2005	` I	_	/18/2005			/24/2005			5/19/2005	J		/18/2005	٠ ا
Matrix	Guidance Value (RGCS)*	1	queous			Aqueous		1	Aqueous			Aqueous			Aqueous		ŀ	Aqueous	
Units	(1.000)		ug/L			ug/L		ĺ	ug/L		·	ug/L	i		ug/L			ug/L	
Semi-Volatile Organic Compo	und (SVOCs)	Conc	MDL	Qual	Canc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Butylbenzylphthalate	50	ND	0.41		ND	0.49		ND	0.3		ND	0.6		ND	0.41		ND	0.3	
Carbazole	NS/NG	NĐ	0.35		ND	0.42		ND .	0.21		ND	0.6		ND	0.35		ND	0.21	\Box
Chrysene	0.002	ND	0.19		ND	0.22		ND	0.31		ND	0.6		ND	0.19		ND	0.31	
Dibenzo[a,h]Anthracene	NS/NG	ND	0.5		ND	0.6		ND	0.2		ND	0.6		ND	0.5		ND	0.2	
Dibenzofuran	NS/NG	ND	1.7		ND	2.1		ND	1.4		ND	0.6		ND	1.7		ND	1.4	T
Diethylphthalate	50	2.3	0.24		ND	0.26		ND	0.26		ND	0.6		ND	0.24	\vdash	ND	0.26	
Dimethylphthalate	50	ND	0.5		ND	0.6		ND	0.19		ND	0.6		ND	0.5		ND	0.19	
Di-n-butylphthalate	50	ND	0.22		1.5	0.27		ND	0.22		ND	0.6		ND	0.22		ND	0.22	
DI-n-octylphthalate	50	ND	0.24		ND	0.28		ND	0.37		ND	0.6		ND	0.24		ND	0.37	
Fluoranthene	50	ND	0.36		ND	0.43		ND	0.18		ND	0.6		ND	0.36		ND	0.18	\vdash
Fluorene	50	ND	0.21		ND	0.25		ND	0.26		ND	0.6		ND	0.21		ND	0.26	
Hexachlorobenzene	0.04	ND	0.56		ND	0.67		ND	0,45		ND	0.6		ND	0.56		ND	0.45	\top
Hexachlorobutadiene	0.5	ΝĐ	0.34		ND	0.41	L	ND	0.27		ND	0.6		ND	0.34		ND	0.27	
Hexachlorocyclopentadiene	5	СИ	6.2		ND	7.4		ND	3		ND	0.6		ND	6.2		ND	3	T
Hexachloroethane	5	ND	0.51		ND	0.61		ND	0.38		ND	0.6		ND	0.51	1	ND	0.38	
Indeno[1,2,3-cd]pyrene	. 0.002	ND	0.72		ND	0.86		ND	0.19		ND	0.6		ND	0.72		ND	0.19	\Box
isophorone	50	ND	0.23		ND	0.27		ND	5.9		1.4	0.6		ND	0.23		ND	5.9	\Box
Naphthalene	10	23	0.19		ND	0.23		ND	0.11		ND	1.5		ND	0.19		ND	0.11	\Box
Nitrobenzene	0.4	ND	0.83		ND	0.99		ND	0.31		ND	0.6		ND	0.83		ND	0.31	T
N-Nitrosodimethylamine	NS/NG	ND	6.4		ND	7.6		ND	12		ND	0.6		ND	6.4		ND	12	
N-Nitroso-Di-N-Propylamine	NS/NG	ND	0.55		ND	0.66		ND	0.35		ND	0.6		ND	0.55		ND	0.35	Т
N-Nitrosodiphenylamine	50	ND	0.37	<u> </u>	ND	0.44		ND	0.3		ND	0.6		ND	0.37		ND	0.3	\Box
Pentachlorophenol	1.0 (Total Phenols)	QИ	0.96		ND	1.1	1	ND	1.1		ND	1.5		ND	0.96	T_{-}	ND	1.1	
Phenanthrene	50	ND	0.23		1.4	0.27		ND	0.24		27	0.6		ND	0.23		ND	0.24	
Phenol	1.0 (Total Phenols)	3.8	1		2.2	1.2		ND	1.8		ND	0.6		ND	1		ND	1.8	
Pyrene	50	ND	0.17		ND	0.2		ND	0.25		ND	0.6		ND	0.17		ND	0.25	T
Total Confident SVOCs	NS/NG	26.8			2.2			0			0			0		T	0	1	\top
Total SVOC TICs	NS/NG	1044.80		J	354.0		J	127.30		J	335.10		j	16.0		J	104.70		1

Notes and Abbreviations:

ug/L = micrograms per liter (all concentrations are given in ug/L).

* = RGCS/G values are based on New York State Title 6 CRR (Codes, Rules and Regulations) Part 703. The guidance value is utilized where a standard value has not been adopted for a substance.

SVOCs = Semi-volatile Organic Compounds

Conc = Concentration

MDL = Minimum detection limit

Qual = Laboratory data qualifier

NS = No standard

ND = Not detected

TICs = Tentatively Identified Compounds

NG = No guidance value

 $\label{eq:Jacobian} J = \text{Compound detected at a concentration lower than the reporting limit and the calibration range} \\ \text{for the compound. Estimated concentration range is provided.}$

One or more PAH compounds, a subset of SVOCs, were detected at concentrations in excess of their respective RSCOs in ten of the 17 soil samples collected at AOC-UST2. No SVOCs other than PAH compounds were detected at concentrations greater than their respective RSCOs. The soil samples collected from the 9-10 foot bgs depth interval at location UST2-4, the 6.5-7 foot bgs depth interval at location UST2-4A, the 6-6.5 ft bgs depth interval at UST2-4B, the 4.5-5 foot bgs depth interval at location UST2-6, the 9-9.5 foot bgs depth interval at location TWP-2, the 5-5.5 foot bgs depth interval at location TWP-3, and the 4.3-4.8 foot bgs depth interval at location TWP-5 did not contain any PAH compounds, or other SVOCs, at concentrations greater than their respective RSCOs. In addition, except for the soil sample collected from the 4-4.5 foot bgs depth interval at location TWP-1A, the soil samples contained concentrations of PAH compounds that are similar to the concentrations of those compounds throughout the Facility.

The concentration of TPHC ranged from non-detect in the soil samples collected at locations TWP-2 and TWP-5 to 48,000 mg/kg in the soil sample collected from the 6-8 foot bgs depth interval at soil boring location UST2-4. No RSCO has been established for TPHC in soil.

Quality Assurance/Quality Control Samples Associated with Soil Samples

To monitor the effectiveness of field decontamination procedures, the Port Authority prepared three field blanks by running laboratory-grade SI water over the stainless steel trowel used in the collection of soil samples. All three field blanks were analyzed for VOCs. No VOCs were detected in any of the three field blanks; therefore, field decontamination procedures were effective.

Summary of Groundwater Sampling Analytical Results and Appropriate NYSDEC Standards

As noted above, six soil borings were converted to temporary wells between May 13 and 24, 2005. The temporary wells were installed to confirm whether LNAPL was mobile, to access an LNAPL sample (if LNAPL migrated into one or more of the temporary wells), and to access a groundwater sample. Based upon measurements made using an oil/water indicator, LNAPL had not migrated into any temporary well as of May 24, 2005. Therefore, LNAPL samples could not be collected because a sufficient volume of LNAPL could not be separated from other matrices and it was concluded that the LNAPL in the vicinity of the temporary wells was immobile.

Groundwater samples were collected to determine whether LNAPL and/or impacted soils, known to be present in several areas in the vicinity of AOC-UST2, was/were acting as a source area for groundwater impacts. In order to confirm whether the LNAPL was acting as a source area, the six temporary wells were installed in two east-west lines. Each line of temporary wells included an upgradient temporary well, a temporary well located immediately downgradient of the LNAPL area, and a downgradient temporary well. The northern transect consisted of upgradient temporary well TWP-1A, LNAPL area temporary well TWP-2, and downgradient temporary well TWP-3. The southern transect consisted of upgradient temporary well TWP-4, LNAPL area temporary well TWP-5, and downgradient temporary well TWP-6. All groundwater samples were analyzed for PP VOCs, PP SVOCs, and TPHC. The analytical results are tabulated in Tables 4A and 4B and summarized below. Temporary well locations are shown on Figure 4.

For discussion purposes, the results have been compared, as appropriate, to current NYSDEC AWQSGVs. The NYSDEC AWQSGVs assume that groundwater is classified as GA, a potential drinking water source. Given the location of the Facility and the potential for water to be saline, the published AWQSGVs are not appropriate. However, at this time, these represent the only standards and guidance values available for ambient groundwater. Please note that the reference of these standards in this report does not represent any agreement or concurrence that the same are appropriate for usage at this site.

No targeted VOCs were detected in the groundwater samples. The concentration of VOC TICs ranged from non-detect at both downgradient temporary wells (TWP-3 and 6) and LNAPL area temporary well TWP-5 to 39.1 ug/L at upgradient temporary well TWP-1A.

Several targeted SVOCs were detected in the groundwater samples; however, the only SVOCs detected at concentrations greater than their respective AWQSGVs were naphthalene and phenol. Naphthalene was detected at a concentration greater than its AWQSGV at upgradient temporary well TWP-1A. Phenol was detected at a concentration greater than its AWQSGV at LNAPL area temporary well TWP-2 and upgradient temporary well TWP-1A. The concentration of total SVOC TICs ranged from 16 ug/L at LNAPL area temporary well TWP-5 to 1044.8 ug/L at upgradient temporary well TWP-1A.

TPHC was not detected in the groundwater samples collected from downgradient temporary wells TWP-3 and TWP-6, LNAPL area temporary well TWP-5, or upgradient well TWP-4. The concentration of

TPHC at upgradient well TWP-1A was 26.8 ug/L, while the concentration of TPHC at LNAPL area well TWP-2 was 2.2 ug/L.

Quality Assurance/Quality Control Associated with Groundwater Samples

To monitor the effectiveness of the field decontamination procedures, the Port Authority prepared and analyzed four field blanks. The field blanks were analyzed for TCL VOCs and were prepared by running laboratory-grade DI water over the sampling equipment.

The targeted VOC methylene chloride was detected in field blanks PI-FB-01-052405WQ01 and PI-FB-01-051905WQ01 (see Table 4A for a summary of the QA/QC results). Methylene chloride is a common laboratory contaminant, and the reported concentration for this compound in one of the field blanks was flagged with a "B," indicating that the compound was detected in an associated method blank. It is likely that the presence of this compound in the field blanks was due to laboratory contamination.

No other VOC was detected in either field blank.

6.2 Data Evaluation Portion of the SRI

Although fieldwork was not performed to evaluate the effect of groundwater impacts at Site 1 on the quality of surface water and sediment in Bridge Creek or to evaluate soil and groundwater quality in the vicinity of the hydrogen holders, HMM reviewed previous analytical data pertaining to these environmental issues. These data have been reported in the September 2004 report entitled *Revised – Site Investigation and Conceptual Remedial Workplan*; however, a summary of the relevant data are summarized in the following sections for the reader's convenience.

6.2.1 Previous Groundwater, Surface Water, and Sediment Analytical Results

Groundwater sampling was conducted at selected Site 1 wells during the SI and the Surcharge Pilot Study, conducted as part of the RI. Groundwater samples collected during both the SI and the RI were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, TPHC, oil and grease, total cyanide, and total phenolics. One groundwater sample was collected from each of eight monitoring wells during the SI and each of six monitoring wells during the Surcharge Pilot Study. Please note, the wells sampled during the SI were located throughout Site 1, but the wells sampled during the Surcharge Pilot Study were located in exclusively in the northern half of Site 1. The groundwater analytical results are tabulated in Appendix C and are shown on the Figures provided in the same Appendix.

Surface water and sediment sampling was conducted concurrently with the groundwater sampling effort during the SI. Surface water samples, but not sediment samples, were collected concurrently with groundwater samples during the RI as well. The SI surface water and sediment sampling locations were selected based on their proximity to wells where groundwater samples were also collected and to a "white material" previously observed at Bridge Creek. The RI surface water samples were located in Bridge Creek adjacent to the surcharge soil stockpile. All surface water and sediment samples were analyzed for TAL metals. In addition, the surface water samples were analyzed for pH using portable pH meters. The surface water and sediment sampling results are tabulated in Appendix C.

The analytical results for the SI groundwater sampling effort indicates that the only substances detected at concentrations greater than their respective NYSDEC AWQSGVs were ethylbenzene, xylene, phenol, 1,2-benzphenanthracene, benzo(a)anthracene, and the metals arsenic and cadmium. The concentration of ethylbenzene and xylene exceeded their respective AWQSGVs only in the sample from PG-CS-7. The concentrations of 1,2-benzphenanthracene and benzo(a)anthracene were greater than their respective AWQSGVs only in the groundwater samples collected at well PG-EW-3. Cadmium was detected at a concentration greater than its AWQSGV only in the groundwater sample collected from well PG-RS-2. Phenol was the only compound, and arsenic was the only metal, that was detected at a concentration greater than its AWQSGV in more than one groundwater sample. Phenol was detected at a concentration greater than its AWQSGV in the groundwater sample collected at wells PG-PA-MW-6, PG-CS-7, PG-EW-6, and PG-PA-MW-1. With the exception of PG-PA-MW-6, these wells are all located in the northern half of Site 1. Well PG-PA-MW-6 is located on the western side of Site 1, approximately at the north-south midpoint of Site 1. Arsenic was detected at concentrations greater than its AWQSGV in four groundwater samples collected from wells in the southern portion of Site 1.

As previously noted, the surface water and sediment samples were not analyzed for organic compounds. Lead and magnesium were detected at concentrations greater than their respective RSWCS in all three surface water samples. Mercury was detected at a concentration greater than its RSWCS in only the upstream surface water sample. Arsenic, cadmium, chromium, copper, iron, manganese, and nickel were detected at concentrations greater than their respective RSWCS and beryllium and zinc at concentrations greater than their respective Recommended Surface Water Cleanup Guidance Values (an RSWCS is available for neither of these two metals) only in the downstream surface water sample. The pH of Bridge Creek was measured to be between 7.5 and 8.2. Arsenic and cadmium were the only two metals detected at concentrations greater than their respective AWQSGVs in groundwater samples collected

during the SI. Groundwater impacted by arsenic was generally present in the southern portion of Site 1. However, this area is more than 400 feet upstream of the surface water sample (SW-3) that exhibited an elevated concentration of arsenic. Neither of the two surface water samples collected downstream of the area where groundwater was impacted by arsenic and upstream of surface water sample SW-3 contained arsenic at concentrations greater than its RSWCO. The same is true for cadmium: the area where groundwater impacted by cadmium would discharge into Bridge Creek (based on groundwater elevation contour lines generated during the SI) is upstream of surface water samples that didn't contain elevated concentrations of cadmium, but downstream surface water sample SW-3 did contain an elevated level of cadmium. The source of the elevated concentrations of metals, including arsenic and cadmium, in downstream surface water sample SW-3 is therefore unclear.

All five sediment samples contained one or more of the following metals at concentrations greater than their respective NYSDEC Lower Effects Level (LEL) but below the Severe Effects Level (SEL): arsenic, cadmium, chromium, and mercury. Lead and zinc were detected at concentrations greater than their NYSDEC SELs at all sediment sampling locations. Iron, mercury, nickel, and silver were detected at concentrations greater than their respective NYSDEC SELs in at least one of the sediment samples collected during the SI. Please note, the SI sediment sampling analytical results do not exhibit a pattern of increasing or decreasing concentration in a downstream direction in Bridge Creek for any metal analyzed.

The analytical results for the RI groundwater sampling effort indicates that the only substances detected at concentrations greater than their respective NYSDEC AWQSGVs were xylene, phenol, and the metals antimony, arsenic, beryllium, iron, manganese, nickel, sodium, and thallium. The concentration of xylene exceeded its AWQSGVs at PG-CS-7 only. Phenol was detected at a concentration greater than its AWQSGV only in the groundwater sample collected from well PG-RS-1. Arsenic, iron, and sodium were the only metals that were detected at concentrations greater than their respective AWQSGVs in more than one groundwater sample. Arsenic was detected at concentrations greater than its AWQSGV only in the samples collected from wells PG-PA-MW-1S and PG-PA-MW-4S. Iron and sodium were detected at concentrations greater than their respective AWQSGVs at all wells sampled during the RI with the exception of well PG-CS-7, where sodium was the only metal detected at concentration greater than its AWQSGV. The metals antimony, beryllium, and thallium were detected at concentrations greater than their respective AWQSGVs only in the sample collected from well PG-PA-MW-4S. Manganese was detected at concentrations greater than its AWQSGV only in the sample collected from well PG-PA-MW-4S.

MW-4D. Nickel was detected at a concentration greater than its AWQSGV only in the sample collected from well PG-PA-MW-1S.

As noted above, the surface water samples were not analyzed for organic compounds. The only metals detected at concentrations greater than their respective RSWCS or Guidance Values in any RI surface water sample were iron, magnesium, silver, and sodium. Of these four metals, iron and sodium were the only metals detected at concentrations greater than their respective AWQSGVs in groundwater samples collected during the RI. Magnesium was detected at a concentration greater than its RSWCS in all five surface water samples. Silver was detected at a concentration greater than its RSWCS in the upstream surface water sample. Iron was detected at a concentration greater than its Recommended Surface Water Cleanup Guidance Value (an RSWCS is not available for iron) in two of the five RI surface water samples. Sodium was detected at a concentration greater than its RSWCS in all surface water samples except the upstream surface water sample.

6.2.2 Previous Soil and Groundwater Analytical Results - Former Hydrogen Holders

The soil sampling locations nearest to the former hydrogen holders are PG-Wood-03, PG-Wood-3, PG-Wood-05, PG-PA-MW-6, and PG-PA-MW-6D. All five sampling locations are located within 100 feet of at least one of the two former hydrogen holders. As noted above, the concern regarding the hydrogen holders is not that the holders themselves could have discharged regulated substances, but rather that appurtenant equipment (air compressors, e.g.) could have discharged these substances. HMM's review of available records could not confirm the presence or location of any potential appurtenant equipment.

Seventeen soil samples were collected from the five locations situated nearest the locations of the former hydrogen holders, as based on Sanborn maps. All soil samples were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, total cyanide, total phenolics, O&G, TPHC, and PCBs. The analytical results are tabulated in Tables 5A through 5D and are depicted on Figure 6.

The soil sampling analytical results indicate that no targeted VOCs, pesticides, PCBs, total cyanide, or total phenolics were detected at concentrations greater than their respective RSCOs. The SVOC benzo(b)fluoranthene was detected at a concentration greater than its RSCO in only two of the 17 soil samples evaluated. The SVOC phenol was also detected at a concentration greater than its RSCO in only two of the soil samples. The following metals were detected at concentrations greater than their

TABLE 5A SUMMARY OF SOIL ANALYTICAL RESULTS-VOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location	<u> </u>	PG-WC	OD-03	PG-WC	OD-03	PG-W	OOD-3	PG-W	OOD-3	PG-WC	OD-05	PG-WC	OD-05
Field ID	NV6555	PG-W		PG-W			VD-3	PG-V		PG-W		PG-W	
Sampling Date	NYSDEC	11/10	/2000	11/10	/2000	11/29	/2000	11/29	/2000	11/7/	2005	11/7/	2000
Matrix	RSCO	Sc		So		S		Sc		So		Sc	
Sample Depth	(mg/Kg)	0.5-2	ft bas	2-4 ft	bas	2-4 f	t bas	6-8 ft	bas	0-2 ft	bas	2-4 ft	bas
Units		mg/		mg	_	mg		mg/		mg/		mg/	- 1
VOLATILE ORGANIC COMPOU	NDS (VOCs)	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
1.1.1-Trichloroethane	0.8	ND		ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	0.6	ND		ND		ND		ND		ND		ND	
1,2,4-Trichlorobenzene	3.4	ND	1	ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	0.8 1	ND		ND		ND		ND		ND		ND	
1,1-Dichloroethane	0.2	ND		ND		ND		ND		ND		ND	
1,1-Dichloroethene	0.4	ND		ND		ND	L	ND		ND		ND	
1,2-Dichloroethane	0.1	ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane	0.3 ²	ND		ND		ND		ND		ND		ND	
2-Chloroethyl vinyl ether	NS	ND		ND		ND		ND		ND		ND	
Acrolein	NS	ND		ND		ND		ND		ND		ND	
Acrylonitrile	·NS	ND		ND		ND		ND		ND		ND	
Benzene	0.06	ND		ND		ND		ND		ND		ND	
Bromodichloromethane	NS	ND		ND		ND		ND		ND		ND	
1,2-Dichlorobenzene	7.9	ND		ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	8.5	ND		ND		ND		ND		ND		ND	
Bromoform	NS	ND		ND		ND		ND		ND		ND	
Bromomethane	NS	ND		ND		ND		ND		ND		ND	
Carbon Tetrachloride	0.6	ND		ND		ND		ND		ND		ND	
Chlorobenzene	1.7	ND		ND		ND		ND		ND.		ND	
Chloroethane	1.9	ND		ND		ND		ND		ND		ND	
Chloroform	0.3	ND		ND		ND		ND		ND		ND	
Chloromethane	NS	ND		ND		ND		ND		ND		ND	
Cis-1,3-Dichloropropene	NS	ND		ND		ND		ND		ND		ND	
Dibromochloromethane	NS	ND		ND		ND		ND		ND		ND	
Dichloromethane	0.1	0.0028	J,B	0.0025	J,B	0.0058	J,B	0.0089	J,B	ND		ND	
Ethylbenzene	5.5	ND		ND		ND		ND		ND		ND	
M&P-Xylenes	1.2	ND		ND		ND		ND		ND		ND	
Methylbenzene	NS	ND		ND		ND		ND		ND		ND	
O-Xylene	1.2	ND		ND		ND		ND		ND		ND	
Tetrachloroethylene	1.4	ND		ND		ND		ND	I	ND		ND	
trans-1,2-Dichloroethylene	0.3	ND		ND		ND		ND		ND		ND	
trans-1,3-Dichloropropene	NS	ND		ND		ND		ND	↓	ND		ND	
Trichloroethylene	0.7	ND		ND		ND		ND		ND		ND	
Vinyl chloride	0.2	ND		ND		ND		ND		ND		ND	
Total Confident VOCs		0		0		0		0		0	1	0	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

RSCO: Recommended Soil Cleanup Objective

VOC: Volatile Organic Compound

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs: Feet below ground surface

NS: No standard ND: Not detected

B: The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

J: Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided.

- 1: This RSCO is for 1,1,1-Trichloroethane.
- 2: This RSCO is for 1,3-Dichloropropane.
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.

TABLE 5A SUMMARY OF SOIL ANALYTICAL RESULTS-VOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PG-WC	OD-05	PG-WC	OD-05	PG-WC	OD-05	PG-WOOD-05		
Field ID	NIVEDEC	E .	/D-05		/D-05		/D-05	PG-W		
Sampling Date	NYSDEC	11/7/	2000	11/7/	2000	11/7/	2000	11/7/		
Matrix	RSCO	Sc	oil	S	oil İ	So		S		
Sample Depth	(mg/Kg)	4-6 f	4-6 ft bgs		6-8 ft bgs		ft bgs	14-16	ft bgs	
Units		mg.		mg.		mg.	_	mg/Kg		
VOLATILE ORGANIC COMPO	JNDS (VOCs)	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	
1,1,1-Trichloroethane	0.8	ND		ND		ND		ND		
1,1,2,2-Tetrachloroethane	0.6	ND		ND		ND		ND		
1,2,4-Trichlorobenzene	3.4	ND		ND		ND		ND		
1,1,2-Trichloroethane	0.8 1	ND		ND		ND		ND		
1,1-Dichloroethane	0.2	ND		ND		ND		ND		
1,1-Dichloroethene	0.4	ND		ND		ND		ND		
1,2-Dichloroethane	0.1	ND		ND		ND		ND		
1,2-Dichloropropane	0.3 2	ND		ND		ND		ND		
2-Chloroethyl vinyl ether	NS	ND		ND		ND		ND		
Acrolein	NS	ND		ND		ND		ND		
Acrylonitrile	NS	ND .		ND		ND		ND		
Benzene	0.06	ND		ND		ND		ND		
Bromodichloromethane	NS	ND		ND		ND		ND		
1,2-Dichlorobenzene	7.9	ND		ND		ND		ND		
1,4-Dichlorobenzene	8.5	ND		ND		ND		ND		
Bromoform	NS	ND		ND		ND		ND		
Bromomethane	NS	ND		ND		ND		ND		
Carbon Tetrachloride	0.6	ND		ND		ND		ND		
Chlorobenzene	1.7	ND		ND	I	ND		0.018		
Chloroethane	1.9	ND		ND		ND		ND		
Chloroform	0.3	ND		ND		ND		ND		
Chloromethane	NS	ND		ND	I	ND		ND		
Cis-1,3-Dichloropropene	NS	ND		ND	I	ND		ND		
Dibromochloromethane	NS	ND		ND		ND		ND]	
Dichloromethane	0.1	0.0043	J	0.0079		ND		0.0086	J,B	
Ethylbenzene	5.5	ND ND		ND	I	ND		0.0084		
M&P-Xylenes	1.2	ND		ND		ND		0.0047	J	
Methylbenzene	NS	ND		ND		ND		0.024		
O-Xylene	1.2	ND		ND		ND		ND		
Tetrachloroethylene	1.4	ND		ND		ND		ND		
trans-1,2-Dichloroethylene	0.3	ND		ND		ND		ND		
trans-1,3-Dichloropropene	NS	ND		ND		ND		ND		
Trichloroethylene	0.7	ND		ND		ND		ND		
Vinyl chloride	0.2	ND		ND		ND		ND		
Total Confident VOCs		0		0.0079		0		0.05		

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

RSCO: Recommended Soil Cleanup Objective

VOC: Volatile Organic Compound

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs: Feet below ground surface

NS: No standard ND: Not detected

- B: The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- J: Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided.
- 1: This RSCO is for 1,1,1-Trichloroethane.
- 2: This RSCO is for 1,3-Dichloropropane.
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.

TABLE 5A SUMMARY OF SOIL ANALYTICAL RESULTS-VOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PG-PA	-MW-6	PG-PA	-MW-6	PG-PA	-MW-6	PG-PA	-MW-6	PG-PA	MW-6
Field ID										PG-MWPA-0	
Sampling Date	NYSDEC RSCO		2000	11/7/		11/7/			2000	11/7/2	
Matrix	(mg/Kg)	S	oil	Sc	oil	Sc	oil	S		Sc	
Sample Depth	, , ,	1.5-3	ft bas	3-4.5		4.5-6	ft bgs	6-8 ft bgs		8.5-10	
Units		mg		mg/	_	mg/Kg		mg/Kg		mg/Kg	
VOLATILE ORGANIC COMPO	JNDS (VOCs)	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Oual	Conc	Qual
1,1,1-Trichloroethane	0.8	ND	T T	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	0.6	ND		ND		ND		ND		ND	-
1,2,4-Trichlorobenzene	3.4	ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	0.8 1	ND		ND		ND		ND		ND	
1,1-Dichloroethane	0.2	ND		ND		ND		ND		ND	
1,1-Dichloroethene	0.4	ND		ND		ND		ND	L	ND	
1,2-Dichloroethane	0.1	ND		ND		ND		ND		ND	
1,2-Dichloropropane	0.3 2	ND		ND		ND		ND		ND	
2-Chloroethyl vinyl ether	NS	ND		ND		ND		ND		ND	
Acrolein	NS	ND		ND		ND		ND		ND	
Acrylonitrile	NS	ND		ND		ND		ND		ND	,
Benzene	0.06	ND		ND		ND		ND		ND	
Bromodichloromethane	NS	ND		ND		ND		D		ND	
1,2-Dichlorobenzene	7.9	ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	8.5	ND		ND		ND		ND		ND	
Bromoform	NS	ND		ND		ND		ND		ND	
Bromomethane	NS	ND		ND		ND		ND		ND	
Carbon Tetrachloride	0.6	ND		ND		ND		ND		ND	
Chlorobenzene	1.7	ND		ND		ND ,		ND		ND	
Chloroethane	1.9	ND		ND		ND		ND		ND	
Chloroform	0.3	ND		ND		ND		ND		ND	
Chloromethane	NS	ND		ND		ND		ND		ND	
Cis-1,3-Dichloropropene	NS	ND		ND		ND		ND		ND	
Dibromochloromethane	NS	ND		ND		ND		ND		ND	
Dichloromethane	0.1	0.0041	J	0.0036	J	0.004	J,B	0.005	J	0.0059	J
Ethylbenzene	5.5	ND		ND		ND		ND		ND	
M&P-Xylenes	1.2	ND		ND		ND		ND		ND	
Methylbenzene	NS	ND		ND		ND		ND		ND	
O-Xylene	1.2	ND		ND		ND		ND		ND	
Tetrachloroethylene	1.4	ND		ND		ND		ND		ND	[
trans-1,2-Dichloroethylene	0.3	ND		ND		ND		ND		ND	
trans-1,3-Dichloropropene	NS	ND		ND		ND		ND		ND	
Trichloroethylene	0.7	ND		ND		ND		ND		ND	
Vinyl chloride	0.2	ND		ND		ND		ND O		ND	
Total Confident VOCs		0		0		0		0		0	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

RSCO: Recommended Soil Cleanup Objective

VOC: Volatile Organic Compound

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs: Feet below ground surface

NS: No standard ND: Not detected

- B: The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- J: Compound detected at a concentration lower than the reporting limit and the calibration range for the compound.
- 1: This RSCO is for 1,1,1-Trichloroethane.
- 2: This RSCO is for 1,3-Dichloropropane.
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.

TABLE 5B SUMMARY OF SOIL ANALYTICAL RESULTS-SVOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location	1	PG-W	OOD-03	PG-W	OOD-03	I PG-W	OOD-3	I PG-W	OOD-3	PG-W	OOD-05
Field ID	111/0050		VD-03	1	VD-03		ND-3	1	WD-3		VD-05
Sampling Date	NYSDEC RSCO	11/10	/2000	11/10	/2000	11/29	/2000		/2000		/2005
Matrix	(mg/Kg)	s	oil		oil	s	oil	s	oil	s	oil
Sample Depth	(Hig/Ng)	0.5-2	ft bgs	2-4 1	ft bgs	2-4 1	t bgs	6-81	ft bgs	0-2 1	t bgs
Units		mg	/Kg	mg	/Kg	mg	/Kg	mg	/Kg	mg	/Kg
SVOCs		Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
1,2-Benzphenanthracene	Note 1	0.06	J	1.1		0.15	J	ND	l	ND	
1,2-Diphenylhydrazine	Note 1	ND		ND		ND		ND		ND	
2,4,6-Trichlorophenol	0.1 ²	ND		ND		ND		ND		ND	
2,4-Dichlorophenol	0.4	ND		ND		ND		ND		ND	
2,4-Dimethyphenol	Note 1	ND		ND		ND		ND		ND	
2,4-Dinitrophenol	MDL	ND		ND		ND		ND		ND	
2,4-Dinitrotoluene	Note 1	ND		ND		ND		ND		ND	
2,6-Dinitrotoluene	1	ND		ND		ND		ND		ND	
2-Chlornaphthalene	Note 1	ND		ND		ND		ND		ND	
2-Chlorophenol	0.8	ND		ND		ND		ND		ND	
2-Nitrophenol	MDL Note 1	ND	L,	ND		ND		ND		ND	
3,3'-Dichlorobenzidine	Note 1	ND		ND		ND		ND		ND	
4,6-Dinitro-o-cresol	Note 1	D D		ND		ND		ND DA		ND	
4-Bromophenylphenyl ether	Note 1 0.240 or MDL	ND DD		ND ND	ļ	ND ND		ND ND		ND ND	
4-Chloro-3-methylphenol	Note 1	ND		ND		ND ND		ND ND		ND ND	
4-Chlorophenylphenyl ether 4-Nitrophenol	MDL	ND		ND ND		ND ND		ND ND		ND ND	
Acenaphthene	Note 1	ND		0.088	J	ND ND		ND		ND	
Acenaphthylene	41	ND		0.000	J	ND	-	ND		ND	
Anthracene	Note 1	ND		0.32		ND		ND		ND	
Benzidine	Note 1	ND		ND		ND		ND		ND	
Benzo(a)anthracene	MDL	0.047	J	0.95		0.10	J	ND		ND	
Benzo(a)pyrene	MDL	0.039	J	0.97		0.11	Ĵ	ND		ND	
Benzo(b)fluoranthene	1.1	0.086	· J	· 2.5		0.18	J	ND		ND	
Benzo(g,h,l)perylene	Note 1	ND		0.31		0.11	J	ND		ND	
Benzo(k)fluoranthene	1.1	ND		ND		0.073	j	ND		ND	
Benzyl butyl phthalate	Note 1	ND		ND		ND		ND		ND	
Bis(2-chloroethoxy)methane	Note 1	ND		ND		ND		ND		ND	
Bis(2-chloroethyl)ether	Note 1	ND		ND		ND		ND		ND	
Bis(2-Chloroisopropyl)ether	Note 1	ND		ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	Note 1	0.4	В	0.23	В	0.17	J,B	0.34	В	0.21	
Di-n-butyl phthalate	8.1	ND		ND		ND		ND		0.20	
Di-n-octyl phthalate	Note 1	0.052	J	0.089	J	ND		0.067	J	0.097	J,B
Dibenz(a,h)anthracene	MDL 7.1	ND ND		ND		ND		ND		ND	
Diethyl phthalate Dimethyl phthalate	2	ND		ND ND		ND ND		ND ND		ND ND	
Fluoranthene	MDL	0.09	J	1.6		0.14	J	ND		ND	
Fluorene	MDL	ND ND	 	0.11	J	ND	<u> </u>	ND		ND	
Hexachloro-1.3-butadiene	NS	ND		ND	 	ND		ND	-	ND	
Hexachlorobenzene	0.41	ND		ND		ND		ND		ND	
Hexachlorocyclopentadiene	Note 1	ND	<u> </u>	ND		ND		ND		ND	+
Hexachloroethane	Note 1	ND		ND		ND		ND		ND	
Indeno(1,2,3-CD)pyrene	3.2	ND		0.33		0.096	J	ND		ND	
Isophorone	4.4	ND		ND		ND		ND	<u>†</u>	ND	
M-Dichlorobenzene	Note 1	ND		ND		ND		ND		ND	
N-Nitroso-di-n-propylamine	Note 1	ND		ND		ND		ND		ND	
N-Nitrosodimethylamine	Note 1	ND		ND		ND]	ND	I	ND	
N-Nitrosodiphenylamine	Note 1	ND]	ND		ND		ND		ND	
Naphthalene	13	ND		0.20		0.07	J	ND]	ND	
Nitrobenzene	MDL	ND		ND		ND		ND		ND	
Pentachlorophenol	1.0 or MDL	ND		ND		ND		ND		ND	
Phenanthrene	Note 1	0.07	· J	1.1		0.12	J	ND		ND	
Phenol	0.03 or MDL	ND		ND		ND		ND		ND	
Pyrene	Note 1	0.1	J	1.5		0.15	J	ND		ND	
Total Confident SVOCs	500	0		10.88		0		0		0.41	

TABLE 5B SUMMARY OF SOIL ANALYTICAL RESULTS-SVOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

				1 - 2 144		CDO 14/6	200.05	DO 14/6	200.06	DC 14/	OOD-05	DC DX	-MW-6
Sample Location		PG-WOOI			OOD-05		OOD-05 VD-05		OOD-05 VD-05	_	VD-05		VPA-06
Field ID	NVODEC BOCO	PG-WD-			VD-05			_	/2000		/2000		2000
Sampling Date	NYSDEC RSCO	11/7/200)()	1	2000	1	2000		oil		oil		oil
Matrix	(mg/Kg)	Soil		_	oil		oil t bgs		ft bgs		ft bgs		ft bas
Sample Depth	• :	2-4 ft bg		4-6 f			/Kg		/Kg		/Kg		/Kg
Units		mg/Kg			/Kg							Conc	Qual
SVOCs			ual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual		Quai
1,2-Benzphenanthracene	Note 1	ND		ND		ND		ND_	ļ	ND	ļ	1.3	
1,2-Diphenylhydrazine	Note 1	ND		ND		ND		ND		ND	ļi	ND	
2,4,6-Trichlorophenol	0.1 ²	ND		ND		ND		ND		ND		ND	
2,4-Dichlorophenol	0.4	ND		ND		ND		ND_		ND	ļ	ND	
2,4-Dimethyphenol	Note 1	ND		ND		ND		ND		ND		ND	
2,4-Dinitrophenol	MDL	ND		ND		ND		ND		ND		ND	
2,4-Dinitrotoluene	Note 1	ND		ND		ND		ND_		ND	<u> </u>	ND	
2,6-Dinitrotoluene	11	ND		ND		ND		ND_		ND		ND	
2-Chlornaphthalene	Note 1	ND		ND		ND		ND		ND ND		ND ND	
2-Chlorophenol	0.8	ND		ND		ND		ND		ND ND	 	ND	
2-Nitrophenol	MDL	ND		ND		ND		ND ND	<u></u>	ND ND	 	ND	
3,3'-Dichlorobenzidine	Note 1	ND		ND	ļ	Z D D		ND_		ND		ND	
4,6-Dinitro-o-cresol	Note 1	ND		ND				ND ND	-	ND UND		ND	
4-Bromophenylphenyl ethe	Note 1	ND		ND ND		D D		ND ND	-	ND ND	 	ND	
4-Chloro-3-methylphenol	0.240 or MDL	ND								ND		ND	
4-Chlorophenylphenyl ethe	Note 1	ND ND		ND ND		ND DZ		ND ND		ND		ND	-
4-Nitrophenol	MDL	ND		ND		ND		ND ND		ND	<u> </u>	0.38	
Acenaphthene	Note 1	ND	-	ND	_	ND		ND	-	ND		0.16	J
Acenaphthylene	41 Note 1	ND		ND		ND		ND I		ND		2.7	
Anthracene		ND		ND		ND		ND	-	ND		ND ND	
Benzidine	Note 1 MDL	ND		ND		ND		ND		ND		1.1	
Benzo(a)anthracene	MDL	ND	-	ND		ND		ND	1	ND		1.2	
Benzo(a)pyrene	1.1	ND		ND		ND		ND		ND		2.2	
Benzo(b)fluoranthene	Note 1	ND		ND		ND		ND		ND		0.43	
Benzo(g,h,l)perylene Benzo(k)fluoranthene	1.1	ND		ND		ND		ND		. ND		ND	
Benzyl butyl phthalate	Note 1	ND		ND		ND		ND		ND		ND	
Bis(2-chloroethoxy)methan	Note 1	ND		ND		ND		ND		ND		ND	_
Bis(2-chloroethyl)ether	Note 1	ND		ND		ND		ND		ND		ND	
Bis(2-Chloroisopropyl)ether	Note 1	ND		ND		ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	Note 1	ND		ND		ND		ND		ND		ND	
Di-n-butyl phthalate	8.1	ND		ND		ND		0.16	J	0.29	J	ND	
Di-n-octyl phthalate	Note 1	ND		0.05	J,B	ND		ND		0.16	J,B	0.038	J
Dibenz(a,h)anthracene	MDL	ND		ND	,	ND		ND		ND		0.28	
Diethyl phthalate	7.1	ND		ND		ND		ND		ND		ND	
Dimethyl phthalate	2	ND		ND		ND		ND		ND		ND	
Fluoranthene	MDL	ND		ND		ND		ND		ND		2.2	
Fluorene	MDL	ND		ND		ND		ND		ND		0.26	
Hexachloro-1,3-butadiene	NS	ND		ND		ND		ND		ND		ND	
Hexachlorobenzene	0.41	ND		ND		ND		ND		ND		ND	
Hexachlorocyclopentadiene	Note 1	ND		ND		ND		ND		ND		ND	
Hexachloroethane	Note 1	ND		ND .		ND		ND		ND		ND	
Indeno(1,2,3-CD)pyrene	3.2	ND		ND		ND		ND		ND		0.47	
Isophorone	4.4	ND		ND		ND		ND		ND		ND	
M-Dichlorobenzene	Note 1	ND		ND		ND		ND		ND		ND	
N-Nitroso-di-n-propylamine	Note 1	ND		ND		ND		ND		ND		ND	
N-Nitrosodimethylamine	Note 1	ND		ND		ND		ND		ND		ND	
N-Nitrosodiphenylamine	Note 1	ND		ND		ND		ND		ND		ND	
Naphthalene	13	ND		ND		ND		0.13	J	ND		0.33	i
Nitrobenzene	MDL	ND		ND		ND		ND		ND		ND	
Pentachlorophenol	1.0 or MDL	ND		ND		ND		ND		ND		ND	
Phenanthrene	Note 1	ND		ND		ND		ND		ND		1.6	
Phenol	0.03 or MDL	1.2		ND		ND		ND		ND		ND	
Pyrene	Note 1	ND		ND		ND		ND		ND		2.0	
Total Confident SVOCs	500	1.2		0		0		0		0		16.45	

TABLE 5B SUMMARY OF SOIL ANALYTICAL RESULTS-SVOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location	I	PG-PA	\-MW-6	PG-PA	A-MW-6	PG-PA	-MW-6	PG-P/	A-MW-6
Field ID	NIVEDEC	PG-MV	VPA-06	PG-M\	VPA-06	PG-MV	VPA-06	PG-M\	NPA-06
Sampling Date	NYSDEC	11/7	/2000	11/7	/2000	11/7	/2000	11/7	/2000
Matrix	RSCO (ms/Ks)	s	oil	s	oil	s	oil	S	ioil
Sample Depth	(mg/Kg)	3-4.5	ft bgs	4.5-6	ft bgs	6-81	t bgs	8.5-10) ft bgs
Units		mg	/Kg	mg	/Kg	mg	/Kg	mg	J/Kg
SVOCs		Conc	Qual	Conc	Qual	Conc	Oual	Conc	Qual
1,2-Benzphenanthracene	Note 1	0.22		0.12	J	0.08	J	0.12	J
1,2-Diphenylhydrazine	Note 1	ND		ND		ND		ND	
2,4,6-Trichlorophenol	0.12	ND		ND		ND		ND	
2,4-Dichlorophenol	0.4	ND		ND	L	ND		ND	
2,4-Dimethyphenol	Note 1	ND		ND		ND		ND	
2,4-Dinitrophenol	MDL	ND		ND		ND		ND	
2,4-Dinitrotoluene	Note 1	ND		ND	ļ	ND		ND	
2,6-Dinitrotoluene	1	ND		ND		ND		ND	ļ
2-Chlornaphthalene	Note 1	ND		ND		ND		ND_	
2-Chlorophenol	0.8	ND		ND		ND		ND	<u> </u>
2-Nitrophenol	MDL	ND	·	ND		ND		ND	
3,3'-Dichlorobenzidine	Note 1	ND		ND		ND		ND	<u> </u>
4,6-Dinitro-o-cresol	Note 1	ND		ND ND	<u> </u>	ND ND		ND ND	
4-Bromophenylphenyl ethe	Note 1 0.240 or MDL	ND ND	·	ND ND		ND		ND ND	
4-Chloro-3-methylphenol 4-Chlorophenylphenyl ethe	Note 1	ND		ND		ND		ND ND	
4-Nitrophenol	MDL	ND		ND		ND		ND	
Acenaphthene	Note 1	ND		ND		ND		ND	
Acenaphthylene	41	ND		ND		ND		ND	
Anthracene	Note 1	0.052	J	ND		ND		ND	
Benzidine	Note 1	ND		ND		ND		ND	
Benzo(a)anthracene	MDL	0.14	j	0.072	J	ND		0.061	J
Benzo(a)pyrene	MDL	0.12	Ĵ	0.049	J	ND		ND	_
Benzo(b)fluoranthene	1.1	0.20		0.059	j	ND		0.063	J
Benzo(g,h,l)perylene	Note 1	0.065	J	ND		ND		ND	
Benzo(k)fluoranthene	1.1	ND		0.049	J	ND		ND	
Benzyl butyl phthalate	Note 1	ND		ND		ND		ND	
Bis(2-chloroethoxy)methan	Note 1	ND		ND		ND		ND	
Bis(2-chloroethyl)ether	Note 1	ND		ND		ND		ND	
Bis(2-Chloroisopropyl)ether	Note 1	ND		ND		ND		ND	
Bis(2-ethylhexyl)phthalate	Note 1	0.055	J	ND		ND		0.076	J
Di-n-butyl phthalate	8.1	0.06	J	0.072	J	0.063	J	0.068	J
Di-n-octyl phthalate	Note 1	0.06	J	0.079	J	ND		ND	
Dibenz(a,h)anthracene	MDL	0.04	J	ND		ND		ND	
Diethyl phthalate	7.1	ND		ND		ND		ND	
Dimethyl phthalate	2	ND 0.18		ND 0.004	<u>-</u>	ND		ND 0.085	J
Fluoranthene	MDL MDL	0.18 ND	J	0.094 ND		ND ND		0.085 ND	J
Fluorene Hexachloro-1.3-butadiene	NS NS	ND ND		ND ND		ND ND		ND	
Hexachloro-1,3-butagiene Hexachlorobenzene	0.41	ND	+	ND		ND		ND	
Hexachlorocyclopentadiene	Note 1	ND		ND		ND		ND	
Hexachloroethane	Note 1	ND		ND		ND		ND	
Indeno(1,2,3-CD)pyrene	3.2	0.059	J	ND		ND		ND	
Isophorone	4.4	ND		ND		ND		ND	
M-Dichlorobenzene	Note 1	ND		ND	1	ND		ND	
N-Nitroso-di-n-propylamine	Note 1	ND		ND	<u>-</u>	ND		ND	
N-Nitrosodimethylamine	Note 1	ND		ND		ND		ND	
N-Nitrosodiphenylamine	Note 1	ND		ND		ND		ND	
Naphthalene	13	0.22		0.15	J	ND		ND	
Nitrobenzene	MDL	ND		ND		ND		ND	
Pentachlorophenol	1.0 or MDL	ND		ND		ND		ND	
Phenanthrene	Note 1	0.46		0.26		ND		0.093	J
Phenol	0.03 or MDL	ND		ND		ND		ND	
Pyrene	Note 1	0.21		0.10	J	ND		0.11	J
Total Confident SVOCs	500	1.3		0.26	1	0		0	
		-							

TABLE 5B SUMMARY OF SOIL ANALYTICAL RESULTS-SVOCS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs: Feet below ground surface

ND: Not detected

B: The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

J: Compound detected at a concentration lower than the reporting limit and the calibration range for the compound. Estimated concentration range is provided. Shaded values depicted in **bold** font exceed the NYSDEC RSCO.

- 1: As per TAGM #4046, the RSCO for individual SVOCs is 50 ppm.
- 2: This RSCO is for 2,4,5-Trichlorophenol
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.
- 4: Shaded values depicted in bold font exceed the NYSDEC RSCO.

TABLE 5C SUMMARY OF SOIL ANALYTICAL RESULTS-PESTICIDES AND PCBS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PG-WC	OOD-03	PG-WC	OD-03	PG-W	OOD-3	PG-W	OOD-3	PG-W	OD-05	PG-WC	OD-05
Field ID			/D-03	PG-W		PG-V	ND-3	PG-V	VD-3	PG-W	VD-05	PG-W	/D-05
Sampling Date	NYSDEC	11/10		11/10	/2000	11/29	/2000	11/29	/2000	11/7/	2005	11/7/	2000
Matrix	RSCO		oil	. S			oil	S	oil	s	oil	S	oil
Sample Depth	(mg/Kg)	0.5-2			t bgs	2-4 f	t bgs	6-8 f	t bas	0-2 f	t bas	2-4 f	t bas
Units		mg		mg	•	mg		mg.	/Kg	mg	/Kg	mg	/Kg
PESTICIDES		Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
4.4'-DDD	2.9	ND		ND		ND		ND	***	ND	-	ND	
4,4'-DDE	2.1	ND		ND		ND		ND		ND		ND	
4.4'-DDT	2.1	0.012		ND		ND		ND		ND		0.13	
Aldrin	0.041	ND		ND		ND		ND		ND		DN	
Alpha-BHC	0.11	ND		ND		ND		ND		ND		ND	
Beta-BHC	0.2	ND		ND		ND		ND		ND		ND	
Chlordane	0.54	ND		ND		ND		ND		ND		ND	
Delta-BHC	0.3	ND		ND		ND		ND		ND		ND	
Dieldrin	0.044	ND		ND		ND		ND		ND		0.027	
Endosulfan I	0.9	ND		ND		Ŋ		ND		ND		0.0047	
Endosulfan il	0.9	ND		ND		Ŋ		ВD		ND		ND	
Endosulfan Sulfate	1	ND		ND		ND		ND		ND		ND	_
Endrin	0.1	ND		ND		ND		ND		ND		0.0089	
Endrin Aldehyde	NS	ND _		ND		ND		ND		ND		ND	
Endrin Ketone	NS	ND		ND		ND		ND		ND		0.0099	
Lindane (Gamma-BHC)	0.06	ND		ND		ND		ND		ND		ND	
Heptachlor	0.1	ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	0.02	ND		ND		ND		ND		ND		0.0065	
Methoxychlor	Note 1	ND		ND		ND		ND		ND		ND	
Toxaphene	NS	ND		ND		ND		ND		ND		ND	
PCBs													
Aroclor 1016	NS	ND		ИD		ND		ND		ND		ND	
Aroclor 1221	NS	ND		ND		ND		ND		ND		QN	
Arocior 1232	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1242	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1248	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1254	NS	ND		ND		ND		ND		ND		1.1	
Aroclor 1260	NS	0.16		ND		ND		ND		ND		ND	
Total PCBs	1 or 10 ²	0.16		ND		ND		ND		ND		§1.1°	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs.: Feet below ground surface

NS: No standard ND: Not detected

1: As per TAGM #4046 the RSCO for total VOCs is less than 10 mg/Kg.

2: 1 mg/Kg is the RSCO for PCBs detected in surface soil (0-2 ft. bgs) samples. 10 mg/Kg is the RSCO for PCBs detected in subsurface samples.

3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.

4: Shaded values depicted in **bold** font exceed the NYSDEC RSCO.

TABLE 5C SUMMARY OF SOIL ANALYTICAL RESULTS-PESTICIDES AND PCBS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PG-WC	OD-05	PG-WC	OD-05	PG-WC	OD-05	PG-WC	OOD-05	PG-PA	-MW-6	PG-PA	-MW-6
Field ID		_	/D-05		/D-05	PG-W	/D-05	PG-W	/D-05	PG-MV	VPA-06	PG-MV	VPA-06
Sampling Date	NYSDEC	11/7/	2000	11/7/	2000	11/7/	2000	11/7/	2000	11/7/	2000	11/7/	2000
Matrix	RSCO (mg/Kg)	S	oil	S	oil	S	oil	S	oil	l s	oil	S	oil
Sample Depth	()),	4-6 f	t bas	6-8 f	t bgs	8-10	ft bgs	14-16	ft bgs	1.5-3	ft bgs	3-4.5	ft bgs
Units		mg	/Kg	mg.	/Kg	mg	/Kg	mg	/Kg _	mg	/Kg	mg	/Kg
PESTICIDES		Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
4.4'-DDD	2.9	ND		ND		ND		ND		ND		ND	
4.4'-DDE	2.1	ND		ND		ND		ND		ND		0.0058	
4,4'-DDT	2.1	ND		ND		ND		ND		0.019		0.017	
Aldrin	0.041	ND		ND		ND		ND		ND		ND	
Alpha-BHC	0.11	ND		ND		ND		ND		ND		ND	
Beta-BHC	0.2	ИD		ND		ND		ND		ND		ND	
Chlordane	0.54	ND		ND		ND		ND		ND		ND	
Delta-BHC	0.3	ND		ND		ND		ND		ND		ND	
Dieldrin	0.044	ND		ND		ND		ND		ND		ND	
Endosulfan I	0.9	ND		ND		ND		ND		ND		ND	
Endosulfan II	0.9	ND		ND		ND		ND		ND		ND	
Endosulfan Sulfate	1	ND		ND		ND		ND		ND		ND	
Endrin	0.1	ND		ND		ND		ND		ND		ND	
Endrin Aldehyde	NS	ND		ND		ND		ND		0.0054		ND	
Endrin Ketone	NS	ND_		ND		ND		ND		ND		ND	
Lindane (Gamma-BHC)	0.06	ND		ND		ND		ND		ND		ND	
Heptachlor	0.1	ND		ND		ND		ND		ND		ND	
Heptachlor Epoxide	0.02	ND		ND		ND		ND		ND		ND	
Methoxychlor	Note 1	ND		ND		ND		ND		ND		ND	
Toxaphene	NS	ND		ND		ND		ND		ND		ND	
PCBs													
Aroclor 1016	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1221	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1232	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1242	NS	ND		ND		ND		ND		ND		ND	
Aroclor 1248	NS	ND_		ND		ND		ND		ND		ND	
Aroclor 1254	NS	ND		0.049		ND		ND		ND		ND	
Aroclor 1260	NS	ND		ND		ND		ND	·	0.095		0.077	
Total PCBs	1 or 10 ²	ND		0.049		ND		ND		0.095		0.077	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs.: Feet below ground surface

NS: No standard ND: Not detected

- 1: As per TAGM #4046 the RSCO for total VOCs is less than 10 mg/Kg.
- 2: 1 mg/Kg is the RSCO for PCBs detected in surface soil (0-2 ft. bgs) samples.
- 10 mg/Kg is the RSCO for PCBs detected in subsurface samples.
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.
- 4: Shaded values depicted in **bold** font exceed the NYSDEC RSCO.

TABLE 5C SUMMARY OF SOIL ANALYTICAL RESULTS-PESTICIDES AND PCBS HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location Field ID	NYSDEC	PG-MV	-MW-6 VPA-06	PG-MV	-MW-6 VPA-06	PG-MV	-MW-6 VPA-06
Sampling Date	RSCO		2000		2000		2000
Matrix	(mg/Kg)	-	oil .	_	oil	_	oil
Sample Depth	(1119/119)	4.5-6	ft bgs		t bgs		ft bgs
Units		mg	/Kg	mg	/Kg	mg	/Kg
PESTICIDES		Conc	Qual	Conc	Oual	Conc	Qual
4,4'-DDD	2.9	ND		ND		ND	
4,4'-DDE	2.1	ND		ND		ND	
4,4'-DDT	2.1	ND		ND		ND	
Aldrin	0.041	ND		ND		ND	
Alpha-BHC	0.11	ND		ND		ND	
Beta-BHC	0.2	ND		ND		ND	
Chlordane	0.54	ND		ND		ND	
Delta-BHC	0.3	ND		ND		ND	
Dieldrin	0.044	ND		ND		ND	
Endosulfan I	0.9	ND		ND		ND	
Endosulfan II	0.9	ND		ND		ND	
Endosulfan Sulfate	1	ND		ND		ND	
Endrin	0.1	ND		ND		ND	
Endrin Aldehyde	NS	ND		ND		ND	
Endrin Ketone	NS	ND		ND		ND	
Lindane (Gamma-BHC	0.06	ND	•	ND		ND	
Heptachlor	0.1	ND		ND		ND	
Heptachlor Epoxide	0.02	ND		ND		ND	
Methoxychlor	Note 1	ND		ND		ND	
Toxaphene	NS	ND		ND		ND	
PCBs							
Aroclor 1016	NS	ND		ND		ND	
Aroclor 1221	NS	ND		ND		ND	
Aroclor 1232	NS	ND		ND		ND	
Aroclor 1242	NS	ND		ND		ND	
Aroclor 1248	NS	ND		ND		ND	
Aroclor 1254	NS	ND		ND		ND	
Aroclor 1260	NS	ND		ND		ND	
Total PCBs	1 or 10 ²	ND	•	ND		ND	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier Ft. bgs.: Feet below ground surface

NS: No standard ND: Not detected

- 1: As per TAGM #4046 the RSCO for total VOCs is less than 10 mg/Kg.
- 2: 1 mg/Kg is the RSCO for PCBs detected in surface soil (0-2 ft. bgs) samples. 10 mg/Kg is the RSCO for PCBs detected in subsurface samples.
- 3: Results are shown only for those soil samples collected within 100 feet of the former Hydrogen Holders.
- 4: Shaded values depicted in **bold** font exceed the NYSDEC RSCO.

TABLE 5D SUMMARY OF SOIL ANALYTICAL RESULTS-METALS, TPH HYDROGEN HOLDERS AOC

HHMT-PORT IVORY FACILITY SITE 1 STATEN ISLAND, NEW YORK

Sample Location		PG-WO	OD-03	PG-W	OOD-03	PG-W	OOD-3	PG-WOC	D-3	PG-W	OOD-05
Field ID		PG-W	D-03	PG-V	√D-03	PG-\	ND-3	PG-WD)-3	PG-V	VD-05
Sampling Date	NYSDEC RSCO	11/10/	2000	11/10	/2000	11/29	/2000	11/29/20	000	11/7/	/2000
Matrix	(mg/Kg)	So	il	S	oil		oil	Soil		s	oil
Sample Depth		0.5-2 f		2-4 f	t bgs	2-4 f	t bgs	6-8 ft b	gs	0-2 f	ft bgs
Units		mg/	Kg	mg	/Kg	mg	/Kg	mg/Kg]	mg	/Kg
METALS		Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Aluminum (fume or dust)	33.000 or SB	ND		4.500		3,900		ND		1500	
Antimony	NS NS	ND		2.3		2.6		ND		ND	
Arsenic	7.5 1	2.8		310		29		ND ND		ND	
	300 1	15		260		120		38		21	l
Barium	0.16					120		ND		ND	
Beryllium	0.16	ND	,	1.3							
Cadmium	35,000 of SB	ND		0.47 22,000	-	0.37 35,000		ND 400,000		ND ND	
Calcium metal	10 ¹									7.4	
Chromium		6.3		20		110		ND			
Cobalt	30 ¹	ND		15		5.2		ND		ND	
Copper	25 ¹	15		210		*110		ND		8.1	
Iron	2000 or SB	3,800		44,000		31,000		ND		4000	
Lead	200-500*	20		460		₹ 580 *		ND		13	
Magnesium	100-5,000 (SB)	18,000		4,700		4,200		4,000		ND	
Manganese	50-5,000(SB)	47		200		220		69		28	
Nickel	13 or 0.5-25 ¹	3.2.		170		* 53		ND		ND	
1_ :	8,500-43,000										
Potassium	(SB)	ND		ND		310		490		ND	
Selenium	2 or 0.1-3.9 ¹	ND		5		3.9		ND		ND	
Silver	NS	ND		0.62		ND		ND		ND	
Sodium	6,000-8,000 (SB)	ND		ND		ND		2,300		ND	
Thallium	NS	ND		ND		ND		ND		ND	
Vanadium	150 or 1-300 ¹	20		39		28		ND		24	
Zinc	20 or 9-50 ¹	17		700		250		ND	Ī	21	
Mercury	0.1	ND		0.38		∂0.48		ND		ND	
TPHC	NS	710	T i	73		140		ND		ND	
Oil and Grease	NS	2,800		1,200		1,300		130		ND	
Cyanide	NS	ND		ND		16		3.2		ND	
рĤ	NS	7.4		7.7		8.2		9.0	i	7.2	
Total Phenolics	500 ²	ND		ND		1.6		3.7		ND	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier

NS: No standard ND: Not detected SB: Site Background

*: As per TAGM #4046, background lead levels vary widely. A typical range for metropolitan, suburban, or highway areas is 200-500 ppm. The analytical results are therefore compared to an RSCO of 500 mg/kg.

- 1) The objective for this compound is the greater of the RSCO or New York State's background concentration.
- 2) Value based on TAGM #4046, standard for total SVOCs.
- 3) Results are show only for those soil samples collected within 100 feet of the former Hydrogen Holders.
- 4) Shaded values depicted in **bold** font exceed the NYSDEC RSCO.
- 5) Site background concentrations have not been established for any metals. Therefore, for metals without RSCOs, the maximum New York State background concentration is provided.

TABLE 5D SUMMARY OF SOIL ANALYTICAL RESULTS-METALS, TPH HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1

STATEN ISLAND, NEW YORK

Sample Location		PG-WC	OD-05	PG-W	OOD-05				OOD-05		OOD-05		
Field ID	NYSDEC	PG-W	/D-05	PG-V	VD-05	PG-W	/D-05	PG-V	VD-05	PG-V	VD-05	PG-MV	VPA-06
Sampling Date	RSCO	11/7/	2000	11/7/	2000	11/7/	2000	11/7	/2000	11/7/	2000	11/7/	2000
Matrix		l so	oil	l s	oil	Sc	oil	s	oil	s	oil	S	oil
Sample Depth	(mg/Kg)	2-4 ft	bgs	4-6 f	t bgs	6-8 ft	bgs	8-10	ft bgs	14-16	ft bgs	1.5	5-3'
Units		mg/	/Kg	mg	/Kg	mg/	/Kg	mg	/Kg	mg	/Kg	mg.	/Kg
METALS		Conc	Qual	Conc	Qual	Conc	Quai	Conc	Qual	Conc	Qual	Conc	Qual
Aluminum (fume or dus	33,000 or SB	1300		1300		2500		2000		14000		4300	
Antimony	NS	2.8		ND		ND		ND		ND		1.7	
Arsenic	7.5 ¹	27		11		28		8.7		ND		₹150	
Barium	300 ¹	250		33		54		36		ND		120	
Beryllium	0.16 1	ND		ND		ND		ND		ND		ND	
Cadmium	1 1	ND		ND		ND		ND		ND		ND	
Calcium metal	35,000 of SB	7400		ND		ND		11000		7700		13000	
Chromium	10 ¹	. 12*		ND		6		ND		24		28	
Cobalt	30 ¹	ND		2.5		6.6		6.7		ND		7	
Copper	25 ¹	59		→ 34 🤛		37		20		ND		∞• 58 ૈ	
Iron	2000 or SB	8200		3300		7500		6600		19000		24000	
Lead	200-500*	130		ND		32		22		ND		73	
Magnesium	100-5,000 (SB)	2000		ND		ND		ND		6200		3800	
Manganese	50-5,000(SB)	55		ND		27		38		110		200	
Nickel	13 or 0.5-25 ¹	12		7.6		15		17		19		26	
	8,500-43,000	450		070		200	ı	200		0000		400	
Potassium	(SB)	150		270		320		320		2600		190	
Selenium	2 or 0.1-3.9 ¹	ND		ND		ND		ND		ND		ND	
Silver	NS	ND		ND		ND		ND		ND		.68	
Sodium	6,000-8,000 (SB)	ND		ND		ND		810	İ	6000	- 1	370	
Thallium	NS NS	ND		ND		ND		ND		ND		ND	
	150 or 1-300												
Vanadium	1	16	- 1	ND		ND		ND		40		38	
Zinc	20 or 9-50 ¹	190		19		94		56 .		360		120	
Mercury	0.1	0.41		ND		ND		ND		ND	ì	0.28	
TPHC	NS	1000		47		95		ND		110		72	
Oil and Grease	NS	13,000		250		18,000		ND		410		ND	
Cyanide	NS	ND		ND		ND		ND		ND		0.52	
рН	NS	7.1		7.1		6.8		7.5		7.7		6.9	
Total Phenolics	500 ²	ND		ND		ND		ND		ND		ND	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier

NS: No standard ND: Not detected SB: Site Background

*: As per TAGM #4046, background lead levels vary widely. A typical range for metropolitan, suburban, or highway areas is 200-500 ppm. The analytical results are therefore compared to an RSCO of 500 mg/kg.

- 1) The objective for this compound is the greater of the RSCO
- or New York State's background concentration.
- 2) Value based on TAGM #4046, standard for total SVOCs.
- 3) Results are show only for those soil samples collected within 100 feet of the former Hydrogen Holders.
- 4) Shaded values depicted in **bold** font exceed the NYSDEC RSCO.
- 5) Site background concentrations have not been established for any metals. Therefore, for metals without RSCOs, the maximum New York State background concentration is provided.

TABLE 5D SUMMARY OF SOIL ANALYTICAL RESULTS-METALS, TPH HYDROGEN HOLDERS AOC HHMT-PORT IVORY FACILITY SITE 1

STATEN ISLAND, NEW YORK

Sample Location		PG-PA	-MW-6	PG-PA	-MW-6	PG-PA	-MW-6	PG-PA	-MW-6
ield ID		. –	VPA-06		VPA-06	_	VPA-06		VPA-06
Sampling Date	NYSDEC RSCO		2000		2000		2000		2000
Matrix	(mg/Kg)		oil		oil		oil	6	oil
Sample Depth	(55)	_	l.5'	_	5-6'	_	-8'		-10'
Units		mg	/Kg	mg	/Kg	mg	/Kg	mg	/Kg
METALS		Conc	Qual	Conc	Qual	Conc	Oual	Conc	Qual
Aluminum (fume or dust)	33,000 or SB	7800		6000		ND		ND	
Antimony	NS	ND		ND		ND		ND	
Arsenic	7.5 ¹	1 36 €		24		16		ND	
Barium	300 ¹	180		170		50		53	
Beryllium	0.16 1	0.49		ND		ND		ND	
Cadmium	1 !	ND		ND		ND		ND	
Calcium metal	35,000 of SB	11000		4300		ND		ND	
Chromium	10 ¹	32		13-		5.1		ND	
Cobalt	30 ¹	6.8		10		2.7		ND	
Copper	25 ¹	46 .		36		15		7.7	
Iron	2000 or SB	30000		28000		19000		ND	
Lead	200-500*	31		17		6.8		ND	
Magnesium	100-5,000 (SB)	810		ND		ND		6800	
Manganese	50-5,000(SB)	92		140		ND		ND	
Nickel	13 or 0.5-25 ¹	17		26		8.1		ND	
Potassium	8,500-43,000 (SB)	320		330		460		ND	
Selenium	2 or 0.1-3.9 ¹	3.3		3.9		3.5		ND	
Silver	NS	ND		ND		ND		1.8	
sodium	6,000-8,000 (SB)	350		290		260		3000	
Thailium	NS	ND		ND		ND		ND	
Vanadium [*]	150 or 1-300 ¹	24		20		ND		ND	[
Zinc	20 or 9-50 ¹	34		48		ND		ND	
Mercury	0.1	0.22		ND	,	ND		ND	
TPHC	NS	74		87		ND		ND	
Oil and Grease	NS	ND		190		180		ND	
Cyanide	NS	4.4		3.5		2.9		18	
рН	NS	7.0		5.5		4.5		10	
Total Phenolics	500 ²	ND	I	ND		ND		ND	

Notes and Abbreviations

NYSDEC: New York State Department of Environmental Conservation

TAGM: Technical Administrative Guidance Memo #4046

RSCO: Recommended Soil Cleanup Objective

Conc: Concentration

mg/kg: milligrams per kilogram Qual: Laboratory data qualifier

NS: No standard ND: Not detected SB: Site Background

*: As per TAGM #4046, background lead levels vary widely. A typical range for metropolitan, suburban, or highway areas is 200-500 ppm. The analytical results are therefore compared to an RSCO of 500 mg/kg.

- 1) The objective for this compound is the greater of the RSCO or New York State's background concentration.
- 2) Value based on TAGM #4046, siandard for total SVOCs.

Results are show only for those soil samples collected within 100 feet of the former Hydrogen Holders.

Shaded values depicted in **bold** font exceed the NYSDEC RSCO.

5) Site background concentrations have not been established for any metals. Therefore, for metals without RSCOs, the maximum New York State background concentration is provided.

respective RSCOs in at least one soil sample: arsenic, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, sodium, and zinc.

As shown on Figure 6, the SI groundwater sampling location nearest to the former hydrogen holders is well PG-PA-MW-6; please note, a groundwater sample was not collected at deep well PG-PA-MW-6D during the SI. Well PG-PA-MW-6 is located within 100 feet of both hydrogen holders. The well is also approximately downgradient of the eastern hydrogen holder and downgradient/sidegradient of the western hydrogen holder. The groundwater sample collected at well PG-PA-MW-6 during the SI was analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, Target Analyte List (TAL) metals, TPHC, oil and grease (O&G), total cyanide, and total phenolics. The analytical results, summarized in Tables 6A through 6D for the groundwater sample collected at well PG-PA-MW-6 indicate that only one SVOC, phenol, and one metal, arsenic, slightly exceeded their respective AWQSGVs.

7.0 DISCUSSION OF DATA

The following is a discussion of the data gathered and evaluated during the SRI. The SRI was completed with the overall goal of determining whether remediation was warranted at any open AOC or with respect to any open issue at Site 1. As noted above, the open AOC is AOC-UST2, and the open issues are the effect (if any) of impacted groundwater on surface water and sediment quality within Bridge Creek, and the effect (if any) of the former hydrogen holders on soil and groundwater quality. Section 7.1 is a discussion of data associated with AOC-UST2. Section 7.2 is a discussion of data associated with the two open issues identified above. These discussions are the basis for the conclusions and recommendations presented in Section 8.0.

7.1 Discussion of Data – AOC-UST2

As presented in Section 4, the objectives for the investigation of AOC-UST2 were as follows: 1) to determine the impact (if any) the LNAPL has on soil quality; 2) to delineate the extent of the LNAPL and impacted soil; 3) to identify if the soil is acting as a source area for groundwater impacts; 4) to delineate the groundwater impacts (if any); 5) to determine whether LNAPL could discharge into Bridge Creek; and, 6) to determine whether impacted groundwater could discharge into Bridge Creek. The following discussion addresses each of the objectives.

TABLE 6A SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROGEN HOLDERS AOC-VOCs HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location	Recommended	PG-PA	-MW-6	PG-PA	-MW-6D
Sampling Date	Groundwater Cleanup		/2000		/2000
Matrix	Standard/Guidance		eous		eous
Units	Value (RGCS/G)*		2/L		g/L
		Conc	Qual	Conc	Qual
VOLATILE ORGANIC COMPOUNDS (VOCs)			Quai		Quai
1,2,4-TRICHLOROBENZENE	5	ND		ND	
1,2-DICHLOROBENZENE	3	ND		ND	
1,4-DICHLOROBENZENE	3	ND		ND	
1,1,1-TRICHLOROETHANE	5	ND		ND	
1,1,2,2-TETRACHLOROETHANE	5	ND		ND	
1,1,2-TRICHLOROETHANE	1	ND		ND	
1,1-DICHLOROETHANE	5	ND		ND	
1,1-DICHLOROETHYLENE	5	ND .		ND	
1,2-DICHLOROETHANE	0.6	NU		ND	
1,2-DICHLORORPROPANE	1	ND		ND	
2-CHLOROETHYL VINYL ETHER	NS/NG	ND		ND	
ACROLEIN	5	ND		ND	
ACRYLONITRILE	5	ND		ND	
BENZENE	1	ND		ND	
BROMODICHLOROMETHANE	50	ND		ND	
BROMOFORM	50	ND		ND	
BROMOMETHANE	5	ND		ND	
CARBON TETRACHLORIDE	5	ND		ND	
CHLOROBENZENE	5	ND		ND_	
CHLOROETHANE	5	ND	,	ND	
CHLOROFORM	7	ND		ND	
CHLOROMETHANE	NS/NG	ND		ND	
CIS-1,3-DICHLOROPROPENE	0.4 (Total)	ND		ND	
DIBROMOCHLOROMETHANE	50	ND		ND	
DICHLOROMETHANE	NS/NG	ND		ND	
ETHYLBENZENE	5	ND		ND	
M&P-XYLENES	5	ND		ND	
METHYLBENZENE	NS/NG	ND		ND	
O-XYLENE	5	ND		ND	
TETRACHLOROETHYLENE	5	ND		ND	
TRANS-1,2-DICHLOROETHYLENE	5	ND		ND	
TRANS-1,3-DICHLOROPROPENE	0.4 (Total)	ND		ND	
TRICHLOROETHYLENE	5	ND	[ND	
VINYL CHLORIDE	2	ND		ND	
Total Confident VOCs	NS/NG	0		0	
Total VOC TICs	NS/NG	0 .		0	

Notes and Abbreviations:

ug/L = micrograms per liter (all concentations are provided in ug/L)

* = RGCS/G values are based on New York State Title 6 CRR (Codes, Rules and Regulations) Part 703. The guidance value is utilized where a standard has not been adopted for a substance.

Conc = Concentration

Qual = Laboratory data qualifier

NS = No standard

ND = Not detected

TICs = Tentatively Identified Compounds

NG = No guidance value

MDL = Minimum detection limit

1) Results are shown only for groundwater samples collected from wells that are downgradient of the location of the former hydrogen holders.

TABLE 6B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROGEN HOLDERS AOC-SVOCS HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Complet costice	Possemmended		A-MW-6	I DO DA	MANAY CD
Sample Location	Recommended Groundwater Cleanur		A-MW-6 7/2000		-MW-6D 0/2000
Sampling Date	Standards/ Guidance				eous
Matrix Units	Value (RGCS/G)*		ieous g/L		g/L
		<u> </u>			
SEMI-VOLATILE ORGANIC COMPOUN		Conc	Qual	Conc	Qual
Acenaphthene	20	ND	-	ND	
Acenaphthylene	NS/NG	ND	 	ND	ļ
Anthracene	50	ND		ND	<u> </u>
1,2-Benzphenanthracene	NS/NG 5	ND ND	1	ND ND	
Benzidine Benzo[a]anthracene	0.002	ND	<u> </u>	ND	
	MDL	ND	<u> </u>	ND	.
Benzo[a]pyrene Benzo[b]fluoranthene	0.002	ND		ND	
Benzo[g,h,i]perylene	NS/NG	ND	<u> </u>	ND	1
Benzo[k]fluoranthene	0.002	ND	ļ	ND	
Butylbenzylphthalate	50	ND	 	ND	
Bis(2-Chloroethoxy)methane	5	ND	 	ND	
Bis(2-Chloroethyl)Ether	1	ND	<u> </u>	ND	
Bis(2-Chloroisopropyl)ether	NS/NG	ND	†	ND	
Bis(2-Ethylhexyl)phthalate	5	ND	<u> </u>	2.3	В
4-Bromophenyl-phenylether	NS	ND		ND	<u> </u>
2-Chloronaphthalene	10	ND		ND	
2-Chlorophenol	NS/NG	ND		ND	
4-Chloro-3-methylphenol	NS/NG	ND		ND	
4-Chlorophenyl-phenylether	NS/NG	ND		ND	
1,2-Diphenylhydrazine	NS/NG	ND		ND	
2,4-Dichlorophenol	5	ND		ND	
2,4-Dimethylphenol	50	ND		ND	
2,4-Dinitrophenol	10	ND		ND	
2,4-Dinitrotoluene	5	ND		ND	
2,6-Dinitrotoluene	5	ND		ND	
3,3'-Dichlorobenzidine	5	ND		ND	
4,6-Dinitro-O-Cresol	NS/NG	ND		ND	
Di-n-butylphthalate	50	ND		1.5	
DI-n-octylphthalate	50 NS/NG	ND		1.3	
Dibenzo[a,h]Anthracene	50	ND ND		ND ND	
Diethylphthalate Dimethylphthalate	50.0	ND		ND	
m-Dichlorobenzene	3	ND		ND	
Fluoranthene	50	ND		ND	
Fluorene	50	ND		ND	
Hexachloro-1,3-Butadiene	0.5	ND		ND	
Hexachlorobenzene	0.04	ND		ND	
Hexachlorocyclopentadiene	5	ND		ND	
Hexachloroethane	5	ND		ND	
Indeno[1,2,3-cd]pyrene	0.002	ND		ND	
Isophorone	50	ND		ND	
2-Nitrophenol	NS/NG	ND		ND	
4-Nitrophenol	NS/NG	ND		ND	
N-Nitroso-Di-N-Propylamine	NS/NG	ND		ND	
N-Nitrosodimethylamine	NS/NG	ND		ND	
N-Nitrosodiphenylamine	50	ND		· ND	
Naphthalene	10	ND		ND	
Nitrobenzene	0.4	ND	I	ND	
Pentachiorophenol	1.0 (Total Phenols)	ND		ND	
Phenanthrene	50	ND		ND	
Phenol	1.0 (Total Phenols)	2.1		ND	
Pyrene	50	ND		ND	
2,4,6-Trichlorophenol	NS/NG	ND		ND	
Total Confident SVOCs	NS/NG	2.1		2.8	
Total SVOC TICs	NS/NG	0		2.3	

TABLE 6B

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROGEN HOLDERS AOC-SVOCS HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Notes and Abbreviations:

ug/L = micrograms per liter (all concentrations are provided in ug/L)

* = RGCS/G values are based on New York State Title 6 CRR (Codes, Rules and Regulations) Part 703. The guidance value has been used where a standard has not been adopted for a substance.

Conc = Concentration

Qual = Laboratory data qualifier

MDL = Laboratory's minimum detection limit

Shaded values in **bold** font represent exceedances of the RGCS/G.

B: The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

NS = No standard

ND = Not detected

TICs = Tentatively Identified Compounds

NG = No guidance value

1) Results are shown only for groundwater samples collected from wells that are downgradient of the location of the former hydrogen holders.

TABLE 6C SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROGEN HOLDERS AOC - PESTICIDES AND PCBS

HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location	Recommended	PG-PA	-MW-6	PG-PA	-MW-6D
Sampling Date	Groundwater Cleanup		/2000		0/2000
Matrix	Standard/Guidance		eous		eous
Units	Value (RGCS/G)*		₃ /L		g/L
PCBs		Conc	Qual	Conc	Qual
AROCLOR 1016	0.09**	ND		ND	
AROCLOR 1221	0.09**	ND		ND	
AROCLOR 1232	0.09**	ND		ND	
AROCLOR 1242	0.09**	ND		ND	
AROCLOR 1248	0.09**	ND		ND	
AROCLOR 1254	0.09**	ND		ND	
AROCLOR 1260	0.09**	ND		ND	
PESTICIDES					•
ALDRIN	0.01	ND		ND	
ALPHA-BHC	0.01	ND		ND	
BETA-BHC	0.01	ND		ND	
CHLORDANE	0.05	ND		ND	
4,4'-DDD	0.3	ND		ND	
4,4'-DDE	0.2	ND		ND	
4,4'-DDT	0.2	ND		ND	
DELTA-BHC	0.01	ND		ND	
DIELDRIN	0.004	ND		ND	
ENDOSULFAN I	NS/NG	ND		ND	
ENDOSULFAN II	NS/NG	ND		ND	
ENDOSULFAN SULFATE	0.1	ND		ND	
ENDRIN	0.01	ND		ND	
ENDRIN ALDEHYDE	5	ND		ND	
ENDRIN KETONE	5	ND		ND	
GAMMA-BHC (LINDANE)	NS/NG	ND		ND	
HEPTACHLOR	0.04	ND		ND	
HEPTACHLOR EPOXIDE	0.01	ND		ND	
METHOXYCHLOR	35	ND		ND	
TOXAPHENE	0.06	ND		ND	

Notes and Abbreviations:

ug/L = micrograms per liter (all concentrations are provided in ug/L)

Conc = Concentration

Qual = Laboratory data qualifier

NS = No standard

ND = Not detected

NG = No guidance value

PCBs = Polychlorinated biphenyls

1) Results are shown only for groundwater samples collected from wells that are

^{* =} RGCS/G values are based on New York State Title 6 CRR (Codes, Rules and Regulations) Part 703. The guidance value is utilized where a standard has not been adopted for a substance.

^{** =} value provided is for total PCBs (Aroclors)

TABLE 6D

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS HYDROGEN HOLDERS AOC-METALS HHMT-PORT IVORY FACILITY, SITE 1 STATEN ISLAND, NEW YORK

Sample Location	Recommended	PG-PA	N-MW-6	PG-PA-	MW-6D
Sampling Date	Groundwater Cleanup	11/27	//2000	11/30/	2000
Matrix	Standard/Guidance	Aqu	eous	Aque	ous
Units	Value (RGCS/G)*	1 '	g/L	ug	
METALS		Conc	Qual	Conc	Qual
ALUMINUM (FUME OR DUST)	NS/NG	430		260	
ANTIMONY	3	ND		ND	
ARSENIC	25	*83. '		ND	
BARIUM	1000	ND		68	
BERYLLIUM	3	ND		ND	
CADMIUM	5	ND		ND	
CALCIUM METAL	NS/NG	1,900		180,000	
CHROMIUM	50	ND		ND	
COBALT	NS	ND		ND	
COPPER	200	ND		ND	
IRON	300	120		15,000	
LEAD	25	ND		ND	
MAGNESIUM	35000	5,500		#430,000 *	
MANGANESE	300	ND		1200	
MERCURY	0.7	ND		ND	
NICKEL	100	ND		ND	
POTASSIUM	NS/NG	100,000		81,000	
SELENIUM	10	ND		ND	
SILVER	50	ND		ND	
SODIUM	20000	900,000		4,000,000	
THALLIUM	1	ND		ND	
VANADIUM	NS	50		ND	
ZINC	2000	ND		ND	
TPHC	100	ND		ND	
OIL & GREASE	100	13		21	
CYANIDE	200	0.013		ND	
*pH	NS/NG	11.36		7.08	
TOTAL PHENOLICS	1.0	ND		ND	

Notes and Abbreviations:

ug/L = micrograms per liter (all concentrations are provided in ug/L)

* = RGCS/G values are based on New York State Title 6 CRR (Codes, Rules and Regulations) Part 703. The guidance value is utilized where a standard has not been adopted for a substance.

TPHC = Total Petroleum Hydrocarbons

Conc = Concentration

Qual = Laboratory data qualifier

Shaded values in **bold** font represent exceedances of the RGCS/G values.

NS = No standard

ND = Not detected

NG = No guidance value

1)Results are shown only for groundwater samples collected from wells that are downgradient of the location of the former hydrogen holders.

7.1.1 Data Related to Objective 1

Objective 1, to determine the impact (if any) the LNAPL has on soil quality, was evaluated by the collection and analysis of seventeen soil samples from 14 soil borings. All soil samples were analyzed for VOC+15, SVOC+25, and TPHC. The analytical data indicate that soil impacts were limited to two VOCs (methylene chloride and 1,2-dichloroethene) and a few PAH compounds, a subset of SVOCs. Methylene chloride was also detected in an associated method blank; therefore, it is likely that the presence of this compound is attributable to laboratory contamination of the soil sample. The concentration (0.19 mg/kg) of trans-1,2-dichloroethene was detected at a concentration slightly greater than its RSCO (0.1 mg/kg) in only a single soil sample, the sample collected from the 1.5-2 feet bgs depth interval at location UST2-5A. This isolated and relatively low concentration of trans-1,2-dichloroethene is not a concern, particularly given the Port Authority's redevelopment plan that includes the placement of pavement and other impervious cover at the majority of Site 1 and the recording of a Deed Notice for all of Site 1.

At least one PAH compound was detected at a concentration greater than its RSCO in ten of the 17 soil samples collected during the SRI. The concentrations of PAH compounds in all samples, except for the sample collected from the 4-4.5 foot bgs depth interval at location TWP-1A, were similar to or less than those detected throughout the Facility (concentrations of total PAH compounds generally between 0 and 10 mg/kg), and are likely attributable to the former placement of historic fill by P&G. This impacted soil will be addressed through the physical redevelopment of Site 1 and the recording of a Deed Notice. The total concentration of PAH compounds in the soil sample collected at TWP-1A was more than 1,000 mg/kg. The presence of cinders was noted in the 4.25-4.5 foot bgs depth interval at location TWP-1A (i.e., within the depth interval of the sample collected at TWP-1A). The presence of cinders and absence of indications of petroleum-impacted soil suggests that cinders were included in the soil sample and that the elevated concentration of PAHs in the sample is attributable to the presence of these cinder(s). However, additional soil investigation is required to confirm this assertion.

Several VOC and SVOC TICs were detected in the soil samples collected during the SRI. However, none of the TICs were compounds that are included in the definition of Principal Organic Contaminants, as defined in the NYSDEC document entitled *Recommended Groundwater Cleanup Guidance and the Recommended Groundwater Cleanup Standard* and dated June 1998. Therefore, no remedial action is warranted with respect to soil where TICs were detected.

Although TAGM 4046 does not include an RSCO for TPHC, the concentration of TPHC is a relative measure of the LNAPL saturation. The greater the concentration of TPHC in the soil, the greater the saturation of LNAPL. The concentration of LNAPL in the soil sample collected from the 6-8 foot bgs depth interval at location UST2-4 was 48,000 mg/kg. The TPHC concentration in this soil sample is more than five times as great as in the sample with the next greatest concentration. Additional investigation is warranted at UST2-4 to confirm the presence or absence of mobile LNAPL.

7.1.2 Data Related to Objective 2

Objective 2, to delineate the extent of LNAPL and impacted soil based on field observations, was evaluated based on field observations and the SRI soil sampling results. LNAPL and/or impacted soil was encountered at four soil boring locations: UST2-4, UST2-4A, UST2-5, and TWP-1. In addition, LNAPL was observed in the area to the north of location UST2-6, to the east of location TWP-2, to the south of location UST2-4, and to the west of location UST2-5 during initial soil removal efforts at AOC-UST2 in April 2005. LNAPL was not encountered at the following locations: UST2-4B, UST2-5A, UST2-6, TWP-1A, and TWP-2 through TWP-6. Therefore, as shown on Figure 3, the extent of LNAPL and/or impacted soil (as based on field observations) at AOC-UST2 is bounded by location UST2-6 to the south, location TWP-2 to the west, location UST2-4B to the north, and TWP-1A and UST2-5A to the east. This area is approximately 235 feet north-south by 170 feet east-west, with a footprint of 30,750 square feet.

The petroleum impacts observed at locations UST2-4, UST2-4A, UST2-5, and TWP-1 were encountered at depths of between four and eight feet bgs. The petroleum impacts were delineated vertically at depths of between six and nine feet bgs; for locations UST2-5 and TWP-1, these depths are relative to the original land surface prior to the construction of the soil stockpile. Since the water table was measured to be at approximately five to seven feet bgs, the LNAPL is not anticipated to have impacted soil quality much deeper than seven feet bgs, which is consistent with the maximum observed depth for LNAPL and/or soil impacts (i.e., eight feet bgs). In addition, organic marsh deposits and clay-like by-product fill, effective barriers to the vertical migration of the LNAPL, were encountered at various locations during the SRI. Organic marsh deposits were observed at approximately 11.5 feet bgs at location TWP-5 and nine feet bgs at location TWP-6, while clay-like by-product fill was observed at approximately 10.5 and 9.5 feet bgs at locations TWP-2 and TWP-3, respectively.

The analytical results for the soil samples collected during the SRI indicate that soil at AOC-UST2 is impacted by relatively low concentrations of PAH compounds except for the soil sample collected from the 4-4.5 foot bgs depth interval at location TWP-1A. The low concentrations of PAH compounds are similar to those detected in soil samples throughout the Facility, and are attributable to the former placement of historic fill by P&G. The concentration of PAH compounds at location TWP-1A is most likely due to the inclusion of cinders in the soil sample; however, additional soil sampling is required at and in the vicinity of TWP-1A.

Soil at sampling location UST2-4 contains a relatively high concentration (48,000 mg/kg) of TPHC in the 6-8 foot bgs depth interval. While an RSCO has not been established for TPHC, the greater the concentration of TPHC, the greater the saturation of petroleum in the subsurface. Although field observations suggest that the LNAPL at this location is immobile, the relatively high concentration of TPHC in soil at UST2-4 suggests that petroleum may be mobile at this location. Therefore, HMM proposes that additional investigation of soil and groundwater quality be conducted at and in the vicinity of location UST2-4.

7.1.3 Data Related to Objective 3

Objective 3, to identify if the soil is acting as a source area for groundwater impacts, was evaluated using the groundwater analytical data generated during the SRI. One groundwater sample was collected from each of six temporary wells, identified as TWP-1 through TWP-6. The six temporary wells were installed in two transects, each consisting of an upgradient well, a well immediately downgradient of the LNAPL area, and a downgradient well. Both transects were oriented approximately east-west, perpendicular to the eastern bank of Bridge Creek. The northern transect consisted of temporary wells (from upgradient to downgradient) TWP-1A, TWP-2, and TWP-3. The southern transect consisted of temporary wells (from upgradient to downgradient) TWP-4, TWP-5, and TWP-6. All groundwater samples were analyzed for VOC+15, SVOC+25, and TPHC.

The groundwater analytical data indicate that only two groundwater samples contained any of the targeted compounds at concentrations greater than their respective AWQSGVs. These samples were collected at temporary wells TWP-1A and TWP-2. Two SVOCs, naphthalene and phenol, were detected at concentrations greater than their respective AWQSGVs in temporary well TWP-1A, while phenol was the only compound detected at a concentration greater than its AWQSGV in temporary well TWP-2. Since the concentration of naphthalene decreased downgradient of well TWP-1A, it is concluded that the

LNAPL and impacted soil at AOC-UST2 did not impact groundwater with respect to naphthalene. The source of the dissolved naphthalene is unclear. However, creosoted wood observed in the soil boring later converted to temporary well TWP-1A is a potential source. Regardless of the source, the groundwater impact does not extend to the nearest downgradient receptor, Bridge Creek.

The concentrations of phenol were elevated only in groundwater samples collected at temporary wells TWP-1A and TWP-2. The concentration of phenol decreased downgradient of temporary well TWP-1A; thus, the LNAPL and impacted soil at AOC-UST2 are not source areas for phenol. Rather, the elevated concentrations of phenol are likely attributable to the decay of naturally-occurring organic material (from the underlying marsh deposits, e.g.). Regardless of the source, the groundwater impact does not extend to the nearest downgradient receptor, Bridge Creek.

Please note, no remedial actions are warranted with respect to groundwater at AOC-UST2. Groundwater recharge rates are anticipated to decrease following the construction of impervious surfaces as part of the redevelopment of Site 1. Also, as established below, groundwater impacts do not extend to Bridge Creek, the nearest downgradient receptor, having been delineated at temporary well TWP-3.

7.1.4 Data Related to Objective 4

Objective 4, to delineate groundwater impacts (if any), was evaluated using the groundwater analytical data generated primarily during the SRI as well as data for a groundwater sample collected from well PG-EW-3 during the SI. As noted above, one groundwater sample was collected from each of six temporary wells, identified as TWP-1 through TWP-6. All groundwater samples were analyzed for VOC+15, SVOC+25, and TPHC.

Groundwater analytical data indicate that only two samples, the samples collected at temporary wells TWP-1A and TWP-2, contained any of the targeted compounds at concentrations greater than their respective AWQSGVs. The two SVOCs, naphthalene and phenol, were detected at concentrations greater than their respective AWQSGVs in temporary well TWP-1A, while phenol was the only compound detected at a concentration greater than its AWQSGV in temporary well TWP-2. Therefore, the groundwater impacted by naphthalene is delineated to the south (i.e., sidegradient) at temporary well TWP-4 and to the west (i.e., downgradient) at temporary well TWP-2. This groundwater impact has not been delineated to the east (i.e., upgradient) or north (i.e., sidegradient); however, well PG-EW-3, located approximately 100 feet to the north of TWP-1, was sampled during the SI. The analytical results did not

reveal that groundwater has been impacted by naphthalene; therefore, well PG-EW-3 can also be used as a delineation point with respect to groundwater impacted by naphthalene. The groundwater impacted by phenol has been delineated to the south (i.e., sidegradient) at temporary wells TWP-4 and TWP-5 and to the east (i.e., downgradient) by temporary well TWP-3. The SI groundwater sampling results for well PG-EW-3 also can be used as a delineation point with respect to groundwater impacted by phenol.

Please note, no remedial actions are warranted with respect to groundwater at AOC-UST2. Groundwater recharge rates are anticipated to decrease following the construction of impervious surfaces as part of the redevelopment of Site 1. Also, groundwater impacts have been delineated at temporary well TWP-3, located downgradient of the groundwater impacts and upgradient of Bridge Creek.

7.1.5 Data Related to Objective 5

Objective 5, to determine whether LNAPL could discharge into Bridge Creek, was evaluated using field observations and measurements made during the SRI. As noted above, six temporary wells, identified as TWP-1A and TWP-2 through TWP-6, were installed at AOC-UST2 during the SRI. As part of the groundwater investigation, the presence or absence of LNAPL in each temporary well was confirmed using an oil-water indicator. LNAPL was not present in any of the six temporary wells as of May 24, 2005. Therefore, the LNAPL does not appear to be mobile in the vicinity of any of the six temporary wells.

In addition, the boring logs for UST2-4, UST2-4A, UST2-5, and TWP-1, the only soil boring locations where petroleum impacts were observed, describe faint odors, relatively low concentrations of volatile organic vapors (maximum 18 ppm) in soil, and trace quantities of petroleum in soil. However, the relatively high concentration of TPHC at location UST2-4 suggests that LNAPL may potentially be mobile at this location. Therefore, as noted above, additional investigation is proposed in the vicinity of UST2-4.

Because the LNAPL is immobile throughout most, if not all, of AOC-UST2, and because, in the years since its release, the LNAPL has not migrated to wells TWP-3 and TWP-6 (i.e., to within 50 feet of Bridge Creek) since the release occurred, it appears unlikely that the LNAPL can migrate into Bridge Creek.

7.1.6 Data Related to Objective 6

Objective 6, to determine whether impacted groundwater could discharge into Bridge Creek, was evaluated using groundwater analytical data generated during the SRI. Six temporary wells were installed at AOC-UST2 during the SRI; these temporary wells were identified as TWP-1A and TWP-2 through TWP-6. The six temporary wells were installed in two transects, each consisting of an upgradient temporary well, an LNAPL area temporary well, and a downgradient temporary well. Both transects were approximately perpendicular to Bridge Creek. The northern transect consisted of temporary wells (from upgradient to downgradient) TWP-1A, TWP-2, and TWP-3. The southern transect consisted of (from upgradient to downgradient) temporary wells TWP-4, TWP-5, and TWP-6. As noted above, one groundwater sample was collected from each of the six temporary wells. All samples were analyzed for VOC+15, SVOC+25, and TPHC.

The analytical results for temporary wells in the southern transect, identified as TWP-4, TWP-5, and TWP-6, did not indicate any groundwater impacts. However, the analytical results for wells in the northern transect, identified as TWP-1, TWP-2, and TWP-3, indicated that groundwater was impacted by the SVOCs naphthalene and phenol. Based on the analytical results for the groundwater sample collected at temporary wells TWP-3, TWP-4, and TWP-5 and those for the groundwater sample collected at well PG-EW-3 during the SI, the groundwater impacts have been completely delineated. Therefore, groundwater impacts in the vicinity of AOC-UST2 do not discharge into or impact surface water quality in Bridge Creek.

7.2 Discussion of Data – Open Areas/Issues

The following is a discussion of data evaluated during the SRI with respect to the three open AOCs/issues at Site 1. These AOCs/issues include AOC-UST2 (the subject of Section 7.1, above), the effect of impacted groundwater on surface water and sediment quality within Bridge Creek, and the former hydrogen holders. Please note, the use of the term "impacts" in the sections below requires additional explanation. The HHMT-Port Ivory Facility is situated in an industrial section of Staten Island that was reclaimed from marshland by the use of fill and is bordered by railroads, ports, and roadways. Based on the industrial land use, it is reasonable to anticipate impacted surface water, sediment, soil, and groundwater on a regional scale. In fact, the NYSDEC detected sediment impacted by pesticides and metals at several locations along Bridge Creek that are upgradient of the Facility (see Appendix B). The following is an excerpt from the U.S. Fish and Wildlife Service document entitled Significant Habitats and Habitat Complexes of the New York Bight Watershed and dated November 1997:

"This unique and regionally significant wetlands and heronry [Arthur Kill] complex is within one of the most intensively industrialized and urbanized corridors in the northeastern United States, and is subject to both physical and qualitative losses of habitat due to chemical (including heavy metals, [the pesticide] DDT, and petrochemicals) and nutrient pollution stresses, stormwater and sewerage discharges, stream channelization, nonpoint source runoff, illegal filling and dumping activities, fragmentation and loss of connecting corridors, loss of upland buffers, ... This area was the site of several recent oil spills and discharges, resulting in direct wildlife losses and decreased productivity. In 1990, 684 spills dumped a volume of ... (1.5 million gallons) of oil into the waterways and wetlands of New York Harbor; 70% of this volume contaminated the Arthur Kill and Kill van Kull."

Due to the presence of these regional impacts, neither the soil nor the groundwater at the HHMT-Port Ivory Facility are currently or will be utilized as natural resources. In addition, the sediment and surface water quality in adjacent surface water bodies (i.e., Bridge Creek and the Arthur Kill) is also not high quality. Therefore, while media are described as "impacted" if the concentration of a regulated compound or metal is present in the medium exceeds NYSDEC standards/guidance values, it is important to realize that the impacts attributable to P&G's operations, if any, only negligibly worsen already degraded environmental quality and that "impacts" believed to be attributable to former P&G operations at the Facility may actually be attributable to the regional contamination.

Section 7.2.1 is a discussion of data that HMM evaluated to determine whether groundwater impacts have affected surface water and/or sediment quality in Bridge Creek. Section 7.2.2 is a discussion of data associated with the former hydrogen holders. These discussions are the basis for the conclusions and recommendations presented in Section 8.0.

7.2.1 Data Related to the Effect of Groundwater Impacts on Bridge Creek

HMM used groundwater, surface water, and sediment analytical data from the SI as well as groundwater and surface water data from the Surcharge Pilot Test, a component of the RI, to determine whether groundwater has adversely impacted surface water and sediment quality in Bridge Creek. One groundwater sample was collected from each of eight wells located throughout Site 1 during the SI. During the RI, one groundwater sample was collected from each of six wells located in the northern half of Site 1. All groundwater samples collected during the SI and RI were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, TPHC, O&G, total cyanide, and total phenolics.

Surface water and sediment sampling was conducted concurrently with the groundwater sampling effort during the SI, and surface water sampling, but not sediment sampling, was conducted concurrently with the groundwater sampling during the RI. The surface water and sediment sampling locations were selected based upon their proximity to wells where groundwater samples were also collected and to a "white material" previously observed along the banks of Bridge Creek. All surface water and sediment samples were analyzed for TAL metals. In addition, the surface water samples collected during the SI were analyzed for pH using portable pH meters.

As indicated on the figure and tables in Appendix B, sediment quality is impacted in Bridge Creek upgradient of the Facility. NYSDEC collected 18 sediment/soil samples and combined these soil samples into four composite samples. All samples were analyzed for VOCs, SVOCs, pesticides and PCBs, and the metals arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. For all metals listed above except barium and selenium, the analytical results indicate that the concentration of these metals in sediment exceed the NYSDEC SEL and/or LEL. NYSDEC has not established LELs or SELs for barium or selenium. In addition, storm water runoff eneters Bridge Creek at where it flows under Western Avenue. Due to these potential impacts, for the purposes of the discussion below, HMM attributes surface water and/or sediment impacts in Bridge Creek to groundwater impacts at the Facility only if there is a clear connection (i.e., a groundwater plume and surface water and/or sediment in an adjacent stretch of Bridge Creek are both impacted by the same substance).

Based on the SI analytical data, groundwater was impacted by the following organic compounds: the VOCs ethylbenzene and xylene (at well PG-CS-7 only); the PAH compounds 1,2-benzphenanthracene and benzo(a)pyrene (at well PG-EW-3); and, the SVOC (and non-PAH compound) phenol (at wells PG-PA-MW-6, PG-CS-7, PG-EW-6, and PG-PA-MW-1). Based on the RI analytical data, groundwater was impacted by the following organic compounds: xylene (at well PG-CS-7 only) and phenol (at well PG-RS-1 only). Alkaline pH levels (above 10) have also been detected in groundwater.

The fact that the ethylbenzene and xylene concentrations decreased at well PG-CS-7 by over 60% between November 2000 and November 2002 indicates that these VOCs are attenuating via natural processes. Further, it is anticipated that the relatively low concentration of xylene, if the compound remains in groundwater near well PG-CS-7, would volatilize quickly upon discharging into Bridge Creek.

A groundwater sample was not collected from well PG-EW-3 during the RI. Therefore, concentration trends cannot be established for the PAHs 1,2-benzphenanthracene and benzo(a)pyrene that were detected at concentrations greater than their respective AWQSGVs during the SI. However, the well is located more than 200 feet upgradient of Bridge Creek, and it is unlikely that the low concentrations of these PAH compounds would reach Bridge Creek. It is more likely that these compounds would attenuate naturally prior to reaching Bridge Creek.

The elevated concentrations of phenol that were detected at wells PG-PA-MW-6, PG-CS-7, PG-EW-6, PG-PA-MW-1, and PG-RS-1 during the SI and the RI are likely attributable to the decay of naturally-occurring organic compounds. The fact that similar concentrations of phenol have been detected throughout the northern two-thirds of Site 1 supports this assertion. Therefore, whether or not surface water in Bridge Creek is impacted by phenol, the source of the phenol does not appear to be related to a former release or an onsite industrial source.

Although pH values of almost 10 have been detected in groundwater at Site 1, the pH of surface water in Bridge Creek has ranged from 7.5 to 8.2. Thus, the elevated pH of groundwater at Site 1 does not seem to have affected the pH of the surface water in Bridge Creek. Please note, this result is expected because the hydronium ions in groundwater discharging to surface water will be diluted in Bridge Creek and because compounds (e.g., bicarbonate) that are present at equilibrium conditions in the groundwater at Site 1 will volatilize from the surface water (e.g., as carbon dioxide).

Based on the groundwater analytical data, therefore, groundwater at Site 1 has not been impacted extensively by organic compounds and that those few minor groundwater impacts that exist are attenuating naturally and/or are unlikely to impact the surface water or sediment quality in Bridge Creek. As noted above, the presence of phenol is likely related to the decay of naturally-occurring organic compounds.

Since groundwater, surface water, and sediment samples were collected concurrently and were analyzed for TAL metals, the metals results for samples in these three media can be evaluated to determine if the quality of surface water or sediment in Bridge Creek have been impacted by groundwater. Analytical data for samples collected during the SI indicate that the only metals that were detected in both groundwater and surface water at concentrations greater than their respective standards and/or guidance values were arsenic and cadmium. Arsenic was detected at a concentration greater than its AWQSGV in

groundwater samples collected from four wells (at wells PG-PA-MW-5, PG-TMW-2, PG-EW-3, and PG-PA-MW-6) in the vicinity of the Wood Yard. The elevated concentrations of arsenic appear to be related to the wood chips previously stockpiled in the Wood Yard. As indicated in Section 2.1.5, the wood chips have been removed. Analytical results for confirmatory, post-excavation soil samples indicate that two of the samples contained arsenic at non-detect levels, one sample contained arsenic at a concentration lower than its RSCO, and three samples contained arsenic at concentrations (7.6 to 25 mg/kg) slightly greater than the RSCO for arsenic (7.5 mg/kg). The effect of the removal of the wood chips on groundwater quality will be determined during a groundwater monitoring program initiated subsequent to the redevelopment of Site 1. In addition, arsenic was detected at a concentration greater than its RSWCS at surface water sampling location PG-SW-3, located approximately 400 feet downstream of the Wood Yard. The surface water sample closest to the Wood Yard (i.e., the upstream surface water sample PG-SW-1) did not contain arsenic at a concentration greater than its AWQSGV. Therefore, the groundwater at the Wood Yard that is impacted by arsenic has not affected the quality of surface water in Bridge Creek.

Cadmium was detected at a concentration greater than its AWQSGV in only the SI groundwater sample collected from well PG-RS-2. This metal was detected at a concentration greater than its RSWCS in only one surface water sample, PG-SW-3, the downstream surface water sample. Based upon the groundwater contour map, the groundwater impacted by cadmium should discharge to a location approximately 400 feet upstream of PG-SW-3. However, neither of the surface water samples collected upstream of sample PG-SW-3 contained cadmium at a concentration greater than the RSWCS for cadmium. Therefore, the groundwater at well PG-RS-2 that is impacted by cadmium did not affect the quality of surface water in Bridge Creek.

Analytical data for samples collected during the RI indicate that the only metals detected at concentrations greater than their respective AWQSGVs in groundwater and their respective RSWCOs/Recommended Surface Water Guidance Values in surface water are iron, magnesium, and sodium. Because Bridge Creek is tidally influenced, the elevated concentrations of iron, magnesium, and sodium in the surface water samples collected from Bridge Creek are attributable to the concentration of those dissolved cations in the Arthur Kill. During recent sampling efforts unrelated to the Site 1 SI, RI, and SRI efforts, the concentrations of iron, magnesium, and sodium (323, 615000, and 7,790,000 mg/L, respectively) in the Arthur Kill adjacent to the Facility have been comparable to the analytical results for the SI and RI surface water samples.

As noted above, sediment samples were collected during the SI and were analyzed for metals. Based on the analytical results, arsenic and cadmium were the only metals detected at concentrations greater than their respective AWQSGVs in groundwater and their respective NJDEP LELs/SELs in sediment. Arsenic was detected at a concentration greater than its AWQSGV in groundwater samples collected from four wells (at wells PG-PA-MW-5, PG-TMW-2, PG-EW-3, and PG-PA-MW-6) in the vicinity of the Wood Yard. Arsenic was detected at a concentration greater than its NYSDEC LEL (but less than its SEL) at all five sediment sampling locations (PG-SED-1 through PG-SED-5). Sediment sampling location PG-SED-1, although the furthest upstream sediment sampling location in Bridge Creek, is more than 300 feet downstream of the Wood Yard. Based on these results, the groundwater impacted by arsenic could have impacted sediment quality in Bridge Creek. However, the concentration of arsenic in sediment samples remained relatively constant downstream of PG-SED-1. If sediment quality were impacted by groundwater in the Wood Yard, the concentration of arsenic in sediment would decrease downstream of the Wood Yard. Since this is not the case, there is no indication that groundwater at Site 1 that is impacted by arsenic has affected sediment quality in Bridge Creek.

Cadmium was detected at a concentration greater than its AWQSGV in only the SI groundwater sample collected from well PG-RS-2. This metal was detected at a concentration greater than its NJDEP LEL in only sediment sample PG-SED-2. Based upon the groundwater contour map, the groundwater impacted by cadmium should discharge to a location more than 300 feet upstream of PG-SED-2. However, the analytical results for the sediment sample collected upstream of sample PG-SED-2 did not contain cadmium at a concentration greater than its NJDEP LEL. Therefore, the groundwater at well PG-RS-2 that is impacted by cadmium did not affect the quality of sediment in Bridge Creek.

Based on the above discussion, the minimal groundwater impacts at Site 1 do not appear to have impacted the quality of surface water or sediment in Bridge Creek. The Port Authority previously indicated that additional groundwater, surface water, and/or sediment samples would be collected at Site 1 and Bridge Creek; however, because of the changes that will potentially occur to contaminant migration pathways following the redevelopment of Site 1, it was determined that the additional groundwater, surface water, and sediment sampling efforts would be included in a post-redevelopment monitoring plan. Details of the monitoring plan are beyond the scope of this report, and will be included in a future Remedial Action Work Plan.

7.2.2 Data Related to Former Hydrogen Holders

As part of the SRI, HMM reviewed analytical data for groundwater and soil samples collected in the vicinity of the former hydrogen holders. The soil sampling locations located within 100 feet of at least one of the two former hydrogen holders (as referenced on Sanborn maps) are PG-Wood-03, PG-Wood-3, PG-Wood-05, PG-PA-MW-6, and PG-PA-MW-6D. As noted above, the concern regarding the hydrogen holders is not that the holders themselves could have discharged regulated substances to soil and/or groundwater, but rather that appurtenant equipment (air compressors, e.g.) could have discharged these substances. Seventeen soil samples were collected from these five locations. All soil samples were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, total cyanide, total phenolics, O&G, TPHC, and PCBs.

The soil sampling analytical results indicate that soil impacts in the vicinity of the former hydrogen holders are limited to the PAH compound benzo(b)fluoranthene, the SVOC (and non-PAH) phenol, and the metals arsenic, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, sodium, and zinc. The elevated concentration of benzo(b)fluoranthene is the only compound or metal that is listed above and that could be related to the presence of the former hydrogen holders and appurtenant equipment (if any). However, the concentrations of benzo(b)fluoranthene were similar to those detected in soil throughout the Facility. As such, the elevated concentrations of benzo(b)fluoranthene appear to be related to the former placement of historic fill at the Facility by P&G. No remedial action is warranted with respect to the soil in the vicinity of the former hydrogen holders.

Groundwater downgradient (i.e., at well PG-PA-MW-6) of the locations of the former Hydrogen Holders is impacted only by phenol and arsenic. The elevated concentrations of arsenic appear to be related to the wood chips previously stockpiled in the Wood Yard. As indicated in Section 2.1.5, the wood chips have been removed. Analytical results for confirmatory, post-excavation soil samples indicate that two of the samples contained arsenic at non-detect levels; one sample contained arsenic at a concentration lower than its RSCO, and three samples contained arsenic at concentrations (7.6 to 25 mg/kg) slightly greater than the RSCO for arsenic (7.5 mg/kg). The effect of the removal of the wood chips on groundwater quality will be determined during a groundwater monitoring program initiated subsequent to the redevelopment of Site 1. The presence of phenol in the groundwater sample collected at PG-PA-MW-6 is likely related to the decay of naturally-occurring organic material that is present in the marsh deposits observed in the soil column at several locations at the Facility, including at Site 1. As such, it does not appear that the presence of the hydrogen holders has impacted groundwater quality.

The elevated concentrations of arsenic appear to be related to the wood chips previously stockpiled in the Wood Yard. As indicated in Section 2.1.5, the wood chips have been removed, and the effect of the removal of the wood chips on groundwater quality will be determined through the proposed groundwater monitoring program. The presence of phenol in the groundwater sample collected at PG-PA-MW-6 is likely related to the decay of naturally-occurring organic material that is present in the marsh deposits observed in the soil column at several locations at the Facility, including at Site 1. As such, it does not appear that the presence of the hydrogen holders has impacted soil or groundwater quality.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The SRI was conducted to close all open AOCs and issues at Site 1 and to determine whether remediation of any medium was warranted. However, based on the findings, limited investigation is required at two locations at Site 1: the vicinity of soil boring location UST2-4 and the vicinity of temporary well point TWP-1A. At this time and pending the outcome of those investigations, no remedial action is warranted at Site 1 beyond the redevelopment of Site 1, including the installation of impervious surfaces, and the recording of a Deed Notice at Site 1. In addition, a groundwater monitoring program will be initiated subsequent to the completion of Site 1 redevelopment.

The HHMT-Port Ivory Facility is situated within an industrial section of Staten Island that was reclaimed from marshland by the use of fill and is bordered by railroads, ports, and roadways. Based on the industrial land use, the environmental quality of surface water, sediment, groundwater, and soil have been impacted on a regional scale. Therefore, neither the soil nor the groundwater at the HHMT-Port Ivory Facility are currently or will be used as natural resources and the surface water and sediment in Bridge Creek and the Arthur Kill are also not high quality. Therefore, while media are referred to as "impacted" throughout this report if the concentration of a regulated substance in the medium exceeds NYSDEC standards or guidance values, it is important to realize that the impacts, if any, attributable to P&G's operations only negligibly worsen already degraded environmental quality and that the "impacts" believed to be attributable to former P&G operations may be attributable instead to regional contamination.

Based on the results and discussion provided in Sections 6 and 7 above, the following conclusions have been drawn for Site 1.

- The soil apparently impacted by PAHs in the vicinity of SRI temporary well location TWP-1A warrants additional investigation. The additional investigation will include the collection of soil samples to confirm that the soil is impacted by PAHs (and that the elevated concentration of PAHs was not due to inclusion of cinders in the soil sample) and soil samples to delineate the impacted soil (if necessary). Depending on the extent of the impacted soil, a groundwater investigation may also be warranted.
- The soil containing elevated concentrations of TPHC (i.e., soil in the vicinity of soil boring location UST2-4) also warrants additional investigation. The goal of the additional investigation will be to determine whether LNAPL in the vicinity of UST2-4 is mobile.
- LNAPL is present at AOC-UST2 within a footprint with an area of 30,750 square feet. However,
 the presence of the LNAPL, believed to be petroleum-based, has not significantly impacted soil
 or groundwater with respect to regulated organic compounds. The LNAPL is present within the
 soil at residual quantities and is immobile throughout most or all of AOC-UST2. Except as
 described above, neither additional investigation nor any remedial action is required in AOCUST2.
- With the exception of groundwater impacted by xylene at well PG-CS-7, groundwater impacts at Site 1 have not impacted the quality of surface water and/or sediment in Bridge Creek. The effect of the impacted groundwater at well PG-CS-7 on the quality of surface water and/or sediment in Bridge Creek is not currently known. Moreover, the xylene impacts in groundwater at well PG-CS-7 appear to be attenuating naturally. A groundwater monitoring program that includes the collection of surface water samples in Bridge Creek will be initiated subsequent to the redevelopment of Site 1.
- Neither soil nor groundwater has been impacted by the former hydrogen holders and appurtenant equipment.
- No human receptors have been identified for any contaminated medium at Site 1 following redevelopment. Impacted soil will be capped with impermeable materials, reducing the mobility of impacted soil and the flux of substances to groundwater. Neither groundwater nor surface water in Bridge Creek is currently utilized as a source of potable water; due to the salinity and

generally poor quality of these potential resources, neither is likely to be used as a source of potable water in the near future. Inhabited buildings are not currently located and are not planned at Site 1.

HMM recommends that additional investigation be conducted in the vicinity of soil boring UST2-4 and TWP-1A to confirm that remedial actions are not warranted with respect to LNAPL and impacted soil, respectively. The details of this investigation will be included in a Targeted Supplemental Remedial Investigation Workplan that will be submitted to NYSDEC and NYSDOH for approval. HMM further recommends that, with the exception of the two referenced areas at AOC-UST2, the only remedial actions warranted at Site 1 are the capping of impacted soils and the establishment of a Deed Notice. The effectiveness of these remedial actions will be monitored in a groundwater monitoring program that includes the collection of surface water samples and that will be initiated subsequent to the redevelopment of Site 1. Details related to the proposed remedial actions and groundwater monitoring program will be included in a Remedial Action Work Plan for Site 1, which will be submitted to the NYSDEC and NYSDOH for approval.

APPENDIX A

SOIL BORING LOGS (SUBMITTED UNDER SEPARATE COVER)

APPENDIX B

SUMMARY OF NYSDEC SAMPLING LOCATIONS AND ANALYTICAL DATA, BRIDGE CREEK

Clark, Geoffrey K

From:

Kohlsaat, Jennifer N

nt·

Tuesday, January 17, 2006 9:26 AM

Clark, Geoffrey K

Subject:

FW:

SedData2.PDF (86

Bridge ek_sample_sites2.pc

KB)

SedData1.PDF (1464L276PCB.PDF (110 KB)

----Original Message----

From: Aldrich, Ed [mailto:ealdrich@panynj.gov] Sent: Wednesday, September 22, 2004 9:01 AM

To: Kohlsaat, Jennifer

Subject: FW:

Jen,

Here is the data from Steve Zahn for his wetland rehab project.

----Original Message----

From: Steve Zahn [mailto:smzahn@gw.dec.state.ny.us]

Sent: Wednesday, September 22, 2004 8:44 AM

To: Aldrich, Ed Subject: Re:

Attached are the bulk numbers from our initial survey and a copy of the sample locations. The 4 samples are composites of 4-5 of the locations as follows:

BCW-01: 1,2, 3, 5

BCW-02: 8, 11, 13, 14, 15

BCW-03: 12, 16, 17, 18

BCW-04: 4, 6, 7, 9, 10

The pesticdes, PCBs, VOCs and SVOCs were not a concern here, only metals were a problem. Sample location 1 turned out to be our "hot-spot". Steve

>>> "Aldrich, Ed" <ealdrich@panynj.gov> 09/21/2004 11:41:38 AM >>> Steve,

Can I get a copy of the analytical data from your wetland restoration project? Your data may help explain the presence of some metals we found in our sediment sampling. If it's not a problem, please e-mail me the data or fax it to me at 973-565-7649.

Thanks,

Ed Aldrich

Report Date: 04/21/04 07:19

RFW Batch Number: 0404L276 Client: NYSDEC Work Order: 01667601001 Page: 1a

	Cust ID:		BCW-01		BCW-02		BCW-03		BCW-04		BCW-04		BCW-04	
Sample RFW#:		. 001		002		003		004		. 004 MS		004 MSD		
Information	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOII	SOIL	
	D.F.:	1.09		1.16 ug/Kg		1.00 ug/Kg		1.06		1.11		0.926		
	Units:	ug/Kg						ug/K	ug/Kg		ug/Kg		ug/Kg	
	Toluene-d8	99	જ	101	%	103	%	112	%	100	%	102	%	
Surrogate Bro	omofluorobenzene	108	%	110	%	118	%	123 *	%	125	* %	122	o _f o	
Recovery 1,2-D	ichloroethane-d4	95	%	87	%	104	*	104	8	92	ક	89	%	
*********	F3F3F2F2F25		==fl==	:========	=fl==	=======	=f1:		=fl=	*****	===f1=	:=======	===fl	
Vinyl Chloride		52	U	25	J	85	Ū	44	U	140	%	143	8	
1,1-Dichloroethen	e	26	U	40	U .	42	U	22	U	93	%	96	%	
Chloroform		26	U	10	J	42	Ü	22	U	106	%	111	%	
1,2-Dichloroethan	e	26	U	40	U	42	U	22	U	100	%	99	%	
2-Butanone		52	U	210		95		170		44	* %	7	* %	
Carbon Tetrachlor	ide	26	U	13	J	42	U	22	U	88	%	83	%	
Trichloroethene		26	U	14	J	42	U	. 22	U	93	of	90	왕	
Benzene		26	Ū	12	J	42	U	22	U	108	%	108	양	
Tetrachloroethene		26	U	17	J	42	U	22	U	93	%	95	de	
Chlorobenzene		26	U	12	J	42	U	22	U	101	항	102	8	
*= Outside of EPA	CLP OC limits													

^{*=} Outside of EPA CLP QC limits.

RFW Batch Number: 0404L276

Lionville oratory, Inc.

Volatiles by GC/MS, TCLP Leachate

Report Date: 04/21/04 07:19

Client: NYSDEC

Work Order: 01667601001 Page: 2a

	Cust ID:	VBLKCS		VBLKCS BS		VBLKCT		VBLKCT BS		
Sample Information	RFW#: Matrix: D.F.: Units:	: 1.00		04LVG112-MB1 SOIL 1.00 ug/Kg		04LVG114-MB1 SOIL 1.00 ug/Kg		04LVG114-MB1 SOIL 1.00 ug/Kg		
	OHICS:									
	Toluene-d8	90	%	89	8	89	%	92	%	
Surrogate	Bromofluorobenzene	93	왕	94	8	94	%	100	8	
Recovery 1,2	2-Dichloroethane-d4	90	%	90	%	90	%	96	૪	
=======================================			=f1		==f1		= f l	========	==f1	=========fl======fl
Vinyl Chloride		10	U	111	%	10	U	114	%	•
1,1-Dichloroethene		5	U	84	%	5	U	92	8	
Chloroform		5	Ū	93	%	5	U	99	%	
1,2-Dichloroethane		5	U	94	%	5	U	105	%	
2-Butanone		10	Ū	52	%	10	U	82	%	
Carbon Tetrachloride		_ 5	IJ	91	%	5	. U	-95	%	
Trichloroethene		 5	U	. 96	[%]	. 5	U	100	o	
Benzene		5	U	100	%	. 5	U	110	%	
Tetrachloroethene			U	91	%	5	U	97	%	
Chlorobenzene			Ü	97	%	5	U	103	*	
*= Outside of B	EPA CLP OC limits.							•		

Lionville A

oratory, Inc.

Semivolatiles

3200 U

7900 U

Hexachlorobenzene

Pentachlorophenol

*= Outside of EPA CLP OC limits.

GC/MS, TCLP Leachate

5600 U

14000 U

2800

6900 U

U

66

80

70

%

Report Date: 04/28/04 10:21

Client: NYSDEC Work Order: 01667601001 Page: la tch Number: 0404L276 BCW-01 BCW-02 BCW-03 BCW-04 BCW-04 BCW-04 Cust ID: RFW#: 001 002 003 004 004 MS 004 MSD Sample SOIL SOTI SOIL SOIL SOIL Information Matrix: SOIL 2.00 2.00 2.00 D.F.: 2.00 2.00 2.00 Units: UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG Nitrobenzene-d5 64 ò 45 62 ÷ % 62 ş 65 54 Surrogate 2-Fluorobiphenyl 62 ş 61 ્ટ્ર 47 ્ર 61 63 ૃ 54 è p-Terphenyl-d14 64 왕 80 63 S, 71 ۶ ا Recovery 65 58 Phenol-d5 72 왕 79 % 60 ⁸ 77 % **7**5 ۶ 67 2-Fluorophenol 75 ş 74 ę, 56 %` 78 75 66 2,4,6-Tribromophenol % 80 ջ 69 ે 73 66 76 80 3200 U 4600 U 5600 2800 U 15 Ü 24 ş 왕 Pyridine 4600 U 5600 2800 U ò 1,4-Dichlorobenzene 3200 U U 5.3 45 왕 3200 U 4600 U 5600 U ્ર 2-Methylphenol 2800 U 64 60 જ 3- and/or 4-Methylphenol 3200 U 460Ó U 5600 U 2800 U 74 % 69 ş Hexachloroethane 3200 U 4600 U 5600 U 2800 U 29 20 ş Nitrobenzene 3200 U 4600 U 5600 U 2800 IJ 59 5.3 % Hexachlorobutadiene 3200 U 4600 U 5600 U 2800 U 53 46 % 3200 U 4600 U 5600 U ş 2,4,6-Trichlorophenol 2800 U 71 61 11000 U 14000 U % 2,4,5-Trichlorophenol 7900 U 6900 U 76 64 2,4-Dinitrotoluene 3200 U 4600 U 5600 U 2800 U 69 58 of 57 ò

4600 U

11000 U

GC/MS. TCLP Leachate Semivolatiles b

Report Date: 04/28/04

Work Order: 01667**601**001 RFW Batch Number: 0404L276 Client: NYSDEC Page: 2a SBLKNT BS Cust ID: SBLKNT Sample RFW#: 04LE0472-MB1 04LE0472-MB1 SOTI Information Matrix: SOIL

Information	D.F.: Units:	1.00 UG/KG	1.00 UG/KG		
	Nitrobenzene-d5	78 %	74 %		
Surrogate	2-Fluorobiphenyl	68 %	66 8		
Recovery	p-Terphenyl-d14	89 %	85 %		
	Phenol-d5	93 %	. 88 %		
•	2-Fluorophenol	89 %	84 %		
	2,4,6-Tribromophenol	64 %	73 %		
=======================================	======================================	=======f1=	======fl==:	========f1======f1	=========fl========fl
Pyridine		330 U	50 %		
1,4-Dichlor	robenzene	330 U	66 %		
2-Methylphe	enol	330 U	76 %		
3- and/or 4	-Methylphenol	330 U	82 %		
Hexachloroe	ethane	330 U	72 %		
Nitrobenzer	ne	330 U	71 %		
Hexachlorob	outadiene	330 U	63 %		
2,4,6-Trich	nlorophenol	330 U	. 68 %		
2,4,5-Trich	lorophenol	830 U	74 %		
2,4-Dinitro	otoluene	330 U	77 %		•
Hexachlorob	penzene	330 U	72 %		
Pentachloro	ophenol	830 U	70 %		

*= Outside of EPA CLP QC limits.

Report Date: 04/21/04 21

RFW Batch Number: 0404L276 Client: NYSDEC Work Order: 01667601001 Page: 1 Cust ID: BCW-01 BCW-02 BCW-03 BCW-03 BCW-03 BCW-04 Sample RFW#: 001 002 003 003 MS 003 MSD 004 Information Matrix: SOIL SOIL SOIL SOIL SOIL SOIL D.F.: 1.00 1.00 1.00 1.00 1.00 1.00 Units: UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG Surrogate: 49 83 56 DCAA 59 59 160 U 230 U 280 U 136 119 140 2,4,5-TP (Silvex) 79 U 110 U 140 U 128 96 69 U Cust ID: PBLKGO PBLKGO BS PBLKGO BSD Sample RFW#: 04LE0471-MB1 04LE0471-MB1 04LE0471-MB1 Information Matrix: SOIL SOIL SOIL D.F.: 1.00 1.00 1.00 Units: UG/KG UG/KG UG/KG Surrogate: DCAA 73 54 61 =========fl=====fl======fl======fl=====fl=====fl=====fl=====fl=====fl=====fl====

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP OC

¥

100

96

r

80

85

33 U

17 U

2,4,5-TP (Silvex)

Jana 100 len

PCBS by GC

Report Date: 04/29/04 10:28 RFW Batch Number: 0404L276 Client: NYSDEC Work Order: 01667601001 Page: 1

	Cust ID:	BCW-01	BCW-	01	BCW-01		BCW-02		BCW-03		BCW-	04
Sample	RFW#:	001	001	MS	001 MSD	,	002		003		0	04
Information	Matrix:	SOIL	SOI	L	SOIL		SOIL		SOIL		SOI	L
	D.F.:	1.00	1	.00	1.0	0 :	1.0	0	1.0	0	1	.00
	Units:	UG/KG	UG	/KG	UG/K	(G	UG/K	G	UG/K	G	UG	/KG
Surrogate:	Tetrachloro-m-xylene	80 %	60	 %	85	%	70	%	80	a _o	60	%
	Decachlorobiphenyl	. 70 %	60	-	90	%	70	8	75	%	55	
Aroclor-1016	=======================================	_	1======= 57		 87	=fl== %	230	=fl== U	280	=fl== U	14	
Aroclor-1221		_ 160 U			160	ับ	230	Ü	280	U	14	
Aroclor-1232		- 160 11			160	Ü	230	-	280	IJ	14	
Aroclor-1242	· · · · · · · · · · · · · · · · · · ·		- •		160	Ü	230		280	Ü	14	-
Aroclor-1248		_ 160 U	- -		160	Ü		U	280	IJ	14	
Aroclor-1254		260	I	-	100 I	U	230	บ	280	U.	14	
Aroclor-1260		160 U			114	%	230	Ū	280	U .	14	
		-	•									
	Cust ID:	PBLKGK	PBLKGK B	S								
Sample	RFW#:	04LE0453-MB1	04LE0453	-MB1								
Information	Matrix:	SOIL	SOI	L						•		
	D.F.:	1.00	1	.00							•	
	Units:	UG/KG	טס	KG				•				
Surrogate:	Tetrachloro-m-xylene	100 %	90) %	· · · · · · · · · · · · · · · · · · ·							
-	Decachlorobiphenyl	110 %	100) ક								
					2222222	==fl=:		==fl==		==fl==		===f1
Aroclor-1016		 -										
Aroclor-1221			_	33 U								
Aroclor-1232		~~	_	33 U								
Aroclor-1242		_	_	33 U								
Aroclor-1248				33 U								
Aroclor-1254			-	33 U								
Aroclor-1260)	33 (7 87	7 %								

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Pesticides/PCB by GC, Special List

Report Date: 04/29/04 11:59

RFW Batch Number: 0404L276 Client: NYSDEC Work Order: 01667601001 Page: 1 Cust ID: BCW-01 BCW-01 BCW-02 BCW-02 BCW-02 BCW-02 Sample RFW#: 001 001 RE 002 002 RE 002 MS 002 MS Information Matrix: SOIL SOTI SOIL SOIL SOIL SOIL D.F.: 1.00 5.00 1.00 5.00 1.00 5.00 Units: UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG Decachlorobiphenvl Surrogate: 110 D . % ۶ 70 % D ۶ 105 왕 ջ Tetrachloro-m-xylene 70 ٩ 85 8 90 Heptachlor 7.9 [] 40 17 11 U 57 U 75 alpha-Chlordane _____ 9.5 40 U 11 · U 57 U 60 D gamma-Chlordane 11 19 J 90 2 11 U 57 U qamma-BHC (Lindane)_____ 30 * % 7.9 U 40 U 11 [] 110 .I D Endrin 16 U 79 II 23 U 110 U 25 * % D Methoxychlor 79 U 6 * % 400 U 110 U 570 U D Toxaphene 160 U 790 U 230 U 1100 U 230 U 1100 II Heptachlor Epoxide 7.9 U D 40 U 11 U 57 U 30 * % Cust ID: BCW-02 BCW-02 BCW-03 BCW-03 BCW-04 BCW-04 Sample RFW#: 002 MSD 002 MSD 003 003 RE 004 004 RE Information Matrix: SOIL SOIL SOIL SOIL SOIL SOIL D.F.: 1.00 5.00 1.00 5.00 1.00 5.00 Units: UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG Decachlorobiphenvl Surrogate: 100 ջ 80 % Ď % 75 D Tetrachloro-m-xvlene 95 8.0 કૃ % D % 50 ٥ IJ Heptachlor 14 45 J 6.9 alpha-Chlordane____ % 50 ş 14 U 71 U 6.9 U 35 U gamma-Chlordane 80 % 옿 14 U 71 U 6.9 [] 35 U qamma-BHC (Lindane) 30 * % D ş 71 U 35 U 14 U 6.9 U Endrin _____ 20 * % D % 28 U 140 U 6.9 J 69 U Methoxychlor____ 2 * % 140 U 710 U 69 U 350 U Toxaphene 230 U 1100 U 280 U-1400 U 140 U 690 U Heptachlor Epoxide 20 * % D કૃ 14 U 71 U 6.9 U 35 U

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Pesticides/PCB by GC, Special List

Report Date: 04/29/04 11:59

Client: NYSDEC Work Order: 01667601001 Page: 2

	Cust ID:	PBLKGK .	PBLKGK RE	PBLKGK BS	PBLKGK BS	
Sample Information	RFW#: Matrix: D.F.:	SOIL 1.00	04LE0453-MB1 SOIL 1.00	04LE0453-MB1 SOIL 1.00	04LE0453-MB1 SOIL 1.00	
	Units:	UG/KG	UG/KG	UG/KG	UG/KG	
Surrogate:	Decachlorobiphenyl Tetrachloro-m-xylene		135 * % 120 * %	120 % 100 %	125 * % 105 %	
**====*===	- ====================================	========f]	l======f]	======f1	.======f1:	======================================
Heptachlor_		1.7 U	1.7 U	70 %	110 %	
alpha-Chloro	dane	1.7 U	1.7 U	50 %	90 %	•
gamma-Chloro	dane	1.7 U	1.7 U	50 %	100 %	
gamma-BHC (1	Lindane)	ַ 1.7 ט	1.7 U	30 * %	90 %	•
Endrin		_ 3.3 U	3.3 U	10 * %	130 %	
Methoxychlo	r	17 U	17 U	2 * %	122 %	
Toxaphene		_ 33 U	33 U	33 U	33 U	
Heptachlor 1	Epoxide	1.7 U	1.7 U	20 * %	100 %	

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

INORGANICS DATA SUMMARY REPORT 04/19/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

		\$			REPORTING	DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	FACTOR
=*===	S151551111114688888		****	****		=======
-001	BCW-01	Silver, Total	1.4	MG/KG	0.27	1.0
		Arsenic, Total	23.3	MG/KG	1.5	1.0
		Barium, Total	<u>. 4640</u>	MG/KG	0.09	,1.0
		Cadmium, Total	3.7	MG/KG	0.18	1.0
		Chromium, Total	223	MG/KG	0.22	1.0
		Mercury, Total	3.5	MG/KG	0.07	1.0
		Lead, Total	3570	MG/KG	0.89	1.0
		Selenium, Total	4.3	MG/KG	1.5	1.0
-002	BCW-02	Silver, Total	1.5	MG/KG	0.33	1.0
		Arsenic, Total	34.2	MG/KG	1.9	1.0
	•	Barium, Total	618	MG/KG	0.11	1.0
		Cadmium, Total	3.8	MG/KG	0.22	1.0
		Chromium, Total	266	MG/KG	0.28	1.0
		Mercury, Total	4.5	MG/KG	0.08	1.0
		Lead, Total	510	MG/KG	1.1	1.0
_		Selenium, Total	5.3	MG/KG	1.9	1.0
	BCW-03	Silver, Total	1.8	MG/KG	0.43	1.0
		Arsenic, Total	29.1	MG/KG	2.4	1.0
		Barium, Total	366	MG/KG	0.14	1.0
		Cadmium, Total	2.8	MG/KG	0.2B	1.0
		Chromium, Total	99.9	MG/KG	0.36	1.0
	•	Mercury, Total	1.9	MG/KG	0.12	1.0
		Lead, Total	450	MG/KG	1.4	1.0
		Selenium, Total	7.3	MG/KG	2.4	1.0
-004	BCW-04	Silver, Total	1.1	MG/KG	0.21	1.0
		Arsenic, Total	29.1	MG/KG	1.2	1.0
		Barium, Total	475	MG/KG	0.07	1.0
		Cadmium, Total	2.8	MG/KG	0.14	1.0
		Chromium, Total	166	MG/KG	0.17	1.0
		Mercury, Total	3.7	MG/KG	0.05	1.0
		Lead, Total	406	MG/KG	0.69	1.0
		Selenium, Total	3.4	MG/KG	1.2	1.0

INORGANICS METHOD BLANK DATA SUMMARY PAGE 04/19/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

					REPORTING	DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	FACTOR
======	***********	******	=======	=====	******	
BLANK1	04L0245-MB1	Silver, Total	0.06 u	MG/KG	0.06	1.0
		Arsenic, Total	0./34 u	MG/KG	0.34	1.0
	× \$-	Barium, Total	0.04	MG/KG	0.02	1.0
		Cadmium, Total	0.04 u	MG/KG	0.04	1.0
		Chromium, Total	0.05 u	MG/KG	0.05	1.0
		Lead, Total	0.20 u	MG/KG	0.20	1.0
	•	Selenium, Total	0.34 u	MG/KG	0.34	1.0
BLANK1	04C0085-MB1	Mercury, Total	0.02 u	MG/KG	0.02	1.0

INORGANICS ACCURACY REPORT 04/19/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

			SPIKED	INITIAL	SPIKED		DILUTION
SAMPLE	SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	*RECOV	FACTOR (SPK)
		**********	******		****		
-001	BCW-01	Silver, Total	24.0	1.4	23.3	97.0	1.0
	•	Arsenic, Total	904	23.3	934	94.3	1.0
		Barium, Total .	5180	4640	934	57.6*	1.0
	•	Cadmium, Total	26.9	3.7	23.3	99.6	1.0
		Chromium, Total	294	223	93 . 4	75.8	1.0
		Lead, Total	3720	3570	233	65.7*	1.0
		Selenium, Total	858	4.3	934	91.4	1.0

INORGANICS PRECISION REPORT 04/19/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

			INITIAL			DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	FACTOR (REP)
======	************	*****		FEE556838		*******
-001REP	BCW-01	Silver, Total	1.4	1.6	13.3	1.0
		Arsenic, Total	23.3	23.4	0.43	1.0
	•	Barium, Total	4640	5450	16.1	1.0
		Cadmium, Total	3.7	3.6	2.7	1.0
		Chromium, Total	223	263	16.6	1.0
	· .	Lead, Total	3570	4950	32.6	1.0
		Selenium, Total	4.3	3.5	20.5	1.0

INORGANICS LABORATORY CONTROL STANDARDS REPORT 04/19/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

			SPIKED	SPIKED		
SAMPLE	SITE ID	ANALYTE	SAMPLE	TRUOMA	UNITS	*RECOV
			*****		*=====	
LCS1	04L0245-LC1	Silver, LCS	49.9	50.0	MG/KG	99.8
		Arsenic, LCS ·	968	1000	MG/KG	96.8
		Barium, LCS	504	500	MG/KG	100.9
		Cadmium, LCS	24.9	25.0	MG/KG	99.6
		Chromium, LCS	50.5	50.0	MG/KG	101.0
		Lead, LCS	248	250	MG/KG	99.4
		Selenium, LCS	939	1000	MG/KG	93.9
LCS1	04C0085-LC1	Mercury, LCS	6.2	6.2	MG/KG	99.5

INORGANICS DATA SUMMARY REPORT 04/22/04

CLIENT: NYSDEC

WORK ORDER: 01667-601-001-9999-00

LVL LOT #: 0404L276

	•				REPORTING	DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	FACTOR
======	======================================		=======	*====		=======
-001	BCW-01	% Solids	21.0	*	0.01	1.0
	•	Cyanide, Reactive	0.91 u	MG/KG	0.91	1.0
		рн	6.6	SOIL PH	0.01	1.0
·	N É	Sulfide, Reactive	133	MG/KG	72.8	1.0
-002	BCW- 02	% Solids	14.5	8	0.01	1.0
		Cyanide, Reactive	0.41 u	MG/KG	0.41	1.0
		рн	6.9	SOIL PH	. 0.01	1.0
	•	Sulfide, Reactive	47.2	MG/KG	33.1	1.0
-003	BCW-03	% Solids	11.8	*	0.01	1.0
		Cyanide, Reactive	0.37 u	MG/KG	0.37	1.0
	•	рн	7.3	SOIL PH	0.01	1.0
		Sulfide, Reactive	42.3	MG/KG	29.6	1.0
-004	BCW-04 .	% Solids	24.Ö	•	0.01	1.0
		Cyanide, Reactive	0.48 u	MG/KG	0.48	1.0
		рн	6.8	SOIL PH	0.01	1.0
		Sulfide, Reactive	51.1	MG/KG	36.5	1.0

Ignitability

famples did not ignite.

App 4-22-04

INORGANICS PRECISION REPORT 04/22/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

			INITIAL			DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	FACTOR (REP)
	=======================================	=======================================	=======		2=32#E#	********
-004REP	BCW-04	Cyanide, Reactive	0.48u	0.51u	NC	1.0
		рн	6.9	6.9	0.0	1.0
		Sulfide, Reactive	51.1	66.9	26.7	1.0

INORGANICS METHOD BLANK DATA SUMMARY PAGE 04/22/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

					RBPORTING	DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	LIMIT	FACTOR
======	=======================================	****************	=======	======	*********	=======
BLANKI	04LRC16-MB1	Cyanide, Reactive	0.50 u	MG/KG	0.50	1.0
BLANK10	04LRS016-MB1	Sulfide, Reactive	40.0 u	MG/KG	40.0	1.0

INORGANICS ACCURACY REPORT 04/22/04

CLIENT: NYSDEC

LVL LOT #: 0404L276

			SPIKED	INITIAL	SPIKED		DILUTION
SAMP	PLE SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT %	RECOV	FACTOR (SPK)
====			======	======	=======================================	=====	
LCSS	04LRC16-LCS1	Cyanide, Reactive	2.44	0.14	5.00	45.9	1.0
LCSS	2 04LRC16-LCS2	Cyanide, Reactive MSD	1.49	0.14	5.00	27.0	1.0
BLAN	K10 04LRS016-MB1	Sulfide, Reactive	89.2	40.0 u	361	24.7	1.0
		Sulfide, Reactive MSD	161	40.0 u	361	44.7	. 1.0

INORGANICS DUPLICATE SPIKE REPORT 04/22/04

CLIENT: NYSDEC

WORK ORDER: 01667-601-001-9999-00

LVL LOT #: 0404L276

			SPIKE#1	SPIKE#	2
SAMPLE	SITE ID	ANALYTE	*RECOV	%RECOV	*DIFF
=======	*****	=======================================	=====	=====	======
LCSS2	04LRC16-LCS2	Cyanide, Reactive	45.9	27.0	51.7
BLANK10	04LRS016-MB1	Sulfide, Reactive	24.7	44.7	57.6

APPENDIX C

SUMMARY OF PREVIOUS GROUNDWATER, SURFACE WATER, AND SEDIMENT SAMPLING LOCATIONS AND ANALYTICAL DATA, SITE 1

Location	Recommended	Recommended	PG-CS-7	PG-EW-3	PG-EW-6	PG-PA-MW-1D	PG-PA-MW-1	PG-PA-MW-5	PG-PA-MW-6	PG-PA-MW-6D	PG-RS-1	PG-RS-2	DO 71444
Sample Date	Groundwater Cleanup	Groundwater Cleanup	11/24/2000	11/24/2000	11/24/2000	11/29/2000	11/28/2000	11/24/2000	11/27/2000	11/30/2000	11/24/2000	1	PG-TMW-02
Concentration in UG/L	Standard UG/L		UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	11/24/2000 UG/L	12/2/2000 UG/L
1,1,1-TRICHLOROETHANE	5	NG	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.88 U	1	 	 	
1,1,2,2-TETRACHLOROETHANE	5	NG	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U		0.44 U	0.44 U	0.44 U	0.44 U
1,1,2-TRICHLOROETHANE	1	NG	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.84 U	0.42 U	0.42 U	0.42 U	0.42 U
1,1-DICHLOROETHANE	5	NG	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U		1.0 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-DICHLOROETHYLENE	5	NG	0.41·U	0.41 U	0.41 U	0.41 U	0.41 U	0.35 U	0.70 U	0.35 U	0.35 U	0.35 U	0.35 U
1,2-DICHLOROETHANE	0.6	NG	0.44 U	0.44 U	0.44 U	0.41 U	0.41 U	0.41 U	0.82 U	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLORORPROPANE	1	NG	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.88 U	0.44 U	0.44 U	0.44 U	0.44 U
2-CHLOROETHYL VINYL ETHER	NS	NG	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.44 U	U 88.0	0.44 U	0.44 U	0.44 U	0.44 U
ACROLEIN	5	NG	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	1.1 U 3.0 U	2.2 U	1.1 U	1.1 U	1.1 U	1.1 U
ACRYLONITRILE	5	NG	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U		6.0 U	3.0 U	3.0 U	3.0 U	3.0 U
BENZENE	1	NG	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	6.6 U	13 U	6.6 U	6.6 U	6.6 U	6.6 U
BROMODICHLOROMETHANE	NS	50	0.30 U	0.30 U	0.30 U	0.30 U		0.32 U	0.64 U	0.32 U	0.32 U	0.32 U	0.32 U
BROMOFORM	NS	50	0.32 U	0.32 U	0.32 U	0.32 U	0.30 U	0,30 U	0.60 N	0.30 U	0.30 U	0.30 U	0.30 U
BROMOMETHANE	5	NG	0.55 U	0.55 U	0.55 U	0.55 U	0.32 U	0.32 U	0.64 U	0.32 U	0.32 U	0.32 U	0.32 U
CARBON TETRACHLORIDE	5	NG	0.23 U	0.23 U	0.23 U	0.23 U	0.55 U	0.55 U	1.1 U	0.55 U	0.55 U	0.55 U	0.55 U
CHLOROBENZENE	5	NG	0.25 U	0.25 U	0.25 U	0.25 U	0.23 U	0.23 U	0.46 U	0.23 U	0.23 U	0.23 U	0.23 U
CHLOROETHANE	5	NG	0.52 U	0.52 U	0.52 U	0.52 U	0.25 U	0.25 U	0.50 U	0.25 U	0.25 U	0.25 U	0.25 U
CHLOROFORM	7	NG	0.45 U	0.45 U	0.45 U	0.45 U	0.52 U	0.52 U	1.0 U	0.52 U	0.52 U	0.52 U	0.52 U
CHLOROMETHANE	5	NG	0.32 U	0.32 U	0.32 U	0.43 U	0.45 U	0.45 U	0.90 U	0.45 U	0.45 U	0.45 U	0.45 U
CIS-1,3-DICHLOROPROPENE	5	NG	0.35 U	0.35 U	0.35 U	0.35 U	0.32 U	0.32 U	0.64 U	0.32 U	0.32 U	0.32 U	0.32 U
DIBROMOCHLOROMETHANE	NS	50	0.41 U	0.41 U	0.41 U	0.41 U	0.35 U	0.35 U	0.70 U	0.35 U	0.35 U	0.35 U	0.35 U
DICHLOROMETHANE	5	NG	0.85 U	0.85 U	0.85 U		0.41 U	0.41 U	0.82 U	0.41 U	0.41 U	0.41 U	0.41 U .
ETHYLBENZENE	5	NG	6.7	0.15 U	0.15 U	0.85 U 0.15 U	0.85 U	0.85 U	1.7 U	0.85 U	0.85 U	0.85 U	0.85 U
M&P-XYLENES	585	NG	18(total M&P)	0.81 U	0.13 U		0.15 U	0.15 U	0.30 U	0.15 U	0.15 U	0.15 U	0.15 U
METHYLBENZENE	5	NG	4.9	0.24 U	0.24 U	0.81 U	0:81 U	0.81 U	1.6 U	0.81 U	0.81 U	0.81 U	0.81 U
O-XYLENE	5	NG	3.3	0.36 U	0.36 U	0.24 U	 	0.24 U	0.48 U	0.24 U	2.4	0.24 U	0.24 U
TETRACHLOROETHYLENE	5	NG	0.34 U	0.34 U	0.34 U	0.36 U		0.36 U	0.72 U	0.36 U	0.36 U	0.36 U	0.36 ป
TRAMS-1,2-DICHLOROETHYLENE	5	NG	0.46 U	0.46 U	0.46 U	0.34 U		0.34 U	0.68 U	0.34 U	0.34 U	0.34 U	0.34 U
TRANS-1,3-DICHLOROPROPENE	NS	NG	0.24 U	0.46 U	0.24 U	0.46 U	0.46 U	0.46 U	0.92 U	0.46 U	0.46 U	0.46 U	0.46 U
TRICHLOROETHYLENE	5		0.24 U		0.24 U	0.24 U		0.24 U	0.48 U	0.24 U	0.24 U	0.24 U	0.24 U
VINYL CHLORIDE	2	NG	0.67 U	0.37 U 0.67 U	0.37 U	0.37 U	0.37 U	0.37 U	0.74 U	0.37 U	0.37 U	0.37 U	0.37 U
U Undetectable Levels		110	0.07 U	U.07 U	JU.07 U	0.67 U	0.67 U	0.67 U	1.3 U	0.67 U	0.67 U	0.67 U	0.67 U

NS No Standard

NG No Guidance

Location	Recommended		PG-CS-7	PG-EW-3	PG-EW-6	PG-PA-MW-1D	PG-PA-MW-1	PG-PA-MW-5	PG-PA-MW-6	PG-PA-MW-6D	PG-RS-1	PG-RS-2	PG-TMW-02
Sample Date	Groundwater	Groundwater Cleanup	11/24/2000	11/24/2000	11/24/2000	11/29/2000	11/28/2000	11/24/2000	11/27/2000	11/30/2000	11/24/2000	11/24/2000	12/2/2000
Concentration in UG/L	Cleanup Standard UG/L	Guidance UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
1,2,4-TRICHLOROBENZENE	5	NG '	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,2-BENZPHENANTHRACENE	NS	0.002	0.30 U	1.2	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
1,2-DICHLOROBENZENE	3	NG	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
1,2-DIPHENYLHYDRAZINE	NS	NG	0.24 U	1.2	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
1.4-DICHLOROBENZENE	3	NG	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
2.4.6-TRICHLOROPHENOL	NS	NG	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
2.4-DICHLOROPHENOL	5	NG	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2,4-DIMETHYLPHENOL	NS	50	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
2,4-DINITRPHENOL	NS	10	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
2,4-DINITROTOLUENE	5	NG	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
2,6-DINITROTOLUENE	5	NG	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
2-CHLORONAPHTHALENE	NS	10	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U,	0.22 U	0.22 U	0.22 U
2-CHLOROPHENOL	NS	NG	1.4 U	1.4 U	1:4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U 1	1.4 U	1.4 U	1.4 U
2-NITROPHENOL	NS	NG	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
3,3'-DICHLOROBENZIDINE	5	NG	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U	2.7 U
4,6-DINITRO-O-CRESOL	NS	NG	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
4-BROMOPHENYLPHENYL ETHER	NS	NG	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U
4-CHLORO-3-METHYLPHENOL	NS	NG	1.9 U	1.9 J	1.9 J	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
4-CHLORORPHENLYPHENYL ETHER	NS	NG	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
4-NITROPHENOL	NS	NG	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
ACENAPHTHENE	NS	20	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U
ACENAPHTHYLENE	NS	NG	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U
ANTHRACENE	NS	50	0.25 U	0.25 U	0:25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
BENZIDINE	5	NG	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U
BENZO(A)ANTHRACENE	NS	0.002	0.20 U	1.2	ູ່ 0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
BENZO(A)PYRENE	ND	NG	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 ป	0.24 U	0.24 U
BENZO(B)FLOURANTHENE	NS	0.002	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U
BENZO(G,H,I)PERYLENE	NS	NG	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
BENZO(K)FLOURANTHENE	NS	0.002	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	· 0.50 U	0.50 U.	0.50 U	0.50 U	0.50 U
BENZYL BUTYL PHTHALATE	NS	50	0.29 บ	1.1	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
BIS(2-CHLOROETHOXY)METHANE	5	NG	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
BIS(2-CHLOROETHYL)ETHER	11	NG	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
BIS(2-CHLOROISOPROPYL)ETHER	5	NG	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	D.14 U	0.14 U
BIS(2-ETHYLHEXYL)PHTHALATE	5	NG	2.1	2.6	0.37 U	8.2	5.3 B	1.9	0.37 U	2.3 B	2.1	1.6	4.6 B
DI-N-BUTYL PHTHALATE	50	NG	0.26 U	1.0	0.26 U	. 0,26 U	0.26 U	0.26 U	0.26 U	1.5	0.26 U	0.26 U	0.26 U
DI-N-OCTYL PHTHALATE	NS	50	0.80 U	1.3	0.80 U	0.80 U	2.0 B	0.80 U	0.80 U	1.3	0.80 U	0.80 U	1.1 B
DIBENZ[A,HJANTHRACENE	NS	NG	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
DIETHYL PHTHALATE	NS	50	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 ป
DIMETHYL PHTHALATE	NS	50	0.24 U	0.24 U	1.6	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
FLUORANTHENE	NS	50	0.29 U	1.4	0.29 U	0.29 U	0.29 U	0.29 U	. 0.29 U	0.29 U	0.29 U	0.29 U	0.29 U
FLUORENE	NS	50	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0. 28 U	0.28 U	0.28 U	0.28 U	0.28 U
HEXACHLORO-1,3-BUTADIENE	0.5	NG	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 ป
HEXACHLOROBENZENE	0.04	NG	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
HEXACHLOROCYCLOPENTADIENE	5	NG	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	· 2.5 U
HEXACHLOROETHANE	5	NG	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U

Location Sample Date Concentration in UG/L	Recommended Groundwater Cleanup Standard UG/L	Groundwater Cleanup	PG-C5-7 11/24/2000 UG/L	11/24/2000	PG-EW-6 11/24/2000 UG/L	PG-PA-MW-1D 11/29/2000 UG/L	PG-PA-MW-1 11/28/2000 UG/L	PG-PA-MW-5 11/24/2000 UG/L		PG-PA-MW-6D 11/30/2000 UG/L	PG-RS-1 11/24/2000 UG/L	PG-RS-2 11/24/2000 UG/L	PG-TMW-02 12/2/2000 UG/L
INDENO[1,2,3-CD]PYRENE	NS	0.002	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
ISOPHORONE	NS	50	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
M-DICHLOROBENZENE	3	NG	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
N-NITROSO-DI-N-PROPYLAMINE	NS	NG	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 ป	0.22 U	0.22 U	0.22 U
N-NITROSODIMETHYLAMINE	NS	NG	0.28 U	0.28 U	0.28 U	0.28 ป	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
N-NITROSODIPHENYLAMINE	NS	50	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
NAPHTHALENE	NS	10	2.0	0.36 U	0.36 U	0.36 U	1.0	0.36 U	0.36 U	0.36 U	9.6	0.36 U	0.36 U
NITROBENZENE	0.4	NG	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 U	0.23 บ	0.23 U	0.23 U	0.23 U
PENTACHLOROPHENOL	1(Total Phenols)	NG	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
PHENANTHRENE	NS	50	0.27 Ų	1.6	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
PHENOL	1(Total Phenois)	NG	1.8	1.2 U	29	1.2 U	33	1.2 U	2.1	1.2 U	16	1.2 U	1.2 U
PYRENE	NS	50	0.27 U	1.4	0.27 U	0.27 ป	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U

U Undetectable Levels

NS No Standard

NG No Guidance

Table Groundwater A Lal Results Pesticides and PCB's Site 1 HHMT-Port Ivory Facility

Location	Recommended	Recommended	PG-CS-7	PG-EW-3	PG-EW-6	PG-PA-MW-1D	PG.PA.MW.4	PG-PA-MW-5	DC CA MAN	lao a4			· · · · · · · · · · · · · · · · · · ·
Sample Date	Groundwater	Groundwater	1	11/24/2000	i .	11/29/2000	11/28/2000	11/24/2000	PG-PA-MW-6	PG-PA-MW-6D	PG-RS-1	PG-RS-2	PG-TMW-02
Concentration in UG/L	Cleanup Standard	Cleanup Guidance	ł	UG/L	UG/L	UG/L	UG/L	UG/L	11/27/2000	11/30/2000	11/24/2000	11/24/2000	12/2/2000
	UG/L	UG/L		100.2	00/2	00,2	JOGAL	IUG/L	UG/L	UG/L	UG/L	UG/L	UG/L
4,4'-DDD	0.3	NG	0.02 U	0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.0011		
4,4'-DDE	0.2	NG	0.02 U	0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U		0.02 U	0.02 U	0.02 U
4,4'-DDT	0.2	NG	0.02 U	0.02 U	0.02 U		0.1 U	0.02 U		0.02 U	0.02 U	0.02 U	0.02 U
ALDRIN	NS	NG	0.02 U	0.02 U	0.02 U	 	0.1 U	0.02 U	0.02 U 0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ALPHA-BHC	NS	NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U		0.02 U	0.02 U	0.02 U	0.02 U
AROCLOR 1016	0.09**	NG		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.02 U	0.02 U	0.02 U	0.02 U
AROCLOR 1221	0.09**	NG		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
AROCLOR 1232	0.09**	NG			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	0.5 U	0.5 U
AROCLOR 1242	0.09**	NG		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
AROCLOR 1248	0.09**	NG		0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
AROCLOR 1254	0.09**	NG			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
AROCLOR 1260	0.09**	NG		0.5 U	0.5 U	0.5 U	 	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
BETA-BHC	0.04	NG		0.02 U	0.02 U	0.02 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U
CHLORDANE	0.05	NG			0.2 U	0.2 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DELTA-BHC	0.04	NG		0.02 U	0.02 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
DIELDRIN	0.004	NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDOSULFAN I	NS	NG		0.02 U	0.02 U	0.02 U 0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDOSULFAN II	NS	NG			0.02 U		0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDOSULFAN SULFATE	. NS	NG		0.02 U		0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDRIN	NS	NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDRIN ALDEHYDE	5	NG			0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
ENDRIN KETONE	5	NG			0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
GAMMA-BHC (LINDANE)	0.05	NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
HEPTACHLOR	0.04	NG	 	0.02 U	0,02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
HEPTACHLOR EPOXIDE	0.03	NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
METHOXYCHLOR	35	NG			0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
TOXAPHENE	0.06	NG NG		0.02 U	0.02 U	0.02 U	0.1 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
U Undetectable Levels	0.00	I NG	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
O Onderectable Fevels													<u> </u>

NS No Standard

NG No Guidance

** Total PCBs

Location	Recommended	Recommended	PG-CS-7	PG-EW-3	PG-EW-6	PG-PA-MW-1D	DC DA MINA	DO DA 1884 6			, .	·	
Sample Date	Groundwater	Groundwater	11/24/2000	11/24/2000	11/24/2000	PG-PA-MW-1D	1	I	· ·	PG-PA-MW-6D	PG-RS-1	PG-RS-2	PG-TMW-02
Concentration in UG/L	Cleanup	Cleanup	UG/L	UG/L	1	11/29/2000	11/28/2000	11/24/2000	11/27/2000	11/30/2000	11/24/2000	11/24/2000	12/2/2000
	Standard UG/L	Guidance UG/L	log/L	UGIL	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM (FUME OR DUST)	NS	NG	180	170	130	5011							
ANTIMONY	3	NG	3,3 U	3.3 U	 	58 U	610	 	430	260	260	2200	58 U
ARSENIC	25	NG		A Committee of the Comm	3.3 U	3.3 U	3,3 U	200 C 200 C 200 C 200 C	3.3 U	3.3 U	3.3 U	3.3 U	3.3 U
BARIUM	1000	NG	23	160	3.6 U	13	3.6 U		83	3.6 U	17	3.7	54
BERYLLIUM	NS	3		2.5 U	160	62	75		23 U	68	23 U	110	23 U
CADMIUM	5	NG	1.4 U	1.4 U	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM METAL	NS	NG	14000		1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	16	1.4 U
CHROMIUM	50	NG	16 U	39000	460000	36000	230000	96000	1900	180000	22000	22000	140000
COBALT	NS	NG NG		16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U
COPPER	200	NG NG	4.6 U	4.6 U	4.6 U	4.6 U	4.6 U	4.6 U	4. 6 U	4.6 U	4.6 U	4.6 U	4.6 U
IRON	300***		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
LEAD		NG	310.		88 U	5100***	88 U	3200***	120	15000***	88 U	12000***	690***
MAGNESIUM	25	NG	3.4 U		4.6	3.4 U	3.4 U	6.2	3.4 U	3.4 U	3.4 U	9.9	3.4 U
MANGANESE	NS	35000	13000	99000	400	79000	260 U	14000	5500	430000	13000	10000	58000
NICKEL	300***	NG	12 U	28***	12 U .	90***	12 U	290***	12 U	1200***	12 U	120***	140***
POTASSIUM	100	NG	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
	NS	NG	19000	46000	20000	39000	40000	6100	100000	81000	25000	77000	17000
SELENIUM	10	NG	20 U		20 U	20 U	20 U	20 U	20 U	 	20 U	20 U	20 U
SILVER	50		5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U		5.2 U	5.2 U	5.2 U
SODIUM	20000	NG	230000	220000	770000	840000	210000	55000	900000	4000000	150000	330000	400000
THALLIUM	NS	0,5	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U		3.1 U	25, 25, 27, 28, 40, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27		3.1 U	
VANADIUM	NS	NG	4.8	6.8	4.3 U	12	4.3 U		50		5.9	 	3.1 U
ZINC	NS	2000	20 U	26	20 U	20 U	20 U		20 U		 	21	10
MERCURY	0.7	NG	0.21 U	0.21 U	0.21 U				0.21 U	 	20 U	70	25
U Undetectable Levels					•			15.510	0.210	0.21 U	0.21 U	0.21 U	0.21 U

NS No Standard

NG No Guidance

*** Total for Iron and Maganese is > 500

Table Groundwater Actical Results TPHC, Oil and Grease, pH, Cyanide and Total Phenolics Site 1 HHMT-Port Ivory Facility

Location		Recommended	Dogommandod	PG-CS-7	PG-EW-3	PG-EW-6	PG-PA-MW-1D	PG-PA-MW-1	PG-PA-MW-5
Sample Date		Groundwater Cleanup Standard	Groundwater Cleanup Guidance	11/24/2000	11/24/2000	11/24/2000	11/28/2000	11/29/2000	11/24/2000
PETROLEUM HYDROCARBONS	MG/L	NS	NG	1.0 U	1.2	1.1 U	2.4	1.0 U	1.0 U
OIL & GREASE	ug/L	15,000MAX	NG	22	22	15	0.66	0.15	1.0 U
CYANIDE	MG/L	0.2	NG	0.01 U	0.01 U	0.01 U	0.01 U	0.016	0.01 U
•pH ·	pH units	NS	NG	9.16	8.23	12.82	12.35	7.07	6.76
TOTAL PHENOLICS	MG/L	0.001	NG	0.05 U	0.05 U	0.05 U	0.22	0.05 U	0.05 U

U Undetectable Levels

NS No Standard

NG No Guidance

Note: pH listed is the pH recorded in the field

Groundwater viical Results TPHC, Oil and Grease, pH, Cyanide and Total Phenolics Site 1 HHMT-Port Ivory Facility

Location Sample Date		Recommended Groundwater Cleanup Standard	Recommended Groundwater Cleanup Guidance	PG-PA-MW-6 11/27/2000	PG-PA-MW-6D 11/30/2000	PG-RS-1 11/24/2000	PG-RS-2 11/24/2000	PG-TMW-02 12/2/2000
PETROLEUM HYDROCARBONS	MG/L	NS	NG	1.0 U	1.0 U	1.0 U	1.0 U	10
OIL & GREASE	ug/L	15,000MAX	NG	13	21	21	14	7.8
CYANIDE	MG/L	0.2	NG	0.013	0.01 U	0.01 U	0.01 U	0.01 U
*pH	pH units	NS	NG	11.36	7.08	11.24	8.54	. 7.1
TOTAL PHENOLICS	MG/L	0.001	NG	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U

U Undetectable Levels

NS No Standard

NG No Guidance

Note: pH listed is the pH recorded in the field

Location	Sediment Criteria		SED-1	 	SED-3	SED-4	SED-5
Sample Date	Lowest Effect Level	Severe Effect Level	11/21/2000	11/21/2000	11/21/2000	11/21/2000	11/21/2000
Concentration	ug/g	ug/g	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
ALUMINUM (FUME OR DUST)	NS	NS	4100	3400	1900	5800	5700
ANTIMONY	2.0	25.0	3.2 U	2.7 ປ	2.3 U	5 U	5.2 U
ARSENIC	6.0	33.0	16	19	14	11	12
BARTUM	NS	NS	72	70	32	96	98
BERYLLIUM	NS	NS	0.89 U	0.74 U	0.63 U	1.4 U	1.4 U
CADMIUM	0.6	9.0	0.67 U	0.64	0.53	ıυ	1.1 U
CALCIUM METAL	NS	NS	2700	3500	2700	4600	5200
CHROMIUM	26.0	110.0	52	49	30	78	82
COBALT	NS	NS	4.9	5.8	3.4	6	5.9 U
COPPER	NS	NS	130	160	61	180	190
IRON (%)	2% (20,000)	4% (40,000)	20000	23000	18000	23000	25000
LEAD	31.0	110.0	160	380	310 ()	200	190"
MAGNESIUM	NS	NS	5100	6400	2700	5200	5900
MANGANESE	460.0	1100.0	130	120	100	160	180
MERCURY	0.2	1.3	1.1	.92	.29	2.6	2.6
NICKEL	16.0	50.0	48	90	3.3	53	45
POTASSIUM	NS	NS	1200	740 U	630 U	1400 U	1900
SELENIUM	NS	NS	5.6 U	4.6 U	4 U	8.6.U	8.9 U
SILVER	1.0	2.2	1.8	43	0.79 U	2.5	2.5
SODIUM	NS	NS	8000	2200	1300	5300	13000
THALLIUM	NS	NS	2.7 U	2.2 U	1.9 U	4.1 U	4.3 U
VANADIUM	NS	NS	24	27	18	43	36 U
ZINC	120.0	270.0	610	600	510	650	560

No Standard Undetectable Levels Above LEL Above SEL

Table 8
Surface Water Analytical Results
Metals and pH
Site 1 HHMT-Port Ivory Facility

Location	Recommended	Recommended	SW-1	SW-2 .	SW-3
Date	Surface Water	Surface Water	11/21/2000	11/21/2000	11/21/2000
Concentration	Cleanup Standard ug/l	Cleanup Guidance ug/l	ug/l	ug/l	ug/l
ALUMINUM	NS	NG	1400	1700	25000
ANTIMONY	3	NG	3.3U	3.3U	3.3U
ARSENIC	50	NG			57
BARIÚM	1000	NG	71		440
BERYLLIUM	NS	3	2.5U		4.1
CADMIUM	5	NG	1.4U	1.4U	9.8
CALCIUM	NS	, NG	150000	150000	160000
CHROMIUM	50	NG	16U	16U	220
COBALT	NS	NG	4.6U	4.6U	16
COPPER	200	NG	43	51	790
IRON	300	NG	2900		63000
LEAD	50	NG	21	29	650
MAGNESIUM	35000	NG	360000	380,000	320000
MANGANESE	300	NG	190	180	690
NICKEL	100	NG	15U	15U	140
POTASSIUM	NS	NG	130000	140000	110000
SELENIUM	10	NG	20U	20U	20U.
SILVER	50	NG	5.2U	5.2U	5.2U
SODIUM	NS	NG	3500000	3600000	2800000
THALLIUM	NS	0.5	3.1U	3.1U	3.1U
VANADIUM	NS	NG	4.3U	4.3U	100
ZINC	NS	2000	130	130	2500
pH (150.1)	NS	NS	8.1	8.2	7.5
MERCURY (245.1)	0.7	NG	0.93	0.54	0.55

NG No Guidance

NS No Standard

U Undetectable Levels

5.0 FSRI METHODS AND RESULTS

Between June 2006 and February 2007, the Port Authority conducted the FSRI in accordance with the January 26, 2006 FSRI Work Plan-AOC-UST2 (Work Plan). The NYSDEC approved the Work Plan in a letter dated April 20, 2006 (see Appendix A). The goal of the FSRI was to determine whether remediation was warranted at two areas in AOC-UST2. The objectives of the FSRI were as follows: 1) to confirm the presence or absence of mobile LNAPL at UST2-4; 2) to delineate the horizontal extent of the mobile LNAPL (if present); 3) to confirm the presence or absence of elevated concentrations of PAH compounds at location TWP-1A; and, 4) to delineate the vertical and horizontal extents of the impacted soil (if present) in the vicinity of TWP-1A.

The Scope of Work for, and methods used during, the FSRI are summarized in Section 5.1. Sections 5.2 and 5.3 summarize the FSRI field observations and analytical results, respectively. Section 5.4 discusses the FSRI results relative to the objectives. Section 5.5 presents the FSRI conclusions, and offers recommendations.

5.1 FSRI-Scope of Work

As noted above, the Scope of Work for the FSRI included the investigation of mobile LNAPL at and in the vicinity of location UST2-4 and of elevated concentrations of SVOC compounds in soil at location TWP-1A. The FSRI deviated from the Work Plan in the following respects. Delineation of mobile LNAPL in the vicinity of UST2-4 was accomplished based on field observations at four step-out test pits rather than by expanding the original excavation at UST2-4, as specified in the Work Plan. In addition, the test pits used for delineation remained open for one day rather than one week, as specified in the Work Plan, because the Port Authority could not delay moving the soil surcharge pile. The one-day observation period increases the uncertainty in the delineation of mobile LNAPL in the vicinity of UST2-4. However, the four step-out test pits were used for delineation purposes only. The observation period during the remedial action will be as specified in the RAWP, and the horizontal extent of soil excavated during the remedial action will be based on field observations made during the remedial action rather than FSRI delineation efforts.

The proposed soil samples in the vicinity of TWP-1A were collected from test pits rather than from soil borings, as proposed. In addition, 13 soil samples were collected from these test pits; only 11 soil samples were proposed in the Work Plan. Neither of these deviations is believed to have a negative effect on the investigation of potential soil impacts in the vicinity of TWP-1A.

The Scope of Work for each component of the FSRI is described below in Sections 5.1.1 and 5.1.2.

5.1.1 Scope of Work - Investigation of Potential Mobile LNAPL at UST2-4

Based on the elevated concentration of TPHC detected in soil at location UST2-4 during the SRI, the Port Authority investigated this area for the presence and extent of mobile LNAPL during the FSRI. The investigation was completed between June 6 and 12, 2006. The Port Authority retained Railroad Construction Company Inc. (RCC) to conduct soil excavation and groundwater pumping activities at UST2-4. HMM personnel oversaw the fieldwork on a continual basis.

HMM personnel re-established SRI location UST2-4 in the field using a hand-held global positioning system (GPS) with sub-meter accuracy. The Port Authority arranged for a utility markout and compared the proposed location to HHMT-Port Ivory Facility utility maps. Once the location was cleared, RCC excavated a 10-foot long by 10-foot wide by 14-foot deep test pit at location UST2-4 using a track-mounted excavator. LNAPL-impacted soil was segregated based on field observations and was stockpiled pending off-site disposal at an appropriate recycling/disposal facility. The stockpile of LNAPL-impacted soil was placed on plastic that was elevated approximately one foot above the surrounding grade and was covered with plastic. Soil that appeared to be clean based on field screening results and field observations was stockpiled pending completion of the excavation, when this material was used for backfilling purposes.

Once the excavation was completed, RCC used a centrifugal pump and hose to temporarily lower the static water level in the test pit. A sump was established by excavating the test pit slightly deeper at one end and placing crushed stone around the suction hose intake screen. Groundwater pumped from the excavation was returned to a nearby test pit that was also located within AOC-UST2. During the dewatering effort, LNAPL was observed to flow from the western and southern sidewalls of the test pit. Therefore, the presence of mobile LNAPL was confirmed at location UST2-4, and the focus of the FSRI was changed from confirming the presence or absence of mobile LNAPL to determining its extent.

In an attempt to delineate the extent of the mobile LNAPL, RCC expanded the test pit by five feet to the west and the south. After the water level in the expanded test pit was temporarily lowered, LNAPL was again observed to flow into the test pit through the west and south sidewalls. It became apparent that the extent of the mobile LNAPL was significantly greater than the extent of the test pit. Therefore, rather

Hatch Mott MacDonald Comprehensive Remedial Investigation Report

than continuing to enlarge the test pit excavated at UST2-4, the Port Authority excavated five small stepout test pits in a second attempt to delineate the area containing mobile (i.e., free) LNAPL to the north,
east, south and west of UST2-4. As shown on Figure 2, test pit UST2-4.1E was excavated approximately
15 feet east of UST2-4, test pit UST2-4.2N was excavated approximately 25 feet north of UST2-4, test pit
UST2-4.3W was excavated approximately15 feet west of UST2-4, test pit UST2-4.4S was excavated
approximately 25 feet south of UST2-4, and test pit UST2-4.5S was excavated approximately 105 feet
south of UST2-4. The method and equipment used to excavate each of these additional test pits were the
same as that for the initial test pit. In general, the limits of the step-out test pits were approximately 10
feet wide by 10 feet long with depths ranging from 10 to 15 feet bgs. However, test pit UST2-4.1E
repeatedly collapsed at a depth of approximately four feet bgs. Once the test pits were excavated, the
water level was temporarily lowered. While the water level was lowered, the test pits were closely
inspected for the presence of mobile LNAPL. The test pits were also inspected approximately 24 hours
later to confirm the presence or absence of LNAPL.

Subsequent to recording the field observations, the Port Authority prepared to backfill the excavations. The Port Authority pumped the LNAPL out of all test pits using a vactor (vac) truck. The LNAPL was transported off site to Lorco Petroleum Services (LPS) for disposal. A total of 2,040 gallons of LNAPL/water mixture was removed and disposed of by LPS. The LPS disposal receipt is included in Appendix B.

5.1.2 Scope of Work – Investigation of Potential Soil Impacts at TWP-1A

The Port Authority investigated soil quality at SRI location TWP-1A to confirm the presence or absence of soil impacted by total SVOC compounds and, if impacts were present, to complete the horizontal and vertical delineation of the impacts. On February 1, 2007, AWT Environmental Services, Inc. (AWT) provided a track-mounted backhoe to excavate test pits in the vicinity of TWP-1A. All soil samples were accessed from the test pits. The excavator was able to access the proposed sampling locations, while a drill rig would not have been able to maneuver around the surcharge pile (a soil pile that is being used to surcharge Site 1 in preparation for redevelopment) and other irregularities in the land surface. HMM provided full-time oversight during the fieldwork summarized below.

HMM personnel re-established SRI location TWP-1A in the field using a hand-held GPS with sub-meter accuracy. Based on this location, HMM personnel marked the locations of five test pits, a test pit at TWP-1A and test pits approximately 10 feet to the north, south, east, and west of TWP-1A. The Port

Authority arranged for a utility markout and compared the proposed test pit locations to HHMT-Port Ivory Facility utility maps. Once the locations were cleared, AWT excavated each test pit. Excavated soil was temporarily stockpiled for use as backfill.

The test pits were no larger than approximately eight feet wide by eight feet long by 12 feet deep. Soil samples were collected at the test pit coincident with location TWP-1A at the following depths: 4-4.5 feet bgs, 8-8.5 bgs, and 10.5-11 feet bgs. For the purposes of this report, the soil sample collected from the 4-4.5 foot bgs depth interval at this test pit will be designated the "confirmation sample." In addition, two soil samples were collected from test pits TWP-1AN, TWP-1AE, and TWP-1AS from the 4-4.5 foot bgs and the 8.5-9 foot bgs depth intervals. Four soil samples were collected at location TWP-1AW. In addition to the depth intervals sampled at TWP-1AN, TWP-1AE, and TWP-1AS, samples were collected at TWP-1AW from the 6-6.5 and 10-10.5 foot bgs depth intervals. The additional samples were collected to better define the vertical extent of impacts, if necessary.

For health and safety purposes, the soil samples were collected from the excavator bucket so that personnel were not required to enter the excavation. The samples were transferred directly from the excavator bucket to the laboratory-prepared sampling jars using a dedicated or decontaminated stainless steel sampling scoop or trowel. Care was taken to ensure that the soil samples did not include cinders. Following the collection of the soil samples at each test pit, the test pit was immediately backfilled and excavation of the next test pit was initiated.

All samples were labeled, placed in a cooler containing ice, and transported to Hampton-Clarke Veritech (New York State Certification No. 11408) under Chain of Custody documentation for analysis of Target Compound List (TCL) SVOC+20. Only the confirmation soil sample was analyzed. The delineation samples were not analyzed because the initial sample contained total SVOCs (including SVOC tentatively identified compounds, or TICs) at a concentration of approximately 36 mg/kg, well below the RSCO for total SVOCs and similar to those concentrations attributable to historic fill.

5.2 FSRI Field Observations

Sections 5.2.1 and 5.2.2 summarize the field observations at locations UST2-4 and TWP-1A, respectively. The field observations include the color, texture, composition, and moisture content of the fill and underlying native soil; the depth to groundwater; and, the presence or absence of mobile (i.e., free) LNAPL. The extent of mobile LNAPL, where delineated, is shown on Figure 2.

5.2.1 Field Observations at UST2-4

Unconsolidated materials encountered during the investigation of UST2-4 generally consisted of fill material, including variable amounts of sand and silt, cinders, and slag. LNAPL-impacted soil was encountered at all test pits excavated in this area. Indications of LNAPL impacts included the presence of LNAPL itself, sheen on soil and groundwater, petroleum odors, and stained soil. Where encountered, the thickness of LNAPL-impacted soil varied from 0.5 feet (at the north sidewall of test pit UST2-4.5S) to 2 feet (at the south sidewall of test pit UST2-4). In general, LNAPL-impacted soil was encountered at depths within two feet above and one foot below the water table.

) . M Groundwater was encountered in the excavations between seven and 12 feet bgs. As the land surface was the reference point for these measurements, the majority of the variability in the static water level is due to the uneven topography in the vicinity of UST2-4. The remaining variability in the static water level, if any, is attributable to variability in the hydraulic conductivity of the fill. The depth to water in a test pit will reach equilibrium at the water table more rapidly when the soil surrounding the test pits is more permeable.

Mobile LNAPL was observed to flow into the southern and western sidewalls of test pit UST2-4. LNAPL was not observed to flow into test pits UST2-4.2N and UST2-4.3W during the FSRI. LNAPL was observed to flow into UST2-4.4S but was not observed to re-accumulate following its removal in test pit UST2-4.5S. Therefore, the LNAPL is believed to be mobile at UST2-4.4S, but the mobile LNAPL does not extend as far south as UST2-4.5S LNAPL and groundwater were not encountered at test pit UST2-4.1E because the test pit could not be completed below 4 feet bgs due to repeated sidewall collapse. Test pit UST2-4.1E was unable to confirm the absence or presence of LNAPL east of UST2-4.

5.2.2 Field Observations at TWP-1A

As stated above, one test pit was excavated at TWP-1A and four step out test pits were excavated in the vicinity of TWP-1A during the FSRI. The maximum test pit dimensions were eight feet long by eight feet wide by 12 feet deep. Unconsolidated materials encountered at the test pit excavated at TWP-1A and the step-out test pits were generally consistent with those observed at location TWP-1A during the SRI. Fill material consisted of variable amounts of sand and silt, cinders, slag, and by-product fill. Cinders were encountered in the fill; however, the thickness of the layer containing cinders was approximately four feet, significantly thicker than the 0.25-foot layer of cinders encountered at TWP-1A. A concrete slab and asphalt were encountered at approximately 3.5 feet bgs. Wood debris was encountered between

nine and 10 feet bgs at TWP-1A, TWP-1AN, and TWP-1AW. Native soil was not encountered at any test pit location.

Where encountered, the depth to groundwater at the test pits varied only slightly from approximately 9 to 9.5 feet bgs. Groundwater was not encountered at test pit TWP-1AE, despite that test pit being excavated to 11 feet bgs (i.e., below the static water level in the other test pits).

LNAPL-impacted soil was not encountered at any of the five test pits. As measured using a photoionization detector (PID), the concentration of volatile organic vapors in the soil was the same as background (i.e., in ambient air). However, sheen was observed on the groundwater surface at TWP-1AN, TWP-1A, and TWP-1AW. Given the lack of LNAPL-impacted soil at these locations and the presence of wood debris at the approximate water table depth, the presence of this sheen is likely attributable to treated wood.

5.3 FSRI Analytical Results

The FSRI at UST2-4 was conducted to confirm the presence and, if present, the extent of mobile LNAPL. As the presence and extent of mobile LNAPL was confirmed through field observations, no soil samples were collected in the vicinity of location UST2-4.

The Port Authority investigated soil quality at SRI location TWP-1A during the FSRI to confirm the presence or absence of soil impacted by total SVOC compounds and, if impacts were present, to complete the horizontal and vertical delineation of the impacts. The Port Authority collected 13 soil samples during the investigation of potential soil impacts at location TWP-1A. Three soil samples were collected at the test pit excavated at TWP-1A and ten soil samples were collected from the four step-out test pits. However, except for the confirmation sample, the remaining soil samples, including those collected from step-out test pits, were to be analyzed on a contingent basis, depending on the analytical results of the confirmation sample. The confirmation sample was analyzed for TCL SVOC+20. The concentration of total SVOCs (including SVOC TICs) in the confirmation sample was approximately 36 mg/kg, well below the RSCO for total SVOCs (500 mg/kg) and similar to the concentrations detected in historic fill throughout the HHMT-Port Ivory Facility. As the concentration of total SVOCs at TWP-1A was not elevated, neither horizontal nor vertical delineation was necessary. Therefore, neither the deeper samples collected at TWP-1A nor the soil samples collected from the step-out borings were analyzed. Analytical

results are summarized in Table 2 and on Figure 2. The laboratory analytical deliverable is provided in Appendix C.

5.4 Discussion of FSRI Results

The goal of the FSRI was to determine whether remediation was warranted at two areas in AOC-UST2. The objectives of the FSRI were as follows: 1) to confirm the presence or absence of mobile LNAPL at UST2-4; 2) to delineate the horizontal extent of the mobile LNAPL (if present); 3) to confirm the presence or absence of elevated concentrations of PAH compounds at location TWP-1A; and, 4) to delineate the vertical and horizontal extents of the impacted soil (if present).

As described below, Objectives 1, 2, and 3 were met, and Objective 4 was not applicable.

5.4.1 Objective 1

The presence of mobile LNAPL was confirmed by field observations at location UST2-4.

5.4.2 Objective 2

As indicated in the Site 1 RAWP, the proposed remedial action will address mobile LNAPL and soil containing mobile LNAPL at the start of the remedial action. The presence of mobile LNAPL was confirmed at location UST2-4. The horizontal extent of the mobile LNAPL was delineated to the south, west, and north of location UST2-4 during the FSRI. The horizontal extent of the mobile LNAPL could not be determined to the east of location UST2-4 because the sidewall at FSRI test pit UST2-4.1E repeatedly collapsed. However, based on field observations, LNAPL-impacted soil was delineated to the east by UST 2-5A and TWP-1A during the SRI and at TWP-1AW during the FSRI.

As shown on Figure 2, the footprint for the maximum extent of mobile LNAPL is approximately 15,950 square feet, as defined by a line connecting UST2-4.5S, the eastern edge of where LNAPL was encountered during the SRI, UST2-4.3W, UST2-4.2N, TWP-1AW, and UST2-5A. An oval passing through UST2-4.5S, UST2-4.3W, UST2-4.2N, and UST2-4.1E defines a smaller (minimum) potential extent (2,190 square feet) of mobile LNAPL. Therefore, the mobile LNAPL is within an area of between 2,190 square feet and 15,950 square feet. The actual extent of mobile LNAPL to be removed will be determined during implementation of the remedial action as specified in the Site 1 RAWP.

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS-SVOCS TWP-1A HHMT-PORT IVORY FACILITY (SITE 1)

Objectives (RSCOs) mg/Kg mg/Kg 3.4 7.9 NS 1.6 8.5 0.1 NS	Conc ND ND	2/1/2007 Soil mg/Kg	
mg/Kg \$ (SVOCs) 3.4 7.9 NS 1.6 8.5 0.1 NS	ND ND		
3.4 7.9 NS 1.6 8.5 0.1 NS	ND ND		
7.9 NS 1.6 8.5 0.1 NS	ND	Qual	MDL
NS 1.6 8.5 0.1 NS			0.38
1.6 8.5 0.1 NS	ND		0.38
8.5 0.1 NS	ND		0.38
0.1 NS	ND		0.38
NS	ND		0.38
	ND		0.38
	ND		0.38
0,4	ND		0.38
NS	ND		0.38
0.2	ND		0.95
NS	ND_]]	0.38
1	ND		0.38
NS	ND		0.38
0.8			0.38
36.4	ND		0.38
			0.38
0.43	ND		0.38
0.33	ND		0.95
0.33	ND		0.38
	ND		0.38
			0.38
0.33	ND		0.38
NS	ND		0.38
0.1	ND		0.38
50	0.097	J	0.38
			0.38
		J	0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
		JB	0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
		· IR	0.38
		- 30 -	0.38
			0.38
			0.38
			0.38
			0.38
			0.38
			0.38
		-	0.38
4.4	ND ND		0.38
13	0.064		0.38
10			0.38
	ND I		0.38
0.2 NS	ND ND		
0.2			0.38
0.2 NS	ND		0.38
0.2 NS NS	ND ND		
0.2 NS NS NS	ND ND ND		0.38
0.2 NS NS NS 1	ND ND ND		0.38 0.95 0.38
0.2 NS NS NS 1	ND ND ND ND 1.1		0.38 0.95
0.2 NS NS NS 1 1 50 0.03	ND ND ND ND 1.1 ND		0.38 0.95 0.38 0.38
	NS 0.8 0.8 36.4 0.1 0.43 0.33 0.33 0.33 0.33 0.33 0.33 0.33	NS ND 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.1 ND 0.43 ND 0.43 ND 0.33 ND 0.11 ND 0.11 ND 0.11 ND 0.067 0.097 0.1 ND 0.087 0.097 0.1 NS 0.097 0.1 NS 0.052 0.082 1.1 0.52 NS NS ND N	NS ND ND ND NS ND NS ND NS ND NS ND NS ND NS ND ND NS ND ND NS ND ND NS ND ND NS ND ND NS ND NS ND ND ND NS ND ND ND NS ND ND ND ND ND ND ND ND ND ND ND ND ND

21

5.4.3 Objective 3

Based on the analytical results, the concentration of total SVOCs in soil in the vicinity of location TWP-1A is similar to that in soil samples throughout Site 1. The elevated concentration of total SVOCs detected in soil at TWP-1A during the SRI is believed to be attributable to the inclusion of cinders in the soil sample. Therefore, soil in the vicinity of TWP-1A does not contain elevated (above background conditions at Site 1) concentrations of total SVOCs and does not constitute a hot spot.

5.4.4 Objective 4

The FSRI data indicated that the concentration of total SVOCs is not elevated in the vicinity of TWP-1A. Therefore, there is no impact to delineate and this objective is not applicable.

5.5 FSRI Conclusions and Recommendations

Based on the data generated during the FSRI, the following conclusions and recommendations are offered.

Mobile LNAPL in the Vicinity of UST2-4

- Conclusion: Mobile LNAPL is present in a maximum footprint of between approximately 2,190 and 15,950 square feet in the vicinity of UST2-4.
- Recommendation: The mobile LNAPL should be removed to the extent practical as specified in
 the Site 1 RAWP. The footprint for the removal area is currently estimated to be between 2,190
 and 15,590 square feet. The actual extent should include all soil at UST2-4 that contained mobile
 LNAPL, based on field observations, at the start of the remedial action.

Soil Impacts in the Vicinity of TWP-1A

- Conclusion: Soil in the vicinity of TWP-1A contains concentrations of SVOCs similar to those
 detected in historic fill throughout the HHMT-Port Ivory Facility.
- Recommendation: No additional remedial or investigative actions are warranted for soil in the vicinity of TWP-1A.

6.0 EXPOSURE ASSESSMENT

The Port Authority completed an exposure assessment to determine if the potential exists for human and ecological receptors to be exposed to known contaminants at the HHMT-Port Ivory Facility. The exposure assessment is documented below.

6.1 Nature of Contaminants at Site 1

The following environmental media have been investigated at Site 1: soil, groundwater, surface water in Bridge Creek, and sediments along the eastern bank/bed of Bridge Creek. The western bank of Bridge Creek is located to the west of the HHMT-Port Ivory Facility. Indoor air quality has not been investigated because no buildings exist or are proposed subsequent to the redevelopment of Site 1. Table 3 documents metals and classes of organic compounds that have been identified at concentrations greater than applicable NYSDEC Standards, Criteria, and Guidance (SCGs) in environmental media investigated at Site 1.

6.1.1 Soil

The analytical results for soil indicate that regulated metals and organic compounds in the following contaminant classes are present in soils at Site 1 at concentrations greater than their respective RSCOs: the VOCs dichloromethane, m&p-xylenes, methylbenzene and o-xylene, various SVOCs, various metals, three pesticides, and total polychlorinated biphenyls (PCBs).

6.1.2 Groundwater

For this project, the groundwater analytical results have been compared to current AWQSGVs for Class GA groundwater. Given the location of the Site and the high potential for water to be saline, the published AWQSGVs are not appropriate for use at Site 1. However, at this time, these represent the only guidance available for ambient groundwater. Please note, reference to these standards in this report does not represent any agreement or concurrence that the same are appropriate for use at Site 1 or the HHMT-Port Ivory Facility. The analytical results for groundwater indicate that the following metals and organic compounds are present in groundwater at Site 1 at concentrations greater than their respective AWQSGVs: the VOCs ethylbenzene and m&p-xylenes; the SVOCs phenol/total phenolics, benzo(a)anthracene, chrysene, and 1,2-diphenylhydrazine; and, the metals antimony, arsenic, beryllium, cadmium, iron, magnesium, manganese, nickel, silver, sodium, thallium, mercury, and sodium.

Table 3

Metals and Compounds Detected at Concentrations ove NYSDEC Standards, Criteria, and Guidance (SCGs) (Howland Hook Marine Terminal-Port Ivory Facility-Site 1

40 Western Avenue Staten Island, New York

SOIL				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
DICHLOROMETHANE	4-CHLORO-3-METHYLPHENOL	DIELDRIN	ARSENIC	PETROLEUM HYDROCARBONS
M&P-XYLENES	4-NITROPHENOL	ENDRIN	BARIUM	(NYSDEC has not established a RSCO
METHYLBENZENE	BENZO[A]ANTHRACENE	HEPTACHLOR EPOXIDE	BERYLLIUM	for TPH; however, TPH concentrations
O-XYLENE	BENZOJAJPYRENE	TOTAL PCBs	CADMIUM	were above 500 mg/kg, the total SVOCs
	BENZO[B]FLOURANTHENE		CALCIUM METAL	allowed by NYSDEC.)
	DIBENZO[A,H]ANTHRACENE		CHROMIUM	Note:RSCO=Recommended soil
	PHENOL		COBALT	cleanup objective
	CHRYSENE		COPPER	
	ANTHRACENE		IRON	
	BENZO[K]FLOURANTHENE		LEAD	
	DIBENZOFURAN		MAGNESIUM	
	FLUORANTHENE		MERCURY	
	INDENO[1,2,3-CD]PYRENE		NICKEL	
	PHENANTHRENE		POTASSIUM	
	PYRENE		SELENIUM	
			SODIUM	
			ZINC	
GROUNDWATER				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
ETHYLBENZENE	1,2-BENZPHENANTHRACENE	NONE	ANTIMONY	TOTAL PHENOLS
M&P-XYLENES	BENZO(A)ANTHRACENE		ARSENIC	
	BIS(2-ETHYLHEXYL)PHTHALATE		BERYLLIUM	
	PHENOL		CADMIUM	
	NAPHTHALENE		IRON	
			MAGNESIUM	
			MANGANESE	
			NICKEL	
			SILVER	
			SODIUM	
			THALLIUM	
			MERCURY	
			SODIUM	
SEDIMENT				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
N/A	N/A	N/A	ARSENIC	N/A
			CADMIUM	
			CHROMIUM	
			IRON (%)	
			LEAD	
			MERCURY	

Table 3

Metals and Compounds Detected at Concentrations ve NYSDEC Standards, Criteria, and Guidance (SCGs) Howland Hook Marine Terminal-Port Ivory Facility-Site 1

40 Western Avenue Staten Island, New York

			NICKEL	
			SILVER	
			ZINC	
SURFACE WATER				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
N/A	N/A	N/A	ARSENIC	N/A
			BERYLLIUM	
			CADMIUM	
			CHROMIUM	
			COPPER	
			IRON	
			LEAD	
			MAGNESIUM	
			MANGANESE	
			NICKEL	
			ZINC	
			MERCURY (245.1)	
				Property Control of the Control of t
Notes:				
VOCs= Volatile organic compound				
SVOCs= Semi-volatile organic com	npounds			
Pest= Pesticides				
PCBs= Poly chlorinated biphenyls				
TPHC= Total Petroleum Hydrocarb	ons			·
O&G= Oil and Grease				
CN= Cyanide				
Tot Ph= Total Phenois				
N/A= Not analyzed				
This list of SCGs is required by the	NYSDEC Draft DER-10 Technical G	Suidance for Site Investigation	and Remediation , date	ed 2002.
	rganic compounds by medium tested			·
	alyzed from the following media: soil,	groundwater, sediment and s	surface water.	
3: None= None detected above SC	Gs where applicable			

6.1.3 Surface Water

Surface water samples collected from Bridge Creek contained Target Analyte List (TAL) Metals above the NYSDEC Recommended Surface Water Cleanup Standards (RSWCS).

Lead and magnesium were detected at concentrations greater than their respective RSWCS in the three surface water samples collected during the SI. Mercury was detected at a concentration greater than its RSWCS in only the upstream surface water sample. Arsenic, cadmium, chromium, copper, iron, manganese, and nickel were detected at concentrations greater than their respective RSWCS and beryllium and zinc at concentrations greater than their respective Recommended Surface Water Cleanup Guidance Values (no RSWCS is available these two metals) only in the downstream surface water sample. The only metals detected at concentrations greater than their respective RSWCS or Guidance Values in any RI surface water sample were iron, magnesium, silver, and sodium.

As Bridge Creek is tidally influenced and groundwater flows from the Arthur Kill into and up Bridge Creek, it is likely that dissolved metals in the impacted and saline Arthur Kill have impacted Bridge Creek. Based on analytical results for surface water samples collected from the Arthur Kill adjacent to the northernmost portion of the HHMT-Port Ivory Facility as required for a closed landfill at the facility, it appears that the elevated concentrations of TAL Metals in the surface water samples collected from Bridge Creek are attributable to the concentrations of those dissolved cations in the Arthur Kill. The concentrations of iron, magnesium, and sodium (323,000 615,000, and 7,790,000 mg/L, respectively) detected in the most recent surface water samples collected from the Arthur Kill adjacent to the Facility are comparable to the analytical results for the SI and RI surface water samples collected from Bridge Creek.

6.1.4 Sediment

Sediment samples collected from Bridge Creek contained one or more of the following metals at concentrations greater than their respective NYSDEC Lower Effects Level (LEL) but below the Severe Effects Level (SEL): arsenic, cadmium, chromium, and mercury. Only two metals, lead and zinc, were detected at concentrations greater than their NYSDEC SELs at all sediment sampling locations. Iron, mercury, nickel, and silver were detected at concentrations greater than their respective NYSDEC SELs in at least one of the sediment samples collected during the SI. The SI sediment sampling analytical results do not exhibit a pattern of increasing or decreasing concentration in a downstream direction in Bridge Creek for any metal analyzed. Potential sources for the impacted sediments include onsite sources (e.g., historic fill), upstream off-site sources (e.g., the area upstream of Site 1 where the NYSDEC is

performing a wetlands restoration effort) and stormwater runoff and/or discharge from neighboring properties or public roadways. The NYSDEC has detected sediment impacted by pesticides and metals at several locations along Bridge Creek, upgradient of Site 1. These media can migrate downstream during low tide and upstream during high tide. The contaminants would likely be dissolved/suspended in surface water and deposited in sediment.

6.2 Potential Receptors

Two types of potential receptors have been identified at and adjacent to Site 1: human and ecological/environmental receptors. There are no residential properties adjacent to Site 1; in fact, except for one residential property located along Richmond Terrace to the north of Site 3 and located approximately 650 feet northeast of Site 1, no human populations are situated in the immediate vicinity of the HHMT-Port Ivory Facility. Therefore, occupants of the residential property are considered the only potential off-site human receptors in the vicinity of the HHMT- Port Ivory Facility.

Persons present at the site are limited to Port Authority personnel, tenants, or contractors retained by the Port Authority. The Port Authority has implemented health and safety measures to minimize contact with contaminants by all persons currently performing tasks at the facility. However, although the health and safety measures lessen the likelihood of exposure by on-site personnel, the potential for exposure cannot be completely eliminated. Therefore, personnel at the Facility are considered to be potential receptors.

The only ecological/environmental receptor adjacent to Site 1 is Bridge Creek. This surface water body is saline and tidally influenced by the Arthur Kill; the NYSDEC has classified the section of the Arthur Kill adjacent to the HHMT-Port Ivory Facility as an SD surface water body. The SD classification indicates that the stream cannot meet primary or secondary water quality criteria due to man-made/natural conditions. During low tide, surface water in Bridge Creek flows towards and discharges into the Arthur Kill, but during high tide, the direction of surface water flow is from the Arthur Kill and up Bridge Creek. No wetlands, marsh areas, or other potential ecosystems are located immediately adjacent to Site 1. Although metals and compounds could potentially be transported from Bridge Creek to the Arthur Kill during low tide via surface water flow or sediment erosion, these substances would first impact Bridge Creek. Therefore, Bridge Creek is considered to be the only ecological/environmental receptor.

6.3 Migration Pathways

The section identifies potential migration pathways for metals and organic compounds from impacted media at the site to potential receptors. Migration pathways are considered under both pre-redevelopment conditions and post-redevelopment conditions in order to demonstrate that the redevelopment will have a positive impact on the environment. Redevelopment, which will be completed for economic purposes, will improve environmental conditions at the site through the construction of an environmental cap. The cap will reduce the mobility of contaminants to potential receptors. In each of the subsections below, the identification and discussion of the potential migration pathways is organized according to medium and contaminant class.

6.3.1 Migration of Metals and Organic Compounds - Pre-Redevelopment

No likely migration pathways from Site 1 to the residents of the property along Richmond Terrace have been identified. The distance between the northeastern boundary of Site 1 and the residential property is approximately 650 feet, making significant movement of surface soil to the property via wind erosion unlikely. Organic vapors that may be generated at Site 1 are likely to disperse prior to reaching the residential property. Groundwater at Site 1 does not flow towards the residential property. The HHMT-Port Ivory facility and the surrounding area are serviced by connections to the potable water and sanitary system of New York City. Neither groundwater nor surface water is utilized for potable purposes at or in the vicinity of the site. No septic systems and/or potable water wells are reported to be located or have been located on or near the site. Storm water generated on the site is directed via a sheet flow to on-site catch basins. These catch basins discharge, through the facility's underground stormwater sewer system, to the adjacent waterways, roadways, and marshland.

Potential migration pathways for organic compounds and metals to personnel working at the facility have been identified. All buildings at the HHMT-Port Ivory Facility are serviced by public utilities; neither groundwater nor surface water is used for potable purposes. If construction vehicles (e.g., excavators) are operating at Site 1 on a dry day or if facility personnel are conducting subsurface work, personnel may be exposed to metals and less volatile organic compounds through the inhalation or ingestion of airborne particulate matter or through dermal contact with soil. Personnel may be exposed to more volatile organic compounds via the same exposure routes as well as by inhalation of volatile organic vapors. If personnel are involved in subsurface work below the water table, personnel may potentially come into direct contact with impacted groundwater or may inhale volatile organic vapors. The Port Authority, its

tenants, and its subcontractors implement health and safety measures to mitigate these potential chemical hazards.

The Port Authority has identified potential migration pathways for metals or organic compounds to migrate to Bridge Creek. Site 1 is relatively flat, but does slope gently towards Bridge Creek. The Port Authority has not established a prevailing wind direction for Site 1 to date. Surface soil containing VOCs, SVOCs, metals, pesticides, total PCBs, and/or TPHC at concentrations above applicable NYSDEC RSCOs may erode from Site 1 and be transported to Bridge Creek via wind or water (primarily sheet flow during storm events) transport; therefore, the potential exists that the adsorbed metals and organic compounds could migrate into Bridge Creek.

Metals and organic compounds may also be mobilized by desorbing from soil and dissolving in rainwater that ultimately recharges groundwater (i.e., may leach). Alternatively, VOCs and SVOCs may desorb from the soil and dissolve in the soil vapor (i.e., may volatilize), and may subsequently dissolve in rainwater that ultimately recharges groundwater. These migration pathways are considered to be identical to the groundwater pathway discussed below.

Groundwater at Site 1 is impacted by relatively few contaminants at concentrations greater than the NYSDEC AWQSGVs. The metals and all the classes of organic compounds could potentially dissolve in groundwater (albeit to different degrees based on the solubility of the specific metal or organic compound) and migrate via advection, dispersion, and diffusion. Due to the generally coarse-grained nature of the fill (i.e., the fill is generally not clay), the diffusion is anticipated to be negligible. Therefore, groundwater and any metals or organic compounds dissolved in the groundwater are anticipated to flow towards and discharge into Bridge Creek. Of course, the rate of baseflow into Bridge Creek is low relative to the flow of water within the creek. Therefore, any metals or organic compounds that discharge into Bridge Creek are immediately diluted.

6.3.2 Migration of Metals and Organic Compounds – Post-Redevelopment

The redevelopment of Site 1 will include capping approximately 90% of Site 1 with impervious materials and placing clean cover soil, demarcated with a geotextile liner, above the remaining impacted soil. Therefore, surface soil will not be eroded and the metals and organic compounds adsorbed to the surface soil will not migrate into Bridge Creek. The cap and cover will also limit exposure of on-site human receptors to impacted soil and groundwater.

Construction of the impervious cover will decrease the loading of metals and organic compounds from soil. In addition, the depth to water is anticipated to increase following the construction of the impervious cover. Therefore, groundwater quality is anticipated to improve following the redevelopment of Site 1, and lower concentrations of metals and organic compounds will discharge into Bridge Creek.

Notwithstanding the above, personnel working at the facility could still potentially contact impacted soil and/or groundwater during excavation activities. The Port Authority has implemented health and safety protocols to minimize chemical hazards associated with intrusive activities. In addition, remaining groundwater impacts could potentially migrate towards and discharge into Bridge Creek. As noted in Section 6.3.1, the rate of baseflow into Bridge Creek is anticipated to be low relative to the volume of water within the creek. Therefore, any metals or organic compounds that may be transported to Bridge Creek via the groundwater migration pathway will be immediately diluted.

6.4 Exposure Assessment Summary

As the redevelopment of Site 1 is considered to be part of the remedial action for the site, this Exposure Assessment Summary evaluates post-redevelopment conditions. The presence of organic compounds and metals in soil and groundwater at Site 1 is not anticipated to be a hazard for residents of the property located along Richmond Terrace.

As noted above, the impacted soil and groundwater that will remain following implementation of the Site 1 RAWP, including the redevelopment of Site 1, is a hazard to facility personnel only in the event that subsurface activities are being conducted and the humidity is low. However, the hazard to the personnel is not considered to be significant given the low concentrations of organic compounds and metals in the soil. For example, the metal lead has been detected in soil at Site 1 at concentrations as great as 630 mg/kg. The Permissible Exposure Limit (PEL) for lead established by the Occupational Safety and Health Administration is 0.05 milligrams per cubic meter (mg/m³). Using 630 mg/kg as a worst-case concentration for lead in soil, even though all except one of the soil samples collected to date at Site 1 have exhibited significantly lower concentrations of lead, workers would have to be exposed to dust levels of almost 80 mg/m³ throughout an 8-hour workday. In other words, the workers would need to work for eight hours within a visible cloud of dust to be exposed to levels of lead above the PEL. The Port Authority's health and safety protocols require moistening soil to reduce the concentration of airborne dust under such extreme circumstances.

Hatch Mott MacDonald Comprehensive Remedial Investigation Report

Under post-redevelopment conditions, Bridge Creek is most likely to be impacted by metals and/or organic compounds via the discharge of groundwater from Site 1. Based on the concentrations of organic compounds in groundwater at Site 1, the groundwater impacts are primarily present at concentrations similar to or lower than the RSWCS for Class SD surface water bodies. Except for nickel, those metals that were detected in groundwater at Site 1 at concentrations above their respective AWQSGVs were detected at similar concentrations in the Arthur Kill, were detected at concentrations below their respective RSWCS for Class SD water bodies (RSWCS), or have no established RSWCS. The maximum concentration of nickel detected in groundwater at Site 1 was 110 ug/L, while the RSWCS for nickel is 75 ug/L. Since groundwater flowing into Bridge Creek is diluted immediately, nickel dissolved in groundwater at Site 1 is not anticipated to negatively impact surface water in Bridge Creek.

The groundwater impacted by organic compounds at Site 1 is similarly unlikely to impact surface water in Bridge Creek. No RSWCS has been established for phenol, benzo(a)anthracene, chrysene, or 1,2-diphenylhydrazene. The maximum concentrations of ethylbenzene and total xylene detected in groundwater at Site 1 are below their respective RSWCS for a Class SD water bodies. Therefore, groundwater discharging to Bridge Creek is not anticipated to impact surface water in Bridge Creek.

7.0 CONCLUSIONS AND RECOMMENDATIONS

All AOCs identified during and subsequent to the Phase I ESA were investigated during the SI, RI, SRI, and FSRI as necessary. Each subsequent phase of environmental investigation resulted in the additional characterization of soil, groundwater, surface water, and/or sediment at or adjacent to the HHMT-Port Ivory Facility. Currently, further investigative and/or remedial efforts are warranted at only one (AOC-UST2) of the 17 AOCs (i.e., 6%) identified at Site 1.

Based on the investigative and remedial actions completed to date, the Port Authority has determined that no further investigative or remedial efforts are warranted at the following AOCs identified during (all AOCs except the Hydrogen Holders) or after (only the Hydrogen Holders) the Phase I ESA:

- UST 5
- UST 6
- Precipitate at Bridge Creek
- AOC-Area C Former Oleum AST and Acid Wastewater Area/Block 1400
- AOC-Area F1, Spent Nickel Catalyst Drum Storage Area/Block 1400

- AOC-Area H, Former Rosin Storage Area/Block 1400
- AOC-Area R, Northwest Corner of Soap Manufacturing Area/Block 1400
- Railroad Tracks and Siding
- Pits and Drains
- Groundwater: LNAPL encountered at TMW-02 will be addressed as part of AOC-UST 2 (see below). Groundwater impacts at GW-14 were addressed by the excavation of soil at Area B (see Area GW-14, below).

The following AOCs were identified during the Phase I ESA and were remediated prior to the FSRI. No further investigative or remedial actions are proposed at these AOCs:

- AOC-Area A West Tank Field Southwest of Building 16/Block 1400: Approximately 3,306 cubic yards of LNAPL-impacted soil was removed.
- AOC-Area B Former Raw Product and By-product AST Areas/Block 1400: Approximately 4,349 cubic yards of LNAPL-impacted soil was removed.
- Wood Yard: Approximately 117 cubic yards of soil was removed.
- Former Structures: Approximately 1,537 cubic yards of LNAPL-impacted soil was removed.
- Area GW-14: Groundwater impacts were addressed by the removal of approximately 4,349 cubic yards of LNAPL-impacted soil.

The following AOCs warrant additional remedial actions for soil, but not groundwater, quality. Although the environmental quality of groundwater at Site 1 is not believed to warrant remedial action, groundwater quality will be investigated by post-redevelopment monitoring. All remedial actions and post-remedial monitoring will be implemented as per the approved Site 1 RAWP.

- Historic Fill Material: An impervious cap will be constructed throughout approximately 90% of Site 1. Geotextile fabric and clean fill will be placed in areas where such a cap was not constructed.
- AOC-UST2: Mobile LNAPL will be removed to the extent practical as specified in the site 1
 RAWP. The footprint for the removal area is currently estimated to be between 2,190 and
 15,590 square feet. The actual extent will include all soil at UST2-4 that contained mobile
 LNAPL, based on field observations, at the start of the remedial action.

APPENDIX A NYSDEC LETTER APPROVING FSRI WORK PLAN

New York State Department of Environmental Conservation Division of Environmental Remediation

Remedial Bureau B

25 Broadway, Albany, New York 12233-7016 •hone: (518) 402-9768 • FAX: (518) 402-9773

Website: www.dec.state.ny.us

April 20, 2006

Mr. Edward Aldrich Port Authority of New York and New Jersey Two Gateway Center, 14th Floor Newark, New Jersey 07102

Re:

HHMT - Port Ivory Facility

Site 1, ID # V00615

Focused Supplemental RI Work Plan

AOC-UST2

Dear Mr. Aldrich:

The New York State Department of Environmental Conservation (NYSDEC), in cooperation with the New York State Department of Health (NYSDOH), have reviewed Hatch Mott MacDonald's (HMM) work plan titled "Focused Supplemental RI Work Plan - AOC-UST2 (Site 1), Howland Hook Marine Terminal - Port Ivory Facility (40 Western Avenue), Staten Island" dated March 6, 2006. The NYSDEC is in agreement with the recommendations and scope of work outlined in this work plan and, as such, this work plan is approved.

Please provide the NYSDEC with one week notice prior to the implementation of this scope of work. If you have any questions, don't hesitate to call me at (518) 402-9768.

Sincerely,

Thomas Gibbons

Project Manager

Remedial Bureau B, Section D

Division of Environmental Remediation

cc:

R. Cozzy/File

T. Gibbons

G. Clark (HMM)

ec:

J. Guastella (DOH)

D. Walsh (Reg. 2)

APPENDIX B

LORCO PETROLEUM DISPOSAL CERTIFICATE

Lorco Petroleum Services 450 South Front St. Elizatieth, NJ 07202 (908) 820-8800 (806) 734-0910 FAX: (908) 820-8412

www.lorcopetroleum.com

STANDARD COLLECTION ORDER FORM

592784

GENERATOR/LOCATION (7	JEH#	BILL TO (IF DIFFERENT FROM LOCATION)						
	NAME				W Ze w		1	
ACCUMULATION LINE ACCUMULATION	COUNT APPROVAL C	ODE INFORMAT	ONATTENTION	INE		ACCOUNT	PRIOVE SEE	
T. Wall, Cox Is Port State 1		DELIVERY	DOREST :					
		erie de la companya d				THE SER		
	ATE ZIP	CITY	# SPECIE			STATE		
PURCHASE OR	ER NUMBER	AHONE NU	MBER			RCHASE ORDER NU	MBER	
TIME OUT							Partura series	
			MANIFE:	ST.	A Company			
		HIPPING INFORMA		***				
The A.M. nirth, that the below named vastening are properly classified Debastrers of Transportation.			在基础的	新发生	"物力发展"几个位	AND AND	S REPRESENTATIVE	<u> </u>
TYPE OTY UNIT	USD	OT Description (Including P	roper Shipping	Name: H	azard Ciass and ID Nu	mber) SALE		Į
	STRING MANAGEMENT	SERVICE SECTION	A.		Approximation of the	Committee of the Commit		
SARGO CONTROL DESCRIPTION	WASTE CODE	QUANTITY	UNIT PA	Œ 🔻	PHICE	TAX		
40500 USED OIL REMOVAL								4
A0300 ANTI-FREEZE REMOVAL	What is a second	7 5		150		COLUMN COLUMN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4
4100 SLUDGE DISPOSAL	Estate Consultation of the	The state of the s		yder (chia) seri				4
4100 GASOLINEWATER	San San San	· 1000年 (1000年)	gardinalis			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A STATE OF	\dashv
640900 PDRUM DISPOSAL	And Anna.					NA AAA	2 (10 11 12 14 17 17 17 17 17 17 17 17 17 17 17 17 17	\dashv
4 41501 TANK ENTRY			1344	1			HARLAN.	٦
CONTROL POLICIER REMOVAL	在外域的 型	建设企业 。20	S. Walle in	· • . • .	77 (Table)	COLUMN TO STATE OF ST	2 F. 18.	٦
AUGO PARTS WASHER SERVICE		如为在外色	4.76	27.	10 3 LON	2010		
40611 NEW 55 GAL DRUM / 17H			· 华.为.世					
A2001 (DEXSIL TEST KIT. TAX		+ 45 C	وده المراجعة المنطقة	74	3/6 2	And other		
41598 TRANSPORTATION	Aller Martin	1 3 5 6	2 May 2 75					4
NOTE LED ANTI-FREEZE					\$P\$ 1000			4
41508 TRUCK AND OPERATOR								4
		CONDITION	ALLA	64 -				┥
PARTS WASHER SERVICE INTERVAL	DAY	S. EXEMPT SA	MALL TO	TAL		The Palm		
USED OIL CUSTOMER SERVICED EVE	RY 30 DA	QUANTT (S GENERAT	OR-		E MY ACCOUNT F			ī
UNLESS OTHERWISE INDICATED		CERTIFICA	TION	FRANSA NDICATI	CTION UNLESS OF ED IN THE PAYMENT S REFLECTING CHA	HERWISE SECTION S		Ш
TO THE THE SECOND OF THE SECOND SECO	AYS.	certify that this g	nan 100 1 (NVOICE	S REFLECTING CHA	AN INTEREST RA	TE OF THE LESSER OF	
		waste per mo	zardous r nth, as	14% PE	R MONTH (18% P	R ANNUM) OR	THE MAXIMAN PATI E NOT PAID WITHIN 30	Ε (
GENERATOR WARRANTS AND REPRESENTS THAT THE MAT LOGO HEREUNDER HAVE NOT BEEN MIXED, COMBINED		ISE and does not acc	umulate	DAYS. IN	THE EVENT OF DE	AULT, LORCO SI	TALL BE ENTITLED TO) [
BLENGED IN ANY QUANTITY WITH MATERIALS CONTAINING F BPHENGES (PCB) OR ANY OTHER MATERIAL DEFINED AS H	OLYCHLORINAT	ED of such waste di			EYS FEES. INITIAL .			_]
UNBER APPLICABLE LAWS, INCLUDING BUT NOT LIMITED TO GENERATION AGREES TO INDEMNIFY AND HOLD LORGO HA	40 CFR PART 2	61		entra estados	PAYMENT	RECEIVED SE	ECTION	
DAMAGES, COSTS, ATTORNEY'S FEES, ETC. ARISING OUT	OF OR IN ANY W			i. c	ASH 🗌	TOTAL	RECEIVED	
Balance Balanc	RELATED TO A BREACH OF THE ABOVE WARRANTY BY THE GENERATOR. Generator certifies that the waste is							
☐ oily water ☐ oil filter ☐ parts washer solv		MON CONDITI						
☐ Other	EXEMPTL	IRGE	n acco	rdance with NJA	C7:26-6.7b +	40CFR PART 279		
Description Description Description Description	QUANTT red GENERAT	1 1	ORCO			cation and used oi		
its to eccept the above described waste.	hits to accept the above described waste.					7.7.7	ア 語 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Print Name	X BELLEY CO LANGE AND A CONTROL OF SHIP						/: · / • · 7	2
TO THE RESERVE AND THE RESERVE	Title	TEST RES	ULTS 🖟	nnt Na	me	NYSK	- 16.1	
Spraule	Date			X ignatur	 A series of the s	THE STATE OF	Date	
GENERATORCUSTOMER	inst in a second with the party and all construction of the second of the	X			LORCO F	And the same of th	E la Maria de la composición de la composición de la composición de la composición de la composición de la comp	
	Garria (Lagra	CUSTOME	R	energia. Sasahe	grade trati agos. Maistratas	e verse verse. Påder av det		

APPENDIX C

LABORATORY ANALYITCAL DATA – FSRI (SUBMITTED UNDER SEPARATE COVER)

Form1 ORGANICS SEMIVOLATILE REPORT

Sample Number: AC28404-001

Client Id: PI-TWP-1A-020107S01

Data File: 7M24574.D

Analysis Date: 02/08/07 04:36

Date Rec/Extracted: 02/02/07-02/07/07

Matrix: Soil

Initial Vol: 30g

Final Vol: 1ml

Dilution: 1

Solids: 88

Units: mg/Kg

				5 5			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
120-82-1	1,2,4-Trichlorobenzene	0.38	U	205-99-2	Benzo[b]fluoranthene	0.38	1.5
95-50-1	1,2-Dichlorobenzene	0.38	U	191-24-2	Benzo[g,h,i]perylene	0.38	0.82
122-66-7	1,2-Diphenylhydrazine	0.38	U	207-08-9	Benzo[k]fluoranthene	0.38	0.52
541-73-1	1,3-Dichlorobenzene	0.38	U	100-51-6	Benzyl alcohol	0.38	U
106-46-7	1,4-Dichlorobenzene	0.38	υ	111-91-1	bis(2-Chloroethoxy)methan	0.38	U
95-95-4	2,4,5-Trichlorophenol	0.38	U	111-44-4	bis(2-Chloroethyl)ether	0.38	U
88-06-2	2,4,6-Trichlorophenol	0.38	U	108-60-1	bis(2-chloroisopropyl)ether	0.38	υ
120-83-2	2,4-Dichtorophenol	0.38	U	117-81-7	bis(2-Ethylhexyl)phthalate	0.38	0.17 JB
105-67-9	2,4-Dimethylphenol	0.38	U	85-68-7	Butylbenzylphthalate	0.38	U
51-28-5	2,4-Dinitrophenol	0.95	U	86-74-8	Carbazole	0.38	0.097 J
121-14-2	2,4-Dinitrotoluene	0.38	U	218-01-9	Chrysene	0.38	1.2
606-20-2	2,6-Dinitrotoluene	0.38	U Ì	53-70-3	Dibenzo[a,h]anthracene	0.38	0.24 J
91-58-7	2-Chloronaphthalene	0.38	U	132-64-9	Dibenzofuran	0.38	U
95-57-8	2-Chlorophenol	0.38	U	84-66-2	Diethylphthalate	0.38	U
91-57-6	2-Methylnaphthalene	0.38	U	131-11-3	Dimethylphthalate	0.38	U
95-48-7	2-Methylphenol	0.38	U	84-74-2	Di-n-butylphthalate	0.38	0.093 JB
88-74-4	2-Nitroaniline	0.38	υ	117-84-0	Di-n-octylphthalate	0.38	υ
88-75-5	2-Nitrophenol	0.38	U	206-44-0	Fluoranthene	0.38	2.2
06-44-5	3&4-Methylphenol	0.38	U	86-73-7	Fluorene	0.38	0.10 J
91-94-1	3,3'-Dichlorobenzidine	0.38	U	118-74-1	Hexachlorobenzene	0.38	U
99-09-2	3-Nitroaniline	0.38	U	87-68-3	Hexachlorobutadiene	0.38	υ
534-52-1	4,6-Dinitro-2-methylphenol	0.95	U	77-47-4	Hexachlorocyclopentadiene	0.38	U
101-55-3	4-Bromophenyl-phenylether	0.38	U	67-72-1	Hexachloroethane	0.38	U
59-50-7	4-Chloro-3-methylphenol	0.38	· U	193-39-5	Indeno[1,2,3-cd]pyrene	0.38	0.72
106-47-8	4-Chloroaniline	0.38	υ -	78-59-1	Isophorone	0.38	U
7005-72-3	4-Chlorophenyl-phenylether	0.38	U	91-20-3	Naphthalene	0.38	0.064 J
100-01-6	4-Nitroaniline	0.38	U	98-95-3	Nitrobenzene	0.38	υ
100-02-7	4-Nitrophenol	0.38	U	62-75-9	N-Nitrosodimethylamine	0.38	U
83-32-9	Acenaphthene	0.38	0.097 J	621-64-7	N-Nitroso-di-n-propylamine	0.38	U
208-96-8	Acenaphthylene	0.38	0.067 J	86-30-6	N-Nitrosodiphenylamine	0.38	U
120-12-7	Anthracene	0.38	0.30 J	87-86-5	Pentachlorophenol	0.95	U
	Benzidine	0.38	U	85-01-8	Phenanthrene	0.38	1.1
56-55-3	Benzo[a]anthracene	0.38	1.3	108-95-2	Phenol	0.38	U
	Benzo[a]pyrene	0.38	1.2	129-00-0	Pyrene	0.38	2.1

Worksheet #: 40409

Total Target Concentration

R - Retention Time Out

13.888

dicates the compound was analyzed but not detected.

Boundicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>50% between columns due to coelution. Lower concentration used.

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC28404-001

Matrix: Soil

Client Id: PI-TWP-1A-020107S01

Initial Vol: 30g

Data File: 7M24574.D

Final Vol: 1ml

Analysis Date: 02/08/07 04:36

Dilution: 1

Date Rec/Extracted: 02/02/07-02/07/07

Solids: 88

Units: mg/Kg

				2 - -
	Cas#	Compound	RT	Conc
1	2216-30-0	Heptane, 2,5-dimethyl-	3.90	0.74 JB
2	123-42-2	2-Pentanone, 4-hydroxy-4-methyl-	3.97	13 JAB
3		unknown	5.77	0.47 J
4	2131-18-2	Pentadecylbenzene	8.56	0.25 J
5	1921-70-6	Pentadecane, 2,6,10,14-tetramethyl-	8.83	0.30 J
6	84-69-5	1,2-Benzenedicarboxylic acid, bis(2-met	9.60	0.25 J
7	629-59-4	Tetradecane	9.75	0.23 J
8	779-02-2	Anthracene, 9-methyl-	9.95	0.27 J
9	613-12-7	Anthracene, 2-methyl-	9.97	0.23 J
10		unknown	10.10	0.24 J
11	37052-13-4	1H-Phenanthro[9,10-d]imidazol-2-amine	10.22	0.61 J
12		unknown	10.35	0.26 JB
13		unknown	10.46	0.47 J
14	•	unknown	10.82	0.46 J
15		unknown	10.86	0.29 J
16	16914-12-8	(E,E)-2,5-Diphenyl-2,4-hexadiene	11.36	1.2 J
17	2381-21-7	Pyrene, 1-methyl-	11.41	Ó.18 J
18	3353-12-6	Pyrene, 4-methyl-	11.53	0.18 J
19	80249-74-7	Cyclopentylsilane	13.45	0.45 J
20	192-97-2	Benzo[e]pyrene	13.76	0.28 J
21	198-55-0	Perylene	13.94	0.78 J
22	54113-93-8	1,1,3,3-TETRAMETHYL-1,3-DISILAIND	15.02	0.53 J
23		unknown	15.48	0.28 J
24		unknown	15.78	0.43 J

Worksheet #: 40409

Total Tentatively Identified Concentration 22.38

<sup>A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.</sup>

Form1 **ORGANICS SEMIVOLATILE REPORT**

Sample Number: AC28404-015

Client Id: PI-TWP-SFB-020107WQ01

Data File: 5M27275.D

Analysis Date: 02/08/07 17:32 Date Rec/Extracted: 02/02/07-02/08/07

Matrix: Aqueous Initial Vol: 980ml

Final Vol: 1ml

Dilution: 1 Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
	,2,4-Trichlorobenzene	10	U	205-99-2	Benzo[b]fluoranthene	10	U
95-50-1 1	,2-Dichlorobenzene	10	U	191-24-2	Benzo[g,h,i]perylene	10	U
122-66-7 1	,2-Diphenylhydrazine	10	U	207-08-9	Benzo[k]fluoranthene	10	U
541-73-1 1	,3-Dichlorobenzene	10	· » U	100-51-6	Benzyl alcohol	10	U
106-46-7 1	,4-Dichlorobenzene	10	U	111-91-1	bis(2-Chloroethoxy)methan	10	U
95-95-4 2	2,4,5-Trichlorophenol	10	U	111-44-4	bis(2-Chloroethyl)ether	10	U
88-06-2 2	2,4,6-Trichlorophenol	10	U	108-60-1	bis(2-chloroisopropyl)ether	10	U
120-83-2 2	4-Dichlorophenol	10	U	117-81-7	bis(2-Ethylhexyl)phthalate	10	U
105-67-9 2	4,4-Dimethylphenol	10	U	85-68-7	Butylbenzylphthalate	10	U
51-28-5 2	,4-Dinitrophenol	26	U	86-74-8	Carbazole	10	U
121-14-2 2	,4-Dinitrotoluene	10	υ	218-01-9	Chrysene	10	υ
606-20-2 2	,6-Dinitrotoluene	10	U	53-70-3	Dibenzo[a,h]anthracene	10	U
91-58-7 2	-Chloronaphthalene	10	U	132-64-9	Dibenzofuran	10	υ
95-57-8 2	-Chlorophenol	10	U	84-66-2	Diethylphthalate	-10	U
91-57-6 2-	-Methylnaphthalene	10	U	131-11-3	Dimethylphthalate	10	U
95-48-7 2-	-Methylphenol	10	U	84-74-2	Di-n-butylphthalate	10	U
88-74-4 2-	-Nitroaniline	10	U	117-84-0	Di-n-octylphthalate	10	U
88-75-5 2	-Nitrophenol	10	U	206-44-0	Fluoranthene	10	U
106-44-5 3	&4-Methylphenol	10	U	86-73-7	Fluorene	10	U
91-94-1 3,	,3'-Dichlorobenzidine	10	U	118-74-1	Hexachlorobenzene	10	U
99-09-2 3-	-Nitroaniline	- 10	U	87-68-3	Hexachlorobutadiene	10	U
534-52-1 4,	,6-Dinitro-2-methylphenol	26	U	77-47-4	Hexachlorocyclopentadiene	10	υ
101-55-3 4-	-Bromophenyl-phenylether	10	υ	67-72-1	Hexachloroethane	10	· U
59-50-7 4-	-Chioro-3-methylphenol	10	υ	193-39-5	indeno[1,2,3-cd]pyrene	10	U
106-47-8 4-	-Chloroaniline	10	υ	78-59-1	Isophorone	10	U
7005-72-3 4-	-Chlorophenyl-phenylether	10	U	91-20-3	Naphthalene	10	U
100-01-6 4-	-Nitroaniline	10	U	98-95-3	Nitrobenzene	10	U
100-02-7 4-	-Nitrophenol	10	U	62-75-9	N-Nitrosodimethylamine	10	U
83-32-9 A	cenaphthene	10	U	621-64-7	N-Nitroso-di-n-propylamine	10	U
208-96-8 A	cenaphthylene	10	U	86-30-6	N-Nitrosodiphenylamine	10	U
120-12-7 A	nthracene	10	U	87-86-5	Pentachlorophenol	26	υ
92-87-5 Be	enzidine	10	U	85-01-8	Phenanthrene	10	U
56-55-3 B	enzo[a]anthracene	10	υ	108-95-2	Phenol	10	υ
50-32-8 B	enzo[a]pyrene	10	υ	129-00-0	Pyrene	10	U

Worksheet #: 40409

Total Target Concentration

ndicates the compound was analyzed but not detected. Indicates the analyte was found in the blank as well as in the sample. E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>50% between columns due to coelution. Lower concentration used.

Form1e

ORGANICS SEMIVOLATILE REPORT Tentatively Identified Compounds

Sample Number: AC28404-015

Client Id: PI-TWP-SFB-020107W

Data File: 5M27275.D Analysis Date: 02/08/07 17:32

Date Rec/Extracted: 02/02/07-02/08/07

Matrix: Aqueous

Initial Vol: 980ml

Final Vol: 1ml

Dilution: 1

Solids: .

Units: ug/L

Cas #	Compound	RT	Conc	
1	No Unknown Compounds Detected	0.00	0.1	

Worksheet #: 40409

Total Tentatively Identified Concentration 0

A - Indicates an aldol condensate.
J - Indicates an estimated value.
B - Indicates the analyte was found in the blank as well as in the sample.

VERITECH Wet Chem Form1 Analysis Summary % Solids

TestGroupName: % Solids SM2540G

TestGroup: %SOLIDS

Project #: 7020230

								Analysis	Received	Collect	
Lab#	Client SampleID	Matrix	Dilution:	Result	Units:	PQL	Prep Date	Date	Date	Date	
AC28404-001	PI-TWP-1A-02010) Soil	1	88	Percent			02/07/07	02/02/07	02/01/07	

Chain of Custody Forms

Sampled By: TG/BS

Relinquished By: Relinquished By: Relinquished By:

Sampling Method: SS Spoon

THE PORT AUTHORITY OF MY & MU

Preservatives:

Date:

1. Ice

4. NaOH

2. HCl

5. MeOH

Materials Engineering Division - 241 Eric Street, Room 234 Jersey City, NJ 07310

Facility	Port Ivory	
Project Info.	Port Ivory	
Charge Code #	CP11-233-295	

EQuIS Sys_Sample_Code

Chain-of-Gustody

PAGE 1 OF 2 PA PROJECT SDG NO__

	7020230															
	Contact	Name		Dorian I	Bailey / A	Angelos 2	Zafire	elis								
	Contact	Phone	No.	201-216	3-2963 /	201-216	2960)								
	Contact	Fax No		201-216	3-2158											
	Contact	Email		dbailey	dbailey@PANYNJ.gov / azafirel@PANYNJ.go						gov					
	Destina	tion Lat	oratory	<i>/</i> :					HCV Lab Case/SDG:							
Sample Depth	ate of Collectio	Time of Collection	Geotech Cross ID	# of Containers	Preservative Code (MeOH No.)	Grab or Composite		TCL BNA+20		HOLD				EQUIS / PDF		
<u>AC 2840</u> 1	4 -	-		<u> </u>		ပ			<u> </u>	<u> </u>		1				
-00	/ por TAL.			1	1	GRAB		x				¥		х		
-00, 8085	2/1/2007			1	1	GRAB				×						
-00 10.5-11.0	2/1/2007		,	1	1	GRAB	П		7 11	x						
4.04.5				1	1	GRAB			1	x		,				
8.0-6.5	9	t^{-}		1 1		GRAB	\sqcap		1	x						
-00		 			1		\vdash									
8.5-9.0		†	 	1	1_1_	GRAB	H		 	X	 	 				
0.0-10.5	2/1/2007	┼──	+	1	1	GRAB	H		1	X	 	 	 	-		
4.0-4.5	2/1/2007	 	 	 -	1_1_	GRAB	╁┼╴		-	×	 	 	ļ			
8.5-8.0°	2/1/2007	<u> </u>	-	1 1	11	GRAB	Н-		<u> </u>	X			 	 		
4.04.5	2/1/2007	<u> </u>	1	1	1	GRAB	Щ			х	<u> </u>	<u></u>	<u> </u>	<u></u>		
2. HCl 5. MeOH	3. HNO3 6. H2SO4	4		TAT: ONE-WEEK OTHER OTHER OTHER						,						
0-2-	07		Receiv	red By: 2	یک کا	n fir i	کس(HC	V	Date:	2-0,2 -	07 1	1:42		
2-02-	٥٦	1340	Receiv	red By:(7 · ·	Juk.	21				Date:	42/0	71	240		
Received By: Date:																

0012

THE PORT AUTHORITY OF MYS MU

Chain-offusiody

PAGE 2 OF 2 PA PROJECT SONO

Maturials Engineering Division	- 241 Erio Street, Reem 234
	· ·
Jarean City, NJ 07	316

Facility	Port Ivory	
Project info.	Port Ivory	
Charge Code #	CP11-233-295	

Contact Name	ntact Name Dorian Bailey / Angelos Zafirelis										
Contact Phone No.	act Phone No. 201-216-2963 / 201-216-2960										
Contact Fax No. 201-216-2158											
Contact Email	dbailey@PANYNJ	.gov / azafirel@PAl	NYNJ.gov								
Destination Laborato	ry:	HCV	Lab Case/SDG:								

	EQuIS Sys_Sample_Code											ample Depth	Date of Collection Year 2007	Time of Collection	Geotech Cross ID	# of Containers	Preservative Code (MeOH No.)	Grab or Composite		TCL BNA+20		ногр			EQUIS / PDF										
										-	000											· ·													
P	Ш	_	7	w i	_	<u>.</u>	1	A	s	_	0	2	0	1	٥	1	4	s	0	3		-011 8.0-8.5	2/1/2007			1	1	GRAB	Ц			х		<u> </u>	
Р		_	т.	w l	,	. .	,	A I	E		0	2	١,	1	۱,	, [,	8	0	,		-012	2/1/2007			1	1	GRAB				x			
P	_		7	w i	,	Τ.	Ţ	A	E			I	Г	Т	T	Т	Т	Т	1	7		-013 8.0-8.5	2/1/2007			1	1	GRAB	П			х			
Р		_	Ţ	w	P	Т	Т	U	Т			Г	Г	Т	Т	Т	Т	Т				-014	2/1/2007			1	1	GRAB	П	Holgy	(72)2/7 Perts				x
P			7	w		.] ,	3	F	В	П	0		Г	Τ	Г	Т	Т	Т	۵	7		, -015	2/1/2007			2	1	GRAB	П	x					×
L								T					Γ	Γ	Γ		Ţ							. "											
							T	T	T				Γ	T	Τ	T	T	7	7										П						
			T		T	T							Γ	Τ			T	7		7									П						
					T	Ţ	T	T	T				Γ	T	T	T	T	7				··· <u>·</u>							П						
Γ			7		T	T	1	T	1	7			Γ	T	T	T	T	1	7	7						-			П						

Sampled By:TG/BSSampling Method:SS Spoon	Preservatives: 1. Ice 2. HCl 3. HNO3 4. NaOH 5. MeOH 6. H2SO4		Deliverables: NY ASP B, EXCEL DTHER,
Relinquished By: The Property of the Property	Date: 2-02-07 1340	Received By: Color of the Received By: Color	Date: 2-02-07 11:45 Date: 2/2/07 1340
Relinquished By:	Date:	Received By:	Date: