

HANNA FURNACE CORPORATION

South Buffalo Redevelopment Plan: Steel Manufacturing Site

Volume 3: Appendix G

MALCOLM PIRNIE

September 1997

SOUTH BUFFALO REDEVELOPMENT PLAN STEEL MANUFACTURING SITE

VOLUNTARY CLEAN-UP SITE ASSESSMENT REPORT

TABLE OF CONTENTS

	LUME 1: Page
1.0	INTRODUCTION1-1
1.1	SOUTH BUFFALO REDEVELOPMENT PLAN/
•••	INTENDED USE OF SITES
1.2	BACKGROUND AND DESCRIPTION OF SITE 1-5
1.3	ZONING1-7
1.4	PURPOSE1-7
2.0	SITE REGULATORY HISTORY2-1
2.1	STEEL MANUFACTURING SITE2-1
	2.1.1 Former Steel Plant Parcel
	2.1.1.1 Wastewater Sources and Characteristics
	2.1.1.2 Wastewater Treatment and Disposal
	2.1.1.3 Other Potential Waste Sources
	2.1.2 Former Donna-Hanna Coke Plant Parcel
	2.1.3 Former LTV Warehouse Parcel2-7
	2.1.4 Former Donna-Hanna Coke Yard Parcel
	2.1.5 Regulatory History
	2.1.6 Site Reconnaissance
	2.1.7 Areas of Potential Environmental Condition 2-11
3.0	PREVIOUS STUDIES
3.1	STEEL MANUFACTURING SITE
	3.1.1 Phase II Site Assessment Investigative Methodology3-1
	3.1.2 Site Geology/Hydrogeology3-3
	3.1.3 Environmental Sampling Results3-4
	3.1.3.1 Area I - Former Steel Plant Parcel
	3.1.3.2 Area II - Former Donner-Hanna Coke Plant Parcel
	3.1.3.3 Area III - Former LTV Warehouse Parcel
	3.1.3.4 Area IV - The Former Donner-Hanna Coke Yard Parcel
	3.1.3.5 Abby Street Berm
4.0	PROPOSED REMEDIAL PLAN
4.1	STEEL MANUFACTURING SITE4-1
	4.1.1 Remedial Action Objectives4-1
	4.1.2 Remedial Action Work Plan 4-2
5.0	REFERENCES5-1

TABLE OF CONTENTS (Continued)

	LIST OF TABLES	
Table	Fol	llows
No.	Description P	age
3-1	Summary of Particle Size Distribution Tests	. 3-3
	LIST OF FIGURES	
Figure		llows
No.	Description P	age
1-1	South Buffalo Redevelopment Plan	1-1
1-2	Marilla Street Landfill Golf Course Concept Plan	
1-3	Regional Map	
1-4	Steel Manufacturing Site - Vicinity Map	
1-5	Steel Manufacturing Site - Site Map	
1-6	Zoning Map	
3-1	Steel Manufacturing Site - Geologic Cross Section	3-3
3-2	Steel Manufacturing Site - Areas of Environmental Condition	
VOLUME	E 2: Appendices A through F	
Appendix	Description	
Α	South Buffalo Redevelopment Plan	
В	Phase I/Phase II Investigation Report - Donner-Hanna Coke Site No. 915017	
C	Remedial Report for the Truscon Property	
D	Bioremediation Plan for the Truscon Property Soils	
E	BSA Permit Application and BPDES Permit for Terminal Basin	
F	Lexis-Vista Site Database Printouts	

TABLE OF CONTENTS (Continued)

VOLUME 3: Appendix G

Appendix

G	I/Phase	•	of	Former	Republic	Steel	Plant	Area	"Steel

VOLUME 4: Appendices H through I

Description

Appendix	Description				
Н	Main LaSalle Soil Characterization Tables				
Ī	Steel Manufacturing Site Remedial Work Plan				

APPENDIX G

PHASE I/PHASE II REPORT OF FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

LTV STEEL COMPANY AND HANNA FURNACE CORPORATION

SEPTEMBER 1997

MALCOLM PIRNIE, INC.

P. O. Box 1938 Buffalo, New York 14219

TABLE OF CONTENTS

		ra _i	ge —
1.0	INT	RODUCTION	1
1.0	1.1	BACKGROUND AND SITE DESCRIPTION	
	1.2	SOUTH BUFFALO REDEVELOPMENT PLAN	
	1.3	PURPOSE AND OBJECTIVES	
	1.5	TORGOGE TAND OBJECTIVES	-
2.0	PHA	ASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)	4
	2.1	SITE HISTORY	
		2.1.1 Area I - Former LTV Steel Plant Parcel	. 5
		2.1.1.1 Wastewater Sources and Characteristics	. 7
		2.1.1.2 Wastewater Treatment and Disposal	. 7
		2.1.1.3 Other Potential Waste Sources	. 7
		2.1.2 Area II - Former Donner-Hanna Coke Plant Parcel	. 8
		2.1.3 Area III - Former LTV Warehouse Parcel	
		2.1.4 Area IV - Former Donner-Hanna Coke Yard Parcel	11
	2.2	REGULATORY RECORDS SEARCH	
	2.3	SITE RECONNAISSANCE	14
	2.4	AREAS OF POTENTIAL ENVIRONMENTAL CONDITIONS	14
3.0	PHA	ASE II ENVIRONMENTAL SITE ASSESSMENT	
	3.1	GENERAL	
	3.2	INVESTIGATIVE METHODOLOGY	
		3.2.1 Surface Soil Characterization	
		3.2.2 Subsurface Soil Characterization	18
		3.2.2.1 Geophysics	
		3.2.2.2 Passive Soil Gas	
		3.2.2.3 Subsurface Borings	19
		3.2.2.4 Well Development	
		3.2.2.5 Test Pit Excavation	
		3.2.3 Surface Water Characterization	
		3.2.4 Groundwater Characterization	
	3.3	SITE GEOLOGY/HYDROGEOLOGY	
	3.4	ENVIRONMENTAL SAMPLING RESULTS	
		3.4.1 Area I - Former LTV Steel Plant Parcel	
		3.4.2 Area II - Former Donner-Hanna Coke Plant Parcel	
		3.4.3 Area III - Former LTV Warehouse Area Parcel	
		3.4.4 Area IV - Former Donner-Hanna Coke Storage Yard Parcel	3 I

TABLE OF CONTENTS (Continued)

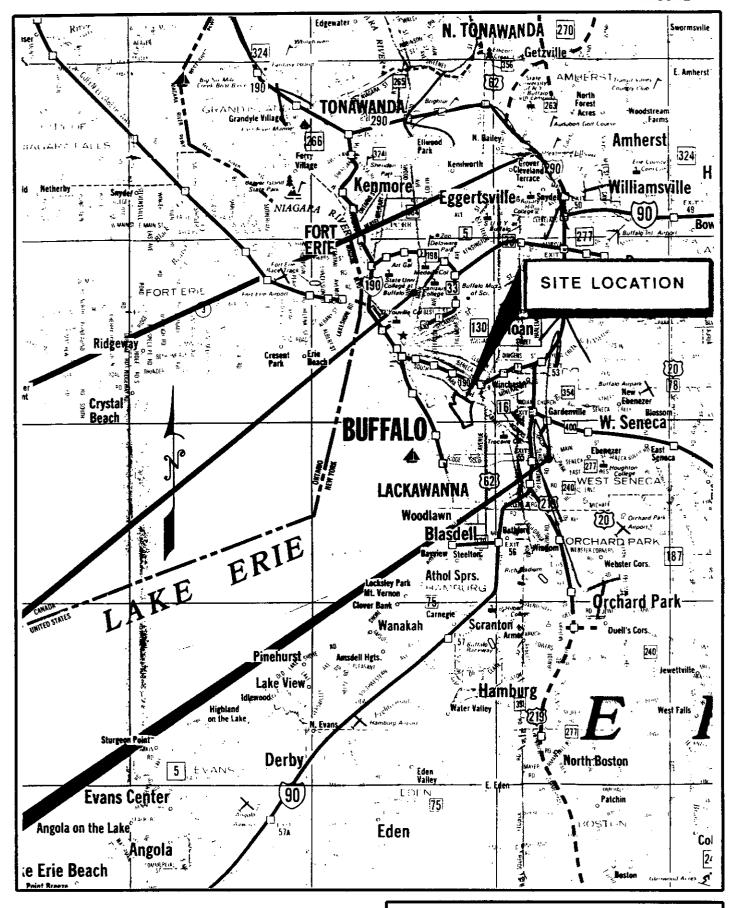
		Page
	3.4.5 Abby Street Soil Berm	36
4.0	SUMMARY AND CONCLUSIONS	36
	4.1 SITE CHARACTERIZATION	
	4.1.1 Phase I ESA Results	
	4.1.2 Phase II Site Investigation Results	
	LIST OF TABLES	
Table		llows
No.		age
2-1	Former Republic Steel Plant Tank Inventory	7
3-1	Borehole Summary Data	
3-2	Monitoring Well Construction Data	20
3-3	Summary of Field Measurements From Well Development	
	and Sampling	
3-4	Summary of Particle Size Distribution Tests	23
3-5	Summary of Environmental Sampling and Analysis Program	
3-6	Summary of Surface Soil Results - Area I	
3-7	Summary of Subsurface Soil Results - Area I	
3-8	Summary of Groundwater Sampling Results - Area I	
3-9	Summary of Surface Soil Results - Area III	
3-10	Summary of Subsurface Soil Results - Area III	
3-11	Summary of Groundwater Sampling Results - Area III	
3-12	Summary of Subsurface Soil Results - Area IV	
3-13	Summary of Groundwater Sampling Results - Area IV	
3-14	Summary of Surface Water Sampling Results - Area IV	
3-15	Summary of TCLP Analytical Results - Area IV	
3-16 <i>A</i>		-
3-16E		
3-17	Summary of Soil Sample Results - Soil Berm	35

LIST OF FIGURES

Figure No.	Description Follows Page
1-1 1-2 1-3	Site Location Map
3-1 3-2	Geologic Cross Section Along Line A-A'
4-1	Areas of Environmental Concern
	LIST OF ATTACHMENTS
Attachm	ent Description
A B-1 B-2 B-3 B-4 B-5	Soil Gas Report Area II Investigation Report - ICF Kaiser Well Construction Diagrams Borehole Logs Well Development Field Logs
Plates	Description
1 2 3 4 5 6 7	Site Features Map Areas of Historic Interest and Sample Locations at the LTV Site Shallow Groundwater Isopotential Map Surface Soil Sample Results Area I Test Pit and Subsurface Soil Analytical Results Area III and IV Test Pit and Subsurface Soil Analytical Results Surface Water and Groundwater Analytical Results

1.0 INTRODUCTION

1.1 BACKGROUND AND SITE DESCRIPTION

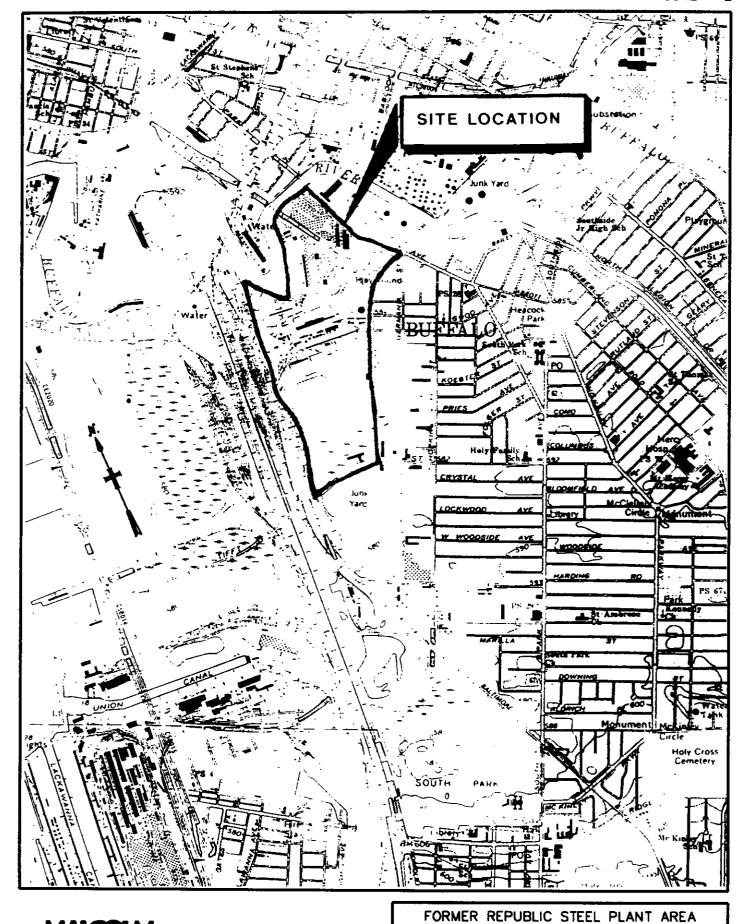

LTV Steel Company (LTV) owns or co-owns with Hanna Furnace Corporation (HFC) vacant industrial property located in Buffalo, New York (Figures 1-1 and 1-2) that was formerly (starting in the early 1900s) used for steel making operations, coke production and storage, and maintenance and storage of various equipment related to site operations. The Steel Manufacturing Site is part of the area of South Buffalo commonly referred to as the Former Republic Steel Plant Area. All operations ceased in the early 1980s and related structures were demolished as part of decommissioning activities that were completed in the early 1990's. As shown on Figure 1-3, the Steel Manufacturing Site is approximately 218 acres in size and is bound on the north by the Buffalo River and South Park Avenue, on the west by railroad tracks, on the east by Abby Street, and on the south by Tifft Street and Hood Industries. A tract of land owned and operated by August-Feine, Inc. is the only active facility that remains on the site (see Figure 1-3 and Plate 1). Based on the operational history, the Steel Manufacturing Site can be segregated into four parcels:

- Area I The former LTV Steel Plant.
- Area II The former Donner-Hanna Coke Plant.
- Area III The former LTV Warehouse Area.
- Area IV The former Donner-Hanna Coke Yard.

These parcels are illustrated on Figure 1-3 and Plate 1 and described briefly below:

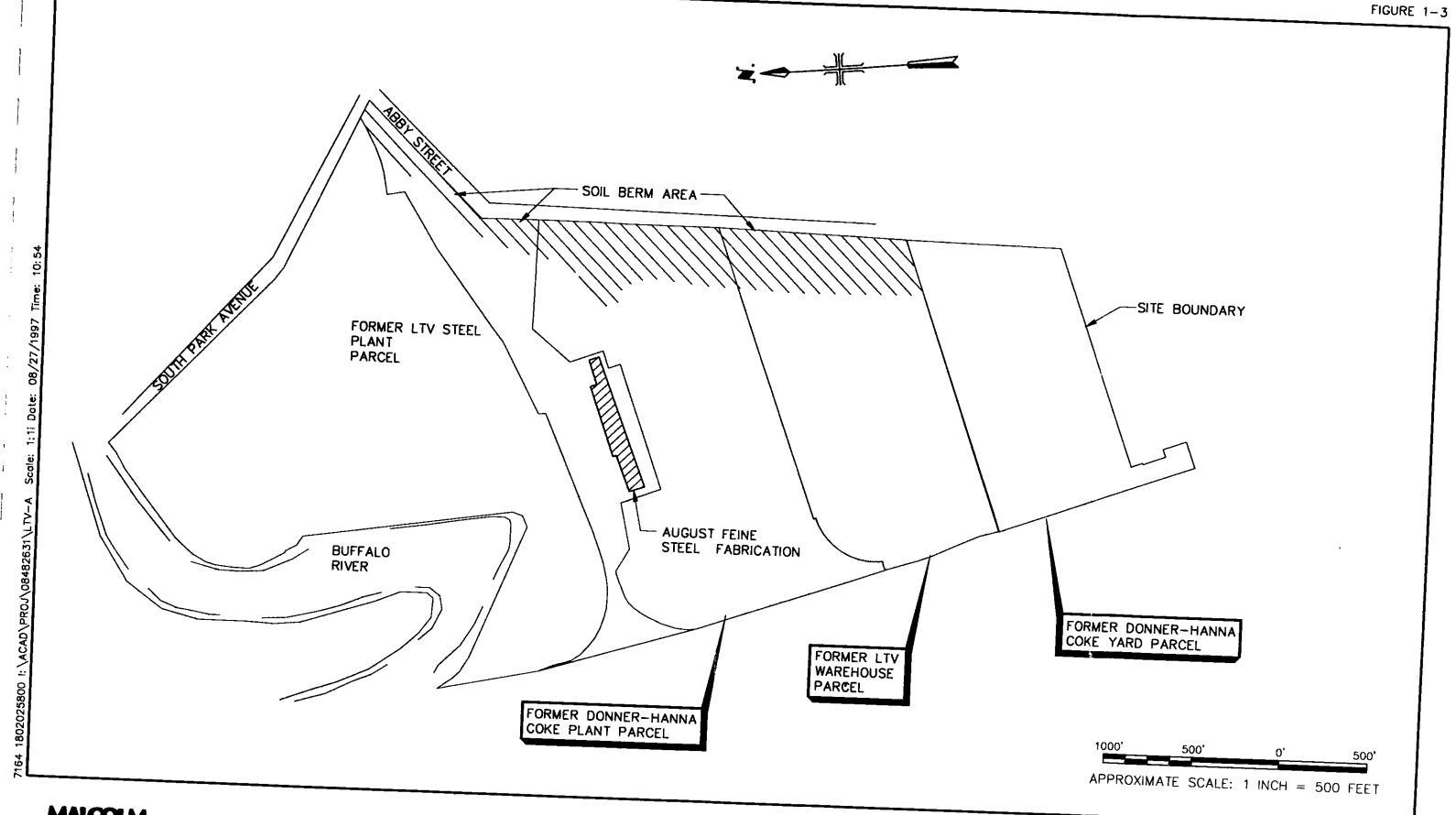
Area I - Former LTV Steel Plant Parcel - The former Republic Steel Plant was located on this northern-most parcel. This parcel is currenly owned by LTV Steel and is approximately 91 acres in area. In the late 1980s, the Steel Plant structures were demolished and the area regraded.

1



MICOLM

FORMER REPUBLIC STEEL PLANT AREA SITE LOCATION MAP


LTV STEEL COMPANY BUFFALO, NEW YORK

AUGUST 1997

SITE VICINITY MAP

MALCOLM

LTV-A

FORMER REPUBLIC STEEL PLANT AREA
STEEL MANUFACTURING SITE
PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT
SITE MAP

LTV STEEL COMPANY BUFFALO, NEW YORK

JUNE 1997

Area II - Former Donner-Hanna Coke Plant Parcel - The former Donner Hanna Coke Plant was located on this parcel. It is approximately 53 acres in area and is jointly owned by LTV Steel Company and Hanna Furnace Corporation. The plant was used to manufacture coke for steel making. By-products such as tar and manufactured gas were generated during the conversion of coal to coke and temporarily stored on-site prior to distribution. Many of the structures were demolished in the mid- to late-1970s and the parcel was then leveled and graded. A small parcel of land owned by August Feine, Inc. and two larger parcels owned by Conrail or Niagara Fronteir Transit Authority (NFTA) separate Area I from Area II. These parcels were not evaluated as part of this report.

Area III - Former LTV Warehouse Parcel - The former LTV Warehouse parcel (currently owned by LTV Steel) is approximately 43 acres in size. It is located to the south of the Donner-Hanna Coke Plant parcel. This parcel was used for storage of equipment and reportedly contained a coke tar pile south of the warehouse and a pelletized slag pile near the southern boundary of the site. The Warehouse parcel is currently being used as a staging/bioremediation area for petroleum contaminated soils excavated from the Truscon property.

Area IV - Former Donner-Hanna Coke Yard Parcel - The former Donner-Hanna Coke Yard parcel is approximately 31-acres in size, is the southern-most parcel on the site, and is jointly owned by LTV Steel Company and Hanna Furnace Corporation. The parcel was allegedly used for the disposal of tar from the Coke Plant and the storage of coke and coal. The entire parcel is currently identified on the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Site List with a "3" classification (i.e., the property poses no significant threat to human health). The assigned classification was determined from the results of a 1989 Phase II investigation of the parcel conducted by Recra Environmental as an agent for the NYSDEC.

The surface of the entire Steel Manufacturing Site is relatively flat and consists of graded fill. There are small piles of soil and/or fill debris at various locations on the site

which were randomly dumped or bulldozed into piles. A large soil fill berm exists along a portion of the eastern site boundary between the Steel Manufacturing Site and Abby Street. Foundations associated with former buildings and storage tanks are sporadically visible at the ground surface. The entire Steel Manufacturing Site is surrounded by chain link fencing.

1.2 SOUTH BUFFALO REDEVELOPMENT PLAN

The City of Buffalo, in partnership with the City of Lackawanna, Erie County and the Erie County Industrial Development Agency has developed a conceptual plan for redevelopment of over 1,200 acres of "brownfields" (inactive industrial) properties in South Buffalo. Development of the Former Republic Steel Plant Area is one of the key elements of the "South Buffalo Redevelopment Plan". This Area is targeted for redevelopment as a light industrial/commercial park.

1.3 PURPOSE AND OBJECTIVES

LTV and HFC are considering transferring ownership of the four parcels described above. In anticipation of potential transfer of ownership, this Phase I Environmental Site Assessment (ESA) and Phase II Site Investigation were performed at the site to assess the environmental condition of the properties. The objectives of the Phase I ESA are to:

- Identify recognized environmental conditions associated with the four parcels which might affect future uses.
- Serve as the basis for focusing the Phase II Site Investigation.

The objectives of the Phase II Site Investigation are to:

- Characterize recognized environmental conditions to determine if hazardous substances and/or petroleum products are present in site soils or groundwater.
- Delineate the nature and extent of soil and/or groundwater contamination to the extent necessary to assess the need for and magnitude of voluntary cleanup efforts necessary to support the City of Buffalo's South Buffalo Redevelopment Plan.

2.0 PHASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)

A Phase I ESA was conducted to determine specific areas of the site with potential environmental conditions based on historical site information, information provided by former employees of the site, a regulatory records search and site conditions assessed during a site walkover. The ESA was performed in conformance with ASTM Standard E1527-94. Performance of an ESA in conformance with ASTM E1527 is intended to reduce, but not eliminate, uncertainty regarding the potential for unrecognized environmental conditions in connection with a property.

2.1 SITE HISTORY

The parcels are currently owned by LTV Steel Company based in Cleveland, Ohio or jointly owned (Donner Hanna parcels) by LTV Steel Company and Hanna Furnace Corporation. Although the chain of title was not available for review, a review of records and photographs at the Buffalo History Museum, Erie County Department of Environment and Planning, Erie County Finance Department, Erie County Department of Public Works, and the New York State Department of Environmental Conservation indicates that the site has been used for the manufacture of steel and coke, as well as storage of raw and finished materials throughout its history dating back to the early 1900's. Malcolm Pirnie, Inc. also interviewed long-time employees of the LTV Steel Corporation and its predecessors (Republic Steel and Donner-Hanna Coke). Mr. Edward Hartman was consulted to describe work activities at the Donner-Hanna Coke Plant and Mr. James Meredith was consulted to describe work activities and demolition work at the LTV (Republic) Steel Plant.

The property was partially developed in the early 1900s. By 1906, many of the bar mills and furnaces at the former LTV Steel Plant were operational and the former Donner-Hanna Coke Plant was present in 1917. The property currently owned by August Feine was developed prior to 1917. A description of the history of each of the four areas at the site is presented below. The basis for this discussion is developed from a review of 1927, 1951,

1960, and 1972 aerial photographs and Sanborn Maps from 1889, 1900, 1917, 1940, 1950, and 1986.

2.1.1 Area I - Former LTV Steel Plant Parcel

The former LTV Steel Plant Parcel began producing steel in 1906 and was operated by Donner Steel Company from 1906 to 1931. In 1931, operations were turned over to Republic Steel. A summary of observations gathered during review of the aerial photos and Sanborn Maps is presented below:

- 1889 (Sanborn) Only a small portion of the extreme northern end of the plant site is visible on the Sanborn map in the vicinity of South Park Avenue (formerly Plank Road and Abbott Road) as it crossed the Buffalo River. R. Evans & Son Glue Factory is present on the site.
- 1900 (Sanborn) R. Evans & Son Glue Factory buildings are present at the same location as 1889; however, the buildings are indicated as vacant and dilapidated.
- 1917 (Sanborn) Steel plant used the name Donner Steel Co. Inc. and performed iron smelting and steel making. The plant was generally located east of the Buffalo River as the river meanders around the current Buffalo Color Corporation. Large structures on the property included four bar mills, an open hearth building, a roll shop, blooming mill, two shipping buildings, a heating furnace building, a brick shed, two power houses, gas producers, and a machine shop. Property southwest of the intersection of Abbott Road (South Park Avenue) and Abby Street between Abbott and the D.L.& W. Railroad was primarily residential with a business called Perry's Iron Works (Dryer Road area). Railroad spurs and tracks surrounded and were interspersed within the plant.
- 1927 (Aerial Photo) The plant site operations grew in size from 1917 to 1927. The aerial photograph indicates that the plant grew to the size and operation depicted in the 1940 Sanborn Map. The Dryer Road residential area southwest of Abby Street and South Park is still visible.
- 1940 (Sanborn) Republic Steel Corporation is identified as the owner of the steel plant. The residential area on Dyer Road had been converted into a scrap iron and pig iron yard between 1927 and 1940. Newly installed structures included a die roll finishing shop, pickling and chipping building, pickling and heat treatment building, forge shop, a larger shipping building,

5

stripper and extractor yard, locomotive repair, cleaning pits, a larger blooming mill, and a thickener (clarifier). The heating furnace building was changed to the pit furnace building. Three large oil tanks are present on the site near the southeast end of the meander of large bend in the Buffalo River. The Sanborn Map indicates that tanks were built in a concrete pit possibly providing secondary containment.

- 1950 (Sanborn) No significant changes were observed at the plant between 1940 and 1950.
- 1951 (Aerial Photo) The plant did not change significantly between 1950 and 1951.
- **1960 (Aerial Photo)** The plant did not change significantly between 1951 and 1960. A stock house and other small buildings are present in the triangular area formed by the railroad tracks in the southeast portion of the plant site.
- 1972 (Aerial Photo) A few changes of note were made to the plant. The scale pit was built between 1960 and 1972 in the northern portion of the plant to the east of the railroad bridge. A laboratory is present south of the large oil tanks. The northernmost large oil tank has been removed.
- 1986 (Sanborn) LTV Corporation is identified as the owner of the property. The Sanborn map indicates that operations have been suspended.

During a majority of the active site history, the steel plant operated two blast furnaces where molten iron was produced from a charge of pellets (upgraded iron ore), scrap iron, limestone (flux) and coke. The molten iron was subsequently converted to steel in two basic oxygen furnaces. The steel ingots produced were sent to the blooming mill where heated ingots ranging from 5 to 6 tons in weight were passed back and forth in large steel rolls squeezing the ingots into heavy square or rectangular sections known as blooms. The 25 to 30-foot long blooms were then sent to the billet mill where hot rolling lengthened the blooms. The blooms were then re-heated in the bar mills and shaped to customer's requirements.

The plant also operated two sulfuric acid pickling processes. Intermediate pickling was performed on the hot rolled bar products and finishing pickling was performed to achieve final surface quality.

2.1.1.1 Wastewater Sources and Characteristics

The primary source of wastewater produced at the plant was from the Venturi scrubber used to clean the blast furnace gases. Scrubber water discharge contained suspended solids from the blast furnace gases and may have contained significant levels of cyanides, phenol, and ammonia. Wastewater from the blooming mill was derived from direct cooling of the rolled product. The wastewater included suspended solids and oil and grease used for lubrication of the rolls. Similar wastewater was produced in the bar mill.

The pickling process used to chemically remove oxides and scale from the surface of the steel produced a spent sulfuric acid pickle liquor. Rinse water from both the intermediate and finishing pickling operations were discharged to the on-site wastewater treatment plant.

2.1.1.2 Wastewater Treatment and Disposal

Wastewater from the Venturi scrubber used for cleaning blast furnace gases was treated in a clarifier located in the northwestern portion of the site. Treated effluent was discharged into the Buffalo River. Wastewater from most of the other cooling processes was discharged into the Buffalo River following settling of suspended solids or skimming of oil. Spent sulfuric acid from the pickling operations was trucked to a 15,000 gallon storage tank on the plant property. The acid waste was used in neutralization and coagulation processes for the plant wastewater treatment system.

2.1.1.3 Other Potential Waste Sources

The plant had numerous aboveground and underground storage tanks containing lubrication oil, engine oil, valve oil, black oil, lithium grease, fuel oil, gasoline, quench oil, diesel fuel, and heating oil. A tank inventory is provided in Table 2-1. The inventory is derived from a 1974 schematic of the Republic Steel Corporation plant oil lines prepared for their Spill Prevention Control and Countermeasures (SPCC) Management Plan. In addition to the tanks, there were two maintenance shops, a scale pit, two clarifiers and several roll finishing buildings.

TABLE 2-1

FORMER REPUBLIC STEEL PLANT TANK INVENTORY

Tank Contents	Size of Tank
	4000 1
Water Glycol Tank	4000 gal
Oil Lube	2000 gal
Light Oil	3000 gal
Oil Lube	10000 gal
Oil	250,000 gal
Oil	12000 gal
Engine Oil	12000 gal
Black Oil	12000 gal
Valve Oil	2000 gal
Lithium Grease	680 gal
Lithium Grease	680 gal
Oil Lube	3500 gal
Diesel Fuel	800 gal
Gas Tank	1000 gal
Fuel Oil	6000 gal
Valve Oil	150 gal
Engine Oil	300 gal
RSC#60 Oil	300 gal
Bowser Recirc. Oil System	1100 gal
34663-34664-31106.422.1-Oil	10000 gal
Unknown	500,000 gal
Unknown	500,000 gal
Engine Oil	440 gal
Quench Oil	6000 gal
Fuel Oil	2000 gal
Diesel Fuel	15,000 gal
Diesel Fuel	15,000 gal
Heating Oil	275 gal
Heating Oil	275 gal

2.1.2 Area II - Former Donner-Hanna Coke Plant Parcel

From 1919 until 1982, the Donner-Hanna Coke Plant produced coke from coal and recovered by-products from the manufacturing process. The coke production capacity was approximately 3,000 tons per day. Typical gas production at the facility was approximately 11,500 standard cubic feet per ton of coal. The manufactured gas was refined and sold to Iroquois Gas. A summary of observations gathered during review of the aerial photos and Sanborn Maps is presented below:

- August Feine Co. Structural Steel Works located on W. Baraga Street. Railroad tracks are present to the north of the Feine building and to the west of the site. A number of streets are present south of the Feine building including Mystic Street, Beacon Street, Bell Street, Rochester and Pittsburgh Avenue. There are a total of fourteen residential dwellings located on the above-mentioned streets.
- 1927 (Aerial Photo) The Donner-Hanna Coke Plant site was operating with numerous visible aboveground tanks, buildings, and coal and coke piles. There is no evidence of the streets and homes that were present in 1917. The Feine building is the same size as in 1917. Railroad spurs traverse into the plant and tracks are located to the north and west of the site. A large manufactured gas holder is present east of the Feine building and four purifier boxes are located to the southwest of the gas holder.
- 1940 (Sanborn Map) Buildings, tanks and other site features have not changed significantly from previous years. Tank contents identified on the Sanborn Map include acid, tar, naphthalene, toluol, benzol, and ammonia. Koppers Company Whole Tar Products is present in the northeast portion of the site, south of Baraga Street. Tar tanks are present on this portion of the property. Iroquois Gas Company is present to the north of Koppers.
- 1950 (Sanborn Map) and 1951 (Aerial Photo) The Coke Plant site did not change significantly since 1940. Two minor changes include the presence of an additional smaller gas holder to the west of the large gas holder, and four additional purifier boxes to the east of the previously mentioned purifier boxes.
- 1960 (Aerial Photo) There appears to be no significant change in the plant operations and site features.

1986 (Sanborn Map) - The only change appears to be that operations are suspended. Also, the original four purifier boxes had been removed from the Iroquois portion of the site.

Donner Hanna Coke Corporation produced primarily coke from coal. Coke production is a carbon removal process involving heating the coal to temperatures of 350 to 1000 degrees Centigrade in the absence of air forming impure carbon residue called "coke" and some volatile products. The condensation of the volatile products from this destructive distillation produces black coal tar as light to heavy grade crudes.

The process also emits coal gas composed of a mixture of hydrogen, methane, carbon monoxide, ethane, ammonia, carbon dioxide, hydrogen sulfide, and other minor components. Recovered by-products from the coal to coke process included phenols as sodium phenolate, ammonia as ammonium sulfate, tars as heavy and light grade crudes, an unrectified light oil containing benzene, toluene and xylene, and naphthalene as a tar from the final cooler. The plant also had a large gas holding tank used to store processed coke oven gas prior to its reuse as fuel in the coke batteries and other plant areas. In addition, there were various piping and utility systems located both aboveground and below ground. Production, storage and handling were performed in the following areas:

- Gas Holder and Iron Oxide (Purifier) Box Area.
- Tar Storage Tank Area.
- Light Oil Area.
- Benzol Washer and Final Cooler Area.
- Locomotive Shed Area.
- Old Tar Tank Area.
- Tar Precipitator Area.
- Shop Area.
- Tar Decanter Area.
- Underground Piping near August Feine.
- Electrical Substation.

These areas were identified as areas of potential environmental impacts for the purpose of focusing Phase II investigation activities. Structures were decommissioned and demolished to ground level in 1990 and 1991. Aboveground features were decontaminated and demolished with the resulting waste products reportedly managed in accordance with

applicable local, State, and Federal regulations. Trenches and pits were cleaned, fractured, and backfilled. Some underground piping and utilities were also removed.

In a Phase II Investigation Report for the Donner-Hanna Coke Yard Site prepared by Recra Environmental as agents for the NYSDEC, it was reported that a 145-foot deep injection well was used during a four-year period prior to 1952 for the disposal of undocumented quantities of ammonia- and phenol-containing wastes. The location of this well was never identified. A well depth of 145 feet places the bottom of the well near the base of the Onondaga Limestone Formation. Since bedrock groundwater is not used as a source of potable water in the Buffalo area, potential historic disposal of these waste materials would have no impact on human health.

2.1.3 Area III - Former LTV Warehouse Area Parcel

The LTV warehouse parcel was reportedly used for storage and maintenance of equipment. The warehouse was present in a 1927 aerial photograph. A summary of observations gathered during review of the aerial photos and Sanborn Maps is presented below:

- 1917 (Sanborn Map) The warehouse site contained a Bridge Shop operated by Lackawanna Bridge Company. A paint shop was present in a small portion of the northern side of the building. Two electric cranes existed to the east of the Bridge Shop and two railroad spurs entered the site from the west.
- 1927 (Areal Photo) The warehouse building was visible in the photograph and was the only building on the site at this time. A covered shipping yard is present on the western side of the building.
- 1940 (Sanborn Map) The warehouse, called Factory Main Shop at this time, was operated by Bethlehem Steel Company. Relatively small portions of the northern side of the building were used as a bolt & rivet shop, paint shop, machine shop and forge shop. A woodworking shop is also present on a portion of the east side of the building. Additional railroad spurs are located to the west of the building. An office building on the eastern side of the site was present with access to Abby Street. It appears that tractor trailer trucks or railroad cars were stored on this portion of the site.

- 1950 (Sanborn Map) There appears to be no change on the site since 1940.
- 1951 (Aerial Photo) In addition to the warehouse building, a pile of fill is noted to the south of the warehouse. A covered shipping yard was added on the southwestern corner of the warehouse building.
- 1960 (Aerial Photo) Either a building or a covered shipping yard was present to the south of the warehouse. Railroad spurs appear to traverse underneath the cover into the shipping yard. Piles of fill were noted to the southeast of the warehouse.
- 1972 (Aerial Photo) The warehouse building is present as is the small building with access off Abby Street. The covered shipping yard is no longer on the site. Small debris piles are noted on the entire site with dirt access roadways around the piles.
- 1986 (Sanborn Map) LTV Corporation is identified as the owner of the property. Only the original warehouse structure and office are present on the site.

2.1.4 Area IV - Former Donner-Hanna Coke Yard Parcel

The former Donner-Hanna Coke Yard Parcel is the southern most parcel of the entire Steel Manufacturing Site. Hood Industries owns and operates property contiguous to the Donner-Hanna Coke Yard site on Tifft Street. The Donner-Hanna Coke Yard site was used for the storage of coke and coal and allegedly the disposal of acid sludges and tar from the steel plant and coke plant. A preliminary Phase I/Phase II Investigation was performed by Recra Environmental, Inc as agents of the NYSDEC in July 1990 on the former Donner-Hanna Coke Yard site. The report indicates that large quantities of coke overlay native soil (generally consisting of lacustrine sand, silt and clay). The investigation detected benzene, as well as other volatile organic compounds, and polynuclear aromatic hydrocarbons (PAHs) in soil, groundwater and surface water. Based on the preliminary findings of the Phase I/II Investigation, the Donner-Hanna Coke Yard site was listed on the New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Site list with a "3" classification (hazardous waste disposed of on the property with no significant threat to human health).

The site was extensively filled over time while primarily being used for coke storage.

A summary of observations gathered during review of the aerial photos and Sanborn Maps is presented below:

- 1917 (Sanborn Map) Three streets are present to the north of Tifft Street.

 The streets are not evident on the 1927 aerial photo.
- 1927 (Aerial Photo) It appears that this area was a meadow or wetland.
- 1940 (Sanborn Map) No change apparent since 1917 Sanborn Map.
- 1950 (Sanborn Map) A small building identified as 'welding' appears near the intersection of Abby and Tifft on what is now Hood Industries.
- 1951 (Aerial Photo) The site had been partially filled in the northern portion. Vegetative growth was noted to the east and south of the site. A wet area of the site is still visible.
- 1960 (Aerial Photo) Piles of fill were noted on most of the site. The wet area noted in 1951 is smaller.
- 1972 (Aerial Photo) The entire site is characterized by scattered piles. The piles appear to be coal or coke. Hood Industries building is present on Tifft Street south of the Donner-Hanna Coke Yard site.

2.2 REGULATORY RECORDS SEARCH

A review of available environmental records for the subject property and nearby sites was conducted by Environmental Data Resources, Inc. (EDR) in conformance with the specific requirements of ASTM Standard Practice for Environmental Site Assessments. The sites researched under the regulatory review included:

- National Priority List (NPL) sites, RCRA Treatment, Storage and Disposal (TSD) sites, NY State Listed Hazardous Waste Sites, RCRA Corrective Action Sites, Records of Decision (RODs), Consent Orders, and Coal Gas databases for sites within a one mile radius.
- CERCLIS sites, NY State Landfills, and Leaking Underground Storage Tank (LUST) databases for sites within a half mile radius.

- Underground Storage Tanks (USTs), RCRA Small Quantity Generators (SQGs), and RCRA Large Quantity Generators (LQGs) for sites within a quarter mile radius, and Above-ground Storage Tanks (ASTs) within a oneeight mile radius.
- Delisted sites and miscellaneous environmental permits or spill data existing at the target property.

A summary of the findings is presented below. The complete database search is presented as Attachment A.

- A total of two Resource Conservation and Recovery Act TSD (treat, store, and dispose) sites were identified and located within one (1) mile of the property. Those include Advanced Electro Polishing Inc. and PVS Chemical Inc.
- A total of seven State Hazardous Waste sites are located within one (1) mile of the property. Of those, only one site (Donner-Hanna Coke Yard site) is on the target property. The other six include: Buffalo Color Corp. Area D; Marilla Street Landfill; Tifft and Hopkins; Lehigh Valley Railroad; Alltifft Landfill; and Ramco Steel. The six latter sites listed are not in the immediate vicinity of the property and are not anticipated to pose a threat to the parcels.
- A total of one handler with RCRA Corrective Action Activity (CORRACTS) is located with one (1) mile of the property. This CORRACTS site is PVS Chemical Inc. of New York.
- A total of two Leaking Underground Storage Tanks (LUSTs) are located within ½ mile of the property. These include Davis and Mavis, and Pallet Exchange, Inc., located between ¼ and ½ miles east of the Site. Given the significant distance and the likely direction of groundwater flow towards the Buffalo River, it is unlikely that these tanks could impact the subject property.
- A review of groundwater supply wells near the property indicated that no registered public or private wells are located within a 1- mile radius of the site.

2.3 SITE RECONNAISSANCE

The site reconnaissance was conducted in March 1997. The property consists of approximately 218 acres of relatively flat-lying graded fill from the demolition of former site structures. Vegetation was present during the site visit; however, as expected during spring weather, the vegetation was very sparse. Fences with locked gates surround the 218 acres of the site with the exception of a dirt road that traverses the site near the August Feine property. A large soil fill berm exists along a portion of the eastern site boundary between the site and Abby Street. All site structures were demolished when the plant operations were suspended in the 1980s. Therefore, no building interiors were inspected as part of the Phase I. During the site walkover, only three areas with potential environmental conditions were noted:

- Two fill ports on the edge of the Buffalo River at the major bend in Area I.
- A blue staining on the ground surface of an area approximately 100 square feet in Area III.
- Black coal/coke fill over much of Area IV.

As part of plant demolition operations, the ground surface was graded. This activity could have masked potential areas of environmental conditions which could have been otherwise visually identified. A list of areas of potential environmental condition was assembled and targeted for drilling and sampling during a Phase II Investigation.

2.4 AREAS OF POTENTIAL ENVIRONMENTAL CONDITIONS

Based on historical site information, information provided by former employees of the site, regulatory records search and site conditions assessed during a site walkover, the Phase I ESA identified the following specific areas of the site as having potential environmental conditions:

Area I

- Scale Pit Area.
- Fuel Oil Storage Area.
- Clarifier Area.
- Oil House and Pickling Area.
- Machine Shop/Electric Shop Area.
- Pickling Area.
- Gas Cleaning/Producer Area.
- Transformer Area.
- Locomotive Repair Shop Area.
- BOF Dust Precipitator Area.
- Fuel Oil Storage Area.
- Underground Piping Area.
- Area North of Skull Cracker Building.

Area II

- Gas Holder and Iron Oxide (Purifier) Box Area.
- Tar Storage Tank Area.
- Light Oil Area.
- Benzol Washer and Final Cooler Area.
- Locomotive Shed Area.
- Old Tar Tank Area.
- Tar Precipitator Area.
- Shop Area.
- Tar Decanter Area.
- Underground Piping near August Feine.
- Electrical Substation.

Area III

- Wood Shop Area.
- Maintenance Shop Area.
- Paint Shop Area.
- Sludge Disposal Area.
- Storage Area.
- Tar Disposal Area.

Area IV

Entire area based on storage of coke and disposal of sludge and tar.

3.0 PHASE II ENVIRONMENTAL SITE ASSESSMENT

3.1 GENERAL

As concluded from the Phase I ESA, areas of potential environmental conditions have been identified for the Steel Manufacturing Site. A Phase II ESA was designed and conducted to characterize the geology and hydrogeology of the four parcels (Areas I-IV) which constitute the Steel Manufacturing Site and to assess whether historic industrial uses of the Site have contaminated on-site media (soil, groundwater, surface soil, and air). The following subsections describe: the methods used to characterize the Steel Manufacturing Site; the geologic and hydrogeologic conditions; and the results of an environmental sampling program.

3.2 INVESTIGATIVE METHODOLOGY

Field investigations for the Phase II Environmental Site Assessment were conducted during March and April 1997. The Steel Manufacturing Site is sub-divided into four separate areas based on existing physical boundaries and the site history described in Section 2.0. These areas include:

- Area I Former LTV Steel Plant Parcel.
- Area II Former Donner-Hanna Coke Plant Parcel.
- Area III Former LTV Warehouse Area Parcel.
- Area IV Former Donner-Hanna Coke Yard Parcel.

The Steel Manufacturing Site (hereafter referred to as the Site) characterization program included the collection and analysis of soil gas, surface soil, subsurface soil, groundwater and surface water samples. Area-specific sampling and analysis programs were developed for each of the four parcels to assess the potential for environmental impacts resulting from historic industrial uses of the properties. Since none of the former site structures currently exist (with the exception of the building owned by August Feine), area-specific sampling locations were selected using an overlay of a survey grid established for the site (400 foot

MALCOLM PIRNIE

centers) on a historic aerial photograph dated 1972. The aerial photo was scanned and digitized to create a CADD base map with the topographic and survey grid data input as a CADD-based overlay. Using this survey grid/aerial photo map, accurate sampling locations associated with each specific area of interest identified as a result of the Phase I were selected. Sample locations were selected by matching survey grid coordinates to site-specific areas of interest. The aerial photo, survey grid, and sampling locations are shown on Plate 2. Field activities performed to characterize the site included:

- Geophysical reconnaissance survey.
- Passive soil gas investigation.
- Surface soil sampling.
- Installation of boreholes, monitoring wells, and piezometers with subsurface soil characterization;
- Development of all newly installed monitoring wells.
- Test pit excavation.
- Surface water sampling.
- Groundwater sampling.

A detailed discussion of these activities is presented in the following subsections.

3.2.1 Surface Soil Characterization

Surface soil sampling was performed at a total of 23 sample locations in Areas I, II and III of the site. Surface soils in Area IV were not sampled since the coke that exists at the ground surface across most of the area is planned for excavation as part of coke recovery operations at the site. The sample locations designated SS-1 through SS-23, are shown on Plate 2. Samples SS-1 through SS-9 and sample SS-23 were collected within Areas II and III. Samples SS-10 through SS-22 were collected in Area I. Samples were collected at locations of historical significance, at random locations across the site or at discolored

surface soil locations identified during the Phase I ESA to assess the potential for contamination in the surface soil at the site.

Surface samples were collected from 0 to 1-foot below ground surface using a 3-inch diameter split spoon sampler. At sample location SS-23 a stainless steel trowel was used to collect discolored surface soil (light blue color) present in the southern portion of Area III. The soils were analyzed for full TCL organic compounds and TAL metals, plus cyanide.

3.2.2 Subsurface Soil Characterization

3.2.2.1 Geophysics

Prior to implementing an intrusive program to characterize the subsurface conditions, an EM31 and EM61 geophysical survey was conducted in the vicinity of the Donner-Hanna Coke Plant parcel's former Benzol production and storage area. The purpose of the geophysical investigation was to establish the effectiveness of these methods to identify buried building foundations and the location of underground piping. The findings and results from the geophysical survey are presented in Attachment B-1. Because of the high conductivity of the fill materials and the lack of definitive anomaly locations relative to the known locations of buried building foundations and tank pads, geophysical testing was discontinued.

3.2.2.2 Passive Soil Gas

A shallow, passive soil gas investigation was conducted in Area II in the vicinity of the former coke by-products handling facilities. A total of thirty (30) GORE-SORBER soil gas units were installed on a grid to identify the presence of polynuclear aromatic hydrocarbon (PAHs) compounds and aromatic hydrocarbons (benzene, toluene, ethylbenzene and xylene {BTEX}) in fill material at the site. The installation of each unit required the manual advancement of small diameter (½ - inch) holes to an approximate depth of 2.5 feet below ground surface. The GORE-SORBER units were then installed to the base of each hole and left in place for a period of approximately 2 weeks. The units were subsequently collected and sent to the W.L. Gore & Associates analytical laboratory for

18

analyses. The location of the soil gas probes and the results of the soil gas investigation are presented in Attachment B-2.

3.2.2.3 Subsurface Borings

A subsurface investigation was conducted by Malcolm Pirnie during March and April 1997 to collect subsurface soil samples required to characterize the overburden materials at the site in Areas I, III, and IV. Area II subsurface characterization activities were performed by ICF Kaiser. A description of the investigation for Area II is presented in Attachment B-3.

The drilling program involved the advancement of a total of 95 borings and included the installation of four (4) monitoring wells in Area I, two (2) wells in Area III, and nine (9) wells in Area IV. The monitoring wells were installed to facilitate sampling of the shallow groundwater and assess the groundwater flow direction in the shallow water-bearing zone at the site. Well installations in Area IV supplemented an existing monitoring well network installed during a Phase II Investigation conducted by RECRA, Inc. as agents for the NYSDEC in 1989.

Borings in Area I were given an alpha-numeric designation A1- (A series through M series) corresponding to the area of interest identified on Plate 2. Generally, two to three soil borings were completed in each area of interest. Borings in Area III are designated A3-SB- (1 through 6) and correlate to specific activities identified for the warehouse building (i.e., maintenance shop, paint shop, wood shop, etc.) and in other portions of the warehouse area to characterize areas distant from the warehouse. Borings in Area IV were designated A4-SB- (1 through 44) and MW-1/1A, 2/2A, 3/3A, 4, 5, and 6. The locations of these boreholes and monitoring wells are shown on Plate 2.

Boreholes were advanced using 4-1/4 inch hollow stem augers to completion depths below the surficial fill unit and coincident with, or below the fill/native soil contact. At the monitoring well locations, wells were constructed using 2-inch diameter Schedule 40 screen and riser pipe material. The screens, which are five feet in length and have a .006-inch slot size, were generally installed to the base of the fill unit identified during borehole and auger advancement. A riser pipe was extended approximately two (2) feet above the well grade elevation and a primary sand pack consisting of a select #1 silica sand equivalent was then

MALCOLM PIRNIE

placed to the top of the screened interval. Where possible, the thickness of the sand pack was extended above the top of the screened interval to intercept the shallow groundwater table. Bentonite chips were placed above the sand pack to a minimum thickness of one (1) foot to seal the well. All borings were then backfilled with drill cuttings. Because the monitoring wells are considered temporary, steel protective casings were not installed above the riser stickup. A locking mechanical plug was used to complete the wells.

Three wells were installed below the base of the coke /fill unit in Area IV. The wells, given the designations A4-MW-1 A4-MW-2 and A4-MW-3, were drilled to a maximum depth approximately six feet below the fill unit into native sediments. A shallow well was then completed in the fill unit (saturated coke) immediately adjacent to the deeper well completed in native material. The shallow wells were designated A4-MW-1A, MW-2A and MW-3A. Monitoring well construction details are presented in Table 3-2. Well construction diagrams are included in Attachment B-4.

The depths of boreholes completed in Areas I, III and IV at the site are summarized in Table 3-1. Boreholes completed in Area II are summarized in Attachment B-3. Stratigraphic information used to physically characterize the fill and native sediments was determined from continuous 3-inch diameter split-spoon samples collected during borehole advancement. Soil samples collected at each location were inspected and described on stratigraphic borehole logs by an on-site geologist. When feasible, an HNu photoionization detector (PID) with a 10.2 Ev lamp was used to scan split spoon soil samples immediately upon retrieval from each boring. Soil samples were placed in labeled glass jars for total organic vapor analysis and archiving purposes. Resultant PID readings were recorded on the field stratigraphic borehole logs presented in Attachment B-5. PID readings were not elevated above background in the ambient air in the vicinity of any of the boreholes during intrusive activities. Subsequent to a visual, olfactory and PID screening process, suspected contaminated soil samples were submitted to Columbia Analytical Services for Full TCL organic compounds and TAL metals or select metals. Specific analytical parameters are summarized in Section 3.4.

As part of a supplemental boring/sampling program completed in the western portion of Area IV, soil samples were collected and analyzed from 24 soil borings. A total of four

TABLE 3-1

BOREHOLE SUMMARY DATA

Borchole ID	Estimated	Total Borehole	Intervals Sampled for
Number	Ground Elev. (ft.)		Laboratory Analysis
Area I (Former	LTV Steel Plant Pa	rcel)	
A1-SB-1	583.8	12.0	
A1-SB-2	583.8	14.0	
A1-SB-3	583.8	11.0	
A1-SB-4	583.8	14.0	
A1-SB-5	583.8	8.0	
A1-SB-6	583.8	8.0	
A1-SB-7	583.8	14.0	
A1-SB-A1	583.8	14.0	8.0 - 12.0
A1-SB-A2	589.7	16.0	8.0-10.0; 8.0-12.0
A1-SB-A3	584.2	12.0	8.0 - 12.0
A1-SB-B1	584.5	14.0	10.0 - 14.0
A1-SB-B2	583.3	14.0	10.0-14.0; 12.0-14.0
A1-SB-B3	583.2	12.0	10.0 - 14.0
A1-SB-C1	583.7	12.0	10.0 - 12.0
A1-SB-C2	584.0	18.0	12.0 - 14.0
A1-SB-C3	582.5	16.0	
A1-SB-D1	581.8	14.0	10.0 - 14.0
A1-SB-D2	582.6	14.0	10.0 - 14.0
A1-SB-D3	583.3	12.0	10.0-12.0; 10.0-14.0
A1-SB-E1	583.4	8.0	4.0 - 8.0
A1-SB-E2	583.3	10.0	4.0-6.0; 4.0-8.0
A1-SB-E3	582.0	8.0	4.0 - 8.0
A1-SB-F1	582.7	6.0	4.0 - 6.0
A1-SB-F2	583.6	14.0	4.0 - 6.0
A1-SB-GI	583.3	12.0	8.0-10.0; 11.0-11.5
A1-SB-G2	583.8	8.2	
A1-SB-H1	584.0	14.0	8.0 - 10.0
A1-SB-H2	582.7	10.0	8.0 - 10.0
A1-SB-II	582.1	14.0	10.0 - 13.0
A1-SB-I2	583.3	12.0	8.0-10.0; 10.0-13.0
A1-SB-J1	582.7	14.0	
A1-SB-J2	583.3	12.0	8.0-10.0; 10.0-12.0
A1-SB-K1	581.8	8.0	6.0 - 8.5
A1-SB-K2	588.9	12.0	6.5-7.0; 6.0-8.5
A1-SB-K3	583.9	10.0	6.0 - 8.5
A1-SB-M2	585.8	14.0	6.0 - 6.5
	r Warehouse Site P		10.10
A3-SB-1	584.9	12.0	1.0 - 1.5
A3-SB-2	586.9	28.0	10.0 - 10.5
A3-SB-3	583.9	8.0	1.0 - 1.5
A3-SB-4	583.7	8.0	4.0 - 5.0
A3-SB-5	583.7	10.0	4.0 - 5.0
A3-SB-6	583.9	10.0	2.5 - 3.0
A3-GW-4	584.8	10.0	2.5 - 3.0
<u> </u>	r Donner-Hanna C		60 00
A4-SB-1	583.8	8.0	6.0 - 8.0
A4-SB-2	584.2	6.0	
A4-SB-3	584.5	8.0	<u> </u>
A4-SB-4	583.2	8.0	
A4-SB-5	583.7	8.0	6.5 - 7.0
A4-SB-6	584.0	8.0	0.3 • 7.0
A4-SB-7	582.5	6.0	4.0 - 4.7
A4-SB-8	581.8	6.0	4.0 * 4.1
A4-SB-9	582.6	6.0 8.0	2.5 - 3.5
A4-SB-10	583.4	6.0	2.3 - 3.3
A4-SB-11	582.4	6.0	
A4-SB-12	582.0	8.0	
A4-SB-13 A4-SB-14	582.7 583.6	8.0	
V4-2D-14	1 333.0	3.0	

TABLE 3-1

BOREHOLE SUMMARY DATA

Borehole ID			Intervals Sampled for		
Number	Ground Elev. (ft.)	Depth (ft.)	Laboratory Analysis		
A4-SB-15	583.5	8.0			
A4-SB-16	583.8	8.0			
A4-SB-17	584.0	8.0			
A4-SB-18	582.7	8.0			
A4-SB-20	582.3	8.0			
A4-SB-21	582.9	8.0	5.7 - 6.0		
A4-SB-22	583.8	8.0			
A4-SB-23	583.3	8.0	2.5-3.5; 6.0-6.5		
A4-SB-24	582.7	6.0			
A4-SB-25	581.2	6.0			
A4-SB-26	581.8	8.0			
A4-SB-27	583.9	8.0	2.0 - 2.5		
A4-SB-28	583.5	8.0			
A4-SB-29	582.9	8.0	6.5 - 7.0		
A4-SB-30	582.8	8.0	6.0 - 6.5		
A4-SB-31	581.7	6.0			
A4-SB-32	582.3	6.0			
A4-SB-33	582.7	6.0			
A4-SB-34	583.7	8.0			
A4-SB-35	582.8	6.0	** · · ·		
A4-SB-36	582.0	6.0	4.2 - 4.7		
A4-SB-37	581.8	6.0			
A4-SB-38	582.7	8.0			
A4-SB-39	585.2	10.0	2.5 - 3.0		
A4-SB-40	583.6	8.0			
A4-SB-41	584.5	8.0	6.5 - 7.0		
A4-SB-42	582.3	6.0			
A4-SB-43	582.6	6.0			
A4-SB-44	583.3	6.0			
A4-MW-1	583.6	14.0			
A4-MW-1A	583.6	7.0	*****		
A4-MW-2	581.8	14.0	5.5 - 6.0		
A4-MW-2A	582.1	7.0	-		
A4-MW-3	581.3	14.0			
A4-MW-3A	582.3	7.3			
A4-MW-4	583.4	14.0	2.5 - 3.0		
A4-MW-5	583.6	12.0	4.5 - 5.0		
A4-MW-6	583.8	12.3			

See Appendix B-2 for Borehole Summary Data in Area II All boreholes are 8.5 inches in diameter.

0848-263-300 Page 2 of 2

TABLE 3-2

MONITORING WELL CONSTRUCTION DATA

Well ID Number	Estimated Ground Elev. (ft.)	Total Borehole Depth (ft.)	PVC Riser Elev. (ft.)	Top of Sandpack (ft.)	Screened Interval (ft.)	Base of Sandpack (ft.)	Native Soil (ff 6g)
Area I (For	ner LTV St	eel Plant Pa	rcel)	. `.			
A1-SB-A2	589.7	16.0	591.7	10.0	12.0 - 17.0	17.2	
A1-SB-F2	586.2	14.0	588.2	5.0	8.0 - 13.0	14.0	
A1-SB-K2	588.9	12.0	591.0	4.0	6.0 - 11.0	11.0	
A1-SB-M2	585.8	14.0	587.8	5.5	7.8 - 12.8	12.8	
Area II (Fo	mer Donne	r-Hanna Co	ke Plant Pa	rcel)			
A2-P-I	587.2	10.0	590.0	4.0	5.0 - 10.0	10.0	
A2-P-II	588.8	10.0	590.9	4.0	5.0 - 10.0	10.0	
Area III (Fo	rmer Ware	house Parc	el)		`		
A3-SB-3	583.9	8.0	585.4	2.0	2.0 - 7.0	7.0	
A3-SB-6	583.9	10.0	585.7	3.0	3.0 - 8.0	8.0	
A3-GW-4	584.8	10.0	588.5	3.0	3.0 - 8.0	8.0	
Area IV (Fo	rmer Donn	er-Hann a C	oke Yard P	arcei)			
A4-MW-1	583.6	14.0	585.8	8.0	8.0 - 13.0	14.0	6
A4-MW-1A	583.6	7.0	585.8	2.0	2.0 - 7.0	7.0	6
A4-MW-2	581.8	14.0	584.1	8.0	8.0 - 13.0	14.0	5.4
A4-MW-2A	582.1	7.0	584.2	2.0	2.0 - 7.0	7.0	5.4
A4-MW-3	581.3	14.0	583.9	7.5	7.7 - 12.7	12.7	5
A4-MW-3A	582.3	7.3	584.1	2.0	2.3 - 7.3	7.3	clogoy (pell 02
A4-MW-4	583.4	14.0	585.1	5.5	7.0 - 12.0	12.2	cloyou (Pell OZ
A4-MW-5	583.6	12.0	585.9	5.0	7.0 - 12.0	12.0	4.3
A4-MW-6	583.8	12.3	585.7	4.0	6.0 - 11.0	11.3	3

soil borings were sampled in six subareas defined in the area of tar material and designated A through F. Boring locations and subareas are shown on Figure 3-2. The purpose of the supplemental boring program was to characterize the potential source of benzene in the area identified during the Phase II ESA. Samples were analyzed for TCLP VOCs, SVOCs, select metals and total cyanide to determine if characteristic hazardous waste for toxicity exist in the area. The results of the boring/sampling program in Area IV is described in Section 3.4.4.

3.2.2.4 Well Development

All newly installed monitoring wells were developed by bailing with a dedicated disposable plastic bailer. The existing well A3- GW-4 which was later to be included in the groundwater sampling event, was also redeveloped by bailing. Purged groundwater was monitored for pH, turbidity, and specific conductivity. Where possible, development was continued until turbidity values were less than 50 NTU, or until pH, and conductivity values had stabilized after purging approximately ten well volumes. The monitoring wells designated A4-MW-1, A4-MW-2, A4-MW-3A, A4-MW-6, A3-SB-3, A3-SB-6, A1-MW-F2, and A1-MW-M2 were slow to recharge and were bailed to "dryness" during well development. Well development field logs are presented in Attachment B-6.

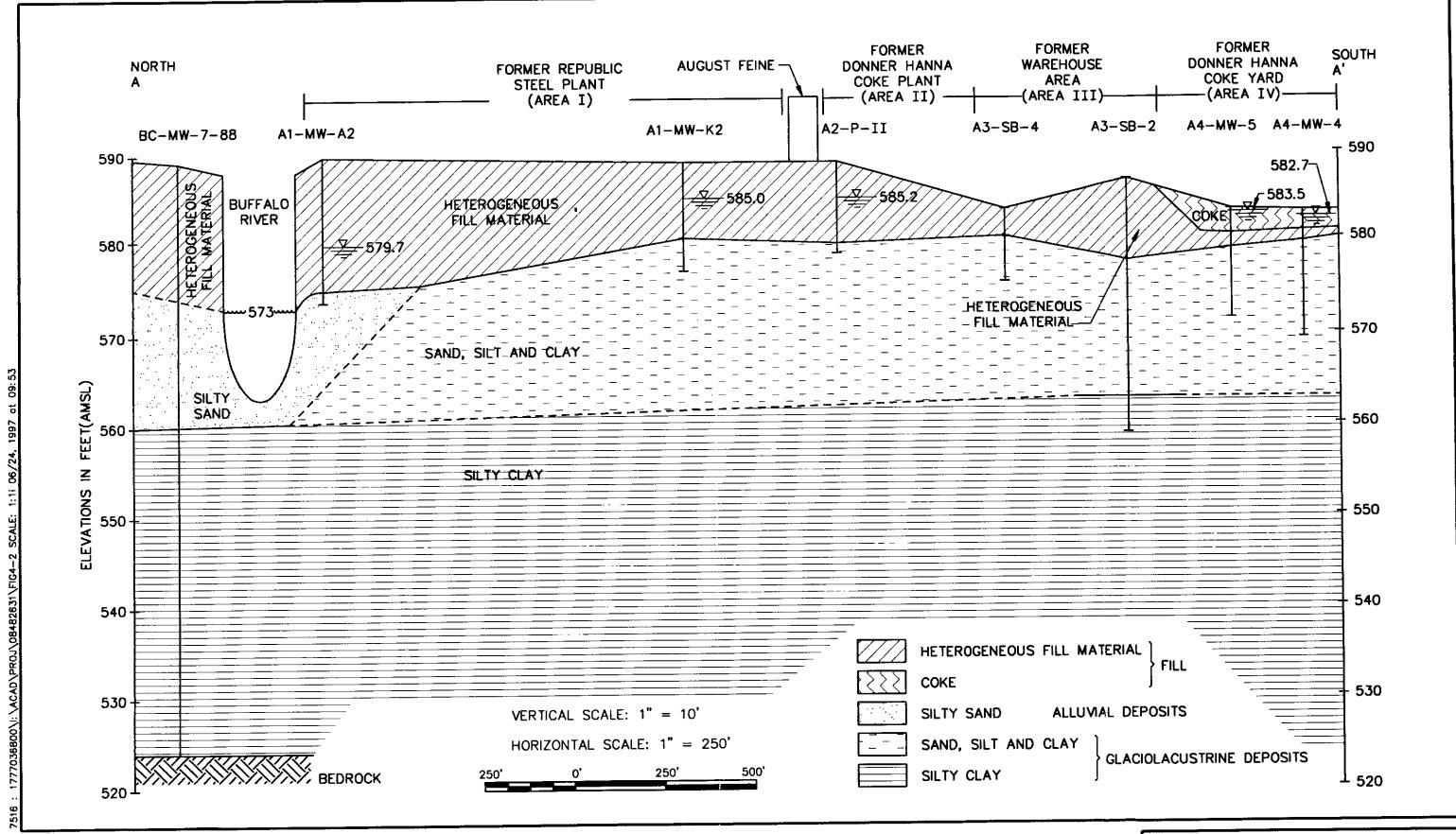
3.2.2.5 Test Pit Excavation

A total of eleven test pits were excavated to depths of approximately 5 -10 feet below grade into the soil berm located along Abby Street and into areas of known underground oil pipelines in Area I (see Plate 2). Test pits designated TP-4 through 8 were excavated into the soil berm to characterize materials present in the berm. An additional surface soil sample (LTV-1) was collected on the east side of the soil berm in Area I during the test pit program to characterize a white-colored discharge from the soil berm. Samples were collected at each location and analyzed for Full TCL organic compounds and TAL metals. Samples from TP-5 and TP-6, which were located adjacent to each other and of similar materials, were composited. Test pits TP-1 through 3 and TP-9 through 11 were excavated in an area of known underground oil pipelines in Area I. Visual observations of

oil contamination, where apparent, were noted. A sample was collected from the Test pit excavated at TP-10 and analyzed for BTEX and PAHs. Overburden materials were described by an on-site geologist and recorded on test pit logs included in Attachment B-7.

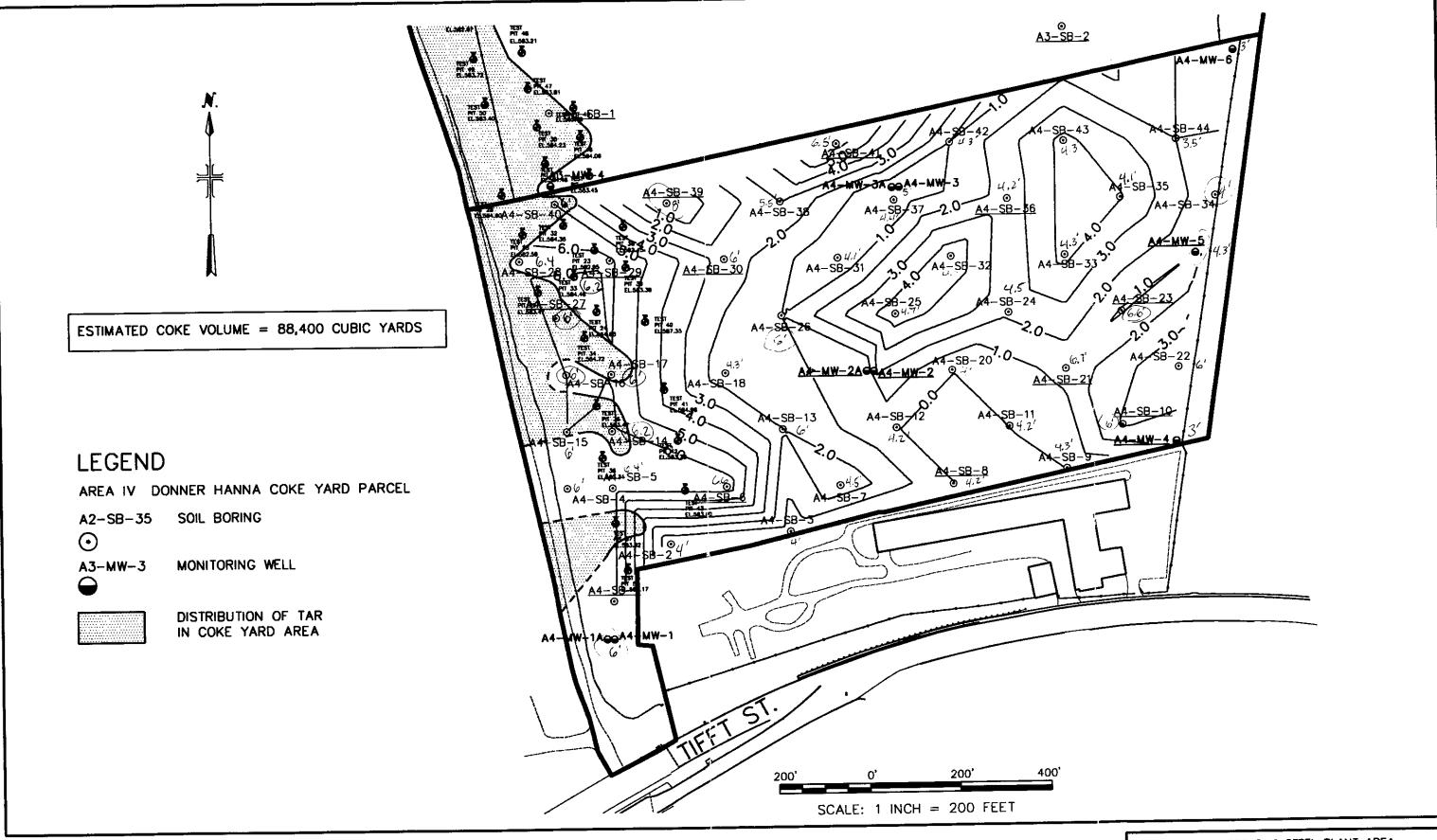
3.2.3 Surface Water Characterization

Three surface water samples were collected from the standing surface waters existing on the undulating surface of the coke in Area IV. Sampling locations are shown on Plate 2. The samples designated SW-1 and SW-3 were collected from discolored ponded areas found in the northwestern and northeastern quadrants of the site, respectively. The sample, SW-2 was collected near the southern downstream terminus of the north - south trending drainage swale that bisects the former coke storage area. Samples were analyzed for Full TCL organic compounds and TAL metals.


3.2.4 Groundwater Characterization

Groundwater samples were collected from fifteen new monitoring wells (MW) two piezometers (P) and one existing monitoring well (GW) during a sampling event conducted in April 1997. Monitoring well sampling locations are shown on Plate 2. Groundwater samples were analyzed for Full TCL organic compounds and TAL metals. Data for field measured parameters are summarized in Table 3-3.

3.3 SITE GEOLOGY/HYDROGEOLOGY


Heterogeneous fill material overlies native soils across the entire site. As shown in the cross-section on Figure 3-1, the fill thickness ranges from 6 to 10 feet. At the Former Donner Hanna Coke Yard (Area IV) portion of the site up to 6 feet of coke overlies fill (see Figure 3-2). The fill material is generally coarse-grained and is comprised of mixtures of slag, ash, coal, and construction and demolition debris in a matrix of sand and gravel. The berms on the eastern side of the site are composed of fill material and are approximately 10 feet in height. Tar material is intermixed with the coke fill in the northwestern portion of Area IV and extends into fill material located in the extreme southwest corner of Area III.

0848-263/FSA 22

FORMER REPUBLIC STEEL PLANT AREA
PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT
GEOLOGIC CROSS SECTION ALONG LINE A-A'

FORMER REPUBLIC STEEL PLANT AREA
PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT
COKE THICKNESS MAP

TABLE 3-3

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF FIELD MEASUREMENTS FROM WELL DEVELOPMENT AND SAMPLING(1)

LOCATION	A4-MW-1		A4-MW-1A		A4-MW-2		A4-MW	/-2A	A4-MV	V-3	A4-MW	/-3A
DATE	development 4/1/97	sampling 4/3/97	development	sampling 4/3/97				sampling	development	sampling		sampling
	4/1/9/	4/3/9/	4/1/9/	4/3/9/	4/1/97	4/3/97	4/1/97	4/3/97	4/1/97	4/3/97	4/1/97	4/3/97
VOL. PURGED (gal)/ WELL VOLUMES	7.5/4		10.0/11		5.0/2		19.0/16		10.0/5		10.0/0	
VOLUMES	7.3/4	-	10.0/11	-	3.0/2	-	18.0/16	-	10.0/5	-	10.0/8	•
TEMP (°C)	-	8.0	-	6.0	ı	6.0	_	7.0	-	6.0	-	7.0
pH (units)	6.2	7.27	6.7	7.06	6.5	6.49	7.4	6.14	3.7	4.64	9.2	6.8
CONDUCTANCE												
(umhos/cm) ⁽³⁾	3220	2020	2390	1860	2550	2870	600	1670	34,300	4690	2690	1170
TURBIDITY (NTU)	>100	> 100	>100	81	>100	> 100	> 100	> 100	< 50	> 100	> 100	64
APPEARANCE	Muddy	Turbid	Black, Cloudy	Turbid	Brown, Muddy	Turbid	Dark Grey	Turbid	Clear Yellow	Turbid	Grey Green	Clear

- (1) Parameters taken from last bailer during well development. During sampling, parameters were taken from the initial bailer.
- (2) Parameters not measured to avoid meter damage.
- (3) Conductance corrected to 25°C.
- Not Applicable

TABLE 3-3

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF FIELD MEASUREMENTS FROM WELL DEVELOPMENT AND SAMPLING(1)

LOCATION	ATION A4-MW-4		A4-MV	V-5	A4-MV	V-6	GW-4		A3-SE	I-3	A3-S	B-6
DATE	development sampl 4/1/97 4/3/9		development	sampling 4/3/97	development 4/1/97	sampling	development 4/1/97	sampling	development 4/1/97	sampling 4/3/97	development 4/1/97	sampling 4/3/97
VOL. PURGED (gal)/ WELL VOLUMES	20.0/10	-	15.0/8	-	10.0/6	-	20.0/12	-	5.0/4	-	15.0/10	-
TEMP (°C)	_	8.0	-	6.0	-	8.0	-	6.0	•	7.0	-	9.0
pH (units)	6.5	6.90	6.6	7.01	6.5	7.23	5.6	7.44	9.1	11.29	10.0	9.39
CONDUCTANCE (umhos/cm) ⁽³⁾	1720	1340	2070	1670	2360	2150	5020	1750	1910	1300	1360	1310
TURBIDITY (NTU)	> 100	> 100	> 100	> 100	> 100	85	> 100	95	> 100	61	< 100	94
APPEARANCE	Yellow Silty	Turbid	Grey Muddy	Cloudy	Yellow Brown	Cloudy	Rusty Clearing	Cloudy	Black Silty	Clear	Clearing Grey	Turbid

- (1) Parameters taken from last bailer during well development. During sampling, parameters were taken from the initial bailer.
- (2) Parameters not measured to avoid meter damage.
- (3) Conductance corrected to 25°C.
- Not Applicable

TABLE 3-3

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF FIELD MEASUREMENTS FROM WELL DEVELOPMENT AND SAMPLING(1)

LOCATION	A2-P	A2-P-1		A2-P-11		A1-SB-K2		·M2	A1-SB	-F2	A1-SB	-A2
TE	development	sampling	development	sampling 4/4/97	development	sampling	development 4/1/97	sampling 4/4/97	development 4/1/97	sampling	development	sampling
ATE OL. PURGED									-77		W.277 V	
val)/ WELL												l
OL. PURGED gal)/ WELL OLUMES	12.0/12	-	15.0/3	-	20.0/17	-	6.0/5	-	5.0/5	-	20.0/3	
EMP (°C)	•	10.0	(2)	11.0	(2)	10.0	-	11.0	-	9.0	-	10.0
u (units)	9.28	9.10	(2)	7.81	(2)	7.56	6.3	8.74	8.3	8.62	10.8	11.01
ONDUCTANCE												
(mhos/cm) ⁽³⁾	2930	2050	(2)	1130	(2)	780	640	730	1085	1040	902	820
TURBIDITY (NTU)	> 100	12	> 100	5	> 100	55	> 100	42	> 100	> 100	> 100	30
	Black,		:							Muddy		
APPEARANCE	Clearing	Clear	Black	Clear	Oily Black	Turbid	Turbid Brown	Clear	Grey Brown	Brown	Dark Cloudy	Clear

- (1) Parameters taken from last bailer during well development. During sampling, parameters were taken from the initial bailer.
- (2) Parameters not measured to avoid meter damage.
- (3) Conductance corrected to 25°C.
- Not Applicable

The fill material is underlain by native glaciolacustrine sand, silt, and clay. These black to gray unconsolidated sediments are dense and organic-rich, and minor amounts of peat were encountered in soil borings completed in the coke yard area. Alluvium consisting of black to gray silty sand with traces of clay underlies the fill proximal to the Buffalo River. Information presented in the Remedial Investigation of the Buffalo Color site (1990), located directly across the river from the site, identified glaciolacustrine silty clay and clayey silt deposits underlying the alluvium and the sand, silt, and clay deposits.

Groundwater occurs in the overburden fill material at relatively shallow depths in the southern portion of the site (1 to 2 feet below grade) and at depths greater than 10 feet in the northern portion of the site. Due to low permeability, the clay-rich glaciolacustrine deposits underlying the more permeable fill act as a barrier to the vertical migration of groundwater, causing shallow water table conditions and groundwater flow in the fill that is primarily horizontal. The differences in permeability between the two types of material are evidenced in Table 3-4, which shows the results of particle size distribution tests for both fill material and native soil. These tests indicate that the fill material is composed of a much greater fraction of larger particles than the native glaciolacustrine deposits. Additionally, due to the techniques used to collect the soil samples, it was not possible to collect any particles present in the fill with diameters greater than 3 inches. These tests, therefore, do not quantify the size of construction and demolition debris such as cobble-sized bricks that are present in the fill.

Plate 3 shows groundwater elevations and inferred flow directions based on depth-to-groundwater measurements collected April 3, 1997. As shown on Plate 3, the groundwater in the shallow water-bearing zone migrates toward the Buffalo River in the northern portion of the site, and towards the south in the southern portion of the site. The groundwater in the southern portion of the site migrates to the south due to a smaller gradient caused by the gradual thinning of the shallow water-bearing zone occurring in the more permeable fill. As the fill thins to the south, the land surface elevation also decreases, causing a gradient sufficient to produce groundwater flow towards the lower topographic elevations to the south.

TABLE 3-4

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF PARTICLE SIZE DISTRIBUTION TESTS

·	PARTICLE SI	ZE DISTRIBUT	ION IN PERC	ENT
AREA	SOIL TYPE	GRAVEL	SAND	SILT and CLAY
I	Native	0.3	21.9	77.8
I	Fill	30.4	64.3	5.3
II	Native	2.0	31.5	66.5
II	Fill	20.1	57.9	22.0
III	Fill	33.7	59.5	6.8
ΙV	Native	3.3	13.4	83.3

3.4 ENVIRONMENTAL SAMPLING RESULTS

The environmental sampling program at the site included the collection and analysis of soil gas, surface soil, subsurface soil, groundwater and surface water samples. Area-specific sampling and analysis programs were developed for each of the four areas identified in the Phase I ESA to assess potential environmental impacts associated with historic uses of the site. As described in Section 3.1, area-specific sampling locations were identified in the field using the historic aerial photograph, the site base map and the survey grid as shown on Plate 2.

A total of 65 subsurface soil samples, 23 surface soil samples, 3 surface water samples, and 17 groundwater samples were analyzed at Columbia Analytical Laboratory using CLP protocols. The analytical program is summarized in Table 3-5. Due to their voluminous nature, the Laboratory Form I data sheets are not included in this report. Analytical data for samples collected from Areas I, III, and IV are summarized in Tables 3-6 through 3-17. Area II results are presented in the report prepared by ICF Kaiser (see Attachment B-2). Data tables are located in the text following a discussion of the results for each specific area. Additionally, Plates 4 through 7 spatially present a summary of the analytical results on the site base map for each media analyzed.

The planned end use for this site is the development of a mixed light industrial/corporate park (warehousing and distribution focus). Large areas of the property will likely be covered by site structures, parking lots and roadways. Included in the summary of tabulated analytical data, is a comparison to USEPA Region III Risk-Based Concentrations for industrial sites or where EPA risk-based concentrations have not been established for certain inorganic parameters, background inorganic parameter concentrations detected in the Truscon property soils located immediately north of Area I are identified for comparison. These comparisons served as a screening tool to identify areas/subareas of the site which pose a potential environment concern. A discussion of the environmental sampling results for each area of the site is presented in the following subsections.

TABLE 3-5

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF ENVIRONMENTAL SAMPLING AND ANALYSIS PROGRAM⁽¹⁾

I - Former LT	V Steel Plant Pa	rcel			P	aran	eter	S	
Media	Sample ID ⁽³⁾	Sampled Intervals (ft)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	PCBs	Indicators ⁽²⁾	TCLP VOCs
	SS-10, SS-11, SS-12, SS-13, SS-17, SS-18, SS-20, SS-21	0-1	х						
Surface Soil	SS-10/11 SS-12/13	0-1 0-1		X	X	X	X		
Surface Sun	SS-14 SS-15 SS-16	0-1 0-1 0-1	X X	X	X X X	X X	X X		
	SS-17/18/19 SS-20/21	0-1 0-1 0-1		X	X	X	X		
:	SS-22 A1-SB-A1/A2/A3	0-1 8.0-12.0	Х	X	X X	X	х		
	A1-SB-A2 A1-SB-B1/B2/B3	8.0-10.0 10.0-14.0	Х	х	х	х			
	A1-SB-B2 A1-SB-C1 A1-SB-C2	12.0-14.0 10.0-12.0 12.0-14.0	X	х	х	х			
	A1-SB-D1/D2/D3 A1-SB-D3	10.0-14.0 10.0-12.0	X	х	х	х			
	A1-SB-E1/E2/E3 A1-SB-E2	4.0-8.0 4.0-6.0	х	х	х	Х			
Subsurface Soil	A1-SB-F1 A1-SB-F1/F2	4.0-6.0	х	х	х	Х			
	A1-SB-G1 A1-SB-G1 A1-SB-H1	11.0-11.5 8.0-10.0 8.0-10.0	X	х	Х	х			
	A1-SB-H1/H2 A1-SB-I1/I2	8.0-10.0 10.0-13.0	^	x	x x	x x			
	A1-SB-I2 A1-SB-J2	8.0-10.0 8.0-10.0	X X						
	A1-SB-J2 A1-SB-K1/K2/K3	10.0-12.0 6.0-8.5		X X	X X	x			
	A1-SB-K2 A1-SB-M1/M2 A1-SB-M2	6.5-7.0 6.0-6.5 6.0-6.5	X	х	х	Х			
Groundwater	A1-SB-A2 (MW-A2) A1-SB-F2 (MW-F2)	0.0-0.5	X	X	X	x			
	A1-SB-K2 (MW-K2) A1-SB-M2 (MW-M2)		X	X X	X X	x x			

Notes

- (1) See ICF Kaiser Report in Appendix B-2 for Donner-Hanna Coke Plant Parcel sampling summary.
- (2) Indicators include: Benzene, toluene, ethylbenzene, and xylene; and Polynuclear Aromatic Hydrocarbons (PAHs).

0848-263-300 Page 1 of 4

⁽³⁾ Commas (,) separate discrete samples and backslashes (/) denote composited samples.

TABLE 3-5

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF ENVIRONMENTAL SAMPLING AND ANALYSIS PROGRAM⁽¹⁾

Area III - Foi	mer Warehou	se Parcel			P	aram	eters	5	
Media	Sample ID ⁽³⁾	Sampled Intervals (ft)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	PCBs	Indicators ⁽²⁾	TCLP VOAs and SVOCs
Surface Soil	SS-1, SS-2, SS-3, SS-4, SS-23	0-1 0-1	X	X	X	X			
	A3-SB-1	1.0-1.5				х		х	
Ī	A3-SB-2	10.0-10.5				Х		х	
Subsurface Soil	A3-SB-3	1.0-1.5				х		х	
Ī	A3-SB-4	4.0-5.0	х		х	х	х		
Ī	A3-SB-5	4.0-5.0	х		х	х	х		
	A3-SB-6	2.5-3.0	х		х	х	Х		
	A3-MW-3		Х	X	Х	Х			
Groundwater [A3-MW-6		Х	Х	Х	Х			
	A3-GW-4		Х	Х	Х	Х			

Notes:

- (1) See ICF Kaiser Report in Appendix B-2 for Donner-Hanna Coke Plant Parcel sampling summary.
- (2) Indicators include: Benzene, toluene, ethylbenzene, and xylene; and Polynuclear Aromatic Hydrocarbons (PAHs).
- (3) Commas (,) separate discrete samples and backslashes (/) denote composited samples.

0848-263-300 Page 2 of 4

TABLE 3-5

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF ENVIRONMETAL SAMPLING AND ANALYSIS PROGRAM⁽¹⁾

Area IV - Former	Donner-Hanna Parcel	Coke Yard			P	aran	eter	s	
Media	Sample ID	Sampled Intervals (ft)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	PCBs	Indicators(2)	TCLP VOCs and SVOCs
	A4-SW-1		Х		Х	Х			
Surface Water	A4-SW-2		х		х	х			
	A4-SW-3		х		х	x	<u> </u>		1
	A4-SB-1	6.0-8.0	х	Х	Х	Х			
	A4-MW-4	2.5-3.0							х
	A4-SB-6	6.5-7.0	х	х	Х	х			
["	A4-SB-8	4.2-4.7	х	х	X	X		l	
	A4-SB-10	2.5-3.5		Ì					х
	A4-SB-21	5.7-6.0	х	Х	х	X			
	A4-SB-23	2.5-3.5							Х
Subsurface Soil		6.0-6.5							х
	A4-SB-27	2.0-2.5							х
	A4-SB-29	6.5-7.0	Х	х	Х	Х			
	A4-SB-30	6.0-6.5	х	Х	Х	Х			
	A4-SB-36	4.2-4.7	Х	Х	Х	X.			
	A4-SB-39	2.5-3.0						ļ	Х
	A4-SB-41	6.5-7.0	Х	Х	Х	Х			
	A4-MW-1		Х	Х	Х	Х			
	A4-MW-1A		Х	Х	Х	Х			
	A4-MW-2		Х	Х	х	х			
[A4-MW-2A		Х	х	Х	X			
Groundwater _	A4-MW-3		х	Х	Х	х			
	A4-MW-3A		х	х	Х	Х			
	A4-MW-4		х	Х	Х	Х			<u> </u>
	A4-MW-5		Х	Х	Х	Х			
Notes:	A4-MW-6		Х	Х	Х	Х			

- (1) See ICF Kaiser Report in Appendix B-2 for Donner-Hanna Coke Plant sampling summary.
- (2) Indicators include: Benzene, toluene, ethylbenzene, and xylene; and Polynuclear Aromatic Hydrocarbons (PAHs).
- (3) Commas (,) separate discrete samples and backslashes (/) denote composited samples.

TABLE 3-5

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF ENVIRONMENTAL SAMPLING AND ANALYSIS PROGRAM⁽¹⁾

	Soil Berm				P	aran	eter	s	
Media	Sample ID ⁽³⁾	Sampled Intervals (ft)	TCL VOCs	TCL SVOCs	TAL Metals	Cyanide	PCBs	Indicators ⁽²⁾	TCLP VOCs and SVOCs
	A1-LTV-1	0-1	х	х	х				
	A1-TP-4	0-1	х	х	х				
Surface Soil	A2-TP-5/6	0-1	х	х	х				
	A3-TP-7	0-1	Х	Х	Х			Ì	
	A3-TP-8	0-1	Х	Х	Х]		

Notes

- (1) See ICF Kaiser Report in Appendix B-2 for Donner-Hanna Coke Plant sampling summary.
- (2) Indicators include: Benzene, toluene, ethylbenzene, and xylene; and Polynuclear Aromatic Hydrocarbons (PAHs).
- (3) Commas (,) separate discrete samples and backslashes (/) denote composited samples.

0848-263-300 Page 4 of 4

3.4.1 Area I - Former LTV Steel Plant Parcel

The focus of the site characterization at the former LTV Steel Plant Parcel (Area I) was to determine if contamination existed in areas where historic operations may have caused or contributed to the release of organic and/or inorganic compounds that could pose environmental or human health risks. This approach allows for the detection of contamination in the most probable areas for contamination to exist related to historic industrial uses of the site. The selection of the historic areas of interest was based on the operational history described in Section 2.0. The subareas of interest identified in Area I are shown on Plate 2 and summarized below:

- Scale Pit (Subarea A).
- Fuel Oil Storage Area (Subarea B).
- Clarifier Area (Subarea C).
- Oil House and Pickling Area (Subarea D).
- Machine Shop/Electric Shop Area (Subarea E).
- Pickling Area (Subarea F).
- Gas Cleaning/Product Area (Subarea G).
- Transformer Area (Subarea H).
- Locomotive Repair Shop Area (Subarea I).
- BOF Dust Precipitator Area (Subarea J).
- Fuel Oil Storage Area (Subarea K).
- Underground Piping Area (Subarea L).
- Skull Cracker Area (Subarea M).

To assess whether contamination exists in these areas, Area I media were characterized through a sampling and analysis program. Results of the Area I characterization are discussed below.

Surface Soil/Fill

A total of 13 surface samples were collected and analyzed as either discrete or composite samples. Samples were analyzed for VOCs, SVOCs, PCBs, and TAL metals. Table 3-6 summarizes compounds detected in surface soil samples. The distribution of the detected compounds is shown on Plate 4. VOCs were not detected above EPA risk-based concentrations in any of the surface soil samples analyzed. A PCB isomer, Aroclor-1248, was detected at a concentration of 1.0 mg/kg (SS-10/11) in one composite

sample located in the vicinity of the former fuel oil storage tanks (Subarea K). Although this concentration exceeds EPA risk-based concentration value of 0.74, this concentration does not exceed the NYSDEC TAGM 4046 Value of 1.0 mg/kg and PCBs were not detected at other surface or subsurface soil sample locations, thus PCBs are not considered a parameter of concern in the surface soils in Area I. Benzo(a)pyrene was detected slightly above the EPA risk-based concentration in 5 of the 8 samples analyzed. Several other polynuclear aromatic hydrocarbons (PAHs) were detected above EPA risk-based concentrations in the same composite sample that detected the PCB isomer (Subarea K). PAH concentrations are often elevated at sites with heavy industrial use. Two of the inorganic parameters (TAL metals), beryllium and manganese, were detected in the surface soil samples at concentrations which exceeded EPA risk-based concentrations.

Subsurface Soil/Fill

A total of 29 subsurface soil/fill samples were collected from 13 different subareas of interest. Samples collected from each subarea of interest were generally composited and analyzed for SVOCs and inorganic parameters. A single discrete VOC sample was also collected and analyzed from each subarea. The selection criteria for submitting samples for laboratory analysis was elevated readings on the PID and/or visual or olfactory evidence of contamination. Native soil located below the coarse fill was often submitted for analysis even if evidence of contamination was not apparent. Subsurface soil/fill analytical results are presented in Table 3-7. The distribution of the detected compounds is shown on Plate 5. VOCs were detected at relatively low concentrations in generally three subareas of Area I: the former oil house/pickling subarea (Subarea D); the former machine shop/electrical shop subarea (Subarea E); and the tar/fuel oil underground piping subarea (Subarea L). However, VOCs were not detected in any of the 13 subareas of interest at concentrations exceeding EPA risk-based concentrations. As expected with the storage or piping of petroleum products; benzene, toluene, ethylbenzene and xylene (BTEX) compounds were detected.

Of the SVOCs detected, PAHs were detected at concentrations exceeding EPA risk-based concentrations at the former machine shop/electric shop subarea (Subarea E),

TABLE 3-6

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SURFACE SOIL RESULTS - AREA 1

	EPA	Background											
	Risk Based Concen.*	Soil Concen.(1)		SS-							SS-	SS-	
Parameter			SS-10/11 ⁽²⁾	.12/13 ⁽³⁾	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	17/18/19	20/21(4)	SS-22
Volatile Organic Compounds	s (mg/kg)			(
Methylene Chloride	760	-				0.009		0.009	0.008		Not		
1,1,1-Trichloroethane	180000	-							0.021		Analyzed		
Semivolatile Organic Compo	unds (mg/k	g)											
Acenaphthylene	-	-	4.6							,			
Anthracene	610000	-	24	0.52									
Benzo(a)anthracene	7.8	•	16	1.4		0.75	0.59				1.5		0.62
Benzo(a)pyrene	0.78	-	12	1.4	0.44	0.96	0.53	Not	Not	Not	1.4		0.99
Benzo(b)fluoranthene	7.8	-	15	2.1	0.81	1.1	1.3	Analyzed	Analyzed	Analyzed	2.3	0.48	1.5
Benzo(k)fluoranthene	7.8	_	8.5	1.1		0.67	0.74]			1.4		0.84
Benzo(g,h,i)perylene	-	-	5.4	0.67	0.45	0.6	0.6	1			0.92		
Bis(2-ethylhyxyl)phthalate	410	-		0.42		1	0.39	1					0.76
Carbazole	-	-	5.5					1					
Chrysene	780	-	21	1.4	0.53	0.8	1	1			1.6		0.72
Fluoranthene	82000	-	36	2.7	0.82	1.1	1.2]			3	0.55	0.5
Indeno(1,2,3-cd)pyrene	7.8	-	5.7	0.65		0.53	0.55				0.86		0.65
Phenanthrene		-	19	2	0.53	0.65	1.3				1.9		
Pyrene	61000	-	27	2.2	0.65	1.1	1.3]			2.6	0.58	0.87
PCB (mg/kg)								_			•		
PCB 1248	0.74	-	1					N	ot Analyze	ed			

NOTES:

- * USEPA Region III Risk-Based Concentration
- (1) Background inorganic soil concentrations from Truscon Property.
- (2) Composite sample from SS-10 and SS-11. Discrete VOC samples were collected from each location. VOCs were not detected in either sample.
- (3) Composite sample from SS-12 and SS-13. Discrete VOC samples were collected from each location. VOCs were not detected in either sample.
- (4) Composite sample from SS-20 and SS-21. Discrete VOC samples were collected from each location. VOCs were not detected in either sample. Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration values.

- Data not available.

TABLE 3-6

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SURFACE SOIL RESULTS - AREA 1

	EPA	Background									· · · · · · · · · · · · · · · · · · ·		
	Risk Based Concen.*	Soil Concen.(1)		~~								~~	
	Concen."		40.	SS-		,					SS-	SS-	
Parameter			SS-10/11 ⁽²⁾	12/13 ⁽³⁾	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	17/18/19	20/21 ⁽⁴⁾	SS-22
Inorganic Compounds (mg/k	g)												
Aluminum	1000000	11700	14600	14100	15700	11500	6730				10700	9390	8250
Arsenic	610	5.17	24.7	25.5	12.2	8.85	7.61				4.37	11.5	8.89
Barium	140000	212	152	130	160	191	121				164	143	92.4
Beryllium	1.3	1.01	2.87	3.5	2.19	2.39	11				1.91	1.93	1.4
Cadmium	1000	0.882	1.51	1.79	0.831	2.89	3.77				2.37	2.94	1.27
Calcium	-	44400	144000	139000	218000	202000	166000	Not	Not	Not	193000	136000	50600
Chromium	10000	29.6	257	197	434	636	891	Analyzed	Analyzed	Analyzed	635	891	73.1
Cobalt	120000	6.34 U	6.5	24.8		6.14	8.19					11.5	6.78
Copper	82000	55.7	141	170	26.4	92.2	94.6				87.7	146	45.4
Iron	610000	24900	134000	165000	94100	97200	160000				144000	223000	64500
Lead	400	63.5	145	195	79.6	145	397	}			147	83.7	76.5
Magnesium	-	7920	20000	24700	12300	22000	24200				19700	19100	7320
Manganese	10000	1080	5470	5420	10800	17000	26300				13600	17100	2340
Nickel	41000	22.6	78.7	122	11.3	63.2	52.8				28.5	57.8	19.3
Potassium	-	1160	1060	1210	850	685	372				857	498	654
Selenium	10000	12.7			21.9	24.6	46.3				57.1	61	8.38
Silver	10000	1.27 U	1.65	1.69	2.53	2.14	4.16				3.05	2.96	
Sodium	-	367	505	617	341	336	333				452	366	268
Vanadium	14000	21	53.5	125	201	386	289				203	210	35
Zinc	610000	138	293	714	143	541	607				341	229	147
Cyanide	41000	0.634 U	3.64	3.35	5.11	1.6	4.13				5.1	6.38	2.06

Notes:

- * USEPA Region III Risk-Based Concentration
- (1) Background inorganic soil concentrations from Truscon Property.
- (2) Composite sample from SS-10 and SS-11. Discrete VOC samples were collected from each location. VOCs were not detected in either sample.
- (3) Composite sample from SS-12 and SS-13. Discrete VOC samples were collected from each location. VOCs were not detected in either sample.
- (4) Composite sample from SS-20 and SS-21. Discrete VOC samples were collected from each location. VOCs were not detected in either sample. Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration value or Background Soil Concentrations.

- Data not available.
- U Compound was analyzed for but was not detected. Actual background concentration is less than this value.

] TA |-7

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA

"STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA I

Parameter	EPA	Background													
	Risk Based Concen.*	Soil Concen.(1)	A1-SB (or MW)- A1,A2, A3	A1-SB- B1,B2, B3	A1-SB- C2		A1-SB- E1,E2,E3	A1-SB (er MW)- F1,F2	A1-SB- G1	H1,H2			K1,K2, K3	TpP10"	A1-SB (or MW)- M1/M2
Sample Depth (ft)			8-12	10-14	12-14	10-14	4-8	4-6	8-10, 11- 11.5	8-10	8-13	10-12, 8- 10	6-8.5	4-5	6-6.5
Volatile Organic Comp	oounds (mg	r/kg)	V.12			20 8.				1	L				
Acetone	200000	-	(2)	(3)	0.061			(6)	(7)	(8)	(9)	(10)	(11)	NA	0.11 ⁽¹³⁾
Benzene	200	-		, í		6.2 (4)									
2-Butanone	1000000	-												NA	0.014 ⁽¹³⁾
cis-1,2-Dichloroethene	20000	_					0.042 (5)							NA	
Ethylbenzene	200000					7.7 (4)								6.6	
Methylene Chloride	760	-	-							<u> </u>				NA	0.007 ⁽¹³⁾
Toluene	410000	_				3.6 ⁽⁴⁾									
Total Xylenes	1000000	_				25.0 ⁽⁴⁾								52	
Trichloroethene	520	_					0.150 ⁽⁵⁾							NA	

Notes:

- * USEPA Region III Risk-Based Concentration
- (1) Background inorganic soil concentrations from Truscon Property.
- (2) Sample A1-MW-A2, 8-10 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (3) Sample A1-SB-B2, 12-14 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (4) Sample A1-SB-D3, 10-12 feet was analyzed for TCL VOCs. Concentrations of detected parameters are shown.
- (5) Sample A1-SB-E2, 4-6 feet was analyzed for TCL VOCs. Concentrations of detected parameters are shown.
- (6) Sample A1-SB-F1, 4-6 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (7) Sample A1-SB-G1, 11-11.5 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (8) Sample A1-SB-H1, 8-10 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (9) Sample A1-SB-I2, 8-10 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (10) Sample A1-SB-J2, 8-10 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (11) Sample A1-MW-K2, 6.5-7 feet was analyzed for TCL VOCs. VOCs were not detected in the sample.
- (12) A sample collected from 5-5.5 feet was analyzed for VOCs. VOCs were not detected in the sample at a dilution of 25 ppm.
- (13) Sample A1-MW-M2, 6-6.5 feet was analyzed for TCL VOCs. Concentrations of detected parameters are shown.

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration values.

- Data not available

| | | | TA | 7 | | | PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA I

Parameter	EPA	Background													
	Risk Based Concen.	Soil Concen. ⁽¹⁾	A1-SB (or MW)- A1,A2, A3		A1-SB- C1	A1-SB- D1,D2,D 3	A1-SB- E1,E2,E3	A1-SB (or MW)- F1,F2	A1-SB- G1	A1-SB- H1,H2		J2	K1,K2, K3	A1- T10 ⁽¹²⁾	A1-SB (or MW)- M1/M2
Sample Depth (ft)			8-12	10-14	10-12	10-14	4-8	4-6	8-10, 11- 11.5	8-10	8-13	10-12, 8- 10	6-8.5	4-5	6-6.5
Semivolatile Organic C	ompounds	(mg/kg)													
Acenapthene	120000	-		·	3.1		0.69						10	380	
Acenaphthylene	-													2200	
Anthracene	610000	-			2.1		1.6						7.4	2100	
Benzo(a)anthracene	7.8	-					3.9			0.89			8.1	1700	0.6
Benzo(a)pyrene	0.78	-					3.1			0.67			6.1	1400	0.56
Benzo(b)fluoranthene	7.8	-					3.6	0.45		0.88				1600	0.94
Benzo(k)fluoranthene	7.8	-					2.1							660	
Benzo(g,h,i)perylene	-	•					1.6								
Chrysene	780	-					3.3		·	0.74			14	1400	0.67
Dibenzo(a,h)anthracene	0.78						0.75								
Dibenzofuran	8200	-					0.51							NA	
Fluoranthene	82000	B.					7.3	0.73	0.7	1.8		0.93		3900	
Fluorene	82000	•			2.4		0.75					0.51	24	2500	
Indeno(1,2,3-cd)pyrene	7.8	-					1.6							640	
2-Methylnapthalene	-	-			13								17	NA	
Napthalene	82000						0.78					0.72		7300	
Phenanthrene		-	93		9.6		5.8	0.45	0.64	1.4		1.8		5100	L
Pyrene	61000	-	42		2.8		6.4	0.66	0.61	1.4		0.7	28	3000	1.2

Notes:

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration values.

- Data not available

NA - Not Analyzed

^{• -} USEPA Region III Risk-Based Concentration

] TA |-7

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA

"STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA I

Parameter	EPA	Background									<u> </u>				
	Risk Based Concen.	Soil Concen.(1)	A1-SB (or MW)- A1,A2, A3	A1-SB- B1,B2,B 3	A1-SB- C1	A1-SB- D1,D2,D 3	A1-SB- E1,E2,E3	A1-SB (ər MW)- F1,F2	A1-SB- G1	A1-SB- H1,H2		J2	A I-SB (or MW)- K1,K2, K3	A1- T10 ⁽¹²⁾	A1-SB (or MW)- M1/M2
Sample Depth (ft)			8-12	10-14	10-12	10-14	4-8	4-6	8-10, 11- 11,5	8-10	8-13	10-12, 8- 10	6-8.5	4-5	6-6,5
Inorganic Compound	s (mg/kg)		<u></u>	<u> </u>		I				1		L	<u> </u>	<u> </u>	<u> </u>
Aluminum	1000000	11700	29400	12900	7590	11600	25500	19100	9220	7180	15000	22000	9700		21800
Antimony	820	7.6 U								1	1				
Arsenic	610	5.17			3.5	21.8		2.4		16.7			11.6		
Barium	140000	212	408	117	54.7	118	304	243	62.4	85.5	132	142	85.6		332
Beryllium	1.3	1.01	3.82			1.03	3.18	1.5	2.9	1.26	0.751	0.928	1.36		1.78
Cadmium	1000	0.882	1.29			1.25	1.8	1.05	4.72	5.05					1.3
Calcium	-	44400	174000	14700	8180	39200	159000	56000	49400	16000	80800	12600	21900	Not	136000
Chromium	10000	29.6	101	25.9	11.3	20.2	328	71.7	42.6	45.3	22.3	24.8	37.4	Analyz.	393
Cobalt	120000	6.34 U		10.9	7.68			11.3		8.88	9.01	11.6		·	
Соррег	82000	55.7	50.1	26.7	19.8	51.5	204	40.2		97.9	25.6	14.2	48.4		84.6
Iron	610000	24900	69900	26500	18700	75000	117000	63500	275000	192000	23800	23800	84100		82600
Lead	400	63.5	11.5	17.4	68.4	116	159	24.2	15.3	293	31.1	14.8	192		118
Magnesium	-	7920	15400	5180	2860	4490	8040	9930	3290	1880	21900	5210	2930		26900
Manganese	10000	1080	3250	674	303	1010	7500	2360	4180	5370	642	449	1170		16600
Mercury	200	0.211				0.32				2.37					
Nickel	41000	22.6	70.2	32.6	21.6	18.9	15.6	37.6		51.7	22.1	30.7	18.3		25.4
Potassium	-	1160	912	2210	1160	1420	1680	2180	673	4830	2760	2060	1510		1730
Selenium	10000	12.7	3.28	1.04			2.02				4.79	2.48	2.7	ļ	13.9
Silver	10000	1.27 U													
Sodium	•	367	956	206	206	224	553	418	165	503	345	372	320		551
Thallium	160	1.27 U							2.56						
Vanadium	14000	21	19.6	23.1	13.3	19.3	69.6	37.5	26.7	33.3	26.9	23.7	46.4		163
Zinc	610000	138	21.3	87.7	71.9	228	207	128	44	1760	76.3	101	174		192
Cyanide	41000	0.634 U					2.79			3.07			3.78		

Notes:

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration values.

0848-263 Page 3 of 3

^{* -} USEPA Region III Risk-Based Concentration

⁽¹⁾ Background inorganic soil concentrations from Truscon Property.

⁻ Data not available

U - Compound was analyzed for but was not detected. Actual background concentration is less than this value.

the former fuel oil storage subarea (Subarea K), and the tar/fuel oil underground piping subarea (Subarea L). The highest concentrations of PAHs were detected in the vicinity of underground piping located at the north end of the piping tunnel between Areas I and II that transported tar/water/fuel oil in subsurface piping. Visual staining and free-phase tar/oil was apparent in the test pit during sample collection. Only beryllium and manganese were detected in the subsurface soil samples at concentrations exceeding EPA risk-based concentrations.

Groundwater

A total of four groundwater samples were collected and analyzed for VOCs, SVOCs and inorganic parameters (TAL metals). Groundwater samples were collected from wells screened in the upper saturated zone (generally occurring in the lower portion of the fill and native soil below the fill). Groundwater analytical results for Area I are presented in Table 3-8. The distribution of the detected compounds is shown on Plate 7. Elevated pH was measured in well A1-MW-A2 (11.29 pH units {see Table 3-3}), near the scale pit located in Subarea A. Although acetone was detected in each of the groundwater samples, the presence of acetone at low concentrations is often associated with laboratory contamination. In general, aromatic hydrocarbons (i.e., toluene, ethylbenzene and xylenes) were detected in groundwater analyzed in the vicinity of the former scale pit (Subarea A). PAHs were also detected in groundwater in this subarea. Although aromatic hydrocarbons were not detected in groundwater in the vicinity of the fuel oil storage tanks (Subarea K), low concentrations of PAHs were detected in the groundwater. Several inorganic parameters were elevated in groundwater collected from the former pickling area of the plant (Subarea F). Since groundwater is not used as a source of potable supply in the Buffalo area and soluble inorganic parameters are often sorbed to the aquifer matrix during transport, the occurrence of the elevated metals concentrations in Area I does not pose a significant environmental concern.

TABLE 3-8 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA I

	NYS Class GA	A1-MW-A2	A1-MW-F2	A1-MW-K2	A1-MW-M2	1
D	Groundwater	.				Duplicate
Parameter	Quality Stds	<u> </u>	· · ·	I		
Volatile Organic Com					`	
Acetone	0.05	0.064	0.054	0.047	0.023	0.022
Carbon Disulfide	0.05	0.017				
Ethylbenzene	0.005	0.0099				
Toluene	0.005	0.0094				
Xylene (Total)	0.005	0.03				
Semivolatile Organic (Compounds (mg/L)					
Acenapthene	0.02	0.0089		0.0096		
Acenapthylene	0.02					
Carbazole	NA					
Chrysene	0.000002			0.006		
Dibenzofuran	0.005					
2,4-Dimethylphenol	NA					
Fluoranthene	0.05					
Fluorene	0.05	0.012		0.015		
2-Methylnaphthalene	0.05	0.084		0.034		
2-Methylphenol	0.005					
4-Methylphenol	0.05					
Napthalene	0.01	0.024				
Phenanthrene	0.05	0.027		0.012		
Phenol	0.001	0.011				
Pyrene	0.05	0.01		0.011		

Notes:

Blank space indicates that parameter was not detected.

NA - NYS Guidance Value not available.

Shading denotes concentration exceeds NYS Class GA Groundwater Quality Standards

0848-263 Page 1 of 2

TABLE 3-8 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA I

	NYS Class GA	A1-MW-A2	A1-MW-F2	A1-MW-K2	A1-MW-M2	A1-MW-M2
	Groundwater	<u> </u>		·		Duplicate
Inorganic Compoun	ds (mg/L)	·				
Aluminum	NA	1.9	126	5.54	3.18	2.62
Arsenic	0.025		0.022			
Barium	1	0.0654	1.04	0.1	0.0382	0.0356
Beryllium	0.003		0.00624			
Calcium	NA	113	189	114	90.1	89.7
Chromium	0.05		0.175	0.0106		
Cobalt	NA		0.0736			
Copper	0.2		0.284			
Iron	0.3	2.85	188	23.9	6.27	5.11
Lead	0.025		0.15	0.141		
Magnesium	35	2.84	33.9	27.8	10.8	10.2
Manganese	0.3	0.0956	4.27	2.64	1.27	1.15
Nickel	NA		0.231			
Potassium	NA	32.1	37	18.8	16.2	16.4
Selenium	0.01	0.00541				0.00752
Sodium	20	35,2	140	20.2	26.2	27.5
Thallium	0.004					
Vanadium	NA		0.221			
Zinc	0.3	0.0226	0.735	0.098	0.038	0.041
Cyanide	0.1			0.209	0.034	0.031

Notes:

Blank space indicates that parameter was not detected.

NA - NYS Guidance Value not available.

Shading denotes concentration exceeds NYS Class GA Groundwater Quality Standards

0848-263 Page 2 of 2

3.4.2 Area II - Former Donner-Hanna Coke Plant Parcel

Analytical results for surface soil, subsurface soil and groundwater in Area II are discussed in the report prepared by ICF Kaiser presented in Attachment B-2.

3.4.3 Area III - Former LTV Warehouse Area Parcel

The focus of the site characterization at the former LTV warehouse area parcel (Area III) was to determine if contamination existed at the property in areas where historic activities may have caused or contributed to the release of organic and inorganic compounds that could pose environmental or human health risks. This approach allows for the detection of contamination in the most probable areas for contamination to exist related to historic industrial uses of the site. The selection of the historic areas of interest is based on the operational history described in Section 2.0. These areas included a paint shop, machine shop and wood shop. These areas of interest identified in Area III are shown on Plate 2. Other portions of Area III were investigated based on field observations. To assess whether contamination exists in these areas, site media were characterized through a sampling and analysis program of fill, native soils and groundwater. Results of the site characterization are discussed below.

Surface Soil/Fill

A total of 4 surface soil/fill samples were collected and analyzed for VOCs, SVOCs, PCBs, and TAL metals (A3-SS-1, 2, 3, and 4). One sample (viz., A3-SS-23) was analyzed for TAL metals only. Surface soil/fill analytical results are presented in Table 3-9. The distribution of the detected compounds is shown on Plate 4. VOCs were not detected in any of the surface samples analyzed. However, the relatively high concentrations of many semi-volatile organic compounds in sample A3-SS-4 necessitated a 500:1 dilution and resulted in an elevated minimum detection limit for VOCs of 33,000 ug/kg.

Of the SVOCs detected, PAHs were detected at concentrations exceeding EPA risk-based concentrations in one of the four samples analyzed for organic compounds (viz. A3-SS-4). This sample was collected from the western portion of Area III where tar-like

TABLE 3-9 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SURFACE SOIL RESULTS - AREA III

Parameter	EPA Risk Based Concen.*	Background Soil Concen. ⁽¹⁾	SS-1	SS-2	SS-3	SS-4	SS-23
Volatile Organic Compo	unds (mg/kg)		·				•
		•					NA
Semivolatile Organic Co	mpounds (mg/k	g)					
Acenaphthene	120000					430	
Acenaphthylene	-	-				190	
Anthracene	610000	-				750	7
Benzo(a)anthracene	7.8	-		4.8		1000	
Benzo(a)pyrene	0.78	-				1000	Not
Benzo(b)fluoranthene	7.8	-		4.9	4	1100	Analyzed
Benzo(k)fluoranthene	7.8	-				760	7
Benzo(g,h,i)perylene	-	**				450	7
Carbazole	-	-	,			310	7
Chrysene	780	-				890	1
Dibenzo(a,h)anthracene	0.78	-				170	7
Dibenzofuran	8200	-				320	1
Fluorene	82000	-				520	
Fluoranthene	82000	-		8.3	7.5	1300	1
Indeno(1,2,3-cd)pyrene	7.8	-				450	7
2-Methylnapthalene	-	_				250	7
Napthalene	82000	-				1300	7
Phenanthrene	-	-		<u> </u>	5.1	1300	1
Pyrene	61000	-		6.4	5.2	1300	7
PCB (mg/kg)				· · · · · · · · · · · · · · · · · · ·			
	-	-					NA

Notes:

- * USEPA Region III Risk-Based Concentration
- (1) Background inorganic soil concentrations from Truscon Property.

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration value.

- Data not available.

NA - Not Analyzed

0848-263 Page 1 of 2

TABLE 3-9 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SURFACE SOIL RESULTS - AREA III

	EPA Risk Based	Background Soil	SS-1	SS-2	SS-3	SS-4	SS-23
Parameter	Concen.*	Concen.(i)	1	~~ -			
Inorganic Compounds	(mg/kg)						
Aluminum	1000000	11700	15000	14600	17100 D	7480	66.7
Antimony	820	7.6					4.29
Arsenic	610	5.17	14.5	25.3	19.8 D	13.3	
Barium	140000	212	81.3	193	165	112	81.7
Beryllium	1.3	1.01	0.621	1.91	3.29	0.88	
Cadmium	1000	0.882		1.35	0.795	2.13	
Calcium	-	44400	370000	78500	203000 D	47700	61500
Chromium	10000	29.6	866	49.3	612 D	146	9.35
Cobalt	120000	6.34				8.62	
Соррег	82000	55.7	27.2	57.2	50.1	112	38
Iron	610000	24900	104000	76700	78800 D	103000	5970
Lead	400	63.5	76.1	185	178 N	226	49.4
Magnesium	-	7920	16500	5630	27800 D	4580	
Manganese	10000	1080	19400	3950	15700 D	3180	242
Mercury	610	0.211				47.9	10.4
Nickel	41000	22.6	9.92	15.3	17.8	49	
Potassium	-	1160	504	1380	758	666	938
Selenium	10000	12.7	9.12	18.4	4.64	32.4	5.32
Silver	10000	1.27	2.34	1.46	2.27		
Sodium	-	367	512	419	535		460
Vanadium	14000	21	383	34.5	237 D	58.1	
Zinc	610000	138	37.7	243	216 D	627	15.7
Cyanide	41000	0.634		15.5		184	21900

Notes:

(1) Background inorganic soil concentrations from Truscon Property.

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA Risk Based Concentration or Background Soil Concentration value.

- Data not available.
- U Compound was analyzed for but was not detected. Background concentration is less than this value.
- N Spiked sample recovery not within control limits
- D Spike diluted out

0848-263 Page 2 of 2

^{* -} USEPA Region III Risk-Based Concentration

materials exists on the ground surface. Based on TCLP results of a tar sample collected from Area IV (discussed in Section 3.3.4) and analyzed for VOCs and SVOCs, the tar-like material is not considered a characteristic hazardous waste. PCBs were not detected in any of the four samples analyzed.

Only beryllium and manganese were detected in the surface soil samples at concentrations which exceeded EPA risk-based concentrations. Elevated cyanide concentrations were detected in the surface soil/fill sample collected at location A3-SS-23. The vicinity of this sample location is stained blue. The cyanide concentration does not exceed EPA risk-based concentrations.

Subsurface Soil/Fill

A total of 6 subsurface soil/fill samples were collected from suspected contaminated fill or native soil. Samples A3-SB-1, MW-2, and SB-3 were collected at random locations within Area III and were analyzed for site indicator parameters (i.e. BTEX, PAHs, and cyanide) and samples A3-SB-4, 5, and 6 were collected in the vicinity of suspected former operations at the warehouse (wood shop, machine shop, and paint shop, respectively) and analyzed for VOCs, SVOCs, PCBs and TAL metals. Subsurface soil/fill analytical results are presented in Table 3-10. The distribution of the detected compounds is shown on Plate 6. In two of the six subsurface samples analyzed (viz., A3-SB-1 and 3), aromatic hydrocarbon compounds (BTEX) were detected; however, BTEX concentrations did not exceed EPA risk-based concentrations. As shown on Plate 6, these samples were collected from fill material in the southwest portion of the Area III in the vicinity of the tar-like material (A3-SB-1) and in the northeastern portion of Area III in the vicinity of a historic material storage area.

Of the SVOCs detected, PAHs were detected at concentrations exceeding EPA risk-based concentrations in the two samples coincident with the detection of VOCs (A3-SB-1 and 3) and to a lesser degree, in one sample collected on the north side of the former warehouse near Area II (A3-SB-6). No PCBs were detected in the samples analyzed.

TABLE 3-10 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA III

Parameter	EPA Risk Based Concen.*	Background	A3-SB-1	A3-SB-2	A3-MW-3	A3-SB-4	A3-SB-5	A3-MW-6
,	11117	Soil Concen.(1).	,	٠,				
Sample Depth (ft)			1.0-1.5	10-10.5	1.0-1.5	4-5	4-5	2.5-3
Volatile Organic Compo	ounds (mg/l	kg) .		, ,				
Acetone	200000	-	NA	NA	NA	0.048	""	
Benzene	200	-			22			
2-Butanone	1000000	-	NA	NA	NA	0.014		
Ethylbenzene	200000	-	6.2		0.081			
Toluene	410000	-	4.9		0.036			
Total Xylenes	1000000	-	45		0.369			
Semivolatile Organic Co	mpounds (mg/kg)				· · · · · · · · · · · · · · · · · · ·		
Acenapthene	120000	-	440		500			
Acenaphthylene	-	-	100		100			
Anthracene	610000	-	240		210			
Benzo(a)anthracene	7.8	-	230		110			7.7
Benzo(a)pyrene	0.78	-	210		. 73			6.7
Benzo(b)fluoranthene	7.8	-	210		87			8.7
Benzo(k)fluoranthene	7.8	-	130		49	*		
Benzo(g,h,i)perylene	-	-	90			····		
Chrysene	780	-	170		85			8.1
Fluoranthene	82000	-	640		380			19
Fluorene	82000	-	300		480			
Indeno(1,2,3-cd)pyrene	7.8	-	86					
Napthalene	82000	-	1200		1400			
Phenanthrene	- 1	-	620		780			17
Pyrene	61000	-	480		250			14
PCB (mg/kg)							·	
			NA	NA	NA			

NOTES:

* - USEPA Region III Risk-Based Concentration

(1) Background inorganic soil concentrations from Truscon Property.

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA values.

- Data not available

NA - Not Analyzed

0848-263 Page 1 of 2

TABLE 3-10 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA III

Parameter	EPA Risk Based Concen.*	Background Soil Concen. (1)	A3-SB-1	A3-SB-2		A3-SB-4	A3-SB-5	A3-MW-6
Sample Depth (ft)			1.0-1.5	10-10-5	1.0-1.5	4-5	- 4-5	2.5-3
Inorganie Compounds (1	ug/kg)					•		
Aluminum	1000000	11700				20800	23400	36500
Arsenic	610	5.17						4.39
Barium	140000	212				112	163	414
Beryllium	1.3	1.01				1.03	1.13	4.72
Cadmium	1000	0.882	Not	Not	Not	1.1	1.2	1.18
Calcium	-	44400	Analyzed	Analyzed	Analyzed	2320	4010	251000
Chromium	10000	29.6				27.2	29.1	108
Cobalt	120000	6.34 U					11.3	
Copper	82000	55.7				24.6	28.2	23.8
Iron	610000	24900				40100	33400	30100
Lead	400	63.5				19.9	20.1	236
Magnesium	-	7920				3870	4490	14300
Manganese	10000	1080				195	311	5360
Mercury	200	•						
Nickel	41000	22.6				27.6	32.8	
Potassium	-	1160				1650	2010	1740
Sodium	-	367				80.2	101	929
Vanadium	14000	21				27.9	33.3	48.4
Zinc	610000	138				128	121	97.7
Cyanide	41000	0.634 U	8.16		1780			6.14

NOTES:

Blank space denotes parameter was not detected.

Shading denotes concentration exceeds EPA values or background soil concentration.

0848-263 Page 2 of 2

^{* -} USEPA Region III Risk-Based Concentration

⁽¹⁾ Background inorganic soil concentrations from Truscon Property.

⁻ Data not available

U - Compound was analyzed for but was not detected. Actual background concentration is less than this value.

TAL metals were not detected in the subsurface soil samples at concentrations exceeding EPA risk-based concentrations.

Groundwater

A total of three groundwater samples were collected and analyzed for VOCs, SVOCs and inorganic parameters. Groundwater samples were collected from wells screened in the upper saturated zone (generally occurring in saturated fill). Groundwater analytical results are presented in Table 3-11. The distribution of the detected compounds is shown on Plate 7.

The pH of groundwater collected from well A3-MW-3 is elevated relative to the pH of other groundwater samples in Area III (see Table 3-3). Benzene and acetone were the only VOCs detected in the groundwater. Benzene was also detected in the unsaturated soils at this location. A relatively high concentration of benzene (1.2 mg/l) was detected in groundwater at well location A3-GW-4. As shown on Plate 7, a similar benzene concentration was detected in surface water located less than 100 feet to the south in Area IV.

Several SVOCs were detected at concentrations exceeding NYS groundwater quality standards. These exceedances were coincident with elevated concentrations of VOCs detected in the groundwater at the same locations. Acid extractables (2-methylphenol, 4-methyl phenol, and phenol) and PAHs (naphthalene and dibenzofuran) were the primary SVOCs detected above NYS groundwater quality standards.

Inorganic parameter concentrations of generally considered non-toxic metals (i.e., potassium, manganese, iron, etc.) are often naturally elevated in shallow groundwaters of Western New York as encountered in numerous site assessments performed by Malcolm Pirnie. Of the inorganic parameters that are considered toxic, cyanide is considered the primary inorganic parameter of interest in Area III. The detection of cyanide above NYS Class GA groundwater quality standards is coincident with elevated VOCs and SVOCs in the groundwater. In addition to cyanide, anomalously high concentrations of thallium (100 mg/l) and iron (298 mg/l) were detected in wells A3-MW-3 and A3-MW-4, respectively.

TABLE 3-11 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA III

	NYS Class GA	A3-MW-3	A3-GW-4	A3-MW-6
	Groundwater			
Parameter	Quality Stds			
Volatile Organic Com	pounds (mg/L)			
Acetone	0.05	0.093		0.026
Benzene	0.0007	0.047	1.2	
Carbon Disulfide	0.05			
Ethylbenzene	0.005			
Toluene	0.005			
Xylene (Total)	0.005			
Semivolatile Organic (Compounds (mg/L)			,
Acenapthene	0.02			
Acenapthylene	0.02		0.014	
Carbazole	NA		0.018	
Chrysene	0.000002			
Dibenzofuran	0.005		0.0095	
2,4-Dimethylphenol	NA		0.11	
Fluoranthene	0.05	0.011		
Fluorene	0.05	0.0056	0.015	
2-Methylnaphthalene	0.05		0.016	
2-Methylphenol	0.005		0.044	
4-Methylphenol	0.05		0.061	
Napthalene	0.01	0.026	0.12	
Phenanthrene	0.05	0.016	0.01	
Phenol	0.001	0.021	0.12	
Pyrene	0.05	0.0067		

Notes: NA - NYS Guidance Value not available.

0848-263 Page 1 of 2

TABLE 3-11 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA III

	NYS Class GA	A3-MW-3	A3-GW-4	A3-MW-6
	Groundwater			
Inorganic Compo	ınds (mg/L)			
Aluminum	NA	1.62	4.63	2.21
Arsenic	0.025	0.0247		0.0118
Barium	1	0.0287		0.0778
Beryllium	0.003			
Calcium	NA	220	437	304
Chromium	0.05		0.027	
Cobalt	NA			
Copper	0.2		0.0343	
Iron	0.3	6.23	298	3.14
Lead	0.025			
Magnesium	35	0.916	76.8	5.01
Manganese	0.3	0.079	7.48	0.133
Nickel	NA			
Potassium	NA	15.1	12.8	10.2
Selenium	0.01	0.0127		0.0080
Sodium	20		41.8	29.2
Thallium	0.004	100		
Vanadium	NA			
Zinc	0.3	0.03	0.134	0.0295
Cyanide	0.1	17.0	0.245	0.0526

Notes:

NA - NYS Guidance Value not available.

0848-263 Page 2 of 2

3.4.4 Area IV- Former Donner-Hanna Coke Storage Yard Parcel

As described in Section 3.3, several feet of coke covers fill and native soil in the former Donner Hanna Coke Storage Yard Parcel (Area IV). Since the coke in Area IV is planned for removal as part of a coke recovery program, one objective of the Area IV investigation was to characterize the media that would remain following coke excavation. Therefore, the sampling and analysis program focused on characterizing the fill, native soils, and coke making byproduct materials present in Area IV. Additionally, surface water and groundwater were characterized to assess whether special handling requirements may be necessary during excavation. Characterization of Area IV involved analyzing subsurface soil/fill and waste material (non-soil) samples, surface water, shallow groundwater (in the coke and fill) and deeper groundwater (in native soil).

Subsurface Soil/Fill

A total of 10 subsurface soil/fill samples were collected and analyzed for VOCs, SVOCs, and select inorganic parameters. Subsurface soil/fill analytical results are presented in Table 3-12. The distribution of the detected compounds is shown on Plate 6. In 1 of 10 subsurface samples analyzed, benzene was detected at concentrations exceeding EPA risk-based concentrations (viz., A4-SB-29). Other aromatic compounds were detected at relatively low concentrations in several other samples collected from Area IV. As shown on Plate 6, the A4-SB-29 sample location is situated in the northwestern portion of Area IV. The sample represents native soil underlying the coke. Although volatile organic compounds were detected in samples collected from other portions of Area IV, they were detected at concentrations below EPA risk-based concentrations and are compounds often associated with contaminants detected in analytical laboratories.

PAHs were detected in the native soils and fill below the coke at several locations. However, only benzo(a)pyrene was detected at a concentration exceeding EPA risk-based concentrations and then only at one sample location (viz., A4-MW-5).

Inorganic parameter were not detected in Area IV at concentrations exceeding EPA risk-based concentrations.

ГАВ -12

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA

"STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA IV

	EPA Risk Based	Background Soil										
	Concen.*	Concen ⁽¹⁾										
Parameter		Concen			A4-SB-41				A4-SB-36		A4-SB-6	A4-SB-29
Sample Depth (ft)			5.5-6	6-6,5	6.5-7	5.7-6	4.2-4.7	4.5-5	4.2-4.7	6-8	6.5-7	6,5-7
Volatile Organic Compo	ounds (mg/k	g)								· · · · · · · · · · · · · · · · · · ·		
Acetone	200000	-	.093	0.1		0.1	0.034	0.18				
Benzene	200	-	0.016	0.074	4.6						0.011	420
2-Butanone (MEK)	1000000	-						0.055				
Methylene Chloride	760	•		• • • • • • • • • • • • • • • • • • • •							0.015	
Toluene	410000	-			1.1	N. T						210
Total Xylenes	1000000											53
Semivolatile Organic Co	mpounds (1	ng/kg)						· · · · · · · · · · · · · · · · · · ·			·	
Acenaphthylene	-	-						0.65			<u> </u>	I
Anthracene	610000	-						1.2				
Benzo(a)anthracene	7.8	-						2				
Benzo(a)pyrene	0.78	-						2			· · · · · · · · · · · · · · · · · · ·	†
Benzo(b)fluoranthene	7.8	-						2.2				
Benzo(k)fluoranthene	7.8	-						1.3				
Benzo(g,h,i)perylene	-	-						0.91				
Bis(2-ethylhexyl)phthala	410	-	3.1				0.57					
Butyl benzyl phthalate	410000	-			0.64		1.5					
Chrysene	780	-						1.8				
Di-n-butyl phthalate	200000	-	4.1B	4.6B	5.2B		2.9					
Di-N-Octylphthalate	-	-			15							
Fluoranthene	82000	_		·	0.62			5.2				
Fluorene	82000	-				-		0.63				
Indeno(1,2,3-cd)pyrene	7.8	-						0.91				
Napthalene	82000	-			0.75			2.8				
Phenanthrene	-	-			0.65			3.1				
Phenol	1000000											25
Pyrene	61000	-			0.52			3.9				

NOTES:

Shading denotes concentration exceeds EPA values.

Blank space denotes parameter was not detected.

^{*-} USEPA Region III Risk-Based Concentration

B - Compound in the associated Method Blank

⁽¹⁾ Background inorganic soil concentrations from Truscon Property.

⁽²⁾ Analyzed for arsenic, chromium, copper, lead, mercury, and zinc. Mercury not detected in samples identified in this table.

⁻ Data not available

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SUBSURFACE SOIL RESULTS - AREA IV

Parameter	EPA Risk Based Concen.*	Background Soil Concen ⁽¹⁾		A4-SB-30	A4-SB-41	A4-SB-21	A4-SB-8	A4-MW-5	A4-SB-36	A4-SB-1	A4-SB-6	A4-SB-29
Sample Depth (ft)			5.5-6	6-6.5	6,5-7	5.7-6	4.2-4.7	4.5-5	4,2-4,7	6-8	6.5-7	6.5-7
Inorganic Compounds	(mg/kg) ⁽²⁾				······································							L
Arsenic	610	5.17								2.7	28	(2.00)
Chromium	10000	29.6	25.5	36.8	581	49.1	25.9	27.4	75.3	16.4	32.9	27.9
Copper	82000	55.7	20.7	31.8	50.2	33.4	23.1	13.3	19	19.1	57.3	18
Lead	400	63.5	20.4	24.5	48.2	24.7	20	21	21	15.5	151	13.7
Zinc	610000	138	86	99.6	180	88.9	98.1	113	107	77.2	662	86.6
Cyanide	41000	0.634 U			17.9						11.6	

NOTES:

- *- USEPA Region III Risk-Based Concentration
- (1) Background inorganic soil concentrations from Truscon Property.
- (2) Analyzed for arsenic, chromium, copper, lead, mercury, and zinc. Mercury not detected in samples identified in this table.

Shading denotes concentration exceeds EPA values.

Blank space denotes parameter was not detected.

- Data not available
- U Compound was analyzed for but was not detected. Actual background concentration is less than this value.

0848-263

Groundwater and Surface Water

A total of nine groundwater samples were collected and analyzed for VOCs, SVOCs and inorganic parameters. Groundwater samples were collected from wells screened in two locations within the uppermost saturated zone (i.e., in the saturated coke and/or fill and in the native soil below the coke/fill). Where well pairs exist, the well designated with an 'A' descriptor (e.g., A4-MW-1A) is representative of the shallower of the well pair. Groundwater analytical results are presented in Table 3-13. The distribution of the detected compounds is shown on Plate 7.

A relatively low pH was measured in well A4-MW-3 (4.64 pH units-see Table 3-3). In general, similar aromatic hydrocarbons (i.e. benzene, toluene, and xylenes) detected in the soils in the northwestern portion of Area IV were detected in the shallow groundwater samples collected from the northern and western portions of Area IV (viz., A4-MW-3A and 1A, respectively). Concentrations of VOCs and SVOCs were not detected above NYS Class GA groundwater quality standards in the eastern portion of Area IV. Elevated concentrations of acetone relative to the NYS groundwater quality standard are likely attributable to the presence of tar in the Area IV. Acetone was detected at high concentrations in tar samples collected and analyzed during the Recra Environmental Phase II Investigation conducted in 1989.

Several SVOCs were detected at concentrations exceeding NYS Class groundwater quality standards. These exceedances were coincident with elevated concentrations of VOCs detected in the groundwater at the same locations. Acid extractables (2-methylphenol, 4-methyl phenol, and phenol) and PAHs (naphthalene and dibenzofuran) were the primary SVOCs detected above NYS Class GA groundwater quality standards. Organic concentrations in samples analyzed from the shallow monitoring wells were generally greater than concentrations detected in the deeper monitoring wells.

Several inorganic parameters were also elevated relative to NYS Class GA groundwater quality standards. Many of the inorganic parameters detected above the standards are generally considered non-toxic metals and are often naturally elevated in shallow groundwaters of Western New York. This is typical when turbidity levels of the groundwater samples exceed 100 NTU (as was the case with a majority of the

TABLE 3-13 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA IV

	NYS Class GA	A4-MW-1	A4-MW-1A	A4-MW-2	A4-MW-2A	A4-MW-3	A4-MW-3A	A4-MW-4	A4-MW-6	A4-MW-5	A4-MW-5
Parameter	Groundwater Quality Stds										Duplicate
Volatile Organic Co	mpounds (mg/L)										
Acetone	0.05	0.088	0.044	0.044		0.9				NA	NA
Benzene	0.0007		0.0062		•		4.9				1
2-Butanone	0.05					0.24				NA	NA
Ethylbenzene	0.005										
Toluene	0.005		0.0052				0.4				
Xylene (Total)	0.005		0.028		_						
Semivolatile Organi	ic Compounds (mg	/L)									·
Acenapthene	0.02										
Acenapthylene	0.02										
Carbazole	-	0.0088								NA	NA
Chrysene	0.000002										
Dibenzofuran	0.005	0.0054								NA	NA
2,4-Dimethylphenol	-		0.25				0.013			NA	NA
Fluoranthene	0.05										
Fluorene	0.05	0.008									
2-Methylphenol	0.005		0.2							NA	NA
4-Methylphenol	0.05		0,44		•		0.019			NA	NA
Napthalene	0.01	0.053	0.33				0.029			0.0079	
Phenanthrene	0.05	0.013	0.05							0.0062	0.006
Phenol	0.001		0.22			0.099	0.053			NA	NA
Pyrene	0.05										

Notes:

Blank space indicates that parameter was not detected

- =NYS Guidance Value not available.

NA - Not Analyzed

0848-263 Page 1 of 2

TABLE 3-13 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF GROUNDWATER SAMPLING RESULTS - AREA IV

	NYS Class GA	A4-MW-1	A4-MW-1A	A4-MW-2	A4-MW-2A	A4-MW-3	A4-MW-3A	A4-MW-4	A4-MW-6	A4-MW-5	A4-MW-5
	Groundwater							,			Duplicate
Inorganic Comp	ounds (mg/L)										
Aluminum	-	1.64	2.98	3.76	12.2	2540	3.15	2.85	2.09		
Arsenic	0.025				0.0142				•	1	
Barium	1		0.0413	0.0508	0.138	0.0278	0.0319	0.0677	0.0335	1	
Beryllium	0.003					0.154			, ,	1	
Cadmium	0.01					0.0989				1	;
Calcium	-	631	611	658	109	286	462	238	338	NOT	NOT
Chromium	0.05				0.0303	0.128				ANALYZED	ANALYZED
Cobalt	-					3.22				1	
Copper	0.2		0.0569		0.0329	0.0263		Î		1	
Iron	0.3	89	92.7	11	22	11400	63.4	71.8	3.76	1	
Lead	0.025		0.0751		0.156	0.587				1	
Magnesium	35	29.1	24.9	200	9.21	2420	80.9	58.2	103	1	
Manganese	0.3	6.43	5.11	6.78	1.01	248	9.05	3.67	8.36	1	
Mercury	0.002		0.00089							1	
Nickel	-					7.04				1	
Potassium	-	14.6	17.9	5.38	7.71	14.4	24.3	3.22	2.22]	
Selenium	0.01	0.0109	0.00925	0.0211	0.00512		0.00514		0.0143	1	
Silver	0.05					0.046				1	
Sodium	20	37.6	27.5	274	10.8	728	68.2	32.7	170	1	
Zinc	0.3	0.0402	0.0803	0.044	0.160	26.1	0.0845	0.0407	0.0343	1	
Cyanide	0.1	0.087	0.177	0.016	0.060	1.34	0.878	1.28	2.15	0.173	0.176

Notes:

Blank space indicates that parameter was not detected

-=NYS Guidance Value not available.

NA - Not Analyzed

MALCOLM PIRNIE

groundwater samples collected for this investigation). Of the elevated inorganic parameters that are considered toxic; only lead, chromium, cadmium and cyanide are considered inorganic parameters of interest in Area IV. Coincident with elevated VOCs and SVOCs, these three parameters were elevated in samples collected from the northern and western portions of Area IV. Although VOCs and SVOCs were either not detected or were present at concentrations above NYS Class GA groundwater quality standards in the eastern portion of Area IV, cyanide was detected at concentrations exceeding the NYS Class GA groundwater quality standards.

A total of three surface water samples were collected and analyzed for VOCs, SVOCs and select inorganic parameters. Surface water analytical results are presented in Table 3-14. The distribution of the detected compounds is shown on Plate 7. In two of the three surface water samples (viz., A4-SW-1 and 2), benzene was detected above the NYS Class D surface water guidance value. Toluene was also detected above the guidance value in A4-SW-2. Of the SVOCs detected, phenol was the only one detected above guidance values (viz., in three samples). Inorganic parameters were not elevated in the surface water relative to guidance values.

Waste Material

A total of six non-soil samples were collected and analyzed for toxic hazardous waste characteristics using TCLP extraction methodology for organic parameters. Waste material samples included: tar; tar-stained sands and residue; various colored sand fill; and oily residue material. Waste material descriptions, sampling depths and TCLP analytical results are summarized in Table 3-15. The TCLP results indicate that black oily sand fill located above native soil at boring A4-SB-23 will leach benzene at concentrations that exceed NYSDEC TCLP Maximum Concentration Values. All other waste material samples characterized using TCLP methods did not exceed NYSDEC Maximum Concentration Values.

The results of the supplemental boring/sampling program completed in the western portion of Area IV in the vicinity of the tar-like material indicates that TCLP benzene concentrations exceed EPA maximum Concentrations of Contaminants for Toxicity

TABLE 3-14 PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF SURFACE WATER SAMPLING RESULTS - AREA IV

	Surface Water	A4-SW1	A4-SW2	A4-SW3
,	Gudance Values			
Parameter .	Class D			
Volatile Organic Compound:	s (μg/L)			
Benzene	6 .	1200	950	
Toluene	5		42	
Semivolatile Organic Compo	unds (μg/L)			
4-Methylphenol	NA	12		12
Napthalene	10	5		9.6
Phenol	5	52	19	40
N-nitroso-di-n-propylamine	NA			19
Inorganic Compounds (mg/L	a)	·		
Arsenic	0.36			
Chromium	NA			
Copper	0.2	0.0205		
Lead	NA			
Mercury	0.0002			
Zinc	0.3	0.0586		
Cyanide	0.022	0.050		

Notes:

(1) Guidance Value

NA - NYS Guidance Value not available.

Characteristics in several of these areas. Individual soil samples were composited from the entire thickness of fill in each of the six areas identified in Figure 3-2 to create a single soil sample representative of the each subarea A through F. Analytical results are presented on Table 3-16A with EPA Maximum Concentration of Contaminants for Toxicity Characteristics for comparison. As shown in the table, only benzene concentrations in subareas B through E were detected at concentrations exceeding EPA toxicity criteria. All other TCLP compounds were detected at concentrations below EPA toxicity criteria.

To better delineate the subareas with EPA toxicity criteria exceedances, discrete samples were composited by corresponding depth interval within composite subareas B, C, and E (i.e. 0 to 2 ft, 2 to 4 ft, and 4 to 6 ft). Because the TCLP benzene concentrations in subarea D were far greater than the other subareas, the discrete depth interval samples from this area were composited separately from the other subareas. Samples were analyzed for TCLP VOCs only, since SVOCs and metals did not exceed EPA Maximum Concentration of Contaminants for Toxicity Characteristics. As shown on Table 3-16B, analytical results indicate that benzene concentrations in only the lower most stratigraphic interval (4 to 6 ft) sampled in composite subareas B, C, and E exceeded the EPA Maximum Concentration for Toxicity Characteristics. Composite sample results for intervals 2 to 4 ft and 4 to 6 ft also exceeded EPA toxicity criteria for benzene in Subarea D. All other sample intervals were below EPA toxicity criteria.

3.4.5 Abby Street Soil Berm

A total of 5 test pits were excavated into the soil berm located between the site and Abby Street in Areas I, II, and III. Sampling was performed to characterize the materials used to construct the soil berm. Generally, broken concrete, bricks and other C&D type materials were encountered in a matrix of sandy silt soil. Samples were analyzed for VOCs, SVOCs, PCBs and TAL metals and cyanide. Samples composited from two test pit locations in Area II were composited; however, discrete VOCs samples were collected and analyzed. In addition to the test pits, a surface grab sample was collected (viz., LTV-1) from a surface seep of white-colored discharge from the east side

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

SUMMARY OF TCLP ANALYTICAL RESULTS

		MAINT OF TO	LIANALIII	CAL RESULT)		
Parameter	Maximum Concentration of Contaminants for Toxicity Characteristics	A4-SB-27	A4-SB-39	A4-MW-4	A4-SB-10	A4-SB-23	A4-SB-23
	Sample		Red Gray	Blue Green	Tar Stained	Green sand	Black oily
	Description	Tar	Fine Sand	Sand Fill	Sand	w/sulfur odor	sands
Sample depth (ft)		2.0-2.5	2.5-3.0	2.5-3.0	2.5-3.5	2.5-3.5	6,0-6.5
Volatile Organic Compounds (m	g/L)						
Benzene	0.5	0.081	0.052				4.1
2-Butanone(MEK)	200						
Carbon Tetrachloride	0.5		•				
Chlorobenzene	100						
Chloroform	6						
1,2-Dichloroethane	0.5						
1,1-Dichloroethene	0.7						
Tetrachloroethene	0.7						
Trichloroethene	0.5						
Vinyl Chloride	0.2						
Semivolatile Organic Compound	ls (mg/L)	_				·	<u>. </u>
1,4-Dichlorobenzene	7.5		I				
2,4-Dinitrotoluene	0.13		-				
Hexachlorobenzene	0.13						
Hexachlorobutadiene	0.5						
Hexachloroethane	3						
2-Methylphenol(o Cresol)	200	1.3			-		1.1
3+4-Methylphenol(m+p Cresol)	200						1.7
Nitrobenzene	2						
Pentachlorophenol	100						
Pyridine	5						
2,4,6-Trichlorophenol	2						
2,4,5-Trichlorophenol	400						

NOTES:

TABLE 16A PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MAUNFACTURING SITE"

TAR AREA TCLP CHARACTERIZATION RESULTS

· · · · · · · · · · · · · · · · · · ·		Tar Area						
Parameter	MCCTC*	A	В	C	D	E	F	
Volatile Organic Compounds (m	ng/L)							
Benzene	0.5		0.71	1,1	38.0	1.6		
Carbon Tetrachloride	0.5							
Chlorobenzene	100							
Chloroform	6							
1,2-Dichloroethane	0.5				0.59			
1,1-Dichloroethene	0.7							
Tetrachloroethene	0.7							
Trichloroethene	0.5							
Vinyl Chloride	0.2							
Semivolatile Organic Compound	ls (mg/L)			·		•		
1,4-Dichlorobenzene	7.5			<u> </u>	[<u> </u>	
2,4-Dinitrotoluene	0.13							
Hexachlorobenzene	0.13							
Hexachlorobutadiene	0.5							
Hexachloroethane	3				\ <u></u>			
2-Methylphenol(o Cresol)	200		0.78		0.64	0.83		
3+4-Methylphenol(m+p Cresol)	200		2.0	0.17	1.7	2.7		
Nitrobenzene	2							
Pentachlorophenol	100				ļ			
Pyridine	5		0.29		1.6	1.2		
2,4,6-Trichlorophenol	2		<u> </u>					
2,4,5-Trichlorophenol	400							
Inorganic Parameters (mg/L)		•	•	•	· · · · · · · · · · · · · · · · · · ·			
Arsenic	5	<u> </u>	<u> </u>				<u> </u>	
Chromium	1				0.205			
Copper			0.0258	0.02	0.0344			
Lead	5				0.143	0.59		
Mercury	0.2	<u> </u>						
Zinc	1	1.43	0.161	0.278	1.04	0.652		
Total Cyanide		23.1	53.2	13.4	11.9	77.7	44.4	

Notes:

^{* -} EPA Maximum Concentration of Contaminants for Toxicity Characteristic Shading denotes concentration exceeds MCCTC*.

Blank space denotes parameter was not detected.

TABLE 3-16B PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

TAR AREA TCLP CHARACTERIZATION RESULTS

		Tar Area						
		Areas B, C, E			Area D			
Parameter	MCCTC*	0-2'	2-4'	4-6'	0-2'	2-4'	4-6'	
Volatile Organic Compound	s (mg/L)							
Benzene	0.5	0.36	0.18	3.7	0.014	6.9	130	
Carbon Tetrachloride	0.5		1111	4. /	0.014	0.5	130	
Chlorobenzene	100							
Chloroform	6	· .						
1,2-Dichloroethane	0.5			<u> </u>				
1,1-Dichloroethene	0.7							
Tetrachloroethene	0.7				 		-	
Trichloroethene	0.5			····				
Vinyl Chloride	0.2							

Notes:

* - EPA Maximum Concentration of Contaminants for Toxicity Characteristics. Shading denotes concentration exceeds MCCTC*.

Blank space denotes parameter was not detected.

MALCOLM PIRNIE

of the soil berm in Area I for analysis of VOCs and SVOCs, TAL metals and cyanide. Analytical results are presented in Table 3-17. The distribution of the detected compounds is shown on Plates 5 and 6.

Acetone was the only VOC detected and was present at a concentration typical of laboratory contamination. Benzo(a)pyrene was the only PAH detected at concentrations exceeding their respective EPA risk-based concentrations. PCBs were not detected in any samples. Of the inorganic parameters exceeding EPA risk-based concentrations, lead concentrations in the composite sample collected from test pits A2-TP5/6 in Area II were substantially elevated compared to lead concentrations detected in other test pit samples. Other elevated inorganic parameters included several non-toxic metals (i.e., potassium, iron, etc.)

TABLE 3-17 PHASE UPHASE II ENVIRONMENTAL SITE ASSESSMENT FORMER REPUBLIC STEEL PLANT AREA "STEEL MANUFACTURING SITE"

<u>SUMMARY OF SOIL SAMPLE RESULTS - SOIL BERM</u> EPA Risk Based **Background Soil** A3~ Concen.* Concentrations(1) LTV-1 A1-TP-4 A2-TP5/6⁽²⁾ **A3-TP7** TP7,Duplicate Parameter **A3-TP8** Volatile Organic Compounds (mg/kg) Acetone 200000 0.045 Semivolatile Organic Compounds (mg/kg) Acenapthene 120000 0.53 Anthracene 610000 0.4 1.1 1.3 Benzo(a)anthracene 7.8 0.94 2.0 2.7 Benzo(a)pyrene 0.490.78 1.9 2.0 2.5 Benzo(b)fluoranthene 0.52 7.8 1.8 2.7 3.8 Benzo(k)fluoranthene 0.665.17.8 2.6 _ $1.\overline{1}$ 1.4 Benzo(g,h,i)perylene 0.88 0.79Bis(2-ethylhexyl)phthalate 4100.55 _ 0.58 Chrysene 780 2.2 2.8 Dibenzofuran 0.57 8200 1.9 _ 0.43Di-N-Butylphthalate 200000 0.55 Fluoranthene 82000 -4.3 4.3 Fluorene 1.1 8.5 82000 4.10.64 0.74 Indeno(1,2,3-cd)pyrene 7.8 0.49_ 0.79Phenanthrene 0.71 0.59 3.6 4.7 Pyrene 1.2 7.8 61000 3.2 _ 3.6 5.5 1.1 Inorganic Compounds (mg/kg) 3.7 Aluminum 1000000 11700 10400 D 3350 11100 Arsenic 12500 11100 610 7200 5.17 3.47 31.4 D Barium 2.21 140000 1.19 212 97.9 83.3 239 Beryllium 92.4 98.7 1.3 50.7 1.01 Cadmium 0.7610.832 1000 0.882 0.846Calcium 0.969 1.24 44400 342000 148000 D Chromium 24900 50600 55400 10000 109000 29.6 $41.\overline{1}$ 72.9 N 18 Copper 21.324 82000 55.7 9.86 10.6 36.9 N 46.3 Iron 28.2 610000 34.4 14.6 24900 7300 19100 D Lead 16000 12400 14000 400 9810 63.5 45.3 145 Magnesium 792 126 $18\overline{7}$ 30.4 7920 3210 16000 D Manganese 6620 8910 10000 11300 1080 15700 894 1270 D 412 Nickel 345 41000 519 369 22.6 12.7 15.4 Potassium 18.1 18.1 8.3 1160 411 1530 1400 Selenium 1030 10000 1040 1080 12.7 2.68 6.16 Sodium 2.41 3.67 4.85 3.74 367 308 200 226 Vanadium 603 14000 509 190 21 22 41.2 20.4Zinc 19.1 21.4610000 13.6 138 49.9 214 N Total Cyanide 287 257 254 41000 67.2

Notes:

VOCs were not detected in either sample.

Shading denotes concentration exceeds EPA values (or background values for inorganic parameters). Blank space denotes parameter was not detected.

NA - Not Analyzed

^{* -} USEPA Region III Risk-Based Concentration

⁽¹⁾ Background inorganic soil concentrations from Truscon property

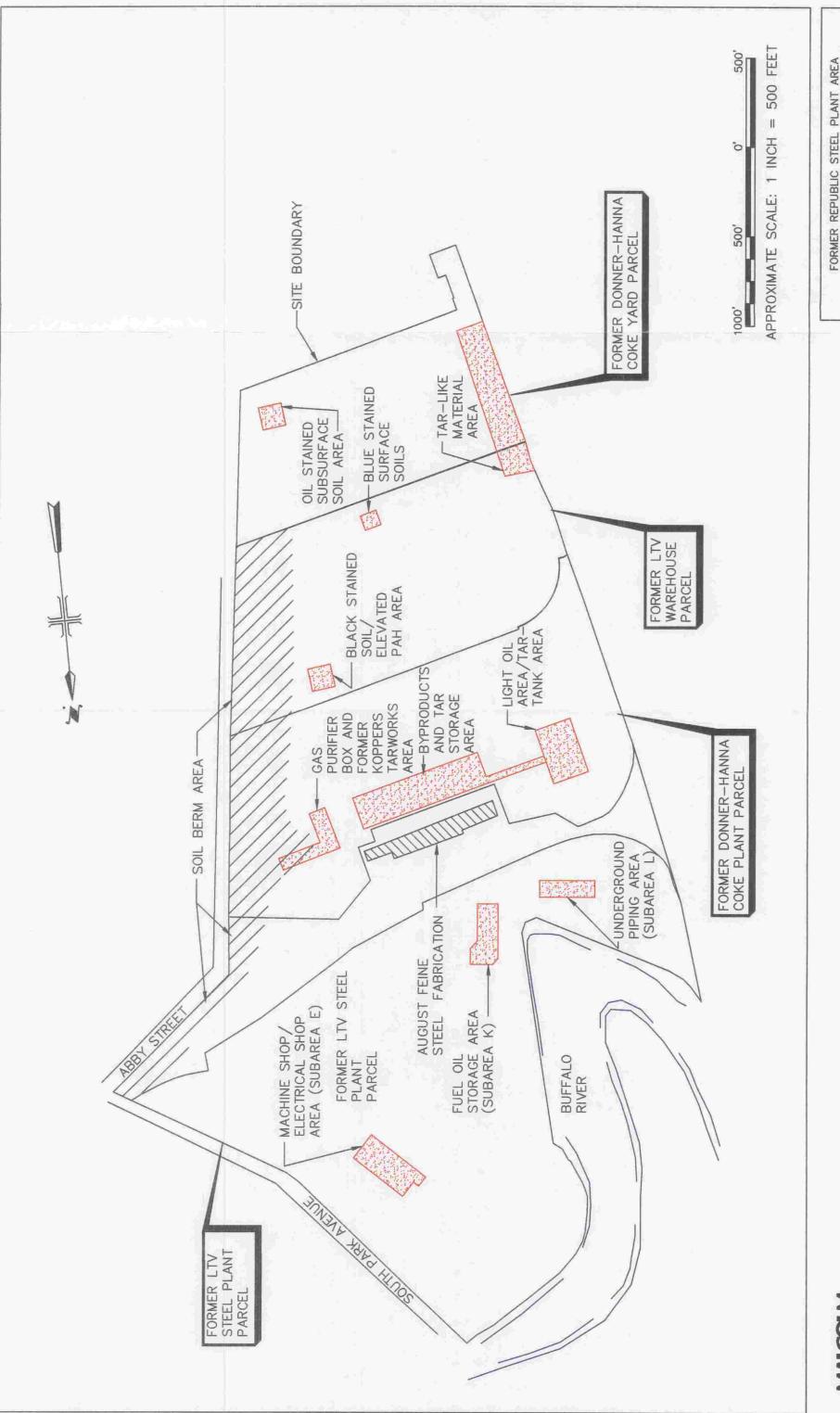
Composite sample from TP-5 and TP-6. Discrete VOC samples collected from each testpit.

N - Spiked sample recovery not within control limits

⁼ Data not available

4.0 SUMMARY AND CONCLUSIONS

4.1 STEEL MANUFACTURING SITE CHARACTERIZATION


4.1.1 Phase I ESA Results

The Phase I ESA identified several subareas with potential environmental conditions associated with historic industrial uses of the site. These subareas included: 13 subareas in the former LTV Steel Plant Parcel (Area I) related to steel making operations and fuel oil storage and transport; 14 subareas at the former Donner-Hanna Coke Plant Parcel (Area II) related to coke making byproduct treatment and product storage areas; 5 subareas in the Former LTV Warehouse Parcel (Area III) related to equipment maintenance activities, suspected surface disposal of gas purifier box wastes (blue stained soils) and the presence of tar-like materials in the southwest corner; and the entire former Donner-Hanna Coke Storage Yard Parcel (Area IV) which is listed as a Class 3 Inactive Hazardous Waste site on the NYSDEC Registry of Inactive Hazardous Waste Sites. These Areas and Subareas are shown on Figure 4-1, Plate 2 and in Attachment B-3.

4.1.2 Phase II Site Investigation Results

The Phase I ESA results served as the basis for scoping the Phase II Site Investigation, which was designed to characterize environmental issues, if any, associated with the proposed end use of the site (viz. light industrial/commercial park). Each of the subareas identified during the Phase I ESA were investigated during the Phase II Site Investigation. In addition, supplemental samples were collected and analyzed to characterize overall site impacts.

Groundwater investigations performed as part of the Phase II Site Investigation identified site operations related contaminant concentrations in excess of New York State Class "GA" Groundwater Quality Standards in the shallow groundwater (uppermost saturated zone) present in the on-site fill materials. The contaminants identified and their concentrations were locally specific to the former steel-making operations. Since

PHASE I/PHASE II ENVIRONMENTAL SITE ASSESSMENT

AREAS OF ENVIRONMENTAL CONDITION

LTV STEEL COMPANY BUFFALO, NEW YORK

7519 0848263302 I: /ACAD\PROJ\08482631\LTV-B Scale: 1:500i Date: 09/09/1997 Time: 11:48

FV-B

groundwater is not used for water supply in South Buffalo, since groundwater yields from fine grained soils present on the site are low, and since there are no sensitive downgradient receptors; the groundwater impact is limited to the on-site fill material.

Therefore, the results of the Phase II Investigation focuses on discussions of surficial and subsurface soil contamination on an Area-by-Area basis (see Figure 4-1).

Area I - Former LTV Steel Plant Parcel -Surface soil sampling results identified concentrations of several PAH compounds above EPA risk-based concentrations in over half of the samples analyzed; however only a limited number of surface samples were collected and analyzed relative to the size of the Area.

Subsurface soil sampling during the Phase II ESA identified three subareas with subsurface soil contamination. These three subareas include:

- The former machine shop/electric shop subarea (Subarea E).
- The former fuel oil storage subarea (Subarea K).
- The tar/fuel oil underground piping subarea (Subarea L).

Subsurface contamination was characterized by elevated PAH compounds associated with the former storage and transport of fuel oil. Stained soils and/or tar-like oil were observed in several boreholes in these three subareas.

Area II - Former Donner-Hanna Coke Plant Parcel - The surface soil analytical results identified several PAH compounds exceeding EPA risk-based concentrations in Area II. The results of the Phase II ESA also identified eleven subareas with subsurface contamination. These subareas include:

- The light oil area.
- Underground piping area.
- Old tar tanks.
- Benzol washers and final coolers area.
- Tar decanters.
- Gas holder and iron oxide (gas purifier)boxes.
- Possible tar unit.
- Primary cooler area.

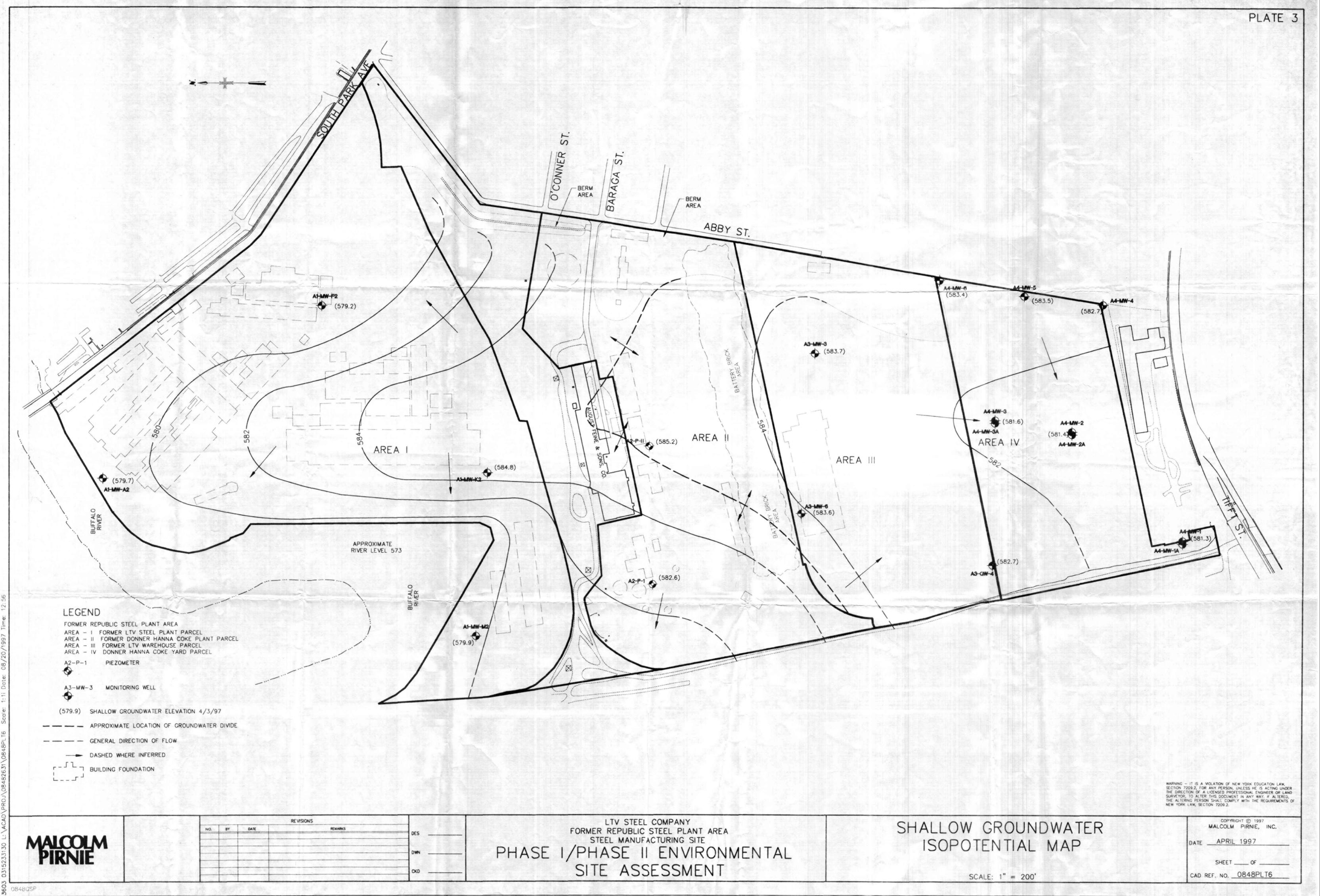
MALCOLM PIRNIE

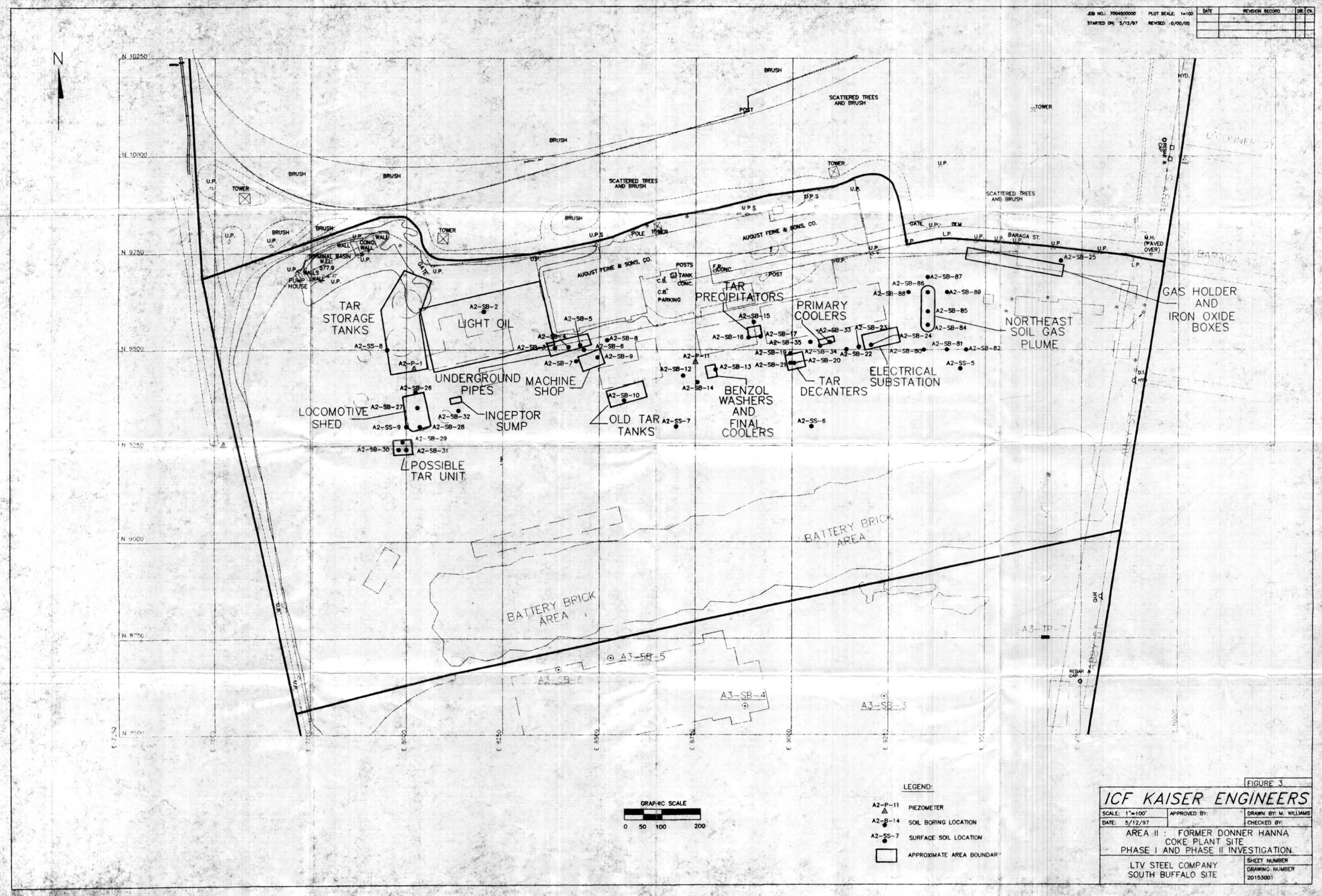
• Northeast soil gas plume (the area in the vicinity of former Koppers Tar Works).

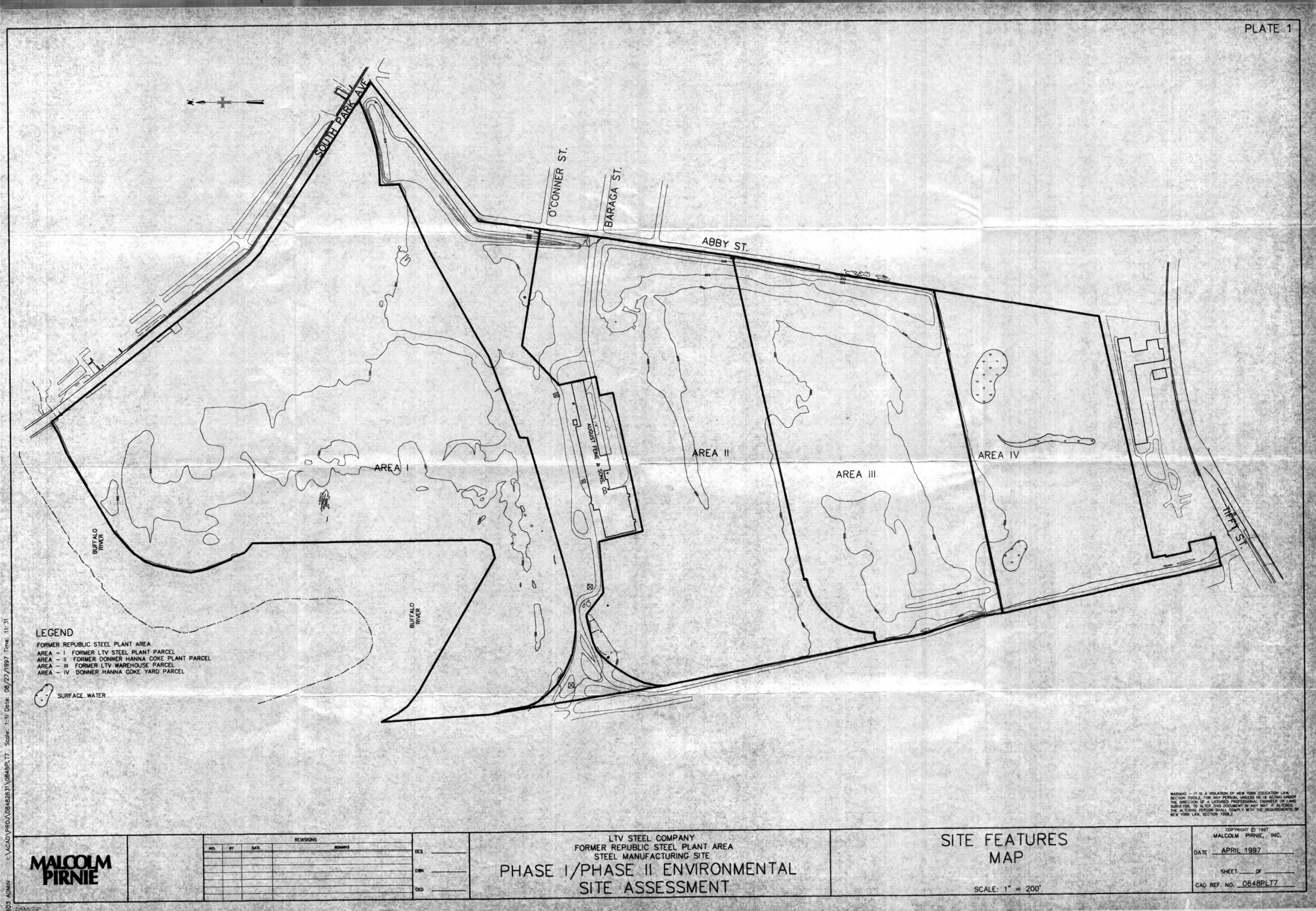
The subsurface soils were contaminated with aromatic hydrocarbons (BTEX) and PAHs. Many of the PAH compound concentrations exceeded EPA risk-based concentrations. Black stained soils, elevated PID readings, and olfactory evidence of contamination were apparent at these subareas.

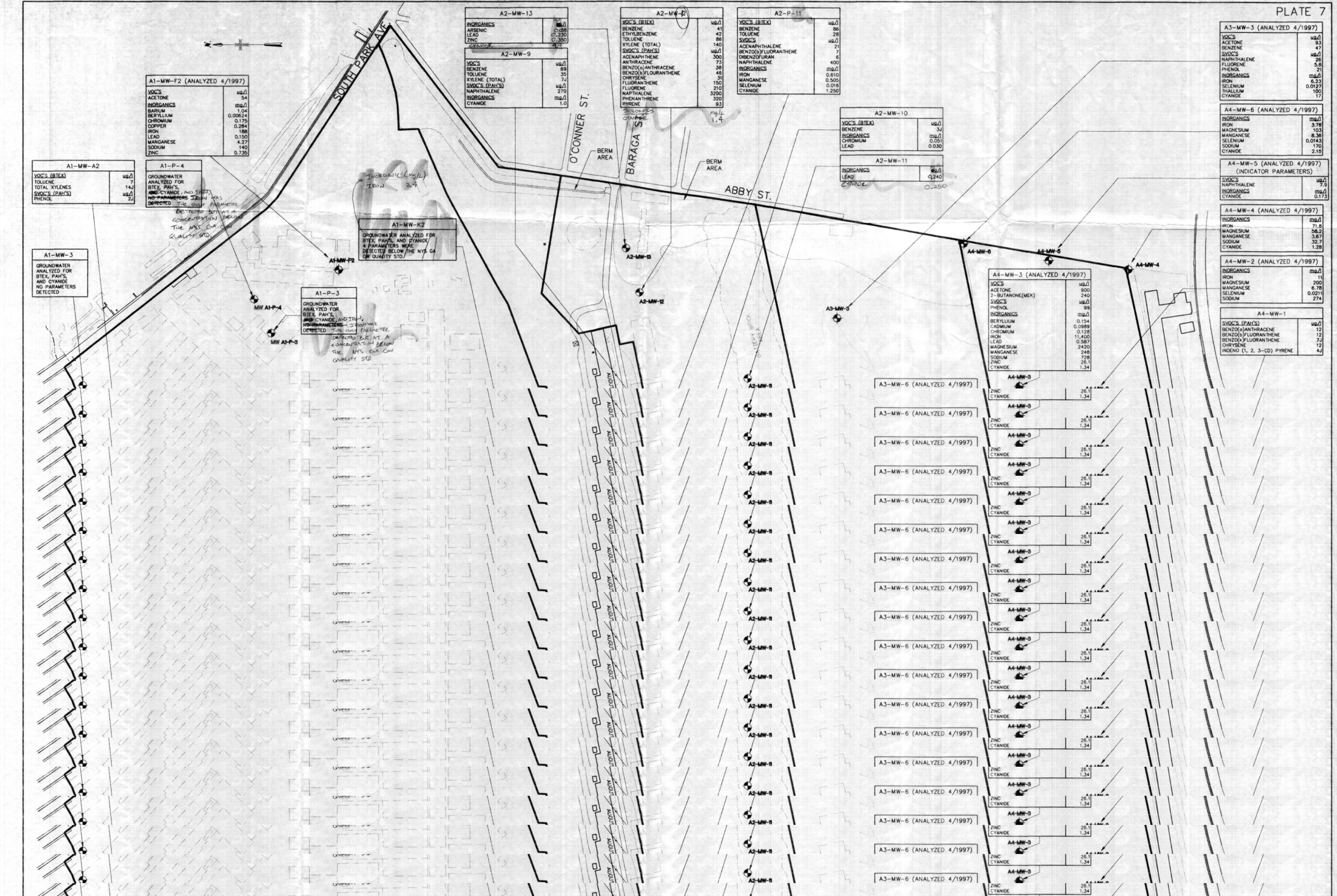
Area III - Former LTV Warehouse Parcel - The results of the Phase II ESA surface soil sampling identified limited surface soil contamination. PAH compounds exceed EPA risk-based criteria in the western portion of the parcel where tar-like materials existed on the ground surface. Also, in the south central portion of the parcel (approximately 100 foot by 100 foot area in the vicinity of sample location A3-SS-23), a tar-like material existed on the ground surface.

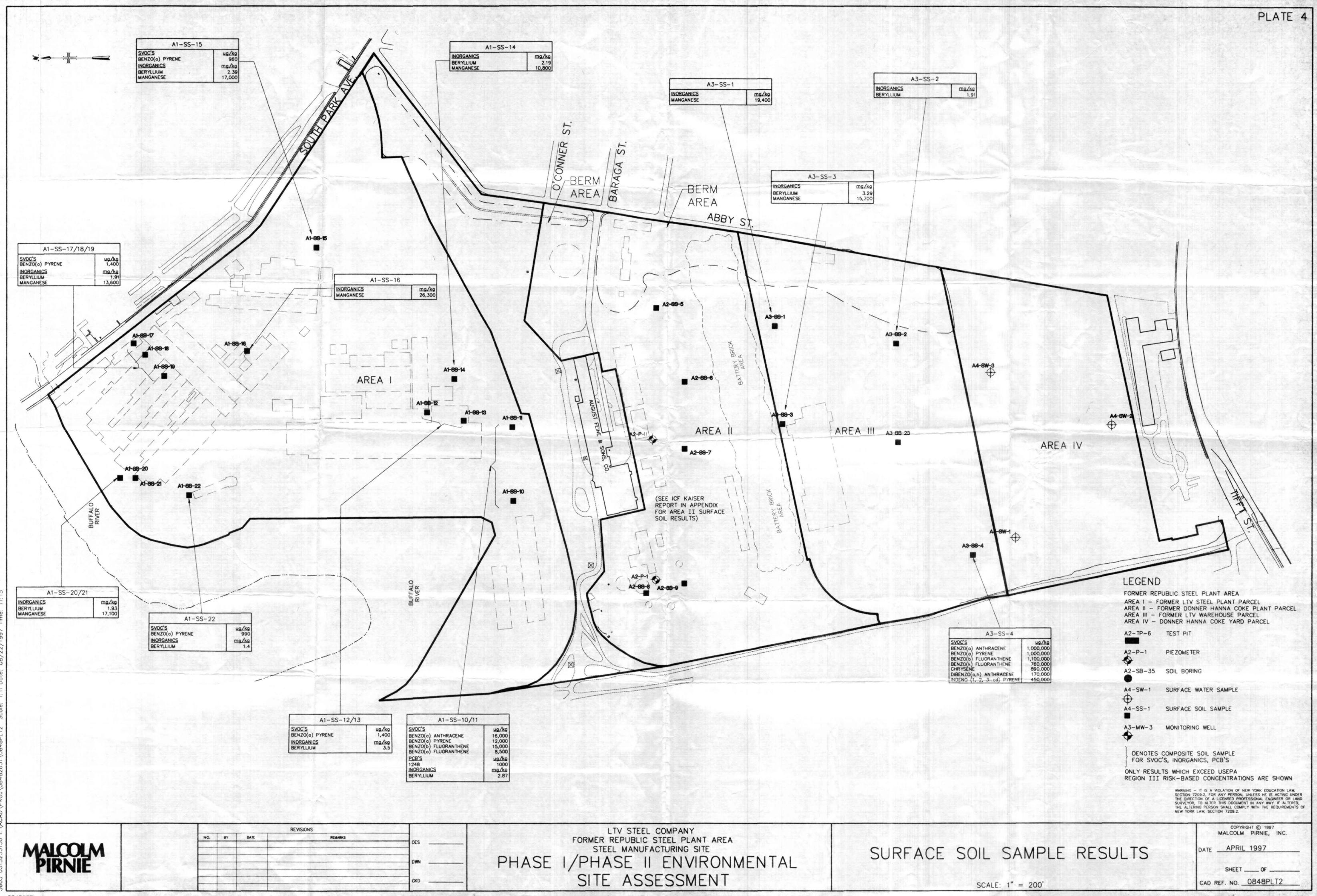
The results of the Phase II subsurface soil sampling identified three of the five subareas identified in the Phase I ESA with soil contamination. The southwest corner of Area III is contaminated with BTEX and PAH compounds. Cyanide concentrations detected in the blue stained surface soils in the south-central portion of Area III did not exceed EPA risk-based concentrations for industrial sites. Black stained soils and elevated PAH concentrations were detected in the northeastern portion of Area III.

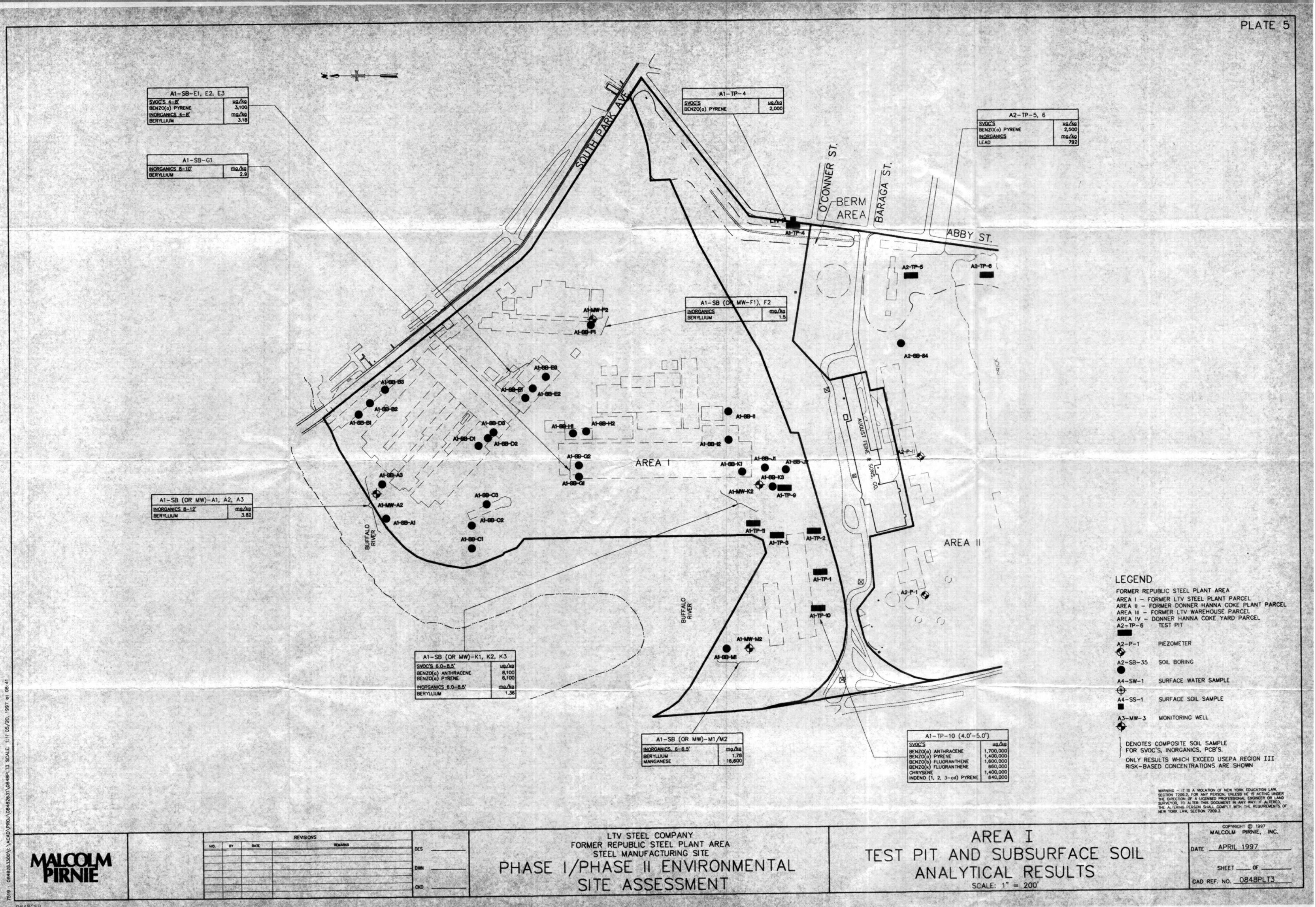

Area IV - The Former Donner-Hanna Coke Yard Parcel - The coke in Area IV is planned for removal as part of a coke recovery program. The Phase II ESA characterized the media remaining following coke excavation. As a result, surface soils were not characterized. The investigation identified benzene contaminated subsurface soils, groundwater and surface water in the northwestern corner subarea. In the same area, tar-like materials are observed at the ground surface and intermixed with the coke in the subsurface. Although TCLP extraction analysis indicates that the tar-like material does not leach appreciable quantities of benzene, other materials in this portion of Area IV are a potential source of benzene. TCLP extraction analysis of materials present in the

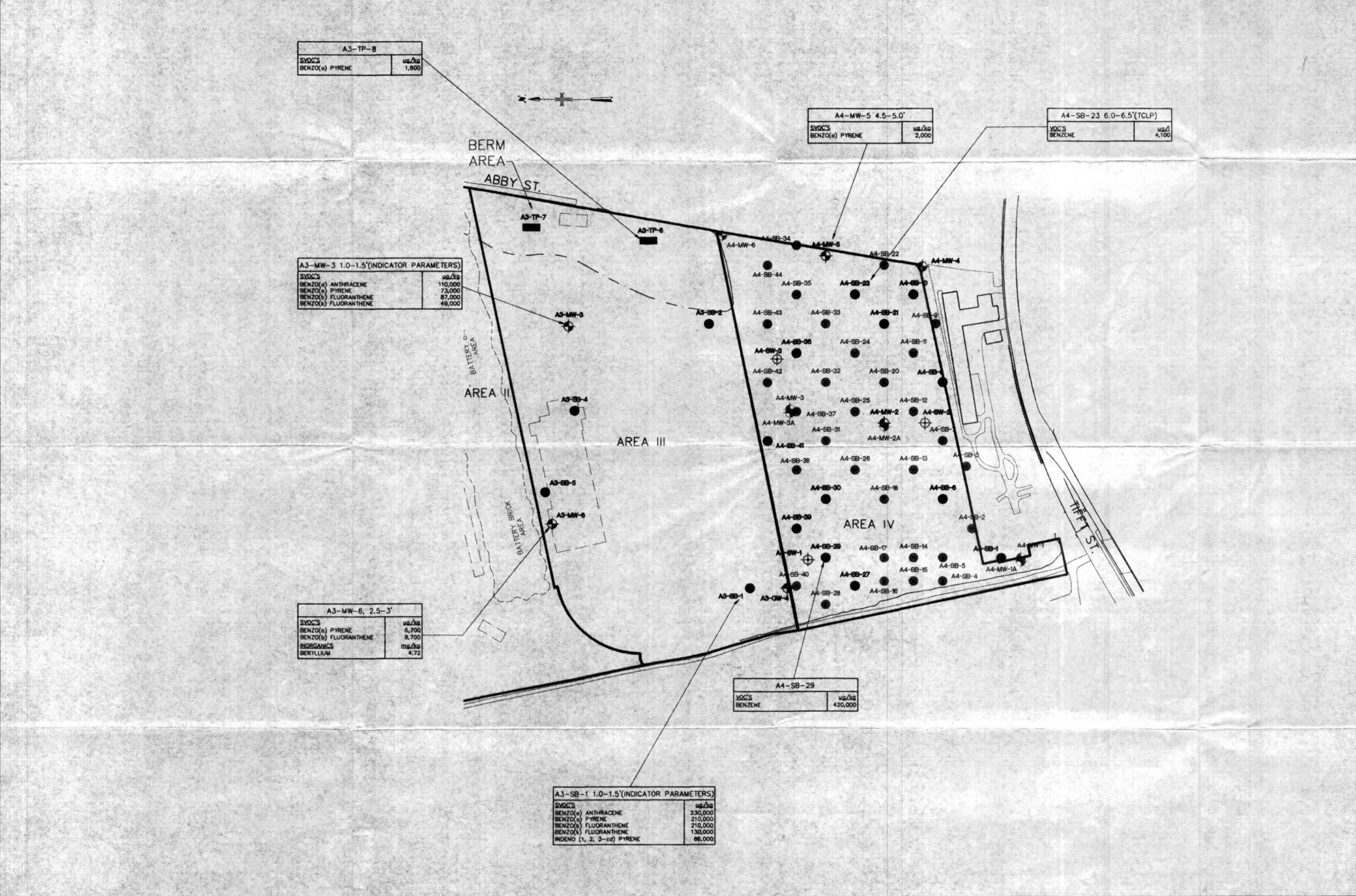



western portion of Area IV indicates that approximately 10,000 cubic yards of material could be TCLP Characteristic hazardous wastes. TCLP extraction analysis of soil collected from oil stained soils in the southeast portion of the area indicate that the soils in this area could also be TCLP characteristic hazardous wastes.


Abby Street Berm


During the investigation of the four Areas, the soil berm along Abby Street was investigated to characterize the soils (reportedly owned by the City of Buffalo) in the berm to determine if environmental concerns were present. Although PAH concentrations exceeded EPA risk-based concentrations in several samples collected from the berm, the depth of the contamination and lack of visual and olfactory evidence of contamination suggests that the soil berm is not an area of environmental concern.





LEGEND

FORMER REPUBLIC STEEL PLANT AREA

AREA I - FORMER LTV STEEL PLANT PARCEL

AREA II - FORMER DONNER HANNA COKE PLANT PARCEL

AREA III - FORMER LTV WAREHOUSE PARCEL

AREA IV - DONNER HANNA COKE YARD PARCEL

A2-TP-6 TEST PIT

P-1 PIEZOMETER

A2-SB-35 SOIL BORING

A4-SW-1 SURFACE WATER SAMPLE

SS-1 SURFACE SOIL SAMPLE

A3-MW-3 MONITORING WELL

(INDICATOR PARAMETERS) - SOIL SAMPLE ANALYZED FOR BTEX, PAHS, AND CYANIDE

(TCLP) - SOIL SAMPLE ANALYZED FOR TCLP VOLATILES AND SEMIVOLATILES

ONLY RESULTS WHICH EXCEED USEPA REGION III RISK-BASED CONCENTRATIONS ARE SHOWN

> WARNING - IT IS A WOLATION OF NEW YORK EDUCATION LAW, SECTION 7209.2, FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER OR LAND SURVEYOR, TO ALTER THIS DOCUMENT IN ANY WAY. IF ALTERED, THE ALTERING PERSON SHALL COMPLY WITH THE REQUIREMENTS O NEW YORK LAW, SECTION 7209.2.

MALCOLM

		A STATE OF THE STA	REVISIONS	
NO.	81	DATE	REMARKS	
		1 J. T. T.	CANADA TO THE PARTY OF THE PART	DES
COTES!			信息 经上海 医多种 医多种 医多种 医多种	DWN
Jan S		的特别的 不是	THE PROPERTY OF THE PARTY OF TH	
200	4			
P. 18.78	Name of the last			CKD

FORMER REPUBLIC STEEL PLANT AREA
STEEL MANUFACTURING SITE

PHASE I/PHASE II ENVIRONMENTAL
SITE ASSESSMENT

AREA III AND IV
TEST PIT AND SUBSURFACE SOIL
ANALYTICAL RESULTS
SCALE: 1" = 200"

	MALCOLM	PIRNIE,	INC.
DATE	APRIL	1997	
	SHEET	or	
CAD	REF. NO.	0848	PLT4

The EDR-Radius Map with GeoCheckTM

Former Republic Steel Property South Park, Abbey St.+Tifft St Buffalo, NY 14220

Inquiry Number: 0158322.1r

February 06, 1997

The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06490

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary.	_ ES1
Topographic Map.	. 2
GeoCheck Summary	3
Overview Map.	4
Detail Map.	. 5
Map Summary - All Sites.	. 6
Map Summary - Sites with higher or the same elevation as the Target Property	. 7
Map Findings.	_ 8
Orphan Summary.	. 26
APPENDICES	
GeoCheck Version 2.1	_ A1
EPA Waste Codes.	. A4
Government Records Searched / Data Currency Tracking Addendum	A5

Thank you for your business.
Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer

This Report contains information obtained from a variety of public sources and EDR makes no representation or warranty regarding the accuracy, reliability, quality, or completeness of said information or the information contained in this report. The customer shall assume full responsibility for the use of this report.

No warranty of merchantability or of fitness for a particular purpose, expressed or implied, shall apply and EDR specifically disclaims the making of such warranties. In no event shall EDR be liable to anyone for special, incidental, consequential or exemplary damages. Copyright (c) 1997 by EDR. All rights reserved.

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR). The search met the specific requirements of ASTM Standard Practice for Environmental Site Assessments, E 1527-94, or custom distances requested by the user.

The address of the subject property for which the search was intended is:

SOUTH PARK, ABBEY ST.+TIFFT ST BUFFALO, NY 14220

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the subject property or within the ASTM E 1527-94 search radius around the subject property for the following Databases:

NPL:	National Priority List
Delisted NPL:	
CERCLIS:	. Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NERAP:	Comprehensive Environmental Response, Compensation, and Liability Information
32.13.11.11.11.11.11.11.11.11.11.11.11.11.	System
SWF/LF:	•
	Petroleum Bulk Storage (PBS, CBS, MOSF) Database (UST)
	Petroleum Bulk Storage (AST)
	RCRA Administrative Action Tracking System
	Resource Conservation and Recovery Information System
	. Resource Conservation and Recovery Information System
HMIRS:	Hazardous Materials Information Reporting System
PADS:	PCB Activity Database System
ERNS:	Emergency Response Notification System
FINDS:	
	. Toxic Chemical Release Inventory System
NPL Liens:	Federal Superfund Liens
TSCA:	. Toxic Substances Control Act
	Material Licensing Tracking System
RODS:	
	Superfund (CERCLA) Consent Decrees
	. Former Manufactured gas (Coal Gas) Sites.
Ooai Gas	Tome Manufactored gas (Ooal Gas) Oiles.

Unmapped (orphan) sites are not considered in the foregoing analysis.

Search Results:

Search results for the subject property and the search radius, are listed below:

Subject Property:

The subject property was identified in the following government records. For more information on this property see page 8 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
REPUBLIC STEEL SOUTH PARK AVENUE BUFFALO, NY	Ny Spills	N/A

Surrounding Properties:

Elevations have been determined from the USGS 1 degree Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. EDR's definition of a site with an elevation equal to the subject property includes a tolerance of -10 feet. Sites with an elevation equal to or higher than the subject property have been differentiated below from sites with an elevation lower than the subject property (by more than 10 feet). Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

RCRIS: The Resource Conservation and Recovery Act database includes selected information on sites that generate, store, treat, or dispose of hazardous waste as defined by the Act. The source of this database is the U.S. EPA.

A review of the RCRIS-TSD list, as provided by EDR, and dated 07/01/1996 has revealed that there are 2 RCRIS-TSD sites within approximately 1 Mile of the subject property.

Equal/Higher Elevation	Address	TP Dist	Map ID	Page
ADVANCED ELECTRO POLISHING INC	356 HOPKINS ST	1/2 - 1	7	14
PVS CHEMICAL INC NEW YORK	55 LEE ST	1/2 - 1	10	17

SHWS: The State Hazardous Waste Sites records are the states' equivalent to CERCLIS. These sites may or may not already by listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. The data comes from the Department of Environmental Conservation's Inactive Hazardous waste Disposal Sites in New York State.

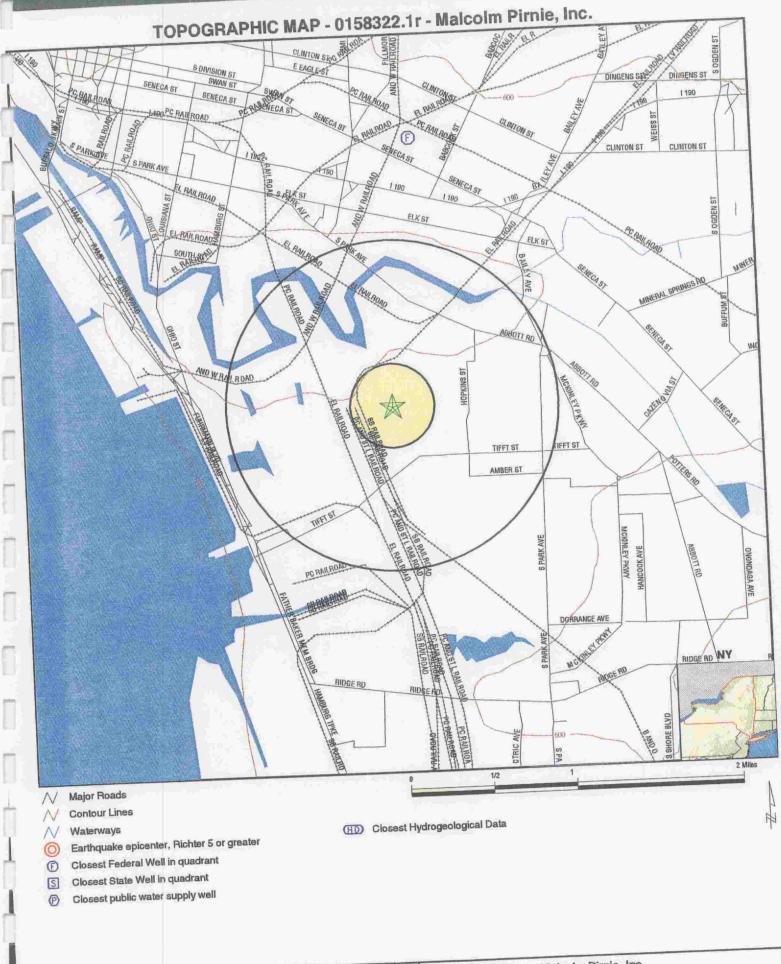
A review of the SHWS list, as provided by EDR, and dated 04/30/1996 has revealed that there are 5 SHWS sites within approximately 1 Mile of the subject property.

Equal/Higher Elevation	Address	TP Dist	Map ID	Page	
DONNER HANNA COKE	ABBY AND MYSTIC STREET	1/4 - 1/2	2	8	
TIFFT AND HOPKINS	PROVIDENCE STREET (PAPE	1/4 - 1/2	3	9	
LEHIGH VALLEY RR	TIFFT STREET	1/2 - 1	6	12	
ALLTIFT LANDFILL	TIFFT STREET	1/2 - 1	8	15	
RAMCO STEEL	110 HOPKINS ST	1/2 - 1	9	16	

CORRACTS: CORRACTS is a list of handlers with RCRA Corrective Action Activity. This report shows which nationally-defined corrective action core events have occurred for every handler that has had corrective action activity.

A review of the CORRACTS list, as provided by EDR, and dated 09/27/1996 has revealed that there is 1 CORRACTS site within approximately 1 Mile of the subject property.

Equal/Higher Elevation	Address	TP Dist	Map ID	Page
PVS CHEMICAL INC NEW YORK	55 LEE ST	1/2 - 1	10	17


LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data comes from the Department of Environmental Conservation's Spills Information Database.

A review of the LUST list, as provided by EDR, and dated 09/30/1996 has revealed that there are 2 LUST sites within approximately 0.5 Miles of the subject property.

Equal/Higher Elevation	Address	TP Dist	Map ID	Page
DAVIS & MAVIS 478 HOPKINS	478 HOPKINS ST	1/4 - 1/2	4	10
PALLET EXCHANGE, INC.	<i>534 HOPKINS ST.</i>	1/4 - 1/2	5	11

Due to poor or inadequate address information, the following sites were not mapped:

Site Name	Database(s)
ALTIFT REALTY	CERCLIS, FINDS
NIAGARA LANDFILL INC	SWF/LF
EVANS LF (OLD) (T)	SWF/LF
NORTHSIDE TRANSFER STA.	SWF/LF
WMNY TRANSFER STATION	SWF/LF
NYS THRUWAY AUTH. SLF	SWF/LF
SQUAW ISLAND SLF	SWF/LF
NIMO-CHERRY FARM	SWF/LF
SPRINGVILLE LF (V)	SWF/LF
AMHERST LF (T)	SWF/LF
BLASDELL LF (V)	SWF/LF
DEPEW LF (V)	SWF/LF
GEORGE SCHREIBER	SWF/LF
ALLIED CHEM-HOPKINS ST.	SWF/LF
SMALL BOAT HARBOR CONTAIN	SWF/LF
TIFFT FARM NATURE PRESERV	SWF/LF
OLD LAND RECLAMATION	SWF/LF
LAMB & WEBSTER C & D	SWF/LF
IWS SCHULTZ C&D	SWF/LF
COLLINS T.S.	SWF/LF
BERNARD COPE SLF	SWF/LF
DUPONT SLF	SWF/LF
SOUTH SIDE T.S. INDIAN RD	SWF/LF
MCMANNUS STEEL CONSTR.	LUST
RUBENSTEIN'S SCRAP YARD	LUST
PVS CHEMICAL	LUST, NY Spills
KENDALL OIL	LUST

TARGET PROPERTY: ADDRESS: CITY/STATE/ZIP: Former Republic Steel Property South Park, Abbey St.+Tifft St Buffalo NY 14220 CUSTOMER: CONTACT: INQUIRY #: Malcolm Pirnie, Inc. Jeanne Asquith 0158322.1r February 06, 1997 4:32 pm

GEOCHECK VERSION 2.1 SUMMARY

GEOLOGIC AGE IDENTIFICATION[†]

Geologic Code:

D2

Era:

Paleozoic

System: Series: Devonian Middle Devonian

ROCK STRATIGRAPHIC UNIT

Category:

Stratified Sequence

GROUNDWATER FLOW INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, including well data collected on nearby properties, regional groundwater flow information (from deep aquifers), or surface topography.‡

General Topographic Gradient: General NNW

General Hydrogeologic Gradient: No hydrogeologic data available.

Site-Specific Hydrogeological Data*:
Search Radius:
2.0 miles
Status:
Not found

USGS TOPOGRAPHIC MAP ASSOCIATED WITH THIS SITE

Target Property: 2442078-G7 BUFFALO SE, NY

FEDERAL DATABASE WELL INFORMATION

 WELL
 DISTANCE
 DEPTH TO

 QUADRANT
 FROM TP
 LITHOLOGY
 WATER TABLE

 Northern
 1 - 2 Miles
 Limestone
 20 ft.

STATE DATABASE WELL INFORMATION

WELL DISTANCE
QUADRANT FROM TP

Southern >2 Miles

PUBLIC WATER SUPPLY SYSTEM INFORMATION (EPA-FRDS)

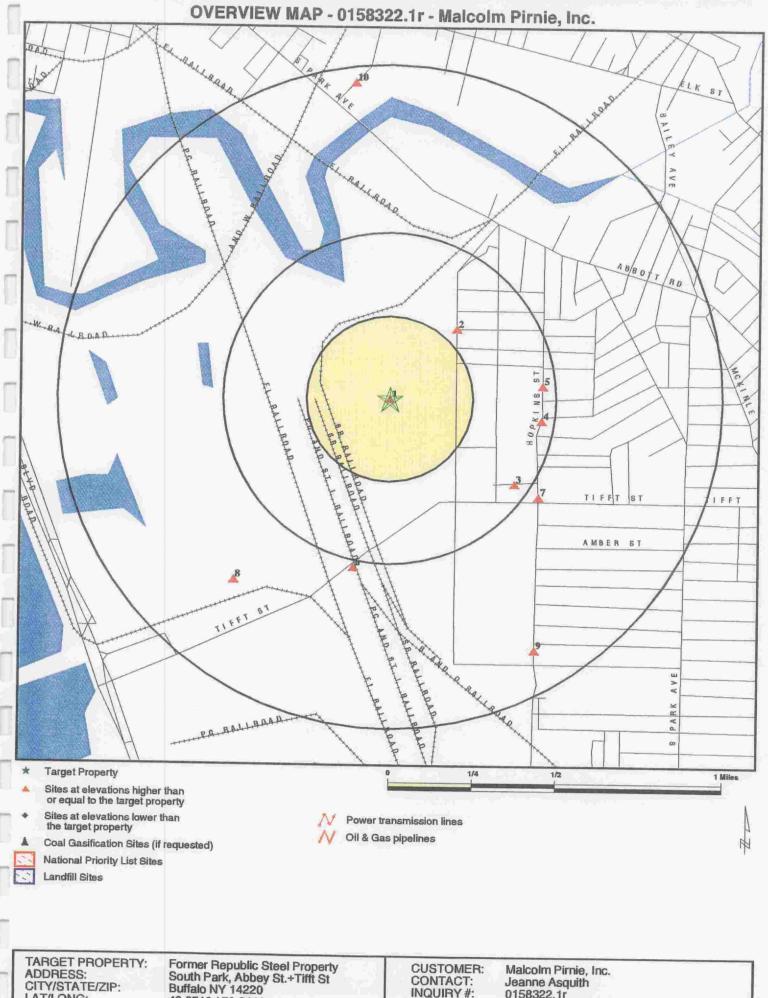
Searched by Nearest Well.

NOTE: PWS System location is not always the same as well location.

PWS Name: PRYME TIME RESTAURANT

CHAFFEE, NY 14030

Location Relative to TP: >2 Miles North

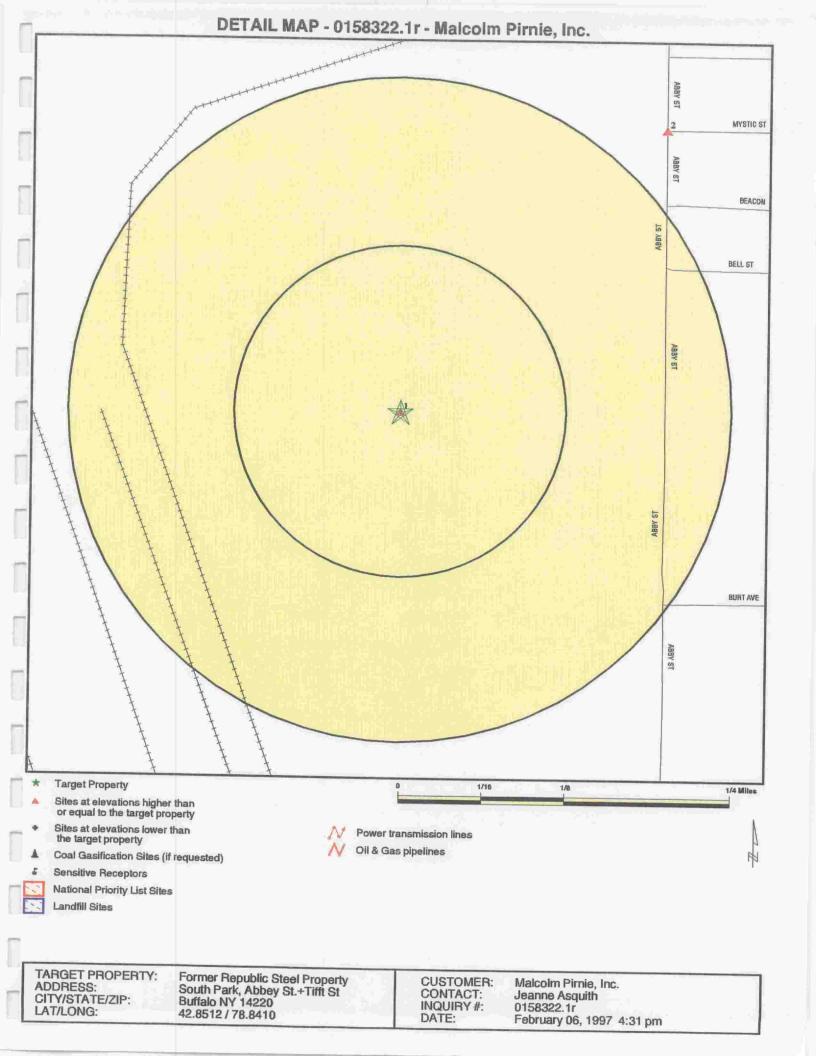

Well currently has or has had major violation(s): No

AREA RADON INFORMATION

ERIE COUNTY, NY

Number of sites tested: 622

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area	1.000 pCi/L	89%	11%	0%
Basement	1.150 pCi/L	87%	11%	2%



CITY/STATE/ZIP: LAT/LONG:

42.8512 / 78.8410

INQUIRY#: DATE:

0158322.1r February 06, 1997 4:29 pm

MAP FINDINGS SUMMARY SHOWING ALL SITES

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
NPL		1.000	0	0	0	0	NR	0
Delisted NPL		TP	NR	NR	NR	NR	NR	0
RCRIS-TSD		1.000	0	0	0	2	NR	2
State Haz. Waste		1.000	0	0	2	3	NR	5
CERCLIS		0.500	0	0	0	NR	NR	0
CERC-NFRAP		TP	NR	NR	NR	NR	NR	0
CORRACTS		1.000	0	0	0	1	NR	1
State Landfill		0.500	0	0	0	NR	NR	0
LUST		0.500	0	0	2	NR	NR	2
UST		0.250	0	0	NR	NR	NR	0
AST		0.125	0	NR	NR	NR	NR	0
RAATS		TP	NR	NR	NR	NR	NR	0
RCRIS Sm. Quan. Gen.		0.250	0	0	NR	NR	NR	0
RCRIS Lg. Quan. Gen.		0.250	0	0	NR	NR	NR	0
HMIRS		TP	NR	NR	NR	NR	NR	0
PADS		TP	NR	NR	NR	NR	NR	0
ERNS		TP	NR	NR	NR	NR	NR	0
FINDS		TP	NR	NR	NR	NR	NR	0
TRIS		TP	NR	NR	NR	NR	NR	0
NPL Liens		TP	NR	NR	NR	NR	NR	0
TSCA		TP	NR	NR	NR	NR	NR	0
MLTS		TP	NR	NR	NR	NR	NR	0
NY Spills	X	TP	NR	NR	NR	NR	NR	0
ROD		1.000	0	0	0	0	NR	0
CONSENT		1.000	0	0	0	0	NR	0
Coal Gas		1.000	0	0	0	0	NR	0

TP = Target Property

NR = Not Requested at this Search Distance

^{*} Sites may be listed in more than one database

MAP FINDINGS SUMMARY SHOWING ONLY SITES HIGHER THAN OR THE SAME ELEVATION AS TP

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	<u>> 1</u>	Total Plotted
NPL		1.000	0	0	0	0	NR	0
Delisted NPL		ΤP	NR	NR	NR	NR	NR	0
RCRIS-TSD		1.000	0	0	0	2	NR	2
State Haz. Waste		1.000	0	0	2	3	NR	5
CERCLIS		0.500	0	0	0	NR	NR	0
CERC-NFRAP		TP	NR	NR	NR	NR	NR	0
CORRACTS		1.000	0	0	0	1	NR	1
State Landfill		0.500	0	0	0	NR	NR	0
LUST		0.500	0	0	2	NR	NR	2
UST		0.250	0	0	NR	NR	NR	0
AST		0.125	0	NR	NR	NR	NR	0
RAATS		Τ Ρ	NR	NR	NR	NR	NR	0
RCRIS Sm. Quan. Gen.		0.250	0	0	NR	NR	NR	0
RCRIS Lg. Quan. Gen.		0.250	0	0	NR	NR	NR	0
HMIRS		TP	NR	NR	NR	NR	NR	0
PADS		TP	NR	NR	NR	NR	NR	0
ERNS		TP	NR	NR	NR	NR	NR	0
FINDS		TP	NR	NR	NR	NR	NR	0
TRIS		TP	NR	NR	NR	NR	NR	0
NPL Liens		TP	NR	NR	NR	NR	NR	0
TSCA		TP	NR	NR	NR	NR	NR	0
MLTS		TP	NR	NR	NR	NR	NR	0
NY Spills	Х	TP	NR	NR	NR	NR	NR	0
ROD		1.000	0	0	0	0	NR	0
CONSENT		1.000	0	0	0	0	NR	0
Coal Gas		1.000	0	0	0	0	NR	0

TP = Target Property

NR = Not Requested at this Search Distance

^{*} Sites may be listed in more than one database

MAP FINDINGS

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

Coal Gas Site Search: No site was found in a search of Real Property Scan's ENVIROHAZ database.

Target Property REPUBLIC STEEL **SOUTH PARK AVENUE BUFFALO, NY**

NY Spills

S102178877

N/A

SPILLS:

Facility ID: Facility Contact: Investigator: **JDC** Caller Name: Caller Phone: Notifier Name: Notifier Phone: Spiller Contact: Spiller:

Not reported UNKNOWN Not reported

Not reported Spill Class:

Spill Closed Dt: 02/02/1995

Material Class: Petroleum Quantity Spilled: 0 gallons

Spill Cause: Abandoned Drums Water Affected: Not reported

Spill Notifier: Citizen

Spill Date: 09/01/1994 12:00 Tank Number: Not reported Test method: Not reported Gross Leak/Fail: Not reported Cleanup Ceased: 02/02/1995

Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported Enforcement Date: Not reported Investigation Complete: Not reported UST Involvement: Fale Spill Record Last Update: 02/07/1995

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 09/30/1994

Not reported

MOBIL OIL

Not reported

Not reported

Not reported

Facility

Address

9408504 Region of Spill: Facility Tele: Not reported Spill Type: **GLENN HAFNER** Caller Agency: (716) 827-5127 Caller Extension: Not reported Notifier Agency: Not reported Notifier Extension: Not reported

Spiller Phone:

No spill occured. No DEC Response. No corrective action required.

Spilled Code: 0066 Quant Recovered: 0 gallons Resource Affected: On Land

Spill Source: Other Commercial/Industrial

PBS Number: Not reported Reported to Dept: 09/26/1994 14:00

Tank Capacity: 0 Gallons Leak Rate: 0.00

2 DONNER HANNA COKE ΝE **ABBY AND MYSTIC STREET** 1/4-1/2 **BUFFALO, NY 14220** Higher

SHWS

S101008660 N/A

Map ID Direction Distance

Elevation Site Database(s)

EDR ID Number EPA ID Number

DONNER HANNA COKE (Continued)

S101008660

SHWS:

Facility ID:

915017

EPA ID:

NYD002110971

Owner:

Hanna Furnace Corporation

Box A, South Park Station

Buffalo, NY 14220

Owner Telephone:

Not reported

Operator:

Hanna Furnace Corporation

Box A South Park Station

Buffalo, NY 14220

Contact:

Kevin Mahar

Telephone

Not reported

Site Classification:

Does not present a significant threat to the public health or the

environment - action may be defered.

Region:

Site Type: Acres:

Dump 33

User:

Donner Hanna Coke

HW Started:

1951

HW Ended:

1975

HW Disposed:

Ammonium sulfate, Other coke related waste

Unknown, Unknown

Units: Air Data:

Unavailable

Surf. Water Data: Unavailable Soil Data:

Available

Grnd. Water Data: Sediment Data:

Available Unavailable

Ground Water Standards Contravention: Drinking Water Standards Contravention:

Yes No Νo

Surface Water Standards Contravention: Air Standards Contravention:

No

No

Enforcement Status: State Action:

Not reported No

None

Legal Action: Fed Action:

No

Remedial Action:

Remed action type:

None Urban soil & layers of clay found at 4-6 ft. depth

Soil Type: Grnd Water Depth:

Unknown

Assessment of Environmental Problems: Analysis of the soil samples shows high levels of most of the PNAs, and the concentration of iron was higher than backgroundlevels. Groundwater

is also contaminated at this site.

Assessment of Health Problems:

Access to the site is partially controlled. The surrounding areaconsists of many other hazardous waste sites and heavy industries. Direct on-site contact with contaminated soils, leachate, a tar-likesubstance extruding from the subsurface, surface water and sediments arethe more likely possible routes of exposure. Groundwater standards are exceeded for arsenic, cyanide and manganese while drinking waterstandards are exceeded for acetone, benzene, toluene and metals. Publicwater serves the area.

SE 1/4-1/2 **BUFFALO, NY**

Higher

TIFFT AND HOPKINS PROVIDENCE STREET (PAPER STREET) **SHWS**

S101008743 N/A

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

TIFFT AND HOPKINS (Continued)

S101008743

SHWS:

Facility ID: Owner:

EPA ID:

Not reported

Artim Transportation Systems, Inc. PO Box 10834

Merrillville, IN 46411

Owner Telephone:

Not reported

Operator:

Consumer Beverages

2230 South Park Buffalo, NY 14220

Contact:

Not reported

Telephone

Not reported

Site Classification:

Temporary classification assigned to sites that have inadiquate and/or

insufficient data for inclusion in any of the other classifications.

Region:

Site Type:

Landfill

Acres: HW Started:

Units:

Not reported Not reported User: HW Ended: unknown Not reported

HW Disposed:

unknown wastes

unknown

Air Data: Grnd. Water Data:

Unavailable Unavailable

Soil Data:

Surf. Water Data: Unavailable Available

Sediment Data:

Unavailable Ground Water Standards Contravention:

Νo **Drinking Water Standards Contravention:** No

Surface Water Standards Contravention:

No

No

Air Standards Contravention: Enforcement Status:

Not reported

Legal Action: Fed Action:

No No

State Action:

Soil Type:

Νo None

Remedial Action: Remed action type:

none unknown unknown

Grnd Water Depth: Assessment of Environmental Problems:

Subsurface soil is contaminated with PAHs and chlorobenzene.

Assessment of Health Problems:

Relatively high concentrations of chlorobenzene

(2,300ppb),1,2-dichlorobenzene (340,000 ppb), 1,2,4-trichlorobenzene (63,000 ppb), and naphthalene (810,000 ppb) were documented in subsurface soils duringthe Preliminary Site Assessment. Presently the potential of exposure tothese chemicals is limited because of an existing clay cap andpavement. However, if this cap is disturbed exposure to these compounds is possible. The immediate area is served by public water and

there areno known users of groundwater in the immediate area.

DAVIS & MAVIS 478 HOPKINS

East 1/4-1/2 Higher **478 HOPKINS ST BUFFALO, NY**

Facility Contact:

Investigator:

Caller Name:

Caller Phone:

Notifier Name:

Notifier Phone:

Spiller Contact:

LUST

S100560472 N/A

LUST:

Facility ID:

9306635

Not reported

RMC

JOHN OTTO

Not reported

(716) 851-7220

Not reported Not reported Region of Spill:

Facility Tele:

Spill Type: Caller Agency: Caller Extension:

Facility NYSDEC Not reported

Notifier Agency: Notifier Extension: Spiller Phone:

Not reported Not reported (414) 658-4831

Not reported

Map ID
Direction
Distance
Flevation

Site

Database(s)

EDR ID Number EPA ID Number

DAVIS & MAVIS 478 HOPKINS (Continued)

Spiller:

KAT REALTY

Address

4314 39TH AVENUE

KENOSHA, WI 53144

Spill Class:

Known release with minimal potential for fire or hazard. DEC Response.

Willing Responsible Party. Corrective action taken.

Not reported

Spill Closed Dt:

12/29/1993

Spill Cause:

Tank Failure Not reported

Water Affected: Spill Notifier:

DEC

Spill Date: 08/30/1993 09:00 Cleanup Ceased: 12/28/1993

Last Inspection: 08/31/1993 Cleanup Meets Standard: False Recommended Penalty:

Spiller Cleanup Date: **Enforcement Date:**

Investigation Complete: **UST Involvement:** Spill Record Last Update: 01/11/1994

Corrective Action Plan Submitted:

Date Spill Entered In Computer Data File: 08/31/1993

8700394

PALLET EXCHANGE, INC. 534 HOPKINS ST. **BUFFALO, NY 14220**

No Penalty

Not reported

Not reported

Not reported

True

LUST:

East 1/4-1/2

Higher

Facility ID:

Facility Contact: Not reported MNP Investigator:

Caller Name: Not reported Caller Phone: Not reported Notifier Name: Notifier Phone:

Not reported Not reported Spiller Contact: Not reported Spiller:

Address

PALLET EXCHANGE **534 HOPKINS STREET**

BUFFALO, NY

Spill Class: Not reported Spill Closed Dt: 12/10/1987 Tank Failure Spill Cause: Water Affected: Not reported

Spill Notifier: Other Spill Date:

04/09/1987 16:35 Cleanup Ceased: 12/10/1987 Last Inspection: 09/03/1987 Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported **Enforcement Date:** Not reported Investigation Complete: Not reported

UST involvement: True Spill Record Last Update: 12/10/1987

Corrective Action Plan Submitted: Not reported Date Spill Entered in Computer Data File: 04/15/1987

\$100560472

Resource Affected: On Land

Spill Source:

Region of Spill: Facility Tele:

Caller Agency:

Caller Extension:

Notifier Extension: Not reported

Resource Affected: Groundwater

Reported to Dept: 04/09/1987 16:35

Notifier Agency:

Spiller Phone:

Spill Source:

PBS Number:

Spill Type:

Other Commercial/Industrial

PBS Number:

9-421545

Reported to Dept: 08/30/1993 09:30

UST LUST

Not reported

Not reported

Not reported

Not reported

Gas Station

Not reported

(716) 823-2400

Facility

U001329151

N/A

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

PALLET EXCHANGE, INC. (Continued)

U001329151

PBS UST:

Facility ID: Town:

9-488798 Not reported (716) 823-2400

SWIS ID: Location: Not reported 1402 Not reported

Telephone: Operator: Contact:

PALLET EXCHANGE, INC.

Not reported

Emergency Contact:

JAMES R. JANKOWIAK, (716) 675-8725

Facility Type: Not reported

Total Tanks:

Old PBS Num:

CBS Number:

Not reported

Owner:

PALLET EXCHANGE, INC. 534 HOPKINS ST. BUFFALO, NY 14220

(716) 823-2400

Owner Type:

Not reported Not reported Owner Mark:

First Owner

Owner Subtype:

Mailing Address:

PALLET EXCHANGE, INC. 534 HOPKINS ST. BUFFALO, NY 14220 (716) 823-2400 Not Reported

Facility Status:

Inactive 06/23/1989 Total Capacity: Expiration:

06/23/1994

Certification: Tank Status:

Closed Before April 1, 1991

Tank Location:

UNDERGROUND

Install Date:

00/00

Tank ID: Product Stored: Tank Internal:

001

NOS 1,2, OR 4 FUEL OIL Not reported

Tank Type: Pipe Internal: Pipe Type:

Steel/carbon steel Not reported COPPER

Pipe Location: Tank External: Pipe External:

Second Containment: Leak Detection:

Not reported Not reported NONE NONE

Not reported

Not reported Not reported

Dispenser: Next Test Date: Test Method:

Submersible Not reported Not reported

Date Closed: Data File:

Overfill Prot:

Date Tested:

00/00 Chemical Bulk Storage Facility

SSW 1/2-1 Higher **LEHIGH VALLEY RR** TIFFT STREET **BUFFALO, NY 14211**

FINDS 1000230818 RCRIS-LQG NYD000513945 CERC-NFRAP

SHWS SWF/LF

CERCLIS-NFRAP Classification Data:

Site Incident Category: Not reported Ownership Status:

OTHER

Federal Facility: NO

NPL Status: NOT ON NPL

EPA Notes:

ENTER AS A NEW SITE; PA/SI WILL BE THE PHASE II (THE SAME DOCUMENT)

STATE ID # 915071

CERCLIS-NFRAP Assessment History:

Assessment: FINAL HAZARD RANKING DETRMINED Assessment: SCREENING SITE INSPECTION Assessment: DISCOVERY Assessment: PRELIMINARY ASSESSMENT

Completed: 08/01/82 Completed: 02/14/91 08/01/82 Completed: Completed: 05/01/83

CERCLIS-NFRAP Alias Name(s):

TIFFT FARM PRESERVE LF

TIFFT ST/LEHIGH VALLEY RR (OLD NAME)

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

LEHIGH VALLEY RR (Continued)

1000230818

RCRIS:

Owner:

LEIGH VALLEY RAILROAD CO

(513) 574-6600

Contact:

KERRY HANLON (203) 796-5252

Classification:

Large Quantity Generator

Waste F001

Quantity 0.000 (N) <u>Waste</u> NONE

Quantity 0.000 (N)

(P) = Pounds,

(K) = Kilograms,

(M) = Metric Tons,

(T) = Tons,

(N) = Not Reported

Used Oil Recyc: No

Violation Status: No violations found

SHWS:

Facility ID:

915071

EPA ID:

NYD000513945

Owner:

Lehigh Valley Railroad Co.

415 Brighton St.

Bethlehem, PA 18015 Not reported

Owner Telephone:

Operator: Booth Oil Co.

Not reported

Not reported

Not reported

Telephone Not reported

Site Classification:

Site is properly closed - no evidence of present or potential adverse

impact - no further action is required.

Region:

Contact:

Site Type:

Dump

Not reported Acres:

User:

Lehigh Valley Railroad

HW Started: HW Disposed:

HW Ended: 1982 Waste oil mixed with chlorinated volatile, organic compounds. (RCRA F001

Waste)

Units: Air Data: 1,000 gallons estimated

Unavailable Available

Surface Water Standards Contravention:

Surf. Water Data: Available

Grnd. Water Data:

Soil Data:

Available

Sediment Data:

Available

Ground Water Standards Contravention: Drinking Water Standards Contravention: Yes

No Yes

Air Standards Contravention: **Enforcement Status:**

Negotiation In Progress

No Legal Action: Fed Action:

No No

State Action: Remedial Action:

No

Remed action type:

None

Soil Type:

None Clay with interbedded silt and sand

Grnd Water Depth:

Varies from 2 to 10 feet

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

LEHIGH VALLEY RR (Continued)

1000230818

Assessment of Environmental Problems:

Residual hazardous waste remains on-site. Site is properly closed, noevidence of present or potential adverse impact; no further action isrequired at this site.

Assessment of Health Problems:

Land use in the vicinity of the site is a mixture of undevelopedrailroad and recreational areas. There are no access restrictions to the property. Previous investigations have documented contamination of groundwater, surficial soils, sludge and solid wastes on site withheavy metals and organic compounds. The removal of hazardous wasteand some soils has occurred, however stained and oil-soaked soilsstill remain on-site. Therefore, the potential for exposure by directcontact with contaminated soil or inhalation of contaminated windborneparticulates exist. Groundwater is not used as a drinking watersource. Public water is

supplied to the area.

LF:

Facility ID: 15S85 Telephone: Not reported Permit #: Not reported DEC Region: Not reported Permit Expires: Permit issue date: Not reported Authrzd/Operate Dt: Constrct Perm #: Not reported Not reported Auth. to Construct: Not reported Const Permit Exp: Not reported Regulatory Status: Receiving Waste: False None Started Rec Waste: Not reported Stop Rec Waste: Not reported

Aquifer: none

Date Ordered On Concent Signed: Not reported Not reported Accomplish Date Of Order:

Inactive HWS: Inactive HWS Nur915071 Inactive HWS Class: Temporary classification assigned to sites that have inadequate and/or

insufficient data or inclusion in any of the other classifications.

Waste type: Not reported

Owner Name: Not reported Owner Type: Private Mail Address: Not reported

Owner Phone Num: Not reported Operator Name: Ny Transverse Mercator Coordinates East: Not reported

Ny Transverse Mercator Coordinates North: Not reported

Annual Report Submitted to ALB:

1989: False 1990: False 1991: False 1992: False 1993: False 1994: False

1995: False

Primary Liner: Not reported Secondary Liner: Not reported Annual Rprt Waived: Not reported Tiping Fee Rprtd: Not reported

ADVANCED ELECTRO POLISHING INC. **ESE** 356 HOPKINS ST

1/2-1 BUFFALO, NY 14220 Higher

FINDS

RCRIS-SQG

Not reported

RCRIS-TSD

1000912642

NY0000886150

		MAP FINDING	S		
Map ID		4			
Direction Distance					EDR ID Number
Elevation	Site			Database(s)	EPA ID Number
		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	<u> </u>		
	ADVANCED ELECTRO	POLISHING INC (Continued)			1000912642
	RCRIS:				
		DVANCED ELECTRO POLISHING INC 716) 821-9171			
		ENNIS HAYES (16) 821-9171			
	Classification: C	onditionally Exempt Small Quantity Gene	erator, TSDF		
			aste Quantity 002 0.000 (N		
		nds, (K) = Kilograms, (M) = Metric	Tons, (T) = Tons, (N) = Not Reported	
	Used Oil Recyc: N		(,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	,	
	TSDF Activities: Not reported				
	Violation Status: N	o violations found			
	101211011 0121201 11	o violatione loane			
8	ALLTIFT LANDFILL			SHWS	S101008672
SW 1/2-1	TIFFT STREET BUFFALO, NY 14202				N/A
Higher	BOFFALO, NT 14202				
_	SHWS:				
	Facility ID:	915054	EPA ID:	NYD000513713	
	Owner:	Alltift Inc.			
		PO Box 246			
		Buffalo, NY 14240			
	Owner Telephone:	Not reported			
	Owner Telephone: Operator:	Not reported Downing Cont. Service			
		Not reported Downing Cont. Service PO Box 246			
	Operator:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240	Tolenhore	Not reported	
	Operator:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported	Telephone	Not reported	
	Operator:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health	Telephone or environment - action	Not reported	
	Operator: Contact: Site Classification:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported	Telephone or environment - action	Not reported	
	Operator: Contact: Site Classification: Region:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health required. 9	Telephone or environment - action	Not reported	
	Operator: Contact: Site Classification:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health required.	Telephone or environment - action User:		ervBuffalo(C)Altift.Inc
	Operator: Contact: Site Classification: Region: Site Type:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health required. 9 Landfill	or environment - action		erv.,Buffalo(C)Altift,Inc
	Operator: Contact: Site Classification: Region: Site Type: Acres:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health required. 9 Landfill 25 1930 Miscellaneous Organic Chemicals, In	or environment - action User: HW Ended: organic Chemicals, Chro	Downing Cont.Se 1975 me Sludge,	erv.,Buffalo(C)Altift,Inc
	Operator: Contact: Site Classification: Region: Site Type: Acres: HW Started:	Not reported Downing Cont. Service PO Box 246 Buffalo, NY 14240 Not reported Significant threat to the public health required. 9 Landfill 25 1930	or environment - action User: HW Ended: organic Chemicals, Chrochlorobenzene, Napthalei	Downing Cont.Se 1975 me Sludge, ne	erv.,Buffalo(C)Altift,Inc

Surf. Water Data: Available

Available

No

No

Soil Data:

Legal Action:

Fed Action:

Yes

No

Yes

Νo

Air Data:

Grnd. Water Data:

Sediment Data:

Unavailable

Negotiation In Progress

Proposed, In Progress

Available

Available

Yes

Clay

RD-RA

0-20 feet

Ground Water Standards Contravention:

Drinking Water Standards Contravention:

Surface Water Standards Contravention:

Air Standards Contravention:

Enforcement Status:

State Action:

Soil Type:

Remedial Action:

Remed action type:

Grnd Water Depth:

TC0158322.1r Page 15

Map ID
Direction
Distance
Elevation

Site

Database(s)

EDR ID Number EPA ID Number

ALLTIFT LANDFILL (Continued)

S101008672

Assessment of Environmental Problems:

The groundwater, surface waters and sediments have been contaminated by hazardous wastes. Preliminary results from the Remedial Investi-gation

indicate that the wastes extend to the east of the existingborder.

Assessment of Health Problems:

Not reported

SSE 1/2-1 Higher **RAMCO STEEL** 110 HOPKINS ST BUFFALO, NY 14202 SHWS

S101008670

N/A

SHWS:

Facility ID:

915046B

EPA ID:

NYD000961003

Owner:

Hopkins Tifft Realty Corp 110 Hopkins Street

Buffalo, NY 14240

Owner Telephone:

Not reported

Operator:

Ramco Steel, Bliss & Laughlin

110 Hopkins Street

Buffalo, NY

Contact:

Not reported

Telephone

Not reported

Site Classification:

Significant threat to the public health or environment - action

required.

Region:

9

Site Type: Acres:

Lagoon

8.463

User:

Ramco Steel, Bliss & Laughlin

HW Started:

1929

HW Ended:

1979

HW Disposed:

Pickle liquor, Rinse water & lime sludge, Iron and chrome

Units:

75,000 gallons/year, 6,000,000 gallons/year, unknown

Air Data:

Unavailable

Surf. Water Data: Unavailable

Grnd. Water Data:

Soil Data:

Available

Sediment Data:

Available

Available Ground Water Standards Contravention:

Yes No

Drinking Water Standards Contravention: Surface Water Standards Contravention:

No

Air Standards Contravention: **Enforcement Status:**

Negotiation In Progress

Νo Legal Action: Fed Action:

No No

State Action: Remedial Action: Yes

None

Remed action type:

Not reported

Soil Type:

Cinders, rock fill underlain by clay

Grnd Water Depth:

Unknown

Мар	ID
Direc	tion
Dista	ınce
Eleva	ation

Site

Database(s)

EDR ID Number EPA ID Number

RAMCO STEEL (Continued)

S101008670

Assessment of Environmental Problems:

The pond which is listed on the national wetland inventory. iscontaminated with metals and its restoration is warranted. The areagroundwater has also been contaminated.

Assessment of Health Problems:

The land use in the vicinity of the site is industrial and commercialincluding rail service. Residential neighborhoods are present 400meters to the east of the site. Past investigations have documentedstained soils, discolored sediments and water, spilled waste materialand drums on-site. Discolored water has been observed leaving the sitevia a drainage ditch that flows north. This drainage system flowstoward the Tifft Farm Nature Preserve. Access to the site is possiblefrom the back of the property, however, there is little evidence thatresidents utilize this area. Potential exposure pathways on-siteinclude direct contact with waste material, affected soils, sedimentsand surface water. The site is also adjacent to and encroached upon bythe Alltift Landfill (a Class 2 site known to have received hazardouswaste). The area is served by public water. The RI Investigation didnot document the disposal of listed hazardous waste.

10 North 1/2-1 Higher **PVS CHEMICAL INC NEW YORK**

55 LEE ST

BUFFALO, NY 14210

FINDS 1000106511 RCRIS-LQG NYD980534390 TRIS **RCRIS-TSD RAATS** CORRACTS **NY Spills**

CORRACTS Data:

Prioritization:

High

Status:

Not reported

RCRIS:

Owner:

PVS CHEMICALS INC

(313) 921-1200

Contact:

WILLIAM DECKER

(716) 825-5762

Classification: Large Quantity Generator, TSDF

Waste Quantity 0.000 (N) D002

<u>Waste</u> Quantity D002 12,700.800 (M)

NONE 0.000 (N)

> (P) = Pounds , (K) ≈ Kilograms, (M) = Metric Tons, (T) = Tons, (N) = Not Reported

Used Oil Recyc: No

TSDF Activities: Not reported Violation Status: No violations found

FINDS:

Other Pertinent Environmental Activity Identified at Site:

- Facility has an active water discharge permit (under PCS)
- Facility is monitored or permitted for air emissions under the Clean Air Act (under AFS/AIRS)
- Civil judicial and administrative enforcement case against facility (under DOCKET)

SPILLS:

Facility ID:

9510124 KEN HALGASH Region of Spill:

Facility Contact: Investigator:

KAH

Facility Tele:

(716) 879-7173

Spill Type:

UST

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

SPILL CENTER JANICE BENEDICT Caller Agency: Caller Phone: (603) 887-2746 Caller Extension: Not reported Notifier Name: KEN HALGASH Notifier Agency: PRAXAIR Notifier Extension: Not reported Notifier Phone: (716) 879-7173 Spiller Phone: (716) 879-7173 Spiller Contact: KEN HALGASH

Spiller: PRAXAIR Address PO BOX 44

Caller Name:

Test method:

TONAWANDA, NY 14151-

Possible release with minimal potential for fire or hazard or Known Spill Class:

release with no damage. DEC Response. Willing Responsible Party.

Corrective action taken.

Spill Closed Dt: 11/14/1995 Spilled Code: 0010 Material Class: Petroleum Quantity Spilled: 1 gallons Quant Recovered: 1 gallons Resource Affected: On Land Spill Cause: Equipment Failure

Other Commercial/Industrial Water Affected: Not reported Spill Source:

Leak Rate:

0.00

Spill Notifier: Responsible Party PBS Number: Not reported Reported to Dept: 11/13/1995 23:52 Spill Date: 11/13/1995 22:00 Tank Capacity: 0 Gallons Tank Number: Not reported

Not reported Gross Leak/Fail: Not reported Cleanup Ceased: 11/14/1995 Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported **Enforcement Date:** Not reported Investigation Complete: Not reported

UST Involvement: Fale Spill Record Last Update: 12/14/1995

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 11/13/1995

8700944 Facility ID: Region of Spill:

Facility Contact: Not reported Facility Tele: Not reported Investigator: **JDC** Spill Type: Facility Caller Name: Not reported Caller Agency: Not reported Caller Phone: Not reported Caller Extension: Not reported

Notifier Name: Not reported Notifier Agency: Not reported Notifier Phone: Not reported Notifier Extension: Not reported Spiller Contact: Not reported Spiller Phone: (716) 825-5762

Spiller: **PVS CHEMICAL** Address **55 LEE STREET**

BUFFALO, NY Not reported

Spill Class: Spill Closed Dt: 05/04/1987 Material Class:

Last Inspection: 05/04/1987

Not reported Spilled Code: Not reported

Quantity Spilled: 0 UNITS NOT REPORTED Quant Recovered: 0 UNITS NOT REPORTED Spill Cause:

Unknown Resource Affected: Air

Water Affected: Not reported Spill Source: Other Commercial/Industrial

Spill Notifier: Responsible Party PBS Number: Not reported 05/04/1987 05:20 Reported to Dept: 05/04/1987 05:50 Spill Date: Tank Number:

Not reported Tank Capacity: 0 Gallons Test method: Not reported Leak Rate: 0.00 Gross Leak/Fail: Not reported

Cleanup Ceased: 05/04/1987

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported Enforcement Date: Not reported Investigation Complete: Not reported Fale

UST Involvement:

Spill Record Last Update: Not reported

Not reported Corrective Action Plan Submitted: Date Spill Entered In Computer Data File: 05/11/1987

8702972 Facility ID: Facility Contact: Not reported

Investigator: RNL

Caller Name: Not reported Caller Phone: Not reported Notifier Name: Not reported Notifier Phone: Not reported Spiller Contact: Not reported

CHEMICAL PROCESS & SUPPLY Spiller:

Address

55 LEE STREET BUFFALO, NY 14210

Spill Class: Not reported

Spill Closed Dt: 09/11/1987 Material Class: Not reported

Quantity Spilled: 0 UNITS NOT REPORTED

Spill Cause: Water Affected: Spill Notifier:

Equipment Failure **BUFFALO RIVER** Responsible Party 07/13/1987 09:00

Spill Date: Tank Number: Not reported Test method: Not reported Gross Leak/Fail: Not reported

Cleanup Ceased: 09/11/1987 Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported **Enforcement Date:** Not reported Investigation Complete: Not reported UST involvement: Fale

Spill Record Last Update: 09/14/1987

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 07/14/1987

Facility ID: 8704461 Facility Contact: Not reported

Investigator: MNP Caller Name: Not reported Caller Phone: Not reported Notifier Name: Not reported Notifier Phone: Not reported Spiller Contact: Not reported

Spiller: **PVS**

55 LEE STREET Address

BUFFALO, NY Spill Class: Not reported Spill Closed Dt: 08/28/1987

Region of Spill:

Facility Tele: Not reported Spill Type: Facility Not reported Caller Agency: Caller Extension: Not reported Notifier Agency: Not reported Notifier Extension: Not reported Spiller Phone: (716) 825-5762

Spilled Code: Not reported

Quant Recovered: 0 UNITS NOT REPORTED

Resource Affected: Surface Water

Other Commercial/Industrial Spill Source:

PBS Number: Not reported 07/13/1987 16:00 Reported to Dept:

0 Gallons Tank Capacity: Leak Rate: 0.00

Region of Spill: q

Facility Tele: Not reported Spill Type: Facility Caller Agency: Not reported Caller Extension: Not reported Notifier Agency: Not reported Notifier Extension: Not reported (716) 825-5762 Spiller Phone:

Map ID Direction Distance Elevation

Site

Database(s)

EDR ID Number EPA ID Number

PVS CHEMICAL INC NEW YORK (Continued)

Material Class: Not reported

Quantity Spilled: 0 UNITS NOT REPORTED

Spill Cause: Human Error Water Affected: Not reported

Spill Notifier: Responsible Party
Spill Date: 08/28/1987 19:35

Tank Number: Not reported
Test method: Not reported
Gross Leak/Fail: Not reported

Cleanup Ceased: 08/28/1987

Last Inspection: Not reported

Cleanup Meets Standard: True

Recommended Penalty: No Penalty

Spiller Cleanup Date: Not reported

Enforcement Date: Not reported

Investigation Complete: Not reported

UST Involvement: Fale Spill Record Last Update: 09/01/1987

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 08/31/1987

Facility ID: 8709563
Facility Contact: Not reported

Investigator: JDC

Caller Name: CHRIS CANCILLA
Caller Phone: (716) 825-5712
Notifier Name: Not reported
Notifier Phone: Not reported
Spiller Contact: Not reported
Spiller: PVS CHEMICAL

Spiller: PVS CHEMICAL Address 55 LEE STREET BUFFALO, NY

Spill Class: Not reported Spill Closed Dt: 02/12/1988

Material Class: Nonpetroleum/Nonhazardous

Quantity Spilled: 70 pounds
Spill Cause: Equipment Failure
Water Affected: Not reported

Spill Notifier: Responsible Party
Spill Date: 02/10/1988 12:50
Tank Number: Not reported

Test method: Not reported
Gross Leak/Fail: Not reported
Cleanup Ceased: 02/12/1988
Last Inspection: Not reported
Cleanup Meets Standard: True
Recommended Penalty: No Penalty

Spiller Cleanup Date: Not reported Enforcement Date: Not reported Investigation Complete: UST Involvement: Fale

Spill Record Last Update: 03/29/1988

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 02/12/1988

Facility ID: 8801202 Region of Spill: 9

Facility Contact: Not reported Facility Tele: Not reported

1000106511

Spilled Code: Not reported

Quant Recovered: 0 UNITS NOT REPORTED

Resource Affected: Air

Region of Spill:

Caller Agency:

Caller Extension:

Notifier Agency:

Spiller Phone:

Spilled Code:

Spill Source:

PBS Number:

Tank Capacity:

Leak Rate:

Reported to Dept:

Facility Tele:

Spill Type:

Spill Source: Other Commercial/Industrial

PBS Number: Not reported
Reported to Dept: 08/28/1987 19:49

9

Notifier Extension: Not reported

Quant Recovered: 0 pounds

Resource Affected: Air

Not reported

Not reported

Not reported

(716) 825-5712

Other Commercial/Industrial

PVS CHEMICAL

Facility

0127

0.00

Not reported

02/10/1988 16:58 0 Gallons

Tank Capacity: 0 Gallons Leak Rate: 0.00

Map ID Direction Distance Elevation

Site

EDR ID Number Database(s) EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

MJH

Spill Type:

Facility **PVS CHEMICAL**

Caller Agency: Caller Extension: Notifier Agency:

Not reported Not reported

Notifier Extension: Not reported

Spiller Phone:

(716) 825-5762

55 LEE STREET BUFFALO, NY

(716) 825-5762

Not reported

Not reported

Not reported **PVS CHEMICAL**

PATRICK MCPHERSON

Spill Class: Not reported Spill Closed Dt:

05/09/1988 Hazardous Material

Material Class:

Quantity Spilled: 0 gallons

Equipment Failure

Spill Cause: Water Affected: Spill Notifier:

Not reported Responsible Party

Spill Date: Tank Number: Test method:

Investigator: Caller Name:

Caller Phone:

Notifier Name:

Notifier Phone:

Spiller Contact:

Spiller: Address

> 05/08/1988 10:40 Not reported Not reported

Gross Leak/Fail: Not reported Cleanup Ceased: 05/09/1988 Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported **Enforcement Date:** Not reported Investigation Complete: Not reported

UST Involvement: Fale Spill Record Last Update: 05/19/1988

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 05/10/1988

Facility ID: 8806982 Facility Contact: Not reported

Investigator:

CAF Caller Name: **CHRIS CANSILLA** (716) 825-5762 Caller Phone: Notifier Name: Not reported Notifier Phone: Not reported Spiller Contact: Not reported

Spiller: **PVS**

Address **55LEE STREET**

BUFFALO, NY 14210

Spill Class: Not reported Spill Closed Dt: 11/29/1988

Material Class: Nonpetroleum/Nonhazardous Quantity Spilled: 50 gallons

Spill Cause: Equipment Failure Water Affected: Not reported Spill Notifier: Responsible Party Spill Date: 11/21/1988 11:00 Tank Number: Not reported

Test method: Not reported Gross Leak/Fail: Not reported Cleanup Ceased: 11/29/1988 Last Inspection: 11/22/1988 Cleanup Meets Standard: True

Spilled Code: 1701 Quant Recovered: 0 gallons Resource Affected: Air

Other Commercial/Industrial Spill Source:

PBS Number: Not reported Reported to Dept: 05/08/1988 10:40

Tank Capacity: 0 Gallons Leak Rate: 0.00

Region of Spill:

Facility Tele: Not reported Spill Type: Facility Caller Agency: **PVS** Caller Extension: Not reported Notifier Agency: Not reported Notifier Extension: Not reported Spiller Phone: (716) 825-5762

Spilled Code: 0039 Quant Recovered: 0 gallons Resource Affected: On Land

Spill Source: Other Commercial/Industrial

PBS Number: Not reported Reported to Dept: 11/21/1988 11:10 Tank Capacity: 0 Gallons

Leak Rate: 0.00

Map ID Direction Distance Elevation

evation Site

Database(s)

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

Recommended Penalty: No Penalty
Spiller Cleanup Date: Not reported
Enforcement Date: Not reported
Investigation Complete: Not reported

UST Involvement: Fale

Spill Record Last Update: 12/13/1988

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 11/22/1988

Facility ID: 9100414 Region of Spill:

Facility Contact: Not reported Facility Tele: Not reported Investigator: MEL Spill Type: Facility

PVS CHEMICAL Caller Name: **CHRIS CANACILLA** Caller Agency: Caller Extension: Not reported Caller Phone: (716) 825-5762 Notifier Agency: Not reported Not reported Notifier Name: Not reported Notifier Phone: Notifier Extension: Not reported Spiller Contact: Not reported Spiller Phone: (716) 825-5762

Spiller: PVS CHEMICAL
Address 55 LEE STREET

Spill Class: BUFFALO, NY
Spill Class: Not reported
Spill Closed Dt: 04/12/1991

Material Class: Not reported Spilled Code: Not reported

Quantity Spilled: 0 UNITS NOT REPORTED Quant Recovered: 0 UNITS NOT REPORTED

Spill Cause: Equipment Failure Resource Affected: Surface Water

Water Affected: BUFFALO RIVER Spill Source: Other Commercial/Industrial Spill Notifier: Responsible Party PBS Number: Not reported

 Spill Date:
 04/10/1991 01:30
 Reported to Dept:
 04/10/1991 03:11

 Tank Number:
 Not reported
 Tank Capacity:
 0 Gallons

 Test method:
 Not reported
 Leak Rate:
 0.00

Gross Leak/Fail: Not reported
Cleanup Ceased: 04/12/1991
Last Inspection: 04/10/1991
Cleanup Meets Standard: True
Recommended Penalty: No Penalty
Spiller Cleanup Date: Not reported
Enforcement Date: Not reported
Investigation Complete: Not reported
UST Involvement: Fale

Spill Record Last Update: 03/13/1992

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 04/12/1991

Facility ID: 9109272 Region of Spill: 9

Facility Contact: Not reported Facility Tele: Not reported Investigator: MF Spill Type: Facility

Caller Name: JOE FLANERY Caller Agency: **PVS** Caller Phone: (716) 824-0499 Caller Extension: Not reported Notifier Name: Not reported Notifier Agency: Not reported Notifier Phone: Not reported Notifier Extension: Not reported (716) 824-0499

Spiller Contact: Not reported Spiller Phone: (716 Spiller: PVS CHEMICAL Address 55 LEE STREET

BUFFALO, NY 14210
Spill Class: Not reported

Spill Closed Dt: 12/02/1991

Material Class: Not reported Spilled Code: Not reported

Map ID Direction Distance Elevation

Site

Spill Cause:

Spill Notifier:

Water Affected:

Database(s)

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

Quantity Spilled: 0 UNITS NOT REPORTED

Not reported

Equipment Failure

Responsible Party

Quant Recovered: 0 UNITS NOT REPORTED

Resource Affected: Air

Spill Source: Other Commercial/Industrial

PBS Number: Not reported
Reported to Dept: 11/30/1991 20:22

Tank Capacity: 0 Gallons Leak Rate: 0.00

11/30/1991 18:00 Spill Date: Not reported Tank Number: Test method: Not reported Gross Leak/Fail: Not reported Cleanup Ceased: 12/02/1991 Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported Enforcement Date: Not reported Investigation Complete: Not reported UST Involvement: Fale

Spill Record Last Update: 12/19/1991
Corrective Action Plan Submitted: Not reported
Date Spill Entered in Computer Data File: 12/02/1991

Facility ID: 9110556 Region of Spill:

Facility Contact: Not reported Facility Tele: Not reported Investigator: MF Spill Type: Facility

Caller Name: CHRIS CANCILLA Caller Agency: PVS (716) 825-5762 Caller Extension: Not reported Caller Phone: Notifier Name: Not reported Not reported Notifier Agency: Notifier Phone: Not reported Notifier Extension: Not reported Spiller Contact: Not reported Spiller Phone: (716) 825-5762

Spiller: PVS CHEMICAL
Address 55 LEE STREET
BUFFALO, NY 14210
Spill Class: Not reported

Spill Class: Not reported

Spill Closed Dt: 01/10/1992

Material Class: Petroleum Spilled Code: 0001

Quantity Spilled: 38 gallons Quant Recovered: 30 gallons

Spill Cause: Human Error Resource Affected: On Land

Water Affected: Not reported Spill Source: Other Commercial/Industrial

Leak Rate:

0.00

Spill Notifier: Responsible Party PBS Number: Not reported
Spill Date: 01/09/1992 04:00 Reported to Dept: 01/09/1992 08:46
Tank Number: Not reported Tank Capacity: 0 Gallons

Test method: Not reported Gross Leak/Fail: Not reported Cleanup Ceased: 01/10/1992 Last Inspection: Not reported Cleanup Meets Standard: True Recommended Penalty: No Penalty Spiller Cleanup Date: Not reported **Enforcement Date:** Not reported Investigation Complete: Not reported Fale UST Involvement: Spill Record Last Update: 01/30/1992

Corrective Action Plan Submitted: Not reported Date Spill Entered In Computer Data File: 01/09/1992

Facility ID: 9201381 Region of Spill: 9

Facility Contact: Not reported Facility Tele: Not reported Investigator: RNL Spill Type: Facility

Map ID Direction Distance Elevation

evation Site

Database(s) EPA

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

Caller Agency: PVS CHEMICAL CHRIS CANCILLA Caller Name: Caller Phone: (716) 825-5762 Caller Extension: Not reported Not reported Notifier Agency: Notifier Name: Not reported Notifier Extension: Not reported Not reported Notifier Phone: Spiller Phone: (716) 825-5762 Spiller Contact: Not reported

Spiller: PVS CHEMICAL Address 55 LEE STREET BUFFALO, NY

Spill Class: Known release that creates potential for fire or hazard. (Highly

Improbable)

Spill Closed Dt: 05/05/1992

Material Class:Nonpetroleum/NonhazardousSpilled Code:0039Quantity Spilled:20 gallonsQuant Recovered:0 gallonsSpill Cause:Human ErrorResource Affected:Surface Water

Water Affected: Not reported Spill Source: Other Commercial/Industrial

PBS Number: Not reported Spill Notifier: Responsible Party Spill Date: 05/02/1992 17:00 Reported to Dept: 05/04/1992 18:12 0 Gallons Tank Number: Not reported Tank Capacity: Not reported Leak Rate: 0.00 Test method:

Gross Leak/Fail: Not reported
Cleanup Ceased: 05/05/1992
Last Inspection: Not reported
Cleanup Meets Standard: True
Recommended Penalty: No Penalty
Spiller Cleanup Date: Not reported
Enforcement Date: Not reported
Investigation Complete: Not reported
UST Involvement: Fale
Spill Record Last Update: 08/03/1992

Corrective Action Plan Submitted: Not reported Date Spill Entered in Computer Data File: 05/06/1992

Facility ID: 9410426 Region of Spill: 9

Facility Contact: Not reported Facility Tele: Not reported Investigator: FG Soill Type: Facility

Caller Name: **CHRIS KINSELLA** Caller Agency: **PVS** (716) 825-5762 Not reported Caller Phone: Caller Extension: Notifier Name: Not reported Notifier Agency: Not reported Notifier Phone: Not reported Notifier Extension: Not reported (716) 825-5762 Spiller Contact: Not reported Spiller Phone:

Spiller: PVS CHEMICAL Address 55 LEE STREET BUFFALO, NY

Spill Class: Known release that creates potential for fire or hazard. (Highly

Improbable)

Spill Closed Dt: 11/07/1994

Material Class:Nonpetroleum/NonhazardousSpilled Code:0039Quantity Spilled:10 poundsQuant Recovered:0 poundsSpill Cause:Equipment FailureResource Affected:Surface Water

Water Affected: BUFFALO RIVER Spill Source: Other Commercial/Industrial

Spill Notifier:Responsible PartyPBS Number:Not reportedSpill Date:11/04/1994 16:00Reported to Dept:11/04/1994 16:58Tank Number:Not reportedTank Capacity:0 Gallons

Test method: Not reported Leak Rate: 0.00
Gross Leak/Fail: Not reported

Cleanup Ceased: 11/07/1994 Last Inspection: Not reported

Map ID
Direction
Distance
Elevation

Site

Database(s)

EDR ID Number EPA ID Number

1000106511

PVS CHEMICAL INC NEW YORK (Continued)

Cleanup Meets Standard: True

Recommended Penalty: Spiller Cleanup Date: Enforcement Date: No Penalty
Not reported

Investigation Complete: UST involvement:

Not reported Not reported

UST Involvement: Fale Spill Record Last Update: 11/14/1994

Corrective Action Plan Submitted: Not reported Date Spill Entered in Computer Data File: 11/07/1994

TC0158322.1r Page 25

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)	Facility ID
BUFFALO	S100668558	MCMANNUS STEEL CONSTR.	EAST FERRY AT LESLIE		LUST	8606908
BUFFALO	\$100669696	RUBENSTEIN'S SCRAP YARD	HOPKINS STREET		LUST	96 07636
BUFFALO	\$100667145	PVS CHEMICAL	LEE STREET		LUST, NY Spills	9103867
BUFFALO	1000252436	ALTIFT REALTY	TIFFT ST	14220	CERCLIS, FINDS	
BUFFALO	S100667782	KENDALL OIL	TIFFT STREET		LUST	9203684
ERIE COUNTY	S101650734	NIAGARA LANDFILL INC			SWF/LF	
ERIE COUNTY	S101650780	EVANS LF (OLD) (T)			SWF/LF	
ERIE COUNTY	S101315475	NORTHSIDE TRANSFER STA.			SWF/LF	
ERIE COUNTY	S101315476	WMNY TRANSFER STATION			SWF/LF	
ERIE COUNTY	S101650750	NYS THRUWAY AUTH. SLF			SWF/LF	
ERIE COUNTY	\$101650753	SQUAW ISLAND SLF			SWF/LF	
ERIE COUNTY	S101650768	NIMO-CHERRY FARM			SWF/LF	
ERIE COUNTY	S101650770	SPRINGVILLE LF (V)			SWF/LF	
ERIE COUNTY	S101650772	AMHERST LF (T)			SWF/LF	
ERIE COUNTY	S101650773	BLASDELL LF (V)			SWF/LF	
ERIE COUNTY	S101650774	DEPEW LF (V)			SWF/LF	
ERIE COUNTY	S101650775	GEORGE SCHREIBER			SWF/LF	
ERIE COUNTY	S101650776	ALLIED CHEM-HOPKINS ST.			SWF/LF	
ERIE COUNTY	S101650777	SMALL BOAT HARBOR CONTAIN			SWF/LF	
ERIE COUNTY	S101650778	TIFFT FARM NATURE PRESERV			SWF/LF	
ERIE COUNTY	S101650779	OLD LAND RECLAMATION			SWF/LF	
ERIE COUNTY	S101650723	LAMB & WEBSTER C & D			SWF/LF	
ERIE COUNTY	S101650730	IWS SCHULTZ C&D			SWF/LF	
ERIE COUNTY	S101650731	COLLINS T.S.			SWF/LF	
ERIE COUNTY	S101650743	BERNARD COPE SLF			SWF/LF	•
ERIÉ COUNTY	S101650744	DUPONT SLF			SWF/LF	
ERIE COUNTY	S100295902	SOUTH SIDE T.S. INDIAN RD	INDIAN ROAD		SWF/LF	

GEOCHECK VERSION 2.1 ADDENDUM FEDERAL DATABASE WELL INFORMATION

Well Closest to Target Property (Northern Quadrant)

BASIC WELL DATA

Site ID: 425226078501601 Distance from TP: 1 - 2 Miles

Site Type: Single well, other than collector or Ranney type

Erie Year Constructed: 1900 County: 590.00 ft. New York Altitude: State: Topographic Setting: Not Reported Well Depth: 180.00 ft. Depth to Water Table: 20.00 ft. Prim. Use of Site: Not Reported Date Measured: 01011951 Prim. Use of Water: Unused

LITHOLOGIC DATA

Geologic Age ID (Era/System/Series): Devonian-Middle Principal Lithology of Unit: Limestone Further Description: Not Reported

WATER LEVEL VARIABILITY

Not Reported

GEOCHECK VERSION 2.1 STATE DATABASE WELL INFORMATION

Water Well Information:

Well Within >2 Miles of Target Property (Southern Quadrant)

001

Public Water Supply #: 1400444 Source ID:

ECWA WOODLAWN PLANT PW Supply Name: Source Name: LAKE ERIE

Source Description: Surface

Availability/Utilization: Permanent Utilization Source Type: Source Record

Latitude: 424752 Longitude: 785110 Source Prod Capacity: 0 Fed ID of Seller: Not Reported Watershed Basin: 01 Watershed Sub-basin: 04

Treatment Plant ID: 002 Date of rec Last Update:

Not Reported Water Type: Not Reported Record Tag: Not Reported

GEOCHECK VERSION 2.1 PUBLIC WATER SUPPLY SYSTEM INFORMATION

Searched by Nearest Well.

PWS SUMMARY:

PWS ID:

NY0018673

PWS Status:

Active

Distance from TP: >2 Miles

Date Initiated:

Not Reported Date De PRYME TIME RESTAURANT

Date Deactivated: Not Reported

Dir relative to TP: North

PWS Name:

CHAFFEE, NY 14030

Addressee / Facility:

System Owner/Responsible Party

CARMODY JAMES T

PIONEER TRI COUNTY ENT LTD

123 MICHIGAN AVE BUFFALO, NY 14204

Facility Latitude:

42 53 11

Facility Longitude: 078 52 42

City Served:

SARDINIA (T)

Population Served: Not Reported

Treatment Class

Not Reported

Well currently has or has had major violation(s): No

EPA Waste Codes Addendum

Code	Description
D000	NOT DEFINED
D002	A WASTE WHICH HAS A PH OF LESS THAN 2 OR GREATER THAN 12.5 IS CONSIDERED TO BE A CORROSIVE HAZARDOUS WASTE. SODIUM HYDROXIDE, A CAUSTIC SOLUTION WITH A HIGH PH, IS OFTEN USED BY INDUSTRIES TO CLEAN OR DEGREASE PARTS. HYDROCHLORIC ACID, A SOLUTION WITH A LOW PH, IS USED BY MANY INDUSTRIES TO CLEAN METAL PARTS PRIOR TO PAINTING. WHEN THESE CAUSTIC OR ACID SOLUTIONS BECOME CONTAMINATED AND MUST BE DISPOSED, THE WASTE WOULD BE A CORROSIVE HAZARDOUS WASTE.
D007	CHROMIUM
F001	THE FOLLOWING SPENT HALOGENATED SOLVENTS USED IN DEGREASING: TETRACHLOROETHYLENE, TRICHLOROETHYLENE, METHYLENE CHLORIDE, 1,1,1-TRICHLOROETHANE, CARBON TETRACHLORIDE, AND CHLORINATED FLUOROCARBONS; ALL SPENT SOLVENT MIXTURES/BLENDS USED IN DEGREASING CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F002, F004, AND F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
NONE	NONE

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement of the ASTM standard.

FEDERAL ASTM RECORDS:

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA/NTIS Telephone: 703-603-8904

CERCLIS: CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 03/31/96 Date Made Active at EDR: 06/03/96 Database Release Frequency: Monthly Date of Data Arrival at EDR: 04/23/96 Elapsed ASTM days: 41 Date of Last EDR Contact: 01/13/97

ERNS: Emergency Response Notification System

Source: EPA/NTIS Telephone: 202-260-2342

ERNS: Emergency Response Notification System. ERNS records and stores information on reported releases of oil and

hazardous substances.

Date of Government Version: 06/30/96 Date Made Active at EDR: 11/05/96 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 08/19/96 Elapsed ASTM days: 78

Date of Last EDR Contact: 11/27/96

NPL: National Priority List

Source: EPA

Telephone: 703-603-8852

NPL: National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC).

Date of Government Version: 06/01/96 Date Made Active at EDR: 07/17/96 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 06/25/96 Elapsed ASTM days: 22 Date of Last EDR Contact: 12/23/96

RCRIS: Resource Conservation and Recovery Information System

Source: EPA/NTIS Telephone: 703-308-7907

RCRIS: Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA).

Date of Government Version: 07/01/96 Date Made Active at EDR: 10/09/96 Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 08/07/96 Elapsed ASTM days: 63

Date of Last EDR Contact: 12/04/96

FEDERAL NON-ASTM RECORDS:

CONSENT: Superfund (CERCLA) Consent Decrees

Source: EPA Regional Offices

Telephone: Varies

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically

by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: Varies Database Release Frequency: Varies

Date of Last EDR Contact: Varies

Date of Next Scheduled EDR Contact: 09/01/95

CORRACTS: Corrective Action Report

Source: EPA

Telephone: 703-308-7907

CORRACTS: CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 09/27/96

Database Release Frequency: Semi-Annually

Date of Last EDR Contact: 12/18/96

Date of Next Scheduled EDR Contact: 03/17/97

FINDS: Facility Index System Source: EPA/NTIS Telephone: 703-908-2493

FINDS: Facility Index System. FINDS contains both facility information and "pointers" to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 09/30/95 Database Release Frequency: Quarterly Date of Last EDR Contact: 12/30/96
Date of Next Scheduled EDR Contact: 04/07/97

HMIRS: Hazardous Materials Information Reporting System

Source: U.S. Department of Transportation

Telephone: 202-366-4555

HMIRS: Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/31/95 Database Release Frequency: Annually Date of Last EDR Contact: 01/27/97

Date of Next Scheduled EDR Contact: 04/28/97

MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission

Telephone: 301-415-7169

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 02/13/96
Database Release Frequency: Quarterly

Date of Last EDR Contact: 01/14/97
Date of Next Scheduled EDR Contact: 04/14/97

NPL LIENS: Federal Superfund Liens

Source: EPA

Telephone: 205-564-4267

NPL LIENS: Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/91

Database Release Frequency: No Update Planned

Date of Last EDR Contact: 11/25/96

Date of Next Scheduled EDR Contact: 02/24/97

PADS: PCB Activity Database System

Source: EPA

Telephone: 202-260-3992

PADS: PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers

of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 08/26/96 Database Release Frequency: Semi-Annually Date of Last EDR Contact: 11/18/96

Date of Next Scheduled EDR Contact: 02/17/97

RAATS: RCRA Administrative Action Tracking System

Source: EPA

Telephone: 202-564-4104

RAATS: RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued

under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA.

Date of Government Version: 04/17/95 Database Release Frequency: N/A

Date of Last EDR Contact: 12/16/96

Date of Next Scheduled EDR Contact: 03/17/97

ROD: Records Of Decision

Source: NTIS

Telephone: 703-416-0703

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and

health information to aid in the cleanup.

Date of Government Version: 03/31/95 Date of Last EDR Contact: 12/02/96

Date of Next Scheduled EDR Contact: 03/03/97 Database Release Frequency: No Update Planned

TRIS: Toxic Chemical Release Inventory System

Source: EPA/NTIS Telephone: 202-260-2320

TRIS: Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land

in reportable quantities under SARA Title III Section 313.

Date of Last EDR Contact: 12/30/96 Date of Government Version: 12/31/92

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 03/31/97

TSCA: Toxic Substances Control Act

Source: EPA/NTIS Telephone: 202-260-1444

TSCA: Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

site. USEPA has no current plan to update and/or re-issue this database.

Date of Government Version: 01/31/95

Date of Last EDR Contact: 12/18/96

Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 03/17/97

STATE OF NEW YORK ASTM RECORDS:

LUST: Spills Information Database

Source: Department of Environmental Conservation

Telephone: 518-457-2462

LUST: Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 09/30/96 Date Made Active at EDR: 01/29/97

Database Release Frequency: Quarterly

Date of Data Arrival at EDR: 12/23/96

Elapsed ASTM days: 37

Date of Last EDR Contact: 01/27/97

SHWS: Inactive Hazardous Waste Disposal Sites in New York State

Source: Department of Environmental Conservation

Telephone: 518-457-0747

SHWS: State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: 04/30/96 Date Made Active at EDR: 06/06/96 Database Release Frequency: Annually Date of Data Arrival at EDR: 05/06/96 Elapsed ASTM days: 31

Date of Last EDR Contact: 12/02/96

SWF/LF: Facility Register

Source: Department of Environmental Conservation

Telephone: 518-457-2051

SWF/LF: Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Section 2004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 06/30/96 Date Made Active at EDR: 09/23/96 Database Release Frequency: Semi-Annually Date of Data Arrival at EDR: 08/12/96

Elapsed ASTM days: 42

Date of Last EDR Contact: 11/12/96

UST: Petroleum Bulk Storage (PBS, CBS, MOSF) Database (UST)

Source: Department of Environmental Conservation

Telephone: 518-457-4351

UST: Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 09/30/96 Date Made Active at EDR: 12/18/96 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 11/18/96

Elapsed ASTM days: 30

Date of Last EDR Contact: 02/03/97

STATE OF NEW YORK NON-ASTM RECORDS:

AST: Petroleum Bulk Storage (AST)

Source: Department of Environmental Conservation

Telephone: 518-457-4351

AST: Registered Aboveground Storage Tanks.

Date of Government Version: 09/30/96

Database Release Frequency: Quarterly

Date of Last EDR Contact: 02/03/97

Date of Next Scheduled EDR Contact: 05/05/97

SPILLS: Spills Information Database

Source: Department of Environmental Conservation

Telephone: 518-457-2462

SPILLS: Data collected on spills reported to NYSDEC as required by one or more of the following: Article 12 of the Navigation Law, 6 NYCRR Section 613.8 (from PBS regs), or 6 NYCRR Section 595.2 (from CBS regs). It includes spills active as of April 1, 1986, as well as spills occurring since this date.

Date of Government Version: 09/30/96 Database Release Frequency: Quarterly Date of Last EDR Contact: 01/27/97

Date of Next Scheduled EDR Contact: 04/28/97

TC0158322.1r Page A8

NEW YORK COUNTY RECORDS

CORTLAND COUNTY:

Cortland County UST Listing (AST)

Source: Cortland County Health Department

Telephone: 607-753-5035

Date of Government Version: 11/15/96

Database Release Frequency: Quarterly

Cortland County UST Listing (UST)

Source: Cortland County Health Department

Telephone: 607-753-5035

Date of Government Version: 11/15/96

Database Release Frequency: Quarterly

NASSAU COUNTY:

NCPHO Article XI Database (AST)

Source: Nassau County Health Department

Telephone: 516-571-3314

Date of Government Version: 12/01/96

Database Release Frequency: Quarterly

NCPHO Article XI Database (UST)

Source: Nassau County Health Department

Telephone: 516-571-3314

Date of Government Version: 12/01/96

Database Release Frequency: Quarterly

ROCKLAND COUNTY:

Petroleum Bulk Storage Database (AST)

Source: Rockland County Health Department

Telephone: 914-364-2605

Date of Government Version: 12/18/96

Database Release Frequency: Quarterly

Petroleum Bulk Storage Database (UST)

Source: Rockland County Health Department

Telephone: 914-364-2605

Date of Government Version: 12/18/96

Database Release Frequency: Quarterly

SUFFOLK COUNTY:

Underground Storage Tank Database (AST)

Source: Suffolk County Department of Health Services

Telephone: 516-854-2521

Date of Government Version: 03/01/96

Database Release Frequency: Annually

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/96

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Date of Last EDR Contact: 12/09/96

Date of Next Scheduled EDR Contact: 03/10/97

Underground Storage Tank Database (UST)

Source: Suffolk County Department of Health Services

Telephone: 516-854-2521

Date of Government Version: 03/01/96 Database Release Frequency: Annually Date of Last EDR Contact: 12/09/96
Date of Next Scheduled EDR Contact: 03/10/97

Historical and Other Database(s)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report. Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

DELISTED NPL: Delisted NPL Sites

Source: EPA

Telephone: 703-603-8769

DELISTED NPL: The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

NFRAP: No Further Remedial Action Planned

Source: EPA/NTIS Telephone: 703-416-0702

NFRAP: As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

FRDS: Federal Reporting Data System

Source: EPA/Office of Drinking Water

Telephone: 202-260-2805

FRDS provides information regarding public water supplies and their compliance with monitoring requirements, maximum contaminant levels (MCL's), and other requirements of the Safe Drinking Water Act of 1986.

Area Radon Information: The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

Oll/Gas Pipelines/Electrical Transmission Lines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines and electrical transmission lines.

Sensitive Receptors: There are individuals who, due to their fragile immune systems, are deemed to be especially sensitive to environmental discharges. These typically include the elderly, the sick, and children. While the exact location of these sensitive receptors cannot be determined, EDR indicates those facilities, such as schools, hospitals, day care centers, and nursing homes, where sensitive receptors are likely to be located.

USGS Water Wells: In November 1971 the United States Geological Survey (USGS) implemented a national water resource information tracking system. This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on more than 900,000 wells, springs, and other sources of groundwater.

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1994 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Water Dams: National Inventory of Dams

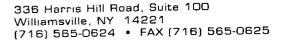
Source: Federal Emergency Management Agency

Telephone: 202-646-2801

WATER DAMS: National computer database of more than 74,000 dams maintained by the Federal Emergency Management

Agency.

New York Public Water Wells


Source: New York Department of Health

Telephone: 518-458-6731

ATTACHMENT B-1

• GEOPHYSICAL SURVEY RESULTS

May 12, 1997 B4055

Mr. Richard Frappa Malcolm Pirnie, Inc. 40 Centre Drive Orchard Park, NY 14127

Re: Geophysical Feasibility Survey Results, LTV Steel, Buffalo, NY

Dear Mr. Frappa:

1.0 INTRODUCTION AND PURPOSE

We are pleased to provide Malcolm Pirnie, Inc. with this report summarizing our findings of the geophysical survey at the above noted site. On February 15 and 16, 1997 Geomatrix Consultants Inc. (Geomatrix) performed terrain conductivity and time domain electromagnetic (TDEM) geophysical surveys at the site. The area surveyed is approximately 4.5 acres in size and is a portion of the LTV property in Buffalo, NY.

The geophysical survey was part of a multidisciplinary study being conducted by Malcolm Pirnie, Inc. The purpose of the feasibility survey was to determine if geophysical techniques would be useful for identifying the locations of buried building foundations and a large buried water pipe prior to subsequent intrusive investigation.

2.0 METHODOLOGY

2.1 Geophysical Reference Grid

A reference grid was established at the site prior to the initiation of the geophysical survey. The grid spacing was 400 ft x 400 ft. Geomatrix subsequently installed a 25 ft by 100 ft subgrid using labeled wire pin flags. The reference grid was established such that data could be accurately recorded along east-west trending survey lines spaced 12.5 ft apart.

2.2 EM31 Survey

A Geonics EM31-DL Frequency Domain Terrain Conductivity meter was used to collect apparent conductivity data at the site. Data were collected along lines oriented east-west. **Geomatrix Consultants, Inc.**

Engineers, Geologists, and Environmental Scientists

Page 2 Malcolm Pirnie May 12, 1997

Quadrature and in-phase data were simultaneously collected at 12.5 foot line intervals and at station intervals of approximately 2.5 feet. The quadrature component data are a measurement of the apparent ground conductivity. Quadrature component data are sensitive to the presence of stratigraphic changes, fill and conductive soils. Quadrature component data were collected in units of milliSiemens per meter (mS/m).

The EM31-DL also records the in-phase component of the electromagnetic field measured in units of parts per thousand (ppt). The in-phase component data are sensitive to the presence of highly conductive materials such as steel, copper and aluminum. All readings with the EM31-DL were taken with the instrument oriented parallel to the direction of travel, in the vertical dipole mode and with the instrument at waist height. The EM31-DL has a depth of exploration of approximately 12 to 15 feet when operated in this configuration.

The EM31-DL was calibrated at a base station south west of the survey area. The base station area is believed to represent background conditions and was free of any visible sources of potential signal interference. The instrument was calibrated following procedures specified in the operations manual. Readings were automatically stored in a solid state data logger during the survey. The data logger was interfaced to a portable computer and the data were transferred to a floppy disk for subsequent processing and interpretation. A total of 6,700 data points were measured and recorded with the EM31.

2.3 Geonics EM61 High Sensitivity Metal Detection Survey

The Geonics EM61 unit is a high sensitivity, high resolution TDEM metal detector that can detect both ferrous and nonferrous metallic objects. It has an approximate investigation depth of 10 feet. The processing console is contained in a backpack worn by the operator which is interfaced to a digital data logger. The transmitter and two receiver coils are located on a two-wheeled cart that is pulled by the operator.

The device's transmitter coil generates a pulsed primary EM field at a rate of 150 pulses per second, inducing eddy currents into the subsurface. The decay rates of these eddy currents are measured by two, 3.28 foot (1 meter) square receiver coils. By taking the measurements at a relatively long time frame after termination of the primary pulse, the response is practically independent of the survey area's terrain conductivity. That is, the decay rates of the eddy currents are much longer for metals than for normal soils.

Data are collected from the EM61's two receiver coils. One of the receiver coils is located coincident to the transmitter coil. The other receiver coil is located 1.31 feet (0.4 meters) above the transmitter coil. Data from the top receiver coil are stored on Channel

Page 3 Malcolm Pirnie May 12, 1997

1 of a digital data logger. Data from the bottom receiver coil are stored on Channel 2 of the data logger. Channel 1 and Channel 2 data are simultaneously recorded at each station location.

Channel 1 data are a measure of the presence or absence of surface metals. Channel 2 data measure the presence of surface and buried metals. To minimize the effects from surface metals, Channel 2 data are subtracted from Channel 1 data. These data are referred to as the "differential" and are stored in Channel 4. In areas of potentially high signal interference, such as overhead power lines, a noise reduction factor (0.28) can be applied to Channel 1 data prior to calculating the differential. These data are stored in Channel 3 which is referred to as the normalized differential channel.

For the LTV Site, Channel 4 data are presented due to the potential presence of surface metals. The instrument responses are recorded in units of milliVolts (mV). Data were recorded digitally by a data logger at a rate of approximately 2 measurements per foot. A total of 19,500 data points were collected and recorded with the EM61.

2.4 Data Reduction

The results of the EM surveys were edited and viewed in profile format using the manufacturer' software, DAT31 and DAT61. Data were pre-sorted and bi-directionally gridded using the Akima spline based gridding software BIGRID. Gridded data were color contoured for ease of interpretation and for final presentation purposes using the software GEOSOFT. Various filters (high and low pass) were applied in an attempt to enhance linear anomalies that may be associated with the foundations and buried pipes.

Preliminary results were delivered to Malcolm Pirnie approximately 1 week after the completion of geophysical field activities.

2.5 Limitations

The geophysical methods used during this survey are established, indirect techniques for non-destructive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. Targets such as buried drums, buried tanks, conduits, etc. are detectable only if they produce recognizable anomalies or patterns against the background geophysical data collected. As with any remote sensing technique, the anomalies identified during a geophysical survey should be further investigated by other techniques such as historical aerial photography, test pitting and/or test borings.

Page 4 Malcolm Pirnie May 12, 1997

3.0 RESULTS

The geophysical data are presented as a series of color contour maps in Figures 1, 2, and 3. The color bar to the right of each map indicates the colors associated with respective measured values. Actual data measurement points are superimposed on the maps.

The EM31 quadrature component data are presented in Figure 1. The data represents the apparent conductivity of the soils and material that lie within the depth of investigation of the EM31; approximately 12 to 15 feet.

The EM31 inphase data are presented in Figure 2. The inphase component of the electromagnetic field, measured by the EM31, is most sensitive to buried metals. The character of the inphase response, low or high, is partially dependent on the orientation of the buried metal(s) relative to the orientation of the EM31 device during data acquisition, or the survey direction. A buried metal pipe, for example, will exhibit a high inphase response when the trend of the pipe is parallel to the survey direction. When a survey line crosses a metal pipe or other linear metal object that is perpendicular to survey direction, it is characterized by a negative inphase response.

The EM61 Channel 3 survey data are shown in Figure 3. Areas suspected to be free of buried metals are shown as color shades of green/yellow. All areas exhibiting a response greater than background (15 to 20 mVolts) likely contain buried metals. These areas are depicted in shades of yellow through purple on Figure 3.

It was anticipated that the presence of the foundations and buried pipes may result in an anomalous linear response due to the possible presence of:

- steel reinforcing bar within the cement foundations;
- steel reinforcing bar within the concrete surrounding the pipes;
- resistive gravel backfill around the pipes; and/or
- disturbed soil resulting in a different moisture content and possible different soil texture.

A large manhole and associated pumphouse (locations indicated on figures) provide a direct reference by which to assess the success of the geophysical techniques to map the location of the large buried pipe known to exist within the study area. It is believed that the pipe exists between these two points. There is no compelling evidence within the geophysical data set that this pipe is geophysically identified. The linear anomalies that are observed in the data are likely related to smaller pipes and/or buried sections of railroad lines.

Page 5 Malcolm Pirnie May 12, 1997

The large conductive anomaly, shown in shades of purple on Figure 1, is likely related to the presence of conductive fill material that at one time formed the base of a series railroad tracks known to have existed in this area.

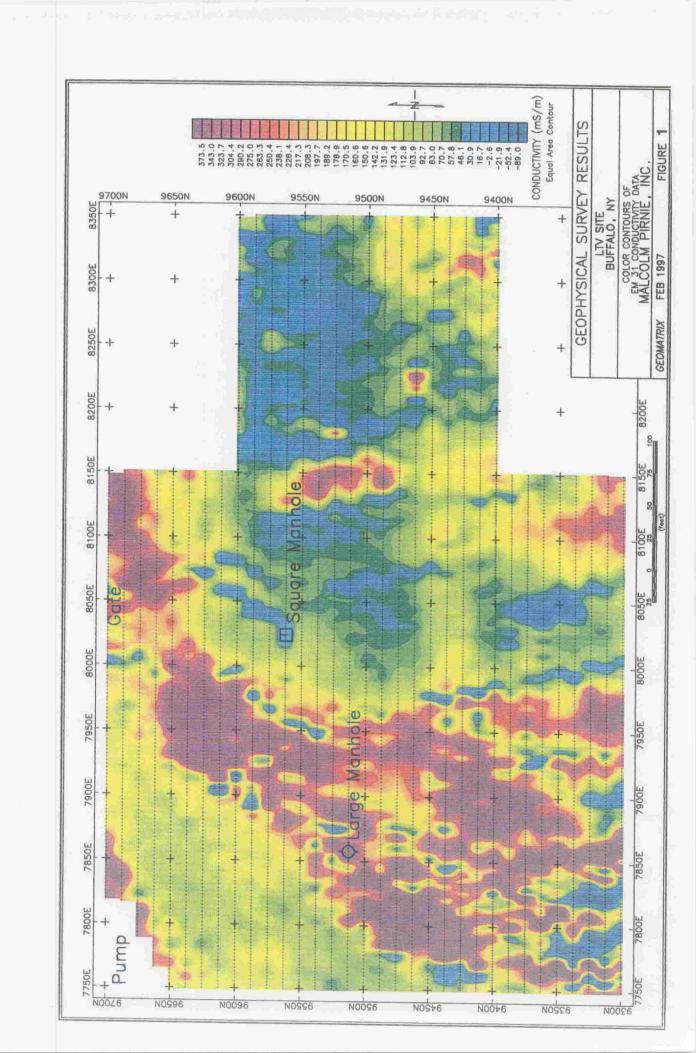
Building foundations are expected to be observed as somewhat rectilinear anomalies. While numerous anomalies are observed in the geophysical data set, there is no compelling evidence that building foundations were located.

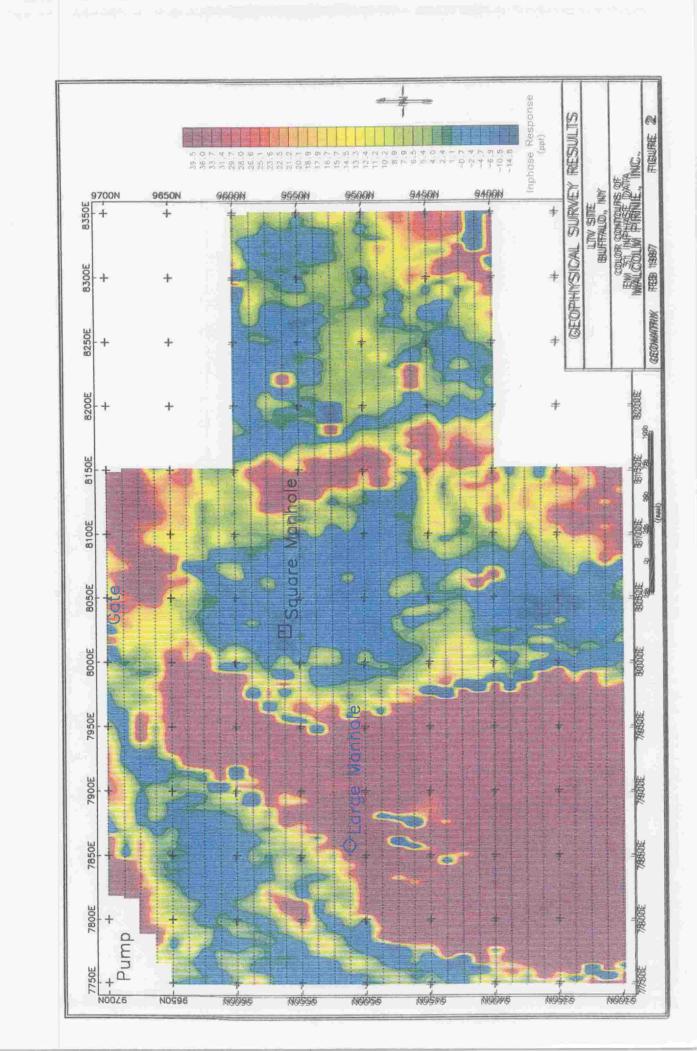
4.0 CONCLUSIONS

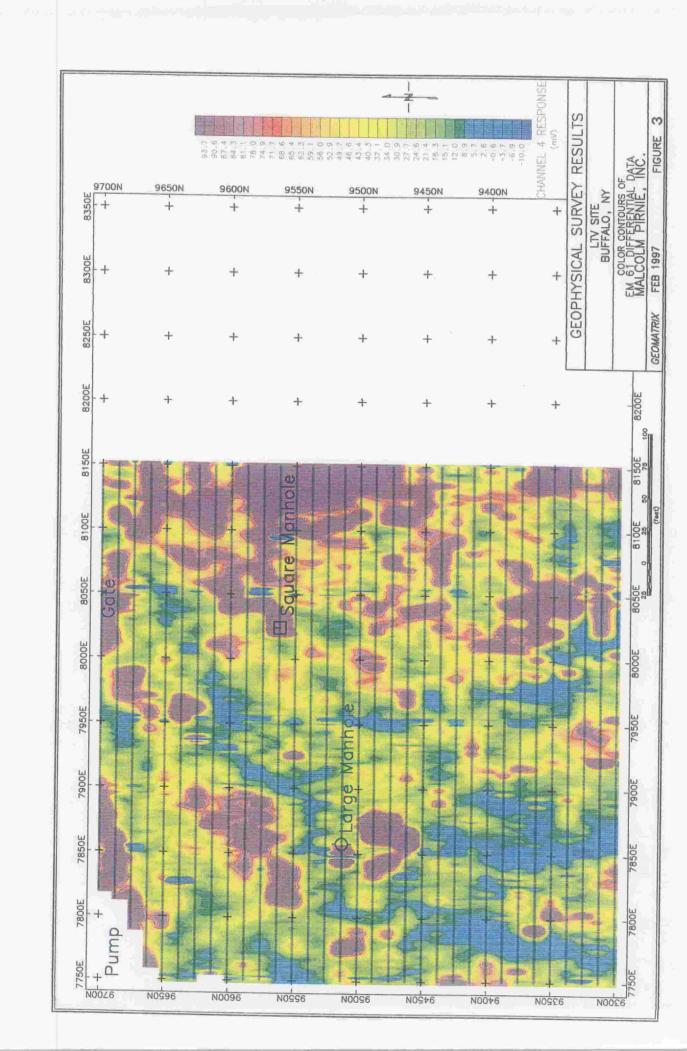
The geophysical feasibility survey conducted on a portion of the LTV site in Buffalo, NY does not appear to have been successful at mapping the locations of a large buried water pipe or building foundations. This may be due to the absence of steel reinforcing bar in the concrete/cement. An alternative explanation is that a geophysical response from the pipe and foundations is present within the data but unrecognized due to the presence of numerous other anomalies. It is possible that any of the anomalous responses observed in the geophysical data may be related to a building foundation or buried pipe, however, a clear indication of a linear or rectilinear anomaly was not observed. Numerous anomalies are observed throughout the data set that may represent buried metals.

The heterogeneous nature of the subsurface material, as evidenced by the large variations in apparent conductivity over short distances, and the high conductivities observed in the EM data, likely precludes the use of Ground Penetrating Radar (GPR) techniques to map the locations of the buried water pipe and building foundations.

We trust that the information presented in this report meets with your needs in order to assist you in your investigation. If you have any questions or comments please do not hesitate to contact our office.


Yours very truly,


GEOMATRIX CONSULTANTS, INC.


John Luttinger Project Geophysicist

FIGURES

ATTACHMENT B-2

SOIL GAS ANALYTICAL RESULTS

W. L. GORE & ASSCCIATES, INC.

101 LEWISVILLE ROAD - P.O. BOX 1100 - ELKTON, MARYLAND 21922-1100 PHONE: 410/392-3300 FAX: 410/996-3325 - TELEX 467637 GORE FB ELKT

ENVIRONMENTAL PRODUCTS GROUP

1 of 5

GORE-SORBERSM Screening Survey Final Report

MGP Phase I & II Buffalo, NY

March 7, 1997

Prepared For: Malcolm Pirnie, Inc. 40 Center Drive Orchard Park, NY 14127

W.L. Gore & Associates, Inc.

Written/Submitted by

Ray Fenstermacher, P.G.

Associate

W.L. Gore & Associates, Inc.

Reviewed/Approved by

Jay W. Hodny, M.S.

Associate

1 PROJECTS/MALCPIRN/MGPBUFF NY/970307R DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

GORE-SORBERsm Screening Survey Final Report

REPORT DATE: March 7, 1997 **AUTHOR:** RFF

SITE INFORMATION

Site Reference: MGP Phase I & II, Buffalo, NY Customer Purchase Order Number: 0848-263-100

Gore Production Order Number: 071968 Gore Site Code: YD

FIELD PROCEDURES

Modules shipped: 33

Installation Date(s): February 17, 1997 # Modules Installed: 31

Field work performed by: Malcolm Pirnie, Inc.

Retrieval date(s): March 3, 1997 Exposure Time: 14 [days] # Modules Retrieved: 31 # Trip Blanks Returned: 2 *

Modules Lost in Field: -0- # Unused Modules Returned: -0-

Date/Time Received by Gore: March 4, 1997 @ 11:30am By: CJF

Recorded Cooler/Water Temperature Control Blank temperature: 2.6 [°C]

Chain of Custody Form attached:

Chain of Custody discrepancies: None

Comments: Although only one module was noted as a trip blank on the chain of custody, two unused modules were returned with this survey and both of these modules were treated as trip blanks.

GORE-SORBERsm Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990. The Laboratory is audited regularly by a quality system design, development and auditing company.

Instrumentation consists of Hewlett-Packard 5890 gas chromatographs and 5971 mass selective detectors, as well as Perkin-Elmer ATD 400 automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Screening Method Quality Assurance:

Before each run sequence, two instrument blanks, a sorber containing 5µg BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in our methods before samples can be analyzed. A sorber containing BFB is also analyzed after every 30 samples and/or trip blanks, as is a method blank. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 20µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by the presence of the target ion and at least two secondary ions, retention time versus reference standard, and the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection

Quality Assurance Level: 2 (ANA-4/GS3)

Instrument ID: #2 Chemist: WW Data Subdirectory: 071968

Compounds/mixtures requested: Custom Target Analyte List (A7)

Deviations from Standard Method: None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 5).

GORE-SORBERsm Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: Two (2) B-sized color contour maps LIST OF MAPS ENCLOSED:

- Benzene, Toluene, Ethyl benzene, and total Xylenes (BTEX)
- Polycyclic Aromatic Hydrocarbons (PAHs)

Compound Name	Method Detection Limit [μg]	Low Map (gray) Limit [µg]	Highest Detect Level [µg]	Upper Map (purple) Limit [μg]
BTEX	0.02	0.22	282.62	282.62
PAHs	0.03	0.03	60.16	60.16

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore, as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

Comments:

• The minimum (gray) contour level, for each mapped analyte or group of analytes, was set at the maximum blank level observed or the MDL, whichever was greater. The maximum contour level was set at the maximum value observed

GORE-SORBER is a registered trademark of W. L. Gore & Associates, Inc.

GORE-SORBERsm Screening Survey Final Report

KEY TO DATA TABLE MGP Phase I & II, Buffalo, NY

UNITS

μg micrograms (per sorber), reported for compounds for which we

run external standards.

MDL method detection limit

ANALYTES

BTEX combined masses of benzene, toluene, ethylbenzene and total xylenes

(Gasoline Range Aromatics)

BENZ benzene
TOL toluene
EtBENZ ethylbenzene
mpXYL m-, p-xylene
oXYL o-xylene

Combined PAHs combined masses of naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, fluorene.

phenanthrene, anthracene, fluoranthene, and pyrene.

BLANKS

TBn unexposed trip blanks, which traveled with the exposed modules

APPENDIX A:

1. CHAIN OF CUSTODY 2. DATA TABLE 3. COLOR CONTOUR MAPS

GORE-SORBER® Screening Survey Chain of Custody

For W.L. Gore & Assoc	iates use only 71948
Production Order #	

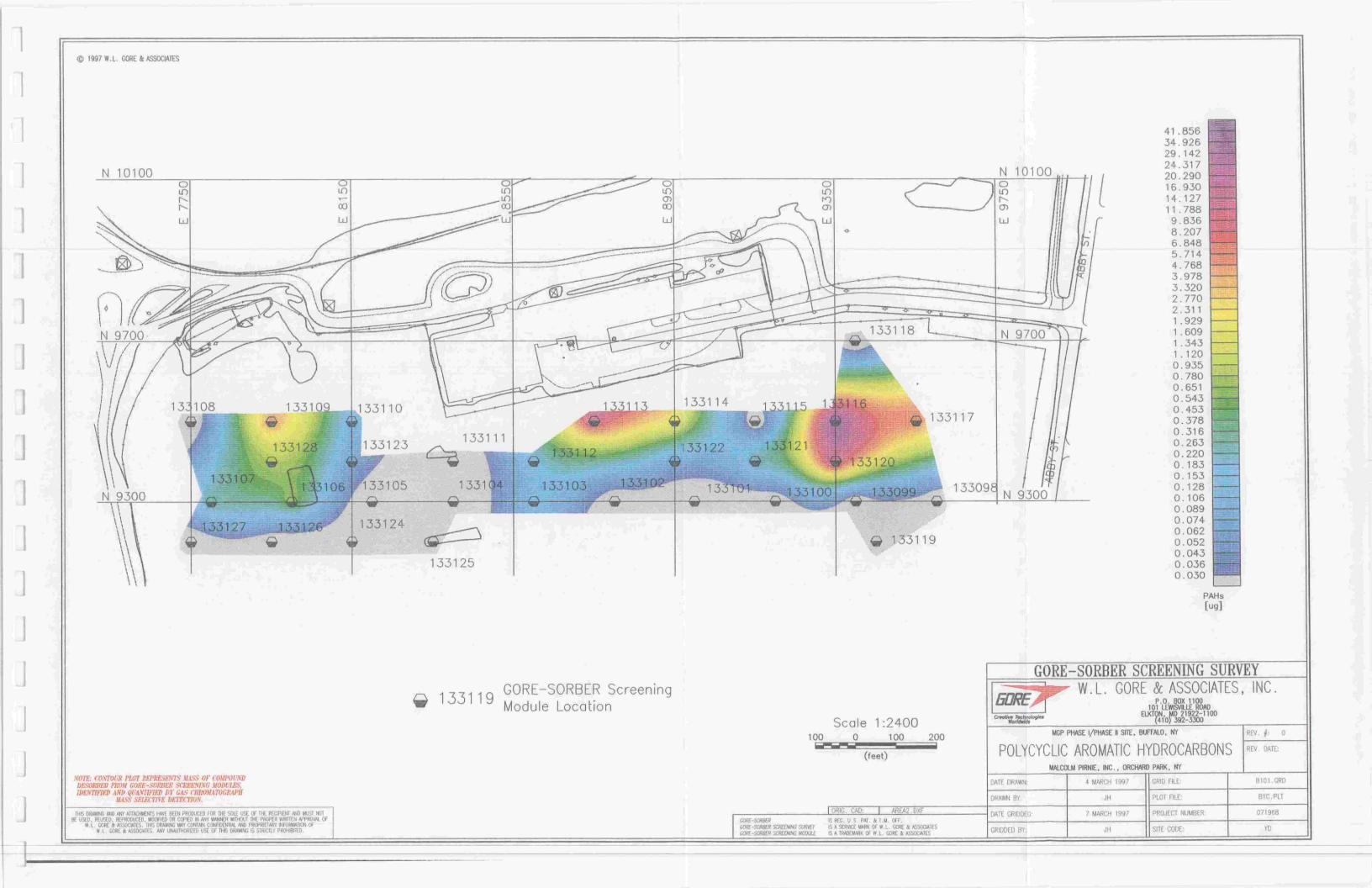
W. L. Gore & Associates, Inc., Environmental Products Group

101 Lewisville Road • Elkton, Maryland 21921 • Tel: (410) 392-3300 • Fax (410) 996-3325

Customer Name: אורנננוו איצעוב -	T.vc	Site Name: MC-P PHASE I + II				
Address: 40 CENTER DR		Site Address:				
CRCHARD THREE W	4 14127		BUFFALL NY			
		Project Manager:	JEAN.VE A	SQUITH		
Phone: 71% 667-6634		Customer Project	No.:	*****		
FAX: 716 6676274		Customer P.O. #:	0948-263 100 QI	10te #: <u> </u>	756 C	
Serial # of Modules Shipped		# of Modules for	Installation 戈。#	of Trip Blan	ks _2	
# 133 C45 through #	to as	Total Modules Sh	ipped: 33	Pie	ces	
# through #	133/30	Total Modules Re	ceived:	Pie	ces	
# through #		Total Modules Ins	talled:	Pie	ces	
# through #		Serial # of Trip B	anks (Client Decides)	#		
# through #		# 133129	#	#		
# through #		#	#	#		
# through #	<u></u>	#	#	#		
Installation Performed By:		Installation Metho	d(s) (circle those that a	ipply):		
Name (please print): R, DS 52/5.	Mersitt	Slide Hammer	Hammer Drill	Auger		
	E, 2mc	Other:				
Installation Start Date and Time:	2//	7197	: 0830	AM) PM		
Installation Complete Date and Time:	2 / 1		: 01.00	AM PM)		
Retrieval Performed By:		Total Modules Re			ces	
Name (please print): R. DBI 52 / J. r	nerritt-	Total Modules Lost in Field: Pieces				
Company/Affiliation: MNESSIM P1121		Total Unused Mod	dules Returned:	Pic	ces	
Retrieval Start Date and Time:	3 / 3	3 1 97	: 0930	AM PM	· · · · · ·	
Retrieval Complete Date and Time:	3 / 3	147	: /200	AM PMP		
Target Analytes to be Mapped	To Be Determined I	Pending Completion	of Lab Analysis [i/]	······································		
(Check Options or List as appropriate):	or write "None", if	applicable.	· · · · · · · · · · · · · · · · · · ·			
Analyte #1:	Analyte #2:		Analyte #3:			
Other Instructions, if any:						
Relinquished By C) Fandum	Pate Time	Received By:		Date	Tim	
Affiliation: W.L. Gore & Associates, Inc.	2/13/97 15:00					
Relinquished By	Date Time	Received By:		_ Date	Tim	
ACCIDATION AND 2007 5	<u> </u>	Affiliation:				
Affiliation: MAKULM PIEVIE, INC						
Relinquished By Affiliation	Date Time	Received By:	Gore & Associates, Inc	Date 3/5 / 47	Tim //・うつ	

C5 Fondre 110 996 3375

THE PARTY OF			3:2.3		27907		NAME OF THE PARTY	THE PERSON OF TH	Stall
	W.S.Y	A) 45	425	1.57 (DO)	10/2				
	EN	MODUI WAT		INCE OF LOCARBON		urvey	1		
COMMENTS	one)	(check		OCARBON		RETRIEVAL DATE/TIME	INSTALLATION DATE/TIME	MODULE #	NE #
2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	NO	YES.	NONE		LPH.	:	<u>.</u> .		
						3/3/47 1026		1330 9	
						1021		99	
<u> </u>						يا ناري		100	
					 	1030		101	
 -						/#35		102	
						,		1.	٠,
					 	1014		1014	
<u> </u>		 			 -	10112		10	
					├	1042		106	
					 	<u></u>		102	0.
		-			1	1050		108	1.
		 		├──	-	10:5		109	2.
				 		1037		110	3.
						1054		1/1	4. 5.
					1	1101		112	
						1104		114	7.
	_	<u> </u>				1104		115	8.
						1110		116	19.
						1113		117	20.
		<u> </u>		<u> </u>		11/7		118	21.
						1/20		119	22.
			<u> </u>			1135		/20	23.
	-	 	ļ			1137		/21	24.
<u> </u>		1	<u> </u>	 		1142		122	25.
		 Y	<u> </u>			1121)		12'	26.
			 	 		1/12		124	27.
			-		-	1144		/2.	28.
	 		 		+	4.4		1 126	29.
	 	+	┼		+		<u>'</u>	/ x /	30.
	 	 		+	-	(-1)			31.
	1	+	-		+				32.
			+						33.
		1	- 	1	+			 	34.
		1						-	35. 36.
									30. 37.
								 	38.
	<u> </u>								39.
	-							_	40.
									41.
FORM			٠.	1		1			42.


GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS MALCOLM PIRNIE INC., ORCHARD PARK, NY GORE CUSTOM TARGET COMPOUND LIST (A7) MGP PHASE I AND II, BUFFALO, NY SITE YD - PRODUCTION ORDER #071968

SAMPLE							Combined					
NAME	BTEX, ug	BENZ, ug	TOL. ua	EtBENZ, ug	mpXYL, ug	oXYL. μα		NAPH, ug	2MeNAPH, ug	Acenaphthylene, ug	Acenaphthene, ug	Fluorene, ug
MDL =	0.02	0.03	0.03	0.02	0.02	0.03	0.03	0.03	0.03	0.05	0.04	0.07
133098	0.26	0.11	0.05	0.01	0.05	0.03	0.01	0.00	0.00	0.00	0.01	0.00
133099	0.29	0.11	0.09	0.02	0.04	0.03	0.00	0.00	0.00	0.00	0.00	p.00
133100	0.46	0.20	0.13	0.02	0.08	0.03	0.00	0.00	0.00	0.00	0.00	
133101	0.44	0.13	0.24	0.01	0.03	0.02	0.00	0.00	0.00	0.00	0.00	
133102	0.90	0.61	0.18	0.01	0.07	0.03	0.00	0.00	0.00	0.00	0.00	0.00
133103	0.68	0.38	0.15	0.05	0.06	0.04	0.15	0.04	0.02	0.00	0.00	0.02
133104	1.21	0.49	0.50	0.03	0.12	0.07	0.00	0.00	0.00	0.00	0.00	0.00
133105	0.68	0.49	0.10	0.01	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.00
133106	0.51	0.23	0.14	0.01	0.08	0.04	0.80	0.80	0.00	0.00	0.00	0.00
133107	20.19	12.77	5.64	0.06	1.15	0.58	0.36	0.35	0.01	0.00	0.00	0.00
133108	0.58	0.15	0.18	0.04	0.16	0.05	0.00	0.00	0.00	0.00	0.00	0.00
133109	134.97	117.58	0.47	14.75	1.26	0.92	6.25	5.89	0.15	0.02	0.03	0.06
133110	14.04	6.06	6.50	0.10	1.09	0.29	0.11	0.10	0.01	0.00	0.00	0.01
133111	0.14	0.06	0.04	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
133112	2.20	1.84	0.24	0.01	0.05	0.05	0.16	0.07	0.03	0.00	0.02	0.02
133113	92.13	72.83	7.00	2.65	7.07	2.59	14.51	8.29	1.76	0.71	0.33	1.70
133114	0.37	0.21	0.09	0.01	0.04	0.02	2.28	0.58	0.31	0.44	0.05	0.33
133115	0.15	0.07	0.04	0.01	0.03	0.01	0.00	0.00	0.00	0.00	0.00	
133116	9.54	1.03	1.42	0.97	3.31	2.81	60.16	40.82	12.06	0.06	1.40	
133117	0.89	0.22	0.36	0.04	0.14	0.12	6.36	1.59	0.91	0.02	1.53	0.97
133118	0.79	0.65	0.10	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	
133119	0.51	0.35	0.11	0.00	0.03	0.02	0.00	0.00	0.00	0.00	0.00	
133120	1.20	0.23	0.18	0.06	0.42	0.31	25.02	7.70	4.15	0.09	6.02	2.72
133121	0.40	0.25	0.10	0.01	0.03	0.02	0.34	0.03	0.02	0.00		0.02
133122	3.06	2.68	0.21	0.03	0 10	0.04	0.06	0.03	0.02	0.00	0.01	0.00
133123	10.30	2.11	0.08	0.60	6.92	0.59	0.06	0.05	0.00	0.00	0.01	0.00
133124	1.42	1.03	0.21	0.02	0.09	0.07	0.00	0.00	0.00	0.00	0.00	
133125	1.64	1.38	0.14	0.02	0.06	0.04	0.00	0.00	0.00	0.00	0.00	
133126	1.56	1.18	0.20	0.03	0.10	0.05	0.00	0.00	0.00	0.00	0.00	
133127	9.96	9.22	0.52	0.03	0.13	0.06	0.00	0.00	0.00	0.00	0.00	k
133128	282.62	152.69	125.12	0.26	3.67	0.88	0.76	0.62		0.00	0.00	0.03
TB, 133129	0.22	0.22	 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TB, 133130	0.14	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Max Observed	282.62	152.69	125.12	14.75	7.07	2.81	60.16	40.82	12.06	0.71	6.02	2.72

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS MALCOLM PIRNIE INC., ORCHARD PARK, NY GORE CUSTOM TARGET COMPOUND LIST (A7) MGP PHASE I AND II, BUFFALO, NY SITE YD - PRODUCTION ORDER #071968

SAMPLE				
NAME	Phenanthrene, ug	Anthracene, ug	Fluoranthene, ug	Pyrene, ug
MDL =	0.04	0.10	0.17	0.24
133098	0.00	0.00	0.00	0.00
133099	0.00	0.00	0.00	0.00
133100	0.00	0.00	0.00	0.00
133101	0.00	0.00	0.00	0.00
133102	0.00	0.00	0.00	0.00
133103	0.04	0.02	0.00	0.00
133104	0.00	0.00	0.00	0.00
133105	0.00	0.00	0.00	0.00
133106	0.00	0.00	0.00	0.00
133107	0.00	0.00	0.00	0.00
133108	0.00	0.00	0.00	0.00
133109	0.07	0.01	0.03	0.00
133110	0.00	0.00	0.00	0.00
133111	0.00	0.00	0.00	0.00
133112	0.01	0.00	0.00	0.00
133113	1.21	0.40	0.06	0.04
133114	0.33	0.15	0.06	0.04
133115	0.00	0.00	0.00	0.00
133116	2.81	0.73	0.27	0.16
133117	0.94	0.32	0.05	0.03
133118	0.00	0.00	0.00	0.00
133119	0.00	0.00	0.00	0.00
133120	3.46	0.65	0.14	80.0
133121	0.11	0.03	0.04	0.03
133122	0.00	0.00	0.00	0.00
133123	0.00	0.00	0.00	0.00
133124	0.00	0.00	0.00	0.00
133125	0.00	0.00	0.00	0.00
133126	0.00	0.00	0.00	0.00
133127	0.00	0.00	0.00	0.00
133128	0.00	0.00	0.00	0.00
. <u></u>				
TB, 133129	0.00	0.00	0.00	0.00
TB, 133130	0.00	0.00	0.00	0.00
Max Observed	3.46	0.73	0.27	0.16

ATTACHMENT B-3

 ICF KAISER AREA II INVESTIGATION REPORT FINAL REPORT FOR THE PHASE II ENVIRONMENTAL SITE ASSESSMENT OF THE DONNER-HANNA COKE PLANT BUFFALO, NEW YORK

JULY 9, 1997

SUBMITTED TO:

MALCOLM PIRNIE, INC. 40 CENTRE DRIVE BUFFALO, NEW YORK 14219-0138

PRESENTED BY:

ICF KAISER ENGINEERS, INC. GATEWAY VIEW PLAZA 1600 WEST CARSON STREET PITTSBURGH, PA 15219-1031

1.0 INTRODUCTION

ICF Kaiser Engineers, Inc. (ICF Kaiser) performed a Phase II Environmental Site Assessment (Phase II ESA) for Malcolm Pirnie, Inc. for the former site of the Donner-Hanna Coke Plant located in Buffalo, New York. The former coke plant site is one of four areas investigated by Malcolm Pirnie during a site characterization study of the LTV Steel site. As described in the report, the former Donner-Hanna Coke Plant is designated as Area II for sample descriptor purposes. The field portion of the Phase II ESA was jointly performed in March, 1997 by Bill Squire, a geologist in ICF Kaiser's Pittsburgh, PA office, and Bryan Hann, a geologist in Malcolm Pirnie's Buffalo, NY office.

The objective of the Phase II ESA was to identify contamination or environmental impairment on the property through the collection of site specific data on potential contamination of soil, subsurface materials, groundwater, and other environmental media.

Specifically, the Phase II ESA involved conducting soil and groundwater sampling at various locations within the former Donner-Hanna Coke Plant (D-H Plant) site to determine the presence or absence of metals, VOC, SVOC, and/or PCB contamination due to past operations of the plant. A Phase I ESA was previously performed for the subject property by Malcolm Pirnie, Inc.

2.0 BACKGROUND

The former D-H Plant consisted of a facility that produced coke and various by-products from coal. The coke production area included coal and coke handling equipment, coke batteries, coal and coke storage areas, and associated auxiliary equipment. The by-product area produced various by-products from coke oven gases generated during the coking process, including products such as coal tar, light oil, and ammonium sulfate. The by-product area consisted of process equipment, storage tanks, and piping used to extract and purify the various by-products from the coke oven off-gases.

The D-H Plant also had a large gas holding tank used to store processed coke oven gas prior to its reuse as fuel in the coke batteries and other plant areas. In addition, there were various piping and utility systems located both aboveground and belowground. There were also a large number of trenches, pits, and sumps located throughout the D-H Plant.

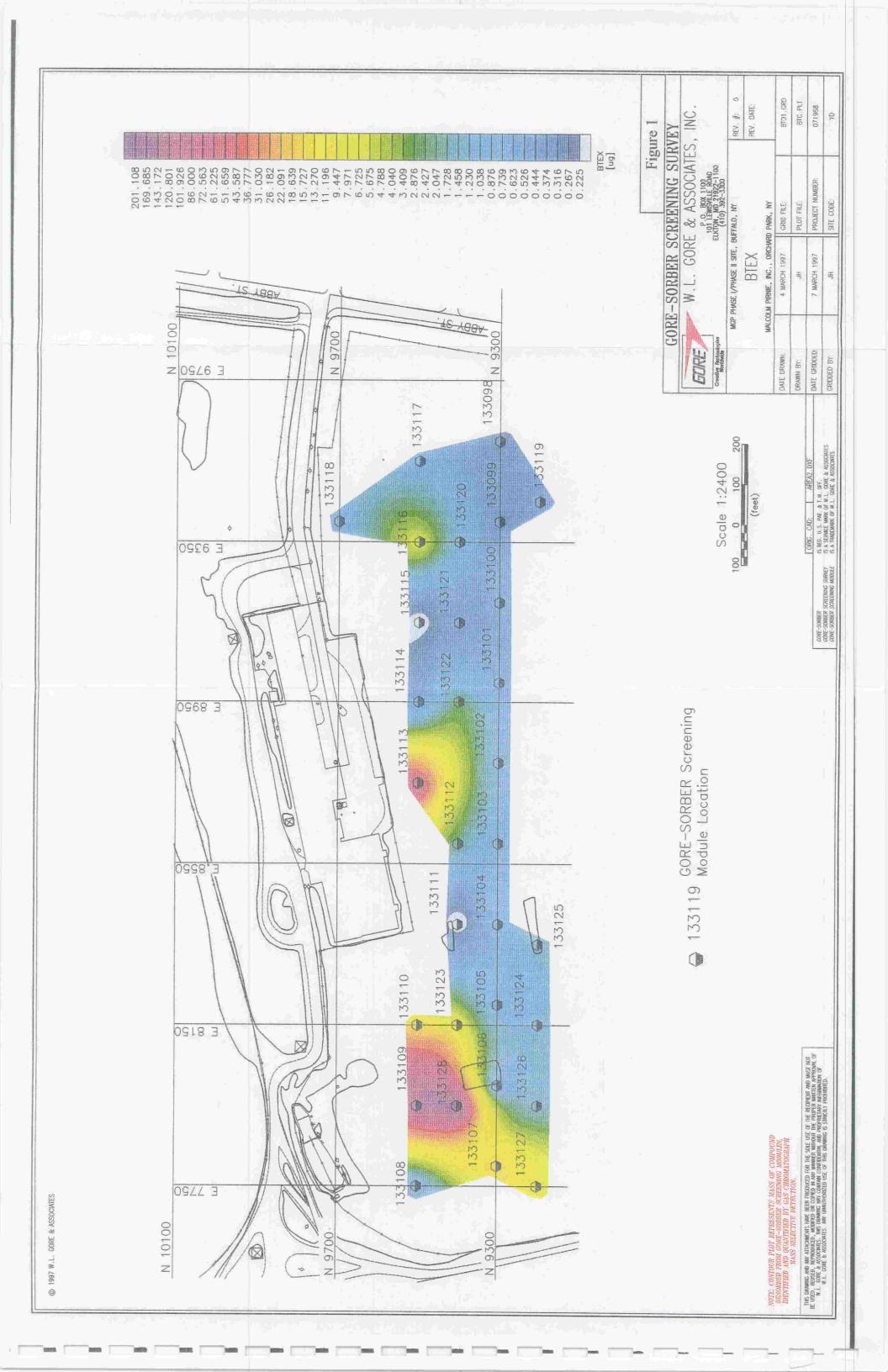
In 1990 and 1991, the D-H plant was decommissioned and demolished down to ground level by ICF Kaiser. Aboveground buildings, structures, tanks, vessels, and piping were decontaminated and demolished, with the resulting waste products managed in accordance with applicable local, State, and Federal regulations. The concrete trenches and pits were cleaned, fractured to prevent runoff water accumulation, and backfilled during the decommissioning and demolition (D&D) process. Some of the underground piping systems and utilities were also removed in various areas of the D-H Plant as well. Upon completion of D&D activities, the D-H Plant Site was graded and seeded to prevent erosion.

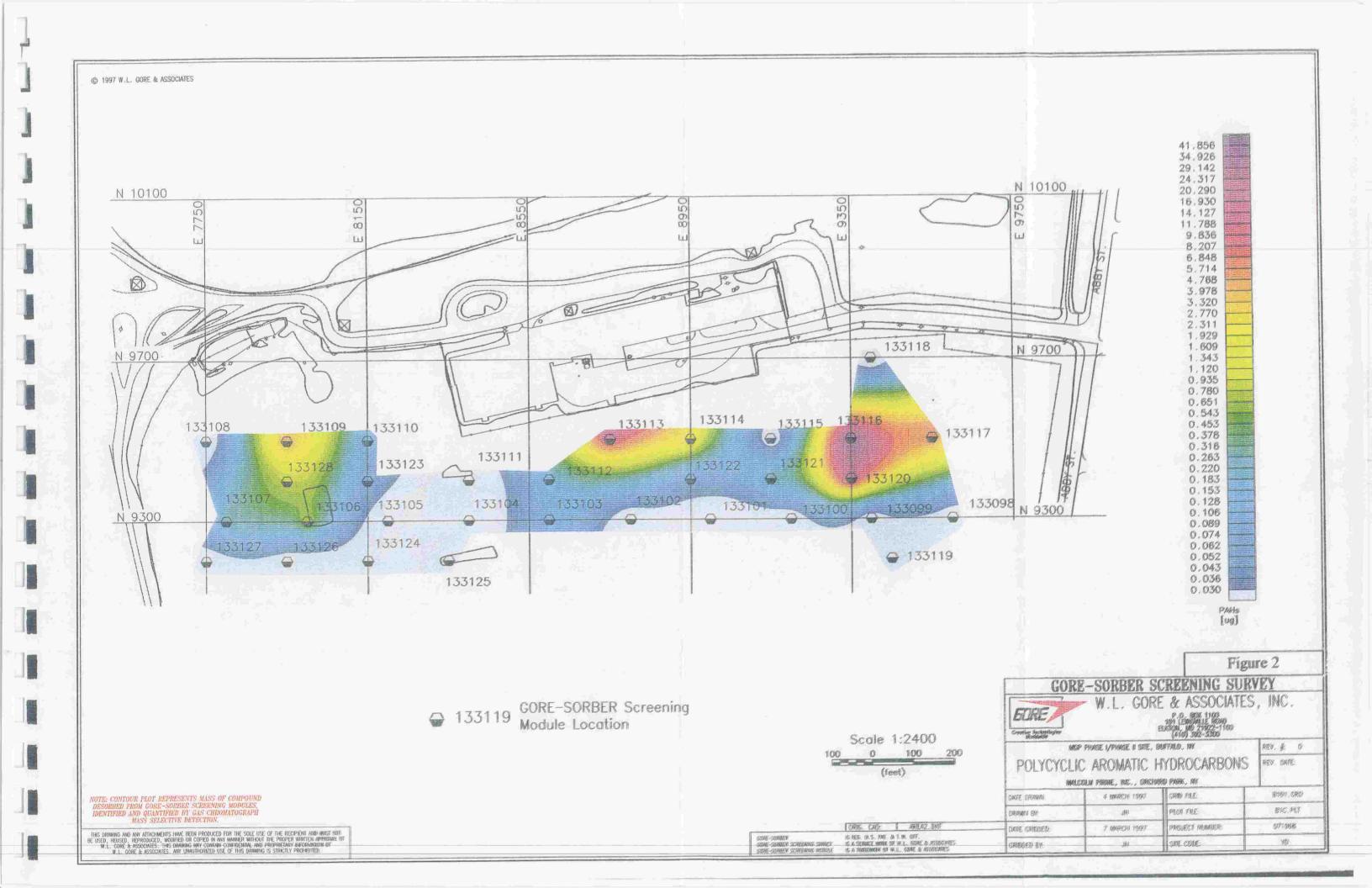
3.0 FIELD ACTIVITIES

Soil Gas Survey

Field activities were initiated by performing a passive soil gas survey across the site using GORE-SORBER st screening modules, which are hydrophobic, microporous, sorbent, soil vapor collection devices. The soil gas survey was performed by Malcolm Pirnie prior to starting other field sampling activities at the site. Thirty-one modules were installed at a depth of 2.5-ft. bgs in a grid pattern. Modules were normally spaced at 100-ft. intervals between the N9200 and N9700 lines and at 200-ft. intervals between the E7750 and E9600 lines (The coordinate references are presented in Figures 1 and 2). The modules were left in the ground for 14 days and then analyzed for Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and Polynuclear Aromatic Hydrocarbon (PAH) compounds. Laboratory analysis consisted of thermal desorption, gas chromatography, and mass spectroscopy. It should be noted that while the results are useful for screening purposes, they are not definitive. For any given compound, only the total mass desorbed from the module is reported, not mass per volume. This method of reporting results does not permit valid comparison against regulatory levels.

Subsurface Soil Sampling


Based on observations made during the D&D of the D-H Plant by ICF Kaiser and on ICF Kaiser's knowledge of the coking process, 14 areas of the plant were identified for surface and/or subsurface soil sampling. The areas included the following former production, storage, and maintenance facilities:


Tar Storage Tanks Tar Decanters Light Oil Area The Electrical Substation Underground Pipes Gas Holder & Iron Oxide Boxes Machine Shop Locomotive Shed Old Tar Tanks Interceptor Sump Benzol Washer & Final Cooler Area ■ Primary Cooler Area Tar Precipitator Area

The contaminants of concern in these areas are contaminants commonly found at coke and byproduct plants. These contaminants include by-product constituents from coal tar (PAHs), light oil (benzene, toluene, and xylenes), and salt (ammonia). Other potential contaminants include chemicals such as naphthalene and cyanide that are often produced in the coke oven gas purification process. In addition, metals contamination may be present due to by-product operations or activities that may have occurred at the steel plants adjacent to the property. The Phase II ESA was focused to investigate potential contamination in shallow and deeper subsurface soil, and groundwater that may have been present due to past coke plant operations. As part of a site-wide investigation of surface soil at the entire LTV Site (Areas I through IV), Malcolm Pirnie sampled and evaluated potential surface soil (0-0.5 ft) contamination at the former coke plant site.

Possible Tar Unit

An historical aerial photograph of the plant with a reference grid overlay previously prepared by Malcolm Pirnie was consulted to determine the locations for soil borings within each of the identified areas. The number of borings per area was chosen to provide adequate areal coverage while minimizing statistical skewing of analytical results. Small areas, such as the Tar Tanks, typically were designated to have one boring, while larger areas, such as the Benzol Washers and Final Coolers, were designated to have three or four borings. The decision to collect only shallow soil samples or

both shallow and deeper subsurface soil samples in each area was based partly on observations made during the D&D and partly on a general knowledge of the coking process. Viscous substances such as tar tend not to migrate far into the subsurface whereas substances such as light oil are more mobile and tend to sink. Therefore, shallow subsurface soils were favored in areas where tar was the suspected contaminant and samples at greater depths were collected in areas with potential benzene contamination. Shallow subsurface soils were generally collected 2 to 4 feet below the ground surface, below the layer of cover soils emplaced after the D&D of the plant.

After the boring locations were marked on the aerial photograph and their reference grid coordinates determined, the locations were marked in the field. Starting from a surveyed grid node, the field team used a tape measure and pin flags to mark each proposed boring location. For the purposes of this investigation, the production area of the plant was labeled Area 2 (A2) and borings were numbered sequentially with either a "P" (piezometer) or "B" (boring) prefix, resulting in borings with designations such as A2-P-1, A2-B-2, etc. Thirty-five boring locations, including two piezometer locations, were marked in the field (see Figure 3). Two areas, the Tar Storage Tank Area and the Benzol Washer and Final Cooler Area, had temporary piezometers installed in a selected boring after the soil sampling to permit collection of groundwater samples. Both piezometers were screened from 5 to 10-ft. bgs.

The borings were completed using a 3-inch O.D. split-spoon driven ahead of a 4.25-inch I.D. hollow stem auger, following ASTM method D 1586-84. Split spoon or auger refusal was often encountered at a location and the boring location was then moved, sometimes more than once. If a boring had to be moved, the field team was careful to always keep the new boring within the general confines of the area being investigated. Borings were moved anywhere from approximately 2-ft. to 25-ft. and the new coordinates were noted. The drilling method was slightly modified, based on field observations, so that the first boring in an area was begun with a split spoon, when possible, to determine the thickness of cover material. Subsequent borings in the same area were augered to the depth of the cover material, generally 2-ft, before beginning split spoon sampling. This modification to the drilling method reduced the need to move subsequent boreholes several times due to split spoon refusal in the cover material.

Once a split spoon sample was obtained, the sample was described in the field logbook. The description included the following information, which was used to prepare boring logs for each borehole (Boring Logs for each soil boring are presented in Appendix A):

- sampling interval
- sample recovery in feet
- texture
- apparent consolidation
- other physical observations
- blow count
- color
- apparent moisture content
- odor
- HnU organic vapor meter readings
- analytical sample number, when appropriate

Field observations showed a covering of demolition debris (slag, cinders, sand, brick, concrete rubble, metal, etc.), generally about 2-ft thick, overlying the original ground surface of the former plant property. The original surface of the plant property (below the demolition debris) was found to be predominantly fill material consisting of ash, slag, silt/clay, medium to coarse sand and fine to medium gravel. In addition, a light to dark blue cemented sand was found in the Light Oil, Tar Decanters, and Primary Coolers areas at depths between 2 and 7-ft. bgs. The blue coloration and cementing is believed to result from ferrous cyanide generated during coke gas distillation and purification

processes (See Section 5 for a further discussion of this topic.). A black-brown-gray, soft to medium stiff silt and clay underlies the entire site at an average depth of about 9-ft. bgs. Saturated conditions were often observed in the fill material at approximately 5-ft. bgs.

The collection of samples for laboratory analysis was targeted at the top 2-ft. of the original ground surface (shallow subsurface sample), and, when required, the top 2-ft. of the underlying native, fine grained soil (deeper subsurface sample). Collection of samples from these two different soil types provides a good indication of the depth of potentially impacted soil due to viscous or fluid contaminants. Samples for laboratory analysis were either collected directly into glass jars (grab samples) or were held in a covered stainless steel bowl to be composited with material from other borings (composite samples). Samples were collected, packed, shipped, and analyzed in accordance with applicable provisions of method SW 846. The samples were marked for Target Analyte List (TAL) metals and total cyanide, Target Compound List (TCL) VOC, TCL SVOC, and TCL PCB analyses, except for samples from the Gas Holder & Iron Oxide Boxes area, which were marked for all of the above plus reactive sulfide and reactive cyanide; and samples from the Electrical Substation, which had TCL VOC, TCL SVOC, and TCL PCB analyses only.

In the northeastern corner of the property, results from the soil gas survey revealed a plume of organic vapors in an area not originally included as part of the soil sampling investigation. Additional borings extending to the north, east, and west from the center of the plume were drilled and evaluated through field observations and readings from the HnU organic vapor meter. For these borings, the most elevated concentrations of organic vapors were detected in borings A2-B-85 (125-ft. north), and A2-B-86 (175-ft. north), as measured from the approximate center of the plume, at depths of up to 6-ft. bgs (the total depth of the borings). One soil sample was collected from boring A2-B-85 and marked for BTEX, PAH, and cyanide analyses from the samples collected in this area.

Surface Soil Sampling

In addition to the soil sampling efforts conducted at the 14 identified areas throughout the plant, three shallow surface soil samples were collected along the southern side of the plant between the former production area and coke batteries, one sample was collected on the western side, and one sample was collected on the eastern side. These samples were collected from the cover material placed over the site after the D&D of the plant to provide a general characterization of the nearsurface soils (0.0-0.5-ft. bgs) throughout the area. Samples were marked for TAL metals and total cyanide, TCL VOC, TCL SVOC, and TCL PCB analyses.

Groundwater Sampling

Two groundwater samples were collected from temporary piezometers installed in selected borings in the Tar Storage Tanks area (boring A2-P-1) and the Benzol Washers area (boring A2-P-11). Samples were collected through the total length of the screen (5 to 10-ft. bgs). These locations were chosen for groundwater sampling based on the results of the soil gas survey and on field observations during boring placement. The groundwater sampling was intended to determine what impact elevated levels of BTEX and PAH compounds found during the soil gas survey were having on the groundwater at the property. Samples were analyzed for TAL metals, total cyanide, TCL VOCs and TCL SVOCs.

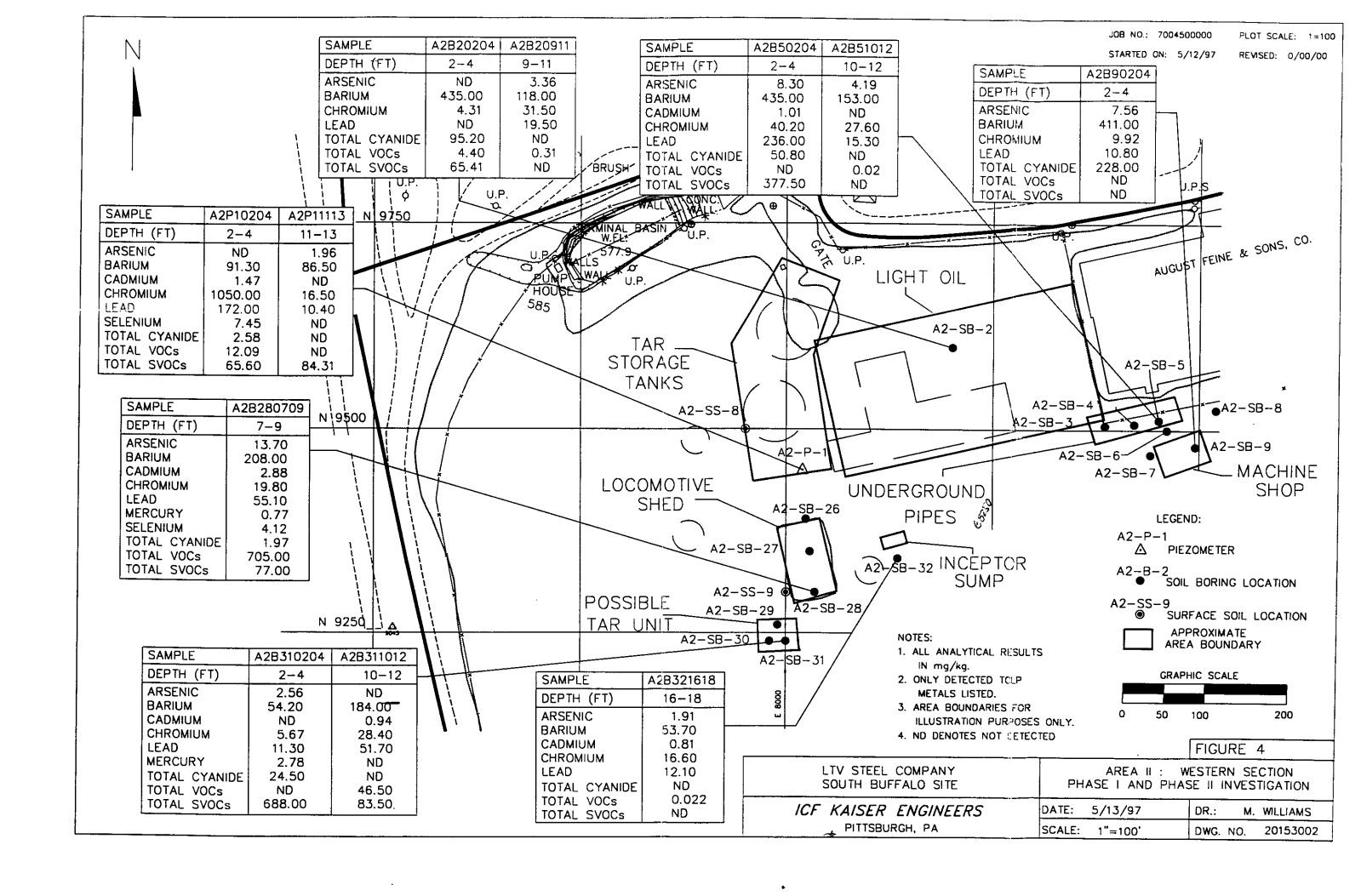
4.0 RESULTS

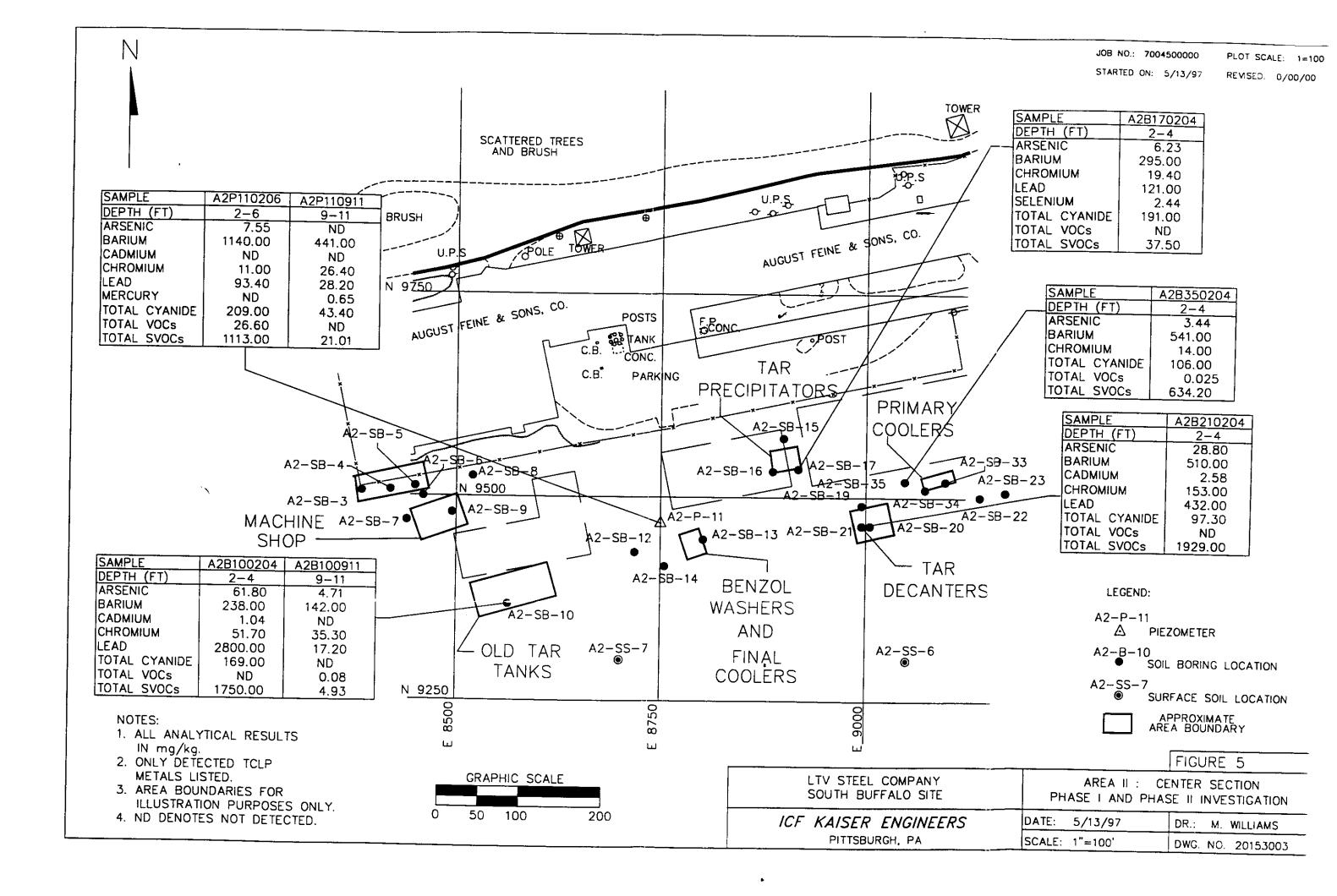
Tables listing analytical results for the soil gas survey, the 14 sampling areas, the soil gas plume sample, and groundwater sampling can be found in Appendix B. Complete soil gas survey results are presented in Table B-1. Results for the 14 areas and boring A2-B-85 in the soil gas plume, are presented in Table B-2, and complete groundwater sampling results are in Table B-3. Summary tables of analytical results have been prepared for each of the 14 areas and boring A2-B-85 in the soil gas plume and are included in Section 5.0. Figures 4, 5, and 6 show boring locations and selected analytes found in the shallow and/or deep samples associated with each boring.

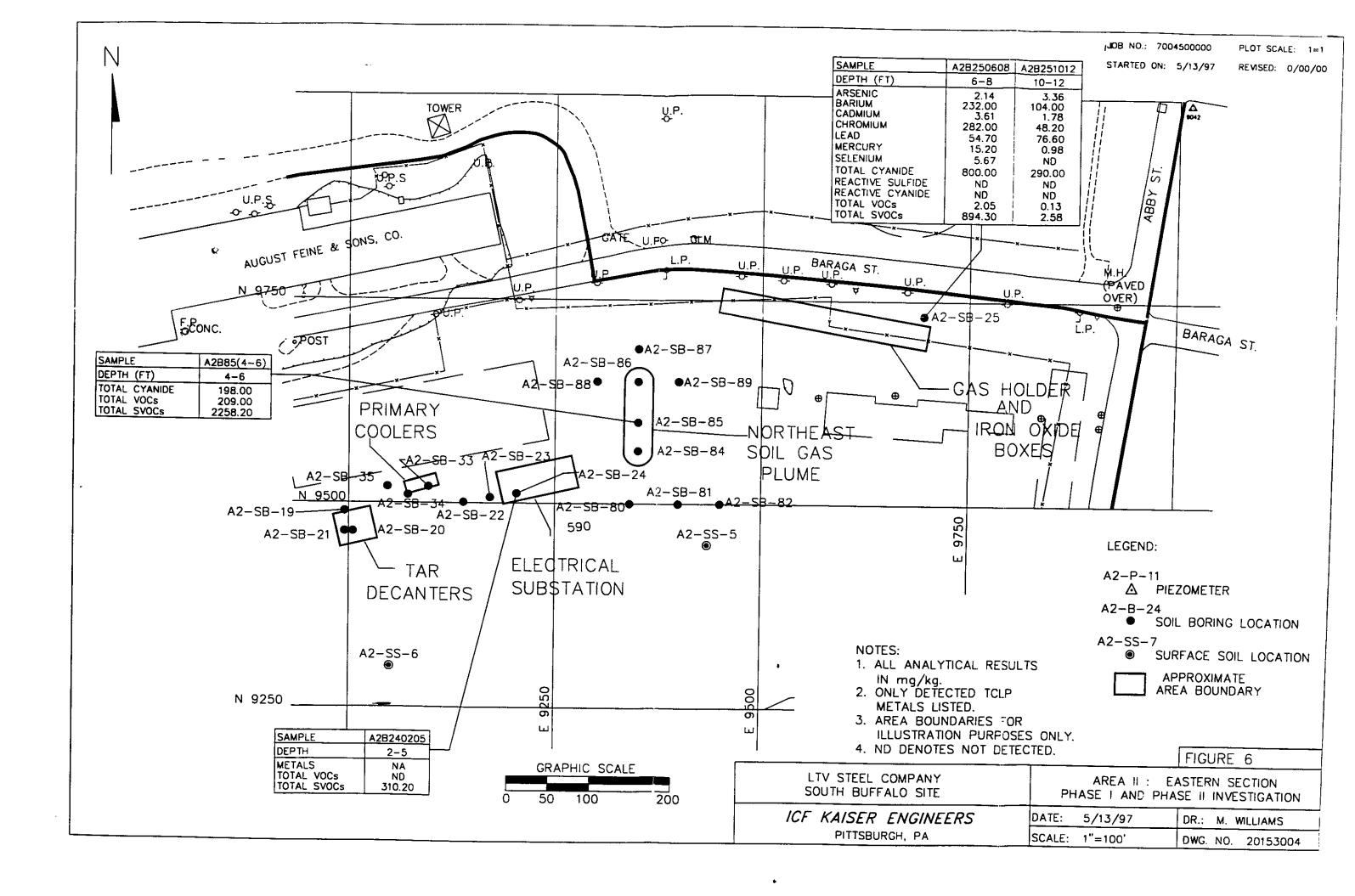
5.0 DISCUSSION OF RESULTS

The following discussion is presented on an area-by-area basis for each of the areas investigated during the Phase II ESA at the Donner-Hanna Coke Plant. An overall discussion of the results for the entire property is presented in Section 5.16.

TAR STORAGE TANK AREA


The coke plant had tar storage tanks located at the northwest corner of the property, adjacent to the 5.1 light oil area. These tanks were used to store coal tar produced in the by-product recovery operations at the plant. Potential contaminants of concern in this area include coal tar constituents such as PAHs and VOCs (primarily benzene, toluene, and xylene). Cyanides may also be present due to process operations that occurred adjacent to this area. One subsurface soil boring was performed in this area to investigate potential soil contamination. In addition, a temporary piezometer was installed in the soil boring after soil sample collection for use in investigating potential groundwater contamination.


Boring A2-P-1 was drilled to a depth of 13 ft. Field observations reported a mild chemical odor in the 9-11 ft. interval. Soil samples were collected from the 2-4 ft. and 11-13 ft. intervals. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. A temporary piezometer was also installed in the boring after the soil sampling was completed, with the screen set in the 5-10 ft. interval. One groundwater sample, A2-P1, was collected and analyzed for TAL metals and total cyanide, TCL VOCs, and TCL SVOCs. Table 1 presents selected analytical results for soil samples A2P10204 and A2P11113. Complete groundwater analytical results can be found in Table B-3.


Analytical results for the 2-4 ft. sample, A2P10204, show no metals in concentrations above their US Environmental Protection Agency (USEPA) Region III Risk Based Concentrations (RBC) for soil ingestion at industrial sites. Benzene (3.1 ppm), toluene (1.0 ppm), and total xylenes (8 ppm) did not exceed RBCs. Three PAH compounds, benzo(a)anthracene (7.9 ppm), benzo(a)pyrene (6.7 ppm), and benzo(b)fluoranthene (8.4 ppm), are above RBC. Total cyanide was detected at 2.58 ppm. PCBs were not detected.

Analytical results for the 11-13 ft. sample, A2P11113, show no metals in concentrations exceeding RBCs. Total cyanide was not detected in this interval, nor were any BTEX compounds. Only one PAH compound, benzo(a)pyrene (3.4 ppm), was detected above RBCs. No PCBs were detected in this interval. LTV Donner-Hanna

Final, July 9, 1997

TABLE 1 Tar Storage Tanks Selected Analytical Results Soil Samples

Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite=c, grab=g)
Tar Storage Tanks	A2-P-1	13	9450	8020	A2P10204 (g)
					A2P11113 (g)

Sampl	e A2P10204 depth	2-4 ft		Sample A2P11113 — depth 11-13 ft				
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS	
Aluminum	4970.00	1000000.00	mg/kg	Aluminum	12100.00	1000000.00	mg/kg	
Arsenic	1	610.00	mg/kg	Arsenio	1.96	610.00	mg/kg	
Barium	91.30	140000.00	mg/kg	Barium	86.50	140000.00	mg/kg	
Beryllium	ND	1.30	mg/kg	Beryllium	0.63	1.30	mg/kg	
Cadmium		1000.00	mg/kg			1000.00	mg/kg	
Calcium			mg/kg				mg/kg	
Chromium	1050.00		mg/kg	Chromium	16.50	1000000.00	mg/kg	
Cobalt	110	120000.00	mg/kg			120000.00	mg/kg	
Copper	88.30	82000.00	mg/kg			82000.00	mg/kg	
iron	157000.00	610000.00	mg/kg		22800.00	610000.00	mg/kg	
Lead			mg/kg				mg/kg	
Magnesium	34200.00		mg/kg	Magnesium	2460.00		mg/kg	
Manganese	35700.00	47000.00	mg/kg	Manganese Manganese	183.00	47000.00	mg/kg	
Nickel	23.10	41000.00	mg/kg			41000.00	mg/kg	
Potassium	343.00		mg/kg	Potassium	1070.00		mg/kg	
Selenium	7.45	10000,00	mg/kg	Selenium	ND	10000.00	mg/kg	
Sodium	453.00		mg/kg	Sodium	227.00		mg/kg	
Vanadium	484.00	14000.00	mg/kg	Vanadium	24.50	14000.00	mg/kg	
Zinc	565.00	610000.00	mg/kg	Zinc	57.10	610000.00	mg/kg	
Total Cyanide	2.58		mg/kg	Total Cyanide	ND		mg/kg	
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS	
Benzene	3.10	200.00	mg/kg	Benzene	ND	200.00	mg/kg	
Toluene	0.99	410000.00	mg/kg	Toluene	ND	410000.00	mg/kg	
Total Xylene	8.00	1000000.00	mg/kg		ND	1000000.00	mg/kg	
Total VOCs	12.09		mg/kg		0.00		mg/kg	
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS	
Acenaphthene	ND	120000.00	mg/kg	Acenaphthene	1.10	120000.00	mg/kg	
Acenaphthylene	ND		mg/kg	Acenaphthylene	2.30		mg/kg	
Anthracene	ND	610000.00	mg/kg	Anthracene	4.30	610000.00	mg/kg	
Benzo(a)anthracene	7.90	7.80	mg/kg	Benzo(a)anthracene	4.30	7.80	mg/kg	
Benzo(a)pyrene	6.70	0.78	mg/kg	Benzo(a)pyrene	3.40	0.78	mg/kg	
Benzo(b)fluoranthene	8.40	7.80	mg/kg	Benzo(b)fluoranthene	3.80	7.80	mg/kg	
Benzo(g,h,i)perylene	3.10		mg/kg	Benzo(g,h,i)perylene	1.20		mg/kg	
Benzo(k)fluoranthene	5.00	78.00	mg/kg	Benzo(k)fluoranthene	2.20	78.00	mg/kg	
Chrysene	6.10	780.00	mg/kg	Chrysene	3.40	780.00	mg/kg	
Dibenzo(a,h)anthracene	ND	0.78	mg/kg	Dibenzo(a,h)anthracene	0.59	0.78	mg/kg	
Fluoranthene	11.00	82000.00	mg/kg	Fluoranthene	9,60	82000.00	mg/kg	
Fluorene	ND	82000.00	mg/kg	Fluorene	5.30	82000.00	mg/kg	
Indeno(1.2,3-cd)pyrene	3.50	7.80	mg/kg	Indeno(1,2,3-cd)pyrene	1.20	7.80	mg/kg	
Naphthalene	ND	82000.00	mg/kg	Naphthalene	14.00	82000.00	mg/kg	
Phenanthrene	2.90	610000.00	mg/kg	Phenanthrene	12.00	610000.00	mg/kg	
Pyrene Total SVOCs	11.00	61000.00	mg/kg	Pyrene	7.00	61000.00	mg/kg	
	65.60 CONCENTRATION	RBC*	mg/kg	Total SVOCs	84.31		mg/kg	
No detections	CONCENTRATION		UNITS		CONCENTRATION	RBC*	UNITS	
INO detections		2.86	mg/kg	No detections		2.86	mg/kg	

ND Not Detected

Only BTEX compounds listed. Only PAH compounds listed.

NOTES:

1 US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites

Analytical results for groundwater sample A2-P1 show four of the 11 metals detected (iron, manganese, selenium, sodium) above their NYSDEC Class GA groundwater quality standards. These metals naturally occur in the environment and are often elevated in regional overburden groundwater. Total cyanide was detected at 0.212 ppm, which is above the GA groundwater standards. Benzene (12 mg/l), toluene (2.5 mg/l), and total xylenes (2 ppm), together with seven of nine SVOCs/PAHs (14.1 mg/l total SVOCs/PAHs) detected were above the GA groundwater quality standards.

5.2 LIGHT OIL AREA

The light oil area of the former D-H plant is located in the northwest portion of the property, adjacent to and east of the tar storage tank area. This area was formerly used to store and partially refine light oil produced in the by-product recovery process. Potential contaminants of concern in this area include benzene, toluene, and xylene, along with other VOCs that may have been produced during light oil refining. One subsurface soil boring was performed in this area to investigate potential contamination.

Boring A2-B-2 was drilled in the Light Oil area to a depth of 12 ft. Field observations reported a blue to dark blue sand from 2-7 ft. and a slight petroleum-like odor in the 2-4 ft. interval. Soil samples were collected from the 2-4 ft. and 9-11 ft. intervals. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 2 presents selected analytical results for soil samples A2B20204 and A2B20911.

Analytical results for the 2-4 ft. sample collected in the Light Oil Area, sample A2B20204, show one metal, beryllium (6.11 ppm), at a concentration above the USEPA Region III RBC for industrial sites. Toluene (1.8 ppm) and total xylenes (2.6 ppm) were below RBCs. Only one PAH compound, benzo(a)pyrene (2.4 ppm), was detected at a concentration above RBC. Total cyanide was detected at 95.20 ppm. PCBs were not detected.

Analytical results for the 9-11 ft. sample, sample A2B20911, show no metals detected at concentrations above RBCs. Benzene (0.14 ppm), toluene (0.14 ppm) and total xylenes (0.03 ppm) were all below RBCs. Total cyanide was not detected, nor were PAHs or PCBs.

5.3 UNDERGROUND PIPES AREA

The underground pipes area of the site is located along the north-central property boundary. A large underground process pipeline was removed in this area during plant D&D operations. Potential contaminants of concern include coal tar constituents (PAHs), VOCs (benzene, toluene, and xylenes), naphthalene, and cyanides. Two surface soil borings and one subsurface boring were performed in this area to investigate potential contamination due to possible past releases from the former process pipeline.

Borings A2-B-3, -4, -5 were drilled in a line approximately 65 ft. long near the fence in the Underground Pipes area to depths of 4, 4, and 12 ft., respectively. Field observations at A2-B-5 reported a slight petroleum-like odor in the 2-4 ft. interval. A composite soil sample was collected from the 2-4 ft. intervals of the three borings and a grab soil sample was collected from the 10-12 ft. interval of boring A2-B-5. Samples were analyzed for TAL metals and total cyanide, TCL VOCs,

LTV Donner-Hanna Final, July 9, 1997

TABLE 2 Light OII Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab≖g)
Light Oil	A2-B-2	12	9600	8200	A2B20204 (g)
					A2B20911 (g)

Sample	A2B20204 – depth			Samp	ie A2B20911 dept	h 9-11 ft	
METALS	CONCENTRATION		UNITS	METALS	CONCENTRATION	RBC	UNITS
Aluminum		1000000.00	mg/kg	Aluminum	23600.00	1000000.00	mg/kg
Arsenic		610.00	mg/kg		3.36	610.00	mg/kg
Barium		140000.00			118.00	140000.00	mg/kg
Beryllium		1.30	mg/kg		1.16	1.30	mg/kg
Calcium			mg/kg	Calcium	2510.00		mg/kg
Chromium		1000000.00	mg/kg	Chromium	31.50	1000000.00	mg/kg
Cobalt		120000.00	mg/kg		11.70	120000.00	mg/kg
Copper		82000.00	mg/kg		26.90	82000.00	mg/kg
Iron	4900.00	610000.00	mg/kg		48700.00	610000.00	mg/kg
Lead			mg/kg		19.50		mg/kg
Magnesium	4570.00		mg/kg		4420.00		mg/kg
Manganese	5170.00	47000.00	mg/kg		304.00	47000.00	mg/kg
Nickel	ND	41000.00	mg/kg		31.40	41000.00	mg/kg
Potassium	1950.00		mg/kg		4030.00		mg/kg
Sodium	1080.00		mg/kg		502.00		mg/kg
Vanadium	ND	14000.00	mg/kg		40.40	14000.00	mg/kg
Zinc	14.80	610000.00	mg/kg	Zinc	116.00	610000.00	mg/kg
Total Cyanide	95.20		mg/kg		ND		mg/kg
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
Benzene	ND'	200.00	mg/kg	Benzene	0.14	0.06	mg/kg
Toluene	1.80	410000.00	mg/kg		0.14	1.50	mg/kg
Total Xylene	2.60	1000000.00	mg/kg		0.03	1000000.00	mg/kg
Total VOCs	4.40		mg/kg		0.31		mg/kg
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Acenaphthene	3.30	120000.00	mg/kg		ND	120000.00	mg/kg
Acenaphthylene	5.50		mg/kg	Acenaphthylene	ND		mg/kg
Anthracene	2.90	610000.00	mg/kg	Anthracene	ND	610000.00	mg/kg
Benzo(a)anthracene	2.90	7.80	mg/kg	Benzo(a)anthracene	ND	7.80	mg/kg
Benzo(a)pyrene	2.40	0.78	mg/kg	Benzo(a)pyrene	ND	0.78	mg/kg
Benzo(b)fluoranthene	2.60	7.80	mg/kg	Benzo(b)fluoranthene	ND	7.80	mg/kg
Benzo(g,h,i)perylene	1.10		mg/kg	Benzo(g,h,i)perylene	ND		mg/kg
Benzo(k)fluoranthene	1.60	78.00	mg/kg	Benzo(k)fluoranthene	ND	78.00	mg/kg
Chrysene	2.20	780.00	mg/kg	Chrysene	ND	780.00	mg/kg
Fluoranthene	11.00	82000.00	mg/kg	Fluoranthene	ND	82000.00	mg/kg
Fluorene	3.90	82000.00	mg/kg	Fluorene	ND	82000.00	mg/kg
indeno(1.2,3-cd)pyrene	1.00	7.80	mg/kg	Indeno(1,2,3-cd)pyrene	ND	7.80	mg/kg
Naphthalene	2.90	82000.00	mg/kg	Naphthalene	ND	82000.00	mg/kg
Phenanthrene	13.00	610000.00	mg/kg	Phenanthrene	ND	610000.00	mg/kg
Pyrene Total SVOCs	3.10 65.41	61000.00	mg/kg	Pyrene	ND	61000.00	mg/kg
		DDO:	mg/kg	Total SVOCs	0.00		mg/kg
PCBs No detections	CONCENTRATION	RBC* 2.86	UNITS mg/kg	PCBs No detections	CONCENTRATION	RBC 2.86	UNITS
							mg/kg

NOTES:

- 1 US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * RBC value for total PCBs
- ND Not Detected
 - Only BTEX compounds listed.
 - Only PAH compounds listed.

TCL SVOCs, and TCL PCBs. Table 3 presents selected analytical results for soil samples A2B50204 and A2B51012.

Analytical results for the 2-4 ft. composite sample, A2B50204, show one metal, beryllium (3.18 ppm), at a concentration above RBCs. Total cyanide was detected at 50.80 ppm. Four of 16 PAH compounds (377.5 ppm total PAHs) detected were found above RBCs. No VOCs or PCBs were detected.

Analytical results for the 10-12 ft. sample, A2B51012, show no metals at concentrations above RBCs. Total cyanide was not detected. Benzene was detected, however, the concentration (0.02 ppm) did not exceed RBCs. No PAHs or PCBs were detected in the subsurface sample.

5.4 MACHINE SHOP

The machine shop area includes the soils located around and within the former machine shop for the coke plant. During D&D activities at the plant, flooring contaminated with PCBs was removed from the machine shop. Along with PCBs, other potential contaminants in this area may include constituents of machine oils and lubricants (VOCs and SVOCs). Four surface soil borings were performed in this area to investigate potential contamination due to past machine shop operations.

Borings A2-B-6, -7, -8, -9 were drilled around the perimeter of the Machine Shop area to depths of 4, 4, 5, and 4 ft., respectively. The borings were spaced to cover an area of approximately 2700 sq. ft. Only one sample, a composite soil sample, was collected from the 2-4 ft. intervals of the four borings. The sample was analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 4 presents selected analytical results for composite soil sample A2B90204.

Analytical results for the 2-4 ft. composite sample, A2B90204, show one metal, beryllium (3.49 ppm), at a concentration above RBCs. Total cyanide is reported at 228.0 ppm. BTEX, PAHs, and PCBs were not detected.

5.5 OLD TAR TANKS AREA

The old tar tank area represents the former location of two tar storage tanks that were adjacent to the main by-products process area, in the west-central portion of the facility. These tanks were older tar storage tanks for the plant that were used in addition to the tar storage tanks located in the northwest corner of the property. Potential contaminants of concern in this area include coal tar constituents such as PAHs and VOCs (primarily benzene, toluene, and xylene). Cyanides may also be present due to process operations that occurred adjacent to this area. One subsurface soil boring was performed in this area to investigate potential contamination that may be present due to past by-product plant operations and activities.

Boring A2-B-10 was drilled in the Old Tar Tanks area to a depth of 12 ft. Soil samples were collected from the 2-4 ft. and 9-11 ft. intervals. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 5 presents selected analytical results for soil samples A2B100204 and A2B100911.

Analytical results for the 2-4 ft. sample, A2B100204, show one metal, beryllium (1.98 ppm) at a concentration above RBCs. Total cyanide was detected at 169.00 ppm. Four of the 15 PAH

TABLE 3 Underground Pipes Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite=c, grab=g)
	A2-B-3	4	9505	8385	
Underground Pipes	A2-B-4	4	9507	8420	A2B50204 (c) *
	A2-B-5	12	9512	8450	A2B51012 (g)

Sample	A2B50204 depti	1 2-4 ft		Sample A2B51012 depth 10-12 ft				
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS	
Aluminum	27600.00	1000000.00	mg/kg	Aluminum	19800.00	1000000.00	mg/kg	
Arsenic	8.30	610.00	mg/kg	Arsenic	4.19	610.00	mg/kg	
Barium	435.00	140000.00	mg/kg	Barium	153.00	140000.00	mg/kg	
Beryllium	3.18	1.30	mg/kg	Beryllium	1.22	1.30	rng/kg	
Cadmium	1,01	1000.00	mg/kg	Cadmium	DN	1000.00	mg/kg	
Calcium	139000.00		mg/kg	Calcium	3570.00		mg/kg	
Chromium	40.20	1000000.00	mg/kg	Chromium	27.60	1000000.00	mg/kg	
Cobait		120000.00	mg/kg	Cobait	14.30	120000.00	mg/kg	
Copper	142.00	82000.00	mg/kg	Copper	32.80	82000.00	mg/kg	
Iron	45600.00	610000.00	mg/kg	Iron	45100.00	610000.00	mg/kg	
Lead	236.00		mg/kg	Lead	15.30		mg/kg	
Magnesium	5340.00		mg/kg	Magnesium	4910.00		mg/kg	
Manganese	3430.00	47000.00	mg/kg	Manganese	693.00	47000.00	mg/kg	
Nickel	17.80	41000.00	mg/kg	Nickei	41.70	41000.00	mg/kg	
Potassium	2370.00		mg/kg	Potassium	1240.00		mg/kg	
Sodium	822.00		mg/kg	Sodium	431.00		mg/kg	
Vanadium	18,70	14000.00	mg/kg	Vanadium	29.50	14000.00	mg/kg	
Zinc	187.00	610000.00	mg/kg	Zinc	99.20	610000.00	mg/kg	
Total Cyanide	50.80		mg/kg	Total Cyanide	ND		mg/kg	
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS	
Benzene	ND	200.00	mg/kg	Benzene	0.02	200.00	mg/kg	
Total VOCs	0.00		mg/kg	Total VOCs	0.02	I	mg/kg	
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS	
Acenaphthene	4.50	120000.00	mg/kg	Acenaphthene	ND	120000.00	mg/kg	
Acenaphthylene	13.00		mg/kg	Acenaphthylene	ND		mg/kg	
Anthracene	16.00	610000.00	mg/kg	Anthracene	NDI	610000.00	mg/kg	
Benzo(a)anthracene	33.00	7.80	mg/kg	Benzo(a)anthracene	ND	7.80	mg/kg	
Benzo(a)pyrene	33.00	0.78	mg/kg	Benzo(a)pyrene	ND	0.78	mg/kg	
Benzo(b)fluoranthene	37.00	7.80	mg/kg	Benzo(b)fluoranthene	ND	7.80	mg/kg	
Benzo(g,h,i)perylene	16.00		mg/kg	Benzo(g,h,i)perylene	NDI		mg/kg	
Benzo(k)fluoranthene	21.00	78.00	mg/kg	Benzo(k)fluoranthene	ND	78.00	mg/kg	
Chrysene	26.00	780.00	mg/kg	Chrysene	DZ	780.00	mg/kg	
Dibenzo(a,h)anthracene	5.40	0.78	mg/kg	Dibenzo(a,h)anthracene	ΩX	0.78	mg/kg	
Fluoranthene	55.00	82000.00	mg/kg	Fluoranthene	ИĎ	82000.00	mg/kg	
Fluorene	11.00	82000.00	mg/kg	Fluorene	ND	82000.00	mg/kg	
Indeno(1,2,3-cd)pyrene	16.00	7.80	mg/kg	Indeno(1,2,3-cd)pyrene	ND.	7.80	mg/kg	
Naphthalene	3.60	82000.00	mg/kg	Naphthalene	ND	82000.00	mg/kg	
Phenanthrene	38.00	610000.00	mg/kg	Phenanthrene	ND	610000.00	mg/kg	
Pyrene	49.00	61000.00	mg/kg	Pyrene	ND	61000.00	mg/kg	
Total SVOCs	377.50		mg/kg	Total SVOCs	0.00		mg/kg	
PC8s	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS	
No detections		2.86	mg/kg	No detections		2.86	mg/kg	

NOTES:

- 1 US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- " Composite sample taken from 2-4 ft interval in borings A2-B-3 and A2-B-4 and A2-B-5.
- ** RBC value for total PCBs
- ND Not Detected
 - Only BTEX compounds listed. Only PAH compounds listed.

70045-001-00 16

TABLE 4 Machine Shop Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER	
AREA	NUMBER	DEPTH T	NORTH	EAST	(composite=c, grab=g)	
	A2-B-6	4	9508	8460		
Machine Shop	A2-B-7	4	9470	8440		
	A2-B-8	5	9520	8520		
	A2-B-9	4	9480	8503	A2B90204 (c) *	

	Sample A2B90204 depth 2-4 ft								
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS		
Aluminum	29200.00	1000000.00	mg/kg	Magnesium	7610.00		mg/kg		
Arsenic	7.56	610.00	mg/kg	Manganese	4700.00	47000.00	mg/kg		
Barium	411.00	140000.00	mg/kg	Nickel	8.68	41000.00	mg/kg		
Beryllium	3.49	1.30	mg/kg	Potassium	1860.00		mg/kg		
Calcium	146000.00		mg/kg	Sodium	747.00		mg/kg		
Chromium	9.92	1000000.00	mg/kg	Vanadium	13.20	14000.00	mg/kg		
Copper	17.00	82000.00	mg/kg	Zinc	124.00	610000.00	mg/kg		
Iron	36200.00	610000.00	mg/kg	Total Cyanide	228.00		mg/kg		
Lead	10.80		mg/kg						
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS		
No detections			mg/kg						
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS		
No detections			mg/kg						
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS		
No detections		2.86	mg/kg						

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * Composite sample taken from 2-4 ft interval in borings A2-B-6 and A2-B-7, A2-B-8 and A2-B-9.
- ** RBC value for total PCBs

ND Not Detected

TABLE 5 Old Tar Tanks Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab≖g)
Old Tar Tanks	A2-B-10	12	9368	8564	A2B100204 (g)
					A2B100911(g)

Sample	A2B100204 depth	2-4 ft		Sample A2B100911 depth 9-11 ft			
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION		UNITS
Aluminum	13800.00	1000000.00	mg/kg	Aluminum	25100.00	1000000.00	mg/kg
Antimony	16.90	820.00	mg/kg	Antimony	ND	820.00	mg/kg
Arsenic	61.80	610.00	mg/kg	Arsenic	4.71	610.00	mg/kg
Barium	238.00	140000.00	mg/kg	Barium	142.00	140000.00	mg/kg
Beryllium	1.98	1.30	mg/kg	Beryllium	1.08	1.30	mg/kg
Cadmium	1.04	1000.00	mg/kg	Cadmium	ND	1000.00	mg/kg
Calcium	69000.00		mg/kg	Calcium	2100.00		mg/kg
Chromium	51.70	1000000.00	mg/kg	Chromium	35.30		mg/kg
Cobalt	ND	120000.00	mg/kg	Cobalt	41.60	120000.00	mg/kg
Copper	164.00	82000.00	mg/kg	Copper	31.60	82000.00	mg/kg
Iron	76700.00	610000.00	mg/kg	Iron	47300.00	610000.00	mg/kg
Lead	2800.00		mg/kg	Lead	17.20		mg/kg
Magnesium	5360.00		mg/kg	Magnesium	4870.00		mg/kg
Manganese	2660.00	47000.00	mg/kg	Manganese	499.00	47000.00	mg/kg
Nickel	30.70	41000.00	mg/kg	Nickel	44.50	41000.00	mg/kg
Potassium	951.00		mg/kg	Potassium	2600.00		mg/kg
Sodium	418.00		mg/kg	Sodium	149.00		mg/kg
Vanadium	40.10	14000.00	mg/kg	Vanadium	40.90	14000.00	mg/kg
Zinc	325.00	610000.00	mg/kg	Zinc	146.00	610000.00	mg/kg
Total Cyanide	169.00		mg/kg	Total Cyanide	ND		mg/kg
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
Ethylbenzene	ND	200000.00	mg/kg	Ethylbenzene	0.03	200000.00	mg/kg
Total Xylene	ND	1000000.00	mg/kg	Total Xylene	0.06	1000000.00	mg/kg
Total VOCs	0.00		mg/kg	Total VOCs	0.09		mg/kg
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Acenaphthylene	54.00		mg/kg	Acenaphthylene	ND		mg/kg
Anthracene	53.00	610000.00	mg/kg	Anthracene	ND	610000.00	mg/kg
Benzo(a)anthracene	150.00	7.80	mg/kg	Benzo(a)anthracene	ND	7.80	mg/kg
Benzo(a)pyrene	100.00	0.78	mg/kg	Benzo(a)pyrene	סא	0.78	mg/kg
Benzo(b)fluoranthene	130.00	7.80	mg/kg	Benzo(b)fluoranthene	0.48	7.80	mg/kg
Benzo(g,h,i)perylene	71.00		mg/kg	Benzo(g,h,i)perylene	ND		mg/kg
Benzo(k)fluoranthene	83.00	78.00	mg/kg	Benzo(k)fluoranthene	N	78.00	mg/kg
Chrysene	130.00	780.00	mg/kg	Chrysene	סא	780.00	mg/kg
Dibenzo(a,h)anthracene	22.00	0.78	mg/kg	Dibenzo(a,h)anthracene	סא	0.78	mg/kg
Fluoranthene	330.00	82000.00	mg/kg	Fluoranthene	1.20	82000.00	mg/kg
Fluorene	34.00	82000.00	mg/kg	Fluorene	ND	82000.00	mg/kg
Indeno(1,2,3-cd)pyrene	70.00	7.80	mg/kg	Indeno(1,2.3-cd)pyrene	ND	7.80	mg/kg
Naphthalene	63.00	82000.00	mg/kg	Naphthalene	1.20	82000.00	mg/kg
Phenanthrene	210.00		mg/kg	Phenanthrene	1.20		mg/kg
Pyrene	250.00	61000.00	mg/kg	Pyrene	0.85	61000.00	mg/kg
Total SVOCs	1750.00		mg/kg	Total SVOCs	4.93		mg/kg
PC8s	CONCENTRATION	RBC*	UNITS	PCBs	CONCENTRATION	RBC	UNITS
No detections		2.86	mg/kg	No detections		2.86	mg/kg

NOTES:

Only BTEX compounds listed.

¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites

^{*} RBC value for total PCBs

ND Not Detected

Only PAH compounds listed.

compounds (1750 ppm total PAHs) detected were above RBCs. No VOCs or PCBs were detected.

Analytical results for the 9-11 ft. sample, A2B100911, show no metals at concentrations above RBCs. Total cyanide was not detected. Ethylbenzene (0.03 ppm) and total xylenes (0.06 ppm) were detected, however, the concentrations were well below RBCs. Five PAHs (4.93 ppm total PAHs) were also detected but at concentrations below RBCs. No total cyanides or PCBs were detected.

5.6 BENZOL WASHER & FINAL COOLER AREA

The benzol washers and final coolers were process units within the former by-product plant that were used to remove by-products such as tar and light oil from raw coke oven gas. These units were located adjacent to each other in the central portion of the former by-product area of the D-H plant. Potential contaminants of concern include PAHs, benzene, toluene, xylenes, and cyanide. Three surface soil borings and one subsurface soil boring were performed in this area to investigate potential contamination. A temporary piezometer was installed in the subsurface boring after soil sampling had been completed in order to investigate potential groundwater contamination.

Borings A2-P-11, A2-B-12, -13, -14 were drilled in the Benzol Washers and Final Coolers area to depths of 12, 2.8, 4, and 4 ft., respectively. The borings were spaced to cover an area of approximately 2615 sq. ft. Field observations at A2-B-12 reported a thin layer of blue-green sand at approximately 1 ft. and a strong chemical odor from 2-4 ft. in A2-B-13. A composite soil sample was collected in the 2-6 ft. interval of the four borings and a grab soil sample was collected from the 9-11 ft. interval of boring A2-P-11. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. A temporary piezometer was also installed in boring A2-P-11 after the soil sampling was completed, with the screen set in the 5-10 ft. interval. One groundwater sample, A2-P11, was collected and analyzed for TAL metals and total cyanide, TCL VOCs, and TCL SVOCs. Table 6 presents selected analytical results for composite soil sample A2P110206 and grab soil sample A2P110911. Complete groundwater analytical results can be found in Table B-3.

Analytical results for the 2-6 ft. composite sample, A2P110206, show one metal, beryllium (4.41 ppm), at a concentration above RBCs. Total cyanide was detected at 209.00 ppm. Benzene (13 ppm), ethylbenzene (9.3 ppm), and total xylenes (4.30 ppm) were detected below RBCs. Three of 13 SVOCs/PAHs detected (1113 ppm total SVOCs/PAHs) were above RBCs. PCBs were not detected.

Analytical results for the 9-11 ft. grab soil sample, A2P110911, show one metal, beryllium (1.89 ppm), at a concentration above RBCs. Total cyanide was detected at 43.40 ppm. There were no PAH compounds found to exceed RBCs. No VOCs or PCBs were detected.

Analytical results for groundwater sample A2-P11 show four metals, including selenium (0.016 mg/l), above their NYSDEC Class GA groundwater quality standards. Total cyanide was detected at 1.25 ppm, which is above the GA groundwater standards. Benzene (0.086 mg/l), toluene (0.028 mg/l), and total xylenes (0.005 mg/l), together with several SVOCs/PAHs (0.519 mg/l total SVOCs/PAHs), were detected at concentrations above the GA groundwater quality standards.

5.7 TAR PRECIPITATOR AREA

The tar precipitators were electrostatic precipitator units used to remove tar mists from raw coke oven gas. These units were located near the north-central property boundary of the former D-H

70045-001-00

TABLE 6 Benzol Washers and Final Coolers Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab=g)
	A2-P-11	12	9468	8750	A2P110206 (c) *
Benzoi Washers &	A2-B-12	2.8	9432	8718	A2P110911 (g)
Final Coolers	A2-B-13	4	9448	8802	
	A2-B-14	4	9415	8755	

Sample	A2P110206 dept	th 2-6 ft		Sample A2P110911 depth 9-11 ft				
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION		UNITS	
Aluminum	38600.00	1000000.00	mg/kg	Aluminum	24600.00	1000000.00	mg/kg	
Arsenic	7.55	610.00	mg/kg	Arsenic	ND	610.00	mg/kg	
Barium	1140.00	140000.00	mg/kg	Barium	441.00	140000.00	mg/kg	
Beryllium	4.41	1.30	mg/kg	Beryllium	1.89	1.30	mg/kg	
Cadmium	ND	1000.00	mg/kg	Cadmium	ND	1000.00	mg/kg	
Chromium	11.00	1000000.00	mg/kg	Chromium	26.40	1000000.00	mg/kg	
Cobalt	ND	120000.00	mg/kg	Cobatt	10.30	120000.00	mg/kg	
Copper	11.40	82000.00	mg/kg	Copper	26.60	82000.00	mg/kg	
Iron	11500.00	610000.00	mg/kg	Iron	31600.00	610000.00	mg/kg	
Lead	93.40		mg/kg	Lead	28.20		mg/kg	
Magnesium	17300.00		mg/kg	Magnesium	9490.00		mg/kg	
Manganese	5260.00	47000.00	mg/kg	Manganese	2360.00	47000.00	mg/kg	
Mercury	ND	610.00	mg/kg	Mercury	0.65	610.00	mg/kg	
Nickel	ND	41000.00	mg/kg	Nickel	24.90	41000.00	mg/kg	
Potassium	1220.00		mg/kg	Potassium	1840.00		mg/kg	
Sodium	707.00		mg/kg	Sodium	731.00		mg/kg	
Vanadium	8.31	14000.00	mg/kg	Vanadium	27.50	14000.00	mg/kg	
Zinc	118.00)	610000.00	mg/kg	Zinc	90.00	610000.00	mg/kg	
Total Cyanide	209.00		mg/kg	Total Cyanide	43.40		mg/kg	
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS	
Benzene	1	200.00	mg/kg	Benzene	ND	200.00	mg/kg	
Ethylbenzene	9.30	200000.00	mg/kg	Ethylbenzene	ND	200000.00	mg/kg	
Total Xylene	4.30	1000000.00	mg/kg	Total Xylene	ND	1000000.00	mg/kg	
Total VOCs	26.60		mg/kg	Total VOCs	0.00		mg/kg	
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION		UNITS	
Acenaphthene	61.00	120000.00	mg/kg	Acenaphthene	ND	120000.00	mg/kg	
Acenaphthylene	48.00		mg/kg	Acenaphthylene	0.98		mg/kg	
Anthracene	39.00	610000.00	mg/kg	Anthracene	סא	610000.00	mg/kg	
Benzo(a)anthracene	48.00	7.80	mg/kg	Benzo(a)anthracene	0.58	7.80	mg/kg	
Benzo(a)pyrene	36.00	0.78	mg/kg	Benzo(a)pyrene	0.53	0.78	mg/kg	
Det izo(a)pyrene	30.00							
Benzo(b)fluoranthene	40.00	7.80	mg/kg	Benzo(b)fluoranthene	0.62	7.80	mg/kg	
		7.80 780.00		Benzo(b)fluoranthene Chrysene	ND	780.00	mg/kg mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene	40.00 43.00 81.00	7.80 780.00 82000.00	mg/kg mg/kg mg/kg	Chrysene Fluoranthene		780.00 82000.00		
Benzo(b)fluoranthene Chrysene	40.00 43.00	7.80 780.00 82000.00 82000.00	mg/kg mg/kg	Chrysene	ND 1.60 ND	780.00 82000.00 82000.00	mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene	40.00 43.00 81.00	7.80 780.00 82000.00	mg/kg mg/kg mg/kg	Chrysene Fluoranthene Fluorene Naphthalene	ND 1.60	780.00 82000.00 82000.00 82000.00	mg/kg mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene Fluorene	40.00 43.00 81.00 46.00 460.00 120.00	7.80 780.00 82000.00 82000.00 82000.00 610000.00	mg/kg mg/kg mg/kg mg/kg	Chrysene Fluoranthene Fluorene	ND 1.60 ND	780.00 82000.00 82000.00 82000.00 610000.00	mg/kg mg/kg mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene Fluorene Naphthalene	40.00 43.00 81.00 46.00 460.00	7.80 780.00 82000.00 82000.00 82000.00	mg/kg mg/kg mg/kg mg/kg mg/kg	Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	ND 1.60 ND 13.00	780.00 82000.00 82000.00 82000.00	mg/kg mg/kg mg/kg mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene	40.00 43.00 81.00 46.00 460.00 120.00 60.00 1113.00	7.80 780.00 82000.00 82000.00 82000.00 610000.00 610000.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene	ND 1.60 ND 13.00 1.40 1.10 21.01	780.00 82000.00 82000.00 82000.00 610000.00 61000.00	mg/kg mg/kg mg/kg mg/kg mg/kg	
Benzo(b)fluoranthene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	40.00 43.00 81.00 46.00 460.00 120.00 60.00	7.80 780.00 82000.00 82000.00 82000.00 610000.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	ND 1.60 ND 13.00 1.40 1.10	780.00 82000.00 82000.00 82000.00 610000.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * Composite sample taken from 4-6 ft interval of A2-P-11, 2-2.8 ft interval of A2-B-12, and 2-4 ft interval of A2-B-13 and A2-B-14.
- ** RBC value for total PCBs
- ND Not Detected

Only BTEX compounds listed. Only PAH compounds listed.

LTV Donner-Hanna Final, July 9, 1997

70045-001-00 20

plant. Contaminants of concern in the tar precipitator area include tar constituents such as PAHs, VOCs (primarily benzene, toluene, and xylenes) and cyanides. Three surface soil borings were performed in this area to investigate potential contamination due to past process operations.

Borings A2-B-15, -16, -17, were drilled in the Tar Precipitators area, each to a depth of 4 ft. The borings were spaced to cover an area of approximately 715 sq. ft. A composite soil sample was collected from the 2-4 ft. intervals of the three borings. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 7 presents selected analytical results for composite soil sample A2B170204.

Analytical results for the 2-4 ft. composite sample, A2B170204, show one metal, beryllium (1.92 ppm), at a concentration above RBCs. Total cyanide was detected at 191.00 ppm. Two of six PAH compounds detected (37.5 ppm total PAHs) were above RBCs. No VOCs or PCBs were detected.

5.8 TAR DECANTER AREA

The tar decanters at the former D-H plant were located in the east-central portion of the by-product area. These units were used to separate tar, ammonia flushing liquor, and tar decanter sludge that had been removed from raw coke oven gas at the coke batteries. Potential contaminants that may be present include VOCs (benzene, toluene, and xylene), PAHs (coal tar constituents), naphthalene, cyanides, and coal tar decanter sludge constituents such as PAHs, VOCs, and lead. (Coal tar decanter sludge is classified as RCRA listed hazardous waste K087). Three surface soil borings were performed in this area to investigate potential contamination that may be present due to past plant operations.

Borings A2-B-19, -20, -21 were drilled in the Tar Decanter area to depths of 4, 4.5, and 4 ft., respectively. The borings were spaced to cover an area of approximately 250 sq. ft. Several unsuccessful attempts were made to complete boring A2-B-18 and the boring was ultimately abandoned. Field observations reported a 0.2 ft. layer of cemented sand at approximately 2 ft. in A2-B-19; a 0.3 ft. layer of dense, blue sand at approximately 2.5 ft. and a creosote/diesel- like odor in A2-B-20; and a layer of cemented, blue sand at approximately 2 ft. in A2-B-21. A composite soil sample was collected from the 2-4.5 ft. intervals of the three successfully completed borings. The sample was analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 8 presents selected analytical results for composite soil sample A2B210204.

Analytical results for the 2-4 ft. composite sample, A2B210204, show one metal, beryllium (3.69 ppm), at a concentration above RBCs. Total cyanide was detected at 97.30 ppm. Four of 16 SVOCs/PAHs detected (1929 ppm total SVOCs/PAHs) were above RBCs. No VOCs or PCBs were detected.

5.9 ELECTRICAL SUBSTATION

The primary electrical substation at the D-H plant was located in the east-central portion of the property, south of the by-product building. During the D&D activities at the plant, PCB transformers were removed from the substation. Potential contaminants in this area include PCBs, VOCs, and SVOCs that may have been present in the transformer dielectric fluid. Three surface soil borings were performed in this area to investigate potential contamination that may be present due to past activities at the substation.

Final, July 9, 1970045-001-00 21

TABLE 7 Tar Precipitators Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDII	VATES	SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab=g)
	A2-B-15	4	9570	8900	
Tar Precipitators	A2-B-16	4	9532	8887]
	A2-B-17	4	9535	8918	A2B170204 (c) *

		Sar	nple A2B170	204 — depth 2-4 ft			
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS
Aluminum	17600.00	1000000.00	mg/kg	Magnesium	8220.00		mg/kg
Arsenic	6.23	610.00	mg/kg	Manganese	2570.00	47000.00	mg/kg
Barium	295.00	140000.00	mg/kg	Nickel	12.50	41000.00	mg/kg
Beryllium	1.92	1.30	mg/kg	Potassium	1880.00		mg/kg
Calcium	94700.00		mg/kg	Selenium	2.44	10000.00	mg/kg
Chromium	19.40	1000000.00	mg/kg	Sodium	830.00		mg/kg
Copper	42.30	82000.00	mg/kg	Vanadium	14.80	14000.00	mg/kg
Iron	36700.00	610000.00	mg/kg	Zinc	181.00	610000.00	mg/kg
Lead	121.00		mg/kg	Total Cyanide	191.00		mg/kg
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
No detections			mg/kg				
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Benzo(a)pyrene	6.30	0.78	mg/kg	Fluoranthene	7.00	82000.00	mg/kg
Benzo(b)fluoranthene	7.90	7.80	mg/kg	indeno(1,2,3-cd)pyrene	5.30	7.80	mg/kg
Benzo(g,h,i)perylene	5.60		mg/kg	Pyrene	5.40	61000.00	mg/kg
Total SVOCs	37.50		mg/kg				
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS
No detections		2.86	mg/kg				

- NOTES:

 'US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites

 'US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
 - * Composite sample taken from 2-4 ft interval in borings A2-B-15, A2-B-16 and A2-B-17.
 - ** RBC value for total PCBs
 - ND Not Detected

Only PAH compounds listed.

TABLE 8 Tar Decanters Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab≖g)
	A2-B-18	Abandoned *	N/A	N/A	
Tar Decanters	A2-B-19	4	9490	8995]
ļ:	A2-B-20	4.5	9470	9015]
	A2-B-21	4	9465	8995	A2B210204 (c) **

	Sample A2B210204 depth 2-4 ft										
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS				
Aluminum	35200.00	1000000.00	mg/kg	Lead	432.00		mg/k				
Arsenic	28.80	610.00	mg/kg	Magnesium	26700.00		rng/k				
Barium	510.00	140000.00	mg/kg	Manganese	6600.00	47000.00	mg/k				
Beryllium	3.69	1.30	mg/kg	Nickel	26.10	41000.00	mg/k				
Cadmium	2.58	1000.00	mg/kg	Potassium	1950.00		mg/k				
Calcium	187000.00		mg/kg	Sodium	688.00		mg/k				
Chromium	153.00	1000000.00	mg/kg	Vanadium	26.10	14000.00	mg/k				
Copper	99.90	82000.00	mg/kg	Zinc	1750.00	610000.00	mg/k				
Iron	68100.00	610000.00	mg/kg	Total Cyanide	97.30		mg/k				
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS				
No detections			mg/kg								
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS				
Acenaphthene	49.00	120000.00	mg/kg	Chrysene	100.00	780.00	mg/k				
Acenaphthylene	90.00		mg/kg	Fluoranthene	310.00	82000.00	mg/k				
Anthracene	110.00	610000.00	mg/kg	Fluorene	110.00	82000.00	mg/k				
Benzo(a)anthracene	110.00	7.80	mg/kg	Indeno(1,2,3-cd)pyrene	48.00	7.80	mg/k				
Benzo(a)pyrene	110.00	0.78	mg/kg	Naphthalene	110.00	82000.00	mg/k				
Benzo(b)fluoranthene	110.00	7.80	mg/kg	Phenanthrene	280.00	610000.00	mg/k				
Benzo(g,h,i)perylene	48.00		mg/kg	Pyrene	220.00	61000.00	mg/k				
Benzo(k)fluoranthene	61.00	78.00	mg/kg								
Total SVOCs	1929.00		mg/kg								
PCBs	CONCENTRATION	RBC***	UNITS	PCBs	CONCENTRATION	RBC	UNITS				
No detections		2.86	mg/kg								

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * Boring A2-B-18 abandoned due to split spoon refusal to boundary of area.
- ** Composite sample taken from 2-4 ft interval in borings A2-B-19 and A2-B-21; taken from 2.5-4.5 ft interval in boring A2-B-20.
- *** RBC value for total PCBs
- ND Not Detected
 - Only PAH compounds listed.

Borings A2-B-22, -23, -24 were drilled in a line approximately 65 ft. long in the Substation area to depths of 5, 3, and 4 ft., respectively. A composite soil sample was collected in the 2-5 ft. intervals of the three borings. The sample was analyzed for TCL VOCs, TCL SVOCs, and TCL PCBs. Table 9 presents selected analytical results for composite soil sample A2B240205.

Analytical results for the 2-4 ft. composite sample, A2B240205, detected 14 PAH compounds. Four of the 14 PAHs detected were above RBCs (310.2 ppm total PAH). No VOCs or PCBs were detected. TAL metals and total cyanide were not analyzed.

5.10 GAS HOLDER & IRON OXIDE BOXES

The coke oven gas holder for the former D-H plant was located near the northeastern boundary of the property and was used to store excess coke oven gas produced in the coking process. The D-H plant sold excess coke oven gas to the local municipality and used units containing iron oxide catalyst to further purify the gas prior to offsite use. Potential contaminants of concern include cyanides, sulfides, PAHs, and VOCs. One subsurface soil boring was performed in the area of the gas holder and iron oxide boxes to investigate potential contamination due to past operations.

Boring A2-B-25 was drilled in the Gas Holder & Iron Oxide Boxes area to a depth of 12 ft. Soil samples were collected from the 6-8 ft. and 10-12 ft. intervals. Samples were analyzed for TAL metals, total cyanide, reactive sulfide, reactive cyanide reactivity, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 10 presents selected analytical results for soil samples A2B250608 and A2B251012.

Analytical results for the 6-8 ft. sample, A2B250608, show one metal, beryllium (4.39 ppm), at a concentration above RBCs. Total cyanide was detected at 800.00 ppm. No reactive sulfide or reactive cyanide were detected. Acetone (0.25 ppm) and benzene (1.80 ppm) were found in concentrations well below their respective RBCs, and five of 18 SVOCs/PAHs (894 ppm total SVOC/PAH) detected were above RBCs. PCBs were not detected.

Analytical results for the 10-12 ft. sample, A2B251012, show no metals above RBCs. Total cyanide was detected at 290.00 ppm. No reactive sulfide or reactive cyanide were detected. Acetone (0.066 ppm), benzene (0.042 ppm), and 2-butanone (MEK)(0.019 ppm) were detected, but at concentrations below their respective RBC. No SVOC/PAH compounds were detected at concentrations exceeding their respective RBC (2.58 total SVOC/PAH). PCBs were not detected.

5.11 LOCOMOTIVE SHED

The locomotive shed at the former D-H plant was located in the southwestern portion of the plant, south of the tar storage areas. The locomotive shed was used for maintenance of locomotives and other railroad machinery used in the plant. Potential contaminants of concern include PAHs, VOCs, and PCBs. Three subsurface soil borings were performed in the area of the former locomotive shed to investigate potential contamination.

Borings A2-B-26, -27, -28, were drilled in a line approximately 100 ft. long in the Locomotive Shed area, each to a depth of 9 ft. Field observations at A2-B-26 reported the 4.5-7.5 ft. interval to be saturated with a black liquid which had a mild to strong petroleum-like odor. The 7-9 ft. interval of A2-B-27 was reported to be saturated with the same black liquid and had a slight petroleum-like odor.

LTV Donner-Hanna Final, July 9, 1997

TABLE 9 Electrical Substation Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≃c, grab≖g)
	A2-B-22	5	9499	9140	
Electrical Substation	A2-B-23	3	9512	9172	
	A2-B-24	4	9517	9204	A2B240205 (c) *

		Sa	mple A2B2	40205 – depth 2-5 ft			
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS
Not analyzed			mg/kg				
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
No detections			mg/kg				
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Acenaphthylene	13.00		mg/kg	Chrysene	24.00	780.00	mg/kg
Anthracene	9.80	610000.0	mg/kg	Fluoranthene	55.00	82000.00	mg/kg
Benzo(a)anthracene	22.00	7.80	mg/kg	Fluorene		82000.00	mg/kg
Benzo(a)pyrene	24.00	0.78	mg/kg	Indeno(1,2,3-cd)pyrene	· · · · · · · · · · · · · · · · · · ·	7.80	mg/kg
Benzo(b)fluoranthene	31.00	7.80	mg/kg	Naphthalene	6.40	82000.00	mg/kg
Benzo(g.h.i)perylene	7.60		mg/kg	Phenanthrene	47.00	610000.00	mg/kg
Benzo(k)fluoranthene	13.00	78.00	rng/kg	Pyrene	40.00	61000.00	mg/kg
Total SVOCs	310.20		mg/kg				
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS
No detections		2.86	mg/kg				

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * Composite sample taken from 3-5 ft interval of A2-B-22;
- 2-3 ft interval of A2-B-23; 2-4 ft interval of A2-B-24.
- ** RBC value for total PCBs
- ND Not Detected
 - Only PAH compounds listed.

TABLE 10 Gas Holder and Iron Oxide Boxes Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab=g)
Gas Holder &	A2-B-25	12	9732	9695	A2B250608 (g)
Iron Oxide Boxes				<u> </u>	A2B251012 (g)

Sample A	2B250608 depth	6-8 ft		Sample A2B251012 – depth 10-12 ft				
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS	
Aluminum	35300.00	1000000.00	mg/kg	Aluminum		1000000.00	mg/kg	
Arsenic	2.14	610.00	mg/kg	Arsenic	3.36	610.00	mg/kg	
Barium	232.00	140000.00	mg/kg	Barium	104.00	140000.00	mg/kg	
Beryllium	4.39	1.30	mg/kg	Beryllium	1.21	1.30	mg/kg	
Cadmium	3.61	1000.00	mg/kg	Cadmium	1.78	1000.00	mg/kg	
Calcium	117000.00		mg/kg	Calcium	14600.00		mg/kg	
Chromium	282.00	1000000.00	mg/kg	Chromium		1000000.00	mg/kg	
Cobalt	11.60	120000.00	mg/kg	Cobalt	ND	120000.00	mg/kg	
Copper	138.00	82000.00	mg/kg	Copper	65.80	82000.00	mg/kg	
Iron	58100.00	610000.00	mg/kg	Iron	48000.00	610000.00	mg/kg	
Lead	54.70		mg/kg	Ļead	76.60		rng/kg	
Magnesium	27700.00		mg/kg	Magnesium	3490.00		mg/kg	
Manganese	2370.00	47000.00	mg/kg	Manganese	376.00	47000.00	mg/kg	
Mercury	15.20	610.00	mg/kg	Mercury	0.98	610.00	mg/kg	
Nickel	319.00	41000.00	mg/kg	Nickel	36.00	41000.00	mg/kg	
Potassium	2470.00		mg/kg	Potassium	1110.00		mg/kg	
Selenium	5.67	10000.00	mg/kg	Selenium	ND	10000.00	mg/kg	
Sodium	702.00		mg/kg	Sodium	182.00		mg/kg	
Vanadium	32.10	14000.00	mg/kg	Vanadi <u>um</u>	21.00	14000.00	mg/kg	
Zinc	504.00	610000.00	mg/kg	Zinc	143.00	610000.00	mg/kg	
Total Cyanide	800.00		mg/kg	Total Cyanide	290.00		mg/kg	
Sulfide Reactivity	ND		mg/kg	Sulfide Reactivity	ND		mg/kg	
Cyanide Reactivity			mg/kg	Cyanide Reactivity	ND		mg/kg	
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS	
Benzene	1.80	200.00	mg/kg	Benzene	0.042	200.00	mg/kg	
Total VOCs	2.05		mg/kg	Total VOCs	0.13		mg/kg	
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS	
Acenaphthene	6.30	120000.00	mg/kg	Acenaphthene	ND	120000.00	mg/kg	
Acenaphthylene	25.00		mg/kg	Acenaphthylene	ND		mg/kg	
Anthracene	42.00	610000.00	mg/kg	Anthracene	ND	610000.00	mg/kg	
Benzo(a)anthracene	67.00	7.80	mg/kg	Benzo(a)anthracene	ND	7.80	mg/kg	
Benzo(a)pyrene		0.78	mg/kg	Benzo(a)pyrene	ND	0.78	mg/kg	
Benzo(b)fluoranthene		7.80	mg/kg	Benzo(b)fluoranthene	ND	7.80	mg/kg	
Benzo(g,h,i)perylene			mg/kg	Benzo(g,h,i)peryiene	ND		mg/kg	
Benzo(k)fluoranthene		78.00	mg/kg	Benzo(k)fluoranthene	ND	78.00	mg/kg	
Chrysene		780.00	mg/kg	Chrysene	ND	780.00	mg/kg	
Dibenzo(a,h)anthracene		0.78	mg/kg	Dibenzo(a,h)anthracene	ND	0.78	mg/kg	
Fluoranthene		82000.00	mg/kg	Fluoranthene	1.00	82000.00	mg/kg	
Fluorene		82000.00	mg/kg	Fluorene	ND	82000.00	mg/kg	
Indeno(1,2,3-cd)pyrene		7.80	mg/kg	Indeno(1,2,3-cd)pyrene	ND	7.80	mg/kg	
Naphthalene		82000.00	mg/kg	Naphthalene	ND	82000.00	mg/kg	
Phenanthrene		610000.00	mg/kg	Phenanthrene	0.91	610000.00	mg/kg	
Pyrene		61000.00	mg/kg	Pyrene	0.67	61000.00	mg/kg	
			mg/kg	Total SVOCs	2.58		mg/kg	
Total SVOCs							1 13 11	
	CONCENTRATION	RBC*	UNITS mg/kg	PCBs No detections	CONCENTRATION	RBC 2.86	UNITS mg/kg	

NOTES:

Only BTEX compounds listed.

¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites

^{*} RBC value for total PCBs

ND Not Detected

Only PAH compounds listed.

A composite soil sample was collected from the 7-9 ft. intervals of the three borings. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 11 presents selected analytical results for composite soil sample A2B280709.

Analytical results for the 7-9 ft. composite sample, A2B280709, show one metal, beryllium (1.31 ppm), at a concentration above RBCs. Total cyanide was detected at 1.97 ppm. Benzene (54 ppm), toluene (200 ppm), ethylbenzene (22 ppm), and total xylenes (429 ppm) were all detected below their respective RBC. One SVOC and one PAH compound was detected, however, both are below their RBC (77 ppm total SVOCs/PAH). PCBs were not detected.

5.12 POSSIBLE TAR UNIT

A tar storage or processing unit was reportedly located near the locomotive shed although no evidence of such a unit was identified during D&D activities. One surface soil boring and two subsurface soil borings were performed at the suspected location of this unit to investigate potential contamination that may be present due to past operations.

Borings A2-B-29, -30, -31 were drilled in the Possible Tar Unit area to depths of 7, 4, and 12 ft., respectively. The borings were spaced to cover an area of approximately 175 sq. ft. Field observations at A2-B-29 reported an oily sheen on the split spoon sample and a slight petroleum-like odor in the 5.5-7 ft. interval. A black oily material was observed in the 2.5-3 ft. interval of A2-B-30. A black oil/grease/tar-like substance was observed in the 9-10 ft. interval of A2-B-31. A composite soil sample was collected in the 2-4 ft. interval of each boring and a grab soil sample was collected from the 10-12 ft. interval of boring A2-B-31. Samples were analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 12 presents selected analytical results for composite soil sample A2B310204 and grab soil sample A2B311012.

Analytical results for the 2-4 ft. composite sample, A2B310204, show no metals at concentrations above RBCs. Total cyanide was detected at 24.50 ppm. VOCs were not detected. Four of 15 SVOCs/PAHs detected (688 ppm total SVOCs/PAHs) were above RBCs. No VOCs or PCBs were detected.

Analytical results for the 10-12 ft. grab soil sample, A2B311012, show no metals at concentrations above RBCs. All four BTEX compounds were detected, however, none exceeded RBCs. Only one of 15 SVOCs/PAHs detected (83.5 ppm total SVOCs/PAHs) was above RBCs. No total cyanide or PCBs were detected.

5.13 INTERCEPTOR SUMP

The interceptor sump at the former D-H plant was used to collect condensate that formed during refining of the wash oil used to remove light oil from coke oven gas in the benzol washers. Emulsions that formed during light oil separation were often also routed to the interceptor sump in many coke by-product plants. Potential contaminants of concern at the interceptor sump include light oil constituents (benzene, toluene, and xylenes), naphthalene, and cyanides. One subsurface soil boring was performed in this area to investigate potential contamination. Since the interceptor sump was located entirely below ground level in the former plant, this boring was advanced to a greater depth than other subsurface borings at the plant.

LTV Donner-Hanna Final, July 9, 1997

TABLE 11 Locomotive Shed Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite=c, grab=g)
	A2-B-26	9	9390	8024	
Locomotive Shed	A2-B-27	9	9350	8029	
	A2-B-28	9	9300	8035	A2B280709 (c) *

		Sample	e A2B280	709 depth 7-9 ft			
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS
Aluminum	17100.00	1000000.00	mg/kg	Magnesium	4350.00		mg/kg
Arsenic	13.70	610.00	mg/kg	Manganese	1620.00	47000.00	mg/kg
Barium	208.00	140000.00	mg/kg	Mercury	0.77	610.00	mg/kg
Beryllium	1.31	1.30	mg/kg	Nickel	21.70	41000.00	mg/kg
Cadmium	2.88	1000.00	mg/kg	Potassium	1780.00		mg/kg
Calcium	95700.00		mg/kg	Selenium	4.12	10000.00	mg/kg
Chromium	19.80	1000000.00	mg/kg	Sodium	1190.00		mg/kg
Copper	42.00	82000.00	mg/kg	Vanadium	20.80	14000.00	mg/kg
iron	81500.00	610000.00	mg/kg	Zinci	657.00	610000.00	mg/kg
Lead	55.10		mg/kg		1,97		mg/kg
TCL VOCs	CONCENTRATION	RBC_	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
Benzene	54.00	200.00	mg/kg	Toluene	200.00	410000.00	mg/kg
Ethylbenzene	22.00	200000.00	mg/kg	Total Xylene	429.00	1000000.00	mg/kg
Total VOCs	705.00		mg/kg				
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Naphthalene	48.00	82000.00	mg/kg				
Total SVOCs	77.00		mg/kg				
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS
No detections		2.86	mg/kg				

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * Composite sample taken from 7-9 ft interval of borings A2-B-26, A2-B-27, A2-B-28.
- ** RBC value for total PCBs
- ND Not Detected

Only BTEX compounds listed.

Only PAH compounds listed.

TABLE 12 Possible Tar Unit Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING					SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab=g)	
	A2-B-29	7	9260	7990		
Possible Tar Unit	A2-B-30	4	9240	7980	A2B310204 (c) *	
	A2-B-31	12	9240	8000	A2B311012 (g)	

Sample	A2B310204 dept	h 2-4 ft		Sample A2B311012 depth 10-12 ft				
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS	
Aluminum	2090.00	1000000.00	mg/kg	Aluminum	24300.00	1000000.00	mg/kg	
Arsenic	2.56	610.00	mg/kg	Arsenic	ND	610.00	mg/kg	
Barium	54.20	140000.00	mg/kg	Barium	184.00	140000.00	mg/kg	
Beryllium	ND	1.30	mg/kg	Beryllium	1.00	1.30	mg/kg	
Cadmium	ND	1000.00	mg/kg	Cadmium	0.94	1000.00	mg/kg	
Calcium	4180.00		mg/kg	Calcium	4910.00		mg/kg	
Chromium	5.67	1000000.00	mg/kg	Chromium		1000000.00	mg/kg	
Cobatt	ND	120000.00	mg/kg	Cobait	9.20		mg/kg	
Copper	20.80	82000.00	mg/kg	Copper	24.50	82000.00	mg/kg	
iron	7180.00	610000.00	mg/kg	iron	32500.00	* * * * - * * - * - *	mg/kg	
Lead	11.30		mg/kg	Lead	51.70		mg/kg	
Magnesium	474.00		mg/kg	Magnesium	4320.00		mg/kg	
Manganese	94.10	47000.00	mg/kg	Manganese	313.00	47000.00	mg/kg	
Mercury	2.78	610.00	mg/kg	Mercury	ND	610.00	mg/kg	
Nickel	6.44	41000.00	mg/kg	Nickel	31.80	41000.00	mg/kg	
Potassium	ND		mg/kg	Potassium	2220.00		mg/kg	
Sodium	121.00		mg/kg	Sodium	142.00		mg/kg	
Vanadium	ND	14000.00	mg/kg	Vanadium	26.80		mg/kg	
Zinc	21.90	610000.00	mg/kg	Zinc	232.00		mg/kg	
Total Cyanide	24.50		mg/kg	Total Cyanide	ND		mg/kg	
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION		UNITS	
Benzene	ND	200.00	mg/kg	Benzene	15.00		mg/kg	
Ethylbenzene	ND	200000.00	mg/kg	Ethylbenzene	2.90		mg/kg	
Toluene	ND	410000.00	mg/kg	Toluene	4.20		mg/kg	
Total Xylene	ND	1000000.00	mg/kg	Total Xylene	24.40		mg/kg	
Total VOCs	0.00		mg/kg	Total VOCs	46.50	1	mg/kg	
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION		UNITS	
Acenaphthylene	28.00		mg/kg	Acenaphthylene	2.40		mg/kg	
Anthracene	26.00	610000.00	mg/kg	Anthracene	2.10		mg/kg	
Benzo(a)anthracene	28.00	7.80	mg/kg	Benzo(a)anthracene	1.40		mg/kg	
Benzo(a)pyrene	24.00	0.78	mg/kg	Benzo(a)pyrene	1.10		mg/kg	
Benzo(b)fluoranthene	31.00	7.80	mg/kg	Benzo(b)fluoranthene	1.40		mg/kg	
Benzo(k)fluoranthene	14.00	78.00	mg/kg	Benzo(k)fluoranthene	0.70		mg/kg	
Chrysene	27.00	780.00	mg/kg	Chrysene	1.40	780.00	mg/kg	
Fluoranthene	60.00	82000.00	mg/kg	Fluoranthene	2.90		mg/kg	
Fluorene	23.00	82000.00	mg/kg	Fluorene	2.60	82000.00	mg/kg	
Indeno(1,2,3-cd)pyrene	13.00	7.80	mg/kg	Indeno(1,2,3-cd)pyrene	ND		mg/kg	
Naphthalene	270.00	82000.00	mg/kg	Naphthalene	52.00		mg/kg	
Phenanthrene	64.00	610000.00	mg/kg	Phenanthrene	5.40	L	mg/kg	
Pyrene	45.00	61000.00	mg/kg	Pyrene	2.40		mg/kg	
Total SVOCs	688.00		mg/kg		83.50		mg/kg	
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION		UNITS	
No detections		2.86	mg/kg	No detections		2.86	mg/kg	

NOTES:

- US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
 Composite sample taken from 2-4 ft interval of borings A2-B29, A2-B-30, A2-B-31.
- ** RBC value for total PCBs
- ND Not Detected

Only BTEX compounds listed. Only PAH compounds listed.

> LTV Donner-Hanna Final, July 9, 1997

Boring A2-B-32 was drilled in the Interceptor Sump area to a depth of 18 ft. Field observations at A2-B-32 reported the 6-8.5 ft. interval to be saturated with a yellow-green liquid. One soil sample was collected from the 16-18 ft. interval of the boring. The sample was analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 13 presents selected analytical results for soil sample A2B321618.

Analytical results for the 16-18 ft. sample, A2B321618, show no metals at concentrations above RBCs. Benzene (0.014 ppm) and toluene (0.008 ppm) were detected below their respective RBCs. No total cyanide, SVOCs or PCBs were detected.

5.14 PRIMARY COOLER AREA

The primary coolers at the former D-H plant were located south of the by-product building and were used to remove tar from raw coke oven gas. Potential contaminants of concern in this area include PAHs, VOCs (benzene, toluene, and xylenes), and cyanides. Three surface soil borings were performed in this area to investigate potential contamination that may be present due to past operations.

Borings A2-B-33, -34, -35 were drilled in a line approximately 50 ft. long in the Primary Coolers area to depths of 2.8, 3.5, and 4 ft., respectively. Field observations reported a blue-gray cemented sand at approximately 2.75 ft. in A2-B-34. A composite soil sample was collected in the 2-4 ft. interval of the borings. The sample was analyzed for TAL metals and total cyanide, TCL VOCs, TCL SVOCs, and TCL PCBs. Table 14 presents selected analytical results for composite soil sample A2B350204.

Analytical results for the 2-4 ft. composite sample, A2B350204, show one metal, beryllium (4.76 ppm), at a concentration above RBCs. Total cyanide was detected at 106.00 ppm. Benzene (0.009 ppm) and tetrachloroethene (PCE) were detected at concentrations well below RBCs. Five of 16 SVOCs/PAHs (634 ppm total SVOC/PAH) detected were above RBCs. PCBs were not detected.

5.15 NORTHEAST SOIL GAS PLUME

The results of the soil gas investigation performed prior to soil and groundwater sampling activities at the site indicated that a contaminant plume of SVOCs and VOCs was present in the soil located in the northeast portion of the property. This is the approximate location of the former Koppers Tar Works identified on earlier Sanborn maps reviewed during Phase I. A subsurface soil boring was drilled in this area to provide further information about potential contamination in this area, supplementing the soil gas survey data and information from samples collected near the suspect area during the Phase II ESA.

Boring A2-B-85 was drilled in the Northeast Soil Gas Plume area to a depth of 6 ft. A grab soil sample was collected in the 4-6 ft. interval of the boring. The sample was analyzed for total cyanide, BTEX, and PAHs. Table 15 presents selected analytical results for soil sample A2-B85(4-6).

LTV Donner-Hanna Final, July 9, 1997

70045-001-00 30

TABLE 13 Interceptor Sump Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COO	RDINATES	SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite=c, grab=g)
Interceptor Sump	A2-B-32	18	9347	8130	A28321618 (g)

	Sample A2B321618 depth 16-18 ft													
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS							
Aluminum	11800.00	1000000.00	mg/kg	Lead	12.10		mg/kg							
Arsenic	1.91	610.00	mg/kg	Magnesium	15000.00		mg/kg							
Barium	53.70	140000.00	mg/kg	Manganese	471.00	47000.00	mg/kg							
Cadmium	0.81	1000.00	mg/kg	Nickel	26.30	41000.00	mg/kg							
Calcium	41700.00	i i	mg/kg	Potassium	2080.00		mg/kg							
Chromium	16.60	1000000.00	mg/kg	Sodium	252.00		mg/kg							
Cobalt	8.92	120000.00	mg/kg	Vanadium	18.80	14000.00	mg/kg							
Copper	28.10	82000.00	mg/kg	Zinc	70.90	610000.00	mg/kg							
Iron		610000.00	mg/kg	Total Cyanide	ND		mg/kg							
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS							
Benzene	0.014	200.00	mg/kg	Toluene	0.008	410000.00	mg/kg							
Total VOCs	0.022		mg/kg											
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS							
No detections			mg/kg											
PCBs	CONCENTRATION	RBC*	UNITS	PCBs	CONCENTRATION	RBC	UNITS							
No detections		2.86	mg/kg											

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- * RBC value for total PCBs

ND Not Detected

Only BTEX compounds listed.

TABLE 14 Primary Coolers Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

BORING	TOTAL	COORDINATES		SAMPLE NUMBER
NUMBER	DEPTH	NORTH	EAST	(composite≃c, grab≂g)
A2-B-33	2.8	9520	9097	
A2-B-34	3.5	9510	9072	
A2-B-35	'4	9520	9047	A2B350204 (c) *
	BORING NUMBER A2-B-33 A2-B-34	BORING TOTAL DEPTH A2-B-33 2.8 A2-B-34 3.5 A2-B-35 4	BORING TOTAL COORDIN	BORING TOTAL COORDINATES

····		San	ple A2B35	0204 – depth 2-4 ft			
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS
Aluminum	44700.00	1000000.00	mg/kg	Magnesium	20300.00		mg/kg
Arsenic	3.44	610.00	mg/kg	Manganese	7360.00	47000.00	mg/kg
Barium	541.00	140000.00	mg/kg	Nickel	8.49	41000.00	mg/kg
Beryllium	4.76	1.30	mg/kg	Potassium	2460.00		mg/kg
Calcium	246000.00		mg/kg	Sodium	763.00		mg/kg
Chromium	14.00	1000000.00	mg/kg	Vanadium	12.00		mg/kg
Copper	22.90	82000.00	mg/kg			610000.00	mg/kg
Iron	41200.00	610000.00	mg/kg	Total Cyanide	106.00		mg/kg
TCL VOCs	CONCENTRATION	RBC	UNITS	TCL VOCs	CONCENTRATION	RBC	UNITS
Benzene	0.009	200.00	mg/kg				
Total VOCs	0.03		mg/kg				
TCL SVOCs	CONCENTRATION	RBC	UNITS	TCL SVOCs	CONCENTRATION	RBC	UNITS
Acenaphthylene	55.00		mg/kg	Dibenzo(a,h)anthracene	5.30	0.78	mg/kg
Anthracene	41.00	610000.00	mg/kg	Fluoranthene	100.00	82000.00	mg/kg
Benzo(a)anthracene	39.00	7.80	mg/kg	Fluorene	31.00	82000.00	mg/kg
Benzo(a)pyrene	39.00	0.78	mg/kg	Indeno(1,2,3-cd)pyrene	19.00	7.80	mg/kg
Benzo(b)fluoranthene	41.00	7.80	mg/kg	Naphthalene	7.90	82000.00	mg/kg
Benzo(g,h,ı)perylene	21.00		mg/kg	Phenanthrene		610000.00	mg/kg
Benzo(k)fluoranthene		78.00	mg/kg	Pyrene	83.00	61000.00	mg/kg
Chrysene		780.00	mg/kg				
Total SVOCs	634.20		mg/kg				
PCBs	CONCENTRATION	RBC**	UNITS	PCBs	CONCENTRATION	RBC	UNITS
No detections		2.86	mg/kg				

NOTES:

- ¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites
- Composite sample taken from 2-2.8 ft interval of boring A2-B-33;
 2-3.5 ft interval of boring A2-B-34;
 2-4 ft interval of boring A2-B-35.
- ** RBC value for total PCBs
- ND Not Detected

Only BTEX compounds listed.
Only PAH compounds listed.

LTV Donner-Hanna Final, July 9, 1997

TABLE 15 Northeast Soil Gas Plume Selected Analytical Results Soil Samples Donner-Hanna Coke Plant

	BORING	TOTAL	COORDINATES		SAMPLE NUMBER
AREA	NUMBER	DEPTH	NORTH	EAST	(composite≖c, grab≖g)
Northeast Soil Gas Plume	A2-B-85	6	9600	9350	A2B85(4-6) (g)

	Sample A2B85(4-6) — depth 4-6 ft												
METALS	CONCENTRATION	RBC ¹	UNITS	METALS	CONCENTRATION	RBC	UNITS						
Total Cyanide	198.00		mg/kg										
BTEX	CONCENTRATION	RBC	UNITS	BTEX	CONCENTRATION	RBC	UNITS						
Benzene	МĎ	200.00	mg/kg	Toluene	20.00	410000.00	mg/kg						
Ethylbenzene	11,00	200000.00	mg/kg	Total Xylene	178.00	1000000.00	mg/kg						
Total VOCs	209.00		mg/kg										
PAHs	CONCENTRATION	RBC	UNITS	PAHs	CONCENTRATION	RBC	UNITS						
Acenaphthene	8.20	120000.00	mg/kg	Chrysene	140.00	780.00	mg/kg						
Acenaphthylene	29.00		mg/kg	Dibenzo(a,h)anthracene	18.00	0.78	mg/kg						
Anthracene	57.00	610000.00	mg/kg	Fluoranthene	500.00	82000.00	mg/kg						
Benzo(a)anthracene	170.00	7.80	mg/kg		86.00	82000.00	mg/kg						
Benzo(a)pyrene	94.00	0.78	mg/kg	Indeno(1,2,3-cd)pyrene	50.00	7.80	mg/kg						
Benzo(b)fluoranthene	150.00	7.80	mg/kg	Naphthalene	150.00	82000.00	mg/kg						
Benzo(g,h,i)perylene	43.00		mg/kg	Phenanthrene	370.00	610000.00	mg/kg						
Benzo(k)fluoranthene		78.00	mg/kg	Pyrene	300.00	61000.00	mg/kg						
Total SVOCs	2258,20		mg/kg										

NOTES:

¹ US EPA Region III Risk Based Concentrations-Soil Ingestion at Industrial Sites

ND Not Detected

Only BTEX compounds listed. Only PAH compounds listed.

Analytical results for the 4-6 ft. grab sample, A2-B85(4-6), detected total cyanide at 198.00 ppm. Ethylbenzene (11.0 ppm), toluene (20 ppm), and total xylenes (178 ppm) were detected at concentrations below RBCs. Six of 16 PAHs detected (2258 ppm total SVOCs/PAHs) were above RBCs.

5.16 SUMMARY OF RESULTS

Total cyanide concentrations in the surface soil samples (2-4 ft. bgs) were plotted on a site map in an effort to determine trends in cyanide concentration. The highest concentration (800 ppm) was found in the Gas Holder and Iron Oxide Boxes area in the northeast corner of the site with the concentration decreasing to the south and west of this location (see Figure 4, 5, and 6). Through past experience in coke plant operations and field observations, it is believed that the cyanide is predominantly in the form of ferrous cyanide, which is a very stable cyanide compound.

Total SVOC concentrations in the surface soil samples (2-4 ft. bgs) were also plotted, with two large and two small "hot spots" identified. The two large areas include the soil between the former locations of the Old Tar Tank, and the former Tar Decanters and the area centered on boring A2-B-85 (total SVOCs 2258.2 ppm) in the soil gas survey plume and extending northeast toward the Gas Holder and Iron Oxide Boxes (boring A2-B-25, total SVOCs 894.3 ppm). The two small SVOC hot spot areas include an area in the vicinity of the locomotive shed and the soil in the vicinity of a shallow surface soil sample collected 0.0-0.5 ft. bgs at boring location A2-SS-8. Analytical results for many of the other areas of the site show numerous individual samples with SVOCs, primarily PAH compounds, in concentrations above their USEPA Region III RBC (see Figures 4, 5, 6 and Tables 1 through 15).

A plot of total VOC concentrations shows four locations with elevated total VOC concentrations. Two of these areas correspond with SVOC hot spots. The first area, the Benzol Washer Area is located between the Old Tar Tank Area and Tar Decanter Area. The second area is centered on boring A2-B-85 in the soil gas survey plume. The remaining two areas are located at the former site of the Locomotive Shed and the former Tar Storage Tank location. Analytical results for several other areas show individual VOCs, primarily BTEX compounds, in elevated concentrations.

Groundwater analytical results from boring A2-P-1 show slightly elevated levels of total cyanide; moderately elevated levels of SVOCs (with Naphthalene above the standard) and BTEX compounds (especially Benzene) above their Standards. Results from A2-P-11 show total cyanide above 1 mg/L; slightly elevated levels of SVOCs, primarily PAH compounds; and slightly elevated levels of BTEX compounds.

34

6.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the Phase II ESA at the former D-H coke plant property indicate that contaminants are present in many areas of the site. Future use of the property may require remedial action prior to development of the property.

Total cyanide was detected over the majority of the sites with total cyanide concentrations in the soil decreasing from the northeast to the south and west across the property; SVOC contamination was present in the site soil at concentrations exceeding USEPA Region III Risk Based Concentrations for soil ingestion at industrial sites at depths ranging from 2 to 6-ft. bgs. across the majority of the former Donner-Hanna coke plant. Low levels of VOCs were also found. Contamination from VOCs and SVOCs (primarily BTEX and PAH compounds) was also found at depths ranging between 7 and 13-ft. bgs. in the Tar Storage Tank Area, Benzol Washer and Final Cooler Area, Locomotive Shed, and possible Tar Unit.

Low concentrations of total cyanide were detected in groundwater samples. VOC and SVOC contamination was generally present at levels above New York State regulatory levels in the Tar Storage Tank area with lower concentrations, though still exceeding regulatory levels, in the Benzol Washer and Final Coolers area. Information regarding groundwater flow paths and velocities are discussed in the Phase II ESA report prepared by Malcolm Pirnie.

The soil gas sampling results identified three areas with elevated levels of soil gas BTEX and PAH compounds. Two of these areas, the Tar Storage Tank Area and the Benzol Washer and Final Cooler Area, were included as part of the Phase II ESA soil sampling activities. A soil sample was was collected from the third area, the contaminated area in the northeast portion of the site that was identified through the soil gas survey, to confirm the soil gas sampling results. The soil sampling results from the three possibly contaminated areas highlighted by the soil gas survey confirm the presence of BTEX and PAH contamination in these areas.

APPENDIX A
SOIL BORING LOGS

BORING LOG

PROJECT NAME <u>1</u> BORING LOCATION	Tar St	orage Tanks	Plant	WATER LEVELS DRILLING (ft-bgs)	19.0. 222	
ORILLING FIRM_5				WELL LEVEL (ft-msi)	CASING ELEV. N/A	
DRILLING METHOD LOGGED BY <u>B. Sc</u>		Spoon/Hollow Ste	em Auger	NORTHING 9450 EASTING 8020	START DATE 3/10/97 FINISH DATE 3/10/9	
S.S. SAMPLE RECOVERY (11./2 ft.) BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	WELL DIAGRAM
25 31 45 2	0		nonplasi	rown med. to coarse slag and ash, tic, moist (fill)		PVC riser
3- 24 52 21 1.4 10		A 2P10204	damp (f			2" PVC riser
5 - 10 28				sh and crushed coal, loose to med. conplastic, damp grading to dry	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
6 1.0 7 7 10 10			wet to s Gray-wh	ed. to coarse ash and slag, loose, aturated (fill)	\$ A A	ITITITITITITITITITITITITITITITITITITIT
8 1.1 32 8 8	6		moist (f	y, soft, med. plasticity, damp to ill) e, wet to saturated	+ + + + + + + + + + + +	2" 0.10 slot PVC
9 9 9 8 8	18		-	pray-black clay, soft to med. stiff, ed. plasticity, damp (CL)		
11 7 12		A2P11113	sandy c	prown-gray clay grading to fine ay, soft to med. stiff, med. to sticity, damp to moist (CH)		-
2.0 15	9		Total De	eptn - 13 ft.		

BORING LOG

BORI DRIL DRIL	NG LINI LINI ED	LOCAT G FIRM G MET BY	FION_But HOD_ 3. Squi	Light C falo Dr Split-S re	22011110				I/A 1/97	
ОЕРТН	S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	716000
2—		1.0	6 10 29 52/0	. 0		ash, pied (fill) Fine to some sill	rown fine to coarse sand, slag, and ce of refractory brick, loose, damp coarse sand and well rnd gravel, i, loose, saturated (fill)			-2
3-		1.8	19 16 16 13 7	54	A2B20204	silt, med saturate	d blue, med. to coarse sand, little . dense, moist grading to ed, sl. petroleum odor (fill) e, more and darker blue, saturated to wet			T T
5-		1.8	12 23 14 24	17.5			e, dark blue, fine to med. grain, onse, moist to wet			1
3	$\left\langle \right\rangle$	1.4	42 14 6 5	12		gravel, f loose, wi Blue-gra	een subangular to subrounded ine to coarse sand, little silt, et to moist (fill) ay fine to coarse sand, few slag, onse to loose, wet to saturated			
9-\ -\ -\		1.5	5 13 17 1	18	A2B20911	(fill) Black-g	ray clay, few rust mottles, med. d. plasticity, moist to gamp {CL}			-4
!-	$\left \right $		6 13							
<u>2</u>	V	1.5	22			Total De	pth - 12 ft.			

- USCS Classification based on visual-manual procedures
 wh-weight of hammer
- 4. wr~weight of rods

- 6. ft-msi-feet above mean sea level

BORING LOG

		ner-Hanna Coke Pl	lant	WATER LEVELS		BORING NO. A2-B-	-3
BORING LOCAT				DRILLING (ft-bgs)		0.5, ELE V.	
DRILLING FIRM				WELL LEVEL (ft-msi)		CASING ELEV. N/	<u>A</u>
		Spoon/Hollow Ster	m Auger	NORTHING 9505		START DATE 3/11/	97
LOGGED BY	J. Squire			EASTING 8385		FINISH DATE 3/11/	/97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in. HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-			Slag and	d brick demolition debris		Drilled interval	7
4	6 5 39 50/3 0	A2B50204	Black-bro brick, med (fill)	own sand, gravel, slag, wood, d. dense to loose, moist to wet		Composite sample of A2-B-3, A2-B-4, A2-B-5	-2
NOTES: 1. Depths and 2. USCS Class 3. wh-weight 4. wr-weight	sification base of hammer	i feet unless otherwis ed on visual-manual p	se noted procedures	5. ft-bgs-feet below ground sur 6. ft-msi-feet above mean sea i		Page 1 of 1	7

BORING LOG

	V Donner-Hanna Coke		ATER LEVELS		BORING NO. A2-B-4	4
BORING LOCATION_		 †	RILLING (ft-bgs)		-G.S. ELEV.N/A	
DRILLING FIRM But	faio Drilling Co.		ELL LEVEL (ft-msi)		CASING ELEV. N/A	
DRILLING METHOD_	Split-Spoon/Hollow St	em Auger	NORTHING 9507		START DATE 3/11/9	7
LOGGED BY <u>B. Squ</u> i	re		EASTING 8420		FINISH DATE 3/11/9	37
DEPTH S.S. SAMPLE RECOVERY (II./2 II.) BLOWS/6 in.	TID (bba) (b		ATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
-		Black-brown, graver (fill)	n, med. to coarse sand and		Orilled interval	Ţ
3- 6 9 0.9 10	A2850204		o coarse sand, little subrnd to et, loose, moist to wet (fill)		Composite sample of A2-B-3, A2-B-4, A2-B-5	7
			5. ft-bgs-feet below ground sur 6. ft-msi-feet above mean sea i		Page 1 of 1	7

BORING LOG

				er-Hanna Coke	Plant	WATER LEVELS		BORING NO. A2-B	-5
DRILLII	NG FIR	м <u> 8</u> ч	ffalo Dr	ground Pipes		DRILLING (ft-Dgs) WELL LEVEL (ft-msi)		CASING ELEV. N/A	
	NG MET			Spoon/Hollow Ste	em Auger	NORTHING 9512 EASTING 8450		START DATE 3/11/ FINISH DATE 3/11	
DEPTH S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	0.1000
2	1.4	5 16 17 14 7	0		brick, an	ne to coarse sand, slag, gravet, and crushed coal, loose, damp (fill) e, It. brown to brown			-2
4	0.7	8 9 6 12	O	A2B50204	1	ed. to coarse sand, little fine ew coarse slag, loose, wet to d (fill)	8 A A A A A A A A A A A	Composite sample o A2-B-3, A2-B-4, A2-B-5	1 -3
6	1.2	6 5 9	0		Black, me med. gra	e, blue-gray, sl. petroluem odor ed. to coarse sand, little fine to evel, loose, saturated, sl. m odor (fill)			-7
8 	1.5	10 9	1		As above	e, sl. petroleum odor _.	0 0 0 0 0 0 0		-
9-	1.4	5 5 11	1		Gray clay damp	y, stiff, med. to high plasticity,			g
		9 10 16		A 2851012	As above	e, brown and gray			T
/ / _	0.9	23	1.5		Total Der	oth - 12 ft.			

- USCS Classification based on visual-manual procedures
 wh-weight of hammer
- 4. wr-weight of rods

- 5. ft-bgs-feet below ground surface
- 6. ft-msi-feet above mean sea level

			er-Hanna Coke f la Shon	Plant	WATER LEVELS DRILLING (ft-bgs)		BORING NO. <u>A2-B-6</u> - G.S. ELEV. N/A	
BORING LOC. DRILLING FI				·	WELL LEVEL (ft-msl)		CASING ELEV. N/A	
			Spoon/Hollow Ste	em Auger		START DATE 3/12/97		
LOGGED BY					NORTHING 9508 EASTING 8460	FINISH DATE 3/12/		
DEPTH S.S. SAMPLE RECOVERY (11./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE IÖ		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
1				Demoktic	on debris		Drilled interval	
3- 1.7	11 11 9	0	A2B90204	loose, da	and, gravel, ash, siag, little clay, amp grading to wet (fill) . oth - 4 ft.		Composite sample of A2-B-6, A2-B-7, A2-B-8, A2-B-9	-3

ROJECT MAME LTV Donner-Hanna Coke Plant ORING LCCATION Machine Shop			Plant	WATER LEVELS		BORING NO. A2-B-7			
					WELL LEVEL (ft-msi)		G.S. ELEV.N/A	Δ.	
RILLING FIR			Spoon/Hollow Ste	em Auger			CASING ELEV. N/A		
OGGED BY_				A u gui	NORTHING 9470 EASTING 8440		START DATE 3/12/97 FINISH DATE 3/12/97		
S.S. SAMPLE RECOVERY (11./2 11.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS		
2					on debris		Drilled interval		
0.9 NOTES:	9 12 6	0	A2B90204	moist to	pth - 4 ft.		Composite sample of A2-B-6, A2-B-7, A2-B-8, A2-B-9		

			er-Hanna Coke F	Plant	WATER LEVELS ORILLING (ft-bgs)		BORING NO. A2-B-8	
BORING LO					WELL LEVEL (ft-msl)		G.S. ELEV.N/A	
DRILLING F					-		CASING ELEV. N/A	
			Spoon/Hollow Ste	am Auger	NORTHING 9520		START DATE 3/12/	
LOGGED BY	<u> </u>	uire			EASTING 8520		FINISH DATE 3/12/	/97
S.S. SAMPLE RECOVERY	(ft./2 ft.) BLOWS/6 m.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
2-				Demolitic	on debris		Drilled interval	7
3	5		A2B90204		ack med. to coarse sand and fine gravel, loose, wet to saturated		Composite sample of	3
1.	2 9	1.2		As above	e, black epth – 5 ft.	0 0 0 0 0 0 0 0 0 0 0 0	A2-B-6, A2-B-7, A2-B-8, A2-B-9	

BORING LOG

BORING LOCATORILLING FIRE	TION_M M_Buffa	Machine fato Drii	illing Co.		DRILLING (ft-bgs)		CASING ELEV. N/A		
ORILLING MET			Spoon/Hollow Ste	m Auger	NORTHING 9480 EASTING 8503		START DATE 3/12/		
S.S. SAMPLE RECOVERY (II./2 II.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН	
2	Demolit			own clay and fine sand, soft to		Drilled interval	7		
3-1	15	0	A2B90204	Brown, me saturated	ff, damp (fill) led. sand, little slag, loose, wet to		Composite sample of A2-B-6, A2-B-7, A2-B-8, A2-B-9	-3	

- 3. wh-weight of hammer 4. wr-weight of rods

BOR DRIL DRIL	ING .LIN .LIN 3ED	LOCA	TION_ M <u>Bu</u> HOD_	Old Ta ffalo Dr Split-S iire	er-Hanna Coke for Tanks filling Co. Spoon/Hollow Sto		WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msI) NORTHING 9368 EASTING 8564		BORING NO. A2-B-10 G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/11/97 FINISH DATE 3/11/97	
ОЕРТН	S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEST
1						Coarse	demolition debris (fill)		Orilled interval	-4
3-			22 10 6		A2B100204	1	ine to coarse sand, fine ash, few d brick, loose, damp, (fill)			-3
4-	$\left\langle \cdot \right\rangle$	1.4	5 3 4	0			e, loose to med. dense			4
6-	\bigwedge	1.8	5 20 20	40			et to saturated, (fill)			6
7 8	\bigvee	1.3	30 12 35	20						_7
9-	\bigvee		5 11 4			Maroon- wet (fill	e, dense Drown silty material, med. stiff,) ed. sand, few well rnd gravel, few	000		9
10-		1.1	2 3 4	8.5	A2B100911	Gray cia plasticit	of wood (fill) y, soft to med. stiff, med. to high y, damp (CL) e, soft grading to med. stiff			-10
12		1.3	7	2		Total De	epth - 12 ft.		-	
1 2 3	. US	pths an	ssifica t of ha	tion base Immer	i feet uniess other ed on visual-manua		5. ft-bgs-feet below ground su s 6. ft-msi-feet above mean sea		Page 1 of 1	

BORING LOCA	_MOITA	Benzo Iffaio Di		Coolers	WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msi)		— G.S. ELEV. <u>N</u>	BORING NO. A2-P-11 G.S. ELEV.N/A CASING ELEV. N/A		
DRILLING ME			Spoon/Hollow Ste	em Auger	NORTHING 9468 START DATE EASTING 8750 FINISH DATE					
DEPTH S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	WELL DIAGR	AM		
2-				Drilled in	on debris		2 HI HI	Backfilled cuttings		
5-1.7	15 31 32 36 7	8	A2P110206	coarse s loose, we Composit A2-B-13	rading to black-brown, fine to land, fine to med. gravel, little silt, et grading to saturated (fill) se sample of A2-P-11, A2-B-12, A2-B-14 The to coarse sand, loose, defill)	1919191919	VC screen	- -		
0.5	1 2 37 23 6			gravel, so med. der	ne to coarse sand, fine to coarse ome sat/clay, little organic matter, nse, saturated (fill)	0 0	TITITITITITITITITITITITITITITITITITITI	7 P 9		
10 1.5	5 1 1 4	1	A2P110911	As above green-gr				-1C		
NOTES: 1. Depths ar 2. USCS Cla 3. wh-weigh 4 wr-weigh	ssificat t of hai	ion base mmer	feet unless otherw d on visual-manual	vise noted	5. ft-bgs-feet below ground sur 6. ft-msi-feet above mean sea	face	Page 1 of	1		

BORING LOG

BOR DRIL DRIL	ING LIN	LCCA IG FIR IG ME1	TION_ MBu	Benzo ffalo D Split-S	er-Hanna Coke for Washers & Fina rilling Co. Spoon/Hollow Ste	Coolers	WATER LEVELS ORILLING (ft-bgs) WELL LEVEL (ft-ms!) NORTHING 9432		BORING NO. A2-B-12 G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/12/97 FINISH DATE 3/12/97	
ОЕРТН	,	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		EASTING 8718 MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
	8rown-to dens Black s brick, d					to dense	nd, gravel, slag, silt, piece of ense, dry to damp (fill)			
2-		1.8				sand, de	ed. sand, thin layer of blue-green nse, dry to damp (fill)			-2
3-		0.3	100/4	0	A2P110206	Total Dep	oth – 2.8 ft		Composite sample of A2-P-11, A2-B-12, A2-B-13, A2-B-14	7
	TES:		a Eleva	itions in	feet unless otherw	ise noted	5. ft~bgs-feet below ground sur			4

- USUS Classification 2.
 wh-weight of hammer
 wr-weight of rods

6. ft-msi-feet above mean sea level

BORING LOG

BORING I DRILLING DRILLING LOGGED	ROJECT NAMETV Donner-Hanna Coke Plant ORING LOCATION _ Benzot Washers & Final Coolers RILLING FIRM _ Buffalo Drilling Co. RILLING METHOD _ Split-Spoon/Hollow Stem Auger DGGED BY _ B. Squire L _ U 9/S _ E SAMPLE ANALYTICAL _ SAMPLE			WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msi) NORTHING 9448 EASTING 8802		BORING NO. A2-B-13 G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/12/97 FINISH DATE 3/12/97			
DEPTH S.S. SAMPLE	RECOVERY (fl./2 fl.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
2	1.9	14 17 30	35	A2P110206	Black, me gravel, lo saturated (benzend	ed. sand, few broken, well rnd lose to med. dense, wet to d. strong chemical odor e?) (fill)		Composite sample of A2-P-11, A2-B-12, A2-B-13, A2-B-14	7 -3

2. USCS Classification based on visual-manual procedures
3. wh-weight of hammer
4 wr-weight of rods

6. ft-msi-feet above mean sea level

BORING LOG

	IAME LTV Donner-Hanna Coke Plant CATION Benzoi Washers & Final Coolers			WATER LEVELS	BORING NO. A2-B-14		
			Coolers	DRILLING (ft-bgs)	<u> </u>	— G.S. ELEV. <u>N/A</u>	
ORILLING FIR				WELL LEVEL (ft-msl)		CASING ELEV. N/A	
		-Spoon/Hollow Ste	m Auger	NORTHING 9415		START DATE 3/12/9	97
LOGGED BY	3. Squire			EASTING 8755		FINISH DATE 3/12/	97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in. HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-			Demolitic	on debris		Drilled interval	4
3- 1.3	18 22 20 18 14	A2P110206	of wood,	ne to med. sand, few slag, pieces, loose to med. dense, moist (fill)		Composite sample of A2-P-11, A2-B-12, A2-B-13, A2-B-14	-3
1. Depths an	ssification bas t of hammer	in feet unless otherwi sed on visual-manual	ise noted procedure:	5. ft-bgs-feet below ground sur s 6. ft-msi-feet above mean sea		Page 1 of 1	

BORING LOG

PRO	JEC	AAM T	4E	V Donn	ier-Hanna Coke f	Plant	WATER LEVELS		BORING NO. A2-B-	-15
BOR	ING	LOCA	ATION.	Tar Pr	recipitators		DRILLING (ft-bgs)		G.S. ELEV.N/A	
ORI	LIN	IG F IF	RMBt	iffalo D	rilling Co.		WELL LEVEL (ft-msi)		CASING ELEV. N/	A
DRII	LIN	IG ME	THOD_	Split-	Spoon/Hollow Ste	em Auger			START DATE 3/12/	/97
LOG	GED	BY_	B. Sq	ure			NORTHING 9570 EASTING 8900	FINISH DATE 3/12		
ОЕРТН	S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
1-						Sand ar	nd gravel, coarse slag (fill)		Orilled interval	Т
3-	TES:	1.4	33 12 6	1.5	A2B170204	coarse s some cla loose, da	ading to dark brown, fine to sand, some fine to med. gravel, sy, few organic matter (wood), amp grading to wet (fill)		Composite sample of A2-B-15, A2-B-16, A2-B-17	~ ~

- 2. USCS Classification based on visual-manual procedures
 3. wh-weight of hammer
 4. wr-weight of rods

- 6. ft-msl-feet above mean sea level

BORING LOG

						<u>lant</u>	ORILLING (ft-bgs)	BORING NO. AZ-B-16 G.S. ELEV.N/A		
DRI	LLIN	NG FIR	RM <u>- В</u> и	uffalo Di	Irilling Co.		WELL LEVEL (ft-msi)	•	CASING ELEV. N/A	<u> </u>
					Spoon/Hollow Ste	em Auger	NORTHING 9532		START DATE 3/12/	/97
LOG	GED	J BY_	E. Sau	ire			EASTING 8887		FINISH DATE 3/12/	/97
н1430	S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-						Demolitic	on debris (fill)		Orilled interval	7
3 -		1.0	7 8 12 50/3	О	A2B170204	to coarsi of wood, (fill)	rown, med. to coarse sand, med. te well rnd gravel, few slag, piece loose, wet grading to saturated . . pth - 4 ft.		Composite sample of A2-B-15, A2-B-16, A2-B-17	7

Depths and Elevations in feet unless otherwise noted
 USCS Classification based on visual-manual procedures

3. wh-weight of hammer 4. wr-weight of rods

5. ft-bgs-feet below ground surface 6. ft-msl-feet above mean sea level

			er-Hanna Coke P	<u>Mant</u>	WATER LEVELS		BORING NO. A2-B-1	17
BORING LO					DRILLING (ft-bgs)		— G.S. ELEV.N/A	
DRILLING F	IRM <u>B</u> ı	uffalo Dr	illing Co.		WELL LEVEL (ft→msI)		CASING ELEV. N/A	
			Spoon/Hollow Ste	m Auger	NORTHING 9535		START DATE 3/12/9	
LOGGED BY	8. Sq	uire			EASTING 8918		FINISH DATE 3/12/	97
OEPTH S.S. SAMPLE RECOVERY	(ft./2 ft.) BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-				Demolitie	ion debris (fill)		Drilled interval	-7
0. 4 NOTES:	9 8	0	A2B170204	med. gr saturate	ned. to coarse sand, some fine to ravel, few slag, loose, wet to ed (fill) .		Composite sample of A2-B-15, A2-B-16, A2-B-17	
1. Depths 2. USCS (Classificating the classification of the cla	ation base ammer	feet unless otherw ed on visual-manual		5. ft-bgs-feet below ground su 6. ft-msI-feet above mean sea		Page 1 of 1	

Demolition debris (fill) 2 Composite sample of Composite sample of A2-B-19, A2-B-20, A2-B-21, A2-B-20, A2-B-21, A2-B-20, A2-B-21, A2-B-20, A2-B	DRILLING FIRM BUTTAID DRILLING SEEM AUGET LOGGED BY B. Squire MORTHING 9490 START DATE 3/13/97 FINISH D				er-Hanna Coke P	lant	WATER LEVELS		BORING NO. A2-B-	19
DRILLING FIRM CONTROL SOLD SOLD SOLD SOLD SOLD SOLD SOLD SO	Demolition debris (fill)						- †			
Brown, fine to coarse sand, some silt, few fine gravet, thin layer of clay, 0.2 ft. layer of cameried sand (fill) ABB210204 ABB2102	AZB210204						- NECE EL VEC (10 11131)			
EASTING 8995 FINISH DATE 3/13/97 FINIS	AND TES: 1. Debths and Elevations in feet unless otherwise noted 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 2. USCS Classification based on visual-narway procedures 5. ft-bgs-feet below ground surface 6. ft-mil-feet above mean see level				DOON/HOllow Ste	m Auger	NORTHING 9490		1	
Demolition debris (fill) Demolition debris	Brown, fine to coarse sand, some silt, few fine gravet, thin layer of clay, 0.2 ft. layer of cemented sand (fill) 7 A2B210204 7 A2B210204 Total Depth - 4 ft. NOTES: 1. Depths and Elevations in feet unless otherwise noted 2. USCS Classification based on visual-manual procedures 5. ft-bgs-feet below ground surface 6. ft-msil-feet above mean sea level			иe		÷			FINISH DATE 3/13/	'97
Demolition debris (fill) Demolition debris	Brown, fine to coarse sand, some silt, few fine gravet, thin layer of clay, 0.2 ft. layer of cemented sand (fill) 7 A2B210204 7 A2B210204 Total Depth - 4 ft. NOTES: 1. Depths and Elevations in feet unless otherwise noted 2. USCS Classification based on visual-manual procedures 5. ft-bgs-feet below ground surface 6. ft-msil-feet above mean sea level	S.S. SAMPLE RECOVERY (IL./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	SAMPLE		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEDTU
Brown, fine to coarse sand, some silt, few fine gravel, thin layer of clay, 0.2 ft. layer of cemented sand (fill) 7 A2B210204 A2B210204 Total Depth - 4 ft.	Brown, fine to coarse sand, some silt, few fine gravel, thin layer of clay, 0.2 ft. layer of cemented sand (fill) 7 A2B210204 A2B210204 A2B210204 Total Depth - 4 ft. NOTES: 1. Depths and Elevations in feet unless otherwise noted 2. USCS Classification based on visual-manual procedures 5. ft-bgs-feet below ground surface 6. ft-msi-feet above mean sea level					Demoditi	on debris (fill)		Drilled interval	-4
4	Depths and Elevations in feet unless otherwise noted USCS Classification based on visual-manual procedures 6. ft-msl-feet above mean sea level	2.0	7	0	A2B210204	fine gra	vel, thin layer of clay, 0.2 ft. layer nted sand (fill)	<u> </u>	A2-B-19, A2-B-20,	-3

			er-Hanna Coke f	1ant	WATER LEVELS		BURING NO. A2-B-	20
BORING LOCA					DRILLING (ft-bgs)		— G.S. ELEV.N/A	
DRILLING FI				·	WELL LEVEL (ft-msi)		CASING ELEV. N/A	\
			Spoon/Hollow Ste	m Auger	NORTHING 9470		START DATE 3/13/	97
LOGGED BY_	B. Squ	iire			EASTING 9015		FINISH DATE 3/13/	97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
3- 1.3	5 14	73	A2B210204	Black grasand, find clay, 0.3 sand, top creosote	ading to It. brown, fine to coarse to med. gravel, thin layer of ft. layer of compacted blue - saturated, btm - damp, mild /diesel odor at top (fill)		Composite sample of A2-B-19, A2-B-21	7 7

BORING LOG

PROJECT NAI	4E LTV	Donne	er-Hanna Coke f	Plant	WATER LEVELS		BORING NO. A2-B-	21
BORING LOCA					DRILLING (ft-bgs)		— G.S. ELEV.N/A	
DRILLING FI					WELL LEVEL (ft-msi)	<u> </u>	CASING ELEV. N/A	١
1			poon/Hollow Ste	m Auger	NORTHING 9465		START DATE 3/13/1	97
LOGGED BY_	B. Squire	e			EASTING_8995		FINISH DATE 3/13/	97
DEPTH S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOMS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1				Demolitic	on debris (fill)		Drilled interval	4
3-	11 13	0	A2B210204	slag, laye saturate	ned. sand, little fine gravel, fewer of cemented blue sand, loose, d (fill)		Composite sample of A2-B-19, A2-B-21	-3
NOTES:	o Elevatio	one in f	feet unless otherw	ien oot-d		<u>A</u> A		4
2. USCS Cla 3. wh-weigh 4. wr-weigh	ssification it of hamm	based	i eet uniess otherw I on visual-manual	procedures	5. ft-bgs-feet below ground si 6. ft-msi-feet above mean sea	irtace Tevel	Page 1 of 1	

		er-Hanna Coke Pla	<u> </u>	WATER LEVELS	BORING NO. A2-B-22		
BORING LOCA	TION Subst	ation		DRILLING (ft-pgs)		- G.S. ELEV.N/A	
RILLING FIR	M_ Buffalo D	rilling Co.		WELL LEVEL (ft-msi)		CASING ELEV. N/A	
		Spoon/Hollow Stem	n Auger	NORTHING 9499	START DATE 3/17/1		
OGGED BY	B. Squire			EASTING 9140		FINISH DATE 3/17/	97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in. HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	
2—						Drilled interval	
3	wh	-	Brown, me dense, we	d. to coarse sand and ash, t (fill)	24 44 44 44 44 44 44		
4-	7	A2B240205		•	AAA AAA AAA AAA	Composite sample of A2-B-22, A2-B-24	
1.3	7 0		Total Dep	th - 5 ft.	AAA AAA		

PROJECT NAME LTV Donner-Hanna Coke	Plant WATE	R LEVELS		BORING NO. A2-B-	23	
BORING LOCATION Substation	ORILL	ING (ft-bgs)		-G.S. ELEV.N/A		
DRILLING FIRM Buffato Oriting Co.	METT	LEVEL (ft-msi)	···	CASING ELEV. N/A	<u> </u>	
DRILLING METHOD Split-Spoon/Hollow S	em Auger	0512		START DATE 3/17/97		
LOGGED BY B. Squire	NORT	THING 9512 TING 9172		FINISH DATE 3/17/		
DEPTH S.S. SAMPLE RECOVERY (11./2 ft.) BLOMS/6 in. GPM THNU Reading (ppm)		RIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН	
A2B240205 O.B 50/3 NOTES: 1. Depths and Elevations in feet unless other	moist (fill) Total Depth - 2.7	and coarse sand, dense,		Composite sample of A2-B-22, A2-B-24	7 7	
USCS Classification based on visual-manu wh-weight of hammer wr-weight of rods		-msi-feet above mean sea le	vel	Page 1 of 1		

PROJE	CT NAM	E LT	V Donn	er-Hanna Coke I	Plant	WATER LEVELS		BORING NO. A2-B-	-24
,			Substa			DRILLING (ft-bgs)		G.S. ELEV.N/A	
				alling Co.		WELL LEVEL (ft-msi)		CASING ELEV. N/A	
				Spoon/Hollow Ste	em Auger			START DATE 3/17/97	
	ED BY_					NORTHING 9517		FINISH DATE 3/17	
		i	,	1	1	EASTING 9204	<u> </u>	FINISH DATE TO	7
ОЕРТН	S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE IO		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-					Demoiitio	n debris (fill)		Drilled interval	T
3-	0.5	2 2 2		A2B240205		n, slag, fine to med. gravel, med. e sand, loose, wet (fill)		Composite sample of A2-B-23, A2-B-24	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2. U 3. w	epths an	sificat Lof hai	ion base mmer	feet unless otherw d on visual-manual	ise noted procedures	5. ft-bgs-feet below ground so 6. ft-msi-feet above mean sea		Page 1 of 1	

				er-Hanna Coke F		WATER LEVELS	BORING NO. A2-B-25			
				older & Iron Oxid	e Boxes	DRILLING (ft-bgs)		G.S. ELEV.N/A		
				illing Co.		WELL LEVEL (ft-msi)		CASING ELEV. N/A		
				Spoon/Hollow Ste	m Auger	NORTHING 9732		START DATE 3/1	7/97	
LOGGE	:D BY	e. Sau	ıre			EASTING 9695		FINISH DATE 3/	17/97	
ОЕРТН	RECOVERY (IL./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН	
2-					Mounded	1 soil berm		Drilled interval	-2	
4	/	4 6			damp (f				4	
6	1.0	13 12	0.2			d gravel, piece of brick, rock t, loose, saturated (fill)	AAA AAA AAA AAA		-5 -6	
7-	/ \	15 19 16		A2B250608	Błack, si moist (fi	Ity ash, soft/loose, nonplastic, ii)	W W W W		-7	
8 - 8	1.3	5 6	1,4	3			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-B -9	
10	0.9	8	0.6			ay silt, med. stiff, low to med. /, damp (ML)			-10	
11-	/	4 4 8		A2B251012		ay silty clay grading to clay, ff to stiff, high plasticity, damp to H)			⊣ 11	
12	1.1	10	0		Total De	oth ~ 12 ft.				
NOTE 1. D 2. L 3. w	epths an	ssificat t of ha	ion base mmer	feet unless otherw d on visual-manual		5. ft-bgs-feet below ground su 6. ft-msl-feet above mean sea		Page 1 of 1		

			er-Hanna Coke I lotive Shed	Plant	WATER LEVELS ORILLING (ft-bgs)		BORING NO. <u>A2-B-26</u> G.S. ELEV. N/A		
ORILLING F				***	WELL LEVEL (ft-msi)		1	<u>—</u>	
			Spoon/Hollow Ste	em Auger			CASING ELEV. N/A		
OGGED BY.			200000000000000000000000000000000000000	- nogo	NORTHING 9390		START DATE 3/14		
			-		EASTING 8024		FINISH DATE 3/14	<u> // 9</u> /	
S.S. SAMPLE RECOVERY	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE IO		MATERIAL DESCRIPTION	SYMBOL	REMARKS		
			-	Gray, co	parse, angular limestone gravel (fill)	100		+	
1-				As above	e, loose, damp to moist	0000000000	Orilled interval		
\mathbb{N}	33				, 10000, 10mp 10 million	000		Î :	
3 - V	45					000			
	47					00			
1.4	80			As above	e, wet, otm 0.3 ft. black-gray with	00		-	
X	85			petroleum		00			
0.6	80			As above	e, Dlack, saturated, v. strong n odor	000			
	60			F = 0	1 0401	00			
1	75			As above	e, brown, wet to saturated	000		-	
1.6	80					000			
	48			dense, we	n and graver, little clay; med. et to saturated, mild petroleum	7 P		-	
	58		A2B2 9 0709	Odor (fill) Brown, fin (SW)	ne to coarse sand, dense, wet		_		
	47		/	(311)			Composite sample of A2-B-26, A2-B-27, A2-B-28		
 	75	200		Total Dep	oth ~ 9 ft.				

DRII DRII	ROJECT NAME LTV Donner-Hanna Coke Plant ORING LOCATION Locomotive Shed ORILLING FIRM Buffalo Drilling Co. ORILLING METHOD Solit-Spoon/Hollow Stem Auger OGGED BY B. Squire						WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msi) NORTHING 9350 EASTING 8029		BORING NO. A2-B-27 G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/14/97 FINISH DATE 3/14/97	
ОЕРТН	S.S. SAMPLE RECOVERY (11./2 11.) BLOWS/6 in. HNu Reading (ppm) GPM) TYPINA THOM READING (Ppm)			MATERIAL DESCRIPTION	SYMBOL	REMARKS	ncotu			
3-4-6-						Gray, co	arse, angular limestone gravel (fill)	000000000000000000000000000000000000000	Orilled interval	7 7 4 5
8-		1.3	19 36 62 70	38	227° A28280709	to coarse to satura Gray, fine med. gra Maroon-ri	gular, fine to coarse gravel, fine is sand, med. dense to dense, wet ted, sl. petroleum odor (fill) is to coarse sand, little fine to vel, dense, wet (fill) ust ash, few white and tan led.dense, damp to dry (fill) th - 9 ft.	000000000	Composite sample of A2-B-26, A2-B-27, A2-B-28	

PROJECT NAM	OJECT HAME LTV Donner-Hanna Coke Plant				WATER LEVELS		BORING NO. A2-B	-28	
BORING LOCA	ATION.	Locom	otive Shed		DRILLING (ft-bgs)		G.S. ELEV.N/A CASING ELEV. N/A		
ORILLING FIR					WELL LEVEL (ft-msi)				
			Spoon/Hollow St	em Auger	NORTHING 9300	START DATE 3/14	/97		
.OGGED BY_	B. Sat	ure			EASTING 8035		FINISH DATE 3/14	/97	
S.S SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	0000	
3				Gray, co	arse, angular limestone gravei (fill)		Drilled interval	T ? 7 T T	
3-	7		A2B280709		en-brown clay, med. stiff to plasticity, damp to moist (CH)			-7	
	11		A20200709	to subrnd	e to coarse sand and subangular gravel (SW)	0 0 0	Composite sample of A2-B-26, A2-B-27, A2-B-28	۴	
/	11	6	i	Total Dep	ith - 9 ft	0 0		1	

	ROJECT NAME LTV Donner-Hanna Coke Plant				WATER LEVELS	•		
BORING LCC					ORILLING (ft-bgs)		G.S. ELEV.N/A	·
DRILLING FI					WELL LEVEL (ft-msl)		CASING ELEV. N/	<u>A</u>
			Spoon/Hollow Ste	am Auger	NORTHING 9260		START DATE 3/14/	<u>/97</u>
LOGGED BY_	8. Sq	uire	·		EASTING 7990		FINISH DATE 3/14	/97
DEPTH S.S. SAMPLE RECOVERY	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
2-				Demonte	ion debris (fill)		Drilled interval	-2
4- 1.7	11 13 9		A2B310204	Biack as damp (f		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Composite sample of A2-B-29, A2-B-30, A2-B-31	
6-	14 14			plasticity visible ((Diack clay, soft to med. stiff, med. y, sl. petroluem odor, oily sheen (CL to CH)	, v. v.		6

- wh-weight of hammer
 wr-weight of rods

BORING LOG

PROJECT NAME	LTV Donne	er-Hanna Coke P	¹ lant	WATER LEVELS		BORING NO. A2-B-	-30
BORING LOCATION				DRILLING (ft-bgs)		— G.S. ELEV.N/A	
DRILLING FIRM	Buffalo Dr	illing Co.		WELL LEVEL (ft-msl)		CASING ELEV. N/	<u>A</u>
DRILLING METHOD			m Auger	9240		START DATE 3/14/	/97
LOGGED BY B. S	quire			NORTHING 9240 EASTING 7980		FINISH DATE 3/14	/97
DEPTH S.S. SAMPLE RECOVERY (f1./2 f1.) BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
1-			Cemolitic	on debris (filf)		Drilled interval	
13 13 12 1.5 9		A2B310204	Black sai med. stif Black asi	indy clay, oily material, soft to iff, sl. plasticity, damp, oily (fill) th, few fine to med. gravel, loose,	I W W W W W W W W W W W W W W W W W W W	Composite sample of A2-B-29, A2-B-30, A2-B-31	
	cation base hammer	feet unless otherwid on visual-manual		5. ft-bgs-feet below ground su s 6. ft-msi-feet above mean sea	ırface	Page 1 of 1	-14

BORING LOG

BOR DRIL DRIL	ROJECT NAME LTV Donner-Hanna Coke Plant ORING LOCATION Former Tar Pit RILLING FIRM Buffalo Drilling Co. RILLING METHOD Split-Spoon/Hollow Stem Auger DGGED BY B. Squire						WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msi) NORTHING 9240		BORING NO. A2-B-31 G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/14/97	
.OG	GEO	BY_	3. SQU	ire			EASTING 8000		FINISH DATE 3/1	4/97
ОЕРТН	S.S. SAMPLE RECOVERY (ft./2 ft.) BLOWS/6 in. HNu Reading (ppm) OI BPMYS TYPOILTA TRANS OI BPMYS TYPOILTA TRANS			MATERIAL DESCRIPTION	SYMBOL	REMARKS	UTGOO			
1-						Coarse (demolition debris (fill)		Drilled interval	1
3-4-		1.4	12 17 11 12 7		A2B310204	Black as damp (fi		1 w w w w w w w w w w	Composite sample of A2-B-30 A2-B-31	
5 6	\bigvee	1.3	7 7 5 5			As above	e, saturated	1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-
8-	$\frac{1}{\sqrt{1}}$	1.0	7 7 8 43			As above	e, med. dense to dense, saturated	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
9-	\bigvee	1.4	38 13				own, fine sand, ash, oil/grease, wood, v. dense, dry (fill)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ŀ
) -	\bigvee		6		A2B311012		ay clay, med. stiff, high /, damp (CH)			4
	$/ \sqrt{}$	1.2	18 31		<u> </u>	Total Der	pth - 12 ft.			

2. USCS Classification based on visual-manual procedures
3. wh-weight of hammer
4. wr-weight of rods

5. ft-bgs-feet below ground surface6. ft-msi-feet above mean sea level

BORING LOG

			. 7	V Doos	or Honor Colin	Diana	WATER LEVELS		5000 vo A2-1	
					er-Hanna Coke -	Plant	•		BORING NO. A2-1	3-32
l .					eptor Sump	• •	DRILLING (ft-bgs)			
1					rilling Co.		WELL LEVEL (ft-msi)	<u>,</u>	CASING ELEV. N/A	
ORIL	LIN(3 ME1	HOD_	Split-9	Spoon/Hollow St	em Auger	0347		START DATE 3/1	7/97
LOGO	GED	BY_	B. Squ	ire	· · · · · · · · · · · · · · · · · · ·		NORTHING 9347		FINISH DATE 3/	17/97
<u> </u>			1	· · · · · · · · · · · · · · · · · · ·			EASTING 8130		TNISH DATE	
ОЕРТН	S.S. SAMPLE	RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	DEPTH
! 2						Coarse	concrete and brick (fill)		Drilled interval	Н
3-	\bigvee		3 2			med. gr	ned. to coarse sand, little fine to avel, little clay, loose, damp to wet (fill)			-2 -3
4 - (\bigvee	1.6	3 2 2			Brown, m	ned. to coarse sand, loose, wet to			4
6-(\triangle	1.0	6 50/0	8		saturate				ج و
7-	\bigvee		8 10 7				ag, ash, gravel, sand, loose, Id with yellow-green oily liquid (fill)	4 <u>4</u> 4 4 <u>4</u> 4		-7
8-		1.4	6 8	550		As above		<u>∆</u> ∆ ∆ ∆ ∆		-8
9-1	\bigvee	1,4	8 5 6	60		Black gr damp (C	ading to gray-black clay, stiff, L)			9
11-	$\sqrt{}$		3 9			As above	e, gray			10
12		0.6	18 21 9	80			e, grading to v. fine to fine sandy			-12
13-	X		21 16	10		C:dy, 501	t, damp to moist (CL)			-13
14-	\bigvee	1.8	17 1 2	40	ļ	coarse s	gray-black-brown, silty, fine to and, loose, saturated and			14
16		1.6	7 12 10	}		stiff, dam	ray, v. fine sandy clay, med. Op (SM and CL) Own clay, soft to med. stiff, med.			-1 6
17-	X		18 27		A2B321618	to high p	lasticity, damp (CH)			-17
18-1/		1.1	36	0		Total Der	oth - 18 ft.			
1. 2. 3.	usc wh-	S Clas weigh:	d Eleva ssificati t of han t of rod	on base imer	feet unless otherw d on visual-manua	vise noted I procedures	5. ft-bgs-feet below ground sur 6. ft-msi-feet above mean sea l	face evel	Page 1 of 1	• •

ORING LOCA	TION_ RM_But THOD_	Primary ffalo Or Solit-S			WATER LEVELS DRILLING (ft-bgs) WELL LEVEL (ft-msi) NORTHING 9520 EASTING 9097		BORING NO. A2-B- G.S. ELEV.N/A CASING ELEV. N/A START DATE 3/13/9 FINISH DATE 3/13/	97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
2 0.8	12	O	A2B350204	Black ar dense to Blue, find (fill)	on debris (fill) nd white, fine to med. sand, med. o dense, damp (fill) e to med. sand, med. dense, damp epth - 2.8 ft.		Composite sample of A2-B-33, A2-B-34, A2-B-35	-2 -3

MODEL I MAN	E _ []/	/ Donne	er-Hanna Coke P	lant	WATER LEVELS		BORING NO. A2-B-	34
ORING LOCA	TION_	Primary	/ Coolers		DRILLING (ft-bgs)		-G.S. ELEV.N/A	
RILLING FIF	M Buf	falo Dr	illing Co.		WELL LEVEL (ft-msl)		CASING ELEV. N/A	
			Spoon/Hollow Ste	m Auger	NORTHING 9510		START DATE 3/13/9	
OGGED BY_	B. Squi	re			EASTING 9072		FINISH DATE 3/13/	97
S.S. SAMPLE RECOVERY (ft./2 ft.)	BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	11,440
2	28			8lack ar	and brown, med. sand, med. dense e, damp to moist (fill)		Drilled interval	7
3	39 80/5	1.8	A2B350204	(fill) Dark bro dense, r	ay, cemented sand, v. dense, dry bwn, fine top med. sand,med. moist (fill) epth - 3.5 ft.		Composite sample of A2-B-33, A2-B-34, A2-B-35	- 1

BORING LO	CATION_ FIRM <u> </u>	Primary uffalo Dr Split-S		········	WATER LEVELS ORILLING (ft-bgs) WELL LEVEL (ft-msl) NORTHING 9520 EASTING 9047		BORING NO. A2-B-G.S. ELEV.N/A CASING ELEV. N/ START DATE 3/13/ FINISH DATE 3/13	/A /97
DEPTH S.S. SAMPLE RECOVERY	(ft./2 ft.) BLOWS/6 in.	HNu Reading (ppm)	ANALYTICAL SAMPLE ID		MATERIAL DESCRIPTION	SYMBOL	REMARKS	ОЕРТН
2-				Brown, fi	ine to coarse sand, few fine to avel, med. dense to dense, wet		Drilled interval	Т-2
NOTES:	10 14 16 8 22	O	A2B350204	(fill)	pth - 4 ft.		Composite sample of A2-B-33, A2-B-34, A2-B-35	

APPENDIX B	
ANALYTICAL RESULTS	
	,,,,

•••

Table B-2 **Complete Analytical Results** Soil Samples

TCL SVOCs** Acenaphthene macenaphthylene Anthracene macenaphthylene macenaphth	NTY ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	USEPA RBC1 120000.00 610000.00	A2P10204	A2P11113	A2B20204	A2B2091		PLE NUME		A21	A2		
TCL SVOCs** Acenaphthene m Acenaphthylene m Anthracene m Benzo(a)anthracene m Benzo(a)pyrene m Benzo(b)fluoranthene m Benzo(g,h,i)perylene m	ng/kg ng/kg ng/kg ng/kg ng/kg	120000.00 610000.00	DN DN	<u>ယ</u> 1.10	A2B20204	A2B209	A2B	<u> </u>	8	A2	. ≥	ծ	ج
TCL SVOCs** Acenaphthene m Acenaphthylene m Anthracene m Benzo(a)anthracene m Benzo(a)pyrene m Benzo(b)fluoranthene m Benzo(g,h,i)perylene m	ng/kg ng/kg ng/kg ng/kg ng/kg	610000.00	ND	1.10		=	A2B50204	A2B51012	A2B90204	A2B100204	A2B100911	A2P110206	A2P110911
Anthracene m Benzo(a)anthracene m Benzo(a)pyrene m Benzo(b)fluoranthene m Benzo(g,h,i)perylene m	ng/kg ng/kg ng/kg			!	3.30	ND	4.50	ND	ND	ND	ND	61.00	ND
Benzo(a)anthracene m Benzo(a)pyrene m Benzo(b)fluoranthene m Benzo(g,h,i)perylene m	ng/kg ng/kg			2.30	5.50	ND	13.00	ND	ND	54.00	ND	48.00	0.98
Benzo(a)pyrene п Велzo(b)fluoranthene п Велzo(g,h,i)perylene п	ng/kg	7.80	ND	4.30	2.90	ND	16.00	ND	ND	53.00	ND	39.00	ND
Benzo(b)fluoranthene m Benzo(g,h,i)perylene m		, .09	7.90	4.30	2.90	ND	33.00	ND	ND	150.00	ND	48.00	0.58
Benzo(g,h,i)perylene n	no/ka	0.78	6.70	3.40	2.40	ND	33.00	ND	, ND	100,00	ND	36.00	0.53
		7.80	8.40	3.80	2.60	ND	37.00	ND.	ND	130.00	0.48	40.00	0.62
∦ Benzo(k)fluoranthene1 n	ng/kg		3.10	1.20	1.10	ND	16.00	ND	ND	71.00	ND	ND	ND
	ng/kg	78.00	5.00	2.20	1.60	ND	21.00	ND	ND	83.00	ND	ND	ND
	ng/kg	610000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	ng/kg	410000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1	ng/kg	200000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ng/kg	290.00 7.80	ND 2.50	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
11	ng/kg ng/kg	8200.00	3.50 ND	1.20 ND	1.00 ND	ND	16.00	ND	ND	70.00	ND	ND	ND
1	ng/kg	0200.00	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
	ng/kg		ND	ND	ND	ND	ND	ND ND	ND	ND	ND AID	ND	ND
	ng/kg	160000.00	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
	ng/kg	10000.00	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
	ng/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1 1 1 1 1 1 1	ng/kg	780.00	6.10	3.40	2.20	ND	26.00	ND	ND	130.00	ND	43.00	ND
, · · · · · · · · · · · · · · · · · · ·	ng/kg	0.78	ND	0.59	ND	ND	5.40	ND	ND	22.00	ND	ND	ND
	ng/kg	8200.00	ND	3.40	0.81	ND	ND	ND	ND	ND	ND	31.00	ND
1,3-Dichlorobenzene m	ng/kg	180000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene m	ng/kg	180000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene m	ng/kg	240.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3'-dichlorobenzidine m	ıg/kg	13.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ng/kg	6100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		1000000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I	~ ~	10000000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ıg/kg	41000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.20
I	ıg/kg	4100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	ng/kg	4100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ng/kg	2000.00	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
l l	ig/kg	410.00	ND 44.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
[ng/kg	82000.00	11.00	9.60	11.00	ND	55.00	ND	ND	330.00	1.20	81.00	1.60
	ng/kg ng/kg	82000.00 3.60	ND ND	5.30 ND	3.90 ND	ND ND	11.00	ND	ND	34.00	ND	46.00	ND
•	ig/kg	73.00	ND	ND	ND	ND	DIA DIA	ND	ND	ND	ND	ND	ND
	g/kg	14000.00	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND
	g/kg	410.00	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
	ıg/kg	6000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
•	g/kg		ND	4.30	5.20	ND	ND	ND	ND	ND	ND	ND	ND ND
	g/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ZD ZD
		100000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table B-1 **Complete Analytical Results** Soil Gas Survey Donner-Hanna Coke Plant

	Compound	Benzene	Toluene	Ethylbenzene	mp-Xylene	o-Xylene	Total BTEX ¹	Naphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene*	Anthracene	Fluoranthene	Pyrene*	Total PAH ²
	Units	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug	ug
Sample Number	133098	0.11	0.05	0.01	0.05	0.03	0.25	0.00	0.00	0.00	0.01	0.00	0.00	0,00	0.00	0.00	0.01
	133099	0.11	0.09	0.02	0.04	0.03	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l L	133100	0.20	0.13	0.02	0.08	0.03	0.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[133101	0.13	0.24	0.01	0.03	0.02	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133102	0.61	0.18	0.01	0.07	0.03	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u> </u>	133103	0.38	0.15	0.05	0.06	0.04	0.68	0.40	0.02	0.00	0.00	0.02	0.04	0.02	0.00	0.00	0.50
	133104	0.49	0.50	0.03	0.12	0.07	1.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	133105	0.49	0.10	0.01	0.05	0.02	0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133106	0.23	0.14	0.01	0.08	0.04	0.50	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80
ll [133107	12.77	5.64	0.06	1.15	0.58	20.20	0.35	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.36
1	133108	0.15	0.18	0.04	0.16	0.05	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00
	133109	117.58	0.47	14.75	1.26	0.92	134.98	5.89	0.15	0.02	0.03	0.06	0.07	0.01	0.03	0.00	6.26
]	133110	6.06	6.50	0.10	1.09	0,29	14.04	0.10	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.12
1	133111	0.06	0.04	0.01	0.03	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133112	1.84	0.24	0.01	0.05	0.05	2.19	0.07	0.03	0.00	0.02	0.02	0.01	0.00	0.00	0.00	0.15
[133113	72.83	7.00	2.65	7.07	2.59	92.14	8.29	1.76	0.71	0.33	1.70	1.21	0.40	0.06	0.04	14.50
	133114	0.21	0.09	0.01	0.04	0.02	0.37	0.58	0.31	0.44	0.05	0.33	0.33	0.15	0.06	0.04	2.29
	133115	0.07	0.04	0.01	0.03	0.01	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133116	1.03	1.42	0.97	3.31	2.81	9.54	40.82	12.06	0.06	1.40	1.86	2.81	0.73	0.27	0.16	60.17
1	133117	0.22	0.36	0.04	0.14	0.12	0.88	1.59	0.91	0.02	1.53	0.97	0.94	0.32	0.05	0.03	6.36
	133118	0.65	0.10	0.01	0.03	0.00	0.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ī	133119	0.35	0.11	0.00	0.03	0.02	0.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133120	0.23	0.18	0.06	0.42	0.31	1.20	7.70	4.15	0.09	6.02	2.72	3.46	0.65	0.14	0.08	25.01
	133121	0.25	0.10	0.01	0.03	0.02	0.41	0.03	0.02	0.00	0.07	0.02	0.11	0.03	0.04	0.03	0.35
l l	133122	2.68	0.21	0.03	0.10	0.04	3.06	0.03	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.06
	133123	2.11	0.08	0.60	6.92	0.59	10.30	0.05	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.06
	133124	1.03	0.21	0.02	0.09	0.07	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133125	1.38	0.14	0.02	0.06	0.04	1.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
]	133126	1.18	0.20	0.03	0.10	0.05	1.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	133127	9.22	0.52	0.03	0.13	0.06	9.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ľ	133128	152.69	125.12	0.26	3.67	0.88	282.62	0.62	0.11	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.76
Trip Blank	133129	0.22	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Trip Blank	133130	0.14	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Note:

Benzene, Toluene, Ethylbenzene, Xiyenes
 Polynuclear Aromatic Hydrocarbons

^{*} Estimated values

Table B-2 Complete Analytical Results Soil Samples

								SAN	IPLE NUM	BER				
		SLINN	USEPA RBC ¹	A2P10204	A2P11113	A2B20204	A2B20911	A2B50204	A2B51012	A2B90204	A2B100204	A2B100911	A2P110206	A2P110911
METALS	Aluminum	mg/kg	1000000.00	4970.00	12100.00	52100.00	23600.00	27600.00	19800.00	29200.00	13800.00	25100.00	38600.00	24600,00
	Antimony	mg/kg	820.00	ND	ND	ND	ND	ND	ND	, ND	16.90	ND	ND	ND
	Arsenic	mg/kg	610.00	ND.	1.96	ND	3.36	8.30	4.19	7.56	61.80	4.71	7.55	ND
	Barium	mg/kg	140000.00	91.30	86.50	435.00	118.00	435.00	153.00	411.00	238.00	142.00	1140.00	441.00
	Beryllium	mg/kg	1.30	ND	0.63	6.11	1.16	3.18	1.22	3.49	1.98	1.08	4.41	1.89
	Cadmium	mg/kg	1000.00	1.47	ND	ND	ND	1.01	ND	ND	1.04	ND	ND.	ND
	Calcium	mg/kg		136000.00	1910.00	315000.00	2510.00	139000.00	3570.00	146000.00	69000.00	2100.00	206000.00	48700.00
	Chromium	mg/kg	1000000.00	1050.00	16.50	4.31	31.50	40.20	27.60	9.92	51.70	35.30	11.00	26.40
	Cobalt	mg/kg	120000.00	ND	8.68	ND	11.70	ND	14.30	ND	ND	41.60	ND	10.30
	Copper	mg/kg	82000.00		14.90	ND	26.90	142.00	32.80	17.00	164.00	31.60	11.40	26.60
	Iron	mg/kg	610000.00	157000.00	22800.00	4900.00	48700.00	45600.00	45100.00	36200.00	76700.00	47300.00	11500.00	31600.00
	Lead	mg/kg		172.00	10.40	ND	19.50	236,00	15.30	10.80	2800.00	17.20	93.40	28.20
	Magnesium	mg/kg		34200.00	2460.00	4570.00	4420.00	5340.00	4910.00	7610.00	5360.00	4870.00	17300.00	9490.00
	Manganese	mg/kg	47000.00	35700.00	183.00	5170.00	304.00	3430.00	693,00	4700.00	2660.00	499.00	5260.00	2360.00
	Mercury	mg/kg	610.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65
	Nickel	mg/kg	41000.00	23.10	23.30	ND	31.40	17.80	41.70	8.68	30.70	44.50	ND	24.90
	Potassium	mg/kg		343.00	1070.00	1950.00	4030.00	2370.00	1240.00	1860.00	951.00	2600.00	1220.00	1840.00
	Selenium	mg/kg	10000.00	7.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Silver	mg/kg	10000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Sodium	mg/kg		453.00	227.00	1080.00	502.00	822.00	431.00	747.00	418.00	149.00	707.00	731.00
	Thallium	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Vanadium	mg/kg	14000.00	484.00	24.50	ND	40.40	18.70	29.50	13.20	40.10	40.90	8.31	27.50
	Zinc	mg/kg	610000.00	565.00	57.10	14.80	116.00	187.00	99.20	124.00	325.00	146.00	118.00	90.00
	Total Cyanide	mg/kg		2.58	ND	95.20	ND	50.80	ND	228.00	169.00	ND	209.00	43.40
	Sulfide Reactivity	mg/kg		NA	NA	NA	NA	NA.	NA	NA	NA	N	NA.	NA
(Cyanide Reactivity	mg/kg		NA NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA.

Table B-2 Complete Analytical Results
Soil Samples

	T						SAM	IPLE NUM	BER				
	UNITS	USEPA RBC1	A2P10204	A2P11113	A2B20204	A2B20911	A2B50204	A2B51012	A2B90204	A2B100204	A2B100911	A2P110206	A2P11091
TCL VOCs Acetone	mg/kg	200000.00	ND	ND	ND	N							
Benzene	mg/kg	200.00	3.10	ND	ND	0.14	NĐ	0.02	ND	ND	1		
Bromodichloromethane	mg/kg	92.00	ND	ND	ND	ND	ND.	ND	ND	ND	3	ND	NI
Bromoform	mg/kg	720.00	ND	ND	ND	NI							
Bromomethane	mg/kg	2900.00	ND	ND	ND	N							
2-Butanone (MEK)	mg/kg	1000000.00	ND	ND	ND.	ND	ND	ND	ND.	ND:	ND	ND	NI
Carbon Disulfide Carbon Tetrachloride	mg/kg	200000.00	ND	ND	ND	DN	ND		ND	ND	ND	ND	NI
	mg/kg	44.00	ND	ND	ND	N							
Chlorobenzene Chloroethane	mg/kg	41000.00	ND	ND	ND	N							
Chloroform	mg/kg	820000.00 940	ND	ND	ND	NE							
Chloromethane	mg/kg mg/kg	440.00	ND ND	ND	ND	ND	NI						
Dibromochloromethane	mg/kg	68.00	ND ND	ND	ND.	ND	NE						
1,1-Dichloroethane	mg/kg	200000.00	ND ND	ND	ND	ND	NI						
1,2-Dichloroethane	mg/kg	63.00	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	NC
1,1-Dichloroethene	mg/kg	9.50	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NE
cis-1,2-Dichloroethene	mg/kg	20000.00	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	NE
trans-1,2-Dichloroethene	mg/kg	41000.00	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	NE
1,2-Dichloropropane	mg/kg	84.00	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	NE
cis-1,3-Dichloropropene	mg/kg	33.00	ND	ND ND	ND	ND	NE						
trans-1,3-Dichloropropene	mg/kg	33.00	ND	ND:	ND	ND	NC						
Ethylbenzene	mg/kg	200000.00	ND	ND	ND	ND	ND	ND	ND.	ND	0.03	ND 0.20	NE
2-Hexanone	mg/kg		ND	ND	9.30 ND	NC							
Methylene Chloride	mg/kg	760.00	ND	ND:	ND	NE NE							
4-Methyl-2-Pentanone (MfBK)	mg/kg	160000.00	ND	ND	ND	NE							
Styrene	mg/kg	410000.00	ND	ND	ND	NE NE							
1,1,2,2-Tetrachloroethane	mg/kg	220.00	ND	ND	ND	ND.	ND	ND	ND.	ND	ND	ND	NE
Tetrachioroethene	mg/kg	110.00	ND	ND	ND	NC							
Toluene	mg/kg	410000.00	0.99	ND	1.80	0.14	ND	ND	ND	ND	ND	ND	NC
1,1,1-Trichloroethane	mg/kg	72000.00	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	NE
1,1,2-Trichloroethane	mg/kg	100.00	ND	ND	ND	NC							
Trichloroethene	mg/kg	520.00	ND	ND	ND	NE							
Vinyl Chloride	mg/kg	3.00	ND	ND ND	ND.	ND	NE						
o-Xylene*	mg/kg	1000000.00	1.90	ND	ND	0.01	ND	ND	ND	ND	0.03	ND	NC
m+p-Xylene* Total VOCs	mg/kg	1000000.00	6.10	ND	2.60	0.02	ND	ND	ND	ND	0.03	4.30	NC.
	mg/kg		12.09	ND	4.40	0.31	ND	0.02	ND	ND	0.08	26.60	NC
Total BTEX	mg/kg		12.09	ND	4.40	0.31	ND	0.02	ND	ND	0.08	26.60	NE

Table B-2 Complete Analytical Results Soil Samples

				· • • • • • • • • • • • • • • • • • • •		T	SAM	PLE NUMI	BER		•-		
	UNITS	USEPA RBC¹	A2P10204	A2P11113	A2B20204	A2B20911	A2B50204	A2B51012	A2B90204	A2B100204	A2B100911	A2P110206	A2P110911
2-Methylphenol	mg/kg	100000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenoi	mg/kg	10000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	mg/kg	82000.00	ND	14.00	2.90	ND	3.60	ND	ND	63.00	1.20	460.00	13.00
2-Nitroanitine 3-Nitroaniline	mg/kg	120.00 6100.00	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND.	ND ND
3-Nitroannine	mg/kg mg/kg	6100.00	ND ND	ND ND	ND	ND	ND		ND	ND	ND	ND	ND
Nitrobenzene	mg/kg	1000.00	ND	ND ND	ND ND	ND ND	ND ND		ND			ND	ND
2-Nitrophenol	mg/kg	1000.00	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Nitrophenol	mg/kg	130000.00	ND	ND	ND	ND	ND ND	ND	ND ND	ND	לוא מא	ND	ND ND
n-Nitrosodimethylamine	mg/kg	0.11	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	l
n-Nitrosodiphenylamine	mg/kg	1200.00	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	
di-n-octylphthalate	mg/kg	41000.00	ND	ND	ND	ND	ND	ND	ND ND	ND:		ND ND	
Pentachtorophenol	mg/kg	48.00	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	
Phenanthrene	mg/kg	610000.00	2.90	12.00	13.00	ND	38.00	ND	ND	210.00		120.00	1.40
Phenol	mg/kg	1000000.00	ND	0.92	ND.	ND	ND	ND	ND	210.00 ND		ND	
4-bromophenyl-Phenylether	mg/kg	120000.00	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
4-chlorophenyl-Phenylether	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
n-Nitroso-di-n-propylamine	mg/kg	0.82	ND	ND	ND	ND	ND	ND	ND	ND.		ND	
Pyrene	mg/kg	61000.00	11.00	7.00	3.10	ND	49.00	ND	ND	250.00		60.00	1
1,2,4-Trichlorobenzene	mg/kg	20000.00	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
2,4,6-Trichlorophenol	mg/kg	520.00	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND ND
2,4,5-Trichlorophenol	mg/kg	20000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total SVOCs	mg/kg		65.60	84.31	65.41	ND	377.50	ND	ND	1750.00	4.93	1113.00	21.01
Total PAHs	mg/kg		65.60	75.69	59.40	ND	377,50	ND	ND	1750.00	4.93	1082.00	19.81
TCL PCBs 1016	mg/kg	140.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1221	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	DND	ND
1232	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	E
1242	mg/kg		ND	ND	ND	ND	ND	ND	ΝD	ND	ND	ND	ND
1248	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1254	mg/kg	41.00	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND.	ND
1260	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

NA Not Analyzed

ND Not Detected

BTEX compounds listed in blue.

PAH compounds listed in red.

¹ USEPA Region III Risk Based Concentrations for soil ingestion at industrial sites

^{*} RBC value is for total Xylenes

Complete Analytical Results
Soil Samples

		7						SAN	PLE NUM	BER				
		STINU	USEPA RBC¹	A2B170204	A2B210204	A2B240205	A2B250608	A2B251012	A2 <u>B28</u> 0709	(A2B310204	A2B311012	A2B321618	A2B350204	A2-B85 4-6
METALS	Aluminum	mg/kg	1000000.00	17600.00	35200.00	NA	35300.00	15400.00	17100.00	2090.00	24300.00	11800.00	44700,00	NA
	Antimony	mg/kg	820.00		ND	NA.	ND	ND	ND	ND	ND	ND	ND	NA
	Arsenic	mg/kg	610.00	6.23	28.80	NA.	2.14	3.36	13.70	2.56	ND.	1.91	3.44	N/A
	Barium	mg/kg	140000.00	295.00	510.00	NA.	232.00	104.00	208.00	54.20	184.00	53.70	541.00	NA
	Beryllium	mg/kg	1.30	1.92	3.69	NA.	4.39	1.21	1.31	ND	1.00	ND	4.76	NA
	Cadmium	mg/kg	1000,00	ND	2.58	NA	3.61	1.78	2.88	ND	0.94	0.81	ND	NA
	Calcium	mg/kg	Í	94700.00	187000.00	NA	117000.00	14600.00	95700.00	4180.00	4910.00	41700.00	246000.00	NA
	Chromium	mg/kg	1000000.00	19.40	153.00	NA	282.00	48.20	19.80	5.67	28.40	16.60	14.00	NA
,	Cobalt	mg/kg	120000.00	ND	ND	NA.	11.60	ND	ND	ND	9.20	8.92	ND:	NA
	Copper	mg/kg	82000.00	42.30	99.90	NA	138.00	65.80	42.00	20.80	24.50	28.10	22.90	NA
	Iron	mg/kg	610000.00	36700.00	68100.00	NA	58100.00	48000.00	81500.00	7180.00	32500.00	26800.00	41200.00	NA
	Lead	mg/kg		121.00	432.00	NA NA	54.70	76.60	55.10	11.30	51.70	12.10	ND	NA NA
	Magnesium	mg/kg		8220.00	26700.00	NA _i	27700.00	3490.00	4350.00	474.00	4320.00	15000.00	20300.00	NA
	Manganese	mg/kg	47000.00	2570.00	6600,00	NA	2370.00	376.00	1620.00	94.10	313.00	471.00	7360.00	NA
	Mercury	mg/kg	610.00	ND	ND	NA.	15.20	0.98	0.77	2.78	ND	ND	ND.	NA
	Nickel	mg/kg	41000.00	12.50	26.10	NA	319.00	36.00	21.70	6.44	31.80	26.30	8.49	NA
	Potassium	mg/kg		1880.00	1950.00	NA	2470.00	1110.00	1780.00	ND	2220.00	2080.00	2460.00	NA
	Selenium	mg/kg	10000.00		ND	NA	5.67	ND	4.12	ND	ND	ND	ND.	NA
	Silver	mg/kg	10000.00	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	NA
	Sodium	mg/kg		830.00	688.00	NA	702.00	182.00	1190.00	121.00	142.00	252.00	763.00	NA
	Thallium	mg/kg		ND ND	ND	NA.	ND	ND	ND	ND	ND	ND	. ND	NA.
	Vanadium	mg/kg	14000.00	14.80	26.10	NA	32.10	21.00	20.80	ND	26.80	18.80	12.00	NA
	Zinc	mg/kg	610000.00	181.00	1750.00	NA	504.00	143.00	657.00	21.90	232.00	70.90	26.10	NA
	Total Cyanide	mg/kg		191.00	97.30	NA	800.00	290.00	1.97	24.50	ND	ND	106.00	198.00
	Sulfide Reactivity	mg/kg		NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA
	Cyanide Reactivity	mg/kg		NA.	NA	NΑ	ND	ND	NA	NA	NA	NA	NA.	NA

Table B-2 Complete Analytical Results Soil Samples

							SAM	PLE NUMI	BER				
	SLINN	USEPA RBC ¹	A2B170204	A2B210204	A2B240205	A2B250608	A2B251012	A2B280709	A2B310204	A2B311012	A2B321618	A2B350204	A2-B85 4-6
TCL VOCs Acetone	mg/kg	200000.00	ND	ND	ND	0.25	0.07	₩ B	ND	ND	ND	ND	NA
Benzene	mg/kg	200,00	1	ND	ND	1.80	0.04	54.00	ND	15,00	0.01	0.01	NC
Bromodichloromethane	mg/kg	92.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Bromoform	mg/kg	720.00	ND	ND	ND	ND	ND	ND	ND	ND	NO	ND	N/A
Bromomethane	mg/kg	2900.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ni/A
2-Butanone (MEK)	mg/kg	1000000.00	ND	ND	ND	ND	0.02	ND	ND	ND	ND	ND	N/A
Carbon Disulfide	mg/kg	200000.00	ND	Z	ИD	ND	ND	ND	ND	ND	i	ND	NA
Carbon Tetrachloride	mg/kg	44.00	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	NA
Chlorobenzene	rng/kg	41000.00	ND	ND.	NĐ	ND	ND	ND	ND	ND		ND	NA
Chloroethane	mg/kg	820000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Chloroform	mg/kg	940	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	NA
Chloromethane	mg/kg	440.00	ND	ND	ND	, ND	ND	ND	ND	ND	ND	ND	NA.
Dibromochloromethane	mg/kg	68.00	ND	ND	ND	ND	DA	ND	ND	ND	ND	ND	NA
1,1-Dichloroethane	mg/kg	200000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,2-Dichloroethane	mg/kg	63.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
1,1-Dichloroethene	mg/kg	9.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
cis-1,2-Dichloroethene	mg/kg	20000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
trans-1,2-Dichloroethene	mg/kg	41000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA.
1,2-Dichloropropane	mg/kg	84.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
cis-1,3-Dichloropropene	mg/kg	33.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
trans-1,3-Dichloropropene	mg/kg	33.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N.A
Ethylbenzene	mg/kg	200000.00	ND	ND	ND	ND	ND	22.00	ND	2.90	ND	ND	11.00
2-Hexanone	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND		ND	NA
Methylene Chloride	mg/kg	760.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	NA
4-Methyl-2-Pentanone (MIBK)	mg/kg	160000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
Styrene	mg/kg	410000.00	ND	ND	NO	ND	ND	ND	ND	ND	1	ND	NA
1,1,2,2-Tetrachioroethane	mg/kg	220.00	ND	ND	ND	ND	ND	ND	ND.	ND	ND ND	ND	NA NA
Tetrachloroethene Toluene	mg/kg	110.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	NA
	mg/kg	410000.00 72000.00	ND ND	ND	ND	ND	ND	200.00	ND	4.20		ND ND	20.00
1,1,1-Trichloroethane	mg/kg mg/kg	100.00	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	NA NA
Trichloroethene	mg/kg mg/kg	520.00	ND	ND ND	ND.	ND ND	ND ND	ND	ND	ND	ND	ND	
Vinyl Chloride	mg/kg	3.00	ם מא	ND:	ND.	ND ND	ND ND	ND ND	ND ND	ND CIN	ND ND	ND ND	NA NA
o-Xylene*	mg/kg	1000000.00	ND	ND	ND ND	ND ND	ND	89.00	ND	ND 6,40	ND ND	ND ND	84.00
m+p-Xylene*	mg/kg	1000000.00	ND ND	ND DN	ND ND	ND ND	ND ND	89.00 340.00	ND ND	6.40 18.00	ND DN		
Total VOCs	mg/kg	***************************************	ND	ND	ND	2.05	0.13	(705.00) ND	46.50	0.02	0.03	94.00 209.00
Total BTEX			ND		ND	1.80		705.00			r		
IOTAL BIEX	mg/kg		ND	ND	ND	1.80	0.04	/05.00	ND	46.50	0.02	0.01	209.0

1 ,

t i

1 |

1

Table B-2 Complete Analytical Results
Soil Samples

							SAN	IPLE NUM	BER				
	UNITS	USEPA RBC1	A2B170204	A2B21020	A2B240205	A2B250608	A2B251012	A2B280709	A2B310204	A2B311012	A2B321618	A2B35020	A2-B85 4-6
TCL SVOCs** Acenaphthene	mg/kg	120000.00		4								2	-6
Acenaphthylene			ND ND			6.30	ND	ND	/ ND	ND	ND	ND	- 1
Anthracene		1	ND		9.80	25.00 42.00	ND	ND	28,00	2.40		55.00	29
Benzo(a)anthracene	mg/kg					67.00	ND	ON	26.00	2.10	ND		5
Benzo(a)pyrene	mg/kg		6.30		24.00	56.00	ND	ND	28.00	1.40	ND	39.00	17
Benzo(b)fluoranthene	mg/kg	7.80	7.90	1	31.00	82.00	ND		24.00	1.10	ND	39.00	9
Benzo(g,h,i)perylene	mg/kg		5,60		7.60	23.00	ND	ND.	31.00	1.40	ND	41.00	15
Benzo(k)fluoranthene	mg/kg	78.00	fil .				ND.	ND	ND	ND.	ND	21.00	4
Benzyl Alcohol	mg/kg	610000.00	ND		ND	30.00 ND	ND	ND	14.00	0.70	ND	19.00	9
Butyi Benzyl Phthalate	mg/kg	410000.00	ND		ND	ND	ND	ND ND	ND	ND	ND	ND	
di-n-Butylphthalate	mg/kg	200000.00	ND		ND:	ND	ND	ND	ND	ND	ND	ND	
Carbazole	mg/kg	290.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	mg/kg	7.80	5.30	48.00	9.10	26.00	ND	ND ND	ND	ND	ND	ND	
4-Chloroaniline	mg/kg	8200.00	ND	ND	ND		ND	ND	13.00	ND	ND	19.00	5
bis(-2-Chloroethoxy)methane	mg/kg		ND.	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	
bis(2-Chloroethyl)ether	mg/kg		ND	ND	ND	ND		ND ND	ND	ND	ND	ND	
2-Chloronaphthalene	mg/kg	160000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Chlorophenol	mg/kg	10000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2'-oxybis(1-Chloropropane)	mg/kg		ND	ND	ND	ND	ND ND	ND.	ND ND	ND ND	ND	ND	
Chrysene	mg/kg	780.00	ND	100.00	24.00	63.00	i i	ND	ND	ND	ND	ND	
Dibenzo(a,h)anthracene	mg/kg	0.78	ND	ND	ND	10.00	ND	ND	27.00	1.40	ND	34.00	14
Dibenzofuran	mg/kg	8200.00	ND	63.00	ND	19.00	ND ND	ND ND	ND	ND	ND	5.30	1
1,3-Dichlorobenzene	mg/kg	180000,00	ND	ND	ND	ND.	ND	ND	13.00	1.60	ND	18.00	
1,2-Dichlorobenzene	mg/kg	180000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	mg/kg	240.00	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	
3,3'-dichlorobenzidine	mg/kg	13.00	ND	ND	ND	ND		ND	ND	ND	ND	ND	
2,4-Dichlorophenol	mg/kg	6100.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Diethylphthalate	mg/kg	1000000.00	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	
Dimethyl phthalate	mg/kg	1000000.00	ND	ND	ND	ND		ND	ND	ND	ND	ND	
2,4-Dimethylphenol	mg/kg	41000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,4-Dinitrophenol	mg/kg	4100.00	ND	ND	ND	ND	ND ND	ND	ND	2.30	ND	ND	
2,4-Dinitrotoluene	mg/kg	4100.00	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	
2,6-Dinitrotoluene	mg/kg	2000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
bis(2-ethylhexyl)phthalate	mg/kg	410.00	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	
Fluoranthene	mg/kg	82000.00	7.00	310.00	55.00	120.00	1.00	ND	ND 60.00	ND	ND	ND	
Fluorene	mg/kg	82000.00	ND	110.00	8.30	33.00	ND	ND ND		2.90	ND	100.00	500
Hexachlorobenzene	mg/kg	3.60	ND	ND	ND	ND	ND	ND ND	23.00 ND	2.60	ND	31.00	86
Hexachlorobutadiene	mg/kg	73.00	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	
Hexachlorocyclopentadiene	mg/kg	14000.00	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	
Hexachloroethane	mg/kg	410.00	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	
Isophorone	mg/kg	6000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Methylnaphthalene	mg/kg		ND	ND	ND	14.00	ND	29.00	22.00	ND	ND	ND	
4,6-dinitro-2-Methylphenol	mg/kg		ND	ND	ND	ND	ND	29.00 ND	ND	3.80	ND	ND	
4-chloro-3-Methylphenol	mg/kg	100000.00	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	1

Table B-2 **Complete Analytical Results** Soil Samples

	SAMPLE NUMBER												
	UNITS	USEPA RBC¹	A2B170204	A2B210204	A2B240205	A2B250608	A2B251012	A2B280709	A2B310204	A2B311012	A2B321618	A2B350204	A2-B85 4-6
2-Methylphenol 4-Methylphenol	mg/kg	100000.00	ND	ND	ND	ND	ND		Two Two	ND	1	ND	NA.
Naphthalene	mg/kg mg/kg	10000.00 82000.00	ND ND	ND 110.00	ND	ND	ND		ND	ND		ND	
2-Nitroaniline	mg/kg	120.00		ND	6.40 ND		ND			52.00			
3-Nitroaniline	mg/kg	6100.00	ND	ND ND	ND	ND ND	ND ND		ND ND	ND ND			
4-Nitroaniline	mg/kg	6100.00	ND	ND	ND ND	ND	ND ND		ND	ND		1	
Nitrobenzene	mg/kg	1000.00	ND	ND ND	ND.	ND UN	ND ND		ND ND	ND ND	1		
2-Nitrophenol	mg/kg	1000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND ND		
4-Nitrophenol	mg/kg	130000.00	ND	ND	ND	ND	ND		ND ND	ND DN	ND ND		
n-Nitrosodimethylamine	mg/kg	0.11	ND	ND	ND	ND	ND		ND ND	–	ND		NA NA
n-Nitrosodiphenylamine	mg/kg	1200.00	ND	ND	ND	ND	ND	ND	ND	ND			
di-n-octylphthalate	mg/kg	41000.00	ND	ND	ND	ND	ND			ND	1		
Pentachlorophenol	mg/kg	48.00	ND	ND	ND	ND	ND			ND	1		NA NA
Phenanthrene	mg/kg	610000.00	ND	280.00	47.00	110.00	0.91	ND	64.00	5,40			370.00
Phenol	mg/kg	1000000.00	ND	ND	ND	ND	ND	ND	ND	ND	ND		NA
4-bromophenyl-Phenytether	mg/kg	120000.00	ND	ND	ND	ND	ND		ND	ND	ND	ND	NA NA
4-chlorophenyl-Phenylether	mg/kg		DN	ND	ND	ND	ND	ND	ND	ND		ND	NA NA
n-Nitroso-di-n-propylamine	mg/kg	0.82	ND	ND	ND	ND	ND	ND	ND	ND			NA NA
Pyrene	mg/kg	61000.00	5.40	220.00	40.00	110.00	0.67	ND	45.00	2.40			
1,2,4-Trichlorobenzene	mg/kg	20000.00	ND	ND	ND	ND	ND	ND	ND	ND		ND	NA NA
2,4,6-Trichlorophenol	mg/kg	520.00	ND	ND	ND	ND	ND	ND	ND	ND		ND.	NA.
2,4,5-Trichtorophenol	mg/kg	20000.00	ND.	ND	ND	ND	ND	ND	ND	ND	ł	ND	NA
Total SVOCs	mg/kg		37.50	1929.00	310.20	894.30	2.58	77.00	688.00	83.50	ND	634.20	2258.20
Total PAHs	mg/kg		37.50	1866.00	310.20	861,30	2.58	48.00	653.00	75.80	ND	616.20	2258.20
TCL PCBs 1016	mg/kg	140.00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1221	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1232	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1242	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1248	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1254	mg/kg	41.00	ND	ND	ND	ND	ND	ND	ND,	ND	ND	ND	ND
1260	mg/kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

BTEX compounds listed in blue.

PAH compounds listed in red.

¹ USEPA Region III Risk Based Concentrations for soil ingestion at industrial sites * RBC value is for total Xylenes

NA Not Analyzed

ND Not Detected

			NYSDEC	SAMPLE	NUMBER
		UNITS	GW Stds ⁽¹⁾	A2-P1	A2-P11
METALS	Aluminum	mg/L	NA	0.713	0.122
	Antimony	mg/L	NA	ND	ND
	Arsenic	mg/L	0.025	0.011	ND
ļ	Barium	mg/L	1	0.088	ND
	Beryllium	mg/L	NA	ND	ND
<u></u>	Cadmium	mg/L	0.088	ND	ND
	Calcium	mg/L	NA	427.000	137.000
	Chromium	mg/L	0.05	ND	ND
	Cobalt	mg/L.	NA	ND	ND
	Copper	mg/L	0.2	ND	ND
	iron	mg/L	0.3	2.110	0.610
	Lead	mg/L	0.025		ND
	Magnesium	mg/L	NA	31.000	42.200
	Manganese	mg/L	0.3	0.523	0.505
	Mercury	mg/L	0.002	ND	ND
	Nickel	mg/L	NA	ND	ND
	Potassium	mg/L	NA	10.900	5.520
	Selenium	mg/L	0.01	0.017	0.016
	Silver	mg/L	0.05	ND	ND
	Sodium	mg/L	20	104.000	48.500
- 	Thallium	mg/L	NA NA	ND	ND
	Vanadium	mg/L	NA	ND	ND
	Zinc	mg/L	0.3	0.020	0.119
	Total Cyanide	mg/L	0.1	0.212	1.250

		NYSDEC	SAMPLE	NUMBER
	UNITS	GW Stds ⁽¹⁾		A2-P11
TCL VOCs Acetone	mg/L	0.05	ND	ND
Benzene	mg/L	0.0007	12.000	0.086
Bromodichloromethane	mg/L	NA	ND	ND
Bromoform	mg/L	NA	ND	ND
Bromomethane	mg/L	NA	ND	ND
2-Butanone (MEK)	mg/L	0.05	ND	ND
Carbon Disulfide	mg/L	0.05	ND	ND
Carbon Tetrachloride	mg/L	0.005	ND	ND
Chlorobenzene	mg/L	0.005	ND	ND
Chloroethane	mg/L	0.05	ND	ND
Chloroform	mg/L	0.007	ND	ND
Chloromethane	mg/L	NA	ND	ND
Dibromochloromethane	mg/L	0.05	ND	ND
1,1-Dichloroethane	mg/L	0.005	ND	ND
1,2-Dichloroethane	mg/L	0.005	ND	ND
1,1-Dichloroethene	mg/L	0.005	ND	ND
cis-1,2-Dichloroethene	mg/L	NA	ND	ND
trans-1,2-Dichloroethene	mg/L	0.005	ND	ND
1,2-Dichloropropane	mg/L	NA	ND	ND
cis-1,3-Dichloropropene	mg/L	NA	ND	ND
trans-1,3-Dichloropropene	mg/L	NA	ND	ND
Ethylbenzene	mg/L	0.005	ND	ND
2-Hexanone	mg/L	NA	ND	ND
Methylene Chloride	mg/L	0.005	ND	ND
4-Methyl-2-Pentanone (MiBK)	mg/L	0.05	ND	ND
Styrene	mg/L	NA	ND	ND
1,1,2,2-Tetrachloroethane	mg/L	0.005	ND	ND
Tetrachloroethene	mg/L	0.005	ND	ND
Toluene	mg/L	0.005	2.500	0.028
1,1,1-Trichloroethane	mg/L	0.005	ND	ND
1,1,2-Trichloroethane	mg/L	0.005	ND	ND
Trichloroethene	mg/L	0.005	ND	ND
Vinyl Chloride	mg/L	0.002	ND	ND
o-Xylene	mg/L	0.005*	ND	ND
m+p-Xylene	mg/L	0.005*	2.000	0.005
Total VOCs	mg/L		16.500	0.119
Total BTEX	mg/L		16.500	0.119

		NYSDEC	SAMPLE	NUMBER
	UNITS	GW Stds ⁽¹⁾	A2-P1	A2-P11
TCL SVOCs Acenaphthene	mg/L	0.02	ND	ND
Acenaphthylene	mg/L	0.02	ND	0.021
Anthracene	mg/L	0.05	ND	0.006
Benzo(a)anthracene	mg/L	0.000002	ND	ND
Benzo(a)pyrene	mg/L	0.000002	ND	ND
Benzo(b)fluoranthene	mg/L	0.000002	ND	0.007
Benzo(g,h,i)perylene	mg/L	0.005	ND	ND
Benzo(k)fluoranthene	mg/L	0.000002	ND	ND
Benzyl Alcohol	mg/L	NA_	ND	ND
Butyl Benzyl Phthalate	mg/L	0.05	ND	ND
di-n-Butylphthalate	mg/L	0.05	ND	ND
Carbazole	mg/L	NA NA	0.290	0.021
Indeno(1,2,3-cd)pyrene	mg/L	0.000002	ND	ЙD
4-Chloroaniline	mg/L	0.005	ND	ND
bis(-2-Chloroethoxy)methane	mg/L	NA	ND	ND
bis(2-Chloroethyl)ether	mg/L	NA	ND	ND
2-Chloronaphthalene	mg/L	NA	ND	ND
2-Chlorophenol	mg/L	0.05	ND	ND
2,2'-oxybis(1-Chloropropane)	mg/L	NA	ND	ND
Chrysene	mg/L	0.000002	ND	ND
Dibenzo(a,h)anthracene	mg/L	0.05	ND	ND
Dibenzofuran	mg/L	0.005	ND	0.006
1,3-Dichlorobenzene	mg/L	NA	ND	ND
1,2-Dichlorobenzene	mg/L	0.0047 ⁽²⁾	ND	ND
1,4-Dichlorobenzene	mg/L	0.0047 ⁽²⁾	ND	ND
3,3'-dichlorobenzidine	mg/L	NA	ND	ND
2,4-Dichlorophenol	mg/L	0.001	ND	ND
Diethylphthalate	mg/L	0.05	ND	ND
Dimethyl phthalate	mg/L	0.05	ND	ND
2,4-Dimethylphenol	mg/L	NA	0.640	ND
2,4-Dinitrophenol	mg/L	0.005	ND	ND
2,4-Dinitrotoluene	mg/L	NA	ND	ND
2,6-Dinitrotoluene	mg/L	0.005	ND	ND
bis(2-ethylhexyl)phthalate	mg/L	0.05	ND	ND
Fluoranthene	mg/L	0.05	0.340	0.012
Fluorene	mg/L	0.05	0.260	0.007

	•	NYSDEC	SAMPLE	NUMBER
	UNITS	GW Stds ⁽¹⁾	A2-P1	A2-P11
Hexachlorobenzene	mg/L	0.00035	ND	ND
Hexachlorobutadiene	mg/L	NA	ND	ND
Hexachlorocyclopentadiene	mg/L	NA	ND	ND
Hexachloroethane	mg/L	NA	ND	ND
Isophorone	mg/L	0.05	ND	ND
2-Methylnaphthalene	mg/L	0.05	0.570	0.015
4,6-dinitro-2-Methylphenol	mg/L	NA	ND	ND
4-chioro-3-Methylphenol	mg/L	0.005	ND	ND
2-Methylphenol	mg/L	0.005	0.950	ND
4-Methylphenol	mg/L	0.05	ND	ND
Naphthalene	mg/L	0.01	6.000	0.400
2-Nitroaniline	mg/L	0.005	ND	ND
3-Nitroaniline	mg/L	NA	ND	ND
4-Nitroaniline	mg/L	0.005	ND	ND
Nitrobenzene	mg/L	0.005	ND	ND
2-Nitrophenol	mg/L	0.005	ND	ND
4-Nitrophenol	mg/L	0.005	ND	ND
n-Nitrosodimethylamine	mg/L	NA	ND	ND
n-Nitrosodiphenylamine	mg/L	NA	ND	ND
di-n-octylphthalate	mg/L	0.05	ND	ND
Pentachlorophenol	mg/L	0.001	ND	ND
Phenanthrene	mg/L	0.05	0.550	0.014
Phenol	mg/L	0.001	4.500	ND
4-bromophenyl-Phenylether	mg/L	NA	ND	ND
4-chlorophenyl-Phenylether	mg/L	NA	ND	ND
n-Nitroso-di-n-propylamine	mg/L	NA	ND	ND
Pyrene	mg/L	0.05	ND	0.010
1,2,4-Trichlorobenzene	mg/L	NA	ND	ND
2,4,6-Trichlorophenol	mg/L	NA	ND	ND
2,4,5-Trichlorophenol	mg/L	0.001	ND	ND
Total SVOCs	mg/L		14.100	0.519
Total PAHs	mg/L		7.150	0.476

Notes:

NA = Not Available

ND = Not Detected

BTEX compounds listed in blue

PAH compounds listed in red

⁽¹⁾ NY State Dept. of Env. Conservation
Class GA Groundwater Quality Standards

⁽²⁾ Applies to sum of para (1,4-) and ortho (1,2-) isomers only.

^{*} GW Standards value is for total Xylenes

ATTACHMENT B-4

- WELL CONSTRUCTION DIAGRAMS
 - Area I
 - Area III
 - Area IV

OMWSHEET.DWG 9-20-90

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMW-1

PROJECT LTV STEEL DATE	T END DRILLING CO
PROJECT NO. 0848-263 GEO	DRILLER(S) L. Schroeder
LOCATION DONNER- HAND	DEVELOPMENT METHOD(S) DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
BENTONITE	DEPTH TO TOP OF GROUT/BOTTOM OF CEMENT 3'
	AND MATERIAL Sch 40 PVC
	BOREHOLE DIAMETER 8 "
	DEPTH TO CENTRALIZERS NA
BENTONITE -	- SENTRALIZERS NA
SEAL X	DEPTH _6.0
\	PELLET SIZE 38" pellets
→	DEPTH 8.0
	SAND SIZE OON
	DEPTH _ 8.0
	95. III <u>- 15.5 -</u>
SAND FILTER PACK	SCREEN DIAMETER, Z "
	SLOT SIZE, ,006 AND MATERIAL Sch 40 PVC
	DEPTH
	DEPTH _/3 · O
	BACKFILL MATERIAL NATIVE SIL
	BOTTOM OF BOREHOLF 14
NOTE: DEPTHS ARE FEET BELOW GRA	DF

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMW-1.

·			
PROJECT LTV STORL	START 3/5/	97 DATE 3/5/97	orilling coBRho brls
PROJECT NO. <u>0849 - と</u> 63	FIELD	77 11.13	DRILLER(S) L. Schroeber
1 KOCC 1 NO. <u>5 5 7 5 5 5 5</u>	— GEOLOGIST	3.4. H. 1407	
LOCATION DOWNER.	1/ 51.		METHOD(S) 41/V* HSA
ECCATION	MANUA SITE		DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD		LOCKABLE	
CEMENT- BENTONITE GROUT	•	RISER DIAM	TOP OF GROUT/surface CEMENT //O METER Z" RIAL S.L. YO RC
			DIAMETER _ 8"
BENTONITE - PELLET SEAL		DEPTH TO CEN	TRALIZERS
		DEPTH	3/0 "
├ ─────────────────────		PELLET SIZE	
		DEPTH _ Z	<u>o'</u>
		SAND SIZE	001
		DEPTHZ	<u>.o.</u>
SAND FILTER PACK		SCREEN DIAI SLOT SIZE, AND MATERI DEPTH7.	METER, 2" AL Sch 40 PVC
		DEPTH	
			TERIAL NA
NOTE: DEPTHS ARE FEET BE	OW GRADE	BOTTOM OF	BOREHOLE

OMWSHEET.DWG 9-20-90

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMW-2

PROJECT LTV STECL START DATE 3/7	
PROJECT NO. 0848-263 FIELD GEOLOGIST -	J.P. H. HOJ DRILLER(S) L. Schooper DRILLING DRILLING
LOCATION DOWNER-HAMMA	DRILLING METHOD(S) DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
CEMENT- BENTONITE GROUT	DEPTH TO TOP OF GROUT/Suchace BOTTOM OF CEMENT 6.00 RISER DIAMETER 2" AND MATERIAL Sch 40 TVC BOREHOLE DIAMETER 8"
BENTONITE - PELLET SEAL	DEPTH TO CENTRALIZERS NA DEPTH 6.0' PELLET SIZE 3/8"
SAND FILTER	DEPTH <u>B.O</u> SAND SIZE <u>OON</u> DEPTH <u>B.O</u> SCREEN DIAMETER, 2".
PACK	SLOT SIZE, 1006 AND MATERIAL S.h 40 PVC DEPTH 13.0
NOTE: DEPTHS ARE FEET BELOW GRADE	BACKFILL MATERIAL NATIVE CANTINGS

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMW-Z

PROJECT LTY STEEL	START DATE 3/1	/97 DATE 3/7/97	DRILLING COBALO DALO
PROJECT NO. 0848-263	FIELD GEOLOGIST .	J.P. H:16-2	DRILLER(S) L. Schrober DRILLING
LOCATION DONNER	- HANNA		METHOD(S) DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD		LOCKABLE	
CEMENT- BENTONITE GROUT		BOTTOM OF	TOP OF GROUT/ CEMENT <u>Survice</u> METER 2" RIAL <u>Sch 40 PVC</u>
			DIAMETER 8"
BENTONITE — PELLET SEAL		DEPTH	TRALIZERS
		PELLET SIZE	3/8"
		DEPTH SAND SIZE	· · · · · · · · · · · · · · · · · · ·
		DEPTH _2,	<u>0'</u>
SAND FILTER PACK		SCREEN DIAI SLOT SIZE, AND MATERI DEPTH 7	AL Sh 40 PVC
			TERIAL NA
NOTE: DEPTHS ARE FEET BELOW	W GRADE	ROLLOW OF	BOREHOLE 7.6

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMIN)-3

PROJECT LTV. Steel START 3	DATE 3/10 DRILLING CO. BRID. DRIG
PROJECT NO. 0848-263 GEOLOGIS	ST J.P. H. HON DRILLER(S) DRILLING DRILLING
LOCATION DONNER- HANNE	DEVELOPMENT METHOD(S) METHOD(S)
SLOPING CEMENT PAD CEMENT— BENTONITE	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING NA LOCKED? XYES NO STICK-UP Z. DEPTH TO TOP OF GROUT/
GROUT	BOTTOM OF CEMENT SUCRACE RISER DIAMETER Z " AND MATERIAL Sch 40 PVC BOREHOLE DIAMETER 8 " DEPTH TO CENTRALIZERS NA
BENTONITE — PELLET SEAL	DEPTH
SAND FILTER PACK	SCREEN DIAMETER, Z'SLOT SIZE, AND MATERIAL Sch 40 PVC
NOTE: DEPTHS ARE FEET BELOW GRADE	BACKFILL MATERIAL NA BOTTOM OF BOREHOLE 17.3

OVERBURDEN MONITORING WELL SHEET

WELL NO. DAMIN - 3

PROJECT TV Steel START 3/	
PROJECT NO. 0848-263 FIELD GEOLOGIST	
LOCATION _ DONNEr - HANNA	METHOD(S) DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD CEMENT- BENTONITE GROUT	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
BENTONITE — PELLET SEAL	BOREHOLE DIAMETER
SAND FILTER PACK	SAND SIZE OON DEPTH 7.7 SCREEN DIAMETER, 2" SLOT SIZE, 1006 AND MATERIAL Sch 40 PVC DEPTH 12.7
NOTE: DEPTHS ARE FEET BELOW GRADE	BACKFILL MATERIAL NA- BOTTOM OF BOREHOLE 12.7

MALCOLM PIRNIE

OVERBURDEN MONITORING WELL SHEET

WELL NO. BHANN-4

PROJECT LTV Steel DATE 3/	11/97 DATE 3/1/97 DRILLING CO. BALO DAILLING
	DRU (59/6)
PROJECT NO. 0948-263 GEOLOGIS	ST J.D. 14:1402 DRILLING DRILLING
	METHOD(S) HASA
LOCATION DOWNER. HANNA	DEVELOPMENT METHOD(S)
	- Indus
	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
CEMENT- BENTONITE GROUT	DEPTH TO TOP OF GROUT/ BOTTOM OF CEMENT Surface RISER DIAMETER 2" AND MATERIAL SL 40 PVC
BENTONITE -	DEPTH TO CENTRALIZERS
SEAL	DEPTH _3.0 '
	PELLET SIZE 3/8"
	DEPTH
	SAND SIZE OON
	DEPTH _7 . D
SAND FILTER PACK	SCREEN DIAMETER, Z"
	SLOT SIZE, ,006 AND MATERIAL Sch 40 PVC
	DEPTH _/ Z. 0
	DEPTH /2.2
	BACKFILL MATERIAL NA
NOTE: DEPTHS ARE FEET BELOW GRADE	BOTTOM OF BOREHOLE /4.2

MALCOLM PIRNIE

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHIMW-S

	0740		
PROJECT _	TV-Stee L DATE	T 3/12/97 END 3/12	197 DRILLING CO. DOLG
i i			
PROJECT NO.	OB48-263 GEO	IELD LOGIST JP 11:11	on DRILLING
			METHOD(S) 4 1/4 11 HSA
LOCATION _	Donnier - Ha	INNA	DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD		LOCK	AND LENGTH OF KABLE PROTECTIVE EL CASING KED?_XYESNO K-UPZ.0
CEMENT- BENTONITE GROUT		RISE AND	TH TO TOP OF GROUT/ TOM OF CEMENT Surface R DIAMETER 2" MATERIAL SLY 40 PVC
25		J	HOLE DIAMETER
BENTONITE - PELLET SEAL		DEPTI	H_3.5′
	\times	PELLE	ET SIZE 3/8 chips
			1 <u>5,0</u>
		SAND	SIZE DON
		DEPTH	7.0
SAND FILTER PACK		SCRFF	N DIAMETER, 2"
		SLOT :	SIZE, 1006 MATERIAL <u>S.h. 40 PV</u>
	::::::::::::::::::::::::::::::::::::::	DEPTH	12.0
		DEPTH	12.0
		i i	ILL MATERIAL NA
NOTE: DESTUS	105	BOTTON	M OF BOREHOLE 12.0
MOTE: DEPTHS	ARE FEET BELOW GRAD	ε Ι	

OVERBURDEN MONITORING WELL SHEET

WELL NO. DHMW-6

,		
_	PROJECT LTV Steel START 3/1	2/97 DATE 3/12/97 DRILLING CO. BATO DETE
	PROJECT NO. 0848-263 GEOLOGIS	
-	GEOLOGIS	DRILLING
	LOCATION DONNEr-HANNA	DEVELOPMENT
	7 77775 (1 7 1	METHOD(S)
-	SLOPING CEMENT PAD	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING NO LOCKED? NO STICK-UP Z , \omega'
	BENTONITE GROUT	DEPTH TO TOP OF GROUT/ BOTTOM OF CEMENT Suchace RISER DIAMETER Z" AND MATERIAL Sh 40 Pro BOREHOLE DIAMETER 9"
	BENTONITE - PELLET SEAL	DEPTH TO CENTRALIZERS _ WA
		DEPTH _2.0'
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PELLET SIZE 3/8"
		DEPTH _4.0'
		SAND SIZE CON
		DEPTH 6.0
9-20-90	SAND FILTER PACK	SCREEN DIAMETER, Z SLOT SIZE, , OCL AND MATERIAL SLL YO PVC DEPTH _//, O
DMWSHEET.DWG		DEPTH 11.3
TEET		BACKFILL MATERIAL OON SAND
MM	NOTE: DEPTHS ARE FEET BELOW GRADE	BOTTOM OF BOREHOLE 12.3
0	THE PELOW GRADE	

OMWSHEET.DWG 9-20-90

OVERBURDEN MONITORING WELL SHEET

WELL NO. 43-38-3

PR	OJECT	START DATE	3/14/91 END	3/14/97	DRILLING CO.	_
				•	DRILLER(S)	<u>-</u>
					DRILLING METHOD(S)	_
LC	DCATIONk	Inchine	Agen 3	·	DEVELOPMENT METHOD(S)	_ _
CEME CEME	ONITE -			- STEEL CASI LOCKED? X - STICK-UP DEPTH TO T BOTTOM OF - RISER DIAM AND MATER	PROTECTIVE NG YESNO 1.0 TOP OF GROUT/ CEMENT _AIA	
BENTON PELLE SEA	ΞT \ //			DEPTH O	3/8	
SAND F				DEPTH _ 7.00 BACKFILL MA	TERIAL SANS	· · · · · · · · · · · · · · · · · · ·
NOTE:	DEPTHS ARE	FEET BELOW GRAD	E	BOTTOM OF E	BOREHOLE 7.0	

MALCOLM PIRNIE

OVERBURDEN MONITORING WELL SHEET WELL NO. A3-SB-

PROJECT	START	END DATE	DRILLING CO.
PROJECT NO.			DRILLER(S)
LOCATION	•		METHOD(S)
SLOPING CEMENT PAD CEMENT-	3	SIZE A LOCKAI STEEL LOCKED STICK-	ND LENGTH OF BLE PROTECTIVE CASING
BENTONITE -		BOTTON RISER AND M BOREHO	TO TOP OF GROUT/ A OF CEMENT NA DIAMETER 21 ATERIAL Sch 40 Prc. DLE DIAMETER 8" CENTRALIZERS NA
PELLET SEAL		PELLET DEPTH _ SAND S	Suchace SIZE 3/8° 3.0' IZE 00N 3.0'
SAND FILTER PACK		SLOT SIZ AND MA	DIAMETER, 2 '' ZE, 006 TERIAL <u>Sch 40 AVC</u> 8.0'
NOTE: DEPTHS ARE FEET B	FLOW CRADE	BACKFILL	OF BOREHOLE _/O'

MALCOLM PIRNIE

OWWSHEET.DWG 9-20-90

OVERBURDEN MONITORING WELL SHEET

WELL NO. ALSB- AZ

PROJECT LTV PHI/PHII DATE 3/25	5/97 DATE 3/25-197 BAIO DE 6
PROJECT NO. 1948-263 GEOLOGIS	ST J. H. 1 LO.) DRILLER(S)
LOCATION Area I Republic	DRILING METHOD(S) 41/4" HS A DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD CEMENT— BENTONITE GROUT	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
BENTONITE - PELLET SEAL	RISER DIAMETER 2" AND MATERIAL SLL 40 PUC BOREHOLE DIAMETER 8" DEPTH TO CENTRALIZERS NA
SEAL SEAL	DEPTH 8.0' PELLET SIZE 3/8" DEPTH 10.0 SAND SIZE 00N DEPTH 12.0
SAND FILTER PACK	SCREEN DIAMETER, Z" SLOT SIZE, .006 AND MATERIAL SUL YO PVC DEPTH 17.0
NOTE: DEPTHS ARE FEET BELOW GRADE	BACKFILL MATERIAL - NA BOTTOM OF BOREHOLE 17.2

OVERBURDEN MONITORING WELL SHEET

WELL NO. AL-SB- FZ

PROJECT LTV Steel D		DRILLER(S)
PROJECT NO. 0848-263	GEOLOGIST _ J. P. 1/1/4	DRILLING DER
LOCATION LTV/Republic	Shal Plant	DEVELOPMENT METHOD(S) DEVELOPMENT
·		
SLOPING CEMENT PAD	LOCK STEEL	AND LENGTH OF ABLE PROTECTIVE L CASING
CEMENT- BENTONITE GROUT	ВОТТ	H TO TOP OF GROUT/ DM OF CEMENT R DIAMETER z"
	AND	MATERIAL SCHOPUC.
	BOREH	HOLE DIAMETER 8"
BENTONITE - PELLET	DEPTH TO	O CENTRALIZERS NA
SEAL	DEPTI-	T SIZE 3/8"
	DEPTH	1_5,0'
	SAND	SIZE OON
	DEP TH	8.01
SAND FILTER PACK	SLOT :	N DIAMETER, Z". SIZE, ,006 IATERIAL _Sh 40 PVC
	DEPTH	14.0
	X ł	ILL MATERIAL NA
NOTE: DESTRUCTION OF THE	ВОТТО	M OF BOREHOLE 14.0
NOTE: DEPTHS ARE FEET BELOW (RADE !	†

MONITORING WELL SHEET WELL NO. A1-58-16

		- TILL OTTEL	• {	
	PROJECT LTV PAT PATE DATE 3/19	ST DATE 3/19/97	DRILLING CO.	_
	PROJECT NO. DB48 263 GEOLOGIST	5.8. Hilton	DRILLER(S)	_ _ _
	LOCATION Aren I LTV/Re		METHOD(S)	-
	LOCATION _ MER 1 LIV/RA	Julli Her Phot	DEVELOPMENT METHOD(S)	_
	SLOPING CEMENT PAD CEMENT- BENTONITE	LOCKED?_X	PROTECTIVE NO YES NO	
	GROUT	BOTTOM OF	CEMENT	
			RIAL SCH 41 PVC	
		•	DIAMETER 8"	
	BENTONITE PELLET	DEPTH TO CEN	TRALIZERS NA	
	SEAL .	DEPTH Z	<u>o'</u>	
		PELLET SIZE	3/8"	l
		DEPTH 4.		
		SAND SIZE .		
		— DEP IH	<u></u>	
9-20-90	SAND FILTER PACK	SCREEN DIAM SLOT SIZE, AND MATERIA DEPTH 11.	AL SCH 40 PVC	1 発養が
		3555	· ·	7
DMWSHEET.DWG		DEPTH BACKFILL MA	TERIAL NA	
DAWSH	NOTE: DEPTHS ARE FEET BELOW GRADE	BOTTOM OF E	BOREHOLE 11.0	

MALCOLM PIRNIE

OMWSHEET.DWG 9-20-90

OVERBURDEN MONITORING WELL SHEET

WELL NO. AL-SB-P

PROJECT LTV PH E/PHZ D	
PROJECT NO. 0848-263	FIELD DRILLER(S) DRILLER(S) DRILLING DRILLING DRILLING
LOCATION Area I L	V/Resublic Stee PAJA DEVELOPMENT METHOD(S) DEVELOPMENT METHOD(S)
SLOPING CEMENT PAD CEMENT— BENTONITE	SIZE AND LENGTH OF LOCKABLE PROTECTIVE STEEL CASING
GROUT	DEPTH TO TOP OF GROUT/ BOTTOM OF CEMENT Switche RISER DIAMETER Z" AND MATERIAL Sch 40 Pre BOREHOLE DIAMETER
BENTONITE — PELLET SEAL	DEPTH 3,5 PELLET SIZE 3/8" chins DEPTH 5,5 SAND SIZE 00 N DEPTH 7,0
SAND FILTER PACK	SCREEN DIAMETER, 2". SLOT SIZE, ,006 AND MATERIAL Sch 40 PVC DEPTH
NOTE: DEPTHS ARE FEET BELOW G	BACKFILL MATERIALNA

ATTACHMENT B-5

 FIELD STRATIGRAPHIC BOREHOLE LOGS

	CLIEN	T			···	······································	JOB NO FIEL	D BOREHOLE LOG
								PREHOLE NO. AI-SB- A'S, A.
							LOGGED BY ST	ARTED 14:00 \$ 3/25 10 37
	METH OF		SOIL				FII FII	(ISHED 19 <u>? ?</u>
	BORIN	_	, 				CORE DIA EL	EVATIONS: DATUM
	SAMPLE NÖ.	TYPE OF	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor, Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc. ,
F, II)	0.4	8			32	17 FILL SAND AND GONNEL DANK BON Fine grand F. Cos Grand, Sing MD brick 19 FILL MED-DANK Silt, Brick, some oil-like Stain	Advance marks to 8'bgs
કુ! _{ને} મે	2	1	10	30 /00 - -	.4/		if Fill Slag AND Crs Grand, slight oil	5:45
5:17	3-	3,8	12	7 4 3	1.3/		101 Silt dark gran-black trace clay, plant organics	
			14					
. 1		Ď.2	9	10 90 180 180	1:2		Rie Shin in/ Cro Gravel and Slag, Sulfur Oppe	Angers to 8' bas prior to som pling & SB-AI
10.8	2	9.4		33 34 14 14	1.0 2.0		3 Silt, dark gray-black	
s:lt	3		12					
•			14				•	

	CLIEN	т					JOB NO FIEL	D BOREHOLE LOG
	PROJECT							
				PREHOLE NO. A1-SB-A2				
	CONTRACTOR LOGGED BY							ARTED 10:10 A 3/25 10 97 IISHED 13:30 3/25 10 97
	OF BORIN		ROCK					EVATIONS: DATUM
	SAMPLE NO.	TY THE PERSON	DEPTH	BLOWS 'H	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.
	1	0.2	0	9 31 32	1//7/	0.V	1.5 FILL SAND AND GRAVEL, Mes BON FIJE MEN grain of Cos Board, Callles and Sha 23"dia	dry
(3)	2	0.2	3	18 32 40 100	9 1.1	0.2	9 All A Above	Spool rebusal 0 3.1"
	3-	0.2	4	13	12/	0.2	1.2 Fill SAND & GAME w/ - 1/47 metal collies	Day
W	4	0.4	6 7	- 23	7	0.2	19 EN NY have say of Care land	DRY
B.3	5	0.6		73 /00	4 - /	12	14 Fill w/ Dil/TAR ON All Surfaces	
oit	6	12.6	70 71	50 40:	1/1	0.4	17 Fill Gravel and Slay Woil from and All surfaces!	
V	7	12.8	12	15 65 100	13	4.6	112 FILL SAND AND GRAVEL W heavy to 1/TAR	34-5
HI SAID	8	3H. ⁾	14 15	1/32	1.5/	6.2	17 Fill SAMDE GONNEL W/ OIL/TAGE 18 SAND MID-TIK BONT. FRE GONE & W/ STREE SILT Oil throughout	Awared Augus to 17' to 10's hall 2' well

							JOB NO FIE	LD BOREHOLE LO
	LOCAT	ION				·		41- SR-R 8-
							LOGGED BY	BOREHOLE NO. AI-SB-B, 83 BTARTED 10:45 M 3/26 19 97
	METH							FINISHED 11:10 4 3/26 19 97
	BORIN	G:	ROCK				·	ELEVATIONS: DATUM
	SAMPLE NO.	TYPE	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring , Tooting and Sampling Procedures , Water Less and Gain Drilling and Tooting Equipment ,Etc.
C;\	1	1	10 11	- 9 8	.3/ /1.5	0.2	12 51/7 7044- SIACK, Shoult and It's standing	Advances Angers to 12' through slag al
2.2 5AND	2	1,2	12	47 47	12/	1,2	12 Silt yno Grand, gray-black, sharp withet 15 SAND Mes brown, Fine-Men grain, trace	Composite somple
	-		14		72.5		- Silt	(o_1/2-12,5
,		7:						
						•		
		•						
	Sheet	Nó	l ir	1.				MALCOLM

						JOB NO F	IELD BOREHOLE LO
			-				BOREHOLE NO. AI-SB-B-Z
		_				LOGGED BY	STARTED 07:00 M 3/26 19 97
METH							FINISHED 10:30 M 3/26 19 97
BORIN	,	ROCK				CORE DIA.	ELEVATIONS: DATUM
SAMPLE NO.	TYPE 400	DEPTI	BLOWS W	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Samplin Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
1	3.2	0 -	15 100 	,9/ /,9	0,~	f-crs, sub-rus cravel	SOOON refused (0 10,91595 Maist
て	4.4	3	25 100 -	1.0/	ć.V	1.5 Fill SAND & Grand A/A W/ Black Oil-like Standing (-/215-3.4 Slag	
3 :	μA	4 5		7/-	λiΑ-	Advanced angers to 6' through apparently debris	
4	0.8	6 7	21 100 	.5/	2,2	. E Slay & Gravel w/cubble > 3" dia.	Moist - SAT
5	ها.٥	8 9	35 100	0.2/	N	12 FIL, 51A9	Moist - SAT
ِ ه	ابل أ)] \0	/00 		6.2	,2 Fill, 5/Ag.	
7	5m2	12 13	6	15/		14 Fill Slav - Granal slave contact	SAT SAMPLED FOR
8		14 15					Composites SVCCS MITS CN P 10:20 C 12:14"

Sheet No. ___ef___

MAICOLM

	PROJE	CT					JOB NO F	BOREHOLE NO. A1-58-83
		RACTO	OR				LOGGED BY	8TARTED M 3/26 19 97 FINISHED M 3/26 19 97
	BORIN	G:	ROCK				CORE DIA.	ELEVATIONS: DATUM
ال:	SAMPLE NO.	Ä	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Melature Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Bering ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
14			/o 	10 12 4 3	1.1/		.5 Fill Grand and Stage, cro to 2" dia, sharp (and fact w/) frace Clay 16 Silt Men Bisson, trace Clay	Advances angers to 10' bas Prior to sampling Mais t
	2		13					
			74					
		· •••				•		
			•					
•								

Sheet No. 1 of 1

	CLIENI PROJE	CT _	Ph	1 St	II	mspir	ATTIVE TO THE PROPERTY OF THE	TELD BOREHOLE LOC
	LOCAT CONT! METH(OF BORING	RACTO	•	4	Halo	TSA HSA	LOGGED BY RCH CORE DIA. 81/2"	BOREHOLE NO. AI-SB-CBI BYARTED 3 M 27 10 97 FINISHED 2 M 27 19 97 ELEVATIONS: DATUM
:	SAMPLE NO.		DEPTH	BLOWS 'N'	RECOVERY	MOISTURE THE NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Oder ,Etc.	NOTES: Boring ,Tooling and Sampling Procedures ,Water Less and Gain Drilling and Tooling Equipment ,Etc.
FILL			0				angered to polo 7.0' refusal model location piled angers, replaced took on lead, onger angered to bio.0'	edagain
10.5 Kative	Į.		10	1963 1963 1964	2.0	8.0	0.3 Fleb , Sharp contact move Du (black) product 1.3 DK gray black Sixt At. (LAY grading to F.S	HE: 144 ppn AND sample taken for 6.11:40 composite CL, C.3
						•		
•			•					
	•							
•		•						

start 11 80 end 12:00

Sneet No.___ef_

CLIENT PROJEC LOCAT CONTR METHO OF BORING	ION _	Pho Ste	But	Tny	Dril	LOGGED BY BY 61	D BOREHOLE LOC OREHOLE NO. A SB-CZ VARTED 3 M 27 19 97 NISHED 3 M 27 19 97 LEVATIONS: DATUM
SAMPLE NO.	TYPE	DEPTH	BLOWS 'N' RECOVERY		MOISTURE.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring , Teeting and Sampling Procedures , Water Loss and Gain Orliling and Teeting Equipment ,Etc.
		0 2	4 5 21 30	13/20	0.0	0.3 DK Brown SILT and GRAVEL, dense, moist 0.9 Orange brown f-med SAND, dense, moist, some proots 0.3 same SAND AIA, WIGHAUEL	
2		2 4		0.5	2.0	Dense de Brown Black SILT w/ Slag	45: 1000 ppm
3		4		10		In Slay - awared do 6.0'	
4		<u>9</u>	42 73 47 95	2.0		0.3 DKG++y/Black SILT and E. SAND W/ Sign 0.3 Dense Slag W/ Sum 5/LT, moist - dry 0.3 Large piece of slag	HS: 480 ppm
.5		\& \ \ \ \ \	127	0.6		0.7 Danse Slag w/ Some SILT, moist, block metallic color me same AlA, slag, day-moist	HS: 1540 flow
6		10	7.7 70 152 46	0.4	_	Slag toundia share - little to no recovery	1.
7	•	12	9 16	2.0	480	Donse DyBraun Black SILTW GRAVEL. Some Slag grading to Orange Brown Hen It Brown dense Boarse SAND moist, large preses of Stag	HS: 400 ppm Sample toking - VOC @ 10 45, Al-SD-C2 (12-14)
8		9	92	0,20	(no recovery	composite CI, C3
Sneet	Ně	•1			eggi.	Start: 9:45 end	MALCOLM PIRNIE

							JOB NO FIEL	D BOREHOLE LOG
	LOCAT	ION _ RACTI	OR				LOGGED BY BCH ST	OREHOLE NO. A1-5B-C2 (ARTED 3 M 27 19 97 NISHED 3 M 27 19 97 EVATIONS: DATUM
ENC	SAMPLE NO.	TVPE	DEPTH	BLOWS 'N'	RECOVERY	MOISTURE TIN MG.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Sering ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.
17.0 UAY	9		16	200-9	2.0	202	C.8 Pense Black coarse SIAND in Stay GRAVEL Some SULT and CLAY dense, wet-moist O.D. Discrey Black to SILT and C. SAND dense, moist O.Y DV Grey CLAY and some SILT, stratified w) black	HS: 160 ppm
						-	thin bands	composite ci, a c3
I				•				
		•						
						1		
			<u> </u>					

Sneet No. ____er

940042 PMd: 10:51

FIELD BOREHOLE LO PROJECT PLUS TOWN THE ATTAL LOCATION THE MUST THE ATTAL CONTRACTOR TO THE STATE THE ST	CLIEN	IT	LIV	Sto	0.1		MSU8.717 200					
BOREHOLE NO. #1-58-C3 CONTRACTOR TO HILL D'Illing CONTRACTOR TO HILL CHIEF TO HILL GHT I NICOT PASSION MOTES BAPIL DESCRIPTION: Color, Teature Classification. Compactions Consistency, Melature Condition. Consistency Consistency Consistency Consistency Consistency	PROJE	ECT_	PY	ري کوريا	Tr	vesti	La Tion	LD BOREHOLE LOC				
METHOD SOIL HE WAS CORE DIA. SIZ STATED 3 M 27 19 97 19 19 19 19 19 19 19 19 19 19 19 19 19	LOCA	LOCATION										
Soliting: ROCK #DS/ 19th CORE DIA. 81/2" SOLITING: ROCK #DS/ 19th CORE DIA. 81/2" SAMPLE DESCRIPTION: Color. Texture Classification. Compactances/Consistency, Melature Condition. Compactances/Consistency, Melature Condition. Compactances/Consistency, Melature Condition. Weathering/Frosturing, Includence, Oder Etc. Diffling and Texture Equipment Etc. Diffling and Texture Equipment Etc. Diffling and Texture Equipment Etc. Diffling and Texture Condition. Compactances/Consistency, Melature Condition. Compactances/Consistency, Melature Condition. Proceedings and Bompling Proceedings of the Condition. Compactances/Consistency, Melature Condition. Proceedings and Bompling Proceedings of the Condition. Compactances/Consistency, Melature Condition. Proced Inchmin 155W, august to 10.0° (chusal part of the Condition). Proceed Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0° (chusal part of the Condition). Record Inchmin 5°C, Compactato to 10.0°												
BORING: ROCK #DS/ IAN. CORE DIA. 812 "ELEVATIONS: DATUM SAMPLE DESCRIPTION: Color, Texture Classification. Comparines/Consistency, Meleture Cendition. Comparines/Consistency, Meleture Cendition. Comparines/Consistency, Meleture Cendition. Comparines/Consistency, Meleture Cendition. Drilling and Testing Equipment Etc. Authority Color of Saw, authority Color			SOIL	•								
SAMPLE DESCRIPTION: Color, Texture Classification. Companiese/Consistency, Moisture Condition. Weathering/Fracturing, Including, Oder Lite. August of the Condition of the Color of the	BORIN		ROCK	-#								
But this and the second of the	SAMPLE NO.	TYPE	DEPTH	BLOWS 'K'	RECOVERY	MOISTURE THE MO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition,	NOTES: Bering Tooting and Samelles				
Sport refusal Capter to 110, refusal concrete feed 8 10.0' moved location 15' & angreed to 5.0' - refusal Moved location 10' & author to 1.0' - refusal Moved location 10' and author to 1.0' - refusal Moved location 30' And original location, suspend to 8.0' S 12 1.0 S 13 2.0 1.2 What (ilentifies studie) What (ilentifies studie) A 2.0 Capter Ala, wood Capter							moved location (55W, suggest 10.0'					
10 10 10 10 10 10 10 10	8		9				moved location 25 E, angered to 5.0' - refusal moved location 25 E, angered to 1.0 - refusal					
13 12 12 12 12 13 12 14 15 10 14 14 10 14 14 10 14 14			δ	12	. λ		Moved location 30' SW argered to 1.0 - refusal Moved location 30' SW original location, surgered to 8.0'					
2			10	13 13 10	2.0		WIT CHECKES! SINGS)	H3: 26ppm				
4 . II	2	_	17	9 10	20	2.0		HS: 13 Ppn				
4 · 1 20 14 20 14	3			19	/ [_						
	4	. [世	,/ I	14	some APR, WI & SAMO					
						-	Start: 13:00					

Start: 13:00 end: 15:40

	CLIENT	τ					JOB NO FIEL	D BOREHOLE LOG
								1. 92 1-12
	LOCAT	ION _						PREHOLE NO. A1-SB-D3/D
	CONTR	RACTO)R			-,-,		ARTED 14:35 6 3/26 19 97
	METHO	OC	SOIL .				FII	118HED M 10 <u>97</u>
1	OF BORIN	G:	ROCK				CORE DIA EL	EVATIONS: DATUM
Æŧ	SAMPLE NO.	TYPE 3	DEPTH	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.
0.2			10	8	1.3/	SCAN	, 2 Fill from Mrs SAND Mcs Brund -9/24	Advances Augers to 10'
5.17	1	1,2	11	15 Ce	2.0	68	1.1 Silt and SANN, black-gone oil shain	prior to sampling &
4			12				Through and	collectes vocs
۵۴۴	2				1 /			6 14,40 Cm 10-15,
	[13	 	1/] {		SAMPLES DE VOCS
			14	 	 			10-12
	1	•						Composite 10-14
1]							
								-
	4		 	 	ł	1	Anger rehisal, moves location 1/2/5' Soull	<u> </u>
					1 .			
ļ								
F: []	} ,	زر	70	7	1.1/		1.1 Fill Gravel F- Crs, book	2B-D1
<i>F</i> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 / 1	0.2	17		12.0	0.2		
1 7 .				3	1/4/3			
2.2	١.,		12	,,5	.7/		15 Sit dank gray, trave Clay, carbonized	SAY
5.17	6	0.2	17	12	1 /	0.2	plant fragments	
l				5	120			
								<u> </u>
	j		 	 	1	1		
					<u> </u>			
,			<u> </u>		1			
•	}		 -	 	1	1		
					<u> </u>		•	

Shoot No.____of__

MAICOLM

	JECT_		· · · · · · · · · · · · · · · · · · ·				LD BOREHOLE LO
	TRACT HOD F	'OR				LOGGED BY	BOREHOLE NO. A SB - D Z BYARTED 13.55 6 3/26 19 97 FINISHED 14'30 6 3/26 19 97
SAMPLE NO.	TYPE HOUSE	DEPTH	BLOWS 'K'	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	MOTES: Boring .Tosting and Samplic Procedures .Water Less and Gain Drilling and Tosting Equipment ,Ete
1	0.2	0	32 102 -	.7/ /.8	52. ² .	= 7 Fill Silt Mes Bon w/some in Grand	Special re D.B.
Z	0.2	3	14 16 17	1.3/	6.2	.5 Fill Communities debis, res book, slavy metal debis, res book, 8 Fill 5AND dack know res Filles grading	Wet
3-	0.2	5	20 /6:5	.4/-		To black w/s.me slas Cos Gravel 14 F.11 Costanchis & Robers, red brick, slag w/ metal reban	species refused to 4,7°
4	0,2	<u>ن</u> 7	13 8 8	۵/	0.2	.8 Fill As above w/ black conders, slag	M015+
5		8 9	<u>#</u> 2	7	-	dulling character indication of large diameter	
6	0.4	JO 71	29 21 100	1.11	0.2	Fine, w/ trace s. It Augur return & Ilis bas more borchole	Spood return (emprox
7	0.4	J2 13	10 5 7	1.2/	0.2	, 4 Gravel u/ SANT & Slag. , 8 S.It Men-Drk grav, trace-little (by, carbosid	5/47 /4:10 S/AT /4:10 Collected #55 (companies 2006)
8		14. 15					6/2-14/ CN

. . .

CLIENT	r					JOB NO F []	ELD BOREHOLE LOG
PROJE	CT						
LOCAT	10N _			•••			BOREHOLE NO. AT-SB-EI/E-
CONTR	RACTO)R				LOGGED BY	STARTED 15:30 6 3/24 10 97
METHO OF	OD	SOIL					FINISHED 15: 45 M 3/24 19 97
BORING	a:	ROCK				CORE DIA.	ELEVATIONS: DATUM
	1050		¥	RY	RE .	SAMPLE DESCRIPTION: Color, Texture Classification,	HOTES: Bering ,Testing and Sampling
<u> </u>	w	TH.	\$	Š ×	5×	Compactness/Consistency, Moisture Condition,	Procedures ,Water Less and Gain
SAMPLE NÓ.	TYPE	DEPTH	BLOWS	RECOVERY %	MOISTURE TIN NO.	Weathering/Freaturing, Includions, Odor ,Etc.	Drilling and Tooting Equipment ,Etc.
		4	17	1.17		III FILL SILT AND SAND , dark brown	Advances Angers to 4.0'
	0 1		11,		0.3	Some fire Grave	prior to sampley a
/	·	2	5	20			Moist-WCT AT-SB-EI
		lo	.3	10/		10 Fill 5:1+ AND SANT AS Above W/ STAR	SA T
2	0.4	<u> </u>	10	' /	0.2	Slag & Cro Gonnel, cobbles /> 3" din	
-	_	7	8	12.3		<u> </u>	
		8					
4			ļ		-		
¦ ∤	4		-	{	4	L = £3	
			 				Advances angers to
1	1						40' Drise to
	ł			1		V	SAMPLING
		4	30			.5 Fill SANDSTONE Cobbie, White tout, CCS	Spord Cetura La AUROX
	0.4		100	5	4.5		4,5-1
	0.1	7		/3	0.0		
 		7.	15	7		IG FILL SANDSTONE ALA	
	0.4	<i>-12</i>	29	1.6/	. 2		Samples for SVOC
	v]	1	13	20	0.3	.3 SANDSTONE WIS FINE GRAVEL	MTLSECN
		2	9	120			P 7-8.
	ł	8	 	ł			
	1			1 1			
	1						
	ł			}			
	1		 	1 :	1 1		
i i	1		Ī	T I	i	•	

Shoot No. Lot 1

MALCOLM

 \wp

	CLIEN	T	_				JOB NO FI	ELD BOREHOLE LOG
	PROJE							
	LOCAT	TION _					<u> </u>	BOREHOLE NO. AI-SB-E2
	CONT	RACTO	OR			<u> </u>	LOGGED BY	STARTED #1,30 \$ 3/24 19 97 FINISHED M 3/24 19 97
	METHO OF	OD	SOIL					FINISHED # 3/24 18 97
	BORIN	G:	ROCK				CORE DIA.	ELEVATIONS: DATUM
:	SAMPLE NO.	TYPE SECTION	DEPTH	M. SMOTO	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Loss and Gain Drilling and Tooting Equipment ,Etc.
			9	61	,5/	School	15 Fill Silt dark brown with slag	100 CN+1, 2'
	.	0.2	 ; 	100	1/2	03		100 CN+7.2
					1./			
ًا الم			2	730	1 /		No Recovery	drilling indiating of
FILL	2	NX	3		{	-		RR bollast is
1511	•			=	1,3		1	crushes stane
			4	24	1,3/		,3 Fill SAND & Grank L+ Gray, sharp control	
i	13 -	0^{ν}	<u></u>	13 K	! "/ ·	0.4	1.0 Fill Silt dank bound of sime Rive blace	Samples her Vocs
			13	حج ا	2.0		50NO, pitalen oxid	@_ 3.05
,			6	3	1		5 FILL SAND MIND SILF dark brown black	
	4	0,2		3_	! "/	0.2	loose time Sind , trace Rime Grand	<u></u>
	ι (├ ─	42	12.0	4		
8.3_			43	3	1.3/	 	. 3 FILL SAND W. S. S. T. MUD BOWN 9MY	3,4+
	1	6.4		2]"%	0.2	EVE-MAN SAND IN GRAVE BIR GRAVE	
JM	٠,		9	2	120	↓ .	1.0 Clay, Man -your-black, trace-1. H	
الألا			10	-	 	 	Silt, trace fine Granel, planet frag	Samples VOC.
7.1	1				1 /	1		EZ- 4-6'
/21 <i> </i>	8		Ш		[/]	ł		
			12	 	 	1		Composite
	7				1 /	j		4.0-5.0
	[13		1/			
	<u> </u>	-	14	1—	 	-		
+	8	İ			† / [1		
	0		75		1/	Į.		
				I	1'	B .	•	l

Sheet No. ____of__

MALCOLM

 $^{\mathsf{W}}$

							JOB NO FIE	LD BOREHOLE LOG
								BOREHOLE NO. AI-SB-F1
							LOGGED BY	STARTED 13:70 6 5/21 19 97
	METH OF BORIN		BOIL					FINISHED 14:00 1 3/21 19 97 ELEVATIONS: DATUM
	SAMPLE NO.	TYPE	DEPTH	BLOWS 'H'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring .Teeting and Sampling Procedures .Water Less and Gain Drilling and Teeting Equipment .Etc.
//	1	0.2	3	7 60	1,0/		FILL 1.6 S.It dark-brow black with iron, slag, Crs Gravel	Advanced Angers to Sometimes Spend returne 3.3
MAY	_	0.2	4 5	3 2 5 2	5/		.2 Fill A/A: .3 Clay dock gray-black gradier to gray-yollow/matted, trace Silt	•
	-		6					SAMULA (3 4-6; By SVUC
								MTLS CN
		,						
1								· · · · · · · · · · · · · · · · · · ·

Shoot No. ______

CLIE	4T					JOB NO FIEL	D BOREHOLE LOG
	ECT_						
	TION _			REHOLE NO. AI-SB-FZ W			
CONT	RACTO	DR SOIL		ARTED /1:00 # 3/21			
OF		ROCK		#ISHED M 19			
	· ·	1001		>	Tω		EVATIONS: DATUM
SAMPLE NO.	TYPE HOL	ОЕРТИ	BLOWS "	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions, Odor ,Etc.	NOTES: Soring ,Tosting and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
	0.0	0 -	27 /00 - -	.3/	gry	FILL SAND AND Gravel, F-Crs W/ Crs Gravel and Stag	Spoon refusal (a 0.9' bas
2	hV	2	j00 	0.3/ /.4		Hugeres through show there, No Recovery trugeres through slag/Gravel debries	Span refrant
3.	0.2	4	9 9	1,2/	$0.\nu$	12 FILL SIF gray-black w/track him grave	
4	0.2		17 12 15	1.8/	0.2	1.8 5:14 YEllow gray w/ 11the-Some Clay, st. H, weak plasticity	WET (1:30
5	اد. و	9	4 5 0	1.6/	0. 2.	1. Ce Silt yellow-grat mattle o little-Some Clay grading downwards approx 8.6 of little flue SAND	SAF
6	0.0	10	5 10 9	1.5/	B. 2	1.5 Clay mo Silt yellow- brown, tomer-little	Moist - Gut
7	0.0	12	2 1 1	1.3/	0.2	13 Clay yellow- Gray, trace - little Silt	
8		19 15				•	

· #346

						JOB NO FIE	LD BOREHOLE LOG		
	ECT _ TION _	-					BOREHOLE NO. AI-SB-GI		
CONT METH OF	ЮD					LOGGED BY	STARTED 8:30 4 3/24 19 97 FINISHED 9:35 4 3/24 19 97		
BORIN		ROCK	<u> </u>			CORE DIA.	ELEVATIONS: DATUM		
SAMPLE NO.	TVPE	DEPTH	BLOWS 'H'	RECOVERY &	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions, Odor ,Etc.	NOTES: Soring ,Tooting and Sampling Procedures ,Water Loss and Goin Drilling and Testing Equipment ,Etc.		
1	12	0	24 29 43 61	1.4/2.0	920m	1.4 Fill, 5thg irai se, Rive-Cris Granel, Metal	DRY		
2	2.5	<u>ک</u> 3	707 °	,2/ ,.4	ð.12	, 2 Fill As Above	Spoon refusal e		
3	NA	4		7	N. 6		Advances angers through fill to depth of G' has no sample talked off 6. interval		
4	2.4	6	7 12 10	1.2/	0.2	1,2 Fill Slag and Coke, to 19 dianeter	SATURATES.		
5	1.0	В 9	1200	1.0/	c.~	1.0 Fill Slag, iso. ore Silt wo fine Shows red - ochre color, w/ Crs Grand to 23" dinnety	SAT Collected 3:11' Ros Sypcs MILS CN CO9'10		
6	,4	10 11	20	di 2.0	0.2	1.1 Fill, rebounce fine-cro Grand w/silt It tan - SANDSTENS CONNES & Native Soil cutals 15 Clay Mas OK Gray trace-little Silt V/ carbonize plant Pragament	SAT		
7		12 13		2.0					
8		14 15				•			

Shoot No. ____of ___

4 **£**179 +

Chy

MALCOLM

 \wp

1/1

CLIEN	т					JOB NO FIE	ELD BOREHOLE LOG
PROJE	CT_			<u></u>			
LOCAT	LION _					· · · · · · · · · · · · · · · · · · ·	BOREHOLE NO. A1-SB-G2
CONT	RACTO	OR				LOGGED BY	BTARTED M 10 97
METH	OD	SOIL					FINISHED M 19
OF BORIN	: Đ	ROCK				CORE DIA.	ELEVATIONS: DATUM
SAMPLE NO.	TYPE HOUSE	DEPTH	BLOWS 'H'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Precedures ,Water Lass and Gain Drilling and Testing Equipment ,Ets.
1	0:1	0	23 28 20	,1/ 2.0	6.2 6.2	17 FILL SAND AND GRAVEL Flore-CCS MED MADUAL M/ pells Fized Sing	Day
2	•	3		N3/ /N5	1	Augeres through concrete mobile of Sing for 4' rehisal G. Approx 5' by s Marco borded location 10' Number	
3	μA	5				Advances argers to 8' prior to samples,	
4	N.	<i>6</i> 7				Dalling character judicative at stroy of	
5	NA.	8	700	03/		Spood refusal @ B.21, No recovered	SAT
6		76][More Done hale Jose trond 4x, manable Joseph Advance Augers/2001
7		12				GZ location lue to texture of Rill	8-70'
9		14 15					

Sheet No. ____of ___

	CLIEN	т					JOB NO FIEL	D BOREHOLE LOG
						-		
					-		LOGGED BY 81	PREHOLE NO. 4-SB - H ARTED 8:30 M 3/21 10 97
	CON I METH		SOIL					
	OF BORIN		ROCK					NISHED 10:00 \$ 3/21 19 97
		<u> </u>	<u> </u>	<u> </u>	T.	ш	Y	EVATIONS: DATUM
	SAMPLE NO.	TVPE	06718	BLOWS "	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Precedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
•	1	0.4	1	20 -	,1/ /,9	Sian 0.2	brown louse F-Crs wil Some F Grand	Spoon remart @
	2	k,o	3	17 22 27	,6/ /2,0	0.2	dark brown-reb, fine Grand to 1/2" die	4.4
/	3	0.6	4	9 14 20	4/.	0.2	14 Fill SAND AND GRAVEL AS Above W/ cobbles, brick 73" dia	Moist-WRT
D.	4	0.3	6 7	70 10 17 15	5/2.0	0.2	, 5 Fill SAND AND Gravel dark brown- red FINC Main of FINC - Crs Gravel w/ cobbles 73" dia	SATURATED .
, l	5	0,2	9	10 10 10	13/	4	1.3 Fill SAND AND Grove AS Above w/ dark red-black fine from having oil/crease te-like sheed to approx 9.0-9.	SAT SAMPLED FOR THE YOUS C- 9:15 9.0-9.5
	(g)	0.2	70 11	11 20 12	1/2.0	0.2	17 FILL SAND/SING Crs gipin of reo brick	547
1.3 1.4	7		12 13				FILL SAND AND GRAVEL, CACK (RD-brown) F-Crs, W/Some Grick, sharp Contact W/ CONTACT W/IHLA SIF	GAΤ
1	8		14 15					for Emposite SUCE MTLS, CN

Shoot No.____of

400

PIRNIE

CLIEN	т	Ψ				JOB NO	FIELD BOREHOLE LOG BOREHOLE NO. A1-SB-1+z		
CONTRACTOR _						LOGGED BY	STARTED M 19 FINISHED M 19		
BORIN	G :	ROCK				CORE DIA.	ELEVATIONS: DATUM		
SAMPLE NÖ.	TYPE	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Westhering/Fracturing, Inclusions, Odor, Etc.	NOTES: Boring ,Teeting and Sampling Precedures ,Water Less and Gain Drilling and Teeting Equipment ,Ets.		
)	6.it	8	10	11/20	6.	1.1 Red-purple SAND AND Gravel of brown state but, fine grain, some Gravel	prior to sampling Composite 8-10' intern		
		70					W/ H, C- 10:25 65 540C1 MTLS, CN		
-									
	·								
-									
]						•			

Shoot No.___

44

							JOB NO FIEI	- JOB NO FIELD BOREHOLE LOG				
								DREHOLE NO. AL-SB-II				
							LOGGED BY 81	TARTED				
	METH							NISHED 19				
	BORIN	T -	ROCK		Ī>	Γ	· · ·	EVATIONS: DATUM				
v	SAMPLE NO.	T TEN	DEPT		RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.				
ı	1 :	اه.و	7	20 36 77 100	1:1/ 0:1/	Start 0,2		Spood refusal (0.1.6"				
GMM	2		3		/	dA	Augeses 2-4" through Stag to Crs Gravel					
Fill	3-		<i>4</i> 5			μA	Augines to B', to odymice Augins Through Grave (RR ballast)					
	4		6		/	NA						
1	5	0.6	9	105	,3/ /.05	-	.3 Graver, crushed showe	FRESIJ FERNENTE				
0.5-11 CIAY	6	0.		17 38 26	72.0	0.2	1.0 5/Ag AND Comples store, S/Ag cubble in spoon to consco spoon to sing. Probable 5/As /(Inx contract At	SAT.				
·	7			7 10 10	05/		15 Clay dark gray-brown, stiff, mild plasticity	Moust				
•	8		14									

_

51.3

MALCOLM

 \mathcal{V}

	CLIENT						JOB NO FIEL	D BOREHOLE LOG
								PREHOLE NO. AI-SB-IZ
	LOCA.	TION _			•			DREHOLE NO. 71-30-12
	CONT	RACTO	OR			···	LOGGED BY	ARTED M 19
	METH	OD	SOIL				FI	NISHED M 19
	BORIN		ROCK		EVATIONS: DATUM			
	SAMPLE NO.	TYPE KOH	DEPTH	BLOWS 'N'	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	HOTES: Bering ,Testing and Sampling Procedures ,Water Lass and Gain Drilling and Testing Equipment ,Etc.
	/	0.4	4	17 35 11	10/	ار، <i>ک</i> ال	. 6 Fill Signio and Granel dark brown rea	Augeres to 4.0' phior to aplitis pool sampling
	2	0.2	<u>i</u> 7	5 5 5 8		0.2	1.7 Clay Fill tan-brown plastic w/ Crosand parting mode and fina -1/5 Grand	
8,8	3	0,4	8	\$ \$ 7	11/23	6.4	18 Clay Fill As above, sharp contract	Samples 8,5-9,0 60 VOCS (4 15:30
	4	0,2	10 11	4 4 10		0.2		Composites I, Iz
			12					MOS
		-	 		1	-		(U_15':30
					<u> </u>	!		
								10-131 INTON
			 -	 -	ł			
	1	-	 	}	1			
					4.			
					4			
			 		 	-		
•	<u> </u>				<u> </u>] 1		
]]		
			<u></u>	<u> </u>	<u> </u>	I	•	

Shoot Ho._

MALCOLM

 \mathcal{W}

							JOB NO FIEL	D BOREHOLE LOG
								REHOLE NO. 48 AL-SB-J1
	CONTI METHO OF	OD						ARTED 09:03 4 3/25 19 97 (ISHED 10:30 M 3/25 19 97
	BORIN	G :	ROCK				CORE DIA EL	EVATIONS: DATUM
	SAMPLE NÓ.	TVPE	DEPTH	H. SMOTS	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Toxture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Presedures ,Water Less and Gain Drilling and Tooting Equipment ,Ets.
1	1	/	0 7	160	1,0/ .5	School School	No Stople - Special refusal due to	Augeres to 2' to
	2	b.*	2 3	93 10°		0.6	17 FILL SAND dark brown -black, five- (rs Wintle Fine Graver slag / little-some FILL/HSh, occasional rep books very dans	D,2Y
f:1)	3	سند	4	29 20 16	0.0		D.C. No recovery	
	4	0,0	<i>b</i> 7	4 4 5	1.0/	0.2	1.0 Fill SAND AND GEARAL, Mes beaut f-ce y fine Genrel, beielf woods	54-7.
1	5	0.0	8 9	6 5 9 46	,6/ /2.0	0.4	of Grayel-Five-(rs of trace SAND of trace wood slight oil sheen on granel surhaus	Maybe Character deposit
512	0	0	70 71	700	4/.4		14 GIAVEL & SLAG - LOS	Augeres through debris
SILY	7	0.6	1	13 19 11	10/		to Silt goar-yellow up Clay	
1	8		14 15				•	

Shoot No. ___of __

							JOB NO FIEI	- JOB NO FIELD BOREHOLE LO				
	LOCAT CONT	TION _	OR				LOGGED BY BY	LOGGED BY BTARTED M 19				
	OF BORIN	a :	ROCK					FINISHED 19				
	SAMPLE NO.	TYPE SAYT	DEPTH	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Precedures ,Water Loss and Gain Drilling and Testing Equipment ,Etc.				
FI)	1	0.2	c J	25 32 37	15/	المعدد 0،2	15 SAND AM) SILT, RED-BROWN, FINE-COS TRACE COCANUL 17 FILL BLACK CINDERS, SLAP, 100N	Day				
	2	<i>9</i> .	3	14 48 24 47	117/	12	12 Fill, Icel pregnate black-gray, Sanoli five-Ged, device compacticed, trace Wood, Slag	de Dry				
	3 -	1.0	2	- 185 11	1/.8	0.2	17 Fill Stag AND COS GOMMI	Spoon return to				
	4	5.6	6 1	80 80 - -	4/.6	0.2	4 Fill Fine - CCS Grown trace-little	Spoon Rehman @ 6,6				
	5	16.4	9	/B /0) 	4	22	16 Gravel Pine- Crs w/ trace Fine	SAMPLE 8-8.5 Nor VOCS				
10:4_ CIAY	6	17.2	10 11	(4) (4) (5) (6)	11/20	1,4	1.0 Clay Gray - howing wink plasticity, stiff,	slight oour				
	7		13					SAMPLED 10-12' Whereal for SYOCS MTLS				
à	8		12				•					

Shoot No.___of_

. 1 % -

CONTRACTOR LOGGED BY STARTED METHOD SOIL FINISHED OF BORING: ROCK CORE DIA ELEVATION LOGED BY BYARTED FINISHED NOTE	BOREHOLE LOC
OF CORE DIA ELEVATIO	LE NO. <u>AI-SB- K L/K</u>
SAMPLE DESCRIPTION: Color, Texture Classification, Press	DHS: DATUM
Compactness/Consistency, Moleture Condition, S	ES: Bering ,Testing and Sampling adures ,Water Less and Gain ng and Testing Equipment ,Etc.
6 3 4/sw 4 SAND AND Gravel brown rive grain to	during trugers to
8	Composite for SVOCS (U.14:36 MILS
6.5 56	
7.5 26 2.0	tagenes to 8' prints
8 9 2 12 51 SAND AND GRAND MACK	Connecte 5
	3100
	MILS

Shoot No.__

MAICOLM

 \mathcal{C}

,	CLIEN	r					JOB NO FIEL	D BOREHOLE LOG
1	PROJE	CT						REHOLE NO. AI-SB-KZ
I	LOCAT	ION _			···-			REHOLE NO. AT-SB
	CONT	RACTO)A				LOGGED BY 87/	ARTED 12:45 M 3/19 10 97
	METHO OF	OD	SOIL .					HSHED /31 M 3/19 19 97
1	BORIN	G:	ROCK				CORE DIA EL	EVATIONS: DATUM
	SAMPLE NÖ.	TYPE 5	DEPTH	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor, Etc.	NOTES: Bering ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
F.))		0,2	O T	13 25 76 15	1.4/	24W	Sant Pine Brown	Day
	2	1,3	3	13 9 8 9	.9/ /2.0	0.2	, 9 Fill 5.1+ and linestone w/ fine-crs	DRY
	3-	0.2	4 3	3 7 20 41	1.1/	0.V	11 Fill Situl AND GARREL FINE-MAD GED-BIACK W/fr- Little SIF BOF Just Some him Grave	
100 Per	4	9,2	6 7	3 4 7 8	j.0/	2.4	12 Fill Grave MO SAND, BIACK	Herry ton #6 Orl W/
8.3 CIAY	5	68	9	5 6	15/	ما ه	1.2 Clay Olin - 200000, mothed w/ tr-little	Simple K2 hir
,	6		70 TI	3	1.3/	0.4	1.3 CIAY oline brow nother, stiff w/	Moist
	7		12					
•	8		<i>1</i> 4.				•	

Sheet No. ______

MALCOLM

 \wp

CLIEN'	r	-				јов но FI	ELD BOREHOLE LOG		
PROJE	ст _						A		
LOCAT	ION _						BOREHOLE NO. AI-SB-MI		
CONT	RACTO	OR.				LOGGED BY J.P. 14.1402	STARTED M 19		
METHO							FINISHED 19		
OF BORIN						CORE DIA.	ELEVATIONS: DATUM		
SAMPLE NÖ.	3471	DEPTH	BLOWS T	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Includions, Odor .Etc.	NOTES: Sering ,Testing and Sampling Procedures ,Water Loss and Gain Drilling and Testing Equipment ,Etc. ,		
		5	14	51	3574	, & FILL S. It Moderate brown, w/ some Fine	Drier to sampling		
		10	100	/ //	0.21	Gravel, cobbles > 3 th dia	Bac Composite		
	•	"	_	1.8			SVOC, MITS SAMPLE		
		1					7000 CONSNIC 368		
		 		4			· Advanced sugers to 6'		
4		 		1	1				
		Q	100	3/		3 FILL SILT AND GOVEL AS A DOM	Composites 6.0-6.5		
2		17	=	{	0.2		Sample w/		
		 	<u> </u>	1/.3	ľ				
		8		1			Sample D Rec		
							SVOCS MTS, CA		
		} -		-	-				
		 		1	<u>† </u>				
				4					
		 	}	-	•				
				1	1				
•		1	├	-					
		 	\vdash	1	1				
				1					
	1			-1	1				
1		-		1	1				
		1	 	1	t	•			

Shoot No.___of.

	CLIEN	т			·····		JOB NO FIEL	D BOREHOLE LOG
1	PROJE	CT						PREHOLE NO. AI-SB-MZ
(LOCAT	LIOH _		<u> </u>				PREHOLE NO. 11-30-11-2
•	CONT	RACTO	OR			 	,	ARTED 9:25 4 3/19 19 97
1	METH OF	OD	SOIL .					MISHED 11:00 \$ 3/19 18
(BORIN	G :	ROCK				CORE DIAEI	EVATIONS: DATUM
	SAMPLE NO.	DSP MAAL	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor, Etc.	NOTES: Soring .Tooling and Sampling Procedures ,Water Less and Gain Drilling and Tooling Equipment ,Etc.
			0	13	11.1	لعمني	1.5 Fil Silt and F SAND, dark brown-black,	DRY-Moist
	1	0 ,3	1	32 48	Z	0,2	W/trace Gravel, conf, brick	
				35	2.0		1.5 Fill dark-brown silt w/smin mis	Dak - Maist
F_{i}	2	04	2	44) 7iu 60	 "/	0.2	Rus Grand As Above grading downwards	Moist-Wet
11.7	-	<u> </u>		40	12.0	<u> </u>		
			4	18 25	1.2/		5 FILL SILT W/ STONG & Grand AS About	wct
	3-	0.4	├	19	i /	0.3	,7 FILL STAND AND SILT DANK Brown	Wet-SAT
		<u> </u>		19	1220		FINA, 1005E GOND ANDI BOF OUS +) ?	
6,5		1	٧	12	13/		18 CLAY CACK -9/MY - black, gooding downward	Sympl 6-6.5 YOC
LIMY	4	$0.\nu$	1-	19	1/	0.2	to Men brown of three Sit	Comparite 6-61 for
411/	' '	~		/0	12.0	i	/	SVOC MTLS , CN
			8	_3	14/		1.4 Clay brown- gray mother, truce Sit	Meist
	1	G.0	9	5 -	<i>¹'/</i>	0.2.		
		ł	 - /- -	9	/z,0			
,	<u> </u>		10	3	11/		1.1 CLAY AS Above	Moist
		0.0	 	4	117	6.2		
	8	10.0	<i>├</i>	7	2.0	<u> </u>		
			12		1 /			
	7		13	7 2	$\frac{1}{2}$	ł	H. V level in BNa River	
	<u> </u>	i		4	<u> </u>			
,	10		14	<u> </u>	17			
·	8	ł	15		1/	1		
	ľ	t	1	1	1/	t	· •	

Shoot No.___of_

CLIENT	「 <u></u>					JOB NO	IELD BOREHOLE LOG
PROJEC	CT						
LOCAT	IOH _						BOREHOLE NO. AI-SB-1
CONTR	ACTO)R				LOGGED BY	STARTED 03:30 \$ 3/27 1997
METHO	OD	SOIL				,	FINISHED 09:15 4 3/27 19
OF BORING	G:	ROCK				CORE DIA.	ELEVATIONS: DATUM
SAMPLE NO.	TYPE	DEPTH	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	· 	NOTES: Bering ,Testing and Sampling Precedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
	1	70 71	- 100	2/		Unable to relicate Anglis to dipth 900 nter that 10.5' Split-spend sample well-cutes metallic stag	Advanced Augurs to 10 600
		12				Anger retural	through fill & Slag
		13		1	i .		
 		74	 		 		
] :] .		
 		 		-			
	73						
	•			-	-		
1				l	1		
		Ŀ					
4 1		 		1			
	·			<u></u>	<u> </u>		
			'.				
		-		ł			
1				1	1		
,		-		ł	ł		
		 	 	1		<u> </u>	
				1	<u> </u>		
1 1		 	 	ł	ł .		
1		 	 	1	1		
				<u>L</u>	<u> </u>	•	

MAICOLM

								IELD BOREHOLE LOG
	LOCAT	TION _ RACT(DD	OR				LOGGED BY	BOREHOLE NO. AL-SB-Z. BTARTED 09:30 M 3/27 18 97 FINISHED 9:15 M 3/27 19 97 ELEVATIONS: DATUM
	SAMPLE NO.	TYPE	DEPTH	BLOWS "W"	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	HOTES: Boring ,Tooting and Sampling . Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Ets.
Fill	1		76 77	11 4		-	, Z FILL SAND AND GRAND W/Slag	Advances Augers to 10°
12.4 Silt	2	p.2	/2 13	114 11 11	~#	0.2	. 4 Fill Silt gray-black, trace fine Graw 13 Silt, light-Men brow.	A
			74					
•		· •;						
	•							

Sheet No.____ef.___

MALCOLM PIRNIE

CLIEN	τ					JOB NO FIE	LD BOREHOLE LOG
							SOREHOLE NO. A1-SB-3
LOCAT						LOGGED BY	SOREHOLE NO. / LL SO SO
METH						LOGGED BY	STARTED 10:00 M 3/27 19 97 FINISHED 11:00 M 3/27 19 97
OF		ROCK					ELEVATIONS: DATUM
SAMPLE NO.	1,1,50	DEPTH		RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling . Procedures ,Water Less and Gain Drilling and Testing Equipment ,Ets.
1	1.2	8	/00 	.3/ /2,D	5.4	Spood rehusal in fill & construction deprise 3 5900 brown, Rive grand of Brick, F-Cro Gravel	prior to split-spend shippli
2))]]				Moved borehold location - see below	
3		12				Augeres though hill G 91	
-	1.4	9 10	8 3 4 5	1.4/	2.0	4 Fill SAND DOCK KNOWN F. Man W/Smi	No significat oil Q
							contract, strong obac
				<u> </u>		Apriox 50' Sith or Gris stake 11,700 N	
;				† 		Brown - Black State med grain w/ 5-ne Rive Grann , oil / Bensene 8000	eavyar - w t.7
				1		•	

Sheet No.___ef___

MAICOLM PIRNIE

DOREOLE NO. A - SB CONTRACTOR METHOD SOIL OF BORING: ROCK SAMPLE DESCRIPTION: Color, Texture Classification, Compasiness/Consistency, Meleture Candition, Compasiness/Consistency, Meleture Candition, Westhering/Freaturing, Inclusions, Oder, Etc. ON 19 4 13 13 200 12 1 10 10 10 10 10 10 10 10 10 10 10 10 1	EHOLE LOG	FIELD BOR	_ JOB NO						τ	CLIEN	
CONTRACTOR METHOD SOIL OFFICE PROCK CORE DIA. ELEVATIONS: DATUM TO SORING: ROCK CORE DIA. CORE DIA. ELEVATIONS: DATUM FINANCE DI '10 & 3/2- ELEVATIONS: DATUM Companiness/Consistency, Melature Candition, Weathering/Fracturing, Inclusions, Oder , Etc. Drilling and Testing Eq. Const. Companiness/Consistency, Melature Candition, Weathering/Fracturing, Inclusions, Oder , Etc. Drilling and Testing Eq. Const. Companiness/Consistency, Melature Candition, Weathering/Fracturing, Inclusions, Oder , Etc. Drilling and Testing Eq. Const. Companiness/Consistency, Melature Candition, Companiness/Consistency, Melature Candition, Precadures Water Less Drilling and Testing Eq. Const. Companiness/Consistency, Melature Candition, Precadures Water Less Drilling and Testing Eq. Const. C	_		_								
METHOD SOIL OF BORING: ROCK BORING: SAMPLE DESCRIPTION: Color, Teature Classification, Compatiness/Consistency, Meisture Condition, Weathering/Fracturing, Includence, Oder , Etc. Drilling and Testing Equ Drilling and Testing E	41-28-4	BOREHOLE NO	- .						ION _	LOCAT	
BORING: ROCK SAMPLE DESCRIPTION: Color, Texture Classification, Companions (Companions) (Compan										CONT	
BORING: ROCK Westerloss (Compatines) (Compa	5 13/27 10 <u>57</u>	FINISHED 11.4						SOIL .	QO		
(graf) 1 07 10 7 7 2.3 12 6.18 Gravel, Fide, w/slag, mes-(as Shall) America to 9 10 27 7 2.3 Augures to 12' Augures to 12' SATURATED 12 3 12 4.6 9 5.14 black w/1.the (as Gravel, saturates) 14 1 2 3 12 2.3 12 4.6 9 5.14 black w/1.the (as Gravel, saturates) 14 1 2 3 2 2 3 12 4.6 9 5.14 black w/1.the (as Gravel, saturates) 14 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3	'UM	ELEVATIONS: DA	CORE DIA					بسبيين		BORIN	
12.3 12 3 12 4 6 79 13 4 6 79 14 6 15 15 15 15 15 15 15	oting Equipment ,Etc.	Precedures , Drilling and T	etency, Melature Condition, ng, Inclusions, Oder ,Etc.	SAMPLE DESCRIPT Compactness/Cons Weathering/Fractur			BLOWS 'N'	DEPTH	TYPE 34	SAMPLE NO.	
12.3 Silt 2 8 13 4 2.0 14 6 15 16 16 16 16 16 16	10 6, brige	SAND Augen	Fine, W/slag, Mes-Cos St	1.3 Fill GrAVE			23	9		1	June
12.3 Silt 2 8 13 4 2.0 14 6 15 16 16 16 16 16 16	ws-	To stand			1 1	I / I	7 4	13	02	1 / :	6:11
12.3 5:17 2 6.8 13 4 /2.0 14 / 2.0 14 / 2.0 14 / 2.0 14 / 2.0 15 / 2.0 16 / 3 / 2 / 2.0 17 / 2.0 18 / 2.0 19 / 2.0 10 / 2.0	ATED	SATU	12'	Angeres to		72.0	5				
11.3 5:17 5:17 7/6/mi (oi) 12.3 13.4 14.6		<u></u>			!	1		44-			- 1
11.3 5:17 5:17 7/6/mi (oi) 12.3 13.4 14.6	· · · · · · · · · · · · · · · · · · ·				i t	1 1	 	-	1		Na.
	· · · · · · · · · · · · · · · · · · ·				<u> </u>] ,				<u></u>	
			AS Above		11/	1.4	43	12	6.		15:5
	· · · · · · · · · · · · · · · · · · ·	in tab	w/ little (15 Grand), SAtura	I IT DILT BLACK				13	$[\sigma,\sigma]$		5:14
			sado truvidit	w/o. s,	<u> </u>	/2·0	u	7.7		`	. 46.vm.
		···			i i	ł	 	1/4	• •;	1	(61)
		•			t t	1 1] .		
			·				 	ļ	ļ		
					!	1	 	 			
					! I]]				1	
	· · · · · · · · · · · · · · · · · · ·					1		┼──		<u> </u>	
					l t				· .		
]			٠.	١,	
			······································				 	 	-	-	
					1 [1 1				1	,
						1		├		1	•
					 	1-				-	
					Į Į			1		1	
					† }	1	 	 	} '		

Sheet No. 1 of 1.

MALCOLM PIRNIE

 I_{\perp}

1	PROJE	CT_						ELD BOREHOLE LOC		
(LOCAT CONTI METH	TION _ RACTO	OR				LOGGED BY	BOREHOLE NO. A1-SB-5 1 STARTED 12: 45 6 3/27 10 97 FINISHED 13:01 3/27 10 97		
(OF BORIN		ROCK	-10			CORE DIA.	ELEVATIONS: DATUM		
11	SAMPLE NO.	TYPE TO	DEPT	BLOWS "H"	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.		
3_	1	22	5	44	1.1/	المرو	3 Grave (Five) w/ Brown Kine Ship black of the (1) think on contact of 8 Silt black-gray, trave clay desting don winner to brown-gray silty Clay	Advances angles to 6' prior to spoon samples Moss to		
	2		9							
	3.		10 11							
٠			12							
1					 					
İ										
•										
٠	Shee	1 Nó	\ \-•°	7	.l	 .	<u> </u>	MALCOLM		

	CLIEN	т			 		JOB NO FIE	LD BOREHOLE LOG		
								BOREHOLE NO. AL-SB-6 '		
	CONT	RACTO)R				LOGGED BY	STARTED 13:10 M 3/27 19 97		
	METH	O D	SOIL			*		FINISHED 4 3/27 19 97 ELEVATIONS: DATUM		
	OF BORIN	G:	ROCK		 .		CORE DIA.			
Fil)	SAMPLE NO.	Ę	ОЕРТН	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Oder ,Etc.	NOTES: Boring ,Tooting and Sampling . Precedures ,Water Less and Gain Drilling and Testing Equipment ,Ets.		
6.4	(0.4	8	4 4	12/		29 Silt dark gray - back trace Ciny, Carbonized Plant Fragments	to to B' price to sampling		
2111			8	//	7	 	CATUMITES (III) 18A9 MOS	Borehale lacia Ly North		
I	1		9		1/_	<u> </u>		Stake 10,100 N, 8150 E		
					•		• •	Clen		
• • • ** • ** • •	-	.,			 -					
					1					
i					-					
				÷,		 				
			 	 	1					
•					1	1 .				
•		<u> </u>			<u> </u>	<u> </u>				
:					1					
;		٠ ا	 	┢┷	4	1				

Shoot No. ____ of ____.

MAICOLM PIRNIE

PF	ROJE	CT					JOB NO F	BOREHOLE NO. AL-SB-7		
C(ONTE ETHO	RACTO	R SOIL _				LOGGED BY	STARTED 13:30 M 3/27 10 97 FINISHED 14:30 M 3/27 10 97		
Ē	SAMPLE O	TYPE	DEPTH CK		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	ELEVATIONS: DATUM NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.		
	1	•	4	700	# /.H	52AN	4 Fill Grand and Constant Stone	Advances Angers to 4'595 pain to sampling Spand remande 4.5-1		
;	2	0.2	<i>4</i>	10 8 8	1.4/	0.2	1.4 F.II Gravel mits & Brown SAND W/ Slag cobbles > 3"dia	547		
Fill	3	0,4	9	5 5 11 10	15/	0.2	115 Fill Silt Clay AN Grand	Maryt		
	4	0.4	10 11	65	1.2/	0,3	1.2 Fill Glay mis filt dark gray-black W/Crs Graykl mis Coal, trace Black Fine SAUS	Mosst		
17	5	0.4		5 6 6 12	2.0/		3 FILL Clay AD Silt As Above 7 Silt Dank Gray-brown, trace-little Clas and Rime SAND sharp contract w/ 6 1.0 SAND DANK gray Med Graid	y Moust SAT.		
Cun			14					Borehole Joseph 702		
1								North or West side of North gave leading inthe		
	·							Approx 15 A of war to		

Sheet No.____et___

MAICOLM

	CLIEN	IT		V S			JOB NO. <u>0848 263</u>	D PODEMOIE LOC
	PROJ	ECT_	Tha	se I		Phi	SK II	D BOREHOLE LOG
	LOCA	TION .	LI		ÇoK	4	Plant	PREHOLE NO. AZ-SB-Z5
	CONT	RACT	OR	<u>Br</u>		DK	LOGGED BY JP Hilton BY	ARTED $\frac{14:00}{M}$ $\frac{3}{17}$ 19 $\frac{97}{97}$
	METH OF		SOIL		1/4 11	175	<u>A</u>	HEUED / 6 3/17 49 97
	BORIN		ROCK	<u> </u>			CORE DIAEL	EVATIONS: DATUM
		Kay		*	Ä	w	SAMPLE DESCRIPTION: Color, Texture Classification,	
	₹	. w	E	5		들	Compactness/Consistency, Moisture Condition,	NOTES: Bering ,Testing and Sampling Procedures ,Water Less and Gain
	SAMPLE NO.	TYPE	DEPTH	BLOWS	RECOVERY	MOISTURE TIN NO.	Weathering/Fracturing, Inclusions, Oder ,Etc.	Drilling and Testing Equipment ,Etc.
		 	0	╁╼═		CLAS	Hugeres 0-41 prior to solit spood	
	j.]					SAMPL -1	
	'	·	┼	 	ł	ŀ		
			2			一		
11	2	ł	3		}	[
$f_{(1)}$	1	ł	1-2-	 	ł		Fill	
•			4	4	11/	 	15 Silt Hereb-brain trace clay fire	
	3-	1.6		6	/ '/	3.V.	GIANG, Shap lontact w/	
		יי	5	112	2.0	٠.	. 6 Silt Lt gray bread w/ demolition debis	SAT-CALES
			6	14			13 5.17 Harry-breef w/3" (4/6) 4 .00 / 4/6 60 00 14	
	41	3.8		20	17	1.4	1.0 Silt Harry-brown w/3" (abble, oil bleve tracte	FOR VOC. SUDE, HTLS, TON
		J•	7	14 10	2.0	1.1	Clay-like leases, Fe stalken parting	PCBS, Realing (N
ا ها. 8			8				IL SILL AND SAND FILL A/A	
	5	10			,8/	ر ا	w/ YALK only laver at Fill /s. It washing	SAT
5:14			9	8	10	0.0	juster free	
,			10	4			2 Sit A/A grading to	Moret - possible Union Si:
	1	$i \mathcal{B}$		4	1,2	0.4	1.0 Silt mp Clay dark gray-brown still up	5/m/le 15 Above ALB 25 - 1012
	8	1,	//_	10	10		commised plant organics	MANUSES A/A
			12	10	/ 2.0			
1	7]						
			13			.]		
			74		,			
•	81	1	7,5		' /]	1		
		- [/5		/	. }		
					1	الــــــا	•	

CLIEN'	r					JOB NO FIEL	D BOREHOLE LOG	
							_ -	
	RACTO	OR				LOGGED BY \$1	PREHOLE NO. 12-58-50 VARTED M 19 97 NISHED M 19 97	
OF BORIN		ROCK				CORE DIA EL	EVATIONS: DATUM	
SAMPLE NÖ.	TYPE HARRY	ОЕРТИ	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.	
1	3.2	0	53	1.5/	1.5	1,5 Coke/Cont W/ 5,1+ Black	Crease to Eistern	
2	0,3	3	5 5 4 5	1,5/		AS AVINE	WET-SAT P- APPROX 3'	
3	D ~	4 5	3 3 4	/z.0	51º.	1.1 Fill SAND W/ black CINDUTS, FINE-CIS 2001. LIPRIODEC FINE GONNELL & Slag	Slight ones	
4	0,2	9	24 2	17/		.7 Fill sput of GOANG A/A	1012 ten 100' WEST 1A 96 -109	
5		8						
		70						
						•		

Shoot No. ________

CLIEN	т					JOB NO FIE	LD BOREHOLE LOG	
							OREHOLE NO. AZ-SB-51	
LOCAT	110H _						OREHOLE NO. 116-30-31	
CONT	RACTO	OR			· · · · · · · · · · · · · · · · · · ·	LOGGED BY 8	TARTED M 19	
METH	OD	SOIL				F	INISHED # 19	
OF BORIN	G:	ROCK	:			CORE DIA.	EVATIONS: DATUM	
SAMPLE NO.	TYPE JEST	DEPTH	BLOWS 'N'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	MOTES: Boring ,Tooting and Sampling Procedures ,Water Lose and Gain Drilling and Tooting Equipment ,Etc.	
		0	16	3/	GLMPS	is Fill SAND and Silt brown-red Fine grain	LOCATION 35'SE	
/	0,0	 	70	ľŹ.	1.2	1/51AG carbles to > x dia	of Terminal Basin	
/	ا ۱	 	22	120			dry-mols F	
		2	6			, 2 Sing cobble		
7	_		4	1/	41	No Received	Coffin Val	
 	1	3	13	12.0			SATREATEN	
	 	4	4		1	14 Fill Gravel mo Sing, tose, No opon	·	
2.	0		2	11/	41			
3	0.0	5	3	/2,0				
		1	}	12.	├──			
11	ł	6	 	1 /	ł			
17		1		1/	Ì			
				<u> </u>				
/	1	18	 	┨ /				
15	┪ .	19	 	1/	1 .			
<u> </u>	<u> </u>			<u> </u>	<u> </u>			
		10		4	ļ			
	ł		╂	-				
ĺ	1	 		<u>†</u>	1			
1		<u> </u>	├	4	1			
	ł	 	 	1				
	 			1	1			
	I			-[I			
İ	ŀ		 	1	1			

Sheet No.____ef ____

MALCOLM

 \wp

PB0 II	ECT								
1 11001	, -			_			LD BOREHOLE LOG		
LOCA	TION _					<u></u>	BOREHOLE NO. <u>A2-58-52</u>		
CONT	RACTO)R				LOGGED BY	TARTED M 10		
METH	OD	SOIL				F	INISHED M 19		
OF BORIN		ROCK				CORE DIA	LEVATIONS: DATUM		
SAMPLE NO.	TYPE AND	DEPTH	BLOWS 'W	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Soring ,Teeting and Sampling Procedures ,Water Less and Gein Drilling and Testing Equipment ,Etc.		
1	0,0	0	9 13 50 24	1.5/2.0	5.ml	15 Fill Brown - black SAND & Grand			
2	0,0	3	7 8 7 8	1.6/	20.30	12 SAND & Grave Fill black, lielit oil Station No Cressite - oil DOR	Be product		
3.		4					stuppes drilling to		
	 	6	 						
4	1			1 / 1					
1		_7_		/					
	 	8	 						
/	1	\ <u>\</u>		1 /	1				
5]	9		1/]]				
		-	 _	/					
7	ł	10		1	1				
0	1		 	1	•				
Ľ_	<u> </u>			1					
•]		 				<u> </u>		
				{					
•	1		 	1	-				
	1								
]] .					
1		<u> </u>	 	4					

Sheet No.____of_

MALCOLM

 \mathcal{M}^{-}

CLIENT	T					JOB NO FIE	LD BOREHOLE LOG
							OREHOLE NO. AZ-SB-53
						•	OREHOLE NO. AZ US US
CONTR	RACTO)R					TARTED M 19
METHO OF	OD	SOIL					INISHED M 19
BORIN	G:	ROCK				CORE DIA.	LEVATIONS: DATUM
SAMPLE NO.	TYPE X	DEPTH	BLOWS 'H'	RECOVERY %	MOIS	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.
1	80	0 1	10 13 18	l"/	3 5 5 E	113 FILL SAND WE SAND AND SILT W/ THAN - LITTLE FINE GAME OI BENEENE FREE NEDWET SWEET OFFE	STAKE # 219 9700 B 8150 E
2		2		/			
3		4			-		
4		6 7					
5		В 9					
6		70					
							,

Shoot No.___of___

MALCOLM

 \bigvee

		` —					JOB NO FI	ELD BOREHOLE LOG
PF	IOJE	CT _						BOREHOLE NO. A2-58-54
LC	CAT	LION _						BOREHOLE NO. ALCODO
C	ONTE	RACTO	OR				LOGGED BY	STARTED M 19
M	ETHO	OD	SOIL			·		FINISHED M 19
80	OF PIN	G:	ROCK		,		CORE DIA.	ELEVATIONS: DATUM
	NO.	W. A. S.	ОЕРТН	BLOWS 'W	RECOVERY %	MOM	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	HOTES: Boring ,Teeting and Sampling Procedures ,Water Loca and Gain Drilling and Teeting Equipment ,Etc.
	/	8.4	Q L	10 13 15 6	1.6/	3.M	, 93 Silt Fill Dark brown-black, W Fine	+ W/SI, ilt ODER WET-SAT Strum, ODER
	2	200	3	2 2 2	11/20	20 -35	7.1 S.IT FILL AS Above w/ Hack staining	Strong ODOR (Sheed
	3	420	4	3 9	- //	200	2 - 1 - 45 - 46 - 4	ه ۲ اد
1	/		6 7					
2	7		9					
			10					
┝			┢	 	-			
1			 	 	1	İ		
ŀ		•	1-	 	1 1	1		
1	ł		 	 	†	1		
T								
	j] .]		
1					1			

MAICOLM

CLIEN	т			·		JOB NO F	ELD BOREHOLE LOG
LOCA	TION _						BOREHOLE NO. A2-SB-55
CONT	RACTO	OR				LOGGED BY	STARTED 69:00 4 3/18 19 97
	OD	SOIL					FINISHED M 19
	G:	ROCK				CORE DIA	ELEVATIONS: DATUM
PLE	m Kak	E	¥ . 8	SVERY *	STURE NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition,	NOTES: Bering ,Testing and Sampling Presedures ,Water Less and Gain
SAE NO.	TYPE			E C	ŠĘ	Weathering/Fracturing, inclusions, Odor ,Etc.	Drilling and Teating Equipment ,Etc.
	 	0	13		GLAN	15 FILL SAND AND GRANNI, BLACK KINE-Ers	
)	2.4	—	10	ľ7	14	grading to	Moist w/ light oil &
1	٠ .	-	17	12.0	11.1	1.0 Clay is little Silt, trace Gravel & Slag	BENZENE OSE
		12	7			2 5 to hand - 61 and 11/6-11 5/1-/2	5 Lawer
2	9.8		11	.8/	2.8	,5 GAND AND GRAVEL W/ little GRAVEL	54Ti
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	1,1,	12	<u> श</u>	1/2.0		black, impregulated if oil of TAR	
		4	 	1/2/		1.3 SAND AND GRAND AS Above, Saturates	54-7.
12.	12.2		7	113/	20.39	w tar & heavy oil	
3	115	5	17	1/2.0	20,39		
	 	├	6	1,2,0			
11	ł	6		1 /	ł		·····
17]	17		1/	j		
	<u> </u>			<u> </u>			
		 8	ļ	∤ /			
15	1	9	 	1/	-		
	1			1/	<u> </u>		
		70		1			
	•	<u> </u>	 	-			
	{ ·	 	 	1	1		
	—	<u> </u>		1			
1	}]			
	Į	 	 	1			
	 	+	 	 			
Ì	1			1]		
Ţ			ļ	1	1		
		1	1		1	₽ •	

Sheet No.____of_

MALCOLM

 \mathbb{W}

	D BOREHOLE LOG
	REHOLE NO. AZ-58-56
	ARTED 9:35 A 3/16 19 97
OF The state of th	ISHED M 19
	EVATIONS: DATUM
BAMPLE DESCRIPTION: Color, Texture Classification,	NOTES: Boring ,Tooling and Sampling Procedures ,Water Less and Gain
BAMPLE DESCRIPTION: Celer, Texture Classification, Compactness/Consistency, Melature Cendition, Weathering/Fracturing, Inclusions, Oder ,Etc.	Drilling and Testing Equipment ,Etc.
D 11/1/4m 15 FILL SIT Brown, AND Concrete	DRY
1 19 19 11 Sharp without w/ 1/ the Fine Starts	Moist
11 /2.0 trace - little f- Crs Granel, shift about	77.015 (
1 2 713/ 13 FILL SITT ANN SAND W/ GRAVEL AS ADOM	
	SAT Strows BD & C
72.0	
4 8 11/ B Sitt w/ SAND AND GRAVE A/A, black	SAT
5 15 / 10 / Shall the Gravel Books - 6160 F-CCS	
20 /2.0 W/ loss tar/or contramilation	
11 0 6 14 1 54NB AND GRAVEL AS ADDRE	547
CAN 5 0.0 9 3 10 0.2 SAND MAD GRAVEL A/A W/ Stickt BOOK	54.5
CM/ 5 0.0 9 3 100.2 B CAY IT-MON GORY, Trace - 1. HE SIH	Moist
10	

Shoot No.___of_

							.D BOREHOLE LOG
						<u> </u>	DREHOLE NO. A2-58-57
CONTI METH	RACTO	OR		-		LOGGED BY \$1	ARTED 10:45 6 3/18 19 77
OF BORIN	G:	ROCK				CORE DIAEL	EVATIONS: DATUM
SAMPLE NO.	TYPE	DEPTH	BLOWS 'W'	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Frecturing, Inclusions, Odor ,Etc.	HOTES: Bering ,Teeting and Sampling Procedures ,Water Loss and Gain Drilling and Testing Equipment ,Etc.
	n_{o}	7		2.0	350	. 2 Silt dark brown of tr-little P SAND 1.4 SAND (SIAG) Green-blue, Meo-Cos slight DOOR	100 A D C SO SOUTH 0150-110 SAMPLED (1-2 (0 11:0)) TLLF
2	380	3	1 <u>5</u> 34 53	14	5-10	1.6 SAND like Slag blue-green fine-(1)	
3 -	120	4	12 35 16	15/	110	1.0 BROWN CAS SAND AND FINE GAME	SATURATED W/
4	260	4 7	8 10 29 7	14/	7200	1.0 SAND AND Gravel black Med-Crs W/ F-CCS Gravel, Tan throughout	SAT
5	-	8					
		70					
	•	 	 	1			
	<u> </u>			1			
		 	 -	┨	1		
	ŀ	 	 	t i	ł		

Sheet No.____ef__

CLIEN	Τ					JOB NO FIFE	LD BOREHOLE LOG		
PROJE	CT_						A		
LOCA	TION _						PREHOLE NO. 12-58-58		
CONT	RACT	OR				· · · · · · · · · · · · · · · · · · ·	ARTED M 18		
METH							NISHED M 19		
OF NIROB		ROCK				•			
			*	`	ш.	SAMPLE DESCRIPTION: Color, Texture Classification,	EVATIONS: DATUM		
PLE		ĮΞ		× E	28	Compactness/Consistency, Meisture Condition,	NOTES: Bering ,Testing and Sampling Presedures ,Water Less and Gain		
SAMPLE NO.	TYPE	DEPTH	BLOWS	RECOVERY %	MOISTURE TIN NO.	Weathering/Fracturing, inclusions, Oder ,Etc.	Drilling and Teeting Equipment ,Etc.		
- O Z		-			2				
1	102	10	10	1.5	ST.M.	13 SILT AND SAND GOOD - Black Rive STAIN 10 SAND OFFICE - BOOD FE STAINED, RIVE - 1916	Lucated booking a		
[/]	10.	7	18	2.0	ا دراا	2 JAND SIACK, KING - MEIN	56-123		
		2	30	14.			o Moved 5' South the		
2	360	-	10'	1.5/	AD.	LC SAVD-1. Ke blue-green Slag, dense SATURATED my light git	sugir rehusel		
2	36	3	45	/a a	110	January Williams	Most - Wet		
		77							
	√0.	7	(A)	1.4	!	110 SAND like Slag, yellow green, Crs,	SAT. W/ light of		
31	320	3	100		180	desir,	Spui, souther		
			(C)	11.1			100 mt /12' cz 5.7		
-,, f		6							
7		7		/					
		8			1				
5	1	9							
]									
- 1		70			. }				
ľ	1				Ħ				
1]								
l	ł				ŀ				
ŀ	1				ł				
1]								
ł	ł			• }	ŀ				
į	t			- 1	t				
I	1			·	1				

Shoot No.___of ___

CLIEN	T					JOB NO FIEI	LD BOREHOLE LOG		
PROJ	ECT _						<u> </u>		
LOCA	TION _						OREHOLE NO. <u>A2-58-59</u>		
CONT	RACT	OR				LOGGED BY 8	TARTED M 19		
METH	OD						NISHED M 10		
OF BORIN		ROCK					EVATIONS: DATUM		
<u> </u>	T	T	<u>}</u>	≿	ш				
۳		Ŧ	1	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition,	NOTES: Bering ,Testing and Sampling Presedures ,Water Less and Gain		
<u>\$</u> .	J A	DEPTH	BLOW	18 *	1	Weathering/Fracturing, Inclusions, Oder ,Etc.	Drilling and Testing Equipment ,Etc.		
SAR NO.	7	ă	<u> </u>	2	¥-	· · · · · · · · · · · · · · · · · · ·			
,	4	0	7	1.0/	- AM	10 Fill Silt dark bround little - Some	Moist		
ł /	10,4	 	 7, .	ł7	12	F-Med SAND trace fine Brand	81.15		
/	†	 	17'	2.0	'	grading to black color @ 18'	Slight obez		
		2		1.11		.3 Fill Silt dark-brown AS Above	JWET.		
1	0,0	<u> </u>	14_	<i>\''</i>	4.0	shap contact w/	SAT (O. Approx 2,5		
	ľ	1-2	12	2.0	٠. `	1.4 FILL SAND L+ brown Men-Crs, Inose			
<u> </u>		4	Walt			O.6 Fill SAND Lt Brown As Above P-Crs	54T.		
3	4,9		2	117	1.4	gharp contact w			
7	14.	5	2	2.0	l+ 1	0.7 Fill SAND Black-gim, Fing-McD w/	•		
		 _		_	} _	APPACENT STAINLINE, Sultar Octor			
,,	1/	 "-	4	1,2/		1,2 SAND L+ gray-bount to black	SAT		
19	22	7	1	2.0	10.2	6 savel			
	<u> </u>		16	12.					
/		R	3	11:1/		11 5MD L+ gray - Sound of HACK OF GANIC	547		
ク	15.4	9	7	2.0	1.0	savor partings, F- Crs grain, sultar onon			
	[5	Y2, U.	<u> </u>				
		10]			Boxchole locates		
		 	 	4			80'Nonth 06		
•	1		 	┪ .	1		Grib Stake N 1700 E 8 150		
	<u> </u>						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
]	1] [] [
	1	 	 	4					
<u> </u>	 	 	-	 	 		<u> </u>		
	1			j .	i :				
]]]				
1	ı		l	I .	•	•			

Sheet No. _____

CLIEN		<u>LT</u>	<u></u>		TE.		D BOREHOLE LOG
PROJE	CT _		BELO		_	Phase II	142 B _ /A
LOCAT	ION _	DOI	inc		NVV	NA BO	PREHOLE NO. DAZ B -60
CONT	RACTO	OR					ARTED M 3/18 19 97
METHO OF	OD	SOIL	4 1/2	111	145A		MISHED M 3/ 19 <u>9 7</u>
BORIN	G:	ROCK	<u> </u>			CORE DIA EL	EVATIONS: DATUM
SAMPLE NO.	TYPE	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor, Etc.	NOTES: Bering ,Teeting and Sempling Presedures ,Water Less and Gain Drilling and Testing Equipment ,Ets.
	1.0	0	12 20 16	120	0.2	AND GRAVEL	or B-54
2	3	3	35 21 7	1/20	1.8	17 SAND AND Gravel dack gray-black, f- Crs grain y/trace-liftle f-Crs Gravel slight sheen is DOOR C. Heir trable	SATURATED
3-	62	5	12 H 10	1.3/	14.4	1.3 SAND dark gray-brown gradic, downward to black-gray f-crs, strong operat tarreces. Le tarre co apprex 5.5	
4	46	5	9 15 20	2.0	20.30	16 SAND AS Above w/little fine Granel Pantings, Sharp contract w/ 18 SAND At Brown - white, Men - Crs,	SAND CONTRACT
5	42	9			12.2	77 45504/ N. N. IA IV N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001/ N. 2001	Slight - Strang cress Le/Tot ooon
6		11					
7		13					
В		15					

Sheet No.___of ____

MAICOLM

PROJECT PHI PHI		
CONTRACTOR BY	JOB NO. () % J () 7	FIELD BODE
BORING: BOCK BORING: BOCK WE AT BELOWS AND AND AND AND AND AND AND AND AND AND	CORE DIA. SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Melature Condition, Weathering/Fracturing, Inclusions, Oder ,Etc.	BOREHOLE NO. A3 -SB-1 STARTED /5:00 M 3/319 97 FINISHED M 19 97 ELEVATIONS: DATUM MOTES: Bering . Testing and Sampling Procedures . Water Loss and Gain Drilling and Testing For
2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, & Calle AND Pellebrus Slag, slight op	Spool schape (a 1.41 65)
4 b.4 7 4 1.5/ 9 /2.0	113 TAR Black, plinter, seem-harm	Prohable Nohwell S
5 DA 9 3 6.0 9 4 2.0 10 5 , 3	No Relavery Sill- Mass grow-brown towns	Wet-Moist
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Juni Brandai, trace Clar	Moss
		W

	PRO.	NT JECT _ ATION	LT P/+	r/	PH	工	JOB NO. <u>0348263</u> FIEI	LD BOREHOLE LOG
	METI	CONTRACTOR					LOGGED BY TRILLES	TARTED 12:45 6 3/13 19 97 NISHED M 19 97
	SAMPLE	TYPE KON	DEPTH		MECOVERY *	MOISTURE TIN NO.	CORE DIA. SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Meisture Condition, Weathering/Fracturing, Inclusions, Oder ,Etc.	EVATIONS: DATUM HOTES: Bering ,Testing and Sampling Precedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
ارزا/ سالمه:د		1.4		14 1	2.0		1.3 Stry and Five Gravel, lives to ye kny 12 Stry and Gravel, brown hive to fine 500 - Fine Gravel, time - little Silt	Doy
	2	1.6	3	//	3/2.0		LE Fill coming bick Cos Gravel, 5/29 lies w/ dibris > 3/1	Wet-SAT
	3	2.8	5	9 14 16	2.0	_	Slag (Grand)	SATURATES
29.0	 	0.0	-	1 / / / / / / / / / / / / / / / / / / /	1,2		Little recover fine Crs w/slag, Little recovery due to wood in bonehole Little recovery due to wood in bonehole No Recovery	Spoint Return (0 7,2'
		니다	9 17 10 17	15 /1	,0	-	. 2 Clay gay black w/s: 1 - do -1:	
	7	. 15	5 2 Z	2 /2 2 1.1	.0		2 - 14ND brow. A-1has u/ trace little 514	Met-Moust SAT
	8		7	3 00	1		0: 5 G. It brown - gray of trace clay gooding to No Recovery	
L s	ineel N	• <u>/</u> _	<u> </u>		<u> </u>			W

WICOLM

	CLIE	NT		<u>_</u> _			JOB NO	TELD BOREHOLE LOG
	PROJ	ECT_						
							LOGGED BY	BOREHOLE NO. A3-SB-2
	METH	OD					LOGGED BY	STARTED M 19
	BORI		ROC				CORE DIA.	FINISHED M 19
	SAMPLE NO.	TYPE	DEPTH	BLOWS 'H'	RECOVERY &	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Melature Condition, Weathering/Fracturing, Includions, Odor ,Etc.	ELEVATIONS: DATUM NOTES: Sering ,Testing and Sampling Precedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
silt	9	0.4	16 17		1.8/		1.8 S.It your of true was Rine SAND	
UM)	10.	0.2	78 79	4 14	19/		19 3:11 1420; rox x/ 1.+16-5:me Clay	
		0,7	20 21	# 5	1.7/-		1.7 Silt w/ little clay as laminar	
V	12	00	22 23	7 9 11 9	0.8/		0.0 No Recovery	
CIM	13:	0.0	24 25	3 2 2 2	2.2/		2,0 Clary, gray, soft, strong photicity	Top Coult wing layer
	14	o. D	26 27	2 2 2 2	1.5/		1.5 CLAY, MED GRAY AS ABOVE	
	15	t	<u>≥</u> ⊌ 29					
	16	I	30					

	CLIER	NT _			-		JOB NO F	ELD DODELLO.		
	PROJ	ECT.						ELD BOREHOLE LO		
								BOREHOLE NO. A3-SB 3		
	CONT	RACI	FOR				LOGGED BY	STARTED 10:00 4 3/14 19 97		
	METH							FINISHED 10:45 6 3/4/ 10 97		
	BORIN	iG :	ROCI		75		CORE DIA.	ELEVATIONS: DATUM		
	SAMPLE NÓ.	TYPE	DEPTH		RECOVE	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Toxture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	MOTES: Boring .Testing and Sempling Precedures .Water Less and Gain Drilling and Testing Equipment ,Etc.		
F11\ 24	/	0,2	1	28 35 19	1,5/		1,0 Pelletizes Slas, gray-brown, sharp continue w/ special w/ bre 15 SAND AND COME ISLAND Rive-MED, w/ bre	SAT		
ON	2	9,0	3	4	120		14 EN GIVE and GIVE FINE SAND			
Ysilt	3:	0.0	4	3 3	14/		114 Clay export in above mothers			
	4	0,0	4	1/2	10/		1.0 CLM of SILT A/A	SAMPLEY /-/, 5' interval R. Byex Prit		
	5		<i>চ</i>					C-10:15 TCN		
	(¢		10							
	7		12							
•	8		14 13							

	CLIE		·		····		JOB NO FIF	FIELD BOREHOLE LOC			
	LOC/	ATION									
		FRACT	OR				LOGGED BY	BOREHOLE NO. A3-58-4 STARTED 14:35 3/4 19 97			
1	BORING: ROCK						CODE DIA	FINISHED 15:15 P 3/14 19 97			
	SAMPLE NO.	TYPE	DEPTH	H. SMOTH	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Freeturing, Inclusions, Odor, Etc.	ELEVATIONS: DATUM NOTES: Boring .Testing and Sampling Procedures .Water Loss and Gain Drilling and Testing Equipment .Etc.			
11	1	0.0	0	54	1.6/		FILL 13: SAND SAND SAND FINE-COS W/ Fine 1.3 Brick, 120 W/SIA9				
,0' , \ \	2	0.	3	4	2.0		Fill 1.2 A/A				
4,2	3	NA.	<i>4 5</i>	8	2.0		12 Fill Clay to Sit w/ Cro Gravel, brick	SVOC			
	4	0.	6 7	4 1	2.0		14 Clay gray, mother, Frace Silt grain, consumed w/ trace saves	TAL TOETALS, CN			
	5	0,0	8	97/	1/	-	6 Clay w/ trace Gilt F. SAND A/A 6 SAND GRAY FINE - MED W/ tr PING 6 GIAND 1958				
	Co		Ю Л		/		15 Clar gim!, trace Silt				
1	7		12 <u>-</u> 13								
	3		3								

WYCOLM

RHO	JECT _					јов но FIE	FIELD BOREHOLE LO		
CON MET O	LOCATION CONTRACTOR METHOD SOIL OF BORING: ROCK					LOGGED BY	BOREHOLE NO. A3-SB-5 STARTED 14:00 8 3/14 19 97 FINISHED 14:30 M 3/14 19 97		
SAMPLE	TYPE	DEPTH	BLOWS 'N'	ECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Celer, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions, Oder ,Etc.	ELEVATIONS: DATUM NOTES: Boring ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.		
1/1	0.2	0	15 211 30	1.2/	-	, & SAND MED brown f- Mes of Five Gomes, & SAND black, compacts, Rivi-Us of little Five Gomes & Crushes stock			
2	6.	2		1.3/		1.3 SAND W/GRAVEL, dark brown - 6/Ack, COAL, brick AND SIAG	541		
3	0,2	4	4 5 7 9	1.4/-		1.0 CLAY GRAY-brash w/tr Silt	Moist		
4	0,0	7	3 3 5	9/		Dig Clay yelle - GINY : Mottles to S.It			
5	0,0	8 9	4 5	14/2.0	- 	W/ trace Give sub-the grand, trace - little Silt	945		
6		/0 /1							
7		12			-				
8		14							

	PROJ	IECT _						LD BOREHOLE LOG	
	CONTRACTOR						LOGGED BY	BOREHOLE NO	
	BORING : ROCK				 	-	CORE DIA.	LEVATIONS: DATUM	
	SAMPLE NO.	TYPE	DEPTH	BLOWS 'N	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includione, Odor, Etc.	NOTES: Boring .Tooling and Sampling Procedures ,Water Loss and Gain Orilling and Tooling Equipment ,Etc.	
FIL	1	1.0	о 1	18 34 25	1.4/		15 SAND Mes brown, Fine-Mes amin's w/ 19thle Gravel, sharp contact w/	36, ht Salfor 1600	
	2	0.4	Z 3	-7 57 /00	1,2/		1.2 SAND AND GANGE FINE - COS GATIN W/ FINE SUB-CAD GORAND TO Va", Black /w/ Apparent Stairing & Z.9-3.2, gray-wh	Spool refinen (c. 3, 3' 695	
,0 ^ 4		0,2	4	35 17 4	1.3/		1. S SAND AND GARVEL Black, loose, Kine-G sharp Contact of black, loose, Kine-G . 3 Clay dark gray-black w/tr-little Silt	61 Arth 104 1 7 5-22 2 2 4 5	
	4	0.2	6 7	2 4	1.1/		1.1 Clay gray-brown, matthe my tr-1. Ite. Silt	Moist	
	5	0'0	9	2 1 2	1.5/		19 5AND Yellow-housed hime little - Some Sil do SAND gray-hours First-Meo, loose of trave-little Grand	9/4-T,	
	6		70 71						
	7		<i>12</i> 15						
	g		14 15					W	

	CLIE	NT	<u> </u>	$\Box V$	<u> </u>	TEE	- L	-
		JECT_	So.	Belo	Ph	MSC	I / Phase II JOB NO. 0848-263 FIE	LD BOREHOLE LO
			Do	NNE	<u>c</u> -	MA		
		TRACT	OR_	<u> RM</u>	37	0 0	Rolling LOGGED BY J.P. 14:1402	TARTED 11:45 M 3/5 19 97
	MET	F		4 1	411	145		TARTED 11:43 m 2/5 19 97
	BORI	NG :	ROC	7			CONE DIA.	HISHED 12:38 6 3/5 19 97
	SAMPLE	17 PM	DEPTH	BLOWS 'H	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Toxture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Loss and Gain Dritting and Teeting Equipment ,Etc.
	1		о Н	2 8 12 10	2.0/		Fe staining a max 1:0'	wet-
Ke	2	0,2	3	20 20 11	19/20		.2 Coke As Above .7 Fill Fen-back, concrete, Gray-Hack Men Saws	SATURA TRIS
ī,cK	3-	0.4	4	17 37 42	20		1.2 Coke w/ little Some Ken book,	SATURATED
3 AY	4	0.4	6	2 2 1	2.0		1.3 Clay park, grav w/ some Frystandy	Samples B-1
	15		<u>छ</u> १				5: It w/ depth dense shift, some plus high	
	6		10					
	7		12					
	В	I	14 15		1			
3	Shoot Noof							

	CLIE		Ž.	∇	<u>S</u>	TEE	JOB NO. 0848-263 FIF	•		
		JECT_		BEIZ	2 Ph	MSE	— / INASR ∐	LD BOREHOLE LO		
		ATION				_				
		TRACT		BN	STARTED 9:05 A 3/6 10 97					
	0				4 n	1451	t LOGGED BY J.P. 141/162	STARTED TIPE M SEC 19 77		
	BOR	HG:	ROC					MISHED		
	 		۱.	*		E .	SAMPLE DESCRIPTION: Color, Texture Classification,	LEVATIONS: DATUM		
	SAMPLE		DEPTH	BLOWS	<u>8</u> ×	E.¥	Compactness/Consistency, Moleture Condition,	NOTES: Boring ,Tosting and Sampling		
	₩	2 2		3	RECOVERY	MOISTURE TIN NO.	Weathering/Fracturing, Inclusions, Odor ,Etc.	Presedures ,Water Less and Gein Drilling and Teating Equipment ,Etc.		
		1	0	6		-	4 () 4 () 1	• <u> </u>		
	11	1	 	4 3	17]	anabire to	Moist		
	L'	_	╂┸╴	3	120		1.0 Silf daris brown - black, trace - little			
			2	4	11		1 Fill Mod Brown Silt trace of SAND			
	2	11.2	├ -्	13,			Respect boyet slag cas Games	MOIST-WET		
١.	L	1"	-	41	12.0	1	, , , , , , , , , , , , , , , , , , ,	O HIVE SCA		
			4	3	11/		1.1 NATIKE GERNY-BOOMS, It, Little Fire Gravel.			
gild Sild	13	1.4	<u>ــــــــــــــــــــــــــــــــــــ</u>	3	171	-	trace Coal, 11 11/2 MAL GRAVEL,	WET-SAT.		
711	1	∄	5	12	2.0	' ∦				
1+			6	1			10 GIF GRAY WILLIAM TOWN			
11	4	2.6		1,	15		HAVE-LITE GRAVEL OLDERY	SAT		
/,	! ' .			3	2.0	- 1	TO MAY SIND & Clay, leat photons	A		
sik			8					Augured to 47		
	5		8			1				
	3	l	٩		/	Į.				
			10							
	6	ˈ ∤				-				
1			12		- /	- 				
ļ	71	ļ	7,]						
ļ	′ 1	ł	13	/	/	1				
			四		 					
l	81	Ŧ	 -			L				
		†	15		/	-				
•	lheet	<u> </u>								
•		···		· ·			·	MALQOLM		

	LOCA	JECT . ATION	So.	NNI	Pl 202 -	NA	I / Phase II NNA	LD BOREHOLE LO
	METI OI BORN	HOD F		<u> 4</u>	<u> </u>	1451 1451	t COGGED BY 3.1. 171 1702	STARTED 10:40 # 3/6 19 97
Coh	SAMPLE	TANK HOW	ODEPTH	BLOWS 'H'	RECOVERY	MOISTURE TIN NO.	CORE DIA. SAMPLE DESCRIPTION: Celer, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Sampling Precedures ,Water Less and Gaia Drilling and Teeting Equipment ,Etc.
				7 11 11 10	12.0		1.5 coke mis brown stag-like debris w	
Sing		0.2	4	4 4 6 60	12/		1.2 Cake horeze no contra 1 Com	SATURATES
G.O. silty		NA	6	100 - 7 1 1	2.0		TRACE Silty Clay Deilling & Sampling character indicate	No Sample Recount
clay	5		ह १	3			base of Cake At Appare 60-6.5'	2 6 3 11 5 pools August to Ca'
•	6		15					
	7	_	13 14			- <u> </u>		
	8		15-					

WHOOLM

	CLIE PRO. LOCA	JECT_	50. Do	BEID	, Ph	MSE NA	I / Phase II					
	CONT METI	LOCATION DONNER - MANNA CONTRACTOR BUFFALO DRILLIO G METHOD SON 41411 HSA OF BORING: ROCK					coded by J.P. 14:1402 Bi	BOREHOLE NO. DH B - 5 STARTED 10:05 N 3/6 10 97 FINISHED 10:25 4 3/6 19 97				
	SAMPLE	HAN POSP	DEPTH	BLOWS 'W	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	EVATIONS: DATUM HOTES: Boring ,Tosting and Sampling Presedures ,Water Loss and Gain Drilling and Tosting Equipment ,Etc.				
of c	1		0	3	1.3/		19 Coke MD Silt breeze w/ Fines	Muics				
5:14			<u>2</u> 3	10 8	2.0		2,0 5ilt min Lake hoeeze w/ black carbon	SATURATES				
	3-		4	4 3 3	2.0		2.0 Colle, black breeze w/ Kines					
2.4 My	1	8.4	6 7	HOW	1.0		.4 Coke As Abure .6 Clar AND Silt DARK gray, stiff,	Augeres to 4.81				
;}}	5		छ १		7							
	6		10		7							
	7		13		7							
	В		14		1							
		.										

WITCOLM

	CLIE		7	\sum_{i}	<u>S</u>	TIEE		JOB NO. 0848-263 FIFI D PODENOI -			
		JECT .		BFIS		MSC	<u> </u>	ELD BOREHOLE LO			
		F	TOR _	Bu	ffa/		LOGGED BY J.P. 14:1402	BOREHOLE NO. DH B - 6 BTARTED 09:30 A 2/4 19 97 FINISHED 10:00 4 3/6 19 97			
		Khir	T	<u> </u>	T≥	Tω	CORE DIA.	ELEVATIONS: DATUM			
	SAMPLE	NA.	N DEPTH	BLOWS.	_	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	HOTES: Sering .Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.			
J	1	-		3 /2	122		19 Coke black breeze mo River 17 Coke how dark brown 5:1+ , trace chap				
Coke	2	_	3	23 26 20 17]~		trace Slag	SATURATIES			
ĺ	3-	-	5	7 9	2.0		1.0 Colle black Nut and house	34TURA TED			
324	4	2.2	9	3	1.5/		.4 Rat Black plant debois fiberons	SAT.			
5.H	5		9				SAMPLED CO.S - TO.D ' IN LOVA! FOR TEL VOL, SVOC, METALS	Augures to 4.0:			
	6		11								
	7		13								
.[В		14 15		/						
5	heel	ná. /		1		<u>-</u> -					

.

	LOCA	JECT _ ATION .	Do	NNC	Ph	A(K	I / Phase II	D BOREHOLE LO
	METH OI BORH	TRACT HOD F	OR	Bul	4"	0 D	colling Logged By J.P. 14:1402 8:	PARTED 8:20 A 3/11 19 97 NISHED 8:40 A 3/11 19 97 LEVATIONS: DATUM
	SAMPLE	TVPE	ODEPTH	BLOWS 'N	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	HOTES: Bering ,Testing and Sampling Precedures ,Water Loss and Sain Drilling and Testing Equipment ,Eta.
/; \\ ~/_			Ĭ	13 6 5]~/		, 2 Fill, Slag of brick constantion debris	SAT.
n/K	2		2	7 7 7 8	1.7/		18 Coke black capped fives, sharp contact of Fill Clay by little brick and slage	547
1.5 lent	3-	0,2	4	1 2	1.7/		15 Fill dark black-brown new SAND w/ white-	Moist - Wit
;;; 	4		6				1.0 Silt dark gray wy rootle to	Angeres to 4.0".
	5		छ १					Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
	6		11					
	7		13		/			
	8	Ţ	14		/			
1	iheet I	×6	07					WYCOLM

	CLIE	NT	7	7	5	TEE	JOB NO. 0848-263 FIFE	
	PRO.	ECT_		BELO	Ph	ASC	L/ Thack II	LD BOREHOLE LO
	LOCA	ATION .	Do	NNU	<u> </u>	MA	NNA	_
		TRACT		Bul	<u> </u>	<u>o</u>	Rilling LOGGED BY J.P. 141/402	OREHOLE NO. DH B - 8
	METI		SOIL	4"	411	1421	*	MISHED 9:00 23/1 19 97
	BORI		ROC	<u></u>			CORE DIA.	MISHED 4.00 M 3/11 19 97
	_ بي [1	*	à	W		LEVATIONS: DATUM
	SAMPLE NÓ.	<u> </u>	DEPTH	\$	8 8	Εž	Compactness/Consistency, Moleture Condition,	NOTES: Sering .Teeting and Sampling
	× 0	17 PE		BLOWS	RECOVERY	MOISTURE TIN NO.	Weathering/Fracturing, Inclusions, Odor ,Etc.	Precedures ,Water Loss and Gain Drilling and Testing Equipment ,Etc.
- 11			0	3	1.1/	-		<u></u>
411				5	J /		.6 Silt dark grav-brown w/ plant debrie	WET-SAT
, ,,	L	† ·	╀┸	/D	27			
			2	21	0.0/		No Recovery	
	12	ł	 -रू-	11.				
	-	L		4"	12.0	-		
4.2			4	2	1.6		. 2 Fill Eight brown - yellow Cis SAND	
WY	13:	0.2	5	2	//	-	- 2 Peat dark brown about debois within	
LAY				7	2.0	f		
	, ,		6		7		, 9 CIMY Men GAY, solt grading to still sity day	Moist matter
yo4	4		7		/		Samples TEL VOC	AUGERES TO 41
, My						ŀ	SVOC	
•		-	ठ				@_ 10:20	(3) 3" 3000-15
	5	1	9			ŧ	G-4.D-4.5	
		ŀ	10		Α	-		
	6	1	Π			t		
					- 	[
į	7	t	12			┟		
	-/	Į	13		/ 1	Ţ		
ŀ			74 	 -{	- 			
ľ	RI	Ţ				t		
	0	-	12	—— <u> </u> ,		-		
•	lha a t	Nő	———L					
•		~~. <u></u>	 -7				•	MALCOLM

	CLIE	_	17	<u> </u>	57	TEE	JOB NO. 0848-263 FIFE	n paneual e		
		JECT _	20. 1		<u> </u>	ASE.	L / Phase II	LD BOREHOLE LO		
		TRACT	_ <u>~~</u>	12. C	C 1	$\sum_{i} \sum_{j} \sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j$	B	DREHOLE NO. DH B - 9		
	MET		50K.	41)	4 11 E12 12	145	LOGGED BY J.Y. 11/140%	TARTED 9:35 4 3/11 19 97		
	BORI	-	ROCK		*		FI FI	MISHED 9:50 0 3/11 19 97		
	[T		<u> </u>	E	w	CORE DIA.	ELEVATIONS: DATUM		
	SAMPLE	1496	O DEPTH	BLOWS.	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tosting and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.		
alt all	1			6 18	2.0		16 Fill silt dank brown a/ plant dates a (c) Cos Gravel	SAT		
<i>(</i> ' '	2		3	9	2.0		No feiners			
1.3	3	0,3	4	4 4	12/		13 FILL SILF DACK GRAY W/ Brick 19 CLAY GRAY- BROWN MOHLUS W/ little Silt	Most		
	4		6 7		/			Augens to 4.0!		
	الح		ह १		/					
	6		11		/					
	7		13		7					
	В		14		1					
•		i		1	 -L.,					

...

	CLIE		八	7	21	TEE	JOB NO. 0848-263	FIELD BOREHOLE LO
		ECT_		BELO	<u> </u>	ASC.	L/Phase II	
							INA	BOREHOLE NO. DH B -10 STARTED 9:50 M 3/11 19 97
	CONT	RACT		14C	4 11	$\frac{17}{\Omega}$	Rilling LOGGED BY J.P. Hilton	STARTED 9750 A 3/11 19 97
	OF	•			4	112		FIMISHED 101.30 6 3/11 19 97
	BORIN	<u> </u>	ROCK				CORE DIA.	ELEVATIONS: DATUM
silt	SAMPLE NO.	TVPE	DEPTH	BLOWS 'H	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Freeturing, Inclusions, Odor, Etc.	NOTES: Sering ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Eta.
<u>.60</u> Ve			о Н	5 12 15 20	1.6/		10 Coke black breeze wo Carbod Fis	Jes SAT
3.1	2		<u>د</u> 3	20 20 30	147		101 Cake A/A Ysms no Grand og SAND AND GRAND Block Ride - MID y Fire Gomes, trave-little Silt	# TOP VOC. S VOC 10:00 & 2.5-3.0 Strong ODAR, TAC-1.16
f:11 6.0	3-		커니	8 S	3/22	-	13 Slage-like brick collis >3" d	
	4	ط,0	5	5 7	1.7/		1.1 Clar gray-brain of trace-1. His 5: 17. gradient 1.1 Clar gray-brain of trace-1. His 5: 17 1.3 Silt and Rich Sand yellow brains trace Clay	Maist -Wet
	5		9					Augumo to 4.0'
	6		11					
	7		13					
	8		14					

	CLIEN PROJE		LT So. 1	BEIO	PW		Phase II	LD BOREHOLE LOG
	CONT METHO OF	RACT(DR	Buf	fals		LOGGED BY J.P. Hilton	TARTED 09:15 & 3/11 19 97 INISHED 09:30 & 3/11 19 97
11-	SAMPLE NO.		ROCK HT490		RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	LEVATIONS: DATUM HOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.
洲源			о Т	3 7 4 4	1,2/		.5 91t brown med start w/ Clay and 17 Fill Lt Brown med start w/ Clay and Concrete debris	54 T
W/A)	2		3	17 9 8	1,0/		1.5 Fill Lt boom - yellow Clary w/ Silt Concrete debris	SAT
はけ	3	0.2	4 5	2 3 3	1.0	-	. 2 Fill As above shars contact w/ . 1 Plat black-gray some silt . 5 Silt Men-DACK, GLAY, W/rontlets, gradian . 8 Clay gray, little Silt grading to mutiled	Maist
W/ FIAY	4		6 7				- C CART THE THE THE GRANT TO MARKET	Augered to 4.0
	5		छ १					(3) 3" 200.13
	9		10					
	7		13					
	В		14					

Shoot No.____of__

	CLIEN		<u>LT</u> So. 1	V		TEE		ELD BOREHOLE LOG
	PROJE LOCAT	TION _	DOA DR	Bre	Fa/2	NAO	LOGGED BY J.P. 14: 1402	BOREHOLE NO. DH B -12 STARTED 14:30 6 3/10 19 97
	METHOF OF BORIN		SOIL .		1"	HSA	CORE DIA.	FINISHED 4:506 3/10 19 97 ELEVATIONS: DATUM
	SAMPLE NO.	TYPE	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor, Etc.	NOTES: Boring ,Tooling and Sampling Procedures ,Water Lose and Gain Drilling and Tooling Equipment ,Etc.
11	1		Ь	1/ 30 3/ 10	1.6/		luc Fill Flag, res brick, constanctions debris	
:	2		3	100	1.6		16 Fill Construction debris, brick	
シナ	3-	0.4	5	9 2 3	1,3/.		12 Fill as abone sharp cutact 12 Peat black w/ plant depois 19 Filt dark giar w/ plant debris	Moist
	4		7					
	5		9					
	6							
	7		13					
•	8		14					

CLIEN		77	<u>V</u>		TEE		LD BOREHOLE LOG		
PROJE		So. 1					4		
	RACT					Rillia LOGGED BY J.P. Hilton	STARTED 15120 M 3/6 19 97 STARTED 15130 M 3/6 19 97		
METH	OD		412	111	1451	todate by	MISHED 15:30 m 3/6 19 97		
OF BORIN		ROCK					LEVATIONS: DATUM		
SAMPLE NO.	TVPE	DEPTH		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.		
	ł	0	ध	2.0/		2.0 Coke breeze - Fumbry Size	INET		
			<u>।</u> ।	2.0					
1		2	9 10	2.9/		1.3 Coke breeze & Fines	SATURATES		
2		3	10	2.0					
	 	4	12	2.9/		(6 TAR grading to			
13-	•	5	13	/	-	1.9 Coke grading to	Augeres to 4'		
			5	/z.0			smpld to 8		
1		6		,4/		. 2 coke fines .4 5,1+ And Peat brown-black	3 3" 900013 .		
4	120'	7		2.0	•	- 1 2/17 / 7 13 12/41 3/3/43 13/47	1 2" spood		
1-		용							
5] -	9							
	<u> </u>				•				
	ł	0							
6		Ш							
	 	12							
17	•	13			,				
	<u> </u>	74							
B									
		15							
Sheet	Bhoot Hóot MALCOLM PIDNIF								

	CLIEN PROJE LOCAT	ct _	LT So. B Don		Ph	_	L/Phase II	DEPARTMENT OF THE PROPERTY OF			
	CONTI METHI OF BORIN	DD	SOIL				LOGGED BY J.P. Hilton STARTED 12:45 M 3/6 FINISHED 1. 90 M 3/6 CORE DIA. ELEVATIONS: DATUM				
;	SAMPLE NO.	TYPE克美	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Sering ,Testing and Sampling Presedures ,Water Less and Sain Drilling and Testing Equipment ,Etc.			
	-		о Н	7 10 11	20/20		20 Coke breeze w/black coabou Rus, trave	SATUKATEN			
	2		2	اجب	2.0		20 Coke breeze AND NUT Warlaw Rimes trace- little slag w/ colobles > 3" dia	JATHRATE D'			
6.0	3-		4 5	3 2 2	1.6/		IND CEKE breeze w/ Rives AS Above	Salvirotes			
رام)	4	14.8	6 7	12	1.2/		1.2 Clay dak goay, stift duse of trace	Auguren to 4.01			
יווּכּן	الح	-	छ 9			-		2-3" 1-2"			
	ع		10								
;	7		13								
-	В		14 15								
	Sheet	Nó	MALCOLM								

 $\cdot V$

	CLIEN		17	7		TEE		D BOREHOLE LOG		
	PROJE	ECT		BELO			- / Thate II			
	LOCA	TION _	Do	311C	<u>n - </u>	<u> </u>	1NA BO	OREHOLE NO. DH B -16		
	CONT	RACTO	D R	Buf	fa/c	D	LOGGED BY J.P. Hilton 8	TARTED 1:05 4 3/6 10 97		
	METH				4 11			NISHED 1:25 4 3/6 19 97		
	OF				·		•	· · · · · · · · · · · · · · · · · · ·		
	BORIN	_	ROCK				CORE DIA.	EVATIONS: DATUM		
	SAMPLE NO.	TVPE公主	DEPTH	H. SMOTE	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor, Etc.	NOTES: Soring ,Tooting and Sampling Procedures ,Water Less and Sain Drilling and Tooting Equipment ,Etc.		
			0	5	2.0/		2.0 iske but & bruze w/ black carbon	SATURATED		
	١, ١,			11	14/		Fines, trace-little Silt, res brick			
] ' .		┞┸	14	2.0					
i	-		2	17	 • • • • • • • • • • • • • • • • • • •		2.0 Colle breeze & block crebon lives			
		1		12	29		some preferation staining	SATURATION		
	2		3	10	2,0		as and in z	· · · · · · · · · · · · · · · · · · ·		
					!					
			4	5	29		2.0 Coke As above, strong creasure -			
	3		-5-	5	! /		chemin open, track slop w	3 ppn HNn send		
6.0		-	 	72	2.0	4	5A5e_			
Sitt	_		6	2			1.1 Silt dack grow-black tage clay	SAT		
シバ	[]	$ \nu $	V 7 2 20	1.1 Silt dark gray-black, trace clar	2011					
	4									
				2						
			3			1		Hugerus to 4'		
	5		٩		/	-		(3) 3" 1 (2")		
								(3/ 3 / (2/)		
			0							
					/					
	6				! /					
			12							
8	5	1			//					
ì	[/]		13		[/	1		1		
					<u> </u>					
			4		/					
ì	B	1	15	—	/	ł				

STEEL JOB NO. 0848-263 FIELD BOREHOLE LOG CLIENT Phase I / Phase II PROJECT ... DONNER - HANNA LOCATION LOGGED BY J.P. 14: 1402 STARTED 15'.00 3/6 19 97 DRil CONTRACTOR HSA FINISHED 15:10 6 3/10 10 97 METHOD SOL OF CORE DIA.__ ELEVATIONS: DATUM BORING : ROCK MOISTURE TIN NO. RECOVERY SAMPLE DESCRIPTION: Color, Texture Classification, HOTES: Boring ,Testing and Sampling SAMPLE NO. BLOWS Presedures ,Water Less and Sala Compactness/Consistency, Moisture Condition, TYPE Drilling and Testing Equipment ,Etc. Weathering/Fracturing, inclusions, Odor ,Etc. CoKe Dielze il Fixes CoKe Coke TAR AND SIF Toe GNES breeze w/ canh N Cole 10 io GILT dank brow - black W/ PEAT Awared to 4.00 10 12 B

Sheet No.___of __

	METH	CT TION _ RACTO	DOY	Buf	Ph	NA P	LOGGED BY J.P. 14:1402 ST	ARTED 16:00 6 3/6 19 97
	OF BORIN		ROCK					EVATIONS: DATUM
<i>د علا</i> ف	SAMPLE NÓ.	TVPE	DEPTH		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tosting and Sampling Procedures ,Water Less and Sain Drilling and Tosting Equipment ,Eta.
13_	1		Н	2- 15 21 18	2.0		1.3 Coke breeze - NAT W/ CARBON FINES LE Slag MS Crs Gravel, orange-brown	SATURATED
429	2		3	19 15 15	1.4/		1.4 SING MD GRAVEL to >3"dia	SATURATED
4.3	3	5.4	4	9 6 3	1.2/		.3 SIAG AND GARREL A/A , 4 Pear Brown-Black W/ plont debris ,5 S.It 2001-brown	SAT.
W/sea	4	16	6	3 2 2 3	1.0/		1.0 5.1+ AND Clay yellow-board, stiff	Augures to 41
	15		8	<u>3</u>		•		1 2"
•	٩	_	10					
	7		12					
- - 	В		14					
	Shoot	N	<u></u> ••	1	<u></u>			MALCOLM

	CLIEN		77	<u>V</u>		TEE		LD BOREHOLE LOG			
	PROJE	-		BELO		_	L/Phase IL				
	LOCA				:		LOGGED BY J.P. 141/402 8	OREHOLE NO. DH B -20 FARTED 14:00 M 3/10 10 97			
	CONT				1 11 14 17 2		CONTRACTOR LOGGED BY J.Y. Hilton 8	MISHED 14:25 & 3/10 19 97			
	OF BORIN		HOCK			· <u> </u>					
	f -		noc.	<u> </u>	>	ш		LEVATIONS: DATUM			
	7		Ξ.		VER	15.0 15.0 10.0 10.0 10.0 10.0 10.0 10.0	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition,	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Sain			
	SAMPLE NO.	TVPE	DEPTH	BLOWS	RECOVERY %	MOISTURE TIN NO.	Weathering/Fracturing, Inclusions, Odor ,Etc.	Drilling and Testing Equipment ,Etc.			
			0	16	14/		. 5 COKE AND SIAG . 3 S. It Orange-blown W/SIAG AND CAS GRAVE				
				22 90			, 3 SIF Orange-blown w/ SIA9 AND Crs Gravel				
	<u> </u>			60	/2,0						
	_ '			19 59	1.7		1.7 Slag AND crushes stone AS Cre				
" >	2	1 .	3	26	2.0						
4.0	 	 	4	19	11		4 CLAY GIAY-DOWN mother 4/ time	Maist			
JM	3-	نها ر		6	1.7	ļ †	Silt, stilt, weak plasticity				
CL.	ر ر	Ι''.	5	97	2.0			•			
			6	5	11/		,4 Clay w/s, + As Above, and in to				
الا	4	0.6		8			IT SAND OFANGE- how. Little Silt	Maist-WCF			
W/ P	'	0.		8	2,0		trace clay				
			छ	Ĭ				Augened to 4.01			
	15	l ·	9	 	1/	-		3 (3") 5000~15			
								1 211 5000			
•		ł	10	 	1 /						
	6] :	II		1/						
			12								
	7	i :			1/						
	[/]		13		/						
	-		14								
•	B		100		/						
			15								
	Shoot	Nö	00		•			MALCOLM			

	CLIEN		LT So. 1	V		TEE	JOB NO. 0848-263 FIEL	_ JOB NO. 0848-263 FIELD BOREHOLE LOG			
	PROJE	. —					INA	PREHOLE NO. DH B - 21			
	CONT			Buf	20 LOGGED BY J.P. 141/102 BT	STARTED 13:30 Pg 3/11 19 97					
	METH		SOIL	4 1/4		145A		MISHED 14:00 6 3/1) 19 97			
	OF	G:	ROCK	<u> </u>	EVATIONS: DATUM						
	SAMPLE NO.	TVPE	DEPTH	BLOWS T	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring ,Tooling and Sampling Procedures ,Water Loss and Gain Drilling and Tooling Equipment ,Etc.			
CaVL			0	7	1.6/		1.3 coke Nut - Fourte w/ Fines sharp				
1.3			┰	19	′/		is SIIT brown Hack w/ trace Coke his slag				
Fill.				16	/ 2.0						
	1_		┞╩╴	20	1,2/		B Clay brown-gray w/ Silt and Cake				
	2	•	3	190	1.2		1-10 5/09	Spoon return 6 3.2"			
			4	60	0.0/		No Kecorery	Mores Re-wares			
, ~	3	1		32				Augures to 5' to take			
, (,),	1 1		-	3	2.0	j		sample 5-7'			
5,7			6	32	1.24		. 7 Fill Slag mo Crs Gravel sharp commet	Samples 5-7'			
	14	44	7	4	2.0.	}	5 Clay brown yellow stiff device moist	5.7-6.0 TCL VOL			
				8	4.0			SVOL			
		}	용			•		MTI-S @ 13:45			
	5		9								
			10					Augents 10' total			
	6		11								
	¥							U/(4) 3" spouls			
	1		12								
	\downarrow / \rfloor] :	13								
			14								
•	B										
	V		15								
	Shoot Noot MALCOLM PIRNIF										

 \mathcal{N}_{\parallel}

		 ECT			Ph		/Phase IT	BOREHOLE NO. DH B - 27 STARTED 13:056 3/11 19 97 FINISHED 13:206 3/11 19 97			
		RACTO OD		Buf 41%	FAls	•	LOGGED BY J.Y. 141 1900 ST				
	SAMPLE NO.	TYPE	DEPTH	BLOWS W	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Freeturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Procedures ,Water Loss and Sain Drilling and Testing Equipment ,Etc.			
۲,۱۱ ۲	1		о Н	7 8 12 11	1.3/		1,3 Fill 5.1t brown-black w/Fe standing, w/ Jittle Coke breeze - Nuit, trave Slag	Wet-Sat			
1.2 ,Ke	2		3	7 8	12.0		1.4 Cake breeze - Foundry w/ black carbod fines 1 Cake w/ trace brown Clave & Silt				
から	ري ابا	19.3	5	3 2 2	2.0		17 Silt dark gar-black w/glass, brick				
ドル	4	0,3	6	3 4 5 8	1.4	•	Silt yellow-gray mottles w/ trace-little snuls w/depth	Maist			
/s;]T	5		9					(3) 3" 50000 1 2" 2000			
	Ç		10								
	7		13								
•	8		14 15								

Shoot No._____of ___

	CLIEN	T	<u> </u>	<u>V</u>		<u>LE</u>		D BOREHOLE LOG
	PROJE						L/Phase IL _	
	CONTRACTOR BUFFALO DR						LOGGED BY J.P. 141/102 BT	REHOLE NO. DH B - 23 ARTED 14:35 % 3/11 19 97
	METHOD SON 41411 1454							HSHED 15:15 M 3/11 19 97
	OF BORIN	G:	ROCK					EVATIONS: DATUM
	SAMPLE NO.	TYPE	DEPTH	M. SMOTE	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Toxture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Lose and Gain Drilling and Tooting Equipment ,Eta.
ike 1			0	\$ 0 0 1	0.9/2°		19 Coke breeze of fines, wood in bother plag	Speed returnit (c 0.9"
زال ال	4		3	22 37 38 23	1.5/		15 Fill Coke my stag 10 Fill Green-gray sandy Grand like material 20 har - chemical obox	TCLP 2.5-3.5 14:50
debi	3		5	12 7 3	2.0		12 Fill black Silt, AND Slag	
1.6 hy	4	220	5	3 5 7 5	2.3		.2 Clay brown black	TCLP VOL 6.0-6.5 @ 151.00
,	15		9				Augrous to 4' 3" 2000 13	
	Q		1					
	7		13					
	В		15					
٠	Sheet	Nó	100		•			MALCOLM

	CLIEN		LI	7		TEE		D BOREHOLE LOG
							L / Phark II	4
							LOGGED BY J.P. 141/402 ST.	REHOLE NO. DH B - 24 ARTED 14:10 g 3/11 19 97
	CONT			DNF	eilling LOGGED BY J.P. Hilton ST.	TARTED 14.10 in 211 10 7/		
	METH OF				1 -		IISHED 14:30 M 3/11 19 97	
	BORIN	IG :	ROCK	_				EVATIONS: DATUM
	SAMPLE NO.	TVPE	DEPTH	H. SMOTE	RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Ets.	NOTES: Boring ,Tooling and Sampling Procedures ,Water Less and Gain Drilling and Tooling Equipment ,Etc.
) Ke	1		0	3 10 18 24	2.0/ 2.0		2.0 Cake brocze- unt of carbon fines trace-little stag	Wet-Maist
2.2			<u>د</u> 3	33 95 71 52	• •		1.3 Fill Cinbers, Slag, white-Alabaster like Material, brick, carbon fines	SAT
流升	3-	.لا	14	14 5 4	1.6/		1 Peat black - carbonized 1 Peat black - carbonized 5 Silt dark gray-bround w/carbonized plants 1 Clay bround some w/trace-little Silt	SAT
žlaj	4		6 7				4 Clay brown-gonr of trace-little Silf	Augure to 4.01.
	5		8					
	6		11					
	7		13					
	В		14 15					

Shoot No._____of__

	CLIEN		77	V		TEE	JOB NO. 0848-263 FIELD BOREHOLE LOG				
	PROJE						L/Phase II JNA	DREHOLE NO. DH B -25			
	CONT	RACTO	or	Buf	fals	D	ailling LOGGED BY J.P. Hilton	TARTED 13:30 6 3/10 19 97			
	METHO OF	OD	SOIL	4 1/4	4 N	N2 F1	<u> </u>	INISHED 14:00 M 3/10 19 97			
	BORIN	G :	ROCK				CORE DIA EI	LEVATIONS: DATUM			
	7.6		 	}	VER	15 6	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition,	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain			
į	SAMPLE NO.	TYPE	DEPTH	BLOWS	RECOVERY %	MOISTURE TIN NO.	Weathering/Freeturing, inclusions, Oder ,Etc.	Drilling and Tosting Equipment ,Etc.			
املام			0	4	15/	<u> </u>	1.5 Coke Nut-breeze w/ carbon Rome				
Coke				811	2.0						
1.			2	9 H	,6/		16 Coke AND SIATE W/ Cobbles 73" dia	Spani refresh (Z.6'			
KIM	2		-	100			16 Coke AND SIAT W/Cobbles 73" dia breeze - Ammary dire coke				
				-	1.6						
1.7	3	10		20	15/		17 FILL COKE W/ STAG AND COS SAND, Sharp	Augered to 41			
1.7 sit	ر		5	14	2.0	_	, 6 Silt AND Peat, dark brown-gray	3 (3") Spoons.			
1 Res			6								
silt	4		7		/						
// I V			छ		7						
	5		9			-					
			10		/						
					1 /						
					/_						
	7		12								
			13		1						
	^		14		7						
	В		15								
	Shoot	Nö	100					MALCOLM			

		ECT _			PW		- / Phase II	DH B -26		
		RACT(OD	OR	Buf	FALS		LOGGED BY J.P. Hilton	STARTED 11:30 3 7 19 97 FINISHED 12:00 3 7 19 97 ELEVATIONS: DATUM		
ı.	SAMPLE NO.	THE HOLD IN	DEPTH	BLOWS 'H'	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gaia Drilling and Teeting Equipment ,Etc.		
: , KL 1. <u>0</u> 1.09	1		<u>о</u> Т	45 45	14/		1,0 Coke Nut-Founder W/ Aines ,4 Slag w/ Crs Gravel	5,4T		
7,11	2		<u>2</u> 3	76 102 -	,4/		9 5/Ag w/Crs Gravel to colder > 3" dia	Dani Refusal e 2.9'		
l.≤ Ne Ne	3-		5	30 75 33	1.6/		.6 5129 of Cobbles >3" dia 1.0 (cks min 5129	Ausers to 41 5 Mp to 8' (4) 34 5005.33		
it prot	니	14 ^D	6	2. 3 4	1.8		1.0 S. It min Pent DACK gray-books. gravity to strace Clay			
	5		<u>ड</u> १							
	6		10 1							
	7		13							
	B		15							
	Shoot	Ně	<u>l</u> ••	1				MALCOLM		

	PROJECT So. BELO PLASE							LD BOREHOLE LOG
							I K I A.	POPENOIS NO DH B - 38
	CONT		OR	Buf	FA/s	D	LOGGED BY J.P. 141/to2	BOREHOLE NO. DH B - Z8 STARTED 1:50 M 3/6 19 97
	METH OF		SOIL	4 1/2	111	HSA		FINISHED 2:05 6 3/6 19 97
	BORIN	G:	ROCK			<u> </u>	CORE DIA.	ELEVATIONS: DATUM
	SAMPLE NO.	主编AL	DEPTH		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	HOTES: Boring ,Tosting and Sampling Procedures ,Water Loss and Gain Drilling and Tosting Equipment ,Etc.
î.Ka	- 1		<u>о</u> Т	5 9 12 24	2.0/ 2.0		2.0 Coke breeze - howspay size w/	- WET
K:1 +	2		2	/8 30 32 22	14/		1.4 Coke breeze 4/ Silt carbod Rives,	SATURATES
	3-		<u>म</u> ड	3 5 6 16	1.2/		112 Colle black carbon Rives / breeze	SAT
ソナナ	4	300,	6	2 1 2	1.1/		.7 Silt good-brows w/ Peat as brown plant	
d Lat	5		9					
	ا م		10					
	7		13					
٠	8		14					
	Sheet	Nó		1				MALCOLM

	CLIEN PROJE	ct _	<u>LT</u> So. 1		Ph		/Phase II	LD BOREHOLE LOG
	CONTE	RACTO		Buf	FALC	•	LOGGED BY J.P. Hilton	BOREHOLE NO. DH B - 29 BTARTED 2:30 M 3/6 10 97 FINISHED 2:50 6 3/6 10 97
	SAMPLE NO.	SAMPLE DESCRIPTION SOLUTION Compositions of Compositions of Constant					SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, inclusions, Odor ,Etc.	ELEVATIONS: DATUM NOTES: Bering ,Testing and Sampling Precedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
1/2 (1)			ОН	4 6 11 13	1,5/		1. Silt dark bound w/ Riva - Men SAND Oxi Ni 220 / Title - Some Ride - Crs	
oKe	2		3	15 14 17 20	2.0/ 2.5		2.0 Coke brieze & Nut w/ carbon fives	
بالو			4	7 12 11 12	2.0/		2.0 Colle de abere	
江北	4	NR	5	4 3 3 3	20		.2 Coke .6 5.1+ dark brown-gray, W/ trave Clay & Peat, strong Chemical Over	
	5		8			-	6.5-7.0' SAMPLE TEL 1/16 5 YOU 1476-5 (1) 14:5	3 (3/5) 0 1 (2/1)
	6		20 =					
	7		13					
	В		14					

Sheet No.____of __

Shoot No._

	CLIEN		LI	7		TEE		D BOREHOLE LOG
	PROJE			BELO			/ Phace IT	
							LOGGED BY J.P. 141/102 BT	JRENUIF ALL WILL "
			D R	11/4 A	2/21	17 C V	LOGGED BY J.Y. Hilton 81	ARTED 12:55 4 3/0 10 97
	METH OF		,	-	1 ''	1124		NISHED 13:25 3/10 19 97
	BORIN)G :	HOCK			.		EVATIONS: DATUM
	SAMPLE NO.	TVPE	DEPTH	BLOWS 'N' RECOVERY % MOISTURE TIN NO.			SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Freeturing, Inclusions, Odor ,Etc.	NOTES: Bering ,Teeting and Sampling Precedures ,Water Loss and Sain Drilling and Testing Equipment ,Etc.
			0	ਚ	6/		ib Slag AND Coke	Spood Refusal B. 6"
SIM	1 1			1 8	1.6			Mores borende
FIL	2		3	40 100 -	10/		16 5/49 W/ Linesterse - cousher stone	57000 Refund 10_ 2,7'
41		~	4	9	12/		, (SIAG FILL AS Above	Augus to 4.01
	3	3'	3	3 7	J,D		grading downward w/ Ithe - Some Clay	3 (3") sports:
10/de	14		6					
1			8					
	5		9					
•	6		10					
		<u> </u>			/			
	7		1 -					
		<u> </u>	13		<u> </u>			
-	B		14					
	V	ł	13		/			

Shoot No. ____of __

	CLIEN PROJE LOCAT	CT	LT 50. 1		Ph	_	Phase II	D BOREHOLE LOG
	CONTI	RACTO DD		Buf	FAls	_	COGGED BY J.P. 141 150~ ST.	ARTED 8:45 7 3/12 19 97 18HED 9:25 4 3/12 19 97
	SAMPLE NO.		DEPTH		RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tosting Equipment ,Eta.
دیالد			Η	7 7 9	1.1/		1.1 Coke bieeze-Nut W/CArbin Fines	SATURATES
w/5/29	2		<u>ک</u> 3		03/		No sample Received. Aughe dell cultings indicate Gravel Size Coke mo Slag	Spood Runsol o 2.4'
4.7 C/M	3		4 6	9	1.3/	-	.7 Coke breeze-nut w/ little Sing sharp Contract w/ .6 Clar yellow-brown w/ little Silt	SAT. Moist
場け	4		6			•		
	الح		9					
	ع		5 3					
	7		13					
	В		中上					

Shoot No. _____of __

	CLIEN		77	<u>V</u>		TEE		JOB NO. 0848-263 FIELD BOREHOLE LOC			
	PROJE						L/TNACR IL				
						•	LOGGED BY J.P. 14:1402	BOREHOLE NO. DH B -33			
		CONTRACTOR BUFFALO DE: 1106 LOGGED BY J.Y. 14:1100 METHOD SOIL 41411 1454						STARTED 09:30 4 3/12 10 97			
	OF BORIN				1	1 \ > / \		FINISHED \$\frac{3}{12} 10 97			
	BONIN	:	ROCK		>	444	CORE DIA.	ELEVATIONS: DATUM			
	J.		 	*	VER.	Z O	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition,	HOTES: Bering ,Teeting and Sampling Precedures ,Water Less and Gain			
	SAMPLE NO.	3dA1	DEPTH	BLOWS	RECOVERY	MOISTURE TIN NO.	Weathering/Fracturing, includions, Odor ,Etc.	Drilling and Teeting Equipment ,Etc.			
			0	उ	1.3/	-	1.3 Coke breeze - Nut of carbon Fire	SATURATED			
. 1	1			14	/						
ske			2	30 100	/2,0		, 2 Coke as Above	Som \ 0.11 \ 1.0 \ 7.27			
	,		ے	=	12/		, C COINC AS ADONC	Spoon Refusal @ 2,21			
	2	ļ	3	=	1.2	_					
1.3			4	10	1.4/		3 Coke A/A, sharp contact w/	Augered to 41			
1.3 IM	3	}	-5	5		-	101 Clay gray stiff w/ wenk plastic by	(3) 34 Sporms			
M		Ì		9	2,0		depth	3,000,74 3			
/a	1	ł	16	 	 						
411	4	Ì	工								
			ਲ								
	5		-								
	3					•					
			10								
	6	,			 						
		 	17								
	7	1									
	[/]	ļ	13								
			14								
,	B	ł	15	 		ŀ					
	لـــّــا				<u> </u>						
	Shoot	Nó	<u></u> ••		•		•	MALCOLM PIRNIE			

JOS NO. 0848-263 FIELD BOREHOLE LOG STEEL CLIENT Phase I / Phase II So. Belo PROJECT _ DOWNER - HANNA LOCATION LOGGED BY J.P. 14: 1402 STARTED 11: 20 \$ 3/12 19 97 CONTRACTOR SOIL 4 14 11 HSA FIMISHED 11:40 4 3/12 19 97 METHOD OF CORE DIA. BORING : ROCK **ELEVATIONS: DATUM** MOISTURE TIM NO. RECOVERY SAMPLE DESCRIPTION: Color, Texture Classification. MOTES: Boring ,Tosting and Sampling BLOWS Procedures ,Water Less and Sola Compactness/Consistency, Moisture Condition, Drilling and Testing Equipment ,Etc. Weathering/Fracturing, Includions, Odor ,Etc. (ske DRY-Muist breeze - NUT 1.5 RINL 9/MIN tar-creasale DOOR FIL COKE AND Crs SAND, black, W. VELLOS Fire brick tac. like ODOR SULTUR 10 4.0 dark gray-black w/tmee 511 0.4 Olive army-brown, mottles, starp Moist CLAY 1 march bound-vellas motted Marst FINE-MEL SAND 10 12 8

Shoot No.

	CLIEN.	T	77	<u> </u>	ST	TEE	JOB NO. 0848-263 FIE	FIELD BOREHOLE LOG		
	PROJE	CT_	30. 1	BFIO	<u> </u>	LIA.	I / Phase II	OREHOLE NO. DH B -35 TARTED 12:456 3/2 10 97		
							20 LOGGED BY J.P. 141/402	TARENOLE NO. 011 0 00		
	CONTI				111		ECOGED BY SIVI	INISHED 13:00 6 3/12 10 97		
	OF BORIN		ROCK			LEVATIONS: DATUM				
	SAMPLE NO.	TYPE	DEPTH		RECOVERY *	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.		
Ke			0 I	2 3 11 15	<i> ''' </i>		1.3 Coke breeze-nut w/ Carbon Rives trace restrick	Saturates		
	2		2 3	32 100 -	,9/		.e Coke as above	Spood refusal e 2.8'. bgs		
4.1 5.1 1	3		5	5 9 13	1.6/.		1.5 Silt gray-bisder mottles w/ the Clay	Moist		
clay	4		7							
	5		9							
	Q		10							
	7		13							
	В		15							
	Shoot	Nó			•			MALCOLM		

	CLIEN PROJE LOCAT CONTI METHO	CT IION _ RACTI	SOIL	Buf Y'X	Pho RZ-	NAr.	L/Phase II NNA Rilling LOGGED BY J.P. 14:1402 BY	D BOREHOLE LOG PREHOLE NO. DH B -36 ARTED 13:05 6 3/12 10 97 HISHED 13:45 6 3/12 10 97
	SAMPLE NO.	<u> </u>	BOCK HOCK	BLOWS T	RECOVERY %	MOISTURE TIN NO.	CORE DIA EL SAMPLE DESCRIPTION: Color, Texture Closeification, Compactness/Consistency, Moisture Condition, Weathering/Freeturing, Inclusions, Odor ,Etc.	EVATIONS: DATUM HOTES: Boring ,Tooting and Sampling Procedures ,Water Loss and Sain Drilling and Tooting Equipment ,Eto,
Colhe	_		о Т	13 18	1.5		1.5 Coke breeze-Nut, Carbon Fixes, true brick, Slag	SAT
2.4 5/A9	2		<u>2</u> 3	733 100 —	8/3		,4 Coke AlA ,4 Slag and 19 Gravel as crushes showe and brick debris	Spood Révent @ Z.B'
4.2.	3-		4 5	3 6 11 12	2,0		1.3 clay Med gray, trace S. It grading downwar to yellow brown	Most Wit
	4		6 7				's.lty' (lay 50mple Tel Vols (* 13:25 50'0's MTLS 4.2.4.7	Augents to 41.
	15		9					
	6		11					
	7		13					
	В		14 15					

Shoot No. ______

MALCOLM

 $\sqrt{-1}$

	CLIEN		LT So. 1		Ph		Phase II				
	LOCAT	_					JNA DO	PREHOLE NO. DH B - 38			
			OR	But	<u> </u>	$\frac{D}{D}$	Rilling LOGGED BY J.P. 14: 1402 ST	ARTED 14:15 6 3/7 10 97			
	METH OF		SOIL		1''	17 S /		HSHED 14:30 6 3/7 19 97			
	BORIN	iG :	HOCK					EVATIONS: DATUM			
	SAMPLE NÓ.	TYPE	ОЕРТН		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compaciness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Loss and Gain Drilling and Testing Equipment ,Eta,			
Colle	1		Ho	3 20 27 30	2.0/ /2.0	, , .	2.0 Coke house - MUT W/ carbon Ans	SATURAMO			
cote	2		3	32 100 -	,9/ ,9		.9 Coke as above grading to Slag mis Coke w/Cobbles >3" dist	Spood retugnil @ 2.91			
51M 25.5	3-		4	79 88 5	2.0		.8 Slag cobbles >3" din	SAT.			
SIF	4	18.2	6 7	7 4 -5	1/2.0		.7 Silt yellow bown mothed, u/ trans - 1:Hb	(3) 3" spoons			
	5		छ 9					1 2" 5000			
	6		10								
!	7		13								
	В		14 15								
	Shoot	Nó	-••	1		-		MALCOLM			

	CLIEN		<u>L1</u>	BELO		TEE Ase 3	L/Phase II	LD BOREHOLE LOC		
	LOCA' CONT METH OF BORIN	TION _ RACTI OD	DOI	Buf 4"	RA/5	NAC	LOGGED BY J.P. 14:1402	FINISHED 14:00 M 3/7 19 97		
	SAMPLE NO.	TYPEAT	DEPTH	M. SMOTE	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.		
	1		0	13 105 31 26	1.7/	1	1.0 F. SAND / Limestone Cos trand. Bome y/ Rive Grand, Share contact u/	Monit		
SAND GAND	2		3	15 25 23 13	20		ENE-MEN SOND W/ CC GONG (COKE) OF SING	TCLP VOC. SYUC - 2.5-3-0 (= 13:45		
F,11	3-		5	7 7 7	20/		2.0 Fill SAND AND CRAYEL, ROD-DROWJ A3 Above, Trace			
.9P_	4	120	6 7	4 4 3 2	1.4/		1.1 Fill w/ SAND AND GRAVEL AS A DONE3 Pat/Black CARboa!	Chemical ODDR		
CLAY	i i	160	9	2	1.8/		1.1 Clay And S. It GIAY- how - 1. He Clay	AUGERED to B'		
	6		11							
	7		13							
•	В		14 15							

Shoot Hó.____of ___

MALCOLM

. 1

		NT ECT _ TION _		NNE Brio	Ph	TEE ASC : NAI	L/Phase II	ELD DONEHOLE LOC			
	CONT METH OF BORIN	: 1G :		4"	FA / 5	N SHI	Fi	PREHOLE NO. DH B -40 [ARTED 2:05 N 3/6 19 97] NISHED 2:30 M 3/6 19 97 EVATIONS: DATUM			
	SAMPLE NÓ.	TYPE SOFT	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	HOTES: Boring ,Teeting and Sampling Procedures ,Water Less and Gain Drilling and Teeting Equipment ,Etc.			
J.	1		о Т	17 24 50 43	2.0/ 12.0		. S TAR .9 Coke breeze down tooks	WIT			
colla	2		3	15 16 15	20/		2.0 Coke breeze & bines Strong cressole oper	SATURATED			
Sinds Sluds	3-		<u>4</u> 5	9 9	2.0		19 Coke as abone 18 Sludge, line-like w/ fine gravel, sand Milder Fe stairing (w Approx 5"	SAT			
Pert & H		54,	6	1 1 2	77		.7 Silt dark brown - gory w/ Pent strong sultur-chemical /ODUR	SAT			
<i>,</i> ,,,	5		छ १					Augures to 41			
	6		10					1 2"			
	7		13								
	В		14 15								
•	Sheet	Nó	••	工				MALCOLM			

	CLIEN	т	<u>LT</u>	∇		TEE		LD BOREHOLE LOG		
	PROJE			BELO			L/Phase II			
	FOCV.	TION _	DO				JNA	OREHOLE NO. DH B - 41		
	METHOD SOIL 414" HSA						LOGGED BY J. 1. TOV &	TARTED 10:00 A 3/10 10 97		
	METH		SOIL	4 7	4 "	145A		MISHED 10:30 \$ 3/10 19 97		
	BORING: ROCK CORE DIA							ELEVATIONS: DATUM		
F.N	SAMPLE NO.	TVPE	DEPTH	BLOWS 'H	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Loss and Gain Drilling and Tooting Equipment ,Etc.		
•			0	26			1.3 Fill L+ Gray SAND & GENEL (SIA9)			
13			T	13 18 7	2.0		14 Silt brown-black, w/ Lake,	Strug Silfar, Has ONER		
Che 4/5it	2		<u>2</u> 3	9 9	2.0/		2.0 coke is/ cont dark-brown black Appears to be leacher from 2.0-3.3, breeze-	- Nut		
	3		<u>म</u> ऽ	3 4 4	1.2/		1.2 Coke of truck-1: He Silt GOV:			
36.5	4	44	6 7	7 9 7	B/ 2.0		15 coke 3 Clay yellow gran mettles w/there silt	Somples C 10:20 for TC VOC 5VOC		
	5		8	7	/			Augura to 41		
			9		/					
	6		F 5					(4) 3" spows		
	7		12							
			13							
•	0		7							
	В		15							

	CLIEN.		17	<u> </u>		TEE		D BOREHOLE LOG
	PROJE	CT _	<u> </u>	3610	<u> </u>	LIA n	L / Thase IL	
							LOGGED BY J.P. 141/102 81	DREHOLE NO. DH B -42 TARTED 6:35 4 3/10 19 97
	METHO	OD	SOIL	41)	111	HSA	FII	MISHED 11:00 \$ 3/10 19 97
	OF BORIN	G:	ROCK					EVATIONS: DATUM
ste	SAMPLE NÖ.	TVPE	DEPTH	BLOWS 'K'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moleture Condition, Weathering/Fracturing, Includions, Odor ,Etc.	MOTES: Soring ,Tooting and Sampling Procedures ,Water Loss and Sain Drilling and Tooting Equipment ,Etc.
. <u>o</u>		-	ō	1	1.2/	•	1.0 coke black breeze-ant whenhow Fines,	
			\vdash_{T}	पु	l' /		2 5/A6 w/ some icke	
129 100/2				14.	/2.0		11 Slag of Co. Consultant Consultant Stands	5
/coXL	7		2	32 /00	.4/		.4 Slag y/ Crs Gravel and crushes stone,	5000 refusal C Approx 2.7' bgs
	2		3	- -	1.7	-		
1,3		0	4	,9	14/		,3 Stag of silt, dark gma-black	
13	3	18	5	4	/2	-	1.1 Sit gray-brown mottles, trace-little	
				В	2.0		1.1 Silt ging-brown mottles, trace-little	Angeneo + 41.
CLAY	4	1	6					
Lav	-1	ł		 	Y			3 (3") 5poods
Ciri	1 1		8					
	5	•	9					
	<u> </u>	}	10		/			
	(ĺ			1 /			
	b .		11					
	J		13	 	/			
	[/]		13		1/			
		 	14		17	<u> </u>		
•	8	ł	15		1			
		<u> </u>	Ļ		<u>Y</u>	Ī		
	Sheet	Nó	01	4	•		,	MALCOLM PIRNIE

	CLIEN'			N 3610	Ph		Phase II	D BOREHOLE LOG		
	LOCATION DONNER - HAT CONTRACTOR BORNER - HAT METHOD SOR 41411 HSA OF BORING: ROCK BORING: ROCK WALLE BORNER - HAT OF B				inle	D,	LOGGED BY J.Y. Hilton ST	PARTED 13/50 6 3/12 19 97 HISHED 14:15 6 3/12 19 97 LEVATIONS: DATUM		
	SAMPLE NO.	TVPE	DEPTH	M. SMOTS	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	MOTES: Boring ,Teeting and Sampling Procedures ,Water Loss and Gain Drilling and Teeting Equipment ,Etc.		
coKe			0 H	4 3 3 4	1,4/		1,4) Coke breeze AND CARBON Fives			
٠, ٧,	2		3	20 33 100	113/		113 Coke NA Wlittle-Some Silt AND CARBON MNES	Spoon refusal & 3,3'		
4.3	3-	0.0	5	711	2.0		.3 Cake NA, shop contract w/ .9 Clay gray-black, shift w/ Knce-little Silt silt	Meist		
	4		6							
	5		9							
	6		1							
	7		13							
	В		15							

	CLIENT PROJE LOCAT CONTE METHO OF BORING	CT TION _ RACTO		Brt. Brt.	Ph 52	AAn	LOGGED BY J.P. 141/102 B	OREHOLE NO. DH B - 44 TARTED 4:15 M 3/2 19 97 INISHED G 3/2 19 97 LEVATIONS: DATUM
	SAMPLE NO.	TVPE	ДЕРТН	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooling and Sampling Procedures ,Water Loss and Gola Drilling and Tooling Equipment ,Etc.
CON 2011 11 15 11 11 11 11 11 11 11 11 11 11 1	2		0 	12 16 34 31 10 2(13 7 8	15/20		1.5 Coke becce-Nut Warbon Fines trace Sing, black-your Silt 1.2 F. Silt my Fine SAND trace- I. He sing, fine- (rs Gravell black singlar Jour sharps control by 3 Peat / Plant Debris Sand And Silt 1.6 Silt dark gray, withrace Clay when the	WET - SATURATED MOIST
	B	Nó	15					MALCOLM

STEEL JOB NO. 0848-263 FIELD BOREHOLE LOG Phase I / Phase II DONNER - HANNA Coje Yand BOREHOLE NO. DHMW -LOGGED BY JP 14: 1402 CONTRACTOR STARTED 13.30 6 3/5 19 97 METHOD FINISHED ____ OF BORING : ROCK CORE DIA. **ELEVATIONS: DATUM** MOISTURE TIN NO. RECOVERY SAMPLE DESCRIPTION: Color, Texture Classification, SAMPLE NO. NOTES: Boring ,Testing and Sampling Compactness/Consistency, Moisture Condition, Procedures .Water Less and Gain Drilling and Testing Equipment ,Etc. Weathering/Fracturing, Inclusions, Odor ,Etc. 1.3 COKE AND breeze blaz K KINES green bound HNU SCAN 10 00m DYRE SPACH breeze w/ Fines 54 T. 4650e 541-3 000R 3-5 pan 6.0 w/ topel OMY W/ little - Some Clay SAF 0100 R same SAND GAY- 6/3-1.8 Silt AND Pis e 54-12 brown-gar moHled WLF chemica. 0002 S. H TAN-BOND . Frace-little Clay Sims

Pent is y

	CLIEN		<u></u>	<u>V</u>		TEE		LD BOREHOLE LOG
	PROJE LOCAT		So. 1			_	JNA B	OBEHOLE NO DHMW-Z
	CONT	RACT		Buf	FAls		LOGGED BY J.P. 141/402 8	TARTED 4:3043/7 19 97
	OF BORIN	G:	ROCK			**	CORE DIAE	LEVATIONS: DATUM
	SAMPLE NO.	北地名美	DEPTH	BLOWS 'H'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Gain Drilling and Tooting Equipment ,Etc.
s Ke	1		<u>о</u> П	7 10 19 22	2.0		ZO Coke breeze - Nut w/ Fines	54-4
2			3	46 36 32 33			1.5 Fill cobble, rep book > 3"din	747
· Y	3-	- `	4	11 6	1.1/	-	1.4 Fill As posse ,3 Feat AND Silt of Mace-1. HU Clay	5/mples til 1083 5/065 5,5-6,0 MTLS
ent Zhy	l . i 1	1,6 -	6 7	7 Z 3	1.2/		1.2 CM girl-hound mottles, stiff	Mn 5 [†]
	5	0.2	명 9	7 5 5	1.3/	-	19 CINY W/ SORME S.It, brown-orange 9/Adis, to 14 CINY ofmy-brewn trace S. It	No. 5+
	6	0,	10	6 8 9	12/		1,2 5,1+ 9/M. bow mottles, trace CIM	Musi 3 F
	7	1.1	13	4 3	1.0/		1.0 Silt and Clar soft, weak placticity	Jet-
•	В		14 15					
	Shoot	Nó	1		-			MALCOLM

.

	CLIEN		7	<u>V</u>		TEE		LD BOREHOLE LOG
	PROJE		So. 1 Don					
	CONT			_			Rolling LOGGED BY J.P. 14: 1402	BOREHOLE NO. DH MW - 3 BTARTED 14:50 6 3/7 19 97 FINISHED 15:50 6 3/7 19 97
	METH	OD	SOIL .	4 1/	4 ¹¹	145A		FINISHED 15.50 8 3/7 19 97
	BORIN		ROCK		·			ELEVATIONS: DATUM
	SAMPLE NO.	TVPETE		H. SMOTE	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Includions, Odor, Etc.	NOTES: Boring ,Teeting and Sampling Procedures ,Water Loss and Gain Drilling and Teeting Equipment ,Etc.
FN			ΘН	32 /00 	1/3		Gravel Fill & SAND Grav, CRS, FROZEN	Spood Refusale, 81
SIM	2		<u>د</u> 3		7-		SIAG & Fill through 2-4' interval No sample taken, Sing to > 4" dia	SAT
=5.0 5.1+	3		4	1 7 10 15	2,0		No RECOVERY, Slag Cobble in shoe buffor	SAT
ciry		عا,ق	6 7	12 19 11	1.10/		9 SAND born-yellow, fine-Mes, little	587
	5	4.4	ह १	2 3 4	1.3/		Weak plasticity	SAT
	6	1.8	10	4 9	1.8/		1.8 Silt AND CLAY AS Above W/ trace Pine SAND AS parting Approx 10,1 - 10,3	SAT
	7	0,8	13	3 5 7 9	20/		1.2 SIT W/ HOLL SAND GOAT	Moist
	8		14 15					

(1

PROJE LOCAT CONTI METHO OF BORIN	RACTO	OR	Buf Y'I		NAV	LOGGED BY J.Y. Hilton	STARTED 11:30 A 3/11 19 97 SHIBHED 12:15 M 3/11 19 97 ELEVATIONS: DATUM
SAMPLE NÖ.	TYPE	DEPTH	BLOWS 'N'	RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Boring ,Testing and Sampling Procedures ,Water Less and Gain Drilling and Testing Equipment ,Etc.
1		Н	3 5 7	1.4		1.4 Coke breeze-Nut W/little-Some Silt MD black carbon himes	34 T.
2		3	3 5 3 3	1.5/		13 CKE w/S; It A/A .6 Silt dark brown w/ little Five SAND, blue-gree Five SAND (10 Peat dark brown Some Silt mo Fine SAND	N TCLP 2.5-3,0 /1:30 VOC, SVOC
3	0.3	5	3 5 9	1.4/	-	11 Clay Gray- brown mottles w/ little - Some Silt, trace has sand, graving to .3 SAND gray brown kive w/ some Silt	Wet-SAT
4	0,3	5	3 4 4	2.0	,	1.6 SANA At brown-clive mottles fine-Mess w/trace-1.the Silt	541
5	6.~	9	**5 4 7 9	1.9/		1.0 SAND MED BROWN: MED GRAIN 10052 W/train 5.1 t sharp (without u/ .9 Clar Gray movente plasticity w/train	541 Ms.st
6	0.2	F	2 3 3	1,8		1.5 Silt gray w/trace-little clay grading cow. wash to .3 Clay Gray, Stilt w/ Some Silt	plac, t - wet
7	0.V	13	5 6 8	1.9/		1.9 Silt gar of little Clay as lamina	Me, y t
8		14					

1 1

	CLIENT PROJEC LOCAT CONTR METHO OF BORING	CT ION _ IACTO)R	Brt.	Pha	NAM	Phase II NA LOGGED BY J.P. 14:1402 BT	BOREHOLE NO. DH MW - 5 STARTED 10:20 A 2/12 19 97 FINISHED 11:15 A 3/12-19 97 ELEVATIONS: DATUM			
,	SAMPLE NO.	TYPE	DEPTH		RECOVERY %	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	NOTES: Soring ,Teeting and Sampling Procedures ,Water Loss and Sain Drilling and Testing Equipment ,Etc.			
13 13 1/4 1/4			ΘН	16 32 30	1.5/		1.0 Coke breeze ant no chabin fines .5 Silt black carbin-like, starn, tar- cressite cover, trave slag, cake	SATURATRO			
silt	5		2 45 3 17 21 4 4 5 4 6 4 7 5	45 1,2/ 17 2,0		.4 5, It As above in/ wood metal debris .T Clay brown-gray w/ brick, would .3 5, It black-gray, brick trace-little	Teh vol (4,5-5.0	5_			
423 (A)	3	0.0		4 4 4	1,2/20		13 Silt Fill As Above 12 Pest Stack -gray grading to 15 Clay Mes Grad up times Silt 100 Clay gray-broad matter grading	SYOC MTLS Moist			
5,442 11,62	1 1			5 7 7		12 S. F yellow - brown - 1. His Grac 5.4ND	5A1	_7			
9/11	5		9	3 4 4	1.1/2.0		.7 Silt yellow - 5mun mother of little Clark	Moist			
	6		11		1.6/		1.6 Silt yellow- brown A/A y/ trave clay	7,815	11		
	7		13								
	В		14						•		
	Sheet	Nő	<u> </u>	<u> </u>	-		•	MALCOLM PIRNIE			

	CLIEN		LT	<u>V</u> _		re E		D BOREHOLE LOG
	PROJE LOCAT			NE	2_~	NVV	LOGGED BY J.P. 141/102 ST.	ARTED 14:40 Pm 3/12 10 97 INSHED 15:45 M 3/12 10 97
	CONTI METHO OF	D D	SOIL .	41%	"	N2FI		HSHED 15'.45'M 3/12 19 77 EVATIONS: DATUM
	SAMPLE OB		DEPTH 300K	BLOWS 'N'	RECOVERY	MOISTURE TIN NO.	SAMPLE DESCRIPTION: Color, Texture Classification, Compactness/Consistency, Moisture Condition, Weathering/Fracturing, Inclusions, Odor ,Etc.	MOTES: Boring ,Tooting and Sampling Procedures ,Water Less and Sain Drilling and Tooting Equipment ,Etc.
			0	3 3 5 13	1.5/		1.5 Coke breeze- NWT, CARDON FINES	
3.0 Pent cylin certe	2	0.4	3	il 22 24 10	114		1.0 Coke breeze for Men-irs Black SAND, Fill of gray into be show without of 1.4 Post/wordy plant tissue, those coke, slag	Pessible 1.11 /NAtive 40
CIA			5	3 5 6	1.6/		1.6 Clay gray w/trace Silt, Still grading dow. Juans to yellow-bound mother	Moist
	4		5	56	1.7/		5 SAND VELLOW brown Ring-Mes V/1, He-Some Silt 15 Silt Vellow Sound trace Clay, staff	Moist Noist Wet
	5		9	7 1 12 12	1.8/		118 Silt As Above	Moist
	6		11	7 10	5'S 0'6		No SAMPLE Recurery	
	7		13					
	В		14					

Shoot No.___of ___

MALCOLM

ATTACHMENT B-6

WELL DEVELOPMENT LOGS

PROJECT TITLE:		 	
PROJECT NO.:		 	
STAFF:		 	
DATE:	4/1/97		

WELL NO .: DHMW-1

(A) =0=11	سسو ہ		VOL
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	<u>/5, </u>	WELL LD.	GAL/DAY
	4	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u> </u>	2"	0.17
	./	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	<u>4,31</u>	4"	0.66
	. ()	5"	1.04
(4) VOLUME OF WATER IN CASING (gal):	<u> </u>	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	witin	2.5	5.0	1.5							
рН	6.1	6,2	6.2	6.2							
CONDUCTIVITY	2700	2630	304D	3220							
TEMPERATURE											
TURBIDITY	84	7/00	7/00	7100						! !	
APPEARANCE	MMHY.	MUDDY	MUDDY	MUDDY							

· WEll capable of Sailing to dryness"

PROJECT TITLE:			
PROJECT NO.:			
STAFF:			
DATE:	4/1/97		

WELL NO .: DHIIW - /A

0.7		VOL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.): $9,5$	WELL LD.	GAL/DAY
a	1"	0.04
(2) CASING INTERNAL DIAMETER (in.): 2	2"	0.17
	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.): 4.38	4"	0.66
a	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	6"	1.50
	8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

			ACC	CUMULA	TED VOLUME	PURGED (G	ALLONS)		
PARAMETERS	12.4.21	2.5	5.0	7.5	10.0				
, bH	6.6	6.1	6.7	6.7	6.7				
CONDUCTIVITY	249°	2410	2500	24.1°	2390				
TEMPERATURE	_	~		_	~				
TURBIDITY	•	>100	1 '	7/00	7/00				·
APPEARANCE	clouby	black Cloudy	black Clonz/	black Jonay	black cloudy				

comments: Developes of 1/4" briler
. Well rechanges immediately

PROJECT TITLE:		· ·		
PROJECT NO.:			 	
STAFF:			 	
DATE:	4/1/97			***

WELL NO .: DHMW-Z

(1) TOTAL CASING AND SCREEN LENGTH (ft.): /Z.32	WELL LD.	VOL. GAL/DAY
7 '	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	2"	0.17
	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.): 2,61	4"	0.66
	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.): 2.2	6"	1.50
	8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

			ACCU	MULATED	VOLUME	PURGED	(GALL	ONS)	
PARAMETERS	witial	2.5	5.0						
рН	6.7	6.5	6,5						
CONDUCTIVITY	209D	2400	2550						
TEMPERATURE									
TURBIDITY	81	7100	7107						
APPEARANCE	C10434	MUSOY	Brand						

· Well bails dry, recharge slow

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DHMW-ZA

		A . 0		VOL.
(1)	TOTAL CASING AND SCREEN LENGTH (ft.):	8.99	WELL I.D.	GAL/DAY
		4	1"	0.04
(2)	CASING INTERNAL DIAMETER (in.):	<u>z'</u>	2"	0.17
			3"	0.38
(3)	WATER LEVEL BELOW TOP OF CASING (ft.):	2.67	4"	0.66
			5"	1.04
(4)	VOLUME OF WATER IN CASING (gai.):	7.1	6"	1.50
			011	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	11:14:41	5.0	12	18								
pH	1.2	1.4	1.6	7.4								
CONDUCTIVITY	995	500	480	600	250							
TEMPERATURE	-	~	-	-								
TURBIDITY	C214	710)	7100 `	7/00								
APPEARANCE	dury	BK y BY	OK WYOY	DKWY DK								

comments: · Devilopen w/14" bailer o recharge immediate

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DHMW - 3

	14.77		VOL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	<u>/7.1</u> /	WELL I.D.	GAL/DAY
		1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u> </u>	2"	0.17
		3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	2 .33	4"	0.66
		5"	1.04
(4) VOLUME OF WATER IN CASING (gal):	2.1	6"	1.50
	····	8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	isi: Hish	5	10.0			!	·				
рН	3.9	3.7	3.1								
CONDUCTIVITY	13,160	34,100	34,300								
TEMPERATURE	<u>, </u>	,	-								
TURBIDITY	14	Z/05	Z50'								
APPEARANCE	CLEM	YIELIUNY MUDDY	derry				Ÿ		<u> </u>		

comments: Developes w/14" bailer
well recharge y moderate

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DHMW-3A

(1) TOTAL CASING AND SCREEN LENGTH (ft.):	9.32	WELL L.D.	VOL. GAL/DAY
	- "	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	2"	2"	0.17
(a) 111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	2.31	4"	0.66
	1 7	5"	1.04
(4) VOLUME OF WATER IN CASING (gal):	1,2	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	in:tin	2,5	5,5	G.Q1							
рН	6.2	6.0	6.8	9,2							
CONDUCTIVITY	39M	5950	2300	2690							
TEMPERATURE											
TURBIDITY	7100	7/00	7105	7100				 			
APPEARANCE	DK MADL/	OMY OMY	P. Struck	CANTU							

comments: Developes w/11/4" bailer

ph change @ 109+1, water becomes green when mixes w/ Fresher" water

NEII recharge - monserate

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DHM W-4

(1) TOTAL CASING AND SCREEN LENGTH (ft.):	14,53	WELL I.D.	VOL. GAL/DAY
	2 "	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):		2"	0.17
		3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	2.24	4"	0.66
	- I	5"	1.04
(4) VOLUME OF WATER IN CASING (gal):	2.1	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	W. Fin	5	10	15	20					
pH	6.4	6.3	6.4	6.3	6,5					
CONDUCTIVITY	1575	1577	1624	1656	1720					
TEMPERATURE	1	-								
TURBIDITY	2100	7100	7100	7/00	7100					
APPEARANCE	yellow	MUDPY	wudby yrligh	ye)lau silty	YELL					

comments: Developes u/14" bailer
rechange-immediate

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DAMW-5

(1) TOTAL CASING AND SCREEN LENGTH (ft.):	14.21	WELL I.D.	VOL. GAL/DAY
		1"	0.04
(2) CASING INTERNAL DIAMETER (in.):		2"	0.17
	0	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (fL)	: <u>2.78</u>	4"	0.66
		5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	1.9	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	instial	5	10	15							
рН	6.8	6.5	6.6	6.6							
CONDUCTIVITY	2020	191D	204D	2070							
TEMPERATURE	į	ĺ									
TURBIDITY	25°		, '	,						<u>.</u>	
APPEARANCE	clear	MUDDY	MUDAY	DK Gray MUDDY		ļ					

comments: DEVELOPED W/14" bailer
. MODERATE recharge

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: DAMW - 6

(1) TOTAL CASING AND SCREEN LENGTH (ft.): 12	2.9	WELL LD.	VOL. GAL/DAY
_	•	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u>2"</u>	2"	0.17
	2.2	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.): 2	32	4"	0.66
	0	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.): \underline{I}	<u>, </u>	6"	1.50
		8''	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	in: Find	5	10								
рН	ما. يا	6,5	6.5								
CONDUCTIVITY	2050	2310	236 ⁰								
TEMPERATURE	_										
TURBIDITY	7100	7/00	7100								
APPEARANCE	KIN	ARIAN ARIAN	YELDY CLEMY								

· MODERATE reharge, well can be bailed to "dryness"

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO.: <u>GW - 4</u>

٠		VOL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.): 15,55	WELL I.D.	GAL/DAY
	I"	0.04
(2) CASING INTERNAL DIAMETER (in.):	2"	0.17
- 9.1	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (fl.): 5.84	4"	0.66
	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	6"	1.50
	8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)									
PARAMETERS	12,42	5	10	15	20					
рН	3,2	5.5	5.1	5.4	5.6					
CONDUCTIVITY	2780	1310	4710	6020	5020					
TEMPERATURE	-		~	_	-					
TURBIDITY	7100	7100	4100.	7/00	7100					
APPEARANCE	March	المالية المالية	Josey	Rusty	clearings					

comments: « Developes of 1 1/4 1/ bailer « Moderate - Past rechnique

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO.: A3-SB-3

	9.35		VOL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	11/23	WELL I.D.	GAL/DAY
	"	i"	0.04
(2) CASING INTERNAL DIAMETER (in.):		2"	0.17
	4 11 1	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	1,41	4"	0.66
		5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	1,5	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

	ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	witin	3	5								
рН	9.8	8.1	9.1								
CONDUCTIVITY	1610	2140	1910								
TEMPERATURE	ş)	•								
TURBIDITY	7100	7/00	G017								
APPEARANCE	Marik Llongy	binck	black sitty								-

COMMENTS: DEVELOPED W/14" bailer
Well bails to "dryness", slow rechnique

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: A3-SB-6

	: ^ ~		₹ 01
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	<u> 10.3</u>	WELL I.D.	GAL/DAY
),	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u> Z"</u>	2"	0.17
	1 7 /	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.	: <u>1 · 1 · 9</u>	4"	0.66
		5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	1,5	6"	1.50
		8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	14.tial	5	10	15								
рН	9.2	10.1	10.4	10,0								
CONDUCTIVITY	1210	1310	132D	1360								
TEMPERATURE	1)		,								
TURBIDITY	> /00	≥100	≯100°	Z100								
APPEARANCE	ginty Tubid	birck silty	black	cleaning gray								

· Well bails to dry vers w/slow-moderate rechange

PROJECT TITLE:	LTV Steel - Phase I Site Investigation, Donner House Cake Plant
PROJECT NO. :	0848-263-300
STAFF:	Bell. BS (ICF Kniser)
DATE:	3/17/97

WELL NO.: A2-Pl

(1) TO	OTAL CASING AND SCREEN LENGTH (ft.):	12.0	WELL I.D.	VOL. GAL/DAY
			1"	0.04
(2) CA	ASING INTERNAL DIAMETER (in.):	<u></u>	2"	0.17
			3"	0.38
(3) W	ATER LEVEL BELOW TOP OF CASING (ft.):	6.43	4"	0.66
			5"	1.04
(4) V(DLUME OF WATER IN CASING (gal):	(10	6"	1.50
			8"	2.60

 $V = 0.0408 [(2)^2 \times \{(1) - (3)\}] = 0.95 GAL.$

			ACC	CUMULA	TED VO	LUME I	PURGED	(GALL	ONS)	
PARAMETERS	9.00 1.0	2.0	3.8	911	7.0	8:18	4:21	9-27		
рН	9.30	9.40	9.40	9.30	9.30	9.30	9.32	9.28		
CONDUCTIVITY	3520	3250	3170	3010	2930	2950	2990	2930		
TEMPERATURE				_		į	1	_		
TURBIDITY	7100	7100	700)	>100	7100	7100	7100	7100		
APPEARANCE	black_ Sheen	→ -	→ -	>,	-> - clearing	^	7	→		

COMMENTS:

start 8:54 end: 9:27 decringue * Sheen on purged water * strong creusote | petroleum oder

PROJECT TITLE:		
PROJECT NO.:		
STAFF:		
DATE:		
WELL NO.: AZ - P-11	Art of the same of the	
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	WELL I.D.	VOL. GAL/DAY
(2) CASING INTERNAL DIAMETER (in.):	1" 2"	0.04 0.17
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	3" 4"	0.38 0.66
(4) VOLUME OF WATER IN CASING (gal.):	5" 6"	1.04 1.50

8"

2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)											
PARAMETERS	15												
рН	-												
CONDUCTIVITY	-												
TEMPERATURE	,												
TURBIDITY	7100												
APPEARANCE	black												

comments: Purgeo 15 gal., significant open (beweeve), did not measure 1-, 0 level or take parameters, given equipment for Add'I well development, seniount-black will settle quickly

" reclarge - impressiate

PROJECT TITLE:	**************************************
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: A1-SB-AZ

		VOL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	WELL I.D.	GAL/DAY
	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	2"	0.17
	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.): $\frac{1}{3}$	4 "	0.66
	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	6"	1.50
		2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)										
PARAMETERS	Catherin.	10	20-									
pН	ii d	10.9	10,8									
CONDUCTIVITY	1015	840	902									
TEMPERATURE	-	-)									
TURBIDITY	7/00	7100	7100									
APPEARANCE	DK	Cloudy	D'K D'K									

comments: Developes w/14" bailer,
Slight-Moderate oil sheer w/ blebs as Hall purge surface
rechnye-inmediate

PROJECT TITLE:	
PROJECT NO.:	
STAFF:	
DATE:	

WELL NO .: A 1-SB-F2

·		V O 124
(1) TOTAL CASING AND SCREEN LENGTH (ft.): 15.35	WELL I.D.	GAL/DAY
	1"	0.04
(2) CASING INTERNAL DIAMETER (in.): 2	2"	0.17
	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (fL): 8.7	4"	0.66
	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	6"	1.50
	8"	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = GAL.$

		ACCUMULATED VOLUME PURGED (GALLONS)											
PARAMETERS	instial	3	5										
рН	છે.છ	8.1	8.3										
CONDUCTIVITY	1250	1045	1085										
TEMPERATURE	_))										
TURBIDITY	7/00	7/00	7100										
APPEARANCE	Brny	MUDDY MUDDY	gry-bon										

comments: Developée w/ 14" bailer . well purges to "dryness", recharge very slow

PROJECT TITLE:	
PROJECT NO.:	
STAFF: _	
DATE: _	

WELL NO .: A1-5B-K2

(1) TOTAL CASING AND SCREEN LENGTH (ft.):	<i>13.</i> 0	WELL I.D.	VOL. GAL/DAY
		1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u> 2"</u>	2"	0.17
		3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	6.12	4"	0.66
	, -	5"	1.04
(4) VOLUME OF WATER IN CASING (gal.):	1,2	6"	1.50
		ደ።	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

		···	ACC	CUMUL	ATED VO	DLUME I	PURGED	(GALL	ONS)		
PARAMETERS	initial	20									
рН	-	_		!							
CONDUCTIVITY	1	-									
TEMPERATURE	-		<u>.</u>								
TURBIDITY	*	סטוד									
APPEARANCE		DKY YK								-	

Sign. hicart Amount of #6 oil on purge water surface, did not use meters for purposes of cleaning equipment

· recharge - immediate, purges 20gal

PROJECT TITLE: _	
PROJECT NO. : _	
STAFF: _	
DATE: _	

WELL NO .: AI - SB - M Z

	1// ^		V CL.
(1) TOTAL CASING AND SCREEN LENGTH (ft.):	19,9	WELL I.D.	GAL/DAY
	•	1"	0.04
(2) CASING INTERNAL DIAMETER (in.):	<u>z"</u>	2"	0.17
	- \	3"	0.38
(3) WATER LEVEL BELOW TOP OF CASING (ft.):	7.0	4"	0.66
		5"	1.04
(4) VOLUME OF WATER IN CASING (gal):	1,3	6"	1.50
		g ¹¹	2.60

 $V = 0.0408 [(2)^2 x {(1) - (3)}] = _____GAL.$

			ACC	UMULA	TED VO	LUME	PURGE	D (GALL	ONS)		
PARAMETERS	last by	3	بي ا								
рН	6.2	6.4	6.3								
CONDUCTIVITY	640	640	640								
TEMPERATURE	-	+	_								
TURBIDITY	250	>100	7100							,	
APPEARANCE	clena	twoid	Turbich brown								

· Recharge - slow

ATTACHMENT B-7

TEST PIT EXCAVATION LOGS

FIELD TEST PIT LOG

	FIELD 1E31				
PROJE	CT:	EXCAVAT	TON DATE	S:	3/19/97
	CT NO	EXCAVAT	TON METH	IOD:	Backhoe
		_	CHECKED		BCH
CLIEN				, 61.	
LOCAT		start:			
1	it steel Plant	end:	9.50		
TEST	PIT LOCATION .		CROSS S	ECTION	
'-5'	/ c	GRADE			
1	/ / 1	GITABLE		•	<u>-</u>
` `	\				
_					
	•				
					,
	■ M loteo				
	£ 8150				
	m				
) {				ļ
					!
1					
]	NOT TO SCALE				NOT TO SCALE
DEPTH	SOIL	GRAPHIC	PHOTOS	SAMPLES	COMMENTS
	DESCRIPTION	LOG	Y/N	0.0	
BGS		100			(INCLUDE SEEPAGE HORIZONS)
0-2.1	Oringe Brown t-med-SAND duse moist				
1.1-2.7	Black ned-worse SAND and				water @ 2.4'
	GRAVEL brick, dense, must-wet				
27	Concrete				
	LOVILIE				
	Trenched moving South				
	education crete 40' from				<u> </u>
	Cal C. M				
	F X 150				
					
	Some Sheen an water 20 counge/Brown SAND topers oft Becomes:				·
	20 Counge/Brown SAND topers oft				
	Bocomes				
	DK Grey Black SILT and f-SAND w/ Concrete, bricks, rebox				
	my Concepto houself coloni				
	MICENTERIE DITCESTAND				
	no obvious contemunation in color				
	on water curface				
	no obvious odors				
	To 1/2 1/20 2/ 25/ 1				
	16mm 607 1000				
	Trunch was ~ 35' long 2.5-3.0' deep				
	•				
	BGS - BELOW GROUND SURFACE			··	
i					

MALCOLM PIRNIE

FIELD TEST PIT LOG

CLIEN LOCAT	ECT NO T:	EXCAVAT LOGGED Start:		HOD: DBY:	3/19/97 Bukhae BCH
200'W 19'S -20'S	of TP-1 NOT TO SCALE SOIL	GRAPHIC	PHOTOS	SAMPLES	NOT TO SCALE
BGS	DESCRIPTION	LOG	Y/N		(INCLUDE SEEPAGE HORIZONS)
0-1.4	Black donse of med SAND w		L		matre (181
	med GRAVEL, brick (rody turnace)				
	med GRAVEL WI Some BRICING SAND				
	Black, wet rubber civiling hose				
	Strong cropsoft noor				
	30 of S of CW Line - possible pipe				
	turnel with	****			
	Concrete w				
	around it				
	in the state of th				
	Trench was 20' long				
	Trench was 20' long 40' deep			· · · · · · · · · · · · · · · · · · ·	
	no obviers contemination insular				
	an worten surface			<u> </u>	***
	Cresote odur was noted .				
			· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
	8GS - BELOW GROUND SURFACE				

MALCOLM PIRNIE

FIELD TEST PIT LOG **EXCAVATION DATES:** PROJECT: **EXCAVATION METHOD: PROJECT NO** CLIENT: LOGGED/CHECKED BY: start: 10:20 LOCATION: end: 11:35 LTV Steel Plant TEST PIT CROSS SECTION **TEST PIT LOCATION** GRADE NOT TO SCALE NOT TO SCALE DEPTH SOIL **GRAPHIC** PHOTOS SAMPLES COMMENTS BGS DESCRIPTION LOG Y/N (INCLUDE SEEPAGE HORIZONS) dense SAND and GRAVEL deeth to unter from dry, Slea, back King wall 8.851 GRAVEL (concrete?)), very haved DK Rrown med-coarse Live white ash w Black oil Staining no oder GUNG BOUTS' 1.7-2.3 Large Sub ungular GRAVEL 3-3.4 White Grey Black ASH sow Orange 34-4.5 RIACK OS water @ 4.51

MALCOLM PIRNIE

BGS - BELOW GROUND SURFACE

	FIELD IES	i bii ri			. 1
PROJ	ECT:	EXCAVAT	ION DATE	S:	3/19/97
PROJ	ECT NO	EXCAVA1	TON MET	IOD:	Backhee
CLIEN	T:	LOGGED	CHECKE	BY:	13CH
LOCA		Stav	t: 11:35	5	
	TV Steel Plant		1: 12:2		
			CROSS S		
1 1231	PIT LOCATION St.	GRADE	J. 1000 C		
S. fur	ringt focciner st.	- Grinde	-	•	<u>k</u>
	Abby St.				
4	4001				
+ Stain	ing is white Fo Feine				
	NOT TO SCALE				NOT TO SCALE
DEPTH	SOIL	GRAPHIC	PHOTOS	SAMPLES	COMMENTS
BGS	DESCRIPTION	LOG	Y/N		(INCLUDE SEEPAGE HORIZONS)
0.2.0	Red From SILT and F. SAND, Some				(MOCODE GEEF AGE HORIZONA)
A	CLAY deuse				
1 2-50					6 4 14 0 17:10
2.0				ļ	Sample taken P. 12:10
	SILT and 6 SAND W SOME CLAY				A1 - TP4 (SC)
	Bluck GRAVEL, some staining]				TCL VOC'S
50	consist backhoe notusal		,	 	TCL SVOC'S PCBS
	Y				TAL Metals + CN
	dry-mist - ward cook,				
ļ	Slaget				
	,				
2 0-1.0	TOUSE REAL BROWN CLAY OF SILT				
1.0-1.7	Pense DK areal block GRAVEL WI				
	Dense Red Brain CLAY W/ SILT Dense DK grey/ book BRAVEL W/ Concrete, slag material wet V hand compacted - cofusal @ 2.0' white Ach - formace bricks				
	V hand committed - cofied @ 2.0				
	white Ach - formore hairks				
	TV ZILLA DI LA LA LA LA LA LA LA LA LA LA LA LA LA			***************************************	
	· · · · · · · · · · · · · · · · · · ·	-			
	4 701 loss at 51 doss				
	6: 15' long ~ 5' deep			-	
	12 10119 ~ 1.10 dest)				
-					

					-
	8G8 - BELOW GROUND SURFACE		İ		
L	•				

MALCOLM PIRNIE

FIELD TEST PIT LOG **EXCAVATION DATES:** PROJECT: **EXCAVATION METHOD:** BackLoe PROJECT NO LOGGED!CHECKED BY: CLIENT: Start: 13-40 LOCATION: end: 14:15 Tonner House Coke Plent TEST PIT LOCATION TEST PIT CROSS SECTION GRADE ABBEY ST · survey stake 18-81 ● B-20 NOT TO SCALE NOT TO SCALE GRAPHIC DEPTH SOIL **PHOTOS** SAMPLES COMMENTS DESCRIPTION LOG BGS Y/N (INCLUDE SEEPAGE HORIZONS) D-14 Black uch a less brick coment-fil 1000000 DESERVER deuse moist Sandle time: 14 10 14-7.25 Brown demse CLAY and SILT WI 1- med SAND Some black ash red brick, Cement AZ-TP56-> mells, Rts seni (CLAY + FILL) maist upt A2-TP5 + YOC TCL VOC'S retusal- concrete pad TCL SUDC'S /PCB'S TAI metals + CN composited wil TP-b Sample time: 14:45

MALCOLM PIRNIE

8GS - BELOW GROUND SURFACE

FIELD TEST PIT LOG **EXCAVATION DATES:** PROJECT: **EXCAVATION METHOD: PROJECT NO** LOGGED/CHECKED BY: CLIENT: Start 14:15 end: 14:50 TP-6 LOCATION: TEST PIT LOCATION TEST PIT CROSS SECTION GRADE NOT TO SCALE NOT TO SCALE DEPTH SOIL GRAPHIC PHOTOS SAMPLES COMMENTS BGS DESCRIPTION LOG Y/N (INCLUDE SEEPAGE HORIZONS) 0-735 Deuse 1+ Brania CLAY WI DE Brans BIGLIC SILT and F. SAND. large coment pieces redbruk black organic it depth Mac taken 14 30 comp metals PCB/som vocisi WITP 5 42-TPL AZ-TPS,6 SEDILY, RCB TCL NOC'S TCL SVOC'S PCBS Sample time: 14:45 **BGS - BELOW GROUND SURFACE**

MALCOLM PIRNIE

FIELD TEST PIT LOG **EXCAVATION DATES:** PROJECT: **EXCAVATION METHOD:** PROJECT NO LOGGED/CHECKED BY: CLIENT: 10-7 start 10:00 end 10:35 LOCATION: TEST PIT LOCATION TEST PIT CROSS SECTION see map of former workhouse site GRADE I to fence N 50' 20' long 9.5' deep NOT TO SCALE NOT TO SCALE DEPTH SOIL **GRAPHIC PHOTOS** SAMPLES COMMENTS BGS DESCRIPTION LOG Y/N (INCLUDE SEEPAGE HORIZONS) 0-3.2 DI Brown SILTund most SAND 18d brick, cenent, upper furnar brick , dense 3.2-40 some A/A with CLAY, dense SILT and F. SANID WI CLAY HS: 62 ppm coul, back roder dense SILT and CLAY wi some SAND, dense, moist 1+ Bro Orange Briwn, Gory CLAY 76-Total depth 9.35

MALCOLM PIRNIE

BGS - BELOW GROUND SURFACE

	_ FIEL	D TEST	PIT LO	OG		1 /	
PROJE	CT:		EXCAVAT	TON DATE	S:	3/20/97	
PROJE			EXCAVATION METHOD:			Backhoe	
CLIENT			LOGGED	CHECKED	BY:	SCH	
LOCAT	-77 6	_	Slaut	10:35			
	Warehouse		,	11:15			
TEST P	PIT LOCATION			CROSS S	ECTION		
			GRADE				
061	1 to line				•	<u>k</u>	
37	A 1º TONO						
See	I to fence mep for bocation						
_	·						
	•						
501	lana						
J U \	(4,7)						
150'l	deef	1					
•							
	NOT TO S	STALE .				NOT TO	20 41 5
DEPTH	SOIL	CALE	GRAPHIC	PHOTOS	SAMPLES	NOT TO S	CALE
	DESCRIPTION		LOG	Y/N	SAMPLES	COMMENTS (INCLUDE SEEPAGE HORI)	70 1100
	7) (SAND		1714		(INCLODE SEEPAGE HORIZ	ZONS)
D ~(.0	<u> </u>						
1.8-42						() 1 d ml 0 /	-
10-47		SAND 1				carde debila 6	<u> </u>
	C. A.,	- [1		1. '. ". "	
110000	ar CLAY, moist	-			···	Sangle time 10:5	5
4.2- 9.0	ar CLAY, moist						5
4.2- 9.0	ar CLAY, moist					A3-7P8	5
	same A/A						5
	ar CLAY, moist	D					5
	same A/A	Q					5
	same A/A	0					5
	same A/A	Q					5
	same A/A	0					
	same A/A	0					5
	same A/A						5
	same A/A						5
	same A/A						5
	same A/A						5
	same A/A						5
	same A/A						5
	same A/A						5
	same A/A						
	same A/A						5
	same A/A						
	same A/A						
	same A/A						
	same A/A						
	same A/A						
	same A/A						

MALCOLM PIRNIE

FIELD TEST PIT LOG

	וובט ובטי				
PROJE	CT:	EXCAVAT	TON DATE	S:	3/20/97
4	CT NO	EXCAVAT	TON METH	iOD:	Backhoe
CLIEN			CHECKEE		BCH
			9:00		
LOCAT	TION: <u>TP-9</u>	3104	• 6 4		
			: 4:40		
TEST F	PIT LOCATION	TEST PIT	CROSS S	ECTION	
1215	of AL-SBIC3	GRADE			
23 -				•	
	1				
					:
					į
ľ	·				
1					
		i			
					į
	6.2				j
İ	P. D				
	NOT TO SCALE				NOT TO SCALE
DEPTH	SOIL	GRAPHIC	PHOTOS	SAMPLES	COMMENTS
808	DESCRIPTION	LOG	Y/N		(INCLUDE SEEPAGE HORIZONS)
0-43	DE BIND SILTAND & SAND W				
	furning Drick Coment, cohor etc.				
	Bluelaren comparted SAND (concre-	I AC			
	-lame here of SLAG at Need:				Water @ 3.5'
		7			
	-large piece of concrete wifebar at 3 PM	<u> </u>			
<u> </u>	Retusal due to concret toundation				
	iotal depth: 4.31				
	4				
	1				
	luns in a SE				
	direction				
	,				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·		
	8GS - BELOW GROUND SURFACE				
ļ					

MALCOLM PIRNIE

FIELD TEST PIT LOG

	FIELD TEST				
PROJ	CT:	EXCAVAT	TON DATE	S:	3/20/47
PROJE	ECT NO	EXCAVAT	TON MET	IOD:	Backhop
CLIEN			CHECKEL		SEE BCH
LOCAT		LOGGES.			PCH
LOCA	rion: <u>TP-10</u>				
TEST	PIT LOCATION	TEST PIT	CROSS S	ECTION	
	a .	GRADE			
592 V	map of plant site			•	
1	•				
10 F	Flom N 10100 E8150				•
	170'w, 44'S				mine
	se direction				, •
	Je direction .	39	s'	7'-	
Ì		•	,	·	ľ
					:
L	NOT TO SCALE				NOT TO SCALE
DEPTH	SOIL	GRAPHIC	PHOTOS	SAMPLES	COMMENTS
BGS	DESCRIPTION	LOG	Y/N		(INCLUDE SEEPAGE HORIZONS)
0-2.2	DIE BUJUL BIECK SICT WE E SAND				
0 2.2				·	
	and BRAVEL brick, Slag, white				
	ash, glass, dense day		<u> </u>		
2.2-3.5	med-large GRAVEL (slog)) Sens				
	SUT + SAND ALA				
2 C-4A	H Brown CLAY dense				
4.0	Congrete SLAB	-			
	CONVER SURIS				-
	continued location is a SE direction				
	at 31. Dice was found 2" steel				
	1" Steel				
	wood	-			
	0) (c) 27/12/1				
	case a concrete of start point				
	Use of concrete 35' SE of start point 41 more is adize of wall foundation 145+off edge of wall foundation	•			
	just off edge of wall foundation				
	,				
40-112	Red/Black Silt and & SAND, order,				11C: 29 acc
כיד -שר	Stand I Stand I Stand				HS: 39ppm
17 24	moist, dense Track for			P	Sounds taken 15:35
4.5-5.0	Red CLAY dunse, moist (mote) DK Grey CLAY dense, moist				HS: 108 pm
	Red CLAY dunse, moist (mote)				H5: 70 ppm
5.8+	DI Grow CLAY donce moint				1
	oozing tour/our on top				HS: 72 ppm
	SOLUTION TOP				ELS. (TENDA
				:	
I	BGS - BELOW GROUND SURFACE				

MALCOLM PIRNIE

PRO. CLIE LOCA	PROJECT: PROJECT NO CLIENT: LOCATION: TP-11 - £ 8434 N-10310		ATION DAT ATION MET D/CHECKE	3121/97 BACKHUE BLO		
TEST	PIT LOCATION	TEST PI GRADE	T CROSS (SECTION		
BFIO CITY DOCK 66'		-	65 killer Couled Agent Couled Agent Couled Apple			
<u> </u>	NOT TO SCALE	+	[3' E	25'	6	
DEPTH	SOIL	GRAPHIC	PHOTOS	SAMPLES	NOT TO S	
BGS	SLAY THEIR W/ IRW ARE	LOG	Y/N		(INCLUDE SEEPAGE HORIZ	
<u> </u>	BLACK FILL instruct w/ concrete		Y	N		
- 6'	BLACK FILL miteral w/ Sone		Y	V		
	Chucks OF IRW ORE		/			
						
:						
		- 				
						
						
- 						
						
T	BGS - BELOW GROUND SURFACE					
IALC PIRN				<u> </u>	SHEET OF	