Site Assessment Report

Former August Feine & Sons Company Site Buffalo, New York NYSDEC Site #V00619-9

August 2005 0062-002-510

Prepared For:

Buffalo, New York

Prepared By:

726 Exchange Street, Suite 624, Buffalo, New York | phone: (716) 856-0599 | fax: (716) 856-0583

ENVIRONMENTAL SITE INVESTIGATION REPORT

Former August Feine & Sons Company Property

Table of Contents

1.0	Introdu	UCTION	1
	1.1 B	ackground	1
	1.2 Pt	urpose	2
		•	
2.0	INVESTI	GATION APPROACH	4
	2.1 Se	oil/Fill Investigation	
	2.1.1		
	2.1.2	2 Soil/Fill Sample Collection & Analysis	
		3 Abandonment and Decontamination	
		roundwater Characterization	
	2.2.1		
	2.2.2	2 Well Development	
		B Groundwater Sample Collection & Analysis	
		ield Specific QA/QC	
3.0	INVESTI	GATION RESULTS BY MEDIA	9
		oil/Fill	
	3.1.1		
	3.1.2	2 Analytical Results	
		roundwater	
	3.2.1		
	3.2.2	2 Groundwater Flow	
		ata Usability Summary	
4.0	SUMMAR	Y AND CONCLUSIONS	14
5.0	REFERE	NCES	

ENVIRONMENTAL SITE INVESTIGATION REPORT

Former August Feine & Sons Company Property

Table of Contents

LIST OF TABLES

Table 1	Sample Locations and Analysis
Table 2	Summary of Groundwater Elevations
Table 3	Summary of Soil/Fill Analytical Results
Table 4	Summary of Groundwater Analytical Results

LIST OF FIGURES

Figure 1	Site Vicinity and Location Map
Figure 2	Site Plan
Figure 3	Site Assessment Sample Locations

Field Borehole Logs

ATTACHMENTS

1.1	
Appendix B	Groundwater Well Development Logs
Appendix C	Low Flow Method Groundwater Purge & Sample Collection Logs
Appendix D	Laboratory Analytical Data Package – Severn Trent Laboratory
Appendix E	Data Usability Summary Report (DUSR)

Appendix A

1.0 Introduction

1.1 Background

The property, formerly owned and operated by August Feine & Sons, hereafter referred to as the "Feine Property" or the Site, located at 364 Baraga Street in South Buffalo, New York was acquired by Steelfields LTD in July 2003 (see Figures 1 and 2). The former Feine Property as well as the adjacent Steelfields Property is subject to a Voluntary Cleanup Agreement entered into by Steelfields LTD and the New York State Department of Environmental Conservation (NYSDEC) on October 15, 2002. The Feine Property is bordered on the western, southern, and eastern side by property owned by Steelfields LTD and bordered to the north by property reputedly owned by Norfolk Southern Railroad (see Figure 2).

August Feine & Sons began its operations on the site prior to 1917, according to a 1917 Fire Insurance (Sanborn) map. The adjacent former Donner-Hanna Coke Plant south of the site produced coke, chemical by-products, and manufactured gas from coal from 1919 to 1982. It appears that through the years of operations and/or as a result of demolition and decommissioning activities, the former coke plant property was filled as evidenced by the site grade being approximately three-feet higher in elevation than Feine's southern and western property boundaries. The elevated fill on the former Donner-Hanna Plant site appears to extend several feet onto the former Feine Property along the common southern boundary. It is this fill and underlying and adjacent soil along the common border between the former Feine and former Donner Hanna Coke Plant properties that is of primary concern.

In accordance with the Remedial Design/Remedial Action (RD/RA) Work Plan (revised September 2002) for the Steelfields Site, a containment cell has been designed and partially constructed to encapsulate contaminated soil/fill within the by-products subarea of the former Coke Plant. A component of the containment cell is a groundwater collection trench that is designed to collect and treat contaminated groundwater from both within the containment cell and from areas adjacent to the containment cell along its northern and eastern boundary, including the entire former Feine Property (see Figure 3).

The containment cell is approximately 14 acres in size and consists of: a 2,376 feet bentonite-soil slurry wall along the southern and western perimeter; a 2,766 feet long

groundwater collection trench along the northern and eastern perimeter; and a synthetic geomembrane cover system. The collected groundwater is treated by granular activated carbon prior to discharge to the Buffalo Sewer Authority sewage system for final treatment. Construction of the slurry wall, groundwater collection system, and groundwater pretreatment facility was completed and placed into operation in February 2004. The cover system is scheduled for construction in 2005.

The original Work Plan for this environmental site investigation (Appendix E of the RD/RA Work Plan, revised September 2002) was based upon the fact that Steelfields did not own the Feine Property at that time and the groundwater collection system and northern containment system boundary were initially located on Area II of the Steelfields property. Following acquisition of the Feine Property by Steelfields in July 2003 and during design of the groundwater collection system, a series of geotechnical borings were advanced along the southern portion of the former Feine Property (see Figure 3). Based upon these geotechnical borings with design the intent of encompassing all grossly contaminated fill within the containment cell, the northern limit of the groundwater collection system and containment cell were constructed approximately 20-feet north of the original work plan location onto the former Feine property as shown in Figure 3. The historical boring logs, specifically A2-SB-108 and A2-SB-109 presented in Appendix A, indicated the presence of tar or naphthalene odor at 3 to 5 feet below ground surface along the southern portion of the former Feine Property.

The predicted influence on the Area II groundwater collection system was modeled as part of the Voluntary Cleanup Work Plan for the Site. The purpose of the model was to predict the zone of influence of the groundwater collection system and was determined to encompass the entire Feine Property. As such, groundwater impacts were not the primary focus of this investigation, although groundwater quality was assessed. In addition, subslab vapor, associated with potential volatile organic impacts below the former Feine building, were not investigated due to proposed plans to raze the building following containment cell completion.

1.2 Purpose

The primary purpose of this Site Assessment Report (SAR) was to:

- Characterize the subsurface soil/fill above the native soils in the former Feine parking lot south of the building relative to Site Specific Action Levels (SSALs);
- Characterize the subsurface soil/fill at the northwest corner of the former Feine property relative to SSALs; and
- Characterize existing groundwater quality along the northern property boundary.

2.0 INVESTIGATION APPROACH

The Work Plan (Ref. 1) included visual characterization of surface and subsurface soil/fill, collection and analysis of subsurface soil/fill samples, and collection and analysis of groundwater samples at the former Feine Property. The investigation was geared toward collection of representative analytical data to identify and compare shallow soil/fill constituent concentrations on the former Feine Property to Site Specific Action Levels (SSALs) established in the RD/RA Work Plan (revised September 2002) for the Steelfields Site. The drilling portion of this investigation (i.e., soil/fill sampling and well installation) was conducted on July 6, 2005, well development was performed on July 12, 2005, and groundwater sample collection on July 18, 2005. A detailed description of the scope of work activities conducted during this investigation follows.

2.1 Soil/Fill Investigation

Thirteen soil/fill borings, designated FAF-B-1 through FAF-B-12 and A2-MW-20, were advanced utilizing direct-push technology (i.e., Geoprobe[™]) at the locations presented in Figure 3 in order to visually characterize the soil/fill horizon as well as to collect representative samples for laboratory analysis. Upon completion of direct-push drilling activities, boring location A2-MW-20 was overdrilled utilizing hollow stem auger technology to facilitate installation of a new monitoring well. Monitoring well construction and groundwater analysis is discussed in Section 2.2 of this report.

2.1.1 Boring Advancement

Each direct-push boring location was advanced through surface soil/fill material and a minimum of one-foot into underlying native soil using a 1.5-inch diameter, 4-foot macrocore sampler with dedicated PVC sleeve. Recovered soil/fill samples were described in the field by a qualified geologist using the Unified Soil Classification System (USCS), scanned for total volatile organic vapors with a calibrated MiniRae 2000 photoionization detector (PID) equipped with a 10.6 eV lamp, and characterized for impacts via visual and/or olfactory observations. Borehole logs are presented in Appendix A. A description of the soil/fill unit as well as PID scan measurements is discussed in Section 3.1 of this report.

2.1.2 Soil/Fill Sample Collection & Analysis

Soil/fill samples were collected utilizing dedicated stainless steel sampling tools. Representative soil/fill samples were placed in pre-cleaned laboratory provided sample bottles, cooled to 4° C in the field, and transported under chain-of-custody command to Severn Trent Laboratories, Inc. (STL), located in Amherst, New York, a New York State Department of Health (NYSDOH) ELAP-certified analytical laboratory, for analysis as indicated in Table 1. Soil/fill analysis is discussed in Section 3.1 of this report.

2.1.3 Abandonment and Decontamination

Following sample collection, 12 of the 13 geoprobe boreholes were backfilled with the remaining soil cuttings and supplemented, as necessary, with surrounding at grade soil/fill. Boring/monitoring well location A2-MW-20 was completed as a new monitoring well as described in Section 2.2 below. All non-dedicated drilling tools and equipment were decontaminated between boring locations using a potable tap water and a phosphate-free detergent (i.e., Alconox) solution and potable tap water rinse.

2.2 Groundwater Characterization

New monitoring well A2-MW-20 was installed at the location shown on Figure 3 using 4.25-inch hollow stem augers to approximately one foot into native soil at the same location as the direct-push boring of the same name. New monitoring well A2-MW-20 and existing monitoring wells A2-MW-15 and A2-MW-18 were used to provide groundwater quality information at the site. These three wells in conjunction with those monitoring wells identified in Table 1 were also used to determine groundwater flow direction at the site. Both groundwater quality and flow direction are discussed in Section 3.2 of this report.

2.2.1 Monitoring Well Installation

Subsequent to boring completion, a 2-inch diameter flush-joint Schedule 40 PVC monitoring well was installed at boring location A2-MW-20. Based upon direct-push macrocore sample moisture descriptions and conditions, well A2-MW-20 was installed to 9.5 fbgs and constructed with a 5-foot flush-joint Schedule 40 PVC, 0.010-inch machine slotted well screen installed across the shallow water-bearing zone (i.e., water table). The well screen and attached riser were placed at the bottom of the borehole and a silica sand filter pack (size

#0) was installed from the base of the well to approximately 2 feet above the top of the screen. A 2-foot thick bentonite chip seal was then installed and allowed to hydrate sufficiently. Well A2-MW-20 was completed with a lock, J-plug, and a 4-inch diameter protective casing secured and anchored at the surface within a 2-foot by 2-foot by 1-foot square concrete pad. Monitoring well A2-MW-20 borehole log and well completion details are presented in Appendix A.

2.2.2 Well Development

Upon installation, but not within 24 hours, the newly installed monitoring well A2-MW-20 and existing monitoring wells A2-MW-15 and A2-MW-18 were developed in accordance with TurnKey and NYSDEC protocol. Well development was accomplished on July 12, 2005 by TurnKey personnel with dedicated tubing fitted with a check-ball foot-valve via surge and purge methodology. Following surging, each well was purged utilizing a peristaltic pump and the same dedicated tubing. Field parameters including pH, temperature, turbidity and specific conductance were measured periodically (i.e., every well volume or as necessary) during development. Field measurements continued until relatively stable. Stability was defined as variation between measurements of 10 percent or less with no overall upward or downward trend in the measurements. A minimum of 10 well volumes was evacuated from each monitoring well. Development water from each monitoring well was discharged to the ground surface no closer than twenty feet from the well location. Groundwater Well Development Logs are presented in Appendix B.

2.2.3 Groundwater Sample Collection & Analysis

On July 15, 2005, prior to sampling the designated monitoring wells, static water levels were measured and recorded from each well identified in Table 1. Depth to water measurements and calculated groundwater elevations are presented on Table 2. On July 18, 2005, following water level measurement, TurnKey personnel purged and sampled monitoring wells A2-MW-15, A2-MW-18, and A2-MW-20 using a peristaltic pump and dedicated pump tubing following low-flow/minimal drawdown purge and sample collection procedures.

Prior to sample collection, groundwater was evacuated from each well at a low-flow rate (less than 0.4 L/min). Field measurements for pH, specific conductance, temperature,

turbidity, and water level as well as visual and olfactory field observations were periodically recorded and monitored for stabilization. Purging was considered complete when the pH, specific conductivity, and temperature stabilized (as previously defined in Section 2.2.2) and when turbidity measurements fell below 50 Nephelometric Turbidity Units (NTU), or became stable above 50 NTU. Upon stabilization of field parameters, groundwater samples were collected and analyzed for the parameters presented in Table 1.

Groundwater samples collected for volatile organic compound (VOC) analysis were not sampled directly through the peristaltic pump due to potential degassing (i.e., loss of VOCs) of the groundwater sample. Instead, upon collection of VOC samples, the pump was turned off and the pressure on the flexible walled tubing within the pump head was maintained in order to prevent groundwater within the tubing from escaping. The tubing was removed from the well and coiled as to prevent any contact with the ground surface. Upon removal of the tubing, the pressure on the pump head was slowly released allowing the trapped groundwater to flow into the VOC sample vials.

Prior to and immediately following collection of groundwater samples, field measurements for pH, specific conductance, temperature, turbidity, Eh, and water level as well as visual and olfactory field observations were recorded on field data sheets presented in Appendix C. All collected groundwater samples were placed in pre-cleaned, pre-preserved laboratory provided sample bottles, cooled to 4 °C in the field, and transported under chain-of-custody command to STL for analysis as indicated in Table 1. Groundwater analysis is discussed in Section 3.2 of this report.

2.3 Field Specific QA/QC

Field specific Quality Assurance and Quality Control (QA/QC) measures taken during this investigation to ensure the reliability of the generated data as described in the Quality Assurance Plan (Appendix B of the RD/RA Work Plan (revised September 2002) (Ref. 2)) were as follows:

■ Trip Blanks - A sufficient number of trip blanks for volatile organic compound analysis were prepared by the laboratory and delivered to the sampling team prior to a sampling event. One sealed blank was carried into the field per day along with the sample containers for each day that volatile organic samples are collected. Trip blanks were transported and handled in the same manner as the actual

samples. The results of the trip blank analysis were reviewed to evaluate if the potential for sample contamination during transportation and handling exists. The trip blanks will be analyzed for STARS VOCs by EPA Method 8021. Based upon the trip blank analysis, sample contamination during transportation and handling of the samples has not occurred.

- Blind Duplicate One blind duplicate was collected and analyzed per 20 samples collected for the parameters presented in Table 1 per matrix (i.e., groundwater and soil/fill). The soil/fill blind duplicate was collected from boring location FAF-B-09 and the groundwater blind duplicate was collected from monitoring well A2-MW-15. The location of the sample collection points were not disclosed to the analytical laboratory, therefore the field sample containers were returned to the laboratory identified only as "blind duplicate". The monitoring well and soil/fill sample locations were recorded in the Project Field Book and on the appropriate field data sheets and the results were compared to review analytical precision. Based upon blind duplicate results, there appears to be relatively good precision associated with the soil/fill and groundwater samples collected during this investigation.
- Matrix spike/matrix spike duplicate (MS/MSD) A sufficient volume of sample was collected at one sampling location per sampling event for MS/MSD analysis for the parameters presented in Table 1 per matrix (i.e., groundwater and soil/fill). The soil/fill MS/MSD sample was collected from boring location FAF-B-07 and the groundwater MS/MSD sample was collected from monitoring well A2-MW-20. The laboratory reported the results of the MS/MSD analysis, which were reviewed for sampling and analysis precision and accuracy. Generally, there is no action taken on the MS/MSD results, however the soil/fill and groundwater MS/MSD results for this investigation were all within required limits.

3.0 INVESTIGATION RESULTS BY MEDIA

The following sections discuss the analytical results of the site investigation by media. Tables 3 and 4 summarize the analytical data for the collected soil/fill and groundwater samples, respectively. Soil/fill exceedances of the SSALs and groundwater exceedances of the NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQSs/GVs) are highlighted. Figure 3 presents the sample locations during this investigation and the STL analytical data summary package is presented in Appendix D.

3.1 Soil/Fill

3.1.1 Description

In general, a dark brown to black soil/fill unit was encountered above a native, dark grey with iron-stained mottling, lean clay with sand (CL) at each of the 13 boring locations, which is consistent with the geology described throughout the Steelfields site (i.e., Areas I through IV). The soil/fill generally consisted of non-cohesive coal and coke fines with slag, brick, and/or concrete fragments and was 4.3 to 5.0 feet thick under the parking lot and beneath the building. The soil/fill was up to 9.5 feet thick north of the building, where the surface elevation is higher. PID scans of the soil/fill measured less than 5 parts per million (ppm), except FAF-B-1 (maximum 135 ppm) and FAF-B-5 (maximum 10.8 ppm). Groundwater was generally encountered approximately 1 to 1.5 feet below ground surface (fbgs) within the Former August Feine property parking/access road area (viz. FAF-B-1 through FAF-11) and approximately 5.0 fbgs along the elevated northern perimeter of the site (viz. FAF-12 and A2-MW-20).

3.1.2 Analytical Results

In general, all of the subsurface soil/fill samples collected during this assessment were reported below the SSALs established for the Steelfields Site, with only a few exceptions as presented below:

• At boring location FAF-B-01, subsurface soil/fill slightly exceeded total VOCs and exceeded individual SSALs for toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, mercury, and total SVOCs.

- At boring location FAF-B-03, subsurface soil/fill slightly exceeded the individual SSAL for lead.
- At boring location FAF-B-07, subsurface soil/fill exceeded individual SSALs for cadmium and lead.
- At boring location FAF-B-09, subsurface soil/fill exceeded the individual SSAL for lead.

Subsurface soil/fill analytical results are summarized in Table 3.

3.2 Groundwater

3.2.1 Analytical Results

In general, all of the groundwater samples collected during this assessment were reported below NYSDEC Class "GA" GWQSs/GVs, with only two exceptions as presented below:

- Well A2-MW-15 groundwater exceeded the GWQS for cyanide, although the concentration was qualified as estimated.
- Well A2-MW-18 groundwater exceeded the GWQS for benzene.

Groundwater analytical results are summarized in Table 4.

3.2.2 Groundwater Flow

On July 15, 2005, prior to sample collection, a round of static water levels were measured in the new and existing monitoring wells presented in Table 1 located on and surrounding the Former August Feine property. Table 2 presents a summary of the measured groundwater elevations. Nine of the 15 water level monitoring wells were discovered to have various issues and depth to groundwater measurements or groundwater elevation calculations could not be made at this time: two wells were destroyed by construction activities (A2-MW-8 and A2-MW-9), five wells were extended as a result of the Area II containment cell construction and will require re-survey (A2-MW-6, A2-MW-7, A2-MW-12, A2-PW-2, and A2-PW-3), and two wells were obstructed with unidentified material

(A1-P-2 and A2-MW-10). Based upon the lack of groundwater data, an isopotential map could not be generated at this time, however upon repair and re-survey of the aforementioned wells, a round of water levels will be measured and an isopotential map will be prepared.

3.3 Data Usability Summary

In accordance with the Quality Assurance Plan (Appendix B of the RD/RA Work Plan (revised September 2002) (Ref. 2)), the laboratory analytical data from this investigation was independently assessed and, as required, submitted for independent review. Ms. Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment involving review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The Data Usability Summary Report (DUSR) was conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review as well as professional judgment. The DUSR, prepared in accordance with Appendix 2B of NYSDEC's draft DER-10 guidance, is included as Appendix E. Those items listed above which demonstrated deficiencies are discussed below, all other items were determined to be acceptable for this level of review.

In general, sample processing was conducted compliant with protocol requirements. Sample results are usable as reported, or usable with minor edit or qualification or reported values as estimated. Internal laboratory quality control samples and site-specific QC samples indicate satisfactory analytical accuracy, precision, and completeness. Sample shipping coolers were received in good condition and at an appropriate temperature. A blind duplicate evaluation performed on soil/fill sample FAF-B-09 and groundwater sample A2-MW-15 for all Table 1 parameters showed an acceptable correlation for the groundwater sample. The soil/fill blind duplicate, however, showed variances exceeding validation guidelines for ethylbenzene, o-xylene, m/p-xylene, naphthalene, chromium, and lead, which were all qualified in the parent as well as the duplicate sample as estimated ("J") and should be used with caution. No indications of significant matrix interference or other indications of potential negative sample bias were recorded; however, minor data qualification as "estimated" ("J" qualifier) or edit to non-detection was required due to typical processing or matrix effects. The following text discusses quality issues of concern as presented in the DUSR.

• STARS VOCs by EPA 8021B:

- o Soil/Fill:
 - Detected results for compounds m-xylene and p-xylene should be considered a combined detection, as their responses cannot be resolved from one another.
 - VOC analytical results for MS/MSD soil/fill are to be qualified as estimated due to recoveries outside acceptable limits in the soil/fill sample FAF-B-07 (MS/MSD), except the compound MTBE.

o Groundwater:

- Acceptable accuracy and precision (elevated recoveries for one analyte not detected in the parent sample).

Base/Neutral SVOCs by EPA 8270C:

- o Soil/Fill:
 - The detected result for acenaphthene in sample FAF-B-07 is qualified as estimated ("J") due to spike recoveries outside acceptable limits.
 - Due to the presence of low levels in the associated method blanks, detections of bis(2-ethylhexyl)phthalate in all subsurface soil/fill samples are considered external contamination, and are edited to reflect non-detection ("U").

- Due to the lack of resolution between responses, detected results for benzo(b)fluoranthene and benzo(k)fluoranthene are qualified as estimated ("]").

o Groundwater:

- All recoveries and internal standard responses were within acceptable limits

• Total RCRA Metals and Cyanide:

o Soil/Fill:

- Due matrix effects or non-homogeneous matrix, cadmium and mercury are all qualified as estimated ("J").
- Due to outlying correlations, cadmium, chromium, and lead are all qualified as estimated ("J").

o Groundwater:

- Due matrix effects or non-homogeneous matrix, cadmium is qualified as estimated ("J").

4.0 SUMMARY AND CONCLUSIONS

As discussed in Section 3.0 of this report, analytical results for subsurface soil/fill and groundwater indicate minimal to no impact compared to SSALs and GWQSs/GVs in the northern portion of the Former Feine property, including the building footprint.

Localized subsurface soil/fill impacts were observed at four locations beneath the parking lot south of the building. Total VOCs were observed in one location only slightly above SSALs in subsurface soil/fill below the parking lot. Lead, cadmium, and/or mercury were observed at four locations in subsurface soil/fill beneath the parking lot.

Shallow overburden groundwater was found to be impacted by benzene at one location and by cyanide at another location in the southeast portion of the former Feine or adjacent property.

Based on the proximity of the identified impacts within the subsurface soil/fill and groundwater to the Area II groundwater collection trench, it is expected that the leachable impacts, if any, are currently being captured and treated by the groundwater collection system, eliminating downgradient migration and potential environmental impact. The proximity of the Area II groundwater collection trench and the high-pressure gas main also limit the excavation of the localized impacted subsurface soil/fill material in those locations (see Figure 3).

Furthermore, the impacted subsurface soil/fill are located below an asphalt-paved parking lot and present no potential for direct human exposure and hence no human health impact. As such, no additional remediation, beyond those already being implemented in accordance with the Voluntary Cleanup Work Plan for Areas I through IV is recommended at this time. Any potential for subsurface soil/fill exposure during future development of the property (i.e., utility installation) is addressed in the Soil/Fill Management Plan for the Steelfields Site.

5.0 REFERENCES

- 1. Work Plan for Environmental Site Investigation, Former August Feine & Sons Company Site, Buffalo, New York, prepared by TurnKey Environmental Restoration, LLC, revised June 2005.
- 2. Work Plan for Voluntary Cleanup Program Remedial Design/Remedial Action (RD/RA), Former Steel Manufacturing Site; TurnKey Environmental Restoration, LLC, revised September 2002.

SAMPLE LOCATIONS AND ANALYSIS

Bullato, INCW TOTA												
	Matrix	х Туре			Paran	neters						
Sample Location	Soil/Fill	Groundwater	Water Level	STARS VOCs Method 8021	TCL Base Neutral SVOCs Method 8270C	Total Metals ¹ Methods 6010B/7470A	Total Cyanide Method 335					
Geoprobe Boring Locations												
FAF-B-01	X			X	X	X						
FAF-B-02	X			X	X	X						
FAF-B-03	X			X	X	X						
FAF-B-04	X			X	X	X						
FAF-B-05	X			X	X	X						
FAF-B-06	X			X	X	X						
FAF-B-07 (MS/MSD)	X			X	X	X						
FAF-B-08	X			X	X	X						
FAF-B-09	X			X	X	X						
FAF-B-10	X			X	X	X						
FAF-B-11	X			X	X	X						
FAF-B-12	X			X	X	X						
Blind Duplicate ²	X			X	X	X						
Monitoring Well Locations												
A1-P-2			X									
A1-MW-5			X									
A2-MW-6			X									
A2-MW-7			X									
A2-MW-8			X									
A2-MW-9			X									
A2-MW-10			X									
A2-MW-12			X									
A2-MW-13			X									
A2-MW-14			X									

SAMPLE LOCATIONS AND ANALYSIS

Former August Feine Property Site Assessment Steelfields LTD. Buffalo, New York

	Matrix	х Туре		Parameters					
Sample Location	Soil/Fill	Groundwater	Water Level	STARS VOCs Method 8021	TCL Base Neutral SVOCs Method 8270C	Total Metals ¹ Methods 6010B/7470A	Total Cyanide Method 335		
A2-MW-15		X	X	X	X	X	X		
A2-MW-18		X	X	X	X	X	X		
A2-MW-20 (MS/MSD)		X	X	X	X	X	X		
A2-PW-2			X						
A2-PW-3	_	_	X						
Trip Blank		X		X	X	X	X		
Blind Duplicate ³		X		X	X	X	X		

Notes:

- 1. Total Metals include: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.
- 2. The soil/fill blind duplicate was collected at boring FAF-B-09.
- 3. The groundwater blind duplicate was collected at monitoring well A2-MW-15.
- 4. MS/MSD Matrix Spike/Matrix Spike Duplicate

SUMMARY OF GROUNDWATER ELEVATIONS

Former August Feine Property Site Assessment Steelfields LTD. Buffalo, New York

Location	Date	TOR Elevation ¹ (fmsl)	Depth to Water (fbTOR)	Groundwater Elevation ¹ (fmsl)	Comment
AREA I - Former St	eel Plant Parcel				
A1-P-2	07/15/05	588.15	NM	NM	obstruction @ ~4.0 fbTOR
A1-MW-5	07/15/05	590.48	6.88	583.60	
AREA II - Former C	Coke Plant Parcel				
A2-MW-6	07/15/05	NS	16.23	NS	extended, needs to be re-surveyed
A2-MW-7	07/15/05	NS	15.25	NS	extended, needs to be re-surveyed
A2-MW-8	07/15/05	591.34	NM	NM	destroyed during construction activities
A2-MW-9	07/15/05	591.12	NM	NM	destroyed during construction activities
A2-MW-10	07/15/05	593.28	NM	NM	obstruction @ ~10.0 fbTOR
A2-MW-12	07/15/05	NS	15.54	NS	extended, needs to be re-surveyed
A2-MW-13	07/15/05	597.90	14.00	583.90	
A2-MW-14	07/15/05	593.02	9.10	583.92	
A2-MW-15	07/15/05	589.56	6.94	582.62	
A2-MW-18	07/15/05	587.64	5.52	582.12	
A2-MW-20	07/15/05	591.54	9.05	582.49	
A2-PW-2 ²	07/15/05	NS	14.79	NS	extended, needs to be re-surveyed
A2-PW-3	07/15/05	NS	NM	NS	extended, needs to be re-surveyed; ext. too high for measurement

Notes:

- 1. Elevation is measured in feet; distance above mean sea level (fmsl) from the Top of Riser (TOR).
- 2. LNAPL was observed in A2-PW-2; product level measured 14.77 fbTOR.
- 3. NM = depth to water not measured.
- 4. NS = monitoring well has been extended and needs to be re-surveyed

TABLE 3 ${\tt SUMMARY\ OF\ SUBSURFACE\ SOIL/FILL\ ANALYTICAL\ RESULTS\ ^1}$

		Sample Location						
Parameter	CAS No.	FAF-B-01	FAF-B-02	FAF-B-03	FAF-B-04	FAF-B-05	FAF-B-06	SSALs ²
STARS Volatile Organic Con	npounds (VOCs	- Method 8	8021) - mg/	kg				
Benzene	71-43-2	0.77	0.0036	0.0035	0.017	0.32	0.025	1
n-Butylbenzene	104-51-8	ND	0.0024	0.0039	0.0028	ND	0.039	1
sec-Butylbenzene	104-51-8	0.13	ND	ND	ND	ND	ND	1
Ethylbenzene	100-41-4	0.16	0.0016	0.0013	ND	ND	0.0014	1
Isopropylbenzene	98-82-8	ND	ND	ND	0.0035	ND	0.0027	1
p-Cymene	99-87-6	0.066	ND	ND	ND	ND	0.00058 J	1
Toluene	108-88-3	1.6	0.0054	0.0074	0.0087	0.017	0.0015	1
o-Xylene	95-47-6	0.3	0.0028	0.0019	0.026	0.017	0.012	1
m,p-Xylene	108-38-3, 106-42-3	2.4	0.0041	0.0032	0.036	0.0064	0.0052	1
Xylenes, Total	1330-20-7	2.7	0.0069	0.0051	0.062	0.024	0.017	1
1,2,4-Trimethylbenzene	95-63-6	3.2	0.0031	0.0058	0.055	0.0091	0.027	1
1,3,5-Trimethylbenzene	108-67-8	1.6	0.0029	0.0028	0.037	ND	0.011	1
TOTAL VOCs (mg/kg)		10.226	0.0259	0.0298	0.186	0.3695	0.12538	10
TCL Semi-Volatile Organic (Compounds (SV)	OCs - Meth	od 8270) (I	base neutra	ls only) - n	ng/kg		
Acenaphthene	83-32-9	8.7 J	2.6 J	0.64 J	0.32 J	6.8 J	10 J	-
Acenaphthylene	208-96-8	88	1.1 J	4.8 J	5.4	2.7 J	2.2 J	-
Anthracene	120-12-7	67	1.4 J	5.6 J	5.4	4.9 J	3.1 J	
Benzo(a)anthracene	56-55-3	68	2.6 J	8	6.8	5.1 J	3 J	
Benzo(b)fluoranthene	205-99-2	59 J	4.2 J	8.9 J	5.8 J	4.9 J	2.7 J	
Benzo(k)fluoranthene	207-08-9	16 J	4.6 J	2.8 J	2.4 J	1.4 J	1.1 J	
Benzo(g,h,i)perylene	191-24-2	28	2 J	6.4 J	3.2	2.8 J	1.2 J	
Benzo(a)pyrene	50-32-8	49	2.2 J	8.1	5.2	4.4 J	2.1 J	
Butyl benzyl phthalate	85-68-7	1.1 J	ND	ND	ND	ND	ND	
2-Chloronaphthalene	91-58-7	1 J	ND	ND	ND	ND	ND	
Chrysene	218-01-9	56	2.8 J	7.6 J	6.2	5.8 J	3.8 J	
Dibenzo(a,h)anthracene	53-70-3	9.4	0.63 J	0.52 J	1.1 J	ND	ND	
Dibenzofuran	132-64-9	55	1.1 J	2.1 J	2.8	3.2 J	3.6 J	
Fluoranthene	206-44-0	190 DJ	5.2 J	22	15	14 J	8.1 J	
Fluorene	86-73-7	74	2.4 J	3.7 J	4.5	5.9 J	7 J	
Indeno(1,2,3-cd)pyrene	193-39-5	30	1.9 J	5.7 J	3.2	2.6 J	1.2 J	
2-Methylnaphthalene	91-57-6	240 DJ	0.98 J	0.6 J	4.6	ND	ND	
Naphthalene	91-20-3	18000 D	1.6 J	4.8 J	27	3.2 J	14	
Phenanthrene	85-01-8	250 DJ	3.6 J	23	18	15 J	2.4 J	
Pyrene	129-00-0	110	5.4 J	18	11	12 J	6.9 J	
TOTAL SVOCs (mg/kg)		19400.2	46.31	133.26	127.92	94.7	72.4	500

SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS $^{\rm 1}$

	0.10			Sample	Location			
Parameter	CAS No.	FAF-B-01	FAF-B-02	FAF-B-03	FAF-B-04	FAF-B-05	FAF-B-06	SSALs ²
Total RCRA Metals - mg/kg								
Arsenic	7440-38-2	11.4	10.3	6.7	7.5	7.1	8.4	75
Barium	7440-39-3	128	380	154	138	176	101	1000
Cadmium	7440-43-9	1.2 J	2.7 J	0.82 J	0.6 J	1.3 J	0.74 J	15
Chromium	7440-47-3	42.1 J	67.4 J	45.3 J	41.4 J	264 J	154 J	1000
Lead	7439-92-1	583 J	916 J	1020 J	435 J	759 J	175 J	1000
Selenium	7782.49-2	ND	ND	ND	ND	ND	ND	61
Mercury	7439-97-6	23.5 J	1.5 J	0.272 J	0.749 J	0.535 J	0.101 J	10

TABLE 3 SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS $^{\rm 1}$

		Sample Location									
Parameter	CAS No.	FAF-B-07 ³ (MS/MSD)	FAF-B-08	FAF-B-09 ⁴	FAF-B-10	FAF-B-11	FAF-B-12	SSALs ²			
STARS Volatile Organic Compounds (VOCs - Method 8021) - mg/kg											
Benzene	71-43-2	0.0095	0.0044	0.0013	0.0019	ND	ND	1			
n-Butylbenzene	104-51-8	ND	ND	ND	ND	ND	ND	1			
sec-Butylbenzene	104-51-8	0.0037	ND	ND	ND	ND	ND	1			
Ethylbenzene	100-41-4	ND	ND	0.002	ND	ND	ND	1			
Isopropylbenzene	98-82-8	ND	ND	ND	ND	ND	ND	1			
p-Cymene	99-87-6	ND	ND	ND	ND	ND	ND	1			
Toluene	108-88-3	0.0014	ND	0.0012	0.0012	ND	ND	1			
o-Xylene	95-47-6	ND	ND	0.0038	ND	ND	ND	1			
m,p-Xylene	108-38-3, 106-42-3	0.0035	ND	0.0079	ND	ND	ND	1			
Xylenes, Total	1330-20-7	0.0035 J	ND	0.012	ND	ND	ND	1			
1,2,4-Trimethylbenzene	95-63-6	ND	ND	ND	ND	0.0017	ND	1			
1,3,5-Trimethylbenzene	108-67-8	ND	ND	ND	0.0024	ND	ND	1			
TOTAL VOCs (mg/kg)		0.0181	0.0044	0.0162	0.0055	0.0017	0	10			
TCL Semi-Volatile Organic (Compounds (SV)	OCs - Meth	od 8270) (k	base neutra	ls only) - n	ng/kg					
Acenaphthene	83-32-9	1.9 J	0.18 J	0.026 J	0.029 J	0.39 J	ND				
Acenaphthylene	208-96-8	7 J	0.19 J	0.2 J	0.071 J	0.31 J	0.26 J				
Anthracene	120-12-7	9	0.21 J	0.11 J	0.093 J	0.82	ND				
Benzo(a)anthracene	56-55-3	15	0.47 J	0.4 J	0.43 J	1.6	1 J				
Benzo(b)fluoranthene	205-99-2	15 J	0.42 J	0.6 J	0.61 J	1.7 J	1.2 J				
Benzo(k)fluoranthene	207-08-9	6.6 J	0.13 J	0.22 J	0.22 J	0.6 J	0.44 J				
Benzo(g,h,i)perylene	191-24-2	6.8 J	0.23 J	0.3 J	0.27 J	0.69	0.84 J				
Benzo(a)pyrene	50-32-8	13	0.33 J	0.46	0.46	1.5	1.1 J				
Butyl benzyl phthalate	85-68-7	ND	ND	ND	ND	ND	ND				
2-Chloronaphthalene	91-58-7	ND	ND	ND	ND	ND	ND				
Chrysene	218-01-9	15	0.63 J	0.46	0.47	1.8	0.98 J				
Dibenzo(a,h)anthracene	53-70-3	2.2 J	0.11 J	0.094 J	0.087 J	0.2 J	0.23 J				
Dibenzofuran	132-64-9	3.7 J	0.23 J	0.051 J	0.032 J	0.56	ND				
Fluoranthene	206-44-0	34	0.68 J	0.58	0.7	4.8	1.8 J				
Fluorene	86-73-7	9	0.17 J	0.034 J	0.069 J	0.97	ND				
Indeno(1,2,3-cd)pyrene	193-39-5	6.7 J	0.21 J	0.29 J	0.26 J	0.65	0.78 J				
2-Methylnaphthalene	91-57-6	1.3 J	0.81 J	0.15 J	0.033 J	0.19 J	ND				
Naphthalene	91-20-3	1.4 J	7.4	2.7 J	0.52	1.4	ND				
Phenanthrene	85-01-8	39	0.82 J	0.36 J	0.34 J	6.1	1.3 J				
Pyrene	129-00-0	26	0.62 J	0.52	0.59	3.7	3.7 J				
TOTAL SVOCs (mg/kg)		212.6	13.84	7.555	5.284	27.98	13.63	500			

SUMMARY OF SUBSURFACE SOIL/FILL ANALYTICAL RESULTS 1

Former August Feine Property Site Assessment Steelfields LTD. Buffalo, New York

	010		Sample Location						
Parameter	CAS No.	FAF-B-07 ³ (MS/MSD)	FAF-B-08	FAF-B-09 ⁴	FAF-B-10	FAF-B-11	FAF-B-12	SSALs ²	
Total RCRA Metals - mg/kg									
Arsenic	7440-38-2	12.9	18.8	8.8	11.9	3.1	14.3	75	
Barium	7440-39-3	179	86.2	292	168	107	180	1000	
Cadmium	7440-43-9	26 J	2 J	0.75 J	0.76 J	0.78 J	1.7 J	15	
Chromium	7440-47-3	207 J	22.7 J	119 J	18.6 J	12 J	15.7 J	1000	
Lead	7439-92-1	1990 J	492 J	2950 J	35.1 J	122 J	88.9 J	1000	
Selenium	7782.49-2	ND	6.6	ND	ND	ND	ND	61	
Mercury	7439-97-6	0.17 J	0.251 J	0.096 J	0.099 J	0.043 J	0.488 J	10	

Notes:

- 1. Only those compounds detected at a minimum of one sample location are presented in this table.
- 2. SSALs = Site Specific Action Levels as per the RD/RA Work Plan.
- 3. The Matrix Spike/Matrix Spike Duplicate sample was collected from sample location FAF-B-07.
- 4. The Blind Duplicate sample was collected from sample location FAF-B-09.
- 5. B = Analyte was detected in the associated blank as well as in the sample.
- 6. J = Estimated value.
- 7. D = Analysis at the secondary dilution factor
- 8. ND = parameter not detected above laboratory detection limit.
- 9. " -- " = not analyzed for this parameter or no inidiviual SSAL

Color Code:

= compound exceeds the individual SSAL value

= total sum of the compounds exceed the total SSAL value

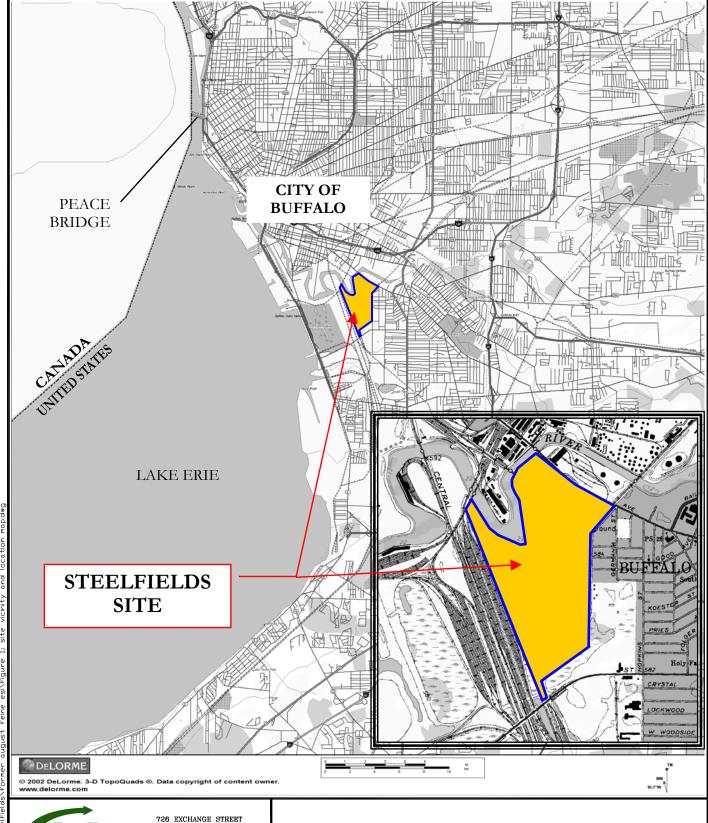
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1

Former August Feine Property Site Assessment Steelfields LTD. Buffalo, New York

D .	010		Sample Location								
Parameter (synonym)	CAS No.	A2-MW-15 ²	A2-MW-18	A2-MW-20 ³ (MS/MSD)	GWQS/GV ⁴						
TARS Volatile Organic Compounds (VOCs - Method 8021) - ug/L											
Benzene	71-43-2	ND	32	ND	5						
Toluene	108-88-3	ND	0.27	ND	5						
Methyl tert butyl ether	1634-04-4	0.24 J	ND	ND	5						
TOTAL VOCs (mg/kg)		0.24	32.27	0	NA						
TCL Semi-Volatile Organic Co	ompounds (S	VOCs - Method 8270) (base neutrals only)) - ug/L							
Acenaphthene	83-32-9	ND	2 J	ND	5						
Dibenzofuran	132-64-9	ND	4 J	ND	50						
Naphthalene	91-20-3	ND	5 J	ND	10*						
TOTAL SVOCs (mg/kg)		0	11	0	NA						
Total RCRA Metals - mg/L											
Arsenic	7440-38-2	0.0116	0.0186	ND	0.025						
Barium	7440-39-3	0.155	0.0722	0.0243	1						
Chromium	7440-47-3	ND	0.0066	ND	0.05						
Lead	7439-92-1	ND	ND	0.007	0.025						
Wet Chemistry - mg/L											
Cyanide	57-12-5	0.66 J	0.17 J	0.08 J	0.2						

Notes:

- 1. Only those compounds detected at a minimum of one sample location are presented in this table.
- 2. The Blind Duplicate sample was collected from sample location A2-MW-15.
- 3. The Matrix Spike/Matrix Spike Duplicate sample was collected from sample location A2-MW-20.
- 4. GWQS/GV = NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.
- 5. " * " = NYSDEC Groundwater Quality Guidance Value
- 6. J = Estimated value.
- 7. NA = not applicable
- 8. ND = parameter not detected above laboratory detection limit.


Color Code:

= compound exceeds the individual SSAL value = total sum of the compounds exceed the total SSAL value

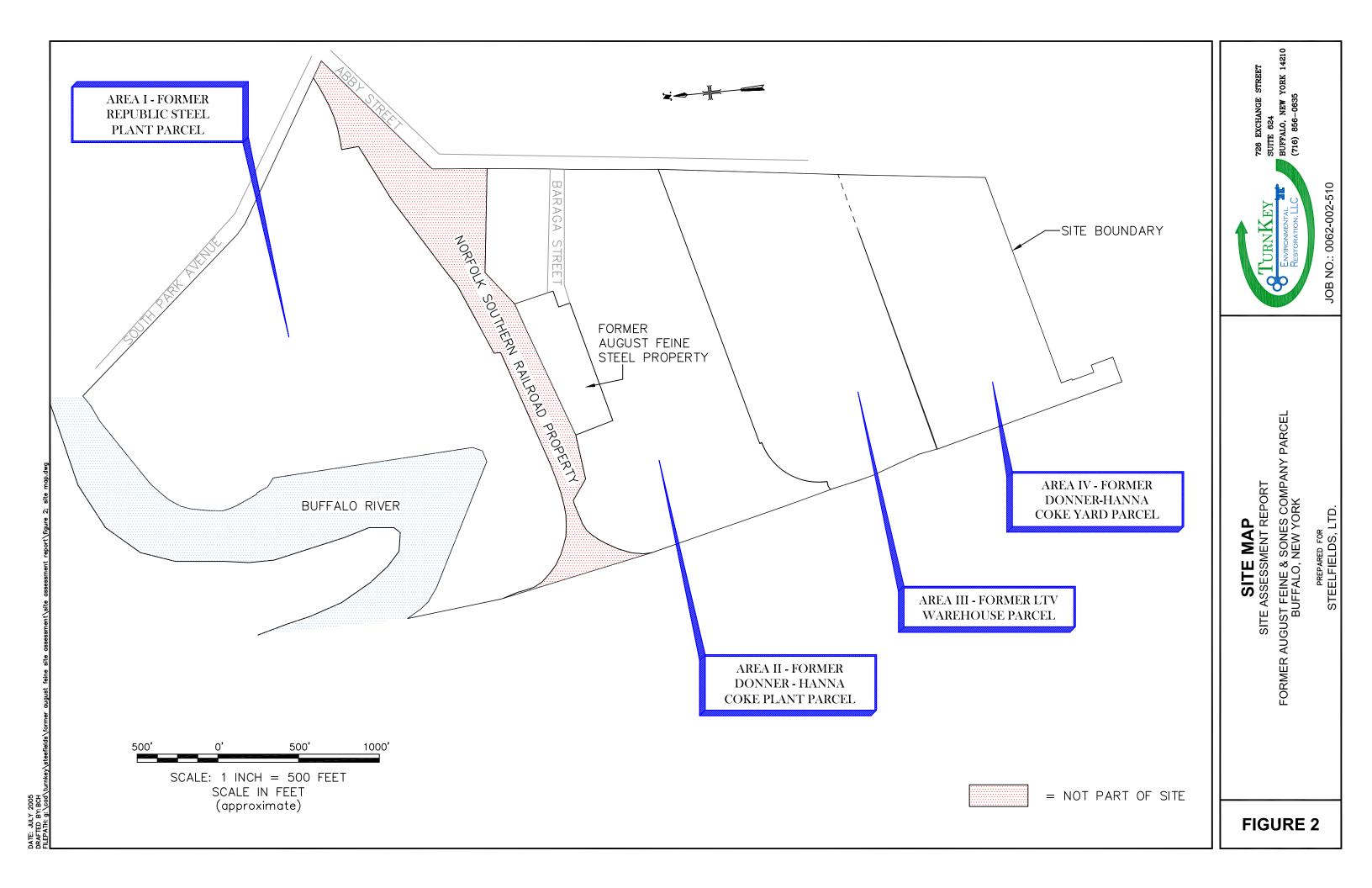
FIGURES

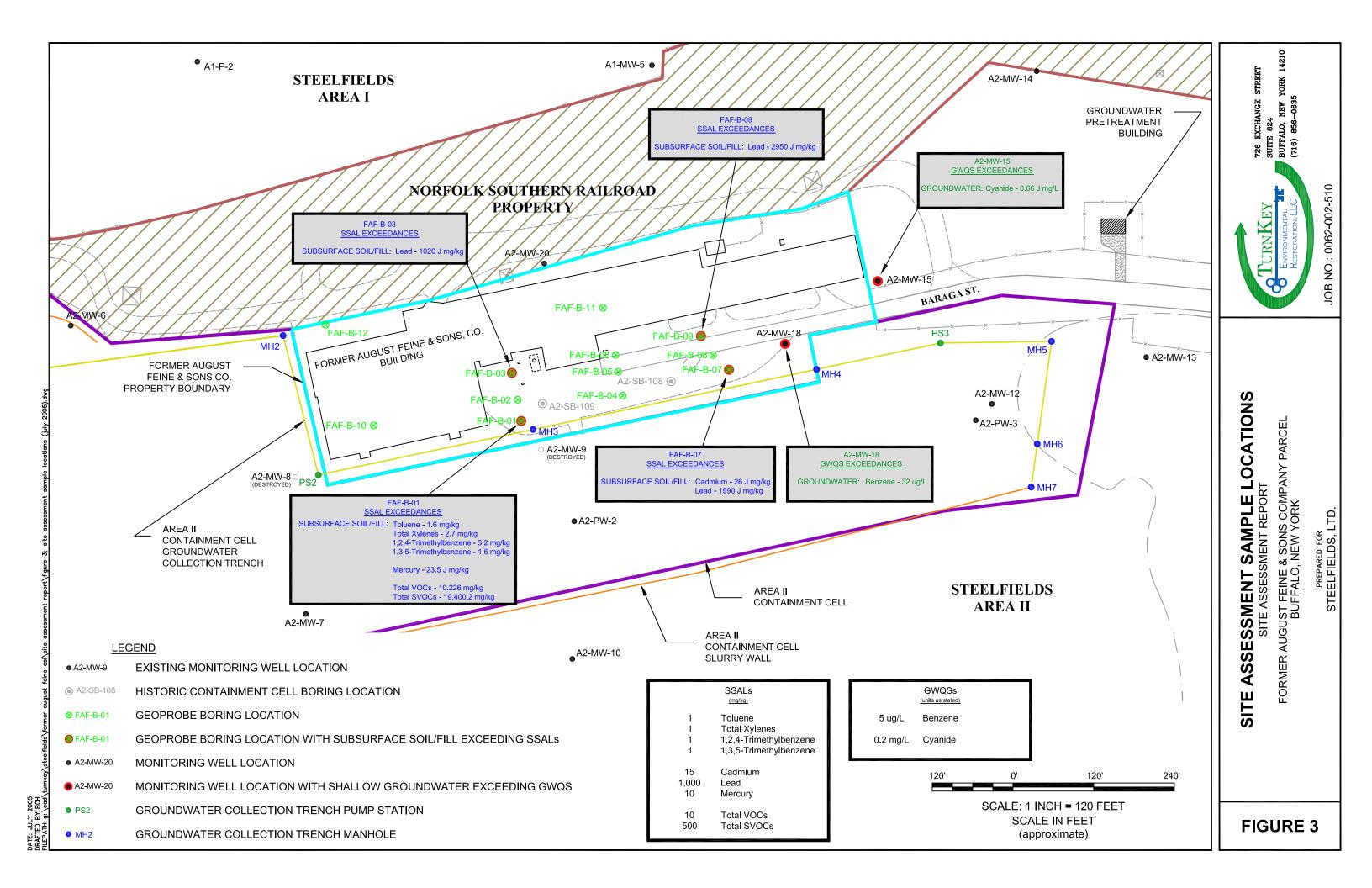
FIGURE 1

726 EXCHANGE STREET SUITE 624 BUFFALO, NEW YORK 14210 (716) 856-0635

PROJECT NO.: 0062-002-510

DATE: FEBRUARY 2005


DRAFTED BY: BCH

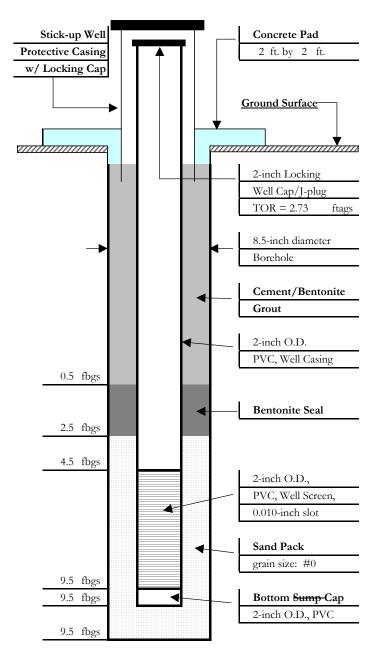

SITE VICINITY AND LOCATION MAP

ENVIRONMENTAL SITE INVESTIGATION

FORMER AUGUST FEINE & SONS COMPANY PARCEL BUFFALO, NEW YORK

PREPARED FOR STEELFIELDS, LTD.

APPENDIX A


FIELD BOREHOLE LOGS

STICK-UP MONITORING WELL COMPLETION DETAIL

Project Name:	Former August Feine (FAF) - Site Assessment	WELL NUMBER:	A2-MW-20
Client:	Steelfields, LTD.	Date Installed:	07/06/05
Boring Location:	North of FAF Building	Project Number:	0062-002-510

Driller Information						
Company: BMS Drilling (Geoprobe), C&W (HSA)						
Driller:	Dennis Sullivan - Phil Bence					
Helper:	NA - Kevin O'Donnell					
Permit Num	iber: NA					
Drill Rig Ty	pe: Geoprobe 5410 - CME 55					

Well Information			
Land Surface Eleva	ation:	588.81	fmsl (approximate)
Drilling Method:	direct pu	sh (samplir	ng), HSA (installation)
Soil Sample Collec	tion Meth	od: 4' n	nacrocore
Drilling Fluid:	none		
Fluid Loss During	Drilling:	NA	gallons (approximate)

Material of Well Construction						
Casing: 2" Schedule 40 PVC						
Screen: 2" Schedule 40 PVC, 0.010-inch slot						
Sump: none						
Sand Pack: #0						
Annular Seal: medium bentonite chips						

Well Development								
Well Purpose: ground	water mor	nitoring						
Techneque(s): surge an	nd purge							
Date Completed: 07/12/	05							
BM/TK Personnel BC	H, RLD							
Total Volume Purge:	10	gallons						
Static Water Level (SWL):	8.89	fbTOR						
Pump Depth: bottom of we	ell							
Purge Duration:	17	minutes						
Yeild:	0.59	gpm						
Specific Capacity:	0.16	gpm/ft						
		_						

Comments:			saturated thickness: SWI	L - stickup =	6.16	fbgs
Total Depth =	12.58	fbTOR	Total Dep	pth - SWL =	3.69	feet
stick-up =	2.73	feet				
Total Depth =	9.85	fbgs				

PREPARED BY: Bryan C. Hann DATE: 07/06/05

FIELD BOREHOLE/MONITORING INSTALLATION LOG

Project Name:	Former August Feine - ESI	BORING NUMBER:	A2-MW-20	
Project Number	r: 0062-002-510	Location: Former August F	eine Parcel	
Client: S	teelfields, LTD.	Start Date/Time:	07/06/05	12:00 PM
Drilling Compa	ny: BMS Drilling, Inc.	End Date/Time:	07/06/05	12:20 PM
Driller:	Dennis Sullivan	Logged By: BCH		
Helper:	N/A	Drilling Method: direct-p	oush, 4.25 HSA	
Rig Type:	Geoprobe 5410 (soil sampling); CME 55 (well install.)	Weather: partly sunny, sl. bre	eze, humid, 77° F	

	Tag Type: Ocoprode 5/170 (son sampling), O/122 55 (wen instant) Treaters: party summy, on breeze, name, // 1									
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Temp. Well Detail (if required)	
588.81 586.81	2	S1	1.8	Grass and weeds at grade FILL: Brown to dark brown, moist, 70% NPF, 20% bricks/concrete, 10% FS, dense, loose when disturbed	FILL	0.0	NA	n	h. 40 PVC riser	
584.81	4								2" Sch.	
582.81	6	S2	2.1	Same as S1 above, moist to wet 0.8 wet 1.1 - 1.9 Black MS, wet	FILL	0.0	NA	n	sand pack - #0 2" Sch. 40 PV/C screen, 0.010" slot	
580.81	8								2" Sch. 40 I	
578.81	10	S3	2.5	0.0 - 0.3 Same as S1 above, wet 0.3 - 1.2 Reworked native material (see 1.5 - 2.5 below) 1.2 - 1.5 Same as S1 above, black, wet 1.5 - 2.5 LEAN CLAY with SAND: Dark grey with iron stained mottling, moist, 80% MPF, 20% FS, firm to stiff	FILL CL	0.0	NA	n		
576.81	12									
574.81	14			EOB: 12.0 fbgs Monitoring well installed using CME 55 and 4.25" HSA						
572.81	16									
570.81	18									
568.81 20										
	EVIAT	IONS:			MS = medium	sand				
C = coa	rse			fbgs = feet below ground st HSA = hollow stem auger	NA = not app	licable				
CG = cc	oarse gr	avel		FG = fine gravel LP = low plasticity	NPF = not pla		s			
CS = co	arse san	nd		fmsl = feet above mean sea LWD = loose when disturbed	SA = sub-angu	ılar				
EOB =				FS = fine sand $M = medium$	SR = sub-roun					
F = fine	s or fine	e		HP = high plasticity MP = medium plasticity	SS = split spoo	on				

A2-MW-20 Page 1 of 1

FIELD GEOPROBE BOREHOLE LOG

Former August Feine - ESI **BORING NUMBER:** FAF-B-01 Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 11:00 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 11:20 AM Dennis Sullivan ВСН Driller: Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Weather: cloudy, slight breeze, 65 °F Geoprobe 5410

Section Sect	_ nig	Rig Type: Geoprobe 5410 weather: cloudy, siight breeze, 65 F								
Sec. 2 St 2.7	Elevation (fmsl)	Depth (fbgs)	Sample No.	Recovery (feet)	USCS Classification: Color, Moisture Condition, Percentage of Soil	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks
578.91 6 S2 2.4 0.0 - 1.6 Same as \$1 above, wet, strong petroleum odor, sheen FII.L 1.35 5.8 NA yes 0.0 - 4.6 EAN CLAY with SAND. Dark grey with iron-stained mortling, moist C.L 1.35 5.8 NA yes 0.0 - 4.6 no	582.91		S1	2.7	10% fine sand, dense, loose when disturbed, non-plastic, wood may be railroad tie, strong petroleum odor, no visible product	FILL	36.0	NA	yes	0.0 - 4.6
574.91 10	578.91	6	S2	2.4	0.6 - 2.4 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist			NA	•	0.0 - 4.6
570.91 14 568.91 16 566.91 18 564.91 20 ABANDONMENT: Method: soil cuttings cement/bentonite grout: NA Northing: 9602.80										
568.91 16 566.91 18 564.91 20 ABANDONMENT: Method: soil cuttings cement/bentonite grout: NA Northing: 9602.80	572.91	12								
566.91 18 564.91 20 ABANDONMENT: Method: soil cuttings cement/bentonite grout: NA Northing: 9602.80										
ABANDONMENT: Method: soil cuttings cement/bentonite grout: NA Northing: 9602.80										
Method: soil cuttings cement/bentonite grout: NA Northing: 9602.80	564.91		MENT	:						
					rings cement/bentonite grout: NA	Northing	9602	.80		
Approximate quantity used: NA Easting: 8673.27						Easting:				

FAF-B-01 Page 1 of 1

FIELD GEOPROBE BOREHOLE LOG

Former August Feine - ESI **BORING NUMBER:** FAF-B-02 Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 10:45 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 11:00 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Weather: cloudy, slight breeze, 65 °F Geoprobe 5410

Rig Type: Geoprobe 5410 weather: Cloudy, slight breeze, 65 F									
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks
584.56	0								
582.56	2	S1	2.7	FILL: Dark brown to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, very dense, loose when disturbed, non-plastic, no observable odor, slight sheen wet @ 1.8 fbgs	FILL	0.0	NA	yes	0.0 - 4.5
580.56	4								
578.56	6	S2	3.4	0.0 - 0.5 Same as S1 above, wet 0.5 - 3.4 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, firm to stiff	FILL CL	0.0	NA	yes no	0.0 - 4.5
576.56	8								
574.56	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill					
572.56	12								
570.56	14								
568.56	16								
566.56	18								
564.56	20								
ABA	NDON	MENT	:						
	Method		soil cutt		Northing:	9634			
	Approx	imate q	uantity u	sed: NA	Easting:	8667	.99		

FAF-B-02 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-03 Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 10:25 AM **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 07/06/05 10:45 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Weather: cloudy, slight breeze, 65 °F Geoprobe 5410

Rig Type: Geoprobe 3410 weather: cloudy, slight breeze, 65 F										
Elevation (fmsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
584.59	0									
582.59	2	S1	2.0	FILL: Dark brown to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, dense, loose when disturbed, non-plastic, slight petroleum odor and sheen wet @ 1.5 fbgs	FILL	2.0	NA	yes	0.0 - 4.5	
580.59	4									
578.59	6	S2	3.4	0.0 - 0.5 Same as S1 above, wet 0.5 - 3.4 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, soft to firm	FILL CL	0.0	NA	yes no	0.0 - 4.5	
576.59	8									
574.59	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
572.59	12									
570.59	14									
568.59	16									
566.59	18									
564.59	20									
	NDON					0.7=	1.20			
	Method		soil cutt		Northing: Easting:	9674 8659				
	77bbrox	ппате ф	antity u	SCI. 1N/1	Easting:	0035	′. ⊤∠			

FAF-B-03 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-04 Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 10:10 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 10:25 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Weather: cloudy, slight breeze, 65 °F Geoprobe 5410

Rig Type: Geoprobe 3410 weather: cloudy, sight breeze, 65 F										
Elevation (fmsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
585.39	0			FILL: Dark brown to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine						
583.39	2	S1	2.0	sand, very dense, loose when disturbed, non-plastic wet @ 1.8 fbgs	FILL	0.0	NA	yes	0.0 - 4.8	
581.39	4									
579.39	6	S2	3.0	0.0 - 0.8 Same as S1 above, wet 0.8 - 3.0 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, firm to stiff	FILL CL	0.0	NA	yes no	0.0 - 4.8	
577.39	8									
575.39	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
573.39	12									
571.39	14									
569.39	16									
567.39	18									
565.39	20									
	NDON	MENT	<u>. </u>							
	Method		soil cutt	rings cement/bentonite grout: NA	Northing:	9640	0.56			
	Approx	imate q	uantity u	sed: NA	Easting:	8824	1.26			

FAF-B-04 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-05 Project Name: 0062-002-510 Project Number: Former August Feine Parcel Location: 09:45 AM Client: Steelfields LTD. Start Date/Time: 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 07/06/05 10:10 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Geoprobe 5410 Weather: cloudy, slight breeze, 65 °F

rig Type. Geophobe 5410 weather. Cloudy, slight breeze, 05 1										
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type,Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
585.39	0									
583.39	2	S1	2.1	FILL: Dark grey to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, very dense, loose when disturbed, non-plastic, strong petroleum odor, no visible product wet @ 1.5 fbgs	FILL	6.9	NA	yes	0.0 - 4.5	
581.39	4									
579.39	6	S2	2.6	0.0 - 0.5 Same as S1 above, wet, slight sheen 0.5 - 2.6 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, stiff	FILL CL	10.8 0.0	NA	yes no	0.0 - 4.5	
577.39	8									
575.39	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
573.39	12									
571.39	14									
569.39	16									
567.39 565.39	18									
		MENT	<u>. </u>							
	Method			rings cement/bentonite grout: NA	Northing:	9676	5.09			
Method: soil cuttings cement/bentonite grout: NA Northing: 9676.09 Approximate quantity used: NA Easting: 8817.45										
	- Phiox	mate qu	aamuty u	000. 1111	பக்கப்பித்.	001/	. 10			

FAF-B-05 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-06 Project Name: 0062-002-510 Project Number: Former August Feine Parcel Location: 09:25 AM Client: Steelfields LTD. Start Date/Time: 07/06/05 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 09:45 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Geoprobe 5410 Weather: cloudy, slight breeze, 65 °F

rig Type. Ocoprobe 5410 weather. Cloudy, sight breeze, 05 1										
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type,Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
585.34	0									
583.34	2	S1	2.3	FILL: Dark grey to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, very dense, loose when disturbed, non-plastic, slight petroleum odor, no visible product wet @ 1.5 fbgs	FILL	3.2	NA	yes	0.0 - 4.5	
581.34	4									
579.34	6	S2	3.1	0.0 - 0.3 Same as S1 above, wet, slight sheen on macro-core 0.3 - 3.1 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, stiff	FILL CL	0.4 0.0	NA	yes no	0.0 - 4.5	
577.34	8									
575.34 573.34	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
373.31	12									
571.34	14									
569.34	16									
567.34 565.34	18									
		MENT	<u> </u>							
	Method			tings cement/bentonite grout: NA	Northing:	9701	07			
	Method: soil cuttings cement/bentonite grout: NA Northing: 9701.07 Approximate quantity used: NA Easting: 8813.59									
	- Phiox	mate qu	aamuty u	000. 1111	பக்கப்பித்.	0015	,			

FAF-B-06 Page 1 of 1

Former August Feine - ESI **BORING NUMBER: FAF-B-07** Project Name: 0062-002-510 Project Number: Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 09:00 AM **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 07/06/05 09:25 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Geoprobe 5410 Weather: cloudy, slight breeze, 65 °F

rig Type: Geoplobe 3410 weather. Gloudy, sugar bleeze, 03 1										
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type,Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
585.35	0									
583.35	2	S1	1.7	FILL: Dark brown to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, dense, loose when disturbed, non-plastic, slight petroleum odor, no visible product wet @ 1.0 fbgs	FILL	3.2	NA	yes	0.0 - 4.5	
581.35	4									
579.35	6	S2	3.4	0.0 - 0.6 Same as S1 above, wet 0.6 - 3.4 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, firm to stiff	FILL CL	0.0	NA	yes no	0.0 - 4.5	
577.35	8									
575.35 573.35	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
313.33	12									
571.35	14									
569.35	16									
567.35	18									
565.35	20	MENT	<u> </u>							
		MENT		since amont/L-strike-sesse NIA	Northing:	0670	11			
	Method: soil cuttings cement/bentonite grout: NA Northing: 9679.11 Approximate quantity used: NA Easting: 8982.06									
	¹ thbrox	mnate qi	ианицу и	OCG. 1971	Lasung.	0702				

FAF-B-07 Page 1 of 1

Former August Feine - ESI **BORING NUMBER: FAF-B-08** Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 08:40 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 09:00 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Weather: cloudy, slight breeze, 65 °F Geoprobe 5410

Section Sect	Rig Type: Geoprobe 3410 weather: cloudy, slight breeze, 65 F										
S82.76 2 S1 2.3		Depth (fbgs)	Sample No.	Recovery (feet)	USCS Classification: Color, Moisture Condition, Percentage of Soil	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
578.76 6 S2 2.8 0.0 - 0.4 Same as S1 above, wet 0.4 - 2.8 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist CL 0.0 NA yes no 576.76 8 574.76 10 EOB @ 8.0 fbg: borrhole backfilled to grade with soil entiring and surrounding suil/fill 572.76 12 570.76 14 566.76 18			S1	2.3	sand, dense to hard, loose when disturbed, non-plastic	FILL	0.0	NA	yes	0.0 - 4.5	
EOB @ 8.0 ftgs borehole backfilled to grade with soil cuttings and surrounding soil fill			S2	2.8	0.4 - 2.8 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist			NA		0.0 - 4.5	
570.76 14 568.76 16 566.76 18											
566.76 18											
564.76 20 ABANDONMENT: Method: soil cuttings cement/bentonite grout: NA Northing: 9700.80 Approximate quantity used: NA Easting: 8958.43		Method	:	soil cutt							

FAF-B-08 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-09 Project Name: 0062-002-510 Project Number: Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 08:15 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 08:40 AM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Geoprobe 5410 Weather: cloudy, slight breeze, 65 °F

Elevation (fmsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks
585.11	2	S1	2.3	FILL: Dark brown to black, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, dense, loose when disturbed, non-plastic wet @ 1.1 fbgs	FILL	0.0	NA	yes	0.0 - 8.5
579.11	6	S2	0.0	No recovery, wet	FILL	NA	NA	no	
577.11 575.11	8	S3	3.7	 0.0 - 1.8 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist, 80% fines, 20% fine sand, medium plasticity, firm 1.8 - 2.5 SANDY LEAN CLAY: Dark grey with iron stained mottling, wet, 60% fines, 40% fine to medium sand, medium plasticity, soft 2.5 - 3.7 CLAYEY SAND: Dark orange/brown, wet, 70% fine to medium sand 30% low to medium plasticity fines, medium dense, rapid dilatency 	CL CL SC	0.0 0.0 0.0	NA	no	
573.11	12			EOB @ 12.0 flbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill soil/fill-native interface is suspected to be approximately 4.5 flbgs; driller error (i.e., not using macro-core basket) allowed 4.0 - 8.0 flbgs sample to fall out, recovered soil/fill (approx. 0.3-feet) is suspected as being slough, baskets were used for all remaining borings					
569.11	16								
567.11 565.11	18 20								
ABAN	NDON	MENT	:						
	Method Approx		soil cutt		Northing: Easting:	9729 8940			

FAF-B-09 Page 1 of 1

Project Name:	Former August Feine - ESI	BORING NUMB	ER:	F AF-B-10		
Project Number:	0062-002-510	Location: Fo	ormer August Fo	eine Parcel		
Client:	Steelfields LTD.	Start Date/Time:		07/06/05	/	01:30 PM
Drilling Company	: BMS Drilling Services, Inc.	End Date/Time:		07/06/05	/	01:55 PM
Driller:	Dennis Sullivan	Logged By:	ВСН			
Helper:	none	Drilling Method:	direct push	with 4-foot m	nacro	o-core
Rig Type:	Geoprobe 5410	Weather: part	ly sunny, slight	breeze, humic	1,77	°F

rig Type. Geophobe 3410 weather. partly sunity, sight breeze, humid, 77 1										
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type,Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
584.32	0									
582.32	2	S1	3.4	 0.0 - 0.5 CONCRETE 0.5 - 3.4 FILL: Black with light grey, moist to wet, 70% coal/coke fines, 20% slag and brick, 10% fine sand, dense, loose when disturbed, non-plastic wet @ 1.2 fbgs 	FILL	0.0	NA	yes	0.0 - 5.0	
580.32	4									
578.32	6	S2	3.3	0.0 - 1.0 Same as S1 above, wet 1.0 - 3.3 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, firm to stiff	FILL CL	1.3	NA	yes no	0.0 - 5.0	
576.32	8									
574.32	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
572.32	12									
570.32	14									
568.32	16									
566.32	18									
564.32	20									
		MENT	<u>'</u>				<u> </u>			
	Method			rings cement/bentonite grout: NA	Northing:	9596	5 27			
	Method: soil cuttings cement/bentonite grout: NA Northing: 9596.27 Approximate quantity used: NA Easting: 8453.95									
	⁷ Phrox	mnate qi	ианицу и	OCG. 1971	Lasung.	0730	,.,,			

FAF-B-10 Page 1 of 1

Project Name:	Former August Feine - ESI	BORING NUMI	BER:	FAF-B-11		
Project Number:	0062-002-510	Location: F	Former August I	Feine Parcel		
Client:	Steelfields LTD.	Start Date/Time:	:	07/06/05	/	01:55 PM
Drilling Company	: BMS Drilling Services, Inc.	End Date/Time:		07/06/05	/	02:15 PM
Driller:	Dennis Sullivan	Logged By:	ВСН			
Helper:	none	Drilling Method:	direct push	with 4-foot n	nacro	o-core
Rig Type:	Geoprobe 5410	Weather: par	tly sunny, slight	breeze, humic	d, 77	°F

rig Type. Geophobe 3410 weather. partly sunity, sight breeze, humid, 77 1										
Elevation (finsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type,Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
584.45	0									
582.45	2	S1	2.5	0.0 - 0.5 CONCRETE 0.5 - 2.5 FILL: Light grey to black, moist to wet, 70% coal/coke fines, 20% slag and concrete, 10% fine sand, dense, loose when disturbed, non-plastic wet @ 1.3 fbgs	FILL	0.0	NA	yes	0.0 - 4.5	
580.45	4									
578.45	6	S2	2.4	0.0 - 0.5 Same as S1 above, wet 0.5 - 2.4 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist 80% fines, 20% fine sand, medium plasticity, firm to stiff	FILL CL	0.0	NA	yes no	0.0 - 4.5	
576.45	8									
574.45 572.45	10			EOB @ 8.0 fbgs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
3/2.43	12									
570.45	14									
568.45	16									
566.45 564.45	18									
		MENT	٠.							
	Method		soil cutt	rings cement/bentonite grout: NA	Northing:	9771	12			
	Approximate quantity used: NA Easting: 8794.92									
	⁷ Phrox	mnate qi	ианицу и	OCG. 1971	Lasting.	0174	.,,			

FAF-B-11 Page 1 of 1

Former August Feine - ESI **BORING NUMBER:** FAF-B-12 Project Name: **Project Number:** 0062-002-510 Former August Feine Parcel Location: Client: Steelfields LTD. Start Date/Time: 07/06/05 11:20 AM 07/06/05 **Drilling Company:** BMS Drilling Services, Inc. End Date/Time: 12:00 PM Dennis Sullivan Driller: ВСН Logged By: Helper: Drilling Method: direct push with 4-foot macro-core none Rig Type: Geoprobe 5410 Weather: cloudy, slight breeze, 65 °F

Rig Type: Geoprobe 5410 weather: cloudy, slight breeze, 65 F										
Elevation (fmsl)	Depth (fbgs)	Sample No.	Recovery (feet)	SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other	USCS Code	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Remarks	
588.69 586.69	2	S1	2.1	FILL: Orange/brown to dark brown, moist, 70% fines, 20% brick/concrete, 10% fine sand, dense, loose when disturbed, non-plastic	FILL	0.0	NA	yes	0.0 - 8.5	
584.69 582.69	6	S2	2.0	Same as S1 above, moist to wet wet @ 5.0 fbgs	FILL	0.0	NA	yes	0.0 - 8.5	
580.69 578.69	10	S3	2.9	0.0 - 0.6 Same as S1 above, wet 0.6 - 2.9 LEAN CLAY with SAND: Dark grey with iron-stained mottling, moist, 80% fines, 20% fine sand, medium plasticity, soft to firm	FILL CL	0.0	NA	yes no	0.0 - 8.5	
576.69 574.69	12			EOB @ 12.0 flogs borehole backfilled to grade with soil cuttings and surrounding soil/fill						
572.69 570.69	16									
568.69	20									
		MENT	:					<u> </u>		
	Method: soil cuttings cement/bentonite grout: NA Northing: 9745.72									
	Approx	imate qı	uantity u	sed: NA	Easting:	8382	2.27			

FAF-B-12 Page 1 of 1

6	RESTORA	MÉNYAL.				FIELD BO	REF	IOF	LE I	.OG				
Pro	ject I	Vame	:Ste	al Gr	lds Former Steel Manuf. Site BOF	RING NUMBER: A2 - 5B - 10	20							
Pro	ject l	Vumb	er:	000	02-002-200 Loca	Location:								
Clie	ent:		Sto	7190	Start	Start Date/Time: 21/11/03 12:03								
Dri	lling	Comp	pany:	Ea	Ah Dimensions End	End Date/Time: 2 14 03								
	rillei	<u>:</u>	Br	ian	Bartion Logg	End Date/Time: 7/14/03 Logged By: 5WN Drilling Method: 4/4" HSA								
-	Ielpe		5	e55'	2 Drill	ling Method: 4 14" 45A				-				
R	Rig Type: DSO Weather: ~15°F, Partly S.													
Depth (bgs)	Sample No.	Blows (per 6")	SPT N-Value	Recovery	SOIL DESCR USCS Classification: Color, Moisture Co Texture, Plasticity, Fabri	ondition, Percentage of Soil Type,	PID Scan (ppm)	PID HDSP (ppm)	Samples (y/n)	Penetrometer (tons/SF)				
0					Advance 4 1411 HSA to 1'	without Sampling.								
iI.	1.	100	4	10	itard gravel fill.			,						
2	2	29		1.2.	1.0 Sand & gravel fill a	my & dark gray	0							
28	Ment Seek	5 16			1.0 Sand & gravel fill a color loose when s 2 Black coase & madium	assurbed compact	955	1184 78	425					
4	3	10		1.1	" As Above	,	-							
		10 2			1.0 Dark gray brown cla	yey sitt , black	0							
6					Boring complete at 6'. ? Surface with cuttings	Boring Filled to								
					- 0									
				9										
						·								
							-	+	-1	-				

ABANDONMENT: Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter = Has bridging of grout occurred? ☐ yes □ no If yes, explain resolution: borehole radius = Method of installation:

FIELD BOREHOLE LOG

Client: Steel Fields Start Date/Time: 2 14/03 Drilling Company: Fath Dimensions End Date/Time: 2 14/03 1:45 Driller: Brian Bactron Logged By: Jam Helper: Jessie Drilling Method: 4/4" 45A Rig Type: D50 SOIL DESCRIPTION	Pro	ect N	Vame	Stee	elfie	ds Former Steel Manuf. Site. BORING NUMBER: AZ-SB-10	9							
Drilling Company: Each Dimensions End Date/Time: 2 (14/03)345 Drilling Company: Each Dimensions End Date/Time: 2 (14/03)345 Drilling Company: Each Dimensions End Date/Time: 2 (14/03)345 Drilling Company: Each Dimensions End Date/Time: 2 (14/03)345 Drilling Method: U (14/04)54 Rig Type: D 50 SOIL DESCRIPTION SOIL DESCRIPTION By B	110	ect 1	vuiii	er:	OOG	Location:								
Helper: Described the prilling Method: 4 14" HSA Rig Type: DSO Weather: NISOF, Partly Sugary Weather: NISOF, Partly Sugary SOIL DESCRIPTION By Soil By Soil By Soil Type, Bedding, Other Advance 4 44" HSA to 2 without Samplify Advance 4 44" HSA to 2 without Samplify Product along cracker Bosing complete at 6's Bosing filled to Surface with cottings. ABANDONMENT: Volume of cement/bentonite grout required: V = pr² x7.48 - gallons borehole depth - Volume of cement/bentonite grout installed: Bosing controlled: gallons borehole diameter -			Come	Str	eelfi									
SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION Texture, Plasticity, Fabric, Bedding, Other Advance 4/4/4/10A to 2/ without Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description. Soll Descri	חוום	riller	·	Dany:	tas	Th Dimensions End Date/Time: 2/14/03 13	45							
SOIL DESCRIPTION SOIL DESCRIPTION SOIL DESCRIPTION Texture, Plasticity, Fabric, Bedding, Other Advance 4/4/4/10A to 2/ without Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Advance 4/4/4/10A to 2/ without Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description, Percentage of Soil Type, But and Sampling. Soll Description. Soll Descri	-			R	ian	Cartron Logged By: Jun								
SOIL DESCRIPTION BY SOIL DESCRIPTION USCS Classification: Color, Moisture Condition, Percentage of Soil Type, Texture, Plasticity, Fabric, Bedding, Other Advance of of the stand, Paper and Paper and the stand, Paper		-		3	essie	Drilling Method: 4 14" HSA								
ABANDONMENT: Volume of cement/bentonite grout required: V = pr² x7.48 = gallons borehole depth - you with a diameter =		8 - 7	T		50	weather: NISOF, Partly S	woo	8	-					
ABANDONMENT: Volume of cement/bentonite grout required: V = pr² x 7.48 - gallons borehole diameter =		Sample No.	Toxesto, Tablet, Bedding, Other						Samples (y/n)	Penetrometer (tons/CF)				
ABANDONMENT: Volume of cement/bentonite grout required: V = pr² x7.48 - gallons borehole diameter -	0	· · · · · · · · · · · · · · · · · · ·	7			Advance 4/4" HSA to 2' without Sampling.								
ABANDONMENT: Volume of cement/bentonite grout installed: Verparational state of the state of t	2				0.1	1 piece gravel in shoe, little sand,	0	2 000/1 1.0	4,03					
ABANDONMENT: Volume of cement/bentonite grout required: V = pr² x 7.48 = gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =	4	2	132		1.0	Gray Ciang silt little clay naphtha odor,								
Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =	le					Boring complete at 6's Boring Filled to Surface with cuttings.								
Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =														
Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =														
Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =														
Volume of cement/bentonite grout required: $V = pr^2 \times 7.48 =$ gallons borehole depth = Volume of cement/bentonite grout installed: gallons borehole diameter =														
Volume of cement/bentonite grout installed: gallons borehole diameter =										-				
yes up no It yes, explain resolution: borehole radius =	V	olun'	ne of c	emen	t/bent	onite grout installed: gallons borehole diamet	er =							
Method of installation:						currear U yes U no It yes, explain resolution: borehole radi	us =							

APPENDIX B

GROUNDWATER WELL DEVELOPMENT LOGS

GROUNDWATER WELL DEVELOPMENT LOG

Project Name: Former August Feine ESI WELL NUMBER: A2-MW-15

Project Number:0062-002-510Sample Matrix:groundwaterClient:Steelfields, LTD.Weather:sunny, humid, slight breeze, 90 °F

WELL DATA: DATE: 07/12/05 TIME: 15:05

Casing Diameter (inches):	2.0	Casing Material:	Schedule 40 PVC
Screened interval (fbTOR):	10.18 - 15.18	Screen Material:	Schedule 40 PVC
Static Water Level (fbTOR):	6.80	Bottom Depth (fbTOR):	15.18
Elevation Top of Well Riser (fmsl):	589.56	Datum Ground Surface:	Mean Sea Level
Elevation Top of Screen (fmsl):	579.38	Stick-up (feet):	2.04

 PURGING DATA:
 DATE:
 07/12/05
 START TIME:
 15:09
 END TIME:
 15:40

VOLUME CALCULATION:

(A) Total Depth of Well (fbTOR):	15.18
(B) Casing Diameter (inches):	2.0
(C) Static Water Level (fbTOR):	6.80
One Well Volume (V, gallons):	1.37
$V = 0.0408 [(B)^{2} x {(A) - (C)}]$	1.57

^{*}Use the table to the right to calculate one well volume.

Field Personnel: BCH

Volume Calculation

Well Diameter	Volume gal/ft
1"	0.041
2"	0.163
3"	0.367
4"	0.653
5"	1.020
6"	1.469
8"	2.611

Stabilization Criteria

Parameter	Criteria				
DO	+/- 0.3 mg/L				
Turbidity	+/- 10%				
SC	+/- 3%				
ORP	+/- 10 mV				
рН	+/- 0.1 unit				

EVACUATION STABILIZATION TEST DATA:

Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (µS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
15:10	6.80	0.0	6.42	22.3	1625	> 1000		- 30	orange
15:15	7.50	1.5	6.30	19.0	1645	507		- 33	light orange
15:20	7.65	3.0	6.29	17.4	1641	577		- 27	light orange
15:23	7.89	5.0	6.36	16.2	1583	415		- 28	light orange
15:27	7.92	7.0	6.30	17.0	1650	> 1000		- 30	lt. orange/brown
15:31	7.99	10.0	6.36	14.6	1650	200		- 25	lt. orange/brown
15:35	8.02	12.0	6.43	14.6	1669	37.9		- 24	clear
15:38	8.04	13.5	6.43	14.0	1670	21.5		- 25	clear
15:40	8.05	15.0	6.34	13.6	1670	14.5		- 19	clear

REMARKS: surged with Waterra foot valve and dedicated tubing

purged with peristaltic pump and dedicated tubing

PREPARED BY: Bryan C. Hann

Groundwater Well Development Logs - Steelfields: A2-MW-15

GROUNDWATER WELL DEVELOPMENT LOG

Project Name: Former August Feine ESI WELL NUMBER: A2-MW-18

Project Number:0062-002-510Sample Matrix:groundwaterClient:Steelfields, LTD.Weather:sunny, humid, slight breeze, 90 °F

WELL DATA: DATE: 07/12/05 TIME: 14:21

Casing Diameter (inches):	2.0	Casing Material:	Schedule 40 PVC
Screened interval (fbTOR):	5.17 - 10.17	Screen Material:	Schedule 40 PVC
Static Water Level (fbTOR):	5.45	Bottom Depth (fbTOR):	10.17
Elevation Top of Well Riser (fmsl):	587.64	Datum Ground Surface:	Mean Sea Level
Elevation Top of Screen (fmsl):	582.47	Stick-up (feet):	1.9

 PURGING DATA:
 DATE:
 07/12/05
 START TIME:
 14:42
 END TIME:
 16:50

VOLUME CALCULATION:

(A) Total Depth of Well (fbTOR):	10.17
(B) Casing Diameter (inches):	2.0
(C) Static Water Level (fbTOR):	5.45
One Well Volume (V, gallons):	0.77
$V = 0.0408 [(B)^2 x {(A) - (C)}]$	0.77

^{*}Use the table to the right to calculate one well volume.

Field Personnel: BCH, RLD

Volume Calculation

Well Diameter	Volume gal/ft
1"	0.041
2"	0.163
3"	0.367
4"	0.653
5"	1.020
6"	1.469
8"	2.611

Stabilization Criteria

Parameter	Criteria				
DO	+/- 0.3 mg/L				
Turbidity	+/- 10%				
SC	+/- 3%				
ORP	+/- 10 mV				
рН	+/- 0.1 unit				

EVACUATION STABILIZATION TEST DATA:

Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (µS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
14:42	5.45	0.0	6.87	32.8	3868	> 1000		- 136	dark grey
14:44	7.35	1.0	6.95	25.7	4118	> 1000		- 128	dark grey
14:48	8.29	2.0	7.20	23.0	3139	> 1000		- 100	dark grey
14:54	10.10	3.5	6.99	23.6	2645	> 1000		- 56	dark grey
15:54	10.10	5.0	7.04	21.9	2770	> 1000		- 92	dark grey
16:38	10.10	6.0	7.11	22.4	1893	> 1000		+ 44	dark grey
16:46	10.10	7.0	7.27	21.8	1880	> 1000		+ 57	grey
16:50	10.10	7.5	7.34	21.5	1656	> 1000	-	+ 49	grey

REMARKS: surged with Waterra foot valve and dedicated tubing

purged with peristaltic pump and dedicated tubing

PREPARED BY: Bryan C. Hann

Groundwater Well Development Logs - Steelfields: A2-MW-18

GROUNDWATER WELL DEVELOPMENT LOG

Project Name: Former August Feine ESI WELL NUMBER: A2-MW-20

Project Number:0062-002-510Sample Matrix:groundwaterClient:Steelfields, LTD.Weather:sunny, humid, slight breeze, 90 °F

WELL DATA: DATE: 07/12/05 TIME: 16:04

Casing Diameter (inches):	2.0	Casing Material: Schedule 40 PVC
Screened interval (fbTOR):	7.58 - 12.58	Screen Material: Schedule 40 PVC
Static Water Level (fbTOR):	8.89	Bottom Depth (fbTOR): 12.58
Elevation Top of Well Riser (fmsl):	591.54	Datum Ground Surface: Mean Sea Level
Elevation Top of Screen (fmsl):	583.96	Stick-up (feet): 2.73

PURGING DATA: DATE: 07/12/05 START TIME: 16:10 END TIME: 16:27

VOLUME CALCULATION:

(A) Total Depth of Well (fbTOR):	12.58
(B) Casing Diameter (inches):	2.0
(C) Static Water Level (fbTOR):	8.89
One Well Volume (V, gallons):	0.60
$V = 0.0408 [(B)^2 x {(A) - (C)}]$	0.00

^{*}Use the table to the right to calculate one well volume.

Field Personnel: BCH, RLD

Volume Calculation

Well Diameter	Volume gal/ft
1"	0.041
2"	0.163
3"	0.367
4"	0.653
5"	1.020
6"	1.469
8"	2.611

Stabilization Criteria

Parameter	Criteria
DO	+/- 0.3 mg/L
Turbidity	+/- 10%
SC	+/- 3%
ORP	+/- 10 mV
рН	+/- 0.1 unit

EVACUATION STABILIZATION TEST DATA:

Time	Water Level (fbTOR)	Accumulated Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductance (µS/cm)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
16:10	8.89	0.0	8.32	24.0	598.2	> 1000		+ 32	dark grey/black
16:14	9.22	1.25	7.78	20.5	697.9	649		+ 70	dark grey
16:16	9.25	3.0	7.80	19.9	686.5	< 1000		+ 89	dark grey/black
16:19	9.25	5.0	7.82	18.7	698	398		+ 76	dark grey
16:21	9.25	6.0	7.75	18.8	714	1000		+ 76	dark grey/black
16:24	9.25	8.0	7.84	18.6	715	274		+ 88	dark grey
16:27	9.26	10.0	7.71	18.2	708	79.6		+ 88	cloudy

REMARKS: surged with Waterra foot valve and dedicated tubing

purged with peristaltic pump and dedicated tubing

PREPARED BY: Bryan C. Hann

Groundwater Well Development Logs - Steelfields: A2-MW-20

APPENDIX C

LOW-FLOW METHOD GROUNDWATER PURGE & SAMPLE COLLECTION LOGS

APPENDIX C

LOW-FLOW METHOD GROUNDWATER PURGE & SAMPLE COLLECTION LOGS

LOW FLOW METHOD GROUNDWATER PURGE & SAMPLE COLLECTION LOG

Project Name: Former August Feine ESI WELL NUMBER: A2-MW-15

Project Number 0062-002-510 Sample Matrix: groundwater

Client: Steelfields, LTD. Weather: partly sunny, humid, slight breeze, 80 °F

Volume Calculation

			_,	v oranie C	arculation
WELL DATA:	DATE: 07/18/05	TIME: 10:04		Well	Volume
Casing Diameter (inches):	2.0	Casing Material: Schedule 40	PVC	Diameter	gal/ft
Screened interval (fbTOR):	10.18 - 15.18	Screen Material: Schedule 40	PVC	1"	0.041
Static Water Level (fbTOR):	6.84	Bottom Depth (fbTOR):	15.18	2"	0.163
Elevation Top of Well Riser (f	msl): 589.56	Ground Surface Elevation (fm	577.34	3"	0.367
Elevation Top of Screen (fms): 579.38	Stick-up (feet):	2.04	4"	0.653
Standing volume in gallons:			1.36	5"	1.020
[(bottom depth - static water leve	l) x vol calculation in ta	ble per well diameter]:	1.50	6"	1.469

PURGI	NG DA	<i>TA:</i> P	ump Type:	peristaltic pu	ımp with d	edicated tubin	g		
Is equipm	nent dedicate	d to location	yes	no	no Is tubing dedicated to location? (yes)				
Depth of	Sample (i.e.	Level of Inta	ke) (fbTOR)	15.00	15.00 Approximate Purge Rate (gal			gal/min) 0	.33
Time	Water Level (fbTOR)	Accumulate d Volume (gallons)	pH (units)	Temperature (degrees C)	Specific Conductan e (µS/cm)	c Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
10:09	Initial	0.0	6.94	17.1	1566	42		- 30	clear
10:11	7.36	0.8	6.58	16.5	1659	108		- 33	cloudy
10:13	7.37	1.3	6.38	16.0	1647	36		- 21	clear
10:15	7.38	2.0	6.35	15.3	1670	20		- 35	clear
							_		

SAMPLING DATA: DATE:	07/18/05	START TIME:	10:17	END TIME:	10:33
Method: low-flow with dedicated tubing		Was well sampled	l to dryness?	yes	(no)
Initial Water Level (fbTOR): 7.38		Was well sampled	l below top o	f sand pack? yes	no
Final Water Level (fbTOR): 7.38		Field Personnel:	BCH, RL	D	

PHYSICAL & CHEMICAL DATA:	WATER QUALITY MEASUREMENTS							
Appearance: clear	рН	ТЕМР.	SC	TURB.	DO	ORP		
Color: none	(units)	(°C)	(uS)	(NTU)	(ppm)	(mV)		
Odor: none	6.44	15.3	1666	13.5		- 29		
Sediment Present? no	6.61	15.7	1648	6.08		- 32		

REMARKS: Blind Duplicate collected at this location

PREPARED BY: Richard L. Dubisz

LOW FLOW METHOD GROUNDWATER PURGE & SAMPLE COLLECTION LOG

A2-MW-18 Project Name: Former August Feine ESI WELL NUMBER: Project Number 0062-002-510 Sample Matrix: groundwater Steelfields, LTD. Client: Weather: partly sunny, humid, slight breeze, 80 °F Volume Calculation DATE: 07/18/05 10:38 **WELL DATA:** TIME: Well Volume Diameter gal/ft Casing Diameter (inches): 2.0 Casing Material: Schedule 40 PVC 0.041 Screened interval (fbTOR): 5.17 - 10.17 Schedule 40 PVC 1" Screen Material: Static Water Level (fbTOR): 5.40 2" 0.163 Bottom Depth (fbTOR): 10.17 Elevation Top of Well Riser (fmsl): 587.64 Ground Surface Elevation (fm 580.57 3" 0.367 4" 0.653 Elevation Top of Screen (fmsl): 582.47 Stick-up (feet): 1.9 1.020 Standing volume in gallons: 0.78 [(bottom depth - static water level) x vol calculation in table per well diameter]: 6" 1.469 **PURGING DATA:** Pump Type: peristaltic pump with dedicated tubing Is equipment dedicated to location? Is tubing dedicated to location? ves no yes no 10.00 Depth of Sample (i.e. Level of Intake) (fbTOR) Approximate Purge Rate (gal/min) Accumulate Specific Water Appearance & рΗ Turbidity DO ORP **Temperature** Conductanc Time Level (degrees C) Volume (units) (NTU) (mg/L) (mV) Odor (fbTOR) (gallons) $(\mu S/cm)$ 10:41 0.0 7.05 22.0 2704 cloudy/turbid Initial 523 - 45 10:43 6.56 7.20 21.6 1663 0.3 60 - 11 cloudy 10:45 7.12 7.34 22.0 71 - 3 sl. Cloudy 0.5 1089 10:47 7.39 1.0 7.38 22.9 1094 108 - 38 cloudy **SAMPLING DATA:** DATE: 07/18/05 START TIME: 10:48 END TIME: 10:59 Method: low-flow with dedicated tubing Was well sampled to dryness? no Initial Water Level (fbTOR): 7.70 Was well sampled below top of sand pack yes no 8.88 BCH, RLD Final Water Level (fbTOR): Field Personnel: PHYSICAL & CHEMICAL DATA: WATER QUALITY MEASUREMENTS Appearance: cloudy TEMP. SC TURB. DO ORP рΗ Color: none (units) (uS) (NTU) (mV) (°C) (ppm) 22.0 Odor: none 7.48 1486 135 - 70 7.24 21.7 Sediment Present? 1822 159 - 41 **REMARKS:** Richard L. Dubisz PREPARED BY:

LOW FLOW METHOD GROUNDWATER PURGE & SAMPLE COLLECTION LOG

A2-MW-20 Project Name: Former August Feine ESI WELL NUMBER: Project Number 0062-002-510 Sample Matrix: groundwater Steelfields, LTD. Client: Weather: partly sunny, humid, slight breeze, 80 °F Volume Calculation DATE: 07/18/05 9:25 **WELL DATA:** TIME: Well Volume Diameter gal/ft Casing Diameter (inches): 2.0 Casing Material: Schedule 40 PVC 0.041 7.58 - 12.58 1" Screened interval (fbTOR): Screen Material: Schedule 40 PVC Static Water Level (fbTOR): 8.92 2" 0.163 Bottom Depth (fbTOR): 12.58 Ground Surface Elevation (fm Elevation Top of Well Riser (fmsl): 591.54 588.81 3" 0.367 4" 0.653 Elevation Top of Screen (fmsl): 583.96 Stick-up (feet): 2.73 1.020 Standing volume in gallons: 0.60 [(bottom depth - static water level) x vol calculation in table per well diameter]: 6" 1.469 **PURGING DATA:** Pump Type: peristaltic pump with dedicated tubing Is equipment dedicated to location? Is tubing dedicated to location? ves yes no no Depth of Sample (i.e. Level of Intake) (fbTOR) 12.00 0.25 Approximate Purge Rate (gal/min) Accumulate Specific Water Appearance & рΗ Turbidity DO ORP **Temperature** Conductanc Time Level (degrees C) Odor Volume (units) (NTU) (mg/L) (mV) (fbTOR) $(\mu S/cm)$ (gallons) 9:28 0.0 897 Initial 8.08 20.3 49.7 + 122 clear 9:30 9.01 19.8 757 + 119 0.3 7.86 185 cloudy 9:32 9.01 7.74 19.2 737 125 1.0 + 120cloudy 9:35 9.01 1.8 7.74 19.0 746 94 + 138cloudy **SAMPLING DATA:** DATE: 07/18/05 START TIME: 9:36 END TIME: 9:58 Method: low-flow with dedicated tubing Was well sampled to dryness? no l 9.01 Initial Water Level (fbTOR): Was well sampled below top of sand pack yes no 9.01 BCH, RLD Final Water Level (fbTOR): Field Personnel: PHYSICAL & CHEMICAL DATA: WATER QUALITY MEASUREMENTS Appearance: clear TEMP. SC TURB. DO ORP рΗ Color: none (units) (uS) (NTU) (mV) (°C) (ppm) Odor: none 7.69 19.8 732 30 + 1387.97 730 Sediment Present? 20.0 9.2 + 143**REMARKS:** MS/MSD collected at this location Richard L. Dubisz

PREPARED BY:

Groundwater Well Purge & Sample Collection Logs - Low Flow - Steelfields: A2-MW-20

APPENDIX D

SEVERN TRENT LABORATORIES, INC. LABORATORY ANALYTICAL DATA PACKAGE

(Due to the size of this attachment, only the raw data is provided; the full package is available upon request)

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - S (BORROW)

Client ID Job No Lab ID Sample Date		BLIND DUPLICAT A05-7063 07/06/2005	E A5706313	FAF-B-01 A05-7063 07/06/2005	A5706301	FAF-B-02 A05-7063 07/06/2005	A5706302	FAF-B-03 A05-7063 07/06/2005	A5706303
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	1.6	1.2	770	60	3.6	1.3	3.5	1.0
n-Butylbenzene	UG/KG	ND	1.2	ND	60	2.4	1.3	3.9	1.0
sec-Butylbenzene	UG/KG	ND	1.2	130	60	ND	1.3	ND	1.0
tert-Butylbenzene	UG/KG	ND	1.2	ND	60	ND	1.3	ND	1.0
Ethylbenzene	UG/KG	ND	1.2	160	60	1.6	1.3	1.3	1.0
Isopropylbenzene	UG/KG	ND	1.2	ND	60	ND	1.3	ND	1.0
p-Cymene	UG/KG	ND	1.2	66	60	ND	1.3	ND	1.0
n-Propylbenzene	UG/KG	ND	1.2	ND	60	ND	1.3	ND	1.0
Toluene	UG/KG	1.5	1.2	1600	60	5.4	1.3	7.4	1.0
o-Xylene	UG/KG	ND	1.2	300	60	2.8	1.3	1.9	1.0
m-Xylene	UG/KG	ND	1.2	2400 1	60	4.1 1	1.3	3.2 1	1.0
p-Xylene	UG/KG	ND	1.2	ND 1	60	ND 1	1.3	ND 1	1.0
Total Xylenes	UG/KG	ND	3.6	2700	180	6.9	3.8	5.1	3.0
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	1.2	ND	60	ND	1.3	ND	1.0
1,2,4-Trimethylbenzene	UG/KG	ND	1.2	3200	60	3.1	1.3	5.8	1.0
1,3,5-Trimethylbenzene ——————SURROGATE(S)	UG/KG	ND	1.2	1600	60	2.9	1.3	2.8	1.0
p-Bromofluorobenzene a,a,a-Trifluorotoluene	% %	97 92	66-134 76-127	110 109	66-134 76-127	96 92	66-134 76-127	98 93	66-134 76-127

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - S (BORROW) Rept: AN1246

Client ID Job No Lab ID Sample Date		FAF-B-04 A05-7063 07/06/2005	A5706304	FAF-B-05 A05-7063 07/06/2005	A5706305	FAF-B-06 A05-7063 07/06/2005	A5706306	FAF-B-07 A05-7063 07/06/2005	A5706307
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	17	1.3	320	1.2	25	1.1	9.5	1.2
n-Butylbenzene	UG/KG	2.8	1.3	ND	1.2	39	1.1	ND	1.2
sec-Butylbenzene	UG/KG	ND	1.3	ND	1.2	ND	1.1	3.7	1.2
tert-Butylbenzene	UG/KG	ND	1.3	ND	1.2	ND	1.1	2.2	1.2
Ethylbenzene	UG/KG	ND	1.3	ND	1.2	1.4	1.1	ND	1.2
Isopropylbenzene	UG/KG	3.5	1.3	ND	1.2	2.7	1.1	ND	1.2
p-Cymene	UG/KG	ND	1.3	ND	1.2	0.58 ป	1.1	ND	1.2
n-Propylbenzene	UG/KG	ND	1.3	ND	1.2	ND	1.1	ND	1.2
Toluene	UG/KG	8.7	1.3	17	1.2	1.5	1.1	1.4	1.2
o-Xylene	UG/KG	26	1.3	17	1.2	12	1.1	ND	1.2
m-Xylene	UG/KG	36 1	1.3	6.4 1	1.2	5.2 1	1.1	3.5 1	1.2
p-Xylene	UG/KG	ND 1	1.3	ND 1	1.2	ND 1	1.1	ND 1	1.2
Total Xylenes	UG/KG	62	3.8	24	3.5	17	3.4	3.5 J	3.8
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	1.3	ND	1.2	ND	1.1	ND	1.2
1,2,4-Trimethylbenzene	UG/KG	55	1.3	9.1	1.2	27	1.1	ND	1.2
1,3,5-Trimethylbenzene SURROGATE(S)	UG/KG	37	1.3	ND	1.2	11	1.1	ND	1.2
p-Bromofluorobenzene	%	100	66-134	93	66-134	98	66-134	106	66-134
a,a,a-Trifluorotoluene	%	92	76-127	97	76-127	89	76-127	91	76-127

Committee Committee (Committee Committee Commi

and the state of t

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - S (BORROW) Rept: AN1246

Client ID Job No Lab ID Sample Date		FAF-B-08 A05-7063 07/06/2005	A5706308	FAF-B-09 A05-7063 07/06/2005	A5706309	FAF-B-10 A05-7063 07/06/2005	A5706310	FAF-B-11 A05-7063 07/06/2005	A5706311
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	4.4	1.1	1.3	1.1	1.9	1.2	ND	1.3
n-Butylbenzene	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
sec-Butylbenzene	UG/KG	ND	1.1	ND	1.1	ND ND	1.2	ND	1.3
tert-Butylbenzene	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
Ethylbenzene	UG/KG	ND	1.1	2.0	1.1	ND	1.2	ND	1.3
Isopropylbenzene	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
p-Cymene	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
n-Propylbenzene	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
Toluene	UG/KG	ND	1.1	1.2	1.1	1.2	1.2	ND	1.3
o-Xylene	UG/KG	ND	1.1	3.8	1.1	ND	1.2	ND	1.3
m-Xylene	UG/KG	ND	1.1	7.9 1	1.1	ND	1.2	ND	1.3
p-Xylene	UG/KG	ND	1.1	ND 1	1.1	ND	1.2	ND	1.3
Total Xylenes	UG/KG	ND	3.4	12	3.3	ND	3.7	ND	4.0
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	1.1	ND	1.1	ND	1.2	ND	1.3
1,2,4-Trimethylbenzene	UG/KG	ND	1.1	ND	1.1	ND	1.2	1.7	1.3
1,3,5-Trimethylbenzene —————SURROGATE(S)	UG/KG	ND	1.1	ND	1.1	2.4	1.2	ND	1.3
p-Bromofluorobenzene a,a,a-Trifluorotoluene	% %	95 92	66-134 76-127	97 93	66-134 76-127	100 98	66-134 76-127	99 94	66-134 76-127

in the mean was data to the more section of the sec

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - S (BORROW) Rept: AN1246

Client ID Job No Łab ID Sample Date		FAF-B-12 A05-7063 07/06/2005	A5706312						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/KG	ND	1.2	NA		NA		NA	
n-Butylbenzene	UG/KG	ND	1.2	NA		NA		NA	
sec-Butylbenzene	UG/KG	ND	1.2	NA		NA		NA	
tert-Butylbenzene	UG/KG	ND	1.2	NA		NA		NA	
Ethylbenzene	UG/KG	ND	1.2	NA		NA		NA	
Isopropylbenzene	UG/KG	ND	1.2	NA		NA		NA	\
p-Cymene	UG/KG	ND	1.2	NA		NA		NA	
n-Propylbenzene	UG/KG	ND	1.2	NA		NA		NA	
Toluene	UG/KG	ND	1.2	NA		NA		NA	
o-Xylene	UG/KG	ND	1.2	NA		NA		NA	
m-Xylene	UG/KG	ND	1.2	NA		NA		NA	
p-Xylene	UG/KG	ND	1.2	NA		NA		NA	
Total Xylenes	UG/KG	ND	3.6	NA		NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/KG	ND	1.2	NA		NA		NA	
1,2,4-Trimethylbenzene	UG/KG	ND	1.2	NA		NA		NA	
1,3,5-Trimethylbenzene ————SURROGATE(S)———	UG/KG	ND	1.2	NA		NA		NA	
p-Bromofluorobenzene	%	101	66-134	NA		NA		NA	
a,a,a-Trifluorotoluene	%	94	76-127	NA	İ	NA		NA	

1.446.4

STL Buffalo

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Łab ID Sample Date		BLIND DUPLICAT A05-7063 07/06/2005	E A5706313	FAF-B-01 A05-7063 07/06/2005	A5706301	FAF-B-01 DL A05-7063 07/06/2005	A5706301DL	FAF-B-01 DL2 A05-7063 07/06/2005	A5706301D2
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	ND	4000	8700 J	8800	ND	880000	ND	1800000
Acenaphthylene	UG/KG	220 J	4000	88000	8800	83000 DJ	880000	ND	1800000
Anthracene	UG/KG	ND	4000	67000	8800	73000 DJ	880000	ND	1800000
Benzo(a)anthracene	UG/KG	640 J	4000	68000	8800	79000 DJ	880000	ND	1800000
Benzo(b)fluoranthene	UG/KG	1000 J	4000	59000	8800	87000 DJ	880000	ND	1800000
Benzo(k)fluoranthene	UG/KG	1100 J	4000	16000	8800	95000 DJ	880000	ND	1800000
Benzo(ghi)perylene	UG/KG	470 J	4000	28000	8800	ND ND	880000	ND	1800000
Benzo(a)pyrene	UG/KG	590 J	4000	49000	8800	55000 DJ	880000	ND	1800000
Benzyl alcohol	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
Bis(2-chloroethoxy) methane	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
Bis(2-chloroethyl) ether	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
Bis(2-ethylhexyl) phthalate	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
4-Bromophenyl phenyl ether	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
Butyl benzyl phthalate	UG/KG	ND	4000	1100 J	8800	ND ND	880000	ND	1800000
4-Chloroaniline	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
2-Chloronaphthalene	UG/KG	ND I	4000	1000 J	8800	ND ND	880000	ND	1800000
4-Chlorophenyl phenyl ether	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
Chrysene	UG/KG	750 J	4000	56000	8800	54000 DJ	880000	ND	1800000
Dibenzo(a,h)anthracene	UG/KG	ND	4000	9400	8800	ND	880000	ND	1800000
Dibenzofuran	UG/KG	ND	4000	55000	8800	54000 DJ	880000	ND	1800000
Di-n-butyl phthalate	UG/KG	ND	4000	ND	8800	ND	880000	ND	1800000
1.2-Dichlorobenzene	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
1.3-Dichlorobenzene	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
1.4-Dichlorobenzene	UG/KG	ND	4000	ND	8800	ND ND	880000	ND	1800000
3.3'-Dichlorobenzidine	UG/KG	ND	4000	ND ND	8800	ND ND	880000	ND	1800000
Diethyl phthalate	UG/KG	ND	4000	ND ND	8800	ND ND	880000	ND	1800000
Dimethyl phthalate	UG/KG	ND ND	4000	ND ND	8800	ND ND	880000	ND	1800000
2.4-Dinitrotoluene	UG/KG	ND ND	4000	ND ND	8800	ND ND	880000	ND	1800000
2,6-Dinitrotoluene	UG/KG	ND	4000	ND ND	8800	ND ND	880000	ND	1800000
Di-n-octyl phthalate	UG/KG	ND ND	4000	ND ND	8800	ND ND	880000	ND	1800000
Fluoranthene	UG/KG	1400 J	4000	180000 E	8800	190000 DJ	880000	220000 DJ	1800000
Fluorene	UG/KG	ND	4000	74000	8800	72000 DJ	880000	ND	1800000
Hexachlorobenzene	UG/KG	ND ND	4000	74000 ND	8800	ND ND	880000	ND	1800000
Hexachlorobutadiene	UG/KG	ND ND	4000	ND ND	8800	ND ND	880000	ND ND	1800000
Hexachlorocyclopentadiene	UG/KG	ND	4000	ND ND	8800	ND ND	880000	ND ND	1800000
Hexachlorocyclopentadiene Hexachloroethane	1	טא ND	4000	ND ND	8800	ND ND	880000	ND ND	1800000
	UG/KG UG/KG	עא 410 J	4000	30000	8800	ND ND	880000	ND ND	1800000
Indeno(1,2,3-cd)pyrene	1 - 1	410 J ND	4000	ND	8800	ND ND	880000	ND ND	1800000
Isophorone	UG/KG				8800	240000 DJ	880000	240000 DJ	1800000
2-Methylnaphthalene	UG/KG	ND 200	4000	300000 E		17000000 DE	880000 880000	1800000 DJ	1800000
Naphthalene	UG/KG	290 J	4000	2400000 E	8800	1			
2-Nitroaniline	UG/KG	ND	20000	ND	43000	ND ND	4300000	ND	8600000
3-Nitroaniline	UG/KG	ND	20000	ND	43000	ND	4300000	ND	8600000

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		BLIND DUPLICA A05-7063 07/06/2005	TE A5706313	FAF-B-01 A05-7063 07/06/2005	A5706301	FAF-B-01 DL A05-7063 07/06/2005	A5706301DL	FAF-B-01 DL2 A05-7063 07/06/2005	A5706301D2
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Nitroaniline Nitrobenzene N-nitrosodiphenylamine N-Nitroso-Di-n-propylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND 860 J 880 J ND	20000 4000 4000 4000 4000 4000 4000	ND ND ND ND 220000 E 110000 ND	43000 8800 8800 8800 8800 8800 8800	ND ND ND 230000 DJ 120000 DJ ND	430000 880000 880000 880000 880000 880000 880000	ND ND ND 250000 DJ 100000 DJ ND	8600000 1800000 1800000 1800000 1800000 1800000 1800000
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % %	81 86 86 91 106 134 87 93 76 86 80 83	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	96 83 95 86 90 135 63 50 50 D 49 45	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	108 113 112 112 111 116 0 D 0 D 0 D 0 D	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	86 88 88 92 100 117 0 D 0 D 0 D	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-120 33-120 53-132

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-02 A05-7063 07/06/2005	A5706302	FAF-B-03 A05-7063 07/06/2005	A5706303	FAF-B-04 A05-7063 07/06/2005	A5706304	FAF-B-05 A05-7063 07/06/2005	A5706305
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	2600 J	9800	640 J	7700	320 J	2400	6800 J	19000
Acenaphthylene	UG/KG	1100 J	9800	4800 J	7700	5400	2400	2700 J	19000
Anthracene	UG/KG	1400 J	9800	5600 J	7700	5400	2400	4900 J	19000
Benzo(a)anthracene	UG/KG	2600 J	9800	8000	7700	6800	2400	5100 J	19000
Benzo(b)fluoranthene	UG/KG	4200 J	9800	8900	7700	5800	2400	4900 J	19000
Benzo(k)fluoranthene	UG/KG	4600 J	9800	2800 J	7700	2400	2400	1400 J	19000
Benzo(ghi)perylene	UG/KG	2000 J	9800	6400 J	7700	3200	2400	2800 J	19000
Benzo(a)pyrene	UG/KG	2200 J	9800	8100	7700	5200	2400	4400 J	19000
Benzyl alcohol	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Bis(2-chloroethoxy) methane	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Bis(2-chloroethyl) ether	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Bis(2-ethylhexyl) phthalate	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
4-Bromophenyl phenyl ether	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Butyl benzyl phthalate	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
4-Chloroaniline	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
2-Chloronaphthalene	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
4-Chlorophenyl phenyl ether	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Chrysene	UG/KG	2800 J	9800	7600 J	7700	6200	2400	5800 J	19000
Dibenzo(a,h)anthracene	UG/KG	630 J	9800	520 J	7700	1100 J	2400	ND	19000
Dibenzofuran	UG/KG	1100 J	9800	2100 J	7700	2800	2400	3200 J	19000
Di-n-butyl phthalate	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
1,2-Dichlorobenzene	UG/KG	ND ND	9800	ND ND	7700	ND	2400	ND	19000
1,3-Dichlorobenzene	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
1,4-Dichlorobenzene	UG/KG	ND	9800	ND ND	7700	ND ND	2400	ND	19000
3.3'-Dichtorobenzidine	UG/KG	ND ND	9800	ND ND	7700	ND	2400	ND	19000
Diethyl phthalate	UG/KG	ND ND	9800	ND ND	7700	ND	2400	ND	19000
Dimethyl phthalate	UG/KG	ND	9800	ND ND	7700	ND ND	2400	ND	19000
2.4-Dinitrotoluene	UG/KG	ND ND	9800	ND ND	7700	ND	2400	ND	19000
2,6-Dinitrotoluene	UG/KG	ND	9800	ND	7700	ND	2400	ND	19000
Di-n-octyl phthalate	UG/KG	ND	9800	ND ND	7700	ND ND	2400	ND	19000
Fluoranthene	UG/KG	5200 J	9800	22000	7700	15000	2400	14000 J	19000
Fluorene	UG/KG	2400 J	9800	3700 J	7700	4500	2400	5900 J	19000
Hexachlorobenzene	UG/KG	2400 J ND	9800	ND	7700	ND ND	2400	ND	19000
Hexachlorobutadiene	UG/KG	ND ND	9800 9800	ND ND	7700	ND	2400	ND	19000
£	UG/KG	ND ND	9800	ND ND	7700	ND	2400	ND ND	19000
Hexachlorocyclopentadiene Hexachloroethane	UG/KG	UN UN	9800	ND ND	7700	ND ND	2400	ND ND	19000
		טא 1900 J	9800	טא 5700 J	7700	3200	2400	2600 J	19000
Indeno(1,2,3-cd)pyrene	UG/KG	1900 J ND	9800 9800	ND ND	7700	ND	2400	ND	19000
Isophorone	UG/KG	ר 980 מא	9800 9800	1 009 T	7700	4600	2400	ND	19000
2-Methylnaphthalene	UG/KG	,			7700	27000	2400	טא 3200 J	19000
Naphthalene	UG/KG	1600 J	9800	4800 J			12000	3200 J ND	91000
2-Nitroaniline	UG/KG	ND	47000	ND	37000	ND ND		טא ND	91000
3-Nitroaniline	UG/KG	ND	47000	ND	37000	ND	12000	עא	71000

STL Buffalo

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-02 A05-7063 07/06/2005	A5706302	FAF-B-03 A05-7063 07/06/2005	A5706303	FAF-B-04 A05-7063 07/06/2005	A5706304	FAF-B-05 A05-7063 07/06/2005	A5706305
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Nitroaniline Nitrobenzene N-nitrosodiphenylamine N-Nitroso-Di-n-propylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene —IS/SURROGATE(S)	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	ND ND ND ND 3600 J 5400 J ND	47000 9800 9800 9800 9800 9800 9800	ND ND ND ND 23000 18000 ND	37000 7700 7700 7700 7700 7700 7700	ND ND ND ND 18000 11000 ND	12000 2400 2400 2400 2400 2400 2400 2400	ND ND ND ND 15000 J 12000 J ND	91000 19000 19000 19000 19000 19000
1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % %	100 102 96 87 86 114 90 93 98 84 81	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	99 99 89 93 94 134 74 84 83 73 67	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	84 82 80 76 114 87 89 91 85 81	50-200 50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132	100 101 95 88 93 140 88 90 88 89 76	50-200 50-200 50-200 50-200 50-200 41-120 50-120 53-137 41-120 33-120 53-132

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-06 A05-7063 07/06/2005	A5706306	FAF-B-07 A05-7063 07/06/2005	A5706307	FAF-B-08 A05-7063 07/06/2005	A5706308	FAF-B-09 A05-7063 07/06/2005	A5706309
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	10000 J	11000	1900 J	7300	180 J	2000	26 J	450
Acenaphthylene	UG/KG	2200 J	11000	7000 J	7300	190 J	2000	200 J	450
Anthracene	UG/KG	3100 J	11000	9000	7300	210 J	2000	110 J	450
Benzo(a)anthracene	UG/KG	3000 J	11000	15000	7300	470 J	2000	400 J	450
Benzo(b)fluoranthene	UG/KG	2700 J	11000	15000	7300	420 J	2000	600	450
Benzo(k)fluoranthene	UG/KG	1100 J	11000	6600 J	7300	130 J	2000	220 J	450
Benzo(ghi)perylene	UG/KG	1200 J	11000	6800 J	7300	230 J	2000	300 J	450
Benzo(a)pyrene	UG/KG	2100 J	11000	13000	7300	330 J	2000	460	450
Benzyl alcohol	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Bis(2-chloroethoxy) methane	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Bis(2-chloroethyl) ether	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND	11000	ND ND	7300	ND	2000	ND	450
Bis(2-ethylhexyl) phthalate	UG/KG	ND	11000	ND	7300	ND	2000	39 BJ	450
4-Bromophenyl phenyl ether	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Butyl benzyl phthalate	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
4-Chloroaniline	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
2-Chloronaphthalene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
4-Chlorophenyl phenyl ether	UG/KG	ND	11000	ND	7300	ND ND	2000	ND	450
Chrysene	UG/KG	3800 J	11000	15000	7300	630 J	2000	460	450
Dibenzo(a,h)anthracene	UG/KG	ND	11000	2200 J	7300	110 J	2000	94 J	450
Dibenzofuran	UG/KG	3600 J	11000	3700 J	7300	230 J	2000	51 J	450
Di-n-butyl phthalate	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
1,2-Dichlorobenzene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
1.3-Dichlorobenzene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
1.4-Dichlorobenzene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
3,3'-Dichlorobenzidine	UG/KG	ND	11000	ND	7300	ND ND	2000	ND	450
Diethyl phthalate	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Dimethyl phthalate	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
2,4-Dinitrotoluene	UG/KG	ND	11000	ND	7300	ND ND	2000	ND	450
2.6-Dinitrotoluene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Di-n-octyl phthalate	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Fluoranthene	UG/KG	8100 J	11000	34000	7300	680 J	2000	580	450
Fluorene	UG/KG	7000 J	11000	9000	7300	170 J	2000	34 J	450
Hexachlorobenzene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Hexachlorobutadiene	UG/KG	ND	11000	ND ND	7300	ND	2000	ND	450
Hexachlorocyclopentadiene	UG/KG	ND ND	11000	ND ND	7300	ND ND	2000	ND ND	450
Hexachloroethane	UG/KG	ND ND	11000	ND	7300	ND ND	2000	ND	450
Indeno(1,2,3-cd)pyrene	UG/KG	1200 J	11000	6700 J	7300	210 J	2000	290 J	450
Isophorone	UG/KG	ND	11000	ND	7300	ND ND	2000	ND ND	450
2-Methylnaphthalene	UG/KG	ND ND	11000	1300 J	7300	810 J	2000	150 J	450
Naphthalene	UG/KG	14000	11000	1400 J	7300	7400	2000	2700	450
2-Nitroaniline	UG/KG	14000 ND	54000	ND	35000	ND	9500	ND	2200
	UG/KG	ND ND	54000	ND ND	35000	ND ND	9500 9500	ND ND	2200
3-Nitroaniline	OG/KG	עא	J4000	NU	33000	NU	7,000	ND.	2200

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-06 A05-7063 07/06/2005	A5706306	FAF-B-07 A05-7063 07/06/2005	A5706307	FAF-B-08 A05-7063 07/06/2005	A5706308	FAF-B-09 A05-7063 07/06/2005	A5706309
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Nitroaniline Nitrobenzene	UG/KG UG/KG	ND ND	54000 11000	ND ND	35000 7300	ND ND	9500 2000	ND ND	2200 450
N-nitrosodiphenylamine	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
N-Nitroso-Di-n-propylamine	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
Phenanthrene	UG/KG	2400 J	11000	39000	7300	820 J	2000	360 J	450
Pyrene	UG/KG	6900 J	11000	26000	7300	620 J	2000	520	450
1,2,4-Trichlorobenzene	UG/KG	ND	11000	ND	7300	ND	2000	ND	450
IS/SURROGATE(S)———									
1,4-Dichlorobenzene-D4	%	94	50-200	103	50-200	81	50-200	88	50-200
Naphthalene-D8	%	96	50-200	103	50-200	81	50-200	87	50-200
Acenaphthene-D10	%	91	50-200	97	50-200	76	50-200	82	50-200
Phenanthrene-D10	%	82	50-200	93	50-200	75	50-200	86	50-200
Chrysene-D12	%	91	50-200	101	50-200	78	50-200	94	50-200
Perylene-D12	%	134	50-200	157	50-200	118	50-200	137	50-200
Nitrobenzene-D5	%	83	41-120	86	41-120	94	41-120	90	41-120
2-Fluorobiphenyl	%	89	50-120	90	50-120	95	50-120	92	50-120
p-Terphenyl-d14	%	86	53-137	86	53-137	89	53-137	100	53-137
Phenol-D5	%	65	41-120	81	41-120	88	41-120	88	41-120
2-Fluorophenol	%	37	33-120	77	33-120	84	33-120	80	33-120
2,4,6-Tribromophenol	%	0 D	53-132	77	53-132	91	53-132	93	53-132

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-10 A05-7063 07/06/2005	A5706310	FAF-B-11 A05-7063 07/06/2005	A5706311	FAF-B-12 A05-7063 07/06/2005	A5706312		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/KG	29 J	440	390 J	420	ND	3700	NA	
Acenaphthylene	UG/KG	71 J	440	310 J	420	260 J	3700	NA	
Anthracene	UG/KG	93 J	440	820	420	ND	3700	NA	
Benzo(a)anthracene	UG/KG	430 J	440	1600	420	1000 J	3700	NA	
Benzo(b)fluoranthene	UG/KG	610	440	1700	420	1200 J	3700	NA	
Benzo(k)fluoranthene	UG/KG	220 J	440	600	420	440 J	3700	NA	
Benzo(ghi)perylene	UG/KG	270 J	440	690	420	840 J	3700	NA	
Benzo(a)pyrene	UG/KG	460	440	1500	420	1100 J	3700	NA	
Benzyl alcohol	UG/KG	ND	440	ND ND	420	ND	3700	NA	
Bis(2-chloroethoxy) methane	UG/KG	ND ND	440	ND	420	ND	3700	NA	
Bis(2-chloroethyl) ether	UG/KG	ND ND	440	ND ND	420	ND ND	3700	NA	
2,2'-Oxybis(1-Chloropropane)	UG/KG	ND ND	440	ND	420	ND	3700	NA	
Bis(2-ethylhexyl) phthalate	UG/KG	31 BJ	440	45 BJ	420	ND	3700	NA.	
4-Bromophenyl phenyl ether	UG/KG	ND ND	440	ND ND	420	ND	3700	NA.	
Butyl benzyl phthalate	UG/KG	ND ND	440	ND ND	420	ND	3700	NA	
4-Chloroaniline	UG/KG	ND ND	440	ND ND	420	ND	3700	NA.	
2-Chloronaphthalene	UG/KG	ND ND	440	ND	420	ND	3700	NA.	
•	UG/KG	ND ND	440	ND ND	420	ND	3700	NA NA	
4-Chlorophenyl phenyl ether	UG/KG	470	440	1800	420	980 J	3700	NA	
Chrysene	UG/KG	87 J	440	200 J	420	230 J	3700	NA NA	
Dibenzo(a,h)anthracene		32 J	440	560	420	ND ND	3700	NA NA	
Dibenzofuran	UG/KG	i	440	ND	420	ND ND	3700	NA NA	
Di-n-butyl phthalate	UG/KG	ND			420	ND ND	3700	NA NA	
1,2-Dichlorobenzene	UG/KG	ND	440	ND	420	ND ND	3700	NA NA	
1,3-Dichlorobenzene	UG/KG	ND	440	ND			3700	NA NA	
1,4-Dichlorobenzene	UG/KG	ND	440	ND	420	ND	3700	NA NA	
3,3'-Dichlorobenzidine	UG/KG	ND	440	ND	420	ND	3700	NA NA	
Diethyl phthalate	UG/KG	ND	440	ND	420	ND ND	3700	NA NA	
Dimethyl phthalate	UG/KG	ND	440	ND	420		3700		
2,4-Dinitrotoluene	UG/KG	ND	440	ND	420	ND	1 1	NA	
2,6-Dinitrotoluene	UG/KG	ND	440	ND	420	ND	3700	NA NA	
Di-n-octyl phthalate	UG/KG	ND	440	ND	420	ND	3700	NA	
Fluoranthene	UG/KG	700	440	4800	420	1800 J	3700	NA	
Fluorene	UG/KG	69 J	440	970	420	ND	3700	NA NA	
Hexachlorobenzene	UG/KG	ND	440	ND	420	ND	3700	NA	
Hexachlorobutadiene	UG/KG	ND	440	ND	420	ND	3700	NA	
Hexachlorocyclopentadiene	UG/KG	ND	440	ND	420	ND	3700	NA	
Hexachloroethane	UG/KG	ND	440	ND	420	ND	3700	NA	
Indeno(1,2,3-cd)pyrene	UG/KG	260 J	440	650	420	780 J	3700	NA	
Isophorone	UG/KG	ND	440	ND	420	ND	3700	NA	1
2-Methylnaphthalene	UG/KG	33 J	440	190 J	420	ND	3700	NA	
Naphthalene	UG/KG	520	440	1400	420	ND	3700	NA	
2-Nitroaniline	UG/KG	ND	2200	ND	2000	ND	18000	NA	
3-Nitroaniline	UG/KG	ND	2200	ND	2000	ND	18000	NA	

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8270 - TCL BASE NEUTRALS ONLY - S

Client ID Job No Lab ID Sample Date		FAF-B-10 A05-7063 07/06/2005	A5706310	FAF-B-11 A05-7063 07/06/2005	A5706311	FAF-B-12 A05-7063 07/06/2005	A5706312		
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Nitroaniline	UG/KG	ND	2200	ND	2000	ND	18000	NA	
Nitrobenzene	UG/KG	ND	440	ND	420	ND	3700	NA NA	
N-nitrosodiphenylamine	UG/KG	ND	440	ND	420	ND	3700	NA NA	
N-Nitroso-Di-n-propylamine	UG/KG	ND	440	ND	420	ND	3700	NA.	
Phenanthrene	UG/KG	340 J	440	6100	420	560 J	3700	NA	
Pyrene	UG/KG	590	440	3700	420	1300 J	3700	NA	
1,2,4-Trichlorobenzene	UG/KG	ND	440	ND	420	ND	3700	NA	-
IS/SURROGATE(S)									†
1,4-Dichlorobenzene-D4	%	90	50-200	96	50-200	86	50-200	NA	
Naphthalene-D8	%	90	50-200	96	50-200	87	50-200	NA	
Acenaphthene-D10	%	86	50-200	91	50-200	89	50-200	NA	
Phenanthrene-D10	%	86	50-200	88	50-200	94	50-200	NA	
Chrysene-D12	1%	92	50-200	100	50-200	103	50-200	NA	
Perylene-D12	%	132	50-200	145	50-200	128	50-200	NA	
Nitrobenzene-D5	%	79	41-120	80	41-120	77	41-120	NA	
2-Fluorobiphenyl	%	82	50-120	83	50-120	77	50-120	NA	
p-Terphenyl-d14	%	88	53-137	79	53-137	71	53-137	NA	
Phenol-D5	%	78	41-120	76	41-120	73	41-120	NA	
2-Fluorophenol	%	65	33-120	62	33-120	68	33-120	NA	
2,4,6-Tribromophenol	%	81	53-132	68	53-132	84	53-132	NA	

Date: 08/01/2005 Time: 16:44:58 Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - RCRA 8 - SW8463-6010/7470 - W

Client ID Job No Łab ID Sample Date		A2-MW-15 A05-7503 07/18/2005	A5750301	A2-MW-18 A05-7503 07/18/2005	A5750302	A2-MW-20 A05-7503 07/18/2005	A5750303	BLIND DUPLICA A05-7503 07/18/2005	TE A5750304
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Arsenic - Total	UG/L	11.6	10.0	18.6	10.0	ND	10.0	12.5	10.0
Barium - Total	UG/L	155	2.0	72.2	2.0	24.3	2.0	151	2.0
Cadmium - Total	UG/L	ND	1.0	ND	1.0	ND	1.0	ND	1.0
Chromium - Total	UG/L	ND	4.0	6.6	4.0	ND	4.0	ND	4.0
Lead - Total	UG/L	ND	5.0	ND	5.0	7.0	5.0	ND	5.0
Mercury - Total	UG/L	ND	0.200	ND	0.200	ND	0.200	ND	0.200
Selenium - Total	UG/L	ND	15.0	ND	15.0	ND	15.0	ND	15.0
Silver - Total	UG/L	ND	3.0	ND	3.0	ND	3.0	ND	3.0

Date: 08/01/2005 Time: 16:44:58 Steelfields - Former LTV Steel site Former August Feine Investigation WET CHEMISTRY ANALYSIS Rept: AN1246

Client ID Job No l Sample Date	Lab ID	AC	2-MW-15 05-7503 7/18/2005	A5750301	A2-MW-18 A05-7503 07/18/2005	A5750302	A2-MW-20 A05-7503 07/18/2005	A5750303	BLIND DUPLICAT A05-7503 07/18/2005	E A5750304
Analyte	Uni	its	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Cyanide - Total	MG/L	-	0.66	0.020	0.17	0.010	0.080	0.010	0.62	0.020

STL Buffalo

Date: 08/01/2005 Time: 17:10:29

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - W Rept: AN1246

Client ID Job No Łab ID Sample Date		A2-MW-15 A05-7503 07/18/2005	A5750301	A2-MW-18 A05-7503 07/18/2005	A5750302	A2-MW-20 A05-7503 07/18/2005	A5750303	BLIND DUPLICA A05-7503 07/18/2005	TE A5750304
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/L	ND	0.20	32	0.20	ND	0.20	ND	0.20
Ethylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	ND	0.20
Toluene	UG/L	ND	0.20	0.27	0.20	ND	0.20	ND	0.20
1,2,4-Trimethylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	ND	0.20
1,3,5-Trimethylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	ND	0.20
Methyl-t-Butyl Ether (MTBE)	UG/L	0.24 J	0.40	ND	0.40	ND	0.40	ND	0.40
n-Butylbenzene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
sec-Butylbenzene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
tert-Butylbenzene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
n-Propylbenzene	UG/L	ND	0.20	ND	0.20	ND	0.20	ND	0.20
p-Cymene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
Isopropylbenzene	UG/L	ND ND	0.20	ND	0.20	ND	0.20	ND	0.20
m-Xylene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
o-Xylene	UG/L	ND	0.20	ND	0.20	ND	0.20	ND	0.20
p-Xylene	UG/L	ND	0.40	ND	0.40	ND	0.40	ND	0.40
Total Xylenes SURROGATE(S)	UG/L	ND	0.60	ND	0.60	ND	0.60	ND	0.60
p-Bromofluorobenzene	%	108	65-123	107	65-123	106	65-123	106	65-123

STL Buffalo

Former August Feine Investigation STEELFIELDS - SW8463 8270 - BASE/NEUTRAL ONLY -W

Date: 08/01/2005 Rept: AN1246 Steelfields - Former LTV Steel site Time: 17:10:29

Client ID Job No Lab ID Sample Date		A2-MW-15 A05-7503 07/18/2005	A5750301	A2-MW-18 A05-7503 07/18/2005	A5750302	A2-MW-20 A05-7503 07/18/2005	A5750303	BLIND DUPLICA A05-7503 07/18/2005	TE A5750304
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Acenaphthene	UG/L	ND	10	2 J	10	ND	10	ND	10
Acenaphthylene	UG/L	ND	10	ND	10	ND	10	ND	10
Anthracene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzo(a)anthracene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzo(b)fluoranthene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzo(k)fluoranthene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzo(ghi)perylene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzo(a)pyrene	UG/L	ND	10	ND	10	ND	10	ND	10
Benzyl alcohol	UG/L	ND	19	ND	20	ND	20	ND	19
Bis(2-chloroethoxy) methane	UG/L	ND	10	ND	10	ND	10	ND	10
Bis(2-chloroethyl) ether	UG/L	ND	10	ND	10	ND	10	ND	10
2,2'-Oxybis(1-Chloropropane)	UG/L	ND	10	ND	10	ND	10	ND	10
Bis(2-ethylhexyl) phthalate	UG/L	ND	10	ND	10	ND	10	ND	10
4-Bromophenyl phenyl ether	UG/L	ND	10	ND	10	ND	10	ND	10
Butyl benzyl phthalate	UG/L	ND	10	ND	10	ND	10	ND	10
4-Chloroaniline	UG/L	ND	10	ND	10	ND	10	ND	10
2-Chloronaphthalene	UG/L	ND	10	ND	10	ND	10	ND	10
4-Chlorophenyl phenyl ether	UG/L	ND	10	ND	10	ND	10	ND	10
Chrysene	UG/L	ND	10	ND	10	ND	10	ND	10
Dibenzo(a,h)anthracene	UG/L	ND	10	ND	10	ND	10	ND	10
Dibenzofuran	UG/L	ND	10	4 J	10	ND	10	ND	10
Di-n-butyl phthalate	UG/L	ND	10	ND	10	ND	10	14	10
1,2-Dichlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10
1,3-Dichlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10
1,4-Dichlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10
3,3'-Dichlorobenzidine	UG/L	ND	19	ND	20	ND	20	ND	19
Diethyl phthalate	UG/L	ND	10	ND	10	ND	10	ND	10
Dimethyl phthalate	UG/L	ND	10	ND	10	ND	10	ND	10
2,4-Dinitrotoluene	UG/L	ND	10	ND	10	ND	10	ND	10
2,6-Dinitrotoluene	UG/L	ND	10	ND	10	ND	10	ND	10
Di-n-octyl phthalate	UG/L	ND	10	ND	10	ND	10	ND	10
Fluoranthene	UG/L	ND	10	, ND	10	ND	10	ND	10
Fluorene	UG/L	ND	10	ND	10	ND	10	ND	10
Hexachlorobenzene	UG/L	ND	10	ND	10	ND	10	ND	10
Hexachlorobutadiene	UG/L	ND	10	ND	10	ND	10	ND	10
Hexachlorocyclopentadiene	UG/L	ND	43	ND	44	ND	45	ND	43
Hexachloroethane	UG/L	ND	10	ND	10	ND	10	ND	10
Indeno(1,2,3-cd)pyrene	UG/L	ND	10	ND	10	ND	10	ND	10
Isophorone	UG/L	ND	10	ND	10	ND	10	ND	10
2-Methylnaphthalene	UG/L	ND	10	ND	10	ND	10	ND	10
Naphthalene	UG/L	ND	10	5 J	10	ND	10	ND	10
2-Nitroaniline	UG/L	ND	48	ND	49	ND	50	ND	48
3-Nitroaniline	UG/L	ND	48	ND	49	ND	50	ND	48

Date: 08/01/2005 Time: 17:10:29

Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - SW8463 8270 - BASE/NEUTRAL ONLY -W Rept: AN1246

Client ID Job No Lab ID Sample Date		A2-MW-15 A05-7503 07/18/2005	A5750301	A2-MW-18 A05-7503 07/18/2005	A5750302	A2-MW-20 A05-7503 07/18/2005	A5750303	BLIND DUPLICA A05-7503 07/18/2005	TE A5750304
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
4-Nitroaniline Nitrobenzene N-nitrosodiphenylamine N-Nitroso-Di-n-propylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene	UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND	48 10 10 10 10 10 10	ND ND ND ND ND ND	49 10 10 10 10 10 10	ND ND ND ND ND ND	50 10 10 10 10 10 10	ND ND ND ND ND ND	48 10 10 10 10 10 10
IS/SURROGATE(S) 1,4-Dichlorobenzene-D4 Naphthalene-D8 Acenaphthene-D10 Phenanthrene-D10 Chrysene-D12 Perylene-D12 Nitrobenzene-D5 2-Fluorobiphenyl p-Terphenyl-d14 Phenol-D5 2-Fluorophenol 2,4,6-Tribromophenol	% % % % % % % % % % % %	103 104 106 113 121 112 90 88 59 27 43	50-200 50-200 50-200 50-200 50-200 50-200 52-120 21-120 36-138 13-120 21-120 62-133	97 100 103 110 115 103 82 83 76 27 40	50-200 50-200 50-200 50-200 50-200 50-200 52-120 21-120 36-138 13-120 21-120 62-133	94 97 97 103 106 103 89 87 86 31 46	50-200 50-200 50-200 50-200 50-200 50-200 52-120 21-120 36-138 13-120 21-120 62-133	106 106 105 108 115 111 84 84 69 26 40	50-200 50-200 50-200 50-200 50-200 50-200 52-120 21-120 36-138 13-120 21-120 62-133

a) The arriving of the earlier of the first of the control of the co

Date: 08/01/2005 Time: 17:10:29 Steelfields - Former LTV Steel site Former August Feine Investigation STEELFIELDS - 8021 STARS - W Rept: AN1246

Client ID Job No Lab ID Sample Date		TRIP BLANK A05-7503 07/18/2005	A5750305						
Analyte	Units	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit	Sample Value	Reporting Limit
Benzene	UG/L	ND	0.20	NA		NA		NA	
Ethylbenzene	UG/L	ND	0.20	NA		NA NA		NA	
Toluene	UG/L	ND	0.20	NA		NA		NA	
1,2,4-Trimethylbenzene	UG/L	ND	0.20	NA		NA		NA	
1,3,5-Trimethylbenzene	UG/L	ND	0.20	NA		NA		NA	
Methyl-t-Butyl Ether (MTBE)	UG/L	ND	0.40	NA		NA		NA	
n-Butylbenzene	UG/L	ND	0.40	NA		NA		NA	
sec-Butylbenzene	UG/L	ND	0.40	NA		NA		NA	
tert-Butylbenzene	UG/L	ND	0.40	NA NA		NA		NA	
n-Propylbenzene	UG/L	ND	0.20	NA		NA NA		NA	
p-Cymene	UG/L	ND	0.40	NA NA		NA		NA	
Isopropylbenzene	UG/L	ND	0.20	NA NA		NA NA		NA	
m-Xylene	UG/L	ND	0.40	NA NA		NA		NA	
o-Xylene	UG/L	ND	0.20	NA NA		NA		NA	
p-Xylene	UG/L	ND	0.40	NA NA		NA		NA	
Total Xylenes —————————SURROGATE(S)————	UG/L	ND	0.60	NA		NA		NA	
p-Bromofluorobenzene	%	107	65-123	NA		NA		NA NA	

STL Buffalo

APPENDIX E

DATA USABILITY SUMMARY REPORT (DUSR)

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 Facsimile (518) 251-4428

August 23, 2005

Bryan Hann Benchmark Env. Engineering 726 Exchange St. Suite 624 Buffalo, NY 14210

RE: **D**ata **U**sability **S**ummary **R**eport for the Former LTV Steelfields-August Feine site STL-Buffalo SDG/Package Nos. A05-7063 and A05-7503

Dear Mr. Hann:

Review has been completed for the data packages generated by Severn Trent Laboratories that pertain to samples collected 7/06/05 through 7/18/05 at the Former Steelfields August Feine site. Thirteen soil samples and four aqueous samples (including a field duplicate for each matrix) were processed for STARS volatiles, TCL base/neutrals, and RCRA metals. The aqueous samples were also processed for cyanide. Methodologies utilized were the USEPA SW846 EPA8021,EPA8270C, EPA 6000/7000, and EPA9012. Sample matrix spikes were also processed.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, with consideration for specific method requirements, and as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes and IDLs
- * Calibration/CRI/CRA Standards
- * ICP Interference Check Standards
- * ICP Serial Dilution Correlations
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR review level.

In summary, samples were processed primarily in compliance with protocol, and results are generally usable as reported, or with usable with minor qualification as estimated or edit to nondetection.

There is evidence of an apparent matrix effect on recoveries of target analytes in the soil matrix spikes, and the soils also show possible non-homogeneity.

Copies of the sample identification/analysis summaries and laboratory case narratives are attached to this text, and should be reviewed in conjunction with this report. Included with this report are red-ink edited sample report forms that represent final qualified sample results.

General

Blind field duplicate correlations were performed for the STARS volatiles, the base/neutrals, and metals on A2-MW-15 (also evaluates cyanide) and FAF-B-09. The correlations for the aqueous samples were acceptable. Those for the soils showed variances exceeding validation guidelines for the following analytes, results for which are qualified in the parent sample and duplicate as being estimated in value ("J" or "UJ" qualifiers): ethylbenzene, o-xylene, m+p-xylene, naphthalene (all >±CRDL), chromium (158%RPD), and lead (180%RPD). Results for those analytes in samples of similar matrix should be used with caution.

STARS Volatiles by EPA 8021B

The detected results for m-xylene and p-xylene were reported as m-xylene, with p-xylene reported as no detection. This is not a correct assumption (as their responses cannot be resolved from one another). Therefore, the report forms have been edited to reflect combined detections.

Blanks show no contamination.

The STARS aqueous matrix spikes of A2-MW-20 show acceptable accuracy and precision (elevated recoveries for one analyte not detected in the parent sample). Those for the soil sample FAF-B-07 produced low recoveries for all but two compounds. Benzene produced elevated recoveries and the recoveries for MTBE were acceptable. All results except those for MTBE in those the parent sample are to be qualified as estimated. Results for samples with similar matrix should be used with caution.

Calibrations standards show responses within validation guidelines.

Holding times were met and instrument tunes were within required ranges. Surrogate and internal standard recoveries were acceptable.

Several samples were processed at dilution, resulting in elevated reporting limits.

Base/Neutral or TCL Semivolatile Analyses by EPA8270C

Results for analytes initially reported with the "E" flag are to be derived from the dilution analysis.

Surrogate recoveries and internal standard responses were acceptable. Calibration standards are within validation guidelines.

Base/neutral matrix spikes of A2-MW-20 show accuracy and precision values within recommended ranges for the six analytes evaluated. Those for FAF-B-07 show outlying recoveries in both spikes for acenaphthene (6% and 40%). The detected result for that compound in the parent sample is qualified as estimated ("J"). The matrix spike of FAF-B-07 shows lower recoveries than the matrix spike duplicate, with two values falling below recommended limits.

Holding times were met and instrument tunes were within required ranges.

Due to the presence at low levels in the associated method blank, the detection of bis(2-ethylhexyl)phthalate in the samples collected 7/6/05 is considered external contamination, and is edited to reflect nondetection ("U") at the CRDL.

Due to lack of resolution between responses, detected results for benzo(b)fluoranthene and benzo(k)fluoranthene are qualified as estimated in value.

RCRA Metals/CN by EPA6010/7470/7471

Matrix spike and duplicate evaluation were performed on A2-MW-20 and FAF-B-07. The following recoveries are outside the validation action ranges of 75% to 125%, indicating either a matrix effect on recovery of analytes from the samples or a nonhomogenous matrix. Associated sample results are qualified as estimated ("J" or "UJ"):

Sample ID	Analyte	%Rec	Associated Samples
A2-MW-20	cyanide	122% and 149%	detections in aqueous
FAF-B-07	cadmium	33% and 84%	soils
	mercury	144% and 169%	detections in soils

Duplicate correlations (performed on matrix spike values) for the samples noted above are within validation action guidelines.

ICP serial dilution evaluation of FAF-B-07 shows outlying correlations for cadmium (13%D), chromium (14%D), and lead (14%D). Results for those three elements in the soil samples are therefore qualified as estimated. The ICP serial dilution evaluation was not applicable to the aqueous samples due to low sample concentrations.

Data Completeness

The following raw data items were not present in the data packages, but can be requested from the laboratory if full validation review of the data is required:

a. Confirmation column analyses were performed for the volatile method EPA8021 detections.

These raw data were not included in the data packages, but the analyst notations regarding those results are present on the raw primary column data, and reviewed for this DUSR.

b. Dual column quantitative correlation was not performed for the volatiles.

The collection and release date for samples reported in SDG A05-7063 were inadvertently entered with the wrong month entry. Results are not affected.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

Judy Harry