Strong Advocates, Effective Solutions, Integrated Implementation

May 4, 2011

Mr. David Szymanski New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619-9) Periodic Review Report (March 2, 2009 to April 1, 2011)

Dear Mr. Szymanski:

Please find attached one hard copy and one compact disc containing the Periodic Review Report (PRR) for the Riverbend Site. This report supplements our previous electronic submittal on May 2, 2011 and includes all supporting appendices as well as one hard copy of the PRR. The report has been prepared consistent with NYSDEC's DER-10 Technical Guidance (May 2010).

Please contact me if you have any questions regarding this submittal.

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann Project Manager

File: 0171-006-500

Periodic Review Report

Riverbend Site (No. V00619) Buffalo, New York

May 2011

0171-006-500

Prepared For:

Riverbend, LLC

Prepared By:

In Association With:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York 14218 | phone: (716) 856-0635 | fax: (716) 856-0583

PERIODIC REVIEW REPORT for the

STEELFIELDS (AKA RIVERBEND, LLC) SITE (SITE NO. V00619)

BUFFALO, NEW YORK

April 2011

0171-006-500

Prepared for:

Riverbend, LLC

Prepared By:

In Association With:

Benchmark & TurnKey Companies 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

PERIODIC REVIEW REPORT Steelfields (aka Riverbend, LLC) Site Table of Contents

1.0	INTRODUCTION			
	1.1	Background	1	
2.0	SITE 2.1 2.2 2.3 2.4	Area I - Former Republic (LTV) Steel Parcel Area II – Former Donner-Hanna Coke Plant Area III – Former Warehouse Parcel Former August Feine Parcel	1 1 2 2 2	
3.0	SITE MANAGEMENT PLAN			
	3.1	Operation, Monitoring and Maintenance (OM&M) Plan	4	
		3.1.1 Area I	4	
		3.1.2 Area II	4	
		3.1.3 Area III	5	
		3.1.4 Former August Feine Parcel	5	
	3.2	Long-Term Groundwater Monitoring (LTGWM) Plan	5	
	3.3	Soil/Fill Management Plan	7	
	3.4	Engineering and Institutional Control Requirements and Compliance	7	
		3.4.1 Engineering Controls	7	
		3.4.2 Institutional Controls	7	
	3.5	Site Inspection	8	
		3.5.1 Ārea I	8	
		3.5.2 Area II	8	
		3.5.3 Area III	9	
		3.5.4 Former August Feine Parcel	9	
	3.6	Abby & Baraga Streets Surface Drainage System Assessment	9	
		3.6.1 Background	9	
		3.6.2 Drain System Assessment/Flushing	10	
4.0	CONCLUSIONS AND RECOMMENDATIONS		11	
5.0	DEC	CLARATION/LIMITATION	12	
6.0	Ref	ERENCES	13	

i

PERIODIC REVIEW REPORT Steelfields (aka Riverbend, LLC) Site Table of Contents

FIGURES

- Figure 1 Site Location and Vicinity Map
- Figure 2 Site Plan
- Figure 3 Abbey Street Drain Site Sketch

APPENDICIES

(provided electronically)

- Appendix A Site Inspection Forms
- Appendix B Area II GWPTS Reports
- Appendix C Site Photograph Log
- Appendix D Groundwater Monitoring Reports
- Appendix E Area III ORC Annual Inspection Forms
- Appendix F Proposed Modification Letter

1.0 INTRODUCTION

TurnKey Environmental Restoration, LLC (TurnKey), in association with Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this Periodic Review Report (PRR), on behalf of Riverbend, LLC, to summarize the postremedial status of New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) Steelfields (aka Riverbend, LLC) Site No. V00619.

This PRR has been prepared in accordance with the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010) and the NYSDEC's Institutional and Engineering Controls Certification Forms have been prepared for each of the four designated areas (i.e., Area I, Area II, Area III, former August Feine) of the Site. This PRR and the associated inspections forms (see Appendix A) have been completed for the March 2, 2009 to April 1, 2011 reporting period.

1.1 Background

In October 2002, Steelfields Ltd. (Steelfields) purchased several vacant industrial properties in South Buffalo, New York (see Figures 1 and 2) out of bankruptcy from the LTV Steel Company and Hanna Furnace Corporation (a wholly owned subsidiary of the National Steel Corporation). At the same time, Steelfields entered into a Voluntary Cleanup Agreement (VCA) with the NYSDEC to remediate four parcels identified below, totaling approximately 218 acres. The parcels were divided based on the operational and ownership history of each:

- Area I Former Republic (LTV) Steel Plant Parcel (± 90.6 acres);
- Area II Former Donner-Hanna Coke Plant Parcel (± 53.0 acres);
- Area III Former Republic (LTV) Steel Warehouse Parcel (± 43.2 acres); and
- Area IV Former Donner-Hanna Coke Yard Parcel (± 31.1 acres)

In July 2003, a fifth parcel, the formerly owned and operated August Feine & Sons property (\pm 4.7 acres), was acquired by Steelfields and was also subject to the original VCA. All five parcels were remediated by Steelfields under the NYSDEC VCA, and remedial activities for the entire Site were completed in 2007. Subsequent to completion of the remediation of Area IV by Steelfields in 2006, this parcel was separated from the Site, sold to

1

Hydro-Air Components, Inc. (Hydro-Air), and entered into the Brownfield Cleanup Program (NYSDEC BCP Site No. C915204) by Hydro-Air. As such, this report does not address Area IV. Riverbend, LLC (Riverbend) acquired the remaining four parcels from Steelfields in May 2008.

2.0 SITE OVERVIEW

The Riverbend Site, comprised of four former heavy industrial properties identified as Areas I, II, and III and the former August Feine parcel, encompasses approximately 192 acres in the City of Buffalo, Erie County, New York. The Site is bordered by the Buffalo River and South Park Avenue to the north, Abby Street and residential neighborhoods to the east, Former Area IV (currently Hydro-Air Components) to the south, and a railroad corridor and rail yard to the west (contiguous parcels owned by South Buffalo Railroad Company, Norfolk Southern Corporation, Buffalo Southern Railroad, and CSX Corporation) (see Figure 2).

The environmental investigations revealed the presence of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), and metals which required remediation. Remedial activities were completed across the Site from 2002 through 2006. Detailed description of the remedial efforts and construction documents are provided in the Department's approved Construction Closeout Report for Area I, including the Site Management Plan, prepared by TurnKey, dated April 2007; and the Final Engineering Report for Areas II and III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, including Site Management Plan, prepared by Malcolm Pirnie, dated May 2008. A brief description of the remedial efforts described in those documents is presented below.

2.1 Area I - Former Republic (LTV) Steel Parcel

The former Republic Steel (LTV) Plant property encompasses two adjoining parcels (122.16-1-8.1 and 122.20-1-3.1) totaling approximately 90.6 acres. Area I is bordered by the Buffalo River and South Park Avenue to the north, Abby Street and residential neighborhoods to the east, Norfolk Southern property to the south, a railroad corridor and rail yard to the west. Remedial efforts conducted in Area I included:

- Remediation of petroleum/naphthalene/tar-impacted and metals impacted soil/fill
- Removal of former fuel oil and tar transfer pipelines, including disposal of residual product within the piping and impacted soil in the vicinity of the pipelines
- Removal of former underground storage tanks; and,
- Buffalo River bank stabilization

2.2 Area II – Former Donner-Hanna Coke Plant

The former Donner-Hanna Coke Plant property encompasses three adjoining parcels (122.20-1-21, 122.20-1-5.1, and 132.08-1-6) totaling approximately 53.0 acres. Area II, partially intersected by Baraga Street, is bordered by an adjacent earthen berm along Abby Street and residential neighborhoods to the east, Norfolk Southern property and the former August Feine parcel to the north, Area III to the south, and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area II included:

- Construction of a 14-acre containment cell, slurry wall, low-permeability cover system and a Groundwater Collection and Conveyance System;
- Construction of a Groundwater Pre-treatment System (GWPTS); and,
- In-Situ "Hot Spot" remediation

2.3 Area III – Former Warehouse Parcel

The former Republic Steel Warehouse property encompasses two adjoining parcels (132.08-1-7 and 132.12-1-9.11) totaling approximately 43.2 acres. Area III is bordered by an adjacent earthen berm along Abby Street and residential neighborhoods to the east, Area II to the north, Former Area IV (currently Hydro-Air Components) to the south, and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area III included:

- Blue-Stained soil/fill remediation;
- Lead-impacted soil remediation; and,
- Tar-impacted soil/fill remediation

2.4 Former August Feine Parcel

The former August Feine property encompasses one parcel (122.20-1-22) totaling approximately 4.7 acres. This property is surrounded by Area II on the west, south, and east and Norfolk Southern property to the north (Baraga Street dead ends at the entrance to this parcel).

A July 2006 site assessment of this parcel identified localized VOC (primarily benzene) and total metal (plus cyanide) impacts to subsurface soil/fill and shallow groundwater along the common boundary with Area II. Based on the proximity of these identified impacts to the Area II groundwater collection trench, the leachable impacts, if any,

TURNKEY CBENCHMARK

are being captured and treated by the groundwater collection system, eliminating downgradient migration and potential environmental impact. As such, no additional remediation, beyond those already being implemented in accordance with the VCA for Area II was recommended. Any potential for subsurface soil/fill exposure during future development of the property (i.e., utility installation) will be addressed in accordance with the Soil/Fill Management Plan (see Section 3.3).

3.0 SITE MANAGEMENT PLAN

The Riverbend Site is managed by two separate Site Management Plans (SMPs). One SMP covers Area I (prepared by TurnKey-Benchmark in April 2007) and the second covers Areas II, III, and the former August Feine parcel (prepared by Malcolm Pirnie in May 2008). Both SMPs include Operation, Monitoring and Maintenance (OM&M) Plans, Long-Term Groundwater Monitoring (LTGWM) Plans, Soil/Fill Management Plans (SFMPs), and Environmental Easements (also identified as Covenant and Restrictions) for their respective parcels. A brief description of these SMP components is presented below.

3.1 Operation, Monitoring and Maintenance (OM&M) Plan

As a requirement of the OM&M plans, annual inspection of Areas I, II, III, and the former August Feine parcel are required. The NYSDEC PRR Institutional and Engineering Controls Certification Form will replace the previously utilized Environmental Inspection Forms for each Area. Details of the annual inspection and completion of the EC/IC forms is discussed in Sections 3.5 and 3.6 below.

3.1.1 Area I

The Area I SMP provides the details for Operation and Maintenance (O&M) related to the product recovery passive skimmer at monitoring well A1-MW-6. Specifically, the O&M Plan details the product recovery system inspection program, routine maintenance operations, and reporting requirements. Inspection logs for the reporting period are included in Appendix A.

3.1.2 Area II

The Area II SMP provides the O&M details related to the groundwater collection and conveyance system, including the soil flushing system; groundwater pre-treatment system (GWPTS) including the bag filters, carbon vessels, transfer pumps, separator tank, and general house-keeping; sewer discharge effluent monitoring; and low-permeability cover system (i.e. landfill post-closure monitoring and cover maintenance). Inspection reports for the reporting period are included in Appendix A. The Area II GWPTS quarterly progress reports submitted to the NYSDEC and the annual effluent monitoring reports submitted to

ATURNKEY C

BENCHMARK

the Buffalo Sewer Authority (BSA) during the current reporting period are presented in Appendix B. Proposed modifications to the Area II SMP are discussed in Section 4.0.

It should be noted that storm water operations related to the Terminal Basin, as described in the SMP for Area II, were discontinued prior to this reporting period as part of the deactivation of that structure in December 2008. The BSA was notified in January 2009 of this deactivation and use of Buffalo Pollution Discharge Elimination System (BPDES) Discharge Permit No. 06-02-BU100 was no longer required. At that time, the BSA was also notified that the former August Feine building, located east of the Terminal Basin and north of the Area II Containment Cell, storm water discharge to the Terminal Basin would be discontinued and the building would be retrofitted with a sump-pump that would utilize the existing BSA storm sewer connection (formerly used by the Terminal Basin) at the intersection of Abby and Baraga Streets. In June 2009, the former August Feine building caught fire and emergency demolition followed. A concrete slab on grade foundation and a small brick walled shed is all that remains and storm water management of this area was subsequently discontinued (see Appendix C).

3.1.3 Area III

The Area IIII O&M plan provides the details related to the in-situ groundwater treatment with oxygen release compound (ORC) at eleven ORC in-situ treatment wells. Inspection logs for the reporting period are included in Appendix A and ORC monitoring results are included in the groundwater monitoring reports, discussed in Section 3.2 below. Proposed modifications to the Area III O&M Plan are discussed in Section 4.0.

3.1.4 Former August Feine Parcel

There are no O&M requirements for the former August Feine parcel.

3.2 Long-Term Groundwater Monitoring (LTGWM) Plan

As a requirement of the SMPs, long-term groundwater monitoring is being performed at the Site. A Long-Term Groundwater Monitoring (LTGWM) Work Plan was prepared by TurnKey in March 2000 (revised April 2007) for Area I. Similarly, LTGWM Work Plans were prepared by others in October 2007 for Areas II (revised April 2008) and

TURNKEY CBENCHMARK

III. Currently, groundwater monitoring is performed on an annual basis and ORC monitoring is performed semi-annually. The activities performed during each groundwater monitoring event are performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised September 2002);
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008);
- May 5, 2008 Response to NYSDEC comment letter regarding Area III Site Management Plan (comment/responses 8, 9, and 10);
- May 5, 2008 Response to NYSDEC comment letter regarding Areas II and III Final Engineering Report (comment/responses 19 and 22); and
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008).

Since 2009 and with NYSDEC approval, LTGWM for Areas I, II, and III were modified into a combined monitoring and reporting event, identified as the Comprehensive Annual Groundwater Monitoring Report. Groundwater monitoring began in 2004 for Area I and in 2007 for Areas II and III. A total of 24 monitoring wells are monitored across the Site including 10 wells in Area I, 9 wells in Area II, and 5 wells in Area III. In addition to these monitoring wells, seven additional wells (1 in Area I and 5 in Area II) are monitored for water level only. Groundwater monitoring events conducted during the reporting period include the following:

- May 2009 Comprehensive Annual Groundwater Monitoring Report and First Semi-Annual Area III ORC Monitoring Event
- November 2009 Second Semi-Annual Area III ORC Monitoring Event
- May 2010 Comprehensive Annual Groundwater Monitoring Report and First Semi-Annual Area III ORC Monitoring Event
- November 2010 Second Semi-Annual Area III ORC Monitoring Event

Groundwater monitoring reports and Area III ORC monitoring network annual inspection forms are presented in Appendices D and E, respectively. Proposed modifications to the LTGWM Plans for Areas I, II, and III are discussed in Section 4.0.

TURNKEY CBENCHMARK

3.3 Soil/Fill Management Plan

A Soil/Fill Management Plan (SFMP) was included in the approved-SMPs for each Area of the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive activities.

No intrusive activities requiring management of on-Site soil or fill material; or the placment of backfill materials occurred during the monitoring period.

3.4 Engineering and Institutional Control Requirements and Compliance

As detailed in the SMPs, several engineering controls (ECs) and institutional controls (ICs) are to be maintained as a requirement of the VCA for the Site.

3.4.1 Engineering Controls

Three of the four Areas of the Riverbend Site are subject to several ECs as indicated below.

- Area I: maintain vegetative cover, perimeter fencing, soil/fill management, soil vapor intrusion (SVI) evaluation or installation of vapor mitigation system before build-out (effective 08/16/2007);
- Area II: maintain final cover system of containment cell, maintain vegetative cover outside containment cell area until build-out whereupon on foot of clean cover or alternative with a demarcation layer is required, O&M of GWPTS, O&M of containment cell, perimeter fencing, soil/fill management, SVI evaluation or installation of vapor mitigation system before build-out (effective 05/21/2008);
- Area III; maintain vegetative cover (limited area sampling required before buildout, failure to meet Site Specific Action Levels (SSALs) would require one foot of clean cover or alternative with a demarcation layer); O&M of passive groundwater treatment (e.g., ORC), perimeter fencing, soil/fill management, SVI evaluation or installation of vapor mitigation system before build-out (effective 05/21/2008); and

7

• Former August Feine parcel: none.

3.4.2 Institutional Controls

All four Riverbend parcels are subject to the following ICs:

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited.
- Land-Use Restriction the controlled property may be used for commercial and/or industrial use; and,
- Soil/Fill Management Plan

Additionally, Areas II and III are subject to compliance with the O&M Plans for their respective areas, as described in Section 3.1.

3.5 Site Inspection

Site inspections of Areas I, II, and III and the former August Feine parcel were conducted by TurnKey/Benchmark on April 12, 2011. A parcel by parcel description is provided in the following sections.

3.5.1 Area I

At the time of the inspection, Area I was vacant, and in compliance with the EC/ICs, with the minor exception of some areas of the perimeter fence needing routine repairs. Riverbend has made arrangements to have the fence repaired in 2011. Although Area I was observed to be vacant during the site inspection, this parcel was utilized for surface storage of wind turbine components during the reporting period. Also, during the winter of 2010/2011, Area I was utilized for emergency snow removal storage by the City of Buffalo near the entrance to South Park Avenue. Remnants of the snow piles were observed during the site inspection along with scattered debris. There was no damage to existing on-site monitoring wells/piezometers in Area I as a result of these piles.

The completed Institutional Control Certification form for Area I is provided in Appendix A. A photographic log is presented in Appendix C.

3.5.2 Area II

At the time of the inspection, Area II, including the GWTS and Containment Cell were in compliance with the EC/ICs, with the minor exception of some areas of the fence needing routine repairs. Riverbend has made arrangements to have the fence repaired in

TURNKEY CBENCHMARK

2011. One monitoring well (i.e., A2-MW-14) was noted vandalized/damaged during the May 2010 LTGWM event. Replacement of this well is pending.

The completed Institutional Control Certification form for Area II is provided in Appendix A. A photographic log is presented in Appendix C.

3.5.3 Area III

At the time of the inspection, Area III was vacant and in compliance with the EC/ICs. The completed Institutional Control Certification form for Area III is provided in Appendix A. A photographic log is presented in Appendix C.

3.5.4 Former August Feine Parcel

At the time of the inspection, the former August Feine parcel was vacant. There are no EC/ICs associated with this parcel; therefore an Institutional Control Certification form was not completed. A photographic log is presented in Appendix C.

3.6 Abby & Baraga Streets Surface Drainage System Assessment

Although not a component of the Area II SMP and/or EC/ICs as well as occurring outside the current PRR reporting period, an explanation of the recent assessment and flushing activities of the Abby and Baraga Streets surface drainage system has been included in this PRR per a NYSDEC request. Any future assessments and/or flushing activities will also be presented in all annual PRRs going forward. A brief background and description of recent field activities is presented below.

3.6.1 Background

The surface drainage system at the Riverbend Site has three components, two Abby Street drains (Abby-West and Abby-East) and the Baraga Street drain lateral (Baraga lateral), as shown in Figure 3. The Abby-West drain (approximately 470 feet long) and the Baraga lateral (approximately 82 feet long) are both 6-inch perforated, corrugated collection pipes wrapped with filter fabric and backfilled with washed No. 2 stone. The Abby-West drain flows toward the south and the Baraga lateral to the east; both empty into the Baraga Street manhole at the intersection of Abby and Baraga Streets. The Abby-West drain has been in

TURNKEY CBENCHMARK

place since 1998 and the Baraga lateral since 2000. In addition, the Abby-East drain, a 4inch perforated, corrugated collection pipe backfilled with washed No. 2 stone, was installed from the O'Conner Street manhole approximately 182 feet north (see Figure 3). The Abby-East drain and two nearby drop inlets (north and south) empty into the O'Conner Street manhole. The Abby-East and Abby-West drains are not connected and operate independently of each other.

The surface drainage system was installed to mitigate breakout of calcium-rich surface water resulting from the underlying slag and lime materials in the vicinity of the berm along Abby Street. Since 1998, the drainage system has functioned as intended, but has required periodic maintenance and repair to remedy clogs due to calcium and sediment build-up and, most recently, damage from heavy snow removal equipment.

3.6.2 Drain System Assessment/Flushing

In March 2011 and in response to complaints received by the NSYDEC of ponding water along Abby Street, TurnKey personnel attempted to flush the Abby-East drain and discovered that it was damaged (approximately 30 feet north of the O'Conner Street manhole) and required repair. Subsequently, TurnKey personnel excavated and repaired approximately 25-feet of the Abby-East drain pipe in that area. Immediately following this repair, water was observed flowing into the O'Conner Street manhole and the drain function appeared to be restored.

In April 2011 and in response to additional complaints received by the NSYDEC of ponding water along Abby Street, TurnKey personnel, with support from a local sewer subcontractor, performed the surface drainage assessment and flushing of the entire Abby and Baraga Streets drainage system. The Abby-East drain was video inspected and found to be free of any obstructions or damage with an observed free-flow of water into of the O'Conner Street manhole; therefore, flushing of the Abby-East drain was not necessary. Although video inspection of the Abby-West and Baraga Street lateral drains was obscured by standing water, sediment, and calcium deposit build-up, each drain was successfully flushed with high-pressure water. Observations of water, sediment, and calcium deposits flowing freely through the Baraga Street manhole during and after flushing activities indicated that the drain system was returned to normal function. Annual assessments are planned.

ATURNKEY C

BENCHMARK

4.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations are as follows:

- At the time of the site inspection, the Site was in compliance with the Engineering and Institutional Controls (EC/ICs), including: groundwater monitoring, leachate collection and pump and treat system, containment cell, ORC monitoring, product removal monitoring, and operational maintenance, groundwater use restriction, land use restriction, O&M plan, and soil/fill management plan.
- Minor fence damage was noted in Areas I and II. The fence damages are currently being addressed, and fencing repairs are expected to be completed by September 1, 2011. The Department will be notified upon completion of the repairs.
- Based on the high probability for snow/ice cover remaining on-Site in April, it is recommended that the PRR reporting period and due date be changed from May 1st to June 1st. This later date would assure no hindrance at the site inspection due to snow or ice cover.
- Based upon an evaluation of operations and maintenance (O&M) procedures and analytical data from 2007 to the present, it is our intention to modify the O&M, monitoring, and reporting requirements for Areas I, II, and III at the Riverbend Site immediately upon your approval. Our April 25, 2011 modification request letter (see Appendix F) details our justifications for the proposed modifications which are briefly summarized below:
 - reduce the frequency of Area II groundwater pre-treatment system (GWPTS) on-site visits by utilizing off-site remote monitoring via the internet;
 - o reduce the Area II O&M reporting frequency from quarterly (four times per year) to annually;
 - modify the groundwater parameter lists of Areas I, II, and III by eliminating those parameters no longer relevant to the assessment of Site groundwater quality; and
 - o modify the current purging requirement from 10 well volumes (or 4 days, whichever occurs first) to low-flow sampling of the eleven oxygen release compound (ORC) wells in Area III.

11

TURNKEY CBENCHMARK

5.0 DECLARATION/LIMITATION

TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering and Science, PLLC, personnel conducted the annual site inspections for Voluntary Cleanup Program Site No. V00619, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to Riverbend, LLC by TurnKey Environmental Restoration, LLC.

This report has been prepared for the exclusive use of Riverbend, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Riverbend, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

6.0 **R**EFERENCES

- 1. Site Management Plan for AREA I (former Republic (LTV) Steel Parcel), Steelfields Site, Buffalo, NY (NYSDEC Site # V00619-9), dated April 2007, prepared by TurnKey Environmental Restoration, LLC and Benchmark Environmental Engineering and Science, PLLC.
- Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendices GG – Area II, dated May 2008, prepared by Malcolm Pirnie.
- 3. Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendices HH Area III, dated May 2008, prepared by Malcolm Pirnie.
- 4. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.

FIGURES

FIGURE 1

DRAFTED BY: BCH

RIVERBEND, LLC

APPENDIX A

SITE INSPECTION FORMS

(PROVIDED ELECTRONICALLY)

AREA

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

AREAI

• :

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. V00619	Box 1			
Site Name Steelfields (aka Riverbend, LLC)				
Site Address: 304 Abby Street Zip Code: 14220 City/Town: Buffalo County: Erie Site Acreage: 182.0				
Reporting Period: March 02, 2009 to April 01, 2011				
	YES	NO		
1 Is the information above correct?	76	но П		
If NO. include handwritten above or on a separate sheet.	\sim	_		
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?				
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 	P .,	威		
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		¢≰		
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form				
5. Is the site currently undergoing development?		X		
	Box 2			
ч <u>8</u> "	YES	NO		
Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X			
7. Are all ICs/ECs in place and functioning as designed?	X			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM.				
A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
Signature of Owner, Remedial Party or Designated Representative Date				

AREA III

• :

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No. V00619	Box 1	Ť
Site	e Name Steelfields (aka Riverbend, LLC)		
Site City Cou Site	e Address: 304 Abby Street Zip Code: 14220 //Town: Buffalo unty: Erie e Acreage: 182.0	r	
Rep	porting Period: March 02, 2009 to April 01, 2011		
	5 a	VEO	NO
1.	Is the information above correct?	A	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		达
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?	<u> </u>	X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		皮
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		×
		Box 2	к
	*	YES	NO
6,	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	×	
7.	Are all ICs/ECs in place and functioning as designed?	R	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM.	Ind	
AC	orrective Measures Work Plan must be submitted along with this form to address th	nese iss	ues.
	a		
Sigr	nature of Owner, Remedial Party or Designated Representative Date	8	

Description of institutional Control Parcel Owner Institutional Control 122.20-1-21 Buffalo Urban Development Corporation O&M Plan Soil Management Plan Soil Management Plan 122.20-1-3.1 Buffalo Urban Development Corporation Coround Water Use Restriction Soil Management Plan Soil Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Coround Water Use Restriction Soil Management Plan Soil Management Plan 122.20-1-6 Buffalo Urban Development Corporation Coround Water Use Restriction Caround Water Use Restriction Caround Water Use Restriction Canduse Restriction O&M Plan Soil Management Plan 132.08-1-6 Buffalo Urban Development Corporation Caround Water Use Restriction Canduse Restriction Caround Water Use Restriction Canduse Restriction Caround Water Use Restrictio	SITE NO. V00619	Bo	
Parcel Owner Institutional Control 122.20-1-21 Buffalo Urban Development Corporation O&M Plan Soil Management Plan 122.20-1-3.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-2.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	Description of Ir	nstitutional Controls	
Line Diffe Interview 122.20-1-21 Buffalo Urban Development Corporation Canduse Restriction O&M Plan 122.20-1-3.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soll Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan 122.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Canduse Restriction Landuse Restriction Landuse Restriction Landuse Restriction Canduse Restriction Canduse Restriction Landuse Restriction Landuse Restriction Landuse Restriction Canduse Restriction Landuse Restriction Restriction Restriction Restriction Restriction Restrion Restriction Restriction Restrict	Parcel	Owner Institutional Control	
122.20-1-3.1 Durate of balan berelopment corporation O&M Plan Soil Management Plan 122.20-1-3.1 Buffalo Urban Development Corporation Caround Water Use Restriction Landuse Restriction Soil Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation O&M Plan Soil Management Plan	122 20-1-21	Buffalo Urban Development Corporation	
Landuse Restriction O&M Plan Soil Management Plan 122.20-1-3.1 Buffalo Urban Development Corporation Corund Water Use Restriction Landuse Restriction Soil Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Canduse Restriction O&M Plan Soil Management Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Canduse Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Canduse Restriction O&M Plan Soil Management Plan 132.12-1-3.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Canduse R	122.20-1-21	Ground Water Use Restriction	
122.20-1-3.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soli Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soli Management Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Canduse Restriction Landuse Restriction Canduse R		Landuse Restriction	
Soil Management Plan Soil Management Plan Ground Water Use Restriction Landuse Restriction Canduse Restriction Landuse Restriction Canduse Restriction Canduse Restriction Canduse Restriction Canduse Restriction Canduse Restriction O&M Plan Soil Management Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Caround Water Use Restriction Landuse Restriction Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		O&M Plan	
122.20-1-3.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soli Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction OAM Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction OAM Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction OAM Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Data Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Data Soli Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Data Soli Management Plan 132.12-14-15.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Landuse Restriction Soli Management Plan 132.12-14-15.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction CAM Plan Soli Management Plan 132.12-14-15.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat		Soil Management Plan	
122.20-1-5.1 Eventsol of value Sectorphiles in Corporation Landuse Restriction Soli Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Coround Water Use Restriction Data Development Corporation Count Water Use Restriction Count Water Use Restriction Canual Water Use Restriction Canual Water Use Restriction Landuse Restriction Canual Water Use Restriction Canual Water Use Restriction Landuse Restriction Canual Water Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	122 20-1-3 1	Buffalo Lirban Development Corporation	
122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Ground Water Use Restriction Landuse Restriction CoM Plan Soil Management Plan 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction CoM Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction CoM Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction CoM Plan Soil Management Plan 132.12-13-11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Landuse Restriction Cound Water Use Restriction Landuse Restriction Cound Water Use Restriction Landuse Restriction Landuse Restriction Cound Water Use Restriction Landuse Restriction Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	166.60-1-0.1	Ground Water Use Restriction	
Soil Management Plan 122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Canned Water Use Restriction 132.08-1-6 Buffalo Urban Development Corporation 132.08-1-7 Buffalo Urban Development Corporation 132.08-1-8 Buffalo Urban Development Corporation 132.12-14-14 Buffalo Urban Development Corporation 132.12-14-9.11 Buffalo Urban Development Corporation 132.12-14-9.11 Buffalo Urban Development Corporation 132.12-14-9.11 Buffalo Urban Development Corporation 132.12-12-1 Cover System Parcel Engineering Control 122.20-1-21 Cover System Pencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System <td< td=""><td></td><td>Landuse Restriction</td></td<>		Landuse Restriction	
122.20-1-5.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Iound Water Use Restriction Colored Water Use Restriction Landuse Restriction Colored Water Use Restriction Colored Water Use Restriction Landuse Restriction Colored Water Use Restriction Colored Water Use Restriction Landuse Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Landuse Restriction Landuse Restriction Landuse Restriction Landuse Restriction Landuse Restriction Colored Water Use Restriction Landuse Restriction Landuse Restriction Landuse Restriction Rest		Soil Management Plan	
122.20-1-5.1 Extrator of basis bevelopment Corporation Ground Water Use Restriction 132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction 132.08-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction 132.12-19-11 Buffalo Urban Development Corporation Ground Water Use Restriction 132.12-19-11 Buffalo Urban Development Corporation Ground Water Use Restriction 132.12-19-11 Buffalo Urban Development Corporation Soil Management Plan 132.12-10-11 Buffalo Urban Development Corporation Soil Management Plan 132.12-12 Cover System Fencing/Access Control Groundwater Containment 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment 122.20-1-3.	100 00 4 5 4	Buffalo Urban Development Corporation	
Is2.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Column Column Soil Management Plan Soil Management Plan So	122.20-1-0.1	Ground Water Use Restriction	
132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction O&M Plan Soil Management Plan Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan Soil Management Plan Soil Management Plan Ground Water Use Restriction Landuse Restriction Soil Management Plan Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan Box Description of Engineering Controls Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat			
Soli Management Plan Soli Management Plan Soli Management Plan Ground Water Use Restriction Landuse Restriction O&M Plan Soli Management Plan I32.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soli Management Plan I22.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soli Management Plan I22.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soli Management Plan Soli Management		O&M Plan	
132.08-1-6 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-1.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		Soil Management Plan	
Solution Orban Development Corporation Ground Water Use Restriction O&M Plan Soil Management Plan 132.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 122.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Corporation Ground Water Contain Soil Management Plan 132.12-1-1.1 Engineering Control Engineering Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	122 08 1 6	Buffalo Urban Development Corporation	
I32.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Co&M Plan Soil Management Plan Soil M	192.00-1-0	Ground Water Lee Peetrolon	
Canduse restriction O&M Plan Soil Management Plan Soil Management Plan Soil Management Plan Soil Management Plan Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan Soil Management Plan		Landuse Destriction	
Solid Management Plan Solid Management Plan Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Soi			
32.08-1-7 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.02-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		Soil Management Plan	
132.06-1-7 Builab Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan Soil Management Plan Box Description of Engineering Controls Box Parcel Engineering Control Box 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment 122.08-1-6 Cover System Fencing/Access Control	422.00 4 7	Buffele Urben Development Comercian	
Landuse Restriction Landuse Restriction O&M Plan Soil Management Plan I22.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan I32.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel I22.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.08-1-6 Cover System	132.08-1-7	Builaio Urban Development Corporation	
122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-61 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		. Ground water use Restriction	
Soil Management Plan Soil Management Plan Ground Water Use Restriction Landuse Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	•		
Soil Management Plan 122.16-1-8.1 Buffalo Urban Development Corporation Ground Water Use Restriction Soil Management Plan 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction 132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Engineering Control Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System			
122.16-1-8.1 Buffato Urban Development Corporation Ground Water Use Restriction I32.12-1-9.11 Buffato Urban Development Corporation Ground Water Use Restriction I32.12-1-9.11 Buffato Urban Development Corporation Ground Water Use Restriction Landuse Restriction Cound Water Use Restriction Landuse Restriction I32.12-1-9.11 Buffato Urban Development Corporation Ground Water Use Restriction Landuse Restriction Cound Water Use Restriction Description of Engineering Controls Parcel Engineering Control Box Description of Engineering Controls Cover System Fencing/Access Control I22.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Description Description I22.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Description Description I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Description Description I32.08-1-6 Cover System Fencing/	100 10 1 0 1	Soil Management Plan	
I32.12-1-9.11 Buffalo Urban Development Corporation Soil Management Plan Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel I22.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	122.16-1-8.1	Buffalo Urban Development Corporation	
I32.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Control [22.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat		Ground Water Use Restriction	
Soil Management Plan Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel I22.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System		Landuse Restriction	
132.12-1-9.11 Buffalo Urban Development Corporation Ground Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6		Soil Management Plan	
Cround Water Use Restriction Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	132.12-1-9.11	Випаю Urban Development Corporation Ground Water Use Restrictic	
Landuse Restriction O&M Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		Ground water Use Restriction	
Oam Plan Soil Management Plan Box Description of Engineering Controls Parcel Engineering Control Iz2.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6		Landuse Restriction	
Soli Management Plan Box Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		O&M Plan	
Box Description of Engineering Control Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	۸	Soil Management Plan	
Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System I22.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System		Box	
Description of Engineering Controls Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System 132.08-1-6 Cover System			
Parcel Engineering Control 122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System			
122.20-1-21 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System 122.20-1-5.1 Cover System 122.20-1-5.1 Cover System 132.08-1-6 Cover System	Description of E	ngineering Controls	
Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	Description of E	Engineering Controls	
Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	Description of E Parcel 122.20-1-21	Engineering Controls	
Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 122.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat 132.08-1-6 Cover System	Description of E Parcel 122.20-1-21	Engineering Controls Engineering Control Cover System	
I22.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21	Engineering Controls Engineering Control Cover System Fencing/Access Control	
I22.20-1-3.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment	
Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection	
I22.20-1-5.1 Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
I22.20-1-5.1 Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E <u>Parcel</u> 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Eonoing/Access Control	
I22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment	
I 22.20-1-5.1 Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I 32.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection	
Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	Description of E Parcel 122.20-1-21 122.20-1-3.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
Groundwater Containment Leachate Collection Pump & Treat I32.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System	
Leachate Collection Pump & Treat Cover System	Description of E <u>Parcel</u> 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control	
I32.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment	
132.08-1-6 Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Cover System Fencing/Access Control Groundwater Containment Leachate Collection	
Cover System	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat	
Fencing/Access Control	Description of E Parcel 122.20-1-21 122.20-1-3.1 122.20-1-5.1 132.08-1-6	Engineering Controls Engineering Control Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System Fencing/Access Control Groundwater Containment Leachate Collection Pump & Treat Cover System	

.

The state of the s	
Parcel	Engineering Control
	Groundwater Containment
	Leachate Collection
	Pump & Treat
433.00 4.7	T dilp & freat
132.00-1-7	Causa Dualana
	Cover System
	Fencing/Access Control
	Groundwater Containment
	Leachate Collection
	Pump & Treat
122.16-1-8.1	
	Cover System
	Fencing/Access Control
	Groundwater Containment
	Dump & Trach
	Pump & Treat
132.12-1-9.11	
	Cover System
	Fencing/Access Control
	Groundwater Containment
	Leachate Collection
	Pump & Treat
Resources and an	

Control Description for Site No. V00619

Parcel: 122.16-1-8.1

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

Parcel: 122.20-1-21

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Parcel: 122.20-1-3.1

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

Parcel: 122.20-1-5.1

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Parcel: 132.08-1-6

Area II: maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Parcel: 132.08-1-7

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Parcel: 132.12-1-9.11

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Bo	XC	5
****	_	-

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES	NO
1	

Π

 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:

(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;

(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and

(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. V00619 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. eter M. Cammarata at 143 Genesee St print name print business address NY 14203 Owner (Owner or Remedial Party) am certifying as _____ for the Site named in the Site Details Section of this form. lomma Signature of Owner or Remedial Party Rendering Certification **IC/EC CERTIFICATIONS** Box 7 **Professional Engineer Signature** I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. 2558 Hamburg print business add man at print name Kiverben am certifying as a Protessional Engineer for the (Owner or Remedial Party) 3 57626 Signature of Protessional Engineer, for the Owner or Stamp Remedial Party, Rendering Certification (Required for PE)

APPENDIX B

AREA II GWPT'S Reports

(PROVIDED ELECTRONICALLY)

APPENDIX B-1

GWPTS QUARTERLY PROGRESS REPORTS

PROGRESS REPORT NO. 3; PERIOD ENDING MARCH 31, 2009 PROGRESS REPORT NO. 4; PERIOD ENDING JULY 1, 2009 PROGRESS REPORT NO. 5; PERIOD ENDING SEPTEMBER 18, 2009 PROGRESS REPORT NO. 6; PERIOD ENDING DECEMBER 29, 2009

PROGRESS REPORT NO. 7; PERIOD ENDING MARCH 31, 2010 PROGRESS REPORT NO. 8; PERIOD ENDING JUNE 30, 2010 PROGRESS REPORT NO. 9; PERIOD ENDING SEPTEMBER 30, 2010 PROGRESS REPORT NO. 10; PERIOD ENDING DECEMBER 31, 2010

PROGRESS REPORT NO. 11; PERIOD ENDING MARCH 31, 2011

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 3 REPORTING PERIOD ENDING March 31, 2009

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers 3 months of the operation and maintenance of the GWPTS from (1/1/09 through 3/31/09). Future progress reports will continue to be submitted quarterly.

1.0 <u>Treatment Statistics</u>

- Approximately 3,771,217 gallons of collected groundwater were treated over this period averaging 41902 gallons per day.
- System was operational for 94 % of the time.
- System was down for 6 % of the time.
- Reason for down time: regular maintenance.

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - 3 bag filter changes/week or as necessary
 - Carbon filtration head vessel back-washing : 3 times per week or as necessary
 - o Decant tar from separator : 3 times per week or as necessary
- Drained the influent vessel, vacuumed the sediment out of the vessel and cleaned the vessel on February 16th, 2009
- Cleaned the flow meter and pumps on February 27th thru February 30th, 2009
- Annual inspection and certification completed in January 2009

3.0 Work Planned

- Carbon change-out scheduled for April 17, 2009
- Continued regular maintenance

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 3 REPORTING PERIOD ENDING March 31, 2009

4.0 Additional Notes/Issues

- Due to the maintenance listed above, the system was shut-down for maintenance from February 13th thru the 14th, 2009 and March 27th thru the 30th 2009.
- The entire GWPTS has been connected via the internet, and is thus remotely monitored "real-time" throughout the day from the Benchmark/TurnKey office. This allows a very dynamic and pro-active operation of the entire system.

5.0 <u>Attachments/Logs</u>

- Bag Filter Change-out Log 12-19-08 through 4-14-09
- Carbon Filter Backwash Log 12-19-08 through 4-14-09
- Maintenance Log
- Graph of Daily Operation
ATTACHMENT 1

MONITORED FLOWS VS. TIME

ATTACHMENT 2

MAINTENANCE LOGS

BENCHMARK Environmental Engineering & Science, PLLC

Project Name:	Steelfields, Ltd.	
Project No.:	0062-008-500	and a second
Client:	Steelfields, Ltd.	
	· · · · ·	

Data	<u></u>		Pressure I	Reading	7
<u>Date</u> $\frac{2/23}{2004}$	1 ime	Total Filtered (gal)	Prior to Change	After Change	technician
12/19/08 12/24/08	3:05 12:00 25 25 25 25 25 25 25 25 25 25 25 25 25	5475045 5627696 5712055 5817654 5832958 5846194 593194	2 4 7 30 2 7 NA 7 30 X	2-3 2-4 2-3 2-4 2-3 2-4 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5	Puis Puis Puis Puis Puis Puis Puis Puis

PROJECT INFORMATION:

Project Name:Steelfields, Ltd.Project No.:0062-008-500Client:Steelfields, Ltd.

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
Jank? TANK 1 TANK 1 TANK 1 TANK 1 TANK 1 TANK 1 TANK 1 TANK 1 TANK 1	3/2/2004 12/24/08 12/24/08 12/26/08 12/26/08 12/26/08 12/3/08 1/2/08 1/2/08 1/2/08	9.48 AM 5:05 pm 10:00 10:00 5 pm 3 pm 10 rm 2 pm 7 cm	5627676 5761065 5792055 5817654 5837958 5837958 58346194 5931194	HB.5- HB.5- HB. HB. HB. HB. HA HB. HA HA HA HA HA HA HA HA HA HA HA HA HA	14 14 13 13 17 17 14 14 14 14 14 14	Frin Par Par Par Par Par Par Par Par

Waste Water Treatment Plant - LTV Steel Maintenance Log

Date	Flow Meter Reading	Lead Tar	ık –	Bag Filte	r	Back Flu	sh	Drain Tar
}	<u> </u>	tonk 1	tonk 2	Change	topk 2	tonk 1	topk 0	Separator
	a. There						tank 2	date
12/11/08	54/2045	X		X	Y	X		
12/24/02	5627696	X	 	X	X	X		
12/11/083	5761065	X		X	X	Y		
12/25/06	5792055	X		X	X	λ	 	
12/31/03	5817654	X		X	X	<u>×</u>		
1/2/07	5832958	X	 	V	X	X		
1/5/07	5846174	$\boldsymbol{\lambda}$		X	X	\boldsymbol{X}		
1/1/08	5931194	X		X	X	λ	X	
								
<u> </u>								
				i			ļ	
	 		<u>_</u>				 	
			,					

Waste Water Treatment Plant - LTV Steel Maintenance Log

ļ	Date	Flow Meter Reading	Lead Tank		Bag Filter		Back Flush		Drain Tar
					Change				Separator
	$-\rho_1$		tank 1	tank 2	tank 1	tank 2	tank 1	tank 2	date
	178	5992370	X		X	X	X	Å	·
3	1909	6154837	λ		X	X	X		
	1/12/09	00236934	X		χ	χ	λ	X	
	414/07	00421417	χ		X	X	X	X	
	1/16/09	00565372	X	 	X	X	X		
	1/19/09	00708337	X		K	X	χ		
	1/21/09	008/2531	X		X	Х	X		
	1/23/09	60960223	X		χ	Х	χ		
	1/26/09	01097387	X		X	X	X		
	128/09	01163720	ý		X	X) X		
	1/30/09	D125796Z	X		X	X	X	X	
	2/2/09	01362373	X		Ż	X	Х		
	2/4/09	01419482	X		Х	X	χ	1	
-									
			·						
	<u> </u>								
	 								
	1								

Reset

Project Name:	Riverbend		 	 	 	
Project No.:	0171-001-500	 	 	 	 	
Client:	Riverbend	 	 	 	 	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
17/09	C:00pm	5992370	28	2.3	pun
119109	8 Dan	6154837	24	23	Pupu _
1/12/09	7:00an	00236934	<u> 28</u>	23	Pun
1114/09	4pm	00421417	25	23	Phil
1/16/09	17am	00565372	NXi		Phil
1/19/04	<u>4p</u> ~			25	Pww
4/2/104	8:50	008 2331	26	17	Fuel
17409	4.17	1197307	78	17	PLIA
1/20/09	7:30	01163720	NA	22	Plun
180/09	3:30	01257962	ĩ.A	22	Put
2/2/09	4:30	01362373	N.K.	22	PWW
2/4/09	10.30	01419482	NHA	22	Pur
t t	, 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
····· · · · · · · · · · · · · · · · ·					·· ·
		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
L	1	L · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • • • • • • • • • •

Project Name	: Riverbend					
Project No.:	0171-001-500	 	 	 	 	
Client:	Riverbend	 	 	 		

	•			Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANKI	1709	5.00pm	5992370	18	12	Pivin
TANKI	1/9/09	8:30am	6154837	13	10	PUN
TANK/	1/12/08	7.00am	00236934	13	17	FWW
TANKI	1/14/09	4pm	00421417	12	14	PUSU
TANK	1/16/09	Tan	00565372	1A	14	Pun
[ANK]	1/19/09	4 pm	00708337	8	<i>i8</i>	PWW
HNKI	1/21/09	81:30	<u> 00812531</u>	14		PLUL
TUNKI	1/23/29	4:30	0960223	12/	12	FUL
AUR	176109	5.30	-0097381		12	Pull
IANK	1/28/09	.7:30	01163720	NA	il	pur,
TANKI	1/20/09	3.50	01257967		/ (_ fwl
TANK	$\frac{2}{2}$	$-\frac{4}{20}$	01362375	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	Phil
- PANK (2/4/07	\mathcal{O}	01417482		16	pun

Waste Water Treatment Plant - Riverbend

 \sim

Maintenance Log

				Bag Filter		Decant Oil	
Date	Flow Meter Reading	Lead	Tank	Change	Back Flush	Seperator	7 1
24109	0494	Tank 1	Tank 2	Tank 1 [.] -	Tank 2	date	Fix sheet
2/4/09	01419482	χ		X	<u> </u>		
2/6/09	01486506	X	· •	X	X		,
7/9/09	01537897	Y	,	XX	Ý	removed	Egal drum
2/11/09	01584493	X		XV	X		/
2/13/07					7		
2114/09	Systen Thol	Dow					
2/15/09	1605689	Y	4	YY	XX		
211609	161 4213	X		XX	xX		
JIAINA	01787239	X		XX	XX		
212009	01955482	X		x X	X		
2/23/09	02073488	X		хУ	$\mathcal{V}_{\mathcal{T}}$	an a	
2/25/07	2191495	V .		y \/	X		
2/27/09	02369072	X		xx	XX		
36109	72581045	X		XX	X	-	
	027/1492	V		XX	XV		
						<u> </u>	
		1					
		1					
			1				
		1					
		1					
		1					
	1	1					-
	1	1	1				}
		1	1				<u> </u>
		1	1				
		1	1				
	3		1	1			1
		1	1				1
		1					
		-		1			

PROJECT INFORMATION:

 $\mathcal{A}_{\mathcal{C}}^{(i)}$

. .

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
2609	4:30	D1486506	NA	27.	Pur
2/9/09	8:00	01537897	NA	23	Pull
411/09	5%	01584493	14	23	phin
2/15/09	10an	01605687		25	PLI
2/16/09	<u>Чрг</u>	01614213	<u>IVIA</u>	23	HUW
2/18/09	3:Kipn	0/78.7239	<u> </u>	22	Pie
2/20/01	gai	01955492			TWW
2/23/09	8.5	O PLAINEE		22	Pur)
2/25/09	930	02171915		25	The
3/2/09	5	02369015	27	2)	Pur
714100	9:20	0201010	25	23	7
		02111412		· · · · · · · · · · · · · · · · · · ·	1000-
	··· ··· ··· ··· ···				
	······································				
	· · ·				
and a second					
					
				L	1

Project Name:	Riverbend
Project No.:	0171-001-500
Client:	Riverbend

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK 1	2/6/09	4:30	01486506	NA	12	PWI
TANK !	2/9/09	8:00	01537897	AIA.	12	PWW
TANK/	2/11/09	5.30	01584493	AIX.	12	Flier
TAUKI	2(15/09	10 a~	01605689	°NA	(8	Flip
TANKI	2/16/09	Hpr-	01614213	NA	12	Pwin
TANKI	<u> Z [18[04</u>	5.15	01787239	12	12	Pun
TANK	2/20/09	'I an	01455481	NA	12	PLI
TAUKL	2/23/09	Ban	02073488	NX 	12	Puin
TAUKI	213/09		0219/495	12	10	PWW
TANAI	2/27/09	850	02367072	16	10	pun
TANK	5/2/07	550	02581045	12	JD	Pain
TANKI	3/4/07	9:30	027/149/2	10	12	PWW
			· · · · · · · · · · · · · · · · · · ·			

Waste Water Treatment Plant - Riverbend

Maintenance Log

				Bag	Filter			Decant Oil
Date	Flow Meter Reading	lead	Tank	Cha	ande	Back	Flush	Seperator
		Topk 1	Took 2	Took 1	Took 0	Tonk 4	Tool: 0	
-1-1-0	DICRIDUC		Tank Z					└───
5 401	02501095	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
3/4/09	02111412	<u> </u>		<u> </u>	X	<u> </u>	{	
3/6/09	02810 [2]	X		X	X	X		
3/9/07	02958645	Ý_		X	λ			$-\frac{1}{x}$
3/11/07	13078284	X		Ŷ	V	X	x	
-511518	03217477	X		X	X	V	<u> ∧</u>	\uparrow
3/16/07	13305574	X		Y X	Ŷ	$\uparrow \gamma$	†	+
STIALA	17796895	Ý	<u> </u>		12	<u>}</u>	┼────	<u> ~ </u>
21200	23501909	V		F		$\frac{1}{v}$	<u> </u>	
3/3/	02011129	_ <u> </u>		⊢-∕`	<u> </u>	<u>⊢ ^ _</u>	 	<u>⊢ ×</u>
- lor la	ASULANCE						 	+
5150	12/20012		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u>↓ X</u>
316101	0 26 10 14 /	<u>X</u> :	ļ	$\downarrow V_{\star}$	<u>X</u>			<u> ′χ</u>
13409	03670741	X	ļ	<u> </u>				
3/5/09	05610168	<u> X </u>		X	X	<u>X</u>		
4/109	03742408		X	_λ	_λ_		<u> </u>	Ý
413/09	03860562		Y	L X	X			Ý
516709	03991215		X	λ^{-}	X		X	V
4/8/19	14140480		X	<u> </u>	V		X	\uparrow
41519	14787979		Ŷ.	Ŷ	V		Ý	1 Å
4/14/19	NURLAZO		V	V	$\overline{\mathbf{v}}$	·		
<i> • •</i> - (~~	<u>X</u>	<u> </u>	r	<u> </u>	<u> </u>
<u> </u>								
<u>├</u>	<u>├──</u> ──					<u></u>		<u> </u>
<u> </u>								<u> </u>
<u> </u>					·			
								· .
└── ─								
ļ								
							<u> </u>	<u> </u>
								<u> </u>
<u>├</u> ────								
							·	
								1

3/30/09 9:30 03670948 EA/2and 100% Engery 3/31/09- backwasted system, cleaned flow meter, running on tent 2 need to change costan in tent 1.

Project Name:	Riverbend						
Project No.:	0171-001-500		 	 ,	 	 	· ·
Client:	Riverbend	 	 	 	 	 	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
3/2/09	5pm	02581045	12	10	Puin
3/4/09	930 MM	02711492	10	17_	Pul
3609	73° AM	02810721	12	12_	PUL
3/9/09	700 AM	02958645	14	10	Pw:-
3/1109	63° pm	03078284	12	12	Piven
3/13/09	3pm_	03217417	12	D	Pur
3/16/09	<u>5'pm</u>	03305524	13	12	Price
-3/18/09	Taul	03395895	8	10	pin
3/20/09	7an	03504909	<u> </u>	TO B	Pill
3 2309	Tan	03591429	8	- A	FUW
3/25/09	7an	03646082	8	8	Thin
3/27/09	50m	03670947	10	B	Fish
3/30/09	B'an	03670748		8	Ru
3/3/09	Ban	03670168	10	22	pine,
4/1/09	12:000m	03742108		10	Pur
4/3/09	9:00	03860562	6	jD	Puin
4/6/07	6.30pm	03991512	8	70	Pur
4/8/09	5:30pm	04140480	8	\square	PWW
4/10/01	"an"	04287929	- 10	D	Pin,
<u>'4/14/C7</u>	L Ban	04486828	8		Puin

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

		_		Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK 1	3/2/0?	5 pm	02581045	25	23	Pui
TANKI	3/4/09	930	02711492	25	23	Plate
TANK	316/09	7 30	028/0721	27	23	Phin
TANK	3/9/09	700 Am	02958645	2.6	23	Pwin
TANKI	3/11/09	630 m	03078284	26	22	Pwin
TANKI	<u>- 113/29</u>	3ph	05217417	25	7	Piul
TANKI	3/16/09	52:00	03305574	76	23	Plui
TAUKI	<u>3 10 09</u>	1 Jan	03395895	25	24	Pin
TANKI	3/20/09	7an	03504904	2.5	24	PWW
JANK!	3/23/09	Tar	03591429	25	25	PWW
TANKI	3/25/05	Tan	03646082	27	25	PLIN
TANKI	7/27/09	5pm	03670947	26	25	This
TANKI	3/30/07	Ban	D3670948	ZR	27	Plum
TANK 2	3/31/09	Ban	03670968	28	25	Pww
TAVKZ	4/109	12:00	03742108	26	IB IB	PWW
TANK Z	4/3/09	9:00	03860562	26	17	Plain
TAVKZ	416109	630 pm	03991512	28	R	Puu
TANK 2	4/8/09	5'30'PM	04140480	27	9	PUW
TANK Z	4/10/09	gar	0428.7929	24	19	لندح
TANKZ	4714709	Ban	04486828	25	18	Pure

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 4 REPORTING PERIOD ENDING July 1, 2009

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers 3 months of the operation and maintenance of the GWPTS from (4/1/09 through 7/1/09).

1.0 <u>Treatment Statistics</u>

- Approximately 2,636,024 gallons of collected groundwater were treated over this period averaging 28967.3 gallons per day.
- System was operational for 95 % of the time.
- System was down for 5 % of the time.
- Reason for down time: Complications with adjacent property fire and demolition

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - Carbon filtration head vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Cleaned the flow meter and pumps on July 1st, 2009
- Emptied Separator and drummed tar
- Additional effort for more frequent bag filter changing and backwashing

3.0 Work Planned

- Carbon change-out scheduled for September 21, 2009
- Continued regular maintenance

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 4 REPORTING PERIOD ENDING July 1, 2009

4.0 Additional Notes/Issues

• Adjacent fire and subsequent building demolition impacted the treatment building by adding large amounts of water during fire suppression efforts. This additional water will continue to gradually be treated by the system but has added the need for additional bag filter change outs, separator cleanings and other maintenance items.

5.0 <u>Attachments/Logs</u>

- Bag Filter Change-out Log 3-2-09 through 7-21-09
- Carbon Filter Backwash Log 3-2-09 through 7-21-09
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Total Flow	Daily Avg
3742108	
3860562	59227
3991512	43650
4140480	74484
4287929	73725
4486828	49725
4578920	92092
4608855	14968
4664690	18612
4744782	26697
4771210	26428
4850544	26445
4902168	25812
4966232	32032
5066506	25069
5115909	24702
5150512	34603
5225260	24916
5269391	22066
5319615	12556
5432583	37656
5467600	17509
5541634	18509
5564739	11553
5600002	35263
5646846	15615
5649611	1383
5679273	14831
5723398	14708
5778295	13724
5837820	19842
5925196	29125
5997091	71895
6178224	45283
6233572	55348
6291342	57770
6335378	44036
6336147	256
6378132	20993
2636024	gallons
	Total Flow 3742108 3860562 3991512 4140480 4287929 4486828 4578920 4608855 4664690 4744782 506506 5115594 5150512 5225260 5269391 5432583 5467600 5541634 55432583 5467600 5541634 55432583 5467600 5541634 55432583 5467600 5541634 55432583 5467600 5541634 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467600 55432583 5467800 5646846 5649611 5679273 5723398 5778295 5837820 5925196 5997091 6178224 6335378 6336147 6378132 2636024

Flows for April

1160060 gallons/month 38668.67 gallons/day 26.85324 gallons/min

680614 gallons/month 21955.29 gallons/day 15.246729 gallons/min

731286.00 gallons/month 24376.2 gallons/day 16.927917 gallons/min

ATTACHMENT 2

MAINTENANCE LOGS

Waste Water Treatment Plant - Riverbend

Maintenance Log

				Bag	Filter			Decant Oil
Date	Flow Meter Reading	lead	Tank	Cha	ande	Back	Flush	Seperator
		Topk 1	Took 2	Took 1	Took 0	Tonk 4	Tool: 0	
-1-1-0	DICRIDUC		Tank Z					└───
5 401	02501095	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
3/4/09	02111412	<u> </u>		<u> </u>	X	<u> </u>	{	
3/6/09	02810 [2]	X		X	X	X		
3/9/07	02958645	Ý_		X	λ			$-\frac{1}{x}$
3/11/07	13078284	X		Ŷ	V	X	x	
-511518	03217477	X		X	X	V	<u>├</u> ∧	\uparrow
3/16/07	13305574	X		Y X	Ŷ	$\uparrow \gamma$	†	+
STIALA	17796895	Ý	<u> </u>		12	<u>}</u>	╂─────	<u> ~ </u>
21200	23501909	V		F		$\frac{1}{v}$	<u> </u>	
3/3/	02011129	_ <u> </u>		⊢-∕`	<u> </u>	<u>⊢ ^ _</u>	 	<u>⊢ ×</u>
- lor la	ASULANCE						 	+
5150	12/20012		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u>↓ X</u>
316101	0 26 10 14 /	<u>X</u> :	ļ	$\downarrow V_{\star}$	<u>X</u>			<u> ′χ</u>
13409	03670741	X	ļ	<u> </u>				
3/5/09	05610168	<u> X </u>		X	X	<u>X</u>		
4/109	03742408		X	_λ	_λ_		<u> </u>	Ý
413/09	03860562		Y	L X	X			Ý
516709	03991215		X	λ^{-}	X		X	V
4/8/19	14140480		X	<u> </u>	V		X	\uparrow
41519	14787979		Ŷ.	Ŷ	V		Ý	1 Å
4/14/19	NURLAZO		V	V	$\overline{\mathbf{v}}$	<u></u>		
<i> • •</i> - (~~	<u>X</u>	<u> </u>	r	<u> </u>	<u> </u>
<u> </u>								
<u>├</u>	<u>├──</u> ──					<u></u>		<u> </u>
<u> </u>					—			<u> </u>
<u> </u>					·			
								· .
└── ─								
ļ								
							<u> </u>	<u> </u>
								<u>├</u> ────
<u>├</u> ────								
							·	
								1

3/30/09 9:30 03670948 EA/2and 100% Engery 3/31/09- backwasted system, cleaned flow meter, running on tent 2 need to change costan in tent 1.

Project Name:	Riverbend						
Project No.:	0171-001-500		 	 ,	 	 	· ·
Client:	Riverbend	 	 	 	 	 	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
3/2/09	5pm	02581045	12	10	Puin
3/4/09	930 MM	02711492	10	17_	Pul
3609	73° AM	02810721	12	12_	PUL
3/9/09	700 AM	02958645	14	10	Pwin
3/1109	63° pm	03078284	12	12	Piven
3/13/09	3pm_	03217417	12	D	Pur
3/16/09	<u>5'pm</u>	03305524	13	12	Price
-3/18/09	Taul	03395895	8	10	pin
3/20/09	7an	03504909	<u> </u>	TO B	Pill
3 2309	Tan	03591429	8	- A	FUW
3/25/09	7an	03646082	8	8	Thin
3/27/09	50m	03670947	10	B	Fish
3/30/09	B'an	03670748		8	Ru
3/3/09	Ban	03670168	10	22	pine,
4/1/09	12:000m	03742108		10	Pur
4/3/09	9:00	03860562	6	jD	Puin
4/6/07	6.30pm	03991512	8	10	Pur
4/8/09	5:30pm	04140480	8	\square	PWW
4/10/01	"an"	04287929	- 10	D	Pin,
<u>'4/14/C7</u>	L Ban	04486828	8		Puin

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

		_		Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK 1	3/2/0?	5 pm	02581045	25	23	Pui
TANKI	3/4/09	930	02711492	25	23	Plate
TANK	316/09	7 30	028/0721	27	23	Phin
TANK	3/9/09	700 Am	02958645	2.6	23	Pwin
TANKI	3/11/09	630 m	03078284	26	22	Pwin
TANKI	<u>- 7/13/29</u>	3ph	05217417	25	7	Piul
TANKI	3/16/09	52:00	03305574	76	23	Plui
TAUKI	<u>3 10 09</u>	1 Jan	03395895	25	24	Pin
TANKI	3/20/09	7an	03504904	2.5	24	PWW
JANK!	3/23/09	Tar	03591429	25	25	PWW
TANKI	3/25/05	Tan	03646082	27	25	PLIN
TANKI	7/27/09	5pm	03670947	26	25	This
TANKI	3/30/07	Ban	D3670948	ZR	27	Plum
TANK 2	3/31/09	Ban	03670968	28	25	Pww
TAVKZ	4/109	12:00	03742108	26	IB IB	PWW
TANK Z	4/3/09	9:00	03860562	26	17	Plain
TAVKZ	416109	630 pm	03991512	28	R	Puu
TANK 2	4/8/09	5'30'PM	04140480	27	9	PUW
TANK Z	4/10/09	gar	0428.7929	24	19	لندح
TANKZ	4714709	Ban	04486828	25	18	Pure

Waste Water Treatment Plant - Riverbend Maintenance Log

			Mainto		og			
			_ ,	Bag	Filter	- ·	F 1 1	Decant Oil
_ Date	How Meter Reading	Lead	Lank	Cha	inge	Back	Flush	Seperator
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	
4/15/29	04578920		X	ŢX T	X		<u> </u>	X
Ultre	2468855		X	X	Ϋ́		X	Ý
4/20/09	CH464690		X	Y	Ý	V	X	X
4/23/07	04744782		Ϋ́	Ň.	V _		ΎΧ	X
4/24/09	04771210		X	χ	Ŷ	<u>k</u>	χ	<u>λ</u>
4/27/29	04850544		X	_χ	X		<u>×</u>	λ
4/29/09	04902168	l	X	_χ	X	<u> </u>	X	L X
6//109_	04966232		ΎΧ.	X	X		K	X
5/5/07	05066506	<u> </u>	Ϋ́,Υ	X	X		<u>x</u>	X
5/1/9	07115909		X		X		<u> </u>	$ \mathcal{X} $
5/8/01	05 50512		X	X V	X	_X		X_{\sim}
511107	DE 210701			<u> </u>	<u> </u>			
5 13 04	05219615	<u> </u>	X	1 I	- V	*		
5 1 10 1 M	05427583		V		1 V			V
502/05	1541.7400		X	Î X	$-\gamma$	X	1 Ŷ	1V
SILLIA	15541634		X	X	X	<u> </u>	X	X
5718/01	05564737		X	X	X	X	X	X
5/29/09	0540002		X	X	$\boldsymbol{\lambda}$		×	X
61109	05646846		V.	V	$\boldsymbol{\lambda}$	K	<u> </u>	X
		L			X .			Ĺ
						ļ		
				L	· ·	<u> </u>		
				ļ.,	! 			┼
			}			ļ		┨─────
<u> </u>		<u>├</u>			<u> </u>	<u> </u>	<u> </u>	+
}	<u> </u>		ļ					<u> </u>
<u> </u>			<u> </u>	 -		<u> </u>	<u> </u>	<u> </u>
<u> </u>			{		<u> </u>			
	<u> </u>		<u> </u>		·			1
			<u> </u>					<u> </u>
					· ·			
[1

Project Name:	e: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

		·		Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	techniçian
TAUKZ.	4/15/09	3:30pm	04578920	AFR 8	10	July Log
TANKZ	4/17/29	4:30	04608855	NA	10	Fach
TANK 2	4/20/09	730	04664690	NA	R	Pui
TANK 2	4/23/09	1030	04744782	NA	6	This
TANKZ	4/24/09	8 20	0477/210	<u>N'A</u>	10	Puin
TANKZ	4/27/09	830	04850544	NA	R	Phin
TANKL	4/29/09	7:00	04902168	NA	- 4	PW
TANK2	5 /1/09	7:00	04966232	9	Ø	pur
TANKZ	5/5/09	7:30	05066506	NA NA	i)	Ri
TANKZ	5/7/07	7:36	05/15/109	10	<u> </u>	Par
TANK2	<u> </u>	<u>5pm</u>	05150512	NA NA	10	PLOV
TANK Z	5/11/07	Ogn	05225260		<u> </u>	Par-
TANKZ.	5/13/09	5pm	05269391		. 10	Rev
TANKZ	5/19/09	300	053/96/5	10		Fun
TANKZ	5/20/07	5pm	05432503	//	i0	Philip
TANK2	5/22/09	10 m	05467600	NA	10	Paul
TANEZ	5/26/09	4 cm	05541634	12	12	Pun
	5/78/07	5.p.a	05564-39	NA	12	Plus
11	5/29/09	5.p	0560002	NH	R	Flot
((6/1/07	L Ypie	05646846	N/A	12	Piu

Project Name:	Riverbend										
Project No.:	0171-001-500	 	 	 	 	· ·	 	· ·	 	 	
Client:	Riverbend	 	 · ·	 	 		 		 	 	

	<u> </u>		Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
4/12/07	<u> </u>	04578920	25	22	Ply
1178127-	<u>- 7.50</u>	04608855	NA	21	Pur
4/23/09	1030	01664610	NAS	2i	JWW
4/24/09	Q30	04771210		Z3	PWW
4/27/09	AX	048505///	/YA		Peru
4/29/09	7:00	64902168		<u> </u>	tain
5/1/09	7:00	04966232	>2	2/	nun
5/5/09	7:30	05066506			pin
5,769	7:30	05115909	73	77	Run
518109	<u>521</u>	05150512	IVA I	77-	Bus
5/11/09	670	05225260	24	19	Plut al
5/13/09	15pm	05269391	NA	27 -	Privin
5/10/01	- jpin_	05319615	<u> </u>	23	Turn
6120109	- JPM	024 32.5BX	26	23	Paul
5/26/07	a lupm	0546760	NA	25	Ruce
5/20/09	Ian '	05541654	<u> </u>	2.4	Plue
5/19/03	<u> </u>	05564737	NA		PWW
6/1/09	4	05/4/01/	NA	25	PUSIN
	<u> </u>	- 10 10076	NA	25	PWW

Tunik	
Erasiananan Restoration LLC	

٠

Waste Water Treatment Plant - Riverbend Maintenance Log

					5			Decemt Oil
Date	Flow Motor Pooding	Lood	Took	Ваg	Filler	Pool		Decant Oil
Date	Tiow weter Reading	Leau	Tarik	Una	inge	васк	Flush	Seperator
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	
6 /3/09	05649611		Y	Y	Y		V	X
2/5/189	05679772		Ŷ	Ŷ	Ŷ	V	v v	Γ Ú
illia	15713298		V			_	- .	
ETC/L	151250		$-\overline{\leftarrow}$	<u> </u>	X		K	
BIQUI	USTIBLIS		Ă.	- X	<u>X</u>	X	<u> </u>	
dEC1	05837820		X	<u> </u>	X.		X	X
6/10/09	55925196		X	χ	V			V
6/19/09	05997097		Ŷ	V	X		Ŷ	T
6/23/09	06178224		N.	X	Y	\overline{v}	× ×	A
halor	06733571		Ŵ	$\overline{}$	Ŷ	<u> </u>		1
1 155/19	791247						1 1	
6/2-10	NG2 (572)		- î			1/		×
0 120101 1 1 - 10 - 0	10223510 Ai 276111			<u>X</u>	~	<u> </u>	X	
6/2401	10770141		X	<u> </u>	K			X
7/1/09	06518132		<u> </u>	<u> </u>	X	<u> </u>	X	ľ X
7/2/09	06380772		<u> </u>	<u>X</u>	X	¥5		X
7/7/09	0638207h		Y	K	X	X	1	
716109	06414882		X	X	X.		¥	x
The	06491325		V	X	X	······	Ŷ	X
TIDDA	06504406		- y V	V	Y	V	^י ۷	V
7159	NISU 1755		N/	V V			$-\hat{v}$	
-1/109	AIS7:030		Y.	5			$\frac{1}{12}$	
7/2/28	NGT 278		X	<u>×</u>	X	~ ~ 1		K,X
11.101	0621220		<u> </u>	Λ_{μ}	<u> </u>	<u>X</u>		1×
1/2/01	0658512		<u> </u>	<u> X </u>	X		<u> (</u>	X
7/2/09	06570868							
					•			
							<u>.</u>	
	· · · · · · · · · · · · · · · · · · ·						·	
······								
ļ								
]	T			
					•			
							······	

Project Name:	Riverbend
Project No.:	0171-001-500
Client:	Riverbend

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
6/3/09	7:30an	05649611	NA	24	Pur
615109	12:30pm	05679273	NA	24	PWin
6/8/09	4 pm	05723398	NA	24	PUN,
6/12/09	Ten	05778295	25	24	Pur
6/15/09	4.21	05837820		23	PLIN,
6/18/109	- Spm	05925/96	27	22	pue
6/19/09	6rso pm	105997011	<u></u>	21	"uu
6/23/09	5p.~(66178224	<u> </u>	22	Pur
6/24/09	-130 am	06233572	24	27_	fare
6/25/09	330	06291342		22	Twin
6/26/09	730 an	06335378	<u> </u>	22	pin
6/29/09	430	06336147		22	Fill
7/1/09	Bar	06378132		25	pur .
7/2/09_	6pm	06380772	<u> </u>		Fun
7/7/07	434 m	06382076	50		Phi-
71,8/09	7.00ar	06414882	30	45	Pww -
7/9/09	4 30	06491 325	28	25	PLL
P 10/07	700	06504400	29	Z6	Par-
7/13/09	5pm	06546755	30	26	Phe -
7/16/09	630A.	106571230	<u>zo</u>	28	1 Wh
7/17/09	tan	06571238	30	27	pure
7/20/07	5pm	06585512	30	27	PUL
7/21/29	tim	06590868	30	75	Pull

PROJECT INFORMATION:

4

Project Name	: Riverbend				
Project No.:	0171-001-500	 	 	 	
Client:	Riverbend	 	 	 	
· · · · · · · ·		 	 	 	

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANKZ	6/3/91	7:30 cm	05649611	MA	j2	Plan
TANKZ	6/5/09	17:30pm	05679273	NA	17	FUL
+ANKZ	6/13/09	4 pm	05723398	NSA	12	Run
TANK 2	6/(2/09	Zpm	05778295	2	[2	PUN
Thinks 2	6406/361	4 pm	05837820	NK		Pivin)
TANKZ	6 18 09	13pm	05925196	2	8	Phin
TANK Z	6/19/09	<u>G</u> sq pm	05997091	B	8	Full
T-NKZ	62309	5pm	06178224	0	ð	pui
TAVEZ	6/24/09	73° an	06233572	10	<u> </u>	Pala
TANKZ	6/25/07	3.20	06291342	10	B	Pain
INKZ	6 /20/07		06335378	10	8.	PUN
TANKZ	6(25/07	440	06336147			Pase
TANKE	1/1/09	Ban	06378132	[4	10 -	Pun
TANAZ	7/2/09	6 pm	06380772	9	6	Pun
TANK 2	2709	450	06382076	6	6	phi
TANK Z	7/8/09	7:00a~	06414882	4	8	Pall
TANKZ	7/9/09	450 pm	06491325	4	8	pi.
TANK 2	7/10/09	Tan	06554404		8	PWN
TANKZ	1/15/09	50-	06909412 0654679	\$ 4	6	PWW
TANKZ	7/16/07	6 Ain	0657/238	4	4 🥭 🔬	PWW
TANKZ	711407	11 41~	06571258	Ĩ <u>·</u> [۲ <u>4</u>	Pwi
TANKZ	7/20/09	5 p.M	0658592	Č	ÿ	PUL
TANKZ	7/21/07	GAM	06590868	Ô	4	

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 5 REPORTING PERIOD ENDING September 18, 2009

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers approximately 3 months of the operation and maintenance of the GWPTS from (7/1/09 through 9/18/09).

1.0 <u>Treatment Statistics</u>

- Approximately 226,730 gallons of collected groundwater were treated over this period averaging 2834.12^* gallons per day. (see note 4.0 2)
- System was operational for approximately 90% of the time.
- System was down for 10 % of the time.
- Reason for down time: Regular maintenance and complications caused by adjacent property fire and demolition
- Flow meter was not operating properly and was serviced twice

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - 3 bag filter changes/week or as necessary
 - Carbon filtration head vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Cleaned the flow meter and pumps on September 21, 2009
- Steam washed both the influent and effluent tanks within the treatment building
- Changed out the carbon in both carbon vessels on September 21, 2009
- Additional effort for more frequent bag filter changing and backwashing

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 5 REPORTING PERIOD ENDING September 18, 2009

3.0 Work Planned

- Continued regular maintenance

4.0 Additional Notes/Issues

- Adjacent fire and subsequent building demolition impacted the treatment building by adding large amounts of water during fire suppression efforts. This additional water will continue to gradually be treated by the system but has added the need for additional bag filter change outs, separator cleanings and other maintenance items.
- Flow meter was not operating correctly, and thus tabulated results are incorrect. The system was still operating during this time, and is estimated to have processed 28,967.3 gallons as a daily average

5.0 Attachments/Logs

- Bag Filter Change-out Log 6-3-09 through 9-18-09
- Carbon Filter Backwash Log 6-3-09 through 9-18-09
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg
7/1/2009	6378132	
7/2/2009	6380772	2640
7/7/2009	6382076	261
7/8/2009	6414882	32806
7/9/2009	6491325	76443
7/10/2009	6504406	13081
7/13/2009	6546755	14116
7/16/2009	6571238	8161
7/17/2009	6577238	6000
7/20/2009	6586512	3091
7/21/2009	6590868	4356
7/23/2009	6601477	5305
7/27/2009	6602257	195
7/29/2009	6604827	1285
7/31/2009	6604842	8
8/4/2009	6604851	2
8/7/2009	6604851	0
8/10/2009	6604851	0
8/12/2009	6604856	3
8/13/2009	6604856	0
8/14/2009	6604856	0
8/17/2009	6604860	1
8/19/2009	6604860	0
8/21/2009	6604862	1
8/25/2009	6604862	0
8/28/2009	6604862	0
9/2/2009	6604862	0
9/4/2009	6604862	0
9/7/2009	6604862	0
9/9/2009	6604862	0
9/11/2009	6604862	0
9/14/2009	6604862	0
9/16/2009	6604862	0
9/18/2009	6604862	0

Total Flow

-6378132 gallons

Flows for July

226710 gallons/month 7313.226 gallons/day 5.078629 gallons/min

Flows for August

11 gallons/month 0.3548387 gallons/day 0.0002464 gallons/min

Flows For September

0.00 gallons/month 0 gallons/day 0 gallons/min

ATTACHMENT 2

MAINTENANCE LOGS

Translition	
Environmental Revisionation.115	

٠

Waste Water Treatment Plant - Riverbend Maintenance Log

					5			Decemt Oil
Date	Flow Motor Pooding	Lood	Took	Bag	Filler	Pool		Decant Oil
Dale	Tiow weter Reading	Leau	Tarik	Una	inge	васк	Flush	Seperator
-		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	
6 /3/09	05649611		Y	Y	Y		V	X
15/189	05679772		Ŷ	Ŷ	Ŷ	V	v v	Γ Ú
illia	15713298		V			_	- .	
ETC/C	151250		$-\overline{\leftarrow}$	<u> </u>	X		K	
BIQUI	USTIBLIS		Ă.	X	<u>X</u>	X	<u> </u>	
dEC1	05837820		X	<u> </u>	X.		X	X
6/10/09	55925196		X	χ	V			V
6/19/09	05997097		Ŷ	V	X		Ŷ	T
6/23/09	06178224		N.	X	Y	\overline{v}	× ×	A
halor	06733571		Ŵ		Ŷ	<u> </u>		1
1 155/19	76791247		\neg	X Y			L V	X
	NG2 (572)		- î			1/		×
0/20/07	10225510 AL 276111			<u>X</u>	~	<u> </u>	X	
6/2401	10770141		X	<u> </u>	K			X
7/1/09	06518132		<u> </u>	<u>Y</u>	X	<u> </u>	X	ľ X
7/2/09	06380772		<u> </u>	<u>X</u>	X	¥5		X
7/7/09	0638207h		Y	K	X	X	λ	
7/6/09	06414882		X	X	X.		¥	x
The	06491325		V	X	X	······	Ŷ	X
11009	06504406		- y V	V	Y	V	^י ۷	V
11.59	NISU 1755	·	N/	V.			$-\hat{v}$	
-1/109	AIS7:030		V.	<u> </u>				
7/7/29	NGT 278		X	<u>×</u>	X	~ ~ 1		K,X
11.101	0621220		<u> </u>	1	<u> </u>	<u>X</u>		1×
1/2/01	0658512		<u> </u>	<u> </u>	X		<u> (</u>	X
7/21/09	06570868							
					•			
							<u>.</u>	
	······································							
ļ								
					Ţ			
					•			
							······	

Project Name:	Riverbend
Project No.:	0171-001-500
Client:	Riverbend

			Pressure		
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
6/3/09	7:30an	05649611	NA	24	Pur
615109	12:30pm	05679273	NA	24	PWin
6/8/09	4 pm	05723398	NA	24	PUN,
6/12/09	TPIL	05778295	25	24	Pur
6/15/09	4.21	05837820	NA	23	PLIN,
6/18/09	- jon	05925/96	27	22	par
6/19/09	6rso pm	105997011	<u></u>	21	"ULU
6/23/09	5p.~(66178224	<u> </u>	22	Pur
6/24/09	-130am	06233572	24	2.7_	fare .
6/25/09	3 30	06291342	- 24 -	22	This
6/26/09	730 an	06335378	<u> </u>	22	pin
6/29/09	4 30	0633614-1	65	22	FUN
7/1/09	Bar	06378132		75	pur -
7/2/09	6pm	06380772	<u> </u>		Fun
7/7/07	430 pm	06382076	50		Phi-
7/8/09	7.00ar	06414882	30	25	PWW P
7/9/09	4	06491 325	<u></u> Z8	23	PLU
7/10/07	700	06504400	29	26	Fun Bill
7/13/09	- <u>2</u> pm	06546753	30	16	Phi
7/16/09	630A.	106571238	20	28	TWW
7/17/09	1 an	06571238	30	27	pure
7/20/07	5pm	06585512	30	27	Pu
7/21/29	tan	06590868	30	75	Pull

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

PROJECT INFORMATION:

4

Project Name	: Riverbend				
Project No.:	0171-001-500	 	 	 	
Client:	Riverbend	 	 	 	
· · · · · · · ·		 	 	 	

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANKZ	6/3/91	7:30 cm	05649611	MA	j2	Plan
TANKZ	6/5/09	17:30pm	05679273	NA	17	FUL
+ANKZ	6/13/09	4 pm	05723398	NSA	12	Run
TANK 2	6/(2/09	Zpm	05778295	2	[2	PUN
Thinks 2	6406/361	4 pm	05837820	NK		Pivin)
TANKZ	6 18 09	13pm	05925196	2	8	Phin
TANK Z	6/19/09	<u>G</u> sq pm	05997091	B	8	Full
T-NKZ	62309	5pm	06178224	0	ð	pui
TAVEZ	6/24/09	73° an	06233572	10	<u> </u>	Pala
TANKZ	6/25/07	3.20	06291342	10	B	Pui
INKZ	6 /20/07		06335378	10	8.	PUN
TANKZ	6(25/07	440	06336147			Pase
TANKE	1/1/09	Ban	06378132	[4	10 -	Pun
TANAZ	7/2/09	6 pm	06380772	9	6	Pun
TANK 2	2709	450	06382076	6	6	phi
TANK Z	7/8/09	7:00a~	06414882	4	8	Pall
TANKZ	7/9/09	450 pm	06491325	4	8	pi.
TANK 2	7/10/09	Tan	06554404		8	PWN
TANKZ	1/15/09	50-	0690941 0654679	\$ 4	6	PWW
TANKZ	7/16/07	6 Ain	0657/238	4	4 🥭 🔬	PWW
TANKZ	711407	11 41~	06571258	Ĩ <u>·</u> [۲ <u>4</u>	Pwi
TANKZ	7/20/09	5 p.M	0658592	Č	ÿ	PUL
TANKZ	7/21/07	GAM	06590868	Ô	4	

G	FURNKEY
6	EINTRONMENTAL RESTORATION 1110

Waste Water Treatment Plant - Riverbend

-

	e e -							
			_	Bag	Filter			Decant Oil
Date	Flow Meter Reading	Lead	Tank	Cha	ange	Back	Flush	Seperator
Alex 1		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	
123 34	6601411		X	<u> </u>	X	<u> </u>	\downarrow	TW
712101	6604251			<u>X</u>	Λ.			Pww
(2901	6604821		<u> </u>		<u> </u>			1 YUW
1307	6604842	· 	<u> </u>	<u>×</u>	V V	<u> </u>	<u> </u>	Fre
B14107	1601851		K_	<u> </u>	X_	L		Pur
27107	6004851		V_	<u>``\</u>	<u>'X</u>	<u> </u>		PWW
Slejo?	6604851		X	V_	X		X	pul
8/11/09	3604856	i	K	X	X	Y	X	Far
8/13/09	6604B56		ΪX		<u>y</u>		X	FWU
8/14/09	6604856		V	Ϋ́Υ.	X		X	PWU
8/17/09	6604860		X	X	V V		Ϋ́.	ANN
8/19/09	6604860		Y	X	X	X	Y	Pun
8/21 Cr	6604862		V V	X	X		X	Pur
Bush	6604862		X	X	\mathbf{x}		X	n
8/20/0	66040Er		X	XI	X	V	X	TUN
9/2/09	6604862		X	X	Γ <u>χ</u> _		X	PLU
914109			$\overline{\mathbf{v}}$	\dot{V}	X		X	PUW
9/1/09			X	X	X	V	X	PUL
99109			X	X	X		8	PUU
9/11/09			X	X	X	X	X	DINN
9/14/09			X	Ϋ́	X		X	700
111109			X	X	X	X	X X	PRUL)
9/18/09	V		X	X	X			
-1-1					- **			<u> </u>
								<u> </u>
				·				
								<u>├</u> ────┥
								{
							<u> </u>	
								}
<u> </u>						· · · · · · · · · · · · · · · · · · ·		<u> </u>
							ļ	┟────┤
							<u>├</u>	╂────┤
<u>}</u>			<u> </u>		·			
	L						I	L

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

٠

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

]	Pressure	Reading	
	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
7/23/69	TATAS	3:50	6601477	NA	27	Au
	7/27/07	4:30	6602257	30	27	Puc
	7/25/09	430	6604827	30	27	PUL
	7/31/09	700m	604842		24	Mun
	8/4/09	53"7	6604851	30	27	Prise
	8/7/09	3 30	6604851	30	27	122
	8/10/07	130	6604851	30	27	16.6
	8/12/09	470	6604856	30	27	Jul
	<u>B//3/07</u>	730	6604856	30		PLW
	0/14/07	-130			27	100
	8/19/09	-730	6604860		~~	Pun
	37109	730	6604847-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	Pu-
	8/15/07	-730	6604862	30	27	Aver
	8/28/09	ban	6604842	30	27	The
	9/2/09	730	6604862	30	75	ALUC
	9/4/09	736	660486z	30	27	Mul
	9/7/07	730	664862	<u> </u>	27	Per
	9/9/09	730	6604862	30	35	Puc
	2(11/07	730	6604862	50	25	Paul
	9/14/09	730	6604862	30	27	Pula
	9/16/07	730	6604862	30	27	Puc
	9/18/09	730	663486Z	50	53	PW

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

roject Name: Riverbend	
Project No.: 0171-001-500	
lient: Riverbend	

T 100 1		·		Pressure Differentail R	eading on Lead Tank	1
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK 2	7/23/07	330	6601477	1/A)	Den
TANK	7/27/09	5pm	6602257	46		Phil
TANKL	1/29/69	420	6604A27	1	1.	Di
TANK C		7.9	6604842	$\hat{\mathbf{D}}$		Put
-IDNK C	6/4/09	530	600 485	0	7	Think
TANKZ	8/7/09	330	\$6004851	Ö		Fuer
TANKE	8/10/09	1'30	36004851	Ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- PUL
TONKE	BIRDA	4*	LLOYASK	0		Jair
TANKZ	<u>e[13/09</u>	-730	6604855			- Hu
TANKZ	8/14/09	730	6604855	8		- Juin
TANK2	8/17/09	730	6604840	0		<u>run</u>
TANKL	8/19/09	730	6604860	<u>Š</u>		Philip
TANK?	8/21/09	-730	6LAYRE	0		rew
TANKZ	8/25/09	730	6604863	0	3	Pere
TANKZ	3/28/07	6 an	6604867		2	au
TANKZ	9/2/09	730	600180			Pue
TANKZ	9/4/09	730				Parla
TANKZ	9/7/09	770	GGOGESGE C		- 2	PLUZI
TAUK	9/9/109	770	Lenderte C			Pue
TANK-	9/11/09	730	660400		4	Pai
TAMZ	9/11/10	736	660986-2		5	PWN
	1114/07	×	6604862	2	7	Fish
I ANK L	9/16/09	730	6104067	\bigcirc		12 1. Wal
TANKTO	iliola	720	0007002	$\overline{\Box}$	~	t un
	1000		6604862	Ĵ)	<	PUU

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 6 REPORTING PERIOD ENDING December 29, 2009

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers approximately 3 months of the operation and maintenance of the GWPTS from (9/18/09 through 12/29/09).

1.0 <u>Treatment Statistics</u>

- Approximately 4,563,970 gallons of collected groundwater were treated over this period averaging 45,639.7 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time.

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - 3 bag filter changes/week or as necessary
 - Carbon filtration vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing

3.0 Work Planned

- Continued regular maintenance

4.0 <u>Attachments/Logs</u>

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 6 REPORTING PERIOD ENDING December 29, 2009

- Bag Filter Change-out Log 9-19-09 thru 12-29-09
- Carbon Filter Backwash Log 9-19-09 thru 12-29-09
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg
9/28/2009	6612713	
10/2/2009	6946489	83444
10/7/2009	7305135	71729
10/9/2009	7443472	69169
10/13/2009	7759300	78957
10/15/2009	7915201	77951
10/19/2009	8201990	71697
10/21/2009	8336031	67021
10/27/2009	8456732	20117
11/2/2009	8624147	27903
11/6/2009	8835356	52802
11/9/2009	9031667	65437
11/13/2009	9213842	45544
11/16/2009	9359396	48518
11/18/2009	9491634	66119
11/20/2009	9608653	58510
11/23/2009	9809350	66899
11/25/2009	9906541	48596
11/27/2009	10000009	46734
11/30/2009	10005994	1995
12/8/2009	10106541	12568
12/9/2009	10202781	96240
12/11/2009	10365222	81221
12/16/2009	10618780	50712
12/18/2009	10757904	69562
12/21/2009	10926764	56287
12/23/2009	10926764	0
12/26/2009	11054653	42630
12/28/2009	11168832	57090

Total Flow 4556119 gallons

Flows for October

1510243 gallons/month 48717.52 gallons/day 33.83161 gallons/min

Flows for November

46061.5 31.9871

1381847 gallons/month 46061.567 gallons/day 31.987199 gallons/min

Flows For December 10

1062291.00 gallons/month 35409.7 gallons/day 24.5900694 gallons/min

ATTACHMENT 2

MAINTENANCE LOGS

6	FURNKEY
	RESTORATION, LLC

Waste Water Treatment Plant - Riverbend

Date	Flow Motor Pooding	Lead Tank		Bag	Filter	Back	Decant Oil	
Date	Tiow meter reading	Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
1-28-01	66127:3	V	4	X	X	Y		×
10-2-09	6946489	X	k	<u>`X</u>	X	X	X	ÍÝ
10					·`			/
16-7	7305/35	X		X	X	X		λ
10-9	7443472	X		X	X	X	X	X
10-13	7759300	X		X	×	X		X
10-15	79157.01	<u> </u>		_ X	1	X	X	X
10-19	<u>19201990</u>	<u>x</u> `		X	_ X	X		X
10-21	8336031	X		X	×	<u> </u>		ΎΧ
10 27	-9456737	<u>X</u>		V	X	<u> </u>	X	Ý.
11-2	8624147	_χ		X	X	X		Ň.
11-5	2533326	X		Ł	Je .	Ľ.	<u> </u>	X
11-7	9031667	<u> </u>		X	X	<u>×</u>		1.1
11-1 -2	A 2 0 2 0	<u> </u>		X	<u> </u>	<u> </u>	Ľ,	
11.10	93-931-5	<u></u>		<u> X </u>	<u> </u>	<u> </u>		
1/ 18	9441634	<u> </u>		X	X	<u>X</u>	<u> </u>	<u> </u>
11-20	9008655	<u> </u>		<u> </u>	<u>×</u>	X	1/	<u>├Ă</u>
11-23	1009550	_X		<u> </u>	<u> </u>	X	X	
11.77	770654				- ¥	<u>Y</u>	· ·	
$\frac{1}{1}\frac{2}{2}$	10000001	V		× V	\sim	X		
D-8-6	10005179			~~~	$-\lambda$	¥ V	<u>×</u>	
12-9-6	1010031	$\overline{\mathbf{v}}$		<u> </u>	×	<u>x</u>	ν	$\overrightarrow{\mathcal{X}}$
12-11-05	10202101	<u> </u>					<u> </u>	
17 1.09	ING 18780	$\frac{1}{X}$		$\hat{\mathbf{v}}$	X	\bigcirc		$\overline{\mathbf{x}}$
17-18-09	(0757904	X	¥	$-\frac{1}{\sqrt{2}}$	- <u>/\</u> Y	-	X	
12-21-09	10926762		- 4	\sim	Ý	Ŷ	//	
1723-0	9109-26-764	X		X	X	X	<u>-</u>	- X
12-26	11054153	X		X	X	V	Y	X
12-28-0	11168832	_X		Λ	X	×	4	X
ا ا								

7848366 = 89,066

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name	: Riverbend					
Project No.:	0171-001-500					
Client:	Riverbend			 	 · · · · · · · · · · · · · · · · · · ·	

Total Filtered (gal) 66/27/3 6946487 7305/35 7445472	Prior to Change 27 26 Z6	After Change 24 23	technician Fun Pun
6612713 6946487 7305135 7443472	27 26 Z6	24 23	Pww Pwi
6946487 7305135 7443472	26 26	23	PWind
7305135	26		
744 3472		23	Pru
	25	22	PWW
7759300	26	22	PWW
7915201	26	23	Duri
820/990	27	9 G	Par
8336031	28	23	PWW
8456732	28	ZZ	PWW
8624147	27		Pur
303536	27		Pu
9031667	27	22	PWW
9213842	27	7.3-	- Pui-
9359396	28		Main
9491634	28	Z3	PWL
9608653	27	22	PWW
1809350	78	= 22	Pur
9906541	28	23	PWW
110000009	28	22	PWW
			water in the second
	820/990 8336031 8456732 8624147 2835256 9031667 9213842 9359396 9491634 9491634 9608653 1809350 9906541 16000007	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail R	eading on Lead Tank]
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
12-8 E	> TANK 1	630pm	10106541	8	12	PUL
129 €	A TANKI	430 pm	10202781	8	11	700
12-11 2	- TANKI	7:00an	10365222	8	11,	PWL
12-16-0	12-16-31	1550	10618780	F	14	BMG
MAYK 1	12-18-07	1900	10757904	/3	12	BMG
TANKI	12-21-09	9 an	10926762	9	12	PWW
TANK	<u>11-2509</u>	8:00an	10926769	9	17	PUN
TANK	12-26-07	Ban	1059 453	12	12	FWW
ITNKI	16-20-07	13:00	11168832	- 7	/2	TWW
				· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			
	· · · ·					
		······································				
						·······

.

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail R	eading on Lead Tank	1
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANKI	9-23-07	3:00	6612713	3	Q	PLV
	10-2-09	320	6946489	0		Pluis
	10-7-09	5pm	7305135	10	10	Pr.x.I
	10-9-09	ban	7443472	7	10	DUM
	10-13-09	Tam	7759300	8	10	Pur
TANK [10-15-09	<u> </u>	7915201	R	11	Pain
TANK 1	10.19-09	730	8201990	Ê	11	Philip
TANK	10-21-07	39m	8:326031	E	14	Pin
TANK	10-27-0	1 pm	8456732	f.	10	Frie
-AIK I		- 2 pan	B624147	6	R	Puil
TANK /	11-6-01	5 st pan	8835356	6	ri	Then
TANK	1-4-07	330 pm	9031667	88	12	Pari
HANK	<u> </u>	430/FM	943842	88	3	Plan
TANK	11-16-07	-7-3° Am	1359396	<u> </u>	IB.	Pilled
TANK	1-18-09		9491634	B	12	FWW
TANK (11-20-69	(DAM	96086>3	8	12	PLW
TANKI	11-23-09	- Ban	9809350	8	11	PUN
TANK	11-25-01	lam	7986541	88	(2	Pau
TANKI	11-61-07	J pm	10000009	8	(1	700
(ANK (11-30-09	Tan	10005994	R	12	Phu

. .

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend
Project No.:	0171-001-500
Client:	Riverbend

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
12-8	GPM	10106541.	28	22	PWW
12-9	-1470	10202781	28	22	Pww.
12-11	100an	10365222	28	22	PWW
12-16-09	1550	10618780	28	22	Bines
12.18-09	1000	10757904	24	22	BMG
12-21-09	9:00an	10926762	27	72	pur
12-23-01	8:00an	10926764		21	Phie
12-76-01	Ban	11054653		22	PWW
12-115-05	1 pm	11158832		22	PWEN
	· · · · · · · · · · · · · · · · · · ·				
<u></u>					
<u> </u>	L				

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 7 REPORTING PERIOD ENDING March 31, 2010

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers approximately 3 months of the operation and maintenance of the GWPTS from (1/1/10 through 3/31/10).

1.0 <u>Treatment Statistics</u>

- Approximately 4,288,125 gallons of collected groundwater were treated over this period averaging 47,645.8 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time.

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - Carbon filtration vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing

3.0 Work Planned

- Continued regular maintenance
- Carbon change out (projected June 2010)
- Oil/Water separator drain and clean out (projected June 2010)

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 7 REPORTING PERIOD ENDING March 31, 2010

4.0 <u>Attachments/Logs</u>

- Bag Filter Change-out Log 1/4/10 thru 4/14/10
- Carbon Filter Backwash Log 1/4/10 thru 4/14/10
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg
1/4/2010	11418973	
1/5/2010	30591	30591
1/8/2010	99632	23014
1/11/2010	143665	14678
1/13/2010	245692	51014
1/15/2010	348213	51261
1/18/2010	449294	33694
1/20/2010	550766	50736
1/22/2010	690142	69688
1/25/2010	831800	47219
1/27/2010	942875	55538
2/1/2010	1081295	27684
2/3/2010	1112539	15622
2/5/2010	1189625	38543
2/8/2010	1264337	24904
2/10/2010	1386272	60968
2/12/2010	1429725	21727
2/15/2010	1543162	37812
2/17/2010	1592164	24501
2/19/2010	1629915	18876
2/24/2010	1825949	39207
2/26/2010	1969890	71971
3/1/2010	2154961	61690
3/3/2010	2342917	93978
3/5/2010	2657122	157103
3/8/2010	2879743	74207
3/11/2010	3106586	75614
3/15/2010	3435250	82166
3/17/2010	3596377	80564
3/19/2010	3604134	3879
3/22/2010	3752480	49449
3/24/2010	3901979	74750
3/26/2010	4063360	80691
3/29/2010	4288125	74922
4/1/2010	4490184	67353

Total Flow 4288125 gallons

Flows for January

1081295 gallons/month 34880.48 gallons/day 24.22256 gallons/min

Flows for February

888595 gallons/month 31735.536 gallons/day 22.038566 gallons/min

Flows For March

2520294.00 gallons/month 81299.8065 gallons/day 56.4581989 gallons/min

* = flow meter calibrated and reset to zero on 01/05/10

ATTACHMENT 2

MAINTENANCE LOGS

Contraction and the second sec		Waste V	Vater Tr Mainte	eatment enance L	Plant - I .og	Riverbend	t	
Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter inge	Back	Flush	Decant Oil
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
1/4/10	11418973	X		X	χ	X	X	X
1-610	30591	X		X	X	X		X
1-8-10	9763Z	×		Y	X	X		X
1-11-10	143665	×		<u>}</u>	X	<u>x</u>		X
· 13 15	245692	ΎΥ		X	X	X	V	X
1-15-10	348213	X		X	Ŷ.	Y		
8-10	44924	X		V	X	, V		$\langle \rangle$
1-20-10	550766	Ý		Ϋ́	X	V		X
1 ZZ-10	690142	X		X	x	X		X
1-75-10	831800	K		X	Ύ.	X		Ϋ́ Υ
-27-10	942875		i	X	X	<u> </u>		X
2-1-10	1081295	X		X	X	<u>x</u>	X	
2-3-10	1112539	<u>`x</u>		<u> </u>	×	×		<u> </u>
2.5.10	1189625	X		X	<u>k</u>	$\underline{\mathcal{Y}}_{}$		<u> x</u>
2-8-10	1264337	X		K	<u>×</u>	<u> </u>		1
-10-10	1386272	<u>X</u>		<u> </u>	X	X	<u> </u>	Ιχ
2.10	1429725	X		X	X	<u> </u>		12_
2-15-10	1543162	<u> </u>		У	X	×	X	<u> </u>
2-17-10	1592164	_X			λ	X		$\downarrow \chi$
2-17-10	1629915	LV_	L	X	X	<u>×</u>	\mathbf{X}_{-}	X
							 	ļ
		L			L		 	ļ
								ļ
ļ		 				ļ		<u> </u>
ļ	 	ļ					l	ļ
ļ						ļ	_	<u> </u>
			 				<u> </u>	<u> </u>
							 	ļ
								
	 						ļ	
	 						 	
	_			 			 	
		<u> </u>	l		├		┟	<u> </u>
ļ	 	<u> </u>	 	 		<u> </u>	ł	
				 		 	<u> </u>	┨
L .	l	l	I	1	l	l	l	1

1-5to Lareset ton

DA

e

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend	
Project No.:	0171-001-500	•
Client:	Riverbend	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
1-4-10	6 an	11418973	77	21	21.1.)
1-6-10	5pm	30591	28	7.1	Puis
1-8-10	3pm	99632	27	22	Pill 1
1 - 11 - 10	1730m	143665	28	21	Duri
1-13-10	12pm	245692	7.8	22	DIX.J
1-15-10	Tan	348213	28	27	Pixa
<u> </u>	<u>5pn</u>	449294	7 <i>R</i>	2.2	PUW
1-20-10	14pm	550766	283	2	PLIL
1-22-10	Tand	690142	25	21	PWW
1-25-10	400	831800	27	21	TWI
1-27-10	G130	\$ 942875	27	23	PWIN
	715	1081295	27	-2C	PLAKA
<u> </u>	730	1112539	Z7	22	PWW
2-5-10	2.50	1189625	793	23	PWW
2-83-10	8.00	1264337	Z7	22	Pun
2-10-10	11:00	1386277	26	7.2	Fur
2-12-10	Ta	1429725	28	23	Pin
2-13-10	Tan	15/3/62	27	21	PWW
7 16 1	4pm	1592164		23	PWW
2-17-10	Ban	1629715		22	Phila

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

г					Pressure Differentail R	eading on Lead Tank]
Ļ	Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
1-5-10	TANK 1	1 - 4 - 0	ban	11418973	10		De
counter -	TANKI	1.6-10	5pm	30591			PULL
reset _	TANK 1	1-8-10	3pm	99/37		/	Full
fo O L	TANK 1	1-11-10	730	143145		(>	Pul
L	TANKI	1-13-10	12pm	745697	17	/3	Phi-
	Tenk 1	1-15-10	Zan	348713		12	Pui
	TANK /	1-18-10	5000	449294	10	/4	_ Pui
L	TANKI	1-20-10	1400	550711	16		PWC
	TANKI	1-22-10	Tan	690147			Pur
E	FANK 1	1-25-10	YPM				PWW
-	TANKI	1-27-10	930	947076			plui
-	TANK 1	Z-1-10	715	108,795			TUW
	TANK 1	2-3-10	730 000	11/7529		/D	Phil
	TANKI	2-5-10	7.30	1169/75		12	PWW
	TANK-1	7-8-10	Bash	17642377			PWU
	Traik	2.10.10	ling	120131		12	Pur
	TANKI	2-12-10	Tem	1200212		/Z	Fre
	11	2-15-16	7.000	-146163		14	- Ann
	11	2-17-16	11400	-154 516 2		10	Puh
	11	7 - 19, 10	et the second se	-1572/44	/2	12	fulle
L		<u> </u>	Om	162 1715			PWW

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
7-24-10	750	182,5949	27	25	Plukal
7-16-10	40	1969890	25	72	Pluxal
3-1-10	. Jan	2154961	26	77	Provide
3-3-10	4pm	2342917	24	23	2(46)
3-5-10	12	2657122	23	27	75-0
3.8-10	7:45	2879743	2(0	77	PMIL
3-11-10	720	3106586	25	115	BML
3-15-10	430	3435250	76	2373	DI W
3-17-10	4:10	3596377	78	76	Fun
3-19-10	730	3464134	79	71	Freid
<u>3-22-10</u>	4pm	3762480		21	PWW
-3-24-10	4pm	396:675	78		PWW
3-26-10	Z150m	4063340	7.6		pan
3-29-10	50m	4788175	70		Pan
4-1-10	14=10	449 0104	78		The
4-5-10	500	4744119			Turus
4-7-10	9	URALIA			Pwin
4-9-10	54.00	E040(37	- 60	23	PWin
11-12-10	6:0	5731015 C	27	<u></u>	PWW
4-14-10	130 pin	<u>- 26 21815</u> 579 AULU	48	22	pun
		2312719	28	23	PWW

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

	<u> </u>			Pressure Differentail R	eading on Lead Tank	1
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TAUKI	Z-24-10	730	187,5949	1()	/7	Relati
IANK I	<u>Z-26-(C)</u>	430	PAC 98 90	10		- Row
TANK	3-1-10	Zon	2154961	<i>b</i>	/1	FWW
TONKI	3-3-10	4 pm	7342917			pul
TANK/	3-5-10	12	7657177			Fan
TANKI	3.8.10	745	2079743	<u> </u>		FWW
TANKI	3-11-10	720	3106586			BME
TANKI	3-15-10	430	7436.2561			BING
TANKI	2-17-10	4:10	2696207			rww
11	3-19-10	736	2101124		6	force
11	3-27-10		3757100	10	(1	- FWW
11	3-24-10	<u> </u>	2901976	1-6	8	PWW
11	3-71-11)	7.5			11	Par
TANKI	2.79-11)		406 3360			PWW
TONKI	4-1-10	11:110	468125	/3	B	PWL
TANIFI	I = I (D)	4.10	4470184	/3	10	Pue
TANKI	$\frac{1}{1} \frac{1}{7} \frac{1}{1}$	<u> </u>	474449	[4	9	PWW
TANK	46 10	4:00an	4816488		10	PULL
TANK	1-1-10	342 an	5040632	13	11	Paral
TANG	<u>9-11-10</u>	6 sc pm	5231815	141	/٨	Puix
IANKI	4-14-10	621 mg	5370414	13	10	- Deda

	FURNKEY
6	ENVERSESTER AR

Waste Water Treatment Plant - Riverbend Maintenance Log

Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter inge	Back	Flush	Decant Oil
	Ű	Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
2.74-10	1825949	X		X	X	χ		X
1-76 10	969890	_X		'Y	X	V	X	X
3-1-10	2154961	\checkmark		χ	x	χ		$ \lambda $
3.3-10	2342917	K		X	X	Χ		λ
3-5-10	2657122	<u> </u>		X	7	X	X	γ
3-8-10	2879743	\times		X	τX	X		X
3.10-10	3106586	X		X	X	X	×.	X
3-15-10	3435250	X		X	X	Y		X
:-17-10	3596377	<u>×</u>		X	x	X		X
3-19-10	3604134	X		X	X	X	X	
3-10-1	3-757480	X		X	X	X		X
3-24-10	390/171			Ľ.	k	X		λ
3-26-10	4063360	_¥		X	×	Ý		IX
3-27-10	4288125	_ <u> </u>		X	λ	X		ĽX
:1-1-10	4470184	<u> X </u>		X	X	X	X	Ľ(
4.510	474449	_X		<u> </u>	K	X		
:7-10	4896488	_X		X	X			<u>X</u>
4-9-10	504063Z	X		X	X	<u> </u>	_ X	Ľ
4-14-10	5231815	_ <u>X,</u>		X,	X	<u> </u>		$ \chi $
4-14-10	5390414	<u> </u>		X	1	1/		1×
	ļ <u> </u>							
								<u> </u>
								ļ{
								<u> </u>
			ļļ					↓
								
								<u> </u>
								<u> </u>
	ļ	·						╂
								Į
								<u> </u>
	└────							
	ļ							
								↓
			ļ					<u> </u>
	1		1 1					

4

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 8 REPORTING PERIOD ENDING June 30, 2010

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers approximately 3 months of the operation and maintenance of the GWPTS from (3/31/10 through 6/30/10).

1.0 <u>Treatment Statistics</u>

- Approximately 4,405,843 gallons of collected groundwater were treated over this period averaging 48,415.9 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time.

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - Carbon filtration vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing
- Carbon change out 6/7/10
- On 6/21/10 thru 7/13/10 only one bag filter was operational due to a bag cage malfunction

3.0 <u>Work Planned</u>

- Continued regular maintenance

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 8 REPORTING PERIOD ENDING June 30, 2010

4.0 <u>Attachments/Logs</u>

- Bag Filter Change-out Log 1/4/10 thru 4/14/10, 4/16/10 thru 6/14/10 and 6/21/10 thru 7/11/10
- Carbon Filter Backwash Log 1/4/10 thru 4/14/10, 4/16/10 thru 6/14/10 and 6/21/10 thru 7/11/10
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg	
4/1/2010	4490184		
4/5/2010	4744419	63559	
4/7/2010	4896488	76035	
4/9/2010	5040632	72072	160
4/12/2010	5231815	63728	100
4/14/2010	5390414	79300	140
4/16/2010	5438305	23946	
4/19/2010	5672941	78212	120
4/21/2010	5956985	142022	100
4/23/2010	6140523	91769	100
4/26/2010	6406440	88639	8
4/28/2010	6539866	66713	
4/30/2010	6601245	30690	60
5/3/2010	6698801	32519	
5/5/2010	6849548	75374	40
5/7/2010	6986314	68383	20
5/10/2010	7181053	64913	20
5/12/2010	7249615	34281	
5/14/2010	7308022	29204	
5/17/2010	7410293	34090	
5/19/2010	7544173	66940	,
5/21/2010	7621064	38446	
5/24/2010	7735883	38273	
5/26/2010	7769614	16866	
5/28/2010	7815493	22940	
6/1/2010	7918208	25679	
6/3/2010	8003019	42406	
6/4/2010	8038979	35960	
6/7/2010	8160439	40487	
6/9/2010	8235920	37741	
6/10/2010	8311960	76040	
6/14/2010	8469498	39385	
6/21/2010	8549002	11358	
6/23/2010	8623391	37195	
6/25/2010	8674016	25313	
6/28/2010	8803740	43241	
7/1/2010	8896027	30762	
Total Flow	4405843	gallons	
Flows for April		2049682	gallons/mon
		66118.77	gallons/day
		45.91582	gallons/min

* = flow meter calibrated and reset to zero on 01/05/10
1.) 6/21/10 thru 7-13-10 operating on only one bag filter due to broken bag cage

1019819 gallons/month 36422.107 gallons/day 25.29313 gallons/min

977819.00 gallons/month 32593.9667 gallons/day 22.6346991 gallons/min

ATTACHMENT 2

MAINTENANCE LOGS

Contraction and the second sec		Waste V	Vater Tr Mainte	eatment enance L	Plant - I .og	Riverbend	t	
Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter inge	Back	Flush	Decant Oil
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
1/4/10	11418973	X		X	χ	X	X	X
1-610	30591	X		X	X	X		X
1-8-10	9763Z	×		Y	X	X		X
1-11-10	143665	×		<u>}</u>	X	<u>x</u>		X
· 13-15	245692	ΎΥ		X	X	X	V	X
1-15-10	348213	X		X	Ŷ.	Y		
8-10	44924	X		V	X	, V		$\langle \rangle$
1-20-10	550766	Ý		Ϋ́	X	V		X
1 ZZ-10	690142	X		X	x	X		X
1-75-10	831800	K		X	Ύ.	X		Ϋ́ Υ
-27-10	942875		i	X	X	<u> </u>		X
2-1-10	1081295	X		X	X	<u>x</u>	X	
2-3-10	1112539	<u>`x</u>		<u> </u>	×	×		<u> </u>
2.5.10	1189625	X		X	<u>k</u>	$\underline{\mathcal{Y}}_{}$		<u> x</u>
2-8-10	1264337	X		K	<u>×</u>	<u> </u>		1
-10-10	1386272	<u>X</u>		<u> </u>	X	X	<u> </u>	Ιχ
2.10	1429725	X		X	X	<u> </u>		12_
2-15-10	1543162	<u> </u>		У	X	×	X	<u> </u>
2-17-10	1592164	_X			λ	X		$\downarrow \chi$
2-17-10	1629915	LV_	L	X	X	<u>×</u>	\mathbf{X}_{-}	X
							 	ļ
		L			L		 	ļ
								ļ
ļ		 				ļ		<u> </u>
ļ	 	ļ					l	ļ
ļ				- <u></u>		ļ	_	<u> </u>
			 				<u> </u>	<u> </u>
							 	ļ
<u> </u>								
	 						ļ	
	 						 	
	_			 			 	
		<u> </u>	l		├		┟	<u> </u>
ļ	 	<u> </u>	 	 		<u> </u>	ł	
				 		 	<u> </u>	┨
L .	l	l	I	1	l	l	l	1

1-5to Lareset ton

DA

e

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend	
Project No.:	0171-001-500	•
Client:	Riverbend	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
1-4-10	6 an	11418973	77	21	21.1.)
1-6-10	5pm	30591	28	7.1	Puis
1-8-10	3pm	99632	27	22	Pill 1
1 - 11 - 10	1730m	143665	28	21	Duri
1-13-10	12pm	245692	7.8	22	DIX.J
1-15-10	Tan	348213	28	27	PINA
<u> </u>	<u>5pn</u>	449294	7 <i>R</i>	2.2	PUW
1-20-10	14pm	550766	283	2	PLIL
1-22-10	Tand	690142	25	21	PWW
1-25-10	400	831800	27	21	TWI
1-27-10	G130	\$ 942875	27	23	PWIN
	715	1081295	27	-2C	PLAKA
<u> </u>	730	1112539	Z7	22	PWW
2-5-10	2.50	1189625	793	23	PWW
2-83-10	8.00	1264337	Z7	22	Pun
2-10-10	11:00	1386277	26	7.2	Fur
2-12-10	Ta	1429725	28	23	Pin
2-13-10	Tan	15/3/62	27	21	PWW
7 16 1	4pm	1592164		23	PWW
2-17-10	Ban	1629715		22	Phila

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

г					Pressure Differentail R]	
Ļ	Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
1-5-10	TANK 1	1 - 4 - 0	ban	11418973			De
counter -	TANKI	1.6-10	5pm	30591			PULL
reset	TANK 1	1-8-10	3pm	99/32			Full
fo O L	TANK 1	1-11-10	730	143145		(>	Pul
L	TANKI	1-13-10	12pm	745697	17	/3	Phi-
	Tenk 1	1-15-10	Zan	348713	12	<u>/ Z</u>	- two
	TANK /	1-18-10	5000	449294	10	/4	_ Pui
L	TANKI	1-20-10	1400	550711	16		PWC
	TANKI	1-22-10	Tan	690147			Pur
E	FANK 1	1-25-10	YPM				PWW
-	TANKI	1-27-10	930	947076			plui
-	TANK 1	Z-1-10	715	108,795			TUW
	TANK 1	2-3-10	730 000	11/7529		/D	Phil
	TANKI	2-5-10	7.30	1169/75		12	PWW
	TANK-1	7-8-10	Bash	17642377			PWU
	Traik	2.10.10	ling	120131		12	Pur
	TANKI	2-12-10	Tem	1200212		/Z	Fre
	11	2-15-16	7.000	-146163		14	- Ann
	11	2-17-16	11400	-154 516 2		10	Puh
	11	7 - 19 10	et the second se	-1572/44	/2	12	fulle
L		<u> </u>	Om	162 1715			PWW

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

			Pressure	7	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
7-24-10	750	182,5949	27	25	Plukal
7-16-10	40	1969890	25	72	Pluxal
3-1-10	. Jan	2154961	26	77	Provide
3-3-10	4pm	2342917	24	23	2(46)
3-5-10	12	2657122	23	27	75-0
3.8-10	7:45	2879743	2(0	77	PMIL
3-11-10	720	3106586	25	115	BML
3-15-10	430	3435250	76	2373	DI W
3-17-10	4:10	3596377	78	76	Fun
3-19-10	730	3464134	19	71	Freid
<u>3-22-10</u>	4pm	3762480		21	PWW
-3-24-10	4pm	396:675	78		PWW
3-26-10	Z150m	4063340	7.6		pan
3-29-10	50m	4788175	70		Pan
4-1-10	14=10	449 0104	78		The
4-5-10	500	4744119			Turus
4-7-10	9	URALIA			Pwin
4-9-10	54.00	E040(37	- 60	23	PWin
11_R-10	6:0	5731015 C	27	23	PWW
4-14-10	130 pin	<u>- 26 21815</u> 579 AULU	48	22	pun
		2312719	28	23	PWW

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

	<u> </u>			Pressure Differentail R		
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TAUKI	Z-24-10	730	187.5949	1()	17	Philip
IANK I	Z-26-10	430	PAG 78 70	10	12	- Division
TANKI	3-1-10	Zan	215496	D		<u>ruu</u>
TONKI	<u>3- 5-10</u>	4 pm	2342917			pul
TANKI	3-5-10	12	7657177			Fun
TANKI	3.8.10	745	2979743	<u> </u>		FWW
TANKI	3-11-10	720	3106586	12	i [BUNG
TANKI	3-15-10	430	34367571			BING
TANKI	3-17-10	4:10	2596277			MWW
11	3-19-10	736	2104124	40	6	fore
11	5-22-10	4	3757400	10		- gww
1	3-24-10	<u>ц</u>	3901979	1.6	8	PWW
11	3-26-10	15	10/220		/	par
TANKI	3-79-11)	60.	400 3260		10	FUR
TANKI	4-1-10	4.40			8	PWW
TANKI	4.5-10	5	4410184	/3	10	Par
TANKI	4-7-10	<u> </u>	-7/4/417			Pau
TANK (4.6-10	545	4016480		/0	PWW
TANK	4-12-10	130	2070632	13	71	Pau
TANKI		<u> </u>	1631815	/41	<u> </u>	PWV
	7-14-10	- t- fra	5570414	13	ID	Dur

	FURNKEY
6	ENVERSESTER AR

Waste Water Treatment Plant - Riverbend Maintenance Log

Date	Flow Meter Reading	Lead Tank		Bag Filter Change		Back Flush		Decant Oil
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
2.24-10	1825949	X		X	X	χ		X
1-76 10	969890	X		'Y	X	V	X	X
5-1-10	2154961	$\boldsymbol{\mathbf{X}}$		X	x	χ		$ \chi $
3.3-10	2342917	K		X	X	Χ		λ
3-5-10	2657122	X		X	<u>ل</u>	X	X	γ
3-8-10	2879743	\times		X	×Χ	X		X
3.10-10	3106586	X		X	X	X	×.	X
3-15-10	3435250	X		X	X	Y		X
:-17-10	3596377	<u>Ľ</u>		X	x	X		X
3-19-10	3604134	X		X	X	X	X	\mathbf{X}
3-100	3-752480	X		X	X	X		X
3-24-10	390/177	1		X	_k	<u> </u>		λ
3-26-10	4063360	- X		X	×	Ý.		X,
3-27-10	4288125	Ľ,		K	λ	X		ΓX
:10	4470184	<u>×</u>		X	X	X	X	ľ (
4.5.10	:474449	X		<u> X </u>	K	<u> </u>		Y
: <u>7-10</u>	4896488	X		X	Υ.	<u> </u>		X
4-9-10	504063Z	X		X	X	<u> </u>	_ X	$ ' \rangle$
4-14-10	5231815	<u> X </u>		X,	X	<u> </u>		$ \chi $
4-14-10	5390414	<u> </u>		<u> </u>	<u> </u>	·/	,	1×
							ļ	ļ
								ļ
								<u> </u>
					r 	r		ļ
<u> </u>						······		
								ļ
ļ					L			
								<u> </u>
								Į
						<u>.</u>		<u> </u>
					 			Į
								ļ
							L <u></u>	<u> </u>
								۱ I

4
TURNKEY	
Environmental PE Residentics, LLC	

.

Waste Water Treatment Plant - Riverbend Maintenance Log

Date Flow Meter Readi		Lead	Tank	Bag Cha	Filter	Back	Decant Oil	
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
4-16-10	5438305	X		X	Х	X		X
	567294	X		χ	Χ	X		X
4-21-10	5956985	X		X	X	X		Ϋ́
:1-23-10	6140523	X		χ	X	χ	X	$\overline{\lambda}$
1-26-10	6406440	X		X	X	X		X
4-25 iD	6539866	X		X	X	Ý		X
1-30-10	6601245	X		X	×	X		X
53-10	6698801	X		V	X	V	X	Ý
5-5-10	6841548	K		Χ	X	λ.		X
5-7-10	6986314	τ		κ	X	<u>k</u>	K	X
5 10-10	7181053	X		_ K	X –	X		ΎΎ
5-12-12	7249615	Χ		X	X	Ϋ́Υ		
5-14-10	1308022	X		×	λ	ý.	X	X
-17-10	7410293	X		X	_X	<u>X</u>		Ŷ
5-19-10	7544173	X		<u>X</u>	X	X	×	X
5-21-10	7621064	X		_K_	X	_X		X
-3-24-10	7735883	X		$-\chi$	X	<u> </u>		X_
<u>, 26 10</u>	7767614	<u> </u>		<u> </u>	<u>×</u>	X		X
5-28-10	7815493	×		X	X	Ý	<u>X</u>	<u> </u>
6-1-10	7918208	X		X	X	_X		V_
6-3-12	8003019	_X		<u> </u>	_´X	_X		X
5-4-10	8038979	X		<u> </u>	X	<u> </u>	X	X.
- 1-10	8160439	<u> </u>		X	- K	́Y	'X	X
6-9-10	8235920		K	_X	X	X		X
6-10-10	8311760		<u>X</u>	$\overline{\mathcal{X}}$	X	$\underline{\lambda}$	X	X
6-14-10	8469478		X	<u> </u>	<u> </u>	<u>X</u>		X
 						·		
								<u> </u>
<u> </u>							ļ	<u> </u>
L						<u></u>		l
		·						
							1	1

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	: Riverbend						
Project No.:	0171-001-500	 	N 10 7 44 10 1		 		
Client:	Riverbend	 		 		·	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
4-16-10	630	5438305	27	23	Phin
4-19-107	630	5672941	- 78	23	PWW
4-21-10	Bas	5956985	27	23	Ren
4-23-10	800	614 00523	28	7-2	PWW
4-26-10	50m	6406440	28	21	Pun
4-28-10	8	6539866	78	72	Pan
4-30-10	7	6601245	<u> 28</u>	23	PWW
5-3-10	8	6698801	29	<u> </u>	PUN
5-5-10	Ban	684754B	25	2/	Flick
5-7-10	9a.	6986314	25	21	pun
5-10-10	8 an	7181053	25	27	PWW
5-12-10	701	7249615	28	21	PWW
5-14-10	Ban	7308027	25	27	PWW
5-17-10	Tan	74/0793	27	Z/	PWW
5-19-10	Tan	7549175	27	22	Phil
5-21-10	31M	7621064	27	22	Fui
5-24-10	1400~	7735883	e 27	72	PWL
5-16-10	Tal	7769614		Zi	Pull
5-28-10	Bar	781-173	21	272	PUL
6-1-10	30211	T71 8208	27		PIL

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

PROJECT INFORMATION:

1.4.1

Project Name:	Riverbend			
Project No.:	0171-001-500			
Client:	Riverbend			

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
6-3-10	6905	8003019	24	21.5	BMA
6-4-18	800	8038979	27	21	Phin
6-7-10	8.00	B160439	27	20	PWN
5-1-10	800	8235920	26	21	Pusie,
6-10-10	800	0311460	<u> </u>	2.0	Pula
6-14-10	70.5	8461448	- 28		1-and
	· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·					
·····					
· · · · · · · · · · · · · · · · · · ·					

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend			
Project No.:	0171-001-500	 	 	
Client:	Riverbend			

Lead Tank	Data			Pressure Differentail R	eading on Lead Tank	J
TANK /	4.16.10	lime	Total Filtered (gal)	Prior to Change	After Change	technician
TANK	11010	6.0	5438305	12	- Chunge	<u>ucclimician</u>
TANKI	7-14-10	630	5672941	17		Phin
TRAIL	<u> </u>	8	5951985	12		TWW
TIVAL	4-23-10	8.00	6140523	1		Pun
TANKI	<u>4-28-10</u>	5pm	6401440		<u>((</u>	puh
PUVAI	4-28-10	6008	153984	<u> </u>		Pine
TANKI	4-30-10	7	((0)7115	14		Pier
TANK	5-579-16	8		15	12	INW
TANK	5-5-10	Rain	LED DOUL	14	10	Phyla
TANKI	5-7-10		601 1548	12	10	Divi
TANK /	A 5-10-10	- Jum	6186314	/6	10	Pin
TANKI	8-3-17-10	- Dan	118(05)	16	10	- nu
TANKI	5-14-10		1249615	16		- FUW
TANK	5 17 10	Den	1308022	16		pww
TANKI	5 13 12	lan	74/0293	16		- Fun
TANKI	$\frac{J^{-} I I - I 0}{C - 2 I I A}$	-jam	7544/73			FWW
TANKI	3-4-10	30-	7621064	16		PUN
	5-24-10	4pm	7735883			PWW
14 11K1	5.16.D	Tar.	77/9/14		(<u>D</u>	PWW
- FINK (5.8-2	Bar.	7815492		10	PUDIA
	<u>6-1-10</u>	ZOM			10	PWM
-				16		\$1.J-

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

PROJECT INFORMATION:

*

Project Name: RiverbendProject No.:0171-001-500Client:Riverbend

		¥		Denceure Differentail R	eading on Lead Tank	
				Piessuie Dineren	After Change	technician
	Deta	Time	Total Filtered (gal)	Prior to Change	11	Bruch
Lead Tank	Date	0905	8003019	i fil	11	Parla
Gozaf Jahr	6.3.10	800	8038917	14	11	Plas
TAUK	6-7-10	800	8160457	12	- b	TWW
TANK	6-9-10	800	8235720	17	0	Pur
TINKT	6-10-10	300	- QUL949B	14		
TANK2	6-14-10	100	<u> </u>			
		+				
		-				
			1			

	Maintenance Log								
Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter ange	Back Flush		Decant Oil	
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator	
2/11/10	8549002		X	X		λ	\mathbf{X}		
6/23/00	8623-391		X	X	X		X	X	
125/10	8674016		Ý	У	X		74	X	
-125/10	8803740		X	X	Ŷ		X	X	
7-1-10	8896027		X	X			X	X	
7-2-10	8955945		V V	Ϋ́χ	X	X		X	
7-5-D	8976524		X	\times	×		X	1	
7-7-10	901987		X	X	X		γ –	Ϋ́χ	
7-1-10	9212945		X	X	X		Ý	Σ	
							<u> </u>		
								<u> </u>	
								<u> </u>	
•									
					·				
								<u></u>	
								·	
					· · · · · · · · · · · · · · · · · · ·				

Waste Water Treatment Plant - Riverbend

6-21-10 +,11 7-13-10 operating a one bag filter because the charge on 2-d bag filter split

1

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	,
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail F	Reading on Lead Tank	1
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK L	<u>-6/21/10</u>	14:15	8549002	14	- Inter Change	technician
TANK Z		SA	8623371	16	<u>o</u>	PLE
TRAIN 2	E 125/16	8:00	8674016	15		Pur
TANK 2	6/28/16	7:00 an	8803740	14	a	- Full
TANKZ	7-7-10	1100	8896027	0	• 7	Dirac
TANK-2	7-5-10	7200	8755945	0	8	-BVNG
TANKZ	7-7-10	33004	8971524	0	7	Tww
TANKZ	7-11-10	- Pro-	<u> </u>	0	E	Zur
		- Tan	1212148	0		Pwu

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	♥
Client:	Riverbend	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
6/2(10)	19:15	854 9002	28	22	
6/23/10	-55~	8623391	78	23	PILW
6/25/10		8674016	- 26	22	PUL
010010	1 dian	8803740	29	26	The second secon
7-7-10	100	896027	26.5	20	TAMI-
7-6-10	14	8955945	26	ZO	Plula
7-7-1)	710 an	8776524	28	20	ALLI
7-11 10	- 3 pm	7017821		21	Plan
7-11-10	- I gin	1212948	26	EI.	Plus

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 9 REPORTING PERIOD ENDING September 30, 2010

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress report covers approximately 3 months of the operation and maintenance of the GWPTS from (07/01/10 through 9/30/10).

1.0 <u>Treatment Statistics</u>

- Approximately 1,637,303 gallons of collected groundwater were treated over this period averaging 17,796.77 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time
- Approximately 2.5 drums of tar was recovered from the oil/water separator

2.0 General Schedule of Maintenance Undergone

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - Carbon filtration vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing
- On 6/21/10 thru 7/13/10 only one bag filter was operational due to a bag cage malfunction
- September 30, 2010 the oil/water separator was drained and cleaned

3.0 Work Planned

- Continued regular maintenance
- Carbon change out (projected December 2010)
- Annual certification/inspection (November/December 2010)

4.0 <u>Attachments/Logs</u>

- Bag Filter Change-out Log 6/21/10 thru 7/11/10, 7/19/10 thru 9/29/10
- Carbon Filter Backwash Log 6/21/10 thru 7/11/10, 7/19/10 thru 9/29/10
- Maintenance Log
- Graph of Daily Operation

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg
7/1/2010	8896027	
7/2/2010	8955945	59918
7/5/2010	8976524	6860
7/7/2010	9019821	21649
7/11/2010	9212948	48282
7/19/2010	9325315	14046
7/21/2010	9402699	38692
7/23/2010	9459391	28346
7/26/2010	9501246	13952
7/28/2010	9590306	44530
7/30/2010	9664217	36956
8/4/2010	9764931	20143
8/6/2010	9836252	35661
8/13/2010	9935339	14155
8/16/2010	9994562	19741
8/18/2010	10046859	26149
8/20/2010	10095963	24552
8/23/2010	10126042	10026
8/25/2010	10162531	18245
8/27/2010	10199542	18506
8/30/2010	10226394	8951
9/1/2010	10253664	13635
9/3/2010	10278502	12419
9/6/2010	10304924	8807
9/8/2010	10337449	16263
9/10/2010	10359878	11215
9/13/2010	10379291	6471
9/15/2010	10412241	16475
9/17/2010	10429996	8878
9/20/2010	10451293	7099
9/22/2010	10475306	12007
9/24/2010	10487652	6173
9/27/2010	10496783	3044
9/29/2010	10533330	18274
Total Flow	1637303	gallons

* = flow meter calibrated and reset to zero on 01/05/10

Flows for July

1.) 6/21/10 thru 7-13-10 operating on only one bag filter due to broken bag cage

768190 gallons/month 24780.32 gallons/day 17.20856 gallons/min

Flows for August

562177 gallons/month 18134.742 gallons/day 12.593571 gallons/min

Flows For September

306936.00 gallons/month 10231.2 gallons/day 7.105 gallons/min

ATTACHMENT 2

MAINTENANCE LOGS

			Mainte	enance L	_og			
Date	Flow Meter Reading	Lead Tank		Bag Filter Change		Back Flush		Decant Oil
		Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
2/11/10	8549002		X	X		λ	\mathbf{X}	
6/23/00	8623-391		X	X	X		X	X
125/10	8674016		Ý	У	X		74	X
-125/10	8803740		X	X	Ŷ		X	X
7-1-10	8896027		X	X			X	X
7-2-10	8955945		V V	Ϋ́χ	X	X		X
7-5-D	8976524		X	\times	×		X	1
7-7-10	901987		X	X	X		γ –	Ϋ́χ
7-1-10	9212945		X	X	X		Ý	Ϋ́ Υ
							<u> </u>	
								<u> </u>
								<u> </u>
•								
					·			
								<u></u>
								·
					· · · · · · · · · · · · · · · · · · ·			

Waste Water Treatment Plant - Riverbend

6-21-10 +,11 7-13-10 operating a one bag filter because the charge on 2-d bag filter split

1

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	,
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail F	Reading on Lead Tank	1
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANK L	<u>-6/21/10</u>	14:15	8549002	14	- Inter Change	technician
TANK Z		SA	8623371	16	<u>0</u>	PLE
TRAIN 2	E 125/16	8:00	8674016	15		Pur
TANK 2	6/28/16	7:00 an	8803740	14	a	- Full
TANKZ	7-7-10	1100	8896027	0	• 7	Dirac
TANK-2	7-5-10	7200	8755945	0	8	-BVNG
TANKZ	7-7-10	33004	8971524	0	7	Tww
TANKZ	7-11-10	- Pro-	<u> </u>	0	E	Zur
		- Tan	1212148	0		Pwu

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	♥
Client:	Riverbend	

			Pressure	Reading	7
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
6/2(10)	19:15	854 9002	28	22	
6/23/10	-55~	8623391	78	23	PILW
6/25/10		8674016	- 26	22	PUL
010010	1 dian	8803740	29	26	The second secon
7-7-10	100	896027	26.5	20	TAMI-
7-6-10	14	8955945	26	ZO	Plula
7-7-1)	710 an	8776524	28	20	ALLI
7-11 10	- 3 pm	7017821		21	PLAL
7-11-10	- I gin	1212948	26	Ē.	Plus

Waste Water Treatment Plant - Riverbend Maintenance Log

Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter	Back	Flush	Decant Oil
	3	Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
7-19-10	9325315		X	X	X		X	X
7-21-10	9402699		X	X	X	χ	X	\boldsymbol{X}
7-23-10	9459391		V	Ý.	X		X	X
7-26-10	9501246		X	Ϋ́.	X	X	X	X
7-28-10	9590306			Υ	X		<u> </u>	X
7-30-10	9664217		X	X	<u> </u>	X	<u>X</u>	X
0 4-10	9764931		X	X	<u> </u>	M	<u>X</u>	1χ
8-6-10	9836252		<u> </u>	<u> </u>	X	<u> </u>	<u>X</u>	$\dot{\gamma}$
8-13-10	9935339			X_{-}	<u> </u>	·	<u> </u>	X_{-}
8-16-10	9994562		X	<u> </u>	<u> </u>		<u>×</u>	$ X_{-} $
8-10	10046859		X	<u> </u>	<u>×</u>	X	<u> </u>	X
0-20-10	10015163		<u> </u>	<u>x</u>	<u> </u>		<u> </u>	
0 25 10	10126042		X		<u>X</u>		<u>×</u>	+
2177 10	10162551	·	-¥-	<u> </u>	X		<u> </u>	<u> X</u>
O(1-10)	10149542		$-\hat{\varsigma}$	- <u>X</u>	X	<u> </u>	+	
8-30-10	10206514							+
9310	1025 5657			- x	X			$\left \frac{1}{2} \right $
9-(-10	INZNIGIL					<u> </u>		$+ \times -$
9-8-10	103271149		X		$\frac{k}{\chi}$			1 L
9-10-10	10359878	<u> </u>	X	- X	Y		Ŵ	
1-13-10	10379791		X	V	Ϋ́	<u> </u>	Ι Ý	Y
9-15-D	10412241		X	X	Ύ		X	\uparrow
9-17-10	104 29996		X	X	K	X	X	$\overline{\mathbf{v}}$
3-20 10	10451293		X	X	λ		X	1
9-22-10	104 75306		X	X	ίχ		X	X
	10-12-12-12			4	1	1	1	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. T. T.F		<u> </u>	1	1		1	1
19 - 190 - 197	and the second				1		1	
				i 			L	
ļ							ļ	
L	 							
	}	ļ						<u> </u>
					ļ			
 	 	 		ļ		<u> </u>		
	4				l	1		

1053530

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
7-19-10	4pm	93253/5	30	71	PWW
7-21-10	4 pm	9402699	26	20	PWW
7-23-10	4/2.~	9559391	25	ZÒ	PWW
7-26-10	4 pm	9501246	26	21	Puw
7-28-10	Tan	9590306	26	Zo	PUN
7-30-10	8 an	9664217	27	22	PWW
8-4-10	730pm	9764931	28	22	PWW
8-6-10	430 pm	9836252	Ze	21	PWW
8-13-10	1235	9935339	27	20	Brid
8-16-10	800	2994562	27	2	Plui
8-18-10	800	10046859	28	20	pun
8-20-10	8:00	10095763	7.8	21	PWW
8-23-10	8:00	10126042	27	21	PWW
8-25-10	SEM	10162531	26	20	Fin
8-27-10	5 pm	10199542	26	71	PUL
8-30-10	Tan	102-26394	27	22	PWW
9-1-10	6.3cm	10253664	26	ZO	PUR
9-3-10	Tan	10278507	25	21	Pash
7-6-10	4pm	10304924	ZG	Z	PWW
9-8-10	3.pm	10337449	ZY	21	Pun
9-10-10	3pm	10359878	26	21	pur

>

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend			
Project No.:	0171-001-500			
Client:	Riverbend		 	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
9-13-10	5pm	10379291	0	0	Puus
9-15-10	6pm	10412241	0	\bigcirc	pui
9-17-10	3'30 pm	10428996	0		Pier
9-20-10	5 pm	10451293	0	0	Puru
9-22-10	if pra	10475506		0	Pun
and the second		104 5 6 C M			for a second
	st general			· .	n Line and Line
	· · · · · · · · · · · · · · · · · · ·				

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend		
Project No.:	0171-001-500		
Client:	Riverbend		

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
TANKZ	7-19-10	4pm	9325315	12	6	Pau
TANKZ	7-21-10	46m	9402699	.0	0	Puin
TANKZ	7-23-10	40-	945939		0	PWC
TANKZ	7-26-10	4pm	9501246	\mathcal{O}	0	PWL
TANKZ	7-28-10	Tan	<u>9590306</u>	6	0	PWW
TANKZ	7-30-10	Ban	7664217	\diamond	0	Paw
TANKZ	8-4-10	73°pm	9764931		0	pui
TANKZ	8-6-10	430 pm	9836252	0		Pin
Jank 2	8-13-10	1235	9935339	0	0	Brug
Tank 2	8-16-10	8:00	9994562		\bigcirc	PWW
TANKZ	8-18-10	8:00	10046859	<u> </u>	0	PWW
TANKE	8-20-10	8:00	10015963	0	0	Pur
TANKZ	8-23-16	8:00	10126042	0	0	Pur
TANK 2	8-25-10	5pm	10162531	0	0	Pww
TANKZ	8-27-10	SDA	10199542	0	0	Puer
TANKZ	8-30-10	Tan	102.26.394	0	0	perte
TANKZ	9-1-10	630 m	10253669	0	Ø	The
TANKZ	9-3-10	Tan	10278502	0	0	Puns
TANKZ	9-6-10	4pm	10304924	0	0	PWW
TANKZ	9-8-10	30~	10337449		0	PWW
TANGZ	9-10-10	3pm	10359878	0	0	pun

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail F	leading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
Gato TNIKZ	9-13-10	5 p.~	10379291	26	21	puer
TAVKZ	2-15-10	6pn	10412241	26	20	Pur
-TANKZ	9-17-10	330 pm	10429996	25	20	Plie
TANKZ	9-20-10	5pm	10451293	26	21	PWW
TANK2	9-22-10	4pm	10475301	25	20	PWW
10 10 -			, Cap F. M. C.			
· · · ·			A Contraction of the second		101	E E
<u> </u>						
			·····			
			· · · · · · · · · · · · · · · · · · ·			
L						

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 10 REPORTING PERIOD ENDING December 31, 2010

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress Report covers approximately 3 months of the operation and maintenance of the GWPTS from (10/01/10 through 12/31/10).

1.0 <u>Treatment Statistics</u>

- Approximately 709,965 gallons of collected groundwater were treated over this period averaging 7,977 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time
- Approximately 1 drum of tar was generated from the oil/water separator

2.0 General Schedule of Maintenance Undergone

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - Carbon filtration vessel back-washing : 3 times per week or as necessary
 - Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing
- December 21, 2010 the oil/water separator was drained and cleaned
- Carbon change out (Tank 2) on 12/23/10

3.0 Work Planned

- Continued regular maintenance
- Annual certification/inspection postponed until spring due to snow cover

4.0 <u>Attachments/Logs</u>

- Graph of monitored flows through treatment system
- Maintenance Log 9/30/10 thru 1/3/11
- Bag Filter Change-out Log 9/30/10 thru 1/3/11
- Carbon Filter Backwash Log 9/30/10 thru 1/3/11

ATTACHMENT 1

MONITORED FLOWS VS. TIME

Date	Total Flow	Daily Avg
10/01/2010	10,551,278	10,161
10/04/2010	10,587,654	12,125
10/06/2010	10,600,029	6,188
10/08/2010	10,625,434	12,703
10/11/2010	10,646,528	7,031
10/13/2010	10,667,432	10,452
10/15/2010	10,687,108	9,838
10/18/2010	10,694,394	2,429
10/20/2010	10,730,948	18,277
10/22/2010	10,749,516	9,284
10/25/2010	10,765,923	5,469
10/27/2010	10,789,098	11,588
10/29/2010	10,791,325	1,114
11/01/2010	10,799,934	2,870
11/03/2010	10,813,941	7,004
11/05/2010	10,831,652	8,856
11/08/2010	10,859,632	9,327
11/10/2010	10,871,361	5,865
11/12/2010	10,900,021	14,330
11/15/2010	10,935,695	11,891
11/17/2010	10,999,612	31,959
11/19/2010	11,004,308	2,348
11/22/2010	11,008,210	1,301
11/24/2010	11,029,772	10,781
11/26/2010	11,046,943	8,586
11/29/2010	11,070,001	7,686
12/01/2010	11,093,921	11,960
12/03/2010	11,102,938	4,509
12/06/2010	11,113,946	3,669
12/08/2010	11,145,432	15,743
12/10/2010	11,168,951	11,760
12/13/2010	11,169,121	57
12/15/2010	11,172,398	1,639
12/17/2010	11,175,439	1,521
12/20/2010	11,178,947	1,169
12/22/2010	11,231,164	26,109
12/27/2010	11,249,811	3,729
12/29/2010	11,261,243	4,297
01/03/2011	11,532,778	40,424

OC	OCTOBER		OCTOBER		OCTOBER		NOVEMBER		DEC	EMBER
248,656	gallons/month		293,987	gallons/month	438,857	gallons/month				
31	days		30	days	31	days				
8,021	gallons/day		9,800	gallons/day	14,157	gallons/day				
6	gallons/min		7	gallons/min	10	gallons/min				

Total Quarterly Flow: Ave. Quarterly Flow:

Notes: * = flow meter calibrated and reset to zero on 01/05/10

709,965 7,977

gallons gallons

ATTACHMENT 2

MAINTENANCE LOGS

Barboonter Barboonter Restantor.Lla	TT	Waste V	Vater Tr Mainte	eatment nance L	i Plant - I ₋og	Riverbend	'	
Date	Flow Meter Reading	Lead	Tank	Bag Cha	Filter ange	Back	Flush	Decant Oil
Duio	non motor requirig	Tank 1	Tank 2	Tank 1	Tank 2	Tank 1	Tank 2	Seperator
9-30-10	10541117		X	\mathbf{X}	\mathbf{X}	\sim	X	X
10-1-10	10551278		X	X	X		X	X
10-4-10	10587654		X	·χ	X	X	К.	ΪX
10-6-10	10600029		X	K	X		K	X
10-8-10	106 25434		У	X	K		X	X
10-11-10	10646528		X	X	X	X	X	X
10-13-10	10667432		V I	X	X		Ŕ	Х
10-15-11	10687108	-	X	У	$\mathbf{\hat{\chi}}$		X	X
10-18-10	10694394		X	X	12	X	X	ΪX
10-20-10	10730948		Ϋ́	X	X		X	X
10-72-10	10749516		X	Ϋ́	X	·	X	Íχ
10-25-10	10765923		V	Ŷ	X	X	X	X
10-27.10	10789098		Ϋ́	Х	X		V V	X
10.29.10	10791325		X	X	X		Ŷ	X
11-1-10	10799934		X	X	V	X	X	X
11.3-10	10813941		×	X	X		X	X
11-5-10	10831657-		X	X	Y		X	V
11-8-10	10859632		X	ν V	X	X	·X	X
11-10-10	10871361		X	X	X		X	X
11-12-10	10900021		X	Х	X	X	X	X
11-15-10	109 35695		X	X	\boldsymbol{X}		X	X
11-17-10	10999612		X	X	K		X	X
11-19-10	11654308		X	X	X	X	X	X
11-22.10	110082In		X	V	ι γ		X	Y Y
11-24-10	11029 772		Ý	Ŷ	Ŷ		X	χ
1 26-0	11046943	-	X	X	Γ́Λ	X	Y	X
11-22-0	11070001		x	X	X		Ŕ	X
12-1-10	11093921		X	X	K.		X	X
12-3-10	4-62938		X	X	X	X	λ	X
12-6-0	111/3946		X	X	λ		$\frac{1}{\lambda}$	X
12-8-10	11145432-		X	X	X	X		Γ λ
12-10-1	MILBASI		V	$\mathbf{\hat{x}}$	X	<u> </u>	X	
12:13-10	111 69171		<u> </u>	X	X	V	X	Y
12-15-10	11172798		×	Î X	1 X		X	X
17-19-10	11175439		X	1		X	X	X
12-2010	11178947		X	Ύχ	\uparrow		X	
12-22-10	11231164		k i k	Ŷ	· / X	χ.	Ύγ	X
12-27-10	11249611	X	-	X	X	×	-	X
12-29-10	011261243	X		X	X	\sim	P	\sim
1-3-11	11532778	X		ε.» Ν.	C	\sim	k	ſ
	0	/		X	Х	X	×	X

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

Project Name:	Riverbend
Project No.:	0171-001-500
Client:	Riverbend

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
9-50-2010	08:30m	10541114	76	21	12P
10-1-10	6:00 pm	10551278	25	21	Pule
10-4-10	8 500	10587654	ZT	zi	Paxo
10-6-10	7 pm	10600029	276	22	PWW
10-8-10	6 b.~	10625434	27	22	Puus
10 - 11 - 10	17 an	10646528	26	2(700
10-13-10	7pm	10667432	27	20	PWW
10-15-10	1406	10687108	ZM	Z0	177
10-18-10	1730	10694394		70	PWW
10-20-10	1700	1073094R	27	21	PWW
10-22-10	1700	10749516	Z6	70	PWW
10-25-10	1600	10765923	27	Z1	Pur
10-27-10	600	10789098	26	20	PWW
10-29-10	7	10791325	27	ZI	PWW
il- 1- 10	7 am	10799934	<i>Z8</i>	<u></u> Z/	Pww
11-3-10	4pm	10813941	26	20	PWW
11-5-16	5-200	10831652	27	21	PWW
11-8-10	67n	1085963Z		21	PWW
11-10-10	Ban	10871361	26	20	Pww
1 (- 1z-10	7an	1090021	15	20	Pur
11-15-10	5pm	10935695	28	20	

OPERATION AND MAINTANANCE BAG FILTER CHANGE-OUT LOG

.

PROJECT INFORMATION:

•

Project Name:	Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

			Pressure	Reading	
Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
11-17-10	700	10999612	28	20	PWW
11-19-10	1800	11654308	27	10	Pwid
11-22-13	1800	11008210	Z9	20	PWW
11-24-10	7.00	11029772		Z(DWW
11-26-10	Bon	1046943	28	22	Paico
11-29-10	76m	11070001	27	21	Pww
12-1-10	<u>6'p~</u>	11093921	76	<u>zo</u>	ρωω
12-3-10	Spr	1110 2938	7.6	21	Pww
12-6-10	7 DN	11113946		20	AMM
12-8-10	6 pm	1145432	<u>Z7</u>	<u>Z(</u>	Ρωω
12-10-10	Spa	11168951	<u>78</u>	72	Puh
12-13-10	4 pm	11169171		22	Pww
12-15-10	6 pm	11172398	2,55	21	Paul
12-17-10	5pm	11113434		21	frains 1
12-20-10	12pm	11178747	26	20	Plusa
12-72-10	5.24	11231164	26	ZO	TWW
12-2(-10	6'pm	11247811	<u> </u>	77	FOR G
12-27-10	1 pm	11261273	<u> </u>	4	PNW
1-3-11	<u> </u>	11532178		21	Face
	L				

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

Project Name	: Riverbend	
Project No.:	0171-001-500	
Client:	Riverbend	

	_			Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
2	9-30-Z010	0830m	10541117		\bigcirc	MP
2	B-10-1-10	60070	10551278	6	Ő	Frie
	10-4-10	Bpin	10587654	6	0	PUW
	10-6-10	Ton	10600029	O	0	PULL
2	10-8-10	<u> <u> </u><u> </u></u>	10625434	0	0	Pluce
2	10-11-10	7 an	10646528	0	0	700
2	10-13-10	7pm	10667432	6	6	Pur
t t	10-15-10	1406	10684108	0	0	MPP
2	10-18-10	/730	<u> 10694394 </u>	0	0	PUL
2	10-20-10	1700	10730948	0	\square	PWW
2	10-22-10	1700	10749516	0	0	PUNN
	10-25-10	1600	10765923	6	0	Pere
2	10-27-10	600	10789098	C	6	Put
2	10-29-10	700	10791375	0	0	Put
2	11-1-10	700	10799934	0	0	FWW
2	11-3-16	1600	10813941	0	0	Pwil)
	11-5-10	1700	10831652	0	0	Duc
- 2	11-8-10	1600	10857632	\odot	0	FUR
Z	11-10-10	800	1087/36/	0	0	Pun
7	11-12-10	700	10900021	0	ð	PWW
Z	11-15-10	1700	1093569 5	0	0	Pue

. . j

OPERATION AND MAINTANANCE CARBON FILTER BACKWASH LOG

PROJECT INFORMATION:

Project Name: Riverbend

110,000 1 10110		
Project No.:	0171-001-500	
Client:	Riverbend	

				Pressure Differentail R	eading on Lead Tank	
Lead Tank	Date	Time	Total Filtered (gal)	Prior to Change	After Change	technician
7	11-17-10	700	10999612	0	O	PWW
Z	11-19-10	1800	11654308	0	0	PWW
7	11-22-10	1800	11008210		0	PWW
Ž	11-24-10	700	11029772	6	0	PWW
2	11-76-10	Bon	11646943	0	0	PWW
2	11-29-10	Zpm	11070002	6	0	PWW
2	12-1-10	1 pm	11093921	0	0	Pailo
2	12-3-10	s pm	11102938	<u> </u>	\diamond	PWW
2	12-6-10	7pm	11113946	0	6	Pww
2	12-8-10	6 pm	11145432	0	0	Puil
2	12-10-10	5pm	11168951		<u> </u>	Pulu
Z	12-13-10	· 400	11/69/21	6		Peseo
Z	12-15-10	6pm	11172398		\bigcirc	Puer
2	12-17-10	524	11175439	ð	0	Paula
2	12-20-10	12 pm	11178947		0	Pul
2	12-22-10	<u> </u>	11231164	0		PWLS
TANKI	12-27-10	bph	11249811	12	8	PWW
TANKI	12-29-10	15m	11261243	12	B	Dun
TANK 1	1-3-11	1/ 000	11532778	<i>i</i> /	8	PWW
				1		

Waste Water Treatment Plant - Riverbend

S I GROWEN	Maintenance Log									Flow 101			
Date/Time	Flow Meter	Lead	Tank	Back	Flush	Pressu	re Differential (PSI)	Bag Cha	Filter nge	Bag Pres	sure (PSI)	Decant Oil	verme / after
	Reading	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	
1-6-1109:00	11693520	X		Y	x	/Z	10	X	X	28	21	X	
1-7-11 10:00	21753	X		X		11	<u>e</u>	X	X	28	Z(X	
1-11-11 14:00	169.298	X		<u>×</u>		12	8	<u> </u>	X	24	20	X	
1-13-11 16:00	284,533	K		X		10	e	ĸ	X	Z4	2(X	
(-14-11 17:00	330,387	<u>X</u>		X	X	4	2	X	<u> </u>	Z4	20	12	
1-17-11 1600	421,961	X		<u> </u>		4	2		X	24	ZÒ	X	
1-17-11 16	512,006	X,		X		6		X	K	Z6	20	X	
1-21-11 1700	632083	X		<u> </u>		4	<u>Z</u>	X	<u>x</u>	25	20	\mathcal{X}_{-}	
1-25-11 1100	792,947	X		<u>X</u>		4	2	X	X	Z3_	ZD		
1-31-11 800	1047798	<u>X</u>		_X	,e.	5	_5	X	×	22	20	X	606Pm, 76 GPM
2-2-11 1500	11451471	_X		_ <u>X</u>			<u> </u>	X			19	<u> </u>	75 14707
Z-M-11 1200	1364637	X		<u> </u>			7		<u> </u>	-28	19.5		GIGPM/ 15BC
2-9-111030	1446630	×		<u>×</u>			<u> </u>	X	<u> </u>		20		17
<u>C-11-11 1100</u>	1521410	X		<u> </u>	<u>×</u>		4	×	-X		40		SOLC
2-14-11 1030	1647379	×		<u> </u>		-	4	X	<u>~</u>		21		-/80,49
2-16-(17000	1740356	\times		<u> </u>	<u> </u>	55	6			77	20		76.05 180.60
7-18-11 1100	1815544	X_{-}		X	<u> </u>		2	<u> </u>		26	<u>ZO</u>	X	13.26 83.05
<u>-71-11 1900</u>	194793	X		¥/			<u> </u>	ĻX_			<u> 20</u>	L <u>X</u>	- 18675
7-73- 1400	203178	X,		X		5.5	4	X	_ <u>X</u> /_	40	19		6.51/81.40
7-25-11 0945	211847	<u> </u>		×		7	4	<u> </u>			≤ 0		-180,60
7-78-11 1800	2751377	×/		LX		<u>_</u>	4	X	<u> </u>	<u>73</u>	40	X	03.11/14.49
5-2-11 1920	7558545	$X_{/}$		X		<u>5,5</u> _				66	10	<u>×</u>	68.04/8/200
54-11 1300	2477904	<u> </u>	æ	<u>×</u>		·	10	×	<u>></u>	<u> </u>	20	Z	-774,44
									•••••				
							<u> </u>				ļ		
*													
			···.		ļ								
								ļ					
[Ļ <u> </u>				<u> </u>		l	<u> </u>		L	L		

130

1-6-11 @ 10:00 Flow meter was calibrated and reset to O

FIGTENTICN

Puc 1

¥

500

Waste Water Treatment Plant - Riverbend Maintenance Log ÷.,

······						manne	nanoc Log	· · · · · · · · · · · · · · · · · · ·						
	Flow Meter	Lead	Tank	Back	Flush	Pressu	re Differential	Bag	Filter	Bag Pres	sure (PSI)	Decant Oil	Instantan	eous Flow
Jare	Reading	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	Before	After
5-9-11 800	7637933					11	8			23	70	×	65.66	80.75
5-11-11 500	777 4314	x		$\overline{\mathbf{x}}$	X	~	10	×	$\mathbf{\hat{\mathbf{x}}}$	-	ZO	XG		81.50
R-14-11 800	2857730	$\overline{\times}$		X		11	9	×	X	ZZ	20	X	64.38	80.53
5-11041 820	7950190	$\overline{\mathbf{X}}$		X	1	9.5	10	X	\mathbf{X}	ZI	20	\mathbf{X}	65.31	80.74
5-18-11 1200	3048555	X,		\mathbf{X}	\times	9	10	X	X	72	20	X	67.76	83.28
8-21-11 450	3180299	X		X			in	X	\mathbf{X}		ZO	X		81.56
5-23-110730	3313758	X		X	,	-	10	X	\mathbf{X}		ZO	X		81.26
5-26-11 1000	3473746	X		\times	\times	12	10	$ \times$	\times	24	ZO	\times	48.03	78.27
378-11 000	3521889	\mathbf{X}_{-}		\times		ä	iD	\sim	\times		70	×,	62.61	80.47
5-30-11 0000	3588691	\searrow		\mathbf{X}		17	11	<u> </u>	$ \cdot \rangle$	Z4	21		51.76	77.85
								, í		 				
									<u></u>	ļ				
													-	
								ļ						
· · · · · · · · · · · · · · · · · · ·														
										•				
											<u> </u>			
	<u> </u>													
											<u> </u>			
		-												
					r	· ·								
									<u> </u>			· · · · · ·		
												-		
			<u> </u>						,					
					<u> </u>	-				-				
			.						<u> </u>	-				·
						-			+		-			
			<u> </u>		<u> </u>		*							
· · · • • • • • • • • • • • • • • • • •				l					<u> </u>		+			· · · · · · · · · · · · · · · · · · ·
]					1		1	L]	

_

URNKEY

PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES Riverbend, LLC 197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 11 REPORTING PERIOD ENDING March 31, 2011

Project Description

This Quarterly Progress Report has been prepared for the Riverbend, LLC Groundwater Pre-Treatment System (GWPTS) located at 197 Baraga Street, Buffalo, NY. This Report has been prepared in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. This Progress Report covers 3 months of the operation and maintenance of the GWPTS from January 1 through March 31, 2011.

1.0 <u>Treatment Statistics</u>

- Approximately 3,749,433 gallons of collected groundwater were treated over this period averaging 41,703 gallons per day.
- System was operational for approximately 100% of the time.
- System was down for 0% of the time
- Approximately 130 pounds of tar was generated from the oil/water separator; approximately 58 pounds in January, 36 pounds in February, and 36 pounds in March. These volumes are consistent with a Conditionally Exempt Small Quantity generator (≤ 220 pounds/month). This generator status according to the USEPA has an on-site accumulation quantity limit of 2,200 pounds and no accumulation time limit.

2.0 <u>General Schedule of Maintenance Undergone</u>

- Regular Maintenance Items
 - o 3 bag filter changes/week or as necessary
 - o Carbon filtration vessel back-washing: 3 times per week or as necessary
 - o Decant tar from separator : 3 times per week or as necessary
- Additional effort for more frequent bag filter changing and backwashing
- Pulled all three pumps from the pump stations; cleaned, changed oil; and replaced the chains on each pulley system. All three pumps are functioning as intended.
- Performed an electrical assessment on all 3 pump stations, which required some reprogramming of the Sensaphone SCADA 3000 AutoDialer

3.0 Work Planned

- Continue regular maintenance
- Annual certification/inspection associated with the Periodic Review Report (PRR) in accordance with DER-10 is being performed in April

4.0 <u>Attachments/Logs</u>

- Attachment 1: Graph of monitored flows through treatment system for current quarter
- Attachment 2: Maintenance Log for current quarter (01/06/11 thru 3/30/11)
- Attachment 3: Generated Volume of Tar Material Log (01/01/11 thru 03/30/11)

ATTACHMENT 1

MONITORED FLOWS VS. TIME

ENVIRONMENTAL RESTORATION. LLC

ATTACHMENT 1

MONITORED FLOWS v. TIME FIRST QUARTER 2011

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Total Flow	Daily Avg
01/03/2011	11,532,778	54,307
01/06/2011	11,693,520	53,581
01/07/2011	21,753	21,753
01/11/2011	169,298	36,886
01/13/2011	284,533	57,618
01/14/2011	330,387	45,854
01/17/2011	421,961	30,525
01/19/2011	512,006	45,023
01/21/2011	632,083	60,039
01/25/2011	792,947	40,216
01/31/2011	1,047,798	42,475
02/02/2011	1,145,471	48,837
02/07/2011	1,354,632	41,832
02/09/2011	1,446,630	45,999
02/11/2011	1,521,410	37,390
02/14/2011	1,647,379	41,990
02/16/2011	1,740,356	46,489
02/18/2011	1,815,544	37,594
02/21/2011	1,942,931	42,462
02/23/2011	2,031,287	44,178
02/25/2011	2,118,471	43,592
02/28/2011	2,251,327	44,285
03/02/2011	2,338,545	43,609
03/04/2011	2,427,904	44,680
03/09/2011	2,632,933	41,006
03/11/2011	2,724,318	45,693
03/14/2011	2,857,730	44,471
03/16/2011	2,950,190	46,230
03/18/2011	3,048,333	49,072
03/21/2011	3,180,299	43,989
03/23/2011	3,313,758	66,730
03/26/2011	3,423,746	36,663
03/28/2011	3,521,889	49,072
03/30/2011	3,588,691	33,401

Total Quarterly Flow:3,749,433Ave. Quarterly Flow:41,703

3,749,433 gallons 41,703 gallons/day

JANUARY									
1,208,540	gallons/month								
31	days								
38,985	gallons/day								
27	gallons/min								

FEBRUARY							
1,203,529	gallons/month						
28	days						
42,983	gallons/day						
30	gallons/min						

MARCH								
1,337,364	gallons/month							
31	days							
43,141	gallons/day							
30	gallons/min							

Notes:

* = flow meter calibrated and reset to zero on 01/06/11

ATTACHMENT 2

MAINTENANCE LOGS

Waste Water Treatment Plant - Riverbend

ST GRANE	Maintenance Log									Flow 101			
Date/Time	Flow Meter	Lead	Tank	Back	Flush	Pressu	re Differential (PSI)	Bag Cha	Filter nge	Bag Pres	sure (PSI)	Decant Oil	verne/after
	Reading	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	
1-6-1109:00	11693520	X		Y	x	/Z	10	X	X	28	21	X	
1-7-11 10:00	21753	X		X		11	<u>e</u>	X	X	28	Z(X	
1-11-11 14:00	169.298	X		<u>×</u>		12	8	<u> </u>	X	24	20	X	
1-13-11 16:00	284,533	K		X		10	e	ĸ	X	Z4	2(X	
(-14-11 17:00	330,387	<u>X</u>		X	X	4	2	X	<u> </u>	Z4	20	12	
1-17-11 1600	421,961	X		<u> </u>		4	2		X	24	20	X	
1-17-11 16	512,006	X,		X		6		X	K	Z6	20	X	
1-21-11 1700	632083	X		<u> </u>		4	<u>Z</u>	X	<u>x</u>	25	20	\mathcal{X}_{-}	
1-25-11 1100	792,947	X		<u>X</u>		4	2	X	X	Z3_	ZD		
1-31-11 800	1047798	<u>X</u>		_X	,e.	5	_5	X	×	22	20	X	606Pm, 76 GPM
2-2-11 1500	11451471	_X		_ <u>X</u>			<u> </u>	X			19	<u> </u>	75 14707
Z-M-11 1200	1364637	X		<u> </u>			7		<u> </u>	-28	19.5		GIGPM/ 15BC
2-9-111030	1446630	×		<u>×</u>			<u> </u>	X_	<u> </u>		20		17
<u>C-11-11 1100</u>	1521410	X		<u> </u>	<u>×</u>		4	×	-X		40		SOLC
2-14-11 1030	1647379	×		<u> </u>		-	4	X	<u>~</u>		21		-/80,49
2-16-(17000	1740356	\times		<u> </u>	<u> </u>	55	6			77	20		76.05 180.60
7-18-11 1100	1815544	X_{-}		X	<u> </u>		2	<u> </u>		26	<u>ZO</u>	X	13.26 83.05
<u>-71-11 1900</u>	194793	X		¥/			<u> </u>	ĻX_			<u> 20</u>	L <u>X</u>	- 18675
7-73- 1400	203178	X,		X		5.5	4	X	_ <u>X</u> /_	40	19		6.51/81.40
7-25-11 0945	211847	<u> </u>		×		7	4	<u> </u>			≤ 0		-180,60
7-78-11 1800	2751377	×/		LX		<u>_</u>	4	X	<u> </u>	<u>73</u>	40	X	03.11/14.49
5-2-11 1920	7558545	$X_{/}$		X		<u>5,5</u> _				66	10	<u>×</u>	68.04/8/200
54-11 1300	2477904	<u> </u>	æ	<u>×</u>		·	10	×	<u>></u>	<u> </u>	20	Z	-774,44
									•••••				
							<u> </u>				ļ		
*													
			···.		ļ								
								ļ					
[Ļ <u> </u>				<u> </u>		l	<u> </u>		L	L		

130

1-6-11 @ 10:00 Flow meter was calibrated and reset to O

FIGTENTICN

Puc 1

¥

500
Waste Water Treatment Plant - Riverbend Maintenance Log ÷.,

······						manne	nanoc Log	· · · · · · · · · · · · · · · · · · ·							
	Flow Meter	Lead	Lead Tank		Flush	Pressu	re Differential	Bag	Filter	Bag Pres	sure (PSI)	Decant Oil	Instantan	Instantaneous Flow	
Jare	Reading	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	Before	After	
5-9-11 800	7637933					11	8			23	70	×	65.66	80.75	
5-11-11 500	777 4314	x		$\overline{\mathbf{x}}$	X	~	10	×	$\mathbf{\hat{\mathbf{x}}}$	-	ZO	XG		\$1.50	
R-14-11 800	2857730	$\overline{\times}$		X		11	9	×	X	ZZ	20	X	64.38	80.53	
5-11041 820	7950190	$\overline{\mathbf{X}}$		X	1	9.5	10	X	\mathbf{X}	ZI	20	\mathbf{X}	65.31	80.74	
5-18-11 1200	3048555	X.		$\mathbf{\hat{\mathbf{X}}}$	$\left \right\rangle$	9	10	X	X	72	20	X	67.76	53 25	
8-21-11 950	RI80299	X		X		-	in	\mathbf{X}	\mathbf{X}		20	X		81.56	
5-23-110730	5313758	X		X		-	10	X	X		ZO	X		81.26	
5-26-11 1000	3473746	X		\times	\times	12	10	\times	\times	24	ZO	\mathbf{X}	48.03	78.27	
378-11 000	3521889	X		\mathbf{X}		ä	10	\sim	\mathbf{X}		70	X	67.61	80.47	
5-30-11 0000	3588691	\searrow		\mathbf{X}		17	11		\mathbf{X}	Z4	21		51.76	77.85	
			i .											·	
									<u></u>						
				·									-		
								ļ							
· · · · · · · · · · · · · · · · · · ·									ļ						
					ļ		l			•					
	·								<u> </u>						
		ļ													
·					-	-									
······															
				<u> </u>	<u> </u>			-	,						
								+							
								+	. .						
									·			<u> </u>			
											+				
						<u> </u>]		1	L		<u> </u>	

_

URNKEY

ATTACHMENT 3

GENERATED VOLUME OF TAR MATERIAL

ATTACHMENT 3

GENERATED VOLUME OF TAR MATERIAL FIRST QUARTER 2011

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Decant	Clean Seperator	Tar Level in Drum (inches)	Accumulated Tar Since Last Check (inches)	Volume of Tar (gallons)	Volume of Tar (pounds)
01/01/11 thru 02/10/11	Х	Х	3.5	3.5	6.02	57.9
02/11/11	Х	Х	3.5	0	0	0.0
02/14/11	Х	Х	3.8	0.3	0.516	5.0
02/16/11	Х	Х	4.1	0.3	0.516	5.0
02/18/11	Х	Х	4.6	0.5	0.86	8.3
02/21/11	Х	Х	4.9	0.3	0.516	5.0
02/23/11	Х	Х	5.2	0.3	0.516	5.0
02/25/11	Х	Х	5.4	0.2	0.344	3.3
02/28/11	Х	Х	5.7	0.3	0.516	5.0
03/02/11	Х	Х	6	0.3	0.516	5.0
03/04/11	Х	Х	6.3	0.3	0.516	5.0
03/07/11	Х	Х	6.5	0.2	0.344	3.3
03/09/11	Х	Х	6.7	0.2	0.344	3.3
03/11/11	Х	Х	6.8	0.1	0.172	1.7
03/14/11	Х	Х	6.9	0.1	0.172	1.7
03/16/11	Х	Х	7	0.1	0.172	1.7
03/18/11	Х	Х	7.1	0.1	0.172	1.7
03/21/11	Х	Х	7.2	0.1	0.172	1.7
03/23/11	Х	Х	7.3	0.1	0.172	1.7
03/26/11	Х	Х	7.6	0.3	0.516	5.0
03/28/11	Х	Х	7.7	0.1	0.172	1.7
03/30/11	Х	Х	7.9	0.2	0.344	3.3
					Total Tar:	130.7
			De	ensity of Tar (published va Gallon	alue) (Ibs/gallon): s of Tar per inch:	9.62 1.72

Pounds of Tar per inch: 16.53

Periodic Review Report March 9, 2009 to April 1, 2011 Riverbend, LLC - Area II

APPENDIX B-2

GWPTS EFFLUENT MONITORING REPORTS (BSA CORRESPONDENCE)

2009 ANNUAL COMPLIANCE REPORT 2010 ANNUAL COMPLIANCE REPORT

January 7, 2010

Mr. James Overholt Buffalo Sewer Authority Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: Riverbend, LLC Ground Water Pre-Treatment Discharge Monitoring Results Compliance Monitoring Report – December 2009 BPDES Permit No. 06 -03- BU101

Dear Mr. Overholt:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration has prepared this correspondence to present semi-annual discharge monitoring results for the groundwater pre-treatment system at the above-referenced facility. Discharge monitoring was performed during the period of November 16-17, 2009.

SAMPLE COLLECTION

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with permit No. 06-03-BU101 in laboratory-provided, precleaned, and pre-preserved sample bottles. Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. Per the Buffalo Sewer Authority's (BSA's) verbal approval, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period.

ANALYTICAL RESULTS

Analytical results are presented as Attachment 1. Data are summarized in Table 1 with permitted discharge limits. As indicated, all parameters are well within allowable limits.

FLOW MONITORING

Flow measurement data is presented in Table 1. Quarterly flow monitoring was based on the total flow recorded during the monitoring period divided by the number of days in the monitoring period. A copy of the flow meter calibration data is presented in Attachment 2.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Walter J. Meisner

Walter J. Meisner, P.E. Project Manager

Cc: Peter Cammarata (BUDC) – ecopy David Stebbins (BUDC) – ecopy Paul Werthman (TurnKey) – ecopy Walt Meisner (TurnKey) – ecopy

File: 0171-001-500

TABLES

TABLE 1

GROUNDWATER PRETREATMENT SYSTEM 2009 DATA SUMMARY

BPDES Permit #06-03-BU101 Riverbend, LLC Baraga Street, Buffalo, NY

Parameter (Units)	Concentration ¹	Mass ³ (pounds)	Daily Discharge Limits ²							
Laboratory pH (S.U.)	7.63	na	5.0 - 12.0							
Field pH (S.U.)	7.18	na	5.0 - 12.0							
Volatile Organic Compounds - Method 624 (mg/L)										
Benzene	0.016	na	Monitor							
Semi-Volatile Organic Compounds - Meth	nod 625 (mg/L)									
2,4-Dimethylphenol	0.00078 J	na	Monitor							
Inorganics (mg/L)										
Total Cyanide	0.46 D	0.175	2.882 lbs							
Average Daily Flow (gallons) ⁴	45,640		Note 5							

Notes:

1. Samples were collected from 11/16/09 to 11/17/09.

2. Mass limits are based on flow of 45,639.7 gpd; limits may be adjusted based on actual discharge.

3. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified herein.

4. Average daily flow based on net flow recorded between September 18, 2009 through December 29, 2009.

5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 57,600 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modifed.

6. " D " = dilution required due to high concentration of target analyte.

ATTACHMENT 1

ANALYTICAL DATA

Analytical Report

Work Order: RSK0855

Project Description River Bend - Effluent

For:

Bryan Hann

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Thursday, December 3, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SD WA	90029
Kentucky UST	UST	30
Louisiana *	NELAP CWA, RCRA	2031
Maine	SD WA, C WA	N Y0044
Maryland	SD WA	294
Massachusetts	SD WA, C WA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SD WA, C WA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA, CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas *	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accre ditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Turnkey Environmental Restoration, LLC	
2558 Hamburg Turnpike	
Lackawanna, NY 14218	

Work Order: RSK0855

Project: River Bend - Effluent Project Number: [none] Received: 11/18/09 Reported: 12/03/09 15:56

DATA QUALIFIERS AND DEFINITIONS

- **D08** Dilution required due to high concentration of target analyte(s)
- **HFT** The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection
- Limit (MDL). Concentrations within this range are estimated.
- P17 Lab to composite samples by date/time/flow.
- SL Volatile sample was composited in the laboratory prior to analysis.
- **NR** Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLCWo2558 Hamburg TurnpikeLackawanna, NY 14218Pro

Work Order: RSK0855

Project: River Bend - Effluent Project Number: [none] Received: 11/18/09 Reported: 12/03/09 15:56

			Executive	Summary	y - Detect	tions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSK0855-0	1 (process effl	uent - Water)			Sam	pled: 11/	/16/09 10:00	Rec	vd: 11/18/0	9 10:40
Volatile Organic Com	<u>oounds</u>									
Benzene	16	SL	5.0	0.60	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Acid and Base/Neutra	Extractables	by EPA Metho	od 625							
2,4-Dimethylphenol	0.78	J	5.0	0.13	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
General Chemistry Pa	rameters									
Cyanide	0.460	D08	0.0200	0.0100	mg/L	2.00	11/23/09 11:25	LRM	9K21016	335.4
рН	7.63	HFT	NR	0.00	SU	1.00	11/18/09 21.41	JFR	9K18115	4500-H+ B

Turnkey Environmental Restoration, LLC	Work Order: RSK0855
2558 Hamburg Turnpike	
Lackawanna, NY 14218	Project: River Bend - Effluent
	Project Number: [none]

Received: 11/18/09 Reported: 12/03/09 15:56

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
process effluent	RSK0855-01	Water	11/16/09 10:00	11/18/09 10:40	P17

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSK0855-01 (process efflu	uent - Water))		Sam	pled: 11/	16/09 10:00	Recv	/d: 11/18/09	9 10:40
Volatile Organic Compou	unds									
1.1.1-Trichloroethane	ND	SL	5.0	0.73	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.1.2.2-Tetrachloroethane	ND	SL	5.0	1.2	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
1,1,2-Trichloroethane	ND	SL	5.0	0.48	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
1,1-Dichloroethane	ND	SL	5.0	0.59	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.1-Dichloroethene	ND	SL	5.0	0.85	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
1,2-Dichlorobenzene	ND	SL	5.0	0.44	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.2-Dichloroethane	ND	SL	5.0	0.60	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.2-Dichloropropane	ND	SL	5.0	0.61	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.3-Dichlorobenzene	ND	SL	5.0	0.54	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
1.4-Dichlorobenzene	ND	SL	5.0	0.51	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
2-Chloroethyl vinyl ether	ND	SL	25	3.7	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
Acrolein	ND	SL	100	17	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
Acrylonitrile	ND	SL	100	4.0	ua/L	1.00	11/20/09 22:09	TRB	9K20016	624
Benzene	16	SI	5.0	0.60	ug/l	1.00	11/20/09 22:09	TRB	9K20016	624
Bromodichloromethane	ND	SI	5.0	0.54	ug/L	1 00	11/20/09 22:09	TRB	9K20016	624
Bromoform	ND	SI	5.0	0.01	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Bromomethane	ND	SI	5.0	12	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Carbon Tetrachloride	ND	SI	5.0	0.51	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Chlorobenzene	ND	SI	5.0	0.01	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Chlorodibromomethane	ND	SI	5.0	0.40	ug/L	1.00	11/20/00 22:00	TRB	9K20016	624
Chloroethane	ND	SI	5.0	0.41	ug/L	1.00	11/20/00 22:00	TRB	9K20016	624
Chloroform	ND	SI	5.0	0.54	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Chloromethane		SI	5.0	0.64	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
cis-1 3-Dichloropropene		SI	5.0	0.57	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Ethylbenzene		SI	5.0	0.37	ug/L	1.00	11/20/09 22:09	TPB	9K20010	624
Methylene Chloride		SI	5.0	0.40	ug/L	1.00	11/20/09 22:09	TPB	9K20010	624
Tetrachloroothono		SL	5.0	0.01	ug/L	1.00	11/20/09 22:09		9K20010	624
Toluono		SL	5.0	0.34	ug/L	1.00	11/20/09 22:09		9K20010	624
trans 1.2 Disbloresthans		SL	5.0	0.45	ug/L	1.00	11/20/09 22:09		9K20010	624
trans 1.2 Dichlerenrenen		SL	5.0	0.39	ug/L	1.00	11/20/09 22:09		9K20010	624
irans-1,3-Dichloropropen	ND	3L	5.0	0.44	ug/L	1.00	11/20/09 22.09	IKD	9120010	024
Trichloroethene	ND	SL	5.0	0.60	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Trichlorofluoromethane	ND	SL	5.0	0.45	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
Vinyl chloride	ND	SL	5.0	0.75	ug/L	1.00	11/20/09 22:09	TRB	9K20016	624
1,2-Dichloroethane-d4	110 %	SL	Surr Limits:	(88-132%)			11/20/09 22:09	TRB	9K20016	624
4-Bromofluorobenzene	96 %	SL	Surr Limits:	(78-122%)			11/20/09 22:09	TRB	9K20016	624
Toluene-d8	98 %	SL	Surr Limits:	(87-110%)			11/20/09 22:09	TRB	9K20016	624
Acid and Base/Neutral Ex	xtractables b	by EPA Meth	od 625							
1,2,4-Trichlorobenzene	ND		10	0.49	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
1.2-Dichlorobenzene	ND		10	0.14	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
1.2-Diphenvlhvdrazine	ND		10	0.063	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
1 3-Dichlorobenzene	ND		10	0.069	ug/l	1.00	11/21/09 09:21	MAF	9K19053	625
1.4-Dichlorobenzene	ND		10	0.090	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
2.4.6-Trichlorophenol	ND		50	0.23	ua/l	1.00	11/21/09 09:21	MAF	9K19053	625
2 4-Dichlorophenol	ND		5.0	0.30	ug/L	1 00	11/21/09 09:21	MAF	9K19053	625
2 4-Dimethylphenol	0 78	.1	5.0	0.00	ug/L	1 00	11/21/00 00:21	MAF	9K19053	625
2 4-Dinitrophenol		5	10	0.10	ug/L	1.00	11/21/00 00:21		0K10053	625
			50	0.04	ug/L	1.00	11/21/00 00:21		0K100F2	625
			5.0	0.20	ug/L	1.00	11/21/00 00:21		0K100F2	625
2,0-Dimitolouene			5.0	0.72	ug/L	1.00	11/21/00 00:21		0K100F2	625
			5.0	0.000	ug/L	1.00	11/21/09 09.21	IVIAE	31(19000	020

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

			Ana	lytical Re	port					
	Sample	Data		-		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSK0855-01	(process effl	uent - Water) - (cont.		Sam	npled: 11/1	6/09 10:00	Recy	vd: 11/18/09	10:40
Acid and Base/Neutral E	Extractables I	by EPA Method	625 - cont.							
2-Chlorophenol	ND		5.0	0.16	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
2-Nitrophenol	ND		5.0	0.14	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
3.3'-Dichlorobenzidine	ND		5.0	0.82	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
4,6-Dinitro-2-methylphen	ND		10	0.76	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
ol			5.0	0.44		4.00	44/04/00 00:04		01/40050	005
4-Bromophenyl phenyl ether	ND		5.0	0.11	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
4-Chloro-3-methylphenol	ND		5.0	0.56	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
4-Chlorophenyl phenyl	ND		5.0	0.21	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
4-Nitrophenol	ND		10	13	ua/l	1 00	11/21/09 09.21	MAE	9619053	625
Acenanbthene			50	0.060	ug/L	1.00	11/21/09 09:21	MAE	9K19055	625
Acenaphthylene			5.0	0.000	ug/L	1.00	11/21/09 09.21		9K19055	625
Acenaphilitylene			5.0	0.034	ug/L	1.00	11/21/09 09.21		9K19055	025
Antinacene	ND		5.0	0.052	ug/L	1.00	11/21/09 09.21		9619055	020
Benzidine	ND		80	2.5	ug/L	1.00	11/21/09 09:21		9K19053	625
Benzolajanthracene	ND		5.0	0.043	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Benzo[a]pyrene	ND		5.0	0.058	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Benzo[b]fluoranthene	ND		5.0	0.062	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Benzo[g,h,i]perylene	ND		5.0	0.10	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Benzo[k]fluoranthene	ND		5.0	0.042	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Bis(2-chloroethoxy)metha	ND		5.0	0.085	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Bis(2-chloroethyl)ether	ND		5.0	11	ua/l	1 00	11/21/09 09.21	MAF	9K19053	625
Bis(2-chloroisopropyl)	ND		5.0	0.086	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
ether Bis(2-ethylhexyl)	ND		10	0.86	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
phthalate					•					
Butyl benzyl phthalate	ND		5.0	1.3	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Chrysene	ND		5.0	0.036	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Dibenz[a,h]anthracene	ND		5.0	0.055	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Diethyl phthalate	ND		5.0	0.17	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
Dimethyl phthalate	ND		50	0.17	ua/l	1.00	11/21/09 09:21	MAF	9K19053	625
Di-n-butyl phthalate	ND		5.0	0.94	ua/l	1 00	11/21/09 09:21	MAF	9K19053	625
Di-n-octyl phthalate	ND		5.0	4.5	ua/l	1 00	11/21/09 09:21	MAF	9K19053	625
Fluoranthene	ND		5.0	0.11	ug/L	1.00	11/21/00 00:21	MAF	9K19053	625
Fluorene			5.0	0.043	ug/L	1.00	11/21/00 00:21	MAE	0K10053	625
Hovachlorobonzono			5.0	0.040	ug/L	1.00	11/21/00 00:21		01(10053	625
Hexachlorobutadiana			5.0	0.20	ug/L	1.00	11/21/09 09.21		91(19055	025
Hexachiorobuladiene			5.0	0.62	ug/L	1.00	11/21/09 09.21		9619055	020
Hexachlorocyclopentadle	ND		5.0	0.45	ug/L	1.00	11/21/09 09:21	MAF	9K19053	620
Hexachloroethane	ND		5.0	0.48	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Indeno[1,2,3-cd]pyrene	ND		5.0	0.19	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Isophorone	ND		5.0	0.16	ua/L	1.00	11/21/09 09:21	MAF	9K19053	625
Naphthalene	ND		5.0	0.080	ua/l	1.00	11/21/09 09:21	MAF	9K19053	625
Nitrobenzene	ND		5.0	0.11	ua/l	1 00	11/21/09 09:21	MAF	9K19053	625
N-Nitrosodimethylamine	ND		10	0.96	ug/L	1.00	11/21/00 00:21	MAF	9K19053	625
N Nitrosodi n propularia			50	0.00	ug/L	1.00	11/21/00 00:21		0K10053	625
е	ND		5.0	0.23	uy/L	1.00	11/21/09 09.21	IVI/AF	91(19000	020
N-Nitrosodiphenylamine	ND		5.0	0.40	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Pentachlorophenol	ND		10	0.41	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Phenanthrene	ND		5.0	0.071	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
Phenol	ND		5.0	0.12	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
	0		NIX 4 4000		0000 /		7004			

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Turnkey Environmental Restoration, LLCWork Orde2558 Hamburg TurnpikeLackawanna, NY 14218Project: Riv

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

			A	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSK0855-01	(process effl	uent - Water) - cont.		Sam	pled: 11/	16/09 10:00	Recv	vd: 11/18/0	9 10:40
Acid and Base/Neutral	Extractables	by EPA Meth	nod 625 - co	ont.						
Pyrene	ND		5.0	0.041	ug/L	1.00	11/21/09 09:21	MAF	9K19053	625
2-Fluorophenol	46 %		Surr Limits:	(17-120%)			11/21/09 09:21	MAF	9K19053	625
Phenol-d5	34 %		Surr Limits:	(10-120%)			11/21/09 09:21	MAF	9K19053	625
Nitrobenzene-d5	89 %		Surr Limits:	(42-120%)			11/21/09 09:21	MAF	9K19053	625
2-Fluorobiphenyl	92 %		Surr Limits:	(44-120%)			11/21/09 09:21	MAF	9K19053	625
2,4,6-Tribromophenol	115 %		Surr Limits:	(49-122%)			11/21/09 09:21	MAF	9K19053	625
p-Terphenyl-d14	76 %		Surr Limits:	(22-125%)			11/21/09 09:21	MAF	9K19053	625
General Chemistry Par	ameters									
Cyanide	0.460	D08	0.0200	0.0100	mg/L	2.00	11/23/09 11:25	LRM	9K21016	335.4
pH	7.63	HFT	NA	0.00	SU	1.00	11/18/09 21:41	JFR	9K18115	4500-H+ B

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Project: River Bend - Effluent Project Number: [none] Received: 11/18/09 Reported: 12/03/09 15:56

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
Acid and Base/Neutral Extractable	es by EPA N	lethod 625							
625	9K19053	RSK0855-01	1,000.00	mL	1.00	mL	11/19/09 16:00	LTT	3510C MB
General Chemistry Parameters									
335.4	9K21016	RSK0855-01	50.00	mL	50.00	mL	11/21/09 12:10	JMM	Cn Digestion
4500-H+ B	9K18115	RSK0855-01	1.00	mL	1.00	mL	11/18/09 21:41	JFR	рН
Volatile Organic Compounds									
624	9K20016	RSK0855-01	5.00	mL	5.00	mL	11/20/09 09:05	TRB	5030B MS

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compour	nds										
Blank Analyzed: 11/20/09)										
1,1,1-Trichloroethane			5.0	0.73	ug/L	ND					
1,1,2,2-Tetrachloroethane			5.0	1.2	ug/L	ND					
1,1,2-Trichloroethane			5.0	0.48	ug/L	ND					
1,1-Dichloroethane			5.0	0.59	ug/L	ND					
1,1-Dichloroethene			5.0	0.85	ug/L	ND					
1,2-Dichlorobenzene			5.0	0.44	ug/L	ND					
1,2-Dichloroethane			5.0	0.60	ug/L	ND					
1,2-Dichloropropane			5.0	0.61	ug/L	ND					
1,3-Dichlorobenzene			5.0	0.54	ug/L	ND					
1,4-Dichlorobenzene			5.0	0.51	ug/L	ND					
2-Chloroethyl vinyl ether			25	3.7	ug/L	ND					
Benzene			5.0	0.60	ug/L	ND					
Bromodichloromethane			5.0	0.54	ug/L	ND					
Bromoform			5.0	0.47	ug/L	ND					
Bromomethane			5.0	1.2	ug/L	ND					
Carbon Tetrachloride			5.0	0.51	ug/L	ND					
Chlorobenzene			5.0	0.48	ug/L	ND					
Chlorodibromomethane			5.0	0.41	ug/L	ND					
Chloroethane			5.0	0.87	ug/L	ND					
Chloroform			5.0	0.54	ug/L	ND					
Chloromethane			5.0	0.64	ug/L	ND					
cis-1,3-Dichloropropene			5.0	0.57	ug/L	ND					
Ethylbenzene			5.0	0.46	ug/L	ND					
Methylene Chloride			5.0	0.81	ug/L	ND					
Tetrachloroethene			5.0	0.34	ug/L	ND					
Toluene			5.0	0.45	ug/L	ND					
trans-1,2-Dichloroethene			5.0	0.59	ug/L	ND					
trans-1,3-Dichloropropen e			5.0	0.44	ug/L	ND					
Trichloroethene			5.0	0.60	ug/L	ND					
Trichlorofluoromethane			5.0	0.45	ug/L	ND					
Vinyl chloride			5.0	0.75	ug/L	ND					
Surrogate:					ug/L		110	88-132			
1,2-Dichloroethane-d4 Surrogate:					ug/L		96	78-122			
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		100	87-110			

LCS Analyzed: 11/20/09 (Lab Number:9K20016-BS1, Batch: 9K20016)

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA												
Analvte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers			
Volatile Organic Compou	Inds												
LCS Analyzed: 11/20/09	(Lab Numb	er:9K2001	6-BS1, Ba	o 72		17.0	00	75 105					
		20.0	5.0	0.75	ug/L	10.2	90	61 140					
1,1,2,2-Tetracilioroethana		20.0	5.0	1.2	ug/L	19.5	97	71 120					
		20.0	5.0	0.48	ug/L	19.0	95	71-129					
1,1-Dichloroethane		20.0	5.0	0.59	ug/L	10.9	94 64	73-120 51 150					
1, 1-Dichlorobanzana		20.0	5.0	0.65	ug/L	12.7	04	62 127					
1,2-Dichloropenzene		20.0	5.0	0.44	ug/L	10.0	93	69 137					
1,2-Dichloroethane		20.0	5.0	0.60	ug/L	19.1	95	24 166					
1,2-Dichloropropane		20.0	5.0	0.61	ug/L	18.7	93	34-100					
1,3-Dichlorobenzene		20.0	5.0	0.54	ug/L	19.1	95	73-127					
1,4-Dicniorobenzene		20.0	5.0	0.51	ug/L	18.6	93	63-137					
2-Chioroethyi vinyi ether		100	25	3.7	ug/L	107	107	1-224					
Benzene		20.0	5.0	0.60	ug/L	19.2	96	64-136					
Bromodichloromethane		20.0	5.0	0.54	ug/L	18.0	90	66-135					
Bromotorm		20.0	5.0	0.47	ug/L	16.2	81	73-129					
Bromomethane		20.0	5.0	1.2	ug/L	24.6	123	14-186					
Carbon Tetrachloride		20.0	5.0	0.51	ug/L	18.1	90	73-127					
Chlorobenzene		20.0	5.0	0.48	ug/L	18.5	92	66-134					
Chlorodibromomethane		20.0	5.0	0.41	ug/L	17.4	87	68-133					
Chloroethane		20.0	5.0	0.87	ug/L	19.7	98	38-162					
Chloroform		20.0	5.0	0.54	ug/L	19.2	96	68-133					
Chloromethane		20.0	5.0	0.64	ug/L	21.2	106	1-204					
cis-1,3-Dichloropropene		20.0	5.0	0.57	ug/L	18.7	93	24-176					
Ethylbenzene		20.0	5.0	0.46	ug/L	19.4	97	59-141					
Methylene Chloride		20.0	5.0	0.81	ug/L	18.7	94	61-140					
Tetrachloroethene		20.0	5.0	0.34	ug/L	18.5	93	74-127					
Toluene		20.0	5.0	0.45	ug/L	18.8	94	75-126					
trans-1,2-Dichloroethene		20.0	5.0	0.59	ug/L	18.2	91	70-131					
trans-1,3-Dichloropropen e		20.0	5.0	0.44	ug/L	17.9	90	50-150					
Trichloroethene		20.0	5.0	0.60	ug/L	18.4	92	67-134					
Trichlorofluoromethane		20.0	5.0	0.45	ug/L	19.6	98	48-152					
Vinyl chloride		20.0	5.0	0.75	ug/L	21.2	106	4-196					
Surrogate: 1,2-Dichloroethane-d4					ug/L		105	88-132					
Surrogate: 4-Bromofluorobenzene					ug/L		98	78-122					
Surrogate: Toluene-d8					ug/L		101	87-110					

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA												
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers		
Acid and Base/Neutral E	xtractables	by EPA M	ethod 625										
	o //	h 01/400											
Blank Analyzed: 11/21/0	9 (Lab Num	iber:9K19U	153-BLK1, E	Satch: 9K1905	5)								
1,2,4-Trichlorobenzene			10	0.49	ug/L	ND							
1,2-Dichlorobenzene			10	0.14	ug/L	ND							
1,2-Diphenyinydrazine			10	0.063	ug/L	ND							
1,3-Dichlorobenzene			10	0.069	ug/L	ND							
1,4-Dichlorobenzene			10	0.090	ug/L	ND							
2,4,6-Irichlorophenol			5.0	0.23	ug/L	ND							
2,4-Dichlorophenol			5.0	0.30	ug/L	ND							
2,4-Dimethylphenol			5.0	0.13	ug/L	ND							
2,4-Dinitrophenol			10	0.84	ug/L	ND							
2,4-Dinitrotoluene			5.0	0.26	ug/L	ND							
2,6-Dinitrotoluene			5.0	0.72	ug/L	ND							
2-Chloronaphthalene			5.0	0.068	ug/L	ND							
2-Chlorophenol			5.0	0.16	ug/L	ND							
2-Nitrophenol			5.0	0.14	ug/L	ND							
3,3'-Dichlorobenzidine			5.0	0.82	ug/L	ND							
4,6-Dinitro-2-methylphen ol			10	0.76	ug/L	ND							
4-Bromophenyl phenyl ether			5.0	0.11	ug/L	ND							
4-Chloro-3-methylphenol			5.0	0.56	ug/L	ND							
4-Chlorophenyl phenyl ether			5.0	0.21	ug/L	ND							
4-Nitrophenol			10	1.3	ug/L	ND							
Acenaphthene			5.0	0.060	ug/L	ND							
Acenaphthylene			5.0	0.034	ug/L	ND							
Anthracene			5.0	0.052	ug/L	ND							
Benzidine			80	2.5	ug/L	ND							
Benzo[a]anthracene			5.0	0.043	ug/L	ND							
Benzo[a]pyrene			5.0	0.058	ug/L	ND							
Benzo[b]fluoranthene			5.0	0.062	ug/L	ND							
Benzo[g,h,i]perylene			5.0	0.10	ug/L	ND							
Benzo[k]fluoranthene			5.0	0.042	ug/L	ND							
Bis(2-chloroethoxy)metha ne			5.0	0.085	ug/L	ND							
Bis(2-chloroethyl)ether			5.0	1.1	ug/L	ND							
Bis(2-chloroisopropyl) ether			5.0	0.086	ug/L	ND							
Bis(2-ethylhexyl) phthalate			10	0.86	ug/L	ND							
Butyl benzyl phthalate			5.0	1.3	ug/L	ND							

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike					%	% REC	% RPI) Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limi	t Qualifiers	
Acid and Base/Neutral Ex	ctractables	by EPA I	Method 625								
Blank Analyzed: 11/21/09	(Lab Num	hor 9K10	053-BIK1 B	atch: 9K19053	2)						
Chrvsene			5.0	0.036	ua/L	ND					
Dibenz[a,h]anthracene			5.0	0.055	ug/L	ND					
Diethyl phthalate			5.0	0.17	ug/L	ND					
Dimethyl phthalate			5.0	0.17	ug/L	ND					
Di-n-butyl phthalate			5.0	0.94	ug/L	ND					
Di-n-octyl phthalate			5.0	4.5	ug/L	ND					
Fluoranthene			5.0	0.11	ug/L	ND					
Fluorene			5.0	0.043	ug/L	ND					
Hexachlorobenzene			5.0	0.28	ug/L	ND					
Hexachlorobutadiene			5.0	0.62	ug/L	ND					
Hexachlorocyclopentadie			5.0	0.45	ug/L	ND					
ne Hevachloroethane			5.0	0.48	ua/l						
Indeno[1 2 3-cd]pyrene			5.0	0.49	ug/L						
Isonhorone			5.0	0.16	ug/L	ND					
Naphthalene			5.0	0.080	ug/L	ND					
Nitrobenzene			5.0	0.11	ug/L	ND					
N-Nitrosodimethylamine			10	0.96	ug/L	ND					
N-Nitrosodi-n-propylamin			50	0.23	ug/L	ND					
e			010	0.20	~9. =						
N-Nitrosodiphenylamine			5.0	0.40	ug/L	ND					
Pentachlorophenol			10	0.41	ug/L	ND					
Phenanthrene			5.0	0.071	ug/L	ND					
Phenol			5.0	0.12	ug/L	ND					
Pyrene			5.0	0.041	ug/L	ND					
Surrogate:					ug/L		36	17-120			
2-Fluorophenol Surrogate: Phenol-d5					ua/L		28	10-120			
Surrogate:					ug/L		65	42-120			
Nitrobenzene-d5 Surrogate:					ug/L		68	44-120			
2-Fluorobiphenyl Surrogate:					ug/L		88	49-122			
Surrogate: p-Terphenyl-d14					ug/L		82	22-125			
LCS Analyzed: 11/21/09	(Lab Numb	er:9K190	53-BS1, Bato	ch: 9K19053)							
1,2,4-Trichlorobenzene		50.0	10	0.49	ug/L	29.6	59	44-120			
1,2-Dichlorobenzene		50.0	10	0.14	ug/L	27.7	55	32-120			
1,2-Diphenylhydrazine		50.0	10	0.063	ug/L	49.0	98	47-146			
1,3-Dichlorobenzene		50.0	10	0.069	ug/L	27.4	55	14-120			
TestAmerica Buffalo - 10	Hazelwoo	d Drive A	mherst, NY	14228 tel 716-	691-2600 fax 7	16-691-799	91				

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers			
Acid and Base/Neutral E	xtractables	by EPA N	lethod 625										
LCS Analyzadi 11/21/00	(l ob Numb		52 D04 Date	h. 01/40052)									
1 4-Dichlorobenzene		50 0	ээ-өз г, ва ц 10	0.090	ua/l	27.2	54	20-120					
2 4 6-Trichlorophenol		50.0	10	0.23	ug/L	48.2	96	48-136					
2 4-Dichlorophenol		50.0	10	0.30	ug/L	42.3	85	43-123					
2.4-Dimethylphenol		50.0	10	0.13	ua/L	39.3	79	42-120					
2.4-Dinitrophenol		50.0	50	0.84	ua/L	32.0	64	20-125		J			
2,4-Dinitrotoluene		50.0	10	0.26	ug/L	54.9	110	51-139					
2,6-Dinitrotoluene		50.0	10	0.72	ug/L	54.8	110	55-144					
2-Chloronaphthalene		50.0	10	0.068	ug/L	39.6	79	30-120					
2-Chlorophenol		50.0	10	0.16	ug/L	33.1	66	31-120					
2-Nitrophenol		50.0	10	0.14	ug/L	38.6	77	34-123					
3,3'-Dichlorobenzidine		50.0	20	0.82	ug/L	60.5	121	35-143					
4,6-Dinitro-2-methylphen ol		50.0	50	0.76	ug/L	72.0	144	32-156					
4-Bromophenyl phenyl ether		50.0	10	0.11	ug/L	46.8	94	53-127					
4-Chloro-3-methylphenol		50.0	10	0.56	ug/L	49.0	98	45-138					
4-Chlorophenyl phenyl ether		50.0	10	0.21	ug/L	41.3	83	43-126					
4-Nitrophenol		50.0	50	1.3	ug/L	21.9	44	22-120		J			
Acenaphthene		50.0	10	0.060	ug/L	43.3	87	47-120					
Acenaphthylene		50.0	10	0.034	ug/L	42.6	85	35-129					
Anthracene		50.0	10	0.052	ug/L	49.0	98	49-133					
Benzidine		50.0	80	2.5	ug/L	13.1	26	1-120		J			
Benzo[a]anthracene		50.0	10	0.043	ug/L	49.6	99	50-143					
Benzo[a]pyrene		50.0	10	0.058	ug/L	49.0	98	57-140					
Benzo[b]fluoranthene		50.0	10	0.062	ug/L	45.1	90	59-138					
Benzo[g,h,i]perylene		50.0	10	0.10	ug/L	52.9	106	44-153					
Benzo[k]fluoranthene		50.0	10	0.042	ug/L	43.6	87	50-143					
Bis(2-chloroethoxy)metha ne		50.0	10	0.085	ug/L	30.0	60	40-120					
Bis(2-chloroethyl)ether		50.0	10	1.1	ug/L	32.0	64	35-120					
Bis(2-chloroisopropyl) ether		50.0	10	0.086	ug/L	32.6	65	33-120					
Bis(2-ethylhexyl) phthalate		50.0	50	0.86	ug/L	47.5	95	49-158		J			
Butyl benzyl phthalate		50.0	10	1.3	ug/L	54.0	108	47-147					
Chrysene		50.0	10	0.036	ug/L	51.2	102	55-146					
Dibenz[a,h]anthracene		50.0	10	0.055	ug/L	48.5	97	45-153					
Diethyl phthalate		50.0	10	0.17	ug/L	50.3	101	45-135					
Dimethyl phthalate		50.0	10	0.17	ug/L	48.9	98	54-120					

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RSK0855

Received: 11/18/09 Reported: 12/03/09 15:56

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA Source Spike % % REC % RPD Data												
	Source	Spike					%	% REC	%	RPD	Data		
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers		
Acid and Base/Neutral Ex	ctractables	by EPA N	Method 625										
LCS Analyzod: 11/21/09	(Lab Numb	or:0K100	52 BS1 Ba	tab: 01/10052)									
Di-n-butyl phthalate		50.0	ээ-дэт, да 10	0 94	ua/l	50.6	101	53-120					
Di-n-butyl phthalate		50.0	10	4.5	ug/L	43.7	97	56 1/6					
		50.0	10	4.5	ug/L	40.7 50.6	101	46 127					
Fluoraninene		50.0	10	0.11	ug/L	50.6	101	40-137					
Fluorene		50.0	10	0.043	ug/L	46.6	93	59-121					
Hexachlorobenzene		50.0	10	0.28	ug/L	46.1	92	54-133					
Hexachlorobutadiene		50.0	10	0.62	ug/L	28.4	57	24-120					
Hexachlorocyclopentadie		50.0	50	0.45	ug/L	21.9	44	5-120			J		
Hexachloroethane		50.0	10	0.48	ug/L	26.4	53	40-113					
Indeno[1,2,3-cd]pyrene		50.0	10	0.19	ug/L	50.4	101	50-147					
Isophorone		50.0	10	0.16	ug/L	36.4	73	34-120					
Naphthalene		50.0	10	0.080	ug/L	36.2	72	33-120					
Nitrobenzene		50.0	10	0.11	ug/L	36.2	72	35-120					
N-Nitrosodimethylamine		50.0	10	0.96	ug/L	22.7	45	19-120					
N-Nitrosodi-n-propylamin		50.0	10	0.23	ug/L	37.6	75	40-120					
e N. Nitropodin bony domina			10	0.40		50.0	110	E4 40E					
		50.0	10	0.40	ug/L	58.0	116	54-125					
Pentachlorophenol		50.0	50	0.41	ug/L	29.2	58	37-147			J		
Phenanthrene		50.0	10	0.071	ug/L	49.1	98	56-120					
Phenol		50.0	10	0.12	ug/L	16.5	33	12-120					
Pyrene		50.0	10	0.041	ug/L	50.7	101	52-120					
Surrogate:					ug/L		39	17-120					
2-Fluorophenol Surrogate: Phenol-d5					ua/L		29	10-120					
Surrogate:					ug/L		71	42-120					
Nitrobenzene-d5					U								
Surrogate:					ug/L		76	44-120					
2-Fiuorobipnenyi Surrogate:					ug/L		100	49-122					
2,4,6-Tribromophenol					5								
Surrogate: p-Terphenyl-d14					ug/L		84	22-125					

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218			Work Order: RSK0855 Project: River Bend - Effluent Project Number: [none] LABORATORY QC DATA					Recei Repo	ved: rted:	11/18/0 12/03/	09 09 15:56	
			L	ABORATORY	QC DATA							
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers	
General Chemistry Param	neral Chemistry Parameters											
LCS Analyzed: 11/18/09 (Lab Numb	er:9K1811	5-BS1, Ba	tch: 9K18115)								
рH		7.00	NA	0.00	SU	7.01	100	99.3-100. 8				
General Chemistry Param	eters											
Blank Analyzed: 11/23/09	Slank Analyzed: 11/23/09 (Lab Number:9K21016-BLK1, Batch: 9K21016)											
Cyanide			0.0100	0.0050	mg/L	ND						
LCS Analyzed: 11/23/09 (Lab Numb	er:9K2101	6-BS1, Ba	tch: 9K21016)								

Cyanide 0.400 0.0100 0.0050 mg/L 0.437 109 90-110

Chain of Custody Record		Tempi Drinki	ərah og V	ure c Vate	n F r?	lece Yes	ipi .	Ng		-				ST	/)(C					
Cieni TVrnkey Address		Proyect Takon	Man I a	14 14	er (A	Me	(15. iogo)	NA Fax	Nun	nber					~			Date Lab	3 //- Numi	17 ber	-0	9		Cha	ain of Custody Num 1221	<u>32</u>
City Butalo Butalo Project Name and Location (State)	e 4218	Site Go	1) <u>2</u> Intaci Max	<u>35</u> Jer	<u>k</u>	<u>~</u>	57	B.	l Tanti F	201 13(1)	16 Le	<u>/8:</u> ~	56	<u>-0</u> ਜ	22 T	<u>, z z</u> - †	Ала поге	lysis spa	(Atta ce is	ich lis neec	șt if jed)		(ig e(af <u>'</u>
Riverberg GWTS Contract/Purchase Order/Ouole No. 0171-009-500				4	lairta	í			C F	Cont Press	ainer ervai	is å lives		100 62	durd SZ	N V									Special In: Conditions	structions/ of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Process Efficient	Date 11-16-09	Time 000	Afr	snearen X	9æci	ا بر +		Conpress	H2SO4		¥ X	Alection Alection		8	ןי 4	12	121							1	624 + 62:	5
								-	·									_							Analysis I Langersite	<u>to be</u> at by
							-						-							+					LaD	
					4 1																					_
Possible Hazard Idenbilcation			5	ampl	e Dis	pasa	4														iee (955	ed il samoles are n	etained
Non-Hazard Flammable Skm tristant Tum Around Time Required 24 Hours 24 Hours 14 Da	<mark>, Poison B</mark> ys 21 Day	s <u>k</u> ca	n C	I Re Sta	num	то С 	lient	<u>م</u> 		lispo Regi	sal B; uinem	y Lab ents (Sp		Archi 1	N# F	or		_ *	loaths	i ko	nger l	theuri	f mon	u/h)		Terra
2. Retinquistred By		Dete	8	-09		ne /	0 1 1	/0 	1. R 2. R	lecot	ved 8	9y 7 9y	2-	t	2	•••									<u> </u>	1 <i>64[]</i> Time
3. Relinquished By		Date			Tit	940 			3. R	ecel	ved 8	<i>9y</i>						-			-	1			Date	Time
DISTRIBUTION: WHITE Related to Client with Report,	CANARY - Stays	with the San	17 19,	FINT	(- Fi	eld C	φy.										_(4	. 2			2	/			

ATTACHMENT 2

FLOW METER CALIBRATION DATA

Northeast Metrology Corp.

2601 Genesee Street Buffalo, NY 14225 716-827-3770 ISO/IEC 17025:2005 Accredited www.vantek-nem.com www.nemcal.com

Calibration Certificate

www.vantek-ne	m.com www.nemcal.com		
Company:	STEELFIELDS RIVERBEND	Certificate #:	1092225
Address:	197 BARAGA STREET	Calibration Date	: 1/9/2009
	BUFFALO, NY 14210	PO/Acct:	
Contact:	PAUL W. WERTHMAN	Page:	1
Department:			
Gage Desc:	Flow transmitter/sensor	Control #:	SFRB#80210142061
Manufacturer:	Georg Fischer Signet	Model:	8550 / 515
Location:		Serial #:	80210142061

Repairs:

CLEANED.

+ / - Tolerances: 2.000% / 2.000% Graph Scale: +0.100000

GPM				-20	-15	-10	-5	0	5	10	15	20
Nominal	Actual	Deviation		т.	+.	+.	+	0	+	+	+	+
+71.000000	+71.277500	+0.277500	3" PVC		. ().	
+71.000000	+71.747500	+0.747500	2.900" ID		. ().	
+71.000000	+71.902500	+0.902500	Schedule 80		. ().	
+71.000000	+72.065000	+1.065000			. (1).	
+71.000000	+72.227500	+1.227500			. (Contraction of the second		10 martine).	

Comments:

PRECISION INSTRUMENT IS IN CONFORMANCE. TEMPERATURE @ 52.2 F & 36% R.H. 15.567 mA LOOP OUTPUT RESET TOTAL GALLONS

Procedure:

110476:Flowme01.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6006 Flowmeter (Master) 821/261191-99, 821/264157-00, 821/256463-99, 821/263668-00 Cal Date / Due Date: 4/26/2006 -- 4/27/2011

Gage Status: PASS

Due Date: 1/10/2010

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F) : (20°C (±1°C)) relative humidity less than 45%. Electronic & Mechanical calibration performed at ambient temperature.

ALL PERTINENT DATA & READINGS ARE AS FOUND OR AS CALIBRATED UNLESS OTHERWISE DENOTED IN COMMENTS. Calibration performed in accordance with one or more of the following specifications: ISO/IEC 17025:2005, ANSI/NCSL Z540-1-1994, Former MIL-STD 45662A, ISO 9001:2000, ISO 10012-1:1992(E).

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with Federal Specification GGG-G-15C.

Calibration meets or exceeds 4 : 1 ratio, with the exception of gage blocks stated above.

Note the recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: Garrick Shick Signature:

Sand An

This certificate is not valid unless all 1 page(s) are present.

Northeast N 2601 Genesee S Buffalo, NY 1422 716-827-3770 www.vantek-ner	Iso/IEC 17025:2005 Accredited, n www.nemcal.com	ste Séteration estate de la composition re l'Anna composition	an sanan Sanan Alaman Sanan Yulan	Calibration Certifi	cate
Company: Address: Contact: Department:	STEELFIELDS RIVERBEND 197 BARAGA STREET BUFFALO, NY 14210 PAUL W. WERTHMAN	Months o <mark>rp</mark> iest si gra	Certificate,#: Calibration Date PO/Acct: Page:	1104484 1/5/2010 0171-003-500 1	
Gage Desc: ^{SP} Manufacturer: Location:	Flow Transmitter / Sensor Georg Fischer Signet	113) 	Control #: Model: Serial #:	SFRB#80210142061 8550 / 515 80210142061	47 - 4

Repairs:

13.28

+ / - Tolerances: 2.000% / 2.000% Graph Scale: +0.100000

<u>GPM</u>	and a strange			-20	-15	-10	-5	0	5	10	15	20
Nominal	Actual	Deviation	tel contrat descente dans	- T.	+.	÷.	+	0	+	+	+	+
+53.050000	+53.290000	+0.240000				()		
+53.050000	+52.790000	-0.260000	Sector Sector	deres at			-)		
+53.050000	+52.490000	-0.560000		· · ·		()		
+53.310000	+53.730000	+0.420000				(-)		
+52.540000	+53.100000	+0.560000				i)		
								Elizabeth St.	C -			

Comments:

CALIBRATION PERFORMED AT AMBIENT CONDITIONS: 55.4°F & 53.0% R.H. RESET TOTAL GALLONS @ 11,517,800 (YEAR) PERM GALLONS: 64,306,778 (LIFE) mA LOOP OUTPUT: 12.38 - 12.78

Procedure:

110476:Flowme01.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6006: Flowmeter (Master) 821/261191-99, 821/264157-00, 821/256463-99, 821/263668-00 Cal Date / Due Date: 4/26/2006 -- 4/27/2011 NEM-9217: Thermohygrometer Doc210426-A Cal Date / Due Date: 1/2/2008 -- 1/3/2010

Gage Status: PASS

Due Date: 1/6/2011

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F) : (20°C (±1°C)) relative humidity less than 45%. Electronic & Mechanical calibration performed at ambient temperature.

ALL PERTINENT DATA AND READINGS CALIBRATED ARE AS FOUND OR AS LEFT UNLESS OTHERWISE DENOTED IN COMMENTS. Calibration performed in accordance with one or more of the following specifications: ISO/IEC 17025:2005, ANSI/NCSL Z540-1-1994, Former MIL-STD 45662A, ISO 9001:2000, ISO 10012-1:1992(E).

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with Federal Specification GGG-G-15C.

Calibration meets or exceeds 4 : 1 ratio, with the exception of gage blocks stated above.

Calibration is performed on premesis at Northeast Metrology Corp. unless otherwise denoted in Comments.

Note the recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: Garrick Shick Signature:

Jan

This certificate is not valid unless all 1 page(s) are present.

Strong Advocates, Effective Solutions, Integrated Implementation

February 8, 2011

Mr. James Overholt Buffalo Sewer Authority Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: Riverbend, LLC Ground Water Pre-Treatment Discharge Monitoring Results 2010 Annual Compliance Monitoring Report BPDES Permit No. 06 -03- BU101

Dear Mr. Overholt:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration, LLC has prepared this correspondence to present the 2010 discharge monitoring results for the groundwater pre-treatment system at the above-referenced facility. Discharge monitoring was performed during the periods of June 24-25 and November 23-24, 2010.

SAMPLE COLLECTION

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with permit No. 06-03-BU101 in laboratory-provided, precleaned, and prepreserved sample bottles. Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. Per the Buffalo Sewer Authority's (BSA's) verbal approval, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period.

ANALYTICAL RESULTS

Analytical results are presented as Attachment 1. Data are summarized in Table 1 with permitted discharge limits. As indicated, all parameters are well within allowable limits.

FLOW MONITORING

Flow measurement data is presented in Table 1. Quarterly flow monitoring was based on the total flow recorded during the monitoring period divided by the number of days in the monitoring period. A copy of the flow meter calibration data is presented in Attachment 2.

Please contact us if you have any questions.

Sincerely, TurnKey Environmental Restoration, LLC

lya Bryan C. Hann.

Project Manager

ec: Peter Cammarata (BUDC) David Stebbins (BUDC) Paul Werthman (TurnKey)

File: 0171-003-500

TABLES

TABLE 1

GROUNDWATER PRETREATMENT SYSTEM 2010 DATA SUMMARY

BPDES Permit #06-03-BU101 Riverbend, LLC Baraga Street, Buffalo, NY

Parameter	June 24-25, 2010		November 23-24, 2010		
	Concentration (units as indicated)	Mass ¹ (pounds)	Concentration (units as indicated)	Mass ¹ (pounds)	Daily Discharge Limits ²
Laboratory pH (S.U.)	7.63	na	7.36	na	5.0 - 12.0
Field pH (S.U.)	6.72	na	6.92	na	5.0 - 12.0
Volatile Organic Compounds - Method 624					
Benzene	ND	na	0.0024	na	Monitor
Semi-Volatile Organic Compounds - Meth					
Total SVOCs	ND	na	ND	na	Monitor
Inorganics (mg/L)					
Total Cyanide	0.429	0.181	0.461	0.057	2.882 lbs
Average Daily Flow (gallons) ^{3,4}	50,546		14,940		see Note 5

Notes:

1. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified herein.

2. Mass limits are based on flow of 50,546 gpd for the June event and 14,940 gpd for the November event; limits may be adjusted based on actual discharge.

3. Average daily flow based on net flow recorded between January 5, 2010 through June 25, 2010 for the June event.

4. Average daily flow based on net flow recorded between June 28, 2010 through November 24, 2010 for the November event.

5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 57,600 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modifed.

6. " ND " = Indicates compound was analyzed for, but not detectewd at or above the reporting limit.

Flow Calculations:

Event	Date	Flow Measurement (gallons)	Average Daily Flow (gallons)	
luna 2010	1/5/2010	30,591	50 546	
Julie 2010	6/25/2010	8,674,016	50,546	
November 2010	6/28/2010	8,803,740	14,940	
	11/24/2010	11,029,772		

ATTACHMENT 1

ANALYTICAL DATA

Analytical Report

Work Order: RTF1402

Project Description River Bend - Effluent

For:

Bryan Hann **Turnkey Environmental Restoration, LLC** 2558 Hamburg Turnpike Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Friday, July 2, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

TestAmerica Buffalo Current Certifications

As of 06/17/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP C WA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida *	NELAP CWA, RCRA	E87672
Georgia *	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	N Y0 044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire *	NELAP SDWA, CWA	233701
New Jersey *	NELAP,SDWA, CWA, RCRA,	NY455
New York *	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412 -08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for p arameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Project: River Bend - Effluent Project Number: [none] Received: 06/25/10 Reported: 07/02/10 14:07

DATA QUALIFIERS AND DEFINITIONS

- **HFT** The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- **P16** Lab to composite volatile samples by date/time/flow.
- P17 Lab to composite samples by date/time/flow.
- SL Volatile sample was composited in the laboratory prior to analysis.
- NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Project: River Bend - Effluent Project Number: [none] Received: 06/25/10 Reported: 07/02/10 14:07

Executive Summary - Detections													
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method			
Sample ID: RTF140	02-01 (Process effl	uent - Water)			Sam	pled: 06/	25/10 08:00	Recv	/d: 06/25/1	0 15:40			
General Chemistry	y Parameters												
Cyanide	 Cyanide 0.429 0.0100 0.0050 mg/L 1.00 07/01/10 13:01 jmm 10F2518 335.4												
pН	7.63	HFT	NR	0.00	SU	1.00	06/25/10 23:36	KLD	10F2294	4500-H+ B			

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Project: River Bend - Effluent Project Number: [none] Received: 06/25/10 Reported: 07/02/10 14:07

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
Process effluent	RTF1402-01	Water	06/25/10 08:00	06/25/10 15:40	P16, P17

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

			A	analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTF1402-01 (Process effle	uent - Water)			Sam	pled: 06/	25/10 08:00	Recv	/d: 06/25/1	0 15:40
Volatile Organic Compo	unds									
1,1,1-Trichloroethane	ND	SL	5.0	0.38	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,1,2,2-Tetrachloroethane	ND	SL	5.0	0.26	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,1,2-Trichloroethane	ND	SL	5.0	0.48	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,1-Dichloroethane	ND	SL	5.0	0.59	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,1-Dichloroethene	ND	SL	5.0	0.85	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,2-Dichlorobenzene	ND	SL	5.0	0.44	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,2-Dichloroethane	ND	SL	5.0	0.60	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,2-Dichloropropane	ND	SL	5.0	0.61	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,3-Dichlorobenzene	ND	SL	5.0	0.54	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1,4-Dichlorobenzene	ND	SL	5.0	0.51	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
2-Chloroethyl vinyl ether	ND	SL	25	1.8	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Benzene	ND	SL	5.0	0.60	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Bromodichloromethane	ND	SL	5.0	0.54	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Bromoform	ND	SL	5.0	0.47	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Bromomethane	ND	SL	5.0	1.2	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Carbon Tetrachloride	ND	SL	5.0	0.51	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Chlorobenzene	ND	SL	5.0	0.48	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Chlorodibromomethane	ND	SL	5.0	0.41	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Chloroethane	ND	SL	5.0	0.87	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Chloroform	ND	SL	5.0	0.54	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Chloromethane	ND	SL	5.0	0.64	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
cis-1,3-Dichloropropene	ND	SL	5.0	0.33	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Ethylbenzene	ND	SL	5.0	0.46	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Methylene Chloride	ND	SL	5.0	0.81	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Tetrachloroethene	ND	SL	5.0	0.34	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Toluene	ND	SL	5.0	0.45	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
trans-1,2-Dichloroethene	ND	SL	5.0	0.59	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
trans-1,3-Dichloropropen	ND	SL	5.0	0.44	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
e					-					
Trichloroethene	ND	SL	5.0	0.60	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Trichlorofluoromethane	ND	SL	5.0	0.45	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
Vinyl chloride	ND	SL	5.0	0.75	ug/L	1.00	06/29/10 21:22	TRB	10F2443	624
1.2 Dichloroethane d4	116 %	<u></u>	Surr Limite:	(88 122%)			06/20/10 21.22	TDB	1052442	624
A Bromofluorobenzene	110 %	3L SI	Surr Limits:	(00-13276)			06/20/10 21.22	TDD	101 2443	624
Toluene-d8	90 %	SL	Surr Limits:	(70-72276)			06/29/10 21:22	TPB	1012443	624
A sid and Base/Neutral E	30 //		od COF	(07-11078)			00/29/10 21.22	IND	101 2445	024
Aciu anu Dase/Neutral E		JY EFA WIE(N	00 020	-	*					6
1,2,4-Trichlorobenzene	ND		10	0.49	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
1,2-Dichlorobenzene	ND		10	0.14	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
1,2-Diphenylhydrazine	ND		10	0.063	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
1,3-Dichlorobenzene	ND		10	0.069	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
1,4-Dichlorobenzene	ND		10	0.090	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,4,6-Trichlorophenol	ND		5.0	0.23	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,4-Dichlorophenol	ND		5.0	0.30	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,4-Dimethylphenol	ND		5.0	0.13	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,4-Dinitrophenol	ND		10	0.84	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,4-Dinitrotoluene	ND		5.0	0.26	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2,6-Dinitrotoluene	ND		5.0	0.72	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2-Chloronaphthalene	ND		5.0	0.068	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2-Chlorophenol	ND		5.0	0.16	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
2-Nitrophenol	ND		5.0	0.14	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Project: River Bend - Effluent Project Number: [none]

Analytical Report										
Sample Data Dil Date Lab										
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTF1402-01 (F	Process effle	uent - Water) -	cont.		Sam	pled: 06/	25/10 08:00	Recv	vd: 06/25/10	0 15:40
Acid and Base/Neutral Ex	xtractables	by EPA Method	d 625 - co	nt.						
3 3'-Dichlorobenzidine	ND		5.0	0.82	ua/l	1.00	06/29/10 17:43	MAF	10F2283	625
4 6-Dinitro-2-methylphen	ND		10	0.76	ua/L	1.00	06/29/10 17:43	MAF	10F2283	625
ol					0					
4-Bromophenyl phenyl	ND		5.0	0.11	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
ether										
4-Chloro-3-methylphenol	ND		5.0	0.56	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
4-Chlorophenyl phenyl	ND		5.0	0.21	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
ether 4 Nitranhanal			10	4.0		1 00	00/00/40 47:40		405000	005
4-Mitrophenoi			10	1.3	ug/L	1.00	06/29/10 17:43		10F2283	625 625
Acenaphthelene			5.0	0.000	ug/L	1.00	06/20/10 17:43		10F2203	625
Anthracene			5.0	0.054	ug/L	1.00	06/29/10 17:43	MAE	10F2283	625
Benzidine			80	2.5	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Benzolalanthracene	ND		50	0.043	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Benzo[a]pyrene	ND		5.0	0.058	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Benzolbifluoranthene	ND		5.0	0.062	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Benzo[g,h,i]perylene	ND		5.0	0.10	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Benzo[k]fluoranthene	ND		5.0	0.042	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Bis(2-chloroethoxy)metha	ND		5.0	0.085	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
ne										
Bis(2-chloroethyl)ether	ND		5.0	1.1	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Bis(2-chloroisopropyl)	ND		5.0	0.086	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
ether			4.0							~~-
Bis(2-ethylhexyl)	ND		10	0.86	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
phthalate			5.0	1 2	110/	1 00	06/20/10 17:42		1052202	625
Chrysono			5.0	0.036	ug/L	1.00	06/29/10 17:43		1052203	625
Dibenz[a b]anthracene			5.0	0.055	ug/L	1.00	06/29/10 17:43	MAE	10F2283	625
Diethyl phthalate	ND		5.0	0.000	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Dimethyl phthalate	ND		5.0	0.17	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Di-n-butyl phthalate	ND		5.0	0.94	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Di-n-octyl phthalate	ND		5.0	4.5	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Fluoranthene	ND		5.0	0.11	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Fluorene	ND		5.0	0.043	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Hexachlorobenzene	ND		5.0	0.28	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Hexachlorobutadiene	ND		5.0	0.62	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Hexachlorocyclopentadie	ND		5.0	0.45	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
ne				0.40		4.00	00/00/40 47 40		4050000	005
Hexachloroethane	ND		5.0	0.48	ug/L	1.00	06/29/10 17:43		10F2283	625
			5.0	0.19	ug/L	1.00	06/29/10 17:43		10F2283	625
Naphthalana			5.0	0.10	ug/L	1.00	06/20/10 17:43		10F2203	625
Nitrobenzene			5.0	0.000	ug/L	1.00	06/29/10 17:43	MAE	10F2283	625
N-Nitrosodimethylamine	ND		10	0.96	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
N-Nitrosodi-n-propylamin	ND		5.0	0.23	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
е			0.0	0.20	~9, L		50,20,10 11.40			320
N-Nitrosodiphenylamine	ND		5.0	0.40	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Pentachlorophenol	ND		10	0.41	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Phenanthrene	ND		5.0	0.071	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Phenol	ND		5.0	0.12	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625
Pyrene	ND		5.0	0.041	ug/L	1.00	06/29/10 17:43	MAF	10F2283	625

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Received: 06/25/10 Reported: 07/02/10 14:07

Turnkey Environmental Restoration, LLC Work Order: RTF1402 Received: 06/25/10 2558 Hamburg Turnpike Reported: 07/02/10 14:07 Lackawanna, NY 14218 Project: River Bend - Effluent Project Number: [none]

Analytical Report													
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method			
Sample ID: RTF1402-01	(Process efflu	ient - Water) - cont.		Sampled: 06/25/10 08:00 Recvd: 06/25/10 15:40								
Acid and Base/Neutral I	Extractables b												
2-Fluorophenol	26 %		Surr Limits:	(17-120%)			06/29/10 17:43	MAF	10F2283	625			
Phenol-d5	22 %		Surr Limits:	(10-120%)			06/29/10 17:43	MAF	10F2283	625			
Nitrobenzene-d5	56 %		Surr Limits:	(42-120%)			06/29/10 17:43	MAF	10F2283	625			
2-Fluorobiphenyl	63 %		Surr Limits:	(44-120%)			06/29/10 17:43	MAF	10F2283	625			
2,4,6-Tribromophenol	71 %		Surr Limits:	(52-151%)			06/29/10 17:43	MAF	10F2283	625			
p-Terphenyl-d14	67 %		Surr Limits:	(22-125%)			06/29/10 17:43	MAF	10F2283	625			
General Chemistry Para	ameters												
Cyanide	0.429		0.0100	0.0050	mg/L	1.00	07/01/10 13:01	jmm	10F2518	335.4			
pH	7.63	HFT	NA	0.00	รับ	1.00	06/25/10 23:36	KLD	10F2294	4500-H+ B			

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Project: River Bend - Effluent Project Number: [none] Received: 06/25/10 Reported: 07/02/10 14:07

SAMPLE EXTRACTION DATA Wt/Vol Extract Lab Parameter Batch Lab Number Extracte Units Volume Units Date Prepared Tech Extraction Method Acid and Base/Neutral Extractables by EPA Method 625 625 10F2283 RTF1402-01 mL BML 1,000.00 mL 1.00 06/27/10 09:00 3510C MB **General Chemistry Parameters** 335.4 10F2518 RMB Cn Digestion RTF1402-01 50.00 mL 50.00 mL 06/29/10 17:54 06/25/10 23:36 4500-H+ B 10F2294 RTF1402-01 50.00 mL 50.00 mL MDM No prep pH Volatile Organic Compounds 5030B MS 624 10F2443 RTF1402-01 5.00 mL 5.00 mL 06/29/10 09:18 TRB

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	<u>nds</u>										
Blank Analyzed: 06/29/10	(Lab Num	ber:10F24	143-BLK1	, Batch: 10F2443))						
1,1,1,2-Tetrachloroethane			5.0	0.50	ug/L	ND					
1,1,1-Trichloroethane			5.0	0.38	ug/L	ND					
1,1,2,2-Tetrachloroethane			5.0	0.26	ug/L	ND					
1,1,2-Trichloroethane			5.0	0.48	ug/L	ND					
1,1-Dichloroethane			5.0	0.59	ug/L	ND					
1,1-Dichloroethene			5.0	0.85	ug/L	ND					
1,2,3-Trichloropropane			5.0	0.21	ug/L	ND					
1,2,4-Trimethylbenzene			5.0	0.52	ug/L	ND					
1,2-Dibromo-3-chloroprop			5.0	0.62	ug/L	ND					
1,2-Dibromoethane (EDB)			5.0	0.50	ug/L	ND					
1,2-Dichlorobenzene			5.0	0.44	ug/L	ND					
1,2-Dichloroethane			5.0	0.60	ug/L	ND					
1,2-Dichloropropane			5.0	0.61	ug/L	ND					
1,3-Dichlorobenzene			5.0	0.54	ug/L	ND					
1,4-Dichlorobenzene			5.0	0.51	ug/L	ND					
2-Butanone (MEK)			25	1.8	ug/L	ND					
2-Chloroethyl vinyl ether			25	1.8	ug/L	ND					
2-Chlorotoluene			5.0	0.33	ug/L	ND					
2-Hexanone			25	2.0	ug/L	ND					
3-Chlorotoluene			5.0	0.31	ug/L	ND					
4-Chlorotoluene			5.0	0.27	ug/L	ND					
4-Isopropyltoluene			5.0	0.54	ug/L	ND					
4-Methyl-2-pentanone (MIBK)			25	1.3	ug/L	ND					
Acetone			25	2.0	ug/L	ND					
Acrolein			100	17	ug/L	ND					
Acrylonitrile			100	1.9	ug/L	ND					
Allyl chloride			5.0	0.56	ug/L	ND					
Benzene			5.0	0.60	ug/L	ND					
Bromochloromethane			5.0	0.71	ug/L	ND					
Bromodichloromethane			5.0	0.54	ug/L	ND					
Bromoform			5.0	0.47	ug/L	ND					
Bromomethane			5.0	1.2	ug/L	ND					
Carbon disulfide			5.0	0.29	ug/L	ND					
Carbon Tetrachloride			5.0	0.51	ug/L	ND					
Chlorobenzene			5.0	0.48	ug/L	ND					
Chlorodibromomethane			5.0	0.41	ug/L	ND					

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	<u>nds</u>										
Blank Analyzod: 06/20/10	(Lab Num	bor:10E2/	13 BI K1	Batch: 1052443)							
Chloroethane			5.0	0.87	ua/L	ND					
Chloroform			5.0	0.54	ug/L	ND					
Chloromethane			5.0	0.64	ug/L	ND					
cis-1,2-Dichloroethene			5.0	0.57	ug/L	ND					
cis-1,3-Dichloropropene			5.0	0.33	ug/L	ND					
Dibromomethane			5.0	0.53	ug/L	ND					
Dichlorodifluoromethane			5.0	0.28	ug/L	ND					
Ethyl Acetate			5.0	0.32	ug/L	ND					
Ethylbenzene			5.0	0.46	ug/L	ND					
lodomethane			5.0	0.29	ug/L	ND					
Isopropyl Acetate			5.0	0.56	ug/L	ND					
Methyl tert-Butyl Ether			5.0	0.35	ug/L	ND					
Methylene Chloride			5.0	0.81	ug/L	ND					
n-Amyl Acetate			5.0	0.36	ug/L	ND					
n-Butyl Acetate			5.0	0.49	ug/L	ND					
n-Butylbenzene			10	0.32	ug/L	ND					
Styrene			5.0	0.38	ug/L	ND					
t-Butanol			100	12	ug/L	ND					
Tetrachloroethene			5.0	0.34	ug/L	ND					
Toluene			5.0	0.45	ug/L	ND					
trans-1,2-Dichloroethene			5.0	0.59	ug/L	ND					
trans-1,3-Dichloropropen e			5.0	0.44	ug/L	ND					
trans-1,4-Dichloro-2-bute ne			25	1.3	ug/L	ND					
Trichloroethene			5.0	0.60	ug/L	ND					
Trichlorofluoromethane			5.0	0.45	ug/L	ND					
Vinyl acetate			25	1.5	ug/L	ND					
Vinyl chloride			5.0	0.75	ug/L	ND					
Xylenes, total			10	1.1	ug/L	ND					
Surrogate:					ug/L		103	88-132			
Surrogate:					ug/L		105	78-122			
Surrogate: Toluene-d8					ug/L		93	87-110			
LCS Analyzed: 06/29/10 (Lab Numb	er:10F244	3-BS1, Ba	atch: 10F2443)							
1,1,1-Trichloroethane		20.0	5.0	0.38	ug/L	20.5	102	75-125			
1,1,2,2-Tetrachloroethane		20.0	5.0	0.26	ug/L	14.3	71	61-140			
1,1,2-Trichloroethane		20.0	5.0	0.48	ug/L	16.8	84	71-129			

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA										
	Source	Spike					%	% REC	% RP	D Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Lim	it Qualifiers
Volatile Organic Compou	<u>inds</u>									
LCS Applyzod: 06/29/10	(Lab Numb	or:10E244	3.BS1 Ba	tch: 10E2443)						
1.1-Dichloroethane		20.0	5-D51, Da 5.0	0.59	ua/L	19.5	98	73-128		
1,1-Dichloroethene		20.0	5.0	0.85	ug/L	17.8	89	51-150		
1,2-Dichlorobenzene		20.0	10	0.44	ug/L	17.3	86	63-137		
1,2-Dichloroethane		20.0	5.0	0.60	ug/L	20.7	103	68-132		
1,2-Dichloropropane		20.0	5.0	0.61	ug/L	18.6	93	34-166		
1,3-Dichlorobenzene		20.0	10	0.54	ug/L	17.8	89	73-127		
1,4-Dichlorobenzene		20.0	10	0.51	ug/L	17.4	87	63-137		
2-Chloroethyl vinyl ether		100	25	1.8	ug/L	82.7	83	1-224		
Benzene		20.0	5.0	0.60	ug/L	19.2	96	64-136		
Bromodichloromethane		20.0	5.0	0.54	ug/L	20.2	101	66-135		
Bromoform		20.0	5.0	0.47	ug/L	15.9	80	71-129		
Bromomethane		20.0	10	1.2	ug/L	23.0	115	14-186		
Carbon Tetrachloride		20.0	5.0	0.51	ug/L	19.8	99	73-127		
Chlorobenzene		20.0	5.0	0.48	ug/L	17.9	90	66-134		
Chlorodibromomethane		20.0	5.0	0.41	ug/L	18.0	90	68-133		
Chloroethane		20.0	10	0.87	ug/L	23.0	115	38-162		
Chloroform		20.0	5.0	0.54	ug/L	20.8	104	68-133		
Chloromethane		20.0	10	0.64	ug/L	18.4	92	1-204		
cis-1,3-Dichloropropene		20.0	5.0	0.33	ug/L	18.8	94	24-176		
Ethylbenzene		20.0	5.0	0.46	ug/L	18.2	91	59-141		
Methylene Chloride		20.0	5.0	0.81	ug/L	17.4	87	61-140		
Tetrachloroethene		20.0	5.0	0.34	ug/L	17.5	87	74-127		
Toluene		20.0	5.0	0.45	ug/L	16.9	85	75-126		
trans-1,2-Dichloroethene		20.0	10	0.59	ug/L	19.3	97	70-131		
trans-1,3-Dichloropropen e		20.0	5.0	0.44	ug/L	17.5	87	50-150		
Trichloroethene		20.0	5.0	0.60	ug/L	19.1	95	67-134		
Trichlorofluoromethane		20.0	10	0.45	ug/L	23.9	119	48-152		
Vinyl chloride		20.0	10	0.75	ug/L	19.1	96	4-196		
Surrogate: 1 2-Dichloroethane-d4					ug/L		102			
Surrogate: 4-Bromofluorobenzene					ug/L		108			
Surrogate: Toluene-d8					ug/L		95			

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike	PI	MDI			%	% REC	%	RPD	Data
Analyte	Result			MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral Ex	tractables	DY EPA Met	100 625								
Blank Analyzed: 06/29/10	(Lab Num	ber:10F228	3-BLK1, I	Batch: 10F2283)							
1,2,4-Trichlorobenzene			10	0.49	ug/L	ND					
1,2-Dichlorobenzene			10	0.14	ug/L	ND					
1,2-Diphenylhydrazine			10	0.063	ug/L	ND					
1,3-Dichlorobenzene			10	0.069	ug/L	ND					
1,4-Dichlorobenzene			10	0.090	ug/L	ND					
2,4,6-Trichlorophenol			5.0	0.23	ug/L	ND					
2,4-Dichlorophenol			5.0	0.30	ug/L	ND					
2,4-Dimethylphenol			5.0	0.13	ug/L	ND					
2,4-Dinitrophenol			10	0.84	ug/L	ND					
2,4-Dinitrotoluene			5.0	0.26	ug/L	ND					
2,6-Dinitrotoluene			5.0	0.72	ug/L	ND					
2-Chloronaphthalene			5.0	0.068	ug/L	ND					
2-Chlorophenol			5.0	0.16	ug/L	ND					
2-Nitrophenol			5.0	0.14	ug/L	ND					
3,3'-Dichlorobenzidine			5.0	0.82	ug/L	ND					
4,6-Dinitro-2-methylphen ol			10	0.76	ug/L	ND					
4-Bromophenyl phenyl ether			5.0	0.11	ug/L	ND					
4-Chloro-3-methylphenol			5.0	0.56	ug/L	ND					
4-Chlorophenyl phenyl ether			5.0	0.21	ug/L	ND					
4-Nitrophenol			10	1.3	ug/L	ND					
Acenaphthene			5.0	0.060	ug/L	ND					
Acenaphthylene			5.0	0.034	ug/L	ND					
Anthracene			5.0	0.052	ug/L	ND					
Benzidine			80	2.5	ug/L	ND					
Benzo[a]anthracene			5.0	0.043	ug/L	ND					
Benzo[a]pyrene			5.0	0.058	ug/L	ND					
Benzo[b]fluoranthene			5.0	0.062	ug/L	ND					
Benzo[g,h,i]perylene			5.0	0.10	ug/L	ND					
Benzo[k]fluoranthene			5.0	0.042	ug/L	ND					
Bis(2-chloroethoxy)metha ne			5.0	0.085	ug/L	ND					
Bis(2-chloroethyl)ether			5.0	1.1	ug/L	ND					
Bis(2-chloroisopropyl) ether			5.0	0.086	ug/L	ND					
Bis(2-ethylhexyl) phthalate			10	0.86	ug/L	ND					
Butyl benzyl phthalate			5.0	1.3	ug/L	ND					

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral Ex	tractables	by EPA	Method 625								
Blank Analyzed: 06/29/10	(Lab Num	ber 10E2	2283-BIK1 F	Satch: 10F2283	,						
Chrysene			5.0	0.036	uq/L	ND					
Dibenz[a,h]anthracene			5.0	0.055	ug/L	ND					
Diethyl phthalate			5.0	0.17	ug/L	ND					
Dimethyl phthalate			5.0	0.17	ug/L	ND					
Di-n-butyl phthalate			5.0	0.94	ug/L	ND					
Di-n-octyl phthalate			5.0	4.5	ug/L	ND					
Fluoranthene			5.0	0.11	ug/L	ND					
Fluorene			5.0	0.043	ug/L	ND					
Hexachlorobenzene			5.0	0.28	ug/L	ND					
Hexachlorobutadiene			5.0	0.62	ug/L	ND					
Hexachlorocyclopentadie			5.0	0.45	ug/L	ND					
ne											
Hexachloroethane			5.0	0.48	ug/L	ND					
Indeno[1,2,3-cd]pyrene			5.0	0.19	ug/L	ND					
Isophorone			5.0	0.16	ug/L	ND					
Naphthalene			5.0	0.080	ug/L	ND					
Nitrobenzene			5.0	0.11	ug/L	ND					
N-Nitrosodimethylamine			10	0.96	ug/L	ND					
N-Nitrosodi-n-propylamin			5.0	0.23	ug/L	ND					
N-Nitrosodiphenylamine			5.0	0.40	ug/L	ND					
Pentachlorophenol			10	0.41	ug/L	ND					
Phenanthrene			5.0	0.071	ug/L	ND					
Phenol			5.0	0.12	ug/L	ND					
Pyrene			5.0	0.041	ug/L	ND					
Surrogate:					ua/l		29	17-120			
2-Fluorophenol					ug, E		20	11 120			
Surrogate: Phenol-d5					ug/L		23	10-120			
Surrogate: Nitrobenzene-d5					ug/L		60	42-120			
Surrogate:					ug/L		66	44-120			
2-Fluorobiphenyl							0.4	50 4 F 4			
Surrogate: 2.4.6-Tribromophenol					ug/L		84	52-151			
Surrogate:					ug/L		94	22-125			
p-Terphenyl-d14											
LCS Analyzed: 06/29/10 (Lab Numb	er:10F22	83-BS1, Bat	ch: 10F2283)							
1,2,4-Trichlorobenzene		50.0	10	0.49	ug/L	26.5	53	44-142			
1,2-Dichlorobenzene		50.0	10	0.14	ug/L	23.5	47	32-129			
1,2-Diphenylhydrazine		50.0	10	0.063	ug/L	44.8	90	47-146			
1,3-Dichlorobenzene		50.0	10	0.069	ug/L	22.9	46	1-172			
TestAmerica Buffalo - 10	Hazelwoo	d Drive A	mherst. NY	14228 tel 716-	691-2600 fax 7	16-691-799	91				

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA										
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% R RPD Li	PD mit	Data Qualifiers
Acid and Base/Neutral Ex	tractables	by EPA Me	ethod 625								
		405000									
LCS Analyzed: 06/29/10 (Lab Numb	er:10F2283	-BS1, Bato	n: 10F2283)		00.0	47	00 404			
1,4-Dichloropenzene		50.0	10	0.090	ug/L	23.6	47	20-124			
2,4,6-1 richlorophenol		50.0	5.0	0.23	ug/L	36.9	74	37-144			
		50.0	5.0	0.30	ug/L	34.0	68	39-135			
2,4-Dimethylphenol		50.0	5.0	0.13	ug/L	30.9	62	32-119			
2,4-Dinitrophenol		50.0	10	0.84	ug/L	42.9	86	1-191			
2,4-Dinitrotoluene		50.0	5.0	0.26	ug/L	46.6	93	39-139			
2,6-Dinitrotoluene		50.0	5.0	0.72	ug/L	44.9	90	50-158			
2-Chloronaphthalene		50.0	5.0	0.068	ug/L	32.7	65	60-118			
2-Chlorophenol		50.0	5.0	0.16	ug/L	26.0	52	23-134			
2-Nitrophenol		50.0	5.0	0.14	ug/L	32.1	64	29-182			
3,3'-Dichlorobenzidine		50.0	5.0	0.82	ug/L	70.7	141	1-262			
4,6-Dinitro-2-methylphen ol		50.0	10	0.76	ug/L	51.6	103	1-181			
4-Bromophenyl phenyl ether		50.0	5.0	0.11	ug/L	42.9	86	53-127			
4-Chloro-3-methylphenol		50.0	5.0	0.56	ug/L	39.8	80	22-147			
4-Chlorophenyl phenyl ether		50.0	5.0	0.21	ug/L	41.3	83	25-158			
4-Nitrophenol		50.0	10	1.3	ug/L	18.9	38	1-132			
Acenaphthene		50.0	5.0	0.060	ug/L	38.1	76	47-145			
Acenaphthylene		50.0	5.0	0.034	ug/L	38.9	78	33-145			
Anthracene		50.0	5.0	0.052	ug/L	44.3	89	27-133			
Benzidine		50.0	80	2.5	ug/L	49.5	99	1-120			J
Benzo[a]anthracene		50.0	5.0	0.043	ug/L	46.6	93	33-143			
Benzo[a]pyrene		50.0	5.0	0.058	ug/L	43.4	87	17-163			
Benzo[b]fluoranthene		50.0	5.0	0.062	ug/L	35.7	71	24-159			
Benzo[g,h,i]perylene		50.0	5.0	0.10	ug/L	38.0	76	1-219			
Benzo[k]fluoranthene		50.0	5.0	0.042	ug/L	37.5	75	11-162			
Bis(2-chloroethoxy)metha ne		50.0	5.0	0.085	ug/L	30.1	60	33-184			
Bis(2-chloroethyl)ether		50.0	5.0	1.1	ug/L	26.5	53	12-158			
Bis(2-chloroisopropyl) ether		50.0	5.0	0.086	ug/L	28.5	57	36-166			
Bis(2-ethylhexyl) phthalate		50.0	10	0.86	ug/L	47.9	96	8-158			
Butyl benzyl phthalate		50.0	5.0	1.3	ug/L	47.4	95	1-152			
Chrysene		50.0	5.0	0.036	ug/L	48.0	96	17-168			
Dibenz[a,h]anthracene		50.0	5.0	0.055	ug/L	39.0	78	1-227			
Diethyl phthalate		50.0	5.0	0.17	ug/L	46.0	92	1-114			
Dimethyl phthalate		50.0	5.0	0.17	ug/L	42.4	85	1-112			

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTF1402

Received: 06/25/10 Reported: 07/02/10 14:07

Project: River Bend - Effluent Project Number: [none]

			LÆ	ABORATORY (QC DATA								
	Source	Spike					%	% REC	%	RPD	Data		
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers		
Acid and Base/Neutral E	Acid and Base/Neutral Extractables by EPA Method 625												
LCS Analyzed: 06/29/10	(I ab Numb	er:10F22	83-BS1, Bat	ch: 10F2283)									
Di-n-butyl phthalate	(50.0	5.0	0.94	ug/L	45.2	90	1-118					
Di-n-octyl phthalate		50.0	5.0	4.5	ug/L	40.0	80	4-146					
Fluoranthene		50.0	5.0	0.11	ug/L	41.6	83	26-137					
Fluorene		50.0	5.0	0.043	ug/L	43.6	87	59-121					
Hexachlorobenzene		50.0	5.0	0.28	ug/L	42.4	85	1-152					
Hexachlorobutadiene		50.0	5.0	0.62	ug/L	26.2	52	24-116					
Hexachlorocyclopentadie ne		50.0	5.0	0.45	ug/L	24.9	50	5-120					
Hexachloroethane		50.0	5.0	0.48	ug/L	22.6	45	40-113					
Indeno[1,2,3-cd]pyrene		50.0	5.0	0.19	ug/L	38.8	78	1-171					
Isophorone		50.0	5.0	0.16	ug/L	32.6	65	21-196					
Naphthalene		50.0	5.0	0.080	ug/L	30.8	62	21-133					
Nitrobenzene		50.0	5.0	0.11	ug/L	31.9	64	35-180					
N-Nitrosodimethylamine		50.0	10	0.96	ug/L	17.5	35	19-120					
N-Nitrosodi-n-propylamin e		50.0	5.0	0.23	ug/L	31.6	63	1-230					
N-Nitrosodiphenylamine		50.0	5.0	0.40	ug/L	49.4	99	54-125					
Pentachlorophenol		50.0	10	0.41	ug/L	43.1	86	14-176					
Phenanthrene		50.0	5.0	0.071	ug/L	45.8	92	54-120					
Phenol		50.0	5.0	0.12	ug/L	12.4	25	5-112					
Pyrene		50.0	5.0	0.041	ug/L	48.1	96	52-115					
Surrogate: 2-Fluorophenol					ug/L		27	17-120					
Surrogate: Phenol-d5					ug/L		22	10-120					
Surrogate:					ug/L		63	42-120					
Surrogate: 2-Eluorobinhenvl					ug/L		69	44-120					
Surrogate: 2 4 6-Tribromophenol					ug/L		87	52-151					
Surrogate: p-Terphenyl-d14					ug/L		90	22-125					

THE LEADER IN ENVIRONMENTAL TESTING Work Order: RTF1402 Turnkey Environmental Restoration, LLC Received: 06/25/10 2558 Hamburg Turnpike 07/02/10 14:07 Reported: Lackawanna, NY 14218 Project: River Bend - Effluent Project Number: [none] LABORATORY QC DATA Source Spike % % REC % RPD Data RL Result Level MDL Analyte Units Result REC Limits RPD Limit Qualifiers **General Chemistry Parameters** LCS Analyzed: 06/25/10 (Lab Number:10F2294-BS1, Batch: 10F2294) pН NA 0.00 SU 7.00 100 99.3-100. 7.00 8 **General Chemistry Parameters** Blank Analyzed: 07/01/10 (Lab Number:10F2518-BLK1, Batch: 10F2518) Cyanide 0.0100 0.0050 ND mg/L LCS Analyzed: 07/01/10 (Lab Number:10F2518-BS1, Batch: 10F2518) Cyanide 0.0100 0.0050 0.250 mg/L 0.233 93 90-110

Chain of	Temperature o	on Receipt .	Te	TestAmerica						
Custody Record	Drinking Wate	r? Yes⊡		EADER IN ENVIRONMENTAL TESTING	1					
TAL-4124 (1007)			<u> </u>							
Turnkey	Project Manager	iryan	Hann	Date6-18-10 #-13-18	Chain of Custody Number 167637					
2558 Hamburg Turnpike Suite 300	71685	6 - 05	99 (116)85E	- 0583	Page of					
City Buffalo Brate Zip Code NY 14218	Site Contact		Lab Contact	Analysis (Attach list if more space is needed)						
Project Name and Location (State)	Carrier/Waybill N	umber		254	Snecial Instructions/					
Contract/Purchase Order/Quote No. 0171-009-500	M	latrix	Containers & Preservatives		Conditions of Receipt					
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time July Streems	Sed. Soil	Unpres. H2SO4 HNO3 HCI NaOH NaOH NaOH	PPP 1						
Process Effluent of the s	3:00 X		X X X	8411	624+625					
					Analysis to be					
					composited by					
					Гав					
Possible Hazard Identification	Unknown	e Disposal turn To Client	Disposal By Lab 🔲 ,	(A fee may be as Archive For Months longer than 1 mo	sessed if samples are retained					
Turn Around Time Required	Other		QC Requirements (Specity)							
1. Relinquisiter By What Weather	6/18/10	B 30	1. Received By	Mye	Date Time 06-25-10 14120					
2. Rejingaished by	Dàie 06-25-10	Time 15:46	2. Received By	baronhi	Date Time					
3. Relinquished By	Date	Time	3. Received By		Date Time					
Comments				$\angle 12^{\circ}$						
DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays w	ith the Sample; PINK	- Field Copy		7.8						

Analytical Report

Work Order: RTK1664

Project Description River Bend - Effluent

For:

Bryan Hann **Turnkey Environmental Restoration, LLC** 2558 Hamburg Turnpike Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Friday, December 3, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	N Y200003
Pennsylvania*	NELAP CWA,RCRA	68-00 281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none] Received: 11/24/10 Reported: 12/03/10 12:57

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- M15 The Matrix Spike Duplicate exhibited results outside of the quality control limits. However, the Matrix Spike and Blank Spike (LCS) were acceptable.
- P16 Lab to composite volatile samples by date/time/flow.
- P17 Lab to composite samples by date/time/flow.
- SL Volatile sample was composited in the laboratory prior to analysis.
- NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none] Received: 11/24/10 Reported: 12/03/10 12:57

Executive Summary - Detections												
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method		
Sample ID: RTK16	64-01 (Process effl	uent - Water)			Sam	oled: 11/	24/10	Recv	/d: 11/24/1	0 16:15		
Volatile Organic (<u>Compounds</u>											
Benzene	2.4	SL,J	5.0	0.60	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624		
General Chemistr	ry Parameters											
Cyanide	0.461		0.0100	0.0050	mg/L	1.00	12/02/10 12:36	JME	10K2728	335.4		
рН	7.36		NR	0.00	SU	1.00	11/24/10 22:30	JLN	10K2440	4500-H+ B		

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none] Received: 11/24/10 Reported: 12/03/10 12:57

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
Process effluent	RTK1664-01	Water	11/24/10	11/24/10 16:15	P16, P17

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

			Α	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTK1664-01 (Process effl	uent - Water))		Sam	pled: 11/	24/10	Recv	/d: 11/24/1	0 16:15
Volatile Organic Compou	<u>inds</u>									
1,1,1-Trichloroethane	ND	SL	5.0	0.38	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,1,2,2-Tetrachloroethane	ND	SL	5.0	0.26	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,1,2-Trichloroethane	ND	SL	5.0	0.48	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,1-Dichloroethane	ND	SL	5.0	0.59	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,1-Dichloroethene	ND	SL	5.0	0.85	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,2-Dichlorobenzene	ND	SL	5.0	0.44	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,2-Dichloroethane	ND	SL	5.0	0.60	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,2-Dichloropropane	ND	SL	5.0	0.61	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,3-Dichlorobenzene	ND	SL	5.0	0.54	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
1,4-Dichlorobenzene	ND	SL	5.0	0.51	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
2-Chloroethyl vinyl ether	ND	SL	25	1.8	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Benzene	2.4	SL,J	5.0	0.60	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Bromodichloromethane	ND	SL	5.0	0.54	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Bromoform	ND	SL	5.0	0.47	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Bromomethane	ND	SL	5.0	1.2	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Carbon Tetrachloride	ND	SL	5.0	0.51	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Chlorobenzene	ND	SL	5.0	0.48	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Chlorodibromomethane	ND	SL	5.0	0.41	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Chloroethane	ND	SL	5.0	0.87	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Chloroform	ND	SL	5.0	0.54	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Chloromethane	ND	SL	5.0	0.64	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
cis-1,3-Dichloropropene	ND	SL	5.0	0.33	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Ethylbenzene	ND	SL	5.0	0.46	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Methylene Chloride	ND	SL	5.0	0.81	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Tetrachloroethene	ND	SL	5.0	0.34	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
Toluene	ND	SL	5.0	0.45	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
trans-1,2-Dichloroethene	ND	SL	5.0	0.59	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
trans-1,3-Dichloropropen	ND	SL	5.0	0.44	ug/L	1.00	11/30/10 14:56	TRB	10K2697	624
e Trichloroethene	ND	SI	5.0	0.60	ug/l	1 00	11/30/10 17:56	TPB	101/2607	624
Trichlorofluoromethane		SI	5.0	0.00	ug/L	1.00	11/30/10 14:56	TPB	1012097	624
Vinyl chloride		SI	5.0	0.45	ug/L	1.00	11/30/10 14:56	TRB	101(2037	624
	ne -	02	0.0	0.70	ug/L	1.00	11/00/10 14:00	III	101(2007	024
1,2-Dichloroethane-d4	93 %	SL	Surr Limits:	(72-130%)			11/30/10 14:56	TRB	10K2697	624
4-Bromofluorobenzene	94 %	SL	Surr Limits:	(69-121%)			11/30/10 14:56	TRB	10K2697	624
Toluene-d8	92 %	SL	Surr Limits:	(70-123%)			11/30/10 14:56	TRB	10K2697	624
Acid and Base/Neutral E	xtractables I	by EPA Meth	od 625							
1,2,4-Trichlorobenzene	ND		11	0.55	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
1,2-Dichlorobenzene	ND		11	0.16	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
1,2-Diphenylhydrazine	ND		11	0.071	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
1,3-Dichlorobenzene	ND		11	0.077	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
1,4-Dichlorobenzene	ND		11	0.10	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,4,6-Trichlorophenol	ND		5.6	0.26	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,4-Dichlorophenol	ND		5.6	0.34	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,4-Dimethylphenol	ND		5.6	0.15	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,4-Dinitrophenol	ND		11	0.94	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,4-Dinitrotoluene	ND		5.6	0.30	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2,6-Dinitrotoluene	ND		5.6	0.81	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2-Chloronaphthalene	ND		5.6	0.076	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2-Chlorophenol	ND		5.6	0.18	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625
2-Nitrophenol	ND		5.6	0.16	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

Analytical Report											
	Sample	Data		-	-	Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RTK1664-01 (Process effl	uent - Water) -	cont.		Sam	pled: 11/	24/10	Recv	/d: 11/24/10	0 16:15	
Acid and Base/Neutral E	xtractables	bv EPA Metho	d 625 - co	nt.							
3 3'-Dichlorobenzidine			56	0.92	ua/l	1 00	11/29/10 17:58	MAF	10K2613	625	
4 6-Dinitro-2-methylphen	ND		11	0.86	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
ol					9						
4-Bromophenyl phenyl	ND		5.6	0.13	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
ether			5.0	0.00		4 00	44/00/40 47-50		401/0040	005	
4-Chloro-3-methylphenol			5.6	0.62	ug/L	1.00	11/29/10 17:58		10K2613	625	
4-Chlorophenyl phenyl	ND		0.0	0.23	ug/L	1.00	11/29/10 17:58	MAF	10K2013	625	
4-Nitrophenol	ND		11	15	ua/l	1 00	11/20/10 17:58	ΜΔΕ	10K2613	625	
Acenaphthene	ND		56	0.067	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Acenaphthylene	ND		5.6	0.038	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Anthracene	ND		5.6	0.059	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Benzidine	ND	1	90	2.8	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Benzolalanthracene		L	56	0.048	ug/L	1.00	11/20/10 17:58	MAE	10K2613	625	
Benzo[a]pyrene			5.6	0.040	ug/L	1.00	11/20/10 17:58	MAE	10K2613	625	
Benzo[b]fluoranthene			5.6	0.000	ug/L	1.00	11/29/10 17:58	MAE	101(2013	625	
Benzola h ilpondono			5.0	0.005	ug/L	1.00	11/20/10 17:58		101(2013	625	
Benzo[k]fluoranthono			5.0	0.11	ug/L	1.00	11/29/10 17:58		1012013	625	
			5.0	0.047	ug/L	1.00	11/29/10 17:50		10K2013	625	
Bis(2-chloroethoxy)metha	ND		5.0	0.095	ug/L	1.00	11/29/10 17.50	IVIAL	101/2013	025	
lie Bis(2-chloroethyl)ether	ND		56	12	ua/l	1 00	11/20/10 17:58	ΜΔΕ	10K2613	625	
Bis(2 chloroisopropyl)			5.6	0.096	ug/L	1.00	11/20/10 17:58	MAE	10K2613	625	
ether	ND		0.0	0.000	ug/L	1.00	11/20/10 11:00		1012010	020	
Bis(2-ethylbeyyl)	ND		11	0.97	ua/l	1 00	11/29/10 17:58	MAF	10K2613	625	
nhthalate	ne -			0.07	49/2	1.00	11120/10 11.00	110 0	10112010	020	
Butyl benzyl phthalate	ND		56	15	ua/l	1 00	11/29/10 17:58	MAF	10K2613	625	
Chrysene	ND		5.6	0.040	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Dibenz[a h]anthracene	ND		5.6	0.062	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Diethyl obthalate	ND		5.6	0.002	ug/L	1.00	11/20/10 17:58	MAF	10K2613	625	
Dimethyl phthalate			5.6	0.15	ug/L	1.00	11/20/10 17:58	MAE	10K2613	625	
Di-n-butyl phthalate			5.6	1 1	ug/L	1.00	11/20/10 17:58	MAE	101(2013	625	
Di-n-butyl philialate			5.0	5.0	ug/L	1.00	11/29/10 17:58		1012013	625	
Eluoranthono			5.0	0.12	ug/L	1.00	11/29/10 17:58		1012013	625	
Eluoropo			5.0	0.12	ug/L	1.00	11/29/10 17:50		1012013	625	
Havashlarahanzana			5.0	0.046	ug/L	1.00	11/29/10 17:50		10K2013	625	
Hexachiorobenzene			5.0 5.0	0.31	ug/L	1.00	11/29/10 17:50		10K2013	020	
			5.0 5.0	0.69	ug/L	1.00	11/29/10 17:50		10K2013	020	
Hexachiorocyclopentadle	ND		5.0	0.51	ug/L	1.00	11/29/10 17.56	IVIAF	10K2013	025	
ne Hexachloroothano	ND		5.6	0.54	ug/l	1 00	11/20/10 17.58		101/2613	625	
			5.0	0.34	ug/L	1.00	11/29/10 17:50		10K2013	625	
			5.0	0.21	ug/L	1.00	11/29/10 17:50		10K2013	625	
Norphthelene			5.0 5.0	0.10	ug/L	1.00	11/29/10 17:50		10K2013	020	
Naphthalene	ND		5.0 5.0	0.090	ug/L	1.00	11/29/10 17:58		10K2013	625	
Nitrobenzene	ND		5.6	0.12	ug/L	1.00	11/29/10 17:58		10K2613	625	
N-Nitrosodimetnylamine	ND		11	1.1	ug/L	1.00	11/29/10 17:58		10K2613	625	
N-Nitrosodi-n-propylamin	ND		5.6	0.26	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
e N. Nitropodiokora dereiar			E 0	0.44	1.00	1 00	11/20/40 47.50		101/0040	605	
			0.0	0.44	ug/L	1.00	11/29/10 17:58		101/2013	025	
	ND		11	0.46	ug/L	1.00	11/29/10 17:58		10K2613	625	
Prienanthrene	ND		5.6	0.080	ug/L	1.00	11/29/10 17:58		10K2613	625	
Phenol	ND		5.6	0.14	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	
Pyrene	ND		5.6	0.046	ug/L	1.00	11/29/10 17:58	MAF	10K2613	625	

Turnkey Environmental Restoration, LLC Work Order: RTK1664 Received: 11/24/10 2558 Hamburg Turnpike Reported: 12/03/10 12:57 Lackawanna, NY 14218 Project: River Bend - Effluent Project Number: [none]

Analytical Report													
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method			
Sample ID: RTK1664-01	Sampled: 11/24/10 Recvd: 11/24/10 16:1												
Acid and Base/Neutral	Extractables	by EPA Meth	od 625 - co	ont.									
2-Fluorophenol	44 %		Surr Limits:	(17-120%)			11/29/10 17:58	MAF	10K2613	625			
Phenol-d5	33 %		Surr Limits:	(10-120%)			11/29/10 17:58	MAF	10K2613	625			
Nitrobenzene-d5	75 %		Surr Limits:	(42-120%)			11/29/10 17:58	MAF	10K2613	625			
2-Fluorobiphenyl	78 %		Surr Limits:	(44-120%)			11/29/10 17:58	MAF	10K2613	625			
2,4,6-Tribromophenol	106 %		Surr Limits:	(52-151%)			11/29/10 17:58	MAF	10K2613	625			
p-Terphenyl-d14	84 %		Surr Limits:	(22-125%)			11/29/10 17:58	MAF	10K2613	625			
General Chemistry Para	ameters												
Cyanide	0.461		0.0100	0.0050	mg/L	1.00	12/02/10 12:36	JME	10K2728	335.4			
рН	7.36		NA	0.00	รับ	1.00	11/24/10 22:30	JLN	10K2440	4500-H+ B			

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none] Received: 11/24/10 Reported: 12/03/10 12:57

Wt/Vol Extract Lab Parameter Batch Lab Number Extracte Units Volume Units Date Prepared Tech Extraction Method Acid and Base/Neutral Extractables by EPA Method 625 625 10K2613 mL JXB RTK1664-01 890.00 mL 1.00 11/29/10 09:09 3510C MB **General Chemistry Parameters** 335.4 mL KLD Cn Digestion 10K2728 RTK1664-01 50.00 50.00 mL 11/30/10 10:30 11/24/10 22:30 4500-H+ B 10K2440 RTK1664-01 25.00 mL 25.00 mL JLN No prep pH Volatile Organic Compounds 624 10K2697 RTK1664-01 5.00 mL 5.00 mL 11/30/10 10:27 TRB 5030B MS

SAMPLE EXTRACTION DATA

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike					%	% REC	% RPD	Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers	
Volatile Organic Compour	nds										
Blank Analyzed: 11/30/10	(Lab Num	ber:10K26	97-BLK1	. Batch: 10K2697)							
1 1 1-Trichloroethane	(5.0	0.38	ua/l	ND					
1 1 2 2-Tetrachloroethane			5.0	0.26	ug/l	ND					
1 1 2-Trichloroethane			5.0	0.48	ug/L	ND					
1 1-Dichloroethane			5.0	0.59	ug/L	ND					
1 1-Dichloroethene			5.0	0.85	ug/L	ND					
1 2-Dichlorobenzene			5.0	0.44	ug/l	ND					
1 2-Dichloroethane			5.0	0.60	ug/l	ND					
1 2-Dichloropropane			5.0	0.61	ua/l	ND					
1 3-Dichlorobenzene			5.0	0.54	ug/l	ND					
1 4-Dichlorobenzene			5.0	0.51	ug/l	ND					
2-Chloroethyl vinyl ether			25	1.8	ug/l	ND					
Benzene			-0 5 0	0.60	ug/l	ND					
Bromodichloromethane			5.0	0.54	ua/L	ND					
Bromoform			5.0	0.47	ua/L	ND					
Bromomethane			5.0	1.2	ua/L	ND					
Carbon Tetrachloride			5.0	0.51	ua/L	ND					
Chlorobenzene			5.0	0.48	ua/L	ND					
Chlorodibromomethane			5.0	0.41	ua/L	ND					
Chloroethane			5.0	0.87	ua/L	ND					
Chloroform			5.0	0.54	ug/L	ND					
Chloromethane			5.0	0.64	ug/L	ND					
cis-1,3-Dichloropropene			5.0	0.33	ug/L	ND					
Ethylbenzene			5.0	0.46	ug/L	ND					
Methylene Chloride			5.0	0.81	ug/L	ND					
Tetrachloroethene			5.0	0.34	ug/L	ND					
Toluene			5.0	0.45	ug/L	ND					
trans-1,2-Dichloroethene			5.0	0.59	ug/L	ND					
trans-1,3-Dichloropropen			5.0	0.44	ug/L	ND					
Trichloroethene			5.0	0.60	ug/L	ND					
Trichlorofluoromethane			5.0	0.45	ug/L	ND					
Vinyl chloride			5.0	0.75	ug/L	ND					
Surrogate:					ug/L		97	72-130			
1,2-Dicnioroethane-d4 Surrogate:					ug/L		97	69-121			
4-Bromotiuorobenzene Surrogate: Toluene-d8					ug/L		95	70-123			

LCS Analyzed: 11/30/10 (Lab Number:10K2697-BS1, Batch: 10K2697)

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218

Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA										
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD RPD Limit	Data Qualifiers
Volatile Organic Compou	inds				Onito	Rooun		Linito		quamoro
LCS Analyzed: 11/30/10	(Lab Numb	er:10K269	7-BS1, B	atch: 10K2697)		10.0				
1,1,1-Irichloroethane		20.0	5.0	0.38	ug/L	18.8	94	75-125		
1,1,2,2-Tetrachloroethane		20.0	5.0	0.26	ug/L	19.0	95	61-140		
1,1,2-Trichloroethane		20.0	5.0	0.48	ug/L	18.6	93	71-129		
1,1-Dichloroethane		20.0	5.0	0.59	ug/L	19.1	95	73-128		
1,1-Dichloroethene		20.0	5.0	0.85	ug/L	16.1	81	51-150		
1,2-Dichlorobenzene		20.0	5.0	0.44	ug/L	16.5	83	63-137		
1,2-Dichloroethane		20.0	5.0	0.60	ug/L	19.2	96	68-132		
1,2-Dichloropropane		20.0	5.0	0.61	ug/L	19.2	96	34-166		
1,3-Dichlorobenzene		20.0	5.0	0.54	ug/L	16.6	83	73-127		
1,4-Dichlorobenzene		20.0	5.0	0.51	ug/L	16.2	81	63-137		
2-Chloroethyl vinyl ether		100	25	1.8	ug/L	107	107	1-224		
Benzene		20.0	5.0	0.60	ug/L	19.2	96	64-136		
Bromodichloromethane		20.0	5.0	0.54	ug/L	20.2	101	66-135		
Bromoform		20.0	5.0	0.47	ug/L	18.0	90	71-129		
Bromomethane		20.0	5.0	1.2	ug/L	16.7	84	14-186		
Carbon Tetrachloride		20.0	5.0	0.51	ug/L	19.1	96	73-127		
Chlorobenzene		20.0	5.0	0.48	ug/L	18.8	94	66-134		
Chlorodibromomethane		20.0	5.0	0.41	ug/L	18.9	94	68-133		
Chloroethane		20.0	5.0	0.87	ug/L	19.6	98	38-162		
Chloroform		20.0	5.0	0.54	ug/L	18.8	94	68-133		
Chloromethane		20.0	5.0	0.64	ug/L	21.4	107	1-204		
cis-1,3-Dichloropropene		20.0	5.0	0.33	ug/L	19.0	95	24-176		
Ethylbenzene		20.0	5.0	0.46	ug/L	19.0	95	59-141		
Methylene Chloride		20.0	5.0	0.81	ug/L	19.4	97	61-140		
Tetrachloroethene		20.0	5.0	0.34	ug/L	18.4	92	74-127		
Toluene		20.0	5.0	0.45	ug/L	18.0	90	75-126		
trans-1,2-Dichloroethene		20.0	5.0	0.59	ug/L	18.6	93	70-131		
trans-1,3-Dichloropropen		20.0	5.0	0.44	ug/L	18.4	92	50-150		
Trichloroethene		20.0	5.0	0.60	ug/L	18.8	94	67-134		
Trichlorofluoromethane		20.0	5.0	0.45	ug/L	22.3	112	48-152		
Vinyl chloride		20.0	5.0	0.75	ug/L	21.7	109	4-196		
Surrogate:					ug/L		97	72-130		
1,2-Dicnioroethane-d4 Surrogate: 4-Bromofiliorobenzene					ug/L		100	69-121		
Surrogate: Toluene-d8					ug/L		96	70-123		

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral Ex	tractables	by EPA N	<u>lethod 625</u>								
Blank Analyzed: 11/29/10	(Lab Num	ber:10K2	613-BLK1, E	Batch: 10K2613	3)						
1,2,4-Trichlorobenzene			10	0.49	ug/L	ND					
1,2-Dichlorobenzene			10	0.14	ug/L	ND					
1,2-Diphenylhydrazine			10	0.063	ug/L	ND					
1,3-Dichlorobenzene			10	0.069	ug/L	ND					
1,4-Dichlorobenzene			10	0.090	ug/L	ND					
2,4,6-Trichlorophenol			5.0	0.23	ug/L	ND					
2,4-Dichlorophenol			5.0	0.30	ug/L	ND					
2,4-Dimethylphenol			5.0	0.13	ug/L	ND					
2,4-Dinitrophenol			10	0.84	ug/L	ND					
2,4-Dinitrotoluene			5.0	0.26	ug/L	ND					
2,6-Dinitrotoluene			5.0	0.72	ug/L	ND					
2-Chloronaphthalene			5.0	0.068	ug/L	ND					
2-Chlorophenol			5.0	0.16	ug/L	ND					
2-Nitrophenol			5.0	0.14	ug/L	ND					
3,3'-Dichlorobenzidine			5.0	0.82	ug/L	ND					
4,6-Dinitro-2-methylphen ol			10	0.76	ug/L	ND					
4-Bromophenyl phenyl ether			5.0	0.11	ug/L	ND					
4-Chloro-3-methylphenol			5.0	0.56	ug/L	ND					
4-Chlorophenyl phenyl ether			5.0	0.21	ug/L	ND					
4-Nitrophenol			10	1.3	ug/L	ND					
Acenaphthene			5.0	0.060	ug/L	ND					
Acenaphthylene			5.0	0.034	ug/L	ND					
Anthracene			5.0	0.052	ug/L	ND					
Benzidine			80	2.5	ug/L	ND					
Benzo[a]anthracene			5.0	0.043	ug/L	ND					
Benzo[a]pyrene			5.0	0.058	ug/L	ND					
Benzo[b]fluoranthene			5.0	0.062	ug/L	ND					
Benzo[g,h,i]perylene			5.0	0.10	ug/L	ND					
Benzo[k]fluoranthene			5.0	0.042	ug/L	ND					
Bis(2-chloroethoxy)metha ne			5.0	0.085	ug/L	ND					
Bis(2-chloroethyl)ether			5.0	1.1	ug/L	ND					
Bis(2-chloroisopropyl) ether			5.0	0.086	ug/L	ND					
Bis(2-ethylhexyl) phthalate			10	0.86	ug/L	ND					
Butyl benzyl phthalate			5.0	1.3	ug/L	ND					

THE LEADER IN ENVIRONMENTAL TESTING

www.testamericainc.com

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

			LA	ABORATORY	QC DATA							
	Source	Spike					%	% REC	% RP	D Data		
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Lim	it Qualifiers		
Acid and Base/Neutral Extractables by EPA Method 625												
Blank Analyzed: 11/29/10	(Lab Num	ber:10K	2613-BLK1.	Batch: 10K2613)							
Chrysene	(5.0	0.036	, ug/L	ND						
Dibenz[a,h]anthracene			5.0	0.055	ug/L	ND						
Diethyl phthalate			5.0	0.17	ug/L	ND						
Dimethyl phthalate			5.0	0.17	ug/L	ND						
Di-n-butyl phthalate			5.0	0.94	ug/L	ND						
Di-n-octyl phthalate			5.0	4.5	ug/L	ND						
Fluoranthene			5.0	0.11	ug/L	ND						
Fluorene			5.0	0.043	ug/L	ND						
Hexachlorobenzene			5.0	0.28	ug/L	ND						
Hexachlorobutadiene			5.0	0.62	ug/L	ND						
Hexachlorocyclopentadie ne			5.0	0.45	ug/L	ND						
Hexachloroethane			5.0	0.48	ug/L	ND						
Indeno[1,2,3-cd]pyrene			5.0	0.19	ug/L	ND						
Isophorone			5.0	0.16	ug/L	ND						
Naphthalene			5.0	0.080	ug/L	ND						
Nitrobenzene			5.0	0.11	ug/L	ND						
N-Nitrosodimethylamine			10	0.96	ug/L	ND						
N-Nitrosodi-n-propylamin e			5.0	0.23	ug/L	ND						
N-Nitrosodiphenylamine			5.0	0.40	ug/L	ND						
Pentachlorophenol			10	0.41	ug/L	ND						
Phenanthrene			5.0	0.071	ug/L	ND						
Phenol			5.0	0.12	ug/L	ND						
Pyrene			5.0	0.041	ug/L	ND						
Surrogate:					ug/L		51	17-120				
2-Fluorophenol Surrogate: Phenol-d5					ua/l		38	10-120				
Surrogate:					ug/L		86	42-120				
Nitrobenzene-d5 Surrogate:					ug/L		87	44-120				
2-Fluorobiphenyl Surrogate:					ug/L		116	52-151				
2,4,6-1 ribromophenoi Surrogate: p-Terphenyl-d14					ug/L		120	22-125				
LCS Analyzed: 11/29/10 (Lab Numb	er:10K26	613-BS1, Bat	tch: 10K2613)								
1,2,4-Trichlorobenzene		50.0	10	0.49	ug/L	28.6	57	44-142				
1,2-Dichlorobenzene		50.0	10	0.14	ug/L	25.6	51	32-129				
1,2-Diphenylhydrazine		50.0	10	0.063	ug/L	45.8	92	47-146				
1,3-Dichlorobenzene		50.0	10	0.069	ug/L	24.1	48	1-172				
TestAmerica Buffalo - 10	Hazelwoo	d Drive A	Amherst, NY	14228 tel 716-6	691-2600 fax 7	16-691-799	91					

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Acid and Base/Neutral E	xtractables	by EPA N	lethod 625								
1 CS Analyzod: 11/20/10	(Lab Numb	or:10K264	13_891 Bat								
1 4-Dichlorobenzene		50.0	10- DOT, Dat	0.090	ua/l	25 1	50	20-124			
2 4 6-Trichlorophenol		50.0	50	0.23	ug/L	44 1	88	37-144			
2 4-Dichlorophenol		50.0	5.0	0.30	ug/L	40.5	81	39-135			
2 4-Dimethylphenol		50.0	5.0	0.13	ug/l	39.3	79	32-119			
2 4-Dinitrophenol		50.0	10	0.84	ug/l	47.1	94	1-191			
2.4-Dinitrotoluene		50.0	5.0	0.26	ua/L	49.1	98	39-139			
2.6-Dinitrotoluene		50.0	5.0	0.72	ua/L	52.2	104	50-158			
2-Chloronaphthalene		50.0	5.0	0.068	ua/L	35.8	72	60-118			
2-Chlorophenol		50.0	5.0	0.16	ua/L	33.3	67	23-134			
2-Nitrophenol		50.0	5.0	0.14	ua/L	40.7	81	29-182			
3.3'-Dichlorobenzidine		50.0	5.0	0.82	ua/L	67.3	135	1-262			
4,6-Dinitro-2-methylphen		50.0	10	0.76	ug/L	57.3	115	1-181			
4-Bromophenyl phenyl ether		50.0	5.0	0.11	ug/L	46.9	94	53-127			
4-Chloro-3-methylphenol		50.0	5.0	0.56	ug/L	44.0	88	22-147			
4-Chlorophenyl phenyl ether		50.0	5.0	0.21	ug/L	43.3	87	25-158			
4-Nitrophenol		50.0	10	1.3	ug/L	21.8	44	1-132			
Acenaphthene		50.0	5.0	0.060	ug/L	40.8	82	47-145			
Acenaphthylene		50.0	5.0	0.034	ug/L	41.6	83	33-145			
Anthracene		50.0	5.0	0.052	ug/L	47.9	96	27-133			
Benzidine		50.0	80	2.5	ug/L	83.9	168	1-120			L1
Benzo[a]anthracene		50.0	5.0	0.043	ug/L	51.1	102	33-143			
Benzo[a]pyrene		50.0	5.0	0.058	ug/L	56.1	112	17-163			
Benzo[b]fluoranthene		50.0	5.0	0.062	ug/L	47.0	94	24-159			
Benzo[g,h,i]perylene		50.0	5.0	0.10	ug/L	44.1	88	1-219			
Benzo[k]fluoranthene		50.0	5.0	0.042	ug/L	45.1	90	11-162			
Bis(2-chloroethoxy)metha ne		50.0	5.0	0.085	ug/L	36.1	72	33-184			
Bis(2-chloroethyl)ether		50.0	5.0	1.1	ug/L	32.2	64	12-158			
Bis(2-chloroisopropyl) ether		50.0	5.0	0.086	ug/L	32.4	65	36-166			
Bis(2-ethylhexyl) phthalate		50.0	10	0.86	ug/L	66.1	132	8-158			
Butyl benzyl phthalate		50.0	5.0	1.3	ug/L	64.5	129	1-152			
Chrysene		50.0	5.0	0.036	ug/L	50.1	100	17-168			
Dibenz[a,h]anthracene		50.0	5.0	0.055	ug/L	47.6	95	1-227			
Diethyl phthalate		50.0	5.0	0.17	ug/L	51.9	104	1-114			
Dimethyl phthalate		50.0	5.0	0.17	ug/L	48.5	97	1-112			

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral Ex	tractables	by EPA	Method 625								
LCS Analyzed: 11/29/10 (Lab Number:10K2613-BS1, Batch: 10K2613)											
Di-n-butyl phthalate		50.0	5.0	0.94	ug/L	55.6	111	1-118			
Di-n-octyl phthalate		50.0	5.0	4.5	ug/L	65.3	131	4-146			
Fluoranthene		50.0	5.0	0.11	ug/L	49.9	100	26-137			
Fluorene		50.0	5.0	0.043	ug/L	45.1	90	59-121			
Hexachlorobenzene		50.0	5.0	0.28	ug/L	47.3	95	1-152			
Hexachlorobutadiene		50.0	5.0	0.62	ug/L	26.6	53	24-116			
Hexachlorocyclopentadie ne		50.0	5.0	0.45	ug/L	26.8	54	5-120			
Hexachloroethane		50.0	5.0	0.48	ug/L	23.2	46	40-113			
Indeno[1,2,3-cd]pyrene		50.0	5.0	0.19	ug/L	47.0	94	1-171			
Isophorone		50.0	5.0	0.16	ug/L	38.4	77	21-196			
Naphthalene		50.0	5.0	0.080	ug/L	32.9	66	21-133			
Nitrobenzene		50.0	5.0	0.11	ug/L	38.6	77	35-180			
N-Nitrosodimethylamine		50.0	10	0.96	ug/L	22.1	44	19-120			
N-Nitrosodi-n-propylamin e		50.0	5.0	0.23	ug/L	38.7	77	1-230			
N-Nitrosodiphenylamine		50.0	5.0	0.40	ug/L	62.3	125	54-125			
Pentachlorophenol		50.0	10	0.41	ug/L	50.1	100	14-176			
Phenanthrene		50.0	5.0	0.071	ug/L	48.2	96	54-120			
Phenol		50.0	5.0	0.12	ug/L	16.2	32	5-112			
Pyrene		50.0	5.0	0.041	ug/L	49.3	99	52-115			
Surrogate:					ug/L		42	17-120			
Surrogate: Phenol-d5					ug/L		31	10-120			
Surrogate:					ug/L		76	42-120			
Nitrobenzene-d5 Surrogate:					ug/L		79	44-120			
2-Fluorobiphenyi Surrogate: 2 4 6-Tribromophenol					ug/L		103	52-151			
Surrogate: p-Terphenyl-d14					ug/L		98	22-125			
Matrix Spike Analyzed: 11/29/10 (Lab Number:10K2613-MS1, Batch: 10K2613) QC Source Sample: RTK1664-01											
1,2,4-Trichlorobenzene	ND	95.2	19	0.94	ug/L	67.5	71	44-142			
1,2-Dichlorobenzene	ND	95.2	19	0.28	ug/L	63.7	67	32-129			
1,2-Diphenylhydrazine	ND	95.2	19	0.12	ug/L	86.5	91	47-146			
1,3-Dichlorobenzene	ND	95.2	19	0.13	ug/L	60.4	63	1-172			
1,4-Dichlorobenzene	ND	95.2	19	0.17	ug/L	61.9	65	20-124			
2,4,6-Trichlorophenol	ND	95.2	9.5	0.45	ug/L	84.3	89	37-144			
2,4-Dichlorophenol	ND	95.2	9.5	0.57	ug/L	83.7	88	39-135			
TestAmerica Buffalo - 10	Hazelwood	d Drive A	mherst, NY	14228 tel 716-0	691-2600 fax 7	16-691-799	91				

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA										
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Acid and Base/Neutral E	xtractables	by EPA N	lethod 625							
Matrix Spike Analyzed: 1 QC Source Sample: RTK1664-	I <mark>1/29/10</mark> (L ₋01	ab Numbe	r:10K2613-N	IS1, Batch: 10	K2613)					
2,4-Dimethylphenol	ND	95.2	9.5	0.26	ug/L	78.7	83	32-119		
2,4-Dinitrophenol	ND	95.2	19	1.6	ug/L	87.8	92	1-191		
2,4-Dinitrotoluene	ND	95.2	9.5	0.50	ug/L	91.9	96	39-139		
2,6-Dinitrotoluene	ND	95.2	9.5	1.4	ug/L	98.4	103	50-158		
2-Chloronaphthalene	ND	95.2	9.5	0.13	ug/L	75.1	79	60-118		
2-Chlorophenol	ND	95.2	9.5	0.30	ug/L	72.8	76	23-134		
2-Nitrophenol	ND	95.2	9.5	0.27	ug/L	82.1	86	29-182		
3,3'-Dichlorobenzidine	ND	95.2	9.5	1.6	ug/L	96.6	101	1-262		
4,6-Dinitro-2-methylphen ol	ND	95.2	19	1.4	ug/L	106	111	1-181		
4-Bromophenyl phenyl ether	ND	95.2	9.5	0.22	ug/L	90.3	95	53-127		
4-Chloro-3-methylphenol	ND	95.2	9.5	1.1	ug/L	88.0	92	22-147		
4-Chlorophenyl phenyl ether	ND	95.2	9.5	0.40	ug/L	82.4	87	25-158		
4-Nitrophenol	ND	95.2	19	2.6	ug/L	60.6	64	1-132		
Acenaphthene	ND	95.2	9.5	0.11	ug/L	83.5	88	47-145		
Acenaphthylene	ND	95.2	9.5	0.065	ug/L	83.1	87	33-145		
Anthracene	ND	95.2	9.5	0.10	ug/L	88.8	93	27-133		
Benzidine	ND	95.2	150	4.8	ug/L	23.3	24	1-120		J
Benzo[a]anthracene	ND	95.2	9.5	0.082	ug/L	91.6	96	33-143		
Benzo[a]pyrene	ND	95.2	9.5	0.11	ug/L	101	106	17-163		
Benzo[b]fluoranthene	ND	95.2	9.5	0.12	ug/L	87.5	92	24-159		
Benzo[g,h,i]perylene	ND	95.2	9.5	0.19	ug/L	85.2	89	1-219		
Benzo[k]fluoranthene	ND	95.2	9.5	0.080	ug/L	79.8	84	11-162		
Bis(2-chloroethoxy)metha ne	ND	95.2	9.5	0.16	ug/L	74.4	78	33-184		
Bis(2-chloroethyl)ether	ND	95.2	9.5	2.1	ug/L	68.3	72	12-158		
Bis(2-chloroisopropyl) ether	ND	95.2	9.5	0.16	ug/L	69.6	73	36-166		
Bis(2-ethylhexyl) phthalate	ND	95.2	19	1.6	ug/L	129	135	8-158		
Butyl benzyl phthalate	ND	95.2	9.5	2.5	ug/L	127	133	1-152		
Chrysene	ND	95.2	9.5	0.068	ug/L	89.2	94	17-168		
Dibenz[a,h]anthracene	ND	95.2	9.5	0.11	ug/L	87.1	92	1-227		
Diethyl phthalate	ND	95.2	9.5	0.33	ug/L	97.3	102	1-114		
Dimethyl phthalate	ND	95.2	9.5	0.32	ug/L	90.0	94	1-112		
Di-n-butyl phthalate	ND	95.2	9.5	1.8	ug/L	103	108	1-118		
Di-n-octyl phthalate	ND	95.2	9.5	8.5	ug/L	118	124	4-146		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Received: 11/24/10 Reported: 12/03/10 12:57

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Project: River Bend - Effluent Project Number: [none]

LABORATORY QC DATA											
Analvte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Acid and Base/Neutral E	xtractables	by EPA M	lethod 625								
Matrix Spike Analyzed: 1 QC Source Sample: RTK1664	1/29/10 (La -01	ab Numbe	r:10K2613-M	S1, Batch: 10	K2613)						
Fluoranthene	ND	95.2	9.5	0.21	ug/L	91.5	96	26-137			
Fluorene	ND	95.2	9.5	0.081	ug/L	86.4	91	59-121			
Hexachlorobenzene	ND	95.2	9.5	0.52	ug/L	88.0	92	1-152			
Hexachlorobutadiene	ND	95.2	9.5	1.2	ug/L	70.0	73	24-116			
Hexachlorocyclopentadie ne	ND	95.2	9.5	0.86	ug/L	69.5	73	5-120			
Hexachloroethane	ND	95.2	9.5	0.92	ug/L	60.7	64	40-113			
Indeno[1,2,3-cd]pyrene	ND	95.2	9.5	0.35	ug/L	85.3	90	1-171			
Isophorone	ND	95.2	9.5	0.30	ug/L	75.5	79	21-196			
Naphthalene	ND	95.2	9.5	0.15	ug/L	72.6	76	21-133			
Nitrobenzene	ND	95.2	9.5	0.21	ug/L	80.8	85	35-180			
N-Nitrosodimethylamine	ND	95.2	19	1.8	ug/L	56.6	59	19-120			
N-Nitrosodi-n-propylamin e	ND	95.2	9.5	0.44	ug/L	81.9	86	1-230			
N-Nitrosodiphenylamine	ND	95.2	9.5	0.75	ug/L	119	125	54-125			
Pentachlorophenol	ND	95.2	19	0.79	ug/L	94.3	99	14-176			
Phenanthrene	ND	95.2	9.5	0.14	ug/L	89.1	94	54-120			
Phenol	ND	95.2	9.5	0.23	ug/L	47.1	49	5-112			
Pyrene	ND	95.2	9.5	0.078	ug/L	89.3	94	52-115			
Surrogate: 2-Fluorophenol					ug/L		59	17-120			
Surrogate: Phenol-d5					ug/L		48	10-120			
Surrogate: Nitrobenzene-d5					ug/L		81	42-120			
2-Fluorobiphenyl Surrogate:					ug/L		103	52-151			
2,4,6-Tribromophenol Surrogate:					ug/L		84	22-125			
p-Terphenyl-d14											
Matrix Spike Dup Analyz QC Source Sample: RTK1664	ed: 11/29/10	0 (Lab Nu	mber:10K26	13-MSD1, Bat	ch: 10K2613)						
1,2,4-Trichlorobenzene	ND	95.2	19	0.94	ug/L	64.5	68	44-142	5	34	
1,2-Dichlorobenzene	ND	95.2	19	0.28	ug/L	59.7	63	32-129	6	38	
1,2-Diphenylhydrazine	ND	95.2	19	0.12	ug/L	86.4	91	47-146	0.2	20	
1,3-Dichlorobenzene	ND	95.2	19	0.13	ug/L	57.1	60	1-172	6	37	
1,4-Dichlorobenzene	ND	95.2	19	0.17	ug/L	57.8	61	20-124	7	40	
2,4,6-Trichlorophenol	ND	95.2	9.5	0.45	ug/L	85.0	89	37-144	0.8	20	
2,4-Dichlorophenol	ND	95.2	9.5	0.57	ug/L	78.9	83	39-135	6	23	
2,4-Dimethylphenol	ND	95.2	9.5	0.26	ug/L	75.9	80	32-119	4	18	
TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA										
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral Ext	ractables I	by EPA N	lethod 625								
Matrix Spike Dup Analyzed QC Source Sample: RTK1664-01	: 11/29/10	(Lab Nu	mber:10K26	613-MSD1, Bat	ch: 10K2613)						
2,4-Dinitrophenol	ND	95.2	19	1.6	ug/L	92.7	97	1-191	6	29	
2,4-Dinitrotoluene	ND	95.2	9.5	0.50	ug/L	92.6	97	39-139	0.8	20	
2,6-Dinitrotoluene	ND	95.2	9.5	1.4	ug/L	98.8	104	50-158	0.4	17	
2-Chloronaphthalene	ND	95.2	9.5	0.13	ug/L	75.1	79	60-118	0	30	
2-Chlorophenol	ND	95.2	9.5	0.30	ug/L	69.1	73	23-134	5	26	
2-Nitrophenol	ND	95.2	9.5	0.27	ug/L	77.5	81	29-182	6	28	
3,3'-Dichlorobenzidine	ND	95.2	9.5	1.6	ug/L	107	112	1-262	10	31	
4,6-Dinitro-2-methylphen ol	ND	95.2	19	1.4	ug/L	108	114	1-181	2	30	
4-Bromophenyl phenyl ether	ND	95.2	9.5	0.22	ug/L	91.7	96	53-127	2	16	
4-Chloro-3-methylphenol	ND	95.2	9.5	1.1	ug/L	85.6	90	22-147	3	16	
4-Chlorophenyl phenyl ether	ND	95.2	9.5	0.40	ug/L	84.2	88	25-158	2	15	
4-Nitrophenol	ND	95.2	19	2.6	ug/L	62.7	66	1-132	3	24	
Acenaphthene	ND	95.2	9.5	0.11	ug/L	83.8	88	47-145	0.3	25	
Acenaphthylene	ND	95.2	9.5	0.065	ug/L	84.1	88	33-145	1	22	
Anthracene	ND	95.2	9.5	0.10	ug/L	89.0	93	27-133	0.2	15	
Benzidine	ND	95.2	150	4.8	ug/L	32.6	34	1-120	33	50	J
Benzo[a]anthracene	ND	95.2	9.5	0.082	ug/L	95.5	100	33-143	4	15	
Benzo[a]pyrene	ND	95.2	9.5	0.11	ug/L	104	109	17-163	3	15	
Benzo[b]fluoranthene	ND	95.2	9.5	0.12	ug/L	87.6	92	24-159	0.2	17	
Benzo[g,h,i]perylene	ND	95.2	9.5	0.19	ug/L	86.3	91	1-219	1	19	
Benzo[k]fluoranthene	ND	95.2	9.5	0.080	ug/L	82.7	87	11-162	4	19	
Bis(2-chloroethoxy)metha ne	ND	95.2	9.5	0.16	ug/L	69.4	73	33-184	7	23	
Bis(2-chloroethyl)ether	ND	95.2	9.5	2.1	ug/L	64.4	68	12-158	6	33	
Bis(2-chloroisopropyl) ether	ND	95.2	9.5	0.16	ug/L	67.9	71	36-166	2	36	
Bis(2-ethylhexyl) phthalate	ND	95.2	19	1.6	ug/L	129	135	8-158	0	15	
Butyl benzyl phthalate	ND	95.2	9.5	2.5	ug/L	135	141	1-152	6	15	
Chrysene	ND	95.2	9.5	0.068	ug/L	92.6	97	17-168	4	15	
Dibenz[a,h]anthracene	ND	95.2	9.5	0.11	ug/L	88.4	93	1-227	1	18	
Diethyl phthalate	ND	95.2	9.5	0.33	ug/L	99.1	104	1-114	2	15	
Dimethyl phthalate	ND	95.2	9.5	0.32	ug/L	91.9	97	1-112	2	15	
Di-n-butyl phthalate	ND	95.2	9.5	1.8	ug/L	105	110	1-118	2	15	
Di-n-octyl phthalate	ND	95.2	9.5	8.5	ug/L	123	129	4-146	4	15	
Fluoranthene	ND	95.2	9.5	0.21	ug/L	90.8	95	26-137	0.8	15	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, NY 14218 Work Order: RTK1664

Received: 11/24/10 Reported: 12/03/10 12:57

Project: River Bend - Effluent Project Number: [none]

	LABORATORY QC DATA										
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Acid and Base/Neutral E	xtractables	by EPA N	lethod 625								
Matrix Spike Dup Analyz QC Source Sample: RTK1664-	ed: 11/29/10 01	0 (Lab Nu	mber:10K2	613-MSD1, Bat	ch: 10K2613)						
Fluorene	ND	95.2	9.5	0.081	ug/L	87.1	91	59-121	0.8	18	
Hexachlorobenzene	ND	95.2	9.5	0.52	ug/L	86.6	91	1-152	2	15	
Hexachlorobutadiene	ND	95.2	9.5	1.2	ug/L	64.6	68	24-116	8	50	
Hexachlorocyclopentadie ne	ND	95.2	9.5	0.86	ug/L	66.8	70	5-120	4	50	
Hexachloroethane	ND	95.2	9.5	0.92	ug/L	56.9	60	40-113	6	43	
Indeno[1,2,3-cd]pyrene	ND	95.2	9.5	0.35	ug/L	87.4	92	1-171	2	17	
Isophorone	ND	95.2	9.5	0.30	ug/L	71.5	75	21-196	5	21	
Naphthalene	ND	95.2	9.5	0.15	ug/L	68.8	72	21-133	5	31	
Nitrobenzene	ND	95.2	9.5	0.21	ug/L	75.2	79	35-180	7	27	
N-Nitrosodimethylamine	ND	95.2	19	1.8	ug/L	53.9	57	19-120	5	22	
N-Nitrosodi-n-propylamin e	ND	95.2	9.5	0.44	ug/L	77.0	81	1-230	6	23	
N-Nitrosodiphenylamine	ND	95.2	9.5	0.75	ug/L	122	128	54-125	2	15	M15
Pentachlorophenol	ND	95.2	19	0.79	ug/L	97.0	102	14-176	3	21	
Phenanthrene	ND	95.2	9.5	0.14	ug/L	89.3	94	54-120	0.2	16	
Phenol	ND	95.2	9.5	0.23	ug/L	46.3	49	5-112	2	36	
Pyrene	ND	95.2	9.5	0.078	ug/L	92.4	97	52-115	3	15	
Surrogate: 2-Fluorophenol					ug/L		56	17-120			
Surrogate: Phenol-d5					ug/L		47	10-120			
Surrogate: Nitrobenzene-d5					ug/L		78	42-120			
Surrogate: 2-Fluorobiphenyl					ug/L		82	44-120			
Surrogate: 2,4,6-Tribromophenol					ug/L		104	52-151			
Surrogate: p-Terphenyl-d14					ug/L		88	22-125			

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL	TESTING											
Turnkey Environmental Res 2558 Hamburg Turnpike	toration, LLC	;	Work Ord	Work Order: RTK1664					ved: rted:	11/24/ ⁻ 12/03/	10 10 12:57	
Lackawanna, NY 14218			Project: River Bend - Effluent Project Number: [none]					itopo				
			LA	BORATORY C	C DATA							
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers	
General Chemistry Parar	neters											
LCS Analyzed: 11/24/10	(Lab Numb	oer:10K244	40-BS1, Bat	ch: 10K2440)								
рН		7.00	NA	0.00	SU	7.05	101	99.3-100. 8				
General Chemistry Parar	<u>neters</u>											
Blank Analyzed: 12/02/10) (Lab Num	nber:10K2	728-BLK1, E	Batch: 10K2728)								
Cyanide			0.0100	0.0050	mg/L	ND						
LCS Analyzed: 12/02/10	(Lab Numb	er:10K272	28-BS1, Bat	ch: 10K2728)								
Cyanide		0.400	0.0100	0.0050	mg/L	0.361	90	90-110				

•	Chain of Custody Record		Tempo	erature	on	Roceiț	or			1	e	S	1	ł	Υ	16	er	ic	20				
	TAL-4124 (1007)		Drinki	ng Wa	ter?	Y85 [শ্ব		Ţ		EAD	ER IN	I EN	VIRG	лис	ENT,	AL T	ESTI	NG			
)	Tucakey		Project	Managa B	<u>_</u> -4	an	Ha	20								Date [[-2	4-	10		Chain of Cu 17	<u>40</u>	49
8	2558 Hawburg Turnpike Sult	t <u>e 300</u>	Tekephi [7]	sne Mün 6) <u>B</u> !	100/ (56-	05	199/	1.U	(<u>6)</u>	<u>95</u> 6	6-0	<u>758</u>	3			Lap A	40000	*			Page	1	of
	Buffalo NY 1		Rul	WW WW	<u>er</u> {h	ww	~ B	Convec Ei	i scl	(er			. 1	,	Anal) hore : 	vsis (; spaci	Attac e is n 	h lisi leede	17 10)				
	Projace Neme and Location (Slate) Kiverberg 19 CWPTSE	fluent	Carrier	WayDill	Numb	X8 7						129	625	>							Sp	oocial I	nstructions/
	Cantract/Purchase Order/Quote No. 0 [7] - 009 - 500	-	:		Mam	ġr	i	Ca Pre	ntaina Iserva	ve å tives		2	y.	27	E						Co	ndition	s of Receipt
	Sample I,D. No. and Description (Containers for each sample may be combined on one line).	பிசை	Tang	<i>Ait</i> Aqueoue	2 Sec	Sew	Linger	NOS2H	HCr.	NBCH Zhảo	NBOH	PLL	ž	tot	4								
	Process Ettluent	11-24-10	8:00	Ŷ			X		X	x		Bi	ų	1 1	1						624	+ 67	25
							<u> </u>	+	+ •	+	+		+	+	+	<u> </u>	-+	+	_	╉	anal	4515	<u>to</u>
٩					-		-+							••••		╎─	į	+			be (ionp	lah
I					L								- !-						-	·			
ų					 		┥	!			_			_				_	-				
					+ -		+		+	-	+	$\left \right $	+	-	+	┢		-+	-	$\frac{1}{1}$			
					İ			-i- ;		<u></u>						†-			Ť				
					\square		-												<u> </u>				
			_		-	-	┿┦	+					+	_	+	-	-			++			
	Possible Hazard Identification Mon.Kazard				ole Di Sator	spassel To Cite	 ~~ [1		<u> </u>		─ └ └]				4	<u> .1</u>	(A fai	e may	be es		olos are i	
				· ·			 	CC Re	iquirer?	ients (Speci	97) 1971						A- 30					
	1. Retirquigned By (1), the			<u>**:</u> d IA	17	me R:z	-	1. Rec	701	34	\mathbb{Z}		n		/						Data	احب	Time
	2. Reinguisher Ey// m 1 2	=	Dale	1010	$\frac{1}{1}^{n}$	د دن سرم ۱/۱۱	<u> </u>	Z Hec	aived L		$\overline{\mathcal{A}}$		Ŕ	7.	٤						Date	<u>~ ~</u>]	<u>70.70</u> Time
	3. Reinquisyley By		Date	<u>77</u> 71		me		3. Fien	aivad L	ا	_ x	7	f								Dete	tro	Time
	Comments		-L										•						ĥ	0.			
																				<u> </u>			

DISTRIBUTION: WHITE - Renimed to Client with Report; CANARY: Suits with the Semple; PINK - Field Opp

ATTACHMENT 2

FLOW METER CALIBRATION DATA

Northeast N 2601 Genesee S Buffalo, NY 1422 716-827-3770 www.vantek-ner	Iso/IEC 17025:2005 Accredited, n www.nemcal.com	ste Séteration estate de la composition re l'Anna composition	an sanan Sanan Alaman Sanan Yulan	Calibration Certifi	cate
Company: Address: Contact: Department:	STEELFIELDS RIVERBEND 197 BARAGA STREET BUFFALO, NY 14210 PAUL W. WERTHMAN	Months o <mark>rp</mark> iest si go	Certificate,#: Calibration Date PO/Acct: Page:	1104484 1/5/2010 0171-003-500 1	
Gage Desc: ^{SP} Manufacturer: Location:	Flow Transmitter / Sensor Georg Fischer Signet	113) 	Control #: Model: Serial #:	SFRB#80210142061 8550 / 515 80210142061	47 - 4

Repairs:

13.28

+ / - Tolerances: 2.000% / 2.000% Graph Scale: +0.100000

<u>GPM</u>	and a strange			-20	-15	-10	-5	0	5	10	15	20
Nominal	Actual	Deviation	tel contrat descente dans	- T.	+.	÷.	+	0	+	+	+	+
+53.050000	+53.290000	+0.240000				()		
+53.050000	+52.790000	-0.260000	Sector Sector	deres at			-)		
+53.050000	+52.490000	-0.560000		· · ·		()		
+53.310000	+53.730000	+0.420000				(-)		
+52.540000	+53.100000	+0.560000				i)		
								Elizabeth St.	C -			

Comments:

CALIBRATION PERFORMED AT AMBIENT CONDITIONS: 55.4°F & 53.0% R.H. RESET TOTAL GALLONS @ 11,517,800 (YEAR) PERM GALLONS: 64,306,778 (LIFE) mA LOOP OUTPUT: 12.38 - 12.78

Procedure:

110476:Flowme01.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6006: Flowmeter (Master) 821/261191-99, 821/264157-00, 821/256463-99, 821/263668-00 Cal Date / Due Date: 4/26/2006 -- 4/27/2011 NEM-9217: Thermohygrometer Doc210426-A Cal Date / Due Date: 1/2/2008 -- 1/3/2010

Gage Status: PASS

Due Date: 1/6/2011

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F) : (20°C (±1°C)) relative humidity less than 45%. Electronic & Mechanical calibration performed at ambient temperature.

ALL PERTINENT DATA AND READINGS CALIBRATED ARE AS FOUND OR AS LEFT UNLESS OTHERWISE DENOTED IN COMMENTS. Calibration performed in accordance with one or more of the following specifications: ISO/IEC 17025:2005, ANSI/NCSL Z540-1-1994, Former MIL-STD 45662A, ISO 9001:2000, ISO 10012-1:1992(E).

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with Federal Specification GGG-G-15C.

Calibration meets or exceeds 4 : 1 ratio, with the exception of gage blocks stated above.

Calibration is performed on premesis at Northeast Metrology Corp. unless otherwise denoted in Comments.

Note the recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: Garrick Shick Signature:

Jan

This certificate is not valid unless all 1 page(s) are present.

APPENDIX C

SITE PHOTOGRAPH LOG

(PROVIDED ELECTRONICALLY)

Photo 2:

Photo 3:

- Photo 1: Area I Site Conditions (looking west)
- Photo 2: Area I Site Conditions (looking east)
- Photo 3: Area I Site Conditions (looking north)
- Photo 4: Area I Example of fence damage

Photo 7:

<image>

Photo 8:

Photo 5:	Area II – North side slope of Containment Cell (looking east)
Photo 6:	Area II - Site Conditions Pump Station adjacent to storm water pond
Photo 7:	Area II – Storm water feature within detention pond
Photo 8:	Area II – CSX rail access gate (looking west)

Photo 11:

- Photo 9: Area II Exterior of GWTS building along Baraga Street (looking northwest)
- Photo 10: Area II Interior of GWTS building
- Photo 11: Area III Site conditions (looking north)
- Photo 12: Area III Site conditions (looking south toward Tifft Street)

Photo 15:

Photo 14:

Photo 16:

Photo 13:	Former August Feine parcel, remaining block building (looking southwest)
Photo 14:	Area I – monitoring well A1-MW-7 with snow pile remnants at right (looking south)
Photo 15:	Area I – debris left behind following partial snow pile melt (looking east)
Photo 16:	Area I – debris left behind following partial snow pile melt (looking west)

Photo 19:

Photo 17:	Former August Feine building following June 2006 fire (looking west)
Photo 18:	Former August Feine building following June 2006 fire (looking south into building)
Photo 19:	Former August Feine building following June 2006 fire (looking east), fire truck on road
Photo 20:	Former August Feine parcel following emergency demolition and cleanup (looking northeast)

APPENDIX D

GROUNDWATER MONITORING REPORTS

(PROVIDED ELECTRONICALLY)

May 2009 – Comprehensive Annual Groundwater Monitoring Report and First Semi Annual Area III ORC Monitoring Event

NOVEMBER 2009 – SECOND SEMI-ANNUAL AREA III ORC MONITORING EVENT

May 2010 – Comprehensive Annual Groundwater Monitoring Report and First Semi-Annual Area III ORC Monitoring Event

NOVEMBER 2010 – SECOND SEMI-ANNUAL AREA III ORC MONITORING EVENT

Periodic Review Report March 9, 2009 to April 1, 2011 Riverbend, LLC - Area II

APPENDIX D-1

MAY 2009

COMPREHENSIVE ANNUAL GROUNDWATER MONITORING REPORT & & First Semi Annual Area III ORC Monitoring Event

September 8, 2009

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619-9) 2009 Comprehensive Annual Groundwater Monitoring Report

Dear Mr. Moore:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration, LLC, has prepared this comprehensive letter report to transmit the results of the May 2009 groundwater monitoring event conducted at Area I (Former Steel Plant Parcel), Area II (Former Coke Plant Parcel), and Area III (Former Warehouse Parcel) of BUDC's Riverbend Site, Buffalo, NY (see Figure 1). This letter report also includes the results of the May 2009 Oxygen Release Compound (ORC) monitoring event for Area III. The current groundwater monitoring event was performed from May 11-15, 2009. The LTGWM network wells are summarized in Table 1 and shown on Figure 1. A summary of field activities and findings for all three areas of the Site are presented below.

PURPOSE

The activities performed during the current site-wide groundwater monitoring event were performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised September 2002);
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008);
- February 15, 2008 NYSDEC comment letter for Area III (comments 8, 9, and 10);
- May 5, 2008 Response to NYSDEC comment letter for Areas II and III (comment/response no. 22);
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008); and
- May 5, 2008 Response to NYSDEC Comment letter for Areas II and III (comment/response no. 19)

This annual report includes a tabular and/or graphical assessment and detailed discussion of groundwater quality trends on an Area by Area basis. Groundwater flow patterns, however, are discussed on a site-wide basis. Groundwater samples were analyzed for the parameters identified by Area in Table 2.

Mr. Maurice Moore NYSDEC

GROUNDWATER ELEVATIONS & FLOW

Depth to water measurements and calculated groundwater elevations measured from 11 wells and 2 Buffalo River staff gauges in Area I, 19 wells in Area II, and 5 wells in Area III on May 11, 2009 are summarized in Table 3. The Lake Erie elevation presented in Table 3 was obtained from the National Oceanic and Atmospheric Administration/National Ocean Service's (NOAA/NOS) Center for Operational Oceanographic Products and Services (CO-OPS) web page; Great Lakes Water Level Data Inventory for station number 9063020 Buffalo, Lake Erie, New York.

An isopotential map, presented as Figure 1, was prepared from the May 2009 groundwater elevations and the collection system as-built invert elevations. The baseline isopotential map prepared by Geomatrix from the June 1998 groundwater elevations representing groundwater flow conditions at the Site prior to the Area II Containment Cell construction is presented as Figure 2 for comparison. Comparison of the May 2009 and June 1998 maps indicate that the groundwater mound located between Areas I and II observed in June 1998 has retreated significantly to the southeast and outside the perimeter of the Containment Cell. The groundwater depression in June 1998 around the terminal basin is no longer present due to the discontinuation in January 2009 of storm water management activities at the Site in that area (i.e., pumping from the basin to the sanitary sewer). Further examination of Figure 1 indicates significant lowering of the water table of between 2 to 7 feet throughout the containment cell and extending north and east beyond the containment cell as generally predicted in the selected remedial approach groundwater flow model (Geomatrix, December 1998) (see Attachment 1). Current groundwater flow is toward the collection trench from all directions. The groundwater flow, as depicted on Figure 1, also shows that potentially impacted groundwater from outside the containment cell to the north on the Former August Feine and Norfolk Southern parcels is being drawn back toward the collection system, as predicted by pre-design MODFLOW® modeling.

GROUNDWATER COLLECTION SYSTEM EVALUATION

An evaluation of the slurry wall effectiveness included comparing groundwater elevations from a single well pair identified as A2-MW-19 and A2-MW-7. Monitoring Well A2-MW-19 is located outside the Containment Cell and Well A2-MW-7 is located within the Cell as shown on Figure 1. A groundwater elevation comparison of this well pair indicates that groundwater outside the Cell is higher than inside the Cell and an inward hydraulic gradient toward the Cell has been established, as predicted by the pre-design MODFLOW® model.

Based upon the results of this evaluation and the isopotential map discussed earlier, the groundwater collection/containment system appears to be effectively collecting impacted groundwater and controlling groundwater migration within the Area II Containment Cell as well as to the east and north of the containment cell. Routine system monitoring and maintenance in conjunction with long-term groundwater monitoring of Areas I and II, as scheduled, is expected to be sufficient to continue to assess the long-term effectiveness of the containment cell.

AREA I FIELD ACTIVITIES & FINDINGS

Table 4 summarizes the Area I annual LTGWM event field-measured parameters and analytical results for Wells A1-MW-1, A1-MW-2, A1-MW-3, A1-MW-4, A1-MW-5, A1-MW-6, A1-MW-8, A1-MW-9, A1-MW-M2, and A1-P-4. Compounds detected above method detection limits are shown on the table with their associated concentration and NYSDEC Groundwater Quality Standard (NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values, June 1998) for comparison. Concentrations exceeding NYSDEC Groundwater Quality Standards (GWQSs) are shaded. Upon examination of Table 4, the following observations are apparent:

- Field pH measurements at Well A1-MW-5 exceeded the upper GWQS of 8.5 and one of two field pH measurements at Well A1-MW-6 was slightly below the lower GWQS of 6.5.
- VOCs benzene, n-butylbenzene, sec-butylbenzene, isopropylbenzene, and npropylbenzene were all detected at concentrations exceeding their respective GWQSs at Well A1-MW-6 only.
- Total arsenic was detected at a concentration slightly exceeding the GWQS at Wells A1-MW-6 and A1-MW-8 only.
- All remaining parameters analyzed at all other locations within Area I during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

During the current monitoring event, field personnel also performed visual immiscible layer surveillance and observed no non-aqueous phase liquid (NAPL) in any of the Area I wells listed in Table 1, except Well A1-MW-6. Not including the initial well development and sampling events, A1-MW-6 has been monitored since the February 2005 installation of the PetroTrap[™] free product passive skimmer or almost 5 years. Since installation, a total of approximately 5.5 gallons of recovered product has been removed (see Table 5). In accordance with the LTGWM Plan, all recovered product is temporarily stored in a 5-gallon container and staged within the on-site Groundwater Pre-Treatment Building until a licensed used oil service contractor picks up the recovered product for proper recycling or disposal.

As indicated in Table 5, seasonal increases in product thickness and recovery are apparent during the typical late Fall and early Spring rainy periods. Based upon the progress to date, monitoring of A1-MW-6 should continue in accordance with the Area I LTGWM Plan on a monthly basis.

AREA II FIELD ACTIVITIES & FINDINGS

Table 6 summarizes the Area II annual LTGWM event field-measured parameters and analytical results for Wells A2-MW-3, A2-MW-4R, A2-MW-5, A2-MW-10, A2-MW-13, A2-

MW-14, A2-MW-16, and A2-MW-17. The table also includes field and laboratory results for Well A2-MW-15, which is monitored every two years. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of Table 6, the following observations are apparent:

- Field pH measurements at Wells A2-MW-15 and A2-MW-16 were slightly below the lower GWQS of 6.5.
- VOCs benzene, tert-butylbenzene, and isopropylbenzene were all detected at concentrations exceeding their respective GWQSs at Well A2-MW-17. VOC benzene was also detected at a concentration exceeding the GWQS at Wells A2-MW-13 and A2-MW-16.
- All remaining parameters analyzed at all other locations within Area II during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

AREA III FIELD ACTIVITIES & FINDINGS

Table 7 summarizes the Area III LTGWM event field-measured parameters and analytical results for Wells A3-MW-3, A3-MW-6, A3-MW-7, A3-MW-9, and A3-MW-10. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of Table 7, the following observations are apparent:

- Field pH measurements at Wells A3-MW-7 and A3-MW-9 exceeded the upper GWQS of 8.5 and the field pH measurements at Well A3-MW-10 were below the lower GWQS of 6.5.
- VOCs benzene, p-cymene, and toluene were all detected at concentrations exceeding their respective GWQSs at Well A3-MW-7. VOC benzene was also detected at a concentration exceeding the GWQS at Wells A3-MW-3, A3-MW-9, and A3-MW-10.
- All remaining parameters analyzed at all other locations within Area III during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

In accordance with NYSDEC-approved procedures, ORC Wells A3-ORC-1 through A3-ORC-11 are to be purged until 10 well volumes are removed or to dryness for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. Table 8 summarizes the current Area III ORC event field-measured parameters and analytical results. Compounds detected above method detection limits are shown on Table 8 with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of

Table 8, benzene exceeded the GWQS for all eleven wells monitored. In addition, pH was measured below the lower limit GWQS of 6.5 at all of the ORC wells except A3-ORC-1, which exceeded the upper limit GWQS of 8.5.

The ORC "socks", suspended in each of the ORC wells are to be replaced when depleted, generally every six months. During the current monitoring event, ORC socks were removed and checked for depletion; none of which required replacement.

MOVING AVERAGE TREND ANALYSIS (MATA)

In general accordance with the LTGWM Plan for each Area of the Site, any parameter exceeding the GWQS/GV for two consecutive events are to be statistically evaluated for all monitoring wells listed in Table 1. Statistical evaluation for each parameter of interest involves the averaging of four sequential monitoring event concentrations and plotting the moving average. The Area by Area 4-year moving average trend analysis (MATA) as well as the concentration versus time plots for those monitored locations and parameters requiring tracking (as defined above) are presented in Attachment 2 and summarized in Table 9. Only the Area I MATA plots have been included in the attachment. Area II and Area III plots are required to assess a trend in the data. As more data is collected, MATA assessments will be made for Area II and III monitoring locations, as necessary.

As indicated in Table 9 and presented in Attachment 2, the Area I MATA assessment indicates the following:

- The concentration versus time and MATA plots for the field measured pH at Well A1-MW-5, although elevated above the GWQS, continues to indicate a neutral trend (neither increasing nor decreasing) since September 2004.
- The MATA plot for n-propylbenzene at Well A1-MW-6 at first glance indicates an increasing 4-year moving average trend, however upon closer inspection the trend is being influenced by an unusually high concentration reported in August 2007 of more than 10 times historic values (i.e., outlier). The concentration versus time plot shown on the same chart, however, indicates a return to historic ranges in April 2008 and May 2009 as well as a pronounced decreasing trend.
- Although the concentration versus time plot for total arsenic at Well A1-MW-6 reveals a wide concentration range from a high 0.29 mg/L in December 2006 to non-detect in August 2007, the MATA plot clearly indicates a decreasing trend since August 2007.
- The concentration versus time plot for total arsenic at Well A1-MW-8 indicates a period of moderation from December 2006 to April 2008 where the arsenic concentration actually began to decrease, however the data from the May 2009 event has indicated a higher concentration. The MATA plot does indicate a slight increasing trend and this compound at this location will continue to be monitored.

Mr. Maurice Moore NYSDEC

PLANNED ACTIVITIES

In accordance with the LTGWM Plans identified earlier in this report, all newly installed wells in the groundwater monitoring program are to be sampled semi-annually for two years, then annually thereafter. In addition, existing wells are to be sampled semi-annually for one year, then annually thereafter. As of this monitoring event, the semi-annual monitoring requirements for all newly installed and existing wells of Areas I and II as well as Area III existing Wells A3-MW-3 and A3-MW-6 have been completed. Two of four required semi-annual events have also been completed for newly-installed Area III Wells A3-MW-9 and A3-MW-10 with two additional semi-annual events to be completed.

A schedule summarizing the past, present, and future monitoring events is presented in Table 1. The next planned comprehensive monitoring event for Areas I, II, and III is tentatively scheduled for May 2010. The third of four semi-annual monitoring events for Area III Wells A3-MW-9 and A3-MW-10 is tentatively scheduled for October 2009 with the fourth and final semi-annual event occurring during the comprehensive May 2010 event. Area III ORC well monitoring is expected to be performed in November 2009 and again in May 2010 (every six months).

Please contact us if you have any questions.

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann Project Manager

Enclosures

cc: Peter Cammarata (BUDC) – ecopy David Stebbins (BUDC) – ecopy Paul Werthman (TurnKey) – ecopy Walt Meisner (TurnKey) – ecopy

File: 0171-001-600

GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY ^{1,2}

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

	Туре	of Well	ell Monitoring Event																						
Well			Ye	ar 1	Ye	ar 2	Yea	ar 3	Year 4	Year 5	Year 6														
Designation	New	Existing	1 SA	2SA	1 SA	2SA	Anı	nual	Annual	Annual	Annual														
AREA I: Former	Steel Pl	ant Parc	cel																						
A1-MW-1		х	Sep-04	Sep-05	De	c-06	Aug	j- 07	Apr-08	May-09	•														
A1-MW-2		х	Sep-04	Sep-05	De	c-06	Aug-07		Aug-07		Apr-08	May-09	•												
A1-MW-3		х	Sep-04	Sep-05	Dec-06		Aug-07		Apr-08	May-09	•														
A1-MW-4	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	•														
A1-MW-5	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	•														
A1-MW-6	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	•														
A1-MW-7	х					wate	r level	only		•															
A1-MW-8	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	•														
A1-MW-9	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	•														
A1-MW-M2		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	•														
A1-P-4		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	•														
AREA II: Forme	r Coke F	Plant Par	cel																						
A2-MW-3		х	Jul-07	Dec-07	Ap	r-08	Ma	/-09	•	•	•														
A2-MW-4R		х	Jul-07	Dec-07	Ap	r-08	Ma	/-09	•	•	٠														
A2-MW-5		х	Jul-07	Dec-07	Ap	r-08	Ma	/-09	•	•	•														
A2-MW-6		х		•		wate	r level	only																	
A2-MW-7		х				wate	r level	only																	
A2-MW-10		х	Dec-07	Apr-08	Ma	y-09		•	•	•	•														
A2-MW-12		х				wate	r level only																		
A2-MW-13		х	Jul-07	Dec-07	Ap	r-08	May-09		•	•	•														
A2-MW-14	х		Jul-07	Dec-07	Apr-08	May-09	•		•	•	•														
A2-MW-15 3	х		Jul-07	Dec-07	\sim	May-09	> <		•	\sim	•														
A2-MW-16	х		Jul-07	Dec-07	Apr-08	May-09	-09 •		•	•	•														
A2-MW-17	х		Jul-07	Dec-07	Apr-08	May-09		•	•	•	•														
A2-MW-18	х					wate	r level	only	1		J														
A2-MW-19	х					wate	r level	only																	
A2-MW-20	х					wate	r level	only																	
AREA III: Forme	r Wareh	ouse Pa	rcel					,																	
A3-MW-3		х	Oct-08	May-09		•		•	•	•	•														
A3-MW-6		х	Oct-08	May-09		•		•	•	•	•														
A3-MW-7		х	Jul-07	Dec-07	Ap	r-08	May-09		May-09		May-09		Mav-09		May-09		May-09		May-09		May-09		•	•	•
A3-MW-9	х		Oct-08	May-09	•	•	•		•	•	•														
A3-MW-10	х		Oct-08	May-09	٠	•		Ð	•	•	٠														
AREA III - ORC	wells (ev	/ery 6 m	onths)																						
A3-ORC-1		x	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														
A3-ORC-2		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	٠														
A3-ORC-3		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	٠														
A3-ORC-4		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	٠														
A3-ORC-5	1	х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														
A3-ORC-6		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														
A3-ORC-7	İ	х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	•	•	•	•														
A3-ORC-8	İ	х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	•	•	•	•														
A3-ORC-9		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														
A3-ORC-10		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														
A3-ORC-11		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	٠	•	•	•														

Notes:
1. Per the LTGWM Plan, newly installed monitoring wells require four consecutive semi-annual groundwater monitoring events, then annually thereafter.
2. Per the LTGWM Plan, existing monitoring wells require two consecutive semi-annual groundwater monitoring events, then annually thereafter.
3. It is the semaled over two years.

= type of monitoring well

х •

= to be monitored beyond the current contract year.

ANALYTICAL PARAMETERS PER AREA

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Area I & II Wells	Area III Wells	Area III ORC Wells
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level
STARS List VOCs (Method 8021)	STARS List VOCs (Method 8021)	Benzene (Method 8021)
Arsenic (Method 6010)	Arsenic (Method 6010)	Alkalinity (Method 310.2)
Chromium (Method 6010)	Chromium (Method 6010)	
Lead (Method 6010)	Lead (Method 6010)	
Total Petroleum Hydrocarbons (TPH) (Method 1664) for wells:	Cyanide (Method 335)	
A1-MW-1		
A1-MW-3 A1-MW-6		
A1-MW-9		

Notes:

1. For the first semi-annual event, wells were analyzed for "Full List" (i.e., TCL and STARS List VOCs).

GROUNDWATER ELEVATION MEASUREMENTS May 11, 2009

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)
Area I Monitoring We	ells ²					
A1-MW-1	586.38	NP	8.86	NP	577.52	577.52
A1-MW-2	586.39	NP	7.43	NP	578.96	578.96
A1-MW-3	591.98	NP	17.52	NP	574.46	574.46
A1-MW-4	586.70	NP	6.70	NP	580.00	580.00
A1-MW-5	590.48	NP	5.88	NP	584.60	584.60
A1-MW-6	591.60	17.65	17.96	0.31	573.64	573.91
A1-MW-7	586.97	NP	12.70	NP	574.27	574.27
A1-MW-8	589.47	NP	10.89	NP	578.58	578.58
A1-MW-9	588.05	NP	12.11	NP	575.94	575.94
A1-MW-M2	587.85	NP	7.41	NP	580.44	580.44
A1-P-4	589.37	NP	12.95	NP	576.42	576.42
Area II Monitoring We	ells ³					
A2-MW-3	588.95	NP	6.92	NP	582.03	582.03
A2-MW-4R	588.59	NP	6.60	NP	581.99	581.99
A2-MW-5	587.25	NP	5.35	NP	581.90	581.90
A2-MW-6	592.69	NP	9.46	NP	583.23	583.23
A2-MW-7	602.05	NP	19.95	NP	582.10	582.10
A2-MW-10	593.59	NP	9.95	NP	583.64	583.64
A2-MW-11	587.01		~ no m	easurement obta	ained ~	
A2-MW-12	604.12	NP	17.91	NP	586.21	586.21
A2-MW-13	597.90	NP	13.61	NP	584.29	584.29
A2-MW-14	593.02	NP	7.56	NP	585.46	585.46
A2-MW-15	589.56	NP	7.81	NP	581.75	581.75
A2-MW-16	597.62	NP	13.79	NP	583.83	583.83
A2-MW-17	596.94	NP	13.83	NP	583.11	583.11
A2-MW-18	587.64	NP	4.79	NP	582.85	582.85
A2-MW-19	592.02	NP	8.82	NP	583.20	583.20
A2-MW-20	591.54	NP	7.91	NP	583.63	583.63
A2-PW-1	601.76		~ no m	easurement obta	ained ~	
A2-PW-2	603.91		~ no m	neasurement obta	ained ~	
A2-PW-3	603.88		~ no m	easurement obta	ained ~	
A2-PW-4	598.75		~ no m	easurement obta	ained ~	
Area III Monitoring W	/ells ³					
A3-MW-3	585.40	NP	4.40	NP	581.00	581.00
A3-MW-6	585.70	NP	2.56	NP	583.14	583.14
A3-MW-7	586.39	NP	4.34	NP	582.05	582.05
A3-MW-9	597.61	NP	15.06	NP	582.55	582.55
A3-MW-10	585.41	NP	5.75	NP	579.66	579.66

GROUNDWATER ELEVATION MEASUREMENTS May 11, 2009

2009 Comprehensive Groundwater Monitoring Report **Riverbend**, LLC **Buffalo, New York**

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)							
Area III ORC Monitoring Wells ³													
A3-ORC-1	587.17	NP	5.05	NP	582.12	582.12							
A3-ORC-2	587.35	NP	5.22	NP	582.13	582.13							
A3-ORC-3	587.55	NP	5.22	NP	582.33	582.33							
A3-ORC-4	587.14	NP	4.81	NP	582.33	582.33							
A3-ORC-5	587.77	NP	5.31	NP	582.46	582.46							
A3-ORC-6	587.53	NP	6.70	NP	580.83	580.83							
A3-ORC-7	587.16	NP	5.45	NP	581.71	581.71							
A3-ORC-8	587.51	NP	5.53	NP	581.98	581.98							
A3-ORC-9	585.15	NP	3.16	NP	581.99	581.99							
A3-ORC-10	587.60	NP	5.63	NP	581.97	581.97							
A3-ORC-11	587.70	NP	5.30	NP	582.40	582.40							
Surface Water 4,5													
SG-01 (downstream)	585.07	NP	11.60	NP	573.47	573.47							
SG-02 (upstream)	590.72	NP	16.82	NP	573.90	573.90							
Lake Erie	NA	NA	NA	NA	NA	572.25							

Notes:

1. Groundwater elevations are corrected if free product (i.e., LNAPL) is present.

2. Area I monitoring well reference point elevations (i.e., top of riser for wells and sheet pile for staff gauges) as surveyed by TurnKey on November 10, 2004.

Xhear Infolitoring well reference point elevations (i.e., up of inserior wells and sheet pile for start gauges) as surveyed by furnicely on November 10, 2004.
 Monitoring well elevations have been surveyed at various times by TurnKey or Steelfields.
 Staff Gauge (SG) locations are located at the upstream and downstream locations indicated on Figure 1. Each staff gauge was surveyed on January 3, 2008 by Niagara Boundary personnel.
 Source: NOAA Tides & Currents Web Page- Buffalo, NY Station ID 9063020; average daily elevation of Buffalo, New York Station #9063020.

Definitions:

DTP = depth to product, if present

DTW = detph to water

fmsl = feet above mean sea level fbTOR = feet below top of riser NP = no measureable product was present

R = replacement wellTOR = top of riser

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area I: Former Steel Plant Parcel

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

	Monitoring Location and Date of Sample Collection																				
Parameter	Parameter A1-MW-1		A1-N	/IW-2	A1-N	/W-3	A1-N	1W-4	A1-N	IW-5	A1-N	/W-6	A1-N	IW-8	A1-N	IW-9	A1-M	W-M2	A1-	P-4	GWQS/GV ¹
		1/09	05/1	05/11/09		05/11/09 05/11/09		05/11/09		05/12/09 05/12/09		05/11/09		05/11/09		05/1	1/09				
Field Measurements (units as i	ndicated	1) ²																			
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA
pH (units)	7.41	7.38	7.64	7.60	6.80	6.80	6.68	6.69	10.38	10.37	6.48	6.50	6.86	6.84	7.16	7.15	7.01	7.04	6.67	6.64	6.5 - 8.5
Temperature (degrees C)	10.0	9.8	8.6	8.7	11.0	11.0	11.3	10.8	11.3	11.4	11.6	12.0	11.4	11.7	11.1	11.0	10.8	10.6	10.5	11.0	NA
Specific Conductance (uS)	574.7	565.9	432.8	437.1	946.3	950.6	772.0	759.2	672.2	669.5	1223	1214	1842	1858	665.3	686.0	578.7	576.0	717.5	719.1	NA
Turbidity (NTU)	40.1	30.9	2.9	1.91	37.8	24.9	27.8	17.7	3.26	2.24	NA	NA	50.8	34.7	34.6	17.9	44.6	27.6	24.4	16.1	NA
Dissolved Oxygen (mg/L)	1.24	1.39	1.47	1.45	1.47	1.34	2.64	2.69	1.65	1.73	1.94	1.68	1.03	1.14	1.46	1.37	1.70	1.80	4.15	4.65	NA
Eh (mV)	- 144	- 139	- 121	- 115	- 48	- 51	- 29	- 42	- 100	- 102	- 104	- 108	- 145	- 148	- 104	- 109	+ 8	+ 15	+ 17	+ 22	NA
Visual Observation	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	oil glo	bules ³	light o	range	cle	ear	cle	ear	cle	ear	NA
Olfactory Observation	sulfu	r-like	no	one	nc	ne	no	ne	no	ne	petro	o-like	no	ne	no	ne	no	ne	no	ne	NA
Volatile Organic Compounds (u	g/L)																				
Benzene	0.1	8 J	N	ID	N	ID	N	D	0.2	22	3	.4	N	D	Ν	D	Ν	D	Ν	D	0.7
n-Butylbenzene	Ν	D	ND		N	ND ND		0.92 13		N	D	ND		ND		ND		5			
sec-Butylbenzene	N	D	ND		ND ND		ND 13		3	N	ND ND		ND		ND		5				
tert-Butylbenzene	N	D	ND		Ν	ID	ND		ND		Ν	D	N	D	ND		ND		ND		5
p-Cymene (4-Isopropyltoluene)	N	D	N	ID	Ν	ID	ND		N	D	Ν	D	Ν	D	Ν	D	N	D	Ν	D	5
Ethylbenzene	N	D	N	ID	Ν	ID	ND		ND		Ν	D	Ν	D	ND		ND		ND		5
Isopropylbenzene	N	D	N	ID	Ν	ID	ND		ND		20		Ν	D ND		D	ND		ND		5
Methyl tert butyl ether	N	D	N	ID	Ν	ID	Ν	D	ND ND		D	ND		ND		ND		ND		10	
n-Propylbenzene	N	D	N	ID	Ν	ID	Ν	D	N	D	3	3	N	D	N	D	N	D	Ν	D	5
Toluene	0.3	33	N	ID	0.3	2 J	Ν	D	N	D	2	.7	N	D	0.3	26	N	D	Ν	D	5
1,2,4-Trimethylbenzene	N	D	N	ID	Ν	ID	Ν	D	N	D	Ν	D	N	D	N	D	N	D	Ν	D	5
1,3,5-Trimethylbenzene	N	D	N	ID	Ν	ID	Ν	D	N	D	Ν	D	Ν	D	Ν	D	N	D	Ν	D	5
Xylenes, Total	N	D	N	ID	Ν	ID	Ν	D	0.3	9 J	4	4	Ν	D	Ν	D	N	D	Ν	D	15
Total VOCs	0.5	51	(0	0	.2	()	1.	53	89	0.1	()	0.2	26	()	()	10
Inorganics (mg/L)																					
Total Arsenic	0.0)24	N	ID	N	ID	Ν	D	Ν	D	0.0)71	0.0	537	N	ID	Ν	ID	Ν	D	0.025
Total Chromium	N	D	N	ID	N	ID	Ν	D	N	D	Ν	ID	Ν	D	Ν	ID	N	ID	0.0	005	0.05
Total Lead	ND ND		N	ID	ND		N	D	Ν	ND ND		D	ND		ND		N	D	0.025		
Total Petroleum Hyrdocarbons	(mg/L)																				
ТРН	Ν	D	-		Ν	ID	-	-	-	-	Ν	ID	-	-	Ν	ID	-	-	-	-	NA

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. Light non-aqueous phase liquid (LNAPL) detected; approximately 0.31 feet in thickness.

4. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.

5. "ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

6. " -- " = compound is not analyzed at this location
###
= Shaded values represent exceed

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

		LN	APL Measurem	ent	Quantity	Height of	
Date	Days Since Last Visit	Top (fbTOR)	Bottom (fbTOR)	Thickness (feet)	Removed ¹ (oz.)	Petro-Trap (fbTOR)	Comments
09/21/04	0	18.10	18.40	0.30	NA		well development
09/23/04	2	18.10	18.40	0.30	NA		Fall 2004 groundwater monitoring event
02/01/05	131	17.50	20.85	3.35	NA	16.0	installed PetroTrap passive skimmer
02/08/05	7	17.94	19.89	1.95	16	16.0	first LNAPL removal from Petro Trap
02/11/05	3	17.89	19.75	1.86	20	16.0	ok
02/15/05	4	18.10	18.52	0.42	20	16.0	ok
02/18/05	3	17.59	17.91	0.32	12	16.0	ok
02/25/05	7	18.02	18.51	0.49	2	16.0	Petro Trap tubing was tangled
03/04/05	7	18.13	18.63	0.50	6	16.0	Petro Trap tubing was tangled
03/18/05	14	18.00	18.74	0.74	3.5	16.0	checked Petro Trap for leaks, none located
04/08/05	21	17.37	18.20	0.83	24	15.0	ok; raised Petro Trap approximately 1-foot
04/14/05	6	17.65	17.81	0.16	22	15.0	ok
04/28/05	14	16.23	16.25	0.02	25.6	15.0	ok
05/17/05	19	17.62	17.80	0.18	14	14.0	~14 oz. of water in Petro Trap; raised approx. 1-foot
06/21/05	35	17.68	17.71	0.03	14	14.0	ok
07/18/05	27	18.03	18.11	0.08	12	15.0	ok, lowered approx. 1-foot
09/09/05	53	18.34	18.42	0.08	8	15.0	ok
09/20/05	11	18.33	18.38	0.05	22	15.0	ok; Area I LTGWM Event
10/31/05	41	18.50	18.52	0.02	24	15.0	ok
11/23/05	23	18.95	18.96	0.01	22	15.0	ok
12/28/05	35	19.35	19.36	0.01	22	15.0	ok
01/30/06	33	18.43	18.44	0.01	24	15.0	ok
02/27/06	28	18.38	19.06	0.68	24	15.0	ok
03/28/06	29	18.44	19.31	0.87	24	15.0	ok
04/27/06	30	18.39	19.17	0.78	24	15.0	ok
05/18/06	21	18.41	19.05	0.64	8	15.0	ok; Area I LTGWM Event
06/30/06	43	17.82	18.35	0.53	8	15.0	ok
07/31/06	31	17.95	18.64	0.69	16	15.0	ok
12/01/06	123	19.41	21.65	2.24	16	15.0	ok; Area I LTGWM Event, removed oily water.
06/30/07	211	17.98	20.51	2.53	8	15.0	ok
07/31/07	31	18.31	21.40	3.09	22	14.0	~12oz. Water in Trap; raised PetroTrap approx. 1'
08/22/07	22	18.50	20.11	1.61	4	14.0	ok
09/29/07	38	18.86	21.72	2.86	4	14.0	ok
10/30/07	31	19.10	21.04	1.94	3	14.0	ok
11/28/07	29	19.47	20.52	1.05	2	14.0	checked Petro Trap for leaks, none located
12/28/07	30	18.93	20.42	1.49	14	15.0	~12oz. Water in Trap; lowered PetroTrap approx. 1'
08/12/08	228	17.98	19.60	1.62	30	15.0	ok, bailed down product removed ~1.0 gal
09/10/08	29	18.61	20.10	1.49	4	15.0	Needs to be ajusted and claened
10/08/08	28	18.90	20.46	1.56	8	17.5	Dropped trap to 17.41 fbgs, cleaned off filter.
11/11/08	34	18.79	21.00	2.21	11	17.5	ok
12/16/08	35	18.64	20.86	2.22	1	17.5	ok
01/07/09	22	18.28	21.20	2.92	1	17.0	raised trap to 17.0 fbgs
02/11/09	35	18.52	21.22	2.70	64	17.0	17 oz in trap, bailed 47 oz
03/10/09	27	17.50	19.63	2.13	2	17.0	ok
04/01/09	22	18.12	19.08	0.96	48	17.0	Bailed ~40oz, ~8 was removed from trap
05/06/09	35	17.61	19.81	2.20	3	17.0	ok
05/12/09	6	17.65	17.96	0.31	18	17.0	ok .
06/02/09	21	17.64	18.17	0.53	2	17.0	ok
07/08/09	36	17.96	18.17	0.21	20	17.0	ok .
08/06/09	29	18.05	19.75	1.70	1.5	17.0	ok
		Total Quar	ntity Remove	ed To Date:	703.6 oz.	or 5.50 ga	al.

Notes: 1. The PetroTrap canister used has a capacity of 25.6 oz. (0.2 gal). 2. Data from January 1, 2007 through July 31, 2008 was collected by EnSol, Inc.; data before and after this time has been collected by TurnKey Environmmental Restoration, LLC.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area II: Former Coke Plant Parcel

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Monitoring Location and Date of Sample Collection																			
Parameter	A2-N	/W-3	A2-M	A2-MW-4R		1W-5	A2-M	W-10	A2-M	W-13	A2-M	W-14	A2-M	W-15	A2-M	IW-16	A2-N	IW-17	GWQS/GV ¹
05/13/09		05/1	05/13/09		05/13/09		3/09	05/1	3/09	05/1	2/09	05/1	2/09	05/1	3/09	05/1	13/09		
Field Measurements (units as i	indicated	d) ²			-									-					
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA
pH (units)	7.03	7.10	7.12	7.11	7.05	7.02	7.75	7.75	7.23	7.24	7.11	7.10	6.35	6.37	6.36	6.39	6.74	6.74	6.5 - 8.5
Temperature (degrees C)	9.8	9.5	9.2	9.4	10.2	10.5	10.3	10.3	11.6	10.9	10.2	10.2	10.4	10.7	12.3	12.4	10.3	10.3	NA
Specific Conductance (uS)	818.3	818.1	1023.0	1022.0	762.1	766.3	1992.0	2041.0	2252.0	2260.0	629.9	631.8	1309.0	1316.0	2180.0	2155.0	2894.0	2894.0	NA
Turbidity (NTU)	3.8	9.31	37.1	46.1	3.06	4.93	28.6	11.8	18.3	9.36	4.13	2.67	30.6	21.0	159	138	2.6	2.16	NA
Dissolved Oxygen (mg/L)	1.81	1.59	1.86	1.26	1.53	1.53	1.44	1.43	1.64	1.14	4.92	4.97	1.78	1.45	1.55	2.01	1.16	1.11	NA
Eh (mV)	0	0	- 101	- 101	- 70	- 79	- 115	- 112	- 133	- 133	- 16	0	- 20	- 21	- 66	- 88	- 117	- 115	NA
Visual Observation	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	clear		NA
Olfactory Observation	nc	one	no	ne	no	ne	no	ne	no	ne	no	ne	no	ne	sulfu	ır-like	none		NA
Volatile Organic Compounds (u	ıg/L)																		
Benzene	N	ID	0.2 J		Ν	ND 0.65		0.	0.85 ND		ND		10		62		0.7		
n-Butylbenzene	N	ID	ND ND		ID	N	ID	N	ND		ND		ND		ND		ID	5	
sec-Butylbenzene	ND		N	D	ND		N	ID	N	D	Ν	D	ND		ND		1	.8	5
tert-Butylbenzene	N	ID	N	ND ND		N	ID	N	D	N	D	N	D	ND		9	.5	5	
p-Cymene (4-Isopropyltoluene)	N	ID	ND ND		ID	ND		N	D	ND		ND		ND		ND		5	
Ethylbenzene	N	ID	N	D	Ν	ND ND		ND		ND		ND		ND		1.9		5	
Isopropylbenzene	N	ID	N	D	Ν	ND NE		ID	ND		ND		ND		ND		6.1		5
Methyl tert butyl ether	N	ID	N	D	Ν	ID	ND		ND		ND		ND		N	ID	ND		10
n-Propylbenzene	N	ID	N	D	Ν	ID	N	ID	N	D	Ν	D	Ν	D	ND		Ν	ID	5
Toluene	0.	29	N	D	N	ID	N	ID	N	D	Ν	D	N	D	ND		0.	33	5
1,2,4-Trimethylbenzene	N	ID	N	D	N	ID	N	ID	N	D	Ν	D	N	D	N	1D	Ν	ID	5
1,3,5-Trimethylbenzene	N	ID	N	D	Ν	ID	N	ID	N	D	Ν	D	Ν	D	Ν	ID	Ν	ID	5
Xylenes, Total	N	ID	N	D	Ν	ID	N	ID	N	ID	N	D	N	D	N	ID	Ν	ID	15
Total VOCs	0.29 0.2		.2	()	0.	65	0.	85	()	()	1	0	81	.63	10	
Inorganics (mg/L)																			
Total Arsenic	N	ID	ND		ND		N	ND		D	ND		ND		0.0122		ND		0.025
Total Chromium	N	ID	N	D	N	ID	N	ID	N	ID	0.0	093	ND		0.0133		ND		0.05
Total Lead	N	ID	N	D	N	ID	N	ID	N	ID	Ν	D	N	D	0.0153		N	ID	0.025

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. Light non-aqueous phase liquid (LNAPL) detected; approximately 0.31 feet in thickness.

4. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.

5. " ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area III: Former Warehouse Parcel

2009 Comprehensive Groundwater Monitoring Report **Riverbend**, LLC Buffalo, New York

	Monitoring Location and Date of Sample Collection												
Parameter	A3-N	/W-3	A3-N	/W-6	A3-N	IW-7	A3-N	/W-9	A3-N	IW-10	GWQS/GV ¹		
	05/1	2/09	05/1	12/09	05/1	2/09	05/1	2/09	05/1	2/09			
Field Measurements (units as	indicated)) ²	-			-	-	-					
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA		
pH (units)	7.16	7.13	8.22	8.24	10.30	10.21	11.74	11.72	5.61	5.63	6.5 - 8.5		
Temperature (degrees C)	13.3	13.5	10.0	10.9	10.4	10.9	10.4	11.3	11.4	11.0	NA		
Specific Conductance (uS)	1229	1444	1185	1197	830.0	834.7	6925	7030	5847	5865	NA		
Turbidity (NTU)	12	2.92	2	1.3	22.9	32.8	0.7	10.7	23	24.1	NA		
Dissolved Oxygen (mg/L)	2.99	2.71	2.76	2.92	1.08	1.19	1.82	1.97	1.11	1.37	NA		
Eh (mV)	- 149	- 136	- 187	- 179	- 255	- 230	- 158	- 151	- 14	0	NA		
Visual Observation	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	NA		
Olfactory Observation	nc	one	sulfu	ır-like	sulfu	r-like	nc	ne	nc	one	NA		
Volatile Organic Compounds (u	ıg/L)												
Benzene	1	2	0.	0.44		270		10		000	0.7		
n-Butylbenzene	Ν	ID	ND			1		ID	ND		5		
sec-Butylbenzene	ND		ND		N	ID	Ν	ID	ND		5		
tert-Butylbenzene	ND		ND		N	ID	N	ID	Ν	ID	5		
p-Cymene (4-Isopropyltoluene)	ND		Ν	1D	5	.4	Ν	ID	Ν	ID	5		
Ethylbenzene	Ν	ID	ND		0.	55	Ν	ID	ND		5		
Isopropylbenzene	Ν	ID	ND		ND		ND		ND		5		
Methyl tert butyl ether	Ν	ID	ND		ND		ND		ND		10		
n-Propylbenzene	Ν	ID	Ν	1D	ND		ND		ND		5		
Toluene	Ν	ID	Ν	1D	1	1	4	.1	Ν	ID	5		
1,2,4-Trimethylbenzene	Ν	ID	Ν	1D	1	.7	0.	61	Ν	ID	5		
1,3,5-Trimethylbenzene	Ν	ID	Ν	1D	0.	55	Ν	ID	Ν	ID	5		
Xylenes, Total	Ν	ID	Ν	1D	-	7	1	.4	Ν	ID	15		
Total VOCs	1	2	0.	44	29	7.2	16	.11	34,	000	10		
Inorganics (mg/L)													
Total Arsenic	0.0	192	N	ID	0.0)12	N	ID	0.0	109	0.025		
Total Chromium	Ν	ID	ND		N	ID	ND		ND		0.05		
Total Lead	ND		ND		ND		ND		ND		0.025		
Wet Chemistry (mg/L)													
Cyanide	5.	53	0.0	266	0.	17	Ν	ID	0.1	154	0.2		

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. Light non-aqueous phase liquid (LNAPL) detected; approximately 0.31 feet in thickness.

4. "NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
5. "ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF ORC ANALYTICAL RESULTS Area III: Former Warehouse Parcel

2009 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ²			
Field Measurements During Purge (units	-ield Measurements During Purge (units as shown) ¹														
Static Depth to Water (fbTOR)	5.05	5.22	5.22	4.81	5.31	6.70	5.45	5.53	3.11	5.63	5.30				
Total Depth (fbTOR)	14.18	14.45	14.38	14.38	13.96	14.93	14.38	14.63	13.98	14.55	14.57				
One Casing Volume (gallons)	5.90	6.00	5.90	6.20	5.60	5.30	5.80	5.90	7.00	5.80	6.00				
Number of Volumes Purged	7.3	6.8	5.3	5.1	8.3	8.0	6.0	7.1	10.1	6.0	10.0				
Sample Determination ³	4-days	4-days	4-days	4-days	4-days	4-days	4-days	4-days	volume	4-days	volume				
Purge: Day 1 (05/12/09) (gallons)	10.0	13.0	7.5	8.0	12.0	11.0	8.0	12.0	70.5	10.0	24.0				
Purge: Day 2 (05/13/09) (gallons)	10.0	8.0	8.0	7.5	11.0	11.5	9.0	10.0		8.0	20.0				
Purge: Day 3 (05/14/09) (gallons)	13.0	10.0	8.0	8.0	11.5	10.0	9.0	10.0		8.5	16.0				
Purge: Day 4 (05/15/09) (gallons)	10.0	10.0	8.0	8.0	12.0	10.0	9.0	10.0		8.5					
Sample Collection (date indicated)	05/15/09	05/15/09	05/15/09	05/15/09	05/15/09	05/15/09	05/15/09	05/15/09	05/13/09	05/15/09	05/15/09				
Cumulative Volume Purged (gallons)	43.0	41.0	31.5	31.5	46.5	42.5	35.0	42.0	70.5	35.0	60.0				
Field Measurements During Sample Col	lection (units	as shown) ³	}								-	-			
pH (units)	10.80	4.66	4.65	5.91	4.13	4.53	5.16	3.74	2.93	3.91	5.46	6.5 - 8.5			
Temperature (deg C)	14.9	16.0	14.6	15.9	13.8	14.5	12.3	14.3	13.9	13.2	11.7				
Specific Conductance (uS)	168.8	8005	8193	7179	8653	11960	10900	14.82	11910	9645	6390				
Turbidity (NTU)	279	44.1	115	227	666	> 1000	> 1000	601	441	454	311				
Dissolved Oxygen (ppm)	2.31	1.45	1.32	1.98	1.62	1.28	2.14	1.42	1.62	1.63	2.04				
ORP (mV)	- 328	+ 148	+ 151	- 46	+ 173	+ 76	+ 29	+ 198	+ 258	+ 196	- 29				
Visual Observation	clear	sl. Orange	sl. orange	sl. orange	sl. orange	sl. orange	tan	sl. orange	sl. orange	sl. orange	brown				
Volatile Organic Compounds (mg/L):															
Benzene	11	94	25	1.5	120	30	9.6	180	980	300	0.014	0.001			
Wet Chemistry (mg/L):															
Alkalinity	203	62.8	62.9	114	12.1	74.7	137	ND	ND	ND	193				

Notes:

1. Field measurements were collected immediately before groundwater sample collection.

2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).

3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to

dryness 4 consecutive days prior to sample collection.

4. " D " = Analysis performed at the secondary dilution factor.

5. " ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

AREA-BY-AREA MOVING AVERAGE TREND ANALYSIS (MATA) SUMMAR1

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

Location	No. of	MATA	Moving Average Trend ¹ [increasing (I), decreasing (D), neutral (N)]									
	Data Pts.	Pts.	рН	n-Propylbenzene	Total Arsenic	CN						
Area I Monitoring V	Vells											
A1-MW-1	6	3	NA	NA	NA							
A1-MW-2	6	3	NA	NA	NA							
A1-MW-3	6	3	NA	NA	NA							
A1-MW-4	7	4	NA	NA	NA							
A1-MW-5	7	4	N	NA	NA							
A1-MW-6	7	4	NA	I	D							
A1-MW-8	7	4	NA	NA	I							
A1-MW-9	7	4	NA	NA	NA							
A1-MW-M2	6	3	NA	NA	NA							
A1-P-4	6	3	NA	NA	NA							
Area II Monitoring	Wells											
A2-MW-3	4	1	TBD	TBD	TBD							
A2-MW-4R	4	1	TBD	TBD	TBD							
A2-MW-5	4	1	TBD	TBD	TBD							
A2-MW-10	3	3/4	TBD	TBD	TBD							
A2-MW-13	4	1	TBD	TBD	TBD							
A2-MW-14	4	1	TBD	TBD	TBD							
A2-MW-15	3	3/4	TBD	TBD	TBD							
A2-MW-16	4	1	TBD	TBD	TBD							
A2-MW-17	4	1	TBD	TBD	TBD							
Area III Monitoring	Wells											
A3-MW-3	2	1/2	TBD	TBD	TBD	TBD						
A3-MW-6	2	1/2	TBD	TBD	TBD	TBD						
A3-MW-7	4	1	TBD	TBD	TBD	TBD						
A3-MW-9	2	1/2	TBD	TBD	TBD	TBD						
A3-MW-10	2	1/2	TBD	TBD	TBD	TBD						

Notes:

1. In general accordance with the LTGWM Plan for each Area and based upon the groundwater results to date any parameter exceeding the

groundwater quality standard for two (2) consecutive events will be statistically evaluated.

2. TBD = to be determined; insufficient data exists to make a trend determination.

3. " -- " = not analyzed for this parameter.

4. NA = indicates there have not been two consecutive exceedances of the GWQS/GV at this location and trending is "not applicable". = Concentration versus time and 4-year moving average plots are provided in Attachment 2.

FIGURES

ATTACHMENT 1

GROUNDWATER FLOW MODEL (GEOMATRIX, DECEMBER 1998)

ATTACHMENT 2

CONCENTRATION VERSUS TIME & MOVING AVERAGE TREND ANALYSIS (MATA) PLOTS

PERIODIC REVIEW REPORT MARCH 9, 2009 TO APRIL 1, 2011 RIVERBEND, LLC - AREA II

APPENDIX D-2

NOVEMBER 2009

SECOND SEMI-ANNUAL AREA III ORC MONITORING EVENT

December 7, 2009

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619-9) Area III Semi-Annual Groundwater Monitoring Report – October 2009 Area III ORC Bi-Annual Monitoring Report – November 2009

Dear Mr. Moore:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration, LLC, has prepared this letter report to transmit the results of the October 2009 semi-annual groundwater monitoring event and the November 2009 Oxygen Release Compound (ORC) bi-annual monitoring event for Area III (Former Warehouse Parcel) of BUDC's Riverbend Site, Buffalo, NY (formerly Steelfields, see Figure 1).

PURPOSE

In general accordance with the October 2007 Long-Term Groundwater Monitoring (LTGWM) Work Plan (Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III, May 2008), the February 15, 2008 NYSDEC Comment letter for Area III (comments 8, 9, and 10), and the May 5, 2008 Response to NYSDEC Comment letter for Areas II and III (comment/response no. 22), newly installed wells in the Groundwater Monitoring Program are to be sampled semi-annually for two years, then annually thereafter. In addition, existing wells are to be sampled semi-annually for one year, then annually thereafter. The current monitoring event, conducted on October 30, 2009, completes the third of four semi-annual monitoring events for newly installed wells A3-MW-9 and A3-MW-10. All existing wells have satisfied the semi-annual monitoring requirement and were not monitored during this event. The Groundwater Monitoring Network wells and sample frequency for the Riverbend Site is presented in Table 1.

In accordance with the March 2008 ORC Maintenance and Monitoring Manual (Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III, May 2008) and the May 5, 2008 Response to NYSDEC Comment letter for Areas II and III (comment/response no. 19), ORC wells A3-ORC-1 through A3-ORC-11 are to be purged, on a bi-annual basis (every 6 months), until 10 well volumes are removed or for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. From November 3-6, 2009, TurnKey personnel purged and collected groundwater samples for field analysis of dissolved oxygen, pH,

oxidation-reduction potential (ORP), temperature, and water level as well as laboratory analysis of alkalinity and benzene from the eleven Area III ORC wells. In addition, the ORC "socks", suspended in each of the ORC wells, were removed and assessed during the current monitoring event; none of the socks required replacement and were re-installed.

OCTOBER 2009 SEMI-ANNUAL GROUNDWATER MONITORING EVENT

Both Area III monitoring Wells A3-MW-9 and A3-MW-10 were purged and sampled using a non-dedicated Mini-Typhoon[®] submersible pump (decontaminated between wells) and dedicated pump tubing, following low-flow purge and sample collection procedures. Samples from both locations were transferred to laboratory-supplied, pre-preserved sample bottles and transported, under chain of custody command, to TestAmerica, Inc. in Amherst NY, for analysis of: STARS List volatile organic compounds (VOCs) per Method 8021; total arsenic, total chromium, and total lead per Method 6010; and cyanide per Method 335.

Field measurements and laboratory analytical results are summarized on Table 2. Groundwater Quality Standards and Guidance Values (GWQSs/GVs) (NYSDEC TOGS 1.1.1, June 1998) are provided for comparison. As indicated on Table 2, benzene was the only VOC detected at a concentration exceeding the GWQS at both monitoring well locations; toluene was only detected above the GWQS at one location, A3-MW-10. In addition, pH at both wells exceeded the GWQS (one above the upper limit of 8.5 and one below the limit of 6.5).

NOVEMBER 2009 ORC MONITORING EVENT

All eleven Area III ORC wells, A3-ORC-1 through A3-ORC-11, were purged and sampled using dedicated polyethylene disposable bailers. As shown in Table 3, three of the eleven wells were sampled upon completing the 10 well volume requirement, while the remaining 8 wells were sampled on the fourth day of purging. Samples from all eleven locations were transferred to laboratory-supplied, pre-preserved sample bottles and transported, under chain of custody command, to TestAmerica for analysis of benzene per SW846 Method 8021 and alkalinity per MCAWW Method 310.1.

Field measurements and laboratory analytical results are summarized on Table 3. GWQSs/GVs are provided for comparison. As indicated on Table 3, benzene was detected at a concentration exceeding the GWQS at all eleven ORC well locations. In addition, pH was measured below GWQS of 6.5 at all of the ORC wells.

PLANNED ACTIVITIES

The next planned monitoring event for Area III is tentatively scheduled for May 2009. This event will represent the last of four consecutive semi-annual monitoring events for newly installed wells A3-MW-9 and A3-MW-10 as well as the comprehensive annual groundwater monitoring event for the Riverbend Site (Areas I, II, and III).

Please contact us if you have any questions.

Mr. Maurice Moore NYSDEC December 7, 2009 Page 3 of 3

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann

Project Manager

Enclosures

cc: Peter Cammarata (BUDC) – ecopy David Stebbins (BUDC) – ecopy Paul Werthman (TurnKey) – ecopy Walt Meisner (TurnKey) – ecopy

File: 0171-001-600

GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY 1,2

Riverbend, LLC Former Steel Manufacturing Site Buffalo, New York

14/-11	Туре	of Well					Mor	nitoring Ev	vent				
Well		F actoria a	Yea	ar 1	Yea	ar 2	Yea	ar 3	Year 4	Year 5	Year 6	Year 7	Year 8
Designation	New	Existing	1 SA	2SA	1 SA	2SA	Anı	nual	Annual	Annual	Annual	Annual	Annual
AREA I					1								
A1-MW-1		x	Sep-04	Sep-05	Dec	c-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-2		х	Sep-04	Sep-05	Dec	c-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-3		х	Sep-04	Sep-05	Dec	c-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-4	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-5	х		Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	•	•
A1-MW-6	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-7	х						wate	r level	only				
A1-MW-8	х		Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	٠	•
A1-MW-9	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	•	•
A1-MW-M2		х	Sep-04	Sep-05	Dec	c-06	Au	g-07	Apr-08	May-09	May-10	•	•
A1-P-4		х	Sep-04	Sep-05	Dec	c-06	Au	g-07	Apr-08	May-09	May-10	•	•
AREA II													
A2-MW-3		х	Jul-07	Dec-07	Арі	r-08	Ma	y-09	May-10	•	٠	•	٠
A2-MW-4R		х	Jul-07	Dec-07	Арі	r-08	Ма	y-09	May-10	•	•	•	•
A2-MW-5		х	Jul-07	Dec-07	Арі	r-08	Ма	y-09	May-10	•	٠	•	٠
A2-MW-6		х					wate	r level	only				
A2-MW-7		х					wate	r level	only				
A2-MW-10		х	Dec-07	Apr-08	Ma	y-09	Ma	y-10	•	٠	•	•	•
A2-MW-12		х					wate	r level	only				
A2-MW-13		х	Jul-07	Dec-07	Арі	r-08	Ма	y-09	May-10	٠	٠	٠	•
A2-MW-14	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	٠	٠	•	•	٠
A2-MW-15 ³	х		Jul-07	Dec-07	$\left< \right>$	May-09	\wedge	<	May-10	$\left. \right\rangle$	•	$\left. \right\rangle$	•
A2-MW-16	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	•	•	•	•	•
A2-MW-17	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	•	•	•	•	•
A2-MW-18	х						wate	r level	only				
A2-MW-19	х						wate	r level	only				
A2-MW-20	х						wate	r level	only				
AREA III					i								
A3-MW-3		х	Oct-08	May-09	May	y-10		•	٠	•	٠	•	٠
A3-MW-6		х	Oct-08	May-09	May	y-10		•	٠	•	٠	•	٠
A3-MW-7		х	Jul-07	Dec-07	Арг	r-08	Ma	y-09	May-10	•	•	•	•
A3-MW-9	х		Oct-08	May-09	Oct-09	May-10		•	•	•	•	•	•
A3-MW-10	х		Oct-08	May-09	Oct-09	May-10		•	•	•	•	•	•
AREA III - ORC V	wells (eve	ry 6 mont	hs)	r	1	-	-		-	r	-	r	
A3-ORC-1		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-2		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-3		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-4		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-5		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-6		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-7		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-8	L	х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-9		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-10		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•
A3-ORC-11		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	•	•	•	•

Notes:

х .

Per the LTGWM Plan, newly installed monitoring wells require four consecutive semi-annual groundwater monitoring events, then annually thereafter.
Per the LTGWM Plan, existing monitoring wells require two consecutive semi-annual groundwater monitoring events, then annually thereafter.

Monitoring well will be sampled every two years. 3.

09 / No May-10

= first semi-annual monitoring event = second semi-annual and/or annual monitoring event

type of monitoring well
to be monitored beyond the current contract year.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

2009: Year 2 First Semi-Annual Event Area III Long-Term Groundwater Monitoring Riverbend, LLC Buffalo, New York

PARAMETER	A3-N	/IW-9	A3-M	GWQS ⁴		
Field Measurements (units as shown) ³						
pH (units)	11.25	11.23	5.47	5.45	6.5 - 8.5	
Temperature (deg C)	12.9	13.0	15.1	15.1		
Specific Conductance (uS)	6661	6162	6103	6076		
Turbidity (NTU)	8.57	4.69	42.5	34.6		
Dissolved Oxygen (ppm)	2.83	2.92	0.6	1.45		
ORP (mV)	-152	-178	-43	-42		
Volatile Organic Compounds (mg/L):						
Benzene	0.0	026	1.5	5 D	0.001	
Toluene	0.00	0074	0.00	63 D	0.005	
1,2,4-Trimethylbenzene	0.00	015 J	N	ID		
Xylenes, Total	0.0	003	N	ID	0.015	
Total Inorganic Compounds (mg/L):						
Arsenic	Ν	ID	N	ID	0.025	
Chromium	Ν	ID	N	ID	0.05	
Lead	0.0	103	N	ID	0.025	
Wet Chemistry (mg/L):						
Cyanide - Total	Ν	ID	0.1	0.2		

Notes:

1. Only those compounds detected above the method detection limit at a minimum of one sample location are shown.

2. Shaded and bolded values represent exceedances of the GWQS/GV.

3. Field measurements were collected immediately before and after groundwater sample collection.

4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as per 6 NYCRR Part 703.

5. " J " = Estimated Value

6. "ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

BOLD

7. " NM " indicates parameter was not measured due to insufficient well volume.

SUMMARY OF ORC ANALYTICAL RESULTS^{1,2}

2008 Second Semi-Annual Event Area III Long-Term Groundwater Monitoring Riverbend, LLC Buffalo, New York

PARAMETER	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ⁴
Field Measurements During Purge (unit	s as shown)	3										
Purge: Day 1 (11/03/09) (gallons)	18.0	15.0	10.0	8.0	15.0	13.0	10.0	13.0		10.0	26.0	
Purge: Day 2 (11/04/09) (gallons)	18.0	15.0	8.0	8.0	12.0	10.0	10.0	10.0		10.0	22.0	
Purge: Day 3 (11/05/09) (gallons)	18.0	15.0	8.0	8.0	12.0	10.0	10.0	10.0	70.0	10.0	13.0	
Purge: Day 4 (11/06/09) (gallons)	9.0	15.0	8.0	8.0	12.0	9.0	10.0	10.0		10.0		
Sample Collection (date indicated)	11/06/09	11/06/09	11/06/09	11/06/09	11/06/09	11/06/09	11/06/09	11/06/09	11/05/09	11/06/09	11/05/09	
Cumulative Volume Purged (gallons)	63.0	60.0	34.0	32.0	51.0	42.0	40.0	43.0	70.0	40.0	61.0	
Initial Depth to Water (fbTOR)	4.51	4.89	5.16	4.74	4.98	5.54	5.31	5.56	3.31	5.31	5.13	
Total Depth (fbTOR)	14.18	14.45	14.38	14.38	13.96	14.93	14.38	14.63	13.98	14.55	14.57	
One Casing Volume (gallons)	6.3	6.2	6.0	6.2	5.8	6.1	5.9	5.9	6.9	6.0	6.1	
Number of Volumes Purged	10.0	9.7	5.7	5.2	8.8	6.9	6.8	7.3	10.1	6.7	10.0	
Sample Determination ⁵	volume	4-days	4-days	4-days	4-days	4-days	4-days	4-days	volume	4-days	volume	
Field Measurements During Sample Co.	llection (units	s as shown)	3									
pH (units)	5.61	4.58	4.26	5.51	5.66	4.04	4.91	3.34	2.50	3.12	5.31	6.5 - 8.5
Temperature (deg C)	11.1	13.2	12.9	11.9	12.2	10.9	11.0	11.0	10.0	10.9	12.3	
Specific Conductance (uS)	3,027	7,991	8,181	7,987	9,481	12,640	10,130	15,110	14,920	9,426	6,703	
Turbidity (NTU)	420	93.8	115	222	216	331	327	428	668	75.2	340	
Dissolved Oxygen (ppm)	0.93	1.61	1.01	0.99	0.94	1.07	1.01	0.91	1.44	1.53	2.54	
ORP (mV)	-35	32	119	-32	114	33	-12	17.2	269	140	-59	
Volatile Organic Compounds (mg/L):												
Benzene	1.6 D	16 D	6 D	0.035 D	32 D	6.9 D	2.1 D	41 D	230 D	76 D	0.003 D	0.001
Wet Chemistry (mg/L):												
Alkalinity	269	317	330	310	ND	331	143	ND	ND	ND	316	

Notes:

1. Only those compounds detected above the method detection limit at a minimum of one sample location are shown.

2. Shaded and bolded values represent exceedances of the GWQS/GV.

BOLD

3. Field measurements were collected immediately before groundwater sample collection.

4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) as per 6 NYCRR Part 703.

5. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to dryness 4 consecutive days prior to sample collection.

6. " D " = Analysis performed at the secondary dilution factor.

7. "ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

FIGURES

● A1-MW-2	NETWORK MONITORING
• A1-MW-7	
● A1-MW-K2	NON-NETWORK MONITOR
A3-ORC-1	ORC SOCK WELL
PS1	GROUNDWATER COLLEC
⊠ SG-01	BUFFALO RIVER STAFF G
● A4-MW-5R	OFF-SITE MONITORING W

Periodic Review Report March 9, 2009 to April 1, 2011 Riverbend, LLC - Area II

APPENDIX D-3

May 2010

COMPREHENSIVE ANNUAL GROUNDWATER MONITORING REPORT & & First Semi Annual Area III ORC Monitoring Event

February 2, 2011

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619-9) 2010 Comprehensive Annual Groundwater Monitoring Report

Dear Mr. Moore:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration, LLC, has prepared this comprehensive letter report to transmit the results of the May 2010 groundwater monitoring event conducted at Area I (Former Steel Plant Parcel), Area II (Former Coke Plant Parcel), and Area III (Former Warehouse Parcel) of BUDC's Riverbend Site, Buffalo, NY (see Figure 1). This letter report also includes the results of the May and November 2010 Oxygen Release Compound (ORC) monitoring events for Area III. The current groundwater monitoring event was performed May 11-14, 2010. The LTGWM network wells are summarized in Table 1 and shown on Figure 1. A summary of field activities and findings for all three areas of the Site are presented below.

PURPOSE

The activities performed during the current site-wide groundwater monitoring event were performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised September 2002);
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008);
- February 15, 2008 NYSDEC comment letter for Area III (comments 8, 9, and 10);
- May 5, 2008 Response to NYSDEC comment letter for Areas II and III (comment/response no. 22);
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008); and
- May 5, 2008 Response to NYSDEC Comment letter for Areas II and III (comment/response no. 19)

This annual report includes a tabular and/or graphical assessment and detailed discussion of groundwater quality trends on an Area by Area basis. Groundwater flow patterns, however, are discussed on a site-wide basis. Groundwater samples were analyzed for the parameters identified by Area in Table 2.

GROUNDWATER ELEVATIONS & FLOW

Depth to water measurements and calculated groundwater elevations measured from 11 wells and 2 Buffalo River staff gauges in Area I, 18 of the 19 wells in Area II, and 5 monitoring wells and 11 ORC monitoring wells in Area III on May 17, 2010 are summarized in Table 3. During the current monitoring event, Area II well A2-MW-14 was identified as damaged beyond repair and was not sampled or sounded. The Lake Erie elevation presented in Table 3 was obtained from the National Oceanic and Atmospheric Administration/National Ocean Service's (NOAA/NOS) Center for Operational Oceanographic Products and Services (CO-OPS) web page; Great Lakes Water Level Data Inventory for station number 9063020 Buffalo, Lake Erie, New York.

An isopotential map, presented as Figure 1, was prepared from the May 2010 groundwater elevations and the collection system as-built invert elevations. The baseline isopotential map prepared by Geomatrix from the June 1998 groundwater elevations representing groundwater flow conditions at the Site prior to the Area II Containment Cell construction is presented as Figure 2 for contrast. Comparison of the May 2010 and June 1998 maps indicate that the groundwater mound located between Areas I and II observed in June 1998 is no longer present; replaced instead by a groundwater "sink" created by the groundwater collection system. The groundwater depression in June 1998 around the terminal basin is also no longer present due to the discontinuation (in January 2009) of storm water management activities at the Site in that area (i.e., pumping from the basin to the sanitary sewer). Further examination of Figure 1 indicates significant lowering of the water table of between 2 to 7 feet throughout the containment cell and extending north and east beyond the containment cell as generally predicted in the selected remedial approach groundwater flow model (Geomatrix, December 1998) (see Attachment 1). Current groundwater flow is toward the collection trench from all directions. The groundwater flow, as depicted on Figure 1, also shows that potentially impacted groundwater from outside the containment cell to the north on the Former August Feine and Norfolk Southern parcels is being drawn back toward the collection system, as predicted by pre-design MODFLOW® modeling.

GROUNDWATER COLLECTION SYSTEM EVALUATION

An evaluation of the slurry wall effectiveness included comparing groundwater elevations from a single well pair identified as A2-MW-19 and A2-MW-7. Monitoring Well A2-MW-19 is located outside the Containment Cell and Well A2-MW-7 is located within the Cell as shown on Figure 1. A groundwater elevation comparison of this well pair indicates that groundwater outside the Cell is higher than inside the Cell and an inward hydraulic gradient toward the Cell has been established, as predicted by the pre-design MODFLOW® model.

Based upon the results of this evaluation and the isopotential map discussed earlier, the groundwater collection/containment system appears to be effectively collecting impacted groundwater and controlling groundwater migration within the Area II Containment Cell as well as to the east and north of the containment cell. Routine system monitoring and maintenance in conjunction with long-term groundwater monitoring of Areas I and II, as

scheduled, is expected to be sufficient to continue to assess the long-term effectiveness of the containment cell.

AREA I FIELD ACTIVITIES & FINDINGS

Table 4 summarizes the Area I annual LTGWM event field-measured parameters and analytical results for Wells A1-MW-1, A1-MW-2, A1-MW-3, A1-MW-4, A1-MW-5, A1-MW-6, A1-MW-8, A1-MW-9, A1-MW-M2, and A1-P-4. Compounds detected above method detection limits are shown on the table with their associated concentration and NYSDEC Groundwater Quality Standard (NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values, June 1998) for comparison. Concentrations exceeding NYSDEC Groundwater Quality Standards (GWQSs) are shaded. Upon examination of Table 4, the following observations are apparent:

- Field pH measurements at Well A1-MW-5 exceeded the upper GWQS of 8.5 and one of the field pH measurements at Well A1-MW-6 were slightly below the lower GWQS of 6.5.
- VOCs benzene, n-butylbenzene, sec-butylbenzene, isopropylbenzene, and npropylbenzene were all detected at concentrations exceeding their respective GWQSs at Well A1-MW-6 only.
- Total arsenic was detected at a concentration slightly exceeding the GWQS at Wells A1-MW-6 and A1-MW-8 only.
- All remaining parameters analyzed at all other locations within Area I during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

During the current monitoring event, field personnel also performed visual immiscible layer surveillance and observed no non-aqueous phase liquid (NAPL) in any of the Area I wells listed in Table 1, except Well A1-MW-6. Not including the initial well development and sampling events, A1-MW-6 has been monitored since the February 2005 installation of the PetroTrap[™] free product passive skimmer or more than 5 years. Since installation, a total of approximately six gallons of recovered product has been removed (see Table 5). In accordance with the LTGWM Plan, all recovered product is temporarily stored in a 5-gallon container and staged within the on-site Groundwater Pre-Treatment System (GWPTS) building until a licensed used oil service contractor picks up the recovered product for proper recycling or disposal.

As indicated in Table 5, seasonal increases in product thickness and recovery are apparent during the typical late Fall and early Spring rainy periods. Based upon the progress to date, monitoring of A1-MW-6 should continue in accordance with the Area I LTGWM Plan on a monthly basis.

AREA II FIELD ACTIVITIES & FINDINGS

Table 6 summarizes the Area II annual LTGWM event field-measured parameters and analytical results for Wells A2-MW-3, A2-MW-4R, A2-MW-5, A2-MW-10, A2-MW-13, A2-MW-14, A2-MW-16, and A2-MW-17. Well A2-MW-15, which is monitored every two years, was not sampled during the current monitoring event. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of Table 6, the following observations are apparent:

- A2-MW-14 was damaged; therefore no water level or sample could be obtained for the May 2010 monitoring event.
- No VOCs, especially BETX or other petroleum based compounds associated with historic activities performed on site, were detected at concentrations above their respective GWQSs at all monitoring well locations.
- All remaining parameters analyzed at all other locations within Area II during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

AREA III FIELD ACTIVITIES & FINDINGS

Table 7 summarizes the Area III LTGWM event field-measured parameters and analytical results for Wells A3-MW-3, A3-MW-6, A3-MW-7, A3-MW-9, and A3-MW-10. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of Table 7, the following observations are apparent:

- Field pH measurements at Wells A3-MW-7 and A3-MW-9 exceeded the upper GWQS of 8.5 and the field pH measurements at Well A3-MW-10 were below the lower GWQS of 6.5.
- The VOC benzene was detected at a concentration exceeding the GWQS at Wells A3-MW-7, A3-MW-9, and A3-MW-10.
- Total cyanide was detected in Well A3-MW-3 exceeding the GWQS.
- Total lead was detected in Well A3-MW-9 exceeding the GWQS.
- All remaining parameters analyzed at all other locations within Area III (excluding ORC wells) during the current monitoring event were reported as "non-detect" or at a concentration significantly below their respective GWQSs.

A discussion of the moving average trend analysis is presented later in this report.

In accordance with NYSDEC-approved procedures, ORC Wells A3-ORC-1 through A3-ORC-11 are to be purged until 10 well volumes are removed or to dryness for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. Table 8 summarizes the current Area III ORC event field-measured parameters and analytical results. Compounds detected above method detection limits are shown on Table 8 with their associated concentration and GWQS for comparison. Concentrations exceeding the GWQSs are shaded. Upon examination of Table 8, benzene exceeded the GWQS for all eleven wells monitored for the May 2010 event. In addition, pH was measured below the lower limit GWQS of 6.5 at all of the ORC wells except A3-ORC-1, which exceeded the upper limit GWQS of 8.5.

The ORC "socks", suspended in each of the ORC wells are to be replaced when depleted. During the current monitoring event, ORC socks were removed and checked; none of which required replacement.

MOVING AVERAGE TREND ANALYSIS (MATA)

In general accordance with the LTGWM Plan for each Area of the Site, any parameter exceeding the GWQS/GV for two consecutive events is to be statistically evaluated for all monitoring wells listed in Table 1. Statistical evaluation for each parameter of interest involves the averaging of four sequential monitoring event concentrations and plotting the moving average. The Area by Area 4-year moving average trend analysis (MATA) as well as the concentration versus time plots for those monitored locations and parameters requiring tracking (as defined above) are presented in Attachment 2 and summarized in Table 9. Only the Area I MATA plots have been included in the attachment. Area II and Area III plots are not included due to insufficient data; a minimum of three moving average data points are required to assess a trend in the data. As more data is collected, MATA assessments will be made for Area II and III monitoring locations, as necessary.

As indicated in Table 9 and presented in Attachment 2, the Area I MATA assessment indicates the following:

- The concentration versus time and MATA plots for the field measured pH at Well A1-MW-5, although elevated above the GWQS, continues to indicate a neutral trend (neither increasing nor decreasing) since September 2004.
- The MATA plot for n-butylbenzene and n-propylbenzene at Well A1-MW-6 at first glance indicates an increasing 4-year moving average trend; however upon closer inspection the trend is being influenced by unusually high concentrations of these two analytes reported in August 2007 of more than 10 times historic values (i.e., outlier). The concentration versus time plot shown on the same charts, however, indicates a return to historic ranges from April 2008 through May 2010 as well as the start of a neutral or slightly decreasing trend.
- Similar to the above, the MATA plot of isopropylbenzene at Well A1-MW-6 at first glance indicates an increasing 4-year moving average trend; however upon closer

inspection the trend is being influenced by an outlier reported in May 2009 of more than 3 times historic concentrations. The concentration versus time plot shown on the same plot, however indicates that the trend is returning to historic concentrations.

- Although the concentration versus time plot for total arsenic at Well A1-MW-6 reveals a wide concentration range from a high 0.29 mg/L in December 2006 to non-detect in August 2007, the MATA plot clearly indicates a decreasing trend since August 2007.
- The concentration versus time plot for total arsenic at Well A1-MW-8 indicates a period of moderation from December 2006 to April 2008 where the arsenic concentration actually began to decrease, however the data from the May 2010 event has indicated a higher concentration. The MATA plot does indicate a slight increasing trend and this compound at this location will continue to be monitored.

PLANNED ACTIVITIES

A schedule summarizing the past, present, and future monitoring events is presented in Table 1. The next planned comprehensive monitoring event for Areas I, II, and III is tentatively scheduled for May 2011. Area III ORC well monitoring was performed in November 2010 and tentatively scheduled for May 2011 (every six months).

Please contact us if you have any questions.

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann

Project Manager

Enclosures

- ec: Peter Cammarata (BUDC) David Stebbins (BUDC) Paul Werthman (TurnKey)
- File: 0171-001-600

GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY ^{1,2}

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

	Туре	of Well					Mor	nitoring E	vent				
Well	New	Eviation	Ye	ar 1	Ye	ar 2	Yea	ar 3	Year 4	Year 5	Year 6	Year 7	Year 8
Designation	New	Existing	1 SA	2SA	1 SA	2SA	Anı	nual	Annual	Annual	Annual	Annual	Annual
AREA I													
A1-MW-1		х	Sep-04	Sep-05	De	c-06	Au	g-07	Apr-08	May-09	May-10	May-11	•
A1-MW-2		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	May-10	May-11	٠
A1-MW-3		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	May-10	May-11	٠
A1-MW-4	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	May-11	٠
A1-MW-5	х		Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	May-11	٠
A1-MW-6	х		Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	May-11	•
A1-MW-7	х						wate	r level	only				
A1-MW-8	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	May-11	•
A1-MW-9	х		Sep-04	Sep-05	May-06	Dec-06	Aug	g-07	Apr-08	May-09	May-10	May-11	٠
A1-MW-M2		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	May-10	May-11	•
A1-P-4		х	Sep-04	Sep-05	De	c-06	Aug	g-07	Apr-08	May-09	May-10	May-11	•
AREA II													
A2-MW-3		х	Jul-07	Dec-07	Ap	r-08	Ma	y-09	May-10	May-11	•	•	•
A2-MW-4R		х	Jul-07	Dec-07	Ар	r-08	Ma	y-09	May-10	May-11	•	•	•
A2-MW-5		х	Jul-07	Dec-07	Ap	r-08	Ma	y-09	May-10	May-11	•	•	•
A2-MW-6		х					wate	r level	only				
A2-MW-7		х					wate	r level	only				
A2-MW-10		х	Dec-07	Apr-08	Ma	y-09	Ma	y-10	May-11	•	•	•	•
A2-MW-12		х					wate	r level	only				
A2-MW-13		х	Jul-07	Dec-07	Ap	r-08	Ma	y-09	May-10	•	•	•	٠
A2-MW-14	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	May-11	•	•	•	•
A2-MW-15 3	х		Jul-07	Dec-07	\geq	May-09	\geq	<	May-11	$>\!$	•	>	•
A2-MW-16	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	May-11	•	•	•	•
A2-MW-17	х		Jul-07	Dec-07	Apr-08	May-09	Ma	y-10	May-11	•	•	•	•
A2-MW-18	х						wate	r level	only				
A2-MW-19	х						wate	r level	only				
A2-MW-20	х						wate	r level	only				
AREA III		1	1	1					•	1		1	
A3-MW-3		х	Oct-08	May-09	Ma	y-10	Ma	y-11	•	•	•	•	•
A3-MW-6		х	Oct-08	May-09	Ma	y-10	Ma	y-11	•	•	•	•	٠
A3-MW-7		х	Jul-07	Dec-07	Ap	r-08	Ma	y-09	May-10	May-11	•	•	٠
A3-MW-9	х		Oct-08	May-09	Oct-09	May-10	Ma	y-11	•	•	•	•	•
A3-MW-10	х		Oct-08	May-09	Oct-09	May-10	Ma	y-11	•	•	•	•	•
AREA III - OR	C wells (e	every 6 mo	onths)	1	-	1	T	1	T	1	-	1	
A3-ORC-1		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-2		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-3		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-4		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-5		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-6		x	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-7		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-8		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-9		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-10	ļ	х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•
A3-ORC-11		x	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	•	•

Notes: 1. Per the LTGWM Plan, newly installed monitoring wells require four consecutive semi-annual groundwater monitoring events, then annually thereafter. 2. Per the LTGWM Plan, existing monitoring wells require two consecutive semi-annual groundwater monitoring events, then annually thereafter.

2. Per the L1GWM Plan, existing monitoring wears require two consecutive set
3. Monitoring well will be sampled every two years.
3. May-11
x
= tentatively scheduled future monitoring event
x
= type of monitoring well
= to be monitored beyond the current contract year.

ANALYTICAL PARAMETERS PER AREA

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Area I & II Wells	Area III Wells	Area III ORC Wells
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level
STARS List VOCs (Method 8021)	STARS List VOCs (Method 8021)	Benzene (Method 8021)
Arsenic (Method 6010)	Arsenic (Method 6010)	Alkalinity (Method 310.2)
Chromium (Method 6010)	Chromium (Method 6010)	
Lead (Method 6010)	Lead (Method 6010)	
Total Petroleum Hydrocarbons (TPH) (Method 1664) for wells:	Cyanide (Method 335)	
A1-MW-1		
A1-MW-3 A1-MW-6		
A1-MW-9		

Notes:

1. For the first semi-annual event, wells were analyzed for "Full List" (i.e., TCL and STARS List VOCs).

GROUNDWATER ELEVATION MEASUREMENTS May 17, 2010

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)
Area I Monitoring We	ells ²					11 Wells
A1-MW-1	586.38	NP	8.53	NP	577.85	577.85
A1-MW-2	586.39	NP	6.87	NP	579.52	579.52
A1-MW-3	591.98	NP	18.15	NP	573.83	573.83
A1-MW-4	586.70	NP	6.06	NP	580.64	580.64
A1-MW-5	590.48	NP	5.00	NP	585.48	585.48
A1-MW-6	591.60	18.03	20.24	2.21	571.36	573.30
A1-MW-7	586.97	NP	11.86	NP	575.11	575.11
A1-MW-8	589.47	NP	11.83	NP	577.64	577.64
A1-MW-9	588.05	NP	11.92	NP	576.13	576.13
A1-MW-M2	587.85	NP	6.88	NP	580.97	580.97
A1-P-4	589.37	NP	6.94	NP	582.43	582.43
Area II Monitoring W	ells ³					19 Wells
A2-MW-3	588.95	NP	6.45	NP	582.50	582.50
A2-MW-4R	588.59	NP	6.09	NP	582.50	582.50
A2-MW-5	587.25	NP	4.83	NP	582.42	582.42
A2-MW-6	592.69	NP	8.91	NP	583.78	583.78
A2-MW-7	602.05	NP	19.39	NP	582.66	582.66
A2-MW-10R	593.59	NP	9.31	NP	584.28	584.28
A2-MW-11	590.11	NP	6.22	NP	583.89	583.89
A2-MW-12	604.12	NP	17.45	NP	586.67	586.67
A2-MW-13	597.90	NP	12.78	NP	585.12	585.12
A2-MW-14 ⁶	593.02			~destroyed	~	
A2-MW-15	589.56	NP	4.38	NP	585.18	585.18
A2-MW-16	597.62	NP	12.99	NP	584.63	584.63
A2-MW-17	596.94	NP	13.11	NP	583.83	583.83
A2-MW-18	587.64	NP	4.10	NP	583.54	583.54
A2-MW-19	592.02	NP	8.21	NP	583.81	583.81
A2-MW-20	591.54	NP	6.57	NP	584.97	584.97
A2-PW-1	601.76	NP	20.04	NP	581.72	581.72
A2-PW-2	603.91	NP	18.17	NP	585.74	585.74
A2-PW-3	603.88	NP	20.07	NP	583.81	583.81
Area III Monitoring W	/ells ³	-				5 Wells
A3-MW-3	585.40	NP	3.09	NP	582.31	582.31
A3-MW-6	585.70	NP	2.33	NP	583.37	583.37
A3-MW-7	586.39	NP	3.87	NP	582.52	582.52
A3-MW-9	597.61	NP	14.48	NP	583.13	583.13
A3-MW-10	585.41	NP	5.29	NP	580.12	580.12

GROUNDWATER ELEVATION MEASUREMENTS May 17, 2010

2010 Comprehensive Groundwater Monitoring Report **Riverbend**, LLC **Buffalo, New York**

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)
Area III ORC Monitor	ing Wells ³					11 Wells
A3-ORC-1	587.17	NP	4.21	NP	582.96	582.96
A3-ORC-2	587.35	NP	4.50	NP	582.85	582.85
A3-ORC-3	587.55	NP	4.50	NP	583.05	583.05
A3-ORC-4	587.14	NP	4.19	NP	582.95	582.95
A3-ORC-5	587.77	NP	4.33	NP	583.44	583.44
A3-ORC-6	587.53	NP	4.82	NP	582.71	582.71
A3-ORC-7	587.16	NP	5.12	NP	582.04	582.04
A3-ORC-8	587.51	NP	5.10	NP	582.41	582.41
A3-ORC-9	585.15	NP	2.71	NP	582.44	582.44
A3-ORC-10	587.60	NP	5.10	NP	582.50	582.50
A3-ORC-11	587.70	NP	4.79	NP	582.91	582.91
Surface Water 4,5						3 Locations
SG-01 (downstream)	585.07	NP	12.81	NP	572.26	572.26
SG-02 (upstream)	590.72	NP	18.02	NP	572.70	572.70
Lake Erie	NA	NA	NA	NA	NA	571.16

Notes:

1. Groundwater elevations are corrected if free product (i.e., LNAPL) is present.

2. Area I monitoring well reference point elevations (i.e., top of riser for wells and sheet pile for staff gauges) as surveyed by TurnKey on November 10, 2004.

After Infolitoring well reference point elevations (i.e., top or insert of weils and sheet pile for stall gauges) as surveyed by furnkey of November 10, 2004.
Monitoring well elevations have been surveyed at various times by Turnkey or Steelfields.
Staff Gauge (SG) locations are located at the upstream and downstream locations indicated on Figure 1. Each staff gauge was surveyed on January 3, 2008 by Niagara Boundary personnel.
Source: NOAA Tides & Currents Web Page- Buffalo, NY Station ID 9063020; average daily elevation of Buffalo, New York Station #9063020.
During the May 2010 monitoring event, this well appeared to be vandalized and damaged beyond repair.

Definitions:

DTP = depth to product, if present DTW = detph to water

fmsl = feet above mean sea level

fbTOR = feet below top of riser NP = no measureable product was present R = replacement well

TOR = top of riser

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area I: Former Steel Plant Parcel

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

							M	onitorin	g Locati	on and	Date of S	Sample	Collecti	on							
Parameter	A1-N	IW-1	A1-N	IW-2	A1-N	IW-3	A1-N	/W-4	A1-N	IW-5	A1-M	IW-6	A1-N	1W-8	A1-N	IW-9	A1-M	W-M2	A1-	•P-4	GWQS/GV ¹
	05/1	8/10	05/1	8/10	05/1	8/10	05/1	7/10	05/1	7/10	05/1	7/10	05/1	8/10	05/1	8/10	05/1	7/10	05/1	8/10	
Field Measurements (units as	indicate	ed) ²																			
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA
pH (units)	7.20	7.19	7.53	7.50	7.04	6.97	6.80	6.76	10.27	10.29	6.31	6.40	6.71	6.73	7.02	7.04	7.10	7.13	6.98	6.98	6.5 - 8.5
Temperature (degrees C)	9.9	9.6	9.7	9.6	11.3	11.5	12.6	11.1	11.0	12.4	13.8	13.9	10.8	10.9	10.9	11.0	12.3	12.3	10.5	10.2	NA
Specific Conductance (uS)	551.0	542.0	476.2	478.0	1144	1010	832.9	824.6	655.4	644.6	1130	1137	1948	1961	610.7	609.6	569.2	569.0	539.3	530.4	NA
Turbidity (NTU)	81.6	26	4.79	3.88	45.9	11.2	36.6	16	1.54	1.47	8.8	6.91	167	151	1.68	0.99	31.7	26.9	16.7	15.6	NA
Dissolved Oxygen (mg/L)	2.96	1.45	1.29	1.43	6.02	4.60	2.23	1.56	1.77	1.49	2.99	1.61	2.39	2.70	2.29	2.36	2.15	2.69	8.05	8.30	NA
Eh (mV)	- 115	- 115	- 122	- 117	+ 4	+ 19	+ 33	+ 8	- 116	- 116	- 104	- 103	- 116	- 116	- 89	- 80	+ 28	+ 29	- 21	- 12	NA
Visual Observation	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	oil glob	oules ³	light o	range	cle	ear	cle	ear	cle	ear	NA
Olfactory Observation	mu	isty	Sulfu	r like	nc	ne	no	ne	SI. Mus	ty Odor	petro	-like	no	ne	no	ne	no	ne	nc	one	NA
Volatile Organic Compounds (ug/L)																				
Benzene	N	ID	Ν	D	N	ID	N	ID	0.07	′1 J	1.9	DJ	N	D	N	D	Ν	D	N	ID	1
n-Butylbenzene	N	ID	Ν	D	N	D	N	ID	N	D	5.3	DJ	N	D	N	D	N	D	N	ID	5
sec-Butylbenzene	N	ID	Ν	D	N	D	N	ID	N	D	3.2	DJ	N	D	N	D	N	D	N	ID	5
tert-Butylbenzene	N	ID	N	D	N	D	N	ID	N	D	Ν	D	N	D	N	D	N	D	N	ID	5
p-Cymene (4-Isopropyltoluene)	N	ID	N	D	N	D	N	ID	N	D	0.54	DJ	N	D	N	D	N	D	N	ID	5
Ethylbenzene	N	ID	N	D	N	D	N	ID	N	D	Ν	D	N	D	N	D	N	D	N	ID	5
Isopropylbenzene	N	ID	N	D	N	D	N	ID	N	D	5.3	D	N	D	N	D	N	D	N	ID	5
Methyl tert butyl ether	N	ID	Ν	D	N	D	N	ID	N	D	Ν	D	N	D	N	D	N	D	N	ID	10
n-Propylbenzene	N	ID	Ν	D	N	D	N	ID	N	D	10	D	N	D	N	D	N	D	N	ID	5
Toluene	N	D	N	D	N	D	N	ID	N	D	0.95	DJB	N	D	N	D	N	D	N	ID	5
1,2,4-Trimethylbenzene	N	ID	N	D	N	D	N	ID	0.07	77 J	Ν	D	N	D	N	D	N	D	N	ID	5
1,3,5-Trimethylbenzene	N	ID	N	D	N	D	N	ID	N	D	Ν	D	N	D	N	D	N	D	N	ID	5
Xylenes, Total	N	ID	Ν	D	N	ID	N	ID	Ν	D	1.	4	N	D	N	D	Ν	D	N	ID	15
Total VOCs	()	()		2		0	0.1	48	28.	59		2		2		2		0	10
Total Inorganics (mg/L)																					
Total Arsenic	0.0	335	Ν	D	N	D	N	ID	Ν	D	0.07	744	0.1	101	0.0	102	N	D	N	ID	0.025
Total Chromium	N	D	Ν	D	N	D	N	ID	Ν	D	Ν	D	Ν	D	Ν	D	N	D	0.0	026	0.05
Total Lead	N	ID	N	D	N	ID	N	ID	N	D	Ν	D	N	D	N	D	N	D	N	ID	0.025
Soluble Inorganics (mg/L)					_													_	_		
Souble Arsenic	N	ID	-	-	-	-	-	-	-	-	-	-	0.0	175	-	-	-	-			0.025
Total Petroleum Hyrdocarbons	s (mg/L)				_													_	_		
ТРН	N	ID	-	-	N	ID	-	-	-	-	91	.4	-	-	N	D	-	-	-		NA

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. Light non-aqueous phase liquid (LNAPL) detected; approximately 2.39 feet in thickness.

4. "NA " = Not Applicable, a GWQS/GV has not been established for this parameter.

5. "ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

6. " -- " = compound is not analyzed at this location

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

		LNA	PL Measure	ment	Quantity	Height of							
Date	Days Since	Тор	Bottom	Thickness	Removed ¹	Petro-Trap	Comments						
Duto	Last Visit	(fbTOR)	(fbTOR)	(feet)		(fbTOR)	Commonito						
				(1001)	(02.)								
09/21/04	0	18.10	18.40	0.30	NA		well development						
09/23/04	2	18.10	18.40	0.30	NA		Fall 2004 groundwater monitoring event						
02/01/05	131	17.50	20.85	3.35	NA 10	16.0	Installed Petro I rap passive skimmer						
02/08/05	1	17.94	19.89	1.95	16	16.0	first LNAPL removal from Petro Trap						
02/11/05	3	17.89	19.75	1.86	20	16.0	OK						
02/15/05	4	18.10	18.52	0.42	20	16.0	OR OK						
02/16/05	3	17.59	17.91	0.32	12	16.0	OK Batra Trap tubing was tangled						
02/25/05	7	10.02	19.62	0.49	2	16.0	Petro Trap tubing was tangled						
03/18/05	1/	18.00	18.03	0.30	3.5	16.0	checked Petro Tran for leaks, none located						
04/08/05	21	17.37	18.20	0.74	24	15.0	ok: raised Petro Trap approximately 1-foot						
04/14/05	6	17.65	17.81	0.05	27	15.0	ok						
04/28/05	14	16.23	16.25	0.10	25.6	15.0	ok						
05/17/05	19	17.62	17.80	0.18	14	14.0	~14 oz. of water in Petro Trap: raised approx. 1-foot						
06/21/05	35	17.68	17.71	0.03	14	14.0	ok						
07/18/05	27	18.03	18.11	0.08	12	15.0	ok, lowered approx. 1-foot						
09/09/05	53	18.34	18.42	0.08	8	15.0	ok						
09/20/05	11	18.33	18.38	0.05	22	15.0	ok; Area I LTGWM Event						
10/31/05	41	18.50	18.52	0.02	24	15.0	ok						
11/23/05	23	18.95	18.96	0.01	22	15.0	ok						
12/28/05	35	19.35	19.36	0.01	22	15.0	ok						
01/30/06	33	18.43	18.44	0.01	24	15.0	ok						
02/27/06	28	18.38	19.06	0.68	24	15.0	ok						
03/28/06	29	18.44	19.31	0.87	24	15.0	ok						
04/27/06	30	18.39	19.17	0.78	24	15.0	ok						
05/18/06	21	18.41	19.05	0.64	8	15.0	ok; Area I LTGWM Event						
06/30/06	43	17.82	18.35	0.53	8	15.0	ok						
07/31/06	31	17.95	18.64	0.69	16	15.0	ok						
12/01/06	123	19.41	21.65	2.24	16	15.0	ok; Area I LTGWM Event, removed oily water.						
06/30/07	211	17.98	20.51	2.53	8	15.0	ok						
07/31/07	31	18.31	21.40	3.09	22	14.0	~12oz. Water in Trap; raised PetroTrap approx. 1'						
08/22/07	22	18.50	20.11	1.61	4	14.0	ok						
09/29/07	38	18.86	21.72	2.86	4	14.0	ok						
10/30/07	31	19.10	21.04	1.94	3	14.0	ok						
11/28/07	29	19.47	20.52	1.05	2	14.0	checked Petro I rap for leaks, none located						
12/28/07	30	18.93	20.42	1.49	14	15.0	~12oz. Water in Trap; lowered Petro Trap approx. 1						
08/12/08	228	17.98	19.60	1.62	30	15.0	ok, bailed down product removed ~1.0 gal. 1K took over monitoring						
09/10/08	29	18.61	20.10	1.49	4	15.0	Needs to be ajusted and claened						
10/08/08	28	18.90	20.46	1.00	8	17.5	Lowered trap to 17.41 fbgs, cleaned off filter.						
12/16/09	34	18.79	21.00	2.21	1	17.5	OR .						
12/16/08	30	18.04	20.86	2.22	1	17.5	OK						
01/07/09	22	10.20	21.20	2.92	64	17.0	17 oz in tran bailed 47 oz						
02/11/09	27	17.52	19.63	2.70	2	17.0	n oz in trap, ballou 47 oz						
04/01/09	21	18.12	19.03	2.13	∠ 	17.0	Bailed ~40oz ~8 was removed from trap						
05/06/00	22	17.61	19.00	2 20	- 1 0 2	17.0	ok						
05/12/09	6	17.65	17.06	0.31	18	17.0	ok						
06/02/09	21	17.64	18 17	0.53	2	17.0	ok						
07/08/09	36	17.96	18 17	0.00	20	17.0	ok						
08/06/09	29	18.05	19.75	1 70	1.5	17.0	ok						
09/01/09	26	18.11	19.20	1.09	3	17.0	ok						
10/06/09	35	17.84	19.62	1.78	6	17.0	ok						
11/03/09	28	17.82	19.11	1.29	10	17.0	ok						
12/01/09	28	18.07	18.50	0.43	20	17.0	ok						
01/13/10	43	18.22	18.75	0.53	5	17.0	ok						
02/10/10	28	18.03	19.00	0.97	4	17.0	ok						
03/05/10	23	19.31	20.81	1.50	3	17.0	ok						
04/06/10	32	18.61	20.41	1.80	4	17.0	ok						
05/05/10	29	18.41	20.20	1.79	1	17.0	ok						
05/17/10	12	18.03	20.42	2.39	1	17.0	ok						
	Tot	al Quantity	Removed	To Date:	760.6.07	or 594 a	al						
	1010	a waanuty	Removeu	TO Date.	100.0 02.	0. J.J- 9							

Notes:
The PetroTrap canister used has a capacity of 25.6 oz. (0.2 gal).
Data from January 1, 2007 through July 31, 2008 was collected by EnSol, Inc.; data before and after this time has been collected by TurnKey Environmmental Restoration, LLC.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area II: Former Coke Plant Parcel

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

						Мо	nitoring	Locatio	on and D	Date of S	Sample (Collectio	on						
Parameter	A2-1	MW-3	A2-M	W-4R	A2-N	IW-5	A2-M	W-10	A2-M	W-13	A2-M	W-14	A2-M	N-15 ⁶	A2-M	W-16	A2-M	W-17	GWQS/GV ¹
	05/	18/10	05/1	8/10	05/1	8/10	05/1	9/10	05/1	9/10	N	IS	N	IS	05/1	9/10	05/1	9/10	
Field Measurements (units as	indicate	ed) ²																	
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA
pH (units)	7.30	7.30	7.12	7.11	6.97	6.97	7.29	7.29	7.12	7.10	NS	NS	NS	NS	6.67	6.67	6.51	6.59	6.5 - 8.5
Temperature (degrees C)	9.6	9.7	9.6	9.6	10.0	9.9	11.4	12.0	12.6	13.0	NS	NS	NS	NS	12.4	13.7	13.1	12.0	NA
Specific Conductance (uS)	773.7	774.1	948.2	948.7	712.4	713.2	1993	1986	1867	1867	NS	NS	NS	NS	1710	1807	2847	2822	NA
Turbidity (NTU)	9.66	8.39	34.5	36.9	6.52	5.6	20.5	15.3	15.8	12.4	NS	NS	NS	NS	95.2	158	24.7	10.4	NA
Dissolved Oxygen (mg/L)	3.14	3.00	1.76	1.66	2.90	2.79	2.70	2.45	1.54	1.24	NS	NS	NS	NS	3.11	2.70	1.80	1.39	NA
Eh (mV)	- 24	- 24	- 64	- 69	- 83	- 82	- 69	- 71	- 117	- 121	NS	NS	NS	NS	- 25	- 46	- 100	- 103	NA
Visual Observation	cl	ear	cle	ear	cle	ear	cle	ar	cle	ear	N	IS	N	IS	gr	еу	cle	ear	NA
Olfactory Observation	no	odor	no c	odor	mu	isty	mu	sty	mu	sty	N	IS	N	IS	mu	isty	mu	usty	NA
Volatile Organic Compounds ((ug/L)																		
Benzene	ľ	ND	N	D	N	D	0.1	9 J	0.	52	N	IS	N	IS	0.	68	0.	68	1
n-Butylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	N	ID	5
sec-Butylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	0.2	23 J	5
tert-Butylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	N	D	2	.6	5
p-Cymene (4-Isopropyltoluene)	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	N	D	N	ID	5
Ethylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	N	D	N	ID	5
Isopropylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	0.1	2 J	0.0	34 J	5
Methyl tert butyl ether	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	N	ID	10
n-Propylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	N	ID	5
Toluene	ľ	ND	N	D	N	D	Ν	D	Ν	D	N	IS	N	IS	0.07	1 B,J	N	ID	5
1,2,4-Trimethylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	N	ID	5
1,3,5-Trimethylbenzene	ľ	ND	N	D	N	D	Ν	D	N	D	N	IS	N	IS	Ν	D	N	ID	5
Xylenes, Total	ľ	ND	N	D	N	D	N	D	0.07	76 J	N	IS	N	IS	0.0	57 J	N	ID	15
Total VOCs		0	()	()	0.1	19	0.5	96	()	()	0.9	28	3.5	544	10
Inorganics (mg/L)													_	_		_	_		
Total Arsenic	ľ	ND	N	D	N	D	N	D	N	D	N	IS	N	IS	0.0	113	N	ID	0.025
Total Chromium	ľ	ND	N	D	N	D	N	D	N	D	N	IS	N	IS	0.0	127	N	ID	0.05
Total Lead	ľ	ND	N	D	N	D	N	D	N	D	N	IS	N	IS	0.0	013	N	ID	0.025

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.

4. "ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

5. " NS " = this monitoring location was damaged and was not sampled

5. " - - " = This parameter was not analyzed.

6. Well A2-MW-15 is monitored every two years. The next tentatively scheduled event is May 2011.

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Area III: Former Warehouse Parcel

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

	Monitoring Location and Date of Sample Collection										
Parameter	A3-N	/W-3	A3-N	/W-6	A3-N	IW-7	A3-N	IW-9	A3-M	GWQS/GV ¹	
	05/1	9/10	05/1	9/10	05/1	9/10	05/1	9/10	05/1	9/10	
Field Measurements (units as i	indicated)	2									
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	NA
pH (units)	7.01	NM	7.75	7.80	10.10	10.06	11.34	11.34	5.37	5.41	6.5 - 8.5
Temperature (degrees C)	16.2	NM	12.4	12.6	12.8	12.3	11.5	12.0	11.6	12.2	NA
Specific Conductance (uS)	1256	NM	1341	1351	691.6	689.6	7440	7280	5757	5735	NA
Turbidity (NTU)	30.2	NM	7.83	4.82	7.81	5.86	3.48	4.19	43.6	35.9	NA
Dissolved Oxygen (mg/L)	3.23	NM	3.25	3.25	2.05	2.23	2.68	2.85	0.93	1.12	NA
Eh (mV)	- 109	NM	- 152	- 154	- 197	- 187	- 139	- 133	0	0	NA
Visual Observation	cle	ear	cle	ear	cle	ear	cle	ear	cle	ear	NA
Olfactory Observation	mu	isty	mu	ısty	mu	isty	no	ne	nc	ne	NA
Volatile Organic Compounds (u	g/L)										
Benzene	0.	79	0.1	8 J	3	7	3	.4	360	00 D	1
n-Butylbenzene	Ν	ID	Ν	ID	Ν	D	0.1	4 J	Ν	ID	5
sec-Butylbenzene	Ν	ID	Ν	ID	Ν	D	0.2	3 J	0.3	5 DJ	5
tert-Butylbenzene	Ν	ID	Ν	ID	Ν	D	Ν	D	Ν	ID	5
p-Cymene (4-Isopropyltoluene)	Ν	ID	Ν	ID	Ν	D	Ν	D	Ν	ID	5
Ethylbenzene	Ν	ID	Ν	ID	0.1	5 J	Ν	D	0.76	6 DJ	5
lsopropylbenzene	Ν	ID	Ν	ID	N	D	Ν	D	2.4	4 D	5
Methyl tert butyl ether	Ν	ID	Ν	ID	N	D	Ν	D	Ν	ID	10
n-Propylbenzene	Ν	ID	Ν	ID	0.2	5 J	Ν	D	1.8	DJ	5
Toluene	0.07	4 JB	Ν	ID	1.7	7 B	0.9	3 B	3.3	DB	5
1,2,4-Trimethylbenzene	Ν	ID	Ν	ID	0.	42	0.3	26	0.7	1 DJ	5
1,3,5-Trimethylbenzene	Ν	ID	N	ID	0.	21	Ν	D	Ν	ID	5
Xylenes, Total	0.1	4 J		ID	1	.4	0.3	6 J	2.2	DJ	15
Total VOCs	1.0	004	0.	18	41.	.13	5.	32	3,6	612	10
Inorganics (mg/L)											
Total Arsenic	0.1	02	Ν	ID	0.0	104	Ν	D	0.0	109	0.025
Total Chromium	0.0	086	Ν	ID	N	D	ND		Ν	ID	0.05
Total Lead	0.0	088	ND		N	D	0.0	308	Ν	0.025	
Wet Chemistry (mg/L)	et Chemistry (mg/L)										
Cyanide	11.1			353	0.0	247	Ν	D	0.1	0.2	

Notes:

1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)

2. Field measurements were collected immediately before and after groundwater sample collection.

3. " B " = Analyte found in the associated blank, as well as the sample.

4. " D " = analyzed at the secondary dilution factor.

5. " J " = Estimated Value

###

6. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.

7. "ND" = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

8. " NM " = insufficient water for field analysis; parameter was not measured.

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF ORC ANALYTICAL RESULTS Area III: Former Warehouse Parcel

2010 Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ²	
Field Measurements During Purge (units as shown) ¹													
Static Depth to Water (fbTOR)	4.61	4.96	4.89	4.53	4.76	5.16	5.35	5.40	2.91	5.69	5.15		
Total Depth (fbTOR)	14.08	14.45	14.38	14.38	14.03	14.36	14.36	14.63	14.03	14.55	14.57		
One Casing Volume (gallons)	6.10	6.10	6.10	6.40	6.00	6.00	5.80	6.00	7.20	5.70	6.10		
Number of Volumes Purged	9.5	7.4	5.4	4.4	9.3	6.7	6.6	6.7	10.0	6.3	10.2		
Sample Determination ³	4-days	4-days	4-days	4-days	4-days	4-days	4-days	4-days	volume	4-days	volume		
Purge: Day 1 (05/11/10) (gallons)	15.0	10.0	9.0	7.0	14.0	10.0	9.0	10.0		8.0	25.0		
Purge: Day 2 (05/12/10) (gallons)	13.0	11.0	8.0	7.0	13.0	10.0	9.0	10.0		9.0	22.0		
Purge: Day 3 (05/13/10) (gallons)	15.0	12.0	8.0	7.0	14.0	10.0	10.0	10.0	72.0	10.0	15.0		
Purge: Day 4 (05/14/10) (gallons)	15.0	12.0	8.0	7.0	15.0	10.0	10.0	10.0		9.0			
Sample Collection (date indicated)	05/14/10	05/14/10	05/14/10	05/14/10	05/14/10	05/14/10	05/14/10	05/14/10	05/13/09	05/14/10	05/13/10		
Cumulative Volume Purged (gallons)	58.0	45.0	33.0	28.0	56.0	40.0	38.0	40.0	72.0	36.0	62.0		
Field Measurements During Sample Collection (units as shown) ³													
pH (units)	9.82	4.73	4.57	5.74	3.85	4.34	5.53	3.40	3.06	3.78	5.59	6.5 - 8.5	
Temperature (deg C)	13.6	13.7	14.6	13.7	13.6	13.6	15.8	13.8	10.7	13.1	10.9		
Specific Conductance (uS)	1972	7677	7137	7332	9087	12.01 (ms)	10.71 (ms)	14.41 (ms)	14.04 (ms)	9743	6543		
Turbidity (NTU)	>1000	56.5	49.1	143	54.8	155	285	197	168	157	243		
Dissolved Oxygen (ppm)	0.06	1.29	1.65	1.43	1.08	1.05	1.95	0.91	2.02	1.37	2.27		
ORP (mV)	- 300	+ 28	+ 161	- 1	+ 215	+ 124	+ 6	+ 219	+ 239	+ 199	- 14		
Visual Observation	black sed	Orange	sl. orange	sl. orange	sl. orange	sl. orange	grey	sl. orange	sl. orange	sl. orange	black sed		
Volatile Organic Compounds (mg/L):													
Benzene	2.2 D	4.6 D	15 D	0.0073 D	30 D	6.9 D	0.13 D	42 D	240 D	73 D	0.0085 D	0.001	
Wet Chemistry (mg/L):													
Alkalinity	151 D	193 D	209 D	265 D	ND	167 D	364 D	ND	ND	ND	263 D		

Notes:

1. Field measurements were collected immediately before groundwater sample collection.

2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).

3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to dryness 4 consecutive days prior to sample collection.

4. " D " = Analysis performed at the secondary dilution factor.

5. "ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

AREA-BY-AREA MOVING AVERAGE TREND ANALYSIS (MATA) SUMMARY

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

Location	No. of Data Pts.	MATA Pts.	Moving Average Trend ¹ [increasing (I), decreasing (D), neutral (N)]									
			рН	n-Butylbenzene	Isopropylbezene	n-Propylbenzene	Total Arsenic	CN				
Area I Monitoring Wells												
A1-MW-1	7	4	NA	NA	NA	NA	NA					
A1-MW-2	7	4	NA	NA	NA	NA	NA					
A1-MW-3	7	4	NA	NA	NA	NA	NA					
A1-MW-4	8	5	NA	NA	NA	NA	NA					
A1-MW-5	8	5	N	NA	NA	NA	NA					
A1-MW-6	8	5	NA	Ν	N	N	D					
A1-MW-8	8	5	NA	NA	NA	NA	I					
A1-MW-9	8	5	NA	NA	NA	NA	NA					
A1-MW-M2	7	4	NA	NA	NA	NA	NA					
A1-P-4	7	4	NA	NA	NA	NA	NA					
Area II Monitoring Wells												
A2-MW-3	5	2	TBD	TBD	TBD	TBD	TBD					
A2-MW-4R	5	2	TBD	TBD	TBD	TBD	TBD					
A2-MW-5	5	2	TBD	TBD	TBD	TBD	TBD					
A2-MW-10	4	1	TBD	TBD	TBD	TBD	TBD					
A2-MW-13	5	2	TBD	TBD	TBD	TBD	TBD					
A2-MW-14	4	1	TBD	TBD	TBD	TBD	TBD					
A2-MW-15	3	0	TBD	TBD	TBD	TBD	TBD					
A2-MW-16	5	2	TBD	TBD	TBD	TBD	TBD					
A2-MW-17	5	2	TBD	TBD	TBD	TBD	TBD					
Area III Monitoring Wells												
A3-MW-3	3	0	TBD	TBD	TBD	TBD	TBD	TBD				
A3-MW-6	3	0	TBD	TBD	TBD	TBD	TBD	TBD				
A3-MW-7	5	1	TBD	TBD	TBD	TBD	TBD	TBD				
A3-MW-9	4	1	TBD	TBD	TBD	TBD	TBD	TBD				
A3-MW-10	4	1	TBD	TBD	TBD	TBD	TBD	TBD				

Notes:

1. In general accordance with the LTGWM Plan for each Area and based upon the groundwater results to date any parameter exceeding the groundwater quality standard for two (2) consecutive

2. TBD = to be determined; insufficient data exists to make a trend determination.

3. " -- " = not analyzed for this parameter.

4. NA = indicates there have not been two consecutive exceedances of the GWQS/GV at this location and trending is "not applicable".

= Concentration versus time and 4-year moving average plots are provided in Attachment 2.

FIGURES

GROUNDWATER FLOW MODEL (GEOMATRIX, DECEMBER 1998)

CONCENTRATION VERSUS TIME & MOVING AVERAGE TREND ANALYSIS (MATA) PLOTS

PERIODIC REVIEW REPORT MARCH 9, 2009 TO APRIL 1, 2011 RIVERBEND, LLC - AREA II

APPENDIX D-4

NOVEMBER 2010

SECOND SEMI-ANNUAL AREA III ORC MONITORING EVENT

Strong Advocates, Effective Solutions, Integrated Implementation

February 9, 2010

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619-9) Area III ORC Bi-Annual Monitoring Report – November 2010

Dear Mr. Moore:

On behalf of our client, Riverbend, LLC, TurnKey Environmental Restoration, LLC, has prepared this letter report to transmit the results of the November 2010 Oxygen Release Compound (ORC) bi-annual monitoring event for Area III (Former Warehouse Parcel) of BUDC's Riverbend Site, Buffalo, NY (formerly Steelfields, see Figure 1).

PURPOSE

In accordance with the March 2008 ORC Maintenance and Monitoring Manual (Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III, May 2008) and the May 5, 2008 Response to NYSDEC Comment letter for Areas II and III (comment/response no. 19), ORC wells A3-ORC-1 through A3-ORC-11 are to be purged, on a bi-annual basis (every 6 months), until 10 well volumes are removed or for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. From November 15-18, 2010, TurnKey personnel purged and collected groundwater samples for field analysis of dissolved oxygen, pH, oxidation-reduction potential (ORP), temperature, and water level as well as laboratory analysis of alkalinity and benzene from the eleven Area III ORC wells. In addition, the ORC "socks", suspended in each of the ORC wells, were removed and assessed during the current monitoring event; none of the socks required replacement and were re-installed.

NOVEMBER 2009 ORC MONITORING EVENT

All eleven Area III ORC wells, A3-ORC-1 through A3-ORC-11, were purged and sampled using dedicated polyethylene disposable bailers. As shown in Table 1, three of the eleven wells were sampled upon completing the 10 well volume requirement, while the remaining eight wells were sampled on the fourth day of purging. Samples from all eleven locations were transferred to laboratory-supplied, pre-preserved sample bottles and transported, under

chain of custody command, to TestAmerica for analysis of benzene per SW846 Method 8021 and alkalinity per MCAWW Method 310.1.

Field measurements and laboratory analytical results are summarized on Table 1. GWQSs/GVs are provided for comparison. As indicated on Table 1, benzene was detected at a concentration exceeding the GWQS at all eleven ORC well locations. In addition, pH was measured below GWQS of 6.5 at all of the ORC wells, with one exception. Well A3-ORC-1 pH was measured above the GWQS of 8.5.

PLANNED ACTIVITIES

The next planned monitoring event for Area III is tentatively scheduled for May 2011. This event is the comprehensive annual groundwater monitoring event for the Riverbend Site (Areas I, II, and III).

Please contact us if you have any questions.

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann

Project Manager

Enclosures

ec: Peter Cammarata (BUDC) David Stebbins (BUDC) Paul Werthman (TurnKey)

File: 0171-003-600

TABLES

TABLE 1

SUMMARY OF ORC ANALYTICAL RESULTS

Area III: Former Warehouse Parcel 2010 Second Semi-Annual ORC Monitoring Event Riverbend, LLC Buffalo, New York

PARAMETER	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ²	
Field Measurements During Purge (units as sh	ield Measurements During Purge (units as shown) ¹												
Static Depth to Water (fbTOR)	5.95	6.23	6.54	5.91	6.43	6.81	6.75	6.73	4.35	6.55	6.03		
Total Depth (fbTOR)	14.08	14.43	14.39	14.37	14.01	14.38	14.38	14.68	14.03	14.55	14.57		
One Casing Volume (gallons)	5.30	5.35	5.10	5.50	4.90	4.90	4.90	5.10	6.30	5.20	5.50		
Number of Volumes Purged	8.7	9.0	5.5	5.1	10.2	6.5	6.7	7.3	10.3	7.9	10.2		
Sample Determination ³	4-days	4-days	4-days	4-days	volume	4-days	4-days	4-days	volume	4-days	volume		
Purge: Day 1 (05/11/09)/(11/15/10) (gallons)	14.0	14.0	7.0	7.0	15.0	8.0	9.0	10.0		14.0	26.0		
Purge: Day 2 (05/12/09)/(11/16/10) (gallons)	10.0	12.0	7.0	7.0	12.0	8.0	8.0	9.0		9.0	22.0		
Purge: Day 3 (05/13/09)/(11/17/10) (gallons)	10.0	12.0	7.0	7.0	12.0	8.0	8.0	9.0		9.0	8.0		
Purge: Day 4 (05/14/09)/(11/18/10) (gallons)	12.0	10.0	7.0	7.0	11.0	8.0	8.0	9.0	65.0	9.0			
Sample Collection (date indicated)	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/18/10	11/17/10		
Cumulative Volume Purged (gallons)	46.0	48.0	28.0	28.0	50.0	32.0	33.0	37.0	65.0	41.0	56.0		
Field Measurements During Sample Collection	(units as sho	own) ³											
pH (units)	10.62	4.61	4.63	5.71	3.87	4.41	5.38	3.64	2.73	3.60	5.31	6.5 - 8.5	
Temperature (deg C)	12.3	13.3	12.6	11.5	11.6	12.3	10.3	12.2	11.3	10.0	15.3		
Specific Conductance (uS)	1606	7781	7493	8522	9388	12.24(ms)	10.47(ms)	12.85(ms)	10.96(ms)	9825	6543		
Turbidity (NTU)	>1000	65.7	124	91.7	65	>1000	233	360	81.3	81.7	124		
Dissolved Oxygen (ppm)	0.05	1.58	1.18	1.55	1.51	1.28	1.62	1.33	1.22	1.37	1.71		
ORP (mV)	- 299	+ 112	+ 113	- 83	+ 126	+ 34	+ 0	+ 180	+ 224	+ 185	+ 24		
Visual Observation	black sed	Yellow tint	Yellow tint	Yellow tint	Yellow tint	Yellow tint	grey	sl. orange	sl. orange	Yellow Staining			
Volatile Organic Compounds (mg/L):													
Benzene	1.9 D	13 D	5.4 D	0.0032 D	37 D	7 D	0.84 D	48 D	220 D	89 D	0.0026 D	0.001	
Wet Chemistry (mg/L):													
Alkalinity	155 D	141 D	272 D	301 D	ND	128 D	283 D	ND	ND	ND	215 D		

Notes:

1. Field measurements were collected immediately before groundwater sample collection.

2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).

3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to dryness 4 consecutive days prior to sample collection.

4. " D " = Analysis performed at the secondary dilution factor.

5. "ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

###

FIGURES

NETWORK MONITORING WE
NETWORK MONITORING WE
NON-NETWORK MONITORIN
ORC SOCK WELL
SVE WELL
NON-NETWORK PIEZOMETE
GROUNDWATER COLLECTIC

APPENDIX E

AREA III ORC ANNUAL INSPECTION FORMS

(PROVIDED ELECTRONICALLY)

May 2009 November 2009 May 2010 November 2010

APPENDIX E-1

NOVEMBER 2009

AREA III ORC ANNUAL INSPECTION FORMS

ORC WELL ANNUAL INSPECTION FORM Active ORC monitoring wells

reparer's Name: Jam			Client:	Riverhand II	<u>^</u>	
reparer's Name: Jem				Niverbenu, LL	<u>.</u>	
	Behran Lt		Date/Time	1/1/0	7 1300	
sample location:	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-
purge start:	11/3/09	11/3/09	11/3/04	11/3/09	11/3/05	11/3/09
purge end:	11/6/09	11/6/09	116/09	116/09	11/6/09	11/6/09
total volumes purged:	63 gal	60 gals	NOR 34 gels	32 mils	Sigals	42 94
sampling dates:	11/6/09	11/6/09	11/6/09	11/6/09	11/6/09	11/6/0
Field groundwater qu	uality measure	ments:				
Water Level	4.51	509	5.38	4.98	5.16	900 S. 9
Bottom Depth	14.18	14.45	14.38	14.38	13.96	14.23
рН	5.61	4.58	4.26	5.51	516	4.04
Temperature	11.1	13.2	12.4	11.9	12.2	10.9
DO	.93	161	1.01	94	.74	1.07
ORP	-35	32	119	-37	114	33
Well Integrity:						
7 Cement seal	Crick 2	Stucket	Cincke	Contrad	Conclud	Cincher
Pro-Casing condition	N/4	NA	<u>~/4</u>	NA	NA	NA
Lock condition	Berd	5002	acre	goid	ROJE	esond
J-plug condition	good	goud	good	good	goure	good
Refer to Site Plan for we	ll locations				-	
ORC Sock's:						
Have any Socks been re	placed ?	🗍 yes)		
If replaced on what date	and why.	·	X			
Are socks fully submerge	ea in well screens.		A ves			
If no explain why.						
·						
	<u> </u>			<u></u>		
Are all ORC wells being	sampled and main	tained according	to the site manaç	gement plan	yes	🗌 no
If no please state why.						
					,	

lastes like, gent

ORC WELL ANNUAL INSPECTION FORM Active ORC monitoring wells

Project Name: Long-le	rm GWM		Project No	D.: 017/-0	03-600	
Project Location: Area			Client:	Kiverbund		·
Preparer's Name:	Bekindt		Date/Time	e: 11/6/09	136 0	
sample location:	A3-0RC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	
purge start:	11/3/09	11/3/09	11 5/09	1/3/09	11/3/09	
purge end:	11/6/07	11/6/09	11/5/09	11/6/04	11/5/09	
total volumes purged:	40 guls	43 gals	70 guls	40 guls	6294	
sampling dates:	11/6/09	11/6/09	11/5/09	1116109	11/5/08	
<u>Field groundwater qu</u>	ality measure	<u>ments</u> :				
Water Level	5.84	6.06	7.37	5-31	10.41	
Bottom Depth	14.63	14.63	13-98	14 55	1457	
pН	4.91	3.34	2.50	3.12	5-31	
Temperature	(1.0	(1.0)	10.0	10.9	12.3	
DO	1.01	-91	1.44	1.53	2.54	
ORP	-12	172	269	140	- 59	
Well Intearity:						
→ Cement seal	6.140	(, k)	$\overline{\langle u \rangle}$	G: In)	Curked	Grack
Pro-Casing condition	N/A.	1/A	NA	NA	1/A	NA
Lock condition	Touc	good	9002	General	لورم	90.02
J-plug condition	90.2	4005	good	goud	igoid	9002
Refer to Site Plan for well	locations					
ORC Sock's:				/		
Have any Socks been rep	laced ?	📋 yes		0		
If replaced on what date a	and why.					
·····						
Are socks fully submerged	d in well screens.		yes	no		
If no explain why.						
					· · · · · · · · ·	
			4 . 41 . 14		<u> </u>	
Are all ORC wells being s	ampled and maint	ained according	to the site mana	igement plan	yes	Ano
ii no please state why.		<u> </u>				}
_						
Initial: TAB				Date: /	1/6/09	

APPENDIX E-2

NOVEMBER 2010

AREA III ORC ANNUAL INSPECTION FORMS

1

ANNUAL INSPECTION FORM ORC Monitoring Wells

Project Name: Area H	FORC	hells	Project No.	: 0171-0	03-600	
Project Location: Rive	bend		Client:	Riverbert		
Preparer's Name: TAB			Date/Time:	1/19/10	1500	
Sampling dates:	A3-ORC-7 11/18/10	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11 H 17/n	929.0
Field aroundwater quality	r measurements	1				
Water Level	6.91	7.03	5.63	6.66	9.98	
Bottom Depth	14.38	34.68	-2-73-140	3 14.55	14.57	
<u>pH (units)</u>	5.38	3.64	2.73	3,60	5.31	
Temperature (deg. F)	10.3	12.2	14.3	10.0	15.3	
Sp. Cond. (uS/mS)	10,47 ms	12.85 (ms)	10.96(ms)	9825	6453	
DO (ppm)	1.62	1.33	1.22	1.37	131	
ORP (mV)	O	180	224	184	24	
Laboratory Analysis (che	ck all those that	t apply)			,	
Benzene Method 8021	X .	x	х	x	x	
Total Alkalinity	×	×	×	X	X	
					A	An 11 Yould 1 YO MAY
Refer to Figure 1 for well	locations					
Well integrity:					######################################	1
Cement seal	good	🗌 poor	If poor, note Well No.(s): Cruelia	y on hel	l seals
Pro - casing condition	good	poor	If poor, note damage:	No pri	o casilys	
Lock condition	good	D poor	If poor, note Well No.(s):		,
Working J - plug	Yes yes	🗌 no	If no, note Well No.(s)	:		
OPC Sooke:						kanakan menangkan perinta ing perinta ang perinta ang perinta ang perinta ang perinta ang perinta ang perinta a Perinta ang perinta ang peri
Have any Socks been re	nlaced?	ves				
If yes, indicate replacem	ent date and reas	son:	$Z \searrow$			
ii yoo, indicato replacem	oni dato and road					
	<u> </u>					
Are socks fully submerge	ed in well screens	?	yes no	.17		
If no, explain why not:						
••••		-				
						NALING AND AND AND AND AND AND AND AND AND AND
General:		interined eccord	ing to the Site Man	agament Dian?	V	no no
Are all ORC wells being	sampled and mai	intaineo accoro	ing to the Site Man	agement rians	¥ 155	
ii no, explain why not:			,			
				.1.	1	
Initial: TAR				Date: 1/1/	9/10	
			рани — — — — — — — — — — — — — — — — — — —		1	

.

Ĵ.

1.11

ANNUAL INSPECTION FORM ORC Monitoring Wells

Project Name: Area -	III Orch	vells	Project N	<u>o.: 6171-</u>	003-60	<u>ठ</u>
Project Location: Rivel	m		Client:	Riverbe	nd	
Preparer's Name:	B		Date/Tim	e: 1/19/10	1500	
Sampling dates:	A3-ORC-1	A3-ORC-2	A3-ORC-3 11/18/10	A3-ORC-4	A3-ORC-5 10/15/10	A3-ORC-6 11/18/10
Field groundwater qualit	y measurements		*			
Water Level	5.94	6.38	6.98	6.01	9.76	7.02
Bottom Depth	14.08	14,43	14,39	* 14.37	14.01	14.38
pH (units)	10.62	4.6	4.63	5.71	3.87	4.41
Temperature (deg. F)	12.3	13.3	12,6	165	11.6	12.3
Sp. Cond. (uS/mS)	1606	7-7-81	7-4-43	8522	4388	12.24 MS
<u>DO (ppm)</u>	<u> </u>	<u>h58</u>	1.18	1.55	1.51	1.28
ORP (mV)	-299	112	113	~83	126	34
Laboratory Analysis (che	eck all those that	<u>t apply)</u>				
Benzene Method 8021	X	x	X	x	X	<u>×</u>
Total Alkalinity	<u>x</u>	X	X	X	X	X
				/ * *///		
						<u></u>
Refer to Figure 1 for we	ll locations		<u>*0</u>	RE-4, Was T	Dawyed, A	NewAstickup
Well integrity:					· · · ·	was fut Back
Cement seal	good	poor	If poor, note Well No	D.(S): Cracks	on ceant	Seuls
Pro - casing condition	🗌 good	Door	If poor, note damage	e: No procus	my on rel	<u>b</u>
Lock condition	good	poor	If poor, note Well No	o.(s):		
Working J - plug	yes yes	no	If no, note Well No.((s):		
ORC Socks:					and annual for the second s	AL MARKAY AL MARKAY AL MARKAY AL MARKAY AND A MARKAY AND A MARKAY AND A MARKAY AL MARKAY AND A MARKAY AND A MARKAY AND A MARKAY AND A MARKAY
Have any Socks been re	eplaced?	🗌 yes	no 🔍			
If yes, indicate replacem	ent date and reas	son:				N'
Are socks fully submerg	ed in well screens	\$?	yes no			
If no, explain why not:		u=				
·			-7+AU/-			
General:						an an an an an an an an an an an an an a
Are all ORC wells being	sampled and ma	intained accord	ling to the Site Ma	anagement Plan?	yes	🗌 no
If no, explain why not:	I.		Ū	-	6.S	
- • • "						
					l. l.	
Initial: 1413				Date: ()()	19/10	
• ~				Ę.		

APPENDIX F

PROPOSED MODIFICATION LETTER

(PROVIDED ELECTRONICALLY)

Strong Advocates, Effective Solutions, Integrated Implementation

April 25, 2011

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend, LLC – Buffalo, New York Site NYSDEC Site No. V00619-9 Modification Request for Areas I, II, and III

Dear Mr. Moore:

This letter is intended to request Department approval of our proposed revisions to the Long-Term Groundwater Monitoring and Site Management Plans for the Riverbend, LLC Site (see Figure 1) as further detailed below.

PURPOSE

Based upon an evaluation of operations and maintenance (O&M) procedures and analytical data from 2007 to the present, it is our intention to modify the O&M, monitoring, and reporting requirements for Areas I, II, and III at the Riverbend Site immediately upon your approval. To that end, we are proposing to:

- reduce the frequency of Area II groundwater pre-treatment system (GWPTS) onsite visits by utilizing off-site remote monitoring via the internet;
- reduce the Area II O&M reporting frequency from quarterly (four times per year) to annually;
- modify the groundwater parameter lists of Areas I, II, and III by eliminating those parameters no longer relevant to the assessment of Site groundwater quality; and
- modify the current purging requirement from 10 well volumes (or 4 days, whichever occurs first) to low-flow sampling of the eleven oxygen release compound (ORC) wells in Area III.

The following sections detail our justifications for these proposed modifications and Figure 1 presents all referenced monitoring locations.

AREA II O&M MODIFICATIONS

The entire perimeter collection system and GWPTS were constructed and programmed utilizing a personal computer and Sensaphone SCADA 3000 AutoDialer. The SCADA 3000 has capabilities for real-time remote monitoring and certain remote system access and process control. Following re-installation of a high-speed internet connection, the system variables can be monitored nearly continuously, enabling more efficient and proactive operation, maintenance, and monitoring. We propose to reduce the number of on-site O&M monitoring visits from the current frequency of three times per week to one by utilizing this remote system. We recognize that more frequent on-site monitoring may be required based on remote monitoring observations and alarm conditions; however the majority of time will only require one visit per week.

AREA II O&M REPORTING

Because the Area II groundwater collection system and GWPTS have been operating since 2008 with little to no major interruptions or shut-downs, we propose to reduce the O&M reporting frequency from quarterly to annually (once per year). We believe that with this established track record, it warrants a reduction in reporting frequency. We do, however, understand that the NYSDEC still has the option to request any information from Riverbend at any time throughout the calendar year prior to the annual submittal.

PARAMETER MODIFICATIONS

As part of our historical database for Areas I, II, and III, all analyzed parameters have been tabulated since 2004 for Area I and 2007 for Areas II and III. Based upon this thorough summary, we were able to determine which compounds were never detected above method detection limits as well as which detected compounds were consistently reported at concentrations below the NYSDEC Class GA Groundwater Quality Standard/Guidance Value (GWQS/GV). Our assessment also included time-concentration trend analysis of detected compounds as well as a determination of the adequacy of each compound as an appropriate indicator of groundwater quality impairment for each Area. Supporting documentation including summary tables and concentration versus time plots (where appropriate) for Areas I, II, and III are presented in Attachments 1, 2, and 3, respectively.

As a result of our assessment, a summary of our proposed parameter list modifications for Areas I, II, and III are included in the attached Table 1. Justification for these modifications is discussed below.

• Area I: Former Republic Steel Plant Parcel

Eliminate arsenic, chromium, and lead analysis at wells A1-MW-1, A1-MW-2, A1-MW-3, A1-MW-4, A1-MW-5, A1-MW-9, A1-MW-M2, and A1-P-4. With the exception of occasional outliers, analytical data for these compounds at these locations indicates that they have historically been reported as non-

detect or at concentrations significantly below their respective GWQSs with no discernable trend. Arsenic was reported slightly above the GWQS at well A1-MW-1 during one event, which is not consistent with historical results for this location since that time and is therefore considered to be an outlier. Based on historical results, these inorganic parameters at the wells identified above are not considered to be relevant to the assessment of Area I groundwater quality.

- Eliminate chromium and lead analysis for wells A1-MW-6 and A1-MW-8 for reasons stated above. Arsenic will continue to be monitored at these two locations.
- Eliminate total petroleum hydrocarbon (TPH) monitoring of wells A1-MW-1, A1-MW-3, A1-MW-6, and A1-MW-9. TPH has been reported as non-detect at all locations since 2004, with one exception. Although well A1-MW-6 has historically detected TPH, due primarily to the presence of LNAPL, the lack of a GWQS for this compound plus continued analysis of volatile organic compounds (VOCs) means that the TPH analysis is redundant and unnecessary at this location.

• Area II: Former Donner-Hanna Coke Plant Parcel

• Eliminate arsenic, chromium, and lead analysis at all Area II wells. With only a few exceptions (e.g., outliers), these metals have been reported as non-detect in all Area II wells since 2007. At those locations where metals were detected, concentrations were reported well below their respective GWQSs. Metals concentrations were only reported slightly above their respective GWQSs at two locations (A2-MW-4R and A2-MW-14) during a single event for each, which were immediately followed by several non-detect events or reported at concentrations well below the standard. There is no discernable trend (either increasing or decreasing) at either of these locations as a result. Based on historical results, these parameters are not considered to be relevant to the assessment of Area II groundwater quality.

• Area III – Former Republic (LTV) Warehouse Parcel

o Eliminate arsenic, chromium, and lead analysis at all Area III wells except for one. Only well A3-MW-3 consistently reported arsenic concentrations exceeding the GWQS during two of three events. For the other wells and with only a few exceptions (e.g., outliers), these metals have been reported as non-detect in all Area III wells since 2007. At those locations where metals were detected, reported concentrations were well below their respective GWQSs. There was only one occurrence of a reported concentration slightly

exceeding the GWQS; arsenic at well A3-MW-3 and lead at A3-MW-9. There is no discernable trend (either increasing or decreasing) at either of these locations. Based on historical results, these parameters are not considered to be relevant to the assessment of Area III groundwater quality.

- Eliminate cyanide at all Area III wells except for one. Only well A3-MW-3 consistently reported cyanide concentrations exceeding the GWQS during every event, all other concentrations were either outliers (e.g., occurring during only one event) or reported well below the GWQS. Based on historical results, cyanide is not considered to be relevant to the assessment of Area III groundwater quality, except in the vicinity of A3-MW-3.
- o Modify the current purging requirement from 10 well volumes (or 4 days, whichever occurs first) to low-flow sampling of the eleven oxygen release compound (ORC) wells in Area III. Because oxygen is being released at these locations, dissolved oxygen will be monitored during low-flow sampling and only upon stabilization will representative groundwater samples be collected. Modification of this procedure will greatly reduce the volume of groundwater currently being purged from each ORC well while obtaining the same representative groundwater data.

As you know, the next comprehensive site-wide groundwater monitoring event is tentatively scheduled for May 2011 so we are anxious begin implementation of the proposed modifications immediately upon your approval. If you wish to discuss our proposed modifications further, please contact me at your earliest convenience.

Sincerely, TurnKey Environmental Restoration, LLC

Bryan C. Hann

Bryan C. Hann Project Manager

Enclosures

ec: P. Cammarata (Riverbend) D. Stebbins (Riverbend) P. Werthman (TurnKey) D. Szymanski (NYSDEC)

file: 0171-006-500

TABLES

TABLE 1

ANALYTICAL PARAMETERS PER AREA PROPOSED MODIFICATIONS

Modification Request for Areas I, II, and III Riverbend, LLC Buffalo, New York

Location	Modification Request					
Area I Wells						
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	continue monitoring					
STARS List VOCs (Method 8021)	continue monitoring					
Arsenic (Method 6010)	only analyze at wells A1-MW-6 and A1-MW-8					
Chromium (Method 6010)	no longer analyze for this compound					
Lead (Method 6010)	no longer analyze for this compound					
Total Petroleum Hydrocarbons (TPH) (Method 1664) for wells: A1-MW-1 A1-MW-3 A1-MW-6 A1-MW-9	no longer analyze for this compound					
Area II Wells						
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	continue monitoring					
STARS List VOCs (Method 8021)	continue monitoring					
Arsenic (Method 6010)	no longer analyze for this compound					
Chromium (Method 6010)	no longer analyze for this compound					
Lead (Method 6010)	no longer analyze for this compound					
Area III Wells						
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	continue monitoring					
STARS List VOCs (Method 8021)	continue monitoring					
Arsenic (Method 6010)	only analyze at well A3-MW-3					
Chromium (Method 6010)	no longer analyze for this compound					
Lead (Method 6010)	no longer analyze for this compound					
Cyanide (Method 335)	only analyze at well A3-MW-3					
Area III ORC Wells						
Field Parameters: pH, temperature, dissolved oxygen, turbidity, ORP, water level	continue monitoring					
Benzene (Method 8021)	continue monitoring					
Alkalinity (Method 310.2)	continue monitoring					
Purging Procedure (10 volumes or 4 days)	modify to low-flow sampling once DO has stabilized					

FIGURES

NETWORK MONITORING WE
NETWORK MONITORING WE
NON-NETWORK MONITORIN
ORC SOCK WELL
SVE WELL
NON-NETWORK PIEZOMETE
GROUNDWATER COLLECTIC

AREA I

HISTORIC SUMMARY TABLES & CONCENTRATION VS. TIME PLOTS

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-1

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV		Sample Date							
	(ug/∟)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10	
Water Quality Field Measurements										
pH (units)	6.5 - 8.5	7.84	7.25		7.25	7.22	7.74	7.41	7.20	
Temperature (°C)		15.4	16.4		12.0	14.9	7.5	10.0	9.9	
Sp. Conductance (uS)		730	672		636	685	623	575	551.0	
Turbidity (NTU)		7.1	0.77		9.01	3	31	40.1	81.6	
DO (ppm)	-	NM	NM		3.4	11.1	7.49	1.24	2.96	
Eh (mV)		-86	-136		-135	-115	77	-144	- 115	
STARS VOCs (ug/L)										
Benzene	1	< 10	< 0.2		< 0.2	< 0.7	< 0.2	0.18 J	< 0.2	
n-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4	
sec-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4	
tert-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4	
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4	
Ethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2	
Isopropylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2	
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4	
n-Propylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2	
Toluene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	0.33	< 0.2	
1,2,4-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2	
1,3,5-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2	
Xylenes (total)	15	< 30	< 0.6		< 0.6	< 4	< 0.6	< 0.6	< 0.6	
Total Metals (mg/L)		_								
Arsenic	0.025	0.015	0.014		0.011	< 0.01	< 0.01	0.024	0.0335	
Chromium	0.05	< 0.002	< 0.002		< 0.002	< 0.01	< 0.004	< 0.004	< 0.004	
Lead	0.025	< 0.003	< 0.003		< 0.003	< 0.05	< 0.005	< 0.005	< 0.005	
Total Petroleum Hyrdocarbons (mg/	L)									
ТРН	NA	< 5	< 5		< 5	< 5	< 5	< 5	< 5	

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

= Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-2

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV		Sample Date								
	(ug/L)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10		
Water Quality Field Measurements											
pH (units)	6.5 - 8.5	7.23	7.23		7.32	7.38	7.74	7.64	7.53		
Temperature (°C)		17.4	18.6		11.1	17.1	7.1	8.6	9.7		
Sp. Conductance (uS)		845	870		670	817	1	433	476.2		
Turbidity (NTU)		1.27	0.93		1.9	0	14	2.9	4.79		
DO (ppm)		NM	NM		3.19	9.1	3.23	1.47	1.29		
Eh (mV)		-23	-110		-80	-72	257	-121	- 122		
STARS VOCs (ug/L)											
Benzene	1	< 10	< 0.2		< 0.2	< 0.7	< 0.2	< 0.2	< 0.2		
n-Butylbenzene	5	< 10	1.1		< 0.4	< 1	< 0.4	< 0.4	< 0.4		
sec-Butylbenzene	5	< 10	0.85		< 0.4	< 1	< 0.4	< 0.4	< 0.4		
tert-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4		
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4		
Ethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
Isopropylbenzene	5	< 10	0.8		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4		
n-Propylbenzene	5	< 10	0.77		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
Toluene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
1,2,4-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
1,3,5-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2		
Xylenes (total)	15	< 30	< 0.6		< 0.6	< 4	< 0.6	< 0.6	< 0.6		
Total Metals (mg/L)		_									
Arsenic	0.025	< 0.0049	< 0.004		< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01		
Chromium	0.05	< 0.002	< 0.002		< 0.002	< 0.01	< 0.004	< 0.004	< 0.004		
Lead	0.025	< 0.003	< 0.003		< 0.003	< 0.05	< 0.005	< 0.005	< 0.005		
Total Petroleum Hyrdocarbons (mg/	L)										
ТРН	NA		< 5								

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

= Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-3

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV		Sample Date									
	(ug/L)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10			
Water Quality Field Measurements												
pH (units)	6.5 - 8.5	7.42	7.23		6.68	7.22	7.10	6.80	7.04			
Temperature (°C)		14.8	15.8		12.5	14.0	10.1	11.0	11.3			
Sp. Conductance (uS)		1084	1168		929	100	1	946	1144			
Turbidity (NTU)		6.8	13.2		17.9	59	54	37.8	45.9			
DO (ppm)		NM	NM		4	11.08	2.05	1.47	6.02			
Eh (mV)		113	-24		0	29	185	-48	+ 4			
STARS VOCs (ug/L)												
Benzene	1	< 10	< 0.2		< 0.2	< 0.7	< 0.2	< 0.2	< 0.2			
n-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4			
sec-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4			
tert-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4			
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4			
Ethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2			
Isopropylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2			
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4			
n-Propylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2			
Toluene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	0.2 J	0.2 J			
1,2,4-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2			
1,3,5-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2			
Xylenes (total)	15	< 30	< 0.6		< 0.6	< 4	< 0.6	< 0.6	< 0.6			
Total Metals (mg/L)		_										
Arsenic	0.025	< 0.0049	< 0.004		< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01			
Chromium	0.05	< 0.002	< 0.002		< 0.002	< 0.01	< 0.004	< 0.004	< 0.004			
Lead	0.025	< 0.003	< 0.003		< 0.003	< 0.05	< 0.005	< 0.005	< 0.005			
Total Petroleum Hyrdocarbons (mg/	L)											
ТРН	NA	< 5	< 5		< 5	< 5	< 5	< 5	< 5			

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

= Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-4

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	QS/GV Sample Date							
	(ug/∟)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	7.95	6.65	6.94	6.83	6.69	7.33	6.68	6.80
Temperature (°C)	-	15.2	17.3	10.4	11.0	14.9	8.2	11.3	12.6
Sp. Conductance (uS)	-	773	893	977	810	805	1	772	832.9
Turbidity (NTU)	-	7	14.9	33.7	11.3	61	56	27.8	36.6
DO (ppm)		NM	NM	NM	4.3	11.33	4.12	2.64	2.23
Eh (mV)		90	-42	70	-92	-81	136	-29	+ 33
STARS VOCs (ug/L)									
Benzene	1	< 10	< 0.2	< 0.2	< 0.2	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 10	< 0.4	0.38 J	< 0.4	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 10	< 0.4	0.22 J	< 0.4	< 1	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 30	< 0.6	< 0.6	< 0.6	< 4	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)		_							
Arsenic	0.025	< 0.0049	0.0048	< 0.004	< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/	_)								
ТРН	NA		< 5						

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-5

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	QS/GV Sample Date							
	(ug/L)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	11.54	10.75	10.93	11.01	11.43	11.54	10.38	10.27
Temperature (°C)		15.4	17.5	11.4	11.0	16.2	7.7	11.3	11.0
Sp. Conductance (uS)	-	897	866	742	580	800	0	672	655.4
Turbidity (NTU)		2.65	0.62	4.46	1.63	6	18	3.26	1.54
DO (ppm)		NM	NM	NM	3.49	10.76	3.7	1.65	1.77
Eh (mV)	-	-159	-103	-114	-165	-170	89	-100	- 116
STARS VOCs (ug/L)									
Benzene	1	< 10	< 0.2	< 0.2	< 0.2	< 0.7	< 0.2	0.22	0.071 J
n-Butylbenzene	5	< 10	< 0.4	< 0.4	0.31 J	< 1	< 0.4	0.92	< 0.4
sec-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	0.077 J
1,3,5-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 30	< 0.6	< 0.6	< 0.6	< 4	< 0.6	0.39 J	< 0.6
Total Metals (mg/L)		-							
Arsenic	0.025	< 0.0049	< 0.004	< 0.004	< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/l	_)								
ТРН	NA		< 5						

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-6

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	S/GV Sample Date							
	(ug/∟)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	7.06	7.07	7.10	6.50	6.89	7.13	6.48	6.31
Temperature (°C)		16.3	15.3	11.8	9.6	18.8	10.7	11.6	13.8
Sp. Conductance (uS)		1202	1251	1271	1303	130	1	1223	1130
Turbidity (NTU)		47.3	35	69	>1000	21	131	NA	8.8
DO (ppm)		NM	NM	NM	3.98	10.13	1.2	1.94	2.99
Eh (mV)		-68	-56	-138	-112	-138	90	-104	- 104
STARS VOCs (ug/L)									
Benzene	1	< 50	4.1	3.9	< 10	< 500	< 20	3.4	1.9 D,J
n-Butylbenzene	5	< 50	6.5	4.6	25	3300	< 40	13	5.3 D,J
sec-Butylbenzene	5	< 50	4.2	6.3	< 20	< 500	< 40	13	3.2 D,J
tert-Butylbenzene	5	< 50	< 0.4	< 0.4	< 20	< 500	< 40	< 2	< 4
p-Cymene (4-Isopropyltoluene)	5	< 50	< 0.4	0.97	< 20	< 500	< 40	< 2	0.54 D
Ethylbenzene	5	< 50	< 0.2	1.2	< 10	< 500	< 20	< 1	< 2
Isopropylbenzene	5	< 50	6.2	6.4	< 10	< 500	< 20	20	5.3 D
Methyl-t-Butyl Ether (MTBE)	10*	< 50	< 0.4	< 0.4	< 20	< 500	< 40	< 2	< 4
n-Propylbenzene	5	< 50	10	12	20	590	40	33	10 D
Toluene	5	< 50	0.21	1.1	< 10	< 500	< 20	2.7	0.95 D,J,B
1,2,4-Trimethylbenzene	5	< 50	< 0.2	1.7	< 10	880	< 20	< 1	< 2
1,3,5-Trimethylbenzene	5	< 50	< 0.2	0.33	< 10	650	< 20	< 1	< 2
Xylenes (total)	15	< 150	0.93	1.5	< 30	< 2000	< 60	4	1.4
Total Metals (mg/L)		_							
Arsenic	0.025	0.046	0.14	0.13	0.29	< 1	0.079	0.071	0.0774
Chromium	0.05	0.0026	< 0.002	0.0035	0.084	< 1	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003	0.004	0.12	< 5	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/l	_)								
ТРН	NA	< 5	109	5.6	6300	6080	3720	< 5	91.4

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

BOLD

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

= Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-8

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	QS/GV Sample Date							
	(ug/∟)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	6.86	6.96	6.88	6.75	6.69	7.19	6.86	6.71
Temperature (°C)		15.5	17.6	10.8	12.0	13.4	8.4	11.4	10.8
Sp. Conductance (uS)		2132	1891	1958	2051	170	1	1842	1948
Turbidity (NTU)		49.9	103	37.4	39.7	630	86	50.8	167
DO (ppm)		NM	NM	NM	3.95	11.71	11.44	1.03	2.39
Eh (mV)		-57	-57	-99	-129	-6	130	-145	- 116
STARS VOCs (ug/L)									
Benzene	1	< 10	< 0.2	< 1	< 0.2	< 0.7	< 4	< 2	< 2
n-Butylbenzene	5	< 10	< 0.4	< 2	< 0.4	< 1	< 8	< 4	< 4
sec-Butylbenzene	5	< 10	< 0.4	< 2	< 0.4	< 1	< 8	< 4	< 4
tert-Butylbenzene	5	< 10	< 0.4	< 2	< 0.4	< 1	< 8	< 4	< 4
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4	< 2	< 0.4	< 1	< 8	< 4	< 4
Ethylbenzene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
Isopropylbenzene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4	< 2	< 0.4	< 1	< 8	< 4	< 4
n-Propylbenzene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
Toluene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
1,2,4-Trimethylbenzene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
1,3,5-Trimethylbenzene	5	< 10	< 0.2	< 1	< 0.2	< 1	< 4	< 2	< 2
Xylenes (total)	15	< 30	< 0.6	< 3	< 0.6	< 4	< 12	< 4	< 4
Total Metals (mg/L)		_							
Arsenic	0.025	0.014	0.023	0.031	0.039	0.0402	0.038	0.0537	0.101
Chromium	0.05	0.0043	< 0.002	< 0.002	< 0.002	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/	L)								
ТРН	NA		< 5						

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average tred analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-9

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	S/GV Sample Date							
	(ug/∟)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	7.76	6.97	7.08	7.08	7.52	7.26	7.16	7.02
Temperature (°C)		12.9	15.3	11.3	11.3	12.7	7.7	11.1	10.9
Sp. Conductance (uS)		724	1765	840	860	715	0	665	610.7
Turbidity (NTU)		0.6	2.06	3.35	0.58	11	13	34.6	1.68
DO (ppm)		NM	NM	NM	3.7	12.36	6.6	1.46	2.29
Eh (mV)		-59	-126	-111	-127	-154	199	-104	- 89
STARS VOCs (ug/L)									
Benzene	1	< 10	< 0.2	< 0.2	< 0.2	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 10	0.5	< 0.4	< 0.4	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 10	< 0.2	< 0.2	< 0.2	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 30	< 0.6	< 0.6	< 0.6	< 4	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)		-							
Arsenic	0.025	0.0084	0.013	0.0077	0.007	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/l	L)								
TPH	NA	< 5	< 5	< 5	< 5	< 5	6.8	< 5	< 4.9

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

BOLD

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

= Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-MW-M2

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	SV Sample Date							
	(ug/L)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	7.40	7.30		7.04	7.11	7.59	7.01	7.10
Temperature (°C)		16.5	17.6		11.9	15.7	8.6	10.8	12.3
Sp. Conductance (uS)		725	680		681	60	1	579	569.2
Turbidity (NTU)	-	22	3.56		5.25	12	30	44.6	31.7
DO (ppm)		NM	NM		3.98	11.04	2.08	1.7	2.15
Eh (mV)		130	-107		-63	-4	160	8	+ 28
STARS VOCs (ug/L)									
Benzene	1	< 10	< 0.2		< 0.2	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)	5	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 10	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 30	< 0.6		< 0.6	< 4	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)		_							
Arsenic	0.025	< 0.0049	0.0059		< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.002	< 0.002		< 0.002	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.003	< 0.003		< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/	L)								
ТРН	NA		< 5						

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY ^{1,2} A1-P-4

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	V Sample Date							
	(ug/L)	Sep-04	Sep-05	May-06	Dec-06	Aug-07	Apr-08	May-09	May-10
Water Quality Field Measurements									
pH (units)	6.5 - 8.5	7.20	6.78		7.56	6.98	7.03	6.67	6.98
Temperature (°C)		16.7	16.8		11.3	15.0	8.5	10.5	10.5
Sp. Conductance (uS)		987	877		329	885	89	718	539.3
Turbidity (NTU)		5.5	3.53		6.39	3	25	24.4	16.7
DO (ppm)		NM	NM		9.18	10.68	3.98	4.15	8.05
Eh (mV)		131	74		52.4	101	318	17	- 21
STARS VOCs (ug/L)									
Benzene	1	< 5	< 0.2		< 0.2	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 5	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 5	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 5	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)	5	< 5	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 0.4		< 0.4	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 5	< 0.2		< 0.2	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 15	< 0.6		< 0.6	< 4	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)		_							
Arsenic	0.025	< 0.0049	< 0.004		< 0.0045	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.002	0.026		0.058	< 0.01	0.0084	0.005	0.026
Lead	0.025	< 0.003	< 0.003		< 0.003	< 0.05	< 0.005	< 0.005	< 0.005
Total Petroleum Hyrdocarbons (mg/	L)								
ТРН	NA		< 5						

Notes:

1. Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.

2. Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average tred analysis.

3. Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

"*" = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD = Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)

AREA II

HISTORIC SUMMARY TABLES & CONCENTRATION VS. TIME PLOTS

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-3

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV (ug/L) ⁴ —		S	Sample Dat	е	
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10
Water Quality Field Measurements						
pH (units)	6.5 - 8.5	6.57	7.42	8.02	7.03	7.30
Temperature (°C)		15.9	9.4	9.4	9.8	9.6
Sp. Conductance (uS)		127	482	0	818.3	773.7
Turbidity (NTU)		140	35	114	3.8	9.66
DO (ppm)		11.95	2.13	3.02	1.81	3.14
Eh (mV)		98	200	237	0	- 24
STARS VOCs (ug/L)						
Benzene	1	< 1	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 5	< 1		< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 5	< 1	< 0.2	0.29	< 0.2
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)						
Arsenic	0.025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.01	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-4R

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	AMETER ³ GWQS/GV (ug/L) ⁴		S	Sample Dat	e	
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10
Water Quality Field Measurements						
pH (units)	6.5 - 8.5	7.11	7.16	7.41	7.12	7.12
Temperature (°C)		19.0	10.1	7.9	9.2	9.6
Sp. Conductance (uS)		163	1229	0	1023.0	948.2
Turbidity (NTU)		> 1000	72	119	37.1	34.5
DO (ppm)		15.65	2.71	4.13	1.86	1.76
Eh (mV)		-117	176	148	- 101	- 64
STARS VOCs (ug/L)						
Benzene	1	12	< 0.7	< 0.2	0.2 J	< 0.2
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 5	< 1		< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)						
Arsenic	0.025	0.0264	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	0.0566	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	0.0728	< 0.05	< 0.005	< 0.005	< 0.005

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-5

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV (ug/L) ⁴		S	Sample Dat	е	
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10
Water Quality Field Measurements						
pH (units)	6.5 - 8.5	6.86	7.06	7.55	7.05	6.97
Temperature (°C)		19.7	10.7	7.1	10.2	10.0
Sp. Conductance (uS)		96	1012	0	762.1	712.4
Turbidity (NTU)		66	23	69	3.06	6.52
DO (ppm)		15.97	3.05	8.91	1.53	2.90
Eh (mV)		-28	227	251	- 70	- 83
STARS VOCs (ug/L)						
Benzene	1	< 1	< 0.7	< 0.2	< 0.2	< 0.2
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 5	< 1		< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)						
Arsenic	0.025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.01	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-10

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV		S	ample Dat	е	
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10
Water Quality Field Measurements						
pH (units)	6.5 - 8.5		7.97	7.50	7.75	7.29
Temperature (°C)			10.2	8.7	10.3	11.4
Sp. Conductance (uS)			926	81	1992.0	1993
Turbidity (NTU)			19	26	28.6	20.5
DO (ppm)			2.73	2.28	1.44	2.70
Eh (mV)			119	228	- 115	- 69
STARS VOCs (ug/L)						
Benzene	1		< 0.7	< 0.2	0.65	0.19 J
n-Butylbenzene	5		< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5		< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5		< 1		< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)			< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5		< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5		< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*		< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5		< 1	< 0.2	< 0.2	< 0.2
Toluene	5		< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5		< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5		< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15		< 2	< 0.6	< 0.6	< 0.6
Total Metals (mg/L)						
Arsenic	0.025		< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05		< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025		< 0.05	< 0.005	< 0.005	< 0.005

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-13

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV (ug/L) ⁴		S	ample Dat	e	
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10
Water Quality Field Measurements						
pH (units)	6.5 - 8.5	6.75	7.64	7.73	7.23	7.12
Temperature (°C)		15.8	11.8	4.1	11.6	12.6
Sp. Conductance (uS)		250	562	0	2252.0	1867
Turbidity (NTU)		29	8	91	18.3	15.8
DO (ppm)		11.42	2.6	4.5	1.64	1.54
Eh (mV)		-98	49	268	- 133	- 117
STARS VOCs (ug/L)						
Benzene	1	< 1	< 0.7	< 0.2	0.85	0.52
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4
tert-Butylbenzene	5	< 5	< 1		< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Toluene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	0.076 J
Total Metals (mg/L)						
Arsenic	0.025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chromium	0.05	< 0.01	< 0.01	< 0.004	< 0.004	< 0.004
Lead	0.025	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-14

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV	Sample Date						
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10		
Water Quality Field Measurements								
pH (units)	6.5 - 8.5	7.39	7.53	6.99	7.11			
Temperature (°C)		31.2	10.1	7.1	10.2			
Sp. Conductance (uS)		785	582	0	629.9			
Turbidity (NTU)		16	29	23	4.13			
DO (ppm)		6.31	7.61	5.34	4.92			
Eh (mV)		161	286	373	- 16			
STARS VOCs (ug/L)								
Benzene	1	< 1	< 0.7	< 0.2	< 0.2			
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4			
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4			
tert-Butylbenzene	5	< 5	< 1		< 0.4			
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4			
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2			
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2			
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4			
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2			
Toluene	5	< 5	< 1	< 0.2	< 0.2			
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2			
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2			
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6			
Total Metals (mg/L)								
Arsenic	0.025	< 0.01	< 0.01	< 0.01	< 0.01			
Chromium	0.05	0.0356	0.0639	0.011	0.0093			
Lead	0.025	< 0.05	< 0.05	< 0.005	< 0.005			

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-15

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV	Sample Date						
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10		
Water Quality Field Measurements								
pH (units)	6.5 - 8.5	6.37	6.76		6.35			
Temperature (°C)		18.8	10.8		10.4			
Sp. Conductance (uS)		128	149		1309.0			
Turbidity (NTU)		130	49		30.6			
DO (ppm)		10.43	5.92		1.78			
Eh (mV)		-72	257		- 20			
STARS VOCs (ug/L)								
Benzene	1	< 1	< 0.7		< 0.2			
n-Butylbenzene	5	< 5	< 1		< 0.4			
sec-Butylbenzene	5	< 5	< 1		< 0.4			
tert-Butylbenzene	5	< 5	< 1		< 0.4			
p-Cymene (4-Isopropyltoluene)		< 5	< 1		< 0.4			
Ethylbenzene	5	< 5	< 1		< 0.2			
Isopropylbenzene	5	< 5	< 1		< 0.2			
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1		< 0.4			
n-Propylbenzene	5	< 5	< 1		< 0.2			
Toluene	5	< 5	< 1		< 0.2			
1,2,4-Trimethylbenzene	5	< 5	< 1		< 0.2			
1,3,5-Trimethylbenzene	5	< 5	< 1		< 0.2			
Xylenes (total)	15	< 10	< 2		< 0.6			
Total Metals (mg/L)								
Arsenic	0.025	< 0.01	< 0.01		< 0.01			
Chromium	0.05	< 0.01	< 0.01		< 0.004			
Lead	0.025	< 0.05	< 0.05		< 0.005			

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-16

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV	Sample Date						
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10		
Water Quality Field Measurements								
pH (units)	6.5 - 8.5	6.38	6.33	6.87	6.36	6.67		
Temperature (°C)		19.9	11.0	5.3	12.3	12.4		
Sp. Conductance (uS)		261	1617	0	2180.0	1710		
Turbidity (NTU)		210	41	218	159	95.2		
DO (ppm)		10.63	2.27	3.27	1.55	3.11		
Eh (mV)		-84	219	299	- 66	- 25		
STARS VOCs (ug/L)								
Benzene	1	1.2	1.2	0.53	10	0.68		
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4		
sec-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4		
tert-Butylbenzene	5	< 5	< 1		< 0.4	< 0.4		
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4		
Ethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2		
Isopropylbenzene	5	< 5	< 1	< 0.2	< 0.2	0.12 J		
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4		
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2		
Toluene	5	< 5	< 1	< 0.2	< 0.2	0.071 BJ		
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2		
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2		
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	0.057 J		
Total Metals (mg/L)								
Arsenic	0.025	0.0137	< 0.01	< 0.01	0.0122	0.0113		
Chromium	0.05	< 0.01	< 0.01	0.011	0.0133	0.0127		
Lead	0.025	< 0.05	< 0.05	0.0083	0.0153	0.013		

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY 1,2 A2-MW-17

Comprehensive Groundwater Monitoring Report Riverbend, LLC **Buffalo, New York**

PARAMETER ³	GWQS/GV	Sample Date									
	(ug/L)	Jul-07	Dec-07	Apr-08	May-09	May-10					
Water Quality Field Measurements											
pH (units)	6.5 - 8.5	6.53	6.75	6.94	6.74	6.51					
Temperature (°C)		17.1	10.9	7.4	10.3	13.1					
Sp. Conductance (uS)		334	10	0	2894.0	2847					
Turbidity (NTU)		81	5	30	2.6	24.7					
DO (ppm)		11.09	2.92	2.94	1.16	1.80					
Eh (mV)		-121	127	111	- 117	- 100					
STARS VOCs (ug/L)	STARS VOCs (ug/L)										
Benzene	1	14	3.6	2.7	62	0.68					
n-Butylbenzene	5	< 5	< 1	< 0.4	< 0.4	< 0.4					
sec-Butylbenzene	5	< 5	< 1	< 0.4	1.8	0.23 J					
tert-Butylbenzene	5	< 5	2.5		9.5	2.6					
p-Cymene (4-Isopropyltoluene)		< 5	< 1	< 0.4	< 0.4	< 0.4					
Ethylbenzene	5	< 5	< 1	< 0.2	1.9	< 0.2					
Isopropylbenzene	5	< 5	< 1	< 0.2	6.1	0.034 J					
Methyl-t-Butyl Ether (MTBE)	10*	< 5	< 1	< 0.4	< 0.4	< 0.4					
n-Propylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2					
Toluene	5	< 5	< 1	< 0.2	0.33	< 0.2					
1,2,4-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2					
1,3,5-Trimethylbenzene	5	< 5	< 1	< 0.2	< 0.2	< 0.2					
Xylenes (total)	15	< 10	< 2	< 0.6	< 0.6	< 0.6					
Total Metals (mg/L)											
Arsenic	0.025	< 0.01	0.012	< 0.01	< 0.01	< 0.01					
Chromium	0.05	< 0.01	< 0.01	< 0.004	< 0.004	< 0.004					
Lead	0.025	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005					

Notes:

 Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.
Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Definitions:

fbTOR = Feet below top of riser.J = Estimated value; result is less than the sample quantitation limit but greater than zero.

B = Analyte was found in the associated blank, as well as in the sample.

D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV)

ND = parameter was analyzed for, but not detected

** * = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

AREA III

HISTORIC SUMMARY TABLES & CONCENTRATION VS. TIME PLOTS

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY^{1,2} A3-MW-3

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	3WQS/GV Sample Date						
	(ug/∟)	Jul-07	Dec-07	Apr-08	Oct-08	May-09	Oct-09	May-10
Water Quality Field Measurements								
pH (units)	6.5 - 8.5				7.08	7.16		7.01
Temperature (°C)					16.4	13.3		16.2
Sp. Conductance (uS)					1896	1229		1256
Turbidity (NTU)					25.2	12		30.2
DO (ppm)					3.8	2.99		3.23
Eh (mV)					-87	- 149		- 109
STARS VOCs (ug/L)								
Benzene	1				1.1	12		0.79
n-Butylbenzene	5				< 0.4	< 8		< 0.4
sec-Butylbenzene	5				< 0.4	< 8		< 0.4
tert-Butylbenzene	5				< 0.4	< 8		< 0.4
p-Cymene (4-Isopropyltoluene)					< 0.4	< 8		< 0.4
Ethylbenzene	5				< 0.2	< 4		< 0.2
Isopropylbenzene	5				< 0.2	< 4		< 0.2
Methyl-t-Butyl Ether (MTBE)	10*				< 0.4	< 8		< 0.4
n-Propylbenzene	5				< 0.2	< 4		< 0.2
Toluene	5				< 0.2	< 4		0.074 BJ
1,2,4-Trimethylbenzene	5				< 0.2	< 4		< 0.2
1,3,5-Trimethylbenzene	5				< 0.2	< 4		< 0.2
Xylenes (total)	15				< 0.6	< 8		0.14 J
Total Metals (mg/L)		_						
Arsenic	0.025				0.098	0.0192		0.102
Chromium	0.05				0.016	< 0.004		0.0086
Lead	0.025				0.013	< 0.005		0.0088
Wet Chemistry (mg/L)								
Cyanide	0.2				4.63	5.53		11.1 D

Notes:

Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Lirr

Definitions:

fbTOR = Feet below top of riser.

B = Stimated value; result is less than the sample quantitation limit but greater than zero.
B = Analyte was found in the associated blank, as well as in the sample.
D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV) ND = parameter was analyzed for, but not detected *** = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)
Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY^{1,2} A3-MW-6

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	Sample Date							
	(ug/L)	Jul-07	Dec-07	Apr-08	Oct-08	May-09	Oct-09	May-10	
Water Quality Field Measurements									
pH (units)	6.5 - 8.5				8.17	8.22		7.75	
Temperature (°C)					16.3	10.0		12.4	
Sp. Conductance (uS)					1147.0	1185		1341	
Turbidity (NTU)					15.4	2		7.83	
DO (ppm)					1.00	2.76		3.25	
Eh (mV)					- 220	- 187		- 152	
STARS VOCs (ug/L)									
Benzene	1				< 0.2	0.44		0.18 J	
n-Butylbenzene	5				< 0.4	< 0.4		< 0.4	
sec-Butylbenzene	5				< 0.4	< 0.4		< 0.4	
tert-Butylbenzene	5				< 0.4	< 0.4		< 0.4	
p-Cymene (4-Isopropyltoluene)					< 0.4	< 0.4		< 0.4	
Ethylbenzene	5				< 0.2	< 0.2		< 0.2	
Isopropylbenzene	5				< 0.2	< 0.2		< 0.2	
Methyl-t-Butyl Ether (MTBE)	10*				< 0.4	< 0.4		< 0.4	
n-Propylbenzene	5				< 0.2	< 0.2		< 0.2	
Toluene	5				< 0.2	< 0.2		< 0.2	
1,2,4-Trimethylbenzene	5				< 0.2	< 0.2		< 0.2	
1,3,5-Trimethylbenzene	5				< 0.2	< 0.2		< 0.2	
Xylenes (total)	15				< 0.6	< 0.4		< 0.4	
Total Metals (mg/L)		-							
Arsenic	0.025				0.01	< 0.01		< 0.01	
Chromium	0.05				< 0.002	< 0.004		< 0.004	
Lead	0.025				0.0045	< 0.005		< 0.005	
Wet Chemistry (mg/L)									
Cyanide	0.2				0.04	0.0266		0.0353	

Notes:

Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Lirr

Definitions:

fbTOR = Feet below top of riser.

B = Stimated value; result is less than the sample quantitation limit but greater than zero.
B = Analyte was found in the associated blank, as well as in the sample.
D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV) ND = parameter was analyzed for, but not detected *** = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)
Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY^{1,2} A3-MW-7

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV		Sample Date							
	(ug/∟)	Jul-07	Dec-07	Apr-08	Oct-08	May-09	Oct-09	May-10		
Water Quality Field Measurements										
pH (units)	6.5 - 8.5	10.01	10.43	10.30		10.30		10.10		
Temperature (°C)		24.9	8.7	9.0		10.4		12.8		
Sp. Conductance (uS)		112	1139	NM		830.0		691.6		
Turbidity (NTU)		22	8	129		22.9		7.81		
DO (ppm)		8.8	2.95	5.17		1.08		2.05		
Eh (mV)		-116	1	13		- 255		- 197		
STARS VOCs (ug/L)										
Benzene	1	71	82	< 0.2		270		37		
n-Butylbenzene	5	< 10	< 1	< 0.4		1		0.25 J		
sec-Butylbenzene	5	< 10	< 1	< 0.4		< 0.4		< 0.4		
tert-Butylbenzene	5	< 10	< 1	< 0.4		< 0.4		< 0.4		
p-Cymene (4-Isopropyltoluene)		< 10	< 1	< 0.4		5.4		< 0.4		
Ethylbenzene	5	< 10	< 1	< 0.2		0.55		0.15 J		
Isopropylbenzene	5	< 10	< 1	< 0.2		< 0.2		< 0.2		
Methyl-t-Butyl Ether (MTBE)	10*	< 10	< 1	< 0.4		< 0.4		< 0.4		
n-Propylbenzene	5	< 10	< 1	< 0.2		< 0.2		< 0.2		
Toluene	5	< 10	2.5	< 0.2		11		1.7 B		
1,2,4-Trimethylbenzene	5	< 10	< 1	< 0.2		1.7		0.42		
1,3,5-Trimethylbenzene	5	< 10	< 1	< 0.2		0.55		0.21		
Xylenes (total)	15	< 20	< 4	< 0.6		7		1.4		
Total Metals (mg/L)		-								
Arsenic	0.025	0.0201	0.0141	0.016		0.012		0.0104		
Chromium	0.05	< 0.01	< 0.01	0.012		< 0.004		< 0.004		
Lead	0.025	< 0.05	< 0.05	0.021		< 0.005		< 0.005		
Wet Chemistry (mg/L)										
Cyanide	0.2	0.195	0.211	0.243		0.17		0.0247		

Notes:

Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Lirr

Definitions:

fbTOR = Feet below top of riser.

B = Stimated value; result is less than the sample quantitation limit but greater than zero.
B = Analyte was found in the associated blank, as well as in the sample.
D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV) ND = parameter was analyzed for, but not detected *** = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)
Not analyzed for this parameter during this event.

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY^{1,2} A3-MW-9

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV	/QS/GV Sample Date						
	(ug/L)	Jul-07	Dec-07	Apr-08	Oct-08	May-09	Oct-09	May-10
Water Quality Field Measurements								
pH (units)	6.5 - 8.5				11.74	11.74	11.25	11.34
Temperature (°C)					15.8	10.4	12.9	11.5
Sp. Conductance (uS)					2066	6925	6661	7440
Turbidity (NTU)					27.2	0.7	8.57	3.48
DO (ppm)					0.16	1.82	2.83	2.68
Eh (mV)					-288	- 158	-152	- 139
STARS VOCs (ug/L)								
Benzene	1				1.4 J	10	2.6	3.4
n-Butylbenzene	5				< 0.4	< 0.4	< 0.4	0.14 J
sec-Butylbenzene	5				< 0.4	< 0.4	< 0.4	0.23 J
tert-Butylbenzene	5				< 0.4	< 0.4	< 0.4	< 0.4
p-Cymene (4-Isopropyltoluene)					< 0.4	< 0.4	< 0.4	< 0.4
Ethylbenzene	5				< 0.2	< 0.2	< 0.2	< 0.2
Isopropylbenzene	5				< 0.2	< 0.2	< 0.2	< 0.2
Methyl-t-Butyl Ether (MTBE)	10*				< 0.4	< 0.4	< 0.4	< 0.4
n-Propylbenzene	5				< 0.2	< 0.2	< 0.2	< 0.2
Toluene	5				0.27	4.1	0.74	0.93 B
1,2,4-Trimethylbenzene	5				< 0.2	0.61	0.15 J	0.26
1,3,5-Trimethylbenzene	5				< 0.2	< 0.2	< 0.2	< 0.2
Xylenes (total)	15				< 0.6	1.4	0.3	0.36 J
Total Metals (mg/L)		=						
Arsenic	0.025				0.013	< 0.01	< 0.01	< 0.01
Chromium	0.05				< 0.002	< 0.004	< 0.004	< 0.004
Lead	0.025				0.011	< 0.005	0.0103	0.0308
Wet Chemistry (mg/L)								
Cyanide	0.2				< 0.01	< 0.01	< 0.01	< 0.01

Notes:

Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Lirr

Definitions:

fbTOR = Feet below top of riser.

B = Stimated value; result is less than the sample quantitation limit but greater than zero.
B = Analyte was found in the associated blank, as well as in the sample.
D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV) ND = parameter was analyzed for, but not detected *** = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

BOLD

HISTORICAL GROUNDWATER ANALYTICAL DATA SUMMARY^{1,2} A3-MW-10

Comprehensive Groundwater Monitoring Report Riverbend, LLC Buffalo, New York

PARAMETER ³	GWQS/GV			S	ample Dat	e		
	(ug/∟)	Jul-07	Dec-07	Apr-08	Oct-08	May-09	Oct-09	May-10
Water Quality Field Measurements								
pH (units)	6.5 - 8.5				5.90	5.61	5.47	5.41
Temperature (°C)					16.1	11.4	15.1	12.2
Sp. Conductance (uS)					6271	5847	6103	5735
Turbidity (NTU)					36.8	23	42.5	35.9
DO (ppm)					0.98	1.11	0.6	1.12
Eh (mV)					-20	- 14	-43	0
STARS VOCs (ug/L)								
Benzene	1				520	34000	1500 D	3600 D
n-Butylbenzene	5				< 4	< 80	< 40	< 4
sec-Butylbenzene	5				< 4	< 80	< 40	0.35 DJ
tert-Butylbenzene	5				< 4	< 80	< 40	< 4
p-Cymene (4-Isopropyltoluene)					< 4	< 80	< 40	< 4
Ethylbenzene	5				< 2	< 40	< 20	0.76 DJ
Isopropylbenzene	5				4.5	< 40	< 20	2.4 D
Methyl-t-Butyl Ether (MTBE)	10*				< 4	< 80	< 40	< 4
n-Propylbenzene	5				< 2	< 40	< 20	1.8 DJ
Toluene	5				< 2	< 40	6.3 DJ	3.3 DB
1,2,4-Trimethylbenzene	5				< 2	< 40	< 20	0.71 DJ
1,3,5-Trimethylbenzene	5				< 2	< 40	< 20	< 2
Xylenes (total)	15				3 J	< 80	< 40	2.2 DJ
Total Metals (mg/L)		_						
Arsenic	0.025				0.005	0.109	< 0.01	< 0.01
Chromium	0.05				< 0.01	< 0.004	< 0.02	< 0.02
Lead	0.025				< 0.003	< 0.005	< 0.005	< 0.005
Wet Chemistry (mg/L)								
Cyanide	0.2				0.164	0.154	0.184	0.146

Notes:

Concentrations exceeding the Class "GA" Groundwater Quality Standard/Guidance Value (GWQS/GV) are shaded yellow.
Any parameter exceeding the Class "GA" GWQS/GV for two consecutive events will undergo moving average trend analysis.
Benzene, total lead, and TPH requires moving average trend analysis irrespective of concentration.

4. Values per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Lirr

Definitions:

fbTOR = Feet below top of riser.

B = Stimated value; result is less than the sample quantitation limit but greater than zero.
B = Analyte was found in the associated blank, as well as in the sample.
D = Indicates value obtained through dilution of sample.

GWQS/GV = NYSDEC Class GA Groundwater Quality Standard (GWQS) / Guidance Value (GV) ND = parameter was analyzed for, but not detected *** = NYSDEC Class GA Groundwater Quality Guidance Value (GWQGV)

Analytical result exceeds Class GA Water Quality Standards (TOGS 1.1.1)
Not analyzed for this parameter during this event.

