Periodic Review Report

May 1, 2017 through May 1, 2018

Riverbend Site (No. V00619) Buffalo, New York

June 2018 0322-018-500

Prepared For:

Fort Schuyler Management Corporation

Prepared By:

In Association With:

PERIODIC REVIEW REPORT for the STEELFIELDS (AKA RIVERBEND, LLC) SITE (SITE NO. V00619)

BUFFALO, NEW YORK

June 2018 0322-018-500

Prepared for:

FORT SCHUYLER MANAGEMENT CORPORATION

Prepared By:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635 In Association With:

Benchmark Environmental Engineering & Science, PLLC
2558 Hamburg Turnpike, Suite 300
Buffalo, NY 14218
(716)856-0599

PERIODIC REVIEW REPORT

Steelfields (aka Riverbend, LLC) Site Site No. V00619

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Background	1
2.0	SITI	E OVERVIEW	
	2.1	Area I - Former Republic (LTV) Steel Parcel	3
	2.2	Area II – Former Donner-Hanna Coke Plant	4
	2.3	Area III – Former Warehouse Parcel	4
	2.4	Former August Feine Parcel	5
	2.5	Former Norfolk Southern Parcel	5
3.0	SITI	E MANAGEMENT PLAN	6
	3.1	Operation, Monitoring, and Maintenance (OM&M) Plan	
	0.1	3.1.1 Area I	
		3.1.2 Area II	
		3.1.3 Area III	7
		3.1.4 Former August Feine Parcel	7
		3.1.5 Former Norfolk Southern Parcel	
	3.2	Long-Term Groundwater Monitoring (LTGWM) Plan	7
	3.3	Soil/Fill Management Plan	9
	3.4	Institutional and Engineering Control Requirements	9
		3.4.1 Institutional Controls	9
		3.4.2 Engineering Controls	9
	3.5	Site Inspection & IC/EC Compliance	
		3.5.1 Area I	
		3.5.2 Area II	
		3.5.3 Area III	
		3.5.4 Former August Feine Parcel	
	2.6	3.5.5 Former Norfolk Southern Parcel	
	3.6	Abby & Baraga Streets Surface Drainage System	
		3.6.1 Background	11
4.0	Con	NCLUSIONS AND RECOMMENDATIONS	13
5.0	DEC	CLARATION/LIMITATION	14
6.0	Dre	FERENCES	15
0.0	ILCL	'LILINGES	

PERIODIC REVIEW REPORT

Steelfields (aka Riverbend, LLC) Site Site No. V00619 Table of Contents

FIGURES

Figure 1	Site Location and Vicinity Map		
Figure 2 Site Plan			
Figure 3 Abbey Street Drain Site Sketch			
	APPENDICIES		
Appendix A	Site Inspection (IC/EC) Form		
Appendix B	Area II – Annual GWPTS and BSA Semi-Annual CMRs		
Appendix C	Comprehensive Annual Groundwater Monitoring Report		
Appendix D	Area III - ORC Annual Inspection Forms (June and December)		
Appendix E	Site Photograph Log		

1.0 Introduction

TurnKey Environmental Restoration, LLC (TurnKey), in association with Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this Periodic Review Report (PRR) on behalf of Fort Schuyler Management Corporation (FSMC) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) Steelfields (aka RiverBend, LLC) Site No. V00619.

This PRR has been prepared in accordance with the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (Ref. 1). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Forms have been prepared for each of the three designated areas (i.e., Area I, Area II, and Area III) of the Site. This PRR and the associated IC/EC Form (see Appendix A) have been completed for the May 1, 2017 to May 1, 2018 reporting period.

1.1 Background

In October 2002, Steelfields Ltd. (Steelfields) purchased several vacant industrial properties in South Buffalo, New York (see Figures 1 and 2) out of bankruptcy from the LTV Steel Company and Hanna Furnace Corporation (a wholly owned subsidiary of the National Steel Corporation). At the same time, Steelfields entered into a Voluntary Cleanup Agreement (VCA) with the NYSDEC to remediate four parcels identified below, totaling approximately 218 acres. The parcels were divided based on the operational and ownership history of each:

- Area I Former Republic (LTV) Steel Plant Parcel (± 90.6 acres)
- Area II Former Donner-Hanna Coke Plant Parcel (± 53.0 acres)
- Area III Former Republic (LTV) Steel Warehouse Parcel (± 43.2 acres)
- Area IV Former Donner-Hanna Coke Yard Parcel (± 31.1 acres)

In July 2003, a fifth parcel, the formerly owned and operated August Feine & Sons property (±4.7 acres), was acquired by Steelfields. The August Feine property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA. As such, only Areas I, II, III, and IV were

TURNKEY BENCHMARK

remediated under the NYSDEC VCA. Subsequent to completion of the remediation of Area IV by Steelfields in 2006, this parcel was separated from the Site, sold to Hydro-Air Components, Inc. (Hydro-Air), and entered into the Brownfield Cleanup Program (NYSDEC BCP Site No. C915204) by Hydro-Air. Accordingly, this report does not address Area IV. RiverBend, LLC, a Buffalo Urban Development Corporation (BUDC)-related entity, acquired the Site from Steelfields in May 2008. On July 22, 2014, FSMC acquired Area I of the RiverBend Site from RiverBend, LLC. On November 24, 2014, FSMC acquired Areas II and III from RiverBend, LLC. On June 24, 2016, a sixth parcel, the formerly owned and operated Norfolk Southern Railroad property (±22.16 acres), was acquired by FSMC. Similar to the former August Feine property, the former Norfolk Southern property is also relevant and proximate to the RiverBend Site and is not under any NYSDEC program or subject to a SMP under the RiverBend VCA.

2.0 SITE OVERVIEW

The RiverBend Site, comprised of former heavy industrial properties identified as Areas I, II, III, and the former August Feine and Norfolk Southern parcels, ncompass approximately 204 acres in the City of Buffalo, Erie County, New York (see Figure 2). The Site is bordered by the Buffalo River and South Park Avenue to the north; Abby Street and residential neighborhoods to the east; Former Area IV (currently Hydro-Air Components) to the south; and a railroad corridor and rail yard to the west (contiguous parcels owned by South Buffalo Railroad Company, Buffalo Southern Railroad, and CSX Corporation) (see Figure 2).

Environmental investigations of the Site revealed the presence of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), and metals in soil and groundwater that required remediation. Remedial activities were completed across the Site from 2002 through 2006. Detailed descriptions of the remedial efforts and construction documents for this period are provided in the NYSDEC's approved Construction Closeout Report for Area I, including the Site Management Plan, prepared by TurnKey (Ref. 2); and the Final Engineering Report for Areas II and III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, including a Site Management Plan, prepared by Malcolm Pirnie (Ref. 3). A brief description of the remedial efforts described in those documents is presented below.

2.1 Area I - Former Republic (LTV) Steel Parcel

The former Republic Steel (LTV) Plant property encompasses two adjoining parcels (122.16-1-8.1 and 122.20-1-3.1) totaling approximately 90.6 acres (see Figure 2). Area I is bordered by the Buffalo River and South Park Avenue to the north, Abby Street and residential neighborhoods to the east, former Norfolk Southern property to the south (now part of the RiverBend Site), and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area I included:

- Remediation of petroleum/naphthalene/tar-impacted and metals-impacted soil/fill.
- Removal of former fuel oil and tar transfer pipelines, including disposal of residual product within the piping and impacted soil in the vicinity of the pipelines.

3

TURNKEY BENCHMARK

- Removal of former underground storage tanks.
- Buffalo River bank stabilization.

2.2 Area II – Former Donner-Hanna Coke Plant

The former Donner-Hanna Coke Plant property encompasses three adjoining parcels (122.20-1-21, 122.20-1-5.1, and 132.08-1-6) totaling approximately 53.0 acres (see Figure 2). Area II, partially intersected by Baraga Street, is bordered by an adjacent earthen berm along Abby Street and residential neighborhoods to the east; the former Norfolk Southern property and the former August Feine parcel (now part of the Riverbend Site) to the north; Area III to the south; and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area II included:

- Construction of a 14-acre Containment Cell with slurry wall, low-permeability cover system, and a groundwater collection and conveyance system
- Construction of a groundwater pre-treatment system (GWPTS)
- In-situ "hotspot" remediation

2.3 Area III – Former Warehouse Parcel

The former Republic Steel Warehouse property encompasses two adjoining parcels (132.08-1-7 and 132.12-1-9.11) totaling approximately 43.2 acres (see Figure 2). Area III is bordered by Abby Street and residential neighborhoods to the east; Area II to the north; Former Area IV (currently Hydro-Air Components) to the south; and an active railroad corridor and rail yard to the west. Remedial efforts conducted in Area III included:

- On-site blue-stained soil/fill treatment and disposal/consolidation in the Area II Containment Cell
- On-site lead-impacted soil/fill treatment and disposal/consolidation in the Area II Containment Cell
- Tar-impacted soil/fill disposal/consolidation in Area II Containment Cell
- In situ groundwater treatment with oxygen release compound (ORC) at 11 ORC treatment wells

TURNKEY BENCHMARK

2.4 Former August Feine Parcel

The former August Feine property encompasses one parcel (122.20-1-22) approximately 4.7 acres in size (see Figure 2). This property is surrounded by Area II on the west, south, and east; and the former Norfolk Southern property to the north (Baraga Street dead ends at the entrance to this parcel). The August Feine property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA. As such, any discussions or findings as a result of the site assessment regarding the August Feine property are provided herein for informational purposes only.

A July 2006 site assessment of the former August Feine parcel identified localized VOC (primarily benzene) and total metal (plus cyanide) impacts to subsurface soil/fill and shallow groundwater along the common boundary with Area II. Based on the proximity of these identified impacts to the Area II groundwater collection trench, the leachable impacts, if any, are being captured and treated by the groundwater collection system, mitigating downgradient migration and potential environmental impact. As such, no additional remediation, beyond those already being implemented in accordance with the VCA for Area II, was recommended. Any potential for subsurface soil/fill exposure during future development of the property (i.e., utility installation) will be addressed in accordance with the Soil/Fill Management Plan (see Section 3.3).

2.5 Former Norfolk Southern Parcel

The former Norfolk Southern property encompasses one parcel (122.20-1-23.1) approximately 22.16 acres in size (see Figure 2). The property is bounded on the north by Area I and Area II and the former August Feine property to the south. The former Norfolk Southern property was historically used to transport manufactured steel, iron, metallurgical coke, and coke by-products for Republic Steel and Donner Hanna Coke. This property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA, but is owned by FSMC.

5

TURNKEY BENCHMARK

3.0 SITE MANAGEMENT PLAN

Areas I, II, and III of the RiverBend Site are managed by two separate Site Management Plans (SMPs). One SMP covers Area I (Ref. 2) and the second covers Areas II and III (Ref. 3). Both SMPs include Operation, Monitoring, and Maintenance (OM&M) Plans; Long-Term Groundwater Monitoring (LTGWM) Plans; Soil/Fill Management Plans (SFMPs); and Environmental Easements (also identified as Covenant and Restrictions) for their respective parcels. A brief description of these SMP components is presented below.

3.1 Operation, Monitoring, and Maintenance (OM&M) Plan

As a requirement of the OM&M Plans, annual inspection of Areas I, II, and III are required; as there are no engineering controls on the former August Feine parcel the site inspection is provided for informational purposes only. The NYSDEC PRR Institutional and Engineering Controls (IC/EC) Certification Form has replaced the previously used Environmental Inspection Forms for each Area. Appendix A includes the completed IC/EC Form for the current period. Details of the annual inspection and completion of the IC/EC Form is discussed in Sections 3.5 and 3.6 below.

3.1.1 Area I

The Area I SMP provides the details for Operation and Maintenance (O&M) related to the product recovery at monitoring well A1-MW-6. Specifically, the O&M Plan details the product recovery system inspection program, routine maintenance operations, and reporting requirements. In February 2017 due to very low product recovery volumes, the NYSDEC approved discontinuing the use of a passive skimmer in well A1-MW-6 in lieu of an absorbent pad.

3.1.2 Area II

The Area II SMP provides the O&M details related to the groundwater collection and conveyance system, including the soil flushing system; groundwater pre-treatment system (GWPTS) including the bag filters, carbon vessels, transfer pumps, separator tank, and general house-keeping; sewer discharge effluent monitoring; and low-permeability cover system (i.e., landfill post-closure monitoring and cover maintenance). Appendix B includes the Area II GWPTS annual progress report submitted to the NYSDEC and the two semi-

6 TURNKEY BENCHMARK

annual effluent compliance monitoring reports submitted to the Buffalo Sewer Authority (BSA) during the current reporting period.

3.1.3 Area III

The Area IIII O&M plan provides the details related to the in-situ groundwater treatment with oxygen release compound (ORC) at 11 ORC treatment wells. ORC monitoring results are included in the annual groundwater monitoring report (Appendix C; and discussed in Section 3.2 below). Appendix D includes the July and December 2017 ORC semi-annual event inspection forms.

3.1.4 Former August Feine Parcel

There are no voluntary cleanup O&M requirements for the former August Feine parcel. In June 2009, the former August Feine building caught fire and emergency demolition followed. A concrete slab on grade foundation and a small brick walled shed is all that remained, and storm water management of this area was subsequently discontinued. In September 2015 and with NYSDEC approval, the footprint of the former August Feine building was filled in with processed concrete material generated during Area I redevelopment. A substation servicing the redevelopment on Area I was constructed on the August Feine parcel in 2016.

3.1.5 Former Norfolk Southern Parcel

There are no voluntary cleanup O&M requirements for the former Norfolk Southern parcel.

3.2 Long-Term Groundwater Monitoring (LTGWM) Plan

As a requirement of the SMPs, long-term groundwater monitoring is being performed at the Site. A Long-Term Groundwater Monitoring (LTGWM) Work Plan was prepared by TurnKey in March 2000 (revised June 2005 for Area I. Similarly, LTGWM Work Plans were prepared by others in October 2007 for Areas II (revised April 2008) and III. Groundwater monitoring began in 2004 for Area I and in 2007 for Areas II and III. Since 2009 and with NYSDEC approval, LTGWM for Areas I, II, and III was modified into a combined site-wide monitoring and reporting event. A total of 23 network monitoring

TURNKEY BENCHMARK

wells are sampled across the Site including 11 wells in Area I, 7 wells in Area II, and 5 wells in Area III. In addition to the groundwater monitoring network wells, six additional wells in Area II are monitored for water level only.

In May 2011, the NYSDEC approved a modification of the groundwater parameter lists and sample frequency for Areas I, II, and III. The modified monitoring program for the 3 Areas now follows a 2-year monitoring cycle (e.g., bi-annual) as presented in Appendix C. In general, this modification reduces the VOC and metals analysis frequency to once every other year for most wells while the collection of field parameters must be measured every year going forward. Currently, groundwater monitoring is performed on an annual basis and ORC monitoring is performed semi-annually (every 6 months). The activities performed during each groundwater monitoring event are performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised June 2005 Ref. 4)
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (Ref. 5)
- May 5, 2008 Response to NYSDEC comment letter regarding Area III Site Management Plan (comment/responses 8, 9, and 10)
- May 5, 2008 Response to NYSDEC comment letter regarding Areas II and III Final Engineering Report (comment/responses 19 and 22)
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (Ref. 5)
- May 5, 2011 NYSDEC Response to Modification Request Letter.

In June 2016 and upon NYSDEC notification, wells A1-MW-8R and A1-MW-10 were installed to replace historically decommissioned well A1-MW-8 and piezometer A1-MW-P-4, respectively. In September 2016 and upon NYSDEC consultation and approval, it was determined that wells A1-MW-4 and A1-MW-M2 and piezometer A1-P-2 were located within the Area I Variance Area footprint and required removal and relocation. As such, these wells and the piezometer were decommissioned in general accordance with NYSDEC Commissioners Policy 43 (CP-43: Groundwater Monitoring Well Decommissioning). In May 2018, replacement wells A1-MW-4R and A1-MW-11 for decommissioned wells A1-MW-4 and A1-MW-M2, respectively, were installed and are sampled as part of the LTGWM plan.

TURNKEY BENCHMARK

Upon NYSDEC concurrence, it was determined that piezometer A1-P-2 did not require replacement.

Appendix C includes the 2017 Comprehensive Annual Groundwater Monitoring Report for Areas I, II, and III. This report includes the results of the July 2017 groundwater monitoring event as well as the results of the July and December 2017 ORC semi-annual monitoring events for Area III, all of which were conducted during the current PRR period (May 1, 2017 through May 1, 2018). Appendix D includes the ORC inspection forms for the July and December 2017 events.

3.3 Soil/Fill Management Plan

A Soil/Fill Management Plan (SFMP) was included in the approved SMPs for each Area of the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive activities.

3.4 Institutional and Engineering Control Requirements

As detailed in the SMPs, several institutional controls (ICs) and engineering controls (ECs) are to be maintained as a requirement of the VCA for the Site.

3.4.1 Institutional Controls

Three RiverBend parcels (Areas I, II, and III) are subject to the following ICs:

- Groundwater-Use Restriction: The use of groundwater for potable and nonpotable purposes is prohibited
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use
- Soil/Fill Management Plan

Additionally, Areas II and III are subject to compliance with the O&M Plans for their respective areas, as described in Section 3.1.

3.4.2 Engineering Controls

Three RiverBend parcels (Areas I, II, and III) are subject to several ECs as indicated by Area below.

9

TURNKEY BENCHMARK

- Area I: Maintain vegetative cover and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 08/16/2007).
- Area II: Maintain final cover system of containment cell and maintain vegetative cover outside containment cell area until build-out whereupon one foot of clean cover or alternative with a demarcation layer is required; O&M of GWPTS; O&M of containment cell and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 05/21/2008).
- Area III: Maintain vegetative cover (limited area sampling required before build-out, failure to meet Site Specific Action Levels (SSALs) would require one foot of clean cover or alternative with a demarcation layer); O&M of passive groundwater treatment (e.g., ORC) and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 05/21/2008).

3.5 Site Inspection & IC/EC Compliance

On June 12, 2018, Benchmark's Certifying Professional Engineer performed a Site assessment of Areas I, II, and III, including the former August Feine and Norfolk Southern parcels. The following sections provide a parcel-by-parcel description of the Site assessment and maintenance activities performed. Appendix A includes the completed IC/EC Form for Areas I, II, and III. Appendix E includes a photographic log of the Site.

3.5.1 Area I

Redevelopment activities associated with Area I are complete. A 1.2 million square-foot manufacturing building (Tesla) was constructed and is in service. Redevelopment activities subject to the Area I SMP are summarized in the RiverBend Area I Construction Completion Report (Area I CCR, Ref. 6). At the time of the June 2018 inspection, Area I was in compliance with the IC/ECs.

3.5.2 Area II

At the time of the June 2018 inspection, Area II, including the pump stations, GWTS and Containment Cell, was in compliance with the IC/ECs.

TURNKEY BENCHMARK

3.5.3 Area III

At the time of the June 2018 inspection, Area III was vacant and in compliance with the IC/ECs.

3.5.4 Former August Feine Parcel

At the time of the May 2018 inspection, the former August Feine parcel was vacant. There are no IC/ECs associated with this parcel; therefore, this parcel is not included on the IC/EC Form.

3.5.5 Former Norfolk Southern Parcel

At the time of the May 2018 inspection, the former Norfolk Southern parcel was vacant. There are no IC/ECs associated with this parcel; therefore, this parcel is not included on the IC/EC Form.

3.6 Abby & Baraga Streets Surface Drainage System

Although not a component of the Area II SMP, TurnKey personnel perform a monthly inspection of the drainage system including the Baraga Street manhole due to historic blockages in the system resulting in past complaints of ponding water along Abby Street. As requested by the NYSDEC, the surface drainage system background and monthly assessment results are provided below.

3.6.1 Background

The surface drainage system at the RiverBend Site was installed to mitigate breakout of calcium-rich surface water resulting from the underlying slag and lime materials in the vicinity of the berm along Abby Street. Since 1998, the drainage system has functioned as intended, but has required periodic maintenance and repair to remedy clogs due to calcium and sediment build-up and occasional damage from heavy snow removal equipment. More recently the surface drainage system required repair and modification due to significant damage to the Berm from South Park to Baraga Street caused by vehicle rutting, particularly in the Abby Street drain vicinity, which prevented the system from functioning as intended.

In May 2014, TurnKey performed repairs and modifications to the original Abby Street drainage system to restore function and to allow the system to be more efficient. The

TURNKEY BENCHMARK

modified Abby Street drainage system configuration is presented in Figure 3. Both the Berm and drainage system are inspected monthly.

On February 22, 2018 during a monthly inspection, water was observed emanating from a clean out which services the Abby street drain. The water flowed across the surface into a nearby man hole. This caused some staining and stressed vegetation. TurnKey fenced off this area and contacted Pinto Construction Services, Inc. (Pinto) to clean out the blockage. On March 7, 2018, Pinto flushed the Abby Street Drainage System via high-pressure water injection. Observed flows within the Baraga Street manhole indicate the system is operating as intended. No further activities were required or performed on the Abby Street drain system during the current reporting period (May 1, 2017 through May 1, 2018).

4.0 CONCLUSIONS AND RECOMMENDATIONS

At the time of the inspection, the Site was in compliance with the IC/ECs. No modifications to the OM&M procedures are recommended at this time.

0322-018-500

13

5.0 DECLARATION/LIMITATION

TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering and Science, PLLC, personnel conducted the annual site inspections for Voluntary Cleanup Program Site No. V00619, located in Buffalo, New York, according to generally accepted practices. This report complies with the scope of work provided to FSMC by TurnKey Environmental Restoration, LLC.

This report has been prepared for the exclusive use of Fort Schuyler Management Corporation. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Fort Schuyler Management Corporation. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC and/or Benchmark Environmental Engineering and Science, PLLC.

14

6.0 REFERENCES

- 1. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. Site Management Plan for Area I (former Republic (LTV) Steel Parcel), Steelfields Site, Buffalo, NY (NYSDEC Site # V00619-9), dated Revised August 2016, prepared by TurnKey Environmental Restoration, LLC and Benchmark Environmental Engineering and Science, PLLC.
- 3. Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendix GG and HH, dated May 2008, prepared by Malcolm Pirnie.
- 4. Work Plan for Long-Term Groundwater Monitoring, Former Steel Manufacturing Site, Buffalo, NY, prepared for Steelfields Ltd., revised June 2005 by TurnKey Environmental Restoration, LLC.
- 5. Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendix HH Attachments A4 and A5, dated May 2008, prepared by Malcolm Pirnie.
- 6. Construction Completion Report, RiverBend Area I, Voluntary Cleanup Program, VCP Site No. V00619-1, Buffalo New York. Prepared by TurnKey Environmental Restoration, PLLC. April 2018.

15

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0322-017-500

DATE: May 2018

DRAFTED BY: CMC

SITE VICINITY & LOCATION MAP

PERIODIC REVIEW REPORT

RIVERBEND SITE BUFFALO, NEW YORK

PREPARED FOR

FORT SCHUYLER MANAGEMENT CORPORATION

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

APPENDIX A

SITE INSPECTION (IC/EC) FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No. V00619	Site Details	Box 1	
Sit	e Name Steelfields (aka River	bend)		
City Co	e Address: 312 Abby Street //Town: Buffalo unty:Erie e Acreage: 182.0	Zip Code: 14220		
Re	porting Period: May 01, 2017 to	May 01, 2018		
			VEC	NO
		10	YES	NO
1.	Is the information above correct	XT?		
	If NO, include handwritten above	ve or on a separate sheet.		
2.	Has some or all of the site prop tax map amendment during this	perty been sold, subdivided, merged, or undergone a s Reporting Period?		√
3.	Has there been any change of (see 6NYCRR 375-1.11(d))?	use at the site during this Reporting Period		\checkmark
4.	Have any federal, state, and/or for or at the property during this		√	
		tions 2 thru 4, include documentation or evidence previously submitted with this certification form.		
5.	Is the site currently undergoing	development?		V
			Box 2	
			YES	NO
6.	Is the current site use consiste Commercial and Industrial	nt with the use(s) listed below?	Y	
7.	Are all ICs/ECs in place and fu	nctioning as designed?	√	
		THER QUESTION 6 OR 7 IS NO, sign and date below a TE THE REST OF THIS FORM. Otherwise continue.	and	
A C	Corrective Measures Work Plan	must be submitted along with this form to address t	hese iss	ues.
Sia	nature of Owner, Remedial Party	or Designated Representative Date		

SITE NO. V00619 Box 3

Description of Institutional Controls

Parcel

122.16-1-8.1

Owner

Fort Schuyler Management Corporation

Institutional Control

Ground Water Use Restriction Soil Management Plan

Landuse Restriction

Monitoring Plan O&M Plan

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

122.20-1-21

Fort Schuyler Management Corporation

Monitoring Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

O&M Plan

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

122.20-1-3.1

Fort Schuyler Management Corporation

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

Monitoring Plan
O&M Plan

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

122.20-1-5.1

Fort Schuyler Management Corporation

Monitoring Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

O&M Plan

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.08-1-6

Fort Schuyler Management Corporation

O&M Plan

Ground Water Use Restriction Soil Management Plan

Landuse Restriction Monitoring Plan

Area II: maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.08-1-7

Fort Schuyler Management Corp.

Monitoring Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction

O&M Plan

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.12-1-9.11

Fort Schuyler Management Corp.

Ground Water Use Restriction Soil Management Plan Landuse Restriction O&M Plan

Monitoring Plan

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Box 4

Description of Engineering Controls

Parcel Engineering Control

122.16-1-8.1

Cover System

Fencing/Access Control

122.20-1-21

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

122.20-1-3.1

Cover System

Fencing/Access Control

122.20-1-5.1

Groundwater Treatment System

Cover System

Fencing/Access Control

132.08-1-6

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection

Parcel	Engineering Control	
	Fencing/Access Control	
132.08-1-7		
132.00-1-7	Cover System	
	Fencing/Access Control	
132.12-1-9.11	Cover System	
	Fencing/Access Control	
		Box 5
Periodic Revi	iew Report (PRR) Certification Statements	
1. I certify by checking "YE	S" below that:	
•	eview report and all attachments were prepared usarty making the certification;	under the direction of, and
are in accordance	ny knowledge and belief, the work and conclusion with the requirements of the site remedial progra and the information presented is accurate and controls.	am, and generally accepted
engineering practices,	and the information presented is accurate and of	YES NO
		4
	Plan (or equivalent as required in the Decision D sted in Boxes 3 and/or 4, I certify by checking "YE true:	
	al Control and/or Engineering Control(s) employe t the Control was put in-place, or was last approv	
(b) nothing has of the environment;	ccurred that would impair the ability of such Conti	rol, to protect public health and
	site will continue to be provided to the Departmer access to evaluate the continued maintenance o	
	ccurred that would constitute a violation or failure Plan for this Control; and	to comply with the
	ssurance mechanism is required by the oversight ns valid and sufficient for its intended purpose es	
		YES NO
	ANSWER TO QUESTION 2 IS NO, sign and date COMPLETE THE REST OF THIS FORM. Otherw	
A Corrective Measures W	ork Plan must be submitted along with this form	to address these issues.
Cinnahura of Ora	lial Danks on Danimarkad Danasa (19	Data
Signature of Owner, Remed	lial Party or Designated Representative	Date

IC CERTIFICATIONS SITE NO. V00619

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I at	,
print name	print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section o	f this form.
Signature of Owner, Remedial Party, or Design Rendering Certification	nated Representative Date

IC/EC CERTIFICATIONS

Box 7

Date

Pro	ressio	nai Engineer Signature
		re true. I understand that a false statement made herein is uant to Section 210.45 of the Penal Law. Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Tumpike
Thomas H. Forbes, P.E.	at	Buffalo, NY 14218
print name		print business address
am certifying as a Professional Enginee	er for th	neOwner (Owner or Remedial Party)
De Ful		ANTE OF NEW LONG O

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

APPENDIX B

AREA II

ANNUAL GWPT'S REPORT &

BSA SEMI-ANNUAL COMPLIANCE MONITORING REPORTS

ANNUAL PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES RiverBend, LLC (Site No. V00619-9)

197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 18 REPORTING PERIOD ENDING DECEMBER 31, 2017

Project Description

This Annual Progress Report has been prepared for the RiverBend, LLC Groundwater Pre-Treatment System (GWPTS) located at 312 Abby Street, Buffalo, NY in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. In accordance with our NYSDEC-approved Modification Request (dated April 25, 2011), this Progress Report covers one-year operation and maintenance of the GWPTS from January 1, 2017 through December 31, 2017.

1.0 Treatment Statistics

- Approximately 10,133,617 gallons of groundwater was collected and treated over the current monitoring period averaging 27,740 gallons per day.
- System was on-line for approximately 93% of the time.
- System was off-line for approximately 7% of the time.
- Approximately 2,535.4 pounds of tar was generated from the oil/water separator and non-routine pump station cleaning activities. Based on this monthly quantity (less than 220 pounds per calendar month), a Hazardous Waste Report is not required making FSMC's RiverBend Site a Conditionally Exempt Small Quantity Generator (CESQG) in accordance with Part 371.1(f). For comparison, quantities of generated tar during previous years of operation included: ± 659 pounds in 2012, ± 912 pounds in 2013, ± 139.4 pounds in 2014, ± 296.9 pounds in 2015, and ± 1614.8 pounds in 2016.
- On December 4, 2017, 3 drums of tar (approximately 143 gallons) were transported and disposed at US Ecology Detroit South (formerly EQ Detroit Inc.) of Detroit, Michigan as a D003 reactive sulfide waste.

2.0 General Schedule of Maintenance Undergone

- Regular Maintenance Items
 - o 2 bag filter changes/week or as necessary with weekly off-site remote monitoring via the internet.
 - o Carbon filtration vessel back-washing: 2 times per week or as necessary
 - o Decant tar from separator: 2 times per week or as necessary
- January 4, 2017 Flow meter was calibrated.
- Pump station cleaning and pump replacement (PS-1 & PS-3)/maintenance corrective measures were performed between December 19, 2016 and January 23, 2017.
 Following electrician certification on January 23, 2017, all three pumps (PS-1 thru PS-3) were activated and the collection system was back to functioning as designed.

ANNUAL PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES RiverBend, LLC

(Site No. V00619-9)

197 Baraga St, Buffalo NY, 14210

PROGRESS REPORT No. 18 REPORTING PERIOD ENDING DECEMBER 31, 2017

Following decanting of excess water into the GWPTS, five drums of cleaning solids mixed with tar were recovered.

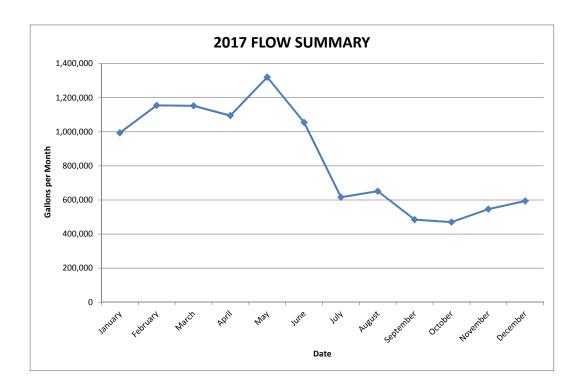
- May thru October 2017 Mowed grass area and weed trimmed fence line around the treatment building, as necessary.
- July 20, 2017 Annual certification/inspection associated with the Periodic Review Report (PRR) in accordance with DER-10 was performed.
- June 16, 2017 Changed the carbon in lead vessel #1. Lead and lag vessels were reversed at that time (vessel #1 became the lag and #2 the lead).
- July 2017 Long-Term Groundwater Monitoring was performed in Areas I, II, and III. ORC monitoring in Area III was also performed.
- October 13, 2016 Mowed final cover and weed trimmed penetrations associated with the Area II Containment Cell.
- October 31 thru December 10, 2017 System down due to electrical control problems. An electrician was on site on December 6, 2017 to troubleshoot and fix the system. The system worked for two days before shutting down due to electrical control problems. An electrician was on site on December 10, 2017 to troubleshoot and fix the system.
- December 11 thru December 14, 2017 ORC monitoring in Area III was performed.
- December 16 thru December 19, 2017 System down due to building heater malfunction. The system shut down to protect itself from potential freezing temperatures. The heater was repaired on December 19, 2017 and the system was restarted.
- December 21, 2017 Cleaned the influent tank, effluent tank, oil/water separator, and bag filter canisters.
- December 29, 2017 Carbon in lead vessel #2 is scheduled to be changed on January 15, 2018 Lead and lag vessels will be reversed at that time (vessel #2 will become the lag and #1 the lead).

3.0 Attachments/Logs

- Attachment 1: Graph of monitored flows through treatment system for 2017
- Attachment 2: Maintenance Logs for 2016 (01/03/17 thru 01/03/18)
- Attachment 3: Generated Volume of Tar Material (01/01/17 thru 12/31/17)
- Attachment 4: Hazardous Waste Manifest (12/04/17)

ATTACHMENT 1

MONITORED FLOWS VS. TIME


MONITORED FLOWS v. TIME 2017

ATTACHMENT 1

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC (Site No. V00619-9) Buffalo, New York

2017

		2017		
Month	GPMo	GPD	GPM	
January 993,745		32,056	22	
February	1,154,708	39,818	28	
March	1,152,289	37,171	26	
April	1,094,558	36,485	25	
May	1,320,607	42,600	30	
June	1,055,375	35,179	24	
July	615,949	19,869	14	
August	651,469	21,015	15	
September	484,457	16,149	11	
October	470,202	15,168	11	
November 546,121		18,204	13	
December	594,137	19,166	13	
Total	10,133,617			
Min.	470,202	15,168	11	
Max.	1,320,607	42,600	30	
Ave.	844,468	27,740	19	
Since August 2	008:			
Total	82,966,319	NA		
Min.	191,242	6,169		
Max.	2,318,235	77,104		
Ave.	838,044	27,555		

ATTACHMENT 1

MONITORED FLOWS v. TIME FIRST QUARTER 2017

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Total Flow	Daily Avg
1/3/2017	8,454,815	15,768
1/4/2017	8,489,861	35,046
1/5/2017	35,928	35,928
1/9/2017	193,804	39,469
1/16/2017	258,630	9,261
1/18/2017	296,711	19,041
1/20/2017	398,713	51,001
1/24/2017	596,669	49,489
1/27/2017	720,021	41,117
1/31/2017	895,627	43,902
2/2/2017	995,524	49,949
2/7/2017	1,185,791	38,053
2/10/2017	1,326,408	46,872
2/14/2017	1,502,804	44,099
2/16/2017	1,589,461	43,329
2/22/2017	1,811,315	36,976
2/24/2017	1,880,987	34,836
2/28/2017	2,050,335	42,337
3/2/2017	2,141,900	45,783
3/7/2017	2,341,680	39,956
3/9/2017	2,431,557	44,939
3/14/2017	2,609,197	35,528
3/17/2017	2,699,258	30,020
3/20/2017	2,777,043	25,928
3/24/2017	2,917,744	35,175
3/27/2017	3,035,716	39,324
3/31/2017	3,202,624	41,727

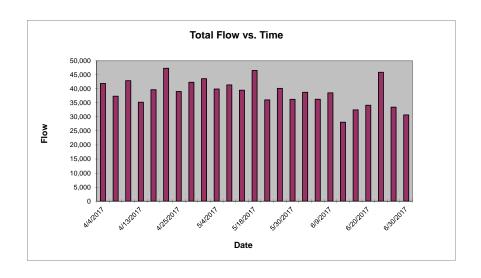
				Total	Flow vs	s. Time				
	60,000									
	50,000						_			
	40,000	_							[
Flow	30,000			ш	Ш	Ш		Ш	n _ []	
	20,000	Ш		ш	Ш	Ш	Ш	Ш	ш	
	10,000	ш	.	ш	Ш	Ш	Ш	Ш	ш	l
	0 1			, II , II , I			, , ,		$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	o Harani	11912011	1/20/2011	11311201	217012011	212212017	3/2/2011	3/14/2011	3/24/2011	
					Date	•				

Total Quarterly Flow: 3,300,742 gallons Ave. Quarterly Flow: 36,348 gallons/day

JANUARY				
993,745	gallons/month			
31	days			
32,056	gallons/day			
22	gallons/min			

FEBRUARY					
1,154,708 gallons/month					
29	days				
39,818	gallons/day				
28	gallons/min				

MARCH				
1,152,289 gallons/month				
31	days			
37,171	gallons/day			
26	gallons/min			


Notes:
 * = flow meter calibrated and reset to zero on 01/05/16

MONITORED FLOWS v. TIME SECOND QUARTER 2017

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Total Flow	Daily Avg
4/4/2017	3,370,232	41,902
4/7/2017	3,482,330	37,366
4/11/2017	3,653,890	42,890
4/13/2017	3,724,362	35,236
4/18/2017	3,922,696	39,667
4/20/2017	4,017,294	47,299
4/25/2017	4,212,509	39,043
4/27/2017	4,297,182	42,337
5/2/2017	4,515,176	43,599
5/4/2017	4,595,026	39,925
5/9/2017	4,802,031	41,401
5/16/2017	5,078,663	39,519
5/18/2017	5,171,744	46,541
5/22/2017	5,316,004	36,065
5/25/2017	5,436,475	40,157
5/30/2017	5,617,789	36,263
6/2/2017	5,734,120	38,777
6/6/2017	5,879,316	36,299
6/9/2017	5,995,014	38,566
6/14/2017	6,135,569	28,111
6/16/2017	6,200,552	32,492
6/20/2017	6,337,143	34,148
6/21/2017	6,383,027	45,884
6/26/2017	6,550,385	33,472
6/30/2017	6,673,164	30,695

Total Quarterly Flow: 3,470,540 gallons Ave. Quarterly Flow: 38,088 gallons/day

APRIL		
gallons/month		
days		
gallons/day		
gallons/min		

MAY		
1,320,607	gallons/month	
31	days	
42,600	gallons/day	
30	gallons/min	

JUNE		
1,055,375	gallons/month	
30	days	
35,179	gallons/day	
24	gallons/min	

Notes:

^{* =} flow meter calibrated and reset to zero on 01/05/16

MONITORED FLOWS v. TIME THIRD QUARTER 2017

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Total Flow	Daily Avg
7/6/2017	6,790,141	19,496
7/10/2017	6,880,079	22,485
7/14/2017	6,944,303	16,056
7/17/2017	6,998,661	18,119
7/20/2017	7,083,275	28,205
7/25/2017	7,214,631	26,271
7/28/2017	7,289,113	24,827
8/1/2017	7,319,032	7,480
8/3/2017	7,369,478	25,223
8/8/2017	7,494,804	25,065
8/10/2017	7,545,868	25,532
8/14/2017	7,640,725	23,714
8/17/2017	7,696,250	18,508
8/22/2017	7,782,540	17,258
8/24/2017	7,817,605	17,533
8/29/2017	7,907,540	17,987
8/31/2017	7,940,582	16,521
9/6/2017	8,037,414	16,139
9/13/2017	8,178,985	20,224
9/19/2017	8,280,207	16,870
9/22/2017	8,329,673	16,489
9/27/2017	8,395,834	13,232
9/29/2017	8,425,039	14,603

			То	tal Flow	vs. Tim	е		
	30,000	_	•					
	25,000				١			
	20,000			Ш	Ш			
Flow	15,000		ш	ш	ш			
	10,000	Ш	ш	ш	ш	Ш	ш	
	5,000	Ш	ш	111	ш	Ш	ш	
	0				.			
	716/2017	11172017	112812017	81812017	81712017	8/29/2017	9132017	oka Ikan'i
	Date							

Total Quarterly Flow: 1,751,875 gallons Ave. Quarterly Flow: 19,011 gallons

JULY		
615,949	gallons/month	
31	days	
19,869	gallons/day	
14	gallons/min	
14	gallons/min	

AUGUST		
651,469	gallons/month	
31	days	
21,015	gallons/day	
15	gallons/min	

SEPTEMBER		
484,457	gallons/month	
30	days	
16,149	gallons/day	
11	gallons/min	

Notes:

^{* =} flow meter calibrated and reset to zero on 01/05/16

MONITORED FLOWS v. TIME FOURTH QUARTER 2017

Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

Date	Total Flow	Daily Avg
10/4/2017	8,492,536	13,499
10/6/2017	8,518,393	12,929
10/9/2017	8,568,528	16,712
10/13/2017	8,613,680	11,288
10/24/2017	8,770,341	14,242
10/27/2017	8,818,242	15,967
10/31/2017	8,895,241	19,250
11/2/2017	8,904,323	4,541
11/6/2017	8,905,506	296
11/9/2017	8,940,449	11,648
11/14/2017	9,043,510	20,612
11/16/2017	9,093,492	24,991
11/20/2017	9,194,895	25,351
11/22/2017	9,245,717	25,411
11/27/2017	9,365,199	23,896
11/30/2017	9,441,362	25,388
12/4/2017	9,538,118	24,189
12/7/2017	9,608,244	23,375
12/12/2017	9,739,023	26,156
12/13/2017	9,802,776	63,753
12/19/2017	9,835,864	5,515
12/21/2017	9,885,658	24,897
12/27/2017	10,035,499	24,974

Total Flow vs. 1	lime
70,000	
60,000	
50,000	
40,000	
30,000	_
20,000	
10,000	
0	
O TOURDAY TOURDAY TOUR TRAIN THE TRA	n' nagan' anagan' anagan'
Date	

Total Quarterly Flow: 1,610,460 gallons Ave. Quarterly Flow: 17,513 gallons

OCTOBER		
470,202	gallons/month	
31	days	
15,168	gallons/day	
11	gallons/min	

EMBER
gallons/month
days
gallons/day
gallons/min

DEC	EMBER
594,137	gallons/month
31	days
19,166	gallons/day
13	gallons/min

Notes:

^{* =} flow meter calibrated and reset to zero on 01/05/16

FIELD LOGS

Waste Water T ment Plant - Riverbend

						Mallite	Maintenance Log							
Date	Flow Meter Reading	Lead Tank	Tank	Back	Flush	Pressu	Pressure Differential (PSI)	ම් ද	Bag Filter Change	Bag Pres	Bag Pressure (PSI)	Decant Oil	Instantan	Instantaneous Flow
,	1	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	Before	After
V	-	×		×	×	0/4	0'5	×	>	1	200	X		20,07
1	35428	×		X	צ	Q'h	0.0	×	>	279	200	3	10 01	11110
1.4 2017	193804	×		×	X	23	7	×	\	020	30:	(3		21.01
1-11-17	258360	×		×	>	2	C 7	\		₹0 € 0	000	× .	10.57	7
1-18-17	296	>		,	4 >	2 2		()	4	T	44.0	×	71.13	79.19
1 20.17	2000-1-1	× ;		X	× :	. 1	_	X	X	2	23.	×	75 74	7965
1.	000	×.		×	×	2.0	2.2	×	×	23.5	23.6	×	70.17	C: 08
1 - 62 - 1	2400-1	×		×	×	0.4	4.0	×	X	13.9	229	>	70 12	100
~	720021	×.		×	X	4.6	4.0	×	×	S 10	930	\	117	7.6
1-31 17	Z	×		×	×	4.0	4.0	X	y	17.70		()	حماده	12.7
2 4	445234	×		×	×	Q,D	0.0	>	>		. 200	7	1 2 2 2	1
	185791	*		×	×	40	7	×	(>	1 7 7 V	. 00	×>		ないで
C1-01 X	1336408	×		×	>	2	0	>	2	2	ルの	()		K20
2-14 17	1500000	>		3				4	X	1	000	×	50.15	76 13
C)	- 1000	†		× .	7			X	k	5	25.€	>	51.55	75.09
22.2	5	,		X	×	Q	0,7	×	X	24.3	23.5	×	ある。	75.16
11.77	1	×,		×	×	4.0	4.0	×	×	25.2	24.1	X	16.98	69.70
11.277	<u>'</u> الا	×		×	×	4.0	7.C	×	×	25.1	23 (.	×	45.11	~
	d	×		×	×	૭	9	×	×	241	200	×		100
17-	17	×		R	S	9	C.	×	Ŗ	956	0.20	×	000	100
1-1-		×		×	×	5.0	5.0	×	×		030	×	から、子	100
5-4-17	5	۶۷		×	×	7	ľ	×	×	23.2		\ >	,	200
1	ZI.	×		×	×	1	7,0	×	٨		233	>		722
	264258	×		×	×	4.0	4,0	×	>	23.4	22	3	(25 17	2000
	770	R		X	Ŋ	l	1	X	×	240	2	Z.	1.57	1
	7917744	×		٧.	×	40	4.6	Х	×	24.5		>	21 07	20/20
,	557	×		×	×	1	1	×	بد	v	23.4	×	100	00.07
1 2 1	27.07	×		×	メ	4.0	4.0	×	×	23.9	23.33	*	(3.4	1,5
1	3510735	×		×	×	40	40	×	×	24.5	23.4	Y	5/6.54	10.8
1.12	C 4 2	: 🙏		×	۲.	4,0	4.0	×	X	24.3		×	28.7	1179
١.	3	×		×	×	4.0	4.0	×		24.2	23.5	×	100	00
0	3124307	×		×	×	0. Z	4.0	×	×	3.5	23.3	×	9 7	75.76
4-7/	ついろかという	x		×	×	4.0	4.0	Y	X	23.9	23.4	×	62.10	72.56
-	17/2	43		×	٧,	0,1	4,0	×	×	1	23.3	メ	200	
(1-0-)		٨	,	×	1	4.0	0.3	X	×	24.4	23.6	×	54.21	7,000
1														1

Flow meter calibrated + reset to zero on 1/4/17
Final reading prior to reset = 8489861
Carbon change 12/29/16

Waste Water T ment Plant - Riverbend

						Mainter	Maintenance Log							
Date	Flow Meter	Lead Tank	ınk	Back I	Flush	Pressur	Pressure Differential (PSI)	Bag Ci: Ci	Bag Filter Change	Bag Pres	Bag Pressure (PSI)	Decant Oil	Instantan	Instantaneous Flow
	aniilg	Tank 1	Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	Before	After
- LI112	4291182	メ		×	×	4.0	O T	X	×	24.1	22.7	×	(12,13)	20.72
5[2]17		×		×	×	1	4.0	×	X	1	22.5	Х	,	36.06
7. 1. 1.	.9	×		×	×	1	40	×	X	1	3.2.5	×		7369
5.6.7	c2 6	×		×	×	1	(<u>×</u>	2	23.8	23.€	X	és	١.
5-16-17	5078663	×		×	×	4.0	4,0	×	×	C 1-6	23 C	×	Cl 15	73.32
5 18 7	5171744	メ		'	لحز)	1.0	×	צ.)	225	×	1	
5.22-17	5316004	×		×	×)	4.0	×	×	ı	23.4	>)	000
F-35-17	5430475	×		¥	×	4.0	d,O	×	×	246	23.0	×	43.7	~
5-30-13	-	Ķ		>	×	O, H	C),(C)	X	Х	25.8	23.C	×	27.67	1015
4.2.3	5734120	×		×	X	4.8	4,0	×	X	1.97	23.5	X	33,03	1.7 93
66 17	5919316	×		×	×	4,0	0.4	×	×	25.8	25.0	×		10,51
C1-6-3	59950 i4	×		×	×	ı	Ø-35	×	×	1	23 C	×	,	CC. 42
6 14 17	6135569	2		.×	×	t		X	१	26 4	22.1	×	0.0	
1-11-17	1200552		X	Ness Cuch	×	1	4.0	×	×	1	1.1.4	>	J	125.54
6-20-17	6337143			l	l	١	l	×	×	NA	λV	×	20	4
6.21-17	4383027		×	*	X	1	0.7	×	×		1	. >	かんか	17 50
126-17	6550385		×	×	X	4.0	4,0	X	X	j	1	×	38.90	200
L-80-17	6673164		×	×	×	2,0	4.0	×	×	ſ	ţ	X	41.12	78.70
7-5-17	(750) 41		×	×	×	Ž Ô	4.0	×	×	>)	X	1 .	77.46
7-16-17	6680018		R	×	×	/	1	X	X	ļ		×	S S S S S S S S S S S S S S S S S S S	75.
7-14-1	6944303		, A		×	Į	1	×	X		2(20
7 11/17	6995661		×	Z	્ર	1)	×	X	25	21.6	R	S	28
7-36-17	احد		X	<i>,</i>	×	4		R	S	918	-	R	74	
1.35-11	و		×	Ş	Q	j	١	×	X.	おみ	23	4	OL.	0/
7-38-17	738/113		×	×	×	1		X	X	233	31.7	7	121	83.49
O.G	7319032		×	, ,\	×	(1	Χ.	X	25.8	21.7	×	72	84.62
8-3-17	7369478	•	×	×	×	3	6 73	×	×	31.5	31.5	×	77	86,03
0	7494904		×		X	•	*	×	·×	2	20.3	*	16.19	\$3.04
2010	1545868		X	*	T	į	1		×		3/13	×	77.88	87.13
2-14-17	7640735	*	X	×	×	(ę	×	×	1.9	30.3	×	74.27	82.12
8	J696250	2000	×	X	×	4	l	X	×	31.8	2/63	×	76.51	87.35
W-88-8			×	×	×	1	1	×	X	.4	31,0	X	76.19	89.24
L1-14-8	1817605		×	×	×	ę	ı	×	×	30.9	20.3	×	1404	2
C. 12. 17	1 Kg 7	Shere's	400	دا	54 54	7	•							

4 Ch Cheric out

Waste Water T nent Plant - Riverbend

	•	7
	•	•
	•	٠,
	٠.	٠
		7
- 1		
		_
	-	
	п	h
	м	٠
	•	٩
	•	ø
	-	
	1	
	-	
	ш	n
- 3	3	*
- 1	•	_
-1	-	-
	•	٩
	u	u
	-	3
	•	=
	г	
		-
	п	٠
	4	u
	•	
	٠,	9
	2	_
-	_	_

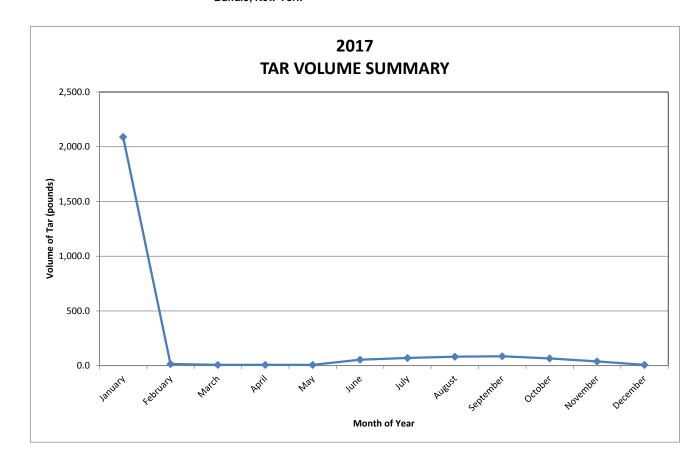
					Mallici	Maillellaile Log							
Date	Flow Meter	Lead Tank	Back	Flush	Pressur	Pressure Differential (PSI)	Bag Ching	Bag Filter Change	Bag Pres	Bag Pressure (PSI)	Decant Oil	Instantaneous Flow	ous Flow
	Keading	Tank 1 Tank 2	Tank 1	Tank 2	Before	After	Tank 1	Tank 2	Before	After	Seperator	Before	After
C1/60/8	7907540	×	×	×	3	,	×	×	20.1	31.0	×	75.04	810,93
× 8/3.//7	7940582	×	×	×	Į	ţ	×	×	みんぶ	11/18	×	78,03	27,96
-	4037414	×	×	×	l	9	×	×	363	1.10	×	73,25	87,35
9.13-17	8178985	×	K	X	-	1	R	بحر	21.5	21.0	×	2,5	67
6.19.17	8380207	×	×	×	1	\$	×	X	230	31.5	×	05:39	86.38
4-23-17	8339673	×	×	X	1		X	X,	23.1	5 1E	×	8759	25.64
L1-12.5	43-15-834	×	×	×	j		×	× .	23.8	21,5	X.	63.16	89.45
9-29-17	84,35039	×	×	×	appe Contract	-	×	X	9%	20,3	×	19.31	87.65
10.5.17	8-1925.36	\	×	×	2	1	X	×	1.18	30°4	X	60.75	7,
10-6-17	8518393	×	×	×	ţ		×	×	21.5	1/2/	×	76.08	41.09X
ri-6-91	8568538	×	×	X	-	4	×	×	31.9	3/1.6	×	76.71	86,20
10-12-17	46 3680	×	X	X	ł	1	×	×	31.7	0%	. ×	どかとし	37.67
re-34-17	4770341	X	X	1	1	-	×	×	23.0	2009	7	Ch192	1257
10-37-17	8818243	×	Y	X,	ž		×	×	23.5	31.5	×	28.72	84.48
10-31-17	1463488	×	X	X	Û		×	X	72.4	818	×	25'51	86,57
11-3-17	5904323		×	X			8.	X	220	1.0%	×	75.47	155.75
11-18617	×90 5506	×	X,	X	S -	-	\mathcal{X}_{i}	X	81/2	3/1.5	×	48.77	800%
11-5-11	8940449	×	҈≺	×	1	3	X	X	33,5	3/6/0	×	64.61	870db
11-14-17	QEH 3510	×	×	×	4	١	×	X	33.8	230 A	X	CML	810,55
11-12-17	G 150 3 700 3	×	×	×	1	Circum	×	×	22.0	21.9	X	74023	36,38
L1-96-11	9194895	×	×	×	,	1	×	×	23.6	367	×	72.46	84.53
11-88-11	9245717	×	×	×	1	ť	×	×	23.4	2301	××	73.53	85.57
L1-78-11	9365199	×	×	×	ŧ	١	×	>	93°4	3342		74.26	45°68
11-36-17	9441362	×	X	`~	ĭ	١	<u>`</u>	×	22,3	220	ぐ		85.67
13-4-1J	9538113	×	×,	×	ţ	1	×	X	32,3	31.8	, X		83.52
19-7-17	91008244	X	×	×	\	4	×	X	32.7	213	31.8×'	38	St.43
13-17	9739033	×	×	×	1	1	×	X	33.5	31.9	K,	68.89	79.09
13-13-17	9503776	_	>	7	1	ţ	×	¥	27.8	31.7		4567	8/42
13-17-17		×	ح	۲,	1	١	>	×	320	220	X	11.69	85.00
12-21-17	988658	×	×	ج.	1	l	X	X	22.6	21.7	R	76	79
C1-18/61		×	×	×	1	-	×	×	22,3	h.K.	×	75,05	8237
1-3-18	(1022 lp 873	χ,	×	X	ŧ	Ĺ	X	×	23.4	22.3	×	65.92	83,07
			,	_									

3-31 - TOOK TAR/SLUNE SAMPLE FROM ACTIVE DELINIR DRUM & TAR/SLUZIE PS-3 DELIN

A

10-34 - BURALD WHERE ADTROCKY ONLY ITE, THESS POST-SYSTEM SIMPLES
11-6 - TEAM (MOUNT BEETEL) ON SITE TO FIX JUM RIND SONSORY ALAREM 135UZ - PENDLEM FIXED! - RESTART SYSTEM | 13-19 - HEARE PROVEM (PANIMASINE WORKENG - KEEP) EYE UN IT!

GENERATED VOLUME OF TAR MATERIAL


GENERATED VOLUME OF TAR MATERIAL 2017

Groundwater Pre-Treatment System (GWPTS)
Riverbend, LLC
(Site No. V00619-9)
Buffalo, New York

Month	Volume of Tar (pounds)
January	2,089.1
February	15.7
March	7.8
April	7.8
May	7.8
June	54.8
July	70.5
August	82.2
September	86.2
October	66.6
November	39.2
December	7.8

Total: 2535.5 pounds Drums: 5.27

Min. 7.8 pounds Max. 2089.1 pounds Ave. 211.3 pounds

HAZARDOUS WASTE MANIFEST (12/04/17)

DISPOSAL CONNECTIONS INC 6569 HEATHER DRIVE LOCKPORT, NY 14094-1152

Invoice Date: 12/13/2017 Customer ID: 018081

Facility: EQ Detroit, Inc., 1923 Frederick, Detroit, MI 48211	
Description	Qty. Unit
K179003DET - K179003DET Tar Residuals	3.00 DM55

Customer Service: 1-800-592-5489 www.usecology.com

	print or type. (Form desig	ned for use on elite (1	2-pitch) typewriter.)						r-	rm Ac	d Our	
† UN	IIFORM HAZARDOUS	1. Generator ID Number				Emergency Respon		4. Manifes	! Tracking	rm Approve		NO. 205-1-0
	WASTE MANIFEST	NYROO	014892	24		16-225-		חח	198	058	33	FLE
Gen	Senerator's Name and Maily Fort Schuyter Mail 257 Fuller Road Albarry NY 1220 erator's Phone: 6 1 ransporter 1 Company Nam	Negement Corpo	7 0 9 6	Att: Tom	O'Brien Ger Ro	erator's Site Address verbend Site 2 Abby Stre- field NY 14	ss (if differen	t than mailing addre	rss)	000	<u> </u>	<u> </u>
1	Tonawanda Tan	k Transport Se	rvice inc.					U.S. EPA ID		764	40	٠.
7 10	ransporter 2 Company Nam	2						U.S EPAID		, , ,	• •	0 1
1	esignaled Facility Name and EQ Detroit, Inc. 1923 Frederick St				-			U.S. EPAID	Number		_	
1	Detroit M0 48211 htty's Phone: 313 92						3	·				
								MID	98	0 9 9	1 5	6 6
9a HM	and Packing Group (if ar	n (including Proper Shipp (iy))	ing Name. Hazard Class, II	D Number,		10. Conta	T	11. Total Quantity	12. Unit V/L/Vol.		Waste Co	
X	'RQ NA3077, H	ezardous Wests	, Sold, n.o.s. (Di	003), 9, F	-GIN	HU.	Туре	Сивиниу	VVL; VOL	Dana	_	
X						003	DM	01500	P	D003	B	** * *****
	2.							0.00		<u> </u>		
-	3.		_				ļ				i i	9
												÷
	4.					-	-					
											100	
14. Sp	equi Handling Instructions X179003DET,	and Additional Information	relable in section	11	-						_	_
	7 2											
15. G	GENERATOR'S/OFFEROR' marked and labeled/placarde exporter. I certify that the con	S CERTIFICATION: The d. and are in all respects	reby declare that the conte in proper condition for tran	ents of this con esport accordin	signment are fully ig to applicable in	and accurately des	scribed above	e by the proper ship nental regulations.	ping name	and are clas	ssilied, pac	kaged
16	certify that the waste minim	zation statement identifie								price dia r	an ore rea	raiy
Genera	alor's Offeror's Printed Type	name .			Signature		/	1/1	_	Mar	ath Day	Year
Dri	TO COMPANY TO	aunt for	F.S. M.C.		1 //	52	1	m		1/2	714	1/7
16 Inte	emational Shipments	Import to U.S.				/			_			1//
Transp	oorter signature (for exports				port from U.S.	Port of ent	AT COMPANY					
	nsporter Acknowledgment of		100			Date leavin	ig U S :		_			
Transpo	orler 1 Printed/Typed Name				Signature					Mon	th Dow	Va.e
(Aumers 1	- Stabe	~~~		124		1_	Bane	_	I J	th Cay	Ye.ir
Transpo	orter 2 Printed Typed Name	100	chera		Signature	nusi	400	Sans	0	10	214	1/1
					I					Mon	in Day	Yeur
18 Dec	crepancy									_	_1	
	20-Avanore											
18a. Us	screpancy Indication Space	Quantity		voe		Residue				Ī	10.00	
		*	<u> </u>	1pc] riesique		Partial Rejec	ton	L	Fut Re	ection

18b. Alte	ernate Facility (or Generator)		_	<u>`</u>	lanniest Reference	Number:	ILP EDAIDA				
								U.S. EPA ID Nu	noer			
Eagle !	r Phone											
	s Phone. gnature of Afternate Facility	or Constant										
org	Francis of Asianate Facility (or Generator)								Mon	th Day	Year
				1			1			1	1	1
19 Hazi	ardous Waste Lepc Maha	emphi Method Codes (i.)	e., codes for hezardous wa	ste treament	disposal and rec	vrlina systame:	1				_	1
	1	2	1	7	3.	lonin stancing)	#	4.	_			
70. Nac-	gnated Facility Corner of D			-11			Д_		/			
	gnated Facility Currer of D. Typed Name	Cediff Con of rea	cept of hazardous material	is covered by		ol as note in Item	182					
	1/1/10	1/1/1	1111MV	10	Signature	M/	ľ		VL	1	4	Y -
orm 87	700-22 (Rev. 3-05) Prev	us editions are obso	kete.			DESIG	NATED FA	CILITY TO DE	STINAT	ON STAT	E (IF RE	OUIRED
											2.99	

Strong Advocates, Effective Solutions, Integrated Implementation

December 21, 2017

Mr. Michael Szilagyi **Buffalo Sewer Authority** Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: RiverBend Site

> Ground Water Pre-Treatment Discharge Monitoring Results December 2017 Semi-Annual Compliance Monitoring Report

BPDES Permit No. 16-01-BU278

Dear Mr. Szilagyi:

On behalf of our client, Fort Schuyler Management Corporation, TurnKey Environmental Restoration, LLC has prepared this correspondence to present the second semi-annual 2017 discharge monitoring results for the groundwater pre-treatment system at the abovereferenced facility. Discharge monitoring was performed from December 11-12, 2017.

SAMPLE COLLECTION

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with Buffalo Pollution Discharge Elimination System (BPDES) Permit No. 16-01-BU278 in laboratory-provided, pre-cleaned, and pre-preserved sample bottles (see Figure 1). Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. In accordance with the Permit, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period. Field documentation is provided in Attachment 1.

ANALYTICAL RESULTS

The current period analytical results are presented as Attachment 2. Compounds detected above the laboratory reporting limit during the December 2017 event are summarized in Table 1 along with permitted BSA discharge limits. As presented, all parameters are well within allowable limits.

FLOW MONITORING

Flow measurement data is presented in Table 1. Average daily flow was based on the total flow recorded during the monitoring period divided by the number of days in that monitoring period. A copy of the annual flow meter calibration data is presented in Attachment 3. The next flow meter calibration is tentatively scheduled for January 2018.

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

ec: Tom O'Brien (Fort Schuyler)

Paul Werthman (TurnKey)

File: 0322-017-500

TABLES

TABLE 1

2017 SEMI-ANNUAL GROUNDWATER PRETREATMENT SYSTEM DATA SUMMARY

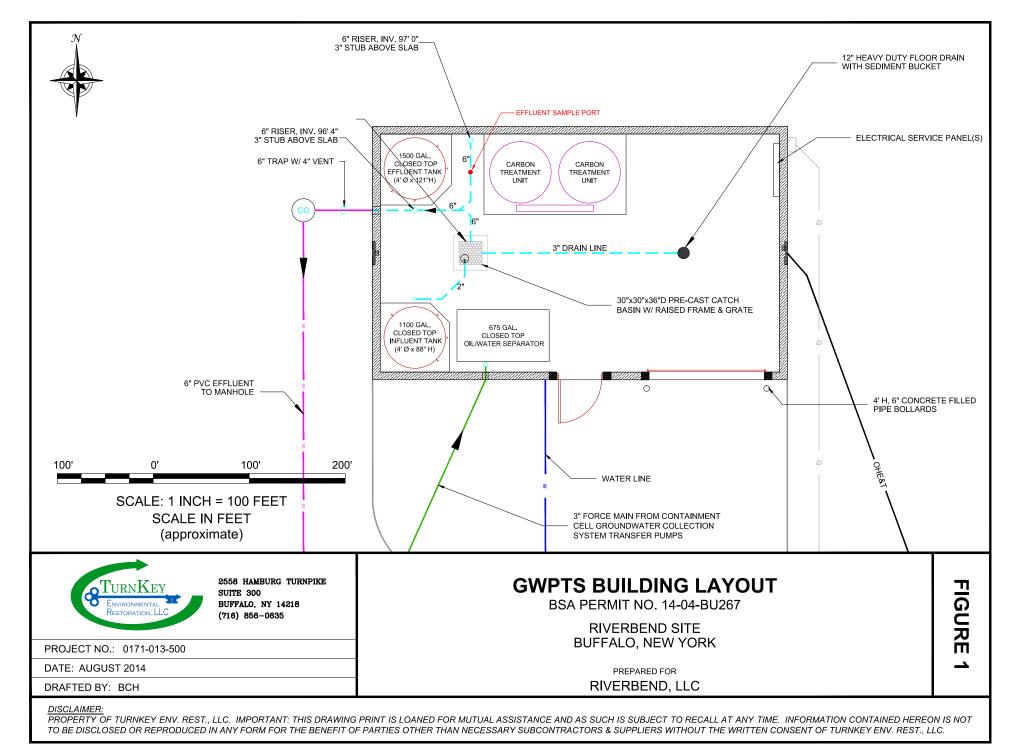
BPDES Permit #16-01-BU278 Fort Schuyler RiverBend Site 312 Abby Street, Buffalo, NY

	December	11-12, 2017						
Parameter	Concentration (units as indicated)	Mass ¹ (pounds)	Daily Discharge Limits ²					
Laboratory pH (S.U.)	7.20	na	5.0 - 12.0					
Field pH (S.U.) ³	NA	na	5.0 - 12.0					
Volatile Organic Compounds - Method 624	! (mg/L)							
Total VOCs	ND	na	Monitor					
Semi-Volatile Organic Compounds - Method 625 (mg/L)								
Total SVOCs	ND	na	Monitor					
Inorganics (mg/L)								
Total Cyanide	1.36	0.213	4.3 lbs					
Average Daily Flow (gallons per day) 4	18,	737	see Note 5					

Notes:

- 1. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified below.
- 2. Mass limits are based on the Average Daily Flow through the December event; actual limits may vary slightly based on actual discharge.
- 3. Field pH is an average of 4 grab samples collected over a 24-hour period.
- 4. Average daily flow based on net flow recorded as presented below.
- 5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 54,000 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modified.
- 6. "ND" = Indicates compound was analyzed for, but not detected above the reporting limit.

Flow Calculations:


Event	Date	Flow Measurement * (gallons)	Average Daily Flow * (gallons per day)
December 2017	6/26/2017	6,550,385	10 727
December 2017	12/21/2017	9,885,658	18,737

Notes:

* = flow meter calibrated and reset to zero on 01/04/17. Average daily flow above accounts for the recalibration and zeroing.

FIGURES

FIELD DOCUMENTATION

WATER SAMPLE COLLECTION LOG

PROJ	ECT INFO	RMATION			SA	AMPLE DESCR	RIPTION
Project	Name: Riv	erbend Site			I.D	.: Pro	cess Effluent
Project	No.: -017	4- TO322.	-017-500	1	Ma	trix: SURFACE	WATER STORM
Client:	Riv	erbend, LLC				SEEP	OTHER
Location	n: 192	Baraga St.,	Buffalo, NY			INFLUENT	✓ EFFLUENT
	LE INFOR		_		_		
	nipped to Lab				Sa	mple Type:	POINT GRAB COMPOSITE
	ed By: Ches Collection N			eamnla valv	a nrior to off	 luent holding tank	
	er: Cloudy	ileti ioa.	via emuem	. Sample valv	e prior to en	ident noiding tank	
		250 €					
Pai	rameter	Units	Grab #1	Grab #2	Grab #3	Grab #4	
	pН	units	NA	NA	NA	NA	
	Temp.	°C					
	Cond.	mS					
	Turbidity	NTU		<u> </u>	in the second		
	Eh / ORP	mV	V	V	111	W 1	
	D.O. Odor	ppm	NA	NA	NA	MA	
		olfactory visual	NOAE	None	None	None	
_^	ppearance Sample		Cleor	Clear	Clear	12-18-17	
	Sample Sample		19-11-17	19-11-17	1730		
L	Sample	Tillie	0.130	1430	1730	2930	
FYACT	LOCATION	(if applicab	ule)				
			•	ce Elevation	/fmol\		
INOI	thing (ft)	Easting	j (ii) Suria	ice Elevation			
SAMPL	E DESCRIP	TION (appe	arance, olfa	ctory):			
ciear,	no order						
	E ANALYSI	· ·			00) 100	5 (0)(00)	
			mples for me	ethod 624 (V	OCs) and 62	5 (SVOCs) analys	sis, these samples will
	mposited at t		. avanida and	d labaratanı	م الله برط الله	anual aliquata of a	omple to fill
		•	cyanide and	ı iaboratory p	on by filling (equal aliquots of s	ample to IIII
<u>-</u>	e containers ONAL REMA						
ADDITIO	ONAL REIVIA	ANNO.					
	RED BY: (Lacton Ho	chreiter			DATE: 12 -	·13-17

ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1745701

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Report Date: 12/20/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: Report Date: L1745701

12/20/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1745701-01	PROCESS EFFLUENT-GRAB 1,2, 3, 4	WATER	BUFFALO, NEW YORK	12/12/17 09:30	12/12/17
L1745701-02	COMPOSITE PROCESS EFFLUENT-GRAB 1, 2, 3, 4	WATER	BUFFALO, NEW YORK	12/12/17 09:30	12/12/17
L1745701-03	PROCESS EFFLUENT-	WATER	BUFFALO, NEW YORK	12/12/17 09:30	12/12/17
L1745701-06	TRIP BLANK	WATER	BUFFALO, NEW YORK	12/11/17 09:30	12/12/17

Serial_No:12201716:55

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:12201716:55

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

WG1074293: A Matrix Spike and Laboratory Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the Matrix Spike and Laboratory Duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/20/17

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

Serial_No:12201716:55

L1745701

12/20/17

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

SAMPLE RESULTS

12/12/17 09:30

Lab Number:

Report Date:

Lab ID: L1745701-01 Date Collected: 12/12/17

Client ID: PROCESS EFFLUENT-GRAB 1,2, 3, 4

Sample Location: BUFFALO, NEW YORK

Date Received: Field Prep: Not Specified

Matrix: Water Analytical Method: 5,624

Analytical Date: 12/14/17 13:58

Analyst: BD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	5.0	0.62	1
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1
Chloroform	ND		ug/l	1.5	0.22	1
Carbon tetrachloride	ND		ug/l	1.0	0.32	1
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1
Dibromochloromethane	ND		ug/l	1.0	0.33	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1
Tetrachloroethene	ND		ug/l	1.5	0.33	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1
Bromodichloromethane	ND		ug/l	1.0	0.25	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1
Bromoform	ND		ug/l	1.0	0.32	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1
Benzene	ND		ug/l	1.0	0.23	1
Toluene	ND		ug/l	1.0	0.32	1
Ethylbenzene	ND		ug/l	1.0	0.31	1
Chloromethane	ND		ug/l	5.0	0.64	1
Bromomethane	ND		ug/l	5.0	1.3	1
Vinyl chloride	ND		ug/l	1.0	0.30	1
Chloroethane	ND		ug/l	2.0	0.26	1
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	0.29	1
Trichloroethene	ND		ug/l	1.0	0.33	1
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1

Serial_No:12201716:55

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/12/17 09:30

Client ID: PROCESS EFFLUENT-GRAB 1,2, 3, 4 Date Received: 12/12/17
Sample Location: BUFFALO, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
1,3-Dichlorobenzene	ND		ug/l	5.0	0.25	1	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.26	1	
p/m-Xylene ¹	ND		ug/l	2.0	0.58	1	
o-xylene ¹	ND		ug/l	1.0	0.22	1	
Xylenes, Total¹	ND		ug/l	1.0	0.22	1	
Styrene ¹	ND		ug/l	1.0	0.25	1	
Acetone ¹	ND		ug/l	10	4.0	1	
Carbon disulfide ¹	ND		ug/l	5.0	0.73	1	
2-Butanone ¹	ND		ug/l	10	2.2	1	
Vinyl acetate ¹	ND		ug/l	10	2.9	1	
4-Methyl-2-pentanone ¹	ND		ug/l	10	1.8	1	
2-Hexanone ¹	ND		ug/l	10	2.5	1	
Acrolein ¹	ND		ug/l	8.0	1.3	1	
Acrylonitrile ¹	ND		ug/l	10	0.97	1	
Dibromomethane ¹	ND		ug/l	1.0	0.11	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	102		80-120	
Fluorobenzene	105		80-120	
4-Bromofluorobenzene	98		80-120	

Project Name: RIVERBEND BSA SAMPLING **Lab Number:** L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 12/14/17 08:23

Analyst: GT

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG1072636-10
Methylene chloride	ND	ug/l	5.0	0.62
1,1-Dichloroethane	ND	ug/l	1.5	0.29
Chloroform	ND	ug/l	1.5	0.22
Carbon tetrachloride	ND	ug/l	1.0	0.32
1,2-Dichloropropane	ND	ug/l	3.5	0.27
Dibromochloromethane	ND	ug/l	1.0	0.33
1,1,2-Trichloroethane	ND	ug/l	1.5	0.24
2-Chloroethylvinyl ether	ND	ug/l	10	0.54
Tetrachloroethene	ND	ug/l	1.5	0.33
Chlorobenzene	ND	ug/l	3.5	0.30
Trichlorofluoromethane	ND	ug/l	5.0	0.46
1,2-Dichloroethane	ND	ug/l	1.5	0.32
1,1,1-Trichloroethane	ND	ug/l	2.0	0.30
Bromodichloromethane	ND	ug/l	1.0	0.25
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.26
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.32
Bromoform	ND	ug/l	1.0	0.32
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.22
Benzene	ND	ug/l	1.0	0.23
Toluene	ND	ug/l	1.0	0.32
Ethylbenzene	ND	ug/l	1.0	0.31
Chloromethane	ND	ug/l	5.0	0.64
Bromomethane	ND	ug/l	5.0	1.3
Vinyl chloride	ND	ug/l	1.0	0.30
Chloroethane	ND	ug/l	2.0	0.26
1,1-Dichloroethene	ND	ug/l	1.0	0.37
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene ¹	ND	ug/l	1.0	0.29
Trichloroethene	ND	ug/l	1.0	0.33

Serial_No:12201716:55

L1745701

Project Name: RIVERBEND BSA SAMPLING Lab Number:

Project Number: T0322-017-500 **Report Date:** 12/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 12/14/17 08:23

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	
/olatile Organics by GC/MS - V	Vestborough La	b for sample(s):	01 Batch:	WG1072636-10	
1,2-Dichlorobenzene	ND	ug/l	5.0	0.26	
1,3-Dichlorobenzene	ND	ug/l	5.0	0.25	
1,4-Dichlorobenzene	ND	ug/l	5.0	0.26	
p/m-Xylene ¹	ND	ug/l	2.0	0.58	
o-xylene ¹	ND	ug/l	1.0	0.22	
Xylenes, Total ¹	ND	ug/l	1.0	0.22	
Styrene ¹	ND	ug/l	1.0	0.25	
Acetone ¹	ND	ug/l	10	4.0	
Carbon disulfide ¹	ND	ug/l	5.0	0.73	
2-Butanone ¹	ND	ug/l	10	2.2	
Vinyl acetate ¹	ND	ug/l	10	2.9	
4-Methyl-2-pentanone ¹	ND	ug/l	10	1.8	
2-Hexanone ¹	ND	ug/l	10	2.5	
Acrolein ¹	ND	ug/l	8.0	1.3	
Acrylonitrile ¹	ND	ug/l	10	0.97	
Methyl tert butyl ether ¹	ND	ug/l	10	0.27	
Dibromomethane ¹	ND	ug/l	1.0	0.11	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
Pentafluorobenzene	99		80-120			
Fluorobenzene	103		80-120			
4-Bromofluorobenzene	97		80-120			

Lab Control Sample Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

Report Date: 12/20/17

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	072636-9				
Methylene chloride	100		-		70-111	-		30
1,1-Dichloroethane	105		-		78-116	-		30
Chloroform	105		-		86-111	-		30
Carbon tetrachloride	90		-		60-112	-		30
1,2-Dichloropropane	100		-		83-113	-		30
Dibromochloromethane	95		-		58-129	-		30
1,1,2-Trichloroethane	100		-		80-118	-		30
2-Chloroethylvinyl ether	105		-		69-124	-		30
Tetrachloroethene	100		-		80-126	-		30
Chlorobenzene	90		-		80-126	-		30
Trichlorofluoromethane	110		-		83-128	-		30
1,2-Dichloroethane	100		-		82-110	-		30
1,1,1-Trichloroethane	100		-		72-109	-		30
Bromodichloromethane	100		-		71-120	-		30
trans-1,3-Dichloropropene	95		-		73-106	-		30
cis-1,3-Dichloropropene	100		-		78-111	-		30
Bromoform	90		-		45-131	-		30
1,1,2,2-Tetrachloroethane	100		-		81-122	-		30
Benzene	105		-		84-116	-		30
Toluene	100		-		83-121	-		30
Ethylbenzene	90		-		84-123	-		30
Chloromethane	90		-		70-144	-		30
Bromomethane	75		-		63-141	-		30

Lab Control Sample Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

Report Date: 12/20/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG1	1072636-9					
Vinyl chloride	110		-		56-118	-		30	
Chloroethane	105		-		74-130	-		30	
1,1-Dichloroethene	110		-		77-116	-		30	
trans-1,2-Dichloroethene	100		-		81-121	-		30	
cis-1,2-Dichloroethene ¹	105		-		85-110	-		30	
Trichloroethene	100		-		84-118	-		30	
1,2-Dichlorobenzene	100		-		78-128	-		30	
1,3-Dichlorobenzene	95		-		77-125	-		30	
1,4-Dichlorobenzene	95		-		77-125	-		30	
p/m-Xylene ¹	90		-		81-121	-		30	
o-xylene ¹	90		-		81-124	-		30	
Styrene ¹	90		-		84-133	-		30	
Acetone ¹	116		-		40-160	-		30	
Carbon disulfide ¹	130		-		54-134	-		30	
2-Butanone ¹	114		-		57-116	-		30	
Vinyl acetate ¹	95		-		40-160	-		30	
4-Methyl-2-pentanone ¹	110		-		79-125	-		30	
2-Hexanone ¹	116		-		78-120	-		30	
Acrolein ¹	100		-		40-160	-		30	
Acrylonitrile ¹	110		-		66-123	-		30	
Methyl tert butyl ether¹	105		-		57-126	-		30	
Dibromomethane ¹	100		-		65-126	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Lab Number:

L1745701

Project Number: T0322-017-500

Report Date:

12/20/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1072636-9

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	102			80-120
Fluorobenzene	104			80-120
4-Bromofluorobenzene	98			80-120

Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number:

L1745701

Report Date:

12/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	r RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough	Lab Asso	ciated sample(s): 01 QC Ba	tch ID: WG1072636-	6 QC Samp	ole: L1745803-02	Client IE): MS Sample
Methylene chloride	ND	200	200	100	-	-	70-111	-	30
1,1-Dichloroethane	ND	200	200	100	-	-	78-116	-	30
Chloroform	ND	200	200	100	-	-	86-111	-	30
Carbon tetrachloride	ND	200	190	95	-	-	60-112	-	30
1,2-Dichloropropane	ND	200	200	100	-	-	83-113	-	30
Dibromochloromethane	ND	200	180	90	-	-	58-129	-	30
1,1,2-Trichloroethane	ND	200	190	95	-	-	80-118	-	30
2-Chloroethylvinyl ether	ND	200	200	100	-	-	69-124	-	30
Tetrachloroethene	ND	200	190	95	-	-	80-126	-	30
Chlorobenzene	ND	200	180	90	-	-	80-126	-	30
Trichlorofluoromethane	ND	200	220	110	-	-	83-128	-	30
1,2-Dichloroethane	ND	200	200	100	-	-	82-110	-	30
1,1,1-Trichloroethane	ND	200	200	100	-	-	72-109	-	30
Bromodichloromethane	ND	200	200	100	-	-	71-120	-	30
trans-1,3-Dichloropropene	ND	200	180	90	-	-	73-106	-	30
cis-1,3-Dichloropropene	ND	200	180	90	-	-	78-111	-	30
Bromoform	ND	200	190	95	-	-	45-131	-	30
1,1,2,2-Tetrachloroethane	ND	200	200	100	-	-	81-122	-	30
Benzene	ND	200	200	100	-	-	84-116	-	30
Toluene	ND	200	190	95	-	-	83-121	-	30
Ethylbenzene	ND	200	190	95	-	-	84-123	-	30
Chloromethane	ND	200	180	90	-	-	70-144	-	30
Bromomethane	ND	200	140	70	-	-	63-141	-	30
Vinyl chloride	ND	200	210	105	-	-	56-118	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

Report Date: 12/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	r RPD	RPD Qual Limits
Volatile Organics by GC/MS	S - Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG1072636-	6 QC Samp	le: L1745803-02	Client ID	: MS Sample
Chloroethane	ND	200	200	100	-	-	74-130	-	30
1,1-Dichloroethene	ND	200	210	105	-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	200	200	100	-	-	81-121	-	30
cis-1,2-Dichloroethene ¹	ND	200	210	105	-	-	85-110	-	30
Trichloroethene	ND	200	200	100	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	200	190	95	-	-	78-128	-	30
1,3-Dichlorobenzene	ND	200	190	95	-	-	77-125	-	30
1,4-Dichlorobenzene	ND	200	190	95	-	-	77-125	-	30
p/m-Xylene ¹	ND	400	360	90	-	-	81-121	-	30
o-Xylene ¹	ND	200	180	90	-	-	81-124	-	30
Styrene ¹	ND	200	180	90	-	-	84-133	-	30
Acetone ¹	ND	500	560	112	-	-	40-160	-	30
Carbon disulfide ¹	8.0J	200	240	120	-	-	54-134	-	30
2-Butanone ¹	ND	500	540	108	-	-	57-116	-	30
Vinyl acetate ¹	ND	400	390	98	-	-	40-160	-	30
4-Methyl-2-pentanone ¹	ND	500	530	106	-	-	79-125	-	30
2-Hexanone ¹	ND	500	550	110	-	-	78-120	-	30
Acrolein ¹	ND	400	360	90	-	-	40-160	-	30
Acrylonitrile ¹	ND	400	430	108	-	-	66-123	-	30
Dibromomethane ¹	ND	200	200	100	-	-	65-126	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number:

L1745701

Report Date:

12/20/17

	Native	MS	MS	MS		MSD	MSD	- 1	Recovery			RPD	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits	

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1072636-6 QC Sample: L1745803-02 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	99		80-120
Fluorobenzene	103		80-120
Pentafluorobenzene	101		80-120

Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1

L1745701

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1072	2636-5 QC Sa	mple: L174	5803-02 Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number:

L1745701

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1072	2636-5 QC Sa	mple: L174	5803-02 Client ID: DUP Sample
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	ND	ND	ug/l	NC	30
Carbon disulfide ¹	8.0J	8.0J	ug/l	NC	30
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30

L1745701

Lab Number:

Lab Duplicate Analysis Batch Quality Control

RIVERBEND BSA SAMPLING Batch Quality

Project Number: T0322-017-500 **Report Date:** 12/20/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1072	636-5 QC San	nple: L174	5803-02 Client ID: DUP Sample
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

			Acceptance
Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Criteria
Pentafluorobenzene	103	103	80-120
Fluorobenzene	105	104	80-120
4-Bromofluorobenzene	99	98	80-120

Project Name:

SEMIVOLATILES

L1745701

12/20/17

12/12/17

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

SAMPLE RESULTS

Date Collected: 12/12/17 09:30

Lab Number:

Report Date:

Date Received:

Lab ID: L1745701-01

Client ID: PROCESS EFFLUENT-GRAB 1,2, 3, 4

Sample Location: BUFFALO, NEW YORK

Field Prep: Not Specified
Extraction Method: EPA 625
Extraction Date: 12/19/17 08:27

Matrix: Water Analytical Method: 5,625

Analytical Date: 12/20/17 11:48

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0	0.72	1	
Benzidine ¹	ND		ug/l	20	8.3	1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.91	1	
Hexachlorobenzene	ND		ug/l	2.0	0.67	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.55	1	
2-Chloronaphthalene	ND		ug/l	2.0	0.79	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.3	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.88	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
Azobenzene ¹	ND		ug/l	2.0	0.61	1	
Fluoranthene	ND		ug/l	2.0	0.64	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.68	1	
4-Bromophenyl phenyl ether¹	ND		ug/l	2.0	0.78	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.54	1	
Hexachlorobutadiene	ND		ug/l	2.0	0.67	1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10	3.7	1	
Hexachloroethane	ND		ug/l	2.0	0.74	1	
Isophorone	ND		ug/l	5.0	0.79	1	
Naphthalene	ND		ug/l	2.0	0.81	1	
Nitrobenzene	ND		ug/l	2.0	0.68	1	
NDPA/DPA ¹	ND		ug/l	2.0	0.73	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.54	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.3	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.1	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.97	1	
Di-n-octylphthalate	ND		ug/l	5.0	0.99	1	
Diethyl phthalate	ND		ug/l	5.0	0.73	1	
Dimethyl phthalate	ND		ug/l	5.0	0.70	1	
Benzo(a)anthracene	ND		ug/l	2.0	0.68	1	

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

SAMPLE RESULTS

Lab ID: Date Collected: 12/12/17 09:30

Client ID: PROCESS EFFLUENT-GRAB 1,2, 3, 4 Date Received: 12/12/17
Sample Location: BUFFALO, NEW YORK Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westboro	ugh Lab					
Benzo(a)pyrene	ND		ug/l	2.0	0.63	1
Benzo(b)fluoranthene	ND		ug/l	2.0	0.65	1
Benzo(k)fluoranthene	ND		ug/l	2.0	0.68	1
Chrysene	ND		ug/l	2.0	0.68	1
Acenaphthylene	ND		ug/l	2.0	0.63	1
Anthracene	ND		ug/l	2.0	0.69	1
Benzo(ghi)perylene	ND		ug/l	2.0	0.71	1
Fluorene	ND		ug/l	2.0	0.66	1
Phenanthrene	ND		ug/l	2.0	0.66	1
Dibenzo(a,h)anthracene	ND		ug/l	2.0	0.68	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	0.73	1
Pyrene	ND		ug/l	2.0	0.62	1
4-Chloroaniline ¹	ND		ug/l	5.0	1.2	1
Dibenzofuran ¹	ND		ug/l	2.0	0.69	1
2-Methylnaphthalene ¹	ND		ug/l	2.0	0.76	1
n-Nitrosodimethylamine ¹	ND		ug/l	2.0	0.78	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.80	1
p-Chloro-m-cresol ¹	ND		ug/l	2.0	0.66	1
2-Chlorophenol	ND		ug/l	2.0	0.62	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.78	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.4	1
2-Nitrophenol	ND		ug/l	5.0	1.3	1
4-Nitrophenol	ND		ug/l	10	1.1	1
2,4-Dinitrophenol	ND		ug/l	20	8.0	1
4,6-Dinitro-o-cresol ¹	ND		ug/l	10	1.9	1
Pentachlorophenol	ND		ug/l	5.0	2.8	1
Phenol	ND		ug/l	5.0	0.74	1
2-Methylphenol ¹	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0	0.92	1
Benzoic Acid ¹	ND		ug/l	50	6.2	1
Benzyl Alcohol ¹	ND		ug/l	2.0	0.72	1

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

SAMPLE RESULTS

Lab ID: L1745701-01 Date Collected: 12/12/17 09:30

Client ID: PROCESS EFFLUENT-GRAB 1,2, 3, 4 Date Received: 12/12/17
Sample Location: BUFFALO, NEW YORK Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	36	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	86	10-120
4-Terphenyl-d14	71	33-120

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701 **Report Date:** 12/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 12/20/17 10:55

Analyst: CB

Extraction Method: EPA 625

Extraction Date: 12/19/17 08:27

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	S - Westborough	Lab for sar	nple(s):	01	Batch:	WG107	'4293-1
Acenaphthene	ND		ug/l		2.0	0.72	2
Benzidine ¹	ND		ug/l		20	8.3	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.91	
Hexachlorobenzene	ND		ug/l		2.0	0.67	,
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.55	j
2-Chloronaphthalene	ND		ug/l		2.0	0.79)
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.3	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.88	3
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1	
Azobenzene ¹	ND		ug/l		2.0	0.61	
Fluoranthene	ND		ug/l		2.0	0.64	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.68	3
4-Bromophenyl phenyl ether ¹	ND		ug/l		2.0	0.78	3
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	3
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.54	1
Hexachlorobutadiene	ND		ug/l		2.0	0.67	,
Hexachlorocyclopentadiene ¹	ND		ug/l		10	3.7	
Hexachloroethane	ND		ug/l		2.0	0.74	
Isophorone	ND		ug/l		5.0	0.79)
Naphthalene	ND		ug/l		2.0	0.81	
Nitrobenzene	ND		ug/l		2.0	0.68	3
NDPA/DPA ¹	ND		ug/l		2.0	0.73	3
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.54	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.3	
Butyl benzyl phthalate	ND		ug/l		5.0	1.1	
Di-n-butylphthalate	ND		ug/l		5.0	0.97	,
Di-n-octylphthalate	ND		ug/l		5.0	0.99)
Diethyl phthalate	ND		ug/l		5.0	0.73	3
Dimethyl phthalate	ND		ug/l		5.0	0.70)

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701 **Report Date:** 12/20/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 12/20/17 10:55

Analyst: CB

Extraction Method: EPA 625

Extraction Date: 12/19/17 08:27

Benzo(a)anthracene ND	Parameter	Result	Qualifier	Units		RL	MDL	
Benzo(a)pyrene ND	Semivolatile Organics by GC/MS	- Westborough	Lab for sa	ample(s):	01	Batch:	WG1074293-1	
Benzo(b)fluoranthene ND	Benzo(a)anthracene	ND		ug/l		2.0	0.68	
Benzo(k)fluoranthene ND ug/l 2.0 0.68 Chrysene ND ug/l 2.0 0.68 Acenaphthylene ND ug/l 2.0 0.63 Anthracene ND ug/l 2.0 0.69 Benzo(ghi)perylene ND ug/l 2.0 0.71 Fluorene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.66 Phenanthracene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.68 Pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 2.0 0.62 4-Chlorophanoline¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62	Benzo(a)pyrene	ND		ug/l		2.0	0.63	
Chrysene ND ug/l 2.0 0.68 Acenaphthylene ND ug/l 2.0 0.63 Anthracene ND ug/l 2.0 0.69 Benzo(ghi)perylene ND ug/l 2.0 0.71 Fluorene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.66 Dibenzo(a,h)anthracene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.78 2-Methylnaphthalene¹ ND ug/l 2.0 0.	Benzo(b)fluoranthene	ND		ug/l		2.0	0.65	
Acenaphthylene ND ug/l 2.0 0.63 Anthracene ND ug/l 2.0 0.69 Benzo(ghi)perylene ND ug/l 2.0 0.71 Fluorene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.68 Dibenzo(a,h)anthracene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.73 Pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 5.0 1.2 Dibenzofuran¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 2.0 0.66 2-Chloro-m-cresol¹ ND ug/l 5.0 0.78 2,4-Dichlorophenol ND ug/l 5.0	Benzo(k)fluoranthene	ND		ug/l		2.0	0.68	
Anthracene ND ug/l 2.0 0.68 Benzo(ghi)perylene ND ug/l 2.0 0.71 Fluorene ND ug/l 2.0 0.66 Phenanthrene ND ug/l 2.0 0.66 Dibenzo(a,h)anthracene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 2.0 0.66 2-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.66 2-Indenol ND ug/l 2.0 0.78 2,4-Dimethylphenol ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.68 2-A-Dimethylphenol ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.68 2-Indenol ND ug/l 2.0 0.69 2-Indenol ND ug/l 2.0 0.68 2-Indenol ND ug/l 3.0 0.78 2-Indenol ND ug/l 3.0 0.74	Chrysene	ND		ug/l		2.0	0.68	
Benzo(ghi)perylene ND	Acenaphthylene	ND		ug/l		2.0	0.63	
Pluorene ND ug/l 2.0 0.66	Anthracene	ND		ug/l		2.0	0.69	
Phenanthrene ND ug/l 2.0 0.66 Dibenzo(a,h)anthracene ND ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.73 Pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 5.0 1.2 Dibenzofuran¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 2.0 0.62 2,4-Dimethylphenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 20 <td>Benzo(ghi)perylene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>2.0</td> <td>0.71</td> <td></td>	Benzo(ghi)perylene	ND		ug/l		2.0	0.71	
Dibenzo(a,h)anthracene ND Ug/l 2.0 0.68 Indeno(1,2,3-cd)pyrene ND Ug/l 2.0 0.73 Pyrene ND Ug/l 2.0 0.62 4-Chloroaniline¹ ND Ug/l 5.0 1.2 Dibenzofuran¹ ND Ug/l 2.0 0.69 2-Methylnaphthalene¹ ND Ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND Ug/l 2.0 0.78 2,4,6-Trichlorophenol ND Ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND Ug/l 2.0 0.66 2-Chlorophenol ND Ug/l 2.0 0.66 2-Chlorophenol ND Ug/l 2.0 0.62 2,4-Dichlorophenol ND Ug/l 5.0 0.78 2,4-Dimethylphenol ND Ug/l 5.0 1.4 2-Nitrophenol ND Ug/l 5.0 1.3 4-Nitrophenol ND Ug/l 5.0 1.3 4-Nitrophenol ND Ug/l 5.0 8.0 4,6-Dinitro-o-cresol¹ ND Ug/l 5.0 2.8 Phenol ND Ug/l 5.0 0.74	Fluorene	ND		ug/l		2.0	0.66	
Indeno(1,2,3-cd)pyrene ND	Phenanthrene	ND		ug/l		2.0	0.66	
Pyrene ND ug/l 2.0 0.62 4-Chloroaniline¹ ND ug/l 5.0 1.2 Dibenzofuran¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.62 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 1.0 1.1 2,4-Dinitro-o-cresol¹ ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 5.0 2.8 Phenol ND ug/l 5.0	Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.68	
4-Chloroaniline¹ ND ug/l 5.0 1.2 Dibenzofuran¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 5.0 2.8 Phenol ND ug/l 5.0	Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.73	
Dibenzofuran¹ ND ug/l 2.0 0.69 2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 0.74	Pyrene	ND		ug/l		2.0	0.62	
2-Methylnaphthalene¹ ND ug/l 2.0 0.76 n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 5.0 0.78 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4-Nitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	4-Chloroaniline ¹	ND		ug/l		5.0	1.2	
n-Nitrosodimethylamine¹ ND ug/l 2.0 0.78 2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4-Nitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 0.74	Dibenzofuran ¹	ND		ug/l		2.0	0.69	
2,4,6-Trichlorophenol ND ug/l 5.0 0.80 p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2-Methylnaphthalene ¹	ND		ug/l		2.0	0.76	
p-Chloro-m-cresol¹ ND ug/l 2.0 0.66 2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	n-Nitrosodimethylamine ¹	ND		ug/l		2.0	0.78	
2-Chlorophenol ND ug/l 2.0 0.62 2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2,4,6-Trichlorophenol	ND		ug/l		5.0	0.80	
2,4-Dichlorophenol ND ug/l 5.0 0.78 2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	p-Chloro-m-cresol ¹	ND		ug/l		2.0	0.66	
2,4-Dimethylphenol ND ug/l 5.0 1.4 2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2-Chlorophenol	ND		ug/l		2.0	0.62	
2-Nitrophenol ND ug/l 5.0 1.3 4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2,4-Dichlorophenol	ND		ug/l		5.0	0.78	
4-Nitrophenol ND ug/l 10 1.1 2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2,4-Dimethylphenol	ND		ug/l		5.0	1.4	
2,4-Dinitrophenol ND ug/l 20 8.0 4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2-Nitrophenol	ND		ug/l		5.0	1.3	
4,6-Dinitro-o-cresol¹ ND ug/l 10 1.9 Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	4-Nitrophenol	ND		ug/l		10	1.1	
Pentachlorophenol ND ug/l 5.0 2.8 Phenol ND ug/l 5.0 0.74	2,4-Dinitrophenol	ND		ug/l		20	8.0	
Phenol ND ug/l 5.0 0.74	4,6-Dinitro-o-cresol ¹	ND		ug/l		10	1.9	
	Pentachlorophenol	ND		ug/l		5.0	2.8	
2-Methylphenol ¹ ND ug/l 5.0 1.0	Phenol	ND		ug/l		5.0	0.74	
	2-Methylphenol ¹	ND		ug/l		5.0	1.0	

L1745701

Lab Number:

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500 **Report Date:** 12/20/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,625

Analytical Date: 12/20/17 10:55

Analyst: CB

Extraction Method: EPA 625 Extraction Date: 12/19/17 08:27

Result Qualifier Units RLMDL Parameter Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1074293-1 3-Methylphenol/4-Methylphenol¹ ND ug/l 5.0 1.1 2,4,5-Trichlorophenol¹ ND 5.0 0.92 ug/l Benzoic Acid¹ ND ug/l 50 6.2 Benzyl Alcohol¹ ND ug/l 2.0 0.72

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	84	33-120

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s	s): 01 Batch:	WG1074293	3-2				
Acenaphthene	78		-		47-145	-		30	
1,2,4-Trichlorobenzene	68		-		44-142	-		30	
Hexachlorobenzene	77		-		1-152	-		30	
Bis(2-chloroethyl)ether	74		-		12-158	-		30	
2-Chloronaphthalene	75		-		60-118	-		30	
3,3'-Dichlorobenzidine	33		-		1-262	-		30	
2,4-Dinitrotoluene	96		-		39-139	-		30	
2,6-Dinitrotoluene	89		-		50-158	-		30	
Fluoranthene	90		-		26-137	-		30	
4-Chlorophenyl phenyl ether	77		-		25-158	-		30	
4-Bromophenyl phenyl ether ¹	77		-		53-127	-		30	
Bis(2-chloroisopropyl)ether	81		-		36-166	-		30	
Bis(2-chloroethoxy)methane	82		-		33-184	-		30	
Hexachlorobutadiene	62		-		24-116	-		30	
Hexachloroethane	60		-		40-113	-		30	
Isophorone	85		-		21-196	-		30	
Naphthalene	71		-		21-133	-		30	
Nitrobenzene	80		-		35-180	-		30	
n-Nitrosodi-n-propylamine	85		-		1-230	-		30	
Bis(2-Ethylhexyl)phthalate	125		-		8-158	-		30	
Butyl benzyl phthalate	98		-		1-152	-		30	
Di-n-butylphthalate	97		-		1-118	-		30	
Di-n-octylphthalate	103		-		4-146	-		30	

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD _imits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s)	: 01 Batch:	WG1074293	3-2		
Diethyl phthalate	88		-		1-114	-	30
Dimethyl phthalate	85		-		1-112	-	30
Benzo(a)anthracene	89		-		33-143	-	30
Benzo(a)pyrene	85		-		17-163	-	30
Benzo(b)fluoranthene	86		-		24-159	-	30
Benzo(k)fluoranthene	88		-		11-162	-	30
Chrysene	89		-		17-168	-	30
Acenaphthylene	78		-		33-145	-	30
Anthracene	88		-		27-133	-	30
Benzo(ghi)perylene	81		-		1-219	-	30
Fluorene	82		-		59-121	-	30
Phenanthrene	86		-		54-120	-	30
Dibenzo(a,h)anthracene	85		-		1-227	-	30
Indeno(1,2,3-cd)Pyrene	102		-		1-171	-	30
Pyrene	88		-		52-115	-	30
2,4,6-Trichlorophenol	84		-		37-144	-	30
P-Chloro-M-Cresol ¹	84		-		22-147	-	30
2-Chlorophenol	72		-		23-134	-	30
2,4-Dichlorophenol	80		-		39-135	-	30
2,4-Dimethylphenol	75		-		32-119	-	30
2-Nitrophenol	79		-		29-182	-	30
4-Nitrophenol	54		-		1-132	-	30
2,4-Dinitrophenol	74		-		1-191	-	30

Project Name: RIVERBEND BSA SAMPLING

A SAMPLING

Project Number: T0322-017-500

Lab Number: L1745701

<u>Pa</u>	rameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Se	mivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s):	01 Ba	tch: WG1074	293-2				
	4,6-Dinitro-o-cresol ¹	81		-		1-181	-		30	
	Pentachlorophenol	53		-		14-176	-		30	
	Phenol	42		-		5-112	-		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
2-Fluorophenol	50		21-120
Phenol-d6	39		10-120
Nitrobenzene-d5	81		23-120
2-Fluorobiphenyl	76		15-120
2,4,6-Tribromophenol	87		10-120
4-Terphenyl-d14	85		33-120

INORGANICS & MISCELLANEOUS

Project Name: RIVERBEND BSA SAMPLING Lab Number: L1745701

Project Number: T0322-017-500 **Report Date:** 12/20/17

SAMPLE RESULTS

Lab ID: L1745701-03 Date Collected: 12/12/17 09:30

Client ID: PROCESS EFFLUENT- Date Received: 12/12/17
Sample Location: BUFFALO, NEW YORK Field Prep: Not Specified

Matrix: Water

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Cyanide, Total	1.36	mg/l	0.025	0.009	1	12/13/17 13:40	12/13/17 17:06	121,4500CN-CE	LH
pH (H)	7.2	SU	-	NA	1	-	12/13/17 08:44	121,4500H+-B	GD

L1745701

Project Name: RIVERBEND BSA SAMPLING Lab Number:

> Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for samp	ole(s): 03	Batch:	WG10	72200-1				
Cvanide, Total	ND	ma/l	0.005	0.001	1	12/13/17 13:40	12/13/17 16:14	121.4500CN-C	E LH

Project Name: RIVERBEND BSA SAMPLING

Project Number:

T0322-017-500

Lab Number:

L1745701

Report Date:

12/20/17

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 03	Batch: WG1072168-1						
рН	100	-		99-101	-		5	
General Chemistry - Westborough Lab A	ssociated sample(s): 03	Batch: WG1072200-2	2					
Cyanide, Total	97	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500

Lab Number:

L1745701

Report Date:

12/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qu	RPD al Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 03	QC Batch ID: V	WG1072200-4	QC Sample: L17455	525-02 Client	ID: MS Sa	mple
Cyanide, Total	ND	0.2	0.193	96	-	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500 Lab Number: L1745701 12/20/17

Report Date:

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual RPD Lir	nits
General Chemistry - Westborough Lab Assoc EFFLUENT-	ciated sample(s): 03 QC Batch ID:	WG1072168-2	QC Sample: L1745	701-03 Cli	ient ID: PROCESS	
рН (Н)	7.2	7.2	SU	0	5	
General Chemistry - Westborough Lab Associ	ciated sample(s): 03 QC Batch ID:	WG1072200-3	QC Sample: L1745	525-01 Cli	ient ID: DUP Sample	Э
Cyanide, Total	ND	ND	mg/l	NC	30	

Serial_No:12201716:55 *Lab Number:* L1745701

Project Name: RIVERBEND BSA SAMPLING

Project Number: T0322-017-500 Report Date: 12/20/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1745701-01A	Vial Na2S2O3 preserved split	Α	NA		4.4	Υ	Absent		624(3)
L1745701-01B	Vial Na2S2O3 preserved split	Α	NA		4.4	Υ	Absent		624(3)
L1745701-01D	Split Amber 1000ml Na2S2O3	Α	NA		4.4	Υ	Absent		625(7)
L1745701-01E	Split Amber 1000ml Na2S2O3	Α	NA		4.4	Υ	Absent		625(7)
L1745701-01S	Vial Na2S2O3 preserved	Α	NA		4.4	Υ	Absent		HOLD-624(7)
L1745701-01T	Vial Na2S2O3 preserved	Α	NA		4.4	Υ	Absent		HOLD-624(7)
L1745701-01U	Vial Na2S2O3 preserved	Α	NA		4.4	Υ	Absent		HOLD-624(7)
L1745701-02A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02C	Vial HCI preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02D	Vial HCI preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02E	Vial HCI preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02F	Vial HCI preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02G	Vial HCl preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02H	Vial HCI preserved	Α	NA		4.4	Υ	Absent		COMP-VOA()
L1745701-02M	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02N	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02O	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02P	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02Q	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02R	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02S	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()
L1745701-02T	Amber 1000ml Na2S2O3	Α	7	7	4.4	Υ	Absent		COMP-W()

Lab Number: L1745701

RIVERBEND BSA SAMPLING

Project Name:

Project Number: T0322-017-500 Report Date: 12/20/17

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1745701-03A	Plastic 60ml unpreserved	Α	7	7	4.4	Υ	Absent		PH-4500(.01)
L1745701-03B	Plastic 250ml NaOH preserved	Α	>12	>12	4.4	Υ	Absent		TCN-4500(14)
L1745701-06A	Vial Na2S2O3 preserved	Α	NA		4.4	Υ	Absent		HOLD-624(7)
L1745701-06B	Vial Na2S2O3 preserved	Α	NA		4.4	Υ	Absent		HOLD-624(7)

Project Name:RIVERBEND BSA SAMPLINGLab Number:L1745701Project Number:T0322-017-500Report Date:12/20/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:RIVERBEND BSA SAMPLINGLab Number:L1745701Project Number:T0322-017-500Report Date:12/20/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:RIVERBEND BSA SAMPLINGLab Number:L1745701Project Number:T0322-017-500Report Date:12/20/17

REFERENCES

Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔLPHA	NEW YORK CHAIN OF		ervice Centers shweh, NJ 07430: 35 Whitney Rd, Suite 5 bany, NY 12205: 14 Walker Way mawanda, NY 14150: 275 Cooper Ave, Suite 105					Date in I	Rec'd	1	2/1	3/1	,	ALPHA Job#			
AND DESCRIPTION OF THE PERSON	CUSTODY	Tonawanda, NY 14150: 275 Cc	oper Ave, Suite 10	05					-0113	1	2/1	3/1	1	1-1745701			
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information	18142	BUTTON			Deliv	crable	s			131		Billing Information			
8 Walkup Dr. TEL: 508-398-9220	TEL: 508-822-9300	Project Name: River	hend BSA	Samplin	5			ASP-	A		1	ASP-B		Same as Client Info			
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 6-ffo		The state of the s				EQu!	S (1 F	le)		EQuIS	(4 File)	PO#			
Client Information	THE PARTY OF	Project # To 3 20 -						Other									
Client: Benchmark and	Tumber (c	(Use Project name as P	promp.				Regu	latory	Requi	remen	1			Disposal Site Information			
Address: 2559 No	- 4	Project Manager: Bro						NY TO	GS			NY Part	375	Please identify below location	of		
suite #300 Buffall		ALPHAQuote #:						AWQ:	Standa	rds		NY CP-	51	applicable disposal facilities.			
Phone: 716-856 -		Turn-Around Time	191851	10000				NY Re	stricted	Use		Other		Disposal Facility:			
Fax: 716 - 856 -		Standar	d 🔀	Due Date):			NY Un	restrict	ed Use				□ NJ □ NY			
Email: BGreene @ To		Rush (only if pre approve	d) [# of Days	1			NYC 5	Sewer D	Dischar	ge			Other:	-		
These samples have be	Charles and the Control of the Contr	ed by Alpha					ANA	LYSIS	E .					Sample Filtration	T		
Other project specific														Done	1		
Please specify Metals	or TAL.						24	502	TCN					Lab to do Preservation Lab to do (Please Specify below)	a I B o t		
ALPHA Lab ID			Collection		Sample	Sampler's	9	0	2	Hd.					1		
(Lab Use Only)	Si	ample ID	Date	Time	Matrix	Initials			31.	9				Sample Specific Comments	8		
45701 - di	Process Eff	Cial Grah I	13-11-13	0930	water	CEH	×	×							5		
-01-02-07			12-11-17	1430	water	CEH	×	×							5		
-01,-02-03		71 710 2000	12-11-17	1730	water	CEH	×	×							5		
		uent - Grap 4	12-12-17	247	water	CEH	×	×							5		
-01,82-04	10.5		19-19-17		water	CEH		-	X	X					2		
-03 -05	Pricess EFF	1464 -	12-H-13	0 1,50	илите					-							
	THE PROPERTY		Secretify 14			1									\top		
					+										\top		
					+												
					-	1						\rightarrow	_		\top		
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification Mansfield: Certification			-	ntainer Type Preservative	A	A	PE	P				Please print clearly, leg and completely. Sample not be logged in and turnaround time clock w	es can		
E = NaOH	B = Bacteria Cup											\perp		start until any ambiguiti			
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished By: Date/Time Closter Machieter 12-12-17/1260 (2011)					Received By:			Date/Time			resolved. BY EXECUTI THIS COC, THE CLIEN	NT.			
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Sm ICA	MARKET THE PARTY OF THE PARTY O					4 - 12 - 1 - 1			in River (2/1			14	7 1:50	- TAS READ AND AGRE	PHA'S
Form No: 01-25 HC (rev. 3	0-Sept-2013)													- Action and the state of the s			

ATTACHMENT 3

FLOW METER CALIBRATION DATA

Northeast Metrology Corp.

2601 Genesee Street Buffalo, NY 14225

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Company:

RIVERBEND

Address:

192 BARAGA STREET

BUFFALO, NY 14210

Contact:

BRANDON ROGERS

Department:

Manufacturer: Location:

Gage Desc:

Flow Transmitter / Sensor

George Fischer Signet

Calibration Certificate

www.nemcal.com

Certificate #:

1194587

Calibration Date:

1/4/2017

PO/Acct:

1 of 2 Page: Visual Condition: Good

Date Received:

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515 80210142061

Parameters:

Flow Units - GPM Gas Type - N/A

Repairs:

+ / - Tolerances: 2.000% / 2.000%

Graph Scale: +0.100000

GPM -20 -15 -5 15 Nominal Actual Deviation +76.200000 +75.730000 -0.470000 +76.410000 +76.200000 +0.210000 +76.200000 +75.790000 -0.410000 +76.200000 +76.080000 -0.120000 +76.200000 +76.450000 +0.250000 Avg. of 10

Timed

Comments:

+76.200000

CALIBRATION PERFORMED AT AMBIENT CONDITIONS: 62°F & 50% R.H.

SCHEDULE 80 PVC 3" O.D. I.D.=2.9"

+76.500000

+0.300000

TOTAL GALLONS (2017): 8489861 PERM. GALLONS: 31685459

TOTAL GALLONS RESET AT THE END OF TESTING.

mA OUTPUT: 0 = 3.99, MAX = 16.05

Procedure:

110176:E-Flowme.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6004 Flow Calibrator

CE17617 Cal Date / Due Date: 2/19/2013 - 2/20/2018

Gage Status: PASS

Due Date: 1/4/2018

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F): (20°C (±1°C)) & relative humidity less than 45%. Electronic & Mechanical calibration performed at ambient conditions.

All pertinent data and readings calibrated are as found & as left unless otherwise denoted in comments.

Northeast Metrology Corp.

Calibration Certificate

2601 Genesee Street Buffalo, NY 14225

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Page #:

2 of 2

Gage Desc: Manufacturer: Flow Transmitter / Sensor George Fischer Signet

Location:

Certificate #:

1194587

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515

80210142061

Calibration performed in accordance with ANSI/NCSL Z540-1-1994 unless otherwise denoted in comments.

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with GGG-G-15C.

Calibration meets or exceeds 4:1 ratio, with the exception of gage blocks stated above.

Measurement Uncertainties are based on approximately a 95% confidence level, using a coverage factor of k=2.

Measurement Uncertainty is taken into account in determining gage status (pass/fail).

Calibration is performed on premises at Northeast Metrology Corp. unless otherwise denoted in comments.

The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: GK Signature: ___

This certificate is not valid unless all 2 page(s) are present.

Results of this certificate relate only to the item mentioned in document header.

END OF DOCUMENT

Strong Advocates, Effective Solutions, Integrated Implementation

June 29, 2017

Mr. Michael Szilagyi Buffalo Sewer Authority Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: RiverBend Site

Ground Water Pre-Treatment Discharge Monitoring Results June 2017 Semi-Annual Compliance Monitoring Report BPDES Permit No. 14-04-BU267

Dear Mr. Szilagyi:

On behalf of our client, Fort Schuyler Management Corporation, TurnKey Environmental Restoration, LLC has prepared this correspondence to present the first semi-annual 2017 discharge monitoring results for the groundwater pre-treatment system at the above-referenced facility. Discharge monitoring was performed from June 19-20, 2017.

SAMPLE COLLECTION

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with Buffalo Pollution Discharge Elimination System (BPDES) Permit No. 16-01-BU278 in laboratory-provided, pre-cleaned, and pre-preserved sample bottles (see Figure 1). Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. In accordance with the Permit, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period. Field documentation is provided in Attachment 1.

ANALYTICAL RESULTS

The current period analytical results are provided in Attachment 2. Compounds detected above the laboratory reporting limit at a minimum of one location during the June 2017 event are summarized in Table 1 along with permitted BSA discharge limits. As indicated, all parameters are well within allowable limits.

FLOW MONITORING

Flow measurement data is presented in Table 1. Quarterly flow monitoring was based on the total flow recorded during the monitoring period divided by the number of days in that monitoring period. A copy of the annual flow meter calibration data is presented in Attachment 3. The next flow meter calibration is tentatively scheduled for January 2018.

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Bryan C. Hann.

Project Manager

ec: Tom O'Brien (Fort Schuyler) Paul Werthman (TurnKey)

File: 0322-017-500

TABLES

TABLE 1

2017 SEMI-ANNUAL GROUNDWATER PRETREATMENT SYSTEM DATA SUMMARY

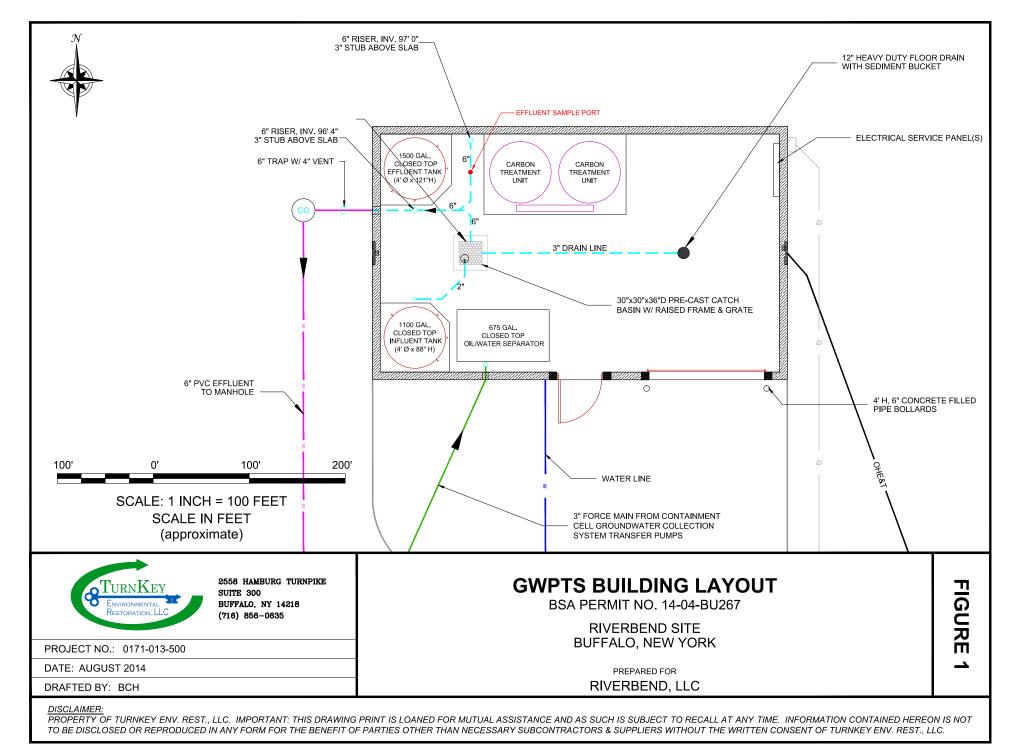
BPDES Permit No. 16-01-BU278 Fort Schuyler RiverBend Site 312 Abby Street, Buffalo, NY

Parameter	June 16-17, 2016				
	Concentration (units as indicated)	Mass ¹ (pounds)	Daily Discharge Limits ²		
Laboratory pH (S.U.)	7.10	na	5.0 - 12.0		
Field pH (S.U.) 3	7.16	na	5.0 - 12.0		
Volatile Organic Compounds - Method 624 (mg/L)					
Total VOCs	ND	na	Monitor		
Semi-Volatile Organic Compounds - Method 625 (mg/L)					
Total SVOCs	ND	na	Monitor		
Inorganics (mg/L)					
Total Cyanide	1.5	0.474	4.3 lbs		
Average Daily Flow (gallons per day) 4	37,863		see Note 5		

Notes:

- 1. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified below.
- 2. Mass limits are based on the Average Daily Flow through the June event; actual limits may vary slightly based on actual discharge.
- 3. Field pH is an average of 4 grab samples collected over a 24-hour period.
- 4. Average daily flow based on net flow recorded between the Flow Calculation dates shown below for the June event.
- 5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 54,000 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modified.
- 6. "ND" = Indicates compound was part of the analysis, but not detected at a concentration above the reporting limit.

Flow Calculations:


Event	Date	Flow Measurement * (gallons)	Average Daily Flow * (gallons per day)
June 2016	01/04/2017	0	37,863
	06/26/2017	6,550,385	

Notes:

* = flow meter calibrated and reset to zero on 01/04/17. Average daily flow presented above accounts for the recalibration and zeroing.

FIGURES

ATTACHMENT 1

FIELD DOCUMENTATION

WATER SAMPLE COLLECTION LOG

PR	ROJECT INFORMATION					SAMPLE DESCRIPTION				
Proj	ject Name:	Riverbend Site			<u>l</u> .	D.:	Process	Effluent		
Proj	ject No.:	0171-			N	1atrix:	SURFACE WATER	STORM		
Clie	nt;	Riverbend, LLC	;				SEEP	OTHER		
Loc	ation:	192 Baraga St.	, Buffalo, NY				INFLUENT	✓ EFFLUENT		
	MPLE INF	FORMATION Lab: 6	0-17		S	ample Ty	pe: POINT	✓ GRAB		
	ected By:	BM6	•			, ,,	✓ COMPO	SITE		
	nple Collecti	on Method:	Via effluent	sample valv	e prior to e	ffluent ho	ding tank			
	ather:	9								
Air	Temperature	ə:								
	Parameter	Units	Grab #1	Grab #2	Grab #3			-		
	рН	units	6.54	7.27	7.37	7.45				
	Temp.	°C	12.3	12.7	12.7	12.5				
	Cond.	mS	381.0	1327	1330	134		2 0		
	Turbidity	/ NTU	15.5	12.9	13.6	14.8	3			
	Eh / ORF	P mV	138	133	128	106				
	D.O.	ppm	1.77	1.72	1.75	2.24	,			
	Odor	olfactory	None	None	None	None	-			
	Appearan	ce visual	clear	clear	clear	clen				
_	Sar	nple Date	6-19-17	6-19-17	6-19-17	6-20-	17			
	San	nple Time	945	1217	1630	830				
EXA	ACT LOCAT	ION (if applicat	ole)							
	Northing (ft)) Easting	g (ft) Surfa	ice Elevation	(fmsl)					
SAN	MPLE DESC	CRIPTION (appe	arance, olfa	ctory): Se	ce abo	e: ele	er, no odo			
CAR	ADIE ANIAI	YSIS (laborato	rv analysis r	equired).		_				
			<u> </u>		OCs) and 6	S25 (SV/O	Cs) analysis, the	eo camploc will		
	composite		inples for the	etilou 624 (Vi	oos) and t	25 (5000	25) arialysis, the	se samples will		
			r avanida and	d laboratori,	o∐ by filling	a caual ali	quots of sample	to fill		
			cyaniue and	a laboratory p	on by Illiini	y equal all	quots of sample	to iiii		
	mple contai									
ADL	DITIONAL R	IEMARKS:								
					_					
DD-	DADED D	Brock	Cocas	100			TE. /785	1)		

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION:

	ct Name: Riverben	d Site				Date:			
Projec	ct No.: 0171- :: Riverbend	4 110				Instrumen	t Source:	вм 🗀	Rental
0.10111	METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
	рН meter	units		Myron L Company Ultra Meter 6P	6213516 6243084 6212375	×	4.00 7.00 10.01	4.00	
	Turbidity meter	NTU		Hach 2100P or 2100Q Turbidimeter	06120C020523 (P) 13120C030432 (Q)		< 0.4 or 10 for 2100 Q 20 100 800	11.3 20.3 101 863	
	Turbidity meter	NTU		LaMotte 2020	6523-1816 (La)		0.0 NTU 1.0 NTU 10.0 NTU		
d	Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516		<u>1413</u> mS @ 25 ℃	1413	
	PID	ppm		MinRAE 2000		8	open air zero ppm lso. Gas		MIBK response factor = 1.0
<u></u>	Dissolved Oxygen	ppm		HACH Model HQ30d	080700023281		100% Satuartion	€000 €00	
	Particulate meter	mg/m ³					zero air		
	Oxygen	%			A.		open air		
	Hydrogen sulfide	ppm					open air		
	Carbon monoxide	ppm					open air		
	LEL	%					open air		
	Radiation Meter	uR/H					background area		
PREP	TIONAL REMARKS: ARED BY: ment Calibration Log.xls				DATE:				

ATTACHMENT 2

ANALYTICAL DATA

ANALYTICAL REPORT

Lab Number: L1720803

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Bryan Hann
Phone: (716) 856-0599

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Report Date: 06/27/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: T0322-016-500

Lab Number: L1720803 **Report Date:** 06/27/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1720803-01	PROCESS EFFLUENT-GRAB 1, 2, 3,4	WATER	BUFFALO, NY	06/20/17 08:30	06/20/17
L1720803-02	COMPOSITE PROCESS EFFLUENT-GRAB 1, 2, 3,4	WATER	BUFFALO, NY	06/20/17 08:30	06/20/17
L1720803-03	PROCESS EFFLUENT	WATER	BUFFALO, NY	06/20/17 08:30	06/20/17
L1720803-04	TRIP BLANK	WATER	BUFFALO, NY	06/19/17 08:00	06/20/17

Project Name:RIVERBEND S/A BSALab Number:L1720803Project Number:T0322-016-500Report Date:06/27/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Ple	ase	conta	act CI	ient Se	rvices a	at 800)-624-92	20 with	any	questions.	

Project Name:RIVERBEND S/A BSALab Number:L1720803Project Number:T0322-016-500Report Date:06/27/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics by Method 624

The WG1016435-3 LCS recoveries for 2-chloroethylvinyl ether (125%), 1,2-dichloroethane (115%), 1,1,1-trichloroethane (115%), ethylbenzene (125%), chloromethane (60%) and p/m-xylene (122%), associated with L1720803-04, are outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

The WG1017046-3 LCS recoveries for 1,2-dichloropropane (115%), 1,1,1-trichloroethane (110%) and benzene (120%), associated with L1720803-01, are outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Semivolatile Organics

WG1016114: A Matrix Spike and Laboratory Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the matrix spike and laboratory duplicate results could not be reported.

Cyanide, Total

The WG1016004-4 MS recovery (135%), performed on L1720803-03, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/27/17

Custen Walker Cristin Walker

ANALYTICA

ORGANICS

VOLATILES

L1720803

06/20/17 08:30

Not Specified

Dilution Factor

06/20/17

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Qualifier

Result

Units

Report Date: 06/27/17

Lab Number:

Date Collected:

Date Received:

Field Prep:

RL

MDL

SAMPLE RESULTS

Lab ID: L1720803-01

Client ID: PROCESS EFFLUENT-GRAB 1, 2, 3,4

Sample Location: BUFFALO, NY

Matrix: Water Analytical Method: 5,624

Analytical Date: 06/23/17 15:59

Analyst: GT

Parameter

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	5.0	0.62	1	
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1	
Chloroform	ND		ug/l	1.5	0.22	1	
Carbon tetrachloride	ND		ug/l	1.0	0.32	1	
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1	
Dibromochloromethane	ND		ug/l	1.0	0.33	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1	
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1	
Tetrachloroethene	ND		ug/l	1.5	0.33	1	
Chlorobenzene	ND		ug/l	3.5	0.30	1	
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1	
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1	
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1	
Bromodichloromethane	ND		ug/l	1.0	0.25	1	
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1	
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1	
Bromoform	ND		ug/l	1.0	0.32	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1	
Benzene	ND		ug/l	1.0	0.23	1	
Toluene	ND		ug/l	1.0	0.32	1	
Ethylbenzene	ND		ug/l	1.0	0.31	1	
Chloromethane	ND		ug/l	5.0	0.64	1	
Bromomethane	ND		ug/l	5.0	1.3	1	
Vinyl chloride	ND		ug/l	1.0	0.30	1	
Chloroethane	ND		ug/l	2.0	0.26	1	
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1	
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1	
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	0.29	1	
Trichloroethene	ND		ug/l	1.0	0.33	1	
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1	

Project Name: RIVERBEND S/A BSA Lab Number: L1720803

Project Number: T0322-016-500 **Report Date:** 06/27/17

SAMPLE RESULTS

Lab ID: L1720803-01 Date Collected: 06/20/17 08:30

Client ID: PROCESS EFFLUENT-GRAB 1, 2, 3,4 Date Received: 06/20/17

Sample Location: BUFFALO, NY Field Prep: Not Specified

						· ·
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	0.25	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.26	1
p/m-Xylene ¹	ND		ug/l	2.0	0.58	1
o-xylene ¹	ND		ug/l	1.0	0.22	1
Xylenes, Total ¹	ND		ug/l	1.0	0.22	1
Styrene ¹	ND		ug/l	1.0	0.25	1
Acetone ¹	ND		ug/l	10	4.0	1
Carbon disulfide ¹	ND		ug/l	5.0	0.73	1
2-Butanone ¹	ND		ug/l	10	2.2	1
Vinyl acetate ¹	ND		ug/l	10	2.9	1
4-Methyl-2-pentanone ¹	ND		ug/l	10	1.8	1
2-Hexanone ¹	ND		ug/l	10	2.5	1
Acrolein ¹	ND		ug/l	8.0	1.3	1
Acrylonitrile ¹	ND		ug/l	10	0.97	1
Dibromomethane ¹	ND		ug/l	1.0	0.11	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	94		80-120	
Fluorobenzene	105		80-120	
4-Bromofluorobenzene	101		80-120	

06/19/17 08:00

Not Specified

06/20/17

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

SAMPLE RESULTS

Lab Number: L1720803

Report Date: 06/27/17

Date Collected:

Date Received:

Field Prep:

Lab ID: L1720803-04

Client ID: TRIP BLANK

Sample Location: BUFFALO, NY

Matrix: Water Analytical Method: 5,624

Analytical Date: 06/22/17 15:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westk	orough Lab					
Methylene chloride	ND		ug/l	5.0	0.62	1
1,1-Dichloroethane	ND		ug/l	1.5	0.29	1
Chloroform	ND		ug/l	1.5	0.22	1
Carbon tetrachloride	ND		ug/l	1.0	0.32	1
1,2-Dichloropropane	ND		ug/l	3.5	0.27	1
Dibromochloromethane	ND		ug/l	1.0	0.33	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.24	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.54	1
Tetrachloroethene	ND		ug/l	1.5	0.33	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
Trichlorofluoromethane	ND		ug/l	5.0	0.46	1
1,2-Dichloroethane	ND		ug/l	1.5	0.32	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.30	1
Bromodichloromethane	ND		ug/l	1.0	0.25	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.26	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.32	1
Bromoform	ND		ug/l	1.0	0.32	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.22	1
Benzene	ND		ug/l	1.0	0.23	1
Toluene	ND		ug/l	1.0	0.32	1
Ethylbenzene	ND		ug/l	1.0	0.31	1
Chloromethane	ND		ug/l	5.0	0.64	1
Bromomethane	ND		ug/l	5.0	1.3	1
Vinyl chloride	ND		ug/l	1.0	0.30	1
Chloroethane	ND		ug/l	2.0	0.26	1
1,1-Dichloroethene	ND		ug/l	1.0	0.37	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
cis-1,2-Dichloroethene ¹	ND		ug/l	1.0	0.29	1
Trichloroethene	ND		ug/l	1.0	0.33	1
1,2-Dichlorobenzene	ND		ug/l	5.0	0.26	1

Project Name: RIVERBEND S/A BSA Lab Number: L1720803

Project Number: T0322-016-500 **Report Date:** 06/27/17

SAMPLE RESULTS

Lab ID: L1720803-04 Date Collected: 06/19/17 08:00

Client ID: TRIP BLANK Date Received: 06/20/17
Sample Location: BUFFALO, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	5.0	0.25	1	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.26	1	
p/m-Xylene ¹	ND		ug/l	2.0	0.58	1	
o-xylene ¹	ND		ug/l	1.0	0.22	1	
Xylenes, Total¹	ND		ug/l	1.0	0.22	1	
Styrene ¹	ND		ug/l	1.0	0.25	1	
Acetone ¹	ND		ug/l	10	4.0	1	
Carbon disulfide ¹	ND		ug/l	5.0	0.73	1	
2-Butanone ¹	ND		ug/l	10	2.2	1	
Vinyl acetate ¹	ND		ug/l	10	2.9	1	
4-Methyl-2-pentanone ¹	ND		ug/l	10	1.8	1	
2-Hexanone ¹	ND		ug/l	10	2.5	1	
Acrolein ¹	ND		ug/l	8.0	1.3	1	
Acrylonitrile ¹	ND		ug/l	10	0.97	1	
Dibromomethane ¹	ND		ug/l	1.0	0.11	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	104		80-120	
Fluorobenzene	98		80-120	
4-Bromofluorobenzene	110		80-120	

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 06/22/17 11:11

Methylene chloride ND ug/l 5.0 0.62 1.1-Dichloroethane ND ug/l 5.0 0.62 1.1-Dichloroethane ND ug/l 1.5 0.29 Chloroform ND ug/l 1.5 0.22 Carbon tetrachloride ND ug/l 1.0 0.32 1.2-Dichloropropane ND ug/l 1.0 0.32 1.2-Dichloropropane ND ug/l 1.0 0.33 1.1,2-Trichloroethane ND ug/l 1.0 0.33 1,1,2-Trichloroethane ND ug/l 1.5 0.24 2-Chloroethylvinyl ether ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 1.5 0.33 Chloroethane ND ug/l 1.5 0.32 Trichlorofluoromethane ND ug/l 1.5 0.32 Interpretation of thane ND ug/l 1.5 0.26 icis-1,3-Dichloropropene ND	Parameter	Result	Qualifier Units	RL	MDL
1,1-Dichloroethane ND	olatile Organics by GC/MS -	· Westborough Lab	for sample(s): 04	Batch:	WG1016435-4
Chloroform ND ug/l 1.5 0.22 Carbon tetrachloride ND ug/l 1.0 0.32 1,2-Dichloropropane ND ug/l 3.5 0.27 Dibromochloromethane ND ug/l 1.0 0.33 1,1,2-Trichloroethane ND ug/l 1.5 0.24 2-Chloroethylvinyl ether ND ug/l 10 0.54 Tetrachloroethane ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 3.5 0.30 Chlorobenzene ND ug/l 5.0 0.46 Trichlorofluoromethane ND ug/l 5.0 0.30 Trichlorofluoromethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 1.5 0.32 Bromodichloromethane ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l	Methylene chloride	ND	ug/l	5.0	0.62
Carbon tetrachloride ND ug/l 1.0 0.32 1,2-Dichloropropane ND ug/l 3.5 0.27 Dibromochloromethane ND ug/l 1.0 0.33 1,1,2-Trichloroethane ND ug/l 1.5 0.24 2-Chloroethylvinyl ether ND ug/l 10 0.54 Tetrachloroethene ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 3.5 0.30 Trichlorofluoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.22 Benzene ND ug/l <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>ug/l</td><td>1.5</td><td>0.29</td></t<>	1,1-Dichloroethane	ND	ug/l	1.5	0.29
1,2-Dichloropropane ND	Chloroform	ND	ug/l	1.5	0.22
Dibromochloromethane ND	Carbon tetrachloride	ND	ug/l	1.0	0.32
1,1,2-Trichloroethane ND ug/l 1.5 0.24 2-Chloroethylvinyl ether ND ug/l 10 0.54 Tetrachloroethene ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 3.5 0.30 Trichlorofluoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 I1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l	1,2-Dichloropropane	ND	ug/l	3.5	0.27
2-Chloroethylvinyl ether ND ug/l 10 0.54 Tetrachloroethene ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 3.5 0.30 Trichlorofluoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0	Dibromochloromethane	ND	ug/l	1.0	0.33
Tetrachloroethene ND ug/l 1.5 0.33 Chlorobenzene ND ug/l 3.5 0.30 Trichloroftuoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 1.0 0.25 Bromodichloromethane ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>ug/l</td> <td>1.5</td> <td>0.24</td>	1,1,2-Trichloroethane	ND	ug/l	1.5	0.24
Chlorobenzene ND ug/l 3.5 0.30 Trichlorofluoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 2.0 0.30 Bromodichloromethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 1.0	2-Chloroethylvinyl ether	ND	ug/l	10	0.54
Trichlorofluoromethane ND ug/l 5.0 0.46 1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 2.0 0.30 Bromodichloromethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0	Tetrachloroethene	ND	ug/l	1.5	0.33
1,2-Dichloroethane ND ug/l 1.5 0.32 1,1,1-Trichloroethane ND ug/l 2.0 0.30 Bromodichloromethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5	Chlorobenzene	ND	ug/l	3.5	0.30
1,1,1-Trichloroethane	Trichlorofluoromethane	ND	ug/l	5.0	0.46
Bromodichloromethane ND ug/l 1.0 0.25 trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	1,2-Dichloroethane	ND	ug/l	1.5	0.32
trans-1,3-Dichloropropene ND ug/l 1.5 0.26 cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	1,1,1-Trichloroethane	ND	ug/l	2.0	0.30
cis-1,3-Dichloropropene ND ug/l 1.5 0.32 Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene ¹ ND ug/l 1.0 0.29	Bromodichloromethane	ND	ug/l	1.0	0.25
Bromoform ND ug/l 1.0 0.32 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	trans-1,3-Dichloropropene	ND	ug/l	1.5	0.26
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	cis-1,3-Dichloropropene	ND	ug/l	1.5	0.32
Benzene ND ug/l 1.0 0.23 Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Bromoform	ND	ug/l	1.0	0.32
Toluene ND ug/l 1.0 0.32 Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.22
Ethylbenzene ND ug/l 1.0 0.31 Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Benzene	ND	ug/l	1.0	0.23
Chloromethane ND ug/l 5.0 0.64 Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Toluene	ND	ug/l	1.0	0.32
Bromomethane ND ug/l 5.0 1.3 Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Ethylbenzene	ND	ug/l	1.0	0.31
Vinyl chloride ND ug/l 1.0 0.30 Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Chloromethane	ND	ug/l	5.0	0.64
Chloroethane ND ug/l 2.0 0.26 1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Bromomethane	ND	ug/l	5.0	1.3
1,1-Dichloroethene ND ug/l 1.0 0.37 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Vinyl chloride	ND	ug/l	1.0	0.30
trans-1,2-Dichloroethene ND ug/l 1.5 0.33 cis-1,2-Dichloroethene¹ ND ug/l 1.0 0.29	Chloroethane	ND	ug/l	2.0	0.26
cis-1,2-Dichloroethene ¹ ND ug/l 1.0 0.29	1,1-Dichloroethene	ND	ug/l	1.0	0.37
	trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene ND ua/l 1.0 0.33	cis-1,2-Dichloroethene ¹	ND	ug/l	1.0	0.29
	Trichloroethene	ND	ug/l	1.0	0.33

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 06/22/17 11:11

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s):	04 Batch:	WG1016435-4
1,2-Dichlorobenzene	ND	ug/l	5.0	0.26
1,3-Dichlorobenzene	ND	ug/l	5.0	0.25
1,4-Dichlorobenzene	ND	ug/l	5.0	0.26
p/m-Xylene ¹	ND	ug/l	2.0	0.58
o-xylene ¹	ND	ug/l	1.0	0.22
Xylenes, Total ¹	ND	ug/l	1.0	0.22
Styrene ¹	ND	ug/l	1.0	0.25
Acetone ¹	ND	ug/l	10	4.0
Carbon disulfide ¹	ND	ug/l	5.0	0.73
2-Butanone ¹	ND	ug/l	10	2.2
Vinyl acetate ¹	ND	ug/l	10	2.9
4-Methyl-2-pentanone ¹	ND	ug/l	10	1.8
2-Hexanone ¹	ND	ug/l	10	2.5
Acrolein ¹	ND	ug/l	8.0	1.3
Acrylonitrile ¹	ND	ug/l	10	0.97
Dibromomethane ¹	ND	ug/l	1.0	0.11

		Acceptance
Surrogate	%Recovery Qu	ualifier Criteria
Pentafluorobenzene	108	80-120
Fluorobenzene	106	80-120
4-Bromofluorobenzene	110	80-120

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 06/23/17 14:19

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene Trichlorofluoromethane	estborough Lab fo	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5.0 1.5 1.5 1.0 3.5 1.0	0.62 0.29 0.22 0.32 0.27 0.33
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	1.5 1.5 1.0 3.5 1.0	0.29 0.22 0.32 0.27
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	1.5 1.0 3.5 1.0	0.22 0.32 0.27
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND	ug/l ug/l ug/l ug/l	1.0 3.5 1.0	0.32 0.27
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND ND	ug/l ug/l ug/l	3.5 1.0	0.27
Dibromochloromethane 1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND ND	ug/l ug/l	1.0	
1,1,2-Trichloroethane 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND ND	ug/l		0.33
2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene	ND		1.5	0.33
Tetrachloroethene Chlorobenzene		ua/l	1.5	0.24
Chlorobenzene	ND	ug/i	10	0.54
		ug/l	1.5	0.33
Trichlorofluoromethane	ND	ug/l	3.5	0.30
	ND	ug/l	5.0	0.46
1,2-Dichloroethane	ND	ug/l	1.5	0.32
1,1,1-Trichloroethane	ND	ug/l	2.0	0.30
Bromodichloromethane	ND	ug/l	1.0	0.25
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.26
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.32
Bromoform	ND	ug/l	1.0	0.32
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.22
Benzene	ND	ug/l	1.0	0.23
Toluene	ND	ug/l	1.0	0.32
Ethylbenzene	ND	ug/l	1.0	0.31
Chloromethane	ND	ug/l	5.0	0.64
Bromomethane	ND	ug/l	5.0	1.3
Vinyl chloride	ND	ug/l	1.0	0.30
Chloroethane	ND	ug/l	2.0	0.26
1,1-Dichloroethene	ND	ug/l	1.0	0.37
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
cis-1,2-Dichloroethene1	ND	ug/l	1.0	0.29
Trichloroethene	ND	ug/l		

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,624

Analytical Date: 06/23/17 14:19

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 01	Batch:	WG1017046-4
1,2-Dichlorobenzene	ND	ug/l	5.0	0.26
1,3-Dichlorobenzene	ND	ug/l	5.0	0.25
1,4-Dichlorobenzene	ND	ug/l	5.0	0.26
p/m-Xylene ¹	ND	ug/l	2.0	0.58
o-xylene ¹	ND	ug/l	1.0	0.22
Xylenes, Total ¹	ND	ug/l	1.0	0.22
Styrene ¹	ND	ug/l	1.0	0.25
Acetone ¹	ND	ug/l	10	4.0
Carbon disulfide ¹	ND	ug/l	5.0	0.73
2-Butanone ¹	ND	ug/l	10	2.2
Vinyl acetate ¹	ND	ug/l	10	2.9
4-Methyl-2-pentanone ¹	ND	ug/l	10	1.8
2-Hexanone ¹	ND	ug/l	10	2.5
Acrolein ¹	ND	ug/l	8.0	1.3
Acrylonitrile ¹	ND	ug/l	10	0.97
Methyl tert butyl ether ¹	ND	ug/l	10	0.27
Dibromomethane ¹	ND	ug/l	1.0	0.11
Tert-Butyl Alcohol ¹	ND	ug/l	100	6.0
Tertiary-Amyl Methyl Ether ¹	ND	ug/l	20	0.18
Dichlorodifluoromethane ¹	ND	ug/l	1.0	0.30

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
Pentafluorobenzene	95	80-120
Fluorobenzene	104	80-120
4-Bromofluorobenzene	96	80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L17

L1720803

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	h Lab Associated	sample(s):	04 Batch: WG1	016435-3				
Methylene chloride	105		-		70-111	-	30	
1,1-Dichloroethane	110		-		78-116	-	30	
Chloroform	110		-		86-111	-	30	
Carbon tetrachloride	110		-		60-112	-	30	
1,2-Dichloropropane	95		-		83-113	-	30	
Dibromochloromethane	105		-		58-129	-	30	
1,1,2-Trichloroethane	100		-		80-118	-	30	
2-Chloroethylvinyl ether	125	Q	-		69-124	-	30	
Tetrachloroethene	115		-		80-126	-	30	
Chlorobenzene	120		-		80-126	-	30	
Trichlorofluoromethane	110		-		83-128	-	30	
1,2-Dichloroethane	115	Q	-		82-110	-	30	
1,1,1-Trichloroethane	115	Q	-		72-109	-	30	
Bromodichloromethane	110		-		71-120	-	30	
trans-1,3-Dichloropropene	105		-		73-106	-	30	
cis-1,3-Dichloropropene	110		-		78-111	-	30	
Bromoform	95		-		45-131	-	30	
1,1,2,2-Tetrachloroethane	90		-		81-122	-	30	
Benzene	110		-		84-116	-	30	
Toluene	115		-		83-121	-	30	
Ethylbenzene	125	Q	-		84-123	-	30	
Chloromethane	60	Q	-		70-144	-	30	
Bromomethane	65		-		63-141	-	30	

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery ' Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 04 Batch: W	/G1016435-3		
Vinyl chloride	70	-	56-118	-	30
Chloroethane	90	-	74-130	-	30
1,1-Dichloroethene	100	-	77-116	-	30
trans-1,2-Dichloroethene	100	-	81-121	-	30
cis-1,2-Dichloroethene ¹	100	-	85-110	-	30
Trichloroethene	110	-	84-118	-	30
1,2-Dichlorobenzene	105	-	78-128	-	30
1,3-Dichlorobenzene	115	-	77-125	-	30
1,4-Dichlorobenzene	115	-	77-125	-	30
p/m-Xylene ¹	122	Q -	81-121	-	30
o-Xylene ¹	120	-	81-124	-	30
Styrene ¹	120	-	84-133	-	30
Acetone ¹	78	-	40-160	-	30
Carbon disulfide ¹	90	-	54-134	-	30
2-Butanone ¹	74	-	57-116	-	30
Vinyl acetate ¹	88	-	40-160	-	30
4-Methyl-2-pentanone ¹	94	-	79-125	-	30
2-Hexanone ¹	90	-	78-120	-	30
Acrolein ¹	65	-	40-160	-	30
Acrylonitrile ¹	85	-	66-123	-	30
Dibromomethane ¹	105	-	65-126	-	30

Project Name: RIVERBEND S/A BSA

Lab Number:

L1720803

Project Number: T0322-016-500

Report Date:

06/27/17

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 04 Batch: WG1016435-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	107			80-120
Fluorobenzene	105			80-120
4-Bromofluorobenzene	113			80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
blatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01 Batch: WG1	017046-3				
Methylene chloride	100		-		70-111	-		30
1,1-Dichloroethane	100		-		78-116	-		30
Chloroform	110		-		86-111	-		30
Carbon tetrachloride	110		-		60-112	-		30
1,2-Dichloropropane	115	Q	-		83-113	-		30
Dibromochloromethane	90		-		58-129	-		30
1,1,2-Trichloroethane	100		-		80-118	-		30
2-Chloroethylvinyl ether	85		-		69-124	-		30
Tetrachloroethene	100		-		80-126	-		30
Chlorobenzene	100		-		80-126	-		30
Trichlorofluoromethane	105		-		83-128	-		30
1,2-Dichloroethane	110		-		82-110	-		30
1,1,1-Trichloroethane	110	Q	-		72-109	-		30
Bromodichloromethane	95		-		71-120	-		30
trans-1,3-Dichloropropene	95		-		73-106	-		30
cis-1,3-Dichloropropene	100		-		78-111	-		30
Bromoform	90		-		45-131	-		30
1,1,2,2-Tetrachloroethane	95		-		81-122	-		30
Benzene	120	Q	-		84-116	-		30
Toluene	100		-		83-121	-		30
Ethylbenzene	105		-		84-123	-		30
Chloromethane	90		-		70-144	-		30
Bromomethane	100		-		63-141	-		30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500 Lab Number:

L1720803

Report Date:

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - West	borough Lab Associated sa	mple(s): 01 Batch: WG	1017046-3		
Vinyl chloride	100	-	56-118	-	30
Chloroethane	95	-	74-130	-	30
1,1-Dichloroethene	105	-	77-116	-	30
trans-1,2-Dichloroethene	105	-	81-121	-	30
cis-1,2-Dichloroethene ¹	100	-	85-110	-	30
Trichloroethene	110	-	84-118	-	30
1,2-Dichlorobenzene	100	-	78-128	-	30
1,3-Dichlorobenzene	95	-	77-125	-	30
1,4-Dichlorobenzene	100	-	77-125	-	30
p/m-Xylene ¹	105	-	81-121	-	30
o-Xylene ¹	100	-	81-124	-	30
Styrene ¹	105	-	84-133	-	30
Acetone ¹	92	-	40-160	-	30
Carbon disulfide ¹	85	-	54-134	-	30
2-Butanone ¹	88	-	57-116	-	30
Vinyl acetate ¹	88	-	40-160	-	30
4-Methyl-2-pentanone ¹	92	-	79-125	-	30
2-Hexanone ¹	92	-	78-120	-	30
Acrolein ¹	90	-	40-160	-	30
Acrylonitrile ¹	90	-	66-123	-	30
Methyl tert butyl ether ¹	95	-	57-126	-	30
Dibromomethane ¹	110	-	65-126	-	30
tert-Butyl Alcohol ¹	96	-	52-114	-	30

Project Name: RIVERBEND S/A BSA

Lab Number:

L1720803

Project Number: T0322-016-500 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	017046-3					
Tertiary-Amyl Methyl Ether ¹	100		-		66-111	-		30	
Dichlorodifluoromethane ¹	105		-		70-130	-		30	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	103				80-120
Fluorobenzene	109				80-120
4-Bromofluorobenzene	97				80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limit	
Volatile Organics by GC/MS -	Westborough I	_ab Assoc	ciated sample(s	s): 04 QC Ba	tch ID: W	G1016435-	6 QC Samp	le: L1721047-02	Client IE	D: MS Sample	
Methylene chloride	ND	200	200	100		-	-	70-111	-	30	
,1-Dichloroethane	ND	200	210	105		-	-	78-116	-	30	
Chloroform	ND	200	230	115	Q	-	-	86-111	-	30	
Carbon tetrachloride	ND	200	220	110		-	-	60-112	-	30	
,2-Dichloropropane	ND	200	210	105		-	-	83-113	-	30	
Dibromochloromethane	ND	200	240	120		-	-	58-129	-	30	
,1,2-Trichloroethane	ND	200	220	110		-	-	80-118	-	30	
2-Chloroethylvinyl ether	ND	200	430	215	Q	-	-	69-124	-	30	
etrachloroethene	ND	200	250	125		-	-	80-126	-	30	
Chlorobenzene	ND	200	250	125		-	-	80-126	-	30	
richlorofluoromethane	ND	200	210	105		-	-	83-128	-	30	
,2-Dichloroethane	ND	200	230	115	Q	-	-	82-110	-	30	
,1,1-Trichloroethane	ND	200	240	120	Q	-	-	72-109	-	30	
Bromodichloromethane	ND	200	260	130	Q	-	-	71-120	-	30	
rans-1,3-Dichloropropene	ND	200	240	120	Q	-	-	73-106	-	30	
sis-1,3-Dichloropropene	ND	200	240	120	Q	-	-	78-111	-	30	
Bromoform	ND	200	220	110		-	-	45-131	-	30	
,1,2,2-Tetrachloroethane	ND	200	150	75	Q	-	-	81-122	-	30	
Benzene	ND	200	220	110		-	-	84-116	-	30	
oluene	ND	200	250	125	Q	-	-	83-121	-	30	
Ethylbenzene	ND	200	250	125	Q	-	-	84-123	-	30	
Chloromethane	ND	200	110	55	Q	-	-	70-144	-	30	
Bromomethane	ND	200	130	65		-	-	63-141	-	30	
/inyl chloride	ND	200	140	70		-	-	56-118	-	30	

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD	RPD Qual Limits
Volatile Organics by GC/MS -	Westborough	Lab Assoc	ciated sample(s): 04 QC Ba	tch ID: WO	G1016435-6	G QC Samp	le: L1721047-02	Client IE	D: MS Sample
Chloroethane	ND	200	180	90		-	-	74-130	-	30
1,1-Dichloroethene	ND	200	190	95		-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	200	200	100		-	-	81-121	-	30
cis-1,2-Dichloroethene ¹	ND	200	200	100		-	-	85-110	-	30
Trichloroethene	ND	200	260	130	Q	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	200	220	110		-	-	78-128	-	30
1,3-Dichlorobenzene	ND	200	230	115		-	-	77-125	-	30
1,4-Dichlorobenzene	ND	200	230	115		-	-	77-125	-	30
p/m-Xylene ¹	ND	400	510	128	Q	-	-	81-121	-	30
o-Xylene ¹	ND	200	250	125	Q	-	-	81-124	-	30
Styrene ¹	ND	200	250	125		-	-	84-133	-	30
Acetone ¹	94.J	500	510	102		-	-	40-160	-	30
Carbon disulfide ¹	ND	200	170	85		-	-	54-134	-	30
2-Butanone ¹	ND	500	370	74		-	-	57-116	-	30
Vinyl acetate ¹	ND	400	67J	0	Q	-	-	40-160	-	30
4-Methyl-2-pentanone1	ND	500	500	100		-	-	79-125	-	30
2-Hexanone ¹	ND	500	470	94		-	-	78-120	-	30
Acrolein ¹	ND	400	200	50		-	-	40-160	-	30
Acrylonitrile ¹	ND	400	330	82		-	-	66-123	-	30
Dibromomethane ¹	ND	200	210	105		-	-	65-126	-	30

Project Name: RIVERBEND S/A BSA

Project Number:

T0322-016-500

Lab Number:

L1720803

Report Date:

06/27/17

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual Limits	RPD	Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 04 QC Batch ID: WG1016435-6 QC Sample: L1721047-02 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	114		80-120
Fluorobenzene	99		80-120
Pentafluorobenzene	106		80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD	RPD Qual Limits
Volatile Organics by GC/MS -	- Westborough La	ab Asso	ciated sample(s	s): 01 QC Ba	tch ID: W	G1017046-	6 QC Samp	le: L1721283-02	Client II	D: MS Sample
Methylene chloride	ND	20	28	140	Q	-	-	70-111	-	30
1,1-Dichloroethane	ND	20	30	150	Q	-	-	78-116	-	30
Chloroform	ND	20	31	155	Q	-	-	86-111	-	30
Carbon tetrachloride	ND	20	33	165	Q	-	-	60-112	-	30
1,2-Dichloropropane	ND	20	35	175	Q	-	-	83-113	-	30
Dibromochloromethane	ND	20	26	130	Q	-	-	58-129	-	30
1,1,2-Trichloroethane	ND	20	28	140	Q	-	-	80-118	-	30
2-Chloroethylvinyl ether	ND	20	24	120		-	-	69-124	-	30
Tetrachloroethene	ND	20	28	140	Q	-	-	80-126	-	30
Chlorobenzene	ND	20	28	140	Q	-	-	80-126	-	30
Trichlorofluoromethane	ND	20	31	155	Q	-	-	83-128	-	30
1,2-Dichloroethane	ND	20	32	160	Q	-	-	82-110	-	30
1,1,1-Trichloroethane	ND	20	32	160	Q	-	-	72-109	-	30
Bromodichloromethane	ND	20	27	135	Q	-	-	71-120	-	30
trans-1,3-Dichloropropene	ND	20	15	75		-	-	73-106	-	30
cis-1,3-Dichloropropene	ND	20	5.3	26	Q	-	-	78-111	-	30
Bromoform	ND	20	27	135	Q	-	-	45-131	-	30
1,1,2,2-Tetrachloroethane	ND	20	27	135	Q	-	-	81-122	-	30
Benzene	ND	20	35	175	Q	-	-	84-116	-	30
Toluene	ND	20	28	140	Q	-	-	83-121	-	30
Ethylbenzene	ND	20	30	150	Q	-	-	84-123	-	30
Chloromethane	ND	20	25	125		-	-	70-144	-	30
Bromomethane	ND	20	4.8J	24	Q	-	-	63-141	-	30
Vinyl chloride	ND	20	31	155	Q	-	-	56-118	-	30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD	RPD Qual Limits
Volatile Organics by GC/MS	S - Westborough	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: W	/G1017046-	6 QC Samp	le: L1721283-02	Client II	D: MS Sample
Chloroethane	ND	20	29	145	Q	-	-	74-130	-	30
1,1-Dichloroethene	ND	20	30	150	Q	-	-	77-116	-	30
trans-1,2-Dichloroethene	ND	20	30	150	Q	-	-	81-121	-	30
cis-1,2-Dichloroethene1	ND	20	30	150	Q	-	-	85-110	-	30
Trichloroethene	ND	20	33	165	Q	-	-	84-118	-	30
1,2-Dichlorobenzene	ND	20	27	135	Q	-	-	78-128	-	30
1,3-Dichlorobenzene	ND	20	27	135	Q	-	-	77-125	-	30
1,4-Dichlorobenzene	ND	20	28	140	Q	-	-	77-125	-	30
p/m-Xylene ¹	ND	40	59	148	Q	-	-	81-121	-	30
o-Xylene ¹	ND	20	28	140	Q	-	-	81-124	-	30
Styrene ¹	ND	20	28	140	Q	-	-	84-133	-	30
Acetone ¹	ND	50	67	134		-	-	40-160	-	30
Carbon disulfide ¹	ND	20	25	125		-	-	54-134	-	30
2-Butanone ¹	ND	50	65	130	Q	-	-	57-116	-	30
Vinyl acetate ¹	ND	40	53	133		-	-	40-160	-	30
4-Methyl-2-pentanone1	ND	50	67	134	Q	-	-	79-125	-	30
2-Hexanone ¹	ND	50	67	134	Q	-	-	78-120	-	30
Acrolein ¹	ND	40	40	100		-	-	40-160	-	30
Acrylonitrile ¹	ND	40	54	135	Q	-	-	66-123	-	30
Dibromomethane ¹	ND	20	32	160	Q	-	-	65-126	-	30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

06/27/17

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1017046-6 QC Sample: L1721283-02 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
4-Bromofluorobenzene	94		80-120
Fluorobenzene	113		80-120
Pentafluorobenzene	102		80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date: 06/27/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 04	QC Batch ID: WG1016	6435-5 QC S	ample: L172	1047-02 Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500 Lab Number: L1720803 06/27/17

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 04	QC Batch ID: WG101	6435-5 QC Sa	ample: L172	21047-02 Client ID: DUP Sample
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	94.J	97J	ug/l	NC	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30

RIVERBEND S/A BSA Batch Quality

Lab Number:

L1720803

Project Number: T0322-016-500

Project Name:

Report Date: 06/27/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 04	QC Batch ID: WG1016	435-5 QC Sar	mple: L172	1047-02 Client ID: DUP Sample
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Acceptance Criteria
Pentafluorobenzene	106	106	80-120
Fluorobenzene	99	98	80-120
4-Bromofluorobenzene	109	106	80-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500 Lab Number: L1720803 06/27/17

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	•	QC Batch ID: WG101			1283-01 Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	•	QC Batch ID: WG101			11283-01 Client ID: DUP Sample
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	ND	ND	ug/l	NC	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30

L1720803

Lab Duplicate Analysis Batch Quality Control

RIVERBEND S/A BSA Batch Quality Cont

h Quality Control

Lab Number:

Project Number: T0322-016-500 **Report Date:** 06/27/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG1017	046-5 QC Sar	nple: L1721	1283-01 Client ID: DUP Sample
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

			Acceptance
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	r Criteria
Pentafluorobenzene	91	92	80-120
Fluorobenzene	102	102	80-120
4-Bromofluorobenzene	103	102	80-120

Project Name:

SEMIVOLATILES

L1720803

06/27/17

06/23/17 00:33

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

SAMPLE RESULTS

Date Collected: 06/20/17 08:30

Lab Number:

Report Date:

Extraction Date:

Lab ID: L1720803-01

Client ID: PROCESS EFFLUENT-GRAB 1, 2, 3,4

Sample Location: BUFFALO, NY Date Received: 06/20/17 Field Prep: Not Specified

Extraction Method: EPA 625

Matrix: Water Analytical Method: 5,625

Analytical Date: 06/23/17 20:21

Analyst: RC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - 1	Westborough Lab						
Acenaphthene	ND		ug/l	2.0	0.72	1	
Benzidine ¹	ND		ug/l	20	8.3	1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.91	1	
Hexachlorobenzene	ND		ug/l	2.0	0.67	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.55	1	
2-Chloronaphthalene	ND		ug/l	2.0	0.79	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.3	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.88	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
Azobenzene¹	ND		ug/l	2.0	0.61	1	
Fluoranthene	ND		ug/l	2.0	0.64	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.68	1	
4-Bromophenyl phenyl ether¹	ND		ug/l	2.0	0.78	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.54	1	
Hexachlorobutadiene	ND		ug/l	2.0	0.67	1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10	3.7	1	
Hexachloroethane	ND		ug/l	2.0	0.74	1	
Isophorone	ND		ug/l	5.0	0.79	1	
Naphthalene	ND		ug/l	2.0	0.81	1	
Nitrobenzene	ND		ug/l	2.0	0.68	1	
NDPA/DPA ¹	ND		ug/l	2.0	0.73	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.54	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.3	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.1	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.97	1	
Di-n-octylphthalate	ND		ug/l	5.0	0.99	1	
Diethyl phthalate	ND		ug/l	5.0	0.73	1	
Dimethyl phthalate	ND		ug/l	5.0	0.70	1	
Benzo(a)anthracene	ND		ug/l	2.0	0.68	1	

Project Name: RIVERBEND S/A BSA Lab Number: L1720803

Project Number: T0322-016-500 **Report Date:** 06/27/17

SAMPLE RESULTS

Lab ID: L1720803-01 Date Collected: 06/20/17 08:30

Client ID: PROCESS EFFLUENT-GRAB 1, 2, 3,4 Date Received: 06/20/17
Sample Location: BUFFALO, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab Benzo(a)pyrene ND 2.0 0.63 1 ug/l Benzo(b)fluoranthene ND ug/l 2.0 0.65 1 Benzo(k)fluoranthene ND 2.0 0.68 1 ug/l ND Chrysene 2.0 0.68 1 ug/l Acenaphthylene ND 2.0 0.63 1 ug/l ND Anthracene 2.0 0.69 1 ug/l Benzo(ghi)perylene ND 2.0 0.71 1 ug/l 1 Fluorene ND ug/l 2.0 0.66 Phenanthrene ND 2.0 0.66 1 ug/l ND Dibenzo(a,h)anthracene 2.0 0.68 1 ug/l Indeno(1,2,3-cd)pyrene ND ug/l 2.0 0.73 1 Pyrene ND 2.0 0.62 1 ug/l 4-Chloroaniline1 ND 5.0 1.2 1 ug/l Dibenzofuran1 ND 1 ug/l 2.0 0.69 ND 2.0 0.76 1 2-Methylnaphthalene¹ ug/l n-Nitrosodimethylamine1 ND 2.0 0.78 1 ug/l 2,4,6-Trichlorophenol ND 0.80 ug/l 5.0 1 ND 2.0 0.66 p-Chloro-m-cresol1 1 ug/l 2-Chlorophenol ND 2.0 0.62 1 ug/l ND 1 2,4-Dichlorophenol 5.0 0.78 ug/l 2,4-Dimethylphenol ND 5.0 1.4 1 ug/l 2-Nitrophenol ND ug/l 5.0 1.3 1 4-Nitrophenol ND 10 1 ug/l 1.1 2,4-Dinitrophenol ND 20 8.0 1 ug/l 4,6-Dinitro-o-cresol1 ND ug/l 10 1.9 1 Pentachlorophenol ND ug/l 5.0 2.8 1 Phenol ND ug/l 5.0 0.74 1 2-Methylphenol¹ ND ug/l 5.0 1.0 1 ND 3-Methylphenol/4-Methylphenol¹ 5.0 1.1 1 ug/l 2,4,5-Trichlorophenol1 ND ug/l 5.0 0.92 1 Benzoic Acid¹ ND ug/l 50 6.2 1 Benzyl Alcohol¹ ND 2.0 0.72 1 ug/l

Project Name: RIVERBEND S/A BSA Lab Number: L1720803

Project Number: T0322-016-500 **Report Date:** 06/27/17

SAMPLE RESULTS

Lab ID: L1720803-01 Date Collected: 06/20/17 08:30

Client ID: PROCESS EFFLUENT-GRAB 1, 2, 3,4 Date Received: 06/20/17 Sample Location: BUFFALO, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

% Recovery	Acceptance Qualifier Criteria
44	21-120
29	10-120
69	23-120
72	15-120
70	10-120
73	33-120
	44 29 69 72 70

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803 **Report Date:** 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 06/23/17 14:12

Analyst: RC

Extraction Method: EPA 625

Extraction Date: 06/23/17 00:33

Semivolatile Organics by GC/MS - V Acenaphthene Benzidine ¹	ND	Lab for sa	ample(s):	01	Batch:	WG1016114-1	
<u> </u>							
Benzidine ¹	ND		ug/l		2.0	0.72	
	ND		ug/l		20	8.3	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.91	
Hexachlorobenzene	ND		ug/l		2.0	0.67	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.55	
2-Chloronaphthalene	ND		ug/l		2.0	0.79	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.3	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.88	
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1	
Azobenzene ¹	ND		ug/l		2.0	0.61	
Fluoranthene	ND		ug/l		2.0	0.64	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.68	
4-Bromophenyl phenyl ether ¹	ND		ug/l		2.0	0.78	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.54	
Hexachlorobutadiene	ND		ug/l		2.0	0.67	
Hexachlorocyclopentadiene ¹	ND		ug/l		10	3.7	
Hexachloroethane	ND		ug/l		2.0	0.74	
Isophorone	ND		ug/l		5.0	0.79	
Naphthalene	ND		ug/l		2.0	0.81	
Nitrobenzene	ND		ug/l		2.0	0.68	
NDPA/DPA ¹	ND		ug/l		2.0	0.73	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.54	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.3	
Butyl benzyl phthalate	ND		ug/l		5.0	1.1	
Di-n-butylphthalate	ND		ug/l		5.0	0.97	
Di-n-octylphthalate	ND		ug/l		5.0	0.99	
Diethyl phthalate	ND		ug/l		5.0	0.73	
Dimethyl phthalate	ND		ug/l		5.0	0.70	

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803 **Report Date:** 06/27/17

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 06/23/17 14:12

Analyst: RC

Extraction Method: EPA 625

Extraction Date: 06/23/17 00:33

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01 Batch:	WG1016114-1
Benzo(a)anthracene	ND	ug/l	2.0	0.68
Benzo(a)pyrene	ND	ug/l	2.0	0.63
Benzo(b)fluoranthene	ND	ug/l	2.0	0.65
Benzo(k)fluoranthene	ND	ug/l	2.0	0.68
Chrysene	ND	ug/l	2.0	0.68
Acenaphthylene	ND	ug/l	2.0	0.63
Anthracene	ND	ug/l	2.0	0.69
Benzo(ghi)perylene	ND	ug/l	2.0	0.71
Fluorene	ND	ug/l	2.0	0.66
Phenanthrene	ND	ug/l	2.0	0.66
Dibenzo(a,h)anthracene	ND	ug/l	2.0	0.68
Indeno(1,2,3-cd)pyrene	ND	ug/l	2.0	0.73
Pyrene	ND	ug/l	2.0	0.62
4-Chloroaniline ¹	ND	ug/l	5.0	1.2
Dibenzofuran ¹	ND	ug/l	2.0	0.69
2-Methylnaphthalene ¹	ND	ug/l	2.0	0.76
n-Nitrosodimethylamine ¹	ND	ug/l	2.0	0.78
2,4,6-Trichlorophenol	ND	ug/l	5.0	0.80
p-Chloro-m-cresol ¹	ND	ug/l	2.0	0.66
2-Chlorophenol	ND	ug/l	2.0	0.62
2,4-Dichlorophenol	ND	ug/l	5.0	0.78
2,4-Dimethylphenol	ND	ug/l	5.0	1.4
2-Nitrophenol	ND	ug/l	5.0	1.3
4-Nitrophenol	ND	ug/l	10	1.1
2,4-Dinitrophenol	ND	ug/l	20	8.0
4,6-Dinitro-o-cresol ¹	ND	ug/l	10	1.9
Pentachlorophenol	ND	ug/l	5.0	2.8
Phenol	ND	ug/l	5.0	0.74
2-Methylphenol ¹	ND	ug/l	5.0	1.0

L1720803

Lab Number:

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500 Report Date: 06/27/17

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 5,625 Analytical Date:

06/23/17 14:12

Analyst: RC Extraction Method: EPA 625

06/23/17 00:33 **Extraction Date:**

\//oothorough						
- vvesiborougi	n Lab for sa	ample(s):	01	Batch:	WG1016114-1	
ND		ug/l		5.0	1.1	
ND		ug/l		5.0	0.92	
ND		ug/l		50	6.2	
ND		ug/l	:	2.0	0.72	
	ND ND	ND ND	ND ug/l	ND ug/l	ND ug/l 5.0 ND ug/l 50	ND ug/l 5.0 0.92 ND ug/l 50 6.2

Tentatively Identified Compounds

ND ug/l No Tentatively Identified Compounds

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
2-Fluorophenol	42	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	76	33-120

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803

Report Date: 06/27/17

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westl	borough Lab Associa	ated sample(s): 01	1 Batch:	WG101611	4-2				
Acenaphthene	68		-		47-145	-		30	
1,2,4-Trichlorobenzene	61		-		44-142	-		30	
Hexachlorobenzene	67		-		1-152	-		30	
Bis(2-chloroethyl)ether	65		-		12-158	-		30	
2-Chloronaphthalene	69		-		60-118	-		30	
3,3'-Dichlorobenzidine	34		-		1-262	-		30	
2,4-Dinitrotoluene	81		-		39-139	-		30	
2,6-Dinitrotoluene	82		-		50-158	-		30	
Fluoranthene	77		-		26-137	-		30	
4-Chlorophenyl phenyl ether	65		-		25-158	-		30	
4-Bromophenyl phenyl ether ¹	69		-		53-127	-		30	
Bis(2-chloroisopropyl)ether	63		-		36-166	-		30	
Bis(2-chloroethoxy)methane	70		-		33-184	-		30	
Hexachlorobutadiene	51		-		24-116	-		30	
Hexachloroethane	53		-		40-113	-		30	
Isophorone	72		-		21-196	-		30	
Naphthalene	64		-		21-133	-		30	
Nitrobenzene	90		-		35-180	-		30	
n-Nitrosodi-n-propylamine	70		-		1-230	-		30	
Bis(2-Ethylhexyl)phthalate	81		-		8-158	-		30	
Butyl benzyl phthalate	81		-		1-152	-		30	
Di-n-butylphthalate	84		-		1-118	-		30	
Di-n-octylphthalate	86		-		4-146	-		30	

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

06/27/17

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	stborough Lab Associate	ed sample(s): 01 Batch:	WG1016114-2		
Diethyl phthalate	70	-	1-114	-	30
Dimethyl phthalate	78	-	1-112	-	30
Benzo(a)anthracene	74	-	33-143	-	30
Benzo(a)pyrene	80	-	17-163	-	30
Benzo(b)fluoranthene	82	-	24-159	-	30
Benzo(k)fluoranthene	71	-	11-162	-	30
Chrysene	71	-	17-168	-	30
Acenaphthylene	75	-	33-145	-	30
Anthracene	73	-	27-133	-	30
Benzo(ghi)perylene	76	-	1-219	-	30
Fluorene	69	-	59-121	-	30
Phenanthrene	70	-	54-120	-	30
Dibenzo(a,h)anthracene	73	-	1-227	-	30
Indeno(1,2,3-cd)Pyrene	71	-	1-171	-	30
Pyrene	74	-	52-115	-	30
2,4,6-Trichlorophenol	78	-	37-144	-	30
P-Chloro-M-Cresol ¹	80	-	22-147	-	30
2-Chlorophenol	72	-	23-134	-	30
2,4-Dichlorophenol	84	-	39-135	-	30
2,4-Dimethylphenol	82	-	32-119	-	30
2-Nitrophenol	84	-	29-182	-	30
4-Nitrophenol	45	-	1-132	-	30
2,4-Dinitrophenol	75	-	1-191	-	30

Project Name: RIVERBEND S/A BSA

Lab Number:

L1720803

Project Number: T0322-016-500

Report Date:

06/27/17

<u>Pa</u>	rameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Se	mivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01 B	atch:	WG1016114-2					
	4,6-Dinitro-o-cresol ¹	79		-			1-181	-		30	
	Pentachlorophenol	62		-			14-176	-		30	
	Phenol	35		-			5-112	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	49		21-120
Phenol-d6	35		10-120
Nitrobenzene-d5	74		23-120
2-Fluorobiphenyl	78		15-120
2,4,6-Tribromophenol	68		10-120
4-Terphenyl-d14	75		33-120

INORGANICS & MISCELLANEOUS

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date: 06/27/17

SAMPLE RESULTS

Lab ID: L1720803-03

PROCESS EFFLUENT Client ID:

Sample Location: BUFFALO, NY

Date Collected:

06/20/17 08:30

Date Received:

06/20/17

Field Prep:

Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Cyanide, Total	1.50		mg/l	0.025	0.009	5	06/22/17 20:20	06/23/17 13:09	121,4500CN-CE	LK
pH (H)	7.1		SU	-	NA	1	-	06/21/17 10:30	121,4500H+-B	JT

Project Name: RIVERBEND S/A BSA

Lab Number: L1720803 Project Number: T0322-016-500 Report Date: 06/27/17

Method Blank Analysis	s
Batch Quality Control	

Parameter	Result Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 03	Batch:	: WG10	16004-1				
Cyanide, Total	ND	mg/l	0.005	0.001	1	06/22/17 20:20	06/23/17 12:45	121,4500CN-C	CE LK

Project Name: RIVERBEND S/A BSA

Project Number:

T0322-016-500

Lab Number:

L1720803

06/27/17

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery (%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 03 E	Batch: WG1015396-1				
рН	100	-	99-101	-	5	
General Chemistry - Westborough Lab A	ssociated sample(s): 03 E	Batch: WG1016004-2				
Cyanide, Total	94	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

06/27/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery C	Recovery Qual Limits	RPD Q	RPD ual Limits
General Chemistry - Westborouger	gh Lab Asso	ciated samp	le(s): 03	QC Batch ID: V	VG101600	04-4	QC Sample: L1720	0803-03 Client	ID: PROC	CESS
Cyanide, Total	1.50	0.2	1.77	135	Q	-	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number:

L1720803

Report Date:

06/27/17

Parameter	Native Sa	ample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 03	QC Batch ID:	WG1015396-2	QC Sample: L	1700006-120	Client ID:	DUP Sample
рН	6.8		6.9	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s): 03	QC Batch ID:	WG1016004-3	QC Sample: L	1721071-01	Client ID: [OUP Sample
Cyanide, Total	0.002	2J	0.002J	mg/l	NC		30

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Lab Number: L1720803 **Report Date:** 06/27/17

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1720803-01A	Vial Na2S2O3 preserved split	Α	NA		3.4	Υ	Absent		624(3)
L1720803-01B	Vial Na2S2O3 preserved split	Α	NA		3.4	Υ	Absent		624(3)
L1720803-01C	Vial Na2S2O3 preserved split	Α	NA		3.4	Υ	Absent		624(3)
L1720803-01D	Split Amber 1000ml Na2S2O3	Α	N/A	N/A	3.4	Υ	Absent		625(7)
L1720803-01E	Split Amber 1000ml Na2S2O3	Α	N/A	N/A	3.4	Υ	Absent		625(7)
L1720803-02A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02C	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02D	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02E	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02F	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02G	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02H	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02I	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02J	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02K	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02L	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		COMP-VOA()
L1720803-02M	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02N	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02O	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02P	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02Q	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02R	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()

Lab Number: L1720803

Report Date: 06/27/17

Project Name: RIVERBEND S/A BSA

Project Number: T0322-016-500

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1720803-02S	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-02T	Amber 1000ml Na2S2O3	Α	NA		3.4	Υ	Absent		COMP-W()
L1720803-03A	Plastic 60ml unpreserved	Α	7	7	3.4	Υ	Absent		PH-4500(.01)
L1720803-03B	Plastic 250ml NaOH preserved	Α	>12	>12	3.4	Υ	Absent		TCN-4500(14)
L1720803-04A	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624(3)
L1720803-04B	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624(3)

Project Name:RIVERBEND S/A BSALab Number:L1720803Project Number:T0322-016-500Report Date:06/27/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:RIVERBEND S/A BSALab Number:L1720803Project Number:T0322-016-500Report Date:06/27/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: RIVERBEND S/A BSA Lab Number: L1720803

Project Number: T0322-016-500 Report Date: 06/27/17

REFERENCES

Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06271714:11

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	105		ge 1 of 1			e Rec		4/2	20/	17	ALPHA Job# L1720803
8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Del	iverab	les					Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Riverbend S	S/A BSA				ASF	P-A			ASP	-В	✓ Same as Client Info
		Project Location:	Buffalo, NY] EQ	uIS (1	File)] EQu	IS (4 File)	PO #
Client Information		Project #					7 0	Oth	er					
Client: Benchma	rk Environmental	(Use Project name as Pr	roject #)				Reg	ulator	y Req	uireme	nt			Disposal Site Information
	burg Turnpike,Ste300	Project Manager:	Candace Fo	ОХ			TE	NYT	rogs		T	NY Pa	art 375	Please identify below location of
Buffalo, NY 14218		ALPHAQuote #:					7 c	AWC	Q Stand	dards	Ē	NYC	P-51	applicable disposal facilities.
Phone: 716-856-0	599	Turn-Around Time						NYF	Restricte	ed Use		Other		Disposal Facility:
Fax:		Standard	J 5da	/ Due Date	9:		1 6	NYL	Jnrestri	cted Us	е			□ NJ □ NY
Email: bhann@tu	rnkeyllc.com	Rush (only if pre approved)		# of Days	3:		1 =	NYC	Sewer	Discha	rae			Other: NA
These samples have b	peen previously analyze	ed by Alpha					ANA	LYSIS			-3-			Sample Filtration
Other project specific	c requirements/comm	ents:						T	T	T	I	_		
Please specify Metals	s or TAL.				624	625	TCN	Hd				Done Lab to do Preservation Lab to do (Please Specify below)		
ALPHA Lab ID	Sar	mple ID	Coll	ection	Sample	Sampler's	1							t
(Lab Use Only)			Date	Time	Matrix	Initials								Sample Specific Comments
20803-01	Process Effluent - Gra	ab 1	6-19-17	945	Water	But	x	x						Lab to composite 1-4 5
-07	Process Effluent - Gra	ab 2	6-19-17	1217	Water	1	x	х						Lab to composite 1-4 5
-02	Process Effluent - Gra	ab 3	6-19-17	1630	Water		x	x						Lab to composite 1-4 5
-02	Process Effluent - Gra	ab 4	6-20-17	830	Water	1	x	x						Lab to composite 1-4 5
-03	Process Effluent		6-20-17	830	Water	ome			x	x				
									1	<u> </u>				2
-04	Trip Blank		6-19-17	800	Water	Brub	x							2
													-	
								<u> </u>						
Preservative Code:	Container Code													
A = None B = HCI C = HNO ₃ D = H_2 SO ₄ E = NaOH	P = Plastic	Westboro: Certification No Mansfield: Certification No				Preservative	<u>v _</u>	Α		Р				Please print clearly, legibly and completely. Samples can not be logged in and
F = MeOH	C = Cube	Relinquished B	Rv.	Detail	Time a	1	and the second	H	-	Α				turnaround time clock will not start until any ambiguities are
O = Other	O = Other E = Encore D = BOD Bottle	Brack Greene	ni 6/2	1	1000 45	J.# .	Receiv	/ed By		-6/	7	Date/	Time 400	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S
Form No: 01-25 (rev. 30-Se	pt-2013)													TERMS & CONDITIONS.

ATTACHMENT 3

FLOW METER CALIBRATION DATA

Northeast Metrology Corp.

2601 Genesee Street Buffalo, NY 14225

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Company:

RIVERBEND

Address:

192 BARAGA STREET

BUFFALO, NY 14210

Contact:

BRANDON ROGERS

Department:

Manufacturer: Location:

Gage Desc:

Flow Transmitter / Sensor

George Fischer Signet

Calibration Certificate

www.nemcal.com

Certificate #:

1194587

Calibration Date:

1/4/2017

PO/Acct:

1 of 2 Page: Visual Condition: Good

Date Received:

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515

80210142061

Parameters:

Flow Units - GPM Gas Type - N/A

Repairs:

+ / - Tolerances: 2.000% / 2.000%

Graph Scale: +0.100000

20	15	10	5	0	-5	-10	-15	-20				<u>GPM</u>
. +	+	+	+	0	+	+	+.	T		Deviation	Actual	Nominal
025 0*)		**** ***** ****				(-0.470000	+75.730000	+76.200000
78)		1.0			3.00	(::•		+0.210000	+76.410000	+76.200000
7)						(0.		-0.410000	+75.790000	+76.200000
)						(-0.120000	+76.080000	+76.200000
98)		99		84	360	(Avg. of 10	+0.250000	+76.450000	+76.200000
9)		0.	1	7.4	2017	(12	Timed	+0.300000	+76.500000	+76.200000
))))					100 100 100 100 100 100 100 100 100 100	(-	+0.210000 -0.410000 -0.120000 +0.250000	+76.410000 +75.790000 +76.080000 +76.450000	+76.200000 +76.200000 +76.200000 +76.200000

Comments:

CALIBRATION PERFORMED AT AMBIENT CONDITIONS: 62°F & 50% R.H.

SCHEDULE 80 PVC 3" O.D. I.D.=2.9"

TOTAL GALLONS (2017): 8489861 PERM. GALLONS: 31685459

TOTAL GALLONS RESET AT THE END OF TESTING.

mA OUTPUT: 0 = 3.99, MAX = 16.05

Procedure:

110176:E-Flowme.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6004 Flow Calibrator

CE17617 Cal Date / Due Date: 2/19/2013 - 2/20/2018

Gage Status: PASS

Due Date: 1/4/2018

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F): (20°C (±1°C)) & relative humidity less than 45%. Electronic & Mechanical calibration performed at ambient conditions.

All pertinent data and readings calibrated are as found & as left unless otherwise denoted in comments.

Northeast Metrology Corp.

Calibration Certificate

2601 Genesee Street Buffalo, NY 14225

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Page #:

2 of 2

Gage Desc: Manufacturer: Flow Transmitter / Sensor George Fischer Signet

Location:

Certificate #:

1194587

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515

80210142061

Calibration performed in accordance with ANSI/NCSL Z540-1-1994 unless otherwise denoted in comments.

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with GGG-G-15C.

Calibration meets or exceeds 4: 1 ratio, with the exception of gage blocks stated above.

Measurement Uncertainties are based on approximately a 95% confidence level, using a coverage factor of k=2.

Measurement Uncertainty is taken into account in determining gage status (pass/fail).

Calibration is performed on premises at Northeast Metrology Corp. unless otherwise denoted in comments.

The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: GK Signature: ___

This certificate is not valid unless all 2 page(s) are present.

Results of this certificate relate only to the item mentioned in document header.

END OF DOCUMENT

APPENDIX C

COMPREHENSIVE ANNUAL GROUNDWATER MONITORING REPORT

June 15, 2018

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619) 2017 Comprehensive Annual Groundwater Monitoring Report

Dear Mr. Moore:

On behalf of our client Fort Schuyler Management Corporation (FSMC), TurnKey Environmental Restoration, LLC, has prepared this comprehensive letter report to transmit the results of the July 2017 groundwater monitoring event conducted at Area I (Former Steel Plant Parcel), Area II (Former Coke Plant Parcel), and Area III (Former Warehouse Parcel) of FSMC's RiverBend Site, Buffalo, NY (see Figure 1). This letter report also includes the results of the July and December 2017 Oxygen Release Compound (ORC) monitoring events for Area III. The current groundwater monitoring event was performed July 13-18, 2017, the Area III first semi-annual ORC monitoring event was performed July 24-27, 2017, and the Area III second semi-annual ORC event December 11-14, 2017.

The LTGWM network wells are summarized in Table 1 and shown on Figure 2. A summary of field activities and findings for all three areas of the Site are presented below.

PURPOSE

The activities performed during the current site-wide groundwater monitoring event were performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised September 2002);
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008);
- May 5, 2008 Response to NYSDEC comment letter regarding Area III Site Management Plan (comment/responses 8, 9, and 10);
- May 5, 2008 Response to NYSDEC comment letter regarding Areas II and III Final Engineering Report (comment/responses 19 and 22);
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008); and
- May 5, 2011 NYSDEC Response to Modification Request Letter.

This annual report includes a tabular and/or graphical assessment and detailed discussion of groundwater quality trends on an Area by Area basis. Groundwater flow patterns, however, are

Mr. Maurice Moore

Mr. Maurice Moore

NYSDEC

June 15, 2018

Page 2 of 6

discussed on a site-wide basis. Groundwater samples were analyzed for the modified parameter list identified by Area in Table 2.

GROUNDWATER ELEVATIONS & FLOW

Depth to water measurements and calculated groundwater elevations measured from 10 wells and two Buffalo River staff gauges in Area I, 17 wells in Area II, and 5 monitoring wells and 11 ORC monitoring wells in Area III on July 14, 2017 are summarized in Table 3. The Lake Erie elevation, presented in the table for reference, was obtained from the National Oceanic and Atmospheric Administration/National Ocean Service's (NOAA/NOS) Center for Operational Oceanographic Products and Services (CO-OPS) web page; Great Lakes Water Level Data Inventory for station number 9063020 Buffalo, Lake Erie, New York.

An isopotential map, presented as Figure 3, was prepared using data from the July 14, 2017 groundwater elevations, the collection system as-built invert elevations, and the soil flushing system discharge invert elevations. The baseline isopotential map prepared by Geomatrix from the June 1998 groundwater elevations representing groundwater flow conditions at the Site prior to the Area II Containment Cell construction is presented as Figure 4 for contrast. Comparison of the July 2017 and June 1998 maps indicate that the groundwater mound located between Areas I and II observed in June 1998 has been significantly reduced and pushed north; replaced instead by a groundwater "sink" created by the groundwater collection system. The groundwater depression observed in June 1998 around the terminal basin is also no longer present due to the discontinuation (in January 2009) of storm water management activities at the Site in that area (i.e., pumping from the basin to the sanitary sewer). Further examination of Figure 3 indicates significant lowering of the water table, between 2 to 4 feet, in the vicinity of the groundwater collection trench as generally predicted in the selected remedial approach groundwater flow model (Geomatrix, December 1998) (see Attachment 1).

Additional evaluation of the containment cell area shows five artificial groundwater mounds resulting from the soil flushing system; a remedial measure designed to remediate subsurface soils beneath five areas of concern identified during the Voluntary Cleanup. In general, the flushing system partially diverts groundwater, on a continuous basis, from pump stations PS-1, PS-2, and PS-3 to perforated distribution pipes in the system (shown on Figure 3). These mounds create a unique, yet effective, method to remediate residual impacts in those areas.

The groundwater flow, as depicted on Figure 3, also shows that potentially impacted groundwater from outside the containment cell to the north on the Former August Feine and Norfolk Southern parcels is being drawn back toward the collection system, as predicted by predesign MODFLOW® modeling. Aside from the significant hydraulic capture of the groundwater collection system in Area II, Site groundwater generally flows north toward the Buffalo River, with minor westerly and southerly components.

GROUNDWATER COLLECTION SYSTEM EVALUATION

An evaluation of the slurry wall effectiveness included comparing groundwater elevations from a single well pair identified as A2-MW-19 and A2-MW-7. Monitoring well A2-MW-19 is located outside the Containment Cell and well A2-MW-7 is located within the Cell as shown on Figure

Mr. Maurice Moore

Mr. Maurice Moore

NYSDEC

June 15, 2018

Page 3 of 6

3. A groundwater elevation comparison of this well pair indicates that groundwater outside the Cell is roughly a half-foot higher (0.45-feet) than inside the Cell and an inward hydraulic gradient toward the Cell has been established, as predicted by the pre-design MODFLOW® model.

Based upon the results of this evaluation and the isopotential map discussed earlier, the groundwater collection/containment system appears to be effectively collecting impacted groundwater and controlling groundwater migration within the Area II Containment Cell as well as to the east and north of the Containment Cell. Routine system monitoring and maintenance in conjunction with long-term groundwater monitoring of Areas I and II, as scheduled, is expected to be sufficient to continue to assess the long-term effectiveness of the containment cell.

AREA I FIELD ACTIVITIES & FINDINGS

Table 2 presents the Area I field-measured and laboratory analyzed parameters, the results of which are summarized in Table 4. Compounds detected above method detection limits are shown on the table with their associated concentration and NYSDEC Groundwater Quality Standard (NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values, June 1998) for comparison. Concentrations exceeding NYSDEC Groundwater Quality Standards (GWQSs) are shaded. With the exception of n-Propylbenzene and total arsenic at well A1-MW-6, each analyzed compound was either reported as non-detect or at concentrations well below their respective GWQSs. A discussion of the moving average trend analysis for Area I groundwater is presented later in this report.

During the current monitoring event, field personnel also performed visual immiscible layer surveillance and observed no non-aqueous phase liquid (NAPL) in any of the Area I wells listed in Table 1, except well A1-MW-6. Excluding the initial well development and sampling events, A1-MW-6 has been monitored since the February 2005 installation of the PetroTrap™ free product passive skimmer. From 2005 through 2017, nearly 13 gallons of product has been removed (see Table 5). Based on the VOC analytical results of well A1-MW-6, it is apparent that the NAPL is highly weathered and is having little effect on the groundwater quality at that location. In accordance with the LTGWM Plan, all recovered product is temporarily stored in a 55-gallon drum within secondary containment and staged within the on-site Groundwater Pre-Treatment System (GWPTS) building until a licensed used oil service contractor picks up the recovered product for proper recycling or disposal.

As indicated in Table 5, seasonal increases in product thickness and recovery are apparent during the typical late Fall and early Spring rainy periods. Based upon the progress to date and the marginal effects on groundwater quality at this location, LNAPL monitoring of A1-MW-6 should continue in accordance with the Area I LTGWM Plan on a monthly basis. However, due to a significant decline in the volume of recoverable product, we have replaced the PetroTrap[™] free product passive skimmer with an absorbent sock that will be changed out during the monthly checks.

Mr. Maurice Moore

Mr. Maurice Moore

NYSDEC

June 15, 2018

Page 4 of 6

AREA II FIELD ACTIVITIES & FINDINGS

Table 2 presents the Area II field-measured and laboratory analyzed parameters, the results of which are summarized in Table 6. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. With the exception of benzene and total lead at well A2-MW-16, each analyzed compound was either reported as non-detect or at concentration well below their respective GWQSs. A discussion of the moving average trend analysis for Area II groundwater is presented later in this report.

AREA III FIELD ACTIVITIES & FINDINGS

Table 2 presents the Area III field-measured and laboratory analyzed parameters, the results of which are summarized in Table 7. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. With the exception of pH at wells A3-MW-7 and A3-MW-10, benzene at wells A3-MW-7 and A3-MW-10, and total cyanide at wells A3-MW-7 and A3-MW-10, each analyzed compound was either reported as non-detect or at concentrations well below their respective GWQSs. A discussion of the moving average trend analysis for Area III groundwater is presented later in this report. Well A3-MW-3 was not sampled during this sampling event because it was inaccessible due to localized flooding.

In accordance with NYSDEC-approved procedures, ORC wells A3-ORC-1 through A3-ORC-11 are to be purged until 10 well volumes are removed or to dryness for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. A summary of the July and December 2017 Area III ORC semi-annual event field-measured parameters and analytical results are presented in Tables 8 and 9, respectively. Compounds detected above method detection limits are shown on these tables with their associated concentration and GWQS for comparison; concentrations exceeding the GWQSs are shaded. Upon examination of Tables 8 and 9, benzene exceeded the GWQS for all eleven wells monitored during the July event and nine of the eleven wells during the December event. Field measurement pH was determined to be outside the GWQS range at all eleven wells during the July and December events.

The ORC "socks," suspended in each of the ORC wells are to be replaced when depleted. During the current monitoring event, ORC socks were removed and checked; none of which required replacement.

MOVING AVERAGE TREND ANALYSIS (MATA)

In general accordance with the LTGWM Plan for each Area of the Site, any parameter exceeding the GWQS for two consecutive events is to be statistically evaluated for all monitoring wells listed in Table 1. Statistical evaluation for each parameter of interest involves the averaging of four sequential monitoring event concentrations and plotting the moving average. The Area by Area 4-event moving average trend analysis (MATA) as well as the concentration versus time plots for those monitored locations and parameters requiring tracking (as defined above) are presented in Attachment 2 and summarized in Table 10. Evaluation of the MATA plots (Attachment 2) and table (Table 10) indicate the following:

Mr. Maurice Moore

Mr. Maurice Moore

NYSDEC

June 15, 2018

Page 5 of 6

• The concentration versus time and MATA plots for the field measured pH at wells A1-MW-5, A2-MW-16, A3-MW-7, A3-MW-9, and A3-MW-10 indicate a long-term neutral trend (neither increasing nor decreasing) since monitoring began at each location. The concentration versus time and MATA plot for the field measured pH at well A3-MW-9 indicates a recent decreasing trend, but overall looks like a slightly fluctuating neutral trend.

- The MATA plot for benzene at wells A3-MW-7, A3-MW-9, and A3-MW-10 indicates a continued decreasing trend approaching the GWQS at each location. The MATA plot for benzene at A2-MW-16 indicates a neutral trend (neither increasing nor decreasing) however the concentration versus time plot indicates a slight rebound above the GWQS.
- The MATA plot for n-propylbenzene at well A1-MW-6 initially indicated an increasing 4-event moving average trend (August 2007 to May 2010); however, the trend was being influenced by unusually high concentration reported in August 2007 of more than 30 times historic values (i.e., outlier). The concentration versus time plot shown on the same charts, however, indicates not only a return to historic range (i.e., decreasing trend), but a decreasing trend with concentrations approaching (and occasionally falling below) the GWQS from April 2008 through the current period.
- Although the concentration versus time plot for total arsenic at well A1-MW-6 reveals a
 wide concentration range from a high 0.29 mg/L in December 2006 to 0.0455 mg/L in
 June 2015, the MATA plot indicates a decreasing trend since August 2007.
- The MATA plot for cyanide at well A3-MW-3 initially indicated an increasing 4-event moving average trend from May 2010 to June 2012; however, the trend was being influenced by an unusually high cyanide concentration reported in June 2012 of more than four times historic values (i.e., outlier). The concentration versus time plot shown on the same chart, indicates a moderating return to historic ranges (i.e., decreasing trend). As such, the MATA plot for cyanide indicates a decreasing trend from June 2012 through June 2016. Well A3-MW-3 was not sampled during this sampling event because it was inaccessible due to localized flooding.
- Although the concentration versus time plot for cyanide at well A3-MW-7 reveals a wide concentration range from a high 0.267 mg/L in June 2014 to 0.01 in June 2013, the MATA plot indicates a neutral trend (neither increasing nor decreasing) below the GWQS since May 2010. Historically, cyanide concentrations at this location have been reported below the GWQS (between May 2009 and June 2013), followed by two events slightly above the GWQS (June 2014 and July 2015), followed by a concentration below the GWQS for one event (June 2016) returning to slightly above the GWQS during the current reporting period.

NYSDEC EQUIS DELIVERABLES

On December 29, 2017, TurnKey submitted the analytical data in Electronic Data Deliverable (EDD) format for the current groundwater and ORC monitoring events to the NYSDEC on behalf of FSMC to satisfy the NYSDEC EQuIS submittal requirement. TurnKey received confirmation on January 17, 2018 that the submittals were successfully uploaded, and the data is available for use within the NYSDEC system.

Mr. Maurice Moore

NYSDEC

June 15, 2018

Page 6 of 6

MISCELLANEOUS ACTIVITIES

In July 2017, replacement wells A1-MW-4R and A1-MW-11 were installed for decommissioned wells A1-MW-4 and A1-MW-M2, respectively. Upon NYSDEC concurrence, it was determined that piezometer A1-P-2 did not require replacement.

Each newly installed monitoring wells were surveyed and developed in accordance with the LTGWM Plan. Replacement wells A1-MW-4R and A1-MW-11 were sampled in July 2017 and the analytical results included in this report.

Well decommissioning reports for A1-MW-4 and A1-MW-M2 were provided in the May 2017 PRR. Borehole and well completion logs for replacement wells A1-MW-4R and A1-MW-11 were also provided in the May 2017 PRR.

PLANNED ACTIVITIES

A schedule summarizing the past, present, and future monitoring events is presented in Table 1. The NYSDEC-approved bi-annual analytical program is presented in Table 2. The next planned comprehensive monitoring event for Areas I, II, and III will be performed Summer 2018. Area III ORC well monitoring is tentatively scheduled for June and November 2018 (every six months).

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

Enclosures

ec: Tom O'Brien (FSMC)

Paul Werthman (TurnKey)

File: 0322-017-500

TABLES

TABLE 1

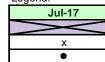
GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY 1,2,3

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

			Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 19 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 19 Year 19 Year 10 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 19 Year 19 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 18 Year 19 Year 19 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 18 Year 19																					
Well	Туре	of Well	Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 1 SA 2SA 1 SA 2SA Annual Ann																					
Designation	New	Existing				1																		
ADEAL			1 5A	25A	1 5A	25A	An	nuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annuai	Annual
AREA I	T	T		l <u>.</u>	1 5	00	1 .	07	I	l	1	l	l	l	Ι		I	1	T _	T -	_	T _	_	T -
A1-MW-1		Х	Sep-04	Sep-05			 		Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-2		Х	Sep-04	Sep-05		ec-06		g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-3		Х	Sep-04	Sep-05		ec-06	_	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•		•
A1-MW-4 ⁴		Х	Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16		\sim	\sim	\sim	\sim		
A1-MW-4R ⁴	Х	Х	$>\!\!<$	$\geq \leq$	>>	>>	_>	<	> <	> <	\geq	> <	> <	> <	> <	> <	$\geq \leq$	Jul-17	•	•	•	•	•	•
A1-MW-5	1	Х	Sep-04	Sep-05	May-06	Dec-06	_	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-6		Х	Sep-04	Sep-05	May-06	Dec-06	I	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-7 ⁵		Х				water	<u>leve</u>	Ionly		ı		May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-8		Х	Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	$\geq \leq$	$\geq \leq$	$\geq \leq$	> <	> <	$\geq \leq$	$>\!\!<$	>>	> <
A1-MW-8R ⁶		Х	$>\!\!<$	> <	> <	> <	>	$<\!<$	$>\!\!<$	> <	$\geq \leq$	> <	> <	> <	$>\!\!<$	$>\!\!<$	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-9		Х	Sep-04	Sep-05	May-06	Dec-06	Au	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-10 ⁶		Х	$>\!\!<$	><	>	<<	>	<<	$>\!\!<$	$>\!\!<$	> <	> <	> <	><	$>\!<$	$>\!\!<$	Jun-16	Jul-17	•	•	•	•	•	•
A1-MW-M2 ⁴		Х	Sep-04	Sep-05	De	ec-06	Au	g-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	$>\!\!<$	><	><	><	$>\!\!<$	><	$\geq \leq$
A1-MW-11 ⁴	Х	Х	$>\!\!<$	$>\!\!<$	>	\leq	\geq	\leq	$>\!\!<$	$>\!\!<$	$\geq \leq$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$\geq \leq$	Jul-17	•	•	•	•	•	•
A1-P-4		Х	Sep-04	Sep-05	De	ec-06	Au	Aug-07 Ap		May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	$>\!\!<$	$\geq \leq$	$\geq \leq$	$>\!\!<$	$>\!\!<$	$\geq \leq$	$>\!\!<$	$\geq \leq$	$\geq \leq$
AREA II																								
A2-MW-3		Х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-4R		Х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-5		Х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-6		Х		-	- -		-	-	•	-	-	wa	ter le	vel o	nly	-	-	-	-	-		-		-
A2-MW-7		Х										wa	ter le	vel o	nly									
A2-MW-10		Х						Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-12		Х										wa	ter le	vel o	nly						_			
A2-MW-13		Х					Jul-07	Dec-07	Ар	r-08	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-16		Х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-17		Х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A2-MW-18		х		-	-	-	-	-	-	-	-	wa	ter le	vel o	nly	-	-		-	-	-	-	-	-
A2-MW-19		х											ter le											
A2-MW-20		х					water level only																	
AREA III	•	•																						
A3-MW-3	T	Х							Oct-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A3-MW-6	1	х							Oct-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A3-MW-7	1	х					Jul-07	Dec-07	Apr-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A3-MW-9	1	х						•	Oct-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•
A3-MW-10		х							Oct-08	May-09	May-10	May-11	Jun-12	Jun-13	Jun-14	Jul-15	Jun-16	Jul-17	•	•	•	•	•	•

TABLE 1

GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY 1,2,3


Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

Well	Now	Eviatina	Ye	ar 3	Ye	ar 4	Yea	ar 5	Ye	ar 6	Ye	ar 7	Ye	ar 8	Ye	ar 9	Yea	ar 10	Yea	ar 11	Yea	ır 12	Yea	ar 13
Designation	New	Existing	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA	1 SA	2SA
AREA III - OF	RC wells	(every 6	6 month	s)		•	•		•	•	•	•	•	•	•	•		•		•		•		
A3-ORC-1		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-2		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-3		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-4		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-5		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-6		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-7		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-8		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-9		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-10		х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17
A3-ORC-11		Х	Jul-07	Dec-07	Apr-08	Nov-08	May-09	Nov-09	May-10	Nov-10	May-11	Nov-11	Jun-12	Nov-12	Jun-13	Dec-13	Jun-14	Dec-14	Jul-15	Nov-15	Jun-16	Dec-16	Jul-17	Dec-17

Notes

- 1. Per the LTGWM Plan, newly installed monitoring wells require four consecutive semi-annual groundwater monitoring events, then annually thereafter.
- 2. Per the LTGWM Plan, existing monitoring wells require two consecutive semi-annual groundwater monitoring events, then annually thereafter.
- 3. The groundwater sampling plan was modified to a bi-annual frequency (see Table 2) as per NYSDEC approval letter dated May 5, 2011.
- 4. Due to redevelopment activities in Area I, wells A1-MW-4 and A1-MW-M2 were replaced on July 11-12, 2017 with wells A1-MW-4R and A1-MW-11, respectively.
- 5. Per a NYSDEC request, A1-MW-7 was sampled for VOCs, arsenic, chromiuim, and lead in 2011 only; water level and field parameters annually thereafter.
- 6. Well A1-MW-8 and piezometer A1-P-4 were replaced June 6-7, 2016 with wells A1-MW-8R and A1-MW-10, respectively.

Legend

- = current monitoring event
- = monitoring well was decomissioned to make way for redevelopment; replacement wells are being considered.
- = type of monitoring well
- = future monitoring event

ANALYTICAL PROGRAM SUMMARY 1

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

AREA I A1-MOV-1									Mo	nitoring	Year						
Designation Field CP-31 2006 Researce Field CP-31 CP-3	Well			2011, 201	3, 201	5, 201	<mark>7</mark> , 201	9				2012,	2014, 20	016, 2018	3, 2020		
### ##################################		Field	CP-51	8260 Benzene					Alk.	Field		Benzene	As	Cr	Pb	CN	Alk.
A1-MW-2	AREA I																
A-1-MW-4R-2	A1-MW-1	х	х		х					Х			х				
At-MAY-6	A1-MW-2	х	х							х							
A1-MW-6	A1-MW-3	х	х							Х							
A1-MW-6	A1-MW-4R ²	Х	х							Х							
A1-MW-9R*	A1-MW-5	Х	х							Х	Х						
Al-MW-9R	A1-MW-6	Х	х		х					Х	Х		х				
Al-MW-9R	A1-MW-7 ³	Х								Х							
A1-MW-10²		х	х		х					х			х				
A-REA II A-2-MW-3		х	х							х							
### A2-MW-3	A1-MW-10 ⁴	х	х			х				х				х			
### A2-MW-3		х	х							х							
A2-MW-4R		•	•		•	•	•	•	•			•			,	•	•
A2-MW-4R	A2-MW-3	х	х				Τ			Х							
A2-MW-5	A2-MW-4R	Х	х							Х							
A2-MW-10R	A2-MW-5																
A2-MW-10R	A2-MW-6			wate	er le	vel o	nlv		•			wa	ter le	velo	nIv		
A2-MW-10R	A2-MW-7						-										
A2-MW-13	A2-MW-10R	х	х				Τ			Х							
A2-MW-13	A2-MW-12			wate	er le	vel o	nlv					wa	ter le	velo	nlv		ļ
A2-MW-16	A2-MW-13	х	х				Τ			х							
A2-MW-17	A2-MW-16				х	х	х			-	х		х	х	х		
A2-MW-18							†										
A2-MW-19			•	wate	er le	vel o	nlv		•			w a	ter le	evelo	nlv		
A2-MW-20 water level only water level only AREA III A3-MW-3 X <	A2-MW-19																
AREA III A3-MW-3 X																	
A3-MW-3 X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,,,,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>							,,,,								,		
A3-MW-6 X </td <td></td> <td>X</td> <td>x</td> <td>I</td> <td>X</td> <td></td> <td>Τ</td> <td>X</td> <td></td> <td>х</td> <td>X</td> <td></td> <td>×</td> <td>T .</td> <td></td> <td>X</td> <td>I</td>		X	x	I	X		Τ	X		х	X		×	T .		X	I
A3-MW-7 X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>							 										
A3-MW-9 X </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>							1										
A3-MW-10 x<							X								Х		
AREA III - ORC wells (every 6 months) A3-ORC-1 X		-					1	х			+					Х	
A3-ORC-1 X<				months)													
A3-ORC-2 x<		T .		1			1		x	х		х					Х
A3-ORC-3 x<							 										X
A3-ORC-4 X<							 										X
A3-ORC-5 X<		-					 		1								X
A3-ORC-6 x<			 				†	1	1								
A3-ORC-7 X X X X X X X A3-ORC-8 X		+	 				†										X
A3-ORC-8 x<							1										X
A3-ORC-9 x<		+			 		 										X
A3-ORC-10 x			 		 		 										
A3-ORC-11 x x x x x x x x			 		 		+										
			 				+										X
Totals: 34 22 11 6 2 2 4 11 34 9 11 6 2 2 4 11		1 ^	<u> </u>		<u> </u>	<u> </u>	1	Ī									
1	Totals:	34	22	11	6	2	2	4	11	34	9	11	6	2	2	4	11

Notes:

- 1. Modified analytical plan as per NYSDEC approval letter dated May 5, 2011.
- 2. Due to redevelopment activities in Area I, wells A1-MW-4 and A1-MW-M2 were replaced on July 11-12, 2017 with wells A1-MW-4R and A1-MW-11, respectively.
- 3. Per a NYSDEC request, A1-MW-7 was sampled for VOCs, arsenic, chromiuim, and lead in 2011; water level and field parameters annually thereafter.
- 4. Well A1-MW-8 and piezometer A1-P-4 were replaced June 6-7, 2016 with wells A1-MW-8R and A1-MW-10, respectively.

GROUNDWATER ELEVATION MEASUREMENTS July 14, 2017

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)
Area I Monitoring W	'ells ²					11 Wells
A1-MW-1	586.38	NP	9.89	NP	576.49	576.49
A1-MW-2	586.39	NP	8.40	NP	577.99	577.99
A1-MW-3	591.98	NP	16.26	NP	575.72	575.72
A1-MW-4R	588.76	NP	8.42	NP	580.34	580.34
A1-MW-5	590.48	NP	6.62	NP	583.86	583.86
A1-MW-6	591.60	16.03	16.03	0.00	575.57	575.57
A1-MW-7	586.97	NP	10.71	NP	576.26	576.26
A1-MW-8R	589.83	NP	13.35	NP	576.48	576.48
A1-MW-9	588.05	NP	11.65	NP	576.40	576.40
A1-MW-10	589.73	NP	13.71	NP	576.02	576.02
A1-MW-11	591.73	NP	17.90	NP	573.83	573.83
Area II Monitoring V	Vells ²					17 Wells
A2-MW-3	588.95	NP	6.87	NP	582.08	582.08
A2-MW-4R	588.59	NP	6.54	NP	582.05	582.05
A2-MW-5	587.25	NP	5.28	NP	581.97	581.97
A2-MW-6	592.69	NP	15.67	NP	577.02	577.02
A2-MW-7	602.05	NP	19.78	NP	582.27	582.27
A2-MW-10R	593.59	NP	10.40	NP	583.19	583.19
A2-MW-11	590.11	NP	7.21	NP	582.90	582.90
A2-MW-12	604.12	NP	17.40	NP	586.72	586.72
A2-MW-13	597.90	NP	14.20	NP	583.70	583.70
A2-MW-16	597.62	NP	13.96	NP	583.66	583.66
A2-MW-17	596.94	NP	13.60	NP	583.34	583.34
A2-MW-18	587.64	NA	NA	NA	NA	NA
A2-MW-19	592.02	NP	9.30	NP	582.72	582.72
A2-MW-20	591.54	NP	5.45	NP	586.09	586.09
A2-PW-1	601.76	NP	20.85	NP	580.91	580.91
A2-PW-2	603.91	NP	18.48	NP	585.43	585.43
A2-PW-3	603.88	NP	19.75	NP	584.13	584.13
Area III Monitoring	Wells ²					5 Wells
A3-MW-3	585.40	NA	NA	NA	NA	NA
A3-MW-6	585.70	NP	6.37	NP	579.33	579.33
A3-MW-7	586.39	NP	3.82	NP	582.57	582.57
A3-MW-9	597.61	NP	15.09	NP	582.52	582.52
A3-MW-10	585.41	NP	5.70	NP	579.71	579.71

GROUNDWATER ELEVATION MEASUREMENTS July 14, 2017

2017 Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) **Buffalo, New York**

Monitoring Location	TOR Elevation (fmsl)	DTP (fbTOR)	DTW (fbTOR)	Product Thickness (feet)	Groundwater Elevation (fmsl)	Corrected Groundwater Elevation ¹ (fmsl)
Area III ORC Monitor	ing Wells ²					11 Wells
A3-ORC-1	587.17	NP	4.78	NP	582.39	582.39
A3-ORC-2	587.35	NP	4.91	NP	582.44	582.44
A3-ORC-3	587.55	NP	5.10	NP	582.45	582.45
A3-ORC-4	587.14	NP	4.40	NP	582.74	582.74
A3-ORC-5	587.77	NP	5.36	NP	582.41	582.41
A3-ORC-6	587.53	NP	5.29	NP	582.24	582.24
A3-ORC-7	587.16	NP	5.80	NP	581.36	581.36
A3-ORC-8	587.51	NP	5.87	NP	581.64	581.64
A3-ORC-9	585.15	NP	3.45	NP	581.70	581.70
A3-ORC-10	587.60	NP	5.48	NP	582.12	582.12
A3-ORC-11	587.70	NP	5.19	NP	582.51	582.51
Surface Water 4,5						3 Locations
SG-01 (downstream)	585.07	NP	10.00	NP	575.07	575.07
SG-02 (upstream)	590.72	NP	15.45	NP	575.27	575.27
Lake Erie	NA	NA	NA	NA	NA	573.75

Notes:

- 1. Groundwater elevations are corrected if free product (i.e., LNAPL) is present.
- Monitoring well reference point elevations (i.e., top of riser for wells and sheet pile for staff gauges) have been surveyed at various times by TurnKey or Steelfields.
 Staff Gauge (SG) locations are located at the upstream and downstream locations indicated on Figure 1. Each staff gauge was surveyed on January 3, 2008 by Niagara Boundary personnel.
- 5. Source: NOAA Tides & Currents Web Page- Buffalo, NY Station ID 9063020; average daily elevation of Buffalo, New York Station #9063020.

Definitions:

DTP = depth to product, if present

DTW = detph to water

fmsl = feet above mean sea level fbTOR = feet below top of riser

NP = no measureable product was present NM = not measured for this event

R = replacement well TOR = top of riser

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area I: Former Steel Plant Parcel

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

				Moni	toring Location	on and Date of	Sample Colle	ection				
Parameter	A1-MW-1	A1-MW-2	A1-MW-3	A1-MW-4R	A1-MW-5	A1-MW-6 ³	A1-MW-7	A1-MW-8R	A1-MW-9	A1-MW-10	A1-MW-11	GWQS/GV 1
	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/17/17	07/18/17	
Field Measurements (units as	indicated) 2											
pH (units)	8.21	7.49	7.08	7.01	7.68	7.42	NS	6.95	NS	7.03	NS	6.5 - 8.5
Temperature (degrees C)	14.0	17.5	14.4	15.0	18.2	15.0	NS	15.8	NS	14.9	NS	NA
Specific Conductance (uS)	799	883.0	4170	4258.0	4035	4352	NS	846.0	NS	682.4	NS	NA
Turbidity (NTU)	2.4	2.1	89	69.00	4.10	37.9	NS	24.0	NS	58.0	NS	NA
Dissolved Oxygen (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Eh (mV)	181	66	73	140	-165	82	NS	66	NS	90	NS	NA
Visual Observation	Clear	Clear	SI. Turbid	SI. Turbid	clear	Black/Sheen	NS	Clear	NS	Clear	NS	NA
Olfactory Observation	No odor	No odor	No odor	No odor	No odor	SI Petroleum	NS	No odor	NS	No odor	NS	NA
Volatile Organic Compounds (ug/L)											
Benzene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	1
n-Butylbenzene	ND	ND	ND	ND	ND	3.3 J	NS	ND	NS	ND	NS	5
sec-Butylbenzene	ND	ND	ND	ND	ND	2.2 J	NS	ND	NS	ND	NS	5
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
p-Cymene (4-Isopropyltoluene)	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
Ethylbenzene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
Isopropylbenzene	ND	ND	ND	ND	ND	2.3 J	NS	ND	NS	ND	NS	5
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	10
n-Propylbenzene	ND	ND	ND	ND	ND	5.2 J	NS	ND	NS	ND	NS	5
Toluene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	5
Xylenes, Total	ND	ND	ND	ND	ND	ND	NS	ND	NS	ND	NS	15
Total VOCs	0.0	0.0	0.0	0.0	0.0	13	0.0	0.0	0.0	0.0	0.0	10
Total Inorganics (mg/L)												
Total Arsenic	0.00948	NS	NS	NS	NS	0.05947	NS	0.0087	NS	NS	NS	0.025
Total Chromium	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0014	NS	0.05

Notes

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- 2. Field measurements were collected immediately before and after groundwater sample collection.
- 3. Light non-aqueous phase liquid (LNAPL) detected.
- 4. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
- 5. "ND" = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.
- 6. " -- " = compound is not analyzed at this location

Color Code:

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

		LNA	PL Measure	ment	0 414					
Date	Days Since Last Visit	Тор	Bottom	Thickness	Quantity Removed ¹	Height of Petro-Trap	Comments			
	Luot Violt	(fbTOR)	(fbTOR)	(feet)	(oz.)	(fbTOR)				
09/21/04	0	18.10	18.40	0.30	NA		well development			
09/23/04	2	18.10	18.40	0.30	NA		Fall 2004 groundwater monitoring event			
02/01/05	131	17.50	20.85	3.35	NA	16.0	installed PetroTrap passive skimmer			
02/08/05 02/11/05	7 3	17.94 17.89	19.89 19.75	1.95 1.86	16 20	16.0 16.0	first LNAPL removal from Petro Trap ok			
02/11/05	4	18.10	18.52	0.42	20	16.0	ok ok			
02/18/05	3	17.59	17.91	0.32	12	16.0	ok ok			
02/25/05	7	18.02	18.51	0.49	2	16.0	Petro Trap tubing was tangled			
03/04/05	7	18.13	18.63	0.50	6	16.0	Petro Trap tubing was tangled			
03/18/05	14	18.00	18.74	0.74	3.5	16.0	checked Petro Trap for leaks, none located			
04/08/05	21	17.37	18.20	0.83	24	15.0	ok; raised Petro Trap approximately 1-foot			
04/14/05	6	17.65	17.81	0.16	22	15.0	ok			
04/28/05	14	16.23	16.25	0.02	25.6	15.0	ok			
05/17/05	19	17.62	17.80	0.18	14	14.0	~14 oz. of water in Petro Trap; raised approx. 1-foot			
06/21/05	35	17.68	17.71	0.03	14	14.0	ok			
07/18/05	27	18.03	18.11	0.08	12	15.0	ok, lowered approx. 1-foot			
09/09/05	53	18.34	18.42	0.08	8 22	15.0	ok			
09/20/05	11	18.33	18.38 18.52	0.05 0.02	24	15.0	ok; Area I LTGWM Event			
10/31/05 11/23/05	41 23	18.50 18.95	18.52	0.02	22	15.0 15.0	ok ok			
12/28/05	35	19.35	19.36	0.01	22	15.0	ok ok			
01/30/06	33	18.43	18.44	0.01	24	15.0	ok ok			
02/27/06	28	18.38	19.06	0.68	24	15.0	ok			
03/28/06	29	18.44	19.31	0.87	24	15.0	ok			
04/27/06	30	18.39	19.17	0.78	24	15.0	ok			
05/18/06	21	18.41	19.05	0.64	8	15.0	ok; Area I LTGWM Event			
06/30/06	43	17.82	18.35	0.53	8	15.0	ok			
07/31/06	31	17.95	18.64	0.69	16	15.0	ok			
12/01/06	123	19.41	21.65	2.24	16	15.0	ok; Area I LTGWM Event, removed oily water.			
06/30/07	211	17.98	20.51	2.53	8	15.0	ok			
07/31/07	31	18.31	21.40	3.09	22	14.0	~12oz. Water in Trap; raised PetroTrap approx. 1'			
08/22/07	22	18.50	20.11	1.61	4	14.0	ok .			
09/29/07	38	18.86	21.72	2.86	4	14.0	ok .			
10/30/07 11/28/07	31 29	19.10 19.47	21.04 20.52	1.94 1.05	2	14.0 14.0	ok checked Petro Trap for leaks, none located			
12/28/07	30	18.93	20.32	1.49	14	15.0	~12oz. Water in Trap; lowered PetroTrap approx. 1'			
08/12/08	228	17.98	19.60	1.62	30	15.0	ok, bailed down product removed ~1.0 gal. TK took over monito			
09/10/08	29	18.61	20.10	1.49	4	15.0	Needs to be ajusted and claened			
10/08/08	28	18.90	20.46	1.56	8	17.5	Lowered trap to 17.41 fbgs, cleaned off filter.			
11/11/08	34	18.79	21.00	2.21	11	17.5	ok			
12/16/08	35	18.64	20.86	2.22	1	17.5	ok			
01/07/09	22	18.28	21.20	2.92	1	17.0	raised trap to 17.0 fbgs			
02/11/09	35	18.52	21.22	2.70	64	17.0	17 oz in trap, bailed 47 oz			
03/10/09	27	17.50	19.63	2.13	2	17.0	ok			
04/01/09	22	18.12	19.08	0.96	48	17.0	Bailed ~40oz, ~8 was removed from trap			
05/06/09	35	17.61	19.81	2.20	3	17.0	ok			
05/12/09	6	17.65	17.96	0.31	18	17.0	ok			
06/02/09	21	17.64	18.17	0.53	20	17.0	ok ok			
07/08/09 08/06/09	36 29	17.96 18.05	18.17 19.75	0.21 1.70	20 1.5	17.0 17.0	ok ok			
08/06/09	29 26	18.05	19.75	1.70	3	17.0	ok ok			
10/06/09	35	17.84	19.20	1.78	6	17.0	ok ok			
11/03/09	28	17.82	19.11	1.29	10	17.0	ok ok			
12/01/09	28	18.07	18.50	0.43	20	17.0	ok ok			
01/13/10	43	18.22	18.75	0.53	5	17.0	ok			
02/10/10	28	18.03	19.00	0.97	4	17.0	ok			
03/05/10	23	19.31	20.81	1.50	3	17.0	ok			
04/06/10	32	18.61	20.41	1.80	4	17.0	ok			
05/05/10	29	18.41	20.20	1.79	1	17.0	ok			
05/17/10	12	18.03	20.42	2.39	1	17.0	ok			
06/04/10	18	17.83	19.88	2.05	3	17.0	ok			
07/14/10	40	17.95	19.70	1.75	16	17.0	ok .			
08/06/10	23	18.00	20.17	2.17	1	17.0	ok			
09/10/10	35	18.64	20.90	2.26	2	17.0	ok			

SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

		LALA	DI Magaura	mont	·		
Dete	Days Since		PL Measure		Quantity	Height of	Comments
Date	Last Visit	Top (fbTOR)	Bottom (fbTOR)	Thickness (feet)	Removed ¹ (oz.)	Petro-Trap (fbTOR)	Comments
10/15/10	35	18.82	20.61	1.79	2	17.0	ok
11/02/10	18	19.25	19.60	0.35	24	17.0	Less 0.5oz was removed via petro trap, bailed 24oz
12/14/10	42	18.30	19.48	1.18	1	17.0	ok
01/20/11	37	19.03	20.34	1.31	10	17.0	ok
02/18/11	29	18.84	19.83	0.99	18	17.0	Bailed ~15 oz of product
04/27/11	68	17.15	18.00	0.85	1	17.0	TOP was over petro-trap.
05/23/11	26	17.82	19.91	2.09	16	17.0	4 oz. removed from trap, bailed 12 oz.
06/07/11	15	16.47	20.28	3.81	21	17.0	7 oz. removed from trap, bailed 14 oz.
07/13/11	36	17.64	20.12	2.48	14	17.0	5 oz. removed from trap, bailed 9 oz
08/10/11 09/29/11	28 50	18.32 17.28	20.09 18.40	1.77 1.12	5 22	17.0 17.0	3 oz. removed from trap, bailed 2 oz 2 oz. removed from trap, bailed 22 oz.
10/17/11	18	16.93	18.65	1.72	13	17.0	ok
11/29/11	43	18.66	19.84	1.72	26	17.0	ok ok
12/22/11	23	19.24	19.77	0.53	19	17.0	ok ok
01/12/12	21	18.14	19.67	1.53	21	17.0	ok
02/06/12	25	18.79	19.84	1.05	18	17.0	ok
03/08/12	31	17.38	21.18	3.80	21	17.0	ok
04/05/12	28	19.16	20.33	1.17	22	17.0	ok
05/03/12	28	18.71	20.03	1.32	24	17.0	ok
06/19/12	47	18.20	19.61	1.41	24	17.0	1 oz. removed from trap, bailed 23 oz.
07/25/12	36	18.69	20.42	1.73	28	17.0	ok
12/21/12	149	18.97	19.30	0.33	5	17.0	1 oz. removed from trap, bailed 4 oz.
01/17/13	27	19.25	20.40	1.15	30	17.0	2 oz. removed from trap, bailed 28 oz.
02/25/13	39	19.18	20.45	1.27	19	16.5	1 oz. removed from trap, bailed 18 oz.
03/28/13	31	18.95	19.30	0.35	13	17.0	2 oz. removed from trap, bailed 11 oz.
04/29/13	32	18.45	19.40	0.95	25	17.0	3 oz. removed from trap, bailed 22 oz.
05/24/13	25	19.05	19.63	0.58	18	17.0	3 oz. removed from trap, bailed 15 oz.
06/17/13	24	18.13	18.43	0.30	8	16.0	0 oz. removed from trap, bailed 8 oz.
07/18/13	31	17.67	18.05	0.38	13	16.0	2 oz. removed from trap, bailed 11 oz.
08/19/13	32	18.02	18.75	0.73	26	16.0	4 oz. removed from trap, bailed 22 oz.
09/13/13	25	18.85	19.07	0.22	11	16.5	0 oz. removed from trap, bailed 11 oz.
10/17/13	34	18.55	18.85	0.30	7.5	16.0	0.5 oz. removed from trap, bailed 7 oz.
11/06/13	20	18.62	19.15	0.53	22	16.0	3 oz. removed from trap, bailed 19 oz.
12/03/13	27	19.33	19.69	0.36	19	16.0	3 oz. removed from trap, bailed 16 oz.
01/13/14	41	18.34	19.30	0.96	21	17.0	2 oz. removed from trap, bailed 19 oz.
02/20/14	38	19.62	20.21	0.59	20	17.0	4 oz. removed from trap, bailed 16 oz.
03/27/14	35	18.91	19.67	0.76	28.5	17.0	5.5 oz. removed from trap, bailed 23 oz.
04/17/14	21 40	18.17 17.52	19.06 17.87	0.89 0.35	20 9	17.0	1 oz. removed from trap, bailed 19 oz.
05/27/14 06/20/14	24		-	0.36	5	17.0 17.0	3 oz. removed from trap, bailed 6 oz.
06/20/14	20	17.83 18.24	18.19 18.28	0.36	2	17.0	0.5 oz. removed from trap, bailed 4.5 oz. 0.0 oz. removed from trap, bailed 2 oz.
07/10/14	20						rements obtained
11/06/14	119	18.71	19.18	0.47	23	17.0	2.0 oz. removed from trap, bailed 21 oz.
12/11/14	35	17.64	18.55	0.47	32	17.0	4.0 oz. removed from trap, bailed 28 oz.
01/29/15	49	18.67	20.82	2.15	35	17.0	1.0 oz. removed from trap, bailed 28 oz.
02/27/15	29	19.22	19.25	0.03	2	17.0	0.0 oz. removed from trap, bailed 2 oz.
03/23/15	29	19.22	19.25	0.03	4	17.0	1.0 oz. removed from trap, bailed 2 oz.
03/23/15	35	18.92	19.24	0.06	12	17.0	2.0 oz. removed from trap, bailed 3 oz.
05/26/15	29	19.50	19.22	0.30	6	17.0	1.0 oz. removed from trap, bailed 10 oz.
06/10/15	15	18.32	18.35	0.07	3	17.0	1.0 oz. removed from trap, bailed 5 oz.
07/24/15	44	17.60	17.62	0.03	1.5	17.0	0.5 oz. removed from trap, bailed 2 oz.
08/31/15	38	18.10	18.12	0.02	2	17.0	0.5 oz. removed from trap, bailed 1 oz. 0.5 oz. removed from trap, bailed 1.5 oz.
09/30/15	30	18.60	18.64	0.02	6	17.0	1.0 oz. removed from trap, bailed 1.3 oz.
10/30/15	30	18.28	18.36	0.04	6.5	17.0	0.5 oz. removed from trap, bailed 6 oz.
12/27/15	58	18.14	18.20	0.06	4.5	17.0	0.5 oz. removed from trap, bailed 0 oz.
01/28/16	32	18.12	18.14	0.00	1.5	17.0	0.0 oz. removed from trap, bailed 1.5 oz.
02/27/16	30	18.10	18.13	0.02	2	17.0	0.5 oz. removed from trap, bailed 1.5 oz.
02/27/16	29	17.51	17.54	0.03	4.5	17.0	0.0 oz. removed from trap, bailed 1.5 oz.
03/27/16	29	17.31	17.54	0.03	2.5	17.0	0.5 oz. removed from trap, bailed 4.5 oz.
05/31/16	36	17.30	17.42	0.04	2.5	17.0	0.5 oz. removed from trap, bailed 2 oz.
06/28/16	28	17.29	17.31	0.02	2	17.0	0.5 oz. removed from trap, bailed 1 oz.
00/20/10	۷۵	11.41	11.23	0.00		17.0	5.5 52. Tomovou nom trap, ballou 1 02.

SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 **Area I: Former Republic (LTV) Steel Plant Parcel**

		LNA	PL Measure	ment	Quantity	Height of	
Date	Days Since Last Visit	Top (fbTOR)	Bottom (fbTOR)	Thickness (feet)	Removed ¹ (oz.)	Petro-Trap (fbTOR)	Comments
07/29/16	31	17.16	17.18	0.02	1	17.0	0.5 oz. removed from trap, bailed 0.5 oz.
08/30/16	32	17.70	17.72	0.02	2.5	17.0	1.0 oz. removed from trap, bailed 1.5 oz.
09/30/16	31	18.35	18.36	0.01	1	17.0	0.0 oz. removed from trap, bailed 1 oz.
12/30/16	91	18.03	18.26	0.23	30.5	17.0	0.5 oz. removed from trap, bailed 30 oz.
02/24/17	56	18.70	18.75	0.05	0.5	NA	Removed petro-trap and installed absorbant sock
03/31/17	35	18.72	18.72	0.00	0	NA	
04/27/17	27	17.01	17.01	0.00	0	NA	
05/22/17	25	15.90	15.90	0.00	0	NA	
06/30/17	39	16.25	16.25	0.00	0	NA	
07/11/17	11	16.20	16.20	0.00	0	NA	
08/10/17	41	16.50	18.75	2.25	4.2	NA	
09/29/17	80	16.15	16.15	0.00	0	NA	
10/27/17	28	18.00	18.13	0.13	1.2	NA	
11/30/17	34	15.58	15.65	0.07	0.5	NA	
12/19/17	19	16.86	16.92	0.06	4.8	NA	
	Tota	al Quantity	Removed	or 12.91	gal.		

- The PetroTrap canister used has a capacity of 25.6 oz. (0.2 gal).
 Data from January 1, 2007 through July 31, 2008 was collected by EnSol, Inc.; data before and after this time has been collected by TurnKey Environmmental Restoration, LLC.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area II: Former Coke Plant Parcel

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

	Monitoring Location and Date of Sample Collection											
Parameter	A2-MW-3	A2-MW-4R	A2-MW-5	A2-MW-10R	A2-MW-13	A2-MW-16	A2-MW-17	GWQS/GV 1				
	07/18/17	07/18/17	07/18/17	07/18/17	07/18/17	07/18/17	07/18/17					
Field Measurements (units as	indicated) ²											
pH (units)	7.59	7.36	7.11	7.91	7.41	6.08	7.45	6.5 - 8.5				
Temperature (degrees C)	15	13.9	14.6	13.4	13.1	14.6	13.6	NA				
Specific Conductance (uS)	821	4013	313	1428	2321	1755	2425	NA				
Turbidity (NTU)	0.89	1.95	1.26	0	0.18	8	1.44	NA				
Dissolved Oxygen (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA				
Eh (mV)	- 155	- 17	- 4	- 151	- 101	40	- 130	NA				
Visual Observation	Clear	Clear	Clear	Clear	Clear	Turbid	Clear	NA				
Olfactory Observation	No odor	No odor	No odor	No Odor	No odor	No odor	No Odor	NA				
/olatile Organic Compounds (ug/L)											
Benzene	ND	ND	ND	ND	ND	1.4	ND	1				
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	0.75 J	5				
p-Cymene (4-Isopropyltoluene)	ND	ND	ND	ND	ND	ND	ND	5				
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
Methyl tert butyl ether	ND	ND	ND	ND	ND	ND	ND	10				
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
Toluene	ND	ND	ND	ND	ND	ND	ND	5				
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	5				
Xylenes, Total	ND	ND	ND	ND	ND	ND	ND	15				
Total VOCs						1.4	0.75	10				
norganics (mg/L)												
Total Arsenic	NS	NS	NS	NS	NS	0.01093		0.025				
Total Chromium	NS	NS	NS	NS	NS	0.02228		0.05				
Total Lead	NS	NS	NS	NS	NS	0.04318		0.025				

Notes

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- $2. \ \ \text{Field measurements were collected immediately before and after groundwater sample collection}.$
- 3. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
- 4. " ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.
- 5. " NS " = this monitoring location was damaged and was not sampled
- 6. " -- " = This parameter was not analyzed.

Color Code:

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area III: Former Warehouse Parcel

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

		Monitoring Locat				
Parameter	A3-MW-3	A3-MW-6	A3-MW-7	A3-MW-9	A3-MW-10	GWQS/GV 1
	07/18/17	07/18/17	07/18/17	07/18/17	07/18/17	
Field Measurements (units as	indicated) 2					
pH (units)	NA	7.57	10.78	7.47	5.72	6.5 - 8.5
Temperature (degrees C)	NA	17.3	16.1	NA	15.5	NA
Specific Conductance (uS)	NA	357	303.0	358	4465	NA
Turbidity (NTU)	NA	8.89	0.85	28.7	7.83	NA
Dissolved Oxygen (mg/L)	NA	NA	NA	NA	NA	NA
Eh (mV)	NA	187	- 213	- 138	- 15	NA
Visual Observation	NA	clear	clear	clear	Clear	NA
Olfactory Observation	NA	no odor	Sulfur	no odor	no odor	NA
Volatile Organic Compounds (ug/L)					
Benzene	NA	ND	12	0.16 J	1.5	1
n-Butylbenzene	NA	ND	ND	ND	ND	5
sec-Butylbenzene	NA	ND	ND	ND	ND	5
tert-Butylbenzene	NA	ND	ND	ND	ND	5
p-Cymene (4-Isopropyltoluene)	NA	ND	ND	ND	ND	5
Ethylbenzene	NA	ND	ND	ND	ND	5
Isopropylbenzene	NA	ND	ND	ND	1.4 J	5
Methyl tert butyl ether	NA	ND	ND	ND	ND	10
n-Propylbenzene	NA	ND	ND	ND	ND	5
Toluene	NA	ND	ND	ND	ND	5
1,2,4-Trimethylbenzene	NA	ND	ND	ND	ND	5
1,3,5-Trimethylbenzene	NA	ND	ND	ND	ND	5
Xylenes, Total	NA	ND	ND	ND	ND	15
Total VOCs	0	0	12	0.16	2.9	10
Inorganics (mg/L)						
Total Arsenic	NA	0.00576	-	-	-	0.025
Total Lead	NA	-	-	0.00631	-	0.025
Wet Chemistry (mg/L)					· 	
Cyanide	NA	0.025	0.215	-	0.212	0.2

Notes:

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- 2. Field measurements were collected immediately before and after groundwater sample collection.
- 4. "-" Analysis was not performed for this parameter.
- 5. " J " = Estimated Value
- 6. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
- 7. " ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

Color Code

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.

SUMMARY OF JULY 2017 ORC ANALYTICAL RESULTS 1,2,3 Area III: Former Warehouse Parcel

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

					Mor	nitoring Loca	tion					
Parameter	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ²
Field Measurements During Purge (unit	ts as shown)	1										
Static Depth to Water (fbTOR)	4.78	4.91	5.10	4.40	5.36	5.29	5.80	5.87	3.45	5.48	5.19	
Total Depth (fbTOR)	14.08	14.43	14.38	14.38	14.03	14.36	14.36	14.63	14.03	14.55	14.57	
One Casing Volume (gallons)	6.07	6.22	6.06	6.52	5.66	5.92	5.59	5.72	6.91	5.92	6.13	
Number of Volumes Purged	6.0	10.6	6.5	5.7	8.1	6.3	6.4	3.9	12.6	6.6	11.8	
Sample Determination ³	4-days	volume	4-days	4-days	4-days	4-days	4-days	4-days	volume	4-days	volume	
Purge: Day 1 (07/24/17) (gallons)	8.0	17.0	14.0	7.5	18.0	10.0	10.0	6.0		10.0	20.0	
Purge: Day 2 (07/25/17) (gallons)	11.0	20.0	8.3	10.5	13.0	9.5	10.0	6.3		10.0	20.5	
Purge: Day 3 (07/26/17) (gallons)	10.3	17.0	9.0	10.0	9.5	9.5	9.8	5.0	75.0	10.0	18.0	
Purge: Day 4 (07/27/17) (gallons)	7.0	12.0	8.0	9.0	5.1	8.5	6.0	5.0	12.0	9.0	14.0	
Sample Collection (date indicated)	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	07/27/17	
Cumulative Volume Purged (gallons)	36.3	66.0	39.3	37.0	45.6	37.5	35.8	22.3	87.0	39.0	72.5	
Field Measurements During Sample Co	llection (units	as shown) 3										
pH (units)	10.01	5.35	5.35	6.45	5.98	5.18	5.84	5.05	4.24	6.40	5.93	6.5 - 8.5
Temperature (deg C)	15.3	16.2	16.0	16.2	16.2	15.4	16.3	17.7	16.7	16.5	17.9	
Specific Conductance (uS)	1966	5684	6254	4966	5596	8,342	7780	7,621	6388	6035	5560	
Turbidity (NTU)	36	70	19	44	15	151	68	86	108	45	51	
Dissolved Oxygen (ppm)	0.8	1.44	1.54	3.44	1.36	1.3	1.82	1.29	1.01	0.99	1.3	
ORP (mV)	251	78	95	- 82	-9	84	-7	118	242	- 136	-24	
Visual Observation	black	black	clear	clear	clear	orange/brown	light brown	yellow	yellow	clear	clear	
Volatile Organic Compounds (mg/L):												
Benzene	2.2	4.7	2.7	0.0013	6.7	6.9	0.014	21	140	9.4	0.0019	0.001
Wet Chemistry (mg/L):												
Alkalinity	109	12.9	7.5	230	157	ND	162	ND	ND	507	179	

Notes:

- 1. Field measurements were collected immediately before groundwater sample collection.
- 2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).
- 3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to
- 4. "B" = Analyte is found in the associated blank, as well as the sample.
- 5. " D " = Analysis performed at the secondary dilution factor.
- 6. "ND" indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

Color Code:

SUMMARY OF DECEMBER 2017 ORC ANALYTICAL RESULTS 1,2,3 Area III: Former Warehouse Parcel

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

					Mor	nitoring Loca	tion					
Parameter	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	GWQS ²
Field Measurements During Purge (units	s as shown)	1										
Static Depth to Water (fbTOR)	4.54	4.46	4.69	4.03	4.57	4.95	5.89	5.46	3.12	5.20	5.12	
Total Depth (fbTOR)	14.08	14.43	14.38	14.38	14.03	14.36	14.36	14.63	14.03	14.55	14.57	
One Casing Volume (gallons)	6.20	6.50	6.30	6.70	6.10	6.10	5.50	5.90	7.10	6.10	6.10	
Number of Volumes Purged	6.3	10.0	6.0	4.9	6.7	6.4	5.9	3.9	10.1	6.1	6.8	
Sample Determination ³	4-days	volume	4-days	4-days	4-days	4-days	4-days	4-days	volume	4-days	4-days	
Purge: Day 1 (12/11/17) (gallons)	12.0	15.0	10.0	8.5	8.5	12.0	9.0	7.0		8.0	10.0	
Purge: Day 2 (12/12/17) (gallons)	9.0	20.0	10.0	8.0	13.5	10.0	8.5	6.5		12.0	9.5	
Purge: Day 3 (12/13/17) (gallons)	9.0	20.0	9.5	8.5	10.0	9.0	7.5	5.0	60.0	8.0	12.0	
Purge: Day 4 (12/14/17) (gallons)	9.0	10.0	8.5	8.0	9.0	8.0	7.5	4.5	12.0	9.0	10.0	
Sample Collection (date indicated)	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	12/14/17	
Cumulative Volume Purged (gallons)	39.0	65.0	38.0	33.0	41.0	39.0	32.5	23.0	72.0	37.0	41.5	
Field Measurements During Sample Col	lection (units	as shown) 3										
pH (units)	11.60	4.88	4.86	6.20	5.62	4.51	5.66	4.58	3.07	6.30	5.91	6.5 - 8.5
Temperature (deg C)	9.8	7.7	9.1	9.2	10.1	9.6	11.2	10.1	11.1	7.0	10.9	
Specific Conductance (uS)	1601	4986	6430	2348	4844	9636	5197	7502	8219	4804	3909	
Turbidity (NTU)	8.16	25.5	22.4	34.4	37.2	17	31	60.7	49	843	36	
Dissolved Oxygen (ppm)	0.23	3.66	2.52	3.16	2.8	2.48	2.17	4.41	1.57	2.26	2.66	
ORP (mV)	-30.5	84	67	-5	12	66	15	78	239	-64	-59	
Visual Observation	clear	clear	clear	clear	clear	clear	light brown	light brown	clear	brown	clear	
Volatile Organic Compounds (mg/L):												
Benzene	1.1	2.2	2.1	0.00047	3.8	4.2	0.0033	17	1.1	86	0.00067	0.001
Wet Chemistry (mg CaCO ₃ /L):												
Alkalinity	200	13.5	21.9	306	167	ND	182	9.7	507	ND	219	

Notes:

- 1. Field measurements were collected immediately before groundwater sample collection.
- 2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).
- 3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to dryness 4 consecutive days prior to sample collection.
- 4. " ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

Color Code:

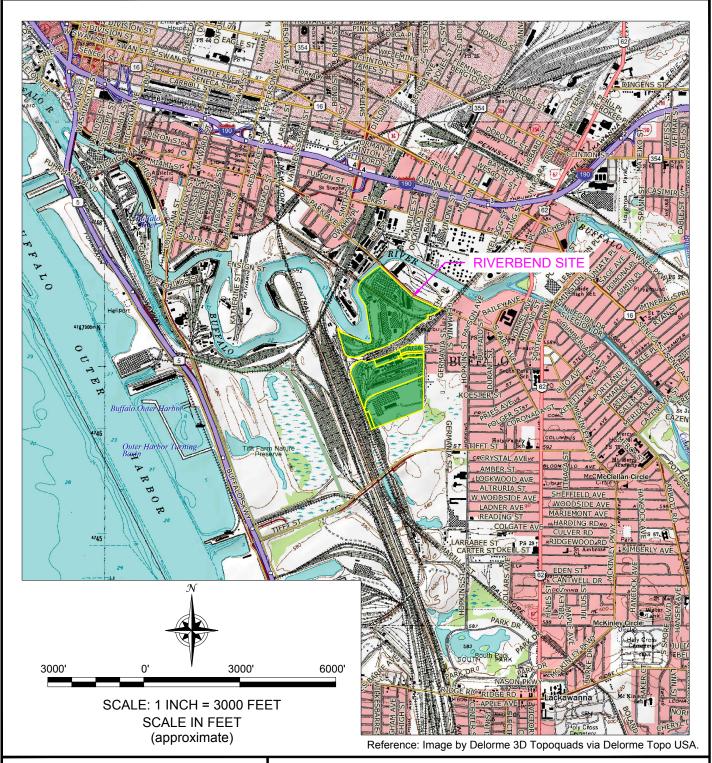
AREA-BY-AREA MOVING AVERAGE TREND ANALYSIS (MATA) SUMMARY

Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

Location	No. of Data Pts.	MATA Pts.				ving Average Tre (I), decreasing (D),			
	Data Pts.	Pts.	рН	Benzene	n-Butylbenzene	Isopropylbenzene	n-Propylbenzene	Total Arsenic	Cyanide
Area I Monitoring	Wells				•				
A1-MW-1	14	NA	NA	NA	NA	NA	NA	NA	
A1-MW-2	14	NA	NA	NA	NA	NA	NA	NA	
A1-MW-3	14	NA	NA	NA	NA	NA	NA	NA	
A1-MW-5	15	12	N	NA	NA	NA	NA	NA	
A1-MW-6	15	12	NA	NA	NA	NA	D	D	
A1-MW-7	7	NA	NA	NA	NA	NA	NA	NA	
A1-MW-8R	2	0	NA	NA	NA	NA	NA	NA	
A1-MW-9	15	NA	NA	NA	NA	NA	NA	NA	
A1-MW-10	2	0	NA	NA	NA	NA	NA	NA	
Area II Monitoring	Wells								
A2-MW-3	12	NA	NA	NA	NA	NA	NA	NA	
A2-MW-4R	12	NA	NA	NA	NA	NA	NA	NA	
A2-MW-5	12	NA	NA	NA	NA	NA	NA	NA	
A2-MW-10R	11	NA	NA	NA	NA	NA	NA	NA	
A2-MW-13	12	NA	NA	NA	NA	NA	NA	NA	
A2-MW-16	12	9	N	N	NA	NA	NA	NA	
A2-MW-17	12	NA	NA	NA	NA	NA	NA	NA	
Area III Monitoring	g Wells								
A3-MW-3	9	6	NA	NA	NA	NA	NA	NA	D
A3-MW-6	10	NA	NA	NA	NA	NA	NA	NA	NA
A3-MW-7	12	9	N	D	NA	NA	NA	NA	N
A3-MW-9	11	8	N	D	NA	NA	NA	NA	NA
A3-MW-10	11	8	N	D	NA	NA	NA	NA	NA

Notes

- 1. In general accordance with the LTGWM Plan for each Area and based upon the groundwater results to date any parameter exceeding the groundwater quality standard for two (2) consecutive
- 2. " -- " = not analyzed for this parameter.
- 3. NA = indicates there have not been two consecutive exceedances of the GWQS/GV at this location and trending is "not applicable".


Color Code:

= Concentration versus time and 4-event moving average plots are provided in Attachment 2.

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0322-016-500

DATE: MARCH 2018

DRAFTED BY: BCH-CMC

SITE VICINITY & LOCATION MAP

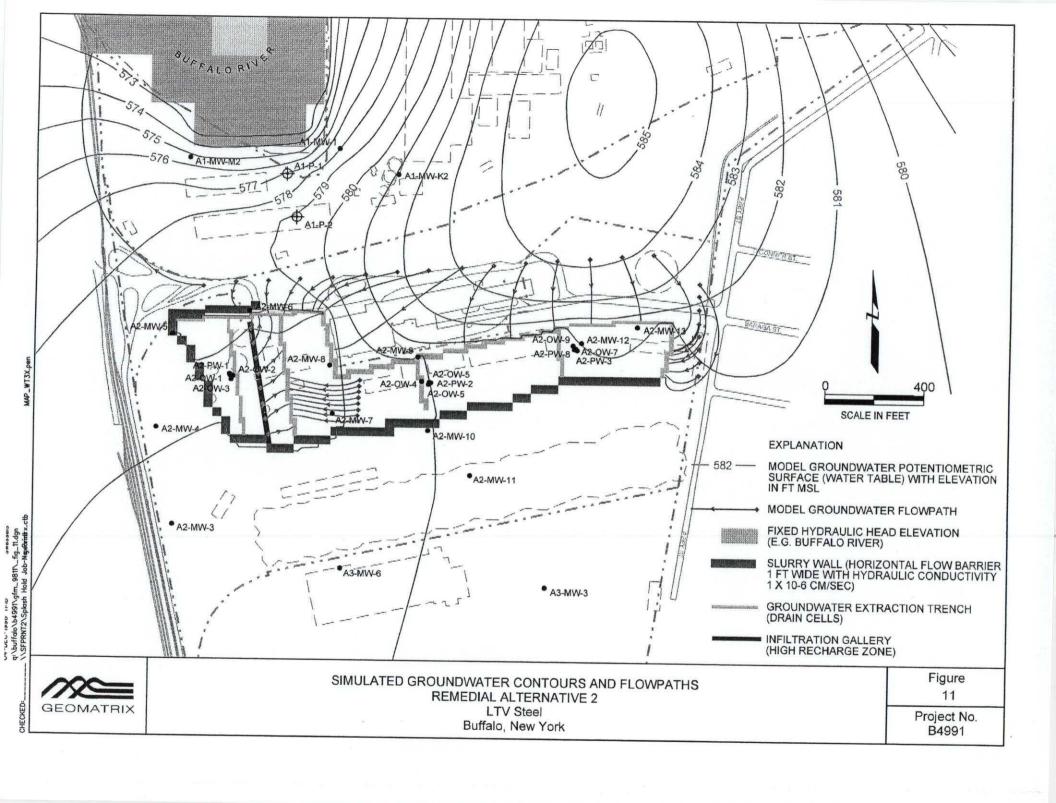
ANNUAL GROUNDWATER MONITORING REPORT

RIVERBEND SITE BUFFALO, NEW YORK

PREPARED FOR

FORT SCHUYLER MANAGEMENT CORPORATION

DISCLAIMER


PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

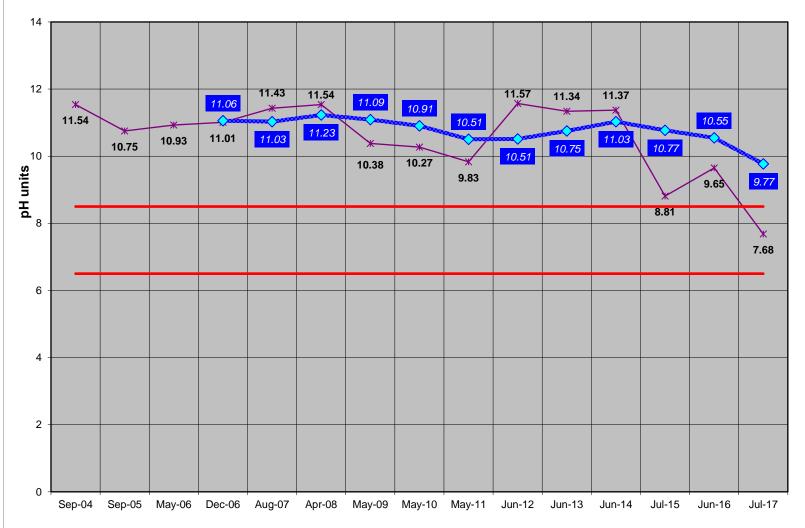
F:CAD\TurnKey\Riverbend (formerly Steelfields)\LTGWM Program\2017 Comprehensive GWM Report\Figure 2; Site Pl

F:\CAD\TurnKey\Riverbend (formerly Steelfields)\LTGWM Program\2018 Comprehensiv

GROUNDWATER FLOW MODEL (GEOMATRIX, DECEMBER 1998)

CONCENTRATION VERSUS TIME &
MOVING AVERAGE TREND ANALYSIS (MATA)
PLOTS

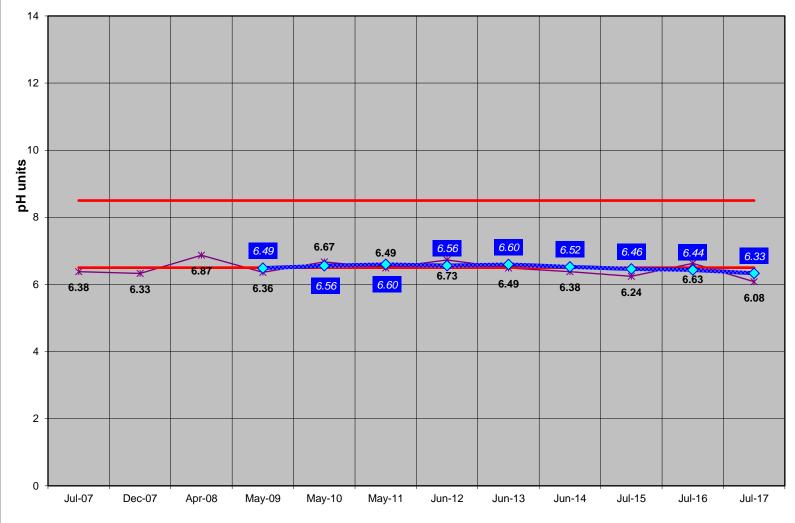
ATTACHMENT 2A


 $\mathbf{P}\mathbf{H}$



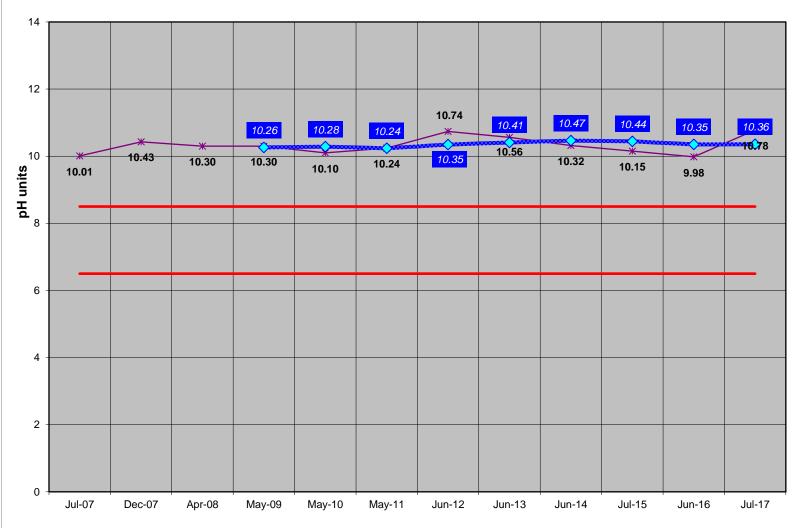
MOVING AVERAGE TREND ANALYSIS A1-MW-5 pH

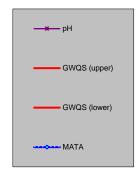
Riverbend Area I LTGWM Buffalo, New York



Sample Collection Date

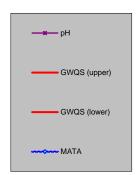
MOVING AVERAGE TREND ANALYSIS A2-MW-16 pH





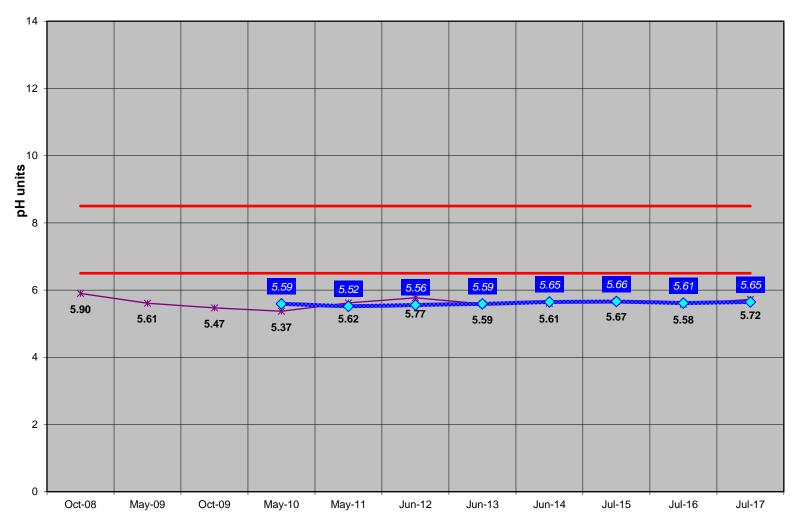
Sample Collection Date

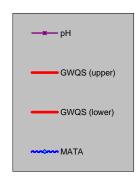
MOVING AVERAGE TREND ANALYSIS A3-MW-7 pH



Sample Collection Date

MOVING AVERAGE TREND ANALYSIS A3-MW-9 pH

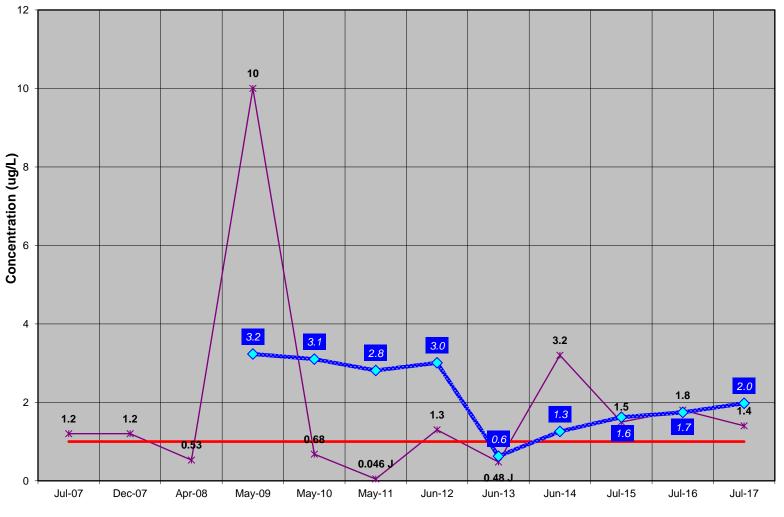


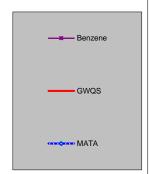


Sample Collection Date

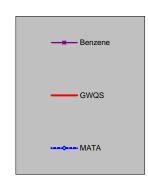
MOVING AVERAGE TREND ANALYSIS A3-MW-10 pH

Sample Collection Date


ATTACHMENT 2B

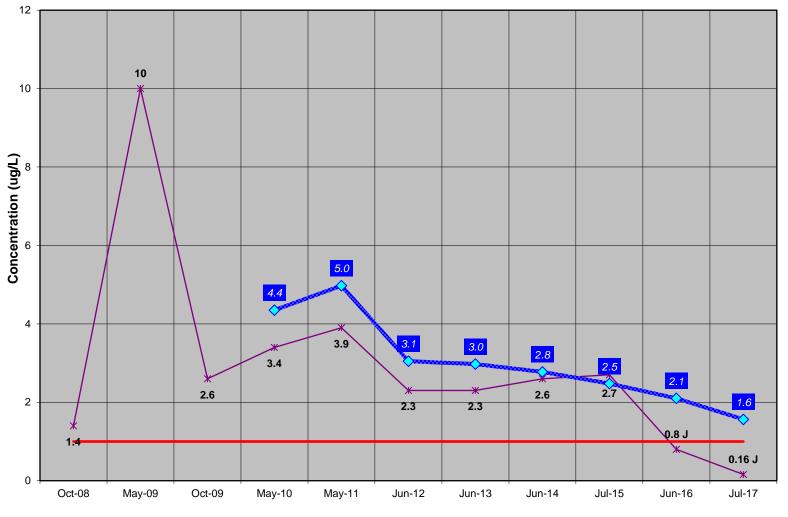

BENZENE

MOVING AVERAGE TREND ANALYSIS A2-MW-16 BENZENE



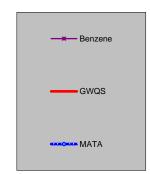
Sample Collection Date

MOVING AVERAGE TREND ANALYSIS A3-MW-7 BENZENE



Sample Collection Date

MOVING AVERAGE TREND ANALYSIS A3-MW-9 BENZENE

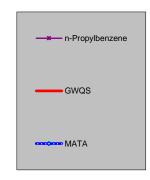


Sample Collection Date

MOVING AVERAGE TREND ANALYSIS A3-MW-10 BENZENE

Sample Collection Date

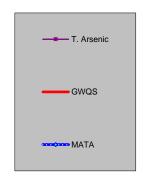
ATTACHMENT 2C


N-PROPYLBENZENE

MOVING AVERAGE TREND ANALYSIS A1-MW-6 n-PROPYLBENZENE

Sample Collection Date

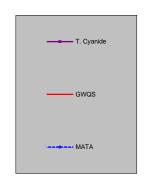
ATTACHMENT 2D


TOTAL ARSENIC

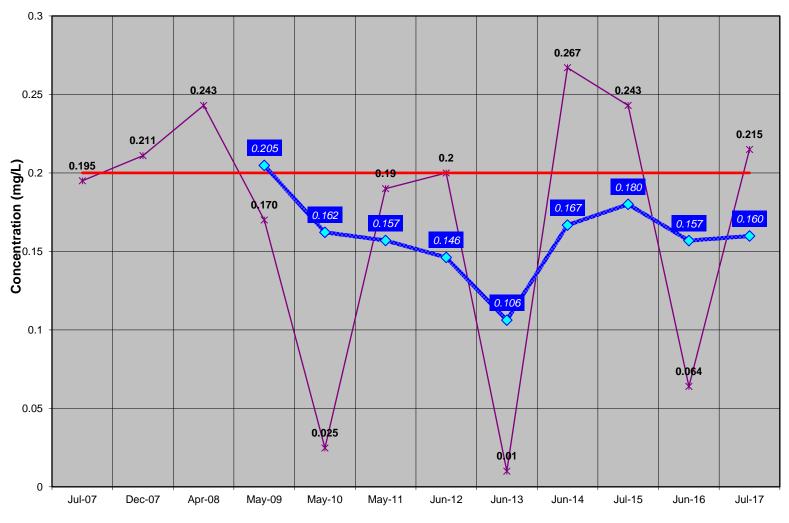
MOVING AVERAGE TREND ANALYSIS A1-MW-6 TOTAL ARSENIC

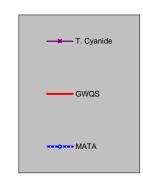
Sample Collection Date

ATTACHMENT 2E


TOTAL CYANIDE

MOVING AVERAGE TREND ANALYSIS A3-MW-3 TOTAL CYANIDE


Sample Collection Date



ATTACHMENT 2

MOVING AVERAGE TREND ANALYSIS A3-MW-7 TOTAL CYANIDE

Riverbend Area I LTGWM Buffalo, New York

Sample Collection Date

APPENDIX D

AREA III

ORC ANNUAL INSPECTION FORMS
JUNE & DECEMBER

Project Name: RiverBend Site	e - LTGWM		Project N	lo.: 0322-017	'-500	
Project Location: Area III			Client:	FSMC		
Preparer's Name: Chester No	uhreiter .		Date/Tim	e: 12-14-17	/ 1400	
sample location:	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-ORC-6
purge start date:	13-11-17	13-11-17	12-11-17	13-11-17	12-11-17-	12-11-17
purge end date:	12-14-17	12-14-17	12-14-17	12-14-17	12-14-17	12-14-17
volume purged (gallons):	39	65	38	33	41	34
Field groundwater qua			S		- '-	
sample date:		12-14-17	12 14 17	12-14-17	in a cl	10 11 15
sample time:	13-14-17	1330	1360	1935	12-14-17	12-14-17
DTW (fbTOR)	4.43	4.55	4 87	4.15	<u>1215</u> 4.73	1150
pH (units)	11.60	4.88	4.86	620	5.62	5.20 4.51
Temp. (deg F)	9.8	7.7	9.1	9 20		
SC (uS)	1601			3348	10.1	9.6
Turbidity (NTU)	8.16	4986	6430		4844	9636
DO (ppm)		35.5	<u> </u>	34.4	37.2	17
ORP (mV)	<u>- 0.33</u> -305	<u>3.66</u> 84	<u>a.52</u>	3.16	<u>a.šo </u>	2.48
teneral control of the control of th		- 54	67		13	66
Well Integrity Observat						
Cement seal	9000	-good	_good	_good	good	good
Pro-Casing condition	NA	NA	NA	NA	NA	NA
Lock condition	good	_goxl	good	good	good	good
J-plug condition	good	_good	good	_goal_	_good_	good
Refer to Site Plan for well lo	ocations					
ORC Sock's:						
Have any Socks been repla	iced?	☐ yes	💢 n	0		
If replaced, provide date an	d explanation:					
-						
f 						
Are socks fully submerged i	in well screens.		🔀 yes	☐ no		
If no, explain.						
Are all ORC wells being sar	mpled and mainta	nined according to	o the site manag	ement plan	🔀 yes	□ no
If no, explain.						9
-						
nitial: CEA				Date: 13-14	1 -17	

roject Name: RiverBend Site	- LTGWM	_	Project N		-500	
roject Location: Area III	<u> </u>		Client:	FSMC		
reparer's Name: Chester Ho	ichneiter		Date/ IIme	e: 12-14-17 /	1400	
sample location:	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	
purge start date:	12-11-17	12-11-17	12-13-17	12-11-17	12-11-17	
purge end date:	12-14-17	12-14-17	12-14-17	12-14-17	12-14-17	
volume purged (gallons):	39.50	23	72	37	41.50	
Field groundwater qual	ity measuren	nents:				
sample date:	12-14-17	12-14-17	12-14-17	12-14-17	12-14-17	
sample time:	1136	(115	1100	1030	1000	-
DTW (fbTOR)	5.65	5.61	3.17	5.38	5.02	
pH (units)	5.66	4.58	3.07	6.30	5.91	
Temp. (deg F)	11-2	16.1	11.1	7.0	10.91	
SC (uS)	5197	7502	8919	4864	3909	
Turbidity (NTU)	31.6	60.7	49	843	36	-
DO (ppm)	31.0	4.41	1.57	2.ac	->6	
ORP (mV)	15	78	939	-64	- 59	-
Well Integrity Observati						
Cement seal	good	good	good	good	good	
Pro-Casing condition	NA	NA.	NA	NA	NA	
Lock condition			(CO) (CO) (CO)		good	-
J-plug condition	good	good	_900d_ _900d	good	good	-
Refer to Site Plan for well lo			<u>-9</u> uu-	_good_		-
ORC Sock's:						
Have any Socks been replace	ced?	☐ yes	⊠ n	0		
If no, explain.						
пто, охрани.						
Are socks fully submerged in	n well screens.		☑ yes	□ no		
If no explain why.			-	_		
Are all ORC wells being sam	pled and mainta	ined according t	o the site manag	ement plan	💢 yes	no
If no, explain.						
itial: CEA				Date: 12 -	14 17	

Project Location: Area III			On .		-500	
Preparer's Name:	010		Client:	FSMC		
reparer s Name.	(LL))	Date/Time	e: 1/28//.	<i>}</i>	
sample location:	A3-ORC-1	A3-ORC-2	A3-ORC-3	A3-ORC-4	A3-ORC-5	A3-0PC
purge start date:	7/24/17					
purge end date:	2/2/12			2/22/12		
volume purged (gallons):	36.25	66	39.25	37		37.5
Field groundwater qua	lity measuren	nents:	-			
sample date:	7/27/17	- 1	7/27/12	7/27/1	$\gamma_{22/2}$	2/2/
sample time:	OSUT		Call			
DTW (fbTOR)	12.0T		13/4/	1 3 4		
pH (units)	10.01					
Temp. (deg F)	15.3					
SC (uS)	1966			1.		
Turbidity (NTU)	36	$\overline{}$		7700	5596	6396
DO (ppm)	.80			7411	13/	
ORP (mV)	4251	+78		=33	- 4	
Well Integrity Observat	ions:					
Cement seal	500)	900)	and)	(300))	~ · · · · ·
Pro-Casing condition	/A	0		- 44		0
Lock condition	500)	" ;				
J-plug condition	<u> </u>		5000		- 1	
Refer to Site Plan for well lo	~	<i>J</i>		- 0	<u>_</u>	
ORC Sock's:						
Have any Socks been replac	ced?	□ ves	Z ¹ no	1		
If replaced, provide date and			<u></u>			
Are socks fully submerged in	well screens		Z vos			
If no, explain.	Won Gorgens.) yes	Ĵ□ uo		
п по, вхріані.		21D Date/Time: $7/28/17$ 21 A3-ORC-2 A3-ORC-3 A3-ORC-4 A3-ORC-5 $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/24/17$ $7/27/17$				
	pled and maintai	ned according to	the site manage	ement plan	yes	□ no
If no, explain.						

Project Location: Area III			Client:	FSMC		
Preparer's Name:	12 Date/Time: 2/3/// 2					
sample location:	A3-ORC-7	A3-ORC-8	A3-ORC-9	A3-ORC-10	A3-ORC-11	
purge start date:	7/24/17	Thul 7	7/26/17	7/24/17	7/24/17	
purge end date:	7127/17	7/27/13	72/127	7/27/17	7/27/12	
volume purged (gallons):	35.75	22.25	87	39	72.5	
Field groundwater qual	lity measuren	nents:		7.	,	
sample date:	7/27/17	7127/17	7/27/17	7/27/17	7/27/17	
sample time:	1054	1043	1154	1139	112T	
DTW (fbTOR)	1280	10.40	78.5	1318	1154	
pH (units)	187	50	11.24	6.40	- 11.31	
Temp. (deg F)	16.3	17.7	16.7	16.	1795	
SC (uS)	7780	7621	6388	6035	1/2	
Turbidity (NTU)	68	86	100	45	5560	
DO (ppm)	1.82	1.29	1.01	0.99	-5133	
ORP (mV)	-7	+ 118	+242	-136	-1.30 -24	
Well Integrity Observat	ions:					
Cement seal	9000	900)	900)	9000	(100)	
Pro-Casing condition	MA	1/4	NA	MA	N/A	
Lock condition	5000	5000	Swo	5002	1	-
J-plug condition	500)	500)	Soul	500)	5004	
Refer to Site Plan for well lo	cations				~	
ORC Sock's:						
Have any Socks been replace	ced?	☐ yes	⊠ ′no			
lf.no, explain.			∠	•		
Are socks fully submerged in	n well screens.		✓ yes	☐ no		E I
If no explain why.						
If no explain why. Are all ORC wells being sam If no, explain.	npled and mainta	ined according to	the site manage	ement plan	yes	

APPENDIX E

SITE PHOTOGRAPH LOG

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: Area I – looking north, vegetated river buffer

Photo 2: Area I – looking west, vegetated river buffer

Photo 3: Area I – looking west, storm sewer outfall

Photo 4: Area I – looking southwest at riprap cover along north building face

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: Area I – looking southeast, northwest side of Tesla building

Photo 6: Area I – looking southwest, river embankment along fence

Photo 7: Area I – looking northeast, west side of Tesla building

Photo 8: Area I – looking southeast, west side of Tesla building

Photo 9:

Photo 10:

Photo 11:

Photo 12:

Photo 9: Area I -northwest at variance slag reuse area

Photo 10: Area I – looking south at substation

Photo 11: Area I – looking north at riprap on south side of Tesla building

Photo 12: Area I – looking west at south side of Tesla building

RiverBend Site Buffalo, New York June 2018

Photo 13:

Photo 14:



Photo 15:

Photo 16:

Photo 13: Area II – looking east, pretreatment building

Photo 14: Area II – looking east, pretreatment building control panel

Photo 15: Area II – looking northwest, pretreatment building system

Photo 16: Area II – pretreatment system maintenance log

Photo 17:

Photo 18:

Photo 19:

Photo 20:

Photo 17: Area II – looking south/southwest, Abby St Berm near O'Connor

Photo 18: Area II – looking east, east half of A2 cover

Photo 19: Area II – looking west, south half of A2 cover

Photo 20: Area II – looking east, north half of A2 cover

Photo 21:

Photo 22:

Photo 23:

Photo 24:

Photo 21: Area II – looking south, containment cell pump station PS-1

Photo 22: Area II – looking northwest, northwest corner of A2 cover with area of filled in terminal basin

beyond the gate

Photo 23: Area II – looking north, west side of A2 cover and containment cell detention pond (dry)

Photo 24: Area II – looking east, east side of A2 cover

Photo 25:

Photo 26:

Photo 27:

Photo 28:

Photo 25: Area III – looking east, showing A3 and perimeter fence

Photo 26: Area III – looking northeast, showing north side of A3

Photo 27: Area III – looking south, showing southwest corner of A3

Photo 28: Area III – looking north, showing A3 ORC well