



Mr. David Szymanski New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: RiverBend Site (formerly Steelfields) (V00619)

Periodic Review Report (May 1, 2018 to May 1, 2019)

Dear Mr. Szymanski:

On behalf of Fort Schuyler Management Corporation (FSMC), TurnKey Environmental Restoration, LLC (TurnKey) in association with Benchmark Environmental Engineering & Science, PLLC (Benchmark) has prepared the enclosed hard copy of the completed Institutional and Engineering Controls (IC/EC) certification form and one compact disc containing the Periodic Review Report (PRR) for the RiverBend Site (V00619), including all supporting appendices. The IC/EC certification form and report have been prepared in accordance with NYSDEC's DER-10 Technical Guidance (May 2010). The IC portion of the certification form (Box 6) has been signed by Mr. Scott Bateman, FSMC Board Treasurer, and the EC portion (Box 7) has been signed by Mr. Thomas H. Forbes, P.E. and Principal Engineer of Benchmark and TurnKey.

Please contact me if you have any questions regarding this submittal.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

ec: Kenneth Gelting (FSMC)

Thomas H. Forbes (Benchmark TurnKey)

File: 0322-019-502

Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkturnkey.com

# Periodic Review Report

May 1, 2018 through May 1, 2019

Riverbend Site (No. V00619) Buffalo, New York

May 2019

0322-019-502

**Prepared For:** 

Fort Schuyler Management Corporation



Prepared By:







# PERIODIC REVIEW REPORT for the STEELFIELDS (AKA RIVERBEND, LLC) SITE (SITE NO. V00619)

### **BUFFALO, NEW YORK**

May 2019 0322-019-502

Prepared for:



#### FORT SCHUYLER MANAGEMENT CORPORATION

Prepared By:



TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635 In Association With:



Benchmark Environmental Engineering & Science, PLLC
2558 Hamburg Turnpike, Suite 300
Buffalo, NY 14218
(716)856-0599

#### PERIODIC REVIEW REPORT

# Steelfields (aka Riverbend, LLC) Site Site No. V00619

#### **Table of Contents**

| 1.0 | INT           | RODUCTION                                          | 1         |
|-----|---------------|----------------------------------------------------|-----------|
|     | 1.1           | Background                                         | 1         |
|     |               |                                                    |           |
| 2.0 | SITE OVERVIEW |                                                    |           |
|     | 2.1           | Area I - Former Republic (LTV) Steel Parcel        | 3         |
|     | 2.2           | Area II – Former Donner-Hanna Coke Plant           | 4         |
|     | 2.3           | Area III – Former Warehouse Parcel                 | 4         |
|     | 2.4           | Former August Feine Parcel                         | 5         |
|     | 2.5           | Former Norfolk Southern Parcel                     | 5         |
| 3.0 | SITI          | E MANAGEMENT PLAN                                  | 6         |
|     | 3.1           | Operation, Monitoring, and Maintenance (OM&M) Plan |           |
|     | 0.1           | 3.1.1 Area I                                       |           |
|     |               | 3.1.2 Area II                                      |           |
|     |               | 3.1.3 Area III                                     | 7         |
|     |               | 3.1.4 Former August Feine Parcel                   | 7         |
|     |               | 3.1.5 Former Norfolk Southern Parcel               | 7         |
|     | 3.2           | Long-Term Groundwater Monitoring (LTGWM) Plan      | 7         |
|     | 3.3           | Soil/Fill Management Plan                          | 9         |
|     | 3.4           | Institutional and Engineering Control Requirements | 9         |
|     |               | 3.4.1 Institutional Controls                       |           |
|     |               | 3.4.2 Engineering Controls                         | 9         |
|     | 3.5           | Site Inspection & IC/EC Compliance                 |           |
|     |               | 3.5.1 Area I                                       |           |
|     |               | 3.5.2 Area II                                      |           |
|     |               | 3.5.3 Area III                                     |           |
|     |               | 3.5.4 Former August Feine Parcel                   |           |
|     | 2 -           | 3.5.5 Former Norfolk Southern Parcel               |           |
|     | 3.6           | Abby & Baraga Streets Surface Drainage System      |           |
|     |               | 3.6.1 Background                                   | 11        |
| 4.0 | Con           | NCLUSIONS AND RECOMMENDATIONS                      | 13        |
| 5.0 | DEC           | CLARATION/LIMITATION                               | 14        |
| 6.0 | RFF           | FERENCES                                           | 15        |
| 0.0 | Lill          |                                                    | ••••••••• |



#### PERIODIC REVIEW REPORT

# Steelfields (aka Riverbend, LLC) Site Site No. V00619 Table of Contents

#### **FIGURES**

| Figure 1    | Site Location and Vicinity Map                             |  |  |
|-------------|------------------------------------------------------------|--|--|
| Figure 2    | Site Plan                                                  |  |  |
| Figure 3    | Abbey Street Drain Site Sketch                             |  |  |
|             |                                                            |  |  |
| APPENDICIES |                                                            |  |  |
| Appendix A  | Site Inspection (IC/EC) Form                               |  |  |
| Appendix B  | Area II – Annual GWPTS and BSA Semi-Annual CMRs            |  |  |
| Appendix C  | Comprehensive Annual Groundwater Monitoring Report         |  |  |
| Appendix D  | Area III – ORC Annual Inspection Forms (June and December) |  |  |
| Appendix E  | Site Photograph Log                                        |  |  |



#### 1.0 Introduction

TurnKey Environmental Restoration, LLC (TurnKey), in association with Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this Periodic Review Report (PRR) on behalf of Fort Schuyler Management Corporation (FSMC) to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) Steelfields (aka RiverBend, LLC) Site No. V00619.

This PRR has been prepared in accordance with the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (Ref. 1). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Forms have been prepared for each of the three designated areas (i.e., Area I, Area II, and Area III) of the Site. This PRR and the associated IC/EC Form (see Appendix A) have been completed for the May 1, 2017 to May 1, 2018 reporting period.

#### 1.1 Background

In October 2002, Steelfields Ltd. (Steelfields) purchased several vacant industrial properties in South Buffalo, New York (see Figures 1 and 2) out of bankruptcy from the LTV Steel Company and Hanna Furnace Corporation (a wholly owned subsidiary of the National Steel Corporation). At the same time, Steelfields entered into a Voluntary Cleanup Agreement (VCA) with the NYSDEC to remediate four parcels identified below, totaling approximately 218 acres. The parcels were divided based on the operational and ownership history of each:

- Area I Former Republic (LTV) Steel Plant Parcel (± 90.6 acres)
- Area II Former Donner-Hanna Coke Plant Parcel (± 53.0 acres)
- Area III Former Republic (LTV) Steel Warehouse Parcel (± 43.2 acres)
- Area IV Former Donner-Hanna Coke Yard Parcel (± 31.1 acres)

In July 2003, a fifth parcel, the formerly owned and operated August Feine & Sons property (±4.7 acres), was acquired by Steelfields. The August Feine property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA. As such, only Areas I, II, III, and IV were

TURNKEY BENCHMARK

remediated under the NYSDEC VCA. Subsequent to completion of the remediation of Area IV by Steelfields in 2006, this parcel was separated from the Site, sold to Hydro-Air Components, Inc. (Hydro-Air), and entered into the Brownfield Cleanup Program (NYSDEC BCP Site No. C915204) by Hydro-Air. Accordingly, this report does not address Area IV. RiverBend, LLC, a Buffalo Urban Development Corporation (BUDC)-related entity, acquired the Site from Steelfields in May 2008. On July 22, 2014, FSMC acquired Area I of the RiverBend Site from RiverBend, LLC. On November 24, 2014, FSMC acquired Areas II and III from RiverBend, LLC. On June 24, 2016, a sixth parcel, the formerly owned and operated Norfolk Southern Railroad property (±22.16 acres), was acquired by FSMC. Similar to the former August Feine property, the former Norfolk Southern property is also relevant and proximate to the RiverBend Site and is not under any NYSDEC program or subject to a SMP under the RiverBend VCA.



#### 2.0 SITE OVERVIEW

The RiverBend Site, comprised of former heavy industrial properties identified as Areas I, II, III, and the former August Feine and Norfolk Southern parcels, encompass approximately 204 acres in the City of Buffalo, Erie County, New York (see Figure 2). The Site is bordered by the Buffalo River and South Park Avenue to the north; Abby Street and residential neighborhoods to the east; Former Area IV (currently Hydro-Air Components) to the south; and a railroad corridor and rail yard to the west (contiguous parcels owned by South Buffalo Railroad Company, Buffalo Southern Railroad, and CSX Corporation) (see Figure 2).

Environmental investigations of the Site revealed the presence of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) including polycyclic aromatic hydrocarbons (PAHs), and metals in soil and groundwater that required remediation. Remedial activities were completed across the Site from 2002 through 2006. Detailed descriptions of the remedial efforts and construction documents for this period are provided in the NYSDEC's approved Construction Closeout Report for Area I, including the Site Management Plan, prepared by TurnKey (Ref. 2); and the Final Engineering Report for Areas II and III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, including a Site Management Plan, prepared by Malcolm Pirnie (Ref. 3). A brief description of the remedial efforts described in those documents is presented below.

#### 2.1 Area I - Former Republic (LTV) Steel Parcel

The former Republic Steel (LTV) Plant property encompasses two adjoining parcels (122.16-1-8.1 and 122.20-1-3.1) totaling approximately 90.6 acres (see Figure 2). Area I is bordered by the Buffalo River and South Park Avenue to the north, Abby Street and residential neighborhoods to the east, former Norfolk Southern property to the south (now part of the RiverBend Site), and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area I included:

- Remediation of petroleum/naphthalene/tar-impacted and metals-impacted soil/fill.
- Removal of former fuel oil and tar transfer pipelines, including disposal of residual product within the piping and impacted soil in the vicinity of the pipelines.

3

TURNKEY BENCHMARK

- Removal of former underground storage tanks.
- Buffalo River bank stabilization.

#### 2.2 Area II – Former Donner-Hanna Coke Plant

The former Donner-Hanna Coke Plant property encompasses three adjoining parcels (122.20-1-21, 122.20-1-5.1, and 132.08-1-6) totaling approximately 53.0 acres (see Figure 2). Area II, partially intersected by Baraga Street, is bordered by an adjacent earthen berm along Abby Street and residential neighborhoods to the east; the former Norfolk Southern property and the former August Feine parcel (now part of the Riverbend Site) to the north; Area III to the south; and a railroad corridor and rail yard to the west. Remedial efforts conducted in Area II included:

- Construction of a 14-acre Containment Cell with slurry wall, low-permeability cover system, and a groundwater collection and conveyance system
- Construction of a groundwater pre-treatment system (GWPTS)
- In-situ "hotspot" remediation

#### 2.3 Area III – Former Warehouse Parcel

The former Republic Steel Warehouse property encompasses two adjoining parcels (132.08-1-7 and 132.12-1-9.11) totaling approximately 43.2 acres (see Figure 2). Area III is bordered by Abby Street and residential neighborhoods to the east; Area II to the north; Former Area IV (currently Hydro-Air Components) to the south; and an active railroad corridor and rail yard to the west. Remedial efforts conducted in Area III included:

- On-site blue-stained soil/fill treatment and disposal/consolidation in the Area II Containment Cell
- On-site lead-impacted soil/fill treatment and disposal/consolidation in the Area II Containment Cell
- Tar-impacted soil/fill disposal/consolidation in Area II Containment Cell
- In situ groundwater treatment with oxygen release compound (ORC) at 11 ORC treatment wells

TURNKEY BENCHMARK

#### 2.4 Former August Feine Parcel

The former August Feine property encompasses one parcel (122.20-1-22) approximately 4.7 acres in size (see Figure 2). This property is surrounded by Area II on the west, south, and east; and the former Norfolk Southern property to the north (Baraga Street dead ends at the entrance to this parcel). The August Feine property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA. As such, any discussions or findings as a result of the site assessment regarding the August Feine property are provided herein for informational purposes only.

A July 2006 site assessment of the former August Feine parcel identified localized VOC (primarily benzene) and total metal (plus cyanide) impacts to subsurface soil/fill and shallow groundwater along the common boundary with Area II. Based on the proximity of these identified impacts to the Area II groundwater collection trench, the leachable impacts, if any, are being captured and treated by the groundwater collection system, mitigating downgradient migration and potential environmental impact. As such, no additional remediation, beyond those already being implemented in accordance with the VCA for Area II, was recommended. Any potential for subsurface soil/fill exposure during future development of the property (i.e., utility installation) will be addressed in accordance with the Soil/Fill Management Plan (see Section 3.3).

#### 2.5 Former Norfolk Southern Parcel

The former Norfolk Southern property encompasses one parcel (122.20-1-23.1) approximately 22.16 acres in size (see Figure 2). The property is bounded on the north by Area I and Area II and the former August Feine property to the south. The former Norfolk Southern property was historically used to transport manufactured steel, iron, metallurgical coke, and coke by-products for Republic Steel and Donner Hanna Coke. This property, though relevant and proximate to the RiverBend Site, is not under any NYSDEC program or subject to a SMP under the RiverBend VCA, but is owned by FSMC.

5

TURNKEY BENCHMARK

#### 3.0 SITE MANAGEMENT PLAN

Areas I, II, and III of the RiverBend Site are managed by two separate Site Management Plans (SMPs). One SMP covers Area I (Ref. 2) and the second covers Areas II and III (Ref. 3). Both SMPs include Operation, Monitoring, and Maintenance (OM&M) Plans; Long-Term Groundwater Monitoring (LTGWM) Plans; Soil/Fill Management Plans (SFMPs); and Environmental Easements (also identified as Covenant and Restrictions) for their respective parcels. A brief description of these SMP components is presented below.

#### 3.1 Operation, Monitoring, and Maintenance (OM&M) Plan

As a requirement of the OM&M Plans, annual inspection of Areas I, II, and III are required; as there are no engineering controls on the former August Feine parcel the site inspection is provided for informational purposes only. The NYSDEC PRR Institutional and Engineering Controls (IC/EC) Certification Form has replaced the previously used Environmental Inspection Forms for each Area. Appendix A includes the completed IC/EC Form for the current period. Details of the annual inspection and completion of the IC/EC Form is discussed in Sections 3.5 and 3.6 below.

#### 3.1.1 Area I

The Area I SMP provides the details for Operation and Maintenance (O&M) related to the product recovery at monitoring well A1-MW-6. Specifically, the O&M Plan details the product recovery system inspection program, routine maintenance operations, and reporting requirements. In February 2017 due to very low product recovery volumes, the NYSDEC approved discontinuing the use of a passive skimmer in well A1-MW-6 in lieu of an absorbent pad.

#### 3.1.2 Area II

The Area II SMP provides the O&M details related to the groundwater collection and conveyance system, including the soil flushing system; groundwater pre-treatment system (GWPTS) including the bag filters, carbon vessels, transfer pumps, separator tank, and general house-keeping; sewer discharge effluent monitoring; and low-permeability cover system (i.e., landfill post-closure monitoring and cover maintenance). Appendix B includes the Area II GWPTS annual progress report submitted to the NYSDEC and the two semi-

TURNKEY BENCHMARK

annual effluent compliance monitoring reports submitted to the Buffalo Sewer Authority (BSA) during the current reporting period.

#### 3.1.3 Area III

The Area IIII O&M plan provides the details related to the in-situ groundwater treatment with oxygen release compound (ORC) at 11 ORC treatment wells. ORC monitoring results are included in the annual groundwater monitoring report (Appendix C; and discussed in Section 3.2 below). Appendix D includes the June and November 2018 ORC semi-annual event inspection forms.

#### 3.1.4 Former August Feine Parcel

There are no voluntary cleanup O&M requirements for the former August Feine parcel. In June 2009, the former August Feine building caught fire and emergency demolition followed. A concrete slab on grade foundation and a small brick walled shed is all that remained, and storm water management of this area was subsequently discontinued. In September 2015 and with NYSDEC approval, the footprint of the former August Feine building was filled in with processed concrete material generated during Area I redevelopment. A substation servicing the redevelopment on Area I was constructed on the August Feine parcel in 2016.

#### 3.1.5 Former Norfolk Southern Parcel

There are no voluntary cleanup O&M requirements for the former Norfolk Southern parcel.

#### 3.2 Long-Term Groundwater Monitoring (LTGWM) Plan

As a requirement of the SMPs, long-term groundwater monitoring is being performed at the Site. A Long-Term Groundwater Monitoring (LTGWM) Work Plan was prepared by TurnKey in March 2000 (revised June 2005 for Area I. Similarly, LTGWM Work Plans were prepared by others in October 2007 for Areas II (revised April 2008) and III. Groundwater monitoring began in 2004 for Area I and in 2007 for Areas II and III. Since 2009 and with NYSDEC approval, LTGWM for Areas I, II, and III was modified into a combined site-wide monitoring and reporting event. A total of 23 network monitoring

\*BENCHMARK

wells are sampled across the Site including 11 wells in Area I, 7 wells in Area II, and 5 wells in Area III. In addition to the groundwater monitoring network wells, six additional wells in Area II are monitored for water level only.

In May 2011, the NYSDEC approved a modification of the groundwater parameter lists and sample frequency for Areas I, II, and III. The modified monitoring program for the 3 Areas now follows a 2-year monitoring cycle (e.g., bi-annual) as presented in Appendix C. In general, this modification reduces the VOC and metals analysis frequency to once every other year for most wells while the collection of field parameters must be measured every year going forward. Currently, groundwater monitoring is performed on an annual basis and ORC monitoring is performed semi-annually (every 6 months). The activities performed during each groundwater monitoring event are performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised June 2005 Ref. 4)
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (Ref. 5)
- May 5, 2008 Response to NYSDEC comment letter regarding Area III Site Management Plan (comment/responses 8, 9, and 10)
- May 5, 2008 Response to NYSDEC comment letter regarding Areas II and III Final Engineering Report (comment/responses 19 and 22)
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (Ref. 5)
- May 5, 2011 NYSDEC Response to Modification Request Letter.

In June 2016 and upon NYSDEC notification, wells A1-MW-8R and A1-MW-10 were installed to replace historically decommissioned well A1-MW-8 and piezometer A1-MW-P-4, respectively. In September 2016 and upon NYSDEC consultation and approval, it was determined that wells A1-MW-4 and A1-MW-M2 and piezometer A1-P-2 were located within the Area I Variance Area footprint and required removal and relocation. As such, these wells and the piezometer were decommissioned in general accordance with NYSDEC Commissioners Policy 43 (CP-43: Groundwater Monitoring Well Decommissioning). In May 2017, replacement wells A1-MW-4R and A1-MW-11 were installed for decommissioned wells A1-MW-4 and A1-MW-M2, respectively, and are sampled as part of the LTGWM plan.

TURNKEY BENCHMARK

Upon NYSDEC concurrence, it was determined that piezometer A1-P-2 did not require replacement.

Appendix C includes the 2018 Comprehensive Annual Groundwater Monitoring Report for Areas I, II, and III. This report includes the results of the September 2018 groundwater monitoring event as well as the results of the June and November 2018 ORC semi-annual monitoring events for Area III, all of which were conducted during the current PRR period (May 1, 2018 through May 1, 2019). Appendix D includes the ORC inspection forms for the June and November 2018 events.

#### 3.3 Soil/Fill Management Plan

A Soil/Fill Management Plan (SFMP) was included in the approved SMPs for each Area of the Site. The SFMP provides guidelines for the management of soil and fill material during any future intrusive activities.

#### 3.4 Institutional and Engineering Control Requirements

As detailed in the SMPs, several institutional controls (ICs) and engineering controls (ECs) are to be maintained as a requirement of the VCA for the Site.

#### 3.4.1 Institutional Controls

Three RiverBend parcels (Areas I, II, and III) are subject to the following ICs:

- Groundwater-Use Restriction: The use of groundwater for potable and nonpotable purposes is prohibited
- Land-Use Restriction: The controlled property may be used for commercial and/or industrial use
- Soil/Fill Management Plan

Additionally, Areas II and III are subject to compliance with the O&M Plans for their respective areas, as described in Section 3.1.

#### 3.4.2 Engineering Controls

Three RiverBend parcels (Areas I, II, and III) are subject to several ECs as indicated by Area below.

9

TURNKEY BENCHMARK

- Area I: Maintain vegetative cover and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 08/16/2007).
- Area II: Maintain final cover system of containment cell and maintain vegetative cover outside containment cell area until build-out whereupon one foot of clean cover or alternative with a demarcation layer is required; O&M of GWPTS; O&M of containment cell and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 05/21/2008).
- Area III: Maintain vegetative cover (limited area sampling required before build-out, failure to meet Site Specific Action Levels (SSALs) would require one foot of clean cover or alternative with a demarcation layer); O&M of passive groundwater treatment (e.g., ORC) and perimeter fencing; soil/fill management; soil vapor intrusion (SVI) evaluation before on-site building construction or installation of vapor mitigation system during on-site building construction and prior to occupancy (effective 05/21/2008).

#### 3.5 Site Inspection & IC/EC Compliance

On May 24, 2019, Benchmark's Certifying Professional Engineer performed a Site assessment of Areas I, II, and III, including the former August Feine and Norfolk Southern parcels. The following sections provide a parcel-by-parcel description of the Site assessment and maintenance activities performed. Appendix A includes the completed IC/EC Form for Areas I, II, and III. Appendix E includes a photographic log of the Site.

#### 3.5.1 Area I

Redevelopment activities associated with Area I are complete. A 1.2 million square-foot manufacturing building (Tesla) was constructed and is in service. Redevelopment activities subject to the Area I SMP are summarized in the RiverBend Area I Construction Completion Report (Area I CCR, Ref. 6). At the time of the May 2019 inspection, Area I was in compliance with the IC/ECs.

#### 3.5.2 Area II

At the time of the May 2019 inspection, Area II, including the pump stations, GWTS and Containment Cell, was in compliance with the IC/ECs.

TURNKEY BENCHMARK

#### 3.5.3 Area III

At the time of the May 2019 inspection, Area III was vacant and in compliance with the IC/ECs.

#### 3.5.4 Former August Feine Parcel

At the time of the May 2019 inspection, the former August Feine parcel was vacant. There are no IC/ECs associated with this parcel; therefore, this parcel is not included on the IC/EC Form.

#### 3.5.5 Former Norfolk Southern Parcel

At the time of the May 2019 inspection, the former Norfolk Southern parcel was vacant. There are no IC/ECs associated with this parcel; therefore, this parcel is not included on the IC/EC Form.

#### 3.6 Abby & Baraga Streets Surface Drainage System

Although not a component of the Area II SMP, TurnKey personnel perform a monthly inspection of the drainage system including the Baraga Street manhole due to historic blockages in the system resulting in past complaints of ponding water along Abby Street. As requested by the NYSDEC, the surface drainage system background and monthly assessment results are provided below.

#### 3.6.1 Background

The surface drainage system at the RiverBend Site was installed to mitigate breakout of calcium-rich surface water resulting from the underlying slag and lime materials in the vicinity of the berm along Abby Street. Since 1998, the drainage system has functioned as intended, but has required periodic maintenance and repair to remedy clogs due to calcium and sediment build-up and occasional damage from heavy snow removal equipment. More recently the surface drainage system required repair and modification due to significant damage to the Berm from South Park to Baraga Street caused by vehicle rutting, particularly in the Abby Street drain vicinity, which prevented the system from functioning as intended.

In May 2014, TurnKey performed repairs and modifications to the original Abby Street drainage system to restore function and to allow the system to be more efficient. The

TURNKEY BENCHMARK

modified Abby Street drainage system configuration is presented in Figure 3. Both the Berm and drainage system are inspected monthly.

On April 4, 2018, TurnKey had Pinto Construction Services, Inc. (Pinto) flush the Abby Street Drainage System via high-pressure water injection. Observed flows within the Baraga Street manhole indicate the system is operating as intended. No further activities were required or performed on the Abby Street drain system during the current reporting period (May 1, 2018 through May 1, 2019).



#### 4.0 CONCLUSIONS AND RECOMMENDATIONS

At the time of the inspection, the Site was in compliance with the IC/ECs. No modifications to the OM&M procedures are recommended at this time.



#### 5.0 DECLARATION/LIMITATION

TurnKey Environmental Restoration, LLC in association with Benchmark Environmental Engineering and Science, PLLC, personnel conducted the annual site inspections for Voluntary Cleanup Program Site No. V00619, located in Buffalo, New York, according to generally accepted practices. This report complies with the scope of work provided to FSMC by TurnKey Environmental Restoration, LLC.

This report has been prepared for the exclusive use of Fort Schuyler Management Corporation. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of Fort Schuyler Management Corporation. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC and/or Benchmark Environmental Engineering and Science, PLLC.



#### 6.0 REFERENCES

- 1. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. Site Management Plan for Area I (former Republic (LTV) Steel Parcel), Steelfields Site, Buffalo, NY (NYSDEC Site # V00619-9), dated Revised August 2016, prepared by TurnKey Environmental Restoration, LLC and Benchmark Environmental Engineering and Science, PLLC.
- 3. Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendix GG and HH, dated May 2008, prepared by Malcolm Pirnie.
- 4. Work Plan for Long-Term Groundwater Monitoring, Former Steel Manufacturing Site, Buffalo, NY, prepared for Steelfields Ltd., revised June 2005 by TurnKey Environmental Restoration, LLC.
- 5. Final Engineering Report for Areas II & III, Former Donner-Hanna Coke Plant and Republic (LTV) Steel Properties, Steelfields Site Buffalo, NY (NYSDEC Site #V00133-9), Appendix HH Attachments A4 and A5, dated May 2008, prepared by Malcolm Pirnie.
- 6. Construction Completion Report, RiverBend Area I, Voluntary Cleanup Program, VCP Site No. V00619-1, Buffalo New York. Prepared by TurnKey Environmental Restoration, PLLC. April 2018.

15



### **FIGURES**



#### FIGURE 1







2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: 0322-017-500

DATE: May 2018

DRAFTED BY: CMC

#### SITE VICINITY & LOCATION MAP

PERIODIC REVIEW REPORT

RIVERBEND SITE BUFFALO, NEW YORK

PREPARED FOR

FORT SCHUYLER MANAGEMENT CORPORATION

DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

### **APPENDIX A**

SITE INSPECTION (IC/EC) FORM





# Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| F-0100                                                                                                                            | Institutional and Engineering Controls Certification Form                                                                                                   |       |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--|
| Sit                                                                                                                               | Site Details<br>e No. V00619                                                                                                                                | Box 1 |    |  |
|                                                                                                                                   |                                                                                                                                                             |       |    |  |
| Sit                                                                                                                               | e Name Steelfields (aka Riverbend)                                                                                                                          |       |    |  |
| City<br>Co                                                                                                                        | e Address: 312 Abby Street       Zip Code: 14220<br>y/Town: Buffalo<br>unty: Erie                                                                           |       |    |  |
| Site                                                                                                                              | e Acreage: 182.000                                                                                                                                          |       |    |  |
| Re                                                                                                                                | porting Period: May 01, 2018 to May 01, 2019                                                                                                                |       |    |  |
|                                                                                                                                   |                                                                                                                                                             |       |    |  |
|                                                                                                                                   |                                                                                                                                                             | YES   | NO |  |
| 1.                                                                                                                                | Is the information above correct?                                                                                                                           |       |    |  |
|                                                                                                                                   | If NO, include handwritten above or on a separate sheet.                                                                                                    |       |    |  |
| 2.                                                                                                                                | Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?                          |       |    |  |
| 3.                                                                                                                                | Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?                                                         |       |    |  |
| 4.                                                                                                                                | Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?                  |       |    |  |
|                                                                                                                                   | If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. |       |    |  |
| 5.                                                                                                                                | Is the site currently undergoing development?                                                                                                               |       |    |  |
|                                                                                                                                   |                                                                                                                                                             |       |    |  |
|                                                                                                                                   |                                                                                                                                                             | Box 2 |    |  |
|                                                                                                                                   |                                                                                                                                                             | YES   | NO |  |
| 6.                                                                                                                                | Is the current site use consistent with the use(s) listed below?  Commercial and Industrial                                                                 |       |    |  |
| 7.                                                                                                                                | Are all ICs/ECs in place and functioning as designed?                                                                                                       |       |    |  |
| IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. |                                                                                                                                                             |       |    |  |
| A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                   |                                                                                                                                                             |       |    |  |
|                                                                                                                                   |                                                                                                                                                             |       |    |  |
|                                                                                                                                   |                                                                                                                                                             |       |    |  |

Date

Signature of Owner, Remedial Party or Designated Representative

SITE NO. V00619 Box 3

#### **Description of Institutional Controls**

Parcel

122.16-1-8.1

Owner

Fort Schuyler Management Corporation

Institutional Control

Ground Water Use Restriction Soil Management Plan

Landuse Restriction

Monitoring Plan O&M Plan

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

122.20-1-21

Fort Schuyler Management Corporation

Monitoring Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

O&M Plan

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

122.20-1-3.1

Fort Schuyler Management Corporation

Ground Water Use Restriction

Soil Management Plan Landuse Restriction

Monitoring Plan
O&M Plan

Area I: Maintain vegetative cover, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (8/16/07)

122.20-1-5.1

Fort Schuyler Management Corporation

Monitoring Plan

**Ground Water Use Restriction** 

Soil Management Plan Landuse Restriction

O&M Plan

Area II: Maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.08-1-6

Fort Schuyler Management Corporation

O&M Plan

Ground Water Use Restriction Soil Management Plan

Landuse Restriction Monitoring Plan

Area II: maintain vegetative cover until buildout whereupon one foot of clean cover or alternative with a demarcation layer is required, O&M of groundwater pre-treatment plant, O&M of containment cell, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.08-1-7

Fort Schuyler Management Corp.

Monitoring Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction

O&M Plan

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

132.12-1-9.11

Fort Schuyler Management Corp.

Ground Water Use Restriction Soil Management Plan Landuse Restriction O&M Plan

Monitoring Plan

Area III: Maintain vegetative cover (limited area sampling required before buildout, failure to meet SSALs would require one foot of clean cover or alternative with a demarcation layer), O&M of passive groundwater treatment, land use restriction, fencing, groundwater use prohibition, soil/fill management, SVI evaluation or installation of vapor mitigation system before buildout. (5/21/08)

Box 4

#### **Description of Engineering Controls**

<u>Parcel</u> <u>Engineering Control</u>

122.16-1-8.1

Cover System

Fencing/Access Control

122.20-1-21

**Groundwater Treatment System** 

Cover System

Groundwater Containment Leachate Collection Fencing/Access Control

122.20-1-3.1

Cover System

Fencing/Access Control

122.20-1-5.1

Groundwater Treatment System

Cover System

Fencing/Access Control

132.08-1-6

Groundwater Treatment System

Cover System

Groundwater Containment Leachate Collection

| <u>Parcel</u>                                                                                                                                                                                                                                      | Engineering Control Fencing/Access Control                                                                                         |                             |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--|
|                                                                                                                                                                                                                                                    | i chong/Access Control                                                                                                             |                             |       |  |
| 132.08-1-7                                                                                                                                                                                                                                         | Cover System<br>Fencing/Access Control                                                                                             |                             |       |  |
| 132.12-1-9.11                                                                                                                                                                                                                                      | Cover System<br>Fencing/Access Control                                                                                             |                             |       |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                    |                             | Box 5 |  |
| Periodic Review F                                                                                                                                                                                                                                  | Report (PRR) Certification Statements                                                                                              | s                           |       |  |
| I certify by checking "YES" be                                                                                                                                                                                                                     | . , ,                                                                                                                              |                             |       |  |
| a) the Periodic Review                                                                                                                                                                                                                             | report and all attachments were prepa<br>making the certification;                                                                 | red under the direction of, | and   |  |
| are in accordance with                                                                                                                                                                                                                             | vledge and belief, the work and conclusions described in this ce<br>e requirements of the site remedial program, and generally acc |                             |       |  |
| engineering practices; and                                                                                                                                                                                                                         | the information presented is accurate a                                                                                            | rna compete.<br>YES         | NO    |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                    |                             |       |  |
| 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: |                                                                                                                                    |                             |       |  |
| (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;                                                           |                                                                                                                                    |                             |       |  |
| (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;                                                                                                                              |                                                                                                                                    |                             |       |  |
| (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                                                                             |                                                                                                                                    |                             |       |  |
| (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                                                                                |                                                                                                                                    |                             |       |  |
| (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.                                                        |                                                                                                                                    |                             |       |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                    | YES                         | NO    |  |
|                                                                                                                                                                                                                                                    |                                                                                                                                    |                             |       |  |
|                                                                                                                                                                                                                                                    | WER TO QUESTION 2 IS NO, sign and                                                                                                  |                             |       |  |
| A Corrective Measures Work P                                                                                                                                                                                                                       | lan must be submitted along with this                                                                                              | form to address these iss   | sues. |  |
| Olimature (O. D. W. C.                                                                                                                                                                                                                             | arty or Designated Representative                                                                                                  | <br>Date                    |       |  |

#### IC CERTIFICATIONS SITE NO. V00619

Box 6

#### SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

| Scott Rateman<br>print name                                         | at FORT SCHUYLER MANAGEMENT CORP. print business address |
|---------------------------------------------------------------------|----------------------------------------------------------|
| am certifying as O WNE                                              | (Owner or Remedial Party)                                |
| for the Site named in the Site Details Sec                          | etion of this form.  \$\sigma \left  29/19               |
| Signature of Owner, Remedial Party, or E<br>Rendering Certification | Designated Representative Date                           |

#### IC/EC CERTIFICATIONS

Box 7

#### **Professional Engineer Signature**

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Benchmark Environmental Engineering

2558 Itambus Tipk

Brint name

print business address

am certifying as a Professional Engineer for the \_\_\_\_\_\_

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner

Remedial Party, Rendering Certification

5-30-19

Date

### **APPENDIX B**

#### **AREA II**

ANNUAL GWPT'S REPORT &

BSA SEMI-ANNUAL COMPLIANCE MONITORING REPORTS





# ANNUAL PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES RiverBend, LLC (Site No. V00619-9)

197 Baraga St, Buffalo NY, 14210

#### PROGRESS REPORT No. 19 REPORTING PERIOD ENDING DECEMBER 31, 2018

#### **Project Description**

This Annual Progress Report has been prepared for the RiverBend, LLC Groundwater Pre-Treatment System (GWPTS) located at 312 Abby Street, Buffalo, NY in accordance with the requirements of the Site Management Plan and at the request of the NYSDEC. In accordance with our NYSDEC-approved Modification Request (dated April 25, 2011), this Progress Report covers one-year operation and maintenance of the GWPTS from January 1, 2018 through December 31, 2018.

#### 1.0 Treatment Statistics

- Approximately 9,427,491 gallons of groundwater was collected and treated over the current monitoring period averaging 25,771 gallons per day.
- System was on-line for approximately 99% of the time.
- System was off-line for approximately 1% of the time.
- Approximately 156.5 pounds of tar was generated from the oil/water separator and non-routine pump station cleaning activities. Based on this monthly quantity (less than 13 pounds per calendar month), a Hazardous Waste Report is not required making FSMC's RiverBend Site a Conditionally Exempt Small Quantity Generator (CESQG) in accordance with Part 371.1(f). For comparison, quantities of generated tar during previous years of operation included: ± 659 pounds in 2012, ± 912 pounds in 2013, ± 139.4 pounds in 2014, ± 296.9 pounds in 2015, ± 1614.8 pounds in 2016, and ± 2,535.4 pounds in 2017.
- On February 9, 2018, 5 drums of tar (approximately 236 gallons) were transported and disposed at US Ecology Detroit South (formerly EQ Detroit Inc.) of Detroit, Michigan as a D007 (53 O-cresol waste), D008 (54 M-cresol waste), D018 (55 P-cresol waste), and D030 (211 Mercury waste).

#### 2.0 General Schedule of Maintenance Undergone

- Regular Maintenance Items
  - o 2 bag filter changes/week or as necessary with weekly off-site remote monitoring via the internet.
  - o Carbon filtration vessel back-washing: 2 times per week or as necessary
  - o Decant tar from separator: 2 times per week or as necessary
- January 3, 2018 Flow meter was calibrated.
- January 2018 Cleaned the influent tank, effluent tank, and oil/water separator.



# ANNUAL PROGRESS REPORT FOR THE OPERATION, MAINTENANCE, AND MONITORING SERVICES RiverBend, LLC

(Site No. V00619-9) 197 Baraga St, Buffalo NY, 14210

#### PROGRESS REPORT No. 19 REPORTING PERIOD ENDING DECEMBER 31, 2018

- May thru October 2018 Mowed grass area and weed trimmed fence line around the treatment building, as necessary.
- June 8, 2018 Changed the carbon in lead vessel #1. Lead and lag vessels were reversed at that time (vessel #1 became the lag and #2 the lead).
- June 12, 2018 Annual certification/inspection associated with the Periodic Review Report (PRR) in accordance with DER-10 was performed.
- June 2018 ORC monitoring in Area III was performed.
- September 2018 Long-Term Groundwater Monitoring was performed in Areas I, II, and III.
- September 26, 2018 Mowed final cover and weed trimmed penetrations associated with the Area II Containment Cell.
- November 2018 ORC monitoring in Area III was performed.
- December 13, 2018 Changed the carbon in lead vessel #2. Lead and lag vessels were reversed at that time (vessel #2 will become the lag and #1 the lead).

#### 3.0 Attachments/Logs

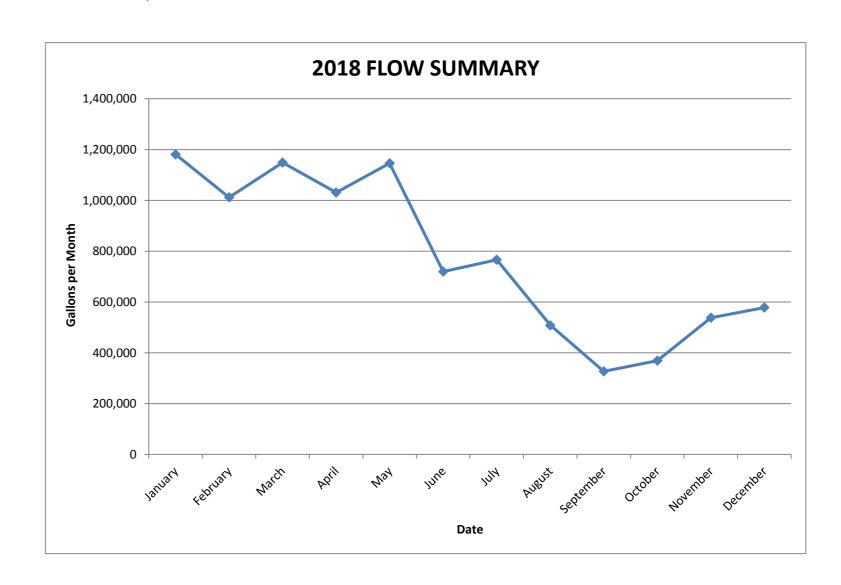
- Attachment 1: Graph of monitored flows through treatment system for 2018
- Attachment 2: Maintenance Logs for 2018 (01/03/18 thru 01/08/19)
- Attachment 3: Generated Volume of Tar Material (01/03/18 thru 12/31/17)
- Attachment 4: Hazardous Waste Manifest (2/9/18)

## **ATTACHMENT 1**

MONITORED FLOWS VS. TIME





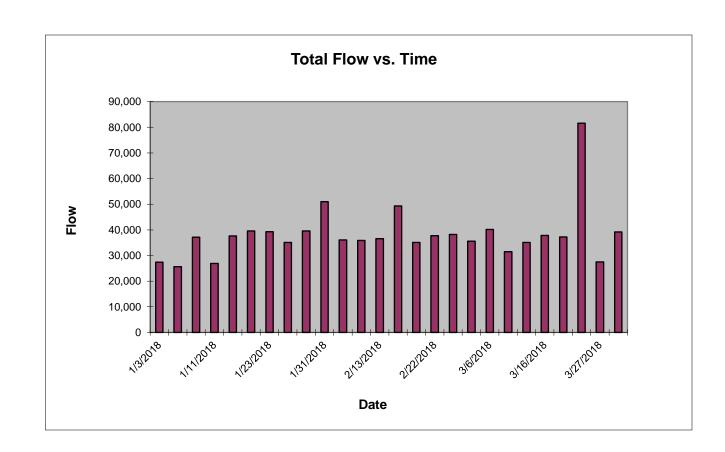

#### **ATTACHMENT 1**

# MONITORED FLOWS v. TIME 2018

Groundwater Pre-Treatment System (GWPTS)
Riverbend, LLC
(Site No. V00619-9)
Buffalo, New York

#### 2018

| Month              | GPMo       | GPD    | GPM |
|--------------------|------------|--------|-----|
| January            | 1,181,053  | 38,098 | 26  |
| February           | 1,011,469  | 34,878 | 24  |
| March              | 1,148,920  | 37,062 | 26  |
| April              | 1,031,091  | 34,370 | 24  |
| May                | 1,146,071  | 36,970 | 26  |
| June               | 719,681    | 23,989 | 17  |
| July               | 766,029    | 24,711 | 17  |
| August             | 508,256    | 16,395 | 11  |
| September          | 326,777    | 10,893 | 8   |
| October            | 369,054    | 11,905 | 8   |
| November           | 537,635    | 17,921 | 12  |
| December           | 578,105    | 18,649 | 13  |
| Total              | 9,324,141  |        |     |
| Min.               | 326,777    | 10,893 | 8   |
| Max.               | 1,181,053  | 38,098 | 26  |
| Ave.               | 777,012    | 25,487 | 18  |
| Since August 2008: |            |        |     |
| Total              | 93,099,936 | NA     |     |
| Min.               | 191,242    | 6,169  |     |
| Max.               | 2,318,235  | 77,104 |     |
| Ave.               | 838,738    | 27,575 |     |






# MONITORED FLOWS v. TIME FIRST QUARTER 2018

Groundwater Pre-Treatment System (GWPTS)
Riverbend, LLC
Buffalo, New York

| Date      | Total Flow | Daily Avg |
|-----------|------------|-----------|
| 1/3/2018  | 10,226,872 | 27,339    |
| 1/5/2018  | 51,206     | 25,603    |
| 1/9/2018  | 148,693    | 37,173    |
| 1/11/2018 | 202,473    | 26,890    |
| 1/16/2018 | 390,675    | 37,640    |
| 1/17/2018 | 430,226    | 39,551    |
| 1/23/2018 | 666,146    | 39,320    |
| 1/24/2018 | 701,203    | 35,057    |
| 1/30/2018 | 938,713    | 39,585    |
| 1/31/2018 | 989,680    | 50,967    |
| 2/6/2018  | 1,205,964  | 36,047    |
| 2/8/2018  | 1,277,635  | 35,836    |
| 2/13/2018 | 1,460,327  | 36,538    |
| 2/15/2018 | 1,559,049  | 49,361    |
| 2/20/2018 | 1,734,528  | 35,096    |
| 2/22/2018 | 1,809,954  | 37,713    |
| 2/27/2018 | 2,001,149  | 38,239    |
| 3/1/2018  | 2,072,230  | 35,541    |
| 3/6/2018  | 2,272,940  | 40,142    |
| 3/8/2018  | 2,335,866  | 31,463    |
| 3/12/2018 | 2,476,312  | 35,112    |
| 3/16/2018 | 2,627,418  | 37,777    |
| 3/21/2018 | 2,813,673  | 37,251    |
| 3/22/2018 | 2,895,261  | 81,588    |
| 3/27/2018 | 3,032,560  | 27,460    |
| 3/30/2018 | 3,150,069  | 39,170    |
|           |            |           |
|           |            |           |
|           |            |           |
|           |            |           |
|           |            |           |
|           |            |           |
|           |            |           |
|           |            |           |



Total Quarterly Flow: 3,341,442 gallons Ave. Quarterly Flow: 36,680 gallons/day

| JANUARY   |               |  |
|-----------|---------------|--|
| 1,181,053 | gallons/month |  |
| 31        | days          |  |
| 38,098    | gallons/day   |  |
| 26        | gallons/min   |  |

| FEBRUARY  |               |  |
|-----------|---------------|--|
| 1,011,469 | gallons/month |  |
| 29        | days          |  |
| 34,878    | gallons/day   |  |
| 24        | gallons/min   |  |

| MARCH     |               |  |
|-----------|---------------|--|
| 1,148,920 | gallons/month |  |
| 31        | days          |  |
| 37,062    | gallons/day   |  |
| 26        | gallons/min   |  |

# Notes:



# MONITORED FLOWS v. TIME SECOND QUARTER 2018

Groundwater Pre-Treatment System (GWPTS)
Riverbend, LLC
Buffalo, New York

| Date      | Total Flow | Daily Avg |  |
|-----------|------------|-----------|--|
|           |            | , ,       |  |
| 4/2/2018  | 3,253,255  | 34,395    |  |
| 4/5/2018  | 3,362,572  | 36,439    |  |
| 4/11/2018 | 3,585,612  | 37,173    |  |
| 4/13/2018 | 3,617,642  | 16,015    |  |
| 4/17/2018 | 3,797,492  | 44,963    |  |
| 4/19/2018 | 3,873,519  | 38,014    |  |
| 4/24/2018 | 4,060,453  | 37,387    |  |
| 4/27/2018 | 4,181,160  | 40,236    |  |
| 5/1/2018  | 4,313,554  | 33,099    |  |
| 5/3/2018  | 4,385,690  | 36,068    |  |
| 5/8/2018  | 4,566,014  | 36,065    |  |
| 5/10/2018 | 4,634,899  | 34,443    |  |
| 5/14/2018 | 4,777,858  | 35,740    |  |
| 5/17/2018 | 4,876,025  | 32,722    |  |
| 5/22/2018 | 5,049,399  | 34,675    |  |
| 5/24/2018 | 5,119,934  | 35,268    |  |
| 5/30/2018 | 5,327,231  | 34,550    |  |
| 6/1/2018  | 5,395,764  | 34,267    |  |
| 6/4/2018  | 5,502,524  | 35,587    |  |
| 6/6/2018  | 5,572,710  | 35,093    |  |
| 6/8/2018  | 5,642,343  | 34,817    |  |
| 6/11/2018 | 5,714,682  | 24,113    |  |
| 6/15/2018 | 5,804,233  | 22,388    |  |
| 6/18/2018 | 5,875,194  | 23,654    |  |
| 6/21/2018 | 5,943,562  | 22,789    |  |
| 6/26/2018 | 6,046,912  | 20,670    |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |

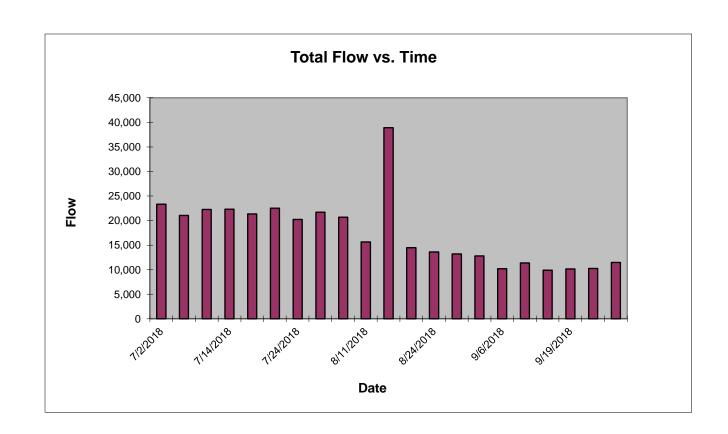
|      | Total Flow vs. Time                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |      |  |         |          |                  |  |
|------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------|--|---------|----------|------------------|--|
| Flow | 50,000<br>45,000<br>40,000<br>35,000<br>25,000<br>10,000<br>5,000<br>0 | A Sanda of the san | Arzaran 8 | Salar 8 | Date |  | Outon's | On Trans | OLIVANO BOLLINGO |  |

Total Quarterly Flow: 2,896,843 gallons Ave. Quarterly Flow: 31,776 gallons/day

| APRIL     |               |  |
|-----------|---------------|--|
| 1,031,091 | gallons/month |  |
| 30        | days          |  |
| 34,370    | gallons/day   |  |
| 24        | gallons/min   |  |
|           | , u           |  |

| MAY       |               |  |
|-----------|---------------|--|
| 1,146,071 | gallons/month |  |
| 31        | days          |  |
| 36,970    | gallons/day   |  |
| 26        | gallons/min   |  |

| JUNE    |               |  |
|---------|---------------|--|
| 719,681 | gallons/month |  |
| 30      | days          |  |
| 23,989  | gallons/day   |  |
| 17      | gallons/min   |  |


# Notes:



# MONITORED FLOWS v. TIME THIRD QUARTER 2018

# Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

| Date      | Total Flow | Daily Avg |  |
|-----------|------------|-----------|--|
| 7/2/2018  | 6,186,825  | 23,319    |  |
| 7/6/2018  | 6,270,987  | 21,041    |  |
| 7/10/2018 | 6,359,983  | 22,249    |  |
| 7/14/2018 | 6,449,262  | 22,320    |  |
| 7/18/2018 | 6,534,570  | 21,327    |  |
| 7/22/2018 | 6,624,588  | 22,505    |  |
| 7/24/2018 | 6,665,022  | 20,217    |  |
| 7/27/2018 | 6,730,132  | 21,703    |  |
| 7/31/2018 | 6,812,941  | 20,702    |  |
| 8/11/2018 | 6,985,122  | 15,653    |  |
| 8/15/2018 | 7,140,809  | 38,922    |  |
| 8/21/2018 | 7,227,618  | 14,468    |  |
| 8/24/2018 | 7,268,447  | 13,610    |  |
| 8/28/2018 | 7,321,197  | 13,188    |  |
| 9/2/2018  | 7,385,297  | 12,820    |  |
| 9/6/2018  | 7,426,203  | 10,227    |  |
| 9/11/2018 | 7,483,099  | 11,379    |  |
| 9/14/2018 | 7,512,836  | 9,912     |  |
| 9/19/2018 | 7,563,470  | 10,127    |  |
| 9/25/2018 | 7,624,987  | 10,253    |  |
| 9/27/2018 | 7,647,974  | 11,494    |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |
|           |            |           |  |

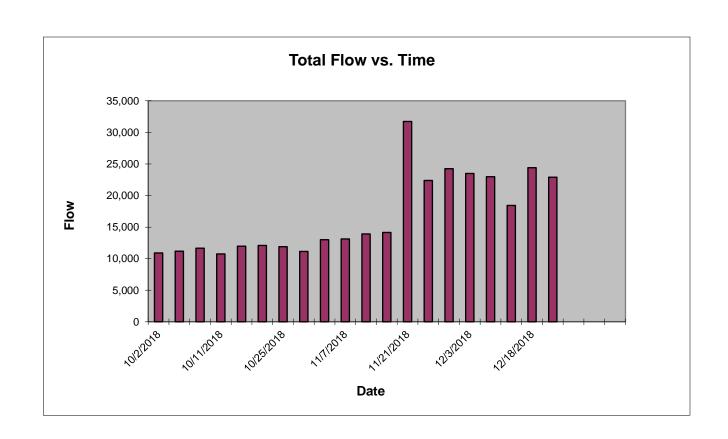


Total Quarterly Flow: 1,601,062 gallons Ave. Quarterly Flow: 17,333 gallons

| JULY    |               |  |
|---------|---------------|--|
| 766,029 | gallons/month |  |
| 31      | days          |  |
| 24,711  | gallons/day   |  |
| 17      | gallons/min   |  |

| AUGUST        |  |  |
|---------------|--|--|
| gallons/month |  |  |
| days          |  |  |
| gallons/day   |  |  |
| gallons/min   |  |  |
|               |  |  |

| SEP     | <b>TEMBER</b> |
|---------|---------------|
| 326,777 | gallons/month |
| 30      | days          |
| 10,893  | gallons/day   |
| 8       | gallons/min   |


# Notes:



# MONITORED FLOWS v. TIME FOURTH QUARTER 2018

# Groundwater Pre-Treatment System (GWPTS) Riverbend, LLC Buffalo, New York

| Date       | Total Flow | Daily Avg |
|------------|------------|-----------|
| 10/2/2018  | 7,702,397  | 10,885    |
| 10/4/2018  | 7,724,745  | 11,174    |
| 10/9/2018  | 7,782,939  | 11,639    |
| 10/11/2018 | 7,804,430  | 10,746    |
| 10/17/2018 | 7,876,161  | 11,955    |
| 10/23/2018 | 7,948,661  | 12,083    |
| 10/25/2018 | 7,972,466  | 11,903    |
| 10/29/2018 | 8,017,028  | 11,141    |
| 11/2/2018  | 8,069,105  | 13,019    |
| 11/7/2018  | 8,134,756  | 13,130    |
| 11/12/2018 | 8,204,377  | 13,924    |
| 11/20/2018 | 8,317,633  | 14,157    |
| 11/21/2018 | 8,349,378  | 31,745    |
| 11/28/2018 | 8,506,146  | 22,395    |
| 11/30/2018 | 8,554,663  | 24,259    |
| 12/3/2018  | 8,625,161  | 23,499    |
| 12/7/2018  | 8,717,035  | 22,969    |
| 12/13/2018 | 8,827,626  | 18,432    |
| 12/18/2018 | 8,949,664  | 24,408    |
| 12/26/2018 | 9,132,768  | 22,888    |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |
|            |            |           |



Total Quarterly Flow: 1,484,794 gallons Ave. Quarterly Flow: 16,158 gallons

| OC      | TOBER         |
|---------|---------------|
| 369,054 | gallons/month |
| 31      | days          |
| 11,905  | gallons/day   |
| 8       | gallons/min   |

| NOV     | 'EMBER        |
|---------|---------------|
| 537,635 | gallons/month |
| 30      | days          |
| 17,921  | gallons/day   |
| 12      | gallons/min   |

| DEC     | EMBER         |
|---------|---------------|
| 578,105 | gallons/month |
| 31      | days          |
| 18,649  | gallons/day   |
| 13      | gallons/min   |

# Notes:

FIELD LOGS



Waste Water Treamment - Riverbend

Maintenance Log

|            |              |            |            |             |             | Main    | Maintenance Log      | Log          |          |                    |            |                |           |                    |
|------------|--------------|------------|------------|-------------|-------------|---------|----------------------|--------------|----------|--------------------|------------|----------------|-----------|--------------------|
|            | Date         | Flow Meter | Lead Tank  | Tank        | Back Flush  | Flush   | Bag Filter<br>Change | ilter<br>nge | Bag Pres | Bag Pressure (PSI) | Decant Oil | Tar in<br>Drum | Instantan | Instantaneous Flow |
|            |              | Reading    | Tank 1     | Tank 2      | Tank 1      | Tank 2  | Tank 1               | Tank 2       | Before   | After              | Seperator  | (inches)       | Before    | After              |
| *          | 1-3-18       | 10226873   |            | >           | >           | /       | >                    | 7            | 23.4     | 22,3               | >          | 101            | 65:33     | 83.07              |
|            | 1-5-18       | 51306      |            | >           | \           | >       | \<br>\               | 7            | 23.4     | 22.1               | \          |                | 73.83     | 80.31              |
|            | 1-6-18       | 1481.93    |            | >           | 7           | >       | \                    | >            | 33.0     | 23.0               | 7          | 34.            | 72.85     | 82,54              |
|            | 81-11-1      | 202473     |            | >           | >           | 7       | >                    | 7            | 25.9     | 21.6               | 7          |                | 73.45     | 81.65              |
| ত          | 1-16-18      | 390675     |            | >           | >           | >       | >                    | >            | 23.6     | 3303               | >          | M              | 6826      | 79,26              |
|            | 1-17-18      | 430336     |            | >           | >           | >       | \<br>\               |              | 23.0     | 23.4               | >          | ř.             | 7/046     | 801/8              |
|            | 1-23-18      | 1066146    |            | >           | <b>&gt;</b> | >       | <u> </u>             | >            | 23.3     | 4.86               | >          | :              | 12.99     | 78.87              |
|            | 81-48-1      | 701303     |            | >           | >           | >       | >                    | 7            | 2301     | 33.5               | >          | a.             | 70.58     | 8H:03              |
|            | 1-30-18      | 938713     |            | /           | /,          | >       | >                    | >            | 22.3     | 22.3               | <u> </u>   | 7.5"           | 71,73     | 18.91              |
|            | 1-31-18      | 989680     |            | >           | >           | >       | <b>&gt;</b>          | >            | 33.7     | 32c1               | >          | :              | 73,73     | 77:46              |
|            | 2-6-18       | 1305964    |            | <u>\</u>    | <u> </u>    |         | >                    | >            | 23.3     | 23,2               | >          |                | 68.46     | 77.13              |
|            | 81-8-8       | 1277635    |            | <u> </u>    | /           | >       | >                    | <b>/</b>     | 32.8     | 2203               |            |                | 68.89     | 77.27              |
|            | 2-13-18      | 1460337    |            | >           | <u> </u>    | /       | >                    | >            | 23.4     | 2205               | >          | \$ 511         | 63.89     | 76.84              |
| ত          | 3-15-18      | 1559049    |            | <b>&gt;</b> | <u> </u>    | /       | <u> </u>             | /            | 33°0     | 22.4               | >          | 1              | 41001     | 73.95              |
| •          | 3-30-18      | 1134528    |            | >           | >           | >       | >                    | >            | 33.3     | 3264               | >          | ı              | 610 40    | 74.17              |
|            | 81-60-6      | 1,809954   |            | >           | >           | >       | \<br>\               |              | 229      | 2205               | >          |                | 68.6      | 75.83              |
| <b>G</b> C | 3-21-        | 2001149    | >          | 會           | 7           | >       | >                    |              | 333      | 20,2               | >          | 6.511          | 65.74     | 76.79              |
|            | 3-1-18       | 3073330    | >          |             | >           | >       | <u> </u>             | <u>\</u>     | 225      | 23.3               | <u>\</u>   | 4              | 67.37     | 77.96              |
|            | 3-6-18       | 3373940    | >          |             | \           | >       |                      | \            | 2201     | 81.9               |            | *2             | 68.89     | 78.92              |
|            | 81-8-2       | 2335866    | >          |             | >           | >       | >                    |              | 32.7     | 21.8               |            | 1              | 68.73     | 78,03              |
|            | 3-12-14      | 2476312    | >          |             | 7           | 7       | 7                    | 7            | 330      | 22.0               | >          | 211            | 66,39     | 79.13              |
| O          | 3-16-18      | 3637418    | ۷          |             | >           | >       | \<br>\               |              | 23.6     | 3/68               |            |                | 62017     | 77.77              |
|            | 3-31-18      | 3813673    | >          |             | >           | >       | >                    | 5            | 23.3     | 21.3               | >          | 1              | 62.14     | 78,63              |
|            | 3-33-18      | 2895261    | >          |             | >           | >       | >                    | >            | 32,3     | 71.4               | >          |                | 66.58     | 74.65              |
|            | 3-37-18      | 3032560    | >          |             | 7           | >       | >                    | >            | 23.3     | 33.0               | >          | 7.5"           | £ 8.52    | 76.93              |
| C.T        | 3 -36-18     | 3150069    | >          |             | >           | >       | >                    | >            | 33.1     | 246                | >          | :              | 67.34     | 75.96              |
| 5          | 81-7-1       | 3253255    | /          |             | 1           | 1       | 2                    | 7            | 22.7     | 21.8               | 1          |                | 70        | 87                 |
|            | 4-5-18       | 3362572    | 7          |             | 7           | 7       | 7                    | 7            | 22,2     | 21.7               | 7          |                | (uS       | 2,3                |
|            | 81-11-15     | 3585613    | >          |             | >           | >       | >                    | >            | 23.9     | 8/10               | >          | 8:             | 63        | 18                 |
| ত          | 4-13-18      | 3617643    | >          |             | >           | >       | >                    | 7            | 23.0     | 21.7               | 7          | 1              | 68        | 79                 |
|            | 4-11-18      | 379 7493   | >          |             | >           | >       | 7                    | 7            | 23.1     | 21.8               | 7          | 1              | 60        | \$0                |
|            | -14-         | 3873519    | >          |             |             | 7       | 7                    | 7            | 23.0     | 31.7               | 7          | ŧ              | 60        | - 11               |
|            | 4-94-18      | 406 6453   | >          |             | \<br>\<br>! | >       | >                    | 7            | 2367     | 31.6               | >          | 8.35           | 70        | 78                 |
| •          | * FLOW METER | Ke         | CALIBRATES | ans         | ust suo     | o moren | EN RE                | -Se7         | R        | 0                  | 1 1/5 1    | 15 flast       | denoine   | ct your            |
|            |              | *          | 1          | ( )<br>( )  | V.          |         |                      |              |          |                    | Y          |                |           | 8                  |

"G"- fines GEORECO - 1x3 Amonth (3pmps)
C- CARREN CHANGE OF TANK 2. & LOND TANK CHANGED TO TTANK 1



G \*

Waste Water Treد الماط - Riverbend Maintenance Log

|          | )        |            |           |        |            | Main   | Maintenance Log      | Log                  |                    |            |            |          |           |                    |
|----------|----------|------------|-----------|--------|------------|--------|----------------------|----------------------|--------------------|------------|------------|----------|-----------|--------------------|
|          | Date     | Flow Meter | Lead Tank | Tank   | Back Flush | Flush  | Bag Filter<br>Change | Sag Filter<br>Change | Bag Pressure (PSI) | sure (PSI) | Decant Oil | Tar in   | Instantan | Instantaneous Flow |
|          |          | Reading    | Tank 1    | Tank 2 | Tank 1     | Tank 2 | Tank 1               | Tank 2               | Before             | After      | Seperator  | (inches) | Before    | After              |
|          | 4-97-18  | 4181161    | >         | 8      | >          | 7      | 7                    | 1                    | 22.7               | 2116       | \          | 8018     | 601       | 78                 |
|          | 81-1-5   | 4313554    | 7         |        | >          | >      | \                    |                      | 2063               | 71/6       | \          | ,        | 99        | 51                 |
|          | 5-3-18   | 4385190    | >         |        | \          | >      | >                    | \                    | 2301               | 100        | \          | ,        | 68        | 20                 |
|          | 8-8-5    | 456014     | >         | ü      | \<br>\     | >      | >                    | >                    | 2363               | 31.5       | \          | 1        | 49        | 22                 |
| 5        | 81-01-5  | 4634899    | >         |        | <u>\</u>   | \      | 7                    | >                    | 230                | 7164       | 7          | 1.6      | 8         | 77                 |
|          | 81-61-5  | 4777858    | >         |        |            |        | <b>\</b>             |                      | SEC                | 448        | >          | , ,      | 67        | 6/                 |
| W        | 81-11-8  | 4876025    | >         |        | 5          | >      | >                    | \                    | 223                | 21.7       | >          | 3        | to)       | 11                 |
|          | 5-23-18  | 5049399    | >         |        | >          | >      | >                    | 7                    | 22.5               | 3/8        | 1          |          | 49        | 28                 |
|          | 81. HE-5 | 5119934    | >         |        | /          | >      |                      | \                    | 23.2               | 2106       |            | " N. 36  | 65        | 78                 |
|          | 5-36-18  | 3          | 7         |        | \          | 7      | 7                    | \                    | 33.6               | 4010       | \<br>\     | -        | 23        | 27                 |
|          | 11-1-0   | 5395764    | 7,        |        | 7          | 7      | 1                    | 7                    | 73.4               | 31.5       | 1          |          | 19        | 28                 |
| Ċ        | 11-6-0   | yes6055    | >         |        | 7          | 1      | ,                    | 7                    | 24.7               | 210        | 1          |          | 64        | 29                 |
| 1        | 81-0-9   |            | >         |        | >          | >      | >                    | >                    | 23.3               | 0163       | 1          | ,. KIE 6 | 60        | 22                 |
|          | 81-8-9   | . 0        |           | >      | 7          | 7      | 7                    | 1                    |                    | 20.7       | 1          | **       |           | 75                 |
|          | 6-11-18  | 5714682    |           | 7      | 7          | 7      | 7                    | 7                    | 21.3               | 208        | 7          |          | 74        | 13                 |
|          |          | 24.2       |           | >      | 2          | >      | 7                    | \                    | 21.6               | 2000       | 1          | *        | 89        | 100                |
| 9        | 1        | 5875194    |           | 7      | 7          | 7      | /                    | 7                    | 21,7               | 21.1       | /          | 9 3/48   | 78        | 83                 |
| Ò        | 41-18-9  | 5943563    |           | >      | >          | 7      | 7                    | 7                    | 21.5               | 2008       | 1          |          | 73        | 83                 |
|          |          | 6076913    |           | >      | >          | 7      | >                    | >                    | 3/17               | 20.9       | <b>/</b>   |          | 11        | 83                 |
| ,        | 2-8-18   | 6186835    |           | >      | >          | >      | 7                    | 7                    | 22,8               | 81.0       | 1          | -        | 40        | 80                 |
| 7        | 7-6-18   | 4370967    |           | >      | >          | >      | >                    | >                    |                    | 300 BR     | /          | 101      | · 73      | 98                 |
|          | 7-10-18  |            |           | >      | >          | >      | >                    | >                    | 33.3               | 21.0       | >          |          | . 73      | 28                 |
|          |          | 6449363    |           | >      | >          | >      | 5                    | 2                    | 2205               | 20.9       | >          | ,        | 73        | 35,                |
|          |          | 6534 53 D  |           | >      | >          | >      | >                    | >                    | 31.9               | 76. X      | >          |          | 12        | 26                 |
|          | 8        | 6624584    |           | >'     | > '        | >      | 7                    | >                    | 2209               | 21.0       | >          | 10 K     | de C      | 48                 |
| <b>T</b> | 20       | CC05999    |           | >      | >          | >      | >                    | 7                    | 31.8               | 2101       | >          | 1        | OF        | 25                 |
|          | 31-18-   | 6730133    |           | >      | >          | >      | >                    | >                    |                    | 2163       | 7          |          | G.7       | 87                 |
|          | 7-31-18  | 1466189    |           | >      | >          | 2      | >                    | >                    | $\neg$             | 4.10       | >          | ı        | 62        | 29                 |
| <u> </u> | 2        | 6618819    |           | >      | >          | >      | >                    | >                    | 23.0               | 2009       | >          | 1025     | Let-      | 180                |
|          | - 15     | 7140804    |           | >      | >          | >      | >                    | >                    | 22°1               | 2163       | 2          | ŧ)       | 72        | 98                 |
|          | 0        |            | (p)       | >      | >          | >      | 2                    | >                    | 2303               | 31.1       | >          | t        | 99        | 83                 |
| 1        | 16-J     | 736844 F   |           | >      | >          | >      | >                    | >                    |                    | 38.9       | >          | 1        | 75        | 27                 |
| in the   | 8-38-18  | 7331197    |           | >      | >          | >      | >                    | >                    | 3a.4               | 0%         | >          | 10,3%    | 1+        | 85                 |
| 北北       | 0 304    | 4          |           |        |            |        |                      |                      |                    | 7          |            |          |           |                    |

"B" -> Pumps Grandson on Areaval - Influent That Anem @ Hait love, - Backhistons cleaned p-pos - weeking Presport,

Waste Water T. ment Plant - Riverbend

| Date     | Flow Meter<br>Reading | Lead   | Lead Tank | Back   | Back Flush | Cha         | Bag Filter<br>Change | Bag Pres | Bag Pressure (PSI) | Decant Oil | Tar in<br>Drum | Instantar | Instantaneous Flow |
|----------|-----------------------|--------|-----------|--------|------------|-------------|----------------------|----------|--------------------|------------|----------------|-----------|--------------------|
| 3, 20    |                       | Tank 1 | Tank 2    | Tank 1 | Tank 2     | Tank 1      | Tank 2               | Before   | After              | Seperator  | (inches)       | Before    | After              |
| 21-8-6   | +28234+               |        | 7         | 7      | 7          | >           | 7                    | 33.8     | 81.8               | 7          | 10-3%          | 14        | 18                 |
| 4-1-18   | 7476303               |        | 7         | 7      | 7          | 7           | 7                    | 320      | 20.8               | 1          |                | 120       | 85                 |
| 81-11-6  | 74830E                |        | 7         | 7      | 7          | 7           | >                    | 33.4     | 20.9               | 7          | t.             | 20        | 24                 |
| 8-14-18  | 7512830               |        | 7         | 7      | 7          | 7           | >                    | 5.EC     | 21.0               | 7          | 1              | 57        | 53                 |
| 3-13-18  | 7563470               |        | 7         | 7      | 7          | 7           | 7                    | 22.3     | 90C                | 7          | 9625           | 77.       | ×                  |
| 9-35-18  | £86469£               |        | 7         | 1      | 7          | 7           | 1                    | 22.6     | 21.0               | 7          |                | 59        | 2/8                |
| X1- tE-X | 7                     |        | 7         | 7      | /          | 7           | >                    | P.CE     | 20.8               | >          | 1              | 25.4      | * C                |
| 81-0-01  | 7702397               |        | 7         | >      | \          |             |                      | 220      | 2009               | 7          |                | 40        | 7%                 |
| 81-10-01 | 54 thet t             |        | 7         | >      | >          | >           | >                    | 5.60     | 3/1.3              |            | 3:03           | 25        | 83                 |
| 16-9-18  | 1783939               |        | >         | >      | 1          | <b>&gt;</b> | >                    | 670      | 20.5               | ۷          | 4              | 九七        | 7.85               |
| A I      | 7804430               |        | >         | >      | >          | >           | \                    | 31.8     | 3103               | >          | •              | 7         | 88                 |
| 87-121-0 | 1919484               |        | >         | >      | >          | >           | /                    | N.CC     | 1.1E               | >          | -              | 70        | 4%                 |
| m        |                       |        | >         | >      | \<br>\     | >           | /                    | S. E.C   | 3/10               | >          | 29.75          | 24        | CS                 |
| 81-50-01 | 4                     |        | ×         | >      | >          | >           | <u>\</u>             | 33.3     | 51.8               | >          | 1              | ht        | 300                |
| 29       | 8017038               |        | >         | >      |            | >           | /                    | 93.9     | 19/E               | >          | 1              | 12        | 8.50               |
| in in    | =                     |        | 7         | >      | >          | >           | /                    | 22.7.    | 81.3               | 7          | 1              | ht        | 700                |
| 1        | 8134756               |        | >         | >      | >          | >           | /                    | 23.6     | 21.0               | >          | 101            |           | 84                 |
| 81-81-11 | 9                     |        | 7         | >      | 7          | 2           | 7                    | 8.CC     | 15.1C              | 7.         | 1              |           | 18                 |
| 27-17-11 | 1763                  |        | 7         | 7      | 1          | ,           | 7                    | 22.6     | 21.2               | 7,         | ì              |           | 85                 |
|          | 8544378               |        | 7         | 7      | 1          | 7           | 7                    | 21.7     | 26.0               | 7          | 1              | 76        | 8                  |
| 11-38-18 | 8506146               |        | >         | >      | >          | >           | 7                    | 33,6     | 31.4               | \          | 10%            |           | 00                 |
| 1        | 4554663               |        | >         | >      | >          | >           | >                    | . 1      | 0/11               | 7          | 1              | 16        | 86                 |
| 19-3-18  | 8695 6                |        | 7         | >      | 1          | >           | >                    |          | 20.9               | 7          | 1              | 74        |                    |
| 10-+ X   | 87 F635               |        | >         | >      | >          | >           | >                    | 32,6     | 21.0               |            | ,              | 20        | 86                 |
| 13-10-18 | (                     |        | >         |        |            | 7           | 7                    |          |                    | >          | 10:42          |           |                    |
| 19-13-18 | 1                     | >      |           | >      | >          |             |                      | 23,7     | 013                | /          | \$ ,           |           |                    |
| 18-18    | 4996 HLS              | >      |           | >      | >          | >           | >                    | 33.1     | 30°3               | /          | 9 -            | 4         | 06                 |
| 81-10-01 |                       | >      |           | >      | >          | >           | >                    | 71.4     | 30.23              | 7          |                | ×         | 69                 |
| 10-00-K  |                       | >      |           | >      | >          | >           | >                    | P.C.     | 30.7               | >          | 10,4504        | 65        | 29                 |
| 1-0-19   | 9385781               | >      |           | >      | >          | <b>&gt;</b> | <u> </u>             | 52.5     | 2006               | >          | 1              | 7/4       | 16                 |
| 51-8-1   | 943 56 79             | >      |           | >      | >          | >           | 7                    | Baci     | 20,3               | >          | -              | 75        | 95                 |
|          |                       |        |           |        |            |             |                      |          |                    |            | 1              |           |                    |
|          |                       |        |           |        |            |             |                      |          |                    |            |                |           |                    |



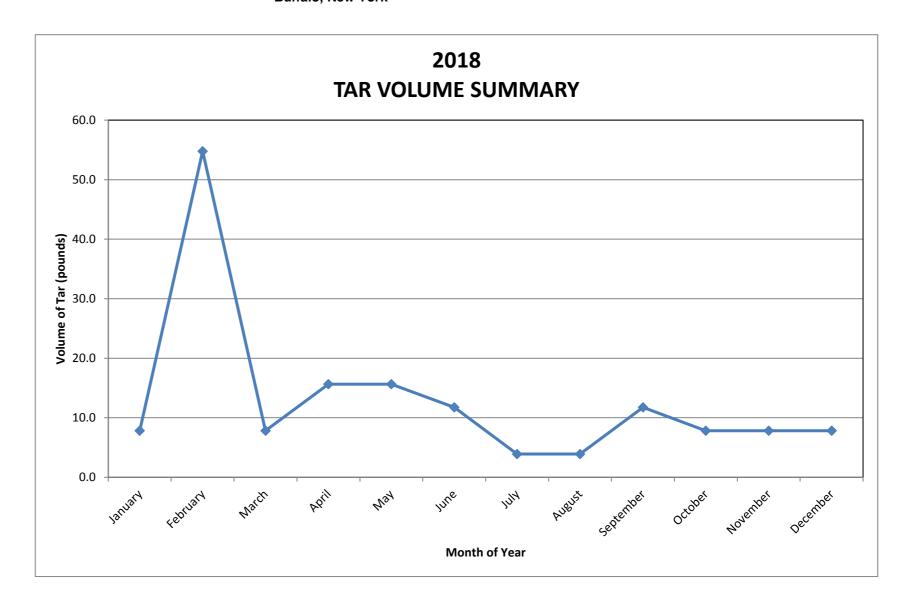
"6" GRENKED PUMP

\*\* C. - 12-18-18 - CARBON CHENGE TIMES . SLUTTE TRINK 4 05 (RQD). \*\* \* - 10/18 - 11/16 (LOB) TIKES YOUNGER

GENERATED VOLUME OF TAR MATERIAL






# GENERATED VOLUME OF TAR MATERIAL 2018

Groundwater Pre-Treatment System (GWPTS)
Riverbend, LLC
(Site No. V00619-9)
Buffalo, New York

|           | -                         |
|-----------|---------------------------|
| Month     | Volume of Tar<br>(pounds) |
| January   | 7.8                       |
| February  | 54.8                      |
| March     | 7.8                       |
| April     | 15.7                      |
| May       | 15.7                      |
| June      | 11.7                      |
| July      | 3.9                       |
| August    | 3.9                       |
| September | 11.7                      |
| October   | 7.8                       |
| November  | 7.8                       |
| December  | 7.8                       |

Total: 156.5 pounds Drums: 0.34

Min. 3.9 pounds Max. 54.8 pounds Ave. 13.0 pounds



HAZARDOUS WASTE MANIFEST (02/09/18)





DISPOSAL CONNECTIONS INC 6569 HEATHER DRIVE LOCKPORT, NY 14094-1152

Invoice Date: 02/15/2018 Customer ID: 018081

Facility: EQ Detroit, Inc., 1923 Frederick, Detroit, MI 48211

Description

ty. Unit

K179198DET - K179198DET pump station cleaning residuals (wc-2)

5.00 DM55

Customer Service: 1-800-592-5489 www.usecology.com

|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123 1517210c2112                                                                                                                       |                                                                  | r 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | 4. Manifest Tra                                                    | cking Nun                         | 100                     |                                   |                             |                                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|-------------------------|-----------------------------------|-----------------------------|----------------------------------------|
| print or                                                     | type. (Form desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ned for use o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n elite (12-pitch                                                                                                                      | n) typewnie                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Page 1 c                                                                    | f 3. Emerger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncy Response Ph                                                                    | one                                                                     | 009                                                                | ጸበ፣                               | 5R /                    | 4                                 | FLE                         |                                        |
| HEOR                                                         | M HAZARDOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1. Generalum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O Manney                                                                                                                               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W 2214                                                                             |                                                                         | mailing originates                                                 | 00.                               | 74.                     | •                                 |                             | 7                                      |
| WAST                                                         | E MANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NYF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000                                                                                                                                    | 140                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iom O'Bris                                                                     | Generator's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sile Address (if o                                                                 | different man                                                           | making audiess;                                                    |                                   | İ                       |                                   |                             | 1                                      |
| Genera                                                       | tor's Name and Mailin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £ Соглогий                                                                                                                             | ion .                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | 312 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | end Sile<br>sby Street                                                             |                                                                         |                                                                    |                                   | :                       |                                   |                             |                                        |
| FOI                                                          | t Schuyter was<br>Puller Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | . Balli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NY 1422                                                                            | <b>10</b>                                                               |                                                                    |                                   |                         |                                   |                             |                                        |
| AD                                                           | amu NY 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ALTERNA - 17-20-11                                                               |                                                                         | U.S. EPA ID Nu                                                     | mber                              |                         |                                   |                             |                                        |
| eneralc                                                      | y's Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.7                                                                                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | I NY D                                                             | 0 9                               | 7 8 4                   | 4 8                               | 01                          | 4                                      |
| Iransp                                                       | newanda Tai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nk Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | port Servi                                                                                                                             | ice inc.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | U.S EPAID N                                                        | mber                              | 1                       |                                   |                             | l                                      |
|                                                              | ooner 2 Company Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | 1                                                                  |                                   |                         |                                   |                             | $\dashv$                               |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | U.S. EFAID N                                                       | umber                             |                         |                                   |                             | - [                                    |
| . Oesio                                                      | nated Facility Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Site Addres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         |                                                                    |                                   | 8                       |                                   |                             | į                                      |
| 8                                                            | Detroil, inc.<br>123 Fracientek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         | MID                                                                |                                   | 00                      | 0 1                               | 5 6 6                       |                                        |
| D                                                            | wolf MI 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         |                                                                    |                                   | 1                       |                                   |                             |                                        |
| Facility'                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND MINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        | Nama Haza                                                        | and Class, ID No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | imber.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10. Contam                                                                         |                                                                         | 11. Total<br>Quantity                                              | 12 Unit<br>WLNOL                  | 1                       | : Nasæ                            | Codes                       |                                        |
| 3a.                                                          | 9b. U.S. DOT Descr<br>and Packing Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iption (including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Proper Shipping                                                                                                                        | Name, naza                                                       | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                                                                                | Type                                                                    | Quarty                                                             | ******                            | man.                    | • 100                             | Q8 D0                       | MA                                     |
| нМ                                                           | 1. RO NASO7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ii dirjii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        | Salle o                                                          | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7, D008, C                                                                     | 0018,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                                         |                                                                    | 1                                 | w                       | _ U                               | Ų, v                        | îïX                                    |
| ~                                                            | RO NA307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7, Hazaro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MP 4400.                                                                                                                               | , 3000, 1                                                        | ,_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 005                                                                                | DM                                                                      | 01575                                                              | P                                 | 003                     | 0                                 | <u>B</u>                    | _                                      |
| ^                                                            | D030), 9, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                                                                |                                                                         | -                                                                  |                                   |                         |                                   |                             |                                        |
| -                                                            | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | 1                                                                       | }                                                                  | 1                                 | 14                      | •                                 |                             |                                        |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                  | 1                                                                       |                                                                    | 1-                                | #-                      |                                   |                             | _                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         |                                                                    |                                   |                         |                                   |                             |                                        |
|                                                              | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                                                  | 1                                                                       | 1                                                                  | 1                                 | 1                       | : ### TC                          | *1                          |                                        |
|                                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | -                                                                       |                                                                    | +-                                | +-                      |                                   |                             | _                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                         |                                                                    | 1                                 | Į.                      |                                   | 8 B                         |                                        |
| Γ                                                            | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                                                                  | 1                                                                       | ì                                                                  | 1                                 | 11                      |                                   | _                           |                                        |
| 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1, ENG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hy and accurately                                                                  | described al                                                            | nove by the prope                                                  | r shipping (                      | name and                | are dassa                         | hed, packag                 | ed<br>/                                |
| 1                                                            | GENERATOR'S/OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FEROR'S CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTIFICATION: U                                                                                                                         | hereby decla                                                     | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons                                                              | ignment are ful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ty and accurately<br>international and open of Consent.                            | described al                                                            | pove by the prope                                                  | r shipping r<br>ons If expo       | name and<br>ort shipmen | are dassi                         | hed, packag<br>n the Primar | ed<br>#                                |
| 1                                                            | GENERATOR'S/OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FEROR'S CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RTIFICATION: U                                                                                                                         | hereby decla                                                     | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons                                                              | ignment are ful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hy and accurately<br>international and<br>ment of Consent.<br>I) or (b) (if I am a | described al<br>national gove<br>small quantit                          | nove by the prope<br>ernmental regulation<br>by generator) is that | r shipping r<br>ons If expo       | name and<br>ort shipmen | are classe<br>t and I an<br>Month |                             | ed<br>/                                |
| 15                                                           | GENERATOR'S/OF<br>marked and labeled<br>Exporter, I certify the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FEROR'S CEl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RTIFICATION: 1/1 d are in all respect of this consignm in statement ident                                                              | hereby decla                                                     | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons                                                              | ignment are ful<br>g to applicable<br>a Acknowledgm<br>antity generator<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e or (b) (if I am a                                                                | small quantit                                                           | y generator) is tru                                                | r shipping i<br>ans If expo<br>e. | name and                |                                   |                             | ed<br>Y                                |
| 15                                                           | GENERATOR'S/OF<br>marked and labeled<br>Exporter, I certify the<br>I certify that the wa<br>nerator's Ofteror's Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FEROR'S CEI<br>liplacarded, an<br>at the contents<br>sie minimizatio<br>nled/Typed Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTIFICATION: 11<br>d are in all respect<br>of this consignm<br>in statement ident<br>me                                                | hereby decla                                                     | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons                                                              | ignment are ful<br>g to applicable<br>a Acknowledgm<br>antity generator<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or (b) (if lama:                                                                   | smali quantit                                                           | y generator) is tru                                                |                                   | tns emer                | Mont                              |                             | Ye                                     |
| 15<br>Ge                                                     | GENERATOR'S/OF<br>marked and labeled<br>Exporter. I certify the<br>I certify that the wa<br>nerator's Ofteror's Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FEROR'S CEI<br>intecarded, an<br>at the contents<br>see minimizatio<br>ned/Typed Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RTIFICATION: 11 d are in all respect of this consignm in statement ident me                                                            | hereby decla<br>cts in proper<br>nent conform<br>tified in 40 CF | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>g to applicable<br>a Acknowledgm<br>antity generator<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or (b) (if lama :                                                                  | small quantif                                                           | y generator) is ou                                                 |                                   | name and                | Mont                              |                             | Ye                                     |
| 15<br>Ge                                                     | GENERATOR'S/OF marked and labeled Exporter. I certify that the wanerator's Ofteror's Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FEROR'S CEI Uplacarded, an at the contents ste umminizatio nted/Typed Na  HC()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RTIFICATION: 1.1 d are in all respect of this consignment ident me Import to U. Import to U.                                           | hereby decla<br>cts in proper<br>nent conform<br>tified in 40 CF | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are fui<br>o to applicable<br>o Acknowledgm<br>antity generator<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or (b) (if lama :                                                                  | smali quantit                                                           | y generator) is ou                                                 |                                   | ths emer                | \\dot\d                           | Day                         | Ye                                     |
| 15 Ge                                                        | GENERATOR SOF<br>marked and labeled<br>Exporter, I certify that the wan<br>rerator's Offeror's Pri<br>Linetmatorial Suprime<br>ansporter signature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FEROR'S CEI Uplacarded, an at the contents sis minimizatio nited/Typed Nat  HC() units for exports only ledgment of Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTIFICATION: 11 d are in all respect of this consignm in statement ident me  Import to U.                                              | hereby decla<br>cts in proper<br>sent conform<br>tifled in 40 CF | are that the cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Porto                                                                            | small quantif<br>of entry/exit<br>leaving U.S.                          | y generator) is ou                                                 |                                   |                         | Month  12                         | Day                         | Ye                                     |
| 15 Ge                                                        | GENERATOR'S/OF marked and labeled Exporter. I certify that the wanerator's Ofteror's Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FEROR'S CEI (placarded, an at the contents is e minimizatio nited/Typed Nan  HC() ants for exports only leadgment of Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTIFICATION: U d are in all respec of this consigning in statement ident me import to U. ): celpt of Materials                         | hereby declades in proper sent conform infined in 40 CF          | are that the cont<br>condition for tra<br>to the terms of I<br>FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Porto                                                                            | small quantif<br>of entry/exit<br>leaving U.S.                          | y generator) is ou                                                 |                                   |                         | Month  12                         | Day                         | Ye                                     |
| ORTER INIT. 21 12 12 12 12 12 12 12 12 12 12 12 12           | GENERATOR SOF marked and labeled Exporter, I certify that the wanerator's Offeror's Pro- Line material signature ( Transporter signature ( Transporter 1 Printed Transporter 1 P | FEROR'S CEI<br>lyplacarded, an<br>at the contents<br>sie minimized<br>hed/Typed Na<br>HC ( ')<br>unts<br>for exports orth<br>leadgment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTIFICATION: 11 d are in all respect of this consignm in statement ident me  Import to U.                                              | hereby declades in proper sent conform infined in 40 CF          | are that the cont<br>condition for tra<br>to the terms of I<br>FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Porto                                                                            | small quantif<br>of entry/exit<br>leaving U.S.                          | y generator) is ou                                                 |                                   |                         | Month   2                         | Day                         | Ye                                     |
| ORTER INIT. 21 12 12 12 12 12 12 12 12 12 12 12 12           | GENERATOR S/OF marked and labeled Exponen. I certify the I certify the I certify that the wanerator's Offeror's Principle of the I certify that the wanerator's Offeror's Principle of I certify the I certified of the I cert | FEROR'S CEI<br>lyplacarded, an<br>at the contents<br>sie minimized<br>hed/Typed Na<br>HC ( ')<br>unts<br>for exports orth<br>leadgment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTIFICATION: U d are in all respec of this consigning in statement ident me import to U. ): celpt of Materials                         | hereby declades in proper sent conform infined in 40 CF          | are that the cont<br>condition for tra<br>to the terms of I<br>FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Porto                                                                            | small quantif<br>of entry/exit<br>leaving U.S.                          | y generator) is ou                                                 |                                   |                         | Month   2                         | Day                         | Ye                                     |
| TR ANSPORTER INIT. 99 99 99 99 91                            | GENERATOR S/OF marked and labeled Exponen, I certify the I certify the I certify the I certify that the wan nerator's Offeror's Pro- Linternational Stripme ansporter signature ( Transporter Admonwansporter 1 Printed Transporter 2 Printed Transporter 2 Printed Transporter 2 Printed Transporter 2 Printed Transporter 3 Printed Tran | FEROR'S CEI<br>lyplacarded, an<br>at the contents<br>sie minimized<br>hed/Typed Na<br>HC ( ')<br>unts<br>for exports orth<br>leadgment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTIFICATION: U d are in all respec of this consigning in statement ident me import to U. ): ceipt of Materials                         | hereby declades in proper sent conform infined in 40 CF          | are that the cont<br>condition for tra<br>to the terms of I<br>FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c<br>Date                                                                      | small quantit                                                           | y generator) is the                                                |                                   |                         | Month   2                         | h Day                       | Ye   1   1   1   1   1   1   1   1   1 |
| TRANSPORTER INIT. 99                                         | GENERATOR'S/OF marked and labeled Exporter, I certify the I certify the I certify the I certify that the was nerator's Offeror's Prince ansporter signature ( Transporter signature ( Transporter 1 Printed/Transporter 2 Printed/Transporter 2 Printed/Transporter 3 Pr | FEROR'S CEI<br>lyplacarded, an at the contents<br>size minimization<br>ned/Typed Na<br>ints<br>ints<br>for exports only<br>leadgment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTIFICATION: II d are in all respect of this consignm in statement ident me Import to U.):                                             | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>resport according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Porto                                                                            | small quantit                                                           | y generator) is the                                                |                                   |                         | Month   2                         | Day                         | Ye   1   1   1   1   1   1   1   1   1 |
| TRANSPORTER INIT. 99                                         | GENERATOR S/OF marked and labeled Exponen, I certify the I certify the I certify the I certify that the wan nerator's Offeror's Pro- Linternational Stripme ansporter signature ( Transporter Admonwansporter 1 Printed Transporter 2 Printed Transporter 2 Printed Transporter 2 Printed Transporter 2 Printed Transporter 3 Printed Tran | FEROR'S CEI<br>lyplacarded, an at the contents<br>size minimization<br>ned/Typed Na<br>ints<br>ints<br>for exports only<br>leadgment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RTIFICATION: U d are in all respec of this consigning in statement ident me import to U. ): ceipt of Materials                         | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>respont according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c Date                                                                         | small quantit                                                           | Pan                                                                | oual Rejection                    | in .                    | Month   2                         | h Day                       | \(\frac{\partial}{\partial}\)          |
| TRANSPORTER IN L. ST. 121 121 121 121 121 121 121 121 121 12 | GENERATOR S/Of marked and labeled Exporter. Learthy th Loarthy that the wan nerator's Offeror's Pin Line Control of the Contro | FEROR'S CEL  Uplacarded, an at the contents ste minimization anted/Typed Na  Inc. (1)  units for exports orth ecogment of Re yiped Name  Lyped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTIFICATION: 11 d are in all respect of this consigning in statement ident me  Limport to U. Coept of Materials  Quantity              | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>respont according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c<br>Date                                                                      | small quantit                                                           | Pan                                                                |                                   | in .                    | Month   2                         | h Day                       | Ye   1   1   1   1   1   1   1   1   1 |
| TRANSPORTER INT. Co.                                         | GENERATOR'S/OF marked and labeled Exporter, I certify the I certify the I certify the I certify that the was nerator's Offeror's Prince ansporter signature ( Transporter signature ( Transporter Abronow ansporter 1 Printed/Transporter 2 Printed/Transporter 2 Printed/Transporter 2 Printed/Transporter 3 Printe | FEROR'S CEL  Uplacarded, an at the contents ste minimization anted/Typed Na  Inc. (1)  units for exports orth ecogment of Re yiped Name  Lyped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTIFICATION: 11 d are in all respect of this consigning in statement ident me  Limport to U. Coept of Materials  Quantity              | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>respont according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c Date                                                                         | small quantit                                                           | Pan                                                                | oual Rejection                    | in .                    | Month   2                         | h Day                       | Ye   1   1   1   1   1   1   1   1   1 |
| TRANSPORTER INT. Co.                                         | GENERATOR S/Of marked and labeled Exporter. Learthy th Loarthy that the wan nerator's Offeror's Pin Line Control of the Contro | FEROR'S CEL  Uplacarded, an at the contents ste minimization anted/Typed Na  Inc. (1)  units for exports orth ecogment of Re yiped Name  Lyped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTIFICATION: 11 d are in all respect of this consigning in statement ident me  Limport to U. Coept of Materials  Quantity              | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>respont according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c Date                                                                         | small quantit                                                           | Pan                                                                | oual Rejection                    | in .                    | Monte   2                         | Day Th Day                  | Ye   1   1   1   1   1   1   1   1   1 |
| FACILITY TRANSPORTER INIT. 59 99 51                          | GENERATOR SIGN marked and labeles Exporter. Learthy th Loarthy that the wa nerator's Ofteror's Pin Linetmational Stupme ansporter signature ( Transporter Admow ansporter 1 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr B. Discrepancy India B. Discrepancy India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FEROR'S CEI<br>lyplacarded, an<br>at the contents<br>sie minimizatio<br>nied/Typed Na<br>HC(1)<br>ants<br>for exports only<br>leagment of Re<br>yped Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTIFICATION: III d are in all respec of this consignm in statement ident me import to U. Cospt of Materials  Quantity                  | hereby declads in proper sent conform infied in 40 Cf            | are that the continuous condition for train to the terms of FR 262.27(a) (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents of this cons<br>respont according<br>the attached EP/<br>I am a large qua | ignment are ful<br>to applicable in<br>Acknowledgm<br>antity generator<br>Signatur<br>port from U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon c Date                                                                         | small quantit                                                           | Pan                                                                | oual Rejection                    | in .                    | Monte   2                         | Day Th Day                  | Ye Ye                                  |
| FACILITY TRANSPORTER INIT. 59 99 51                          | GENERATOR S/Of marked and labeles Exporter. Learthy th Loartily that the wanerator's Offeror's Pro- Linestrator's Offeror's Pro- Lin | FEROR'S CEI Uplacarded, an at the contents see minimizatio see minimizatio need/Typed Na HC (1) edgment of Re yped Name  Laton Space  (or Generator) mate Facility i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. ): Cospit of Materials Quantify or Generator) | hereby declads in proper sent conform infled in 40 CF            | are that the condition for train to the terms of the term | ents of this cons<br>report according<br>the attached EP/<br>I am a large qui  | ignment are ful<br>to applicable.<br>Acknowledgr<br>Antity generation<br>Signalur<br>pon from U.S.<br>Signatur<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pon c Date  Residue  Manifest Ref                                                  | small quantition of entry-lexit leaving U.S.                            | Pan                                                                | oual Rejection                    | in .                    | Monte   2                         | Day Th Day                  | Ye Ye                                  |
| FACILITY TRANSPORTER INTLES                                  | GENERATOR S/Of marked and labeles Exporter. Learthy th Loartily that the wanerator's Offeror's Pro- Linestrator's Offeror's Pro- Lin | FEROR'S CEI Uplacarded, an at the contents see minimizatio see minimizatio need/Typed Na HC (1) edgment of Re yped Name  Laton Space  (or Generator) mate Facility i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. ): Cospit of Materials Quantify or Generator) | hereby declads in proper sent conform infled in 40 CF            | are that the condition for train to the terms of the term | ents of this cons<br>report according<br>the attached EP/<br>I am a large qui  | ignment are ful<br>to applicable.<br>Acknowledgr<br>Antity generation<br>Signalur<br>pon from U.S.<br>Signatur<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pon c Date  Residue  Manifest Ref                                                  | small quantition of entry-lexit leaving U.S.                            | Pan                                                                | oual Rejection                    | in .                    | Monte   2                         | Day Th Day                  | Ye Ye                                  |
| FACILITY TRANSPORTER INTLES                                  | GENERATOR SIGN marked and labeles Exporter. Learthy th Loarthy that the wa nerator's Ofteror's Pin Linetmational Stupme ansporter signature ( Transporter Admow ansporter 1 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr B. Discrepancy India B. Discrepancy India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FEROR'S CEI Uplacarded, an at the contents see minimizatio see minimizatio need/Typed Na HC (1) edgment of Re yped Name  Laton Space  (or Generator) mate Facility i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. ): Cospit of Materials Quantify or Generator) | hereby declads in proper sent conform infled in 40 CF            | are that the condition for train to the terms of the term | ents of this cons<br>report according<br>the attached EP/<br>I am a large qui  | ignment are ful<br>to applicable.<br>Acknowledgr<br>Antity generation<br>Signalur<br>pon from U.S.<br>Signatur<br>Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pon c Date  Residue  Manifest Ref                                                  | small quantition of entry-lexit leaving U.S.                            | Pan                                                                | oual Rejection                    | in .                    | Monte   2                         | Day  Day  Th Day            | Ye Ye                                  |
| ACILITY TRANSPORTER INTL.                                    | GENERATOR SIGN marked and labeles Exporter. Learthy th Loarthy that the wanerator's Offeror's Pro Linetmational Stupme ansporter signature ( Transporter Addrow ansporter 1 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr Talksporter 3 Printed Tr Talksporter 3 Printed Tr Talksporter 4 Printed Tr Talksporter 5 | FEROR'S CEI lyplacarded, an at the contents sie minimizatio nied/Typed Na HC() units for exports only ledgment of Re yped Name  cation Space  (or Generator)  rmate Facility in the Report Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. Cospt of Materials  Quantity or Generator)    | hereby declads in proper sent conform infied in 40 Cf.           | are that the condition for train to the terms of the terms of the R 262 27(a) (fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this consumption of the attached EPP   am a large quality   Ex         | ignment are fully to applicable. Acknowledgr Acknowledgr Signatur poor from U.S. Signatur Sig | Pon to Date  Residue  Manifest Ref                                                 | small quantition of entry lexit leaving U.S.                            | Pan  U.S. E                                                        | oual Rejection                    | in .                    | Moral 2                           | Day Th Day Full Re          | Ye L                                   |
| FACILITY TRANSPORTER INTL                                    | GENERATOR SIGN marked and labeles Exporter. Learthy th Loarthy that the wanerator's Offeror's Pro Linetmational Stupme ansporter signature ( Transporter Addrow ansporter 1 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr Talksporter 2 Printed Tr Talksporter 3 Printed Tr Talksporter 3 Printed Tr Talksporter 4 Printed Tr Talksporter 5 | FEROR'S CEI lyplacarded, an at the contents sie minimizatio nied/Typed Na HC() units for exports only ledgment of Re yped Name  cation Space  (or Generator)  rmate Facility in the Report Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. Cospt of Materials  Quantity or Generator)    | hereby declads in proper sent conform infied in 40 Cf.           | are that the condition for train to the terms of the terms of the R 262 27(a) (fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this consumption of the attached EPP   am a large quality   Ex         | ignment are fully to applicable. Acknowledgr Acknowledgr Signatur poor from U.S. Signatur Sig | Pon to Date  Residue  Manifest Ref                                                 | small quantition of entry lexit leaving U.S.                            | Pan  U.S. E                                                        | oual Rejection                    | in .                    | Moral 2                           | Day  Day  The Day  Full Re  | Ye L                                   |
| FACILITY TRANSPORTER INTL                                    | GENERATOR S/Of marked and labeles Exporter. Learthy th Loartily that the wanerator's Offeror's Pro- Linestrator's Offeror's Pro- Lin | FEROR'S CEE  I placarded, and at the content side minimization and Typed Name  The Content and Typed Name  The Con | RTIFICATION: 11 d are in all respect of this consignm in statement ident me import to U. Cospt of Materials  Quantity or Generator)    | hereby declads in proper sent conform infied in 40 Cf.           | are that the condition for train to the terms of the terms of the R 262 27(a) (fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ents of this consumption of the attached EPP   am a large quality   Ex         | ignment are fully to applicable. Acknowledgr Acknowledgr Signatur poor from U.S. Signatur Sig | Pon to Date  Residue  Manifest Ref                                                 | small quantition of entry-lexit seaving U.S. seaving U.S. sterence Nurm | Pan  U.S. E                                                        | trai Rejectro                     | on ber                  | Moral 2                           | Day  Day  The Day  Full Re  | Ye Court                               |

## Strong Advocates, Effective Solutions, Integrated Implementation



June 15, 2018

Mr. Michael Szilagyi Buffalo Sewer Authority Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: RiverBend Site

Ground Water Pre-Treatment Discharge Monitoring Results June 2018 Semi-Annual Compliance Monitoring Report BPDES Permit No. 14-04-BU267

Dear Mr. Szilagyi:

On behalf of our client, Fort Schuyler Management Corporation, TurnKey Environmental Restoration, LLC has prepared this correspondence to present the first semi-annual 2018 discharge monitoring results for the groundwater pre-treatment system at the above-referenced facility. Discharge monitoring was performed from June 5-6, 2018.

### **SAMPLE COLLECTION**

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with Buffalo Pollution Discharge Elimination System (BPDES) Permit No. 16-01-BU278 in laboratory-provided, pre-cleaned, and pre-preserved sample bottles (see Figure 1). Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. In accordance with the Permit, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period. Field documentation is provided in Attachment 1.

## **ANALYTICAL RESULTS**

The current period analytical results are provided in Attachment 2. Compounds detected above the laboratory reporting limit during the June 2018 event are summarized in Table 1 along with permitted BSA discharge limits. As indicated, all parameters are well within allowable limits.

# FLOW MONITORING

Flow measurement data is presented in Table 1. Quarterly flow monitoring was based on the total flow recorded during the monitoring period divided by the number of days in that monitoring period. A copy of the annual flow meter calibration data is presented in Attachment 3. The next flow meter calibration is tentatively scheduled for January 2019.

### **CERTIFICATION STATEMENT**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

ec: Tom O'Brien (Fort Schuyler)

Paul Werthman (TurnKey)

File: 0322-018-501



# **TABLES**





### TABLE 1

### 2018 SEMI-ANNUAL GROUNDWATER PRETREATMENT SYSTEM DATA SUMMARY

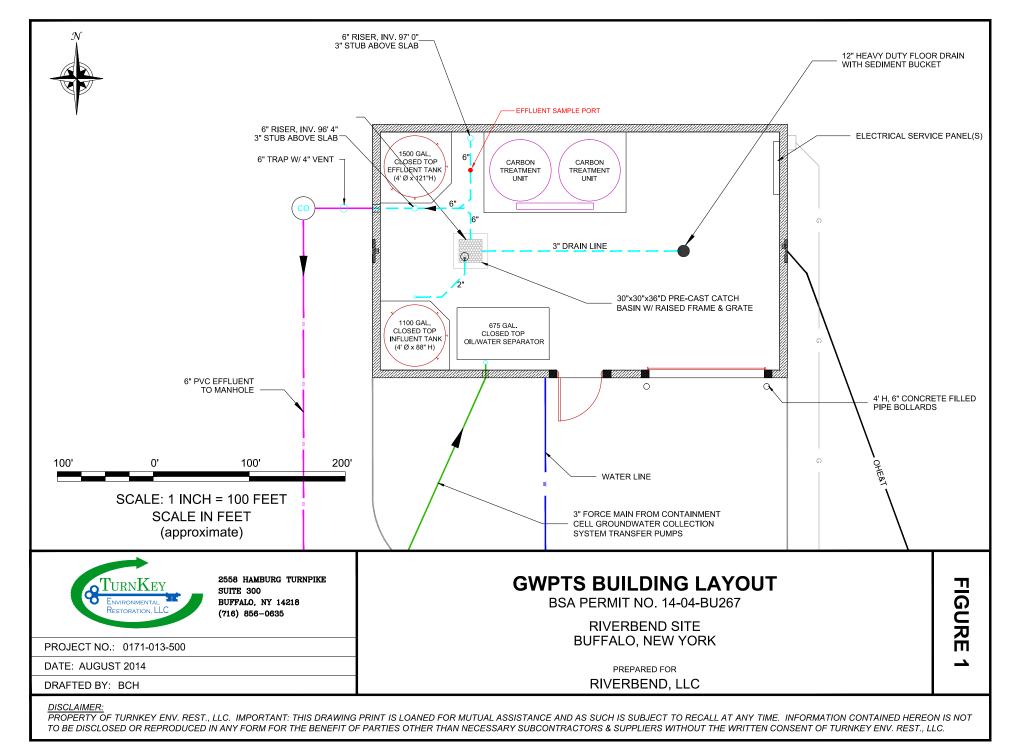
BPDES Permit No. 16-01-BU278 Fort Schuyler RiverBend Site 312 Abby Street, Buffalo, NY

|                                         | June 16-                           | -17, 2016                     |                                        |
|-----------------------------------------|------------------------------------|-------------------------------|----------------------------------------|
| Parameter                               | Concentration (units as indicated) | Mass <sup>1</sup><br>(pounds) | Daily<br>Discharge Limits <sup>2</sup> |
| Laboratory pH (S.U.)                    | 7.20                               | na                            | 5.0 - 12.0                             |
| Field pH (S.U.) <sup>3</sup>            | 6.90                               | na                            | 5.0 - 12.0                             |
| Volatile Organic Compounds - Method 624 | 4 (mg/L)                           |                               |                                        |
| Acetone                                 | 3.4 J                              | na                            | Monitor                                |
| Bromomethane                            | 3.7 J                              | na                            | Monitor                                |
| Total VOCs                              | 7.1 J                              | na                            | Monitor                                |
| Semi-Volatile Organic Compounds - Metho | od 625 (mg/L)                      |                               |                                        |
| Acenapthene                             | 1.6 J                              | na                            | Monitor                                |
| Total SVOCs                             | 1.6 J                              | na                            | Monitor                                |
| Inorganics (mg/L)                       |                                    |                               |                                        |
| Total Cyanide                           | 2.08                               | 0.631                         | 4.3 lbs                                |
| Average Daily Flow (gallons per day) 4  | 36,                                | 402                           | see Note 5                             |

### Notes:

- 1. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified below.
- 2. Mass limits are based on the Average Daily Flow through the June event; actual limits may vary slightly based on actual discharge.
- 3. Field pH is an average of 4 grab samples collected over a 24-hour period.
- 4. Average daily flow based on net flow recorded between the Flow Calculation dates shown below for the June event.
- 5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 54,000 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modified.
- 6. "ND" = Indicates compound was part of the analysis, but not detected at a concentration above the reporting limit.

### Flow Calculations:


| Event      | Date     | Flow Measurement * (gallons) | Average Daily Flow * (gallons per day) |
|------------|----------|------------------------------|----------------------------------------|
| June 2018  | 1/4/2018 | 0                            | 36,402                                 |
| Julie 2016 | 6/8/2018 | 5,642,343                    | 30,402                                 |

### Notes:

<sup>\* =</sup> flow meter calibrated and reset to zero on 01/04/17. Average daily flow presented above accounts for the recalibration and zeroing.

# **FIGURES**





FIELD DOCUMENTATION





# WATER SAMPLE COLLECTION LOG

| ROJECT IN                             | <b>IFORMATION</b>           | V              |               | S             | AMPLE DE       | SCRIPTION        | ON                 |
|---------------------------------------|-----------------------------|----------------|---------------|---------------|----------------|------------------|--------------------|
| oject Name:                           | RiverBend Site              |                |               | 1.0           | D.:            | Proces           | s Effluent         |
| oject No.:                            | 0322-018-501                |                |               | M             | atrix: SURF    | ACE WATER        | STORM              |
| lient:                                | FSMC                        |                |               |               | SEEP           |                  | OTHER              |
| ocation:                              | 312 Abby Stree              | et. Buffalo. N | Y             |               | INFLU          | ENT              | ✓ EFFLUENT         |
| ate Collected:<br>ime Collected:      | 6-5-18 au                   |                | 18            | Sa            | ample Type:    | ☐ POINT ☑ COMPOS | ☐ GRAB             |
| 27 5000-0                             | hester Hochre               |                |               |               |                |                  |                    |
| Sample Collecti                       |                             | DIRECT DIP     |               | SS /          | POLY. DIPPER   | PERIST           | ALTIC PUMP         |
|                                       | -                           | POLY. DISP. B  | AILER         | ☐ ISCO        | SAMPLER        | ✓ OTHER          | - sample port grab |
| Veather:<br>ir Temperature<br>Paramet |                             | Grab #1        | Grab #2       | Grab #3       | Grab #4        |                  |                    |
| pH                                    | units                       | 6.42           | 6.94          | 6.85          | 6. 87          |                  |                    |
| Temp.                                 | °C                          | 11.2           | 11.3          | 11.3          | 11. 2          |                  |                    |
| Cond.                                 | mS                          | 1267           | 1268          | 1311          | 1284           |                  |                    |
| Turbidity                             | NTU                         | 8.00           | 9.00          | 5.00          | 8.00           |                  |                    |
| Eh / ORF                              | p mV                        | 108            | 115           | 84            | 85             |                  |                    |
| D.O.                                  | ppm                         | 3.71           | 4.44          | 4.58          | 4.71           |                  |                    |
| Odor                                  | olfactory                   | No odos        | No odos       | No odor       | No odor        |                  |                    |
| Appearan                              |                             | Clear          | clear         | Clear         | clear          |                  |                    |
|                                       | nple Date                   | 6-5-18         | 6-5-18        | 6-5-18        | 6-6-18         |                  |                    |
| Sam                                   | nple Time                   | 0815           | 1205          | 1710          | 0845           |                  |                    |
| Northing (ft)                         | TION (if applicate) Easting | •              | Elevation (fm | nsl)          |                |                  |                    |
| AMPLE DESC                            | CRIPTION (appe              | arance, olfa   | actory):      |               |                |                  |                    |
| AMPLE ANAL                            | .YSIS (depth, la            | boratory an    | alysis requi  | ired):        |                |                  |                    |
|                                       | dividual grab sa            | mples for me   | ethod 624 (V  | OCs) and 6    | 25 (SVOCs) aı  | nalysis, the     | se samples will    |
| be composited                         |                             |                |               |               |                |                  |                    |
|                                       | osite samples for           | cyanide and    | d laboratory  | pH by filling | equal aliquots | of sample        | to fill            |
| sample contai                         |                             |                |               |               |                |                  |                    |
| DDITIONAL R                           | EMARKS:                     |                |               |               |                |                  |                    |
|                                       |                             |                |               |               |                |                  |                    |
| REPARED BY                            | : Chester                   | Hochreiter     | -             |               | DATE:          | 6/6/             | 2018               |
|                                       |                             |                |               |               |                |                  |                    |

# **EQUIPMENT CALIBRATION LOG**



| Z        |
|----------|
| 0        |
| Ē        |
| ⋖        |
| Σ        |
| ~        |
| 0        |
| Ĭ.       |
| Z        |
| F        |
| C        |
| Ш        |
| 3        |
| 0        |
| œ        |
| <u>п</u> |
|          |

| Project Name: River Bead              | 5:16              |      |                                        |                                           | Date: 6            | Date: <i>6</i> -5-みが8             |                        |                               |
|---------------------------------------|-------------------|------|----------------------------------------|-------------------------------------------|--------------------|-----------------------------------|------------------------|-------------------------------|
| Project No.: ⊤০૩ఎ৯-১।१.≲০।<br>Client: | Sol               |      |                                        |                                           | Instrument Source: | t Source:                         | BM                     | Rental                        |
| METER TYPE                            | UNITS             | TIME | MAKE/MODEL                             | SERIAL NUMBER                             | CAL. BY            | ARD                               | POST CAL. READING      | SETTINGS                      |
| ☑ pH meter                            | units             | 08   | Myron L Company<br>Ultra Meter 6P      | 6213516 C243084 C212375 X C223973 C223973 | (1年)               | 4.00<br>7.00<br>10.01             | 4.01<br>6.99<br>10.01  |                               |
| Turbidity meter                       | UTN               | 805  | Hach 2100P or<br>2100Q<br>Turbidimeter | 06120C020523 (P) K<br>13120C030432 (Q) □  | CEIL               | < 0.4 or 10 tor 2100 a 20 100 800 | 0.00<br>30<br>97<br>47 |                               |
| ☐ Turbidity meter                     | NTU               |      | LaMotte 2020                           | 6523-1816 (La)                            |                    | 0.0 NTU<br>1.0 NTU<br>10.0 NTU    |                        |                               |
| 以 Sp. Cond. meter                     | Sm                | 860  | Myron L Company<br>Ultra Meter 6P      | 6213516                                   | CEH                | 1413 mS @ 25°C                    | [413                   |                               |
| □ PID                                 | шdd               |      | MinRAE 2000                            |                                           |                    | open air zero<br>ppm lso. Gas     |                        | MIBK response<br>factor = 1.0 |
| Dissolved Oxygen                      | mdd               | 810  | HACH Model HQ30d                       | 080700023281                              | トヨフ                | 100% Satuartion                   | 9,00)                  |                               |
| ☐ Particulate meter                   | mg/m <sub>3</sub> |      |                                        |                                           |                    | zero air                          |                        |                               |
| □ Oxygen                              | %                 |      |                                        |                                           |                    | open air                          |                        |                               |
| Hydrogen sulfide                      | mdd               |      |                                        |                                           |                    | open air                          |                        |                               |
| ☐ Carbon monoxide                     | mdd               |      |                                        |                                           |                    | open air                          |                        |                               |
|                                       | %                 |      |                                        |                                           |                    | open air                          |                        |                               |
| ☐ Radiation Meter                     | uR/H              |      |                                        |                                           |                    | background area                   |                        |                               |
| ADDITIONAL DEMABLE.                   |                   |      |                                        |                                           |                    |                                   |                        |                               |

PREPARED BY:
Equipment Calibration Log.xls

DATE:

# **EQUIPMENT CALIBRATION LOG**

| IARK  | N T A L                                         |
|-------|-------------------------------------------------|
| ENCHM | ENVIRONMENTAL<br>ENGINEERING &<br>SCIENCE, PLLC |
| ENC   | Z V I R O                                       |
| B     | <u>У</u><br>МППО<br>О                           |

| <b>Ζ</b> Ψ                                         | 7 I.              |      |                                        |                                          | Date: C   | Date: $G - G - Aoi8$              |                       |                               |
|----------------------------------------------------|-------------------|------|----------------------------------------|------------------------------------------|-----------|-----------------------------------|-----------------------|-------------------------------|
| Project No.: エクミュスーク18<br>Client:                  | 8-50              |      |                                        |                                          | Instrumer | Instrument Source:                | BM                    | Rental                        |
| METER TYPE                                         | UNITS             | TIME | MAKE/MODEL                             | SERIAL NUMBER                            | CAL. BY   | STANDARD                          | POST CAL.             | SETTINGS                      |
| ☑ pH meter                                         | units             | 830  | Myron L Company<br>Ultra Meter 6P      | 6213516                                  | CEH       | 4.00 7.00                         | 3.97<br>7.01<br>10.03 |                               |
| Turbidity meter                                    | UTN               | 835  | Hach 2100P or<br>2100Q<br>Turbidimeter | 06120C020523 (P) ⊠<br>13120C030432 (Q) □ | CEH       | < 0.4 or 10 for 2100 a 20 100 800 | 0000<br>30<br>96      |                               |
| ☐ Turbidity meter                                  | NTO               |      | LaMotte 2020                           | 6523-1816 (La)                           |           | 0.0 NTU<br>1.0 NTU<br>10.0 NTU    |                       |                               |
|                                                    | Sm                | 830  | Myron L Company<br>Ultra Meter 6P      | 6213516                                  | (ごを#      | 1413_ms@25°C                      | 1408                  |                               |
|                                                    | mdd               |      | MinRAE 2000                            |                                          |           | open air zero<br>ppm Iso. Gas     |                       | MIBK response<br>factor = 1.0 |
| 区 Dissolved Oxygen                                 | mdd               | 840  | HACH Model HQ30d                       | 080700023281                             | CEH       | 1                                 | 18%                   |                               |
| ☐ Particulate meter                                | mg/m <sub>3</sub> |      |                                        |                                          |           | zero air                          |                       |                               |
| Oxygen                                             | %                 |      |                                        |                                          |           | open air                          |                       |                               |
| Hydrogen sulfide                                   | mdd               |      |                                        |                                          |           | open air                          |                       |                               |
| ☐ LEL                                              | mdd %             |      |                                        |                                          |           | open air                          |                       |                               |
| ☐ Radiation Meter                                  | uR/H              |      |                                        |                                          |           | background area                   |                       |                               |
| ADDITIONAL REMARKS:                                | ļ                 |      |                                        |                                          |           |                                   |                       |                               |
| PREPARED BY: CE 体<br>Equipment Calibration Log.xls |                   |      |                                        | DATE: 6-6-2018                           | 8         |                                   |                       |                               |
|                                                    |                   |      |                                        |                                          |           |                                   |                       |                               |

ANALYTICAL DATA





### ANALYTICAL REPORT

Lab Number: L1821602

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Report Date: 06/14/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

**Report Date:** 06/14/18

| Alpha<br>Sample ID | Client ID                                     | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------------------------------------------|--------|--------------------|-------------------------|--------------|
| L1821602-01        | PROCESS EFFLUENT-GRAB 1,2,3,4                 | WATER  | BUFFALO, NY        | 06/06/18 08:45          | 06/08/18     |
| L1821602-02        | COMPOSITE PROCESS<br>EFFLUENT-GRAB 1, 2, 3, 4 | WATER  | BUFFALO, NY        | 06/06/18 08:45          | 06/08/18     |
| L1821602-03        | PROCESS EFFLUENT                              | WATER  | BUFFALO, NY        | 06/06/18 08:45          | 06/08/18     |
| L1821602-04        | TRIP BLANK                                    | WATER  | BUFFALO, NY        | 06/05/18 00:00          | 06/08/18     |



Project Name:RIVERBEND S/A BSALab Number:L1821602Project Number:T0322-018-501Report Date:06/14/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Serial\_No:06141822:58

Project Name:RIVERBEND S/A BSALab Number:L1821602Project Number:T0322-018-501Report Date:06/14/18

### **Case Narrative (continued)**

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1821602-04: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

Cyanide, Total

The WG1125245-3 Laboratory Duplicate RPD (48%), performed on L1821602-03, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 06/14/18

# **ORGANICS**



# **VOLATILES**



Serial\_No:06141822:58

L1821602

**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-501

**SAMPLE RESULTS** 

Report Date: 06/14/18

Lab Number:

Lab ID: L1821602-01 Date Collected: 06/06/18 08:45

Client ID: Date Received: 06/08/18 PROCESS EFFLUENT-GRAB 1,2,3,4 Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 06/09/18 13:44

Analyst: MKS

| Volatile Organics by GC/MS - Westborough |       |   |      |     |      | Dilution Factor |
|------------------------------------------|-------|---|------|-----|------|-----------------|
| Volatile Organics by Ochwo - Westborough | n Lab |   |      |     |      |                 |
| Methylene chloride                       | ND    |   | ug/l | 5.0 | 0.56 | 1               |
| 1,1-Dichloroethane                       | ND    |   | ug/l | 1.5 | 0.40 | 1               |
| Chloroform                               | ND    |   | ug/l | 1.0 | 0.38 | 1               |
| Carbon tetrachloride                     | ND    |   | ug/l | 1.0 | 0.24 | 1               |
| 1,2-Dichloropropane                      | ND    |   | ug/l | 3.5 | 0.46 | 1               |
| Dibromochloromethane                     | ND    |   | ug/l | 1.0 | 0.27 | 1               |
| 1,1,2-Trichloroethane                    | ND    |   | ug/l | 1.5 | 0.34 | 1               |
| 2-Chloroethylvinyl ether                 | ND    |   | ug/l | 10  | 0.35 | 1               |
| Tetrachloroethene                        | ND    |   | ug/l | 1.5 | 0.26 | 1               |
| Chlorobenzene                            | ND    |   | ug/l | 3.5 | 0.30 | 1               |
| Trichlorofluoromethane                   | ND    |   | ug/l | 5.0 | 0.28 | 1               |
| 1,2-Dichloroethane                       | ND    |   | ug/l | 1.5 | 0.47 | 1               |
| 1,1,1-Trichloroethane                    | ND    |   | ug/l | 2.0 | 0.29 | 1               |
| Bromodichloromethane                     | ND    |   | ug/l | 1.0 | 0.28 | 1               |
| trans-1,3-Dichloropropene                | ND    |   | ug/l | 1.5 | 0.31 | 1               |
| cis-1,3-Dichloropropene                  | ND    |   | ug/l | 1.5 | 0.34 | 1               |
| Bromoform                                | ND    |   | ug/l | 1.0 | 0.22 | 1               |
| 1,1,2,2-Tetrachloroethane                | ND    |   | ug/l | 1.0 | 0.20 | 1               |
| Benzene                                  | ND    |   | ug/l | 1.0 | 0.38 | 1               |
| Toluene                                  | ND    |   | ug/l | 1.0 | 0.31 | 1               |
| Ethylbenzene                             | ND    |   | ug/l | 1.0 | 0.28 | 1               |
| Chloromethane                            | ND    |   | ug/l | 5.0 | 1.0  | 1               |
| Bromomethane                             | 3.7   | J | ug/l | 5.0 | 1.2  | 1               |
| Vinyl chloride                           | ND    |   | ug/l | 1.0 | 0.38 | 1               |
| Chloroethane                             | ND    |   | ug/l | 2.0 | 0.37 | 1               |
| 1,1-Dichloroethene                       | ND    |   | ug/l | 1.0 | 0.31 | 1               |
| trans-1,2-Dichloroethene                 | ND    |   | ug/l | 1.5 | 0.33 | 1               |
| cis-1,2-Dichloroethene <sup>1</sup>      | ND    |   | ug/l | 1.0 | 0.17 | 1               |



Serial\_No:06141822:58

**Project Name:** Lab Number: RIVERBEND S/A BSA L1821602

**Project Number:** Report Date: T0322-018-501 06/14/18

**SAMPLE RESULTS** 

Lab ID: L1821602-01 Date Collected: 06/06/18 08:45

PROCESS EFFLUENT-GRAB 1,2,3,4 Client ID: Date Received: 06/08/18 Field Prep: Not Specified

Sample Location: BUFFALO, NY

Sample Depth:

| Parameter                              | Result  | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|----------------------------------------|---------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - Westborou | ıgh Lab |           |       |     |      |                 |  |
| Trichloroethene                        | ND      |           | ug/l  | 1.0 | 0.33 | 1               |  |
| 1,2-Dichlorobenzene                    | ND      |           | ug/l  | 5.0 | 0.28 | 1               |  |
| 1,3-Dichlorobenzene                    | ND      |           | ug/l  | 5.0 | 0.27 | 1               |  |
| 1,4-Dichlorobenzene                    | ND      |           | ug/l  | 5.0 | 0.29 | 1               |  |
| p/m-Xylene <sup>1</sup>                | ND      |           | ug/l  | 2.0 | 0.30 | 1               |  |
| o-xylene <sup>1</sup>                  | ND      |           | ug/l  | 1.0 | 0.34 | 1               |  |
| Xylenes, Total <sup>1</sup>            | ND      |           | ug/l  | 1.0 | 0.30 | 1               |  |
| Styrene <sup>1</sup>                   | ND      |           | ug/l  | 1.0 | 0.37 | 1               |  |
| Acetone <sup>1</sup>                   | 3.4     | J         | ug/l  | 10  | 2.4  | 1               |  |
| Carbon disulfide <sup>1</sup>          | ND      |           | ug/l  | 5.0 | 0.28 | 1               |  |
| 2-Butanone <sup>1</sup>                | ND      |           | ug/l  | 10  | 1.0  | 1               |  |
| Vinyl acetate <sup>1</sup>             | ND      |           | ug/l  | 10  | 0.41 | 1               |  |
| 4-Methyl-2-pentanone <sup>1</sup>      | ND      |           | ug/l  | 10  | 0.19 | 1               |  |
| 2-Hexanone <sup>1</sup>                | ND      |           | ug/l  | 10  | 0.55 | 1               |  |
| Acrolein <sup>1</sup>                  | ND      |           | ug/l  | 8.0 | 1.8  | 1               |  |
| Acrylonitrile <sup>1</sup>             | ND      |           | ug/l  | 10  | 0.33 | 1               |  |
| Dibromomethane <sup>1</sup>            | ND      |           | ug/l  | 1.0 | 0.23 | 1               |  |

| Surrogate            | % Recovery | eptance<br>riteria |
|----------------------|------------|--------------------|
| Pentafluorobenzene   | 100        | 60-140             |
| Fluorobenzene        | 108        | 60-140             |
| 4-Bromofluorobenzene | 95         | 60-140             |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L1821602

**Report Date:** 06/14/18

# Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 06/09/18 11:16

Analyst: MKS

| arameter                            | Result            | Qualifier Units   | RL     | MDL         |
|-------------------------------------|-------------------|-------------------|--------|-------------|
| olatile Organics by GC/MS           | - Westborough Lab | for sample(s): 01 | Batch: | WG1124695-4 |
| Methylene chloride                  | ND                | ug/l              | 5.0    | 0.56        |
| 1,1-Dichloroethane                  | ND                | ug/l              | 1.5    | 0.40        |
| Chloroform                          | ND                | ug/l              | 1.0    | 0.38        |
| Carbon tetrachloride                | ND                | ug/l              | 1.0    | 0.24        |
| 1,2-Dichloropropane                 | ND                | ug/l              | 3.5    | 0.46        |
| Dibromochloromethane                | ND                | ug/l              | 1.0    | 0.27        |
| 1,1,2-Trichloroethane               | ND                | ug/l              | 1.5    | 0.34        |
| 2-Chloroethylvinyl ether            | ND                | ug/l              | 10     | 0.35        |
| Tetrachloroethene                   | ND                | ug/l              | 1.5    | 0.26        |
| Chlorobenzene                       | ND                | ug/l              | 3.5    | 0.30        |
| Trichlorofluoromethane              | ND                | ug/l              | 5.0    | 0.28        |
| 1,2-Dichloroethane                  | ND                | ug/l              | 1.5    | 0.47        |
| 1,1,1-Trichloroethane               | ND                | ug/l              | 2.0    | 0.29        |
| Bromodichloromethane                | ND                | ug/l              | 1.0    | 0.28        |
| trans-1,3-Dichloropropene           | ND                | ug/l              | 1.5    | 0.31        |
| cis-1,3-Dichloropropene             | ND                | ug/l              | 1.5    | 0.34        |
| Bromoform                           | ND                | ug/l              | 1.0    | 0.22        |
| 1,1,2,2-Tetrachloroethane           | ND                | ug/l              | 1.0    | 0.20        |
| Benzene                             | ND                | ug/l              | 1.0    | 0.38        |
| Toluene                             | ND                | ug/l              | 1.0    | 0.31        |
| Ethylbenzene                        | ND                | ug/l              | 1.0    | 0.28        |
| Chloromethane                       | ND                | ug/l              | 5.0    | 1.0         |
| Bromomethane                        | ND                | ug/l              | 5.0    | 1.2         |
| Vinyl chloride                      | ND                | ug/l              | 1.0    | 0.38        |
| Chloroethane                        | ND                | ug/l              | 2.0    | 0.37        |
| 1,1-Dichloroethene                  | ND                | ug/l              | 1.0    | 0.31        |
| trans-1,2-Dichloroethene            | ND                | ug/l              | 1.5    | 0.33        |
| cis-1,2-Dichloroethene <sup>1</sup> | ND                | ug/l              | 1.0    | 0.17        |
| Trichloroethene                     | ND                | ug/l              | 1.0    | 0.33        |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L1821602

**Report Date:** 06/14/18

# Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 06/09/18 11:16

Analyst: MKS

| Parameter                            | Result           | Qualifier Units  | RL        | MDL         |
|--------------------------------------|------------------|------------------|-----------|-------------|
| olatile Organics by GC/MS            | - Westborough La | o for sample(s): | 01 Batch: | WG1124695-4 |
| 1,2-Dichlorobenzene                  | ND               | ug/l             | 5.0       | 0.28        |
| 1,3-Dichlorobenzene                  | ND               | ug/l             | 5.0       | 0.27        |
| 1,4-Dichlorobenzene                  | ND               | ug/l             | 5.0       | 0.29        |
| p/m-Xylene <sup>1</sup>              | ND               | ug/l             | 2.0       | 0.30        |
| o-xylene <sup>1</sup>                | ND               | ug/l             | 1.0       | 0.34        |
| Xylenes, Total <sup>1</sup>          | ND               | ug/l             | 1.0       | 0.30        |
| Styrene <sup>1</sup>                 | ND               | ug/l             | 1.0       | 0.37        |
| Acetone <sup>1</sup>                 | ND               | ug/l             | 10        | 2.4         |
| Carbon disulfide <sup>1</sup>        | ND               | ug/l             | 5.0       | 0.28        |
| 2-Butanone <sup>1</sup>              | ND               | ug/l             | 10        | 1.0         |
| Vinyl acetate <sup>1</sup>           | ND               | ug/l             | 10        | 0.41        |
| 4-Methyl-2-pentanone <sup>1</sup>    | ND               | ug/l             | 10        | 0.19        |
| 2-Hexanone <sup>1</sup>              | ND               | ug/l             | 10        | 0.55        |
| Acrolein <sup>1</sup>                | ND               | ug/l             | 8.0       | 1.8         |
| Acrylonitrile <sup>1</sup>           | ND               | ug/l             | 10        | 0.33        |
| Methyl tert butyl ether <sup>1</sup> | ND               | ug/l             | 10        | 0.19        |
| Dibromomethane <sup>1</sup>          | ND               | ug/l             | 1.0       | 0.23        |

|                      |                    | Acceptance  |  |  |  |
|----------------------|--------------------|-------------|--|--|--|
| Surrogate            | %Recovery Qualifie | er Criteria |  |  |  |
|                      |                    |             |  |  |  |
| Pentafluorobenzene   | 102                | 60-140      |  |  |  |
| Fluorobenzene        | 109                | 60-140      |  |  |  |
| 4-Bromofluorobenzene | 96                 | 60-140      |  |  |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

Report Date:

06/14/18

| Parameter                               | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-----------------------------------------|------------------|--------------|-------------------|-----------|---------------------|-----|------|---------------|
| Volatile Organics by GC/MS - Westboroug | h Lab Associated | sample(s): 0 | 1 Batch: WG1      | 1124695-3 |                     |     |      |               |
| Methylene chloride                      | 80               |              | -                 |           | 60-140              | -   |      | 28            |
| 1,1-Dichloroethane                      | 75               |              | -                 |           | 50-150              | -   |      | 49            |
| Chloroform                              | 110              |              | -                 |           | 70-135              | -   |      | 54            |
| Carbon tetrachloride                    | 110              |              | -                 |           | 70-130              | -   |      | 41            |
| 1,2-Dichloropropane                     | 110              |              | -                 |           | 35-165              | -   |      | 55            |
| Dibromochloromethane                    | 95               |              | -                 |           | 70-135              | -   |      | 50            |
| 1,1,2-Trichloroethane                   | 90               |              | -                 |           | 70-130              | -   |      | 45            |
| 2-Chloroethylvinyl ether                | 95               |              | -                 |           | 1-225               | -   |      | 71            |
| Tetrachloroethene                       | 90               |              | -                 |           | 70-130              | -   |      | 39            |
| Chlorobenzene                           | 80               |              | -                 |           | 65-135              | -   |      | 53            |
| Trichlorofluoromethane                  | 95               |              | -                 |           | 50-150              | -   |      | 84            |
| 1,2-Dichloroethane                      | 110              |              | -                 |           | 70-130              | -   |      | 49            |
| 1,1,1-Trichloroethane                   | 110              |              | -                 |           | 70-130              | -   |      | 36            |
| Bromodichloromethane                    | 105              |              | -                 |           | 65-135              | -   |      | 56            |
| trans-1,3-Dichloropropene               | 90               |              | -                 |           | 50-150              | -   |      | 86            |
| cis-1,3-Dichloropropene                 | 100              |              | -                 |           | 25-175              | -   |      | 58            |
| Bromoform                               | 80               |              | -                 |           | 70-130              | -   |      | 42            |
| 1,1,2,2-Tetrachloroethane               | 85               |              | -                 |           | 60-140              | -   |      | 61            |
| Benzene                                 | 110              |              | -                 |           | 65-135              | -   |      | 61            |
| Toluene                                 | 100              |              | -                 |           | 70-130              | -   |      | 41            |
| Ethylbenzene                            | 90               |              | -                 |           | 60-140              | -   |      | 63            |
| Chloromethane                           | 105              |              | -                 |           | 1-205               | -   |      | 60            |
| Bromomethane                            | 70               |              | -                 |           | 15-185              | -   |      | 61            |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L1821602

**Report Date:** 06/14/18

| arameter                                | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-----------------------------------------|------------------|---------------|-------------------|----------|---------------------|-----|------|---------------|
| olatile Organics by GC/MS - Westborough | Lab Associated   | sample(s): 01 | Batch: WG1        | 124695-3 |                     |     |      |               |
| Vinyl chloride                          | 90               |               | -                 |          | 5-195               | -   |      | 66            |
| Chloroethane                            | 85               |               | -                 |          | 40-160              | -   |      | 78            |
| 1,1-Dichloroethene                      | 80               |               | -                 |          | 50-150              | -   |      | 32            |
| trans-1,2-Dichloroethene                | 80               |               | -                 |          | 70-130              | -   |      | 45            |
| cis-1,2-Dichloroethene <sup>1</sup>     | 100              |               | -                 |          | 60-140              | -   |      | 30            |
| Trichloroethene                         | 100              |               | -                 |          | 65-135              | -   |      | 48            |
| 1,2-Dichlorobenzene                     | 85               |               | -                 |          | 65-135              | -   |      | 57            |
| 1,3-Dichlorobenzene                     | 80               |               | -                 |          | 70-130              | -   |      | 43            |
| 1,4-Dichlorobenzene                     | 85               |               | -                 |          | 65-135              | -   |      | 57            |
| p/m-Xylene <sup>1</sup>                 | 82               |               | -                 |          | 60-140              | -   |      | 30            |
| o-xylene <sup>1</sup>                   | 80               |               | -                 |          | 60-140              | -   |      | 30            |
| Styrene <sup>1</sup>                    | 75               |               | -                 |          | 60-140              | -   |      | 30            |
| Acetone <sup>1</sup>                    | 94               |               | -                 |          | 40-160              | -   |      | 30            |
| Carbon disulfide <sup>1</sup>           | 80               |               | -                 |          | 60-140              | -   |      | 30            |
| 2-Butanone <sup>1</sup>                 | 130              |               | -                 |          | 60-140              | -   |      | 30            |
| Vinyl acetate <sup>1</sup>              | 75               |               | -                 |          | 60-140              | -   |      | 30            |
| 4-Methyl-2-pentanone <sup>1</sup>       | 100              |               | -                 |          | 60-140              | -   |      | 30            |
| 2-Hexanone <sup>1</sup>                 | 110              |               | -                 |          | 60-140              | -   |      | 30            |
| Acrolein <sup>1</sup>                   | 85               |               | -                 |          | 60-140              | -   |      | 30            |
| Acrylonitrile <sup>1</sup>              | 90               |               | -                 |          | 60-140              | -   |      | 60            |
| Methyl tert butyl ether <sup>1</sup>    | 80               |               | -                 |          | 60-140              | -   |      | 30            |
| Dibromomethane <sup>1</sup>             | 95               |               | -                 |          | 70-130              | -   |      | 30            |



**Project Name:** RIVERBEND S/A BSA

Lab Number:

L1821602

Project Number: T032

T0322-018-501

Report Date:

06/14/18

|           | LCS       |      | LCSD      |      | %Recovery |     |      | RPD    |
|-----------|-----------|------|-----------|------|-----------|-----|------|--------|
| Parameter | %Recovery | Qual | %Recovery | Qual | Limits    | RPD | Qual | Limits |

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1124695-3

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Q | Acceptance<br>ual Criteria |
|----------------------|-----------------------|---------------------|----------------------------|
| Pentafluorobenzene   | 103                   |                     | 60-140                     |
| Fluorobenzene        | 106                   |                     | 60-140                     |
| 4-Bromofluorobenzene | 97                    |                     | 60-140                     |

## **SEMIVOLATILES**



L1821602

06/14/18

06/13/18 00:01

06/08/18

**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-501

**SAMPLE RESULTS** 

Date Collected: 06/06/18 08:45

Lab Number:

Report Date:

Date Received:

Lab ID: L1821602-01

Client ID: PROCESS EFFLUENT-GRAB 1,2,3,4

Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** Analytical Method: 129,625.1 Analytical Date: 06/14/18 04:09

Analyst: CB

| Parameter                              | Result        | Qualifier | Units | RL  | MDL  | Dilution Factor |
|----------------------------------------|---------------|-----------|-------|-----|------|-----------------|
| Semivolatile Organics by GC/MS - Wes   | stborough Lab |           |       |     |      |                 |
| Acenaphthene                           | 1.6           | J         | ug/l  | 2.0 | 0.41 | 1               |
| Benzidine <sup>1</sup>                 | ND            |           | ug/l  | 20  | 12.  | 1               |
| 1,2,4-Trichlorobenzene                 | ND            |           | ug/l  | 5.0 | 1.5  | 1               |
| Hexachlorobenzene                      | ND            |           | ug/l  | 2.0 | 0.95 | 1               |
| Bis(2-chloroethyl)ether                | ND            |           | ug/l  | 2.0 | 0.60 | 1               |
| 2-Chloronaphthalene                    | ND            |           | ug/l  | 2.0 | 0.32 | 1               |
| 3,3'-Dichlorobenzidine                 | ND            |           | ug/l  | 5.0 | 0.46 | 1               |
| 2,4-Dinitrotoluene                     | ND            |           | ug/l  | 5.0 | 0.64 | 1               |
| 2,6-Dinitrotoluene                     | ND            |           | ug/l  | 5.0 | 0.63 | 1               |
| Azobenzene <sup>1</sup>                | ND            |           | ug/l  | 2.0 | 0.89 | 1               |
| Fluoranthene                           | ND            |           | ug/l  | 2.0 | 0.74 | 1               |
| 4-Chlorophenyl phenyl ether            | ND            |           | ug/l  | 2.0 | 0.37 | 1               |
| 4-Bromophenyl phenyl ether             | ND            |           | ug/l  | 2.0 | 0.45 | 1               |
| Bis(2-chloroisopropyl)ether            | ND            |           | ug/l  | 2.0 | 0.82 | 1               |
| Bis(2-chloroethoxy)methane             | ND            |           | ug/l  | 5.0 | 0.58 | 1               |
| Hexachlorobutadiene                    | ND            |           | ug/l  | 2.0 | 0.92 | 1               |
| Hexachlorocyclopentadiene <sup>1</sup> | ND            |           | ug/l  | 10  | 1.4  | 1               |
| Hexachloroethane                       | ND            |           | ug/l  | 2.0 | 0.97 | 1               |
| Isophorone                             | ND            |           | ug/l  | 5.0 | 0.55 | 1               |
| Naphthalene                            | ND            |           | ug/l  | 2.0 | 0.90 | 1               |
| Nitrobenzene                           | ND            |           | ug/l  | 2.0 | 0.79 | 1               |
| NDPA/DPA <sup>1</sup>                  | ND            |           | ug/l  | 2.0 | 0.78 | 1               |
| n-Nitrosodi-n-propylamine              | ND            |           | ug/l  | 5.0 | 0.63 | 1               |
| Bis(2-ethylhexyl)phthalate             | ND            |           | ug/l  | 3.0 | 1.7  | 1               |
| Butyl benzyl phthalate                 | ND            |           | ug/l  | 5.0 | 0.67 | 1               |
| Di-n-butylphthalate                    | ND            |           | ug/l  | 5.0 | 0.63 | 1               |
| Di-n-octylphthalate                    | ND            |           | ug/l  | 5.0 | 0.63 | 1               |
| Diethyl phthalate                      | ND            |           | ug/l  | 5.0 | 0.72 | 1               |
|                                        |               |           |       |     |      |                 |

Project Name: RIVERBEND S/A BSA Lab Number: L1821602

**Project Number:** T0322-018-501 **Report Date:** 06/14/18

**SAMPLE RESULTS** 

Lab ID: Date Collected: 06/06/18 08:45

Client ID: PROCESS EFFLUENT-GRAB 1,2,3,4 Date Received: 06/08/18

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

| Parameter                                  | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------|----------------|-----------|-------|-----|------|-----------------|--|
| Semivolatile Organics by GC/MS - W         | estborough Lab |           |       |     |      |                 |  |
| Dimethyl phthalate                         | ND             |           | ug/l  | 5.0 | 1.4  | 1               |  |
| Benzo(a)anthracene                         | ND             |           | ug/l  | 2.0 | 0.66 | 1               |  |
| Benzo(a)pyrene                             | ND             |           | ug/l  | 2.0 | 0.61 | 1               |  |
| Benzo(b)fluoranthene                       | ND             |           | ug/l  | 2.0 | 0.74 | 1               |  |
| Benzo(k)fluoranthene                       | ND             |           | ug/l  | 2.0 | 0.74 | 1               |  |
| Chrysene                                   | ND             |           | ug/l  | 2.0 | 0.67 | 1               |  |
| Acenaphthylene                             | ND             |           | ug/l  | 2.0 | 0.93 | 1               |  |
| Anthracene                                 | ND             |           | ug/l  | 2.0 | 0.79 | 1               |  |
| Benzo(ghi)perylene                         | ND             |           | ug/l  | 2.0 | 0.67 | 1               |  |
| Fluorene                                   | ND             |           | ug/l  | 2.0 | 0.93 | 1               |  |
| Phenanthrene                               | ND             |           | ug/l  | 2.0 | 0.82 | 1               |  |
| Dibenzo(a,h)anthracene                     | ND             |           | ug/l  | 2.0 | 0.69 | 1               |  |
| Indeno(1,2,3-cd)pyrene                     | ND             |           | ug/l  | 2.0 | 0.63 | 1               |  |
| Pyrene                                     | ND             |           | ug/l  | 2.0 | 0.73 | 1               |  |
| 4-Chloroaniline <sup>1</sup>               | ND             |           | ug/l  | 5.0 | 0.79 | 1               |  |
| Dibenzofuran <sup>1</sup>                  | ND             |           | ug/l  | 2.0 | 0.37 | 1               |  |
| 2-Methylnaphthalene <sup>1</sup>           | ND             |           | ug/l  | 2.0 | 0.35 | 1               |  |
| n-Nitrosodimethylamine <sup>1</sup>        | ND             |           | ug/l  | 2.0 | 0.41 | 1               |  |
| 2,4,6-Trichlorophenol                      | ND             |           | ug/l  | 5.0 | 0.61 | 1               |  |
| p-Chloro-m-cresol <sup>1</sup>             | ND             |           | ug/l  | 2.0 | 0.53 | 1               |  |
| 2-Chlorophenol                             | ND             |           | ug/l  | 2.0 | 0.51 | 1               |  |
| 2,4-Dichlorophenol                         | ND             |           | ug/l  | 5.0 | 0.55 | 1               |  |
| 2,4-Dimethylphenol                         | ND             |           | ug/l  | 5.0 | 0.85 | 1               |  |
| 2-Nitrophenol                              | ND             |           | ug/l  | 5.0 | 0.60 | 1               |  |
| 4-Nitrophenol                              | ND             |           | ug/l  | 10  | 0.83 | 1               |  |
| 2,4-Dinitrophenol                          | ND             |           | ug/l  | 20  | 1.2  | 1               |  |
| 4,6-Dinitro-o-cresol                       | ND             |           | ug/l  | 10  | 1.2  | 1               |  |
| Pentachlorophenol                          | ND             |           | ug/l  | 5.0 | 0.62 | 1               |  |
| Phenol                                     | ND             |           | ug/l  | 5.0 | 0.26 | 1               |  |
| 2-Methylphenol <sup>1</sup>                | ND             |           | ug/l  | 5.0 | 0.77 | 1               |  |
| 3-Methylphenol/4-Methylphenol <sup>1</sup> | ND             |           | ug/l  | 5.0 | 0.51 | 1               |  |
| 2,4,5-Trichlorophenol <sup>1</sup>         | ND             |           | ug/l  | 5.0 | 0.64 | 1               |  |
| Benzoic Acid <sup>1</sup>                  | ND             |           | ug/l  | 50  | 1.2  | 1               |  |
| Benzyl Alcohol <sup>1</sup>                | ND             |           | ug/l  | 2.0 | 0.49 | 1               |  |
|                                            |                |           |       |     |      |                 |  |



Project Name: RIVERBEND S/A BSA Lab Number: L1821602

**Project Number:** T0322-018-501 **Report Date:** 06/14/18

**SAMPLE RESULTS** 

Lab ID: L1821602-01 Date Collected: 06/06/18 08:45

Client ID: PROCESS EFFLUENT-GRAB 1,2,3,4 Date Received: 06/08/18
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

| 2-Fluorophenol       53       35-77         Phenol-d6       40       24-61         Nitrobenzene-d5       75       15-314 |
|--------------------------------------------------------------------------------------------------------------------------|
| Nitrobenzene-d5 75 15-314                                                                                                |
|                                                                                                                          |
|                                                                                                                          |
| 2-Fluorobiphenyl 76 55-108                                                                                               |
| 2,4,6-Tribromophenol 84 52-123                                                                                           |
| 4-Terphenyl-d14 82 52-109                                                                                                |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L1821602

**Report Date:** 06/14/18

### Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 06/13/18 21:12

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 06/12/18 22:07

| arameter                               | Result          | Qualifier   | Units     |    | RL     | MDL         |
|----------------------------------------|-----------------|-------------|-----------|----|--------|-------------|
| emivolatile Organics by GC/M           | S - Westborougl | n Lab for s | ample(s): | 01 | Batch: | WG1125256-1 |
| Acenaphthene                           | ND              |             | ug/l      |    | 2.0    | 0.41        |
| Benzidine <sup>1</sup>                 | ND              |             | ug/l      |    | 20     | 12.         |
| 1,2,4-Trichlorobenzene                 | ND              |             | ug/l      |    | 5.0    | 1.5         |
| Hexachlorobenzene                      | ND              |             | ug/l      |    | 2.0    | 0.95        |
| Bis(2-chloroethyl)ether                | ND              |             | ug/l      |    | 2.0    | 0.60        |
| 2-Chloronaphthalene                    | ND              |             | ug/l      |    | 2.0    | 0.32        |
| 3,3'-Dichlorobenzidine                 | ND              |             | ug/l      |    | 5.0    | 0.46        |
| 2,4-Dinitrotoluene                     | ND              |             | ug/l      |    | 5.0    | 0.64        |
| 2,6-Dinitrotoluene                     | ND              |             | ug/l      |    | 5.0    | 0.63        |
| Azobenzene <sup>1</sup>                | ND              |             | ug/l      |    | 2.0    | 0.89        |
| Fluoranthene                           | ND              |             | ug/l      |    | 2.0    | 0.74        |
| 4-Chlorophenyl phenyl ether            | ND              |             | ug/l      |    | 2.0    | 0.37        |
| 4-Bromophenyl phenyl ether             | ND              |             | ug/l      |    | 2.0    | 0.45        |
| Bis(2-chloroisopropyl)ether            | ND              |             | ug/l      |    | 2.0    | 0.82        |
| Bis(2-chloroethoxy)methane             | ND              |             | ug/l      |    | 5.0    | 0.58        |
| Hexachlorobutadiene                    | ND              |             | ug/l      |    | 2.0    | 0.92        |
| Hexachlorocyclopentadiene <sup>1</sup> | ND              |             | ug/l      |    | 10     | 1.4         |
| Hexachloroethane                       | ND              |             | ug/l      |    | 2.0    | 0.97        |
| Isophorone                             | ND              |             | ug/l      |    | 5.0    | 0.55        |
| Naphthalene                            | ND              |             | ug/l      |    | 2.0    | 0.90        |
| Nitrobenzene                           | ND              |             | ug/l      |    | 2.0    | 0.79        |
| NDPA/DPA <sup>1</sup>                  | ND              |             | ug/l      |    | 2.0    | 0.78        |
| n-Nitrosodi-n-propylamine              | ND              |             | ug/l      |    | 5.0    | 0.63        |
| Bis(2-ethylhexyl)phthalate             | ND              |             | ug/l      |    | 3.0    | 1.7         |
| Butyl benzyl phthalate                 | ND              |             | ug/l      |    | 5.0    | 0.67        |
| Di-n-butylphthalate                    | ND              |             | ug/l      |    | 5.0    | 0.63        |
| Di-n-octylphthalate                    | ND              |             | ug/l      |    | 5.0    | 0.63        |
| Diethyl phthalate                      | ND              |             | ug/l      |    | 5.0    | 0.72        |
| Dimethyl phthalate                     | ND              |             | ug/l      |    | 5.0    | 1.4         |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

**Lab Number:** L1821602 **Report Date:** 06/14/18

### Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 06/13/18 21:12

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 06/12/18 22:07

| Parameter                           | Result        | Qualifier Uni | ts          | RL     | MDL         |  |
|-------------------------------------|---------------|---------------|-------------|--------|-------------|--|
| Semivolatile Organics by GC/MS      | - Westborough | Lab for samp  | le(s): 01   | Batch: | WG1125256-1 |  |
| Benzo(a)anthracene                  | ND            | uç            | <b>y</b> /l | 2.0    | 0.66        |  |
| Benzo(a)pyrene                      | ND            | uç            | g/l         | 2.0    | 0.61        |  |
| Benzo(b)fluoranthene                | ND            | นดู           | g/l         | 2.0    | 0.74        |  |
| Benzo(k)fluoranthene                | ND            | นดู           | g/l         | 2.0    | 0.74        |  |
| Chrysene                            | ND            | นดู           | g/l         | 2.0    | 0.67        |  |
| Acenaphthylene                      | ND            | นดู           | g/l         | 2.0    | 0.93        |  |
| Anthracene                          | ND            | นดู           | g/l         | 2.0    | 0.79        |  |
| Benzo(ghi)perylene                  | ND            | uç            | g/l         | 2.0    | 0.67        |  |
| Fluorene                            | ND            | uç            | g/l         | 2.0    | 0.93        |  |
| Phenanthrene                        | ND            | uç            | g/l         | 2.0    | 0.82        |  |
| Dibenzo(a,h)anthracene              | ND            | uç            | g/l         | 2.0    | 0.69        |  |
| Indeno(1,2,3-cd)pyrene              | ND            | uç            | g/l         | 2.0    | 0.63        |  |
| Pyrene                              | ND            | นดู           | g/l         | 2.0    | 0.73        |  |
| 4-Chloroaniline <sup>1</sup>        | ND            | นดู           | g/l         | 5.0    | 0.79        |  |
| Dibenzofuran¹                       | ND            | นดู           | g/l         | 2.0    | 0.37        |  |
| 2-Methylnaphthalene <sup>1</sup>    | ND            | นดู           | g/l         | 2.0    | 0.35        |  |
| n-Nitrosodimethylamine <sup>1</sup> | ND            | นดู           | g/l         | 2.0    | 0.41        |  |
| 2,4,6-Trichlorophenol               | ND            | นดู           | g/l         | 5.0    | 0.61        |  |
| p-Chloro-m-cresol <sup>1</sup>      | ND            | นดู           | g/l         | 2.0    | 0.53        |  |
| 2-Chlorophenol                      | ND            | นดู           | g/l         | 2.0    | 0.51        |  |
| 2,4-Dichlorophenol                  | ND            | นดู           | g/l         | 5.0    | 0.55        |  |
| 2,4-Dimethylphenol                  | ND            | นดู           | g/l         | 5.0    | 0.85        |  |
| 2-Nitrophenol                       | ND            | นดู           | g/l         | 5.0    | 0.60        |  |
| 4-Nitrophenol                       | ND            | นดู           | g/l         | 10     | 0.83        |  |
| 2,4-Dinitrophenol                   | ND            | uç            | g/l         | 20     | 1.2         |  |
| 4,6-Dinitro-o-cresol                | ND            | uç            | <b>y/</b> I | 10     | 1.2         |  |
| Pentachlorophenol                   | ND            | uç            | g/l         | 5.0    | 0.62        |  |
| Phenol                              | ND            | uç            | g/l         | 5.0    | 0.26        |  |
| 2-Methylphenol <sup>1</sup>         | ND            | ug            | g/l         | 5.0    | 0.77        |  |



**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-501 Lab Number:

L1821602

Report Date: 06/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

129,625.1 06/13/18 21:12

Analyst:

СВ

Extraction Method: EPA 625.1

Extraction Date:

06/12/18 22:07

| Result        | Qualifier                 | Units                                   |                                                             | RL                                                             | MDL                                                                              |
|---------------|---------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| - Westborough | Lab for s                 | sample(s):                              | 01                                                          | Batch:                                                         | WG1125256-1                                                                      |
| ND            |                           | ug/l                                    |                                                             | 5.0                                                            | 0.51                                                                             |
| ND            |                           | ug/l                                    |                                                             | 5.0                                                            | 0.64                                                                             |
| ND            |                           | ug/l                                    |                                                             | 50                                                             | 1.2                                                                              |
| ND            |                           | ug/l                                    |                                                             | 2.0                                                            | 0.49                                                                             |
|               | - Westborough  ND  ND  ND | - Westborough Lab for s  ND  ND  ND  ND | - Westborough Lab for sample(s):  ND ug/l  ND ug/l  ND ug/l | - Westborough Lab for sample(s): 01  ND ug/l  ND ug/l  ND ug/l | - Westborough Lab for sample(s): 01 Batch:  ND ug/l 5.0  ND ug/l 5.0  ND ug/l 50 |

|                      |           | Acceptance         |
|----------------------|-----------|--------------------|
| Surrogate            | %Recovery | Qualifier Criteria |
| 2-Fluorophenol       | 61        | 35-77              |
| Phenol-d6            | 48        | 24-61              |
| Nitrobenzene-d5      | 83        | 15-314             |
| 2-Fluorobiphenyl     | 95        | 55-108             |
| 2,4,6-Tribromophenol | 75        | 52-123             |
| 4-Terphenyl-d14      | 83        | 52-109             |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L1821602

**Report Date:** 06/14/18

| Aconaphthene 83 - 60-132 - 30  Berudine' 34 - 0-70 - 30  Berudine' 75 - 5 - 57-130 - 30  Hexachlorobenzene 82 - 8.142 - 30  Besig-chloroethylether 79 - 4.3126 - 30  3.3-Dichlorobenzidine 80 - 66-120 - 30  3.3-Dichlorobenzidine 87 - 4.127 - 30  3.3-Dichlorobenzidine 88 - 66-120 - 30  3.3-Dichlorobenzidine 88 - 68-120 - 30  3.3-Dichlorobenzidine 88 - 68-120 - 30  3.3-Dichlorobenzidine 88 - 68-120 - 30  4Chlororophenyl phenyl ether 88 - 68-120 - 30  4Chlorophenyl phenyl ether 88 - 68-120 - 30  Bisig-chlorospopopylether 89 - 68-130 - 30  Bisig-chlorospopopylether 79 - 68-130 - 30  Bisig-chlorospopopylether 88 - 68-120 - 30  Bisig-chlorospopopylether 88 - 68-120 - 30  Bisig-chlorospopopylether 88 - 68-120 - 30  Bisig-chlorospopopylether 89 - 68-130 - 30  Bisig-chlorospopopylether 88 - 68-120 - 30  Bisig-chlorospopopylether 98 - 98-120 - 30  Bisig-chlorospopop | Parameter                                 | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|-----|------|---------------|
| Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Semivolatile Organics by GC/MS - Westbord | ough Lab Associa | ited sample(s | s): 01 Batch:     | WG1125256 | i-2                 |     |      |               |
| 1,2,4-Trichlorobenzene         75         -         57-130         -         30           Hexachlorobenzene         82         -         8-142         -         30           Bis(2-chloroethyl)ether         79         -         43-126         -         30           2-Chloronaphthalene         80         -         66-120         -         30           3,3-Dichlorobenzidine         35         -         8-213         -         30           2,4-Dinitrotolune         87         -         48-127         -         30           2,6-Dinitrotolune         87         -         68-137         -         30           2,6-Dinitrotolune         88         -         68-137         -         30           4-Chlorospenete         88         -         44-115         -         30           4-Chlorophenyl phenyl ether         82         -         43-121         -         30           4-Bromophenyl phenyl ether         86         -         66-120         -         30           Bis(2-chloroethoxylmethae         84         -         49-165         -         30           Hexachlorobutadiene         71         -         38-120         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acenaphthene                              | 83               |               | -                 |           | 60-132              | -   |      | 30            |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzidine <sup>1</sup>                    | 34               |               | -                 |           | 0-70                | -   |      | 30            |
| Bis(2-chloroethyl)ether   79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-Trichlorobenzene                    | 75               |               | -                 |           | 57-130              | -   |      | 30            |
| 2-Chloronaphthalene       80       -       65-120       -       30         3,3*-Dichlorobenzidine       35       -       8-213       -       30         2,4-Dinitrotoluene       87       -       48-127       -       30         2,6-Dinitrotoluene       87       -       68-137       -       30         Azobenzene¹       88       -       44-115       -       30         Fluoranthene       83       -       43-121       -       30         4-Chlorophenyl phenyl ether       82       -       38-145       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         Bis(2-chlorostoxyl)methane       84       -       49-165       -       30         Bis(2-chlorosthoxyl)methane       84       -       49-165       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Isophorone       87       -       47-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hexachlorobenzene                         | 82               |               | -                 |           | 8-142               | -   |      | 30            |
| 3,3'-Dichlorobenzidine       35       -       8-213       -       30         2,4-Dinitrotoluene       87       -       48-127       -       30         2,6-Dinitrotoluene       87       -       68-137       -       30         Azobenzene¹       88       -       44-115       -       30         Fluoranthene       83       -       43-121       -       30         4-Chlorophenyl phenyl ether       82       -       38-145       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         4-Bromophenyl phenyl ether       79       -       63-139       -       30         Bis(2-chlorostoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachlorocethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bis(2-chloroethyl)ether                   | 79               |               | -                 |           | 43-126              | -   |      | 30            |
| 2,4-Dinitrotoluene       87       -       48-127       -       30         2,6-Dinitrotoluene       87       -       68-137       -       30         Azobenzene¹       88       -       44-115       -       30         Fluoranthene       83       -       43-121       -       30         4-Chlorophenyl phenyl ether       82       -       38-145       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         Bis(2-chloroisopropyl)ether       79       -       63-139       -       30         Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         NItrobenzene       84       -       54-158       -       30 <td>2-Chloronaphthalene</td> <td>80</td> <td></td> <td>-</td> <td></td> <td>65-120</td> <td>-</td> <td></td> <td>30</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chloronaphthalene                       | 80               |               | -                 |           | 65-120              | -   |      | 30            |
| 2,6-Dinitrotoluene       87       -       68-137       -       30         Azobenzene¹       88       -       44-115       -       30         Fluoranthene       83       -       43-121       -       30         4-Chlorophenyl phenyl ether       82       -       38-145       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         Bis(2-chloroisopropyl)ether       79       -       63-139       -       30         Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30 <td>3,3'-Dichlorobenzidine</td> <td>35</td> <td></td> <td>-</td> <td></td> <td>8-213</td> <td>-</td> <td></td> <td>30</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,3'-Dichlorobenzidine                    | 35               |               | -                 |           | 8-213               | -   |      | 30            |
| Azobenzene¹ 88 - 44-115 - 30 Fluoranthene 83 - 43-121 - 30 4-Chlorophenyl phenyl ether 82 - 38-145 - 30 4-Bromophenyl phenyl ether 86 - 65-120 - 30 Bis(2-chloroisopropyl)ether 79 - 63-139 - 30 Bis(2-chloroethoxy)methane 84 - 49-165 - 30 Hexachlorobutadiene 71 - 38-120 - 30 Hexachlorocyclopentadiene¹ 52 - 7-118 - 30 Hexachlorocyclopentadiene¹ 52 - 7-118 - 30 Hexachlorocethane 68 - 55-120 - 30 Isophorone 87 - 47-180 - 30 Naphthalene 80 - 36-120 - 30 Nitrobenzene 84 - 54-158 - 30 NDPA/DPA¹ 90 - 45-112 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,4-Dinitrotoluene                        | 87               |               | -                 |           | 48-127              | -   |      | 30            |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6-Dinitrotoluene                        | 87               |               | -                 |           | 68-137              | -   |      | 30            |
| 4-Chlorophenyl phenyl ether       82       -       38-145       -       30         4-Bromophenyl phenyl ether       86       -       65-120       -       30         Bis(2-chloroisopropyl)ether       79       -       63-139       -       30         Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Azobenzene <sup>1</sup>                   | 88               |               | -                 |           | 44-115              | -   |      | 30            |
| 4-Bromophenyl phenyl ether       86       -       65-120       -       30         Bis(2-chloroisopropyl)ether       79       -       63-139       -       30         Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fluoranthene                              | 83               |               | -                 |           | 43-121              | -   |      | 30            |
| Bis(2-chloroisopropyl)ether       79       -       63-139       -       30         Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-Chlorophenyl phenyl ether               | 82               |               | -                 |           | 38-145              | -   |      | 30            |
| Bis(2-chloroethoxy)methane       84       -       49-165       -       30         Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Bromophenyl phenyl ether                | 86               |               | -                 |           | 65-120              | -   |      | 30            |
| Hexachlorobutadiene       71       -       38-120       -       30         Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bis(2-chloroisopropyl)ether               | 79               |               | -                 |           | 63-139              | -   |      | 30            |
| Hexachlorocyclopentadiene¹       52       -       7-118       -       30         Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bis(2-chloroethoxy)methane                | 84               |               | -                 |           | 49-165              | -   |      | 30            |
| Hexachloroethane       68       -       55-120       -       30         Isophorone       87       -       47-180       -       30         Naphthalene       80       -       36-120       -       30         Nitrobenzene       84       -       54-158       -       30         NDPA/DPA¹       90       -       45-112       -       30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hexachlorobutadiene                       | 71               |               | -                 |           | 38-120              | -   |      | 30            |
| Isophorone     87     -     47-180     -     30       Naphthalene     80     -     36-120     -     30       Nitrobenzene     84     -     54-158     -     30       NDPA/DPA¹     90     -     45-112     -     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hexachlorocyclopentadiene <sup>1</sup>    | 52               |               | -                 |           | 7-118               | -   |      | 30            |
| Naphthalene     80     -     36-120     -     30       Nitrobenzene     84     -     54-158     -     30       NDPA/DPA¹     90     -     45-112     -     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hexachloroethane                          | 68               |               | -                 |           | 55-120              | -   |      | 30            |
| Nitrobenzene         84         -         54-158         -         30           NDPA/DPA¹         90         -         45-112         -         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Isophorone                                | 87               |               | -                 |           | 47-180              | -   |      | 30            |
| NDPA/DPA <sup>1</sup> 90 - 45-112 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Naphthalene                               | 80               |               | -                 |           | 36-120              | -   |      | 30            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nitrobenzene                              | 84               |               | -                 |           | 54-158              | -   |      | 30            |
| n-Nitrosodi-n-propylamine 86 - 14-198 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NDPA/DPA¹                                 | 90               |               | -                 |           | 45-112              | -   |      | 30            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-Nitrosodi-n-propylamine                 | 86               |               | -                 |           | 14-198              | -   |      | 30            |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number: L

L1821602

Report Date:

| arameter                              | LCS<br>%Recovery   | Qual          | LCSD<br>%Recovery | Qual       | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|---------------------------------------|--------------------|---------------|-------------------|------------|---------------------|-----|------|---------------|
| emivolatile Organics by GC/MS - Westb | oorough Lab Associ | ated sample(s | s): 01 Batch:     | WG1125256- | 2                   |     |      |               |
| Bis(2-ethylhexyl)phthalate            | 91                 |               | -                 |            | 29-137              | -   |      | 30            |
| Butyl benzyl phthalate                | 88                 |               | -                 |            | 1-140               | -   |      | 30            |
| Di-n-butylphthalate                   | 93                 |               | -                 |            | 8-120               | -   |      | 30            |
| Di-n-octylphthalate                   | 93                 |               | -                 |            | 19-132              | -   |      | 30            |
| Diethyl phthalate                     | 85                 |               | -                 |            | 1-120               | -   |      | 30            |
| Dimethyl phthalate                    | 90                 |               | -                 |            | 1-120               | -   |      | 30            |
| Benzo(a)anthracene                    | 83                 |               | -                 |            | 42-133              | -   |      | 30            |
| Benzo(a)pyrene                        | 79                 |               | -                 |            | 32-148              | -   |      | 30            |
| Benzo(b)fluoranthene                  | 81                 |               | -                 |            | 42-140              | -   |      | 30            |
| Benzo(k)fluoranthene                  | 87                 |               | -                 |            | 25-146              | -   |      | 30            |
| Chrysene                              | 83                 |               | -                 |            | 44-140              | -   |      | 30            |
| Acenaphthylene                        | 90                 |               | -                 |            | 54-126              | -   |      | 30            |
| Anthracene                            | 89                 |               | -                 |            | 43-120              | •   |      | 30            |
| Benzo(ghi)perylene                    | 82                 |               | -                 |            | 1-195               | •   |      | 30            |
| Fluorene                              | 86                 |               | -                 |            | 70-120              | •   |      | 30            |
| Phenanthrene                          | 86                 |               | -                 |            | 65-120              | •   |      | 30            |
| Dibenzo(a,h)anthracene                | 84                 |               | -                 |            | 1-200               | •   |      | 30            |
| Indeno(1,2,3-cd)pyrene                | 79                 |               | -                 |            | 1-151               | -   |      | 30            |
| Pyrene                                | 82                 |               | -                 |            | 70-120              | -   |      | 30            |
| 4-Chloroaniline <sup>1</sup>          | 64                 |               | -                 |            | 10-100              | -   |      | 30            |
| Dibenzofuran <sup>1</sup>             | 83                 |               | -                 |            | 23-126              | -   |      | 30            |
| 2-Methylnaphthalene <sup>1</sup>      | 84                 |               | -                 |            | 40-109              | -   |      | 30            |
| n-Nitrosodimethylamine <sup>1</sup>   | 48                 |               | -                 |            | 15-68               |     |      | 30            |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

Report Date:

| arameter                                   | LCS<br>%Recovery | Qual            | LCSD<br>%Recover | / Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|-----------------|------------------|-------------|---------------------|-----|------|---------------|--|
| emivolatile Organics by GC/MS - Westbor    | ough Lab Associa | ated sample(s): | 01 Batcl         | n: WG112525 | 6-2                 |     |      |               |  |
| 2,4,6-Trichlorophenol                      | 90               |                 | -                |             | 52-129              | -   |      | 30            |  |
| p-Chloro-m-cresol <sup>1</sup>             | 92               |                 | -                |             | 68-130              | -   |      | 30            |  |
| 2-Chlorophenol                             | 82               |                 | -                |             | 36-120              | -   |      | 30            |  |
| 2,4-Dichlorophenol                         | 90               |                 | -                |             | 53-122              | -   |      | 30            |  |
| 2,4-Dimethylphenol                         | 90               |                 | -                |             | 42-120              | -   |      | 30            |  |
| 2-Nitrophenol                              | 86               |                 | -                |             | 45-167              | -   |      | 30            |  |
| 4-Nitrophenol                              | 67               |                 | -                |             | 13-129              | -   |      | 30            |  |
| 2,4-Dinitrophenol                          | 64               |                 | -                |             | 1-173               | -   |      | 30            |  |
| 4,6-Dinitro-o-cresol                       | 86               |                 | -                |             | 56-130              | -   |      | 30            |  |
| Pentachlorophenol                          | 68               |                 | -                |             | 38-152              | -   |      | 30            |  |
| Phenol                                     | 51               |                 | -                |             | 17-120              | -   |      | 30            |  |
| 2-Methylphenol <sup>1</sup>                | 84               |                 | -                |             | 38-102              | -   |      | 30            |  |
| 3-Methylphenol/4-Methylphenol <sup>1</sup> | 89               |                 | -                |             | 35-103              | -   |      | 30            |  |
| 2,4,5-Trichlorophenol <sup>1</sup>         | 93               |                 | -                |             | 47-126              | -   |      | 30            |  |
| Benzoic Acid¹                              | 27               |                 | -                |             | 2-55                | -   |      | 30            |  |
| Benzyl Alcohol <sup>1</sup>                | 74               |                 | -                |             | 31-103              | -   |      | 30            |  |

Project Name: RIVERBEND S/A BSA

Lab Number:

L1821602

Project Number: T0322-018-501

Report Date:

06/14/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1125256-2

| Surrogate            | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------|-----------------------|------------------------|------------------------|
| 2-Fluorophenol       | 61                    |                        | 35-77                  |
| Phenol-d6            | 50                    |                        | 24-61                  |
| Nitrobenzene-d5      | 85                    |                        | 15-314                 |
| 2-Fluorobiphenyl     | 90                    |                        | 55-108                 |
| 2,4,6-Tribromophenol | 84                    |                        | 52-123                 |
| 4-Terphenyl-d14      | 82                    |                        | 52-109                 |



# INORGANICS & MISCELLANEOUS



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

**Report Date:** 06/14/18

**SAMPLE RESULTS** 

Lab ID: L1821602-03

PROCESS EFFLUENT

Sample Location: BUFFALO, NY

Date Collected:

06/06/18 08:45

Date Received:

06/08/18

Field Prep:

Not Specified

Sample Depth:

Client ID:

Matrix: Water

| Parameter             | Result Qua      | lifier Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-----------------|--------------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V | Westborough Lab |              |       |       |                    |                  |                  |                      |         |
| Cyanide, Total        | 2.08            | mg/l         | 0.025 | 0.009 | 5                  | 06/12/18 23:27   | 06/13/18 13:35   | 121,4500CN-CE        | LH      |
| pH (H)                | 7.2             | SU           | -     | NA    | 1                  | -                | 06/09/18 09:09   | 121,4500H+-B         | GD      |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

**Report Date:** 06/14/18

Method Blank Analysis Batch Quality Control

| Parameter           | Result Qu       | alifier | Units      | RL     | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|---------|------------|--------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab | for sam | ple(s): 03 | Batch: | WG11  | 25245-1            |                  |                  |                      |         |
| Cyanide, Total      | ND              |         | mg/l       | 0.005  | 0.001 | 1                  | 06/12/18 23:27   | 06/13/18 12:18   | 121,4500CN-C         | E LH    |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

Report Date:

| Parameter                             | LCS<br>%Recovery Qua     | LCSD<br>al %Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |  |
|---------------------------------------|--------------------------|----------------------|------|---------------------|-----|------|------------|--|
| General Chemistry - Westborough Lab A | Associated sample(s): 03 | Batch: WG1124267-    | 1    |                     |     |      |            |  |
| рН                                    | 100                      | -                    |      | 99-101              | -   |      | 5          |  |
| General Chemistry - Westborough Lab A | Associated sample(s): 03 | Batch: WG1125245-    | 2    |                     |     |      |            |  |
| Cyanide, Total                        | 93                       | -                    |      | 90-110              | -   |      |            |  |



### Matrix Spike Analysis Batch Quality Control

Project Name: RIVERBEND S/A BSA

**Project Number:** T0322-018-501

Lab Number:

L1821602

Report Date:

| Parameter                    | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery Qua | Recovery<br>I Limits | RPD Q   | RPD<br>ual Limits |
|------------------------------|------------------|-------------|-------------|-----------------|-------------------|----------------------|----------------------|---------|-------------------|
| General Chemistry - Westboro | ugh Lab Asso     | ciated samp | ole(s): 03  | QC Batch ID: V  | NG1125245-4       | QC Sample: L182142   | 6-01 Client          | ID: MSS | ample             |
| Cyanide, Total               | 0.002J           | 0.2         | 0.179       | 90              | -                 | -                    | 90-110               | -       | 30                |



# Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-501

Lab Number:

L1821602

Report Date:

| Parameter                                            | Native Sample                  | Duplicate Sample | e Units         | RPD      | Qual        | RPD Limits |
|------------------------------------------------------|--------------------------------|------------------|-----------------|----------|-------------|------------|
| General Chemistry - Westborough Lab Associa          | ted sample(s): 03 QC Batch ID: | WG1124267-2 Q    | C Sample: L1821 | 459-01 C | lient ID: [ | OUP Sample |
| рН                                                   | 8.4                            | 8.4              | SU              | 0        |             | 5          |
| General Chemistry - Westborough Lab Associa EFFLUENT | ted sample(s): 03 QC Batch ID: | WG1125245-3 Q    | C Sample: L1821 | 602-03 C | lient ID: F | PROCESS    |
| Cyanide, Total                                       | 2.08                           | 1.27             | mg/l            | 48       | Q           | 30         |



Project Name: RIVERBEND S/A BSA

Lab Number: L1821602

**Project Number:** T0322-018-501 **Report Date:** 06/14/18

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Cooler Custody Seal

A Absent

| Container ID         Container Type         Cooler         pH         PH         deg C         Pres         Seal         Date/Time         Analysis(*)           L1821602-01A         Vial Na2S2O3 preserved split         A         NA         3.4         Y         Absent         624.1(3)           L1821602-01C         Vial Na2S2O3 preserved split         A         NA         3.4         Y         Absent         624.1(3)           L1821602-01D         Split Amber 1000ml Na2S2O3         A         N/A         N/A         3.4         Y         Absent         625.1(7)           L1821602-01E         Split Amber 1000ml Na2S2O3         A         N/A         N/A         3.4         Y         Absent         625.1(7)           L1821602-02E         Vial Na2S2O3 preserved         A         N/A         N/A         3.4         Y         Absent         COMP-VOA()           L1821602-02B         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02C         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02E         Vial Na2S2O3 preserved         A         NA         3.4         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Container Info | ormation                     |        | Initial | Final | Temp |      |        | Frozen    |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|--------|---------|-------|------|------|--------|-----------|-------------|
| L1821602-01B Vial Na2S2O3 preserved split A NA 3.4 Y Absent 624.1(3)  L1821602-01C Vial Na2S2O3 preserved split A NA 3.4 Y Absent 624.1(3)  L1821602-01D Split Amber 1000ml Na2S2O3 A N/A N/A 3.4 Y Absent 625.1(7)  L1821602-01E Split Amber 1000ml Na2S2O3 A N/A N/A 3.4 Y Absent 625.1(7)  L1821602-02A Vial Na2S2O3 preserved A NA 3.4 Y Absent 625.1(7)  L1821602-02B Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()  L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() | Container ID   | Container Type               | Cooler |         |       |      | Pres | Seal   | Date/Time | Analysis(*) |
| L1821602-01C Vial Na2S2O3 preserved split A NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L1821602-01A   | Vial Na2S2O3 preserved split | Α      | NA      |       | 3.4  | Υ    | Absent |           | 624.1(3)    |
| L1821602-01D Split Amber 1000ml Na2S2O3 A N/A N/A 3.4 Y Absent 625.1(7) L1821602-01E Split Amber 1000ml Na2S2O3 A N/A N/A 3.4 Y Absent 625.1(7) L1821602-02A Vial Na2S2O3 preserved A NA NA 3.4 Y Absent COMP-VOA() L1821602-02B Vial Na2S2O3 preserved A NA NA 3.4 Y Absent COMP-VOA() L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                | L1821602-01B   | Vial Na2S2O3 preserved split | Α      | NA      |       | 3.4  | Υ    | Absent |           | 624.1(3)    |
| L1821602-01E Split Amber 1000ml Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L1821602-01C   | Vial Na2S2O3 preserved split | Α      | NA      |       | 3.4  | Υ    | Absent |           | 624.1(3)    |
| L1821602-02A Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02B Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02I Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02I Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L1821602-01D   | Split Amber 1000ml Na2S2O3   | Α      | N/A     | N/A   | 3.4  | Υ    | Absent |           | 625.1(7)    |
| L1821602-02B Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02D Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02U Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L1821602-01E   | Split Amber 1000ml Na2S2O3   | Α      | N/A     | N/A   | 3.4  | Υ    | Absent |           | 625.1(7)    |
| L1821602-02C Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02I Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L1821602-02A   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02D         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02E         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02F         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02G         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02H         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02I         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02J         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L1821602-02B   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02E Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02F Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02I Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L1821602-02C   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02F         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02G         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02H         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02I         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02J         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02M         Amber 1000ml Na2S2O3         A         7         7         3.4         Y         Absent         COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L1821602-02D   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02G Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02H Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02I Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02J Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02K Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02L Amber 1000ml Na2S2O3 A 7 7 3 3.4 Y Absent COMP-VOA()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L1821602-02E   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02H         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02I         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02J         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02M         Amber 1000ml Na2S2O3         A         7         7         3.4         Y         Absent         COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L1821602-02F   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02I         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02J         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02M         Amber 1000ml Na2S2O3         A         7         7         3.4         Y         Absent         COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L1821602-02G   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02J         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02M         Amber 1000ml Na2S2O3         A         7         7         3.4         Y         Absent         COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L1821602-02H   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02K         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02L         Vial Na2S2O3 preserved         A         NA         3.4         Y         Absent         COMP-VOA()           L1821602-02M         Amber 1000ml Na2S2O3         A         7         7         3.4         Y         Absent         COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L1821602-02I   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02L Vial Na2S2O3 preserved A NA 3.4 Y Absent COMP-VOA() L1821602-02M Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L1821602-02J   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| L1821602-02M Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02K   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L1821602-02L   | Vial Na2S2O3 preserved       | Α      | NA      |       | 3.4  | Υ    | Absent |           | COMP-VOA()  |
| 14004000 00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L1821602-02M   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |
| L1821602-02N Amber 1000ml Na2S2O3 A / / 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02N   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |
| L1821602-02O Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02O   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |
| L1821602-02P Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02P   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |
| L1821602-02Q Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02Q   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |
| L1821602-02R Amber 1000ml Na2S2O3 A 7 7 3.4 Y Absent COMP-W()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L1821602-02R   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4  | Υ    | Absent |           | COMP-W()    |



*Lab Number:* L1821602

Report Date: 06/14/18

**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-501

| Container Info | Container Information        |        | Initial | Final | Temp  |      |        | Frozen    |              |
|----------------|------------------------------|--------|---------|-------|-------|------|--------|-----------|--------------|
| Container ID   | Container Type               | Cooler | pН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)  |
| L1821602-02S   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4   | Υ    | Absent |           | COMP-W()     |
| L1821602-02T   | Amber 1000ml Na2S2O3         | Α      | 7       | 7     | 3.4   | Υ    | Absent |           | COMP-W()     |
| L1821602-03A   | Plastic 60ml unpreserved     | Α      | 7       | 7     | 3.4   | Υ    | Absent |           | PH-4500(.01) |
| L1821602-03B   | Plastic 250ml NaOH preserved | Α      | >12     | >12   | 3.4   | Υ    | Absent |           | TCN-4500(14) |
| L1821602-04A   | Vial Na2S2O3 preserved       | Α      | N/A     | N/A   | 3.4   | Υ    | Absent |           | ARCHIVE()    |
| L1821602-04B   | Vial Na2S2O3 preserved       | Α      | N/A     | N/A   | 3.4   | Υ    | Absent |           | ARCHIVE()    |



Project Name:RIVERBEND S/A BSALab Number:L1821602Project Number:T0322-018-501Report Date:06/14/18

#### **GLOSSARY**

#### **Acronyms**

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers



Project Name:RIVERBEND S/A BSALab Number:L1821602Project Number:T0322-018-501Report Date:06/14/18

#### Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Project Name:RIVERBEND S/A BSALab Number:L1821602Project Number:T0322-018-501Report Date:06/14/18

#### REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

#### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

#### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene

**EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

**EPA 624**: Volatile Halocarbons & Aromatics, **EPA 608**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

#### **Mansfield Facility:**

#### Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

#### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

**EPA 245.1** Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

| Дірна                                             | NEW YORK<br>CHAIN OF<br>CUSTODY        | Service Centers<br>Mahwah, NJ 07430: 35 White<br>Albany, NY 12205: 14 Walke<br>Tonawanda, NY 14150: 275 | r Way       | 105              |           | ge 1<br>of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Dat       | e Red   | 6'd 6     | 19  | 114       |         | ALPHA JOB# 1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------|-------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|---------|-----------|-----|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.             | Mansfield, MA 02048<br>320 Forbes Blvd | Project Information                                                                                     | 32.53       | IP. GE           | PARTIE N  | AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN | Del  | iverab    | les     | 2210      |     |           |         | Billing Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEL: 508-898-9220<br>FAX: 508-898-9193            | TEL: 508-822-9300                      | Project Name:                                                                                           | Riverbend   | S/A BSA          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ASI       | P-A     |           |     | ASP-B     |         | Same as Client Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FAX: 508-896-9193                                 | FAX 508-822-3288                       | Project Location:                                                                                       | Buffalo, NY | 1                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17   | 2         | ulS (1  | File)     | П   | EQuIS (   | 4 File) | PO#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client Information                                |                                        | Project # T0392                                                                                         | -018-5      | 61               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 7  | Oth       |         |           |     |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client: Benchmar                                  | rk Environmental                       | (Use Project name as                                                                                    |             |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rec  | _         | _       | uireme    | nt  | -113      |         | Disposal Site Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address: 2558 Ham                                 | burg Turnpike,Ste300                   | Project Manager:                                                                                        | Фаневселя   | de Brac          | k Green   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 000000000 | rogs    |           |     | NY Part 3 | 75      | The second of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Buffalo, NY 14218                                 |                                        | ALPHAQuote #:                                                                                           |             | · · · ·          | - (5: CC) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 7  | AW        | Q Stand | dards     | П   | NY CP-51  |         | Please identify below location of<br>applicable disposal facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Phone: 716-856-0                                  | 599                                    | Turn-Around Time                                                                                        |             | 34.10            | 100       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i    | 7         |         | ted Use   | H   | Other     |         | Disposal Facility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fax: BG:eeneld                                    | DTURNEY 116.Com                        | Standa                                                                                                  | ard 🗸       | Due Dat          | 0.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 =  |           |         | icted Us  |     | Ollier    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Email: 4hann@tu                                   | rakaylle.com                           | Rush (only if pre approve                                                                               |             | # of Day         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17   |           |         | r Dischar |     |           |         | NJ NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| These samples have b                              | een previously analyze                 | 700                                                                                                     |             | n or buy         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANIA | LYSI      | _       | Discria   | 9a  |           |         | Other: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | c requirements/comm                    |                                                                                                         |             |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 | T         | _       | Т —       |     |           | _       | Sample Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Please specify Metals                             | s or TAL.                              |                                                                                                         |             |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 624  | 625       | TCN     | Ħ         |     |           |         | ☐ Done ☐ Lab to do Preservation ☐ Lab to do  (Please Specify below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THE REAL PROPERTY AND ADDRESS OF THE PARTY AND |
| ALPHA Lab ID                                      | Sar                                    | mple ID                                                                                                 | Col         | lection          | Sample    | Sampler's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    | 1         | 1       |           |     |           |         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Lab Use Only)                                    |                                        |                                                                                                         | Date        | Time             | Matrix    | Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |           |         |           |     |           |         | Sample Specific Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5/1907-0107                                       | Process Effluent - Gra                 |                                                                                                         | 6/5/18      | 0815             | Water     | CEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x    | x         |         |           |     |           |         | Lab to composite 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20107                                             | Process Effluent - Gra                 | ıb 2                                                                                                    | 6/5/18      | 1205             | Water     | CEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x    | x         |         |           |     |           |         | Lab to composite 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2010                                              | Process Effluent - Gra                 | ib 3                                                                                                    | 615/18      | 1710             | Water     | CEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x    | x         |         |           |     |           |         | Lab to composite 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40.10                                             | Process Effluent - Gra                 | b 4                                                                                                     | 6/6/18      | 0945             | Water     | CEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x    | x         |         |           |     |           |         | Lab to composite 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .03                                               | Process Effluent                       |                                                                                                         | 6/6/18      | 0945             | Water     | CEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           | ×       | ×         |     |           |         | add to domposite 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                        |                                                                                                         |             |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |         |           |     |           | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | Trip-Blank                             |                                                                                                         |             |                  | Water     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×    |           |         |           |     |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   |                                        |                                                                                                         |             |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |         |           |     |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                        |                                                                                                         |             |                  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _         |         |           | -   | _         | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3 = HCI                                           | L - Ligatio                            | Westboro: Certification I<br>Mansfield: Certification I                                                 |             |                  | Con       | tainer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v    | A         | Р       | Р         |     |           |         | Please print clearly, legib<br>and completely. Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ly<br>car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | G = Glass<br>B = Bacteria Cup          |                                                                                                         |             |                  | P         | reservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н    | н         | F       | A         |     |           |         | not be logged in and<br>turnaround time clock will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   | C = Cube<br>O = Other                  | , Relinguished                                                                                          | By:         | Date             | /Time     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _    | red By    | -       | 10        | _   | Date/Time |         | start until any ambiguities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | E = Encore<br>D = BOD Bottle           | Choter Hochette                                                                                         | 1 AAC       | 6-6-18<br>6/8/18 | 11200     | andr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111  | _         | 011 -   |           | 6/8 | 1/8 /5    | -00     | resolved. BY EXECUTING<br>THIS COC, THE CLIENT<br>HAS READ AND AGREE<br>TO BE BOUND BY ALPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| orm No: 01-25 (rev. 30-Se                         | pt-2013)                               | 0 0                                                                                                     |             |                  | -         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | -         | 5       | -         |     |           |         | TERMS & CONDITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **ATTACHMENT 3**

FLOW METER CALIBRATION DATA



### **Northeast Metrology Corp.**

4490 Broadway **Depew, NY 14043** 

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Company:

**RIVERBEND** 

Address:

192 BARAGA STREET

BUFFALO, NY 14210

Contact:

**BROCK GREENE** 

Department:

Flow Transmitter / Sensor

Gage Desc: Manufacturer:

George Fischer Signet

Location:

**Calibration Certificate** 





www.nemcal.com

Certificate #: Calibration Date: 1/3/2018

1208314

PO/Acct:

Page:

1 of 2

Visual Condition: Good

**Date Received:** 

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515

80210142061

#### **Parameters:**

Units - GPM Gas Type - N/A Liguid Type -

### Repairs:

+ / - Tolerances: 2.000% / 2.000%

Graph Scale: +0.100000

| <u>GPIVI</u> |            |           |            | -20 | -15 | -10 | -5 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 | 10             | 15 | 20 |
|--------------|------------|-----------|------------|-----|-----|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|----|----|
| Nominal      | Actual     | Deviation |            | Т.  | +.  | +.  | +  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + | +              | +  | +  |
| +75.100000   | +75.440000 | +0.340000 |            |     | (   |     |    | TIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                | )  |    |
| +75.100000   | +74.560000 | -0.540000 |            |     | (   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                | )  |    |
| +75.100000   | +75.170000 | +0.070000 |            |     | (   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                | )  |    |
| +75.100000   | +75.980000 | +0.880000 |            |     | (   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                | )  |    |
| +75.100000   | +74.480000 | -0.620000 | Avg. of 10 |     | (   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | <del>-</del> . | )  |    |
| +75.100000   | +74.500000 | -0.600000 | Timed      |     | (   |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                | )  |    |
|              |            |           |            |     |     |     |    | A CONTRACTOR OF THE PARTY OF TH |   |                |    |    |

#### Comments:

CALIBRATION PERFORMED ONSITE AT AMBIENT CONDITIONS: 59°F & 33% R.H.

SCHEDULE 80 PVC 3" O.D. I.D.=2.9"

TOTAL GALLONS (2018): 10226872

**PERM GALLONS: 41912177** 

TOTAL GALLONS RESET AT END OF TESTING

mA OUTPUT: 0 = 3.99mA MAX = 16.09

#### **Procedure:**

110176:E-Flowme.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6009 Ultrasonic Flowmeter

1331545884, 1329407628 Cal Date / Due Date: 12/16/2016 -- 12/16/2018

Gage Status: PASS

Due Date: 1/3/2019

We certify the equipment used for this calibration is traceable to the International System of Units (SI) via standards traceable to NIST or other National Metrology Institutes (NMI).

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F): (20°C (±1°C)) & relative humidity less than 45%.

### **Northeast Metrology Corp.**

4490 Broadway

**Depew, NY 14043** 

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Page #:

2 of 2

Gage Desc:

Flow Transmitter / Sensor

Manufacturer:

George Fischer Signet

Location:

Certificate #:

1208314

Control #:

SFRB#80210142061

**Calibration Certificate** 

Model:

8550 / 515

Serial #:

80210142061

Electronic & Mechanical calibration performed at ambient conditions.

All pertinent data and readings calibrated are as found & as left unless otherwise denoted in comments.

Calibration performed in accordance with ANSI/NCSL Z540-1-1994 unless otherwise denoted in comments.

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with GGG-G-15C.

Calibration meets or exceeds 4:1 ratio, with the exception of gage blocks stated above.

Measurement Uncertainties are based on approximately a 95% confidence level, using a coverage factor of k=2.

Measurement Uncertainty is taken into account in determining gage status (pass/fail).

Calibration is performed on premises at Northeast Metrology Corp. unless otherwise denoted in comments.

The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: GK m Signature:

This certificate is not valid unless all 2 page(s) are present.

Results of this certificate relate only to the item mentioned in document header.

\*\*END OF DOCUMENT\*\*

#### Strong Advocates, Effective Solutions, Integrated Implementation



December 12, 2018

Mr. Michael Szilagyi **Buffalo Sewer Authority** Industrial Waste Section 90 West Ferry Street Buffalo, NY 14213-1799

Re: RiverBend Site

> Ground Water Pre-Treatment Discharge Monitoring Results December 2018 Semi-Annual Compliance Monitoring Report

BPDES Permit No. 16-01-BU278

Dear Mr. Szilagyi:

On behalf of our client, Fort Schuyler Management Corporation, TurnKey Environmental Restoration, LLC has prepared this correspondence to present the second semi-annual 2018 discharge monitoring results for the groundwater pre-treatment system at the abovereferenced facility. Discharge monitoring was performed from November 27-28, 2018.

#### **SAMPLE COLLECTION**

Samples were collected from the pretreated process effluent (Outfall 001) in general accordance with Buffalo Pollution Discharge Elimination System (BPDES) Permit No. 16-01-BU278 in laboratory-provided, pre-cleaned, and pre-preserved sample bottles (see Figure 1). Four grab samples for volatile organic compound (VOC) and semi-volatile organic compound (SVOC) analysis were containerized in individual sample bottles for laboratory composite preparation during sample extraction and USEPA Method 624 and Method 625 analysis, respectively. Composite samples were also collected for laboratory pH and total cyanide analysis. In accordance with the Permit, composite samples were prepared for all required parameters by combining grab samples collected at four equally spaced intervals over the 24-hour monitoring period. Field documentation is provided in Attachment 1.

#### ANALYTICAL RESULTS

The current period analytical results are presented as Attachment 2. Compounds detected above the laboratory reporting limit for the November 2018 sampling event are summarized in Table 1 along with permitted BSA discharge limits. As presented, all parameters are within allowable limits.

#### FLOW MONITORING

Flow measurement data is presented in Table 1. Average daily flow was based on the total flow recorded during the monitoring period divided by the number of days in that monitoring period. A copy of the annual flow meter calibration data is presented in Attachment 3. The next flow meter calibration is tentatively scheduled for January 2019.

#### **CERTIFICATION STATEMENT**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

ec: Tom O'Brien (Fort Schuyler)

Paul Werthman (TurnKey)

File: 0322-018-503

## **TABLES**





#### TABLE 1

#### 2018 SEMI-ANNUAL GROUNDWATER PRETREATMENT SYSTEM DATA SUMMARY

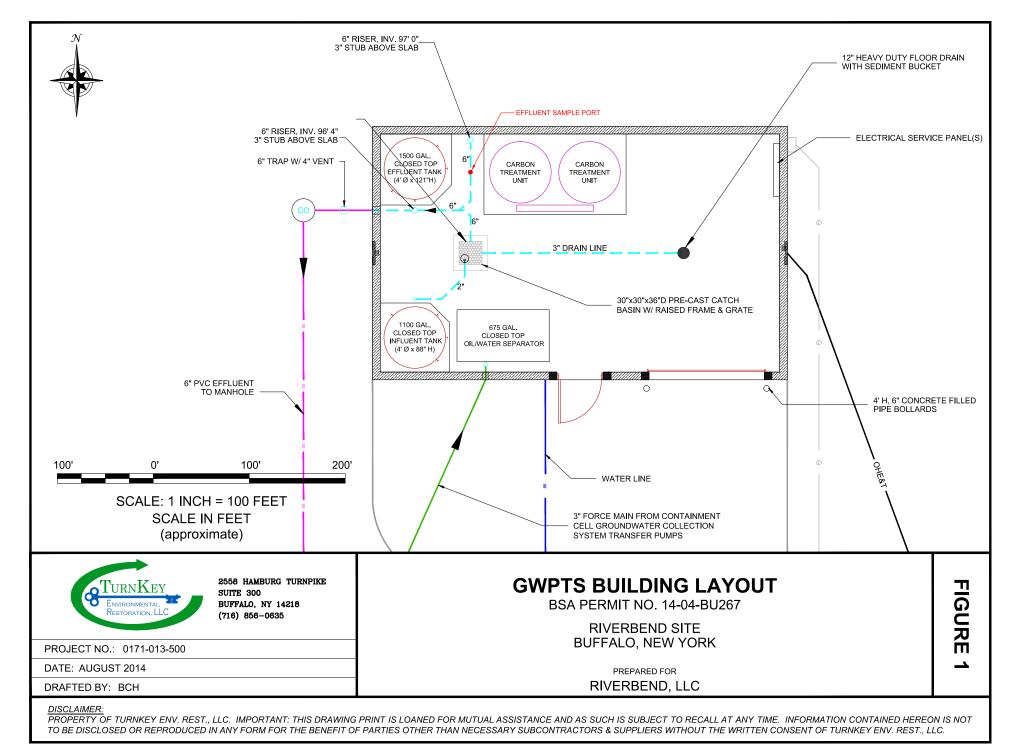
BPDES Permit #16-01-BU278 Fort Schuyler RiverBend Site 312 Abby Street, Buffalo, NY

|                                        | November                           | 27-28, 2018                            |         |  |  |  |
|----------------------------------------|------------------------------------|----------------------------------------|---------|--|--|--|
| Parameter                              | Concentration (units as indicated) | Daily<br>Discharge Limits <sup>2</sup> |         |  |  |  |
| Laboratory pH (S.U.)                   | 7.50                               | 7.50 na                                |         |  |  |  |
| Field pH (S.U.) 3                      | 6.59                               | 6.59 na                                |         |  |  |  |
| Volatile Organic Compounds - Method 62 |                                    |                                        |         |  |  |  |
| Total VOCs                             | ND                                 | na                                     | Monitor |  |  |  |
| Semi-Volatile Organic Compounds - Meth | od 625 (mg/L)                      |                                        |         |  |  |  |
| Total SVOCs                            | ND                                 | na                                     | Monitor |  |  |  |
| Inorganics (mg/L)                      |                                    |                                        |         |  |  |  |
| Total Cyanide                          | 1.35                               | 4.3 lbs                                |         |  |  |  |
| Average Daily Flow (gallons per day) 4 | 16,                                | see Note 5                             |         |  |  |  |

#### Notes:

- 1. The monitoring result is calculated based on the concentration of detected parameters and the average daily flow rate identified below.
- 2. Mass limits are based on the Average Daily Flow through the December event; actual limits may vary slightly based on actual discharge.
- 3. Field pH is an average of 4 grab samples collected over a 24-hour period.
- 4. Average daily flow based on net flow recorded as presented below.
- 5. Permitted maximum allowable daily flow is 110,000 gpd. An action level of 54,000 gpd is identified in the Permit. The BSA is to be notified if flow consistently exceeds this action level so that the permit can be modified.
- 6. "ND" = Indicates compound was analyzed for, but not detected above the reporting limit.

#### Flow Calculations:


| Event         | Date      | Flow Measurement *<br>(gallons) | Average Daily Flow * (gallons per day) |
|---------------|-----------|---------------------------------|----------------------------------------|
| November 2018 | 6/8/2018  | 5,642,343                       | 16,894                                 |
| November 2018 | 12/7/2018 | 8,717,035                       | 10,034                                 |

#### Notes:

<sup>\* =</sup> flow meter calibrated and reset to zero on 01/03/18. Average daily flow above accounts for the recalibration and zeroing.

## **FIGURES**





## **ATTACHMENT 1**

FIELD DOCUMENTATION





### WATER SAMPLE COLLECTION LOG

| PROJECT INFORMATION                  |                              |               |          |               |                                  | SAMPLE DESCRIPTION     |                |                |  |
|--------------------------------------|------------------------------|---------------|----------|---------------|----------------------------------|------------------------|----------------|----------------|--|
| Project Name: RiverBend Site         |                              |               |          |               |                                  | I.D.: Process Effluent |                |                |  |
| Project No.:                         | 0322-016-                    | 0322-016-500  |          |               |                                  | atrix: Surf            | ACE WATER      | STORM          |  |
| Client:                              | FSMC                         | FSMC          |          |               |                                  | SEEP                   |                | OTHER          |  |
| Location:                            | 312 Abby Street, Buffalo, NY |               |          |               |                                  | INFLUENT               |                | ✓ EFFLUENT     |  |
| Location,                            | O 12 7 lbby                  | otroot, bune  | , 141    |               |                                  |                        |                |                |  |
| SAMPLE IN                            | FORMATI                      | ON            |          |               |                                  |                        |                |                |  |
| Date Collected: 11/27/18 - 11/28/18  |                              |               |          |               | Sa                               | ample Type:            | POINT          | ☐ GRAB         |  |
| Time Collected:                      |                              |               |          |               |                                  |                        | ✓ COMPOSI      | TE             |  |
| Date Shipped to                      |                              | 18/18         |          |               |                                  |                        |                |                |  |
| Collected By:                        |                              |               |          |               |                                  |                        |                |                |  |
| Sample Collection Method: DIRECT DIP |                              |               |          |               | SS / POLY. DIPPER PERISTALTIC PL |                        |                |                |  |
|                                      | POLY. DISP. BAILER           |               |          |               |                                  |                        | ISCO SAMPLER   |                |  |
| SAMPLING                             | INFORMA                      | TION          |          |               |                                  |                        |                |                |  |
| Neather: (2)                         |                              |               |          |               |                                  |                        |                |                |  |
| Air Temperature                      |                              |               |          |               |                                  |                        |                |                |  |
| 60%                                  |                              |               |          |               |                                  |                        |                |                |  |
| Paramet                              |                              |               |          | Grab #2       | Grab #3                          | Grab #4                | -              |                |  |
| pH                                   | uni                          |               |          | 6.57          | 6.68                             | 6.54                   |                |                |  |
| Temp.                                | °C                           |               |          | 11.3          | 11,4                             | Mind 11.4              |                |                |  |
| Cond.                                | m:                           |               |          | 1167          | 1257                             | 1186                   |                |                |  |
| Turbidity                            |                              | 0.0           | . 1      | 15.3          | 10.7                             | 14.7                   |                |                |  |
| Eh / ORI                             | P m'                         | v 30          |          | 4             | -3                               | 15                     |                |                |  |
| D.O.                                 | pp                           | 1.0           |          | 3.96          | 3.80                             | 4. 15                  |                |                |  |
| Odor                                 | olfac                        | - Journe      |          | NOAE          | Vone                             | NOAC                   |                |                |  |
| Appearan                             |                              | ial Clear     |          | Clear         | Clear                            | Clear                  | 1              |                |  |
| Sar                                  | 11-27                        |               | 11-27-18 | 11-27-18      | 11-28-18                         |                        |                |                |  |
| Sample Time                          |                              | 033           | O        | 1930          | 1700                             | 0900                   | 1              |                |  |
|                                      |                              |               |          |               |                                  |                        |                |                |  |
| XACT LOCAT                           | ION (if app                  | licable)      |          |               |                                  |                        |                |                |  |
| Northing (ft                         | ) E                          | asting (ft)   | E        | levation (fms | sl)                              |                        |                |                |  |
|                                      |                              |               |          |               |                                  |                        |                |                |  |
|                                      |                              |               |          |               | 1                                |                        |                |                |  |
| SAMPLE DESC                          | CRIPTION (                   | appearance    | . olfa   | ctory):       |                                  |                        |                |                |  |
| clear, no or                         |                              |               | ,        | 7/            |                                  |                        |                |                |  |
| creat , no or                        | 101                          |               |          |               |                                  |                        |                |                |  |
| SAMPLE ANAL                          | YSIS (dept                   | h, laborato   | ry ana   | lysis requir  | ed):                             |                        |                |                |  |
|                                      |                              |               |          |               |                                  | 25 (SVOCs) a           | nalysis, thes  | e samples will |  |
| be composite                         |                              | ·             |          | ,             |                                  |                        | •              | _              |  |
| Collect compo                        | osite sample                 | es for cyanic | e and    | laboratory p  | H by filling                     | equal aliquots         | s of sample to | o fill         |  |
| sample contai                        |                              |               |          | , ,           |                                  |                        | •              |                |  |
| ADDITIONAL R                         | REMARKS:                     |               |          |               |                                  |                        |                |                |  |
|                                      |                              |               |          |               |                                  |                        |                |                |  |
|                                      |                              |               |          |               |                                  |                        |                |                |  |
| REPARED BY                           | I: CEU                       |               |          |               |                                  | DATE:                  | 11-28-18       |                |  |

# **EQUIPMENT CALIBRATION LOG**



# PROJECT INFORMATION:

| Circle   Circle   Carbon   Circle   Carbon   Circle   Carbon   Circle   Carbon   Circle   Carbon   C | _                                                      | 1        |                                |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|--------------------------------|-------------------------------|
| METER TYPE         UNITS         TIME         MAKE/MODEL         SERIAL NUMBER         CAL. BY         STANDARD           PH meter         Units         6213376         CEH         4.00         H.001           Turbidity meter         NTU         C83c         Hach 2100P or 21375         C6120C020523 (P)         CEH         7.00         7.00           Turbidity meter         NTU         LaMorte 2020         6523-1816 (La)         CEH         CCH         10.01           Sp. Cond. meter         NTU         LaMorte 2020         6523-1816 (La)         CEH         CCH         0.00 NTU           PID         PID         Myron L Company         66213375         CEH         7cc- MS @ 25 °C         R.00 NTU           PID         PID         MinRAE 2000         6523-1816 (La)         CEH         7cc- MS @ 25 °C         R.00 NTU           PID         Ppm         MinRAE 2000         6523-1816 (La)         CEH         7cc- MS @ 25 °C         R.00 NTU           Particulate meter         Mg/m         MinRAE 2000         1402000100319 K         CEH         100% Satuartion           Particulate meter         Mg/m         1402000100319 K         CEH         100% Open air           Open air         Open air         Open air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                      | Instrume | ×                              | Rental                        |
| Turbidity meter   NTU   C93c   Ultra Meter 6F   C223973   CEA   CA or 10 terzino   C223973   CA or 10 terzino   C223973   CEA   CA or 10 terzino   C223973   CA or 10 terzino   C223973   CEA   CA or 10 terzino   C223973   CA or 10 terzino   C233973   CA or 10 terzino   C333973   CA or 10 terzino   C33397 |                                                        | CAL. BY  |                                | POST CAL. SETTINGS READING    |
| Turbidity meter   NTU c.93c   Hach 2100P or 210000   Turbidimeter   Turbidity meter   NTU   LaMotte 2020   6523-1816 (La)   C.E.H   C.0.NTU   1.0.NTU   1. | 6213516<br>6243084<br>6212375<br>6223973               | 当つ       |                                |                               |
| Sp. Cond. meter         NTU         LaMotte 2020         6523-1816 (La)         CEH         100 NTU           Sp. Cond. meter         mS         c73c         Ultra Meter 6P         6213516 (La)         CEH         7xxxx mS @ 25 °C           PID         ppm         MinRAE 2000         Add 3084 (State)         CEH         7xxx mS @ 25 °C           Dissolved Oxygen         ppm         MinRAE 2000         080700023281         Open air zero           Particulate meter         mg/m³         HACH Model HQ30d         1402000100319 (X)         CEH         100% Satuartion           Oxygen         yhdrogen sulfide         ppm         c3s5         HACH Model HQ30d         1402000100319 (X)         ceh         cppn air           LEL         yh         y         y         y         y         y         y         y           Radiation Meter         uR/H         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y         y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |          | or 10 fer 2100 a 20 100 800    |                               |
| Sp. Cond. meter         uS         or33c         Myron L Company Oltra Meter 6P (6212375 STS)         6213376 STS         CEH         7000 MS 25 °C           PID         ppm         MinRAE 2000         080700023281 STS         0ppm air zero         0ppm air zero           Dissolved Oxygen         ppm         0535         HACH Model H030d         100500041867 STS         CEH         100% Satuartion           Particulate meter         mg/m³         mg/m³         1402000100319 KT         CEH         100% Satuartion           Hydrogen sulfide         ppm         %         mg/m³         cero air         open air           LEL         %         mW/H         mg/m³         mg/m³         mg/m³         mg/m³           Radiation Meter         mRAH         mg/m³         mg/m³         mg/m³         mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6523-1816 (La)                                         |          | 0.0 NTU<br>1.0 NTU<br>10.0 NTU |                               |
| PID         ppm         MinRAE 2000         MinRAE 2000         O80700023281         CEL         Open air zero           Dissolved Oxygen         mg/m³         HACH Model HQ30d         100500041867         CEL         100% Satuartion           Particulate meter         mg/m³         1402000100319         K         1402000100319         K           Oxygen         %         ppm         1402000100319         K         ppm         ppm air           Hydrogen sulfide         ppm         ppm         ppm air         ppm air         ppm air           Carbon monoxide         ppm         ppm air         ppm air         ppm air           LEL         %         ppm air         ppm air           Radiation Meter         uR/H         packground area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6213516<br>6243084<br>6212375<br>6223973               | 7EH      | mS @ 25 °C                     |                               |
| Dissolved Oxygen         ppm         c/83.5         HACH Model HQ30d         080700023281         CEU         100% Satuartion           Particulate meter         mg/m³         mg/m³         1402000100319         K         1402000100319         K         1402000100319         K         1402000100319         K         140000000000         I         100% Satuartion           Oxygen         %         ppm         cero air         cero air<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AinRAE 2000                                            |          | open air zero<br>ppm lso. Gas  | MIBK response<br>factor = 1.0 |
| Particulate meter         mg/m³         mg/m³           Oxygen         %         mg/m²           Hydrogen sulfide         ppm         mg/m²           Carbon monoxide         ppm         mg/m²           LEL         %         mg/m²           Radiation Meter         uR/H         mg/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 080700023281<br>НQ30d<br>100500041867<br>1402000100319 | hヨフ      |                                | *                             |
| Oxygen         %         Pomm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |          | zero air                       |                               |
| Hydrogen sulfide         ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |          | open air                       |                               |
| Carbon monoxide         ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |          | open air                       |                               |
| LEL % Meter uR/H Neter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |          | open air                       |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |          | open air                       |                               |
| ADDITIONAL REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |          |                                |                               |
| DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DATE: 11-37-18                                         | 0        |                                |                               |

## **ATTACHMENT 2**

ANALYTICAL DATA





### ANALYTICAL REPORT

Lab Number: L1848408

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Brock Greene
Phone: (716) 856-0599

Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-500

Report Date: 12/05/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-500

 Lab Number:
 L1848408

 Report Date:
 12/05/18

| Alpha<br>Sample ID | Client ID                                 | Matrix | Sample<br>Location | Collection Date/Time | Receive Date |
|--------------------|-------------------------------------------|--------|--------------------|----------------------|--------------|
| L1848408-01        | PROCESS EFFLUENT GRAB<br>1-4              | WATER  | BUFFALO, NY        | 11/28/18 09:00       | 11/28/18     |
| L1848408-02        | COMPOSITE OF PROCESS<br>EFFLUENT GRAB 1-4 | WATER  | BUFFALO, NY        | 11/28/18 09:00       | 11/28/18     |
| L1848408-03        | PROCESS EFFLUENT                          | WATER  | BUFFALO, NY        | 11/28/18 09:00       | 11/28/18     |
| L1848408-04        | TRIP BLANK                                | WATER  | BUFFALO, NY        | 11/28/18 00:00       | 11/28/18     |



Project Name:RIVERBEND S/A BSALab Number:L1848408Project Number:T0322-018-500Report Date:12/05/18

### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Project Name:RIVERBEND S/A BSALab Number:L1848408Project Number:T0322-018-500Report Date:12/05/18

### **Case Narrative (continued)**

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Cyanide, Total

WG1183836: A Matrix Spike and Laboratory Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the Matrix Spike and Laboratory Duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/05/18

Custen Walker Cristin Walker

# **ORGANICS**



# **VOLATILES**



L1848408

11/28/18 09:00

Not Specified

11/28/18

**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-500

**SAMPLE RESULTS** 

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 12/05/18

Lab ID: L1848408-01

Client ID: PROCESS EFFLUENT GRAB 1-4

Sample Location:

BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 11/30/18 15:02

Analyst: NLK

| Parameter                         | Result      | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|-----------------------------------|-------------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - West | borough Lab |           |       |     |      |                 |  |
| Methylene chloride                | ND          |           | ug/l  | 1.0 | 0.56 | 1               |  |
| 1,1-Dichloroethane                | ND          |           | ug/l  | 1.5 | 0.40 | 1               |  |
| Chloroform                        | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Carbon tetrachloride              | ND          |           | ug/l  | 1.0 | 0.24 | 1               |  |
| 1,2-Dichloropropane               | ND          |           | ug/l  | 3.5 | 0.46 | 1               |  |
| Dibromochloromethane              | ND          |           | ug/l  | 1.0 | 0.27 | 1               |  |
| 1,1,2-Trichloroethane             | ND          |           | ug/l  | 1.5 | 0.34 | 1               |  |
| 2-Chloroethylvinyl ether          | ND          |           | ug/l  | 10  | 0.35 | 1               |  |
| Tetrachloroethene                 | ND          |           | ug/l  | 1.0 | 0.26 | 1               |  |
| Chlorobenzene                     | ND          |           | ug/l  | 3.5 | 0.30 | 1               |  |
| Trichlorofluoromethane            | ND          |           | ug/l  | 5.0 | 0.28 | 1               |  |
| 1,2-Dichloroethane                | ND          |           | ug/l  | 1.5 | 0.47 | 1               |  |
| 1,1,1-Trichloroethane             | ND          |           | ug/l  | 2.0 | 0.29 | 1               |  |
| Bromodichloromethane              | ND          |           | ug/l  | 1.0 | 0.28 | 1               |  |
| trans-1,3-Dichloropropene         | ND          |           | ug/l  | 1.5 | 0.31 | 1               |  |
| cis-1,3-Dichloropropene           | ND          |           | ug/l  | 1.5 | 0.34 | 1               |  |
| Bromoform                         | ND          |           | ug/l  | 1.0 | 0.22 | 1               |  |
| 1,1,2,2-Tetrachloroethane         | ND          |           | ug/l  | 1.0 | 0.20 | 1               |  |
| Benzene                           | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Toluene                           | ND          |           | ug/l  | 1.0 | 0.31 | 1               |  |
| Ethylbenzene                      | ND          |           | ug/l  | 1.0 | 0.28 | 1               |  |
| Chloromethane                     | ND          |           | ug/l  | 5.0 | 1.0  | 1               |  |
| Bromomethane                      | ND          |           | ug/l  | 5.0 | 1.2  | 1               |  |
| Vinyl chloride                    | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Chloroethane                      | ND          |           | ug/l  | 2.0 | 0.37 | 1               |  |
| 1,1-Dichloroethene                | ND          |           | ug/l  | 1.0 | 0.31 | 1               |  |
| trans-1,2-Dichloroethene          | ND          |           | ug/l  | 1.5 | 0.33 | 1               |  |
| cis-1,2-Dichloroethene            | ND          |           | ug/l  | 1.0 | 0.17 | 1               |  |
|                                   |             |           |       |     |      |                 |  |



Project Name: RIVERBEND S/A BSA Lab Number: L1848408

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

**SAMPLE RESULTS** 

Lab ID: L1848408-01 Date Collected: 11/28/18 09:00

Client ID: PROCESS EFFLUENT GRAB 1-4 Date Received: 11/28/18

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

| Parameter                                | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|------------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - Westborough | Lab    |           |       |     |      |                 |
| Trichloroethene                          | ND     |           | ug/l  | 1.0 | 0.33 | 1               |
| 1,2-Dichlorobenzene                      | ND     |           | ug/l  | 5.0 | 0.28 | 1               |
| 1,3-Dichlorobenzene                      | ND     |           | ug/l  | 5.0 | 0.27 | 1               |
| 1,4-Dichlorobenzene                      | ND     |           | ug/l  | 5.0 | 0.29 | 1               |
| p/m-Xylene                               | ND     |           | ug/l  | 2.0 | 0.30 | 1               |
| o-xylene                                 | ND     |           | ug/l  | 1.0 | 0.34 | 1               |
| Xylenes, Total                           | ND     |           | ug/l  | 1.0 | 0.30 | 1               |
| Styrene                                  | ND     |           | ug/l  | 1.0 | 0.37 | 1               |
| Acetone                                  | ND     |           | ug/l  | 10  | 2.4  | 1               |
| Carbon disulfide                         | ND     |           | ug/l  | 5.0 | 0.28 | 1               |
| 2-Butanone                               | ND     |           | ug/l  | 10  | 1.0  | 1               |
| Vinyl acetate                            | ND     |           | ug/l  | 10  | 0.41 | 1               |
| 4-Methyl-2-pentanone                     | ND     |           | ug/l  | 10  | 0.19 | 1               |
| 2-Hexanone                               | ND     |           | ug/l  | 10  | 0.55 | 1               |
| Acrolein                                 | ND     |           | ug/l  | 8.0 | 1.8  | 1               |
| Acrylonitrile                            | ND     |           | ug/l  | 10  | 0.33 | 1               |
| Dibromomethane                           | ND     |           | ug/l  | 1.0 | 0.23 | 1               |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Pentafluorobenzene   | 100        |           | 60-140                 |  |
| Fluorobenzene        | 105        |           | 60-140                 |  |
| 4-Bromofluorobenzene | 101        |           | 60-140                 |  |



11/28/18 00:00

Not Specified

11/28/18

Project Name: RIVERBEND S/A BSA

**Project Number:** T0322-018-500

**SAMPLE RESULTS** 

Lab Number: L1848408

**Report Date:** 12/05/18

Date Collected:

Date Received:

O/tim EE 1(EO

Lab ID: L1848408-04
Client ID: TRIP BLANK

Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 11/30/18 13:14

Analyst: NLK

| Parameter                         | Result      | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|-----------------------------------|-------------|-----------|-------|-----|------|-----------------|--|
| Volatile Organics by GC/MS - West | borough Lab |           |       |     |      |                 |  |
| Methylene chloride                | ND          |           | ug/l  | 1.0 | 0.56 | 1               |  |
| 1,1-Dichloroethane                | ND          |           | ug/l  | 1.5 | 0.40 | 1               |  |
| Chloroform                        | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Carbon tetrachloride              | ND          |           | ug/l  | 1.0 | 0.24 | 1               |  |
| 1,2-Dichloropropane               | ND          |           | ug/l  | 3.5 | 0.46 | 1               |  |
| Dibromochloromethane              | ND          |           | ug/l  | 1.0 | 0.27 | 1               |  |
| 1,1,2-Trichloroethane             | ND          |           | ug/l  | 1.5 | 0.34 | 1               |  |
| 2-Chloroethylvinyl ether          | ND          |           | ug/l  | 10  | 0.35 | 1               |  |
| Tetrachloroethene                 | ND          |           | ug/l  | 1.0 | 0.26 | 1               |  |
| Chlorobenzene                     | ND          |           | ug/l  | 3.5 | 0.30 | 1               |  |
| Trichlorofluoromethane            | ND          |           | ug/l  | 5.0 | 0.28 | 1               |  |
| 1,2-Dichloroethane                | ND          |           | ug/l  | 1.5 | 0.47 | 1               |  |
| 1,1,1-Trichloroethane             | ND          |           | ug/l  | 2.0 | 0.29 | 1               |  |
| Bromodichloromethane              | ND          |           | ug/l  | 1.0 | 0.28 | 1               |  |
| trans-1,3-Dichloropropene         | ND          |           | ug/l  | 1.5 | 0.31 | 1               |  |
| cis-1,3-Dichloropropene           | ND          |           | ug/l  | 1.5 | 0.34 | 1               |  |
| Bromoform                         | ND          |           | ug/l  | 1.0 | 0.22 | 1               |  |
| 1,1,2,2-Tetrachloroethane         | ND          |           | ug/l  | 1.0 | 0.20 | 1               |  |
| Benzene                           | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Toluene                           | ND          |           | ug/l  | 1.0 | 0.31 | 1               |  |
| Ethylbenzene                      | ND          |           | ug/l  | 1.0 | 0.28 | 1               |  |
| Chloromethane                     | ND          |           | ug/l  | 5.0 | 1.0  | 1               |  |
| Bromomethane                      | ND          |           | ug/l  | 5.0 | 1.2  | 1               |  |
| Vinyl chloride                    | ND          |           | ug/l  | 1.0 | 0.38 | 1               |  |
| Chloroethane                      | ND          |           | ug/l  | 2.0 | 0.37 | 1               |  |
| 1,1-Dichloroethene                | ND          |           | ug/l  | 1.0 | 0.31 | 1               |  |
| trans-1,2-Dichloroethene          | ND          |           | ug/l  | 1.5 | 0.33 | 1               |  |
| cis-1,2-Dichloroethene            | ND          |           | ug/l  | 1.0 | 0.17 | 1               |  |
|                                   |             |           |       |     |      |                 |  |



Project Name: RIVERBEND S/A BSA Lab Number: L1848408

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

**SAMPLE RESULTS** 

Lab ID: L1848408-04 Date Collected: 11/28/18 00:00

Client ID: TRIP BLANK Date Received: 11/28/18
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

| Parameter                               | Result | Qualifier | Units | RL  | MDL  | Dilution Factor |
|-----------------------------------------|--------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - Westboroug | h Lab  |           |       |     |      |                 |
| Trichloroethene                         | ND     |           | ug/l  | 1.0 | 0.33 | 1               |
| 1,2-Dichlorobenzene                     | ND     |           | ug/l  | 5.0 | 0.28 | 1               |
| 1,3-Dichlorobenzene                     | ND     |           | ug/l  | 5.0 | 0.27 | 1               |
| 1,4-Dichlorobenzene                     | ND     |           | ug/l  | 5.0 | 0.29 | 1               |
| p/m-Xylene                              | ND     |           | ug/l  | 2.0 | 0.30 | 1               |
| o-xylene                                | ND     |           | ug/l  | 1.0 | 0.34 | 1               |
| Xylenes, Total                          | ND     |           | ug/l  | 1.0 | 0.30 | 1               |
| Styrene                                 | ND     |           | ug/l  | 1.0 | 0.37 | 1               |
| Acetone                                 | ND     |           | ug/l  | 10  | 2.4  | 1               |
| Carbon disulfide                        | 0.50   | J         | ug/l  | 5.0 | 0.28 | 1               |
| 2-Butanone                              | ND     |           | ug/l  | 10  | 1.0  | 1               |
| Vinyl acetate                           | ND     |           | ug/l  | 10  | 0.41 | 1               |
| 4-Methyl-2-pentanone                    | ND     |           | ug/l  | 10  | 0.19 | 1               |
| 2-Hexanone                              | ND     |           | ug/l  | 10  | 0.55 | 1               |
| Acrolein                                | ND     |           | ug/l  | 8.0 | 1.8  | 1               |
| Acrylonitrile                           | ND     |           | ug/l  | 10  | 0.33 | 1               |
| Dibromomethane                          | ND     |           | ug/l  | 1.0 | 0.23 | 1               |

| Surrogate            | % Recovery | Qualifier | Acceptance<br>Criteria |  |
|----------------------|------------|-----------|------------------------|--|
| Pentafluorobenzene   | 99         |           | 60-140                 |  |
| Fluorobenzene        | 99         |           | 60-140                 |  |
| 4-Bromofluorobenzene | 102        |           | 60-140                 |  |



L1848408

Project Name: RIVERBEND S/A BSA Lab Number:

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 11/30/18 09:00

Analyst: NLK

| arameter                  | Result            | Qualifier Units | RL RL        | MDL         |
|---------------------------|-------------------|-----------------|--------------|-------------|
| olatile Organics by GC/MS | - Westborough Lab | for sample(s):  | 01,04 Batch: | WG1184283-8 |
| Methylene chloride        | ND                | ug/l            | 1.0          | 0.56        |
| 1,1-Dichloroethane        | ND                | ug/l            | 1.5          | 0.40        |
| Chloroform                | ND                | ug/l            | 1.0          | 0.38        |
| Carbon tetrachloride      | ND                | ug/l            | 1.0          | 0.24        |
| 1,2-Dichloropropane       | ND                | ug/l            | 3.5          | 0.46        |
| Dibromochloromethane      | ND                | ug/l            | 1.0          | 0.27        |
| 1,1,2-Trichloroethane     | ND                | ug/l            | 1.5          | 0.34        |
| 2-Chloroethylvinyl ether  | ND                | ug/l            | 10           | 0.35        |
| Tetrachloroethene         | ND                | ug/l            | 1.0          | 0.26        |
| Chlorobenzene             | ND                | ug/l            | 3.5          | 0.30        |
| Trichlorofluoromethane    | ND                | ug/l            | 5.0          | 0.28        |
| 1,2-Dichloroethane        | ND                | ug/l            | 1.5          | 0.47        |
| 1,1,1-Trichloroethane     | ND                | ug/l            | 2.0          | 0.29        |
| Bromodichloromethane      | ND                | ug/l            | 1.0          | 0.28        |
| trans-1,3-Dichloropropene | ND                | ug/l            | 1.5          | 0.31        |
| cis-1,3-Dichloropropene   | ND                | ug/l            | 1.5          | 0.34        |
| Bromoform                 | ND                | ug/l            | 1.0          | 0.22        |
| 1,1,2,2-Tetrachloroethane | ND                | ug/l            | 1.0          | 0.20        |
| Benzene                   | ND                | ug/l            | 1.0          | 0.38        |
| Toluene                   | ND                | ug/l            | 1.0          | 0.31        |
| Ethylbenzene              | ND                | ug/l            | 1.0          | 0.28        |
| Chloromethane             | ND                | ug/l            | 5.0          | 1.0         |
| Bromomethane              | ND                | ug/l            | 5.0          | 1.2         |
| Vinyl chloride            | ND                | ug/l            | 1.0          | 0.38        |
| Chloroethane              | ND                | ug/l            | 2.0          | 0.37        |
| 1,1-Dichloroethene        | ND                | ug/l            | 1.0          | 0.31        |
| trans-1,2-Dichloroethene  | ND                | ug/l            | 1.5          | 0.33        |
| cis-1,2-Dichloroethene    | ND                | ug/l            | 1.0          | 0.17        |
| Trichloroethene           | ND                | ug/l            | 1.0          | 0.33        |



Project Name: RIVERBEND S/A BSA Lab Number: L1848408

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 11/30/18 09:00

Analyst: NLK

| arameter                             | Result          | Qualifier    | Units       | RL     | MDL         |
|--------------------------------------|-----------------|--------------|-------------|--------|-------------|
| olatile Organics by GC/MS -          | Westborough Lab | o for sample | e(s): 01,04 | Batch: | WG1184283-8 |
| 1,2-Dichlorobenzene                  | ND              |              | ug/l        | 5.0    | 0.28        |
| 1,3-Dichlorobenzene                  | ND              |              | ug/l        | 5.0    | 0.27        |
| 1,4-Dichlorobenzene                  | ND              |              | ug/l        | 5.0    | 0.29        |
| p/m-Xylene                           | ND              |              | ug/l        | 2.0    | 0.30        |
| o-xylene                             | ND              |              | ug/l        | 1.0    | 0.34        |
| Xylenes, Total                       | ND              |              | ug/l        | 1.0    | 0.30        |
| Styrene                              | ND              |              | ug/l        | 1.0    | 0.37        |
| Acetone                              | ND              |              | ug/l        | 10     | 2.4         |
| Carbon disulfide                     | ND              |              | ug/l        | 5.0    | 0.28        |
| 2-Butanone                           | ND              |              | ug/l        | 10     | 1.0         |
| Vinyl acetate                        | ND              |              | ug/l        | 10     | 0.41        |
| 4-Methyl-2-pentanone                 | ND              |              | ug/l        | 10     | 0.19        |
| 2-Hexanone                           | ND              |              | ug/l        | 10     | 0.55        |
| Acrolein                             | ND              |              | ug/l        | 8.0    | 1.8         |
| Acrylonitrile                        | ND              |              | ug/l        | 10     | 0.33        |
| n-Hexane <sup>1</sup>                | ND              |              | ug/l        | 20     | 0.17        |
| Methyl tert butyl ether              | ND              |              | ug/l        | 10     | 0.19        |
| Dibromomethane                       | ND              |              | ug/l        | 1.0    | 0.23        |
| 1,4-Dioxane <sup>1</sup>             | 110             | J            | ug/l        | 2000   | 30.         |
| Tert-Butyl Alcohol                   | ND              |              | ug/l        | 100    | 3.9         |
| Tertiary-Amyl Methyl Ether           | ND              |              | ug/l        | 20     | 0.28        |
| Dichlorodifluoromethane <sup>1</sup> | ND              |              | ug/l        | 1.0    | 0.32        |

|           | P         | Acceptance                |                        |
|-----------|-----------|---------------------------|------------------------|
| %Recovery | Qualifier | Criteria                  |                        |
|           |           |                           |                        |
| 99        |           | 60-140                    |                        |
| 99        |           | 60-140                    |                        |
| 96        |           | 60-140                    |                        |
|           | 99<br>99  | %Recovery Qualifier 99 99 | 99 60-140<br>99 60-140 |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| rameter                            | LCS<br>%Recovery      | LCSD<br>Qual %Recovery   | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|------------------------------------|-----------------------|--------------------------|--------------------------|-----|--------------------|
| latile Organics by GC/MS - Westbor | ough Lab Associated s | ample(s): 01,04 Batch: \ | WG1184283-7              |     |                    |
| Methylene chloride                 | 100                   | -                        | 60-140                   | -   | 28                 |
| 1,1-Dichloroethane                 | 95                    | -                        | 50-150                   | -   | 49                 |
| Chloroform                         | 100                   | -                        | 70-135                   | -   | 54                 |
| Carbon tetrachloride               | 80                    | -                        | 70-130                   | -   | 41                 |
| 1,2-Dichloropropane                | 95                    | -                        | 35-165                   | -   | 55                 |
| Dibromochloromethane               | 100                   | -                        | 70-135                   | -   | 50                 |
| 1,1,2-Trichloroethane              | 100                   | -                        | 70-130                   | -   | 45                 |
| 2-Chloroethylvinyl ether           | 100                   | -                        | 1-225                    | -   | 71                 |
| Tetrachloroethene                  | 95                    | -                        | 70-130                   | -   | 39                 |
| Chlorobenzene                      | 90                    | -                        | 65-135                   | -   | 53                 |
| Trichlorofluoromethane             | 100                   | -                        | 50-150                   | -   | 84                 |
| 1,2-Dichloroethane                 | 95                    | -                        | 70-130                   | -   | 49                 |
| 1,1,1-Trichloroethane              | 85                    | -                        | 70-130                   | -   | 36                 |
| Bromodichloromethane               | 105                   | -                        | 65-135                   | -   | 56                 |
| trans-1,3-Dichloropropene          | 90                    | -                        | 50-150                   | -   | 86                 |
| cis-1,3-Dichloropropene            | 95                    | -                        | 25-175                   | -   | 58                 |
| Bromoform                          | 90                    | -                        | 70-130                   | -   | 42                 |
| 1,1,2,2-Tetrachloroethane          | 100                   | -                        | 60-140                   | -   | 61                 |
| Benzene                            | 95                    | -                        | 65-135                   | -   | 61                 |
| Toluene                            | 100                   | -                        | 70-130                   | -   | 41                 |
| Ethylbenzene                       | 90                    | -                        | 60-140                   | -   | 63                 |
| Chloromethane                      | 90                    | -                        | 1-205                    | -   | 60                 |
| Bromomethane                       | 110                   | -                        | 15-185                   | -   | 61                 |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| arameter                                | LCS<br>%Recovery   | LCSD<br>Qual %Recovery | %Recovery<br>' Qual Limits | RPD | RPD<br>Qual Limits |  |
|-----------------------------------------|--------------------|------------------------|----------------------------|-----|--------------------|--|
| platile Organics by GC/MS - Westborough | n Lab Associated s | ample(s): 01,04 Batch: | WG1184283-7                |     |                    |  |
| Vinyl chloride                          | 120                | -                      | 5-195                      | -   | 66                 |  |
| Chloroethane                            | 90                 | -                      | 40-160                     | -   | 78                 |  |
| 1,1-Dichloroethene                      | 95                 | -                      | 50-150                     | -   | 32                 |  |
| trans-1,2-Dichloroethene                | 100                | -                      | 70-130                     | -   | 45                 |  |
| cis-1,2-Dichloroethene                  | 85                 | -                      | 60-140                     | -   | 30                 |  |
| Trichloroethene                         | 95                 | -                      | 65-135                     | -   | 48                 |  |
| 1,2-Dichlorobenzene                     | 95                 | -                      | 65-135                     | -   | 57                 |  |
| 1,3-Dichlorobenzene                     | 90                 | -                      | 70-130                     | -   | 43                 |  |
| 1,4-Dichlorobenzene                     | 95                 | -                      | 65-135                     | -   | 57                 |  |
| p/m-Xylene                              | 85                 | -                      | 60-140                     | -   | 30                 |  |
| o-xylene                                | 85                 | -                      | 60-140                     | -   | 30                 |  |
| Styrene                                 | 80                 | -                      | 60-140                     | -   | 30                 |  |
| Acetone                                 | 112                | -                      | 40-160                     | -   | 30                 |  |
| Carbon disulfide                        | 80                 | -                      | 60-140                     | -   | 30                 |  |
| 2-Butanone                              | 110                | -                      | 60-140                     | -   | 30                 |  |
| Vinyl acetate                           | 112                | -                      | 60-140                     | -   | 30                 |  |
| 4-Methyl-2-pentanone                    | 104                | -                      | 60-140                     | -   | 30                 |  |
| 2-Hexanone                              | 106                | -                      | 60-140                     | -   | 30                 |  |
| Acrolein                                | 112                | -                      | 60-140                     | -   | 30                 |  |
| Acrylonitrile                           | 100                | -                      | 60-140                     | -   | 60                 |  |
| Methyl tert butyl ether                 | 90                 | -                      | 60-140                     | -   | 30                 |  |
| Dibromomethane                          | 90                 | -                      | 70-130                     | -   | 30                 |  |
| 1,4-Dioxane <sup>1</sup>                | 95                 | -                      | 60-140                     | -   | 30                 |  |



**Project Name:** RIVERBEND S/A BSA

**Project Number:** 

T0322-018-500

Lab Number:

L1848408

12/05/18

Report Date:

| Parameter                                  | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|------------|-------------------|-------------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): | 01,04 Batch:      | WG1184283-7 |                     |     |      |               |  |
| Tert-Butyl Alcohol                         | 110              |            | -                 |             | 60-140              | -   |      | 30            |  |
| Tertiary-Amyl Methyl Ether                 | 85               |            | -                 |             | 60-140              | -   |      | 30            |  |
| Dichlorodifluoromethane <sup>1</sup>       | 85               |            | -                 |             | 70-130              | -   |      | 30            |  |

|                      | LCS         |         | LCSD     |      | Acceptance |  |
|----------------------|-------------|---------|----------|------|------------|--|
| Surrogate            | %Recovery Q | Qual %F | Recovery | Qual | Criteria   |  |
| Pentafluorobenzene   | 100         |         |          |      | 60-140     |  |
| Fluorobenzene        | 97          |         |          |      | 60-140     |  |
| 4-Bromofluorobenzene | 98          |         |          |      | 60-140     |  |



# **SEMIVOLATILES**



Project Name: RIVERBEND S/A BSA Lab Number: L1848408

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

**SAMPLE RESULTS** 

Lab ID: L1848408-01 Date Collected: 11/28/18 09:00

Client ID: PROCESS EFFLUENT GRAB 1-4 Date Received: 11/28/18
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 11/29/18 07:34

Analytical Date: 11/30/18 21:21 Analyst: ALS

| Parameter                              | Result            | Qualifier | Units | RL  | MDL  | Dilution Factor |
|----------------------------------------|-------------------|-----------|-------|-----|------|-----------------|
| Semivolatile Organics by GC/MS -       | · Westborough Lab |           |       |     |      |                 |
| Acenaphthene                           | ND                |           | ug/l  | 2.0 | 0.41 | 1               |
| Benzidine <sup>1</sup>                 | ND                |           | ug/l  | 20  | 12.  | 1               |
| 1,2,4-Trichlorobenzene                 | ND                |           | ug/l  | 5.0 | 1.5  | 1               |
| Hexachlorobenzene                      | ND                |           | ug/l  | 2.0 | 0.95 | 1               |
| Bis(2-chloroethyl)ether                | ND                |           | ug/l  | 2.0 | 0.60 | 1               |
| 2-Chloronaphthalene                    | ND                |           | ug/l  | 2.0 | 0.32 | 1               |
| 3,3'-Dichlorobenzidine                 | ND                |           | ug/l  | 5.0 | 0.46 | 1               |
| 2,4-Dinitrotoluene                     | ND                |           | ug/l  | 5.0 | 0.64 | 1               |
| 2,6-Dinitrotoluene                     | ND                |           | ug/l  | 5.0 | 0.63 | 1               |
| Azobenzene <sup>1</sup>                | ND                |           | ug/l  | 2.0 | 0.89 | 1               |
| Fluoranthene                           | ND                |           | ug/l  | 2.0 | 0.74 | 1               |
| 4-Chlorophenyl phenyl ether            | ND                |           | ug/l  | 2.0 | 0.37 | 1               |
| 4-Bromophenyl phenyl ether             | ND                |           | ug/l  | 2.0 | 0.45 | 1               |
| Bis(2-chloroisopropyl)ether            | ND                |           | ug/l  | 2.0 | 0.82 | 1               |
| Bis(2-chloroethoxy)methane             | ND                |           | ug/l  | 5.0 | 0.58 | 1               |
| Hexachlorobutadiene                    | ND                |           | ug/l  | 2.0 | 0.92 | 1               |
| Hexachlorocyclopentadiene <sup>1</sup> | ND                |           | ug/l  | 10  | 1.4  | 1               |
| Hexachloroethane                       | ND                |           | ug/l  | 2.0 | 0.97 | 1               |
| Isophorone                             | ND                |           | ug/l  | 5.0 | 0.55 | 1               |
| Naphthalene                            | ND                |           | ug/l  | 2.0 | 0.90 | 1               |
| Nitrobenzene                           | ND                |           | ug/l  | 2.0 | 0.79 | 1               |
| NDPA/DPA <sup>1</sup>                  | ND                |           | ug/l  | 2.0 | 0.78 | 1               |
| n-Nitrosodi-n-propylamine              | ND                |           | ug/l  | 5.0 | 0.63 | 1               |
| Bis(2-ethylhexyl)phthalate             | ND                |           | ug/l  | 2.2 | 1.7  | 1               |
| Butyl benzyl phthalate                 | ND                |           | ug/l  | 5.0 | 0.67 | 1               |
| Di-n-butylphthalate                    | ND                |           | ug/l  | 5.0 | 0.63 | 1               |
| Di-n-octylphthalate                    | ND                |           | ug/l  | 5.0 | 0.63 | 1               |
| Diethyl phthalate                      | ND                |           | ug/l  | 5.0 | 0.72 | 1               |
|                                        |                   |           |       |     |      |                 |



Project Name: RIVERBEND S/A BSA Lab Number: L1848408

**Project Number:** T0322-018-500 **Report Date:** 12/05/18

**SAMPLE RESULTS** 

Lab ID: L1848408-01 Date Collected: 11/28/18 09:00

Client ID: PROCESS EFFLUENT GRAB 1-4 Date Received: 11/28/18

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

| Parameter                                  | Result         | Qualifier | Units | RL  | MDL  | Dilution Factor |  |
|--------------------------------------------|----------------|-----------|-------|-----|------|-----------------|--|
| Semivolatile Organics by GC/MS - W         | estborough Lab |           |       |     |      |                 |  |
| Dimethyl phthalate                         | ND             |           | ug/l  | 5.0 | 1.4  | 1               |  |
| Benzo(a)anthracene                         | ND             |           | ug/l  | 2.0 | 0.66 | 1               |  |
| Benzo(a)pyrene                             | ND             |           | ug/l  | 2.0 | 0.61 | 1               |  |
| Benzo(b)fluoranthene                       | ND             |           | ug/l  | 2.0 | 0.74 | 1               |  |
| Benzo(k)fluoranthene                       | ND             |           | ug/l  | 2.0 | 0.74 | 1               |  |
| Chrysene                                   | ND             |           | ug/l  | 2.0 | 0.67 | 1               |  |
| Acenaphthylene                             | ND             |           | ug/l  | 2.0 | 0.93 | 1               |  |
| Anthracene                                 | ND             |           | ug/l  | 2.0 | 0.79 | 1               |  |
| Benzo(ghi)perylene                         | ND             |           | ug/l  | 2.0 | 0.67 | 1               |  |
| Fluorene                                   | ND             |           | ug/l  | 2.0 | 0.93 | 1               |  |
| Phenanthrene                               | ND             |           | ug/l  | 2.0 | 0.82 | 1               |  |
| Dibenzo(a,h)anthracene                     | ND             |           | ug/l  | 2.0 | 0.69 | 1               |  |
| Indeno(1,2,3-cd)pyrene                     | ND             |           | ug/l  | 2.0 | 0.63 | 1               |  |
| Pyrene                                     | ND             |           | ug/l  | 2.0 | 0.73 | 1               |  |
| 4-Chloroaniline <sup>1</sup>               | ND             |           | ug/l  | 5.0 | 0.79 | 1               |  |
| Dibenzofuran <sup>1</sup>                  | ND             |           | ug/l  | 2.0 | 0.37 | 1               |  |
| 2-Methylnaphthalene <sup>1</sup>           | ND             |           | ug/l  | 2.0 | 0.35 | 1               |  |
| n-Nitrosodimethylamine <sup>1</sup>        | ND             |           | ug/l  | 2.0 | 0.41 | 1               |  |
| 2,4,6-Trichlorophenol                      | ND             |           | ug/l  | 5.0 | 0.61 | 1               |  |
| p-Chloro-m-cresol <sup>1</sup>             | ND             |           | ug/l  | 2.0 | 0.53 | 1               |  |
| 2-Chlorophenol                             | ND             |           | ug/l  | 2.0 | 0.51 | 1               |  |
| 2,4-Dichlorophenol                         | ND             |           | ug/l  | 5.0 | 0.55 | 1               |  |
| 2,4-Dimethylphenol                         | ND             |           | ug/l  | 5.0 | 0.85 | 1               |  |
| 2-Nitrophenol                              | ND             |           | ug/l  | 5.0 | 0.60 | 1               |  |
| 4-Nitrophenol                              | ND             |           | ug/l  | 10  | 0.83 | 1               |  |
| 2,4-Dinitrophenol                          | ND             |           | ug/l  | 20  | 1.2  | 1               |  |
| 4,6-Dinitro-o-cresol                       | ND             |           | ug/l  | 10  | 1.2  | 1               |  |
| Pentachlorophenol                          | ND             |           | ug/l  | 5.0 | 0.62 | 1               |  |
| Phenol                                     | ND             |           | ug/l  | 5.0 | 0.26 | 1               |  |
| 2-Methylphenol <sup>1</sup>                | ND             |           | ug/l  | 5.0 | 0.77 | 1               |  |
| 3-Methylphenol/4-Methylphenol <sup>1</sup> | ND             |           | ug/l  | 5.0 | 0.51 | 1               |  |
| 2,4,5-Trichlorophenol <sup>1</sup>         | ND             |           | ug/l  | 5.0 | 0.64 | 1               |  |
| Benzoic Acid <sup>1</sup>                  | ND             |           | ug/l  | 50  | 1.2  | 1               |  |
| Benzyl Alcohol <sup>1</sup>                | ND             |           | ug/l  | 2.0 | 0.49 | 1               |  |
|                                            |                |           |       |     |      |                 |  |



**Project Name:** Lab Number: RIVERBEND S/A BSA L1848408

Report Date: **Project Number:** T0322-018-500 12/05/18

**SAMPLE RESULTS** 

Lab ID: Date Collected: L1848408-01 11/28/18 09:00

Date Received: Client ID: PROCESS EFFLUENT GRAB 1-4 11/28/18 Field Prep: Not Specified

Sample Location: BUFFALO, NY

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

| Surrogate            | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------|------------|----------------------------------|
| 2-Fluorophenol       | 44         | 25-87                            |
| Phenol-d6            | 31         | 16-65                            |
| Nitrobenzene-d5      | 73         | 42-122                           |
| 2-Fluorobiphenyl     | 67         | 46-121                           |
| 2,4,6-Tribromophenol | 69         | 45-128                           |
| 4-Terphenyl-d14      | 64         | 47-138                           |
|                      |            |                                  |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number: L1848408

**Report Date:** 12/05/18

### Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 11/30/18 17:10

Analyst: ALS

Extraction Method: EPA 625.1 Extraction Date: 11/29/18 07:34

| arameter                               | Result         | Qualifier   | Units     | RL        | MDL         |
|----------------------------------------|----------------|-------------|-----------|-----------|-------------|
| emivolatile Organics by GC/M           | S - Westboroug | h Lab for s | ample(s): | 01 Batch: | WG1183726-1 |
| Acenaphthene                           | ND             |             | ug/l      | 2.0       | 0.41        |
| Benzidine <sup>1</sup>                 | ND             |             | ug/l      | 20        | 12.         |
| 1,2,4-Trichlorobenzene                 | ND             |             | ug/l      | 5.0       | 1.5         |
| Hexachlorobenzene                      | ND             |             | ug/l      | 2.0       | 0.95        |
| Bis(2-chloroethyl)ether                | ND             |             | ug/l      | 2.0       | 0.60        |
| 2-Chloronaphthalene                    | ND             |             | ug/l      | 2.0       | 0.32        |
| 3,3'-Dichlorobenzidine                 | ND             |             | ug/l      | 5.0       | 0.46        |
| 2,4-Dinitrotoluene                     | ND             |             | ug/l      | 5.0       | 0.64        |
| 2,6-Dinitrotoluene                     | ND             |             | ug/l      | 5.0       | 0.63        |
| Azobenzene <sup>1</sup>                | ND             |             | ug/l      | 2.0       | 0.89        |
| Fluoranthene                           | ND             |             | ug/l      | 2.0       | 0.74        |
| 4-Chlorophenyl phenyl ether            | ND             |             | ug/l      | 2.0       | 0.37        |
| 4-Bromophenyl phenyl ether             | ND             |             | ug/l      | 2.0       | 0.45        |
| Bis(2-chloroisopropyl)ether            | ND             |             | ug/l      | 2.0       | 0.82        |
| Bis(2-chloroethoxy)methane             | ND             |             | ug/l      | 5.0       | 0.58        |
| Hexachlorobutadiene                    | ND             |             | ug/l      | 2.0       | 0.92        |
| Hexachlorocyclopentadiene <sup>1</sup> | ND             |             | ug/l      | 10        | 1.4         |
| Hexachloroethane                       | ND             |             | ug/l      | 2.0       | 0.97        |
| Isophorone                             | ND             |             | ug/l      | 5.0       | 0.55        |
| Naphthalene                            | ND             |             | ug/l      | 2.0       | 0.90        |
| Nitrobenzene                           | ND             |             | ug/l      | 2.0       | 0.79        |
| NDPA/DPA <sup>1</sup>                  | ND             |             | ug/l      | 2.0       | 0.78        |
| n-Nitrosodi-n-propylamine              | ND             |             | ug/l      | 5.0       | 0.63        |
| Bis(2-ethylhexyl)phthalate             | 1.8            | J           | ug/l      | 2.2       | 1.7         |
| Butyl benzyl phthalate                 | ND             |             | ug/l      | 5.0       | 0.67        |
| Di-n-butylphthalate                    | ND             |             | ug/l      | 5.0       | 0.63        |
| Di-n-octylphthalate                    | ND             |             | ug/l      | 5.0       | 0.63        |
| Diethyl phthalate                      | ND             |             | ug/l      | 5.0       | 0.72        |
| Dimethyl phthalate                     | ND             |             | ug/l      | 5.0       | 1.4         |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number: L1848408

**Report Date:** 12/05/18

### Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 11/30/18 17:10

Analyst: ALS

Extraction Method: EPA 625.1 Extraction Date: 11/29/18 07:34

| arameter                            | Result          | Qualifier   | Units     | RL      | MDL            |  |
|-------------------------------------|-----------------|-------------|-----------|---------|----------------|--|
| emivolatile Organics by GC/         | MS - Westboroug | h Lab for s | ample(s): | 01 Bato | h: WG1183726-1 |  |
| Benzo(a)anthracene                  | ND              |             | ug/l      | 2.0     | 0.66           |  |
| Benzo(a)pyrene                      | ND              |             | ug/l      | 2.0     | 0.61           |  |
| Benzo(b)fluoranthene                | ND              |             | ug/l      | 2.0     | 0.74           |  |
| Benzo(k)fluoranthene                | ND              |             | ug/l      | 2.0     | 0.74           |  |
| Chrysene                            | ND              |             | ug/l      | 2.0     | 0.67           |  |
| Acenaphthylene                      | ND              |             | ug/l      | 2.0     | 0.93           |  |
| Anthracene                          | ND              |             | ug/l      | 2.0     | 0.79           |  |
| Benzo(ghi)perylene                  | ND              |             | ug/l      | 2.0     | 0.67           |  |
| Fluorene                            | ND              |             | ug/l      | 2.0     | 0.93           |  |
| Phenanthrene                        | ND              |             | ug/l      | 2.0     | 0.82           |  |
| Dibenzo(a,h)anthracene              | ND              |             | ug/l      | 2.0     | 0.69           |  |
| Indeno(1,2,3-cd)pyrene              | ND              |             | ug/l      | 2.0     | 0.63           |  |
| Pyrene                              | ND              |             | ug/l      | 2.0     | 0.73           |  |
| 4-Chloroaniline <sup>1</sup>        | ND              |             | ug/l      | 5.0     | 0.79           |  |
| Dibenzofuran <sup>1</sup>           | ND              |             | ug/l      | 2.0     | 0.37           |  |
| 2-Methylnaphthalene <sup>1</sup>    | ND              |             | ug/l      | 2.0     | 0.35           |  |
| n-Nitrosodimethylamine <sup>1</sup> | ND              |             | ug/l      | 2.0     | 0.41           |  |
| 2,4,6-Trichlorophenol               | ND              |             | ug/l      | 5.0     | 0.61           |  |
| p-Chloro-m-cresol <sup>1</sup>      | ND              |             | ug/l      | 2.0     | 0.53           |  |
| 2-Chlorophenol                      | ND              |             | ug/l      | 2.0     | 0.51           |  |
| 2,4-Dichlorophenol                  | ND              |             | ug/l      | 5.0     | 0.55           |  |
| 2,4-Dimethylphenol                  | ND              |             | ug/l      | 5.0     | 0.85           |  |
| 2-Nitrophenol                       | ND              |             | ug/l      | 5.0     | 0.60           |  |
| 4-Nitrophenol                       | ND              |             | ug/l      | 10      | 0.83           |  |
| 2,4-Dinitrophenol                   | ND              |             | ug/l      | 20      | 1.2            |  |
| 4,6-Dinitro-o-cresol                | ND              |             | ug/l      | 10      | 1.2            |  |
| Pentachlorophenol                   | ND              |             | ug/l      | 5.0     | 0.62           |  |
| Phenol                              | ND              |             | ug/l      | 5.0     | 0.26           |  |
| 2-Methylphenol <sup>1</sup>         | ND              |             | ug/l      | 5.0     | 0.77           |  |



Project Name: RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

**Report Date:** 12/05/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 129,625.1 11/30/18 17:10

Analyst:

ALS

Extraction Method: EPA 625.1 Extraction Date: 11/29/18 07:34

| Parameter                                  | Result        | Qualifier | Units      |    | RL     | MDL         |  |
|--------------------------------------------|---------------|-----------|------------|----|--------|-------------|--|
| Semivolatile Organics by GC/MS             | - Westborough | Lab for   | sample(s): | 01 | Batch: | WG1183726-1 |  |
| 3-Methylphenol/4-Methylphenol <sup>1</sup> | ND            |           | ug/l       |    | 5.0    | 0.51        |  |
| 2,4,5-Trichlorophenol <sup>1</sup>         | ND            |           | ug/l       |    | 5.0    | 0.64        |  |
| Benzoic Acid <sup>1</sup>                  | ND            |           | ug/l       |    | 50     | 1.2         |  |
| Benzyl Alcohol <sup>1</sup>                | ND            |           | ug/l       |    | 2.0    | 0.49        |  |
|                                            |               |           |            |    |        |             |  |

|                      |           | Acceptance         |
|----------------------|-----------|--------------------|
| Surrogate            | %Recovery | Qualifier Criteria |
| 2-Fluorophenol       | 43        | 25-87              |
| Phenol-d6            | 31        | 16-65              |
| Nitrobenzene-d5      | 74        | 42-122             |
| 2-Fluorobiphenyl     | 68        | 46-121             |
| 2,4,6-Tribromophenol | 60        | 45-128             |
| 4-Terphenyl-d14      | 67        | 47-138             |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| nrameter                                | LCS<br>%Recovery Q  | LCSD<br>ual %Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |
|-----------------------------------------|---------------------|-----------------------|--------------------------|-----|--------------------|
| emivolatile Organics by GC/MS - Westbor | ough Lab Associated | sample(s): 01 Batch:  | WG1183726-2              |     |                    |
| Acenaphthene                            | 77                  | -                     | 60-132                   | -   | 30                 |
| Benzidine <sup>1</sup>                  | 3                   | -                     | 0-70                     | -   | 30                 |
| 1,2,4-Trichlorobenzene                  | 67                  | -                     | 57-130                   | -   | 30                 |
| Hexachlorobenzene                       | 77                  | -                     | 8-142                    | -   | 30                 |
| Bis(2-chloroethyl)ether                 | 73                  | -                     | 43-126                   | -   | 30                 |
| 2-Chloronaphthalene                     | 73                  | -                     | 65-120                   | -   | 30                 |
| 3,3'-Dichlorobenzidine                  | 38                  | -                     | 8-213                    | -   | 30                 |
| 2,4-Dinitrotoluene                      | 94                  | -                     | 48-127                   | -   | 30                 |
| 2,6-Dinitrotoluene                      | 90                  | -                     | 68-137                   | -   | 30                 |
| Azobenzene <sup>1</sup>                 | 97                  | -                     | 44-115                   | -   | 30                 |
| Fluoranthene                            | 86                  | -                     | 43-121                   | -   | 30                 |
| 4-Chlorophenyl phenyl ether             | 78                  | -                     | 38-145                   | -   | 30                 |
| 4-Bromophenyl phenyl ether              | 80                  | -                     | 65-120                   | -   | 30                 |
| Bis(2-chloroisopropyl)ether             | 85                  | -                     | 63-139                   | -   | 30                 |
| Bis(2-chloroethoxy)methane              | 82                  | -                     | 49-165                   | -   | 30                 |
| Hexachlorobutadiene                     | 62                  | -                     | 38-120                   | -   | 30                 |
| Hexachlorocyclopentadiene <sup>1</sup>  | 62                  | -                     | 7-118                    | -   | 30                 |
| Hexachloroethane                        | 66                  | -                     | 55-120                   | -   | 30                 |
| Isophorone                              | 89                  | -                     | 47-180                   | -   | 30                 |
| Naphthalene                             | 69                  | -                     | 36-120                   | -   | 30                 |
| Nitrobenzene                            | 80                  | -                     | 54-158                   | -   | 30                 |
| NDPA/DPA <sup>1</sup>                   | 83                  | -                     | 45-112                   | -   | 30                 |
| n-Nitrosodi-n-propylamine               | 89                  | -                     | 14-198                   | -   | 30                 |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| Parameter                          | LCS<br>%Recovery      |                    | .CSD<br>ecovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------|-----------------------|--------------------|-----------------|-----------|---------------------|-----|------|---------------|
| Semivolatile Organics by GC/MS - W | estborough Lab Associ | ated sample(s): 01 | Batch: V        | VG1183726 | -2                  |     |      |               |
| Bis(2-ethylhexyl)phthalate         | 87                    |                    | -               |           | 29-137              | -   |      | 30            |
| Butyl benzyl phthalate             | 96                    |                    | -               |           | 1-140               | -   |      | 30            |
| Di-n-butylphthalate                | 98                    |                    | -               |           | 8-120               | -   |      | 30            |
| Di-n-octylphthalate                | 87                    |                    | -               |           | 19-132              | -   |      | 30            |
| Diethyl phthalate                  | 89                    |                    | -               |           | 1-120               | -   |      | 30            |
| Dimethyl phthalate                 | 86                    |                    | -               |           | 1-120               | -   |      | 30            |
| Benzo(a)anthracene                 | 85                    |                    | -               |           | 42-133              | -   |      | 30            |
| Benzo(a)pyrene                     | 94                    |                    | -               |           | 32-148              | -   |      | 30            |
| Benzo(b)fluoranthene               | 88                    |                    | -               |           | 42-140              | -   |      | 30            |
| Benzo(k)fluoranthene               | 89                    |                    | -               |           | 25-146              | -   |      | 30            |
| Chrysene                           | 82                    |                    | -               |           | 44-140              | -   |      | 30            |
| Acenaphthylene                     | 79                    |                    | -               |           | 54-126              | -   |      | 30            |
| Anthracene                         | 84                    |                    | -               |           | 43-120              | -   |      | 30            |
| Benzo(ghi)perylene                 | 87                    |                    | -               |           | 1-195               | -   |      | 30            |
| Fluorene                           | 81                    |                    | -               |           | 70-120              | -   |      | 30            |
| Phenanthrene                       | 79                    |                    | -               |           | 65-120              | -   |      | 30            |
| Dibenzo(a,h)anthracene             | 90                    |                    | -               |           | 1-200               | -   |      | 30            |
| Indeno(1,2,3-cd)pyrene             | 92                    |                    | -               |           | 1-151               | -   |      | 30            |
| Pyrene                             | 84                    |                    | -               |           | 70-120              | -   |      | 30            |
| 4-Chloroaniline <sup>1</sup>       | 64                    |                    | -               |           | 10-100              | -   |      | 30            |
| Dibenzofuran <sup>1</sup>          | 78                    |                    | -               |           | 23-126              | -   |      | 30            |
| 2-Methylnaphthalene <sup>1</sup>   | 73                    |                    | -               |           | 40-109              | -   |      | 30            |
| n-Nitrosodimethylamine1            | 45                    |                    | -               |           | 15-68               | -   |      | 30            |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| arameter                                   | LCS<br>%Recovery | Qual           | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|----------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| emivolatile Organics by GC/MS - Westboro   | ugh Lab Associa  | ated sample(s) | : 01 Batch:       | WG1183726 | S-2                 |     |      |               |  |
| 2,4,6-Trichlorophenol                      | 79               |                | -                 |           | 52-129              | -   |      | 30            |  |
| p-Chloro-m-cresol <sup>1</sup>             | 88               |                | -                 |           | 68-130              | -   |      | 30            |  |
| 2-Chlorophenol                             | 69               |                | -                 |           | 36-120              | -   |      | 30            |  |
| 2,4-Dichlorophenol                         | 80               |                | -                 |           | 53-122              | -   |      | 30            |  |
| 2,4-Dimethylphenol                         | 58               |                | -                 |           | 42-120              | -   |      | 30            |  |
| 2-Nitrophenol                              | 77               |                | -                 |           | 45-167              | -   |      | 30            |  |
| 4-Nitrophenol                              | 59               |                | -                 |           | 13-129              | -   |      | 30            |  |
| 2,4-Dinitrophenol                          | 51               |                | -                 |           | 1-173               | -   |      | 30            |  |
| 4,6-Dinitro-o-cresol                       | 78               |                | -                 |           | 56-130              | -   |      | 30            |  |
| Pentachlorophenol                          | 63               |                | -                 |           | 38-152              | -   |      | 30            |  |
| Phenol                                     | 38               |                | -                 |           | 17-120              | -   |      | 30            |  |
| 2-Methylphenol <sup>1</sup>                | 67               |                | -                 |           | 38-102              | -   |      | 30            |  |
| 3-Methylphenol/4-Methylphenol <sup>1</sup> | 67               |                | -                 |           | 35-103              | -   |      | 30            |  |
| 2,4,5-Trichlorophenol <sup>1</sup>         | 82               |                | -                 |           | 47-126              | -   |      | 30            |  |
| Benzoic Acid <sup>1</sup>                  | 17               |                | -                 |           | 2-55                | -   |      | 30            |  |
| Benzyl Alcohol <sup>1</sup>                | 72               |                | -                 |           | 31-103              | -   |      | 30            |  |

Project Name: RIVERBEND S/A BSA

Lab Number:

L1848408

Project Number: T0322-0

T0322-018-500

Report Date:

12/05/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1183726-2

| Surrogate            |    | .CSD<br>covery Qual | Acceptance<br>Criteria |
|----------------------|----|---------------------|------------------------|
| 2-Fluorophenol       | 48 |                     | 25-87                  |
| Phenol-d6            | 36 |                     | 16-65                  |
| Nitrobenzene-d5      | 78 |                     | 42-122                 |
| 2-Fluorobiphenyl     | 73 |                     | 46-121                 |
| 2,4,6-Tribromophenol | 81 |                     | 45-128                 |
| 4-Terphenyl-d14      | 74 |                     | 47-138                 |



# INORGANICS & MISCELLANEOUS



11/28/18 09:00

Date Collected:

**Project Name:** RIVERBEND S/A BSA

Lab Number: L1848408 Report Date: **Project Number:** 12/05/18 T0322-018-500

**SAMPLE RESULTS** 

Lab ID: L1848408-03

Client ID: PROCESS EFFLUENT Date Received: 11/28/18 Not Specified Sample Location: BUFFALO, NY Field Prep:

Sample Depth:

Matrix: Water

| Parameter           | Result          | Qualifier | Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|-----------------|-----------|-------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab |           |       |       |       |                    |                  |                  |                      |         |
| Cyanide, Total      | 1.35            |           | mg/l  | 0.025 | 0.009 | 5                  | 11/29/18 11:10   | 11/29/18 13:40   | 121,4500CN-CE        | LH      |
| pH (H)              | 7.5             |           | SU    | -     | NA    | 1                  | -                | 11/29/18 04:34   | 121,4500H+-B         | JW      |



**Project Name:** RIVERBEND S/A BSA

Lab Number: L1848408 Project Number: T0322-018-500 **Report Date:** 12/05/18

Method Blank Analysis Batch Quality Control

| Parameter           | Result Qualifier         | Units      | RL    | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|---------------------|--------------------------|------------|-------|--------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - | Westborough Lab for samp | ole(s): 03 | Batch | : WG11 | 83836-1            |                  |                  |                      |         |
| Cyanide, Total      | ND                       | mg/l       | 0.005 | 0.001  | 1                  | 11/29/18 11:10   | 11/29/18 13:12   | 121,4500CN-C         | E LH    |



**Project Name:** RIVERBEND S/A BSA

Project Number: T0322-018-500

Lab Number:

L1848408

Report Date:

| Parameter                             | LCS<br>%Recovery Qual     | LCSD<br>%Recovery Q | %Recovery<br>Lual Limits | RPD | Qual | RPD Limits |
|---------------------------------------|---------------------------|---------------------|--------------------------|-----|------|------------|
| General Chemistry - Westborough Lab A | ssociated sample(s): 03 B | atch: WG1183692-1   |                          |     |      |            |
| pH                                    | 100                       | -                   | 99-101                   | -   |      | 5          |
| General Chemistry - Westborough Lab A | ssociated sample(s): 03 B | eatch: WG1183836-2  |                          |     |      |            |
| Cyanide, Total                        | 107                       | -                   | 90-110                   | -   |      |            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: RIVERBEND S/A BSA Batch Quality C

Lab Number:

L1848408 12/05/18

Project Number: T0322-018-500 Report Date:

| Parameter                                           | Native Sample                       | Duplicate Sam | ple Units       | RPD         | Qual RPD Limits  |
|-----------------------------------------------------|-------------------------------------|---------------|-----------------|-------------|------------------|
| General Chemistry - Westborough Lab Ass<br>EFFLUENT | sociated sample(s): 03 QC Batch ID: | WG1183692-2   | QC Sample: L184 | 8408-03 Cli | ient ID: PROCESS |
| pH (H)                                              | 7.5                                 | 7.5           | SU              | 0           | 5                |



Project Name: RIVERBEND S/A BSA

**Project Number:** T0322-018-500

**Lab Number:** L1848408 **Report Date:** 12/05/18

### Sample Receipt and Container Information

Were project specific reporting limits specified?

**Cooler Information** 

Custody Seal Cooler

Α Absent

| Container Information |                              |        |               | Final | Temp  |      |        | Frozen    |             |
|-----------------------|------------------------------|--------|---------------|-------|-------|------|--------|-----------|-------------|
| Container ID          | Container Type               | Cooler | Initial<br>pH | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*) |
| L1848408-01A          | Vial Na2S2O3 preserved split | Α      | NA            |       | 2.4   | Υ    | Absent |           | 624.1(3)    |
| L1848408-01B          | Vial Na2S2O3 preserved split | Α      | NA            |       | 2.4   | Υ    | Absent |           | 624.1(3)    |
| L1848408-01C          | Vial Na2S2O3 preserved split | Α      | NA            |       | 2.4   | Υ    | Absent |           | 624.1(3)    |
| L1848408-01D          | Split Amber 1000ml Na2S2O3   | Α      | N/A           | N/A   | 2.4   | Υ    | Absent |           | 625.1(7)    |
| L1848408-01E          | Split Amber 1000ml Na2S2O3   | Α      | N/A           | N/A   | 2.4   | Υ    | Absent |           | 625.1(7)    |
| L1848408-02A          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02B          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02C          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02D          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02E          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02F          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02G          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02H          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02I          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02J          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02K          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02L          | Vial Na2S2O3 preserved       | Α      | NA            |       | 2.4   | Υ    | Absent |           | COMP-VOA()  |
| L1848408-02M          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
| L1848408-02N          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
| L1848408-02O          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
| L1848408-02P          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
| L1848408-02Q          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
| L1848408-02R          | Amber 1000ml Na2S2O3         | Α      | 7             | 7     | 2.4   | Υ    | Absent |           | COMP-W()    |
|                       |                              |        |               |       |       |      |        |           |             |

YES



**Lab Number:** L1848408

**Report Date:** 12/05/18

**Project Name:** RIVERBEND S/A BSA

**Project Number:** T0322-018-500

| Container Information |                              |        |     | Final | Temp  |      |        | Frozen    |              |  |
|-----------------------|------------------------------|--------|-----|-------|-------|------|--------|-----------|--------------|--|
| Container ID          | Container Type               | Cooler | pН  | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)  |  |
| L1848408-02S          | Amber 1000ml Na2S2O3         | Α      | 7   | 7     | 2.4   | Υ    | Absent |           | COMP-W()     |  |
| L1848408-02T          | Amber 1000ml Na2S2O3         | Α      | 7   | 7     | 2.4   | Υ    | Absent |           | COMP-W()     |  |
| L1848408-03A          | Plastic 60ml unpreserved     | Α      | 7   | 7     | 2.4   | Υ    | Absent |           | PH-4500(.01) |  |
| L1848408-03B          | Plastic 250ml NaOH preserved | Α      | >12 | >12   | 2.4   | Υ    | Absent |           | TCN-4500(14) |  |
| L1848408-04A          | Vial Na2S2O3 preserved       | Α      | NA  |       | 2.4   | Υ    | Absent |           | 624.1(3)     |  |
| L1848408-04B          | Vial Na2S2O3 preserved       | Α      | NA  |       | 2.4   | Υ    | Absent |           | 624.1(3)     |  |



**Project Name:** Lab Number: RIVERBEND S/A BSA L1848408 **Project Number:** T0322-018-500 **Report Date:** 12/05/18

### GLOSSARY

### Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

**EMPC** - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

**EPA** - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

- Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

MSD

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

**RPD** - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

### **Footnotes**

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers



Serial\_No:12051811:28

Project Name:RIVERBEND S/A BSALab Number:L1848408Project Number:T0322-018-500Report Date:12/05/18

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



Serial\_No:12051811:28

Project Name:RIVERBEND S/A BSALab Number:L1848408Project Number:T0322-018-500Report Date:12/05/18

### **REFERENCES**

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

### **LIMITATION OF LIABILITIES**

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



Serial\_No:12051811:28

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

## Certification Information

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility** SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

### **Mansfield Facility:**

## **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

### Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

| Westborough, MA 01581<br>8 Walkup Dr.                                   | NEW YORK<br>CHAIN OF<br>CUSTODY<br>Mansfield, MA 02048<br>320 Forbes Blvd | Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co | Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105      | Pag<br>\ o    | e 1<br>f 1   | Deli | Date<br>in<br>verable | Lab      |         | 28 ]     | 18            | ALPHA Job# LJ848408 Billing Information                                                             |                        |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|--------------|------|-----------------------|----------|---------|----------|---------------|-----------------------------------------------------------------------------------------------------|------------------------|
| TEL: 508-898-9220<br>FAX: 508-898-9193                                  | TEL: 508-822-9300<br>FAX: 508-822-3288                                    | Project Name:                                                                                       | Riverbend S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S/A BSA  |               |              |      | ASP                   | -A       |         | _ A      | SP-B          | ✓ Same as Client Info                                                                               |                        |
|                                                                         | 7707 300 GRE 3200                                                         | Project Location:                                                                                   | Buffalo, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |               |              |      | EQu                   | IS (1    | File)   | □ E      | QuIS (4 File) | PO#                                                                                                 |                        |
| Client Information                                                      | NE SERVICE                                                                | Project # T0322-01                                                                                  | 8 - 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |               |              |      | Othe                  | er       |         |          |               |                                                                                                     |                        |
| Client: Benchma                                                         | rk Environmental                                                          | (Use Project name as P                                                                              | roject#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |               |              | Reg  | ulatory               | Requ     | uireme  | nt       | A DESCRIPTION | Disposal Site Information                                                                           |                        |
|                                                                         | burg Turnpike,Ste300                                                      | Project Manager:                                                                                    | Candace-Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x- Brack | Greene        |              |      | NYT                   | ogs      |         |          | Y Part 375    | Please identify below location of                                                                   | of                     |
| Buffalo, NY 14218                                                       |                                                                           | ALPHAQuote #:                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              | ] [  | AWQ                   | Stand    | lards   | □ N      | Y CP-51       | applicable disposal facilities.                                                                     |                        |
| Phone: 716-856-0                                                        | 599                                                                       | Turn-Around Time                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               | W- SALE      |      | NYR                   | estricte | ed Use  |          | ther          | Disposal Facility:                                                                                  | -                      |
| Fax: BGGERER                                                            | Turakeylle.com                                                            | Standar                                                                                             | COLUMN TO A STATE OF THE PARTY | Due Date | e:            |              |      | NY U                  | nrestri  | cted Us | 9        |               | □ NJ □ NY                                                                                           |                        |
| Email: bhann@to                                                         | rnkeylic.com-                                                             | Rush (only if pre approved                                                                          | i) 🔲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # of Day | s:            |              |      | NYC                   | Sewer    | Dischar | ge       |               | Other: NA                                                                                           |                        |
| These samples have b                                                    | een previously analyze                                                    | ed by Alpha                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              | ANA  | LYSIS                 | 3        |         |          |               | Sample Filtration                                                                                   | ò                      |
| Please specify Metals                                                   | c requirements/comm                                                       | ents:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              | 624  | 625                   | TCN      | Hd      |          |               | ☐ Done ☐ Lab to do Preservation ☐ Lab to do  (Please Specify below)                                 | t a l B o t            |
| ALPHA Lab ID                                                            |                                                                           |                                                                                                     | Coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ection   | Sample        | Sampler's    | 1    |                       | 1        |         |          |               | (                                                                                                   | t                      |
| (Lab Use Only)                                                          | 300                                                                       | mple ID                                                                                             | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time     | Matrix        | Initials     | L    |                       |          |         |          |               | Sample Specific Comments                                                                            | е                      |
| 48408 -01/03                                                            | Process Effluent - Gra                                                    | ab 1                                                                                                | 11-27-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0830     | Water         | CEH          | x    | ×                     |          |         |          |               | Lab to composite 1-4                                                                                | - 5                    |
|                                                                         | Process Effluent - Gra                                                    | ab 2                                                                                                | 11-27-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1230     | Water         | CEH          | ×    | x                     |          |         |          |               | Lab to composite 1-4                                                                                | 1                      |
|                                                                         | Process Effluent - Gra                                                    | ab 3                                                                                                | 11-27-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1700     | Water         | CEH          | ×    | ×                     |          |         |          |               | Lab to composite 1-4                                                                                | 1                      |
| 7                                                                       | Process Effluent - Gra                                                    | ab 4                                                                                                | 11-28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0700     | Water         | CEH          | ×    | x                     |          |         | $\vdash$ |               | Lab to composite 1-4                                                                                | 1                      |
| 03                                                                      | Process Effluent                                                          |                                                                                                     | 11-28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0900     | Water         | CEH          |      |                       | ×        | x       |          |               |                                                                                                     | 1                      |
|                                                                         |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              |      |                       |          |         |          |               |                                                                                                     | +                      |
| 04                                                                      | Trip Blank                                                                |                                                                                                     | 11-28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Water         |              | x    |                       |          |         |          |               |                                                                                                     | 1                      |
|                                                                         |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              |      |                       |          |         |          |               |                                                                                                     | +                      |
|                                                                         |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              |      | $\top$                |          |         |          |               |                                                                                                     | $\top$                 |
|                                                                         |                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              |      |                       |          |         |          |               |                                                                                                     | $\top$                 |
| = H <sub>2</sub> SO <sub>4</sub>                                        | A = Amber Glass<br>V = Vial<br>G = Glass                                  | Westboro: Certification N<br>Mansfield: Certification N                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -             | ntainer Type | v    | A                     | Р        | P       |          |               | Please print clearly, legit and completely. Sample: not be logged in and turnaround time clock wi   | s can                  |
|                                                                         | B = Bacteria Cup<br>C = Cube                                              | Dell'accidet a tr                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |               |              | Н    | ΙΗ                    | E        | Α       |          |               | start until any ambiguitie                                                                          |                        |
| = NaHSO <sub>4</sub><br>= Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | O = Other<br>E = Encore<br>D = BOD Bottle                                 | Relinquished                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 10946<br>2011 | 000-         | ~    | W B                   |          | цþ      | 2/18,    | lk 2123       | resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALP TERMS & CONDITIONS | NG<br>T<br>ES<br>'HA'S |
| rm No: 01-25 (rev. 30-Se                                                | pt-2013)                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |               |              |      |                       |          |         |          |               | TERMIS & CONDITIONS                                                                                 | Ł.                     |

# **ATTACHMENT 3**

FLOW METER CALIBRATION DATA



## **Northeast Metrology Corp.**

4490 Broadway **Depew, NY 14043** 

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Company:

**RIVERBEND** 

Address:

192 BARAGA STREET

BUFFALO, NY 14210

Contact:

**BROCK GREENE** 

Department:

Gage Desc: Manufacturer:

Flow Transmitter / Sensor George Fischer Signet

Location:

**Calibration Certificate** 





www.nemcal.com

Certificate #: Calibration Date: 1/3/2018

1208314

PO/Acct:

Page:

1 of 2

Visual Condition: Good

**Date Received:** 

Control #:

SFRB#80210142061

Model: Serial #: 8550 / 515

80210142061

## **Parameters:**

Units - GPM Gas Type - N/A Liguid Type -

## Repairs:

+ / - Tolerances: 2.000% / 2.000%

Graph Scale: +0.100000

| <u>GPIVI</u> |            |           |            | -20 | -15 | -10 | -5 | 0   | 5 | 10       | 15 | 20 |
|--------------|------------|-----------|------------|-----|-----|-----|----|-----|---|----------|----|----|
| Nominal      | Actual     | Deviation |            | Т.  | +.  | +.  | +  | .0  | + | +        | +  | +  |
| +75.100000   | +75.440000 | +0.340000 |            | , . | (   |     |    | 210 |   |          | )  |    |
| +75.100000   | +74.560000 | -0.540000 |            |     | (   |     |    |     |   |          | )  |    |
| +75.100000   | +75.170000 | +0.070000 |            |     | (   |     |    |     |   |          | )  |    |
| +75.100000   | +75.980000 | +0.880000 |            |     | (   |     |    |     |   |          | )  |    |
| +75.100000   | +74.480000 | -0.620000 | Avg. of 10 |     | (   |     |    |     |   | <u> </u> | )  |    |
| +75.100000   | +74.500000 | -0.600000 | Timed      |     | (   |     |    |     |   |          | )  |    |
|              |            |           |            |     |     |     |    | -   |   |          |    |    |

## Comments:

CALIBRATION PERFORMED ONSITE AT AMBIENT CONDITIONS: 59°F & 33% R.H.

SCHEDULE 80 PVC 3" O.D. I.D.=2.9"

TOTAL GALLONS (2018): 10226872

**PERM GALLONS: 41912177** 

TOTAL GALLONS RESET AT END OF TESTING

mA OUTPUT: 0 = 3.99mA MAX = 16.09

## **Procedure:**

110176:E-Flowme.gdf (Manual 1000)

We certify the equipment used for this calibration is traceable to NIST through one or more of the following numbers: NEM-6009 Ultrasonic Flowmeter

1331545884, 1329407628 Cal Date / Due Date: 12/16/2016 -- 12/16/2018

Gage Status: PASS

Due Date: 1/3/2019

We certify the equipment used for this calibration is traceable to the International System of Units (SI) via standards traceable to NIST or other National Metrology Institutes (NMI).

Dimensional calibration performed in NEM laboratory @ 68°F (±2.0°F): (20°C (±1°C)) & relative humidity less than 45%.

## **Northeast Metrology Corp.**

4490 Broadway

**Depew, NY 14043** 

P: 716-827-3770 F: 716-827-3775

e-mail: nem@nemcal.com

Page #:

2 of 2

Gage Desc:

Flow Transmitter / Sensor George Fischer Signet

Manufacturer: Location:

Certificate #:

1208314

Control #:

SFRB#80210142061

**Calibration Certificate** 

Model:

8550 / 515

Serial #: 80210142061

Electronic & Mechanical calibration performed at ambient conditions.

All pertinent data and readings calibrated are as found & as left unless otherwise denoted in comments.

Calibration performed in accordance with ANSI/NCSL Z540-1-1994 unless otherwise denoted in comments.

Gage Blocks meet or exceed Federal Specifications for the grade and accuracy applicable to these items in accordance with GGG-G-15C.

Calibration meets or exceeds 4:1 ratio, with the exception of gage blocks stated above.

Measurement Uncertainties are based on approximately a 95% confidence level, using a coverage factor of k=2.

Measurement Uncertainty is taken into account in determining gage status (pass/fail).

Calibration is performed on premises at Northeast Metrology Corp. unless otherwise denoted in comments.

The recording of false, fictitious or fraudulent statements or entries on this document may be punished as a felony under federal statutes.

This certificate shall not be reproduced except in full, with the written approval of the originating metrology laboratory.

Certified By: GK m Signature:

This certificate is not valid unless all 2 page(s) are present.

Results of this certificate relate only to the item mentioned in document header.

\*\*END OF DOCUMENT\*\*

## **APPENDIX C**

# COMPREHENSIVE ANNUAL GROUNDWATER MONITORING REPORT





January 15, 2019

Mr. Maurice Moore New York State Dept. of Environmental Conservation Division of Environmental Remediation 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Riverbend Site (formerly Steelfields) (V00619) 2018 Comprehensive Annual Groundwater Monitoring Report

Dear Mr. Moore:

On behalf of our client Fort Schuyler Management Corporation (FSMC), TurnKey Environmental Restoration, LLC, has prepared this comprehensive letter report to transmit the results of the September 2018 groundwater monitoring event conducted at Area I (Former Steel Plant Parcel), Area II (Former Coke Plant Parcel), and Area III (Former Warehouse Parcel) of FSMC's RiverBend Site, Buffalo, NY (see Figure 1). This letter report also includes the results of the June and November 2018 Oxygen Release Compound (ORC) monitoring events for Area III. The current groundwater monitoring event was performed September 21 & 22, 2018, the Area III first semi-annual ORC monitoring event was performed June 4-7, 2018, and the Area III second semi-annual ORC event November 26-29, 2018.

The LTGWM network wells are summarized in Table 1 and shown on Figure 2. A summary of field activities and findings for all three areas of the Site are presented below.

### **PURPOSE**

The activities performed during the current site-wide groundwater monitoring event were performed in general accordance with the following documents:

- Work Plan for Long-Term Groundwater Monitoring (LTGWM) of Area I (revised September 2002);
- Work Plan for LTGWM of Areas II and III (October 2007) submitted as Attachment A4 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008);
- May 5, 2008 Response to NYSDEC comment letter regarding Area III Site Management Plan (comment/responses 8, 9, and 10);
- May 5, 2008 Response to NYSDEC comment letter regarding Areas II and III Final Engineering Report (comment/responses 19 and 22);
- ORC Maintenance and Monitoring Manual (March 2008) submitted as Attachment A5 of Appendix HH of the Final Engineering Report for Areas II and III (May 2008); and
- May 5, 2011 NYSDEC Response to Modification Request Letter.

This annual report includes a tabular and/or graphical assessment and detailed discussion of groundwater quality trends on an Area by Area basis. Groundwater flow patterns, however, are

Mr. Maurice Moore

NYSDEC

January 15, 2019

Page 2 of 6

discussed on a site-wide basis. Groundwater samples were analyzed for the modified parameter list identified by Area in Table 2.

### **GROUNDWATER ELEVATIONS & FLOW**

Depth to water measurements and calculated groundwater elevations measured from 10 wells and two Buffalo River staff gauges in Area I, 17 wells in Area II, and 5 monitoring wells in Area III on August 29, 2018 are summarized in Table 3. The Lake Erie elevation, presented in the table for reference, was obtained from the National Oceanic and Atmospheric Administration/National Ocean Service's (NOAA/NOS) Center for Operational Oceanographic Products and Services (CO-OPS) web page; Great Lakes Water Level Data Inventory for station number 9063020 Buffalo, Lake Erie, New York.

An isopotential map, presented as Figure 3, was prepared using data from the August 29, 2018 groundwater elevations, the collection system as-built invert elevations, and the soil flushing system discharge invert elevations. The baseline isopotential map prepared by Geomatrix from the June 1998 groundwater elevations representing groundwater flow conditions at the Site prior to the Area II Containment Cell construction is presented as Figure 4 for contrast. Comparison of the August 2018 and June 1998 maps indicate that the groundwater mound located between Areas I and II observed in June 1998 has been significantly reduced and pushed north; replaced instead by a groundwater "sink" created by the groundwater collection system. The groundwater depression observed in June 1998 around the terminal basin is also no longer present due to the discontinuation (in January 2009) of storm water management activities at the Site in that area (i.e., pumping from the basin to the sanitary sewer). Further examination of Figure 3 indicates significant lowering of the water table, between 2 to 4 feet, in the vicinity of the groundwater collection trench as generally predicted in the selected remedial approach groundwater flow model (Geomatrix, December 1998) (see Attachment 1).

Additional evaluation of the containment cell area shows five artificial groundwater mounds resulting from the soil flushing system; a remedial measure designed to remediate subsurface soils beneath five areas of concern identified during the Voluntary Cleanup. In general, the flushing system partially diverts groundwater, on a continuous basis, from pump stations PS-1, PS-2, and PS-3 to perforated distribution pipes in the system (shown on Figure 3). These mounds create a unique, yet effective, method to remediate residual impacts in those areas.

The groundwater flow, as depicted on Figure 3, also shows that potentially impacted groundwater from outside the containment cell to the north on the Former August Feine and Norfolk Southern parcels is being drawn back toward the collection system, as predicted by predesign MODFLOW® modeling. Aside from the significant hydraulic capture of the groundwater collection system in Area II, Site groundwater generally flows north toward the Buffalo River, with minor westerly and southerly components.

## **GROUNDWATER COLLECTION SYSTEM EVALUATION**

An evaluation of the slurry wall effectiveness included comparing groundwater elevations from a single well pair identified as A2-MW-19 and A2-MW-7. Monitoring well A2-MW-19 is located outside the Containment Cell and well A2-MW-7 is located within the Cell as shown on Figure



Mr. Maurice Moore
NYSDEC
January 15, 2019
Page 3 of 6

3. A groundwater elevation comparison of this well pair indicates that groundwater outside the Cell is greater than three quarters of a foot higher (0.76-feet) than inside the Cell and an inward hydraulic gradient toward the Cell has been established, as predicted by the pre-design MODFLOW® model.

Based upon the results of this evaluation and the isopotential map discussed earlier, the groundwater collection/containment system appears to be effectively collecting impacted groundwater and controlling groundwater migration within the Area II Containment Cell as well as to the east and north of the Containment Cell. Routine system monitoring and maintenance in conjunction with long-term groundwater monitoring of Areas I and II, as scheduled, is expected to be sufficient to continue to assess the long-term effectiveness of the containment cell.

## **AREA I FIELD ACTIVITIES & FINDINGS**

Table 2 presents the Area I field-measured and laboratory analyzed parameters, the results of which are summarized in Table 4. Compounds detected above method detection limits are shown on the table with their associated concentration and NYSDEC Groundwater Quality Standard (NYSDEC TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values, June 1998) for comparison. Concentrations exceeding NYSDEC Groundwater Quality Standards (GWQSs) are shaded. With the exception of total arsenic at well A1-MW-6, each analyzed compound was either reported as non-detect or at concentrations well below their respective GWQSs. A discussion of the moving average trend analysis for Area I groundwater is presented later in this report.

During the current monitoring event, field personnel also performed visual immiscible layer surveillance and observed no non-aqueous phase liquid (NAPL) in any of the Area I wells listed in Table 1, except well A1-MW-6. Excluding the initial well development and sampling events, A1-MW-6 has been monitored since the February 2005 installation of the PetroTrap™ free product passive skimmer. From 2005 through 2017, nearly 13 gallons of product has been removed (see Table 5). Based on the VOC analytical results of well A1-MW-6, it is apparent that the NAPL is highly weathered and is having little effect on the groundwater quality at that location. In accordance with the LTGWM Plan, all recovered product is temporarily stored in a 55-gallon drum within secondary containment and staged within the on-site Groundwater Pre-Treatment System (GWPTS) building until a licensed used oil service contractor picks up the recovered product for proper recycling or disposal.

As indicated in Table 5, seasonal increases in product thickness and recovery are apparent during the typical late Fall and early Spring rainy periods. Based upon the progress to date and the marginal effects on groundwater quality at this location, LNAPL monitoring of A1-MW-6 should continue in accordance with the Area I LTGWM Plan on a monthly basis. However, due to a significant decline in the volume of recoverable product, we have replaced the PetroTrap™ free product passive skimmer with an absorbent sock that will be changed out during the monthly checks.



Mr. Maurice Moore
NYSDEC
January 15, 2019
Page 4 of 6

## **AREA II FIELD ACTIVITIES & FINDINGS**

Table 2 presents the Area II field-measured and laboratory analyzed parameters, the results of which are summarized in Table 6. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. With the exception of benzene and total lead at well A2-MW-16, each analyzed compound was either reported as non-detect or at concentration well below their respective GWQSs. A discussion of the moving average trend analysis for Area II groundwater is presented later in this report.

## AREA III FIELD ACTIVITIES & FINDINGS

Table 2 presents the Area III field-measured and laboratory analyzed parameters, the results of which are summarized in Table 7. Compounds detected above method detection limits are shown on the table with their associated concentration and GWQS for comparison. With the exception of pH at wells A3-MW-7 and A3-MW-10, benzene at wells A3-MW-7 and A3-MW-10, and total cyanide at wells A3-MW-3, each analyzed compound was either reported as non-detect or at concentrations well below their respective GWQSs. A discussion of the moving average trend analysis for Area III groundwater is presented later in this report.

In accordance with NYSDEC-approved procedures, ORC wells A3-ORC-1 through A3-ORC-11 are to be purged until 10 well volumes are removed or to dryness for four consecutive days, whichever occurs first, in order to obtain representative groundwater samples within the ORC area of Area III. A summary of the June and November 2018 Area III ORC semi-annual event field-measured parameters and analytical results are presented in Tables 8 and 9, respectively. Compounds detected above method detection limits are shown on these tables with their associated concentration and GWQS for comparison; concentrations exceeding the GWQSs are shaded. Upon examination of Tables 8 and 9, benzene exceeded the GWQS for nine of the eleven wells monitored during the June event and nine of the eleven wells during the November event. Field measurement pH was determined to be outside the GWQS range at all eleven wells during the June and November events.

The ORC "socks," suspended in each of the ORC wells are to be replaced when depleted. During the current monitoring event, ORC socks were removed and checked; none of which required replacement.

## MOVING AVERAGE TREND ANALYSIS (MATA)

In general accordance with the LTGWM Plan for each Area of the Site, any parameter exceeding the GWQS for two consecutive events is to be statistically evaluated for all monitoring wells listed in Table 1. Statistical evaluation for each parameter of interest involves the averaging of four sequential monitoring event concentrations and plotting the moving average. The Area by Area 4-event moving average trend analysis (MATA) as well as the concentration versus time plots for those monitored locations and parameters requiring tracking (as defined above) are presented in Attachment 2 and summarized in Table 10. Evaluation of the MATA plots (Attachment 2) and table (Table 10) indicate the following:

• The concentration versus time and MATA plots for the field measured pH at wells A2-MW-16, A3-MW-7, and A3-MW-10 indicate a long-term neutral trend (neither increasing



Mr. Maurice Moore NYSDEC

- nor decreasing) since monitoring began at each location. The concentration versus time and MATA plot for the field measured pH at well A1-MW-5 and A3-MW-9 indicates a recent decreasing trend.
- The MATA plot for benzene at wells A3-MW-7, A3-MW-9, and A3-MW-10 indicates a continued decreasing trend approaching the GWQS at each location. The MATA plot for benzene at A2-MW-16 indicates a neutral trend (neither increasing nor decreasing) however the concentration versus time plot recently indicates a rebound above the GWQS.
- The MATA plot for n-propylbenzene at well A1-MW-6 initially indicated an increasing 4-event moving average trend (August 2007 to May 2010); however, the trend was being influenced by unusually high concentration reported in August 2007 of more than 30 times historic values (i.e., outlier). The concentration versus time plot shown on the same charts, however, indicates not only a return to historic range (i.e., decreasing trend), but a decreasing trend with concentrations approaching (and occasionally falling below) the GWQS from April 2008 through the current period.
- Although the concentration versus time plot for total arsenic at well A1-MW-6 reveals a wide concentration range from a high 0.29 mg/L in December 2006 to 0.0455 mg/L in June 2015, the MATA plot indicates a decreasing trend form August 2007 through July 2017 with a slight rebound for the current sampling event.
- The MATA plot for cyanide at well A3-MW-3 initially indicated an increasing 4-event moving average trend from May 2010 to June 2012; however, the trend was being influenced by an unusually high cyanide concentration reported in June 2012 of more than four times historic values (i.e., outlier). The concentration versus time plot shown on the same chart, indicates a moderating return to historic ranges (i.e., decreasing trend). As such, the MATA plot for cyanide indicates a decreasing trend from June 2012 through June 2016 followed by a recent rebounding trend. Overall the MATA plot indicates a neutral trend for cyanide at A3-MW-3.
- Although the concentration versus time plot for cyanide at well A3-MW-7 reveals a wide concentration range from a high 0.267 mg/L in June 2014 to 0.01 in June 2013, the MATA plot indicates a neutral trend (neither increasing nor decreasing) below the GWQS since May 2010. Historically, cyanide concentrations at this location have been reported below the GWQS (between May 2009 and June 2013), followed by two events slightly above the GWQS (June 2014 and July 2015), followed by a concentration below the GWQS for one event (June 2016), followed by one event slightly above GWQS (July 2017) returning to below the GWQS during the current reporting period.

## **NYSDEC EQUIS DELIVERABLES**

On November 13 and December 17, 2018, TurnKey submitted the analytical data in Electronic Data Deliverable (EDD) format for the current groundwater and ORC monitoring events to the NYSDEC on behalf of FSMC to satisfy the NYSDEC EQuIS submittal requirement. TurnKey received confirmation on November 15 and December 26, 2018 the submittals were successfully uploaded, and the data is available for use within the NYSDEC system.



Mr. Maurice Moore
NYSDEC
January 15, 2019
Page 6 of 6

## **PLANNED ACTIVITIES**

A schedule summarizing the past, present, and future monitoring events is presented in Table 1. The NYSDEC-approved bi-annual analytical program is presented in Table 2. The next planned comprehensive monitoring event for Areas I, II, and III will be performed Summer 2019. Area III ORC well monitoring is tentatively scheduled for June and November 2019 (every six months).

Please contact us if you have any questions.

Sincerely,

TurnKey Environmental Restoration, LLC

Brock Greene

Project Environmental Scientist

Enclosures

ec: Kenneth Gelting (FSMC)

Paul Werthman (TurnKey)

File: 0322-018-502







## GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY 1,2,3

|                       |          |          |                  |               |                  |                                                                                     |                  |                  |                  |                  |                  |                  | Monitori         | ng Event         |                  |                  |                  |          |          |          |          |          |          |          |          |          |
|-----------------------|----------|----------|------------------|---------------|------------------|-------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Well<br>Designation   | Yea      | ar 1     | Yea              | ar 2          | Ye               | ar 3                                                                                | Year 4           | Year 5           | Year 6           | Year 7           | Year 8           | Year 9           | Year 10          | Year 11          | Year 12          | Year 13          | Year 14          | Year 15  | Year 16  | Year 17  | Year 18  | Year 19  | Year 20  | Year 21  | Year 22  | Year 23  |
| Designation           | 1 SA     | 2SA      | 1 SA             | 2SA           | An               | nual                                                                                | Annual           | Annual   | Annual   | Annual   | Annual   | Annual   | Annual   | Annual   | Annual   | Annual   |
| AREA I                |          |          |                  |               |                  |                                                                                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |          |          |          |          |          |          |          |          |
| A1-MW-1               | Sep-04   | Sep-05   | Dec              | c-06          | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-2               | Sep-04   | Sep-05   | Dec              | c-06          | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-3               | Sep-04   | Sep-05   | Dec              | c-06          | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-4 4             | Sep-04   | Sep-05   | May-06           | Dec-06        | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | $\times$         | $\times$         | X        | X        | X        | $\times$ | X        | $\times$ | $\times$ | X        | $>\!\!<$ |
| A1-MW-4R 4            | $\times$ | X        | $\times$         | $\times$      | $\wedge$         | $\leq$                                                                              | $\times$         | X                | X                | $\times$         | $\times$         | $\times$         | $\times$         | $\times$         | X                | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-5               | Sep-04   | Sep-05   | May-06           | Dec-06        | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-6               | Sep-04   | Sep-05   | May-06           | Dec-06        |                  | ig-07                                                                               | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-7 <sup>5</sup>  |          |          |                  | water         |                  |                                                                                     | ′                |                  |                  | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-8               | Sep-04   | Sep-05   | May-06           | Dec-06        | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | > <              | $>\!\!<$         | $\times$         | $>\!\!<$         | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $>\!\!<$ | $\times$ | $>\!\!<$ |
| A1-MW-8R <sup>6</sup> | $>\!\!<$ | $>\!\!<$ | $>\!\!<$         | $>\!\!<$      | >                | $\leq$                                                                              | $>\!\!<$         | $\times$         | $>\!\!<$         | $>\!\!<$         | $>\!\!<$         | $>\!\!<$         | $\sim$           | $>\!\!<$         | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-9               | Sep-04   | Sep-05   | May-06           | Dec-06        | Au               | g-07                                                                                | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-10 <sup>6</sup> | $\sim$   | $\sim$   | $\geq$           | $\overline{}$ | $\geq$           | $\leq$                                                                              | $>\!\!<$         | $>\!\!<$         | $>\!\!<$         | $\sim$           | $>\!\!<$         | $>\!\!<$         | $>\!\!<$         | $>\!\!<$         | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A1-MW-M2 <sup>4</sup> | Sep-04   | Sep-05   | Dec              | c-06          | Au               | Aug-07 Apr-08 May-09 May-10 May-11 Jun-12 Jun-13 Jun-14 Jul-15 Jun-16 Jul-17 Sep-18 |                  |                  |                  |                  |                  |                  |                  |                  |                  | $\sim$           |                  |          |          |          |          |          |          |          |          |          |
| A1-MW-11 4            | $\sim$   | $\sim$   |                  | <u> </u>      |                  | Jul-17 Gep-10                                                                       |                  |                  |                  |                  |                  |                  |                  |                  |                  | •                |                  |          |          |          |          |          |          |          |          |          |
| A1-P-4                | Sep-04   | Sep-05   | Dec              | c-06          | Au               | ug-07 Apr-08 May-09 May-10 May-11 Jun-12 Jun-13 Jun-14                              |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |          |          |          |          |          |          |          |          |
| AREA II               | 1        |          | ı                |               | 1.1.07           | D 07                                                                                | 1 4 00           | M 00             | May 40           | 140.44           | lun 40           | lun 40           | lun 44           | bol 45           | lun 40           | 1.147            | 0 40             |          |          |          |          |          |          |          | _        |          |
| A2-MW-3               |          |          |                  |               | Jul-07<br>Jul-07 | Dec-07<br>Dec-07                                                                    | Apr-08<br>Apr-08 | May-09<br>May-09 | May-10<br>May-10 | May-11<br>May-11 | Jun-12<br>Jun-12 | Jun-13<br>Jun-13 | Jun-14<br>Jun-14 | Jul-15<br>Jul-15 | Jun-16<br>Jun-16 | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A2-MW-4R<br>A2-MW-5   |          |          |                  |               | Jul-07<br>Jul-07 | Dec-07                                                                              | Apr-08           | May-09           | May-10           | May-11           | Jun-12<br>Jun-12 | Jun-13<br>Jun-13 | Jun-14<br>Jun-14 | Jul-15<br>Jul-15 | Jun-16<br>Jun-16 | Jul-17<br>Jul-17 | Sep-18<br>Sep-18 | •        | •        | -        | •        | •        | •        | •        | -        | •        |
| A2-IVIVV-5<br>A2-MW-6 |          |          |                  |               | Jul-07           | Dec-07                                                                              | Apr-06           | iviay-09         | Iviay-10         | May-11           | Juli-12          |                  |                  | vel o            |                  | Jul-17           | Sep-18           | •        |          |          |          |          |          |          |          | _        |
| A2-MW-7               |          |          |                  |               |                  |                                                                                     |                  |                  |                  |                  |                  |                  |                  | vel o            |                  |                  |                  |          |          |          |          |          |          |          |          |          |
| A2-MW-10              |          |          |                  |               |                  | Dec-07                                                                              | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A2-MW-12              |          |          | l                |               |                  |                                                                                     |                  | ,                | ,                | ,                | ****             |                  |                  | vel o            |                  | oui ii           | ocp to           |          |          |          |          |          | 1        |          |          | l        |
| A2-MW-13              |          |          |                  |               | Jul-07           | Dec-07                                                                              | Api              | r-08             | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A2-MW-16              |          |          |                  |               | Jul-07           | Dec-07                                                                              | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A2-MW-17              |          |          |                  |               | Jul-07           | Dec-07                                                                              | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A2-MW-18              |          |          |                  |               |                  |                                                                                     |                  |                  | -                |                  |                  | wa               | ter le           | vel o            | nly              | •                |                  |          |          |          | •        |          | •        |          |          |          |
| A2-MW-19              |          |          |                  |               |                  |                                                                                     |                  |                  |                  |                  |                  | wa               | ter le           | vel o            | nly              |                  |                  |          |          |          |          |          |          |          |          |          |
| A2-MW-20              |          |          | water level only |               |                  |                                                                                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |          |          |          |          |          |          |          |          |
| AREA III              |          |          |                  |               |                  |                                                                                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |          |          |          |          |          |          |          |          |          |
| A3-MW-3               |          |          |                  |               |                  |                                                                                     | Oct-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A3-MW-6               |          |          |                  |               |                  |                                                                                     | Oct-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A3-MW-7               |          |          |                  |               | Jul-07           | Dec-07                                                                              | Apr-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A3-MW-9               |          |          |                  |               |                  |                                                                                     | Oct-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |
| A3-MW-10              |          |          |                  |               |                  |                                                                                     | Oct-08           | May-09           | May-10           | May-11           | Jun-12           | Jun-13           | Jun-14           | Jul-15           | Jun-16           | Jul-17           | Sep-18           | •        | •        | •        | •        | •        | •        | •        | •        | •        |



## GROUNDWATER MONITORING NETWORK AND SAMPLE FREQUENCY 1,2,3

#### Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

| Well         | Yea      | ar 3      | Yea    | ar 4   | Ye     | ar 5   | Yea    | ar 6   | Yea    | ar 7   | Ye     | ar 8   | Yea    | ar 9   | Yea    | r 10   | Yea    | ır 11  | Yea    | r 12   | Yea    | ır 13  | Yea    | ar 14  | Yea  | r 15 |
|--------------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------|------|
| Designation  | 1 SA     | 2SA       | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA   | 2SA    | 1 SA | 2SA  |
| AREA III - C | ORC well | ls (every | 6 mont | hs)    |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |      |      |
| A3-ORC-1     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-2     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-3     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-4     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-5     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-6     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-7     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-8     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-9     | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-10    | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |
| A3-ORC-11    | Jul-07   | Dec-07    | Apr-08 | Nov-08 | May-09 | Nov-09 | May-10 | Nov-10 | May-11 | Nov-11 | Jun-12 | Nov-12 | Jun-13 | Dec-13 | Jun-14 | Dec-14 | Jul-15 | Nov-15 | Jun-16 | Dec-16 | Jul-17 | Dec-17 | Jun-18 | Nov-18 | •    | •    |

#### Note:

- 1. Per the LTGWM Plan, newly installed monitoring wells require four consecutive semi-annual groundwater monitoring events, then annually thereafter.
- 2. Per the LTGWM Plan, existing monitoring wells require two consecutive semi-annual groundwater monitoring events, then annually thereafter.
- 3. The groundwater sampling plan was modified to a bi-annual frequency (see Table 2) as per NYSDEC approval letter dated May 5, 2011.
- 4. Due to redevelopment activities in Area I, wells A1-MW-4 and A1-MW-M2 were replaced on July 11-12, 2017 with wells A1-MW-4R and A1-MW-11, respectively.
- 5. Per a NYSDEC request, A1-MW-7 was sampled for VOCs, arsenic, chromiuim, and lead in 2011 only; water level and field parameters annually thereafter.
- 6. Well A1-MW-8 and piezometer A1-P-4 were replaced June 6-7, 2016 with wells A1-MW-8R and A1-MW-10, respectively.

#### Legend:



- = current monitoring event
- = monitoring well was decomissioned to make way for redevelopment.
- = future monitoring event



## ANALYTICAL PROGRAM SUMMARY 1

|                       |                                                    |               |                         |                      |                      |         |    | Mo   | nitoring | Year          |                         |          |                     |         |    |      |
|-----------------------|----------------------------------------------------|---------------|-------------------------|----------------------|----------------------|---------|----|------|----------|---------------|-------------------------|----------|---------------------|---------|----|------|
| Well                  |                                                    |               | 2011, 20                | )13, 20 <sup>4</sup> | 15, 201 <sup>°</sup> | 7, 2019 |    |      |          |               | 2012, 2                 | 014, 201 | 6, <mark>201</mark> | 8, 2020 |    |      |
| Designation           | Field                                              | CP-51<br>VOCs | 8260<br>Benzene<br>Only | As                   | Cr                   | Pb      | CN | Alk. | Field    | CP-51<br>VOCs | 8260<br>Benzene<br>Only | As       | Cr                  | Pb      | CN | Alk. |
| AREA I                |                                                    |               |                         |                      |                      |         |    |      |          |               |                         |          | _                   |         |    |      |
| A1-MW-1               | х                                                  | х             |                         | х                    |                      |         |    |      | х        |               |                         | х        |                     |         |    |      |
| A1-MW-2               | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A1-MW-3               | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A1-MW-4R <sup>2</sup> | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A1-MW-5               | х                                                  | х             |                         |                      |                      |         |    |      | х        | х             |                         |          |                     |         |    |      |
| A1-MW-6               | х                                                  | х             |                         | х                    |                      |         |    |      | х        | х             |                         | х        |                     |         |    |      |
| A1-MW-7 <sup>3</sup>  | х                                                  |               |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| AI-MW-8R <sup>4</sup> | х                                                  | х             |                         | х                    |                      |         |    |      | х        |               |                         | х        |                     |         |    |      |
| A1-MW-9               | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A1-MW-10 <sup>4</sup> | х                                                  | х             |                         |                      | х                    |         |    |      | х        |               |                         |          | х                   |         |    |      |
| A1-MW-11 <sup>2</sup> | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| AREA II               |                                                    |               |                         |                      |                      |         |    |      |          |               |                         |          |                     |         |    |      |
| A2-MW-3               | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A2-MW-4R              | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A2-MW-5               | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     |         |    |      |
| A2-MW-6               |                                                    |               | wat                     | er le                | vel o                | nly     |    |      |          | 1             | w a                     | ter le   | vel o               | nlv     |    |      |
| A2-MW-7               | water level only water level only water level only |               |                         |                      |                      |         |    |      |          |               |                         |          |                     |         |    |      |
| A2-MW-10R             | х                                                  | х             |                         |                      |                      | ĺ       |    |      | х        |               |                         |          |                     | T       |    |      |
| A2-MW-12              |                                                    |               | wat                     | er le                | vel o                | nly     |    |      |          | 1             | w a                     | ter le   | vel o               | nlv     |    |      |
| A2-MW-13              | х                                                  | х             |                         |                      |                      |         |    |      | х        |               |                         |          |                     | l í     |    |      |
| A2-MW-16              | х                                                  | х             |                         | х                    | х                    | х       |    |      | х        | х             |                         | х        | х                   | х       |    |      |
| A2-MW-17              | х                                                  | х             |                         |                      |                      |         |    |      | х        | х             |                         |          |                     |         |    |      |
| A2-MW-18              |                                                    |               | wat                     | er le                | vel o                | nly     |    |      |          | 1             | w a                     | ter le   | vel o               | nlv     |    |      |
| A2-MW-19              |                                                    |               |                         |                      | vel o                |         |    |      |          |               |                         |          | vel o               |         |    |      |
| A2-MW-20              |                                                    |               |                         |                      | vel o                |         |    |      |          |               |                         |          | vel o               |         |    |      |
| AREA III              | •                                                  |               |                         |                      |                      |         |    |      |          |               |                         |          |                     |         |    |      |
| A3-MW-3               | х                                                  | х             |                         | х                    |                      |         | х  |      | х        | х             |                         | х        |                     |         | х  |      |
| A3-MW-6               | х                                                  | х             |                         | Х                    |                      |         | х  |      | х        | х             |                         | х        |                     |         | х  |      |
| A3-MW-7               | х                                                  | х             |                         |                      |                      |         | х  |      | х        | х             |                         |          |                     |         | х  |      |
| A3-MW-9               | х                                                  | х             |                         |                      |                      | Х       |    |      | х        | х             |                         |          |                     | х       |    |      |
| A3-MW-10              | х                                                  | х             |                         |                      |                      |         | х  |      | х        | х             |                         |          |                     |         | х  |      |
| AREA III - ORC        | wells (e                                           | every 6       | months)                 |                      |                      |         |    |      |          |               |                         |          |                     |         |    |      |
| A3-ORC-1              | ×                                                  |               | x                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-2              | х                                                  |               | х                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-3              | х                                                  |               | х                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-4              | х                                                  |               | х                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-5              | х                                                  |               | х                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-6              | х                                                  |               | x                       |                      |                      |         |    | x    | x        |               | x                       |          |                     |         |    | Х    |
| A3-ORC-7              | х                                                  |               | х                       |                      |                      |         |    | х    | х        |               | х                       |          |                     |         |    | х    |
| A3-ORC-8              | х                                                  |               | x                       |                      |                      |         |    | x    | x        |               | х                       |          |                     |         |    | х    |
| A3-ORC-9              | x                                                  |               | x                       |                      |                      |         |    | Х    | x        |               | x                       |          |                     |         |    | х    |
| A3-ORC-10             | Х                                                  |               | x                       |                      |                      |         |    | х    | x        |               | x                       |          |                     |         |    | x    |
| A3-ORC-11             | х                                                  |               | x                       |                      |                      |         |    | х    | x        |               | x                       |          |                     |         |    | x    |
|                       | •                                                  |               |                         |                      | •                    |         |    |      |          |               |                         |          |                     |         |    |      |
| Totals:               | 34                                                 | 22            | 11                      | 6                    | 2                    | 2       | 4  | 11   | 34       | 9             | 11                      | 6        | 2                   | 2       | 4  | 11   |

- otes:

  1. Modified analytical plan as per NYSDEC approval letter dated May 5, 2011.

  2. Due to redevelopment activities in Area I, wells A1-MW-4 and A1-MW-M2 were replaced on July 11-12, 2017 with wells A1-MW-4R and A1-MW-11, respectively.

  3. Per a NYSDEC request, A1-MW-7 was sampled for VOCs, arsenic, chromiuim, and lead in 2011; water level and field parameters annually thereafter.

  4. Well A1-MW-8 and piezometer A1-P-4 were replaced June 6-7, 2016 with wells A1-MW-8R and A1-MW-10, respectively.



## GROUNDWATER ELEVATION MEASUREMENTS August 29, 2018

| Monitoring<br>Location | TOR<br>Elevation<br>(fmsl) | DTP<br>(fbTOR) | DTW<br>(fbTOR) | Product<br>Thickness<br>(feet) | Groundwater<br>Elevation<br>(fmsl) | Corrected<br>Groundwater<br>Elevation <sup>1</sup><br>(fmsl) |
|------------------------|----------------------------|----------------|----------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| Area I Monitoring W    | /ells <sup>2</sup>         |                |                |                                |                                    | 11 Wells                                                     |
| A1-MW-1                | 586.38                     | NP             | 12.55          | NP                             | 573.83                             | 573.83                                                       |
| A1-MW-2                | 586.39                     | NP             | 13.12          | NP                             | 573.27                             | 573.27                                                       |
| A1-MW-3                | 591.98                     | NP             | 12.14          | NP                             | 579.84                             | 579.84                                                       |
| A1-MW-4R               | 588.76                     | NP             | 14.14          | NP                             | 574.62                             | 574.62                                                       |
| A1-MW-5                | 590.48                     | NP             | 8.04           | NP                             | 582.44                             | 582.44                                                       |
| A1-MW-6                | 591.60                     | 17.09          | 17.14          | 0.05                           | 574.46                             | 574.50                                                       |
| A1-MW-7                | 586.97                     | NP             | 11.97          | NP                             | 575.00                             | 575.00                                                       |
| A1-MW-8R               | 589.83                     | NP             | 14.84          | NP                             | 574.99                             | 574.99                                                       |
| A1-MW-9                | 588.05                     | NP             | 12.73          | NP                             | 575.32                             | 575.32                                                       |
| A1-MW-10               | 589.73                     | NP             | 15.02          | NP                             | 574.71                             | 574.71                                                       |
| A1-MW-11               | 591.73                     | NP             | 11.94          | NP                             | 579.79                             | 579.79                                                       |
| Area II Monitoring V   | Vells <sup>2</sup>         |                |                |                                |                                    | 17 Wells                                                     |
| A2-MW-3                | 588.95                     | NP             | 14.32          | NP                             | 574.63                             | 574.63                                                       |
| A2-MW-4R               | 588.59                     | NP             | 13.93          | NP                             | 574.66                             | 574.66                                                       |
| A2-MW-5                | 587.25                     | NP             | 12.14          | NP                             | 575.11                             | 575.11                                                       |
| A2-MW-6                | 592.69                     | NP             | 10.52          | NP                             | 582.17                             | 582.17                                                       |
| A2-MW-7                | 602.05                     | NP             | DRY            | NP                             | < 580.8                            | < 580.8                                                      |
| A2-MW-10R              | 593.59                     | NP             | 11.02          | NP                             | 582.57                             | 582.57                                                       |
| A2-MW-11               | 590.11                     | NP             | 10.64          | NP                             | 579.47                             | 579.47                                                       |
| A2-MW-12               | 604.12                     | NP             | 17.62          | NP                             | 586.50                             | 586.50                                                       |
| A2-MW-13               | 597.90                     | NP             | 14.12          | NP                             | 583.78                             | 583.78                                                       |
| A2-MW-16               | 597.62                     | NP             | 14.91          | NP                             | 582.71                             | 582.71                                                       |
| A2-MW-17               | 596.94                     | NP             | 14.50          | NP                             | 582.44                             | 582.44                                                       |
| A2-MW-18               | 587.64                     | NA             | NA             | NA                             | NA                                 | NA                                                           |
| A2-MW-19               | 592.02                     | NP             | 10.46          | NP                             | 581.56                             | 581.56                                                       |
| A2-MW-20               | 591.54                     | NP             | 7.16           | NP                             | 584.38                             | 584.38                                                       |
| A2-PW-1                | 601.76                     | NP             | 18.10          | NP                             | 583.66                             | 583.66                                                       |
| A2-PW-2                | 603.91                     | NP             | 20.25          | NP                             | 583.66                             | 583.66                                                       |
| A2-PW-3                | 603.88                     | NP             | 19.74          | NP                             | 584.14                             | 584.14                                                       |
| Area III Monitoring    | Wells <sup>2</sup>         |                |                |                                |                                    | 5 Wells                                                      |
| A3-MW-3                | 585.40                     | NP             | 4.90           | NP                             | 580.50                             | 580.50                                                       |
| A3-MW-6                | 585.70                     | NP             | 8.97           | NP                             | 576.73                             | 576.73                                                       |
| A3-MW-7                | 586.39                     | NP             | 8.56           | NP                             | 577.83                             | 577.83                                                       |
| A3-MW-9                | 597.61                     | NP             | 15.87          | NP                             | 581.74                             | 581.74                                                       |
| A3-MW-10               | 585.41                     | NP             | 7.84           | NP                             | 577.57                             | 577.57                                                       |



## GROUNDWATER ELEVATION MEASUREMENTS August 29, 2018

## 2018 Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

| Monitoring<br>Location | TOR<br>Elevation<br>(fmsl) | DTP<br>(fbTOR) | DTW<br>(fbTOR) | Product<br>Thickness<br>(feet) | Groundwater<br>Elevation<br>(fmsl) | Corrected<br>Groundwater<br>Elevation <sup>1</sup><br>(fmsl) |
|------------------------|----------------------------|----------------|----------------|--------------------------------|------------------------------------|--------------------------------------------------------------|
| Area III ORC Monitor   | ing Wells <sup>2</sup>     |                |                |                                |                                    | 11 Wells                                                     |
| A3-ORC-1               | 587.17                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-2               | 587.35                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-3               | 587.55                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-4               | 587.14                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-5               | 587.77                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-6               | 587.53                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-7               | 587.16                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-8               | 587.51                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-9               | 585.15                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-10              | 587.60                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| A3-ORC-11              | 587.70                     | NP             | NM             | NP                             | NM                                 | NM                                                           |
| Surface Water 4,5      |                            |                |                |                                |                                    | 3 Locations                                                  |
| SG-01 (downstream)     | 585.07                     | NP             | 10.36          | NP                             | 574.71                             | 574.71                                                       |
| SG-02 (upstream)       | 590.72                     | NP             | 16.09          | NP                             | 574.63                             | 574.63                                                       |
| Lake Erie              | NA                         | NA             | NA             | NA                             | NA                                 | 573.0                                                        |

## Notes:

- Groundwater elevations are corrected if free product (i.e., LNAPL) is present.
- 2. Monitoring well reference point elevations (i.e., top of riser for wells and sheet pile for staff gauges) have been surveyed at various times by TurnKey or Steelfields.

  4. Staff Gauge (SG) locations are located at the upstream and downstream locations indicated on Figure 1. Each staff gauge was surveyed on January 3, 2008
- 4. Staff Gauge (SG) locations are located at the upstream and downstream locations indicated on Figure 1. Each staff gauge was surveyed on January 3, 2008 by Niagara Boundary personnel.
- 5. Source: NOAA Tides & Currents Web Page- Buffalo, NY Station ID 9063020; average daily elevation of Buffalo, New York Station #9063020.

#### Definitions:

DTP = depth to product, if present
DTW = detph to water
fmsl = feet above mean sea level
fbTOR = feet below top of riser
NP = no measureable product was present
NM = not measured for this event
R = replacement well
TOR = top of riser



## SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area I: Former Steel Plant Parcel

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

|                               |              |          |          | Moni     | toring Location | n and Date of        | Sample Colle | ection       |          |              |          |           |
|-------------------------------|--------------|----------|----------|----------|-----------------|----------------------|--------------|--------------|----------|--------------|----------|-----------|
| Parameter                     | A1-MW-1      | A1-MW-2  | A1-MW-3  | A1-MW-4R | A1-MW-5         | A1-MW-6 <sup>3</sup> | A1-MW-7      | A1-MW-8R     | A1-MW-9  | A1-MW-10     | A1-MW-11 | GWQS/GV 1 |
|                               | 09/22/18     | 09/22/18 | 09/22/18 | 09/22/18 | 09/22/18        | 09/22/18             | 09/22/18     | 09/22/18     | 09/22/18 | 09/22/18     | 09/22/18 |           |
| Field Measurements (units as  | indicated) 2 |          |          |          |                 |                      |              |              |          |              |          |           |
| pH (units)                    | 7.69         | NS       | NS       | NS       | 8.12            | 6.74                 | NS           | 6.27         | NS       | 6.15         | NS       | 6.5 - 8.5 |
| Temperature (degrees C)       | 16.2         | NS       | NS       | NS       | 16.4            | 15.2                 | NS           | 12.7         | NS       | 13.0         | NS       | NA        |
| Specific Conductance (uS)     | 1270         | NS       | NS       | NS       | 1246            | 1327                 | NS           | 1301.0       | NS       | 1327.0       | NS       | NA        |
| Turbidity (NTU)               | 8.0          | NS       | NS       | NS       | 6.00            | 20.0                 | NS           | 40.0         | NS       | 41.0         | NS       | NA        |
| Dissolved Oxygen (mg/L)       | 8.39         | NS       | NS       | NS       | 8.57            | 7.27                 | NS           | 8.70         | NS       | 8.69         | NS       | NA        |
| Eh (mV)                       | -20          | NS       | NS       | NS       | -73             | -107                 | NS           | -22          | NS       | -25          | NS       | NA        |
| Visual Observation            | Clear        | NS       | NS       | NS       | Clear/sheen     | Clear/Sheen          | NS           | Clear        | NS       | Clear        | NS       | NA        |
| Olfactory Observation         | No odor      | NS       | NS       | NS       | No odor         | SI Petroleum         | NS           | SI Petroleum | NS       | SI Petroleum | NS       | NA        |
| Volatile Organic Compounds (  | ug/L)        |          |          |          |                 |                      |              |              |          |              |          |           |
| Benzene                       | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 1         |
| n-Butylbenzene                | NS           | NS       | NS       | NS       | ND              | 3.9                  | NS           | NS           | NS       | NS           | NS       | 5         |
| sec-Butylbenzene              | NS           | NS       | NS       | NS       | ND              | 2.8                  | NS           | NS           | NS       | NS           | NS       | 5         |
| tert-Butylbenzene             | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| p-Cymene (4-Isopropyltoluene) | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| Ethylbenzene                  | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| Isopropylbenzene              | NS           | NS       | NS       | NS       | ND              | 1.7 J                | NS           | NS           | NS       | NS           | NS       | 5         |
| Methyl tert butyl ether       | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 10        |
| n-Propylbenzene               | NS           | NS       | NS       | NS       | ND              | 2.9                  | NS           | NS           | NS       | NS           | NS       | 5         |
| Toluene                       | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| 1,2,4-Trimethylbenzene        | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| 1,3,5-Trimethylbenzene        | NS           | NS       | NS       | NS       | ND              | ND                   | NS           | NS           | NS       | NS           | NS       | 5         |
| Xylenes, Total                | NS           | NS       | NS       | NS       | ND              | 0.94 J               | NS           | NS           | NS       | NS           | NS       | 5         |
| Total VOCs                    | 0.0          | 0.0      | 0.0      | 0.0      | 0.0             | 12.24                | 0.0          | 0.0          | 0.0      | 0.0          | 0.0      | 10        |
| Total Inorganics (mg/L)       |              |          |          |          |                 |                      |              |              |          |              |          | _         |
| Total Arsenic                 | 0.001        | NS       | NS       | NS       | NS              | 0.138                | NS           | 0.0164       | NS       | NS           | NS       | 0.025     |
| Total Chromium                | NS           | NS       | NS       | NS       | NS              | NS                   | NS           | NS           | NS       | 0.00055 J    | NS       | 0.05      |

#### Notes:

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- 2. Field measurements were collected immediately before and after groundwater sample collection.
- 3. Light non-aqueous phase liquid (LNAPL) detected.
- 4. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
- 5. " ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.
- 6. " -- " = compound is not analyzed at this location

#### Color Code:

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.



## SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

|                      |            |                | B. 14          |              | Barraro, ricii |              |                                                               |
|----------------------|------------|----------------|----------------|--------------|----------------|--------------|---------------------------------------------------------------|
|                      | Days Since | LNA            | PL Measure     | ment         | Quantity       | Height of    |                                                               |
| Date                 | Last Visit | Тор            | Bottom         | Thickness    | Removed 1      | Petro-Trap   | Comments                                                      |
|                      |            | (fbTOR)        | (fbTOR)        | (feet)       | (oz.)          | (fbTOR)      |                                                               |
| 09/21/04             | 0          | 18.10          | 18.40          | 0.30         | NA             |              | well development                                              |
| 09/23/04             | 2          | 18.10          | 18.40          | 0.30         | NA             |              | Fall 2004 groundwater monitoring event                        |
| 02/01/05             | 131        | 17.50          | 20.85          | 3.35         | NA<br>10       | 16.0         | installed PetroTrap passive skimmer                           |
| 02/08/05<br>02/11/05 | 7          | 17.94<br>17.89 | 19.89<br>19.75 | 1.95<br>1.86 | 16<br>20       | 16.0<br>16.0 | first LNAPL removal from Petro Trap ok                        |
| 02/11/05             | 4          | 18.10          | 18.52          | 0.42         | 20             | 16.0         | ok ok                                                         |
| 02/13/05             | 3          | 17.59          | 17.91          | 0.42         | 12             | 16.0         | ok ok                                                         |
| 02/25/05             | 7          | 18.02          | 18.51          | 0.49         | 2              | 16.0         | Petro Trap tubing was tangled                                 |
| 03/04/05             | 7          | 18.13          | 18.63          | 0.50         | 6              | 16.0         | Petro Trap tubing was tangled                                 |
| 03/18/05             | 14         | 18.00          | 18.74          | 0.74         | 3.5            | 16.0         | checked Petro Trap for leaks, none located                    |
| 04/08/05             | 21         | 17.37          | 18.20          | 0.83         | 24             | 15.0         | ok; raised Petro Trap approximately 1-foot                    |
| 04/14/05             | 6          | 17.65          | 17.81          | 0.16         | 22             | 15.0         | ok                                                            |
| 04/28/05             | 14         | 16.23          | 16.25          | 0.02         | 25.6           | 15.0         | ok                                                            |
| 05/17/05             | 19         | 17.62          | 17.80          | 0.18         | 14             | 14.0         | ~14 oz. of water in Petro Trap; raised approx. 1-foot         |
| 06/21/05             | 35         | 17.68          | 17.71          | 0.03         | 14             | 14.0         | ok                                                            |
| 07/18/05             | 27<br>53   | 18.03          | 18.11<br>18.42 | 0.08         | 12<br>8        | 15.0<br>15.0 | ok, lowered approx. 1-foot                                    |
| 09/09/05<br>09/20/05 | 11         | 18.34<br>18.33 | 18.38          | 0.08         | 22             | 15.0         | ok ok; Area I LTGWM Event                                     |
| 10/31/05             | 41         | 18.50          | 18.52          | 0.03         | 24             | 15.0         | ok, Alea i Li Gwiw Event                                      |
| 11/23/05             | 23         | 18.95          | 18.96          | 0.02         | 22             | 15.0         | ok ok                                                         |
| 12/28/05             | 35         | 19.35          | 19.36          | 0.01         | 22             | 15.0         | ok                                                            |
| 01/30/06             | 33         | 18.43          | 18.44          | 0.01         | 24             | 15.0         | ok                                                            |
| 02/27/06             | 28         | 18.38          | 19.06          | 0.68         | 24             | 15.0         | ok                                                            |
| 03/28/06             | 29         | 18.44          | 19.31          | 0.87         | 24             | 15.0         | ok                                                            |
| 04/27/06             | 30         | 18.39          | 19.17          | 0.78         | 24             | 15.0         | ok                                                            |
| 05/18/06             | 21         | 18.41          | 19.05          | 0.64         | 8              | 15.0         | ok; Area I LTGWM Event                                        |
| 06/30/06             | 43         | 17.82          | 18.35          | 0.53         | 8              | 15.0         | ok                                                            |
| 07/31/06             | 31         | 17.95          | 18.64          | 0.69         | 16             | 15.0         | ok                                                            |
| 12/01/06<br>06/30/07 | 123<br>211 | 19.41<br>17.98 | 21.65<br>20.51 | 2.24<br>2.53 | 16<br>8        | 15.0<br>15.0 | ok; Area I LTGWM Event, removed oily water.                   |
| 07/31/07             | 31         | 18.31          | 21.40          | 3.09         | 22             | 14.0         | ~12oz. Water in Trap; raised PetroTrap approx. 1'             |
| 08/22/07             | 22         | 18.50          | 20.11          | 1.61         | 4              | 14.0         | ok                                                            |
| 09/29/07             | 38         | 18.86          | 21.72          | 2.86         | 4              | 14.0         | ok                                                            |
| 10/30/07             | 31         | 19.10          | 21.04          | 1.94         | 3              | 14.0         | ok                                                            |
| 11/28/07             | 29         | 19.47          | 20.52          | 1.05         | 2              | 14.0         | checked Petro Trap for leaks, none located                    |
| 12/28/07             | 30         | 18.93          | 20.42          | 1.49         | 14             | 15.0         | ~12oz. Water in Trap; lowered PetroTrap approx. 1'            |
| 08/12/08             | 228        | 17.98          | 19.60          | 1.62         | 30             | 15.0         | ok, bailed down product removed ~1.0 gal. TK took over monito |
| 09/10/08             | 29         | 18.61          | 20.10          | 1.49         | 4              | 15.0         | Needs to be ajusted and claened                               |
| 10/08/08             | 28         | 18.90          | 20.46          | 1.56         | 8              | 17.5         | Lowered trap to 17.41 fbgs, cleaned off filter.               |
| 11/11/08<br>12/16/08 | 34         | 18.79          | 21.00<br>20.86 | 2.21         | 11<br>1        | 17.5         | ok<br>ok                                                      |
| 01/07/09             | 35<br>22   | 18.64<br>18.28 | 21.20          | 2.22<br>2.92 | 1              | 17.5<br>17.0 | raised trap to 17.0 fbgs                                      |
| 02/11/09             | 35         | 18.52          | 21.22          | 2.70         | 64             | 17.0         | 17 oz in trap, bailed 47 oz                                   |
| 03/10/09             | 27         | 17.50          | 19.63          | 2.13         | 2              | 17.0         | ok                                                            |
| 04/01/09             | 22         | 18.12          | 19.08          | 0.96         | 48             | 17.0         | Bailed ~40oz, ~8 was removed from trap                        |
| 05/06/09             | 35         | 17.61          | 19.81          | 2.20         | 3              | 17.0         | ok                                                            |
| 05/12/09             | 6          | 17.65          | 17.96          | 0.31         | 18             | 17.0         | ok                                                            |
| 06/02/09             | 21         | 17.64          | 18.17          | 0.53         | 2              | 17.0         | ok                                                            |
| 07/08/09             | 36         | 17.96          | 18.17          | 0.21         | 20             | 17.0         | ok                                                            |
| 08/06/09             | 29         | 18.05          | 19.75          | 1.70         | 1.5            | 17.0         | ok                                                            |
| 09/01/09             | 26         | 18.11          | 19.20          | 1.09         | 3              | 17.0         | ok                                                            |
| 10/06/09             | 35         | 17.84          | 19.62          | 1.78         | 6              | 17.0         | ok                                                            |
| 11/03/09<br>12/01/09 | 28<br>28   | 17.82<br>18.07 | 19.11<br>18.50 | 1.29<br>0.43 | 10<br>20       | 17.0<br>17.0 | ok<br>ok                                                      |
| 01/13/10             | 43         | 18.22          | 18.75          | 0.43         | 5              | 17.0         | ok<br>ok                                                      |
| 02/10/10             | 28         | 18.03          | 19.00          | 0.97         | 4              | 17.0         | ok                                                            |
| 03/05/10             | 23         | 19.31          | 20.81          | 1.50         | 3              | 17.0         | ok                                                            |
| 04/06/10             | 32         | 18.61          | 20.41          | 1.80         | 4              | 17.0         | ok                                                            |
| 05/05/10             | 29         | 18.41          | 20.20          | 1.79         | 1              | 17.0         | ok                                                            |
| 05/17/10             | 12         | 18.03          | 20.42          | 2.39         | 1              | 17.0         | ok                                                            |
| 06/04/10             | 18         | 17.83          | 19.88          | 2.05         | 3              | 17.0         | ok                                                            |
| 07/14/10             | 40         | 17.95          | 19.70          | 1.75         | 16             | 17.0         | ok                                                            |
| 08/06/10             | 23         | 18.00          | 20.17          | 2.17         | 1              | 17.0         | ok                                                            |
| 09/10/10             | 35         | 18.64          | 20.90          | 2.26         | 2              | 17.0         | ok                                                            |
| 10/15/10             | 35         | 18.82          | 20.61          | 1.79         | 2              | 17.0         | ok                                                            |



## SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

|                      |                          | 1 1 1 1 1      | DI M              |                     | bullalo, New                              | 1011                               |                                                                              |
|----------------------|--------------------------|----------------|-------------------|---------------------|-------------------------------------------|------------------------------------|------------------------------------------------------------------------------|
| Date                 | Days Since<br>Last Visit | Top<br>(fbTOR) | Bottom<br>(fbTOR) | Thickness<br>(feet) | Quantity<br>Removed <sup>1</sup><br>(oz.) | Height of<br>Petro-Trap<br>(fbTOR) | Comments                                                                     |
| 11/02/10             | 18                       | , ,            | , ,               | , ,                 | , ,                                       | , ,                                | Lace O Fee upo removed via patra trap hailed 24an                            |
| 12/14/10             | 42                       | 19.25<br>18.30 | 19.60<br>19.48    | 0.35<br>1.18        | 24<br>1                                   | 17.0<br>17.0                       | Less 0.5oz was removed via petro trap, bailed 24oz ok                        |
| 01/20/11             | 37                       | 19.03          | 20.34             | 1.31                | 10                                        | 17.0                               | ok                                                                           |
| 02/18/11             | 29                       | 18.84          | 19.83             | 0.99                | 18                                        | 17.0                               | Bailed ~15 oz of product                                                     |
| 04/27/11             | 68                       | 17.15          | 18.00             | 0.85                | 1                                         | 17.0                               | TOP was over petro-trap.                                                     |
| 05/23/11             | 26                       | 17.82          | 19.91             | 2.09                | 16                                        | 17.0                               | 4 oz. removed from trap, bailed 12 oz.                                       |
| 06/07/11             | 15                       | 16.47          | 20.28             | 3.81                | 21                                        | 17.0                               | 7 oz. removed from trap, bailed 14 oz.                                       |
| 07/13/11             | 36                       | 17.64          | 20.12             | 2.48                | 14                                        | 17.0                               | 5 oz. removed from trap, bailed 9 oz                                         |
| 08/10/11             | 28                       | 18.32          | 20.09             | 1.77                | 5                                         | 17.0                               | 3 oz. removed from trap, bailed 2 oz                                         |
| 09/29/11<br>10/17/11 | 50<br>18                 | 17.28<br>16.93 | 18.40<br>18.65    | 1.12<br>1.72        | 22<br>13                                  | 17.0<br>17.0                       | 2 oz. removed from trap, bailed 22 oz. ok                                    |
| 11/29/11             | 43                       | 18.66          | 19.84             | 1.18                | 26                                        | 17.0                               | ok                                                                           |
| 12/22/11             | 23                       | 19.24          | 19.77             | 0.53                | 19                                        | 17.0                               | ok ok                                                                        |
| 01/12/12             | 21                       | 18.14          | 19.67             | 1.53                | 21                                        | 17.0                               | ok                                                                           |
| 02/06/12             | 25                       | 18.79          | 19.84             | 1.05                | 18                                        | 17.0                               | ok                                                                           |
| 03/08/12             | 31                       | 17.38          | 21.18             | 3.80                | 21                                        | 17.0                               | ok                                                                           |
| 04/05/12             | 28                       | 19.16          | 20.33             | 1.17                | 22                                        | 17.0                               | ok                                                                           |
| 05/03/12             | 28                       | 18.71          | 20.03             | 1.32                | 24                                        | 17.0                               | ok                                                                           |
| 06/19/12             | 47                       | 18.20          | 19.61             | 1.41                | 24                                        | 17.0                               | 1 oz. removed from trap, bailed 23 oz.                                       |
| 07/25/12             | 36                       | 18.69          | 20.42             | 1.73                | 28                                        | 17.0                               | ok                                                                           |
| 12/21/12<br>01/17/13 | 149<br>27                | 18.97<br>19.25 | 19.30<br>20.40    | 0.33<br>1.15        | 5<br>30                                   | 17.0<br>17.0                       | 1 oz. removed from trap, bailed 4 oz. 2 oz. removed from trap, bailed 28 oz. |
| 02/25/13             | 39                       | 19.25          | 20.45             | 1.15                | 19                                        | 16.5                               | 1 oz. removed from trap, bailed 28 oz.                                       |
| 02/25/13             | 31                       | 18.95          | 19.30             | 0.35                | 13                                        | 17.0                               | 2 oz. removed from trap, bailed 16 oz.                                       |
| 04/29/13             | 32                       | 18.45          | 19.40             | 0.35                | 25                                        | 17.0                               | 3 oz. removed from trap, bailed 22 oz.                                       |
| 05/24/13             | 25                       | 19.05          | 19.40             | 0.58                | 18                                        | 17.0                               | 3 oz. removed from trap, bailed 25 oz.                                       |
| 06/17/13             | 24                       | 18.13          | 18.43             | 0.30                | 8                                         | 16.0                               | 0 oz. removed from trap, bailed 8 oz.                                        |
| 07/18/13             | 31                       | 17.67          | 18.05             | 0.38                | 13                                        | 16.0                               | 2 oz. removed from trap, bailed 11 oz.                                       |
| 08/19/13             | 32                       | 18.02          | 18.75             | 0.73                | 26                                        | 16.0                               | 4 oz. removed from trap, bailed 22 oz.                                       |
| 09/13/13             | 25                       | 18.85          | 19.07             | 0.73                | 11                                        | 16.5                               | 0 oz. removed from trap, bailed 11 oz.                                       |
| 10/17/13             | 34                       | 18.55          | 18.85             | 0.30                | 7.5                                       | 16.0                               | 0.5 oz. removed from trap, bailed 7 oz.                                      |
| 11/06/13             | 20                       | 18.62          | 19.15             | 0.53                | 22                                        | 16.0                               | 3 oz. removed from trap, bailed 19 oz.                                       |
| 12/03/13             | 27                       | 19.33          | 19.69             | 0.36                | 19                                        | 16.0                               | 3 oz. removed from trap, bailed 16 oz.                                       |
| 01/13/14             | 41                       | 18.34          | 19.30             | 0.96                | 21                                        | 17.0                               | 2 oz. removed from trap, bailed 19 oz.                                       |
| 02/20/14             | 38                       | 19.62          | 20.21             | 0.59                | 20                                        | 17.0                               | 4 oz. removed from trap, bailed 16 oz.                                       |
| 03/27/14             | 35                       | 18.91          | 19.67             | 0.76                | 28.5                                      | 17.0                               | 5.5 oz. removed from trap, bailed 23 oz.                                     |
| 04/17/14             | 21                       | 18.17          | 19.06             | 0.89                | 20                                        | 17.0                               | 1 oz. removed from trap, bailed 19 oz.                                       |
| 05/27/14             | 40                       | 17.52          | 17.87             | 0.35                | 9                                         | 17.0                               | 3 oz. removed from trap, bailed 6 oz.                                        |
| 06/20/14             | 24                       | 17.83          | 18.19             | 0.36                | 5                                         | 17.0                               | 0.5 oz. removed from trap, bailed 4.5 oz.                                    |
| 07/10/14             | 20                       | 18.24          | 18.28             | 0.04                | 2                                         | 17.0                               | 0.0 oz. removed from trap, bailed 2 oz.                                      |
|                      |                          |                | August throu      | gh October: R       | iverBend Area I                           | sold, no measu                     | rements obtained                                                             |
| 11/06/14             | 119                      | 18.71          | 19.18             | 0.47                | 23                                        | 17.0                               | 2.0 oz. removed from trap, bailed 21 oz.                                     |
| 12/11/14             | 35                       | 17.64          | 18.55             | 0.91                | 32                                        | 17.0                               | 4.0 oz. removed from trap, bailed 28 oz.                                     |
| 01/29/15             | 49                       | 18.67          | 20.82             | 2.15                | 35                                        | 17.0                               | 1.0 oz. removed from trap, bailed 34 oz.                                     |
| 02/27/15             | 29                       | 19.22          | 19.25             | 0.03                | 2                                         | 17.0                               | 0.0 oz. removed from trap, bailed 2 oz.                                      |
| 03/23/15             | 24                       | 19.18          | 19.24             | 0.06                | 4                                         | 17.0                               | 1.0 oz. removed from trap, bailed 3 oz.                                      |
| 04/27/15             | 35                       | 18.92          | 19.22             | 0.30                | 12                                        | 17.0                               | 2.0 oz. removed from trap, bailed 10 oz.                                     |
| 05/26/15             | 29                       | 19.50          | 19.57             | 0.07                | 6                                         | 17.0                               | 1.0 oz. removed from trap, bailed 5 oz.                                      |
| 06/10/15             | 15                       | 18.32          | 18.35             | 0.03                | 3                                         | 17.0                               | 1.0 oz. removed from trap, bailed 2 oz.                                      |
| 07/24/15             | 44                       | 17.60          | 17.62             | 0.02                | 1.5                                       | 17.0                               | 0.5 oz. removed from trap, bailed 1 oz.                                      |
| 08/31/15             | 38                       | 18.10          | 18.12             | 0.02                | 2                                         | 17.0                               | 0.5 oz. removed from trap, bailed 1.5 oz.                                    |
| 09/30/15             | 30                       | 18.60          | 18.64             | 0.04                | 6                                         | 17.0                               | 1.0 oz. removed from trap, bailed 5 oz.                                      |
| 10/30/15             | 30                       | 18.28          | 18.36             | 0.08                | 6.5                                       | 17.0                               | 0.5 oz. removed from trap, bailed 6 oz.                                      |
| 12/27/15             | 58                       | 18.14          | 18.20             | 0.06                | 4.5                                       | 17.0                               | 0.5 oz. removed from trap, bailed 1.5 oz.                                    |
| 01/28/16             | 32                       | 18.12          | 18.14             | 0.02                | 1.5                                       | 17.0                               | 0.0 oz. removed from trap, bailed 1.5 oz.                                    |
| 02/27/16             | 30                       | 18.10          | 18.13             | 0.03                | 2                                         | 17.0                               | 0.5 oz. removed from trap, bailed 1.5 oz.                                    |
| 03/27/16             | 29                       | 17.51          | 17.54             | 0.03                | 4.5                                       | 17.0                               | 0.0 oz. removed from trap, bailed 4.5 oz.                                    |
| 04/25/16             | 29                       | 17.38          | 17.42             | 0.04                | 2.5                                       | 17.0                               | 0.5 oz. removed from trap, bailed 2 oz.                                      |
| 05/31/16             | 36                       | 17.29          | 17.31             | 0.02                | 2                                         | 17.0                               | 0.5 oz. removed from trap, bailed 1.5 oz.                                    |
| 06/28/16             | 28                       | 17.21          | 17.29             | 0.08                | 2                                         | 17.0                               | 0.5 oz. removed from trap, bailed 1 oz.                                      |
| 07/29/16             | 31                       | 17.16          | 17.18             | 0.02                | 1                                         | 17.0                               | 0.5 oz. removed from trap, bailed 0.5 oz.                                    |
| 08/30/16             | 32                       | 17.70          | 17.72             | 0.02                | 2.5                                       | 17.0                               | 1.0 oz. removed from trap, bailed 1.5 oz.                                    |



### SUMMARY OF LNAPL THICKNESS / REMOVAL IN A1-MW-6 Area I: Former Republic (LTV) Steel Plant Parcel

|          |                          | LNA            | PL Measure        | ment                | Quantity                   | Height of             |                                                 |
|----------|--------------------------|----------------|-------------------|---------------------|----------------------------|-----------------------|-------------------------------------------------|
| Date     | Days Since<br>Last Visit | Top<br>(fbTOR) | Bottom<br>(fbTOR) | Thickness<br>(feet) | Removed <sup>1</sup> (oz.) | Petro-Trap<br>(fbTOR) | Comments                                        |
| 09/30/16 | 31                       | 18.35          | 18.36             | 0.01                | 1                          | 17.0                  | 0.0 oz. removed from trap, bailed 1 oz.         |
| 12/30/16 | 91                       | 18.03          | 18.26             | 0.23                | 30.5                       | 17.0                  | 0.5 oz. removed from trap, bailed 30 oz.        |
| 02/24/17 | 56                       | 18.70          | 18.75             | 0.05                | 0.5                        | NA                    | Removed petro-trap and installed absorbant sock |
| 03/31/17 | 428                      | 18.72          | 18.72             | 0.00                | 0                          | NA                    |                                                 |
| 04/27/17 | 27                       | 17.01          | 17.01             | 0.00                | 0                          | NA                    |                                                 |
| 05/22/17 | 25                       | 15.90          | 15.90             | 0.00                | 0                          | NA                    |                                                 |
| 06/30/17 | 39                       | 16.25          | 16.25             | 0.00                | 0                          | NA                    |                                                 |
| 07/11/17 | 11                       | 16.20          | 16.20             | 0.00                | 0                          | NA                    |                                                 |
| 08/10/17 | 41                       | 16.50          | 16.80             | 0.30                | 4.2                        | NA                    |                                                 |
| 09/29/17 | 80                       | 16.15          | 16.15             | 0.00                | 0                          | NA                    |                                                 |
| 10/27/17 | 28                       | 18.00          | 18.13             | 0.13                | 1.2                        | NA                    |                                                 |
| 11/30/17 | 34                       | 15.58          | 15.65             | 0.07                | 0.5                        | NA                    |                                                 |
| 12/19/17 | 19                       | 16.86          | 16.92             | 0.06                | 4.8                        | NA                    |                                                 |
| 01/18/18 | 30                       | 17.25          | 17.38             | 0.13                | 38                         | NA                    | Oil and water mixture                           |
| 02/08/18 | 21                       | 17.91          | 18.11             | 0.20                | 64                         | NA                    | Oil and water mixture                           |
| 03/07/18 | 27                       | 16.94          | 17.05             | 0.11                | 32                         | NA                    | Oil and water mixture                           |
| 04/24/18 | 48                       | 16.09          | 16.53             | 0.44                | 51                         | NA                    | Oil and water mixture                           |
| 05/16/18 | 22                       | 16.40          | 16.41             | 0.01                | 13                         | NA                    | Oil and water mixture                           |
| 06/20/18 | 35                       | 16.49          | 16.52             | 0.03                | 13                         | NA                    | Oil and water mixture                           |
| 07/18/18 | 28                       | 16.48          | 16.67             | 0.19                | 6                          | NA                    | Oil and water mixture                           |
| 08/28/18 | 41                       | 16.80          | 16.81             | 0.01                | 6                          | NA                    | Oil and water mixture                           |
| 09/19/18 | 22                       | 17.21          | 17.90             | 0.69                | 102                        | NA                    | Oil and water mixture                           |
| 10/25/18 | 36                       | 17.82          | 17.87             | 0.05                | 13                         | NA                    | Oil and water mixture                           |
| 11/30/18 | 36                       | 18.01          | 18.10             | 0.09                | 26                         | NA                    | Oil and water mixture                           |
| 12/18/18 | 18                       | 17.14          | 17.17             | 0.03                | 64                         | NA                    | Oil and water mixture                           |
|          | Tota                     | I Quantity     | Removed           | To Date:            | 2081.7 oz.                 | or 16.26              | gal.                                            |

- Notes:
  1. The PetroTrap canister used has a capacity of 25.6 oz. (0.2 gal).
  2. Data from January 1, 2007 through July 31, 2008 was collected by EnSol, Inc.; data before and after this time has been collected by TurnKey Environmmental Restoration, LLC.



# SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area II: Former Coke Plant Parcel

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

|                               |              |          | Monitoring Loca | tion and Date of S | Sample Collection | 1        |          |           |
|-------------------------------|--------------|----------|-----------------|--------------------|-------------------|----------|----------|-----------|
| Parameter                     | A2-MW-3      | A2-MW-4R | A2-MW-5         | A2-MW-10R          | A2-MW-13          | A2-MW-16 | A2-MW-17 | GWQS/GV 1 |
|                               | 09/21/18     | 09/21/18 | 09/21/18        | 09/21/18           | 09/21/18          | 09/21/18 | 09/21/18 |           |
| Field Measurements (units as  | indicated) 2 |          |                 |                    |                   |          |          |           |
| pH (units)                    | NS           | NS       | NS              | NS                 | NS                | 6.34     | 6.84     | 6.5 - 8.5 |
| Temperature (degrees C)       | NS           | NS       | NS              | NS                 | NS                | 16.1     | 15.0     | NA        |
| Specific Conductance (uS)     | NS           | NS       | NS              | NS                 | NS                | 2674     | 2784     | NA        |
| Turbidity (NTU)               | NS           | NS       | NS              | NS                 | NS                | 6        | 3        | NA        |
| Dissolved Oxygen (mg/L)       | NS           | NS       | NS              | NS                 | NS                | 5.83     | 6.48     | NA        |
| Eh (mV)                       | NS           | NS       | NS              | NS                 | NS                | -110     | -105     | NA        |
| Visual Observation            | NS           | NS       | NS              | NS                 | NS                | Clear    | Clear    | NA        |
| Olfactory Observation         | NS           | NS       | NS              | NS                 | NS                | SI Odor  | SI Odor  | NA        |
| Volatile Organic Compounds (  | ug/L)        |          |                 |                    |                   |          |          |           |
| Benzene                       | NS           | NS       | NS              | NS                 | NS                | 3.8      | ND       | 1         |
| n-Butylbenzene                | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| sec-Butylbenzene              | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| tert-Butylbenzene             | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| p-Cymene (4-Isopropyltoluene) | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Ethylbenzene                  | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Isopropylbenzene              | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Methyl tert butyl ether       | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 10        |
| n-Propylbenzene               | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Toluene                       | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| 1,2,4-Trimethylbenzene        | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| 1,3,5-Trimethylbenzene        | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Xylenes, Total                | NS           | NS       | NS              | NS                 | NS                | ND       | ND       | 5         |
| Total VOCs                    |              | -        |                 |                    | -                 | 3.8      | 0        | 10        |
| Inorganics (mg/L)             |              |          |                 |                    |                   |          |          |           |
| Total Arsenic                 | NS           | NS       | NS              | NS                 | NS                | 0.00394  | NS       | 0.025     |
| Total Chromium                | NS           | NS       | NS              | NS                 | NS                | 0.01039  | NS       | 0.05      |
| Total Lead                    | NS           | NS       | NS              | NS                 | NS                | 0.00862  | NS       | 0.025     |

#### Notes:

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- 2. Field measurements were collected immediately before and after groundwater sample collection.
- 3. " NA " = Not Applicable, a GWQS/GV has not been established for this parameter.
- 4. "ND" = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.
- 5. " NS " = this monitoring location was not sampled for this parameter.
- 6. " -- " = This parameter was not analyzed.

#### Color Code:



# SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2 Area III: Former Warehouse Parcel

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

| Parameter                     | A3-MW-3      | A3-MW-6  | A3-MW-7  | A3-MW-9  | A3-MW-10 | GWQS/GV 1 |  |
|-------------------------------|--------------|----------|----------|----------|----------|-----------|--|
|                               | 09/21/18     | 09/21/18 | 09/22/18 | 09/21/18 | 09/21/18 |           |  |
| Field Measurements (units as  | indicated) 2 |          |          |          |          |           |  |
| pH (units)                    | 6.93         | 7.12     | 9.55     | 7.62     | 5.66     | 6.5 - 8.5 |  |
| Temperature (degrees C)       | 17.5         | 17.2     | 12.0     | 14.7     | 16.5     | NA        |  |
| Specific Conductance (uS)     | 2389.0       | 872      | 683.2    | 804      | 5079     | NA        |  |
| Turbidity (NTU)               | 24           | 6        | 3        | 6        | 9        | NA        |  |
| Dissolved Oxygen (mg/L)       | 5.92         | 5.84     | 7.56     | 6.43     | 6.43     | NA        |  |
| Eh (mV)                       | -34          | -81      | -200     | -62      | -1       | NA        |  |
| Visual Observation            | Clear        | Clear    | Clear    | Clear    | Clear    | NA        |  |
| Olfactory Observation         | Si Odor      | No Odor  | SI Odor  | SI Odor  | SI Odor  | NA        |  |
| Volatile Organic Compounds (  | ug/L)        |          |          |          |          |           |  |
| Benzene                       | ND           | 0.16 J   | 14       | 0.19 J   | 1.6      | 1         |  |
| n-Butylbenzene                | ND           | ND       | ND       | ND       | ND       | 5         |  |
| sec-Butylbenzene              | ND           | ND       | ND       | ND       | ND       | 5         |  |
| tert-Butylbenzene             | ND           | ND       | ND       | ND       | ND       | 5         |  |
| p-Cymene (4-Isopropyltoluene) | ND           | ND       | ND       | ND       | ND       | 5         |  |
| Ethylbenzene                  | ND           | ND       | ND       | ND       | ND       | 5         |  |
| Isopropylbenzene              | ND           | ND       | ND       | ND       | 1.4 J    | 5         |  |
| Methyl tert butyl ether       | ND           | ND       | ND       | ND       | ND       | 10        |  |
| n-Propylbenzene               | ND           | ND       | ND       | ND       | ND       | 5         |  |
| Toluene                       | ND           | ND       | ND       | ND       | ND       | 5         |  |
| 1,2,4-Trimethylbenzene        | ND           | ND       | 0.7 J    | ND       | ND       | 5         |  |
| 1,3,5-Trimethylbenzene        | ND           | ND       | ND       | ND       | ND       | 5         |  |
| Xylenes, Total                | ND           | ND       | ND       | ND       | ND       | 5         |  |
| Total VOCs                    | 0            | 0.16     | 14.7     | 0.19     | 3        | 10        |  |
| Inorganics (mg/L)             |              |          |          |          |          |           |  |
| Total Arsenic                 | 0.02158      | 0.00841  | -        | -        | -        | 0.025     |  |
| Total Lead                    | -            | -        | -        | 0.00257  | -        | 0.025     |  |
| Wet Chemistry (mg/L)          |              |          |          |          |          |           |  |
| Cyanide                       | 10.6         | 0.028    | 0.108    | -        | 0.164    | 0.2       |  |

#### Notes:

- 1. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998)
- 2. Field measurements were collected immediately before and after groundwater sample collection.
- 4. "-" Analysis was not performed for this parameter.
- 5. " J " = Estimated Value
- 6. "NA" = Not Applicable, a GWQS/GV has not been established for this parameter.
- 7. " ND " = the sample location was analyzed for this parameter, but reported at a concentration less than the method detection limit.

#### Color Code

###

= Shaded values represent exceedances of the NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value.



## SUMMARY OF JUNE 2018 ORC ANALYTICAL RESULTS 1,2,3 Area III: Former Warehouse Parcel

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

|                                                               |                |             |          |             | Mor      | nitoring Loca | ition       |          |          |           |           | GWQS <sup>2</sup> |
|---------------------------------------------------------------|----------------|-------------|----------|-------------|----------|---------------|-------------|----------|----------|-----------|-----------|-------------------|
| Parameter                                                     | A3-ORC-1       | A3-ORC-2    | A3-ORC-3 | A3-ORC-4    | A3-ORC-5 | A3-ORC-6      | A3-ORC-7    | A3-ORC-8 | A3-ORC-9 | A3-ORC-10 | A3-ORC-11 |                   |
| Field Measurements During Purge (units as shown) <sup>1</sup> |                |             |          |             |          |               |             |          |          |           |           |                   |
| Static Depth to Water (fbTOR)                                 | 4.44           | 4.48        | 4.40     | 4.09        | 4.72     | 4.61          | 5.41        | 5.31     | 2.73     | 5.37      | 5.14      |                   |
| Total Depth (fbTOR)                                           | 14.08          | 14.43       | 14.38    | 14.38       | 14.03    | 14.36         | 14.36       | 14.63    | 14.03    | 14.55     | 14.57     |                   |
| One Casing Volume (gallons)                                   | 6.29           | 6.50        | 6.52     | 6.72        | 6.08     | 6.37          | 5.84        | 6.09     | 7.38     | 5.99      | 6.16      |                   |
| Number of Volumes Purged                                      | 5.4            | 6.2         | 5.4      | 4.8         | 6.4      | 5.2           | 4.3         | 3.6      | 10.2     | 5.1       | 6.0       |                   |
| Sample Determination <sup>3</sup>                             | 4-days         | 4-days      | 4-days   | 4-days      | 4-days   | 4-days        | 4-days      | 4-days   | volume   | 4-days    | 4-days    |                   |
| Purge: Day 1 (06/04/18) (gallons)                             | 8.5            | 10.0        | 9.0      | 8.0         | 10.0     | 9.0           | 7.0         | 6.0      |          | 7.0       | 9.0       |                   |
| Purge: Day 2 (06/05/18) (gallons)                             | 9.5            | 10.0        | 9.5      | 8.0         | 10.0     | 8.0           | 6.0         | 6.0      | 30.0     | 9.0       | 9.0       |                   |
| Purge: Day 3 (06/06/18) (gallons)                             | 8.0            | 10.0        | 8.5      | 8.0         | 9.5      | 8.0           | 6.0         | 5.0      | 30.0     | 7.5       | 9.0       |                   |
| Purge: Day 4 (06/07/18) (gallons)                             | 8.0            | 10.0        | 8.5      | 8.0         | 9.5      | 8.0           | 6.0         | 5.0      | 15.0     | 7.0       | 10.0      |                   |
| Sample Collection (date indicated)                            | 06/07/18       | 06/07/18    | 06/07/18 | 06/07/18    | 06/07/18 | 06/07/18      | 06/07/18    | 06/07/18 | 06/07/18 | 06/07/18  | 06/07/18  |                   |
| Cumulative Volume Purged (gallons)                            | 34.0           | 40.0        | 35.5     | 32.0        | 39.0     | 33.0          | 25.0        | 22.0     | 75.0     | 30.5      | 37.0      |                   |
| Field Measurements During Sample Co.                          | llection (unit | s as shown) | 3        |             |          |               |             |          |          |           |           |                   |
| pH (units)                                                    | 11.51          | 5.17        | 4.79     | 6.14        | 5.61     | 4.57          | 5.70        | 4.65     | 3.36     | 6.05      | 6.12      | 6.5 - 8.5         |
| Temperature (deg C)                                           | 16.6           | 16.8        | 16.8     | 17.4        | 15.6     | 16.0          | 15.5        | 15.8     | 16.3     | 16.0      | 16.6      |                   |
| Specific Conductance (uS)                                     | 1,861          | 5,888       | 6,604    | 3,666       | 5,794    | 10,680        | 7,006       | 8,369    | 10,230   | 9,337     | 4,450     |                   |
| Turbidity (NTU)                                               | 42             | 38          | 34       | 104         | 65       | 80            | 133         | 144      | 109      | 158       | 107       |                   |
| Dissolved Oxygen (ppm)                                        | 0.25           | 2.18        | 1.88     | 2.07        | 2.05     | 1.61          | 2.37        | 1.73     | 1.57     | 1.03      | 1.78      |                   |
| ORP (mV)                                                      | -338           | 43          | 105      | 68          | 8        | 126           | -15         | 111      | 254      | 77        | -52       |                   |
| Visual Observation                                            | clear          | clear       | clear    | light brown | clear    | clear         | light brown | brown    | brown    | brown     | brown     |                   |
| Volatile Organic Compounds (mg/L):                            |                |             |          |             |          |               |             |          |          |           |           |                   |
| Benzene                                                       | 1.7            | 3           | 1.7      | 0.0013      | 4.1      | 4.9           | 0.0037      | 13       | 86       | 8.9       | 0.0006    | 0.001             |
| Wet Chemistry (mg/L):                                         |                |             |          |             |          |               |             |          |          |           |           |                   |
| Alkalinity                                                    | 219            | 15.3        | 2.4      | 283         | 138      | ND            | 207         | ND       | ND       | 810       | 364       |                   |

#### Notes:

- 1. Field measurements were collected immediately before groundwater sample collection.
- 2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).
- 3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "Volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to
- 4. "B" = Analyte is found in the associated blank, as well as the sample.
- 5. " D " = Analysis performed at the secondary dilution factor.
- 6. "ND" indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

#### Color Code:



## SUMMARY OF NOVEMBER 2018 ORC ANALYTICAL RESULTS 1,2,3 Area III: Former Warehouse Parcel

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

|                                                               |               |             |          |             | Mor      | nitoring Loca | ition    |             |             |           |           | GWQS <sup>2</sup> |  |
|---------------------------------------------------------------|---------------|-------------|----------|-------------|----------|---------------|----------|-------------|-------------|-----------|-----------|-------------------|--|
| Parameter                                                     | A3-ORC-1      | A3-ORC-2    | A3-ORC-3 | A3-ORC-4    | A3-ORC-5 | A3-ORC-6      | A3-ORC-7 | A3-ORC-8    | A3-ORC-9    | A3-ORC-10 | A3-ORC-11 |                   |  |
| Field Measurements During Purge (units as shown) <sup>1</sup> |               |             |          |             |          |               |          |             |             |           |           |                   |  |
| Static Depth to Water (fbTOR)                                 | 5.02          | 5.37        | 5.39     | 4.85        | 4.70     | 5.55          | 6.16     | 5.66        | 3.58        | 5.63      | 5.43      |                   |  |
| Total Depth (fbTOR)                                           | 14.08         | 14.43       | 14.38    | 14.38       | 14.03    | 14.36         | 14.36    | 14.63       | 14.03       | 14.55     | 14.57     |                   |  |
| One Casing Volume (gallons)                                   | 5.90          | 5.90        | 5.80     | 6.20        | 6.00     | 5.70          | 5.30     | 5.80        | 6.80        | 5.80      | 5.90      |                   |  |
| Number of Volumes Purged                                      | 5.8           | 6.9         | 6.2      | 5.8         | 6.7      | 5.6           | 5.1      | 3.9         | 10.3        | 5.5       | 5.2       |                   |  |
| Sample Determination <sup>3</sup>                             | 4-days        | 4-days      | 4-days   | 4-days      | 4-days   | 4-days        | 4-days   | 4-days      | volume      | 4-days    | 4-days    |                   |  |
| Purge: Day 1 (11/26/18) (gallons)                             | 8.0           | 10.0        | 9.0      | 9.0         | 10.0     | 8.0           | 6.5      | 6.0         |             | 8.0       | 7.0       |                   |  |
| Purge: Day 2 (11/27/18) (gallons)                             | 9.0           | 11.0        | 9.0      | 9.0         | 10.0     | 8.0           | 7.0      | 5.5         |             | 8.0       | 8.0       |                   |  |
| Purge: Day 3 (11/28/18) (gallons)                             | 8.5           | 10.0        | 9.0      | 9.0         | 10.0     | 8.0           | 6.5      | 5.5         | 35.0        | 8.0       | 7.5       |                   |  |
| Purge: Day 4 (11/29/18) (gallons)                             | 9.0           | 10.0        | 9.0      | 9.0         | 10.0     | 8.0           | 7.0      | 5.5         | 35.0        | 8.0       | 8.0       |                   |  |
| Sample Collection (date indicated)                            | 11/29/18      | 11/29/18    | 11/29/18 | 11/29/18    | 11/29/18 | 11/29/18      | 11/29/18 | 11/29/18    | 11/29/18    | 11/29/18  | 11/29/18  |                   |  |
| Cumulative Volume Purged (gallons)                            | 34.5          | 41.0        | 36.0     | 36.0        | 40.0     | 32.0          | 27.0     | 22.5        | 70.0        | 32.0      | 30.5      |                   |  |
| Field Measurements During Sample Col                          | lection (unit | s as shown) | 3        |             |          |               |          |             |             |           |           |                   |  |
| pH (units)                                                    | 11.61         | 5.47        | 5.01     | 6.03        | 5.80     | 4.72          | 5.58     | 5.48        | 3.33        | 6.30      | 6.27      | 6.5 - 8.5         |  |
| Temperature (deg C)                                           | 9.5           | 8.1         | 10.0     | 6.9         | 8.5      | 9.6           | 8.1      | 7.7         | 8.5         | 8.1       | 7.4       |                   |  |
| Specific Conductance (uS)                                     | 1863          | 6324        | 7499     | 3813        | 4680     | 11260         | 7669     | 7049        | 9632        | 3838      | 3802      |                   |  |
| Turbidity (NTU)                                               | 24.4          | 24.4        | 9.92     | 62.6        | 34.5     | 16.2          | 40.2     | 83          | 206         | 132       | 40.7      |                   |  |
| Dissolved Oxygen (ppm)                                        | 0.11          | 2.99        | 1.74     | 237         | 4.51     | 1.44          | 2.02     | 2.25        | 1.59        | 2.25      | 3.2       |                   |  |
| ORP (mV)                                                      | -286          | -15         | 70       | 2           | 22       | 81            | -19      | 1           | 244         | -70       | -78       |                   |  |
| Visual Observation                                            | clear         | clear       | clear    | light brown | clear    | clear         | clear    | light brown | light brown | brown     | clear     |                   |  |
| Volatile Organic Compounds (mg/L):                            |               |             |          |             |          |               |          |             |             |           |           |                   |  |
| Benzene                                                       | 1.3           | 3.2         | 2.7      | 0.00049     | 3.5      | 6.1           | 0.0044   | 10          | 95          | 0.31      | 0.00046   | 0.001             |  |
| Wet Chemistry (mg CaCO <sub>3</sub> /L):                      |               |             |          |             |          |               |          |             |             |           |           |                   |  |
| Alkalinity                                                    | 176           | 27.2        | 26.3     | 299         | 134      | ND            | 135      | 130         | ND          | 438       | 201       |                   |  |

#### Notes:

- 1. Field measurements were collected immediately before groundwater sample collection.
- 2. NYSDEC Class "GA" Groundwater Quality Standard/Guidance Value 6NYCRR Part 703 (effective June 1998).
- 3. NYSDEC requirement: purge 10 well volumes or to dryness for 4 consecutive days, then sample. "volume" indicates that 10 well volumes were purged prior to sample collection and "4-days" indicates that the well was purged to dryness 4 consecutive days prior to sample collection.
- 4. " ND " indicates parameter was not detected above laboratory reporting limit and is reported herein as not detected (ND).

#### Color Code



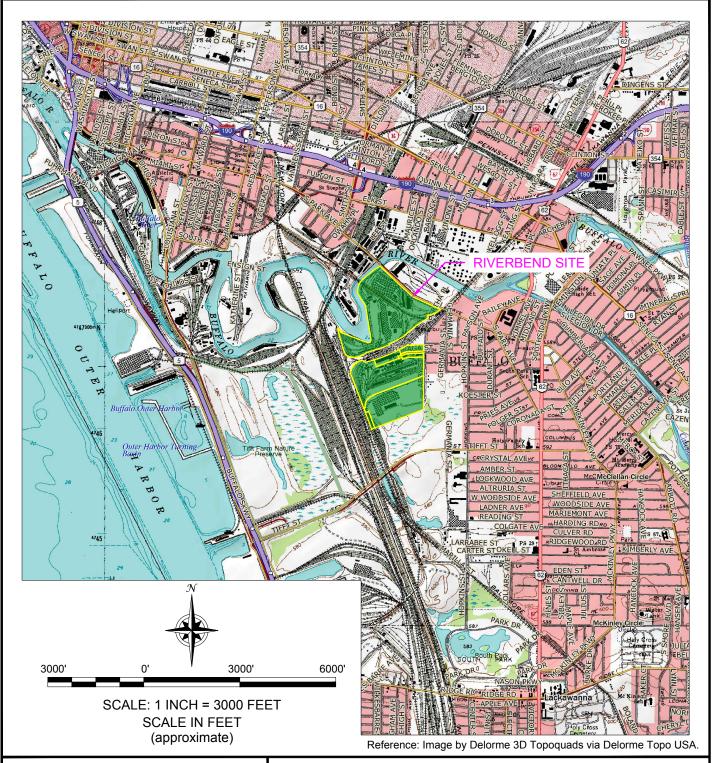
## AREA-BY-AREA MOVING AVERAGE TREND ANALYSIS (MATA) SUMMARY

## Comprehensive Groundwater Monitoring Report Riverbend Site (V00619-9) Buffalo, New York

| Location            | No. of Data Pts. | MATA<br>Pts. | [morodomy (1), doorodomy (2), node at (11)] |         |                |                      |                 |               |         |  |  |  |
|---------------------|------------------|--------------|---------------------------------------------|---------|----------------|----------------------|-----------------|---------------|---------|--|--|--|
|                     | Data Fts. Fts.   |              | рН                                          | Benzene | n-Butylbenzene | Isopropylbenzen<br>e | n-Propylbenzene | Total Arsenic | Cyanide |  |  |  |
| Area I Monitoring V | Vells            |              |                                             |         |                |                      |                 |               |         |  |  |  |
| A1-MW-1             | 15               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-2             | 14               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-3             | 14               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-5             | 16               | 13           | D                                           | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-6             | 16               | 13           | NA                                          | NA      | NA             | NA                   | D               | I             |         |  |  |  |
| A1-MW-7             | 7                | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-8R            | 3                | 0            | NA                                          | NA      | NA             | NA                   | NA              | NA            | 1       |  |  |  |
| A1-MW-9             | 15               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A1-MW-10            | 3                | 0            | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| Area II Monitoring  | Wells            |              |                                             |         |                |                      |                 |               |         |  |  |  |
| A2-MW-3             | 12               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-4R            | 12               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-5             | 12               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-10R           | 11               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-13            | 12               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-16            | 13               | 10           | N                                           | I       | NA             | NA                   | NA              | NA            |         |  |  |  |
| A2-MW-17            | 13               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            |         |  |  |  |
| Area III Monitoring | Wells            |              |                                             |         |                |                      |                 |               |         |  |  |  |
| A3-MW-3             | 10               | 7            | NA                                          | NA      | NA             | NA                   | NA              | NA            | N       |  |  |  |
| A3-MW-6             | 11               | NA           | NA                                          | NA      | NA             | NA                   | NA              | NA            | NA      |  |  |  |
| A3-MW-7             | 13               | 10           | N                                           | D       | NA             | NA                   | NA              | NA            | N       |  |  |  |
| A3-MW-9             | 12               | 9            | D                                           | D       | NA             | NA                   | NA              | NA            | NA      |  |  |  |
| A3-MW-10            | 12               | 9            | N                                           | D       | NA             | NA                   | NA              | NA            | NA      |  |  |  |

#### Notes

- 1. In general accordance with the LTGWM Plan for each Area and based upon the groundwater results to date any parameter exceeding the groundwater quality standard for two (2) consecutive
- 2. " -- " = not analyzed for this parameter.
- 3. NA = indicates there have not been two consecutive exceedances of the GWQS/GV at this location and trending is "not applicable".


#### Color Code:

= Concentration versus time and 4-event moving average plots are provided in Attachment 2.

# **FIGURES**



## FIGURE 1





2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

PROJECT NO.: 0322-016-500

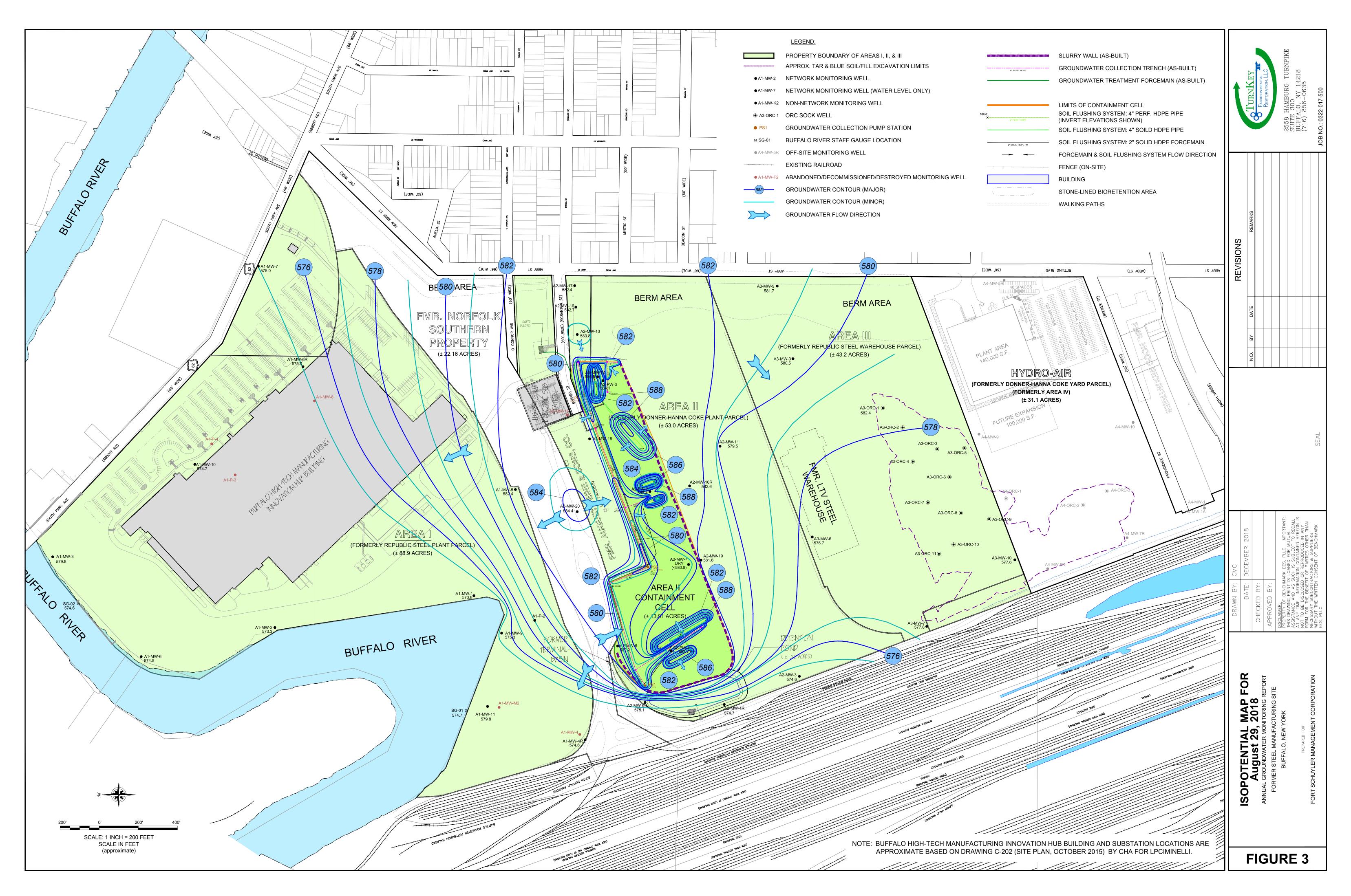
DATE: MARCH 2018

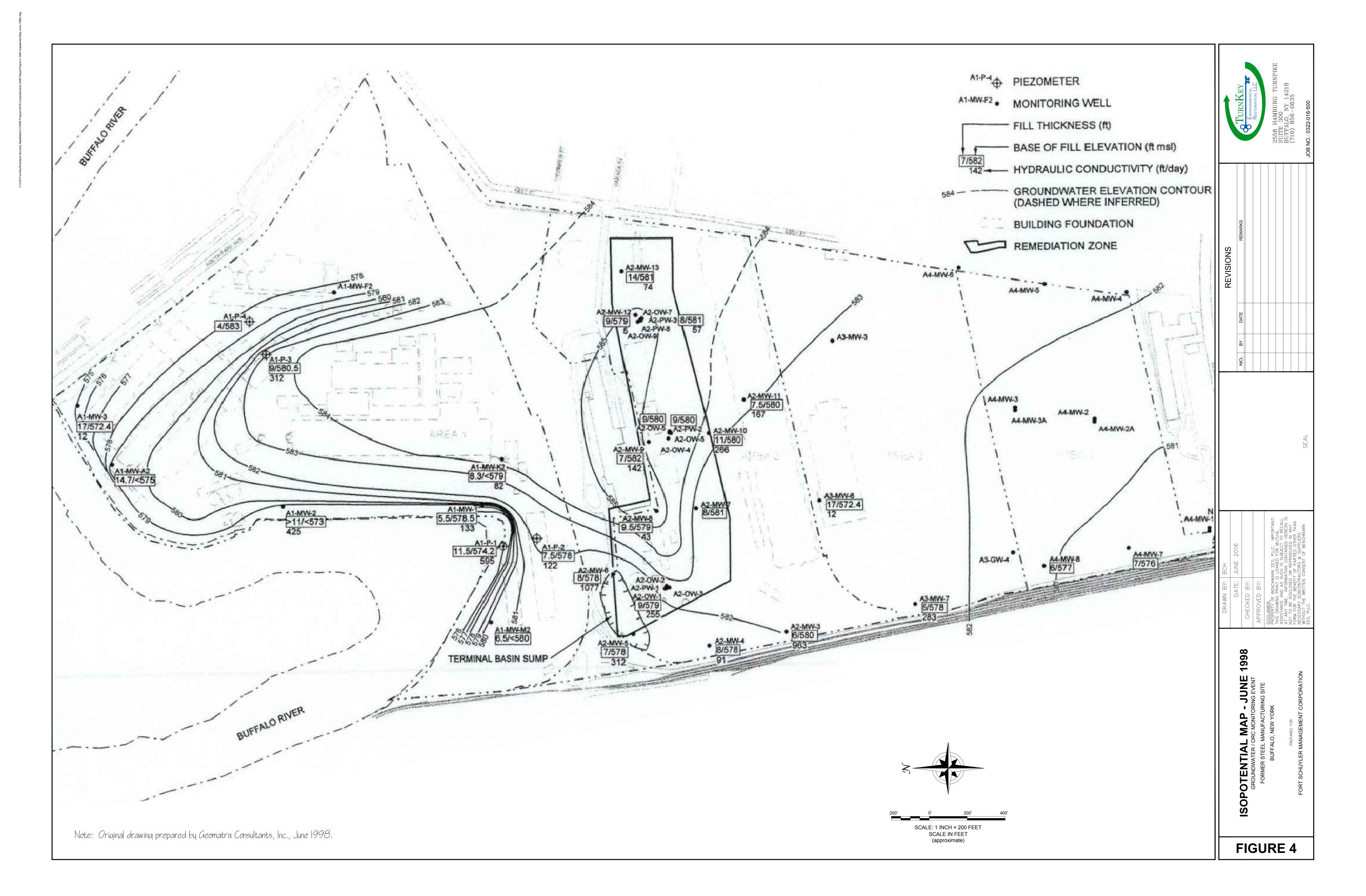
DRAFTED BY: BCH-CMC

## SITE VICINITY & LOCATION MAP

ANNUAL GROUNDWATER MONITORING REPORT

RIVERBEND SITE BUFFALO, NEW YORK

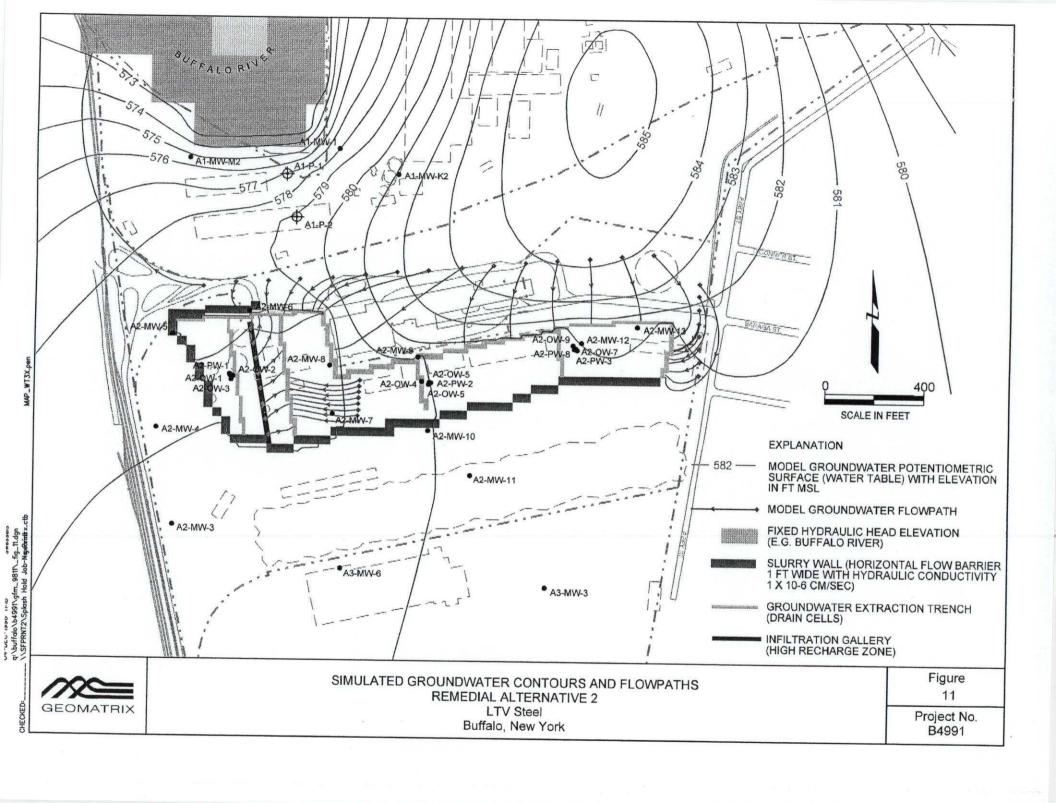

PREPARED FOR


FORT SCHUYLER MANAGEMENT CORPORATION

#### DISCLAIMER

PROPERTY OF TURNKEY ENVIRONMENTAL RESTORATION, LLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF TURNKEY ENVIRONMENTAL RESTORATION, LLC.

F:CAD\TurnKey\Riverbend (farmerly Steelfields)\LTGWM Program\2017 Comprehensive GWM Report\Figure 2; Site Pl






# **ATTACHMENT 1**

GROUNDWATER FLOW MODEL (GEOMATRIX, DECEMBER 1998)

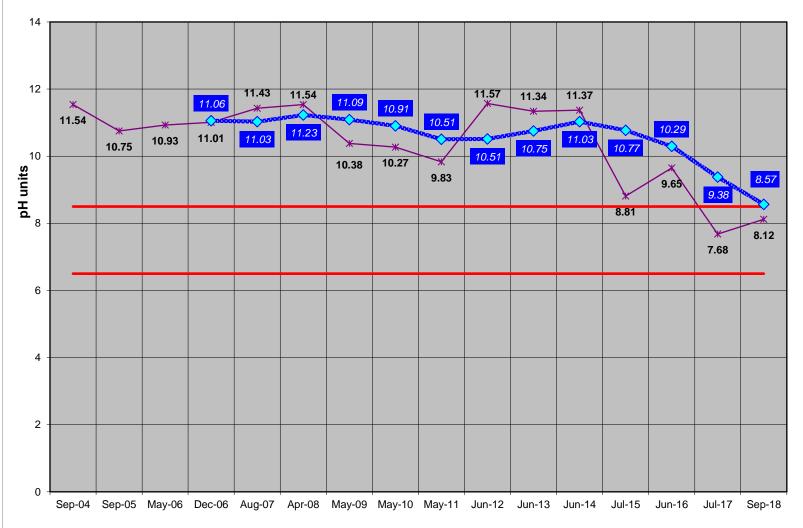


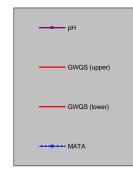


CONCENTRATION VERSUS TIME &
MOVING AVERAGE TREND ANALYSIS (MATA)
PLOTS



# **ATTACHMENT 2A**


 $\mathbf{P}\mathbf{H}$ 

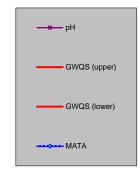





### MOVING AVERAGE TREND ANALYSIS A1-MW-5 pH

### Riverbend Area I LTGWM Buffalo, New York

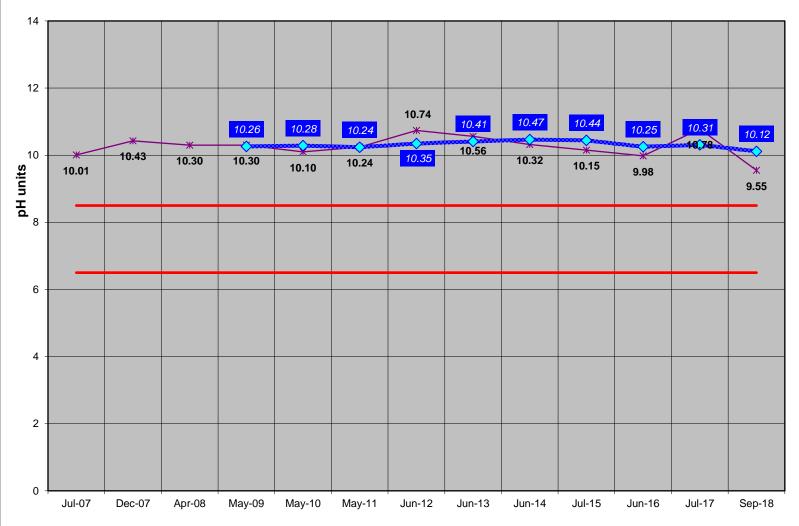


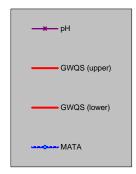




### **Sample Collection Date**



# MOVING AVERAGE TREND ANALYSIS A2-MW-16 pH



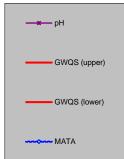




**Sample Collection Date** 



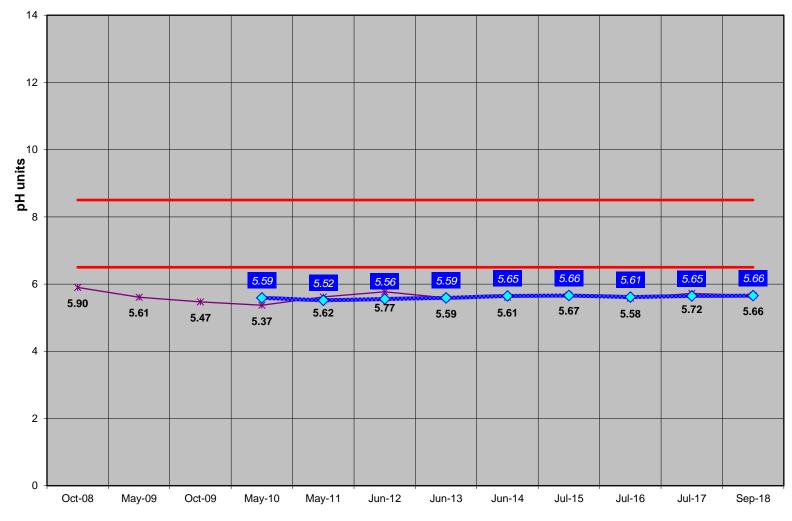
# MOVING AVERAGE TREND ANALYSIS A3-MW-7 pH

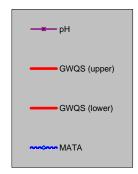



**Sample Collection Date** 




# MOVING AVERAGE TREND ANALYSIS A3-MW-9 pH





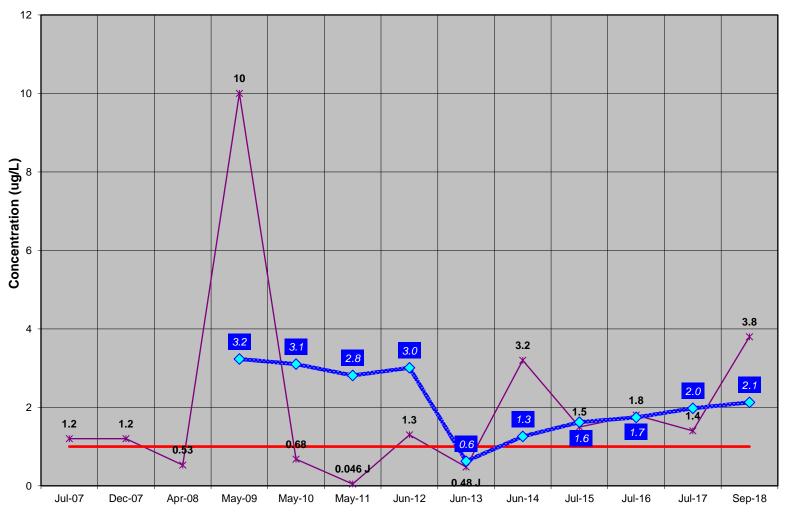


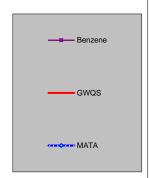

# MOVING AVERAGE TREND ANALYSIS A3-MW-10 pH





**Sample Collection Date** 


# **ATTACHMENT 2B**

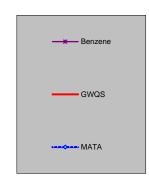

**BENZENE** 





### MOVING AVERAGE TREND ANALYSIS A2-MW-16 BENZENE



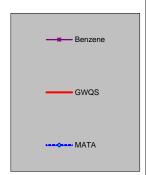



**Sample Collection Date** 



# MOVING AVERAGE TREND ANALYSIS A3-MW-7 BENZENE



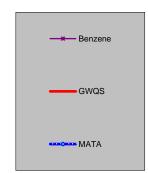



**Sample Collection Date** 



# MOVING AVERAGE TREND ANALYSIS A3-MW-9 BENZENE






**Sample Collection Date** 



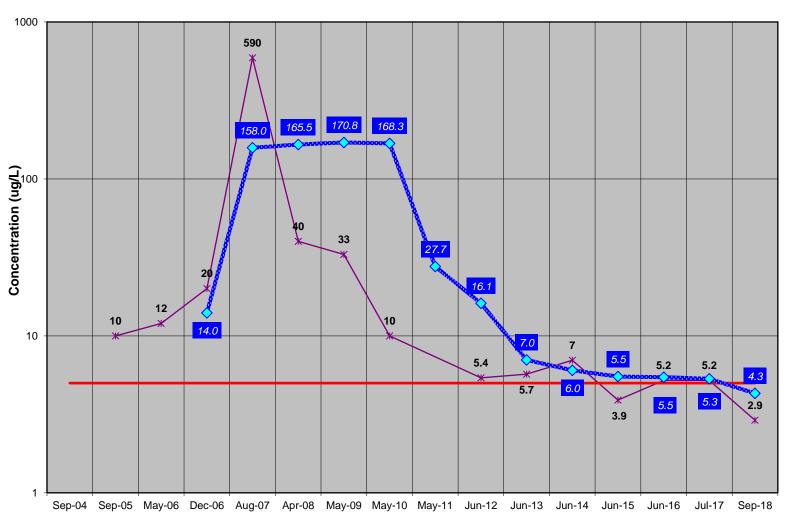
# MOVING AVERAGE TREND ANALYSIS A3-MW-10 BENZENE

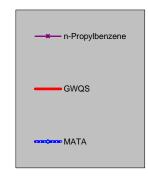




**Sample Collection Date** 

# **ATTACHMENT 2C**


**N-PROPYLBENZENE** 






# MOVING AVERAGE TREND ANALYSIS A1-MW-6 n-PROPYLBENZENE

### Riverbend Area I LTGWM Buffalo, New York

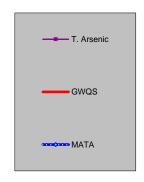




**Sample Collection Date** 

## **ATTACHMENT 2D**

TOTAL ARSENIC





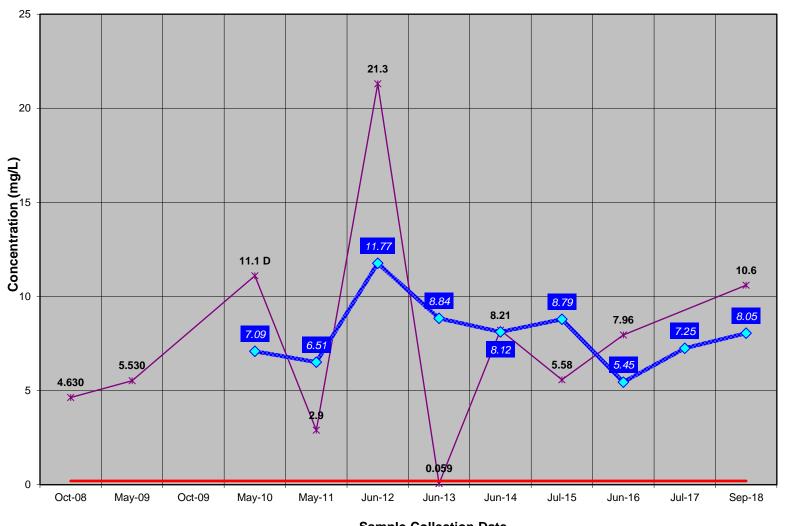

# MOVING AVERAGE TREND ANALYSIS A1-MW-6 TOTAL ARSENIC

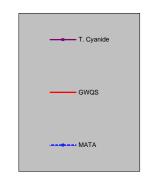
### Riverbend Area I LTGWM Buffalo, New York





### **Sample Collection Date**

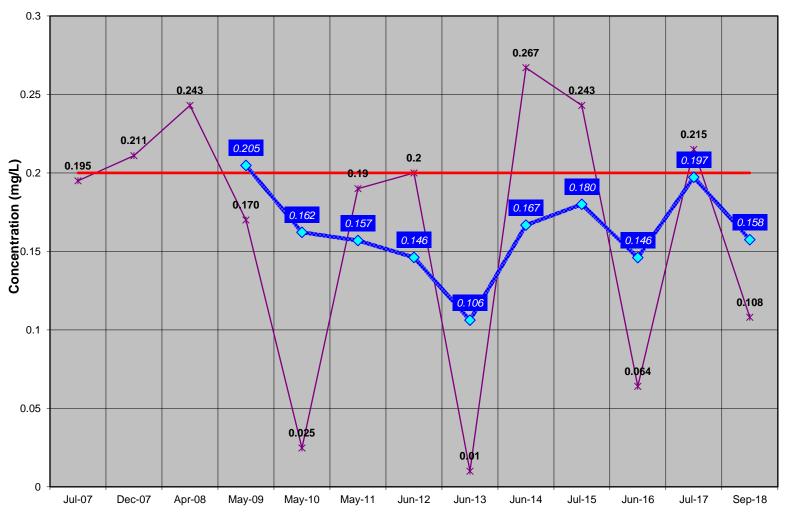

## **ATTACHMENT 2E**

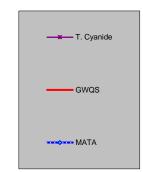

TOTAL CYANIDE





### **MOVING AVERAGE TREND ANALYSIS** A3-MW-3 **TOTAL CYANIDE**




**Sample Collection Date** 



# MOVING AVERAGE TREND ANALYSIS A3-MW-7 TOTAL CYANIDE





**Sample Collection Date** 

## **APPENDIX D**

### **AREA III**

ORC ANNUAL INSPECTION FORMS
JUNE & DECEMBER





| Project Name: RiverBend Sit                   | ాం గ్రామం<br>Project No.: 0322-0 <del>17-50</del> 0 |                    |                  |             |                   |           |
|-----------------------------------------------|-----------------------------------------------------|--------------------|------------------|-------------|-------------------|-----------|
| Project Location: Area III                    |                                                     |                    | Client:          | FSMC        |                   |           |
| Preparer's Name: Chester                      | Hochreiter                                          |                    | Date/Time        | e:          |                   |           |
| sample location:                              | A3-ORC-1                                            | A3-ORC-2           | A3-ORC-3         | A3-ORC-4    | A3-ORC-5          | A3-ORC-6  |
| purge start date:                             | 6-4-18                                              | 6-4-18             | 6-4-18           | 6-4-18      | 6-4-18            | 6-4-18    |
| purge end date:                               | 6-7-18                                              | 6-7-18             | 6-7-18           | 6-7-18      | 6-7-18            | 6-7-18    |
| volume purged (gallons):                      | 34.00                                               | 40.00              | 35.50            | 32.00       | 39.00             | 33.00     |
| Field groundwater qua                         | lity measuren                                       | nents:             |                  |             |                   |           |
| sample date:                                  | 6-7-18                                              | 6-7-18             | 6-7-18           | 6-7-18      | 6-7-18            | 6-7-18    |
| sample time:                                  | 1640                                                | 1700               | 1600             | 1620        | 1540              | 1520      |
| DTW (fbTOR)                                   | 4.66                                                | 4.75               | 4.81             | 4.22        | 5.14              | 4.95      |
| pH (units)                                    | 11.51                                               | 5.17               | 4.79             | 6.14        | 5.61              | 4.57      |
| Temp. (deg F)                                 | 16.6                                                | 16.8               | 16.8             | 17.4        | 15.6              | 16.0      |
| SC (uS)                                       | 1861                                                | 5888               | 6604             | 3666        | 5794              |           |
| Turbidity (NTU)                               | 42                                                  | 38                 | 34               | 104         | 65                | 10.68 m   |
| DO (ppm)                                      | 0.25                                                | 2.18               | 1.88             | 2.07        |                   | <u>80</u> |
| ORP (mV)                                      | ~ 338                                               | 43                 | 10.5             | - 68        | <u> 2.05</u><br>8 | 126       |
| Well Integrity Observa                        | tions:                                              |                    |                  |             |                   |           |
| Cement seal                                   | 900d                                                | good               | good             | cond        | and               | and       |
| Pro-Casing condition                          | good                                                | good               | good             | 9000        | -900g             | good      |
| Lock condition                                | good                                                | god                | good.            | 9000        | good              | 9000      |
| J-plug condition                              | good                                                | good               | 9000             | good        | 900d              | good      |
| Refer to Site Plan for well I                 | ocations                                            |                    | 65               |             |                   |           |
| ORC Sock's:                                   |                                                     |                    |                  |             |                   |           |
| Have any Socks been repla                     | aced?                                               | yes                | 🔀 n              | 0           |                   |           |
| If replaced, provide date ar                  | nd explanation:                                     |                    |                  |             |                   |           |
|                                               |                                                     |                    |                  |             |                   |           |
| Are socks fully submerged                     | in well screens.                                    |                    | X yes            | no no       |                   |           |
| If no, explain.                               |                                                     |                    |                  |             |                   |           |
|                                               |                                                     |                    |                  |             | 11                |           |
| Are all ORC wells being sa<br>If no, explain. | mpled and mainta                                    | nined according to | o the site manag | ement plan  | 🔀 yes             | □ no      |
| ii iio, oxpiaiii.                             |                                                     |                    |                  |             |                   |           |
|                                               |                                                     |                    |                  |             |                   |           |
|                                               |                                                     |                    |                  |             |                   |           |
| nitial: CEH                                   |                                                     |                    |                  | Date: 6 - 7 | z -2018           |           |



-018-501 Project Name: RiverBend Site - LTGWM Project No.: 0322-016-500 **Project Location:** Area III Client: **FSMC** Preparer's Name: Chester Hochreiter Date/Time: sample location: A3-ORC-7 **A3-ORC-8** A3-ORC-9 A3-ORC-10 A3-ORC-11 purge start date: 6-4-18 6-4-18 6-35-18 6-4-18 6-4-18 purge end date: 6-7-18 6-7-18 6-7-18 6-7-18 6-7-18 volume purged (gallons): 25.00 75.00 29.00 30.50 37.00 Field groundwater quality measurements: sample date: 6-7-18 6-7-18 6-7-18 6-7-18 6-7-18 sample time: 1440 1500 1720 1400 1420 DTW (fbTOR) 5.75 5.78 3.39 5.66 5.36 pH (units) 3.36 5. 70 4.65 6.05 6.12 Temp. (deg F) 16.3 15.5 15.8 16.0 16.6 SC (uS) 8369 10.23 ms 9337 7006 4450 Turbidity (NTU) 144 109 158 133 107 DO (ppm) a.37 1.57 1.03 1.73 1.78 ORP (mV) -15 11.1 254 - 77 Well Integrity Observations: Cement seal 9000 900 9000 9000 Pro-Casing condition 5000 900 9000 OCX Lock condition 9000 900 9000 J-plug condition 0000 900 Refer to Site Plan for well locations **ORC Sock's:** Have any Socks been replaced? yes X no If no, explain. Are socks fully submerged in well screens. 🔀 yes ☐ no If no explain why. Are all ORC wells being sampled and maintained according to the site management plan **x** yes no no If no, explain. Initial: CEH Date: 6-7-2018



| Project Name: RiverBend Site   | e - LTGWM        | Project No.: 0322-017-500  Client: FSMC |                   |             |                        |          |  |  |
|--------------------------------|------------------|-----------------------------------------|-------------------|-------------|------------------------|----------|--|--|
| Project Location: Area III     |                  |                                         |                   |             |                        |          |  |  |
| Preparer's Name: Chester H     | lochreiter       |                                         | Date/Time         | e: 11-29-18 |                        |          |  |  |
| sample location:               | A3-ORC-1         | A3-ORC-2                                | A3-ORC-3          | A3-ORC-4    | A3-ORC-5               | A3-ORC-6 |  |  |
| purge start date:              | 11-26-18         | 11-26-18                                | 11-26-18          | 11-26-18    | 11-26-18               | 11-26-18 |  |  |
| purge end date:                | 11-29-18         | 11-29-18                                | 11-29-18          | 11-99-18    | 11-29-18               | 11-29-18 |  |  |
| volume purged (gallons):       | 34.5             | 41                                      | 36                | 36          | 40                     | 32       |  |  |
| Field groundwater qua          | lity measuren    | nents:                                  |                   |             |                        |          |  |  |
| sample date:                   | 11-29-18         | 11-29-18                                | 11-29-18          | 11-29-18    | 11-29-18               | 11-29-18 |  |  |
| sample time:                   | 1530             | 1545                                    | 1500              | 1515        | 1445                   | 1430     |  |  |
| DTW (fbTOR)                    | 4,57             | 4 92                                    | 5.00              | 4.52        | 4,53                   | 5, 37    |  |  |
| pH (units)                     | 11.61            | 5.47                                    | 5.01              | 6.03        | 5.80                   | 4.72     |  |  |
| Temp. (deg F)                  | 9.5              | 8.1                                     | 10.00             | 6.9         | 8,5                    | 9.6      |  |  |
| SC (uS)                        | 1863             | 6324                                    | 7499              | 3813        | 4680                   | 11.26 ms |  |  |
| Turbidity (NTU)                | 24.4             | 24.4                                    | 9.92              | 62.6        | _768 <i>0</i><br>_34.5 | 16.2     |  |  |
| DO (ppm)                       | 0.11             | 2.99                                    | 1,74              | 23.7        | 4.51                   |          |  |  |
| ORP (mV)                       | -286             | ~15                                     | 70                | 2<br>       |                        | 81       |  |  |
| Well Integrity Observat        | tions:           |                                         |                   |             |                        |          |  |  |
| Cement seal                    | good             | good                                    | _good_            | good        | good                   | good     |  |  |
| Pro-Casing condition           | _good            | god                                     | good              | good        | good                   | good     |  |  |
| Lock condition                 | good             | good                                    | good              | good        | good                   | - PCL    |  |  |
| J-plug condition               | good             | good                                    | good              | goal        | good                   | good     |  |  |
| Refer to Site Plan for well le | ocations         |                                         |                   |             |                        |          |  |  |
| ORC Sock's:                    |                  |                                         |                   |             |                        |          |  |  |
| Have any Socks been repla      | aced?            | ☐ yes                                   | <b>汉</b>   no     | )           |                        |          |  |  |
| If replaced, provide date ar   |                  | <u></u>                                 | <u> </u>          |             |                        |          |  |  |
|                                |                  |                                         |                   |             |                        |          |  |  |
|                                |                  |                                         |                   |             |                        |          |  |  |
| Are socks fully submerged      | in well screens. |                                         | 🗵 yes             | ☐ no        |                        |          |  |  |
| If no, explain.                |                  |                                         |                   |             |                        |          |  |  |
| -                              |                  |                                         |                   |             |                        |          |  |  |
|                                |                  |                                         |                   |             |                        |          |  |  |
| Are all ORC wells being sa     | mpled and mainta | ained according to                      | o the site manage | ement plan  | 🔀 yes                  | □ no     |  |  |
| If no, explain.                |                  |                                         |                   |             |                        |          |  |  |
|                                |                  |                                         |                   |             |                        |          |  |  |
| -                              |                  |                                         |                   |             |                        |          |  |  |
|                                |                  |                                         |                   |             |                        |          |  |  |
| nitial: ८೯೫                    |                  |                                         |                   | Date: 11-20 | 1-18                   |          |  |  |



| Project Name: RiverBend Site               | Project No.: 0322-016-500  Client: FSMC |                     |                  |            |             |      |  |
|--------------------------------------------|-----------------------------------------|---------------------|------------------|------------|-------------|------|--|
| Project Location: Area III                 |                                         |                     |                  |            |             |      |  |
| Preparer's Name: Chester H                 | abreiter                                | Date/Time: 11-29-18 |                  |            |             |      |  |
| sample location:                           | A3-ORC-7                                | A3-ORC-8            | A3-ORC-9         | A3-ORC-10  | A3-ORC-11   |      |  |
| purge start date:                          | 11-26-18                                | 11-26-18            | 11-28-18         | 11-26-18   | 11-26-18    |      |  |
| purge end date:                            | 11-29-18                                | 11-29-18            | 11-29-18         | 11-29-18   | 11-29-18    |      |  |
| volume purged (gallons):                   | 27                                      | 22.5                | 70               | 32         |             |      |  |
| Field groundwater qua                      | lity measuren                           | nents:              |                  |            |             |      |  |
| sample date:                               | 11-29-18                                | 11-29-18            | 11-29-18         | _11-29-18_ | 11-29-18    |      |  |
| sample time:                               | 1460                                    | 1415                | 1600             | 1330       | 1345        |      |  |
| DTW (fbTOR)                                | 6.02                                    | 5.82                | 3,18             | 5.44       | 5.14        |      |  |
| pH (units)                                 | 5.58                                    | 5.48                | 3.33             | 6.30       | 6.27        |      |  |
| Temp. (deg F)                              | 8.1                                     | 7.7                 | 8.5              | 8.1        | 7.4         |      |  |
| SC (uS)                                    | 7669                                    | 7049                | 9632             | 3838       | 3802        |      |  |
| Turbidity (NTU)                            | 40,2                                    | 83                  | 206              | 132        | <u>40.7</u> | **   |  |
| DO (ppm)                                   | 2-02                                    | <br>_a,as           | 1.59             | a.a5       | 3,20        |      |  |
| ORP (mV)                                   | -19                                     | _0,05               | 244              | -70        | - 78        |      |  |
| Well Integrity Observat                    | tions:                                  |                     |                  |            |             |      |  |
| Cement seal                                | goal                                    | good                | good             | good       | _good_      |      |  |
| Pro-Casing condition                       | good                                    | good                |                  | good       | good        |      |  |
| Lock condition                             | good                                    | good                | _good_           | good       | good        |      |  |
| J-plug condition                           | good                                    | good                | good             | good       | good        |      |  |
| Refer to Site Plan for well lo             | ocations                                | 6636                |                  |            |             |      |  |
| ORC Sock's:                                |                                         |                     |                  |            |             |      |  |
| Have any Socks been repla                  | aced?                                   | yes                 | [X] no           | 0          |             |      |  |
| If no, explain.                            |                                         |                     |                  |            |             |      |  |
|                                            |                                         |                     |                  |            |             |      |  |
| Are socks fully submerged in well screens. |                                         |                     | ☑ yes            | no         | _           |      |  |
| If no explain why.                         |                                         |                     |                  |            |             |      |  |
|                                            |                                         |                     |                  |            |             |      |  |
| Are all ORC wells being sa                 | mpled and mainta                        | ained according t   | o the site manag | ement plan |             | □ no |  |
| If no, explain.                            | •                                       |                     |                  | •          |             |      |  |
|                                            |                                         |                     |                  |            |             |      |  |
|                                            |                                         |                     |                  |            |             |      |  |
|                                            |                                         |                     |                  |            |             |      |  |
| nitial: CEH Date: 11-29-18                 |                                         |                     |                  |            |             |      |  |

## **APPENDIX E**

SITE PHOTOGRAPH LOG



### Photo 1:



Photo 2:



Photo 3:



Photo 4:



Photo 1: Area I – looking north, east side of Tesla building

Photo 2: Area I – looking west, vegetated river buffer

Photo 3: Area I – looking west northwest, storm sewer outfall

Photo 4: Area I – looking southwest at riprap cover along north building face

### Photo 5:



Photo 6:



Photo 7:



Photo 8:



Photo 5: Area I – looking south, river embankment along fence

Photo 6: Area I – looking northeast, west side of Tesla building

Photo 7: Area I – looking southeast, west side of Tesla building

Photo 8: Area I – looking east, west side of Tesla building with cover and river in forefront

#### Photo 9:



Photo 10:



Photo 11:



Photo 12:



Photo 9: Area I –looking east, western portion of Area I at variance slag reuse area with west side of Tesla

building in background

Photo 10: Area II – looking north at south side of Tesla building

Photo 11: Area I – looking north at riprap on south side of Tesla building

Photo 12: Area I – looking west at south side of Tesla building



### Photo 13:



Photo 14:



Photo 15:



Photo 16:



Photo 13: Area II – looking northwest, pretreatment building

Photo 14: Area II – looking east, pretreatment building control panel

Photo 15: Area II – looking southwest, pretreatment building system

Photo 16: Area II – pretreatment system maintenance log

### Photo 17:



Photo 18:



Photo 19:



Photo 20:



Photo 17: Area II – looking north, Abby St Berm near O'Connor

Photo 18: Area II – looking east, east half of Area II cover

Photo 19: Area II – looking northwest, west half of Area II cover

Photo 20: Area II – looking east, south slope of Area II cover

### Photo 21:





Photo 22:



Photo 24:



Photo 21: Area II – looking northwest, pump station PS-1 with area of filled in terminal basin beyond the gate

Photo 22: Area II – looking north, west side of Area II cover and containment cell detention pond (dry)

Photo 23: Area II – looking south, west side of Area II

Photo 24: Area II – looking north west at electric substation for the Tesla building

### Photo 25:



Photo 26:



Photo 27:



Photo 28:



Photo 25: Area III – looking east, showing Area III and perimeter fence

Photo 26: Area III – looking northeast, showing north side of Area III

Photo 27: Area III – looking southeast, showing middle of Area III with Area IV in background

Photo 28: Area III – looking west, showing north half of Area III