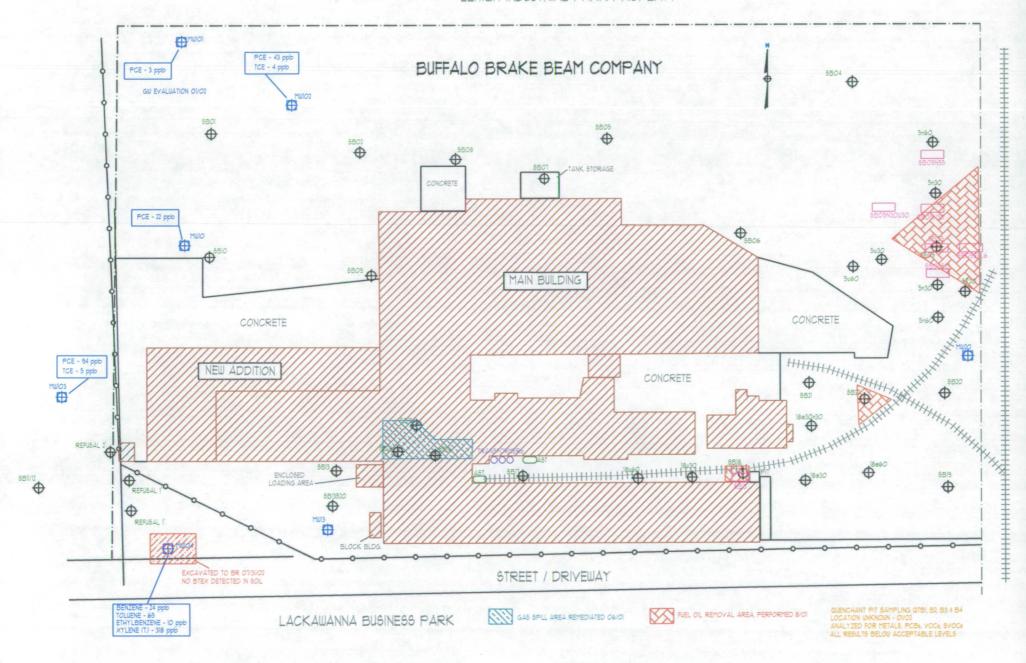
The electronic version of this file/report should have the file name:

Type of document . Site Numb	er . Year-M	Ionth . File <i>Year-Year</i> or Rep	oort name . pdf
letter	C	orrespondenceFile	pdf
example: letter . Site Number .	Year-Mont	h . CorrespondanceFileYear	r-Year . pdf
report. <u>v 00625 . 2</u>	2001-01	. Site Data-Rem	ed Activities
example: report . Site Number			
if a non-foilable site: add ".nf.	pdf'' at end	of file name	

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C


Summary of Site Data & Remedial Activities

BUFFALO BRAKE BEAM Rigel Enterprises Site

Voluntary Clean-Up

Lackawanna (C), Eire County

LEHIGH INDUSTRIAL PARK PROPERTY

RIGEL ENTERPRISES, INC. ENVIRONMENTAL REMEDIATION WORK PLAN January 23, 2001

Project #1 "Chlorinated Solvents"

- Sterling Environmental Services will take several samples of the ground water at sample point MW10 to confirm the presence of Hazardous Materials, including chlorinated solvents.
- If Sterling's samples are found to be within NYS DEC acceptable limits a letter confirming this will be obtained from the NYS DEC and no further work will be performed.
- If Hazardous Materials, including chlorinated solvents are confirmed to be present in the ground water at levels exceeding the NYS DEC limits. Sterling Environmental will:
 - O Determine ground water flow directions and potential off-site migration paths.
 - o Identify receptors.
 - Attempt to identify off-site sources of contamination and responsible parties.
 - o Work with NYS DEC and identified responsible parties for off-site sources of contamination to develop a plan to remediate the site.

Project #2 "Fuel-Oil Spill"

- Reference is made to the attached letter dated January 24, 2001 from Sterling Environmental Services, Inc. that addresses this issue in greater detail. Specific reference is made to revised NYSDEC method for determining cleanup objectives for petroleum
 - SB5, SB18, SB20 and SB21 were identified in the base line report as requiring clean up based upon the STARS guidance. Under the new DEC guidance, TAGM 4046, all previously identified constituents are below the levels requiring remediation. Therefore no remediation will be performed on these sites.
 - SB22 has two (2) constituents exceeding TAGM 4046 values and will be remediated by excavating an area radiating out laterally ten (10) feet to a depth of five feet. The actual final excavation will be determined in the field by observation and PID screening. When field screening indicates a "clean" condition, soil samples will be taken from the sidewalls and the bottom and will be tested for all constituents found in this area by the base line study. Both the NYS DEC and Power Brace Corporation will be notified in advance of this work to allow for independent observation and testing. If the samples come back within the NYS DEC TAGM 4046 limits the excavated area will be back filled.

- Reference is made to the attached letter dated January 24, 2001 from Sterling Environmental Services, Inc. that addresses this issue in greater detail.
 - The "groundwater" identified in the "Baseline Report" was actual found above grade and most likely is not ground water.
 - This water will be pumped and removed.
 - The concrete floor around SB14 and SB16 will be removed and the area excavated to the foundation walls to the South and the East and thirty (30) feet to the North and fifty (50) feet to the West all to a depth of twelve (12) feet. The actual final excavation will be determined in the field by observation and PID screening. When field screening indicates a "clean" condition, soil samples will be taken from the sidewalls and the bottom and will be tested for all constituents found in this area by the base line study. Both the NYS DEC and Power Brace Corporation will be notified in advance of this work to allow for independent observation and testing. If the samples come back within the NYS DEC STARS limits the excavated area will be back filled and resurfaced with concrete.
 - This excavation will require that Power Brace Corporation allow access to this area. Power may have to be cut to the shipping area for several days. We don't believe that there will be a significant disruption in your operations since there are alternative shipping and receiving locations in the facility and there should be no disruptions in the new production facility.
 - The ground water to the South of SB14 and SB16 will be tested.

Project #4 "Quenchent Pit"

- Based upon Power Brace Corporation providing access to this facility we will utilize Power Brace Corporation personnel to drain the tank. Sterling Environmental Services, Inc. will inspect and test the pit for leaks.
 - o If no evidence of leaks is found, no further work will be performed.
 - o If evidence of leaks are found the pit liner will be removed and soil and water samples will be taken to determine if any Hazardous Materials are present that exceed the NYS DEC levels. If so they will be remediated based on a plan developed after tests are received.
 - After remediation, if any, the liner will be reinstalled and repaired as appropriate.

Project # 5 "Ground Water Monitoring"

- All "dry wells" as outlined in the "Base Line" report will be filled and considered closed with no further work required.
- The wells that were tested in the "Base Line" report and any additional wells installed as part of Project One (1) through four (4) will be tested on a quarterly basis for only those constituents that were found in the "Base Line" report that exceeded NYS DEC acceptable levels. If after 4 consecutive "clean" tests this project will be considered closed.

STERLING ENVIRONMENTAL SERVICES, INC.

January 24, 2001

Richard Adams
Buffalo Brake Beam Co.
400 Ingham Ave
Lackawanna, NY 14213

Dear Richard:

I have reviewed the Baseline Environmental Site Assessment prepared by Earth Tech, Inc in December 2000 for the Ingham Ave. property as well as the supporting documents you provided. Based upon the soil sample, analysis there are two areas that require remediation. The two areas requiring remediation are based on sample points SB22 and the two adjacent points SB14 and 16.

Please note that effective December 20, 2000 the NYSDEC dropped the use of the STARS guidance values for the purpose determining cleanup objectives at petroleum contaminated sites. The DEC is now using TAGM 4046 and a supplemental table as the basis for the cleanup objectives. I have attached a copy of the correspondence from the state, the supporting memorandum and applicable tables. The full text of TAGM 4046 can be found on the DEC website.

The site assessment was completed using the STARS guidance values as the cleanup objectives. I have compared the analytical results from the site assessment to the new cleanup objectives from TAGM 4046. Several of the sample points that were identified in the site assessment as requiring action are below the new cleanup objectives for all constituents and with not require remediation. These points are SB05, SB18, SB20 and SB21.

Sample point SB22 showed two constituents, as totals, above the TAGM 4046 recommended soil cleanup objectives at the 0 to 4 foot depth interval. These are Benzo(a)anthracene at 0.620 ppm and Chrysene at 0.820 ppm.

Sample points SB14 and SB16 are adjacent to one another beneath the floor inside the building. Both showed significant evidence of gasoline contamination and exceed the soil cleanup objectives for various constituents. A "ground water"

1372 CLINTON STREET • BUFFALO, NEW YORK 14206 • PHONE (716) 824-2407 • FAX (716) 824-2441

sample from SB14 indicates possible ground water impact. The shallow depth of this sample, 1.5 feet, compared to a water table at 8 to 13 feet depth elsewhere on site indicates that this is perched water below the building floor and not actual ground water.

My recommendation is to perform limited soil removals at each of the two areas discussed above in an effort to obtain a closed status. It is impossible to accurately estimate the volume that will need to be removed from the data available. Since a point source for the contamination has not been determined the identified sample points are not necessarily the center of the proposed excavations.

The following is a proposal of possible area limits as a starting point for excavation. The actual limits of excavation will be determined in the field by observation and PID screening. Please note the actual limits of excavation may vary significantly from the proposed limits and building structures may limit complete removal in the area of SB14 and 16.

The proposed excavation limits for SB22 is an area starting at SB22 radiating out laterally 10 feet to a depth of approximately 5 feet.

The proposed excavation limits for the SB14 and 16 area are foundation walls to the North, South and West extending approximately 30 feet to the East to a depth of 12 feet. It appears that perched water may be encountered in this excavation and need to be removed and containerized for disposal.

Once the excavation is complete, discreet samples will be collected from the bottom and each of the four sidewalls. The samples will be submitted for lab analysis, as totals, for the STARS list of primary fuel oil components of concern, EPA Method 8021 and 8270. The sample results will then be compared to the TAGM 4046 recommended soil cleanup objectives. In the event that a sample fails to meet the cleanup objectives, additional excavation and resampling will be performed.

If you have any questions on this proposal or wish to discuss it further please feel free to call.

Sincerely,

Wayne K. Cameron

STERLING

ENVIRONMENTAL SERVICES

DATE: 1/24/01	
RECIPIENT FAX #: 853-2109	
TO: Richard Adams	
FROM: Wayne Cameron	
TOTAL NUMBER OF PAGES 12 (INCLUDING COVER SHEET)	

TOTAL NUMBER OF PAGES 12 (INCLUDING COVER SHEET)

COMMENTS:

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 9

270 Michigan Avenue, Buffalo, New York, 14203-2999

Phone: (716) 851-7220 • FAX: (716) 851-7226

Website: www.dec.state.ny.us

January 11, 2001

Dear Sir of Madam:

Determination of Soil Cleanup Levels

In an effort to provide greater consistency between programs within the NYSDEC Division of Environmental Remediation (DER), a directive has been issued (enclosed) requiring use of NYSDEC TAGM 4046 for determination of soil cleanup levels at all sites under DER's purview. The contents of TAGM 4046 can be found on the NYSDEC Website at www.dec.state.ny.us.

Please note that use of TAGM 4046 requires that soil samples be analyzed for the total concentration of analytes and that analysis of a TCLP extraction will not provide the necessary information. Please insure that any future soil analysis conforms to the above requirements.

Sincerely,

Peter J. Buechi, P.E.

Regional Environmental Remediation

REA Breedin

Engineer

/sz

Enclosure

cc: Mr. Robert Leary
Spills Unit

New York State Department of Environmental Conservation Division of Environmental Remediation MEMORANDUM

-PJB (C)

TO:

Bureau Directors, Regional Spill Engineers, Regional Hazardous Waste

Remediation Engineers, Section Chiefs

FROM:

Michael J O'Toole, Jr., Director

SUBJECT:

Determination of Soil Cleanup Levels

DATE:

DEC 20 200

Since the Divisions of Hazardous Waste Remediation and Spills Management were combined, efforts have been underway to consolidate similar activities. One such effort (s the determination of soil cleanup. Existing documents included TAGM 4046: Determination of Soil Cleanup Objectives and Levels, and STARS Memo #1: Petroleum-Contaminated Soil Guidance Policy. TAGM 4046 was designed as guidance for the determination of soil cleanup levels at Inactive Hazardous Waste Sites. STARS #1 was designed to determine when petroleum contaminated soil can be released from regulation but has been used to determine soil cleanup levels. While a direct comparison of the guidance values is not possible for the contaminants included in both documents. (one uses total concentration while the other is leachate based), the values are not the same. This has lead to much confusion as well as some criticism of not being consistent across the program. A revised guidance document for the determination of soil cleanup at all contaminated sites is being developed. However, until that document is finalized and completes the process for approval of Departmental Policy, TAGM 4046 is to be used for the determination of soil cleanup levels at all sites that are under this Divisions' purview. The tables contained in STARS #1 will continue to be used for its intended purpose: "To provide direction on the handling, disposal, and/or reuse of nonhazardous petroleum contaminated soils."

TAGM 4046 contains soil cleanup objectives for volatile compounds, semi-volatile compounds, pesticides/PCBs and metals using criteria for the protection of groundwater and human health and the environment. There are some contaminants that are included in STARS #1 that are not listed in TAGM 4046. Soil cleanup objectives for those contaminants have been calculated and are attached and should be considered part of TAGM 4046. In general, the soil cleanup objectives for individual contaminants listed in TAGM 4046 should be used. However, TAGM 4046 does contain maximum values for classes of contaminants (e.g. total Semi-VOCs \leq 500 ppm) that can be used when many specific contaminants from one class of contaminant are present with no single contaminant predominating.

It is recognized that petroleum spill sites do not go though the same process as inactive hazardous waste sites. This directive does not change the STARS #1 process or the process of determining the appropriate remedy at a petroleum spill site. The intent is only to substitute the soil cleanup objectives contained in TAGM 4046 for the numerical values in the tables in STARS #1. The primary objective is to achieve those values. However, if it is not feasible to achieve the objectives, further evaluation is conducted to determine if a higher value may be used for the specific spill site.

This directive is effective immediately. If there are any questions relative to the use of TAGM 4046 soil cleanup objectives for petroleum sites, please contact Jim Harrington at 518-457-0337.

Appendix A
Table 1
ded Soil Cleanup of

Recommended Soil Cleanup objectives for Volatile Organic Compounds

1998

· 	T CAS	1 Partition	Groundwater	Groundwater	Soil Cleanup	USEPA Hea	lth Dased	Rec.soil	Detection	Notations
Contaminant	Registry	coefficient		Standards /	objectives to	(HEAST)		Cleanup	Limit	
	Number	Koc	Cinteria	Cuiteria	Protect GW			Objective		
		1	այ/Ler թրե	Designation	Quality (ppm)	Carcinogens	Systemic	. (բրա)		
		1				(րթա)	Toxicants			
							(րթո			
n-Butyl-Benzene	104-58-8	3523	5	P	17 62	N/A	N/A	18		
sec-Butyl-Benzene	135-98-8	4982	5	ŧ,	24.91	N/A	N/A	25	.]	
Isopropylbenzene	98-82-8	948	5	Р	4,74	H/A	3100	5		
p-Isopropylioluene	99.87.6	2,114	5	P	10.57	N/A	N/A	! ! !		
Methyl-Tert-Butyl-Ether (MTBE)	1634-04-4	12	10	G	0 1 2	N/A	İ	0.12		В
N-Propylbenzene	103-65-1	2800	5	P	14 00	11/A	N/A	14		
1,2,4-Trimethylbenzene	95-63-6	2590	5	P	12.95	N/A	N/A	13	.	
1.3.5 - Trimethylbenzene	108-67-8	661	3	ľ	3 31	N/A	N/A	3.3	l	<u> </u>

A- Cleanup objective reflects changes to groundwater standards in June 1998 version of TOGS 1.1.1

01160

1.11

B - A groundwater standard is under review and has not been finalized yet 10 ppb was used to reflect the guidance value published in the April 2000 amendment to TOGS 1.1.4

N/A - Not available

MDL - Method detection limit

And York State Department of finitionmental Conscrution. * Home * Sita Ma

APPENDIX A of TAGM #4046

TABLE 1 Recommended soil cleanup objectives (mg/kg or ppm) Volatile Organic Contaminants

Shortcut to TAGM 4046 Tables for SVOCs | Pesticides/PCBs | Heavy Metals

Contaminant	Partition Coefficient, Koc	Groundwater Standards/ Criteria, Cw (ug/l or ppb)	soil conc.,		USEPA Health Based (ppin) Carcin- Systemic ogens Toxicants		CRQL (ppb)	Rec. Soil Cleanup Objective (ppm)
Acetone	2.2	50	0.0011	0.1 1	N/A	8,000	10	0.2
Benzene	83	0.7	0.0006	0.06	24	N/A	5	0.06
Benzoic Aci d	54 <u>*</u>	50	0.027	2.7	N/A	300,000	5	2.7
2-Butanone	4.5 *	50	0.003	0.3	N/A	4,000	10	0.3
Carbon Disulfide	54 <u>*</u>	50	0.027	2.7	N/A	8,000	5	2.7
Carbon Tetrachloride	110 *	5	0.006	0.6	5.4	60	5	0.6
Chiorobenzene	330	5	0.017	1.7	N/A	2,000	5	1.7
Chloroethane	37 <u>*</u>	50	0.019	1.9	N/A	N/A	10	1.9
Chloroform	31	7	0.003	0.30	114	800	5	0.3
Dibromochloromethane	N/A	50	N/A	N/A	N/A	N/A	5	N/A
1,2-Dichlorobenzene	1,700	4.7	0. 07 9	7.9	N/A	N/A	330	7.9
1,3-Dichlorobenzene	310 <u>*</u>		0.0155	1.55	N/A	N/A	330	1.6
1,4-Dichlorobenzene	1,700	5.	0.085	8.5	N/A	N/A	330	8.5
1,1-Dichloroethane	30	5.	0.002	0.2	N/A	N/A	5	0.2
1,2-Dichloroethane	14.	5 ·	0.001	0.1	7.7	N/A	5	0.1
1,1-Dichloroethene	65	· 5 :	0.004	0.4	12	700	5	0.4
1,2-Dichloroethene (trans)	59	5	0.003	0.3	N/A	2,000	5	0.3
1-3 dichloropropane	51 .	5	0.003	0.3	N/A	N/A	5 -	0.3 🐫
Ethylbenzene .	1,100	*	0.055	5.5	N/A	8,000	.5.	5.5
113 Freon (1,1,2 Trichloro-	1,230 *		0.060	6.0			5	

01161

1,2,2 Trifluoroethane)

1,2,2 1,1,1,00,000,1,1,1,1,1,1,1,1,1,1,1,1,1,		\				<u></u>		
Methylene chloride	21: :::::::::::::::::::::::::::::::::::	5 (72)	0.001	0.1	93	5,000	5 .	0.1
4-Methyl-2-Pentanone	19 *	50.	0.01	1.0	N/A	N/A	10	1.0
Tetrachloroe th ene	277	5	0.014	1.4	14	800	5	1.4
1,1,1-Trichloroethane	152	5	0.0076	0.7 6	N/A	7,000	5	0.8
1,1,2,2- Tetrachloroethane	118	5	0. 0 06	0.6	35	N/A	5	0.6
1,2,3-trichloropropane	68	5	0.0034	0.34	N/A	80	5	0.4
1,2,4-trichlorobenzene	670 <u>*</u>	5	0.034	3.4	N/A	N/A	3 3 0	3.4
Toluene :	300	5	0.015	1.5	N/A	20,000	5	1.5
Trichloroethene	126	5 .	0.007	0.70	64	N/A	5	0.7
Vinyl chloride	57	2 .	0.0012	0.12	N/A	N/A	10	0.2
Xylenes	240	5	0.012	1.2	N/A	200,000		1.2

- a. Allowable Soil Concentration $Cs = f \times Cw \times Koc$
- b. Soil cleanup objective = Cs x Correction Factor (CF)

N/A is not available

- * Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. All other Koc values are experimental values.
- *** Correction Factor (CF) of 100 is used as per TAGM #4046
- *** As per TAGM #4046, Total VOCs < 10 ppm.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and should be adjusted for the actual soil organic carbon content if it is known.

New York State Department of Endronmental Conservation . Home . Site Map

APPENDIX A of TAGM #4046

TABLE 2 Recommended soil cleanup objectives (mg/kg or ppm) Semi-Volatile Organic Contaminants

Shortcut to TAGM 4046 Tables for VOCs | Pesticides/PCBs | Heavy Metals

Contaminant	Partition Coefficient, Koc	Groundwater Standards/ Criteria, Cw (ug/I or ppb)	Allowable soil conc., Cs (ppm)	b ** Soil cleanup objectives to protect GW quality (ppm)	USEPA I Based (p Carcin-S ogens	pin)	CRQL (ppb)	Rec. Soil Cleanup Objective (ppm)
Acenaphthene	4,600	20 .	0.9	90. 0	N/A	5,000	330	50.0
Acenaphthylene	2,056 <u>*</u>	20	0.41	41.0	N/A	N/A	330	41.0
Aniline	13.8	5	0.001	0.1	123	N/A	330	0.1
Anthracene i	14,000	50 -	7.00	700.0	N/A	20,000	330	50.0
Benzo(a) :	1,380,000	0.002	0.03	3.0	0.224	N/A	330	0,224 or MDL
Benzo (a) p yr ene	5,500,000	0.002 (ND)	0.110	11.0	0.0609	N/A	330	0.061 or MDL
Benzo (b) : fluoranthene	550,000	0.002	0.011	1.1	N/A	N/A	3 3 0	1.1
Benzo (g,h,i) perylene	1,600,000	5	8.0	800	N/A	N/A	330	50.0
Benzo (k) fluoranthene	550,000	0.002	0.011	1.1	N/A	N/A	330	1.1
bis(2-ethylhexyl) phthalate	8,706 *	50	4.35	435.0	50	2,000	330	50.0 ***
Butylbenzylphthlate	2,430	50	1.215	122.0	N/A	20,000	330	50.0 ***
Chrysene	200,000	0 .002	0.004	0.4	N/A	. N/A	330	0.4
4- Chloroaniline	43 ****	5	0.0022	0.22	200	300	330	0.220 or MDL

4-Chloro-3- methylphenol	47	5	0.0024	0.24	N/A	N/A	330	0.240 or MDL
2-Chlorophenol	15 *	50	0.008	0.8	N/A	400	330	0.8
Dibenzofur an	1,230 *	5	0.062	6.2	N/A	N/A	330	6.2
Dibenzo(a,h) anthracene	33,000,000	50	1,650	165,000	0.0143	N/A	330	0.014 or MDL
3,3'- Dichlorobenzidine	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlor op henol	380	1 :	0.004	0.4	N/A	200	330	0.4
2,4-Dinitrop h enol	38	5	0.002	0.2	N/A	200	1,600	0.200 or MDL
2,6 Dinitrotoluene	198*	5	0.01	1.0	1.03	N/A	330	1.0
Diethylphth la te	142	50	0.071	7.1	N/A	60,000	3 3 0	7.1
Dimethylphthlate	40	50 :	0.020	2.0	N/A .	80 ,000	330	2.0
Di-n-butyl , phthalate	162:*	50	0.081	8.1	N/A	8,000	330	8.1
Di-n-octyl p h thlate	2,346 <u>*</u>	50	1.2	120.0	N/A	2,000	330	50.0
Fluoranthen e	38,000	50 .	19	1900.0	N/A	3,000	330	50.0
Fluorene	7,300	50	3.5	350.0	N/A	3,000	330	50.0 ***
Hexachlorobenzene	3,900	0.35	0.014	1.4	0.41	60	330	0.41
Indeno (1,2,3-cd) pyrene	1,600,000	0.002	0.032	3.2	N/A	N/A	3 3 0	3.2
Isophorone	88.31 *	50	0.044	4.40	1,707	20,000	330	4.40
2- methylnaphthalene	727 *	50	0.364	36.4	N/A	N/A	330	36.4
2-Methylph en ol	15	5	0.001	0.1	N/A	. N/A	330	0.100 or MDL
4-Methylphenol	17	50	0.009	0.9	N/A	4,000	330	0.9
Naphthalene	1,300	10	0.130	13.0	N/A	300	330	13.0
Nitrobenze ne	36	.5	0.002	0.2	N/A	40	330	0.200 or MDL
					•	• •		0.430

2-Nitroaniline	86	5	0.0043	0.43	N/A	N/A	1,600	or MDL
2-Nitrophen ol	65	5	0.0033	0.33	N/A	N/A	330	0.330 or MDL
4-Nitrophenol	21	5 .	0.001	0.1	N/A	N/A	1,600	0.100 or MDL
3-Nitroaniline	93	5	0.005	0.5	N/A	N/A	1,600	0.500 or MDL
Pentachlorophenol	1,022	1	0.01	1.0	N/A	2,000	1,600	1.0 or MDL
Phenanthrene	4,36 5 *	50	2.20	220.0	N/A	N/A	330	50.0 ***
Phenol	27	1	0.0003	0.03	N/A	50,000	330	0.03 or MDL
	13,295 *	50	6.65	665.0	N/A	2,000	330	50.0 ***
2,4,5- Trichlorophenol	89 <u>*</u>	I	0.001	0.1	N/A	8,000	330	0.1

a. Allowable Soil Concentration $Cs = f \times Cw \times Koc$

b. Soil cleanup objective = Cs x Correction Factor (CF)

N/A is not available

MDL is Method Detection Limit

* Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. Other Koc values are experimental values.

** Correction Factor (CF) of 100 is used as per TAGM #4046

**** As per TAGM #4046, Total VOCs < 10 ppm., Total Semi- VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm.

**** Koc is derived from the correlation Koc = 0.63 Kow (Determining Soil Response Action Levels..... EPA/540/2-89/057). Kow is obtained from the USEPA computer database 'MAIN'.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and should be adjusted for the actual soil organic carbon content if it is known.

Test Pit Sampling Activities Fuel Oil Spill Area

Prepared for: Buffalo Brake Beam Site 400 Ingham Avenue Lackawanna, NY

Prepared by: Sterling Environmental Services Inc. 1372 Clinton Street Buffalo, NY

Table of Contents

ntrodu cti on					p. 3
Summa ry of Field Acti vi	ties and Obs	ervations	***********		p. 3 – 5
Tables of Field Observa	tions Per Eac	h Test Pit.			p. 6 – 7
· · · · · · · · · · · · · · · · · · ·					
Summa ry of Analytical i	Results				p. 8
Tables of Analytical Res	sults Per Sam	ple	***************************************		p. 9 –14
Conclusions and Recon	nmendations	• • • • • • • • • • • • • • • • • • • •			p. 15
	: :				
Appendixes:	. · · · · · · · · · · · · · · · · · · ·			· .	
1. Map of Test Pits	<u>:</u> :	•			
2. Photographs of Test	Pits				
3. Copy of Lab Results	* •				

INTRODUCTION

Sterling Environmental was retained by Rigel Enterprises for the purpose of installing test pits and retrieving samples as part of a further investigation of the area referred to as the *fuel oil spill area* at the former Buffalo Brake Beam property. Based upon the findings of the Baseline Environmental Site Assessment Prepared by Earth Tech, Inc. in December 2000, a spill report for this area was made to the NYSDEC and the area was assigned spill number 0009396. Rigel Enterprises agreed to remediate the area of SB22 to levels below the NYSDEC TAGM 4046 cleanup standards, for the NYSDEC STARS list of constituents for fuel oil. Representatives of Miner Enterprises were concerned that unacceptable levels of contaminants may be present in the areas of SB05 and SB18 as well. The two parties, Rigel and Miner, agreed to this test pit investigation as a means to address these concerns.

The agreed upon work plan called for one test pit at SB18 and five test pits in the SB05 area, one near the original point and four additional points at a 25 to 30 foot radius. If field observations indicated, additional pits would be installed. The test pits would be advanced in two-foot increments to the depth of the water table. A sample would be collected from each 2-foot increment for headspace screening for VOC's using a PID. Visual and olfactory observations would also be recorded for each interval. A sample would be collected for lab analysis from the interval of each pit exhibiting the highest potential level of contamination by instrument and/or observation.

The test pit and sampling activities were scheduled for May 4, 2001. Present for the test pit and sampling activities were Wayne Cameron and Jeremy Wells of Sterling, Jim Kelleran as backhoe operator and Kevin McGrath of Earth Tech as Miner's representative. The parties met at the site at 8:00 am, The weather was 65 degrees F and sunny with a slight west wind.

SUMMARY OF FIELD ACTIVITIES & OBSERVATIONS

The point SB05 was located in the field from the map prepared by Earth Tech as part of the Baseline Environmental Site Assessment. Based upon the proximity of this point to the fence it was agreed upon that a trench would be installed from SB05 in an easterly direction toward the fence line to the limit of reach of the backhoe. The western end of the trench would be considered the SB05 base point and the eastern end, 14.6 feet to the east, would be considered the eastern perimeter point, SB05-E14.6.

Test pit \$B05 was advanced to a total depth of eight feet below ground surface where water was encountered. Headspace readings from the two-foot intervals ranged from 0.5 to 38 PPM. The top four feet were layered brown soil and black

carbonaceous grit backfill over brown silt with increasing moisture content with advancing depth. No odors were noted. The headspace reading from the four-foot depth, black grit, was 28 PPM and the six-foot depth was 38 PPM. The sample for lab analysis was taken of the soil directly below the black grit interface at the four-foot depth.

Test pit SB05-E14.6 was advanced to a total depth of five feet below ground surface. Water was encountered at a depth of four feet and pooled in the excavation at four and a half feet. Headspace readings from the two-foot intervals ranged from 4 to 70 PPM. The entire depth was layered brown soil and black carbonaceous grit backfill containing concrete rubble, wire and other debris. A strong septic odor was noted at the water interface. The highest headspace reading was from the four-foot depth, 70 PPM. The sample for lab analysis was taken of the soil at the four-foot depth. A sample of the water was also collected and allowed to settle. No sheen or phase separation was observed. The water sample was collected for field observation only. No lab analysis was performed on this sample.

Test pit SB05-S25 was located 25 feet to the south of SB05. This pit was advanced to a total depth of nine feet, eight inches below ground surface. Headspace readings from the two-foot intervals ranged from 3 to 40 PPM. The top eight feet was industrial backfill over very moist gray/brown silt. Mild unidentified odors were noted at four feet and nine feet. The highest headspace reading was 40 PPM from the nine foot, eight inch depth. The sample for lab analysis was taken at the nine foot, eight inch depth.

Test pit \$B05-N30 was located 30 feet to the north of \$B05. This pit was advanced to a total depth of four feet below ground surface. Headspace readings from the two-foot intervals ranged from 20 to 40 PPM. The entire depth was industrial backfill, black carbonaceous grit with ash, refractory and scrap metal. A mild unidentified odor was noted. Perched water was encountered at three feet, three inches. A black oil film was visible on the water. No sample was collected for lab analysis from this pit. The presence of free product dictates that this area needs to be remediated.

The original sampling plan was modified in the field upon finding free product at SB05-N30. In an effort to delineate the areal extent of the contamination two additional test pits were installed, one to the west and one to the north of SB05-N30. Test pit SB05-N30-W30 was located 30 feet to the west of SB05-N30. This pit was advanced to a total depth of six feet below ground surface. Headspace readings from the two-foot intervals ranged from 2 to 20ppm. The top three feet consisted of brown cover soil over very moist black grit. Below this was a gray/brown, wet, sandy silt. A water lens was encountered at five feet. Mild unidentified odors were noted from four feet down. The highest headspace reading was 20 PPM from the four-foot depth. The sample for lab analysis was taken at the four-foot depth.

Test pit SB05-N55 was located 25 feet to the north of SB05-N30. This pit was advanced to a total depth of six feet below ground surface. Headspace readings from the two-foot intervals ranged from 1.5 to 30 PPM. The top two feet was brown soil over black and white grit. Below this was a very moist, stratified, gray/brown silt. Mild unidentified odors were noted at four feet. The highest headspace reading was 30 PPM from the four-foot depth. The sample for lab analysis was taken at the four-foot depth.

The point SB18 was located in the field from the map prepared by Earth Tech as part of the Baseline Environmental Site Assessment. Test pit SB18 was advanced to a total depth of six feet below ground surface. Headspace readings from the two-foot intervals ranged from 12 to 70 PPM. The top four feet were black/brown soil over gray/brown silt. From four to five feet was a gravel lens with gray clay below. Strong petroleum odors were noted in the top four feet. The highest headspace reading was 70 PPM from the four-foot depth. The sample for lab analysis was taken at the four-foot depth.

Field Observations

Summary Table of Field Observations

• · · · · · · · · · · · · · · · · · · ·	Test Pit	# SB05	
Depth Interval	Headspace	Visual	Olfactory
2'	3 PPM	Brown soil	No odor
4	28 PP M	Black	No odor
		carbonaceous grit	
6'	38 PP M	Moist brown silt	No odor
8′	0.5 PPM	Brown silt / water	No odor
10'			· · · · · · · · · · · · · · · · · · ·
·	Test Pit # \$	SB05-E14.6	·
Depth Interval	Headspace	Visual	Olfactory
2'	4 PPM	Brown soil wi th debris	No odor
4'	10 PPM	Black	Unidentified odor
		carbonaceous grit	
		with debris	
5'		Standing water	Strong septic odor
8'			
1 0'			
·	Test Pit #	SB05-S25	
Depth Interval	Headspace	Visual	Olfactory
2'	3 PP M	Dark brown grit with debris	No odor
4'	38 PP M	Moist brown silt	Mild unidentified
			odor
6'	3.7 PPM	Brown silt	No ador
		changing to black	
8'	35 PPM	Very moist gray silt	No odor
10'	40 PP M	Very moist	Unidentified odor
<u> </u>		gray/brown silt	· · · · · · · · · · · · · · · · · · ·
<u></u>		SB05-N30	OIF. 1
Depth Interval	Headspace	Visual	Olfactory
2'	20 PPM	Black	Unidentified odor
		carbonaceous grit	
		with ash &debris	
4'	40 PP M	Saturated debris	Unidentified odor
		standing water with	
		oil film	· · · · · · · · · · · · · · · · · · ·
6'			
8'			
<u>:</u> 10'	<u> </u>		

	Test Pit # SE	305-N30-W30	· · · · · · · · · · · · · · · · · · ·
Depth Interval	Headspace	Visual	Olfactory
2'	2 PPM	Brown soi l / bla ck grit	No odor
4'	20 PP M	Wet black carbonaceous grit	Unidentified odor
6'	7 PPM	Gray/bro wn s ilt water lens @ 5'	Unidentified odor
8'			
10'			
	Test Pit #	SB05-N55	
Depth Interval	Headspace	Visual	Olfactory
2'	1.5 PPM	Black & white grit	. No odor
4'	30 PPM	Brown & gray stratified silt	Mild unidentified odor
6'	15 PP M	Very moist gray/brown silt	No odor
8'			
10'			

	Test Pit # SB18							
Depth Interval	Headspace	Visual ·	Olfactory					
2'	30 PP M	Black/brown soil	Strong petroleum odor					
4'	70 PP M	Gray/brown silt	Strong petroleum odor					
6'	12 PP M	Gravel lens over gray clay	No odor					
8'								
10'								

SUMMARY OF ANALYTICAL RESULTS

Soil grab samples were collected from six of the seven test pits installed. These samples were submitted to Upstate Laboratories, Inc., under standard chain of custody procedures, for analysis for the NYSDEC STARS analyte list of VOC's by EPA Method 8260, SVOC's by EPA Method 8270 and TOC.

The following pages contain summary tables of the analytical results for each sample and the TAGM 4046 Recommended Soil Cleanup Objectives with adjustment for TOC. All concentrations, with the exception of TOC, are expressed in PPM for comparison purposes. Copies of the laboratory report and chain of custody are attached.

None of the samples from the test pits showed concentrations in excess of the TOC adjusted recommended soil cleanup objectives.

In general, detection limits were quite high for these samples due to matrix interference and the dilution factor. Constituents that were not detected but the detection limit exceeds the TOC adjusted recommended soil cleanup objective are note with an asterisk in the tables.

Summary Table in PPM (mg/Kg) Sample # SB05 0955H TOC Level: 3.7216%

Constituent	Sample Results	TAGM4046	Soil Cleanup
	•	Rec. Soil	Objective
		Cleanup	Adjusted for
		Objective	TOC%
Benzen e	<0.640 *	0.06	0.22
Ethylbe nz ene	<0.640	5.5	20.47
Toluene	< 0.640	1.5	5.58
Total Xy le ne	<1.280	1.2	4.47
Isopropyl Benzene	< 0.640	5.0	18.61
n-Propylbenzene	< 0.640	14.0	52.10
p-Isopropyl Toluene	< 0.640	11.0	40.94
1,2,4-TrimethylBenzene	<0.640	13.0	48.38
1,3,5-TrimethylBenzene	<0.640	33.0	122.81
n-Butyl B enzene	< 0.640	18.0	66.99
sec-Butyl Benzene	<0.640	25.0	93.04
Naphthalene	<0.640	13.0	48.38
MTBE	· <0.640 *	0.12	0.45
t-Butylbenzene	<0.640	10.0	37.22
Anthrac en e	: 0.450	50. 0	186.08
Fluoren e	1.100	50.0	186.08
Phenanthrene	1.700	50. 0	186.08
Pyrene	< 0.430	50. 0	186.08
Acenaphthene	1.100	50.0	186.08
Benzo(a)anthracene	< 0.430	0.224 or MDL	0.83 or MDL
Fluoranthene	<0.430	50. 0	186.08
Benzo(b)fluoranthene	<0.430	1.10	4.09
Benzo(k)fluoranthene	<0.430	1.10	4.09
Chryse ne	< 0.430	0.40	1.49
Benzo(a)pyrene	< 0.430	0.061 or MDL	0.23 or MDL
Benzo(g,h,l)perylene	<0.430	50. 0	186.08
Indeno(1,2,3-cd)pyrene	< 0.430	3.20	11.91
Dibenz(a,h)anthracene	< 0.430	0.014 or MDL	0.05 or MDL

Summary Table in PPM (mg/Kg) Sample # SB05E14-6 1010H TOC Level: 8.0655%

1 OC Level: 8.0655%			
Constitu e nt	Sample Results	TAGM4046	Soil Cleanup
		Rec. Soil	Objective
		Cleanup	Adjusted for
		Objective	TOC%
Benzene	<3.200*	0.06	0.48
Ethylbe nz ene	<3.200	5.5	44.36
Toluene	<3.200	1.5	12.10
Total Xylene	<6.400	1.2	9.68
Isoprop yl Benzene	5.200	5.0	40.33
n-Propylbenzene	<3.200	14.0	112.92
p-Isopropyl Toluene	<3.200	11.0	88.72
1,2,4-Tr im ethylBenzene	<3.200	13.0	104.85
1,3,5-TrimethylBenzene	<3.200	33.0	266.16
n-Butyl Benzene	<3.200	18.0	145.18
sec-Butyl Benzene	<3.200	25.0	201.64
Naphthalene	<3.200	13.0	104.85
MTBE ·	<3.200*	0.12	0.97
t-Butylb en zene	<3.200	10.0	80.66
Anthracene .	<4.200	50. 0	403.28
Fluoren e	6.000	50. 0	403.28
Phenanthrene	10.000	50. 0	403.28
Pyrene	<4.200	50.0	403.28
Acenaphthene	5.100	50. 0	403.28
Benzo(a)anthracene	<4.200	0.224 or MDL	1.81 or MDL
Fluoranthene	<4.200	50. 0	403.28
Benzo(b)fluoranthene	<4.200	1.10	8.87
Benzo(k)fluoranthene	<4.200	1,10	8.87
Chrysene	: <4.200*	0.40	3.23
Benzo(a)pyrene	. <4.200	0.061 or MDL	0.49 or MDL
Benzo(g,h,I)perylene	<4.200	50. 0	403.28
Indeno(1,2,3-cd)pyrene	<4.200	3.20	25.81
Dibenz(a,h)anthracene	<4.200	0.014 or MDL	0.11

Summary Table in PPM (mg/Kg) Sample # SBO5S25 1105H TOC Level: 0.4737%

Constituent .	Sample Results	TAGM4046	Soil Cleanup
	'	Rec. Soil	Objective
		Cleanup	Adjusted for
		Objective	TOC%
Benzene	<0.540*	0.06	0.03
Ethylbe nz ene	<0.540	5.5	2.61
Toluene	< 0.540	1.5	0.71
Total Xylene	<1.080*	1.2	0.57
Isopropyl Benzene	<0.540	5.0	2.37
n-Propylbenzene	<0.540	14.0	6.63
p-Isopropyl Toluene	<0.540	11.0	5.21
1,2,4-Tr im ethylBenzene	<0.540	13.0	6.16
1,3,5-TrimethylBenzene	<0.540	33.0	15.63
n-Butyl Benzene	<0.540	18.0	8.53
sec-Butyl Benzene	<0.540	25.0	11.84
Naphthalene	, <0.540	13.0	6.16
MTBE	<0.540*	0.12	0.06
t-Butylb en zene	<0.540	10.0	4.74
Anthracene	، <0.360	50.0	23.69
Fluoren e	0.460	50. 0	23.69
Phenan th rene	1.000	50.0	23.69
Pyrene	0.430	50. 0	23.69
Acenap ht hene	<0.360	50. 0	23.69
Benzo(a)anthracene	< 0.360	0.224 or MDL	0.11 or MDL
Fluoranthene	<0.360	50.0	23.69
Benzo(b)fluoranthene	< 0.360	1.10	0.52
Benzo(k)fluoranthene	<0.360	1.10	0.52
Chrysene	<0.360*	0.40	0.19
Benzo(a)pyrene	<0.360	0.061 or MDL	0.03 or MDL
Benzo(g,h,l)perylene	< 0.360	50.0	23.69
Indeno(1,2,3-cd)pyrene	<0.360	3.20	1.52
Dibenz(a,h)anthracene	<0.360	0.014 or MDL	0.007 or MDL

Summary Table in PPM (mg/Kg) Sample # SB05N30W30 1245H TOC Level: 0.8239%

Constituent	Sample Results	TAGM4046	Soil Cleanup
Constituent	Jample Mesuits	Rec. Soil	Objective
	• '	Cleanup	Adjusted for
		Objective	TOC%
Benzene	<2.900*	0.06	0.05
Ethylbe nz ene	<2.900	5.5	4.53
Toluene	<2.900*	1.5	1.24
Total Xylene	<5.800*	1.2	0.99
Isopropyl Benzene	<2.900	5.0	4.12
n-Propylbenzene	<2.900	14.0	11.53
p-Isopropyl Toluene	<2.900	11.0	9.06
1,2,4-Tr im ethylBenzene	<2.900	13.0	10.71
1,3,5-TrimethylBenzene	<2.900	33.0	27.19
n-Butyl Benzene	5.900	18.0	14.83
sec-Butyl Benzene	<2.900	25.0	20.60
Naphthalene	<2.900	13.0	10.71
MTBE	<2.900*	0.12	0.10
t-Butylb en zene	<2.900	10.0	8.24
Anthracene	5.000	50. 0	41.20
Fluoren e	. 8.000	50. 0	41.20
Phenan th rene	. 15.000	50.0	41.20
Pyrene	<3.800	50. 0	41.20
Acenap ht hene	6.800	50.0	41.20
Benzo(a)anthracene	<3.800	0.224 or MDL	0.18 or MDL
Fluoranthene	<3.800	50. 0	41.20
Benzo(b)fluoranthene	<3.800*	1.10	0.91
Benzo(k)fluoranthene	<3.800*	1.10	0.91
Chrysene	: <3.800*	0.40	0.33
Benzo(a)pyrene	<3.800	0.061 or MDL	0.05 or M DL
Benzo(g,h,l)perylene	<3.800	50. 0	41.20
Indeno(1,2,3-cd)pyrene	<3.800*	3.20	2.64
Dibenz(a,h)anthracene	<3.800	0.014 or MDL	0.01 or MDL

Summary Table in PPM (mg/Kg) Sample # SBO5 N55 1320H TOC Level: 2.0989%

Constitu e nt	Sample Results	TAGM4046	Soil Cleanup
	•	Rec. Soil	Objective
		Cleanup	Adjusted for
•		Objective	TOC%
Benz e ne	< 0.037	0.06	0.13
Ethylbenzene -	< 0.037	5. 5	11.54
Toluene -	< 0.037	1.5	3.15
Total Xylene	< 0.074	1.2	2.52
Isopropyl Benzene	< 0.037	5.0	10.49
n-Propylbenzene	< 0.037	14.0	29.38
p-Isopropyl Toluene	< 0.037	11.0	23.09
1,2,4-TrimethylBenzene	< 0.037	13.0	27.29
1,3,5-TrimethylBenzene	< 0.037	33.0	69.26
n-Butyl Benzene	0.099	18.0	37.78
sec-Butyl Benzene	< 0.037	25.0	52.47
Naphthalene	<0.037	13.0	27.29
MTBE	< 0.037	0.12	0.25
t-Butylb en zene	< 0.037	10.0	20.99
Anthracene	< 0.410	50.0	104.95
Fluoren e	0.500	50. 0	104.95
Phenanthrene	0.960	50. 0	104.95
Pyrene	. <0.410	50.0	104.95
Acenap ht hene	: 0.420	50. 0	104.95
Benzo(a)anthracene	< 0.410	0.224 or MDL	0.47 or MDL
Fluoranthene	< 0.410	50.0	104.95
Benzo(b)f luoranthene	< 0.410	1.10	2.31
Benzo(k)fluoranthene	< 0.410	1.10	2.31
Chrysene	<0.410	0.40	0.84
Benzo(a)pyrene	< 0.410	0.061 or MDL	0.13 or MDL
Benzo(g,h,l)perylene	< 0.410	50.0	104.95
Indeno(1,2,3-cd)pyrene	< 0.410	3.20	6.72
Dibenz(a,h)anthracene	< 0.410	0.014 or MDL	0.03 or MDL

Summary Table in PPM (mg/Kg) Sample # SB18 1425H TOC Level: 1.0302%

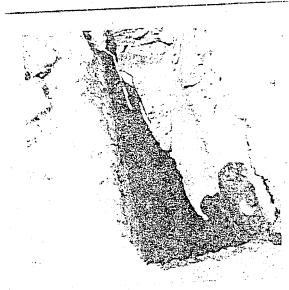
Cons t itu e nt	Sample Results	TAGM4046	Soil Cleanup
Constituent	Odinpic Mesalts	Rec. Soil	Objective
·		Cleanup	Adjusted for
		Objective	TOC%
Benzene	<0.630*	0.06	0.06
Ethylbe nz ene	< 0.630	5.5	5.67
Toluene	< 0.630	1.5	1.55
Total Xylene	: <1.260*	1.2	1.24
Isopropyl Benzene	1.000	5.0	5.15
n-Propylbenzene	0.970	14.0	14.42
p-Isopropyl Toluene	< 0.630	11.0	11.33
1,2,4-Tr im ethylBenzene	<0.630	13.0	13.39
1,3,5-TrimethylBenzene	0.810	33. 0	34.00
n-Butyl Benzene	1.800	18.0	18.54
sec-Butyl Benzene	1.300	25.0	25.76
Naphthalene	<0.630	13.0	13.39
MTBE	<0.630*	0.12	0.12
t-Butylb en zene	<0.630	10.0	10.30
Anthracene	<1.70	50.0	51.51
Fluoren e	2.100	50. 0	51.51
Phenan th rene	5.900	50. 0	51.51
Pyrene	2.000	50. 0	51.51
Acenaphthene	2.100	50. 0	51.51
Benzo(a)anthracene	<1.700	0.224 or MDL	0.23 or MDL
Fluoranthene	<1.700	50.0	51.51
Benzo(b)fluoranthene	<1.700*	1.10	1.13
Benzo(k)fluoranthene	<1.700*	1.10	1.13
Chrysene	<1.700*	0.40	0.41
Benzo(a) pyrene	, <1.700	0.061 or MDL	0.063 or MDL
Benzo(g,h,l)perylene	<1.700	50.0	51.51
Indeno(1,2,3-cd)pyrene	· <1.700	3,20	3.30
Dibenz(a,h)anthracene	<1.700	0.014 or MDL	0.01 44 or
			MDL

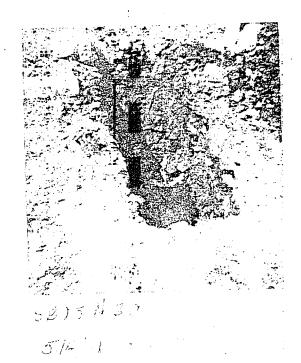
CONCLUSIONS AND RECOMMENDATIONS

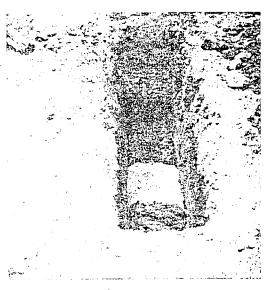
One discrete area of contamination has been identified within the fuel oil spill area as a result of this further investigation. The point identified is SB05-N30. This area is in addition to the SB22 area, which was previously identified, in the Baseline Environmental Site Assessment. Both areas will require remediation. A limited soil removal activity in these areas should be sufficient to address this situation.

The visible oil encountered in test pit SB05-N30 appears to be confined to a perched water pocket within buried debris. The size of this debris pocket and the extent of impacted surrounding soil is not well delineated. It appears to be shallow in depth, not more than four or five feet. Points 30 feet to the south and west and 25 feet to the north were clean. The fence line was 39 feet to the east. As a worst case these points would be the maximum limits of excavation.

In addition, I would recommend a limited soil removal in the area of SB18. This is a subjective call based upon field observations. The sample results for this test pit are below the cleanup objectives. However, strong petroleum odors were noted throughout the top four feet of the excavation. TAGM 4046 states that "any time a soil exhibits a discernible odor nuisance, it shall not be considered clean even if it has met the numerical criteria".


MAP IS NOT TO SCALE. = RECTANGLES INDICATE APPROXIMATE LOCATIONS FOR TEST PITS EXCAUATED 5/4/01 A TOTAL OF 7 TEST PITS WERE EXCHUNTED AND 6 SAMPLES WELL TAKEN (SROSN 30 CONTAINED FREE PRODE TOTAL OF THE STEP TOWNS OF SAMPLE


8 180 3 5/4/01 9:52



3114121 - 4150 514121 - 4150

520562E 5/4/0

SEGIMIN (13) TAMÀN NAMET

2505 NGB 5/4/01

Upstate Laboratories inc.

Shipping 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209

Malling: Box 289 • Syracuse, NY 13206

Albany (518) 459-3134 Binghamton (607) 724-0478

May 29, 2001

Buffalo (716) 649-2533 Rochester (716) 436-9070 New Jersey (201) 703-1324

Mr. Wayne K. Cameron
Project Manager
Sterling Env. Services, Inc.
1372 Clinton St.
Buffalo, NY 14206

Re: Analysis Report #12801020 - Buffalo Brake Beam

Dear Mr. Cameron:

Please find enclosed the results for your samples which were picked up by ULI personnel on May 7, 2001.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J Scala

Director

AJS/jd

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Note: Faxed results were given to your office on 5/23 and 5/29/01. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages:

03452

ATE: 05/29/01

Upstate Laboratories, Inc.

Analysis Results
Report Number: 12801020

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL:

BUFFALO BRAKE BEAM SBO5 0955H 05/04/01 G

ULI I.D.: 12801020	Matrix: Soil	·		
PARAMETERS .	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	78%	05/09/01		WD466
EPA 8260 Petroleum, NYSDEC STARS I	List			
Benzene	<640ug/kg dw	05/11/01	01	VM34:
Ethylbenzene	<640ug/kg dw	05/11/01	01	VM34
Toluene	<640ug/kg dw	05/11/01	01	VM34
o-Xylene	<640ug/kg dw	05/11/01	01	VM34
m-Xylene & p-Xylene	<640ug/kg dw	05/11/01	01	VM34
Isopropyl Benzene :	<640ug/kg dw	05/11/01	01	VM34
n-Propylbenzene	<640ug/kg dw	05/11/01	61	VM34
p-Isopropyl Toluene	<640ug/kg dw	05/11/01.	61	VM34
1,2,4-Trimethylbenzene	<640ug/kg dw	05/11/01	01	VM34
1,3,5-Trimethylbenzene	<640ug/kg dw	05/11/01	61	VM34
n-Butyl Benzene	<640ug/kg dw	05/11/01	61	VM34
sec-Butyl Benzene	<640ug/kg dw	05/11/01	01	VM34
Naphthalene	<640ug/kg dw	05/11/01	01	VM34
MTBE	<640ug/kg dw	05/11/01	61	VM34
t-Butylbenzene :	<640ug/kg dw	05/11/01	GI	VM34
Petroleum, EPA Method 8270				
	4 77 0 11 1 7	05/32/01		
Anthra c ene	450ug/kg dw	05/17/01		SA28
Fluorene	1100ug/kg dw	05/17/01		SA28
Phenanthrene	1700ug/kg dw	05/17/01		SA28
Pyrene	<430ug/kg dw	05/17/01		SA28
Acenaphthene	1100ug/kg dw	05/17/01		SA28
Benzo(a) anthracene	<430ug/kg dw	05/17/01		SA2.8
Fluoranthene	<430ug/kg dw	05/17/01		SA2
Benzo(b) fluoranthene	<430ug/kg dw	05/17/01		SAZ
Benzo(k) fluoranthene :	<430ug/kg dw	05/17/01		SA28
Chrysene	<430ug/kg dw	05/17/01		SA28
Benzo(a) pyrene	<430ug/kg dw	05/17/01		SA2
Benzo(g,h,i)perylene	<430ug/kg dw	05/17/01		SA2
Indeno(1,2,3-cd)pyrene	<430ug/kg dw	05/17/01		SA2
Dil ∋nzo(a,h)anthracene	<430ug/kg dw	05/17/01		SA28
TOC	37,216mg/kg	05/21/01		sco:

ATE: 05/29/01

Upstate Laboratories, Inc. Analysis Results Report Number: 1280**10**20 Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

Lab I.D.V

BUFFALO BRAKE BRAM

SB05E14-6 1010H 05/04/01 G

PARAMETERS	RESULTS	DATE ANAL.	KEY	F
Percent Solids	79%	05/09/01		WI
EPA 8260 Petroleum, NYSDEC STARS Li	st			
				•
Benzen e	<3200ug/kg dw	05/11/01	Cl	V
Ethylbenzene	<3200ug/kg dw	05/11/01	01	V
Toluen e	<3200ug/kg dw	05/11/01	01	VI
o-Xyle ne	<3200ug/kg dw	05/11/01	01	V
m-Xylene & p-Xylene	<3200ug/kg dw	05/11/01	01	V
Isopropyl Benzene	5200ug/kg dw	05/11/01		V
n-Propylbenzene	<3200ug/kg dw	05/11/01	01	V!
p-Isopropyl Toluene	<3200ug/kg dw	05/11/01	01	VI
1,2,4-Trimethylbenzene	<3200ug/kg dw	05/11/01	01	V
1,3,5-Trimethylbenzene	<3200ug/kg dw	05/11/01	01	V
n-Butyl Benzene	. <3200ug/kg dw	05/11/01	01	V:
sec-Butyl Benzene	<3200ug/kg dw	05/11/01	01	V.
Naphthalene	<3200ug/kg dw	05/11/01	01	V
MTBE	<3200ug/kg dw	05/11/01	01	V
t-Buty l benzene	<3200ug/kg dw	05/11/01	01	V
777 27 13 3 0070				
Petroleum, EPA Method 8270	•			
Anthra c ene	<4200ug/kg dw	05/15/01	0.5	S
Fluorene	6000ug/kg dw	05/15/01		S
Phenanthrene	10,000ug/kg dw	05/15/01		S
Pyrene	<4200ug/kg dw	05/15/01	0.5	S
Acenap h thene	5100ug/kg dw	05/15/01	4.5	s
Benzo (a) anthracene	<4200ug/kg dw	05/15/01	0.5	S
Fluoranthene	<4200ug/kg dw	05/15/01	05	S
Benzo(b) fluoranthene	<4200ug/kg dw	05/15/01	05	S
Benzo(k) fluoranthene	<4200ug/kg dw	05/15/01	05	S
Chrysene	<4200ug/kg dw	05/15/01		S
	<4200ug/kg dw	05/15/01	05	S
Benzo(a)pyrene Benzo(g ,h,i)perylene	<4200ug/kg dw	05/15/01	05	2
	<4200ug/kg dw	05/15/01	05	S
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	<4200ug/kg dw	05/15/01	05	S

TE: 05/29/01

Upstate Laboratories, Inc.

Analysis Results
Report Number: 12801020

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM Sampled by: Client

SB05S25 1105H 05/04/01 G

Percent Solids	•		RESULTS	DATE ANAL.	KEY	F
### Benzene Benzene Benzene Stylene						- W
Senzene	Percent Solids		93%	05/09/01		
Ethylbenzene	EPA 8260 Petroleum, NYSDEC	STARS List				
Ethylbenzene	Borrone		<540ua/ka dw	05/11/01	01	7
Toluene				,,		7
O-Xylene	-					٠,
m-Xylene & p-Xylene						7
Isopropyl Benzene						,
n-Propylbenzene				· · ·	-	4
p-Isopropyl Toluene					-	
1,2,4-Trimethylbenzene						
1,3,5-Trimethylbenzene		•	J			
n-Butyl Benzene						
Sec-Butyl Benzene S40ug/kg dw O5/11/01 O1 Naphthalene S40ug/kg dw O5/11/01 O1 MTBE S40ug/kg dw O5/11/01 O1 t-Butylbenzene S40ug/kg dw O5/11/01 O1 Petroleum, EPA Method 8270 Anthracene S40ug/kg dw O5/17/01 Fluorene 460ug/kg dw O5/17/01 Phenanthrene 1000ug/kg dw O5/17/01 Pyrene 430ug/kg dw O5/17/01 Acenaphthene S40ug/kg dw O5/17/01 Benzo(a) anthracene S40ug/kg dw O5/17/01 Benzo(b) fluoranthene S40ug/kg dw O5/17/01 Benzo(b) fluoranthene S40ug/kg dw O5/17/01 Benzo(b) fluoranthene S40ug/kg dw O5/17/01 Chrysene S40ug/kg dw O5/17/01 Benzo(a) pyrene S40ug/kg dw O5/17/01 Benzo(b) fluoranthene S40ug/kg dw O5/17/01 Senzo(a) pyrene S40ug/kg dw O5/17/01 Senzo(b) fluoranthene S40ug/kg dw O5/17/01 Senzo(a) pyrene S40ug/kg dw O5/17/01 Senzo(b) fluoranthene S40ug/kg dw O5/17/01 Senzo(a) pyrene S40ug/kg dw O5/17/01						
Naphthalene	<u>-</u>	•		·		
MTBE <540ug/kg dw						
### t-Butylbenzene	-		<u> </u>			
Petroleum, EPA Method 8270 Anthracene						
Anthracene	6-EdtAthenzene		(310dg/11g di	33, 42, 32		
Fluorene 460ug/kg dw 05/17/01 Phenanthrene 1000ug/kg dw 05/17/01 Pyrene 430ug/kg dw 05/17/01 Acenaphthene 360ug/kg dw 05/17/01 Benzo(a) anthracene 360ug/kg dw 05/17/01 Fluoranthene 360ug/kg dw 05/17/01 Benzo(b) fluoranthene 360ug/kg dw 05/17/01 Benzo(k) fluoranthene 360ug/kg dw 05/17/01 Chrysene 360ug/kg dw 05/17/01 Benzo(a) pyrene 360ug/kg dw 05/17/01 Benzo(g, h, i) perylene 360ug/kg dw 05/17/01	Petroleum, EPA Method 8270			•		
Fluorene 460ug/kg dw 05/17/01 Phenanthrene 1000ug/kg dw 05/17/01 Pyrene 430ug/kg dw 05/17/01 Acenaphthene 360ug/kg dw 05/17/01 Benzo(a) anthracene 360ug/kg dw 05/17/01 Fluoranthene 360ug/kg dw 05/17/01 Benzo(b) fluoranthene 360ug/kg dw 05/17/01 Benzo(k) fluoranthene 360ug/kg dw 05/17/01 Chrysene 360ug/kg dw 05/17/01 Chrysene 360ug/kg dw 05/17/01 Benzo(a) pyrene 360ug/kg dw 05/17/01 Benzo(g,h,i) perylene 360ug/kg dw 05/17/01	3		<350ug/kg dw	05/17/03		
Phenanthrene Pyrene 1000ug/kg dw 05/17/01 Acenaphthene Acenaphthene 8360ug/kg dw 05/17/01 8enzo(a) anthracene 8360ug/kg dw 05/17/01 Fluoranthene 8360ug/kg dw 05/17/01 8enzo(b) fluoranthene 8360ug/kg dw 05/17/01 8enzo(k) fluoranthene 8360ug/kg dw 05/17/01 8enzo(k) fluoranthene 8360ug/kg dw 05/17/01 Chrysene 89nzo(a) pyrene 89nzo(g, h, i) perylene 8360ug/kg dw 05/17/01 805/17/01		:				
Pyrene 430ug/kg dw 05/17/01 Acenaphthene <360ug/kg dw 05/17/01 Benzo(a)anthracene <360ug/kg dw 05/17/01 Fluoranthene <360ug/kg dw 05/17/01 Benzo(b)fluoranthene <360ug/kg dw 05/17/01 Benzo(k)fluoranthene <360ug/kg dw 05/17/01 Chrysene <360ug/kg dw 05/17/01 Benzo(a)pyrene <360ug/kg dw 05/17/01 Benzo(a)pyrene <360ug/kg dw 05/17/01 Benzo(g,h,i)perylene <360ug/kg dw 05/17/01						
Acenaphthene	• .					
Benzo(a) anthracene	-					
Fluoranthene	<u>-</u>		2. 2			
Benzo (b) fluoranthene <360ug/kg dw		•			•	
Benzo(k) fluoranthene (•	• •			
Chrysene <360ug/kg dw			3. 3			
Benzo(a)pyrene		ſ		, , , , , , , , , , , , , , , , , , , ,		
Benzo(g ,h,i)perylene <360ug/kg dw 05/17/01				· · · · · · · · · · · · · · · · · · ·		
Denzo (g/ n/ 1/ por / 2000)		1	2			
THREE TO A CONTROL COMMITTER ON UDITION						
Dibenzo(a,h) anthracene <360ug/kg dw 05/17/01	Indeno(1,2,3-cd)pyrene		2. 3			

TE: 05/29/01

Upstate Laboratories, Inc. Analysis Results

Report Number: 12801020 Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM

SBO5N30W30 1245H 05/04/01 G

Percent Solids 87% 05/09/01 WD4 EPA 8260 Petroleum, NYSDEC STARS List Benzene	ULI I.D.: 12801023		Matrix: Soil	•		
Percent Solids	PARAMETERS :			DATE ANAL.		FILE
Benzene	Percent Solids			05/09/01		WD46
Benzene	DD 0000 Data law MYGDEC CEAS	oc tick			•	
Ethylbenzene		CS DISC				
Ethylbenzene	Benzene.		<2900ug/kg dw	05/11/01	Cl	VM34
Toluene			<2900ug/kg dw	05/11/01 .	01	VM3
0-Xylene <2900ug/kg dw	-		<2900ug/kg dw	05/11/01	01	VM3
m-Xylene & p-Xylene			<2900ug/kg dw	05/11/01	01	VM3
Isopropy Benzene			<2900ug/kg dw	05/11/01	01	VM3
n-propylbenzene			<2900ug/kg dw	05/11/01	01	VM3
p-Isopropyl Toluene			<2900ug/kg dw	05/11/01	01	VM3
1,2,4-Trimethylbenzene			<2900ug/kg dw	05/11/01	01	VM3
1,3,5-Trimethylbenzene			<2900ug/kg dw	05/11/01	01	VM3
n-Butyl Benzene 5900ug/kg dw 05/11/01 VM3 sec-Butyl Benzene <2900ug/kg dw				05/11/01	01	VM3
sec-Butyl Benzene <2900ug/kg dw			5900ug/kg dw	05/11/01		VM3
Naphthalene <2900ug/kg dw	· · · · · · · · · · · · · · · · · · ·		J. J	05/11/01	01	VM3
MTBE <2900ug/kg dw					01	VM3
### Test			- -	05/11/01	01	VM3
Anthracene	***			05/11/01	. 01	VM3
Fluorene 8000ug/kg dw 05/23/01 SA2 Phenanthrene 15,000ug/kg dw 05/23/01 SA2 Pyrene 23800ug/kg dw 05/23/01 SA2 Benzo(a) anthracene 6800ug/kg dw 05/23/01 SA2 Fluoranthene 23800ug/kg dw 05/23/01 SA2 Fluoranthene 23800ug/kg dw 05/23/01 SA2 Benzo(b) fluoranthene 23800ug/kg dw 05/23/01 SA2 Benzo(k) fluoranthene 23800ug/kg dw 05/23/01 SA2 Chrysene 23800ug/kg dw 05/23/01 SA2 Chrysene 23800ug/kg dw 05/23/01 SA2 Benzo(a) pyrene 23800ug/kg dw 05/23/01 SA2 Benzo(g,h,i) perylene 23800ug/kg dw 05/23/01 SA2 Indeno(1,2,3-cd) pyrene 23800ug/kg dw 05/23/01 SA2 Dibenzo(a,h) anthracene 23800ug/kg dw 05/23/01 SA2	Petroleum, EPA Method 8270					
Fluorene 8000ug/kg dw 05/23/01 SA2 Phenanthrene 15,000ug/kg dw 05/23/01 SA2 Pyrene 2800ug/kg dw 05/23/01 SA2 Acenaphthene 6800ug/kg dw 05/23/01 SA2 Benzo(a) anthracene 2800ug/kg dw 05/23/01 SA2 Fluoranthene 2800ug/kg dw 05/23/01 SA2 Benzo(b) fluoranthene 2800ug/kg dw 05/23/01 SA2 Benzo(k) fluoranthene 2800ug/kg dw 05/23/01 SA2 Chrysene 2800ug/kg dw 05/23/01 SA2 Chrysene 2800ug/kg dw 05/23/01 SA2 Benzo(a) pyrene 2800ug/kg dw 05/23/01 SA2 Benzo(g,h,i) perylene 2800ug/kg dw 05/23/01 SA2 Indeno(1,2,3-cd) pyrene 2800ug/kg dw 05/23/01 SA2 Dibenzo(a,h) anthracene 2800ug/kg dw 05/23/01 SA2			= 0 0 0 /1	05/33/01		C 3 2
Phenanthrene 15,000ug/kg dw 05/23/01 SA2 Pyrene <3800ug/kg dw				· · ·		-
Pyrene						
Acenaphthene 6800ug/kg dw 05/23/01 SA2 Benzo(a) anthracene <3800ug/kg dw 05/23/01 SA2 Fluoranthene <3800ug/kg dw 05/23/01 SA2 Benzo(b) fluoranthene <3800ug/kg dw 05/23/01 SA2 Benzo(k) fluoranthene <3800ug/kg dw 05/23/01 SA2 Chrysene <3800ug/kg dw 05/23/01 SA2 Benzo(a) pyrene <3800ug/kg dw 05/23/01 SA2 Benzo(g,h,i) perylene <3800ug/kg dw 05/23/01 SA2 Indeno(1,2,3-cd) pyrene <3800ug/kg dw 05/23/01 SA2 Dibenzo(a,h) anthracene <3800ug/kg dw 05/23/01 SA2						
Benzo (a) anthracene <3800ug/kg dw			- · - -			
Fluoranthene		•	2. 2			
Benzo (b) fluoranthene		•			,	
Benzo (k) fluoranthene <3800ug/kg dw						
Chrysene					• ,	
Benzo(a)pyrene <3800ug/kg dw			4· 5			
Benzo(g,h,i)perylene						
Indeno(1,2,3-cd) pyrene <3800ug/kg dw 05/23/01 SA2 Dibenzo(a,h) anthracene <3800u j/kg dw 05/23/01 SA2		:		· · · · · · · · · · · · · · · · · · ·		
Dibenzo(a,h)anthracene . <3800uj/kg dw 05/23/01 SAI						
Dibanzo (a, n) anentacene	= - · · · · · · · · · · · · · · · · · ·				•	
TOC 8239mg/kg 05/21/91 SCC	Dibenzo(a,h)anthracene .		<3800uj/kg dw	05/23/01		SAZ
	TOC		8239mg/kg	05/21/01		SCO

ATE: 05/29/01

Upstate Laboratories, Inc.

Analysis Results Report Number: 1280**10**20

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM

APPROVAL:

SB05 N55 1320H 05/04/01 G

PARAMETERS		RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids		81%	05/09/01		WD4661
EPA 8260 Petroleum, NYSDEC	STARS.Lis	t.			
Benzen e		<37ug/kg dw	05/11/01		VM3430
Ethylbenzene	•	<37ug/kg dw	05/11/01		VM3430
Toluene		<37ug/kg dw	05/11/01		VM3430
o-Xylene	•	<37ug/kg dw	05/11/01		VM3430
m-Xylene & p-Xylene	•	<37ug/kg dw	05/11/01		VM3430
Isopropyl Benzene		<37ug/kg dw	05/11/01		VM3430
n-Propylbenzene		<37ug/kg dw	05/11/01		VM3430
p-Isopropyl Toluene		<37ug/kg dw	05/11/01		VM3430
1,2,4-Trimethylbenzene		<37ug/kg dw	05/11/01		· VM3430
1,3,5-Trimethylbenzene		<37ug/kg dw	05/11/01		VM343
n-Butyl Benzene		99ug/kg dw	05/11/01		VM343
sec-Butyl Benzene		<37ug/kg dw	05/11/01		VM343
Naphthalene		<37ug/kg dw	05/11/01		VM343
MTRE		<37ug/kg dw	05/11/01		VM343
t-Butylbenzene	i .	<37ug/kg dw	05/11/01		VM343
Petroleum, EPA Method 8270					
Anthracene		<410ug/kg dw	05/17/01		SA282
Fluorene		500ug/kg dw	05/17/01		SA282
Phenanthrene		960ug/kg dw	05/17/01		SA282
Pyrene		<410ug/kg dw	05/17/01		SA282
Acenap h thene		420ug/kg dw	05/17/01		SA282
Benzo(a) anthracene		: <410ug/kg dw	05/17/01		SA282
Fluoranthene		<410ug/kg dw	05/17/01		SA282
Benzo (b) fluoranthene		<410ug/kg dw	05/17/01		SA282
Benzo(k) fluoranthene		<410ug/kg dw	05/17/01		SA282
Chrysene		<410ug/kg dw	05/17/01		SA282
Benzo (a) pyrene		<410ug/kg dw	05/17/01		SA282
Benzo(g,h,i)perylene		<410ug/kg dw	05/17/01		SA282
Indeno(1,2,3-cd)pyrene		<410ug/kg dw	05/17/01		SA282
		<410ug/kg dw	05/17/01		SA282
Dibenzo(a,h)anthracene		<#1000 VG CW	03/1/01		-

TE: 05/29/01

Upstate Laboratories, Inc.

Report Number: 12801020 Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM SB 18 1425H 05/04/01 G

ULI I.D.: 12 801025	Matrix: Soil	•		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE;
·	79%	05/09/01		WD466
Percent Solids	196	. 03/99/01		11240
EPA 8260 Petroleum, NYSDEC STARS Lis	t ·			
	<630ug/kg dw	05/11/01	01	VM34
Benzene.	<630ug/kg dw	05/11/01	01	VM34
Ethylbenzene Toluen e	<630ug/kg dw	05/11/01	01	VM34
	<630ug/kg dw	05/11/01	01	VM34
o-Xylene	<630ug/kg dw	05/11/01	01	VM34
m-Xylene & p-Xylene	1000ug/kg dw	05/11/01	-	VM34
Isopropyl Benzene : n-Propylbenzene ;	970ug/kg dw	05/11/01		VM34
	<630ug/kg dw	05/11/01	01	VM34
p-Isop r opyl Toluene 1,2,4-Trimethylbenzene	<630ug/kg dw	05/11/01	01	VM34
	810ug/kg dw	05/11/01		VM34
1,3,5-Trimethylbenzene	1800ug/kg dw	05/11/01		VM34
n-Butyl Benzene : sec-Bu ty l Benzene :	1300ug/kg dw	05/11/01		VM34
Naphthalene	<630ug/kg dw	05/11/01	01	VM34
MTBE	<630ug/kg dw	05/11/01	01	VM34
t-Butylbenzene	<630ug/kg dw	05/11/01	01	VM34
·	, <u>,</u>			
Petroleum, EPA Method 8270				
Anthra c ene	<1700ug/kg dw	05/23/01		SA28
Fluorene	2100ug/kg dw	05/23/01		SA28
Phenanthrene	5900ug/kg dw	05/23/01		SA28
Pyrene	2000ug/kg dw	05/23/01		SA28
Acenaphthene	2100ug/kg dw	05/23/01	-	SA28
Benzo(a) anthracene	<1700ug/kg dw	05/23/01		SA28
Fluoranthene :	<1700ug/kg dw	05/23/01		SA2
Benzo(b) fluoranthene	<1700ug/kg dw	05/23/01		SA28
Benzo(k) fluoranthene	<1700ug/kg dw	05/23/01		SA2
Chrysene	<1700ug/kg dw	05/23/01		SA2
Benzo(a) pyrene	<1700ug/kg dw	05/23/01		SA2
Benzo(g,h,i)perylene	<1700ug/kg dw	05/23/01		SA2
Indeno(1,2,3-cd)pyrene	<1700ug/kg dw	05/23/01		SA2
Dibenzo(a,h)anthracene :	<1700ug/kg dw	05/33/01		SA2
	10,302mg/kg	05/21/01		SÇ0(

<u>d</u>w = Dry weight

KEY PAGE

- 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
- 2 MATRIX INTERFERENCE
- 3 PRESENT IN BLANK
- 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE
- 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS
- 6 BLANK CORRECTED
- 7 HEAD SPACE PRESENT IN SAMPLE
- 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
- 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID
- 10 ADL(AVERAGE DETECTION LIMITS)
- 11 PQL (PRACTICAL QUANTITATION LIMITS)
- 12 SAMPLE ANALYZED OVER HOLDING TIME
- 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE
- 14 SAMPLED BY ULI
- 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR
- 16 AN INHIBITORY FACTOR WAS: OBSERVED IN THIS ANALYSIS
- 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
- 18 THE SERIAL DILUTION OF THIS SAMPLE SUGGESTS A POSSIBLE PHYSICAL AND/OR CHEMICAL INTERFERENT IN THIS DETERMINATION. THE DATA MAY BE BIASED EITHER HIGH OR LOW.
- 19 CALCULATION BASED ON DRY WEIGHT
- 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS:
- 21 UG/KG AS REC.D / UG/KG DRY WT
- 22 MG/KG AS REC.D / MG/KG DRY WT
- 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS
- 24 SAMPLE DILUTED/BLANK CORRECTED
- 25 MD (NON-DETECTED)
- 26 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS/BLANK CORRECTED
- 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE
- 28 FOST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE PQL
- 39 ANALYZED BY METHOD OF STANDARD ADDITIONS
- 30 METHOD PERFORMANCE STUDY HAS NOT BEEN COMPLETED/ND(NON-DETECTED)
- 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT
- 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED . . .
- 33 NON-POTABLE WATER SOURCE
- 34 VOLATILE ASP CODES
 - (B) POSSIBLE/PROBABLE BLANK CONTAMINATION (D) ALL COMPOUNDS IDENTIFIED AT A SECONDARY DILUTION FACTOR (J) DETECTED BELOW THE CRQL
- 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES
- 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
- 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
- 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS)
 PER DAY OF CL2
- 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY . .
- 40 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS)
 PER DAY LAS
- 41 RESULTS ARE REPORTED ON AN AS REC.D BASIS AND AS A SECOND BASIS AND - THE SAMPLE WAS ANALYZED ON A TOTAL BASIS: THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL TCLP VALUE
- 43 METAL BY CONCENTRATION PROCEDURE
- 44 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY

Upstate Laboratories, Inc. Chain of Custody Record 6034 Corporate Drive . E. Syracuse, NY 13057-1017 Fax 437 1209 (315) 437 0255 Client Project # / Project Name Sterling Environmental Buftalo Brake Beam Time LADRE Site Location (city/state) (Lab Notification Con-Client Contact: Phone # 824-2407 Lack awania, NY Wayne Comeron required) Grab or ULI Internal Use Only Sample Location: Remarks 5) 6) 7) 8) 4) Comp. Grab 12801020 Soil 5/4/01 9:55 SB05 Grab S04/ 5/4/01/10:10 SB05 E14.6 6rob 5/4/01 11:05 Soil SB05525 5/4/01 12:45 Soil SB05 N30 W30 Gra b 5/4/01/3:20 Soil SB05 N55 5/4/01/4:25 Soil Grab SB18 03460 ULI Internal Use Only Sampled by: (Please Print) sample bottle: type size pres. parameter and method Delivery (check one): Wayne Cameron ☐ ULI Sampled Pickup Dropoff Steding Environmental Too CI Received by: (Signature) Relinguished by: (Signature) Date Relinquished by: (Signature) Date Received by: (Signature) Drum Sills Received by: (Signature) Relinguished by: (Signature) Date Time Rec'd for Lab by: (Signature) Relinquished by: (Signature) Date 🛝 Time he numbered columns above cross-reference with the numbered columns in the upper right-hand corner

REMEDIAL ACTIVITIES REPORT

Gasoline Spill Area NYDEC spill # 9708447 Buffalo Brake Beam Site 400 Ingham Ave Lackawanna, NY

Prepared: June 2001
By: Sterling Environmental Services, Inc.
1372 Clinton Street
Buffalo, NY 14206

Table of Contents

1. Introduction			page 3
2. Remedial Activities	1		page 3
2.1 Sa fe ty			page 3
2.2 Mobilization and Prep	paration		page 4
2.3 Excavation of Soils			page 4
Sampling and Analysis			page 6
Wap of Original Excavation	on and Sample Points		page 7
Map of Second Excavation	n and Sample Points	•	page 8
ammary Tables of Analy	rtical Results		page 9
Conclusion			page 14
appendixes and Attachm	ents		
- Appendix One		Upstate Laboratorie	s Report
- Appendix Two		Photographs of Ex	cavation
- Appendix Three		Dump Truck Activit	y Report

1. Introduction

The following Remedial Activities Report presents an in-depth description of the activities performed to delineate and further remediate NYSDEC spill # 9708447 (also referred to as the Gasoline Spill Area) Buffalo Brake Beam Site located at 400 Ingham Avenue, Lackawanna NY.

The New York State Department of Environmental Conservation originally issued the site spill # 9708447 in October 1997, after contaminated soil was discovered during an excavation project for a new building addition.

Sterling Environmental Services Inc. was then contracted in November 1997 to remediate the contaminated soils from the property so the proposed building could continue. The remedial activities required 212 tons of material to be removed and shipped to Modern Landfill Inc.; Model City, NY for disposal purposes. However, it was discovered at the time of excavation of the contaminated materials that contaminants extended under the footer and beneath the floor of the existing manufacturing building. Considering any further excavation would jeopardize the existing manufacturing facility, the NYSDEC issued a "Closed-Inactive" decision for the site.

As a result of the business recently being sold, the new owner, Miner Enterprises inc. required as a condition of sale that the remaining contaminants be removed from the site. As a voluntary action (not required by local, state, or federal regulators), Sterling Environmental Services Inc. was commissioned to commence investigation and remedial activities taking place inside the manufacturing facility "crane room". A scope of pertinent information relative to remedial activities, follow-up sampling, analytical results, and conclusive actions is contained herein.

2. Remedial Activities

2.1. **Safety**

All remedial activities took place over a period of 4 working days beginning on Friday June 1, 2001 and continuing Monday the 4th, Tuesday the 5th and Friday June 8th, 2001. Remedial activities were set up and performed in accordance with all applicable laws, standards, and criteria.

Sterling employees donned level D protection and minimized exposure to contaminants by following a site-specific health and safety program that included hourly air monitoring. This was to ensure not only the respiratory safety of those involved in remedial activities, but also those employees of the plant who could possibly be exposed to contaminants.

Proper steps were taken to provide adequate ventilation within the facility. All exhaust fans were engaged along with the opening of all overhead and man doors in proximity to the remedial work area. This was done also to provided ample ventilation for the exhaust fumes of the heavy equipment used in excavating the contaminated soils.

Safe boundary lines were set up with yellow caution tape to keep unauthorized personnel out of the remedial area while work was in progress. This also ensured a safe observation area and adequate space for excavating equipment to operate without danger to human health.

2.2. Mobilization And Preparation

All equipment necessary for remedial activities was mobilized on Friday June 1, 2001. Crushed stone was delivered to the site and placed in the rail siding, using a backhoe to create a ramp for equipment access to the crane bay floor. Equipment used for excavation purposes included a machine mounted hydraulic jackhammer to break up the floor and an excavator to remove the concrete and underlying soils. All excavated material was direct loaded for disposal at CID – Division of Waste Management.

Sterling Environmental provided hand tools including; shovels, pick axes and brooms, along with sampling equipment and the PID (photo ionization detector) for air monitoring and soil screening. Sterling also provided pumping equipment and accessories in case any water was encountered during excavation. A portable Baker Tank was spotted on-site for temporary storage of any water encountered during excavation activities. No significant amount of water was encountered during excavation and the tank was not was not used.

Immediately prior to excavation, guardrails and posts were removed from the floor in the loading area to allow room for equipment to operate. A portable steet bridge was also taken out and replaced with smaller aluminum scaffolding.

Then, all miscellaneous items were removed from the wall area including some metal scraps, an air compressor, two old air canisters, and the above ground portion of the latex paint dip tank drain pipe. This allowed better access to the soils closest to the column and footer of the building.

2.3 Excavation of Soils

Preliminary excavation limits were established based upon available information. Two geoprobe points from the Earth Tech, Baseline Environmental Site Assessment showed unacceptable levels of contaminants. The one point was located in the southwest corner of the main floor of the crane bay and the rail siding retaining wall. (The western side of the west wall of the crane bay in this area was the site of the 1997 removal action.) The other point showing contamination was

located roughly due east of this point; three quarters of the way across the crane bay. A third geoprobe point located to the north of and between these two points, at the southeast comer of the latex paint dip tank, was considered clean.

The concrete floor was broken up, in the identified area of contamination, using the machine mounted hydraulic hammer. Excavation commenced at the southwest corner of the main floor of the crane bay and the rail siding retaining walt. Significant odors of aged gasoline were encountered at shallow depth in this corner. Excavation proceeded to the north following the west walt of the crane bay to just past the next column line. Odors diminished both with depth and distance from the southwest corner.

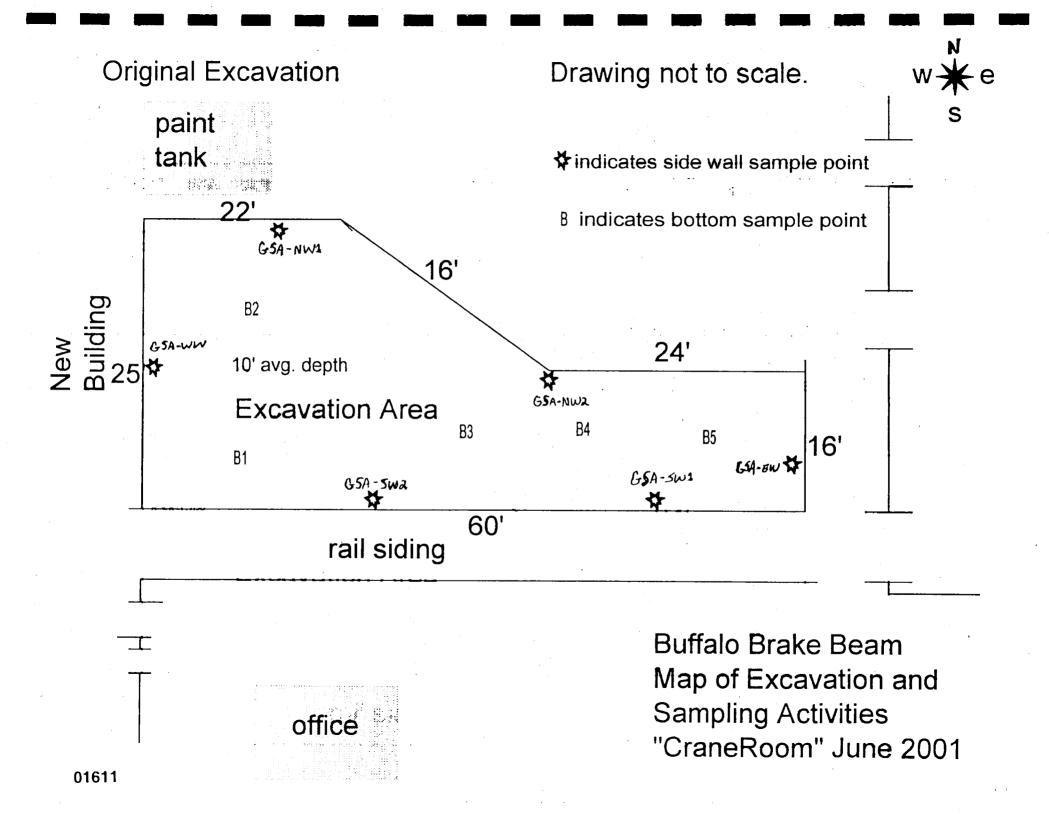
Particular care was taken in excavating this area both to slope the excavation below the footing to protect the building structure and to locate an in-house high voltage feed that ran through the excavation area but could not be precisely located. The high voltage feed was located during excavation and found to be in a conduit attached to the rail siding retaining wall directly above the footing.

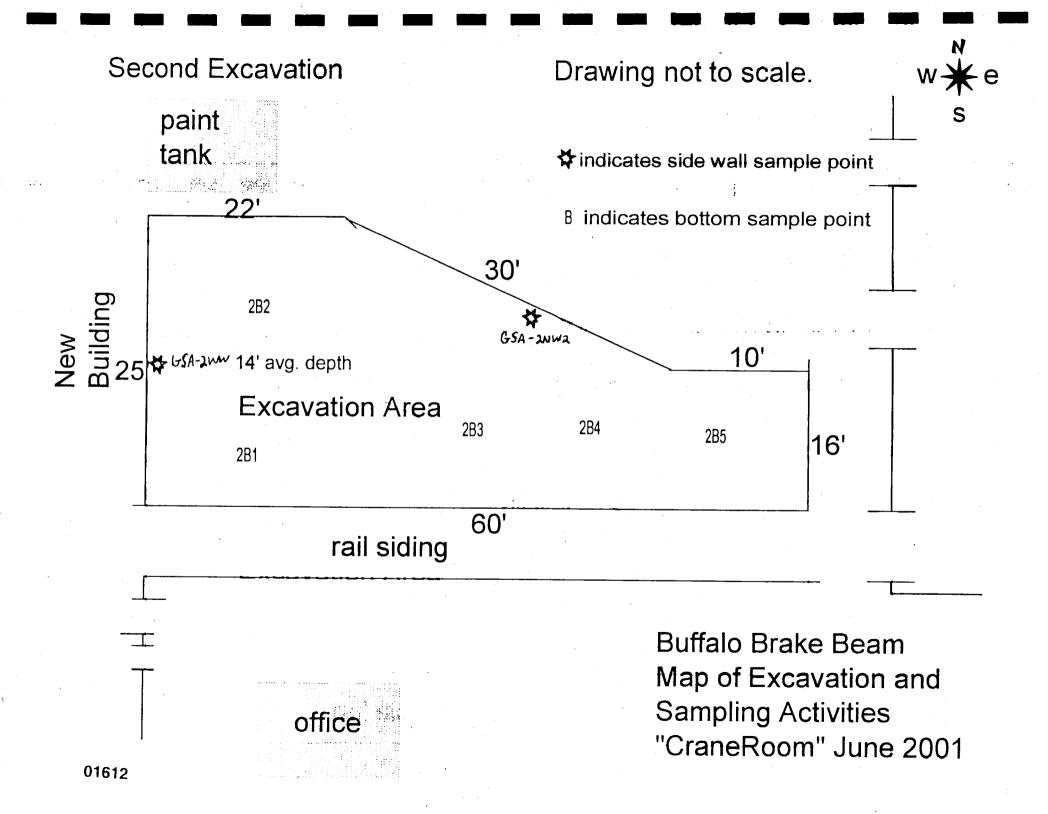
No visual evidence of contamination was observed in the excavation with the exception of sheen present on the soil in the conduit bedding following the top of the footing of the rail siding retaining wall. This visual evidence diminished as the excavation proceeded to the east and was no longer observed at the eastern end of the excavation.

All excavated materials were direct loaded to dump trucks for transport to CID — Division of Waste Management for disposal as non-hazardous gasoline contaminated soil.

Excavation proceeded downward and outward from the southwest comer until visual, olfactory and PID screening indicated that a potentially clean limit had been obtained. The resulting excavation was to an average depth of 11 feet and measured 25 feet along the west walf, 60 feet across the crane bay following the rail siding the retaining wall and tapering, in an irregular fashion, to 16 feet along the east wall. A total of 563 tons of soil were removed and disposed of at CID in the initial removal action.

Confirmation samples were collected from the sidewalls and bottom of the excavation and submitted to a lab for analysis. Details of the sampling and analysis are included in the following section. Three of the seven samples collected failed to meet the cleanup objectives. These included the sample from below the footing of the west side wall, the eastern sample from the north sidewall and the composite sample from the bottom.


Additional excavation was undertaken on Friday June 8th to remove as much material as possible from between the support columns of the west wall; to cut back the eastern portion of the north wall and further clean out the bottom. The west wall


below the footing was cut back nearly to vertical between the support columns while maintaining a supporting slope to protect the column bases. An irregular protruding comer on the eastern end of the north wall where the failing sample was taken was cut back to a more gradual angle. The entire bottom was redressed and a gravel lens with elevated PID readings was found four inches below the surface in the central area of the excavation. The gravel lens was approximately 18 inches thick. Approximately three additional feet of soil was removed in this area including the lens and underlying soil. A total of 142 additional tons of soil were removed in this second round of excavation. The west wall below the footing, the eastern portion of the north wall and the bottom were resampled after this second round of removal. Analytical results for the north wall and bottom were below the cleanup objectives. As anticipated the soil beneath the footing on the west wall did not meet the cleanup objectives. No further removal could be performed in this direction without jeopardizing the structural integrity of the building. Therefore excavation activities were concluded and the excavation was back-filled.

3. Sampling and Analysis

Confirmation samples were collected from the excavation following each round of excavation. Individual grab samples were collected from the sidewalls and a five point composite sample was collected from the bottom of the excavation. Two sidewall samples, a western and an eastern one, were collected from the north and south walls in the initial round of sampling due to their relative length. Sidewall samples were collected approximately 18 inches above the bottom of the excavation at the center of the west and east wall and at the center of the eastern and western halves of the north and south walls. The second round of sampling only included the areas that failed the first round and were re-excavated. All samples were submitted to Upstate Laboratories, Inc. under standard chain of custody procedures, for analysis for the NYSDEC STARS analyte list of VOC's by EPA Method 8260 and TOC.

The following pages contain summary tables of the analytical results for each sample and the TAGM 4046 Recommended Soil Cleanup Objective with adjustment for TOC. All concentrations, with the exception of TOC, are expressed in PPM for comparison purposes. Copies of the laboratory report and chain of custody are attached along with diagrams showing the sample locations.

Analytical Results Summary Tables in PPM (mg/Kg) Sample # GSA-WW TOC Level: 3.3852

Constit ue nt	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<2.700	0.06	0.20
Ethylbe n zene	<2.700	5.5	18.62
Toluene ·	<2.700	1.5	5.08
Total Xylene	7.700	1.2	4.06
Isopropyl Benzene	38.000	5.0	16.93
n-Propylbenzene	3.200	14.0	47.39
p-Isopropyl Toluene	<2.700	11.0	37.24
1,2,4-TrimethylBenzene	11.000	13.0	44.01
1,3,5-TrimethylBenzene	<2.700	33.0	111.71
n-Butyl Benzene	8.000	18.0	60.93
sec-Butyl Benzene	<2.700	25.0	84.63
Naphth al ene	3.500	13.0	44.01
MTBE	<2.700	0.12	0.41
i-Butylb e nzens	<2.700	10.0	. 33.85

Sample # GSA-NW1 TOC Level: 2.4864

Constitueni	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<0.530	0.06	0.15
Ethylbenzene	<0.530	5.5	13.66
Toluene	<0.530	1.5	3.73
Total X yle ne	<1.06	1.2	2.98
Isopropyi Benzene	11.000	5.0	12.43
n-Propylbenzene	0.850	14.0	34.81
p-Isopropyl Toluene	< 0.530	11.0	27.35
1,2,4-TrimethylBenzene	3.000	13.0	32.32
1,3,5-TrimethylBenzene	<0.530	33.0	82.05
n-Butyl B enzene	2.600	18.0	44.76
sec-Butyl Benzene	1.300	25.0	62.16
Naphth al ene	0.620	13.0	32.32
MTBE .	< 0.530	0.12	0.30
t-Butylbenzene	<0.5 30	10.0	24.86

Analytical Results Summary Tables in PPM (mg/Kg) Sample # GSA-NW2 TOC Level: 1.4054

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene /	< 0.540	0.06	0.08
Ethy lben zene	<0 .540	5.5	7.73
Tolu e ne	< 0.540	1.5	2.11
Total Xylene	<1.08	1.2	1.69
Isopropyl Benzene	19.000	5.0	7.03
n-Propylbenzene	1.500	14.0	19.68
p-Isopropyl Toluene	<0.540	11.0	15.46
1,2,4-TrimethylBenzene	3.000	13.0	18.27
1,3,5-TrimethylBenzene	< 0.540	33.0	46.38
n-Butyl Benzene	3.200	18.0	25.30
sec-Bu ty l Benzene	1.600	25.0	35.14
Naphthalene	< 0.540	13.0	18.27
MTBE	. <0.540	0.12	0.17
t-But y lb e nzene	< 0.540	10.0	14.05

Sample # GSA-EW TOC Level: 1.5603

Constituent	Sample Results	TA GM 4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzen e	<0.260	0.06	0.09
Ethylbenzene	<0.260	5.5	8.58
Toluene	<0.260	1.5	2.34
Total Xylene	0 .490	1.2	1.87
Isopropyl Benzene	6.600	5.0	7.80
n-Propylbenzene	0.690	14.0	21.84
p-Isopropyl Toluene	< 0.260	11.0	17.16
1,2,4-TrimethylBenzene	1.400	13.0	20.28
1,3,5-TrimethylBenzene	<0.260	33.0	51.49
n-Butyl B enzene	0.910	18.0	28,09
sec-Butyl Benzene	0.610	25.0 ≺	39.01
Naphth al ene	<0.260	13.0	20.28
MTBE	<0.260	0.12	0.19
t-Butylbenzene	<0.2 60	10.0	15.60

Analytical Results

Summary Tables in PPM (mg/Kg)
Sample # GSA-SW1
TOC Level: 1.6864

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<0.270	0.06	0.10
Ethylbenzene	<0.270	5.5	9.28
Tolue ne	<0.270	1.5	2.53
Total Xylene	0.360	1.2	2.02
Isopropyl Benzene	3.200	5.0	8.43
n-Propylbenzene	<0.270	14.0	23.61
p-Isopropyl Toluene	<0.270	11.0	18.55
1,2,4-TrimethylBenzene	0.880	13.0	21.92
1,3,5-TrimethylBenzene	< 0.270	33.0	55.65
n-Butyl Benzene	0.580	18.0	30.35
sec-Butyl Benzene	<0.270	25.0	42.16
Napht h alene	0.390	13.0	21.92
MTBE	: <0.270	0.12	0.20
t-Butylbenzene	<0.270	10.0	16.86

Sample # GSA-SW2 TOC Level: 1.5377

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<0.270	0.06	0.09
Ethylb e nzene	<0.270	5.5	8,46
Toluene	< 0.270	1.5	2.31
Total Xylene	0.300	1.2	1.85
Isopropyl Benzene	4.100	5.0	7.69
n-Propylbenzene	0.400	14.0	21.53
p-Isopropyl Toluene	<0.270	11.0	16.91
1,2,4- Tr imethylBenzene	1.300	13.0	19.99
1,3,5-TrimethylBenzene	< 0.270	33.0	50.74
n-Butyl Benzene	0.980	18.0	27.68
sec-Butyl Benzene	0.410	25.0	38.44
Naphthalene	0 .580	13.0	19.99
MTBE	<0.270	0.12	0.18
t-Butylbenzene	<0.270	10.0	15.38

Analytical Results

Summary Tables in PPM (mg/Kg) Sample # GSA-B TOC Level: 1.0488

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<1.300	0.06	0.06
Ethylbenzene	2.200	5.5	5.77 ·
Toluene	<1.300	1.5	1.57
Total Xylene	9,200	1.2	1.26
Isopropyl Benzene	42.000	5.0	5.24
n-Propylbenzene	3.500	14.0	14.68
p-Isopropyl Toluene	<1.300	11.0	11.54
1,2,4-TrimethylBenzene	11.000	13.0	13.63
1,3,5- Tr imethylBenzene	<1.300	33.0	34.61
n-Butyl Benzene	9.500	18.0	18.88
sec-Butyl Benzene	4.000	25.0	26.22
Napht ha lene	5.800	13.0	13.63
MTBE	<1.300	0.12	0.13
t-Butylbenzene	<1.300	10.0	10.49

Sample # GSA-2NW2 TOC Level: 3.5377

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	< 0.003	0.06	0.21
Ethylb e nzene	<0.003	5.5	19.46
Toluene	<0.003	1.5	5.31
Total Xylene	0.017	1.2	4.25
Isopropyl Benzene	0.040	5.0	17.69
n-Propylbenzene	< 0.003	14.0	49.53
p-Isopropyl Toluene	< 0.003	11.0	38.91
1,2,4- Tr imethylBenzene	0.062	13.0	45.99
1,3,5-TrimethylBenzene	< 0.003	33.0	116.74
n-Butyl Benzene	<0.003	18.0	63.68
sec-B ut yl Benzene	< 0.003	25.0	88.44
Naphthalene	0.014	13.0	45.99
MTBE	<0.003	0.12	0.42
t-Buty lb enzene	<0.003	10.0	35.38

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # GSA-2WW
TOC Level: 1.2381

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	<0.500	0.06	0.07
Ethylbenzene	<0 .500	5.5	6.81
Toluene	< 0.500	1.5	1.86
Total Xylene	<1.000	1.2	1.49
Isopropyl Benzene	8.400	5.0	6.19
n-Propylbenzene	0.630	14.0	17.33
p-Isopropyl Toluene	<0.500	11.0	13.62
1,2,4-TrimethylBenzene	2.600	13.0	16.10
1,3,5- Tr imethylBenzene	<0.500	33.0	40.86
n-Butyl Benzene	<0.500	18.0	22.29
sec-Butyl Benzene	0.880	25.0	30.95
Napht h alene	1.800	13.0	16.10
MTBE	. <0.500	0.12	0.15
t-Butylbenzene	<0.500	10.0	12.38

Sample # GSA-2B1-5 TOC Level: 1.4666

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective	Soil Cleanup Objective Adjusted for TOC%
Benzene	< 0.003	0.06	0.09
Ethylb e nzene	<0.003	5.5	8.07
Toluene	<0.003	1.5	2.20
Total Xylene	<0.006	1.2	1.76
Isopropyl Benzene	0.083	5.0	7.33
n-Propylbenzene	<0.003	14.0	20.53
p-Isop ro pyl Toluene	< 0.003	11.0	16.13
1,2,4-TrimethylBenzene	0.049	13.0	19.07
1,3,5-TrimethylBenzene	<0.003	33.0	48.40
n-Butyl Benzene	< 0.003	18.0	26.40
sec-Butyl Benzene	< 0.003	25.0	36.67
Naphthalene	0 .017	13.0	19.07
MTBE	<0.003	0.12	0.18
t-Buty lb enzene	<0.003	10.0	14.67

4. Conclusion

A total of 705 tons of gasoline contaminated soil were removed and disposed of at CID – Division of Waste Management in this voluntary remedial action. Lab analysis of confirmation samples collected from the bottom and the north, east and south side walls of the completed excavation showed all constituents of concern to be below the TOC adjusted recommended soil cleanup objectives of TAGM 4046. Lab analysis of the confirmation sample from the west wall below the footing showed Isopropyl Benzene in a concentration exceeding the TOC adjusted recommended soil cleanup objective. All of the soil that could be removed in this direction without jeopardizing the structural integrity of the building support wall was removed in this remedial action.

A prior remedial action for this same spill, in 1997, removed contaminated soil from the east side of the same wall at this location. The 1997 remedial action removed all contaminated soil on the east side of the wall with the exception of a slope below the footing to protect the support wall.

The remaining contaminated soil is in an area approximately 25 feet long north and south, starting at a depth of four feet below grade, the width of the footing, and sloping outward to the east and west to a depth of approximately 10 feet. The surface of this area on both sides of the wall is covered by concrete floor and is under roof. The bottom depth of the contaminated zone is greater than four feet above the groundwater table.

The remaining contaminated soil is de minimis in quantity, is separated from the surface and groundwater by at least four feet and is protected from rainwater percolation. The likelihood of any impact to human health or groundwater is considered minimal and no further action is recommended at this time. In the event that this building is demolished in the future, this remaining contamination should be addressed.

A monitoring well, MW13, installed by Earth Tech as part of the Baseline Environmental Site Assessment, is located down gradient from this spill site. Earth Tech attempted to sample this well in December 2000 but there was insufficient water present to obtain a sample. This well will be monitored on a quarterly basis for the presence of water. If a sufficient volume of water is present to obtain a sample the well will be sampled and the sample analyzed for the NYSDEC STARS analyte list of constituents of concern for gasoline to assess any groundwater impact from this spill. If the samples do not indicate any impact or if no sufficient volume of water for sampling is observed by the second quarter of 2002 this mater will be considered closed.

Appendix One

Upstate Laboratories Report

Shipping: 6034 Corporate Dr. • E. Suracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209

Mailling: Box 289 • Suracuse, NY 13206

Buffalo (716) 649-2533 Rochester (716) 436-9070

Albany (518) 459-3134 Binghamton (607) 724-0478

June 18, 2001

New Jersey (201) 703-1324

Mr. Wayne K. Cameron Project Manager Sterling Env. Services, Inc. 1372 Clinton St. Buffalo, NY 14206

Analysis Report #15701067 - Buffalo Brake Beam

Dear Mr. Cameron:

Please find enclosed the results for your samples which were received on June 5, 2001.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. Sc.

Director

AJS/jd

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Faxed results were given to your office on 6/7/01. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

01620

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVACE QC:______ Lab I.D.: 10170

GSA-WW 1215H 06/05/01 G

ULI I.D.: 15701067	· ·	Matrix: Soil			
PARAMET E RS	· ·	RESULTS	DATE ANAL.	KEY	file#
Percent Solids		92%	06/07/01		WD5030
TOC	:	33,852mg/kg	06/05/01		SC0001
EPA 8260 Petroleum, 1	NYSDEC STARS	List			
Benzene	•	<2700ug/kg dw	06/06/01	05	VM3462
Ethylbenzene		<2700ug/kg dw	06/06/01	05	VM3462
Toluene	:	<2700ug/kg dw	06/06/01	05	VM3462
o-X y lene		3000ug/kg dw	06/06/01		VM3462
m-Xylene & p-Xylene	3	4700ug/kg dw	06/06/01		VM3462
Isopropyl Benzene		38,000ug/kg dw	06/06/01		VM3462
n-Propylbenzene		3200ug/kg dw	06/06/01		VM3462
p-Isopropyl Toluene	9	<2700ug/kg dw	06/06/01	05	VM3462
1,2,4-Trimethylbenz		11,000ug/kg dw	06/06/01		VM3462
1,3,5-Trimethylbenz		<2700ug/kg dw	06/05/01	05	VM3462
n-Butyl Benzene		8000ug/kg dw	06/06/01		VM3462
sec-Butyl Benzene	: *	<2700ug/kg dw	06/06/01	05	VM3462
Nap h thalene		3500ug/kg dw	06/06/01		VM3462
MTBE	i	<2700ug/kg dw	06/06/01	05	VM3462
t-Butylbenzene		<2700ug/kg dw	06/06/01	05	VM3462

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM j.

Sampled by: Client

APPROVAL

QC: Lab I.D.: 10170

GSA-NW-1 1225H 06/05/01 G

ULI I.D.: 15701068	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	file#
Percent Solids	94%	06/ 07/ 01		WD5030
TOC	24,864mg/kg	06/06/01		SC0001
EPA 8260 Petroleum, NYSDEC	STARS List			
Benzene	<530ug/kg dw	06/ 06/01	05	VM3462
Ethylbenzene	<530ug/kg dw	06/06/01	05	VM3462
Toluene	<530ug/kg dw	06/06/01	05	VM3462
o-X y lene	<530ug/kg dw	06/ 05/01	. 05	VM3462
m-X y lene & p-Xylene	<530ug/kg dw	06/ 06/01	05	VM3462
Isopropyl Benzene	11,000ug/kg dw	06/06/01		VM3462
n-Propylbenzene	850ug/kg dw	06/ 05/01		VM3462
p-I so propyl Toluene	<530ug/kg dw	06/ 06/01	05	VM3462
1,2,4-Trimethylbenzene	3000ug/kg dw	06/ 06/01		VM3462
1,3,5-Trimethylbenzene	<530ug/kg dw	06/0 6/01	05	VM3462
n-Butyl Benzene	2600ug/kg dw	06/ 06/01		VM3462
sec-Butyl Benzene	1300ug/kg dw	06/ 06/01		VM3462
Nap h thalene	620ug/kg dw	06/ 06/01		VM3462
MTBE	<530ug/kg dw	06/ 06/01	05	VM3462
t-Butylbenzene	<530ug/kg dw	06/0 6/01	05	VM3462

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

APPROVAL
QC:_____
Lab I.D.: 10170

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

GSA-NW2 1230H 06/05/01 G

<540ug/kg dw

06/06/01

05

VM3462

ULI I.D.: 15701069	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	93%	06/ 07/ 01		WD5030
TOC	14,054mg/kg	06/06/01		SC0001
EPA 8260 Petroleum, NYSDEC	STARS List			
Ben ze ne	<540ug/kg dw	06/ 06/0 1	05	VM3462
Ethylbenzene	<540ug/kg dw <540ug/kg dw	06/05/01	05	VM3462
Toluene	<540ug/kg dw <540ug/kg dw	06/05/01	05	VM3462
o-X yl ene	<540ug/kg dw <540ug/kg dw	06/05/01	05	VM3462
m-X yl ene & p-Xylene	<540ug/kg dw	06/05/01	05	VM3462
Isopropyl Benzene	19,000ug/kg dw	06/06/01	0.5	VM3462
n-Propylbenzene	15,000dg/kg dw	06/05/01		VM3462
p-Isopropyl Toluene	. <540ug/kg dw	06/06/01	05	VM3462
1,2,4-Trimethylbenzene	3000ug/kg dw	06/06/01		VM3462
1,3,5-Trimethylbenzene	<540ug/kg dw	06/06/01	05	VM3462
n-Butyl Benzene	3200ug/kg dw	06/06/01		VM3462
sec-Butyl Benzene	1600ug/kg dw	06/06/01		VM3462
Nap ht halene	<540ug/kg dw	06/05/01	05	VM3462
MTBE	<540ug/kg dw	06/06/01	05	VM3462

dw = Dry weight

t-Butylbenzene

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL QC: Lab I.D.: 10170

G:	SA-	EW	1	235H	0	6/05/01	G

ULI I.D.: 15701070	Matrix: Soil				
PARAMET ER S	RESULTS	DATE ANAL.	KEY	FILE#	
Percent Solids	95%	06/07/01		WD5030	
TOC	15,603mg/kg	06/ 06/01		SC 0001	
EPA 8260 Petroleum, NYSDEC STARS Lis	st .				
Benzene	<260ug/kg dw	06/06/01	05	VM3462	
Ethylbenzene	<260ug/kg dw	06/06/01	05	VM3462	
Toluene	<260ug/kg dw	06/06/01	05	VM3462	
o-X yl ene	<260ug/kg dw	06/06/01	05	VM3462	
m-X yl ene & p-Xylene	49 0ug/kg dw	06/ 06/01		VM3462	
Isopropyl Benzene	6600ug/kg dw	06/ 06/01		VM3462	
n-Propylbenzene	690ug/kg dw	06/ 06/01		VM3462	
p-Isopropyl Toluene	<260ug/kg dw	06/06/01	05	VM3462	
1,2,4-Trimethylbenzene	1400ug/kg dw	06/ 06/01		VM3462	
1,3,5-Trimethylbenzene	<260ug/kg dw	06/06/01	05	VM3462	
n-Butyl Benzene	910ug/kg dw	06/ 06/01		VM3462	
sec-Butyl Benzene	610ug/kg dw	06/06/01		VM3462	
Naphthalene ;	<260ug/kg dw	06/06/01	05	VM3462	
MTBE	<260ug/kg dw	06/06/01	05	VM3462	
t-Butylbenzene	<260ug/kg dw	06/ 06/01	05	VM3462	

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BRAM

Sampled by: Client

APPROVAL QC: Lab I.D.: 10170

GSA-SW1 1240H 06/05/01 G

TLT T.D.: 15701071	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	94%	06/ 07/ 01		WD5030
TOC	16,864mg/kg	06/06/01		SC0001
EPA 8260 Petroleum, NYSDEC STARS	List			
Ben ze ne	<270ug/kg dw	06/0 6/0 1	05	VM3462
Ethylbenzene	<270ug/kg dw	06/ 06/0 1	05	VM3462
Toluene	<270ug/kg dw	06/ 05/0 1	05	VM3462
o-X yl ene	<270ug/kg dw	06/06/01	05	VM3462
m-X yl ene & p-Xylene	360ug/kg dw	06/ 06/01		VM3462
Isopropyl Benzene	3200ug/kg dw	06/ 06/01		VM3462
n-Propylbenzene	<270ug/kg dw	06/ 06/01	05	VM3462
p-Isopropyl Toluene	. <270ug/kg dw	06/ 05/0 1	05	VM3462
1,2,4-Trimethylbenzene	880ug/kg dw	06/ 06/01		VM3462
1,3,5-Trimethylbenzene	<270ug/kg dw	06/ 05/0 1	05	VM3462
n-Butyl Benzene	580ug/kg dw	06/06/01		VM3462
sec-Butyl Benzene	<270ug/kg dw	06/06/01	05	VM3462
Naphthalene	390ug/kg dw	06/06/01		VM3462
MTBE	<270ug/kg dw	06/06/01	05	VM3462
t-Butylbenzene	<270ug/kg dw	06/ 06/0 1	05	VM3462

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL
QC:
Lab I.D.: 10170

BUFFALO BRAKE BEAM

GSA-SW2 1245H 06/05/01-G

ULI T.D.: 15701072	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Per c ent Solids	94%	06/ 07/ 01		WD5030
TOC	15,377mg/kg	06/0 5/01		SC0001.
EPA 8260 Petroleum, NYSDEC S	STARS List			
Benzene	<270ug/kg dw	06/ 06/0 1	05	VM3462
Ethylbenzene	<270ug/kg dw	06/06/01	05	VM3462
Toluene	<270ug/kg dw	06/05/01	05	VM3462
o-X yl ene	<270ug/kg dw	06/06/01	. 05	VM3462
m-X yl ene & p-Xylene	300ug/kg dw	06/06/01		VM3462
Isopropyl Benzene	4100ug/kg dw	06/ 05/01		VM3462
n-Propylbenzene	400ug/kg dw	06/06/01		VM3462
p-Isopropyl Toluene	<270ug/kg dw	06/06/01	05	VM3462
1,2,4-Trimethylbenzene	. 1300ug/kg dw	06/06/01		VM3462
1,3,5-Trimethylbenzene	<270ug/kg dw	06/06/01	05	VM3462
n-Butyl Benzene	980ug/kg dw	06/ 06/01		VM3462
sec-Butyl Benzene	410ug/kg dw	06/05/01		VM3462
Naphthalene	580ug/kg dw	06/06/01		VM3462
MTBE	<270ug/kg dw	06/06/01	05	VM3462
t-Butylbenzene	<270ug/kg dw	06/06/01	05	VM3462

Upstate Laboratories, Inc.

Analysis Results

Report Number: 15701067

Client I.D.: STERLING ENV. SERVICES; INC. BUFFALO BRAKE BEAM Sampled by: Client

APPROVAL .

GSA-B 1255H 06/05/01 G

UL	ıΙ	I.	D.	:	15701073	•	Matrix: Soil

ARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#	
Percent Solids	93%	06/07/01		WD5030	
TOC	10,488 mg/kg	06/ 06/01		SC 00 01	
EPA 8260 Petroleum, NYSDEC STARS	List				
Benzene	<1300ug/kg dw	06/07/01	05	VM3465	
Ethylbenzene	2200ug/kg dw	06/07/01	••	VM3465	
Toluene	<1300ug/kg dw	06/07/01	05	VM3465	
o-X yl ene	<1300ug/kg dw	06/07/01	05	VM3465	
m-X yl ene & p-Xylene	9200ug/kg dw	06/ 07/01		VM3465	
Isopropyl Benzene	42,000ug/kg dw	06/07/01		VM3465	
n-Propylbenzene	3500ug/kg dw	06/07/01		VM3465	
p-I so propyl Toluene	· <1300ug/kg dw	06/0 7/01	05	VM3465	
1,2,4-Trimethylbenzene	11,000ug/kg dw	06/07/01		VM3465	
1,3,5-Trimethylbenzene	<1300ug/kg dw	06/07/01	05	VM3465	
n-Butyl Benzene	9500ug/kg dw	06/ 07/01		VM3465	
sec-Butyl Benzene	4000ug/kg dw	06/07/01		VM3465	
Nap ht halene	5800ug/kg dw	06/ 07/01		VM3465	
MTBE	<1300ug/kg dw	06/07/01	05	VM3465	
t-Butylbenzene	<1300ug/kg dw	06/07/01 .	0 5	VM3465	

6034 Corporate Drive • E. Syra (315) 437 0255	cuse, NY 13		Cha	in (of C	Just	od.	Y	R	(8)	3 0 1	rd]			Ų	1-	1 (4-42)
Client		Client Proje	ect # / Project	Name	-,		No.	1.61	}		1	1	T	T]		Special Turnaround
Sterling Environ	imental	Butt	alo Bra	Ke Be	am		of	Mi.		\ <u>V</u>			1				Time_24/1/r
Sterling Environmental Collect Contact: Phone # Site 7/6 Wayne Cameron 824-2407			on (city/state)	M/ C	,		Con-	85		13	ı						(Lab Notification
Wayne Comeron	824 240	Lack	awann	a., 10 '			tain-	K		10							required)
Sample Location:	Date	Time	Matrix	Grab or Comp.	ULI Inter	nal Use Only	ers	=5	2)	(X) (3)	4)	5) 6	7)	8)	9)	10)	Remarks
GSA-WW	6/5/01	12:15	Soil	Grah	1570	1067		X	(X.	X.				<u> </u>	ļ		.)
GSA-NWI	1	12:25	1			68	(i)	X	Y	Y			_				
GSA-NWI	1 1	12:30		1. 1		69	(1)	X	X,	X					İ		1.0.1
GSA-EW		12:35				70		×	(X)	7			\perp				Rush 24 Hour
GSA-SWI	<i> </i>	12:40		1 .,		71		X	(X)	 				<u> </u>			27 11000
GSA-SWZ		12:45	/	V		72		X	X	X			ļ	_			
GSA-B	V	12:55	- 4	Comp		73	(i)	X	K	X		_	_	<u> </u>	<u> </u>		<i>J</i>
				,					ļ					_			
	<u> </u>			ļ				ļ	ļ	ļļ	_		<u> </u>		<u> </u>	ļ	·
		<u> </u>	<u> </u>		:				L					1	<u> </u>		
parameter and method	• • • • • • • • • • • • • • • • • • • •	·	sample bottle:	type	size	pres.	Samp	_		_							Internal Use Only very (check one):
1)			· · · · · · · · · · · · · · · · · · ·	ļ			1	•		Car	ner	OU					LI Sampled propost
2) (% Solida) Ki	·	•		·			Comp	rany: Ste	rli	'n &	En	vir	onn	ien	Tel		e CDT
3)										-		re) Da		Tim			eived by: (Signature)
4)		•					3	<u>~3</u>	_			_ (~	5/01	32	10		Dawn Ellis
		•								.			0/1				Jawa Carry
5)	• • •		•				Relin	quish	ed b	y: (Siç	natu	re) Da	te	Tim	e	Rece	eived by: (Signature)
6)		<u> </u>		,		· •	1		_^	90	01	, 6	5/	1-	שסט		
7) .														_			
3)							Reline	quish	ed b	y: (Sig	ınatur	e) Da	te	Tim	e	Rece	eived by: (Signature)
9) 01628									,								
	·						Reline	quish	ed b	y: (Sig	natur	e) Da	te .	Tim		Rec'	digr Lab by: (Signature)
Note: The numbered columns above	cross-reference	with the nun	nbered columns	in the upper	right-han	d corner.	1						bul	M	5		L' (Man)
						•	l		<u>-</u>		·	I <i>Y</i> Y		19	-	l	1-01014

Albany

Binghamton

Fair Lawn (NJ)

Syracuse

Rochester

Upstate Laboratories inc.

Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209

Mailing: Box 289 • Syracuse, NY 13206

Albany (518) 459-3134 Binghamton (607) 724-0478

June 18, 2001

Buffalo (716) 649-2533 Rochester (716) 436-9070 New Jersey (201) 703-1324

Mr. Wayne K. Cameron Project Manager Sterling Env. Services, Inc. 1372 Clinton St. Buffalo, NY 14206

Re: Analysis Report #16201061 - Buffalo Brake Beam

Dear Mr. Cameron:

Please find enclosed the results for your samples which were received on June 11, 2001.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. Scala

Director

AJS/jd

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Note: Faxed results were given to your office on 6/12/01. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

01629

DATE: 06/18/01

Upstate Laboratories, Inc.

Analysis Results

Report Number: 16201061

Client I.D.: STERLING ENV. SERVICES, INC. Sampled by: Client

APPROVAL OS 0c: 1/2 Lab I.D.: 10170

BUFFALO BRAKE BEAM GSA-2NW2 1450H 06/08/01 G

	~			
- <u>ori</u> <u>i.b.</u> :	16201061	Matrix:		

ARAMETERS	. 4	RESULTS	DATE ANAL.	KEY	FILE#
TOC	:	35,377mg/kg	06/11/01		SC0001
EPA 8260 Petroleum	, NYSDEC STARS	List			
Benzene		<3ug/kg	06/11/01		VM347
Eth yl benzene	:	<3ug/kg	06/11/01		VM347
Toluene	: · · · ·	<3ug/kg	06/11/01		VM347
o-Xylene		17ug/kg	06/11/01		VM347
m-Xylene & p-Xyl	ene ·	<3ug/kg	06/11/01		VM347
Isopropyl Benzen	e	40ug/kg	06/11/01		VM347
n-Propylbenzene		<3ug/kg	06/11/01		VM347
p-Isopropyl Tolu	ene	<3ug/kg	06/11/01		VM347
1,2,4-Trimethylb	enzene,	62ug/kg	06/11/01		VM347
1,3,5-Trimethylb	enzene .	<3ug/kg	06/11/01		VM347
n-Butyl Benzene		<3ug/kg	06/11/01		VM347
sec-Butyl Benzen	e	<3ug/kg	06/11/01		VM347
Nap ht halene	:	14ug/kg	06/11/01		VM347
MTBE		<3ug/kg	06/11/01		VM347
t-Butylbenzene		<3ug/kg	06/11/01		VM347

dw = Dry weight

DATE: 06/18/01

Upstate Laboratories, Inc.

Analysis Results

Report Number: 16201061

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

t-Butylbenzene

BUFFALO BRAKE BEAM

APPROVAL:

Lab I.D.: 10170

06/11/01

05

VM3472

GSA-2WW 1600H 06/08/01 G

ULI I.D.: 16201062		Matrix: Soil	. – – – – –		
PARAMETERS	:	RESULTS	DATE ANAL.	KEY	FILE#
TOC		12,381mg/kg	06/11/01		SC 00 01
EPA 8260 Petroleum, NYSD	EC STARS Li	st			
Benzene		<500ug/kg	06/11/01	05	VM3472
Ethylbenzene		<500ug/kg	06/11/01	05	VM3472
Toluene		<500ug/kg	06/11/01	05	VM3472
o-Xylene	•	<500ug/kg	06/11/01	05	VM3472
m-X yl ene & p-Xylene	•	<500ug/kg	06/11/01	. 05	VM3472
Iso pr opyl Benzene	:	8400ug/kg	06/11/01		VM3472
n-Propylbenzene		630ug/kg	06/11/01		VM3472
p-Isopropyl Toluene		<500ug/kg	06/11/01	05	VM3472
1,2,4-Trimethylbenzene		2600ug/kg	06/ 11/0 1		VM3472
1,3,5-Trimethylbenzene		<500ug/kg	06/11/01	0.5	VM3472
n-Butyl Benzene		. <500ug/kg	06/11/01	05	VM3472
sec-Butyl Benzene		880ug/kg	06/11/01		VM3472
Nap ht halene	,	1800ug/kg	06/11/01		VM3472
MTBE		<500ug/kg	06/11/01	05	VM3472

<500ug/kg

dw = Dry weight .

DATE: 06/18/01

Upstate Laboratories, Inc.

Analysis Results

Report Number: 16201061

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL OC.

BUFFALO BRAKE BEAM

GSA-2B1-5 1550H 06/08/G1 G

ULI I.D.: 16201063	Matrix: Soil	· 		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
TOC	14,666mg/kg	06/11/01		SC 0001
EPA 8260 Petroleum, NYSDEC STARS L	ist			
Benzene	<3ug/kg	06/11/01		VM3472
Ethylbenzene	<3ug/kg	06/11/01		VM3472
Toluene	<3ug/kg	06/11/01		VM3472
o-Xylene	<3ug/kg	06/11/01		VM3472
m-X y lene & p-Xylene	<3ug/kg	06/11/01		VM3472
Iso pr opyl Benzene	. 83ug/kg	06/11/01		VM3472
n-Propylbenzene	<3ug/kg	06/11/01		VM3472
p-Isopropyl Toluene	<3ug/kg	06/11/01		VM3472
1,2,4-Trimethylbenzene	. 49ug/kg	06/11/01		VM3472
1,3,5-Trimethylbenzene	<3ug/kg	06/11/01		VM3472
n-Butyl Benzene	<3ug/kg	06/11/01		VM3472
sec-Butyl Benzene	<3ug/kg	06/11/01		VM3472
Nap ht halene	17ug/kg	06/11/01		VM3472
MTB E	<3ug/kg	06/11/01		VM3472
t-Butylbenzene	<3ug/kg	06/11/01		VM3472

dw = Dry weight .

Chain Of Custody Record 6034 Corporate Drive • E. Syracuse, NY 13057-1017 (315) 437 0255 Fax 437 1209 STERLING ENVIRONMENTAL BUFFALO Brake No. Special Turnaro Site Location (city/state) Client Contact Con-(Lab Notification LACKRWANNA 170the tree novema required) tain-Grab or ULI Internal Use Only Date Remarks Comp. **4)** | 5) | **6)** | 7) | **8)** | 9) | 10) GSA-2NW2 1458 16201061 Grab. GSA-2WW GSA-2B1-5 1600 501 GRAB COMP parameter and method Sampled by: (Please Print) sample bottle: type size pres. **ULI Internal Use Only** Wayne Cameron Delivery (check one): ☐ ULI Sampled Company: Pickup ☐ Dropoff Sterling Environmental CC Received by: (Signature) Relinquished by: (Signature) Date Time Received by: (Signature) Relinquished by: (Signature) | Date Time Received by: (Signature) 8) 01633 Relinquished by: (Signature) Date Time Rec'd for Lab by: (Signature) Note: The numbered columns above cross-reference with the numbered columns in the upper right-hand corner

Syracuse

Rochester

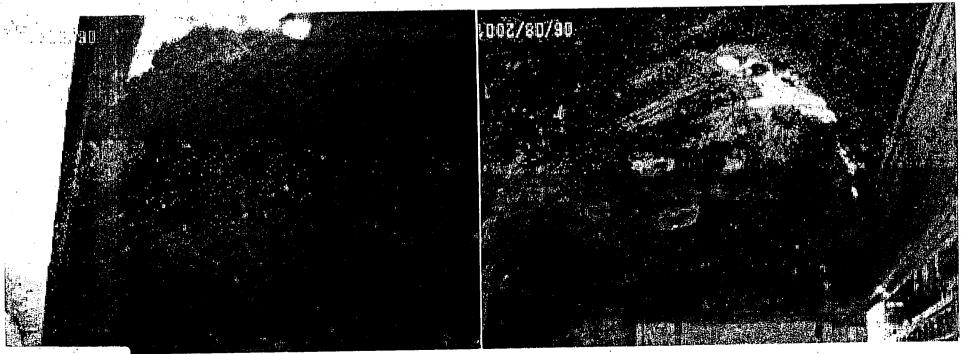
Buffalo

Albany

Binghamton

Fair Lawn (NJ)

(mm)


Appendix Two

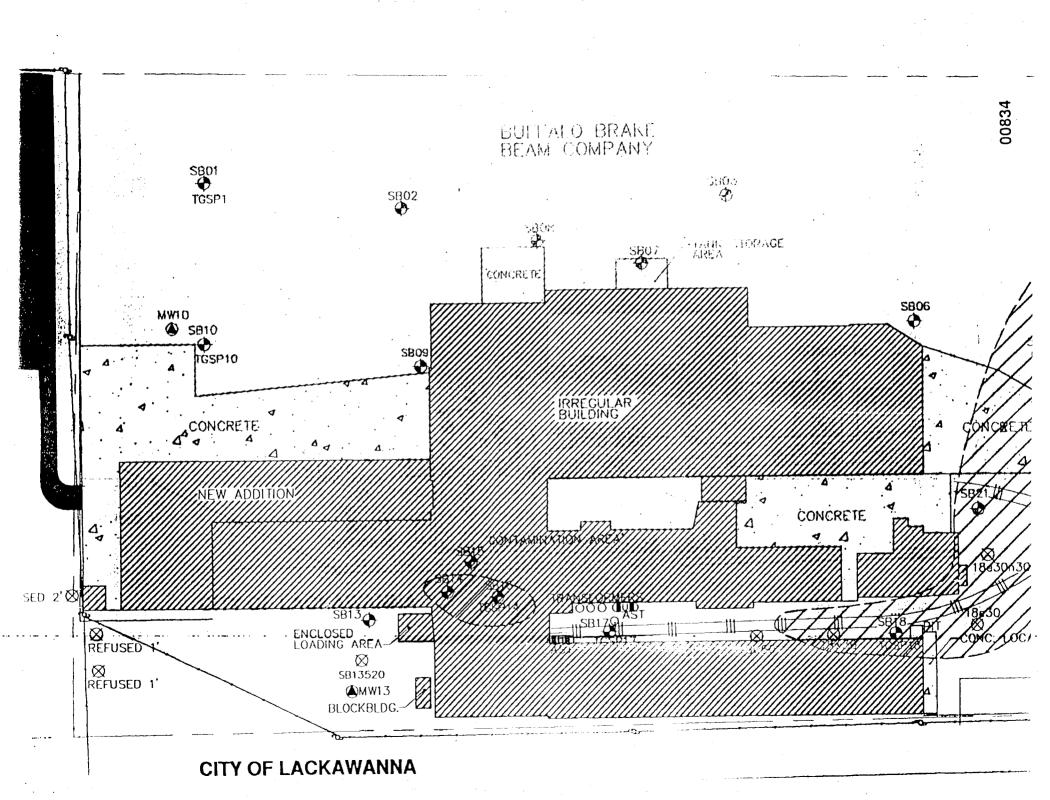
Photographs of Excavation

Appendix Three

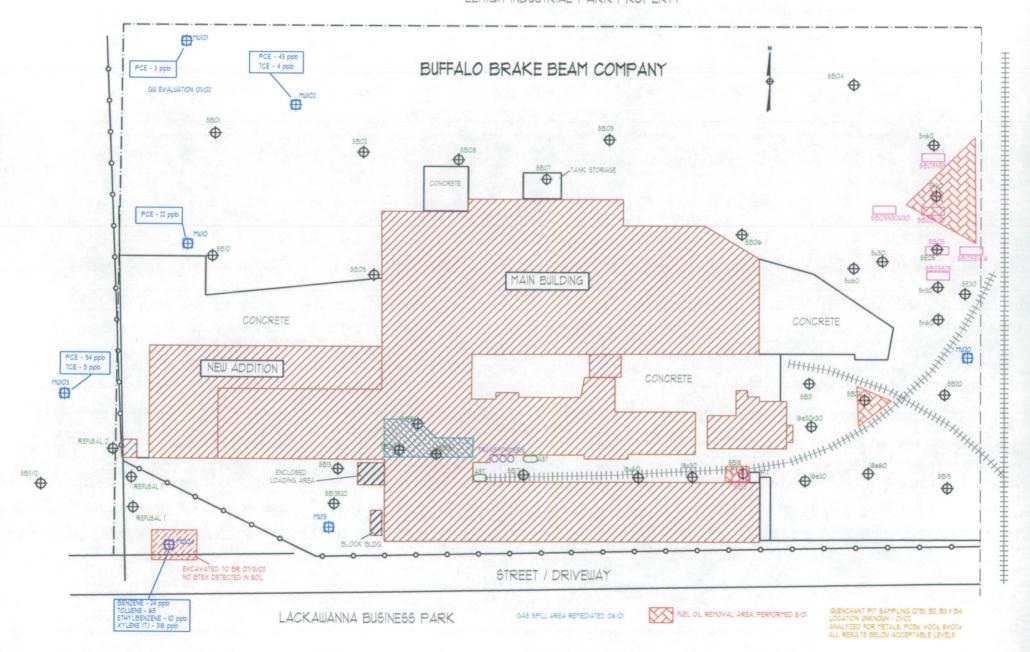
Dump Truck Activity Report

Dump Truck Activity

Date	Truck #	Time In	Time Out	Weight in Tons
6/ 1	L 42	3:30	3:45	26.75
6/ 1	L 45	3:45	4:00	21.18
6/1	A 48	4:00	4:15	27.15


Date	Truck #	Time In	Time Out	Weight in Tons
6/ 4	A 48	6:10	6:30	29.26
6/4	A 46	6:30	6:55	30.02
6/4	L 47	6:55	7:40	36.63
6/ 4	A 17	7:40	7:50	25.41
6/4	A 43	9:00	9:20	34.80
6/4	L 47	10:00	10:15	33.83
6/ 4	A 17	10:15	10:40	25.95
6/4	A 43	11:15	11:30	36.02
6/4	L 47	12:20	12:40	33.57
6/ 4	A 17	12:50	1:10	24.70
6/4	L 47	2:30	2.50	36,49

Da te	Truck#	Time In	Time Out	Weight in Tons
6/ 5	L 47	6:40	7:15	34.86
6/ 5	A 25	8:05	8:25	28.49
6/5	A 17	9:15	9:35	26.79
6/ 5	A 48	10:00	10:25	25.89
6/ 5	A 25	11:20	11:50	24.97


D a te	Truck#:	Time In	Time Out	Weight in Tons
6/8	A 32	11:15	11:35	23.36
6/ 8	L 47	1:00	1:10	37.11
6/ 8	A 32	1:25	1:40	23.67
6/8	A 46	3:10	3:20	26.02
6/ 8	L 47	3:30	3:45	31.60

Hydraulic Oil contaminated Soil from the track area - chromium & lead samples 08/94

LEHIGH INDUSTRIAL PARK PROPERTY

REMEDIAL ACTIVITIES REPORT

Fuel Oil Spill Area NYDEC spill # 0009396 Buffalo Brake Beam Site 400 Ingham Ave Lackawanna, NY

Prepared: September 2001
By: Sterling Environmental Services, Inc.
1372 Clinton Street
Buffalo, NY 14206

Table of Contents

1. Introduction				page 3
			· 	
2. Remedial Activities	•			page 3
2.1 Safety	;			page 3
2.2 Mobilization and Prepare	aration			page 4
2.3 Excavation of Soils	. (page 4
				,
3. Sampling and Analysis	• :			page 5
	· · · · · · · · · · · · · · · · · · ·	• •		7
Summary Tables of Analys	tical Result	S		page 7
4. Conclusion	!			page 20
Appendixes and Attachme	ents			
- Appe n dix One		Ul	pstate Labor	atories Report
- Appendix Two	. Ma	aps of Exca	vations and	Sample Points
- Appendix Three	!		Photographs	of Excavation
- Appendix Four		D	ump Truck /	Activity Report

1. Introduction

The following Remedial Activities Report presents a description of the activities performed to delineate and remediate NYSDEC spill # 0009396 (also referred to as the Fuel Oil Spill Area) Buffalo Brake Beam Site located at 400 Ingham Avenue, Lackawanna NY.

The New York State Department of Environmental Conservation (NYSDEC) issued the site spill # 0009396 after contaminated soils were discovered by Earth Tech Inc.(Earth Tech) during an environmental assessment of the property. Earth Tech's report, issued in December 2000, was commissioned by Miner Enterprises Inc.(Miner) while pending the purchase of the property from the prior owner. As a condition of sale, the prior owner agreed to address a number of environmental issues pertaining to the property including a possible fuel oil spill in the "yard area" east of the manufacturing facilities.

Sterling Environmental Services Inc.(Sterling) was retained to commence investigation and remediation of contaminated soils. On the basis of the Earth Tech, Baseline Environmental Site Assessment and follow-up Test pit investigation by Sterling, three distinct areas of contamination were identified within this spill area. These three areas are identified by their initial sample point identification numbers; SB05, SB22 and SB18. The following report covers remedial activities for these three areas.

A scope of pertinent information relative to remedial activities, follow-up sampling, analytical results, and conclusions is contained herein.

2. Remedial Activities

2.1. Safety

All remedial activities took place over a period of 3 working days beginning Monday August 20th, 2001 and continuing through Wednesday August 22nd, 2001. Remedial activities were set up and performed in accordance with all applicable laws, regulations and standards.

Sterling employees donned level D protection and minimized exposure to contaminants by following a site-specific health and safety program that included air monitoring. This was to ensure not only the respiratory safety of those involved in remedial activities, but also those employees of the plant who could possibly be exposed to contaminants. Monitoring, however, was deemed unnecessary after the second day due to a maximum exposure level of approximately 3ppm in the breathing zone.

Safe boundary lines were set up with yellow caution tape to keep unauthorized personnel out of the remedial area while work was in progress. This also ensured a safe observation area and adequate space for excavating equipment to operate without danger to human health.

2.2 Mobilization And Preparation

All equipment necessary for remedial activities was mobilized on the morning of Monday August 20th, 2001. The excavator used for remedial activities was provided by Kelleran Services Inc. LCA Development Inc. provided dump trucks and drivers for transporting excavated materials. Materials were direct loaded onto the trucks and transported to CID – Division of Waste Management in Chaffee, NY for proper disposal.

Sterling provided hand tools including; shovels, pick axes and brooms, along with sampling equipment and the PID (photo ionization detector) for air monitoring and soil screening. Sterling also provided pumping equipment and accessories in case any water was encountered during excavation. A portable tank was spotted on-site for temporary storage of any water encountered during excavation activities.

Excessive vegetation and some large obstructions were removed from the area north of the manufacturing facilities to create an access road for dump trucks and machinery. Some large obstructions were also removed from the excavation area prior to remedial activities.

2.3 Excavation of Soils

Excavation of contaminated soils began promptly at 6:30am on Monday August 20th in the yard area SB05. Using SB05-N30 as a starting point, excavation proceeded due east to the fence line at an initial depth of approximately six feet. A visual layer of black carbonaceous grit appeared along with a strong odor approximately two to three feet below the surface. The excavation depth was increased to ten feet based upon field screening of the bottom of the excavation. The excavation fanned out to the north and south, following visual and olfactory indicators, in the direction of the eastern fence line. Pockets of perched water were encountered at various depths and locations within the excavation. A visible sheen was noted on some of these water pockets. As the excavation continued in a north and south direction, the black carbonaceous grit layer and correlating odors gradually subsided. Once the excavation end points were established in the north, east and southerly directions, additional excavation was

performed in the westerly direction to finish the removal. The pattern of the spread of contamination in the soil created a triangular shaped excavation area 67'x82'x62' wide by 10' deep in dimension. Excavation of SB05 lasted approximately two days and resulted in the removal and disposal of 1227 tons of soil.

Excavation of contaminated soils in area SB22 began Tuesday August 21st at approximately 2:00pm. Although a significant discoloration of soil was not noticed upon excavation, a very strong odor was present. Because of its location interior to a railroad track intersection switch, the excavation started in the corner of the switch and proceeded westward along the edges of each set of tracks at a depth of about seven feet. The final excavation, finished the morning of Wednesday August 22nd, was a triangular shaped area 27'x35'x34' wide and 7' deep in dimension. A total of 220 tons of soil were removed and disposed of from the SB22 area.

The excavation of area SB18 was difficult. The area was located along a rail spur between two buildings with low hanging overhead power lines. Although strong petroleum odors were observed in the test pit in this location, significant odors were not observed during the removal operation. An old clay drain line was broken during excavation. The water contained in the pipe flooded the excavation. Approximately 125 gallons of water were pumped from the excavation to a storage tank. No sheen was observed on the water. The water was sampled and submitted to the lab for analysis along with the confirmation samples from the excavation. After dewatering the excavation was continued. The excavation was concluded after one truckload due to the lack of visual or olfactory indications of contamination. The resulting excavation was rectangular and measured 14' x 6' x 4' deep. 25 tons of soil were removed and disposed of from SB18.

3. Sampling and Analysis

All confirmation samples were taken the afternoon of Wednesday August 22nd. Multiple grab samples were taken from the three sidewalls of SB05 and composited in the field for analysis. The samples were taken approximately three to four feet from the bottom approximately ten feet from one another. Five points were sampled on the east wall, below the fence line. Two of these samples were from the black seam that ran the length of the wall at varying elevations. These five samples were combined to form composite, FSA-05-EW. Two composites were formed from the samples from both the northwest and southwest walls respectively. For the southwest wall the three eastern half samples were composited to form FSA-05-SWE and the two western half samples were composited to form FSA-05-NWS and the three northern half samples were composited to form FSA-05-NWS. A five point

bottom composite sample, FSA-05-B, was also taken from the excavation. (see appendix for map and further details).

Grab samples were taken from the three sidewalls of SB22 and composited in the field for analysis. The samples were taken approximately two to three feet from the bottom approximately ten feet from one another. Two points were sampled on the north wall. These two samples were combined to form composite, FSA-22-N. For the east wall two samples were composited to form FSA-22-E. For the southwest wall three samples were composited to form FSA-22-SW. A five point bottom composite sample, FSA-22-B, was also taken from the excavation. (see appendix for map and further details).

SB18, because of its' relatively small size, was sampled differently. One sample was collected from the center point of each sidewall and composited to form FSA-18-SW for analysis. A two point bottom composite sample, FSA-18-B, was also collected for analysis.

All samples were submitted to Upstate Laboratories, Inc. under standard chain of custody procedures, for analysis for the NYSDEC STARS analyte list of VOC's by EPA method 8260 and SVOC's by EPA method 8270.

Analytical results for all analytes for all samples for all three excavations are below the TAGM 4046 Recommended Soil Cleanup Objectives or below the detection limit. The following pages contain summary tables of the analytical results for each sample and the TAGM 4046 Recommended Soil Cleanup Objectives. All concentrations are expressed in ppm for comparison purposes. Copies of the laboratory report and chain of custody are attached along with diagrams showing the sample locations.

Analytical Results Summary Tables in PPM (mg/Kg) Sample # FSA-05-B EPA Method 8260

Constituent	Sample Results	TAGM4046
33,13,1143,11		Rec. Soil
		Cleanup
		Objective
Benzene	<0.280	0.06
Eth yl benzene	<0.280	5.5
Töluene	<0.280	1.5
Total Xylene	< 0.560	1.2
Isopropyl Benzene	<0.280	5.0
n-Propylbenzene	<0.280	14.0
p-Isop ro pyl Toluene	<0.280	11.0
1,2,4-TrimethylBenzene	<0.280	13.0
1,3,5-TrimethylBenzene	<0.280	33.0
n-Bu ty l Benzene	<0.280	18.0
sec-Butyl Benzene	<0.280	25.0
Naphthalene	<0.280	13.0
MTBE	<0.280	0.12
t-Butylbenzene	<0.280	10.0

ts TAGM4046 Rec. Soil
) · · · · · · · · · · · · · · · · · · ·
Clannin
Cleanup
Objective
50.0
50.0
50.0
50.0
50.0
0.224 or MDL
50.0
1.10
1.10
0.40
0.061 or MDL
50.0
3.20
0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-05-EW
EPA Method 8260

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective
Benzene	<0.320	0.06
Eth y lbenzene	<0.320	5.5
Töluene	<0.320	1.5
Total Xylene	<0.640	1.2
Isopr op yl Benzene	<0.320	5.0
n-Propylbenzene	< 0.320	14.0
p-Isopropyl Toluene	<0.320	11.0
1.2.4-TrimethylBenzene	< 0.320	13.0
1,3,5-TrimethylBenzene	< 0.320	33.0
n-Butyl Benzene	< 0.320	18.0
sec-Butyl Benzene	<0.320	25.0
Naphthalene	< 0.320	13.0
MTBE	< 0.320	0.12
t-Bu t ylbenzene	< 0.320	10.0

Constituent	Sample Results	TAGM4046
gg//silias//i		Rec. Soil
		Cleanup
		Objective
Anthracene	<0.430	50.0
Fluorene	0.490	50.0
Phenanthrene	0.870	50.0
Pyrene	<0.430	50.0
Acenaphthene	< 0.430	50.0
Benzo (a) anthracene	< 0.430	0.224 or MDL
Fluoranthene	< 0.430	50.0
Benzo (b) fluoranthene	< 0.430	1.10
Benzo (k) fluoranthene	< 0.430	1.10
Chrysene	< 0.430	0.40
Benzo (a) pyrene	< 0.430	0.061 or MDL
Benzo (ghi) perylene	< 0.430	50.0
Indeno (1,2,3-cd) pyrene	< 0.430	3.20
Dibenzo (a,h) anthracene	< 0.430	0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-05-SWE
EPA Method 8260

Constituent	Sample Results	TAGM4046 Rec. Soil
		Cleanup
		Objective
Benzene	< 0.300	0.06
Eth yl benzene	< 0.300	5.5
Toluene	< 0.300	1.5
Total Xylene	< 0.600	1.2
Isopropyl Benzene	<0.300	5.0
n-Propylbenzene	< 0.300	14.0
p-Isop ro pyl Toluene	< 0.300	11.0
1,2,4-TrimethylBenzene	<0.300	13.0
1,3,5-TrimethylBenzene	<0.300	33.0
n-Bu ty l Benzene	0.690	18.0
sec-Butyl Benzene	< 0.300	25.0
Naphthalene	<0.300	13.0
MTBE	<0.300	0.12
t-Butylbenzene	< 0.300	10.0

Constituent	Sample Results	TAGM4046
	•	Rec. Soil
		Cleanup
		Objective
An t hracene	0.450	50.0
Fluorene	0.810	50.0
Ph en anthrene	1.900	50.0
Pyrene	<0.400	50.0
Acenaphthene	0.580	50.0
Benzo (a) anthracene	< 0.400	0.224 or MDL
Fluoranthene	<0.400	50.0
Benzo (b) fluoranthene	< 0.400	1.10
Benzo (k) fluoranthene	< 0.400	1.10
Chrysene	<0.400	0.40
Benzo (a) pyrene	< 0.400	0.061 or MDL
Benzo (ghi) perylene	< 0.400	50.0
Indeno (1,2,3-cd) pyrene	< 0.400	3.20
Dibenzo (a,h) anthracene	< 0.400	0.014

Analytical Results Summary Tables in PPM (mg/Kg) Sample # FSA-05-SWW EPA Method 8260

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective
Benzene	<0.590	0.06
Eth y lbenzene	<0.590	5. 5
Toluene	<0.590	1.5
Total Xylene	<1.180	1.2
Isopropyl Benzene	<0.590	5.0
n-Propylbenzene	<0.590	14.0
p-Isopropyl Toluene	< 0.590	11.0
1,2,4-TrimethylBenzene	< 0.590	13.0
1,3,5-TrimethylBenzene	<0.590	33.0
n-Butyl Benzene	<0.590	18.0
sec-Butyl Benzene	<0.590	25.0
Naphthalene	<0.590	13.0
MTBE	<0.5 90	0.12
t-Butylbenzene	< 0.590	10.0

Constituent	Sample Results	TAGM4046
	•	Rec. Soil
		Cleanup
	·	Objective
A nt hracene	0.680	50.0
Fluorene	1.200	50.0
Phenanthrene	2.700	50.0
Pyrene	0.400	50.0
Acenaphthene	0.630	50.0
Benzo (a) anthracene	< 0.390	0.224 or MDL
Fluoranthene	<0.390	50. 0
Benzo (b) fluoranthene	< 0.390	1.10
Benzo (k) fluoranthene	<0.390	1.10
Chrysene	<0.390	0.40
Benzo (a) pyrene	< 0.390	0.061 or MDL
Benzo (ghi) perylene	< 0.390	50. 0
Indeno (1,2,3-cd) pyrene	< 0.390	3.20
Dibenzo (a,h) anthracene	< 0.390	0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-05-NWS
EPA Method 8260

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective
Benzene	< 0.590	0.06
Eth yl benzene	< 0.590	5.5
Toluene	<0.590	1.5
Total Xylene	<1.180	1.2
Isopropyl Benzene	< 0.590	5.0
n-Propylbenzene	<0.590	14.0
p-Isop ro pyl Toluene	< 0.590	11.0
1,2,4-TrimethylBenzene	< 0.590	13.0
1,3,5-TrimethylBenzene	< 0.590	33.0
n-Bu ty l Benzene	< 0.590	18.0
sec-Butyl Benzene	<0.590	25.0
Naphthalene	<0.590	13.0
MTBE	<0.590	0.12
t-Butylbenzene	<0.590	10.0

Constituent	Sample Results	TAGM4046
Ogrigation		Rec. Soil
		Cleanup
	· .	Objective
Anthracene	<0.390	50.0
Fiuorene	0.390	50.0
Phenanthrene	0.930	50.0
Pyrene	<0.390	50.0
Acenaphthene	< 0.390	50.0
Benzo (a) anthracene	< 0.390	0.224 or MDL
Fluoranthene	< 0.390	50.0
Benzo (b) fluoranthene	< 0.390	1.10
Benzo (k) fluoranthene	< 0.390	1.10
Chrysene	<0.390	0.40
Benzo (a) pyrene	< 0.390	0.061 or MDL
Benzo (ghi) perylene	< 0.390	50.0
Indeno (1,2,3-cd) pyrene	< 0.390	3.20
Dibenzo (a,h) anthracene	< 0.390	0.014

Analytical Results

Summary Tables in PPM (mg/Kg) Sample # FSA-05-NWN EPA Method 8260

Constituent	Sample Results	TAGM4046
		Rec. Soil
		Cleanup
·	· ·	Objective
B e nzene	<0.280	0.06
Eth yl benzene	<0.280	5.5
Toluene	<0.280	1.5
Total Xylene	< 0.560	1.2
Isopropyl Benzene	<0.280	5.0
n-Propylbenzene	: <0.280	14.0
p-Isop ro pyl Toluene	<0.280	11.0
1.2.4-TrimethylBenzene	< 0.280	13.0
1.3.5-TrimethylBenzene	< 0.280	33.0
n-Bu ty i Benzene	<0.280	18.0
sec-Butyl Benzene	<0.280	25.0
Naphthalene	<0.280	13.0
MTBE	<0.280	0.12
t-Butylbenzene	<0.280	10.0

Constituent	Sample Results	TAGM4046
	-	Rec. Soil
		Cleanup
		Objective
Anthracene	<0.380	50.0
Fluorene	<0.380	50.0
Phenanthrene	: 0.590	50.0
Pyrene	<0.380	50.0
Acenaphthene	< 0.380	50.0
Benzo (a) anthracene	< 0.380	0.224 or MDL
Fluoranthene	<0.380	50.0
Benzo (b) fluoranthene	< 0.380	1.10
Benzo (k) fluoranthene	< 0.380	1.10
Chrysene	<0.380	0.40
Benzo (a) pyrene	< 0.380	0.061 or MDL
Benzo (ghi) perylene	< 0.380	50.0
Indeno (1,2,3-cd) pyrene	<0.380	3.20
Dibenzo (a,h) anthracene	< 0.380	0.014
DIDCHZO (a,ri) artir addita	I	

Analytical Results Summary Tables in PPM (mg/Kg) Sample # FSA-22-B EPA Method 8260

Constituent	Sample Results	TAGM4046
Constituent	4.4	Rec. Soil
		Cleanup
		Objective
B e nzene	< 0.630	0.06
Ethylbenzene	< 0.630	5.5
Toluene	< 0.630	1.5
Total Xylene	<1.260	1.2
Isopropyl Benzene	< 0.630	5.0
n-Propylbenzene	: <0.630	14.0
p-Isopropyl Toluene	< 0.630	11.0
1,2,4-TrimethylBenzene	< 0.630	13.0
1,3,5-TrimethylBenzene	< 0.630	33.0
n-Bu ty l Benzene	< 0.630	18.0
sec-Butyl Benzene	< 0.630	25.0
Naphthalene	< 0.630	13.0
MTBE	< 0.630	0.12
t-Butylbenzene	<0.630	10.0

	The state of the s	
Constituent	Sample Results	TAGM4046
O Sino Lita Sino	•	Rec. Soil
·		Cleanup
		Objective
Anthracene	<0.420	50.0
Fluorene	< 0.420	50.0
Ph en anthrene	< 0.420	50.0
Pyrene	< 0.420	50.0
Acenaphthene	< 0.420	50.0
Benzo (a) anthracene	< 0.420	0.224 or MDL
Fluoranthene	< 0.420	50.0
Benzo (b) fluoranthene	< 0.420	1.10
Benzo (k) fluoranthene	< 0.420	1.10
Chrysene	<0.420	0.40
Benzo (a) pyrene	< 0.420	0.061 or MDL
Benzo (ghi) perylene	< 0.420	50.0
Indeno (1,2,3-cd) pyrene	<0.420	3.20
Dibenzo (a,h) anthracene	< 0.420	0.014
Dipolito (ajii) aliani	· · · · · · · · · · · · · · · · · · ·	

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-22-N
EPA Method 8260

Constituent	Sample Results	TAGM4046
o o notice o n	· •	Rec. Soil
		Cleanup
		Objective
Benzene	< 0.320	0.06
Eth yl benzene	< 0.320	5. 5
Toluene	<0.320	1.5
Total Xylene	< 0.640	1.2
Isopropyl Benzene	< 0.320	5.0
n-Propylbenzene	< 0.320	14.0
p-Isopropyi Toluene	< 0.320	11.0
1,2,4-TrimethylBenzene	< 0.320	13.0
1,3,5-TrimethylBenzene	< 0.320	33.0
n-Bu ty l Benzene	< 0.320	18.0
sec-Butyl Benzene	< 0.320	25.0
Naphthalene	< 0.320	13.0
MTBE	<0.320	0.12
t-Bu ty lbenzene	< 0.320	10.0

0 414 4	Sample Results	TAGM4046
Constituent	- Sample Results	Rec. Soil
		Cleanup
		Objective
		
Anthracene	0.540	50.0
Fluorene	< 0.430	50.0
Phenanthrene	1.200	50.0
Pyrene	0.790	50.0
Acenaphthene	< 0.430	50.0
Benzo (a) anthracene	< 0.430	0.224 or MDL
Fluoranthene	< 0.430	50.0
Benzo (b) fluoranthene	<0.430	1.10
Benzo (k) fluoranthene	<0.430	1.10
Chrysene	< 0.430	0.40
Benzo (a) pyrene	< 0.430	0.061 or MDL
Benzo (ghi) perylene	< 0.430	50.0
Indeno (1,2,3-cd) pyrene	< 0.430	3.20
Dibenzo (a,h) anthracene	< 0.430	0.014

Analytical Results Summary Tables in PPM (mg/Kg) Sample # FSA-22-E EPA Method 8260

Constituent	Sample Results TAGM4046 Rec. Soil Cleanup Objective	
Benzene	<0.570	0.06
Eth yi benzene	<0.570	5.5
Toluene	<0.570	1.5
Total Xylene	<1.140	1.2
Isopro p yl Benzene	< 0.570	5.0
n-Propylbenzene	< 0.570	14.0
p-Isop ro pyl Toluene	< 0.570	11.0
1,2,4-TrimethylBenzene	<0.570	13.0
1,3,5-TrimethylBenzene	<0.570	33.0
n-Bu ty l Benzene	<0.570	18.0
sec-Butyl Benzene	< 0.570	25.0
Naphthalene	<0.570	13.0
MTBE	< 0.570	0.12
t-Butylbenzene	<0.570	10.0

Constituent	Sample Results	TAGM4046
GGNGGRAGINE		Rec. Soil
		Cleanup
		Objective
Anthracene	0.640	50.0
Fluorene	0.520	50.0
Phenanthrene	1.300	50.0
Pyrene	0.740	50.0
Acenaphthene	< 0.380	50.0
Benzo (a) anthracene	< 0.380	0.224 or MDL
Fluoranthene	< 0.380	50.0
Benzo (b) fluoranthene	< 0.380	1.10
Benzo (k) fluoranthene	< 0.380	1.10
Chrysene	<0.380	0.40
Benzo (a) pyrene	<0.380	0.061 or MDL
Benzo (ghi) perylene	<0.380	50.0
Indeno (1,2,3-cd) pyrene	: <0.380	3.20
Dibenzo (a,h) anthracene	<0.380	0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-22-SW
EPA Method 8260

Constituent	Sample Results	TAGM4046
30,73 413 517	•	Rec. Soil
·		Cleanup
		Objective
Benzene	< 0.310	0.06
Eth yl benzene	< 0.310	5. 5
Toluene	< 0.310	1.5
Total Xylene	< 0.620	1.2
Isopropyl Benzene	< 0.310	5.0
n-Propylbenzene	< 0.310	14.0
p-Isop ro pyl Toluene	< 0.310	11.0
1,2,4-TrimethylBenzene	< 0.310	13.0
1,3,5-TrimethylBenzene	< 0.310	33.0
n-Bu ty l Benzene	< 0.310	18.0
sec-Butyl Benzene	< 0.310	25.0
Naphthalene	< 0.310	13.0
MTBE	< 0.310	0.12
t-Butylbenzene	< 0.310	10.0

Constituent	Sample Results	TAGM4046
	·	Rec. Soil
·		Cleanup
	9	Objective
Anthracene	0.410	50.0
Fluorene	< 0.410	50.0
Phenanthrene	0.810	50.0
Pyrene	0.680	50.0
Acenaphthene	<0.410	50.0
Benzo (a) anthracene	< 0.410	0.224 or MDL
Fluoranthene	< 0.410	50.0
Benzo (b) fluoranthene	< 0.410	1.10
Benzo (k) fluoranthene	< 0.410	1.10
Chrysene	<0.410	0.40
Benzo (a) pyrene	< 0.410	0.061 or MDL
Benzo (ghi) perylene	<0.410	50.0
Indeno (1,2,3-cd) pyrene	< 0.410	3.20
Dibenzo (a,h) anthracene	< 0.410	0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-18-B
EPA Method 8260

Constituent	Sample Results	TAGM4046
	•	Rec. Soil
	•	Cleanup
		Objective
Benzene	<0.209	0.06
Eth yl benzene	< 0.209	5. 5
Toiuene	<0.209	1.5
Total Xylene	< 0.418	1.2
Isopropyl Benzene	<0.209	5.0
n-Propylbenzene	< 0.209	14.0
p-Isopropyl Toluene	<0.209	11.0
1,2,4-TrimethylBenzene	<0.209	13.0
1,3,5-TrimethylBenzene	<0.209	33.0
n-Bu ty l Benzene	<0.209	18.0
sec-Butyl Benzene	<0.209	25.0
Naphthalene	<0.209	13.0
MTBE	<0.209	0.12
t-Butylbenzene	<0.209	10.0

Constituent	Sample Results	TAGM4046
33,13,113		Rec. Soil
		Cleanup
		Objective
A nt hracene	< 0.390	50.0
Fluorene	< 0.390	50.0
Phenanthrene	0.400	50.0
Pyrene	< 0.390	50.0
Acenaphthene	< 0.390	50.0
Benzo (a) anthracene	< 0.390	0.224 or MDL
Fluoranthene	< 0.390	50.0
Benzo (b) fluoranthene	< 0.390	1.10
Benzo (k) fluoranthene	< 0.390	1.10
Chrysene	< 0.390	0.40
Benzo (a) pyrene	< 0.390	0.061 or MDL
Benzo (ghi) perylene	< 0.390	50.0
Indeno (1,2,3-cd) pyrene	< 0.390	3.20
Dibenzo (a,h) anthracene	< 0.390	0.014

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # FSA-18-SW
EPA Method 8260

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup	
· ·		Objective	
Benzene	< 0.300	0.06	
Eth yl benzene	< 0.300	5.5	
Toluene	< 0.300	1.5	
Total Xylene	< 0.600	1.2	
Isopropyl Benzene	< 0.300	5.0	
n-Propylbenzene	0.520	14.0	
p-Isop ro pyl Toluene	< 0.300	11.0	
1,2,4-TrimethylBenzene	< 0.300	13.0	
1,3,5-TrimethylBenzene	< 0.300	33.0	
n-Bu ty l Benzene	0.720	18.0	
sec-Butyl Benzene	0.370	25.0	
Naphthalene	< 0.300	13.0	
MTBE	< 0.300	0.12	
t-Butylbenzene	<0.300	10.0	

Sample Results	TAGM4046
	Rec. Soil
	Cleanup
	Objective
1.000	50.0
0.970	50.0
3.100	50.0
0.900	50.0
0.630	50.0
<0.400	0.224 or MDL
<0.400	50.0
<0.400	1.10
<0.400	1.10
<0.400	0.40
<0.400	0.061 or MDL
<0.400	50.0
<0.400	3.20
< 0.400	0.014
	1.000 0.970 3.100 0.900 0.630 <0.400 <0.400 <0.400 <0.400 <0.400 <0.400 <0.400 <0.400

Analytical Results Summary Tables in PPM (mg/Kg) Sample # FSA-18-WATER EPA Method 8021

Constituent	Sample Results	TAGM4046 Rec. Soil Cleanup Objective
Benzene		
Eth y lbenzene		
Toluene		
Total Xylene		,
Isopr op yl Benzene		
n-Propylbenzene	1	
p-Isopropyl Toluene		
1,2,4-TrimethylBenzene		
1,3,5-TrimethylBenzene		
n-Bu ty l Benzene		
sec-Butyl Benzene		
Naphthalene		
MTBE		
t-Butylbenzene		

0 14 1	Sample Results	TAGM4046
Constituent	Sample results	Rec. Soil
		Cleanup
		Objective
Anthracene		50.0
Fluorene		50.0
Phenanthrene	:	50.0
Pyrene		50.0
Acenaphthene		50.0
Benzo (a) anthracene		0.224 or MDL
Fluoranthene		50.0
Benzo (b) fluoranthene		1.10
Benzo (k) fluoranthene	:	1.10
Chrysene		0.40
Benzo (a) pyrene		0.061 or MDL
Benzo (ghi) perylene		50.0
Indeno (1,2,3-cd) pyrene		3.20
Dibenzo (a,h) anthracene		0.014

4. Conclusion

A total of 1522 tons of fuel oil contaminated soil were removed from three locations and disposed of at CID — Division of Waste Management as part of this remedial action. Lab analysis of confirmation samples collected from the bottom and the sidewalls of each excavation showed concentrations for all analytes to be below the Recommended Soil Cleanup Objectives of TAGM 4046.

Remediation of this spill is considered complete and the excavation has been backfilled.

Upstate Laboratories inc.

Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209

Mailing: Box 289 • Syracuse, NY 13206

Buffalo (716) 649-2533 Rochester (716) 436-9070

Albanu (518) 459-3134 Binghamton (607) 724-0478

September 6, 2001

New Jersey (201) 703-1324

Mr. Wayne K. Cameron Project Manager Sterling Env. Services, Inc. 1372 Clinton St. Buffalo, NY 14206

Re: Analysis Report #23601131 - Buffalo Brake Beam/Fuel Spill Area

Dear Mr. Cameron:

Please find enclosed the results for your samples which were picked up by ULI personnel on August 23, 2001.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

onus Ocala Anthony J. (Scala

Director

AJS/jd

Enclosures: report, invoice

N. Scala, ULI cc/encs:

file

Faxed results were given to your office on 9/4/01.

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

03408

ATE: 09/06/01

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-B 1200H 08/22/01 C

ULI I.D.: 2 3601131	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
		08/28/01		WD6050
Percent Solids	90%	00/20/01		ND003
EPA 8260 Petroleum, NYSDEC STARS L	ist	•		
	<280ug/kg dw	08/27/01	01	VM359
Benzene -	<280ug/kg dw	08/27/01	01	VM359
Ethylbenzene	<280ug/kg dw	08/27/01	01	VM359
Toluen e	<280ug/kg dw	08/27/01	01	VM359
o-Xyle n e	<280ug/kg dw	08/27/01	01	VM359
m,p-xylene	<280ug/kg dw	08/27/01	01	VM359
IsopropylBenzene	<280ug/kg dw	08/27/01	01	VM359
n-Propylbenzene	<280ug/kg dw	08/27/01	01	VM35
4-IsopropylToluene	<280ug/kg dw	08/27/01	01	VM35
1,2,4-Trimethylbenzene	<280ug/kg dw	08/27/01	01	VM35
1,3,5-Trimethylbenzene	<280ug/kg dw	08/27/01	01	VM35
n-ButylBenzene	. <280ug/kg dw	08/27/01	01	VM35
sec-Bu t ylBenzene	<280ug/kg dw	08/27/01	01	VM35
Naphthalene	<280ug/kg dw	08/27/01	01	VM35
MTBE	<280ug/kg dw	08/27/01	01	VM35
tert-Butylbenzene	(200 dg) kg d#	33, 27, 32	,	
Petroleum, EPA Method 8270				
	<370ug/kg dw	09/04/01		SA29
Anthracene	<370ug/kg dw	09/04/01		SA29
Fluorene	540ug/kg dw	09/04/01		SA29
Phenanthrene	<370ug/kg dw	09/04/01		SA29
Pyrene	<370ug/kg dw	09/04/01		SA2S
Acenaphthene	<370ug/kg dw	09/04/01		SA2S
Benzo[a] anthracene :	<370ug/kg dw	09/04/01	•	SA29
Fluoranthene	. <370ug/kg dw	09/04/01		SA25
Benzo[b] fluoranthene	<370ug/kg dw	09/04/01		SA29
Benzo [k] fluoranthene		09/04/01		SA2
Chrysene	<370ug/kg dw	09/04/01		SA2
Benzo[a] pyrene	<370ug/kg dw	09/04/01		SA2
Benzo[ghi]perylene	<370ug/kg dw	09/04/01		SA2
<pre>Indeno[1,2,3-cd]pyrene</pre>	<370ug/kg dw	09/04/01		SA2S
Dibenz[a,h]anthracene	<370ug/kg dw	03/04/01		

iw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-EW 1320H 08/22/01 C

ULI I.D.: 2 3601132	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	77%	08/28/01		WD6050
EPA 8260 Petroleum, NYSDEC STARS L	ist			
	<320ug/kg dw	08/24/01		VM3587
Benzene	<320ug/kg dw	08/24/01.		VM3587
Ethylbenzene	<320ug/kg dw	08/24/01		VM3587
Toluene .	<320ug/kg dw	08/24/01		VM3587
o-Xylene	<320ug/kg dw	08/24/01		VM3581
m-Xylene & p-Xylene	<320ug/kg dw	08/24/01		VM358
IsopropylBenzene	<320ug/kg dw	08/24/01		VM358
n-Propylbenzene	<320ug/kg dw	08/24/01		VM358
p-IsopropylToluene	<320ug/kg dw	08/24/01		VM358
1,2,4-Trimethylbenzene	<320ug/kg dw	08/24/01		VM358
1,3,5-Trimethylbenzene	<320ug/kg dw	08/24/01		VM358
n-ButylBenzene	<320ug/kg dw	08/24/01		VM358
sec-ButylBenzene	<320ug/kg dw	08/24/01	•	VM35
Naphthalene	<320ug/kg dw	08/24/01		VM35
MTBE	<320ug/kg dw	08/24/01		VM35
t-Buty l benzene	2320 dg/ kg - d#	33, 21, 32		
Petroleum, EPA Method 8270,				
	<430ug/kg dw	09/04/01		SA291
Anthr ac ene	490ug/kg dw	09/04/01		SA29
Fluorene	870ug/kg dw	09/04/01		SA29
Phenanthrene	<430ug/kg dw	09/04/01		SA29
Pyrene	<430ug/kg dw	09/04/01		SA29
Acenaphthene	<430ug/kg dw	09/04/01		SA29
Benzo[a] anthracene	<430ug/kg dw	09/04/01		SA29
Fluoranthene	<430ug/kg dw	09/04/01		SA29
Benzo[b] fluoranthene	<430ug/kg dw	09/04/01		SA29
Benzo[k] fluoranthene	<430ug/kg dw	09/04/01		SA29
Chrysene :	<430ug/kg dw	09/04/01		SA29
Benzo[a]pyrene		09/04/01		SA29
Benzo[ghi]perylene	<430ug/kg dw	09/04/01		SA29
<pre>Indeno[1,2,3-cd]pyrene</pre>	<430ug/kg dw	09/04/01		SA29
Dibenz[a,h]anthracene	<430ug/kg dw	03/44/01	•	وعيمن

dw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 2360**11**31

Client I.D.: STERLING ENV. SERVICES, INC.

mpled by: Client

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-SWE 1220H 08/22/01 C

 ULI I.D.: 23601133		Matrix: Soil			
PARAMETERS	· ·	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids		83%	08/28/01		WD6050
	_				
EPA 8260 Petroleum, NYSDEC	STARS List				
		<300ug/kg dw	08/24/01	01	VM3587
Benzen e r		<300ug/kg dw	08/24/01	01	VM3587
Ethylbenzene	•	<300ug/kg dw	08/24/01	01	VM3587
Toluen e	•	<300ug/kg dw	08/24/01	01	VM3587
o-Xyle n e	£	<300ug/kg dw	08/24/01	01	VM3587
m-Xylene & p-Xylene	•	<300ug/kg dw	08/24/01	01	VM3587
IsopropylBenzene	i ·	<300ug/kg dw	08/24/01	01	VM3587
n-Propylbenzene			08/24/01	01	VM3587
p-Isop r opylToluene	i	<300ug/kg dw	08/24/01		VM3587
1,2,4-Trimethylbenzene		<300ug/kg dw	08/24/01	01	VM3587
1,3,5-Trimethylbenzene		<300ug/kg dw	08/24/01	V.	VM3587
n-ButylBenzene	:	690ug/kg dw	08/24/01	01	VM3587
sec-ButylBenzene	•	<300ug/kg dw	08/24/01	01	VM3587
Naphthalene		<300ug/kg dw	08/24/01	01	VM3587
MTBE		<300ug/kg dw		01	VM3587
t-Butylbenzene		<300ug/kg dw	08/24/01	U.L	4113367
Petroleum, EPA Method 8270	· •				
		450/l== des	09/04/01		SA2980
Anthracene	, ·	450ug/kg dw	09/04/01		SA2980
Fluorene	;	810ug/kg dw	09/04/01		SA2980
Phenanthrene		1900ug/kg dw	09/04/01		SA2980
Pyrene		<400ug/kg dw	09/04/01		SA2980
Acenaphthene :		580ug/kg dw	09/04/01		SA2980
Benzo[a] anthracene		<400ug/kg dw	09/04/01		SA2980
Fluoranthene		<400ug/kg dw	09/04/01		SA2980
Benzo[b] fluoranthene	•	<400ug/kg dw	09/04/01		SA2980
Benzo[k] fluoranthene		<400ug/kg dw	09/04/01		SA2980
Chrysene		<400ug/kg dw	09/04/01		SA2980
Benzo[a] pyrene		<400ug/kg dw	09/04/01		SA2980
Benzo[ghi]perylene		<400ug/kg dw			SA2980
Indeno[1,2,3-cd]pyrene		<400ug/kg dw	09/04/01		SA2980
Indendition and a construction of		<400ug/kg dw	09/04/01		

w = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23**6**0**11**31

Client I.D.: STERLING ENV. SERVICES, INC. Sampled by: Clien**t**

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-SWW 1235H 08/22/01 C

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
		08/28/01		WD6050
Percent Solids	85%	00/20/01		
EPA 8260 Petroleum, NYSDEC STARS L	ist			
	<590ug/kg dw	08/27/01	01	VM3590
Benzene :	<590ug/kg dw	08/27/01	01	VM3590
Ethylbenzene	<590ug/kg dw	08/27/01	.01	VM3590
Toluen e	<590ug/kg dw	08/27/01	01	VM3590
o-Xyle n e	<590ug/kg dw	08/27/01	01	VM3590
m-Xylene & p-Xylene	<590ug/kg dw	08/27/01	01	VM3590
IsopropylBenzene	<590ug/kg dw	08/27/01	01	VM3590
n-Propylbenzene	<590ug/kg dw	08/27/01	01	VM3590
p-IsopropylToluene	<590ug/kg dw	08/27/01	01	VM3590
1,2,4-Trimethylbenzene	<590ug/kg dw	08/27/01	01	VM3590
1,3,5-Trimethylbenzene	<590ug/kg dw	08/27/01	01	VM3590
n-ButylBenzene	<590ug/kg dw	08/27/01	01	VM3590
sec-Bu t ylBenzene	<590ug/kg dw	08/27/01	01	VM3590
Naphthalene	<590ug/kg dw	08/27/01	01	VM3590
MTBE	<590ug/kg dw	08/27/01	01	VM3590
t-Butylbenzene	2590ug/ kg · u · ·			
Petroleum, EPA Method 8270				
	680ug/kg dw	09/04/01		SA2980
Anthracene	1200ug/kg dw	09/04/01		SA2980
Fluorene	2700ug/kg dw	09/04/01		SA2980
Phenanthrene	400ug/kg dw	09/04/01		SA2980
Pyrene	630ug/kg dw	09/04/01		SA2980
Acena ph thene	<390ug/kg dw	09/04/01		SA2980
Benzo[a] anthracene	<390ug/kg dw	09/04/01		SA298
Fluoranthene :	<390ug/kg dw	09/04/01		SA298
Benzo[b] fluoranthene	<390ug/kg dw	09/04/01		SA298
Benzo[k] fluoranthene	<390ug/kg dw	09/04/01		SA298
Chrysene	<390ug/kg dw	09/04/01		SA298
Benzo[a] pyrene	<390ug/kg dw	09/04/01	_	SA298
Benzo[ghi]perylene	<390ug/kg dw	09/04/01	•	SA298
Indeno[1,2,3-cd]pyrene	<390ug/kg dw	09/04/01		SA298
Dibenz[a,h] anthracene	<pre><390ug/kg uw</pre>	05/01/04		

dw = Dry weight

Upstate Laboratories, Inc.

Analysis Results Report Number: 2360**1**131

Client I.D.: STERLING ENV. SERVICES, INC.

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-NWS 1250H 08/22/01 C

G			
Sampled	py:	Client	

### Percent Solids EPA 8260 Petroleum, NYSDEC STARS List Benzene"	l by: Client	:		· 		
Percent Solids EPA 8260 Petroleum, NYSDEC STARS List Ethylbenzene	- ULI I.D.: 2 3501135		Matrix: Soil	· .		
### Percent Solids EPA 8260 Petroleum, NYSDEC STARS List ###################################	PARAMETERS	; ;	RESULTS	DATE ANAL.		FILE#
Benzene		· :	85%	08/28/01		WD6050
Benzene	FPA 8260 Petroleum, NYSDE	C,STARS List				
Benzene				00/07/07		17M3 5 9 0
### Styling ### St	Benzene'	1				
Toluene						
o-Xylene m-Xylene & p-Xylene						
m-Xylene & p-Xylene	- -					
IsopropylBenzene	m-Yulene & p-Xulene					
n-Propylbenzene	IsopropylBenzene				-	
p-IsopropylToluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 2590ug/kg dw 08/27/01 01 VM359 1,3,5-Trimethylbenzene 2590ug/kg dw 08/27/01 01 VM359 1-ButylBenzene 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 08/27/01 01 VM359 2590ug/kg dw 09/04/01 SA298 2590ug	- Propelhenzene					
1,2,4-Trimethylbenzene	- IsopropylToluene					
1,3,5-Trimethylbenzene	p-igoplopylididens	1		· · ·		
n-ButylBenzene	1,2,4-111mctmy12ene					
Sec-ButylBenzene	1,3,5 all imethy is discussed		<590ug/kg dw			
Naphthalene	n-Butylbenzene	:	<590ug/kg dw			
### ##################################		•	<590ug/kg dw			
Petroleum, EPA Method 8270			<590ug/kg dw			
Anthracene		1	<590ug/kg dw	08/27/01	01	VM3590
Anthracene	Petroleum, EPA Method 827	0				
Anthracene 390ug/kg dw 09/04/01 SA298 Fluorene 930ug/kg dw 09/04/01 SA298 Phenanthrene 930ug/kg dw 09/04/01 SA298 Pyrene <a href="mailto:apentaring-nc-nc-nc-nc-nc-nc-nc-nc-nc-nc-nc-nc-nc-</td><td></td><td></td><td>200</td><td>09/04/01</td><td></td><td>SA2980</td></tr><tr><td>Fluorene 390ug/kg dw 09/04/01 SA298 Phenanthrene 930ug/kg dw 09/04/01 SA298 Pyrene <a href="</td"><td>Anthracene</td><td></td><td></td><td></td><td></td><td>SA2980</td>	Anthracene					SA2980
Phenanthrene 930ug/kg dw 09/04/01 SA298 Pyrene <390ug/kg dw	Fluorene	:				
Pyrene						
Acenaphthene	Pyrene	•				
Benzo [a] anthracene <390 ug/kg dw						
Fluoranthene	Benzo[a] anthracene				•	
Benzo [b] fluoranthene <390ug/kg dw						
Benzo [k] fluoranthene	Benzo[b] fluoranthene	•			•	
Chrysene	Benzo[k] fluoranthene					
Benzo[a]pyrene				· ·		
Benzo[ghi]perylene	Renzo (al pyrene					
Indeno[1,2,3-cd]pyrene <3900g/kg dw 00/04/01 53298	Benzo Ghilpervlene					
390ug/kg dw 09/04/01 SA298	Indepoil 2.3-cdlpvrene					
	Dibenz[a,h]anthracene		<390ug/kg dw	09/04/01		SA2980

w = Dry weight

_Upstate Laboratories, Inc.

Analysis Results Report Number: 2360**11**31

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-05-NWN 1310H 08/22/01 C

ULI I.D.: 23601136		Matrix: Soil			
PARAMETERS	•	RESULTS	DATE ANAL.	KEY	FILE#
		88%	08/28/01		WD605
Percent Solids					
EPA 8260 Petroleum, NYSDEC S	STARS List	•			€ .
Benzene		<280ug/kg dw	08/27/01	01	VM359
		<280ug/kg dw	08/27/01	01	VM359
Ethylbenzene		<280ug/kg dw	08/27/01	01	VM359
Toluen e		<280ug/kg dw	08/27/01	01	VM35
o-xylene		<280ug/kg dw	08/27/01	01	VM35
m-Xylene & p-Xylene		<280ug/kg dw	08/27/01	01	VM35
IsopropylBenzene		<280ug/kg dw	08/27/01	01	VM35
n-Propylbenzene		<280ug/kg dw	08/27/01	01	VM35
p-IsopropylToluene		<280ug/kg dw	08/27/01	. 01	VM35
1,2,4-Trimethylbenzene	•	<280ug/kg dw	08/27/01	01	VM35
1,3,5-Trimethylbenzene		<280ug/kg dw	08/27/01	01	VM35
n-ButylBenzene		<280ug/kg dw	08/27/01	01	VM3
sec-ButylBenzene		<280ug/kg dw	08/27/01	01	VM3
Naphthalene :		<280ug/kg dw	08/27/01	01	VM3
MTBE		<280ug/kg dw	08/27/01	01	VM3
t-Butylbenzene		<280 dg/ kg - dw	00,2,,02		
Petroleum, EPA Method 8270					
		<380ug/kg dw	09/04/01	,	SA2
Anthracene :	•	<380ug/kg dw	09/04/01		SA2
Fluorene		590ug/kg dw	09/04/01		SA2
Phenanthrene		<380ug/kg dw	09/04/01		SA2
Pyrene		<380ug/kg dw	09/04/01		SA2
Acena ph thene			09/04/01		SA2
Benzo[a] anthracene ;		<380ug/kg dw	09/04/01		SA2
Fluoranthene		<380ug/kg dw	09/04/01		SA2
Benzo[b] fluoranthene		<380ug/kg dw	09/04/01		SA2
Benzo[k] fluoranthene	• •	<380ug/kg dw	09/04/01	•	SA2
Chrysene		<380ug/kg dw	09/04/01		SA2
Benzo[a] pyrene		<380ug/kg dw	•		SA2
Benzo[ghi]perylene	•	<380ug/kg dw	09/04/01		SA2
Indeno[1,2,3-cd]pyrene		<380ug/kg dw	09/04/01		SA2
Dibenz[a,h] anthracene		<380ug/kg dw	09/04/01		DAZ

w = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM/

Sampled by: Client

FUEL SPILL AREA FSA-22-B 1400H 08/22/01 C

PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
****	 80%	08/28/01		WD605
Percent Solids	00%	00,20,01		
EPA 8260 Petroleum, NYSDEC STARS	List			
	<630ug/kg dw	08/27/01	01	VM359
Benzene :	<630ug/kg dw	08/27/01	01	VM359
Ethylbenzene	<630ug/kg dw	08/27/01	01	VM35
Toluene	<630ug/kg dw	08/27/01	01	VM35
o-Xyl en e	<630ug/kg dw	08/27/01	01	VM35
m-xylene & p-Xylene	<630ug/kg dw	08/27/01	01	VM35
IsopropylBenzene	<630ug/kg dw	08/27/01	01	VM35
n-Propylbenzene	<630ug/kg dw	08/27/01	01	VM35
p-Iso pr opylToluene	<630ug/kg dw	08/27/01	01	VM35
1,2,4-Trimethylbenzene	<630ug/kg dw	08/27/01	01	VM35
1,3,5-Trimethylbenzene	<630ug/kg dw	08/27/01	01	VM35
n-But yl Benzene	<630ug/kg dw	08/27/01	01	VM35
sec-ButylBenzene	<630ug/kg dw <630ug/kg dw	08/27/01	01	VM3
Naphthalene	<630ug/kg dw	08/27/01	01	VM3
MTBE	<630ug/kg dw	08/27/01	. 01	VM3
t-But yl benzene	<8304g/kg 4w	00,2,,02		
Petroleum, EPA Method 8270	·			
	<420ug/kg dw	09/04/01		SA2
Anthr ac ene i	<420ug/kg dw	09/04/01		SA2
Fluorene	<420ug/kg dw	09/04/01		SA2
Phenanthrene	<420ug/kg dw	09/04/01		SA2
Pyren e	<420ug/kg dw	09/04/01		SA2
Acenaphthene	<420ug/kg dw	09/04/01		SA2
Benzo[a] anthracene	<420ug/kg dw	09/04/01		SA2
Fluoranthene	<420ug/kg dw	09/04/01		SA2
Benzo[b] fluoranthene	<420ug/kg dw	09/04/01		SA2
Benzo[k] fluoranthene	<420ug/kg dw	09/04/01		SA2
Chrysene	<420ug/kg dw <420ug/kg dw	09/04/01		SA2
Benzo [a] pyrene	<420ug/kg dw	09/04/01		SA2
Benzo[ghi]perylene	<420ug/kg dw	09/04/01		SA2
Indeno[1,2,3-cd]pyrene	<420ug/kg dw	09/04/01		SA2
Dibenz[a,h] anthracene	<420 dg/ kg dw	33,4-,4-		

dw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM/

Sampled by: Client

APPROVAL:

1

FUEL SPILL AREA FSA-22-N 1405H 08/22/01 C

ULI I.D.: 23601138	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
Percent Solids	- 77%	08/28/01		WD605
percent solids ;				
EPA 8260 Petroleum, NYSDEC STA	RS List			
	<320ug/kg dw	08/27/01	01	VM35
Benze ne ,		08/27/01	01	VM35
Ethylbenzene	<320ug/kg dw	08/27/01	01	VM35
Toluene :	<320ug/kg dw	08/27/01	01	VM3 5
o-Xyl en e	<320ug/kg dw		01	VM3 5
m-Xylene & p-Xylene	<320ug/kg dw.	08/27/01		VM35
IsopropylBenzene ;	<320ug/kg dw	08/27/01	01	
n-Propylbenzene	<320ug/kg dw	08/27/01		VM3 5
p-Iso pr opylToluene	<320ug/kg dw	08/27/01	01	VM3 5
1,2,4-Trimethylbenzene	<320ug/kg dw	08/27/01	01	VM3 5
1,3,5-Trimethylbenzene	<320ug/kg dw	08/27/01	01	VM3
n-ButylBenzene	<320ug/kg dw	08/27/01	01	VM3
sec-ButylBenzene	<320ug/kg dw	08/27/01	01	VM3
Naphthalene	<320ug/kg dw	08/27/01	01	VM3
MTBE :	<320ug/kg dw	08/27/01	01	VM3
t-Butylbenzene	<320ug/kg dw	08/27/01	. 01	VM3
Petroleum, EPA Method 8270				
	540ug/kg dw	09/04/01		SA29
Anthracene	<430ug/kg_dw	09/04/01		SA2
Fluorene	1200ug/kg dw	09/04/01		SA2
Phenanthrene	790ug/kg dw	09/04/01		SA2
Pyrene	<430ug/kg dw	09/04/01		SA2
Acenaphthene	<430ug/kg dw	09/04/01		SA2
Benzo[a] anthracene	<430ug/kg dw	09/04/01		SA2
Fluoranthene	<430ug/kg dw	09/04/01		SA2
Benzo[b] fluoranthene	<430ug/kg dw	09/04/01	•	SA2
Benzo[k] fluoranthene	<430ug/kg dw	09/04/01		SA2
Chrysene	<430ug/kg dw <430ug/kg dw	09/04/01		SA2
Benzo[a]pyrene		09/04/01		SA2
Benzo[ghi]perylene :	<430ug/kg dw	09/04/01		SA2
Indeno[1,2,3-cd]pyrene ;	<430ug/kg dw	09/04/01		SA2
Dibenz[a,h]anthracene	<430ug/kg dw	09/04/01		JAZ

dw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 2360**1**131

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL:

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-22-E 1415H 08/22/01 C

ULĪ Ī.D.: 2 3601139	Matrix: Soil			
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
*****	88%	08/28/01		WD6050
Percent Solids	888	00/20/01		· · · · · · · · · · · · · · · · · · ·
EPA 8260 Petroleum, NYSDEC STARS	List			
****	<570ug/kg dw	08/27/01	01	VM3590
Benzene -	<570ug/kg dw	08/27/01	01	VM3590
Ethylbenzene	<570ug/kg dw	08/27/01	01	VM3590
Toluene		08/27/01	01	VM3590
o-Xyle n e	<570ug/kg dw	08/27/01	01	VM3590
m-Xylene & p-Xylene	<570ug/kg dw	08/27/01	01	VM3590
IsopropylBenzene	<570ug/kg dw	08/27/01	01	VM3590
n-Propylbenzene	<570ug/kg dw	08/27/01	01	VM3590
p-Isop r opylToluene ;	<570ug/kg dw	08/27/01	01	VM3590
1,2,4-Trimethylbenzene	<570ug/kg dw		01	VM3590
1,3,5-Trimethylbenzene	<570ug/kg dw	08/27/01	01	VM3590
n-ButylBenzene	<570ug/kg dw	08/27/01		VM3590 VM3590
sec-ButylBenzene	<570ug/kg dw	08/27/01	01	VM3590 VM3590
Naphthalene :	<570ug/kg dw	08/27/01	01	VM3590
MTBE	<570ug/kg dw	08/27/01	01	VM3590 VM3590
t-Butylbenzene	<570ug/kg dw	08/27/01	01	\W3230
Petroleum, EPA Method 8270				
				SA2980
Anthracene !	640ug/kg dw	09/04/01		
Fluorene	520ug/kg dw	09/04/01		SA2980
Phenanthrene	1300ug/kg dw	09/04/01	•	SA2980
Pyrene	740ug/kg dw	09/04/01		SA2980
Acenaphthene	<380ug/kg dw	09/04/01		SA2980
Benzo[a] anthracene	<380ug/kg dw	09/04/01		SA2980
Fluoranthene	<380ug/kg dw	09/04/01	•	SA2980
Benzo [b] fluoranthene	<380ug/kg dw	09/04/01		SA2980
Benzo [k] fluoranthene	<380ug/kg dw	09/04/01		SA2980
	<380ug/kg dw	09/04/01		SA2980
Chrysene Benzo [a] pyrene	<380ug/kg dw	09/04/01		SA2980
Benzo[a]pyrene Benzo[ghi]perylene	. <380ug/kg dw	09/04/01	•	SA2980
Indeno[1,2,3-cd]pyrene	<380ug/kg dw	09/04/01		SA2980
Dibenz[a,h]anthracene	<380ug/kg dw	09/04/01		SA2980
Dibenzia, njanthradene :				

w = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 2360**1**131

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-22-SW 1430H 08/22/01 C

ULI I.D.: 23601140	Matrix: Soil	•		
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#
***				WD6050
Percent Solids	81%	08/28/01		WD6050
EPA 8260 Petroleum, NYSDEC STARS	List			
	<310ug/kg dw	08/24/01	01	VM3587
Benzene	<310ug/kg dw <310ug/kg dw	08/24/01	01	VM3587
Ethylbenzene	2	08/24/01	01	VM3587
Toluen e	<310ug/kg dw	08/24/01	01	VM3587
o-Xyl en e	<310ug/kg dw	08/24/01	01	VM3587
m-Xylene & p-Xylene	<310ug/kg dw	08/24/01	01	VM3587
IsopropylBenzene	<310ug/kg dw	08/24/01	01	VM3581
n-Propylbenzene	<310ug/kg dw	08/24/01	01	VM358
p-IsopropylToluene	<310ug/kg dw	08/24/01	01	VM358
1,2,4-Trimethylbenzene	<310ug/kg dw	· · ·	01	VM358
1,3,5-Trimethylbenzene	<310ug/kg dw	08/24/01	61	VM358
n-ButylBenzene	<310ug/kg dw	08/24/01	01	VM358
sec-ButylBenzene	<310ug/kg dw	08/24/01	. 01	VM358
Naphthalene	<310ug/kg dw	08/24/01	01	VM358
MTBE	<310ug/kg dw	08/24/01	. 01	VM358
t-Butylbenzene	<310ug/kg dw	08/24/01	. 01	VMSSC
Petroleum, EPA Method 8270				
	/1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /	09/04/01		SA298
Anthracene	410ug/kg dw	09/04/01		SA298
Fluorene :	<410ug/kg dw	09/04/01		SA298
Phenanthrene	810ug/kg dw	•		SA298
Pyrene	680ug/kg dw	09/04/01		SA29
Acenaphthene	<410ug/kg dw	09/04/01		SA29
Benzo[a] anthracene	<410ug/kg dw	09/04/01		SA29
Fluoranthene :	<410ug/kg dw	09/04/01		SA29
Benzo[b] fluoranthene	<410ug/kg dw	09/04/01	•	SA29
Benzo[k] fluoranthene	<410ug/kg dw	09/04/01		SA29
Chrysene	<410ug/kg dw	09/04/01		
Benzo[a] pyrene	<410ug/kg dw	09/04/01	•	SA29 SA29
Benzo[ghi]perylene	<410ug/kg dw	09/04/01		
	/1	09/04/01		SA29
Indeno[1,2,3-cd]pyrene	<410ug/kg dw <410ug/kg dw	09/04/01		SA29

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM/

Sampled by: Client

APPROVAL:

FUEL SPILL AREA FSA-18-B 1455H 08/22/01 C

ULI I.D.: 23601141	Matrix: Soil				
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#	
	85%	08/28/01		WD605	
Perce nt Solids	00%	. 00/20/01		, ND 5 C	
EPA 8260 Petroleum, NYSDEC STARS I	ist				
Benze ne	<209ug/kg dw	08/24/01	01	VM35	
Ethylbenzene ,	<209ug/kg dw	08/24/01	01	VM35	
Toluene	<209ug/kg dw	08/24/01	01	VM35	
o-Xyl en e	<209ug/kg dw	08/24/01	01	VM35	
m-Xylene & p-Xylene	<209ug/kg dw	08/24/01	01	VM35	
IsopropylBenzene	<209ug/kg dw	08/24/01	01	VM3	
n-Propylbenzene	<209ug/kg dw	08/24/01	01	VM3	
p-Iso pr opylToluene	<209ug/kg dw	08/24/01	01	VM3	
1,2,4-Trimethylbenzene	<209ug/kg dw	08/24/01	01	VM3	
1,3,5-Trimethylbenzene	<209ug/kg dw	08/24/01	01	VM3	
n-ButylBenzene	<209ug/kg dw	08/24/01	01	VM3	
sec-ButylBenzene	<209ug/kg dw	08/24/01	0,1	VM3	
Naphthalene	<209ug/kg dw	08/24/01	01	VM3	
MTBE	<209ug/kg dw	08/24/01	01	VM3	
t-But yl benzene	<209ug/kg dw	08/24/01	01	VM3	
Petroleum, EPA Method 8270					
	200 /1	09/04/01		SA2	
Anthr ac ene	<390ug/kg dw	09/04/01		SA2	
Fluor en e	<390ug/kg dw	09/04/01		SA2	
Phenanthrene	400ug/kg dw	09/04/01		SA2	
Pyren e	<390ug/kg dw	09/04/01		SA2	
Acena ph thene	<390ug/kg dw	09/04/01		SA2	
Benzo[a] anthracene	<390ug/kg dw	09/04/01		SA2	
Fluoranthene	<390ug/kg dw	09/04/01		SA2	
Benzo[b] fluoranthene	<390ug/kg dw			SA2	
Benzo[k] fluoranthene	<390ug/kg dw	09/04/01 09/04/01		SA2 SA2	
Chrysene	<390ug/kg dw	09/04/01		SA2	
Benzo[a]pyrene	<390ug/kg dw	09/04/01		SA2	
Benzo[ghi]perylene	<390ug/kg dw	09/04/01		SA2	
Indeno[1,2,3-cd]pyrene	<390ug/kg dw	, ,		SA2	
Dibenz[a,h]anthracene	<390ug/kg dw	09/04/01	•	5AZ	

lw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL:
QC: S_____
Lab I.D.: 10170

BUFFALO BRAKE BEAM/

FUEL SPILL AREA FSA-18-SW 1500H 08/22/01 C

ULI I.D.: 23601142	Matrix: Soil				
PARAMETERS	RESULTS	DATE ANAL.	KEY	FILE#	
Percent Solids	83%	08/28/01		WD6050	
EPA 8260 Petroleum, NYSDEC STARS Lis	s t				
EPA 0200 Fectoreum, Nabbas Care	in The Control of the				
Benzene.	<300ug/kg dw	08/24/01	01	VM3587	
Ethylbenzene	<300ug/kg dw	08/24/01	01	VM3587	
Toluene	<300ug/kg dw	08/24/01	01	VM3587	
o-Xyl en e	<300ug/kg dw	08/24/01	01	VM3587	
m-Xylene & p-Xylene	<300ug/kg dw	08/24/01	01	VM3587	
IsopropylBenzene	<300ug/kg dw	08/24/01	01	VM3587	
n-Propylbenzene	520ug/kg dw	08/24/01		VM3587	
p-IsopropylToluene	<300ug/kg dw	08/24/01	01	VM3587	
1,2,4-Trimethylbenzene	<300ug/kg dw	08/24/01	01	VM3587	
1,3,5-Trimethylbenzene	<300ug/kg dw	08/24/01	01	VM3587	
	720ug/kg dw	08/24/01		VM3587	
n-ButylBenzene	370ug/kg dw	08/24/01		VM3587	
sec-ButylBenzene	<300ug/kg dw	08/24/01	01	VM3587	
Naphthalene	<300ug/kg dw	08/24/01	01	VM3587	
MTBE t-Butylbenzene	<300ug/kg dw	08/24/01	01	VM3587	
Petroleum, EPA Method 8270					
Anthracene	1000ug/kg dw	09/04/01		SA2980	
	970ug/kg dw	09/04/01		SA2980	
Fluorene Phenanthrene	3100ug/kg dw	09/04/01		SA2980	
	900ug/kg dw	09/04/01		SA2980	
Pyrene	630ug/kg dw	09/04/01		SA298	
Acenaphthene	<400ug/kg dw	09/04/01		SA298	
Benzo[a] anthracene	<400ug/kg dw	09/04/01		SA298	
Fluoranthene	<400ug/kg dw	09/04/01		SA298	
Benzo[b] fluoranthene	<400ug/kg dw	09/04/01		SA298	
Benzo[k] fluoranthene	<400ug/kg dw	09/04/01		SA298	
Chrysene	<400ug/kg dw	09/04/01		SA298	
Benzo[a] pyrene	<400ug/kg dw	09/04/01		SA298	
Benzo[ghi]perylene	<400ug/kg dw	09/04/01		SA298	
Indeno[1,2,3-cd]pyrene		09/04/01		SA2980	
Dibenz[a,h]anthracene :	<400ug/kg dw	03/04/01		DALLO	

Upstate Laboratories, Inc.

Analysis Results

Report Number: 23601131

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM/

Chrysene

Benzo[a]pyrene

Benzo [ghi] perylene

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

FUEL SPILL AREA FSA-18-WATER 0810H 08/22/01 G

APPROVAL: (

Sampled by: Client Matrix: Water - - - - - - ULI I.D.: 23601143 FILE# KEY DATE ANAL. RESULTS PARAMETERS Petroleum, EPA Method 8021 08/31/01 VA5902 01 08/31/01 01 08/31/01 01 08/31/01 01 <3ug/1Benzen**e** VA5902 <3uq/1 Ethylbenzene VA5902 <3ug/l Toluene 08/31/01 01 VA5902 <3uq/1m,p-xylene 08/31/01 01 VA5902 <3ug/1o-Xylene VA5902 08/31/01 01 <3ug/1Isopropylbenzene 01 VA5902 08/31/01 <3ug/1n-Propylbenzene VA5902 01 08/31/01 <3ug/l p-Isopropyltoluene 01 VA5902 08/31/01 <3uq/11,2,4-Trimethylbenzene VA5902 08/31/01 01 <3uq/11,3,5-Trimethylbenzene 01 VA5902 08/31/01 <3ug/1n-Butylbenzene 01 VA5902 08/31/01 <3uq/1sec-Butylbenzene 08/31/01 01 VA5902 <3uq/1t-Butylbenzene VA5902 08/31/01 01 <3ug/l Naphthalene VA5902 08/31/01 <50ug/l MTBE Petroleum, EPA Method 8270, _____ SA2981 09/03/01 <5ug/l Anthracene 09/03/01 SA2981 <5ug/1 Fluorene SA2981 09/03/01 <5ug/1Phenanthrene SA2981 09/03/01 <5ug/l Pyrene SA2981 09/03/01 <5ug/l Acena**ph**thene SA2981 09/03/01 <5ug/1Benzo[a] anthracene SA2981 09/03/01 <5ug/1Fluoranthene SA2981 09/03/01 <5ug/1Benzo[b] fluoranthene SA2981 09/03/01 <5ug/1 Benzo[k] fluoranthene 09/03/01 SA2981 <5ug/l

<5ug/l

<5ug/1

<5ug/1

<5ug/l

09/03/01

09/03/01

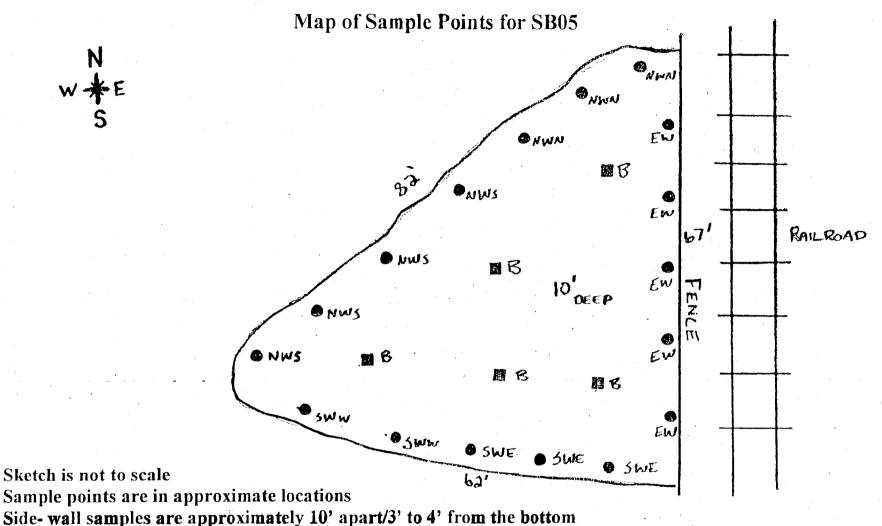
09/03/01

09/03/01

SA2981

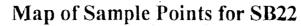
SA2981

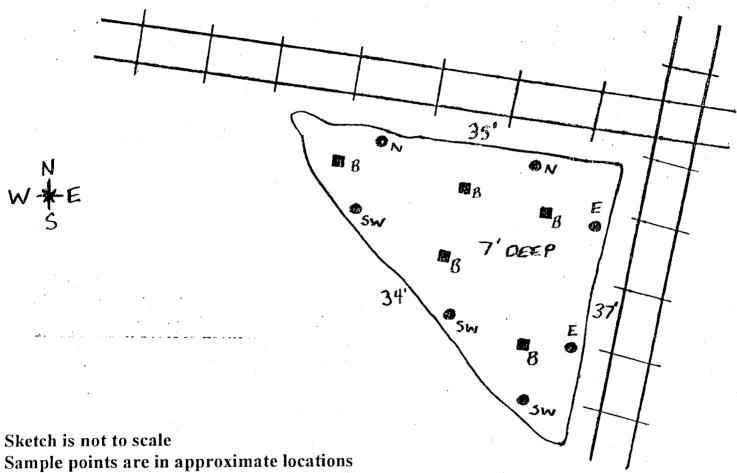
SA2981


SA2981

KEY PAGE

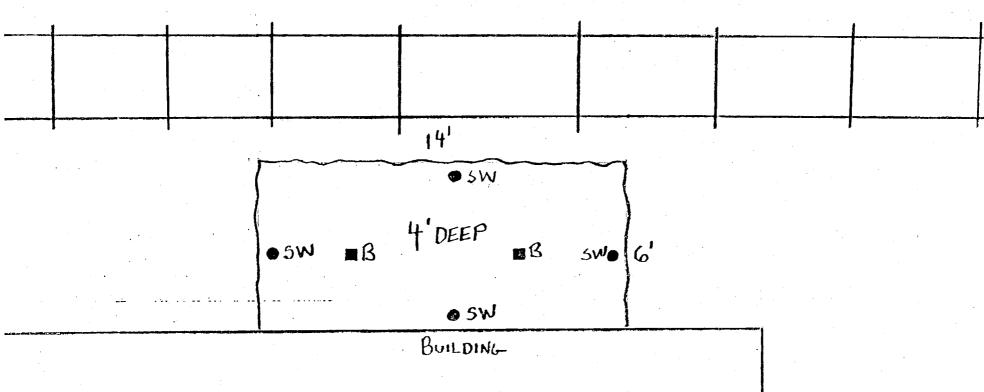
- MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
- MATRIX INTERFERENCE
- PRESENT IN BLANK 3
- ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE 4
- THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS 5
- BLANK CORRECTED
- HEAD SPACE PRESENT IN SAMPLE
- QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
- THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID 9
- 10 ADL (AVERAGE DETECTION LIMITS)
- 11 PQL(PRACTICAL QUANTITATION LIMITS)
- SAMPLE ANALYZED OVER HOLDING TIME 12
- DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM
- THE FILTERING PROCEDURE
- SAMPLED BY ULI
- 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR
- 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS
- 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
- 18 THE SERIAL DILUTION OF THIS SAMPLE SUGGESTS A POSSIBLE PHYSICAL AND/OR CHEMICAL INTERFERENT IN THIS DETERMINATION. THE DATA MAY BE BIASED EITHER HIGH OR LOW.
- 19 CALCULATION BASED ON DRY WEIGHT
- 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS
- 21 UG/KG AS REC.D / UG/KG DRY WT
- 22 MG/KG AS REC.D / MG/KG DRY WT
- INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS 23
- SAMPLE DILUTED/BLANK CORRECTED 24
- 25 ND (NON-DETECTED)
- 26 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS/BLANK CORRECTED
- SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE
- 28 POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE PQL
- ANALYZED BY METHOD OF STANDARD ADDITIONS
- 30 METHOD PERFORMANCE STUDY HAS NOT BEEN COMPLETED/ND(NON-DETECTED)
- 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT
- TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED 32
- 33 NON-POTABLE WATER SOURCE
- 34 VOLATILE ASP CODES
 - ______ (B) POSSIBLE/PROBABLE BLANK CONTAMINATION (D) ALL COMPOUNDS IDENTIFIED AT A SECONDARY DILUTION FACTOR (J) DETECTED BELOW THE CRQL
- THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON
- PETROLEUM DISTILLATES 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
- 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
- 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS)
- PER DAY OF CL2 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY
- 40 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS)
- PER DAY LAS RESULTS ARE REPORTED ON: AN AS REC.D BASIS
- THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20,
- CREATING A THEORETICAL TCLP VALUE 43 METAL BY CONCENTRATION PROCEDURE
- 44 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY


pstate Laborate 3034 Corporate Drive • E. Syrac	cuse, NY 13	11C. 9 057-1017 437 1209	Cha	lin (de C	ust	od	. y	R	e c	; @]	r (j	8/	31) t 10	Ha.	8/30/01
315) 437 0255		Client Proje	ect # / Project I	Name			No.		0	7							Special Turnaround
STERLING ENVIRONME	ENTAL SERV	BUPTALO .	Brake BEAM	FUEL	SPILL	MEA	of	200	5			1	İ			1 1	Time S_U/L/
Client Contact:		Site Location	on (city/state)	. /	-		Con-	8	62					-	-	1	(Lab Notification
	18784 2807		ANNAW	NY			tain-	72.5	3			-		-			required)
WAYNE CHMEKON	Date	Time	Matrix		ULI Interna	Use Only		12	15	ĺ]				Remarks
Pample Location:	Date	1,1110		Comp.		- · · · · ·		1)	2)	(3)	4)	5) (5) 7)	8)	9)	10)	Hemarito
F3 K-05-B	8/22/0	12:00	Soil	COMP	23hc	1131		X	X	X				-	-	-	
FSA-05-EW	8/22/01	1:30	SOIL	COMP		1399	2	X	. <	X				- -	ļ.—		
PBN-05-5WE	6/22/01	12.20	Soil	COM		133	(2)	92	1	X	.		_	_	 	·	
FSA - 05 - SWW	2/22/01	12:35	1	COMP		134	2	X	叉	(X)				-	<u> </u>	-	
=5A - 05 - NWS	8/03/01	12:50	- ·	Conf		132	2)	X	1	X			_				
FSA-05 NWN	2/32/01	1:10	3012	Conf		136	(2)	X	X	X				-			
F3A-22-B	8/22/01	2:00	301L	KOMP		137	(2)	X	X	X)			ļ	-		
FSA - 22 - N	3/22/01		5012	COMP		138	(2)	X	بح	(X)					_	-	
F3A-22-E	8/22/01	-	501L	COMP		139	12	Х.	2	X							03423
FSA-22-5W	8/27/01		Seil	Comp	1	140	2	X.	7	[X]				<u> </u>			
parameter and method			sample bottle:		size	pres.	Sāmi	pled b	oy: (P	lease	Prin	it) Laasii	201	j.			Internal Use Only ivery (check one):
10/ <0/10)	Ýc.												20X			ᅥᇛᅜ	JLI Sampled
11 /01 5000 000 1							Com	ipany:	512	RLI	ηP	EN	UIR	UNM	EUT		Pickup Dropoff
2)	<u> </u>		<u></u>		·		-						W				
3)				ļ	-		Relin	nquist	hed b	oy: (Si 	gnati	ure) l	Date		me •		eived by: (Signature)
4)			·				- Francisco	-	برساس				23	9	<i>72</i> 2	9	Mlant
5)	•				ļ		Relir	ngyisi	ηed t	oy: (Si	ignat	(Iro) 1	Date	2 Tir	me	Rec	ceived by: (Signature)
6)						 	-	Var.	46)		2//	36	2 /	12	ال	
7)			·		-		Reli	nquisl	hed I	bv: (S	iunat	ure)	Date		me	_]	ceived by: (Signature)
8)			·					75.51) · (-	g					1	
										·				_ _			
9)	<u> </u>						Reli	nquis	hed	by: (S	ignat	ure)	Date \	Ti	me	Red	c'd for kab.by: (Signature)
10) Note: The numbered columns above	ve cross-retere	nce with the n	umbered column	ns in the upp	er right-han	d corner.	-						7/V		(1)		P)(Aump
Hote. The Hamberton of Julius Has					A				amta	ا خصصه			air <u>L</u> e	wg (N. <u>41</u>		


	. 1	T		•			•					Y	13	DF	(10),
pstate Laborat 6034 Corporate Drive • E. Syra	cuse, NY 130	057-1017	Cha	uln (of Cust	ođ	y į	R.)) T Ç	L		H	'n()	8/30/01
(315) 437 0255 Client: STEPLING ENUIROWENTAL			ect # / Project I	,	FUEL SPILL MEA	No.	07:		1200						Special Turnaround
Client Contact:	Phone # (76) 824	Site Location	on (city/state)	7		Con-	STAKS 8760	200	77 A R S 20 21						(Lab Notification required)
Sample Location:	2407 Date	Time .	AWANN Matrix	Grab or	ULI Internal Use Only	tain- ers	1 1		3) (4)	5)	6)	7)	8) 9)	10)	Remarks
F3A-18-B	8/22/01	2:55	Soil	COMP	231/01/41	2	7 5	7	X						
1	8/22/01	r	Son Water	CoMP	143		× 7		X			-		-	
FSA-18-Water	12401	3 - 70											_	,	
															03424
parameter and method			sample bottle:	type	size pres	Samp	oled by	r. (Ple	ease Pr	int)					Internal Use Only
1)						Com	AJNI pany:	E. Stel	K	CA S Ex	ME	1201 2011) YENTA		ivery (check one): ULI Sampled Pickup Dropoff
2)			:	-			SER1	UICA	65 : (Signa	1.0	· .	···	 Time	E	ceiyêd,by: (Signature)
4) (% Solids) in						Heim	quisne	5 C	. (Signa	iture)	8/1	ľ	9: _{Z6}	- 1	Served by (salgification)
5)						Relin	quishe	ed by	r. (Bigna	ituro)	Date 3/	1	Time	Red	celved by. (Signature)
7)		·				Relin	nquishe	ed by	r: (Signa	ature)	Date	•	Time	Red	ceived by: (Signature)
8)			· ·			-								_	
(9)						Relin	nquishe	ed by	/: (Sign:	ature)	Date	1/01/	Time	Re	c'd for Lab, by: (Signature)
Note: The numbered columns abov	e cross-referen	ce with the nu	imbered column	s in the uppo	er right-hand corner.						Enic	<u>, , , , , , , , , , , , , , , , , , , </u>	V 1 =	_J_ 	1 1 Civilian

• = side-wall sample point

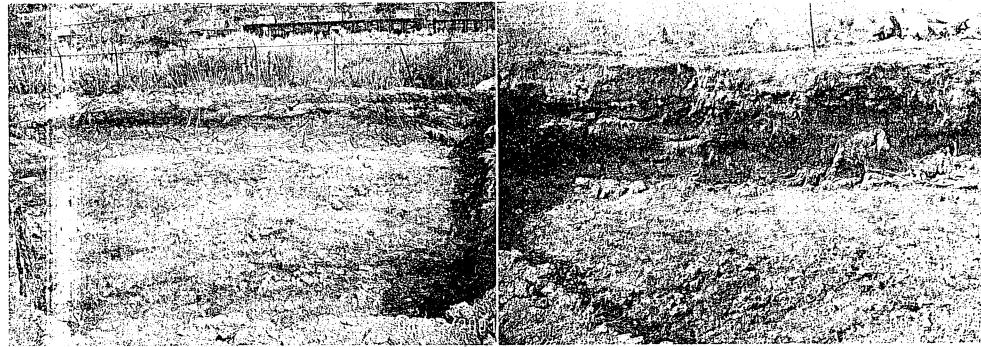
= bottom sample point

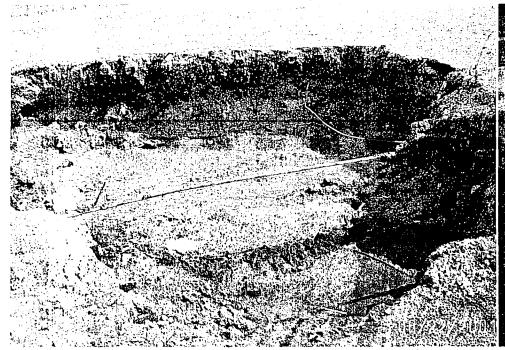


Side-wall samples are approximately 10' apart/2' to 3' from the bottom

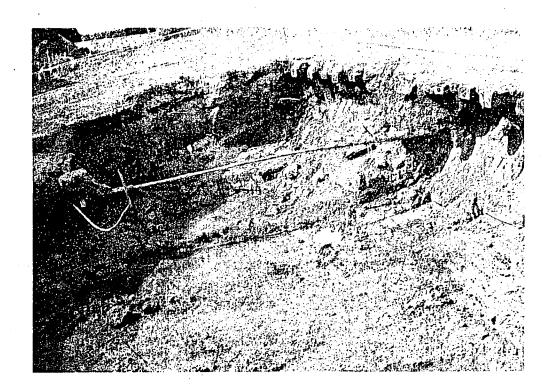
- =side-wall sample point
- =bottom sample point

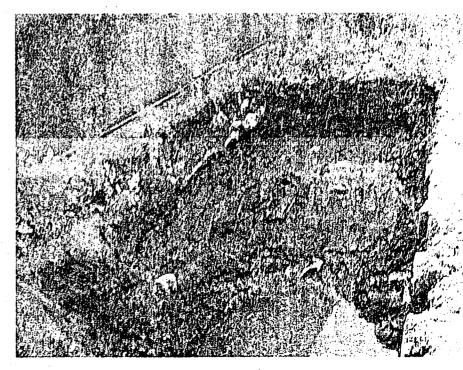
Map of Sample Points for SB18


Sketch is not to scale


Sample points are in approximate locations

Side- wall samples are centered approximately 2' from the bottom


- = side-wall sample point
- **5** =bottom sample point



Dump Truck Activity Fuel Oil Spill Area

DATE	TRUCK #	TIME IN	TIME OUT	WEIGHT/TONS
8/20/01	A 48	6:30	6:45	21.33
8/20/01	A 46	7:00	7:10	25.02
8/20/01	A 18	7:10	7:20	21.84
8/20/01	A 25	7:20	7:30	23.30
8/20/01	L 38	7:30	7:35	24.62
8/20/01	A 15	7:35	7:45	21.85
8/20/01	A 27	7:45	7:55	25.66
8/20/01	A 17	8:00	8:05	21.27
8/20/01	A 48	8:25	8:40	23.84
8/20/01	A 46	8:55	9:05	21.64
8/20/01	A 18	9:40	9:50	24.71
8/20/01	A 15	9:55	10:05	24.06
8/20/01	A 48	10:15	10:35	21.05
8/20/01	A 17	10:35	10:45	16.38**
8/20/01	A 46	10:45	10:55	24.48
8/20/01	A 48	12:10	12:15	20.72
8/20/01	A 18	12:15	12:22	21.24
8/20/01	A 15	12:22	12:30	22.43
8/20/01	A 46	12:37	12:44	25.52
8/20/01	A 17	12:45	12:52	16.30**
8/20/01	A 48	2:00	2:05	23.44
8/20/01	A 15	2:32	2:41	. 24.51
8/20/01	A 18	2:41	2:48	23.68
8/20/01	A 46	2:48	3:00	22.94
8/20/01	A 17	3:00	3:09	18.11**
8/20/01	L 47	3:10	3:25	31.10

Total Weight of Contaminated Soils Removed 8/20/01= 591.04 tons

Dump Truck Activity Fuel Oil Spill Area

DATE	TRUCK#	TIME IN	TIME OUT	WEIGHT/TONS
8/21/01	A 46	6:10	6:20	23.73
8/21/01	A 48	6:20	6:30	25.82
8/21/01	A 30	6:34	6:45	21.69
8/21/01	A 15	6:45	6:55	26.80
8/21/01	A 18	6:55	7:03	22.10
8/21/01	A 28	7:05	7:15	21.87
8/21/01	A 17	7:15	7:22	19.60
8/21/01	L 38	7:25	7:30	24.61
8/21/01	A 46	8:18	8:26	23.03
8/21/01	A 48	8:28	8:34	25.46
8/21/01	A 30	8:45	8:53	19.26
8/21/01	A 15	9:00	9:07	25.93
8/21/01	A 18	9:11	9:20	23.99
8/21/01	A 17	9:35	9:47	23.33
8/21/01	A 46	10:10	10:20	23.03
8/21/01	A 48	10:20	10:26	23.74
8/21/01	A 27	10:28	10:34	22.38
8/21/01	A 30	10:50	11:00	22.56
8/21/01	A 15	11:04	11:20	24.59
8/21/01	A 18	11:20	11:28	22.83
8/21/01	A 17	11:50	12:00	23.32
8/2:1/01	A 46	12:10	12:15	24.91
8/21/01	A 48	12:15	12:23	24.69
8/2·1/01	A 21	12:47	12:55	28.03
8/21/01	A 27	12:57	1:09	24.56
8/21/01	A 30	1:15	1:25	24.53
8/21/01	A 15	1:26	1:38	23.93
8/2:1/01	A 18	1:38	1:43	23.19
8/21/01	A 17	2:00	2:15	22.65
8/21/01	A 46	2:20	2:27	22.67
8/21/01	A 48	2:29	2:37	25.68
8/21/01	A 27	3:03	3:13	22.76
8/21/01	A 21	3:13	3:20	21.18
8/21/01	A 30	3:20	3:38	21.29
8/21/01	A 15	3:30	3:48	20.38

Total Weight of Contaminated Soils Removed 8/21/01=820.12 tons

Dump Truck Activity Fuel Oil Spill Area

DATE	TRUCK#	TIME IN	TIME OUT	WEIGHT/TONS
8/22/01	A 46	6:10	6:28	22.96
8/22/01	A 48	6:39	7:15	21.52
8/22/01	L 38	8:00	8:30	18.40
8/22/01	A 48	8:42	9:30	23.42
8/22/01	L 38	10:20	11:03	24.27

Total Weight of Contaminated Soils Removed 8/22/01=110.57 tons

Supplemental Environmental Field Investigation Report

Quenchant Pit

Buffalo Brake Beam Site 400 Ingham Avenue Lackawanna, NY

Prepared: March 2002

By: Sterling Environmental Services, Inc. 50 Lake Avenue Blasdell, NY 14219

TABLE OF CONTENTS

INTRODUCTION	p 3
SUMMARY OF FIELD ACTIVITIES & OBSERVATIONS	p. 4
DIAGRAM OF SAMPLE POINT LOCATIONS	p. 6
SUMMARY OF ANALYTICAL RESULTS	p. 7
ANALYTICAL RESULTS TABLES	p. 9
CONCLUSIONS AND RECOMMENDATIONS	p.24
ATTACHMENTS:	
UPSTATE LABORATORIES REPORT	

MSDS for UCON QUENCHANT RL

INTRODUCTION

Sterling Environmental was retained by Rigel Enterprises for the purpose of investigating further the Quenchant Pit as an area of environmental concern relating to the former Buffalo Brake Beam property. The Quenchant Pit was originally identified as an area of environmental concern in the Baseline Environmental Site Assessment prepared by Earth Tech, Inc. in December 2000. The following report will discuss sampling efforts and correlating analytical data from recent investigations along with recommendations for further action based upon the findings.

The Quenchant Pit was used to quench hot steel coming out of the heat treat furnace. UCON Quenchant RL, a solution of polyalkylene glycol was reportedly used in the quenchant bath. This product contained sodium nitrate and aminates including cyanoaminate. An MSDS for this product has been inserted as an appendix to this report.

The Quenchant Pit consisted of an open top rectangular steel tank set in a poured rectangular concrete pit approximately 16.5'x 12'x 6.5' in depth. The tank occupied most of the space of the pit with spacing of four inches to three feet between the steel and the concrete walls with the top of the tank being approximately four inches below the floor surface as to allow overflow to collect in the pit.

A visual inspection of the concrete pit after removal of the steel floor plates showed breaches in the concrete. The corners of the pit in particular, where the concrete had either broken out or the pour was incomplete, underlying soils were visible. The major concern was that of possible contamination of adjacent soils due to activities and usages of the Quenchant Pit.

An agreed upon work plan called for a minimum of four soil samples to be collected from below the floor near the quenchant pit area and submitted for lab analysis. Continuous split spoon soil cores obtained via Geoprobe were to be collected from the surface to either refusal or the water table, whichever came first. Sample intervals displaying the highest level of impact based upon visual, olfactory and headspace screening or the interval immediately above the water table were to be collected for analysis.

Sampling activities were scheduled to take place on January 21, 2002. Present for sampling activities were Wayne Cameron and Jeremy Wells of Sterling Environmental, Steve Choiniere of Earth Tech (observing representative for Miner), and 2 Geoprobe operators from Zebra Environmental.

SUMMARY OF FIELD ACTIVITIES & OBSERVATIONS

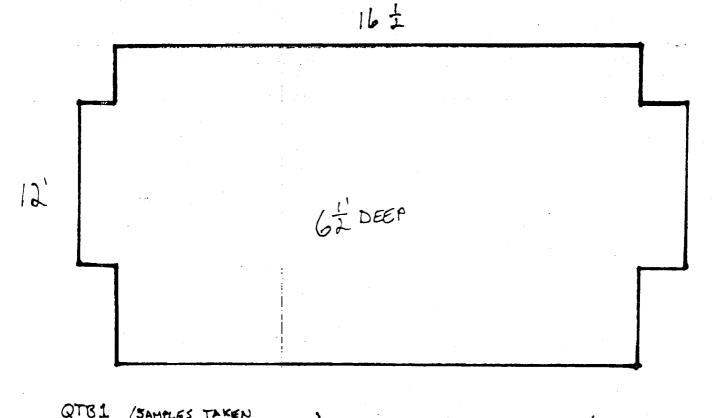
Visual inspection of the pit after removal of the sludge and steel tank revealed that the pit had been rectangular originally. The concrete sidewalls showed the pattern of wood plank forms. The majority of the north and south walls had been removed at some point and the pit was widened using plywood forms on the inside. It appeared that the soil had subsided in all four corners of this expansion once the forms were set but before the concrete was poured. This resulted in the exposed soils noted in the original inspection.

A total of four strategic Geoprobe borings were done on the south side of the Quenchant Pit. The split spoon borings were taken at 4' intervals from surface to refusal or the water table. Each soil interval was screened immediately with a PID. Samples were obtained from intervals deemed most impacted through headspace PID screening, olfactory, and visual observations. Obtained samples were labeled and handled accordingly and submitted to Upstate Laboratories for analysis under standard chain of custody procedures. A concrete wall on the north side and obstructions to the east and west of the pit made it impossible to pursue borings in those areas. The borings were named QTB1, QTB2, QTB3, and QTB4 respectively. A diagram of the pit and the boring tocations follows.

QTB1 was advanced approximately 2'south and 14" west of the southwest corner of the pit at 11:25am. Two samples were obtained; QTB1-01 at the interval of 8'-12' and QTB1-02 at the refusal interval of 16'-17'. Each depth interval and its findings are listed below:

Depth	PID	,	Observations
0'-4'		1 ppm	granutar backfill
4'-8'		12 ppm	granular backfill
8'-12'		[.] 10 ppm	granular backfill to 9.51/ gray
			clay-like with sand/ moisture @
			10'/ sample QTB1-01 taken.
12 ' -16'		'5 p pm	gray clay with wet sand
16'-1 7'		'19 ppm	refusal/ gray clay with wet sand
			sample QTB1-02 taken

QTB2 was advanced approximately 2' east and 33" south from the southeast corner of the pit at 12:20pm. No samples were obtained due to the fact that it hit refusal at 5' below the surface and the PID reading for the 0'-4' interval was only 2 ppm.


QTB3 was advanced approximately 5.5' south and 6" west of the southeast corner of the pit at 12:35 pm. One sample, QTB3-01, was taken at the 8'-12' interval due to a significant odor although there was not a significant PID reading for that interval.

Dep th	PID	3	Observations
0'-4'		.1 ppm	granular backfill
4'-8'		2 ppm	granular backfill/ clay/ odor
			around 7'
8'-1 2'		.2 ppm	gray clay and sand/ strong odor
			sample QTB3-01 taken
1 4 .5 '		no recovery	refusal

QTB4 was advanced approximately 14' south from the center of the southern wall of the pit at 1:20pm. One sample QTB4-01, was taken at the 12'-14.5' refusal interval due to a high PID reading. The PID readings were relatively high on most of the intervals at this boring, however it is possible that they are unrelated to the quenchant pit due to the distance of the location of the boring from the pit.

Dep th 0'-4' 4'-8' 8'-12' 12'-14.5'	PID 5 ppm 25 ppm 15 ppm 25 ppm	Observations granular backfill granular backfill clay and some backfill clay and some backfill refusal at 14.5'/sample
		refusal at 14.5'/sample QTB4-01 taken

DIAGRAM OF SAMPLE POINT LOCATIONS

AND HI WEST OF CORNER

(NO SAMPLES) QTB2

(SE SOUTH
AND 2' EAST
OF CORNER

SAMPLE TAKEN

GTB3-010 8'-12'

NO 6" WEST

DEF CORNER

NOTE: DRAWING IS NOT TO SCALE. POINTS AND DIMENSIONS ARE APPROXIMATE MEASUREMENTS

SAMPLE TAKEN (PY' SOUTH CENTER)

SUMMARY OF ANALYTICAL RESULTS

All four samples were analyzed for TCL Metals, SVOC's, PCB's and Cyanides. Metals were analyzed for due to the potential for alloy metals to have leached from the steel that was being quenched. Historically, oils were sometimes used as quenching agents in heat-treating processes. This raised the concern that there may have been Semi-volatiles and or PCB's introduced into the soil via overspill and leaching. Label information collected during the baseline site assessment from a drum of UCON Quenchant RL, the most recently used quenchant product, revealed cyanoaminates as a constituent. However the MSDS obtained for this product does not list cyanoaminates as a constituent. The possibility of cyanoaminates breaking down to form cyanide compounds was the basis for analyzing the samples for cyanides. Although sampling for VOC's was not part of the work plan, a field decision was made to analyze two samples, QTB1-02 and QTB4-01 for VOC's due to the high PID readings.

Analytical results are presented in the following tables with comparison to the recommended soil cleanup objective from TAGM 4046. A copy of the lab analytical report is attached.

Cyanide was below the detection limit in all four samples. For heavy metals, in general, the cleanup objective is the site background level. A site background study was not included as part of the scope of this investigation. TAGM 4046 lists Eastern USA or New York State background level ranges for many of the metals. Exceedences of the TAGM listed background levels are highlighted in bold. Nickel and Zinc were above the TAGM listed background levels in sample QTB1-01 but are well within US background levels as reported by the US Geological Survey. Likewise, Calcium and Magnesium were above the TAGM listed background levels in samples QTB1-02, QTB3-01 and QTB4-01 but within the US background levels reported by the USGS. Silver was detected in sample QTB4-01 at 6.6 ppm. No background levels are listed for Silver in TAGM 4046 or the USGS report. The generic soil screening level for Silver under the USEPA Soil Screening Guidance Technical Background Document for migration to groundwater with a 20 DAF is 34 ppm. In the other three samples Cadmium, at 1.3 to 1.8 ppm, exceeds the background levels listed. These levels are still below the EPA generic soil screening level for a 20 DAF of 8 ppm. Selenium exceeds site background levels by two to four times in three of the samples. QTB1-02, QTB3-01 and QTB4-01. Antimony was detected in two of the samples, QTB1-01 and QTB4-01 at 39 and 94 ppm respectively, above the USGS background levels of <8.8 ppm.

The semi-volatile analysis showed no specific exceedences of the TAGM 4046 recommended soil cleanup objectives. However, the detection limits for QTB1-01 were extremely high due to a high dilution level to protect the lab instrumentation.

The resulting detection limits are too high to make any determination from this sample.

PCB's were not detected in any of the four samples.

The volatile analysis showed no exceedences of the TAGM 4046 recommended soil cleanup objectives.

Analytical Results

Summary Table in PPM (mg/Kg)
Sample # QTB1-01
Matrix: Soil
Heavy Metals

Constituent	Sample Results	TAGM 4046 Rec.	*Eastern USA	**USGS
	•	Soil Cleanup	Background	Background
		Objective		Levels
Aluminum	7,800 :	SB	33,000	
Antim o ny	39 :	SB	N/A	<1-8.8
Ar s enic **	6.9	7.5 or SB	3-12	
Bariu m	42	300 or SB	15-600	
Be r yl liu m	<0.55 ·	0.16 or SB	0-1.75	
Cadmium	1.8	1 or SB	0.1-1	
Ca l ci um	1,500	SB	130-35,000	<150- 320,00
Chromium	15 1	10 or SB	1.5-40	320,00
Cobalt	57 !	30 or SB	2.5-60	
Copper	23	25 or SB	1-50	
Cyanide	<1.1		N/A	
Iron	18,000	2,000 or SB	2,000-550,000	
Lead	<11 :	SB	200-500	
Magnesium	3,800	SB	100-5,000	.005- >100,00
Manganese	180	SB	50-5,000	
Mercury	<0.17 :	0.1	0.001-0.2	
Nicke l	28***	13 or SB	0.5-25	<5-700
Potassium	2,300	SB	8,500-43,000	
Selenium	1.8	2 or SB	0.1-3.9	
Silver	<5.5	SB	N/A	
Sodium	1,600 ;	SB	6,000-8,000	·
Thallium	<0.33	SB	N/A	
Vanadium	<33	150 or SB	1-300	
Zinc	59***	20 or SB	9-50	<5-2,900

SB site background

N/A not available

- * From TAGM 4046
- ** "Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States" by Josephine G. Boerngen and Mansford T. Shacklette, US Geological Survey
- *** Level exceeds Eastern USA background as reported in TAGM4046 but is within range of US background levels as reported by USGS.

Analytical Results

Summary Table in PPM (mg/Kg)
Sample # QTB1-02
Matrix: Soil
Heavy Metals

Constituent	Sample Results	TAGM 4046 Rec.	*Eastern USA	**USGS.
	•	Soil Cleanup	Background	Background
		Objective		Level
Aluminum	3,700	SB	33,000	
Antim o ny	<32	SB	N/A	<1-8.8
Arsenic	4.1	7.5 or SB	3-12	
Barium	<32	300 or SB	15-600	
Beryllium	<0.53	0.16 or SB	0-1.75	
Cadmium	1.3	1 or SB	0.1-1	
Calcium	99,000***	SB	130-35,000	<150- 320,00
Chromium	8.4	10 or SB	1.5-40	
Cobalt	18	30 or SB	2.5-60	
Copper	16	25 or SB	1-50 .	
Cyani de	<1.1		N/A	
Iron	6,500	2,000 or SB	2,000-550,000	
Lead	<11	SB	200-500	
Magn es ium	15,000***	SB	100-5,000	.005- >100,00
Manganese	170	SB	50-5,000	
Mercury	<0.16	0.1	0.001-0.2	
Nickel	17	13 or SB	0.5-25	<5-700
Potas siu m	1,200 .	SB	8,500-43,000	
Selenium	17	2 or SB	0.1-3.9	
Silver	<5.3	SB	N/A	
Sodiu m	720	SB	6,000-8,000	
Thallium	<0.32	SB	N/A	
Vanadium	<32 .	150 or SB	1-300	
Zinc	33	20 or SB	9-50	<5-2,900

SB site background

N/A not available

* From TAGM 4046

** "Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States" by Josephine G. Boerngen and Mansford T. Shacklette, US Geological Survey

*** Level exceeds Eastern USA background as reported in TAGM4046 but is within range of US background levels as reported by USGS.

Analytical Results

Summary Table in PPM (mg/Kg)
Sample # QTB3-01
Matrix: Soil
Heavy Metals

Constituent	Sample Results	TAGM 4046 Rec.	*Eastern USA	**USGS
		Soil Cleanup	Background	Background
		Objective		Level
Aluminum	4,400	SB	33,000	
Antimony	<33	SB	N/A	<1-8.8
Arsenic	4.4	7.5 or SB	3-12	
Barium	<33 .	300 or SB	15-600	
Bery lli um	< 0.55	0.16 or SB	0-1.75	
Cadm i um	1.5	1 or SB	0.1-1	
Calcium	110,000***	SB	130-35,000	<150-320,00
Chromium	9.6	10 or SB	1.5-40	
Cobalt	26	30 or SB	2.5-60	
Copper	18	25 or SB	1-50	,
Cyan id e	<1.1	·	N/A	
Iron	8,500	2,000 or SB	2,000-550.000	
Lead	<11 .	SB	200-500	
Magn e sium	9,900***:	SB	100-5,000	.005->100,00
Manganese	200 :	SB	50-5,000	
Mercury	< 0.17	0.1	0.001-0.2	
Nickel	21 :	13 or SB	0.5-25	<5-700
Potas si um	1,500	SB	8,500-43,000	
Selenium	15	2 or SB	0.1-3.9	
Silver	<5.5	SB	N/A	
Sodium	600	SB	6,000- 8, 000	
Thallium	<0.33	SB	N/A	
Vana di um	<33	150 or SB	1-300	
Zinc	40	20 or SB	9-50	<5-2,900

SB site background N/A not available

^{*} From TAGM 4046

^{** &}quot;Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States" by Josephine G. Boerngen and Mansford T. Shacklette, US Geological Survey

^{***} Level exceeds Eastern USA background as reported in TAGM4046 but is within range of US background levels as reported by USGS.

Summary Table in PPM (mg/Kg)
Sample # QTB4-01
Matrix: Soil
Heavy Metals

Constituent	Sample Results	TAGM 4046 Rec.	*Eastern USA	**USGS
	* :	Soil Cleanup	Background	Background
	!	Objective		Level
Aluminum	3,100	SB	33,000	
Antimony	94	SB	N/A	<1-8.8
Arsenic	4.6	7.5 or SB	3-12	
Barium	34	300 or SB	15-600	
Bery lli um	< 0.55	0.16 or SB	0-1.75	
Cadmium	1.1	1 or SB	0.1-1	
Calcium	180,000***	SB	130-35,000	<150-320,00
Chromium	8.1	10 or SB	1.5-40	
Cobalt	22 :	30 or SB	2.5-60	
Copper	12	25 or SB	1-50	
Cyanide	<1.1		N/A	
Iron	6,900 .	2,000 or SB	2,000-550,000	
Lead	<11	SB	200-500	
Mag ne sium	7,600***	SB	100-5,000	.005->100,00
Manganese	250	SB	50-5,000	
Mercury	<0.16	0.1	0.001-0.2	
Nickel	15 1	13 or SB	0.5-25	<5-700
Potassium	1,100	SB	8,500-43,000	
Selenium	8.5 :	2 or SB	0.1-3.9	
Silver	6.6	SB	N/A	
Sodium	450 :	SB	6,000-8,000	
Thallium	<0.33	SB	N/A	
Vana di um	<33 :	150 or SB	1-300	
Zinc	28	20 or SB	9-50	<5-2,900

SB site background N/A not available

* From TAGM 4046

** "Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States" by Josephine G. Boerngen and Mansford T. Shacklette, US Geological Survey

*** Level exceeds Eastern USA background as reported in TAGM4046 but is within range of US background levels as reported by USGS.

Analytical Results Summary Table in PPM (mg/Kg) Sample # QTB1-01 Matrix: Soil

SVOC's EPA method 8270

Constituent	Sample Results	TAGM 4046 Rec. Soil
		Cleanup Objective
Phenol	<37	0.03 or MDL
Bis (2-Chloroethyl) ether	<37	
2-Chlorophenol	<37	0.8
1,3-Dichlorobenzene	<37	1.6
1,4-Dichlorobenzene	<37	8.5
1,2-Dichlorobenzene	<37	7.9
2-Met hy lphenol	<37	0.100 or MDL
2,2'-Oxybis (1-	<37 .	
Chloropropane)		
4-Methylphenol	<37	0.9
n-Nitrosodinpropylamine	<37	
Hexachloroethane	<37	
Nitrobenzene :	<37	0.200 or MDL
Isophorone	<37	4.40
2-Nitrophenol	<37	0.330 or MDL
2,4-Dimethylphenol	<37	
Bis (2-Chloroethoxy) methane	<37	
2,4-Dichlorophenol	<37	0.4
1,2,4-Trichlorobenzene	<37	3.4
Naphthalene :	<37	13.0
4-Chl or oaniline	<37	0.220 or MDL
Hexachlorobutadiene (<37	
4-Chloro-3-methylphenol	<37	0.240 or MDL
2-Met hy inaphthalene	<37	36.4
Hexaclorocyclopentadiene	<37	
2,4,6-Trichlorophenol	<37	
2,4,5- Tr ichlorophenol	<37	0.1
2-Chloronaphthalene	<37	
2-Nitroanaline	<370	0.430 or MDL
Dimet h ylphthalate	<37	2.0
Ac e naphthylene .	<37	41.0
2,6-Dinitrotoluene	<37	1.0
3-Nitr o aniline	<370	0 .500 or MDL
Acenaphthene .	<37	50.0
2,4-Dinitrophenol	<37	0.200 or MDL

4.37'4	<370	0.100 or MDL
4-Nitrophenol	<37	6.2
Dibenzofuran	<37	0.2
2,4-Dinitrotoluene		7.1
Diethylphthalate	<37	, /.1
4-Chlorophenylphenylether	<37	50.0
Fluo re ne	<37	50.0
4-Nitroanaline	<370	
2-Methyl-4,6-dinitrophenol	<37	
n-Ni tro sodiphenylamine	<37	
4-Bromophenylphenylether	<37	
Hexachlorobenzene	<37	0.41
Pent ac hlorophenol	<74	1.0 or MDL
Phenanthrene	<37	50.0
Anthracene	<37	50.0
Carbazole i	<37	
di-n-butylphthalate .	<37	8.1
Fluoranthene	<37	50.0
Pyre ne	<37	50.0
Butylbenzylphthalate .	<37	50.0
3.3-Dichlorobenzidine	. <37	N/A
Benzo (a) anthracene	<37	0.224 or MDL
Chrysene	<37	0.4
Bis (2-Ethylhexyl)phthalate	<37	50.0
Di-n-octylphthalate	<37	50.0
Benzo (b) fluoranthene	<37	1.1
Benzo (k) fluoranthene	<37	1.1
Benzo (a) pyrene	<37	0.061 or MDL
Indeno (1,2,3-cd)pyrene	<37	3.2
Dibenzo (a,h) anthracene	<37	0.014 or MDL
Benzo (ghi) perylene	<37	50.0

TAGM 4046 requires Individual SVOC's to be < 50 ppm and Total SVOC's to be < 500 ppm.

Summary Table in PPM (mg/Kg) Sample # QTB1-02 Matrix: Soil SVOC's EPA method 8270

Constituent	Sample Results	TAGM 4046 Rec. Soil
		Cleanup Objective
Phenol	<0.360	0.03 or MDL
Bis (2-Chloroethyl) ether	<0.360	
2-Ch lor ophenol	<0.360	0.8
1,3-Dichlorobenzene	<0.360	1.6
1,4-Dichlorobenzene	. < 0.360	8.5
1,2-Dichlorobenzene	<0.360	7.9
2-Methylphenol	<0.360	0.100 or MDL
2,2'-Oxybis (1-	<0.360	
Chloropropane)	 	
4-Methylphenol	< 0.360	0.9
n-Nitrosodinpropylamine	< 0.360	
Hexa ch loroethane	< 0.360	
Nitrobenzene	< 0.360	0.200 or MDL
Isophorone	< 0.360	4.40
2-Nit ro phenol	< 0.360	0.330 or MDL
2,4-Dimethylphenol	< 0.360	
Bis (2-Chloroethoxy)	< 0.360	
meth an e		
2,4-Dichlorophenol	<0.360	0.4
1,2,4-Trichlorobenzene	< 0.360	3.4
Naph th alene	<0.360	13.0
4-Chloroaniline	< 0.360	0. 2 20 or MDL
Hexachlorobutadiene	< 0.360	
4-Chloro-3-methylphenol	<0.360	0.240 or MDL
2-Methylnaphthalene	< 0.360	36.4
Hexaclorocyclopentadiene	< 0.360	
2,4,6-Trichlorophenol	< 0.360	
2,4,5-Trichlorophenol	< 0.360	0.1
2-Chloronaphthalene	<0.360	
2-Nit ro analine	<3.600	0.430 or MDL
Dimethylphthalate	<0.360	2.0
Acenaphthylene	< 0.360	41.0
2,6-Dinitrotoluene	<0.360	1.0
3-Nitroaniline	<3.600	0.500 or MDL
Acenaphthene	<0.360	50.0
2,4-Dinitrophenol	<3.600	0.200 or MDL

4-Nitrophenol	<3.600	0. 100 or MDL
Dibenzofuran	< 0.360	6.2
2,4-Dinitrotoluene	< 0.360	
Diethylphthalate	< 0.360	7.1
4-Chlorophenylphenylether	< 0.360	
Fluorene	<0.360	50.0
4-Nitroanaline	<3.600	
2-Methyl-4,6-dinitrophenol	<3.600	
n-Nitrosodiphenylamine	< 0.360	
4-Bromophenylphenylether	< 0.360	
Hexa ch lorobenzene	< 0.360	0.41
Pentachiorophenol	<0.720	1.0 or MDL
Phenanthrene	0.380	50.0
Anth ra cene	<0.360	50.0
Carbazole	<0.360	
di-n-butylphthalate	<0.360	8.1
Fluoranthene	<0.360	50.0
Pyrene	<0.360	50.0
Butylbenzylphthalate	<0.360	50.0
3,3-Dichlorobenzidine	<0.360	N/A
Benzo (a) anthracene	<0.360	0.224 or MDL
Chry se ne	<0.360	0.4
Bis (2-Ethylhexyl)phthalate	1.600	50.0
Di-n-octylphthalate	<0.360	50.0
Benzo (b) fluoranthene	<0.360	1.1
Benzo (k) fluoranthene	<0.360	1.1
Benzo (a) pyrene	< 0.360	0.061 or MDL
Indeno (1,2,3-cd)pyrene	< 0.360	3.2
Dibe nz o (a,h) anthracene	<0.360	0.014 or MDL
Benzo (ghi) perylene	< 0.360	50.0

TAGM 4046 requires Individual SVOC's to be < 50 ppm and Total SVOC's to be < 500 ppm.

Summary Table in PPM (mg/Kg) Sample # QTB3-01 Matrix: Soil SVOC's EPA method 8270

Constituent	Sample Results	TAGM 4046 Rec. Soil
		Cleanup Objective
Phenol	<0.740	0.03 or MDL
Bis (2-Chloroethyl) ether	<0.740	
2-Chlorophenol	<0.740	0.8
1,3-Dichlorobenzene	<0.740	1.6
1,4-Dichlorobenzene	<0.740	8.5
1,2-Dichlorobenzene	<0.740	7.9
2-Methylphenol	<0.740	0.100 or MDL
2,2'-Oxybis (1-	<0.740	
Chlo ro propane)		
4-Methylphenol	< 0.740	0.9
n-Nitrosodinpropylamine	<0.740	
Hexachloroethane	< 0.740	
Nitrobenzene	< 0.740	0.200 or MDL
Isophorone	< 0.740	4.40
2-Ni tro phenol	<0.740	0.330 or MDL
2,4-Dimethylphenol	<0.740	
Bis (2-Chloroethoxy)	<0.740	
meth an e		
2,4-Dichlorophenol	<0.740	0.4
1,2,4-Trichlorobenzene	< 0.740	3.4
Naphthalene	<0.740	13.0
4-Chloroaniline	<0.740	0. 2 20 or MDL
	<0.740	
4-Ch ló ro-3-methylphenol	! <0.740	0.240 or MDL
	< 0.740	36.4
,	<0.740	
2,4,6-Trichlorophenol	< 0.740	
2,4,5-Trichlorophenol	<0.740	0.1
2-Chloronaphthalene	<0.740	
2-Ni tro analine	<7.400	0.430 or MDL
Dimethylphthalate	< 0.740	2.0
Acenaphthylene	<0.740	41.0
2,6-Dinitrotoluene	<0.740	1.0
3-Nitroaniline .	<7.400	0.500 or MDL
Acenaphthene	<0.740	50.0
2,4-Dinitrophenol	<7.400	0.200 or MDL

4-Nitrophenol	<7.400	0.100 or MDL
Dibenzofuran	<0.740	6.2
2,4-Dinitrotoluene	<0.740	
Diethylphthalate	<0.740	7.1
4-Chlorophenylphenylether	<0.740	* -
Fluorene	<0.740	50.0
4-Nitroanaline	<7.400	
2-Methyl-4,6-dinitrophenol	<7.400	
n-Nitrosodiphenylamine	<0.740	
4-Bromophenylphenylether.	<0.740	
Hexachlorobenzene	< 0.740	0.41
Pentachlorophenol	<1.500	1.0 or MDL
Phenanthrene .	< 0.740	50.0
Anth ra cene	<0.740	50.0
Carbazole	<0.740	
di-n-butylphthalate	< 0.740	8.1
Fluoranthene	<0.740	50.0
Pyrene	<0.740	50.0
Butylbenzylphthalate	<0.740	50.0
3,3-Dichlorobenzidine	<0.740	N/A
Benzo (a) anthracene	<0.740	0.224 or MDL
Chrysene	<0.740	0.4
Bis (2-Ethylhexyl)phthalate	3.600	50.0
Di-n-octylphthalate	<0.740	50.0
Benzo (b) fluoranthene	<0.740	1.1
Benzo (k) fluoranthene	< 0.740	1.1
Benzo (a) pyrene	<0.740	0.061 or MDL
Inde no (1,2,3-cd)pyrene	<0.740	3.2
Dibenzo (a,h) anthracene	< 0.740	0.014 or MDL
Benzo (ghi) perylene	<0.740	50.0

TAGM 4046 requires Individual SVOC's to be < 50 ppm and Total SVOC's to be < 500 ppm.

Summary Table in PPM (mg/Kg)
Sample # QTB4-01
Matrix: Soil
SVOC's EPA method 8270

Constituent	Sample Results	TAGM 4046 Rec. Soil
•		Cleanup Objective
Pheno!	<0.370	0.03 or MDL
Bis (2-Chloroethyl) ether	< 0.370	
2-Chl or ophenol	< 0.370	0.8
1,3-Dichlorobenzene	< 0.370	1.6
1,4-Dichlorobenzene	< 0.370	8.5
1,2-Dichlorobenzene	< 0.370	7.9
2-Methylphenol	< 0.370	0.100 or MDL
2,2'-Oxybis (1-	·<0.370	
Chloropropane)		
4-Methylphenol	<0.370	0.9
n-Nitrosodinpropylamine	< 0.370	
Hexa ch loroethane	< 0.370	
Nitrobenzene	i < 0.370	0.200 or MDL
Isophorone	< 0.370	4.40
2-Nit ro phenol	< 0.370	0.330 or MDL
2,4-Dimethylphenol	< 0.370	
Bis (2-Chloroethoxy)	< 0.370	
metha n e		
2,4-Dichlorophenol	<0.370	0.4
1,2,4-Trichlorobenzene	<0.370	3.4
Naph th alene	<0.370	13.0
4-Chloroaniline	<0.370	0.220 or MDL
Hexachlorobutadiene	< 0.370	
4-Chloro-3-methylphenol	<0.370	0.240 or MDL
2-Methylnaphthalene	· <0.370	36.4
Hexa clo rocyclopentadiene	<0.370	
2,4.6- T richlorophenol	< 0.370	
2,4,5-Trichlorophenol	< 0.370	0.1
2-Chl or onaphthalene	<0.370	
2-Nit ro analine	<3.700	0.430 or MDL
Dimethylphthalate	< 0.370	2.0
Acen ap hthylene	< 0.370	41.0
2,6-Dinitrotoluene	<0.370	1.0
3-Nitroaniline	<3.700	0.500 or MDL
Acenaphthene	<0.370	50.0
2,4-Dinitrophenol	<3.700	0.200 or MDL

4-Nitrophenol !	<3.700	0.100 or MDL
Dibe nz ofuran	<0.370	6.2
2,4-Dinitrotoluene	< 0.370	
Diethylphthalate	<0.370	7.1
4-Chlorophenylphenylether	<0.370	
Fluorene	< 0.370	50.0
4-Nitroanaline	<3.700	
2-Methyl-4,6-dinitrophenol	<3.700	
n-Nitrosodiphenylamine	<0.370	
4-Bromophenylphenylether	<0.370	
Hexachlorobenzene	<0.370	0.41
Pentachlorophenol	< 0.730	1.0 or MDL
Phen an threne i	< 0.370	50.0
Anth ra cene	<0.370	50.0
Carbazole :	<0.370	
di-n-butylphthalate	< 0.370	8.1
Fluoranthene	< 0.370	50.0
Pyrene	< 0.370	50.0
Butylbenzylphthalate	<0.370	50.0
3,3-Dichlorobenzidine	< 0.370	N/A
Benzo (a) anthracene	< 0.370	0.224 or MDL
Chry se ne	<0.370	0.4
Bis (2-Ethylhexyl)phthalate:		50.0
Di-n-octylphthalate	<0.370	50.0
Benzo (b) fluoranthene .	< 0.370	1.1
Benzo (k) fluoranthene	<0.370	1.1
Benzo (a) pyrene	< 0.370	0.061 or MDL
Indeno (1,2,3-cd)pyrene	<0.370	3.2
	<0.370	0.014 or MDL
Benzo (ghi) pervlene :	< 0.370	50.0

TAGM 4046 requires Individual SVOC's to be \leq 50 ppm and Total SVOC's to be \leq 500 ppm.

Summary Table in PPM (mg/Kg) Sample # QTB1-01

Matrix: Soil

PCB's (Aroclors) EPA method 8082

Constituent	Sample Results	TAGM 4046 Rec. Soil
		Cleanup Objective
Aroclor 1016	<0.09	I.0 surface/ 10.0 subsurface
Aroclor 1221	<0.09	1.0 surface/ 10.0 subsurface
Aroclor 1232	<0.09	1.0 surface/ 10.0 subsurface
Aroclor 1242	<0.09	1.0 surface/ 10.0 subsurface
Aroclor-1248	<0.09	1.0 surface/ 10.0 subsurface
Aroclor 1254	<0.09	1.0 surface/ 10.0 subsurface
Aroclor 1260	<0.09	1.0 surface/ 10.0 subsurface

Sample # QTB1-02

Matrix: Soil

<0.09	1.0 surface/ 10.0 subsurface
<0.09	1.0 surface/ 10.0 subsurface
<0.09	1.0 surface/ 10.0 subsurface
<0.09.	I.0 surface/ 10.0 subsurface
<0.09	1.0 surface/ 10.0 subsurface
<0.09	1.0 surface/ 10.0 subsurface
<0.09	1.0 surface/ 10.0 subsurface
	<0.09 <0.09 <0.09 <0.09 <0.09

Sample # QTB3-01 Matrix: Soil

Aroclor 1016	<0.08	1.0 surface/ 10.0 subsurface
Arocl or 1221	< 0.08	I.0 surface/ 10.0 subsurface
Aroclor 1232	< 0.08	1.0 surface/ 10.0 subsurface
Aroclor 1242	< 0.08	1.0 surface/ 10.0 subsurface
Arocl or 1248	< 0.08	1.0 surface/ 10.0 subsurface
Aroclor 1254	<0.08	1.0 surface/ 10.0 subsurface
Aroclor 1260	< 0.08	1.0 surface/ 10.0 subsurface

Sample # QTB4-01

Matrix: Soil

Arocl or 1016	< 0.08	1.0 surface/ 10.0 subsurface
Aroclor 1221	< 0.08	1.0 surface/ 10.0 subsurface
Aroclor 1232	<0.08	1.0 surface/ 10.0 subsurface
Aroclor 1242	<0.08	1.0 surface/ 10.0 subsurface
Aroclor 1248	<0.08	1.0 surface/ 10.0 subsurface
Aroclor 1254	< 0.08	1.0 surface/ 10.0 subsurface
Aroclor 1260	<0.08	1.0 surface/ 10.0 subsurface

Summary Table in PPM (mg/Kg)
Sample # QTB1-02
Matrix: Soil
VOC's EPA method 8260

Constituent	Sample Results	TAGM 4046 Rec. Soil				
•		Cleanup Objective				
Chloromethane	<0.003					
Bromomethane	<0.003					
Vinyl Chloride	<0.002	0.2				
Chloroethane	<0.003	1.9				
Methylene Chloride	<0.003	0.1				
Acetone	0.110	0.2				
Carbon Disulfide	< 0.003	2.7				
1,1-Dichloroethene	< 0.003	0.4				
1.1-Dichloroethane	< 0.003	0.2				
Trans-1,2-Dichloroethene	< 0.003	0.3				
Cis-1,2-Dichloroethene	< 0.003					
Chlor of orm	< 0.003	0.3				
1,2-Dichloroethane	< 0.003	0.1				
2-Butanone	< 0.011	0.3				
1,1,1-Trichloroethane	< 0.003	0.8				
Carbon Tetrachloride	< 0.003	0.6				
Bromodichloromethane	< 0.003					
1,2-Dichloropropane	< 0.003					
Cis-1,3-Dichloropropene	< 0.003					
Trichloroethene	< 0.003					
Dibromochloromethane	< 0.003	N/A				
1,1,2-Trichloroethane	< 0.003					
Benzene	< 0.003	0.06				
Trans-1,3-Dichloropropene	< 0.003					
Bromoform	r < 0.003					
4-Methyl-2-pentanone	< 0.011	1.0				
2-He xa none	<0.011					
Tetrachloroethene	< 0.003	1.4				
1,1,2,2-Tetrachloroethane	< 0.003	0.6				
Toluene	< 0.003	1.5				
Chlorobenzene	< 0.003	1.7				
Ethyl be nzene	< 0.003	5.5				
Styre ne	<0.003					
Total Xylene	< 0.006	1.2				

TAGM 4046 requires Total VOC's to be < 10 ppm.

Upstate Laboratories inc.

Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209_

Mailing: Box 289 . Syracuse, NY 13206

Buffalo (716) 649-2533 Rochester (716) 436-9070

Albany (518) 459-3134 Binghamton (607) 724-0478

February 11, 2002

New Jersey (201) 343-5353

Mr. Wayne K. Cameron
Project Manager
Sterling Env. Services, Inc.
50 Lake Ave.
Blasdell, NY 14219

Re: Analysis Report #02302010 - Buffalo Brake Beam

Dear Mr. Cameron:

Please find enclosed the results for your samples which were picked up by ULI personnel on January 22, 2002.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. Scala Director

AJS/rd

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Note: Faxed results were given to your office on 2/08/02. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM Sampled by: Client QTB1-01 1155H 01/21/02 G

APPROVAL:
QC:
Lab I.D.: 10170

	ULI I.D.: 02302010	•		atrix: So			
PA	RAMETERS	RESULTS	TIME	DATE ANAL.	KEY	KEY	FILE#
	Percent Solids	90%		01/24/02			WD792
	Total Cyan id e	<1.1mg/kg dw		01/29/02			WD793
Total	Aluminum	17800 mg/kg dw		01/30/02			MB423
Total	Antimony	₁39msg/kg dw		01/30/02			MB423
Total	Arsenic by Low Level	:6.9mg/kg dw		01/30/02			MB423
Total	Barium	42 mg/kg dw		01/30/02			MB423
Total	Beryllium	.<0.55mmg/kg dw		01/30/02			MB423
Total	Cadmium	,1.8mg/kg dw		01/30/02			MB423
Total	Calcium	.15000mg/kg dw		01/30/02			MB423
Total	Chromium	15mg/kg dw		01/30/02			MB423
Total	Cobalt	57nog/kg dw		01/30/02			MB423
Total	Copper	23mg/kg dw		01/30/02			MB423
Total	Iron	18000mg/kg dw		01/30/ 02			MB423
Total	Lead	<11mg/kg dw		01/30/02			MB423
Total	Magnesium	3800mg/kg dw		01/30/02			MB423
Total	Manganese	,180mg/kg dw		01/30/02			MB423
Total	Mercury	/<0.17mg/kg dw		01/30/02			MB423
Total	Nickel	28mg/kg dw		01/30/02			MB423
Total	Potassium	2300mg/kg dw		01/30/02			MB423
Total	Selenium by Low Level	.1.8mg/kg dw		01/30/02			MB423
Total	Silver	<5.5mg/kg dw		01/30/02			MB423
Total	Sodium	1600 mag/kg dw		01/30/02			MB423
Total	Thallium by Low Level	i<0.33magr/kogrebw		01/30/02			MB423
Total	Vanadium	.<33mg/kg dw		01/30/62			MB423
Total	Zinc	59mg/kg dw		01/30/02			MB423
	TCL Semivolatiles by BPA Method 8270						
	Phenol	<37,000ug/kg dw		01/26/02		01	SA324
	bis(2-Chloroethyl)ether	:<37,000ug/kg dw		01/26/02		61	SA324
	2-Chlorophenol 1,3-Dichlorobenzene	<37,000ug/kg dw		01/26/02		01	SA324
	1,4-Dichlorobenzene	<37,000mg/kg dw		01/26/02		01	SA324
	,	<37,000mg/kg dw		01/26/02		01	SA324
	1,2-Dichlorobenzene	:<37,000mg/kg dw		01/26/02		01	SA324
	2-Methylphenol	<37,000ug/kg dw		01/26/02		01	SA324
	2,2'-Oxybis(1-Chloropropane)	<37,000ug/kg dw		01/26/02		61	SA324:
	4-Methylphenol	<37,000ug/kg dw		01/26/02		01	SA324
	n-Nitrosodinpropylamine Hexachloroethane	<37,000ug/kg dw		01/26/02		01	SA324
	Nitrobenze ne	<37,000mg/kg dw		01/26/02		01	SA324
	Isophorone	<37,900ug/kg dw		01/26/02		61	SA324

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

BUFFALO BRAKE BEAM

QTB1-01 1155H 01/21/02 G

AMETERS	RESULTS	TIME	DATE ANAL.	KEY	KEY	PILE#
2-Nitrophemol	<37,000ug/kg dw		01/26/02		01	SA324
2,4-Dimethylphenol	<37,000ug/kg dw		01/26/02		OI	SA324
bis(2-Chloroethoxy)methane	:<37,000ug/kg dw		01/26/02		01	SA324
2,4-Dichlorophenol	:<37,000ug/kg dw		01/26/02		61	SA324
1,2,4-Trichlorobenzene	<37,000ug/kg dw		01/26/02		01.	SA324
Naphthalene. =	<37,000ug/kg dw		01/26/02		01	SA324
4-Chloroaniline	<37,000ug/kg dw		01/26/02		01,	SA324
Hexachloro bu tadiene	<37,000ug/kg dw		01/26/02		01	SA324
4-Chloro-3-methylphenol	<37,000ug/kg dw		01/26/02		01	SA324
2-Methylnaphthalene	<37,000ug/kg dw		01/26/02		01	SA324
Hexachlorocyclopentadiene	<37,000ug/kg dw		01/26/02		01	SA324
2,4,6-Trichlorophenol	<37,000ug/kg dw		01/26/02		01 -	SA324
2,4,5-Trichlorophenol	<37,000ug/kg dw		01/26/02		01	SA324
2-Chloronaphthalene	<37,000ug/kg dw		01/26/02		01	SA324
2-Nitroaniline	<370,000ug/kgdw		01/26/02		01	SA324
Dimethylph th alate	<37,000ug/kg dw		01/26/02		61	SA324
Acenaphthylene	<37,900ug/kg dw		01/26/02		01	SA324
2,6-Dinitrotoluene	<37,000ug/kg dw		01/26/02		01	SA324
3-Nitroaniline	<370.000ug/kgdw		01/26/02		01	SA324
Acenaphthene	<37,000ug/kg dw		01/26/02		01	5A324
2,4-Dinitrophenol	<37,000ug/kg dw		01/26/02		01	SA324
4-Nitrophenol	<370,000ug/kgdw		01/26/02		01	SA324
Dibenzofuran	<37.000ug/kg dw		01/26/02		01	SA324
2.4-Dinitrotoluene	<37,000ug/kg dw		01/26/02		01.	SA324
Diethylphthalate	<37.000ug/kg dw		01/26/02		01	SA324
4-Chlorophenylphenylether	<37,000ug/kg dw		01/26/02		01	SA324
Fluorene	<37,000ug/kg dw		01/26/02		01	SA324
4-Nitroaniline	<370,000ug/kgdw		01/26/02		01	SA324
2-Methyl-4,6-dinitrophenol	<37,000ug/kg dw		01/26/02		01	SA324
n-Nitrosodiphenylamine	<37,000ug/kg dw		01/26/02		01.	SA324
4-Bromophenylphenylether	<37.000ug/kg dw		01/26/02		01	SA324
Hexachlorobenzene	<37,000ug/kg dw		01/26/02		01	\$A324
Pentachlorophenol	<74,000mg/kg dw		01/26/02		01	SA324
Phenanthrene	<37,900ug/kg dw		01/26/02		01	SA324
Anthracene	<37,000ug/kg dw		01/26/02		01	SA324
Carbazole	<37,000ug/kg dw		01/26/02		01 .	SA324
di-n-butylphthalate	<37,000ug/kg dw		01/26/02		01	SA324
Fluoranthene	<37,000ag/kg dw					
'			01/26/02		81	SA324
Pyrene Butylbenzylphthalate	<37,000ug/kg dw <37,000ug/kg dw		01/26/ 02 01/26/ 02		91 91	5A324

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM i

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

QTB1-01 1155H 01/21/02 G

TLI I.D.: 02302010		Matrix: Soil	
PARAMETERS	RESULTS	TIME DATE ANAL. KEY	KEY FILE
3,3'-Dichlorobenzidine	<37,000ug/kg dw	01/26/02	01 SA3242
Benzo(a) anthracens	<37,000ug/kg dw	01/26/02	01 SA3242
Chrysene	<37,000ug/kg dw	01/26/02	01 SA3242
bis(2-Ethylhexyl)phthalate	<37,000ug/kg dw	01/26/02	01 SA3242
Di-n-octylphthalate	<37,000ug/kg dw	01/26/02	01 · SA3242
Benzo(b) fluoranthene	<37,000ug/kg dw	01/26/02	01 SA3242
Benzo(k) fluoranthene	<37,000ug/kg dw	01/26/02	61 SA3242
Benzo(a) py re ne	<37,000ug/kg dw	01/26/02	01 SA3242
Indeno(1,2,3-cd)pyrene	<37,000ug/kg dw	01/26/02	C1 SA3242
Dibenzo(a, h) anthracene	<37,000ug/kg dw	01/26/02	01 SA3242
Benzo (ghi) perylene	<37,000ug/kg dw	01/26/02	01 SA3242
PCB (Aroclors) by EPA Method 8082			
Aroclor 1016	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 12 21	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1232	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1242	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1248	<0.09mg/kg dw	01/29/52	GA1228
Aroclor 1254	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1260	<0.09mg/kg dw	01/29/02	GA1228
Total PCB	<0.09mg/kg dw	01/29/02	GA1228

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES; INC.

Sampled by: Client

APPROVAL: ος:<u>ν</u>-ξ=__ Lab I.D.: 10170

BUFFALO BRAKE BEAM

QTB1-02 1215H 01/21/02 G

PA	RAMETERS	RESULTS	TIME DATE ANAL. KEY K	EY FILE#
	Percent Solids	93%	01/24/02	WD792
	Total Cyanide	<1.1mg/kg dw	01/29/02	WD793
Total	Aluminum	3700mg/kg dw	01/30/02	MB423
Total	Antimony	<32mg/kg dw	01/30/02	MB423
Total	Arsenic by Lew Level	4.lmg/kg dw	01/30/02	MB423
Total	Barium	<32mg/kg dw	01/30/02	MB423
Total	Beryllium	<0.53mg/kg dw	01/30/92	MB423
Total	Cadmium	1.3mg/kg dw	01/30/02	MB423
Total	Calcium	99000mmg/kg dw	01/30/02	MB423
Total	Chromium	8.4mg/kg dw	01/30/02	MB423
Total	Cobalt	18mg/kg dw	01/30/02	MB423
Total	Copper	16mg/kg dw	01/30/02	MB423
Total	Iron	6500 mg/kg dw	01/30/02	MB423
Total	Lead	<11mg/kg dw	01/30/62	MB423
Total	Magnesium	.15000mg/kg dw	01/30/02	MB423
Total	Manganese	170mg/kg dw	01/30/02	MB423
Total	Mercury	<0.16mg/kg dw	01/30/02	MB423
Cotal	Nickel	17mg/kg dw	01/30/02	MB423
Total	Potassium	1200mg/kg dw	01/30/02	MB423
Total	Selenium by Low Level	17mg/kg dw	01/30/02	MB423
Total	Silver	<5.3mg/kg dw	01/30/02	MB423
Total	Sodium	720 mg/kg dw	01/30/02	MB423
Cotal	Thallium by Low Level	< 0.32 mg/kg dw	01/30/02	ME 423
Cotal	Vanadium	<32mg/kg dw	01/30/02	MB423
Cotal	Zinc	33mg/kg dw	01/30/02	MB423
	TCL Volatiles by EPA Method 8260			
	-			
	Chloromethane	<3ug/kg dw	01/30/02	VM381
	Bromomethane	<3ug/kg dw	01/30/02	VM381
	Vinyl Chloride	<2ug/kg dw	01/30/02	VM381
	Chloroethane	<3ug/kg dw	01/30/02	VM381
	Methylene C hl oride	<3ug/kg dw	01/30/02	VM381
	Acetone	· 110ug/kg dw	01/30/02 11	VM381
	Carbon Disulfide	<pre>(<3ug/kg dw</pre>	01/30/02	VM381
	1,1-Dichloreethene	<3ug/kg dw	01/30/02	VM381
	1,1-Dichloreethane	<3ug/kg dw	01/30/02	VM381
	trans-1,2-Dichloroethene	<3ug/kg dw	01/30/02	VM381
	cis-1,2-Dichloroethene	<jug dw<="" kg="" td=""><td>01/30/02</td><td>VM381</td></jug>	01/30/02	VM381
	Chloroform	<3ug/kg dw	01/30/02	VM381
	1,2-Dichloroethane	<3ug/kg dw	01/30/02	VM381.

dw = Dry weight

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

. .

Sampled by: Client

APPROVAL: 0C:35 Lab I.D.: 10170

QTB1-02 1215H 01/21/02 G

ULI I.D.: 02302011	_ <u></u>	Matrix: So	iī	.
PARAMETERS	RESULTS	TIME DATE ANAL.	KEY KEY	PILE#
2-Butanone	<pre>.<1lug/kg dw</pre>	01/30/02		VM3812
1,1,1-Trichloroethane	, <3 ug/kg dw	01/30/02		VM3812
Carbon Tetrachloride	<3ug/kg dw	01/30/02		VM3812
Bromodichloromethane	<3ug/kg dw	01/30/02		VM3812
1,2-Dichloropropane	:<3ug/kg dw	01/30/02		VM3812
cis-1,3-Dichloropropens	1 < 3 ug/kg dw	01/30/02		VM3812
Trichloroethene	<3ug/kg dw	01/30/02		VM3812
Dibromochloromethane	<3ug/kg dw	01/30/02	•	VM3812
1,1,2-Trichloroethane	<3ug/kg dw	01/30/02		VM3812
Benzene	· <3ug/kg dw	01/30/02		VM3812
trans-1,3-Dichloropropene	<3ug/kg dw	01/30/02		VM3812
Bromoform	. <3ug/kg dw	01/30/02		VM3812
4-Methyl-2-pentanone	<11ug/kg dw	01/30/02		VM3812
2-Hexanone	; <llug dw<="" kg="" td=""><td>01/30/02</td><td></td><td>VM3812</td></llug>	01/30/02		VM3812
Tetrachloroethene	<3ug/kg dw	01/30/02		VM3812
1,1,2,2-Tetrachloroethane	: <3ug/kg dw	01/30/02		VM3812
Toluene	i <3ug/kg dw	01/30/02		VM3812
Chlorobenzene	: <3ug/kg dw	01/30/02		VM3812
Ethylbenzene	. <3 ug/ kg dw	01/30/02		VM3812
Styrene	<3ug/kg dw	01/30/02		VM3812
m-Xylene a nd p-Xylene	t < 3 ug/kg dw .	01/30/02	•	VM3812
o-Xylene	<3ug/kg dw	01/30/02		VM3812
TCL Semivolatiles by EPA Method 8276	o .			
Phenol	<360ug/kg dw	01/26/02		SA3242
bis(2-Chloroethyl)ether	<360ug/kg dw	01/26/02		SA3242
2-Chloroph en ol	, <360ug/kg dw	01/26/02		SA3242
1,3-Dichlorobenzene	<360ug/kg dw	01/26/02		SA3242
1,4-Dichlorobenzene	. <360ug/kg dw	01/26/02		SA3242
1,2-Dichlorobenzene	. <360ug/kg dw	01/26/02		SA3242
2-Methylph en ol	. <360ug/kg dw	01/26/02		SA3242
2,2'-Oxybis(1-Chloropropane)	<360ug/kg dw	01/26/02		SA3242
4-Methylphenol	<360 ug/kg dw	01/26/02		SA3242
n-Nitrosodinpropylamine	<360ug/kg dw	01/26/02	•	SA3242
Hexachloro et hane	. <360ug/kg dw	01/26/02		SA3242
Nitrobenzene	<360ug/kg dw	01/26/02		SA3242
Isophorone	<360ug/kg dw	01/26/02		SA3242
2-Nitrophenol	<360ug/kg dw	01/26/02		SA3242
2,4-Dimeth yl phenol	<360ug/kg dw	01/26/02		SA3242
bis(2-Chlorethoxy)methane	<360ug/kg dw	01/26/02		SA3242

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES; INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL:
QC:\\
Lab I.D.: 10170

QTB1-02 1215H 01/21/02 G

	_	_	_	_	_		_	_	_	 _	_	_	_	_		_							
ULI	I.	D.	:	02	230	20	01:	1,									1	Ма	tr:	ìΧ	:	So	il.

RAMETERS	RESULTS		KEY PILE#
2,4-Dichlorophenol	<360ug/kg dw	01/26/02	SA324
1,2,4-Trichlorobenzene	<360ug/kg dw	01/26/02	. SA324
Naphthalene	<360ug/kg dw	01/26/02	SA324
4-Chloroaniline	<360ug/kg dw	01/26/02	SA324
Hexachloro bu tadiene	<360ug/kg dw	01/26/02	SA324
4-Chloro-3-methylphenol	<360ug/kg dw	01/26/02	SA324
2-Methylnaphthalene	<360ug/kg dw	01/26/02	SA324
Hexachloro cy clopentadiene	<360ug/kg dw	01/26/02	SA324
2,4,6-Trichlorophenol	<360ug/kg dw	01/26/02 .	SA324
2,4,5-Trichlorophenol	<360ug/kg dw	01/26/02	SA324
2-Chloronaphthalene	<360ug/kg dw	01/26/02	\$A324
2-Nitroani li ne	<3600ug/kg dw	01/26/02	SA324
Dimethylph th alate	<360ug/kg dw	01/26/02	5A324
Acenaphthylene	<360ug/kg dw	01/26/02	SA324
2,6-Dimitrotoluene	<360ug/kg dw	01/26/02	SA324
3-Nitroani li ne	<3600ug/kg dw	01/26/02	SA324
Acenaphthe ne	<360ug/kg dw	01/26/02	SA324
2,4-Dimitrophenol	<3600ug/kg dw	01/26/02	SA324
4-Nitrophenol	<3600ug/kg dw	01/26/02	SA324
Dibenzofur an	<360ug/kg dw	01/26/02	SA324
2,4-Dinitrotoluene	.<360ug/kg dw	01/26/02	SA324
Diethylphthalate	<360ug/kg dw	01/26/02	SA324
4-Chlorophenylphenylether	<360ug/kg dw	01/26/02	SA324
Fluorene	<360ug/kg dw	01/26/02	SA324
4-Nitroani li ne	<3600ug/kg dw	01/26/02	SA324
2-Methyl-4,6-dinitrophenol	<3600ug/kg dw	01/26/02	SA324
n-Nitrosodiphenylamine	<360ug/kg dw	01/26/02	SA324
4-Bromophemylphenylether	<360ug/kg dw	01/26/02	SA324
Hexachloro be nzene	<360ug/kg dw	01/26/02	SA324
Pentachlorophenol	<720ug/kg dw	01/26/02	SA324
Phenanthrene	180ug/kg dw	01/26/02	SA324
Anthracene	<360ug/kg dw	01/26/02	SA324
Carbazole	<360ug/kg dw	01/26/02	SA324
di-n-butylphthalate	<360ug/kg dw	01/26/02	SA324
Fluoranthene	<360ug/kg dw	01/26/02	SA324
Pyrene	<360ug/kg dw	01/26/02	SA324
Butylbenzy iph thalate	<360ug/kg dw	01/26/02	SA324
3,3'-Dichlorobenzidine	<360 ug/kg dw	01/26/02	SA324
Benzo(a)anthracene	<360ug/kg dw	01/26/02	SA324
Chrysene	<360ug/kg dw	01/26/02	SA3242

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL: ____ QC:____ Lab I.D.: 10170

QTB1-02 1215H 01/21/02 G

ULI I.D.: 02302011	** - ** **	Matrix: Soil	
PARAMETERS	RESULTS	TIME DATE ANAL. KEY KI	Y PILES
bis(2-Ethylhexyl)phthalate	1600ug/kg dw	01/26/02	SA3242
Di-n-octyl ph thalate	:<360ug/kg dw	01/26/02	SA3242
Benzo(b) fluoranthene	:<360ug/kg dw	01/26/02	SA3242
Benzo(k) fluoranthene	:<360ug/kg dw	01/26/02 .	SA3242
Benzo (a) pyrene	1<360 ug/kg dw	01/26/02	SA3242
Indeno(1,2,3-cd)pyrene	/<360ug/kg dw	01/26/02	SA3242
Dibenzo(a,h) anthracene	<360ug/kg dw	01/26/02	SA3242
Benzo(ghi)perylene	;<360ug/kg dw	01/26/02	SA3242
PCB (Aroclors) by EPA Method 8082 Aroclor 1016	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1221	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1232	:<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1242	<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1242 Aroclor 1248	:<0.09mg/kg dw	01/29/02	GA1228
	:<0.09mg/kg dw	01/29/02	GA1228
Aroclor 1254		01/29/02	GA1228
Aroclor 1260 Total PCB	.<0.09mg/kg dw .<0.09mg/kg dw	01/29/02	GA1228
TOCAL PED	- ce. osmg/kg dw	01/29/02	GALZZO

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL:

QTB3-01 1305H 01/21/02 G

PA	rameters	RESULTS	TIME	DATE ANAL.	KKY	KRY	file#
	Percent Solids	90%		01/24/02			WD7926
	Total Cyan id e	<1.lmg/kg dw		01/29/02			WD7937
Total	Aluminum	4400 mg/kg dw		01/30/02			MB4234
otal	Antimony	<33mg/kg dw		01/30/02			MB4234
otal	Arsenic by Low Level	4.4mg/kg dw		01/30/02			MB4237
otal	Barium	<33mg/kg dw		01/30/02			MB4234
otal	Beryllium	<0.55mg/kg dw		01/30/02			MB4234
otal	Cadmium	1.5mg/kg dw		01/30/02			MB4234
otal	Calcium	110000mg/kg dw		01/30/02			MB4234
otal	Chromium	9.6mg/kg dw		01/30/02			MDB 4 2 3 4
otal	Cobalt	26mg/kg dw		01/30/02			MB4234
otal	Copper	18mg/kg dw		01/30/02			MB4234
otal	Iron	8500 mg/kg dw		01/30/02			MB4234
otal	Lead	<11mg/kg dw		01/30/02			MB4234
otal	Magnesium	9900mg/kg dw		01/30/02			MB4234
otal	Manganese	200mg/kg dw		01/30/02			MB4234
otal	Mercury	<0.17mg/kg dw		01/30/02			MDB 4 2 3 5
otal	Nickel	21mg/kg dw		01/30/02			MB4234
otal	Potassium	1500mg/kg dw		01/30/02			MB4236
otal	Selenium by Low Level	15mg/kg dw		01/30/02			MB4237
otal	Silver	<5.5mg/kg dw		01/30/02			MB4234
otal	Sodium	600mg/kg dw		01/30/02		-	MB4236
otal	Thallium by Low Level	< 0.33 mg/kg dw		01/30/02			MB4237
otal	Vanadium	<33mg/kg dw		01/30/02			MB4234
otal	Zinc	40mg/kg dw		01/30/02			MB4234
	TCL Semivolatiles by EPA Method 327	70 .					
	Phenol	<740ug/kg dw		01/28/02			SA3242
	bis(2-Chloroethyl)ether	<740ug/kg dw		01/28/02			SA3242
	2-Chlorophenol	<740mg/kg dw		01/28/02	•		SA3242
	1,3-Dichlorobenzene	<740 ug/kg dw		01/28/02			SA3242
	1,4-Dichlorobenzene	<740ug/kg dw		01/28/02			SA3242
	1,2-Dichlorobenzene	c740ug/kg dw		01/28/02			SA3242
	2-Methy1phenol	<740mg/kg dw		01/28/02			SA3242
	2,2'-Oxybis(1-Chloropropane)	<740 ug/kg dw		01/28/02			SA3242
	4-Methylphencl	<740mg/kg dw		01/28/02			SA3242
	n-Nitrosodinpropylamine	<740ug/kg dw		01/28/02			SA3242
	Hexachleroethane	<740ug/kg dw		01/28/02			SA3242
	Nitrobenzene	<740mg/kg dw		01/28/02			SA3242
	Isophorone	<740ug/kg dw		01/28/02			SA3242

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES; INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL:
QC., ____
Lab I.D.: 10170

QTB3-01 1305H 01/21/02 G

ULI I.D.:	02302012	Matrix: Soil

PARAMETERS	RESULTS		EY KEY FILE#
	.7.60 />- 3.4	07/20/02	
2-Nitrophemol	<740ug/kg dw	01/28/02	SA3242
2,4-Dimethylphenol	.<740ug/kg dw	01/28/02	SA3242
bis(2-Chloroethoxy)methane	<740ug/kg dw	01/28/02	SA3242
2,4-Dichlorophenol	,<740ug/kg dw	01/28/02	SA3242
1,2,4-Trichlorobenzene	:<740ug/kg dw	01/28/02	SA3242
Naphthalene	:<740ug/kg dw	01/28/02	SA3242
4-Chloroaniline	. <740ug/kg dw	01/28/02	SA3242
Hexachlorobutadiene	. <740ug/kg dw	01/28/02	· SA3242
4-Chloro-3-methylphenol	<740ug/kg dw	01/28/02	SA3242
2-Methylna ph thalene	. <740ug/kg dw	01/28/02	SA3242
Hexachlorocyclopentadiene	. <740ug/kg dw	01/28/02	SA3242
2,4,6-Trichlorophenol	:<740ug/kg dw	01/28/02	\$A3242
2,4,5-Trichlorophenol	:<740ug/kg dw	01/28/02	SA3242
2-Chloronaphthalene	:<740ug/kg dw	01/28/02	SA3242
2-Nitroaniline	.<7400ug/kg dw	01/28/02	SA3242
Dimethylph th alate	/<740ug/kg dw	01/28/02	SA3242
Acenaphthylene	1<740ug/kg dw	01/28/02	SA3242
2,6-Dimitrotoluene	. <740ug/kg dw	01/28/62	SA3242
3-Nitroaniline	·<7400ug/kg dw	01/28/02	SA3242
Acenaphthene	<pre>1<740ug/kg dw</pre>	01/28/02	SA3242
2,4-Dinitrophenol	1<7400ug/kg dw	01/28/02	SA3242
4-Nitrophenol	.<7400ug/kg dw	01/28/52	SA3242
Dibenzofuran	<740ug/kg dw	01/28/02	5A3242
2,4-Dinitrotoluene	<740 ug/kg dw	01/28/52	SA3242
Diethylphthalate	<740ug/kg dw	01/28/02	SA3242
4-Chlorophenylphenylether	<740 ug/kg dw	01/28/02	SA3242
Fluorene	<740ug/kg dw	01/28/02	SA3242
4-Nitroaniline	<7400ug/kg dw	01/28/02	5A3242
2-Methy1-4,6-dinitrophenol	<7400 ug/kg dw	01/28/02	SA3242
n-Nitrosodiphenylamine	.<740ug/kg dw	01/28/02	SA3242
4-Bromophenylphenylether	<740ug/kg dw	01/28/02	SA3242
Hexachlorobenzene	.<740 aug/kig dw	01/28/02	SA3242
Pentachlorophenol	<1500 ug/kg dw	01/28/02	SA3242
Phenanthrene	c740ug/kg dw	01/28/02	SA3242
Anthracene	'<740ug/kg dw	01/28/02	SA3242
Carbazole	:<740ug/kg dw	01/28/02	SA3242
di-n-butyl ph thalate	ic740mg/kg dw	01/28/02	SA3242
Fluoranthene	<740ug/kg dw	01/28/02	SA3242
Pyrene	<740ug/kg dw	01/28/02	SA3242
Butylbenzy lp hthalate	<740ug/kg dw	01/28/02	SA3242

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL QC: 10170

QTB3-01 1305H 01/21/02 G

ULI I.D.: 02302012	•	Matrix: Soil	
Parameters	RESULTS	TIME DATE ANAL. KEY KEY	/ FILE#
	,	••••	-
3,3'-Dichlorobenzidine	<740ug/kg dw	01/28/02	SA324
Benzo(a) anthracene	<740ug/kg dw	01/28/02	SA324
Chrysene	<740ug/kg dw	01/28/02	SA324
bis(2-Bthylhexyl)phthalate	3600ug/kg dw	01/28/02	SA324
Di-n-octyl ph thalate	<740ug/kg dw	01/28/02	SA324
Benzo(b) fluoranthene	: <740ug/kg dw	01/28/02	SA324
Benzo(k) fluoranthene	, <740ug/kg dw	01/28/02	SA324
Benzo(a)pyrene	; <740ug/kg dw	01/28/02	SA324
Indeno (1, 2, 3-cd) pyrene	<740ug/kg dw	01/28/02	SA324
Dibenzo(a, h) anthracene	<740ug/kg dw	01/28/02	SA324
Benzo(ghi)perylene	<740ug/kg dw	01/28/62	SA324
PCB (Arodlors) by EPA Method 8082			
Aroclor 1016	.<0.08ug/kg dw	01/29/02	GA122
	.<0.08mg/kg dw	01/29/02	GA122
Aroclor 1232	:<0.08mg/kg dw	01/29/02	GA122
Aroclor 1242	.<0.08mg/kg dw	01/29/02	GA122
Aroclor 1248	. <0.08mg/kg dw	01/29/02	GA122
Aroclor 1254	<0.08mg/kg dw	01/29/02	GA122
Aroclor 1260	. <0.08mg/kg dw	01/29/02	GA122
Total PCB	'<0.08mg/kg dw	01/29/02	GA122

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES; INC.

Sampled by: Client

APPROVAL:

BUFFALO BRAKE BEAM

QTB4-01 1415H 01/21/02 G

	•				
	RAMETERS	RESULTS	TIME DATE ANAL. KEY	KRY	FILE#
		91%	01/24/02		WD792
	Percent Solids	<1.lmg/kg dw	01/29/02		WD793
	Total Cyanide	3100mg/kg dw	01/30/02		MB423
Total	Aluminum	94mg/kg dw	01/30/02	•	MB423
Total	Antimony	4.6mg/kg dw	01/30/02		MB423
Total	Arsenic by Low Level	-: -	01/30/02		MB423
Total	Barium	34mg/kg dw	01/30/02	•	MB423
Total	Beryllium	<0.55mg/kg dw	01/30/02		MB423
Total	Cadmium	.1.1mg/kg dw .180000mg/kg dw	01/30/02		MB423
Total	Calcium	8.1mg/kg dw	01/30/02		MB423
Total	Chromium		• ,		MB423
Total	Cobalt	22mg/kg dw	01/30/02		
Total	Copper	12mg/kg dw	01/30/02		MB423
Total	Iron	6900mg/kg dw	01/30/02		MB423
Total	Lead	<11mg/kg dw	01/30/02		MB423
Total	Magnesium	7600mg/kg dw	01/30/02		MB423
Total	Manganese	: 250mg/kg dw	01/30/02		MB423
Total	Mercury	,<0.16mg/kg dw	01/30/02		MB423
Total	Nickel	15mg/kg dw	01/30/02		MB423
Total	Potassium	1100mg/kg dw	01/30/02		MB423
Total	Selenium by Low Level	8.5mg/kg dw	01/30/02		MB423
Total	Silver	6.6mg/kg dw	01/30/02		MB423
Total	Sodium	450mg/kg dw	01/30/02		MB423
Total	Thallium by Low Level	, < 0.33 mg/kg dw	01/30/02		MB423
Total	Vanadium	. <33mg/kg dw	01/30/02		MB423
Total	Zinc	28mg/kg dw	01/30/02		MB423
	TCL Volatiles by BPA Method 8260	•			
	Chloromethane	· <3ug/kg dw	01/30/02		VM3 8 1
	Bromomethane	<3ug/kg dw	01/30/02		VM3 8 1
	Vinyl Chloride	. , <2mg/kg dw	01/30/02		VM381
	Chloroethane	<3ug/kg dw	01/30/02		VM381
	Methylere Chloride	4ug/kg dw	01/30/02	11	VM381
	Acetone	<pre><1lug/kg dw</pre>	01/30/02		VM381
	Carbon Disulfide	<3ug/kg dw	01/30/02		VM381
	1,1-Dichloroethene	c3ug/kg dw	01/30/02		VM381
	1,1-Dichloroethane	c3ug/kg dw	01/30/02		VM381
	trans-1,2-Dichloroethene	<3 ug/kg dw	01/30/02		VM381
	cis-1,2 Dichloroethene	<lug dw<="" kg="" li=""></lug>	01/30/02		VM381
	Chloroform	<3ug/kg dw	01/30/02		VM381
	1,2-Dichloroethane	<3mg/ing chw	01/30/02		VM381

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES; INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL: oc: 5 Lab I.D.: 10170

QTB4-01 1415H 01/21/02 G

01/26/02

01/26/02

01/26/02

01/26/02

01/26/02

01/26/02

SA2919

SA2919

SA2919

SA2919

SA2919

SA2919

ARAMETERS	RESULTS	TIME DATE ANAL. KBY KEY	FILE#
		01/10/00	******
2-Butanone	<ll><ll><ll><ld></ld></ll></ll></ll>	01/30/02	VM3812
1,1,1-Trichloroethane	<3ug/kg dw	01/30/02	VM3812
Carbon Tetrachloride	<3ug/kg dw	01/30/02	VM3812
Bromodichloromethane	<3ug/kg dw	01/30/02	VM3812
1,2-Dichloropropane	<3ug/kg dw	01/30/02	VM3812
cis-1,3-Di ch loropropens	<3ug/kg dw	01/30/02	VM3812
Trichloroethene	<3ug/kg dw	01/30/02	VM3812
Dibromochleromethane	<3ug/kg dw	01/30/92	VM3 812
1,1,2-Trichloroethane	<3ug/kg dw	01/30/02	VM3812
Benzene	<3ug/kg dw	01/30/02	VM3812
trans-1,3-Dichloropropene	<3ug/kg dw	. 01/30/02	VM3812
Bromoform	<3ug/kg dw	01/30/02	VM3812
4-Methyl-2-pentanone	<11ug/kg dw	01/30/02	VM3812
2-Hexanone	<pre><dw</pre>	01/30/02	VM3812
Tetrachloroethene	<3ug/kg dw	01/30/02	VM3812
1,1,2,2-Tetrachloroethane	<3ug/kg dw	01/30/02	VM3812
Toluene	<3ug/kg dw	01/30/02	VM3812
Chlorobenzene	<3ug/kg dw	01/30/02	VM3812
Ethylbenzene	<3ug/kg dw	01/30/02	VM3812
Styrene	<3ug/kg dw	01/30/ 02 ·	VM3812
m-Xylene a nd p-Xylene	<3ug/kg dw	01/30/62	VM3812
o-Xylene	<3ug/kg dw	01/30/02	VM3812
TCL Semivolatiles by EPA Method 8270	:		
Phenol	<370ug/kg dw	01/26/02	SA2919
bis(2-Chloroethyl)ether	<370ug/kg dw	01/26/02	SA2919
2-Chlorophenol	<370ug/kg dw	01/26/02	SA2919
1,3-Dichlorobenzene	<370ug/kg dw	01/26/02	SA2919
1,4-Dichlorobenzene	<370ug/kg dw	01/26/02	SA2919
1,2-Dichlorobenzene	<370ug/kg dw	01/26/02	SA2919
2-Methylphenol	<370ug/kg dw	01/26/02	SA2919
2,2'-Oxybis(1-Chloropropane)	<370ug/kg dw	01/26/02	SA2919
4-Methylphenol	<370ug/kg dw	01/26/02	SA2919
n-Nitrosodinpropylamine	:<370ug/kg dw	01/26/02	SA2919
		,,	

.<370ug/kg dw

.c370ug/kg dw

<370ug/kg dw

<370ug/kg dw

.<370ug/kg dw

: <370mg/kg dw

dw = Dry weight

bis (2-Chloroethoxy) methane

Hexachloroethane

2,4-Dimethylphenol

Nitrobenze**ze**

2-Nitrophenol

Isophorene

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL:

QTB4-01 1415H 01/21/02 G

UL	I	I.	D.	•	02	31	02	013

	Ma	tr	ix:	: S	oil
--	----	----	-----	-----	-----

PARAMETERS	RESULTS	TIME DATE ANAL. KEY	KEY FILES
2,4-Dichlorophenol	<370ug/kg dw	01/26/02	SA2919
1,2,4-Trichlorobenzene	<370ug/kg dw	01/26/02	SA2919
Naphthalene	<370ug/kg dw	01/26/02	SA2919
4-Chloroaniline	<370ug/kg dw	01/26/02	SA2919
Hexachlorobutadiene	<370ug/kg dw	01/26/02	SA2919
4-Chlore-3-methylphenol	<370ug/kg dw	01/26/02	SA2919
2-Methylnaphthalene	<370ug/kg dw	01/26/02	SA2919
Rexachlorocyclopentadiene	<370ug/kg dw	01/26/02	SA2919
2,4,6-Trichlorophenol	<370ug/kg dw	01/26/02	SA2919
2,4,5-Trichlorophenol	<370ug/kg dw	01/26/02	SA2919
2-Chloronaphthalene	<370ug/kg dw	01/26/02	SA2919
2-Nitroaniline	<3700ug/kg dw	01/26/02	SA2919
Dimethylphthalate	<370 ug/kg dw	01/26/02	SA2919
Acenaphthylene	<370ug/kg dw	01/26/02	SA2919
2,6-Dinitrotoluene	<370ug/kg dw	01/25/02	SA2919
3-Nitroaniline	<3700ug/kg dw	01/26/02 .	SA2919
Acenaphthene	. <370ug/kg dw	01/26/02	SA2919
2,4-Dinitrophenol	.<3700ug/kg dw	01/26/02	SA2919
4-Nitrophenol	<3700ug/kg dw	01/26/02	SA2919
Dibenzofur an	:<370ug/kg dw	01/25/02	SA2919
2,4-Dinitrotoluene	i<370ug/kg dw	01/26/02	5 A2 919
Diethylphthalate	<370ug/kg dw	01/26/02	\$ A2 919
4-Chlorophenylphenylether	<370 ug/kg dw	01/26/02	SA2919
Fluorene	;<370ug/kg dw	01/26/02	SA2919
4-Nitroaniline	<3700ug/kg dw	01/26/02	SA2919
2-Methyl-4,6-dinitrophenol	<3700 ug/kg dw	01/26/02	SA2919
n-Nitrosodiphenylamine	:<370ug/kg dw	01/26/02 .	SA2919
4-Bromophenylphenylether	:<370ug/kg dw	01/26/02	SA2919
Hexachlorobenzene	<370ug/kg dw	01/26/02	SA2919
Pentachlorophenol	<730ug/kg dw	01/26/02	SA2919
Phenanthrene	<370mg/kg dw	01/26/02	SA2919
Anthracene	.<370ug/kg dw	01/26/02	SA2919
Carbazole	:<370ug/kg dw	01/26/02 .	SA2919
di-n-butylphthalate	1<370ug/kg dw	01/26/02	SA2919
Fluoranthene	.<370ug/kg dw	01/26/02	SA2919
Pyrene	<370ug/kg dw	01/26/02	SA2919
Butylbenzyl ph thalate	:<370ug/kg dw	01/26/02	SA2919
3,3'-Dichlorobenzidine	.<370 ug/kg dw	01/26/02	- 5A2919
Benzo(a) anthracene	<370ug/kg dw	01/26/02	SA2919
Chrysene	.<370ug/kg dw	01/26/02	SA2919

Upstate Laboratories, Inc.

Analysis Results

Report Number: 02302010

Client I.D.: STERLING ENV. SERVICES, INC. BUFFALO BRAKE BEAM

Sampled by: Client

APPROVAL:
QC:
Lab I.D.: 10170

GA1228

GA1228

GA1228

GA1228

QTB4-01 1415H 01/21/02 G

01/29/02

01/29/02

01/29/02

01/29/02

ARAMETERS	RESULTS	TIME DATE ANAL. KEY	KEY FILE#
bis(2-Sthylhexyl)phthalate	2100ug/kg dw	01/26/02	SA2919
Di-n-octyl ph thalate	<370ug/kg dw	01/26/02	SA2919
Benzo(b) fluoranthene	,<370ug/kg dw	01/26/02	SA2919
Benzo(k) fluoranthene	:<370ug/kg dw	01/26/02	SA2919
Benzo (a) pyrene	:<370ug/kg dw	01/26/02	SA2919
Indeno(1,2,3-cd)pyrene	<370ug/kg dw	01/26/02	SA2919
Dibenzo(a,h) anthracene	<370ug/kg dw	01/26/02	SA2915
Benzo (ghi) perylana	. <370ug/kg dw	01/26/02	SA2919
PCB (Aroclors) by EFA Method 8082			
Aroclor 10 16	:<0.08mg/kg dw	01/29/02	GA1228
Aroclor 1221	<0.08mg/kg dw	01/29/02	GA1228
Aroclor 1232	<0.08mg/kg dw	01/29/02	GA1228
Aroclor 1242	.<0.08mg/kg dw	01/29/02	GA1228

<0.08mg/kg dw

:<0.08mg/kg dw

:<0.08mg/kg dw

'<0.08mg/kg dw

dw = Dry weight

Aroclor 1248

Aroclor 1254

Aroclor 1260

Total PCB

KEY PAGE

- 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
- 2 REFERENCE SAMPLE/CCV RECOVERY WAS OUTSIDE OF CONTROL LIMITS
- METHOD BLANK RESULT WAS ABOVE THE CONTROL LIMITS
- 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE
- 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS
- 6 BLANK CORRECTED
- 7 HEAD SPACE PRESENT IN SAMPLE
- 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
- 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID
- 10 RESULTS ARE REPORTED ON AN AS REC.D BASIS
- 11 POSSIBLE CONTAMINATION FROM FIELD/LABORATORY
- 12 SAMPLE ANALYZED OVER HOLDING TIME
- 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE
- 14 SAMPLED BY ULI
- 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR
- 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS
- 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
- 18 THE SERIAL DILUTION OF THIS SAMPLE SUGGESTS A POSSIBLE PHYSICAL AND/OR CHEMICAL INTERFERENT IN THIS DETERMINATION. THE DATA MAY BE BIASED EITHER HIGH OR LOW.
- 19 CALCULATION BASED ON DRY WEIGHT
- 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS
- 21 UG/KG AS REC.D / UG/KG DRY WT
- 22 MG/KG AS REC.D / MG/KG DRY WT
- 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS
- 24 SAMPLE DILUTED/BLANK CORRECTED
- 25 ND (NON-DETECTED)
- 26 DUPLICATE SAMPLE OUTSIDE QC CRITERIA
- 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE
- 28 POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE POL
- 29 ANALYZED BY METHOD OF STANDARD ADDITIONS
- 30
- 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT
- 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED
- 33 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS) PER DAY LAS
- 34 THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL: TCLP VALUE
- 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES
- 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
- 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
- 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS)
 PER DAY OF CL2
- 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY
- (B) DETECTED IN BLANK
- (D) ALL COMPOUNDS IDENTIFIED IN AN ANALYSIS AT A SECONDARY DILUTION FACTOR
- (E) COMPOUNDS WHOSE CONCENTRATIONS EXCEED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT FOR THAT SPECIFIC ANALYSIS
- (J) DETECTED BELOW THE CROL
- (a) SAMPLE(S) RECEIVED AT THE IMPROPER TEMPERATURE
- (b) HEADSPACE IN VOA VIAL(S)
- (c) HEADSPACE IN ALKALINITY BOTTLE(S)
- (d) SAMPLE CONTAINER(S) RECEIVED BROKEN

Chlorinated Solvents Monitoring Well Activities Report

Buffalo Brake Beam 400 Ingham Ave. Lackawanna, NY

Prepared by: Sterling Environmental Services Inc.
50 Lake Ave.
Blasdell, NY
April 2002

Table of Contents

INTRODUCTION	P. 3
WELL INSTALLATION	P. 3
RELATIVE WELL ELEVATIONS	P. 6
DIAGRAM OF WELL DEPTHS AND WATER LEVELS	P . 7
MONITORING WELL SAMPLING	P. 8
SUMMARY OF ANALYTICAL RESULTS	P. 8
ANALYTICAL RESULTS TABLES	P. 9
CONCLUSIONS AND RECOMONDATIONS	P.14
CHLORINATED SOLVENT WELLS	P.14
MW104, BTEX WELL	P.15
DIAGRAM OF WELL LOCATIONS	P.16
APPENDIXES: TEST BORING LOGS ANALYTICAL RESULTS	

INTRODUCTION

In November of 2000, Earth Tech installed three monitoring wells on the Buffalo Brake Beam property as a part of their Baseline Environmental Site Assessment. One of the wells, MW10, exhibited concentrations of two chlorinated solvents, Tetrachloroethene and

cis-2-dichloroethene, in excess of ambient water quality standards.

In an effort to delineate the extent of contamination and investigate a possible source, four new groundwater monitoring wells were strategically installed, two presumed up gradient (MW101 and MW102) and two presumed down gradient (MW103 and MW104) from MW10. This was based upon the anticipation of groundwater flow in a southwest direction from the north side of the property towards Lake Erie. Following installation, the wells were developed in accordance with the agreed upon Supplemental Environmental Field Investigation Work Plan/ Quenchant Pit & Chlorinated Solvent Projects prepared January 2002, by Sterling. After development, the wells were sampled by Sterling. The samples were then picked up by Upstate Laboratories, following standard chain of custody procedures, and analyzed for VOC's using EPA method 8260. The following report gives a complete description of well installation, development, sampling procedures, and findings based upon analytical results.

WELL INSTALLATION

Installation activities began on the morning of January 22, 2002 and concluded on the evening of January 23, 2002. Present for monitoring well installation activities were Wayne Cameron and Jeremy Wells from Sterling, Steve Choiniere of Earth Tech (Observing representative for Miner) and two drill operators/installers from Parratt Wolff Inc. Sterling was responsible for overseeing the installation activities and choosing the final locations for wells along with screening the split spoon samples with a PID to determine possible source contamination. The contracted drill team from Parratt Wolff Inc. was responsible for all drilling and installation activities along with the tools and materials needed to construct the groundwater monitoring wells. They also kept a Test Boring Log of soil descriptions at individual subsurface intervals for each well. The Test Boring Log has been added as an appendix to this report.

The first well, MW104, was installed due south of MW10 in the parking lot of the loading area on the south side of the new building. It is approximately 16' east of the corner of the building and 45'8" south (please see diagram on p.16). Refusal for the split spoon was reached at 11.8' and refusal for the auger was reached at 12.0'. The flush mount well was installed successfully at the 12.0' depth in accordance with the work plan. A list of the split spoon intervals and correlating PID readings follows:

Depth Interval		PID Reading
0'-2'		0-1 ppm
2'-4'		0-1 ppm
4'-4.9 '		0-17 ppm
6'- 6.1'		No Recovery
8'-10'	· .	0-3 ppm
10'-1 1. 8'	· !	0-4 ppm

The second well, MW103, was installed due west of the new building addition at a 45-degree radial angle (approximately) from the MW10 - MW104 line. It is located approximately 55'8" west from the right corner of the overhead door (please see diagram on p.16). Refusal for the split spoon was reached at 14.7' and refusal for the auger was reached at 14.0'. The flush mount well was installed successfully at the 14.0' depth in accordance with the work plan.

Depth Interval	PID Reading
0'-2'	0-1 ppm
2'-4'	0-1 ppm
4'-6'	0-1 ppm
6'-8'	0-1 ppm
8'-10'	0-1 ppm
10'-1 2'	0-2 ppm
12'-1 4'	0-1 ppm
14'-14.7'	0-1 ppm

The third well, MW101, was installed approximately 106' due north of MW10, just inside the fence line of the yard area north of the new building (please see diagram on p.16). Split spoon refusal was reached at 12.9' and auger refusal was reached at 13.0'. The well was successfully installed at 13.0' in accordance with the work plan.

Depth Interval	•		PID Reading
0'-2'	:	34	0-1 ppm
2'-4'	ř	• •	0-1 ppm
4'-6'	:		0-1 ppm
6'- 8 '	i		0-1 ppm
8'- 1 0'	1 2		0-1 ppm
10'-1 2'	•		0-2 ppm
12'-12.9'		•	0-17 ppm

The fourth well, MW102, was installed at a 45 degree radial angle to the south and east of MW101 and approximately 106' from MW10 in the yard area north of the new building (please see diagram on p.16). Split spoon refusal and auger refusal both, were reached at 14.1'. Due to very wet sands and a vacuum condition created when pulling the plug from the auger, two to two and a half feet of sands had to be flushed out of the boring hole with potable water before the

well could be installed. The flush mount well was successfully installed at 14.0' in accordance with the work plan.

	<u>PID</u>	Reading
•	0-2	ppm
	0-1	ppm
	0-2	ppm
	0-2	ppm
	0-3	ppm
;	0-1	ppm
<u>:</u>	0-3	ppm
	•	0-2 0-1 0-2 0-2 0-3 0-1

WELL DEVELOPMENT

The standard procedure for developing the groundwater monitoring wells was discussed in detail in the work plan. The wells were developed in accordance with that plan before any samples were taken. All four wells were completely developed within a period of two weeks between January 25,2002 and February 8, 2002. Three wells, MW101, MW102, and MW103 were able to reach the turbidity requirement of 50 NTU's or less after the required purging volume had been pumped out of the wells. MW104 was a low volume well with slow recharge and was unable to reach the turbidity requirement and thus was purged dry five times, allowing at least ninety percent volume recovery between purges.

During well development, a datum point was established on the casing of each well to establish a reference point from which depth and static water levels could be measured. These measurements were crucial to development as they were the basis for well volume calculations. The tables below show the depths, water levels, calculated volumes, and total volumes removed for each well:

MW101

Depth: 178"

Initial H2O Level: 126"

Calculated Well Volume: 2.8 gallons

Total Volume removed: 64 gallons (final turbidity: 21.0 NTU)

MW1**02**

Depth: 162.5"

Initial H2O Level: 107.5"

Calculated Well Volume: 3 gallons

Total Volume removed: 39 gallons (final turbidity: 49.2 NTU)

MW1**0**3

Depth: 167"

Initial H2O Level: 105.5"

Calculated Well Volume: 3.3 gallons

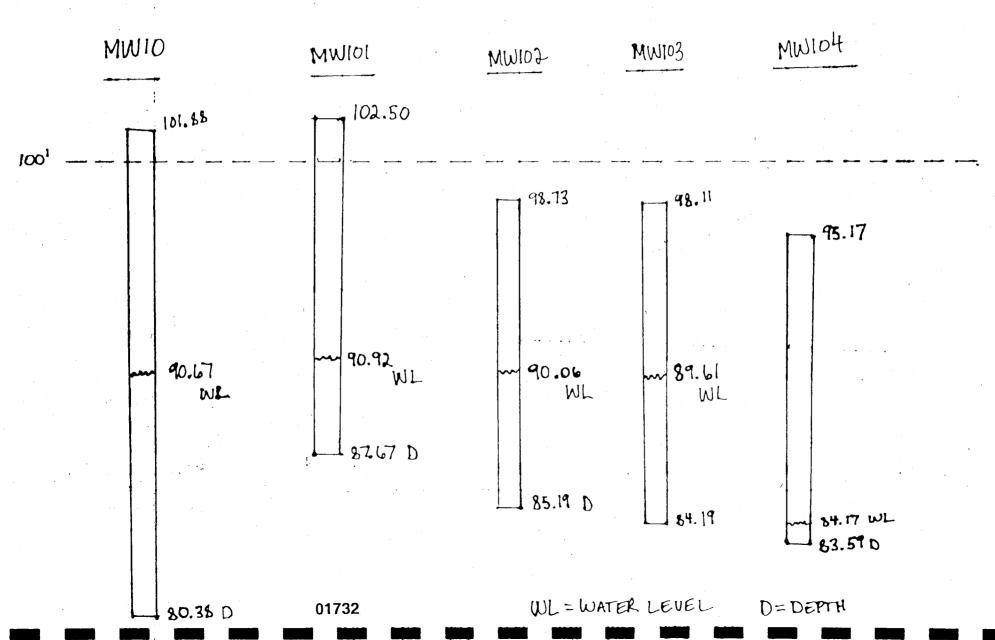
Total Volume removed: 30 gallons (final turbidity: 14.7 NTU)

MW104

Depth: 139".

Initial H2O Level: 132"

Calculated Well Volume: 0.38 gallons


Total Volume removed: 1.83 gallons (purged well dry 5 times)

RELATIVE WELL ELEVATIONS

All well depth measurements shown to this point are from the top of the individual well casing. Two of the well casings, MW10 and MW101, extend above grade while the other three are flush mounts. There are also variations in the ground surface elevations between the various well points. To account for these variations, the relative elevations of the well datum points were determined using a laser level. The floor of the new building addition was used as an arbitrary base reference elevation. The relative well datum point elevations were determined from this reference. The following figure shows the well depths and water levels adjusted for the datum point elevations.

Diagram of Monitoring Well Depths and Water Levels relative to an Arbitrary Elevation Level of 100'

~

MONITORING WELL SAMPLING

Five monitoring wells, MW10, MW101, MW102, MW103 and MW104 were sampled on Wednesday 2/20/02. Due to the low volume and slow recovery of MW104 observed during development, this well was purged on 2/19/02, by pumping until all water was removed. The other four wells were purged on 2/20/02 by removing three well volumes with a peristaltic pump. MW104 showed full recovery in the 24 hour period. The other four wells showed full recovery within 2.5 hours. One sample was collected from each of the five wells using a dedicated disposable bailer. Each sample was transferred to a labeled, precleaned VOA vial using a VOC bottom emptying device. The samples were packed in ice and sent to Upstate Laboratories under standard chain of custody procedures for analysis of VOC's by SW-846 Method 8260.

SUMMARY OF ANALYTICAL RESULTS

Analytical results are presented in the following tables with comparison to the Ambient Water Quality Standards and Guidance Values, NYSDEC TOGS 1.1.1.

Tetrachloroethene was detected in four of the five wells sampled. These were MW10, MW101, MW102 and MW103. The concentration of Tetrachloroethene in MW101 was below the groundwater standard. The concentration in the other three wells, MW10 @ 22 ppb, MW102 @ 43 ppb and MW103 @ 94 ppb exceeded the groundwater standard of 5 ppb. Trichloroethene was detected in two of the wells, MW102 and MW103, but concentrations were at or below the groundwater standard. No chlorinated solvents were detected in MW104, however BTEX compounds were detected at significant levels. Concentrations of Benzene, Toluene, Ethyl Benzene and Xylene exceeded the groundwater standard in this sample. Benzene @ 24 ppb exceeded the standard of 0.7 ppb. Toluene @ 65 ppb, Ethyl Benzene @ 10 ppb and total Xylenes @ 318 ppb exceeded the standard of 5 ppb for each compound.

Analytical Results Summary Table in PPB (ug/l) Matrix: Water

Sample: MW10-01 Analysis: VOC's (EPA Method 8260)

Constituent	Sample Results	TOGS 1.1.1 Groundwater Standards/Guidance Values
Chloromethane	<3	5
Bromomethane	<3	5
Vinyl Chloride	<2	2
Chloroethane	<3	50
Methylene Chloride	<3	5
Acetone	<10	50
Carbon Disulfide	<3	50
1,1-Dichloroethene	<3	5
1,1-Di ch loroethane	<3	5
Trans-1,2-Dichloroethene	<3	5
Cis-1,2-Dichloroethene	<3	5
Chloroform	<3	7
1,2-Di ch loroethane	<3	5
2-Butanone	<10	50
1,1,1- Tr ichloroethane	<3	5
Carbon Tetrachloride	<3	5
Bromodichloromethane	<3	50
1,2-Di ch loropropane	<3	5
Cis-1,3-Dichloropropene	<3	5
Trichloroethene .	<3	5 .
Dibromochloromethane :	<3	50
1,1,2-Trichloroethane	<3	5
Benzene	<3	0.7
Trans-1,3-Dichloropropene	<3	5
Bromoform	<3	50
4-Methyl-2-pentanone	<10	50
2-Hex an one	<10	50
Tetrachloroethene	22	5
1,1,2,2-Tetrachloroethane	<3	5
Toluene	<3	5
Chlorobenzene	<3	5
Ethylbenzene	<3	5
Styren e	<3	5
Total Xylene	<6	5

Analytical Results Summary Table in PPB (ug/l) Matrix: Water

Sample: MW101-01
Analysis: VOC's (EPA Method 8260)

Constituent	Sample Results	TOGS 1.1.1 Groundwater Standards/Guidance Values
Chloromethane	<3	5
Bromomethane	<3	5
Vinyl Chloride	<2	2
Chloroethane	.<3	50
Methylene Chloride	<3	5
Acetone	<10	50
Carbon Disulfide	<3	50
1,1-Dichloroethene	<3	5
1,1-Dichloroethane	<3	5
Trans-1,2-Dichloroethene	<3	5
Cis-1,2-Dichloroethene	<3	5
Chloroform	<3	7
1,2-Dichloroethane	<3	5
2-Butanone	<10	50
1,1,1- Tr ichloroethane	<3	5
Carbon Tetrachloride	< 3	5
Bromodichloromethane	<3	50
1,2-Di ch loropropane	<3	5
Cis-1,3-Dichloropropene	<3	5
Trichloroethene	<3	, 5
Dibromochloromethane	<3	50
1,1,2-Trichloroethane	<3	5
Benzene	<3	0.7
Trans-1,3-Dichloropropene	<3	5
Bromoform	<3	50
4-Methyl-2-pentanone	<10	50
2-Hex an one	<10	50
Tetrachloroethene	3	5
1,1,2;2-Tetrachloroethane	<3	5
Tolue ne	<3	5
Chlorobenzene	<3	5
Ethylbenzene	<3	5
Sty r en e	<3	5
Total Xylene	<6	5

Analytical Results Summary Table in PPB (ug/i)

Matrix: Water

Sample: MW102-01 Analysis: VOC's (EPA Method 8260)

Constituent	Sample Results	TOGS 1.1.1 Groundwater Standards/Guidance Values
Chloromethane	<3	5
Bromomethane	.<3	5
Vinyl Chloride	<2	2
Chloroethane	<3	50
Methylene Chloride	-<3	5
Acetone	<10	50
Carbon Disulfide	<3	50
1,1-Dichloroethene	<3	5
1,1-Di ch loroethane	<3	5
Trans-1,2-Dichloroethene	<3	5
Cis-1,2-Dichloroethene	<3	5
Chloroform	<3	7
1,2-Di ch loroethane	<3	5
2-Butanone	1<10	50
1,1,1- Tri chloroethane	<3	5
Carbon Tetrachloride	<3	5
Bromodichloromethane	<3	50
1,2-Di ch loropropane	<3	5
Cis-1,3-Dichloropropene	<3	5
Trichloroethene	4	5
Dibromochloromethane	<3	50
1,1,2-Trichloroethane	<3	5
Benzene	<3	0.7
Trans-1,3-Dichloropropene	<3	5
Bromoform	<3	50
4-Methyl-2-pentanone	<10	50
2-Hex an one	<10	50
Tetrachloroethene	43	5
1,1,2,2-Tetrachloroethane	<3	5
Toluene :	<3	5
Chlorobenzene	<3	5
Ethylbenzene	<3	5
Styren e	<3	5
Total Xylene	<6	5

Analytical Results Summary Table in PPB (ug/l) Matrix: Water

Sample: MW103-01 Analysis: VOC's (EPA Method 8260)

Constituent	Sample Results	TOGS 1.1.1 Groundwater Standards/Guidance Values
Chloromethane	<3	5
Bromomethane	<3	5
Vinyl Chloride	<2	2
Chloroethane	<3	50
Methylene Chloride	<3	5
Acetone	<10	50
Carbon Disulfide	<3	50
1,1-Dichloroethene	<3	5
1,1-Dichloroethane	<3	5
Trans-1,2-Dichloroethene	<3	5
Cis-1,2-Dichloroethene	<3	5
Chloroform	<3	7
1,2-Di ch loroethane	<3	5
2-Butanone	<10	50
1,1,1-Trichloroethane	<3	5
Carbon Tetrachloride .	<3 ·	5
Bromodichloromethane	<3	50
1,2-Di ch loropropane	<3	5
Cis-1,3-Dichloropropene	<3	5
Trichloroethene	5	5
Dibromochloromethane	<3	50
1,1,2- Tri chloroethane	<3	5
Benzene	<3	0.7
Trans-1,3-Dichloropropene	<3	5
Bromo fo rm	<3	50
4-Methyl-2-pentanone	<10	50
2-Hexanone	<10	50
Tetrachloroethene	94	5
1,1,2,2-Tetrachloroethane	<3	5
Toluen e	<3	5
Chlorobenzene	<3	5
Ethylbenzene	<3	5
Styren e	<3	5
Total Xylene	<6	5

Analytical Results Summary Table in PPB (ug/l) Matrix: Water

Sample: MW104-01 Analysis: VOC's (EPA Method 8260)

Constituent	Sample Results	TOGS 1.1.1 Groundwater Standards/Guidance Values
Chloromethane	<6	5
Bromomethane	<6	5
Vinyl Chloride	<4	2
Chloroethane	l <6	50
Methylene Chloride	<6	5
Acetone	<20	50
Carbon Disulfide	<6	50
1,1-Dichloroethene	<6	5
1,1-Di ch loroethane	<6	5
Trans-1,2-Dichloroethene	<6	5
Cis-1,2-Dichloroethene	<6	5
Chloroform	<6	7
1,2-Di ch loroethane	<6	5
2-Butanone	<20	50
1,1,1-Trichloroethane	<6	5
Carbon Tetrachloride	<6	5
Bromodichloromethane	<6	50
1,2-Di ch loropropane	<6	5
Cis-1,3-Dichloropropene	<6	5
Trichloroethene	<6	5
Dib r omochloromethane	<6	50
1,1,2-Trichloroethane	<6	5
Benzene	24	0.7
Trans-1,3-Dichloropropene	<6	5
Bromoform	<6	50
4-Methyl-2-pentanone	<20	50
2-H e xa n one	<20	50
Tetrachloroethene	<6	5
1,1,2,2-Tetrachloroethane	<6	5
Toluen e	65	5
Chlorobenzene	<6	5
Ethylbenzene .	10	5
Styrene	<6	5
Total Xylene	318	5

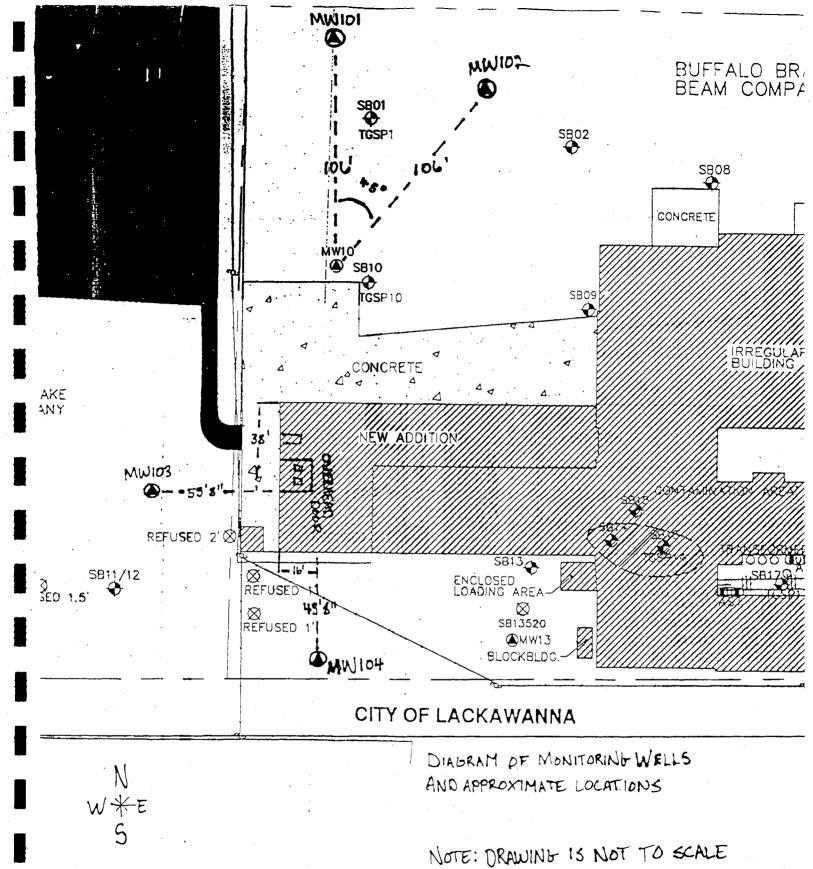
CONCLUSIONS AND RECOMMENDATIONS

In general, it is impossible to draw firm conclusions from the information available at this time. What can be concluded is that MW104 is unrelated to the other four wells, "the chlorinated solvents project". It is also apparent that Tetrachloroethene is present above the ambient groundwater standard, in shallow groundwater below the site. The levels of Tetrachloroethene in each of the wells sampled in this round were less than the level found in the initial sampling of MW10 a year ago which appears to indicate that the situation is not getting worse. It should also be noted that a review of the record of decision for the Lehigh Industrial Park inactive hazardous waste site, the adjacent property to the north, shows a chlorinated solvent, cis 1,2.Dichloroethene was found in the groundwater below the site at concentration above the groundwater standard. This site is located in the presumed upgradiant direction of the wells sampled in this project. The conclusions of the ROD were that the contamination did not pose a threat to the public health or the environment and no source was identified on the site. Therefore no groundwater remediation was performed.

CHLORINATED SOLVENT WELLS

MW10, MW101, MW102 and MW103 all showed the presence of Tetrachloroethene. Cis-1,2-dichloroethene, the solvent identified in the ROD for the Lehigh site, was noted in the original sampling of MW10 as part of the baseline assessment. It was not detected in this round of sampling in MW10 or any of the other three wells. The levels of Tetrachloroethene in this sampling exercise were also lower than in the initial sampling. The initial sampling showed concentrations of 140 ppb. In this round of sampling MW10 was 22 ppb. Higher levels were observed in MW102 and MW103 at 43 and 94 ppb respectively, which are both below the level of the initial sample.

Many factors are at work in a groundwater situation which may influence the results. We are looking at concentrations of less than 100 parts per billion. Minor variations in these numbers are not necessarily statistically significant. The difference between the concentration in MW10 and MW102 and 103 may be that MW10 was installed a year ago and MW102 and 103 have been recently disturbed by the installation process. MW104 is 2.5 feet shallower than any of the other wells. This may indicate a slope to the bedrock or it may be located on an elevated anomaly that may create a flow pattern around it. If it is an elevated anomaly this could contribute to the lower concentrations in this well. Seasonal groundwater level fluctuation can also influence the results. Processes such as flushing and natural attenuation are also at work.


I would recommend that these wells continue to be sampled on a quarterly basis to develop more reliable data and to confirm that concentrations are not increasing. I would also recommend that we pursue obtaining the groundwater

sampling information and analytical results for the RI conducted on the Lehigh site. This information may help provide evidence of an off-site source.

MW104, BTEX WELL

The findings for MW104 indicate that this well is unrelated to the other four. The relative water level, hydogeological conditions of the low well volume and slow recharge as well as the distinctly different chemical fingerprint indicate that this well is geologically isolated from the aquifer of the other wells. This well is being discussed separately.

MW104 showed concentrations of Benzene, Toluene, Ethyl Benzene and Xylene in excess of the groundwater standards. These compounds are indicative of gasoline or fuel contamination. The source of this contamination has not been identified. The area in which the well is located was identified as an area of buried concrete debris in the baseline assessment. There are also drain lines in this area. During the drilling for the well installation elevated PID readings were observed at the 4 to 4.9 foot depth interval. The next recoverable interval was not until the 8 foot depth. It is possible that we drilled through something such as an old drain bed during the well installation and this may be the source of the contamination. It is also possible that the groundwater has been impacted by the gasoline spill area identified inside the building. I would recommend another round of sampling of this well and MW13. If a sample can be obtained from MW13 and it does not show the BTEX contamination, the gasoline spill area could be ruled out as the source based upon MW13s closer proximity to the spitl area. I would then recommend a series of test borings and field screening to better identify and delineate the contamination source area.

GROUNDWATER
NT (INSTALLED IN
MPLE COLLECTED

A INDICATES MONITORING WELL

MW101, MW102, MW103, AND MW104 INSTALLED BY STERLING

5879 FISHER ROAD EAST SYRACUSE, N.Y. 13057

HOLE NO. mw - 102

JOB NO. 02018

WHILE DRILLING

PROJECT BJHAlo BRAKE BEAM

LOCATION LACKAWANNA, N. Y.

DATE STARTED

DATE COMPLETED

1-23-01

1-23-02

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR - % CORE RECOVERY

140 # HAMMER FALLING

BEFORE CASING 11.0' REMOVED

GROUND WATER DEPTH

AFTER CASING REMOVED Installed 2" poe well

8.0

CASING TYPE 4 1/4 H. S.A. 2" PUL WELL SHEET / OF /

SURF. EL.

DEPTH	SAM PL E DEP TH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	Ŋ	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	ان.د - 'ه	ī		8-9	37		
				28-11		Brown, moist, Deuse F/m RAND, little ETLT, little	•
	2.0'- 4.0'	2			3≽	Flm graves	
,				14-20			
5'	4.0'- 6.0'	3		10-24	40		-
				24-21			
	6.0'- 8.0'	4			50	TAN MOIST DEATH F/m SAME	
	·			27-21			8.0
10'	80'-10.0'	2		16-10	23	TAN, WET, MID FIN CAND	
- 10	-						
	12.21	6			39		
		<u> </u>			 		
	12.5 - 14.5	7	<u> </u>		25		13.0'
15				34-21		of Limestone Ruck Feapwent's CHAT, THAIR	
						duese refusal at 14.1"	
	<u> </u>				<u> </u>	Scarened 14.0' = 9.0'	
				 		Risec 9.0'- ,5' in low geade	
		 	ļ	·		5 SANDPACE - 14.0" - 7.0" = 4 GAE # 0 SAND	
				: 	ļ	SEAL 7.0'- 1.5' = 2 Bags Holey lung	
	-	ļ	·			sackacte 1.5'- gende = 2 Cogs	
		3.0 1 8-9 37 ROAL STOWE 28-11 BROWN, MoIST, DEUSE F/M SAND, 11HIE SILT, 11HIE F/M GRAVET -9.0 2 16-20 36 F/M GAND, 11HIE SILT, 11HIE F/M GRAVET -6.0 3 10-24 40 70 70 70 70 70 70 70 70 70 70 70 70 70					
		<u> </u>	ļ	 		18" some tube pad	
		 	ļ	-	 	% * ,	
	 		 	-			
		 	!	· · · · · · · · · · · · · · · · · · ·			
		 		<u> </u>		· *	
		+ · · ·		 	 		
		<u> </u>		 	 		
		<u> </u>					
					1		
					Ĺ		
				_			
						· ··•	
			T				
							04746

5879 FISHER ROAD

-- EAST SYRACUSE, N.Y. 13057

HOLE NO. MW - 101

PROJECT Buffalo Banke Beam

LOCATION LACKAWANNA, N.Y.

DATE STARTED

DATE COMPLETED

N — NO. OF BLOWS TO DRIVE SAMPLER 12" WI140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

1-23-02

1-23-02

JOB NO. 020/8

SURF. EL.

GROUND WATER DEPTH

WHILE DRILLING

BEFORE CASING REMOVED //.0

AFTER CASING

REMOVED Installed 2" Pue well

8.0

C — NO. OF BLOWS TO DRIVE CASING 12" WI

* HAMMER FALLING

CASING TYPE 474 H.S.A.

J. Puc well

4" fee - casing

SHEET , OF ,

	41.1	ec · c	acing		•		
DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0'- 2.0'	,		4-4	8	Beown, moist, Loose to min Flm sand	
	-	-		4-5			
	20'-400	2		4.8	15	Trace ster, Trace line genuel	
				7.5			4.0'
` ک	4.0'-4.0'	3		2-2	7	TAN, moist LOOSE TO m/A F/m sand trace	,
				5-11		SILT, TRACE FINE GRAVE!	ļ
	6.0'- 8.0'	4		10-12	29		
				17-22			8.0'
,	8.0'-10.0'	5		4-14	37	TRACE STLT	7.7'
10'	ļ,	ļ		23-27		crey, moist, Denie F/m sand, some fine oras	
	יבבו - יהמ	6	L	14-14	33		70.0
				19-23	ļ	But Flor-gover	12.5
	12.0'-12.9	7		40-544	<u> </u>	GREY, WET, VERY DENSE Florsand, some Florgers!	
15'	1:	-		. .			8.1.6
	<u> </u>		ii			spoon extural at 12.9'	
					 	Augus de Cuent AT 13,0	,
					 	Screened 13.0' - 8.0'	!
		<u> </u>	 	····		Riter 80' - 3.0' above gande	
	- · ·					Sandpack 13.0' - 4.0' e 4 Bags # 0 Famo	ŀ
		<u> </u>	 		 	SEAL 6.0' - 2.0' = 742 Bage Hule plug	
						Sackente 20'- gende = 3 éngs	
	-		 		-	1 4" pro- casing w/Luck	
						1 18" Come tube PAd	
					 		
			i				
	-						
		i					
							l
	•					Ī	1743
							11140
		1	1			- 	1

5879 FISHER ROAD

HOLE NO. mw-103

EAST SYRACUSE, N.Y. 13057

PROJECT BUHALO BRAKE BEAM

LOCATION LACKAWANNE N.Y.

DATE STARTED

DATE COMPLETED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" - ASTM D-1586, STANDARD PENETRATION TEST

1-22-02

1-22-02

JOB NO. 02018

SURF. EL.

GROUND WATER DEPTH WHILE DRILLING

BEFORE CASING

11.0' REMOVED

AFTER CASING

REMOVED BASTAILE 2" PVL

C - NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR - % CORE RECOVERY :

184 HAMMER FALLING

CASING TYPE 477 W.C.E.

30 pur well ay cookie cukie

SHEET , OF /

		<i>æ</i> γ.::	cook	10 20	يدي بين			
	DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGI DEPTH
Γ		0'-2.0	1		20-12	22	BROWN, MOIST, MERIUM ARMIL FINE SAND, come EXET, little	
					10 - 8	પ્ર	F/m gainet	
		20- 4.0	2		7-9	18	· · ·	3.5
Ī					9-8		TAN, moist, modium Dense Himsand, some salt	
_	_5'	90'- 6.0'	3		2-2	9		5.0
					7 - 4	ļ	TANT MOIST TO WET, LOOSE TO median were F/m sand	7.0'
ł		6.0- 80'	4/		10-11	32	Little SILT	
•					11-10	!	TAN, MOIST, MO F/M SAND, TRANC ETLT	6.o'
	,	80 - 10.0'	2		6-9	18	TON, WET, MID FIM SAND	
Ļ.	10'		ļ		11-9	ļ		
1		10.0'- 12.0'	<u>, 6</u>	<u> </u>	7-12	29		
				<u> </u>	[ב-דו		•	
		12.0'- 14.0'	7_	ļ	12-15	34	TAN, WET, DENSE FIM SAND	
1				<u> </u>	21-27		· · · · · · · · · · · · · · · · · · ·	14.5'
<u> </u>	15'	14.0'- 14.7'	8		9-50/.2	<u> </u>	GECY, WET, Highly Weathtack Limestone	B. D. B.
	E				ļ		spooned to 14.7'	
		<u> </u>	<u> </u>	<u> </u>	ļ		BULLE TO 14.2	
			<u> </u>			<u> </u>	See concer 14.0 - 7.0	
							Aisea 7.0'- ,5' below grante	
L		·					Sandpack 14.0' - 7.0' = 4 Bays # 0 Sand	
			ļ		<u> </u>	٠.	Seal 7.0'- 2.0' = 2 Bags hale plag	
			<u> </u>				sackacta 2.0'- gende = 2 CA75	
		·	ļ				8" Fmc	
		· · · · · · · · · · · · · · · · · · ·	ļ	ļ	 		1	
Ļ.				ļ				
			ļ	ļ		<u> </u>		
1			ļ	ļ		-		
				L			·	
	*		ļ			<u> </u>		
-				<u></u>		L		
			ļ					
							·	
				ļ.,				
ļ.		·	ļ		·	<u> </u>		
				<u> </u>				
		· · · · · ·					·	•
		-				<u></u>		
ĺ								
_						1	1	

5879 FISHER ROAD

EAST SYRACUSE, N.Y. 13057

HOLE NO. MW-104

SURF. EL.

JOB NO. 02018

GROUND WATER DEPTH WHILE DRILLING Dey

BEFORE CASING REMOVED . Day

AFTER CASING

SHEET , OF ,

REMOVED Installed 2" for well

PROJECT Boffalo BLAKE BEAM

LOCATION LACKOWANNA, N.Y.

DATE STARTED

DATE COMPLETED

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

1-22-02

1- 22-02

30" — ASTM D-1586, STANDARD PENETRATION TEST
C — NO. OF BLOWS TO DRIVE CASING 12" W/ /% # HA
"/OR — % CORE RECOVERY

/ # HAMMER FALLING

CASING TYPE 414 H.S.A

Z" PUE WELL

24" COOLIE CUTTER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	1.0-2.0	1		18-18		BROWN, Day, Denk Flow Sund and Flow grant	3.0'
	3.0'- 4.0'	2		40-25	50	Gley, Day, Zense, F/m ganuel, Trace ETAT, Teace Fine Earl	4.0
5'	4.0'- 4.9'	3		8-50/3		Gary, Day, very brose Fine sand, some exet, little F/M genre	
	6.0 - 6.1	4		50/.1		7 NO RECOVERY	
10	8.0'- 10.0'	5		14-14	30	SAA w/ TRACE of Highly Feactured Shale 4 Limestone	
	10.0 - 11.2'	Ų		10 - 25		GREY, Day; Highly Fractured Linestone	11.3'
15'	12.0'-	7				Spoon refuent AT 11.8' Augen Refusal AT 12.0' Screened A.a' = 7.0' 10 suat fue	8.0.8.
,73 ,73						Rises 7.0'5' below gande ampre Saudpack 12:0'- 4:8' = 4 Bags of 0 Sand SEAL 7:8'-2.0' = 8 Bag Hote plug Saukkete 2:0'- gande = 2 Bags	
						8" FMC inside cookie cutter Hole	
<u> </u>							
					-	But the second of the second o	

01745

DFL

Upstate Laboratories inc.

Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209_

Matting: Box 289 • Syracuse, NY 13206

Buffalo (716) 649-2533 Rochester (716) 436-9070

Albany (518) 459-3134 Binghamton (607) 724-0478

March 13, 2002

New Jersey (201) 343-5353

Mr. Wayne K. Cameron Project Manager Sterling Env. Services, Inc. 50 Lake Ave. Blasdell, NY 14219

Analysis Report #05302036 - Monitoring Wells/Chlor Solvents

Dear Mr. Cameron:

Please find enclosed the results for your samples which were picked up by ULI personnel on February 21, 2002.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. Scala Director

AJS/rd

Enclosures: report, invoice

cc/encs: N. Scala, ULI.

file

Note: Faxed results were given to your office on 3/13/02. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

Upstate Laboratories, Inc.

Analysis Results

Report Number: 05302036

Client I.D.: STERLING ENV. SERVICES, INC. MONITORING WELLS/

Sampled by: Client

APPROVAL Lab I.D.: 10170

CHLOR. SOLVENTS MW10-01 1240H 02/20/02 G

ARAMETERS	RESULTS	TIME	DATE AMAL. KE	KEY FILE
CL Volatiles by EPA Method 826	o			
Chloromethane	<3ug/l		03/04/02	VM3 854
Bromomethane	<3ug/1		03/04/02	VM3854
Vinyl Chloride	<2ug/1		03/04/02	VM3 8 5 4
Chloroethane	<3ug/1		03/04/02	VM3 854
Methylene Chloride	.<3ug/l		03/04/02	VM3 8 5 4
Acetone	<10ug/1		03/04/02	VM3 8 5 4
Carbon Disu lf ide	<3ug/1		03/04/02	VM3854
1,1-Dichloroethene	<lug 1<="" td=""><td></td><td>03/04/02</td><td>VM3854</td></lug>		03/04/02	VM3854
1,1-Dichloroethane	<lug 1<="" td=""><td></td><td>03/04/02</td><td>VM3854</td></lug>		03/04/02	VM3854
trans-1,2-Dichloroethene	. <3ug/l		03/04/02	VM3854
cis-1,2-Dichloroethene	<3ug/l		03/04/02	VM3854
Chloroform	<3ug/1		03/04/02	VM3854
1,2-Dichloroethane	<3ug/l		03/04/02	VM3 8 5 4
2-Butanone	<10ug/1		03/04/02	VM3854
1,1,1-Trichloroethane	'<3ug/l		03/04/02	· VM3854
Carbon Tetrachloride	<3ug/l		03/04/92	VM3854
Bromodichloromethane	<3ug/l		03/04/02	VM3854
1,2-Dichloropropane	: <lug l<="" td=""><td></td><td>03/04/02</td><td>VM3854</td></lug>		03/04/02	VM3854
cis-1,3-Dichloropropene	<3ug/l		03/04/02	VM3854
Trichloreethene	<3ug/l		03/04/02	VM3854
Dibromochloromethane	<3ug/l		03/04/02	VM3854
1,1,2-Trichlorosthans	<lug l<="" td=""><td></td><td>03/04/02</td><td>VM3854</td></lug>		03/04/02	VM3854
Benzene ·	<3ug/l		03/04/02	VM3854
trans-1,3-Dichloropropene	<3ug/l		03/04/02	VM3854
Bromoform	<3ug/1		03/04/02	VM3854
4-Methy1-2-pentanone	; <10ug/l		03/04/02	VM3854
2-Hexanone	. <10ug/l		03/04/02	VM3854
Tetrachloroethene	22ug/l		03/04/02	VM3 854
1,1,2,2-Tetrachloroethane	<3ug/l		03/04/02	VM3 8 5 4
Toluene	<3ug/l		03/04/02	VM3854
Chlorobenzene	<3ug/1		03/04/02	VM3854
Ethylbenzene	<3 ug /1		03/04/02	VM3854
Styrene	<3ug/1		03/04/02	VM3854
m-Xylene and p-Xylene	<3ug/l		03/04/02	VM3854
o-Xylene	<3ug/1		03/04/02	VM3854

Upstate Laboratories, Inc.

Analysis Results

Report Number: 05302036

Client I.D.: STERLING ENV. SERVICES, INC. MONITORING WELLS/

Sampled by: Client

CHLOR. SOLVENTS MW101-01 1210H 02/20/02 G

ULI I.D.: 05302037		. Ma	atrix: Wa	ter		
lrameters .	RESULTS	TIME	DATE ANAL.	KSY	KRY	FILE#
				•••		
TCL Volatiles by EPA Method 8260						
Chloromethane	<3ug/l		02/28/02			VM3851
Bromomethane	<3ug/l		02/28/02			VM3851
Vinyl Chloride	<2ug/1		02/28/02			VM3851
Chloroethane	<3ug/l		02/28/02			VM3851
Methylene Chloride	<3ug/l		02/28/02			VM3851
Acetone	<10ug/1		02/28/02			VM3851
Carbon Disu lf ide	<3ug/l		02/28/02			VM3851
1,1-Dichlorcethene	<3ug/1		02/28/02			VM3851
1,1-Dichlorosthane	<3ug/l		02/28/02	÷		VM3851
trans-1,2-Dichloroethene	<3ug/1		02/28/02			VM3851
cis-1,2-Dichloroethene	<3ug/1		02/28/02			VM3851
Chloroform	<3ug/l		02/28/02			VM3851
1,2-Dichloroethane	<3ug/1		02/28/02			VM3851
2-Butanone	<10ug/l		02/28/02			VM3851
1,1,1-Trichloroethane	<3ug/1		02/28/02			VM3851
Carbon Tetrachloride	<3ug/1		02/28/02			VM3851
Bromodichloromethane	<3ug/l		02/28/02	•		VM3851
1,2-Dichloropropane	<3ug/1		02/28/02			VM3851
cis-1,3-Dichloropropene	! <3ug/l		02/28/02			VM3851
Trichloroethene .	· <3ug/l		02/28/02			VM3851
Dibromochloromethane	<3ug/l		02/28/02			VM3851
1,1,2-Trichloroethane	. <3ug/l		02/28/02			VM3851
Benzene	<3ug/l		02/28/02			VM3851
trans-1,3-Dichloropropene	<3ug/l -	•	02/28/02			VM3851
Bromoform	· <3ug/1		02/28/02			VM3851
4-Methyl-2- pe ntanone	<10ug/1		02/28/02			VM3851
2-Hexanone	<10ug/1		02/28/02			VM3851
Tetrachloroethene	lug/l		02/28/02			VM3851
1,1,2,2-Tetrachloroethane	<3ug/l		02/28/02			VM3851
Toluene	<3ug/l		02/28/02			VM3851
Chlorobenzene	<3ug/1		02/28/02			VM3851
Ethylbenzene	<3ug/1		02/28/02			VM3851
Styrene	<3ug/l		02/28/02			VM3851
m-Xylene and p-Xylene	. <3ug/l		02/28/02			VM3851
o-Xylene	. <3ug/1		02/28/02			VM3851

Upstate Laboratories, Inc.

Analysis Results

Report Number: 05302036

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

APPROVAL:

QC:
Lab I.D.: 10170

MONITORING WELLS/

CHLOR. SOLVENTS MW102-01 1225H 02/28/02 G

ULI I.D.: 05302038	•	Matrix: Water			
ARAMETERS	RESULTS	TIME DATE ANAL. E	EY KEY FILE		
TCL Volatiles by EPA Method 8260					
Chloromethane	<3ug/l	02/28/02	VM3 8 5		
Bromomethane	<3ug/1	02/28/02	VM3 8 5		
Vinyl Chloride	<2ug/1	02/28/02	VM3 8 5		
Chloroethane	.<3 ug /1	02/28/02	VM3 8 5		
Methylene Chloride	<3ug/l	02/28/02	VM3 8 5		
Acetone	<10ug/1	02/28/02	VM3 8 5		
Carbon Disu lf ide	<3ug/1	02/28/02	VM3 8 9		
1,1-Dichloroethene	<3ug/l	02/28/02	VM3 8 5		
1,1-Dichloroethane	<3ug/l	02/28/02	VM3 8 5		
trans-1,2-Dichloroethene	<3ug/l	02/28/02	VM3 8 5		
cis-1,2-Dichloroethene	<3ug/1	02/28/02	VM3 8 5		
Chloroform	<3ug/1	02/28/02	VM3 8 5		
1,2-Dichloroethane	: <3ug/l	02/28/02	VM3 8 5		
2-Butanome	<10ug/1	02/28/02	VM3 8 5		
1,1,1-Trichloroethane	<3ug/1	02/28/02	VM3 8 5		
Carbon Tetrachloride	<3119/1	02/28/02	VM3 8 5		
Bromodichloromethane	<3ug/l	02/28/02	VM3 8 5		
1,2-Dichloropropane	<3ug/l	02/28/62	VM3 8 5		
cis-1,3-Dichloropropene	' <3ug/1	02/28/02	VM385		
Trichloreethene	4ug/1	02/28/02	VM3 8 5		
Dibromochloromethane	<3ug/1	02/28/02	VM3 8 5		
1,1,2-Trichloroethane	<3ug/l	02/28/02	VM3 8 5		
Benzene	<3ug/l	02/28/02	VM3 8 5		
trans-1,3-Dichloropropene	<3ug/l	02/28/02	VM3 8 5		
Bromoform	<3ug/1	02/28/02	VM3 8 5		
4-Methyl-2-pentanone	<10ug/l	02/28/02	VM3 8 5		
2-Hexanone	<10ug/1	02/28/02	VM3 8 5		
Tetrachloroethene	43ug/1	02/28/02	VM3 8 5		
1,1,2,2-Tetrachloroethane	<3ug/l	02/28/02	VM3 8 5		
Toluene	<3ug/1	02/28/02	VM3 8 5		
Chlorobenzene	<3ug/l	02/28/01	VM3 8 5		
Ethylbenzene	<3ug/1	02/28/02	VM3 8 5		
Styrene	. <3ug/l	02/28/02	VM3 8 5		
m-Xylene and p-Xylene	<3ug/l	02/28/02	VM3 8 5		
o-Xylene	<3ug/1	02/28/02	VM385		

Upstate Laboratories, Inc.

Analysis Results

Report Number: 05302036

Client I.D.: STERLING ENV. SERVICES, INC.

Sampled by: Client

MONITORING WELLS/

CHLOR. SOLVENTS MW103-01 1255H 02/20/02 G

ULI I.D.: 05302040	•	Matrix: Water	
PARAMETERS	RESULTS	TIME DATE ANAL. KEY	CEY FILE
TCL Volatiles by EPA Method 8260			
Chloromethane	<3ug/l	03/04/02	VM3 8
Bromomethane	<3ug/1	03/04/02	VM3 8
Vinyl Chloride	<2ug/1	03/04/02	VM3 8
Chloroethane	<3 u g/l	03/04/02	VM3 8
Methylene Chloride	<3ug/1	03/04/02.	VM3 8
Acetone	<10ug/1	03/04/02	VM3 8
Carbon Disulfide	<3ug/1	03/04/02	VM3 8
1,1-Dichlorosthene	<3ug/l	03/04/02	VM3 8
1,1-Dichloroethane	<3ug/1	03/04/92	VM3 8
trans-1,2-Dichloroethene	<3ug/1	03/04/02	VM3 8
cis-1,2-Dic hl oroethene	<3ug/l	03/04/02	VM3 8
Chloroform	<3ug/1	03/04/02	VM3 8
1,2-Dichloroethane	<3ug/l	03/04/02	VM3 8
2-Butanone	:<10ug/1	03/04/02	VM3 8
1,1,1-Trichloroethane	:<3ug/1	03/04/62	VM3 8
Carbon Tetrachloride	<3ug/1	03/04/62	VM3 8
Bromodichloromethane	<3ug/1	03/04/02	VM3 8
1,2-Dichloropropane	<3ug/l	03/04/02	VM3 8
cis-1,3-Dichloropropene	<3ug/1	03/04/62	VM38
Trichloroethene	Sug/1	03/04/02	VM3 8
Dibromochloromethane	<3ug/1	03/04/02	VM3 8
1,1,2-Trichloroethane	<3ug/1	03/04/02	VM3 8
Benzene	<3ug/1	03/04/02	VM3 8
trans-1,3-Dichloropropene	<3ug/1	03/04/02	VM3 8
Bromoform	<3ug/1	03/04/02	VM3 8
4-Methyl-2-pentanone	<10ug/1	03/04/02	VM38
2-Hexanone	<10ug/l	03/04/02	VM3 8
Tetrachloroethene	94ug/1 1	03/04/02	VM38
1,1,2,2-Tetrachloroethane	'<3ug/1	03/04/02	VM3 8
Toluene	<3ug/1	03/04/02	VM3 8
Chlorobenzene	<3ug/1	03/04/02	VM3 8
Ethylbenzene	' <3ug/1	03/04/02	VM3 8
Styrene	<3ug/1	03/04/02	VM3 8 5
m-Xylene and p-Xylene	<3ug/l	03/04/02	VM3 8 5
o-Xylene	<3ug/l	03/04/02	VM3 8 5

Upstate Laboratories, Inc.

Analysis Results

Report Number: 05302036

Client I.D.: STERLING ENV. SERVICES, INC. MONITORING WELLS/

Sampled by: Client

APPROVAL: Lab I.D.: 10170

CHLOR. SOLVENTS MW104-01 1150H 02/20/02 G

RAMETERS	. RESULTS	TIME	DATE ANAL.	XXY	KRY	FILE#
TCL Volatiles by EPA Method 8260	,					
			/ /		_	
Chloromethane	<6ug/l		02/28/02		5	VM3851
Bromomethane	<6ug/1		02/28/02		5	VM3851
Vinyl Chloride	<4ug/1		02/28/02		5	VM3851
Chloroethane	<6ug/1		02/28/02		5	VM3851
Methylene Chloride	<6ug/l		02/28/02		5	VM3851
Acetone	<20ug/1	•	02/28/02		5	VM3851
Carbon Disulfide	<6ug/l		02/28/02		5	VM3851
1,1-Dichloroethene	<6ug/l		02/28/02		5	VM3851
1,1-Dichloroethane	<6ug/l		02/28/02		5	VM3851
trans-1,2-Dichloroethene	<6ug/l		02/28/02		5	VM3851
cis-1,2-Dichloroethene	<6ug/l		02/28/02		5	VM3851
Chloroform	<fug l<="" td=""><td></td><td>02/28/02</td><td></td><td>5</td><td>VM3851</td></fug>		02/28/02		5	VM3851
1,2-Dichloroethane	<6ug/l		02/28/02		5	VM3851
2-Butanome	<20ug/1		02/28/62		5	VM3851
1,1,1-Trichloroethane	<6ug/l		02/28/02		5	VM3851
Carbon Tetrachloride	<6ug/l		02/28/92		5	VM3851
Bromodichloromethane	:<6ug/l		02/28/02		5 .	VM3851
1,2-Dichloropropane	<6ug/l		02/28/02		5	VM3851
cis-1,3-Dichloropropene	<6ug/l		02/28/02		5	VM3851
Trichloroethene	<6ug/l		02/28/02		5	VM3851
Dibromochloromethane	<6ug/l		02/28/92		5	VM3851
1,1,2-Trichloroethane	<6ug/l		02/28/02		5	VM3851
Benzene	24ug/l		02/28/02			VM3851
trans-1,3-Dichloropropene	<6ug/l		02/28/02		5	VM3851
Bromoform	<6ug/l		02/28/02		5	VM3851
4-Methyl-2-pentanone	<20ug/1		02/28/02		5	VM3851
2-Hexanone	. <20ug/1		02/28/02		5	VM3851
Tetrachleroethene	<6ug/1		02/28/02		5	VM3851
1,1,2,2-Tetrachloroethane	<6ug/l		02/28/02		5	VM3851
Toluene	65ug/1		02/28/02			VM3851
Chlorobenzene	<6ug/l		02/28/02		5	VM3851
Ethylbenzene	10ug/1		02/28/02			VM3851
Styrene	<6ug/1		02/28/02		5	VM3851
m-Xylene and p-Xylene	240ug/1		02/28/02		-	VM3851
o-Xylene	.78ug/1		02/28/02			VM3851

KEY PAGE

- 1 MATRIX INTERFERENCE PRECLUDES LOWER DETECTION LIMITS
- 2 REFERENCE SAMPLE/CCV RECOVERY WAS OUTSIDE OF CONTROL LIMITS
- METHOD BLANK RESULT WAS ABOVE THE CONTROL LIMITS
- 4 ANALYSIS NOT PERFORMED BECAUSE OF INSUFFICIENT SAMPLE
- 5 THE PRESENCE OF OTHER TARGET ANALYTE(S) PRECLUDES LOWER DETECTION LIMITS
- 6 BLANK CORRECTED
- 7 HEAD SPACE PRESENT IN SAMPLE
- 8 QUANTITATION LIMIT IS GREATER THAN THE CALCULATED REGULATORY LEVEL. THE QUANTITATION LIMIT THEREFORE BECOMES THE REGULATORY LEVEL.
- 9 THE OIL WAS TREATED AS A SOLID AND LEACHED WITH EXTRACTION FLUID
- 10 RESULTS ARE REPORTED ON AN AS REC.D BASIS
- 11 POSSIBLE CONTAMINATION :FROM FIELD/LABORATORY
- 12 SAMPLE ANALYZED OVER HOLDING TIME
- 13 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL DUE TO CONTAMINATION FROM THE FILTERING PROCEDURE
- 14 SAMPLED BY ULI
- 15 DISSOLVED VALUE MAY BE HIGHER THAN TOTAL; HOWEVER, THE VALUES ARE WITHIN EXPERIMENTAL ERROR
- 16 AN INHIBITORY FACTOR WAS OBSERVED IN THIS ANALYSIS
- 17 PARAMETER NOT ANALYZED WITHIN 15 MINUTES OF SAMPLING
- 18 THE SERIAL DILUTION OF THIS SAMPLE SUGGESTS A POSSIBLE PHYSICAL AND/OR CHEMICAL INTERFERENT IN THIS DETERMINATION. THE DATA MAY BE BIASED EITHER HIGH OR LOW.
- 19 CALCULATION BASED ON DRY WEIGHT
- 20 INDICATES AN ESTIMATED VALUE, DETECTED BUT BELOW THE PRACTICAL QUANTITATION LIMITS
- 21 UG/KG AS REC.D / UG/KG DRY WT
- 22 MG/KG AS REC.D / MG/KG DRY WT
- 23 INSUFFICIENT SAMPLE PRECLUDES LOWER DETECTION LIMITS
- 24 SAMPLE DILUTED/BLANK CORRECTED
- 25 ND (NON-DETECTED)
- 26 DUPLICATE SAMPLE OUTSIDE QC CRITERIA
- 27 SPIKE RECOVERY ABNORMALLY HIGH/LOW DUE TO MATRIX INTERFERENCE
- POST-DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUTSIDE OF THE CONTROL LIMITS (85-115%); HOWEVER, THE SAMPLE CONCENTRATION IS BELOW THE POL
- 29 ANALYZED BY METHOD OF: STANDARD ADDITIONS
- 30
- 31 FIELD MEASURED PARAMETER TAKEN BY CLIENT
- 32 TARGET ANALYTE IS BIODEGRADED AND/OR ENVIRONMENTALLY WEATHERED
- 33 MILLIGRAMS PER LITER (MG/L) LINEAR ALKYL SULFONATE (LAS) / POUNDS (LBS) PER DAY LAS
- 34 THE SAMPLE WAS ANALYZED ON A TOTAL BASIS; THE TEST RESULT CAN BE COMPARED TO THE TCLP REGULATORY CRITERIA BY DIVIDING THE TEST RESULT BY 20, CREATING A THEORETICAL TCLP VALUE
- 35 THE HYDROCARBONS DETECTED IN THE SAMPLE DID NOT CROSS-MATCH WITH COMMON PETROLEUM DISTILLATES
- 36 MATRIX INTERFERENCE CAUSING SPIKES TO RESULT IN LESS THAN 50.0% RECOVERY
- 37 MILLIGRAMS PER LITER (MG/L) / POUNDS (LBS) PER DAY
- 38 MILLIGRAMS PER LITER (MG/L) OF RESIDUAL CHLORINE (CL2) / POUNDS (LBS)
 PER DAY OF CL2
- 39 MICROGRAMS PER LITER (UG/L) / POUNDS (LBS) PER DAY
- (B) DETECTED IN BLANK
- (D) ALL COMPOUNDS IDENTIFIED IN AN ANALYSIS AT A SECONDARY DILUTION FACTOR
- (E) COMPOUNDS WHOSE CONCENTRATIONS EXCEED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT FOR THAT SPECIFIC ANALYSIS
- (J) DETECTED BELOW THE CROL
- (a) SAMPLE(S) RECEIVED AT THE IMPROPER TEMPERATURE
- (b) HEADSPACE IN VOA VIAL(S)
- (c) HEADSPACE IN ALKALINITY BOTTLE(S)
- (d) SAMPLE CONTAINER(S) RECEIVED BROKEN

Upstate Laboratories, Inc.

6034 Corporate Drive • E. Syracuse, NY 13057-1017 (315) 437 0255 Fax 437 1209

Chain Of Custody Record

3/8

Client:		Client Proj	ect # / Project	Name		CHLOP.	No.	10	>				1	\top	Γ-	.	Special Turnaround
STERLING ENUIRON	HENTAL	MONI	ORING on (city/state)	WEL	LS/5	SLUENT	of	130	1		1	1					Time
	Phone # 324	Site Location	on (city/state)	/	. 7		Con-	\sim	}		1	1	İ				(Lab Notification
WAYNE K. CAMBRON	2407	Buffalo	Brake E	EAM LA	CKAWAN	NA NY	tain-	5					}		ĺ		required)
Sample Location:	Date	Time	Matrix	1	ULI Inter	nal Use Only	ers	13		1		ł			l		
MULLALL	2/20/2	## Com	11 -	Comp.	1000		13	1,1)	2)	3)	4) 5) 6)	7)	8)	9)	10)	Remarks
	1/20/27		J -	1	T	2036	12	M		_			_				
HW 101-01	2/20/02	12:10 pm	Hyo	GRAB		_37	(1)	X			_		<u> </u>				
MW102-01	2/20/02	12:25 pm	110	GRAPS		38	12	X									
MW10-01	2/20/02	17:40pm	150	PAG		39	(1)	X									
MW103-01	1/20/02	12:35pm	HrD	GAB		40		X		-							
	' '	,					10									-	
							1									-	
							1						-				
				,									-		-		
							<u> </u>						ļ				
parameter and method			sample bottle:	type	size	pres.	Samp	ll led b	l v: (PI	ease	Print)		L.,	L1	\dashv	11111	Internal Use Only
WAYNE K. CAMBON 2407 Buffalo Br. Sample Location: Date Time M. MW104-01 $\frac{1}{2}$ 20/02 $\frac{11}{2}$ 50 m H. MW104-01 $\frac{1}{2}$ 20/02 $\frac{11}{2}$ 30 m H. MW102-01 $\frac{1}{2}$ 20/02 $\frac{11}{2}$ 30 m H. MW103-01 $\frac{1}{2}$ 20/02 $\frac{11}{2}$ 30 m H. parameter and method sample 11 21 3) 4) 5) 6)							W	441	JĖ	K.	Print)	Ma	<i>_</i>	, .		Deliv	very (check one):
Client Contact: WAYNE K, CAMBON Sample Location: Date MWIOT-01 AWIOL-01 AWIOS-01 Phone 240 AWIOS-01 AWIOS-01 Awios-							Comp	any:			4) CK	۱.	J	- 1		Ll Sampled ickup
2)	-	·				·	STE	KU	NB	EN	VIKON	MEL	IT A.	Ċ			c_QL
3)							Peling	qui s he	ed by	/: (Sig	nature	Date	,	Time		Rece	eived by: (Signature)
4)							VO	1/				14		9,0		1	CIA
							/ ;	SVE	W	W/ -	_		or	ילן			Jawn Illis
5)		· 				/					nature	Date:		Time	-	Rece	eived by: (Signature)
6)						/						1/2	,/				-1. (orginatoro)
70		<u>;</u> .			•		L	XXW	M	U	lis	1/2	162	173	50		
					. 1		Relino	quishe	ed by	r: (Sigi	nature)	Date		Time	1	Recei	ived by: (Signature)
8)																	, , , , , , , , , , , , , , , , , , ,
9) 01753				-								ļ					
10)	•						Relind	l ui s he	ed by	r: (Sigı	nature)	Date	الى م	Time		Rec'd	for Lab by: (Signature)
	cross-reference	with the num	bered columns	in the upper	right-hand	d corner.						12.7	1	544	\mathcal{A}	1	5 (nump
 		· · · · · ·										17.					1 AUG M

Remedial Activities Report BTEX Area/MW104

Buffalo Brake Beam 400 Ingham Ave Lackawanna, NY

Prepared By: Sterling Environmental Services Inc.
50 Lake Ave.
Blasdell, NY
August 2002

Table of Contents

Introduction	page 3
Remedial Activities	page 3
Sampling and Analytical Results	page 4
Analy tic al Results Tables	page 5
Conclusions	page 6
Appendixes	
Photos of Excavation	page 7
Upstate Laboratories Report	page 8
Boring Log for MW104	page 11
Suppl e mental Test Pit Report	page 12

INTRODUCTION

The following is a report summarizing the findings from the remedial activities conducted July 31st to address BTEX contamination found in monitoring well MW104. Attached, as a supplement, is a brief discussion of the findings from two additional unrelated test pits that were excavated on the same day.

Monitoring well MW104 was originally installed, developed, and sampled by Sterling Environmental Services Inc. in January 2002 as part of an investigation to delineate the extent and possibly find the source of chlorinated solvent groundwater contamination found in MW10 (installed by Earth Tech 2000). No chlorinated solvents were found in MW104, however, BTEX compounds, Benzene, Toluene, Ethylbenzene and Xylene were present in excess of TOGS 1.1.1 Groundwater Standards and Guidance Values indicating the possibility of gasoline related products in the groundwater and/or soil. A second sample taken in June again confirmed the presence of BTEX compounds.

Because of the slow recharge and low water levels encountered in MW104 in comparison to the other wells and the fact that the BTEX compounds were not found in any of the other monitoring wells, it was assumed that the contamination was most likely isolated to a pocket of perched water. Remedial activities proved this assumption to be untrue.

REMEDIAL ACTIVITIES

Remedial activities took place on July 31, 2002 at approximately 7:30 am EST. Present for the excavation were Wayne Cameron and Jeremy Wells of Sterling Environmental, Jim Kelleran (equipment operator/contractor), and Tamara M. Hauptfleisch as an observer for Earth Tech. The excavation commenced at 7:45 am EST.

Remedial activities began with the excavation of an area approximately 20' x 20' in size East of the manhole. Soils were excavated in lifts of approximately 6" to 1' in depth at a time. Lifts were observed and screened using a PID and then subsequently stockpiled adjacent to the excavated area. The excavated area was also continuously screened every foot in depth down to about 4'. The soils removed up to this point were mostly a mix of dry bank run gravel, soil and shot rock with some sand and silt present. There were no significant readings on the PID, nor were there any olfactory or visual indications of contamination. All PID readings were < 4 ppm with the highest readings in the top 6 inches to 1 foot. No evidence of tanks, demolition debris, drain lines or other utility conduits were found.

At this point (approximately 9:30-9:45am EST), a trench was dug to the full depth of the well due north adjacent to the well. Soils were removed in 1 foot lifts with each lift being observed and screened with the PID. Shale was encountered at a

depth of 10.5' and bedrock was encountered at 11.5'(depth of the well). The shale was slightly moist, but the bedrock was dry and no flow of groundwater or perched water was encountered. There were no significant readings on the PID and no olfactory or visual signs of contamination. There was also no sign of any water leaching back into the excavated area over the 5 hour period that the excavation stood open.

The total well depth for MW104 is 139 inches. The water level as measured in the well that morning was at a depth of 132 inches indicating 7 inches of water in the well.

A trench was then excavated on the south side of the well, adjacent to the well on the street side, similar to that north of the well. Again, there were no indications of contamination through PID screening or visual and olfactory observations. Shale was encountered at 10.5' and bedrock was encountered at 12'. The shale was not very moist and the bedrock was dry. The south trench excavation was deeper than the bottom depth of the well and there was still no sign of water leaching into the excavation.

No evidence of soil contamination was found in the excavation process. Also no source of water was found, neither perched water nor ground water. The well was left in place and the excavation was backfilled with the excavated soil.

Photographs of the excavation have been added to this report as an appendix.

SAMPLING AND ANALYTICAL RESULTS

Two soil samples were collected, BTEX-N1 from the north trench and BTEX-S1 from the south trench. Both samples were grab samples collected from just above the shale at the bottom of the respective trenches. The samples were submitted to Upstate Laboratories under standard chain of custody procedures for analysis of the STARS list of constituents of concern for gasoline by USEPA Method 8260. All constituents in both samples were below the detection limit of 3 ug/kg.

Analytical results are presented in the following tables with comparison to the Recommended Soil Cleanup Objectives of NYSDEC TAGM 4046. A copy of the lab report is attached as an appendix.

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # BTEX-N1
EPA Method 8260

Constituent	Sample Results	TAGM4046
		Rec. Soil Cleanup
		Objective
Benzene	<0.003	0.06
Ethylbenzene	< 0.003	5.5
Toluene	<0.003	1.5
Total Xylene	<0.003	1.2
Isopropyl Benzene	<0.003	5.0
n-Propylbenzene	<0.003	14.0
p-I so propyl Toluene	, <0.003	11.0
1,2,4-TrimethylBenzene	< 0.003	13.0
1,3,5-TrimethylBenzene	< 0.003	33.0
n-Butyl Benzene	< 0.003	18.0
se c -Butyl Benzene	< 0.003	25.0
Naphthalene	< 0.003	13.0
MTBE	<0.003	0.12
t-Butylbenzene	< 0.003	10.0

Analytical Results
Summary Tables in PPM (mg/Kg)
Sample # BTEX-S1
EPA Method 8260

Constituent	Sample Results	TAGM4046
		Rec. Soil Cleanup
		Objective
Benzene	<0.003	0.06
Ethylbenzene	< 0.003	5.5
Toluene	<0.003	1.5
Total Xylene	<0.003	1.2
Is op ropyl Benzene	<0.003	5.0
n-Propylbenzene	< 0.003	14.0
p-Isopropyi Toluene	<0.003	11.0
1,2,4-TrimethylBenzene	<0.003	13.0
1,3,5-TrimethylBenzene	<0.003	33.0
n-Butyl Benzene	<0.003	18.0
sec-Butyl Benzene	<0.003	25.0
Naphthalene	<0.003	13.0
MTBE	<0.003	0.12
t-Butylbenzene	<0.003	10.0

CONCLUSIONS

This remedial effort failed to find any contaminated soil in the vicinity of MW104. It also failed to find any source of perched water or groundwater in this area. No soil was removed from the site.

MW104 contained 7 inches of water at the time of the excavation. Excavations on the north and south side of the well within two to three feet of the well casing to the full depth of the well failed to find any water. The soil was visibly dry with the exception of the shale in the bottom foot of the north side excavation, which was moist. This excavation sat open for five hours and no water was observed entering the excavation. The soil samples taken from directly above the shale showed no evidence of contamination.

No water was observed in the auger hole at the time this well was installed. The sand pack for this well extends to a height of 4.8 feet below the surface. A bentonite seal was installed from 4.8 to 2 feet below grade with sackrete to grade. A copy of the boring and well installation log is attached as an appendix. From the initial well development this well has shown a limited volume of water, averaging 5 inches, and slow recharge.

MW13 installed by Earth Tech as part of the baseline site assessment is located 104 feet east of MW104 in the same parking area. This well has failed to produce any water since its installation.

The area received below normal rainfall in the month preceding the excavation. However, there were a couple of significant rain events associated with thunderstorms the week prior to the excavation.

Based upon the findings, I speculate that surface water runoff from the parking lot is entering the well. Large chunks of shot rock were observed throughout the upper 4 to 5 feet of the excavation. During well installation the auger met resistance but was able to advance. It is possible that chunks of shot rock were displaced by the auger creating voids around them that were not sealed by the bentonite plug and thus allowing surface water infiltration.

In summary, no evidence of groundwater or soil contamination was found surrounding MW104. The findings from the well sampling are considered an anomaly. No further remedial action is recommended for the BTEX Area.

Upstate Laboratories inc.

Shipping: 6034 Corporate Dr. • E. Syracuse, NY 13057-1017 • (315) 437-0255 • Fax (315) 437-1209_

Mailing: Box 289 · Syracuse, NY 13206

Buffalo (716) 649-2533 Rochester (585) 436-9070 New Jersey (201) 343-5353

Albany (518) 459-31**3**4 Binghamton (607) 724-0478

August 15, 2002

Mr. Wayne K. Cameron
Project Manager
Sterling Env. Services, Inc.
50 Lake Ave.
Blasdell, NY 14219

Re: Analysis Report #21302006 - Buffalo Brake Beam

Dear Mr. Cameron:

Please find enclosed the results for your samples which were received on July 31, 2002.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your sample. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. UScala

Director

AJS/rd

Enclosures: report, invoice

cc/encs: N. Scala, ULI

file

Note: Faxed results were given to your office on 8/14/02. AJS

Disclaimer: The test results and procedures utilized, and laboratory interpretations of data obtained by ULI as contained in this report are believed by ULI to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ULI for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

DATE: 08/15/02

Upstate Laboratories, Inc.

Analysis Results

Report Number: 21302006

Client I.D.: STERLING ENV. SERVICES, INC.

APPROVAL: US

Lab P.D.: 10170

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

VM4121

08/07/02

08/07/02

08/07/02

08/07/02

08/07/02

08/07/02

08/07/02

08/07/02

08/07/92

08/07/02

08/07/02

Sampled by: Client

ID:21302006 Mat:Soil BUFFALO BR	AKE BEAM	BTEX-NI 1157H 07/31/02	-g
Parameters	RESULTS	TIME DATE ANAL. KRY KEY	FILE#
Percent Solids	94%	08/08/02	WE0338
EPA 8260 Petroleum, NYSDEC STARS List	5 - <u>1</u>		
		•	
Benzene	<3ug/kg dw	08/07/02	VM4121
Ethylbenzene	<3ug/kg dw	08/07/02	VM4121
Toluene .	<3ug/kg dw	08/07/02	VM4121
o-Xylene	<3ug/kg dw	08/07/02	VM4121
m-Xylene & p-Xylene	<3ug/kg dw	08/07/02	VM4121
IsopropylB enz ene	<3ug/kg dw	08/07/02	VM4121
n-Propylbenzene	<3ug/kg dw	08/07/02	VM4121
p-isopropyltoluene	<3ug/kg dw	08/07/02	VM4121
1,2,4-Trimethylbenzene	<3ug/kg dw	08/07/ 02	VM4121
1,3,5-Trimethylbenzene	<3ug/kg dw	08/07/ 02	VM4121
n-ButylBen sen e	<3ug/kg dw	08/07/ 02	VM4121
sec-ButylBenzene	<3ug/kg dw	08/07/62	VM4121
Naphthalen e	<3ug/kg dw	08/07/02	VM4121
MTBE	<3ug/kg dw	08/07/02	VM4121
t-butylbenzene	<3ug/kg dw	08/07/02	VM4121
ID:21302007 Mat:Soil BUFFALO BE	LAKE BEAM	BTEX-ST 1154H 07/31/02	-G
PARAMETERS	RESULTS	TIME DATE ANAL. KEY KEY	FILE#
Percent So lid s	92%	08/08/02	ME0338
EPA 8260 Petroleum, NYSDEC STARS Lis	t - i		
Benzene	<3ug/kg dw	08/07/62	VM4121
Ethylbenzene	<3ug/kg dw	08/07/02	VM4121
Toluene .	<3ug/kg dw	08/07/02	VM4121
o-Xylene	<3ug/kg dw	08/07/62	VM4121

<3ug/kg dw

<3ug/kg dw

<3ug/kg dw</pre>

<3ug/kg dw

<3ug/kg dw

<3ug/kg dw

<3ug/kg dw

.<3ug/kg dw

:<3ug/kg dw

<3ug/kg dw

<3ug/kg dw

dw = Dry weight

m-Xylene & p-Xylene

IsopropylBenzene

n-Propylbenzene

n-ButylBenzene

t-butylbenzene

Naphtha**l**en**e**

MTBE

sec-ButylBenzene

p-isopropyltoluene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Upstate Laboratories, Inc.

6034 Corporate Drive • E. Syracuse, NY 13057-1017 (315) 437 0255 Fax 437 1209

Chain Of Custody Record

8/15

Client: SERUNY-ENVI Client Contact:	KON M	ENTI	AL.	Client F	Project i	# / F	roject	Name KE 1	REAM of Con													Special Turnaround Time OA			
		Phone	# \$24						2.11%		Con	5										(Lab Notification			
WAYNE CAME	ROLL	240	7	LAC	KA	NA	M	IA_{j}	NY	····	tain-	8							Ì	1		required)			
Sample Location:		Da	te	Time		Ма		Grab or	ULI inter	nai Uśe Only	ers	8	σ,		4.	5 ,		_,			40)	Remarks			
0-1		-1/a.	1.	11.0		-	;	Comp.		1860 280 B	X	1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	5.			
BIEX NI		און	اره ا	110 3	7 3	<u> </u>	1	BRAS	X X	320 <i>0</i> 6	1X	X		<u> </u>			-		<u> </u>	\vdash	\vdash				
STEX - SI		7/31	102	11:5	4 3	D I	<u> </u>	GRAB	CATCHELL	ev ar /		بحرا	Δ	-				-	<u> </u>	<u> </u>					
									The Part of			-								ļ		· · · · · · · · · · · · · · · · · · ·			
							·		17.5 TA 18.5								- 4-		ļ			Let appear and the second self-self-self-self-second second second second second second second second second se			
			· · · ·							是是	1						J.					· · · · · · · · · · · · · · · · · · ·			
		'. :							101.01																
										APT 1978	·														
				1.5										·	74.	1									
				-					雅特				-												
			11.						43.5							-						-			
parameter and method					sam	ple	bottle:	type	size	pres.	Sam	oled b	y: (P	lease	Prin	1t)		-		•		nternal Use Only			
1)					• .			İ	1		$ \omega $	Dyl	UE	K	<u>.</u> (A	ME	eo	N		Deli\	ery (check one) LI Sampled			
2) (90 Solid) <u>L</u>										4	pany.			•		•	•				ckup Uropoff			
3)	78.	1-00				*					Relin	guish	ed b	 γ:(Si	gnati	ure)	Date	,	Time	8	Rege	iven by: (Signature)			
<u> </u>						1.			 	: .	6	eren	L	24			7/3/	//	3.0	7	√	VI / NA /			
4)					<u> </u>		-		 	-					- Co	' [. 7	/ * }			h	M lene			
5)	4 , 4				•	:	<u> </u>			<u> </u>	Rejin	Q uish	pd be	y: (Si	gnati	=== =(e)	Date		Time	e	Rece	vived by: (Slgnature)			
6)											Y .\	4	///	^ ^ 5		9	Χ,		12	b /					
7)					\$				 	<u> </u>	Belin	quish	ed by	v: /Si	anati	ure)	Date	SZ	Time		Rece	ived by: (Signature)			
8)								<u> </u>	ļ			701		,. (J .	,	_, _,			1	-		7. (a.g. a.a. a)			
9)	01	826					•				Relin	nuich	ad b	w 19i		uro)			Time	n	Dan's	d for Labyby: (Signature)			
10)	nd method SALS 8.1-32				01020						1	1		inem!	daisi	יכט ט	y. (S)	Aust	ושיט	Jak	N		-را ا	Luer (1 or variety. (Signature)
	AMNE CAMERON 240 DE IEX-N1 7/3 TEX-S1 7/3 ameter and method Po Soll 38.1-32							in the uses	r right box	nd corpor	1					À	⁄ ኢ.\	ן יט׳	rsA	ハ	مل ا	$\leq 1 \times 10^{-1}$			

DATE STARTED .

PROJECT Buffalo Prate Beam

LOCATION LACKOWA --- +, N.H.

TEST BORING LOG

5879 FISHER ROAD

EAST SYRACUSE, N.Y. 13057

HOLE NO. MW-104

SURF. EL.

JOB NO. 02018

GROUND WATER DEPTH WHILE DRILLING DRY

BEFORE CASING REMOVED . Day

AFTER CASING

SHEET , OF ,

REMOVED INSTALLED 2" FOR well

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

C - NO. OF BLOWS TO DRIVE CASING 12" WI "/OR -- % CORE RECOVERY

1-22-02

190 # HAMMER FALLING

1-22-02

DATE COMPLETED

CASING TYPE 4/4 H.S.A

zie pue well 24" cookie Cutter шЩ

DEPTH	SAMP LE DEPT H	SAMPLE NUMBER	C	SAMPLE DRIVE RECORD PER 6"	, N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH	
	1.0-2.0	1		18-18	-	BROWN, Dry, Dewice Flow Sand and Flow gener	3.0'	ĺ
	3.0'- 4.0'	2		40-25	50	oley, any, lease, F/m gravet, Trace STAT, Trace Fine sand	4.0	<u> </u>
5'	4.0' - 4.9'	3	<u> </u>	8-50/3		GREY, Day, very bense Fine sand, some AILT, little F/M genuel		
	6.0'- 6.1	4	-	50/.1		TNO RECOVERY	Ř	
10	8.0'- 13.0'	5	 	14-14	30	SAA w/ TRACE of Highly Fractured Shale & Limestone	//,3 '	
72	10.0 - 11.8'	U	!	10-25	ļ	Grey, Day, Highly Fractured Linestone	12.0	7
•	12.0'-	7		83-100/.3			8.0.8.	4
15'	7,0	 -/			1	Spool refusal AT 11.8' August Refusal AT 12.0' Scarced 12.0' - 7.0' 10 SLOT PVC		
75		-			1	Scerened P.0' - 7.0' 10 SLOT PUC RISEL 7.0'5' below glade 2" PUC SANDPACK 12:0' - 4:8' = 4 BAGS # 0 SAND		ļ
 			+			SEAL 1.0' = 1 BAG Hole plug		
		-				Stiffe 2012 grade = 2 Bass	•	İ
!	-			<u> </u>			: 	ļ
			 	!				
		i	-		1			
	-		1					
			 					
	- :-							
:								
İ			-					
					+	<u>'</u>		
		-	 	ļ	 			

SUPPLEMENTAL TEST PITS REPORT

As requested by Earth Tech, two test pits were dug in the lawn area South of the parking lot between the office building and the new manufacturing building addition. As part of the baseline site assessment Earth Tech had attempted to install Geoprobe soil borings in this area but met shallow refusal on multiple attempts. This lawn area is slightly elevated from the surrounding areas. It was assumed that the refusal was from buried concrete of old building foundations and/or demolition debris. There were concerns that other waste materials may have been buried in this area as well. Since no samples had been obtained from this area it had not been ruled out as a possible source area for the chlorinated solvent contamination found in groundwater onsite.

Two test pits were installed 47 feet apart in an east-west line straddling the center point of the lawn area. The test pits were 14 feet long north to south, 2 feet wide and to a depth of 3.5' and 6' respectively. Material was removed in one foot lifts, observed and screened with the PID. The material removed was natural soil mixed with large shot rock. No PID readings were observed in either test pit. The depth of the test pits where limited when large limestone boulders were encountered which the excavator could not remove. There was no evidence of the burial of any demolition debris or other disposal activity in this area. No samples were collected and the excavations were backfilled.

Photographs of the test pits are attached.

