FINAL ENGINEERING REPORT DOBBS FERRY WATERFRONT PARK SITE NO. V-00628 VILLAGE OF DOBBS FERRY WESTCHESTER COUNTY, NEW YORK

Prepared for:
Village of Dobbs Ferry
112 Main Street
Dobbs Ferry, New York 10522

Prepared by:

Potomac-Hudson Environmental, Inc. PO Box 7 207 S. Stevens Ave. South Amboy, New Jersey 08879

Village of Dobbs Ferry Dobbs Ferry, NY 10522

Project Manager Ed Phillips James J. Hahn Engineering P.C. Putnam Business Park 1689 Route 22, Brewster, NY 10509

Project Engineer George E. Pommer, P.E

December 2017

FINAL ENGINEERING REPORT DOBBS FERRY WATERFRONT PARK SITE NO. V-00628-3 VILLAGE OF DOBBS FERRY WESTCHESTER COUNTY, NEW YORK

TABLE OF CONTENTS

SECTION	PAGE
EXECUTIVE SUMMARY	III
CERTIFICATIONS	1
1.0 INTRODUCTION AND PURPOSE	2
1.1 SITE DESCRIPTION	2
1.2 SITE HISTORY	
2.0 DECRIPTION OF REMEDIAL ACTION	3
2.1 Summary of Remedy	3
2.2 SUMMARY OF REMEDIAL ACTIONS COMPLETED	4
2.3 APPLICABLE REMEDIATION STANDARDS	
2.3.1 Groundwater Response Action Outcome (RAO)	6
2.3.2 Soil RAO	
2.4 SUMMARY OF ENVIRONMENTAL CONDITIONS	
2.5 DESCRIPTION OF SITE RESTORATION	
2.6 DESCRIPTION OF SOURCE AND QUALITY OF FILL	
2.7 COST ESTIMATE OF REMEDIAL ACTION	
2.9 WASTE MANIFESTS	
2.10 Engineering and Institutional Controls	
2.11 SITE MANAGEMENT PLAN	
2.12 GROUNDWATER	
3.0 CONTAMINATION REMAINING AT THE SITE	9
4.0 REFERENCES	10
FIGURES	
1 Project Location	
2 Monitoring Well Locations	
3 Limits of the Installed Soil Cover and Adjacent Uncovered Vacant	Lands
4 Site Plan and Site Survey	

APPENDICES

- 1 Waterfront Park Recreational Field Voluntary Cleanup Area Final As-Constructed Plan
- 2 Site Management Plan

- 3 NUS Corporation Sample Location Map and US Environmental Protection Agency (1986) Data Tables
- 4 Sample Location Plan, Village of Dobbs Ferry (2002) and Potomac-Hudson Environmental, Inc. (2002) Data Tables
- 5 Sample Location Plan and Potomac-Hudson Environmental, Inc. (2005) Data Tables and Data Usability Summary Report
- 6 Fill Approval Documents

FINAL ENGINEERING REPORT DOBBS FERRY WATERFRONT PARK SITE NO. V-00628-3 VILLAGE OF DOBBS FERRY WESTCHESTER COUNTY, NEW YORK

EXECUTIVE SUMMARY

The Village of Dobbs Ferry conducted soil and groundwater quality investigations on a vacant parcel of land formerly operated as a municipal landfill by the Village of Dobbs Ferry. The property was remediated and redeveloped as a 300 feet by 170 feet recreational field known as the Dobbs Ferry Waterfront Park. This Final Engineering Report (FER) was prepared on behalf of the Village of Dobbs Ferry to document the extent and effectiveness of the site remediation in accordance with the Voluntary Cleanup Agreement (VCA) between the Village of Dobbs Ferry and the New York State Department of Environmental Conservation (NYSDEC) dated July 3, 2003 and the Amendment to the Voluntary Cleanup Agreement executed on October 25, 2005.

The results of investigations conducted at the Dobbs Ferry Waterfront Park have revealed that soil contamination and groundwater contamination were present. The Site's subsurface soils were found to contain concentrations of semi volatile organic compounds (SVOCs) (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene), chlordane, and metals (arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, and zinc) above the NYSDEC Recommended Soil Cleanup Objective (RSCO).

Groundwater samples collected at the Site indicate concentrations of volatile organic compounds VOCs (benzene, chlorobenzene, toluene, xylenes) and pesticides (4,4-DDD and 4,4-DDE), and metals (antimony, iron, lead, manganese, sodium) above the NYSDEC Groundwater Standard (GS).

Visual observations of subsurface material indicated the presence of a large amount of debris (household and construction type). Aside from the concentrations of soil contaminants above the NYSDEC RSCO, the presence of this type of debris has been considered in the design of the field. Geotechnical issues such as soil settling and debris shifting have been taken into consideration in the final site design.

Engineering controls, soil cover and long term groundwater monitoring were implemented to mitigate the impacts of subsurface soil and groundwater contamination. These engineering controls are discussed in the approved Site Management Plan (SMP), provided in Appendix 2: Site Management Plan.

Since the remedial action has resulted in contamination above unrestricted levels remaining onsite, institutional control in the form of a Deed Restriction is required for the remedy. The components of the Deed Restriction are further described in the approved SMP.

The Deed Restriction will:

- Restrict the contemplated use of the site to "active recreational use" which is a land use for the primary purpose of establishing an athletic playing field;
- Restrict any development that would impact the integrity of the engineered soil cover made of clean fill:
- Restrict the use of onsite groundwater; and
- Require operation, management and monitoring of the site in accordance with the provisions of the SMP approved by the NYSDEC.

The Deed Restriction was filed____3/28/18_____

An active remedial approach for the groundwater contamination was not warranted or required by NYSDEC, however groundwater use will be prohibited and long-term groundwater quality monitoring will be conducted as detailed in the approved SMP.

The Site Management Plan has been reviewed and approved by NYSDEC. A Draft Deed Restriction will be prepared for NYSDEC's review and approval.

Based on the remedial actions performed at the Site, all requirements of the Remedial Action Work Plan (RAWP) have been met, and the remedy is effective in controlling the remaining contamination at the Site.

The site work for covering the field was completed in 2007 and the field was put into use in Spring of 2008.

The Site Management Plan, SMP, approved: 3/28/18.

CERTIFICATIONS

I, George E. Pommer P.E., am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in a deed restriction created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such restriction has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department. For reports submitted after July 1, 2011, also include the following:

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, George E. Pommer P.E., of James J. Hahn Engineering P.C., am certifying as Owner's Designated Site Representative, and I have been authorized and designated by all site owners to sign this certification for the site.

082452 NYS Professional Engineer #

STAMP

FINAL ENGINEERING REPORT DOBBS FERRY WATERFRONT PARK SITE NO. V-00628-3 VILLAGE OF DOBBS FERRY WESTCHESTER COUNTY, NEW YORK

1.0 INTRODUCTION AND PURPOSE

The Final Engineering Report (FER) was prepared on behalf of the Village of Dobbs Ferry, New York in accordance with the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) Guide and the Draft DER-10 Technical Guidance for Site Investigation and Remediation. The Site was formerly a municipal landfill located adjacent to the Dobbs Ferry Waterfront Park in Dobbs Ferry, New York (hereafter called "the Site"). The regional location of the Site is shown as Figure 1. The Waterfront Park Recreational Field Voluntary Cleanup Area (VCA), Limits of the Installed Soil Cover and Adjacent Uncovered Vacant Lands is included in Figure 2.

The site is located in the County of Westchester, New York and is identified as [a portion of] Section 8, Block 415 and Lot P-60 on the Village of Dobbs Ferry Tax Map #3.80-36-45. The covered and uncovered site is situated on an approximately 1.9879-acre area bounded by private property to the north, parking lot to the south, Metro North Railroad tracks to the east, and steep Hudson River banks to the west (see Figure 1). The boundaries of the site are fully described in Figure 2: Limits of The Installed Soil Cover and Adjacent Uncovered Lands.

The work at the Dobbs Ferry Waterfront Park was conducted in accordance with the Voluntary Cleanup Agreement (VCA) between the Village of Dobbs Ferry and the NYSDEC dated July 3, 2003 and the Amendment to the Voluntary Cleanup Agreement executed on October 25, 2005 (Site No. V-00628).

The purpose of this FER is to (i) provide information related to the soil and groundwater contamination present at the Site, and (ii) provide details regarding the selection, design and implementation of the remedial action conducted for the Site that is protective of both public health and the environment.

1.1 SITE DESCRIPTION

The Site was a vacant parcel of land formerly operated as a municipal landfill by the Village of Dobbs Ferry. Following remediation the site has been redeveloped as a recreational field with an asphalt walking trail and outdoor recreational exercise equipment. The site elevation ranges from approximately 18 to 20 feet NGVD.

1.2 SITE HISTORY

Based on the review of a Site Inspection Report and Hazard Ranking System Model of the Dobbs Ferry Riverfront Park prepared by NUS Corporation in 1986 for the US Environmental Protection Agency (USEPA), the Site was used by the Village as a landfill from 1950 to the early 1970's. The landfill, which is not covered or lined, was mainly used for construction and demolition debris. However, Stauffer Chemical Corp. Ardsley Plant reportedly backfilled the landfill with approximately 200 tons of inorganic and salt bearing wastes between 1950 and 1956. The NUS Corporation Sample Location Map showing the approximate locations of buried waste and fill appears in Appendix 3.

Based on information provided by James Dunn, the Director of Public Works for the Village of Dobbs Ferry, as much as five feet of material consisting of soil, rock, street sweepings and mulch has been placed on top of the original landfill surface since 1956.

2.0 DECRIPTION OF REMEDIAL ACTION

2.1 SUMMARY OF REMEDY

Engineering controls were implemented at the Site as the remedial action for Site soil and groundwater contamination. The engineering control consists of a two feet clean soil cover. A Site Plan showing the final site grades after covering is included in Figure 2. The remedial action work plan was approved by the New York State Department of Environmental Conservation (NYSDEC) in March 2007. The remedial action for soil remediation and construction of the field included:

- Scraping off high spots and filling in low spots
- Covering of the Site soils with geotextile fabric, demarcation layer overlain by two feet of clean fill, including sod and/or grass cover
- Fencing the field area and providing an entrance pathway from the parking lot area
- Completion of a proposed Deed Restriction restricting the future handling of contaminated fill prohibiting groundwater use.
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;
- Periodic certification of the institutional and engineering controls listed above

Appendix 1 provides the Waterfront Park Recreational Field Voluntary Cleanup Area (VCA) Final As-Constructed Plan (Drawing 1) revised April 18, 2011 for the implemented remedial action. The final VCA was expanded to the south toward the parking lot to include a total of 1.9879 acres of covered and uncovered land. The proposed Deed Restriction addresses the presence of soil contamination underneath the cover. The proposed Deed Restriction acts as the institutional control which is the enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and of ensuring the potential restriction of inappropriate future site uses. The proposed Deed Restriction provides a legal description of the property subject to the Deed Restriction, and details the engineering controls at the Site and the applicable Site restrictions that include, but are not limited to, prohibiting the use of groundwater

for any purposes, and prohibiting any excavation below the geo-membrane marker layer without the implementation of the Site Management Plan for the Site.

A Site Management Plan has also been implemented and is included in Appendix 2. The Site Management Plan addresses the management of any subsurface materials that may be brought to the surface in the future for maintenance/repair activities conducted in the vicinity of the field; it also provides details of the long-term monitoring of groundwater quality.

2.2 SUMMARY OF REMEDIAL ACTIONS COMPLETED

The Village of Dobbs Ferry has redeveloped the Site as a restricted, active recreational playing field measuring 300 feet by 170 feet. The field is currently partially enclosed by a fence on the north, west and east sides of the metes and bounds of the voluntary cleanup area. Appendix 1 provides the Waterfront Park Recreational Field Voluntary Cleanup Area Final As-Constructed Plan (Drawing 1) for the remedial action. This plan provides the final site grades as well as the location of the fence around the perimeter of the field. The remedial plan for soil contamination and construction of the field included scraping off high spots and filling in low spots, then covering the Site with a geotextile fabric underneath two feet of clean fill, including six inches of topsoil and covering with sod and/or grass. As shown on Appendix 1, the soil cover extends beyond the boundaries of the playing field.

No excavation for subsurface utilities or drains was conducted as part of the remedial action other than for a sprinkler system located between twelve to eighteen inches below finished grade, at least six inches above the filter fabric. The recreational field was not constructed with any bleachers, lights, backstops or other structures that required excavation of soil to a depth greater than two feet. The only excavation performed was for the installation of the six foot high fence posts around three sides of the final Site boundary as determined by the surveyed metes and bounds. The fence post excavations were approximately 10-12 inches in diameter every five feet to a depth of approximately 3.5 feet below grade. Soils excavated from above the liner were stockpiled on plastic and kept separate from other subsurface soils. The liner was cut in the area of the excavation to allow installation of the fence post. Prior to Site covering along the fence line, the fence posts were installed so that any excavated materials could be placed underneath the geotextile fabric and cleanfill cover, and remain onsite. The approved Site Management Plan establishes protective procedures to be utilized during any future excavations to a depth greater than the final thickness of the two feet clean fill cover. The Village will maintain the Site fencing that effectively discourages public access to the areas outside the VCA boundary. The remedial action met all requirements of the Remedial Action Work Plan (RAWP).

All work was conducted in accordance with the approved Health and Safety Plan (HASP) previously provided to NYSDEC in the RAWP that was prepared to define the health and safety requirements necessary to protect workers involved in the site grading and construction of the soil cover. As a result of the site's proposed SMP monitoring wells were installed for use in the Long Term Groundwater Monitoring Plan.

Due to the soil remediation and construction activities required for the preparation of the site (e.g. clearing/grubbing, regrading, soil barriers, clean fill deposition), a NYSDEC-required air

monitoring program was designed and implemented, and a Community Air Monitoring Plan Report was submitted to NYSDEC in May 2008. Continuous monitoring for volatile organics and particulates was conducted at upwind and downwind locations during grubbing and regrading activities. The results of the air monitoring indicated that remediation of the Dobbs Ferry Waterfront Park resulted in no significant increases in either VOCs or fugitive dust. No action level criteria were exceeded at any time during the remediation process.

The SMP prohibits the use of onsite groundwater from the Site for any purpose. The site's proposed Deed Restriction identifies the contaminants remaining in place beneath the implemented engineering control (covering), and indicates that a prohibition on the land use exists in a manner consistent with the engineering controls intended to ensure the long-term effectiveness of the site remediation and eliminate potential exposure pathways to hazardous materials.

The Village has agreed that the terms of this account will apply to any future development of the remaining landfill area and/or the previously excluded riverbank and shoreline.

The only variation from the RAWP that was encountered during the construction of the field was that the grass seed would not germinate due to the dry weather conditions in the summer months. The Village installed an underground, automatic watering system with the piping located between twelve to eighteen inches below finished grade, keeping at least six inches above the filter fabric. There were no other problems encountered during the construction of the recreational field.

The plan for the recreational field was changed from the original plan in that the covered area was expanded beyond the fenced recreational field to the south and now includes a total covered area of 1.7145 acres based on a survey dated October 1, 2007. The final as-constructed plan is included in Appendix 1. The work has been completed under the supervision of a Professional Engineer in accordance with the approved RAWP. The Village has installed passive recreational improvements such as a jogging path, seating and fitness equipment.

During the remediation, contaminated soils were not removed off-site but were spread over the Site, underneath the final clean fill cover, within the fenced recreational field area inside the covered 1.7145 acre Voluntary Cleanup Area. The remediated area consisted of the 300 foot by 170 foot recreational field (51,000 square feet). Man-made fill material observed in test pits conducted at the Site extended to a depth of up to 15 feet below original grade. The approximate volume of contaminated soil placed under the cover was 765,000 cubic feet. No waste streams were generated during the remedial action.

Since post-remedial sampling was not required in the RAWP; a Data Usability Summary Report (DUSR) was not required.

2.3 APPLICABLE REMEDIATION STANDARDS

For soil contaminants, NYSDEC Recommended Soil Cleanup Objectives (RSCO) have been adopted as presented in the NYSDEC Technical Assistance Guidance Memorandum (TAGM)

#4046 – Determination of Soil Cleanup Objectives and Cleanup Levels – Appendix A, Tables 1 through 4. Remediation standards for groundwater are the NYSDEC Groundwater Standards/Criteria (GS) cited in TAGM #4046 Appendix A. TAGM #4046 was rescinded 11/3/2010 and the area was covered prior to 10/7/2007. Therefore work was performed prior to the change in regulations to CP-51.

The remedial work at the Dobbs Ferry Waterfront Park was completed in accordance with the VCA between the Village of Dobbs Ferry and the NYSDEC dated July 3, 2003 and the Amendment to the Voluntary Cleanup Agreement executed on October 25, 2005. All site investigation work was conducted in accordance with the NYSDEC Division of Environmental Remediation Voluntary Cleanup Program Guide and reviewed by the NYSDEC Division of Environmental Remediation and the NYS Department of Health (DOH).

2.3.1 Groundwater Response Action Outcome (RAO)

RAO for Environmental Protection

• Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.

2.3.2 Soil RAO

RAO for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAO for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.4 SUMMARY OF ENVIRONMENTAL CONDITIONS

Previous soil and groundwater sampling events have been conducted at the Site between 1986 and 2005. These investigations were discussed fully in the Remedial Action Workplan dated October 2006 previously submitted to NYSDEC. Based on the results of the previous soil investigations conducted in 1986, 2002 and 2005 the Site surface soils have been found to contain concentrations of pesticides, **SVOCs** (benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene), and metals (chromium, copper, nickel, zinc) above the NYSDEC RSCO. The Site subsurface soils have been found to contain concentrations of SVOCs (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene), chlordane, and metals (arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, and zinc) above the NYSDEC RSCO.

Groundwater samples collected at the Site indicate concentrations of VOCs (benzene, chlorobenzene, toluene, xylenes) and pesticides (4,4-DDD and 4,4-DDE), and metals (antimony, iron, lead, manganese, sodium) above the NYSDEC GS. The NYSDEC, via email dated June 28, 2005, indicated that groundwater use at the Site should be prohibited and that it did not appear likely that the Site is impacting the Hudson River.

Visual observations during both test pit programs indicated the presence of a large amount of debris (household and construction type). Aside from the concentrations of soil contaminants above the NYSDEC RSCO, the presence of this type of debris was also considered in the design of the field. Geotechnical issues such as soil settling and debris shifting were taken into consideration in the final site design.

Data tables and sample location figures for the various investigations conducted at the Site between 1986 and 2005 are included in Appendices 3, 4 and 5. The data collected by NUS Corporation for the US Environmental Protection Agency (USEPA) in 1986 as part of a Site Inspection Report and Hazard Ranking System Model of the Dobbs Ferry Riverfront Park is included in Appendix 3. The sample location plan and analytical data tables for the May 2002 investigation conducted by the Village of Dobbs Ferry appear in Appendix 4. The sample location plan and analytical data tables for the December 2002 Site Investigation Report prepared by Potomac-Hudson Environmental, Inc. (PHEnv) for Site appear in Appendix 5.

As indicated in the various sample location maps in Appendices 3, 4 and 5, and the Site Plan in Figure 4, the soil contaminants found at the Site were all within the covered area of the Site.

2.5 DESCRIPTION OF SITE RESTORATION

Upon completion of scraping off high spots and filling in low spots on the Site, the area was then covered with a geotextile fabric underneath two feet of clean fill, including six inches of topsoil and the covering with sod and/or grass. An active recreational playing field measuring 300 feet by 170 feet was then constructed at the Site. The field was fenced with 15 feet safety zones on sidelines and 10 feet safety zones on the end lines. Appendix 1 provides the Waterfront Park Recreational Field Voluntary Cleanup Area Final As-Constructed Plan (Drawing 1) for the remedial action. As shown on the drawing, the cover extends beyond the boundaries of the playing field south toward the parking lot area.

The following details include information of the Contractor and Environmental Engineer who performed work on the Site.

- Contractor: Acocella Contracting, Inc. 68 Gaylor Road, Scarsdale, New York 10583.
- Environmental Engineer: Potomac-Hudson Environmental, Inc. 207 S. Stevens Ave. S. Amboy, New Jersey 08879.

2.6 DESCRIPTION OF SOURCE AND QUALITY OF FILL

The clean fill material was obtained by the Site general contractor from various sources and after various email submissions to NYSDEC, including laboratory data, was approved by NYSDEC for Site use. The analysis of the fill material met the New York State soil guidance levels established in Technical Guidance Memorandum (TAGM) 4046. Copies of the email correspondence approving the clean fill material are included in Appendix 6.

2.7 COST ESTIMATE OF REMEDIAL ACTION

The estimated cost of the covering with two feet of clean fill is provided below.

Total	\$ 383,000
Reports/Coordination with NYSDEC	\$ 4,000
Community Air Monitoring	\$ 7,000
Health and Safety/Oversight	\$ 22,000
Installation of Clean Fill Cover, Geotextile Liner and Field Construction	\$ 350,000

2.8 AS-BUILT DRAWINGS

Appendix 1 provides the Waterfront Park Recreational Field Voluntary Cleanup Area (VCA) Final As-Constructed Plan (Drawing 1) dated December 31, 2007 for the implemented remedial action. The final VCA site boundaries were extended to the south to include a total covered and uncovered land of 1.9879 acres. The VCA area is based on a site survey dated October 1, 2007.

2.9 WASTE MANIFESTS

No waste materials were generated during the remedial action.

2.10 ENGINEERING AND INSTITUTIONAL CONTROLS

Engineering controls were implemented for Site soil and groundwater contamination. The remedial plan for soil remediation and construction of the field is discussed in the approved SMP, provided in Appendix 2: Site Management Plan.

Since the remedy resulted in contamination above unrestricted levels remaining onsite, institutional controls in the form of a proposed Deed Restriction is required for the remedy. The proposed NYSDEC Deed Restriction will include the following EC/ICs

- Restricts the contemplated use of the site to "active recreational use" which is a land use for the primary purpose of establishing an athletic playing field;
- Restricts any development that would impact the integrity of the engineered cover;
- Restricts the use of onsite groundwater; and
- Requires operation, management and monitoring of the site in accordance with the provisions of the Site Management Plan (SMP) approved by the NYSDEC.

Evidence that the Deed Restriction was executed and filed was submitted to the NYSDEC within 30 days of the NYSDEC's approval of the Deed Restriction.

2.11 SITE MANAGEMENT PLAN

An approved Site Management Plan (SMP) was prepared that addressed any excavations which may be conducted in the future to a depth greater than the final thickness of the constructed two feet clean fill cover. The approved SMP addresses the proper management of subsurface materials that may be brought to the surface after completion of the clean fill cover. The approved SMP also discusses the monitoring, inspection, operations and maintenance, repair, and reporting requirements for the engineering controls utilized at the Site as required by the institutional control (Deed Restriction).

• The approved Site Management Plan (SMP) is provided in Appendix 2.

2.12 GROUNDWATER

An active remedial approach was not required to address the groundwater contaminant concentrations above Standards, Criteria, Guidance (SCGs) based upon the following:

The source of the contamination was urban fill and municipal solid waste. No hazardous waste or "source areas" were identified during the investigation that could have been addressed. Active groundwater remediation was not justified because of the relatively low level of site contaminants and the restriction against any future use of the groundwater resource. The area is serviced by municipal water, and there are no structures on-site that could pose a potential vapor intrusion concern. The final remedy included a Deed Restriction that restricted the use of Site groundwater.

3.0 CONTAMINATION REMAINING AT THE SITE

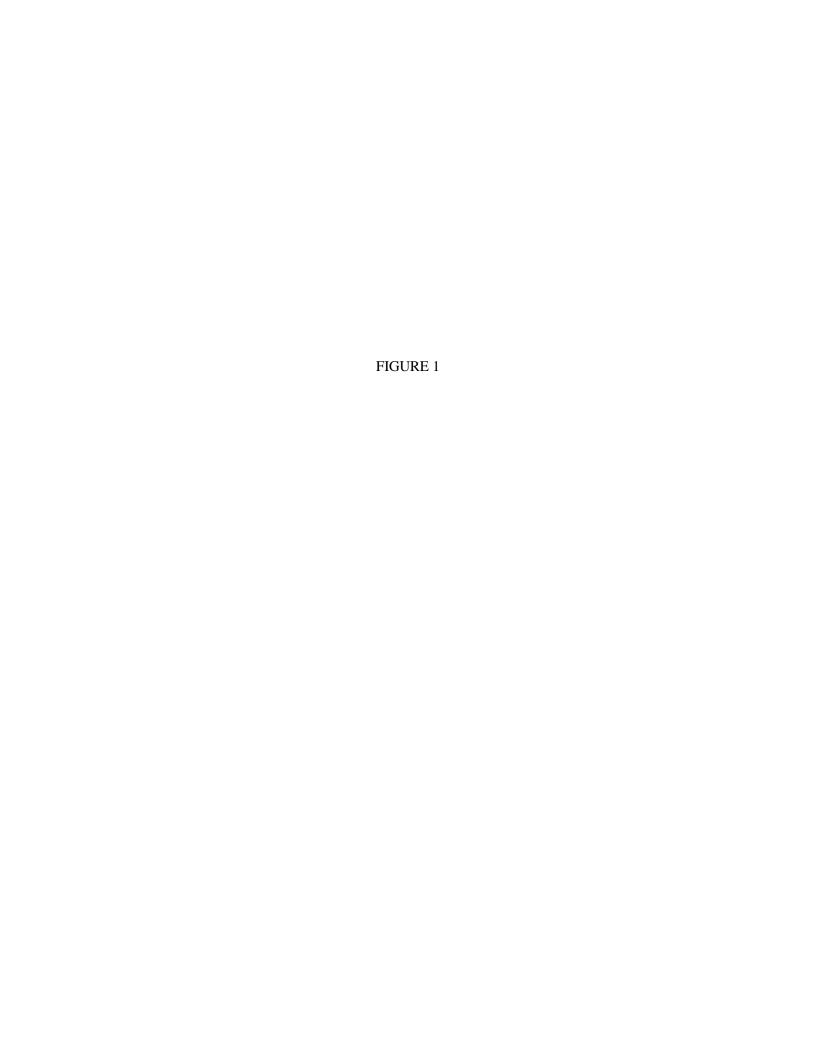
The remaining contamination on Site is outlined on the Monitoring Well Construction Log's, dated March 28, 2011 included in Appendix 3 of the Site Management Plan. There are three Well Construction Log's provided in the SMP and each provides details of the subsurface borings materials encountered on Site. A description of the materials and depths are shown on the subsurface profile.

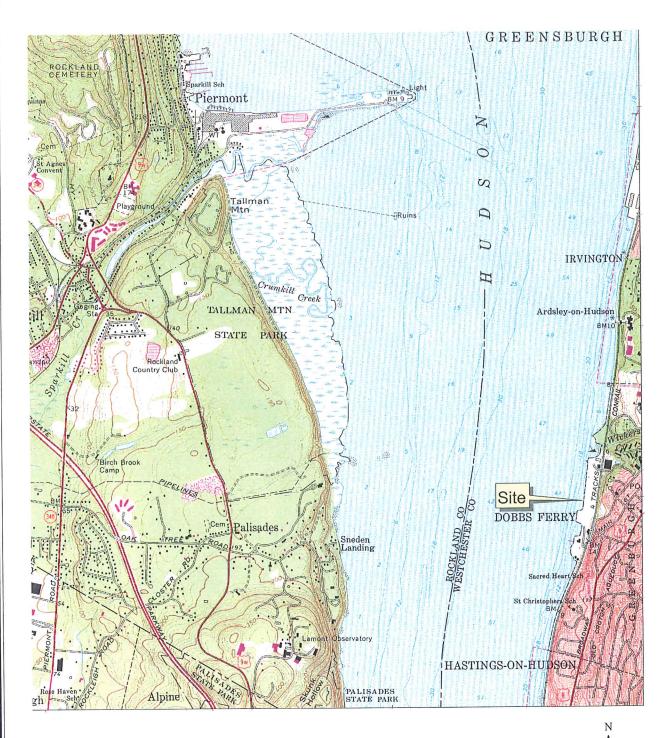
4.0 REFERENCES

Analytical data report dated 5/30/2002, York Analytical Labs. Conducted for the Village of Dobbs Ferry, New York.

Community Air Monitoring Plan Report, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. May 2008.

Final Draft Site Inspection Report and Hazard Ranking System Model, Dobbs Ferry Riverfront Park, Dobbs Ferry, New York. Prepared Under Technical Directive Document No. 02-8603-37A, Contract No. 68-01-6699 for the US Environmental Protection Agency. September 18, 1986. NUS Corporation.


Remedial Action Workplan, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. October 2006.


Site Investigation Report, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. September 2003.

Site Investigation Workplan, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. May 2004 (Revised November 2004).

Site Management Plan, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. May 2008, Revised March 2009.

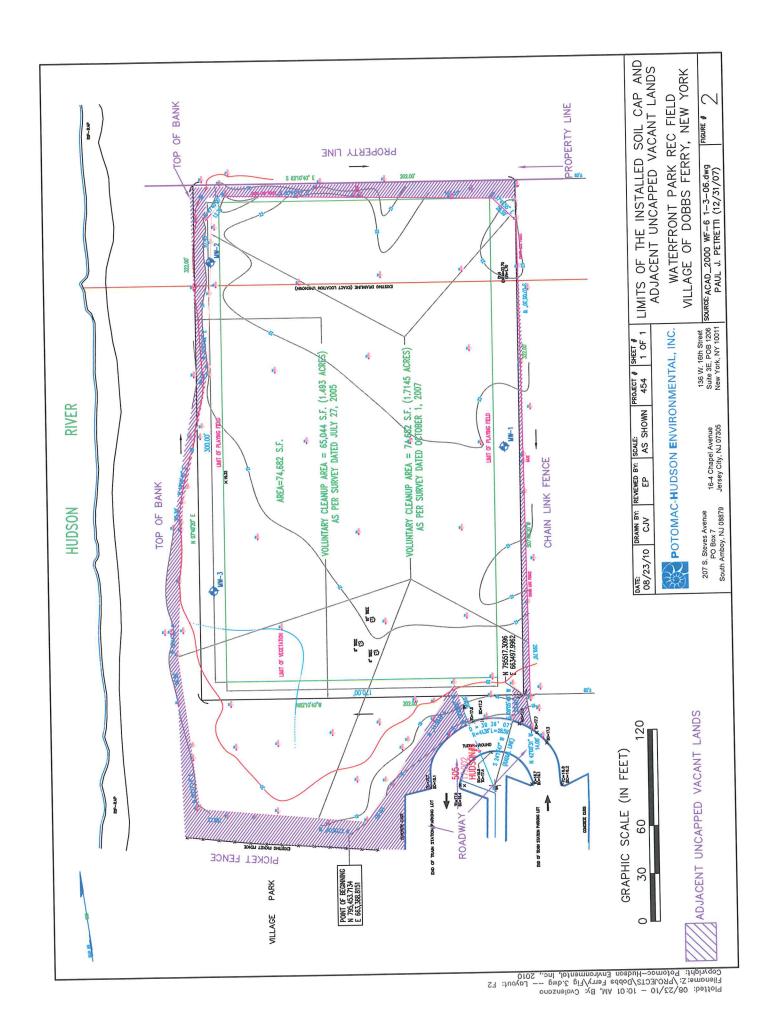
Supplemental Site Investigation Report, Dobbs Ferry Waterfront Park. Potomac-Hudson Environmental, Inc. September 2005.

c:\arcviewproj\dobbsferry\proj2.apr\layout1

DATE: DRAWN BY: REVIEWED BY: SCALE: PROJECT # SHEET #

May 2004 MDS KEP AS SHOWN 454 1 OF 1

POTOMAC-HUDSON ENVIRONMENTAL, INC.


166 John Street PO Box 7 South Amboy, NJ 08879

23 Chapel Avenue Jersey City, NJ 07305 136 W. 16th Street Suite 3E, POB 1206 New York, NY 10011 Project Location
Dobbs Ferry Waterfront Park
Dobbs Ferry, New York

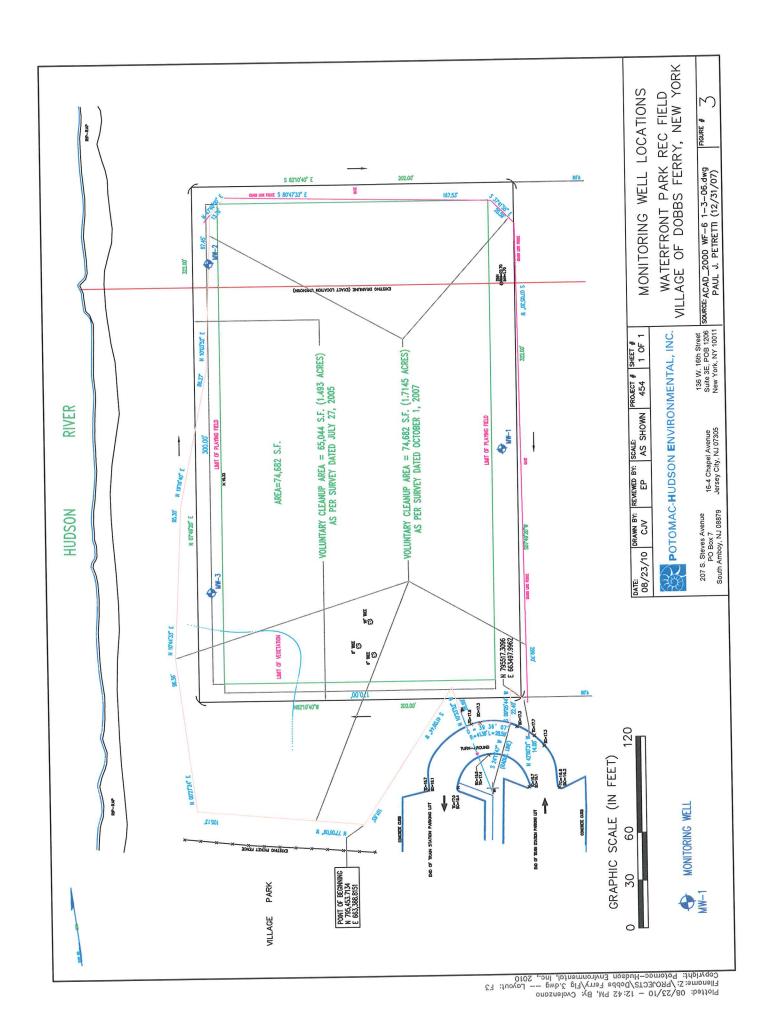
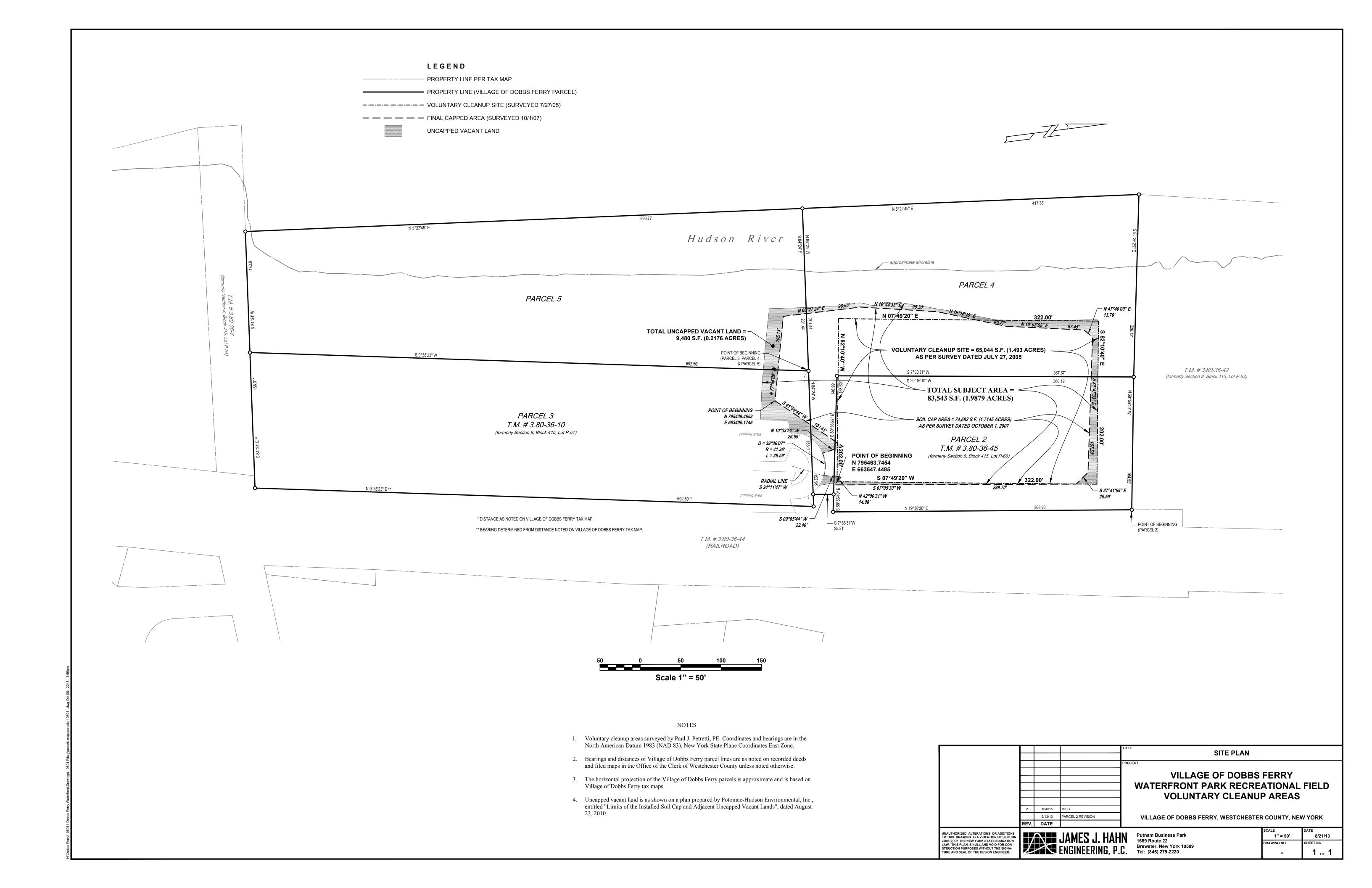
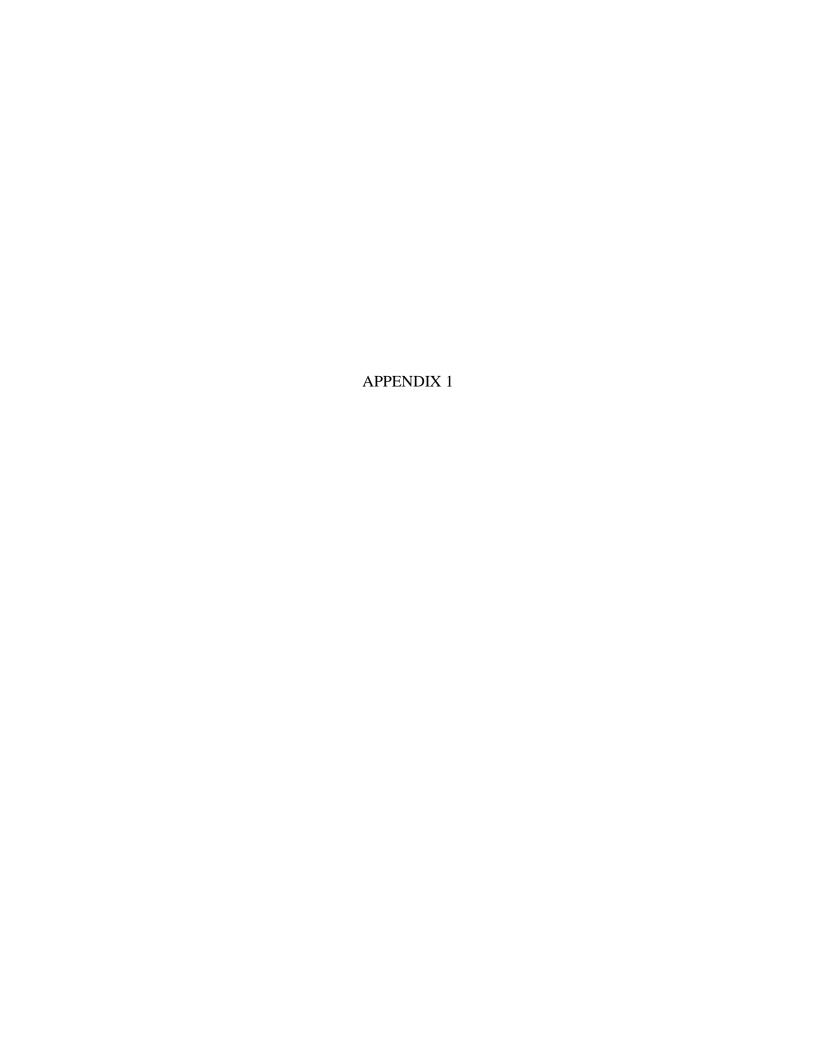
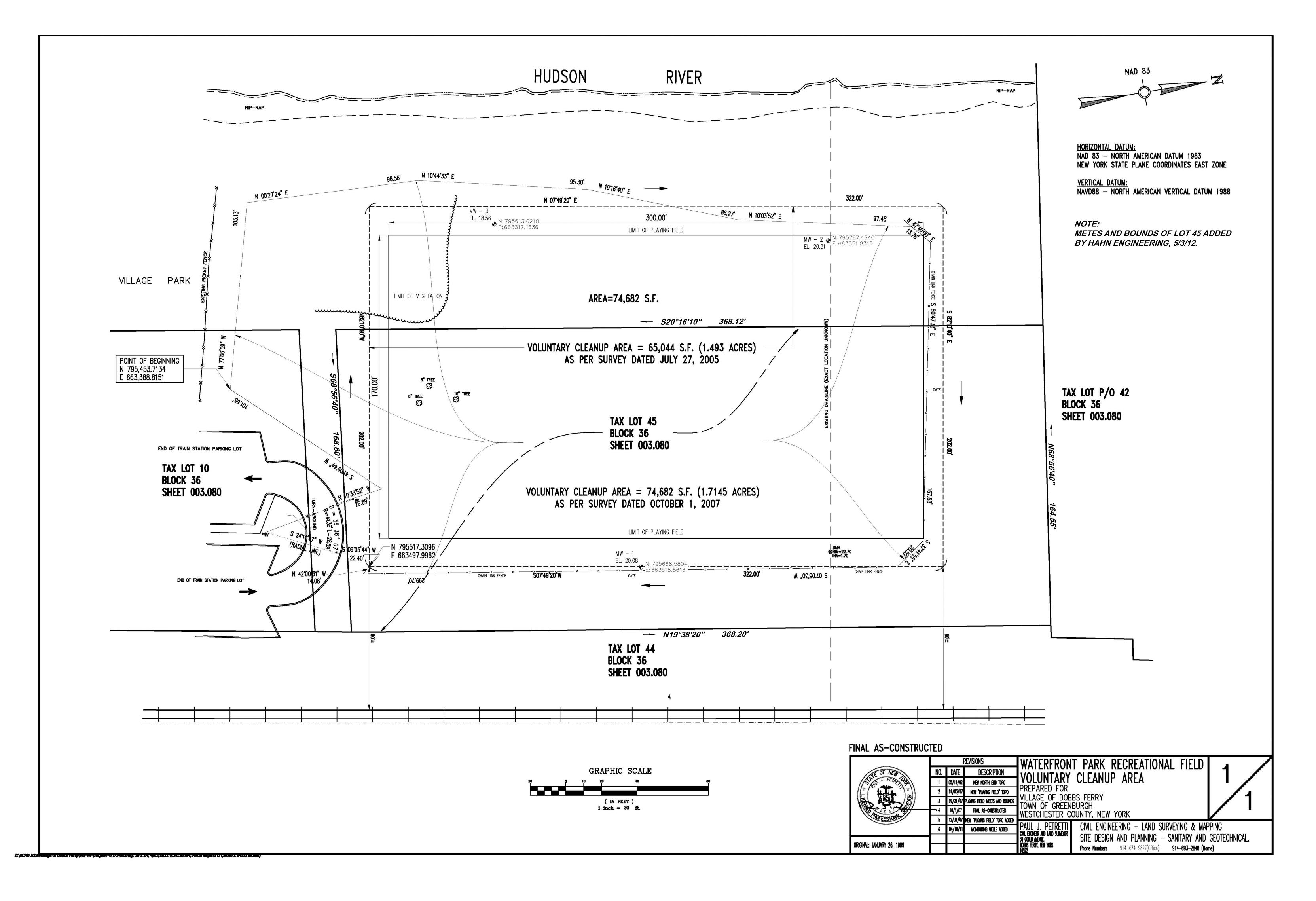
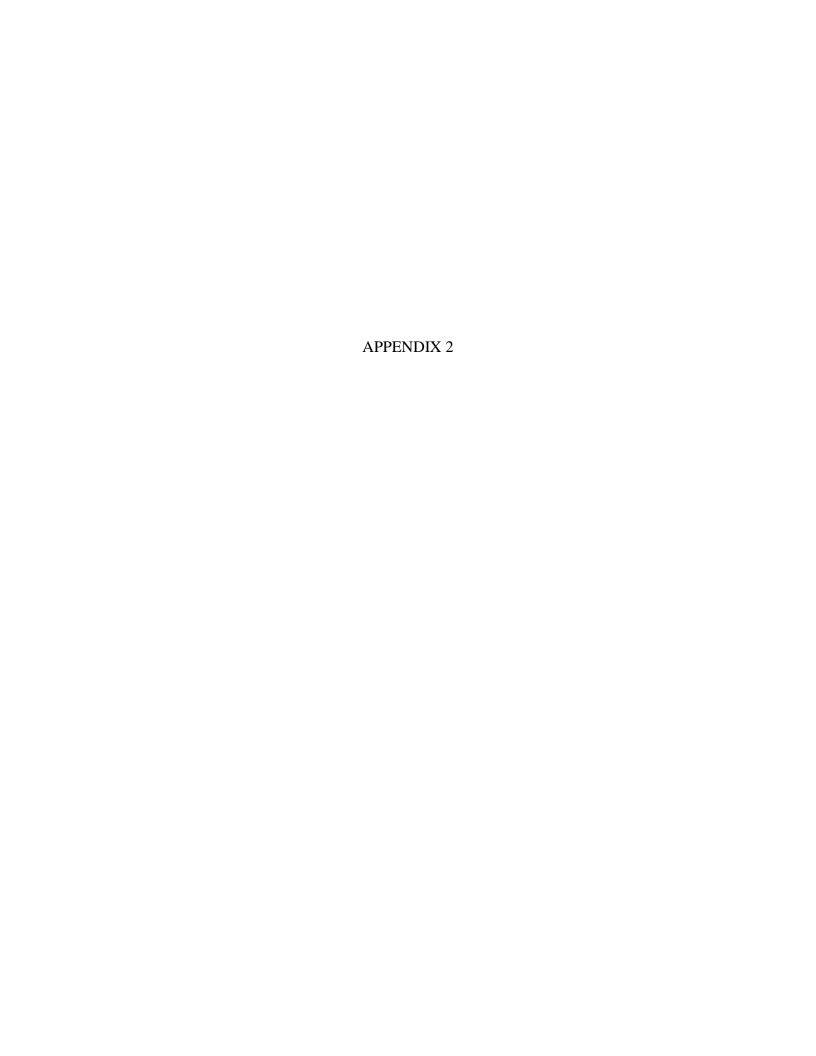

Nyack, NY USGS Quadrangle

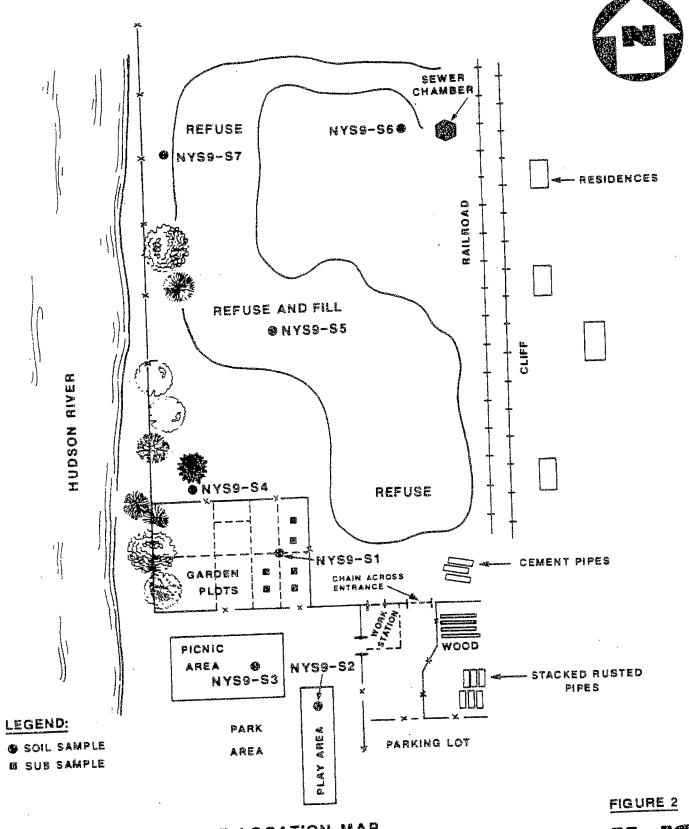
FIGURE #











APPENDIX 3

NUS Corporation Sample Location Map and US Environmental Protection Agency (1986) Data Tables

SAMPLE LOCATION MAP

DOBBS FERRY RIVERFRONT PARK,

DOBBS FERRY, N.Y.

(HOT TO SCALE)

TABLE I

SAMPLE DESCRIPTIONS
DOBBS FERRY LANDFILL
DOBBS FERRY, NEW YORK
CASE #6099

Sample ID Number	Organic Traffic Report#	Inorganic Traffic Report #	Time (Hours)	Sample Type	Sample <u>Location</u>
NYS9-S1	BG06 <i>5</i>	MBE211	1148	Soil	Composite of six (6) subsamples collected from three (3) of the nine (9) garden plots located at Southwest corner of lanc Sample depth 0-6 inches.
NYS9-S2	BG066	MBE212	1205	Soil	Sample collected along slide in the playground area along the Northeast fence line. Sample depth inches.
NYS9-S3	BG067	MBE213	1215	Soil	Sample collected in the vicinity of the picnic area along the North fen line. Sample depth 0-6 inches.
NYS9-S4	BG068	MBE214	1244	Soil	Sample collected along the North fence line of t garden plot area in the Southwest corner of land Sample depth 0-6 inches.
NYS9-55	BG069	MBE215	1256	Soil	Sample collected at center of landfill. Sampl depth 0-6 inches.
NYS9-S6	BG070	MBE216	1326	Soil	Sample collected at the Northeast corner of land Sample depth 0-6 inches.
NYS9-S7	BG071	MBE217	1338	Soil	Sample collected at Northeast corner of land: Sample depth 0-6 inches.
NYS9-BL1	BG072	N/A*	N/A*	Water	Field VOA water blank collected at EPA Edison, New Jersey.

^{*}N/A = Not Applicable

ORGANIC DATA REPORTING QUALIFIERS

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of such flags must be explicit.

- Value -If the result is a value greater than or equal to the detection limit, report the value.
- U -Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g., 10U) based on necessary concentration/dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U-Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.
- I -Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g., 10J)
- C -This flag applies to pesticide parameters where the identification has been confirmed by GC/MS. Single component pesticides >10 ng/ul in the final extract should be confirmed by GC/MS.
- B -This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- Other -Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described and such description attached to the data summary report.

ANALYTICAL DATA NAME: DOBB'S FERRY SAMPLING DATE: 6/18/86 CASE: 6099

11	1:	4	7	1	E	ς
11	i.	H	î :		-	.7

VOLATILES	: !		!					;
SAMPLE NUMBER	; NYS9-51	NYS5-82	,	NYS9-54			NYS9-57 SOIL	INYS9-BLI :
MATRIX	- SCIL	: 801L	. 2212			: 501L : U8/KG	501E US/KG	T UG/L
UNITS	UG/KE	DEAKE	: UE/KB	; VG/K8 :	\ U8/K6 :		: 52/65 !	
			:	1	; J	: :		
Chloromethane	:	:	:	:		1		i
Bromomethane Vinvl Chloride		:		:	!	:	ŧ	1
	:		:	:	!	:	i	1'
Chloroethane	! E	; 5.15	E	E	! E	; E	E	; Ε
Methylene Chlorice	· Ē	: 13	Ξ	; Ε	Ξ Ξ	1	Ε	ΙΞ
Acetone	. •			!	. J	i	;	į
Carbon Distifice			i .	<u>i</u>	i ì	i	:	:
1.1-Dichlorosthems	:	•	· !	1	1	1	1	:
1.1-Dichloroethane	i		:	1	i	1	:	1
Trans-1.2-Dichloroetnens	i	: .		;		1	1	1
Chieroform		:				1 .	\$ 1	!
1.2-Dichloroethans	:					i	!	!
2-Butanone		i	•				ì	!
i.i.i-Trichiordetpade	•		i i	!	1	!	1	i
Carbon Tetrachiorice	1			1	:	:	1	i.
Vanyl Acetate	1	•	·	:		;	:	
Bromodizmicrometname	•		•	!	•			;
1.1.2.1-Tetrachloroethame	ì		•			•	;	i
1.2-Dichlorocropane	:		•	1	1 1			:
Trans-1.3-Dichloroprocess					:	ı	:	
Trichlorostaens		•		•			1	
Dipromochloromethane					i			ī
1,1,2-Trichloroethers				-		-		·
Benzene		Ξ	•	Ξ	•	. 4	: 4	· -
Die-1.J-Dichlorcorodene				;	•		:	
2-Chimroetaviviavietaer	•	i	i	•			:	
Branctora		•		,	i	•	•	1
1-Hexanone	!							•
4-Methyl-1-Pentanone		;				•	i	:
Techachiproechene					:		;•	
Toluens	1	•	ï	:			•	· E
Oniorobenzena					:			
Einvioensene			•					i
Etaleus Etaleus						•		*
Totel %/Lepes							i	:

KOTEBI

Evant adeds - compound analysed for dut not detected

E - analysis our not bess DA:30 requirécents

C - compound present pelox the apecified detection limit

8 - compound foind in leponation plans se well as the sample.

Andicates operative/properls clar contaggnetion

ANALYTICAL DATA NAME: DOBB'S FERRY SAMPLINS DATE: 6/18/86

CASE: 6099

SAMI-VELATILES	. 1							
SAMPLE NUMBER MATRIX	NYS9-31 SOIL	EDIL	NYS9-S3 SDIL SDIL	1 SOIL	NY89-55 SOIL UB/KB	MYS9-S6 SOIL UG/KG	MYS9-S7 SGIL US/KG	(NYS9-BL1 WATER N/A
UNITS	UG/K6	U5/K6	:	US:NC 		:		·
K-Mitrosodimethylamine		; ; 1	; }	1	1	!	;	1
Phenoi	r l	ŧ	i	1		i	1	1
Acilins	t t	i	1	i	i	;	1	1
Bis(2-Chloroethyl)Ether	!	1	1		i	ī	i .	1
2-Chlaropnenol	!		1	1	ì	1	ţ	!
1,3-D: chi grobenzene		!	1	1	i 1	1	!	:
1,4-Dichloropenzene	!	•	i	i	i	ı	!	
Benzyl Alcohol	1	i	i	1	i .	1	1	
1.2-Dichloropenzene	i	i ·	i	1	i 1	1	!	, !
2-Methylchenoi	1.	i	į.	;	i	1		
Bis(2-Chioroisopropvi)Ether	. 1	t i	1	i	i i	1	· !	1
4-Methylonenol	1	1	1	:	:	1	j	!
N-Nitroso-Di-n-Propylagine	!	i	!	:	i	1	į	!
Hexachior opthane	1	:	i	:	i		į	
Nitropensens	;		;	i	1		!	
Isophorane	i	i i	i	i	•	:	!	
2-Wit-pomenel	!	:	٠.	i			:	:
2.4-Dimetavlahenol	1	1	:	1	:		!	•
Benzeic Acid	!	;		1	1	•		
Bis (1-Chloroetnoxy/Mathana	:	1	1			' !		
1,4-Bocolerophenol		į	i			,	:	1
1,2,4-Tricplorosensess	t	,	•		:			į
Nachtrelens		:		:			-	
4-Chicroariline	•			i	:			1
Hexachionosutadiene	i	· t	į.	i	•			1
4-Onlors-J-hethylchenc.	;		i	i	į I	!		i
[-Methylcaphthalene	;		:	1	1	•		
ne) echlorockolopentadiene	:	1	; .	:		•		<u>.</u>
2,4,8-Trionlorophenol	1	i	ì	i	1	:	:	.1
1.4,5-Trichlorophenel	i	i	,		į	;		:
2-Ohloronaphthalens	1		;	<i>*</i> ,	•	,	•	!
1-Witroamiline	1	į.			:	1	i i	:
Diaethyl Phihelate	:			i	4	:		i t
Acenachthviene	·	70	6.	i	; ·	•	•	
J-kitroaniline	1		•	i	:	:	į	;
Acemeobiness		43	ij		:	•		
I,4-Dinitrotterol	:	'			!			
4-Nitrophanol	;		i					į
Dipencofunan		•	;	i		;	:	1
2.4-Dinitritoluene	:	-	i	÷		-		

ANALYTICAL DATA NAME: DOBB'S FERRY SAMPLING DATE: 6/18/86

CASE: 6099

	SEMI-VOLATILES :		· ·			·;			:
N ON	SAMPLE NUMBER MATRIX UNITS	MYS9-S1 SDIL UG/KG	NYS9-S2 SDIL UG/K6	001K 001L NVS9-53	NYS9-S4 SDIL UG/KG 	NYS9-S5 SOIL U6/K6	NYS9-S6 SOIL UG/KE	NYS9-57 EDIL U6/K6	NYS9-BL1 WATER N/A
	2.6-Dinitrotolusne Diethylohthalate 4-Chlorophenylphenvl ether Fluorene 4-Nitroaniline 4.6-Dinitro-2-Kethylphenol N-Nitrosodiohenylagine 4-Brosophenylohenvi ether		1 1 1 1 1700 1						
50	Hexachlorobenzene Pentachlorobenol Phenanthrene Anthracene Di-n-Butvlohthalate Fluoranthene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1500 1500 2800	! ! !		5800 1 1 1 8200	! ! ! 2300		
0.724	Pvrene Butvlbenzvlohtnalate 3.37-Dichlorobenzidine Benzo(a)Anthracene Bis(2-Ethylnexvl)Phthalate	: : : : : : : :	9200 	:		4700 1 1 2800 1 E 1 7000	! ! !	: : : E : 680	
0.06(m)	Di-n-Octvi Phthalate Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene 2 Inceno(1.2,3-cd)Pyrene Dibenzo(a.n)Anthracene		2500 , 3000 , 2500 , 2500		:	1500 1500 1700 1700 1700 1700	; 520 ; 590 ;	: : : : :	1
50	2 Incene (1.1.3-corryrens Dibenzo (a.m) Anthracens	:	1 2000 1 2100		· !	1	ï	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	:

NOTES:

Blank space - compound analyzed for out not detected

E - analysis did not bass QA/QC requirements

 $\ensuremath{\mathfrak{J}}$ - compound present below the specified detection limit

P - compound found in laboratory tlank as well as the sample, indicates possible/probable blank contamination

ANALITICAL DATA NAME: DOBB'S FERRY SAMPLING DATE: 6/18/86 CASE: 6099

SAMPLE NUMBER MATRIX UNITS	: NYS9-S1 : : S01L : U0/K0	301L	S01L	. 561-	NYS9-85 - 901L 	NYS9-S6 SG1L UE/KG 	: 301L	NYE9-BL WATER N/A
Aloha-BHC		i	! `	!	E I	1	:	l .
heta-8HC		1	i 1	i	t t	i	1	:
Delta-BHC	<u> </u>	1	1	1 .	1	i	i	i I
Genma-BHC (Lindene)	i .	1		1	1	1		1
Heotachio	ł E	1	!	!	!	i .	i	1
Algrin	į	!	i	1		i	i	:
Heptachier Epoxica		1 .		1.	i	i	i	1
Encosultan i	1	i	1	ì			i , ,	1
Dieloria	i i	!	!	1 1	1	i J		i
4.4'-052	;	i	1	1	1	1	i	i
Endrin	}	1	1	;		1	:	1
Endosulfan II	1	i			1		i .	
4,4 -DDD	!	!	!	i	:	i	i d	i
Enoosilian sulists	;	; E	1	!	i		! 135	l .
Enoric Albenvas	i	t t	!	!	1	1	i	:
4,4 -007	· E	:	Į Ē	i	;	1	i	i
Methoxychlor	ŧ	1	1	:	:	1	ì	i
Endric kelone		1	i	:	!	i -	;	1
Chiorcans	,]	336.	:	., 3	i è	i v	1 3	i
Torestens	;	i	!	i	•	ì		;
Arezier-ikle	\$	•	:	i	!	!!		;
Andi.or-1931	:	:	:	7	1	1	i	i .
Arbilin-1131	;	1	;	!	!	:	•	1
Arecter-1242	1	1	1	i,	· ·	t	,	
Aresier-124E	1	i	:	į	1 .	1	i	i
Arceler-1254	!	:	:	1	1		1	:
o Arbeier-1250	505.15	1 22958	Ξ.	· <u>E</u>	E	E	:	

WITEE:

Slam, abase - compound analytes for our not detected

E - analysis did not pass QA/QC requirements

 $\boldsymbol{\xi}$ - compound present palow the specified detection limit

E - compound found in lacoratory blank as well as the sample, indicates obsaicle/probable blank contamination

INORGANIC DATA QUALIFIER

Footnotes:

- NR not required by contract at this time.
- Form I:
- Value If the result is a value greater than or equal to the instrument detection limit but less than the contract required detection limit, report the value in brackets (i.e., [10]. Indicate the analytical method used with P (for ICP/Flame AA) or F (for furnace).
- U Indicates elemant was analyzed for but not detected. Report with the detection limit value (e.g., 10U).
- E Indicates a value estimated or not reported due to the presence of interference. Explanatory note included on cover page.
- Indicates value determined by Method of Standard Addition.
 Indicates spike sample recovery is not within control limits.
- Indicates spike sample tookery to within control limits.
- + Indicates the correlation coefficient for method of standard addition is less than 0.995

ANALYTICAL DATA NAME: DOBB'S FERRY SAMPLINS DATE: 6/18/86

DANIELRO DATE: 0770

CASE: 6099

	INDRGANICS		!					!	[
real los	SAMPLE NUMBER MATRIX UNITS	NY89-31 801L MG/KG	HY89-82 SCIL ME/KG	M6/K6	NYSS-54 301L MS/KB	M2/K6 301L NYE9-65	NYS9-56 SOIL MG/KG	NY39-S7 SOIL M3/KG	NYS9-EL1
. 5B	Aluminum	9570	19100	12200	7030	7556 !.	! 3080	6440 !	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
175058	Antimony Arsenic Barium	Į.	i ! 15 : J	16 1 475		: 6.5·		' ! !	
	Bervilium Caomium		: :	; ;	! ! !	i :		1	
	Calcium Chromium	9470 19							•
-	Cobelt	32	!	ł 20	! !	1 (30	! 15	! ! 36	1 1 1 1
25056		17100	1 27500	16000	11806	14300	7190	15200	
36	Lead Kaonesium	188 5230		1 5940	1 6970		4700	5160	1
58	Handsveze	339 0.225						1 232 1 0.120	
0.1	Mickel	1 2	i	!	! !	!	i :] J	
1	Potassium Belenium	<u>!</u>	1	i			!	:	
	Silver Socium	: :	: ! !	i !	i i	;	· ;	1	: 1
	Thellium Tin	i	1 1	1	! !		:	:	
	3 Vanadium	; } } 1 184	45			i J ! 122	95	1 25 1 16 ⁵	
2005	7 1100	1 164	1 221	1 697	, ,,		· -	- -	

NCTEE:

Slank space - compound analyzed for but not detected

E - analysis did not bass QA/QC requirements

J - compound present below the specified difection limit

B - compound found in laboratory blank as well as the sample, indicates possible/protable blank contamination

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER BG · 065

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2661

Sample Matrix: SOIL
Data Release Authorized By:

6099 Case No: QC Report No: 055 Contract No:68-01-7102

Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

Concentration:

Low

(Circle One) Medium

Date Extracted/Prepared: 6/19/86

Date Analyzed: 6/19/86

Conc/Dil Factor:

1

pH: 7.2

Percent Moisture: 23

per	ug/l or ug/Kg (Circle One)	CAS Number 179-34-5 1,1,2,2-Tetrachloroethane	ug/l or ug/Ko (Circle One)
87-3 Chloromethane 93-9 Bromomethane 91-4 Vinyl Chloride 90-3 Chloroethane 99-2 Methylene Chloride 64-1 Acetone 15-0 Carbon Disulfide 35-4 1,1-Dichloroethane 34-3 1,1-Dichloroethane ,-60-5 Trans-1,2-Dichloroethane 66-3 Chloroform '-06-2 1,2-Dichloroethane 93-3 2-Butanone 55-6 1,1,1-Trichloroethane 23-5 Carbon Tetrachloride05-4 Vinyl Acetate 27-4 Bromodichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 4.8 B 4.9 JB 0.4 J 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 10.0 U 5.0 U 5.0 U	79-34-5	5.0 u 5.0 u 5.0 u 5.0 u 5.0 u 5.0 u 6.0 u

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

t, report the value.

cates compound was analyzed for but not detected. Report minimum detection limit for the sample with the U(e.g.10U ರ ೪-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. minimum attainable detection limit for the sample.

timating a concentration for tentatively identified compounds and such description attached to the data summary report. nore a : ! response is assumed or when the mass spectral data rangates the presence of a compound that meets the identification initeria but the result is less than the specified detection limit but greater than zero (e.g. 10J).

the result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identification has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confirmed ˈbÿ́ GC/MS

ed on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as well essarily the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

OTHER

Other specific flags and footnotes may be required to properly icates an estimated value. This flag is used either when define the results. If used, they must be fully described

mannanii sayaasaa ka sa ka

FORM I

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER BG-065

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2661

Sample Matrix: SOIL

Sample Matrix: SOIL

Data Release Authorized By: Langi Odeii:

Case No: 6099 QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

resilimitali W/oracenti 1

Concentration: \ Low

Medium

(Circle One)

Date Extracted/Prepared: 6/19/86

Date Analyzed: 6/19/86

Conc/Dil Factor: 1

pH: 7.2

Percent Moisture: 23

CAS	ug/l or ug/Kg	CAS	ug/l or ⁽ ug/Kg
Number		Number	(Circle On e)
74-87-3 Chloromethane 74-83-9 Bromomethane 75-01-4 Vinyl Chloride 75-00-3 Chloroethane 75-09-2 Methylene Chloride 67-64-1 Acetone 75-15-0 Carbon Disulfide 75-35-4 1,1-Dichloroethane 75-34-3 1,1-Dichloroethane 156-60-5 Trans-1,2-Dichloroethane 67-66-3 Chloroform 107-06-2 1,2-Dichloroethane 79-93-3 2-Butanone 71-55-6 1,1,1-Trichloroethane 56-23-5 Carbon Tetrachloride 103-05-4 Vinyl Acetate 75-27-4 3romodichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 6.8 B 4.9 JB 0.4 J 5.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

limit, report the value.

Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U(e.g.10U based on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as wel read U-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. the minimum attainable detection limit for the sample.

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds and such description attached to the data summary report. where a 1 1 response is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the specified detection limit rut greater than zero (e.g. 10J).

If the result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identificat has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confir by GC/MS

necessarily the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

OTHER

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

. FORM I

ORGANIC ANALYSIS DATA SHEL (PAGE 2)

LABORATORY NAME: NANCO LABS. INC.

CASE NO: 6099

SAMPLE NO. BG-065

SEMIVOLATILE COMPOUNDS

	Concentration: Low Date Extracted/Prepared: 6/10	Median	Circle One)	GPC Cleanup: Yes Y No Separatory Funnel Extraction: Y Continuous Liquid - Liquid Extra	fes action: Yes_
	Date Analyzed: 7/02/86	1			_
•	Conc/Dil Factor: 23	_		ug	// or .ug/K
	Percent Moisture : 23	ug/l or ug/Kg	CAS	(Circle One)
AS.		(Circle One)	Number		
nuper				Acenaphthene	330.0 U
U.D		330.0 U	83-32-9	2,4-Dinitrophenol	1600.0 U
2-75-9	N-Nitrosodimethylamine	330.0 U	51-28-5		1600.0 U
108-95-2	Phenol	330.0 U	100-02-7	4-Nitrophenol	330.0 U
111-44-4	bis(-2-Chloroethyl)Ether	330.0 U	132-64-9	Dibenzofuran	330.0 U
	2-Chlorophenol	330.0 U	121-14-2	2,4-Dinitrotoluene	330.0 U
5-57-8	1 1.3-Dichlorobenzene	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0 U
41-73-1	1 1,4-Dichlorobenzene	330.0 U	84-66-2	Diethylphthalate	330.0 U
106-46-7	Benzyl Alcohol		7005-72-3	4-Chlorophenyl-phenylether	330.0 U
100-51-6	1 1,2-Dichlorobenzene	330.0 U	86-73-7	Fluorene	1600.0
95-50-1	2-Methylphenol	330.0 U	1 100-01-6	4-Nitroaniline	1600.0 4
95-48-7	bis(2-chloroisopropyl)Ether	330.0 U	534-52-1	4,6-Dinitro-2-Methylphenol	
39638-32-9	4-Methylphenol	330	86-30-6	N-Nitrosodiphenylamine (1)	330.0 (
106-44-5	N-Witroso-Di-n-Propylamine	330.0 U	101-55-3	4-Bromophenyl-phenylether	330.0
621-64-7	Hexachloroethane	330.0 U	1118-74-1	Hexachlorobenzene	330.0
67-72-1		330.0 0		Pentachlorophenol	1600.0
98-95-3	Nitrobenzene	330.0 U	87-86-5	Phenanthrene	330.0
78-59-1	Isophorone	330.0 U	85-01-8	Anthracene ,	330.0
88-75-5	2-Nitrophenol	330.0 U	120-12-7	Di-n-Butylphthalate	330.0
105-67-9	2,4-Dimethylphenol	1600.0 U	84-74-2	Fluoranthene	330.0
65-85-0	Benzoic Acid		206-44-0	1	330.0
111-91-1	bis(-2-Chloroethoxy)Methano	330.0 U	129-00-0	Pyrene Butylbenzylphthalate	330.0
120-83-2	2,4-Dichlorophenol	330.0 U	85-68-7	Butylbenzylphinatace	660.0
120-82-1	1,2,4-Trichlorobenzene	330.0 U	91-94-1	3,31-Dichtorobenzianie	330.0
91-20-3	Naphthalene	330.0 U	56-55-3	Benzo(a)Anthracene	1490.0
106-47-8	4-Chloroaniline	330.0 U	117-81-7	bis(2-Ethylhexyl)Phthalate	330.0
87-68-3	Hexachlorobutadiene	330.0 U	218-01-9	Chrysene	330.0
59-50-7	4-Chloro-3-Methylphenol	330.0 U	117-84-0	Di-n-Octyl Phthalate	330.0
1 91-57-6	2-Methylnaphthalene	330.0 U	205-99-2	Benzo(b)Fluoranthene	330.0
77-47-4	Hexachlorocyclopentadiene	330.0 U	207-08-9	Benzo(k)Fluoranthene	330.0
1 88-06-2	2,4,6-Trichlorophenol	1	50-32-8	Benzo(a)Pyrene	330.0
95-95-4	2,4,5-Trichlorophenol	1600.0 U	193-39-5	Indeno(1,2,3-cd)Pyrene	330.0
•	2-Chloronaphthalene	330.0 0	53-70-3	Dibenz(a,h)Anthracene	330.0
91-58-7	2-Nitroaniline	1600.0 U	191-24-2	Benzo(g,h,i)Perylene	330.0
88-74-4	Dimethyl Phthalate	330.0 U	1 171 24 2	i	1
131 - 11 - 3	Acenaphthylene	330.0 U			
208-96-8 99-09-2	3-Nitroaniline	1600.0 U		ot be separated from diphenylamine	;

ORGANICS ANALYSIS DATA SHEET (PAGE 3)

SAMPLE NUMBER BG-065

LABORATORY NAME: NANCO LABS, INC. CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium (Circle One)
Date Extracted/Prepared: 6/19/86
Date Analyzed: 7/1/86
Conc/Dil Factor: 1
Percent Moisture: 23

GPC Cleanup: Yes_X_ No___
Separatory Funnel Extraction: Yes___
Continuous Liquid Liquid Extraction: Yes___

	ug/l or ug/Kg (Circle One)
Alpha-BHC Beta-BHC Delta-BHC Delta-BHC Clindane Heptachlor Leptachlor Leptachlor	
Aroctor-1016 Aroctor-1221 Aroctor-1232 Aroctor-1242 Aroctor-1248 Aroctor-1254	160.00 U 160.00 U 160.00 U 160.00 U 160.00 U 320.00 U
	Beta-BHC Delta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

	30		40000		3
or Ws	20	 ۷t		Vi	

LABORATORY NAME: NANCO LABS, INC. C. E NO: EPA 6099

PESTICIDE/PCBs

Concentration: Date Extracted/P	renared:	6/19/80	(Circle	One)
Date Extrao	17/94			
Date Analyzed: /	12/00	\		
Date Analyzed: 7 Conc/Dil Factor:		*	1	
Percent Moisture	::	23		

GPC Cleanup: Yes_X_ No___ Separatory Funnel Extraction: Yes___ Continuous Liquid-Liquid Extraction: Yes___

convectes dates

CAS Number		ug/l or (ug/Kg) (Circle One)
=	Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1232	(Circle One) 16.00 U
53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor-1248 Aroclor-1254 Aroclor-1260	160.00 U 320.00 U 505.10 B

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

			70		40000	3
	or W	Ue	30	۷t	Vi	
· Vs	CI. A	WS				

Form I

Sample Managem P.O. Box 818 -	eact Laboratory Present Office Alexandria, VA FTS: 8-557-2490				EPA Sample N MBE 211 Date 7178	
	INORO	ANIC A	MALYS:	IS DATA SHEE		
LAB FAME JTC	Environmental	Cnsl	ts.	CASE	но. <u>6099</u>	
SOW NO.	784	_		•		
LAB SAMPLE ID.	но. <u>73-3423</u>			·QC RE	PORT NO. <u>269</u>	
	Elemen	rs Ide	nrifia	d_and Measu		
Concentration:		,	II CALLE		1	
fatrix: Water				Sludge		
ACTIAL MELCI					· Other	
	ug/L or	mg/kg	Jary (⊌eight (Circ	:le One)	
. Aluminum	9570			Hagnesium.	:	Р
. Antimony	32 U	P		Hanganese'	4 0	Р
. Arsenic	[5,8]	F'	•	Hercury	~ ~ ~	d.V.
. Barium	[10]	Р		Nickel	[16]	Р
. Beryllium	2.64	р	17.	Potassium	3220U	A
. Cadmium	3.2U	P	18.	Selenium	2,84	F
. Calcium	9470	P	19.	Silver	6.311	Р
Chromium	19	P	20.	Sod1um	3030U	P
Cobalt	114	Р	21.	Thallium	344	F
. Copper	<u> 32</u>	P	22.	Tin	19u	Р
. Iron	17100	P	23.	Vanadium	[17]	P
. Lead	188 \$	<u> </u>	24.	Zinc	184	P
anide	NR Auto	o An	Perce	nt Solids (2) 77.62	
as de resul	fined on Cover P.	age. d. De	Additî finiti	onal flags on of such	alt qualifiers ar or footnotes expl flags must be ex	aini
·				Lab Manager	50	

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER BG-066

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2662

Sample Matrix: SOIL

Sample Matrix: SUIL
Data Release Authorized By: Sea 4 Cd 4

6099 Case No: QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

Ioncentration:

Medium

(Circle One)

Date Extracted/Prepared: 6/19/86

Date Analyzed: 6/19/86

1 .

Conc/Dil Factor:

Percent Moisture: 15

pH: 7.7

37-3 Chloromethane 33-9 Bromomethane 31-4 Vinyl Chloride 30-3 Chloroethane 39-2 Methylene Chloride 54-1 Acetone 15-0 Carbon Disulfide 35-4 1,1-Dichloroethene	Circle One)		(Circle One)
34-3 1,1-Dichloroethane -60-5 Trans-1,2-Dichloroethene 66-3 Chloroform -C5-2 1,2-Dichloroethane 93-3 2-Butanone 55-6 1,1,1-Trichloroethane 23-5 Carbon Tetrachloride -C5-4 Vinyl Acetate 27-4 Brcmodichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 5.1 B 6.2 JB 5.0 U 5.0 U	79-34-5	5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

t, report the value.

icates compound was analyzed for but not detected. Report minimum detection limit for the sample with the U(e.g.10U ed an necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as well d U-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. minimum attainable detection limit for the sample.

icates an estimated value. This flag is used either when mating a concentration for tentatively identified compounds and such description attached to the data summary report. re a 1 1 response is assumed or when the mass spectral data 'cates the presence of a compound that meets the identification teria but the result is less than the specified detection limit greater than zero (e.g. 10J).

he result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identification has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confirmed by GC/MS

essarily the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

LABORATORY NAME: NANCO LABS. INC. CASE NO: 6099

SAMPLE NO. BG-065

SEMIVOLATILE COMPOUNDS

	Concentration: (Low) Date Extracted/Prepared: 6/19 Date Analyzed: 7/02/86 Conc/Dil Factor:	I Caram	Circle One)	GPC Cleanup: Yes X No Separatory Funnel Extraction: Continuous Liquid - Liquid Extr	Yesaction: Yes
	percent Moisture : 15		CAS		g/l or ug/
_	u	alr or nalka	Mamper	(Circle One
S	(circle one	Reminder		
mber			1 83-32-9	Acenaphthene	430.0
75.0	N-Nitrosodimethylamine	330.0 U	51-28-5	2,4-Dinitrophenol	1600.0 ัก
-75-9	Phenol	330.0 U	100-02-7	4-Nitrophenol	1600.0 U
8-95-2	bis(-2-Chloroethyl)Ether	330.0 U	132-64-9	Dibenzofuran	330.0 U
1-44-4	2-Chlorophenol	330.0 U	121-14-2	2,4-Dinitrotoluene	330.0 U
5-57-8	1,3-Dichlorobenzene	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0 U
1-73-1	1 1,4-Dichlorobenzene	330.0 U	84-66-2	Diethylphthalate	330.0 U
6-46-7	Benzyi Alcohol	330.0 U	1 7005-72-3	4-Chlorophenyl-phenylether	330.0 U
0-51-6	1,2-Dichlorobenzene	330.0 U		fluorene	1700.0
5-50-1	2-Methylphenol	330.0 U	86-73-7	4-Nitroaniline	1600.0 L
5-48-7	bis(2-chloroisopropyl)Ether	330.0 U	100-01-6	4,6-Dinitro-2-Methylphenol	1600.0 \
635-32-9	4-Methylphenol	330.0 U	534-52-1	N-Nitrosodiphenylamine (1)	330.0 (
5-44-5	N-Nitroso-Di-n-Propylamine	330.0 U	86-30-6	4-Bromophenyl-phenylether	330.0
21-64-7	Hexachloroethane	330.0 U	101-55-3	Hexachlorobenzene	330.0
7-72-1		330.0 U	118-74-1	Pentachlorophenol	1600.0
8-95-3	Nitrobenzene	330.0 U	87-86-5	Phenanthrene	1500.0
8-59-1	Isophorone	330.0 0	85-01-8		2800.0
8-75-5	2-Nitrophenol	330.0 U	120-12-7	Anthracene'	330.0
C5-67-9	2,4-Dimethylphenol	1600.0 U	84-74-2	Di-n-Butylphthalate	17000.0
5-85-0	Benzoic Acid	330.0 U	206-44-0	fluoranthene	9200.0
111-91-1	bis(-2-Chloroethoxy)Methane	330.0 U	129-00-0	Pyrene	330.0
120-83-2	2,4-Dichlorophenol	330.0 U	85-68-7	Butylbenzylphthalate	660.0
120-82-1	1,2,4-Trichlorobenzene	330.0 U	91-94-1	3,3'-Dichlorobenzidine	5900.0
91-20-3	Naphthalene	330.0 U	56-55-3	Benzo(a)Anthracene	2200.0
106-47-8	4-Chloroaniline	330.0 U	117-81-7	bis(2-Ethylhexyl)Phthalate	5600.0
27-6B-3	Hexachlorobutadiene	330.0 U	218-01-9	Chrysene	330.0
59-50-7	4-Chloro-3-Methylphenol	330.0 U	117-84-0	pi-n-Octyl Phthalate	2500.0
91-57-6	2-Methylnaphthalene	330.0 U	205-99-2	Benzo(b)Fluoranthene	3000.0
77-47-4	Hexachlorocyclopentadiene	330.0 U	207-08-9	Benzo(k)Fluoranthene	1 2500.0
83-06-2	2,4,6-Trichlorophenol	1 1600.0 U	1 50-32-8	Benzo(a)Pyrene	2000.0
95-95-4	1 2,4,5-Trichlorophenol	1 .	193-39-5	Indeno(1,2,3-cd)Pyrene	•
91-58-7	2-chloronaphthalene	330.0 U	53-70-3	Dibenz(a,h)Anthracene	330.0
88-74-4	2-Nitroaniline	1600.0 U	191-24-2	Benzo(g,h,i)Perylene	2100.0
13:-11-3	Dimethyl Phthalate	330.0 0	1 121 41 -	j	1
208-96-8	Acenaphthylene	700.0	1		
79-09-2	3-Nitroaniline	1600.0 U		be separated from diphenylamine	

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium (Circle One) Date Extracted/Prepared: 6/19/86 Date Analyzed: 7/1/86	GPC Clcunup: Yes < No Separatory Funnel Extraction: Yes Continuous Liquid-Liquid Extraction: Yes
Conc/Dil Factor: 15 Percent Moisture: 15	ug/l or (ug/Kg)

CAS Number		ug/l or (ug/Kg) (Circle One)
Number 319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 7421-93-4 1031-07-8 50-29-3 53494-70-5 72-43-5 57-74-9 8001-35-2 1104-28-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor Chlordane Toxaphene Aroclor-1221 Aroclor-1232 Aroclor-1248 Aroclor-1254	16.00 U 32.00 U 160.00 U
11096-82-5	Aroclor-1260	2298.00 B

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

			40000	3
vs	3C	. Vt	Vi	

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium (C	Trole One)	GPC Cleanup: Yes_X_ No Separatory Funnel Extrac	
Date Extracted/Prepared: 6/19/86		Continuous Liquid-Liquid	
Date Analyzed: 7/2/86		CONTENIDOUS ENQUIRE ENQUIRE	
Conc/Dil Factor:> 1			
Percent Moisture: 15			
1 11 0	CAS		ug/l or Jug/Kg
rosekmilled	Number		(Circle One)
	MONDEL		
w)come	319-84-6	Alpha-BHC	16.00 U
	319-85-7	Beta-BHC	16.00 U
-) 1.	319-86-8	Delta-BHC	16.00 U
Nate.	1 58-89-9	Gamma-BHC (Lindane)	16.00 U
	76-44-8	Heptachlor	16.00 U
	309-00-2	Aldrin	16.00 U
:	1024-57-3	Heptachlor Epoxide	16.00 U
	959-98-8	Endosulfan I	16.00 U
•	60-57-1	Dieldrin	32.00 U
	72-55-9	4,4'-DDE	32.00 U
	1 72-20-8	Endrin	32.00 U
	33213-65-9	Endosulfan II	32.00 U
	72-54-8	4,4'-DDD	32.00 U
÷ :	1 7421-93-4	Endrin Aldehyde	32.00 U
•	1 1031-07-8	Endosulfan Sulfate	965.00
	1 50-29-3	4,4'-DDT	1 32.00 U
	1 53494-70-5	Endrin Ketone	32.00 U
	1 72-43-5	Methoxychlor	160.00 U
:	1 57-74-9	Chlordane	336.00
:	8001-35-2	Toxaphene	320.00 U
·	1 12674-11-2	Aroclor-1016	1 160.00 U
	111104-28-2	Aroctor-1221	1 160.00 U
	4	Aroctor-1232	160.00 U
	11141-16-5	Aroclor-1242	160.00 U
	53469-21-9	Aroclor-1248	1 160.00 U
	1 12672-29-6	Aroclor-1240	320.00 U
	11097-69-1	Aroctor-1254	2298.00 B
	11096-82-5	Aroctor-1200	1 2270.00 0
		Vi = Volume of extract injected (ul Vs = Volume of water extracted (ml) Ws = Weight of sample extracted (g) Vt = Volume of total extract (ul)	
Vs	30	Vt	40000 Vi

Form 1 B

U.S. EPA Contr	act Laboratory P	rogram		EPA Sampl	e No.
Sample Hanagem	ent Office Alexandria, VA	77717		_	
703/557-2490	FTS: 8-557-2490	22313		MBE 2	121
7027 -				Date 7 1	7 86
	INOR	GANIC ANA	LYSIS DATA SHEE		
LAB FAME JTC B	Environmental	Cnslts	. CASE	NO. 6099	
SOW NO.	784	_			
LAB SAMPLE ID.	но. <u>73 ж24</u>		·QC RE	PORT NO. <u>269</u>	
	Elemen	ts Identi	fied and Heasu	red	
Concentration:	Low/		Hedius		
Hatrix: Water _	Soil		Sludge	Other	
	·				
	ug/L or	mg/kg H	ry weight (Circ	le One)	• .
l. Aluminum	19100		13. Hagnesium.		Р
2. Antimony	47 U		14. Manganese		P
3. Arsenic	+62		15. Mercury	A 2 = =	old.V.
4. Barium	[15]		6. Nickel	1.32	P
5. Beryllium 3.	842701x 4#		7. Potassium		A 4H
6. Cadmium 4,6	U SISTIMI		8. S-lenium	4,74	F
7. Calcium	7940	P 1	9. Silver	9.34	Р
B. Chromium	39	P 2	O. Sodium L	+460U	P
G. Cobalt	164	<u> </u>	l. Thallium	5.0U	F
O. Copper	55		2. Tin	28U	P
	7500	P 2:	3. Vanadium	49	P
2. Lead	179 &	P 24	. Zinc	227	P
yanide	NR Auto	An Pe	rcent Solids (2	52.7	
ootnotes: For r					
	eporting results ined on Cover Pa	to EPA,	standard resu	lt qualifiers	are used
result	s are encouraged	i. Defin	ition of such	flags must be	plaining explicit
and co	ntained on Cover	Page, h	pwever.		CAPITCIC
Ements:	•				

			• 1 12	<u>aa.</u>	
			Lab Manager	250	

LABORATORY NAME: NANCO LABS. INC. CASE NO: 6099 SAMPLE NO. BG-067

SEMIVOLATILE COMPOUNDS

	Concentration: Low Date Extracted/Prepared: 6/19	Medium	(Circle One)	GPC Cleanup: Yes X No Separatory Funnel Extraction: Y Continuous Liquid - Liquid Extra	es ction: Yes
	Date Extracted/Prepared	•			
	Date Extracted 7/02/86 Date Analyzed: 7/02/86 Conc/Dil Factor: 18	1	. ,	ugu	/L or ug/Kg)
	- 10 il FBC LOI	, un /Ka	CAS	(Circle One)
	Percent Moisture : 18	ug/l or ug/Kg/ (Circle One)	Number		
		(Circle one)		Labora	330.0 U \
er		330.0 U	83-32-9	Acenaphthene	1600.0 U
	N.Nitrosodimethylamine	330.0 U	51-28-5	2,4-Dinitrophenol	1600.0 U
5-9		330.0 U	100-02-7	4-Nitrophenol	330.0 U \
95-2	Phenol bis(-2-Chloroethyl)Ether		132-64-9	Dibenzofuran	330.0 U \
.44-4	bis(-2-Chief detity	330.0 U	121-14-2	2,4-Dinitrotoluene	330.0 U \
57-8	2-Chlorophenol	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0 U
-73-1	1,3-Dichlorobenzene	330.0 0	84-66-2	Diethylphthalate.	330.0 U
-40-7	1,4-Dichlorobenzene	330.0 U	7005-72-3	4-Chlorophenyl-phenylether	330.0 U
-51-6	Benzyl Alcohol	330.0 U	1 86-73-7	Fluorene	1600.0 U
	1,2-Dichlorobenzene	330.0 U	100-01-6	4-Nitroaniline	1600.0 U
50-1 .48-7		330.0 0 1	534-52-1	(4-Dinitro-2-Methylphenol	330.0 U
48-1	L bis(2-chloroisopropy()2	330.0 0		u.witrosodiphenylamine ()	330.0 U
538-32-9	1-60001	330.0 0	86-30-6	4-Bromophenyl-phenylether	330.0 U
5-44.5	u-witroso-Di-n-Propy(amilio	330.0 0	101-55-3	Hexachlorobenzene	
1-64-7	Hexachloroethane	330.0 U	118-74-1	Pentachlorophenol	1600.0 U
-72-1	Nitrobenzene	330.0 U	87-86-5	Phenanthrene	330.0 U
- 95 - 3	Isophorone	330.0 U	1 85-01-8	Anthracene	330.0 U
-59-1	2-Nitrophenol	330.0 U	1 120-12-7	Di-n-Butylphthalate	330.0 U
- 75 - 5	2,4-Dimethylphenol	1 1600.0 U	1 84-74-2	D1-U-Barathurung	330.0 U
15-67-9	' haid	0.11		Fluoranthene	330.0 U
,-85-0	Benzoic Acid bis(-2-Chloroethoxy)Methar	ne 330.0 0	1	Pyrene	330.0 U
11-91-1	2,4-Dichlorophenol		1 25 (9.7	Butylbenzylphthalate	660.0 U
10-83-2	1,2,4-Trichlorobenzene	330.0 U	1 00 0/-1	3,3'-Dichlorobenzidine	330.0
20-82-1	1,2,4-17161101050112	330.0 U	, -, -E-3	Benzo(a)Anthracene	330.0
1-20-3	Naphthalene	330.0 L	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	bis(2-Ethylhexyl)Phthalate	330.0
16-47-8	4-Chloroaniline	330.0 (3 1 247.01.0	i chrysene	1 330.01
7-68-3	Hexachlorobutadiene	330.0		I Di-n-Octyl Phillagar	330.0
2-50-7	4-Chloro-3-Methylphenol	330.0	u 177-04 0	Repro(b)Fluoranthene	330.0
1-57-6	2-Methylnaphthalene	330.0			330.0
7-47-4	Hexachlorocyclopentadien	330.0		1 Benzo(a)Pyrene	330.0
8-06-2	1 2 / A-Trichlorophenot	1600.0		Indeno(1,2,3-cd)Pyrene	330.0
15-95-4	1 2 4.5-Trichlorophenol	330.0	11 1 193-39	L nibenz(a.h)Anthracene	330.0
11-58-7	l 2-Chloronaphthalene	1600.0	11 55-70-3	: Darviene	, ,,,,,,,
38-74-4	1 2-Nitroaniline	330.0		1	
131-11-3	Dimethyl Phthalate	330.0	u I		
	a Acenaphthylene	1600.0	U	nnot be separated from diphenylami	ne
208·96·8 99·09·2	, z wieroaniline	1	(1) · Car	Juor de sehararea	

COMMENT: NO HSL'S FOUND

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER BG-057

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2663

Sample Matrix: SOIL

Data Release Authorized By:

6099 Case No: QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

LOH Concentration:

Then age (dell)

Medium

(Circle One)

Date Extracted/Prepared: 6/19/86

Date Analyzed: 6/19/86

1

pH: 7.3

Percent Moisture: 18

Conc/Dil Factor:

10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 5.2 B 5.8 JB 5.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 10.0 U 5.0 U
	10.0 U 10.0 U 10.0 U 5.2 B 5.8 JB 5.0 U 10.0 U 10.0 U	

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

:, report the value.

tates compound was analyzed for but not detected. Report minimum detection limit for the sample with the U(e.g.10Ud on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as well U-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. runimum attainable detection limit for the sample.

cates an estimated value.This flag is used either when mating a concentration for tentatively identified compounds and such description attached to the data summary report. 'c a 1 1 response is assumed or when the mass spectral data cates the presence of a compound that meets the identification terna but the result is less than the specified detection limit greater than zero (e.g. 10J).

re result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identification has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confirmed by GC/MS

В

ssarily the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

OTHER

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

-management of the state of the

.ABORATORY NAME: NANCO LABS, INC. LASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low	Medium 6/19/86	(Circle One)	
Concentration: Concen		1	

GPC Cleanup: Yes_X_ No___ Separatory Funnel Extraction: Yes___ Continuous Liquid-Liquid Extraction: Yes___

		ug/l or. <u>ug/Kg</u>)
CAS Number		(Circle One)	-
-,	Alpha-GHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE	16.00 U 16.00 U 16.00 U 16.00 U 16.00 U 16.00 U 16.00 U 16.00 U 16.00 U	
72-55-9 72-20-8 33213-65-9 72-54-8 7421-93-4 1031-07-8 50-29-3 53494-70-5 72-43-5	Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Methoxychlor	32.00 U 32.00 U 32.00 U 32.00 U 32.00 U 89.00 32.00 U 160.00 U	
57-74-9 8001-35-2 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Chlordane Toxaphene Arocior-1016 Arocior-1221 Arocior-1232 Arocior-1242 Arocior-1248 Arocior-1254 Arocior-1260	320.00 U 160.00 U 160.00 U 160.00 U 160.00 U 160.00 U 320.00 U	

۷i	=	Volume	of	extract injected (ul)
۷s	=	Volume	of	water extracted (ml)
Ws	=	Weight	of	sample extracted (g)
۷t	=	Volume	of	total extract (ul)

				40000	3
		30	۷t		Vi
/s	or Ws				

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium Date Extracted/Prepared: 6/19/86	(Circle One)
Date Extracted/ 1	
Date Analyzed: 7/2/86 Conc/Dil Factor:>	1
Percent Moisture: 18	
Percent mois	

GPC Cleanup: Yes_X_ No___ Separatory Funnel Extraction: Yes___ Continuous Liquid-Liquid Extraction: Yes___

165 in the 1

CAS Number		ug/l or (g/Kg) (Circle One)	
319-84-6 319-85-7 319-86-8 58-89-9 76-44-8 309-00-2 1024-57-3 959-98-8 60-57-1 72-55-9 72-20-8 33213-65-9 72-54-8 7421-93-4	Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endrin Aldehyde Endosulfan Sulfate 4,4'-DDT Endrin Ketone Hethoxychlor Chlordane Toxaphene Aroclor-1211 Aroclor-1222 Aroclor-1248 Aroclor-1254	16.00 U 32.00 U 160.00 U 160.	
11096-82-5	Aroclor-1260	1	

Vi = Volume of extract injected (ul)
Vs = Volume of water extracted (ml)
Ws = Weight of sample extracted (g)
Vt = Volume of total extract (ul)

		. 70		40000		3
	or Ws	30	Vt		Vi	
٧s	U					

· Form [

U.S. EPA Cor	ntract Laborato	ry Program			EPA Sampl	e No.
P.O. Box 818	gement Office 3 - Alexandria, 3 FTS: 8-557-24	VA 22313			MBE 2	<u>/3</u>
7027					Date 7 15	186
• 150	I Fruironman	NORGANIC A	MALYS	SIS DATA SHEE	T	
	Environment		ts.	CASE	NO. 6099	
SOW NO.						
LAB SAMPLE II	D. NO. 73 34.	2.5		·QC RE	PORT NO. <u>269</u>	
	Ele	ments Ide	ntifi	ed and Heasur	red	
Concentration	: Low_			Medium		
Hatrix: Wate	r s	011		Sludge		
					•	
	ug/	L or mg/kg	Dara	veight (Circ	le One)	
l. Aluminum	12200	P	13.	Hagnesium.	6940	P
2. Antimony	<u> </u>	P	14.	Manganese'	345	P
3. Arsenic	16	F.	15.	Hercury	0,410 c	old.V.
4. Barium	475	Р_	16.	Nickel	lau	P
5. Beryllium	2.44	Р	17.	Potassium	3020U	A
6. Cadmium	<u> 3.0U</u>	. P.	18.	Selenium	3,04	F
7. Calcium	10400	P	19.	Silver	5,911	P
8. Chromium	a]	P	20.	Sodium	2840U	P
9. Cobalt	104	Р	21.	Thallium	3,211	F
10. Copper	20	<u>P</u>	22.	Tin	18 U	P
11. Iron	16000	P	23.	Vanadium	32	P
12. Lead	76#	F	24.	Zinc	307	P
-yanide	NR A	uto An	Perce	nt Solids <u>(Z</u>	> 82.6	
ootnotes: For	reporting resulefined on Cover	lts to EP	A. sr	anderd resul		
	ilts are encour contained on Co	akeu. Dei	3 D 1 C 1	On or even	flags must be	explicit
omments:			.,	V		
-					<u> </u>	****
				Lab Manager	5 D	- ,

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2672

Sample Matrix: SOIL
Data Release Authorized By:

6099 Case No:

QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/85

VOLATILE COMPOUNDS

Concentration:

Medium

(Circle One)

Date Extracted/Prepared:

6/20/86

Date Analyzed: 6/20/86

pH: 7.4

Conc/Dil Factor: 1

rcent	Moisture:	12
-------	-----------	----

Percent	Moisture:	12
---------	-----------	----

ber	ug/l or 'ug/Kg (Circle One)	Kumber	ug/l or ug/Kg (Circle Cne)
87-3 Chloromethane 83-9 Bromomethane -01-4 Vinyl Chloride -00-3 Chloroethane -09-2 Methylene Chloride -64-1 Acetone -15-0 Carbon Disulfide -35-4 1,1-Dichloroethane -34-3 1,1-Dichloroethane -6-0-5 Trans-1,2-Dichloroethane -6-0-5 Trans-1,2-Dichloroethane -6-3 Chloroform -7-06-2 1,2-Dichloroethane -93-3 2-Sutanone -55-6 1,1-Trichloroethane -33-5 Carbon Tetrachloride -38-05-4 /inyl Acetate -27-4 3-omedichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 12.0 B 4.3 JB 5.0 U 10.0 U 5.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 10.0 U 5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Ξ'E

mit, report the value.

raisates compound was analyzed for but not detected. Report $^{\circ}e$ minimum detection limit for the sample with the U(e.g.10U ased on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as wel ccersor: Ly the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination cad U-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. he minimum attainable detection limit for the sample.

indicates an estimated value. This flag is used either when entimating a concentration for tentatively identified numpounds and such description attached to the data summary report. arers a 1 1 response is assumed or when the mass spectrul data indicates the presence of a compound that meets the identification :::: | but the result is less than the specified detection limit but greater than zero (e.g. 10J).

the result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identificat has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confir by GC/MS

В

OTHER -

Other specific flags and footnotes may be required to property define the results. If use, they must be fully described

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER 8G-072

Laboratory Name: NANCO LABORATORY INC. Lab Sample ID No:>P2660

Sample Hatrix: WATER Data Release Authorized BY:

6099 Case No:

QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/86

Leange Clab. VOLATILE COMPOUNDS

Concentration:

, Low

(Circle One)

Date Extracted/Prepared: 6/19/86

Medium

Date Analyzed: 6/19/86

Conc/Dil Factor: 1

pH: 8.0

Percent Moisture: N/A

CAS	(Circle One)	CAS Number	ug/lor ug/Kg (Circle One)
:74.87-3 Chloromethane - 83-9 Bromomethane - 75.01-4 Vinyl Chloride - 75.00-3 Chloroethane - 75.09-2 Methylene Chloride - 75.09-2 Methylene Chloride - 75.09-3 Carbon Disulfide - 75.09-4 1,1-Dichloroethane - 75.09-5 Trans-1,2-Dichloroethane - 75.09-5 Trans-1,2-Dichloroethane - 75.09-6 Chloroform - 75.09-6 Chloroethane - 75.09-6 Carbon Tetrachloride - 75.09-6 Carbon Tetrachloride - 75.09-7 Carbon Tetrachloride	10.0 U 10.0 U 10.0 U 10.0 U 7.0 B 11.0 B 5.0 U 10.0 U 5.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 10.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

- . report the value.

of lates compound was analyzed for but not detected. Report getection limit for the sample with the U(e.g.10U tains in necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as well ration for the data user to take appropriate action. ". - - Turn attainable detection limit for the sample.

' '' an estimated value. This flag is used either when

The Tomas and

in the contraction for tentatively identified compounds and such description attached to the data summary report. The property of a compound that meets the identification esult is less than the specified detection limit ···- '-' : : : (e.g. 10J).

the second is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identification has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confirmed by GC/MS

В

recovery, the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

OTHER

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

LABORATORY NAME: NANCO LABS. INC. CASE NO: 6099

SAMPLE NO. BG-068

SEMIVOLATILE COMPOUNDS

	Low	Medium	(Circle One)	GPC Cleanup: Yes No No	
	Concentration: Low Date Extracted/Prepared: 6/1	9/86		Separatory Funnel Extraction:	
	Date Extracted/Prepared. 57.	.,		Continuous Liquid - Liquid Ex	traction: Yes
	Date Analyzed: 7/02/86	. 1			
	Conc/Dil Factor: 12				
	Percent Moisture : 12	ug/l or (ug/Kg	CAS		ug/l or ug/Kg
,S		(Circle One)	Number		(Circle One)
mber					
	a dud mine	330.0 U	83-32-9	Acenaphthene	330.0 u
2-75-9	N.Nitrosodimethylamine	330.0 U	51-28-5	2,4-Dinitrophenol	1600.0 U
- 38-95-2	Phenol	330.0 U	100-02-7	4-Nitrophenol	1600.0 U
11-44-4	bis(-2-Chloroethyl)Ether	330.0 U	132-64-9	Dibenzofuran	330.0 U
5-57-8	2-Chlorophenol	330.0 0	121-14-2	2,4-Dinitrotoluene	330.0 U
41-73-1	1,3-Dichlorobenzene	330.0 U	1 606-20-2	2,6-Dinitrotoluene	330.0 U
26-46-7	1,4-Dichlorobenzene	330.0 0	84-66-2	Diethylphthalate	330.0 U
20-51-6	Benzyl Alcohol	330.0 U	1 7005-72-3	4-Chlorophenyl-phenylether	330.0 U
5-50-1	1,2-Dichlorobenzene	330.0 U	86-73-7	Fluorene	330.0 U
5-43-7	2-Methylphenol	1	1 100-01-6	4-Nitroaniline	1600.0 U
7633-32-9	bis(2-chloroisopropyl)Ether	330.0 U	534-52-1	4,6-Dinitro-2-Methylphenol	1600.0 U
06-44-5	4-Methylphenol	330.0 U	86-30-6	N-Nitrosodiphenylamine (1)	330.0 U
21-64-7	N-Nitroso-Di-n-Propylamine	330.0 U	101-55-3	4-Bromophenyl-phenylether	330.0 U
7-72-1	Hexachloroethane	330.0 U	118-74-1	Hexachlorobenzene	330.0 U
3.75.3	Nitrobenzene	•	87-86-5	Pentachlorophenol	1600.0 U
8-59-1	Isophorone	330.0 U	1 85-01-8	Phenanthrene	330.0 U
8-75-5	2-Nitrophenol	330.0 U	120-12-7	Anthracene	330.0 U
35 - 67 - 9	2,4-Dimethylphenol	330.0 U	84-74-2	Di-n-Butylphthalate	330.0 U
5 - 25 - 0	Benzoic Acid	1600.0 U	206-44-0	Fluoranthene	330.0 0
11-91-1	bis(-2-Chloroethoxy)Methane	330.0 U	1 129-00-0	Pyrene	330.0 ∪
20-83-2	2,4-Dichlorophenol	330.0 U	85-68-7	Butylbenzylphthalate	330.0 U
23-22-1	1,2,4-Trichlorobenzene	330.0 U	,	3,3:-Dichlorobenzidine	660.0 U
11-20-3	Naphthalene	330.0 U	91-94-1	Benzo(a)Anthracene	330.0 U
66-47-3	4-Chloroaniline	330.0 U	56-55-3	bis(2-Ethylhexyl)Phthalate	330.0 U
.7-68-3	Hexachlorobutadiene	330.0 U	117-81-7	Chrysene	330.0 U
19-50-7	4-Chloro-3-Methylphenol	330.0 U	218-01-9	Di-n-Octyl Phthalate	330.0 0
71-57-6	2-Methylnaphthalene	330.0 U	117-84-0	Benzo(b)Fluoranthene	330.0 U
77-47-4	Hexachlorocyclopentadiene	330.0 U	205-99-2	Benzo(k)Fluoranthene	330.0 U
88-06-2	2,4,6-Trichlorophenol	330.0 U			330.0 U
95 55-4	2,4,5-Trichlorophenol	1600.0 U	50-32-8	Benzo(a)Pyrene	330.0 U
71 58 7	! 2-Chloronaphthalene	330.0 U	193-39-5	Indeno(1,2,3-cd)Pyrene	330.0 U
28 74 4	2-Nitroaniline	1600.0 U	53-70-3	Dibenz(a,h)Anthracene	330.0 U
.3: 3	Dimethyl Phthalate	330.0 U	191-24-2	Benzo(g,h,i)Perylene	
753 75 3	: Acenaphthylene	330.0 U	.1		
€0.55	3-Nitroaniline	1600.0 U			.
	1	į	(1) - Cannot	be separated from diphenylamine	

COMMENT: NO HELTE FOUND

CASE NO: EPA 6099

PESTICIDE/PCBs

Consentration: (Low Medium (Circle One) Date Extracted/Prepared: 6/19/86 Date Analyzed: 7/1/86 Conc,Dil Factor: ----> percent Moisture: 12

GPC Cleanup: Yes_X_ No___ Separatory Funnel Extraction: Yes____ Continuous Liquid Liquid Extraction: Yes____

CAS Number	ug/l or ug/Kg) (Circle One)
319-84-6 Alpha-BHC 319-85-7 Beta-BHC 319-86-8 Delta-BHC (Lindane) 76-44-8 Heptachlor 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 959-98-8 Endosulfan I 60-57-1 Dieldrin 72-55-9 4,4'-DDE 72-20-8 Endrin 33213-65-9 Endosulfan II 72-54-8 4,4'-DDD 7421-93-4 Endrin Aldehyde 1031-07-8 Endosulfan Sulfate 50-29-3 4,4'-DDT 53494-70-5 Endrin Ketone 72-43-5 Methoxychlor 72-43-5 Methoxychlor 72-43-6 Aroclor-1016 11104-28-2 Aroclor-1221 11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242 12672-29-6 Aroclor-1254	16.00 U 32.00 U 160.00 U

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

		40000		3
30	۷t		Vi	
OF WS				

LABORATORY NAME: NANFO LABS, INC. CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Med Date Extracted/Prepared: 6/1 Date Analyzed: 7/2/86 Conc/pil Factor:> Percent Moisture: 12	ium (Circle One) 9/86 1	GPC Cleanup: Yes_ Separatory Funnel Continuous Liquid	
[e-	CAS Number 319-84-6	Alpha-BHC	ug/l or ug/kg (Circle One)
	319-85-7 319-86-8 58-89-9 76-44-8 309-00-2	Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin	16.00 U 16.00 U 16.00 U 16.00 U
	1024-57-3 959-98-8 60-57-1	Heptachlor Epoxide Endosulfan I Dieldrin	16.00 U 16.00

76-44-8	Heptachlor	10.000	i
1 309-00-2	l Aldrin	16.00 U	1
1024-57-3	Heptachlor Epoxide	16.00 U	١
959-98-8	Endosulfan I	16.00 U	
60-57-1	Dieldrin	9.60 J	1
72-55-9	4,4'-DDE	32.00 U	
72-20-8	Endrin] 32.00 U	
33213-65-9	Endosulfan II	32.00 U	l
72-54-8	1 4,4'-DDD	32.00 U	
1 7421-93-4	Endrin Aldehyde	32.00 U	
1 1031-07-8	Endosulfan Sulfate	32.00 U	1
1 50-29-3	4.4'-DDT	32.00 U	
53494-70-5	Endrin Ketone	32.00 U	
1 72-43-5	Methoxychior	160.00 U	
1 57-74-9	Chlordane	24.70 J	1
1 8001-35-2	Toxaphene	320.00 U	-
1 12674-11-2	Aroclor-1016	160.00 U	1
1 11104-28-2	Aroclor-1221	160.00 U	-
1 11141-16-5	Aroclor-1232	160.00 U	
53469-21-9	Aroctor-1242	160.00 U	
12672-29-6	Aroclor-1248	160.00 U	1
11097-69-1	Aroclor-1254	320.00 U	1
11096-82-5	Aroclor-1260	288.00 JB	1
1 11010 00 0			

'Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

	3 በ		40000		3
 or Ws	JU	۷t		۷í	

· Form I

ERA Cons	ract Laborator	v Progra	m		100	
Cample Hanage	ment Office				EPA Sample	
00. Box 818	- Alexandria, '	VA 2231	3		MBE 21	4 ¦
103/557-2490	FTS: 8-557-249	90				
	11	ORGANIC	ANALYS	SIS DATA SHEE	Date 7 17	86
JAYF JTC	Environment	al Cnsl	ts.			
SOW NO.	784			CVZE	но. 6099	
	. NO. 73. 342	<u></u>				
MB SAITED ID	15.512	10		·QC RE	PORT NO. <u>269</u>	
	Flor	mante TJ.				
Concentration:			ntiri	ed and Heasu		
Hatrix: Water		11 /	•	Hediu		
Hatrix: water	30			Sludge	Other _	
	4.					
43			-	weight (Circ		
1. Aluminum	7030	P		Hagnesium.		Р
2. Antimony	<u> 2911</u>	<u> </u>	14.	Manganese'		P
3. Arsenic	3.82	, <u>F</u>	15.	Mercury	0,300 co.	ld.v.
4. Barium	-156	<u> </u>	16.	N1ckel	114	P
5. Beryllium	<u> 2,3u</u>	p	17.	Potassium	285011	A
6. <u>Cadmium</u>	294	Р	18.	Selenium	2,54	F
7. Calcium	13700	<u>5</u>	19.	Silver	5,64	P
8. Chromium		Р	20.	Sodium	26804	P
9. Cobalt.	9.74	P	21.	Thallium	3,011	·
10. Copper	16	Р	22.	Tin	1711	P
II. Iron	11800	P	23.	Vanadium	779	P
12. Lead	25 ₩	F	24.	Zinc	75	
Syanide	NR AL	ito An	Perce	nc Solids (Z	3) 87.7	<u>P</u>
'ootnotes: For r	enorring resul					
		raye - /	1001 -	^n=! *!=~~ ~	lt qualifiers ar r footnotes expl	
	cucouta	ktu. <i>D</i> e.	LIUIEI	OD OF EUCh	r rootnotes expl flags must be ex	aining plicit
	ontained on Cov	er Page,	howe.	ver.		•
oments:			wat			
					•	
						-
•	-			Lab Hanager	£9	
				0-1		

ORGANICS ANALYSIS DATA SHEET (PAGE 1)

SAMPLE NUMBER BG-069

_aboratory Name:NANCO LABORATORY INC. Lab Sample ID No:>P2665

Data Release Authorized By:

6099 Ca No: QC Report No: 055 Contract No:68-01-7102 Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

Concentration:

(يوها

(Circle One)

Date Extracted/Prepared: 6/19/86 Datc Analyzed: 6/19/86

Medium

Conc/Dil Factor:

pH: 7.7

Percent Moisture: 12

C45	ug/l or .ug/Kg)	CAS	ug/l or ug/Ke
	(Circle One)	Number	(Circle One)
72.87-3 Chloromethane 72.83-9 Bromomethane 75.01-4 Vinyl Chloride 75.00-3 Chloroethane 75.09-2 Methylene Chloride 67.64-1 Acetone 75.15-0 Carbon Disulfide 75.35-4 1,1-Dichloroethane 75.34-3 1,1-Dichloroethane 75.66-3 Chloroform 77.96-2 1,2-Dichloroethane 73.3 2-Butanone 71.55-6 1,1,1-Trichloroethane 76.23-5 Carbon Tetrachloride 78.23-5 Carbon Tetrachloride 78.25-4 Vinyl Acetate 78.27-4 Bromodichloromethane	1.7 J 10.0 U 10.0 U 10.0 U 5.2 JB 6.6 JB 0.8 J 5.0 U 5.0 U 5.0 U 5.0 U 10.0 U 0.8 J 5.0 U 10.0 U 10.0 U 5.0 U	79-34-5	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 6.7 J 6.0 U 6.0

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

imit, report the value.

rdicates compound was analyzed for but not detected. Report he minimum detection limit for the sample with the U(e.g.10U eased on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as well ead U-Compound was analyzed for but not detected. The number is and warns the data user to take appropriate action. he minimum attainable detection limit for the sample.

rgicates an estimated value. This flag is used either when stimating a concentration for tentatively identified compounds and such description attached to the data summary report. here a 1 1 response is assumed or when the mass spectral data rdicates the presence of a compound that meets the identification riteria but the result is less than the specified detection limit ut greater than zero (e.g. 10J).

f the result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identification has been confirmed by GC/MS Single component pesticides greater than or equal to 10 ng/ul in the final extract should be confirms by GC/MS

necessarily the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

OTHER

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

CASE NO: 6099

SAMPLE NO. 83-869

SEMIVOLATILE COMPOUNDS

	LOW/	Medium	(Circle One)	GPC Cleanup: Yes X No	_
				Separatory Funnel Extraction:	Yes
•	Date Extracted/Prepared: 6/	17,00		Continuous Liquid - Liquid Ext	traction: Yes
•	Date Analyzed: 7/02/86	. 1			
	Conc/Dil Factor:	·			٠.
	Percent Moisture : 12	ug/l or ug/Kg	CAS	•	ug/l or \ug/r
CAS		('Circle One)	Number		(Circle One :
Number		(Citota one)			
	N-Nitrosodimethylamine	330.0 U	83-32-9	Acenaphthene	330.0 U
62-75-9	•	330.0 U	51-28-5	2,4-Dinitrophenol	1600.0 U
100-95-2	Phenol bis(-2-Chloroethyl)Ether	330.0 U	100-02-7	4-Nitrophenol	ر 1600.0 ن
111-44-4	2-Chlorophenol	330.0 U	132-64-9	Dibenzofuran	330.0 U
95-57-8	1 1,3-Dichlorobenzene	330.0 U	121-14-2	2,4-Dinitrotoluene	330.0 U
541-73-1	1,4-Dichlorobenzene	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0 U
106-46-7	1,4-Dichtor Oberizente	330.0 U	84-66-2	Diethylphthalate	330.0 ປ
100-51-6	1,2-Dichlorobenzene	330.0 U	7005-72-3	4-Chlorophenyl-phenylether	330.0 U
4 93-50-1		330.0 U	86-73-7	Fluorene	330.0 U
55·48·7	2-Methy(phenol bis(2-chloroisopropyl)Ether	330.0 U	100-01-6	4-Nitroaniline	1600.0 U
37638-32-9		330.0 U	534-52-1	4,6-Dinitro-2-Methylphenol	1600.0 U
:05-44-5	4-Methylphenol N-Nitroso-Di-n-Propylamine	330.0 U	86-30-6	N-Nitrosodiphenylamine (1)	330.0 U
621-64-7	N-Nitroso-Di-H-F1-5Py Cameria	330.0 U	101-55-3	4-Bromophenyl-phenylether	3 30. 0 U
67-72-1	,	330.0 U	118-74-1	Hexachlorobenzene	330.0 U
10-40-3	Nitrobenzene	330.0 U	87-86-5	Pentachlorophenol	1600.0 U
73-59-1	Isophorone	330.0 U	85-01-8	Phenanthrene	5800.0
29-75-5	2-Nitrophenol	330.0 U	120-12-7	Anthracene	330.0 U
105-67-9	2,4-Dimethylphenol	1 1600.0 U	84-74-2	Di-n-Butylphthalate	330.0 U
55-85-0	Benzoic Acid bis(-2-Chloroethoxy)Methane	1	206-44-0	Fluoranthene	8200.0
11-91-1		330.0 U	1 129-00-0	Pyrene .	[4700.0
120-83-2	2,4-Dichlorophenol	330.0 U	85-68-7	Butylbenzylphthalate] 330.0 U
123-82-1	1,2,4-Trichlorobenzene	330.0 U	91-94-1	3,3'-Dichlorobenzidine	660.0 U
1 91-20-3	Naphthalene	330.0 0	1 56-55-3	Benzo(a)Anthracene	2800.0
3-72-601	4-Chloroaniline	330.0 U	117-81-7	bis(2-Ethylhexyl)Phthalate	4600.0
1 27-62-3	Hexachlorobutadiene	330.0 U	1 218-01-9	Chrysene	3000.0
1 07 10-7	4-Chloro-3-Methylphenol	330.0 U	117-84-0	Di-n-Octyl Phthalate	330.0 U
7-157-6	2-Methylnaphthalene		1 205-99-2	Benzo(b)Fluoranthene	1500.0
-7	Hexachlorocyclopentadiene	330.0 U	207-08-9	Benzo(k)Fluoranthene	1500.0
[]·':-2	2,4,6-Trichlorophenol	330.0 U	50-32-8	Benzo(a)Pyrene	1900.0
1 95 - 4	2,4,5-Trichlorophenol	1600.0 U	1	Indeno(1,2,3-cd)Pyrene	1200.0
91.59.7	2-Chloronaphthalene	330.0 U	193-39-5	Dibenz(a,h)Anthracene	, 330.0 U
1 22 74.4	2-Nitroaniline	1600.0 U	53-70-3	Benzo(g,h,i)Perylene	1350.0
121.11.3	Dimethyl Phthalate	330.0 U	191-24-2	Benzo(g,n, ryrer) rens	i
211-75-3	Acenaphthylene	330.0 U	1		
21.15.3	3-Nitroaniline	1600.0 U		be separated from diphenylamine	

THUESTER: NO HELTE FOUND

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium Date Extracted/Prepared: 6/19/86 Date Analyzed: 7/1/86 Conc/Dil Factor:> Percent Moisture: 12	(Circle One)		X No Extraction: Yes -Liquid Extraction: Yes
	CAS .		ug/l or ug/Kg)
	Number		(Circle One)
	319-84-6	Alpha-RHC	16.00 U ·
	319-85-7	Beta-BHC	16.00 U
	319-86-8	Delta-BHC	16.00 U
	58-89-9	Gamma-BHC (Lindane)	16.00 U
	76-44-8	Heptachlor	16.00 U
	309-00-2	Aldrin	16.00 U
:	1024-57-3	Heptachlor Epoxide	16.00 U
	959-98-8	Endosulfan I	16.00 U
•	60-57-1	Dieldrin	16.00 U .
	72-55-9	4,4'-DDE	32.00 U
	72-20-8	Endrin	32.00 U
	33213-65-9	Endosulfan II	32.00 U
	72-54-8	4,41-DDD	[32.00 U
	7421-93-4	Endrin Aldehyde	32.00 U
	1031-07-8	Endosulfan Sulfate	32.00 U
•	50-29-3	4,41-DDT	189.00
	53494-70-5	Endrin Ketone	32.00 U
	72-43-5	Methoxychlor	160.00 U
	57-74-9	Chlordane	142.00 J
	8001-35-2	Toxaphene	320.00 U
	12674-11-2	Aroclor-1016	160.00 U
	11104-28-2	Aroctor-1221	160.00 U
	11141-16-5	Aroclor-1232	160.00 U
	53469-21-9	Aroclor-1242	160.00 U
	12672-29-6	Aroclor-1248	[160.00 U
	11097-69-1	Aroctor-1254	320.00 U
	11096-82-5	Aroclor-1260	320.00

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

		30		40000		3
Ve	or Ws	20	Vt		Vi	

LABORATORY NAME: NANCO LABS, INC. CASE NJ: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium (Circle Cne)
Date Extracted/Prepared: 6/19/86
Late Analyzed: 7/2/86
Conc/Dil Factor: 1

12

GPC Cleanup: Yes X No Separatory Funnel Extraction: Yes Continuous Liquid-Liquid Extraction: Yes

resubative
Wichell

Percent Moisture:

CAS		ug/l or ug/kg
Number		(Circle One)
319-84-6	Alpha-BHC	16.00 U
319-85-7	Beta-BHC .	16.00 U
319-86-8	Delta-BHC	16.00 U
58-89-9	Gaṃma-BHC (Lindane)	16.00 U
76-44-8	Heptachlor	16.00 U
309-00-2	Aldrin	16.00 U
1024-57-3	Heptachlor Epoxide	16.00 U
959-98-8	Endosulfan I	16.00 U
60-57-1	Dieldrin	16.00 U
72-55-9	4,41-DDE	32.00 U
72-20-8	Endrin	32.00 U
33213-65-9	Endosulfan II	32.00 U
72-54-8	4,4'-DDD	32.00 U
7421-93-4	Endrin Aldehyde	32.00 U
1031-07-8	Endosulfan Sulfate	32.00 U
50-29-3	4,41-DDT	180.00
53494-70-5	Endrin Ketone	32.00 U
72-43-5	Methoxychlor	160.00 U
57-74-9	Chlordane	142.00 J
8001-35-2	Toxaphene	320.00 U
12674-11-2	Aroclor-1016	160.00 U
11104-28-2	Aroclor-1221	160.00 U
11141-16-5	Aroctor-1232	160.00 U
53469-21-9	Aroclor-1242	160.00 U
12672-29-6	Arocior-1248	160.00 U
11097-69-1	Aroclor-1254	320.00 U
11096-82-5	Aroclor-1260	320.00
•		

Vi = Volume of extract injected (ui)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

30 40000 3
Or Ws _____ Vt ____ Vi _____

Form	7	F
1010	L	

	•
·	6
•	· Form I E
U.S. EPA Contract Laboratory Progr	
Sample Management Office	EPA Sample No.
p.O. Box 818 - Alexandria, VA 223	,
703/557-2490 FTS: 8-557-2490	MBE 215
	<u>-</u>
INORGANT	C ANALYSIS DATA SHEET
LAB FAME JTC Environmental Cn.	elte:
704	CASE NO. <u>6099</u>
20k 110:	
LAB SAMPLE ID. NO. 73 3427	.07 .000000
	-QC REPORT NO. <u>269</u>
Elements I	dentified and Measured
Concentration: Low	Hedium
Hatrix: Water Soil ~	
	SludgeOther
ug/L or mg/	kg dry weight (Circle One)
2 Assimons OC	_ 10.100 p
	14. Manganese 296 P
	15. Hercury 0,120 Cold.V.
4. Barium (62)	16. Nickel 1011
5. Beryllium D.BU p	
6. Cadmium 2.94 P	
7 (-1-1)-	Serentum 2,6U
TAIDEUU F	
8. Chromium P	20. Sodium 2760U P
9. Cobalt 10U P	21 The 114 2 144
10. Conner 2n	
11. Iron 142An P	22. Tin 84 P
	23. Vanadium (23) P
2. Lead 95 # P	24. Zinc 176
yanideNR Auto An	P
ootnotes: For reporting	Percent Solids (I) 85.2
TOPOLLANK LEGUITA FO	EPA, standard result qualifiers are used
as derined on Cover Page.	Additional flags or footnotes explaining
and contained on Cover Page	efinition of such flags must be explicit
- " " " " " " " " " " " " " " " " " " "	i, however.
iments:	•
·	
	•
	lah Mana
	Lab Manager

SAMPLE NUMBER BG-070

Laboratory Name: NANCO LABORATORY INC. Lab Sample ID No:>P2666

Sample Matrix: SUIL
Data Release Authorized By:

Case No: 6099 GC Report No: C55 Contract No:68-01-7102 Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

Concentration:

. Lom Medium (Circle One)

Date Extracted/Prepared: 6/19/86

Date Analyzed: 6/19/86

pH: 7.6

Conc/Dil Factor:

Percent Moisture: 7

CAS Number	ug/l or ug/Kg (Circle one)	CAS Number	ug/l or ug/K; (Circle One)
74-87-3 Chloromethane 74-83-9 Bromomethane 75-01-4 Vinyl Chloride 75-00-3 Chloroethane 75-07-2 Methylene Chloride 67-64-1 Acetone 75-15-0 Carbon Disulfide 75-35-4 1,1-Dichloroethane 75-34-3 1,1-Dichloroethane 75-34-3 Chloroform 107-06-2 1,2-Dichloroethane 75-36-3 Chloroform 107-06-2 1,1-Trichloroethane 75-35-5 1,1,1-Trichloroethane 75-35-5 Carbon Tetrachloride 105-05-4 Vinyl Acetate 75-27-4 Bromodichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 11.0 B 10.0 U 5.0 U 10.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 10.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

HEAVER THE ANNUAL PROPERTY.

If the result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identificant, report the value.

indicates compound was analyzed for but not detected. Report the cinicum detection limit for the sample with the U(e.g.10U this is necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as wel Tables sample. It indicates possible/probable blank contamination road officerund was analyzed for but not detected. The number is and warns the data user to take appropriate action. tra minute attainable detection limit for the sample.

indicates an estimated value. This flag is used either when thating a concentration for tentatively identified compounds and such description attached to the data summary report. *** response is assumed or when the mass spectral data

: ite the presence of a compound that meets the identification in the result is less than the specified detection limit 'w' 37, 'or than zero (e.g. 10J).

В

by GC/MS

OTHER Other specific flags and footnotes may be required to properly

has been confirmed by GC/MS Single component pesticides greater

than or equal to 10 ng/ul in the final extract should be confir

define the results. If used, they must be fully described

FORM I

CASE NO: 6099

SAMPLE NO. BG-070

SEMIVOLATILE COMPOUNDS

	Concentration: (Low) Date Extracted/Prepared: 6/1	Medium 9/86	(Circle One)	GPC Cleanup: Yes X No Separatory Funnel Extraction: Continuous Liquid - Liquid Ext	
	Date Analyzed: 7/03/86	. 1			
	Conc/Dil Factor:>	1			- .
	Percent Moisture: 7	11 - 1/2	CAS		na\r or ma\r
CAS		ug/l or ug/Kg	Number		(Circle One)
Number	·	('Circle One)			
		330.0 U	1 83-32-9	Acenaphthene	330.0 U
62-75-9	N-Nitrosodimethylamine	330.0 U	1 51-28-5	2,4-Dinitrophenol	1600.0 U
108-95-2	Phenol	330.0 U	100-02-7	4-Nitrophenol	1600.0 U
111-44-4	bis(-2-Chloroethyl)Ether	330.0 U	132-64-9	Dibenzofuran	330.0 U
95-57-8	2-Chlorophenol	330.0 U (1 121-14-2	2,4-Dinitrotoluene	330.0 U
541-73-1	1,3-Dichlorobenzene	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0 U
105-46-7	1,4-Dichlorobenzene		1 84-66-2	Diethylphthalate	330.0 U
100-51-6	Benzyl Alcohol	330.0 0	1 7005-72-3	4-Chlorophenyl-phenylether	330.0 U
95-50-1	1,2-Dichlorobenzene	330.0 U [1 86-73-7	Fluorene	330.0 U
95-48-7	2-Methylphenol	330.0 U	1 100-01-6	4-Nitroaniline	1600.0 U
37638-32-9	bis(2-chloroisopropyl)Ether	330.0 U	1 534-52-1	4.6-Dinitro-2-Methylphenol	1600.0 U
106-44-5	4-Methylphenol	330.0 U	1 86-30-6	N-Nitrosodiphenylamine (1)	330.0 U
621-64-7	N-Nitroso-Di-n-Propylamine	330.0 U	1 101-55-3	4-Bromophenyl-phenylether	330.0 U
67.72-1	Hexachloroethane	330.0 U	1 118-74-1	Hexachlorobenzene	330.D U
73-95-3	Nitrobenzene	330.0 U	1 87-86-5	Pentachlorophenol	1600.0 U
78-59-1	Isophorone	330.0 U	85-01-8	Phenanthrene	1200.0
E3 · 75 · 5	2-Nitrophenol	330.0 U		Anthracene	330.0 U
105-67-9	2,4-Dimethylphenol	330.0 0	120-12-7	1	330.0 U
65-85-0	Benzoic Acid	1600.0 U	84-74-2	Di-n-Butylphthalate	2300.0
. :11-91-1	bis(-2-Chloroethoxy)Methane	330.0 U	206-44-0	Fluoranthene	1300.0
120-83-2	2,4-Dichlorophenol	330.0 U	129-00-0	Pyrene	330.0 U
123-82-1	1,2,4-Trichlorobenzene	330.0 U	85-68-7	Butylbenzylphthalate	660.0 U
71-20-3	Naphthalene	330.0 U	91-94-1	3,3'-Dichlorobenzidine	ı
115-47-8	4-Chloroaniline	330.0 U	56-55-3	Benzo(a)Anthracene	330.0 U
17.68.3	Hexachlorobutadiene	330.0 U	117-81-7	bis(2-Ethylhexyl)Phthalate	330.0 U
17.50-7	4-Chloro-3-Methylphenol	330.0 U	218-01-9	Chrysene	330.0 U
. 51.57-6	2-Methylnaphthalene	330.0 U	117-84-0	Di-n-Octyl Phthalate	330.0 U
77-47-4	Hexachlorocyclopentadiene	330.0 U	205-99-2	Benzo(b)Fluoranthene	520.0
13-06-2	2,4,6-Trichlorophenol	330.0 U	207-08-9	Benzo(k)Fluoranthene	520.0
.5.05.2 -5.95-4	2,4,5-Trichlorophenol	1600.0 U	50-32-8	Benzo(a)Pyrene	590.0
-1-13-4	2.Chloronaphthalene	330.0 U	193-39-5	Indeno(1,2,3-cd)Pyrene] 330.0 U
1 1 517 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-Nitroaniline	1600.0 U	53-70-3	Dibenz(a,h)Anthracene	330.0 U
· · · · · · · · · · · · · · · · · · ·	·	330.0 U	191-24-2	Benzo(g,h,i)Perylene	0.085
3 3 75 € 2 3 75 €	Dimethyl Phthalate	330.0 U	1	·	
12	Acenaphthylene				
2	3.Nitroaniline	1600.0 U		be separated from diphenylamine	

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium Date Extracted/Prepared: 6/19/86 Date Analyzed: 7/1/86 Conc/Dil Factor:	(Circle One) . 1	GPC Cleanup: Yes_X_ No Separatory Funnel Extraction: Yes Continuous Liquid-Liquid Extraction: Yes_
Percent Moisture: 7		

CAS Number		ug/l or ug/Kg ('Circle One')
Mamper		
319-84-6	Alpha-BHC	16.00 U
319-85-7	Beta-BHC	16.00 U
319-86-8	Delta-BHC	16.00 U
58-89-9	Gamma-BHC (Lindane)	16.00 U
76-44-8	Heptachlor	16.00 U
309-00-2	Aldrin	16.00 U
1024-57-3	Heptachlor Epoxide	16.00 U
959-98-8	Endosulfan I	16.00 U
60-57-1	Dieldrin	11.80 J
72-55-9	4,41-DDE	32.00 U
72-20-8	Endrin	32.00 U.
33213-65-9	Endosulfan II	32.00 U
72-54-8	4,41-DDD	' 32.00 U
7421-93-4	Endrin Aldehyde	32.00 U
1 1031-07-8	Endosulfan Sulfate	32.00 U
1 50-29-3	4,4'-DDT	32.00 U
53494-70-5	Endrin Ketone	32.00 U
72-43-5	Methoxychlor	160.00 U
1 57-74-9	Chlordane	56.80 J
1 8001-35-2	Toxaphene	320.00 U
1 12674-11-2	Aroclor-1016	160.00 U
11104-28-2	Aroclor-1221	160.00 U
1 11141-16-5	Aroclor-1232	160.00 U
53469-21-9	Aroclor-1242	160.00 U
1 12672-29-6	Aroclor-1248	160.00 U
1 11097-69-1	Aroclor-1254	320.00 U
1 11096-82-5	Arocior-1260	351.00 B
1	•	

	30		40000		د
on tin	30	Vt		Vi	
or Ws					

PESTICIDE/PCBs

CASE NO: EPA 6099

Concentration	:

Medium (Circle One)

Date Extracted/Prepared: 6/19/86

Date Analyzed: 7/2/86

Conc/Dil Factor: ----->

Percent Moisture: 7

GPC Cleanup	: YesX No	
Separatory	Funnel Extraction: Yes	
Continuous	Liquid-Liquid Extraction	on: Yes

ug/l or dug/Kg

(Circle One)

56.80 J

320.00 U

160.00 U

160.00 U

160.00 U 160.00 U

160.00 U 320.00 U

351.00 B

regular 14.		319-84-6	Alpha-BHC	1	16.00 U
16,011 11	_	319-85-7	Beta-BHC	- 1	16.00 U
į į	\ f.	319-86-8	Delta-BHC	1	16.00 U
WKILCH	high	58-89-9	Gamma-BHC (Lindane)	1	16.00 U
, ,		76-44-8	Heptachlor	1	16.00 U
		309-00-2	Aldrin	1	16.00 U
		1024-57-3	Heptachlor Epoxide		16.00 U
		959-98-8	Endosulfan I	1	16.00 U
		60-57-1	Dieldrin		11.80 J
		72-55-9	4,41-DDE	Ì	32.00 U
		72-20-8	Endrin	1	32.00 U
		33213-65-9	Endosulfan II	1	32.00 U
		72-54-8	4,41-DDD	1	32.00 U
		7421-93-4	Endrin Aldehyde	I	32.00 U
		1031-07-8	Endosulfan Sulfate	1	32.00 U
•		50-29-3	4,4'-DDT	1	32.00 U
		53494 <i>-</i> 70-5	Endrin Ketone		32.00 U
		72-43-5	Methoxychlor		160.00 U

57-74-9 8001-35-2

CvS

Number

 $\hat{V}_i = Volume of extract injected (ul)$

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (g)

Vt = Volume of total extract (ul)

		30		40000		3
Vs	or Ws		Vt		Vi	

Chlordane

Toxaphene

| 12674-11-2 | Aroclor-1016

| 11104-28-2 | Aroclor-1221

| 11141-16-5 | Aroclor-1232

| 53469-21-9 | Aroclor-1242 | 12672-29-6 | Aroclor-1248

| 11097-69-1 | Aroclor-1254 | 11096-82-5 | Aroclor-1260 Form I F

U.S. EPA Contract Laboratory Program Sample Management Office P.O. Box 818 - Alexandria, VA 22313	EPA Sample No.
P.O. 80X 516 ALEXANDER 101/557-2490	Date 7 17 96
INORGANIC	ANALYSIS DATA CHEFT
LAB PAME JTC Environmental Cost	ts. case No. <u>6099</u>
/ H A	
LAB SAMPLE ID. NO. 73 3428	OC REPORT NO. 269
Elements Ide	ntified and Measured
Concentration: Low	Hedium
Hatrix: Water Soil	Sludge Other
:0 AC	g dry weight (Circle One)
1. Aluminum 3080 P	13. nagnesium.
2. Antimony 2911 P	14. Manganese
3. Arsenic (4,6) F	15. Mercury 0.00 Cold.V.
4. Barium (38) p	~ ~ ~ · · · · · · · · · · · · · · · · ·
5. Beryllium 2.3U p	17. POERSEIUM 2070 W
6. Cadmium 2.94 P	18. Selenium aisu
7. <u>Calcium</u> 2000 P	19. Silver 7, 10 p
8. Chromium P	20. 3001111
9. Cobalt 9.8U P	21. Thallium 5/14 F
10. Copper D P	22. <u>Tin</u> 7U P
11. 1ron 190	23. Vanadium SU P
Cyanide WR Auto An	Percent Solids (I) 86.6
as defined on Cover Page.	EPA, standard result qualifiers are used Additional flags or footnotes explaining efinition of such flags must be explicite, however.
omments:	
	-
·	Lab Manager 58

Laboratory Name: NANCO LABORATORY INC.

Lab Sample ID No:>P2667

Data Release Authorized By: Jef. C. - 44. C. C.

6099 Case No: QC Report No: 055

Contract No:68-01-7102

Date Sample Received: 6/19/86

VOLATILE COMPOUNDS

Concentration:

Medium TOH->

(Circle One)

Date Extracted/Prepared: 6/20/86

Date Analyzed: 6/20/86

Conc/Dil Factor:

pH: 7.6

Percent Moisture: 7

S	ug/l or ug/Kg)	CAS	ug/l or ug/Kg
	(Circle One)	Number	(Circle One)
-87-3 Chloromethane -83-9 Bromomethane -01-4 Vinyl Chloride -00-3 Chloroethane -09-2 Methylene Chloride -15-0 Carbon Disulfide -15-0 Carbon Disulfide -35-4 1,1-Dichloroethane -34-3 1,1-Dichloroethane -6-60-5 Trans-1,2-Dichloroethene -66-3 Chloroform -7-06-211,2-Dichloroethane -93-3 2-Butanone -55-6 1,1,1-Trichloroethane -23-5 Carbon Tetrachloride -3-05-4 Vinyl Acetate -27-4 Bromodichloromethane	10.0 U 10.0 U 10.0 U 10.0 U 4.9 JB 5.7 JB 5.0 U 5.0 U	79-34-5	5.0 U 10.0 U 10.0 U 5.0 U

Data Reporting Qualifiers

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

t, report the value.

cates compound was analyzed for but not detected. Report U.C.-pound was analyzed for but not detected. The number is and warns the data user to take appropriate action. mirror attainable detection limit for the sample.

Ming a concentration for tentatively identified compounds and such description attached to the data summary report. : a · · · response is assumed or when the mass spectral data

airs the presence of a compound that meets the identification ma ∞: the result is less than the specified detection limit preater than zero (e.g. 10J).

he result is a value greater than or equal to the detection. This flag applies to pesticide parameters where the identificat than or equal to 10 ng/ul in the final extract should be confin by GC/MS

d on necessary concentration dilution actions. (This is not This flag is used when the analyte is found in the blank as wel ssar ly the instrument detection limit.) The footnote should as a sample. It indicates possible/probable blank contamination

Other specific flags and footnotes may be required to properly define the results. If used, they must be fully described

CASE NO: 6099

SAMPLE NO. BG-071

SEMIVOLATILE COMPOUNDS

	Concentration: Low	Medium	(Circle One)	GPC Cleanup: Yesk No	
	Date Extracted/Prepared: 6/	19/86		Separatory Funnel Extraction	: Yes
	Date Analyzed: 7/03/86			Continuous Liquid - Liquid E	xtraction: Y
	Conc/Dil Factor:	> 1			
	Percent Moisture : 7	· -			
CAS		ug/l or <u>ug/K</u> g	CAS		ug/l or ug
Number		(Circle One)	Number		(Circle On
62 - 75 - 9	N-Witrosodimethylamine	330.0 U	83-32-9	Acenaphthene	330.0
108-95-2	Phenol	330.0 U	51-28-5	2,4-Dinitrophenol	1600.0
111-44-4	bis(-2-Chloroethyl)Ether	330.0 U	100-02-7	4-Nitrophenol	1600.0
95-57-8	2-Chlorophenol	330.0 U	132-64-9	Dibenzofuran	330.0
541-73-1	1,3-Dichlorobenzene	330.0 U	121-14-2	2,4-Dinitrotoluene	330.0
106-46-7	1,4-Dichlorobenzene	330.0 U	606-20-2	2,6-Dinitrotoluene	330.0
100-51-6	Benzyl Alcohol	330.0 U	84-66-2	Diethylphthalate	330.0
95-50-1	1,2-Dichlorobenzene	330.0 U	7005-72-3	4-Chlorophenyl-phenylether	330.0
95 - 48 - 7	2-Methylphenol	330.0 U	. 86-73-7	Fluorene	330.0
39638-32-9	bis(2-chloroisopropyl)Ether	330.0 U	100-01-6	4-Nitroaniline	1600.0
106-44-5	4-Methylphenol	330.0 U	534-52-1	4,6-Dinitro-2-Methylphenol	1600.0
621.64.7	N-Nitroso-Di-n-Propylamine	330.0 U	86-30-6	N-Nitrosodiphenylamine (1)	330.0
57-72-1	Hexachloroethane	330.0 U	101-55-3	4-Bromophenyl-phenylether	330.0
98-95-3	Nitrobenzene	330.0 U	118-74-1	Hexachlorobenzene	330.0
78·59·1	Isophorone	330.0 U	87-86-5	Pentachlorophenol	1600.0
88·75·5	2-Nitrophenol	330.0 U	85-01-8	Phenanthrene	330.0
105-67-9	2,4-Dimethylphenol	330.0 U	120-12-7	Anthracene	330.0
45 · 85 · 0	Benzoic Acid	1600.0 U	84-74-2	Di-n-Butylphthalate	330.0
111.91-1	bis(-2-Chloroethoxy)Methane	330.0 U I	206-44-0	Fluoranthene	1400.0
121-83-2	2.4-Dichlorophenol	330.0 U	129-00-0	Pyrene	330.0
121-22-1	1.2.4-Trichlorobenzene	330.0 U	85-68-7	Butylbenzylphthalate	330.0
71.20.3	Naphthalene	330.0 U	91-94-1	3,3'-Dichlorobenzidine	660.0
115-47-8	1 4-Chloroaniline	330.0 U	1 56-55-3	Benzo(a)Anthracene	330.0
37-68-3	Hexachlorobutadiene	330.0 U	117-81-7	bis(2-Ethylhexyl)Phthalate	4200.0
59-50-7	4-Chloro-3-Methylphenol	330.0 U	1 218-01-9	Chrysene	680.0
7' 57 6	2-Methylnaphthalene	330.0 U	117-84-0	Di-n-Octyl Phthalate	330.0
77 -7-4	Hexachlorocyclopentadiene	330.0 U	205-99-2	Benzo(b)Fluoranthene	410.0
5.5.2	2,4,6-Trichtorophenol	330.0 U	207-08-9	Benzo(k)Fluoranthene	330.0
75 75 4	2,4,5-Trichtorophenol	1600.0 U	50-32-8	Benzo(a)Pyrene	330.0
71 58 7	2.Chloronaphthalene	330.0 U	193-39-5	Indeno(1,2,3-cd)Pyrene	330.0
88 7. L	2 Nitroaniline	1 1600.0 U	53-70-3	Dibenz(a,h)Anthracene	330.0
.33	Dimethyl Phthalate	330.0 U	191-24-2	Benzo(g,h,i)Perylene	330.0
] ** <u>B</u>	: Acenaphthylene	330.0 U		1	
1. 12	'3-Nitroaniline	•	1	1	:
	- with daing ting	1600.0 U	443	e separated from diphenylamine	

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium (Date Extracted/Prepared: 6/19/86 Date Analyzed: 7/1/86 Conc/Dil Factor:>	Circle One) .	GPC Cleanup: YesX No Separatory Funnel Extraction: Yes Continuous Liquid Liquid Extraction: Yes
Percent Moisture: 7		

CAS		ug/l or ug/Kg
Number		(Circle One)
319-84-6	Alpha-BHC	16.00 U
319-85-7	Beta-BHC	16.00 U
319-86-8	Delta-BHC	16.00 U
58-89-9	Gamma-BHC (Lindane)	16.00 U
76-44-8	Heptachlor	16.00 U
309-00-2	Aldrin	16.00 U
1024-57-3	Heptachlor Epoxide	16.00 U
959-98-8	Endosulfan I	16.00 U
60-57-1	Dieldrin	' 4.80 J
72-55-9	4,41-DDE	32.00 U
72-20-8	Endrin	32.00 U
33213-65-9	Endosulfan II	32.00 U
72-54-8	4,41-DDD	9.70 J
7421-93-4	Endrin Aldehyde	32.00 U
1031-07-8	Endosulfan Sulfate	135.00
50-29-3	4,41-DDT	32.00 U
53494-70-5	Endrin Ketone	32.00 U
72-43-5	Methoxychlor	160.00 U
57-74-9	Chlordane	46.30 J
8001-35-2	Toxaphene	320.00 U
12674-11-2	Arocior-1016	160.00 U
11104-28-2	Aroclor-1221	160.00 U
11141-16-5	Aroclor-1232	160.00 U
53469-21-9	Aroclor-1242	160.00 U
12672-29-6	Aroclor-1248	160.00 U
11097-69-1	Aroclor-1254	320.00 U
11096-82-5	Aroclor-1260	320.00 U

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Ws = Weight of sample extracted (

Vt = Volume of total extract (ul)

		30		40000		3
-	or Ws		۷t		۷i	

CASE NO: EPA 6099

PESTICIDE/PCBs

Concentration: Low Medium Date Extracted/Prepared: 6/19/86	(Circle One)
Date Extracted/Prepared: 6/19/86	
Date Analyzed: 7/2/86	
Conc/Dil Factor:>	1
Percent Moisture: 7	

GPC Cleanup: Yes__X__ No___ Separatory Funnel Extraction: Yes___ Continuous Liquid-Liquid Extraction: Yes___

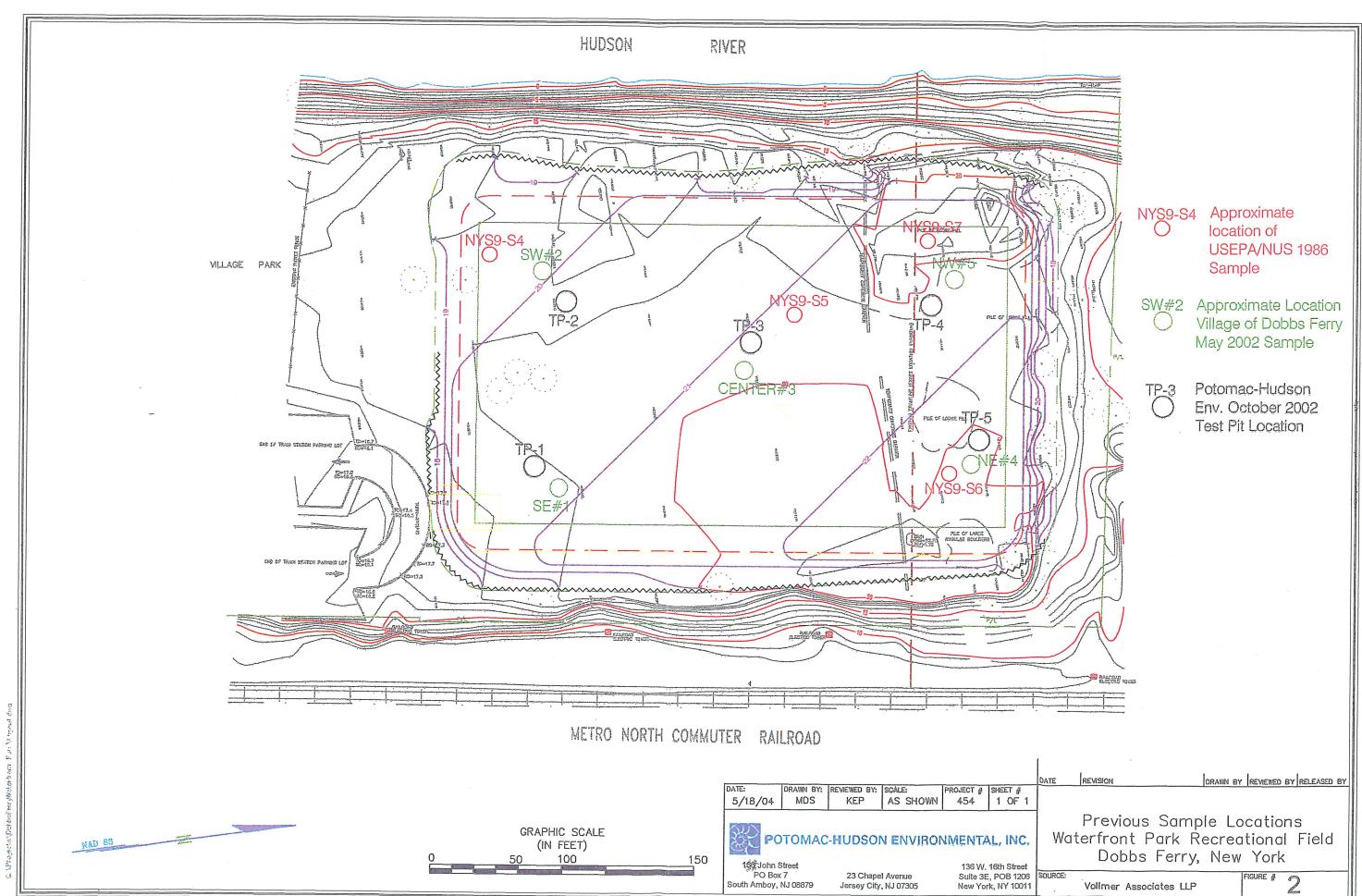
M/con the d

	CAS Number		ug/l or ug/Kg (Circle One)	
-	319-84-6	Alpha-BHC	l 16.00 u	
i	319-85-7	Beta-BHC	1 16.00 U	1
i	319-86-8	Delta-BHC	l 16.00 u	1
i	58-89-9	Gamma-BHC (Lindane)	l 16.00 U	1
i	76-44-8	Heptachlor	16.00 U	1
İ	309-00-2	Aldrin	16.00 U	1
ĺ	1024-57-3	Heptachlor Epoxide	16.00 U	i
-	959-98-8	Endosulfan I	15.00 U	ì
l	60-57-1	Dieldrin	4.80 J	1
1	72-55-9	4,4'-DDE	32.00 U	i
1	72-20-8	Endrin	32.00 U	i
	33213-65-9	Endosulfan II	32.00 U	i
	72-54-8	4,4'-DDD	9.70 J	i
1	7421-93-4	Endrin Aldehyde	32.00 U	i
1	1031-07-8	Endosulfan Sulfate	135.00	i
1	50-29-3	4,4'-DDT	32.00 U	ĺ
	53494-70-5	Endrin Ketone	32.00 U	İ
1	72-43-5	Methoxychlor	160.00 U	ĺ
1	57-74-9	Chlordane	46.30 J	ĺ
	8001-35-2	Toxaphene	320.00 U	İ
1	12674-11-2	Aroclor-1016	160.00 U	l
	11104-28-2	Aroclor-1221	160.00 U	
1	11141-16-5	Aroclor-1232	160.00 U	
-	53469-21-9	Aroclor-1242	160.00 U	
	12672-29-6	Aroclor-1248	160.00 U	
ĺ	11097-69-1	Aroclor-1254	320.00 U	į
1	11096-82-5	Aroclor-1260	320.00 U	

Vi = Volume of extract injected (ul)

Vs = Volume of water extracted (ml)

Vs = Weight of sample extracted (g)


Vt = Volume of total extract (ul)

			30		40000		3
۷s	And the second s	or Ws		Vt	V	Λi.	

•				
U.S. EPA Contract La Sample Hanagement Of	buratory Progra		EPA Sample	No.
p O Box 818 - Alexa	ndria, VA 2231	3	MBE 21	
703/557-2490 FTS: 8	-557-2490			
	INORGANIC	ANALYSIS DATA SHI	Date 7 17	86
LAB PAME JTC Enviro	onmental Cnsl	te		
SOW NO. 784		CASE	но. <u>6099</u>	
LAB SAMPLE ID. NO. 7	3 3419			
	- 1211	· · · · · · · · · · · · · · · · · · ·	EPORT NO. <u>269</u>	
	Elements Ide	entified and Heas		
Concentration:	Lou /			
Hatrix: Water			ım	
		Sidage	Ocher _	
	ug/L or mg/k	grafy weight (Cir	-1-0	
1. Aluminum 640	10 P			_
2. Antimony	194 P	13. Magnesium		P
J. Arsenic L	CII	14. Hanganese	A 10 :	Р
4. Barium	591 P	15. Hercury	0,120 co	ld.v.
5. Beryllium	211	16. Nickel		P
	29U P	17. Potassium	<u> 2890U</u>	A
	20 P	18. Selenium	<u> 3,04</u>	F
. Chromium L	 P	19. Silver	5, lu	P
Cobalt 9,	8U P	20. Sodium	a 1900	Р
O. Copper	1	21. Thallium 22. Tin	<u> 31U</u>	F
1. Iron 1520	P P		174	Р
2. <u>Lead</u>	38 + P	23. Vanadium	<u> 25</u>	P
ranide NR	A	24. Zinc	169	P
octnotes: For reporting		Percent Solids (
	results to EP	A, standard resu	lt qualifiers ar	e usad
results are e	DCOUTAged Des	described trage	lt qualifiers ar or footnotes expl flags must be ex	aining
and contained	on Cover Page,	however.	riags must be ex	plicit
ments:				
			•	"
		1 - 1 - 1		
		Lab Manager	7.7 7.	

APPENDIX 4

Sample Location Plan, Village of Dobbs Ferry (2002) and Potomac-Hudson Environmental, Inc. (2002) Data Tables

TABLE 2 SOIL SAMPLE RESULTS - VOLATILE ORGANICS PHE (OCTOBER 2002) DOBBS FERRY WATERFRONT PARK, DOBBS FERRY, NY

	NYSDEC	NYSDEC					T		1				T						·					-
Client ID:	Recommended	Soil Cleanup		TP1A	-	TP1B		TP2A	т	P2B	-	грза	Т Т	P3B		TP4A		TP4B	-	ГР5А	ד	TP5B	TI	P5C (1)
Sample Depth (ft):	Soil	Obj. Protective	I	0-0.5		9.5-10	1	0-0.5		9.5-10	1	0-0.5	1	9.5-10		0-0.5	l	10-11	1	0-0.5		9.5-10		9.5-10
Lab ID:	Cleanup	of GW	76	22-001	76	22-002	l	622-003	1	22-004		22-005	ļ.	22-006	1	322-007	l	22-008		22-009	76	22-010	76	22-011
Date Sampled:	Objective	quality		01/2002		01/2002	1	/01/2002	E .	1/2002	1	01/2002	1	1/2002		01/2002		01/2002		01/2002		01/2002	ì	01/2002
Matrix:	(ppm)	(ppm)		Soil		Soil	'0'	Soil	1	Soil		Soil	1	Soil	10,	Soil	101	Soil		Soil		Soil	1	Soil
Volatiles (ppm)	(Pp)	(PP)	Conc		Conc	Q MDL	Conc	Q MDL	Conc	Q MDL	Conc	Q MDL	-	Q MDL	Conc	Q MDL	Conc	Q MDL	in the second	Q MDL	Conc	Q MDL	Conc	Q MDL
Chloromethane	NA	l NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Vinyl Chloride	0.2	0.12	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	1	0.0063	ND	0.00555	ND		ND	0.0054	ND	0.006	ND	0.0058
1 '	NA	NA:	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067 0.0067	ND	- 1	ND		ND	0.0058
Bromomethane	1.9	1.9	ND	0.00575	ND ND	0.0061	ND		ND		ND		ND		1 '	1				0.0054		0.006		
Chloroethane	NA	NA NA	ND		ND			0.00705		0.0061	i i	0.0055	1	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Trichlorofluoromethane		1		0.00575		0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Acrolein	NA	NA 0.4	ND	0.012	ND	0.012	ND	0.014	ND	0.012	ND	0.011	ND	0.013	ND	0.011	ND	0.013	ND	0.011	ND	0.012	ND	0.012
1,1-Dichloroethene	0.4	0.4	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	i .	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Methylene Chloride	0.1	0.1	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Acrylonitrile	NA	NA	ND	0.012	ND	0.012	ND	0.014	ND	0.012	ND	0.011	ND	0.013	ND	0.011	ND	0.013	ND	0.011	ND	0.012	ND	0.012
trans-1,2-Dichloroethene	0.3	0.3	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,1-Dichloroethane	0.2	0.2	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Chloroform	0.3	0.3	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,1,1-Trichloroethane	0.8	0.76	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	- ND	0.0054	ND	0.006	ND	0.0058
Carbon Tetrachloride	0.6	0.6	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,2-Dichloroethane(EDC)	0.1	0.1	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Benzene	0.06	0.06	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	0.00264	J 0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Trichloroethene	0.7	0.7	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,2-Dichloropropane	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Bromodichloromethane	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND -	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
2-Chloroethylvinyl Ether	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
cis-1,3-Dichloropropene	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Toluene	1.5	1.5	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
trans-1.3-Dichloropropene	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1.1.2-Trichloroethane	NA	NA	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Tetrachloroethene	1.4		ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Dibromochloromethane	NA ·		ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Chlorobenzene	1.7	1.7	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	0.027	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
	5.5	5.5	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	0.00322	J 0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
Ethylbenzene	1.2		ND	0.00575	0.082	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	0.00322	0.0063	ND	1		1		0.0054	ND			0.0058
Total Xylenes	na Na	NA	ND	0.00575	0.062 ND	0.0061	ND	0.00705	ND ND	0.0061				i		0.00555	ND	0.0067	ND			0.006	ND	
Bromoform	0.6	0.6	ND	0.00575	ND ND		ND ND	1			ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,1,2,2-Tetrachloroethane		1.55	ND	0.00575	ND ND	0.0061	ND ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,3-Dichlorobenzene	1.6	l l				0.0061		0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,4-Dichlorobenzene	8.5	8.5	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	0.00393	J 0.0063	ND	1	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
1,2-Dichlorobenzene	7.9	7.9	ND	0.00575	ND	0.0061	ND	0.00705	ND	0.0061	ND	0.0055	ND	0.0063	ND	0.00555	ND	0.0067	ND	0.0054	ND	0.006	ND	0.0058
TOTAL VO's:			ND		0.082		ND		ND		ND		0.055	J	ND		ND	ŀ	ND		ND		ND	
TOTAL TIC's:	40.14)		ND		0.00952		ND		0.00756		ND	l	0.183	_	ND		ND		ND		ND		ND	
TOTAL VO's & TIC's:	10 🛂	NA	ND		0.091	ĺ	ND		0.00756		ND		0.238 、	J	ND		ND	Will be account to the	ND		ND		ND	

⁽¹⁾ Sample TP5C is duplicate of sample TP5B

⁽²⁾ Total VO's should be less than 100 ppm

~ = Sample not analyzed for
ND = Analyzed for but Not Detected at the MDL

NA = Not Available

J = The concentration was detected at a value below the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

TABLE 3
SOIL SAMPLE RESULTS - SEMIVOLATILE ORGANICS
PHE (OCTOBER 2002)
DOBBS FERRY WATERFRONT PARK, DOBBS FERRY, NY

	NVCDEC	ANCOREO		Parameter	T						-		***											
Client ID:	NYSDEC Recommended	NYSDEC Soil Cleanup] .	TD4 A	_	-D4D		TDO														West and the second		
Sample Depth (ft):	Soil	Obj. Protective	í	TP1A	'	P1B		TP2A		TP2B	1	ГРЗА	7	TP3B		TP4A	İ	TP4B		TP5A		TP5B	T	P5C ⁽¹⁾
Lab ID:	Cleanup	of GW	1	0-0.5 22-001	70	9.5-10] _	0-0.5		9.5-10	1	0-0.5		9.5-10		0-0.5	1	10-11		0-0.5		9.5-10		9.5-10
Date Sampled:	Objective	quality	1	01/2002	1	22-002 01/2002	1	622-003	1	322-004	1	22-005	1	22-006		7622-007	1	622-008	7	622-009	7	622-010	76	22-011
Matrix:	(ppm)	(ppm)		Soil	1	Soil	1 10	0/01/2002 Soil	10/	/01/2002	1	01/2002	1	01/2002	10	0/01/2002	10	/01/2002	10	/01/2002	10	/01/2002	10/0	01/2002
Semivolatiles - BNA (ppm)	(5511)	(ppm)	-	3011	·	3011		2011	-	Soil		Soil	-	Soil		Soil		Soil		Soil		Soil		Soil
N-Nitrosodimethylamine	NA	NA	ND	0.217	ND	0.214	ND	0.050		2.222					1									7. 11 - 11 - 11
Phenol	0.03 or MDL	0.03	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	1	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Aniline	0.1	0.1	ND	0.217	ND	0.214	ND	0.258 0.258	ND	0.206	ND	0,199	1	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
bis(2-Chloroethyl)ether	NA NA	NA NA	ND	0.217	ND	0.214	ND	0.258	ND ND	0.206	ND	0.199	1	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0,228	ND	0.462
2-Chlorophenol	0.8	0.8	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
1,3-Dichlorobenzene	1.6	1.55	ND	0.217	ND	0.214	ND	0.258	ND	0.206 0.206	ND ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
1,4-Dichlorobenzene	8.5	8.5	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Benzyl alcohol	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199 0.199	ND ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
1,2-Dichlorobenzene	7.9	7.9	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2-Methylphenol	0.1 or MDL	0.1	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0,227 0,227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
bis(2-chloroisopropyl)ether	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
4-Methylphenol	0.9	0.9	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0,228	ND	0.462
N-Nitroso-di-n-propylamine	NA	NA	ND .	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199 0.199	ND ND	0.254	ND ND	0.194	ND	0.228	ND	0.462
Hexachloroethane	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199		0.254	i	0.194	ND	0.228	ND	0.462
Nitrobenzene	0.2 or MDL	0.2	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND ND	0.254	ND ND	0.194	ND	0.228	ND	0.462
Isophorone	4.4	4.4	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND ND	0.254 0.254	ND	0.194 0.194	ND ND	0.228	ND	0.462
2-Nitrophenol	0.33 or MDL	0.33	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND			0.228	ND	0.462
2,4-Dimethylphenol	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194 0.194	ND	0.228	ND	0.462
bis(2-Chloroethoxy)methane	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND		ND ND	0.228	ND ND	0.462
Benzoic acid	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194 0.194	ND	0.228 0.228	ND ND	0.462
2,4-Dichlorophenol	0.4	0.4	ND	0.217	ND	0.214	ND	0.258	ND	0,206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462 0.462
1,2,4-Trichlorobenzene	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Naphthalene	13	13	ND	0.217	0.167	J 0.214	ND	0.258	ND	0.206	ND	0.199	0.246	0.227	ND	0.199	ND	0.254	0.364	0.194	0.167	J 0.228	1.04	0.462
4-Chloroaniline	0.22 or MDL	0.22	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0,199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Hexachlorobutadiene	· NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
4-Chloro-3-methylphenol	0.24 or MDL	0.24	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2-Methylnaphthalene	36.4	36.4	ND	0.217	0.370	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	0.560	0.462
Hexachlorocyclopentadiene	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2,4,6-Trichlorophenol	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0,199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2,4,5-Trichlorophenol	0.1	0.1	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2-Chloronaphthalene	NA NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2-Nitroaniline	0.43 or MDL	0.43	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Dimethylphthalate	2	. 2	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2,6-Dinitrotoluene	41	1	ND	0.217	ND	0.214	ND	0.258	ND .	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Acenaphthylene 3-Nitroaniline	0.5 or MDL	41 0.5	ND ND	0.217	0.538	0.214	0.280	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	0.159 .	J 0.254	1.72	0.194	0.326	0.228	1.23	0.462
Acenaphthene	50 ⁽²⁾	90	ND DN	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2,4-Dinitrophenol	0.2 or MDL	0.2	ND ND	0.217 0.217	2.58 ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	0.214	J 0.228	2.61	0.462
4-Nitrophenol	0.1 or MDL		ND	0.217		0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
2,4-Dinitrotoluene	NA NA		ND	0.217	ND ND	0.214	ND ND	0.258	ND	I	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Dibenzofuran	6.2	1	ND	0.217	1.80	0.214 0.214	ND ND	0.258	ND		ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
Diethylphthalate	7.1	1	ND	0.217	ND	0.214	ND	0.258 0.258	ND	1	ND	0.199	ND	0.227	ND	0.199	ND	1	0.170	J 0.194	ND	0.228	2.31	0.462
Fluorene	50 (2)	1	ND	0.217	4.02	1	0.221 .	J 0.258	ND ND	I	ND	0.199	ND 0.130	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
4-Chlorophenyl-phenylether	NA	I	ND	0.217	ND	0.214	0.221 . ND	0.258	ND	1	ND ND	0.199	0.139	J 0.227	ND	0.199	ND	0.254	0.235	0.194	0.276	0.228	3.32	0.462
4-Nitroaniline	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND		ND	0.199	ND ND	0.227	ND		ND	0,254	ND	0.194	ND	0.228	ND	0.462
4,6-Dinitro-2-methylphenol	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND		ND	0.199	ND	0.227	ND ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
N-Nitrosodiphenylamine	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	i	ND	0.199	ND	0.227	ND ND		ND	0.254	ND	0.194	ND	0.228	ND	0.462
1,2-Diphenylhydrazine/Azobenzene	NA	1	ND	0.217	ND	1	ND	0.258	ND	1	ND	0.199	ND	0.227	ND	1	ND	0.254	ND	0.194	ND	0.228	ND	0.462
4-Bromophenyl-phenylether	NA	1	ND	0.217	ND	1	ND	0.258	ND		ND	0.199	ND	0.227	ND	3	ND ND	0.254 0.254	ND	0.194	ND	0.228	ND	0.462
Hexachlorobenzene	0.41		ND	0.217	ND	- 1	ND	0.258	ND	1	ND	0.199	ND	0.227	ND		ND	1	ND	0.194	ND	0.228	ND	0.462
Pentachiorophenol	1 or MDL	3	ND	0.217	ND	- 1	ND	0.258	ND		ND	0.199	ND	0.227	ND	1	ND	0.254	ND ND	0.194	ND ND	0.228	ND	0.462
										5.255		0.,00	112	V.E.E.I	1457	U. (55	יאט	0.254	אט	0.194	עאו	0.228	ND	0.462

TABLE 3 SOIL SAMPLE RESULTS - SEMIVOLATILE ORGANICS PHE (OCTOBER 2002) DOBBS FERRY WATERFRONT PARK, DOBBS FERRY, NY

	NYSDEC	NYSDEC			T		T		T		`\		T	The same of the sa	7		-				T		~	
Client ID:	Recommended	Soil Cleanup	Т	P1A	TF	1B	T	P2A	1 7	P2B	T	РЗА	1	'P3B	I -	P4A	-	P4B	١.		_			no (1)
Sample Depth (ft):	Soil	Obj. Protective	0	-0.5		3.5-10	0	-0.5	1	9.5-10	1 '	0-0.5	į.	9.5-10	1	-0.5	1	0-11	1	P5A		P5B		5C ⁽¹⁾
Lab ID:	Cleanup	of GW	762	2-001	7622	2-002	762	2-003	1	22-004		22-005		22-006		2-007	1	22-008	1	0-0.5		9.5-10		9.5-10
Date Sampled:	Objective	quality	10/0	1/2002	10/01	/2002	10/0	1/2002	10/0	1/2002	1	1/2002	1	1/2002	1	1/2002	1	1/2002		22-009 11/2002	\$	2-010	1	2-011
Matrix:	(ppm)	(ppm)		Soil	s	oil	8	Soil		Soil		Soil)	Soil	I .	Soil		inzouz Soil	ſ	77/2002 Soil		1/2002 ioil	1	1/2002 Soil
Semivolatiles - BNA (ppm) (CONT				2112 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212 - 1212	er frieder om eine State er 1986 (200)	malayan et sayana, sayanan e		The second second second	Control of the Contro		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				A STATE OF THE PARTY OF THE PAR	DEED-ROTE SHOW	THE RESERVE OF THE PARTY OF THE		-	3011		OH	3	OII
Phenanthrene	50 ⁽²⁾	220	0.398	0.217	29.3	0.214	2.32	0.258	0.181	J 0.206	ND	0.199	0.467	0.227	0.409	0.199	0.696	0.254	1.71	0.404	0.00			
Anthracene	. 50 ⁽²⁾	700	ND	0.217	13.7	0.214	0.668	0.258	ND	0.206	ND	0.199	0.163	J 0.227	ND		0.303	0.254	1.21	0,194	2.23 0.758	0.228	38.2	0.462
Carbazole	NA	NA	ND	0.217	1.71	0.214	0.155	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	0.183	0.194 J 0.194		0.228	8.16	0.462
)i-n-butylphthalate	8.1	8.1	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0,199	ND	0.227	ND	0.199	ND	0.254	ND		0.312	0.228	4.05	0.462
luoranthene	50 ⁽²⁾	1900	1.23	0.217	30.8	0.214	3.81	0.258	0.283	0.206	ND	0.199	1.01	0.227	0.799	0.199	1.38	0.254	10.6	0.194 0.194	ND 4.25	0.228	ND	0.462
Senzidine	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND -	0.206	ND	0,199	ND	0,227	ND	0.199	ND	0.254	ND	0.194	4.25 ND	0.228 0.228	44.6	0.462
yrene ·	50 ⁽²⁾	665	1.11	0.217	24.9	0.214	3.46	0.258	0.275	0.206	0.119	J 0.199	1.17	0.227	0.777	0.199	1.54	0.254	9.04	0.194	3.13	0.228	ND 35,3	0.462
,3'-Dimethylbenzidine	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	3. 13 ND	0.228	ND	0.462
lutylbenzylphthalate	50 ⁽²⁾	122	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462
,3'-Dichlorobenzidine	NA	NA	ND	0.217	ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	ND	0.254	ND	0.194	ND	0.228	ND	0.462 0.462
enzo[a]anthracene	0.224 or MDL	3	0.826	0.217	13.4	0.214	1.98	0.258	0.188	J 0.206	ND	0.199	0.822		0.482		0.933	0.254	8.25	0.194	2.55	0.228		
hrysene	0.4	0.4	1.08	0.217	15.3	0.214	2.08	0.258	0.277	0.206	ND	0.199	1.33		0.621	0.199	1.22	0.254	8.93	0.194	2.97		18.6	0.462
is(2-Ethylhexyl)phthalate	50 (2)	435	0.587	0.217	0.255	0.214	ND	0.258	0.501	0.206	ND	0.199	2,14	0.227	ND		0.526	0.254	ND			0.228	20.4	0.462
i-n-octylphthalate	50 (4)	120	ND	0.217	· ND	0.214	ND	0.258	ND	0.206	ND	0.199	ND	0.227	ND	0.199	0.526 ND	0.254	ND -	0.194	0.148	J 0.228	ND	0.462
enzo[b]fluoranthene	1.1	1.1	0.864	0.217	7.76	0.214	1.09	0.258	0.136	J 0.206	ND	0.199	0.718		0.336		0.798	0.254	6.09	0.194	ND	0,228	ND	0.462
enzo[k]fluoranthene	1.1	1.1	0.671	0.217	8.13	0.214	1.44	0,258	0.166	J 0.206	ND	0.199	0.639		0.484		0.749			0.194	2.65	0.228	13.1	0.462
enzo[a]pyrene	0.061 or MDL	11	0.901	0.217	10,3	0.214	1.58	0,258	0.176	J 0.206	ND	0.199	1.06		0.480			0.254	6.90	0.194	1.65	0.228	13.5	0.462
ideno[1,2,3-cd]pyrene	3.2	3.2	0.690	0.217	6.03	0.214	1.08	0.258	0,137	J 0.206	ND	0.199	0.514		0.335	<u>_</u>	1.10	0.254	7.64	0.194	2.65	0.228	15.6	0.462
ibenz[a,h]anthracene	0.014 or MDL	165,000	0.439	0.217	3.04		0.490	0,258	ND	0.206	ND	0.199	0.308		0.335 0.182 J		0.745	0.254	4.36	0.194	1.72	0.228	11.4	0.462
enzo[g,h,i]perylene	50 ⁽²⁾		0.791	0.217	6.03	0.214	1.13	0.258	0.190	J 0.206	ND	0.199	0.887			<u> </u>	0.403	0.254	2.30	0.194	0.846	0,228	5.40	0.462
OTAL BNA'S:			9.59		180 J	9.2.17	21.8 J	0.200	2.51		0.119 J	0.199	11.6	0.227	0.366	0.199	0.777	0.254	4.07	0.194	1.68	0.228	11.6	0.462
OTAL TIC's:			ND		21.9	į	1.63]	ND ND		ND ND	ļ	9.53	ا ا	5.27 J		11.3 J	l	73.8 J	!	28.5		251	
OTAL BNA'S & TIC's:	500 😕	NA	9.59		202 J		23.4 J		2.51	,	0.119 J	I	9.55 21.1	, [ND 5.27 J	ĺ	ND 11.3 J		23.3 97.0 J	1	2.41 30.9		40.7 292	

⁽¹⁾ Sample TP5C is duplicate of sample TP5B

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

⁽²⁾ Individual SVOs should be less 50 ppm

⁽³⁾ Total SVOs should be less than 500 ppm

^{~ =} Sample not analyzed for ND = Analyzed for but Not Detected at the MDL

NA = Not Available

J = The concentration was detected at a value below the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation.

TABLE 4
SOIL SAMPLE RESULTS - PESTICIDES/PCBs/METALS/GENERAL CHEMISTRY
VILLAGE OF DOBBS FERRY (MAY 2002) and PHE (OCTOBER 2002)
DOBBS FERRY WATERFRONT PARK, DOBBS FERRY, NY

	NYSDEC	NYSDEC	T		1		H																	
Client ID:	Recommended	Soil Cleanup	SE	E#1	sw	#2	CEN.	TER #3	Ι,	NE#4		N. R. J. J. P.	-	TD4D										
Sample Depth (ft):	Soil	Obj. Protective	1	 -0.5	1	0.5)-0.5	1	0-0.5	1	W#5		TP1B		P2B	T	P3B		TP4B	1	ГР5В	TF	P5C ⁽¹⁾
Lab ID:	Cleanup	of GW	02050		02050			7-0.5 0532-03	l	0-0.5 50532-04	1	0-0.5		9.5-10	1	9.5-10		9.5-10		10-11		9.5-10		9.5-10
Date Sampled:	Objective	quality	05/22		05/22			2/2002	1	22/2002		0532-05	ľ	22-002	i	22-004	1	22-006	7	622-008	76	22-010	76	22-011
Matrix:	(ppm)	(ppm)	Sc		Sc	1		ioil		22/2002 Soil		2/2002		01/2002	1	1/2002	10/0	01/2002	10	/01/2002	10/0	01/2002	10/0	01/2002
PCB's (ppm)		()- /				'11		1011		2011	,	Soil		Soil	5	Soil		Soil		Soil		Soil		Soil
Aroclor-1016	1 surf; 10 subsurf (2)	10	ND	0.02	ND	0.02	ND	0.00	ND	0.00	l													
Aroclor-1221	1 surf; 10 subsurf (2)	10	ND	0.02	ND	0.02		0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND	0.018	ND	0.017
Aroclor-1232	1 surf; 10 subsurf (2)	10	ND	0.02	ND	1	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND.	0.018	ND	0.017
Aroclor-1242	1 surf: 10 subsurf (2)	10	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND	0.018	ND	0.017
Aroclor-1248	1 surf: 10 subsurf (2)	10	ND	0.02		0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016,	ND	0.019	ND	0.020	ND	0.018	ND	0.017
Aroclor-1254	1 surf; 10 subsurf (2)	10	ND		ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND	0.018	ND	0.017
Aroclor-1260	1 surf; 10 subsurf (4)	10	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND	0.018	ND	0.017
Pesticides (ppm)	and the state of t	10	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.02	ND	0.019	ND	0.016	ND	0.019	ND	0.020	ND	0.018	ND	0.017
alpha-BHC	0.44		ND	2 6 1 2								,			1.10					AND THE PROPERTY OF THE PARTY OF				
beta-BHC	0.11	0.2	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND	0.00461	ND	0.00421
	0.2	0.2	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	1	0.00491	ND	0.00461	ND	0.00421
gamma-BHC (Lindane) delta-BHC	0.06	0.06	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472		0.00491	ND	0.00461	ND	0.00421
	0.3	0.3	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472		0.00491	ND	0.00461	ND	0.00421
Heptachlor	0.1	0.1	ND	0.010	ND	l l	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND	0.00461	ND	0.00421
Aldrin	0.041	0.5	ND	0.010	ND		ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND	0.00461	ND	0.00421
Heptachlor epoxide	0.02	0.02	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND	0.00461	ND	0.00421
Endosulfan I	0.9	0.9	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND .	0.00461	ND DN	1
4,4'-DDE	2.1	4.4	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND -	0.00464	0.00815	0.00409		1	0.033	0.00491	0.018	0.00461	0.00602	0.00421
Dieldrin	0.044	0.1	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472		0.00491	ND	0.00461		0.00421
Endrin	0.1	0.1	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND	0.00461	0.00867	0.00421
Endosulfan II	0.9	0.9	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND		ND	0.00421
4,4'-DDD	2.9	7.7		0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	0.036		0.021	0.00472		0.00491	0.011	0.00461	ND	0.00421
Endrin aldehyde	NA	NA	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491		0.00461	ND	0.00421
Endosulfan sulfate	1	1		0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491	ND ND	0.00461	ND	0.00421
4,4'-DDT	2.1	2.5	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.00464	ND	0.00409	ND	0.00472	ND	0.00491		0.00461	ND	0.00421
Chlordane	0.54	2 (0.148	0.050	0.123	0.050	ND	0.050	ND	0.050	0.0632	0.050	ND	0.023	0.245	0.021	0.160			1	0.00881	0.00461	ND	0.00421
Methoxychlor	(4)	900	ND	0.5	ND	0.5	ND						115	ļ	0.2.40	0.021	0.100	0.024	0.150	0.024	0.171	0.023	0.556	0.021
Toxaphene	NA	NA	ND		ND	1	ND ND	I	ND	0.5	ND	0.5	~	~	~	~	~	~	~	~	~	~	~	~
Metals (ppm)				0.0		0.5	111	0.5	ND	0.5	ND	0.5	ND	0.023	ND	0.021	ND	0.024	ND	0.024	ND	0.023	ND	0.021
Antimony	SB	NA	ND	0.80	ND	000	NID	0.00	ND														CONTRACTOR CONTRACTOR	
Arsenic	7.5 or SB	1	7.33	- 1			ND		ND	0.80	ND	0.80	ND	1.22	ND	1.22	ND	1.25	ND	1.32	ND	1.20	ND	1.15
Beryllium	0.16 or SB	1	7.33 ND	1	5.00 ND	I	I.81		2.78	1	4.75	1.00	3.75	1.22	3.47	1.22	4.80	1.25	4.45	1.32	4.39	1.20	3.51	1.15
Cadmium	1 or SB	NA I	ND	- 1		i	ND		ND	0.10	ND	0.10	ND	0.608	ND	0.608	ND	0.625	ND	0.662	ND	0.598	ND	0.573
Chromium	10 or SB	I					ND		ND	0.30	ND		0.674	0.304	0.579	0.304	2.71	0.313	1.09	0.331	0.367	0.299	0.479	0.287
· •		E		0.50		0.50 1		0.50		0.50			29.8	2.43	55.2	2.43	40.1	2.50	25.1	2.65	22.0	2.39	23.4	2.29
Copper	25 or SB SB ¹⁹⁷		- Carrier Charles				0.2	1	13.1		25.9	0.60	33.8	2.43	47.4	2.43	640		48.7	2.65	39.3	2.39	36.6	2.29
Lead	1		71.5	0.30	36.1	0.30 4	9.8	0.30 7	7.28	0.30	54.4	0.30	228	0.608	573		1000		341	0.662	146	0.598	139	0.573
Mercury	0.1	NA _	~	~ _	~	~	~	~	~	~	~		0.379	ļ _{ero} ,	0.242		0.960	<u> </u>	0.343	j		<u> -</u>		
Nickel	13 or SB	NA 7	16.4	0.90	15.3	0.90 1	4.5	0.90 1	4.4	0.90	14.9		20.2	1.22	18.7		25.2				0.761	0.060	0.438	0.014
Selenium	2 or SB	NA 7		1.00			VD.	and the same of th	ND	Some	ND	1.00	ND	2.43	ND			<u></u>	20.4	1.32	19.0	1.20	14.9	1.15
Silver	SB	NA						0.30			ND	0.30	ND	0.608	ND		ND		ND .	2.65	ND	2.39	ND	2.29
Thallium	SB	NA				1.00 1	ND	1.00		1.00			ND	0.122	ND		ND		ND	0.662	ND	0.598	ND	0.573
Zinc	20 or SB	NA ·		0.60		0.60 5		0.60 3		0.60		-	195			The same of the sa	ND 525		ND	0.132	ND	0.120	ND	0.115
t	ar and a second		· · · · · · · · · · · · · · · · · · ·					2.00		0.00		0.00	130	2.43	210	2.43	535	2.50	330	2.65	145	2.39	131	2.29

TABLE 4 SOIL SAMPLE RESULTS - PESTICIDES/PCBs/METALS/GENERAL CHEMISTRY VILLAGE OF DOBBS FERRY (MAY 2002) and PHE (OCTOBER 2002) DOBBS FERRY WATERFRONT PARK, DOBBS FERRY, NY

Client ID: Sample Depth (ft): Lab ID: Date Sampled: Matrix:	NYSDEC Recommended Soil Cleanup Objective (ppm)	NYSDEC Soil Cleanup Obj. Protective of GW quality (ppm)	020505 05/22/ So	0.5 32-01 2002	0 02050 05/22 S	V#2 -0.5 532-02 2/2002 oil	1	0.5 532-03 /2002	NE#4 0-0.5 02050532-04 05/22/2002 Soil	02050	-0.5 532-05 /2002	762: 10/01	P1B 9.5-10 2-002 1/2002	762: 10/01	P2B 9.5-10 2-004 1/2002 oil	762 10/0	P3B 9.5-10 22-006 1/2002 Goil	76: 10/0	TP4B 10-11 22-008 01/2002 Soil	762 10/0	P5B 9.5-10 2-010 1/2002	762: 10/01	5C ⁽¹⁾ 9.5-10 2-011 1/2002
General Analytical				- United States and States and States			Berg a Maryer Control of the State of								O11		OUI	,	2011		oil		oil
Cyanide, Total (ppm)	NA	NA	~	~	~	~	~	~	~ ~			ND	4.00						İ				
Total Recoverable Phenois (ppm)	NA	NA I	~	~	~	~	~	~		~	~	ND	1.22	ND	1.22	ND	1.26	ND	1.34	ND	1.20	ND	1.16
Total Petroleum Hydrocarbons (ppr	, NA	NA	~	~	~	_			~ ~	~	~	ND	3.06	ND	3.05	ND	3.15	ND	3.36	ND	3.00	ND	2.90
(1) Sample TP5C is duplicate of sam	The second secon							~]	~ ~	~	~	2450	97.8	1500	48.7	2000	50.4	1000	26.9	1160	48.0	2730	92.8

Concentration exceeds NYSDEC Recommended Soil Cleanup Objective

⁽²⁾ Total PCB Cleanup Objective

⁽³⁾ USEPA Residential Lead Standard for soil = 400 ppm in bare soil in childrens play area or 1200 ppm for bare soil in rest of yard

⁽⁴⁾ As per TAGM #4046, Total VOCs <10 ppm

^{~ =} Sample not analyzed for ND = Analyzed for but Not Detected at the MDL NA = Not Available

J = The concentration was detected at a value below the MDL

APPENDIX 5

Sample Location Plan and Potomac-Hudson Environmental, Inc. (2005) Data Tables and Data Usability Summary Report

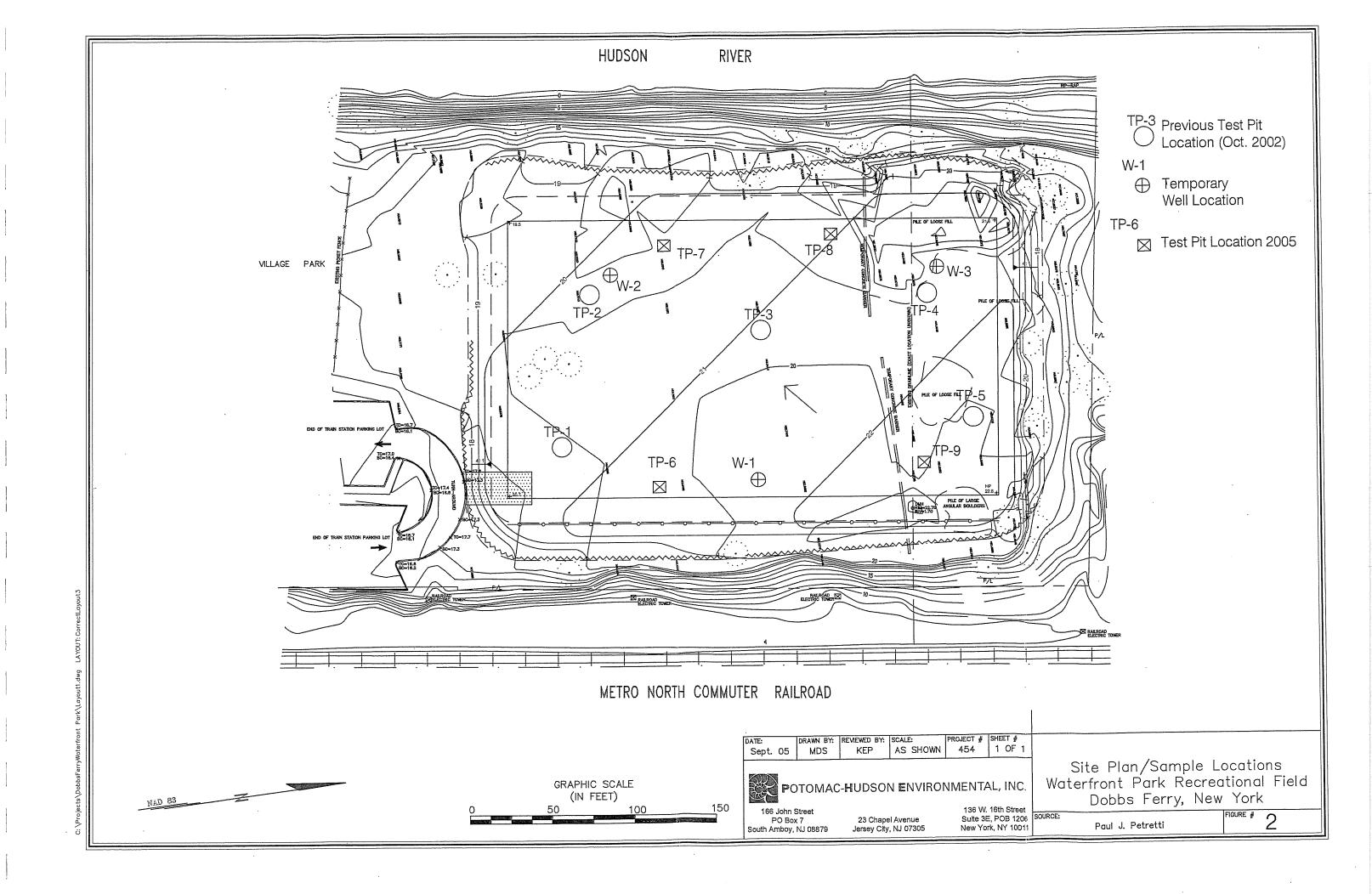


TABLE 2
Soil Sample Summary - Test Pits 1/28/2005
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Client ID:	TP6	TP7	TP8	<u>FP</u>	6	TP10		EB	Γ
	Sample Depth:	6	9	7	7.5	10	6		ļ	
	Lab ID: Date Sampled:	1/28/2005	1/28/2005	N89577-4 1/28/2005	N89577-5 1/28/2005	2005	N89577-6 1/28/2005	o ro	N89577-1 1/28/2005	
	Matrix:	Soil Conc Q MDL	Soil Conc Q MDL	Soil Conc Q MDL	Soil Conc Q	MDL.	Soil Conc Q N	MDL	Field Blank Soil	Soil
	NYSDEC Recommended Soil Cleanup									
GC/MS Volatiles (ppm)	Objective (ppm)									
Acetone	0.2	01	0.0046	0.0179	<u>.</u>	0.013	0.156 0	0.013	QN	10
Benzene Bromodichloromethene	0.00	ND 0.0014	2 5	2 9		0.0013		0.0013	QN	-
Bromoform	A N			ND 0.0058	ON NO	0.0064	0 0	0.0067	2 5	
Bromomethane	Ą		2 2	2 2		0.0064		0.0067		4 N
2-Butanone (MEK)	0.3	Ģ	Q	0.0073		0.013	2	0.013	QN	ر 1
Carbon disulfide	2.7		요 !	2		0.0064		0.0067	ND	7
Chlorobenzene	0.0	ND 0.0071	ND 0.0068	2 9	ON S			0.0067	Q !	-
Chloroethane	- 6		2 5		. 1.000.0 86	0.0064	0.0026 J 0.	0.0067	2 2	·- ·
Chloroform	0.3		200	2		0.0004		0.0067	2 5	
Chloromethane	NA		2	9		0.0064		0.0067	2 2	- \-
Dibromochloromethane	NA		2	₽:	_	0.0064		0.0067	ND	_
1, I-Dichloroethane	0.5	ND 0.0071	2 5	2 :		0.0064		0.0067	Q	~
1,4-Dichloroethene	0.7		890.0 ON I	ND 0.0058	ON 85	0.0064		0.0067	2 2	- ,
cis-1,2-Dichloroethene	. AN		2 5	2 5		0.0004	ט מ ט מ	7900.0		
trans-1,2-Dichloroethene	0.3		2	2 2		0.0064		0.0067		
1,2-Dichloropropane	NA NA			2	·	0.0064		0.0067	Q	-
cis-1,3-Dichloropropene	NA:		Q.	S		0.0064		0.0067	ND	-
trans-1,3-Dichloropropene Ethylhanzana	NA F	ND 0.0071	2 9	2 :		0.0064		0.0067	QN .	-
2-Hexanone	S.S.			ND 0.0012	12 0.0018 58 ND	0.0013	ON ON ON	0.0013	Q Q	← 4
4-Methyl-2-pentanone(MIBK)	-		20	2		0.0064		0.0097	2 5	ט ער
Methylene chloride	0.1	6	0.0029 J	0.0034 J	Ö		4	0.0067	N Q	0 0
Styrene	NA P		2	2		0.0064		0.0067	ND	2
1, i,∠,∠-i etrachioroetnane Totmohloroethono	9.0		2 5	Q !		0.0064		0.0067	QN Q	-
Tolliene	4. r	1,007.0 CIN	2 5	2 9		0.0064		0.0067	Q :	.
1,1,1-Trichloroethane	8.0				7100.0 ZI	0.0013	ON CN	0.0013	2 2	
1,1,2-Trichloroethane	NA		2	2		0.0004		0.0007	2 5	
Trichloroethene	0.7	ND 0.0071	Q.	Q.		0.0064		0.0067	200	
Vinyl chloride	0.2		Q	Q.		0.0064		0.0067	Q	-
Xylene (total) TOTAL TABGETED GCM/S Volctilos (com)	1.2	ND 0.0028		ND 0.0023		0.0026	¬	0.0027	ND	<u>_</u>
101AL PARGETED GOIMO VOIGUIES (ppm)		0.2808	0.0075	0.0286	0.0349		0.2206		0	
TOTAL NON-TARGETED GC/MS Volatiles (ppm)		1.4468 J	0.9673 J	f 69.0	1.2 J		1.5898 J	,	0	
TOTAL GC/MS Volatiles (ppm)	10 (1)	1.7276	0.9748	0.7186	1 2349		1 8104		c	
		· · · · ·	2: -2:	0.1.100	U-C-C-1		+010+		>	

TABLE 2 Soil Sample Summary - Test Pits 1/28/2005 Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Client ID:	1P6		TP7	_	TP8	8	6dT	6	TP10	10	FB	
	Sample Depth:	9 N90677 2	·	6		7	,	7.5	ر ا	6	_		
	Date Sampled:		35	1/28/2005	2 50	1/28/2005	005	N89577-5 1/28/2005	77-5 :005	N89577-6 1/28/2005	77-6 2005	N89577-1 1/28/2005	
	Wattix:	Sonc Q	MDL	Soil Conc Q	MDL	Soil Conc Q	MDL	Soil Conc Q	MDL.	Soil Conc Q	MDI	Field Blank Soil	nk Soil
	NYSDEC Recommended Soil Cleanup									B.	i .		
GC/MS Semi-volatiles (ppm)	Opjective (ppin)												
2-Chlorophenol	. 8.0	QN	0.21	CN	0.21	Ş	00	ב	Ċ	<u></u>	2	<u>.</u>	1
4-Chloro-3-methyl phenol	0.240 or MDL	9	0.21	2	0.21	2 2	0.99	2 2	0.2	2 2	0.21	2 2	o ro
z,4-Dimethylphenol	0.4 4.0	9 9	0.21	2 5	0.21	Q :	0.99	2	0.2	QN	0.21	Q	2
2,4-Dinitrophenol	0.2 or MDL	2 9	0.85	2 5	0.21	2 2	0.99	2 2	0.2	2 5	0.21	Q :	5
4,6-Dinitro-o-cresol	NA	9	0.85	2	0.83	2 2	1 4	2 2	0.81	2 2	0.86	2 2	2 2
Z-Wethylphenol	0.1 or MDL	8	0.21	Q	0.21	Q	0.99	Q	0.2	Q.	0.21	2	3 2
5x4-Wetnylphenol	0.9 (2)	2 9	0.21	오 :	0.21	2	0.99	0.0965 J	0.2	N	0.21	S	5
4-Nitrophenol	0.1 or MDI	2 5	0.21	<u> </u>	0.21	2 2	0.99	2 9	0.2	2 :	0.21	2	2
Pentachlorophenol	1.0 or MDL	9	0.85	2 2	0.83	2 2	4 4	2 5	0.81	2 2	0.86	2 2	2 2
Phenol	0.03 or MDL	QN	0.21	ON O	0.21	QN.	0.99	2	0.2	2 2	0.20	<u> </u>	3 rc
z,4,3-1 richiorophenol 12,4,6-Trichlorophenol	0.1	99	0.21	2 9	0.21	2	0.99	Q :	0.2	N	0.21	S	o ro
Acenanhthene	() E _O (1)		12.0	NO.	0.21	2 :	0.99	2	0.2	9	0.21	Q	5
Acenaphthylene	30. 41	0.481	0.085	0.0249	0.083	9 9	4.0	0.0253 J	0.081	0.0645 J	0.086	2	7
Anthracene	50(1)			0.0000	200.0	2 2	4.0	0.0472	0.081	0.0506	0.086	Q Q	2
Benzo(a)anthracene	0.224 or MDL	1.41		0.301	0.083	0.163	4.0	0.0877	0.081	0.0753	0.086	2 2	2 0
Benzo(a)pyrene	0.061 or MDL	_	٠	0.332		0.194	0.4	0.238	0.00	0.243	0.000	2 2	7 6
Benzo(b)fluoranthene	<u></u> :	,	_	0.353		0.19	0.4	0.297	0.081	0.234	0.086	2 2	7 0
Benzo(k)fluoranthana	50(1)		0.085	0.149		N Q	0.4	R	0.081	0.0887	0.086	2	1 2
4-Bromophenyl phenyl ether	T. N	909.0 ND	0.085	0.202 GN	0.083	9 9	4.0	0.243	0.081	0.247	0.086	Q	2
Butyl benzyl phthalate	50(1)			0.0443	0.003	2 5	4.0	3 5	0.081	ON S	0.086	윤 :	7
2-Chloronaphthalene	NA			ND ON	0.083	2 2	0.4	2 2	0.081	0.233 ND	0.086	2 5	С и
4-Chloroaniine	0.220 or MDL	9 5	0.21	Q :	0.21	S	0.99	Q	0.2	2	0.21	2	ດນ
Chrysene	N O	_	0.085	NO S	0.083	N 2573	0.4	0.064	0.081	0.0334 J	0.086	QN	7
bis(2-Chloroethoxy)methane	- AN	-,	0.003	N.34	0.003	U. 1/3	4. 4	0.277	0.081	0.276	0.086	2 :	7
bis(2-Chloroethyl)ether	NA		0.085	2	0.083	2 8	0.4	2 2	0.081	2 5	0.086	2 5	2 0
bis(2-Chlorosopropyl)ether	NA:		0.085	Q	0.083	N	0.4	Q	0.081	2	0.086	<u> </u>	7 2
1.2-Dichlorohenzene	NA 7 D		0.085	9 9	0.083	요 !	0.4	S	0.081	S	0.086	Q	2
1,3-Dichlorobenzene	6.7		0.085	2 S	0.083	2 5	4.0	2 2	0.081	2 9	0.086	2 9	2
1,4-Dichlorobenzene	8.5		0.085	2	0.083	2 2	4. 6	2 2	0.00	2 5	0.086	2 5	2 0
2,4-Dinitrotoluene	NA.		0.085	QN	0.083	Q	0.4	9	0.081	9	0.086	2 8	۷ ۸
3,3'-Dichlorobenzidine	- V		0.085	2 9	0.083	2 5	0.4	8 :	0.081	Q	0.086	2	7
Dibenzo(a,h)anthracene	0.014 or MDL	0.129		0.0721	0.083	S 5	86.0	2 5	0.2	ND	0.21	2 :	2
Dibenzofuran	6.2	7		QN	0.083	2 2	. d	0.0224		0.0334	0.086	2 5	7 4
Di-n-butyl phthalate	8.1		0.085	N Q	0.083	9	0.4	2 2 2		0.0859	0.000	<u> </u>	00
Di-II-octyl prtralate	50'''	QN	0.085	ND Q	0.083	Q	0.4	QN		ND	0.086	2	2 1

Page 2 of 5

TABLE 2
Soil Sample Summary - Test Pits 1/28/2005
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

•	Client ID:	TP6		TP7		TP8	8	TP9	б.	严"	TP10	FB	3
	Lab ID: Date Sampled:	N89577-2 1/28/2005	51 F2	N89577-3 1/28/2005	5.3	N89577-4	7.4	0.3 N89577-5	77-5 0005	N895	N89577-6	N89577-1	17-1
	Matrix:	Soil Conc Q	占	Soil Conc Q	Soil Q MDL	Soil Soil Conc Q	I MDL	Soil Conc O	ii MDI	School	Soil	1/28/2005 Field Blank Soil	ink Soil
	NYSDEC Recommended Soil Cleanup Objective (ppm)							1					
Diethyl phthalate Dimethyl phthalate	7.1	ON CN	0.085	ON CE	0.083	S S	0.4	2 :	0.081	2	0.086	QN	2
bis(2-Ethylhexyl)phthalate	50 ⁽¹⁾			0.198	0.083	UND 0.666	4.0	ND 1.54	0.081	0 146	0.086	2 5	0 0
Fluoranthene	50 ⁽¹⁾			0.474		0.275 J	0.4	0.422	0.081	0.459	0.086	2 2	N 0
Fluorene	50 ⁽¹⁾			0.0289 J	0.083	N Q	0.4	0.0386	0.081	0.0715	0.086	2 2	1 0
Hexachlorobenzene Hexachlorobutadiene	0.41 NA	2 5	0.085	<u> </u>	0.083	2 5	4.0	2 5	0.081	2 5	0.086	2	121
Hexachlorocyclopentadiene	NA		0.85	₽	0.83	2 2	2 4	28	0.81	2 2	0.086	2 2	20 2
Hexachloroethane Indeno(1.2.3-rd)nvrana	A c			Q S	0.21	2 :	0.99	<u>Q</u>	0.2	Q	0.21	9	2
Isophorone	5.2 4.4	0.204 ND	0.085	0.142 ND	0.083	2 5	4.0	2 2	0.081	0.085 UN	0.086	2 5	0.0
2-Methylnaphthaiene	36.4		0.085	9	0.083	2	0.4	0.0424 J	0.081	0.0636	0.086	2 2	N 61
Z-INITIOATIIITIE	0.43 or MDL		0.21	9 9	0.21	₽:	0.99	2	0.2	QN	0.21	S	C)
4-Nitroaniline	NA NA	2 5	2,00	2 5	0.27	2 2	0.99	2 2	0.2	9 9	0.21	2 :	121
Naphthalene	13			0.0234 J	0.083	<u> </u>	0.4	0.0703 J	0.081	0.209	0.086	2 2	5 6
Nitrobenzene	0.2 or MDL			Q	0.083	NO	0.4	S	0.081	S	0.086	2	7 2
N-Nitrosodiphenylamine	NA AN	2 5	0.085	9 S	0.083	2 2	4.0	2 5	0.081	2	0.086	Q.	7
Phenanthrene	50(1)			0.215	0.083	0.147	0.99	N 0	2.0	ON O	0.21	2 2	ro c
Pyrene	50(1)			0.466	0.083	0.249 J	0.4	0.304	0.081	0.375	0.086	2 Z	у С
1,2,4-I richlorobenzene TOTAL TARGETED GC/MS Semi-volatiles (ppm)	3.4	ND 16.533	0.085	ND 3.4747	0.083	ND 2 057	4.0	ND 1 3777	0.081	ND	0.086	2	1 70
TOTAL NON-TARGETED GC/MS Semi-volatiles (ppm)	(mo	9.96 J		3.13 J		34.84		67.11 J		5.73	_		
TOTAL GC/MS Semi-volatiles (ppm)	500 (1)	26.493		6.6047		36 897		74 4874		0 2405		c	
GG Semi-volatiles (nnm) (SW846 80814)								101		2.5		>	
(Managara) (mdd) pompo magara													
Aldrin alpha-BHC beta-BHC	0.041	222	0.0016	888	0.0016	229	0.0015	88	0.0016	99	0.0017	<u>8</u> 8	0.02
delta-BHC	4. C.		0.0010	2 5	0.0016	<u> </u>	0.0015	2 5	0.0016	9 9	0.0017	9 9	0.02
gamma-BHC (Lindane)	0.06			S		2 2	0.0015	2 8	0.0016	28	0.0017	2 2	0.02
arpira-Chlordane	NA 0 54	0.0914 0	0.0032 0	0.0347	0.0016	0.003	0.0015	0.0672	0.0032	0.0491	0.0034	NO	0.02
Dieldrin	0.044			ND ON		ND O	0.0015	0.0653 ND	0.0032	0.045 ND	0.0034	<u> </u>	0.02
4,4'-DDD	2.9	_		0.0101		0.0016	0.0015	0.0148	0.0016	0.0471	0.0034	2 2	0.02
4,4-DDT	2.7		0.0016	<u> </u>	0.0016	2 2	0.0015	2 5	0.0016	₽:	0.0017	₽!	0.02
Endrin	0.1		0.0016		0.0016	2 2	0.0015	2 2	0.0016	2 2	0.0017	2 5	0.02
Endosulfan sulfate Endrin aldahyda	<u>-</u>		0.0016		0.0016	N Q	0.0015	S	0.0016	<u>8</u>	0.0017	2 2	0.02
Endosulfan-I	0.0		0.0016	<u> </u>	0.0016	2 5	0.0015	9 9	0.0016	2 2	0.0017	2 9	0.02
				age 3	of 5		20.00		0.00	S S	0.0017	S	c0.0

Page 4 of 5

TABLE 2
Soil Sample Summary - Test Pits 1/28/2005
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Client ID:	TP6	9	TP7	7	TP8	8	TP9	. 6	TP10	01	FB	
	Sample Depth:	9 N80677 2	1,	6 N80577 3	1	7 Moneyy	1	7.5	. !	6		1	
	Date Sampled:	1/28/2005 1/28/2005 Soil	500	1/28/2005	2002	1/28/2005	5002	1/28/2005 1/28/2005	9002	1/28/2005	9-7.	1/28/2005	7-1
		Conc Q	MDL	Conc Q	MDL	Conc Q	MDL	Conc Q	MDL	Son Conc	MDL	Conc Q ME	A MDL
	NYSDEC Recommended												
:	Soil Cleanup Objective (ppm)									-			
Endosulfan-II Hentachter	0.0	9 9	0.0016	QN C	0.0016	Q.	0.0015	Q !	0.0016	Q.	0.0017	Ð	0.02
Heptachlor epoxide	0.02	2 2	0.0016	2 2	0.0016	2 5	0.0015	2 £	0.0016	9 9	0.0017	9 9	0.02
Methoxychior	ε	2	0.0041	2 2	0.001	2 5	0.0038	2 5	2000	2 2	0.00	2 2	20.0
Endrin ketone	ĄN	9	0.0041	2	0.004	2 2	0.0038	2 2	0.004	2 2	0.0042	2 5	0.02
Toxaphene	NA	Q	0.02	Q	0.02	QN Q	0.019	Q	0.02	9	0.021	2	0.25
Aroclor 1016	1 surf., 10 subsurf (3)	2	0.041	Q	0.04	QN	0.038	Q	0.04	Q.	0.042	g	0.5
Arocior 1221	1 surf., 10 subsurf	Q !	0.041	2	0.04	2	0.038	Q	0.04	Q	0.042	2	0.5
Atocior 1232	1 surt., 10 subsurt (3)	2 !	0.041	2	0.04	R	0.038	9	0.04	S	0.042	9	0.5
Arodor 1242	1 surt., 10 subsurf (3)	Q ;	0.041	9 !	0.04	2	0.038	9	0.04	Q	0.042	S	0.5
Arada 1240	Suri., 10 subsuri	0.86	0.041	Z :	-	Q	0.038	2	0.04	0.767	0.042	2	0.5
Aradar 1254	1 surt., 10 subsurt (3)	1.4	0.041	9 ;		0.0397	0.038	9	0.04	1.31	0.042	Q	0.5
TOTAL TARGETED GC Semi-volatiles (ppm)	ו sur., זט subsur.	0.47 3.0248		0.0444		ND 0.0474	0.038	ND 0.1473	0.04	0.397	0.042	g 9	0.5
Metals Analysis (ppm)			,					5		20102		Þ	
Aluminum	SB	7410	25	7300	24	10800	23	11300	24	8640	22	<200	200
Arsenic	35 7.5 or SB	7.17	, ¢	2.1.2	7. 6	7.1.2 7.1.2	7. 5	<1.2	7 . 5	×1.2	2	45.0 1.0	ו טו
Barium	300 or SB	78.3	25	77.3	24.	- 5	7 8	90.5	7.7	5.0 103	7.7	0.00	o 50
Beryllium	0.16 (HEAST) or SB	<0.62	0.62	<0.61	0.61	<0.58	0.58	<0.59	0.59	<0.62	0.62	<5.0 <5.0	200
Cadmium	1 or SB	1,1	0.62	<0.61	0.61	<0.58	0.58	<0.59	0.59	-	0.62	<4.0	4
Chromium	25 10 or 55	8090	620 620	9290	e 10	8050	280	7630	290	12400	620	<5000	2000
Cobalt	30 or SB	9.9	5. 6 5. 6	10.0 <6.1	7. 6	20.9 7.8	7. Z	31.2 0.6	7.7	26.5	7.2	, 4	9
Copper	25 or SB	104	3.1	32.2	ю	25	2.9	70.9	2.9	78.7	3. 5.	\$ \$ \$	25
lron	2,000 or SB	20900	12	13100	- 7	15700	12	25600	12	16700	12	×100	100
Lead	SB	162	1.2	140	1.2	173	1.2	152	1.2	168	1.2	<3.0	က
Manganese	988	4260 286	029	5480 211	610	6210 254	580	5540	590	4690	620	<5000	2000
Mercury	0.1	0.3	0.041	0.15	0.038	0.16	0.036	<0.036	0.036	<0.043	0.043	51.7 02.05	0 0
Nickel	13 or SB	20.6	4.9	16.1	4.9	16.3	4.7	19.9	4.7	16.3	5	45	40
Potassium	SS	1040	620	1310	610	1810	280	1930	290	1110	620	<5000	2000
Siver	2 or SB SB		2. 5	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2, 5	<u>^</u> 7.2	1.2	<1,2	1,2	<1.2 -	1.2	<5.0	2
Sodium	S S	< e20 < 620	620	×1.7 <610	610	<7.7 <580	7.7	<1.2	1.2	<1.2	1.2	×10 ×10	10
Thallium	SB	<1.2	1.2	<1.2	1.2	<1.2	1.2	500 500 500 500 500 500 500 500 500 500	1.2	<1.2	120	×3000	1000
Vanadium	150 or SB	18.6	6.2	21.9	6.1	28	5.8	30.3	5.9	19.6	6.2	<50	20.
Z.I.I.C	20 or SB	168	2.5	109	2.4	97.1	2.3	184	2.4	177	2.5	<20	20

Soil Sample Summary - Test Pits 1/28/2005 Dobbs Ferry Waterfront Park, Dobbs Ferry, NY TABLE 2

	Client ID:	TP6	TP7	TP8	TP9	TP10	田田
	Sample Depth:	6	9	7	7,5	6	l ·
	Lab ID:	N89577-2	N89577-3	N89577-4	N89577-5	N89577-6	N89577-1
	Date Sampled:	1/28/2005	1/28/2005	1/28/2005	1/28/2005	1/28/2005	1/28/2005
	Matrix:	Soil	Soil	Soil	Soil	Soil	Field Blank Soil
		Conc Q MDL	Conc Q MDL	Conc Q MDL	Conc Q MDL	Conc Q MDL	Conc Q MDL
	NYSDEC						
	Recommended						
	Soil Cleanup						
	Objective (ppm)						
General Chemistry (ppm)							
			-				
Cyanide	ΑN	<0.29 0.29		<0.26 0.26		<0.30 0.3	<0.010 0.01
Solids, Percent (%)	ΨZ	78.5	7.67	84.2	82.6	77.2	
					C		

(1) As per TAGM #4046, Total VOCs <10 ppm, Total Semi-VOCs <500 ppm, and Individual Semi-VOCs <50 ppm
(2) Soil Cleanup Objective for 4-Methylphenol
(3) Total PCB Cleanup Objective
(4) USEPA Residential Lead Standard for soil = 400 ppm bare soil in childrens play area or 1200 ppm for bare soil in rest of yard NA = Not Available
SB = Site Background
ND = Not Detected at Indicated Method Detection Limit

Concentration Exceeds NYSDEC Groundwater Standard

TABLE 3
Soil Sample Summary - Well Locations 1/28/2005
Dobbs Ferry Waterfront Park
Dobbs Ferry, New York

	Client ID:	M	W1-S	WZ-S	S	M	W3-S
	Depth:	22	22-24	16-20	0.	4	14-16
	Lab ID:	N948	N94857-1	N94857-4	57-4	N94857-7	2-7-
	Date Sampled: Matrix:	3/31/ S	3/31/2005 Soil	3/31/2005 Soil	3005	3/31/ Sc	3/31/2005 Soil
	NYSDEC	Conc	Q MDL	Conc Q	MDL	Conc	Q MDL
	Recommended						
	Soil Cleanup				•		
GC/MS Volatiles (ppm)	Onjective (ppin)						
Acetone	0.2	2	0.021	0.0484	0.018	Q	0.023
Benzene	0.06	2 !	0.0021	2 9	0.0018	2	0.0023
Bromodichloromethane	AN Y	2 2	0.011	2 2	0.0089	2 9	0.011
Bromomethane	AN	2 5	0.01	2 5	0.0089	2 5	0.01
2-Butanone (MEK)	0.3	2	0.021	2	0.018	2	0.023
Carbon disulfide	2.7	0.0076	J 0.011	0.0062	0.0089	0.011	0.011
Carbon tetrachloride	9.0	2	. 0.011	Ω	0.0089	Q	0.011
Chlorobenzene	1.7	0.0041	J 0.011	0.0134	0.0089	_	0.011
Chloroethane	1,9	9	0.011	Q	0.0089	Q	0.011
Chloroform	0.3	2	0.011	2 :	0.0089	2	0.011
Ciliorometriane	A S	2 2	0.011	2 5	0.0089	2 9	0.011
1 1-Dichlorothana	2 2	2 2	0.0	2 5	0.0009	5 5	0.0
1.1.2-Dichloroethane	2.0	2 5	0.01	2 5	0.0009	2 2	20.0
11.1-Dickloroethene	40	Ē	0.0	2 2	0.000	2 5	0.0
cis-1,2-Dichloroethene	Ϋ́	2	0.011	9	0.0089		0.011
trans-1,2-Dichloroethene	0.3	Q	0.011	Q.	0.0089		0.011
1,2-Dichloropropane	NA	Q	0.011	g	0.0089		0.011
cis-1,3-Dichloropropene	≰:	2 :	0.011	2 !	0.0089		0.011
trans-1,3-Dichioropropene	¥ '	2 9	0.011	Q :	0.0089		0.011
Eulyiperizerie	0.0	2 2	0.0021	0.004	0.0018		0.0023
Z-i iekailoi ie 4-Methyl-2-pentanone(MIRK)	¥ -	2 2	20.0	2 2	0,0089	2 5	0.011
Methylene chloride	0.1	0.0091	J 0.011	0.0063	0.0089	C	0.01
Styrene	Ą	9	0.011	2	0.0089		0.011
1,1,2,2-Tetrachloroethane	9.0	Q	0.011	Q	0.0089	Q	0.011
Tetrachloroethene	4.1	9	0.011	S	0.0089		0.011
Toluene	1.5	R	0.0021	0.0024	0.0018		0.0023
1,1,1-Trichloroethane	0.8	9	0.011	2	0.0089		0.011
1,1,2-Trichloroethane	NA	2	0.011	Q.	0.0089		0.011
Trichloroethene	0.7	₽:	0.011	2 :	0.0089		0.011
Virilyi Crioride	7.0	N S	0.011		0.0089		0.011
TOTAL TARGETED GC/MS Volatiles (ppm)	7	0.0257	0.0043	0.1456	0.0036	0.2197	0.0046
TOTAL NON-TABGETED GC MAS Volatiles (mm)		7		7	_		_
101AL NON-TAINED GOING VOIGINES (PPIII)		007.1	,	1.032		0.244	

Page 2 of 5

0.33 0.33 0.84 0.84 3.3 3.3 0.84 0.84 0.33 0.33 0.33 0.84 0.84 0.84 0.84 3.3 3.3 0.33 0.33 Conc Q MDI W3-S 14-16 N94857-7 3/31/2005 Soil 0.153 0.238 O.677 ON ON ON ON ON ON ND ND ND 0.287 0.4637 0.154 9999999 2 呈 760.0 0.097 0.97 0.24 0.24 0.24 0.24 W2-S 16-20 N94857-4 3/31/2005 Soil 0.0844 ND ND ND 0.0386 0.189 0.0451 0.0758 0.355 0.0572 0.0665 0.0684 ND ND ND ND Conc 0.0232 0.171 0.0832 1.1776 0.1560.11 0.11 0.11 1.1 0.27 0.27 0.27 1.1 1.1 0.27 0.27 0.11 0.11 MDL 0.11 0.11 0.27 0.27 W1-S 22-24 N94857-1 3/31/2005 Soil 0.0356 J 0.266 0.0576 0.432 0.528 1.2817 9 Date Sampled: Matrix: Depth: Lab ID: Recommended Objective (ppm) Soil Cleanup 0.33 or MDL 0.1 or MDL 1.0 or MDL 0.03 or MDL 0.061 or MDL 0.014 or MDL 0.240 or MDL 0.224 or MDI 0.220 or MDI 0.2 or MDL 0.1 or MDL 0.9 (2) NYSDEC 41 50⁽¹⁾ NA 50⁽¹⁾ NA ž ₹ TOTAL GC/MS Volatiles (ppm) bis(2-Chloroethoxy)methane 4-Bromophenyl phenyl ether GC/MS Semi-volatiles (ppm) 4-Chlorophenyl phenyl ether bis(2-Chloroisopropyl)ether 1-Chloro-3-methyl phenol Dibenzo(a,h)anthracene bis(2-Chloroethyl)ether 3'-Dichlorobenzidine Benzo(b)fluoranthene Butyl benzyl phthalate ,4,5-Trichlorophenol Benzo(k)fluoranthene ,4,6-Trichlorophenol Benzo(g,h,i)perylene 2-Chloronaphthalene 3enzo(a)anthracene 1,2-Dichlorobenzene ,3-Dichlorobenzene I,4-Dichlorobenzene Di-n-butyl phthalate Di-n-octyl phthalate 2,4-Dimethylphenol 1,6-Dinitro-o-cresol entachlorophenol 2,4-Dichlorophenol 3&4-Methylphenol 2,4-Dinitrotoluene ,6-Dinitrotoluene 2,4-Dinitrophenol Acenaphthylene Benzo(a)pyrene 4-Chloroaniline 2-Chlorophenol 2-Methylphenol Acenaphthene Dibenzofuran 2-Nitrophenol -Nitrophenol Anthracene Carbazole Chrysene henol

Soil Sample Summary - Well Locations 1/28/2005

Dobbs Ferry Waterfront Park Dobbs Ferry, New York

TABLE 3
Soil Sample Summary - Well Locations 1/28/2005
Dobbs Ferry Waterfront Park
Dobbs Ferry, New York

	Client ID:	W1-S		W2-S	s	W3-S	S, S
	Deput.	#7-77 WIG40E7		07-01 07-01	, 1 c	14-10 NO4057 7	1 0
	Date Sampled:	3/31/2005	- 15	3/31/2005	902	3/31/2005	002
	Matrix:	Soil		Soil		Soil	_
	NYSDEC	Conc	MDL	Conc	MDL	Conc Q	MDL
	Soil Cleanup						
	Objective (ppm)						
Diethyl phthalate Dimethyl phthalate	7.1	<u> </u>	0.1	2 2	0.097	2 2	0.33
bis(2-Ethylhexy))phthalate	50(1)	0.584	0.11	3.76	0.097	8.01	0.33
Fluoranthene	50(1)	1.21	0.11	0.462	0.097	0.546	0.33
Fluorene	50(1)	0.0597 J	0.11	0.0976	0.097	0.141	0.33
Hexachlorobenzene	0.41	2	0.11	2	0.097	Q.	0.33
Hexachlorobutadiene	NA:	2	0.11	2 9	0.097	9 9	0.33
Hexachlorocyclopentadiene Hexachloroefhane	A A	2 8	1.1	2 2	0.97	2 2	3.3
Indeno(1,2,3-cd)pyrene	3.2	0.438	0.11	0.0612 J	0.097	2	0.33
Isophorone	4.4	QN	0.11	Q	0.097	Q	0.33
2-Methylnaphthalene	36.4	0.0775 J	0.11	0.0627 J	0.097	0.4	0.33
2-Nitroanline	0.43 or MDL	2 5	0.27	2 5	0.24	2 5	0.84
4-Nitroanijne	NA NA	2 2	0.27	2	0.24	2 2	0.84
Naphthalene	13	0.0335 J	0.11	0.149	0.097	0.53	0.33
Nitrobenzene	0.2 or MDL	2	0.11	Q.	0.097	Q.	0.33
N-Nitroso-di-n-propylamine N-Nitrosodinhenvlamine	A A	2 5	0.71	2 5	0.097	2 2	0.33
Phenanthrene	50(1)	0.395	0.11	0.479	0.097	0.648	0.33
Pyrene	50 ⁽¹⁾	1.19	0.11	0.431	0.097	0.598	0.33
1,2,4-Trichlorobenzene TOTAL TARGETED GC/MS Semi-volatiles (ppm)	3.4	ND 9.5978	0.11	ND 7.1838	0.097	ND 14.931	0.33
TOTAL NON-TARGETED GC/MS Semi-volatiles (ppm)		27.64 J		82.23 J		83.14 J	
TOTAL GC/MS Semi-volatiles (ppm)	500 (1)	37.2378		89.4138		98.071	
GC Semi-volatiles (ppm) (SW846 8081A)							
Aldrin	0.041	Q.	0.0021	Q.	0.0019		0.0018
alpha-BHC	0.71 0.2	2 2	0.0021	2 2	0.0019	2 2	0.0018
delta-BHC	0.3	ΩN	0.0021	Q	0.0019		0.0018
gamma-BHC (Lindane)	0.06	2 5	0.0021	<u>8</u>	0.0019		0,0018
aipna-Cniordane namma-Chlordane	NA 0.54	2 2	0.0021	S S	0.0019	2 2	0.0018
Dieldrin	0.044	0.0063	0.0021	0.0164	0.0019		0.0018
4,4'-DDD	2.9	ND	0.0021	0.784	0.019	0.0063	0.0018
4,4-DDE 4.4'-DDT	2.7	0.0103	0.0021	0.147	0.019	0.022	0.0018

Page 4 of 5

TABLE 3
Soil Sample Summary - Well Locations 1/28/2005
Dobbs Ferry Waterfront Park
Dobbs Ferry, New York

	Client ID: Depth:	W1-S 22-24	S #	W2-S 16-20	S O	W 4	W3-S 14-16
	Lab ID:	N94857-1	7-1	N94857-4	47	N948	N94857-7
	Date Sampled: Matrix:	3/31/2005 Soil	902	3/31/2005 Soil	005 I	3/31/ Sc	3/31/2005 Soil
	NYSDEC Recommended Soil Cleanup Objective (ppm)	Conc Q	MDL	Conc	MDL	Conc	Q MDL
Endrin	0.1	Q.	0.0021	SN.	0.0019	QN	0.0018
Endosulfan sulfate	_	ND	0.0021	Ð	0.0019	Q	0.0018
Endrin aldehyde	NA NA	ND	0.0021	Q	0.0019	9	0.0018
Endosulfan-I	6.0	Ω	0.0021	ND	0.0019	Q	0.0018
Endosulfan-II	6.0	ΩN	0.0021	Q	0.0019	ΩŅ	0.0018
Heptachlor	0.1	Ω	0.0021	Q	0.0019	2	0.0018
Heptachlor epoxide	0.02	Ω	0.0021	9	0.0019	Q	0.0018
Methoxychlor	3	Q Q	0.0053	2	0.0048	Q	0.0046
Endrin ketone	AN :	요 :	0.0053	2 :	0.0048	2	0.0046
l Oxapinerile	WA .	2 :	0.026	⊋ :	0.024	2	0.023
A10000 1010	1 surt, 10 subsurt (3)	2 :	0.036	⊋ :	0.034	2 :	0.033
Arodor 122 (1 suit, 10 subsuit (3)	2 5	0.030	<u> </u>	0.034	2 !	0.033
Albeita 1232	4 40 (3)	ON C	0.036	2 5	0.034	2	0.033
Alucion 1242	1 suff., 10 subsuff.	LZG.U	0.036	0.356	0.034	0.237	0.033
Alocior 1248	1 surt, 10 subsurt	ON!	0.036	2	0.034	2	0.033
Arocior 1254	1 surt., 10 subsurf	0.171	0.036	2	0.034	0.138	0.033
Aroclor 1260	1 surf., 10 subsurf	Q i	0.036	0.0557	0.034	2	0.033
OTAL TARGETED GC Settil-Volatiles (ppm)		0.7145		1.3859		0.4299	
Metals Analysis (ppm)	-						
Aluminum	SB	5890	33	6770	59	3520	28
Antimony	SB	<1.6	1.6	<1.4	1.4	4.1^	1.4
Arsenic	7.5 or SB	6	9.1	5.6	4.1	13.3	1.4
Barium	300 or SB	60.4	33	214	53	71.6	28
Beryllium	U.16 (HEASI) or SB	<0.81	0.81	<0.72	0.72	<0.70	0.7
Cadmidin	1 of 55	<0.81	0.87	1.1	0.72	7.3	0.98
Carcuit	JO OF CR	346	9.0	11900	7.50	14400	9 ;
Cobalt	30 or SB	<8.1 48.1	. 6	2.67		88	<u>†</u> ^
Copper	25 or SB	97.5	4.1	41.2	3.6	70.3	3.5
Iron	2,000 or SB	67200	16	65300	4	108000	20
Lead	SB (4)	147	1.6	185	1.4	2830	1.4
Magnesium	SB	7180	810	4990	720	2250	700
Manganese	SB	326	2.4	366	2.2	502	2.1
Mercury	0.1	0.52	0.051	1.1	0.048	0.37	0.042
Nickei	13 or SB	22.7	6.5	17.6	5.8	24.9	5.6
Potassium	SB	1170	810	1210	720	<700	200
Silver	20 OD 2	8.7	<u>.</u> م	2.7	4. 4		4. 4
Sodium	SB	810 810	810	<720	720	799	700
Thallium	SB	₹.	1:	4.0	-	<2.0	2
Vanadium	150 or SB	14.6	8.1	17.3	7.2	15	7
ZINC	20 or SB	256	3.3	1830	2.9	1250	2.8

Page 5 of 5

Soil Sample Summary - Well Locations 1/28/2005 Dobbs Ferry Waterfront Park Dobbs Ferry, New York TABLE 3

	Client ID:	W1.	S	WZ-S		W3-	S
	Depth:		4	16-20		14-1	9
	Lab ID:		7-1	N94857	4	N9485	1-1
	Date Sampled:	3/31/2005	305	3/31/2005	22	3/31/2005	500
	Marrix:	100		200		200	
	NYSDEC	Conc Q MDL	MDL	Conc Q MDL	MDL	Conc Q MDL	MDL
	Recommended						
	Soil Cleanup						
	Objective (ppm)						
General Chemistry (ppm)							
Cyanide	ΑN	<0.37	0.37	<0.34	0.34	<1.6	1.6
Solids, Percent (%)	NA NA	2.68		92.6		8.66	

(1) As per TAGM #4046, Total VOCs <10 ppm, Total Semi-VOCs <500 ppm, and Individual Semi-VOCs <50 ppm
(2) Soil Cleanup Objective for 4-Methylphenol
(3) Total PCB Cleanup Objective
(4) USEPA Residential Lead Standard for soil = 400 ppm bare soil in childrens play area or 1200 ppm for bare soil in rest of yard
NA = Not Available
SB = Site Background
ND = Not Detected at Indicated Method Detection Limit
Concentration Exceeds NYSDEC Groundwater Standard

TABLE 4
Groundwater Sample Summary - Temporary Well Points
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Client ID:	FB-S	E	FB-W	TB	-	W1-W	W.	W2-W	W3-W	-	W4-W	
	Sample Deptn: Lab ID:	N94857-2	N948	N94857-9	N94857-10	<u></u>	N94857-3	N948	N94857-5	N94857-8	60	N94857-6	۳
	Date Sampled: Matrix:	3/31/2005 Field Blank Soil		3/31/2005 Field Blank Soil	3/31/2005 Trip Blank Soil		3/31/2005 Ground Water	3/31 Ground	3/31/2005 Ground Water	3/31/2005 Ground Water	5 afer	3/31/2005 Ground Water	05 Vater
	NYSDEC	Conc Q MDL	Conc	Q MDL	Conc Q MDL	OL Conc	nc Q MDL	<u> </u>	Q MDL	Conc Q	Q MDL	Conc	Q MDL
	Groundwater Standards (ppb)							···					***********
GC/MS Volatiles (ppb)													
Acetone	50			9		QN O		6.7	J 10	25.5	10	17.1	10
Benzene	7.0			-	ND 1	L	Г	2	Ψ-	2.3	: -	2	:
Bromodichloromethane Bromoform		8 8	2 5		ON I		 	2	-	₽		Q	
Bromomethane				4 2	ON ON ON ON ON ON ON ON ON ON ON ON ON O	2 2		2 5	4 c	2 9	4.0	2 9	4 c
2-Butanone (MEK)	50			. . .	•			2	10	₽ 9	10	9 9	۶ 1
Carbon tetrachloride	50			7 +		2 2		0.49	ر 2	L. 1	2 5	2	2
Chlorobenzene	2				2 2	2 10		7 4 8 8		78.9		N 4 7 7	
Chloroethane	50	ND 1	8	~	ND ON	Ž	_	2	· 	ND ND		2	- ,-
Chloroporm	7	2 :	2	_	NO.	Ź —	1	S	~	QN Q	_	2	τ-
Dibromochloromethane	20	S S	99		<u> </u>	Z 2	٥ ر ۲ - ۲	2 2		2 9	- -	9 9	, ,
1,1-Dichloroethane	ς Σ	9 9	2 9	- \	2 2	z Z	- - -	2 5	- +	2 9		2 2	
1,2-Dichloroethane	ū	NO T	2	Ψ-	N ON	: Ź	. –	2	- ~-	2		2 2	
1,1-Dichloroethene	S.	Q !	2	~	ND ON	Ź	1	Q.	-	ΩN	-	9	· -
trans-1,2-Dichloroethene	ĸ	55	<u> </u>	·- ·	S 5	z 2	- ·	2 9	- τ	2 !		2 :	-
1,2-Dichloropropane)	5 5	2 9		2 2	z	- F	2 2		2 E		9 9	
cis-1,3-Dichloropropene		ND 1	2	-	N ON	ž	. —	2		2		2 2	
trans-1,3-Dichloropropene	1	2	2	_	ND 1	Ź		2	~	Q.	_	Q.	-
Zulyibelizerie 2-Hexanone	2	CN CN CN		 ц		z 2	Ω (0.98	ے 1	1.7	- 1	0.9 J.	- 1
4-Methyl-2-pentanone(MIBK)	20			טיני		z		2 2	Ω K	2 5	ıç u	2 2	ı,
Methylene chloride	5	ND S		2 0	N ON	z Ź		2 2	2 2	2 2	0 0	2 E	٥٥
Styrene		ND 2		5	ND ON	Ź 		2	သ	Q	. ro	9	5
1,1,2,2-1eu acinotoeu ane Tetrachloroethene	ດທ			 -	S 5	z	۵ ر ۲ ۰	99	₩ ₹	2 9	- ,	2 9	Ψ,
Toluene	2	2	9		2 2	-		2 2		N 0		- N	
1,1,1-Trichloroethane	Ω.	NΩ	2	-	ND ON	Ž	<u></u>	2	. —			2	
1,1,2-inchloroethane Trickloroethane		2 :	2 :	- ,	Q.	z :	7	2	-	Q.	-	9	-
Vinyl chloride ·	7	9 9	2 2			z	9 9	9 9		2 2		2 2	
Xylene (total)	S.	N T	Q	Ψ-	ND ON	. Ż		20.8	- -	12.8	_ -	18.8	
TOTAL TARGETED GC/MS Volatiles (ppb)		0	0		0	23.	9.7	34.41	.	123	<u> </u>	41.84	
TOTAL NON-TARGETED GC/MS Volatiles (ppb)		0	0		0	<u> </u>		0	•	49.7 J		0	
TOTAL GC/MS Volatiles (ppb)		0	0		0	237.6	7.6	34.41		172.7		41.84	
						\dashv							

Page 1 of 5

TABLE 4
Groundwater Sample Summary - Temporary Well Points
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Client ID:	FB-S		FB-W		TB	Š	W1-W	W2-W	≥	W3-W		W4-W	Μ-
	Sample Deput.	N94857-		N94857-9	o,	N94857-10	N94857-3	57-3	N94857.5	7.5	N94857_8		N9/857.6	57.6
		3/31/2005 Field Blank Soil		3/31/2005 Field Blank Soil)5 Soil	3/31/2005 Trip Blank Soil	3/31/2005 Ground Water	2005 Wafer	3/31/2005 Ground Water	705 Vafer	3/31/2005 Ground Water	05 Vater	3/31/2005 Ground Water	2005 Water
		Conc Q MDL	ļ	Conc Q	 	Conc Q MDL	Сопс	Conc Q MDL	Сопс	Q MDL	Conc	Q MDL	Conc	Q MDL
GC/MS Semi-volatiles (ppb)	Standards (ppb)													
														
2-Chlorophenol	50	2 2	ıcı	9 5	5.1	NA S	2 !	ro r	2 :	5.4	9 !	2	Q.	5.2
2,4-Dichlorophenol	o -	2 2	. ro	2 2	5.7	NA N	2 2	יז ט	2 5	4. 4	2 2	יט ע	2 2	5.2
2,4-Dimethylphenol		Q.	5	9	5.1	₹	2 2	. ro	2 2	4.4	2 2	יז כ	2 2	2.5
2,4-Dinitrophenol	5	R	20	Q	20	NA	2	20,	2	55	2 8	20 2	2 2	2.5
4,6-Dinitro-o-cresol		Q	20	Q.	20	NA	2	20	Q	22	9	20	2	7
Z-Methylphenol	ທີ່	2	rc -	2	5.1	NA NA	2	5	2	5.4	Q	5	S	5.2
3&4-Methylphenol	50 (1)	Q	2	9	5.1	NA	9	5	2.9	J 5.4	9	2	2.9	J 5.2
Z-Niuophenol	ı, cı	9 9	2 2	2 2	5.1	Y S	2 !	ۍ (2 :	5.4	2	22	2	5.2
Pentachloronhenol	O +	5 5	2 20	2 2	9 8	¥ S	2 5	2 8	2 5	22	2 :	50	2 :	7
Phenol	- 4-	2 5	ر م	2 5	7 7	Z Z	2 5	 07 4	2 5	77	2 5	. Z	2 9	21
2,4,5-Trichlorophenol		2	. rc	2 5	. 7.	Z N	2 5	ט גנ	2 5	0, r	2 5	O 14	2 2	2.2
2,4,6-Trichlorophenol		Q.	2	9	5.1	Z	2	, ru	2 2	4 4	2 5	ט גר	2 5	2.5
Acenaphthene	20	N O	2	9	7	NA	2.8	2	0.57	J 2.2	2	2 0	2 2	2.5
Acenaphthylene	20	ND	2	2	7	NA	2	7	2	2.2	2	1 73	2	2.1
Anthracene	20	Q	7	2	7	NA	0.91	J 2	2	2.2	<u>Q</u>	2	Q Q	2.1
Benzo(a)anthracene	0.002	9 :	7	2 :	2 '	AN :	2	7	2	2.2	2	7	Q N	2.1
Benzo(h)fuoranthene	0.002 (UN)	9 9	., .	2 5	21 0	Y Y	2 9	~ ~	2 5	2.2	9 9	2 0	2 :	2.1
Benzo(a.h.i)berylene	5.002	2 2	10	2 5	۰ ۷	NA	2 2	7 0	2 2	2.2	2 5	N 0	2 2	2.7
Benzo(k)fluoranthene	0.002	2	1 0	2 9	1 0	X X	2 2	1 0	9 €	2.2	2 E	۸ ۷	2 2	2
4-Bromophenyl phenyl ether		S	2	P	2	NA	9	7	9	2.2	2	1 72	2	2.1
Butyl benzyl phthalate	20	₽!	7	9 !	7	¥ :	2	2	Q	2.2	<u>Q</u>	7	Ñ	2.1
Z-Cnioronaphunaiene Z-Chloroaniine	Ľ	2 2	ıo ı	2 9	5.1	NA S	2 9	ភ រ	9 9	5.4	2 :	ı O	9 !	5.2
Carbazole	,	2 2	, c	2 5	 	AN AN	2 5	0 0	2 2	4.0	2 5	٠ c	2 2	τ. Υ τ.
Chrysene	0.002	2	1 0	2	1 0	NA NA	9	1 6	2 2	2.2	2 2	1 0	2 2	2.1
bis(2-Chloroethoxy)methane		Ω	2	R	2	NA	2	2	N	2.2	9	2	2	2.1
bis(2-Chloroethyl)ether		Q.	7	9	2	NA	9	2	2	2.2	9	2	Q	2.1
bis(z-Chloroisopropyl)ether		2	7 0	9 9	2 (YA:	2	2	2	2.2	Q.	2	S	2.1
4-Cniorophenyl pnenyl etner	1	9 9	20	99	2 0	A :	2 :	2 '	2 :	2.2	2	2	2	2.1
1,2-Dichlorobenzene	7.4	2 2	7 (2 2	Ν (Y Y	2 9	0.0	2 5	2.2	2 :	2 (₽!	2.1
1.4-Dichlorobenzene	ם ני	2 5	۰ د	<u> </u>	۷ ۸	NA NA	 § °	7 6	2 5	2.2	2 2		3 S	2.1
2,4-Dinitrotoluene)	2	1 8	2	1 7	¥ N	2 2	1 0	S S	2.2	t CN	۰ ۷	. S	2.7
2,6-Dinitrotoluene	S	Q.	7	Q	7	NA	2	2	2	2.2	2	1 7	2	2.1
3,3'-Dichlorobenzidine	N N	Ω	2	Q	5.1	NA	9	5	Q	5.4	Q	2	S	5.2
Dibenzo(a,h)anthracene	20	요 !	21	₽!	7	AN :	2	7	2	2.2	S	2	2	2.1
Ulberizolufati	5	Q.	Ç	ND ND	5.1	NA	1.3	ر ج	2	5.4	2	2	2	5.2

TABLE 4
Groundwater Sample Summary - Temporary Well Points
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

	Sample Depth:	TH V	ī.	FB-W	<u>m</u>		W1-W	W2-W	 ≩	W3-W	>	W4-W	 ≽
	Lab ID:	N94857-2	N94	N94857-9	N94857-10	N S	N94857-3	N94857-5	57-5	N94857-8	8-7	N94857-6	9-7:
	Matrix:	Field Blank Soil		Field Blank Soil	Trip Blank Soil		Ground Water	Ground Water	Water	Ground Water	Vater	Sround Water	Water
	OHOMA	Conc Q MDL	L Conc	Q MDL	Conc Q MDL		Q MDL	Conc	Q MDL	Conc	Q MDL	Conc	Q MDL
	RYSDEC Groundwater Standards (ppb)		······································										
	50		_	2	NA:	2		QN	2.2	QN	2	QN	2.1
Diefkyl nbfbalate	20			N 0	A S	2 2		2 9	2.2	은 당	~ ~	2	2.1
Dimethyl phthalate	20			7 7	Z Z	2		2 2	2.2	6. E	N N	2 2	2.7
bis(2-Ethylhexyl)phthalate	20			7	NA A	<u>ه</u>		3.6	2.2	12.4	1 0	2	J 2.1
Fluoranthene	50			2 0	NA S	7.8	7	2 5	2.2	U. 77.0	7 0	2	
Hexachlorobenzene	50 0.35			2 2	Y X	Z Z		2 2	2.2	2 2	2 0	2 2	2.7
Hexachlorobutadiene				1 64	NA.	2		2 2	2.2	2 9	1 7	2 2	2.1
Hexachlorocyclopentadiene Hexachloroethane				20	A S	99		2 2	22	2 5	20 -	2 2 3	72
Indeno(1,2,3-cd)pyrene	0.002			.; c	Z Z	2		2 2	2.2	2 2	o 0	2 2	2.7
Isophorone	50			7 0	A :	S.		Θ.	2.2	Q.	2	2	2.1
2-Nitroaniline	5 5			7 K	Y Y		7	- 5	J 2.2	2 2	2 4	9.0 C	5.1
3-Nitroaniline	ς.			5.1	NA N	2		2 2	5.4	2 9	2	2 2	5.2
4-Nitroaniline Nanhthalene	70			5.1	AA Y	S.	-	9 %	4.6	ON A	ro c	28	5.2
Nitrobenzene	5 2			1 0	Z Z	<u> </u>	•	7 Q	2.2	5. S	v 0	N ON	2.7
N-Nitroso-di-n-propylamine				2 4	AN S	9;	-	99	2.2	2 5	2 1	2 5	2.1
Phenanthrene	50	ND ND S	2 2	. 0	N N	.7	5 2	1,2	0.4 J 2.2	0.99	0 0	- €	3.2 J. 2.1
Pyrene 1.3.4 Trichlorobourges	50			2 0	A S	1.2	٦	2	2.2	0.76	2	9 !	2.1
1,2,4-1 IICINOTODERZENE TOTAL TARGETED GC/MS Semi-volatiles (ppb)	c	O O	1.7	7	A A	24.61	_	12.21	2.2	ND 22.26	8	0.77 9.77	2.1
TOTAL NON-TARGETED GC/MS Semi-volatiles (ppb)		0	0		NA	894.6	٦ (1855	-,	671.3 J		1902	7
TOTAL GC/MS Semi-volatiles (ppb)		0	1.7		NA	919.21	_	1867.21		693.56		1911.77	
GC Semi-volatiles (ppb) (SW846 8081A)													
Aldrin	ND (<0.01)			0.02	ΑN	2	0.02	2	0.02	2	0.021	9	0.02
alpha-BHC	ND (<0.05)	ND 0.02	Q !	0.02	N :	2	0.02	2	0.02	2	0.021	2	0.02
Deta-BHC	ND (<0.05)			0.02	A N	2 2	0.02	2 2	0.02	9 9	0.021	9 9	0.02
gamma-BHC (Lindane)	ND (<0.05)			0.02	¥.	2	0.02	9	0.02	2	0.021	9	0.02
alpha-Chlordane				0.02	∀ N	2 :	0.02	₽!	0.02	2	0.021	2	0.02
gamma-chorane Dieldrin	0.1 ND (<0.01)			0.02	A A	2 2	0.02	99	0.02	2 2	0.021	2 5	0.02
4,4'-DDD	ND (<0.01)			0.02	Y Y	2	0.02	0.037	0.02	2 2	0.021	0.023	0.02
4,4'-DDE	ND (<0.01)	ND 0.02	_	0.02	NA	S	0.02	0.025	0.02	QN	0.021	0.02	0.02

TABLE 4
Groundwater Sample Summary - Temporary Well Points
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

			l						ŀ		ŀ				
	Client ID: Sample Depth:	FB-S		FB-W	>	B		W1-W		W2-W		W3-W		W4-W	≥
	. Lab ID:	N94857-2	7-2	N94857-9	6-7	N94857-10	•	N94857-3		N94857-5		N94857-8	æ	N94857-6	7-6
	Date Sampled: Matrix:	3/31/2005 Field Blank Soil	05 k Soil	3/31/2005 Field Blank Soil	05 k Soil	3/31/2005 Trip Blank Soil		3/31/2005 Ground Water		3/31/2005 Ground Water		3/31/2005 Ground Water)5 afer	3/31/2005 Ground Water	005 Nater
		Conc Q	Q MDL	Conc	Q MDL	Conc Q M	MDL C	Conc Q MDL	<u> </u>	Conc Q MDL	Ŀ	Conc Q	Q MDL	Conc	Q MDL
	Groundwater														
4,4'-DDT	ND (<0.01)	QN	0.02	QN	0.02	NA	+		0.02		L	₽ P	0.021	QN	0.02
Endrin	ND (<0.01)	9	0.02	g	0.02	NA			0.02			₽	0.021	2	0.02
Endosulfan sulfate	0.1	R	0.02	g	0.02	NA A			0.02			Ð	0.021	2	0.02
Endrin aldehyde		2	0.02	R	0.02	NA A	_	0 Q	0.02			Q.	0.021	2	0.02
Endrin ketone	NA NA	2	0.05	2	0.051	NA			0.05		0.05		0.052	2	0.051
Endosulfan-I	0.1	Q	0.02	9	0.02	Ϋ́			0.02				0.021	g	0.02
Endosulfan-II	0.1	2	0.02	2	0.02	NA A			0.02			S S	0.021	Q	0.02
Heptachlor	ND (<0.01)	Q N	0.02	2	0.02	¥.			0.02			S	0.021	Ð	0.02
Heptachlor epoxide	ND (<0.01)	2	0.02	9	0.02	NA.			0.02			Q	0.021	<u>Q</u>	0.02
Methoxychlor	35	2	0.05	2	0.051	¥			0.05			2	0.052	2	0.051
Toxaphene	ę	2	0.25	₽	0.25	NA A			0.25			Ð	0.26	2	0.25
Aroclor 1016	0.1	2	0.5	2	0.51	NA			0.5			Q	0.52	Q	0.51
Aroclor 1221	0.1 (3)	9	0.5	2	0.51	NA		Q.	0.5		0.5	Q	0.52	Q	0.51
Aroclor 1232	0.1 (2)	QN	0.5	9	0.51	NA		ON	0.5			Q	0.52	Q	0.51
Arnclor 1242	0.1(2)	S	0.5	E	0.51	NA						9	0.52	2	0.51
Aroclor 1248	0.1	2 5	2 6	2 2	2 2	N VI			2 4			2 2	0.55	2 5	2 2
	27.5	2 4	2 6	2 5	5 6	<u> </u>			2 1			<u> </u>	20.0	2 !	0.0
Arocior 1254	0.1	2 5	0.5	2 9	0.51	¥ S			0.5		5.0	₽ 9	0.52	2 5	0.51
Arocion 1250 TOTAL TARGETED GC Semi-volatiles (pub)		⋛ -	C.O	⊋ -	1.5.0	A N		_		אס ל ה		⊋ •	76.0		0.51
		Þ		•		<u> </u>		o		7005		o		20.0	
Metals Analysis (ppb)									 .						
Aluminum	Ϋ́Z	<200	200	<200	200	¥	_					316	200	<200	200
Antimony	က	<5.0	5	<5.0	5	NA			2	5.9	1	5.2	2	<5.0	2
Arsenic	25	<5.0	5	<5.0	5	ΑN				1	ı	8.01	5	19.5	5
Barium	1000	<200	200	<200	200	NA						:200	200	266	200
Beryllium	AN AN	<5.0	5	<5.0	2	¥.						<5.0	5	<5.0	2
Cadmium	2	×4.0	4	4.0	4	¥.	•					4.0	4	<4.0	4
Calcium	NA S	2000	2000	<2000	2000	¥:	20	208000 5		0	•	154000	2000	158000	5000
Chromium	99	<10 70 70	10	2,5	2 2	¥:						×10	9	2 10 10	19
Cobait	AN COC	S (00 %	S (ر د د	NA NA						£ ₹	20, 40	£ 4	S 4
Tron	300	(100 (100	100	400	200	Ç N		_		г		2000	- C- C- C- C- C- C- C- C- C- C- C- C- C-	27300	3 5
Lead Lead	25	8 8		8 8	 6 m	Ž Ž		36.8		_		13	3 ~	3000	
Magnesium	NA	<5000 <5000	2000	<5000	2000	Y N	<u></u>	7		7		30200	2000	85800	2000
Mandanese	300	<15	15	415	15.0	Y AN	Ĺ	_	L	Г	-	1010	15.	2360	15
Merciny	200	0000		200		ΔN]	35		7		200	2 5	2007	2 6
Nickel	100	×40 ×40	4.04	<40	40	Z Z			404		40	<40	40	~0.20 <40	40
Potassium	AN	<5000	2000	<5000	2000	×	60	81300 5				49000	5000	59200	2000
Selenium	10	<5.0	2	<5.0	5	NA A				<5.0		<5.0	5	<5.0	5
Silver	50	<10	9	<10	10	NA					\dashv	<10	10	<10	10

Page 4 of 5

TABLE 4
Groundwater Sample Summary - Temporary Well Points
Dobbs Ferry Waterfront Park, Dobbs Ferry, NY

And the second s	Client ID:	FB-S		FB-W	ŀ	TB	W-I-W		W2-W	×	W3-W	3	10/4-10/	1
	Sample Depth:								!		•	•	•	-
	Lab ID:	N94857-2	~	N94857-9	6	N94857-10	N94857-3	7-3	N94857-5	57-5	N94857-8	57-8	N94857-6	- B-Z
	Date Sampled:	3/31/2005		3/31/2005	2	3/31/2005	3/31/2005	205	3/31/2005	005	3/31/2005	2005	3/31/2005	
	Matrix: Field	Field Blank Soil		Field Blank Soil		Trip Blank Soil	Ground Water	Nater	Ground Water	Water	Ground Water	Water	Ground Wafer	Vafer
		Conc Q MDL		Conc Q	MDL (Conc Q MDL Conc Q MDL	Conc Q MDL		Conc O MDI	CMC	1	IOM	Conc O MDI	ICM
	NYSDEC									1		×	2	1
	Groundwater													-
	Standards (ppb)													
Sodium	20,000	<5000 5	5000 <	<5000	5000	NA	410000	5000	295000	5000	5000 310000	5000	308000	2000
Thallium	ĄZ	7	,						2000		000010	2000	200000	0000
	ξ.			210		NA	<10	10	2	10	20,	10	<10	10
Valiaulum	¥	×20	20	<50	20	NA	<50	20	<50	50	<50	50	<50 <50	בי
Zinc	¥	<20	20	<20	20	NA	110	5	445	200	700	8 6	9 6	3 8
-					 ì		2	3	P	2	2	2	203	2
General Chemistry (ppm)														
Cyanide	200	<0.010	0.01 <0.010		5	ΔIN	27	5	1		3			
		١		ı	-1	1./1	0.10	0.01	0.01		0.01 0.11	0.01	0.044	0.01

Groundwater Standard for 4-Methylphenol
 Total PCB Groundwater Standard
 NA = Not Available
 ND = Not Detected at Indicated Method Detection Limit

Concentration Exceeds NYSDEC Groundwater Standard

DATA USABILITY SUMMARY REPORT (DUSR) 2005 DATA

The objective of the Data Usability Summary Report (DUSR) is to determine whether the data meets the site/project specific criteria for data quality and data use. The DUSR has been prepared by the Quality Assurance Officer, John Kerber. Mr. Kerber's resume was previously submitted to NYSDEC as part of the Site Investigation Workplan.

The laboratory data was reviewed for accuracy and usability in accordance with the guidelines set forth in Appendix B of the NYSDEC's Voluntary Cleanup Guide dated May 2002. The sample analysis reporting level was the NYSDEC Analytical Services Protocol (ASP) Category B deliverables.

All sample analyses conducted as part of this investigation were done by Accutest Laboratories, a New York State ASP/DOH certified laboratory (#10983). All samples were analyzed using standard USEPA SW-846 methodologies.

The following table presents a summary of the matrix type, number of samples, number of field and trip blanks, analytical parameters, and analytical methods.

Analytical Methods/QA Summary Table

# of Samples	Matrix	Parameter	EPA Method	Sample Duplicates	Field Blanks
7	Soil	TCL VO	8260B	1	1
7	Soil	TCL SVOCs	8270C	1	1
7	Soil	TCL Pesticide/ PCB	8081A/ 8082	1	1
7	Soil	Cyanide	9012M	1	1
7	Soil	TAL Metals	6010B/7471A	1	1
3	Aqueous	TCL VOCs	8260B	1	1
3	Aqueous	TCL SVOCs	8270C	1	1
3	Aqueous	TCL Pesticide/ PCB	8081A/ 8082	1	1
3	Aqueous	Cyanide	335.3	1	1
3	Aqueous	TAL Metals	6010B/7470A	1	1

Upon review, the data packages were found to be complete as defined under the requirements for the NYSDEC ASP Category B deliverables.

All holding times were met for the soil and groundwater sample analyses.

All of the QC data (i.e, blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data) fall within the protocol required limits and specifications with the following exceptions:

1. <u>Job No. N89577</u> (Test Pit Soil Samples)

Volatiles (aqueous) Method 8260B

- Matrix spike/matrix spike duplicates recovery for benzene, ethylbenzene, xylene (total) are outside control limits due to high level in sample relative to spike amount.
- Matrix spike/matrix spike duplicates recovery for 2-butanone (MEK0 and benzene are outside control limits due to probable matrix interference.
- Sample N89228-3MSD has surrogate outside control limits due to probable matrix interference.
- N89626-6MS/MSD for 2-butanone (MEK) outside control limits due to matrix interference.
- N89626-6MS/MSD for acetone outside control limits due to matrix interference.

Volatiles (solid) Method 8260B

- Matrix spike recoveries for 1,1,2,2-tetrachloroethane, acetone, trichloroethene are outside control limits due to matrix interference.
- Matrix spike duplicate recoveries for 1,1,2,2-tetrachloroethane, acetone, trichloroethene are outside control limits due to matrix interference.
- RPD for MSD for 1,1,2,2-tetrachloroethane are outside control limits due to probable sample homogeneity.
- Sample N89228-3MSD has surrogates outside control limits due to probable matrix interference.
- N89228-3MSD for dibromofluoromethane outside control limits due to probable matrix interference/sample inhomogeneity.
- Matrix spike recovery for acetone is outside control limits due to high level in sample relative to spike amount.

Extractables (aqueous) Method 8270C

- Matrix spike recovery for 2-methylnaphthalene, 4-chloro-3-methyl- phenol, 4-chloroaniline, bis(2-chloroethyl)ether, hexachlorocyclopentadiene, N-Nitroso-din-propylamine are outside control limits due to matrix interference.
- Matrix spike duplicate recovery for 2-methylnaphthalene, 4-chloro-3-methylphenol, 4-chloroaniline, bis(2-chloroethyl)ether, hexachlorocyclopentadiene, N-

- Nitroso-di-n-propylamine, N-Nitrosodiphenylamine are outside control limits due to matrix interference.
- Matrix spike recovery for 2,4-dimethylphenol, 2-methylphenol 3&4-methylphenol, phenol are outside control limits due to high level in sample relative to spike amount.
- RPD for MSD for 2,4,5-trichlorophenol, 2,4-dinitrophenol, 2-nitroaniline, 4-chloroaniline, 4-nitroaniline, n-nitrosodiphenylamine are outside control limits for sample OP19379-MSD due to probable sample homogeneity.
- OP19379-MSD for 4-nitroaniline, 2-nitroaniline and 2,4-dinitrophenol are outside control limits due to matrix interference.
- OP19379-MS for N-Nitroso-di-n-propylamine, hexachlorocyclopentadiene, bis(2-chloroethyl)ether, -chloroaniline, 4-chloro-3-methyl- phenol are outside control limits due to matrix interference.
- OP19379-MSD for 2,4,5-trichlorophenol outside control limits due to high level in sample relative to spike amount.

Extractables (solid) Method 8081A

- N89577-6 for gamma-Chlorodane reported 2nd signal. Percent D of end check (ECC) on 1st signal excess method criteria (15%) so using for confirmation only.
- N89577-4 for alpha-Chlorodane more than 40% RPD for detected concentrations between the two GC columns.
- N89577-3 for alpha-Chlorodane more than 40% RPD for detected concentrations between the two GC columns.
- N89577-2 for gamma-Chlorodane more than 40% RPD for detected concentrations between the two GC columns.
- N89577-2 for alpha-Chlorodane more than 40% RPD for detected concentrations between the two GC columns.
- N89577-5 for gamma-Chlorodane reported 2nd signal. Percent D of end check (ECC) on 1st signal excess method criteria (15%) so using for confirmation only.

Extractables (solid) Method 8082

- N89577-2 for aroclor-1260 reported 2nd due to interference on 1st signal.
- N89577-6 for aroclor-1260 reported 2nd due to interference on 1st signal.

Metals (solid) Method 6010B

- Matrix spike recovery for aluminum, iron, lead, magnesium, manganese, zinc outside control limits due to possible matrix interference and/or sample nonhomogeneity.
- Matrix spike duplicate recovery for antimony, manganese are outside control limits due to probable matrix interference.
- Matrix spike recovery for calcium outside control limits due to skipe amount low relative to sample amount.
- RPD for MSD for iron outside control limits for sample MP28901-S2 due to possible sample nonhomogeneity.

- RPD for serial dilution for arsenic, beryllium, cadmium, selenium, silver, copper, zinc outside control limits for sample MP28901-SD1. Percent difference acceptable due to low initial sample concentrations (<50 times IDL).
- MP28901-SD1 for copper- serial dilution indicates possible matrix interference.
- MP28901-SD1 for zinc serial dilution indicates possible matrix interference.

Wet Chemistry (aqueous) Method 335.3

- Blank spike recovery for cyanide is outside control limits.
- GP27006-EXT4 for cyanide, spike blank indicates possible high bias, but all associated samples <DL.

2. <u>Job No.N94857 (soil borings and groundwater samples)</u>

Volatiles (aqueous) Method 8260B

• N94857-2, N94857-5 sample pH did not satisfy field preservation criteria.

Volatiles (solid) Method 8260B

• RPD for MSD for carbon disulfide are outside control limits due to matrix interference.

Extractables (aqueous) Method 8270C

- Blank spike recovery for carbazole is outside control limits. High percent recoveries as no associated positive found in the QC batch.
- Matrix spike duplicate recovery for carbazole is outside in house control limits.
- Sample N94857-8 has surrogate recovery outside control limit due to matrix interference.
- Sample N94857-8 re-extraction due to one surrogate outside QC limit performed outside holding time. Original prep date within holding time.

Extractables (aqueous) Method 8081A

- Sample N94857-8 has surrogate outside control limits due to matrix interference.
- OP19887-BS1 for heptachlor reported 2nd signal, percent D of check on 1st signal exceed method criteria (15%) so using for confirmation only.
- RPD for MSD for heptachlor reported 2nd signal, percent D of check on 1st signal exceed method criteria (15%) so using for confirmation only.
- OP19887-BS3 for endosulfan sulfate reported 2nd signal, percent D of end check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- N94857-5 for 4,4-DDE, 4,4-DDD more than 40% RPD for detected concentrations between the two GC columns.
- N94857-6 for 4,4-DDE, 4,4-DDD more than 40% RPD for detected concentrations between the two GC columns.

Extractables (Aqueous) Method 8082

• N94857-3, N94857-5 after TBA clean up.

Extractables (Solid) Method 8081a

- N94857-7 for 4,4-DDT more than 40% RPD for detected concentrations between the two GC columns. Reported from 2nd signal.
- N94857-4 for 4,4-DDE reported 2nd signal, percent D of end check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- N94857-7 for 4,4-DDE reported 2nd signal, percent D of end check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- N94857-1 for dieldrin more than 40% RPD for detected concentrations between the two GC columns. Reported from 2nd signal.
- OP19876-MS, OP19876-MSD for delta-BHC reported 2nd signal, percent D of end check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.
- OP19876-MS, OP19876-MSD for alpha-chlordane- reported from 2nd signal due to interference on 1st signal.
- N94857-1 for 4,4-DDT reported from 1st signal. Percent D of end check (ECC) on 2nd signal exceed method criteria (15%) so using for confirmation only.

Extractables (Solid) Method 8082

• N94857-4 for aroclor 1242 – reported from 1st signal due to interference on 2nd signal.

Metals (aqueous) Method 6010B

- RPD for MSD for cadmium is outside control limits due to possible sample nonhomogeneity.
- RPD for serial dilution for arsenic, nickel, selenium, vanadium are outside control limits percent difference acceptable due to low initial sample concentration (<50 times IDL).
- Matrix spike duplicate recovery for iron, sodium outside control limits spike amount low relative to sample amount.

Metals (solid) Method 6010B

- Matrix spike recovery for antimony, chromium, magnesium, manganese, zinc are outside control limits indicating possible matrix interference and/or sample nonhomogeneity.
- Matrix spike duplicate recovery for antimony, copper, magnesium are outside control limits indicating possible matrix interference and/or sample nonhomogeneity.
- Matrix spike and matrix spike duplicate recovery for calcium, iron outside control limits spike amount low relative to sample amount.
- RPD for MSD for calcium, iron, manganese are outside control limits due to possible sample homogeneity.
- RPD for serial dilution for antimony, beryllium, cadmium, selenium, silver are outside control limits percent difference acceptable due to low initial sample concentration (<50 times IDL).

- RPD for serial dilution for potassium are outside control limits indicating possible matrix interference.
- N94857-7 for cadmium, thallium elevated detection limit due to dilution required for high interfering element.

Wet Chemistry (aqueous) Method 335.3

• RPD for duplicate for cyanide are outside control limits for sample GP27799-D1. RPD acceptable due to low duplicate and sample concentrations.

Wet Chemistry (solid) Method 9012M

- Matrix spike recovery for cyanide is outside control limits indicating possible matrix interference and/or sample nonhomogeneity.
- RPD for duplicate for cyanide are outside control limits for sample GP27791-D1 due to possible sample nonhomogeneity.
- GP27791-ICV3 for cyanide blank spike recovery outside control limits indicating possible high bias, but only the associated samples <DL are reported.
- N94857-7 for cyanide detection limit raised due to matrix interference result confirmed on later run.

All of the data have been generated using the established and agreed upon analytical protocols.

An evaluation of the raw data confirms the results provided in the data summary sheets and quality control verification forms.

The correct data qualifiers have been used.

Despite the listed exceedances of the quality control data, we find no reason to resample or reanalyze any of the samples.

APPENDIX 6

Fill Approval Documents

Ed Phillips

From:

Ed Phillips

Sent:

Thursday, June 21, 2007 10:30 AM

To:

'Barbara Jean Wilson'

Subject:

RE: Dobbs Ferry Waterfront Park

YES

----Original Message----

From: Barbara Jean Wilson [mailto:acocella@verizon.net]

Sent: Thursday, June 21, 2007 10:23 AM

To: Ed Phillips

Subject: Re: Dobbs Ferry Waterfront Park

June 21, 2007

Dear Ed:

Does this mean we can start to deliver the soil to the job site.

Please advise.

Thank you,

Barbara Jean Wilson ACOCELLA CONTRACTING, INC. 68 GAYLOR ROAD SCARSDALE, NEW YORK 10583 914-723-2700 FAX 914-723-0927

---- Original Message -----

From: "Ed Phillips" <ephillips@phenv.com>

To: "Barbara Jean Wilson" <acocella@verizon.net>

Sent: Thursday, June 21, 2007 7:19 AM Subject: FW: Dobbs Ferry Waterfront Park

----Original Message----

From: Kathryn Eastman [mailto:kceastma@gw.dec.state.ny.us]

Sent: Wednesday, June 20, 2007 5:43 PM

To: Ed Phillips

Cc: Anthony Giaccio; David Crosby

Subject: Fwd: Dobbs Ferry Waterfront Park

Ed-

The top soil, represented by the analytical results attached below, is approved for use at Dobbs Ferry Waterfront Park.

Sincerely, Kathryn Eastman

>>> "Ed Phillips" <ephillips@phenv.com> 6/19/2007 10:47 AM >>> Attached are pictures, analytical data and source documentation for proposed topsoil to be used at the Dobbs Ferry Waterfront Park. Please review ASAP as the contractor is anxious to begin bringing the topsoil to the site.

Ed Phillips

Potomac-Hudson Environmental, Inc.

207 S. Stevens Ave.

S. Amboy, NJ 08879

Office # 732-525-3100

Cell # 732-261-2471

Ed Phillips

From:

David Crosby [dacrosby@gw.dec.state.ny.us]

Sent:

Wednesday, June 06, 2007 11:40 AM

To:

Ed Phillips; Barbara Jean Wilson

Cc:

Anthony Giaccio; Kathryn Eastman; Martin Minnicino

RE: FW: Fill Material Subject:

Ed and Barb: The photos are fine. They indicate the source is native. Further, you indicate that the material is free of debris. The analytical results you provided indicate that the soil meets the restricted residential numbers in part 375. As such, based on these representations, the material is approved for backfill.

Please let the Department know of when you plan on spreading the material so we can provided field oversight.

The Department appreciates your efforts towards implementing a remedial program for the Dobbs Ferry VCP Site.

If you have any questions, feel free to contact me.

Thanks DAC

David A. Crosby Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233-7014 518-402-9662

>>> "Ed Phillips" <ephillips@phenv.com> 6/6/2007 9:55 AM >>> I will be out of state starting late today until Monday morning. If a decision is made regarding the second fill source and work continues, please notify Martin Minnicino of PHENV so that he may have the air monitoring program restarted.

Martin can be reached at 732-525-3100. His cell number is 908-347-8118. His email address is mminnicino@phenv.com

----Original Message----

From: Barbara Jean Wilson [mailto:acocella@verizon.net]

Sent: Wednesday, June 06, 2007 8:30 AM

To: David Crosby; Ed Phillips

Cc: Anthony Giaccio; Kathryn Eastman

Subject: Re: FW: Fill Material

June 6, 2007

Dear Ed and David:

Attached are the photo's we promised to you.

Please be advised the dirt is stock piled and not yet spread. There is no debris of any kind. Soil is native material (Virgin Ground)

Please confirm you have received these pictures.

If you need more information, please contact me.

Thank you,

Bart

---- Original Message -----

From: "David Crosby" <dacrosby@gw.dec.state.ny.us>

To: "Ed Phillips" <ephillips@phenv.com>; "Barbara Jean Wilson"

<acocella@verizon.net>

Cc: "Anthony Giaccio" <agiaccio@dobbsferry.com>; "Kathryn Eastman"

<kceastma@gw.dec.state.ny.us>

Sent: Tuesday, June 05, 2007 7:57 AM

Subject: Re: FW: Fill Material

Thanks, pictures will help. Is this material presently on-site and spread? Also, how is the construction going along the river? The Department has concerns with the soil cap near the river (placement, erosion, etc). If work is progressing, we would like to set up a site inspection.

Thanks DAC

David A. Crosby Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233-7014 518-402-9662

>>> "Barbara Jean Wilson" <acocella@verizon.net> 6/5/2007 7:14 AM >>> June 5, 2007

Dear Ed, Anthony and David:

The soil is Native Soil. We are going to take pictures today. If I get the camera back early enough today, we will e-mail the pictures to you today.

Thank you,

Bart Acocella
---- Original Message ---From: "Ed Phillips" <ephillips@phenv.com>
To: <acocella@verizon.net>
Cc: "Anthony Giaccio" <agiaccio@dobbsferry.com>; "David Crosby"
<dacrosby@gw.dec.state.ny.us>
Sent: Monday, June 04, 2007 3:56 PM
Subject: FW: FW: Fill Material

Bart,

In email below NYDEC still has questions about the fill source. Specifically, is there any debris in the material, concrete, wood, brick etc? Is the soil native material or was it fill brought to the residence? Are photos of the soil available?

I will be out most of the week on vacation.

Kathy Eastman of the DEC will be out of the office June 4-6 and back Thursday June7. If you would rather have the DEC inspect the site of the 2nd material source than assemble and submit enough documentation to approve the source" remotely", then contact Dave Crosby of the DEC at (518) 402-9662.

Sorry for the delay on this email. We have been down for three days.

Ed Phillips

----Original Message----

From: Kathryn Eastman [mailto:kceastma@gw.dec.state.ny.us]

Sent: Friday, June 01, 2007 5:42 PM

To: Ed Phillips Cc: David Crosby

Subject: Re: FW: Fill Material

Ed--I'm forwarding information to Dave Crosby. Please contact him Monday morning. It the material native material? Is there any debris? Photos? D Crosby will answer your e-mail, or visit source personally.

KCE.

>>> "Ed Phillips" <ephillips@phenv.com> 6/1/2007 5:07 PM >>>

Don't know if you saw this email gving some info on the next source.

From: Ed Phillips

Sent: Wednesday, May 30, 2007 2:59 PM

To: Kathy Eastman Cc: Anthony Giaccio

Subject: FW: Fill Material

Kathy,

The email below was sent to me by the contractor for the soil for which you have recent data.

EP

From: Barbara Jean Wilson [mailto:acocella@verizon.net]

Sent: Tuesday, May 29, 2007 7:13 AM

To: Ed Phillips

Subject: Fill Material

May 29, 2007

Dear Ed:

Re: Village of Dobbs Ferry - Waterfront Park:

The reports of the fill came from 14 Skyview Drive, Armonk, New York.

The

fill is a sandy material and was excavated from a big extension on an existing house.

The material was picked up by me and delivered by Barbara Wilson to the American

Analytical Laboratory.

If you need further information please contact Barbara.

The top soil reports should be in this week.

Please respond via e-mail also my phone number is 914-723-2700.

Thank you,

Bart Acocella