

June 28, 2007

Mr. Jeffrey A. Konsella, P.E. Environmental Engineer II Division of Environmental Remediation New York State Department of Environmental Conservation 270 Michigan Avenue Buffalo, New York 14203

Reference: Ekonol Polyester Resins Site (#V00653-9).

Treatability Testing Summary and Pilot Test Scope of Work

Dear Mr. Konsella:

Provided herein, on behalf of Atlantic Richfield Company, is an amendment to the Alternative Evaluation Phase 2 data summary report and proposed pilot test scope of work submitted to the New York State Department of Environmental Conservation (NYSDEC) on December 28, 2006. The purpose of this letter is to provide NYSDEC with a summary of the treatability testing results, define the selected treatment technology, and update the scope of work (SOW) for the pilot test.

Together with the December 2006 submittal, this letter will complete the addendum to the Remedial Alternatives Report (February 2006, Revised July 2006). Subsequent to NYSDEC review of this report, concurrence with the selected treatment, and proposed SOW, a pilot test work plan will be issued. A summary of the treatability study, technology selection, and the pilot test SOW are provided below.

TREATABILITY STUDY

The treatability study (see Attachment 1) was a laboratory-scale test in which microcosms of site rock and ground water were amended with various *in situ* technologies. The microcosms were sampled over time and the analytical results were compared to evaluate the effectiveness of the treatments. Using the results of treatability testing with the geologic and hydrogeologic site model, a treatment technology was chosen for a pilot-phase treatment. The treatability studies were designed to determine:

- The presence/absence of native microorganisms that are capable of facilitating biodegradation of site-specific chlorinated compounds of concern (COCs).
- If biodegradation of chlorinated COCs can be enhanced in Site rock and groundwater by the addition of carbon substrates (i.e., biostimulation).
- If the addition of a microbial culture that is known to completely dechlorinate chlorinated COCs with a carbon substrate (i.e., bioaugmentation) can enhance biodegradation beyond what can be achieved by addition of the carbon substrate alone.

• If formulations combining zero valent iron (ZVI) and a carbon source can increase the overall degradation rate of chlorinated COCs relative to the biostimulation and bioaugmentation approaches described above.

Each treatment option was tested during the treatability study and was applied to two groups of microcosms. One set of microcosms contained rock and groundwater from the source area, whereas the second set of microcosms contained rock and groundwater from locations that are downgradient of the source area. Source zone microcosm tests utilized bedrock from MW-7D and groundwater from MW-4D (see Figure 1). Downgradient microcosm tests utilized bedrock from MW-21D and groundwater from MW-20D.

Bedrock and groundwater samples were composited upon receipt at the laboratory, and characterized for volatile organic carbons (VOCs), total organic carbon (TOC), and total iron. Groundwater samples were analyzed for geochemical parameters including nitrate, sulfate, ferrous iron, alkalinity, methane, ethene, and ethane, along with biological indicators of reductive dechlorination activity. The biological indicators that were measured in groundwater samples were concentrations of two microbial populations and the genes for enzymes that are associated with complete reductive dechlorination of TCE. The two microbial populations that were measured were *Dehalococcoides*, which are bacteria known to degrade TCE through DCE and VC to ethene, and *Dehalobacter*, which are bacteria known to degrade TCA. The genes for the enzymes TCE and VC reductase were also measured. The results of the analytical testing are provided in Table 1.

Laboratory-scale treatability testing evaluated the following *in situ* technologies:

- Biostimulation using Slow Release SubstrateTM (SRSTM), which is an emulsified soybean oil product to enhance biodegradation.
- Bioaugmentation using the SDC-9 microbial culture (contains *Dehalococcoides* spp.) in addition to SRSTM.
- Combined abiotic and biostimulation treatment using zero valent iron (ZVI) in combination with either emulsified vegetable oil or a solid-phase plant protein. The three formulations of ZVI mixed with carbon substrate were emulsified vegetable oil with nanoscale ZVI, emulsified vegetable oil with microscale ZVI, and the propriety formulation of ZVI mixed with vegetable protein and nutrients (EHC®).

Each treatment described above was added to triplicate microcosms that were prepared for both source and downgradient microcosm sets. Two laboratory controls were prepared in triplicate to evaluate natural biotic and abiotic pathways as well as unknown loss. The microcosms were sampled at 0, 4, 8, 12, and 16 weeks into the study.

TREATABILITY STUDY RESULTS AND EVALUATION

The results of the treatability test are described in detail in the *In Situ Bioremediation and Zero Valent Iron Treatability Studies* report that is attached to this letter (Attachment 1). The results of the treatability testing indicated the following:

- Groundwater in bedrock contains substantial concentrations of an indigenous microbial population that includes *Dehalococcoides* and *Dehalobacter*, species that are known to completely degrade chlorinated COCs to innocuous end products. The microbial consortium expresses TCE and VC reductase gene activity and may be well adapted to complete reductive dechlorination of TCE. Although these microcultures exist in native groundwater, historical Site data suggests that the time frame involved for breakdown of the COC's can be enhanced to more quickly meet remedial goals as per the Remedial Alternatives Report (February 2006, Revised July 2006).
- Emulsified vegetable oil was able to stimulate the indigenous microbial population, resulting in enhanced degradation of site-specific chlorinated COCs.
- Bioaugmentation with SDC-9 or other bacteria known to degrade chlorinated COCs, when combined with an organic substrate (vegetable oil), may have enhanced degradation of *cis*-1,2-DCE in the source area microcosm set.
- Although emulsified ZVI and EHC are designed to enhance both biotic and abiotic
 degradation pathways for chlorinated COCs, there was no significant difference
 between their performance and the performance of the biostimulation and
 bioaugmenation treatment approaches. In addition, geochemical results including
 oxidation reduction potential indicated that ZVI based treatments may be consumed
 at a faster rate than emulsified vegetable oil treatments.
- High concentrations of sulfate may compete with chlorinated COCs as an alternate electron acceptor. The dosage and type of substrate should be designed to account for elevated sulfate concentrations.

The results of laboratory-scale treatability testing were used to support selection of the most appropriate technology to use in a field-scale pilot. The table below, which was developed by considering the results of bench-scale testing and previous experience using the various treatment technologies, lists the advantages and limitations of using a particular technology for *in situ* treatment of chlorinated COCs in bedrock.

Treatment	Advantages	Disadvantages
Biostimulation using SRS TM	Longer lasting carbon source extends duration of treatment beyond ZVI-based technologies, potentially resulting in the mass of chlorinated ethenes and ethanes degraded over long term.	May result in a slower degradation rate of chlorinated ethenes and ethanes relative to ZVI-based technologies.
	Anaerobic biodegradation is already occurring at Site, so technology would simply enhance existing processes.	Dose applied must be sufficient to overcome sulfate concentration.

Treatment	Advantages	Disadvantages
	Inexpensive relative to ZVI-based technologies, which allows technology to be applied cost-effectively over a larger treatment zone.	More likely to temporarily produce regulated intermediate degradation products (e.g., <i>cis</i> -1,2-DCE, VC) than ZVI or bioaugmentation approaches.
Bioaugmentation using SDC-9 with SRS TM	Faster degradation of intermediate degradation products than would be realized with biostimulation alone. May aid in competition with sulfate	Initial injection cost higher than biostimulation alone with no guarantee of an improvement in long-term performance. Introduction of non-native
	reducing bacteria for added substrate.	microorganisms may be of concern to project stakeholders and could delay completion of the injection permit process.
	Less expensive than ZVI-based technologies.	
Nanoscale Emulsified Zero Valent Iron (EZVI)	Potential for rapid reduction in chlorinated ethene and ethane concentrations.	Geochemical changes not sustained because highly-reactive ZVI would be consumed. Rapid reaction rate likely to require frequent re-injection and substantial increase in cost.
	Easier to uniformly distribute in the subsurface relative to EHC.	Cost of nanoscale ZVI is very high relative to emulsified vegetable oil and moderately higher than microscale ZVI.
		Bench-scale study did not demonstrate that nanoscale EZVI significantly outperformed biostimulation-based approaches.
		Need to evaluate the introduction of iron on existing microbial population
Microscale EZVI	Potential for rapid reduction in chlorinated ethene and ethane concentrations.	Geochemical changes not sustained because highly-reactive ZVI would be consumed. Rapid reaction rate likely to require frequent re-injection and substantial increase in cost.
	Bench-scale tests suggest improved removal of 1,1 DCA relative to nanoscale EZVI.	Cost of microscale ZVI is high relative to emulsified vegetable oil, but less than nanoscale ZVI
		More difficult to distribute evenly in subsurface than nanoscale EZVI and emulsified vegetable oil.
		37 1. 1 . 1 . 1 . 1 . 0
		Need to evaluate the introduction of iron on existing microbial population.

Treatment	Advantages	Disadvantages
ЕНС	May assist in reducing sulfate concentrations, leading to enhanced degradation of chlorinated COCs.	Less effective removal of chlorinated ethenes and ethanes than EZVI.
	Initial rapid reaction with gas production.	Some chlorinated ethene and ethane removal may be due to gas stripping, which introduces the potential for additional soil gas generation.
	In treatability study EHC produced relatively higher amounts of innocuous end products.	Much more difficult to distribute evenly in subsurface relative to EZVI and emulsified vegetable oil. Introduction of iron may have unintended consequences on existing microbial populations.
		interodial populations.

TREATMENT TECHNOLOGY SELECTION

The evaluation of the treatability testing results and other site data reveal that bioaugmentation has the best overall potential for remediation of chlorinated COCs in bedrock groundwater in an accelerated time frame compared to natural attenuation. For initial treatments, including pilot testing, the addition of microcultures (i.e. bioaugmentation) will likely have a more pronounced affect on the groundwater concentrations than biostimulation alone. Biostimulation may also be an affective treatment and could be considered in the future, if required.

EZVI treatments performed very well in the laboratory however, Site conditions and implantation factors (e.g. injection and distribution of the EZVI, treatment duration per application) favor bioaugmentation. EHC® was not considered an appropriate treatment technology for the Site due to gas production and the difficulty of distributing this substance in the subsurface.

Therefore, a bioaugmentation injection approach using a carbon-based substrate and commercially available microcultures is proposed for remediation of the chlorinated COCs in bedrock groundwater. This, coupled with the proposed bioreactor in overburden near the former containment tank (Parsons, 2006) are anticipated to provide enough carbon in both the overburden and bedrock groundwater to effectively reduce the chlorinated COCs at the site.

The design specifics of the carbon-based emulsion will be presented in the pilot test work plan.

FINAL PILOT TEST SCOPE OF WORK

The field-scale pilot test is the first phase of remediation of the chlorinated COCs in bedrock groundwater. This section discusses the final scope of work for a pilot test to evaluate bioaugmentation as the remedial treatment technology(s) to effectively decrease Site COCs.

<u>Shallow Groundwater:</u> Based on Site conditions and a review of technologies, a bioreactor will be most effective in addressing the shallow groundwater. Given the limited size of the bioreactor, a pilot field test is not warranted.

<u>Deep Groundwater:</u> Based on the results of the laboratory treatability testing (February 2007), and previous studies, the treatment technology selected for deep groundwater is bioaugmentation with an emulsified carbon substrate and microcultures known to degrade chlorinated COCs. The anticipated SOW for the pilot test using this selected technology is described below. Details regarding the material selected, injection volumes, well spacing, and other design criteria will be defined in the work plan.

The pilot test will be designed with the following primary objectives:

- Determine if the selected technology is capable of reducing Site groundwater COCs in a more timely manner to a level by which remedial goals can be reached by monitored natural attenuation.
- Evaluate design parameters for full-scale implementation, and determine if there are any adverse secondary effects to groundwater.
- Refine injection methodology and estimate a radius of influence;
- Assess impacts to hydrogeology; and
- Assess the potential for increased solubility of inorganics (e.g., arsenic), generation
 of gases (e.g., methane, hydrogen or hydrogen sulfide), and other undesirable
 effects.

Scope of Work

The pilot test will be comprised of (1) treatment application and (2) performance monitoring. The treatment application involves all processes and monitoring related to the field application to specific sections of the bedrock groundwater. Performance monitoring includes the methods to assess the remedial technology.

Treatment Application

The pilot test will be performed near the source area between RMW-2D and RMW-4D (see Figure 2). It is anticipated that five injection wells will be used during the test to apply the substrate to the fractured bedrock and eight monitoring wells will be included in the performance monitoring. Details of the treatment application design will be presented in the field-scale pilot test work plan. The treatment application design is anticipated to include:

• Installation of injection wells/points.

- Injection of one or more conservative tracers to estimate the radius of influence and injection hydraulics of the bedrock groundwater system.
- Development of injection dosages based on a combination of field data, laboratory data, and literature design criteria.
- Development of a mitigation plan for health and safety issues including procedures for handling system leaks and injection pressure build up.
- Application of bioaugmentation including injection of a vegetable oil emulsion followed by an injection of microcultures.

Performance Monitoring

Details of the performance monitoring design will be presented in the pilot test work plan. The performance monitoring is anticipated to include:

- Monitoring wells will be located upgradient, within the treatment zone, and downgradient of the treatment zone. The network may include a combination of new wells and the existing monitoring wells (e.g. RMW-1D RMW-2D, RMW-3D RMW-4D, MW-7D and MW-20D).
- A monitoring schedule including a baseline sampling event (prior to injection), and up to four performance monitoring events that will occur approximately 1 week, 6 weeks, 13 weeks, and 26 weeks following injection. Note that site data will be evaluated after each performance monitoring event to determine if the proposed monitoring program should be modified or extended.
- An analytical protocol defined for baseline and performance monitoring events.
 This analytical protocol will include site-specific COCs and various biogeochemical indicators.
- Hydraulic parameters, (hydraulic gradient and hydraulic conductivity), will be monitored to determine the effect of the substrate on formation permeability.
- Evaluation of the performance data will include changes in COC mass, geochemical parameters, and calculation of degradation rates.

ANTICIPATED SCHEDULE

An estimated schedule of field activities and report submittals is described below. A more detailed schedule will be provided in the pilot test work plan.

Task	Schedule
Remedial Alternatives Addendum Report and Recommended Alternative Pilot Test Scope of Work (this submittal)	June 2007
Pilot Test Work Plan	July 2007
Implement Pilot Test Work Plan	September 2007
Completion of Pilot Program	To be determined based on final design of pilot test.

If you have any comments, questions, or concerns, please feel free to contact William B. Barber of Atlantic Richfield Company at (216) 271-8038.

Sincerely,

Mark S. Raybuck Project Manager

Mark S. Raybuch

cc: W. Barber, Atlantic Richfield

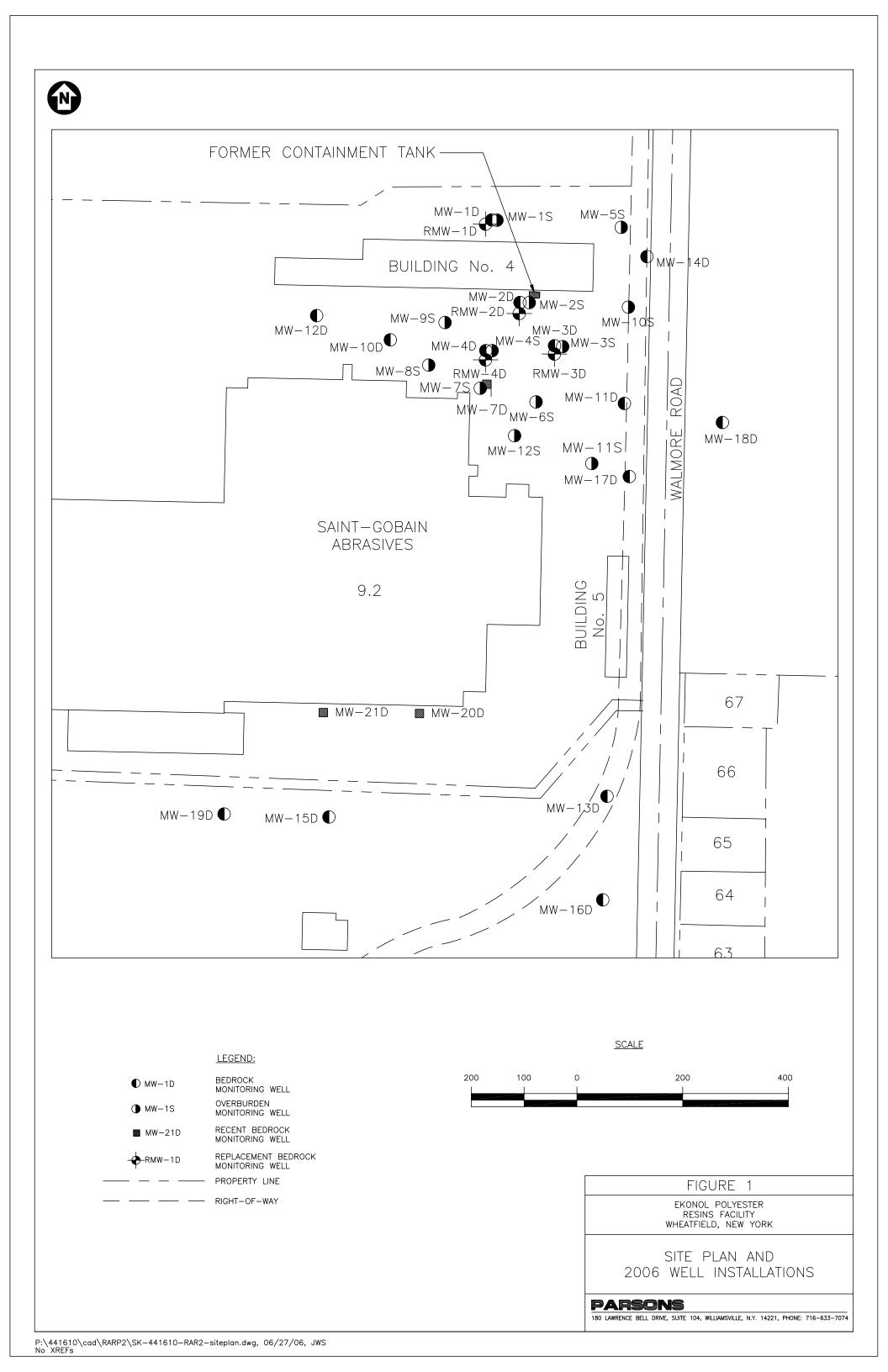
S. Fiorenza, BP

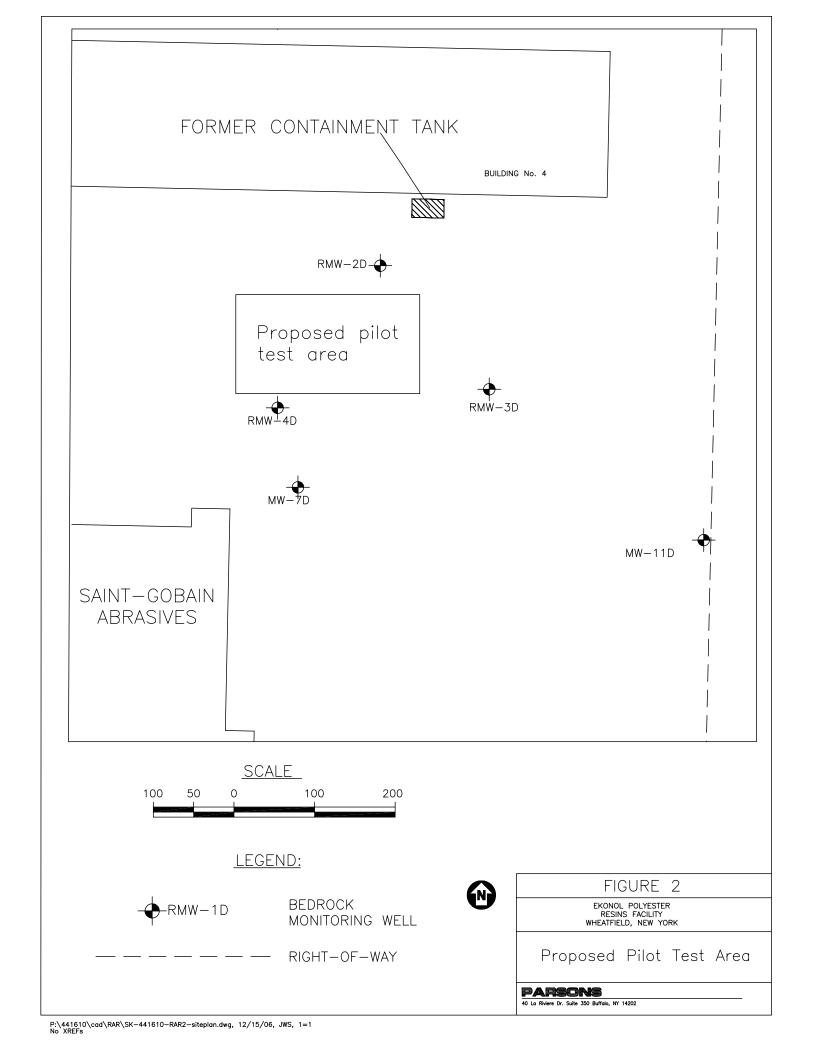
S. Brauner, Parsons

W. Hughes, Parsons

G. Hermance, Parsons

File: 442257 No. 2


TABLES


Table 1. Concentrations of CVOCs, Dissolved Hydrocarbon Gases, Electron Acceptors, and Dehalogenating Bacteria in Site Groundwater and Rock

Dagamatag	Tluito	RMW-4D (Source)	MW-7D (Source)	MW-20D Plume	MW-21D (Plume)	
Parameter	Units	Groundwater	Rock	(Groundwater)	Rock	
Alkalinity	mg/L as CaCO3	290		280		
Ferrous Iron	mg/L	<1.0		4		
Nitrate	mg/L	< 0.5		0.94		
Sulfate	mg/L	1300		1200		
Total Organic Carbon	mg/L or mg/kg	6.6	540	< 5.0	930	
Total Iron	mg/L or mg/kg	0.33	2600	0.22	3100	
Percent Solids	%		99		96	
Vinyl Chloride	μg/L or μg/kg	560	<2.0	590	9.1	
Chloroethane	μg/L or μg/kg	<100	<2.0	<100	<2.0	
1,1-Dichloroethene	μg/L or μg/kg	<100	<2.0	<100	<2.0	
1,1-Dichloroethane	μg/L or μg/kg	150	<2.0	170	3.3	
cis-1,2-Dichloroethene	μg/L or μg/kg	6310	21	3050	21	
1,1,1-Trichloroethane	μg/L or μg/kg	160	<2.0	420	1	
Trichloroethene	μg/L or μg/kg	15600	61	<100	5.8	
Tetrachloroethene	μg/L or μg/kg	1040	9.9	<100	7.5	
Methane	μg/L or μg/kg	200	42	<67	14	
Ethene	μg/L or μg/kg	<120	<2.4	<120	<2.4	
Ethane	μg/L or μg/kg	<120	43	<120	<2.4	
Dehalococcoides spp.	cells/mL	1.16E+04		4.48E+01		
Dehalobacter spp.	cells/mL	3.62E+03		2.09E+02		
TCE R-Dase	cells/mL	3.13E-01		<4.99E-01		
BAV1 VC R-Dase	cells/mL	1.09E+04		9.63E+01		
VC R-Dase	cells/mL	2.92E+03		4.71E+00		

 $\mu g/L = micrograms$ per liter (water); $\mu g/kg = micrograms$ per kilogram (rock), spp. = species, R-Dase = Reductase mg/L = milligrams per liter (water), mg/kg = milligrams per kilogram (rock)

FIGURES

ATTACHMENT 1

FINAL REPORT

IN SITU BIOREMEDIATION AND ZERO VALENT IRON TREATABILITY STUDIES EKONOL POLYESTER RESINS FACILITY WHEATFIELD, NY

PREPARED FOR:

ATLANTIC RICHFIELD COMPANY 4850 EAST 49TH STREET MBC3-147 CUYAHOGA HEIGHTS, OH 44125-1014

AND

PARSONS 40 LA RIVIERE DRIVE SUITE 350 BUFFALO, NY 14202

PREPARED BY:

michael I lee, PRI.

MICHAEL D. LEE, PH.D. TERRA SYSTEMS, INC. 1035 PHILADELPHIA PIKE SUITE E WILMINGTON DE 19809

JUNE 18, 2007

1.0 INTRODUCTION

Terra Systems, Inc. (TSI) has completed a treatability study for Atlantic Richfield Company (ARCO) and Parsons to evaluate enhanced anaerobic bioremediation and three formulations of zero valent iron (ZVI) and carbon sources to remediate chlorinated ethenes and chlorinated ethanes in groundwater underlying the former Ekonol Polyester facility (the Site) in Wheatfield, New York. Tetrachloroethene (PCE), trichloroethene (TCE) and their daughter products cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), and vinyl chloride (VC) and 1,1,1-trichloroethane (1TCA) and its daughter products 1,1-dichloroethane (1DCA), and 1,1-dichloroethene (1DCE) have been detected in groundwater at the Site above their respective NYS Groundwater Standards. Two areas of the Site were evaluated: the source area near RMW-4D with rock samples from MW-7D and a plume area near MW-20D with rock samples from MW-21D. The source area contains high levels of PCE, TCE, and cDCE and detectable levels of VC with much lower levels of 1TCA, 1DCE, and 1DCA. The plume area has little of the parent PCE or TCE, high cDCE concentrations, detectable VC, and somewhat higher levels of 1TCA, 1DCE, and 1DCA than in the source area.

Anaerobic biodegradation is a well-established methodology for the treatment of TCE and its daughter products. These chlorinated volatile organic compounds (CVOC) can be degraded to carbon dioxide (CO₂), methane (CH₄) and other innocuous products such as ethene or ethane via reductive dechlorination and other biological processes. Similarly, 1TCA undergoes anaerobic biotransformation to 1DCA and CA. There is also an abiotic, dehydroelimination reaction that can transform 1TCA to 1,1- 1DCE, VC, ethene, and potentially onto acetate. The study evaluated the potential for the addition of a slow-release substrate (emulsified soy bean oil) and a bioaugmented slow-release substrate to stimulate reductive dechlorination of PCE, TCE, cDCE, 1TCA, 1DCA, and 1DCE to ethene/ethane.

Three formulations of ZVI with carbon substrates were also evaluated. Two treatments were prepared with emulsified ZVI (EZVI); a nanoscale formulation with submicron ZVI particles (Toda American RNIP 10-DS with an average particle size of 70 nm) and a microscale formulation with an average particle size of 5 microns in diameter (BASF Carbonyl Iron Powder OM). The RNIP 10-DS ZVI is shipped in water and was not activated by washing with acid. The BASF Carbonyl Iron Powder was first washed with sulfuric acid to remove the iron oxide coating. The EZVI formulations for this study include 10.2% by weight ZVI, 37.4% soybean oil, 50.9% water, and 1.5% emulsifier. The vegetable oil emulsion coating the ZVI causes the chlorinated solvents to partition into the oil where it then reacts with the ZVI forming less chlorinated compounds and ultimately acetylene, ethene, and ethane. The oil coating should also protect the ZVI from oxidation which extends the time that the ZVI remains reactive. The oil and surfactants will be fermented to hydrogen. In addition, corrosion of the

iron with water may lead to hydrogen formation which can then support biological reductive dechlorination of the chlorinated solvents. The third ZVI containing material was Adventus ISCR EHC – a mixture of 45% by weight 5 to 35 micron diameter ZVI particles and 55% of a fibrous carbon matrix and other materials.

The treatability studies were performed to determine:

- If biodegradation of PCE, TCE, 1TCA, and 1DCA can be stimulated in Site rock and groundwater by the addition of carbon substrates;
- If the optimal biological microorganisms are present to facilitate biodegradation;
- If addition of the substrate, nutrients, and a dechlorinating culture can stimulate further biodegradation than the substrate alone; and
- If formulations combining ZVI and a carbon source can speed the dechlorination rates.

2.0 ROCK AND GROUND WATER CHARACTERIZATION

Rock samples were collected from the MW-21D on September 29, 2006 (plume area) and from MW-7D (source area) on October 3, 2006 by Jim Schuetz of Parsons. The samples were collected in steel tubes. The rock samples were shipped on the days they were collected and received at TSI on September 30, 2006 and October 4, 2006. After receipt at the laboratory, the rock samples were transferred from the steel tubes, broken into smaller pieces, and composited under anaerobic conditions.

Groundwater samples were collected and shipped from MW-20D (plume area) on September 28, 2006 and from RMW-4D (source area) on October 2, 2006. The samples were received at TSI on September 29, 2006 and October 3, 2006, respectively.

Portions of the rock and groundwater composites were then submitted for initial characterization. Table 1 summarizes the ground water and rock analytical results at the time of the October 2006 sampling event.

High concentrations (>1,000 μ g/L) of PCE, TCE, and cDCE were detected in the groundwater sample from RMW-4D with lower concentrations ($<1,000 \mu g/L$) of 1TCA, 1DCA, and VC. Other volatile chlorinated ethenes and ethanes, acetylene, ethene, and ethane were not detected and a minor amount of methane was detected. Acetylene is produced by the abiotic reaction of zero valent iron or ferrous sulfide with PCE, TCE, and cDCE. Ethene and ethane may also be generated by the abiotic reaction with ZVI, but are characteristically produced by the biological reductive dechlorination of PCE and TCE and 1TCA. There was only 6.6 mg/L of total organic carbon (TOC) in the groundwater. Sulfate was the dominant electron acceptor (1,300 mg/L) with nodetectable nitrate or ferrous iron. The groundwater was analyzed by Microbial Insights of Rockford, TN for the numbers of *Dehalococcoides* (the only organism known to metabolize cDCE to VC and ethene) and *Dehalobacter* (known to convert PCE and TCE to cDCE and to be able to metabolize 1TCA to chloroethane) and the number of gene copies of the TCE-reductase (TCE R-Dase), VC R-Dase, and BAV1 VC R-Dase. BAV1 is an isolate from a site in Michigan that has different dehalogenase than the generic VC R-dase. High numbers of *Dehalococcoides* and *Dehalobacter* were found in the groundwater from RWM-4D with good expression of the TCE-, VC-, and BAV1 VC reductase genes. The rock sample from MR-7D contained only low levels of cDCE, TCE, PCE, methane, and ethane. The TOC of the rock was relatively low (540 mg/kg). The rock contained 2,600 mg/kg of total iron.

The plume area groundwater collected from MW-20D contained high levels (>1,000 μ g/L) of cDCE with detectable, but lower levels of 1TCA, 1DCA, and VC. Methane, acetylene, ethene, and ethane were not detected. TOC was not detected above the detection limit of 5.0 mg/L; substrate availability probably controls the extent of dechlorination. There were modest levels of nitrate and ferrous iron in the

groundwater. Sulfate concentrations were high (1,200 mg/L) and sulfate is the dominant electron acceptor. Iron reduction may also be an important electron acceptor, but was not measured in these studies. The counts of *Dehalococcoides* and *Dehalobacter* were much lower in MW-20D. Detection of both the VC reductase genes suggests that the microbial population is capable of complete transformation of cDCE once substrate is available and more favorable conditions for dechlorination have been achieved.

The results of the initial rock/ground water analyses indicate that:

- The analytical data for CVOCs and natural attenuation parameters provide evidence of naturally occurring reductive dechlorination; and
- The high levels of sulfate and potentially iron may control the extent of dechlorination.

Section 3 presents the test conditions for the anaerobic bioremediation and ZVI studies. The results for the studies are presented in Section 4. Conclusions are presented in Section 5.

Table 1. Concentrations of CVOCs, Dissolved Hydrocarbon Gases, Electron Acceptors, and Dehalogenating Bacteria in Site Groundwater and Rock

Parameter	Units	RMW-4D (Source) Groundwater	MW-7D (Source) Rock	MW-20D Plume (Groundwater)	MW-21D (Plume) Rock
Alkalinity	mg/L as CaCO3	290		280	
Ferrous Iron	mg/L	<1.0		4.0	
Nitrate	mg/L	<0.5		0.94	
Sulfate	mg/L	1300		1200	
Total Organic Carbon	mg/L or mg/kg	6.6	540	<5.0	930
Total Iron	mg/L or mg/kg	0.33	2600	0.22	3100
Percent Solids	%		99		96
Vinyl Chloride	μg/L or μg/kg	560	<2.0	590	9.1
Chloroethane	μg/L or μg/kg	<100	<2.0	<100	<2.0
1,1-Dichloroethene	μg/L or μg/kg	<100	<2.0	<100	<2.0
1,1-Dichloroethane	μg/L or μg/kg	150	<2.0	170	3.3
cis-1,2-Dichloroethene	μg/L or μg/kg	6310	21	3050	21
1,1,1-Trichloroethane	μg/L or μg/kg	160	<2.0	420	1.0
Trichloroethene	μg/L or μg/kg	15600	61	<100	5.8
Tetrachloroethene	μg/L or μg/kg	1040	9.9	<100	7.5
Methane	μg/L or μg/kg	200	42	<67	14
Ethene	μg/L or μg/kg	<120	<2.4	<120	<2.4
Ethane	μg/L or μg/kg	<120	43	<120	<2.4
Dehalococcoides spp.	cells/mL	1.16E+04		4.48E+01	
Dehalobacter spp.	cells/mL	3.62E+03		2.09E+02	
TCE R-Dase	cells/mL	3.13E-01		<4.99E-01	
BAV1 VC R-Dase	cells/mL	1.09E+04		9.63E+01	
VC R-Dase	cells/mL	2.92E+03		4.71E+00	

 μ g/L = micrograms per liter; μ g/kg = micrograms per kilogram (rock); spp. = species; R-Dase = Reductase; mg/L = milligrams per liter; mg/kg = milligrams per kilogram (rock)

3.0 ANAEROBIC MICROCOSM STUDY

TSI completed the laboratory portion of the Anaerobic Microcosm Study at its Wilmington, Delaware facility between October 24, 2006 and February 14, 2007. The study evaluated the potential for the addition of a slow-release substrate (SRSTM, TSI's emulsified soy bean oil) to stimulate reductive dechlorination of PCE, TCE, cDCE, 1TCA, 1DCA, and 1DCE to ethene/ethane. The SRSTM was added at 2,000 mg/L (0.8) mL SRSTM per 400 mL groundwater) which would provide about 1,010 mg/L of carbon. The SRSTM contains sodium lactate (4% by volume) as a fast-acting substrate to rapidly generate anaerobic conditions and well as yeast extract, nitrogen, and phosphorus. Other treatments evaluated the potential for SRSTM in combination with bioaugmentation to achieve complete dechlorination and three formulations of ZVI and carbon - nano EZVI, micro EZVI, and EHC. These treatments were compared to a poisoned control prepared with autoclaved rock and groundwater and amended with mercuric chloride and an unamended control. Triplicate microcosms were prepared for the source and plume areas for each treatment. Adventus recommended a loading rate of between 0.5 and 1% EHC. The 1% EHC loading rate (4 g EHC per 400 mL groundwater) was chosen which would provide about 1.8 g ZVI per bottle based upon a ZVI content of 45% for EHC. Similar loading rates of 1.8 g ZVI or 17.6 g EZVI were used for the nano and micro EZVI treatments. The EZVI formulation for these studies contained 10.2% by weight ZVI. The standard loading of EZVI was 44 g/L. Additional treatments were prepared with the nano EZVI and micro EZVI at lower (4.5 and 22 g/L) and higher (88 g/L) quantities of EZVI to determine the effect of different loading rates of EZVI on the rates and extent of degradation of the chlorinated solvents. The study procedures and results are presented in this section of the report.

3.1 MICROCOSM PREPARATION

Table 2 summarizes the individual microcosms that were prepared for this study and the quantities of groundwater, rock and amendments added to each microcosm. The killed controls demonstrate losses due to volatilization, sorption, or abiotic reactions as biological reactions are expected to be inhibited. However, the autoclaving process (steam at 121 °C and 15 pounds per square inch pressure) may change the properties of the soil or bedrock and potentially increase adsorption or release organics that can support microbial growth if any microorganisms survive the autoclaving process or addition of mercuric chloride. The unamended controls evaluate if the native microbial could biodegrade the CVOCs under existing conditions. Two sets of treatments were prepared with SRSTM; one set was bioaugmented after two weeks with the Shaw SDC-9 culture. Additional treatments evaluated nano and micro-scale EZVI and EHC. The treatments were prepared using 500-milliliter (mL) amber bottles and were incubated for up to 16 weeks. Each treatment was prepared in triplicate. The microcosms were prepared with 160 g rock and 400 mL of groundwater and amendments. The

microcosms were prepared and sampled in an anaerobic chamber containing 3% hydrogen, 5% carbon dioxide and 92% nitrogen to ensure anaerobic conditions were maintained. The microcosms were incubated at 21°C in the dark throughout the study.

Because EHC generates a relatively large volume of gas, the septum of each lid was pierced with a needle and a 50 mL syringe used to collect the gases. To ensure equivalent losses in all treatments, syringes and needles were used for all bottles.

The sterile poisoned controls were prepared using autoclaved groundwater and composited rock to account for potential abiotic losses of 1TCA and TCE from the microcosm. The sterile control rock was autoclaved for 30 minutes at 120 °C and 15 pounds per square inch of steam on two successive days. These control microcosms were also amended with 1,000 mg/L of mercuric chloride to further reduce the potential for microorganism survival. A second aliquot of mercuric chloride was added to these bottles on Week 8. The sterile control treatments were amended with TCE and 1TCA in methanol. Approximately 12.5 mg/L of TOC was added with the methanol spike.

A solution of 1 mg/L resazurin was added to each microcosm as a visual indicator of oxidation-reduction potential (ORP). The microcosms remained clear when conditions are anaerobic and reducing, which are necessary for reductive dechlorination to occur. A pink color was observed when the microcosm is under aerobic, oxidizing conditions. Resazurin does not affect the biodegradation process and would not be added as part of a full-scale implementation. All of the microcosms became clear soon after they were set up indicating that there was sufficient organic matter in the rock and groundwater to support anaerobic conditions.

Additional aliquots of 2,000 mg/L SRSTM was added at Week 12 to treatments 3, 4, 10, and 11. The approximately 2,020 mg/L of carbon added to these microcosms should be sufficient to consume the 1,200 to 1,300 mg/L of sulfate in the source and plume area microcosms. Another 4 mL of SDC-9 bioaugmentation culture as added at Week 12 to treatments 4 and 11.

Table 1. Microcosm Amendments

No.	Treatment	Rock (g)	Liquid (mL)	Amendments
1A, 1B, 1C	Poisoned Control	160 g MW-7D	400 RMW-4D sterile	1,000 mg/L mercuric chloride, 1.0 mg/L
			groundwater	resazurin, 10 mg/L TCE and 10 mg/L 1TCA
				spike
2A, 2B, 2C	Unamended	160 g MW-7D	400 RMW-4D groundwater	1.0 mg/L resazurin
3A, 3B, 3C	SRS TM	160 g MW-7D	400 RMW-4D groundwater	2,000 mg/L SRS TM , 1.0 mg/L resazurin
4A, 4B, 4C	SRS TM with	160 g MW-7D	400 RMW-4D groundwater	2,000 mg/L SRS TM , 1.0 mg/L resazurin
	Bioaugmentation			<i>O.</i>
5A, 5B, 5C	Nanoscale EZVI	160 g MW-7D	400 RMW-4D groundwater	44 g/L Nanoscale EZVI, 1.0 mg/L resazurin
6A, 6B, 6C	Microscale EZVI	160 g MW-7D	400 RMW-4D groundwater	44 g/L Microscale EZVI, 1.0 mg/L resazurin
7A, 7B, 7C	EHC	160 g MW-7D	400 RMW-4D groundwater	10 g/L EHC, 1.0 mg/L resazurin
15A, 15B, 15C	Nanoscale EZVI	160 g MW-7D	400 RMW-4D groundwater	A 4.5 g/L Nanoscale EZVI, 1.0 mg/L resazurin
				B 22 g/L Nanoscale EZVI, 1.0 mg/L resazurin
				C 88 g/L Nanoscale EZVI, 1.0 mg/L resazurin
Totals		4,320 g MW-7D	10,800 RMW-4D groundwater	
8A, 8B, 8C	Poisoned Control	160 g MW-21D	400 MW-20Dsterile	1,000 mg/L mercuric chloride, 1.0 mg/L
			groundwater	resazurin, 10 mg/L TCE and 10 mg/L 1TCA
				spike
9A, 9B, 9C	Unamended	160 g MW-21D	400 MW-20D groundwater	1.0 mg/L resazurin
10A, 10B, 10C	SRS TM	160 g MW-21D	400 MW-20D groundwater	2,000 mg/L SRS TM , 1.0 mg/L resazurin
11A, 11B, 11C	SRS TM with	160 g MW-21D	400 MW-20D groundwater	2,000 mg/L SRS TM , 1.0 mg/L resazurin
	Bioaugmentation			
12A, 12B, 12C	Nanoscale EZVI	160 g MW-21D	400 MW-20D groundwater	44 g/L Nanoscale EZVI, 1.0 mg/L resazurin
13A, 13B, 13C	Microscale EZVI	160 g MW-21D	400 MW-20D groundwater	44 g/L Microscale EZVI, 1.0 mg/L resazurin
14A, 14B, 14C	EHC	160 g MW-21D	400 MW-20D groundwater	10 g/L EHC, 1.0 mg/L resazurin
16A, 16B, 16C	Microscale EZVI	160 g MW-21D	400 MW-20D groundwater	A 4.5 g/L Microscale EZVI, 1.0 mg/L resazurin
				B 22 g/L Microscale EZVI, 1.0 mg/L resazurin
				C 88 g/L Microscale EZVI, 1.0 mg/L resazurin
Totals		3,360 g MW-21D	8,400 MW-20D groundwater	

3.2 ANAEROBIC MICROCOSM SAMPLING AND ANALYSIS

Samples were collected from each microcosm for analysis after 0, 4, 8, 12, and 16 weeks of incubation. In addition, aqueous samples were collected on Week 2 from treatments 4A, 4B, 4C (source SRSTM + bioaugmentation); 7A (source EHC); 11A, 11B, 11C (plume SRSTM + bioaugmentation); 14A (plume EHC); 15A, 15B, 15C (source nano EZVI); and 16A, 16B, and 16C (plume micro EZVI). Additional samples were collected from treatments 15A, 15B, 15C, 16A, 16B, and 16C after 6 weeks. Samples were collected from the microcosms within an anaerobic glove box to maintain anaerobic conditions. Samples were collected for CVOC and light hydrocarbon analyses. Aliquots (0.05 to 9 mL) of the samples to be analyzed by TSI for CVOCs in general accordance with SW-846 Method 8021B and for light hydrocarbons (acetylene, ethene, ethane, and methane) in general accordance with a modified SW 846 Method 8015 were transferred directly into a 20-mL headspace vial containing 1 mL of a 25% sodium chloride solution adjusted to pH 2.0 with phosphoric acid and enough distilled water to bring the entire volume of sample and sodium chloride solution to 10 mL. In addition, a 10 mL sample was collected at each time point to be analyzed for pH, redox potential (ORP), and alkalinity. At the end of the study (Week 16), sulfate samples were collected from the main study (treatments 1 to 14). After sampling, the withdrawn liquid was replaced with sterile glass beads. The volume of liquid in each microcosm decreased with each sampling point. However, this was thought to have little effect on the microcosms as the concentrations of chlorinated compounds within the aqueous phase remained the same and the glass beads are inert and not expected to change the reactivity of the bedrock or amendments.

4.0 RESULTS AND DISCUSSION

4.1 METABOLIC ACTIVITY IN ANAEROBIC MICROCOSMS

Metabolic activity refers to the level of anaerobic biological degradation that is occurring and has been evaluated in this study by measuring dissolved methane concentrations. The reduction in the sulfate concentrations and the presence of methane in a microcosm are indications that anaerobic microorganisms are present and actively biodegrading the organic substrate. Iron reduction may also have occurred, but was not measured in these studies. Much of the ferrous iron produced from iron reduction would likely react with sulfide generated by sulfate reduction. Abiotic reactions of the chlorinated solvents with ferrous sulfide may have occurred. Acetylene is sometimes produced from the reaction of TCE with ferrous sulfide and ZVI. Increases in methane concentrations following addition of an organic substrate to a microcosm indicate that the growth of methanogenic microorganisms can be stimulated. Methane was produced when other electron acceptors (e.g., oxygen, nitrate, sulfate, iron) have been depleted, and reductive dechlorination occurs most readily under these methanogenic conditions.

4.1.1 Source Area Microcosms. Sulfate concentrations were measured only in the initial characterization and at the last time point at Week 16. For the source area treatments, little change in the sulfate concentrations were seen with sterile control, unamended control, nano EZVI, or micro EZVI treatments. About 71% of the sulfate was removed in the SRSTM-amended treatment 3 and over 99% with the SRSTM + bioaugmentation (treatment 4) and EHC (treatment 7).

Figure 1 presents the average dissolved methane concentrations for each source area microcosm set constructed with RMW-4D groundwater and MW-7D rock. Appendix I contains the data for all three replicates of each treatment and the data for the three source area treatments with varying loadings rates of nano EZVI and the three plume area treatments with the varying loading rates of micro EZVI. Average methane concentrations in the microcosms at the beginning of the study for the plume treatments ranged from 200 to 220 $\mu g/L$. Methane concentrations declined initially in all treatments. In the SRSTM + bioaugmentation microcosms, the maximum methane levels reached 5,200 $\mu g/L$. None of the other source area treatments produced appreciable methane.

4.1.2 Plume Area Microcosms. Partial sulfate depletion (26 to 60%) was seen in SRSTM-amended treatment 10, SRSTM + bioaugmentation treatment 11, nano-EZVI, and EHC treatment 14. Sulfate remained the predominant electron acceptor. Iron reduction may also be important, but was not evaluated in these studies. Average methane concentrations in the plume area treatments ranged initially from 103 to 110 μ g/L.

Methane levels fell to non-detect by week 8 (Figure 2). Low concentrations of methane were detected in the micro EZVI, SRSTM, and nano EZVI treatments at weeks 12 and 16.

4.1.3 Microcosm Study Summary. The results of the microcosm study indicate:

- As expected, the sterile microcosms did not reduce the sulfate concentrations or produce appreciable methane;
- Growth of indigenous microorganisms can be stimulated through the addition of an organic substrate. This conclusion is based on decreases in sulfate concentrations observed in substrate-amended microcosms relative to the control microcosms; and
- Sulfate and potentially iron were the dominant electron acceptors in both areas of the site.

4.2 pH, ORP, AND ALKALINITY IN ANAEROBIC MICROCOSMS

Samples were collected from the all sixteen sets microcosms throughout the study to be analyzed for pH, oxidation-reduction potential (ORP), and alkalinity. ORP and pH were measured using 10 mL aliquots of the samples with pH and ORP probes and meters. Alkalinity was measured by titration with 0.02 N sulfuric acid to pH 3.8.

4.2.1 Source Area Treatments. Figures 3, 4, and 5 show the average pH, ORP, and alkalinity for each source area treatment excluding treatment 15 with the varying nano EZVI loadings. Appendix I provides the results of all of the pH, ORP, and alkalinity analyses.

The average initial pH in the source area treatments ranged between 6.4 and 6.8. During the study, the average pH dropped to 5.6 in the EHC treatment 7. The average pH remained relatively neutral (6.6 to 7.3) for the remaining treatments.

Oxidizing conditions (158 to 260 millivolts or mV) were found initially in source control treatment 1, source unamended control treatment 2, and the SRSTM amended treatment 3. The two control treatments remained oxidizing. Negative ORPs were found at Week 2 and thereafter in the other treatments with the lowest ORPs of -400 mV seen in the SRSTM + bioaugmentation treatment 4. The average ORP increased to -100 mV in weeks 12 and 16 for the micro EZVI and EHC treatments.

The initial average alkalinity levels were 200 mg/L CaCO₃ for the source sterile control treatment 1 and between 285 and 328 mg/L CaCO₃ for the remaining source area treatments. Alkalinity increased slightly with the unamended treatment 2 and micro EZVI with much larger increases with the SRSTM, SRSTM + bioaugmentation, and EHC as sulfate was reduced and the fatty acids converted to bicarbonate.

4.2.2 Plume Area Treatments. Figures 6, 7, and 8 show the average pH, ORP, and alkalinity for each plume area treatment excluding treatment 17 with the varying micro EZVI loadings.

The source area treatments pH ranged between 6.4 and 6.8 . A drop to 5.8 was seen in the EHC treatment 14 at week 2. The average pH remained relatively neutral (6.4 to 7.3) thereafter.

Oxidizing conditions (167 to 269 mV) were found initially in source control treatment 8, source unamended control treatment 9, SRSTM amended treatment 10, and SRSTM + bioaugmentation treatment 11. The two control treatments remained oxidizing throughout the study. Negative ORPs were found at Week 2 and thereafter in the other treatments with the lowest ORPs of -370 mV seen in the SRSTM + bioaugmentation treatment 4. The average ORP increased to -157 to -12 mV in week 16 for the nano, micro EZVI, and EHC treatments.

The initial average alkalinity levels were 123 mg/L CaCO₃ for the plume sterile control treatment 8 and between 272 and 312 mg/L CaCO₃ for the remaining plume area treatments. Alkalinity decreased slightly with the unamended treatment 2 and changed little with micro EZVI and nano EZVI. Larger increases were observed with the SRSTM, SRSTM + bioaugmentation, and EHC.

4.3 GAS COLLECTION IN ANAEROBIC MICROCOSMS

Adventus reported that EHC would generate a large volume of gas (carbon dioxide, methane, and hydrogen) that could potentially break the microcosm bottles if they were not vented. Syringes with needles were inserted into all of the microcosm bottles to collect the gas. Table 2 presents the volume of gas collected in each treatment over the first 15 days; no gas was produced after 15 days. There were low volumes of gas (<5.0 mL) produced with the sterile control, unamended, SRSTM, SRSTM + bioaugmentation, nano EZVI, and micro EZVI. With EHC, the volume of gas ranged from 0 (microcosm 7C) to 53.5 mL (microcosm 7B) with greater than 10 mL in microcosms 7A and 14A. A sample of the gas was collected from treatment 7A on 10/30/06 (Day 5) and analyzed for VOC and dissolved hydrocarbon gases. Table 3 presents the results of this analysis. The air sample contained high levels of TCE (1,280 µg/L) and cDCE (5,660 µg/L), and lower levels of PCE, 1TCA, 1DCA, VC, and methane. The gas production from the EHC was stripping the contaminants from the groundwater.

Table 2. Gas Volume (mL) Collected in Microcosms

Bottle	Date	10/27/2006	10/28/2006	10/29/2006	10/30/2006	10/31/2006	11/1/2006	11/2/2006	11/3/2006	11/6/2006	11/9/2006	Cumulative
	Day	2	3	4	5	6	7	8	9	12	15	
1A	Source Sterile Control	0	0	0	0	0	0	0	0	0	0	0.0
1B	Source Sterile Control	0	0	0	0	0	0	0	0	0	0	0.0
1C	Source Sterile Control	0	0	0	0	0	0	0	0	0	0	0.0
2A	Source Unamended Control	0	0	0	0	0	0	0	0	0	0	0.0
2B	Source Unamended Control	0	0	0	0	0	0	0	0	0	0	0.0
2C	Source Unamended Control	0	0	0	0	0	0	0	0	0	0	0.0
3A	Source SRS TM	0	0	0	0	0	0	0	0	0	0	0.0
3B	Source SRS TM	0	0	0	0	0	0	0	0	0	0	0.0
3C	Source SRS TM	0.5	0	0	0	0	0	0	0	0	0	0.5
4A	Source SRS TM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
4B	Source SRS TM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
4C	Source SRSTM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
5A	Source Nano EZVI	1	0	0	0	0	1	0	0	0	0	2.0
5B	Source Nano EZVI	0.5	0	0	0	0	0.5	0	0	0	0	1.0
5C	Source Nano EZVI	0	leak	0	0	0	1	0	0	0	0	1.0
6A	Source Micro EZVI	0.5	0	0	0	0	1	0	0	0	0	1.5
6B	Source Micro EZVI	0.5	0	0	0	0	0	0	0	0	0	0.5
6C	Source Micro EZVI	0	0	0	0	0	0	0	0	0	0	0.0
7A	Source EHC	7	27	0	1	3	0	0	0	0	0	38.0
7B	Source EHC	6.5	13	0	5	24	5	0	0	0	0	53.5
7C	Source EHC	0	0	0	0	0	0	0	0	0	0	0.0
8A	Plume Sterile Control	0	0	0	0	0	0	0	0	0	0	0.0
8B	Plume Sterile Control	0	0	0	0	0	0.5	0	0	0	0	0.5
8C	Plume Sterile Control	1	0	0	0	0	0	0	0	0	0	1.0
9A	Plume Unamended Control	0	0	0	0	0	0	0	0	0	0	0.0
9B	Plume Unamended Control	0.5	0	0	0	0	0	0	0	0	0	0.5
9C	Plume Unamended Control	0	0	0	0	0	0	0	0	0	0	0.0
10A	Plume SRS TM	0	0	0	0	0	0	0	0	0	0	0.0
10B	Plume SRS TM	0	0	0	0	0	0	0	0	0	0	0.0
10C	Plume SRS TM	0	0	0	0	0	0	0	0	0	0	0.0
11A	Plume SRS TM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
11B	Plume SRS TM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
11C	Plume SRS TM + Bioaugmentation	0	0	0	0	0	0	0	0	0	0	0.0
12A	Plume Nano EZVI	0	0	0	0	0	0	0	0	0	1.5	1.5
12B	Plume Nano EZVI	0	0	0	0	1	0	0	0	0	1	2.0
12C	Plume Nano EZVI	0	0	0	2	0	0.5	0.5	0	1	0	4.0
13A	Plume Micro EZVI	1	0	0	0	0	0	0	0	0	0	1.0
13B	Plume Micro EZVI	0	0	0	0	0.5	0	0	0	0	1	1.5
13C	Plume Micro EZVI	0	0	0	1	0	0	0	0	0	0	1.0
14A	Plume EHC	13	33	0	0	0	0	0	0	0	0	46.0
14B	Plume EHC	6	0	0	2	0	0	0	0	0	0	8.0
14C	Plume EHC	0.5	0	0	0	0.5	4	0	0	0	0	5.0

Table 3. VOC and Dissolved Hydrocarbon Gases from Microcosm 7A on 10/30/06

Compound	Unit	Conc.
PCE	μg/L air	84
TCE	μg/L air	1280
cDCE	μg/L air	5663
tDCE	μg/L air	<12
1TCA	μg/L air	62
1DCE	μg/L air	<12
1DCA	μg/L air	69
CA	μg/L air	<12
VC	μg/L air	110
Methane	μg/L air	210
Acetylene	μg/L air	<12
Ethene	μg/L air	<14
Ethane	μg/L air	<14

4.4 CVOC BIODEGRADATION IN ANAEROBIC MICROCOSMS

Appendix I presents the analytical results for the source area anaerobic microcosms containing the RMW-4D groundwater and MW-7D rock and for the plume area microcosm containing the MW-20D groundwater and MW-21D rock. Figures presenting the average chlorinated ethene results for the various microcosms are summarized as follows:

Figure	Microcosm	Amendments			
9	1	Source Sterile Control CE Average +/- Standard Deviation			
10	2	Source Unamended Control CE Average +/- Standard Deviation			
11	3	Source SRS™ CE Average +/- Standard Deviation			
12	4	Source SRS TM + Bioaugmentation CE Average +/- Standard Deviation			
13	5	Source Nano EZVI CE Average +/- Standard Deviation			
14	6	Source Micro EZVI CE Average +/- Standard Deviation			
15	7	Source EHC CE Average +/- Standard Deviation			
16	15A	Source 4.5 g/L Nano EZVI CE			
17	15B	Source 22 g/L Nano EZVI CE			
18	15C	Source 88g/L Nano EZVI CE			
19	8	Plume Sterile Control CE Average +/- Standard Deviation			
20	9	Plume Unamended Control CE Average +/- Standard Deviation			
21	10	Plume SRS™ CE Average +/- Standard Deviation			
22	11	Plume SRS™ + Bioaugmentation CE Average +/- Standard Deviation			
23	12	Plume Nano EZVI CE Average +/- Standard Deviation			
24	13	Plume Micro EZVI CE Average +/- Standard Deviation			
25	14	Plume EHC CE Average +/- Standard Deviation			

26	16A	Plume 4.5 g/L Micro EZVI CE
27	16B	Plume 22 g/L Micro EZVI CE
28	16C	Plume 88g/L Micro EZVI CE

Figures presenting the average chlorinated ethane results for the various microcosms are summarized as follows:

Figure	Microcosm	Amendments			
29	1	Source Sterile Control CA Average +/- Standard Deviation			
30	2	Source Unamended Control CA Average +/- Standard Deviation			
31	3	Source SRS™ CA Average +/- Standard Deviation			
32	4	Source SRS™ + Bioaugmentation CA Average +/- Standard Deviation			
33	5	Source Nano EZVI CA Average +/- Standard Deviation			
34	6	Source Micro EZVI CA Average +/- Standard Deviation			
35	7	Source EHC CA Average +/- Standard Deviation			
36	15A	Source 4.5 g/L Nano EZVI CA			
37	15B	Source 22 g/L Nano EZVI CA			
38	15C	Source 88g/L Nano EZVI CA			
39	8	Plume Sterile Control CA Average +/- Standard Deviation			
40	9	Plume Unamended Control CA Average +/- Standard Deviation			
41	10	Plume SRS™ CA Average +/- Standard Deviation			
42	11	Plume SRS™ + Bioaugmentation CA Average +/- Standard Deviation			
43	12	Plume Nano EZVI CA Average +/- Standard Deviation			
44	13	Plume Micro EZVI CA Average +/- Standard Deviation			
45	14	Plume EHC CA Average +/- Standard Deviation			
46	16A	Plume 4.5 g/L Micro EZVI CA			
47	16B	Plume 22 g/L Micro EZVI CA			
48	16C	Plume 88 g/L Micro EZVI CA			

CVOC concentrations presented on the figures are expressed in total micromoles (μ Moles) units. Molar units were used so that each CVOC is expressed on an equivalent mass basis for comparison purposes. The micromolar concentrations are calculated by dividing the concentration in μ g/L by the molecular weight of the CVOC (PCE = 165.8 grams per mole [g/mol], TCE = 131.4 g/mol; cis-DCE = 96.9 g/mol; trans-DCE = 96.9 g/mol; VC = 62.5 g/mol; 1TCA = 133.4; 1,1-DCE = 96.9 g/mol; 1DCA = 99 g/mol; CA = 64.5 g/mol; VC = 62.5 g/mol; acetylene = 26 g/mol; ethene = 28 g/mol; and ethane = 30 g/mol). Table 4 presents the percent removal for the chlorinated ethenes, chlorinated ethanes, electron acceptors, and dissolved hydrocarbon gases for plume area treatments.

Non-detects were reported for many of the constituents at Week 4 due to the high dilutions used to bring the cDCE into the calibration range. The syringe and needle in all of the bottles contributed to the losses of the volatile constituents.

4.4.1 Source Area Treatments CVOC Results. The following summarizes the results for source area anaerobic microcosm treatments 1 to 7 containing Ekonol RMW-4D groundwater and MW-7D rock:

- Initial average PCE concentrations in these microcosms ranged from 897 μ g/L (1 Sterile Control) to 3,387 μ g/L (5 Nano EZVI). Average TCE concentrations ranged from 9,277 to 57,733 μ g/L, cDCE from 1,453 to 58,367 μ g/L, tDCE <100 to 867 μ g/L, VC <100 to 1,297 μ g/L, 1TCA 800 to 7,873 μ g/L, 1DCE <100 to 1,447 μ g/L, 1DCA <100 to 770 μ g/L, and ethene <120 to 677 μ g/L. CA, acetylene, and ethane were not detected in the initial samples. The sterile control treatment was spiked with TCE and 1TCA. Two of the three replicates in treatment 5 with the nano EZVI contained very high levels of PCE and TCE.
- Over the 16 week incubation period for the sterile control microcosms, there appeared to be losses of PCE, TCE, cDCE, 1TCA, and 1DCA, but no evidence for microbial activity based upon the removal of sulfate, accumulation of methane, or production of daughter products were observed. However, average losses of 100% of PCE, 88% TCE, 80% cDCE, 67% 1TCA, and 99% 1DCE were observed which might be attributed to partitioning into the headspace in the microcosm or adsorption onto the glass bottle, rock, or glass beads. The average total chlorinated ethenes excluding the dissolved gases dropped by 87% and the average chlorinated ethanes excluding the dissolved gases fell by 74%. At week 16, relatively low levels of PCE, TCE, cDCE, 1TCA, and ethane were found in the rock phase of microcosm 1A indicating some potential adsorption onto the rock organic fraction. Some of the groundwater containing these organics may have been collected with the rock fragments.
- There appeared to be limited losses of PCE, TCE, cDCE, 1TCA, 1DCA, and VC in the unamended control, but no further biodegradation to acetylene, ethene, or ethane. There was little evidence of microbial activity based upon the removal of sulfate, production of methane, or conversion of the parent compounds to daughter products. Average losses of 61% of the chlorinated ethenes excluding the gases and 98% of the chlorinated ethanes excluding the gases were observed. PCE, TCE, cDCE, 1TCA, and methane were found in the rock sample at Week 16.

Table 4. Percent Removals of Average Concentrations for Source Area Treatments Over 16 Week Incubation

Source	1	2	3	4	5	6	7	15-A	15-B	15-C
Treatment	Sterile	Unamended	SRSTM	SRSTM+Bioaug	44 g/L Nano EZVI	Micro EZVI	ЕНС	4.5 g/L Nano EZVI	22 g/L Nano EZVI	88 g/L Nano EZVI
Methane	100.0	100.0	100.0	-1638.5	100.0	97.8	100.0	>39.1	>70.0	86.4
PCE	100.0	94.1	99.1	100.0	99.6	99.4	100.0	>91.1	>94.6	>99.4
TCE	88.2	66.8	99.8	100.0	99.8	99.6	100.0	>99.4	>99.6	99.9
cDCE	79.8	51.4	8.7	29.3	88.9	78.4	70.2	30.1	21.3	76.2
tDCE					100.0		100.0	>78.7	>89.1	>98.9
1TCA	67.5	98.8	95.9	100.0	100.0	100.0	100.0	>87.2	>48.7	>98.6
1DCE	99.0		100.0	100.0	100.0	100.0	100.0	>79.2	>89.1	>98.9
1DCA		98.1	98.0	100.0	98.9	97.4		>73.7	>86.5	>98.6
CA										
VC		100.0	98.1	-702.6	98.8	98.0	100.0	>85.7	53.0	74.5
Acetylene										
Ethene					40.4	33.2	-113.5	54.2	14.7	-81.5
Ethane									>-350.0	>-450.0
Sum CE-Gases	87.5	60.9	52.3	29.8	93.8	88.7	84.2	63.1	56.1	86.2
Sum CA-Gases	73.9	98.5	98.3	100.0	99.7	99.1	100.0	100.0	100.0	100.0
Sulfate	15.4	23.3	71.3	99.6	37.4	-69.7	99.8			

Blank cells designate that the constituents were not detected or measured at the beginning or end of the study.

⁻ Negative signs indicate an increase in concentrations.

> Signs indicate that the constituent was reduced to below the detection limit for that constituent, the percent removal was reported as greater than initial concentration minus the final detection limit divided by the initial concentration times 100.

< Signs indicate that the constituent was initially below the detection limit for that constituent, the percent removal was reported as less than the initial detection limit minus the final concentration divided by the initial detection limit times 100.

- The microcosms amended initially with SRSTM showed almost complete conversion of the PCE and TCE to cDCE by Week 4, but little further conversion to VC was observed with no acetylene or ethene production. Slow losses of 1TCA, 1DCA, and 1DCE were also observed with no conversion of 1TCA to daughter products. Total chlorinated ethenes without the gases declined by 52% and chlorinated ethanes without the gases by 98%. About 71% of the sulfate was depleted, but no methane was produced. Some PCE, TCE, and cDCE were found in the rock fraction at week 16 indicating adsorption to the rock organic fraction or potentially that low concentrations of these compounds persisted; a lower dilution was run for the rock samples than the groundwater samples.
- The microcosms amended with SRSTM and bioaugmented on Week 2 achieved complete reduction of PCE and TCE to cDCE within 4 weeks with further transformation to VC in two replicates between Weeks 12 and 16. Acetylene, ethene, or ethane had not yet been produced in these replicates by Week 16. Chlorinated ethanes were gradually reduced over the study. 1DCE and 1DCA were not detected at Week 4 (Figure 32), possibly due to the high dilution needed for the chlorinated ethenes. Sulfate was depleted in all three replicates and methane was produced in all 3 replicates. Average total chlorinated ethenes without the gases declined by 30% and total chlorinated ethanes without the gases were not detected at Week 16. Again, PCE, TCE, cDCE, and methane were detected at relatively low levels in the rock phase due to adsorption to the rock organics or the lowered detection limits.
- There were gradual losses of PCE, TCE, cDCE, and VC in the treatment with the 44 g/L nano EZVI without production of cDCE at the intervals that were sampled. The total chlorinated ethenes without the gases declined by 94%. Acetylene, ethene, and ethane were detected in these treatments. 1TCA was consumed within four weeks. Slow losses of 1DCE and 1DCA were observed with only a low level of 1DCA being detected at week 16; total chlorinated ethanes without the gases were reduced by 99.7%. Most of the removal of the chlorinated ethenes and ethanes appeared to be a result of reaction with the ZVI as there was only limited removal of the sulfate and no methane production which would be expected if biological activity was responsible for the decreases.
- In the treatments with the source area rock and groundwater with the different loadings of nano EZVI (4.5, 22, and 88 g/L), there were relatively slow removals of TCE, with the production of cDCE (in contrast to the treatments with 44 g/L nano EZVI). As the concentration of nano EZVI increased, so did the production of acetylene, ethene, and ethane. Overall removals of chlorinated ethenes were 63% for the 4.5 g/L loading, 56% for the 22 g/L loading, and 86% for the 88 g/L loading. Chlorinated ethanes were eliminated in all loading experiment treatments and 2 of the 3 replicates with 44 g/L nano EZVI. Low levels of PCE, TCE, cDCE, VC, and 1DCA were found in the rock phase of bottle 15C (88g/L).

18

- The micro EZVI performed similarly to the nano EZVI with the gradual removal of PCE, TCE, cDCE, VC, 1TCA, 1DCE, and 1DCA. The average percent removal of chlorinated ethenes without gases in these treatments were 89% and 99% for the chlorinated ethanes without gases. Sulfate was not utilized and only a little methane was produced. Low levels of PCE, TCE, cDCE, and methane were found in the rock phase.
- EHC appeared to provide a slower, less efficient removals of the PCE, TCE, cDCE, and VC than the nano EZVI or micro EZVI. EHC was effective against the chlorinated ethanes, resulting in the reduction to below the detection limits. Acetylene, ethene, and ethane were produced. Overall removal efficiencies for the chlorinated ethenes and chlorinated ethanes (excluding gases) were 84 and 100%, respectively. Sulfate was consumed, but no methane was produced. The rock phase at week 16 contained low levels of PCE, TCE, cDCE, methane, acetylene, ethene, and ethane.

4.4.2 Plume Area Treatments CVOC Results. The following summarizes the results for source area anaerobic microcosm treatments 1 to 7 containing Ekonol MW-20D groundwater and MW-21D rock:

- The plume area wells did not contain detectable levels of TCE and PCE, except for the spiked sterile control where there was an average of 4,113 μ g/L. Average cDCE concentrations ranged from 638 to 23,568 μ g/L, tDCE <100 to 303 μ g/L, VC <100 to 1,297 μ g/L, 1TCA 850 to 3,753 μ g/L, 1DCE 463 to 637 μ g/L, 1DCA <100 to 483 μ g/L, and ethene <120 to 553 μ g/L. CA, acetylene, and ethane were not detected in the initial samples.
- Over the 16 week incubation period for the sterile control microcosms, there were losses of TCE, cDCE, 1TCA, and 1DCE, but no evidence for microbial activity based upon the removal of sulfate, accumulation of methane, or production of daughter products were observed. The average total chlorinated ethenes excluding the dissolved gases dropped by 80% and the average chlorinated ethanes excluding the dissolved gases fell by 55%. At week 16, relatively low levels of PCE, TCE, cDCE, 1TCA, and 1DCA were found in the rock phase of microcosm 8A indicating some potential adsorption onto the rock organic fraction. Some of the groundwater containing these organics may have been collected with the rock fragments.
- There appeared to be limited losses of cDCE, tDCE, 1TCA, 1DCA, and VC in the unamended control. There was little evidence of microbial activity based upon the removal of sulfate, production of methane, or conversion of the parent compounds to daughter products. Low levels of ethene and ethane were detected at Week 16 in all three replicates. Average losses of 61% of the chlorinated ethenes excluding the gases and 80% of the chlorinated ethanes

Table 5. Percent Removals of Average Concentrations for Plume Area Treatments Over 16 Week Incubation

Plume	8	9	10	11	12	13	14	16-A	16-B	16-C
Treatment	Sterile	Unamended	SRSTM	SRSTM+Bioaug	Nano EZVI	44 g/L Micro EZVI	ЕНС	4.5 g/L Micro EZVI	22 g/L Micro EZVI	88 g/L g Micro EZVI
Methane	100.0	100.0	77.3	100.0	84.2	71.6	100.0	>96.9	>96.9	95.8
PCE										
TCE	79.2									
cDCE	81.4	56.2	74.6	68.4	69.5	81.1	33.9	94.5	88.8	96.1
tDCE		100.0						>98.9	>98.9	
1TCA	47.7	66.1	45.9	78.6	100.0	95.5	100.0	>99.6	>99.4	>99.8
1DCE	95.1	100.0	100.0	100.0	100.0	100.0	100.0	>99.3	>98.9	
1DCA		81.2	69.7	76.3	78.9	82.1	54.0	85.3	87.4	97.1
CA										
VC		100.0	88.2	85.1	53.4	86.5	73.5	97.5	94.0	98.4
Acetylene										
Ethene					85.6	58.6	-9.8	89.8	79.3	95.3
Ethane									<37.5	<80.3
Sum CE-Gases	79.6	61.3	75.6	70.2	67.6	81.8	38.2	94.8	89.8	96.4
Sum CA-Gases	54.6	80.1	68.4	85.2	94.3	93.2	86.9	96.6	96.5	98.6
Sulfate	-25.0	-27.8	33.6	25.8	26.1	-13.9	59.7			

Blank cells designate that the constituents were not detected or measured at the beginning or end of the study.

⁻ Negative signs indicate an increase in concentrations.

> Signs indicate that the constituent was reduced to below the detection limit for that constituent, the percent removal was reported as greater than initial concentration minus the final detection limit divided by the initial concentration times 100.

< Signs indicate that the constituent was initially below the detection limit for that constituent, the percent removal was reported as less than the initial detection limit minus the final concentration divided by the initial detection limit times 100.

- excluding the gases were observed. PCE, TCE, cDCE, 1TCA, 1DCA, ethene, and ethane were found in the rock sample at Week 16.
- The plume microcosms amended initially with SRSTM showed slow reductions in cDCE and VC concentrations. Relatively low levels of ethene were detected at Week 16 in all three replicates. Slow losses of 1TCA, 1DCA, and 1DCE were also observed with no apparent conversion of 1TCA to daughter products. Total chlorinated ethenes without the gases declined by 74% and chlorinated ethanes without the gases by 61%. About 34% of the sulfate was depleted. Methane concentrations dropped to non-detect in all 3 replicates, but was found at 75 µg/L at Week 16 in treatment 10A. cDCE, 1TCA, 1DCA, methane, and ethane were found in the rock fraction at week 16 indicating adsorption to the rock organic fraction or potentially that low concentrations of these compounds persisted; a lower dilution was run for the rock samples than the groundwater samples.
- The microcosms amended with SRSTM and bioaugmented on Week 2 showed gradual losses of cDCE and VC. Ethene and/or ethane were detected at Week 16 in all 3 replicates. Sulfate concentrations at week 16 ranged from 430 to 1,400 mg/L; sulfate was partially depleted in only one of the three replicates and methane was not produced. Average total chlorinated ethenes without the gases declined by 70% and total chlorinated ethanes without the gases declined by 85%. PCE, TCE, cDCE, 1TCA, 1DCA, VC, and ethane were detected at relatively low levels in the rock phase due to adsorption to the rock organics or the lowered detection limits.
- There were gradual losses of cDCE and VC in the treatment with the 44 g/L nano EZVI. The total chlorinated ethenes without the gases declined by 68%. Ethene was detected at Week 0 in all three replicates, but fell to non-detect at Week 4. Both ethene and ethane were produced in these treatments. 1TCA was consumed within four weeks with slower losses of 1DCE and 1DCA. Only a low level of 1DCA was detected at week 16; total chlorinated ethanes without the gases were reduced by 94%. Most of the removal of the chlorinated ethenes and ethanes seemed to be a result of reaction with the ZVI as there was only limited removal of the sulfate and little methane production which would be expected if biological activity was responsible for the decreases.
- The micro EZVI performed similarly to the nano EZVI with the gradual removal of cDCE, VC, 1TCA, 1DCE, and 1DCA. The average percent removal of chlorinated ethenes without gases in these treatments were 82% and 93% for the chlorinated ethanes without gases. Sulfate was not utilized and only a little methane was produced. Low levels of PCE, TCE, cDCE, and methane were found in the rock phase at Week 16.

- In the treatments with the plume area rock and groundwater with the different loadings of micro EZVI (4.5, 22, and 88 g/L), there were relatively slow removals of cDCE and VC. Ethene was detected in most of the treatments at Week 0, but fell to non-detect levels by Week 2 or 4. Ethene and ethane were produced from Weeks 6 to 16, but only a trace of acetylene. Overall removals of chlorinated ethenes were 95% for the 4.5 g/L loading, 90% for the 22 g/L loading, and 96% for the 88 g/L loading. Chlorinated ethanes were reduced by 97, 96, and 99%, respectively at the three loadings. Low levels of PCE, TCE, cDCE, methane, acetylene, ethene, and ethane were found in the rock phase of bottle 16C.
- EHC provided similar removal rates of the cDCE and VC as the nano EZVI or micro EZVI. EHC was effective against the chlorinated ethanes, resulting in the reduction to below the detection limits. Ethene and ethane were produced. Overall removal efficiencies for the chlorinated ethenes and chlorinated ethanes (excluding gases) were 38 and 87%, respectively. However, it appeared that at least a portion of the removal observed for EHC was due to stripping with the gas formed from EHC. Sulfate concentrations were reduced by 60%, but no methane was produced. The rock phase at week 16 contained low levels of cDCE, 1DCA, methane, ethene, and ethane.

5.0 CONCLUSIONS

Conclusions of the bioremediation evaluation based on the results presented in this report are as follows:

- The growth of indigenous microorganisms at the Ekonol site can be stimulated through the addition of an organic substrate such as SRSTM. This conclusion is supported by the observed increases in metabolic activity including sulfate and iron reduction through the addition of SRSTM or EHC. Bioaugmentation with a dechlorinating enrichment promoted sulfate and potentially iron reduction and methane production in the source area microcosms, but not the plume area microcosms (at least by Week 16).
- The high levels of sulfate and potentially iron controlled the rate and extent of dechlorination of the PCE, TCE, and cDCE in both the source and plume areas. Only in two replicates of the SRSTM bioaugmentation treatment were substantial methane and VC produced. Further transformation to ethene may occur in subsequent weeks once the sulfate and iron are depleted. Although sulfate concentrations were reduced by between 26 to 60% in the plume area treatments, sulfate levels remained above 330 mg/L; a level where sulfate-reduction would complete with cDCE dechlorination to VC for electron donors.
- Based upon the increases in VC concentrations in at Week 16 in two of three replicates (Figure 12), a slow release substrate and bioaugmentation may be a potential treatment to be considered for full-scale implementation in the source area. A slow release substrate would require much less frequent injection than a soluble substrate such as sodium lactate and will not require groundwater recirculation, but would likely require delivery through multiple injection points.
- The micro and nano EZVI both performed well with removals of 68 to 94% of the chlorinated ethenes and 93 to 99.7% of the chlorinated ethanes. In the source area with higher concentrations of chlorinated ethenes, the nano EZVI outperformed the micro EZVI. The intermediate loading (44 g EZVI/L) of the nano EZVI gave more complete removals of the chlorinated ethenes and ethanes than the lower and higher loadings (4.5, 22, and 88 g EZVI/L). In the plume area with only cDCE and higher levels of 1TCA, the micro EZVI performed better than nano EZVI and the highest loading of 9.0 g ZVI /L of the micro EZVI gave the highest removal efficiency of 96% of the chlorinated ethenes and 99% of the chlorinated ethanes.
- EHC resulted in the removal of almost all of the sulfate in the source area treatments and a substantial reduction in the plume area. However, chlorinated solvent removal efficiencies for the EHC were not as high as the nano and micro EZVI. Chlorinated ethene removal efficiencies ranged from 38 to 84% and 87 to

100% for the chlorinated ethanes. A portion of the removal was due to stripping from the gas formed by EHC.

The results of this study indicate that enhanced natural attenuation may be a viable remedial alternative for the Ekonol Facility to address the chlorinated VOC plumes. More complete transformation of the VOCs was obtained during the 16 week long study with the micro and nano EZVI than EHC or SRSTM with and without bioaugmentation. The micro EZVI will be significantly cheaper than the nano EZVI because of the price differential between micro ZVI (\$2-5 per pound) versus nano ZVI (greater than \$20 per pound). The micro EZVI outperformed the nano-EZVI in the plume studies and gave relatively similar results in the source area. Based upon the lower costs and similar removal efficiencies, the micro EZVI is recommended for a field-scale pilot test to evaluate remedial performance. If micro EZVI is selected for a pilot scale study, it is recommended that the injection of the micro EZVI be monitored for at least six months to determine if the material can be effectively distributed.

Figure 1. Methane Concentrations Source Average +/- Standard Deviation

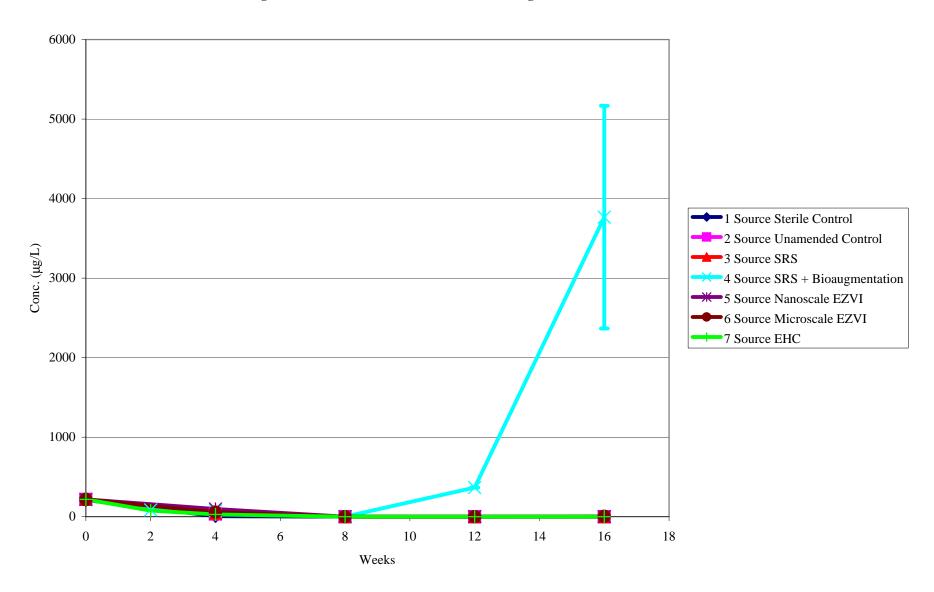


Figure 2. Methane Concentrations Plume Average +/- Standard Deviation

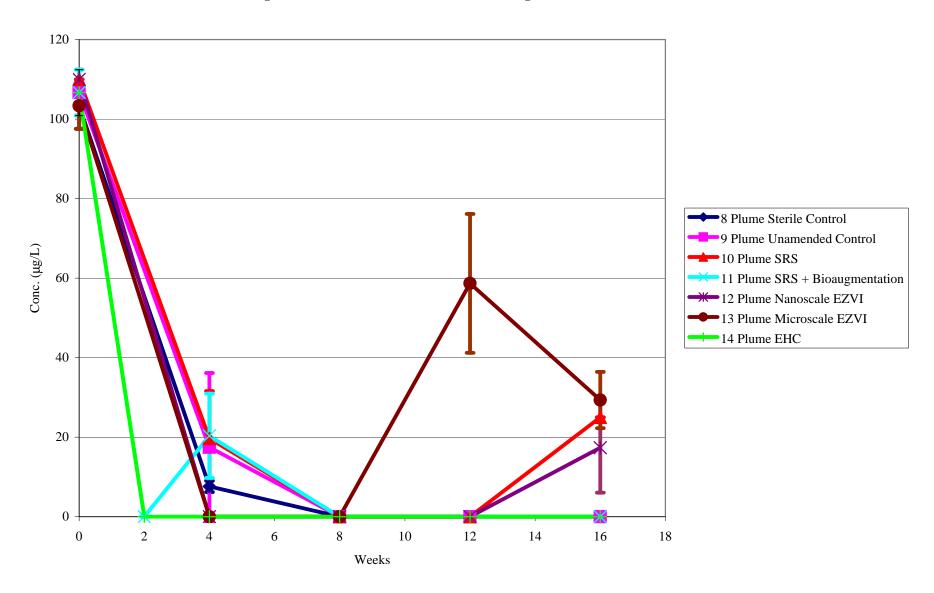


Figure 3. pH Source Treatments Average +/- Standard Deviation

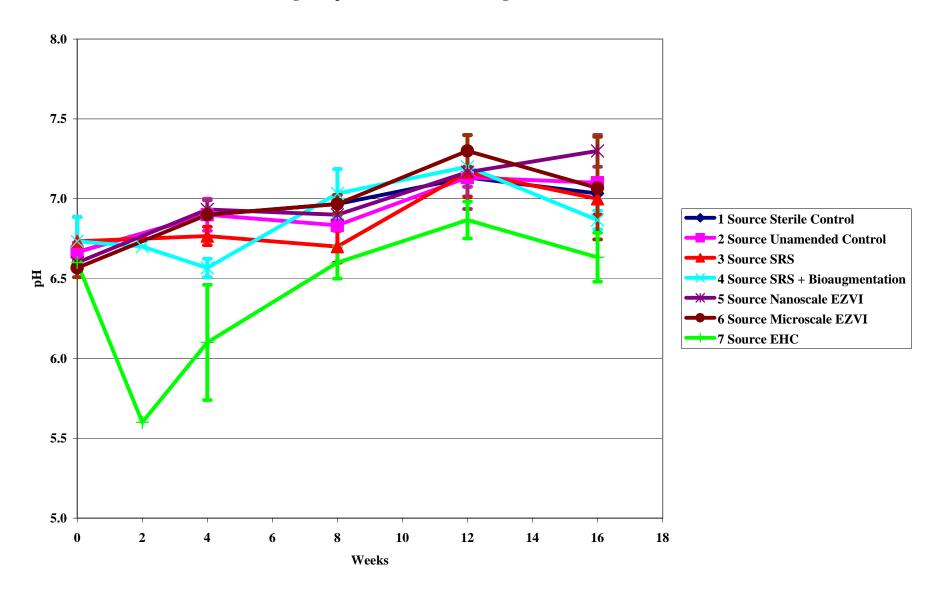


Figure 4. ORP Source Treatments Source Treatments Average +/- Standard Deviation

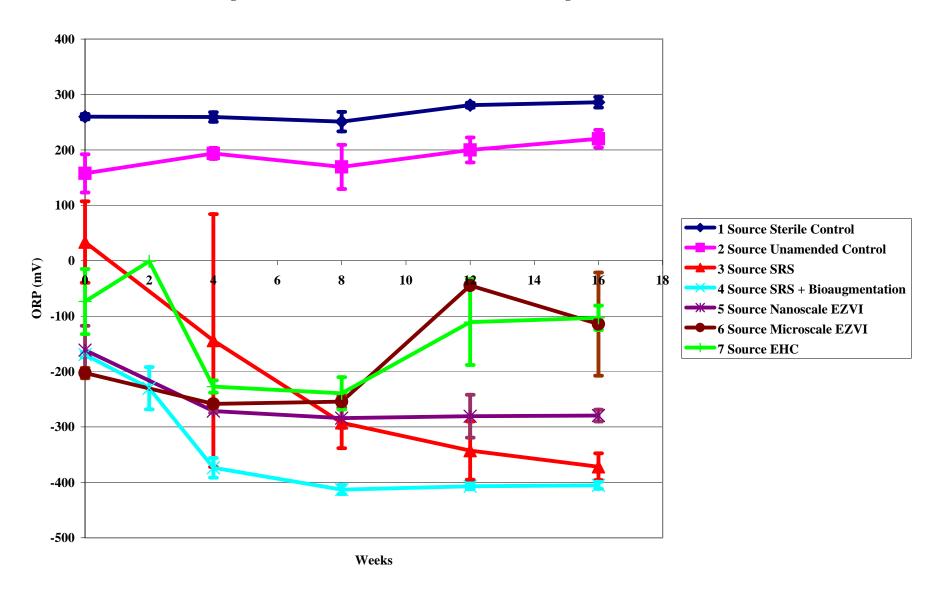


Figure 5. Alkalinity Source Treatments Average +/- Standard Deviation

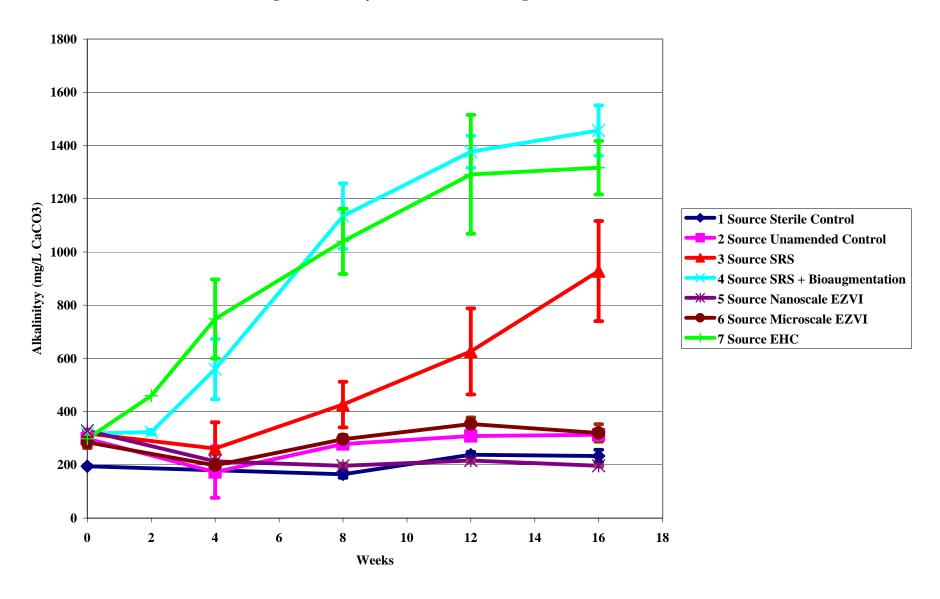


Figure 6. pH Plume Treatments Average +/- Standard Deviation

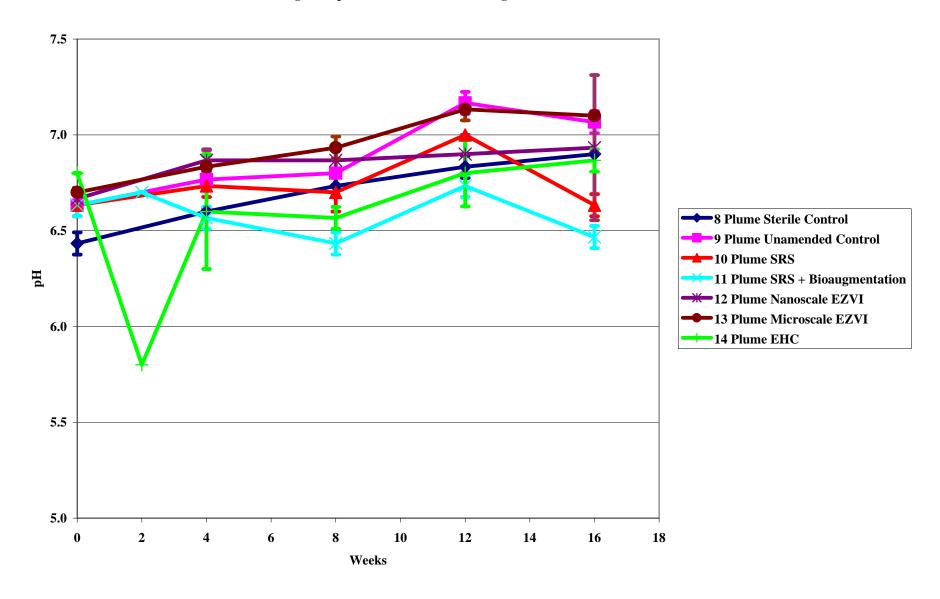


Figure 7. ORP Plume Treatments Average +/- Standard Deviation

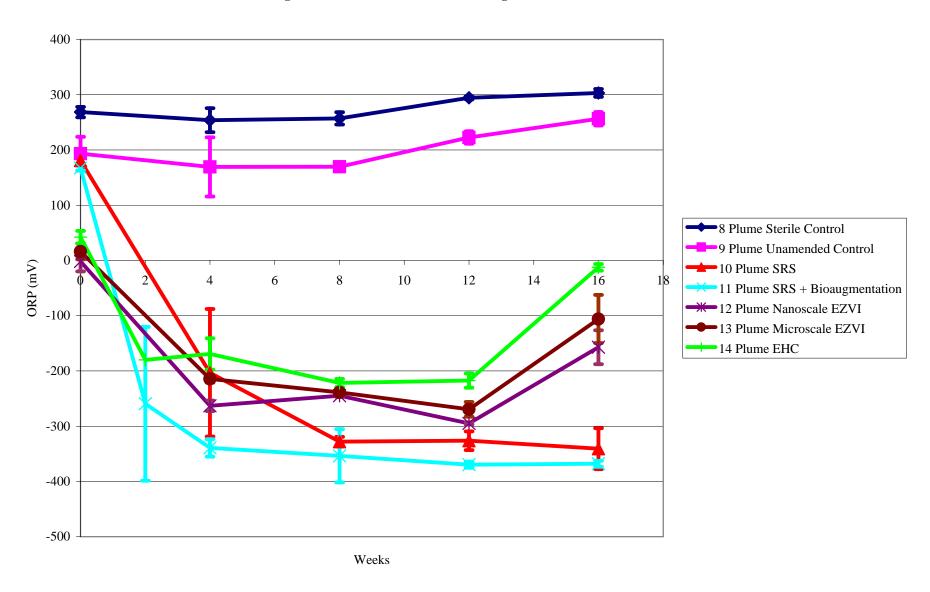


Figure 8. Alkalinity Plume TreatmentsAverage +/- Standard Deviation

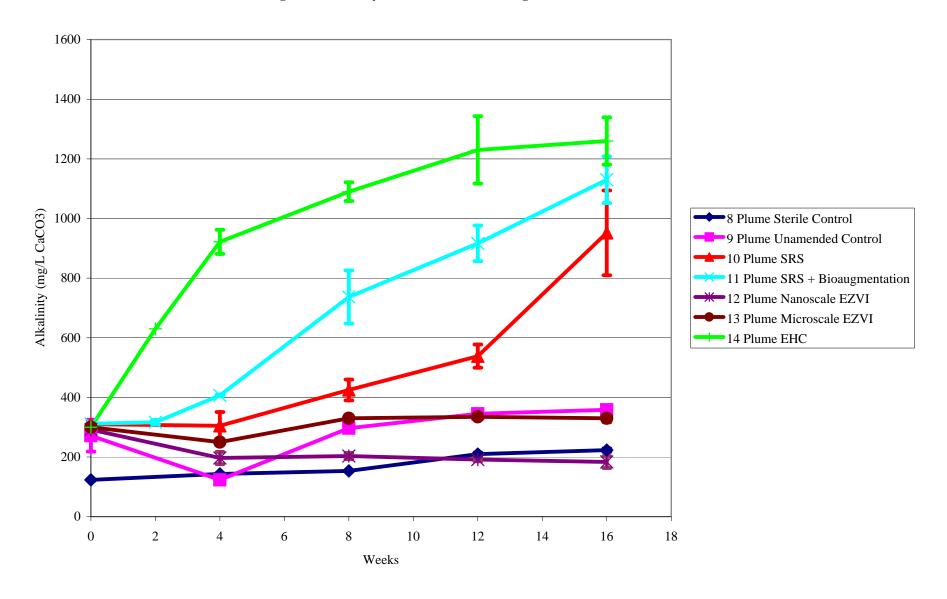


Figure 9 Source Sterile Control CE Average +/- Standard Deviation

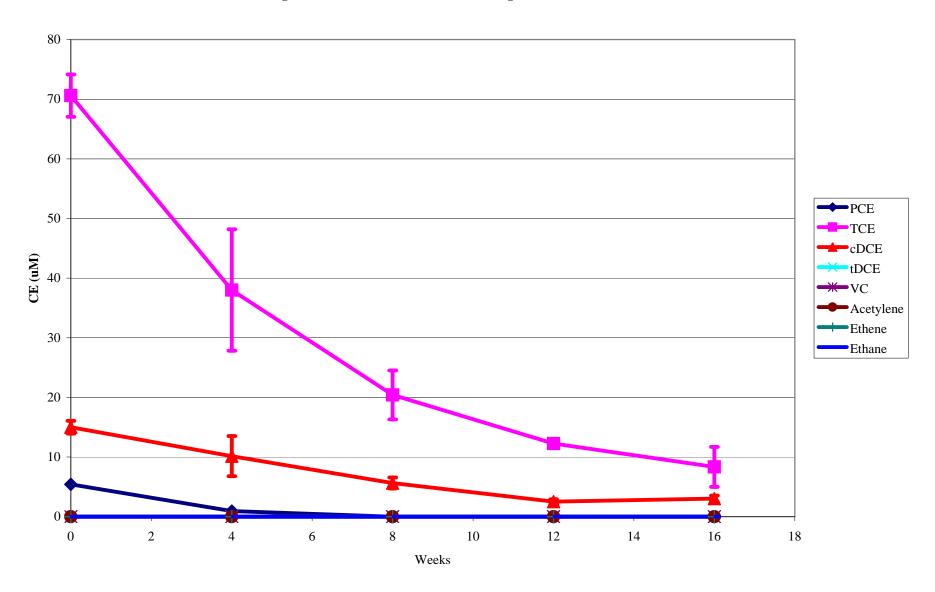


Figure 10 Source Unamended Control CEAverage +/- Standard Deviation

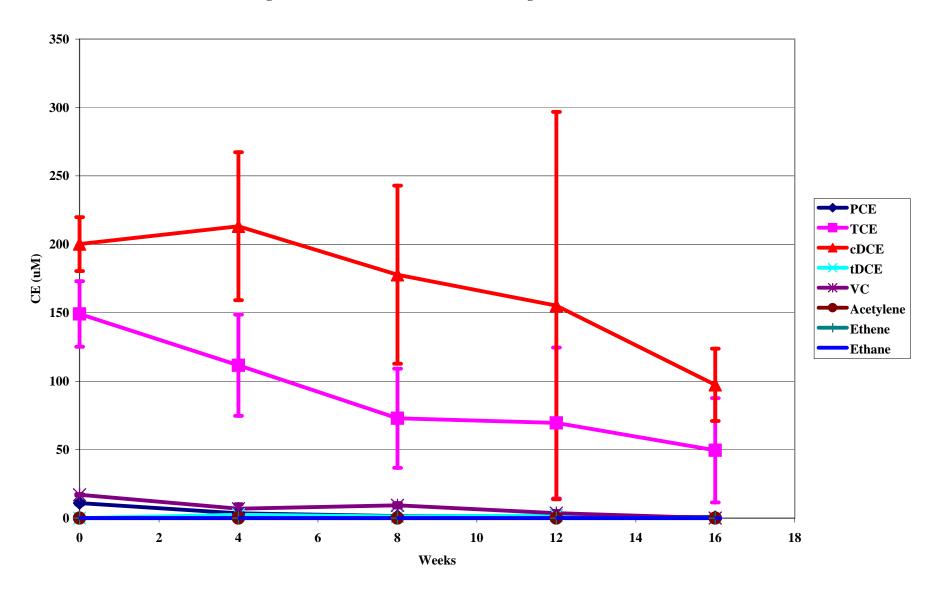


Figure 11 Source SRS CEAverage +/- Standard Deviation

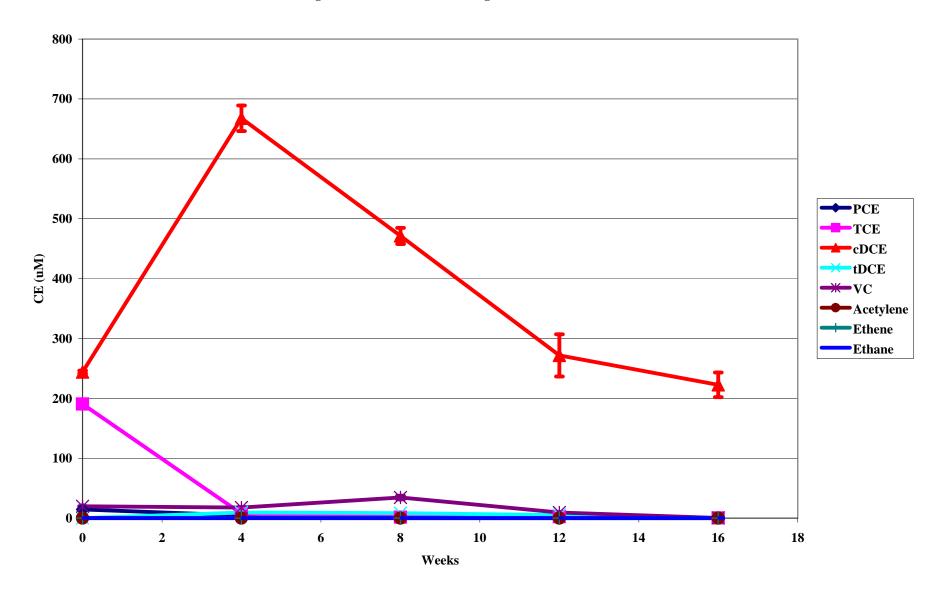


Figure 12 Source SRS + Bioaugmentation CE Average +/- Standard Deviation

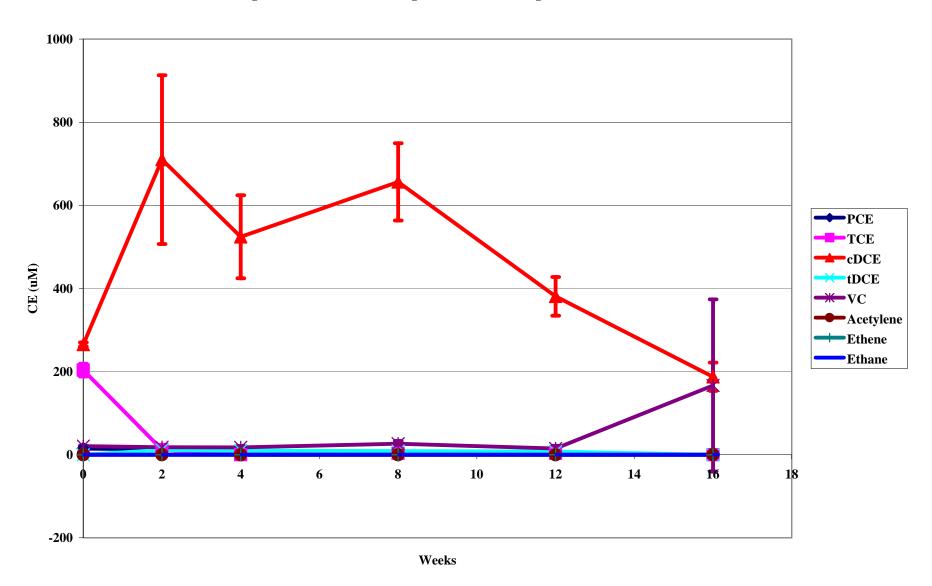


Figure 13 Source Nano EZVI CE Average +/- Standard Deviation

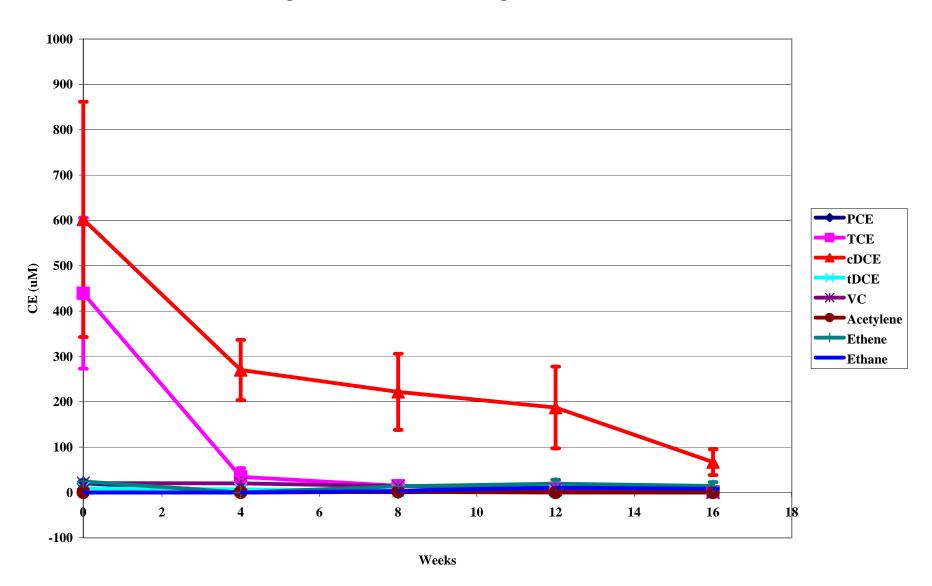


Figure 14 Source Micro EZVI CEAverage +/- Standard Deviation

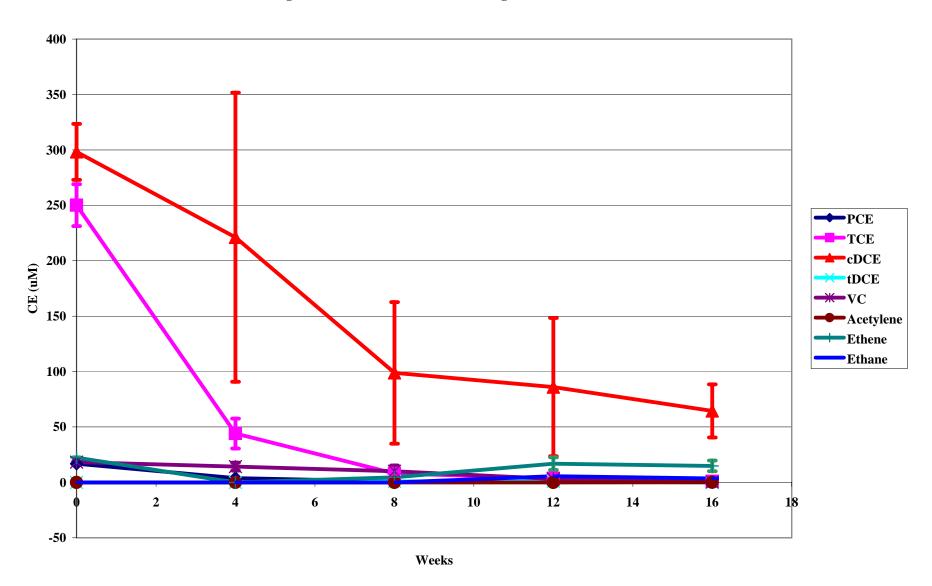


Figure 15 Source EHC CE Average +/- Standard Deviation

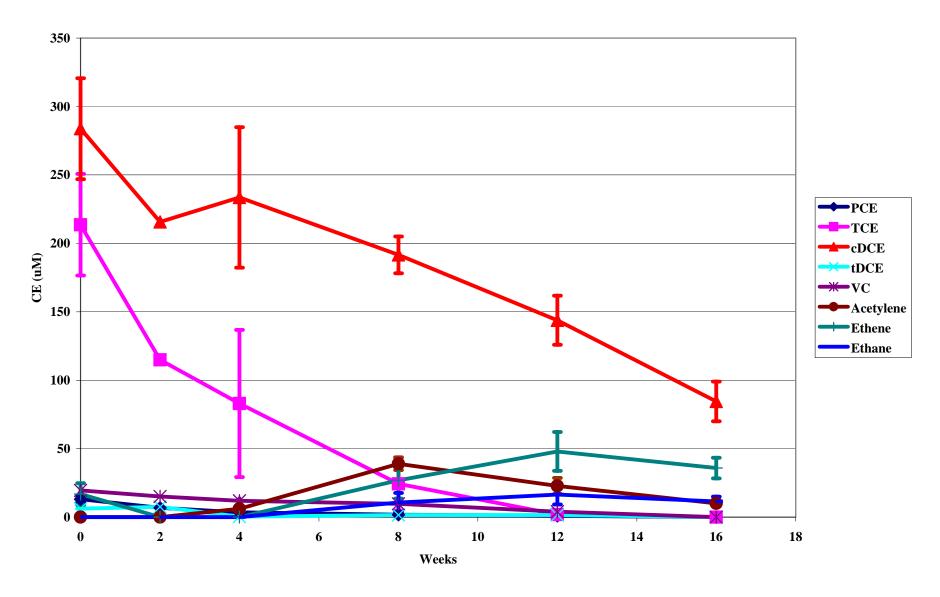


Figure 16 Source 4.5 g/L Nano EZVI CE

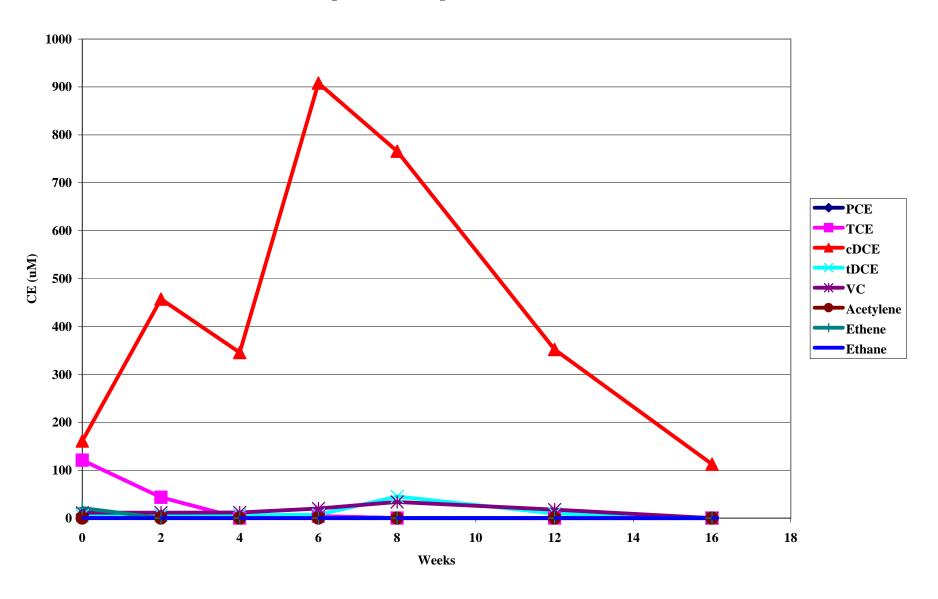


Figure 17 Source 22 g/L Nano EZVI CE

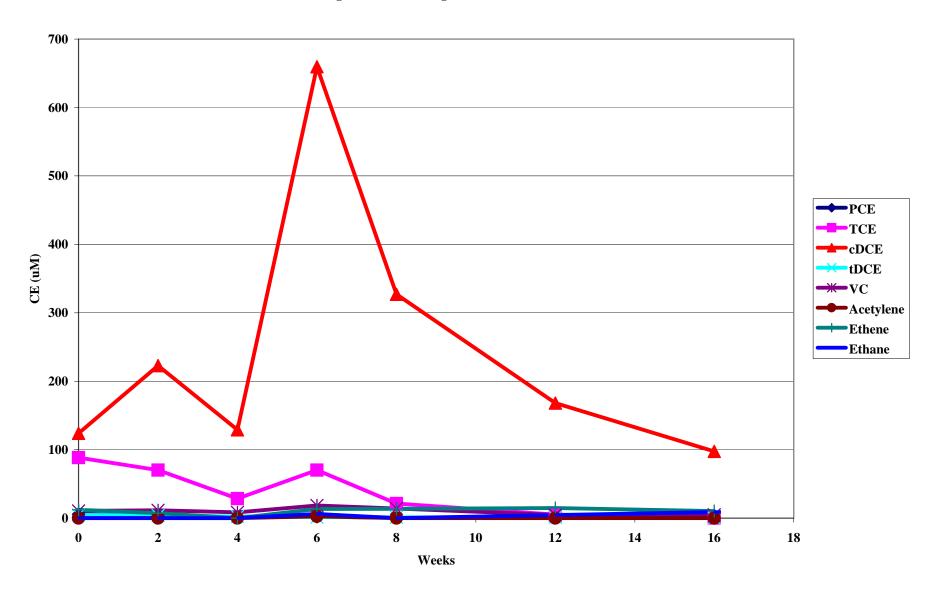


Figure 18 Source 88 g/L Nano EZVI CE



Figure 19 Plume Sterile Control CE Average +/- Standard Deviation

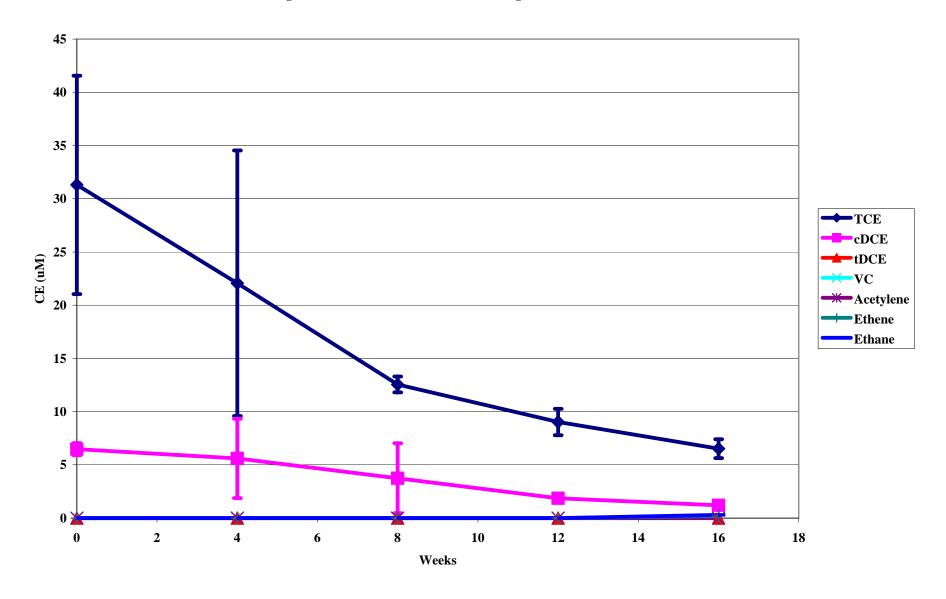


Figure 20 Plume Unamended Control CE Average +/- Standard Deviation

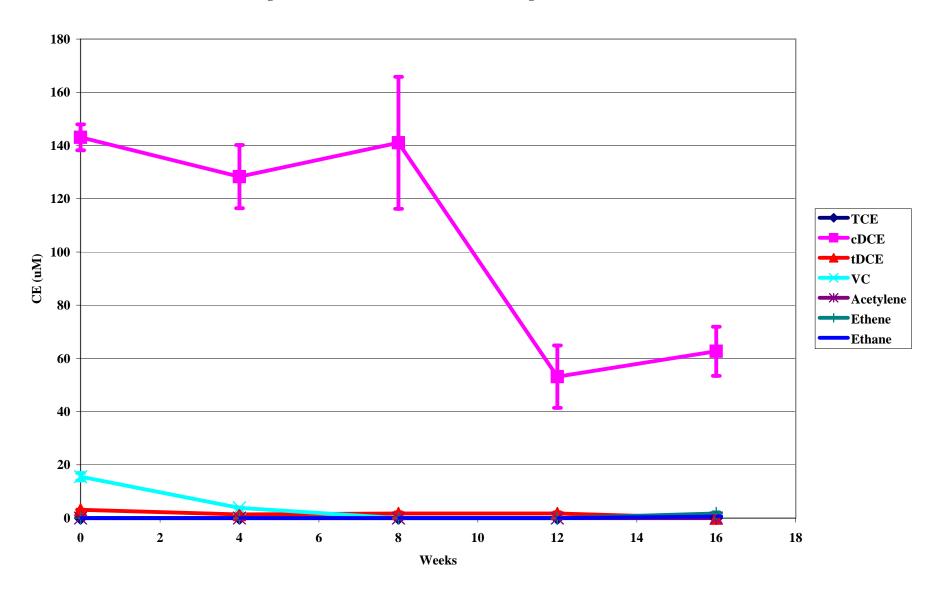


Figure 21 Plume SRS CE Average +/- Standard Deviation

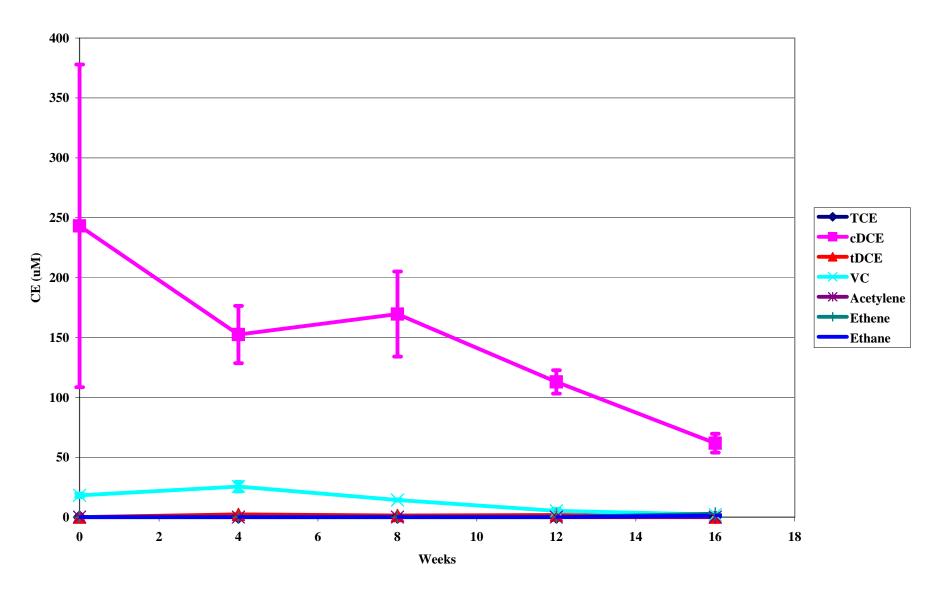


Figure 22 Plume SRS + Bioaugmentation CE Average +/- Standard Deviation

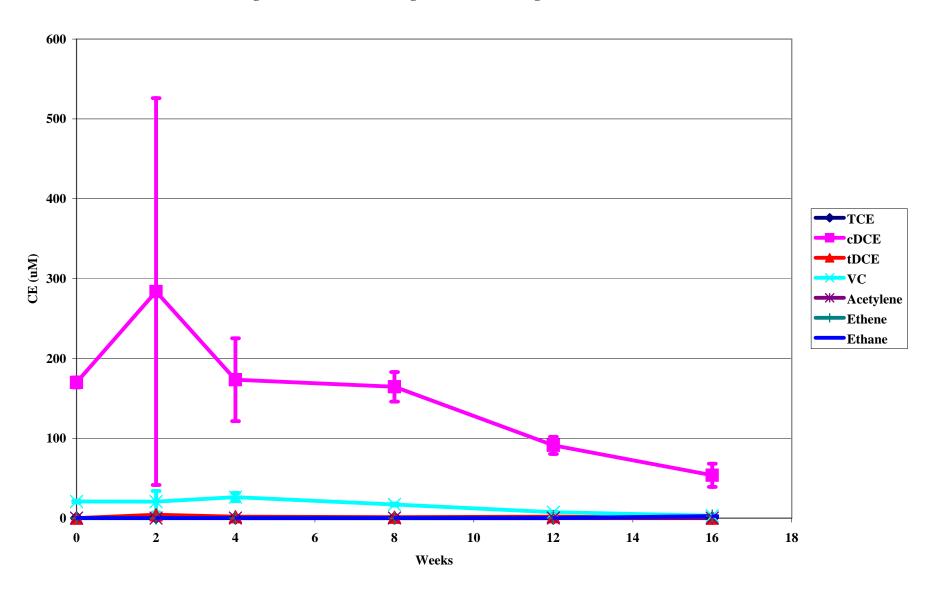


Figure 23 Plume Nano EZVI CE Average +/- Standard Deviation

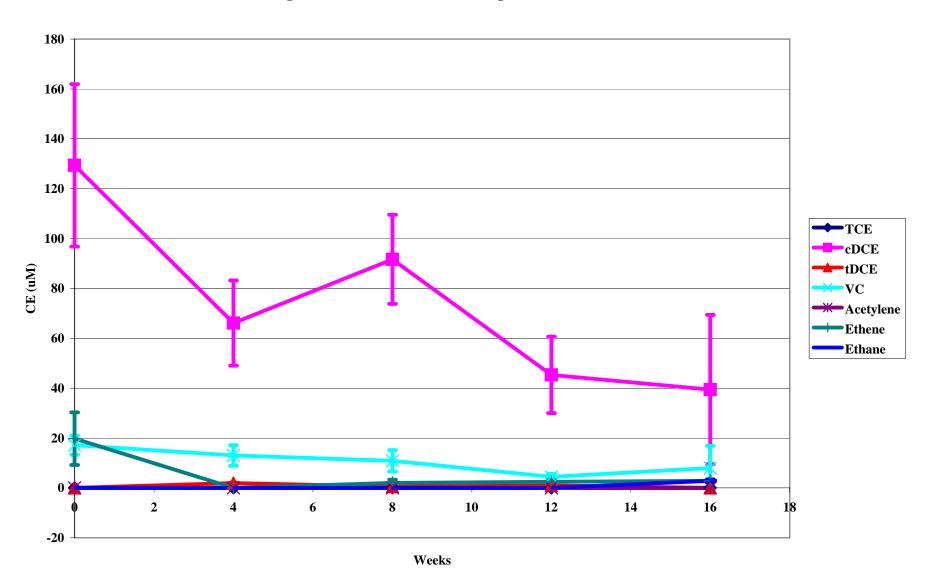


Figure 24 Plume Micro EZVI CE Average +/- Standard Deviation

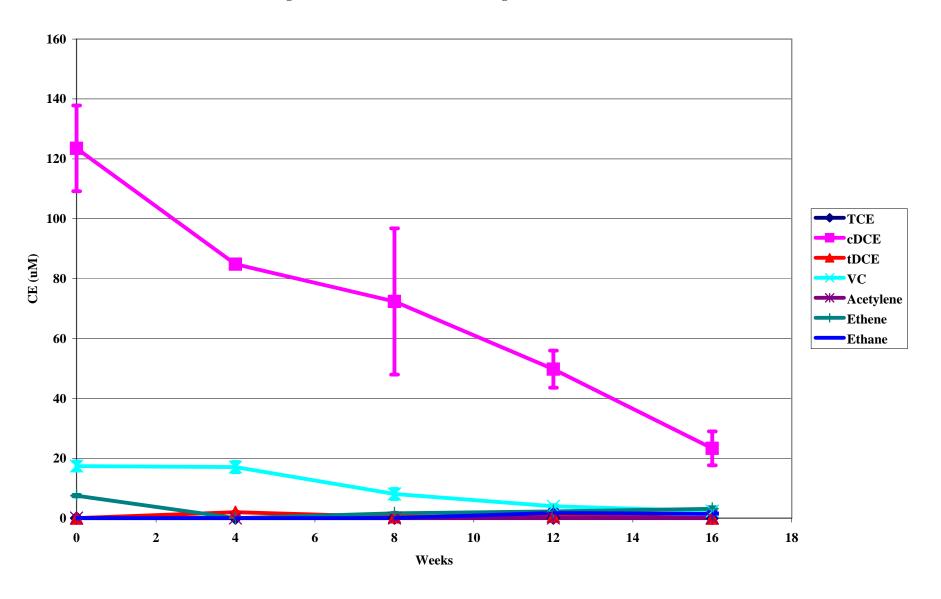


Figure 25 Plume EHC CE Average +/- Standard Deviation

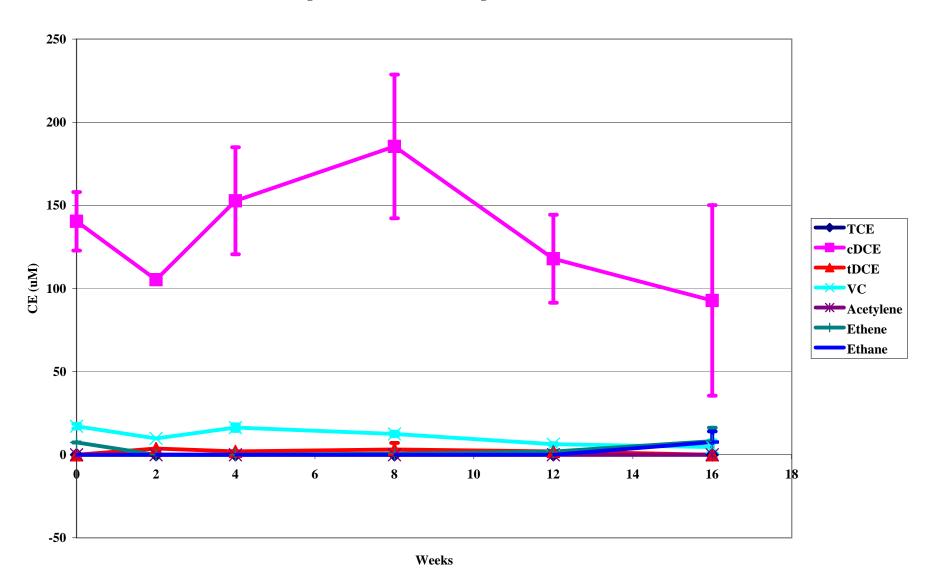


Figure 26 Source 4.5 g/L Micro EZVI CE

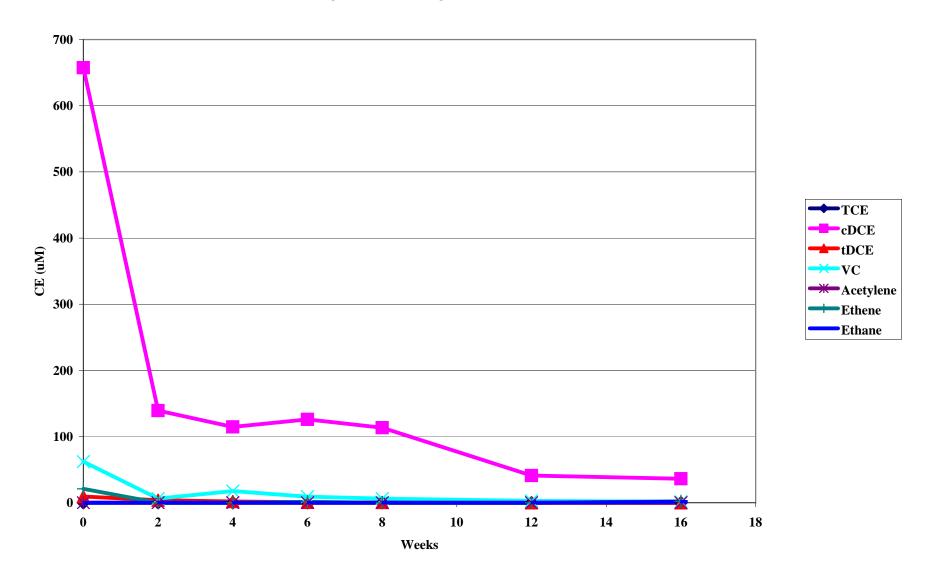


Figure 27 Source 22 g/L Micro EZVI CE

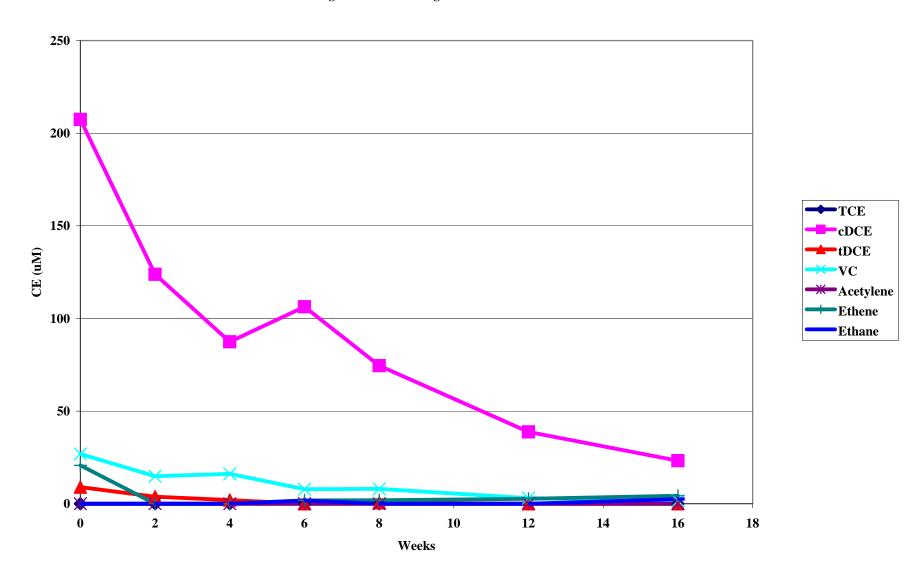


Figure 28 Source 88 g/L Micro EZVI CE

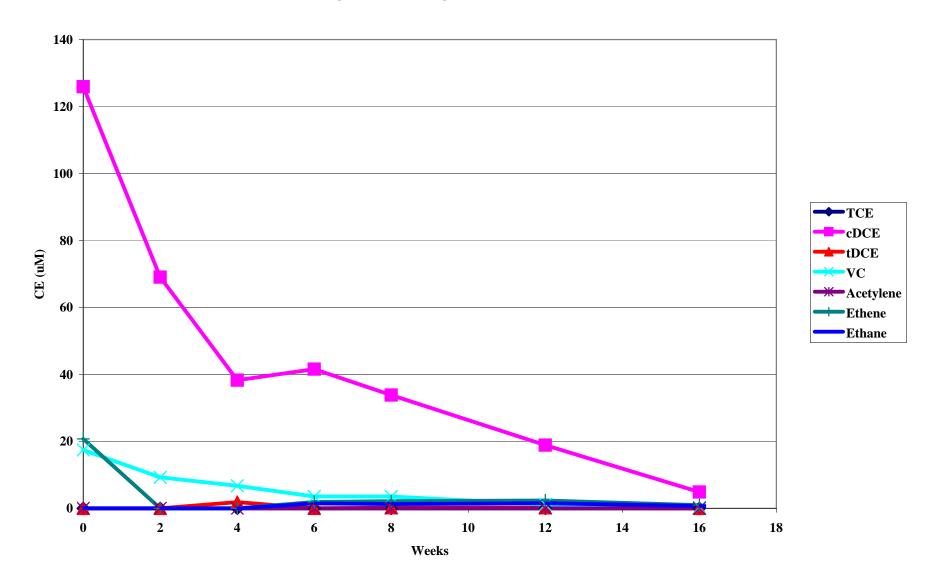


Figure 29 Source Sterile Control CA Average +/- Standard Deviation

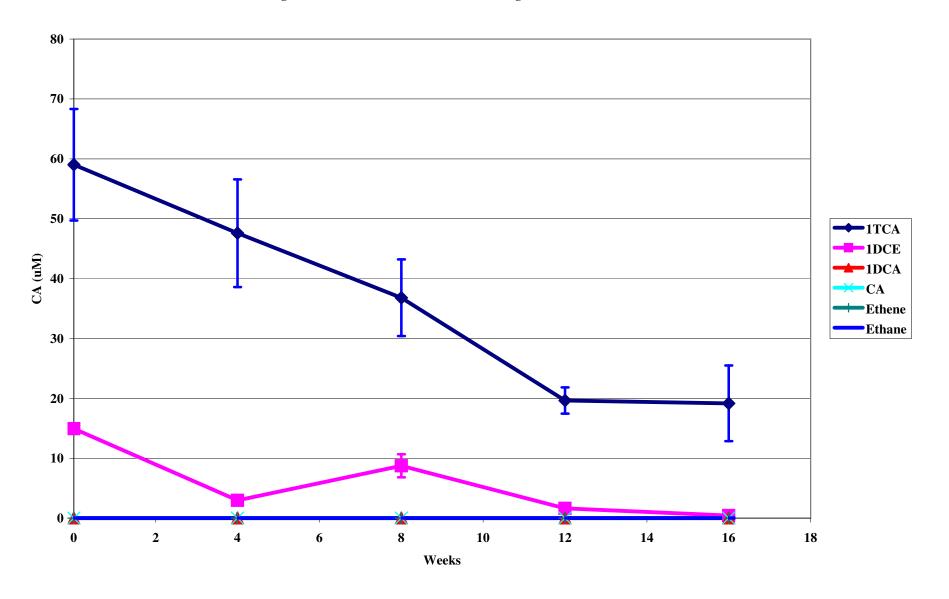


Figure 30 Source Unamended Control CA Average +/- Standard Deviation

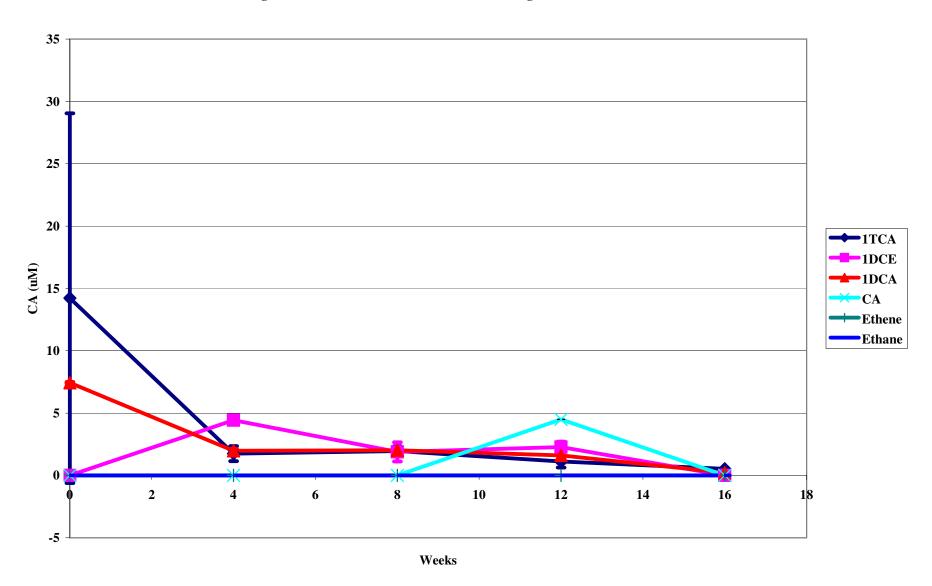


Figure 31 Source SRS CA Average +/- Standard Deviation

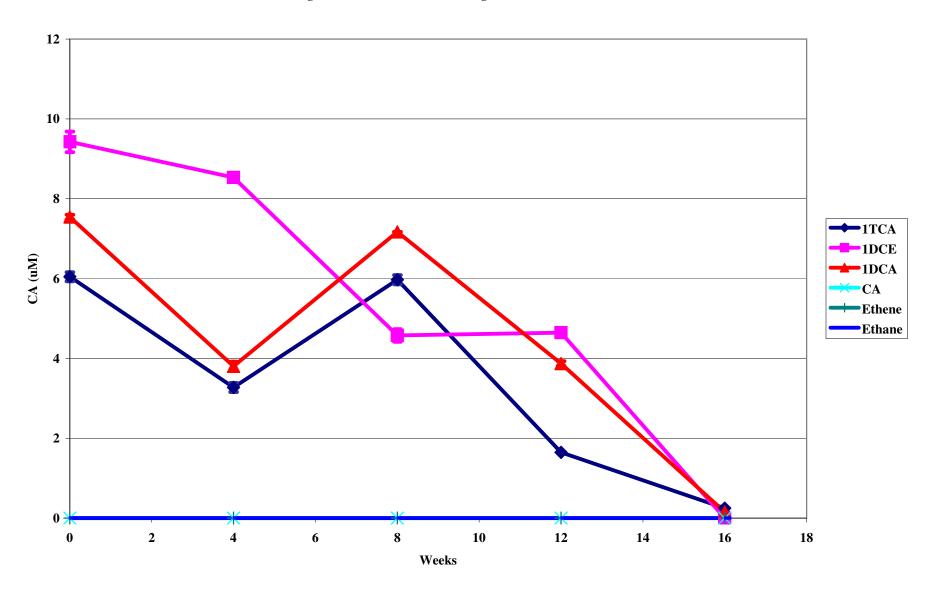


Figure 32 Source SRS + Bioaugmentation CA Average +/- Standard Deviation

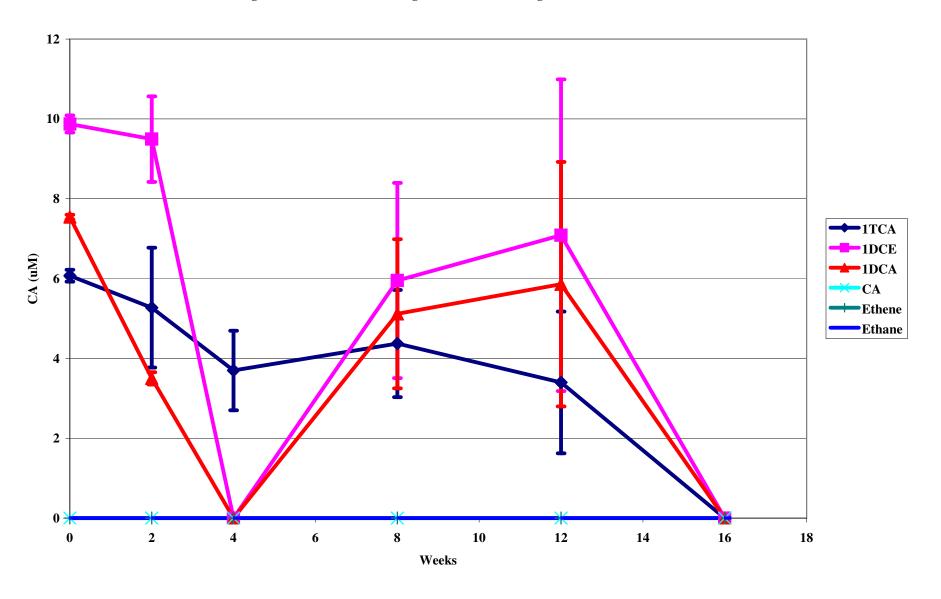


Figure 33 Source Nano EZVI CA Average +/- Standard Deviation

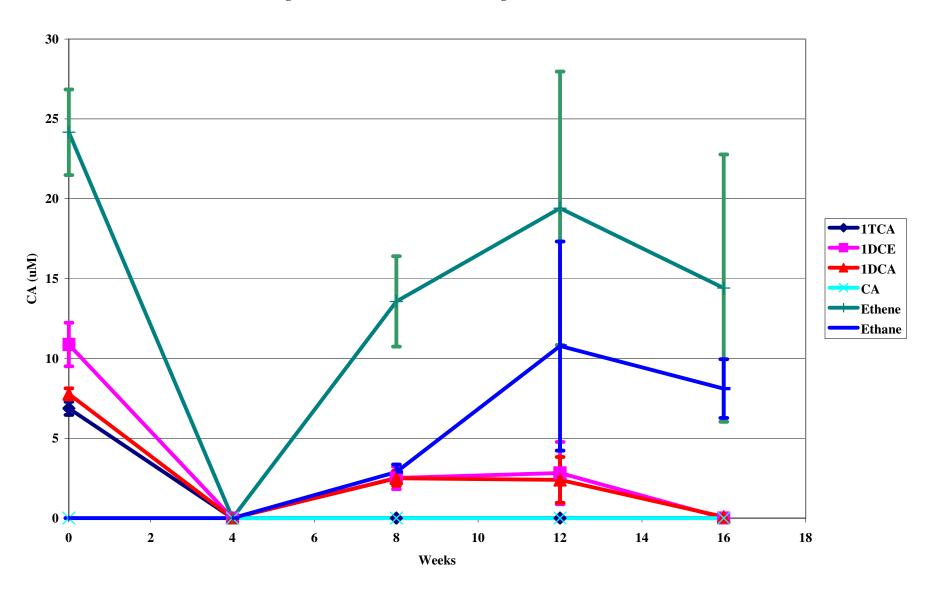


Figure 34 Source Micro EZVI CA Average +/- Standard Deviation

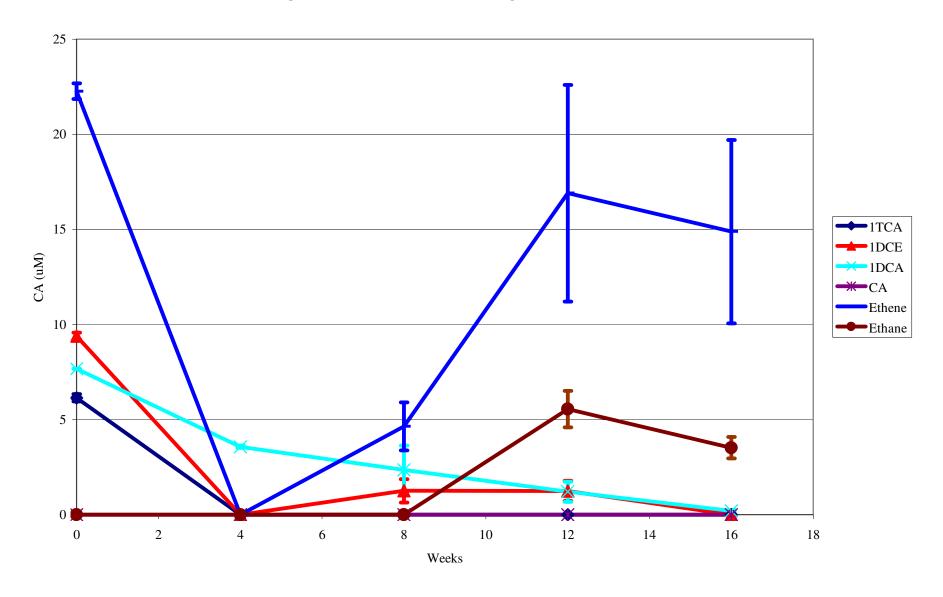


Figure 35 Source EHC CA Average +/- Standard Deviation

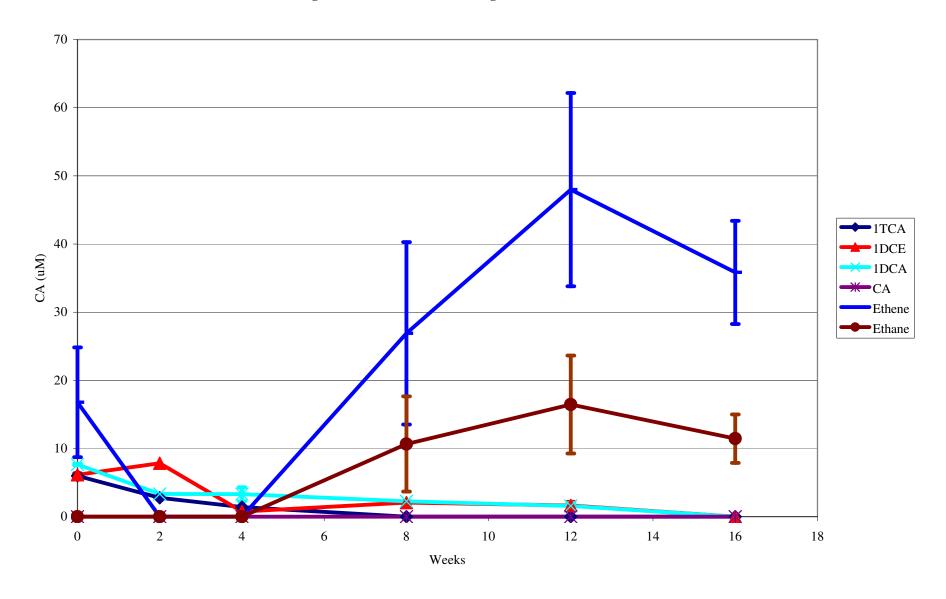


Figure 36 Source 4.5 g/L Nano EZVI CA

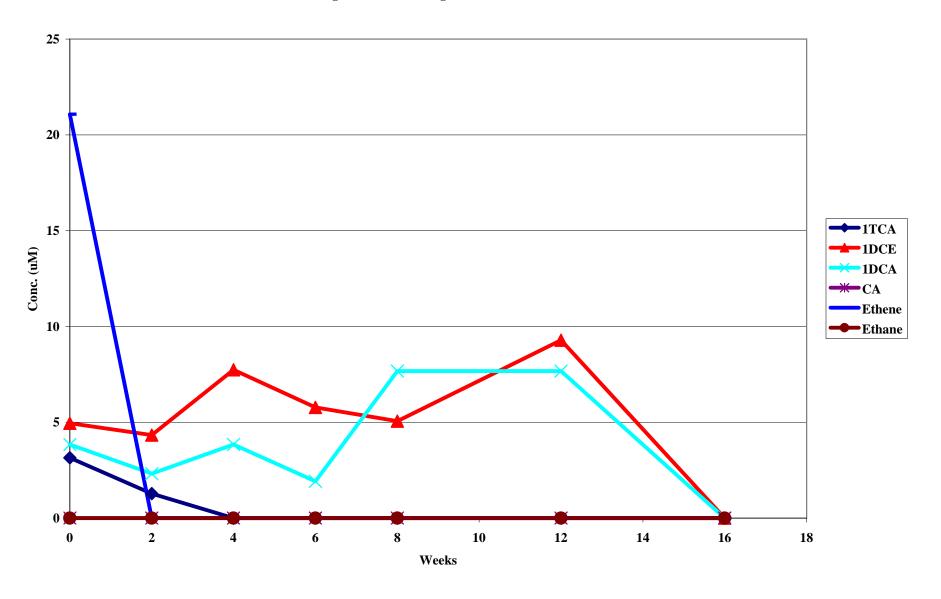


Figure 37 Source 22 g/L Nano EZVI CA

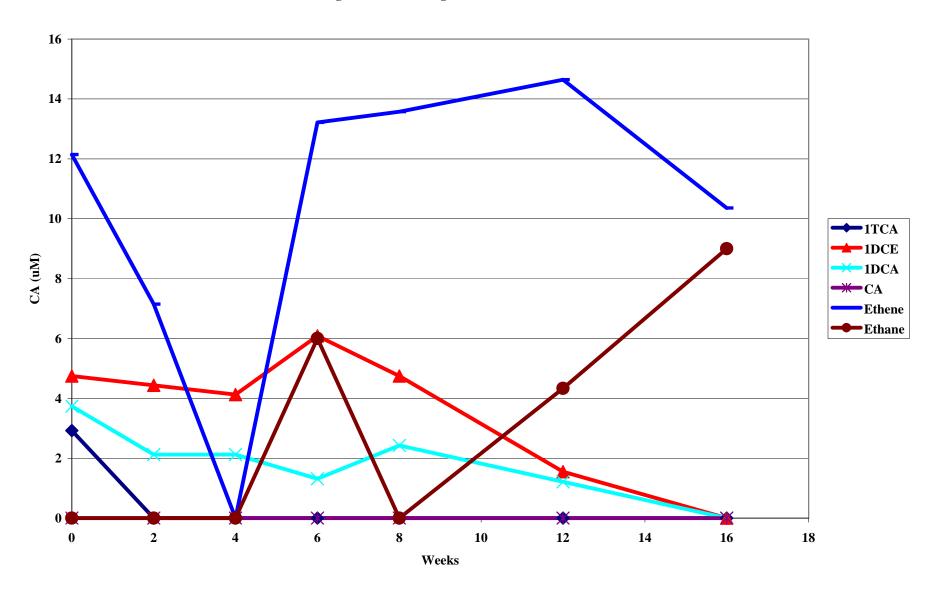


Figure 38 Source 88 g/L Nano EZVI CA

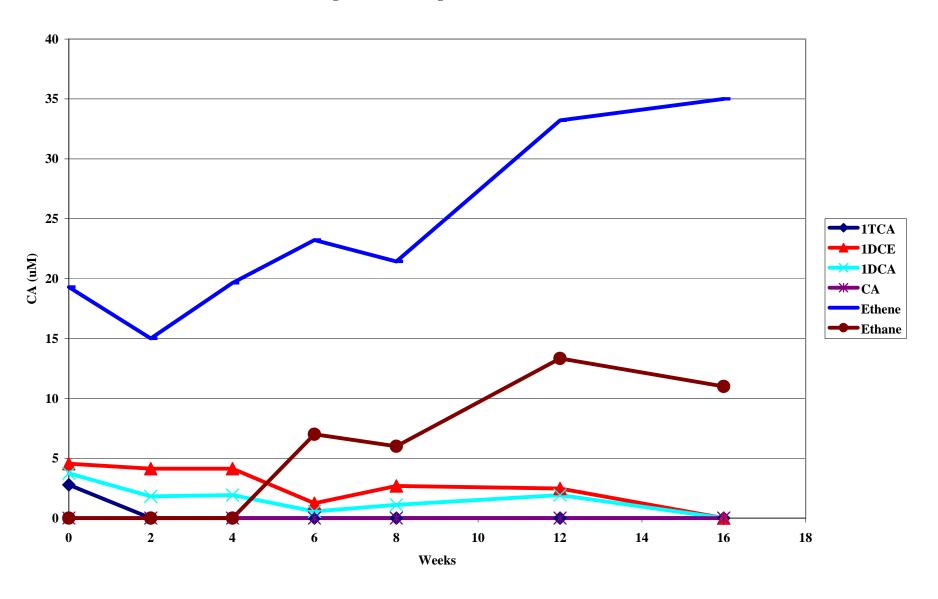


Figure 39 Plume Sterile Control CA Average +/- Standard Deviation

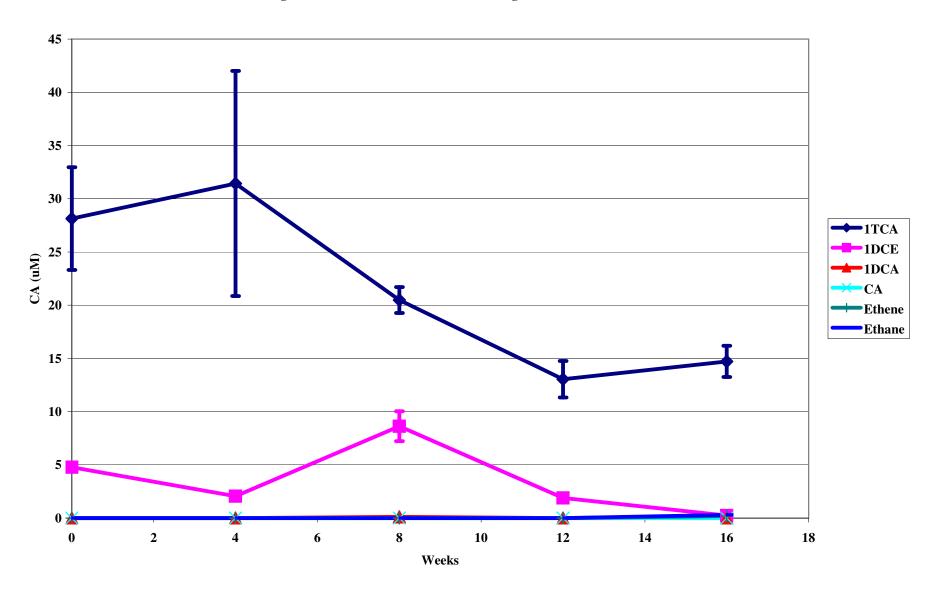


Figure 40 Plume Unamended Control CAAverage +/- Standard Deviation

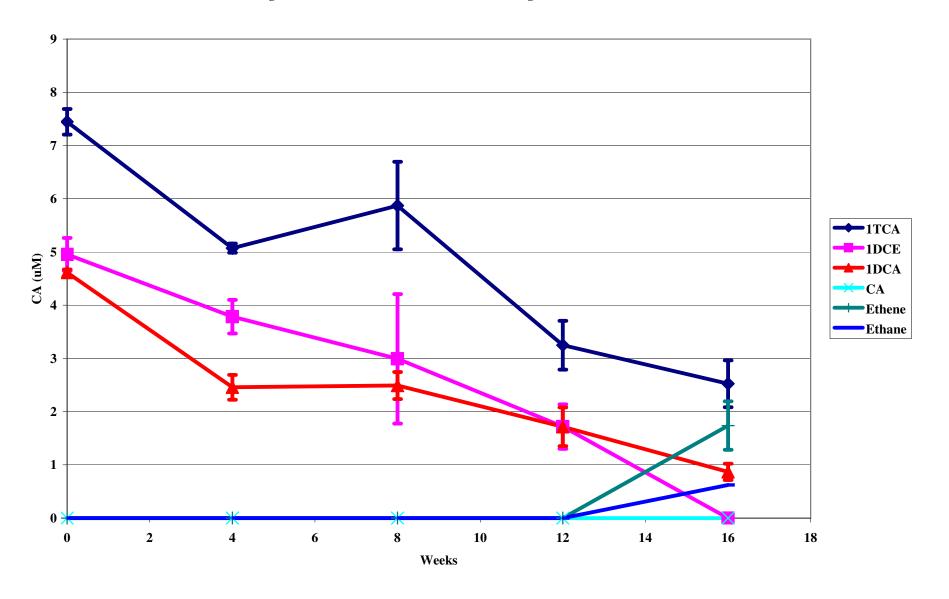


Figure 41 Plume SRS CA Average +/- Standard Deviation

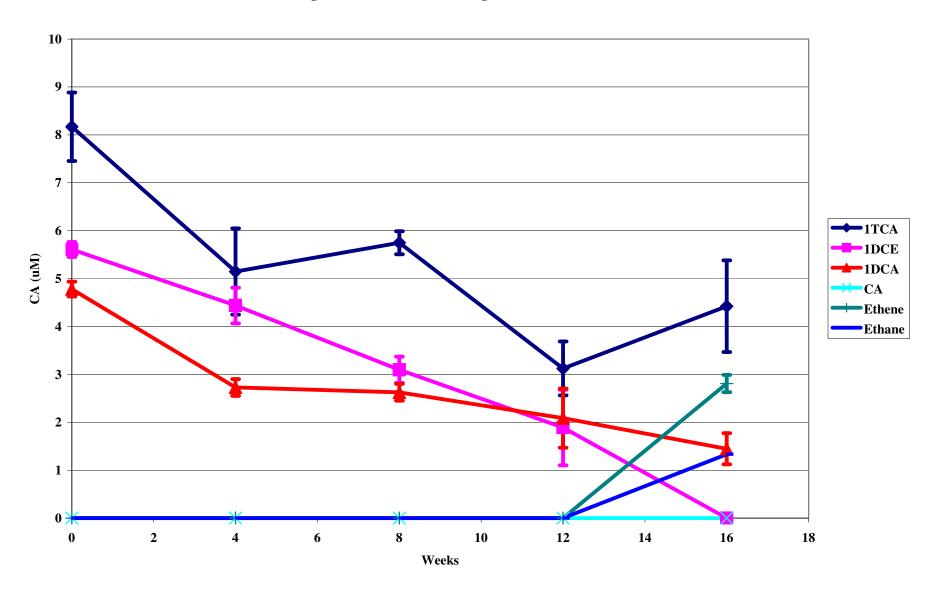


Figure 42 Plume SRS + Bioaugmentation CA Average +/- Standard Deviation

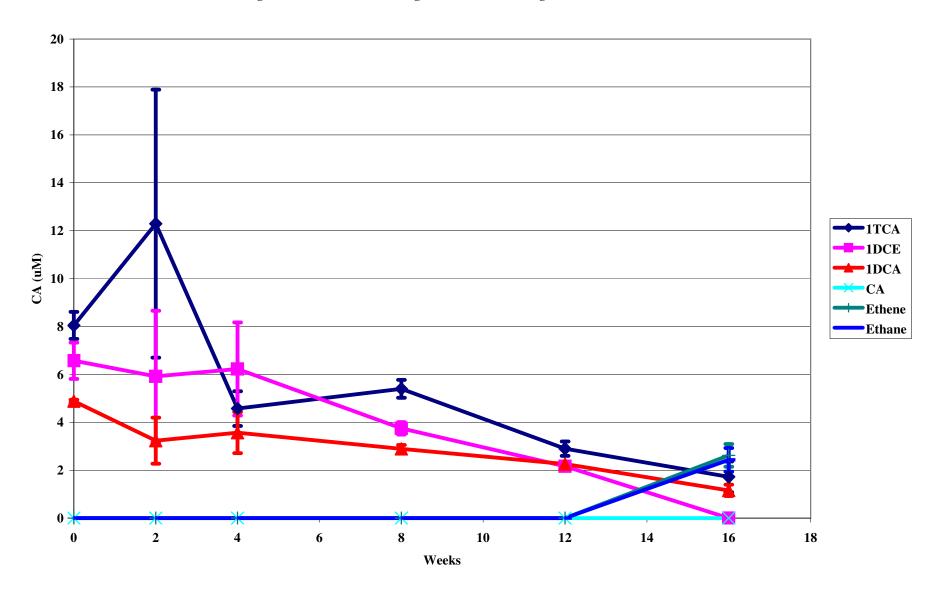


Figure 43 Plume Nano EZVI CA Average +/- Standard Deviation

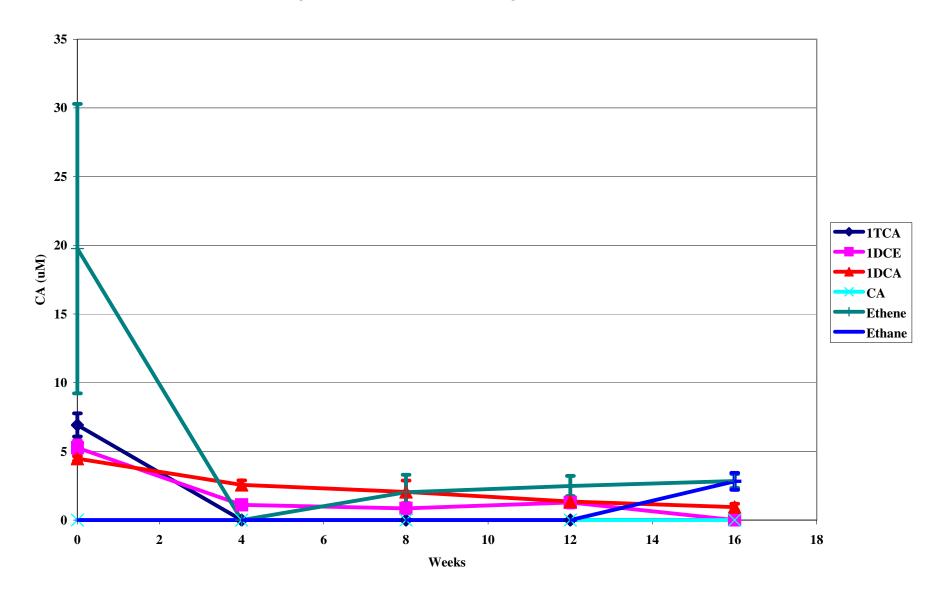


Figure 44 Plume Micro EZVI CA Average +/- Standard Deviation

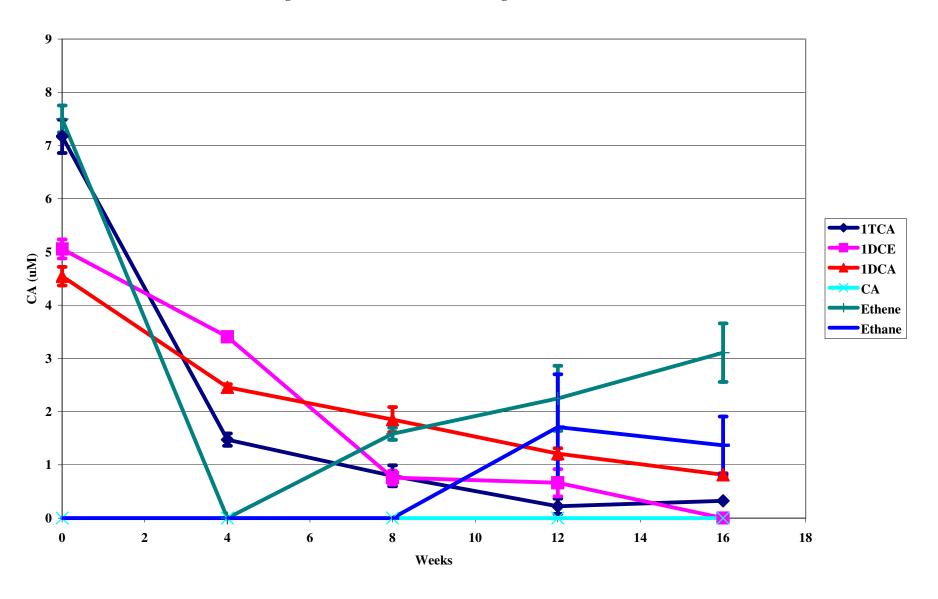
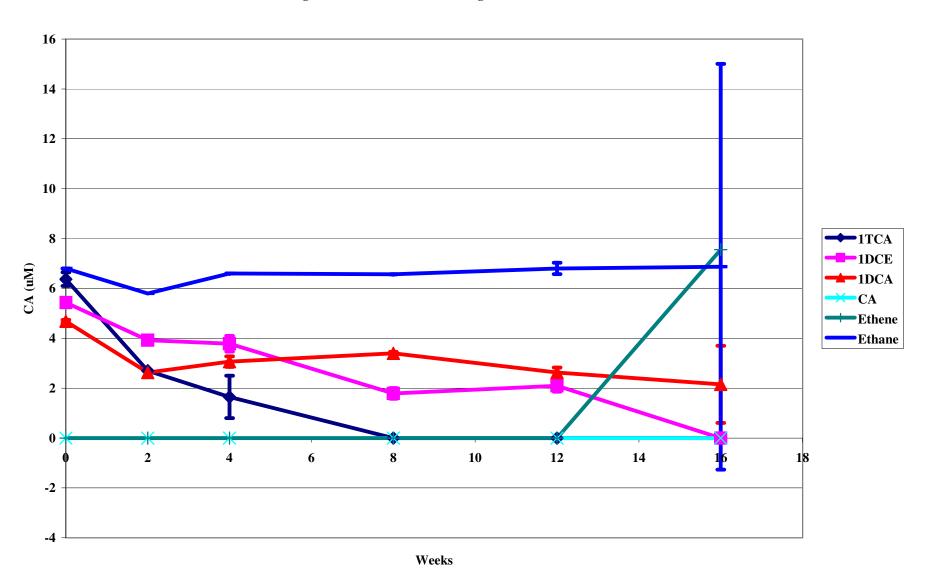
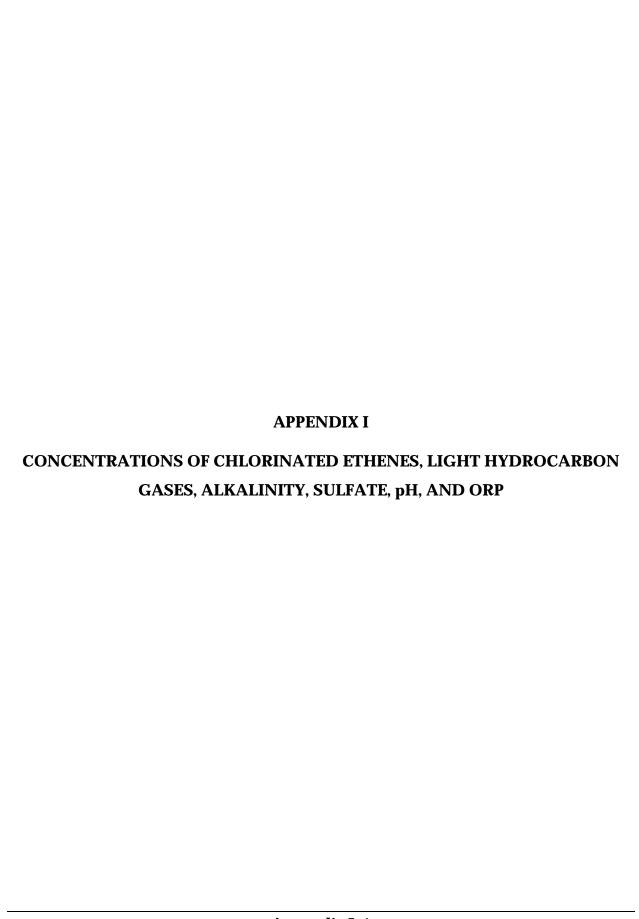




Figure 45 Plume EHC CA Average +/- Standard Deviation

Ekonol Microcosm						
1-A	Sterile Control So Week	ource Zone R 0	RMW-4D Gro	oundwater a	nd MW-7D I 12	Rock 16
Compound PCE	μg/L	910	160	<20	<20	<10
TCE	μg/L	9790	6510	2850	1690	590
cDCE tDCE	μg/L μg/L	1570 <100	1360 <25	490 <20	220 <20	240 <10
1TCA	μg/L	9160	7590	5200	2870	1590
1DCE	μg/L	1520	220	680	120	<10
1DCA CA	μg/L	<100 <100	<25 <25	<20 <20	<20 <20	<10 <10
VC	μg/L μg/L	<100	<25 <25	<20 <20	<20 <20	<10
Methane	μg/L	210	<17	<13	<13	<6.7
Acetylene	μg/L	<100	<25	<20	<20	<10
Ethene Ethane	μg/L μg/L	<120 <120	<30 <30	<24 <24	<24 <24	<12 <12
PCE	μM	5.5	1.0	<0.12	<0.12	< 0.060
TCE	μМ	74.5	49.5	21.7	12.9	4.5
cDCE tDCE	μM μM	16.2 <1.0	14.0 <0.26	5.1 <0.21	2.3 <0.21	2.5 <0.10
1TCA	μM	68.7	56.9	39.0	21.5	11.9
1DCE	μМ	15.7	2.3	7.0	1.2	<0.10
1DCA	μМ	<1.0	< 0.25	<0.20	<0.20	<0.10 <0.31
CA VC	μM μM	<1.6 <1.6	<0.39 <0.40	<0.31 <0.32	<0.31 <0.32	< 0.31
Acetylene	μМ	<3.8	<0.96	<0.77	<0.77	< 0.38
Ethene	μМ	<4.3	<1.1	<0.86	<0.86	< 0.043
Ethane Sum CF	μМ	<4.0 96.2	<1.0 64.5	<0.80 26.7	<0.80 15.1	<0.080
Sum CE Sum CA	μM μM	96.2 84.4	59.2	46.0	22.8	11.9
pH	P****	6.6	6.9	7.0	7.2	7.1
ORP	mV	255	261	231	281	297
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	190 96	175 65	170 27	235 15	260 7.0
Sum CA-Gases	μМ	84	59	46	23	12
Sulfate	mg/L	1300				1100
1-B	Sterile Control Sc	nurce Zone R	MW-4D Gr	undwater a	nd MW-7D I	Rock
Compound	Week	0	4	8	12	16
PCE	μg/L	890	150	<20	<20	<10
TCE cDCE	μg/L	8880 1420	4480 810	3120 650	1520 220	1300 300
tDCE	μg/L μg/L	<100	<25	<20	<20	<10
1TCA	μg/L	7780	6250	5580	2690	3140
1DCE	μg/L	1410	320	1050	130	<10
1DCA CA	μg/L	<100 <100	<25 <25	<20 <20	<20 <20	<10 <10
VC	μg/L μg/L	<100	<25	<20	<20	<10
Methane	μg/L	210	13	<13	<13	<6.7
Acetylene	μg/L	<100	<25	<20	<20	<10
Ethene Ethane	μg/L μg/L	<120 <120	<30 <30	<24 <24	<24 <24	<12 <12
PCE	μM	5.4	0.90	<0.12	<0.12	< 0.060
TCE	μМ	67.6	34.1	23.7	11.6	9.9
cDCE tDCE	μМ	14.7	8.4	6.7	2.3	3.1
1TCA	μM μM	<1.0 58.3	<0.26 46.9	<0.21 41.8	<0.21 20.2	<0.10 23.5
1DCE	μМ	14.6	3.3	10.8	1.3	<0.10
1DCA	μМ	<1.0	< 0.25	<0.20	<0.20	<0.10
CA VC	μM μM	<1.6 <1.6	<0.39 <0.40	<0.31 <0.32	<0.31 <0.32	<0.31 <0.32
Acetylene	μМ	<3.8	<0.96	<0.77	<0.77	<0.38
Ethene	μM	<4.3	<1.1	<0.86	<0.86	< 0.043
Ethane	μM	<4.0	<1.0	<0.80	<0.80	<0.080
Sum CE Sum CA	μM μM	87.6 72.9	43.4 50.2	30.5 52.7	13.8 21.5	13.0 23.5
pH	P****	6.7	6.9	6.9	7.1	7.0
ORP	mV	260	250	258	276	281
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	195 88	175 43	150 30	230 14	220 13.0
Sum CA-Gases	μМ	73	50	53	22	24
Sulfate	mg/L	1300				1100
1-C	Sterile Control Se	nurce Zone R	MW-4D Gr	undwater a	nd MW-7D I	Rock
Compound	Week	0	4	8	12	16
PCE	μg/L	890	160 3990	<20	<20 1620	<10
TCE cDCE	μg/L μg/L	9160 1370	780	2080 500	290	1400 340
tDCE	μg/L	<100	<25	<20	<20	<10
1TCA	μg/L	6680	5200	3950	2300	2940
1DCE 1DCA	μg/L μg/L	1410 <100	320 <25	810 <20	220 <20	42 <10
CA	μg/L	<100	<25	<20	<20	<10
VC	μg/L	<100	<25	<20	<20	<10
Methane Acetylene	μg/L μg/L	210 <100	6.5 <25	<13 <20	<13 <20	<6.7 <10
Ethene	μg/L	<120	<30	<24	<24	<12
Ethane	μg/L	<120	<30	<24	<24	<12
PCE	μМ	5.4	1.0	<0.12	<0.12	<0.060
TCE cDCE	μM μM	69.7 14.1	30.4 8.0	15.8 5.2	12.3 3.0	10.7 3.5
tDCE	μМ	<1.0	<0.26	<0.21	<0.21	<0.10
1TCA	μМ	50.1	39.0	29.6	17.2	22.0
1DCE 1DCA	μM uM	14.6	3.3 <0.25	8.4 <0.20	2.3 <0.20	0.43
CA CA	μM μM	<1.0 <1.6	<0.25	<0.20 <0.31	<0.20	<0.10 <0.31
VC	μМ	<1.6	< 0.40	< 0.32	< 0.32	< 0.32
Acetylene	μM	<3.8	< 0.96	<0.77	<0.77	<0.38
Ethene Ethane	μM μM	<4.3 <4.0	<1.1 <1.0	<0.86 <0.80	<0.86	<0.043 <0.080
Sum CE	μМ	89.2	39.4	21.0	15.3	14.2
Sum CA	μM	64.6	42.3	38.0	19.5	22.5
pH ORP	mV	6.7 265	6.9 267	7.0 264	7.1 285	7.0 280
Alkalinity	my mg/L CaCO3	200	190	175	285 250	220
Sum CE-Gases	μM	89	39	21	15	14.2
Sum CA-Gases Sulfate	μM mg/L	65 1300	42	38	20	22 1100
Junato	gr =	1500				1100

0.72 0.54

2-A	Unamended Cor	atrol Source	7000 PMW-	4D Groundw	ater and Mi	V-7D Rock	
Compound	Week	0	4	4D Gloundw 8	12	16	
PCE	μg/L	2040	640	330	280	200	
TCE	μg/L	23100	16700	14200	17200	12000	
cDCE tDCE	μg/L μg/L	21400 <100	21400 240	23400 160	30700 250	11600 <100	
1TCA	μg/L	4180	310	290	210	<100	
1DCE	μg/L	<100	410	260	250	<100	
1DCA	μg/L	740	200	210	220	<100	
CA VC	μg/L μg/L	<100 1060	<50 540	<50 650	290 320	<100 <100	
Methane	μg/L μg/L	220	42	<34	<34	<34	
Acetylene	μg/L	<100	<50	<50	<50	<50	
Ethene	μg/L	<120	<60	<60	<60	<60	
Ethane PCE	μg/L μM	<120 12.3	<60 3.9	<60 2.0	<60 1.7	<60 1.2	
TCE	µМ µМ	175.8	127.1	108.1	130.9	91.3	
cDCE	μМ	220.8	220.8	241.5	316.8	119.7	
tDCE	μМ	<1.0	2.5	1.7	2.6	<1.0	
1TCA 1DCE	μМ μМ	31.3 <1.0	2.3 4.2	2.2 2.7	1.6 2.6	<0.75 <1.0	
1DCA	µМ µМ	7.5	2.0	2.1	2.0	<1.0	
CA	μМ	<1.6	<0.78	<0.78	4.5	<1.6	
VC	μМ	17.0	8.6	10.4	5.1	<1.6	
Acetylene Ethene	μM M	<3.8 <4.3	<1.9 <2.1	<1.9 <2.1	<1.9 <2.1	<1.9 <2.1	
Ethane	μM μM	<4.3 <4.0	<2.1 <2.0	<2.1 <2.0	<2.1 <2.0	<2.1 <2.0	
Sum CE	μМ	425.9	362.9	363.6	457.1	212.2	
Sum CA	μМ	38.8	8.6	7.0	10.9	0.0	
pH ORP		6.6	6.8	6.7 202	7.1	7.1 238	
Alkalinity	mV mg/L CaCO3	191 325	205 285	202	226 320	238 305	
Sum CE-Gases	μM	426	363	364	457	212.2	
Sum CA-Gases	μМ	39	8.6	7.0	10.9	0.00	
Sulfate	mg/L	1300				1000	
2-B	Unamended Cor	trol Source	Zone RMW-	4D Groundw	ater and MV	V-7D Rock	
Compound	Week	0	4	8	12	16	16 Soil
PCE	μg/L	1660	450	170	120	45	51
TCE cDCE	μg/L μg/L	17000 17600	9130 15100	4690 10800	3180 5180	2180 6610	1140 740
tDCE	μg/L μg/L	<100	230	95	110	<20	<4.0
1TCA	μg/L	750	150	200	81	<20	7.0
1DCE	μg/L	<100	470	110	<25	<20	<4.0
1DCA	μg/L	740	180	190	99	12	<4.0
CA VC	μg/L μg/L	<100 1100	<50 200	<50 470	<25 130	<20 <20	<4.0 <4.0
Methane	μg/L	220	18	<34	<17	<13	17
Acetylene	μg/L	<100	<50	<50	25	<20	<4.0
Ethene Ethane	μg/L	<120 <120	<60 <60	<60 <60	<30 <30	<24 <24	<4.8 21
PCE PCE	μg/L μM	10.0	2.7	1.0	0.72	0.27	0.31
TCE	μМ	129.4	69.5	35.7	24.2	16.6	8.7
cDCE	μМ	181.6	155.8	111.5	53.5	68.2	7.6
tDCE	μМ	<1.0	2.4	1.0	1.1	<0.21	< 0.041
1TCA 1DCE	μM μM	5.6 <1.0	1.1 4.9	1.5 1.1	0.61 <0.25	<0.15 <0.21	0.052 <0.041
1DCA	μМ	7.5	1.8	1.9	1.0	0.12	<0.040
CA	μМ	<1.6	<0.78	<0.78	< 0.39	< 0.31	< 0.062
VC	μМ	17.6	3.2	7.5	2.1	<0.32	< 0.064
Acetylene Ethene	μM μM	<3.8 <4.3	<1.9 <2.1	<1.9 <2.1	<0.96 <1.1	<0.77 <0.71	<0.15 <0.14
Ethane	μМ	<4.0	<2.0	<2.0	<1.0	<0.67	0.70
Sum CE	μМ	338.6	233.6	156.7	81.6	85.1	16.6
Sum CA	μМ	13.1	7.8	4.6	1.6	0.1	0.8
pH ORP	mV	6.7 160	7.0 189	7.0 181	7.2 188	7.1 214	
Alkalinity	mg/L CaCO3	300	120	265	290	305	
Sum CE-Gases	μМ	339	234	157	82	85.1	16.6
Sum CA-Gases	μМ	13	7.8	4.6	1.6	0.1	0.1
Sulfate	mg/L	1300				1000	
2-C	Unamended Cor						
Compound PCF	Week	0 1780	4 660	8	12 220	16 79	
TCE	μg/L μg/L	18700	18200	280 9880	7030	5360	
cDCE	μg/L	19200	25500	17500	9260	10100	
tDCE	μg/L	<100	250	130	190	<25	
1TCA	μg/L	760	240	290 180	160 190	71	
1DCE 1DCA	μg/L μg/L	<100 730	410 210	200	160	<25 31	
CA	μg/L	<100	<50	<50	<40	<25	
VC	μg/L	1030	560	640	240	<25	
Methane Acetylene	μg/L μg/L	210 <100	38 <50	<34 <50	<27 <40	<17 <25	
Ethene	μg/L μg/L	<120	<60	<60	<48	<30	
Ethane	μg/L	<120	<60	<60	<48	<30	
PCE	μМ	10.7	4.0	1.7	1.3	0.5	
TCE cDCE	μM M	142.3 198.1	138.5	75.2 180.6	53.5	40.8	
tDCE	μM μM	198.1 <1.0	263.2 2.6	180.6	95.6 2.0	104.2 <0.26	
1TCA	μМ	5.7	1.8	2.2	1.2	0.53	
1DCE	μМ	<1.0	4.2	1.9	2.0	< 0.26	
1DCA	μM M	7.4	2.1	2.0	1.6	0.3	
CA VC	μM μM	<1.6 16.5	<0.78 9.0	<0.78 10.2	<0.62 3.8	<0.62 <0.40	
Acetylene	μМ	<3.8	<1.9	<1.9	<1.5	<0.40	
Ethene	μМ	<4.3	<2.1	<2.1	<1.7	<1.1	
Ethane Sum CE	μM M	<4.0	<2.0	<2.0	<1.3	<1.0	
Sum CE Sum CA	μM μM	367.7 13.1	417.2 8.2	269.1 6.1	156.2 4.8	145.5 0.8	
pH		6.7	6.9	6.8	7.1	7.1	
ORP	mV	122	187	125	186	208	
Alkalinity	mg/L CaCO3	270	115	285	315	330	
Sum CE-Gases Sum CA-Gases	μM μM	368 13	417 8.2	269 6.1	156 4.8	145.5 0.8	
Sulfate	mg/L	1300				990	

3-A	SRS Source Zor	ne RMW-4D	Groundwate	r and MW-7	D Rock	
Compound	Week	0	4	8	12	16
PCE	μg/L	2530	820	<200	<100	<100
TCE cDCE	μg/L μg/L	25200 23500	1090 66900	640 46900	490 25100	<100 22300
tDCE	μg/L	<100	880	790	490	<100
1TCA	μg/L	820	420	800	330	<100
1DCE 1DCA	μg/L μg/L	910 750	820 370	440 710	450 380	<100 <100
CA	μg/L μg/L	<100	<100	<200	<100	<100
VC	μg/L	1250	1130	2040	590	<100
Methane	μg/L	220 <100	62 <100	<130 <200	<67 <100	<67 <100
Acetylene Ethene	μg/L μg/L	<100	<100	<200 <240	<100	<100
Ethane	μg/L	<120	<120	<240	<120	<120
PCE	μМ	15.3	4.9	<1.2	<0.60	<0.60
TCE cDCE	μM μM	191.8 242.5	8.3 690.4	4.9 484.0	3.7 259.0	<0.76 230.1
tDCE	μМ	<1.0	9.1	8.2	5.1	<1.0
1TCA	μМ	6.1	3.1	6.0	2.5	< 0.75
1DCE	μМ	9.4	8.5	4.5	4.6	<1.0 <1.0
1DCA CA	μM μM	7.6 <1.6	3.7 <1.6	7.2 <3.2	3.8 <1.6	<1.0
VC	μМ	20.0	18.1	32.6	9.4	<1.6
Acetylene	μМ	<3.8	<3.8	<7.6	<3.8	<3.8
Ethene Ethane	μM μM	<4.3 <4.0	<4.3 <4.0	<8.6 <8.0	<4.3 <4.0	<4.3 <4.0
Sum CE	μМ	469.6	730.8	529.7	277.3	230.1
Sum CA	μМ	23.1	15.3	17.7	11.0	0.0
pH		6.6	6.8	6.7	7.3	7.1
ORP Alkalinity	mV mg/L CaCO3	-51 320	-286 375	-338 525	-385 800	-388 1070
Sum CE-Gases	μM	470	731	530	277	230.1
Sum CA-Gases	μМ	23	15	18	11	0
Sulfate	mg/L	1300				11
3-B	SRS Source Zor					
Compound	Week	2290	4 690	-200	12	16
PCE TCE	μg/L μg/L	2280 24300	690 870	<200 <200	<100 500	<100 <100
cDCE	μg/L	23500	64400	44300	30200	19300
tDCE	μg/L	<100	910	810	500	<100
1TCA 1DCF	μg/L	810 890	450 830	780 430	330 450	<100 <100
1DCA	μg/L μg/L	740	390	710	390	<100
CA	μg/L	<100	<100	<200	<100	<100
VC	μg/L	1210	1040	2030	600	<100
Methane Acetylene	μg/L μg/L	220 <100	35 <100	<130 <200	<67 <100	<67 <100
Ethene	μg/L	<120	<120	<240	<120	<120
Ethane	μg/L	<120	<120	<240	<120	<120
PCE	μМ	13.8	4.2	<1.2	<0.60	<0.60
TCE cDCE	μM μM	184.9 242.5	6.6 664.6	<1.5 457.2	3.8 311.7	<0.76 199.2
tDCE	μМ	<1.0	9.4	8.4	5.2	<1.0
1TCA	μМ	6.1	3.4	5.8	2.5	< 0.75
1DCE	μM μM	9.2	8.6	4.4	4.6	<1.0
1DCA CA	µм µМ	7.5 <1.6	3.9 <1.6	7.2 <3.2	3.9 <1.6	<1.0 <1.6
VC	μМ	19.4	16.6	32.5	9.6	<1.6
Acetylene	μМ	<3.8	<3.8	<7.6	<3.8	<3.8
Ethene Ethane	μM μM	<4.3 <4.0	<4.3 <4.0	<8.6 <8.0	<4.3 <4.0	<4.3 <4.0
Sum CE	μМ	460.6	701.4	498.0	330.2	199.2
Sum CA	μМ	22.7	15.9	17.5	11.1	0.0
pH		6.7	6.8	6.6	7.2	7.0
ORP Alkalinity	mV mg/L CaCO3	80 320	119 200	-293 385	-359 600	-383 1000
Sum CE-Gases	μM	461	701	498	330	199.2
Sum CA-Gases	μM	23	16	17	11	0.0
Sulfate	mg/L	1300				360
3-C	SRS Source Zor					
Compound	Week	0 2430	4 770	-200	12	16
PCE TCF	μg/L μg/L	25600	960	<200 <200	<100 <100	63 140
cDCE	μg/L	23900	62800	45800	23700	23100
tDCE	μg/L	<100	910	830	490	<25
1TCA	μg/L	790 940	440	810	<100 450	100
1DCE 1DCA	μg/L μg/L	750	830 370	460 710	380	<25 45
CA	μg/L	<100	<100	<200	<100	<25
VC	μg/L	1240	1120	2370	570	72
Methane Acetylene	μg/L	220	40	<130	<67	<17
Ethene	μg/L μg/L	<100 <120	<100 <120	<200 <240	<100 <120	<25 <30
Ethane	μg/L	<120	<120	<240	<120	<30
PCE	μМ	14.7	4.6	<1.2	<0.60	0.38
CDCE	μM μM	194.8 246.6	7.3 648.1	<1.5 472.7	<0.76 244.6	1.1 238.4
tDCE	µм µМ	<1.0	9.4	8.6	5.1	< 0.26
1TCA	μМ	5.9	3.3	6.1	< 0.75	0.75
1DCE	μМ	9.7	8.6	4.7	4.6	<0.26
1DCA CA	μM μM	7.6 <1.6	3.7 <1.6	7.2 <3.2	3.8 <1.6	0.45 <1.6
VC	µМ µМ	19.8	17.9	37.9	9.1	1.2
Acetylene	μМ	<3.8	<3.8	<7.6	<3.8	<3.8
Ethene	μM	<4.3	<4.3	<8.6	<4.3	<4.3
Ethane Sum CE	μM μM	<4.0 476.0	<4.0 687.4	<8.0 519.1	<4.0 258.8	<4.0 241.0
Sum CA	μМ	23.2	15.6	18.0	8.5	1.2
pH		6.9	6.7	6.8	7.0	6.9
ORP Alkalinity	mV mg/L CaCO3	72 315	-265 210	-246 370	-284 480	-344 715
Sum CE-Gases	mg/L CaCO3 μΜ	476	687	519	259	241.0
Sum CA-Gases	μМ	23	16	18	8	1
Sulfate	mg/L	1300				750

1070 13.7

4-A	SRS + Bioaugme						
Compound PCE	Week	0	2	4	8	12	16
TCE	μg/L μg/L	2570 26600	1900 1440	<200 <200	<200 630	<200 940	<100 <100
cDCE	μg/L	25800	74900	61800	58500	42000	21500
tDCE	μg/L	<100	990	1030	640	920	<100
1TCA 1DCE	μg/L	830 940	630 980	570 <200	790 850	600 910	<100 <100
1DCA	μg/L μg/L	750	350	<200	720	760	<100
CA	μg/L	<100	<100	<200	<200	<200	<100
VC	μg/L	1360	1200	1120	2120	1160	700
Methane	μg/L	220	83	40	<130	<130	2400
Acetylene Ethene	μg/L μg/L	<100 <120	<100 <120	<200 <240	<200 <240	<200 <240	<100 <120
Ethane	μg/L	<120	<120	<240	<240	<240	<120
PCE	μМ	15.5	11.5	<1.2	<1.2	<1.2	< 0.60
TCE	μМ	202.4	11.0	<1.5	4.8	7.2	< 0.76
cDCE tDCE	μM μM	266.3 <1.0	773.0 10.2	637.8 10.6	603.7 6.6	433.4 9.5	221.9 <1.0
1TCA	μМ	6.2	4.7	4.3	5.9	4.5	<0.75
1DCE	μМ	9.7	10.1	<2.1	8.8	9.4	<1.0
1DCA	μМ	7.6	3.5	<2.0	7.3	7.7	<1.0
CA VC	μМ	<1.6	<1.6	<3.1	<3.2 33.9	<3.2	<1.6
Acetylene	μM μM	21.8 <3.8	19.2 <3.8	17.9 <7.7	<7.6	18.6 <7.6	11.2 <3.8
Ethene	μМ	<4.3	<4.3	<8.6	<8.6	<8.6	<4.3
Ethane	μM	<4.0	<4.0	<8.0	<8.0	<8.0	<4.0
Sum CE	μМ	505.9	824.8	666.3	649.0	468.6	233.1
Sum CA pH	μМ	23.5 6.9	18.4 6.7	4.3 6.6	22.0 7.0	21.6 7.2	0.0 6.9
ORP	mV	-164	-250	-358	-406	-409	-410
Alkalinity	mg/L CaCO3	325	325	590	1140	1370	1435
Sum CE-Gases	μМ	506	825	666	649	468.6	233.1
Sum CA-Gases	μM	23	18	4.3	22	22	0.0 4.9
Sulfate	mg/L	1300					4.9
4-B	SRS + Bioaugme						
Compound PCE	Week μg/L	0 2500	2 3080	4 <200	8 <200	12 <200	16 <100
TCE	μg/L μg/L	28800	2350	<200	360	<200	<100
cDCE	μg/L	26100	84700	47000	74000	35300	18100
tDCE	μg/L	<100	1340	1180	1140	950	<100
1TCA	μg/L	810	930	570	490	580	<100
1DCE 1DCA	μg/L μg/L	950 750	980 360	<200 <200	430 390	900 750	<100 <100
CA	μg/L μg/L	<100	<100	<200	<200	<200	<100
VC	μg/L	1280	1200	1300	1290	1150	5420
Methane	μg/L	210	83	110	<130	<130	3700
Acetylene Ethene	μg/L μg/L	<100 <120	<100 <120	<200 <240	<200 <240	<200 <240	<100 <120
Ethane	μg/L μg/L	<120	<120	<240	<240	<240	<120
PCE	μM	15.1	18.6	<1.2	<1.2	<1.2	< 0.60
TCE	μМ	219.2	17.9	<1.5	2.7	<1.5	< 0.76
cDCE tDCE	μM μM	269.3 <1.0	874.1 13.8	485.0 12.2	763.7 11.8	364.3 9.8	186.8 <1.0
1TCA	µМ µМ	6.1	7.0	4.3	3.7	4.3	<0.75
1DCE	μМ	9.8	10.1	<2.1	4.4	9.3	<1.0
1DCA	μМ	7.6	3.6	<2.0	3.9	7.6	<1.0
CA VC	μМ	<1.6	<1.6 19.2	<3.1	<3.2	<3.2 18.4	<1.6
Acetylene	μM μM	20.5 <3.8	<3.8	20.8 <7.7	20.6 <7.6	18.4 <7.6	86.7 <3.8
Ethene	μМ	<4.3	<4.3	<8.6	<8.6	<8.6	<4.3
Ethane	μМ	<4.0	<4.0	<8.0	<8.0	<8.0	<4.0
Sum CE	μМ	524.1	943.6	518.0	798.8	392.5	273.5
Sum CA pH	μМ	23.5 6.6	20.7 6.7	4.3 6.5	12.1 6.9	21.2 7.1	0.0 6.8
ORP	mV	-172	-254	-393	-411	-401	-398
Alkalinity	mg/L CaCO3	305	330	655	1255	1440	1560
Sum CE-Gases	μМ	524	944	518	799	392.5	273.5
Sum CA-Gases Sulfate	μM mg/L	23 1300	21	4.3	12	21	0.00 4.5
Sullate	mg/L	1300					4.5
4-C	SRS + Bioaugme						
Compound PCE	Week μg/L	0 2180	2 1450	4 <100	8 <100	12 <50	16 <100
TCE	μg/L μg/L	24800	990	<100	350	280	<100
cDCE	μg/L	25200	46800	43600	58300	33400	14900
tDCE	μg/L	<100	920	640	710	270	<100
1TCA	μg/L	790	550	340	470	180	<100
1DCE 1DCA	μg/L μg/L	980 740	800 330	<100 <100	450 410	250 230	<100 <100
CA	μg/L	<100	<100	<100	<100	<50	<100
VC	μg/L	1250	970	890	1500	450	25100
Methane	μg/L	220	86	72	<67	1100	5200
Acetylene Ethene	μg/L μg/L	<100 <120	<100 <120	<100 <120	<100 <120	<50 <60	<100 <120
Ethane	μg/L	<120	<120	<120	<120	<60	<120
PCE	μM	13.1	8.7	< 0.60	< 0.60	< 0.30	< 0.60
TCE	μМ	188.7	7.5	<0.76	2.7	2.1	< 0.76
cDCE tDCE	μM μM	260.1 <1.0	483.0 9.5	449.9 6.6	601.7 7.3	344.7 2.8	153.8 <1.0
1TCA	μМ	5.9	4.1	2.5	3.5	1.3	<0.75
1DCE	μМ	10.1	8.3	<1.0	4.6	2.6	<1.0
1DCA	μМ	7.5	3.3	<1.0	4.1	2.3	<1.0
CA VC	μM M	<1.6	<1.6	<1.6 14.2	<1.6	<0.78	<1.6
Acetylene	μM μM	20.0 <3.8	15.5 <3.8	14.2 <3.8	24.0 <3.8	7.2 <1.9	401.6 <3.8
Ethene	μМ	<4.3	<4.3	<4.3	<4.3	<2.1	<4.3
Ethane	μМ	<4.0	<4.0	<4.0	<4.0	<2.0	<4.0
Sum CE	μM M	481.9	524.3	470.8	635.6	356.8	555.4
Sum CA pH	μМ	23.5 6.7	15.7 6.7	2.5 6.6	12.3 7.2	6.3 7.3	0.0 6.9
ORP	mV	-172	-186	-370	-422	-411	-408
Alkalinity	mg/L CaCO3	325	315	435	1010	1320	1375
Sum CE-Gases Sum CA-Gases	μM μM	482 24	524 16	471 2.5	636 12.3	356.8 6.3	555.4 0.0
Sum CA-Gases Sulfate	μM mg/L	1300	16	2.5	12.3	0.3	5.3
	•						

5-A	Nanoscale EZVI	Source Zone	e RMW-4D (Groundwater	and MW-7E	Rock
Compound	Week	0	4	8	12	16
PCE TCE	μg/L	4140 74900	<200 3020	150 1680	110 330	40 140
cDCE	μg/L μg/L	74900 76100	3020	13400	8080	9640
tDCE	μg/L	950	1030	430	120	<20
1TCA	μg/L	920	<200	<50	<25	<20
1DCE	μg/L	1170	<200	220	110	<20
1DCA CA	μg/L	790 <100	<200 <200	220 <50	110 <25	25 <20
VC	μg/L μg/L	1560	1320	870	210	<20 46
Methane	μg/L	210	110	<33	<17	<13
Acetylene	μg/L	<100	<200	<50	<25	<20
Ethene	μg/L	600	<240	350	400	310
Ethane	μg/L	<120	<240	140	200	180 0.24
PCE TCE	μM μM	25.0 570.0	<1.2 23.0	0.90 12.8	0.66 2.5	1.1
cDCE	μМ	785.3	331.3	138.3	83.4	99.5
tDCE	μМ	9.8	10.6	4.4	1.2	< 0.21
1TCA	μМ	6.9	<1.5	< 0.75	< 0.19	<0.15
1DCE 1DCA	μМ	12.1	<2.1 <2.0	2.3	1.1	< 0.21
CA	μM μM	8.0 <1.6	<2.0 <3.1	<1.6	1.1 <0.39	< 0.25
VC	μМ	25.0	21.1	13.9	3.4	0.74
Acetylene	μM	<3.8	<7.7	<7.7	< 0.96	< 0.96
Ethene	μМ	21.4	<8.6	12.5	14.3	11.1
Ethane	μМ	<4.0	<8.0	4.7	6.7	6.0
Sum CE Sum CA	μM μM	1436.5 27.0	386.0 0.0	182.8 9.2	105.4 8.9	112.6 6.3
pH	μινι	6.6	7.0	6.9	6.9	7.4
ORP	mV	-114	-270	-303	-325	-291
Alkalinity	mg/L CaCO3	330	210	205	220	200
Sum CE-Gases	μМ	1415	386	170	91	101.5
Sum CA-Gases Sulfate	μM mg/L	27 1300	0.0	4.5	2.2	0.3 810
Sullate	mg/L	1300				010
5-B	Nanoscale EZVI					
Compound	Week	0	4	8	12	16
PCE TCE	μg/L	3470 65200	<200 3120	<80 770	210 590	<50 120
cDCE	μg/L μg/L	69400	27100	21400	23600	4810
tDCE	μg/L	920	960	290	230	<50
1TCA	μg/L	970	<200	<80	<50	<50
1DCE	μg/L	1080	<200	190	230	<50
1DCA	μg/L	790	<200	300	210	<50
CA VC	μg/L μg/L	<100 1160	<200 1160	<80 1010	<50 420	<50 <50
Methane	μg/L	220	78	<54	<34	<33
Acetylene	μg/L	<100	<200	<80	<50	<50
Ethene	μg/L	750	<240	320	410	230
Ethane	μg/L	<120	<240	<96	220	270
PCE	μМ	20.9	<1.2	<0.48	1.3	<0.30
TCE cDCE	μM μM	496.2 716.2	23.7 279.7	5.9 220.8	4.5 243.6	0.91 49.6
tDCE	μМ	9.5	9.9	3.0	2.4	<0.52
1TCA	μM	7.3	<1.5	< 0.60	< 0.37	< 0.37
1DCE	μМ	11.1	<2.1	2.0	2.4	< 0.52
1DCA	μМ	8.0	<2.0	3.0	2.1	<0.51
CA VC	μM μM	<1.6 18.6	<3.1 18.6	<3.1 16.2	<3.1 6.7	<0.78 <0.80
Acetylene	μМ	<3.8	<7.7	<7.7	<7.7	<1.9
Ethene	μМ	26.8	<8.6	11.4	14.6	8.2
Ethane	μМ	<4.0	<8.0	<8.0	7.3	9.0
Sum CE	μМ	1288.2	331.9	257.3	273.0	58.8
Sum CA pH	μМ	26.4	0.0	5.0	7.3	9.0
ORP	mV	6.6 -169	6.9 -275	6.9 -281	7.3 -263	7.3 -270
Alkalinity	mg/L CaCO3	325	220	190	210	195
Sum CÉ-Gases	μМ	1261	332	246	258	50.6
Sum CA-Gases	μМ	26	0.0	5.0	4.5	0.0
Sulfate	mg/L	1300				830
5-C	Nanoscale EZVI	Source Zone	RMW-4D (Groundwater	and MW-7E	Rock
Compound	Week	0	4	8	12	16
PCE	μg/L	2550	1250	150	430	<50
TCE	μg/L	33100	7440	3320	2660	120
cDCE tDCE	μg/L	29600 730	19300 <200	29700 130	22800 450	4960 <50
1TCA	μg/L μg/L	860	<200	<50	<100	<50 <50
1DCE	μg/L	910	<200	320	480	<50
1DCA	μg/L	730	<200	220	390	<50
CA	μg/L	<100	<200	<50	610	<50
VC Methane	μg/L μg/L	1160 220	1240 100	730 <33	640 <67	<50 <33
Acetylene	μg/L	<100	<200	100	<100	<50
Ethene	μg/L	680	<240	470	820	670
Ethane	μg/L	<120	<240	120	550	280
PCE	μМ	15.4	7.5	0.90	2.6	<0.30
TCE cDCE	μM μM	251.9 305.5	56.6 199.2	25.3 306.5	20.2 235.3	0.91 51.2
tDCE	μМ	7.5	<2.1	1.3	4.6	<0.52
1TCA	μМ	6.4	<1.5	< 0.37	< 0.75	< 0.37
1DCE	μМ	9.4	<2.1	3.3	5.0	<0.52
1DCA	μМ	7.4	<2.0	2.2	3.9	<0.51
CA	μM μM	<1.6	<3.1	<0.78	<0.78	<0.78
VC	LLIVI	18.6 <3.8	19.8 <7.7	11.7 3.8	10.2 <3.8	<0.80 <1.9
VC Acetylene			<8.6	16.8	29.3	
VC Acetylene Ethene	μМ					23.9
Acetylene		24.3 <4.0	<8.0	4.0	18.3	23.9 9.3
Acetylene Ethene Ethane Sum CE	μM μM μM μM	24.3 <4.0 623.1	<8.0 283.2	4.0 366.3	18.3 302.3	9.3 76.0
Acetylene Ethene Ethane Sum CE Sum CA	μM μM μM	24.3 <4.0 623.1 23.2	<8.0 283.2 0.0	4.0 366.3 9.5	18.3 302.3 27.2	9.3 76.0 9.3
Acetylene Ethene Ethane Sum CE Sum CA pH	µМ µМ µМ µМ µМ	24.3 <4.0 623.1 23.2 6.6	<8.0 283.2 0.0 6.9	4.0 366.3 9.5 6.9	18.3 302.3 27.2 7.3	9.3 76.0 9.3 7.2
Acetylene Ethene Ethane Sum CE Sum CA pH ORP	μΜ μΜ μΜ μΜ μΜ	24.3 <4.0 623.1 23.2	<8.0 283.2 0.0	4.0 366.3 9.5	18.3 302.3 27.2	9.3 76.0 9.3
Acetylene Ethene Ethane Sum CE Sum CA pH	μΜ μΜ μΜ μΜ μΜ mV mg/L CaCO3 μΜ	24.3 <4.0 623.1 23.2 6.6 -201	<8.0 283.2 0.0 6.9 -269	4.0 366.3 9.5 6.9 -268	18.3 302.3 27.2 7.3 -254	9.3 76.0 9.3 7.2 -277
Acetylene Ethene Ethane Sum CE Sum CA pH ORP Alkalinity Sum CE-Gases Sum CA-Gases	μΜ μΜ μΜ μΜ μΜ mV mg/L CaCO3 μΜ	24.3 <4.0 623.1 23.2 6.6 -201 330 599 23	<8.0 283.2 0.0 6.9 -269 210	4.0 366.3 9.5 6.9 -268 195	18.3 302.3 27.2 7.3 -254 220	9.3 76.0 9.3 7.2 -277 195 52.1 0.0
Acetylene Ethene Ethane Sum CE Sum CA pH ORP Alkalinity Sum CE-Gases	μΜ μΜ μΜ μΜ μΜ mV mg/L CaCO3 μΜ	24.3 <4.0 623.1 23.2 6.6 -201 330 599	<8.0 283.2 0.0 6.9 -269 210 283	4.0 366.3 9.5 6.9 -268 195 346	18.3 302.3 27.2 7.3 -254 220 273	9.3 76.0 9.3 7.2 -277 195 52.1

16 Soil
17
55
390
<4.0
<4.0
<4.0
<4.0
<4.0
<4.0
<4.0
<1.0
<4.0
<1.0
<0.0
<1.0
<0.041
<0.040
<0.064
<0.050
<0.064
<0.050
<0.064
<0.050
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.07
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064
<0.064

6-A	Microscale EZVI	Source Zone	RMW-4D (Groundwater	and MW-7	D Rock	
Compound	Week	0	4	8	12	16	16 Soil
PCE TCE	μg/L	2620 31100	680 7500	100 1200	81 690	39 250	35 130
cDCE	μg/L μg/L	26400	14900	6500	5250	5400	300
tDCE	μg/L	<100	<100	<40	90	<20	<4.0
1TCA	μg/L	830	<100	<40	<20	<20	<4.0
1DCE 1DCA	μg/L μg/L	900 760	<100 360	94 160	92 89	<20 34	<4.0 <4.0
CA	μg/L μg/L	<100	<100	<40	<20	<20	<4.0
VC	μg/L	1120	810	460	160	12	<4.0
Methane Acetylene	μg/L μg/L	210 <100	48 <100	<27 <40	<13 <20	<13 <20	20 <4.0
Ethene	μg/L μg/L	630	<120	170	430	550	<4.0 16
Ethane	μg/L	<120	<120	<48	150	120	34
PCE	μМ	15.8	4.1	0.60	0.49	0.24	0.21
TCE cDCE	μM μM	236.7 272.4	57.1 153.8	9.1 67.1	5.3 54.2	1.9 55.7	0.99 3.1
tDCE	μМ	<1.0	<1.0	<0.41	0.93	<0.21	<0.041
1TCA	μM	6.2	< 0.75	< 0.30	< 0.15	< 0.15	< 0.030
1DCE	μМ	9.3	<1.0	1.0	0.95	<0.21	< 0.041
1DCA CA	μM μM	7.7 <1.6	3.6 <1.6	1.6 <0.64	0.90 <0.31	0.34 <0.31	<0.040 <0.062
VC	μМ	17.9	13.0	7.4	2.6	0.19	< 0.064
Acetylene	μМ	<3.8	<3.8	<1.5	<0.77	<0.77	<0.15
Ethene	μМ	22.5	<4.3	6.1	15.4	19.6	0.57
Ethane Sum CE	μM μM	<4.0 565.3	<4.0 227.9	<1.6 90.2	5.0 78.8	4.0 77.7	1.1 4.9
Sum CA	μМ	23.2	3.6	2.6	6.8	4.3	1.1
pH		6.6	6.9	7.0	7.3	7.3	
ORP	mV	-206.0	-262	-266	-44	-216	
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	310 543	240 228	290 84	365 63	325 58.1	4.3
Sum CA-Gases	μМ	23	3.6	2.6	1.8	0.3	0.0
Sulfate	mg/L	1300				5000	
6-B	Microscale EZVI	Source Zone	RMW-4D (Groundwater	and MW-7	D Rock	
Compound	Week	0	4	8	12	16	
PCE	μg/L	2720	630	97	82	13	
TCE cDCE	μg/L	31800 29000	5920 13400	1220 5520	530 4450	130 4480	
tDCE	μg/L μg/L	<100	<100	<40	<20	<4.0	
1TCA	μg/L	790	<100	<40	<20	<4.0	
1DCE	μg/L	900	<100	81	92	<4.0	
1DCA CA	μg/L μg/L	760	350 <100	160 <40	89 <20	29 <4.0	
VC	μg/L μg/L	<100 1120	720	430	150	28	
Methane	μg/L	210	32	<27	<13	14	
Acetylene	μg/L	<100	<100	<40	trace	8.3	
Ethene Ethane	μg/L	610 <120	<120 <120	220 <48	650 150	420 110	
PCE	μg/L μM	16.4	3.8	0.59	0.49	0.078	
TCE	μM	242.0	45.1	9.3	4.0	0.99	
cDCE	μМ	299.3	138.3	57.0	45.9	46.2	
tDCE 1TCA	μM μM	<1.0 5.9	<1.0 <0.75	<0.41 <0.30	<0.20 <0.15	<0.041 <0.030	
1DCE	μМ	9.3	<1.0	0.84	0.95	< 0.030	
1DCA	μМ	7.7	3.5	1.6	0.90	< 0.040	
CA	μМ	<1.6	<1.6	< 0.64	<0.31	<0.062	
VC Acetylene	μM μM	17.9 <3.8	11.5 <3.8	6.9 <1.5	2.4 <0.77	0.45 0.32	
Ethene	μМ	21.8	<4.3	7.9	23.2	15.0	
Ethane	μM	<4.0	<4.0	<1.6	5.0	3.7	
Sum CE	μМ	597.4	198.7	81.6	76.1	63.1	
Sum CA pH	μМ	22.9 6.5	3.5 6.9	2.5 6.9	6.8 7.2	3.7 6.7	
ORP	mV	-210	-261	-252	-45	-33	
Alkalinity	mg/L CaCO3	275	200	285	325	285	
Sum CE-Gases	μМ	576	199	74	53	47.7	
Sum CA-Gases Sulfate	μM mg/L	23 1300	3.5	2.5	1.8	0.0 820	
	-						
6-C Compound	Microscale EZVI Week	Source Zone 0	RMW-4D (Groundwater 8	and MW-7	D Rock 16	
PCE	μg/L	3040	610	240	170	<20	
TCE	μg/L	35700	3950	720	240	<20	
cDCE	μg/L	31300	36000	16700	15300	8880	
tDCE 1TCA	μg/L μg/L	<100 840	<100 400	220 <100	180 <40	<20 <20	
1DCE	μg/L	930	<100	190	180	<20	
1DCA	μg/L	760	350	380	180	26	
CA VC	μg/L μg/L	<100 1190	<100 1150	<100 1000	<40 280	<20 28	
Methane	μg/L	230	91	<67	<27	<13	
Acetylene	μg/L	<100	<100	<100	<40	<20	
Ethene Ethane	μg/L	630 <120	<120 <120	200 <120	340 200	280 87	
PCE	μg/L μM	18.3	3.7	1.4	1.0	<0.12	
TCE	μМ	271.7	30.1	5.5	1.8	<0.15	
cDCE	μM	323.0	371.5	172.3	157.9	91.6	
tDCE 1TCA	μM μM	<1.0 6.3	<1.0 <0.75	2.3 <0.75	1.9 <0.30	<0.21 <0.15	
1DCE	µМ µМ	9.6	<0.75	<0.75 2.0	<0.30 1.9	<0.15	
		7.7	3.5	3.8	1.8	0.26	
1DCA	μМ		<1.6	<1.6	< 0.62	<0.31	
CA	μМ	<1.6					
CA VC	μM μM	19.0	18.4	16.0 <3.8	4.5 <1.5	0.45 <0.77	
CA	μМ			16.0 <3.8 <4.3	4.5 <1.5 12.1	<0.45 <0.77 10.0	
CA VC Acetylene Ethene Ethane	µМ µМ µМ µМ µМ	19.0 <3.8 22.5 <4.0	18.4 <3.8 <4.3 <4.0	<3.8 <4.3 <4.0	<1.5 12.1 6.7	<0.77 10.0 2.9	
CA VC Acetylene Ethene Ethane Sum CE	µМ µМ µМ µМ µМ µМ	19.0 <3.8 22.5 <4.0 654.6	18.4 <3.8 <4.3 <4.0 423.7	<3.8 <4.3 <4.0 197.5	<1.5 12.1 6.7 179.2	<0.77 10.0 2.9 102.1	
CA VC Acetylene Ethene Ethane Sum CE Sum CA	µМ µМ µМ µМ µМ	19.0 <3.8 22.5 <4.0 654.6 23.6	18.4 <3.8 <4.3 <4.0 423.7 3.5	<3.8 <4.3 <4.0 197.5 5.8	<1.5 12.1 6.7 179.2 10.3	<0.77 10.0 2.9 102.1 3.2	
CA VC Acetylene Ethene Ethane Sum CE Sum CA pH ORP	µМ µМ µМ µМ µМ µМ	19.0 <3.8 22.5 <4.0 654.6 23.6 6.6 -192	18.4 <3.8 <4.3 <4.0 423.7 3.5 6.9 -252	<3.8 <4.3 <4.0 197.5 5.8 7.0 -245	<1.5 12.1 6.7 179.2 10.3 7.4 -45	<0.77 10.0 2.9 102.1 3.2 7.2 -94	
CA VC Acetylene Ethene Ethane Sum CE Sum CA pH ORP Alkalinity	μΜ μΜ μΜ μΜ μΜ μΜ μΜ mV mg/L CaCO3	19.0 <3.8 22.5 <4.0 654.6 23.6 6.6 -192 270	18.4 <3.8 <4.3 <4.0 423.7 3.5 6.9 -252 155	<3.8 <4.3 <4.0 197.5 5.8 7.0 -245 315	<1.5 12.1 6.7 179.2 10.3 7.4 -45 370	<0.77 10.0 2.9 102.1 3.2 7.2 -94 350	
CA VC Acetylene Ethene Ethane Sum CE Sum CA pH ORP Alkalinity Sum CE-Gases	μΜ μΜ μΜ μΜ μΜ μΜ μΜ μΜ my/L CaCO3 μΜ	19.0 <3.8 22.5 <4.0 654.6 23.6 6.6 -192 270 632	18.4 <3.8 <4.3 <4.0 423.7 3.5 6.9 -252 155 424	<3.8 <4.3 <4.0 197.5 5.8 7.0 -245 315 198	<1.5 12.1 6.7 179.2 10.3 7.4 -45 370 167	<0.77 10.0 2.9 102.1 3.2 7.2 -94 350 92.1	
CA VC Acetylene Ethene Ethane Sum CE Sum CA pH ORP Alkalinity	μΜ μΜ μΜ μΜ μΜ μΜ μΜ mV mg/L CaCO3	19.0 <3.8 22.5 <4.0 654.6 23.6 6.6 -192 270	18.4 <3.8 <4.3 <4.0 423.7 3.5 6.9 -252 155	<3.8 <4.3 <4.0 197.5 5.8 7.0 -245 315	<1.5 12.1 6.7 179.2 10.3 7.4 -45 370	<0.77 10.0 2.9 102.1 3.2 7.2 -94 350	

7-A	EHC Source Zor	e RMW-4D	Groundwate	r and MW-7I) Rock	
Compound	Week	0	2	4	8	12
PCE TCE	μg/L μg/L	2500 31600	1130 15100	790 14000	170 340	160 190
cDCE	μg/L	30800	20900	25300	17300	15900
tDCE 1TCA	μg/L μg/L	<100 820	720 370	<100 270	220 <50	180 <40
1DCE	μg/L μg/L	<100	760	<100	180	190
1DCA	μg/L	770	330	390	220	180
CA VC	μg/L μg/L	<100 1320	<100 940	<100 770	<50 590	<40 300
Methane	μg/L	220	77	29	<33	<27
Acetylene Ethene	μg/L μg/L	<100 610	trace <120	270 <120	1050 1090	560 1430
Ethane	μg/L μg/L	<120	<120	<120	550	510
PCE	μМ	15.1	6.8	4.8	1.0	1.0
TCE cDCE	μM μM	240.5 317.9	114.9 215.7	106.5 261.1	2.6 178.5	1.4 164.1
tDCE	μМ	<1.0	7.4	<1.0	2.3	1.9
1TCA	μМ	6.1	2.8	2.0	<0.37	<0.30
1DCE 1DCA	μM μM	<1.0 7.8	7.8 3.3	<1.0 3.9	1.9 2.2	2.0 1.8
CA	μM	<1.6	<1.6	<1.6	< 0.78	< 0.62
VC Acetylene	μM μM	21.1 <3.8	15.0 <3.8	12.3 10.4	9.4 40.4	4.8 21.5
Ethene	μМ	21.8	<4.3	<4.3	38.9	51.1
Ethane	μМ	<4.0	<4.0	<4.0	18.3	17.0
Sum CE Sum CA	μM μM	616.3 13.9	359.9 14.0	395.1 6.0	273.2 22.4	245.8 20.8
pH	μινι	6.6	5.6	6.5	6.6	6.8
ORP	mV	-136	-1	-239	-216	-27
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	295 595	460 360	875 385	935 194	1050 173.2
Sum CA-Gases	μМ	14	14	6.0	4.1	3.8
Sulfate	mg/L	1300				
7-B	EHC Source Zor					
Compound PCE	Week μg/L	0 2240	4 780	8 400	12 180	16 <40
TCE	μg/L μg/L	30100	15900	3960	250	<40
cDCE	μg/L	28000	25700	18500	13300	9780
tDCE 1TCA	μg/L μg/L	900 810	<100 290	94 <50	180 <40	<40 <40
1DCE	μg/L μg/L	910	<100	220	190	<40
1DCA	μg/L	750	380	230	180	<40
CA VC	μg/L μg/L	<100 1210	<100 850	<50 640	<40 280	<40 <40
Methane	μg/L	220	58	<33	<27	<27
Acetylene	μg/L	<100	200	1110	460	220
Ethene Ethane	μg/L μg/L	590 <120	<120 <120	820 270	1690 700	1240 460
PCE	μM	13.5	4.7	2.4	1.1	<0.24
TCE cDCE	μМ	229.1 289.0	121.0	30.1 190.9	1.9	< 0.30
tDCE	μM μM	289.0 9.3	265.2 <1.0	1.0	137.3 1.9	100.9 <0.41
1TCA	μM	6.1	2.2	< 0.37	< 0.30	< 0.30
1DCE 1DCA	μM μM	9.4 7.6	<1.0 3.8	2.3 2.3	2.0 1.8	<0.41 <0.40
CA	μМ	<1.6	<1.6	<0.78	<0.62	<0.62
VC	μM	19.4	13.6	10.2	4.5	< 0.64
Acetylene Ethene	μM μM	<3.8 21.1	7.7 <4.3	43 29.3	18 60.4	8.5 44.3
Ethane	μM	<4.0	<4.0	9.0	23.3	15.3
Sum CE	μМ	581.3	412.2	306.7	224.6	153.7
Sum CA pH	μМ	23.0 6.6	6.0 5.8	13.6 6.7	27.1 6.8	15.3 6.6
ORP	mV	-66	-217	-272	-125	-101
Alkalinity	mg/L CaCO3	300	785	1175	1335	1330
Sum CE-Gases Sum CA-Gases	μM μM	560 23	405 6.0	235 4.6	147 3.8	100.9 0.0
Sulfate	mg/L	1300				3.5
7-C	EHC Source Zor	e RMW-4D	Groundwate	r and MW-7I	O Rock	
Compound PCE	Week μg/L	0 1750	4 180	8 330	12 110	16 <40
TCE	μg/L μg/L	22500	2820	5270	280	<40
cDCE	μg/L	23700	16900	19900	12600	7650
tDCE 1TCA	μg/L μg/L	910 770	100 <50	130 <50	92 <20	<40 <40
1DCE	μg/L	880	220	200	99	<40
1DCA	μg/L	750	210	220	110	<40
CA VC	μg/L μg/L	<100 1120	<50 610	<50 590	<20 170	<40 <40
Methane	μg/L	210	<33	<33	<13	<27
Acetylene Ethene	μg/L	<100 210	<50 150	880 350	760 910	310 940
Ethane	μg/L μg/L	<120	<60	140	270	320
PCE	μМ	10.6	1.1	2.0	0.66	< 0.24
TCE	μM M	171.2	21.5	40.1	2.1	< 0.30
cDCE tDCE	μM μM	244.6 9.4	174.4 1.0	205.4 1.3	130.0 0.95	78.9 <0.41
1TCA	μМ	5.8	< 0.37	< 0.37	< 0.15	< 0.30
1DCE 1DCA	μM μM	9.1 7.6	2.3 2.1	2.1 2.2	1.0 1.1	<0.41 <0.40
CA	μМ	<1.6	<1.6	<1.6	<0.31	< 0.62
VC Apptidence	μМ	17.9	9.8	9.4	2.7	< 0.64
Acetylene Ethene	μM μM	<3.8 7.5	<3.8 <4.3	34 13	29 33	11.9 33.6
Ethane	μM	<4.0	<4.0	4.7	9.0	10.7
Sum CE Sum CA	μM μM	461.2 22.4	207.7 4.4	304.6 9.0	198.2 11.1	124.4 10.7
pH	μινι	6.6	6.0	6.5	7.0	6.8
ORP	mV	-19	-225	-230	-180	-126
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	300 454	585 208	1010 258	1490 136	1410 78.9
Sum CA-Gases	μM	22	4.4	4.3	2.1	0.0
Sulfate	mg/L	1300				2.9

13.5

16 <400 7140 <400 <400 <400 <400 <400 <400 <400 <400 <400 <400 <400 <0.24 <0.24 <0.30 <0.41 <0.40 <0.62 <0.62 <0.62 <0.62 <0.62 <0.63 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.73 <0.74 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.75 <0.7

15A	1.8 g Nanoscale	e EZVI Source	Zone RMV	/-4D Ground	dwater and N	/W-7D Rock			
Compound	Week	0	2	4	6	8	12	16	
PCE TCE	μg/L μg/L	1120 15900	610 5690	<100 <100	660 530	<200 <200	<200 <200	<100 <100	
cDCE	μg/L	15600	44300	33500	88000	74200	34100	10900	
tDCE	μg/L	470	560	590	690	4370	940.0	<100	
1TCA 1DCE	μg/L μg/L	420 480	170 420	<100 750	<100 560	<200 490	<200 900	<100 <100	
1DCA	μg/L	380	230	380	190	760	760	<100	
CA	μg/L	<50	<50	<100	<100	<200	<200	<100	
VC Methane	μg/L μg/L	700 110	700 45	740 <67	1260 <67	2110 <130	1110 <130	<100 <67	
Acetylene	μg/L	<50	<50	<100	<100	<200	<200	<100	
Ethene	μg/L	590	<60	<120	<120	<240	<240	270	
Ethane PCE	μg/L μΜ	<60 6.8	<60 3.7	<120 <0.60	<120 4.0	<240 <1.2	<240 <1.2	<120 <0.60	
TCE	μМ	121.0	43.3	<0.76	4.0	<1.5	<1.5	<0.76	
cDCE	μМ	161.0	457.2	345.7	908.2	765.7	351.9	112.5	
tDCE 1TCA	μM μM	4.9 3.1	5.8 1.3	6.1 <0.75	7.1 <0.75	45.1 <1.5	9.7 <1.5	<1.0 <0.75	
1DCE	μМ	5.0	4.3	7.7	5.8	5.1	9.3	<1.0	
1DCA	μМ	3.8	2.3	3.8	1.9	7.7	7.7	<1.0	
CA VC	μM μM	<0.78 11.2	<0.78 11.2	<1.6 11.8	<1.6 20.2	<3.2 33.8	<3.2 17.8	<1.6 <1.6	
Acetylene	μМ	<1.9	<1.9	<3.8	<3.8	<7.7	<7.7	<3.8	
Ethene	μМ	21.1	<2.1	<4.2	<4.2	<8.6	<8.6	<4.2	
Ethane	μМ	<2.0	<2.0	<3.3	<3.3	<8.0	<8.0	<3.3	
Sum CE Sum CA	μM μM	325.9 11.9	521.1 7.9	363.6 11.6	943.4 7.7	844.6 12.7	379.4 17.0	112.5 0.0	
pH	μινι	6.8	6.8	6.8	6.7	6.9	7.1	7.0	
ORP	mV	-128	-132	-129	-107	-210	-217	-195	
Alkalinity	mg/L CaCO3	315	300	300	300 943.4	410 844.6	505 379.4	550 112.5	
Sum CE w/o Gases Sum CA w/o Gases	μM μM	304.8 11.9	521.1 7.9	363.6 11.6	7.7	12.7	17.0	0.0	
								0.0	
15B Compound	8.8 g Nanoscali Week	e EZVI Source 0	Zone RMV 2	/-4D Ground 4	dwater and N 6	/W-7D Rock 8	12	16	
PCE	μg/L	930	540	330	300	150	110	<50	
TCE	μg/L	11600	9210	3760	9220	2800	690	<50	
cDCE	μg/L	12000	21600	12500	63900	31700	16300	9440	
tDCE 1TCA	μg/L μg/L	460 390	380 <50	230 <100	140 <40	110 <50	120 <25	<50 <50	
1DCE	μg/L	460	430	400	590	460	150	<50	
1DCA	μg/L	370	210	210	130	240	120	<50	
CA VC	μg/L	<50 660	<50 720	<100 530	<40 1160	<50 870	<25 290	<50 310	
Methane	μg/L μg/L	110	<33	<67	<27	<33	290 <17	<33	
Acetylene	μg/L	<50	<50	<100	65	<50	<25	<50	
Ethene	μg/L	340	200	<120	370	380	410	290	
Ethane PCE	μg/L	<60	<60	<120 2.0	180	<60	130	270 <0.30	
TCE	μM μM	5.6 88.3	3.3 70.1	28.6	1.8 70.2	0.90 21.3	0.66 5.3	<0.30	
cDCE	μМ	123.8	222.9	129.0	659.4	327.1	168.2	97.4	
tDCE	μМ	4.7	3.9	2.4	1.4	1.1	1.2	< 0.52	
1TCA 1DCE	μM μM	2.9 4.7	<0.37 4.4	<0.75 4.1	<0.30 6.1	<0.37 4.7	<0.19 1.5	<0.19 <0.52	
1DCA	μМ	3.7	2.1	2.1	1.3	2.4	1.2	<0.51	
CA	μМ	<0.78	<0.78	<1.6	< 0.62	<0.78	< 0.39	< 0.39	
VC Acetylene	μM uM	10.6 <1.9	11.5 <1.9	8.5 <3.8	18.6 2.5	13.9 <1.9	4.6 <0.96	5.0 <0.96	
Ethene	μМ	12.1	7.1	<3.6 <4.2	13.2	13.6	14.6	10.4	
Ethane	μМ	<2.0	<2.0	<3.3	6.0	<2.0	4.3	9.0	
Sum CE	μМ	245.2	318.8	170.5	767.1	378.0	194.7	112.7	
Sum CA pH	μМ	11.4 6.7	6.6 6.9	6.2 6.9	13.4 6.9	7.2 7.0	7.1 7.2	9.0 7.2	
ORP	mV	-109	-120	-126	-63	-200	-202	-187	
Alkalinity	mg/L CaCO3	305	300	170	265	285	355	425	
Sum CE w/o Gases	μМ	233.0	311.7	170.5	751.4	364.4	180.0	102.4	
Sum CA w/o Gases	μМ	11.4	6.6	6.2	7.4	7.2	2.8	0.0	
15C	35.2 g Nanosca								
Compound PCE	Week μg/L	0 880	2 510	4 310	6 110	8 <20	12 <50	16 1 <5.0	6 Soil 32
TCE	μg/L	10900	6770	2390	2020	870	280	15	87
cDCE	μg/L	11300	14300	9660	6640	24400	11900	2690	1170
tDCE	μg/L	460 370	380	<100	<20	52	<50	<5.0	<5.0
1TCA 1DCE	μg/L μg/L	440	<50 400	<100 400	<20 120	<20 260.0	<50 240	<5.0 <5.0	<5.0 <5.0
1DCA	μg/L	370	180	190	56	110	190	<5.0	5.7
CA	μg/L	<50	<50	<100	<20	<20	<50	<5.0	<5.0
VC Methane	μg/L μg/L	550 110	620 <33	560 <67	290 <13	200 <13	340 <33	140 15	8.4 <3.3
Acetylene	μg/L	<50	110	140	50	44	<50	11	trace
Ethene	μg/L	540	420	550	650	600	930	980	88
Ethane	μg/L	<60	<60	<120	210	180	400	330	82
PCE TCE	μM μM	5.3 83.0	3.1 51.5	1.9 18.2	0.66 15.4	<0.12 6.6	<0.30 2.1	<0.030 0.11	<0.030 0.66
cDCE	μМ	116.6	147.6	99.7	68.5	251.8	122.8	27.8	12.1
tDCE	μМ	4.7	3.9	<1.0	< 0.21	0.54	< 0.52	< 0.052	< 0.052
1TCA 1DCE	μM	2.8 4.5	<0.37 4.1	<0.75 4.1	<0.15 1.2	<0.15 2.7	<0.15 2.5	<0.015	<0.015 <0.052
1DCE 1DCA	μM μM	4.5 3.7	4.1 1.8	4.1 1.9	1.2 0.57	1.11	1.92	<0.052 <0.051	<0.052 0.058
CA	μМ	<0.78	<0.78	<1.6	<0.31	<0.31	<0.78	<0.078	<0.078
VC	μМ	8.8	9.9	9.0	4.6	3.2	5.4	2.2	0.13
Acetylene Ethene	μM μM	<1.9 19.3	4.2 15.0	5.4 19.6	1.9 23.2	1.7 21.4	<1.9 33.2	0.4 35.0	<0.19 3.1
Ethane	μМ	<2.0	<2.0	<3.3	7.0	6.0	13.3	11.0	2.7
Sum CE	μМ	237.7	235.2	153.7	114.3	285.3	163.6	65.5	16.0
Sum CA	μМ	11.1	5.9	6.0	8.8	9.8	17.7	11.0	2.8
pH ORP	mV	6.6 -30	6.9 -112	6.7 -98	6.6 -90	6.4 -199	6.5 -186	6.4 -89	
Alkalinity	mg/L CaCO3	310	275	165	115	105	105	165	
Sum CE w/o Gases	μМ	218.4	216.0	128.7	89.2	262.2	130.4	30.1	12.9
Sum CA w/o Gases	μМ	11.1	5.9	6.0	1.8	3.8	4.4	0.0	0.1

8-A	Storilo Control DI	umo Zono M	W 20D Gro	undwater er	A MW 21D	Pock	
8-A Compound	Sterile Control Pl Week	0		8			16 Soil
PCE TCE	μg/L	<50 5650	<20 4770	<20 1680	<10 1300	<5.0 730	5.5 28
cDCE	μg/L μg/L	635	960	180	210	100	28 20
tDCE	μg/L	<50	<20	<20	<10	<5.0	<2.0
1TCA 1DCE	μg/L μg/L	4350 720	5770 230	2860 690	1910 190	1910 12	140 <2.0
1DCA	μg/L	<50	<20	<20	<10	<5.0	20
CA	μg/L	<50	<20	<20	<10	<5.0 <5.0	<2.0 <2.0
VC Methane	μg/L μg/L	<50 100	<20 6.2	<20 <13	<10 <6.7	<5.0 <3.3	<2.0 <1.3
Acetylene	μg/L	<50	<20	<20	<10	<5.0	<2.0
Ethene Ethane	μg/L	<60 <60	<24 <24	<24 <24	<12 <12	<6.0 <6.0	<2.4 <2.4
PCE	μg/L μM	<0.30	<0.12	<0.12	<0.060	<0.030	0.033
TCE	μМ	43.0	36.3	12.8	9.9	5.6	0.21
cDCE tDCE	μM μM	6.6 <0.52	9.9 <0.21	1.9 <0.21	2.2 <0.10	1.0 <0.052	0.21 <0.021
1TCA	μМ	32.6	43.3	21.4	14.3	14.3	1.0
1DCE 1DCA	μМ	7.4	2.4	7.1	2.0	0.12 <0.051	<0.021
CA	μM μM	<0.51 <0.78	<0.20 <0.31	<0.20 <0.31	<0.10 <0.16	< 0.051	0.20 <0.031
VC	μМ	< 0.80	< 0.32	< 0.32	< 0.16	<0.080	<0.032
Acetylene Ethene	μM M	<1.9 <2.1	<0.77 <0.86	<0.77 <0.86	<0.38 <0.43	<0.19 <0.21	<0.077 <0.086
Ethane	μM μM	<2.1	< 0.86	<0.86	<0.43	<0.21	<0.086
Sum CE	μM	49.6	46.2	14.6	12.1	6.6	0.5
Sum CA pH	μМ	40.0 6.4	45.6 6.6	28.6 6.7	16.3 6.8	14.4 6.9	1.3
ORP	mV	258	229	245	294	296	
Alkalinity	mg/L CaCO3	125	145	155	205	230	
Sum CE-Gases Sum CA-Gases	μM μM	50 40	46 46	15 29	12 16	6.6 14	0.5 1.3
Sulfate	mg/L	1200	40	23	10	1400	1.5
8-B	Sterile Control Pl	umo Zono M	IW 20D Gro	undwater er	4 MW 31D	Pock	
Compound	Week	0	4	undwater ar 8	12	16	
PCE	μg/L	<50	<20 2220	<20	<10 1260	<5.0	
TCE cDCE	μg/L μg/L	3560 680	360	1730 180	1260 150	960 110	
tDCE	μg/L	<50	<20	<20	<10	<5.0	
1TCA 1DCE	μg/L μg/L	3070 670	3760 180	2790 860	1830 180	2180 12	
1DCE 1DCA	μg/L μg/L	<50	<20	<20	<10	<5.0	
CA	μg/L	<50	<20	<20	<10	<5.0	
VC Methane	μg/L	<50 110	<20 7.6	<20 <13	<10 <6.7	<5.0 <3.3	
Acetylene	μg/L μg/L	<50	<20	<20	<10	<5.0	
Ethene	μg/L	<60	<24	<24	<12	<6.0	
Ethane PCE	μg/L μM	<60 <0.30	<24 <0.12	<24 <0.12	<12 <0.060	<6.0 <0.030	
TCE	μМ	27.1	16.9	13.2	9.6	7.3	
cDCE	μМ	7.0	3.7	1.9	1.5	1.1	
tDCE 1TCA	μM μM	<0.52 23.0	<0.21 28.2	<0.21 20.9	<0.10 13.7	<0.052 16.3	
1DCE	μМ	6.9	1.9	8.9	1.9	0.12	
1DCA	μМ	<0.51	<0.20	<0.20	<0.10	<0.051	
CA VC	μM μM	<0.78 <0.80	<0.31 <0.32	<0.31 <0.32	<0.16 <0.16	<0.078 <0.080	
Acetylene	μM	<1.9	<0.77	<0.77	< 0.38	<0.19	
Ethene Ethane	μM μM	<2.1 <2.0	<0.86 <0.40	<0.86 <0.40	<0.43 <0.40	<0.21 <0.20	
Sum CE	μМ	34.1	20.6	15.0	11.1	8.4	
Sum CA	μM	29.9	30.0	29.8	15.6	16.5	
pH ORP	mV	6.4 272	6.6 268	6.7 260	6.9 292	6.9 304	
Alkalinity	mg/L CaCO3	125	140	155	210	220	
Sum CE-Gases	μM	34	21	15	11	8.4	
Sum CA-Gases Sulfate	μM mg/L	30 1200	30	30	16	16 1400	
	-						
8-C Compound	Sterile Control Pl Week	ume Zone M 0	IW-20D Gro 4	undwater ar 8	nd MW-21D 12	Rock 16	
PCE	μg/L	<50	<20	<20	<10	<5.0	
TCE cDCE	μg/L	3130 570	1710	1540 730	1000	880 140	
tDCE	μg/L μg/L	570 <50	310 <20	730 <20	180 <10	140 <5.0	
1TCA	μg/L	3840	3050	2550	1480	1800	
1DCE 1DCA	μg/L μg/L	<50 <50	190 <20	960 35	180 <10	44 <5.0	
CA	μg/L	<50	<20	<20	<10	<5.0	
VC	μg/L	<50	<20	<20	<10	<5.0	
Methane Acetylene	μg/L μg/L	100 <50	9.0 <20	<13 <20	<6.7 <10	<3.3 <5.0	
Ethene	μg/L	<60	<24	<24	<12	17	
Ethane PCE	μg/L μM	<60 <0.30	<24 <0.12	<24 <0.12	<12 <0.060	27 <0.030	
TCE	μМ	23.8	13.0	11.7	7.6	6.7	
cDCE	μМ	5.9	3.2	7.5	1.9	1.4	
tDCE 1TCA	μM μM	<0.52 28.8	<0.21 22.9	<0.21 19.1	<0.10 11.1	<0.052 13.5	
1DCE	μМ	< 0.52	2.0	9.9	1.9	0.45	
1DCA	μM	<0.51	< 0.20	0.35	< 0.10	< 0.051	
CA VC	μM μM	<0.78 <0.80	<0.31 <0.32	<0.31 <0.32	<0.16 <0.16	<0.078 <0.080	
Acetylene	μМ	<1.9	<0.77	<0.77	< 0.38	<0.19	
Ethene	μM ··M	<2.1	<0.86	<0.86 <0.40	< 0.43	0.61	
Ethane Sum CE	μM μM	<2.0 29.7	<0.40 16.2	<0.40 19.3	<0.40 9.5	0.90 8.7	
Sum CA	μМ	28.8	24.8	29.4	13.0	14.8	
pH ORP	mV	6.5 276	6.6 265	6.8 267	6.8 298	6.9 310	
Alkalinity	mg/L CaCO3	120	145	150	215	220	
Sum CE-Gases							
	μМ	30	16	19	9.5	8.1	
Sum CA-Gases Sulfate	μM μM mg/L	30 29 1200	16 25	19 29	9.5	8.1 14 1700	

9-A	Unamended Con	trol Plume Z	one MW-20I	D Groundwa	ter and MW	-21D Rock	
Compound	Week	0	4	8	12	16	16 Soil
PCE TCE	μg/L μg/L	<50 <50	<40 <40	<40 <40	<40 <40	<20 <20	34 77
cDCE	μg/L	13700	11300	16000	5470	6590	1180
tDCE 1TCA	μg/L	450 1030	<40 670	190 720	190 420	<20 270	<4.0 200
1DCE	μg/L μg/L	480	340	420	190	<20	<4.0
1DCA	μg/L	460	230	270	180	98	18
CA VC	μg/L μg/L	<50 950	<40 720	<40 <40	<40 <40	<20 <20	<4.0 <4.0
Methane	μg/L	100	39	<27	<27	<13	<2.7
Acetylene	μg/L	<50	<40	<40	<40	<20	<4.0
Ethene Ethane	μg/L μg/L	<60 <60	<48 <48	<48 <48	<48 <48	55 <24	11 36
PCE	μM	< 0.30	< 0.24	< 0.24	< 0.24	< 0.12	0.21
TCE cDCE	μM μM	<0.38 141.4	<0.30 116.6	<0.30 165.1	<0.30 56.4	<0.15 68.0	0.59 12.2
tDCE	μМ	4.6	<0.41	2.0	2.0	<0.21	< 0.041
1TCA	μМ	7.7	5.0	5.4	3.1	2.0	1.5
1DCE 1DCA	μM μM	5.0 4.6	3.5 2.3	4.3 2.7	2.0 1.8	<0.21 1.0	<0.041 0.18
CA	μМ	<0.78	<0.62	< 0.62	<0.62	<0.31	<0.062
VC	μМ	15.2	11.5	<0.64	<0.64	<0.32	<0.064
Acetylene Ethene	μM μM	<1.9 <2.1	<1.5 <1.7	<1.5 <1.7	<1.5 <1.7	<0.77 2.0	<0.15 0.39
Ethane	μМ	<2.0	<1.6	<1.6	<1.6	< 0.67	1.2
Sum CE Sum CA	μМ	161.2	128.1	167.1 12.5	58.4 6.9	70.0	13.4
pH CA	μМ	17.3 6.6	10.9 6.6	12.5 6.8	6.9 7.2	3.0 7.0	2.9
ORP	mV	220	193	178	235	270	
Alkalinity	mg/L CaCO3	210 161	125 128	290	345 58	360 68.0	13.0
Sum CE-Gases Sum CA-Gases	μM μM	17	11	167 12	6.9	3.0	1.7
Sulfate	mg/L	1200				1600	
9-B	Unamended Con	trol Plume 7	nne MW-20I	D Groundwa	ter and MW	-21D Rock	
Compound	Week	0	4	8	12	16	
PCE TCE	μg/L	<50 <50	<40 <40	<40 <40	<25 <25	<10 <10	
cDCE	μg/L μg/L	13500	12400	11200	3890	6590	
tDCE	μg/L	460	200	120	120	<10	
1TCA 1DCE	μg/L μg/L	970 450	670 360	720 190	380 120	360 <10	
1DCE	μg/L μg/L	450	230	220	130	91	
CA	μg/L	<50	<40	<40	<25	<10	
VC Methane	μg/L μg/L	900 110	<40 7.5	<40 <27	<25 <17	<10 <6.7	
Acetylene	μg/L	<50	<40	<40	<25	<4.0	
Ethene	μg/L	<60	<48	<48	<30	34	
Ethane PCE	μg/L μM	<60 <0.30	<48 <0.24	<48 <0.24	<30 <0.15	56 <0.060	
TCE	μМ	< 0.38	<0.30	< 0.30	<0.19	<0.076	
cDCE	μМ	139.3	128.0	115.6	40.1	68.0	
tDCE 1TCA	μM μM	4.7 7.3	2.1 5.0	1.2 5.4	1.2 2.8	<0.10 2.7	
1DCE	μМ	4.6	3.7	2.0	1.2	<0.10	
1DCA	μМ	4.5	2.3	2.2	1.3	0.92	
CA VC	μM μM	<0.78 14.4	<0.62 <0.64	<0.62 <0.64	<0.39 <0.40	<0.16 <0.16	
Acetylene	μМ	<1.9	<1.5	<1.5	< 0.96	<0.15	
Ethene Ethane	μM μM	<2.1 <2.0	<1.7 <1.6	<1.7 <1.6	<1.1 <1.0	1.2 1.9	
Sum CE	μМ	158.5	130.0	116.8	41.4	69.2	
Sum CA	μM	16.5	11.1	9.6	5.4	5.5	
pH ORP	mV	6.7 160	6.8 207	6.8 168	7.2 220	7.1 254	
Alkalinity	mg/L CaCO3	300	125	305	350	360	
Sum CE-Gases	μМ	158 16	130	117	41		
Sum CA-Gases Sulfate	μM					68.0	
	mg/L		11	10	5.4	3.6 1300	
	mg/L	1200		10	5.4	3.6 1300	
9-C Compound	Unamended Con Week	1200		10	5.4	3.6 1300	
Compound PCE	Unamended Con Week µg/L	1200 trol Plume Z 0 <50	one MW-20I 4 <40	10 D Groundwa 8 <40	5.4 ter and MW 12 <40	3.6 1300 7-21D Rock 16 <20	
Compound PCE TCE	Unamended Con Week μg/L μg/L	1200 trol Plume Z 0 <50 <50	one MW-20I 4 <40 <40	10 D Groundwa 8 <40 <40	5.4 ter and MW 12 <40 <40	3.6 1300 7-21D Rock 16 <20 <20	
Compound PCE	Unamended Con Week µg/L	1200 trol Plume Z 0 <50 <50 14400 <50	one MW-20I 4 <40 <40 13600 210	10 D Groundwa 8 <40 <40 13800 190	5.4 ter and MW 12 <40 <40 6090 190	3.6 1300 7-21D Rock 16 <20 <20 5040 <20	
Compound PCE TCE cDCE tDCE 1TCA	Unamended Con Week µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980	one MW-20I 4 <40 <40 13600 210 690	10 D Groundwa 8 <40 <40 13800 190 910	5.4 ter and MW 12 <40 <40 6090 190 500	3.6 1300 7-21D Rock 16 <20 <20 5040 <20 380	
Compound PCE TCE cDCE tDCE 1TCA 1DCE	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510	one MW-20I 4 <40 <40 13600 210 690 400	10 D Groundwa 8 <40 <40 13800 190 910 260	5.4 ter and MW 12 <40 <40 6090 190 500 190	3.6 1300 7-21D Rock 16 <20 <20 5040 <20 380 <20	
Compound PCE TCE cDCE tDCE tTCA 1DCE 1DCA CA	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50	one MW-20I 4 <40 <40 13600 210 690 400 270 <40	10 D Groundwa 8 <40 <40 13800 190 910 260 250 <40	5.4 ter and MW 12 <40 <40 6090 190 500 190 200 <40	3.6 1300 7-21D Rock 16 <20 <20 5040 <20 380 <20 69 <20	
Compound PCE TCE cDCE tDCE tTCA 1DCE 1TCA CA VC	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50 1070	one MW-20I 4 <40 <40 13600 210 690 400 270 <40 <40	10 D Groundwa 8 <40 <40 13800 190 910 260 250 <40 <40	5.4 ter and MW 12 <40 <40 6090 190 500 190 200 <40 <40	3.6 1300 7-21D Rock 16 <20 <20 5040 <20 380 <20 69 <20 <20	
Compound PCE TCE cDCE IDCE ITCA IDCE IDCA CA VC Methane	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50	one MW-20I 4 <40 <40 13600 210 690 400 270 <40	10 D Groundwa 8 <40 <40 13800 190 910 260 250 <40	5.4 ter and MW 12 <40 <40 6090 190 500 190 200 <40	3.6 1300 7-21D Rock 16 <20 <20 5040 <20 380 <20 69 <20	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50 1070 110 <50 <60	one MW-20I 4 <40 <40 13600 210 690 400 270 <40 <40 5.9 <40 <48	10 D Groundwa 8 <40 13800 190 260 250 <40 <40 <27 <40 <48	5.4 ter and MW 12 <40 6090 190 500 190 200 <40 <40 <27 <40 <48	3.6 1300 -21D Rock 16 <20 <20 5040 <20 380 <20 69 <20 <20 <13 <20 57	
Compound PCE TCE cDCE tDCE tTCA TDCE TDCA CA VC Methane Acetylene Ethene Ethane	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 1070 460 <50 1070 110 <50 <60 <60	one MW-201 4 <40 <40 13600 210 690 400 270 <40 5.9 <40 <48 <48	10 D Groundwa 8 <40 <40 13800 190 910 260 250 <40 <40 <40 <40 <40 <40 <48 <440 <48 <48	5.4 ter and MW 12 <40 6090 190 500 200 <40 <40 <47 <40 <48 <48	3.6 1300 -21D Rock 16 <20 5040 <20 380 69 <20 <20 <13 <20 513 420 <20 <20 <20 <20 <20 <20 <20 <20 <20 <	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene Ethane PCE TCE	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50 1070 110 <50 <60	one MW-201 4 <40 <40 13600 210 690 400 270 <40 5.9 <40 5.9 <40 <48 <0.24 <0.30	10 D Groundwa 8 <40 <13800 190 260 250 <40 <40 <40 <47 <40 <48 <48 <0.24 <0.30	5.4 ter and MW 12 <40 6090 190 500 190 200 <40 <40 <27 <40 <48	3.6 1300 -21D Rock 16 <20 5040 <20 5040 <20 69 <20 <13 <20 <13 <20 57 <24 <0.12	
Compound PCE TCE cDCE tDCE 1DCA 1TCA 1DCA CA VC Methane Acetylene Ethene Ethane PCE TCE cDCE	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 1070 110 <50 980 <50 00 00 1070 110 <50 <60 <60 <0.30 <0.38 148.6	one MW-20I 4 <40 <40 13600 210 690 400 270 <40 <40 5.9 <40 <48 <48 <0.24 <0.30 140.4	10 D Groundwa 8 <40 <40 13800 190 910 260 <40 <40 <40 <40 <40 <40 <448 <0.24 <0.30 142.4	5.4 ter and MW 12 440 400 6090 190 500 190 200 40 40 440 448 0.24 40.30 62.8	3.6 1300 1-21D Rock 16 <20 <20 5040 <20 5040 <20 69 <20 <20 <20 <20 <20 <20 <20 <20 5040 <20 5040 <20 5040 <20 5040 <20 5040 <20 5040 <20 5040 5040 5040 5040 5040 5040 5040 50	
Compound PCE TCE cDCE IDCE ITCA IDCE ITCA CA VC Methane Acetylene Ethene Ethene PCE TCE cDCE IDCE	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 510 460 <50 1070 110 <50 <60 <60 <0.30 <0.38 148.6 <0.52	one MW-201 4 <40 40 13600 210 690 400 270 <40 <40 <40 <40 <40 <0.30 30 30 30 30 30 30 30 30 30 30 30 30 3	10 D Groundwa 8 <40 <40 13800 190 910 260 250 <40 <47 <40 <48 <48 <0.24 <0.30 142.4 2.0	5.4 ter and MW 12 <40 6090 190 500 190 200 <40 <40 <40 <40 <27 <40 <48 <48 <48 <0.24 <0.30 62.8 2.0	3.6 1300 *21D Rook 16 <20 <20 5040 <20 380 <20 69 <20 <13 <20 <13 <20 <13 <20 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15	
Compound PCE TCE cDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene Ethene Ethene Ethene Ethene Ethene TCE CDCE TCE CDCE TCE tDCE 1TCA 1DCE	Unamended Con Week µg/L	1200 trol Plume Z 0	one MW-201 4 <40 40 (40) 13600 210 690 400 270 <40 <40 <40 <40 <40 30 104 40 40 40 40 40 40 40 40 40 40 40 40 4	10 D Groundwas 8 <40 <40 13800 1990 910 260 250 <40 <40 <42 <40 <48 <48 <48 <48 <48 <48 2.0 6.8 2.7	5.4 ter and MW 12 <40 <40 6090 190 500 200 <40 <40 <40 <42 <40 <48 <48 <48 <48 <48 2.2 3.7 2.0	3.6 1300 1-21D Rock 16 <20 <20 <20 380 <20 69 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <13 <20 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCB 1DCA CA VC Methane Acetylene Ethane PCE TCE cDCE tDCE tDCE tDCE tDCE tDCE tDCE tDCE t	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 14400 <50 980 510 460 <50 1070 <60 <60 <60 <0.38 148.6 <0.52 7.3 5.3 4.6	one MW-201 4 400 400 13600 210 690 400 270 400 40 5.9 408 448 484 40.30 140.4 2.2 5.2 4.1 2.7	10 D Groundwa 8 <40 <40 13800 190 260 250 <40 <40 <40 <40 <40 <42 <40 <48 <0.24 <48 <0.24 <0.30 142.4 2.0 6.8 2.7 2.5	5.4 ter and MW 12 240 <40 6090 190 500 200 <40 <40 <427 <40 <48 <0.24 <0.30 62.8 2.0 3.7 2.0 2.0	3.6 13000 -2-21D Rook 16 -2-20 -20 -20 -20 -20 -20 -20 -20 -20 -	
Compound PCE TCE cDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene Ethene Ethene Ethene Ethene Ethene TCE CDCE TCE CDCE TCE tDCE 1TCA 1DCE	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 510 460 <50 1070 110 50 <60 <0.38 466 <0.52 7.3 5.3 4.6 <0.78	one MW-201 4 <40 <300 400 210 690 400 270 <40 5.9 <40 <48 <48 <0.24 <0.30 140.4 2.2 5.2 4.1 2.7 <0.62	10 D Groundwa 8 <40 <40 13800 190 250 <40 250 <40 <40 <40 <40 27 <40 30 142.4 2.0 6.8 2.7 2.5 <6.62	5.4 ter and MW 12 <40 <400 6090 190 500 200 40 <40 <40 <40 <40 <40 <40 <40 <48 <0.24 <0.30 62.8 2.0 3.7 2.0 2.00 <0.62	3.6 1300 1-21D Rook 16 <20 <20 <20 380 <20 69 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <20 <13 <13 <20 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethane PCE TCE tDCE tDCE tDCE tDCA CA CA CA CA CA ACETylene CA	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 60 <50 1070 110 <50 <60 <60 <0.30 <0.30 <0.38 148.6 <0.752 3.3 4.6 0.78 17.1 <1.9	one MW-201 4 400 3600 210 690 400 270 40 5.9 40 48 48 48 40.24 40.30 140.4 2.2 4.1 2.7 <0.62 <0.64 <1.5	10 D Groundwa 8 <40 <40 13800 190 250 <40 <40 <40 250 <40 <40 <41 0.34 12.0 6.8 2.7 2.5 6.62 <0.64 <1.5	5.4 ter and MW 12 <40 <40 <6090 190 500 190 <20 <40 <42 <40 <40 <40 <40 <40 <40 <40 <40 <40 <40	3.6 13000 13000 13000 16	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene Ethane PCE TCE cDCE tDCE 1TCA 1DCA CA VC Acetylene ACETYLENE CA	Unamended Con Week µg/L	1200 trol Plume Z 0 <50 <50 14400 980 510 460 650 1070 660 <0.38 148.6 <0.52 7.3 5.3 4.6 <0.77 <1.1 <1.9 <2.1	one MW-201 4 400 400 13600 690 400 270 690 400 270 40 440 440 440 448 40.30 140.4 2.2 5.2 4.1 2.7 <0.662 4.1 5.7 <0.644 <1.7 <0.644 <1.7	10 D Groundwa 8 <40 <40 13800 190 260 250 <40 <40 <40 <40 <40 <40 <40 <	5.4 ter and MW 12 <40 <400 6090 190 200 <40 <40 <40 <40 <40 <40 <40 <40 <40 <	3.6 13000 1-21D Root 16 <20 <20 <20 <20 <380 <20 <20 <20 <20 <20 <20 <21 <380 <20 <20 <20 <21 <30 <57 <24 <0.15 52.0 0.21 2.8 <0.21 0.70 <0.31 0.32 <0.77 2.0	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethane PCE TCE tDCE tDCE tDCE tDCA CA CA CA CA CA ACETylene CA	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 <50 980 60 <50 1070 110 <50 <60 <60 <0.30 <0.30 <0.38 148.6 <0.752 3.3 4.6 0.78 17.1 <1.9	one MW-201 4 400 3600 210 690 400 270 40 5.9 40 48 48 48 40.24 40.30 140.4 2.2 4.1 2.7 <0.62 <0.64 <1.5	10 D Groundwa 8 <40 <40 13800 190 250 <40 <40 <40 250 <40 <40 <41 0.34 12.0 6.8 2.7 2.5 6.62 <0.64 <1.5	5.4 ter and MW 12 <40 <40 <6090 190 500 190 <20 <40 <42 <40 <40 <40 <40 <40 <40 <40 <40 <40 <40	3.6 13000 13000 13000 16	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCB 1DCA CA VC Methane Acetylene Ethane PCE TCE cDCE tDCE tDCA CA VC Actylene CA VC Actylene CA CA VC Actylene CA	Unamended Con Week µg/L µg/L	1200 trol Plume Z 0 <50 <50 14400 510 460 550 1070 110 <50 <60 <0.38 148.6 <0.52 7.3 5.3 4.6 €0.78 17.1 <1.9 <2.1 1<2.0 165.7 17.3	one MW-201 4 400 3400 13600 210 690 400 270 40 40 5.9 5.40 40 48 48 40.24 12.2 4.1 2.7 40.62 4.1.5 4.1.5 4.1.6 142.5	10 D Groundwa 8 < 40 < 40 13800 190 250 < 40 < 27 < 40 < 40 < 40 < 40 < 40 < 40 < 40 < 4	5.4 ter and MW 12 <40 <40 <6090 190 190 <200 <40 <40 <42 <40 <40 <40 <40 <40 <40 <40 <40 <40 <40	3.6 13000	
Compound PCE TCE cDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethene Ethane PCE TCE cDCE tDCE tDCE tDCE tDCA CA VC Acetylene Ethene Ethane Sum CA Sum CA Sum CA PH	Unamended Con Week µg/L µg/L	1200 trol Plume Z	one MW-201 4 4 40 <40 13600 690 400 270 690 400 270 440 448 <0.30 140.4 2.2 5.2 4.1 2.7 <0.62 <0.64 <1.5 <1.7 <1.6 6.9 6.9 6.9	10 D Groundwa 8 <40 40 13800 190 250 <40 250 <40 <27 <40 348 <48 <0.24 <0.30 142.4 2.0 6.8 2.7 2.5 <0.62 <0.62 <1.7 <1.6 144.4 12.0 6.8	5.4 ter and MW 12 < 40 < 40 < 6090 190 < 500 < 190 < 40 < 40 < 40 < 40 < 40 < 40 < 40 <	3.6 1300 -2-1D Rook 16 <20 <20 <5040 <20 <20 <69 <20 <13 <20 <13 <20 <11 <0.12 <0.15 <50-21 0.70 <0.21 2.88 <0.21 0.70 0.31 <0.32 <0.77 2.0 <0.67 54.0 3.5 7.1	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethane PCE TCE tDCE tDCE tDCA CA ACETylene Ethane PCE TCE tDCE tDCC TCC TCC CDC TCC SUCC TCA TCA TCA TCA TCA TCA TCA TCA TCA T	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z	one MW-20I 4 4 40 <40 13600 400 270 690 400 270 40 448 <48 <0.24 <0.30 140.4 2.2 5.2 4.1 2.7 <0.62 <0.64 <1.5 <1.6 142.5 12.0 6.9 108 120 108 120 108 120 108 120	10 D Groundwa 8 <40 400 13800 190 250 <40 250 <40 <40 <40 340 48 48 48 48 48 48 2.7 40 30 142.4 6.88 163 144.4 12.0 6.88 163 295	5.4 ter and MW 12 <40 <40 <6090 190 <500 <40 <40 <40 <40 <40 <6090 <190 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4	3.6 1300 -2-21D Roose 16 <20 <20 <5040 <20 <20 <40 <20 <13 <20 <57 <424 <0.12 <0.15 52.0 <0.21 0.70 <0.31 <0.32 <0.77 2.0 <0.67 54.0 3.55 7.1 246 355	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethane PCE TCE cDCE 1DCA tDCE tDCA CA VC Methane Acetylene Ethane PCE TCE cDCE 1DCA tDCE 1TCA 1DCA CA VC Acetylene Ethane Sum CA pH ORP Alkalinity Sum CE-Gases	Unamended Con Week IPJL IPJL	1200 trol Plume Z 0 <50 <50 14400 980 510 460 650 1070 660 <0.38 148.6 <0.52 7.3 5.3 4.6 <0.71 <1.9 2.1 <2.1 <2.0 165.7 17.3 6.6 200 305 166	one MW-20I 4 400 400 13600 690 400 270 690 400 270 440 440 440 420 420 430 1400 277 <0.62 4.1 2.7 <0.64 <1.5 12.0 6.90 140 120 143	10 D Groundwa 8 <40 40 13800 190 910 260 250 <40 <27 <40 <48 <48 <0.24 <1.20 6.88 2.7 <0.62 <0.62 <0.62 <1.5 <1.5 <1.5 <1.6 144.4 12.0 6.8 163 295 144	5.4 ter and MW 12 <40 <40 <6090 190 5000 190 <40 <40 <42 <40 <40 <40 <40 <40 <40 <40 <40 <40 <40	3.6 13000 -21D Root 16 <20 <20 <30 <69 <20 <20 <40 <50 <40 <50 <40 <50 <40 <50 <60 <50 <60 <50 <60 <50 <60 <50 <60 <50 <60 <60 <60 <60 <60 <60 <60 <60 <60 <6	
Compound PCE TCE cDCE tDCE tDCE 1TCA 1DCA CA VC Methane Acetylene Ethane PCE TCE tDCE tDCE tDCA CA ACETylene Ethane PCE TCE tDCE tDCC TCC TCC CDC TCC SUCC TCA TCA TCA TCA TCA TCA TCA TCA TCA T	Unamended Con Week µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1200 trol Plume Z	one MW-20I 4 4 40 <40 13600 400 270 690 400 270 40 448 <48 <0.24 <0.30 140.4 2.2 5.2 4.1 2.7 <0.62 <0.64 <1.5 <1.6 142.5 12.0 6.9 108 120 108 120 108 120 108 120	10 D Groundwa 8 <40 400 13800 190 250 <40 250 <40 <40 <40 340 48 48 48 48 48 48 2.7 40 30 142.4 6.88 163 144.4 12.0 6.88 163 295	5.4 ter and MW 12 <40 <40 <6090 190 <500 <40 <40 <40 <40 <40 <6090 <190 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4	3.6 1300 -2-21D Roose 16 <20 <20 <5040 <20 <20 <40 <20 <13 <20 <57 <424 <0.12 <0.15 52.0 <0.21 0.70 <0.31 <0.32 <0.77 2.0 <0.67 54.0 3.55 7.1 246 355	

10-A Compound	SRS Plume Zone Week	MW-20D G 0	roundwater 4	and MW-21	D Rock 12	16	16 Soil
PCE	μg/L	<50	<40	<40	<40	<25	<5.0
TCE cDCE	μg/L μg/L	<50 15100	<40 15400	<40 14700	<40 10600	<25 6850	<5.0 580
tDCE	μg/L	<50	210	110	180	<25	<5.0
1TCA 1DCE	μg/L μg/L	1080 530	680 420	780 290	460 200	730 <25	69
1DCA	μg/L μg/L	470	280	270	200	180	<5.0 14
CA	μg/L	<50	<40	<40	<40	<25	<5.0
VC Methane	μg/L μg/L	1090 110	1570 10	890 <27	320 <27	180 75	<5.0 19
Acetylene	μg/L	<50	<40	<40	<40	<25	<5.0
Ethene	μg/L	<60 <60	<48 <48	<48 <48	<48 <48	78	<6.0 42
Ethane PCE	μg/L μM	<0.30	<0.24	<0.24	<0.24	<30 <0.15	< 0.030
TCE	μМ	<0.38	< 0.30	< 0.30	< 0.30	<0.19	<0.038
cDCE tDCE	μM μM	155.8 <0.52	158.9 2.2	151.7 1.1	109.4 1.9	70.7 <0.26	6.0 <0.052
1TCA	μМ	8.1	5.1	5.8	3.4	5.5	0.52
1DCE	μМ	5.5	4.3	3.0	2.1	<0.26	< 0.052
1DCA CA	μM μM	4.7 <0.78	2.8 <0.62	2.7 <0.62	2.2 <0.62	1.8 <0.39	0.14 <0.078
VC	μМ	17.4	25.1	14.2	5.1	2.9	<0.080
Acetylene	μМ	<1.9	<1.5	<1.5	<1.5	<0.96	<0.19
Ethene Ethane	μM μM	<2.1 <2.0	<1.7 <1.6	<1.7 <1.6	<1.7 <1.6	2.8 <1.0	<0.21 1.4
Sum CE	μМ	173.3	186.2	167.1	116.4	76.4	6.0
Sum CA pH	μМ	18.3 6.6	12.3 6.8	11.6 6.8	7.7 7.0	7.3 6.6	2.1
ORP	mV	187	-71	-318	-312	-360	
Alkalinity	mg/L CaCO3	305	255	385	495	855	
Sum CE-Gases Sum CA-Gases	μM M	173 18	186 12	167 12	116 7.7	73.6 7.3	6.0 0.7
Sulfate	μM mg/L	1200	12	12	1.1	1200	0.7
10-B	-	MW 00D 0			D.D. di		
Compound	SRS Plume Zone Week	0 NIVV-20D	roundwater 4	and MW-211	12	16	
PCE	μg/L	<50	<40	<40	<20	<25	
TCE cDCF	μg/L μg/L	<50 17000	<40 16700	<40 14200	<20 10200	<25 5420	
tDCE	μg/L	<50	230	120	94	<25	
1TCA	μg/L	1190	810	790	330	480	
1DCE 1DCA	μg/L μg/L	560 490	470 280	280 270	100 140	<25 120	
CA	μg/L	<50	<40	<40	<20	<25	
VC	μg/L	1240	1850	930	220	110	
Methane Acetylene	μg/L μg/L	110 <50	16 <40	<27 <40	<13 <20	<17 <25	
Ethene	μg/L	<60	<48	<48	<24	84	
Ethane PCE	μg/L	<60 <0.30	<48 <0.24	<48 <0.24	<24 <0.12	120 <0.15	
TCE	μM μM	<0.30	<0.24	<0.24	<0.12	<0.15	
cDCE	μМ	175.4	172.3	146.5	105.3	55.9	
tDCE 1TCA	μM μM	<0.52 8.9	2.4 6.1	1.2 5.9	1.0 2.5	<0.26 3.6	
1DCE	μМ	5.8	4.9	2.9	1.0	<0.26	
1DCA	μМ	4.9	2.8	2.7	1.4	1.2	
CA VC	μM μM	<0.78 19.8	<0.62 29.6	<0.62 14.9	<0.31 3.5	<0.39 1.8	
Acetylene	μМ	<1.9	<1.5	<1.5	< 0.77	<0.96	
Ethene Ethane	μM μM	<2.1 <2.0	<1.7 <1.6	<1.7 <1.6	<0.71 <0.67	3.0 4.0	
Sum CE	μМ	195.3	204.3	162.7	109.8	60.7	
Sum CA	μМ	19.6	13.8	11.5	4.9	8.8	
pH ORP	mV	6.7 180	6.7 -256	6.7 -333	7.0 -322	6.6 -364	
Alkalinity	mg/L CaCO3	315	345	450	550	1115	
Sum CE-Gases	μМ	195	204	163	110	57.7	
Sum CA-Gases Sulfate	μM mg/L	20 1200	14	12	4.9	4.8 460	
	-						
10-C Compound	SRS Plume Zone Week	0 MW-20D	roundwater 4	and MW-21	D Rock 12	16	
PCE	μg/L	<50	<40	<25	<50	<25	
TCE cDCE	μg/L μg/L	<50 38600	<40 12200	<25 20400	<50 12000	<25 5670	
tDCE	μg/L	<50	210	140	230	<25	
1TCA 1DCE	μg/L	1000 540	570 400	730 330	460 250	560 <25	
1DCA	μg/L μg/L	460	250	240	260	130	
CA	μg/L	<50	<40	<40	<50	<25	
VC Methane	μg/L	1070 110	1360 33	860 <17	430 <34	110 <17	
Acetylene	μg/L μg/L	<50	<40	<25	<50	<25	
Ethene	μg/L	<60	<48	<30	<60	74	
Ethane PCE	μg/L μM	<60 <0.30	<48 <0.24	<30 <0.15	<60 <0.30	<30 <0.15	
TCE	μМ	<0.38	<0.30	<0.19	<0.38	<0.19	
cDCE +DCE	μM	398.3	125.9	210.5	123.8	58.5	
tDCE 1TCA	μM μM	<0.52 7.5	2.2 4.3	1.4 5.5	2.4 3.4	<0.26 4.2	
1DCE	μМ	5.6	4.1	3.4	2.6	<0.26	
1DCA	μM uM	4.6 <0.78	2.5 <0.62	2.4	2.6	1.3	
CA VC	μM μM	<0.78 17.1	<0.62 21.8	<0.39 13.8	<0.78 6.9	<0.39 1.8	
Acetylene	μМ	<1.9	<1.5	< 0.96	<1.9	< 0.96	
Ethene Ethane	μM μM	<2.1 <2.0	<1.7 <1.6	<1.1 <1.0	<2.1 <2.0	2.6 <1.0	
Sum CE	μМ	415.5	149.8	225.7	133.1	62.9	
Sum CA	μМ	17.7	10.9	11.3	8.7	5.5	
pH ORP	mV	6.6 176	6.7 -283	6.6 -333	7.0 -345	6.7 -298	
Alkalinity	mg/L CaCO3	310	315	440	570	885	
Sum CE-Gases Sum CA-Gases	μM μM	415 18	150 11	226 11	133 8.7	60.3 5.5	
Sulfate	μινι mg/L	1200	11	11	0.7	730	

11-A	SRS + Bioaugme	entation Plun	ne Zone MW	/-20D Groun	dwater and	MW-21D Ro	ck
Compound	Week	0	2	4	8	12	16
PCE TCE	μg/L μg/L	<50 <50	<50 480	<100 <100	<40 <40	<40 <40	<25 <25
cDCE	μg/L	17100	54600	14900	17800	10000	6680
tDCE	μg/L	<50	490	<100	110	180	<25
1TCA 1DCE	μg/L	1150 610	2500 880	650 820	770 390	430 210	320 <25
1DCA	μg/L μg/L	490	430	450	290	230	140
CA	μg/L	<50	<50	<50	<40	<40	<25
VC	μg/L	1370	2260	1500	1050	450	230
Methane Acetylene	μg/L μg/L	110 <50	<33 <50	23 <100	<27 <40	<27 <40	<17 <25
Ethene	μg/L	<60	<60	<120	<48	<48	88
Ethane	μg/L	<60	<60	<120	<48	<48	120
PCE TCE	μM μM	<0.30	< 0.30	<0.60 <0.76	<0.24 <0.30	< 0.24	<0.15 <0.19
cDCE	μМ	176.5	563.5	153.8	183.7	103.2	68.9
tDCE	μM	< 0.52	5.1	<1.0	1.1	1.9	<0.26
1TCA 1DCE	μM μM	8.6 6.3	18.7 9.1	4.9 8.5	5.8 4.0	3.2 2.2	2.4 <0.26
1DCA	μМ	4.9	4.3	4.5	2.9	2.3	1.4
CA	μМ	<0.78	<0.78	<1.6	< 0.62	< 0.62	< 0.39
VC Acetylene	μM μM	21.9 <1.9	36.2 <1.9	24.0 <3.8	16.8 <1.5	7.2 <1.5	3.7 <0.96
Ethene	μМ	<2.1	<2.1	<4.2	<1.7	<1.7	3.1
Ethane	μМ	<2.0	<2.0	<4.0	<1.6	<1.6	4.0
Sum CE Sum CA	μM μM	198.4 19.9	608.3 32.2	177.8 17.9	201.6 12.7	112.3 7.7	75.8 7.8
pH	μіνі	6.6	6.7	6.5	6.4	6.8	6.5
ORP	mV	172	-420	-327	-381	-376	-372
Alkalinity	mg/L CaCO3	310	325	405	815	985	1180
Sum CE-Gases Sum CA-Gases	μM μM	198 20	608 32	178 18	202 13	112.3 7.7	72.6 3.8
Sulfate	mg/L	1200	O.E.	10			430
11-B	SRS + Bioaugme	entation Plun	ne Zone MW	/-20D Groun	dwater and	MW-21D Ro	ck
Compound	Week	0	2	4	8	12	16
PCE	μg/L 	<50	<50 -50	<50	<40 <40	<40 <40	<25
TCE cDCE	μg/L μg/L	<50 16400	<50 14400	<50 13000	<40 15800	<40 8480	<25 5050
tDCE	μg/L	<50	360	240	91	180	<25
1TCA	μg/L	1070	1260	500	720	380	220
1DCE 1DCA	μg/L μg/L	580 480	420 260	480 290	360 270	210 220	<25 110
CA	μg/L	<50	<50	<50	<40	<40	<25
VC	μg/L	1290	800	1430	1000	500	190
Methane Acetylene	μg/L	100 <50	<33 <50	38 <50	<27 <40	<27 <40	<17 <25
Ethene	μg/L μg/L	<60	<60	<60	<40 <48	<40 <48	62
Ethane	μg/L	<60	<60	<60	<48	<48	<30
PCE	μМ	< 0.30	< 0.30	< 0.30	<0.24	<0.24	<0.15
TCE cDCE	μM μM	<0.38 169.2	<0.38 148.6	<0.38 134.2	<0.30 163.1	<0.30 87.5	<0.19 52.1
tDCE	μМ	<0.52	3.7	2.5	0.94	1.86	<0.26
1TCA	μМ	8.0	9.4	3.7	5.4	2.8	1.6
1DCE 1DCA	μM μM	6.0 4.8	4.3 2.6	5.0 2.9	3.7 2.7	2.2 2.2	<0.26 1.1
CA	μМ	<0.78	<0.78	< 0.78	< 0.62	< 0.62	<0.39
VC	μМ	20.6	12.8	22.9	16.0	8.0	3.0
Acetylene Ethene	μM μM	<1.9 <2.1	<1.9 <2.1	<1.9 <2.1	<1.5 <1.7	<1.5 <1.7	<0.96 2.2
Ethane	μМ	<2.0	<2.0	<2.0	<1.6	<1.6	<1.0
Sum CE	μМ	189.9	165.1	159.5	180.0	97.4	57.4
Sum CA	μМ	18.9 6.7	16.4 6.7	11.6 6.6	11.8 6.5	7.2 6.7	2.8 6.4
pH ORP	mV	164	-180	-334	-382	-366	-362
Alkalinity	mg/L CaCO3	310	310	405	640	875	1040
Sum CE-Gases	μМ	190	165	160	180	97.4	55.2
Sum CA-Gases Sulfate	μM mg/L	19 1200	16	12	12	7.2	2.8 1400
	-						
11-C Compound	SRS + Bioaugme Week	entation Plun 0	ne ∠one MW 2	r-20D Groun 4	dwater and 8	MW-21D Ro 12	ck 16
PCE	μg/L	<50	<50	<50	<50	<40	<25
TCE cDCE	μg/L μg/L	<50 15900	<50 13500	<50 22500	<50 14200	<40 8000	<25 3870
tDCE	μg/L μg/L	<50	370	22500	14200	190	<25
1TCA	μg/L	1000	1160	680	670	350	150
1DCE 1DCA	μg/L	720 480	420 270	510 320	340 300	210 220	<25 94
CA	μg/L μg/L	<50	<50	<50	<50	<40	<25
VC	μg/L	1230	820	2010	1150	440	160
Methane	μg/L	110	<33	<33	<33	<27 <40	<17 <25
Acetylene Ethene	μg/L μg/L	<50 <60	<50 <60	<50 <60	<50 <60	<40 <48	<25 70
Ethane	μg/L	<60	<60	<60	<60	<48	99
PCE	μМ	< 0.30	<0.30	<0.30	< 0.30	<0.24	<0.15
TCE cDCE	μM μM	<0.38 164.1	<0.38 139.3	<0.38 232.2	<0.38 146.5	<0.30 82.6	<0.19 39.9
tDCE	μМ	< 0.52	3.8	3.0	1.4	2.0	<0.26
1TCA	μМ	7.5	8.7	5.1	5.0	2.6	1.1
1DCE 1DCA	μM μM	7.4 4.8	4.3 2.7	5.3 3.2	3.5 3.0	2.2 2.2	<0.26 0.95
CA	µМ µМ	<0.78	<0.78	<0.78	<0.78	<0.62	< 0.39
VC	μМ	19.7	13.1	32.2	18.4	7.0	2.6
Acetylene	μМ	<1.9	<1.9	<1.9	<1.9	<1.5	<0.96
Ethene Ethane	μM μM	<2.1 <2.0	<2.1 <2.0	<2.1 <2.0	<2.1 <2.0	<1.7 <1.6	2.5 3.3
Sum CE	μМ	183.8	156.3	267.4	166.4	91.6	45.0
Sum CA	μM	19.8	15.8	13.6	11.6	7.0	5.4
pH ORP	mV	6.6 166	6.7 -178	6.6 -357	6.4 -298	6.7 -367	6.5 -370
Alkalinity	my mg/L CaCO3	315	315	-357 410	-298 755	-367 890	1170
Sum CÉ-Gases	μМ	184	156	267	166	91.6	42.5
Sum CA-Gases Sulfate	μM mg/L	20 1200	15.8	13.6	11.6	7.0	2.1 840
Janato	g/ =	.200					340

16 Soil 13 20 1230 <5.0 1230 <5.0 1300 <5.0 5.2 <3.3 35.0 <6.0 38 8 0.078 0.15 12.7 <0.052 0.28 <0.083 <0.19 <0.21 1.3 13.0 <2.5 13.0 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.2

13.0 1.3

12.4	Nanagasia F7\/I	Diuma Zana	MW 20D C		and MAA/ 241	D. Dools
12-A Compound	Nanoscale EZVI Week	0	MW-20D G 4	roundwater a 8	12	16
PCE	μg/L	<50	<40	<20	<25	<10
TCE cDCE	μg/L μg/L	<50 11400	<40 6130	<20 10500	<25 5970	<10 7160
tDCE	μg/L μg/L	<50	180	59	110	<10
1TCA	μg/L	800	<40	<20	<25	<10
1DCE	μg/L	540	<40	100	120	<10
1DCA CA	μg/L μg/L	440 <50	240 <40	240 <20	170 <25	120 <10
VC	μg/L	1100	800	860	360	1140
Methane	μg/L	110	<27	<13	<17	34
Acetylene Ethene	μg/L μg/L	<50 890	<40 <48	<20 55	<25 89	<10 96
Ethane	μg/L	<60	<48	<24	<30	90
PCE	μМ	< 0.30	< 0.24	< 0.12	< 0.15	<0.060
TCE	μМ	<0.38	< 0.30	<0.15	<0.19	<0.076
cDCE tDCE	μM μM	117.6 <0.52	63.3 1.9	108.4 0.61	61.6 1.1	73.9 <0.10
1TCA	μМ	6.0	<0.30	<0.15	<0.19	<0.075
1DCE	μМ	5.6	< 0.41	1.0	1.2	<0.10
1DCA CA	μМ	4.4 <0.78	2.4 <0.62	2.4 <0.31	1.7 <0.39	1.2 <0.16
VC	μM μM	<0.78 17.6	12.8	13.8	<0.39 5.8	<0.16 18.2
Acetylene	μМ	<1.9	<1.5	<0.77	<0.96	<0.38
Ethene	μМ	31.8	<1.7	2.0	3.2	3.4
Ethane	μМ	<2.0	<1.6	<0.83	<1.0	3.0
Sum CE Sum CA	μM μM	167.0 16.0	77.9 2.4	124.7 3.5	71.7 3.0	95.6 4.2
pH	μш	6.7	6.9	6.9	7.0	6.5
ORP	mV	-20	-259	-245	-295	-123
Alkalinity Sum CE-Gases	mg/L CaCO3	290	220 78	215	195	195
Sum CE-Gases Sum CA-Gases	μM μM	135 16	78 2.4	123 3.5	69 3.0	92.1 1.2
Sulfate	mg/L	1200	2.7	3.3	5.0	1000
12-B	-	DI 7	MW 00D 0			D. D d.
Compound	Nanoscale EZVI Week	0 Plume Zone	MW-20D G	roundwater a 8	and MVV-211	16
PCE	μg/L	<50	<40	<10	<20	<10
TCE cDCE	μg/L	<50 16100	<40 4910	35 7060	<20 4180	<10 2370
tDCE	μg/L μg/L	<50	190	46	92	<10
1TCA	μg/L	1020	<40	<10	<20	<10
1DCE	μg/L	540	<40	62	160	<10
1DCA CA	μg/L	460 <50	230 <40	110 <10	110 <20	72 <10
VC	μg/L μg/L	1300	560	370	240	140
Methane	μg/L	110	<27	<6.7	<13	<6.7
Acetylene	μg/L	<50	<40	<10	<20	<10
Ethene Ethane	μg/L μg/L	340 <60	<48 <48	22 <12	48 <24	71 100
PCE	μg/L μM	<0.30	<0.24	< 0.060	<0.12	<0.060
TCE	μМ	< 0.38	< 0.30	0.27	<0.15	< 0.076
cDCE	μМ	166.2	50.7	72.9	43.1	24.5
tDCE 1TCA	μM μM	<0.52 7.6	2.0 <0.30	0.47 <0.075	0.95 <0.15	<0.10 <0.075
1DCE	μМ	5.6	<0.41	0.64	1.7	<0.10
1DCA	μМ	4.6	2.3	1.1	1.1	0.73
CA VC	μM μM	<0.78 20.8	<0.62 9.0	<0.16 5.9	<0.31 3.8	<0.16
Acetylene	μМ	<1.9	<1.5	<0.38	<0.77	<0.38
Ethene	μМ	12.1	<1.7	0.79	1.7	2.5
Ethane	μМ	<2.0	<1.6	< 0.40	<0.67	3.3
Sum CE Sum CA	μM M	199.1 17.9	61.6 2.3	80.3 1.8	49.6 2.8	29.2 4.1
pH	μМ	6.6	6.9	6.9	6.9	7.1
ORP	mV	16	-256	-242	-297	-183
Alkalinity	mg/L CaCO3	295	180	200	185	195
Sum CE-Gases Sum CA-Gases	μM μM	187 18	62 2.3	80 1.8	48 2.8	26.7 0.7
Sulfate	mg/L	1200	2.3	1.0	2.0	800
	-					
12-C Compound	Nanoscale EZVI Week	Plume Zone 0	MW-20D G 4	roundwater a 8	and MW-211	D Rock 16
PCE	μg/L	<50	<40	<20	<20	<2.5
TCE	μg/L	<50	<40	<20	<20	<2.5
cDCE tDCE	μg/L μg/L	10100 <50	8180 200	9090 53	3020 89	1930 <2.5
1TCA	μg/L	950	<40	<20	<20	<2.5
1DCE	μg/L	450	320	85	91	<2.5
1DCA	μg/L	430 <50	290 <40	260	120	88 <2.5
CA VC	μg/L μg/L	820	1080	<20 810	<20 230	220
Methane	μg/L	110	<27	<13	<13	18
Acetylene	μg/L	<50	<40	<20	<20	trace
Ethene Ethane	μg/L μg/L	430 <60	<48 <48	93 <24	71 <24	72 64
PCE	μM	<0.30	<0.24	<0.12	<0.12	<0.015
TCE	μМ	<0.38	< 0.30	< 0.15	<0.15	<0.019
cDCE	μM M	104.2	84.4	93.8	31.2	19.9
tDCE 1TCA	μM μM	<0.52 7.1	2.1 <0.30	0.55 <0.15	0.92 <0.15	<0.026 <0.019
1DCE	μМ	4.6	3.3	0.88	0.94	<0.026
1DCA	μМ	4.3	2.9	2.6	1.2	0.89
CA	μM M	<0.78 13.1	< 0.62	< 0.31	< 0.31	< 0.039
VC Acetylene	μM μM	13.1 <1.9	17.3 <1.5	13.0 <0.77	3.7 <0.77	3.5 <0.096
Ethene	μМ	15.4	<1.7	3.3	2.5	2.6
Ethane	μМ	<2.0	<1.6	< 0.83	<0.67	2.1
Sum CE Sum CA	μM μM	132.7 16.1	103.8 6.2	110.6	38.3 2.2	26.0 3.0
pH CA	μινι	6.7	6.8	3.5 6.8	6.8	7.2
ORP	mV	-1	-274	-247	-293	-165
Alkalinity	mg/L CaCO3	290	190	195	195	160
Sum CE-Gases		447	104	107	20	22.4
Sum CA-Gases	μМ	117 16	104 6.2	107 3.5	36 2.2	23.4
Sum CA-Gases Sulfate		117 16 1200	104 6.2	107 3.5	36 2.2	23.4 0.9 860

13-A	Microscale EZVI	Plume Zone	MW-20D G	roundwater	and MW-21	D Rock
Compound	Week	0	4	8	12	16
PCE TCE	μg/L μg/L	<50 <50	<40 <40	<20 <20	<10 <10	<20 <20
cDCE	μg/L	11600	8290	4850	5490	2770
tDCE	μg/L	<50	190	37	46	<20
1TCA 1DCE	μg/L μg/L	970 480	210 330	130 62	31 50	130 <20
1DCA	μg/L	440	240	170	110	79
CA VC	μg/L μg/L	<50 1090	<40 1000	<20 400	<10 220	<20 120
Methane	μg/L	100	<27	<13	44	<13
Acetylene	μg/L	<50	<40 <48	<20 42	<10 47	<20
Ethene Ethane	μg/L μg/L	320 <60	<48 <48	42 <24	47 <12	91 74
PCE	μМ	< 0.30	<0.24	< 0.12	< 0.060	<0.12
TCE cDCF	μM μM	<0.38 119.7	<0.30 85.6	<0.15 50.1	<0.076 56.7	<0.15 28.6
tDCE	μМ	<0.52	2.0	0.38	0.47	<0.21
1TCA	μМ	7.3	1.6	1.0	0.23	1.0
1DCE 1DCA	μM μM	5.0 4.4	3.4 2.4	0.64	0.52 1.1	<0.21
CA	μМ	<0.78	< 0.62	<0.31	<0.16	<0.31
VC Applylana	μM M	17.4 <1.9	16.0 <1.5	6.4 <0.77	3.5 <0.38	1.9 <0.77
Acetylene Ethene	μM μM	11.4	<1.5 <1.7	<0.77 1.5	<0.38 1.7	3.3
Ethane	μM	<2.0	<1.6	<0.83	<0.33	<0.83
Sum CE Sum CA	μМ	148.6 16.7	103.5 7.4	58.3 3.3	62.3 1.9	33.8 1.8
pH	μМ	6.7	6.9	6.9	7.1	7.1
ORP	mV	9	-212	-239	-284	-136
Alkalinity Sum CE-Gases	mg/L CaCO3	300 137	250 104	330 57	325 61	335 30.5
Sum CE-Gases Sum CA-Gases	μM μM	137	7.4	3.3	1.9	30.5 1.8
Sulfate	mg/L	1200				1400
13-B	Microscale EZVI	Plume Zone	WW-20D G	roundwater	and MM/-21	D Rock
Compound	Week	0	4	8	12	16
PCE	μg/L	<50	<40	<20	<20	<2.5
TCE cDCE	μg/L μg/L	<50 10800	<40 8210	<20 9540	<20 4330	<2.5 2320
tDCE	μg/L	<50	190	47	90	<2.5
1TCA	μg/L	910	200	110	58	<2.5
1DCE 1DCA	μg/L μg/L	480 440	330 240	87 170	93 130	<2.5 84
CA	μg/L	<50	<40	<20	<20	<2.5
VC	μg/L	990	1010	610	260	170
Methane Acetylene	μg/L μg/L	110 <50	<27 <40	<13 <20	78 <20	49 trace
Ethene	μg/L	310	<48	48	61	70
Ethane	μg/L	<60	<48	<24	98	50
PCE TCE	μM μM	<0.30 <0.38	<0.24 <0.30	<0.12 <0.15	<0.12 <0.15	<0.015 <0.019
cDCE	μМ	111.5	84.7	98.5	44.7	23.9
tDCE	μM	< 0.52	2.0	0.49	0.93	<0.026
1TCA 1DCE	μM μM	6.8 5.0	1.5 3.4	0.82	0.43 0.96	<0.019 <0.026
1DCA	μМ	4.4	2.4	1.7	1.3	0.85
CA	μМ	<0.78	< 0.62	< 0.31	<0.31	< 0.039
VC Acetylene	μM μM	15.8 <1.9	16.2 <1.5	9.8 <0.77	4.2 <0.77	2.7 <0.096
Ethene	μМ	11.1	<1.7	1.7	2.2	2.5
Ethane	μМ	<2.0	<1.6	<0.83	3.3	1.7
Sum CE Sum CA	μM μM	138.4 16.2	102.8 7.3	110.4 3.4	52.0 6.0	29.2 2.5
pH		6.7	6.8	6.9	7.2	7.1
ORP	mV	33	-222 240	-240 335	-266 345	-126
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	305 127	103	109	345 50	340 26.7
Sum CA-Gases	μМ	16	7.3	3.4	2.7	0.8
Sulfate	mg/L	1200				1700
13-C	Microscale EZVI	Plume Zone	MW-20D G	roundwater	and MW-21	D Rock
Compound	Week	0	4	8	12	16 <10
PCE TCE	μg/L μg/L	<50 <50	<40 <40	<20 <20	<10 <10	<10
cDCE	μg/L	13500	8160	6640	4640	1680
tDCE	μg/L	<50	190	40	46	<10
1TCA 1DCE	μg/L μg/L	990 510	180 330	78 72	<10 50	<10 <10
1DCA	μg/L	470	250	210	120	79
CA	μg/L	<50	<40	<20	<10	<10
VC Methane	μg/L μg/L	1180 100	1190 <27	500 <13	260 54	150 39
Acetylene	μg/L	<50	<40	<20	<10	<10
Ethene Ethane	μg/L μg/L	<60 <60	<48 <48	43 <24	81 56	100 73
PCE	μg/L μM	<0.30	<0.24	<0.12	< 0.060	<0.060
TCE	μМ	<0.38	< 0.30	<0.15	< 0.076	< 0.076
cDCE tDCE	μM μM	139.3 <0.52	84.2 2.0	68.5 0.41	47.9 0.47	17.3 <0.10
1TCA	μМ	<0.52 7.4	1.3	0.41	< 0.075	<0.10
1DCE	μМ	5.3	3.4	0.74	0.52	<0.10
1DCA CA	μM μM	4.7 <0.78	2.5 <0.62	2.1 <0.31	1.2 <0.16	0.80 <0.16
VC	μМ μM	<0.78 18.9	19.0	<0.31 8.0	<0.16 4.2	<0.16 2.4
Acetylene	μМ	<1.9	<1.5	<0.77	<0.38	<0.38
Ethene Ethane	μM μM	<2.0 <2.0	<1.7 <1.6	1.5 <0.83	2.9 1.9	3.6 2.4
Sum CE	µМ µМ	158.2	105.2	<0.83 78.5	55.4	23.3
Sum CA	μМ	17.4	7.3	3.4	3.6	3.2
pH ORP	mV	6.7 7	6.8 -209	7.0 -237	7.1 -258	7.1 -56
Alkalinity	my mg/L CaCO3	295	260	325	-258 335	315
Sum CE-Gases	μМ	158	105	77	53	19.7
Sum CA-Gases Sulfate	μM mg/L	17 1200	7.3	3.4	1.7	0.8 1000
		00				. 200

1.7 0.000

14-A	EHC Plume Zone	MW-20D G	iroundwater	and MW-21	D Rock	
Compound	Week	0	2	4	8	12
PCE TCE	μg/L μg/L	<50 <50	<50 <50	<40 <40	<25 <25	<50 <50
cDCE	μg/L	11800	10200 360	12300	22800 90	11400
tDCE 1TCA	μg/L μg/L	<50 880	360	190 140	<25	220 <50
1DCE	μg/L	510 460	380	340 320	190 340	230 280
1DCA CA	μg/L μg/L	460 <50	260 <50	<40	340 <25	<50
VC	μg/L	1000	610	910	820	420
Methane Acetylene	μg/L μg/L	110 <50	<33 <50	<27 <40	<17 <25	<33 <50
Ethene	μg/L	310	<60	<48 <48	50	<60
Ethane PCE	μg/L μM	<60 <0.30	<60 <0.30	<0.24	<30 <0.15	<60 <0.30
TCE cDCE	μМ	<0.38	<0.38	< 0.30	<0.19 235.3	<0.38 117.6
tDCE	μM μM	121.8 <0.52	105.3 3.7	126.9 2.0	0.93	2.3
1TCA	μМ	6.6	2.7	1.0	<0.19	<0.38
1DCE 1DCA	μM μM	5.3 4.6	3.9 2.6	3.5 3.2	2.0 3.4	2.4 2.8
CA	μМ	<0.78	<0.78	< 0.62	< 0.39	<0.78
VC Acetylene	μM μM	16.0 <1.9	9.8 <1.9	14.6 <1.5	13.1 <0.96	6.7 <1.9
Ethene	μМ	11.1	<2.1	<1.7	1.8	<2.1
Ethane Sum CE	μM μM	<2.0 148.8	<2.0 118.7	<1.6 143.5	<1.6 251.1	<2.0 126.6
Sum CA	μМ	16.5	9.2	7.8	5.4	5.2
pH ORP	mV	6.8 45	5.8 -180	6.9 -200	6.6 -216	7.0 -228
Alkalinity	mg/L CaCO3	300	630	945	1100	1105
Sum CE-Gases Sum CA-Gases	μM μM	138 17	119 9.2	143 7.8	249 5.4	126.6 5.2
Sulfate	mg/L	1200	9.2	7.0	5.4	5.2
14-B	EHC Plume Zone	e MW-20D G	iroundwater	and MW-21	D Rock	
Compound	Week	0	4	8 <40	12	16
PCE TCF	μg/L μg/L	<50 <50	<40 <40	<40 <40	<40 <40	<40 <40
cDCE	μg/L	15200	13800	15600	14000	15400
tDCE 1TCA	μg/L μg/L	<50 860	190 170	90 <40	180 <40	<40 <40
1DCE	μg/L	540	360	180	190	<40
1DCA CA	μg/L	470 <50	310 <40	340 <40	260 <40	390 <40
VC	μg/L μg/L	1170	990	830	410	580
Methane	μg/L	100	<27	<27	<27	<27
Acetylene Ethene	μg/L μg/L	<50 <60	<40 <48	<40 <48	trace 82	trace 490
Ethane	μg/L	<60	<48	<48	<48	450
PCE TCE	μM μM	<0.30 <0.38	<0.24 <0.30	<0.24	<0.24 <0.30	<0.24
cDCE	μM	156.9	142.4	161.0	144.5	158.9
tDCE 1TCA	μM μM	<0.52 6.4	2.0 1.3	0.93 <0.30	1.9 <0.30	<0.41 <0.30
1DCE	μM	5.6	3.7	1.9	2.0	<0.41
1DCA CA	μM μM	4.7 <0.78	3.1 <0.62	3.4 <0.62	2.6 <0.62	3.9 <0.62
VC	μМ μМ	18.7	15.8	13.3	6.6	9.3
Acetylene	μМ	<1.9	<1.5	<1.5	<1.5	<1.5
Ethene Ethane	μM μM	<2.0 <2.0	<1.7 <1.6	<1.7 <1.6	2.9 <1.6	17.5 15.0
Sum CE	μM	175.6	160.2	175.2	155.8	185.7
Sum CA pH	μМ	16.8 6.8	8.1 6.6	5.3 6.5	4.6 6.7	18.9 6.9
ORP	mV	52	-164	-230	-221	-19
Alkalinity Sum CE-Gases	mg/L CaCO3 μΜ	300 176	945 160	1115 175	1325 153	1320 168.2
Sum CA-Gases	μМ	17	8.1	5.3	4.6	3.9
Sulfate	mg/L	1200				330
14-C	EHC Plume Zone					
Compound PCE	Week μg/L	0 <50	4 <40	8 <40	12 <40	16 <20
TCE	μg/L	<50	<40	<40	<40	<20
cDCE tDCE	μg/L μg/L	13800 <50	18300 200	15500 740	8870 180	5920 <20
1TCA	μg/L	810	350	>40	>40	<20
1DCE 1DCA	μg/L μg/L	530 460	400 280	150 330	190 240	<20 130
CA	μg/L	<50	<40	<40	<40	<20
VC Methane	μg/L μg/L	1040 110	1150 <27	680 <27	350 <27	180 <13
Acetylene	μg/L	<50	<40	<40	trace	trace
Ethene Ethane	μg/L μg/L	310 <60	<48 <48	<48 <48	73 <48	91 110
PCE	μM	<0.30	< 0.24	< 0.24	< 0.24	<0.12
TCE cDCE	μM μM	<0.38 142.4	<0.30 188.9	<0.30 160.0	<0.30 91.5	<0.15 61.1
tDCE	µМ µМ	< 0.52	2.1	7.6	1.9	<0.21
1TCA	μМ	6.1	2.6	<0.30	<0.30	<0.15
1DCE 1DCA	μM μM	5.5 4.6	4.1 2.8	1.5 3.3	2.0 2.4	<0.21 1.3
CA	μМ	<0.78	< 0.62	< 0.62	< 0.62	< 0.31
VC Acetylene	μM μM	16.6 <1.9	18.4 <1.5	10.9 <1.5	5.6 <1.5	2.9 <0.77
Ethene	μМ	11.1	<1.7	<1.7	2.6	3.3
Ethane Sum CE	μM μM	<2.0 170.1	<1.6 209.3	<1.6 178.5	<1.6 101.6	3.7 67.2
Sum CA	μМ	16.2	9.6	4.9	4.4	5.0
pH ORP	mV	6.8 30	6.3 -144	6.6 -219	6.7 -203	6.9 -8
Alkalinity	mg/L CaCO3	300	875	1055	1260	1290
Sum CE-Gases Sum CA-Gases	μM μM	159 16	209 10	178 4.9	99 4.4	64.0 1.3
Sulfate	μινι mg/L	1200	10	4.9	4.4	540

16 <255 <5650 <255 <255 <225 <225 <225 <225 <220 <120 <120 <120 <0.15 <0.19 <0.26 <0.19 <0.26 <0.19 <0.26 <0.19 <0.26 <0.19 <0.26 <0.35 <0.96 <0.26 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0.96 <0

12.7 0.06

16A	1.8 g Microscal								
Compound PCE	Week	0	2 <50	4 <40	6 <25	8 <25	12 <25	16 <10	
TCE	μg/L μg/L	<100 <100	<50 <50	<40 <40	<25 <25	<25 <25	<25 <25	<10	
cDCE	μg/L	63700	13500	11100	12200	11000	3990	3510	
tDCE	μg/L	920	370	190	65	50	<25	<10	
1TCA 1DCF	μg/L	2740	620	350 340	190	89	<25	<10	
1DCE 1DCA	μg/L μg/L	1350 1020	470 270	340 290	160 200	81 260	110 160	<10 150	
CA	μg/L	<100	<200	<40	<25	<25	<25	<10	
VC	μg/L	3880	390	1110	580	400	180	96	
Methane	μg/L	210	<130	14	<17	<17	<17	<6.6	
Acetylene Ethene	μg/L μg/L	<100 590	<50 <60	<40 <48	<25 38	<25 <30	<25 <30	trace 60	
Ethane	μM	<120	<60	<48	<30	<30	<30	44	
PCE	μМ	< 0.60	< 0.30	< 0.24	< 0.15	< 0.15	< 0.15	< 0.060	
TCE	μМ	<0.76	<0.38	<0.30	<0.19	<0.19	<0.19	<0.076	
cDCE tDCE	μM μM	657.4 9.5	139.3 3.8	114.6 2.0	125.9 0.67	113.5 0.52	41.2 <0.26	36.2 <0.10	
1TCA	μМ	20.5	4.6	2.6	1.4	0.67	<0.19	< 0.075	
1DCE	μМ	13.9	4.9	3.5	1.7	0.84	1.1	<0.10	
1DCA	μМ	10.3	2.7	2.9	2.0	2.6	1.6	1.5	
CA VC	μM μM	<1.6 62.1	<0.78 6.2	<0.62 17.8	<0.39 9.3	<0.39 6.4	<0.39 2.9	<0.16 1.5	
Acetylene	μМ	<3.8	<1.9	<1.9	< 0.96	< 0.96	< 0.96	<0.38	
Ethene	μМ	21.1	<2.1	<2.1	1.4	<1.1	<1.1	2.1	
Ethane	μМ	<4.0	<2.0	<2.0	<1.0	<1.0	<1.0	1.5	
Sum CE	μМ	750.0	149.4	134.3	137.2	120.4	44.1	39.9	
Sum CA pH	mV	44.8 6.8	12.2 6.8	9.1 6.8	5.1 6.8	4.1 6.8	2.8 7.0	3.0 7.1	
ORP	mg/L CaCO3	18	-69	-104	-78	-182	-184	-114	
Alkalinity	μМ	305	305	255	325	355	405	385	
Sum CE w/o Gases	μМ	729.0	149.4	134.3	135.9	120.4	44.1	37.8	
Sum CA w/o Gases		44.8	12.2	9.1	5.1	4.1	2.8	1.5	
16B	8.8 g Microscal	e FZVI Pluma	Zone MW-1	OD Ground	water and M	W-21D Rool	(
Compound	Week	0	2	4	6	8	12	16	
PCE	μg/L	<100	<50	<40	<20	<25	<25	<10	
TCE	μg/L	<100	<50	<40	<20	<25	<25	<10	
cDCE tDCE	μg/L μg/L	20100 870	12000 370	8470 190	10300 <20	7220 52	3760 <25	2250 <10	
1TCA	μg/L	1790	390	180	37	<25	<25	<10	
1DCE	μg/L	920	450	320	120	75	110	<10	
1DCA	μg/L	870	250	270	230	240	180	110	
CA VC	μg/L	<100	<50 930	<40	<20 490	<25	<25	<10 100	
Methane	μg/L μg/L	1680 210	930 43	1010 <27	490 <13	500 <17	190 <17	39	
Acetylene	μg/L	<100	<50	<40	<20	<25	trace	trace	
Ethene	μg/L	580	<60	<48	51	53	76	120	
Ethane	μМ	<120	<120	<48	53	<30	trace	75	
PCE TCE	μM μM	<0.60 <0.76	<0.60 <0.76	<0.24 <0.30	<0.12 <0.15	<0.15 <0.19	<0.15 <0.19	<0.060 <0.076	
cDCE	μМ	207.4	123.8	87.4	106.3	74.5	38.8	23.2	
tDCE	μМ	9.0	3.8	2.0	<0.21	0.54	< 0.26	< 0.10	
1TCA	μМ	13.4	2.9	1.3	0.28	<0.19	<0.19	< 0.075	
1DCE	μM	9.5	4.6	3.3	1.2	0.77	1.1	<0.10	
1DCA CA	μM μM	8.8 <1.6	2.5 <0.78	2.7 <0.62	2.3 <0.31	2.4 <0.39	1.8 <0.39	1.1 <0.16	
VC	μМ	26.9	14.9	16.2	7.8	8.0	3.0	1.6	
Acetylene	μМ	<3.8	<1.9	<1.9	< 0.96	< 0.96	< 0.96	<0.38	
Ethene	μМ	20.7	<2.1	<2.1	1.8	1.9	2.7	4.3	
Ethane Sum CE	μM μM	<4.0 264.0	<2.0 142.5	<2.0 105.5	1.8 116.0	<1.0 84.9	<1.0 44.6	2.5 29.1	
Sum CA	μινι	31.7	10.1	7.4	5.6	3.2	3.0	3.6	
pH	mV	6.7	6.8	6.8	6.8	6.8	6.9	6.9	
ORP	mg/L CaCO3	-30	-77	-66	-122	-182	-174	-107	
Alkalinity Sum CE w/o Gases	μМ	285	285	140	285	270	280	215	
Sum CA w/o Gases	μМ	243.3 31.7	142.5 10.1	105.5 7.4	114.1 3.8	83.0 3.2	41.8 3.0	24.8 1.1	
								1.1	
16C	35.2 g Microsca								
Compound	Week	-100	2	-40	-10	-10	12		6 Soil
PCE TCE	μg/L μg/L	<100 <100	<50 <50	<40 <40	<10 <10	<10 <10	<4.0 <4.0	<2.0 <2.0	18 32
cDCE	μg/L	12200	6690	3710	4030	3280	1830	470	250
tDCE	μg/L	<100	<50	180	<10	19	18	<2.0	<2.0
1TCA	μg/L	1140	190	100	<10	<10	<4.0	<2.0	<2.0
1DCE 1DCA	μg/L μg/L	<100 800	<50 190	200 180	<10 66	27 82	19 43	<2.0 23	<2.0 <2.0
CA	μg/L	<100	<50	<40	<10	<10	<4.0	<2.0	<2.0
VC	μg/L	1090	580	420	220	220	73	17	<2.0
Methane	μg/L	210	44	<27	14	<6.7	54	8.9	14
Acetylene Ethene	μg/L	<100 580	<50 <60	<40 <48	<10 53	<10 60	<4.0 65	<2.0 27	5.3 11
Ethane	μg/L μM	<120	<120	<48	45	39	46	22	22
PCE	μМ	<0.60	< 0.60	<0.24	<0.060	<0.060	< 0.024	< 0.012	0.11
TCE	μМ	< 0.76	<0.76	< 0.30	< 0.076	< 0.076	< 0.030	< 0.015	0.24
cDCE	μМ	125.9	69.0	38.3	41.6	33.8	18.9	4.9	2.6
tDCE 1TCA	μM μM	<1.0 8.5	<0.51 1.4	1.9 0.75	<0.10 <0.075	0.20 <0.075	0.19 <0.030	<0.021 <0.015	<0.021 <0.015
1DCE	µМ µМ	8.5 <1.0	< 0.51	2.1	<0.075	0.075	0.20	<0.015	<0.015
1DCA	μМ	8.1	1.9	1.8	0.67	0.83	0.43	0.23	<0.020
CA	μМ	<1.6	<0.78	< 0.62	< 0.16	< 0.16	< 0.062	< 0.031	< 0.031
VC	μМ	17.4	9.3	6.7	3.5	3.5	1.2	0.27	< 0.033
Acetylene Ethene	μM μM	<3.8 20.7	<1.9 <2.1	<1.9 <2.1	<0.38 1.9	<0.38 2.1	<0.15 2.3	<0.077 1.0	<0.077
Ethane	μМ	<4.0	<2.1	<2.1	1.5	1.3	1.5	0.73	0.39
Sum CE	μМ	164.1	78.3	46.9	47.0	39.7	22.6	6.1	3.3
Sum CA		16.6	3.3	4.6	2.2	2.4	2.2	1.0	0.7
pH OPP	mV CaCO3	6.7 -99	6.7	6.7	6.7	6.7	6.5 -169	6.4	
ORP Alkalinity	mg/L CaCO3 μΜ	-99 280	-138 270	-117 195	-116 285	-116 285	-169 145	-63 120	
Sum CE w/o Gases	μМ	143.3	78.3	46.9	45.1	37.6	20.2	5.1	
Sum CA w/o Gases		16.6	3.3	4.6	0.7	1.1	0.6	0.2	