ENTRIX

Since 1984 - Environmental Excellence

ENTRIX, Inc. 4807 Rockside Road, Suite 400 Independence, OH 44131 (216) 642-8225 (216) 642-8226 Fax

April 11, 2005

Mr. Frank Sowers, PE New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

RE: STATUS REPORT-CHURCHVILLE FORD SITE #V00658-8

Dear Mr. Sowers:

This letter report, tables, and attachments presents the status of the environmental investigation at the subject site. We apologize for any inconvenience that you experienced during the several changes in project management, and will endeavor to keep the situation from occurring again.

Site Work

On July 19-22, 2004, ENTRIX, Inc. (ENTRIX) installed the following:

• Six groundwater monitoring wells, designated MW-1, MW-3, MW-6, MW-13, MW-21, and MW-22, were installed at the site. During the installation, soil removed from each monitoring well boring was scanned for the presence of organic vapors every two feet. The highest reading from each section was preserved and transported to an analytical laboratory for analysis of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals (refer to soil summary table). The wells were installed with 10-foot screens in an unconsolidated water-bearing unit generally consisting of brown sandy clay with gravel.

- Twenty soil borings, designated SB-A through SB-T, were installed at the site, each approximately 12-feet deep. During the installation, soil removed from each boring was scanned for the presence of organic vapors every two feet. The highest reading from each section was preserved and transported to an analytical laboratory for analysis of VOCs, SVOCs, and metals (refer to soil summary table).
- Nine shallow surface soil borings, designated SSB1 through SSB-9, were installed at a depth of approximately 2-feet. Samples were taken of the extracted soil and transported to an analytical laboratory for analysis of VOCs, SVOCs, and metals (refer to soil summary table).
- One sediment sample, labeled SW-1, was taken from a storm water drain located down-slope of MW-1, and analyzed for VOCs, SVOCs, and metals

On August 17-19, 2005, ENTRIX performed the following field work:

- All six groundwater-monitoring wells were purged and sampled for select VOCs and SVOCs (refer to groundwater summary table).
- Holes were drilled in the floor of the building for the purpose of taking soil gas samples. Eight summa canisters were installed to take subsurface gas samples. One canister (#102) was placed outside of the building to collect a sample of the ambient outside air, and one was placed to sample the ambient air in the office area (#403). Upon completion of sampling, the Summa canisters were transported to an analytical laboratory and analyzed for a list of common air pollutants (refer to Summa canister summary table.

Ongoing Work

ENTRIX is currently completing an analysis of the results of the analytical testing, and will shortly be providing to you a map showing each sampling location, any contaminants that were identified at each location, along with the concentration, and groundwater contours generated from the monitoring well sampling. Once this mapping is completed, we will consult with you concerning subsequent analyses investigation needed.

ENTRIX

Thank you for your attention to this project, and your patience. Please contact me at 216-642-8225 or skilper@entrix.com with any questions.

Stephen G. Kilper, PE

Senior Consultant/Ohio Office Manager

GROUNDWATER RESULTS FORMER CHURCHVILLE FORD

Sample ID:	MW-6	MW-3	DUP-GW-1	MW-1	MW-13	MW-21	MW-22	RB-GW-1	TB-GW-1
Sample Date:	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04
Units:									
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
SVOCs	1			· · · · · · · · · · · · · · · · · · ·	T	· · · · · · · · · · · · · · · · · · ·		T	1
Phenol	ND	ND	ND	ND	ND	ND	ND		1J
Di-n-octylphthalate	ND	ND	ND	ND	ND	3J	4J		4J
4-Methylphenol	ND	ND	ND	ND	2J	ND	ND		ND
VOCs									
Methyl Tertiary Butyl Ether	ND	4J	4J	12	ND	ND	0.9J	ND	ND
Dichlorodifluoromethane	8	6	6	3J	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	5	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	2J	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	1J	0.9J	1J	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	1J	1J	12	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	360	330	340	1J	0.9J	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	0.9J	ND	ND	7
Benzene	ND	ND	ND	0.8J	ND	0.6J	ND	ND	ND
Trichloroethene	16	50	44	3J	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	4J
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	4J
Tetrachloroethene	51	35	30	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	1J
Acetone	ND	ND	ND	ND	9J	10J	ND	ND	ND
Carbon Disulfide	ND	ND	ND	ND	1J	1J	ND	ND	ND
Xylene (Total)	ND	ND	ND	ND	0.9J	ND	ND	ND	ND

ug/l = micrograms per liter

ND = Not detected at or above the limit of quantitation

J = estimated value, the result is \geq the method detection limit and < the limit of quantitation

[&]quot;--" = not analyzed

Boring ID:	MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:	MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:	7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:	grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite

SVOC ((ua/ka)
0.00,	(~g,g,

SVOC (ug/kg)											
Phenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	320J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	1,100J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	840J	ND	ND	ND	ND	2,100	320J	ND	440J	370J	400J
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	340J	ND	ND	ND	ND	1,300J	ND	ND	380J	ND	390J
Anthracene	ND	ND	ND	ND	ND	280J	ND	ND	ND	ND	ND
Fluoranthene	220J	ND	ND	ND	ND	2,100	370J	ND	500J	380J	500J
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	220J	ND	ND	ND	ND	1,000J	ND	ND	240J	ND	210J
Chrysene	250J	ND	ND	ND	ND	1,300J	230J	ND	250J	250J	250J
bis(2-ethylhexyl)phthalate	4,500J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	220J	ND	ND	ND	ND	1,500J	330J	ND	310J	430J	320J
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	690J	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	1,100J	ND	ND	220J	300J	230J
Indeno(1,2,3-cd) pyrene	ND	ND	ND	ND	ND	820	ND	ND	ND	210J	ND
Dibenzo(a,h) anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	260J	ND	ND	ND	ND	770J	ND	ND	ND	220J	ND
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:	SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:	SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:	7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:	composite	composite	composite	grab								

S۷	OC	(ug/kg)	
		(~9,9/	

SVOC (ug/kg)												
Phenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	47J	ND	ND
4-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	140J	ND	ND
Acenaphthene	ND	ND	900J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	360J	720J	21,000	ND	ND	71	ND	ND	ND	70J	ND	620J
Fluorene	ND	ND	1,100J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	ND	370J	14,000	ND	ND	ND	ND	ND	ND	46J	ND	540J
Anthracene	ND	ND	2,600	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	400J	890J	24,000	ND	ND	ND	ND	ND	ND	58J	ND	800J
Butylbenzylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	ND	380J	10,000	ND	ND	ND	ND	ND	ND	ND	ND	270
Chrysene	230J	470J	13,000	ND	ND	ND	ND	ND	ND	ND	ND	320
bis(2-ethylhexyl)phthalate	ND	ND	<640	ND	ND	200J	ND	ND	ND	130J	ND	ND
Benzo(b)fluoranthene	470J	720J	18,000	ND	ND	ND	ND	ND	ND	ND	ND	380J
Benzo(k)fluoranthene	ND	290J	6,300	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	310J	520J	13,000	ND	ND	ND	ND	ND	ND	ND	ND	250J
Indeno(1,2,3-cd) pyrene	260J	360J	12,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h) anthracene	ND	ND	2,800	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	270J	400J	12,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	ND	ND	420J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	ND	ND	1,600	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:	SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:	SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:	grab											

SVOC (ug/kg)

SVOC (ug/kg)												
Phenol	ND	ND	ND	69J	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	ND	ND	71J	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	ND	ND	ND	340J	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	ND	ND	ND	56J	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	ND	ND	510J	140J	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	ND	ND	ND	65J	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	ND	ND	140J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	ND	ND	620	130J	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	ND	ND	ND	340J	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	ND	ND	240J	40J	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	ND	ND	250J	50J	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-ethylhexyl)phthalate	ND	ND	110J	900	120J	ND						
Benzo(b)fluoranthene	ND	ND	280J	61J	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	ND	ND	130J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	220J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd) pyrene	ND	ND	150J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h) anthracene	ND	ND	40J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	130J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:			trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:	SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:	7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:	composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab

SVOC (ug/kg)

SVOC (ug/kg)								
Phenol	ND	ND	 ND	ND	 ND	ND	 ND	ND
Naphthalene	ND	ND	 ND	ND	 ND	ND	 ND	ND
4-Methylphenol	ND	ND	 ND	ND	 ND	ND	 ND	ND
2-Methylnaphthalene	ND	ND	 ND	ND	 ND	ND	 ND	ND
Acenaphthene	840J	ND	 ND	ND	 ND	ND	 ND	ND
Pyrene	24,000	ND	 ND	ND	 ND	ND	 ND	ND
Fluorene	1,000J	ND	 ND	ND	 ND	ND	 ND	ND
Phenanthrene	16,000	ND	 ND	ND	 ND	ND	 ND	ND
Anthracene	2,100	ND	 ND	ND	 ND	ND	 ND	ND
Fluoranthene	28,000	ND	 ND	ND	 ND	ND	 ND	ND
Butylbenzylphthalate	ND	ND	 ND	ND	 ND	ND	 ND	ND
Benzo(a)anthracene	11,000	ND	 ND	ND	 ND	ND	 ND	ND
Chrysene	15,000	ND	 ND	ND	 ND	ND	 ND	ND
bis(2-ethylhexyl)phthalate	ND	ND	 ND	ND	 ND	ND	 ND	ND
Benzo(b)fluoranthene	17,000	ND	 ND	ND	 ND	ND	 ND	ND
Benzo(k)fluoranthene	7,700	ND	 ND	ND	 ND	ND	 ND	ND
Benzo(a)pyrene	13,000	ND	 ND	ND	 ND	ND	 ND	ND
Indeno(1,2,3-cd) pyrene	11,000	ND	 ND	ND	 ND	ND	 ND	ND
Dibenzo(a,h) anthracene	2,800	ND	 ND	ND	 ND	ND	 ND	ND
Benzo(g,h,i)perylene	10,000	ND	 ND	ND	 ND	ND	 ND	ND
Dibenzofuran	470J	ND	 ND	ND	 ND	ND	 ND	ND
Carbazole	2,500	ND	 ND	ND	 ND	ND	 ND	ND

Boring ID:	MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:	MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:	7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:	grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite

VOC (ua/ka)

VOC (ug/kg)											
Methyl-tert-butyl-ether	8	ND	0.9J	ND	2J	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	3J	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	10	ND	17	1J	ND						
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ND	18	ND							
Toluene	24	ND	ND	1J	ND	1J	ND	ND	ND	ND	12
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	46	ND	12J	ND	8J	ND	ND	ND	ND	ND	87
2-Butanone	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	10J
4-Methyl-2-Pentanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	190	ND	ND	1J	ND	2J	ND	ND	ND	ND	ND
Methylcyclohexane	3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:	SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:	SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:	7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:	composite	composite	composite	grab								

VOC (ug/kg)

100 (49/119/													
Methyl-tert-butyl-ether		ND	ND	ND	ND	ND	1J	ND	ND	ND	ND	ND	ND
Methylene Chloride	1	ND	ND	ND	3J	3J	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	1	ND	ND	ND	ND	ND	ND	3J	ND	13	ND	ND	ND
cis-1,2-dichloroethene	1	ND	ND	ND	ND	ND	29	65	ND	190	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	0.7	ND	ND	0.8J	ND	ND	ND
Trichloroethene		ND	ND	ND	ND	ND	5J	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	4J	ND	ND	13	ND	ND	ND	2J	ND	1J
Tetrachloroethene		ND	ND	ND	ND	ND	5J	5	ND	ND	ND	ND	ND
Ethylbenzene		ND	ND	ND	ND	ND	6J	ND	ND	ND	7	ND	ND
Acetone		13J	ND	13J	ND	ND	26	ND	ND	ND	32	39	ND
2-Butanone		ND	ND	ND	ND	ND	10J	ND	ND	ND	10J	9	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene		ND	ND	ND	ND	ND	49	ND	ND	ND	110	ND	ND
Methylcyclohexane		ND	ND	ND	ND	ND	1J	ND	ND	ND	2J	ND	ND
Dichlorodifluoromethane		ND	ND	ND	ND	ND	4J	ND	ND	ND	ND	ND	ND
Isopropylbenzene		ND	ND	ND	ND	ND	1J	ND	ND	ND	8	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane]	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:	SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:	SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:	grab											
•												

VOC (ug/kg)

too (ag/ilg)													
Methyl-tert-butyl-ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	3J	ND	ND	4J	ND	3J
1,1-Dichloroethane	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	1	ND	ND	ND	ND	ND	2J	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		ND	ND	ND	ND	2J	ND	ND	ND	6	ND	ND	2J
Toluene		ND	ND	ND	ND	ND	ND	ND	1J	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	20J	ND	ND	ND	30	ND	ND	15
Ethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	8J	ND	ND	ND	130	17J	11J	ND	40	8J	8J
2-Butanone		ND	ND	ND	ND	ND	42	ND	ND	ND	11J	ND	ND
4-Methyl-2-Pentanone		ND	ND	ND	ND	ND	3J	ND	ND	ND	ND	ND	ND
Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane]	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:			trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:	SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:	7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:	composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab

100 (49/119/											
Methyl-tert-butyl-ether	ND										
Methylene Chloride	ND										
1,1-Dichloroethane	ND	1J	ND								
cis-1,2-dichloroethene	4J	ND									
Benzene	ND										
Trichloroethene	7J	ND									
Toluene	ND										
Tetrachloroethene	19	2J	ND								
Ethylbenzene	ND										
Acetone	ND	30	ND								
2-Butanone	ND	9J	ND								
4-Methyl-2-Pentanone	ND										
Xylene	ND	14	ND								
Methylcyclohexane	ND										
Dichlorodifluoromethane	ND										
Isopropylbenzene	ND										
Chloroform	ND	10	ND	11	10						
Bromodichloromethane	ND	5	ND	5	5						
Dibromochloromethane	ND	2J	ND	2J	2J						

Boring ID:	MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:	MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:	7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:	grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite

Metals (mg/kg)

wetais (mg/kg)										
Mercury		 	 	0.0037J	0.05J	0.05J	0.05J	0.02J	0.04J	0.02J
Aluminum		 	 	7330	9,940	14,400	10,000	10,500	15,600	9,090
Calcium		 	 	67,300	45,000	5,580	99,500	35,600	22,500	141,000
Iron		 	 	12,100	15,400	17,200	13,900	14,100	17,800	10,200
Magnesium		 	 	35,100	22,400	3,400	23,800	18,700	8,280	14,300
Potassium		 	 	2,850	2,490	2,600	2,450	2,550	2,880	2,470
Sodium		 	 	246	263	200	172	146	200	223
Thallium		 	 	ND	ND	ND	ND	ND	ND	ND
Arsenic		 	 	1.33	5.76	5.55	5.31	4.83	3.31	2.43
Selenium		 	 	ND	ND	ND	ND	ND	ND	ND
Antimony		 	 	ND	ND	ND	ND	ND	ND	ND
Barium		 	 	60.6	65.8	102	53.6	52	112	59
Beryllium		 	 	0.324J	0.42J	0.53J	0.39J	0.41J	0.59J	0.35J
Cadmium		 	 	0.349J	0.43J	0.38J	0.30J	0.26J	0.35J	0.29J
Chromium		 	 	9.29	13.8	16.7	11.6	14.4	19.7	11.4
Cobalt		 	 	3.9	5.02	5.54	4.28	5.26	6.92	4.02
Copper		 	 	9.74	21.9	10.8	9.75	9.61	11	10.1
Lead		 	 	5.91	31.8	23.8	26.6	20.4	14.5	11.7
Manganese		 	 	293	404	472	432	420	431	591
Nickel		 	 	8.87	11.7	12	8.71	10.4	14.8	8.99
Silver]	 	 	ND	ND	ND	ND	ND	ND	ND
Vanadium]	 	 	15.3	19.4	27.4	18.8	21.3	29.9	18
Zinc]	 	 	58.3	79.6	91.9	54.8	53.4	69.1	55.5

ug/kg = micrograms per kilogram "--" = not analyzed

ND = Not detected at or above the limit of quantitation J =estimated value, the result is \geq the method detection limit and < the limit of quantitation

Boring ID:	SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:	SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:	7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:	composite	composite	composite	grab								

Metals (mg/kg)												
Mercury	0.03J	0.02J	0.01J	ND	ND	0.0366J	0.0045J	0.0369J	0.0041J	0.0150J	0.01J	0.01J
Aluminum	13,000	7,510	6,090	6,670	7,190	13,800	6,410	16,900	6,720	13600	9,320	8,610
Calcium	22,800	28,200	40,300	59,600	60,500	8,030	64,200	6,910	61,600	28500	27,300	48,800
Iron	15,700	10,200	10,700	10,900	11,000	16,600	10,500	18,000	10,800	16100	12,600	11,200
Magnesium	10,800	13,500	19,200	23,000	24,400	5,590	27,000	6,020	23,900	14500	13,800	19,500
Potassium	2,800	1,730	1,750	2,150	2,560	2,090	2,040	2,540	2,060	2810	2,450	2,570
Sodium	281	244	234	234	233	176	286	200	250	407	149	203
Thallium	ND	ND	ND	0.986J	ND	1.32J	ND	1.52J	1.03J	1.33J	ND	ND
Arsenic	3.16	3.19	2.79	1.97	1.36	5.29	1.32	3.39	1.74	3.04	2.7	2.2
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	ND	ND	ND	ND	ND	ND	ND	0.979J	1.11J	ND	ND	ND
Barium	72.8	51.3	60.5	51	46.6	63.7	61.3	71.6	49.3	65.5	43	50.5
Beryllium	0.50J	0.30J	0.27J	0.272J	0.296J	0.543J	0.277J	0.636	0.294J	0.513J	0.41J	0.32J
Cadmium	0.31J	0.25J	0.43J	0.359J	0.358J	0.431J	0.387J	0.4 J	0.417J	0.450J	0.35J	0.26J
Chromium	15.8	10.1	48.5	8.71	9.16	14.2	7.85	18.7	9	14.9	11	11.1
Cobalt	6.01	4.61	3.61	3.99	3.63	6.15	3.46	6.75	3.69	5.72	4.29	4.17
Copper	12.6	8.81	12.8	9.84	9.26	9.41	8.17	10.7	8.71	13.4	9.9	9.18
Lead	18.8	14.5	15.4	6.35	5.93	24.1	5.42	20.8	5.91	14.1	8.29	9.19
Manganese	428	561	370	303	278	395	288	270	301	363	318	332
Nickel	12.9	8.51	9.68	7.93	8.09	10.9	7.07	14.2	8.31	13.1	10.7	8.95
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	25.3	16.6	14	15.4	16.1	25.5	14.2	30	15.2	24.2	17.6	18
Zinc	78.5	67.2	246	50.9	48	68.3	51.7	70.9	69.9	67.3	87.3	59.4

ug/kg = micrograms per kilogram
"--" = not analyzed

ND = Not detected at or above the J = estimated value, the result is

Boring ID:	SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:	SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:	grab											

0.01J

9,800

60,200

12,500

30,500

3,120

200

ND

2.56

ND

ND

50.1

0.38J

0.29J

21.1

4.93

9.75

10

334

15.5

ND

18.1

58.8

0.0042J

7,150

54,100

11,200

20,500

2,330

247

ND

1.41

ND

ND

47.9

0.291J

0.342J

9.81

3.71

9.04

277

8.14

ND

16.4

49.2

0.0219J

12,800

32,900

16,100

16,300 2,750

253

ND

3.82

ND

1.04J

59.8

0.488J

0.631

14.1

5.51

12.2

18.3

415

12

ND

23.1

65

0.0038J

6,190

68,400

10,100

38,500

1,900

343

ND

1.37

ND

1.06J

38.1

0.245J

0.309J

7.92

3.23

8.29

5.7

305

6.93

ND

14.4

42.6

0.007J

6,890

50,600

12,800 20,500

1,870

254

ND

1.83

ND

ND

37.9

0.290J

0.326J

8.47

3.8

11.2

10.1

307

8.59

ND

16.5

57

Mercury	ND	0.0063J	0.0048J	ND	ND	ND	0.0057J
Aluminum	6,760	7,040	8,210	7,200	7,040	7,050	6,870
Calcium	56,200	71,000	57,500	53,700	58,500	58,300	58,300
lron	10,400	12,000	12,500	11,000	10,800	12,400	11,400
Magnesium	20,200	25,800	26,200	20,000	27,300	21,500	17,500
Potassium	2,320	1,840	3,110	2,310	2,150	1,820	1,960
Sodium	230	207	240	385	240	349	576
Thallium	ND	ND	ND	ND	ND	ND	ND
Arsenic	1.86	1.83	1.51	1.56	1.41	1.43	1.3
Selenium	ND	ND	ND	ND	ND	ND	ND
Antimony	ND	ND	ND	ND	0.908J	ND	ND
Barium	57.7	52.1	50.3	35.2	42.4	44.9	71.1
Beryllium	0.29J	0.309J	0.327J	0.298J	0.280J	0.279J	0.282J
Cadmium	0.22J	0.302J	0.374J	0.356J	0.320J	0.383J	0.292J
Chromium	9.77	9.25	10.2	9.53	8.56	9.61	9.61
Cobalt	3.92	3.95	3.97	3.6	3.56	4.4	4.02
Copper	8.47	9.28	9.02	9.61	9.03	9.67	8.34
Lead	4.66	4.57	5.45	5.56	5.91	6.32	3.97
Manganese	311	298	303	304	304	320	321
Nickel	8.72	8.42	9.18	8.22	7.67	9.74	9.14
Silver	ND	ND	ND	ND	ND	ND	ND
Vanadium	16.6	14.9	16.7	16.4	14.8	16.5	15.6
Zinc	47.4	45	44.3	45.1	48.9	67.3	36.5

ug/kg = micrograms per kilogram
"" = not analyzed
ND = Not detected at or above th
J = estimated value, the result is

Boring ID:			trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:	SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:	7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:	composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab

Mercury	0.01J	0.0224J		ND	ND	 ND	ND		ND	ND
Aluminum	6,430	9,640	-	ND	ND	 ND	ND		ND	ND
Calcium	68,800	36,800		0.0579J	0.0816J	 ND	ND		ND	ND
Iron	10,200	13,900		ND	ND	 ND	ND		ND	ND
Magnesium	26,500	12,900		ND	0.0261J	 ND	ND		ND	ND
Potassium	2,140	1,890		ND	ND	 ND	ND		ND	ND
Sodium	181	298		ND	ND	 ND	ND		1.49	1.62
Thallium	ND	ND		ND	ND	 ND	ND		ND	ND
Arsenic	2.46	3.43		ND	ND	 ND	ND		ND	ND
Selenium	ND	ND		ND	ND	 ND	ND		ND	ND
Antimony	ND	0.987J		ND	ND	 ND	ND		ND	ND
Barium	29.1	52.7		ND	ND	 ND	ND		ND	ND
Beryllium	0.27J	0.409J		ND	ND	 ND	ND		ND	ND
Cadmium	0.37J	0.401J		ND	ND	 ND	ND		ND	ND
Chromium	10.5	11.3	1	ND	ND	 ND	ND	-	ND	ND
Cobalt	3.31	5.33	1	ND	ND	 ND	ND	-	ND	ND
Copper	9.91	11.2		ND	ND	 ND	ND		ND	ND
Lead	11.6	16.5		ND	ND	 ND	ND		ND	ND
Manganese	312	317		ND	ND	 0.00089J	0.0039J		ND	ND
Nickel	7.76	10.5	1	ND	ND	 ND	ND	-	ND	ND
Silver	ND	ND	-	ND	ND	 ND	ND	-	ND	ND
Vanadium	13.6	18	-	ND	ND	 ND	ND	-	ND	ND
Zinc	137	52.3		0.0054J	ND	 ND	ND		ND	ND

ug/kg = micrograms per kilogram "--" = not analyzed

ND = Not detected at or above the J = estimated value, the result is

SUMMA CANISTER RESULTS FORMER CHURCHVILLE FORD

Sample I	D:	404	113	232	120	93	313	67	102	403	422
Sample Da	e:	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04
Units:		ppb(v)									
tert-Butyl Alcohol		ND	ND	13	ND	ND	ND	ND	ND	0.5J	0.8J
Propene		36	48	41	57	37	2	20	1	20	20
Dichlorodifluoromethane		1,800	810	270	36	730	3	5	0.4J	1	3
Chlorodifluoromethane		23	ND	ND	ND	ND	2	5	ND	ND	4
Chloromethane		ND	ND	ND	ND	ND	ND	2	0.4J	1	0.8J
Trichlorofluoromethane		ND	ND	ND	6J	ND	0.5J	0.5 J	ND	0.3J	0.3J
Pentane	Γ	9J	60	58	61	42	3	24	ND	24	26
Acetone	Γ	190	ND	ND	ND	360	2	48	6	65	100
Carbon Disulfide	Γ	30	230	110	190	230	ND	ND	ND	ND	ND
Acetonitrile	Γ	ND	280	180	340	220	2	ND	ND	ND	ND
Methylene Chloride	Γ	8J	42	ND	66	45	ND	5	ND	2	2
Methyl t-Butyl Ether	Γ	3J	ND	ND	ND	ND	ND	0.4J	ND	0.3J	0.2J
Hexane		12	42	43	37	31	4	4	ND	4	2
Vinyl Acetate	Γ	ND	ND	3J	ND						
cis-1,2-Dichloroethene	Γ	19	10J	ND	ND	ND	ND	2	ND	0.2J	1
2-Butanone	Γ	13	ND	ND	ND	ND	ND	9	1	7	7
Methyl Acrylate	Γ	ND	ND	5J	ND	ND	1	ND	ND	ND	ND
Chloroform	Γ	ND	ND	ND	8.0J	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	Γ	2J	8J	6J	5J	8J	ND	1	ND	ND	1
Carbon Tetrachloride		3J	12J	ND							
Benzene		7J	10J	11	9J	7J	4	4	ND	3	2
Isooctane		ND	ND	2J	ND	10J	0.5J	17	ND	0.9J	0.7J
Heptane		7J	13J	14	7J	8J	5	3	ND	1	2
Trichloroethene		37	6J	ND	6J	ND	0.2J	6	ND	0.6J	6
Dibromomethane		ND	ND	11	ND						
Bromodichloromethane		ND	7J	3J	ND	8J	0.7J	ND	ND	ND	ND
4-Methyl-2-Pentanone		33	120	1,900	440	2,100	4	2	ND	1	3
Toluene		98	210	140	160	160	72	41	0.2J	22	52
Octane		7J	89	ND	ND	ND	2	2	ND	0.9J	1
Tetrachloroethene	ſ	24	42	8J	18J	19J	1	12	ND	3	9
2-Hexanone		ND	ND	5J	19J	19J	0.6J	ND	ND	ND	ND

Sample ID: Sample Date:		404	113	232	120	93	313	67	102	403	422
		08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04
U	Jnits:	ppb(v)									
Ethylbenzene		46	1,300	240	53	260	11	5	ND	2	3
m/p-Xylene		130	3,300	340	130	660	49	18	ND	8	12
o-Xylene		34	810	120	38	190	14	5	ND	2	3
Styrene		3J	35	7J	5J	ND	2	0.9J	ND	0.3J	0.7J
Cumene		2J	58	11	4J	18J	ND	0.7J	ND	ND	0.2J
1,1,2,2-Tetrachloroethane		8J	ND	5J	ND	ND	14	ND	ND	ND	ND
1,2,3-Trichloropropane		ND	8J	ND							
Bromobenzene		3J	4J	4J	4J	ND	24	ND	ND	ND	ND
4-Ethyltoluene		17	86	24	18J	25	5	8	ND	ND	2
1,3,5-Trimethylbenzene		5J	23	8J	7J	9J	24	3	ND	ND	0.7J
1,2,4-Trimethylbenzene		12	21	11	14J	15J	15	7	ND	ND	2
1,4-Dichlorobenzene		ND	ND	ND	ND	ND	ND	0.8J	ND	ND	ND
Hexachloroethane		ND	ND	ND	ND	ND	6	ND	ND	ND	ND

ppb = parts per billion ND = Not detected at or above the limit of quantitation J = estimated value, the result is \geq the method detection limit and < the limit of quantitation