

ENTRIX, Inc. 4807 Rockside Road, Suite 400 Independence, OH 44131 (216) 642-8225 (216) 642-8226 Fax

July 21, 2005

Mr. Frank Sowers, PE New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

RE: STATUS REPORT-CHURCHVILLE FORD SITE #V00658-8

Dear Mr. Sowers:

This letter report and attached tables presents the status of the environmental investigation at the subject site. During our meeting on May 25, 2005, you identified several pending items from the Work Plan prepared for the investigation, as well as additional work that would need to be accomplished for the completion of the investigation. These items are discussed below.

Additional Groundwater Monitoring Wells

New York Department of Environmental Conservation (NYDEC) believes that approximately three additional borings/groundwater monitoring wells will need to be installed in the shallow unconsolidated groundwater zone to further define the groundwater flow and delineate impacted groundwater and soil. It was suggested during our meeting that one should be installed at the northern property line, which is the inferred uppermost gradient position of groundwater at the property, and one well in the each of the southeast and southwest portions of the property to represent down and/or side-gradient conditions. At least one of these locations should attempt to intercept a deeper, possibly consolidated, water-bearing zone following an analysis of published regional groundwater aquifer information. Assuming that a deeper aquifer is located at a reasonable depth, NYDEC requested that multi-level well cluster(s) be installed.

Following your review and comment concerning the information presented in this report, ENTRIX will prepare and submit a work plan amendment that will propose additional monitoring locations, as appropriate.

Previous Boring/Well Installation and Sampling of MW-3

Because of the significantly different analytical results from the 2002 and 2004 analytical results, specifically cis-1,2 dichloroethene, tetrachloroethene, and trichloroethene, NYDEC questioned whether the original groundwater monitoring well MW-3 was replaced entirely during the 2004 field work or whether it was over-drilled and reinstalled. Upon review of available field notes and interview of field personnel involved with the work, it has been determined that the original MW-3 was properly abandoned, and a new well, now designated MW-3, was installed approximately 3 to 5feet from the original location. The field sampling protocols were also reviewed with the field personnel involved during the 2004 sampling event. A minimum of three well volumes were removed from all monitoring wells using bailers supplied by NYDEC, and field parameters (pH, specific conductance, and temperature, etc.) were allowed to stabilize prior to collection of any groundwater samples. ENTRIX has discovered no monitoring well installation or groundwater sampling protocols that were violated during the sampling event, and believe that the 2004 results were representative of the groundwater intercepted by MW-3. The apparent discrepancy in the results from the 2002 sampling may be due to the localized nature of the contamination, natural attenuation during the period between the sampling events, or other reasons.

Comparison of Analytical Results with NYDEC and NY DOH Guidance

Volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals were analyzed from soil and sediment samples collected, and VOCs and SVOCs from groundwater samples. According to Lancaster Laboratories, no Tentatively Identified Compound (TIC) lists were developed for either soil/sediment or groundwater samples collected in 2004. This analysis will be added to any subsequent sampling events performed.

Groundwater

The results of the 2004 groundwater sampling results were compared with Recommended Soil Cleanup Objectives tables presented in NYDEC's Technical and Administrative Guidance Memorandum (TAGM) #4046. The attached summary table presents the results of the analytical testing from groundwater collected from the six groundwater monitoring wells installed at the facility, with values that exceed the appropriate water quality values from TAGM #4046 (Cw) and/or the USEPA maximum contaminant levels (MCLs) shown in red.

Vinyl Chloride exceeded both the Cw and MCL value of 2 ug/l (micrograms per liter) in MW-1 (5 ug/l). MW-1 is located within a storage shed attached to the southwest corner of the site building, and near the former used oil aboveground storage tank (AST) location and the former solvent storage area. Volatile Organic Compound (VOC) 1,1,dichloroethane exceeded the Cw value of 5 ug/l in MW-1 (12 ug/l). Benzene was also detected at MW-1, but at an estimated level (0.8 ug/l) slightly above the Cw level of 0.7 ug/l.

Trichloroethene and Tetrachloroethene were detected in both MW-3 and MW-6, above the Cw and MCL level of 5 ug/l for both VOCs. MW-3 is located within the former solid storage area on the west side of the building, and MW-6 is located within the north-central portion of the building, adjacent to an oil-sand drainage trap. Trichloroethene was detected in groundwater samples collected from MW-3 at a level of 50 ug/l and in MW-6 at a level of 16 ug/l. Tetrachloroethene was detected in groundwater samples collected in groundwater samples were collected from MW-3, the results of which confirm the VOC results.

Vinyl Chloride is known as a degradation product of both trichloroethene and tetrachloroethene, and is not expected to have been used or stored at the facility in the past. Another VOC, cis-1,2 dichloroethene, was detected in both MW-1 and MW-3 at levels over 300 ug/l, but no Cw is presented in TAGM #4046. This VOC is known as a degradation product of other chlorinated solvents, including trichloroethene and tetrachloroethene.

Soils and Sediment

The attached summary table presents the results of the analytical testing from soils and sediment collected from 32 locations throughout the facility, with values that exceed the allowable soil concentrations (Cs) shown in red.

Benzo(a)anthracene, with a Cs of 224 ug/l, was exceeded in shallow soil borings (SSBs) SSB-1 (1000 ug/mg [micrograms per milligram] estimated), SSB-4 (240 ug/mg estimated), SSB-8 (380 ug/mg estimated), and SSB-9 (10,000 ug/mg). SSB-1 is located in a debris pile in the northwest portion of the property, SSB-4 is located just south of the paved parking area, and SSB-8 and 9 are located in the stormwater retention basin on the southeastern portion of the property. Benzo(a)anthracene was also detected slightly above the Cs in soil borings (SBs) SB-H (270 ug/mg) and SB-K (240 ug/mg estimated). SB-H is located near a parking lot drain south of the building, and SB-K is located inside of the north wall of the building near a former solvent storage area and trench drain. Chrysene was detected above the Cs value of 400 ug/mg in SSB-1 (1,300 ug/mg estimated), SSB-8 (470 ug/mg estimated), and SSB-9 (13,000 ug/mg).

Benzo(b)fluoranthene, with a Cs of 1,100 ug/mg, was exceeded in SSB-1 (1500 ug/mg estimated) and SSB-9 (18,000 ug/mg). Benzo(k)fluoranthene, with a Cs of 1,100 ug/mg, was exceeded in SSB-9 (6300 ug/mg estimated). Benzo(a)pyrene, with a Cs of 161 ug/mg, was exceeded in SSB-1 (1,100 ug/mg estimated), SSB-4 (220 ug/mg estimated), SSB-5 (300 ug/mg estimated), SSB-6 (230 ug/mg estimated), SSB-7 (310 ug/mg estimated), SSB-8 (520 ug/mg estimated), and SSB-9 (13,000 ug/mg). Benzo(a)pyrene was also detected in SB-K above the Cs (220 ug/mg estimated). SSB-5 and 6 are located south of the asphalt parking area, and SSB-7 is located in the stormwater retention basin.

Indeno(1,2,3-cd)pyrene, with a Cs of 3,200 ug/mg, was exceeded in SSB-9 (12,000 ug/mg). Dibenzo(a,h)anthracene, with a Cs of 14 ug/mg, was exceeded in SSB-9 (2800 ug/mg) and SB-K (40 ug/mg estimated). Phenol exceeded the Cs of 30 ug/mg in SB-L (69 ug/mg), located near the oil-sand trap and a trench drain inside of the building.

A composite sediment sample was also collected from a stormwater catch basin located in the asphalt parking area south of the building. This sample was designated SW-1 and

significantly exceeded the Cs levels for benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. Water from this catch basin ultimately discharges to the stormwater retention basin.

Metals iron, beryllium, chromium, nickel, and zinc exceeded the Cs values in most of the soil samples and the sediment sample collected. However, the metals concentrations are consistent throughout the sample population, and therefore are indicative of background concentrations.

Soil Gas and Air

Eight soil gas (SG-1 through SG-8) samples were collected beneath the concrete floor throughout the site building, one ambient air sample was collected from the building office area (SG-9), and one outdoor ambient air sample was collected from the western property boundary (SG-10). These samples were analyzed for common air contaminants and compared to NY Department of Health (NYDOH) guidance (refer to attached table). Only two of the air contaminants, trichloroethene and tetrachloroethene currently have NYDOH guidance levels (0.75 and 15 parts per billion [ppb] by volume, respectively).

The trichloroethene guidance was exceeded in SG-1, SG-2, SG-4, SG-7, and SG-8. All are located near former solvent storage areas of the building, or near the oil-sand trap and trench drains. Although this compound was detected in the office area ambient sample (SG-9) at an estimated level of 0.6 ppb, it was below the guidance value.

Tetrachloroethene exceeded the guidance value in SG-1, SG-2, SG-4, and SG-5, but was below the guidance value in the office area. Neither compound was detected in the property line ambient (background) sample.

Discussion of Results

Groundwater

Groundwater exceedances appear to be confined to an area adjacent to, or nearby, the western half of the site building, near former solvent storage areas and the oil-sand trap

located near the northern-center of the building. The analytical results suggest that the groundwater does not significantly exceed the Cw or MCL values, and are restricted to solvents that were used or stored at the facility, and their degradation products. No groundwater contamination appears to be migrating from the facility, and comparison of 2002 to 2004 sampling event results appear to suggest that some of the contaminants may be attenuating significantly over time.

Soil and Sediment

Soil and sediment VOC contamination appear to be localized to the solvent storage areas of the facility, the oil-sand trap and trench drains within the building, and areas subject to stormwater runoff from the facility (parking lot catch basin, soils immediately south of the asphalt parking area, and the stormwater retention basin). VOC impacted soils are generally limited to the uppermost soil strata (2 to 4-feet below ground surface), and are not greatly in exceedance of the Cs values except in the parking lot catch basin, stormwater retention basin, and the northwest debris pile. Analysis of metals concentrations in soil samples indicated that site soils are probably within area background levels.

Soil Gas

Soil gas analytical results from the building indicate that the solvent contamination in the soil may be causing elevated levels of trichloroethene and tetrachloroethene in the soils underlying the building.

Other

NY Department of Transportation (NYDOT)-Sanford Road On-Ramp Construction

ENTRIX has requested copies of the construction plans for the Sanford Road on-ramp construction project from NYDOT. Once these plans are received, the horizontal and vertical extents of the proposed earthworks will be compared to sampling locations and VOC concentrations to determine if there is a possibility for contaminated environmental media to be disturbed during the construction. If the possibility exists, ENTRIX will

notify both NYDEC and NYDOT so appropriate controls can be prepared for the construction.

Property Utility Runs

ENTRIX will research the available information concerning subsurface utility runs on the property that may become preferential pathways for contamination migration. Currently, it appears that the stormwater controls (basins and culverts) may have been a preferential pathway due to the VOC levels at or near these structures.

Private Well Survey

ENTRIX will contact the Monroe County Health Department for any information concerning private water wells in the vicinity of the facility, and will conduct a private well survey in conjunction with subsequent fieldwork. Information obtained will be submitted to NYDEC.

Upon our client's concurrence and additional discussions with NYDEC, ENTRIX will prepare a work plan amendment for the next phase in the site investigation.

Thank you for your attention to this project. Please contact me at 216-642-8225 or <u>skilper@entrix.com</u> with any questions.

ln ON

Stephen G. Kilper, PE Senior Consultant/Ohio Office Manager

GROUNDWATER RESULTS FORMER CHURCHVILLE FORD

Sample ID:		MW-6	MW-3	DUP-GW-1	MW-1	MW-13	MW-21	MW-22	RB-GW-1	TB-GW-1
Sample Date:		08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04	08/19/04
Units:		ug/l								
	TAGM #4046									
	Limits/MCLs									
SVOCs	ug/l									
Phenol	NA	ND		1J						
Di-n-octylphthalate	NA	ND	ND	ND	ND	ND	3J	4J		4J
4-Methylphenol	NA	ND	ND	ND	ND	2J	ND	ND		ND
VOCs										
Methyl Tertiary Butyl Ether	50/NA	ND	4J	4J	12	ND	ND	0.9J	ND	ND
Dichlorodifluoromethane		8	6	6	3J	ND	ND	ND	ND	ND
Vinyl Chloride	2/2	ND	ND	ND	5	ND	ND	ND	ND	ND
Chloroethane	50/NA	ND	ND	ND	2J	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5/NA	ND	1J	0.9J	1J	ND	ND	ND	ND	ND
1,1-Dichloroethane	5/NA	ND	1J	1J	12	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	360	330	340	1J	0.9J	ND	ND	ND
Chloroform	7/NA	ND	ND	ND	ND	ND	0.9J	ND	ND	7
Benzene	<mark>0.7</mark> /5	ND	ND	ND	0.8J	ND	0.6J	ND	ND	ND
Trichloroethene	5/5	16	50	44	3J	ND	ND	ND	ND	ND
Bromodichloromethane		ND	4J							
Toluene	5/1000	ND	4J							
Tetrachloroethene	5/5	51	35	30	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50/NA	ND	1J							
Acetone	50/NA	ND	ND	ND	ND	9J	10J	ND	ND	ND
Carbon Disulfide	50/NA	ND	ND	ND	ND	1J	1J	ND	ND	ND
Xylene (Total)	5/10,000	ND	ND	ND	ND	0.9J	ND	ND	ND	ND

ug/l = micrograms per liter "--" = not analyzed

ND = Not detected at or above the limit of quantitation

J = estimated value, the result is \geq the method detection limit and < the limit of quantitation

Boring ID:		MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:		MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:		7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:		grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite
	TAGM #4046											
SVOC (ug/kg)	RSCO (ug/mg)											
Phenol	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	13,000	320J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	36,400	1,100J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50,000	840J	ND	ND	ND	ND	2,100	320J	ND	440J	370J	400J
Fluorene	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50,000	340J	ND	ND	ND	ND	1,300J	ND	ND	380J	ND	390J
Anthracene	50,000	ND	ND	ND	ND	ND	280J	ND	ND	ND	ND	ND
Fluoranthene	50,000	220J	ND	ND	ND	ND	2,100	370J	ND	500J	380J	500J
Butylbenzylphthalate	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	224	220J	ND	ND	ND	ND	1,000J	ND	ND	240J	ND	210J
Chrysene	400	250J	ND	ND	ND	ND	1,300J	230J	ND	250J	250J	250J
bis(2-ethylhexyl)phthalate	50,000	4,500J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1,100	220J	ND	ND	ND	ND	1,500J	330J	ND	310J	430J	320J
Benzo(k)fluoranthene	1,100	ND	ND	ND	ND	ND	690J	ND	ND	ND	ND	ND
Benzo(a)pyrene	61	ND	ND	ND	ND	ND	1,100J	ND	ND	220J	300J	230J
Indeno(1,2,3-cd) pyrene	3,200	ND	ND	ND	ND	ND	820	ND	ND	ND	210J	ND
Dibenzo(a,h) anthracene	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	50,000	260J	ND	ND	ND	ND	770J	ND	ND	ND	220J	ND
Dibenzofuran	6,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:		SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:		SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:		7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:		composite	composite	composite	grab								
	TAGM #4046												
SVOC (ug/kg)	RSCO (ug/mg)												
Phenol	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	47J	ND	ND
4-Methylphenol	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	36,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	140J	ND	ND
Acenaphthene	50,000	ND	ND	900J	ND								
Pyrene	50,000	360J	720J	21,000	ND	ND	71	ND	ND	ND	70J	ND	620J
Fluorene	50,000	ND	ND	1,100J	ND								
Phenanthrene	50,000	ND	370J	14,000	ND	ND	ND	ND	ND	ND	46J	ND	540J
Anthracene	50,000	ND	ND	2,600	ND								
Fluoranthene	50,000	400J	890J	24,000	ND	ND	ND	ND	ND	ND	58J	ND	800J
Butylbenzylphthalate	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	224	ND	380J	10,000	ND	270							
Chrysene	400	230J	470J	13,000	ND	320							
bis(2-ethylhexyl)phthalate	50,000	ND	ND	<640	ND	ND	200J	ND	ND	ND	130J	ND	ND
Benzo(b)fluoranthene	1,100	470J	720J	18,000	ND	380J							
Benzo(k)fluoranthene	1,100	ND	290J	6,300	ND								
Benzo(a)pyrene	61	310J	520J	13,000	ND	250J							
Indeno(1,2,3-cd) pyrene	3,200	260J	360J	12,000	ND								
Dibenzo(a,h) anthracene	14	ND	ND	2,800	ND								
Benzo(g,h,i)perylene	50,000	270J	400J	12,000	ND								
Dibenzofuran	6,200	ND	ND	420J	ND								
Carbazole	NA	ND	ND	1,600	ND								

Boring ID:		SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:		SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:		7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:		grab											
	TAGM #4046												
SVOC (ug/kg)	RSCO (ug/mg)												
Phenol	30	ND	ND	ND	69J	ND							
Naphthalene	13,000	ND	ND	ND	71J	ND							
4-Methylphenol	900	ND	ND	ND	340J	ND							
2-Methylnaphthalene	36,400	ND	ND	ND	56J	ND							
Acenaphthene	50,000	ND											
Pyrene	50,000	ND	ND	510J	140J	ND							
Fluorene	50,000	ND											
Phenanthrene	50,000	ND	ND	ND	65J	ND							
Anthracene	50,000	ND	ND	140J	ND								
Fluoranthene	50,000	ND	ND	620	130J	ND							
Butylbenzylphthalate	50,000	ND	ND	ND	340J	ND							
Benzo(a)anthracene	224	ND	ND	240J	40J	ND							
Chrysene	400	ND	ND	250J	50J	ND							
bis(2-ethylhexyl)phthalate	50,000	ND	ND	110J	900	120J	ND						
Benzo(b)fluoranthene	1,100	ND	ND	280J	61J	ND							
Benzo(k)fluoranthene	1,100	ND	ND	130J	ND								
Benzo(a)pyrene	61	ND	ND	220J	ND								
Indeno(1,2,3-cd) pyrene	3,200	ND	ND	150J	ND								
Dibenzo(a,h) anthracene	14	ND	ND	40J	ND								
Benzo(g,h,i)perylene	50,000	ND	ND	130J	ND								
Dibenzofuran	6,200	ND											
Carbazole	NA	ND											

Boring ID:				trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:		SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:		7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:		composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab
	TAGM #4046											
SVOC (ug/kg)	RSCO (ug/mg)											
Phenol	30	ND	ND		ND	ND		ND	ND		ND	ND
Naphthalene	13,000	ND	ND		ND	ND		ND	ND		ND	ND
4-Methylphenol	900	ND	ND		ND	ND		ND	ND		ND	ND
2-Methylnaphthalene	36,400	ND	ND		ND	ND		ND	ND		ND	ND
Acenaphthene	50,000	840J	ND		ND	ND		ND	ND		ND	ND
Pyrene	50,000	24,000	ND		ND	ND		ND	ND		ND	ND
Fluorene	50,000	1,000J	ND		ND	ND		ND	ND		ND	ND
Phenanthrene	50,000	16,000	ND		ND	ND		ND	ND		ND	ND
Anthracene	50,000	2,100	ND		ND	ND		ND	ND		ND	ND
Fluoranthene	50,000	28,000	ND		ND	ND		ND	ND		ND	ND
Butylbenzylphthalate	50,000	ND	ND		ND	ND		ND	ND		ND	ND
Benzo(a)anthracene	224	11,000	ND		ND	ND		ND	ND		ND	ND
Chrysene	400	15,000	ND		ND	ND		ND	ND		ND	ND
bis(2-ethylhexyl)phthalate	50,000	ND	ND		ND	ND		ND	ND		ND	ND
Benzo(b)fluoranthene	1,100	17,000	ND		ND	ND		ND	ND		ND	ND
Benzo(k)fluoranthene	1,100	7,700	ND		ND	ND		ND	ND		ND	ND
Benzo(a)pyrene	61	13,000	ND		ND	ND		ND	ND		ND	ND
Indeno(1,2,3-cd) pyrene	3,200	11,000	ND		ND	ND		ND	ND		ND	ND
Dibenzo(a,h) anthracene	14	2,800	ND		ND	ND		ND	ND		ND	ND
Benzo(g,h,i)perylene	50,000	10,000	ND		ND	ND		ND	ND		ND	ND
Dibenzofuran	6,200	470J	ND		ND	ND		ND	ND		ND	ND
Carbazole	NA	2,500	ND		ND	ND		ND	ND		ND	ND

Boring ID:		MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:		MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:		7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:		grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite
	TAGM #4046											
VOC (ug/kg)												
Methyl-tert-butyl-ether	NA	8	ND	0.9J	ND	2J	ND	ND	ND	ND	ND	ND
Methylene Chloride	100	ND	ND	ND	ND	3J	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	300 (trans)	10	ND	17	1J	ND	ND	ND	ND	ND	ND	ND
Benzene	60	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	700	ND	ND	18	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,600	24	ND	ND	1J	ND	1J	ND	ND	ND	ND	12
Tetrachloroethene	1,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5,500	21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	200	46	ND	12J	ND	8J	ND	ND	ND	ND	ND	87
2-Butanone	300	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	10J
4-Methyl-2-Pentanone	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	1,200	190	ND	ND	1J	ND	2J	ND	ND	ND	ND	ND
Methylcyclohexane	NA	3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NA	3J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:		SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:		SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:		7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:		composite	composite	composite	grab								
	TAGM #4046												
VOC (ug/kg)													
Methyl-tert-butyl-ether	NA	ND	ND	ND	ND	ND	1J	ND	ND	ND	ND	ND	ND
Methylene Chloride	100	ND	ND	ND	3J	3J	ND						
1,1-Dichloroethane	200	ND	ND	ND	ND	ND	ND	3J	ND	13	ND	ND	ND
cis-1,2-dichloroethene	300 (trans)	ND	ND	ND	ND	ND	29	65	ND	190	ND	ND	ND
Benzene	60	ND	ND	ND	ND	ND	0.7	ND	ND	0.8J	ND	ND	ND
Trichloroethene	700	ND	ND	ND	ND	ND	5J	ND	ND	ND	ND	ND	ND
Toluene	1,600	ND	ND	4J	ND	ND	13	ND	ND	ND	2J	ND	1J
Tetrachloroethene	1,400	ND	ND	ND	ND	ND	5J	5	ND	ND	ND	ND	ND
Ethylbenzene	5,500	ND	ND	ND	ND	ND	6J	ND	ND	ND	7	ND	ND
Acetone	200	13J	ND	13J	ND	ND	26	ND	ND	ND	32	39	ND
2-Butanone	300	ND	ND	ND	ND	ND	10J	ND	ND	ND	10J	9	ND
4-Methyl-2-Pentanone	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	1,200	ND	ND	ND	ND	ND	49	ND	ND	ND	110	ND	ND
Methylcyclohexane	NA	ND	ND	ND	ND	ND	1J	ND	ND	ND	2J	ND	ND
Dichlorodifluoromethane	NA	ND	ND	ND	ND	ND	4J	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NA	ND	ND	ND	ND	ND	1J	ND	ND	ND	8	ND	ND
Chloroform	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Boring ID:		SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:		SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:		7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:		grab											
	TAGM #4046				-								
VOC (ug/kg)													
Methyl-tert-butyl-ether	NA	ND											
Methylene Chloride	100	ND	ND	ND	ND	ND	ND	3J	ND	ND	4J	ND	3J
1,1-Dichloroethane	200	ND											
cis-1,2-dichloroethene	300 (trans)	ND	ND	ND	ND	ND	2J	ND	ND	ND	ND	ND	ND
Benzene	60	ND											
Trichloroethene	700	ND	ND	ND	ND	2J	ND	ND	ND	6	ND	ND	2J
Toluene	1,600	ND	1J	ND	ND	ND	ND						
Tetrachloroethene	1,400	ND	ND	ND	ND	20J	ND	ND	ND	30	ND	ND	15
Ethylbenzene	5,500	ND											
Acetone	200	ND	8J	ND	ND	ND	130	17J	11J	ND	40	8J	8J
2-Butanone	300	ND	ND	ND	ND	ND	42	ND	ND	ND	11J	ND	ND
4-Methyl-2-Pentanone	1,000	ND	ND	ND	ND	ND	3J	ND	ND	ND	ND	ND	ND
Xylene	1,200	ND											
Methylcyclohexane	NA	ND											
Dichlorodifluoromethane	NA	ND											
Isopropylbenzene	NA	ND											
Chloroform	300	ND											
Bromodichloromethane	NA	ND											
Dibromochloromethane	NA	ND											

Boring ID:				trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:		SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:		7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:		composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab
	TAGM #4046											
VOC (ug/kg)												
Methyl-tert-butyl-ether	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	200	ND	1J	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-dichloroethene	300 (trans)	4J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	700	7J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1,400	19	2J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	200	ND	30	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	300	ND	9J	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	1,200	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	300	ND	ND	ND	ND	ND	ND	ND	10	ND	11	10
Bromodichloromethane	NA	ND	ND	ND	ND	ND	ND	ND	5	ND	5	5
Dibromochloromethane	NA	ND	ND	ND	ND	ND	ND	ND	2J	ND	2J	2J

Boring ID:		MW-1	MW-1	MW-3	MW-3	MW-22	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample ID:		MW-1-(2-4)	MW-1-(18-20)	MW-3-(4-6)	MW-3-(18-20)	MW-22-(2-4)	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6
Sample Date:		7/21/04	7/21/04	7/21/04	7/21/04	7/20/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04	7/21/04
Depth:		grab	grab	grab	grab	grab	composite	composite	composite	composite	composite	composite
	TAGM #4046											
Metals (mg/kg)	mg/kg											
Mercury	0.1					0.0037J	0.05J	0.05J	0.05J	0.02J	0.04J	0.02J
Aluminum	NA					7330	9,940	14,400	10,000	10,500	15,600	9,090
Calcium	NA					67,300	45,000	5,580	99,500	35,600	22,500	141,000
Iron	2,000					12,100	15,400	17,200	13,900	14,100	17,800	10,200
Magnesium	NA					35,100	22,400	3,400	23,800	18,700	8,280	14,300
Potassium	NA					2,850	2,490	2,600	2,450	2,550	2,880	2,470
Sodium	NA					246	263	200	172	146	200	223
Thallium	NA					ND	ND	ND	ND	ND	ND	ND
Arsenic	7.5					1.33	5.76	5.55	5.31	4.83	3.31	2.43
Selenium	2					ND	ND	ND	ND	ND	ND	ND
Antimony	NA					ND	ND	ND	ND	ND	ND	ND
Barium	300					60.6	65.8	102	53.6	52	112	59
Beryllium	0.16					0.324J	0.42J	0.53J	0.39J	0.41J	0.59J	0.35J
Cadmium	1					0.349J	0.43J	0.38J	0.30J	0.26J	0.35J	0.29J
Chromium	10					9.29	13.8	16.7	11.6	14.4	19.7	11.4
Cobalt	30					3.9	5.02	5.54	4.28	5.26	6.92	4.02
Copper	25					9.74	21.9	10.8	9.75	9.61	11	10.1
Lead	NA					5.91	31.8	23.8	26.6	20.4	14.5	11.7
Manganese	NA					293	404	472	432	420	431	591
Nickel	13					8.87	11.7	12	8.71	10.4	14.8	8.99
Silver	NA					ND	ND	ND	ND	ND	ND	ND
Vanadium	18					15.3	19.4	27.4	18.8	21.3	29.9	18
Zinc	20					58.3	79.6	91.9	54.8	53.4	69.1	55.5

ug/kg = micrograms per kilogram

"--" = not analyzed

ND = Not detected at or above the limit of quantitation

J = estimated value, the result is > the method detection limit and < the limit of quantitation

Boring ID:		SSB-7	SSB-8	SSB-9	SB-A	SB-B	SB-C	SB-C	SB-D	SB-E	SB-F	SB-G	SB-H
Sample ID:		SSB-7	SSB-8	SSB-9	SB-A-(2-4)	SB-B-(6-8)	SB-C-(2-4)	SB-C-(6-8)	SB-D-(2-4)	SB-E-(6-8)	SB-F-(2-4)	SB-G-(0-2)	SB-H-(4-6)
Sample Date:		7/21/04	7/21/04	7/21/04	7/19/04	7/19/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/21/04	7/21/04
Depth:		composite	composite	composite	grab								
	TAGM #4046												
Metals (mg/kg)	mg/kg												
Mercury	0.1	0.03J	0.02J	0.01J	ND	ND	0.0366J	0.0045J	0.0369J	0.0041J	0.0150J	0.01J	0.01J
Aluminum	NA	13,000	7,510	6,090	6,670	7,190	13,800	6,410	16,900	6,720	13600	9,320	8,610
Calcium	NA	22,800	28,200	40,300	59,600	60,500	8,030	64,200	6,910	61,600	28500	27,300	48,800
Iron	2,000	15,700	10,200	10,700	10,900	11,000	16,600	10,500	18,000	10,800	16100	12,600	11,200
Magnesium	NA	10,800	13,500	19,200	23,000	24,400	5,590	27,000	6,020	23,900	14500	13,800	19,500
Potassium	NA	2,800	1,730	1,750	2,150	2,560	2,090	2,040	2,540	2,060	2810	2,450	2,570
Sodium	NA	281	244	234	234	233	176	286	200	250	407	149	203
Thallium	NA	ND	ND	ND	0.986J	ND	1.32J	ND	1.52J	1.03J	1.33J	ND	ND
Arsenic	7.5	3.16	3.19	2.79	1.97	1.36	5.29	1.32	3.39	1.74	3.04	2.7	2.2
Selenium	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	NA	ND	ND	ND	ND	ND	ND	ND	0.979J	1.11J	ND	ND	ND
Barium	300	72.8	51.3	60.5	51	46.6	63.7	61.3	71.6	49.3	65.5	43	50.5
Beryllium	0.16	0.50J	0.30J	0.27J	0.272J	0.296J	0.543J	0.277J	0.636	0.294J	0.513J	0.41J	0.32J
Cadmium	1	0.31J	0.25J	0.43J	0.359J	0.358J	0.431J	0.387J	0.4 J	0.417J	0.450J	0.35J	0.26J
Chromium	10	15.8	10.1	48.5	8.71	9.16	14.2	7.85	18.7	9	14.9	11	11.1
Cobalt	30	6.01	4.61	3.61	3.99	3.63	6.15	3.46	6.75	3.69	5.72	4.29	4.17
Copper	25	12.6	8.81	12.8	9.84	9.26	9.41	8.17	10.7	8.71	13.4	9.9	9.18
Lead	NA	18.8	14.5	15.4	6.35	5.93	24.1	5.42	20.8	5.91	14.1	8.29	9.19
Manganese	NA	428	561	370	303	278	395	288	270	301	363	318	332
Nickel	13	12.9	8.51	9.68	7.93	8.09	10.9	7.07	14.2	8.31	13.1	10.7	8.95
Silver	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	18	25.3	16.6	14	15.4	16.1	25.5	14.2	30	15.2	24.2	17.6	18
Zinc	20	78.5	67.2	246	50.9	48	68.3	51.7	70.9	69.9	67.3	87.3	59.4

ug/kg = micrograms per kilogram "--" = not analyzed

ND = Not detected at or above the limit of quant

J = estimated value, the result is > the method c

Boring ID:		SB-I	SB-J	SB-K	SB-L	SB-M	SB-N	SB-O	SB-P	SB-Q	SB-R	SB-S	SB-T
Sample ID:		SB-I-(6-8)	SB-J-(2-4)	SB-K-(2-4)	SB-L-(2-4)	SB-M-(2-4)	SB-N-(2-4)	SB-O-(2-4)	SB-P-(0-2)	SB-Q-(4-6)	SB-R-(2-4)	SB-S-(2-4)	SB-T-(2-4)
Sample Date:		7/21/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/20/04	7/21/04	7/20/04	7/20/04	7/20/04	7/20/04
Depth:		grab											
	TAGM #4046												
Metals (mg/kg)	mg/kg												
Mercury	0.1	ND	0.0063J	0.0048J	ND	ND	ND	0.0057J	0.01J	0.0042J	0.0219J	0.0038J	0.007J
Aluminum	NA	6,760	7,040	8,210	7,200	7,040	7,050	6,870	9,800	7,150	12,800	6,190	6,890
Calcium	NA	56,200	71,000	57,500	53,700	58,500	58,300	58,300	60,200	54,100	32,900	68,400	50,600
Iron	2,000	10,400	12,000	12,500	11,000	10,800	12,400	11,400	12,500	11,200	16,100	10,100	12,800
Magnesium	NA	20,200	25,800	26,200	20,000	27,300	21,500	17,500	30,500	20,500	16,300	38,500	20,500
Potassium	NA	2,320	1,840	3,110	2,310	2,150	1,820	1,960	3,120	2,330	2,750	1,900	1,870
Sodium	NA	230	207	240	385	240	349	576	200	247	253	343	254
Thallium	NA	ND											
Arsenic	7.5	1.86	1.83	1.51	1.56	1.41	1.43	1.3	2.56	1.41	3.82	1.37	1.83
Selenium	2	ND											
Antimony	NA	ND	ND	ND	ND	0.908J	ND	ND	ND	ND	1.04J	1.06J	ND
Barium	300	57.7	52.1	50.3	35.2	42.4	44.9	71.1	50.1	47.9	59.8	38.1	37.9
Beryllium	0.16	0.29J	0.309J	0.327J	0.298J	0.280J	0.279J	0.282J	0.38J	0.291J	0.488J	0.245J	0.290J
Cadmium	1	0.22J	0.302J	0.374J	0.356J	0.320J	0.383J	0.292J	0.29J	0.342J	0.631	0.309J	0.326J
Chromium	10	9.77	9.25	10.2	9.53	8.56	9.61	9.61	21.1	9.81	14.1	7.92	8.47
Cobalt	30	3.92	3.95	3.97	3.6	3.56	4.4	4.02	4.93	3.71	5.51	3.23	3.8
Copper	25	8.47	9.28	9.02	9.61	9.03	9.67	8.34	9.75	9.04	12.2	8.29	11.2
Lead	NA	4.66	4.57	5.45	5.56	5.91	6.32	3.97	10	5	18.3	5.7	10.1
Manganese	NA	311	298	303	304	304	320	321	334	277	415	305	307
Nickel	13	8.72	8.42	9.18	8.22	7.67	9.74	9.14	15.5	8.14	12	6.93	8.59
Silver	NA	ND											
Vanadium	18	16.6	14.9	16.7	16.4	14.8	16.5	15.6	18.1	16.4	23.1	14.4	16.5
Zinc	20	47.4	45	44.3	45.1	48.9	67.3	36.5	58.8	49.2	65	42.6	57

ug/kg = micrograms per kilogram "--" = not analyzed

ND = Not detected at or above the limit of quant

J = estimated value, the result is > the method c

Boring ID:				trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank	trip blank	rinsate blank	field blank
Sample ID:		SW-1	DUP-1	TBLANK-1	RB-1	FB-1	TBLANK-2	RB-2	FB-2	TB-3	RB-3	FB-3
Sample Date:		7/21/04	7/20/04	7/19/04	7/19/04	7/19/04	7/20/04	7/20/04	7/20/04	7/21/04	7/21/04	7/21/04
Depth:		composite	grab	grab	grab	grab	grab	grab	grab	grab	grab	grab
	TAGM #4046											
Metals (mg/kg)	mg/kg											
Mercury	0.1	0.01J	0.0224J		ND	ND		ND	ND		ND	ND
Aluminum	NA	6,430	9,640		ND	ND		ND	ND		ND	ND
Calcium	NA	68,800	36,800		0.0579J	0.0816J		ND	ND		ND	ND
Iron	2,000	10,200	13,900		ND	ND		ND	ND		ND	ND
Magnesium	NA	26,500	12,900		ND	0.0261J		ND	ND		ND	ND
Potassium	NA	2,140	1,890		ND	ND		ND	ND		ND	ND
Sodium	NA	181	298		ND	ND		ND	ND		1.49	1.62
Thallium	NA	ND	ND		ND	ND		ND	ND		ND	ND
Arsenic	7.5	2.46	3.43		ND	ND		ND	ND		ND	ND
Selenium	2	ND	ND		ND	ND		ND	ND		ND	ND
Antimony	NA	ND	0.987J		ND	ND		ND	ND		ND	ND
Barium	300	29.1	52.7		ND	ND		ND	ND		ND	ND
Beryllium	0.16	0.27J	0.409J		ND	ND		ND	ND		ND	ND
Cadmium	1	0.37J	0.401J		ND	ND		ND	ND		ND	ND
Chromium	10	10.5	11.3		ND	ND		ND	ND		ND	ND
Cobalt	30	3.31	5.33		ND	ND		ND	ND		ND	ND
Copper	25	9.91	11.2		ND	ND		ND	ND		ND	ND
Lead	NA	11.6	16.5		ND	ND		ND	ND		ND	ND
Manganese	NA	312	317		ND	ND		0.00089J	0.0039J		ND	ND
Nickel	13	7.76	10.5		ND	ND		ND	ND		ND	ND
Silver	NA	ND	ND		ND	ND		ND	ND		ND	ND
Vanadium	18	13.6	18		ND	ND		ND	ND		ND	ND
Zinc	20	137	52.3		0.0054J	ND		ND	ND		ND	ND

ug/kg = micrograms per kilogram

"--" = not analyzed

ND = Not detected at or above the limit of quant

J = estimated value, the result is > the method c

FORMER CHURCHVILLE FORD SG-10 SG-9 (western property (office Soil Gas Designation: SG-1 SG-2 SG-3 SG-4 SG-5 SG-6 SG-7 boundary) SG-8 area) Sample ID: 404 113 232 120 93 313 67 102 403 422 Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 Units: ppb(v)ppb(v)ppb(v)ppb(v) ppb(v)ppb(v)ppb(v)ppb(v) ppb(v)ppb(v)NY DOH Guidance tert-Butvl Alcohol NA ND ND 13 ND ND ND ND ND 0.5J 0.8J Propene NA 36 48 41 57 37 2 20 20 20 1 Dichlorodifluoromethane NA 1.800 810 270 36 730 3 5 0.4J 1 3 Chlorodifluoromethane NA 23 ND ND ND ND 2 5 ND ND 4 Chloromethane NA ND ND ND ND ND ND 2 0.4J 0.8J 1 Trichlorofluoromethane NA ND ND ND 6J ND 0.5J 0.5 J ND 0.3J 0.3J Pentane NA 9J 60 58 61 42 3 24 ND 24 26 Acetone NA 190 ND ND ND 360 2 48 6 65 100 Carbon Disulfide NA 30 230 110 190 230 ND ND ND ND ND 180 2 ND ND Acetonitrile NA ND 280 340 220 ND ND NA 8J ND 66 ND 2 Methylene Chloride 42 45 ND 5 2 Methyl t-Butyl Ether NA 3J ND ND ND ND ND 0.4J ND 0.3J 0.2J NA 12 43 37 31 ND Hexane 42 4 4 4 2 Vinyl Acetate NA ND ND ЗJ ND ND ND ND ND ND ND cis-1,2-Dichloroethene NA 19 10J ND ND ND ND 2 ND 0.2J 1 2-Butanone NA 13 ND ND ND ND ND 9 7 1 7 Methyl Acrylate NA ND ND 5J ND ND ND ND ND ND 1 Chloroform NA ND ND ND 8.0J ND ND ND ND ND ND NA 8J ND ND 1.1.1-Trichloroethane 2J 8J 6J 5J ND 1 1 Carbon Tetrachloride NA 3J 12J ND ND ND ND ND ND ND ND NA 7J 10J 11 9J 7J ND 2 Benzene 4 4 3 Isooctane NA ND ND 2J ND 10J 0.5J 17 ND 0.9J 0.7J NA 7J 13J 14 7J 8J 5 3 ND Heptane 1 2 Trichloroethene 0.75 37 ND 6J ND 0.2J ND 0.6J 6J 6 6 ND ND Dibromomethane NA ND ND 11 ND ND ND ND ND Bromodichloromethane NA ND 7J ЗJ ND 8J 0.7J ND ND ND ND 4-Methyl-2-Pentanone NA 33 120 1.900 440 2.100 ND 4 2 1 3 98 160 72 0.2J 22 52 Toluene NA 210 140 160 41 NA 7J ND ND ND 2 2 ND 0.9J Octane 89 1 24 8J 18 19J 12 ND 9 Tetrachloroethene 15 42 1 3

SUMMA CANISTER RESULTS

	Sample ID:	404	113	232	120	93	313	67	102	403	422
	Sample Date:	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04
	Units:	ppb(v)									
	NY DOH										
Guidance											
2-Hexanone	NA	ND	ND	5J	19J	19J	0.6J	ND	ND	ND	ND
Ethylbenzene	NA	46	1,300	240	53	260	11	5	ND	2	3
m/p-Xylene	NA	130	3,300	340	130	660	49	18	ND	8	12
o-Xylene	NA	34	810	120	38	190	14	5	ND	2	3
Styrene	NA	ЗJ	35	7J	5J	ND	2	0.9J	ND	0.3J	0.7J
Cumene	NA	2J	58	11	4J	18J	ND	0.7J	ND	ND	0.2J
1,1,2,2-Tetrachloroethane	NA	8J	ND	5J	ND	ND	14	ND	ND	ND	ND
1,2,3-Trichloropropane	NA	ND	8J	ND							
Bromobenzene	NA	ЗJ	4J	4J	4J	ND	24	ND	ND	ND	ND
4-Ethyltoluene	NA	17	86	24	18J	25	5	8	ND	ND	2
1,3,5-Trimethylbenzene	NA	5J	23	8J	7J	9J	24	3	ND	ND	0.7J
1,2,4-Trimethylbenzene	NA	12	21	11	14J	15J	15	7	ND	ND	2
1,4-Dichlorobenzene	NA	ND	ND	ND	ND	ND	ND	0.8J	ND	ND	ND
Hexachloroethane	NA	ND	ND	ND	ND	ND	6	ND	ND	ND	ND

ppb = parts per billion

ND = Not detected at or above the limit of quantitation

J = estimated value, the result is \geq the method detection limit and < the limit of quantitation