Remedial Investigation Report

Former Churchville Ford 111 South Main Street Village of Churchville, New York

NYSDEC SITE ID # V00658-8

Prepared For:

Okar Equipment Company, Inc. 754 Brooks Avenue Rochester, New York 14619

Prepared By:

2230 Penfield Road Penfield, New York 14526

September 2008

Remedial Investigation Report Former Churchville Ford

TABLE OF CONTENTS

		<u>Page</u>
1.0	Exec	utive Summary1
	1.1	Scope of Work
	1.2	Remedial Investigation Findings2
		1.2.1 Geologic and Hydrogeologic Conditions
		1.2.2 Analytical Results/Areas of Concern
	1.3	Exposure Assessment
	1.4	Conclusions and Recommendations4
2.0	Intro	oduction5
	2.1	Purpose of the Report5
	2.2	Site Background6
		2.2.1 Site Description6
		2.2.2 Site History
		2.2.3 Previous Investigations
	2.3	Report Organization
3.0	Stud	y Area Investigation
	3.1	Field Activities
		3.1.1 Sediment Sampling
		3.1.2 Surface and Subsurface Soil Investigations
		3.1.3 Groundwater Investigations
		3.1.4 Soil Vapor Investigation
		3.1.5 Oil/Water Separator Investigation
		3.1.6 Well Survey
		3.1.7 Site Survey
	3.2	Field Activity Documentation
		3.2.1 Sample Collection
4.0	Phys	ical Characteristics of the Study Area22
	4.1	Topography
	4.2	Meteorology22
	4.3	Surface Water Hydrology
	4.4	Geology

Table of Contents (con't)

			rage
	4.5	Subsurface Utilities	23
	4.6	Soils	23
	4.7	Hydrogeology	24
	4.8	Demography of Land Use	
	4.9	Ecology	
5.0	Natu	re and Extent of Contamination	26
	5.1	Applicable Standards, Criteria, and Guidance	26
	5.2	Sediment Sampling Results	
	5.3	Soil Sampling Results	
	5.5	5.3.1 Surface Soils	
		5.3.2 Subsurface Soils	
	5.4	Groundwater Sampling Results	
	5.5	Soil Vapor Intrusion Sampling Results	
	5.6	Oil/Water Separator Investigation Results	
6.0	Cont	taminate Fate and Transport	47
	6.1	Potential Routes of Migration	47
	011	6.1.1 Groundwater Flow.	
	÷	6.1.2 Fugitive Dust Emissions	
		6.1.3 Overland Flow	
		6.1.4 Evaporation/Volatilization	
	6.2	Contaminant Persistence	
		6.2.1 Estimated Persistence Study	
	6.3	Contaminant Migration	
		6.3.1 Factors Affecting Migration	
		6.3.2 Conceptual Site Model	
7.0	Expo	osure Assessment	51
	7.1	Qualitative Public Exposure Assessment	51
	7.2	Environmental Exposure Assessment	
8.0	Sum	mary and Conclusions	52
	8.1	Summary	52
	0.1	8.1.1 Nature and Extent of Contamination	
		8.1.2 Fate and Transport	
		8.1.3 Risk Assessment	
	8.2	Conclusions	
	0.4	8.2.1 Data Limitations	
		8.2.1 Data Limitations	
		0.2.2 Recommended Remedial Actions	

Table of Contents (con't)

Page
9.0 Certification
Attachments
Figure 1 - Site Location Map
Figure 2 - Original Site Plan
Figure 3 - New Site Plan (Sub-Division)
Figure 4 - Previous Investigation Sample Locations
Figure 5 - Sample Location Plan
Figure 6 - Soil Vapor Sample Locations
Figure 7 - Soil Cross Section Transect Lines
Figure 8 - Soil Cross Section A-A'
Figure 9 - Soil Cross Section B-B'
Figure 10- Groundwater Contour Map, October 2006
Figure 11- Groundwater Contour Map, June 2007
Figure 12- Contaminant Contour Map, 2004
Figure 13- Contaminant Contour Map, 2006
Figure 14- Contaminant Contour Map, 2007
Appendix A - Photographs
Appendix B - Soil Boring Logs and Monitoring Well Construction
Appendix C - Well Development Logs and Field Notes/Groundwater Sampling Logs
Appendix D - Soil and Groundwater Analytical Results
Appendix E - Soil Vapor Sample Logs
Appendix F - Soil Vapor Analytical Results
Appendix G - Data Usability Summary Reports
Appendix H - Investigation Derived Waste and Disposal Information
Appendix I - Fish and Wildlife Impact Analysis Decision Key

1.0 Executive Summary

The purpose of this report is to describe the remedial investigation (RI) activities completed under the Voluntary Cleanup Program (VCP) at the Former Churchville Ford Site (Site #V00658-8) located in the Village of Churchville, New York (Figure 1- the "Site"). The report discusses investigation activities and results of investigative work conducted in 2004 by Entrix, Inc. (Entrix) and by Lu Engineers in 2006-2008.

The work described in this report was performed under a Voluntary Cleanup Agreement, dated September 11, 2003, between Antonio Gabriele and Joseph Ognibene (the "volunteers") and the New York State Department of Environmental Conservation (NYSDEC).

The RI objective is the identification of the vertical and horizontal extent of site contamination in order to develop remedial alternatives for the Site.

1.1 Scope of Work

The following RI tasks were performed by Entrix in 2004:

- Installation of 15 soil borings inside the building and five (5) borings outside the building;
- Replacement of four (4) pre-existing temporary wells with permanent 2" diameter monitoring wells and one 4" diameter permanent well;
- Installation of two (2) new monitoring wells: one down-gradient and one cross-gradient;
- Collection of nine (9) surface soil samples; and
- Collection of eight (8) sub-slab soil vapor samples within the building, one (1) indoor air sample, and one (1) outdoor ambient air sample.

In 2007-2008, Lu Engineers completed the following primary tasks as part of the RI:

- Installation of three (3) new 2" diameter groundwater monitoring wells;
- Collection of one representative soil sample from each of the three well borings;
- Two rounds of groundwater sampling;
- Collection of three sediment samples from the storm water catch basins;
- Collection of surface soil samples from the eastern drainage ditch and storm water drainage basin;
- Collection of water level measurements from all wells;
- A survey for private wells in the area;
- A Site survey to verify the horizontal and vertical location of previously surveyed Site features, as well as the location and elevation of all wells;
- Hydraulic conductivity testing;
- A second round of soil vapor intrusion sampling; and
- A cleaning and evaluation of the oil/water separator.

1.2 Remedial Investigation Findings

Findings from this investigation are summarized below:

- Chlorinated solvents were detected in groundwater near/beneath the southwestern portion of the main building in exceedance of NYS groundwater standards. The area of groundwater contamination corresponds with the former solvent storage area and former used oil AST.
- Elevated levels of chlorinated solvents including: trichlorethene (TCE), tetrachloroethene (PCE), and cis-1,2-dichloroethene (cis-1,2-DCE) were found in sub-slab soil vapor and indoor air samples within the Site building. The highest concentrations were detected near the southwest corner of the building.
- Polynuclear aromatic hydrocarbons (PAHs) were detected above recommended soil cleanup objectives (TAGM 4046) in storm drain sediments, surface soils in the eastern drainage ditch and retention basin, and in surface soils from a debris pile on the northwest portion of the Site.

1.2.1 Geologic and Hydrogeologic Conditions

Hydraulic conductivity and groundwater level data collected during the RI have indicated the following:

- Overburden material underlying the Site consists of silt with varying proportions of clay, sand, and gravel.
- Bedrock was not encountered at the Site during the subsurface investigation at depths above 44.5-feet below ground surface (bgs).
- Hydraulic conductivity measurements for onsite wells (MW-1, MW-13, and MW-JCL-02) averaged 2.058 x 10⁻⁶ feet/second (ft/sec).
- The approximate groundwater flow velocity has been calculated to vary, depending on the slope of the potentiometric surface, from 1.79 x 10⁻³ to 1.33 x 10⁻² feet/day (ft/day).
- The average depth to groundwater in the uppermost water-bearing zone has ranged between 4-6 feet bgs over the last year in each of the Site wells.
- Overall groundwater flow in the uppermost water bearing zone at the Site is generally from north to south, but includes a westerly component as well (see Groundwater Contour Maps, Figures 10 and 11).

There are no significant waterbodies on or adjacent to the Site. A storm water retention basin exists on the southeastern portion of the Site between Sanford Road and I-490, adjacent to monitoring well MW-21.

The ground surface slopes gently to the west and steeply to the south. Therefore, the majority of precipitation onsite is captured within the storm water catch basin

system and is directed to the storm water retention basin located directly south of the Site building.

1.2.2 Analytical Results/Areas of Concern

This investigation has identified a source area that requires remedial measures. Elevated levels of TCE, PCE, and other chlorinated solvents have been found in groundwater on the southwestern portion of the building as well as in soil vapor below the southwestern portion of the building. This area was formerly utilized for solvent and used oil storage.

Analytical results indicate that polynuclear aromatic hydrocarbons (PAHs) are present in storm sewer sediments and surface soils in the stormwater retention basin located on the southeast corner of the Site. The source of these compounds is most likely vehicle emissions, fluids, and/or asphaltic debris from adjacent roadways.

1.3 Exposure Assessment

The primary occurrence of Site contaminants include groundwater and soil vapor containing chlorinated solvents from historic use and storage of solvents and used oils associated with vehicle maintenance operations. PAHs in surface soil and catch basin sediments were also identified. Resulting secondary sources of contamination include:

- Contaminated groundwater
- Contaminated subsurface soils
- Soil vapor
- Surface soils in the retention basin

Potential exposure pathways and routes of exposure at the Site include:

- Air via inhalation of vapors in indoor air and during remedial work
- Dermal contact during sampling and testing
- Dermal contact with surface soils in the retention basin.

Given the Site's current status, dermal contact with the surface soils within the storm water retention basin and sediments within the catch basins is not likely. The Site is also located in a community where water is supplied by the municipality; therefore no exposure to contaminated groundwater is indicated. In addition, there are no documented wells located within a 0.1-mile radius of the Site.

Volatilization to indoor air is a potential exposure route, as elevated levels of TCE were identified in two of the three Lu Engineers indoor air sampling locations.

1.4 Conclusions and Recommendations

The approximate area of the Site apparently underlain by contaminated groundwater exceeding 5 micrograms per liter (ug/l) is located on the southwestern portion of the interior and exterior of the main building. This area covers approximately 22,636 ft² (0.52-acre).

Groundwater and soil vapor analysis indicates that this area is contaminated with chlorinated solvents (i.e., TCE, PCE, and cis-1,2-DCE) associated with former solvent storage in the area. It is anticipated that this area will be addressed during remedial activities.

Based on the findings of this investigation, Lu Engineers recommends remedial action to address chlorinated solvents detected in groundwater at levels exceeding NYS Groundwater Standards and NYSDEC guidance (TOGS 1.1.1). Chlorinated solvents in the source area shall be addressed in a forthcoming remedial action work plan.

PAHs in the retention basin, storm sewer catch basins, and drainage swale do not appear to be associated with a release or spill at the Site, but instead from non-point source origins. PAHs in surface soils do not warrant remediation at this time based on current use of the Site, zoning and intended future use as commercial property, and the low potential for migration or human exposures.

Remediation of the oil/water separator is not warranted by these findings.

2.0 Introduction

Lu Engineers has prepared this Remedial Investigation (RI) Report for Okar Equipment Company, Inc. (consultant to the 'Volunteers') for submission to the New York State Department of Environmental Conservation (NYSDEC) Region 8 Division of Environmental Remediation (DER). This report has been prepared in accordance with DER-10 "Technical Guidance for Site Investigation and Remediation" and the DER Draft Voluntary Cleanup Program Guide, May 2002.

The work described in this report was performed under a Voluntary Cleanup Agreement, dated September 11, 2003, between Antonio Gabriele and Joseph Ognibene (the 'Volunteers') and the NYSDEC. An Investigation Work Plan was originally prepared by Entrix, Inc. (Entrix), the 'Volunteer's consultant. This work plan was approved by the NYSDEC and investigation activities were conducted by Entrix in 2004. Prior to completion of the RI, the 'Volunteers' changed consultants from Entrix to Okar Equipment Company, Inc. (Okar). Lu Engineers was contracted by Okar to complete the RI. Lu Engineers prepared a NYSDEC-approved *Voluntary Cleanup Program Work Plan* in August 2006. The remainder of the RI activities were conducted by Lu Engineers between September 2006 and February 2008.

This report describes the RI activities conducted by Entrix and Lu Engineers under the Voluntary Cleanup Agreement. Note: Based on the limited information obtained from Entrix, Lu Engineers cannot certify that RI activities conducted by Entrix were performed in accordance with the approved Work Plan.

2.1 Purpose of Report

The purpose of this report is to describe the RI activities completed under the Voluntary Cleanup Program (VCP) at the Former Churchville Ford Site (Site #V00658-8) located in the Village of Churchville, New York (Figure 1- the "Site"). The report discusses investigation activities and results of investigative work conducted in 2004 by Entrix and by Lu Engineers in 2006-2008.

The objectives of the Entrix portion of the RI were to:

- Confirm data collected during the Phase II ESA investigation conducted in 2002;
- Assess private wells in the immediate vicinity of the Site;
- Delineate surface and subsurface impacts resulting from hydrocarbon use and chlorinated solvent use and storage at the Site;
- Determine groundwater flow direction; and
- Delineate subsurface utilities and their potential influence of groundwater flow and/or contaminant transport.

The objectives of the Lu Engineers portion of the RI were to:

• Identify the nature and extent of Site related contaminants, observed during previous investigations of soil and groundwater at the Site;

- Perform a baseline assessment of risks to public health or the environment that could potentially result from exposure to contaminants; and
- Provide data for use in evaluating alternative remedial measures.

The findings presented in this report are based on data collected during the RI conducted by Entrix in 2004 and Lu Engineers between September 2006 and February 2008. Data collected during a Phase II Environmental Site Assessment (ESA) conducted in August 2002 by the Sear-Brown Group (Sear-Brown) was also reviewed as part of this process.

2.2 Site Background

2.2.1 Site Description

The Site is located at 111 South Main Street in the Village of Churchville, Town of Riga, Monroe County, New York (Figure 1). The original Site boundary was a 10.28-acre parcel (Tax ID #. 143.17-1-001.121) owned by Antonio Gabriele and Joseph Ognibene (see Figure 2). The property was sold to the current owner, Meyers at Churchville, LLC, in April 2004. In 2006, the property was subdivided into two separate parcels to allow for realignment of Sanford Road North, which now transects the original parcel (see Figure 3). The parcels that comprise the former site boundary are as follows:

- Tax ID # 143.17-1-50: A 6.083-acre parcel owned by Meyers at Churchville, LLC. This is the main portion of the Site that contains a 22,000-square foot truck and boat dealership with service bays, a small wooden shed, and parking lot.
- <u>Tax ID # 143.17-1-51</u>: A 1.808-acre parcel located south of Sanford Road; owned by Meyers at Churchville, LLC. This parcel consists of an undeveloped grassy area between I-490 and the new Sanford Road North.
- <u>Sanford Road North Right of Way:</u> This portion of the Site consists of Sanford Road North and a stormwater retention basin owned by the NYSDOT.

The parcels are zoned "Highway Commercial Use District".

The Site is located on the west side of South Main Street (NYS Route 36) and north side of Route I-490. The Town of Riga is located approximately sixteen miles west/southwest of the City of Rochester. The Site is located on the southern edge of the Village of Churchville. The Village of Churchville's main business district is located approximately 1.0-mile north of the Site.

The Site is serviced with public water, sewer, gas, and electric. Surrounding properties include Interstate I-490 to the south; Gatherings party house to the north; a recreational vehicle sales facility to the west; and South Main Street and residential property to the east.

2.2.2 Site History

According to previous environmental reports, the Site was utilized as agricultural land until 1986, when it was developed as an automobile dealership. The facility began operations in 1987 as Gabriele Ford. According to information obtained from the Town of Riga Assessor's Office, the facility was taken over by the Ford Motor Company and operated as Churchville Ford from 1997-2001. The Site was vacant from approximately 2001 until Meyer's Campers purchased the property in 2004. The Site is currently owned by Meyer's at Chruchville, LLC and utilized as Mark's Truck and Boat Center.

The main building was originally constructed in 1986, with two additions reportedly constructed between 1996 and 1999. Operations at the Site included sales and service of new and used vehicles as well as vehicle washing and detailing.

A 1,000-gallon aboveground storage tank (AST) was formerly located outside the southwest corner of the main building. This tank has been removed (removal date unknown). Historically, the tank contained gasoline, virgin oil, and/or waste oil. A 275-gallon virgin oil AST was located in the service area, and a 200-gallon waste oil AST was formerly located outside the service area. Other vehicle maintenance products including antifreeze, used antifreeze, parts washing solvents, lubricants, automotive fluids, cleaners, and waxes were reportedly used onsite and stored in containers of 55-gallons or less.

Contamination was discovered at the Site in 2002 during an environmental investigation conducted for Meyer's Campers, as part of a property transfer. Results of previous investigations are discussed in the following section.

2.2.3 Previous Investigations

The Site has undergone a series of environmental investigations. These investigations include:

- Preliminary Phase I ESA, Entrix, Inc., November 1997
- Preliminary Phase I ESA, Entrix, Inc., August 2001
- Phase I ESA, *The Sear-Brown Group*, July 2002
- Phase II ESA, The Sear-Brown Group, August 2002

The Preliminary Phase I ESAs performed by Entrix were completed in preparation for a property transaction and reportedly concluded that "no potential environmental issues were identified", as stated in the Sear-Brown Phase I ESA. It was noted, however, that stained surfaces were observed outside the main building, in the area of the AST and waste drums.

The Phase I ESA performed by the Sear-Brown Group in 2002 consisted of an environmental site assessment conducted in accordance with American Society for Testing and Materials (ASTM) Standard E-1527-00. The report referenced

information contained in the earlier report prepared by Entrix in 2001. The Sear-Brown Phase I ESA included three parcels of land, only one of which is relevant to this investigation, the original 10.28-acre parcel described as Tax Account No. 143.17-1-001.121 formerly occupied by Gabriele Ford. It should be noted that since the Sear-Brown Phase I ESA was conducted in 2002, this parcel has been subdivided, as described in Section 2.2.1.

The Sear-Brown Phase I ESA noted the following findings:

- Staining was observed on the asphalt parking lot and the side of the building along the exterior western wall of the main building. Staining appeared to be associated with a waste oil AST that had been located inside a small storage building, adjacent to the west of the main building. Reportedly, the exterior western wall of the main building was also utilized for used solvent drum storage.
- Solid waste, including construction/demolition debris, and an empty 250gallon AST were noted behind a small wooden shed located at the northwest corner of the Site.
- The former occupant of the Site, Churchville Ford, is listed as a Conditionally Exempt Small Quantity Generator (CESQG) of hazardous waste.
- Sear-Brown noted the presence of an oily sheen on water in the oil/water separator.
- Maps filed with the Village of Churchville indicated the potential presence of one 500-gallon waste oil underground storage tank (UST) and one 500gallon gasoline UST near the northwest corner of the main building. No evidence of these USTs was found during the assessment.

Based on these findings, Sear-Brown recommended the following actions:

- Subsurface investigation near the northwest corner of the main building to identify the potential presence of suspected USTs.
- Appropriate disposal of oil/water separator contents and follow up investigation to determine the potential for subsurface contamination from this source.
- Subsurface investigation of the stained pavement area along the western exterior wall of the main building.
- Subsurface investigation in the area of a former air compressor storage shed, that was located along the exterior southern wall of the main building.
- Disposal of the solid waste observed on the northwestern portion of the Site and subsurface investigation of the area if impacts are observed.
- De-listing of the Site as a CESOG of hazardous waste.

The Phase II ESA performed by Sear-Brown in August 2002 consisted of a geophysical survey, 14 soil borings, and installation of four temporary groundwater monitoring wells in areas of concern identified by the Phase I ESA.

A total of seven (7) soil and four (4) groundwater samples were submitted for laboratory analysis. These sample locations are indicated on Figure 4.

Results of the Phase II investigation revealed the following:

- No anomolies representative of USTs were indicated by the geophysical survey.
- VOCs related to petroleum products and degreasing solvents were detected at levels above NYSDEC Allowable Soil Concentrations (TAGM 4046) in soil samples GP-1, GP-3, GP-6, GP-10, and GP-13. The highest concentrations were found in borings located near the southwest corner of the building.
- SVOCs related to petroleum products were detected at levels above allowable soil concentrations in soil samples from borings GP-1, GP-10, and GP-13. The source of the SVOCs appears to be from the former waste oil AST.
- VOCs related to petroleum products and/or degreasing solvents were detected at levels above NYSDEC Class GA groundwater standards in all four of the wells. The highest concentration of chlorinated VOCs was detected in MW-3, located in the former solvent storage area.
- Approximately 0.3-0.5 feet of petroleum was present in MW-1, located in the area of the former waste oil AST.
- Groundwater flows generally to the south.

Sear-Brown recommended the following actions based on the findings of the Phase II ESA:

- Convert the temporary monitoring wells into permanent wells.
- Convert MW-1 into a permanent well with a larger diameter well to evaluate the thickness of the product layer.
- Install additional soil borings and groundwater monitoring wells on the northern, eastern, and western VOC plume boundaries.
- Install additional soil borings and groundwater monitoring wells in the vicinity of the oil/water separator for further delineation.

Previous site investigation and assessment information was used in the development the RI work plan for the Site. The NYSDEC approved the Entrix *Investigation Work Plan* in 2004 and the Lu Engineers *Voluntary Cleanup Program Work Plan* in September 2006. Additional investigation points were added to the Lu Engineers work plan to address the noted areas of impact.

2.3 Report Organization

This report describes the field activities performed and sampling results of the remedial investigation. It discusses the occurrence of contaminants, their persistence and migration in the environment, and an assessment of exposure. The report is organized in the following format:

- 1.0 Executive Summary
- 2.0 Introduction
- 3.0 Study Area Investigation
- 4.0 Physical Characteristics of Study Area
- 5.0 Nature and Extent of Contamination
- 6.0 Contaminant Fate and Transport
- 7.0 Exposure Assessment
- 8.0 Summary and Conclusions

3.0 Study Area Investigation

The study area chosen for investigation was based on the results of previous investigations conducted at the Site. The objectives of this investigation were to further delineate the VOC plume located near and below the southwest portion of the building, in the vicinity of MW-1 and MW-3; investigate the oil/water separator as an additional potential source; and evaluate potential contaminant transport/exposure pathways including storm water run-off and vapor intrusion. Sample and test locations, as described in the Voluntary Cleanup Program Work Plan (Lu Engineers, August 2006), were selected with the concurrence of NYSDEC Region 8 officials prior to conducting fieldwork.

3.1 Field Activities

In 2004, Entrix reportedly completed the following tasks:

- Installation of 15 soil borings inside the building and 5 borings outside the building (SB-A thru SB-T, Figure 4);
- Replacement of temporary wells MW-3, MW-6, and MW-13 with permanent 2" diameter monitoring wells and replacement of MW-1 with a 4" diameter permanent well;
- Installation of two new monitoring wells: MW-21 (down-gradient) and MW-22 (cross-gradient);
- Collection of nine (9) surface soil samples (SSB-1 thru SSB-9, Figure 4);and
- Collection of eight (8) sub-slab soil vapor samples within the building (SG-1 thru SG-8, Figure 5), one (1) indoor air sample, and one (1) outdoor ambient air sample.

Approximate Entrix sample locations are indicated on Figures 4 and 5. <u>Note</u>: the installation of additional monitoring wells (MW-15 thru MW-20), as proposed in Section 3.3.1 of the Entrix Work Plan, was not completed during this investigation.

In 2007-2008, Lu Engineers completed the following primary tasks:

- Installation of three new 2" diameter groundwater monitoring wells (MW-JCL-01 thru MW-JCL-03, Figure 4);
- Collection of one representative soil sample for laboratory analysis from each of the three well borings;
- Collection of groundwater samples from each of the three new monitoring wells and the six existing wells;
- Collection of three sediment samples from the storm water drainage inlets (SED-01 thru SED-03, Figure 4);
- Collection of two surface soil samples from the ditch located north of the Site's eastern entrance (SS-01 and SS-02, Figure 4);
- Collection of five surface soil samples from the storm water drainage basin (SS-03 thru SS-07, Figure 4);

- Collection of water level measurements for the three new wells and six existing wells;
- Identification of active groundwater wells located within an approximate 1/10-mile radius of the Site;
- A Site survey to verify the horizontal and vertical location of previously surveyed Site features, as well as the location and elevation of the three new wells and six previously installed wells;
- Hydraulic conductivity testing of a total of five wells, including both new and existing,;
- A second round of soil vapor intrusion sampling; and
- Cleaning and evaluation and cleaning of the oil/water separator.

All RI activities completed at the Site by Entrix were reportedly conducted in 2004. A chronology of RI field activities completed by Lu Engineers at the Site is presented below.

Field Activity	Date Completed
Subsurface Soil Borings and Sampling	September 18 and 20, 2006
Well Installation	September 18 and 20, 2006
Well Development	September 22 and 26, 2006
Groundwater Sampling	October 2006 and June 2007
Storm Drain Investigation and Sediment Sampling	October 2006
Surface Soil Sampling	October 2006
Well Survey	September and October 2006
Site Survey	April 2007
Groundwater Level Measurements	September 2006 & June 2007
Hydraulic Conductivity Testing	June 2007
Soil Vapor Intrusion Sampling	April 4, 2007
Oil/Water separator visual evaluation	January 2008
Oil/Water separator cleaning and inspection	February 2008

Discussion of the objective of each field task, and activities conducted during implementation are presented below.

3.1.1 Sediment Sampling

Surface water runoff at the Site is collected in storm water catch basins. The catch basins discharge to a drainage ditch, which flows into a storm water retention basin, that is located on the southeastern portion of the Site. Sediments were collected for laboratory analysis from the storm water drainage inlets by Lu Engineers on October 3, 2006 (SED-01 thru SED-03). These samples were collected using dedicated pre-cleaned, stainless steel spoons to transfer the soil into the appropriate sample containers. The sediment samples collected consisted

mainly of coarse gravel and asphalt. Water was flowing through the catch basins during the sediment sampling.

The sample collection locations are indicated on the Sample Location Plan, Figure 4. Sample results are discussed in Section 5 of this report. Laboratory analytical results are located in Appendix D.

3.1.2 Surface and Subsurface Soil Investigations

Surface Soil Sampling

A total of 16 surface soil samples were collected from the Site. The objective of surface soil sampling was to identify potential additional source areas and to assess surface soils as a potential exposure pathway at the Site.

In 2004, Entrix reportedly collected three surface soil samples in the storm water retention basin, as well as six surface soil samples on the western, northwestern, and southwestern portions of the Site. These samples were presumably collected from 0-2 inches below the vegetative cover using a hand auger. One representative soil sample was collected from each location for laboratory analysis of VOCs, SVOCs, and metals.

In 2006, Lu Engineers collected two surface soil samples, 0-2 inches below the vegetative cover, from the ditch located south of the Site's eastern entrance and five from the storm water drainage basin located on the southeastern portion of the Site. These samples were collected using dedicated pre-cleaned, stainless steel spoons to transfer the soil into the appropriate sample containers.

A total of seven surface-soil samples collected by Lu Engineers were submitted for laboratory analysis of VOCs and SVOCs, including TICs.

Surface sample locations are indicated on the Sample Location Plan, Figure 4. Sample results are discussed in Section 5 of this report. Laboratory analytical results are located in Appendix D. A Data Usability Summary Report (DUSR) was prepared for this data, which is included in Appendix G.

Subsurface Soil Investigation

The objective of the soil boring investigation was to evaluate conditions in the vicinity of impacted soil and groundwater. A total of 29 soil samples were collected by Entrix during this investigation.

Entrix installed 20 soil borings within the interior and southwestern exterior portion of the building in 2004. These locations are identified as SB-A through SB-T. The borings were reportedly advanced using direct-push soil sampling technology and installed to a total depth of 4-12 feet bgs. Soil samples were reportedly collected in continuous 2-foot samples and screened using a PID. Soil

samples were also collected from well borings MW-1, MW-3, and MW-22. These samples included two samples from MW-1, located in the area of the former used oil AST; two samples from MW-3, located in the area of the former solvent storage; and one sample from MW-22, located in the center of the gravel parking lot area, on the northwestern portion of the Site.

A total of three soil borings (MW-JCL-01, MW-JCL-02, and MW-JCL-03) were advanced at the Site by Lu Engineers in 2006, which were converted into monitoring wells. Each boring was advanced using a CME 75 hollow-stem auger drill rig. Continuous samples were collected in 2-foot intervals at each boring, using ASTM D6151-97 (2003) Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling. Soil samples were collected continuously from ground surface to the target depth at each location. Soil samples were continuously screened for VOCs using a MiniRae 2000 PID.

Lu Engineers Soil samples were submitted for laboratory analysis for TCL VOCs, SVOCs, TICs and TOC. The sample depth intervals were selected based on field observations and PID readings. The soil sample depths were as follows:

MW-JCL-01: 4-6 feet bgs
MW-JCL-02: 6-8 feet bgs
MW-JCL-03: 3-5 feet bgs

Soil boring locations are indicated on the Sample Location Plan, Figure 4. Sample results are discussed in Section 5 of this report. All soil boring logs, including PID readings, are located in Appendix B. Laboratory analytical results of the soil boring samples are located in Appendix D. A DUSR was prepared for this data, which is included in Appendix G.

Investigation Derived Waste and Disposal

Investigation derived waste (IDW) soil generated from sub-surface soil sampling from Lu Engineers and Entrix investigations was placed in 20 55-gallon drums that were staged on the northwest portion of the site, by the storage shed. The drums were transported offsite on December 12, 2006 by NYETECH, and taken to Environmental Products and Services in Syracuse, New York. A copy of the non-hazardous waste manifest is included in Appendix H.

This waste was exempted from being considered F-listed hazardous waste through correspondence with the NYSDEC Division of Solid and Hazardous Materials, Bureau of Hazardous Waste and Radiation Management. Based on available analytical data, the NYSDEC determined that the IDW soils at the Site did not require management as hazardous waste. A copy of the NYSDEC determination letter is included in Appendix H.

3.1.3 Groundwater Investigations

The direction of groundwater flow on Site had previously been determined to trend generally to the south, toward the storm water retention basin (see Figures 10 and 11), but includes a westward component. Monitoring well installations, groundwater sampling, water level measurements, and conductivity testing were all completed at the Site to assess groundwater conditions.

Monitoring Well Installations

The objective of the monitoring well installations was to facilitate the collection of groundwater quality, soil quality, hydraulic conductivity, and water level data. A total of nine permanent groundwater monitoring wells were installed during this investigation.

In 2004, Entrix replaced four temporary 1" wells that were installed by the Sear-Brown Group with permanent 2-inch monitoring wells, except for MW-1 which was replaced with a 4-inch well. Entrix also installed two new monitoring wells, MW-21 (downgradient) and MW-22 (cross-gradient). Well locations are shown on Figure 5. The monitoring wells were presumably installed with a hollow-stem auger drill rig. The wells were installed with 2-inch diameter PVC to a depth of 17 feet bgs using 10 feet of slotted screen and 7 feet of casing. No additional information regarding the installation of these wells was provided by Entrix.

On September 18-20, 2006, Lu Engineers retained Nothnagle Drilling Company to install three additional monitoring wells (MW-JCL-01, -02, and -03, Figure 5). A CME 75 drill rig was used to advance each boring using 4.25-inch hollow-stem augers prior to conversion into a 2-inch diameter monitoring well. Each well was installed using 2-inch diameter Schedule 40 PVC with 10 feet of 0.10-inch slotted screen interval and solid riser. All three wells were completed flush-mount with a steel protective casing. All drilling equipment was decontaminated via steam cleaning methods over a decontamination pad prior to being used in any of the borings. All decontamination water was containerized in 55-gallon steel drums for later disposal.

MW-JCL-01 is located in the grass-covered slope south of the main building and was advanced to a total augered depth of 44.5 feet bgs, with continuous split spoon soil sampling to 44 feet bgs. No elevated PID readings or visual evidence of contamination was observed in any of the soil screened in this boring. MW-JCL-02 is located at the southwest building corner in the contaminant source area, between existing monitoring wells MW-1 and MW-3. This boring was advanced to a total depth of 36 feet bgs with augers and soil sampled continuously to a depth of 35 feet bgs. MW-JCL-03 is located at the edge of the paved parking area on the north side of the Site building. The total depth of this well is 23.5 feet bgs. No elevated PID readings or visual evidence of contamination were observed in any of the soil screened in this boring.

A qualified Lu Engineers geologist provided oversight for the drilling and continuously logged and screened soils. Soil Boring Logs and Well Construction Details are included in Appendix B.

Monitoring Well Development

The three wells installed by Lu Engineers, were developed in on September 22, 2006 using new disposable polyethylene bailers until pH, specific conductivity, and temperature stabilized and turbidity was 50 nephelometric turbidity units (NTU) or less. The wells were initially surged in order to draw sediments out of the sand pack and into the well for removal. All of the wells were initially bailed dry before parameters stabilized, therefore, the wells were developed again on September 26, 2006 in an effort to reduce turbidity. All field instrument measurements made during development were recorded on well development logs, located in Appendix C. All well development water was containerized in new 55-gallon steel drums.

Monitoring well development data was not provided by Entrix.

Groundwater Sampling

Groundwater monitoring wells were sampled during three separate sampling events. The objective of the groundwater sampling was to quantify contaminants in groundwater, and to determine the extent of migration.

Entrix collected the first round of groundwater samples from six monitoring wells in October 2004 for laboratory analysis of VOCs, SVOCs, and metals by Lancaster Laboratories. The wells were reportedly purged a minimum of three well volumes and sampled using disposable bailers. Quality assurance and quality control (QA/QC) samples were also reportedly collected. No water quality parameters or other sampling data was provided by Entrix for this report.

Lu Engineers collected groundwater samples from all nine monitoring wells on October 17-18, 2006. Due to a bottle contamination issue, the wells were resampled for SVOCs by Lu Engineers and Upstate Laboratories personnel on October 23, 2006. A third round of groundwater sampling was conducted by Lu Engineers on June 14-15, 2007.

Prior to sampling, the water level at each well was measured with reference to the casing elevation and recorded. At a minimum, three volumes of water were purged from each well prior to sampling. Groundwater samples were obtained using new polyethylene disposable bailers. Field parameters including turbidity, pH, conductivity, and temperature were measured periodically and recorded prior to collecting the samples. Lu Engineers' groundwater sampling logs are located in Appendix C.

Groundwater samples, including duplicates, matrix spikes (MS), and matrix spike duplicates (MSD) were submitted for laboratory analysis of TCL VOCs, SVOCS, and TICs following ASP 2000 (CLP) methods. Once obtained, all samples collected by Lu Engineers were immediately labeled and placed on ice in a cooler for delivery to Upstate Laboratories. Groundwater results are discussed in Section 5 of this report. Laboratory analytical results are located in Appendix D.

Investigation Derived Wastewater and Disposal

IDW water was generated from drilling equipment decontamination, well development, and well purging. Wastewater from Entrix and Lu Engineers investigations was staged in 55-gallon drums and then consolidated into a 450-gallon poly tank in January 2007. A total of 420 gallons of wastewater was generated during this investigation.

Samples were collected for characterization and disposal. Based on the analytical results, VOC concentrations in the wastewater did not exceed Monroe County's required maximum contaminant level (MCL) of 2.13 mg/l. A Short Term Sewer Use Permit was obtained from the Monroe County Division of Pure Waters to discharge the wastewater into the municipal sewer system. The wastewater was discharged on January 24, 2007.

IDW and disposal information from groundwater sampling is included in Appendix H.

Aquifer Testing

The objective of the aquifer testing was to quantify the potential rate at which water can move through permeable media (soils) at the Site. Rising and falling head slug tests were conducted on wells MW-1, MW-13, and MW-JCL-02 by Lu Engineers, in June 2007, using a LevelTroll 700 pressure transducer and datalogger manufactured by In-Situ, Inc. Based on the slug test data, hydraulic conductivity values were calculated. Results of the aquifer testing are discussed in Section 4 of this report. It is unknown whether the proposed aquifer testing was conducted by Entrix; hydraulic conductivity results from Entrix were not provided for this report.

3.1.4 Soil Vapor Investigation

The objective of the soil vapor investigation was to identify current or potential human exposures to contaminated subsurface vapors associated with the Site.

In 2004, Entrix performed a sub-slab soil gas survey to target each section of the building separately. A total of eight sub-slab samples (SG-1 through SG-8) were collected, as shown on Figure 6. Samples SG-7 and SG-8 were collected, per the NYSDEC's request, in the vicinity of the floor drains and between the former used oil AST and former parts washer unit. In addition, one ambient air sample (SG-9) was collected for the building interior and one outdoor air sample (SG-10)

was also collected. According to the approved Entrix Work Plan, 6-liter Summa canisters were used to collect 8 hour samples. All air samples were reportedly analyzed for VOCs via United States Environmental Protection Agency (USEPA) Modified Method TO-15.

At the request of the NYSDEC, a second round of soil vapor intrusion sampling was conducted by Lu Engineers on April 4-5, 2007 in accordance with NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" dated October 2006 and NYSDEC's letter of February 21, 2007 regarding vapor intrusion. The objective of Lu Engineers' soil vapor intrusion sampling was to reinvestigate areas for potential soil vapor intrusion derived from soil and groundwater contamination located beneath the Site building slab. The sampling was performed in an effort to determine whether or not soil vapor was migrating into ambient indoor air within the Site building.

Prior to sampling, a New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Building Inventory was completed (Appendix E). The sampling event consisted of:

- three sub-slab vapor samples (SVS-JCL-01, -02, and -03);
- three accompanying indoor air samples (IA- JCL-01, -02, and -03); and
- one ambient outdoor air sample (OA-JCL-04) placed upwind of the building.

All soil vapor intrusion sample locations are indicated on Figure 6.

In accordance with the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), sub-slab vapor sample collection consisted of drilling a 1-inch diameter hole through the concrete slab and 3/8" hole approximately two inches into the sub-slab material. A rubber stopper was used to hold $\frac{1}{4}$ " diameter polyethylene tubing in the hole, and the penetration was sealed using melted beeswax (see Photo No.11). The tubing was connected via compression fitting directly to the Summa canister regulator, which was set by the laboratory to a flow rate of \leq 0.2 liters/minute. The initial vacuum readings were recorded and the canisters were opened. All indoor ambient air samples and the outdoor ambient air sample were collected concurrently with the sub-slab samples for a duration of 24 hours.

Soil vapor sample collection logs are provided in Appendix E. Upon completion, the final vacuum readings were recorded and the canisters were closed for shipment to Centek Laboratories for analyses of VOCs via USEPA Modified Method TO-15 using selective ion monitoring (SIM) quantization (low detection limit).

Sample results are discussed in Section 5 of this report. Laboratory analytical results are located in Appendix F.

3.1.5 Oil/Water Separator Investigation

An oil/water separator is located in the north-central portion of the building, as indicated on Figures 4 and 6. According to the Sear-Brown Phase I ESA Report, all floor drains and trench drains in the vehicle service area are connected to the oil/water separator. At the request of the NYSDEC, the oil/water separator tank was investigated as a possible contaminant source by Lu Engineers during this investigation.

According to information obtained from Monroe County Pure Waters, the oil/water separator discharges to the municipal sewer system and is not required to be registered or permitted by the County. General sewer use law permits the discharge of petroleum hydrocarbons up to 100 ppm. According to information obtained from the Village of Churchville, there are no records of violations or history on file associated with the oil/water separator.

Previous reports indicate that the oil/water separator tank was reportedly cleaned periodically and 200 gallons of water/oil was removed on July 11, 2001 (Preliminary Phase I ESA, Entrix 2001). No documentation regarding the oil/water separator was provided by the previous occupant, Gabriele Ford. The tank was inspected by Lu Engineers during a cleaning on February 29, 2008. Approximately ½"-½" of oil was observed on the surface of the tank contents. The current Site owner arranged for the tank to be emptied and cleaned by Safety-Kleen Systems, Inc. A total of 519 gallons (212 gallons solids/ 307 gallons liquid) was removed using a vacuum truck and transported offsite for disposal.

Once emptied, the interior of the oil/water separator was pressure-washed to facilitate inspection by Lu Engineers. The tank is constructed of concrete and is 72 inches wide by 34 inches longs and 72 inches deep. The tank has an approximate capacity of 763 gallons. Inlet pipes from the floor drains discharge into the tank from the west end, and a 4" PVC outlet pipe that leads to the sanitary sewer is located at the east end of the tank, approximately 8" from the bottom (see drawing in field notes, Appendix C). The interior of the tank appeared to be in good condition with no cracks, compromised concrete, or other indications of leakage.

Safety-Kleen performed a scan for chlorinated solvents using a halogen meter prior to removing contents. A "Clor-D-Tect" kit was also used to screen for chlorinated compounds. Both test results were negative.

3.1.6 Well Survey

A search for active, private wells within one-tenth mile of the Site was conducted by Lu Engineers during the investigation. This included contacting the Monroe County Health Department, Monroe County Water Authority, and the Village of Churchville for records of private water wells. A visual search of the area was also conducted.

The well survey did not identify private wells within 0.10-mile of the Site.

3.1.7 Site Survey

A survey of the monitoring wells, site features, and new right-of-ways was completed by Lu Engineers in October 2006. No survey or well elevation data was provided by Entrix.

3.2 Field Activity Documentation

Field activities conducted by Lu Engineers were documented in a Site-specific logbook, included in Appendix C. Photographic documentation of project field activities is provided in Appendix A. Soil boring logs were completed by a qualified Lu Engineers geologist for each well boring and are included in Appendix B. Monitoring well construction is depicted on logs, also included in Appendix B.

All data obtained during well development and sampling is provided on log sheets in Appendix C. Soil vapor sampling data and the NYSDOH building inventory are included in Appendix E.

Health and safety monitoring of the work area was conducted throughout the duration of soil boring and monitoring well installations conducted by Lu Engineers to assure the safety of on-site workers. Air monitoring of the work areas was conducted using a PID equipped with a 10.2 eV lamp. PID readings are included in the field notes (Appendix C). Screening was performed during the site work as outlined in the Community Air Monitoring Plan (CAMP), developed by Entrix.

No field notes, photographs, sampling logs, or documentation of Site conditions were provided by Entrix, therefore, Lu Engineers cannot certify that field activities performed by Entrix were conducted in accordance with the approved Work Plan.

3.2.1 Sample Collection

Documentation of sample collection by Entrix in 2004 is not available.

Samples collected by Lu Engineers in 2006-2007 were obtained, handled and characterized in accordance with NYSDEC Analytical Services Protocol methods. Samples were immediately labeled and placed on ice, if necessary, in coolers for shipment to the laboratory. Samples were relinquished to Upstate Laboratories, Inc., an accredited and appropriately (NYSDEC ELAP CLP) certified analytical laboratory. Chain of custody requirements were strictly adhered to for designated analyses.

The NYSDEC Division of Environmental Remediation Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports was followed. Lu Engineers' Project Manager/Quality Assurance Officer for this project was Greg Andrus and Eric Detweiler was the Field Team Leader. Category B deliverables were provided for all analytical reporting in order to provide the necessary documentation to be reviewed to evaluate the usability of the data and to provide calibration data needed to verify results, as necessary.

Data validation was conducted by MEC^x,LP for all samples collected by Lu Engineers. The DUSRs are included in Appendix G.

One MS/MSD sample was collected for the sediment/surface soil samples, as well as for each round of groundwater samples. One trip blank was relinquished to the contract laboratory for the designated analyses; therefore, a total of 15 soil samples and 22 groundwater samples were obtained and analyzed during Lu Engineers' portion of the investigation.

4.0 Physical Characteristics of the Study Area

Physical characteristics of the study area based on information obtained during investigation activities at the Site are described below.

4.1 Topography

The elevation of the study area is approximately 590 to 570 feet above mean sea level. The ground surface slopes downward approximately 20 feet from the north to the south, toward the storm water retention basin and Route I-490. A steep bank is located at the southern edge of the parking lot; the remainder of the Site is relatively flat with a general southwestward topographic gradient.

4.2 Meteorology

The average temperature of the area ranges from 23.6° Fahrenheit during the month of January to 65.1° Fahrenheit during the month of June and 70.2° Fahrenheit during the month of July to 29.1° Fahrenheit during the month of December. Precipitation for the area ranges from 2.10-inches in February to 2.97 inches in September, with an annual average of 31.96-inches.

4.3 Surface Water Hydrology

Runoff from paved areas flows to stormwater catch basins located south of the main building (see Photo No. 8). The catch basins discharge to the retention basin located on the southeast corner of the Site. The base elevation on the floor of the retention basin is approximately 571 feet above mean sea level. Flow in all Site drainage features is intermittent, occurring only during periods of precipitation or snowmelt.

4.4 Geology

Regionally, the Village of Churchville lies within the glaciated lowlands of the Ontario Plain Physiographic Province of New York. Native soils in the vicinity of the Site consist of glacial till (silt mixed with varying amounts of gravel, clay, and sand) overlain by a silt-based loam.

Although not encountered during this investigation, the bedrock underlying the Site and surrounding area is comprised of dolostone and/or shale of the Camillus formation. This formation is Upper Silurian in age and a member of the Salina Group (Fisher et al 1970, 1977). Bedrock at the Site is greater than 45 feet bgs and was not encountered during this investigation. Geologic conditions were established through information obtained within the previously mentioned investigation reports cited in Section 2.2.3.

4.5 Sub-slab Utilities

Utilities run the length of Main Street; these include municipal sanitary and water utilities. Electric service is aboveground along Main Street.

Floor drains in the service area of the building discharge to an oil/water separator prior to discharging to the municipal sewer system, located on the northern portion of the Site. The sanitary sewer system connects to the sanitary sewer main along Main Street. It is assumed that the floor drain located in the Paint Room (in the northwestern portion of the main building) also discharges to the municipal sanitary sewer system. According to the Phase I ESA conducted by Sear-Brown in 2002, all floor drains, trench drains, and the oil/water separator are connected to the municipal sanitary sewer system.

Runoff from paved areas flows to three stormwater catch basins located south of the building (see Photo No.8) and discharge to the retention basin.

4.6 Soils

Soil types mapped for the Site include Hilton and Ontario loam, each maintaining a slope of approximately 3-8 percent.

Hilton soils are very deep, moderately well-drained soils formed in till of Wisconsin age, derived from sandstone and limestone. They are nearly level to sloping soils on till plains and glaciated dissected plateaus. Saturated hydraulic conductivity is moderately high or high in the mineral solum and moderately high to low in the substratum.

Ontario soils are deep or very deep, well-drained soils formed in till which is strongly influenced by limestone and sandstone. They are nearly level to very steep soils on convex upland till plains and drumlins. Saturated hydraulic conductivity is moderately high or high in the solum and low to moderately high in the substratum.

Based on soil classifications of the three soil borings completed by Lu Engineers at the Site, soils consist mainly of silt and fine sand. Soil boring logs are included in Appendix B.

A stratigraphic analysis was performed as part of the RI using Lu Engineers' subsurface data from the well borings soil boring logs from the previous Phase II investigation, completed by Sear-Brown in 2002. The purpose of this analysis was to develop a conceptual depiction of subsurface geologic and hydrogeologic conditions.

As part of the analysis, geologic cross sections were completed to illustrate generalized subsurface conditions. Cross Section A-A' indicates subsurface conditions from MW-JCL-03 southward to MW-JCL-01. Cross Section B-B' depicts subsurface conditions from previous investigation points GP-12 eastward to GP-14. The soil cross sections are depicted on Figures 8 and 9.

4.7 Hydrogeology

This section describes the groundwater flow patterns and hydraulic conductivity data for the Site. The description generated is based on groundwater elevation data obtained during the RI and hydraulic conductivity data from slug tests completed in monitoring wells MW-1, MW-JCL-02, and MW-13 by Lu Engineers in June 2007.

Overburden groundwater flow patterns at the Site were generated using groundwater level measurements from the onsite wells. Figures 10 and 11 are groundwater contour maps generated using measurements collected in September 2006 and June 2007. Groundwater flow direction is oriented perpendicular to the projected groundwater contour lines and trends down-gradient. Groundwater elevations are highest on the northern portion of the property and lowest along the southern portion, resulting in a general southward groundwater flow direction. Groundwater elevations decrease by up to 18 feet southward across the Site.

Rising and falling head slug tests were used to calculate hydraulic conductivity and groundwater velocities. Hydraulic conductivity (the relative mobility of groundwater through soils) data was obtained using the Bouwer and Rice Method (1976). Through the analysis of each rising and falling head slug test, an average hydraulic conductivity for the Site was determined to be approximately 2.058 x 10⁻⁶ ft/sec (see Appendix C).

Groundwater velocity, the rate at which groundwater moves across the Site, was calculated across two areas of the Site. The first groundwater velocity calculation was performed on the flat-lying area of the Site, in proximity to the building and contaminant source area. The velocity on this portion of the Site was calculated to be approximately 2.058 x 10⁻⁸ ft/sec and is considered the minimum velocity for the Site. The second groundwater velocity calculation was performed in the area of greatest topographic and hydrogeologic relief, south of the Site building. The slope in this area is relatively steep with relief of approximately 20 vertical feet over a horizontal distance of approximately 200 feet (10% +/-). The velocity on this portion of the Site was calculated to be approximately 1.544 x 10⁻⁷ ft/sec. Calculations are included in Appendix C.

Hydraulic conductivity and groundwater level data collected during the RI have indicated the following:

- Overburden material underlying the Site consists primarily of silt with varying amounts of intermixed gravel, sand, and clay.
- Hydraulic conductivity measurements for onsite wells MW-1, MW-JCL-02 and MW-13 averaged 2.058 x 10⁻⁶ ft/sec.
- Groundwater velocities on the Site vary from 2.058 x 10⁻⁸ ft/sec to 1.544 x 10⁻⁷ ft/sec.
- The average depth to groundwater ranged between 4 and 6 feet bgs.

• Overall groundwater flow is generally from north to south, but includes a westerly component as well (see Groundwater Contour Maps, Figures 10 and 11).

Slug test data, hydraulic conductivity calculations, and groundwater velocity calculations are provided in Appendix C.

4.8 Demography of Land Use

The area surrounding the Site is mainly rural, commercial, and residential. The current and past uses of surrounding properties were found to be primarily residential. North of the Site is "Gatherings at the Senators Mansion" (a party house which was a former residence); south of the Site is a recently constructed roadway (i.e., Sanford Street) and Interstate I-490; east of the Site is South Main Street, followed by residential housing; and west of the Site is Meyers Campers Inc., a recreational vehicle sales facility.

Facilities serving children in the vicinity of the project include: Churchville Elementary School (0.7-miles) and Churchville Senior High School (3.0-miles). Facilities serving the needs of elderly persons in the vicinity of the project include: An apartment complex for senior citizens and disabled persons (300-feet north of the Site). There are no health care facilities in the vicinity of the Site.

4.9 Ecology

The Site is located within the Erie-Ontario Plain of the Lake Plain Ecozone of New York State (Reschke, 1990). Vegetation cover types identified on the Site include mowed lawn, asphalt paved parking areas and roadway, a commercial building, and gravel parking area.

No significant wildlife habitat exists on the Site, except for potential nesting and resting sites on building roofs and wires. Some nesting habitat and cover for avian species may be provided by landscape plantings on the Site. No endangered species were identified at the Site. The Fish and Wildlife Resources Impact Analysis Decision Key was completed for the Site by Lu Engineers in 2006 as part of DER-10 and indicated that no Fish and Wildlife Impact Analysis was needed. There are no significant or navigable waterways at or adjacent to the Site. The Fish and Wildlife Resources Impact Analysis Decision Key is included in Appendix I.

5.0 Nature and Extent of Contamination

In this section laboratory analytical, field screening, and related results are compared to the appropriate published Standards, Criteria and Guidance (SCGs), as indicated below. All detected analytes are included in the following tables and those in bold represent concentrations in exceedance of the applicable standards or guidelines. Full analytical reports are located in Appendix D.

5.1 Applicable Standards, Criteria, and Guidance (SCGs)

Soil Samples: Analytical results are compared to the Recommended Soil Cleanup Objectives (RSCOs) in NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 (NYSDEC, 1994) and the Guidance Values for Restricted Commercial Use (RCU) in 6 NYCRR Part 375. The Part 375 guidance values will be used for decisions regarding the need for soil remediation, based on the contemplated future use of the Site as 'Restricted Commercial'.

Groundwater Samples: Analytical results are compared to the NYS Class GA Groundwater Quality Standards in 6 NYCRR Parts 700-705 (NYS, 1999b) and guidance values in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, 1998).

Sediment Samples: Analytical results are compared to the RSCOs in NYSDEC TAGM 4046 (NYSDEC, 1994) and Guidance Values for RCU in 6 NYCRR Part 375.

Sub-slab Soil Vapor and Indoor Air Samples: The sub-slab vapor and indoor air sample results are compared to the outdoor ambient air samples collected over the same time period, as well as appropriate guidelines and standards. These include the New York State Department of Health (NYSDOH) Final Guidance For Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006, sub-slab soil vapor/indoor air matrices, as well as the NYSDOH and USEPA reference data for "typical" outdoor air concentrations, and Occupational Health and Safety (OSHA) time weighted averages (TWA). It should be noted that the applicability of the OSHA TWA is generally limited to instances where the detected compound is actively used at the facility.

5.2 Sediment Sampling Results

Three (3) sediment samples were collected from the storm water catch basins by Lu Engineers in 2006. Sediment samples were analyzed for the following parameters:

- VOCs + TICs (EPA Method 8260B)
- SVOCs + TICs (EPA Method 8270C)
- TAL Metals (EPA Method 6010B and SW7471A)

VOCs detected in the sediment samples include the following:

TABLE 5.2A Detected VOCs in Sediments (Lu Engineers 2006)

PARAMETERS ¹	SED-01	SED-02	SED-03	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	NYSDEC SOIL OBJECTIVES³ (ppb)
acetone	43	43	23	100,000	200
2-butanone (MEK)	10	ND	ND	100,000	300
methylene chloride	3	5	4	100,000	100
tetrachloroethene	ND	ND	5	19,000	1,400

¹ Results represented as micrograms per kilogram (ug/kg)

SVOCs detected in the sediment samples are shown in the following table.

TABLE 5.2B Detected SVOCs in Sediments (Lu Engineers 2006)

PARAMETERS ¹	SED-01	SED-02	SED-03	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	NYSDEC SOIL OBJECTIVES³ (ppb)
pyrene	ND	ND	54,000	500,000	50,000
chrysene	90	200	19,000	56,000	400
benzo (k) fluoroanthene	ND	80	5,000	56,000	1,100
benzo (a) pyrene	70	200	11,000	1,000	61 or MDL
indeno (1,2,3-cd) pyrene	50	100	11,000	5,600	3,200
dibenz (a,h) anthracene	ND	ND	3,000	560	14 or MDL

Results represented as micrograms per kilogram (ug/kg)

MDL - Method Detection Limit

 $\textbf{Bold} \ \text{indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046}$

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

The following metals were identified in sediment samples:

TABLE 5.2C Metals in Sediments (Lu Engineers 2006)

PARAMETERS ¹	SED-01	SED-02	SED-03	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	NYSDEC. SOIL CLEANUP OBJECTIVES³(ppm)	EASTERN USA Background (ppm)
arsenic	4.71	9.86	29.3	16	7.5 or SB	3-12*
barium	50.9	60.0	ND	400	300 or SB	15-600
cadmium	1.68	2.00	ND	9.3	1 or SB	0.1-1
chromium	9.80	10.8	3.31	400	10 or SB	1.5-40*
copper	12.5	12.3	11.6	270	25 or SB	1-50
lead	27.4	14.8	ND	1,000	SB	200-500
magnesium	5,010	16,500	28,300	NA	SB	100-5,000
manganese	323	411	220	10,000	SB	50-5,000
nickel	9.15	9.47	ND	310	13 or SB	.5-25
selenium	1.78	ND	ND	1,500	2 or SB	0.1-3.9
zinc	76.5	311	77.4	10,000	20 or SB	9-50

¹ Results represented as parts per million (ppm)

Bold indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046

A review of the sediment analytical results noted above shows the following information:

- All VOCs detected in the sediment samples were below RCU Guidance Values and RSCOs in TAGM 4046.
- SVOCs were detected above RCU Guidance Values and RSCOs in sample SED-03. The exceedances are all PAH compounds, which commonly result from the incomplete combustion of organic material including fossil fuels, such as coal or fuel oil, and are often found in ash, cinders, soot, and coal tar pitch.
- SED-03, located in the parking lot south of the building, exhibited the highest concentration of PAHs. The elevated concentrations may be attributed to small pieces of asphalt in the samples from the surrounding parking lot and roadways.
- Arsenic, cadmium, magnesium, and zinc were found to be above the RSCOs (TAGM 4046) and Eastern USA background values, however, only arsenic in SED-03 was also found above the Part 375 Guidance Values for RCU.

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

SB - Site Background

^{*} NYS Background (NYSDEC TAGM 4046)

5.3 Soil Sampling Results

5.3.1 Surface Soils

A total of 15 surface soil samples were collected at the Site. Nine (9) surface soil samples were collected in 2004 by Entrix, and (7) seven surface soil samples were collected by Lu Engineers in 2006. Sample locations are shown on Figure 5. Lu Engineers surface soil samples were analyzed for the following parameters:

- VOCs + TICs (EPA Method 8260B)
- SVOCs + TICS (EPA Method 8270C)
- Metals (EPA Method 6010 and SW7471)

All VOCs detected in surface soil samples collected by Lu Engineers and Entrix were below applicable RCU Guidance Values and RSCOs in TAGM 4046.

SVOCs were detected at the following concentrations above RSCOs:

TABLE 5.3A Detected SVOCs in Surface Soils (Entrix 2004)

PARAMETERS ¹	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6	SSB-7	SSB-8	SSB-9	6 NYCRR Part 375 Restricted Commercial Use ³ (ppb)	NYSDEC SOIL OBJECTIVES ²³ (ppb)
anthracene	ND	ND	ND	ND	ND	ND	ND	ND	2,600	100,000	50,000***
benzo(b) fluoroanthene	1,500 J	330 J	ND	310 J	430 J	320 J	470 J	720 J	18,000	5,600	1,100
benżo(k) fluoroanthene	690 J	ND	ND	ND	ND	ND	ND	290 J	6,300	56,000	1,100
benzo(a) anthracene	1,000 J	ND	ND	240 J	ND	210 J	ND	380 J	10,00 0	5,600	224 or MDL⁴
chrysene	1,300 J	230 J	ND	250 J	250 J	250 J	230 J	470 J	13,000	56,000	400
pyrene	2,100	320 J	ND	440 J	370 J	400 J	360J	720 J	21,000	5,600	3,200
phenanthrene	ND	ND	380 J	ND	ND	390 J	ND	370 J	14,000	100,000	50,000 ***
fluoranthene	2,100	370 J	ND	500 J	380 J	500 J	400 J	890 J	24,000	100,000	50,000 ***
indeno(1,2,3-cd) pyrene	820	ND	ND	ND	210 J	ND	260 J	360 J	12,000	5,600	3,200
dibenz (a,h) anthracene	ND	ND	ND	ND	ND	ND	ND	ND	2,800	560	14 or MDL
benzo(g,h,i) perylene	770 J	ND	ND	ND	220 J	ND	270 J	400 J	12,000	100,000	50,000 ***
carbazole	ND	ND	ND	ND	ND	ND	ND	ND	1,600	N/A	N/A

¹ Results represented as micrograms per kilogram (ug/kg)

Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

^{***} As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm. **Bold** indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046

TABLE 5.3B Detected SVOCs in Surface Soils (Lu Engineers 2006)

PARAMETERS ¹	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	NYSDEC SOIL OBJECTIVES ³ (ppb)
benzo(a)anthracene	3,000	3,000	100	100	3,100	300	5,000	5,600	224 or MDL⁴
chrysene	5,000	5,000	200	200	3,800	500	7,600	56,000	400
benzo(b)fluoroanthene	6,300	6,10 0	300	300	4,300	510	9,200	5,600	1,100
benzo(k) fluoroanthene	2,000	2,000	100	80	1,000	200	3,000	56,000	1,100
benzo(a)pyrene	4,000	4,000	200	200	3,000	400	6, 000	1,000	61 or MDL
indeno(1,2,3-cd) pyrene	5,000	5,000	200	200	3,500	400	6, 000	5,600	3,200
dibenz (a,h)anthracene	1,000	ND	ND	ND	800	100	1,000	560	14 or MDL

- 1 Results represented as micrograms per kilogram (ug/kg)
- 2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
- 3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)
- ND None Detected

MDL - Method Detection Limit

Bold indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046

Metals detected in the surface soil samples include the following:

TABLE 5.3C Detected Metals in Surface Soils (Entrix 2004)

	1D1212 3.	~ ~		1,10,000		ice boils	/					
PARAMETERS ¹	SSB-1	SSB-2	SSB-3	SSB-4	SSB-5	SSB-6	SSB-7	SSB-8	SSB-9	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	NYSDEC SOIL OBJECTIVES ³ (ppm)	EASTERN USA Back- ground (ppm)
aluminum	9,940	14,400	10,000	10,500	15,600	9,090	13,000	7,510	6,090	N/A	SB	33,000
arsenic	5.75	5.55	5.31	4.83	3.31	2.43	3.16	3.19	2.79	16	7.5 or SB	3-12
barium	65.8	102	53.6	52	112	59	72.8	51.3	60.5	400	300 or SB	15-600
cadmium	0.43 J	0.38 J	0.30 J	0.26 J	0.35 J	0.29 J	0.31 J	0.25 J	0.43 J	43	1 or SB	0.1-1
calcium	45,000	5,580	99,500	35,600	22,500	141,000	22,800	28,200	40,300	N/A	SB	130-35,000
chromium	13.8	16.7	11.6	14.4	19.7	11.4	15.8	10.1	48.5	110	10 or SB	1.5-40
cobalt	5.02	5.54	4.28	5.26	6.92	4.02	6.01	4.61	3.61	NA	300 or SB	2.5-600
copper	21.9	10.8	9.75	9.61	11	10.1	12.6	8.81	12.8	270	25 or SB	1-50
iron	15,400	17,200	13,900	14,100	17,800	10,200	15,700	10,200	10,700	N/A	2,000 or SB	N/A
lead	31.8	23.8	26.6	20.4	14.5	11.7	18.8	14.5	15.4	400	SB	200-500
magnesium	22,400	3,400	23,800	18,700	8,280	14,300	10,800	13,500	19,200	N/A	SB	100-5,000
manganese	404	472	432	420	431	591	428	561	370	2,000	SB	50-5,000
nickel	11.7	12	8.71	10.4	14.8	8.99	12.9	8.51	9.68	310	13 or SB	0.5-25
potassium	2,490	2,600	2,450	2,550	2,880	2,470	2,800	1,730	1,750	N/A	SB	8,500-43,000
sodium	263	200	212	146	200	223	281	244	234	N/A	SB	6,000-8,000
vanadium	19.4	27.4	18.8	21.3	29.9	18	25.3	16.6	14	N/A	150 or SB	1-300
zinc	7.6	91.9	54.8	53.4	69.1	55.5	78.5	67.2	246	10,000	20 or SB	9-50

- 1 Results represented as milligrams per kilogram (mg/kg)
- 2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
- 3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)
- $ND-None\ Detected$

SB - Site Background

Bold indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046

IADDE 3.3D Detected Metals in Surface Sons (Du Engineers 2000)	TABLE 5.3D	Detected Metals in	Surface Soils (Lu Engineers 2006)
--	------------	---------------------------	-----------------	--------------------

PARAMETERS ¹	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	NYSDEC SOIL OBJECTIVES ³ (ppm)	EASTERN USA Background ³ (ppm)
aluminum	7,370	7,370	6,420	7,960	3,650	4,440	3,520	N/A	SB⁴	33,000
arsenic	4.54	4.20	6.31	4.21	7.71	7.03	ND	16	7.5 or SB	3-12
barium	78.3	63.5	58.5	62.1	34.5	43.4	31.7	400	300 or SB	15-600
cadmium	2.54	2.22	1.82	1.86	1.56	ND	ND	43	1 or SB	0.1-1
calcium	9,980	11,800	22,900	10,000	35,500	21,500	17,400	N/A	SB	130-35,000
chromium	12.4	11.4	9.33	10.5	6.52	6.57	7.55	110	10 or SB	1.5-40
copper	21.4	17.2	15.6	16.3	14.4	11.9	21.7	270	25 or SB	1-50
iron	12,200	11,800	11,900	12,800	8,800	8,160	6,550	N/A	2,000 or SB	N/A
lead	32.7	32.7	15.9	16.6	13.0	9.16	16.7	400	SB	200-500
magnesium	5,810	5,850	9,840	3,960	18,600	9,230	8,120	N/A	SB	100-5,000
manganese	285	400	339	536	360	284	150	2,000	SB	50-5,000
nickel	10.5	ND	10.1	8.90	ND	ND	ND	310	13 or SB	0.5-25
potassium	812	1,030	790	701	615	592	502	N/A	SB	8,500-43,000
selenium	ND	2.41	ND	4.19	ND	ND	ND	180	2 or SB	0.1-3.9
sodium	ND	ND	ND	ND	334	323	453	N/A	SB	6,000-8,000
vanadium	16.0	15.3	14.3	17.4	10.4	10.1	ND	N/A	150 or SB	1-300
zinc	176	168	85.0	92.4	192	63.1	531	10,000	20 or SB	9-50

¹ Results represented as milligrams per kilogram (mg/kg)

Bold indicates parameter detected above Part 375 RCU Guidance Value and TAGM 4046

A review of the surface soil analytical results noted above shows the following information:

- VOC analytical results from these samples did not identify any compounds detected at levels above RCU Guidance Values or RSCOs in TAGM 4046.
- SVOCs were detected above RCU Guidance Values and RSCOs at four of the Lu Engineers surface soil sample locations and one of the Entrix locations: SS-01, SS-02, SS-05, SS-07, and SSB-9.
- The SVOCs found above guidance levels are PAHs. The highest PAH concentrations were detected in SS-07 and SSB-9 on the northeastern portion of the storm water retention basin, closest to the drainage inlet.
- Metals were not detected at concentrations above RCU Guidance values or RSCOs in any of the surface samples collected by Lu Engineers and Entrix.

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

SB - Site Background

5.3.2 Subsurface Soils

A total of 29 subsurface soil samples were collected at the Site. 26 soil samples were collected by Entrix in 2004, and three(3) subsurface soil samples were collected from well borings by Lu Engineers, in 2006. Sample locations are shown on Figure 5.

No elevated PID readings were observed in borings MW-JCL-01 or MW-JCL-03. Elevated PID readings were observed in soil boring MW-JCL-02 between 1.8 and 8 feet bgs. PID readings in this interval ranged from 32 parts per million (ppm) beginning at 1.8 feet to 127 ppm (the highest reading observed) at approximately 7 feet bgs. At 8 feet bgs, PID readings dropped to 1 ppm.

Lu Engineers soil samples were analyzed for the following parameters:

- VOCs + TICs (EPA Method 8260B)
- SVOCs + TICS (EPA Method 8270C)
- Metals (EPA Method 6010B and 7471A)

VOCs were detected in subsurface soil samples by Lu Engineers and Entrix below applicable guidance values (Part 375 RCU and TAGM 4046), as shown in the following tables.

Detected VOCs in Subsurface Soils (Entrix 2004) TABLE 5.3E

PARAMETERS ¹	MW-1 (2-4')	MW-1 (18-	MW-3 (4-6')	MW-3 (18-20')	MW-22 (2-4')	SB-A (2-4')	SB-B (6-8')	SB-C (6-8')	SB-D (2-4')	SB-E (6-8')	SB-F (2-4')	SB-G (0-2')	SB-H (4-6')	6 NYCRR Part 375	REC. SOIL CLEANUP
		20')												Restricted	OBJECTIVES'
														Use ² (ppb)	(add)
MTBE	8	QN	0.9 J	QN	2 J	QN	Q.	QN	QN	QN	ND	ND	ND	500,000	N/A
Methylene Chloride	QN	Q	Ð	Ð	3.5	3 J	3.5	Ð	QN	QN	Ð	Ð	QN ON	500,000	100
1,1-dichloroethane	QX	QN	Ð	QN	QN	QN	Ð	3.5	QN	13	QN Q	Ð	<u>R</u>	240,000	100
Cis-1,2-DCE	10	Q	17	1.3	QN	QN	Ð	99	QN	190	QN	Q.	QN	500,000	300
Benzene		QN	ND	ND	QN	ND	ND	QN	QN	0.8 J	ND	ND	ND	44,000	09
Trichloroethene	QN	QN	81	QN	QN	QN	ND ND	ND	ND	ND	ND	ND	ND	200,000	700
Toluene	24	Ð	Ð.	1.3	QN	QN	ND	ND	ND	ND	2 J	ND	1 J	500,000	1,500
Tetrachloroethene	QZ	Ð	QN	QN	QN	QN	QN	5	ND	QN	ND	ND	QN	150,000	1,400
Ethylbenzene	21	QN	ND	ND	ND	ON	ND	ND	ND	ND	7	ND	ND	390,000	5,500
Acetone	46	QΝ	12 J	ND	8 J	ND	ND	ON	ND	ND	32	39	QN	500,000	200
2-butanone	15	QN	QN	QN	QN	Q.	ND	QN	QN	ND	10 J	6	ND	500,000	300
4-methyl-2-pentanone	N N	QN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A	1,000
Xylene	190	QΝ	QN	1 J	ND	ND	ND	QN	ND	ON	110	ND	ND	500,000	1,200
Methylcyclohexane	3.5	QN	QN	QN	ND	ND	ND Q	ND	QN	ND	2 J	ND	ND	N/A	N/A
Isopropylbenzene	3 J	QN	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	ND	N/A	N/A

1 Results represented as micrograms per kilogram (ug/kg)
2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, I/94)
ND – None Detected
N/A- Not Applicable

Detected VOCs in Subsurface Soils (Entrix 2004) TABLE 5.3E, Con't

PARAMETERS ¹	SB-I (6-8')	SB-J (2-4')	SB-K (2-4")	SB-L (2-4')	SB-M (2-4')	SB-N (2-4')	SB-0 (2-4')	SB-P (0-2')	SB-Q (4-6')	SB-R (2-4')	SB-S (2-4')	SB-T (2-4')	6 NYCRR Part 375 Restricted	REC. SOIL CLEANUP OBJECTIVES ³
													Commercial Use ² (ppb)	(qdd)
MTBE	QN	QN	QN.	QN	QN	Ð	Ð.	QN	QN	ND	ON	ND	500,000	N/A
Methylene Chloride	QN	Ð	£	Ð	QN	QN.	3.5	ND	ND	4 J	3 J	3 J	500,000	100
1,1-dichloroethane	QN	Q.	Ð	QN	ND	QN O	ON ON	QN	ON.	ND	ND	ND	240,000	100
Cis-1,2-DCE	QN	Ð	Ð	Q.	QN	2.5	ND	QN	QN	QN	QN	QN	500,000	300
Benzene	QN	Ð	Ð	QN	QN	ND	ON	ND	ND	ND	ND	ND	44,000	09
Trichloroethene	QN	QN	QN	ND	2.5	QN	ND	ND	9	ND	2.3	2.1	200,000	700
Toluene	QN	Ð	Ð	QN	QN	QN	QN	1.1	ND	QN	QN	ND	500,000	1,500
Tetrachloroethene	QN	QN	ND ND	QN	20 J	ND	ND	ND	30	ND	15	15	150,000	1,400
Ethylbenzene	QN	Ð	Ð	QN	ND ND	ND	QN	ND	ND	ND	ND	ND	390,000	5,500
Acetone	QN	8 J	ND	ND	ND	130	17 J	11.3	ND	40	8 J	8 J	500,000	200
2-butanone	QN	ND	ND	ND	ND	42	ND	ND	ND	11.5	QN	ND	500,000	300
4-methyl-2-pentanone	ND	QN	QN	QN	ND	3 J	N	ND	ND	ND	3 J	ND	N/A	1,000
Xylene	QN	QN	QN	ND	QN	ON	ND	ND	QN	QN	QN	ND	500,000	1,200
Methylcyclohexane	QN	Q.	QN	QN	ND	QN	ON	ND	ND	ND	ND	ND	N/A	N/A
isopropylbenzene	QN	QN	QN	ND	QN	ND	ND	ND	QN	QN	2J	ND	N/A	N/A
1 Decide representation of the	tad or min	ourome n		ilogram (ng/kg)										

1 Results represented as micrograms per kilogram (ug/kg)
2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)
ND – None Detected
N/A- Not Applicable

TABLE 5.3F Detected VOCs in Subsurface Soils (Lu Engineers 2006)

PARAMETERS ¹	MW-JCL-1 (4-6')	MW-JCL-2 (6-8')	MW-JCL-3 (3-5')	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	REC. SOIL CLEANUP OBJECTIVES ³ (ppb)
MTBE	ND	ND	ND	500,000	N/A
Methylene Chloride	6 J	ND	4 J	500,000	100
1,1-dichloroethane	ND	ND	ND	240,000	100
Cis-1,2-DCE	ND	60 J	ND	500,000	300
Benzene	ND	ND	ND	44,000	60
Trichloroethene	2 J	200 J	ND	200,000	700
Toluene	ND	ND	ND	500,000	1,500
Tetrachloroethene	2 J	400 J	ND	150,000	1,400
Ethylbenzene	ND	ND	ND	390,000	5,500
Acetone	ND	ND	ND	500,000	200
2-butanone	ND	ND	ND	500,000	300
4-methyl-2-pentanone	ND	ND	ND	N/A	1,000
Xylene	ND	ND	ND	500,000	1,200
Methylcyclohexane	ND	ND	ND	N/A	N/A
isopropylbenzene	ND	ND	ND	N/A	N/A

- 1 Results represented as micrograms per kilogram (ug/kg)
- 2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
- 3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)
- ND None Detected

N/A- Not Applicable

Low levels of SVOCs were detected in four of the Entrix soil boring samples, as summarized in the following table.

TABLE 5.3G Detected SVOCs in Subsurface Soils (Entrix 2004)

PARAMETERS ¹	SB-C (2-4')	SB-H (4-6')	SB-K (2-4')	SB-L (2-4')	6 NYCRR Part 375 Restricted Commercial Use ³ (ppb)	REC. SOIL CLEANUP OBJECTIVES ² (ppb)
benzo(a)anthracene	ND	270	240 J	40 J	1,000	224 or MDL
bis(2- ethylhexyl)phthalate	200 J	ND	110 J	900	N/A	50,000 ***
chrysene	ND	320	250 J	50 J	3,900	400
fluoranthene	ND	800 J	620	130 J	100,000	50,000 ***
pryene	71	620 J	510 J	140 J	100,000	50,000 ***

- Results represented as micrograms per kilogram (ug/kg)
- 2 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)
- 3 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

ND - None Detected

SVOCs were detected below the RCU Guidance Values in the well boring soil samples collected by Lu Engineers, in 2006, as shown in the following table.

TABLE 5.3H Detected SVOCs in Subsurface Soils (Lu Engineers 2006)

PARAMETERS ¹	MW-JCL-1 (4-6')	MW-JCL-2 (6-8')	MW-JCL-3 (3-5')	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	REC. SOIL CLEANUP OBJECTIVES ³ (ppb)
benzo(a)anthracene	200	ND	200	1,000	224 or MDL
benzo(a)pyrene	100	ND	100	1,000	61 or MDL
benzo(b)fluoranthene	200	ND	200	1,000	1,100
benzo(g,h,i)perylene	100	ND	100	100,000	50,000 ***
benzo(k)fluoranthene	70	ND	70	3,900	1,100
bis(2-ethylhexyl)phthalate	90	ND	ND	N/A	50,000 ***
carbozole	40	ND	90	N/A	N/A
chrysene	200	ND	200	3,900	400
di-n-butyl phthalate	100	70	60	N/A	8,100
fluoranthene	460	ND	600	100,000	50,000 ***
indeno(1,2,3-cd)pryene	100	ND	100	500	3,200
phenanthrene	200	ND	300	100,000	50,000 ***
Pryene	300	ND	400	100,000	50,000 ***

Results represented as micrograms per kilogram (ug/kg)

Metals were detected in subsurface soils below the RCU Guidance Values, as shown in the following tables.

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

N/A- Not Applicable

MDL- Method Detection Limit

^{***} As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm.

Metals in Subsurface Soils (Entrix 2004) TABLE 5.31

		-												
Parameters ¹	MW-22 (2-4')	SB-A (2-4')	SB-B (6-8')	SB-C (2-4')	SB-C (6-8')	SB-D (2-4')	SB-E (6-8')	SB-F (2-4')	SB-G (0-2")	SB-H (4-6')	SB-I (6-8°)	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	REC. SOIL CLEANUP OBJECTIVES ³ (ppm)	EASTERN USA Back-ground (ppm)
aluminum	7,330	6,670	7,190	13,800	6,410	16,900	6,720	13,600	9,320	8,610	6,760	NA	SB	33,000
arsenic	1.33	1.97	1.36	6.29	1.32	3.39	1.74	3.04	2.7	2.2	1.86	16	7.5 or SB	3-12*
barium	9.09	51	46.6	63.7	61.3	71.6	49.3	65.5	43	50.5	57.7	400	300 or SB	15-600
calcium	67,300	29,600	005'09	8,030	64,200	6,910	61,600	28,500	27,300	48,800	56,200	NA	SB	130-35,000
chromium	9.29	8.71	9.16	14.2	7.85	18.7	6	14.9	11	11.1	6.77	400 or 1,500	10 or SB	1.5-40**
cobalt	3.9	3.99	3.63	6.15	3.46	6.75	3.69	6.72	4.29	4.17	3.92	NA	300 or SB	2.5-600
copper	9.74	9.84	9.26	9.41	8.17	10.7	8.71	13.4	6.6	9.18	8.47	270	25 or SB	1-50
iron	12,100	10,900	11,00	16,600	10,500	18,000	10,800	16,100	12,600	11,200	10,400	NA	2,000 or SB	2,000-550,000
lead	5.91	6.35	5.93	24.1	5.42	20.8	5.91	14.1	8.29	9.19	4.66	1,000	SB	**
magnesium	35,100	23,000	24,400	5,590	27,000	6,020	23,900	15,400	13,800	19,500	20,200	NA	SB	100-5,000
manganese	293	303	278	395	288	270	301	363	318	332	311	10,000	SB	50-5,000
nickel	8.87	7.93	8.09	10.9	7.07	14.2	8.31	13.1	10.7	8.95	8.72	310	13 or SB	.5-25
potassium	2,850	2,150	2,560	2,090	2,040	2,540	2,060	2,810	2,450	2,570	2,320	NA	SB	8,500-43,000
sodium	246	234	233	176	786	200	250	407	149	203	230	NA	SB	6,000-8,000
vanadium	15.3	15.4	16.1	25.5	14.2	30	15.2	24.2	17.6	18	16.6	NA	150 or SB	1-300
zinc	58.3	50.9	48	68.3	51.7	6.07	6.69	67.3	87.3	69.4	47.5	10,000	20 or SB	05-6
_	Results represented as milliorams per kilogran	resented	as million	ams ner k		n (mg/kg)								

Results represented as milligrams per kilogram (mg/kg)
Restricted Commercial Use Guidance Values (6 NYCRR Part 375-6)
Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm. 1 Results represented as milligrams per kilogram
2 Restricted Commercial Use Guidance Values (()
3 Recommended Soil Cleanup Objectives (NYSL
ND – None Detected
SB – Site Background
* NYS Background
** NYS Background (NYSDEC TAGM 4046)
** Background levels for lead vary widely. Average

Metals in Subsurface Soils (Entrix 2004) TABLE 5.31 Con't

PARAMETERS!	SB-J (2-4')	SB-K (2-4")	SB-L (2-4')	SB-M (2-4")	SB-N (2-4')	SB-0 (2-4")	SB-P (0-2")	SB-Q (4-6')	SB-R (2-4')	SB-S (2-4')	SB-T (2-4')	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	REC. SOIL CLEANUP OBJECTIVES ³ (ppm)	EASTERN USA Back-ground (ppm)
aluminum	7,040	8,210	7,200	7,040	7,050	6,870	9,800	7,160	12,800	6,190	6,890	NA	SB	33,000
arsenic	1.83	1.51	1.56	1.41	1.43	1.3	2.56	14.1	3.82	1.37	1.83	16	7.5 or SB	3-12*
barium	52.1	50.3	35.2	42.4	44.9	71.7	50.1	47.9	8.65	38.1	37.9	400	300 or SB	15-600
calcium	71,000	57,500	53,700	58,500	58,300	58,300	60,200	54,100	32,900	68,400	50,600	NA	SB	130-35,000
chromium	9.25	10.2	9.53	8.56	19.6	19.6	21.1	18.6	14.1	7.92	8.47	400 or 1,500	10 or SB	1.5-40**
cobalt	3.95	3.97	3.6	3.56	4.4	4.02	4.93	3.71	5.51	3.23	3.8	NA	300 or SB	2.5-600
copper	9.28	9.02	19.6	9.03	29.6	8.34	9.75	9.04	12.2	8.29	11.2	270	25 or SB	1-50
iron	12,000	12,500	11,000	10,800	12,400	11,400	12,500	11,200	16,100	10,100	12,800	NA	2,000 or SB	2,000-550,000
lead	4.57	5.45	5.56	5.91	6.32	3.97	10	5	16.3	5.7	5.7	1,000	SB	**
magnesium	25,800	26,200	20,000	27,300	21,500	17,500	30,500	20,600	16,300	38,500	20,500	NA	SB	100-5,000
manganese	298	303	304	304	320	321	334	277	415	305	307	10,000	SB	50-5,000
nickel	8.42	9.18	8.22	19.7	9.74	9.14	15.5	8.14	12	6.39	8.59	310	13 or SB	.5-25
potassium	1,840	3,110	2,310	2,150	1,820	1,960	3,120	2,330	2,7500	1,900	1,870	NA	SB	8,500-43,000
sodium	207	240	385	240	349	576	200	247	253	343	254	NA	SB	6,000-8,000
vanadium	14.9	16.7	16.4	14.8	16.5	15.6	18.1	16.4	23.1	14.4	16.5	NA	150 or SB	1-300
zinc	45	44.3	45.1	48.9	67.3	36.5	58.8	49.2	65	42.6	57	10,000	20 or SB	9-50
	Results represented as millionams ner kilogram	recented	as millior	1 reu sue.	11 -	(ma/ka)								

Results represented as miligrams per knogram (ung Ng)

Restricted Commercial Use Guidance Values (6 NYCRR Part 375-6)

Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND—None Detected

SB—Site Background

* NYS Background (NYSDEC TAGM 4046)

** Background (NYSDEC TAGM 4046)

** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Bold indicates compound above Recommended Cleanup Objectives/ Eastern USA Background

8,500-43,000

6,000-8,000

1-300

SB

150 or SB

PARAMETERS1 MW-JCL-1 MW-JCL-2 REC. SOIL MW-JCL-3 6 NYCRR Part 375 EASTERN USA (4-6')(6-8')(3-5') Restricted **CLEANUP** Back-ground Commercial Use² OBJECTIVES3 (ppm) (ppm) (ppm) aluminum 8,190 4,470 3,660 NA 33,000 SB4.09 2.29 2.44 3-12* arsenic* 16 7.5 or SB 44.8 400 barium* 92.8 44.4 300 or SB 15-600 SB calcium 22,800 61,200 67,100 NA 130-35,000 400 or 1,500 10 or SB chromium* 13.2 6.54 5.53 1.5-40** 6.06 ND ND 300 or SB 2.5-600 cobalt 270 15.7 10.5 10.2 25 or SB 1-50 copper 14,300 8,690 7,510 NA 2,000 or SB 2,000-550,000 iron 6.10lead* 12.1 8.35 1,000 SB 9,630 22,800 28,100 SB 100-5,000 magnesium NA 10,000 manganese 619 280 286 SB50-5,000 12.6 7.08 310 13 or SB 7.41 .5-25 nickel

860

7.54

49.1

TABLE 5.3J Metals in Subsurface Soils (Lu Engineers 2006)

1,090

10.1

134

potassium

vanadium

zinc

948

16.8

63.5

NA

NA

NA

A review of the subsurface soil analytical results noted above shows the following information:

- No VOCs were detected in subsurface soils above the RCU Guidance Values or RSCOs in TAGM 4046.
- PAH compounds were detected at concentrations above TAGM 4046, but below the RCU Guidance Values.
- Calcium, magnesium, and zinc were detected above Eastern USA Background levels at most of the sample locations, however, no metals were detected above the RCU Guidance Values.

5.4 Groundwater Sampling Results

Groundwater samples were collected during three rounds of sampling. On August 19, 2004, Entrix collected groundwater samples from six of the on-site monitoring wells, that were either installed by Entrix (MW-21 and MW-22) or upgraded from existing Sear-Brown Group monitoring wells (MW-1, MW-3, MW-6, and MW-13). On November 17-18, 2006 and June 14-15, 2007, Lu Engineers collected groundwater samples from all nine groundwater monitoring wells. Samples were collected using disposal polyethylene bailers attached to new polyethylene twine.

¹ Results represented as milligrams per kilogram (mg/kg)

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375-6)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

SB - Site Background

^{*} NYS Background (NYSDEC TAGM 4046)

^{**} Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

Groundwater samples were analyzed for VOCs (EPA Method 8260B) and SVOCs (EPA Method 8270C). VOCs were detected at concentrations above NYS groundwater standards and guidance values, as shown on the following tables.

TABLE 5.4A Detected VOCs in Groundwater (Entrix 2004)

PARAMETERS ¹	MW-1	MW-3	MW-6	MW-13	MW-21	MW-22	Groundwater Standards Criteria ² (ppb)
vinyl Chloride	5	ND	ND	ND	ND	ND	2
chloroethane**	2	ND	ND	ND	ND	ND	5
acetone	ND	ND	ND	9	10	ND	50 [*]
carbon disulfide	ND	ND	ND	1	1	ND	60*
trans-1,2-Dichloroethene**	1	1	ND	ND	ND	ND	- 5
1,1-Dichloroethane**	12	1	ND	ND	ND	ND	5
cis-1,2-Dichloroethene**	340	360	ND	1	0.9	ND	5
chloroform	ND	ND	ND	ND	0.9	ND	7
benzene	0.8	ND	ND	ND	0.6	ND	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	0.6
trichloroethene**	3	50	16	ND	ND	ND	5
tetrachloroethene**	ND	35	51	ND	ND	ND	5
dichlrordifluoromethane	3J	6	8	ND	ND	ND	5
Xylenes**	ND	ND	ND	0.9	ND	ND	5

Detected VOCs in Groundwater (Lu Engineers 2006 & 2007) **TABLE 5.4B**

PARAMETERS ¹	MW- 1 (2006)	MW- 1 (2007)	MW- 3 (2006)	MW- 3 (2007)	MW- 6 (2006)	MW- 6 (2007)	MW- 22 (2006)	MW- 22 (2007)	MW- JCL- 1 (2006)	MW- JCL- 2 (2006)	MW- JCL- 2 (2007)	MW- JCL- 3 (2006)	MW- JCL- 3 (2007)	Groundwater Standards Criteria ² (ppb)
vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	2						
chloroethane**	ND	ND	ND	ND	ND	ND	ND	5						
acetone	ND	ND	19	ND	ND	ND	ND	50*						
carbon disulfide	ND	ND	ND	ND	ND	ND	ND	60*						
trans-1,2-DCE**	ND	ND	ND	ND	ND	ND	ND_	5						
1,1-Dichloroethane**	ND	ND	ND	ND	ND	ND	ND	5						
cis-1,2-DCE	860	620	320	310	ND	ND	ND	ND	ND	560	60	10	ND	5
chloroform	ND	ND	ND	ND	ND	ND	ND	7						
benzene	ND	ND	ND	ND	ND	ND	ND	1						
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	0.6						
trichloroethene**	10	20	270	360	8	8	ND	ND	ND	360	42	17	ND	5
tetrachloroethene**	ND	10	300	470	26	35	ND	ND	ND	170	32	7	ND	5
dichlrordifluoromethane	ND	ND	ND	ND	ND	ND	ND	5						
xylenes*	ND	ND	ND	ND	ND	ND	ND	5						

Bold indicates compound above NYS Groundwater Standards.

Results represented as micrograms per liter (ug/l) Ambient Groundwater Standards (6 NYCRR 703.5)

Groundwater Guidance Value (NYSDEC TOGS 1.1.1)

ND-None Detected

The NYSDEC collected split samples for VOC analysis. Lu Engineers assisted the NYSDEC in collecting these samples in November 2006. The analytical results from the split samples are generally consistent with the VOC results shown above. The analytical results are included in Appendix D.

Groundwater samples collected by Entrix in 2004 identified one SVOC at a concentration above the NYS Groundwater Standards and one SVOC was detected in groundwater samples collected by Lu Engineers in 2006 at a level above the NYS Groundwater Standards, as shown in the following tables.

TABLE 5.4C Detected SVOCs in Groundwater (Entrix 2004)

PARAMETERS ¹	MW-1	MW-3	MW-6	MW-13	MW-21	MW-22	Groundwater Standards Criteria ² (ppb)
isophorone	ND	ND	ND	ND	ND	ND	50*
di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	50
bis (2-ethylhexyl) phthalate	ND	ND	ND	ND	ND	ND	5
di-n-octyl phthalate	ND	ND	ND	ND	3	4	50 [*]
(3+4)-methylphenol	ND	ND	ND	2	ND	ND	1***

- 1 Results represented as micrograms per liter (ug/l)
- 2 Ambient Groundwater Standards (6NYCRR 703.5)
- ND -None Detected
- * Groundwater Guidance Value (NYSDEC TOGS 1.1.1)
- ** Principal Organic Contaminant (6NYCRR 700.1)
- *** Total Phenols Standard is 1 ppb (6NYCRR 703.5)

Bold indicates compound above NYS Groundwater Standards.

TABLE 5.4D Detected SVOCs in Groundwater (Lu Engineers 2006)

PARAMETERS ¹	MW- 1	MW- 3	MW- 6	MW- 13	MW- 21	MW- 22	MW- JCL-1	MW- JCL-2	MW- JCL-3	Groundwater Standards Criteria ² (ppb)
isophorone	2	ND	ND	ND	ND	ND	ND	ND	ND	50*
di-n-butyl phthalate	ND	ND	2	2	2	2	ND	ND	ND	50
bis (2-ethylhexyl) phthalate	3	2	2	8	3	3	ND	ND	ND	5
di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	50*
(3+4)-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	1***

¹ Results represented as micrograms per liter (ug/l)

Bold indicates compound above NYS Groundwater Standards

² Ambient Groundwater Standards (6NYCRR 703.5)

ND -None Detected

^{*} Groundwater Guidance Value (NYSDEC TOGS 1.1.1)

^{**} Principal Organic Contaminant (6NYCRR 700.1)

IADLE 5.4E	Detecte	<u>u 3 v O (</u>	S III G	rounuw	ater (Li	i Engine	ers zuu/	<u> </u>		
PARAMETERS ¹	MW- 1	MW- 3	MW- 6	MW- 13	MW- 21	MW- 22	MW- JCL-1	MW- JCL-2	MW- JCL-3	Groundwater Standards Criteria ² (ppb)
isophorone	ND	ND	ND	ND	ND	ND	ND	ND	ND	50*
di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
bis (2-ethylhexyl) phthalate	ND	ND	ND	ND	ND	ND	2	ND	ND	5
di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	50*
(3+4)-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	1***

TABLE 5.4E Detected SVOCs in Groundwater (Lu Engineers 2007)

Bold indicates compound above NYS Groundwater Standards.

A summary of the groundwater analytical results provides the following information:

- VOCs detected in groundwater above NYS Standards are solvents and breakdown products of solvents formerly used at the facility.
- The highest levels of VOCs were found in MW-01, MW-03, and MW-JCL-02 located near the southwest corner of the building.
- TCE and PCE have remained elevated in MW-1, which is located in the vicinity of the former solvent storage area and used oil AST; and in MW-6 which is located within the central portion of the main building.
- Apparent increases in PCE in MW-3, MW-6, and MW-1 may be due to varying groundwater elevations.
- SVOCs bis(2-ethylhexyl)phthalate (a.k.a. DEHP) and (3+4)- methlyphenol were detected above NYS Groundwater Standards in MW-13, located south of the building. It is noted that DEHP is widely used as a plasticizer in the manufacture of PVC, and may have originated from protective gloves worn during sampling and/or analysis.

5.5 Soil Vapor Intrusion Sampling Results

Two rounds of soil vapor intrusion sampling were completed during the investigation. In August 2004, Entrix collected eight (8) sub-slab soil gas samples (SG-1 thru SG-8) from beneath the floor of the main building and office areas as well as two (2) ambient air samples (SG-9 and SG-10). The samples were collected over an 8-hour period in Summa canisters and analyzed for VOCs via Method TO-15.

The results were compared to the NYSDOH decision matrices in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006)*, and are summarized in the following table.

³ Results represented as micrograms per liter (ug/l)

⁴ Ambient Groundwater Standards (6NYCRR 703.5)

ND -None Detected

^{*} Groundwater Guidance Value (NYSDEC TOGS 1.1.1)

^{**} Principal Organic Contaminant (6NYCRR 700.1)

Table 5.5A	Soil Vapor	Intrusion S	Sample Results	(Entrix- August 2004)

Table 3.3A	~ ~ ~	, ap	or therasion	Juni	or itesuits	(Lineria 11	ugust 200	""		
Parameter	SG-1 ¹	SG-2	SG-3	SG-4	SG-5	SG-6	SG-7	SG-8	SG-9 (Indoor Air)	SG-10 (Outdoor Air)
Carbon Tetrachloride	19 J	74 J	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene (TCE)	199	32 J	ND	32 J	ND	1 J	32	32	3 J	ND
Vinyl Chloride ²										
Recommended Action ³ (Matrix 1)	Mitigate	Mitigate	Take reasonable and practical actions to identify source and reduce exposures	Monitor	Take reasonable and practical actions to identify source and reduce exposures	Take reasonable and practical actions to identify source and reduce exposures	Monitor	Monitor	44.70	
Tetrachloroethene (PCE)	163	285	54	122 J	129 J	7	81	61	20	ND
1,1,1-Trichloroethane (TCA)	11 J	44 J	33	27 J	44 J	ND	5	5	ND	ND
Cis-1,2-dichloroethene (cis-1,2-DCE)	75	40 J	ND	ND	ND	ND	8	4	0.8 J	ND
1,1-dichloroethene (1,1-DCE)	:									
Recommended Action ⁴ (Matrix 2)		Monitor/ Mitigate	Take reasonable and practical actions to identify source and reduce exposures	Monitor/ Mitigate	Monitor/ Mitigate	Take reasonable and practical actions to identify source and reduce exposures	Take reasonable and practical actions to identify source and reduce exposures	Take reasonable and practical actions to identify source and reduce exposures	- -	

Results shown in micrograms per cubic meter (ug/m³)

ND= Not detected at or above the limit of quantitation

J= Estimated value, the result is > the method detection limit and < the quantitation limit

- 1- SG-1 thru SG-8 are sub-slab samples
- 2- Vinyl Chloride was not included in the list of analytes.
- 3- Recommended actions based on NYSDOH Soil Vapor/Indoor Air Matrix 1 for TCE, Carbon Tetrachloride, and Vinyl Chloride
- 4- Recommended actions based on NYSDOH Soil Vapor/Indoor Air Matrix 2 for PCE, TCA, cis-1,2-DCE, and 1,1-DCE

<u>Note</u>: Laboratory analytical data from the vapor intrusion sampling was not provided by Entrix, therefore, Lu Engineers cannot certify the accuracy of the reported values. The results presented in this section are based on data provided in a results table prepared by Entrix (Appendix X). Results for vinyl chloride and 1,1-dichloroethene were not provided.

At the request of the NYSDEC, a second round of vapor intrusion sampling was performed by Lu Engineers in April 2007. Three (3) sub-slab vapor samples (SVS-JCL-01 thru -03) were collected from beneath the floor of the main building, along with three concurrent indoor air (IA-JCL-01 thru -03) and one outdoor air sample (OA-JCL-04), as shown of Figure 6. The sample locations were based on the location of building footers and an evaluation of the reported Entrix sub-slab soil vapor and indoor air results from 2004. The soil vapor samples, indoor air samples and the outdoor sample were collected and analyzed in accordance with the document entitled "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New

York" dated October 2006 and NYSDEC's letter of February 21, 2007 regarding vapor intrusion.

These samples were sent to Centek Laboratories, Inc. for analysis of VOCs via Method TO-15. Results were compared to the NYSDOH decision matrices in the *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006)*, and are summarized in the following table.

TABLE 5.5B Soil Vapor Intrusion Sample Results (Lu Engineers- April 2007)

					(Da Dugu			
PARAMETERS	SVS¹- JCL-01	IA ² - JCL-01	SVS¹- JCL-02	IA ² - JCL-02	SVS ¹ - JCL-03	IA ² - JCL-03	OA ³ - JCL-04	OSHA TWA ⁶
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	10,000
Trichloroethene (TCE)	0.765	0.546	16.4	6.39	45.3	6.39	ND	537,000
Vinyl Chloride	ND	ND	ND	ND	12.0	ND	ND	1,000
Recommended Action ⁴ (Matrix 1)	Take reasonable and practical actions to identify source(s) and reduce exposures		Mitigate		Mitigate			NA
Tetrachloroethene (PCE)	3.31	1.17	86.9	11.9	31.0	11.9	ND	25,000
(TCA)	ND	ND	26.6	1.11	41.0	1.39	ND	N/A
Cis-1,2-dichloroethene (cis-1,2-DCE)	ND	ND	0.443 J	ND	1,570	ND	ND	N/A
1,1-dichloroethene (1,1- DCE)	ND	ND	ND	ND	2.54	ND	ND	N/A
Recommended Actio ⁵ (Matrix 2)	identify so	onable and actions to urce(s) and xposures	practical identify so	onable and actions to ource(s) and exposures	Miti	gate		

Results shown in micrograms per cubic meter (u/m³)

ND= Not detected at or above the limit of quantitation

J= Estimated value, the result is > the method detection limit and < the quantitation limit

- 1 Sub-slab soil vapor sample
- 2 Indoor ambient air sample
- 3 Outdoor air sample
- 4 Recommended actions based on NYSDOH Soil Vapor/Indoor Air Matrix 1 for TCE, Carbon Tetrachloride, and Vinyl Chloride
- 5 Recommended actions based on NYSDOH Soil Vapor/Indoor Air Matrix 2 for PCE, TCA, cis-1,2-DCE, and 1,1-DCE
- 6 OSHA Permissible Exposure Limits based on an 8-hour time weighted average (TWA). NOTE: OSHA PELs are generally applicable only when the chemical is actively used at the facility.

Results of the soil vapor intrusion sampling reveal the following information:

- The highest sub-slab concentrations of TCE were detected in SVS-JCL-03 and SG-1, which are located in the southwest corner of the building, near the former solvent storage area.
- TCE was detected in groundwater samples from nearby wells MW-01, MW-03, and MW-JCL-02. TCE was also detected at low levels in soil samples MW-3, SB-C, SB-M, SB-Q, and SB-T collected by Entrix in 2004.

- TCE was not identified in any of the products inventoried by Lu Engineers in April 2007.
- Vinyl chloride was detected in one sample (SVS-JCL-03), located in the southwest corner of the building. This compound was not detected in the indoor air samples and was not found in any of the products inventoried by Lu Engineers in April 2007. Vinyl chloride was detected at in a nearby groundwater sample from MW-01 (Entrix 2004), but was not detected in any groundwater or soil samples collected by Lu Engineers.
- Tetrachloroethene (PCE) was detected in all of the sub-slab and indoor air samples collected by Lu Engineers and Entrix. This compound was also detected in groundwater samples from nearby wells MW-1, MW-3, MW-JCL-02, and MW-6 at concentrations above NYS groundwater standards. Low levels of PCE were detected in Entrix soil samples SB-C, SB-M, SB-Q, and SB-T and Lu Engineers soil samples from MW-JCL-1 and MW-JCL-2.
- PCE was identified in four products used in the facility during the product inventory completed by Lu Engineers in April 2007 (see Product Inventory Form, Appendix E). A 20-gallon drum of Zep Formula 300 Industrial Solvent for Cold Degreasing (containing 1,1,1-benzene, carbon tetrachloride, and PCE) was located along the western wall of the shop area. PID readings in this area were approximately 13 ppm at the time of sampling.
- Also, Napa CRC Brakleen spray, Zep Zepunch Engine Degreaser, and Yamaha Silicone Protectant & Lube spray, which contain PCE, were observed in the workshop area and parts supply room. It appears that PCE detected in the indoor air samples may be related to the use of these products within the building.
- 1,1,1-trichloroethane (TCA) was detected in sub-slab and indoor air samples located in the western portion of the building. This compound was not detected in any of the soil or groundwater samples collected by Entrix and Lu Engineers, and was not identified in any of the products inventoried by Lu Engineers in April 2007. The source of TCA in the soil vapor intrusion samples is unknown.
- Cis –1,2-dichloroethene (cis-1,2-DCE) was detected in sub-slab sample SVS-JCL-03, located in the southwest corner of the building, at a concentration of 1,570 ug/m³, but not detected in the associated indoor air sample. Lower concentrations of cis-1,2-DCE were detected in the Entrix soil vapor samples collected in the same area.
- Cis-1,2-DCE was detected above NYS groundwater standards in MW-1, MW-3, and MW-JCL-02 which are located near the southwest corner of the building. This compound was also detected at low levels in soil samples MW-1, MW-3, SB-C, SB-E, and MW-JCL-2. None of the products inventoried contain cis-1,2-DCE; therefore, it appears that the source is from impacted groundwater. NYSDOH

guidance recommends mitigation based on elevated levels in the sub-slab, even though the compound was not detected in the indoor air sample.

• 1,1-dichloroethene (1,1-DCE) was detected in sub-slab sample SVS-JCL-03 located in the southwest corner of the building. 1,1-DCE was not included in the analysis by Entrix. This compound was not identified in any of the products inventoried by Lu Engineers in April 2007 and was not detected in soil or groundwater samples collected by Lu Engineers or Entrix. The source of 1,1-DCE in the sub-slab sample is unknown.

Analytical results are included in Appendix E.

5.6 Oil/Water Separator Investigation Results

Observation of the emptied oil/water separator did not reveal evidence of cracks, leaks, or contamination. Screening tests performed by Safety-Kleen did not indicate the presence of chlorinated solvents in the contents. Records from the Village of Churchville indicate that the oil/water separator was connected to the municipal sewer system at the time of installation and continues to discharge to the sewer.

Nearby subsurface soil samples and groundwater samples from MW-6 reveal the presence of low concentrations of solvents, including TCE and PCE. Solvent concentrations are lower in this area than in the source area located near the southwest corner of the building. Low level solvents detected in Entrix soil samples SB-M, SB-Q, and SB-T were located 2-6 feet bgs. This shallow contamination may be a result of infiltration from past spills inside the building.

Based on this information, the oil/water separator is not considered to be a continuing source of contamination.

6.0 Contaminant Fate and Transport

6.1 Potential Routes of Migration

Routes of migrations that exist at the Site consist of the following.

6.1.1 Groundwater Flow

Based on the results from this and previous investigations, it is apparent that contaminated soils have impacted groundwater at the Site. These contaminants may have the ability to move with the flow of groundwater across the Site. Groundwater flow at the Site has been determined to be generally southward at a maximum rate of 1.33×10^{-2} ft/day. There is no indication that off-Site groundwater has been impacted.

6.1.2 Fugitive Dust Emissions

There is no current potential exposure to individuals from fugitive dusts at the Site. The majority of the property is paved or gravel parking lot areas, and the remainder is grass covered. During remedial activities, dust will not be generated.

6.1.3 Overland Flow

Precipitation falling on the Site has the potential to transport contaminants in two ways depending on the rate at which it falls and the surface conditions of the Site. Seeping of precipitation into the surface may transport contaminants further below the ground surface. At a higher rate of precipitation or less permeable surface conditions, contaminants may be transported by either dissolving in or being carried by surface water runoff.

PAHs and heavy metals detected in surface soils may be transported by overland flow. Surface water at the Site flows generally toward the south, and into the retention basin located in the southeast corner of the Site. Most of the Site is paved, which would facilitate overland flow of stormwater. PAHs detected in the eastern drainage ditch migrate south to the catch basin and may be carried via storm sewer into the retention basin. All catch basins located at the Site discharge into the stormwater retention basin.

Overland flow of contaminants from off-site sources may also impact the Site. PAHs deposited from vehicle emissions or asphaltic debris from adjacent roadways Main Street, Sanford Road North, and I-490 could runoff and impact surface soils in the drainage ditch and retention basin as well as accumulate in sediments in the storm drains.

Overland transport of VOCs is unlikely due to the fact that they are primarily found in Site groundwater. Sediment controls and a Stormwater Pollution Prevention Plan (SPPP) will not be implemented due to the nature of the proposed remedial actions at the Site.

6.1.4 Evaporation/Volatilization

Contaminants may volatilize and migrate through soil vapor and air during remedial activities. At the present time there is limited exposure to human health and/or the environment from evaporation/volatilization as the primary volatile contaminants are found in the subsurface. The levels of air contaminants identified during indoor-air sampling may require mitigation. No off-site air impacts were indicated by the findings of this investigation.

6.2 Contaminant Persistence

Various contaminants of concern have been identified at the Site. The persistence of these contaminants is discussed below.

6.2.1 Estimated Persistence in the Study Area

The following table indicates the Site contaminants persistence in the study area.

Table 6.1

Chemical of Concern	Physical Properties	Uses	Reaction with Water	Reaction with Air	Reaction with Soil
TCE 1	Non-flammable, colorless, odorless liquid at room temperature; sweet odor, burning taste	Solvent to remove grease from metal parts	Enters water when disposed of at chemical waste sites; persistent in groundwater; once in water will evaporate into the air; several weeks to breakdown in surface water and slower in groundwater due to evaporation rate	Enters air when disposed of at chemical waste sites; evaporates easily; about half will be broken down within a week	Persistent in soil; very little breaks down in soil; can pass from soil to groundwater
PERC ²	Sharp, sweet odor	Dry cleaning and metal degreasing	Microorganisms can breakdown some PERC in groundwater, most is evaporated into the air	Broken down by sunlight into other chemicals or brought back to the soil and water by rain	Microorganisms can breakdown some PERC in soil, most is evaporated into the air
Cis-1-2,- dichloroethene ³	Also known as 1,2- dichloroethylene- highly flammable, colorless liquid; sharp, harsh odor	Solvent in chemical mixtures	Most will evaporate into the air; can dissolve in water in soil; can contaminate groundwater; takes 13-48 weeks to break down; slight chance that it will break down into vinyl chloride, which is more toxic	Evaporates rapidly into air; takes 5-12 days for half to break down	Most will evaporate into the air; can travel through soil or dissolve in water in the soil
PAHs ⁴	NA	NA	Breakdown takes weeks to months; caused primarily by actions of microorganisms	Breakdown to longer-lasting products by reacting with sunlight and other chemicals in the air	Breakdown takes weeks to months; caused primarily by actions of microorganisms

¹ Agency for Toxic Substance and Disease Registry (ATSDR). <u>Toxicological profile for Trichloroethene</u>. 1995.

² Agency for Toxic Substance and Disease Registry (ATSDR). <u>Toxicological profile for</u> <u>Tetrachloroethene</u>. 1995.

³ Agency for Toxic Substance and Disease Registry (ATSDR). <u>Toxicological profile for Cis-1,2-</u>dichloroethene. 1995.

⁴ Agency for Toxic Substance and Disease Registry (ATSDR). <u>Toxicological profile for Polynuclear Aromatic Hydrocarbons.</u> 1995.

6.3 Contaminant Migration

The migration potential for the above chemicals under Site conditions varies. Typical migration habits of these contaminants are described below.

6.3.1 Factors Affecting Migration

Trichloroethene (TCE)

TCE enters the air and water when it is disposed of at chemical waste sites. It evaporates easily but can stay in the soil and in groundwater. Trichloroethene can pass through the soil into groundwater. TCE is broken down in the subsurface by reductive dehalogenesis into cis-1,2-DCE, vinyl chloride, and eventually ethylene.

Tetrachloroethene (PCE)

PCE evaporates easily into the air and much of the PCE that enters water or soil volatilizes into the air. In the air, it is broken down by sunlight into other chemicals or deposited back into the soil and water by precipitation. PCE is naturally broken down in the subsurface through anaerobic degredation into TCE.

Cis-1,2-Dichloroethene (cis-1,2-DCE)

Cis-1,2-Dichloroethene evaporates rapidly into air, and most cis-1,2-DCE in surface soil or water will volatilize into the air. Cis-1,2-DCE can travel through soil or dissolve in water in the soil.

PAHs

PAHs in general do not easily dissolve in water. They are present in air as vapors or adsorbed to the surfaces of small solid particles. They can travel long distances before they return to earth in rainfall or particle settling. Some PAHs evaporate into the atmosphere from surface waters, but most adsorb to solid particles and settle to the bottoms of rivers or lakes. In soils, PAHs are most likely to adsorb tightly to particles. Some PAHs evaporate from surface soils to air. Certain PAHs in soils may also contaminate groundwater.

6.3.2 Conceptual Site Model

Site contaminant impacts are apparently related to past use as an automobile dealership and maintenance facility. The Site was undeveloped agricultural land until 1986 when it was developed as an automobile dealership.

Products formerly utilized at the site include gasoline, virgin motor oil, and used oil stored in ASTs, virgin and used antifreeze, part washing solvents, automobile cleaners and waxes.

A conceptual site model for the project is outlined in the table below.

Table 6.2 Conceptual Site Model

Media	Known or Suspected Source of Contamination	Type of Contamination Identified (General)	Contaminants of Potential Concern (Specific)	Primary or Secondary Source Release Mechanism	Migration Pathways	Potential Receptors
Soil	1) Solvent storage area 2) Used oil AST	PAHs, Metals	Benzo(a) pyrene;, PAHs, cadmium	Leaks, spills, poor disposal practices	Infiltration / percolation and overland flow	Human: direct contact if excavation occurs in contaminated areas
Sediment	1) catch basins 2) storm sewers 3) road drainage	PAHs, Metals	benzo(a)pyrene, indeno(1,23-cd) pyrene, dibenz (a,h) anthracene, arsenic	Deposition of vehicle emissions, surface runoff	Overland flow	Human: direct contact if excavation occurs in contaminated areas
Groundwater	Contaminated Soil (secondary source)	Chlorinated solvents	Cis-1,2-DCE; TCE; PCE	Infiltration/ percolation from soils	Groundwater flow	Human or ecological receptors are not expected to be exposed
Air/Soil Vapor	Contaminated soil and groundwater beneath buildings	Chlorinated solvents	TCE, PCE, cis- 1,2-DCE	Volatilization of contaminated groundwater and/or soil	Soil vapor intrusion into buildings	Human: Inhalation via indoor air, and during remedial activities

Environmental investigations at the Site have revealed a source area of VOCs in groundwater near the southwest corner of the building. VOCs were also detected in sub-slab soil vapor and indoor air samples. In addition, PAHs have been detected in surface soils and sediments above RCU Guidance Values.

The presence of identified compounds is attributed to the past use of areas within the Site for solvent storage and used oil storage, in particular, the western side of the vehicle service portion of the building. This portion of the building has been utilized for various vehicle maintenance and repair activities since at least the late 1980s.

Migration of Site contaminants from the immediate vicinity of the inferred source area is not indicated by the findings of this investigation.

No private wells are located in the area of the Site. Groundwater contamination appears to be limited to the inferred source location and immediately surrounding area on-site. Exposure to contaminated soil and groundwater is not anticipated. Soil vapor intrusion sampling results have indicated exposure impacts in the interior of the western/southwestern portion of the main building. Vertical migration of detected contaminants does not appear to be occurring.

Several PAHs were detected in the stormwater retention basin. Sampling results indicate that onsite surface soils and sediments in the storm sewer system are a likely source of the PAHs found in the retention basin. The highest levels of PAHs were detected in SED-03, which receives surface run-off from the parking

area surrounding the western portion of the building. Similar PAH compounds and concentrations were detected in SSB-9 and SS-07, both located near the storm sewer discharge; therefore, indicating that PAHs have migrated from the northern portion of Site to the retention basin.

Off-site sources of PAHs may also be impacting the retention basin. Surface runoff from nearby roadways flows into the drainage ditch and retention basin at the Site. Elevated levels of PAHs and metals were detected in the eastern drainage ditch, which receives run-off from Main Street. Run-off from I-490 may also impact the basin to a lesser extent.

Within the retention basin, concentrations of PAHs were highest near the basin inlet. This data suggests that the main source of the PAHs is the storm sewer system. Recent roadway construction at the Site may have attributed to the elevated levels of PAHs within the basin due to use of heavy construction equipment, paving activities, and earthwork. Vehicle emissions or asphaltic debris may have also affected the sampling results.

7.0 Exposure Assessment

The exposure assessment evaluates the movement of the above noted compounds at the Site and identifies routes in which exposure may occur. The Site is currently in use as a truck and boat center.

7.1 Qualitative Public Exposure Assessment

The primary occurrence of Site contaminants include groundwater and soil vapor containing chlorinated solvents from historic use and storage of solvent and used oils associated with vehicle maintenance operations. PAHs have also been identified in surface soil and catch basin sediments. Resulting secondary sources of contamination include:

- Contaminated groundwater
- Contaminated subsurface soils
- Soil vapor
- Surface soils in the retention basin

Potential exposure pathways and routes of exposure at the Site include:

- Air via inhalation of vapors in indoor air and during remedial work
- Dermal contact during sampling and testing
- Dermal contact with surface soils

Given the Site's current status, dermal contact with the soils within the storm water retention basin and sediments within the catch basins is not likely. The Site is also located in a community where water is supplied by the municipality; therefore no

exposure to contaminated groundwater is indicated. In addition, there are no documented wells located within a 0.1-mile radius of the Site.

Volatilization to indoor air is a potential exposure route, as elevated levels of TCE were identified in two of the three Lu Engineer's indoor air sampling locations.

Potential exposure pathways can be mitigated during the proposed remedial phase of this project through the use of a site specific HASP. This plan was prepared for the Site prior to the commencement of investigation activities and will be amended prior to cleanup operations to prevent exposures to site workers and the public.

7.2 Environmental Exposure Assessment

The Fish and Wildlife Resources Impact Analysis Decision Key was completed for the Site as part of DER-10 and indicated that no Fish and Wildlife Impact Analysis was needed. There are no significant or navigable waterways at or adjacent to the Site. The Fish and Wildlife Resources Impact Analysis Decision Key is included in Appendix I.

8.0 Summary and Conclusions

8.1 Summary

8.1.1 Nature and Extent of Contamination

Sampling at the Site has verified the vertical and horizontal extent of identified contaminants. A Full Target Compound List scan of collected samples has verified the type of contaminants present. The extent of groundwater contamination is depicted on Figures 12, 13, and 14.

The approximate area of the Site apparently underlain by contaminated groundwater exceeding 5 ug/l is located on the southwestern portion of the interior and exterior of the main building. This area covers approximately 22,636 ft².

The apparent vertical extent of chlorinated solvent contamination in subsurface soils has been estimated based on Lu Engineers soil boring logs, sample depths and results, and previous investigation findings. Lu Engineers estimated the vertical extent of soil contamination to be approximately 9 feet bgs. Prior investigations have identified similar maximum depths of contaminant occurrence. Detectable levels of contaminants in subsurface soils have not been identified at depths greater than 9 feet bgs. The deepest borings installed to date, MW-JCL-01 (44.5 feet bgs) and MW-JCL-02 (36.0 feet bgs), indicate no occurrence of contamination at greater depths.

Groundwater and soil vapor analyses indicate that the same area is contaminated with chlorinated solvents (i.e., TCE, PCE, cis-1,2-DCE) resulting from former solvent storage in the area. It is anticipated that this area will be addressed

during remedial activities. Lu Engineers has not identified indications of substantial contaminant mobility in Site groundwater.

Elevated levels of PAHs were found in surface soils in the eastern drainage ditch and storm water retention basin. Sediments in the catch basins also contained PAHs in exceedance of RCU Guidance Values. It appears that overland flow of contaminants from parking areas and adjacent roadways has impacted the retention basin. In addition, off-site sources such as vehicle emissions and asphaltic debris from Main Street and I-490 may have attributed to the increased levels of PAHs in the retention basin.

8.1.2 Fate and Transport

Migration of TCE, PCE, and cis-1,2-DCE out of the source area has not been indicated by the findings of this investigation. This inference is supported by the low permeabilities and groundwater velocities observed to date. These compounds will breakdown naturally in the subsurface over time, however, three rounds of groundwater sampling have not revealed a significant decrease in chlorinated solvent concentrations.

Results of the soil vapor intrusion sampling indicate the migration of contaminated soil vapor into the western portion of the building. TCE and PCE easily volatilize to air from contaminated soil and groundwater and vapors may accumulate below the building slab.

Findings of this investigation indicated that PAHs from surface soils and catch basin sediments have been transported by overland flow into the onsite catch basins, through the storm sewer system, and into the stormwater retention basin. Further migration is not anticipated based on the relatively low levels of PAHs detected beyond the basin outfall. Some downward migration of PAHs into the subsurface may occur in the retention basin, but PAHs generally have low mobility in the environment. PAHs do not easily dissolve in water and adsorb tightly to soil particles. PAHs do not easily evaporate to the air.

8.1.3 Risk Assessment

The primary occurrence of Site contaminants include groundwater and soil vapor containing TCE from historic use and storage of solvent and used oils associated with vehicle maintenance operations. Resulting secondary sources of contamination include:

- Contaminated groundwater
- Contaminated subsurface soils
- Soil vapor
- Surface soils and sediment in the retention basin

Potential exposure pathways and routes of exposure at the Site include:

 Air via inhalation of vapors in indoor air or from soil/groundwater during remedial work

• Dermal contact during sampling and testing

In addition, it is noted that PAHs have been detected in the catch basins and storm water retention basin. The elevated concentrations appear to be a result of the proximity of this sample location to Main Street and Route I-490. It is possible the vehicle emissions or asphaltic debris may have biased the results.

Given the Site's current status, dermal contact with surface soils within the storm water retention basin and sediments within the catch basins is not likely. PAHs are commonly found in soils in urban and commercial areas. The Site is also located in a community where water is supplied by the municipality; therefore no exposure to contaminated groundwater is indicated. In addition, no wells were located within a 0.1-mile radius of the Site.

Volatilization to indoor air is a potential exposure route, as elevated levels of TCE were identified in two of the three Lu Engineers indoor air sampling locations.

8.2 Conclusions

8.2.1 Data Limitations

Data Usability Summary Reports (DUSR) have been prepared by MEC^x, LP to fully discuss any data limitations encountered in delineation sampling conducted to date by Lu Engineers, and is included in Appendix G.

The DUSR recommends elevating detection limits for certain metals found in Site soil/sediment samples. This recommendation does not appear to represent concern with respect to the validity of the data produced by this investigation used to define the nature and extent of Site contamination.

8.2.2 Recommended Remedial Actions

Based on the findings of this investigation, Lu Engineers recommends remedial action to address chlorinated solvents detected in groundwater at levels exceeding NYS Groundwater Standards. Chlorinated solvents in the source area shall be addressed in a forthcoming remedial action work plan.

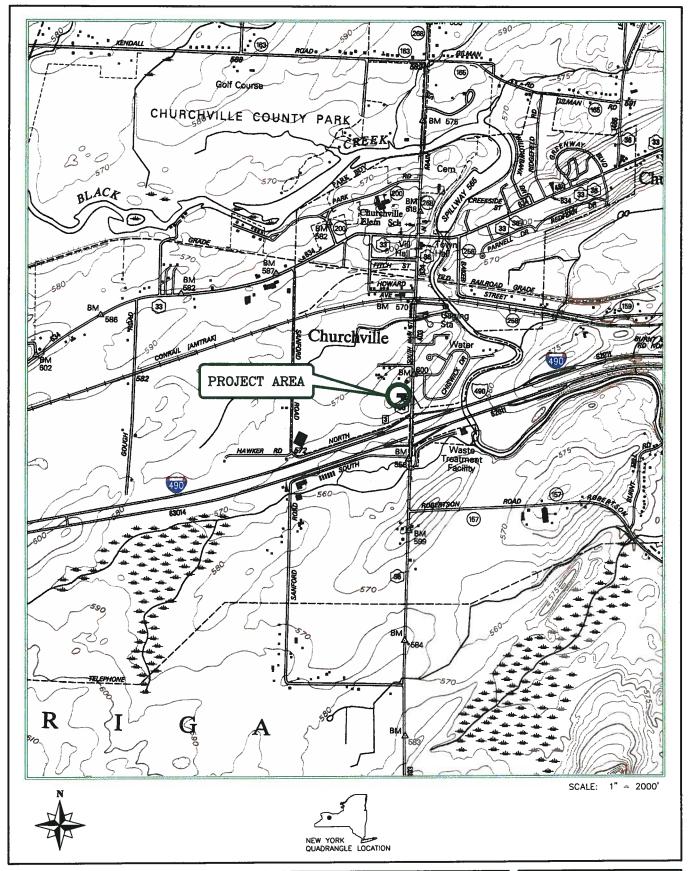
PAHs in the retention basin, storm sewer catch basins, and drainage swale do not warrant remediation at this time based on current use of the Site, zoning and intended future use as commercial property, and the low potential for migration or human exposures.

The oil/water separator is not considered a source of site contaminants and no remedial action relative to this wastewater conveyance is warranted.

9.0 Certification

Lu Engineers certifies the accuracy of this report, to the best of our knowledge, based on the information collected. All activities performed by Lu Engineers, as described in the above scope of work, were conducted in accordance with the NYSDEC-approved Voluntary Cleanup Program Work Plan (August 2006).

Based on the limited information obtained from Entrix, Lu Engineers cannot certify that RI activities conducted by Entrix were performed in accordance with their approved Work Plan. No assurances are made as to the accuracy or completeness of data obtained from Entrix.

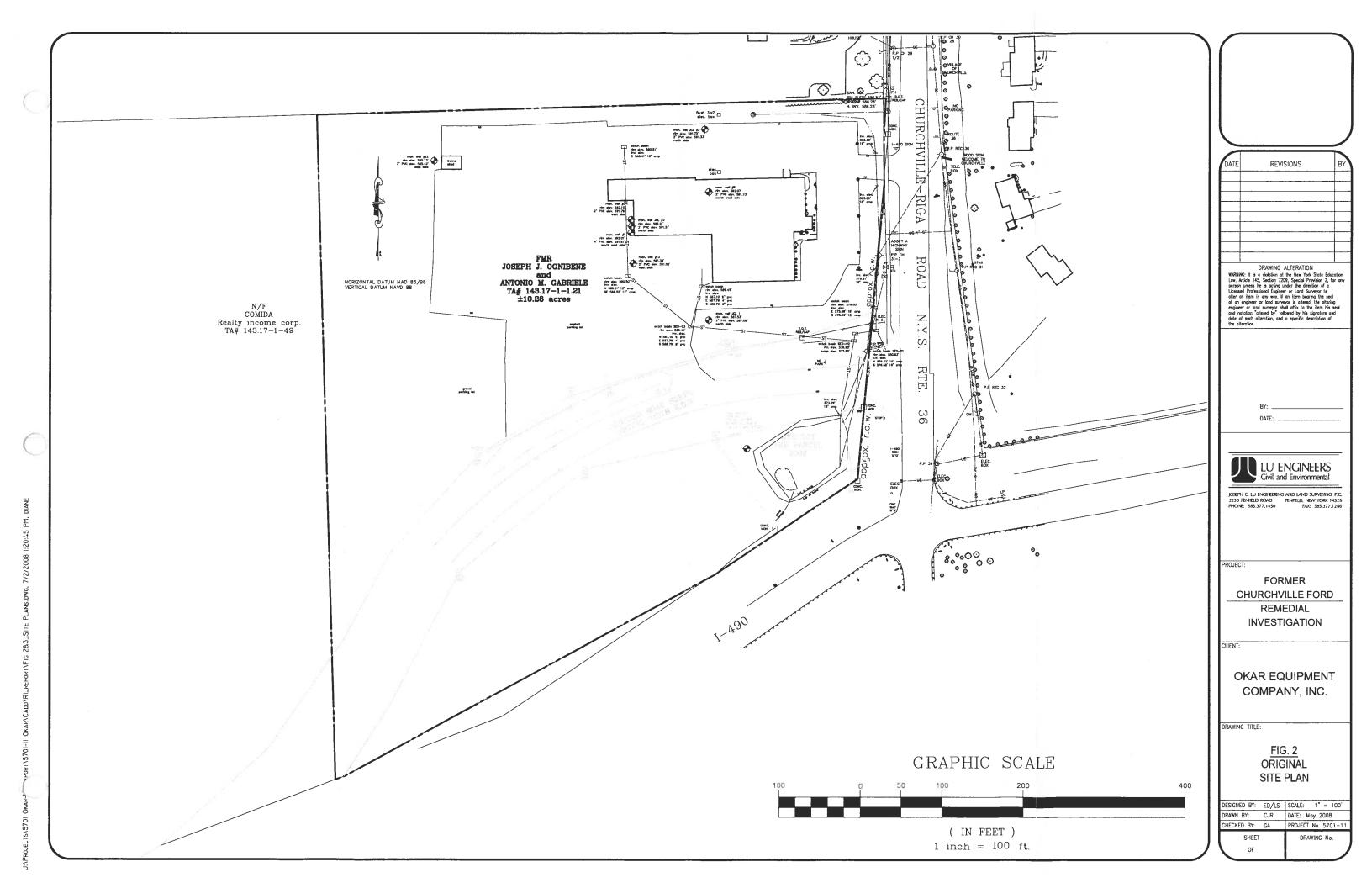

A copy of all information collected during this assessment, including photographs, maps, notes, and other materials will be kept on file at the offices of Lu Engineers. This information is available upon request.

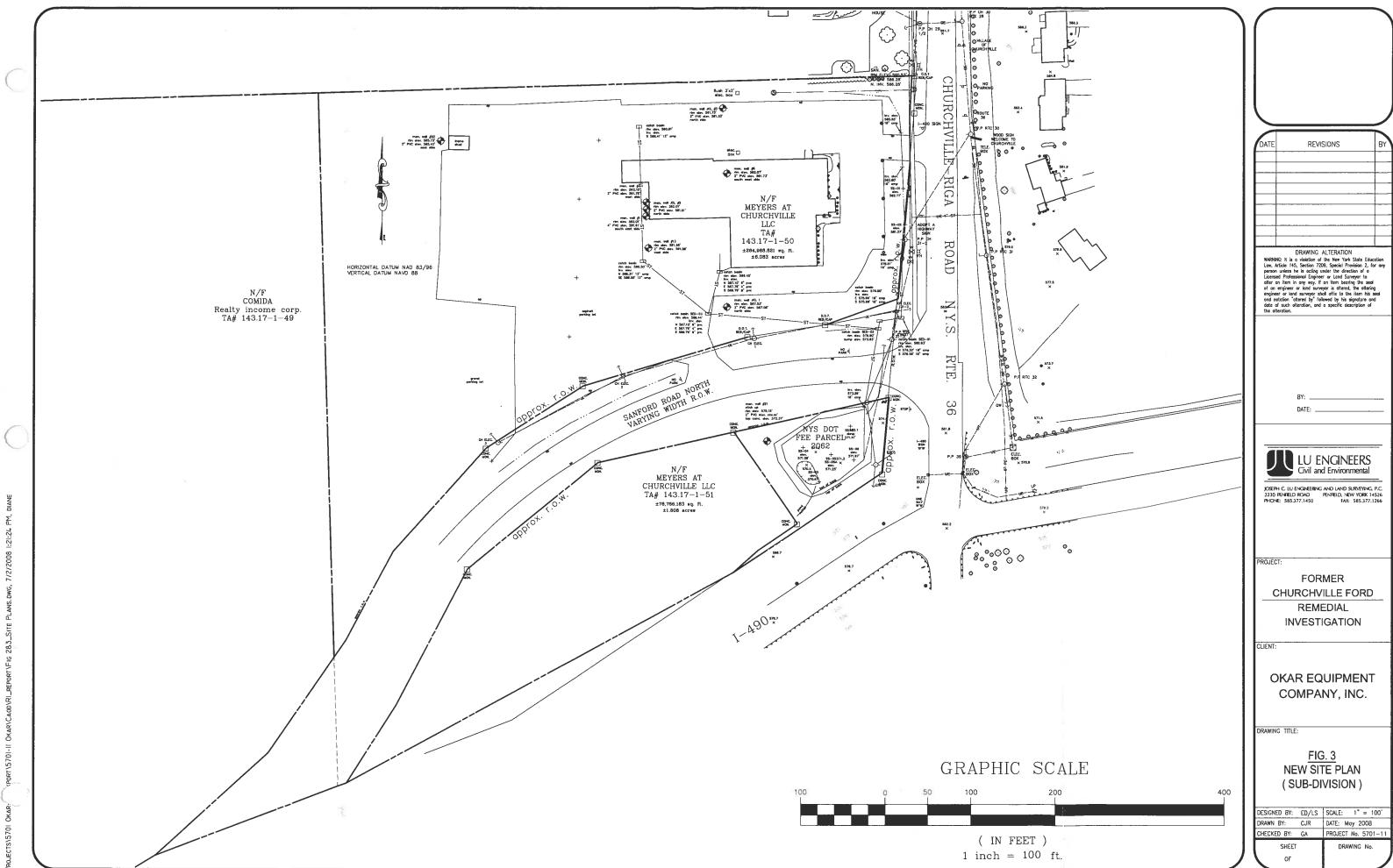
Gregory L. Andrus, CHMM

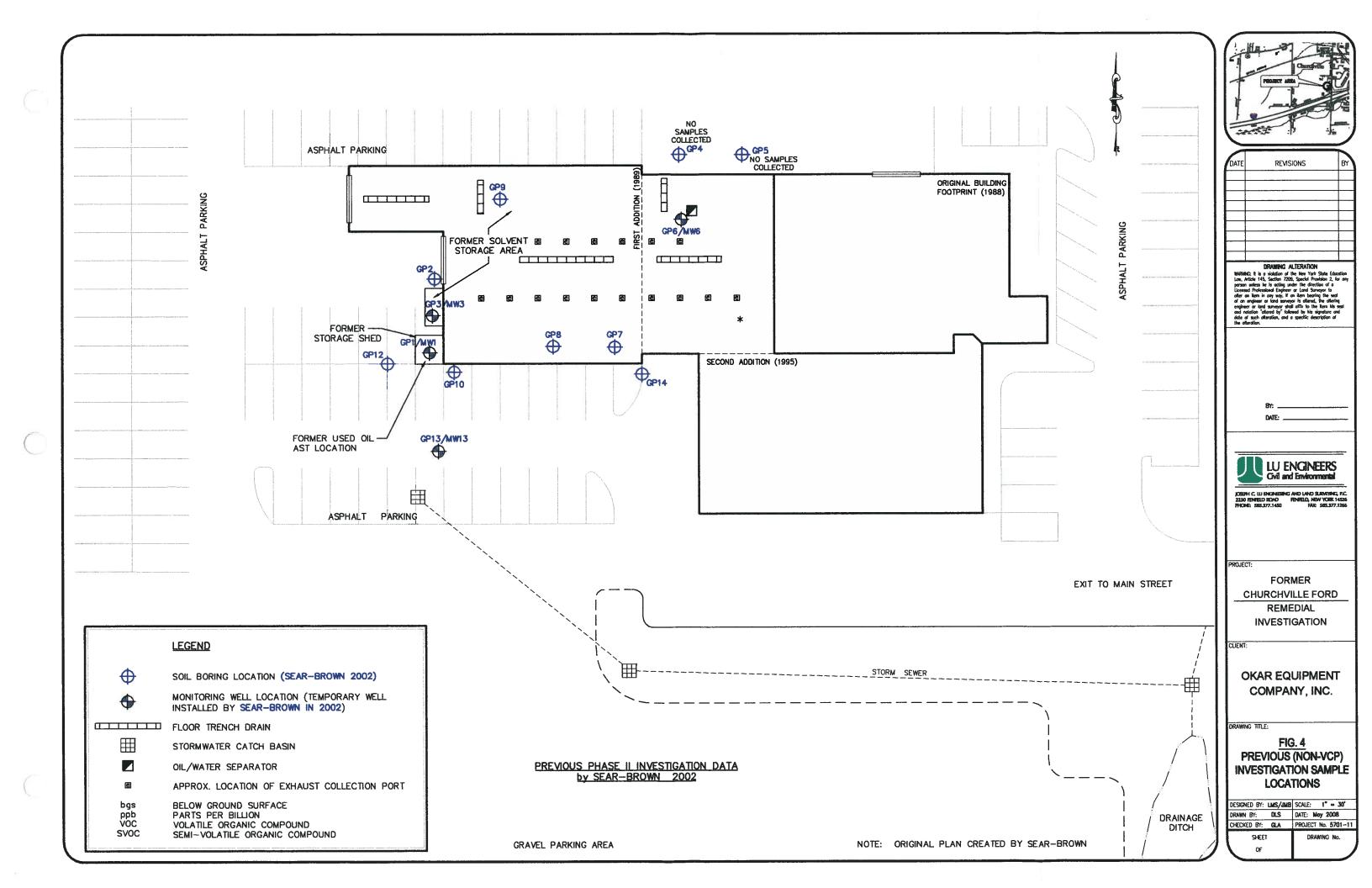
Project Manager

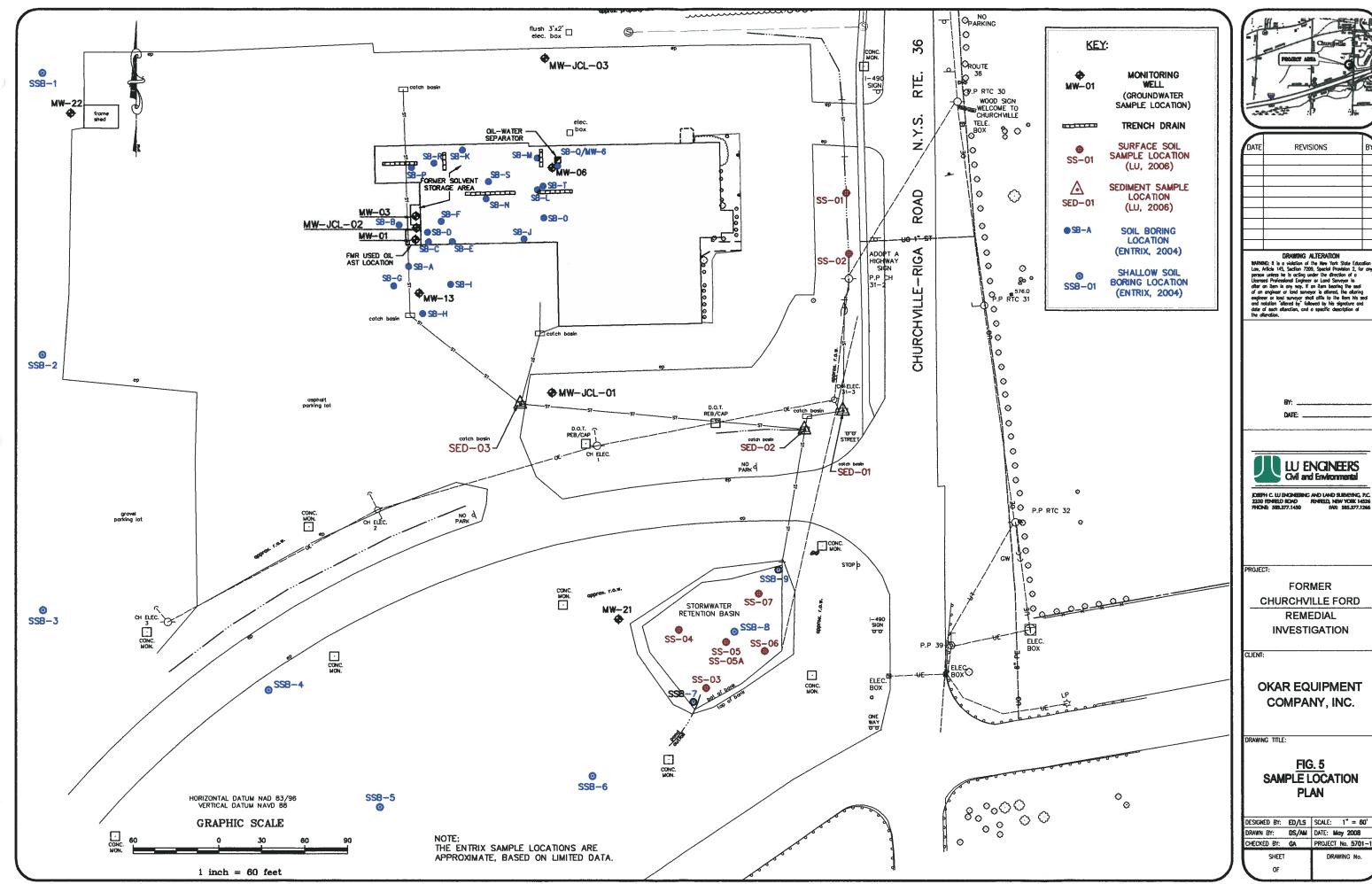
FIGURES

Remedial Investigation Report Former Churchville Ford Site #V00658-8

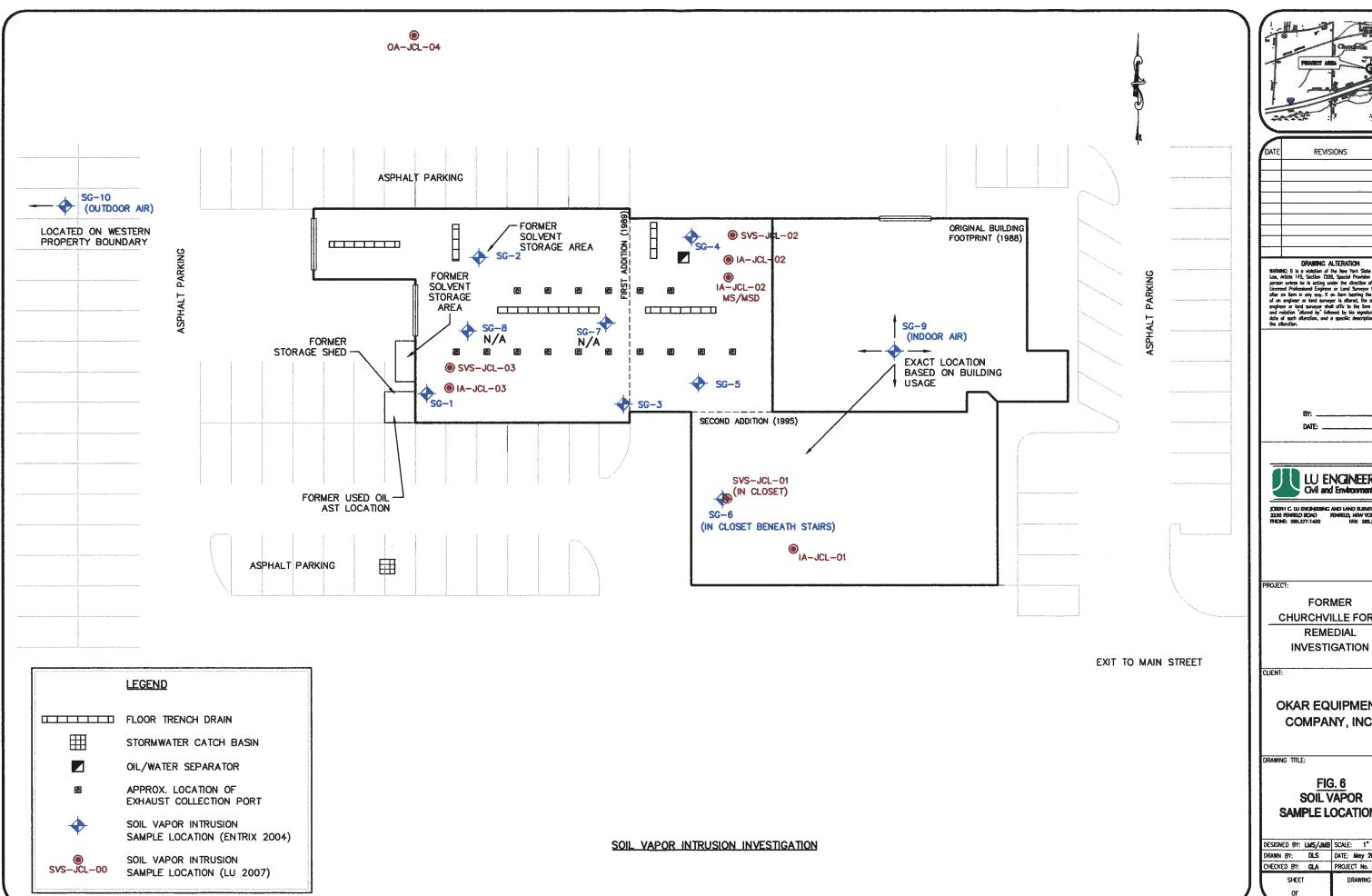



FIGURE 1. SITE LOCATION MAP


TOWN OF CHURCHVILLE - FORMER CHURCHVILLE FORD
OKAR EQUIPMENT


111 SOUTH MAIN STREET CHURCHVILLE, NY MONROE COUNTY

DATE:	DECEMBER 2007
SCALE:	1: 24,000
DRAWN BY:	DLS
CHURCHVILLE & CLIFTO	OT RASTER QUADRANGLE, IN / NEW YORK, MONROE COUNTY 97 / USGS CONTOUR DATA: 1950



_		_		
DATE	REVISIONS	ВҮ		
	·			
DRAWING ALTERATION				

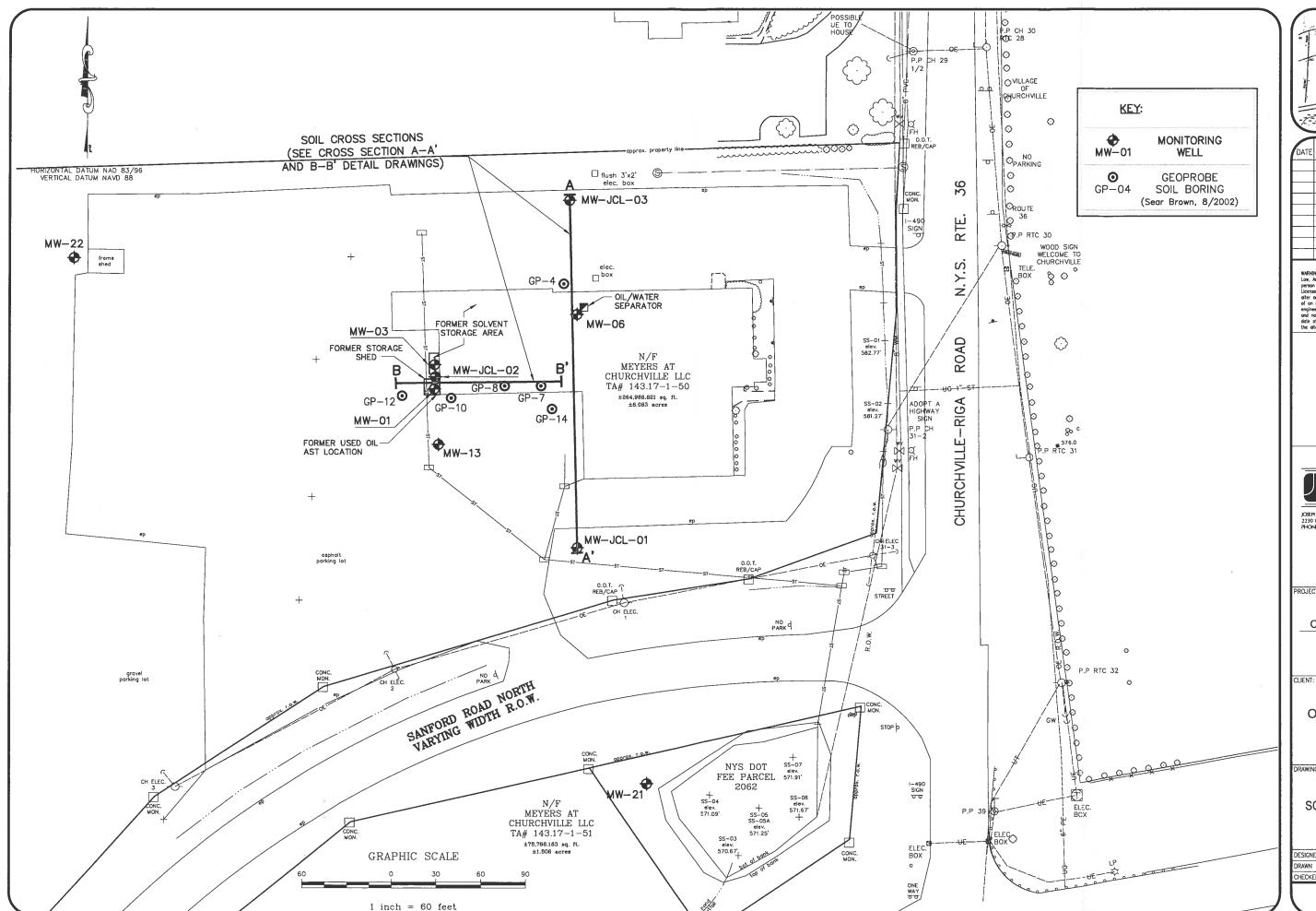
DESIGNED BY: ED	/LS SCALE: 1" = 60'
DRAWN BY: DS	/AM DATE: May 2008
CHECKED BY: GA	PROJECT No. 5701-11
SHEET	DRAWING No.
OF	

DATE	REVISIONS	BY
		H
-		_
		-
		F

ORASING ALTERATION

WASHING II in a violation of the New York Slate Education
Law, Article 145, Section 7209, Special Provision 2, for any
person unites he is acting under the direction of
ilicensed Professional Engineer or Land Surveyor to
olice an item in any upo, if no flam bearing the sail
of an engineer or land surveyor is altered, the altering
engineer or land surveyor shot offits to the term his seal
and notation "ottered by" followed by his signature and
date of such alteruitan, and a specific description of
the atteration.

BY:	
DATE:	



CHURCHVILLE FORD REMEDIAL

OKAR EQUIPMENT COMPANY, INC.

FIG. 6 SOIL VAPOR **SAMPLE LOCATIONS**

	DESIGNED BY:	LMS/JMB	SCALE: 1" = 36"
	DRAWN BY:	DLS	DATE: May 2008
	CHECKED BY:	GLA	PROJECT No. 5701-1
	SHEE	T	DRAWING No.
١.		- 1	

DATE	REVISIONS	B'
		I
\vdash		+
		+-
		1_
		+
	DOMINIAC ALTERATION	

DRAWING ALTERATION

WARNING: It is a violation of the New York State Education
Low, Article 155, Section 7209, Special Provision 2, for any
person unless he is acting under the direction of a
licensed Protessional Engineer or Land Surveyor to
after an item in any way. If an item bearing the self
of an engineer or land surveyor is othered, the oldering
engineer or land surveyor shall affit to the item his sed
and notation. Sincered by Talbayatter and
dotted auch ottertion, and a specific description of
the afteration.

OSEPH C. LU ENGINEERING AND LAND SURVEYING, P.C. 2230 PENFELD ROAD PENFELD, NEW YORK 14526 PHONE: 585.377.1450 FAX: 585.377.1266

FORMER CHURCHVILLE FORD REMEDIAL INVESTIGATION

OKAR EQUIPMENT COMPANY, INC.

DRAWING TITLE:

SOIL CROSS SECTION TRANSECT LINES (A-A', B-B')

SIGNED BY:	ED	SCALE: 1" = 60'
AWN BY:	DS	DATE: December 2007
ECKED BY:	GA	PROJECT No. 5701-11
SHEET		DRAWING No.
OF		l /
_		

DATE	REVISIONS	BY
	·	
WARK	DRAWING ALTERATION NC: It is a violation of the New York State Educa	stion

JOSEPH C. III ENCINERING AND LAND SUMMING, P.C. 2230 PENTELD SCAO FENTELD, NEW YORK 14526 PHONE: 585.377.1450 FAVE 585.377.1450

FORMER CHURCHVILLE FORD REMEDIAL **INVESTIGATION**

OKAR EQUIPMENT COMPANY, INC.

FIG. 8 **SOIL CROSS SECTION** A-A'

DESIGNED BY: ED SCALE: AS SHOWN DRAWN BY: DS DATE: December 2007 PROJECT No. 5701-11 CHECKED BY: GA

REVISIONS	BY
	REVISIONS

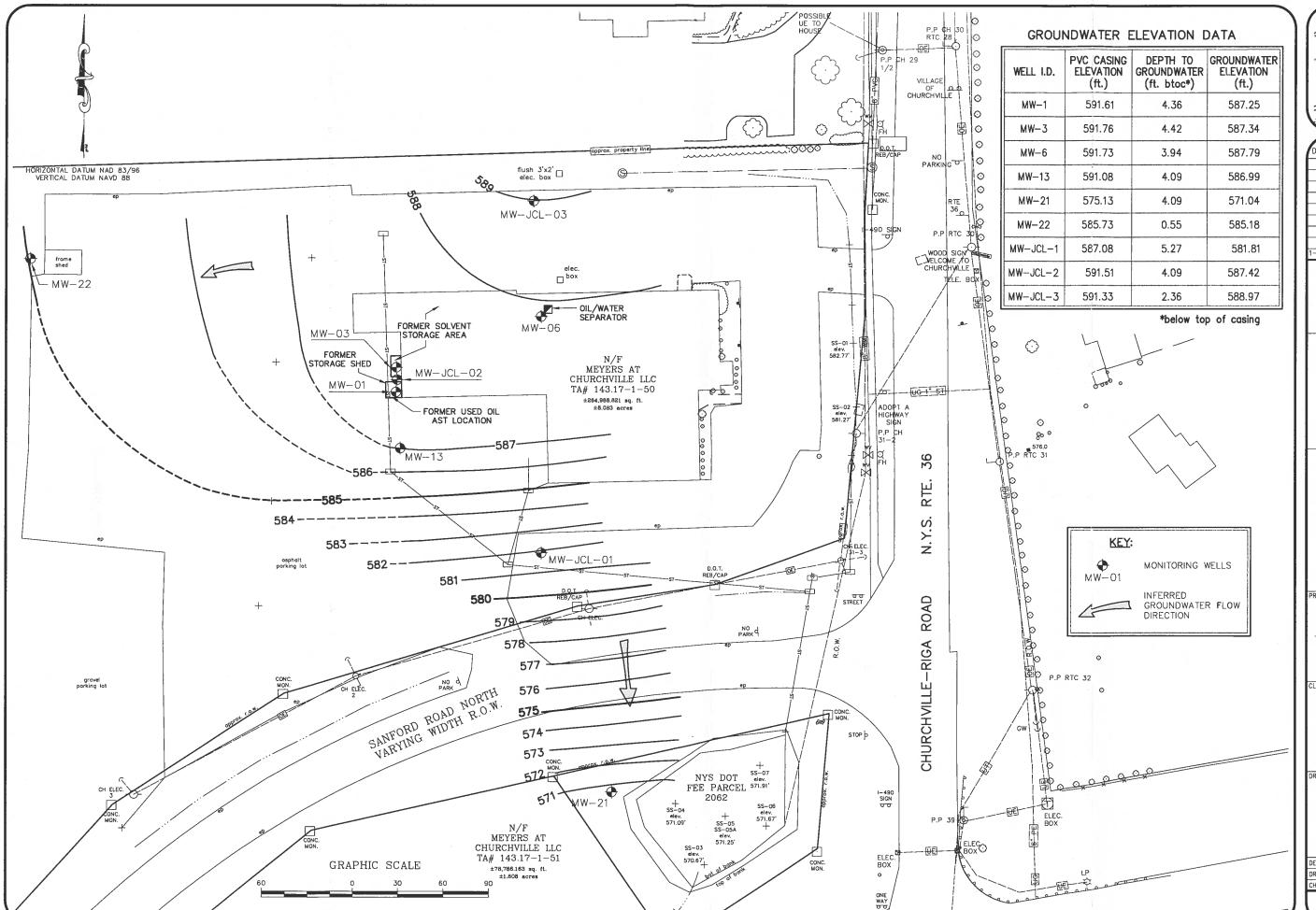
DRAWING ALTERATION

1847896: It is a violation of the New York State Edu
Law, Article 145, Section 1299, Special Provision 2, it
person unless he is coting under the direction of a
Licensed Professional Engineer or Land Surveyor to
offer on Nem in any say, If an Illem bearing the sect
of an engineer or land surveyor is offered, the offering
engineer or land surveyor shall drift to the Rem his sect
and notation offered by followed by his signature and
date of such attention, and a specific description
the offeration.

FORMER CHURCHVILLE FORD REMEDIAL

INVESTIGATION

OKAR EQUIPMENT COMPANY, INC.


DRAWING TITLE:

10'

FIG. 9 SOIL CROSS SECTION B - B'

DESIGNED BY: ED SCALE: AS SHOWN DRAWN BY: DS DATE: December 2007 CHECKED BY: GA PROJECT No. 5701-1 SHEET

BELOW 580'.

1 inch = 60 feet

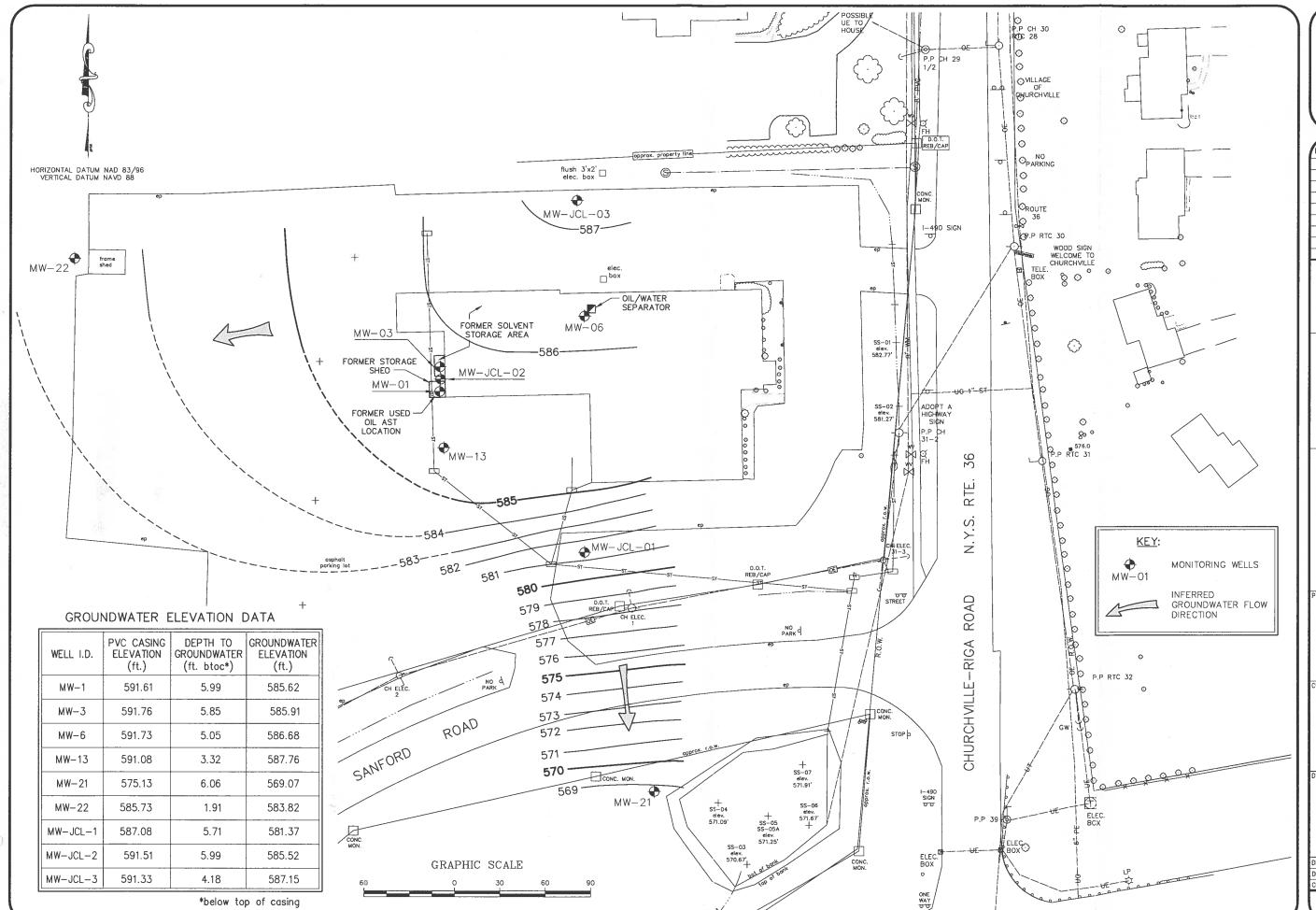
DATE	REVISIONS	BY
1-23	-08 added property lines	dr

DRAWING ALTERATION

DRAWING: ALTERATION

WARNING: It is a violation of the New York Strite Education
Lms. Article 145, Section 7209, Special Provision 2, for any
person unless he is acting under the direction of a
Licensed Professional Engineer or Land Surveyor to
alter on Item in any way. If an Inter bearing, the seel
of an engineer or land surveyor sis othered, the othering
engineer or land surveyor shat offs to the Rem his seal
and notation "othered by "followed by his signature and
date off such othercition, and a specific description of
the othercition.

BY: _	
DATE:	


JOSEPH C. LU ENGINEERING AND LAND SURVEYING, P.C. 2230 FENTELD ROAD PENTELD, NEW YORK 14526 PHONE: 585.377.1450 FAX: 585.377.1266

FORMER **CHURCHVILLE FORD** REMEDIAL INVESTIGATION

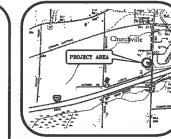

OKAR EQUIPMENT COMPANY, INC.

FIG. 10 GROUNDWATER **CONTOUR MAP** (October 23, 2006)

SIGNED BY:	ED	SCALE: 1" = 60"
AWN BY:	DS	DATE: December 2007
CKED BY:	GA	PROJECT No. 5701-11
SHEET		DRAWING No.
OF		

1 inch = 60 feet

DATE	REVISIONS	BY
		_
<u> </u>		

DRAWING ALTERATION

MARNING: It is a visibilition of the New York Stote Education

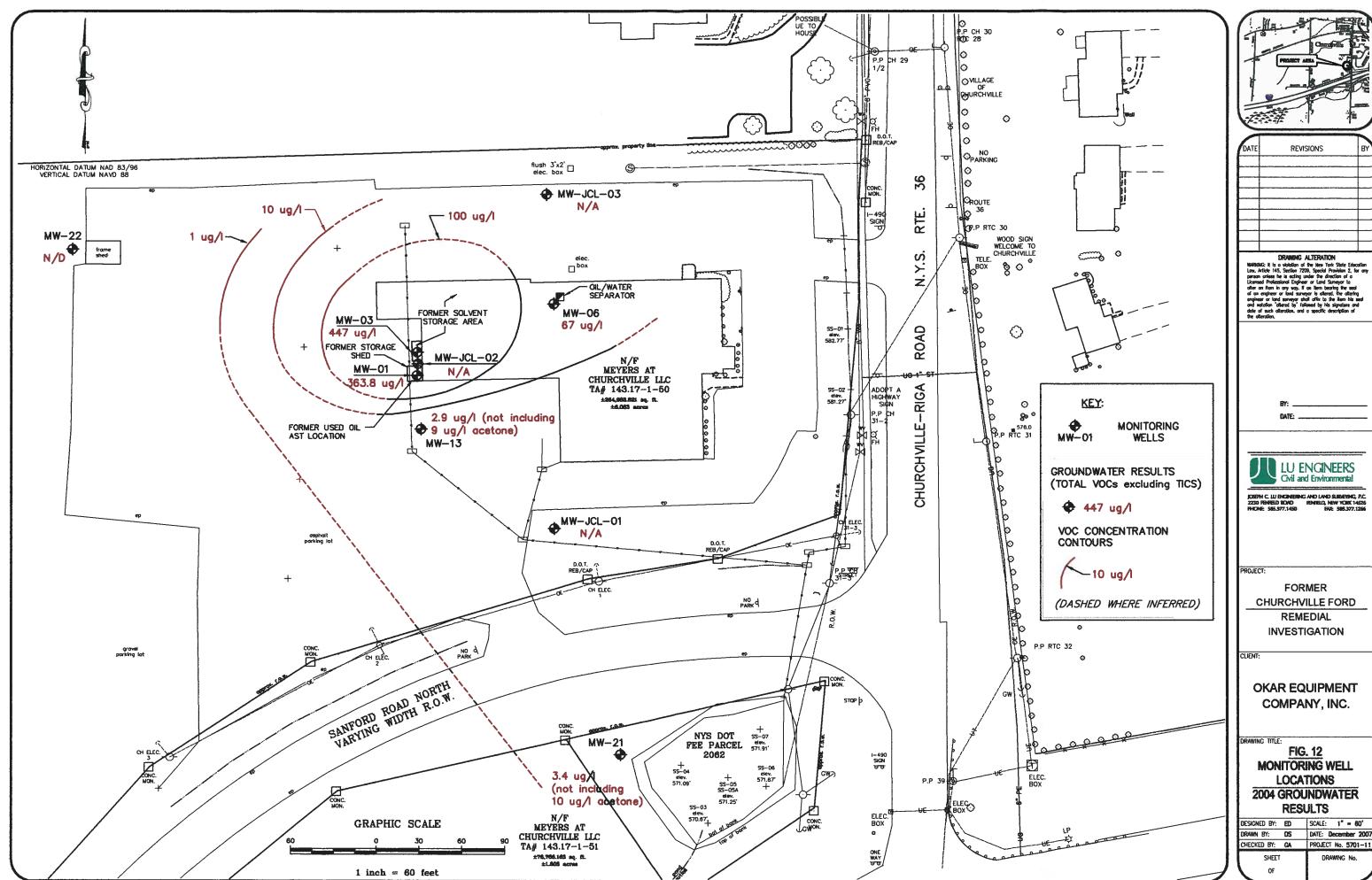
Low, Article 145, Section 7209, Special Provision 2, for any
person unless he is acting under the direction of a

Lessesed Prolessond Engineer or Land Surveyor to
other on item in only way, if on item bearing the selection
of on engineer or lond surveyor a othered, the altering
engineer of land article of a othered, the altering
engineer of land article of a othered, the altering
engineer of land article of the later by followed by his alignature and
other of waits of laterallow, and a specific description of
the alteration.

8Y:	
DATE:	

| DSEPH C. LU ENGINEERING AND LAND SURVEYING, P.C. 2230 PENRELD ROAD | PENRELD, NEW YORK 14526 | PHONE: 585.377.1450 | FAX: 585.377.1266

PROJECT:


FORMER
CHURCHVILLE FORD
REMEDIAL
INVESTIGATION

CLIENT:

OKAR EQUIPMENT COMPANY, INC.

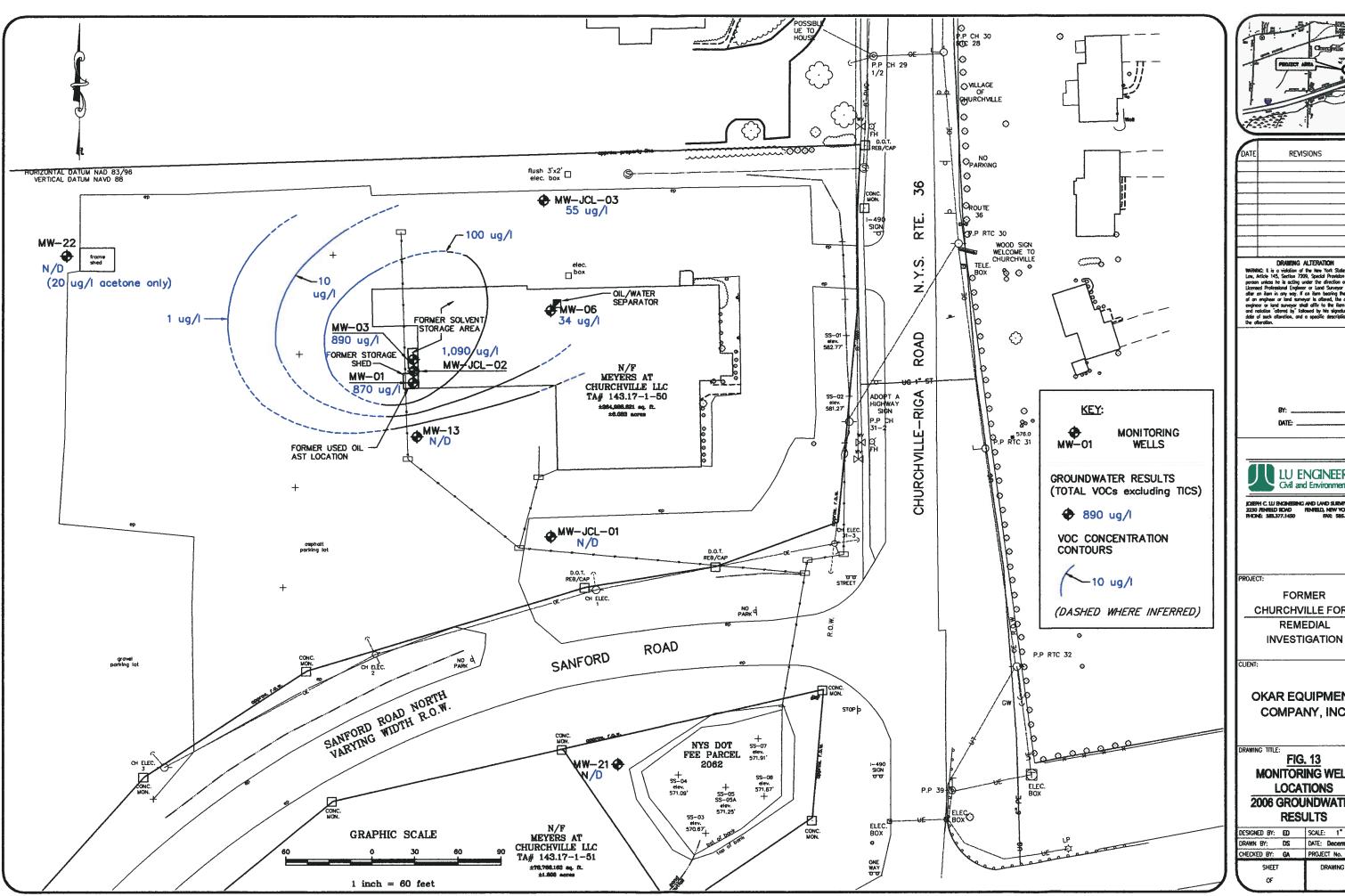
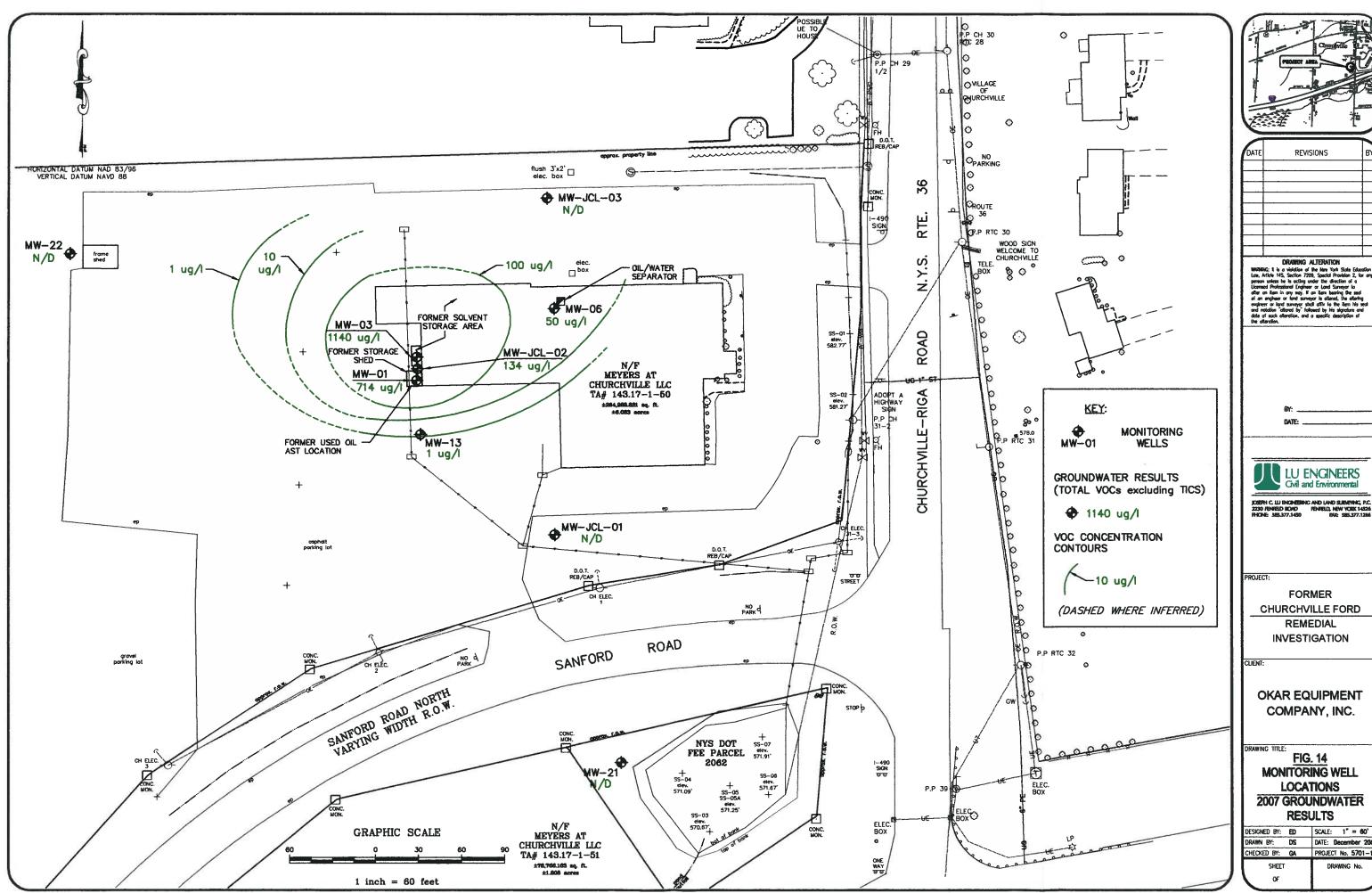

DRAWING TITLE

FIG. 11 GROUNDWATER CONTOUR MAP (June 14, 2007)

DATE	REVISIONS	BY
DRAMING ALTERATION		

DESIGNED BY: ED	SCALE: 1" = 60"
DRAWN BY: DS	DATE: December 2007
CHECKED BY: GA	PROJECT No. 5701-11
SHEET	DRAWING No.
OF	

DATE	REVISIONS	BY
DATE	INE #1310113	- 0'
	DRAWING ALTERATION	


JOSEPH C. ILI SHORNESING AND LAND SURVEYING, P.C. 2230 PENELD SIGND PENELD, NEW YORK 14226 PHONE: 583.377.1450 FAVE 585.377.1266

FORMER CHURCHVILLE FORD REMEDIAL

OKAR EQUIPMENT COMPANY, INC.

MONITORING WELL LOCATIONS 2006 GROUNDWATER RESULTS

DESIGNED BY:	ED	SCALE: 1" = 60'
DRAWN BY:	DS	DATE: December 2007
CHECKED BY:	GA	PROJECT No. 5701-11
SHEET		DRAWING No.
OF		

نــــــ	DRAWING ALTERATION	L
DATE	REVISIONS	BY

CHURCHVILLE FORD

OKAR EQUIPMENT COMPANY, INC.

MONITORING WELL **2007 GROUNDWATER**

DESIGNED BY: ED	SCALE: 1" = 60'
DRAWN BY: DS	DATE: December 2007
CHECKED BY: GA	PROJECT No. 5701-11
SHEET	DRAWING No.
0F	

APPENDIX A Photographs

Remedial Investigation Report Former Churchville Ford Site #V00658-8

Site Photographs – Former Churchville Ford Site

Lu Engineers Investigation

Photo No. 1. Drilling at MW-JCL-01 (September 2006)

Photo No. 2. Decon of Drilling Equipment Between Well Locations (September 2006)

Photo No. 3. Completion of MW-JCL-02 in service Area (September 2006)

Photo No. 4. Staging of Decon Wastes and Other Investigation Derived Wastes Pending Disposal (September 2006)

Photo No. 5. Investigation Derived Wastes Being Transferred to Storage Tank for Eventual Discharge (January 2007)

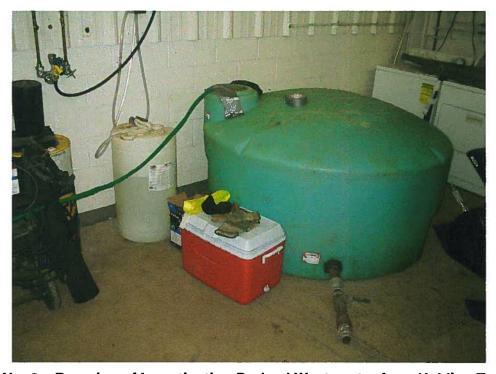


Photo No. 6. Pumping of Investigation Derived Wastewater from Holding Tank into Site Sewer Access (January 2007)

Photo No. 7. Drainage Ditch on the East Side of the Building (October 2006)

Photo No. 8. Storm Drain located on the Slope South of the Building, View Toward the West (October 2006)

Photo No. 9. Retention Basin, View Toward the West (October 2006)

Photo No. 10. Installation of Sub-Slab Vapor Sample Point SVS-JCL-02 (April 2007)

Site Photographs – Former Churchville Ford Site Lu Engineers Investigation

Photo No. 11. Sub-Slab Vapor Sampling Set-up (April 2007)

Photo No. 12. Ambient Outdoor Air Vapor Sample OA-JCL-04 (April 2007)

Photo No. 13. Trench Drain Located in Central Portion of Service Area (June 2007)

Photo No. 14. Oil/Water Separator Located Inside Service Area Portion of Building (June 2007).

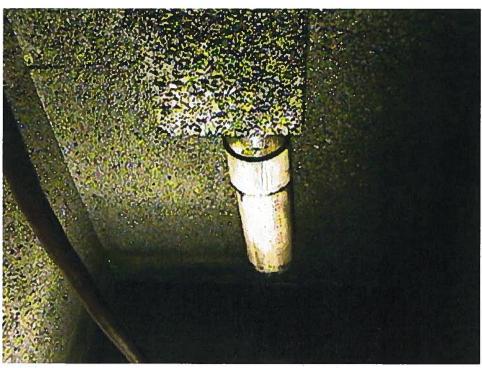


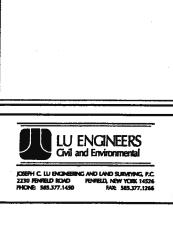
Photo No. 15. Interior of Oil/Water Separator. 4" PVC Outlet Pipe Visible on East Wall of Tank (February 2008).

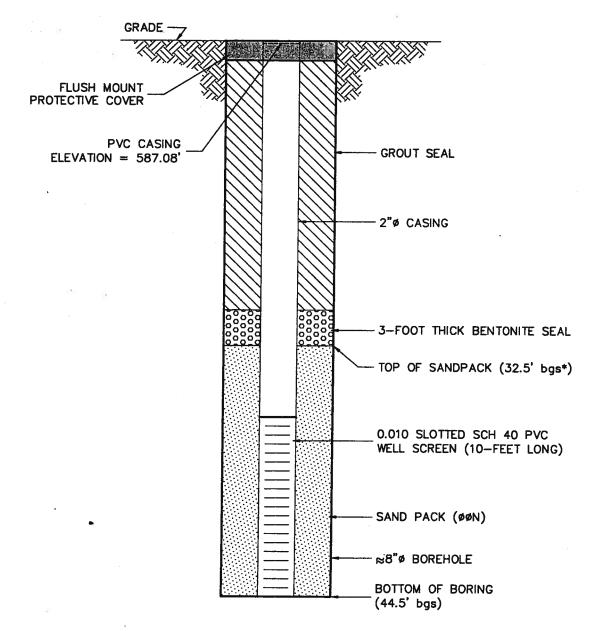
APPENDIX B

Soil Boring and Monitoring Well Construction Logs

Remedial Investigation Report Former Churchville Ford Site #V00658-8

LU ENGINEERS 2230 PENFIELD ROAD Former Churchville Ford - VCA SHEET 1 OF 3 Civil and Environmental PENFIELD, NEW YORK 14528 JOB #:5701-11 Remedial Investigation CHKD. BY: N/A CONTRACTOR: Nothnagle Drilling Co. **BORING LOCATION: SEE PLAN** DRILLER: Jay GROUND SURFACE ELEVATION: N/A DATUM: N/A START DATE: 9/18/06 END DATE: 9/18/06 JCL GEOLOGIST:Eric Detweiler WATER LEVEL DATA TYPE OF DRILL RIG:CME 75 DATE TIME WATER CASING REMARKS CASING SIZE AND TYPE: 4.25" (HS Augers) OVERBURDEN SAMPLING METHOD: Continuous - Split Spoons ROCK DRILLING METHOD: NA D Ε SAMPLE DATA Р SAMPLE DESCRIPTION PID **BLOW** NO. DEPTH N-VALUE RECOVERY /RQD(%) н /6' (FT.) (%) 60% 2 NA @0': reddish topsoil, moist 0 ppm 5 @0-1.0': silty topsoil; reddish, dry; @1.0; crushed stone fill @1.5': red-brown SILT w/CLAY; trace f SAND, trace angular GRAVEL 2 60% 0 ppm 2 2 @4.0'; red-brown SILT w/cCLAY; trace f GRAVEL; moist 0 ppm 3 25% 2 4 @6.2'; rounded f-c GRAVEL; dry-moist; firm SILT; trace CLAY; red-brown; TILL 9 13 4 80% 0 ppm 14 15 15 @8.0'; no CLAY; sub angular to rounded f-c GRAVEL 6 5 85% 0 ppm 11 18 10 25 @10.0'; red-brown SILT; trace f SAND; dry-moist; firm-hard 30 6 88% 21 0 ppm 35 24 @12.0'; SILT TILL; trace f SAND; f-c subangular-rounded GRAVEL; dry; hard 100% 10 7 0 ppm 15 20 @13.5'; grading from red-brown to grey-brown 20 8 100% 0 ppm 13 17 20 14.0-16.0'; grey-brown SILT TILL w/f SAND; rounded-subrounded f-c GRAVEL; hard; dry to 100% 9 23 0 ppm 25 30 100% 11 10 @18.9'; 2" broken rock frags (siltstone) 0 ppm 25 23 20 20 S- SPLIT SPOON SOIL SAMPLE U- UNDISTURBED SOIL SAMPLE C- ROCK CORE SAMPLE GENERAL NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE


PROJECT


BORIN(MW-JCL-01

BORING #

				ENFIELD ROAL		Former Churchville Fo	···	SHEET 2 OF 3 JOB #:5701-11							
	Civil and E	rwironimer	TAL PENTIE	LD, NEW YORK	14026	Remedial Investigation	n		JOB #:5/01-1 CHKD. BY: N						
	TRACTOR	: Noth	nagle Drillin	g Co.		BORING LOCATION:									
	LER: Jay GEOLOGIS	T-Ede	Detweiler			GROUND SURFACE				JM: N/A					
305	GEOLOGIC	or.Enc	Dermoller			START DATE: 9/18/0	<u> </u>	END DA	VATE: 9/18/06 WATER LE	VEL DATA					
	E OF DRILI						DATE	TIME	WATER	CASING	REMARKS				
				HS Augers)											
	K DRILLIN			HOD: Continuo	ous - Split Spoor	18									
D		9 W.E.	1100.101			·									
E			SAMPLI	E DATA											
P			T			1	SA	MPLE	DESCRIPT	ION		PID			
H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE	RECOVERY										
H"	17	11	11.1.7	/RQD(%)	100%										
21					100%	1						0 ppm			
-	24				<u> </u>										
22	28					1						1			
	16	12			71%]						0 ppm			
23						•						1			
	100/0.5														
24		40			000/	@24.0'; grey SILT	TILL W/f S	AND; f-	m GRAVEL;	dry; hard		1			
	100/0.4	13			92%							0 ppm			
25						4									
26						1						1			
~	19	14			91%	@26 0: red-brown S	SILT TIEL	w/ trace	f SAND: f.c	enhandular	to rounded GPAVEL: day: he	ml0 nnm			
27					0.70	320.0, 100 0101111	26.0; red-brown SILT TILL w/ trace f SAND; f-c subangular to rounded GRAVEL; dry; hard								
	57					1									
28	68					1									
上。	19	15			95%	@28.0'; grey-brown	; as above	3				0 ppm			
9												1			
	33					@29.2'; trace CLAY	,								
30		46			2004		@30'; grey-brown SILT TILL w/ GRAVEL; moist-wet								
31	12 23	16			88%		ILT TILL V	w/ GRA	VEL; molst-w	<i>r</i> et		0 ppm			
"	45					@30.5'; moist									
32						1									
	17	17			100%	İ						0 ppm			
33												lo bbiii			
	39					1									
34	39														
	17	18			95%	@34.0'; red-brown 8	SILT TILL;	some	CLAY; moist			0 ppm			
35						@35.0'; grey-brown	SILT If S	AND; w	et; dense (sil	t/sand mix)	; no gravel	1			
	44 40														
36	13	19			19%	Was un cario ion .	T: 4404: =-	am!							
37	41	19			1370	@36.0'; SAND /SIL ⁻ 	i, wet; no	Signel				0 ppm			
"	100/0.6					@37.0'; w/GRAVEL	· maist_w	at							
38						@37.5'; pushed thro									
1 1	43	20			100%	@38.0'; SILT/SAND			noist-wet			0 ppm			
39	100/0.6											V PP			
						@39.3'; brown SILT	/SAND mi	x w/f-c	GRAVEL (TI	LL); wet					
40]	I FOST										1			
		LEGENI SDLIT S	2 IPOON SOIL	SAMPLE	1										
1			URBED SOIL												
			ORE SAMP												
	GENERAL N	OTES:							-						
	1)	STRATI	FICATION L	NES REPRESE	NT APPROXIMAT	E BOUNDARY BETWEEN	SOIL TYPE	S, TRAN	SITIONS MAY B	E GRADUAL.					
	2)	WATER	LEVEL REA	DINGS HAVE B	CORS THAN THOS	MES AND UNDER COND SE PRESENT AT THE TIN	ITIONS STA	TED, FLL	ICTUATIONS OF	F GROUNDWA	NTER				
		OC	JOIN DUE 1	O OTHER PACE	ONG THAN THUS	SE PRESENTAL IME IIN	TE MEASUR	EMEN IS	_	BORING #					

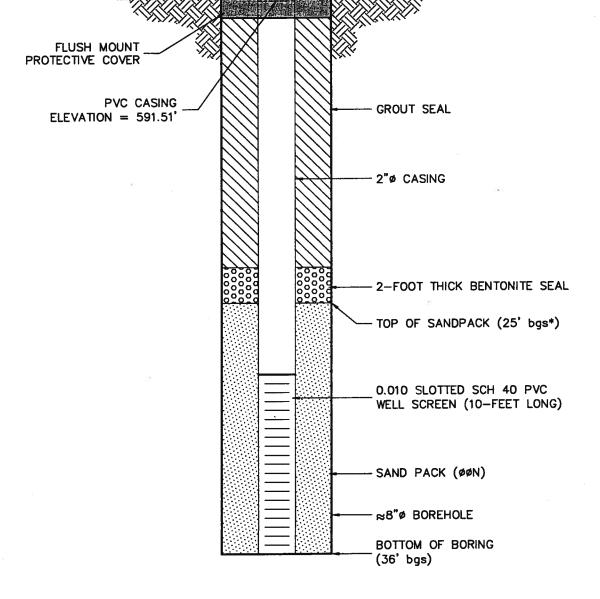
· 5.						PROJECT			BORIN MW-	JCL-01				
	LU EN	SINEEF	RS 2230 P	ENFIELD ROAD	•	Former Churchville Fo	SHEET 3 OF 3							
	Civil and I	emorism	ntel PENFIE	LD, NEW YORK	14526	Remedial Investigation	n		JOB #:5701-1					
CON	TRACTOR	. Noth	nagle Drillin	og Co		RORING LOCATION:	CHKD. BY: N/A							
	LER: Jay		- AND CHAIL	.g			ROUND SURFACE ELEVATION: N/A DATUM: N/A							
		ST:Eric	Detweiler			START DATE: 9/18/0			ATE: 9/18/06					
										EVEL DATA				
	E OF DRIL						DATE	TIME	WATER	CASING	REMARKS	 -		
				HS Augers)	ous - Split Spoor									
	K DRILLIN			100. 00	out open									
D						01				·				
E			SAMPLI	E DATA									ľ	
P			·			1	SA	MPLE	DESCRIPT	ION			PID	
H	BLOW /6"	NO.	DEPTH (FT.)	N-VALUE /RQD(%)	RECOVERY								1	
 "	51	21	(F1.)	/KQD(70)	(%) 100%	@40.0'; grey-brown	ASIT IIS	ND mix	· TILL · w/f-c	CDAVEI · w	at: dense		0.000	
41	100/0.4				100%	i (C+0.0 , Gley-blown	I SIL I/SA	ND IIIIX	, TILL, W/I-C	GRAVEL, W	st, uerise		0 ppm	
7'	100/0.4	\vdash	 											
42		 			 									
"	31	22			100%	@42.0'; brown f sar	ndv SILT:	w/f-m	gravel: moist	•			0 ppm	
43	100/0.5		 		1	1 , 5.0 00.	,,	200. 111	g. 2,o.o.	•			o spin	
						1								
44						1								
]								
45					<u></u>]								
46													7	
		<u> </u>]								
47		ļ											1	
		1							T.D. = 44.5	o' bgs				
48		-												
19	<u> </u>				}									
50		_			-								1	
"	——		-											
51						1							ŀ	
													1	
52					<u> </u>								1	
		L											1	
53													1	
													1	
54													1	
55	ļ	 			ļ	•								
	<u> </u>	 												
56		├												
57					ļ	#								
"			 											
58														
"	-													
59			\vdash											
"														
60													1	
1		LEGEN	D.										1.	
1	S-		- SPOON SOIL	. SAMPLE										
	U-	UNDIST	TURBED SOI	IL SAMPLE										
			CORE SAMP	LE										
	GENERAL													
1						E BOUNDARY BETWEEN		-			TEN			
	2)					MES AND UNDER COND SE PRESENT AT THE TIM				r GROUNDWA	IEK			
1			JJUN DUE 1	J J, ILK I AU	. CING ITTAIN ISTOR	SE CRESERIAL INC III	MEAGOR	-m=1413		BORING #				

MONITORING WELL CONSTRUCTION DETAIL NOT TO SCALE

*bgs = below grade surface

MW-JCL-1

CHURCHVILLE FORD REMEDIAL INVESTIGATION


DATE:	DECEMBER	2007
SCALE:	NONE	

DESIGNED/DRAWN/CHECKED ED/DS/GA

P.N. 5701-11

-						PROJECT BORING MW-JCL-02									
	LU ENG	SINEER	RS 2230 P	ENFIELD ROAD)	Former Churchville Former			SHEET 1 OF 2						
	Civil and E	nvironme	ntel PENFIE	LD, NEW YORK	14526	Remedial investigation	n		JOB #:5701-	11					
						<u> </u>			CHKD. BY: N	/A					
		t: Noth	nagle Drillin	ıg Co.		BORING LOCATION									
	LER: Jay SEOLOGIS	PT.Eda	Debuelles				GROUND SURFACE ELEVATION: N/A DATUM; N/A START DATE: 9/19/06 END DATE: 9/20/06								
JOE C	3EOLOGIC	ST.EIIC	Detweller			START DATE: 9/19/0	10 	END D		EVEL DATA					
TYPE	OF DRIL	L RIG:0	CME 75				DATE	TIME	WATER		REMARKS				
				HS Augers)			- DATE	THALL	WAILK	CASING	REMARKS				
					ous - Split Spoor	18									
ROCI	K DRILLIN	G MET	HOD: NA												
E			SAMPLE	E DATA											
P	: -:					J	ŞAI	MPLE	DESCRIPT	ION		PID			
1.	BLOW /6*	NO.	DEPTH	N-VALUE	RECOVERY										
H H	NA	1	(FT.)	/RQD(%)	12%	20.0 Et ambet fess as eder									
1	INA	 '-		INA	1270		@0-0.5'; asphalt /base, no odor @0.5'; grey-brown SILT, little f SAND; trace GRAVEL; molst; soft; solvent-odor (stale)								
1 '	1	 				கும். நர்கு-மாலா வட்ட, irtile T SAND; trace GRAVEL; moist; soft; softent-odor (stale)									
2	1	├		_								31.8 ppm			
1	1	2			64%	-						1.8'			
3	1	 			0476										
"	1	├				ł						4.6 ppm			
	1					A 41 5		-				1.			
1	6	3			9.40/	@4.1'; red-brown f	sandy SIL	I HLL;	W/T-C GRAV	EL; dry; nar	1	1.3 ppm			
ا۔ ا	7	3	—		84%							7.7 ppm			
5						0.50						20.1 ppm			
1 4	8	.				@5.9'; wet						1			
6	8		<u> </u>		0.40/	@6.2'; f sandy SIL1	W/ 1-C GF	WVEL				79 ppm			
	8	4			94%	{						72 ppm 127 ppm			
7	7														
	9 7											@7.0' +/-			
8		5			000/	@8.2'; red-brown f	sandy SIL	.T w/GI	RAVEL; soft;	wet		0.9 ppm			
<u>_</u>	2	5			88%	000						0 ppm			
9	7					@9.0'; soft									
1	6														
10	3				500/	{									
1	6	6			50%										
11	8	-										0 ppm			
1 45	10	\vdash				040.00						1			
12	7	7			000/	@12.0'; ; red-brown	r sandy S	ill; w	T-C GRAVEL	; trace CLAY	; soft-firm; wet				
1	8				98%							0 ppm			
13	8					· ·									
ا . ا	12											İ			
14		•			OEN	S4401						1			
₋ -}	4	8			95%	(धुःन.५); as above; g	rey-prowr	ı; trace	CLAY; mois	t; Tirm; round	led to sub-rounded GRAVEL	0 ppm			
15	<u>6</u> 8														
]}						40 01 40 50		40.00							
16	11 12	9			1000/	16.0'-16.5'; wet, the	n moist to	18.0", 8	as above						
╽╶╌┞	10	3			100%							0 ppm			
17	11	 													
}		\vdash				@40 Ot. II-L+ L	011 T# *		4 - OD 11 /						
18	24	10			250/	@ 18.0"; light brown	OILI W/f S	8 UNA	T-C GRAVE	L; wet; push	ed through stone @18.8'	L			
╽╶ _╍ ┞	17	10			35%	•						0 ppm			
19	39 51											1			
<u></u> .						A001. Law	# -> 0***	-	- / 0 4 5 1 -			1			
20	47	LEGEN				@20'; brown gravell	y (t-c) SIL	ı; som	e i SAND; m	oist; hard		L			
l			_	CAMBLE											
l			SPOON SOIL												
]			URBED SOI												
-	C- SENERAL N		CORE SAMP	LC											
Ì `			FICATION L	NES REPRESE	NT APPROXIMAT	E BOUNDARY RETWEEN	SOIL TYPE	S TRAN	SITIONS MAY	RE GRADIJAI					
1	 STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER 														
1						SE PRESENT AT THE TIM									
										BORING#					

						PROJECT			BORIN(MW-JCL-02						
				ENFIELD ROAL		Former Churchville Fo			SHEET 2 OF						
	Civil and E	netronmen	tel PENFIE	LD, NEW YORK	14526	Remedial Investigation	n		JOB #:5701-1 CHKD. BY: N						
CON	RACTOR	: Nothi	nagle Drillin	a Co.		BORING LOCATION	SEE PLAN		CHKD. BY: N	/A					
DRIL	.ER: Jay					GROUND SURFACE			DATI	JM: N/A					
JCL C	EOLOGIS	ST:Eric	Detweiler			START DATE: 9/19/0	6	END D/	ATE: 9/20/06						
TYPE	OF DRILL	BIG·C	ME 75				DATE	TIME	WATER LE	VEL DATA	REMARKS				
				HS Augers)			DATE	INVE	WATER	CASING	REMARKS				
OVE	RBURDEN	SAMP	LING MET		ous - Split Spoo	ns									
_	DRILLIN	G MET	HOD: NA												
D			SAMPLI	E DATA											
=			OCIVIL	בטאוא			SAMPLE DESCRIPTION								
 	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1	U/A	WII L.L	DEOOME	1011			PID		
Щ	. /6°		(FT.)	/RQD(%)	(%)	<u> </u>									
	8	11			90%										
21	11	<u> </u>			ļ <u></u>	4									
ا م	<u>8</u> 13														
22	28	12			100%	_l@22.0"; brown f sai	22.0'; brown f sandy SILT w/ GRAVEL; moist; hard								
23	23	12			10078	1							0 ppm		
ا آ	21				 	1									
24	21					1									
	9	13			72%	1						1	0 ppm		
25	14														
	100/4														
26		44			10004	@26.0; grey-brown			some f-c GR	AVEL; moist	; dense	Ì	0 ppm		
	52 100/2	14			100%	@26.5; pushed qua	irtz-like ste	one							
27 100/2															
28						@28.0'; as above w	ılmore GB	A\/EI				1	0		
	100/0.5	15			100%	WZO.U , as above in	WIIIOIB GIV	MVEL.				ľ	0 ppm		
29					1.55%							Ī			
-/						Encounter auger re	fusal @29	.5' (ten	porary)						
30							@30'; grey-brown f SAND w/ SILT, f-c GRAVEL; moist-wet; dense								
	34	16			100%										
31	48				.	1						i			
امما	100/2					l									
32	46	17			100%	@32.3'; medium bi	own SILT	W/ t SA	IND & GRAV	EL; moist; h	ard		0 ppm		
33	100/4			· · · - · · ·	100%	1						- 1			
"	100/1					1									
34						1							0 ppm		
	52	18			100%	Sampled to 34.9'						ľ	- pp		
35	100/5				l]									
						1									
36					<u> </u>										
37					<u> </u>	4						j			
°′ -						ł									
38									T.D. = 36.0	l hae					
"	•					1			1.D 30.0	ngs					
39						1						i			
						1						ŀ			
40															
		LEGEN	_								2 sections of augers, ther	n retry augo	ering		
			POON SOIL			again. 2nd attempt wa	s successfu	ıı ın reac	ning total aug	ered depth of	36' bgs.				
	U- UNDISTURBED SOIL SAMPLE C- ROCK CORE SAMPLE														
(SENERAL N	OTES:				l									
	1)	STRATI	FICATION L	NES REPRESE	NT APPROXIMAT	E BOUNDARY BETWEEN	SOIL TYPE	S, TRAN	SITIONS MAY E	BE GRADUAL.					
	2)	WATER	LEVEL REA	DINGS HAVE B	SEEN MADE AT T	MES AND UNDER COND	ITIONS STA	TED, FLL	ICTUATIONS O	F GROUNDWA	TER				
		mar oc	AUR DUE !	O OTHER PAG	ORO IMAN IMO	SE PRESENT AT THE TIM	MEASUR	EMENTS		BORING #					
									15						

GRADE

MONITORING WELL CONSTRUCTION DETAIL

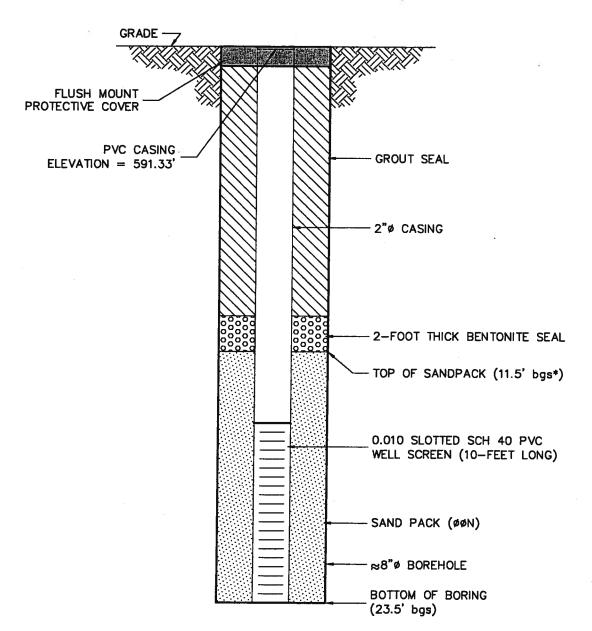
NOT TO SCALE

*bgs = below grade surface

MW-JCL-2

CHURCHVILLE FORD REMEDIAL INVESTIGATION

DATE:	DECEMBER	2007


SCALE: NONE

DESIGNED/DRAWN/CHECKED ED/DS/GA

P.N. 5701-11

`						PROJECT		BORIN(MW-JCL-03							
				ENFIELD ROAD		Former Churchville Fo			SHEET 1 OF						
. 4	Civil and E	nvironmer	tel PENFIEI	LD, NEW YORK	14526	Remedial Investigation	n		JOB #:5701-1						
CON	TRACTOR	: Noth	nagle Drillin	a Co.		BORING LOCATION:	SEE PLAN	J	CHKD. BY: N	/A					
	LER: Jay					GROUND SURFACE			DATL	JM: N/A					
JCL (SEOLOGIS	T:Eric	Detweiler			START DATE: 9/19/0			TE: 9/19/06						
									WATER LE	VEL DATA					
	OF DRILL					we we	DATE	TIME	WATER	CASING	REMARKS				
				HS Augers)	ous - Split Spoon										
	CORILLIN			TOD. Conunuc	ous - Spiit Spoon	3		-							
D						l -									
Ε			SAMPLE	DATA								1			
P							SAMPLE DESCRIPTION								
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1						PID			
Щ	/6"		(FT.)	/RQD(%)	(%)										
	NA	1		NA	82%	@0-0.5'; asphalt, b						0 ppm			
1	3			·		@0.5'; red-brown S	ILT, some	f SAN	D & f-m GRA	VEL; hard					
ا ا	6	_													
2	7	_			000/	[@2.0"; red-brown S	SILT TILL	w/ t SA	ND; f-c angu	lar to suban	gular GRAVEL; dry; firm				
ا ا	9	2			68%										
3	10 14					60 01	20.00								
4	14					@3.6 ; wet	3 3.6'; wet								
1	3	3			44%							L			
5	6	-			44 70							0 ppm			
"	10														
6	10					@6.0'; moist-wet; li	aht brown	· mund	A CDAVEL			i			
۱ ۱	11	4			28%	i (20.0°, moist-wet, iii	Jiit brown,	, round	SU GRAVEL						
7	10				2070							0 ppm			
'}	10			···											
l si	11					@8.0'; as above; tr	ace CLAV	/· majet	-wet						
	2	5			100%	GO.U., as above, a		, 1110131	-WGL			0 ppm			
9	2				10070							o ppin			
Ji	4														
10	5			·								ŀ			
lì	7	6			100%	@10.5'; light brown SILT TILL w/ f SAND & CLAY & GRAVEL; subrounded to rounded (f-c)									
11	7					firm					, (, 0),	0 ppm			
	9											, ,,,,,			
12	10														
1 [6	7			100%	@12.5'; trace CLAY	; moist-w	et				0 ppm			
13[7											''			
[8														
14	11					i									
[8	8			100%							0 ppm			
15	9									•		'			
[9														
16	16	لــِــا													
	8	9			100%							0 ppm			
17	6														
	8]			
18	13				10551										
	5	10			100%	@18.4; light red-bro	wn SILT 1	FILL w/f	-c GRAVEL;	some f san	d; molst; hard	0 ppm			
19	11														
	14														
20	19	LEGEN									·				
		LEGENI	_	0.11DI 5											
			POON SOIL												
	U- UNDISTURBED SOIL SAMPLE														
	C- ROCK CORE SAMPLE GENERAL NOTES:														
•	GENERAL NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.														
1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER															
						SE PRESENT AT THE TIME			WERE MADE.						
									[E	BORING #					

						PROJECT			DODIN MW	101 03				
11	LUENG	INFER	S 2236 P	ENFIELD ROAD	1	Former Churchville Fo	ord - VCA		BORING MW- SHEET 2 OF					
				LD, NEW YORK		Remedial Investigation			JOB #:5701-1					
	- VINI GEN E	, vi (1000)		,			••		CHKD. BY: N					
CON	RACTOR	: Noth	nagle Drillin	g Co.		BORING LOCATION:	BORING LOCATION: SEE PLAN							
DRILL	.ER: Jay					GROUND SURFACE ELEVATION: N/A DATUM: N/A								
JCL C	EOLOGIS	ST:Eric	Detweiler			START DATE: 9/18/0	6	END D	ATE: 9/18/06					
										EVEL DATA				
	OF DRILL			UC A,			DATE	TIME	WATER	CASING	REMARKS			
				HS Augers)	ous - Split Spoon									
ROC	C DRILLIN	G MET	HOD: NA	OD. Conunuc	us - apiit apoon	8	-		 	 				
6	years	J-7751				T		L	L	L	<u> </u>	- 1		
E			SAMPLE	E DATA		1						Ī		
_				•		l	SAMPLE DESCRIPTION							
T	BLOW	NO.	DEPTH	N-VALUE	RECOVERY	1								
Ш	/6"		(FT.)	/RQD(%)	(%)							1		
	2	11			90%		·	0 ppm						
21	4]						1		
[10					}								
22	19					@22.0'; grey-brown	f SAND	w/ SILT	; some f-c Gl	RAVEL; han	d			
[25	12			100%] -						0 ppm		
23	36				L	@23.1'; grey to ligh	t-brown f	SAND	w/f-c GRAVE	L; trace SIL	T; poorly graded; moist	''		
[65													
24	86													
[-			7		
25												1 1		
[
26									T.D. = 24'	bgs				
[
27												1		
				·								l l		
28														
L														
29														
1														
30														
31														
						•						1		
32														
1 1														
33												1 1		
34														
] [
35														
▎▁┡														
36														
}			·											
37												[]		
38												1 1		
<u>_</u> _														
39														
												1 1		
40	l	LECEN				·								
		LEGEN	=	04401-	ļ							7		
			POON SOIL											
			URBED SOI									ł		
	C- SENERAL N		ORE SAMP	.E										
			FICATION	NES REPRESE	NT APPROVIMATI	E BOUNDARY BETWEEN	ISOU TYPE	S TOAL	ISITIONS MAY	DE COADUA!				
	2)	WATER	LEVEL RFA	DINGS HAVE R	EEN MADE AT TH	MES AND UNDER COND	TIONS STA	TFD FIL	ICTUATIONS O	E GROUNDAL.	TER			
	-/	MAY OC	CUR DUE T	O OTHER FACT	ORS THAN THOS	SE PRESENT AT THE TIME	IE MEASUR	EMENTS	WERE MADE	. SAUGHDYYA	11611			
										BORING #	······································			

MONITORING WELL CONSTRUCTION DETAIL NOT TO SCALE

*bgs = below grade surface

MW-JCL-3

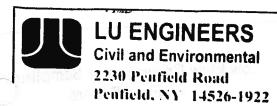
CHURCHVILLE FORD REMEDIAL INVESTIGATION

DATE: DECEMBER 2007

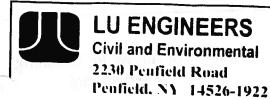
SCALE: NONE

DESIGNED/DRAWN/CHECKED ED/DS/GA

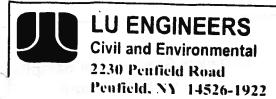
P.N. 5701-11

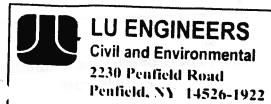

Former Churchville Ford Remedial Investigation Sample Point Locations Coordinate Zone Referenced to UTM ZONE 18 NAD 83 NY TM Units In Meters

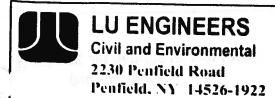
POINT #	NORTHING	EASTING	ELEV.	DESCIPTION
783	4775438.582	265218.238	177.630	SS-01
785	4775425.557	265218.315	177.171	SS-02
791	4775391.903	265215.666	176.977	SED-01 CATCH BASIN
796	4775470.266	265154.775	180.365	MW JCL3 RIM
797	4775470.339	265154.781	180.239	MW JCL3 2" PVC
811	4775462.794	265052.961	178.529	MW22 RIM
812	4775462.784	265053.022	178.436	MW22 2" PVC
830	4775420.999	265125.833	180.253	MW13 RIM
831	4775420.980	265125.790	180.161	MW13 2" PVC
832	4775432.527	265125.473	180.444	MW1 RIM
833	4775432.476	265125.487	180.324	MW1 4" PVC
834	4775435.023	265125.786	180.444	MW JCL2 RIM
835	4775435.042	265125.792	180.294	MW JCL2 2" PVC
845	4775398.425	265153.312	179.078	MW JCL1 RIM
846	4775398.490	265153.303	178.943	MW JCL1 2" PVC
847	4775396.289	265146.505	178.747	SED-03 CATCH BASIN
855	4775388.268	265207.249	175.839	SED-02 CATCH BASIN
862	4775349.259	265165.395	174.459	MW21 TOP CONC.
863	4775349.263	265165.478	175.300	MW21 TOP CASEING
913	4775353.429	265195.695	174.318	SS-07
914	4775341.085	265196.447	174.245	SS-06
915	4775343.339	265188.323	174.118	SS-05 & SS-05A
916	4775346.410	265178.317	174.068	SS-04
917	4775333.701	265183.634	173.939	SS-03
950	4775437.553	265125.750	180.472	MW3 RIM
951	4775437.518	265125.769	180.369	MW3 2" PVC
952	4775446.680	265155.303	180.463	MW6 RIM
953	4775446.649	265155.324	180.360	MW6 2" PVC

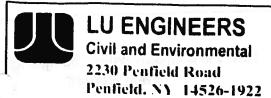

APPENDIX C

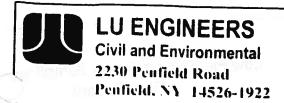
Well Development Logs and Field Notes/Groundwater Sampling Logs

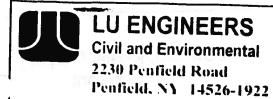

Remedial Investigation Report Former Churchville Ford Site #V00658-8

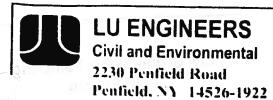

nitial Di inal Do creen l otal V	Depth to Weepth to Weepth to Weepth Length	Vater 1.2 ater 2.7 ged 2.7 srs per minute) sing - 2" diame 1 WELL Vol	4 fe fe fe	et Mea et Wel et PID llons PID	Ambient A	13.7 5.5 p	8 fee	_ We	ell Diameterell Integrity: Cap Casing Locked Collar
Time	Water (ft)	(ml/min)	(deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
1320	4,24 5,25	Ogal	16.3	6.83		1-64	1432 45	73.81	
1330		1 900	16.5	6.93		6.32	1435 45	25,	10-W
$\overline{}$	6.45	3 gal	16.6	6.87		12.1	1445	X47 -+	
1335	8.13	5 gue	17.0	6,91		217	1452	green Live	En -
1345	9.48	Tgal	16.9	7.16		199	1434	4 1 1	
1510	8,42	9 gal	16.3	7.06		329	1477		
520	10.05	ll gal	17.0	7.19		325	1447		
530	11.69	13 gal 15 gal	16.7	7.06		214	1421		
535	13.28	15gal	16.4	7.05		1380	1388		
540	13.72	16 gal	16.5	7.03		1296	1394		
						,	1317		
		rvations: r Containeri <u>UMENTAT</u>		Bailed we	ell to within	n 0.251	of dry at	tu evacu	ating 168
pe of P	ubing:								
oe of W	ater Qual	ity Meter: _	*5/% h *	······································			Calibrated		ul/Culs/V u
		AMETERS				LOCA	TION NOT	FC .	
ameter	<u>Volur</u>	mes Sa	mple Coll	ected		3/3/3	TION NOT	<u> </u>	
						-			
						*			

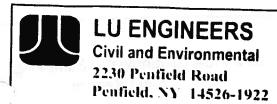

	on ID y Time LING NOT			Fiel Sam	d Sample I ple Time _ DTW =	D Mu 14:15	y-3	S	ob # 5 70(- 1 ampling Event Date 10 / 17/
Initial I Final D Screen: Total V	Depth to Water in case	vater 3. ater 10'(? ged 9.5 rs per minute) ing - 2" diame	fer ga x time duratio ter = 0.163 gai	et Well et PID Ilons PID n (minutes) x Ilons per foot	surement I l Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	Point 7 21, 20 Perk= air 0 ailliliter	1-bppm	et Vi	/ell Diameter _ /ell Integrity:
Time	Depth to Water (ft)	(ml/min)	Temp, (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
1135	8.65	0920	15.0	8.09		6.46	866.8us	MACON TO	
1144	11.65	1 gal	16.7	7.42		18.2	871.9 0	Tar Ell	
1151	13.60	5 gal	16.6	7.26		49.3	894.4	d 51	
1200	16.65	7 gal	15.6	7.37 7.35		123	894.5	TI _V. A' II I	31-11-11-11-11-11-11-11-11-11-11-11-11-1
		9 gal	14.7	7.49		97.1	899.9		
5				0 (\$.				r _e a	
Pt <u>OUIPM</u> pe of P	ENT DOC	Containeri	ION	drummed					
pe of W	ater Quali	ty Meter: _					Calibrated	=14A - pi	
pe of w	CAL DAD	AMETERS	PT.27	202		LOCA	TION NOT	ES	
			mple Colle	cted					
ALYTI			imple Colle	ected					

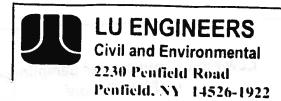

Location	n ID	turchullé MW-6 (1	IN BLOG)	Fiel San	ld Sample] nple Time .	ID Mw- 10:00	-6	Jo _ Sa _ Di	b # 5701-11 ampling Event # ate /0/18/06
SAMPL	ING NOT	res					E .	36.00	to project
Initial De Final De Screen L Total Vo [purge volu Volume of	Depth to Water to Water to Water in casi	Vater 3.° (ater /5.) (0°? (ged 8) (crs per minute)	59' fee fee ga x time duration ter = 0.163 gal	lions ner foot	of death 47 d		For PEAK For Sold State of the second secon	— Wo 2 2 — foot of depth	ell Diameter 2 ell Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity	Cond. (mS/cm)	Pump intake depth (ft)	Comments
	3.94	Ogal		7.46		0,98	834.145		
		1 920	18,4	7.41		24.1	857.1	<u> </u>	
9:26	8.93	2 900	18.4	7,48	-	119	875.6		
	10.3	3 gal	18,7	7,59		676	881.8		
		4 gal	18.5	7.55		462	842.6	I - 4	
9:40		5 gal	18.5	7,55		840	837.4		
A 4 4 4 4 4	14.95	6 gel 7 gal	18.2	7,56		1202	835.4	_==	
	15.59	1 gaz	17.7	7.43		1037	907.2		
	13.51	8 gal	17.7	7.50		948	922.3		
Pu Du	rge Obser	rvations: <u>E</u> r Containeri	-VACUATE	08 GM	LLONS	6 E (2)		121-01	
ype of Pu ype of Tu ype of W	ENT DOCI ump:ubing: Vater Quali	UMENTAT	TION				Calibrated		
NALYTIC arameter	CAL PAR Volun	AMETERS mes Sa	ample Colle	ected		LOCA	ATION NOT	<u>ES</u>	
gnature: _									

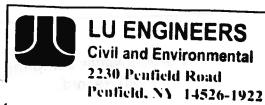

Activity	y Time	hunchville MW-13			ld Sample	ID NW	- 13	_ S _ E	ob # <u>5701 - 11</u> ampling Event # Date <u>16 17 06</u>
Initial D Final Do Screen I Total Vo	epth to W Length olume Pur ume (millilite	Vater 3 ater /o'(?) rged	fe fe	et Wel	Ambient A	ir O	Ppm for	_ V	/ell Diameter/ /ell Integrity: Cap
Volume of	Water in cas	ing - 2" diame	A 1 CA		and Sub !	menticet 1	31 L 13 III	foot of depth	LockedCollar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	(units)	O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
1610	6.52	1 gal	17.8	7.35		2.11	628.7		Stale solvent-
1615	7,92	2 sal	18.3	7.26		22.4	628.6		odor
1620	7.90	3 800	18.4	7.32		15.7	635,2		
	10.3	4 gal	18 4			15.0	628.6		11 7 7 7 7
	11.21	5 gal	18.3	7.25		14.7	6281		11. N. 19.2.1
16 35		6 500	18.1	7.25		31.0		Lea ELL	W
		301		7.25		49.4	629.0		
					ooksi engintii t				
Pu	rge Obser	vations: Containeri		DON	EAFTE	266	A	n-tox	yo ay 1111
OUIPME pe of Pupe of Tupe of W	IMP: lbing: ater Quali	UMENTAT	ION				Calibrated		
NALYTI(CAL PAR Volun	AMETERS nes Sa	mple Colle	ected		LOCA	TION NOT	ES	
nature: _ cked By	:								

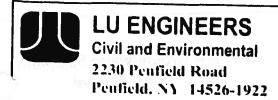

Project l	Name Ch	wchville Mw-2	<u>.</u>	Pi-1				J	ob #_ \$701-11
Activity	Time	10100-2		rie	ld Sample I	D		S	ampling Event #_ Date
				Sali	nple Time	5			Date 10/17/06
Initial De Final De Screen L Total Vo [purge volu Volume of	pth to Wa ength lume Purg me (milliliter Water in casi	ater9 ter geds per minute) x	fee fee gal	t Well r PID	asurement I I Depth Well Head Ambient A 10.00026 gal/n t of depth, 4" di	29./ ir	5 fe	<u>et</u> W 	Vell Diameter Vell Integrity: Cap Casing Locked
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp.	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond.	Pump	Collar
4313-	40	0	0.0		(21	(mS/cm)	intake depth (ft)	Comments
12:25	0,0		13.7	7.66		13.4	921.9		2.63, welle
12.40		2.7	14	7.66		2234	926	2== 1	dry
						of Line		5, 60	
						1 35 1		10.73	
					 				
									
Pu	rge Obser	vations:							THE THE REST
Pu	rge Water	Containeri	zed:				JEE 57		
JUIPME	NI DOC	UMENTAT	<u>ION</u>						
me of Pu	mn.	~~~~							
me of Tu	bing:					7779			
pe of W	ater Ouali	ty Meter: _					C 111		
							Calibrate	d:	W-7- W-2
ALYTI	CAL PAR	AMETERS				LOCA	TION NO	TEC	
rameter	Volun	nes Sa	mple Colle	ected		LUCA	TION NO.	1 E 2	na r
					_				
					•				
nature:									
скеа Ву	:								3

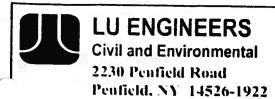

Project 1 Location Activity	Name n ID Time	<u>hrchille</u> MW·22		Fiel San	d Sample l	D		Sa	b # 5701 - [(ampling Event #_ ate
SAMPL	ING NOT	<u>ES</u>				2			nertstrpts ik
Final De	pth to Wa	ater	fee		surement l	Point	fe		ell Diameter
Screen L	ength		fee	t PID	Well Head		1		ell Integrity: Cap
[purge volu	me (millilitei Water in casi	ged	k time duration ter = 0.163 gal	n (minutes) x	0 00026 001/0	nilliliani	DITTO HERVI THE	foot of depth	Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
11:37	J.7'	2 ()	13.3	6.91		1.62	1537		2.6g/sel v.l.
11:45	22 149: 1	2.6921	14.6	6.39		427	1554		
11.55		5.2001 7.8931	14.4	6.96	-	422			
		7.093	14.6	7.04		361	1452		
						\			
							-		
				=					
					0				
								-1	
Pu	rge Obser	vations:		1					
EQUIPMI	ENT DOC	Containeri	ION				tomati		
ype of Pi	ump: ubing:	· · · · · · · · · · · · · · · · · · ·							
'vpe of W	ater Onali	ity Meter: _							
JP 02	aror Quar	ity Mictor		<u> </u>			Calibrate	d:	
NALYTI arameter	CAL PAR Volur	AMETERS		SAL		LOCA	TION NO	<u>res</u>	
<u>arameter</u>	<u>v Olul</u>	nes Sa	ample Coll	ectea					
					•				
									(
gnature:		All House							
hecked By	y:								

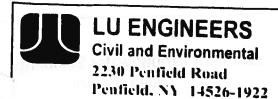

Depth to Purpe Rate Temp. Dissolved Turbidity Cond. Pump Interest Collar Dissolved Turbidity Cond. Pump Interest Comments Comments Collar Dissolved Turbidity Cond. Pump Interest Collar Dissolved Turbidity Cond. Pump Interest Collar Dissolved Dissolved Turbidity Cond. Pump Interest Collar Dissolved Disso	Location Activity SAMPI Initial I Final Descreen I Total Velicity [purge volumes of the content of the con	Time	Vater ater rged ers per minute) sing - 2" diame	fee fee ga x time duration ter = 0.163 gal	Fiel Sam st Mea t Well t PID llons PID n (minutes) x	surement l l Depth Well Head Ambient A 0.00026 gal/n of depth, 4" d	Point To 43.65 L O O O O O O O O O O O O O O O O O O	oc fe	Sar Dar We We	# 5701 - 1 1 mpling Event # 1 te (0 - (2 - 0 6) Ill Diameter 2" Ill Integrity: Cap Casing Locked Collar
1.2.4 3 gal 14.8 7.40 2.12 521.6 12.35 6 gal 13.4 7.42 12.35 6 gal 13.4 7.42 12.45 13.0 7.36 118 673.1 12.45 13.2 7.37 6528 966 dry 12.55 1/92 13.2		Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved	Turbidity		intake	Comments
12:35		4.35					2.12	521.6	acpar (11)	
12.45			3 gal				7.0			-201
Purge Observations: Purge Water Containerized:			I b Ball				103.8	583.1	45 -	
Purge Observations: Purge Water Containerized:	-		1 gal				118	677.9	Netter in	
Purge Observations: Purge Water Containerized:	12.33		1/921	13.2	7.37		6528			do
Purge Water Containerized:				1			1	1-42	_=_	-009
Purge Water Containerized:										
Purge Water Containerized:	-									
Purge Water Containerized:	-									
Purge Water Containerized:										
Purge Water Containerized:	1									
Purge Water Containerized:	D.	rae Oheee			T					
Type of Pump: Type of Tubing: Type of Water Quality Meter: NALYTICAL PARAMETERS Tarameter Volumes Sample Collected gnature:	Pu Du	irge Ubsei	rvations:						_ =====================================	<u> </u>
Type of Tubing: [Yype of Water Quality Meter: [NALYTICAL PARAMETERS] Sample Collected Calibrated:	EQUIPMI	ENT DOC	<u>UMENTAT</u>	ION						
Type of Tubing: [Type of Water Quality Meter:	Type of Pu	ımp:			The state of the s					
NALYTICAL PARAMETERS arameter Volumes Sample Collected gnature:	type of It	lbing:								
NALYTICAL PARAMETERS Parameter Volumes Sample Collected gnature:	Type of W	ater Quali	ity Meter: _					Calibrata	201012	
gnature:								Canorate	J:	
gnature:	NALYTI						LOCA	TION NOT	rre	
gnature:	arameter	<u>Volun</u>	nes Sa	mple Colle	cted			TION NO	ES	
gnature:										
gnature:										
gnature:										
gnature:	-									
gnature:										
necked By:	onatura									
Decreu Dy.	hecked D.									
		-								

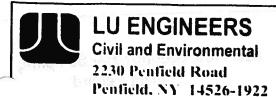

Locatio Activity	on ID	HURCHVILL MW-JCI ES	2	Fiel San	Id Sample Inple Time DTW=	14:00 7.57	JCL-S	S	ob # <u>570[-1</u> ampling Even late <u>10-17</u>
Final De Screen I Fotal Ve purge volu	epth to Wa Length olume Pur ume (milliliter f Water in casi	rater 5. ater 10. ged 10 rs per minute): ing - 2" diamet	fe fee ga x time duratio ter = 0.163 gal	et Well et PID allons PID on (minutes) x allons per foot	Isurement I l Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	35.59 1 / Sake: Air O pinilliliter)	fe 212, 25-16 pn	weet W	Tell Diameter Tell Integrity: Cap Casing Locked Collar
Time	Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)		Cond. (mS/cm)	Pump intake depth (ft)	Comments
0950	5.31	NA	17.2	11.88		32.1	3805	(It)	
10/0	11.42	1 gal	16.8	11.79		38.4	3771		
	22.67	3 gal	14.5	11.78		94.2	3398		
020	33.5		13.5	11.59		303	2597		7.6
1045		7 gal	13.1	11.39		747	1849		THH PI
- 13	# try	9 gal	13.0	11.58		1564	2077		
	- 774								
				-					
Pu	rge Obser	vations:							n onku
Pu	irge Water	Containeri	zed: d	trummed	,				AL - Togy
UIPMI pe of Pr	ENT DOCU	UMENTAT	ION 2	* bailed	dy O	(0: (47-		
e or It	uding:	ty Meter: _			_			- TO	
							Calibrated	l:	
ALYTI ameter	CAL PAR Volum	AMETERS nes Sa	mple Colle	ected		<u>LOCA</u>	TION NOT	ES	ALLEN ERI
-									
1									
ature.									

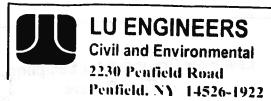

•	^					•			
Project	Name CH	activiLE	FORD					Io	b#_5701-11
Location	n ID _^	1W-JCI	3	Field	d Sample I	DMW-J	CL-3	20	ampling Event #
Activity	Time			Sam	ple Time	11:30	CL-3 NW-JCL-3 ERB-3 FR	_ D	ate 10/18/06
CARADI	INC NOT	TO C				11:35-1	MW-JCL-3	MS/MSD	10/10/00
	ING NOT		,		*	11:40->	ERB-3 FR	om	
Initial D	Pepth to W	ater 2.9	S fe	et Mes	surement I	Point	TAC	ILER	il described
Final De	epth to Wa	ater	for	et Wall	Donth	27 02	/		ell Diameter
	Length		fe	et PID	Well Head	0.0	o ppn	et W	ell Integrity:
	olume Pur	ged	ga	llons PID	Ambient A	ir O.C	2 000	[12]	Cap
[purge volu	ume (millilite	rs per minute)							Casing Locked
PURGE	Water in cas	ing – 2" diame	ter = 0.163 ga	llons per foot	of depth, 4" d	iameter = 0.6	53 gallons per	foot of depth	Collar
TURGE	WALA	WELL VO					-		
	Depth to	Purge Rate	Temp.	pH					
Time	Water (ft)	(ml/min)	(deg. C)	(units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	1 - 1 1 1 1 1
1025	200		5 18-01	1		()	(mortin)	depth (ft)	Comments
1035		0 gal		7.35		1.86	1231		
10:40		/gal	16.9	7.43		4.43	1230	1	
10:44		2 gal	17.2	7.38		10.98	1230	1111111	
10:48	13.40	3 gal	16.5	7.36		114	1228	-	
10:52	14.28	4 gal	16.4	7,22	(189	1245		
10:56	15,2	5 gal	15.9	7.29		6512	1248		
11:05	?	6 gal 8 gal	15.6	7.31	,	61.8	1316		
11:12	(= +/	8gal	15.0	7.29		112	1340		
11:10	21.5%	10 cal	14.7	7.35		57.6	1273		
		1 0 00000							
 		· · · · · · ·							
						· _			
Pu	irge Obsei	rvations:	Bailed -			of dr	4		
Pu	irge Water	r Container	ized:	drum	med				
COULDMI	ENT DOC	UMENTAI	TION					11 - 1	15 T T T T T T T T T T T T T T T T T T T
	DIVI DUC	OMENIA	HON						
ype of P	ump:								
ype of T	ubing:								
ype of W	ater Qual	ity Meter: _					C-1:1		
		- 5					Calibrate	d:	
NALYTI	CAL PAR	AMETERS	3			IOC	TION NO	TEC	
<u>arameter</u>			ample Coll	ected		HOCK	ATION NO	I ES	
gnature:									
necked By	y:		-					_	

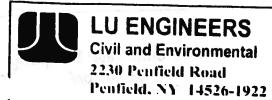

Location Activity	on ID	hurchvil MW-1		Fie San	ld Sample inple Time	ID Mu	U-1	Sa	# <u>5701-</u> mpling Event te <u>10-23-</u>
SAMPL	ING NOT	ES						ngri	15152191
		- II	fe	<u>et</u> Mea	asurement]	Point	TOC A	We	Il Diameter 4 Il Integrity: Cap Casing
Cinai De Screen l	epin to wa	ater	fe	et We	l Depth	13.7	8 fe	ct We	Il Integrity
Total V	olume Pur	roed	fe	et PID	Well Head	4.8 9	PM PEAK		Cap
purge vol	ume (millilite	rs per minute)	K time duration	n (minutes) :	Ambient A	Air Op	pm		Casing
Volume of	Water in cas	ing – 2" diamet	er = 0.163 ga	llons per foot	of denth. 4" d	nilliliterj ismeter 0.6	£2!!		Locked _
PURGE	DATA		ALIDE TO		or deput, 4 d	renificial - 0.0	33 gailons per	foot of depth	Collar
	Depth to	Down Date		70.3. s	1 5 5 5	11 5 × 3			
Time	Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved	Turbidity	Cond.	Pump	
to Alect II			(3.6)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	intake	Comments
		0	14.7	8.41	2.67.	9.65	1351	depth (ft)	
		1 Voi	15.4	8.63	459	229	1349	32-23-	8 11 Jessin
		2 400	14.9	8.72	459	274	1386		e a shi k
						CATE IT TO	1300	7 = 8 - 1 - 1 - 1	
				WLL		42 141			
			Terryo I	THA			ILL		135 1 1
				V 12			العوادات		1 (= 1
					"	123		eget = -	
				300	- 1	12,21			- IA (K.)
	01								
Pu	irge Obser	vations:			3-1 %	THAT !			AL II - XIII -
ru	irge water	Containeri	zed:		26.5 mg		- Long 17 to		William
UIPMI	ENT DOC	UMENTAT	ION				491 03	s. HT[2: [.]	1 100
			<u></u>						
pe of Pu	ump:								
pe of Tu	ubing:								
pe of W	ater Quali	ty Meter: _					Calibrated	19	
				···			Cantrate	l:	
<u>ALY 110</u> ameter		AMETERS	nd villalina			LOCA	TION NOT	T.S.	
ameter	<u>Volun</u>	ies Sa	mple Colle	ected		119,24	Es diese	20	
								9	
oh.ee.									Pro
ature:									

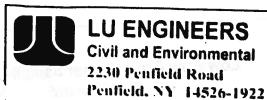

Activity	Time	hunchvi MW-3		San	ld Sample I nple Time _	D	0-3	Sau Da	mpling Event te <u>10-23</u> -
SAMPL	ING NOT	<u>ES</u>							g participation
									
Initial D	epth to w	ater	fee	et Mea	asurement F	Point	VC	We	ell Diameter
Corpon 1	on the	iter	fer	et Wel	l Depth	21.03	3 fe	eet We	Il Integrity
Total V	olume Pur	ned	tee	at PID	Well Head	1_5.7	pon PEr	7k	Сар
purge vol	ume (milliliter	rs per minute)	fee fee gal x time duration	lions FID	Ambient A	ir_U	Epm		Casing
Volume of	Water in casi	ing – 2" diame	eter = 0.163 gal	lions per foot	of denth, 4" d	iilliliterj	en antique man	ends T gette	Locked _
PURGE	DATA		4 169 6 60		or cohen .	Miletel - v.v.	3 gations per	foot of depth	Collar
	Depth to	Purge Rate	T				- Langu		
Time	Water (ft)	rurge Kate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity	Cond.	Pump	200
		43(71.7)					(mS/cm)	intake depth (ft)	Comments
		O	12.0	825	6.52	361	866	debut (11)	
 		IVOL	14.3	8.77	759	162	711		
		2 vel	13,5	8.54	388	175	952		
				1					
		i							
						4	Eur		
+			-						
								=	
	Total of								
			\longrightarrow						
Pı	rge Observ	Trational					= =		ATOMOTE S
Pu	rge Water	Container	ized:	-17-					Tr m
				*9.0			= 46)=		
<u>)UIPMF</u>	NT DOCL	<u>UMENTAT</u>	<u>ION</u>				174	CALL DE	
f D.									
pe of Pu	imp:								
pe of W	ibing:	4. Matan	THE ST						
po or **	atei Quaiit	y wieter: _					Calibrate	d:	
ALYTI	CAL PAR	AMETERS	ž						
ameter	Volum		ample Colle	ected		<u>LOCA</u>	TION NOT	<u>res</u>	
			TIPIO COLL	icicu			B. St. avail		
- 4									

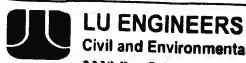

Activity	Time	Ehuch MW-6		Fie San	ld Sample nple Time	ID_MU	v-6	S	ob #_570 - ampling Event late (0 -23 -c
Initial D Final De Screen I	epth to Wepth to Wepth to We	/ater ater	fe fe fe	et Mea et Wel	surement il Depth Well Head	Point	10 C	et W	Vell Diameter
bride Aou	ıme (millilite	rged	r time dumaia	- /	A 44445111111111111111111111111111111111		1.0	_	Casing
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
		Tuol	15.7	8:14	7.16	2.50	717		
		2vol	15.5	810			893		
		2001	19.3	X-11	6.43	368	985		
				- "	<u> </u>				
					1				
	1		7 1						
							-0.25		
Pu	rge Obser	vations:			L				
Pu	rge Water	Containeri	zed:					241	L V. Pontage
UIPME	NT DOC	UMENTAT	ION				Oten	Turksel 1	TOTAL VIEW OF THE
e of Pu									
e of Tu	bing:								
e of W	ater Quali	ty Meter: _					Calibrated	winds or de	
LVTI	TAT DAD	AMETERS			-				
meter	Volum		male C-11			LOCA	TION NOT	ES	
	· Jiuli	a <u>291</u>	mple Colle	cted		1,3(1.1)	7 1 0 0 11 10	4,555	
				illi odbo		193			
				C					
			-1(====================================						
						-			
ature: _									


AMPL nitial D inal De creen I otal V ourge volu	epth to Water in casin	ester	fe fe ga x time duratio	San et Mea et Wel et PID llons PID	d Sample II nple Time _ surement P l Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	oint	UC 51 fe	_ Dat	# 570/-) npling Event # ie 10 -23 - co Il Diameter 2 Il Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
		0	14.4	8.25	5.79	45.33	623	depth (ft)	
		Ivi	16.0	840		155	102.7		
		2001	15.3	8.09	1.94	34.6	610	=======================================	
						\			
									- 23-
D-	Ob	vations:							
Pu <u>UIPMI</u>	rge Water	Containeri	ized:				- 120 T		
oe of Prope of True of W	ubing:	ty Meter: _					Calibrate	d:	guda stad Grand Villa S
ALYTI ameter	CAL PAR Volum	AMETERS nes Sa	ample Coll	<u>ected</u>		LOCA	ATION NO	<u>res</u>	

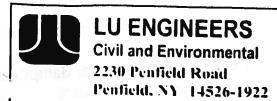

Project Locatio Activity	Name <u>Cl</u> n ID / Time	uuchville MW-2	Find	Fiel San	d Sample I	D MW	-21	_ Sai	0 # 5701-11 mpling Event # te 10-23-06	(
SAMPL	ING NOT	ES							10 23-01	<u> </u>
Initial D Final Do Screen I Total Vo [purge volume of PURGE	Depth to Water to Water in case DATA	rater/ O	fee fee ga k time duration ter = 0.163 gal	et Mea et Wel et PID llons PID n (minutes) x llons per foot	surement I l Depth Well Head Ambient A 0.00026 gal/n of depth, 4" d	Point	9 fee form form 3 gallons per 1	_ We et We - - Foot of depth	ell Diameter	-
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments	
	- W	0	11.9	8.78	5,02	80.3	1088	depth (ft)		
-		1 VOL	12.0	8,73	7.21	82.3	972			_
-		2 VOL		2.5		Ex	LENE			_
		1								\dashv
			* Y							-(
										Ť
					¥					\dashv
								1		\dashv
										\exists
								-ii-1		\exists
D ₁	urge Ohce	rvations:	L		L					7
Pı	irge Wate	r Container	ized·					244	XII u.wardi	
OUIPM	ENT DOC	<u>UMENTAT</u>	<u>ION</u>							
	.									
ype of P	ump:			· · · · · · · · · · · · · · · · · · ·						
	ubing:	ity Meter: _					_			
ype or v	ater Quar	ity Meters.					Calibrate	d:		
NALYTI	ICAL PAR	AMETERS	ale les era			IOCA	TION NO	TTO .		
rameter			ample Coll	ected		LUCA	TION NO	<u>l'es</u>		
					_			-		-
		 			•					-
					•					-
						= =				
										• 1
mature									- 1	15.
ecked D	v·									hii.
C DUADU	J·									


Activity	Name (Mon ID) Time		1.67	San	ld Sample I nple Time	D <u>W</u>	-22	Sar	# <u>570 -</u> npling Event te <u>/0-23-</u>
rinai De Screen I Total Vo [purge volu	epth to Wa Length olume Pur ume (milliliter Water in casi	rater ged rs per minute) ; ing - 2" diamet	fee fee gal	et Well et PID llons PID	asurement lead Depth Well Head Ambient A 0.00026 gal/n of depth, 4" d	16.2 1_0 Air_0	ppm ppm	<u>et</u> We	Il Diameter _ Il Integrity: Cap Casing Locked _ Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
		V0 2v0	13.0	7.99	5.85 4.61 4.69	216 394	(449 1436 1411		
				1.0	-1-5-1	+-(-0	1711		
Pu Pu	rge Obser	vations:	zed:					i glawi	
		UMENTAT							
pe of Pu pe of Tu	ımp: ıbing:		 -						
pe of Wa	ater Qualit	ty Meter:					Calibrate	: <u>M</u>	
ALYTIC	CAL PARA Volum	AMETERS nes Sar	mple Colle	antad		LOCA	TION NOT	res .	L A II
							s div <u>u</u>	3.000	17, 24

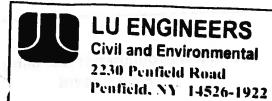

Locatio	n ID	MW-J	CL -1	Fiel Sam	d Sample I	DMW-	JCL-1	_ Sar	0 # <u>570(- (</u> mpling Event # te <u>/0</u> -23-06	+ 1
	ING NOT				•			_ Da	16 10 23-01	
Initial Descreen Total Vestigates	Depth to Weepth to Weepth to Weepth	rater	fe fer ga x time duratio ter = 0.163 ga	et Mea et Wel et PID llons PID n (minutes) x llons per foot	surement l l Depth Well Head Ambient A 0.00026 gal/n of depth, 4" d	Point $\frac{93.5}{43.5}$ I $\frac{0.0}{43.5}$ Air $\frac{0}{60.0}$ milliliter] miameter = 0.6	fer fer fer fer fer fer fer fer fer fer	_ We et We foot of depth	ll Diameter	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments	
		0	14.3	8,23	6.54	F 141	(12)	depth (ft)		
		Ivol	12.4	8.33	7.22	5.68	408			
		2vol	117	8.39	6.72	1/8	487			1
= _		3001	11.4	7 40	5.92	283	552			
				4 1	4.10	203	.352			-(
9 (F										\dashv
										4
										\dashv
										\dashv
							1 3 m			\dashv
										-
D						E		sun-Juvi		\dashv
	urge Obser							orion Phys	a M Say E	
:-	urge water	r Container	ızea:							
QUIPM	ENT DOC	<u>UMENTA</u> 1	<u>ION</u>							
ype of P	ump:		 							
ype of I	ubing:	:4-37-4-	Baut.							
ype or w	vater Qual	ity Meter: _	MESSES A		-9-5		Calibrate	d:		
NALYT	ICAL PAR	AMETERS	wa mid Ja							16
rameter			z ample Coll	ected		LOCA	ATION NO	TES		
	- Foret		ampie Con	CCICU						_
					•					-
					•					-
										-(
										-
gnature:									of Tour	- 1
ескед В	у:									- 1


otal V	Depth to Weepth to Wa Length	ter		et Mes	euroment !	n-: 7	7\A	and/	
otal V	Length		fe	et Wel	Denth	70Int 1	12 6	We	ll Diameter_
purge vol	_	B 8	fe	et PID	Well Head	5.5	PAM PEAK	<u>et</u> we	Il Integrity:
	orunie Pur	ged	Qa	ullons PID	Amhient A	lie A	A	- ingm	Cap
'Olume oi									Casing Locked
URGE	DATA	ng – 2" diamer	ter = 0.163 gai	llons per foot	t of depth, 4" di	ameter = 0.65	53 gallons per f	foot of depth	Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
		0	14.4	aia	C:24			depth (ft)	Commicus
		1006	12.7	9.19	596	546	691	= 34	
		2 001	12.5	1.11	3.78	127	158		
		L VOL	17.>	889	2.63	114	746	± Щ.	
				 '					
								-	
			227					_== = = =	
				 					
							4		
									
Pı		vations:							
Pı	irge Water	Containeri	i-ad.						TI was all
UIPMI	ENT DOCI	UMENTAT	<u>ION</u>						
							19		
10 9C	ump:								
pe of Ti	ubing:								
)C UI VY	ater Quain	ity Meter: _					Calibrate	:d:	William -
41.YTI	CAL PAR	<u>AMETERS</u>	•						
ameter			<u>ample Colle</u>	and a		LOCA	TION NO	<u>TES</u>	
**********	7,0-0	100 54	minie Com	ECIEU			TIL MALL		
			- 10						

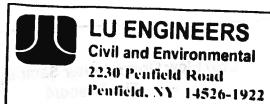
30.33	7 Tille	unchville 1W-ICL	-3	Fiel San	d Sample I	D_Ww-	JCL-3	S	ob # <u>5701 - 11</u> Sampling Event # Date <u>/0 - 23 - 0</u>
Initial D Final Do Screen I Total Vo	Water in casi	ater ater ged rs per minute); ing - 2" diamet	fec fec gal t time duration er = 0.163 gal	Mea Mea Mea Mea Mea Mea Mea Mea Mea Mea	surement I l Depth Well Head Ambient A 0.00026 gal/n of depth, 4" de	Point To 2 2 . 8 Lir O (Air O pailliliter) lameter = 0.6	fe ppn pm 53 gailons per	Vet V	Vell Diameter
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
-		0	14.0	807		7.19	1207	deput (it)	
-		Ivol	14.8	802	2.97	66.9	1201		
		2vo1	14.10	7.97	5.32	163	1246		
					l,				
				63		Ĭ			
							- 5-1		
						9	_ === -1		
		1072 277							
Do									
Pu Do	irge Obser	vations: Containeri							
OUIPMI	ENT DOC	UMENTAT		250			Σ' [J = 1		
pe of Ti	ubing:	4.36.							
he or M	ater Quali	ty Meter: _					Calibrated	i:	
VAL.VTI	CAL DAD	AMETERS							
rameter	Volum		mple Colle	ected		LOCA	TION NOT	ES	
							#		
mature									visca land
mainte.									

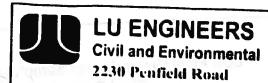


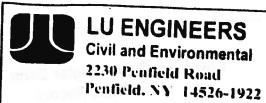
		10:00 TES		Fiel San	d Sample I ple Time _	D_MW	-1	S	ob # <u>570/-</u> ampling Even Pate <u>6/14/0</u>
Initial D Final Do Screen I Total Vo [purge volume of PURGE	Depth to Water to Water to Water in casi	rater 4, Later 13.1 ged 13 rs per minute) x ing - 2" diamete WELL	er = 0.163 ga	lons per foot	Surement P I Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	oint	fe Ppm 53 gallons per	W St W — — floot of depth	/ell Diameter /ell Integrity:
Time	Depth to Water (ft)	rurge Rate (ml/min)	Temp. (deg. C)	pH (units)	Bisselved G2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
1115	4,49	O gol	20.1	6.57	1010 ppin	1.3	1403	depth (ft)	
1:55	6.35	300	19.2	6.59	10:22	13	1414		very clean
2:03	9.3	6 gal	18.5	6.70	1037	180	1433		
2:11	11.95	10 gal	17.0	6.70	1013	260	1400		
2:25	13.45	13 gal	17.0	6.89	993	340	1370		
						7. 1. 1			
			del .		DE VAN	7.1			
				=v = - v/i	T. I. K.	11-15			
						7 7 1			
\rightarrow									
					7. 14				
<u> </u>		L	- 1		TALL	Marie 1			
Pu	rge Obser	vations:	duled u	thin 0	.3' of be	ing dry			
Pu	rge Water	Containeriz	zed:	drumm	ed	3 7	1,00	Mark the contract	
	ımp;	y Meter:	UER.	Myron		LOCA	Calibrated		
pe of Tu pe of W	CAL PARA	METERS							
pe of Tu pe of W			nple Colle	cted				ES	

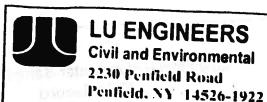


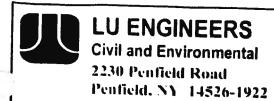
-0 FIAOIIIFFI/0
Civil and Environmental
2230 Penfield Road
Penfield, NY 14526-1922


nitial I final D Screen I fotal V purge vol	epth to Wa Length	rater 4, ater ? ged (5	fe fe x time duratio	est Wellest PID allons PID on (minutes) a	Ambient A	21.10 ² 18.5 \tir	fe form 53 gallons per	_ We	ell Diameter Cap Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp, (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comment
1133	798		23.2	6,85	high je	6.05	.49	depth (ft)	
1144	1.70	u a	17.8	G,91		7.73	898.9		
11-15	9,65		17.2	7.33	3.51.1.	12.3	871.7	3.13	
154	400			7.37	10	1815	857,7		1 2
2,00	10,05		17.(7.35	607.8	30,3	850.7	1-	
205	10107		14,9	7:33	Ce13.4	31,9	867.5		
210	2.0		70	7.40	603.4	, , ,	855.6		
216			18:1		61012		862,5		
223			1813				874.6		
229			19.00	_			871.9	11/1	
237		15 gal !		7,43	6 7,6 °		57813		
Pu	rge Obser	vations:		ACTOR STORY		23	79.0	rm=lmain J	Har W
UIPMI oe of Pu	Imp:	Containeri JMENTAT BAIL Ty Meter:	ion Er			-24	BOS		Carry Com
		METERS	•	94.		LOCA	Calibrated TION NOT	ma e la	187


MIRE ACIE	olume Pur	rater 5.0 ater ged 8 rs per minute) x	fee fee gal	et Well et PID llons PID	Ambient A	19.79° 1 4.4 ir 0ρ	epm Pm	et We	Il Diameter Il Integrity: Cap Casing
oinme of	DATA	ing - 2" diamete	er = 0.163 gai	lons per foot	of depth, 4" di	ameter = 0.65	i3 gallons per	foot of depth	Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
	5.05	0	18.9	6.82		1.25	994.6	depth (ft)	5 717
11:55		2.5	17.8	7.06		293	947		1 1 1
12:00	11.62	4	16.9	7.10	743	959	900 -	710'37	1 #1 1
12:05		5.5	16.6	7.09	732	944	1024		
16:12	18.5	7.5	16.4	7.04	822	990	1143	_ = _	
-				a third h	41.64	3 51			
-									
								W. C.	
						= = = = = = = = = = = = = = = = = = = =			
Pu	irge Obser	vations:	Bailed	to wit	him I'	·Fdu	18:75		Kintari T
Pu	ırge Water	Containeria	zed: <u>Ye</u>	5-dru	nmed	I A	_131/3		W. Establish
UIPMI	ENT DOCI	<u>UMENTATI</u>	<u>ION</u>						
e of Pr	ump:	BALE	R(12)						
e of Tu	ubing:		,						
e of w	ater Quali	ty Meter: _	Myron, H	toriba			Calibrate	d:	
ALVTI	CAL PAD.	AMETERS						armit - m tha	4.5.1
meter	Volum		mple Colle	ected		LOCA	TION NOT	<u>res</u>	
	<u>, 0.1311</u>	100 000	inple Colle	cteu					
			1						
									


SAMPI Initial I Final D Screen Total V	LING NOT Depth to Water to Wat	Ater 5; Rter 15. ged 2 rs per minute); ing - 2" diamet	32 6 9' 6	est Mer est Wel est PID allons PID on (minutes) x	Well Head	Point	Form i53 gallons per		ampling Even ate 6/14/ Tell Diameter ell Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump	
157		A Service of	25.2	7.32	4862	18.5	21/ 7	depth (ft)	Comments
20Z	6 0		22.3	1+23	15057	124	73210		
700	5,9		221	7.24	510.1	179	7366		
120		7 7 F	21.7	1 1/6	513.6	209	7358		
The second second	7 3/		22.1	7.24	515.2	296	744 9	2 5 1	
36	7.71		22.3	730	511.5		740.2		
90			22,0	7.23	513.7	71000	739,7		
$\overline{}$						2075	1		
						Mexical Deliver			
Pu	rge Observ	vations:						ed alternation	The second
UIPME e of Pu e of Tu	MT DOCU mp: bing:	Containeriz MENTATI b y Meter: N	on ailes	drum		- A	2.553. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ki watan	Sentent SVS Sentent SVS Spender Social District Total
		METERS	iple Colle			LOCA	Calibrated: FION NOTE W-13 - 2 Seve	S Smells	5 3/21 Firy


otal V urge vo olume o URGE	DATA	ing – 2" diame	x time duration ter = 0.163 ga	llons per foot	Well Head Ambient 2 0.00026 gal/ t of depth, 4"	d _ O . C Air	9 fe	ed We	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
308 31		Towns .	20.5	7:73	704.8	5.83	1000	depth (ft)	
15	15.74	in the second	12.0	7,60		71000	1000	1 - 1	1,-,,-
120	1211		6.1	7.62	715	71000	1004	True True	
	15-4 E		1101	7.66	(057 17.	71006	965.3		TEN SHEET
50.								- 9	
-1, 11-4	Jan 1981 (1981)				3				
	COURT OF THE PERSON NAMED IN				1				
	î								
						-164-0			-1
Pu	rge Observ	vations: Containeri						capitors at	SHIPTIET IT
of Pu of Tu of W	emp: bing: ater Quality	MENTATI NA NA VA y Meter: N	ION	La Mot		D	Calibrated:		
LYTIC 1eter	CAL PARA Volume		nple Collec	cted		LOCAT	TION NOTE	CS.	


331	a per Penfic	eld, NY 149	526-1922					1 1610	Record
Project	Name (Churchvil MW-22	le Ford						
Location	on ID	MW-22)	172				Jo	ob# 5701-
Activit	y Time	11100		rie So-	id Sample	D Mu	1-22	S	ampling Event
7 + 63				San	ipie i ime			D	ob # <u>570/-</u> ampling Event ate <u>6/15/</u> 8
	ING NOT								TALL AREA
Initial I	Depth to W	Vater 3 ater 3 rged 1 rs per minute)	91 6	et Me	Marana and I	D _ 2 A	- N		depole laid
Final D	epth to W	ater 8	.10 fe	t Wel	Denth	oint	LOR	_ W	ell Diameter_
Screen	Length	?	fe	a PID	Well Head	10.00	<u> </u>	est W	ell Integrity:
TOTAL V	oiume Pui	rged7	88	lons PID	Ambient A	ir O	2em	- English	Cap
Volume of	Water in cas	ing - 2" diamet	t time duration	n (minutes) x	0.00026 gal/n	nilliliter]		and a policina	Casing Locked
PURGE	DATA	ing – 2" diamet	er = 0.163 gal	ions per foot	of depth, 4" d	lameter = 0.6	53 gallons per	foot of depth	Collar
		1 WELL	VOL = 7	L.Zgal					
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp.	pH	Dissolved	Turbidity	Cond		
			(deg. C)	(units)	O2 (mg/L)	(טדע)	(mS/cm)	Pump intake	Comments
11:00	2.	1.5ga1	16.5	6.6		110	ما دوستان	depth (ft)	
11:06		3 gal.	14.5	6.6	1-10	500	1500	2.5.4	Cloudy
11.12		3 gal.	140	6.6		400	1550	133	
11:24		Tgal.	14.3	6.6		450	1500		16
	1 7		10				1300		15
	7.1								
					_ 1		- P		and the same
1									
								- D	
		2 53-1100							and and an area
Pu	rge Obser	Vationa	177				· v	nisiti - 1 k	94 5 D D D T T T
Pu	roe Water	Containoria	nd in					edge of knowled	NA AUGUST
		Containeriz		s-dru	myed	The second			
DUIPME	NT DOCI	IMENTATI	ON				F 71-4	THE REAL	
pe of Pu	mp:	BAILGR							
pe of W	bing:	- 1 <i>(</i>	A						
be or wa	ater Qualit	y Meter:^	Myron, Ho	(100 U-10	105		Calibrated	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ALYTIC	CAL PADA	METERS					3	(理) 经基本规则	22 21 0 00
ameter	Volum		anla Calla	9.1		LOCAT	TION NOT	CS water	
	· 014111	201	nple Collec	tea		100	40 14.20.00 man	A CONTRACTOR	
							- v - le) - v - i - i - i		
	······								
									11 - He
				·					
ature: cked By:									

Initial I Final D Screen I Total V	DATA	Vater 5 ater 4: 10' rged 13 rs per minute) sing - 2" diame	ter = 0.163 ga	ilons per foot	of depth, 4" di	0 int	PPM 53 gailons per		Well Diameter Well Integrity: Cap Casing Locked Collar
Time	Water (ft)	Purge Rate (ml/min)	Temp, (deg. C)	pH (units)	Dissolved 02 (mg/t) TDS (m	Turbidity (NTU)	Cond. (mS/cm)	Pump	Comments
	5,71	Ogal	18.8	7.33	343	1.3	494	depth (ft)	
3:08		3 gal	15.6	7.29	342	6.6	490		U LG T LT = E1 =
3:18		6 gal	15.8	7.30	360	21	516	7.	-Si
3:30	112	9 yal	15.4	7.43	353	130	500		H_ UsL
3,45	43.0	12 gal	16.0	7.30	453	550			Charcoal-blo
		J	X			330	646		Misce lovation
									5/2/e. Jewan 1:
									1 00901 -> W
		1							degraded
									constam. odo
		84	-			An parallel se			
Pu	ge Observ	vations:	unged	within	0,4' 00	de st	D. D. J. C		600 200
DUIPME pe of Pui pe of Tui pe of Wa ALYTIC	mp:bing:ter Qualit	MENTATI BALL y Meter:I	ON ER				Calibrated		
ameter	Volum		nple Collec	eted		LOCAT	TON NOT	ES	

	Activit	on ID _	hurchvill MW-JCI 11:20	2	Fie Sar	eld Sample nple Time	ID_MW	JCL-Z	S	ob #_570(-/ ampling Event # Pate _6 14 07
	Screen Total V	epth to W Length olume Pur ume (millible	Vater 5. Vater 35 10' rged 13 pra per minute) ; sing - 2" diamet WEL	· 2 fc	et PID dlong PID m (minutes) x	0.00026 gal/n	35,43 1 17.5 Air O	ppm Dans	- W	Vell Diameter 2' Vell Integrity: Cap Casing Locked Collar
-	Time	Depth to Water (R)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved. O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake	Comments
, i	11:35		0 दत्र	18.3	8.68		2.18	8	depth (R)	
1	11:55		2.5 gil	16.6	7.64	642	35.8	899.9		Cleen
-	12:10		10.5 gal	15.9	7.28	629	89.9	834.9		
1	12:28			160	7.33	619.3	266	372.1		
1			12.0 gol	19.0	7.75	594	220	842		(
255		3 - 1						-11-11-11-1		
П		. 19.E [= ++ -	
Н										
H						ب السيار	-			
		1				-		u		
	Pur	rge Observ	vetions. Y	2 7				71111111	-11010 200	
1	Pui	rge Water	Containeriz	odilea .	D WITH	N 0.2'	of dry			
			COMMITTEE IZ	ca: — 4	vumm	ed				
E	DUIPME	NT DOCU	MENTATIO	<u>ON</u>				رايدان	LAL ISS	
Tv	pe of Pu	m	NA	^ ^						
Tv	pe of Tu	hing:	. 4.7	BAIL	al_	H				
Tvi	oe of Wa	ter Onalis	y Meter:	7						
		Quanti	y Meter: _F	TOP I bay	which			Calibrated:		
AN.	ALYTIC	AL PARA	METEDO							
_	ameter	Volume		ple Collec			LOCAT	TON NOTE	C.S	10
<u>Par</u>			<u> </u>	DIC COHEC	teu					
Para										
Para										
Par										/
Par										
Par										<u> </u>
Para										

	Activity	Name Con ID M Time	humhvill N-JCL-3 11:45	e Ford	Fiel Sam	d Sample I ple Time _	D MW:	JCL3	Sa	b#_570[-]] umpling Event #_ ate_(o 15 07
	Initial D Final De Screen I Total Ve purge volu	Depth to Water to Water to Water in cas	rgediing - 2" diamet	er = 0.163 gal	lons per foot	surement I Depth Well Head Ambient A 0.00026 gal/m of depth, 4" di	Point	8 fe 2 pprn 3 gallons per	— Wo et Wo — — foot of depth	ell Diameter
	Time	Depth to Water (ft)	Purge Rate- (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	Pump intake depth (ft)	Comments
	11:50 11:57 12:04 12:09		1.5gal. 3gal. Sgal. 6.5gal.	18.5 16.3 16.4 15.6	68	1 1 (35 310 180 80	1040 1165 1270		Clear
	12:16		8gál. 9gal.	17.0	68 68	-	90	1265		
	51									
Ty Ty Ty	Pu DUIPME pe of Pu pe of Tu pe of W	ENT DOCI Imp: \(\frac{1}{2} \) Ibing: \(\text{Libing:} \) Iater Quali	ty Meter: _	zed: <u>d</u> ION		ed		Calibrated	1:	
Par ————————————————————————————————————	ameter	Laura	4	mple Colle	ected		LOCA	FION NOT	ES	

t in Propositive exchange and the L

THE RESERVE OF THE PARTY OF THE

2170 LCC . DJ

SITE Churchville Ford	Probability of the Property of	DA	TE 9-8	2-06	may #_		
LOCATION				N-3CL-1	zulio		
MEASUREMENT OF WATER LEVEL AND WELL VOLUME		Volume of \	Water in Ca	asing or Hole			
 Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. 	Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meter per Meter Depth		
Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.	1 11/2 2 21/2	0.041 0.092 0.163 0.255	0.0055 0.0123 0.0218 0.0341	0.509 1.142 2.024 3.167	0.509 x10 1.142 x10 2.024 x10 3.167 x10		
The number of linear feet of static water (difference between static water level and total depth of well) will be calculated. The static volume will be calculated using	31/2 4 41/2 5 51/2 6 7	0.367 0.500 0.653 0.826 1.020 1.234 1.460 2.000 2.811	0.0491 0.0668 0.0873 0.1104 0.1364 0.1850 0.1963 0.2573 0.3491	4.558 8.209 8.110 10.260 12.670 15.330 18.240 24.840 32.430	4.558 x10 6.209 x10 8.110 x10 10.260 x10 12.670 x10 15.330 x10 16.240 x10 24.840 x10		
the formula: $V = Tr^2(0.163)$	9 10 11 12	3.305 4.080 4.937	0.4418 0.5454 0.6800	41.040 50.670 61.310	32.430 x10 41.040 x10 50.670 x10 61.310 x10		
Where: V = Static volume of well in gallons; T = Depth of water in the well, measured in feet; r = inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the conversion of the casing radius from inches to feet, the conversion of cubic feet to	14 16 18 20 22 24 28 28 28 30 32 34 36	5.875 8.000 10.440 13.220 18.320 19.750 23.500 27.580 32.000 36.720 41.780 47.160 52.880	1.0890 1.3860 1.7670 2.1820 2.8400 3.1420 3.8870 4.2760 4.9090 5.5650 8.3050 7.0890	72.980 99.350 128.650 184.180 202.680 291.850 342.520 397.410 456.020 518.870 565.680 656.720	72.980 x104 99.350 x104 129.650 x104 164.180 x104 202.680 x104 245.280 x104 291.850 x104 347.410 x104 456.020 x104 518.670 x 104 565.630 x104 656.720 x104		
gallons, and (pi). 1 well volume (v) = 5.7 gallons.	1 Gallon = 3.785 liters 1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 37.785 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds 1 Gallon per foot of depth = 12.418 liters per foot of depth 1 Gallon per meter of depth = 12.419 x 10° cubic meters per meter of depth						
NITIAL DEVELOPMENT WATER			TO CUDIC ME	ners per meter of de	pth		
WATER LEVEL (TOIC)	7.49 on	1/26		4.97' w.c.			
COLOR	H - TK		3,214				
ODOR		3		1			
NAL DEVELOPMENT WATER	-						
WATER LEVEL (TOIC)O.O′ WELL DEPTH (TD)							
COLON							
ODOR None.							
u u u u							

WELL DEVELOPMENT - PARAMETER MEASUREMENTS

MW	- 1	1	1 - 1	ı
1-130		L		,

		TOTAL VOL. WITHDRAWN		COND.	TEMP		MW-JCL-1	
ME	GALS. BORE VOL.		pН	(umhos/cm)	TEMP. (C)	TURB. (NTU)	COMMENTS	
5:50			7.74	1.30	14.9	1321		
16.02	3		7.46	1.06	110.60	253	00000 中的736平特别各并从20	
16:11	5	11 - 2-	フフス	1.30	14.1	4173	godini ili marte	
16:00	7		7.49	1.09	14.0	6489	g tear serve on griege. In near	
16:27	10		7.59	1.03	13.7	71000		
6:3a	-11		7.33	1.58	13.4	71000	bailed dry	
		100/11	117/45					
726				1 51		101	Continued developer and	
3:55	1	755	7.35	.641	15.3	220	Autoropie ar escenso le especialismo	
402	2	Eru A	7.85	.519	15,5	<i>६</i> २०		
4'07	4	1-1	7.86	.609	14.3	67		
14:13	7	1 6	7.37	1674	13.3	554 >1500		
14:00	9	- 2	7.88	1064	13.9	>1000		
14:05	11	127	7.85	,906	12.9	71000		
	T 10	W 37		1000	1.2.1	71000	Anii 11 y	
		125-18	i item			44.		
					E HIGHST		ROUNDSCOTO OS TOS TO TO THE	
7				LI (E. prisile in	uu Salifan			
	y il				_ 1 = 124_1			
							DENELS CONTRACT DENELS (M)	
		rest. I	<u> </u>			L HOTE		
			+ - 1 - + ·					
		-						
-					-0+			
							and Normalis of West	

DEVELOPED BY:	DATE DATE	

SITE CHURCHVILLE FORD		DA	TE 9-2	2-06				
LOCATION SW BLOG. CORNER		WE	ELL NO	MW-JCL-	2			
	L All X							
MEASUREMENT OF WATER LEVEL AND WELL VOLUME		Volume of N	Water in Ca	asing or Hole				
Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line.	Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meter per Meter of Depth			
Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.	1 11/2 2 21/2	0.041 0.092 0.163 0.255 0.367	0.0055 0.0123 0.0218 0.0341	0.509 1.142 2.024 3.167	0.509 x10 1.142 x10 2.024 x10 3.167 x10			
 The number of linear feet of static water (difference between static water level and total depth of well) will be calculated. 	31/2 4 41/2 5 51/2	0.500 0.653 0.828 1.020 1.234 1,469	0.0491 0.0688 0.0673 0.1104 0.1364 0.1650 0.1983	4.558 6.209 8.110 10.260 12.670 15.330	4.558 x 10* 6.209 x 10* 8.110 x 10* 10.260 x 10* 12.670 x 10* 15.330 x 10*			
 The static volume will be calculated using the formula: V = Tr² (0.163) 	7 8 9	2.000 2.611 3.305 4.080	0.2679 0.3491 0.4418 0.5454	18.240 24.840 32.430 41.040 50.670	18.240 x10 24.840 x10 32.430 x10 41.040 x10 50.670 x10			
V = 11-(0.163)	11 12 14	4.937 5.875	0.6600 0.7854	61.310 72.960	61.310 x10 72.960 x10			
Where:	10	8.000 10.440 13.220	1.0890 1.3980 1.7670	99,350 129,650	99.350 x 10			
V = Static volume of well in gallons; T = Depth of water in the well, measured in	20 22	16.320 19.750	2.1820	164.180 202.680	164.180 x10 202.680 x10			
feet;	20 22 24 28 28 30	23.500 27.580	2.8400 3.1420	245.280 291.850	245,280 x10			
r = inside radius of well casing in inches;	28 30	32.000 36.720	3.6870 4.2760	342.520 397.410	291.850 x10 342.520 x10 397.410 x10			
and 0.163 = A constant conversion factor which compensates for reh factor for the	32 34 36	41.780 47.160	4.9090 5.5860	456.020 518.870	458.020 x 10 518.870 x 10			
conversion of the casing radius from inches	36	52.880	6.3050 7.0690	585.680 656.720	585.880 x10 656.720 x10			
to feet, the conversion of cubic feet to	1 Gallon = 3.78				17.0			
galions, and (pi). 1 well volume (v) = <u>4.8</u> galions.	1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 37.785 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds 1 Gallon per foot of depth = 12.419 liters per foot of depth 1 Gallon per meter of depth = 12.419 x 10° cubic meters per meter of depth							
NITIAL DEVELOPMENT WATER	1 Gallon per mer	ter of depth = 12.41	19 x 10° cubic me	iters per meter of de	pth			
WATER LEVEL (TOIC) 5.91								
WELL DEPTH (TD) 35.41'			`	W.C. = 29.	5			
COLOR			-					
ODOR								
CLARITY								
INAL DEVELOPMENT WATER								
WATER LEVEL (TOIC)								
···								
ODOB								
COLORCLARITY								

WELL DEVELOPMENT - PARAMETER MEASUREMENTS

MW-JCL-2

TOTAL VOL. WITHDRAWN			1 × -7	COND.	TEMP. TURB.		
ME	GALS.	BORE VOL.	pН	(umhos/cm)	(C)	(NTU)	COMMENTS
313	0.25		10.81	5.15	18.6	6048	very trubid, no od or
317	2	- 0	10.81	5.23	18.0	>1000	and the second s
346	4		9.55	2.31	15.7	71000	DISTANCE VIEW COME
350	4.8	1	9.40	2.49	15.6	71000	of source and applying a strong
355	6	A PARTIE	9.17	1.67	14.7	838	WHEN THE STREET STREET
468	8		8.35	1.32	14.7	71000	the street control to the second
20	10	2	8.05	1.30	14.5	>1000	bailed nearly day
135	12		7.27	1.20	14.8	71000	in deposits of the said light of the said
143	12		Y but	TOPA-	BH E	. 16	builed day (1120 level mater want sound
26/0	06	DTW=6.	79'	N. C.= 28.6	1 WELL	VOL= 4.7	and
1316			TH	1		100	A CONTRACTOR OF THE CONTRACTOR
45	0.2		7.89	0.845	14.9	71000	D.O. = 10.28 VERY TURBID
758	2	taling.	7.90	0.822	15.2	71000	D.o. = 9.89
510	4	100	7.90	0.825	14.8	71000	D.o. = 9.39
521	6	116	7.85	0.852	14.2	781	D.o.4.89
725	8		7.85	0.883	13.8	71000	D.O.= 9.75
530	9	12.01	7.89	0.802	13.8	805	D.O. = 9.99
WELL	BAIL	D DRY	AFTE	L GUA CHAT	ALS APPROV	9 GAL	and the state of the second state of the second
				. 1811 	THE STATE OF THE S		are any \$14 wipo extraovillates.
	Wage 1			PERMIT APPENDE	The Issay of the		AND SWEET SECTION AND SECTION
					*		170.00 1的复数 原始之行动物
			114	ver les e Calabrai			
		33					
			-N				
					- Din		Sam S In

				_
DEVELOPED BY:	ED	DATE	9-22-06) ji

SITE Churchville Ford	1 1 1 1 1 1 1	DA	TE 9-3	39-06	A15.45/		
LOCATION	4			1W-JCL-3	3		
		+					
	1. 8.1						
MEASUREMENT OF WATER LEVEL AND WELL VOLUME		Volume of 1	Water in C	asing or Hole			
Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line.	Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meter per Meter Depth		
Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.	1 11/2 2 21/2	0.041 0.092 0.163 0.255	0.0056 0.0129 0.0218 0.0341	0.509 1.142 2.024 3.167	0.509 x10 1.142 x10 2.024 x10		
The number of linear feet of static water (difference between static water level and total depth of well) will be calculated.	31/2 4 4 41/2 5 51/2	0.367 0.500 0.653 0.826 1.020 1.234	0.0491 0.0668 0.0873 0.1104 0.1384 0.1650	3.167 4.558 6.209 8.110 10.260 12.670	3.167 x10 4.558 x10 6.209 x10 9.110 x10 10.280 x10 12.670 x10 15.330 x10		
 The static volume will be calculated using the formula: V = Tr²(0.163) 	7 8 9	2.000 2.811 3.305 4.080	0.1963 0.2673 0.3491 0.4418 0.5454	18.240 24.840 32.430 41.040 50.670	18.240 x 10 24.840 x 10 32.430 x 10 41.040 x 10 50.670 x 10		
Where:	11 12 14 16	4.937 5.875 8.000 10.440 13.220	0.8600 0.7854 1.0600 1.3960 1.7670	61.310 72.960 99.350 129.650	61.310 x10 72.960 x10 99.350 x10 129.650 x10		
V = Static volume of well in gallons; T = Depth of water in the well, measured in feet; r = inside radius of well accords to become	20 22 24 26	16.320 19.750 23.500 27.580	2.1820 2.8400 3.1420 3.6870	164.180 202.680 245.280 291.850 342.520	164.180 x10 202.680 x10 245.280 x10 291.650 x10 342.520 x10		
r = inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r ² h factor for the	26 30 32 34 36	32.000 36.720 41.780 47.160 52.880	4.2760 4.9090 5.5850 6.3050 7.0690	397.410 456.020 518.670 585.680 656.720	397.410 x10 397.410 x10 458.020 x10 516.870 x 10 565.680 x10		
conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = 3 14 gallons.	1 Gallon = 3.785 liters 1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 37.785 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds 1 Gallon per foot of depth = 12.419 liters per foot of depth 1 Gallon per meter of depth = 12.419 x 10 ⁻³ cubic meters per meter of depth						
NITIAL DEVELOPMENT WATER	1 Gallon per mei	ter of depth = 12.41	19 x 10 ⁻¹ cubic me	Hers per meter of de	pth		
WATER LEVEL (TOIC) 3.47	245	1		19 28'w			
WELL DEPTH (TD) 20.75'				17.30 W	.C. ·		
COLOR brown; silty							
ODOR hone							
CLARITY							
NAL DEVELOPMENT WATER							
WATER LEVEL (TOIC) D.D							
WELL DEPTH (TD)							
COLOR							
ODOR NONE							
CLARITY							
V							

WELL DEVELOPMENT - PARAMETER MEASUREMENTS

MW-CCL-3.

(E		L VOL.	pН	COND.	TEMP.	TURB.	MW-CCL-3					
.(E	GALS.	BORE VOL.	рп	(umhos/cm)	(C)	(NTU)	COMMENTS					
12:45	3		4.44	1364	19.6	4913						
13:52	6		4.45	1431	139	6716						
13:30	9		4.48	1418	19.1	8253	6 NG 120 D2: 17 NEAR					
13:41			4.49	1702	17,7	8878	col miner at the call of a country server					
13:50	12		449	1559	17.60	3484	to a control wax a Habita macania					
13:58	13		4.49	14100	17.4	673	bailed dry					
14:25	14		4.51	1497	ר.רו	177	1st parser after recording					
14:33	15	1,1/1	4.50	1480	17.1	781	enter influents the content of the matter of the					
14:45	15.5		4.48	1478	17.5	949	bailed dry					
1/26	DTW	= 3.21	+/-) *	BALLER IN WE	L, LOWERED	BEFORE 1	EASUREMENT TAKEN					
5:47	0.5	123 123	7.95	1.23	17.7	480	D.O. = 8.82 . TURBID 4					
5:53	2	15.00	7.93	1,24	17.1	>1000	D.o. = 8 80					
6:00	4		7.98	1.24	17.0	71000	D.o.= 8.93					
05	6		7.94	1.30	16.4	>1000	D.o.= 9.16					
16:10	8		7.86	1.28	15.6	71000	D.o.= 9.4/					
16:15	9		7.90	1.35	15.0	7/000	D.o. = 9.85					
	BAILED	DRY	AFTER EL	ACUATING A	PROX. 9 GA	LLONS	amount 12 2 a loy a partition of					
		100		11.0			ESTABLISHED FOR WIND					
1							Sales (Oldin) (Sue Chillia)					
4												
1												

DEVELOPED BY: WWW. CANDIDA

DATE 1-22-06

Location CHURCHVILLE FORD Date 9/18/06
Project / Client OKAR - VCA INVESTIGATION
SUNNY, 80°, STRONG SOUTHERY BREEZE (10-15-1)

OSIO ARANGENSENE, NOTHWAGLE ON SITE,
NAKE RERNSEMBUTS FOR WATER SERVICE
AND DECEN. PAD LOCATION

(LL) ARRIVE ON SITE SET PUSH WE ON SITE SET PUSH WE WE SITE SET PUSH WE WE SITE SET PUSH WE SITE IN STARM OF SUNSTAINS OF BLOSS WE SELDS

50 Mersuled DTW @ 2 WELLS & SW CARIER;

TD=ZI.9/DTW= +0

0915 SET UP TO FEGUN SAMPLING, SPOONS

CR MNJ-JCL-("Buckground PID Readings 0.0 ppm

OR30 Church WATER LEVEL @ MW-13

(SOUTH OFFINALL") DTW=3.92, TD=16.5'

OGG PEGIN SAMPLING @ MW-JEL-) Caugering)
1050 CONTINUE AUGERING @ MW-JEL-) COUNGERING
16'- No visible Dust EMISSIONS, NOW FOULT PID: Oppur
1130 ENCOUNTER SPEW REFUSAL @ 23.5' 5.11
5714 DRJ-MOIST. NO DUST BEING GAVERNTO
1145 DRJUERS BREAT FOR LUNCH

Location Citue Hville Fold Date 9/1966
Project / Client OKAR / VCA TANKEST.

MW-JCL-1 @ 44.5 (SORGEN 445-34.5') Sprows to 40. Not GODO WATER BEARING 39-40 . No VISIBLE DUST BEING GENERMATED 1425 Northwage BABAKS ... RUNS TO SHOP 1220 CONTINUE PUREEING TO 24; PID RESINGED 29,5 " GROUT TO GRAVE, DRILLERS WILL SLEEN INT = 445' TO 34.5' SANDPACK = 1245 ENCOUNTER SPOON REFUSAL ON 24-26 1605 FINISH AUGERING TO 44.5 , WILL SET BREATHING BONE: O ppm, NO USIGNE DUST 44.5 -32,5 , BENTANITE SEAL = \$2,5 'TO NEW AUGER, CONTINUES AUGERING FROM ENITTED, BEGIN CONSTRUCTING WELLY 1700 STE CLEANER UP & SECURE, NOTHWAGE ENCOUNTED SOME WET SILT/SAND AUGGELS), HAVE AUGGELED TO 39, SAVIEN WORK ZONE/BREATHING ZONE (PID) - O JOHN FOR MORE AUGERS CONLY HAVE 40' OF 36 bys; No Usible Dust BEING GENERATED 1515 NOTHINGLE GETLANS TO SITE! ATTACKES complete well tomorrow (9/19/66) Run @ 24.4 , TIGHT DRY TILL 1550 CONTINUE AUGISTING TO 44"

Project / Client OKAR - VCA INVESTIGATION : PN 5701-11

PID READING @ BREATHING ZONE / WORLL AREA MW-JCL-3 @ 20: 14-02, 02=20.9% BegIN DILLVING SPUNS P MW-JGL-3 AFTER 3 SETS UP AT MW-JCL-3 LOCATION ACTIVITIES, PUMPS DECON HOO INTO 0840 CHECK DIW & TOTAL DEPTH OF MW-10 DTW= 4.65 ' T.D. = 19,77' (284) REMAINDER OF AUGERS BUT OF NW-JCL-1 AUGGANG THROUGH ASPHALT/BASE (6"); GLEWATED REMOINES ON ANY OF SOIL SITE DECONNING AUGERS (HAVE PULLED 0740 ARRIVE ON SITE, NOTHWAGE ON Offin, NO DUST (VISIBLE) DURING 1030 CONTINUE AUGGING/SKMPLING @ ON NORTHSIDE OF SITE BLOG. SS GAL. DRUM, MOVES RUS PID BACKSHOWND READING Oppm; No VISIBLE DUST EMISSIONS, NO ANGERING AS SOIL IS MOIST - WET 0845 NOTHWASLE COMPLETES DECON INSIDE 13 KY 2 OF BLOS. FRANK SOWERS ON SITE 161 =0 , 20.9% Oz AND MOVED RIG OFF.

Project Client OKAK-VCA INVESTIGATION

AFTER NOON: SUGREAST, W'LY SAGES

SAMPLED: Open on PID IN WORL ZONE OF STOP SAMPLING @ 24; * HAVE ENCOUNTED CASING W/ SANDPACE FROM 23.5 TO 11.5 box WILL SET WELL TO OF 23.5', NOTHWAVE INTERSING BLOW COUNTS (DENSE MATIL) AND And Now Remissions Augeles & INSTALLING MWI-JCL-2 LOCATION BY SW BLDG. 1115 NOTHINGLE HAS INSTALLED ZAIC WELL BENTANTE SEAL MOM 11.5' TO 9'; GROUT HER WATER TO CONTENT BELOW 18.5" LEL= 0%, 02= 20.8% ; EN COUNTER DEGRADED 280 NOTHWAGE CONFLETES DECOUNTING Solvient book @ Appela. 1-8' bas. HIGHEST APPEAR TO BE OUT OF CONTRAL @ 8.0' 230 NOTHNAGLE BEGINS DECONDING NHY NOTHWAGE TOPS OFF GROUT IN 305 Begin beiling @ MW JCL-2. MW-JC1- 1; TAKES LANCH BREAK NOTHWASTE SETS RIG LP @ ALL DRILLING EQUIPMENT BEGINS SETTING WELL 15 MIKED CORNER

Project / Client Location_

DALLING ACTIVITIES, SOIL IS MAST - VET NO VISIBLE DUST BEING EMITTED DURING DRIVERS BEGIN COMPLETING, MW-JCL-3 BY INSTALLING PROTECTIVE BOX AROUND SIO ENCOUNTER AUGER REFUXAL @ 29.5; S/COURTE

ON SOUTH SIDE OF BLOG W/ PROTECTIVE SAO NOTHINAGLE COMPLETES MW-JCL-3

TO AUGEL THROUGH ROCK @ 29.5 . NOTHINGS GETS TO 30.0 W/ AUGERS AND ATTEMPTS TO DRIVE SPORT @ 30, DEWE SPOON TO 31.1 1005 TAY DETERMINES THAT TEETH HAVE BEEN MW-JCL-2 & CONTINUE ATTEMPTING SHEARED OFF OF ANGER BIT; WILL PULL 1545 DALLERS ADD WATER DOWN HOLE (C) PAROLL ENCOUNTERING, SPOON REFUSER

(EL= 0%, 02= 20.9%; No visible DUST BRING GONGRATED

AUGERS & REPLACE TEETH.

GETTING DELL ROO DOWN HOLF THROUGH 32 APTER EXPERIENCING DIFFICULTY 1650 Nothingle conflicts Augistus To AUGERS; WILL CONTINUE SAMPLING

7 //? Date 9//?	
Location	Project / Client

9/20/06 OVERCAST, SS", 46HT WITH BREED AT BEST, COLLECT EPRETI (FOUR RAISENTABION STORMED OF SANDPACE TO 25 INSTACES BENTANITE SEAL TO 23; MIX GROUT TO FINISH WELL (700 @ NOTHINGLE & LIN ENSINGERS OFF-0930 NOTHINGLE COMPLETES INSTALATION OSSO NOTHWAGLE SETS MW-5CL-2 @ 36 T.D. AND AUGERING TOMORROW (9/20) SECURE (SINCE 26' 1/-); Soins ADPERA MOIST SPOON REFUSAL WITHIN APPROX. I' FROM BEGINNING OF LAST 5 SAMPLING RUNS MW-JCL-2, SET UP EXPLOSIMENTED: LEL=0% 02= 20.8 , NO DUST BEING REACH 36 ; HAVE ENCOUNTERED 0830 AUGGRING LAST 2' OF BORING TO DALLERS ME ONSITE, PREPARE TO 0730 ARRIVE ON SITE, NOTHWAGE CONTINUE AUGERING SAMPLING @ 0800 BEGIN OPPLIENCE GARACA

Project / Client

DTW = 24.45 btc., PARTLY SUNNY 0945 CHECK HID LEVEL @ MW-JCL-

SITE, DECUES PROGRESS, WELL INSTALLATIONS FRANK SOWERS OF NYSDEC ARRUDES ON AND SAMPLING DETAILS

UNCOUSA MONITORING WELL DIRECTLY BEHIND SHED, WATER LEVEL= 1.45 BTO STAGES INVESTIGATION DERIVED WASTE 1030 FRANK SOWERS OFF-SITE, NOTHWAGE DRUMS BEHIND STORAGE SHED; AUSO T.D. = 16.27

* 11 x 55 GALLON STEEL DRUMS ARE PROM PREVIOUS INVESTIGATIONS , IT I ADDITIONAL DRUMS ARE CURRENTLY CURRENTLY STAGED BEHIND SHED ALSO POPPERES AS THOUGH AT LEAST BEING STARED INSIDE THE SHED.

MW-JCL-2 W/HOSE; BEGIN DECONNING NOTHWAGE IS CLEANING W MOUND NOTHNAGE COMPLETES BECOMING DILLING GOLIPMENT

Leskit

Location CHURCHVILLE FORD

Project / Client

Date 9/22/06

FLUSHMOUNT BOX & SCNOTUBE . CONTINUES OF MW-JCL-3 BY INSTALLING PROPERTIVE DALLERS PICK UP REMAINING IDW DELINE ALL 11 DRUMS (2 DECON-WATER, 1 DECON SITE CLEMIND! BEGINS RAINING HARD. PAD POLY W/ SOIL ; WATER (MILLOR AMERICA), 8 SOIL CHELL UNTER LEVEL @ MW-JCL-2: DIN= 625 BIRC W/ MIG & MOVE TO BEHIND SHED TO STAGE 120 NOTHINGLE BEGINS COMPLETION 1500 NOTHWAGLE FINISHES STAGINE CLEAN UP & TEAR DOWN OF DECON. PAD: 2 DOWNS OF DECON. WATER 1405 MW-JCL-2 15 NOW COMPLETE W NOTHWINGLE THEN STARTS COMPLETION OF MW-JCL-2 @ SW BLOG. LORNER 1420 NOTHINGLE CONTINUES GENERAL 1315 MW-JCL-3 IS NOW COMPLETE, 1515 CHECK WATER LEVEL @ MANGEL-3 CUTTINGS) , NOTHNAGLE FINISHED BOX W FLUSH MOUNT COVER HAVE BEEN GENERATED DIW = 3,45 BTC AND LEAVES SITE.

EVACUATING APPLEX 11 GALLONS. WELL 1430 - BAIL MW-JCL-1 DAY ACTED Volume = 6 GALL (4.) Location HENDSPACE @ MW-JCL-3 WOON OPENING; O.D. PPOTLY SUNNY , 68", HGH SWIN (11,35, 4, 25 = 35.4) (35,71) Location CHURULY ILE FORD Date 9/20/06 1130 ARRIVE ON SITE, PREPARE TO DRUBLOP DIW @ NW-JEL-3 = 3.47' T.D.=22.75' 14:45 BRILED WELL AW-JEL-3 DRY: ALSO BEGIN WELL DEVELOPMENT @ MW-JCL-3 1300 BEENIN DEVELOP MENT @ MW-JUL-2 AND MW-JCL-2; PID READING OF Sustry NED Meronis = 12 - 58 pm (46 MEADSPACE READING @ MW-JCL-2; 1530 Lu ENGINIERRE OFF -SITE PEAK READING 74.9 ppm preeze WELLS, SET UP ナスグスト 90 77 6 Project / Client

9/26/06 68 EVACUATIONS APPROXIMATELY III GALLONG, WATER LEVEL @ MW-JCL-1 DTW-7.49 Date 9/22/66 16:35 GALLED MW-TEL-1 DRY AFTER CONTINUE WELL DELIEUPMENT. CHERK SECURE ALL WELLS & DRUMS 1645 - Lu EANSINEERS OFFISITE 1330- ARRIVE ON SITE ITO Project / Client

EUREUMTING APPECE 9 GALLYS WATER STILL 1615 BAIL MW-JELTS DRY APPER AND SE DEVELORMENT, DIW=6.79 1535 SET UP TO PREDEUTION MW-JCL-3 WERY TURBID, NO ODOR, NO SHEEN 1530 BAIL MW-JCL- 2021 AFTER ON N SIDE OF BLOE.

FUNCUMTING APPROX. 9 GALLONS; STILL QUITE

HEADSPACE READING ON PID: O.D pom

DTW = 8.49 BTOC

SET ; BEGIN WELL DEVELOPMENT

@ MW-5CL-1

BAILED WELL MW-JCL-2

Location CHUPCHVILLE FORD Date 10/3/06
Project / Client
CONFROMST, SCATTERED UGHT RAIN 70°

SIDE OF SITE GLOS NEAR NOOTHERN-3 SURFACE Soil SAMPLES COURT FIELD BLANK MOST ENTRANCE, SOIL WAS COLLECTED STRAM WATER BASIN (SS-05A COLLEGE) FROM BENEATH GILASS COVER (0-2"BELOW) (BUND DUPLICATE) FROM NEAR CENTER FROM NIN CORNER OF STORM WATER BEIN, NO STANDING WATER IN THIS LOCATION BELOW STANDING WATER (1-2" XATER) 1000 harive on site to confer SEDIMENT COLLECT SURFACE SOIL SAMPLE SS-OH 115 Coulect sample SS-06 From SE COLLECT SAMPLES SS-05, S\$-05A COLLECT SANDLE SS-01 FROM DRAINAGE SURVE ALONG EAST FROM 0-2" BENEATH GLASS COVER RETENDING BASIN, SAMPLE COLLECTED @ SW CORNER OF STORM WATER FROM SAME SWALE, FURTHER 1025 conect 55-02 soil sample SOUTH TOWARDS CATCH BASIN 1045 COLUGET SOIL SAMPLE 55-03 @ 11:04); NO STANDING WATER

NO STANDING SPETER @SAMPLE LOCATION

COLVER OF STORN WATER BASIN

Location Charactiviae for Date 10/3/06 13
Project / Client

OF STONE; coulder Eas-2, Equip. Pinsode Charles 415 carect sepinary sample 20-03 IN CATCH BASIN'S SANPLE CONTRINS A LOT SS-OT (INXTUDINS AN MS/MSD SAMPLE) @ NE CORNER OF STORM No. and S. MAIN ST. SOME WATER FLOWING WATER RETENTION BASIN (CLOSE TO SED-OI FROM CATCH BASIN ADJACENT TO WITH POLE & CORNER OF SANTARD 1130 Coulet supplies son sample NESTERN SITE ENTRANCE NEAR INFLUENT DRAIN PIPE); STANJOING WATER ENCOUNTERED @ SAMPLING 1230 COLLEGY SEDIMENT SAMPLE SOUTH SIDE OF BLOGG FREDS STARM FAST END OF NEW SWALE ALONG SED-02 FROM CATCHBASIN @ 315 COLLECT SEDIMENT SAMPLE FROM WITHIN CATCH BASIN @ WATER (RETENTION BASIN) 1500 OFF SITE CATION

50' WINDY PAWING

MW-JUL-2 WASH OPENING WELL J-PULS HEADSPACE IN WELL = D-1.6 pm (peaks) WAITING TO SPLIT WATER SAMIPLES BANGED FROM 10-212 pom (212 peaks)
BANC MW-JCL-2 DRY (F. B. WATER) SETUP TO PULLYES LEWALD WHERE MOVE TO MW-3 (closes to door) BESIN FLUCTING AFTER DECOUNING 0915 ARRIVE ON SLITE AFTER PICKING WP DRUMS, SUPPLIES & INSTRUMENTS; FROM MW-3 AND DIW-JEL-Z MW-JCL-2; PID REDINGS @. BOB LONG (NYSDEC) ON SITE QUALITY MEASUREMENTS Q FRUITMENT

1035 COMPLETE PURGING @ MW-13 ENACUATED 6.2 GALLONS; PREP TO WITH BOB LONIN (NYSOR) SAMPLE MW-1 PURGING MW-1 ON HEAD SPACE WOOD OPENING WELL S.S. FAM 1245 PRED TO PURGE MW-1; PAD READING BALL MW-3 NEARY DRY (WITHIN

Location CHURCHUILE FORD Date 10/17/06

Project / Client

FOR BACKGROUND TOO; STALE OPOR TO WATER MW-3, split samples w/ Boro cons. PERDINS OF HERDSPACE IN WELL WHEN CAR IS REMONED - O.O ppm Oppm SUGCS Cheth w/ TICS); SOLIT SAMPLES 1425 COLLECT WATER SAMPLES FROM 1545 Schup to Purche MW-13, P.D 1400 SAMPLE MW-JC4-2 FOR VOCE, 1430 Bob Long OF SITE, CONTINUE

700 SECULE SOTE, UN ENGINEERS OFFSITE MW-13; DTW BEFORE SHANPING = 10.12 BTOIL MAN-1 - DIN BEFORE SAMPLING=9.13 1055 COLLECT WATER SAMPLE FROM 1645 BOWER WATER SAMPLE @

> 1350 PREP TO SAMPLE MW-3, MW-JEL-2 1300 BÉGIN PURGING MW-1; BOB LONG, RETURNS TO SITE TO SPLIT SAMPLES Plan, 0-3 SUSTAINED

0830 ARRIVE ON SITE TO CONTINUE
MONITORING WELL SAMPLING; SET UP
TO SAMPLE MM-6 GINSIOE BAYZ OF
BLOG.); COLLECT FIELD BLANK SAMPLE 18-2.
OGO CHECK HEAD SPACE IN MW-6; PEAK
ACADING OF 4.6 ppm WONTHENDUMS

0955 COMPLETE PURGING/ WATER QUALITY
ANALYSIS, PRES TO SAMPLE MUN-6
1000 COLLECT SAMPLE (WATER) FROM
NAU-6

LOIS MOVE TO MW-JCL-3 TO PURGE &
SAMPLE, PID ON WELL HEADSPACE: 0.0 pp.
BACKGREWND: 0.0 pp.
1030 DTW = 2.45 ' T.D. = 22.43 (MW-JCL-3)
1130 COLLECT WATER SAMPLE @ MW-JCL-3,
ALSO COLLECT MS/MSD SAMPLE &
ELE-3 FROM BALLER
(MS/MSD COLLECTED @ [1:35], COLLECT
ERE-3 @ 11:40)

1413 BEGIN AUGGING AW-JCL-1 1400 SAMPLE WELL MW-13 FOR VOR, SYECE 1410 RE-SAMPLE MW-1 FOR VOC, SVOCS 1420 RE-SAMPLE MW-6 (VOC, SVOCS)

Location CHURLHVIUE FORD Date 10/18/06 17
Project / Client

1440 COLLECT WATER SAMPLE FROM

NW-22 (VOC., SVOC.)

1500 COLLECT WATER SAMPLE & BLIND

DUPLICATE FROM MW-JCL-1 (MW-SCL-1

AND MW-TCL-1 A COUP.); NOTICE 1

OF THE 1 "LIFEL AMBER CONTRINES.

HAS DUST/DIET IN IT WEN OPPONIS, ALSO

OPENINS

OPENINS

1545 OFFSITE

2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

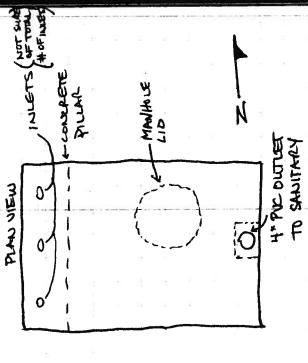
JOB TITLE Former	- Churchvil	le Ford
SHEET NO.	OF	
CALCULATED BY EC	DATE	1/12/07, 1/15/1/2
CHECKED BY	DATE	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P.I.N. 5701-11	95 E	a 94 -

		_				-	-	_		_	_		1	1	_	_	_		-			-		-				l'm		
-	1	μ	2/	97	-	+	+	+	+-	+	+	165	H	15	-	-		ļ		L			-	-	ļ.,	_	_	16		
-	\downarrow			+	-		_	+	+	-	-	-		10		+	-	-	-	+-		-	-	-	-	 	-	e	-	
•	An	rr	V	4	dv.	. 5	40	te	> (dn	Sol	da	te	14	Me	s tre	gat	iov	19	eri	Dec	1	ba.	te	u	tox	es	IN	uto	000
-	+	L	f	PI	4	10	AK.	; 1	10	Thi	nag	te (Dv	T.	1 VG	4	2	1V	ops	0.	17	P	oly	to	ent	-	an	4	1	
-	+	<u>S</u>	70	1	>	in	2 0	لىك	C	N V	ner	0)	V	You		N	1	PY	+19	u	nd	Y.	M	acl	MIN	es	P	int	1 100	oth
-	\dagger		2		1		T	pro		13	1	gai	(cn	L	94	LUI	4	P	un	P	\ \ \ \ \ \ \	act	1	wa	res		400	m	1	
		·		10	3	10,	-DA	9			+	7	1		an	K	Ti	2	,	nt Su	a.	,,	20	W S	0.5	50	-	7.16	0	
	1	`	Ç,	110	, ,	5 (de	pro	J.,	W 0.		1	31			TLU		7	-	D-1	27	7	Sit	LVV	LC3	<u> </u>	-	- 0	72	
	T					-	7	1	1	,,,,,		-			1	1		T	П	-	-					-			-	100
			L	il.	Ev	200	nee	ers	ړ '	er	elo	bu	Nev	t	W	ta	en	fv	m		MW		Te i	7			1-	70	1 -	2
			1	NU	1-	H	J-	ers 3:	4	30	d	1 /-	90	No	ns	(1	00	7-	QOP	1	eco	۸.	wa	ter	7	300	+/_	Co	0	7
			1	A V	100	2 3	19	en 10	No	ው	WOV	Ti	12	ta 1	20	1)	2	1	1		1									
			w	لی	re	W	ate	نام	gr.c	m	P	vel	101	ی	in	Jes	tre	at	iov	s.	5	04	90	Q.	- 1	10	4-1	0	+1	54
	1		+	1	<u>5</u> ٔ	4 9	al.	a	N E	100	"	dry	w	S	=	12	OF	- 9	ala	ms			a				7	1		
	L			_	L	3	\downarrow	_	_	1_																				
	L	-	T	ÞT.	AL	4	مع	WE	116	E	1	A	STE	u	A	EP.	100	su	m	E:	E A	φρν	υ×.	4	20	94	lle	us		
	L																					•				٦		4		AQII Codi
	T	V	w	\$ 1	2	a	11	NO.	le	w	ate	1	~ (do	++	an	k,	sec	w	e	dn	riv	v	aly	re	W	1	u	ge	•
	C	0	7	,	Co	P	ta	nk		an	4	lea	N.	2	1	e									1 -				٥	1001
	4	_		Ĺ	-	-	1	1	-	-	-	-														_				20
4	15	2	0		-	1	-	16		-	_	-			-		_											-		
ic	1					E	1		-			_				0				_										
-	F	4	€J	او	C	M	\$1	vi4	٢	ol	ec	•	Sa	W	le	4	-01	۸	W	عد	e	no	te	1	loc	4	te	nk		
2				C	lai	rac	te	V.4	ν σ	μp	n	E	A	W	H	09	61	リ	10	Cs):	I	ve	tig	ati	NO	M	ate	1-C	1
•	1	-	P			41		of	1	19		Lad		^	1							_					_	_		-
4							4	3 7		1	to	ry	c	£	9	II	ch	ev	ric	2/5	+	on	vq	4	vit	hi	Δ			
	-	p	wi	19	IN	۹(Sec	t	اطه	e)					<u>.</u>					4			4							
.7.		+			100	Υ		300							- 1			-21		-			4	4		_	_	_		
1/2	-	1	70		100		_		Pu	uny	, ,		_	_	,															
•			Section 1					ia	9								lon									f	vo	m		1
		~		_				bu																		sle	n	01		
		-		31		-K	w	19	No	(;)	h	We	N	LOU	roe	C	our	4	d	isc	ha	ge	- 0	er	mi	H	in	ha	nd	,
	(N	Vo	ng	0	to		No	They	dág	le	to	p	id	- 4	p	Po	14	to	nk	- 10	m	EVV	W	(1	25	oi)		M.
-	·	15	-	90	nd	en	ho	se	tov	9	isc	nan	ge	+	bi		i	116			nei	- 1-		100		CONC. CO.				

CLEANING & WASTE REMOVAL IN OIL/WATER 10:45 APPLUE ON SITE TO OVERSEE SEREMENT

of SEP., HE INFORMS ME THAT W UR. TRUCK, REMOVILLS, CONTENTS WASTE WITHIN 0/W SEP. (20" OF WATER WHAY HE BEGAN PUMPING - THERE WAS A TOTAL OF 49" OF SOUD MATERIAL OVERLAIN BY 29" SAFETY KLEGN DRIVER IS ON LITE 1/4-1/2" OF DIL ON SURFACE OF OF WATER) THERE WAS APPROX. OUT TACK N N

TANK IS CONSTRUCTED ENTIRELY OF CONCRETE


TAUR DIMBUSIONS:

72" WIDE x 34" LOWG x 72" TALL (PARCE) =176,256 in3 = 102 A3 = 763 gallon

Capacity (Approximate)

- I PRESSURE - WASHED GUTINE INTERIOR OF THUK EMPTY THUK; TANK APPEARS TO BE - DUCE ALL WASTE/WATER HAD BEEN REMOVED, INSPECTED INSIDE OF

THERE WAS NO OL' FACTORY OF VISUAL buttet to savitaty sawed is Fixed COMPROMISED CONCRETE ON ANY OF THE 8" OFF OF WIDENCE OF CONTRAINTRION OBSERVED OU THE EAST SIDE OF 0/W SEP. TANK Speware and/or FLOOR, 4" Pre. UDICATIONS OF ANY CRACKING OF AND SITS APPROXIMMELY THE FLOOR OF LIFE TEST 为一里 四年

Loca

Location JANER CHALKHULLE FORD 2 2 2968

Project / Client OKAR EQUIPMENT

(HUGGLINATED) SCLUENTS (G>1, OCT PAIN) THE TO KUN A "CUK-DITECT" KIT ON THE GUSTENTS THE RESULT WAS 大一分の上人のBO Colog いはED Etal PORTE HE RECARD AND POINTING OF ALS NEWTINE FOR CHERINATED THUK CONTENTS HE USED A
HAUGES WETER TO CHECK FOR COMPONDES

* TOTAL WASTE ATEMONED: Sci 100, 367 GALLOUS LICHID

ĸ

James Washburn
Vacuum Service Representative

Safety-Kle en Systems, Inc. 1525 W. Henrietta Road Avon, NY 14414

Tel 585.226.2411 ∰ 585.202.4853

CHURCHVILLE FORD

Previous Investigation Derived Waste Inventory (as of 1/15/07):

- 1 soil drum (full)
- 3 drums of "Fingerlakes Safer Stuff All Purpose Cleaner/Degreaser" (full)
- 2 bulged waste water drums (appear to have leaked, both empty)
- 1 poly drum labeled "Waste Coolant" (full)
- 1 poly drum unlabeled (approx. ¼ full)
- 3 poly drums labeled "Camco Antifreeze-50" (all 3 <5 gallons +/-)

2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

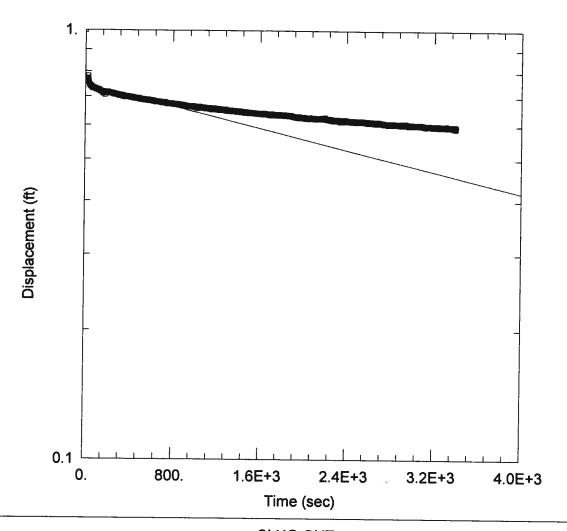
JOB TITLE	CHURCHVILLE FOR	D-Sa	L VAPOR INTRUSION	J
SHEET NO.		OF	1	
CALCULATED	BY ED	DATE	4/4/07	(
CHECKED BY		DATE	17.7	
PIN 57	701-11	_		

																												\neg
1	:/:	\$	A	riv	e	DUE	Si	te	@ 1	on	ne	- (he	rel	vii	le	For	d:	re	vie	W	Sa	n l	ماه	10	car	42	
Ĺ			to	(re	-50	ung	le	f	orme	- 5	6-	1.	56	-4	S	g-4	2)	one	0	Cor	- d	nil	in	7 1 7	fiv.	5+		-
_		_	100	at	ion	WI	11	6	e in	519	le_	d	se	+	in	S	104	brow	m	10	St.	te	a	rea		add	1718	n
	<u> </u>	<u> </u>	bu	<u>:</u>	n	199	生)) 0	when	e	for	me	1.	Soi	L G	که	Si	m	le	2	7-6	· ų	as	C	lle	cte	9	
17	O	-	Be	gir	<u>, o</u>	101	in	q	in c	los	et	be	ne	at	h,	sto	ur.	s '	for	£	125	L 0.	F	3	Su	6-	sla	b
	<u></u>	ļ.,,	Sai	upl	<u>. کو</u>	\$10	ıb	Ì	5	" +	hic	K	w/	s+	one	1gr	we	14	as	e A	sen	ea	14	. <i>p</i>	10	ba	ck	evere
	ļ	<u> </u>	rea	d)	gs ii	n S	10	201	com	2	Clo	SŒ	1 0	we	_ (2.0	<u>) </u>	pm	: 1	2/2	r	en	44	9	do	UN	hol	e
	-		= 0	2.9	PAY	n P	EA.	e	; pu	19	23	1 4	4	iq	q V	olu	m	25	ועו	th	P	D	in	tio	11.	en	din	a
- · 	ļ	<u> </u>	of	بام	191	نه		= 3	>5c	Pe	m	.5	15	air	rec	n	eac	Ni	a	*	30	-4	2	On-		-	+	
<u>17</u>	:33	3	134	gin	ی ا	am	pl	in	2 (1	brn	بع	<u>S</u>	-6	100	ate	dn)	Q	2.5	21	-1	24	-01	1	Su	<u>ს</u> -	sl	ماء	
		-	IN	clo	set): :	:61		up	ind	00v	- (w	bi	ent	7	N	+=	bly	2 0	طنه	ce	4	<u>t</u>)	los	et	
1=			C	CA	-30	<u> </u>	0	1)			_						_			_				_	_	_		_
17,	SO		Be	giza .	dri	U ie	\$	10	r Si	2 CO	nd	S	b	<u>-S</u>	ab	V	i pa	~	105	4	مله	ea	of	fa	rms	u\$	·G-	4
	Sa	mp	10) · \	عمدا	eg	d.	Nd	PI	Dψ	euc	W	3	W	W	vk	sh	P	= 1.	2 +	<u>o].</u>	5	pr	n	Su	s ta	ine	4
		la	b 1	$\frac{n}{l}$	n(3	10	¢a	40	on	3	4	5"	14	uZ f	2	Sa	ny)le	h	de	15	6	*	n	to	fal		
		4	rep	oth	PI	(D	res	191	ng g	1000	m	10/	٤	= 5	7	PA,	m	CRE	24);	our	g.k	-3	1/2	16	ing	-	_
			VOI	um	es	3 V	PIC	lm	e 0	S	at	h	re	6	ene	at	4		5	ćor	K	7/4	3	pu	uge	<u> </u>	11	_
10	• 15		re	asi	<u>y</u> :	= 7		P	gm L	4	ear	!		\dashv	\dashv	,			-	1	_	\perp			_		+	_
'0	• 13								offe CC			اولم	181	urh	9	bæ	su	QX.	Sel	21(الع	Sy.	<u>S+</u>	36	<u></u>	0/	<u>-</u>	_
10	.,,								56			+	1-	\dashv	4		_		7						Ŧ0.	-	<u>_</u>	\forall
10	11	2	B	m	Inc	2001		our	- Sa	rep	ie		319	car	T .	TO	31	20	7 (-014	-\	10	57	701	-	07	.)
70	•		12 44 10 10 10 10 10 10 10 10 10 10 10 10 10 1	e.	TA	امس	11	-	02/	- 0	on	q	2	4	jace	n	7	78 7	O	1/_		4	-07	4	-		-	-
10	20	2	Sa	L	2 4	1.	11	1	1	45/	MSZ.	2	ما	_			_	7	1	_		-	+		+	-	0	-
10	٠.	2	JU 1/2	1	4		LC	+ 1	hird nen (_\$U	10-	-510	ועו	30	2W	Y		191	NI	_ 1	<u> </u>	W	4	24 h	ver	- 0	+	
10	:3	_ 1				-	ī		329	+ -	- 1	- 1	1			_		+				-	+	+	+	\perp		-
10	(5)	0		i	- 1							, ,							7			+	-	4		_3		
	-		71	NIG	<u>g `</u>	1011	LW	دي الرم	3		35	ay	7	alv		20. (e	; 	240	ge	<u>a</u>	'A		5.17	P	P 44		
10	: 4	9	a	ah	ZING	0	ام	CT.	up	~ .	MP	1	<u>ر</u> ا	11				0	5 1	ah	9	7.	 -	JC	<u> </u>	-03	Y	
10				woie	i t	1 :	1	1.	ou	i		- 1		- 1		W7	- 1	0 v -1	- 1		1 .							
		+	um	^				13.	e t		1	7	۷۷	ا- ا	Yt.	+	O (zek	-31	(Qu	nd	+	YD	2 5	a	91	May	\dashv
q.	00		2		667	1 . 1		1	aine	- 1	<u></u>		+	+	1 -	+		<u>_</u>	+	1	+	+	1.1	1	+	+	\dotplus	-
1 -	UU			v to					jory		7 (cha	un	ica	JUS	<u> </u>	>44	2	WI	Th	in	0	ur	19	bh,	, a	<u>14</u>	_
		-	ds	- 1	<i>H</i> _	84	رح	TO	nno	ve	+-	+	+		+	+	+	-	-	+	-	+	+	+-	-	+		-
-					1	L l			1	f	1	- 1			-]					- 1	1	1		1		1	

2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

JOB TITLE Churc	hville F	ord-	Soil V	APOR INTRUSIO	N
SHEET NO.	Traffini	OF		7°1-	
CALCULATED BY	EO	DATE	4/4/0	7 - 4/5/07	
CHECKED BY		DATE			
PIN 5701-11					

			I.N		
SAMPLE I.D.	CANISTER#	REGULATOR	INITIAL PRES.	FINAL PRES	START TIME/ENOTH
ivs-JC4-01	480	180	-29 in Hg	-6 mHz	17:33/8:17
[A-JCL-01	93	66	-29 in Hg	-1.5 mHg	17:40/7:38
SVS-JCL-02 [A-JCL-02]	202	271	-29 in Hg	-2 in Hg	18:15/7:42
A-JCL-02MS/MD	284	454	-28 in Hg	-2 in Hg -2 in Hg O in Hg	18:16/7:43
SVS-TCL-03	165	374	-29 mls	Ointh	18:39 / 7:49
TA-JCL-03	107	301	-28 in ly	-3 mHz	18:40/7:49
A-JCL-04	357	54	-29 in Hg	-1 inthe	18:49 / 8:35
	.2.0.2				
					+



Penfield, New York 14526 585.377.1450 Fax 585.377.1266

JOB TITLE	Church	ville For	2 - VC	P
SHEET NO.	jis his in an	OF	1	1(4)
CALCULATI	ED BY	DATE	6/14/	17
CHECKED E	3Y	DATE		Suppl
P.I.N.	5701-11	(p) 1	. 50	

				_			 -				
915 - Arrive on site	coll	ect	avi	T. In	d 0	0 9		1	ater	level	
							tivit		stivo		
MW-13	9		17.0			COL	1	7	STIVE	bon	
1100 Setrup to punc	0	Mil	- 3.	Mu	1-	01 -	5	1	1	-	
Zone	3	N. VV	13)	10000	13	<u> </u>	- 11	J Car	Hayn	inate	25
1230 Complete pargino	1	111	- 2	MW-	74	1 3	1	+	+		-
		100	1		100000			NCF			-
1330 Begin purging 1	241	1	MW-	13	11		-2			have	2
			ech	- 9	7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1/2		ignit	er_	
1435 Complete Dungine	ech			b †	200	in	,5	nvs.	1.		1
			7-1	M	υ-	13;	beg'	n p	ungine	1	1 1 2
MW-ICL-1, MI	N + 2	#-	+-					U.	PTW	1011	H DEP
1540 Complete Dung		<u> </u>	-		<u> </u>	-	Mu	J-T	4.49		13.78
U THE TOPY	1.0			(gr.	ナナー		MW		4.35 5.05		19.79
1600 Complete pur	11kg	MW	1-7	-4-	1_	dry		1-21	6 06		9.99
16:15 Sample FB-2		-	-	_		11		-22 3841	1.91	. /	6.28
1	N-3		44				mw		5.71	4	13.5 15.43
	w-5	201	4-7				11		3 4.18	di i T	2.78
16:35 leave site										•	
1 6	115%	,		•	pung	ged 1		22. M	n.6-w	w-501	-3
				•		mple		San	1		15
MW-1 (4")	_ _					,			1 1		
Slugin OI start 12:4	6										
5top 13:24	3(138	67)							1		
						11					
Slug Dut Start 13	36							7			! .
Stop 14	30			1		1-				71W 71.	
	n 04	= -	++	++	-						
MW-JCL-2 STUF		16	1		-					72	
1274 5100		5			_	++	++				+
12 70 Stop 29,78	4	4		+		-	1-1				
	11-	,		+-+		 					1
\$lug p	ut C	7		++			+		(to)	4.	
Stop	3:43		-	 -	-	ļ <u>-</u>					(
	4:24	<u> </u>				i	1			ii.	
		4-1									
			1								-+ -

SLUG OUT

Data Set: J:\Projects\5701 Okar-Brockport\5701-11 Okar\Env\final slug\MW-1SlugOutFinal.aqt

Date: <u>07/03/08</u> Time: <u>10:42:38</u>

PROJECT INFORMATION

Company: Lu Engineers

Client: Okar Equipment Co., Inc.

Project: 5701-11

Location: Former Churchville Ford

Test Well: MW-1
Test Date: 6/15/07

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

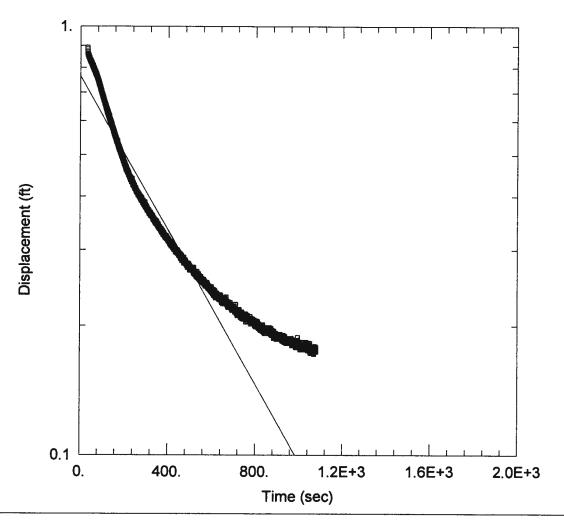
Initial Displacement: 0.999 ft

Total Well Penetration Depth: 9.29 ft

Casing Radius: 0.167 ft

Static Water Column Height: 9.29 ft

Screen Length: 10. ft
Wellbore Radius: 0.33 ft
Gravel Pack Porosity: 0.5


SOLUTION

Aquifer Model: Unconfined

K = 1.084E-6 ft/sec

Solution Method: Bouwer-Rice

y0 = 0.7452 ft

SLUG IN

Data Set: J:\Projects\5701 Okar-Brockport\5701-11 Okar\Env\final slug\MW13sluginFinalJune.aqt

Date: <u>07/03/08</u> Time: <u>10:36:08</u>

PROJECT INFORMATION

Company: Lu Engineers

Client: Okar Equipment Co., Inc.

Project: <u>5701-11</u>

Location: Former Churchville Ford

Test Well: MW-13
Test Date: 6/14/07

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-13)

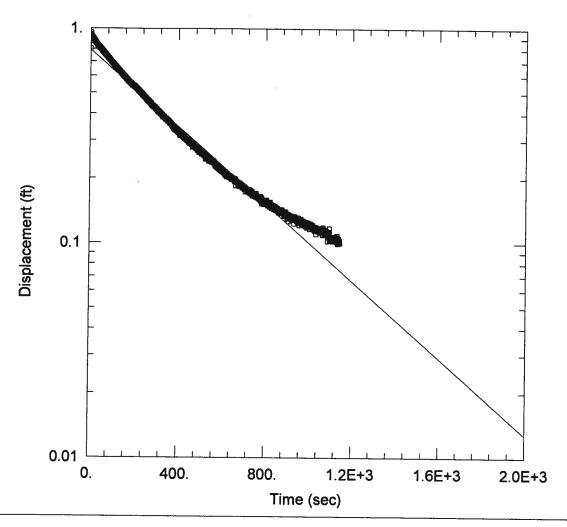
Initial Displacement: 1.309 ft

Total Well Penetration Depth: 13.19 ft

Casing Radius: 0.083 ft

Static Water Column Height: 13.19 ft

Screen Length: 10. ft Wellbore Radius: 0.375 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.627E-6 ft/sec

Solution Method: Bouwer-Rice

y0 = 0.7643 ft

SLUG OUT

Data Set: J:\Projects\5701 Okar-Brockport\5701-11 Okar\Env\final slug\MW-13SlugOutFinal2.aqt

Date: <u>07/03/08</u> Time: <u>10:37:11</u>

PROJECT INFORMATION

Company: Lu Engineers

Client: Okar Equipment Co., Inc.

Project: 5701-11

Location: Former Churchville Ford

Test Well: MW-13
Test Date: 6/14/07

AQUIFER DATA

Saturated Thickness: 20. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-13)

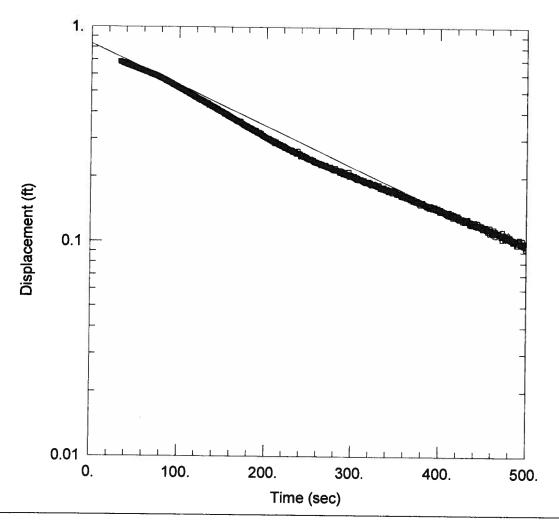
Initial Displacement: 1.063 ft

Total Well Penetration Depth: 13. ft

Casing Radius: 0.083 ft

Static Water Column Height: 13. ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.691E-6 ft/sec

Solution Method: Bouwer-Rice

y0 = 0.7927 ft

SLUG IN

Data Set: J:\Projects\5701 Okar-Brockport\5701-11 Okar\Env\final slug\MW-JCL-2SlugInFinal.aqt

Date: <u>07/03/08</u> Time: <u>10:43:49</u>

PROJECT INFORMATION

Company: Lu Engineers

Client: Okar Equipment Co., Inc.

Project: 5701-11

Location: Former Churchville Ford

Test Well: MW-JCL-2 Test Date: 6/15/07

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-JCL-2)

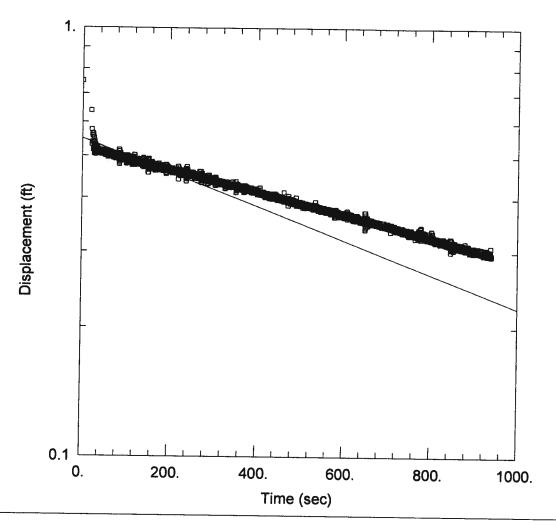
Initial Displacement: 1.995 ft

Total Well Penetration Depth: 29.44 ft

Casing Radius: 0.083 ft

Static Water Column Height: 29.44 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

K = 4.885E-6 ft/sec

Solution Method: Bouwer-Rice

y0 = 0.8327 ft

SLUG OUT

Data Set: J:\Projects\5701 Okar-Brockport\5701-11 Okar\Env\final slug\MW-JCL-2SlugOutFinal.aqt Time: 10:45:03

Date: 07/03/08

PROJECT INFORMATION

Company: Lu Engineers

Client: Okar Equipment Co., Inc.

Project: 5701-11

Location: Former Churchville Ford

Test Well: MW-JCL-2 Test Date: 6/15/07

AQUIFER DATA

Saturated Thickness: 20. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-JCL-2)

Initial Displacement: 0.75 ft

Total Well Penetration Depth: 29.44 ft

Casing Radius: 0.083 ft

Static Water Column Height: 29.44 ft

Screen Length: 10. ft Wellbore Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined

K = 1.005E-6 ft/sec

Solution Method: Bouwer-Rice

y0 = 0.55 ft

Former Churchville Ford Groundwater Calculations

K VALUES (averages of the 3 wells tested)

- Avg. K Slug In = 3.256×10^{-6} ft/sec (0.28 ft/day)
- Avg. K Slug Out = 1.260×10^{-6} ft/sec (0.11 ft/day)
- Combined Avg. K (Slug In & Slug Out) = 2.058×10^{-6} ft/sec (0.18 ft/day)

GROUNDWATER VELOCITY CALCULATIONS

- V = K (dh/dl)
- Overall Avg. $V_{min} = 2.058 \times 10^{-6} \text{ ft/sec } (2'/200') = 2.058 \times 10^{-6} \text{ ft/sec}$ (0.01) = 2.058 x 10⁻⁸ ft/sec (0.00179 ft/day)
- Overall Avg. $V_{max} = 2.058 \times 10^{-6} \text{ ft/sec } (16^{\circ}/200^{\circ}) = 2.058 \times 10^{-6} \text{ ft/sec}$ (0.075) = 1.544 x 10⁻⁷ ft/sec (0.0133 ft/day)

3

ANALYTICAL RESULTS

Prepared for:

Enovis, Inc. 1525 Hampton Hall Orive #16

> Chesterfield 314-313-4155

Prepared by: Lanacaster Laboratories 2425 New Holland Pike Lancaster, PA 17805-2425

Katherine A Klinefelter at (717)656-2300

Respectfully Submitted,

H- II-

Enovis, Inc.
Project: Former Churchville Ford, NY
SDG: NVS15

Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10

Analysis Name	Uniths	4315528 MW-3-(4-		4315527 MW-3-(18		4315528 SSB-1 Co	
		Result	MDL	Result	MDL	Result	MDL
Mercury	mg/kg	n.a.	n.e.	n.a.	n.a.	0.0460 J	0.0037
Akıminum	mg/kg	n.a.	n.a.	ir n.a.	п.а.	9,940.	2.92
Catclum	mg/kg	n.a.	n.a.	n.a.	n.a.	45,000.	5.51
Iron	mg/kg	n.a.	n.a.	n.a.	n.a.	15,400.	4.68
Magnesium	mg/kg	n.a.	n.a.	n.a.	п.а.	22,400.	1.82
Potassium	mg/kg	n.a.	n.a.	n.a.	n.a.	2,490.	2.72
Sedium	mg/kg	n.a.	n.e.	n.a.	n.a.	263.	35.5
Thaillum	ma/ka	n.a.	n.a.	n.a.	п.а.	N.D.	1.08
Arsenic	mg/kg	n.a.	n.a.	n.a.	n.a.	5.78	0.562
Selenium	mg/kg	n.a.	n.a.	n.a.	n.a.	N.D.	1.01
Antimony	mg/kg	n.a.	n.a.	n.a.	n.a.	N.D.	0.867
Barlum	ma/ka	n.a.	n.a.	n.a.	n.a.	65.8	0.0489
Bervillum	mg/kg	n.e.	n.a.	n.a.	n.a.	0.423 J	0.0293
Cadmium	mg/kg	n.a.	n.a.	n.a.	n.a.	0.429 J	0.0656
Chromium	mg/kg	n.a.	n.a.	n.a.	n.a.	13.8	0.234
Cobali	mg/kg	n.a.	n.a.	n.e.	n.a.	5.02	0.187
Copper	mg/kg	n.a.	n.a.	n.a.	n.a.	21.9	0.152
Lead	mg/kg	n.a.	n.a.	n.a.	n.a.	31.8	1.09
Manganese	mg/kg	n.a.	n.a.	n.e.	n.e.	404.	0.0703
Nickel	mg/kg	n.a.	n.a.	n.a.	п.а.	11.7	0.289
Silver	mg/kg	n.a.	n.a.	n.a.	n.a.	N.D.	0.152
Vanadium	mg/kg	n.a.	n.a.	n.a.	n.a.	19.4	0.223
Zinc	mg/kg	n.a.	n.a.	0.8.	n.a.	79.6	0.574
Moisture	%	9.6	0.50	8.7	0.50	15.5	0.50
Phenol	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2-Chlorophenol	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
N-Nitroso-di-n-propylamine	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
4-Chloro-3-methylphenol	ид/ка	N.D.	74.	N.D.	73.	N.D.	390.
Acenephthene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
4-Nitrophenol	ug/ko	N.D.	180.	N.D.	180.	N.D.	990.
2.4-Dinitrotoluene	ug/kg	N.D.	74.	N.D.	79.	N.D.	390.
Pentechlorophenol	ug/kg	N.D.	180.	N.D.	180.	N.D.	990.
Pyrene	ug/kg	N.D.	37.	N.D.	37.	2,100.	200.
2-Nitrophenol	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2,4-Dimethytphenol	ug/kgi	N.D.	37.	N.D.	37.	N.D.	200.
2.4-Dichtorophenol	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2.4.6-Trichiorophenol	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2.4-Dinitrophenol	ug/kg	N.D.	740.	N.D.	730.	N.D.	3.900.
4.6-Dinitro-2-methylphenol	ug/kg	N.D.	180.	N.D.	180.	N.D.	990.
bls(2-Chloroethyr)ether	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Hexachioroethane	ug/kg	N.D.	37.	N.D.	37.	NLD.	200.
Nitrobanzana	ug/kg	N.D.	37.	N.D.	37.	NLD.	200.
isophorene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
bis(2-Chioroethoxy)methane	nayea	N.D.	37.	N.D.	37.	N.D.	200.
Naphthalene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.

Lancaster Laboratories

Analytical Report

Pmiach	Enavis, inc Former Church			Report Date Submit Date			
r sopout	SDG: NVS1				J. 178.43 2.01		
Hexachlorobutadiene	ua/ka	N.D.	74.	N.D.	73.	N.D.	390.
Hexachtorocyclopentadiene	ug/kg	N.D.	180.	NLD.	180.	N.D.	990.
2-Chloronaphthalene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Acenaphthylene	ua/ka	N.D.	37.	N.D.	37.	N.D.	200.
Dimethylphthalate	ug/kg	N.D.	74.	N.D.	73.	N.D.	390.
2.6-Dinitrotoluene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Fluorene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
4-Chlorophenyl-phenylethar	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Diethyiphthalate	ug/kg	NLD.	74.	N.D.	73.	N.D.	360.
N-Nitrosodiphenylamine	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
4-Bromopherryl-phenylether	u a/ka	N.D.	37.	N.D.	37.	N.D.	200.
Hexachlorobenzene	ug/kg	NLD.	37.	N.D.	37.	N.D.	200.
Phenanthrene	Ug/kg	NLD.	37.	N.D.	37.	1,300. J	200.
Anthrecene	ug/kg	N.D.	37.	N.D.	37.	280. J	200.
DI-n-butyiphthalate	ug/kg	NLD.	74.	N.D.	73.	N.D.	390.
Fluoranthene	ug/kg	N.D.	37.	N.D.	37.	2,100.	200.
Butylbenzylphthalate	ug/kg	N.D.	74.	N.D.	73.	N.D.	390.
Benzo(a)anthracene	up/kg	N.D.	37.	N.D.	37.	1,000. J	200.
Chrysene	ug/kg	N.D.	37.	N.D.	37.	1,300. J	200.
3.3'-Dichlorobenzidine	uo/ku	N.D.	74.	N.D.	73.	N.D.	390.
bls(2-Ethylinexyl)phthatate	ug/kg	N.D.	110.	N.D.	110.	N.D.	590.
Di-n-octyiphthalate	ug/kg	N.D.	74.	N.D.	73.	N.D.	390.
Benzo(b)fluoranthene	ug/kg	N.D.	37.	N.D.	37.	1.500. J	200.
Benzo(k)fluoranthene	ug/kg	N.D.	37.	N.D.	37.	690. J	200.
Benzo(a)pyrene	ug/kg	N.D.	37.	N.D.	37.	1,100. J	200.
Indeno(1,2,3-cd)pyrene	ug/ko	N.D.	37.	N.D.	37.	820. J	200.
Dibenz(a,h)anthracene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Benzo(g.h.l)perylena	ug/kg	N.D.	37.	N.D.	37.	770. J	200.
Acetophenone	ug/kg	N.D.	74.	N.D.	73.	N.D.	390.
2-Methylphenoi	ug/kg	NLD.	37.	N.D.	37.	N.D.	200.
2.2'-oxybis(1-Chloropropane)	ug/kg	NLD.	37.	N.D.	37.	N.D.	200.
4-Methylphenol	ug/kg	NLD.	74.	N.D.	73.	N.D.	390.
4-Chloroaniline	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2-Methylnaphthalene	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
2.4.5-Trichlorophenol	ua/ka	N.D.	37.	N.D.	37.	N.D.	200.
2-Nitroeniine	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
3-Nitroaniline	ug/ko	N.D.	74.	N.D.	73.	N.D.	390.
Dibenzofuran	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
4-Nitroanilina	ug/kg	N.D.	74.	N.D.	73.	N.D.	390.
Carbazole	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Atrazine	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Caprolactam	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
Benzaldehyde	ug/kg	N.D.	37.	N.D.	37.	N.D.	200.
1,1'-Biphenyl	ug/kg	N.D.	37:	N.D.	37.	N.D.	200.
Methyl Tertlary Butyl Ether	ug/kg	0.9 J	0.6	N.D.	0.6	N.D.	0.6
Cyclohexane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Methyl Acetate	ug/kg	N.D.	2.	N.D.	2.	N.D.	2
Methylcyclohexane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Dichlorodifluoromethane	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.

Deutsch f	Enovis, in	c. hville Ford, NY			ste: 8/11/200 late: 7/22/200		
Project P	SDG: NVS			Submit D	808: 1/22/2UC	A 8. IU	
Chloromethane	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.
Vinvi Chlorida	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Bromomethana	uo/ka	N.D.	2	N.D.	2.	N.D.	2.
Chlorosthane	ug/kg	N.D.	2	N.D.	2.	N.D.	2.
Yrichiorofluoromethane	ug/kg	N.D.	2	N.D.	2	N.D.	2
1.1-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Methylene Chlorida	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.
trans-1,2-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1.1-Dichioroethane	ug/kg	N.D.	1.	NLD.	1.	N.D.	1.
ds-1.2-Dichigroethane	ug/kg	17.	i.	1. J	1.	N.D.	- i.
Chloroform	ug/kg	N.D.	1.	N.D.	i.	N.D.	1.1
1.1.1-Trichloroethane	ug/kg	N.D.	1.	NLD.	i.	N.D.	1.
Carbon Tetrachieride	ug/kg	N.D.	1.	NLD.	1.	N.D.	1.
Banzane	ug/kg	N.D.	0.6	N.D.	0.6	N.D.	0.6
1.2-Dichioroethane	na/ka	N.D.	1.	N.D.	1.	N.D.	1.
Trichlomethene	ug/kg	18.	1.	N.D.	1.	N.D.	1.
1.2-Dichloropropane	na/ka	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dichioroproperie Bromodichioromethane		N.D.	1.	N.D.	1.	N.D.	
Sromodionioromethanis Foluene	u g/kg	N.D. N.D.	1. 1.		1.		1.
	ug/kg	NLD.		1. J N.D.		1. J	1.
1,1,2-Trichloroethane	ug/kg		1.		1.	N.D.	1.
Tetrachioroethene	ug/kg	35.	1.	N.D.	1.	N.D.	1.
Ofbromochloromethane	ng/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dibromoethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Chlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Ethylbenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Styrene	nayea	N.D.	1.	N.D.	1.	N.D.	1.
Bromoform	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
sopropylbenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,1,2,2-Tetrachloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,3-Dichlorobenzena	ug/kg	N.D.	1.	N.D.	· 1.	N.D.	1.
1,4-Dichlorobenzena	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dichlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dibromo-3-chloropropana	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.
1,2,4-Trichlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Acetone	ug/kg	12. J	8.	N.D.	8.	N.D.	8.
Carbon Disulfide	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
2-Butanone	ug/kg	N.D.	4.	N.D.	4.	N.D.	5.
rans-1,3-Dichloropropena	ug/kg	NLD.	1.	N.D.	1.	N.D.	1.
cls-1,3-Dichloropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1-Methyl-2-pentanone	ug/kg	N.D.	3.	N.D.	3.	N.D.	4.
2-Hexarone	ug/kg	N.D.	3.	N.D.	3.	N.D.	4.
Kylene (Total)	up/kg	N.D.	1.	1. J	1.	2. J	1.
Freori 113	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.
		4315529		4315530		4315531	
Analysia Name	Units	8SB-2 Co	1 4	SSB-3 Co		SSB-4 Co	
		Result	MDL,	Result	MDL	Result	MDL
Mercury	mg/kg	0.0542 J	0.0041	0.0458 J	0.0039	0.0224 J	0.0037
Aluminum	mg/kg	14,400.	3.21	10,000.	3.02	10,500,	2.91

Lancaster Laboratories

Analytical Report

Project:	Enovis, Inc Former Church				te: 8/11/2004 te: 7/22/200		
	SDG: NVS1				mili	10 (G)	
Calcium	ma/ka	5,580.	6.07	99,500.	28.5	35,600.	5.50
Iron	mg/kg	17,200.	5.15	13,900.	4.84	14,100.	4.67
Magnesium	mg/kg	3,400.	2.00	23,800.	1.88	18,700.	1.81
Potessium	mg/kg	2,600.	2.99	2,450.	2.81	2.550.	2.71
Coefficient	marka	200.	39.1	172.	36.8	146.	35.4
Thaillem	mafka	N.D.	1.19	N.D.	1.12	N.D.	1.08
Arsenic	mg/kg	5.55	0.820	5.31	0.582	4.83	0.581
Selenium	mg/kg	N.D.	1.11	N.D.	1.04	N.D.	1.01
Antimorry	mg/kg	N.D.	0.955	N.D.	0.898	N.D.	0.885
Berlum	mg/kg	102.	0.0516	53.6	0.0485	52.0	0.0488
Beryllium	mg/kg	0.528 J	0.0323	0.385 J	0.0303	0.400 J	0.0292
Cadmium	mg/kg	0.376 J	0.0723	0.303 J	0.0679	0.264 J	0.0855
Chromium	mg/kg	18.7	0.258	11.6	0.243	14.4	0.234
Cobalt	mg/kg	5.54	0.207	4.28	0.194	5,26	0.187
Copper	mg/kg	10.8	0.188	9.75	0.158	9.61	0.152
Lead	mg/kg	23.8	1.20	26.6	1.13	20.4	1.09
Manganese	mg/kg	472.	0.0775	432.	0.0728	420.	0.0702
Nickel	mg/kg	12.0	0.297	8.71	0.279	10.4	0.269
Silver	mg/kg	N.D.	0.168	N.D.	0.158	N.D.	0.152
Vanadium	mg/kg	27.4	0.245	18.8	0.231	21.3	0.222
Zinc	mg/kg	91.9	0.633	54.8	0.595	53.4	0.573
Moisture	%	23.3	0.50	18.4	0.50	14.5	0.50
Phenol	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2-Chlorophenol	ug/kg	NLD.	220.	N.D.	200.	N.D.	190.
N-Nitroso-di-n-propylamine	ug/kg	NLD.	220.	N.D.	200.	N.D.	190.
4-Chlore-3-methylphenol	ug/leg	N.D.	430.	N.D.	410.	N.D.	390.
Acenaphthene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
4-Nitrophenol	ug/kg	NLD.	1.100.	N.D.	1,000.	N.D.	970.
2,4-Diritrotoluene	ug/kg	NLD.	430.	N.D.	410.	N.D.	390.
Pentachtorophenol	ug/kg	N.D.	1,100.	N.D.	1,000.	N.D.	970.
Pyrene	ug/kg	320. J	220.	N.D.	200.	440. J	190.
2-Nitrophenol	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2,4-Dimethylphenol	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2.4-Dichierophenoi	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2,4,6-Trichterophenol	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2.4-Dinitrophenol	ug/kg	N.D.	4,300.	N.D.	4,100.	N.D.	3,900.
4.6-Dinitro-2-methylphenol	na/jai	N.D.	1,100.	N.D.	1,000.	N.D.	970.
bis(2-Chiorcethyl)ether	na/jai	N.D.	220.	N.D.	200.	N.D.	190.
Hexachiorosthane	navida	N.D.	220.	N.D.	200.	N.D.	190.
Nitrobenzene	ug/igg	N.D.	220.	N.D.	200.	N.D.	190.
Isophorone	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
bis(2-Chioroethoxy)methane	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Naphthálene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Hexachlorobutadiene	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
Hexachlerocyclopentadiene	ug/kg	N.D.	1,100.	N.D.	1,000.	N.D.	970.
2-Chloronaphthalene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Acenaphthylene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Dimethylphthalate	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
2,8-Dinitrotoluene	n8\e8	N.D.	220.	N.D.	200.	N.D.	190.

Lancaster Laboratories

Page 8 of 42

Analytical Report

Project:	Enovia, in Former Church SDG: NVS	wille Ford, NY			e: 8/11/200- te: 7/22/200		
Fluorene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
4-Chlorophenyl-phenylether	ua/la	N.D.	220.	N.D.	200.	N.D.	190.
Diethylphthalate	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
N-Nitrosodiphenylamine	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
4-Bromophenyl-phenylether	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Hascachiorobenzene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Phenanthrene	uafka	N.D.	220.	N.D.	200.	380. J	190.
Arithracene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Di-n-butytphthalate	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
Fluoranthene	ug/kg	370. J	220.	N.D.	200.	500. J	190.
Butylbenzytphthatate	ug/kg	N.D.	430.	N.D.	410.	N.D.	380
Benzo(a)anthracane	ug/kg	N.D.	220.	N.D.	200.	240. J	190.
Chrysene	ug/kg	230. J	220.	N.D.	200.	250. J	190.
3.3'-Dichlorobenzidine	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
bis(2-Ethythexyl)phthalate	ug/kg	N.D.	650.	N.D.	610.	N.D.	580.
DI-n-octylphthalate	ua/ka	N.D.	430.	N.D.	410.	N.D.	390.
Benzo(b)fluoranthene	ug/kg	330. J	220.	N.D.	200.	310. J	190.
Benzolkifluoranthene	ид/ка	N.D.	220.	N.D.	200.	N.D.	190.
Benzo(a)pyrene	ug/kg	N.D.	220.	N.D.	200.	220. J	190.
Indeno(1,2,3-cd)pyrene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Olbenz(a,h)anthracene	ug/kg	N.D.	220	N.D.	200.	N.D.	190.
Benzo(g,h,l)parylene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Acetophenone	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
2-Methylphenol	ua/ka	N.D.	220.	N.D.	200.	N.D.	190.
2,2'-oxybis(1-Chioropropane)	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
4-Methylphenol	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
4-Chloroaniline	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2-Methylnaphthalene	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2,4,5-Trichlorophenoi	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
2-Nitroaniline	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
3-Nitroaniline	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
Dibenzofuran	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
4-Nitroaniline	ug/kg	N.D.	430.	N.D.	410.	N.D.	390.
Carbazole	ua/ka	N.D.	220.	NLD.	200.	N.D.	190.
Atrazine	ug/ka	N.D.	220.	N.D.	200.	N.D.	190.
Caprolactam	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
Benzaldehyda	ug/kg	N.D.	220.	N.D.	200.	N.D.	190.
1,1'-Biphenyl	up/kg	N.D.	220.	N.D.	200.	N.D.	190.
Methyl Tertlery Butyl Ether	un/ka	N.D.	0.7	N.D.	0.6	N.D.	0.8
Cyclohexane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Methyl Acetate	uo/ka	N.D.	3.	N.D.	2.	N.D.	2.
Methyloydohexane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Dichlorodifluoromethane	ug/kg	N.D.	3.	N.D.	ż.	N.D.	2.
Chloromethane	ua/ka	N.D.	3.	N.D.	2.	N.D.	2.
Vinyl Chloride	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Bromomethana	ug/kg	N.D.	3.	N.D.	2.	N.D.	2.
Chloroethane	ug/kg	N.D.	3.	N.D.	2.	N.D.	2. 2.
Trichlorofluoromethane	ug/kg	N.D.	3.	N.D.	2. 2.	N.D.	2.
1,1-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.

	Enovis, Ir	1C.		Report D	ate: 8/11/200	17:03	
Project:	Former Churc	hville Ford, NY		Submit D	Date: 7/22/20	04 9:10	
	SDG: NVS	315			31-		
Methylene Chloride	un/ko	N.D.	3.	N.D.	2.	N.D.	2.
trans-1.2-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1.1-Dichloroethane	ug/kg	N.D.	1.	N.D.	i.	N.D.	1.
cis-1.2-Dichleroethens	up/kp	N.D.	1.	N.D.	1.	N.D.	1.
Chloroform	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1,1,1-Trichloroethane	ug/kg	N.D.	1.	N.D.	i.	N.D.	1.
Carbon Tetrachiorida	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Benzene	ug/kg	N.D.	0.7	N.D.	0.6	N.D.	0.6
1.2-Dichloroethane	ug/kg	N.D.	1.	NLD.	1.	N.D.	1.
Trichioroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	
1.2-Dichioropropage	ug/kg	N.D.	1.	N.D.	1.		1.
Bromodichioromethene	ug/kg	N.D.	1.	N.D.	1. 1.	N.D.	1.
Toluene	ug/kg	N.D.	1.	N.D.		N.D.	1.
1.1.2-Trichioroethana	anyo	N.D.		NLD. NLD.	1.	N.D.	1.
Tetrachioroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Dibromochioromethane	บอกเอ	N.D.	**		1.	N.D.	1.
1.2-Dibromoethana			1.	N.D.	1.	N.D.	1.
Chlorobenzene	паука	N.D.	1.	N.D.	1.	N.D.	1.
	nô _k tô	N.D.	1.	N.D.	1.	N.D.	1.
Ethylbenzene	nayra	N.D.	1.	N.D.	1.	N.D.	1.
Styrens	nayka	N.D.	1.	N.D.	1.	N.D.	1.
Bromotorm	na\ka	N.D.	1.1	N.D.	1.	N.D.	1.
Isopropylbenzene	nayta	N.D.	1.0	N.D.	1.	N.D.	t.
1,1,2,2-Tetrachloroethans	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
1.3-Dichlorobenzene	n a ld	N.D.	1.	N.D.	1.	N.D.	1.
1,4-Dichlorobenzene	n@y@	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dichlorobenzene	na _k ta	N.D.	1.	N.D.	1.	N.D.	1.
1,2-Dibromo-3-chioropropane	កជារួយ	N.D.	3.	N.D.	2.	N.D.	2
1,2,4-Trichlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Acetone	ug/kg	N.D.	9.	N.D.	9.	N.D.	8.
Cerbon Disuffide	ma/las	N.D.	1.	N.D.	1.	N.D.	Ĭ.
2-Butanone	ug/kg	N.D.	6.	N.D.	5.	N.D.	5.
trans-1,3-Dichloropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	ī.
cia-1,3-Dichloropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
4-Methyl-2-pentanone	ug/kg	N.D.	4.	N.D.	4.	N.D.	4.
2-Hexanone	ug/kg	N.D.	4.	N.D.	4.	N.D.	4.
Xylene (Total)	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.
Freon 113	ug/kg	N.D.	3.	N.D.	2.	N.D.	2.
		424 2-00		4045555		No.	177
Analysis Name	Units	4315532 SSB-5 Co		4315533		4315524	
Antery ete Legitia	Ulina			SSB-6 Co		MW-1-(2-	
Mercury	mg/kg	Result 0.0437 J	MDL	Result	MDL	Result	MDL
Mercury Aluminum			0.0040	0.0249 J	0.0040	n.a.	n.a.
Autominion Calcium	mg/kg	15,600.	3.10	9,090.	3.01	n.a.	n.a.
	mg/kg	22,500.	5.85	141,000.	28.4	n.a.	n.a.
kon	mg/kg	17,800.	4.97	10,200.	4.83	n.a.	n.a.
Magnestum	mg/kg	8,260.	1.93	14,300.	1.88	n.a.	n.a.
Potassium	mg/kg	2,860.	2.89	2,470.	2.81	n.a.	n.a.
Sodium	mg/kg	200.	37.7	223.	36.7	n.a.	n.a.
Thallum	mg/kg	N.D.	1.15	N.D.	1.11	n.a.	n.a.

Lancaster Laboratories

Page 10 of 42

Analytical Report

Pi	Enovia, Inc. Project: Former Churchville Ford, NY SDG: NVS15			Report Da Submit Da				
Arsenic	ma/ka	3.31	0.598	2.43	0.581	ulle n.a.		
Setenium	mg/kg	1.13 J	1.07	N.D.	1.04		п.а.	
Antimony	mg/kg	N.D.	0.922	N.D.	0.898	n.a. n.a.	п.а.	
Barium	mg/kg	112.	0.0498	59.0	0.0484	n.a.	n.a.	
Beryllium	ma/ka	0.593 J	0.0311	0.353 J	0.0303		n.a.	
Cadmium	ma/kg	0.350 J	0.0697	0.333 J	0.0303	n.a. n.a.	n.a.	
Chromium	mg/kg	19.7	0.249	11.4	0.0070	n.a.	n.a.	
Cobalt	mg/kg	8.92	0.199	4.02	0.194	n.a.	n.a.	
Copper	ma/ka	11.0	0.162	10.1	0.157	n.a.	n.a. n.a.	
Lead	ma/ka	14.5	1.16	11.7	1.13	n.a.	n.a.	
Mangenese	mg/kg	431.	0.0747	591.	0.0726	n.a.	n.a.	
Nickel	ma/ka	14.8	0.286	8.99	0.0720	n.a.	n.a.	
Silver	mg/kg	N.D.	0.182	N.D.	0.157	n.a.	n.a.	
Vanedium	mg/kg	29.9	0.237	18.0	0.230	11.41. 11.41.	n.a.	
Zinc	mg/kg	69.1	0.610	55.5	0.583	11.d.	Π. Q.	
Moisture	21.8	19.7	0.50	19.8	0.50	12.8	0.50	
Phenoi	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
2-Chlorophenol	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
N-Nitroso-di-n-propylami:		N.D.	210.	N.D.	210.	N.D.	190.	
4-Chloro-3-methylphenol		N.D.	420.	N.D.	420.	N.D.	380.	
Acenaphthene	un/kn	N.D.	210.	N.D.	210.	N.D.	190.	
4-Nitrophenol	ug/kg	NLD.	1.000.	N.D.	1.000.	N.D.	850.	
2.4-Dinitrotolusna	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.	
Pentachlorophenol	ug/kg	N.D.	1.000.	N.D.	1.000.	N.D.	950.	
Pyrene	ug/kg	370. J	210.	400. J	210.	840. J	190.	
2-Nitrophenol	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
2,4-Dimethylphenol	up/kg	N.D.	210.	N.D.	210.	N.D.	190.	
2,4-Dichlorophenol	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
2,4,6-Trichlorophenol	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
2.4-Dinitrophenol	ug/kg	N.D.	4.200.	N.D.	4.200.	N.D.	3,800.	
4,8-Dinitro-2-methylphen		N.D.	1.000.	N.D.	1.000.	N.D.	950.	
bis(2-Chloroethyl)ether	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
Hexachloroethane	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
Nitrobenzene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
Isophorone	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
bis(2-Chlorosthoxy)meths	ug/kgu enu	N.D.	210.	N.D.	210.	N.D.	190.	
Naphthalene	ug/kg	N.D.	210.	N.D.	210.	320. J	190.	
Hexachiorobutadiena	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.	
Hexachlorocyclopentadie		N.D.	1,000.	N.D.	1,000.	N.D.	950.	
2-Chioronaphthalane	ua/ka	N.D.	210.	N.D.	210	N.D.	190.	
Acenaphthylene	uc/ko	N.D.	210.	N.D.	210.	N.D.	190.	
Dimethylphthalate	ug/kg	NLD.	420.	N.D.	420.	N.D.	380.	
2,6-Dinitrotoluene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
Fluorene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
4-Chlorophenyl-phenyleth	er ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	
Diethylphthalate	ua/ka	N.D.	420.	NLD.	420.	N.D.	380.	
N-Nitrosodiphenytamine	ug/kg	N.D.	210.	N.D.	210.	N.D.	300. 190.	
4-Bromopherryl-pherryleth		N.D.	210.	N.D.	210. 210.	N.D.	190.	
Hexachlorobenzene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.	

Project:	Enovia, Inc. Project: Former Churchville Ford, NY SDG: NVS15			Report Date: 8/11/2004 17:03 , Submit Date: 7/22/2004 9:10					
Phanauthana									
Phenanthrene	пауа	N.D.	210.	390. J	210.	340. J	190.		
Anthracene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
DI-n-butylphthallate	naya	N.D.	420.	N.D.	420.	N.D.	380.		
Fluoranthene	na/ka	380. J	210.	500. J	210.	220. J	190.		
Butylbenzylphthelate	naya	N.D.	420.	N.D.	420.	N.D.	380.		
Benzo(a)anthracene	n D/Jd i	N.D.	210.	210. J	210.	220. J	190.		
Chrysene	m@ye@	250. J	210.	250. J	210.	250. J	190.		
3,3'-Dichtorobenzidine	na/ka	N.D.	420.	N.D.	420.	N.D.	380.		
bis (2-Ethylhexyl)phthelate	n8yd	N.D.	620.	N.D.	620 .	4,500.	570.		
DI-n-octylphthalate	паука	N.D.	420.	N.D.	420.	N.D.	380.		
Benzo(b)fluoranthens	nB\pa	430. J	210.	320. J	210.	220. J	190.		
Benzo(k)fluoranthene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Benzo(a)pyrene	ug/kg	300. J	210.	230. J	210.	N.D.	190.		
Indeno(1,2,3-cd)pyrene	ug/kg	210. J	210.	N.D.	210.	N.D.	190.		
Dibenz(a,h)enthracene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Benzo(g,h,i)perylene	ug/kg	220. J	210.	N.D.	210.	260. J	190.		
Acetophenone	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
2-Methylphenoi	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
2,2'-oxybis(1-Chloropropane)	na/ka	N.D.	210.	N.D.	210.	N.D.	190.		
4-Methylphenol	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
4-Chloroaniline	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
2-Methylnaphthalene	ug/lig	N.D.	210.	N.D.	210.	1,100. J	190.		
2,4,5-Trichiorophenoi	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
2-Nitroanilina	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
3-Nitroaniline	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Dibenzofuran	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
4-Nitroantiina	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Carbazole	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Airazine	ug/kg	NLD.	210.	N.D.	210.	N.D.	190.		
Caprolectem	ua/ka	N.D.	210.	N.D.	210.	N.D.	190.		
Benzaldehyde	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
1,1'-Biphenyl	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Mathyl Tertlary Butyl Ether	ug/kg	N.D.	0.6	N.D.	0.6	8.	0.6		
Cyclohexane	ua/ka	N.D.	1.	N.D.	1.	N.D.	1.		
Methyi Acetate	ug/kg	N.D.	2.	N.D.	2	N.D.	2.		
Methylcyclohexane	ug/kg	N.D.	1.	N.D.	1.	3. J	1.		
Dichlorodifluoromethane	ug/kg	N.D.	2.	N.D.	2.	N.D.	one 2 .		
Chloromethane	ug/kg	N.D.	2.	NLD.	2.	N.D.	2.		
Vinyi Chloride	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Bromomethene	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.		
Chloroethane	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.		
Trichlorofluoromethane	ug/kg	N.D.	2.	N.D.	2. 2.	N.D.	2.		
1,1-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.			
Methylane Chloride	ug/kg	N.D.	2.	N.D.	1. 2 .	N.D.	1.		
trans-1.2-Dichloroethene	nayka nayka	N.D.	2. 1.	N.D. N.D.			2.		
1.1-Dichloroethana	nayea	N.D.	1. 1.		1.	N.D.	1.		
cis-1.2-Dichloroethene	ug/kg	N.D.	1. 1.	N.D.	1.	N.D.	1.		
Chloroform	ug/kg	N.D.		N.D.	1.	10.	1.		
1.1.1-Trichtoroethane	ug/kg	N.D. N.D.	1.	N.D.	1.	N.D.	1.		
1, 1, 1 THE HOLVER MINE	GRAND	N.D.	1.	N.D.	1.	N.D.	1.		

Enovis, Inc. Project: Former Churchville Ford, NY SDG: NVS15				Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10					
Phenanthrene	ug/kg	N.D.	210.	390. J	210.	340. J	190.		
Anthracene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Di-n-butyiphthalata	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Fluoranthene	ug/kg	380. J	210.	500. J	210.	220. J	190.		
Butylbenzylphthalate	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Benzo(a)anthrecene	ug/kg	N.D.	210.	210. J	210.	220. J	190.		
Chrysene	ug/kg	250. J	210.	250. J	210.	250. J	190.		
3,3'-Dichlorobenzidine	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
bla(2-Ethythexyf)phthaiate	ug/kg	N.D.	620.	N.D.	620.	4.500.	570.		
Di-n-octylphthelate	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Benzo(b)fluoranthene	ug/kg	430. J	210.	320. J	210.	220. J	190.		
Benzo(k)fluoranthene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Benzo(a)pyrene	ug/kg	300. J	210.	230. J	210.	N.D.	190.		
Indeno(1,2,3-od)pyrene	ug/kg	210. J	210.	N.D.	210.	N.D.	190.		
Dibenz(e,h)anthracene	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Benzo(g,h,i)perylene	ug/kg	220. J	210.	N.D.	210.	260. J	190.		
Acetophenone	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
2-Methylphenol	ug/kg	- N.D.	210.	N.D.	210.	N.D.	190.		
2,2'-cxybis(1-Chloropropane)	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
4-Methylphenol	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
4-Chloroaniline	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
2-Methylnaphthalene	ug/kg	N.D.	210.	N.D.	210.	1,100. J	190.		
2,4,5-Trichiorophenol	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
2-Nitrouniline	na/ka	N.D.	210.	N.D.	210.	N.D.	190.		
3-Nitroaniline	ug/kg	N.D.	420.	N.D.	420.	N.D.	380.		
Dibenzofuran	ug/kg	NLD.	210.	N.D.	210.	N.D.	190.		
4-Nitroeniline	ugrig	RLD.	420.	N.D.	420.	N.D.	380.		
Carbazole	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Atrazina	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Caprolactam	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Benzaldehyde	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
1,1'-Biphenyl	ug/kg	N.D.	210.	N.D.	210.	N.D.	190.		
Methyl Terliary Butyl Ether	ug/kg	N.D.	8.0	N.D.	0.6	8.	0.6		
Cyclohaxana	ug/kg	N.D.	1.	N.D.	1.	N.D.	1		
Methyl Acetate	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.		
Methylcyclohexane	ug/kg	N.D.	1.	N.D.	1.	3. J	1.		
Dichlorodifluoromethane	nB\kB	N.D.	2.	N.D.	2.	N.D.	2.		
Chloromethans	ng/kg	N.D.	2.	N.D.	2.	N.D.	2.		
Vinyl Chloride	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Bromomethane	na/ka	N.D.	2.	N.D.	2.	N.D.	2.		
Chloroethune	nayda	N.D.	2.	N.D.	2.	N.D.	2.		
Trichioroffuoromethane	riā/jdī	N.D.	2.	N.D.	2.	N.D.	2.		
1,1-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Methylene Chloride	na _l ia	N.D.	2.	N.D.	2.	N.D.	2.		
trans-1,2-Dichloroethene	no/la	N.D.	1.	N.D.	1.	N.D.	1.		
1,1-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
cle-1,2-Dichloroethene	nayea	N.D.	1.	N.D.	1.	10.	1.		
Chloroform	ng/kg	N.D.	1.	N.D.	1.	N.D.	_1.		
1,1,1-Trichioroethane	ug/kg	N.D.	1,	N.D.	1.	N.D.	1.		

	Enovis, ir	ne.		Report D	ata: 8/11/200	M 17·ñ3		
Project:	Former Churc	tiville Ford, NY						
	SDG: NV			COUNTRY	Submit Date: 7/22/2004 9:10			
Carbon Tetrachloride	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Benzene	ug/kg	N.D.	0.6	N.D.	0.6	1. J	0.6	
1,2-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Trichigroethene	ug/ka	N.D.	1.	N.D.	1.	N.D.	i.	
1,2-Dichloropropane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Bromodichloromethane	ug/kg	N.D.	1.	NLD.	i.	N.D.	1.	
Toluene	un/ka	N.D.	1.	12.	1.	24.	1.	
1.1.2-Trichtoroethane	ug/kg	N.D.	i.	N.D.	1.	N.D.	1.	
Tetrachiproethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Dibromochloromethane	un/ka	N.D.	1.	N.D.	1.	N.D.		
1.2-Dibromoethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Chlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Ethylbenzene	ug/kg	N.D.	1.	N.D.	•••		1,	
Styrene	ug/kg	N.D.	1.	N.D.	1.	21.	2020	
Bromoform	ug/kg	N.D.	1.		1.	N.D.	1.	
Isopropyibenzene				N.D.	1.	N.D.	1.	
1,1,2,2-Tetrachioroethane	ug/kg	N.D.	1.	N.D.	1.	3. J	1.	
	ug/leg	N.D.	1.	N.D.	1.	N.D.	1.	
1,3-Dichlorobenzene	na/ja	N.D.	. 1	N.D.	1.	N.D.	1.	
1,4-Dichlorobenzene	ng/kg	NLD.	1.	N.D.	1.	N.D.	1.	
1,2-Dichlorobenzene	nayka	NLD.	1.	N.D.	1.	N.D.	1.	
1,2-Dibromo-3-chioropropane	nB/ldl	N.D.	2.	· N.D.	2.	N.D.	2.	
1,2,4-Trichiorobenzane	ng/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Acetone	ug/kg	NLD.	9.	87.	9.	48.	8.	
Carbon Disuifide	nB/ld	N.D.	1.	N.D.	1.	N.D.	1.	
2-Butanone	ug/kg	N.D.	5.	10. J	5.	15.	5.	
trans-1,3-Dichloropropens	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
cis-1,3-Dichloropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
4-Methyl-2-pentanone	ug/kg	N.D.	4.	N.D.	4.	N.D.	3.	
2-Hexanone	ug/kg	N.D.	4.	N.D.	4.	N.D.	3.	
Xylene (Total)	ug/ka	N.D.	1.	N.D.	1.	190.	1.	
Freon 113	ug/kg	N.D.	2.	N.D.	2.	N.D.	2.	
Analysis Name	Unita	4315525 MW-1-(18		4315534 888-7 Co		4315535 SSB-8 Co		
		Result	MDL	Result	MDL	Result	MDL	
Mercury	mg/kg	D.8.	n.a.	0.0270 J	0.0039	0.0194 J	0.0041	
Aluminum	mp/kg	n.a.	п.а.	13.000.	3.07	7.510.	3.25	
Calcium	mg/kg	n.a.	n.a.	22.800.	5.80	28.200.		
Iron	ma/ka	П.В.	п.а.	15,700.	4.92	,	8.14	
Magnesturn	ma/ka	n.s.		10,800.		10,200.	5.21	
Potassium	uidyd		n.a.		1.91	13,500.	2.02	
Sodium	~ ~	n.a.	n.a.	2,800.	2.86	1,730.	3.03	
Thailium	mg/kg	n.a.	n.a.	281.	37.4	244.	39.8	
I nautum Artenic	mg/kg	n.a.	n.a.	N.D.	1.13	N.D.	1.20	
	mg/kg	n.a.	n.#.	3.16	0.592	3.19	0.627	
Selenium	mg/kg	n.a.	n.a.	N.D.	1.08	N.D.	1.12	
Antimony	mg/kg	n.a.	n.a.	N.D.	0.912	N.D.	0.966	
Barium	mg/kg	n.a.	n.a.	72.5	0.0493	51.3	0.0522	
Beryllum	mg/kg	п.а.	n.a.	0.498 J	0.0308	0.302 J	0.0328	
Cadmium	mg/kg	n.a.	n.a.	0. 308 J	0.0890	0.245 J	0.0731	

Lancaster Laboratories

Page 13 of 42

Analytical Report

Enovis, Inc. Project: Former Churchville Ford, NY SDG: NY816			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10						
Chromium	mg/kg	n.a.	n.a.	15.8	0.247	10.1	0.261		
Cobatt	mg/kg	n.a.	n.s.	6.01	0.197	4.81	0.209		
Copper	ma/ka	n.a.	n.a.	12.6	0.160	8.81	0.170		
Lead	mg/kg	n.a.	n.a.	18.8	1.15	14.5	1.21		
Manganese	mg/kg	n.a.	n.a.	428.	0.0740	561.	0.0783		
Nickel	ma/ka	n.a.	n.a.	12.9	0.284	8.51	0.300		
Silver	ma/ka	n.a.	n.a.	NLD.	0.160	N.D.	0.170		
Vanadium	ma/ka	n.a.	n.s.	25.3	0.234	18.8	0.248		
Zinc	mg/kg	n.a.	n.a.	78.5	0.804	67.2	0.840		
Moisture	-100	8.3	0.50	19.7	0.50	23.4	0.50		
Phenol	up/kg	N.D.	36.	N.D.	210.	N.D.	220.		
2-Chlorophenol	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
N-Nitroso-di-n-propylamine	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
4-Chloro-3-methylphenol	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
Acenaphthene	ug/ko	N.D.	38.	N.D.	210.	N.D.	220.		
4-Nitrophenol	ug/ka	N.D.	180.	N.D.	1.000.	N.D.	1.100.		
2,4-Dinitrotoluene	ua/ka	N.D.	73.	N.D.	420.	N.D.	440.		
Pentachlorophenol	ug/kp	N.D.	180.	N.D.	1.000.	N.D.	1.100.		
Ругеле	ug/kg	N.D.	36.	380. J	210.	720. J	220		
2-Nitrophenoi	ug/kg	N.D.	30.	N.D.	210.	N.D.	220.		
2,4-Dimethylphenol	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
2,4-Dichlorophenol	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
2,4,8-Trichlorophenol	ug/kb	N.D.	36.	N.D.	210.	N.D.	220.		
2,4-Dinitrophenol	ug/kg	N.D.	730.	N.D.	4,200.	N.D.	4.400.		
4,6-Dinitro-2-mathylphenol	ug/kg	N.D.	180.	N.D.	1.000.	N.D.	1,100.		
bis(2-Chloroethyl)ether	ug/kg	N.D.	36,	N.D.	210.	N.D.	220.		
Hexachioroethane	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Nitrobenzane	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Isophorone	ug/kg	N.D.	38.	N.D.	210.	N.D.	220.		
bis(2-Chloroethoxy)methane	ug/kg	N.D.	38.	N.D.	210.	N.D.	220.		
Naphthalene	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Hexachlorobutadiene	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
Hexachlorocyclopentadiene	ug/log	N.D.	180.	N.D.	1,000.	N.D.	1.100.		
2-Chioronaphthalene	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Acenaphthylene	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Dimethylphthelate	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
2,8-Dinfirotoluane	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Fluorene	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
4-Chlorophenyl-phenylether	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Diethylphthalate	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
N-Nitrosodiphenylamine	ng/kg	N.D.	36.	N.D.	210.	N.D.	220.		
4-Bromophenyl-phenylether	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
Hexachiorobenzene	ug/kg	N.D.	36.	N,D.	210.	N.D.	220.		
Phenanthrene	ug/kg	N.D.	36.	N.D.	210.	370. J	220.		
Anthracens	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.		
DI-n-butylphthatate	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
Fluoranthene	ug/kg	N.D.	36.	400. J	210.	890. J	220.		
Butylbenzylphthalate	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.		
Benzo(a)anthracene	ug/kg	N.D.	36.	N.D.	210.	380. J	220.		

Enovie, Inc.				Report Date	a; 8/11 /20 04	L 17-03		
Prolect:	Former Church				a: 7/22/200			
	SDG: NVS		#1.250 m 1237					
Chrysene	ug/kg	N.D.	36.	230. J	210.	470. J	220.	
3,3 -Dichlorobenzidine	ug/kg	NLD.	73.	N.D.	420.	N.D.	440.	
bis(2-Ethylhexyl)phthalate	ug/kg	N.D.	110.	N.D.	620.	N.D.	650.	
Di-n-octylphthalate	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.	
Benzo(b)fluoranthene	ug/kg	NLD.	36.	470. J	210.	720. J	220.	
Benzo(k)fluoranthene	ug/kg	N.D.	36.	N.D.	210.	290. J	220.	
Benzo(a)pyrene	ug/kg	NLD.	36.	310. J	210.	520. J	220.	
Indeno(1,2,3-cd)pyrene	ug/kg	NLD.	36.	260. J	210.	380. J	220.	
Dibenz(a,h)anthracene	ug/kg	N.D.	38.	N.D.	210.	N.D.	220.	
Benzo(g,h,l)perylene	ug/kg	N.D.	36.	270. J	210.	400. J	220.	
Acetophenone	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.	
2-Methylphenol	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
2,2'-oxybis(1-Chloropropane)	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
4-Methylphenol	u g/ kg	N.D.	73.	N.D.	420.	N.D.	440.	
4-Chloroaniline	ng/kg	N.D.	36.	N.D.	210.	N.D.	220.	
2-Methylnaphthalene	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
2,4,5-Trichlorophenol	ug/lg	N.D.	36.	N.D.	210.	N.D.	220.	
2-Nitroanline	ng/kg	N.D.	36.	N.D.	210.	N.D.	220.	
3-Nitroenline	ug/kg	N.D.	73.	N.D.	420.	N.D.	440.	
Dibenzofunkn	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
4 Nitroaniine	ug/kg	N.D.	73 .	N.D.	420.	N.D.	440.	
Carbazole	ug/kg	. N.D.	36.	N.D.	210.	N.D.	220.	
Atrazine	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
Caprolactam	ug/kg	N.D.	36.	N.D.	210.	N.D.	220.	
Benzaldehyde	ug/kg	N.D.	38.	N.D.	210.	N.D.	220.	
1,1'-Biphenyl	ug/kg	N.D.	38.	N.D.	210.	N.D.	220.	
Methyl Terliary Butyl Ether Cyclohacane	ug/kg	N.D.	0.5	N.D.	0.8	N.D.	0.7	
Methyl Acetate	ug/kg ug/ko	N.D. N.D.	1.	N.D.	1.	N.D.	1.	
Methylcyclohexane	ug/kg	N.D.	2.	N.D.	2.	N.D.	3.	
Dichlorodifluoromethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
Chloromethane	ug/kg	N.D.	2. 2.	N.D.	2.	N.D.	3.	
Vinvi Chiorida	ught	N.D.	1.	N.D.	2.	N.D.	3.	
Bromomethane	nayka nayka	NLD.	2	N.D. N.D.	1.	NLD.	1.	
Chloroethana	ug/kg	N.D.	2.	N.D.	2	N.D.	3.	
Trichlorofluoromethane	ug/lg	N.D.	2.	N.D.	2. 2.	N.D.	3.	
1,1-Dichioroethene	ug/kg	N.D.	1.	N.D.	1.	N.D. N.D.	3.	
Methylene Chloride	na/la	N.D.	2	N.D.	1. 2.	N.D.	1. 3.	
trans-1,2-Dichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D. N.D.		
1.1-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
cis-1,2-Dichloroethene	ug/kg	N.D.		N.D.	1.	N.D.	1.	
Chiproform	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
1.1.1-Trichloroethane	ua/ka	N.D.	1.	N.D.	1.	N.D.	1. 1.	
Carbon Tetrachloride	ug/kg	N.D.	1.	N.D.	1.	N.D.		
Benzene	ug/kg	N.D.	0.5	N.D.	0.6	N.D.	1. 0.7	
1.2-Dichloroethane	na/ka	N.D.	1.	N.D.	1.	N.D.	U.7	
Trichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
1,2-Dichloropropane	ug/kg	N.D.	i.	N.D.	1.	N.D.	1.	
Bromodichloromethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.	
-8		2	-		••	14.2.	1.	

Lancaster Laboratories

Page 15 of 42

Analytical Report

Project	Enovis, inc. Project: Former Churchville Ford SDG: NVS15			Report Date: 8/11/2004 17:03 , NY Submit Date: 7/22/2004 9:10							
Toluene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
1,1,2-Trichioroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
Tetrachloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
Dibromochioromethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
1,2-Dibromoethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
Chlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
Ethylbenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	i.				
Styrene	ug/kg	N.D.	1.	N.D.	1.	N.D.	VIII A				
Bromoform	ug/kg	N.D,	1.	N.D.	1.	N.D.	1.				
Isopropyibenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
1,1,2,2-Tetrachioroethane	va/ka	N.D.	1.	N.D.	1.	N.D.	1.				
1.3-Dichlorobenzene	ug/kg	N.D.	1.	NLD.	i.	N.D.	1.				
1,4-Dichlorobenzene	ug/kg	N.D.	i.	N.D.	1.	N.D.					
1,2-Dichiprobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1. 1.				
1,2-Dibromo-3-chioropropane	ug/kg	N.D.	2.	N.D.	1. 2.		•••				
1,2,4-Trichlorobenzene	ug/kg	N.D.	1.	N.D.		N.D.	3.				
Acetone	ug/kg	N.D.	8.		1.	N.D.	04.5				
Carbon Disutfide	ug/kg	N.D.		13. J	9.	N.D.	9.				
2-Butanona	ug/kg		1.	N.D.	1.	N.D.	1.				
trans-1,3-Dichloropropens		N.D.	4.	N.D.	5.	N.D.	5.				
	ng/kg	N.D.	1.	N.D.	1.	N.D.	1.				
da-1,3-Dichtoropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
4-Methyl-2-pentanone	ug/kg	N.D.	3.	N.D.	4.	N.D.	4.				
2-Hexanone	ug/kg	N.D.	3.	N.D.	4.	N.D.	4.				
Xylene (Total)	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.				
Freon 113	ug/kg	N.D.	2.	N.D.	2.	N.D.	3.				
		4315536		4315537		4315538					
Analysis Name	Units	888-9 Co		SB-P-(0-		SB-H-(4-					
		Result	MDL	Result	MDL	Result	MDL				
Mercury	mg/kg	0.0138 J	0.0040	0.0141 J	0.0038	0.0071 J	0.0036				
Aluminum	mg/kg	6,090.	3.08	9,800.	2.76	8.610.	2.77				
Calcium	mg/kg	40,300.	5.82	60,200.	5.21	48.800.	5.23				
Iron	mg/kg	10,700.	4.94	12,500.	4.43	11,200.	4.44				
Magnestum	mg/kg	19,200.	1.92	30,500.	1.72	19.500.	1.73				
Potassium	mg/kg	1,750.	2.87	3,120.	2.57	2,570.	2.58				
Sodium	mg/kg	234.	37.5	200.	33.6	203.	33.7				
Thallium	mg/kg	N.D.	1.14	NLD.	1.02	N.D.	1.02				
Arsenic	mg/kg	2.79	0,594	2.56	0.532	2.20	0.535				
Selentum	mg/kg	N.D.	1.08	N.D.	0.954	N.D.	0.958				
Antimony	mg/kg	N.D.	0.916	N.D.	0.834						
Bartum	mg/kg	60.5	0.0495			N.D.	0.824				
Beryllium	mg/kg	0.270 J	0.0309	50.1	0.0444	60.5	0.0445				
Cadmium	mg/kg	0.433 J		0.378 J	0.0277	0.324 J	0.0278				
Chromium			0.0893	0.292 J	0.0621	0.284 J	0.0824				
Cobatt	mg/kg	48.5	0.247	21.1	0.222	11.1	0.223				
	mg/kg	3.61	0.198	4,93	0.177	4.17	0.178				
Copper	mg/kg	12.8	0.161	9.75	0.144	9.18	0.145				
Lead	mg/kg	15.4	1.15	10.0	1.03	9.19	1.04				
Manganese	mg/kg	370.	0.0742	334.	0.0665	332.	0.0688				
Nickel	mg/kg	9.68	0.285	15.5	0.255	8.95	0.258				

Enovis, Inc. Project: Former Churchville Ford, NY SDG: NV315			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10					
Silver	ing/kg	N.D.	0.161	N.D.	0.144	N.D.	0.145	
Vanadium	ma/ka	14.0	0.235	18.1	0.211	18.0	0.145	
Zinc	mg/kg	248.	0.806	58.8	0.543	59.4	0.548	
Molsture	%	22.3	0.50	13.3	0.50	11.1	0.50	
Phenol	ug/kg	N.D.	210.	NLD.	38.	N.D.	190.	
2-Chiorophenol	ug/leg	N.D.	210.	N.D.	38.	N.D.	190.	
N-Nitroso-di-n-propytamine	ug/ig	N.D.	210.	N.D.	38.	N.D.	190.	
4-Chlore-3-methylphenol	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
Acenaphthene	ug/kg	900. J	210.	N.D.	38.	N.D.	190.	
4-Nitrophenol	ug/kg	N.D.	1,100.	N.D.	190.	N.D.	940.	
2,4-Dinitrototuene	ug/leg	N.D.	430.	N.D.	77.	N.D.	370.	
Pentachlorophenol	ug/kg	N.D.	1,100.	N.D.	190.	N.D.	940.	
Pyrene	ug/kg	21,000.	210.	N.D.	38.	620. J	190.	
2-Nitrophenol	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
2,4-Dimethylphenol	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
2,4-Dichlorophenol	ug/lg	N.D.	210.	N.D.	38.	N.D.	190.	
2,4,6-Trichlarophenol	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
2,4-Dintrophenol	ug/kg	Ń.D.	4.300.	N.D.	770.	N.D.	3.700.	
4,6-Dinitro-2-methylphenol	ug/ig	N.D.	1,100.	N.D.	190.	N.D.	940.	
bis(2-Chlorosthyl)ether	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Haxachlorosthane	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Nitrobenzene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Isophorone	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
bis(2-Chloroethoxy)methana	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Naphthelene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Hexachlorobutadiena	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
Histachierocyclopentadiene	ug/kg	N.D.	1.100.	N.D.	190.	N.D.	940.	
2-Chloronaphthalane	ug/lgg	N.D.	210.	N.D.	38.	N.D.	190.	
Acenaphthylene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Dimethylphthalate	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
2,8-Dinitrototuene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Fluorens	ug/kg	1,100. J	210.	N.D.	38.	N.D.	190.	
4-Chlorophenyl-phenylether	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Diethylphthatate	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
N-Nitrosodiphenylamine	ng/kg	N.D.	210.	N.D.	38.	N.D.	190.	
4-Bromophenyl-phenylether	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Hexachtorobenzene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.	
Phenanthrene	ug/kg	14,000.	210.	N.D.	38.	540. J	190.	
Anthracene	ug/kg	2,600.	210.	N.D.	38.	N.D.	190.	
Di-n-butyiphthalate	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
Fluoranthene	ug/leg	24,000.	210.	N.D.	38.	800. J	190.	
Butylbenzylphthalate	ug/kg	N.D.	430.	N.D.	77.	NLD.	370.	
Benzo(a)anthracene	ug/kg	10,000.	210.	N.D.	38.	270. J	190.	
Chrysene	ug/kg	13,000.	210.	N.D.	38.	320. J	190.	
3,3'-Dichlorobenzidine	ug/leg	N.D.	430.	N.D.	77.	N.D.	370.	
bis(2-Ethylhexyl)phthalate	ug/kg	N.D.	640.	N.D.	120.	N.D.	560.	
Di-n-octylphthalate	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.	
Benzo(b)fluoranthene	ug/kg	18,000.	210.	N.D.	38.	380. J	190.	
Benzo(k)fluoranthene	ug/kg	6,300.	210.	N.D.	38.	N.D.	190.	

Lancaster Laboratories

Page 17 of 42

Analytical Report

Enovis, inc. Project: Former Churchville Ford, NY			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10						
	SDG: NV			Superint man	6. 1122120U	4 8, 10			
Benzo(a)pyrene	ua/ka	13,000.	210.	N.D.	38.	250. J	400		
Indeno(1,2,3-od)pyrene	ug/kg	12,000.	210.	N.D.	36. 38.	250. J N.D.	190. 190.		
Dibenz(a,h)anthracene	ug/kg	2,800.	210.	N.D.	38.	N.D.	190. 190.		
Benzo(g.h.i)perviena	ug/kg	12,000.	210.	N.D.	38.	N.D.	190. 190.		
Acetophenone	ug/kg	N.D.	430.	N.D.	30. 77.	N.D.	180. 370.		
2-Methylphenol	ug/kg	N.D.	210.	N.D.	77. 38.	N.D.	370. 190		
2,2'-exybis(1-Chioropropens)	ug/kg	N.D.	210.	N.D.	30. 38.	N.D.	190.		
4-Methylphenol	ug/kg	N.D.	430.	N.D.	36. 77.	N.D.	370.		
4-Chioroaniline	ug/kg	N.D.	210.	N.D.	38.	N.D.	370. 190.		
2-Methylnaphthalene	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.		
2,4,5-Trichtorophenol	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.		
2-Nitroaniline	ug/kg	N.D.	210.	N.D.	38.	N.D.	190.		
3-Nitroaniline	ug/kg	N.D.	430.	N.D.	77.	N.D.	370.		
Dibenzofuran	ugrkg	420. J	210.	N.D.	77. 38.	N.D.			
4-Nitroeniline	Ug/kg	N.D.	430.	N.D.	77.	N.D.	190. 370.		
Carbazole	ug/kg	1,600. J	210.	N.D.	38.	N.D.			
Atrazine	ug/kg	N.D.	210.	N.D.	36. 38.	N.D.	190.		
Caprolectem	ug/kg	N.D.	210.	N.D.	36. 38.	N.D.	190.		
Benzaldetryde	ug/kg	N.D.	210.	N.D.	36. 38.	N.D.	190.		
1.1'-Biphenyl	ug/kg	N.D.	210.	N.D.	36. 38.		190.		
Methyl Tertiary Butyl Ether	ua/ka	N.D.	0.6	N.D.	30. 0.8	N.D.	190.		
Cyclohexane	ug/kg	N.D.				N.D.	0.6		
Methyl Acetate	ug/kg	N.D.	1. 3.	N.D. N.D.	1.	N.D.	1.		
Methylcyclohexane	Ug/kg	N.D.	1.	N.D.	2.	N.D.	2.		
Dichlorodifluoromethane	ug/kg	NLD.	3.	N.D.	1.	N.D.	1.		
Chloromethane	nayea	N.D.			2.	N.D.	2.		
Vinvi Chloride	up/kg	NLD.	3.	N.D.	2.	N.D.	2.		
Bromomathune			1.	N.D.	1.	N.D.	1.		
Chloroethana	ug/kg ug/kg	N.D.	3.	NLD.	2.	N.D.	2.		
Trichioroffuoromathana		N.D.	3.	N.D.	2.	N.D.	2.		
1.1-Dichloroethene	ug/kg	N.D.	3.	N.D.	2.	N.D.	2.		
Mathylane Chlorida	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
trans-1,2-Dichloroethene	ug/kg	N.D.	3.	N.D.	2.	N.D.	2.		
1.1-Dichiorosthane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
cis-1.2-Dichlomethene	ug/kg	N.D.	1.	N.D.	1,	N.D.	1.		
Chioroform	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
1,1,1-Trichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Carbon Tetrachloride	na/ja	N.D.	1.	N.D.	1.	N.D.	1.		
Benzene	nta/lea	N.D.	0.8	N.D.	0.6	NLD.	0.6		
1,2-Dichloroethane	n 0\/d	N.D.	1.	N.D.	1.	N.D.	1.		
Trichloroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
1,2-Dichloropropane	ug/lg	N.D.	1.	N.D.	1.	N.D.	1.		
Bromodichloromethane	ng/lag	N.D.	1.	N.D.	1.	N.D.	1.		
Toluene	ug/kg	4. J	1.	1. J	1.	1. J	1.		
1,1,2-Trichloroethane	ug/log	N.D.	1.	N.D.	1.	N.D.	1.		
Tetrachioroethene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Dibromochioromethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
1,2-Dibromoethane	ug/kg	N.D,	1.	N.D.	1.	N.D.	1.		
Chiprobenzane	n8\d	N.D.	1.	N.D.	1.	N.D.	1.		

Analytical Report

Project:	Enovin, inc. roject: Former Churchville Ford, NY SDG: NVS15			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10					
Ethylbanzena	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
Styrene	ug/kg	N.D.	1.	N.D.	i.	N.D.	1		
Bromoform	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.		
sopropylbenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1. 1.		
1.1.2.2-Tetrachloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1. 1.		
.3-Dichlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.			
.4-Dichtorobenzene	ug/kg	NLD.	1.	N.D.	1.	N.D.	1.		
.2-Dichiorobenzene	ug/kg	N.D.	i.	N.D.	1.	N.D.	1.		
,2-Dibromo-3-chioropropane	ug/kg	N.D.	3.	N.D.	2.	N.D.	1.		
2.4-Trichlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	2. 1.		
cetone	ug/kg	13. J	9.	11. J	I. 8.	N.D.	1. 8.		
Carbon Disulfide	UB/IB)	NLD.	1.	N.D.	1.	******			
2-Butanone	ug/kg	N.D.	5.	N.D.	1. 5.	N.D.	1.		
rans-1,3-Dichloropropene	ug/kg	N.D.	9. 1.	N.D.	ə. 1.	N.D. N.D.	6.		
is-1,3-Dichleropropens	na/ka	N.D.	1.	N.D.	1. 1.	N.D. N.D.	1. 1.		
-Methyl-2-pentanona	Ug/kg	ND.	4.	N.D.	1. 3.		• • •		
-Hexanone	ug/kg	N.D.	4.	N.D.	3. 3.	N.D.	3.		
(ylene (Total)	ug/kg	N.D.	1.	N.D.		N.D.	3.		
Frech 113	ug/kg	N.D.	3.	NLD.	1.	N.D.	1.		
	Ograg	N.D.	J .	NUL	2.	N.D.	2.		
107-4-6AT-16-07		4315539		4315540		4315544			
Vnalysis Name	Units	SB-I-(8-		58-G-(0-		SW-1 Com			
		Resuit	MDL	Result	MDL	Result	MDL		
lercury	mg/kg	N.D.	0.0037	0.0111 J	0.0038	C.0059 J	0.0039		
Juminum	mg/kg	6,760 .	2.80	9,320.	2.72	6,430.	3.03		
alcium	mg/kg	58,200.	5.29	27,300.	5.13	68,800.	5.72		
on	mg/kg	10,400.	4.49	12,600.	4.36	10,200.	4.86		
lagnestum	mg/kg	20,200.	1.74	13,800.	1.69	26,500.	1.69		
otaselum	mg/kg	2,320.	2.61	2,450.	2.53	2,140.	2.83		
lodium	mg/kg	230.	34.1	149.	33.1	181.	36.9		
hallum	mg/kg	N.D.	1.03	N.D.	1.00	NLD.	1.12		
rsenic	mg/kg	1.88	0.540	2.70	0.524	2.48	0.585		
elenium	mg/kg	N.D.	0.967	N.D.	0.939	N.D.	1.05		
ntimony	mg/kg	N.D.	0.832	N.D.	0.808	NLD.	0.901		
lartum	mg/kg	57.7	0.0450	43.0	0.0437	29.1	0.0487		
eryllium eryllium	mg/kg	0.290 J	0.0281	0.414 J	0.0273	0.274 J	0.0305		
admium	mg/kg	0.223 J	0.0630	0.352 J	0.0611	0.371 J	0.0882		
thromium	mg/kg	9.77	0.225	11.0	0.218	10.5	0.244		
CODEIL	mg/kg	3.92	0.180	4.29	0.175	3.31	0.195		
Copper	mg/kg	8.47	0.146	9.90	0.142	9.91	0.158		
	ma/ka	4.66	1.05	8.29	1.02	11.8	1.13		
ead	114 March			318.	0.0855	312.	0.0731		
· · ·	mg/kg	311.	0.0675				4.4141		
langanese		311. 8.72	0.0675 0.259	10.7			0.280		
langanese lickel	mg/kg			10.7	0.251	7.76	0.280		
flanganese lickel :ilver	mg/kg mg/kg	8.72	0.259	10.7 N.D.	0.2 51 0.142	7.76 N.D.	0.158		
fanganese lickel lilver fanadium	mg/kg mg/kg mg/kg	8.72 N.D. 16.8	0.259 0.146 0.214	10.7 N.D. 17.6	0.251 0.142 0.207	7.76 N.D. 13.6	0.158 0.231		
fanganese lickel lilver /anadium linc	mg/kg mg/kg mg/kg	8.72 N.D. 16.8 47.4	0.259 0.146 0.214 0.551	10.7 N.D. 17.6 87.3	0.251 0.142 0.207 0.535	7.76 N.D. 13.6 137.	0.158 0.231 0.597		
.ead Aanganese Silver /anadium !Inc Aolisture Phenol	mg/kg mg/kg mg/kg mg/kg mg/kg	8.72 N.D. 16.8	0.259 0.146 0.214	10.7 N.D. 17.6	0.251 0.142 0.207	7.76 N.D. 13.6	0.158 0.231		

ReferenceiD: 904712110804184149

Lancaster Laboratories

Page 19 of 42

Analytical Report

Enovis, Inc. Project: Former Churchville Ford, NY SDG: NVS15			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10					
N-Nitroso-di-n-propylamine	∷ ug/kg ⊮	N.D.	37.	N.D.	190.	N.D.	200.	
4-Chlore-3-methylphenol	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.	
Acenaphthene	ug/kg	N.D.	37.	N.D.	190.	840. J	200.	
4-Nitrophenol	ug/kg	N.D.	190.	N.D.	930.	N.D.	1.000.	
2.4-Dinitrotolusns	ug/kg	N.D.	78.	N.D.	370.	N.D.	410.	
Pentachiorophenol	ug/kg	N.D.	190.	N.D.	930.	N.D.	1,000.	
Pyrene	ug/kg	N.D.	37.	N.D.	190.	24.000.	200.	
2-Nitrophenal	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
2,4-Dimethylphenol	Ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
2,4-Dichiorophenol	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
2,4,6-Trichlorophenol	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
2,4-Dinitrophenol	ug/kg	N.D.	750.	N.D.	3.700.	N.D.	4.100.	
4,6-Dinitro-2-methylphenol	ug/kg	N.D.	190.	N.D.	930.	N.D.	1.000.	
bls(2-Chloroethyl)ether	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Hexachioroethane	up/kp	N.D.	37.	N.D.	190.	N.D.	200.	
Nitrobenzene	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Isophorone	ug/kg	N.D.	37.	N.D.	190.	N.D.	200. 200.	
bis(2-Chloroethoxy)methane	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Naphthalene	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Hexachlorobutadiene	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.	
Hexachlorocyclopentaciene	ug/kg	N.D.	190.	N.D.	930.	N.D.	1,000.	
2-Chioronaphthalene	ug/kg	N.D.	37.	N.D.	190.	NLD.	200.	
Acenaphthylene	ug/kg	N.D.	37.	N.D.	190.	NLD.	200.	
Dimethylphthalate	ug/kg	N.D.	75.	N.D.	370.	NLD.	410.	
2,6-Dinitrotoluane	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Fluorene	ug/kg	N.D.	37.	N.D.	190.	1,000. J	200.	
4-Chlorophenyl-phenylether	ug/kg	N.D.	37.	N.D.	190.	NLD.	200.	
Diethylphthalate	ug/kg	N.D.	75.	N.D.	370.	NLD.	410.	
N-Nitrosodiphenylamine	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
4-Bromophenyl-phenylether	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Hexachlorobenzene	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.	
Phenanthrene	ug/kg	N.D.	37.	N.D.	190.	16,000.	200.	
Anthracene	ug/kgu	N.D.	37.	N.D.	190.	2.100.	200.	
DI-n-butylphthalate	ug/lg	N.D.	75.	N.D.	370.	N.D.	410.	
Fluoranthène	ug/kg	N.D.	37.	N.D.	190.	26,000.	410.	
Butylbenzylphthalate	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.	
Benzo(a)anthracene	ug/kg	N.D.	37.	N.D.	190.	11,000.	200.	
Chrysene	ug/kg	N.D.	37.	N.D.	190.	15,000.	200.	
3,3'-Dichlorobenzidine	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.	
bis(2-Ethylhexyl)phthatate	ug/kg	N.D.	110.	N.D.	560.	N.D.	B10.	
DI-n-octylphthalate	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.	
Benzo(b)fluoranthene	ug/kg	N.D.	37.	N.D.	190.	17,000.	200.	
Benzo(k)fluoranthene	ug/kg	N.D.	37.	N.D.	190.	7,700.	200.	
Benzo(a)pyrene	ug/kg	N.D.	37.	N.D.	190.	13,000.	200.	
Indeno(1,2,3-cd)pyrene	ug/kg	N.D.	37.	N.D.	190.	11,000.	200.	
Dibenz(s,h)anthracene	ug/kg	N.D.	37.	N.D.	190.	2,800.	200.	
Benzo(g,h,i)perylene	ug/kg	N.D.	37.	N.D.	190.	10.000.	200.	
Acetophenone	ug/kg	N.D.	75.	N.D.	370.	N.D.	41D.	
2-Methylphenol	ug/leg	N.D.	37.	N.D.	190.	N.D.	200.	

Lancaster Laboratories

Page 20 of 42

Analytical Report

	Enovis, inc.			Report Date	a: 8/11/2004	17:03						
Project:	Project: Former Churchville Ford, N			Submit Date: 7/22/2004 9:10								
•	SDG: NV81	5				A - Brica						
2.2'-oxybis(1-Chigropropane)	ua/ka	N.D.	37.	N.D.	190.	N.D.	200.					
4-Methylphenol	up/kg	N.D.	75.	N.D.	370.	N.D.	410.					
4-Chloroaniline	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.					
2-Methylnaphthalene	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.					
2,4,5-Trichlorophenol	ug/kg	N.D.	37.	N.D.	190.	N.D.	200.					
2-Nitroaniline	ug/kg	N.D.	37.	N.D.	190.	N.D.	200. 200.					
3-Nitroaniline	ug/kg	N.D.	75.	N.D.	370.	N.D.	410.					
Dibenzofuran	ug/kg	N.D.	37.	N.D.	190.	470. J	200.					
4-Nitroaniline	un/ka	N.D.	75.	N.D.	370.	N.D.	410.					
Carbazole	ua/ka	N.D.	37.	N.D.	190.	2.500.	200.					
Atrazine	ua/ka	N.D.	37.	N.D.	190.	N.D.	200.					
Caprolectern	ug/kg	N.D.	37.	N.D.	190.	N.D.	200. 200.					
Benzaldehyde	Ug/kg	N.D.	37.	N.D.	190.	N.D.	200. 200.					
1.1'-Biohanyl	ua/ka	N.D.	37.	N.D.	190.	N.D.	200.					
Mothyl Tertlary Butyl Ether	ug/kg	N.D.	0.6	N.D.	0.6	N.D.	0.6					
Cyclohexane	ug/kg	N.D.	1.	N.D.	1.	N.D.						
Methyl Acetate	ug/kg	N.D.	2.	N.D.	2.	N.D.	1.					
Methyloyclohexane	ug/kg	N.D.	1.	N.D.	1. E.	N.D.	1.					
Dichlorodifluoromethane	ug/kg	N.D.	2.	N.D.	1. 2.	NLD.						
Chloromethane	ug/kg	N.D.	2. 2.	N.D.	2.	N.D.	2. 2.					
Vinyl Chloride	ug/kg	N.D.	1.	N.D.	1.	N.D.						
Bromomethane	Ug/kg	N.D.	2.	N.D.	2.	N.D.	1. 2					
Chloroethane	ug/kg	N.D.	2. 2.	N.D.	2.	N.D.	2.					
Trichlorofluoromethane	ug/kg	N.D.	2, 2,	N.D.	2.	N.D.	2.					
1.1-Dichiorcathena	ug/kg	N.D.	1.	N.D.	1.	N.D.	2. 1.					
Methylene Chloride	ug/kgi	N.D.	2.	N.D.	1. 2.	N.D.	••					
trans-1.2-Dichloroethene	ug/kg	NLD.	1.	N.D.	2. 1.	N.D.	2. 1.					
1.1-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.					
cis-1,2-Dichloroathene	ug/kg	N.D.	1.	N.D.	1.	4. J	1. 1.					
Chloroform	ug/kg	N.D.	1.	N.D.	1.	N.D.						
1.1.1-Trichioroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.					
Carbon Tetrachloride	up/kg	N.D.	1.	N.D.	1.	N.D.	1. 1.					
Benzana	ug/kg	N.D.	0.6	N.D.	0.6	N.D.						
1.2-Dichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.	0.6					
Trichioroethene	ug/kg	N.D.	1.	N.D.	1.	N.D. 7.	1.					
1.2-Dichloropropane	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.100					
Bromodichioromethane	na/ka	N.D.	1.	N.D.	1.	N.D.	1.					
Toluene	ua/ka	N.D.	1.	N.D.	1.	NLD.	1.					
1.1.2-Trichloroethane	ug/kg	N.D.	1.	N.D.	1.	N.D.						
Tetrachloroethene	ug/kg	NLD.	1.	N.D.	1.	19.	1.1					
Dibromochioromethane	nayaa	N.D.	1.	N.D.	1. 1.	19. N.D.	1.					
1,2-Dibromoethane	ug/kg	N.D.	1.	N.D.	1.		1.					
Chlorobenzene	ug/kg	N.D.	1.	N.D.	1.	N.D.	1.					
Ethylbenzene	ug/kg	N.D.	1.	N.D.		N.D.	1.					
Styrene	ug/kg	N.D.	1. 1.	N.D.	1.	N.D.	1.					
Bromoform	ugAcq	N.D.	1. 1.	N.D. N.D.	1.	N.D.	1.					
laopropylbenzene	na/ka	N.D.	1. 1.		1.	N.D.	1.					
1.1.2.2-Tetrachtoroethane	ng/kg	N.D.		N.D.	1.	N.D.	1.					
1.3-Dichiorobenzene	ug/kg	N.D.	1. 1.	N.D. N.D.	1.	N.D.	1.					
-12	A.A.	M.O.	٦.	M.D.	1.	N.D.	1.					

Pmlect:	Enovis, Inc. Project: Former Churchville Ford, NY			Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10						
110,000	SDG: NVS			Subilit	74B. 112212U	J-1 0:10				
1.4-Dichlorobenzene	ua/ka	N.D.	-3.	N.D.	1.	N.D.	1.			
1,2-Dichlorobenzene	up/kg	N.D.	1.	N.D.	1.	N.D.	1.			
1,2-Dibromo-3-chioropropane		N.D.	2.	N.D.	2.	N.D.	1. 2.			
1.2.4-Trichlorobenzene	ug/ka	N.D.	1.	N.D.	1.	N.D.	1.			
Acetone		N.D.	8.	39.	6.	N.D.	8.			
Carbon Dhuitlide		N.D.	1.	N.D.	1.	N.D.	1.			
2-Butanone	ua/ka	N.D.	4.	9. J	4.	N.D.	1. 5.			
trans-1,3-Dichloropropene	ug/kg	N.D.	1.	N.D.	1.	N.D.	0. 1.			
cis-1,3-Dichloropropene	ug/kg	N.D.	i.	N.D.	1.	NLD.	1.			
4-Methyl-2-pentanone	ug/kg	N.D.	3.	N.D.	3.	N.D.	4.			
2-Hexanone	ug/kg	N.D.	3.	N.D.	3.	N.D.	4.			
Xylene (Total)	ug/ka	N.D.	1.	N.D.	3. 1.	N.D.				
Freon 113	ug/kg	N.D.	2.	N.D.	1. 2.	N.D.	1. 2.			
		4315541		4315542		4315543				
Analysis Name	Units	RB-3 Gra		FB-3 Gra		TB-3 Wat				
		Result	MDL	Result	MDL	Result	MDL			
Mercury	mg/f	N.D.	0.000028	N.D.	0.000028	n.a.	0.8.			
1,1'-Biphenyl	ug/i	N.D.	·1.	N.D.	1.	n.a.	n.a.			
Acetophenone	ug/1	N.D.	2.	N.D.	2.	n.a.	n.a.			
4-Chioroaniline	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
Dibenzoturan	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
2-Methylnaphthalene	ug/l	N.D.	1.	N.D.	1.	n.a.	0.8.			
2-Nitroaniline	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
3-Nitroantline	ug/l	N.D.	1.	N.D.	1.	n.e.	П.В.			
4-Nitroaniline	ug/1	N.D.	1.	N.D.	1.	n.a.	n.a.			
2,4,5-Trichlorophenol	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
2-Chlorophenol	ug/i	N.D.	1.	N.D.	i.	n.a.	n.a.			
Phenol	ug/l	N.D.	1.	N.D.	1.	11.8.	n.a.			
2-Nitrophenol	ug/l	N.D.	1.	N.D.	i,	n.a.	n.a.			
2,4-Dimethylphenol	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
2,4-Dichlorophanol	ug/t	N.D.	1.	N.D.	1.	n.a.	n.a.			
4-Chloro-3-methylphenol	ug/t	N.D.	1.	N.D.	1.	0.4.	D.4.			
2,4,8-Trichlorophenol	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.			
2,4-Dinitrophenoi	ug/l	N.D.	19.	N.D.	19.	n.e.	n.a.			
4-Nitrophenol	l\gu	N.D.	10.	N.D.	10.	n.a.	n.a.			
4,8-Dinitro-2-methylphenol	ug/l	N.D.	5.	N.D.	5.	n.a.	n.a.			
Pentachiorophenol	บอก	N.D.	3.	N.D.	3.	0.2.	n.s.			
bis(2-Chloroethyl)ether	llg/l	N.D.	1.	N.D.	1.	n.a.	n.s.			
Hexachioroethane	ll ug/l	N.D.	1.	N.D.	i i.	n.a.	D.2.			
N-Nitroso-dl-n-propytamine	ug/l	N.D.	i.	N.D.	i.	n.a.	n.a.			
Nitrobenzene	ug/i	N.D.	i.	N.D.	ï.	n.a.	n.a.			
Isophorone	ug/l	N.D.	1.	N.D.	i.	n.a.	n.a.			
bis(2-Chieroethoxy)methane	ug/i	N.D.	1.	N.D.	1.	n.a.	n.a.			
Naphthalene	Ngu	N.D.	1.	N.D.	1.	n.a.	n.a.			
Hexachtorobutadiene	ug/l	N.D.	i.	N.D.	1.	0.4.				
Hexachlorocyclopentadiene	luu/l	N.D.	5.	N.D.	5.	n.a.	n.a.			
2-Chloronachthalene	ug/i	N.D.	1.	N.D.	J.	n.a. n.a.	n.a.			
Acenaphiliyiena	ug/l	N.D.	1.	N.D.	1.		n.a.			
		44.60.		n.U.	1.	n.a.	n.a.			

Lancaster Laboratories

Page 22 of 42

Analytical Report

Project:	Enovis, ind Former Church SDG: NVS	wille Ford, NY	Report Date: 8/11/2004 17:03 Submit Date: 7/22/2004 9:10						
Dimethylohthalate	us/l	N.D.	2.	N.D.	2.	n.a.			
2,6-Dinitrotoluene	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.		
Acensphthene	ug/l	N.D.	i.	N.D.	1.		n.a.		
2.4-Dinitrotoluene	ug/l	N.D.	i.	N.D.	1.	ក.ង. ជ.ង.	n.a.		
Fluorena	ug/l	N.D.	1.	N.D.	1.		n.a.		
4-Chlorophenyl-phenylether	ug/i	N.D.	i.	N.D.	1.	n.a.	n.a.		
Diethylphthalate	ug/l	N.D.	2.	N.D.	1. 2.	n.a.	n.a.		
N-Nitrosodiphenylamine	ug/l	N.D.	2	N.D.	2.	л.а.	n.a.		
4-Bromophenyl-phenylether	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.		
Hexachiorobenzene	Ngu	N.D.	i.	N.D.	1.	n.a.	n.a.		
Phenentisune	ug/l	N.D.	1.	N.D.	1.	n.a.	n.a.		
Anthragene	ug/l	N.D.	1.	N.D.	1.	n.a.			
Di-n-butylohthalate	ug/l	N.D.	2.	N.D.	2.	11.p.	n.a.		
Fluoranthene	ug/l	N.D.	1.	N.D.	1.	71.0. D.B.	n.a.		
Pyrene	ug/l	N.D.	1.	N.D.	1.		n.a.		
Butylbenzylphthalate	ug/l	N.D.	2.	N.D.	2.	n.a.	n.a.		
Benzo(a)anthracene	ug/l	N.D.	1.	N.D.	1.	ก.ล.	n.a.		
Chrysene	ug/i	N.D.	i.	N.D.	1.	n.a.	n.a.		
3.3'-Dichlorobenzidine	ug/l	N.D.	1.	N.D.	1.	ก.ล.	n.a.		
bis(2-Ethythexyl)phthalate	ug/l	N.D.	i. 2.	N.D.	• • •	n.a.	n.a.		
Di-n-octyighthalate	ug/l	N.D.	2. 2.	N.D.	2. 2.	n.a.	n.a.		
Benzo(b)@uoranthene	ug/l	N.D.	2. 1.	N.D.	2. 1.	п.а.	n.a.		
Benzo(k)@uoranthene	ug/l	N.D.	1.	N.D.	1. 1.	n.a.	n.a.		
Benzo(a)pyrane	ug/l	N.D.	1.	N.D.		n.a.	n.a.		
Indeno(1,2,3-od)pyrene	ug/l	N.D.	1.	N.D.	1. 1.	n.a.	n.a.		
Dibenz(a,h)anthracene	ug/t	N.D.	i.	N.D.	1.	n.e.	n.a.		
Benzo(g.h.l)perylene	ug/l	N.D.	1.	N.D.		n.a.	n.a.		
2-Methylphenol	บตู/ไ	N.D.	1.	N.D.	1. 1.	n.a.	n.a.		
2,2'-oxybis(1-Chloropropane)	ug/l	N.D.	1.	N.D.	•••	n.a.	n.a.		
4-Methylphenol	ugh	N.D.	2.		1. 2.	n.a.	n.a.		
Carbazola	ug/l	N.D.	1.	N.D N.D.		n.a.	n.a.		
Atrazine	ug/l	N.D.	1.	N.D.	1. 1.	n.a.	n.a.		
Caprolactem	ug/i	N.D.	5.	N.D.		n.a.	n.a.		
Benzeldehvde	ug/i	N.D.	9. 1.	N.D.	5. 1.	n.a.	n.a.		
Methyl Tertary Butyl Ether	ug/l	N.D.	0.5	N.D.	1. 0.5	n.a. N.D.	n.a.		
Cyclohexane	ug/i	N.D.	2.	N.D.	u.s 2.	N.D.	0.5		
Methyl Acetate	ug/i	N.D.	1.	N.D.	1.	N.D.	2.		
Methylcydiohaxane	ng/i	N.D.	1.	N.D.			1.		
Dichlorodifluoromathane	ug/i	N.D.	2.	N.D.	1. 2 .	N.D.	1.		
Chloromethane	ug/i	N.D.	1.	N.D.	2. 1.	N.D.	2.		
Vinyi Chlorida	ug/i	N.D.	1.	N.D.	1.	N.D.	1.		
Bromomethane	ug/l	N.D.	1.	N.D.	• • •	N.D.	1.		
Chloroethane	ug/i	N.D.	1.	N.D.	1. 1.	N.D.	1.		
Trichiorofluoromethane	ug/l	N.D.	1. 2.	N.D.		N.D.	1.		
1.1-Dichloroethene	ug/i	N.D.	2. 0.8	N.D.	2.	N.D.	2.		
Methylene Chloride	ugA	N.D.	u.o 2.	N.D. N.D.	0.8 2.	N.D.	0.8		
trans-1.2-Dichloroethene	ug/i	N.D. N.D.	2. 0.8	N.D.		N.D.	2.		
1.1-Dichigraethane	יעפט ועפט	N.D.	· 1.	N.D. N.D.	0.8	N.D.	0.8		
ds-1,2-Dichloroethene	ug/i	N.D.	0.8	N.D. N.D.	1.	N.D.	1.		
IP-SAMIN ASSISTA	og.	M.D.	U. 5	M.D.	8.0	N.D.	0.8		

Lancaster Laboratories

Page 23 of 42

Analytical Report

Pr	Enovis, inc oject: Former Church SDG: NV81	ville Ford, NY				V/11/2004 17:03 7/22/2004 9:10			
Chloroform	ug/t	11.	0.8	10.	0.8	N.D.	0.8		
1,1,1-Trichioroethane	ug/l	N.D.	8.0	N.D.	8.0	N.D.	0.8		
Carbon Tetrachloride	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
Benzene	ug/l	N.D.	0.5	N.D.	0.8	N.D.	0.5		
1,2-Dichloroethans	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
Trichlorosthene	ug/î	N.D.	1.	N.D.	1.	N.D.	1.		
1,2-Dichloropropane	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
Bromodichloromethane	ug/l	5.	1.	5.	1.	N.D.	1		
Toluene	□ ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7		
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8		
Tetrachloroethene	ug/l	N.D.	6.0	N.D.	0.8	N.D.	0.8		
Dibromochioromethane	ug/l	2. J	1.	2. J	1.	N.D.	1.		
1,2-Dibromoethane	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
Chlorobenzene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8		
Ethylbenzene	ugA	N.D.	0.8	N.D.	0.8	N.D.	0.8		
Styrene	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
Bromoform	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
leopropylbenzene	ug/i	N.D.	1.	N.D.	1.	N.D.	1.		
1,1,2,2-Tetrachioroethane	e ug/l	N.D.	1.	N,D.	1.	N.D.	1.		
1,3-Dichlorobenzene	ug/l	N.D.	· 1.	N.D.	1.	N.D.	1.		
1,4-Dichlorobenzene	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
1,2-Dichlorobenzene	Ug/I	N.D.	1.	N.D.	1.	N.D.	1.		
1,2-Dibromo-3-chioroprop	zane ug/l	N.D.	2.	N.D.	2	N.D.	2.		
1,2,4-Trichlorobenzene	ligu I	N.D.	1.	N.D.	1.	N.D.	1.		
Agetone	ugA	N.D.	6.	N.D.	6.	N.D.	6.		
Carbon Disutfide	ug/i	NLD.	1.	N.D.	1.	N.D.	1.		
2-Butanone	ug/l	N.D.	3.	N.D.	3.	N.D.	3.		
trans-1,3-Dichtoropropens	Ngu e	N.D.	1.	N.D.	1.	N.D.	1.		
cis-1,3-Dichloropropens	ug/l	N.D.	1.	N.D.	1.	N.D.	1.		
4-Methyl-2-pentanone	ug/l	N.D.	3.	N.D.	3.	N.D.	3.		
2-Hexanone	ug/l	N.D.	3.	N.D.	3.	N.D.	3.		
Xylene (Total)	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8		
Freon 113	ug/l	N.D.	2.	N.D.	2.	N.D.	2.		

Laboratory Chronicle

Page 24 of 42

CAT No.	Analysis Name	Method	Trial	Analysis Date/Time	Analysi	Dilution
494 229	4 1994 4 /2 /2 /2 Carlo Ball Carlo		11.12		, mayor	
00111	4 MW-1-(2-4) Grab Soil Sample Moisture	FD4 400 0 400 4		16 153		
04688		EPA 160.3 modified	1-4	7/26/04 1749	Scott W Freisher	1 -
04689	TCL SW848 Semivolatiles Soil	SW-846 8270C		7/27/04 1354	Chad A Moline	1
06292	TCL SW846 Semivotatiles/Soil	SW-846 8270C		7/27/04 1354	Chad A Moline	1 1 1
06381	TCL by 8250 (soft)	SW-846 8260B		7/27/04 1527	Roy R Mellott	1
V0301	Add'l Cmpds - OLM04.2 by 8260B	SW-846 6260B	1	7/27/04 1527	Roy R Mellott	1
	5 MW-1-(18-20) Grab Soil Sample					
00111	Moisture	EPA 160.3 modified	1	7/26/04 1749	Scott W Freisher	1
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C	1	7/27/04 1755	Chad A Molina	i -
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	7/27/04 1755	Chad A Moline	129
06292	TCL by 8260 (soil)	SW-846 8260B	a1	7/26/04 1953	Lauren C Marzario	1
06381	Add'i Cmpds - OLM04.2 by 82608	SW-846 8260B	193	7/26/04 1953	Lauren C Marzarto	
4316526	MW-3-(4-6) Grab Soil Sample					
00111	Moisture	EPA 160.3 modified		7/26/04 1749	Scott W Freisher	
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C		7/27/04 1885	Chad A Moline	977 1
04889	TCL SW846 Semivolafiles/Soil	SW-846 8270C		7/27/04 1888	Chad A Moline	1
06292	TCL by 8260 (soil)	SW-846 6260B		7/28/04 2108	Lauren C Marzario	1
06381	Add'I Cmpds - OLM04.2 by 8280B	SW-846 8260B		7/26/04 2106	Lauren C Marzario	1
	Activities the second		113	7720707 2100	Lauren C Maizano	. 1
	1874-3-(18-20) Grab Soil Sample					
00111	Moisture	EPA 160.3 modified	.1	7/26/04 1749	Scott W Freisher	1
04888	TCL SW848 Semivolatiles Soil	SW-846 8270C	1	7/27/04 1955	Chad A Moline	e-0 0 1 1
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	7/27/04 1955	Ched A Moline	1
08292	TCL by 8280 (soli)	SW-846 8260B	1	7/26/04 2130	Lauren C Marzario	1.01
08381	Add'I Cmpds - OLM04.2 by 8260B	SW-846 8260B	1	7/26/04 2130	Lauren C Marzario	1.01
4315525	SSB-1 Composite Soil Sample					
00159	Mercury	SW-848 7471A	4	7/28/04 1103	Damary Valentin	1
01643	Aluminum	SW-846 6010B		8/2/04 2303	Donna R Sackett	1
01650	Calcium	SW-846 6010B		7/30/04 0863	Joanne M Gates	1/2
01654	Iron	SW-846 6010B		7/30/04 0853	Joanne M Gates	
01667	Magnesium	SW-846 6010B		7/30/04 0863	Joanne M Gates	
01662	Potassium	SW-846 6010B		7/30/04 0863	Joanna M Gates	1
01667	Sodium	SW-846 6010B	-	8/3/04 2157	Donna R Sackett	1
06925	Theffun	SW-846 6010B		7/30/04 0853	Joanne M Gates	
06935	Arsenic	SW-846 6010B		8/6/04 1406	Joanne M Gates	1
06936	Selenium	SW-846 6010B		7/30/04 0863	Joanne M Gates	1
08944	Antimony	SW-846 6010B		7/30/04 0863	Joanna M Gates	200
06946	Barlum	SW-846 6010B		7/30/04 0853	Joanne M Gates	•
08947	Beryllium	SW-846 8010B		7/30/04 0853	Joanne M Getas	
00949	Cadmium	SW-846 6010B	-	7/30/04 0853	Joanne M Gates	
08951	Chromium	SW-846 6010B		7/30/04 0863		1 1 2
08952	Cobak	SW-846 6010B		7/30/04 0853	Joanne M Gates Joanne M Gates	1
08953	Copper	SW-846 6010B	-	7/30/04 0853		1
06955	Lead	SW-846 6010B		8/8/04 1227	Joanne M Gates	1
08958	Manganese	SW-848 6010B		7/30/04 0853	Joanne M Getes	1
08961	Nickel	SW-848 6010B		7/30/04 0853	Joanne M Gates	1
06966	Silver	SW-846 6010B			Joanne M Gates	1
06971	Vanadium	SW-846 6010B		7/30/04 0863	Joanne M Gates	discovered to
	= =0 M/ orms = = s	C. 1-0-10 00 10D	= 1	7/30/04 0853	Josnne M Gates	1

Laboratory Chronicle

Page 25 of 42

CAT No.	Anatonia None	Market CO		Analysis	OH 33 1	
06972	Analysis Name Zinc	Method W	ID	Date/Time	Analyst	Dilution
00111	Moisture	SW-848 6010B	-	7/30/04 0853	Joanna M Gates	- 675 - Sec.
04688	TCL SW846 Semivolatiles Soil	EPA 160.3 modified		7/26/04 1749	Scott W Freisher	1
04689	TCL SW848 Semiyolatiles/Soil	SW-846 8270C		7/28/04 0000	Ryan P Byrne	V-2.165
06292		SW-846 8270C		7/28/04 0000	Ryan P Byrne	1
08381	TCL by 8260 (soil) Add'1 Cmpds - OLMO4.2 by 8260B	SW-846 8280B		7/26/04 2155	Lauren C Marzario	1 -
00301	Add I Citipas - OLMOR2 by 82505	SW-846 8260B	-340	7/26/04 2155	Lauren C Marzario	1
431552	9 \$\$B-2 Composite Sall Sample					
00159	Mercury	SW-848 7471A	1	7/28/04 1104	Damary Valentin	1.4
01543	Aluminum	SW-846 6010B	1	8/2/04 2308	Donna R Sackett	1
01650	Calcium	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
01654	tron week and the second	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
01657	Magnesium	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
01662	Potassium	SW-846 60108	1	7/30/04 0905	Joanne M Gates	1
01667	Sodium	SW-846 6010B	1	8/3/04 2201	Donna R Sackett	-1
06925	Thailum	SW-846 6010B	1	7/30/04 0905	Joanna M Gates	. 1
06935	Arsenic Halandesia III	SW-846 6010B	1	8/6/04 1409	Joanne M Gates	to be
06936	Selenium	SW-848 6010B	1	7/30/04 0905	Joanne M Gates	1
08944	Antimony	SW-848 6010B	1	7/30/04 0905	Joanne M Gates	1
06946	Berlum	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
06947	Beryllium	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
06949	Cadmium	SW-848 6010B	1	7/30/04 0905	Joanna M Gates	1.0001
08951	Chromium	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
06952	Cobalt	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	1
08953	Copper	SW-848 6010B	1	7/30/04 0905	Joanne M Gates	1
06955	Lead	SW-846 6010B	1	8/5/04 1239	Joanne M Gates	1
06958	Manganese	SW-846 6010B	1	7/30/04 0906	Joanne M Gates	1
06961	Nickel	SW-846 6010B		7/30/04 0905	Joanne M Gates	1
08968	Silver	SW-846 6010B		7/30/04 0905	Joanne M Gates	
08971	Venadium	SW-846 6010B		7/30/04 0905	Joanne M Gates	1
06972	Zinc	SW-846 6010B	1	7/30/04 0905	Joanne M Gates	issuer the Thor
00111	Moisture	EPA 160.3 modified		7/26/04 1749	Scott W Freisher	Le Reserve 1 pt
04688	TCL SW848 Semivolatiles Soil	SW-846 8270C		7/28/04 0100	Ryan P Byrne	(40) 1,00
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	-	7/28/04 0100	Ryan P Byrne	. 1
06292	TCL by 8260 (soil)	SW-846 8260B	1.000	7/26/04 2219	Lauren C Marzario	south 1
06381	Add'i Cmpds - OLM04.2 by 8260B	SW-846 8260B	1	7/26/04 2219	Lauren C Marzario	traction to the
4315530	888-3 Composite Soil Sample			0.00		
00159	Mercury	SW-848 7471A	1	7/28/04 1108	Damary Valentin	1
01643	Aluminum	SW-846 6010B		8/2/04 2312	Donna R Sackett	1
01650	Calcium	SW-848 6010B	1	8/5/04 1247	Joanne M Gates	5
01654	tron	SW-846 6010B		7/30/04 0909	Joanne M Gates	1
01857	Magnesium	SW-846 6010B	-	7/30/04 0909	Joanne M Gates	0.000
01662	Potessium	SW-846 6010B		7/30/04 0909	Joanna M Gates	
01667	Sodium	SW-846 6010B		8/3/04 2205	Donna R Sackett	1
06925	Thailium	SW-846 6010B		7/30/04 0909	Joanne M Gates	i
06935	Arsenic	SW-846 6010B		8/8/04 1412	Joanne M Gates	1
06936	Selenium	SW-846 6010B		7/30/04 0909	Joanne M Gates	
06944	Antimony	SW-846 6010B		7/30/04 0909	Joanne M Gates	1
08946	Barlum	SW-846 6010B		7/30/04 0909	Joanne M Gates	10
06947	Beryllium	SW-846 6010B		7/30/04 0909	Joanne M Gates	Marie Dall
06949	Cadmium	SW-846 6010B		7/30/04 0909	Joanne M Gates	

Laboratory Chronicle

Page 26 of 42

CAT			Trial	Analysis		
No.	Analysis Name	Method	ID.	Data/Time	Analyst	Dilution
08951	Chromium	SW-846 6010B	1		Joanne M Gates	Ollution 1
08952	Cobalt	SW-846 6010B		7/30/04 0909	Joanna M Gates	and the state of
06953	Copper	SW-846 6010B	1		Joanne M Gates	200
08955	Lead	SW-846 6010B	1		Joanne M Gates	1
06958	Manganese	SW-846 6010B	1		Joanne M Gates	1
06961	Nickel	SW-846 5010B	1		Journe M Gates	
06966	Silver	SW-848 6010B	i		Joanne M Gales	1
06971	Vanadium	SW-846 6010B	-	7/30/04 0909	Joanne M Gates	
06972	Zinc	SW-846 6010B	1		Joanna M Gales	1
00111	Moisture	EPA 160.3 modified	-	7/28/04 1748	Scott W Freisher	40.00
04888	TCL SW846 Semivolatiles Soil	SW-846 8270C		7/28/04 0200	Ryan P Byrns	Terror ()
04689	TCL SW846 Semiyolatiles/Soli	SW-848 8270C		7/28/04 0200	Ryan P Byrne	
06292	TCL by 8260 (soil)	SW-848 8260B		7/27/04 1502	Roy R Mellott	1
06381	Add'I Cmpds - OLM04.2 by 82608	SW-848 8280B		7/27/04 1502	Roy R Melicit	•
	ARE PRAIDER IN		19	7727104 1302	KON K INGROTE	- 1
431551	1 SSB-4 Composite Soil Sample					
00159	Mercury	SW-846 7471A	1	7/28/04 1107	Damary Valentin	Lacry Are
01643	Aluminum	SW-846 6010B		8/2/04 2317	Donna R Sackett	Indicate
01650	Calcium	SW-846 6010B		7/30/04 0913	Joanne M Gates	
01654	iron	SW-846 6010B	-	7/30/04 0913	Joanne M Gates	
01657	Magnesium	SW-846 6010B		7/30/04 0913	Joanna M Gates	1
01662	Potaeskum	SW-846 6010B		7/30/04 0913	Joanna M Gates	1
01687	Sodium	SW-846 6010B		8/3/04 2209		•
06925	Thalllum	SW-846 6010B		7/30/04 0913	Donna R Sackett Joanne M Gates	1
06935	Areanic	SW-846 6010B	-	8/8/04 1421	Joanna M Gates	L I A
06936	Selenium	SW-848 6010B	-VIOLET	7/30/04 0913	Joanne M Gates	1 1
06944	Antimony	SW-846 6010B		7/30/04 0913		1
06946	Bartum	SW-846 6010B		7/30/04 0913	Joanne M Gates Joanne M Gates	1
06947	Beryllium	SW-846 6010B		7/30/04 0913	Joanne M Gates	1
06949	Cadmium	SW-846 6010B		7/30/04 0913		35.1
06951	Chromium	SW-846 6010B		7/30/04 0913	Joanne M Gates	1
06952	Cobalt	SW-846 8010B	117611170	7/30/04 0913	Joanne M Gates	1
08953	Copper	SW-846 6010B		7/30/04 0913	Joanne M Gates	1
06955	Lead "	SW-846 6010B		8/5/04 1251	Joanne M Gates	1
06958	Manganese	SW-848 6010B	10.00	7/30/04 0913	Joanne M Gates	1 1
08981	Nickel	SW-846 6010B		7/30/04 0913	Joanne M Gates	1
08966	Silver	SW-848 6010B		7/30/04 0913	Joanne M Gates	1
06971	Vanadium	SW-848 6010B		7/30/04 0913	Joanne M Gates	1
08972	Zinc	SW-848 6010B			Joanne M Gates	1
00111	Moisture	EPA 160.3 modified	307	7/30/04 0913	Josnne M Gates	1
04688	TCL SW846 Semivolatiles Soll	SW-848 8270C		7/28/04 1749	Scott W Freisher	1
04889	TCL SW846 Semivolatiles/Soil	SW-848 8270C		7/28/04 0356	Ryan P Byrne	1
08292	TCL by 8260 (soil)	SW-848 8280B		7/28/04 0356	Ryan P Byrne	1
06381	Add'i Cmpds - OLM04.2 by 8280B	SW-846 8260B		7/26/04 2244	Lauren C Marzario	1
••••		311-010 02000	= 1	7/26/04 2244	Lauren C Marzario	1
431553	2 888-6 Composite Soil Sample					
00159	Mercury	SW-846 7471A	-	7/10/M4 44 5F	Dames - 14-1 "	
01643	Aluminum	SW-846 6010B		7/28/04 1109	Damary Valentin	
01650	Calcium	SW-846 6010B		8/2/04 2321	Donna R Sackett	1
01654	Iron	SW-846 6010B		7/30/04 0917	Joanne M Gates	1
01657	Magnesium	SW-846 6010B		7/30/04 0917	Joanne M Gates	1
01562	Potassium	SW-846 6010B		7/30/04 0917	Joanne M Gates	1
		-11010 WIDD	1	7/30/04 0917	Joanne M Gates	1

Laboratory Chronicle

Page 27 of 42

No. Analysis Name Method ID Date/Tim	
01667 Sodium SW-546 6010B 1 8/3/04 22	13 Donna R Sackett 1
08925 Thaillium SW-846 6010B 1 7/30/04 0	917 Joanne M Gates 1
08935 Amenic SW-848 6010B 1 8/8/04 14	
08938 Selenium SW-848 6010B 1 7/30/04 0	917 Joanne M Gates 1
08944 Antimony SW-846 6010B 1 7/30/04 Q	917 Joanne M Gates 1
08946 Barium SW-846 6010B 1 7/30/04 0	917 Joanne M Gates 1
06947 Beryllium SW-848 6010B 1 7/30/04 0	
08949 Cadmium SW-848 6010B 1 7/30/04 0	917 Joanne M Gates 1
08951 Chromium SW-846 6010B 1 7/30/04 0	917 Joanne M Gates 1
08952 Cobalt SW-848 6010B 1 7/30/04 0	
08953 Copper SW-848 6010B 1 7/30/04 0	
08955 Lead SW-846 6010B 1 8/5/04 12/	
08958 Manganese SW-848 6010B 1 7/30/04 00	
06961 Nickel SW-846 6010B 1 7/30/04 0	
06966 Silver SW-848 6010B 1 7/30/04 0	917 Joanne M Gates 1
08971 Vanadium SW-848 6010B 1 7/30/04 01	
06972 Zinc SW-846 6010B 1 7/30/04 0	
00111 Moleture EPA 160.3 modified 1 7/26/04 17	
04888 TCL SW846 Semivotatiles Soil SW-846 8270C 1 7/28/04 04	
04889 TCL SW846 Semivotatilee/Soil SW-848 8270C 1 7/28/04 04	
06292 TCL by 8260 (soil) SW-846 8260B 1 7/26/04 2:	
06381 Add1 Cmpds - OLM04.2 by 8260B SW-846 8260B 1 7/28/04 23	308 Lauren C Marzario 1
4315833 888-6 Composite Soil Sample	
00159 Mercury SW-846 7471A 1 7/28/04 11	10 Damery Valentin 1
01643 Aluminum SW-846 6010B 1 8/2/04 232	
01850 Caldium SW-848 8010B 1 8/3/04 222	
01854 Iron SW-848 6010B 1 7/30/04 05	
01657 Magnesium SW-846 6010B 1 7/30/04 05	21 Joanne M Gates 1
01682 Potassium SW-846 6010B 1 7/30/04 06	21 Joanne M Gates 1
01687 Sodium SW-846 6010B 1 8/3/04 221	7 Donna R Sackett 1
06925 Theilium SW-848 60108 1 7/30/04 09	21 Joanna M Gates 1
08935 Arsenic SW-848 6010B 1 6/6/04 142	7 Joanne M Gates 1
08936 Selenium SW-848 60108 1 7/30/04 08	
08944 Antimorry SW-848 6010B 1 7/30/04 0s	
06948 Bartum SW-846 6010B 1 7/30/04 06	
08947 Beryllum SW-846 6010B 1 7/30/04 06	
08949 Cadmium SW-848 6010B 1 7/30/04 06	21 Joanne M Gates 1
08951 Chromium SW-846 6010B 1 7/30/04 09	21 Joanne M Gates 1
06952 Cobaft SW-846 6010B 1 7/30/04 09	
06953 Copper SW-846 6010B 1 7/30/04 08	
08955 Lead SW-846 6010B 1 8/5/04 128	
06958 Manganese SW-846 6010B 1 7/30/04 09	
06961 Nickel SW-846 60108 1 7/30/04 09	
06966 Silver SW-846 6010B 1 7/30/04 09	
06971 Vanadium SW-846 6010B 1 7/30/04 09	
06972 Zinc SW-848 6010B 1 7/30/04 00	
00111 Meisture EPA 160.3 modified 1 7/26/04 17	
04888 TCL SW848 Semivolatiles Soil SW-848 8270C 1 7/26/04 05	The second state of the second
04689 TCL SW846 Semivolatiles/Soli SW4848 8270C 1 7/28/04 05	
06292 TCL by 5260 (soli) SW-846 8260B 1 7/26/04 23	
06381 Add'l Cmpds - OLM04.2 by 8260B SW-846 8260B 1 7/28/04 23	

Laboratory Chronicle

Page 28 of 42

CAT No.	Analysis Name	tilethod	Trial ID	Analysis Date/Time	Analyst	Dilution	
431581	4 888-7 Composite Soil Sample				•		
00159	Mercury	SW-848 7471A		7/28/04 1112	Damary Valentin	1	
01643	Atuminum	SW-846 6010B		8/2/04 2329	Donna R Sacketi	•	
01850	Calcium	SW-846 6010B			Joanne M Gates	1	
01654	iron	SW-846 6010B			Joanne M Gates	1	
01657	Magnestum	SW-846 6010B		7/30/04 0925		1	
01662	Potassium	SW-846 6010B	1		Joanne M Gates Joanne M Gates	1	
01687	Sodium	SW-846 6010B	1	8/3/04 2225	Donna R Sackett	1 1	
06925	Thalium	SW-848 6010B	i	7/30/04 0925	Johnne M Gafas	1	
08935	Arsenic	SW-846 6010B		8/8/04 1430			
06936	Selenium	SW-846 6010B	1	7/30/04 0925	Joanna M Gates Joanne M Gates	1	
06944	Antimony	SW-846 6010B			Joanne M Gates	1	
08948	Barium	SW-848 6010B	1		Joanne M Gates	1	
06947	Beryllum	SW-846 6010B		7/30/04 0925	Joanna M Gates	1	
06949	Cadmium	SW-846 6010B		7/30/04 0925	Joanne M Gates	1	
06951	Chromium	SW-848 6010B	1			1	
08952	Cobalt	SW-846 6010B			Joanne M Gates Joanne M Gates	1	
08963	Copper	SW-846 6010B	-	7/30/04 0925		1	
08955	Lead	SW-848 6010B	1	8/5/04 1303	Joanne M Gates	100	
08958	Manganese	SW-846 6010B		7/30/04 0925	Joanne M Gates	1	
08961	Nickai	SW-846 6010B			Joanne M Gates	1	
08966	Silver	SW-848 6010B	1	7/30/04 0925 7/30/04 0925	Joanne M Gates	1	
08971	Vanadium	SW-846 6010B			Joanne M Gates	1.	
06972	Zinc	SW-846 6010B	1	7/30/04 0925 7/30/04 0925	Joanne M Gates	1	
00111	Moisture	EPA 160.3 modified			Joanne M Gates	1	
04688	TCL SW846 Semivolatiles Scil	SW-846 8270C		7/26/04 1749	Scott W Freisher	1	
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C		7/28/04 1004	Chad A Moline	1	
08292	TCL by 8260 (soil)	SW-846 8280B		7/28/04 1004	Chad A Moline	1 2	
06381	Add1 Cmpds - OLMO4.2 by 8260B	SW-846 8280B	-	7/27/04 1147	Roy R Mellett	1	
00001	Audi Chipus - Ocino 2 by 62665	347-0-10 82005	'	7/27/04 1147	Roy R Mailott	1	0
	5 88B-8 Composite Soli Sample						
00159	Mercury	SW-846 7471A	1	7/28/04 1116	Demary Valentin	1	
01843	Aluminum	SW-846 6010B	1	8/2/04 2334	Donna R Sackett	1	
01660	Celcium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	= 100 1	
01654	iron	SW-848 6010B	- 1	7/30/04 0929	Joanne M Gates	1	
01657	Magnesium	SVV-846 6010B	1	7/30/04 0929	Joanna M Gatas	1	
01662	Poizesium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	and the last 1 of	
01667	Sodium	5W-846 6010B	1	8/3/04 2229	Donna R Sackett	1	
06925	Thallum	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	1	
06935	Arsenic	SW-846 6010B	nger 1	8/6/04 1433	Joanne M Gates	1 -	
06938	Selenium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	10075.1	
08944	Antimony	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	_onc = 1 ik	
06946	Barlum	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	19 to 1 to 1	
06947	Beryllium	SW-846 6010B	-1	7/30/04 0929	Joanne M Gates	- 110	
06946	Cadmium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	1	
06951	Chromium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	1 -	
06952	Cobalt	SW-646 6010B	1	7/30/04 0929	Joanne M Gates	1	
06953	Copper	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	man.	
06955	Lead	SW-846 6010B	1	8/5/04 1307	Joanne M Getes	1	
00058	Manganese	SW-846 6010B	1	7/30/04 0929	Joanne M Getes	1	
06961	Nickel	SW-846 6010B	-1	7/30/04 0929	Joanne M Gates	Finite 1 =	

Laboratory Chronicle

Page 29 of 42

CAT			Trial	Analysis		
No.	Analysis Name	Method	ID	Date/Time	Analysi	Dilution
06968	Silver	SW-846 6010B	1		Joanne M Gates	1
06971	Vanadium	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	
06972	Zinc	SW-846 6010B	1	7/30/04 0929	Joanne M Gates	
00111	Moisture	EPA 160.3 modified	1	7/26/04 1749	Scott W Freinher	
04688	TCL SW846 Semivolatiles Soil	SW-848 8270C		7/28/04 1104	Ched A Moltre	
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	7/28/04 1104	Chad A Moline	
06292	TCL by 8260 (soil)	SW-846 8260B		7/27/04 1211	Roy R Mellett	1.01
06381	Add'I Cmpds - OLM04.2 by 8260B	SW-848 8260B		7/27/04 1211	Roy R Mellott	1.01
431883	8 SSB-0 Composite Soll Sample					
00159	Mercury	SW-846 7471A	4	7/28/04 1117	Damsry Valentin	DOMES IN
01643	Akıminum	SW-848 6010B	- V2	8/2/04 2338	Donna R Sacketi	
01650	Calcium	SW-848 6010B	L I I I	7/30/04 0933	Joanne M Gates	25, 3
01654	tron	SW-846 6010B		7/30/04 0933	Joanne M Gates	
01657	Magnesium	SW-848 6010B		7/30/04 0933	Joanne M Gates	17.4
01882	Potassium	SW-846 8010B	100	1. 2000 000000	Joanne M Gates	- 1000 m
01667	Sodium	SW-846 6010B	i	8/3/04 2241	Donna R Sackett	
06925	Thallium	SW-846 6010B	1	7/30/04 0933	Joanne M Galas	Telephone in
08935	Arsenic	SW-646 6010B	Ri	8/8/04 1438	Joanne M Gates	1
06936	Salenium	SW-848 6010B	. 20	7/30/04 0933	Joanne M Gates	- 1
06944	Antimony	SW-846 6010B		7/30/04 0933	Joanne M Gates	
06948	Barlum	SW-646 6010B			Joanne M Gates	1
06947	Beryllium	SW-848 6010B		7/30/04 0933	Joanne M Gates	
06949	Cadmium	SW-846 6010B		7/30/04 0933	Joanne M Gates	1
06951	Chromium	SW-848 6010B	i	7/30/04 0933	Joanne M Gates	1
08952	Cobalt	SW-846 6010B		7/30/04 0933	Joanne M Gates	1
06953	Copper	SW-846 6010B	-	7/30/04 0933	Joanne M Gates	· · · · · · ·
06955	Lead	SW-846 6010B	1	8/5/04 1311	Joanne M Gates	
06958	Manganese	SW-846 6010B		7/30/04 0933	Joanne M Gates	1
06961	Nickei	SW-846 6010B	_	7/30/04 0933	Joanne M Gates	
06966	Silver	SW-846 6010B		7/30/04 0933	Joanne M Gales	- i
06971	Vanadium	SW-846 6010B		7/30/04 0933	Joanne M Gates	-1 - 10 11 11 -
06972	Zinc	SW-846 6010B		7/30/04 0933	Joanne M Gates	
00111	Moisture	EPA 160.3 modified		7/26/04 1749	Scott W Freisher	1 1 1 1 1 1 1
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C		7/28/04 1204	Chad A Moline	
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C		7/28/04 1204	Chad A Moline	90 92
06292	TCL by 8260 (soil)	SW-846 8260B		7/27/04 1238	Roy R Mellott	0.99
06381	Add1 Cmpds - OLMD4.2 by 82888	SW-846 8260B		7/27/04 1238	Roy R Mellott	0.00
4315537	SB-P-(0-2) Grab Soil Sample					
00159	Mercury	SW-846 7471A	165	7/28/04 1118	Damary Valentin	
01643	Aluminum	SW-846 6010B		8/2/04 2343	Donna R Sackett	11
01860	Calcium	SW-846 6010B	•	7/30/04 0938	Joanne M Gates	THE LET 1
01654	tron	SW-846 6010B		7/30/04 0938	Joanne M Gates	ILLESSEE TRO
01857	Magnesium	SW-846 6010B	•	7/30/04 0938	Joanne M Gates	, and Carrier
01582	Potassium	SW-846 6010B		7/30/04 0938	Joanne M Gates	HETE S
01667	Sodium	SW-646 6010B		8/3/04 2245	Donna R Sackett	-
06925	Thalilum	SW-846 6010B		7/30/04 0938	Joanne M Gates	Ter 10 E
08935	Arsenic Article Articl	SW-846 6010B	•	8/8/04 1439	Joanne M Gates	1
06938	Selenium	SW-846 6010B		7/30/04 0938	Joanne M Gates	
08844	Antimony	SW-846 6010B		7/30/04 0938	Joanne M Gates	
08948	Barlum	SW-848 6010B		7/30/04 0938	Joanne M Gates	1 2
		- · ·	•		ことは は 日本 日本	7

Laboratory Chronicle

Page 30 of 42

CAT			Trial	Analysis		
No.	Analysis Name	Method	ID	Date/Time	Analysi	Diluition
06947	Beryllium	SW-846 6010B	- 3	7/30/04 0938	Joanne M Gates	1
08949	Cadmium	SW-846 6010B		7/30/04 0938	Joanne M Gates	
06951	Chromium	SW-848 8010B			Joanne M Gates	
06952	Cobalt	SW-846 6010B		7/30/04 0938	Journa M Gates	America III
06953	Copper	SW-846 6010B		7/30/04 0938	Joanne M Gates	100 000
06958	Lead	SW-846 6010B	1		Joanna M Gates	
06958	Manganese	SW-848 6010B	•	7/30/04 0938	Joanne M Gates	
06961	Niciosi	SW-846 6010B		7/30/04 0938	Joanne M Gates	96
06966	Silver	SW-846 6010B	1		Joanne M Gates	
06971	Vanadium	SW-846 6010B		7/30/04 0938	Joanna M Gates	11111
06972	Zinc	SW-848 6010B	1		Joanne M Gates	- 125
00111	Moisture	EPA 160.3 modified	•	7/26/04 1749	Scott W Freisher	
04688	TCL SW848 Semivolatiles Soil	SW-848 8270C		7/28/04 1304	Chad A Moline	1013
04889	TCL SW846 Semivolatiles/Soll	SW-848 8270C	1		Chad A Moline	
06292	TCL by 8280 (soil)	SW-846 8260B		7/27/04 1259	Roy R Mellott	1.01
06381	Add'l Cmpds - OLM04.2 by 8260B	SW-846 8260B		7/27/04 1259	Roy R Meliott	1.01
		A Company		7727707 1200	LADA LA MIRRIORI	1.01
431553	8 SB-H-(4-6) Grab Soli Sample					
00159	Mercury	SW-846 7471A	4	7/28/04 1119	Damary Valentin	17.49
01643	Aluminum	SW-846 6010B	1	8/2/04 2356	Donne R Sackett	1
01650	Calcium	SW-846 60108	•		Joanne M Gates	
01654	iron	SW-846 6010B			Joanne M Gates	•
01657	Megnestum	SW-846 6010B	105	7/30/04 0942	Joanne M Gates	1
01882	Potassium	SW-846 6010B	1	7/30/04 0942	Joanne M Gates	1.
01667	Sodium	SW-846 6010B	1	8/3/04 2249	Donna R Sackett	1
06925	Thelikum	SW-846 6010B	•	7/30/04 0942	Joanne M Gates	
06935	Arsenic	SW-946 6010B		8/8/04 1443	Joanne M Gates	1
06936	Selenkum	SW-846 6010B	•	7/30/04 0942	Joanne M Gates	1
06944	Antimony	SW-846 6010B		7/30/04 0942		1
06948	Barlum	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06947	Beryllium	SW-846 6010B		7/30/04 0942	Joanne M Gates	
06949	Cadmium	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06951	Chromium	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06952	Cobalt	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06653	Copper	SW-848 8010B		7/30/04 0942	Joenne M Gates	1
06955	Land	SW-846 6010B		8/5/04 1327	Joanne M Gates	1
06958	Manganese	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06961	Nickel	SW-846 6010B		7/30/04 0942	Joanne M Gates	1
06966	Silver	SW-848 6010B		7/30/04 0942	Joanne M Gates	44 W31
08971	Vanadium	SW-848 6010B		7/30/04 0942	Joanne M Gates	
08972	Zinc	SW-846 6010B		7/30/04 0942	Joanne M Gates	
00111	Molsture	EPA 160.3 modified	•	7/28/04 1749	Joanne M Gates	1
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C	_	7/28/04 1/49	Scott W Freisher	1
04889	TCL SW848 Semivolatiles/Soil	SW-846 8270C	-		Chad A Moline	1
08292	TCL by 8260 (soil)	SW-846 8260B	•	7/28/04 1404	Ched A Moline	-51
08381	Add'l Cmpds - OLMO4.2 by 8280B	SW-846 8260B		7/27/04 1323 7/27/04 1323	Roy R Mellott Roy R Mellott	1100
431883	8 SB-i-(6-8) Greb Soli Sample		100	Page U		
00159	Mercury	SW-846 7471A	11/		_	
D1643	Aluminum	SW-846 6010B		7/28/04 1120	Damary Valentin	1
01850	Calcium	SW-848 6010B		8/3/04 0000	Donna R Sackett	1
01854	Iran	SW-846 6010B		7/30/04 0954	Joanna M Gatea	1
V1004	hAst	047-040 BUTUS	1	7/30/04 0954	Joanne M Gates	31 1 1

Laboratory Chronicle

Page 31 of 42

CAT			Trial	Analysis		
No.	Analysis Name	Method	ID.	Date/Time	Analysi	Dilution
01657	Magnesium	SW-846 6010B	34.6		Joanne M Gates	1
01682	Potassturn	SW-846 6010B	-	7/30/04 0954	Joanne M Gates	-455
01667	Sodium	SW-846 6010B	1		Donna R Sackett	10 10 10
06925	Thallum	SW-848 6010B	100		Joanne M Gates	emili ii
06935	Arsenic	SW-646 6010B	-116		Joanne M Getes	
06938	Selenium	SW-846 6010B	VIII (74		Joanne M Gates	byte e
08844	Antimony	SW-846 6010B	100	7/30/04 0954	Joanna M Gales	
08946	Berturn	SW-848 6010B	#III 1		Joanne M Gates	
06947	Beryllium	SW-846 6010B	Live		Joanna M Gates	Wall A
0694B	Cadmlum	SW-848 6010B		7/30/04 0954	Joanna M Gales	
06951	Chromium	SW-846 6010B		7/30/04 0954	Joanne M Gates	
06952	Cobalt	SW-846 6010B	1		Joanna M Gates	
06953	Copper	SW-848 6010B		7/30/04 0954	Joanna M Gates	
08955	Lead	SW-848 6010B	1 1		Joanne M Gales	
06958	Manganese .	SW-846 6010B	1		Joanne M Gales	arvilli 🖴
06961	Nickel	SW-848 6010B		7/30/04 0954	Joanne M Gates	THOUGH.
06986	Silver	SW-848 8010B			Joanna M Gates	i
06971	Vanadium	SW-846 6010B		7/30/04 0954	Joanne M Gates	
06972	Zinc	SW-848 6010B	1	7/30/04 0954	Joanne M Gates	i
00111	Moisture	EPA 180.3 modified	1	7/26/04 1749	Scott W Freisher	Variation III
04888	TCL SW846 Semivolatiles Scil	SW-846 8270C	1	7/28/04 1507	Chad A Moline	
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	7/28/04 1507	Chad A Moline	i
06292	TCL by 8260 (soil)	SW-846 8260B		7/27/04 1348	Roy R Mellott	0.99
06381	Add'i Cmpds - OLM04.2 by 8260B	SW-846 5260B		7/27/04 1348	Roy R Mellott	0.99
434 8841	8B-G-(0-2) Grab Soil Sample					
00159	Mercury	SW-848 7471A			<u> </u>	
01643	Aluminum	SW-848 6010B		7/28/04 1121	Damary Valentin	1/16
01650	Celcium	SW-846 6010B		8/2/04 2225	Donna R Sackett	141
01854	Iron	SW-848 6010B		7/30/04 0825	Joanne M Gates	194 March
01657	Magnesium	SV-846 6010B		7/30/04 0825	Joanne M Gates	1 -
01882	Potessium	SW-846 6010B		7/30/04 0825	Joanne M Gates	1
01867	Sodium	SW-846 8010B		7/30/04 0825	Joanne M Gates	1 .
06925	Thaillum	SW-848 6010B		8/3/04 2117	Donna R Sackett	5.1 %
06935	Araenic	SW-846 6010B	- 17	7/30/04 0825	Joanne M Gates	1 1
06936	Salentum	SW-848 80108		8/8/04 1347	Joanne M Gates	none 1 35
06944	Antimorry	SW-848 6010B		7/30/04 0825	Joanne M Gates	Context 1
08946	Bartum	SW-846 6010B		7/30/04 0826	Joanne M Gates	1
06947	Bervillum		Last transfer	7/30/04 0825	Joanne M Gates	1
06949	Cadmium	SW-846 6010B SW-846 6010B		7/30/04 0825	Joanne M Gates	a many 1 ry
06951	Chromium	SW-848 8010B		7/30/04 0825	Joanne M Gates	1
06952	Cobalt	SW-846 6010B	the state of the s	7/30/04 0825	Joanne M Gates	1
06953	Copper	SW-846 6010B		7/30/04 0825	Joanne M Gates	1
08955	Lead	SW-846 6010B		7/30/04 0825	Joanne M Gates	WALLET 1
06958	Manganese		17,000	8/5/04 1159	Joanne M Gates	1
08961	Nickel	SW-846 6010B SW-646 6010B		7/30/04 0825	Joanne M Gates	1
06968	Silver		•	7/30/04 0825	Joanne M Gates	1
08971	Vanadium	SW-846 6010B SW-846 6010B	-	7/30/04 0825	Joanne M Gales	1
08972	Zinc	SW-846 6010B		7/30/04 0825	Joanne M Getes	2000
00111	Moisture	EPA 160.3 modified		7/30/04 0825	Joanne M Getes	1
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C	-	7/26/04 1749	Scott W Freisher	1
04689	TCL SW846 Samiyolatiles/Soil	SW-846 8270C		7/28/04 1607	Ched A Moline	E 1
31000	. US OTTOTO GOT IN PUBLICACION	01 1*010 04/U U	1	7/28/04 1607	Chad A Moline	1

Laboratory Chronicle

Page 32 of 42

CAT			Trial	Analysis		
No.	Analysis Name	Method		Data/Time	Analysi	Dilution
06292	TCL by 8260 (soil)	SW-846 8260B		7/27/04 1414	Roy R Mellott	1
06381	Add1 Cmpda - OLM04.2 by 8260B	SW-846 8260B		7/27/04 1414	Roy R Mellott	- 241
4315541	RS-3 Grab Water Sample					
00259	Mercury	8W-848 7470A	1	7/26/04 0955	Damary Valentin	1
04678	TCL SW848 Semivolatiles/Waters	SW-846 8270C		7/27/04 0324	Joiene M Graham	i
04879	TCL \$W848 Semivolatiles/Waters	SW-846 8270C	1	7/27/04 0324	Jolane M Graham	Maria ett
06291	TCL by 8260 (water)	SW-846 8260B		7/24/04 1811	Anita M Dale	2001-11
06380	Add'I Cmpda - OLM04.2 by 8260B	SW-846 62608		7/24/04 1811	Anita M Dale	i
4315542	PB-3 Grab Water Sample					
00259	Mercury	SW-848 7470A	1	7/26/04 0956	Damary Valentin	2 /2 111
04878	TCL SW846 Semivolatiles/Waters	SW-848 8270C	1	7/27/04 0417	Joiene M Graham	u 1
04879	TCL SW846 Semivolatiles/Waters	SW-846 8270C	0.00	7/27/04 0417	Jolene M Graham	n = 5
06291	TCL by 8260 (water)	SW-846 8260B	1	7/24/04 1835	Anita M Dale	1
06380	Add'i Cmpds - OLM04.2 by 8260B	SW-846 8260B	1	7/24/04 1835	Anita M Dale	i
4315542	TB-2 Water Sample					
06291	TCL by 8260 (water)	SW-846 6260B	-0.0	7/24/04 1858	Anita M Date	=1 OFT
06360	Add'i Cmpds - OLM04.2 by 82608	SW-846 8260B	1	7/24/04 1858	Anita M Dale	= i
	8W-1 Composite Soil Sample					
D0159	Mercury	SW-848 7471A	1	7/28/04 1132	Damary Valentin	1
01643	Aluminum	SW-846 6010B	1	8/3/04 0005	Donna R Sackett	<u>i</u>
01650	Calcium	SW-846 6010B	1	7/30/04 0958	Joanne M Gates	<u>i</u>
01654	Iron	SW-846 6010B	1	7/30/04 0958	Joanne M Gates	nicht - 10
01657	Magnesium	SW-848 8010B	1	7/30/04 0958	Joanne M Gates	1
01662	Potasaium	SW-845 6010B	1	7/30/04 0958	Joanne M Gates	1
01667	Sodium	SW-846 5010B	1	8/3/04 2257	Donna R Sackett	1
08925	Thalitum	SW-848 8010B		7/30/04 0958	Joanne M Gates	1
06935	Arsenic	SW-846 6010B	1	8/8/04 1449	Joanne M Gates	1
06936	Selenium	SW-848 6010B	1	7/30/04 0958	Joanne M Gates	1
06944	Antimony	SW-848 6010B	1	7/30/04 0958	Joanne M Gates	1
08948	Berlum	SW-646 6010B	1 107	7/30/04 0958	Joanne M Gates	1
08947	Beryllium	SW-846 6010B		7/30/04 0968	Joanne M Gates	1
08949	Cadmium	SW-848 6010B	- 1		Joanne M Gates	1
08951	Chromium	SW-848 6010B	-	7/30/04 0958	Joanne M Gates	1
06952	Cobatt	SW-848 6010B	_1	7/30/04 0958	Joanne M Gates	1
06953	Copper	SW-846 6010B	certify m C	7/30/04 0958	Joanne M Gates	1
06955	Lead	SW-846 6010B	1	8/5/04 1335	Joanne M Gates	. 1
06958	Manganese	SW-846 6010B	1	7/30/04 0958	Joenne M Gates	1
06961	Nickei	SW-846 6010B		7/30/04 0958	Joenne M Gates	1
06966	Silver	SW-846 6010B	1	7/30/04 0958	Joanne M Gates	1
06971	Vanadium	SW-846 6010B	1	7/30/04 0958	Joanne M Gates	1
06972	Zinc	SW-848 6010B	7- 0.001		Joanne M Gates	1
00111	Moisture	EPA 160.3 modified	1	7/26/04 1749	Scott W Freisher	1
04888	TCL SW846 Semivolatiles Soil	SW-848 8270C	•	7/28/04 1707	Chad A Moline	1
04689	TCL SW846 Samivolatiles/Soil	SW-848 8270C	•	7/28/04 1707	Chad A Moline	1
04689 08292	TCL SW846 Sem/volatiles/Soil	SW-846 8270C	1		Ryan P Byrne	2
08292	TCL by 8260 (soil)	SW-846 8260B	•	7/27/04 1438	Roy R Mellott	0.99
00301	Add'i Cmpds - OLM04.2 by 8260B	SW-846 8260B	1	7/27/04 1438	Roy R Meliott	0.99

Comments

Page 33 of 42

4315524 MW-1-(2-4) Grab Soil Sample

00111

Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04868

4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689

N-Nitrosodiphenylamine

N-ntrosodiphenylemine decomposes in the GC inlet forming diphenylemine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04889

TCL SW848 Semivolatiles/Soil

The recovery for disthylphthalate was above QC limits in the LCS associated with this sample. Since disthylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315525 MW-1-(18-20) Grab Soil Sample

00111

Molsture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688

4-Methylphenol

3-Mathyphenol and 4-methyphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methyphenol represents the combined total of both compounds.

04669

N-Nitrosodiphenylamine

N-nitrosodiphenytamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689

TCL SW848 Semivolatiles/Soil

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

4315526 MW-3-(4-5) Grab Soil Sample

00111

Moisture

Comments

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Ceisius. The moisture result reported above is on an as-received basis.

04688 4-Methylphenoi

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689 N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689 TCL SW848 Semivolatiles/Soil

The recovery for deflyiphthalate was above QC limits in the LCS associated with this sample. Since disthylphthalate was not detected in this sample, no further action was taken.

4315527 MW-3-(18-20) Grab Soil Bample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04588 4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689 N-Nitrosodiphenylamine

N-nitrosodiphorrylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689 TCL SW846 Semivolatiles/Soil

The recovery for diathylphthelate was above QC limits in the LCS associated with this sample. Since diathylphthelate was not detected in this sample, no further action was taken.

4315528 SSB-1 Composite Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Ceisius. The moisture result reported above is on an as-received basis,

04688 4-Methytphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

Comments

Page 35 of 42

04689

N-Nitrosodiphenylamine

N-nitrocodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrocodiphenylamine represents the combined total of both compounds.

04689

TCL SW846 Semivolatiles/Soil

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315529 \$815-2 Composite Soil Sample

00111

Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 dagrees Celsius. The moisture result reported above is on an as-received basis.

04688

4-Methylphanol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689

N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04889

TCL SW846 Semivolatiles/Soll

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

arari was aston.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315530 SSB-3 Composite Soil Sample

00111

Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celatus. The moisture result reported above is on an as-received basis.

04688

4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04889

N-Nitrosodiphenylamine

Comments

N-nitresodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04889 TCL SW848 Semivolatiles/Soil

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315531 SSB-4 Composite Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688 4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689 N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689 TCL SW846 Semivolatiles/Soil

The recovery for distinyiphthalats was above QC limits in the LCS associated with this sample. Since distinyiphthalats was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315532 88B-5 Composite Soll Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04888 4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689 N-Nitrosodiphenvlamine

Comments

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04889 TCL SW846 Semivolatiles/Sati

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4316633 SSB-6 Composite Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688 4-Methylphenol

3-Methylphenol and 4-methylphenol carnot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04889 N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC iniet forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689 TCL SW848 Semivolatiles/Soil

The recovery for disthylphthalate was above QC limits in the LCS associated with this sample. Since disthylphthalate was not detacted in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315534 88B-7 Composite Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688 4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689 N-Nitrosodiphenviamine

Comments ...

N-nitrosodiphenylamine decomposes in the GC inist forming diphenylamine. N-nitroscapmenyamine decomposes in the low man low man agreement and agreement agreement and agreement agreement and agreement agreement and agreement and agreement agreement agreement agreement agreement agreement and agreement agree

04689 TCL SW846 Semivolatiles/Soil

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since distinyiphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained. normal reporting limits could not be obtained.

4315535 SSS-6 Composite Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 108 degrees Celsius. The moisture result reported above is on an as-received basis.

04688

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

N-Nitrosodiphenylamine 04689

N-nitrosodiphenytamine decomposes in the GC inlet forming diphenytamine.

The result reported for N-nitrosodiphenytamine represents the combined total of both compounds.

04689 TCL SW848 Semivolatiles/Soil

The recovery for distrylphthalate was above QC limits in the LCS associated with this sample. Since distrylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315538 88B-9 Composite Scil Sample

00111

04888

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an reported to the second as-received basis.

4-Methylphenol

3-Mathylphenol and 4-mathylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

CARRO N-Nitrosodiphenylamine

Comments

Page 39 of 42

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenytamine represents the combined total of both compounds.

04880

TCL SW848 Semivolatiles/Soil

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4315537 SB-P-(0-2) Grab Soll Sample

00111

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688

4-Mathylphanol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04889

N-Nitrosodiphenylamine

N-nitroscalphenytamine decomposes in the GC inlet forming diphenytamine.

The result reported for N-nitroscaliphenytamine represents the combined total of both compounds. total of both compounds.

04689

TCL SW846 Semivolatiles/Soil

The recovery for distriy/phthalate was above QC limits in the LCS associated with this sample. Since distriy/phthalate was not detected in this sample, no further action was taken. action was taken.

4315538 SB-H-(4-6) Grab Sqil Sample

00111

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688

4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be reached under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689

N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689

TCL SW848 Semivolatiles/Soil

Comments

The recovery for diethylphthalats was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

4316639 SB-I-(6-8) Grab Soli Sample

00111 Moi

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688 4-Methylphenol

3-Mathylphenol and 4-mathylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04889 N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamins. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04889 TCL SW646 Semivolatiles/Soll

The recovery for diethylphthalate was above QC limits in the LCS associated with this sample. Since diethylphthalate was not detected in this sample, no further action was taken.

4315540 SB-G-(0-2) Grab Soil Sample

00111 Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04888 4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04669 N-Nitrosodiphenylamine

N-nitrocodiphenylamine decomposes in the GC inlet forming diphenylamine.

The result reported for N-nitrocodiphenylamine represents the combined total of both compounds.

04689 TCL SW846 Semivolatiles/Soil

The recovery for distry/phthalate was above QC limits in the LCS associated with this sample. Since distry/phthalate was not detected in this sample, no further action was taken.

Due to sample matrix interferences observed during the extraction, the

Comments

Page 41 of 42

normal reporting limits could not be obtained.

4316541 RB-3 Grab Water Sample

04678

4-Methylphenol

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04879

N-Nitrosodiphemytemine

N-nitrosodiphenylamine decomposes in the GC inist forming diphenylamine.

The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

4315542 FB-3 Grab Water Sample

04878

4-Methylphenal

3-Methylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04879

V-Mitrosodiphenylamine

N-nitrosodiphenytamine decomposes in the GC inlet forming diphenytamine. The result reported for N-nitrosodiphenytamine represents the combined total of both compounds.

4315543 TB-3 Water Sample

4316544 SW-1 Composite Soil Sample

00111

Moisture

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

04688

4-Mathylphenol

3-Metrylphenol and 4-methylphenol cannot be resolved under the chromatographic conditions used for sample analysis. The result reported for 4-methylphenol represents the combined total of both compounds.

04689

N-Nitrosodiphenylamine

N-nitrosodiphenylamine decomposes in the GC inlet forming diphenylamine. The result reported for N-nitrosodiphenylamine represents the combined total of both compounds.

04689

TCL SW846 Semivolatiles/Soli

The recovery for disthylphthalate was above QC limits in the LCS associated with this sample. Since disthylphthalate was not detected in this sample, no further action was taken.

Comments

Page 42 of 42

Due to sample matrix interferences observed during the extraction, the normal reporting limits could not be obtained.

Name of State of

4.11, 15

- A 100 - 10

We then the second second second

Sample Number: SW 4313593

SB-A-(2-4) Grab Soil Sample Enovis Project & E100873 Former Churchville Ford, WY

Enovis, Inc.

Account: 11076

1525 Hampton Hall Drive #16

Collected: 07/19/2004 11:10 by ST Submitted: 07/20/2004 08:50 Reported: 08/11/2004 at 16:44

Chesterfield MO 63017

SB-A2	SDG#: WVS13-01			Dry		
CAT			Dry	Mathod		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Pactor
00159	Mercury	7439-97-6	N.D.	0.0035	mg/kg	1
00111	Moisture	n.a.	8.0	0.50	t	design at the
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.	in weight of to moisture resul	the sample afte it reported abo	r oven drying at ve is on an		
04688	TCL SW846 Semivolatiles Soil					
01185	Phenol	=1				
01185		108-95-2	N.D.	36.	ug/kg	1
	2-Chlorophenol	95-57-8	N.D.	36.	ug/kg	1
01188	N-Nitroso-di-n-propylamine	621-64-7	N.D.	36.	ug/kg	1
01190	4-Chloro-3-methylphenol	59-50-7	N.D.	72.	ug/kg	1
03746	2-Mitrophenol	98-75-5	N.D.	36.	ug/kg	1
03747	2,4-Dimethylphenol	105-67-9	M.D.	36.	ug/kg	1
03748	2,4-Dichlorophenol	120-83-2	W.D.	36.	ug/kg	1
03749	2.4.6-Trichlorophenol	88-06-2	H.D.	36.	ug/kg	1
03753	bis(2-Chloroethyl)ether	111-44-4	W.D.	36.	ug/kg	1
03757	Hexachloroethana	67-72-1	N.D.	36.	ug/kg	1
03758	Nitrobenzene	98-95-3	N.D.	36.	ug/kg	1
03759	I sophorone	78-59-1	N.D.	36.	ug/kg	1
03760	bis (2-Chloroethoxy) methane	111-91-1	N.D.	36.	ug/kg	1
03761	Maphthalene	91-20-3	N.D.	36.	ug/kg	500
03762	Hexachlorobutadiene	87-68-3	N.D.	72.	ug/kg	ī
03763	Hexachlorocyclopentadiene	77-47-4	N.D.	180.	ug/kg	1
03764	2-Chloronaphthalene	91-58-7	N.D.	36.	ug/kg	1
03765	Acenephthylene	208-96-8	N.D.	36.	ug/kg	111
03766	Dimethylphthalate	131-11-3	M.D.	72.	ug/kg	1
04690	2-Methylphenol	95-48-7	N.D.	36.	ug/kg	walle kan
04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	36.	ug/kg	15 9 15
04692	4-Methylphenol	106-44-5	M.D.	72.	ug/kg	1
04693	3-Methylphenol and 4-methylphen chromatographic conditions user for 4-methylphenol represents 4-Chloroaniline	d for sample an	esolved under t	the wareward	ug/kg	
04694	2-Methylnaphthalene	91-57-6	N.D.	36.	ug/kg ug/kg	10.59-14
04695	2,4,5-Trichlorophenol	95-95-4	N.D.	36.		TOP IN THE P
04696	2-Witrosniline	88-74-4	N.D.	36.	ug/kg	47 3
05001	Atrasina	1912-24-9	N.D.	36.	ug/kg	
05002	Caprolactam	105-60-2	N.D.	36.	ug/kg	cos III frac.
05313	Benzaldshyde	100-52-7	N.D.	36.	ug/kg ug/kg	1
04689	TCL SW846 Semivolatiles/Soil					
01191	Acenaphthene	83-32-9	N.D.	36.	san /lea	140
01192	4-Nitrophenol	100-02-7	N.D.	180.	ug/kg ug/kg	1
01193	2,4-Dinitrotoluene	121-14-2	N.D.	72.		
01194	Pentachlorophenol	87-86-5	N.D.	180.	ug/kg	
01195	Pyrene	129-00-0	N.D.	36.	ug/kg ug/kg	1

ReferenceID: 9042761108041641135

03750	2,4-Dinitrophenol	51-28-5	N.D.		720.	ug/kg	1
03751	4,6-Dinitro-2-methylphenol	534-52-1	N.D.		180.	ug/kg	1
03767	2,6-Dinitrotoluene	606-20-2	N.D.		36.	ug/kg	
03768	Pluorene	86-73-7	N.D.		36.	ug/kg	1
03769	4-Chlorophenyl-phenylether	7005-72-3	W.D.		36.		1
03770	Disthylphthalate	84-66-2	N.D.		72.	ug/kg	1
03772	W-Witrosodiphenylamine	86-30-6	W.D.		36.	ug/kg	1
	N-mitrosodiphenvlamine decomp	oses in the GO	inlet f	omina d	4-1	ug/kg	1
	The Leading Leborned for M-Ulf	rosodiphenylami	ne repr	esents t	he combined		
03773	total of both compounds.						
03774	4-Bromophenyl-phenylether Hexachlorobenzene	101-55-3	N.D.		36.	ug/kg	1
03775	Phenanthrene	110-74-1	M.D.		36.	ug/kg	100
03 <i>775</i> 03 776	Anthracene	85-01-8	N.D.		36.	ug/kg	1
03777	Di-n-butylphthalate	120-12-7	N.D.		36.	ug/kg	1
03 <i>777</i> 0 3778		84-74-2	N.D.		72.	ug/kg	1
	Fluoranthene	206-44-0	N.D.		36.	ug/kg	1
03780 03781	Butylbenzylphthalate	85-68-7	N.D.		72.	ug/kg	1
	Benzo (a) anthracene	56-55-3	N.D.		36.	ug/kg	1
3782	Chrysene	218-01-9	N.D.		36.	ug/kg	1
03783	3,3'-Dichlorobensidine	91-94-1	N.D.		72.	ug/kg	1
03784	bis (2-Ethylhaxyl) phthalate	117-81-7	N.D.		110.	ug/kg	1
03785	Di-n-octylphthalate	117-84-0	M.D.		72.	ug/kg	1
03786	Benzo(b) fluoranthene	205-99-2	N.D.		36.	ug/kg	1
03787	Benzo(k) fluoranthene	207-08-9	N.D.		36.	ug/kg	1
03788	Benzo (a) pyrene	50-32-8	N.D.		36.	ug/kg	1
3789	Indeno (1, 2, 3-cd) pyrene	193-39-5	N.D.		36.	ug/kg	1
03790	Dibenz (a, h) anthracene	53-70-3	N.D.		36.	ug/kg	1
3791	Benso(g,h,i)perylene	191-24-2	N.D.		36.	ug/kg	1
04619	Acetophenone	98-86-2	N.D.		72.	ug/kg	ī
34697	3-Nitroaniline	99-09-2	N.D.		72.	ug/kg	- 1-
4698	Dibenzofuran	132-64-9	N.D.		36.	ug/kg	1
47D0	4-Nitroaniline	100-01-6	N.D.		72.	ug/kg	111
4702	Carbazola	86-74-8	M.D.		36.	ug/log	1
7094	1,1'-Biphenyl	92-52-4	N.D.		36.	ug/kg	1
6292	TCL by 8260 (soil)						- 1/7
	No.						
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.		0.5	ug/kg	1
5444	Chloromethane	74-87-3	N.D.		2.	ug/kg	i
5445	Vinyl Chloride	75-01-4	N.D.		1.	ug/kg	1
5446	Bromomethane	74-83-9	N.D.		2.	ug/kg	i
5447	Chloroethane	75-00-3	N.D.		2.5	ug/kg	
5449	1,1-Dichloroethene	75-35-4	N.D.		Maria De Santo	ug/kg	i
5450	Methylene Chloride	75-09-2	3.	3	2 4 100 1	ug/kg	î
5451	trans-1,2-Dichloroethene	156-60-5	N.D.			ug/kg	1
5452	1,1-Dichloroethane	75-34-3	N.D.		1.	ug/kg	1
5454	cis-1,2-Dichloroethene	156-59-2	N.D.		1.	-	
5455	Chloroform	67-66-3	N.D.		1.	ug/kg	1
5457	1,1,1-Trichloroethane	71-55-6	N.D.		1.	ug/kg	1
5458	Carbon Tetrachloride	56-23-5	N.D.			ug/kg	1
5460	Benzene	71-43-2	N.D.		p-10 1.1	ug/kg	1 1
5461	1,2-Dichloroethane	107-06-2			0.5	ug/kg	1
5462	Trichloroethens	79-01-6	M.D. N.D.		1.	ug/kg	1
5463	1,2-Dichloropropane	78-87-5			1.	ug/kg	1
5465	Bromodichloromethene	75-27-4	N.D.		1,	ug/kg	1
5466	Toluene		M.D.		1.	ug/kg	1
5467	1,1,2-Trichloroethane	109-88-3	N.D.		11.11.11.11.11.11.11.11.11.11.11.11.11.	ug/kg	1
5468	Tetrachlorosthene	79-00-5	N.D.		1.	ug/kg	1
5470	Dibromochloromethane	127-16-4	N.D.		11111	ug/kg	1
5472	Chlorobensene	124-48-1	N.D.		ng 1. g	ug/kg	1
33/4	CONTOUR CONTROLLE	108-90-7	N.D.		1.	ug/kg	1

ReferenceID: 9042761108041641I35

E 80 10 10

Samp	le Number: SW 43135.	93				
05474	Ethylbenzene	100-41-4	N.D.	1.	ug/kg	1
05477	Styrene	100-42-5	M.D.	1.	ug/kg	1001
05478	Bronoform	75-25-2	W.D.	1.	ug/kg	1
05480	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1.	ug/kg	100
06293	Acetone	67-64-1	N.D.	8.	ug/kg	1
06294	Carbon Disulfide	75-15-0	M.D.	1.	ug/kg	1
06296	2-Butanone	78-93-3	N.D.	4.	ug/kg	ī
06297	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	nd/kd	1
06298	cis-1,3-Dichloropropens	10061-01-5	M.D.	1.	ug/kg	ī
06299	4-Methyl-2-pentanone	108-10-1	N.D.	3.	ug/kg	1
06300	2-Hexanone	591-78-6	N.D.	3.	ug/kg	1
06301	Xylene (Total)	1330-20-7	N.D.	1.	ug/kg	ī
06381	Add'l Cmpds - OLM04.2 by 8260E	1. A.E.		a une		
02285	Cyclohexane	110-82-7	N.D.	1 II. 10	ug/kg	
05007	Methyl Acetate	79-20-9	N.D.	2.	ug/kg	STATE OF
05008	Methylcyclohexane	109-87-2	N.D.	1.	ug/kg	1
05443	Dichlorodifluoromethane	75-71-8	M.D.	2.	ug/kg	i
05448	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/kg	10.41
05471	1,2-Dibromoethane	106-93-4	N.D.	1.	ug/kg	î
05479	Isopropylbensene	98-62-8	N.D.	1.	ug/kg	i
05491	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/kg	1 -
05492	1,4-Dichlorobenzame	106-46-7	N.D.	1.	ug/kg	1
05494	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/kg	1
05495	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2.	ug/kg	1
05496	1,2,4-Trichlorobensene	120-82-1	N.D.	1.	ug/kg	1
08199	Freon 113	76-13-1	N.D.	2.	ug/kg	i

		Laboratory	Chron	iale		
Mo. 00159	Amalysis Hame Mercury Moisture	Method SW-846 7471A WPA 160.3 modified	Triel#	Analysis Date and Time 07/26/2004 10:37 07/21/2004 15:32	Amalyst Damary Valentin Scott W Freigher	Dilution Factor I
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C	1	07/29/2004 04:09	Ryan P Byrns	ī
D4689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	07/29/2004 04:09	Ryan P Byrne	1
06292 06381	TCL by 8260 (soil) Add'l Cmpds - OLHO4.2 by 82608	SW-846 8260B SW-846 8260B	1	07/23/2004 16:20 07/23/2004 16:20	Roy R Mellott Roy R Mellott	1 1 100

8260B			#1.757 m 11.00		CONTRACTOR OF THE CONTRACTOR
Z (1) (2)					
Sample Number: SW	4313594	72.7k	1431 1232		***
1 11/201		Account: 3	L1076		
SB-B-(6-8) Grab Soil Sample					
Enovis Project # E100873		Bnovis, Ir	ic, Tille-Ma		
Former Churchville Ford, MY			on Hall Drive #16		
		57, 3	33.5- A9AS		
Collected: 07/19/2004 12:15	by ST	Chesterfie	1d NO 63017		
Submitted: 07/20/2004 08:50	-		1400.00		
Reported: 08/11/2004 at 16:4	5				
SB-B6 SDG#: MVS13-02			Dry		
CAT		Dry	Method		Dilution
No. Analysis Name	CAS Mumber	Result	Detection Limit	Units	Factor
00159 Mercury	7439-97-6	N.D.	0.0035	ng/kg	1

	le Number: SW 43135			ster, PA 17603		
00111	Moisture	n.a.	8.5	0.50		1
	"Moisture" represents the los 103 - 105 degrees Celsius. Th as-received basis.	s in weight of e moisture res	the sample ult reported	after oven drying at above is on an		
04688	TCL 8W846 Semivolatiles Soil					
01185	Phenol	108-95-2	N.D.	100	_	
01186	2-Chlorophenol	95-57-8	N.D.	1 H = 32 36.	ug/kg	1
01188	N-Mitroso-di-n-propylamine	621-64-7	N.D.	36.	ug/kg	1
01190	4-Chloro-3-methylphenol	59-50-7	W.D.	36. 73.	ug/kg	1
03746	2-Witrophenol	88-75-5	N.D.	36.	ug/kg	240.11
03747	2,4-Dimethylphenol	105-67-9	N.D.	36.	ug/kg	1
03748	2,4-Dichlorophenol	120-83-2	N.D.	36.	ug/kg	1
03749	2,4,6-Trichlorophenol	88-06-2	N.D.	36.	ug/kg	1 T
03753	bis (2-Chlorosthyl) ether	111-44-4	W.D.	36.	ug/kg	1
03757	Hexachloroethane	67-72-1	N.D.	36.	ug/kg ug/kg	1
0375B	Witrobensene	98-95-3	N.D.	36.	ug/kg	1
03759	Isophorone	78-59-1	W.D.	36.	ug/kg	1
93760	bis(2-Chlorosthoxy)methane	111-91-1	N.D.	36.	ug/kg	i
03761	Naphthalene	91-20-3	N.D.	36.	ug/kg	1
03762	Hexachlorobutadiene	87-68-3	N.D.	73.	ug/kg	i
03763	Hexachlorocyclopentadiene	77-47-4	N.D.	180.	ug/kg	1
03764	2-Chloronaphthalene	91-58-7	N.D.	36.	ug/kg	n III
03765	Acenaphthylene	208-96-8	N.D.	36.	ug/kg	i
03766	Dimethylphthalate	131-11-3	N.D.	73.	ug/kg	1
04690	2-Methylphenol	95-48-7	N.D.	36.	ug/kg	ī
04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	36.	ug/kg	1
04692	4-Methylphenol	106-44-5	N.D.	73.	ug/kg	1
04693	3-Methylphenol and 4-methylphe chrosatographic conditions use for 4-methylphenol represents 4-Chloroeniline	the combined t 106-47-8	malicute The	a vacule managed	ug/kg	1
D4694	2-Mathylnaphthalene	91-57-6	M.D.	36.	ug/kg	1
D4695	2,4,5-Trichlorophenol	95-95-4	M.D.	36.	ug/kg	1
04696	2-Witroaniline	88-74-4	N.D.	36.	ug/kg	1
05001	Atrasine	1912-24-9	N.D.	36.	ug/leg	1
05002	Caprolactam	105-60-2	H.D.	36.	ug/kg	1
05313	Benzaldehyde	100-52-7	N.D.	36.	ug/kg	1
04689	TCL SW846 Semivolatiles/Soil					
01191	Acenaphthene	83-32-9	N.D.	36.	ug/kg	
01192	4-Nitrophenol	100-02-7	N.D.	180.	ug/kg	1
01193	2,4-Dinitrotoluene	121-14-2	N.D.	73.		1
01194	Pentachlorophenol	87-86-5	N.D.	180.	ug/kg	1
01195	Pyrene	129-00-0	N.D.	36.	ug/kg	1
Q3750	2,4-Dinitrophenol	51-28-5	N.D.	730.	ug/kg	- an 1 tons
03751	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	180.	ug/kg	1 1
03767	2,6-Dinitrotoluene	606-20-2	M.D.	36.	ug/kg	1
03768	Pluorene	86-73-7	M.D.	36.	ug/kg	1
03769	4-Chlorophenyl-phenylether	7005-72-3	N.D.	36.	ug/kg	1
03770	Diethylphthalate	84-66-2	N.D.	73.	ug/kg	1
03772	N-Nitrosodiphenylamine	86-30-6	N.D.	36.	ug/kg	WIK.
	N-nitrosodiphenylamine decomports result reported for N-nitrotal of both compounds.	see in the GC	inlet formie		ug/kg	1
03773	4-Bromophenyl-phenylether	101-55-3	N.D.	36.	1507 / Tame	•
03774	Hexachlorobenzene	118-74-1	N.D.	36.	ug/kg	all along
03775	Phenanthrene	85-01-8	W.D.	36.	ug/kg	1
03776	Anthracene	120-12-7	N.D.	36.	ug/kg ug/kg	1

03777	le Number: SW 43135 Di-n-butylphthalate	84-74-2	N.D.		73.		HEGIED)
03778	Fluoranthene	206-44-D	N.D.		75. 36.	ug/kg	10012
03780	Butylbenzylphthalate	85-68-7	N.D.		73.	ug/kg	1
03781	Benzo (a) anthracene	56-55-3	N.D.		36.	ug/kg	1000
03782	Chrysene	218-01-9	N.D.		36.	ug/kg	1
03783	3,3'-Dichlorobenzidine	91-94-1	N.D.		73.	ug/kg ug/kg	1
03784	bis(2-Ethylhaxyl)phthalate	117-81-7	N.D.		110.	ug/kg ug/kg	4
03785	Di-n-octylphthalate	117-84-0	N.D.		73.	ug/kg ug/kg	1
03786	Benzo (b) fluoranthene	205-99-2	N.D.		36.	ug/kg	1
03787	Benzo(k) fluoranthene	207-08-9	N.D.		36.	ug/kg ug/kg	1
03788	Benso(a) pyrene	50-32-8	N.D.		36.	ug/kg	N
03789	Indeno (1,2,3-cd) pyrene	193-39-5	N.D.		36.	ug/kg	1
03790	Dibens (a, h) anthracene	53-70-3	N.D.		36.	ug/kg	pm 1 1
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		36.	ug/kg	1 1
04619	Acetophenone	98-86-2	N.D.		73.	ug/kg	i
04697	3-Nitroeniline	99-09-2	N.D.		73.	ug/kg	1
04698	Dibenzofuran	132-64-9	N.D.		36.	ug/kg	1
04700	4-Nitroaniline	100-01-6	N.D.		73.	ug/kg	1
04702	Carbazole	86-74-8	N.D.		36.	ug/kg	1
07094	1,1'-Biphenyl	92-52-4	N.D.		36.	ug/kg	î
06292	TCL by 8260 (soil)						
02016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.		Secretary of the second	42	
05444	Chloromethane	74-87-3	N.D.		0.5 2.	ug/kg	1
05445	Vinyl Chloride	75-01-4	N.D.		1.	ug/kg	1
05446	Bronomethane	74-83-9	N.D.		2.	ug/kg	1
05447	Chloroethane	75-00-3	M.D.		2.	ug/kg	1
05449	1,1-Dichloroethene	75-35-4	N.D.		1.	ug/kg ug/kg	1
05450	Methylene Chloride	75-09-2	3.	J	2	ug/kg	1
05451	trans-1,2-Dichloroethene	156-60-5	N.D.	•	1.	ug/kg ug/kg	1
05452	1,1-Dichlorosthane	75-34-3	N.D.		1.	ug/kg	1
05454	cis-1,2-Dichloroethene	156-59-2	N.D.		1.	ug/kg	1
05455	Chloroform	67-66-3	N.D.		1.	ug/kg	1
05457	1,1,1-Trichloroethane	71-55-6	N.D.		1.	ug/kg	1
05458	Carbon Tetrachloride	56-23-5	N.D.		1.	ug/kg	1 1 1 1
05460	Benzene	71-43-2	N.D.		0.5	ug/kg	1
05461	1,2-Dichloroethane	107-06-2	N.D.		1.	ug/kg	1
05462	Trichloroethene	79-01-6	N.D.		1.	ug/kg	1
05463	1,2-Dichloropropane	78-87-5	N.D.		1.	ug/kg	1
05465	Bromodichloromethane	75-27-4	N.D.		1.	ug/kg	î
D5466	Toluene	108-88-3	N.D.		1.	ug/kg	1
05467	1,1,2-Trichloroethane	79-00-5	N.D.		1.	ug/kg	1
05468	Tetrachloroethene	127-18-4	N.D.		1.	ug/kg	1
05470	Dibromochloromethene	124-48-1	N.D.		1.	ug/kg	1
05472	Chlorobenzene	108-90-7	N.D.		1.	ug/kg	1
05474	Ethylbenzene	100-41-4	n.d.		1.	ug/kg	1
05477	Styrene	100-42-5	M.D.		1.44 1281 191	ug/kg	1
05478	Bromoform	75-25-2	M.D.		THE BUY TEAL	ug/kg	1
05480	1,1,2,2-Tetrachloroethane	79-34-5	N.D.		1.	ug/kg	1
06293	Acetone	67-64-1	N.D.		8.	ug/kg	1989
06294	Carbon Disulfide	75-15-0	M.D.		1.	ug/kg	1
06296	2-Butanone	78-93-3	N.D.		4.	ug/kg	1
06297	trans-1,3-Dichloropropene	10061-02-6	N.D.		1.	ug/kg	1 70/
	cis-1,3-Dichloropropene	10061-01-5	N.D.		1.	ug/kg	154 11-17
06298							
06299	4-Methyl-2-pentanone	108-10-1	N.D.		3.	ug/kg	1
	4-Methyl-2-pentanone 3-Hexanone Xylene (Total)	108-10-1 591-78-6 1330-20-7	N.D. N.D.		3. 3. 1.	ug/kg ug/kg	1

5amp	le Number: SW 43135; Add'1 Cmpds - OLMO4.2 by 8260;					
40307	AUG 1 Capus - Casioe. 2 by 82601	DE				
02285	Cyclohexane	110-82-7	N.D.	1.	ug/kg	
05007	Methyl Acetate	79-20-9	M.D.	2.	ug/kg	110
050 0B	Methylcyclohexane	108-87-2	N.D.	1.	ug/kg	1
D5443	Dichlorodifluoromethane	75-71-8	N.D.	2.	ug/kg	Xunt mail
05448	Trichlorofluoromethane	75-69-4	W.D.	2.	ug/kg	Walle III
05471	1,2-Dibromoethane	106-93-4	N.D.	ī.		
05479	Isopropylbensene	98-82-8	N.D.	1.	ug/kg	LESS TORH
05491	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/kg ug/kg	1 1 II
05492	1,4-Dichlorobensene	106-46-7	M.D.	1.		1 -
05494	1,2-Dighlorobenzene	95-50-1	N.D.	1 2	ug/kg	1
05495	1,2-Dibromo-1-chloropropans	96-12-8	N.D.	III III III III III	ug/kg	per L
D5496	1,2,4-Trichlorobenzene	120-82-1		15-195- 11 2	ug/kg	1
			N.D.	1,	ug/kg	1
08199	Freon 113	76-13-1	N.D.	2.	ug/kg	17733

CAT		Laboratory	Chron			
Mo. 00159	Analysis Name Mercury	Method	Trial#	Analysis Date and Time	Analyst	Dilution Factor
00111	Moisture	SN-846 7471A	1	07/26/2004 10:38	Demary Valentin	1
04688		RPA 160.3 modified	1	07/21/2004 15:32	Scott W Freisher	1
U-1000	TCL SW846 Semivolatiles Soil	9W-846 8270C	1	07/29/2004 09:37	Chad A Moline	1
04689	TCL SW846 Semivolatiles/Soil	SW-846 827DC	1	07/29/2004 09:37	Chad A Moline	1
06292	TCL by 8260 (soil)	SW-846 8260B	1	07/23/2004 16:44	Roy R Mellott	L L CONTRACTOR
06381	Add'1 Cmpds - OLM04.2 by 8260B	SW-846 8260B	1	07/23/2004 16:44	Roy R Mellott	i

Samo	ie Number: SW 43135	95	PRES.				
-	10734		Account: 110	76			
58-C-(2-4) Grab Boil Sample						
Enovis	Project # El00873		Enovis, Inc.				
Former	Churchville Ford, NY		7.1	Hall Drive #16			
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		rasa Manupton	DATE DATA #10			
Collect	ted: 07/19/2004 14:25 by ST		Chesterfield	MO 62017			
	ted: 07/20/2004 08:50		Compacet T TeTO	NO 83017			
	ed: 08/11/2004 at 16:47				· san Cryere		
5B-C2	SDG9: MVB13-03			H-2			
CAT	22021		0.7	Dry			
No.	Analysis Neme		Dry	Method		Dilution	
	E 100 To	Cas Mumber	Result	Detection Limit	Unita	Factor	
00159	Mercury	7439-97-6	0.0366 J	0.0040	ng/kg	1	
00111	Moisture	n.a.	17.8	0.50		40-14	
	"Moisture" represents the los	s in weight of	he sample afte	r oven drying at	•	17-11	
	103 - 105 degrees Celsius. Th	e moisture resul	it reported abo	ve is on an			
	* The Control of the						
04688	TCL SW845 Semivolatiles Soil						
01185	Phenol	108-95-2	M.D.	41.		100 f	
01186	2-Chlorophenol	95-57-8	N.D.	41.	ug/kg	2 Sewillian	
01188	N-Nitroso-di-n-propylamine	621-64-7	N.D.	41.	ug/kg	جلاحية أأني	
01190	4-Chloro-3-methylphenol	59-50-7	N.D.	81.	ug/kg	1 1	
03746	2-Nitrophenol	8B-75-5	N.D.	41.	ug/kg	D. LIEVER III	
03747	2,4-Dimethylphenol	105-67-9	N.D.	41.	ug/kg	1 1 1 2	
03748	2,4-Dichlorophenol	120-83-2	N.D.		ug/kg	1	
	· •		an . af .	41.	ug/kg	1	

ReferenceID: 9042761108041641I35

03749	le Number: SW 43135; 2,4,6-Trichlorophenol	88-06-2	N.D.	2010	n area to	
03753	bis(2-Chlorosthyl)ether	111-44-4	N.D.	iii ii dhaa 41.	ug/kg	1
03757	Hexachloroethane	67-72-1	N.D.	41.	ug/kg	1
03758	Nitrobensene	98-95-3	N.D.	41.	ug/kg	1
03759	Isophorone	78-59-1	M.D.	missies:41.	ug/kg	1
03760	bis (2-Chloroethoxy) methane	111-91-1	N.D.	41.	ug/kg	1
03761	Nephthalene	91-20-3	N.D.	41.	ug/kg	1
03762	Hexachlorobutadiene	87-68-3	N.D.	41. 81.	ug/kg	10 10
03763	Hexachlorocyclopentadiene	77-47-4	N.D.	81. 200.	ug/kg	1
03764	2-Chloronaphthalene	91-58-7	N.D.		ug/kg	1
03765	Acenaphthylene	208-96-8	N.D.	41.	ug/kg	1
03766	Dimethylphthalate	131-11-3	W.D.	Market 41.	ug/kg	386 1-15
04690	2-Methylphenol	95-48-7	W.D.	81.	ug/kg	101 12
04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	141.	ug/kg	
04692	4-Methylphenol	106-44-5	M.D.	41.	ug/kg	= 1
	3-Methylphenol and 4-methylphe			Ann 13-	ug/kg	1
	for 4-mathylphenol represents	d for sample a	malveis Th	a remark to the		
04693	4-Chloroeniline	106-47-8	N.D.	41.	ug/kg	1
04694	2-Methylnaphthalene	91-57-6	N.D.	41.	ug/log	1
04695	2.4.5-Trichlorophenol	95-95-4	N.D.	41.	ug/kg	1
04696	2-Nitroaniline	88-74-4	N.D.	41.	ug/kg	1 1
05001	Atrasina	1912-24-9	N.D.	41.	ug/kg	1
05002	Caprolactam	105-60-2	N.D. 🚳	41.	ug/kg	1
05313	Benzaldehyde	100-52-7	N.D.	g-474- 41.	ug/kg	1 - 1
04689	TCL SW846 Semivolatiles/Soil			1-1-17		
01191	Acenaphthene			100 mg 1 mg	and the same of th	
01192	4-Nitrophenol	83-32-9	M.D.	41.	ug/kg	1
01193	2,4-Dinitrotoluene	100-02-7	N.D.	200.	ug/kg	1
01194	Pentachlorophenol	121-14-2	N.D.	81.	ug/kg	1
01195	Pyrene	87-86-5	N.D.	200.	ug/kg	1
03750	2.4-Dinitrophenol	129-00-0	71.		ug/kg	1
03751	4,6-Dinitro-2-methylphenol	51-20-5	N.D.	810.	ug/kg	1
03767	2,6-Dinitrotoluene	534-52-1 606-20-2	N.D.	200.	ug/kg	1
03768	Fluorena	86-73-7	N.D.	41.	ug/kg	1
03769	4-Chlorophenyl-phenylether	7005-72-3	N.D.	41.	ug/kg	1
03770	Diethylphthalate	84-66-2	M.D.	41.	ug/kg	1
03772	N-Nitrosodiphenylamine	86-30-6	N.D.	61.	ug/kg	1
	N-nitrosodiphenylamine decompos			41,	ug/kg	1
6 9 11 11 1	total of both compounds.	osodiphenylami	ne represent	s the combined		
03773 03774	4-Bromophenyl-phenylether	101-55-3	M.D.	41.	ug/kg	1
03774 03775	Hexachlorobenzene	118-74-1	N.D.	41.	ug/kg	1
03775 03776	Phenanthrene	85-01-8	W.D.	41.	ug/kg	1
	Anthracene	120-12-7	N.D.	41.	ug/kg	1
03777	Di-n-butylphthelate	84-74-2	N.D.	81.	ug/kg	1 9.054
03778 03780	Pluoranthene Putalharan Jahahalana	206-44-0	M.D.	41.	ug/kg	1
	Butylbensylphthalate	85-68-7	N.D.	81.	ug/kg	1
03781	Benso (a) anthracene	56-55-3	M.D.	41.	ug/kg	1
03782	Chrysene	218-01-9	M.D.	41.	ug/kg	1
03783	3,3'-Dichlorobenzidine	91-94-1	N.D.	81.	ug/kg	1
03784	bis(2-Ethylhexyl)phthalate	117-81-7		J 120.	ug/kg	1
03785	Di-n-octylphthalate	117-84-0	N.D.	81.	ug/kg	1
	Benzo(b)fluoranthene	205-99-2	N.D.	41.	ug/kg	1
		207-08-9	N.D.	41.	non /hou	
03787	Benzo (k) fluoranthene			4412	ug/kg	1
03787 03788	Benzo(a) pyrene	50-32-8	W.D.	41.	ug/kg	1
03786 03787 03788 03789 03790						

Lancaster Laboratories Analytical Report 2425 New Bolland Pike, Lancaster, PA 17603

	le Number: SW 431359					9-8	
03791 04619	Benzo(g,h,i)perylene	191-24-2	N.D.		41.	ug/kg	1001
04619	Acetophenone	98-86-2	W.D.		81.	ug/kg	1
04698	3-Nitroaniline Dibensofuran	99-09-2	N.D.		81.	ug/kg	Land Lane va
04700	4-Nitroaniline	132-64-9	N.D.		41.	ug/kg	1
04702	Carbasola	100-01-6	N.D.		81.	ug/kg	1
07094	1,1'-Biphenyl	86-74-8	N.D.		41.	ug/kg	1
0,034	1,1 -alphenyl	92-52-4	W.D.		41.	ug/kg	1
06292	TCL by 8260 (soil)						
	10000					and the second	
02016	Methyl Tertiary Butyl Ether	1634-04-4	1.	J	0.6	4	75 7 1 10 1
05444	Chloromethane	74-87-3	N.D.		2.	ug/kg	102:37-14
05445	Vinyl Chloride	75-01-4	N.D.		#5(3) Fu	ug/kg	" Laren-
05446	Bromomethane	74-83-9	N.D.		_ led 2	ug/kg ug/kg	1
05447	Chloroethane	75-00-3	N.D.		Tribaeau2	ug/kg	1
05449	1,1-Dichloroethene	75-35-4	N.D.		provide Codest II	ug/kg	1
05450	Methylene Chloride	75-09-2	N.D.		2.	ug/kg	1
05451	trans-1,2-Dichloroethene	156-60-5	N.D.		4 (942) 1	ug/kg	1
05452	1,1-Dichloroethane	75-34-3	N.D.		1.	ug/kg	F-1 94
05454	cis-1,2-Dichloroethene	156-59-2	29.		III 10 C1F	ug/kg	1
05455	Chloroform	67-66-3	N.D.		1.	ug/kg	24700
05457	1,1,1-Trichloroethane	71-55-6	N.D.		1.	ug/kg	1
05458	Carbon Tetrachloride	56-23-5	N.D.		ECEPTION.	ug/kg	XTO I
05460	Benzena	71-43-2	0.7	J	0.6	ug/kg	1
05461	1,2-Dichloroethane	107-06-2	M.D.		1.	ug/kg	1
05462	Trichloroethene	79-01-6	5.	J	1.	ug/kg	1
05463 05465	1,2-Dichloropropana Bromodichloromathana	78-87-5	N.D.		1.	ug/log	1
05466	Toluene	75-27-4	N.D.		1.	ug/kg	1
05467	1,1,2-Trichloroethane	108-88-3	13.		1 1/ 11.	ug/kg	1
05468	Tetrachloroethene	79-00-5	M.D.	8	1.	ug/kg	1
05470	Dibromochloromethane	127-18-4 124-48-1		J	1.	ug/leg	1
05472	Chlorobensens	108-90-7	N.D.		H-310-117	ug/kg	1
05474	Ethylbenzene	100-41-4	N.D. E.	J	1.	ug/kg	1
05477	Styrene	100-42-5	N.D.	J	1.	ug/kg	1
05478	Bromoform	75-25-2	N.D.		TWEE 100	ug/kg	CONTRACTOR
05480	1,1,2,2-Tetrachlorosthane	79-34-5	N.D.			ug/kg	A THE WHILE STATES
06293	Acetone	67-64-1	26.		9.	ug/kg ug/kg	1
06294	Carbon Disulfide	75-15-0	N.D.		D-III 1.0	ug/kg	1
06296	2-Butanone	78-93-3	10.	J	11. /5. Value X	ug/kg	10
06297	trans-1,3-Dichloropropene	10061-02-6	N.D.		E min transpirit	ug/kg	America by
06298	cis-1,3-Dichloropropens	10061-01-5	N.D.		5 1.	ug/kg	1
06299	4-Methyl-2-pentanone	108-10-1	N.D.		4.	ug/kg	in 1
06300	2-Hexanone	591-78-6	N.D.		Fixes 451	ug/kg	1 1
06301	Xylene (Total)	1330-20-7	49.		1.	ug/kg	S Tolling
06381	Add'l Cmpds - OLHO4.2 by 8260B	10				sankerind :	pledot n editrimo
02285	Cyclobexane	130 80 5			F-E0 170	Stanfall Hill	11 - 12
05007	Methyl Acetate	110-82-7	N.D.		1-12 1-1	ug/kg	1
05008	Methylcyclohexane	79-20-9	N.D.		0-2-2.	ug/kg	1 5000
05443	Dichlorodifluoromethane	108-87-2 75-71-8	1.	3	1.0	ug/kg	1
05448	Trichlorofluoromethane	75-69-4	4 · uer	J	2.	ug/kg	1
05471	1,2-Dibromoethane	106-93-4	N.D. N.D.		2.	ug/kg	tining and all
05479	Isopropylbensene	98-82-8	1.	.7		ug/kg	120
05491	1,3-Dichlorobenzene	541-73-1	N.D.	J	1.	ug/kg	1
05492	1,4-Dichlorobenzene	106-46-7	N.D.		1-611-1	ug/kg	1 1070
05494	1,2-Dichlorobensene	95-50-1	N.D.		1.	ug/kg	1
05495	1,2-Dibromo-3-chloropropans	96-12-8	M.D.		-n(1.)	ug/kg	in the su
					2.	ug/kg	1

05496	1,2,4-Trichlorobenzene	120-82-1	N.D.	1.	ug/kg 1	
08199	Freen 113	76-13-1	N.D.	2.	ug/kg 1	
		310 30		and Visited Inc.		
		Laborat	ory Chron	dela		
AT .		11	,	Analysis		Diluti
0 .	Analysis Name	Method	Trial#		Analyst	Facto
0159 0111	Mercury Moisture	8W-846 7471A	1	07/26/2004 10:39	Damary Valentin	1
468B	TCL SW846 Semivolatiles	EPA 160.3 modific SW-846 8270C		07/21/2004 15:32	Scott W Preisher	1
	Soil	34-046 BZ/VC	1	07/29/2004 10:24	Chad A Moline	1
4689	TCL SW846	8W-846 8270C	1	07/29/2004 10:24	Chad & Holine	1
6292	Semivolatiles/Soil TCL by 8260 (soil)	SW-846 8260B	1	05/03/0000 15 05		
6381	Add'1 Cmpds - OLMO4.2 by	SW-846 8260B	i	07/23/2004 17:07 07/23/2004 17:07	Roy R Mellott	1
	8260B		•	01/23/2004 11:07	Roy R Mellott	1
	To March on the 40404					
ظسو	le Number: SW 4313!	96		177.17		
B-C- (6-8) Grab Soil Sample		Account: 1	1076		
	Project # E100873			- 0		
	Churchville Ford, NY		Enovis, In			
	TOTAL POLICY INT		1545 Hampt	on Hall Drive #16		
ollec	ted: 07/19/2004 14:30 by ST		Chamband a	ld MD 63017		
	ted: 07/20/2004 08:50		CHENCELLIE	10 NO 63017		
	ed: 08/11/2004 at 16:48					
B-C6	8DG0: MV#13-04			Dey		
AT	WI THE LAW		- A			
o.	Analysis Name	CAS Number	Dry Result	Method Detection	Dilu	
		Company of	NOD U.S.	Limit	Units Facto	er e
0159	Mercury	7439-97-6	D.0045 J	0.0035	ng/kg 1	
0111	Moisture	n.a.	9.1	0.50	1 AUG 010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	"Moisture" represents the lo	in weight of th	e sample af	ter oven drying at		
	as-received basis.	is unistric tabili	reported a	bove is on an		
1688	TCL SW846 Semivolatiles Soil	Lift.		- 1 - 1		
	ger yer					
L185	Phenol	108-95-2	N.D.	37.	ug/kg 1	
L186	2-Chlorophanol	95-57-8	N.D.	37.	ug/kg 1	
1188	N-Nitroso-di-n-propylamine	621-64-7	N.D.	37.	ug/kg 1	3
L190	4-Chloro-3-methylphenol	59-50-7	N.D.	73.	ug/kg 1	
3746	2-Nitrophenol	88-75-5	N.D.	37.	ug/kg 1	
3747	2,4-Dimethylphenol	105-67-9	N.D.	37.	ug/kg 1	
3748	2,4-Dichlorophenol	120-83-2	N.D.	37.	ug/kg 1	
3749	2,4,6-Trichlorophenol	88-06-2	M.D.	37.	ug/kg 1	
3753	bis (2-Chloroethyl) ether	111-44-4	N.D.	37.	ug/kg 1	
757	Hexachloroethane	67-72-1	M.D.	37.	ug/kg 1	
3758	Nitrobenzene	98-95-3	N.D.	37.	ug/kg 1	
759	Isophorone	78-59-1	M.D.	37.	ug/kg 1	
	bis (2-Chloroethoxy) methane	111-91-1	N.D.	37.	ug/kg 1	
760	Naphthalene Hexachlorobutadiene	91-20-3	N.D.	37.	ug/kg 1	
760 761		87-68-3	N.D.	73.	ug/kg 1	
3760 3761 3762			24 40	180.	ug/kg 1	
3760 3761 3762 3763	Hexachlorocyclopentadiene	77-47-4	N.D.		ug/kg I	
3760 3761 3762 3763 3764	Hexachlorocyclopentadiene 2-Chloronaphthalene	91-58-7	N.D.	37.	ug/kg 1	
3760 3761 3762 3763 3764 3765	Hexachlorocyclopentadiene 2-Chloronaphthalene Acenaphthylene	91-58-7 208-96-8	N.D. N.D.	37. 37.		
1760 1761 1762 1763 1764	Hexachlorocyclopentadiene 2-Chloronaphthalene	91-58-7	N.D.	37.	ug/kg 1	

ReferenceID: 9042761108041641I35

04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	37.	ug/kg	1
04692	4-Methylphenol	106-44-5	N.D.	73.	ug/kg	ì
	3-Methylphenol and 4-methylphenol conditions us for 4-methylphenol represents	ied for penals	amazanda mi	der the	~3/ ~ 3	•
04693	4-Chloroaniline	106-47-8	N.D.	37.	ug/kg	1
04694	2-Methylnaphthalene	91-57-6	N.D.	37.	ug/kg	ī
04695	2,4,5-Trichlorophenol	95-95-4	N.D.	37.	ug/kg	i
04696	2-Nitroaniline	88-74-4	N.D.	37.	ug/kg	i
05001	Atrasine	1912-24-9	N.D.	37.	ug/kg	
05002	Caprolactam	105-60-2	N.D.	37.		1
05313	Benzaldehyde	100-52-7	N.D.	37.	ug/kg ug/kg	1
04689	2VV. 02046 - Control and a 2041			SALVED COMPANY	49, 49	
74007	TCL SW846 Semivolatiles/Soil	100				
01191	Acenaphthene	83-32-9	N.D.	37.	ug/kg	12. 1
01192	4-Mitrophenol	100-02-7	M.D.	E 100 1 180		1
1193	2,4-Dinitrotoluene	121-14-2	N.D.	73.	ug/kg	1
1194	Pentachlorophenol	87-86-5	N.D.		ug/kg	1
1195	Pyrene	129-00-0	N.D.	180.	ug/kg	1
3750	2,4-Dinitrophenol	51-28-5	M.D.	37.	ug/kg	1
3751	4,6-Dinitro-2-methylphenol	534-52-1	N.D.	730.	ug/kg	1
3767	2,6-Dinitrotoluene	606-20-2		180.	ug/kg	1
3768	Fluorene		N.D.	37.	ug/kg	1 38
3769	4-Chlorophenyl-phenylether	86-73-7	N.D.	37.	ug/kg	1
3770	Diethylphthalate	7005-72-3	M.D.	37.	ug/kg	1
3772		84-66-2	M.D.	73.	ug/kg	1
3//2	N-Nitrosodiphenylamine N-nitrosodiphenylamine decomp	86-30-6	N.D.	37.	ug/kg	1
3773 3774	The result reported for N-nit total of both compounds. 6-Bromophenyl-phenylether Hexachlorobensene	101-55-3	N.D.	37.	ug/kg	1
3775	100 to 1 100	118-74-1	M.D.	37.	ug/kg	1
3776	Phenanthrene	85-01-8	M.D.	37.	ug/kg	1
	Anthracene	120-12-7	N.D.	37.	ug/kg	1
3777	Di-m-butylphthalate	84-74-2	N.D.	73.	ug/kg	1
3778	Pluoranthene	206-44-0	N.D.	37.	ug/kg	1
3780	Butylbenzylphthalate	85-68-7	N.D.	73.	ug/kg	1
3781	Benzo (a) anthracene	56-55-3	N.D.	37.	ug/kg	1
3782	Chrysene	218-01-9	M.D.	37.	ug/kg	1
3783	3,3'-Dichlorobenzidine	91-94-1	M.D.	73.	ug/kg	1
3784	bis(2-Ethylhexyl)phthalate	117-81-7	N.D.	110.	ug/kg	1
3785	Di-n-octylphthalate	117-84-0	M.D.	73.	ug/kg	1
3786	Benzo (b) fluoranthene	205-99-2	N.D.	37.	ug/kg	i
3787	Benzo (k) fluorenthene	207-08-9	N.D.	37.	ug/kg	1
3788	Benzo (a) pyrene	50-32-8	N.D.	37.	ug/kg	
3789	Indeno (1, 2, 3-cd) pyrene	193-39-5	N.D.	37.		
3790	Dibenz (a, h) anthracene	53-70-3	N.D.	37.	ug/kg	1
3791	Benzo(g,h,i)perylene	191-24-2	N.D.	37.	ug/kg	1
4619	Acetophenone	98-86-2	N.D.		ug/kg	1
4697	3-Nitroeniline	99-09-2	N.D.	H 1 73.	ug/kg	1
4698	Dibenzofuzan	132-64-9		73.	ug/kg	1
4700	4-Nitroaniline		M.D.	37.	ug/kg	1
4702	Carbasole	100-01-6	N.D.	73.	ug/kg	1
7094	1,1'-Biphenyl	86-74-8 92-52-4	M.D.	37.	ug/kg	1
	- 10 × 10	32-32-4	N.D.	37.	ug/kg	1
6292	TCL by 8260 (soil)					
2016	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	W(11/2211111)	2
5444	Chloromethane	74-87-3	N.D.		ug/kg	0.99
5445	Vinyl Chloride	75-01-4			ug/kg	0.99
	• • • • • • • • • • • • • • • • • • • •	10-47-4	N.D.	1.	ug/kg	0.99

ReferenceID: 9042761108041641135

Samp.	le Number: SW 431359 Bronomethane		100				
05447	Chloroethane	74-03-9	N.D.		2.	ug/kg	0.99
		75-00-3	N.D.		2.	ug/kg	0.99
05449	1,1-Dichloroethene	75-35-4	N.D.		1.	ug/kg	0.99
05450	Methylene Chloride	75-09-2	N.D.		2.	ug/kg	0.99
05451	trans-1,2-Dichloroethene	156-60-5	N.D.		1.	ug/kg	0.99
05452	1,1-Dichloroethane	75-34-3	3.	J	1.	ug/kg	0.99
05454	cis-1,2-Dichloroethene	156-59-2	65.		1.	ug/kg	0.99
05455	Chloroform	67-66-3	N.D.		1.	ug/kg	0.99
05457	1,1,1-Trichloroethane	71-55-6	N.D.		1.	ug/kg	0.99
05458	Carbon Tetrachloride	56-23-5	N.D.		1.	ug/kg	0.99
05460	Bensene	71-43-2	N.D.		0.5	ug/kg	0.99
05461	1,2-Dichloroethane	107-06-2	N.D.		1.	ug/kg	0.99
05462	Trichloroethane	79-01-6	N.D.		1,	ug/kg	0.99
05463	1,2-Dichloropropane	78-87-5	N.D.		1.	ug/kg	0.99
05465	Bromodichloromethane	75-27-4	N.D.		1.	ug/kg	0.99
Ç5466	Toluene	108-88-3	N.D.		1.	ug/kg	0.99
05467	1,1,2-Trichloroethane	79-00-5	M.D.		1.	ug/kg	0.99
05468	Tetrachloroethene	127-18-4	5.	J	ī.	ug/kg	0.99
05470	Dibromochloromethane	124-48-1	N.D.		1.	ug/kg	0.99
05472	Chlorobenzene	108-90-7	N.D.		1.	ug/log	0.99
05474	Ethylbenzene	100-41-4	N.D.		1.	ug/kg	0.99
05477	Styrene	100-42-5	N.D.		1.	ug/kg	0.99
05478	Bromoform	75-25-2	N.D.		1.	ug/kg	0.99
05480	1,1,2,2-Tetrachloroethane	79-34-5	N.D.		1.	ug/kg	0.99
06293	Acetone	67-64-1	N.D.		8.	ug/kg	0.99
06294	Carbon Disulfide	75-15-0	N.D.		1.	ug/kg	0.99
06296	2-Butanone	78-93-3	N.D.		4.	ug/kg	0.99
D62 97	trans-1,3-Dichloropropene	10061-02-6	N.D.		1.	ug/kg	0.99
06298	cis-1,3-Dichloropropens	10061-01-5	N.D.		1.	ug/kg	0.99
06299	4-Methyl-2-pentanone	108-10-1	N.D.		3.	ug/kg	0.99
06300	2-Hexanone	591-78-6	N.D.		3.	ug/kg	0.99
06301	Xylene (Total)	1330-20-7	N.D.		1.	ug/kg	0.99
							E 11-16
06381	Add'l Cmpds - OLH04.2 by 82608						
02285	Cyclohexane	110-82-7	N.D.		1.	ug/kg	0.99
05007	Hethyl Acetate	79-20-9	N.D.		2.	ug/log	0.99
05008	Methylcyclohexane	108-87-2	M.D.		1.	ug/kg	0.99
05443	Dichlorodifluoromethane	75-71-8	N.D.		2.	ug/kg	0.99
05448	Trichlorofluorosethane	75-69-4	N.D.		2.	ug/kg	0.99
05471	1.2-Dibromoethane	106-93-4	N.D.		(157) XHOIDEN	THE CHIEF OF THE CO.	
5479	Isopropylbensene	98-82-8	N.D.		1	ug/kg ug/kg	0.99
5491	1,3-Dichlorobensene	541-73-1	N.D.		1.	the state of the s	0.99
05492	1,4-Dichlorobensene	106-46-7	N.D.		-i mnh	ug/kg	0.99
5494	1,2-Dichlorobenzene	95-50-1	N.D.		1.	ug/kg	0.99
5495	1,2-Dibromo-3-chloropropane	96-12-8	N.D.		2.	ug/kg	0.99
5496	1.2.4-Trichlorobenzene	120-82-1	N.D.			ug/kg	0.99
8199	Freon 113	76-13-1	N.D.		1.	ug/kg	0.99
	1000	1A-T3-T	M.U.		2.	ug/kg	0.99

		Laboratory	Chron	icle			
CAT No. 00159 00111 04688	Analysis Name Mercury Moisture TCL SW846 Semivolatiles Soil	Method SW-846 7471A EPA 160.3 modified SW-846 8270C	Trials 1 1 1	Analysis Date and Time 07/26/2004 10:40 07/21/2004 15:32 07/29/2004 11:12	Analyst Damary Valentin Scott W Freisher Chad A Moline	Dilution Factor 1 1	

CAT		Labora	tory Chron				
No.	Analysis Hame	Mathod	Trials	Analysis			Dilution
04689	TCL SW846 Semivolatiles/Soil	SW-846 8270C	1	Date and Time 07/29/2004 11:12	Analyst Chad A Mol	ine	Factor 1
06292	TCL by 8260 (soil)	SW-846 8260B	1	07/26/2004 18:22	Roy R Melle		0.00
06381	Add'1 Cmpdm - OLM04.2 by 82608	SW-846 8260B	ī	07/26/2004 18:22	Roy R Melli		0.99
Games 2	le Number: SW 4313	1507				market and	
وسو	TO MUMDEL: DN 4313	337	Account: 1	1076			
5B-D- (2-4) Grab Soil Sample			I will be			
Enovis	Project # 2100873		Enovis, Inc				
Former	Churchville Ford, NY			on Hall Drive #16			
Collect	ted: 07/19/2004 15:20 by ST		Chesterfie	ld MO 63017			
	ted: 07/20/2004 08:50		CHEBCGILLE	rg MO 93011			
Report	ed: 08/11/2004 at 16:50						
SB-D2	SDG#: NVS13-05						
CAT	1			Dry			
No.	Analysis Mame	CAS Rumber	Dry	Method		Dilutio	6
5.0	unarias mare	CAS MUMBER	Result	Detection Limit	Unite	Factor	
00159	Mercury	7439-97-6	0.0369 J	0.0039	mg/log	1	
00111	Moisture	n.a.	16.7	0.50	g,g	ì	
	"Noisture" represents the 1 103 - 105 degrees Celsius. ' as-received basis.	oss in weight of t The moisture resul	the sample aft it reported al			1.7 1	
04688	TCL SW846 Semivolatiles So.	i 1					
01185	Phenol	108-95-2	M.D.	THE TAX THE			
01186	2-Chlorophenol	95-57-a		40.	ug/kg	1	.04
01188	N-Nitroso-di-n-propylamine	621-64-7	N.D.	40.	ug/kg	1	
01190	4-Chloro-3-methylphenol	59-50-7	N.D.	40.	ug/kg	1	
03746	2-Nitrophenol		N.D.	V 100 est 80.	ug/kg	111111111111111111111111111111111111111	
03747	2,4-Dimethylphenol	88-75-5 105-67-9	M.D.	40.	ug/kg	1	
03748	2,4-Dichlorophenol	120-83-2	N.D.	40.	ug/kg	1	
03749	2,4,6-Trichlorophenol		N.D.	40.	ug/log	1	
03753	bis (2-Chloroethyl) ether	88-06-2	M.D.	40.	ug/kg	1 1	
03757	Hexachloroethane	111-44-4	N.D.	40.	ug/kg	1	
03758	Nitrobenzene	67-72-1	M.D.	40.	ug/kg	1	
03759		98-95-3	N.D.	40.	ug/kg	1	
03760	Isophorone	78-59-1	N.D.	40.	ug/kg	1	
	bis (2-Chlorosthoxy) methane	111-91-1	N.D.	40.	ug/kg	1	
03761	Naphthalene	91-20-3	N.D.	40.	ug/kg	101	
03762	Haxachlorobutadiene	87-68-3	M.D.	80,	ug/kg	1	
03763	Hexachlorocyclopentadiene	77-47-4	N.D.	200.	ug/kg	1 -	
03764	2-Chloronaphthalene	91-58-7	N.D.	40.	ug/kg	1	
03765	Acenaphthylene	208-96-8	N.D.	40.	ug/kg	1	
03766	Dimethylphthalate	131-11-3	W.D.	80.	ug/kg	1	
04690	2-Methylphenol	95-48-7	N.D.	40.	ug/kg	X 1 1:00:00	
04691	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	40.	ug/kg	1	
04692	4-Methylphenol	106-44-5	M.D.	во.	ug/kg	1	
	3-Nethylphanol and 4-methylp chromatographic conditions to for 4-methylphanol represent	used for sample and to	alered - Man -			_	
04693	4-CHIOTOSNIline	106-47-8	N.D.	40.	ug/kg	1.	
04694	2-Methylnaphthalene	91-57-6	N.D.	40.	ug/kg	1	
04695	2,4,5-Trichlorophenol	95-95-4	N.D.	40.	ug/kg	1	
04696	2-Nitrosniline	88-74-4	M.D.	40.	ug/kg	1	
05001	Atrazine	1912-24-9	N.D.	40.	ug/kg	1	
05002	Caprolactam	105-60-2	N.D.	40.	ug/kg	1	
05313	Benzaldehyde	100-52-7	N.D.	40.	ug/kg	ī	

ReferenceID: 9042761108041641135

Sample Number: SW 4313597

كالمناه	TO MORDOT! DW - 472777	•					
04689	TCL SW846 Semivolatiles/Soil						
01191	Acenaphthene	83-32-9	N.D.		40.		Let Make
01192	4-Nitrophenol	100-02-7	M.D.		200.	ug/kg	1
01193	2,4-Dinitrotoluene	121-14-2	N.D.		60.	ug/kg	1
01194	Pentechlorophenol	87-86-5	N.D.		200.	ug/kg	10
01195	Pyrene	129-00-0	56.	J	40.	ug/kg	1
03750	2,4-Dinitrophenol	51-28-5	N.D.	- N- 111	800.	ug/kg	1
03751	4,6-Dinitro-2-methylphenol	534-52-1	N.D.		200.	ug/kg	1
03767	2,6-Dinitrotoluene	606-20-2	N.D.		40.	ug/kg	1
03768	Fluorene	86-73-7	N.D.		40.	ug/kg	asd 0117
03769	4-Chlorophenyl-phenylether	7005-72-3	N.D.		40.	ug/log	1
03770	Diethylphthalate	84-66-2	N.D.		80.	ug/kg	i
03772	N-Witrosodiphenylamine	86-30-6	N.D.		40.	ug/kg	î
	N-nitrosodiphenylamine decompos The result reported for N-nitro total of both gampounds.	es in the GC seediphenylami	inlet fo	rming diph sents the	enylamine. combined		i i
03773	4-Bromophenyl-phenylether	101-55-3	N.D.		40.	ug/kg	1
03774	Hexachlorobenzene	118-74-1	N.D.		40.	ug/kg	± 1111023
03775	Phenanthrene	85-01-8	N.D.		40.	ug/kg	1
03776	Anthracene	120-12-7	N.D.		40.	ug/kg	1
03777	Di-n-butylphthalate	84-74-2	N.D.		80.	ug/kg	us in
03778	Fluoranthene	206-44-0	M.D.		40.	ug/kg	1
03780	Butylbensylphthalate	85-68-7	N.D.		ao.	ug/kg	1
03781	Benso(a) anthracene	56-55-3	N.D.		40.	ug/kg	1
03782	Chrysene	218-01-9	N.D.		40.	ug/kg	1
03783	3,3'-Dichlorobenzidine	91-94-1	N.D.		80.	ug/kg	1
03784	bis(2-Ethylhexyl)phthalate	117-81-7	150.	J	120.	ug/kg	1
03785	Di-n-octylphthalate	117-84-0	N.D.		80.	ug/kg	11
03786	Benzo(b) fluoranthene	205-99-2	M.D.		40.	ug/kg	1000
03787	Benso(k) fluoranthene	207-08-9	N.D.		40.	ug/kg	1
03788	Benzo(a) pyrene	50-32-8	N.D.		40.	ug/kg	1
03789	Indeno (1,2,3-cd) pyrene	193-39-5	N.D.		40.	ug/kg	1
03790	Dibenz (a, h) anthracene	53-70-3	N.D.		40.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	N.D.		40.	ug/kg	1
04619	Acetophenone	98-86-2	N.D.		BO.	ug/kg	1
04697	3-Witrosniline	99-09-2	N.D.		BO.	ug/kg	1
04698	Dibenzofuran	132-64-9	W.D.		40.	ug/kg	1
04700	4-Nitroaniline	100-01-6	M.D.		80.	ug/kg	1
04702	Carbasole	86-74-8	N.D.		40.	ug/kg	1
07094	1,1'-Biphenyl	92-52-4	N.D.		40.	ug/kg	1
06292	TCL by 8260 (soil)						
02016	Methyl Tertiary Butyl Ether	1634-04-4	1.	J 1172	0.6	ug/kg	You
05444	Chloromethane	74-87-3	N.D.	partitions;	2.	ug/kg	1
05445	Vinyl Chloride	75-01-4	N.D.		3. 1'9, del 1	ug/kg	1
05446	Bromomethane	74-83-9	N.D.		2 2	ug/kg	171
05447	Chloroethans	75-00-3	N.D.		2.	ug/kg	100
05449	1,1-Dichloroethene	75-35-4	N.D.			ug/kg	1
05450	Nethylene Chloride	75-09-2	N.D.		2.	ug/kg	
05451	trans-1,2-Dichloroethene	156-60-5	3.	J	1.	ug/kg	1
05452	1,1-Dichloroethane	75-34-3	N.D.	•	1.	ug/kg ug/kg	
05454	cis-1,2-Dichlorcethens	156-59-2	360.		1.0000 264	PET 200 TO 100 T	1
05455	Chloroform	67-66-3	N.D.		1.	ug/kg	
05457	1,1,1-Trichloroethane	71-55-6	N.D.		1.	ug/kg	1
05458	Carbon Tetrachloride	56-23-5	N.D.		1.	ug/kg	
05460	Benzene	71-43-2	N.D.		0.6	ug/kg	1
05461	1,2-Dichloroethane	107-06-2	N.D.		1.	ug/kg	1 1
						ug/kg	1

ReferenceID: 9042761108041641I35

	le Number: SW 431359	•						
05462	Trichloroethene	79-01-6	N.D.			1.	ug/kg	1
05463	1,2-Dichloropropane	78-87-5	N.D.			1.	ug/kg	1
05465	Bromodichloromethane	75-27-4	N.D.			1.	ug/kg	1
05466	Toluene	108-88-3	N.D.			1.	ug/kg	1
05467	1,1,2-Trichloroethane	79-00-5	N.D.			1.	ug/kg	1
05468	Tetrachloroethene	127-18-4	N.D.		100	1.	ug/kg	1
05470	Dibromochloromethane	124-48-1	N.D.			1.	ug/kg	1
05472	Chlorobenzene	108-90-7	N.D.		V .	1.	ug/kg	1
05474	Ethylbenzene	100-41-4	N.D.			1.	ug/kg	1
05477	Styrene	100-42-5	N.D.			1.	ug/kg	1.
05478	Bromoform	75-25-2	N.D.			1.	ug/kg	1
05480	1,1,2,2-Tetrachloroethane	79-34-5	N.D.			1.	ug/kg	1
06293	Acetone	67-64-1	22.	J		9.	ug/kg	1
06294	Carbon Disulfide	75-15-0	N.D.			1.	ug/kg	1
06296	2-Butanone	78-93-3	25.			5.	ug/kg	1
06297	trans-1,3-Dichloropropens	10061-02-6	N.D.		The little	1.	ug/kg	1
06298	cis-1,3-Dichloropropens	10061-01-5	N.D.			L.	ug/kg	111
06299	4-Methyl-2-pentanone	108-10-1	N.D.			4.	ug/kg	-1-1
06300	2-Hexanone	591-78-6	N.D.			4.	ug/kg	1
06301	Xylene (Total)	1330-20-7	2.	J		l.	ug/kg	
							-3,3	7000
06381	Add'1 Cmpds - OLM04.2 by 8260B							
	1 1 198	1						
02285	Cyclohexane	110-82-7	N.D.			l	ug/kg	1
05007	Hethyl Acetate	79-20-9	N.D.		2	2.	ug/kg	1
05008	Methylcyclohexane	108-87-2	N.D.			ι.	ug/kg	1
05443	Dichlorodifluoromethane	75-71-8	N.D.		2	2.	ug/kg	1
05448	Trichlorofluoromethane	75-69-4	N.D.			2.	ug/kg	1
05471	1,2-Dibromosthans	106-93-4	N.D.		To Divid	ľ.	ug/kg	1
05479	Isopropylbenzene	98-82-6	N.D.		1	١.	ug/kg	111111
05491	1,3-Dichlorobensene	541-73-1	N.D.		- 4	١.	ug/kg	1
05492	1,4-Dichlorobensene	106-46-7	N.D.		100		ug/kg	1
05494	1,2-Dichlorobensene	95-50-1	N.D.		DC-II	I AIII	ug/kg	0 P 11 100
05495	1,2-Dibromo-3-chloropropane	96-12-8	N.D.		7 2	1.	ug/kg	1
05496	1,2,4-Trichlorobenzene	120-82-1	N.D.		- 1		ug/kg	1
08199	Freon 113	76-13-1	N.D.		2	ī.	ug/kg	C 18/121

Laboratory Chronicle

~~=		Demoterory	CULOR			
CAT				Analysis		Dilution
Mo.	Analysis Name	Method	Trials	Date and Time	Analyst	
00159	Mercury	SW-846 7471A	1	07/26/2004 10:42	Damary Valentin	Factor
00111	Moisture	RPA 160.3 modified	i	07/21/2004 15:32	Scott W Freisher	
04688	TCL SW846 Semivolatiles Soil	SW-846 8270C	i	07/29/2004 12:00	Chad A Moline	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04689	TCL SWB46 Semivolatiles/Soil	SW-846 8270C	1	07/29/2004 12:00	Chad A Moline	1
06292	TCL by 8260 (soil)	SW-846 8260B	1	07/23/2004 17:54	Roy R Mellott	
06381	Add'l Cmpds - OLMD4.2 by 8260B	EW-846 8260B	1	07/23/2004 17:54	Roy R Wellott	i

Sample Number: WW 4313598

FB-1 Grab Water Sample Enovis Project # E100873 Foxmer Churchville Ford, NY Account: 11076

Enovis, Inc.

1525 Hampton Hall Drive #16

	le Number: WW 43135: ted: 07/19/2004 16:30 by ST	98	Chesterfield M	10 63017		
	ted: 07/20/2004 08:50		AMORAGETTOTE N			
	ed: 08/11/2004 at 16:52					
CHUFB	SDG#: NVS13-06FB			As Received		
CAT			As Received	Method		Dilution
Mo.	Analysis Hame	CAS Number	Result	Detection Limit	Units	Factor
00259	Mercury	7439-97-6	N.D.	0.000028	mg/l	10 27
01743	Aluminum	7429-90-5	N.D.	0.0398	mg/l	1
01750	Calcium	7440-70-2	0.0516 J	0.0479	mg/1	
01754	Iron	7439-89-6	N.D.	0.0495	mg/l	1
01757	Magnesium	7439-95-4	0.0261 J	0.0193	mg/l	
01762	Potassium	7440-09-7	N.D.	0.0571	mg/1	Harman Harman
01767	Sodium	7440-23-5	N.D.	0.462	mg/1	1 20
07022	Thallium	7440-28-0	N.D.	0.0099	mg/l	
7035	Arsenic	7440-38-2	M.D.	0.0047	mg/l	dry 1 villa
7036	Selenium	7782-49-2	N.D.	0.0059	mg/l	1
07044	Antimony	7440-36-0	N.D.	0.0092	mg/1	1 2 2 2
07046	Barium	7440-39-3	N.D.	0.00045	mg/l	1
07047	Beryllium	7440-41-7	N.D.	0.00097	mg/l	1
07049	Cadmium	7440-43-9	N.D.	0.00076	mg/l	1
07051	Chronium	7440-47-3	M.D.	0.0025	mg/l	1
7052	Cobalt	7440-48-4	N.D.	0.0020	mg/l	1
7053	Copper	7440-50-8	N.D.	0,0027	mg/l	THE THE PARTY OF
7055	Lead	7439-92-1	N.D.	0.0100	mg/l	1
7058	Manganese	7439-96-5	N.D.	0.00084	mg/l	1
7061	Nickel	7440-02-0	W.D.	0.0031	mg/l	1
7066 7071	Silver Vanadium	7440-22-4	N.D.	0.0020	mg/l	1
07071 07072		7440-62-2	N.D.	0.0016	mg/1	1
17072	Zinc	7440-66-6	N.D.	0.0048	mg/l	1 1
04678	TCL SW846 Semivolatiles/Waters					
3871	4-Chlorosniline	106-47-B	N.D.	-10	4.0	9
3905	2-Methylnaphthalane	91-57-6	N.D.	1.	ug/l	1
13907	2-Nitrosniline	8B-74-4	N.D.	1.	ug/l	1 1 1 1 1 1
3922	2,4,5-Trichlorophenol	95-95-4	W.D.	_ 1.	ug/l	1 0
3924	2-Chlorophenol	95-57-B	N.D.	= 11.	ug/l	1
3925	Phenol	108-95-2	N.D.	1. 1.	ug/l	1
3926	2-Witrophenol	88-75-5	W.D.	111. AUD	ug/1	VII.
3927	2,4-Dimethylphenol	105-67-9	N.D.	1.	ug/1	1
3928	2,4-Dichlorophenol	120-83-2	M.D.	1.	ug/1	1
3929	4-Chloro-3-methylphenol	59-50-7	N.D.	1.	ug/1	_
3930	2,4,6-Trichlorophenol	88-06-2	W.D.	1.	ug/1 ug/1	1
3936	bis (2-Chloroethyl) ether	111-64-4	N.D.	1.	ug/l	1-1-1
3941	Hexachloroethane	67-72-1	N.D.	1.	ug/1 ug/1	1
3942	N-Nitroso-di-n-propylamins	621-64-7	N.D.	1.	ug/1	1
3943	Nitrobenzene	98-95-3	N.D.	1.	ug/1 ug/1	8501
3944	Isophorone	78-59-1	N.D.	1.	ug/l	
3945	bis (2-Chloroethoxy) methane	111-91-1	N.D.	1.	ug/1	1
3947	Naphthalene	91-20-3	N.D.	1.	ug/1 ug/1	1
3948	Hexachlorobutadiene	87-68-3	N.D.	1.	ug/1	
3949	Hexachlorocyclopentadiene	77-47-4	N.D.	5.	ug/l	1
3950	2-Chloronaphthalene	91-58-7	N.D.	1.	ug/l	1
3951	Acenaphthylene	208-96-8	N.D.	1.	ug/1	1
3952	Dimethylphthalate	131-11-3	N.D.	2.	ug/1	i
4680	2-Methylphenol	95-48-7	N.D.	1.	ug/1	1
4681	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	1.	ug/1	1
4682	4-Methylphenol	106-44-5	M.D.	2.	ug/1	i

ReferenceID: 9042761108041641I35

	3-Methylphenol and 4-methylph chromatographic conditions us	ed for sample a	malveis "	The result wascasted		
	for 4-methylphenol represents	the combined t	otal of bo	th compounds.		
04999	Atrazine	1912-24-9	N.D.	1,	ug/l	. 1
05000	Caprolactam	105-60-2	N.D.	5.	ug/1	1
05314	Benzaldehyde	100-52-7	N.D.	College Hite	ug/l	1
04679	TCL SW846 Semivolatiles/Water	8				
		200				
00357	1,1'-Biphenyl	92-52-4	N.D.	1,	ug/l	1
01267	Acetophenone	98-86-2	N.D.	6 2.	u g/1	1
03879 0390 8	Dibenzofuran	132-64-9	N.D.	HEO ALLI.	ug/1	1
03909	3-Nitroaniline 4-Nitroaniline	99-09-2	N.D.	- A K-1.	ug/l	1
03931	2,4-Dinitrophenol	100-01-6	N.D.	1,	ug/1	1
03932	4-Nitrophenol	51-28-5	N.D.	19.	ug/ 1	1
03932	4,6-Dinitro-2-methylphenol	100-02-7	N.D.	10.	ug/l	1
03934	Pentachlorophenol	534-52-1	N.D.	5.	ug/l	1
03953	2,6-Dinitrotoluene	87-86-5	N.D.	Te Ge 1843.	u g/ 1	1
03954	Acenaphthene	606-20-2	N.D.	1.	ug/l	1
03955	2,4-Dinitrotoluene	83-32-9	N.D.	1.	ug/1	1
03956	Fluorene	121-14-2	N.D.	1.	ug/l	1
03957	4-Chlorophenyl-phenylether	86-73-7 7005-72-3	N.D.	1,	ug/l	1
03958	Diethylphthalate	84-66-2	N.D.	1.	ug/l	1.
03960	N-Nitrosodiphenylamine	86-30-6	N.D.	2.	ug/l	1
44740	N-mitrosodiphenylamine decompo	nees in the GC	N.D. inlet form	2. ing diphenylamine.	ug/1	1 Apr
	The result reported for N-nit: total of both compounds,	concord brenth I sust	ne represe	nts the combined		
03961	4-Bromophenyl-phenylether	101-55-3	N.D.	1.	ug/l	1
03962	Hexachlorobenzene	118-74-1	N.D.	1.	ug/1	1
03963	Phenauthrene	85-01-8	N.D.	1.	ug/l	1
03964	Anthracene	120-12-7	M.D.	1.	ug/l	1
03965	Di-n-butylphthalate	84-74-2	N.D.	2.	ug/1	1
03966	Fluoranthene	206-44-0	N.D.	1.	ug/1	1
03967	Pyrene	129-00-C	N.D.	1.	ug/l	1
03969	Butylbanzylphthalate	85-68-7	N.D.	2.	ug/1	1
03970	Benzo (a) anthracene	56-55-3	N.D.	1.	ug/l	2
03971	Chrysene	218-01-9	N.D.	1.	ug/l	1
03972	3,3'-Dichlorobenzidine	91-94-1	N.D.	1.	ug/1	1
03973	bis(2-Ethylhexy1)phthalate	117-61-7	N.D.	2.	ug/l	1
03974	Di-n-octylphthalate	117-84-0	N.D.	2.	ug/l	1
03975	Benzo(b) fluoranthene	205-99-2	N.D.	1.	ug/l	1
03976	Benzo(k) fluoranthene	207-08-9	N.D.	1.	ug/1	1
03977	Benso (a) pyrene	50-32-8	N.D.	1.	ug/l	1
03978	Indeno(1,2,3-cd)pyrene	193-39-5	N.D.	1.	ug/l	1
03979	Dibenz (a, h) anthracene	53-70-3	N.D.	1,	ug/l	1
03980	Benso(g,h,i)perylene	191-24-2	N.D.	1.	ug/l	1
04684	Carbazole	86-74-8	N.D.	1.	ug/l	1
	The recovery of atrazine was o	e method requi:	imits in the red holding	he LCS/LCSD. This grime, and acceptain	sample ble QC	
	and comparable data were obser	.ved.				
06291	TCL by 8260 (water)					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.			0.00
05385	Chloromethane	74-87-3	N.D.	0.5	ug/1	1
05386	Vinyl Chloride	75-01-4	N.D.	1.	ug/1	1
05387	Bronomethane	74-83-9	N.D.	1.	ug/1	1
05388	Chloroethane	75-00-3	N.D.	1,	ug/1	1
05390	1,1-Dichloroethene				ug/1	1
V5590	T'T-DICUTOLOSCHOUS	75-35-4	W.D.	0.8	ug/1	1

Samo	le Number: WW 4313	598				
05391	Methylene Chloride	75-09-2	M.D.	2.	ug/1	1
05392	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	ug/1	SE WITH LAND
05393	1,1-Dichloroethane	75-34-3	N.D.	0 1	ug/l	1
05395	cis-1,2-Dichloroethene	156-59-2	N.D.	0.8	ug/1	1
05396	Chloroform	67-66-3	W.D.	0.8	ug/1	1 7
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/1	1 3.5
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/1	124 000
05401	Benzene	71-43-2	N.D.	0.5	ug/1	1
05402	1,2-Dichloroethane	107-06-2	N.D.	1.	ug/1	Ti put dis
05403	Trichloroethene	79-01-6	N.D.	America III William	vg/1	13 6300
05404	1,2-Dichloropropene	78-87-5	N.D.	1.	ug/1	1400
05406	Bromodichloromethane	75-27-4	W.D.	1.	ug/l	1
05407	Toluene	108-88-3	M.D.	0.7	ug/l	1
05408	1,1,2-Trichloroethane	79-00-5	N.D.	0.8	ug/1	1 112
05409	Tetrachloroethane	127-18-4	W.D.	0.8	ug/l	pattacego
05411	Dibromochloromethane	124-48-1	M.D.	11-11-	ug/l	1
05413	Chlorobenzene	108-90-7	M.D.	0.8	ug/1	1 1 35
05415	Ethylbenzene	100-41-4	M.D.	0.8	ug/1	1 7 77
05418	Styrene	100-42-5	N.D.	1.	ug/1	1
05419	Bromoform	75-25-2	N.D.	1. 1	ug/l	1
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1. 1	ug/1	
06302	Acetone	67-64-1	M.D.	6.	ug/1	1
06303	Carbon Disulfide	75-15-0	N.D.	1.	ug/l	1
06305	2-Butanone	78-93-3	N.D.	3.	ug/l	1
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	1.	ug/l	1
06307	cis-1,3-Dichloropropens	10061-01-5	N.D.	1.	ug/l	all 1 car sur
06308	4-Methyl-2-pentanone	108-10-1	N.D.	3.	ug/l	1
06309	2-Hexanone	591-78-6	N.D.	3.	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.8	ug/l	1
06380	Add'l Capds - GIMO4.2 by 826	OB				
02278	Cyclohexane	110-82-7	N.D.	2.	ug/l	1
05005	Methyl Acetate	79-20-9	N.D.	ī.	ug/l	1
05006	Methylcyclohexane	108-87-2	N.D.	1.	ug/1	_ i
05384	Dichlorodifluoromethane	75-71-8	W.D.	2.	ug/1	1
05389	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/1	1
05412	1,2-Dibromoethane	106-93-4	N.D.		ug/1	THE REAL PROPERTY.
05420	Isopropylbensene	98-82-8	N.D.	1	ug/1	1 700
05432	1,3-Dichlorobensene	541-73-1	N.D.	1 1 5 1 1 1 7	ug/l	1 11015
05433	1,4-Dichlorobenzene	106-46-7	N.D.	- 11-117	ug/l	1
05435	1,2-Dichlorobenzene	95-50-1	N.D.	1.	ug/1	1
05436	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2.7	ug/1	1 - 4-
05437	1,2,4-Trichlorobensene	120-82-1	M.D.		ug/1	AND LEASE
08203	Freon 113	76-13-1	N.D.	2.	ug/l	1
			9.10			
		A AVE	37.17	1020		
CAT		Papora	tory Chro			
	and and a second	100		Antlysis		Dilu

Labora	torv	Chroni	616

			Laboratory	Chron	icle		- N
CAT					Analysis		Dilution
No.	Analysis Hamo	Method		Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846	7470A	1	07/23/2004 08:20	Deborah A Krady	1
01743	Aluminum	SW-846	6010B	1	07/26/2004 22:47	Donna R Sackett	
01750	Calcium	SW-846	6010B	1	07/26/2004 22:47	Donna R Sackett	TOTAL TRACTO
01754	Iron	SW-846	6010B	7.1	07/26/2004 22:47	Domna R Sackett	THE REPORT OF
01757	Magnesium	SW-846	6010B	1	07/26/2004 22:47	Donna R Sackett	- 8
01762	Potassium	SW-846	6010B	1	07/26/2004 22:47	Donna R Sackett	Photo VI V
01767	Sodium	SW-846		0 1	07/26/2004 22:47	Donna R Sackett	milit stoma

ReferenceID: 9042761108041641I35

			Laboratory	Chron	icle		
CAT					Analysis		Dilution
Mo.	Analysis Mame	Method		Trial#	Date and Time	Analyst	Vactor
07022	Thellium	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	1
07035	Arsenia	SW-846 6	010B	1	07/26/2004 22:47	Domma R Sackett	PW Sed
07036	Selenium	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	- 1
07044	Antimony	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	
07046	Barium	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	1
07047	Beryllium	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	160,000
07049	Cadmium	SW-846 6	OLOB	1	07/27/2004 16:01	Jayme E Curet	AMS
07051	Chromium	SW-846 6	010B	189. 1	07/26/2004 22:47	Donna R Sackett	1900
07052	Cobalt	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	625 INLUGA
07053	Copper	SW-846 6	0109	ī	07/26/2004 22:47	Donna R Sackett	ir maile
07055	Lead	SW-846 6	0108	1	07/26/2004 22:47	Donna R Sackett	1
07058	Manganese	SW-846 6	010B	1	07/26/2004 22:47	Donna R Sackett	1
07061	Nickel	SW-846 6	0100	- i	07/26/2004 22:47	Donna R Sackett	
07066	Silver	SW-846 6		- T	07/26/2004 22:47	Donna R Sackett	10.0
07071	Vanadium	SW-846 6			07/26/2004 22:47	Donna R Sackett	en anti-blan
07072	Zinc	SW-846 6		N i	07/26/2004 22:47	Donna R Sackett	ML UNIT
04678	TCL SW846	SW-846 B		i	07/25/2004 23:20	10 Pro-	55
	Semivolatiles/Waters			-	01/23/2004 23:20	Ryan P Byrne	1 1
04679	TCL SW846	SW-846 8	270C	1	07/25/2004 23:20	Ryan P Byrne	
	Semivolatiles/Waters					.,,	
06291	TCL by 8260 (water)	EW-846 8	260B	1	07/22/2004 18:07	Susan McMahon-Lau	1
06380	Add'1 Cmpds - OLMO4.2 by 8260B	8W-846 8	260B	1	07/22/2004 18:07	Susan McMahon-Luu	1 HI

Sample Number: WW 4313599

RB-1 Grab Water Sample Enovis Project # E100873 Former Churchville Ford, NY

Collected: 07/19/2004 16:45 by 87

Submitted: 07/20/2004 08:50 Reported: 08/11/2004 at 16:56 Account: 11076

Enovis, Inc. 1525 Hampton Hall Drive #16

Chesterfield NO 63017

CHURB	8DG#: MVB13-0	7RB			As Received		
CAT				As Received	Mathod		Dilution
No.	Analysis Name		CAS Musber	Result	Detection Limit	Vaits	Factor
00259	Mercury		7439-97-6	N.D.	0.000028	mg/l	1
01743	Aluminum		7429-90-5	N.D.	0.0398	mg/l	1
01750	Calcium		7440-70-2	0.0579 J	0.0479	mg/1	1
01754	Iron		7439-89-6	N.D.	0.0495	mg/1	The state of the s
01757	Magnesium		7439-95-4	M.D.	0.0193	mg/1	1
01762	Potassium		7440-09-7	N.D.	0.0571	mg/l	1
01767	Sodium		7440-23-5	N.D.	0.462	mg/1	1
07022	Thallium		7440-28-0	N.D.	D.0099	mg/1	
07035	Arsenic		7440-38-2	N.D.	D.0047	mg/1	Late Committee
07036	Selenium		7782-49-2	N.D.	0.0059	mg/1	1
07044	Antimony		7440-36-0	N.D.	0.0092	mg/1	1
07046	Barium		7440-39-3	N.D.	0.00045	mg/l	1
07047	Beryllium		7440-41-7	N.D.	0.00097	mg/1	1
07049	Cadmium		7440-43-9	N.D.	0.00076	mg/l	1
07051	Chromium		7440-47-3	N.D.	0.0025	mg/l	1
07052	Cobalt		7440-48-4	N.D.	0.0020	mg/l	- ī
07053	Copper		7440-50-B	N.D.	0.0027	mg/l	791 E 1
07055	Lead		7439-92-1	N.D.	0.0100	mg/1	
07058	Hanganese		7439-96-5	N.D.	0.00084	mg/1	1
07061	Nickel		7440-02-0	N.D.	0.0031	mg/l	1
07066	Silver		7440-22-4	N.D.	0.0020	mg/l	111 115
07071	Vanadium		7440-62-2	N.D.	0.0016	mg/l	
07072	Zinc		7440-66-6	0.0054 J	0.0048	mg/l	No. 12 and

Sample Number: WW 4313599

وسب	TA MUMDEL: MM 43133	33				
04678	TCL SW846 Semivolatiles/Water	• " ()				
03871	4-Chloroaniline	106-47-8	N.D.	0.9	ug/l	±1]
03905	2-Mathylnaphthalene	91-57-6	N.D.	0.9	ug/1	1
03907	2-Nitroanilina	88-74-4	N.D.	0.9	_	
03922	2,4,5-Trichlorophenol	95-95-4	N.D.	0.9	ug/1 ug/1	1
03924	2-Chlorophenol	95-57-8	W.D.	0.9	ug/l	1
03925	Phenol	108-95-2	W.D.	0.9	ug/1	
03926	2-Nitrophenol	88-75-5	N.D.	0.9		
03927	2,4-Dimethylphenol	105-67-9	N.D.	0.9	ug/1	1
03928	2,4-Dichlorophenol	120-83-2	N.D.	0.9	ug/1	110 - 11
03929	4-Chloro-3-methylphenol	59-50-7	W.D.	0.9	ug/1	
03930	2,4,6-Trichlorophenol	88-06-2	M.D.	0.9	ug/1	and the
03936	bis(2-Chloroethyl)ether	111-44-4	W.D.	0.9	ug/1	
03941	Herachlorpethane	67-72-1	N.D.	0.9	ug/l	e atrib - crum
03942	N-Witroso-di-n-propylamine	621-64-7	N.D.	0.9	ug/1	
03943	Nitrobenzene	98-95-3	W.D.		ug/l	and the same
03944	Isophorone	78-59-1	N.D.	0.9	ug/l	i ivenillet n
03945	bis (2-Chloroethoxy) methane	111-91-1	N.D.	0.9	ug/l	1
03947	Naphthalane	91-20-3		0.9	ug/1	Mary 1
03948	Hexachlorobutadiene	91-20-3 87-68-3	N.D.	0.9	ug/1	1
03949	Bexachlorocyclopentadiene		N.D.	0.9	ug/l	u, 00 2 3 pt 2
03950	2-Chloronaphthalene	77-47-4	N.D.	5.	ug/l	1
03951	Acenaphthylene	91-58-7	N.D.	(20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	ug/1	
03952	Dimethylphthalate	208-96-8	N.D.	0.9	ug/l	1
04680	100	131-11-3	N.D.	2.	ug/l	1
04681	2-Methylphenol	95-48-7	W.D.	0.9	ug/1	SHIP I STORE
	2,2'-oxybis(1-Chloropropane)	108-60-1	N.D.	0.9	ug/1	THE THEFT
04682	4-Methylphenol	106-44-5	N.D.	2.	ug/l	1
	3-Mathylphenol and 4-mathylphe chromatographic conditions use	enol cannot be	resolved un	der the		
	for 4-methylphenol represents	the combined t	otal of bot	e result reported		
04999	Atrasine	1912-24-9	N.D.	0.9	ug/l	1
05000	Caprolactam	105-60-2	N.D.	z = 1 = 5.	ug/l	10111
05314	Benzal debyde	100-52-7	N.D.	0.9	ug/l	70 1 Sec.
04679	TCL SW846 Semivolatiles/Waters	E				
00357	1,1'-Biphenyl	92-52-4	N.D.	0.9	ug/l	
01267	Acetophenone	98-86-2	N.D.	2.	_	1 1
03879	Dibenzofuran	132-64-9	N.D.	0.9	ug/1	1
03908	3-Witroaniline	99-09-2	W.D.	0.9	ug/1	1 1
03909	4-Nitroaniline	100-01-6	H.D.	0.9	ug/1	1
03931	2,4-Dinitrophenol	51-28-5	N.D.	19.	ug/1	1
03932	4-Nitrophenol	100-02-7	N.D.	9.	ug/1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
03933	4,6-Dinitro-2-methylphanol	534-52-1	N.D.		ug/l	1
03934	Pentachlorophenol	87-86-5	W.D.	5.	ug/l	7 1
03953	2,6-Dinitrotoluene	606-20-2		3.	ug/1	IN INCIDENTAL
03954	Acenaphthene	83-32-9	N.D.	0.9	ug/l	nertal letter
03955	2.4-Dinitrotoluene	110 1 2	N.D.	0.9	ug/l	1
03956	-,	121-14-2	N.D.	g-(III 0.9	ug/l	1=5000
	Fluorene	86-73-7	N.D.	0.9	ug/l	1
03957	4-Chlorophenyl-phenylether	7005-72-3	N.D.	0.9	ug/l	1
03958	Diethylphthalate	84-66-2	N.D.	2.	ug/l	1.401
03960	N-Nitrosodiphenylamine	86-30-6	N.D.	T (12.	ug/l	1
	N-nitrosodiphenylamine decompo The result reported for N-nitr total of both compounds.	ses in the GC cosodiphenylami	inlet formi: ne represent	ng diphenylamine.		
03961	4-Bromophenyl-phenylether	101-55-3	N.D.	0.9	ug/l	1
03962	Hexachlorobenzene	118-74-1	N.D.	0.9	- .	1,121
03963	Phenanthrene	95-01-8	N.D.	0.9	ug/1	
	200			V.3	ug/l	1

Lancaster Laboratories Analytical Report 2425 New Holland Pike, Lancaster, PA 17603

	le Number: WW 43135					
03964	Anthracene	120-12-7	N.D.	0.9	ug/l	8 55 16 .
03965	Di-n-butylphthalate	84-74-2	N.D.	2.	ug/l	1
03966	Fluoranthene	206-44-0	N.D.	0.9	ug/l	1
03967	Pyrene	129-00-0	N.D.	0.9	ug/1	1
03969	Butylbenzylphthalate	85-68-7	N.D.	2.	ug/l	Sec. 1
03970	Benzo (a) anthracene	56-55-3	N.D.	0.9	ug/1	1
03971	Chrysene	218-01-9	N.D.	0.9	ug/1	1
03972	3,3'-Dichlorobensidine	91-94-1	N.D.	0.9	ug/1	1
03973 03974	bis (2-Sthylhexyl)phthalate	117-81-7	N.D.	3 2 2 .	ug/1	1-1
03974	Di-n-octylphthalate Benzo(b)fluoranthane	117-84-0	M.D.	2.	ug/l	1
03975	Benso(k) fluoranthene	205-99-2	M.D.	0.9	ug/l	1
03976	Benso (a) pyrane	207-08-9	N.D.	0.9	ug/1	_t_ 1 01
03978	Indeno(1,2,3-cd)pyrene	50-32-8	N.D.	0.9	ug/l	1
03979	Dibens (a, h) anthracene	193-39-5	M.D.	0.9	ug/1	2011
039BO	Benzo (g, h, i) perylene	53-70-3	N.D.	0.9	ug/l	1
04684	Carbasole	191-24-2	N.D.	0.9	ug/1	1
01001		86-74-8	M.D.	0.9	ug/1	1-821-2107
	The recovery of atrasine was a was re-extracted outside of the	ourside of GC 1	imits in the	LCS/LCSD. This sa	umple	
	and comparable data were obear	er method regul	red nolding	cime, and acceptabl	re oc	
	mid combatable data asta const.	.vac.				
06291	TCL by \$260 (water)				679	
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	15-4m	NOT THE SECTION	emin with
05385	Chloromethane	74-87-3	N.D.	0.5	ug/1	130E-1
05386	Vizyl Chloride	75-01-4	M.D.	1.	ug/1	\$14 P
05387	Bromomethane	74-83-9	N.D.	X-10 - 1.	ug/1	11 120
05388	Chloroethane	75-00-3	N.D.	7 T	ug/1	1 2
05390	1.1-Dichloroethene	75-35-4	N.D.	0.8	ug/1	11.00
05391	Methylene Chloride	75-09-2	N.D.	2.	ug/1	1
05392	trans-1,2-Dichloroethene	156-60-5	N.D.	0.8	ug/1	1
05393	1,1-Dichloroethane	75-34-3	N.D.	1 -15-0191	ug/1 ug/1	1
05395	cis-1,2-Dichloroethene	156-59-2	N.D.	o.s	ug/1	i
05396	Chloroform	67-66-3	N.D.	0.8	ug/l	100
05398	1,1,1-Trichloroethane	71-55-6	N.D.	0.8	ug/l	i
05399	Carbon Tetrachloride	56-23-5	N.D.	1.	ug/1	1
05401	Benzena	71-43-2	M.D.	0.5	ug/1	1
05402	1,2-Dichloroethane	107-06-2	N.D.	W 2002-4450	ug/1	SSA DELLIT
05403	Trichlorosthens	79-01-6	N.D.	1	ug/l	i
05404	1,2-Dichloropropane	78-87-5	M.D.	1-49-47	ug/l	1107
05406	Bromodichloromethane	75-27-4	N.D.	Erei mi	ug/l	330 1 1 2
05407	Toluene	108-88-3	N.D.	0.7	ug/1	11 X 10 X 2 1
05408	1,1,2-Trichlorosthans	79-00-5	N.D.	0.8	ug/l	Ma Pitt
05409	Tetrachloroethene	127-18-4	N.D.	0.B	ug/1	eredamin
05411	Dibromochloromethane	124-48-1	N.D.	1-27-7-21	ug/l	1
05413	Chlorobenzene	108-90-7	N.D.	0.8	ug/1	i
05415	Ethylbenzene (1)	100-41-4	N.D.	0.8	ug/l	1
05418	Styrene	100-42-5	M.D.	5-22-15	ug/1	A MARKED
05419	Bromoform	75-25-2	N.D.	1.0	ug/1	7077
05421	1,1,2,2-Tetrachloroethane	79-34-5	M.D.	7.473 1CH	ug/l	11026
06302	Acetona	67-64-1	N.D.	CARTESTICE C	ug/1	#6 Casts
06303	Carbon Disulfide	75-15-0	N.D.	m - 81 1 LP	ug/1	1
06305	2-Butanone	78-93-3	N.D.	no fint a rac	ug/1	i
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.	No. 100. All Interprets	ug/l	1
06307	cis-1,3-Dichloropropene	10061-01-5	N.D.	1.	ug/l	1
06308	4-Methyl-2-pentanone	108-10-1	N.D.	3.	ug/l	1
					-3/-	-
06309	2-Hexanone	591-78-6	N.D.	3.5	ug/l	1

You a green will a larger

Lancaster Laboratories Analytical Report 2425 New Holland Pike, Lancaster, PA 17603

Samp]	le Mw	mber:	w	43:	13599
06380			OLN04.2	by	8260B

02276	Cyclohexane	110-82-7	N.D.	2.	ug/1	1	
05005	Methyl Acetate	79-20-9	W.D.	1.	ug/l	1	
05006	Methylcyclohexane	108-87-2	W.D.	1.	ug/1	1	
05364	Dichlorodifluoromethane	75-71-8	N.D.	2.	ug/1.	1	
05389	Trichlorofluoromethane	75-69-4	N.D.	2.	ug/l	1	
05412	1,2-Dibromosthane	106-93-4	N.D.	1.	ug/1	ī	
05420	Isopropylbenzene	98-82-8	W.D.	1.	ug/l	1	
05432	1,3-Dichlorobenzene	541-73-1	N.D.	1.	ug/l	1	
05433	1,4-Dichlorobenzene	106-46-7	N.D.	11-11-71.	ug/1	1	
05435	1,2-Dichlorobensene	95-50-1	N.D.	and the second	ug/l	1	
05436	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2.	ug/l	1	
05437	1,2,4-Trichlorobenzene	120-82-1	M.D.	1.	ug/l	1	
08203	Freon 113	76-13-1	N.D.	2.	ug/l	1	
						_	

Laboratory Chronicle

CAI			707/H	Abalysis		Dilution
No.	Analysis Mome	Method	Trial#	Date and Time	Analyst	Vactor
00259	Mercury	SW-846 7470A	100 W 1	07/23/2004 08:21	Deborah A Krady	1
01743	Aluminum	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	1
01750	Calcium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	1
01754	Iron	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	ī
01757	Magnesium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	1
01762	Potassium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	1
01767	Sodium	SW-846 6010B	35 E 1	07/26/2004 22:53	Donna R Sackett	
07022	Thellium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	25 (1996)
07035	Arsenic	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	7
07036	Selenium	SW-846 6010B	3-8 1	07/26/2004 22:53	Donna R Sackett	1 7 1
07044	Antimony	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	i
07046	Barium	SW-846 6010B	100 11	07/26/2004 22:53	Donna R Sackett	
07047	Beryllium	SW-846 6010B	7 4 1	07/26/2004 22:53	Donna R Sackett	I VESTI
07049	Cadmium	SW-846 6010B	1	07/27/2004 16:06	Jayme E Curet	
07051	Chromium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sagkett	1
07052	Cobalt	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	O 470 071
97053	Copper	SW-846 6010B		07/26/2004 22:53	Donna R Sackett	-
07055	Lead	SW-846 6010B	= 1 i 1	07/26/2004 22:53	Donna R Sackett	195
07058	Manganese	SW-846 6010B	i	07/26/2004 22:53	Donna R Sackett	
07061	Nickel	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	J INTERNIT
07066	Silver	SW-846 6010B	- 1	07/26/2004 22:53	Donna R Sackett	
07071	Vanadium	SW-846 6010B	1	07/26/2004 22:53	Donna R Sackett	der .
07072	Zinc	SW-846 6010B	ī	07/26/2004 22:53	Donna R Sackett	1
04678	TCL SW846 Semivolatiles/Waters	SW-846 8270C	ì	07/26/2004 00:22	Ryan P Byrne	a, ista
04679	TCL SW846 Semivolatiles/Waters	8W-846 8270C	1	07/26/2004 00:22	Ryan P Byrne	1 wan min
06291	TCL by 8260 (water)	8W-846 8260B	1	07/22/2004 18:31	Susan McMahon-Luu	D 1
06380	Add:1 Cmpds - OLMO4.2 by 8260B	SW-846 8260B	1	07/22/2004 18:31	Susan McMahon-Luu	1

Sample Number: WW 4313600

TBLAME-1 Water Sample Enovis Project # 3100873 Former Churchville Ford, MY

Collected: 07/19/2004 by ST Submitted: 07/20/2004 08:50

Account: 11076

Enovis, Inc.

1525 Hampton Hall Drive #16

Chesterfield NO 63017

Lancaster Laboratories Analytical Report 2425 New Holland Pike, Lancaster, PA 17603

Sample Number: WW 4313600 Reported: 08/11/2004 at 16:59

CHUTB	:ed: 08/11/2004 at 16:59 ### #################################							
	SDGA: MARTI-02124				As Received			
CAT			As Received		Method		Dilution	
Mo.	Analysis Name Hors	CAS Rumber	Result		Detection Limit	Units	Factor	
06291	TCL by 8260 (water)					от рассона III.		
02010	Methyl Tertiary Butyl Bther	1634-04-4	N.D.			Month reserve	4144	
05385	Chloromethane	74-87-3	N.D.		0.5	ug/l	10000	
05386	Vinyl Chloride	75-01-4	N.D.		1.	ug/l	1	
05387	Bromomethane	74-83-9	N.D.		1.	ug/1	1 0	
05388	Chlorosthans	75-00-3	M.D.		1.	ug/l	rita 12 beli - 1	
05390	1,1-Dichloroethene	75-35-4	и.D.		1.	ug/l	1	
05391	Methylene Chloride	75-09-2	N.D.		0.8	ug/1	1	
05392	trans-1,2-Dichloroethene	156-60-5	N.D.		12. 0.8	ug/1	Hi som 5	
05393	1,1-Dichlorosthane	75-34-3	N.D.		1.	ug/1	1	
05395	cis-1,2-Dichlorosthene	156-59-2	N.D.		0.8	ug/1	1	
05396	Chloroform	67-66-3	N.D.		0.6	ug/l	1	
05398	1,1,1-Trichloroethane	71-55-6	M.D.		0.8	ug/1	1	
05399	Carbon Tetrachloride	56-23-5	N.D.		1.	ug/1	1	
05401	Benzene	71-43-2	N.D.		0.5	ug/1	1	
05402	1,2-Dichlorosthane	107-06-2	N.D.		1.	ug/1	1	
05403	Trichloroethene	79-01-6	N.D.		1.	ug/1	100111111111111111111111111111111111111	
05404	1,2-Dichloropropane	78-87-5	N.D.		Hallester .	ug/1	1	
05406	Bromodichloromethane	75-27-4	N.D.		T-NU.	ug/1	1,000	
05407	Toluene	108-88-3	N.D.		0.7	ug/l	1 ////	
05408	1,1,2-Trichloroethane	79-00-5	N.D.		0.8	ug/1	1	
05409	Tetrachloroethene	127-18-4	N.D.		0.8	ug/l	_	
05411	Dibromochloromethane	124-48-1	N.D.		1.	ug/l	1	
05413	Chlorobenzene	108-90-7	N.D.		0.8	ug/1	1	
05415	Ethylbenzene	100-41-4		depe	0.8	ug/l	10000000	
D5418	Styrene	100-42-5	N.D.		1.	ug/l	1	
05419	Bromoform	75-25-2	N.D.		TV-RA	ug/l	SAFE COLL	
05421	1,1,2,2-Tetrachloroethane	79-34-5	N.D.		1.00	ug/1	100000	
06302	Acetone	67-64-1	N.D.		6.	ug/1	1-1-1-1	
06303	Carbon Disulfide	75-15-0	W D		1.	ug/l ug/l	1	
06305	2-Butanone	78-93-3	N.D.		3.	ug/l	1	
06306	trans-1,3-Dichloropropene	10061-02-6	N.D.		1.	ug/l	1	
D6307	cis-1,3-Dichloropropene	10061-01-5	N.D.		1.	-	1	
06308	4-Methyl-2-pentanone	108-10-1	M.D.		3.	ug/l ug/l	1	
06309	2-Hexanone	591-78-6	N.D.		3.	ug/l	1	
06310	Xylene (Total)	1330-20-7	N.D.		0.8	ug/l	Na Company	
	Analytical of Auroran Physics					ug/1	DIE	
06380	Add'1 Cmpds - 01M04.2 by 82603						w l	
02278	Cyclohazane	110-82-7	N D			120000000000000000000000000000000000000		
05005	Methyl Acetate	79-20-9	N.D.		G-16.91 (197)	ug/l	ally of the	
05006	Methylcyclohexane	108-87-2	N.D.		39,10	ug/1	1	
05384	Dichlorodifluoromethane	75-71-8	N.D.		1.	ug/l	1 0 1100	
05389	Trichlorofluoromethane	75-69-4	N.D.		2.	ug/1	1	
05412	1,2-Dibromosthane		N.D.		2. AND 18 TO 1	ug/l	1	
05420	Isopropylbenzene	106-93-4 98-82-8	N.D.		1. 035 E	ug/l	1	
05432	1,3-Dichlorobensene	541-73-1	N.D. N.D.		1.	ug/1	1	
05433	1,4-Dichlorobenzene	106-46-7	N.D.		1.	ug/l	1 311 134 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
05435	1,2-Dichlorobenzene	95-50-1			1.	ug/1	1 35 17	
05436	1,2-Dibromo-3-chloropropane	96-12-8	N.D. N.D.		1.	ug/l	1	
05437	1,2,4-Trichlorobenzene	120-82-1			2.	ug/l	1 rays character	
08203	Freon 113	76-13-1	M.D.		1.	ug/l	1	
		/U-13-1	N.D.		2.	ug/l	1	

Lancaster Laboratories Analytical Report 2425 New Bolland Pike, Lancaster, PA 17603

Sample Number: WW 4313600

Laboratory Chronicle

CAT		Laboratory	Chron	icle Analysis	or and regulation	Dilution
Mo. 06291 06380	Analysis Name TCL by \$260 (water) Add'l Cmpds - OLHO4.2 by 8260B	Method 8W-846 8260B 8W-846 8260B		Date and Time 07/22/2004 18:54 07/22/2004 18:54	Analyst Susan McMahon-Luu Susan McMahon-Luu	Factor 1 1

Explanation of Symbols and Abbreviations

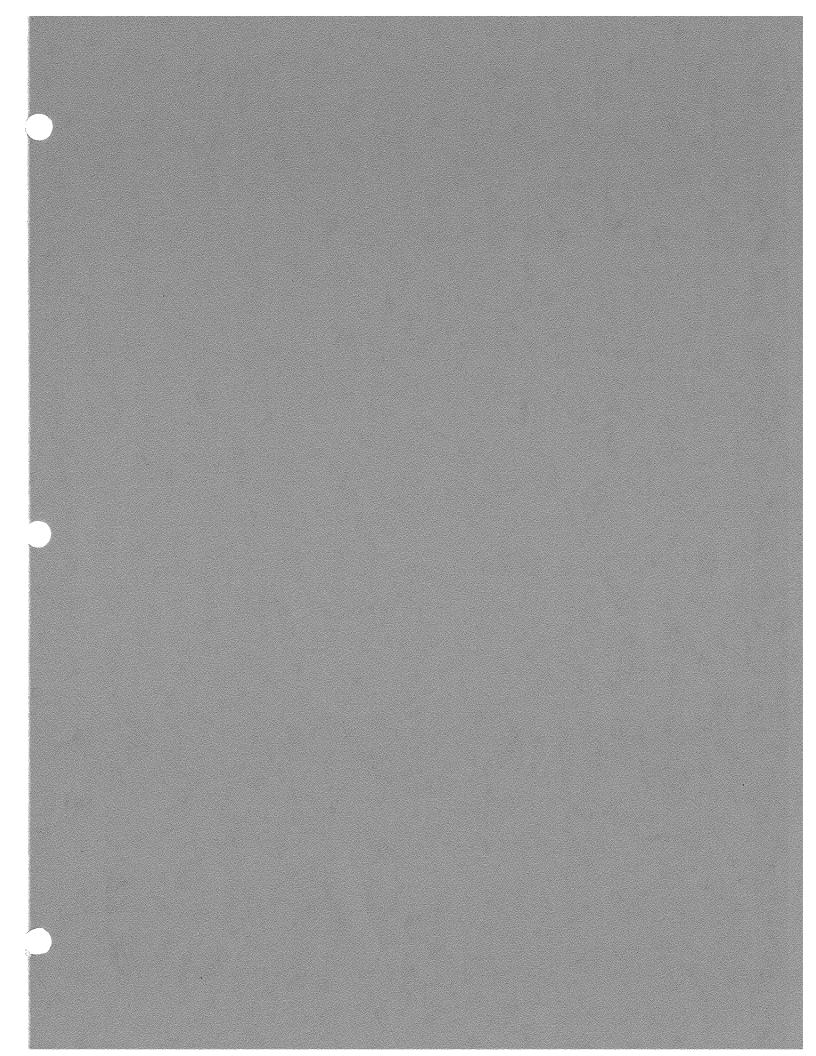
The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobait-chloropiatinate units
umhos/cm	micromhos/cm	NTU	
C	degrees Celsius	NIO	nephelometric turbidity units
meg	millieguivalents	F	degrees Fahrenheit
	gram(s)	lb.	pound(s)
9		with the same of the king of	kilogram(s)
ug	microgram(s)	mg	milligram(s)
mi	miliiter(s)		liter(s)
m3	cubic meter(s)	ul	microliter(s)

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value -- The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
 basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight
 concentration to approximate the value present in a similar sample without moisture. All other results are reported
 on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers	Orga	anic	Qua	lifiers
--------------------	------	------	-----	---------


			morganic duality
A	TIC is a possible aidol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
8	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS		Familiare des 70 littel (Station
		M	Dupilcate Injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	8	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	w	Boot dispetter outs out of a set of the
-			Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected		Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case namative	-	CBB.U> MCM IOI IIIOIOIII OO IIOIMOO IIO

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the taboratory.

WARRANTY AND LIMITS OF LIABILITY - in accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Mr. Eric Detweiler Lu Engineers 2230 Penfield Rd. Penfield, NY 14526

July 5, 2007

RE: Former Churchville Ford Facility

Order No.: U0706166

Dear Mr. Detweiler:

Upstate Laboratories, Inc. received 14 samples on 6/15/07 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms to standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions, please feel free to give us a call.

Thank you for your patronage.

Sincerely,
UPSTATE LABORATORIES, INC.
Carthory J. Scala,
Anthony J. Scala
President/CEO

Enclosures: ASP-B Pkg., report

Confidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-001

Date: 05-Jul-07

Client Sample ID: MW-1

Collection Date: 6/15/2007 10:07:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C (SW:	3520)	Analyst: KL
Phenol	ND	10	µg/L	1	6/29/2007 4:30:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2-Methylphenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	6/29/2007 4:30:00 PM
Hexachloroethane	ND	10	µg/L	1	6/29/2007 4:30:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Isophorone	ND	10	µg/L	1	6/29/2007 4:30:00 PM
2-Nitrophenol	ND	10	µg/L	1	6/29/2007 4:30:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 4:30:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Acenaphthylene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
3-Nitroaniline	ND	24	µg/L	1	6/29/2007 4:30:00 PM
Acenaphthene	ND	10	µg/L	1	6/29/2007 4:30:00 PM
2,4-Dinitrophenol	ND	24	µg/L	1	6/29/2007 4:30:00 PM
4-Nitrophenol	ND	24	µg/L	1	6/29/2007 4:30:00 PM
Dibenzofuran	ND	10	μg/L	1	6/29/2007 4:30:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	
Diethyl phthalate	ND	10	µg/L	1	6/29/2007 4:30:00 PM
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	6/29/2007 4:30:00 PM
Iuorene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
4-Nitroaniline	ND	24	μg/L	1	6/29/2007 4:30:00 PM 6/29/2007 4:30:00 PM

Approved By:

PFF

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5.07

Page 1 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-001

Date: 05-Jul-07

Client Sample ID: MW-1

Collection Date: 6/15/2007 10:07:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 4:30:00 PM
N-Nitrosodiphenylamine	ND	10	µg/L	1	6/29/2007 4:30:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 4:30:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 4:30:00 PM
3.3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Benz(a)anthracene	ND	10	µg/L	1	6/29/2007 4:30:00 PM
Chrysene	ND	10	μg/L.	1	6/29/2007 4:30:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 4:30:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 4:30:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 4:30:00 PM
TIC: unknown (13.83)	20	0	μg/L	1	6/29/2007 4:30:00 PM
TIC: unknown (14.73)	2.6	0	µg/L	1	6/29/2007 4:30:00 PM
TIC: unknown (22.22)	2.6	0	µg/L	1	6/29/2007 4:30:00 PM
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	50	μg/L	5	6/19/2007 12:45:00 PM
Vinyl chloride	ND	50	μg/L.	5	6/19/2007 12:45:00 PM
Bromomethane	ND	50	μg/L	5	6/19/2007 12:45:00 PM
Chloroethane	ND	50	µg/L	5	6/19/2007 12:45:00 PM
Acetone	ND	50	μg/L	5	6/19/2007 12:45:00 PM
1,1-Dichloroethene	ND	50	µg/L	5	6/19/2007 12:45:00 PM
Carbon disulfide	ND	50	µg/L	5	6/19/2007 12:45:00 PM
Methylene chloride	ND	50	μg/L	5	6/19/2007 12:45:00 PM
trans-1,2-Dichloroethene	ND	50	µg/L	5	6/19/2007 12:45:00 PM

Approved	Ву:
Qualifiers:	*

Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Date: 7-5-07

**

Page 2 of 36 Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-001

Date: 05-Jul-07

Client Sample ID: MW-1

Collection Date: 6/15/2007 10:07:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8	260B			Analyst: MRN
1,1-Dichloroethane	ND	50		μg/L	5	6/19/2007 12:45:00 PM
2-Butanone	ND	50		μg/L	5	6/19/2007 12:45:00 PM
cis-1,2-Dichloroethene	620	50		µg/L	5	6/19/2007 12:45:00 PM
Chloroform	ND	50		μg/L	5	6/19/2007 12:45:00 PM
1,1,1-Trichloroethane	ND	50		µg/L	5	6/19/2007 12:45:00 PM
Carbon tetrachloride	ND	50		µg/L	5	6/19/2007 12:45:00 PM
Benzene	ND	50		µg/L	5	6/19/2007 12:45:00 PM
1,2-Dichloroethane	ND	50		µg/L	5	6/19/2007 12:45:00 PM
Trichloroethene	20	50	J	µg/L	5	6/19/2007 12:45:00 PM
1,2-Dichloropropane	ND	50		µg/L	5	6/19/2007 12:45:00 PM
Bromodichloromethane	ND	50		µg/L	5	6/19/2007 12:45:00 PM
4-Methyl-2-pentanone	ND	50		μg/L	5	6/19/2007 12:45:00 PM
cis-1,3-Dichloropropene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
Toluene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
trans-1,3-Dichloropropene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
1,1,2-Trichloroethane	ND	50		μg/L	5	6/19/2007 12:45:00 PM
2-Hexanone	ND	50		μg/L	5	6/19/2007 12:45:00 PM
Tetrachloroethene	10	50	J	μg/L	5	6/19/2007 12:45:00 PM
Dibromochloromethane	ND	50		µg/L	5	6/19/2007 12:45:00 PM
Chlorobenzene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
Ethylbenzene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
m,p-Xylene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
o-Xylene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
Styrene	ND	50		μg/L	5	6/19/2007 12:45:00 PM
Bromoform	ND	50		μg/L	5	6/19/2007 12:45:00 PM
1,1,2,2-Tetrachloroethane	ND	50		μg/L	5	6/19/2007 12:45:00 PM
TIC: 1H-Indene, 1-methylene-	34	0		µg/L	5	6/19/2007 12:45:00 PM
TIC: unknown	30	0		μg/L	5	6/19/2007 12:45:00 PM
NOTES:						

The reporting limits were raised due to the high concentration of target compounds.

Approved By:

Qualifiers:

Low Level

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit Date:

7-5-07

Page 3 of 36

Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits

Lu Engineers

Lab Order:

U0706166

Former Churchville Ford Facility

Project: Lab ID:

CLIENT:

U0706166-002

Date: 05-Jul-07

Client Sample ID: MW-3

Collection Date: 6/14/2007 4:22:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW3		Analyst: KL
Phenol	ND	10	µg/L	1	6/29/2007 5:13:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2-Methylphenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Isophorone	ND	10	µg/L	1	6/29/2007 5:13:00 PM
2-Nitrophenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2,4-Dichlorophenol	ND	10	µg/L	1	6/29/2007 5:13:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Hexachlorobutadiene	ND	10	µg/L	1	6/29/2007 5:13:00 PM
4-Chloro-3-methylphenol	ND	10	µg/L	1	6/29/2007 5:13:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2,4,5-Trichlorophenol	ND	10	µg/L	1	6/29/2007 5:13:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 5:13:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Acenaphthylene	ND	10	µg/L	1	6/29/2007 5:13:00 PM
2.6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
3-Nitroaniline	ND	24	μg/L	1	6/29/2007 5:13:00 PM
Acenaphthene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 5:13:00 PM
4-Nitrophenol	ND	24	μg/L	1	6/29/2007 5:13:00 PM
Dibenzofuran	ND	10	µg/L	1	6/29/2007 5:13:00 PM
2.4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
•	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 5:13:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Fluorene 4-Nitroaniline	ND	24	μg/L	1	6/29/2007 5:13:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 4 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order: Project:

U0706166

U

Former Churchville Ford Facility

Lab ID:

U0706166-002

Date: 05-Jul-07

Client Sample ID: MW-3

Collection Date: 6/14/2007 4:22:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	µg/L	1	6/29/2007 5:13:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 5:13:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 5:13:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Di-n-butyl phthalate	. ND	10	µg/L	1	6/29/2007 5:13:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 5:13:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 5:13:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 5:13:00 PM
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	6/29/2007 5:13:00 PM
TIC: unknown	20	0 B	μg/L	1	6/29/2007 5:13:00 PM
SP/CLP TCL VOLATILE WATER		SW8260E	3		Analyst: MRN
Chloromethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Vinyl chloride	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Bromomethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Chloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Acetone	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1,1-Dichloroethene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Carbon disulfide	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Methylene chloride	ND	50	μg/L	5	6/19/2007 1:34:00 PM
trans-1,2-Dichloroethene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1,1-Dichloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
2-Butanone	ND	50	μg/L	5	6/19/2007 1:34:00 PM

Approved By:

PFF

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 5 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: Lu En

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-002

Date: 05-Jul-07

Client Sample ID: MW-3

Collection Date: 6/14/2007 4:22:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW82	60B		Analyst: MRN
cis-1,2-Dichloroethene	310	50	μg/L	5	6/19/2007 1:34:00 PM
Chloroform	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1.1.1-Trichloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Carbon tetrachloride	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Benzene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1,2-Dichloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Trichloroethene	360	50	μg/L	5	6/19/2007 1:34:00 PM
1,2-Dichloropropane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Bromodichloromethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
4-Methyl-2-pentanone	ND	50	μg/L	5	6/19/2007 1:34:00 PM
cis-1,3-Dichloropropene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Toluene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
trans-1,3-Dichloropropene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1.1,2-Trichloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
2-Hexanone	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Tetrachloroethene	470	50	μg/L	5	6/19/2007 1:34:00 PM
Dibromochloromethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Chlorobenzene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Ethylbenzene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
m,p-Xylene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
o-Xylene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Styrene	ND	50	μg/L	5	6/19/2007 1:34:00 PM
Bromoform	ND	50	μg/L	5	6/19/2007 1:34:00 PM
1,1,2,2-Tetrachloroethane	ND	50	μg/L	5	6/19/2007 1:34:00 PM

NOTES

The reporting limits were raised due to the high concentration of target compounds.

TICS: No compounds were detected.

Approved By: ___

Qualifiers:

.

* Low Level

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 6 of 36

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-003

Date: 05-Jul-07

Client Sample ID: MW-6

Collection Date: 6/15/2007 1:12:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual U	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW3	520)	Analyst: KL
Phenol	ND	10	μ	ıg/L `	1	6/29/2007 5:57:00 PM
Bis(2-chloroethyl)ether	ND	10	μ	ıg/L	1	6/29/2007 5:57:00 PN
2-Chlorophenol	ND	10	μ	ıg/L	1	6/29/2007 5:57:00 PN
1,3-Dichlorobenzene	ND	10		ıg/L	1	6/29/2007 5:57:00 PM
1,4-Dichlorobenzene	ND	10		ıg/L	1	6/29/2007 5:57:00 PM
1,2-Dichlorobenzene	ND	10		ıg/L	1	6/29/2007 5:57:00 PM
2-Methylphenol	ND	10		ıg/L	1	6/29/2007 5:57:00 PM
N-Nitrosodi-n-propylamine	ND	10		ıg/L	1	6/29/2007 5:57:00 PM
Hexachloroethane	ND	10	μ	g/L	1	6/29/2007 5:57:00 PM
Nitrobenzene	ND	10	μ	ig/L	1	6/29/2007 5:57:00 PM
Isophorone	ND	10		g/L	1	6/29/2007 5:57:00 PM
2-Nitrophenol	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4-Dimethylphenol	ND	10	-	g/L	1	6/29/2007 5:57:00 PM
Bis(2-chloroethoxy)methane	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4-Dichlorophenol	ND	10		g/L	1	6/29/2007 5:57:00 PM
1,2,4-Trichlorobenzene	ND	10		g/L	1	6/29/2007 5:57:00 PM
Naphthalene	ND	10		g/L	1	6/29/2007 5:57:00 PM
4-Chloroaniline	ND	10		g/L	1	6/29/2007 5:57:00 PM
Hexachlorobutadiene	ND	10		g/L	1	6/29/2007 5:57:00 PM
4-Chloro-3-methylphenol	ND	10		g/L	1	6/29/2007 5:57:00 PM
2-Methylnaphthalene	ND	10		g/L	1	6/29/2007 5:57:00 PM
Hexachlorocyclopentadiene	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4,6-Trichlorophenol	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4,5-Trichlorophenol	ND	10		g/L	1	6/29/2007 5:57:00 PM
2-Chloronaphthalene	ND	10		g/L	1	6/29/2007 5:57:00 PM
2-Nitroaniline	ND	24		g/L	1	6/29/2007 5:57:00 PM
Dimethyl phthalate	ND	10		g/L	1	6/29/2007 5:57:00 PM
Acenaphthylene	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,6-Dinitrotoluene	ND	10		g/L	1	6/29/2007 5:57:00 PM
3-Nitroaniline	ND	24		g/L	1	6/29/2007 5:57:00 PM
Acenaphthene	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4-Dinitrophenol	ND	24		g/L	1	6/29/2007 5:57:00 PM
4-Nitrophenol	ND	24		g/L	1	6/29/2007 5:57:00 PM
Dibenzofuran	ND	10		g/L	1	6/29/2007 5:57:00 PM
2,4-Dinitrotoluene	ND	10]/L	1	6/29/2007 5:57:00 PM
Diethyl phthalate	ND	10	μg		1	6/29/2007 5:57:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg		1	6/29/2007 5:57:00 PM
Fluorene	ND	10	μg		1	6/29/2007 5:57:00 PM
4-Nitroaniline	ND	24	μg		1	6/29/2007 5:57:00 PM

Approved By:

PFF

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 7 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Lab Order:

Lu Engineers U0706166

Project:

CLIENT:

Former Churchville Ford Facility

Lab ID:

U0706166-003

Date: 05-Jul-07

Client Sample ID: MW-6

Collection Date: 6/15/2007 1:12:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW352		Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 5:57:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 5:57:00 PM
4-Bromophenyl phenyl ether	ND	10	µg/L	1	6/29/2007 5:57:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 5:57:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 5:57:00 PM
3.3*-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 5:57:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 5:57:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 5:57:00 PM
NOTES: TICS: No compounds were detected.					
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	10	µg/L	1	6/19/2007 2:22:00 PM
Vinyl chloride	ND	10	μg/L	1	6/19/2007 2:22:00 PM
Bromomethane	ND	10	μg/L	1	6/19/2007 2:22:00 PM
Chloroethane	ND	10	μg/L	1	6/19/2007 2:22:00 PM
Acetone	ND	10	μg/L	1	6/19/2007 2:22:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/19/2007 2:22:00 PM
Carbon disulfide	ND	10	μg/L	1	6/19/2007 2:22:00 PM
Methylene chloride	ND	10	µg/L	1	6/19/2007 2:22:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 2:22:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/19/2007 2:22:00 PM

Ap	pr	ov	ed	Вy
----	----	----	----	----

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

Date: 7-5-07 Page 8 of 36

Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-003

Date: 05-Jul-07

Client Sample ID: MW-6

Collection Date: 6/15/2007 1:12:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8	260B			Analyst: MRN
2-Butanone	ND	10		µg/L	1	6/19/2007 2:22:00 PM
cis-1,2-Dichloroethene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Chloroform	ND	10		μg/L	1	6/19/2007 2:22:00 PM
1,1,1-Trichloroethane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Carbon tetrachloride	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Benzene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
1,2-Dichloroethane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Trichloroethene	8	10	J	μg/L	1	6/19/2007 2:22:00 PM
1,2-Dichloropropane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Bromodichloromethane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
4-Methyl-2-pentanone	ND	10		μg/L	1	6/19/2007 2:22:00 PM
cis-1,3-Dichloropropene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Toluene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
trans-1,3-Dichloropropene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
1,1,2-Trichloroethane	ND	10		µg/L	1	6/19/2007 2:22:00 PM
2-Hexanone	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Tetrachloroethene	35	10		μg/L	1	6/19/2007 2:22:00 PM
Dibromochloromethane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Chlorobenzene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Ethylbenzene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
m,p-Xylene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
o-Xylene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Styrene	ND	10		μg/L	1	6/19/2007 2:22:00 PM
Bromoform	ND	10		μg/L	1	6/19/2007 2:22:00 PM
1,1,2,2-Tetrachioroethane	ND	10		μg/L	1	6/19/2007 2:22:00 PM
TIC: unknown	7.0	0		μg/L	1	6/19/2007 2:22:00 PM

Approved By:

Qualifiers:

Low Level

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date:

7-5-07

Page 9 of 36

Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits

Date: 05-Jul-07

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-004

Client Sample ID: MW-13

Collection Date: 6/15/2007 10:06:00 AM

Matrix: WATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	520)	Analyst: KL
Phenol	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2-Chlorophenol	ND	10	µg/L	1	6/29/2007 6:40:00 PM
1,3-Dichlorobenzene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
1,4-Dichlorobenzene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
1.2-Dichlorobenzene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
2-Methylphenol	ND	10	µg/L	1	6/29/2007 6:40:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Isophorone	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2-Nitrophenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2.4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 6:40:00 PM
Dimethyl phthalate	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Acenaphthylene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
2.6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
3-Nitroaniline	ND	24	µg/L	1	6/29/2007 6:40:00 PM
Acenaphthene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 6:40:00 PM
4-Nitrophenol	ND	24	μg/L	1	6/29/2007 6:40:00 PM
Dibenzofuran	ND	10	μg/L	1	6/29/2007 6:40:00 PM
2.4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 6:40:00 PN
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 6:40:00 PN
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 6:40:00 PN
Fluorene	ND	10	μg/L	1	6/29/2007 6:40:00 PN
4-Nitroaniline	ND	24	μg/L	1	6/29/2007 6:40:00 PM

Approved By:

Qualifiers:

DEE

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 10 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-004

Date: 05-Jul-07

Client Sample ID: MW-13

Collection Date: 6/15/2007 10:06:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	µg/L	1	6/29/2007 6:40:00 PM
N-Nitrosodiphenylamine	ND	10	µg/L	1	6/29/2007 6:40:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Hexachlorobenzene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 6:40:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Anthracene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Carbazole	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Di-n-butyl phthalate	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 6:40:00 PM
3,3'-Dichlorobenzidine	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Benzo(b)fluoranthene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 6:40:00 PM
Dibenz(a,h)anthracene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Benzo(g,h,i)perylene	ND	10	µg/L	1	6/29/2007 6:40:00 PM
(3+4)-Methylphenol	ND	10	µg/L	1	6/29/2007 6:40:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.14)	20	0	µg/L	1.	6/29/2007 6:40:00 PM
TIC: unknown (13.3)	11	0	µg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.41)	29	0	μg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.53)	18	0	µg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.66)	8.1	0	μg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.92)	39	0	μg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (13.98)	64	0	µg/L	1	6/29/2007 6:40:00 PM
TIC: unknown (14.25)	10	0	µg/L	1	6/29/2007 6:40:00 PM 6/29/2007 6:40:00 PM
TIC: unknown (14.29)	11	0	μg/L	1	6/29/2007 6:40:00 PM
SP/CLP TCL VOLATILE WATER		SW8260B			
Chloromethane	ND	10	μg/L	1	Analyst: MRN 6/18/2007 2:57:00 PM
Vinyl chloride	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Bromomethane	ND	10	µg/L	1	6/18/2007 2:57:00 PM

Approved By:

DEF

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 11 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 05-Jul-07

CLIENT:

Lu Engineers

Lab Order:

U0706166

Former Churchville Ford Facility

Project: Lab ID:

U0706166-004

Client Sample ID: MW-13

Collection Date: 6/15/2007 10:06:00 AM

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260E		Analyst: MRN	
Chloroethane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Acetone	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Carbon disulfide	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Methylene chloride	ND	10	µg/L	1	6/18/2007 2:57:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1,1-Dichloroethane	ND	10	µg/L	1	6/18/2007 2:57:00 PM
2-Butanone	ND	10	μg/L	1	6/18/2007 2:57:00 PM
cis-1,2-Dichloroethene	1	10 J	μg/L	1	6/18/2007 2:57:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1.1.1-Trichloroethane	ND	10	µg/L	1	6/18/2007 2:57:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Benzene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Trichloroethene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/18/2007 2:57:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
1.1.2-Trichloroethane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
2-Hexanone	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Tetrachloroethene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Chlorobenzene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Ethylbenzene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
m,p-Xylene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
o-Xylene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Styrene	ND	10	μg/L	1	6/18/2007 2:57:00 PM
Bromoform	ND	10	µg/L	1	6/18/2007 2:57:00 PM
1,1,2,2-Tetrachloroethane TIC: unknown	5.3	0	μg/L	1	6/18/2007 2:57:00 PM

Approved	By:
Qualifiers:	*

Low Level

Analyte detected in the associated Method Blank

В Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit ND

Date:

7-5-07

Page 12 of 36

Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-005

Date: 05-Jul-07

Client Sample ID: MW-21

Collection Date: 6/15/2007 10:30:00 AM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	····	SW827	'0C (SW	3520)	Analyst: KL
Phenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2-Methylphenol	ND	10	µg/L	1	6/29/2007 7:23:00 PM
N-Nitrosodi-n-propylamine	· ND	10	μg/L	1	6/29/2007 7:23:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Isophorone	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2-Nitrophenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2-Methylnaphthalene	ND	10	μg/Ĺ	1	6/29/2007 7:23:00 PM
Hexachlorocyclopentadiene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2,4,5-Trichlorophenol	ND	10	µg/L	1	6/29/2007 7:23:00 PM
2-Chloronaphthalene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 7:23:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Acenaphthylene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
3-Nitroaniline	ND	24	μg/L	1	6/29/2007 7:23:00 PM
Acenaphthene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 7:23:00 PM
4-Nitrophenol	ND	24	μg/L	1	6/29/2007 7:23:00 PM
Dibenzofuran	ND	10	μg/L	1	
2,4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 7:23:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L μg/L	1	6/29/2007 7:23:00 PM
Fluorene	ND	10		1	6/29/2007 7:23:00 PM
4-Nitroaniline	ND	24	μg/L μg/L	1	6/29/2007 7:23:00 PM 6/29/2007 7:23:00 PM

Approved By:

PFF

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 13 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-005

Date: 05-Jul-07

Client Sample ID: MW-21

Collection Date: 6/15/2007 10:30:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3		Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 7:23:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 7:23:00 PM
4-Bromophenyl phenyl ether	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Pentachlorophenol	ND	24	µg/L	1	6/29/2007 7:23:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 7:23:00 PM
3.3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Chrysene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Benzo(k)fluoranthene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Benzo(a)pyrene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Dibenz(a,h)anthracene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
Benzo(g,h,i)perylene	ND	10	µg/L	1	6/29/2007 7:23:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 7:23:00 PM
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	6/29/2007 7:23:00 PM
TIC: unknown (16.9)	2.6	0	µg/L	1	6/29/2007 7:23:00 PM
TIC: unknown (22.3)	7.5	0	µg/L	1	6/29/2007 7:23:00 PM
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Vinyl chloride	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Bromomethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Chloroethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Acetone	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Carbon disulfide	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Methylene chloride	ND	10	μg/L	1	6/18/2007 3:46:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 14 of 36 Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-005

Date: 05-Jul-07

Client Sample ID: MW-21

Collection Date: 6/15/2007 10:30:00 AM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	60B		Analyst: MRN
2-Butanone	ND	10	μg/L	1	6/18/2007 3:46:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,1,1-Trichloroethane	ND	10	µg/L	1	6/18/2007 3:46:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Benzene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Trichloroethene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/18/2007 3:46:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
2-Hexanone	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Tetrachloroethene	ND	10	µg/L	1	6/18/2007 3:46:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Chlorobenzene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Ethylbenzene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
m,p-Xylene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
o-Xylene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Styrene	ND	10	μg/L	1	6/18/2007 3:46:00 PM
Bromoform	ND	10	μg/L	1	6/18/2007 3:46:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μ g/L	1	6/18/2007 3:46:00 PM
NOTES:			F3.—	•	5, 15/2001 0.40,50 FW

Approved By:

Qualifiers:

PFF

Low Level

TICS: No compounds were detected.

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date:

Page 15 of 36

** Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Former Churchville Ford Facility

Project: Lab ID:

U0706166-006

Date: 05-Jul-07

Client Sample ID: MW-22

Collection Date: 6/15/2007 12:57:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	520)	Analyst: KL
Phenol	ND	10	µg/L	1	6/29/2007 8:06:00 PM
Bis(2-chloroethyl)ether	ND	10	µg/L	1	6/29/2007 8:06:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
1.4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
1.2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2-Methylphenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Isophorone	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2-Nitrophenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2.4-Dichlorophenol	ND	. 10	μg/L	1	6/29/2007 8:06:00 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	1	6/29/2007 8:06:00 PM
Naphthalene	ND	10	µg/L	1	6/29/2007 8:06:00 PM
4-Chloroaniline	ND	10	µg/L	1	6/29/2007 8:06:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:06:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Acenaphthylene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
2.6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
3-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:06:00 PM
Acenaphthene	ND	10	µg/L	1	6/29/2007 8:06:00 PM
2.4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 8:06:00 PM
4-Nitrophenol	ND	24	μg/L	1	6/29/2007 8:06:00 PM
Dibenzofuran	ND	10	µg/L	1	6/29/2007 8:06:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Fluorene 4-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:06:00 PM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 16 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-006

Date: 05-Jul-07

Client Sample ID: MW-22

Collection Date: 6/15/2007 12:57:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	3520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 8:06:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 8:06:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 8:06:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 8:06:00 PM
(3+4)-Methylphenol	ND	10	µg/L	1	6/29/2007 8:06:00 PM
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	6/29/2007 8:06:00 PM
TIC: Methane, triiodo-	53	0	μg/L	1	6/29/2007 8:06:00 PM
TIC: unknown (13.51)	20	0	μg/L	1	6/29/2007 8:06:00 PM
TIC: unknown (14.32)	19	0	μg/L	1	6/29/2007 8:06:00 PM
SP/CLP TCL VOLATILE WATER		SW8260E	}		Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Vinyl chloride	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Bromomethane	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Chloroethane	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Acetone	ND	10	μg/L	1	6/18/2007 4:34:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Carbon disulfide	ND	10	μg/L	1	6/18/2007 4:34:00 PM
Methylene chloride	ND	10	μg/L	1	6/18/2007 4:34:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 4:34:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 7-5-07

Page 17 of 36

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-006

Date: 05-Jul-07

Client Sample ID: MW-22

Collection Date: 6/15/2007 12:57:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8	260B			Analyst: MRN
	ND	10		μg/L	1	6/18/2007 4:34:00 PM
1,1-Dichloroethane	ND	10		μg/L	1	6/18/2007 4:34:00 PM
2-Butanone	ND	10		μg/L	1	6/18/2007 4:34:00 PM
cis-1,2-Dichloroethene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
Chloroform	ND	10		µg/L	1	6/18/2007 4:34:00 PM
1,1,1-Trichloroethane	ND ND	10		μg/L	1	6/18/2007 4:34:00 PM
Carbon tetrachloride	ND	10		µg/L	1	6/18/2007 4:34:00 PM
Benzene	ND ND	10		μg/L	1	6/18/2007 4:34:00 PM
1,2-Dichloroethane	ND ND	10		μg/L	1	6/18/2007 4:34:00 PM
Trichloroethene		10		μg/L	1	6/18/2007 4:34:00 PM
1,2-Dichloropropane	ND	10		μg/L	1	6/18/2007 4:34:00 PM
Bromodichloromethane	ND				1	6/18/2007 4:34:00 PM
4-Methyl-2-pentanone	ND	10		μg/L	1	6/18/2007 4:34:00 PM
cis-1,3-Dichloropropene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
Toluene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
trans-1,3-Dichloropropene	ND	10		μg/L	•	6/18/2007 4:34:00 PM
1,1,2-Trichloroethane	ND	10		μg/L 	1	6/18/2007 4:34:00 PM
2-Hexanone	ND	10		µg/L	1	6/18/2007 4:34:00 PM
Tetrachloroethene	ND	10		µg/L	1	•• •• • • • • • • • • • • • • • • • • •
Dibromochloromethane	ND	10		µg/L	1	6/18/2007 4:34:00 PM
Chlorobenzene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
Ethylbenzene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
m,p-Xylene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
o-Xylene	ND	10		µg/L	1	6/18/2007 4:34:00 PM
Styrene	ND	10		μg/L	1	6/18/2007 4:34:00 PM
Bromoform	ND	10		µg/L	1	6/18/2007 4:34:00 PM
1,1,2,2-Tetrachloroethane	ND	10		µg/L	1	6/18/2007 4:34:00 PM

Approved By:

000

Qualifiers:

Low Level

TICS: No compounds were detected.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 18 of 36

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-007

Date: 05-Jul-07

Client Sample ID: MW-JCL-1

Collection Date: 6/15/2007 10:40:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	270C (SW	/3520)	Analyst: KL
Phenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Methylphenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Isophorone	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Nitrophenol	ND	10	µg/L	1	6/29/2007 8:49:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:49:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Acenaphthylene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
3-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:49:00 PM
Acenaphthene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 8:49:00 PM
4-Nitrophenol	ND	24	μg/L	1	6/29/2007 8:49:00 PM
Dibenzofuran	ND	10	μg/L	1	6/29/2007 8:49:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 8:49:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Fluorene	ND	10	μg/L	1	6/29/2007 8:49:00 PM 6/29/2007 8:49:00 PM
4-Nitroaniline	ND	24	μg/L	1	6/29/2007 8:49:00 PM 6/29/2007 8:49:00 PM

Approved By:

PFI

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 19 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 05-Jul-07

CLIENT:

Lu Engineers

Client Sample ID: MW-JCL-1

Lab Order:

U0706166

Collection Date: 6/15/2007 10:40:00 AM

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-007

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (S	W3520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 8:49:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 8:49:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 8:49:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 8:49:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Bis(2-ethylhexyl)phthalate	2	10	J µg/L	1	6/29/2007 8:49:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Benzo(a)pyrene	ND	10	µg/∟	1	6/29/2007 8:49:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	µg/∟	1	6/29/2007 8:49:00 PM
Dibenz(a,h)anthracene	ND	10	µg/L	1	6/29/2007 8:49:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 8:49:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 8:49:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 8:49:00 PM
TIC: Caprolactam	20	0	μg/L	1	6/29/2007 8:49:00 PM
TIC: unknown	9.1	0	B μg/L	1	6/29/2007 8:49:00 PM
ASP/CLP TCL VOLATILE WATER		SW826	0B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Vinyl chloride	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Bromomethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Chloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Acetone	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Carbon disulfide	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Methylene chloride	ND	10	μg/L	1	6/18/2007 5:23:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM

Approved By:

Qualifiers:

DEE

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 20 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-007

Date: 05-Jul-07

Client Sample ID: MW-JCL-1

Collection Date: 6/15/2007 10:40:00 AM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	0B		Analyst: MRN
2-Butanone	ND	10	μg/L	1	6/18/2007 5:23:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Benzene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Trichloroethene	ND	10	µg/L	1	6/18/2007 5:23:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/18/2007 5:23:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
2-Hexanone	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Tetrachloroethene	ND	10	µg/L	1	6/18/2007 5:23:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Chlorobenzene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Ethylbenzene	ND	10	µg/L	1	6/18/2007 5:23:00 PM
m,p-Xylene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
o-Xylene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Styrene	ND	10	μg/L	1	6/18/2007 5:23:00 PM
Bromoform	ND	10	μg/L	1	6/18/2007 5:23:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	6/18/2007 5:23:00 PM
TIC: unknown	5.4	0	μg/L	1	6/18/2007 5:23:00 PM

Approved By:

PFF

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 21 of 36

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
 - Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-008

Date: 05-Jul-07

Client Sample ID: MW-JCL-2

Collection Date: 6/14/2007 4:28:00 PM

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
CL-SEMIVOLATILE ORGANICS		SW82700	•	•	Analyst: KL
Phenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Chlorophenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Methylphenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
N-Nitrosodi-n-propylamine	· ND	10	μg/L	1	6/29/2007 9:33:00 PM
Hexachloroethane	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Nitrobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Isophorone	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Nitrophenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
4-Chloroaniline	ND	10	µg/L	1	6/29/2007 9:33:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2.4.6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
2-Nitroaniline	ND	24	μg/L	1	6/29/2007 9:33:00 PM
Dimethyl phthalate	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Acenaphthylene	ND	10	μg/L	1	6/29/2007 9:33:00 PN
2,6-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
3-Nitroaniline	ND	24	μg/L	1	6/29/2007 9:33:00 PM
Acenaphthene	ND	10	μg/L	1	6/29/2007 9:33:00 PN
2,4-Dinitrophenol	ND	24	μg/L	1	6/29/2007 9:33:00 PM
· ·	ND	24	μg/L	1	6/29/2007 9:33:00 PM
4-Nitrophenol Dibenzofuran	ND	10	μg/L	1	6/29/2007 9:33:00 PM
	ND	10	μg/L	1	6/29/2007 9:33:00 PN
2,4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Diethyl phthalate	ND	10	µg/L	1	6/29/2007 9:33:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Fluorene 4-Nitroaniline	ND ND	24	μg/L	1	6/29/2007 9:33:00 PN

Approved By:

Qualifiers: *

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page.22 of 36

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-008

Date: 05-Jul-07

Client Sample ID: MW-JCL-2

Collection Date: 6/14/2007 4:28:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW	(3520)	Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	µg/L	1	6/29/2007 9:33:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 9:33:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 9:33:00 PN
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Pentachlorophenol	ND	24	µg/L	1	6/29/2007 9:33:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 9:33:00 PM
3,3'-Dichlorobenzidine	ND	10	µg/L	1	6/29/2007 9:33:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	6/29/2007 9:33:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Benzo(b)fluoranthene	ND	10	µg/L	1	6/29/2007 9:33:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 9:33:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 9:33:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 9:33:00 PM
TIC: unknown (13.51)	20	0	μg/L	1	
TIC: unknown (13.99)	11	0	μg/L	1	6/29/2007 9:33:00 PM 6/29/2007 9:33:00 PM
CDIOLD TOLLYOL ATH THE		•	P9, L	•	0/29/2007 9.33:00 PM
SP/CLP TCL VOLATILE WATER Chloromethane		SW8260E			Analyst: MRN
	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Vinyl chloride Bromomethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Chloroethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Acetone	ND	10	µg/L	1	6/18/2007 6:12:00 PM
1,1-Dichloroethene	ND	10	µg/L	1	6/18/2007 6:12:00 PM
Carbon disulfide	ND	10	µg/L	1	6/18/2007 6:12:00 PM
Methylene chloride	ND	10	µg/L	1	6/18/2007 6:12:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-67

Page 23 of 36

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-008

Date: 05-Jul-07

Client Sample ID: MW-JCL-2

Collection Date: 6/14/2007 4:28:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
2-Butanone	ND	10	μg/L	1	6/18/2007 6:12:00 PM
cis-1,2-Dichloroethene	60	10	μg/L	1	6/18/2007 6:12:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 6:12:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Benzene	ND	10	μ g/L	1	6/18/2007 6:12:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Trichloroethene	42	10	μg/L	1	6/18/2007 6:12:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/18/2007 6:12:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
2-Hexanone	32	10	μg/L	1	6/18/2007 6:12:00 PM
Tetrachloroethene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Chlorobenzene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
Ethylbenzene	ND	10	μg/L	1	6/18/2007 6:12:00 PM
m,p-Xylene		10	μg/L	1	6/18/2007 6:12:00 PM
o-Xylene	ND			1	6/18/2007 6:12:00 PM
Styrene	ND	10	µg/L	1	6/18/2007 6:12:00 PM
Bromoform	ND	10	µg/L	1	6/18/2007 6:12:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	0/10/200/ 0.12.00 FW

NOTES:

TICS: No compounds were detected.

Approved By:
Qualifiers: *

DEE

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: ~

7-5-07

Page 24 of 36

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-009

Date: 05-Jul-07

Client Sample ID: MW-JCL-3

Collection Date: 6/15/2007 1:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW:	3520)	Applied Id
Phenol	ND	10	μg/L	1	Analyst: KL 6/29/2007 10:16:00 PM
Bis(2-chloroethyl)ether	ND	10	µg/L	1	6/29/2007 10:16:00 PM
2-Chlorophenol	ND	10	µg/L	1	6/29/2007 10:16:00 PM
1,3-Dichlorobenzene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	
1,2-Dichlorobenzene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
2-Methylphenol	ND	10	µg/L	1	6/29/2007 10:16:00 PM 6/29/2007 10:16:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	
Hexachloroethane	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Nitrobenzene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
Isophorone	ND	10	μg/L		6/29/2007 10:16:00 PM
2-Nitrophenol	ND	10	μg/L μg/L	1 1	6/29/2007 10:16:00 PM
2,4-Dimethylphenol	ND	10	=		6/29/2007 10:16:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	6/29/2007 10:16:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	6/29/2007 10:16:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Naphthalene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
4-Chloroaniline	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Hexachlorobutadiene	ND		µg/L	1	6/29/2007 10:16:00 PM
4-Chloro-3-methylphenol	ND	10 10	μg/L	1	6/29/2007 10:16:00 PM
2-Methylnaphthalene	ND		µg/L	1	6/29/2007 10:16:00 PM
Hexachlorocyclopentadiene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	6/29/2007 10:16:00 PM
2,4,5-Trichlorophenol		10	µg/L 	1	6/29/2007 10:16:00 PM
2-Chloronaphthalene	ND	10	µg/L 	1	6/29/2007 10:16:00 PM
2-Nitroaniline	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Dimethyl phthalate	ND	24	µg/L	1	6/29/2007 10:16:00 PM
Acenaphthylene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
2,6-Dinitrotoluene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
3-Nitroaniline	ND	10	µg/L	1	6/29/2007 10:16:00 PM
	ND	24	µg/L	1	6/29/2007 10:16:00 PM
Acenaphthene	ND	10	µg/L	1	6/29/2007 10:16:00 PM
2,4-Dinitrophenol	ND	24	µg/L	1	6/29/2007 10:16:00 PM
4-Nitrophenol	ND	24	µg/L	1	6/29/2007 10:16:00 PM
Dibenzofuran	ND	10	µg/L	1	6/29/2007 10:16:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Diethyl phthalate	ND	10	μg/L	1	6/29/2007 10:16:00 PM
l-Chlorophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 10:16:00 PM
luorene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
I-Nitroaniline	ND	24	µg/L	1	6/29/2007 10:16:00 PM

Approved By:

Qualifiers:

PFF

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 25 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Former Churchville Ford Facility

Project: Lab ID:

U0706166-009

Date: 05-Jul-07

Client Sample ID: MW-JCL-3

Collection Date: 6/15/2007 1:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3		Analyst: KL
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	6/29/2007 10:16:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	6/29/2007 10:16:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Hexachlorobenzene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Pentachlorophenol	ND	24	μg/L	1	6/29/2007 10:16:00 PM
Phenanthrene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Anthracene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Carbazole	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Fluoranthene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Pyrene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	6/29/2007 10:16:00 PM
3.3'-Dichlorobenzidine	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Benz(a)anthracene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Chrysene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	6/29/2007 10:16:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	6/29/2007 10:16:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	6/29/2007 10:16:00 PM
TIC: Caprolactam	1100	0	μg/L	1	6/29/2007 10:16:00 PM
TIC: Nonadecane	2.2	0	μg/L	1	6/29/2007 10:16:00 PM
TIC: Phenol, 2,4-bis(1,1-	2.1	0	μg/L	1	6/29/2007 10:16:00 PM
dimethylethyl)- TIC: unknown (13.52)	20	0	μg/L	1	6/29/2007 10:16:00 PM
TIC: unknown (25.31)	2.1	0	μg/L	1	6/29/2007 10:16:00 PM
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/19/2007 3:10:00 PM
Vinyl chloride	ND	10	μg/L	1	6/19/2007 3:10:00 PM
Bromomethane	ND	10	μg/L	1	6/19/2007 3:10:00 PM
Chloroethane	ND	10	µg/L	1	6/19/2007 3:10:00 PM
Acetone	ND	10	μg/L	1	6/19/2007 3:10:00 PM
1,1-Dichloroethene	ND	10	µg/L	1	6/19/2007 3:10:00 PM
Carbon disulfide	ND	10	μg/L	1	6/19/2007 3:10:00 PM

Approved By:

Qualifiers:

PFI

Low Level

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 26 of 36

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-009

Date: 05-Jul-07

Client Sample ID: MW-JCL-3

Collection Date: 6/15/2007 1:15:00 PM

Matrix: WATER

	SW8: 10 10 10 10 10 10 10 10 10 10 10 10 10	260B	1 1 1 1 1 1 1 1 1	Analyst: MRN 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10 10	µg/L µg/L µg/L µg/L µg/L µg/L	1 1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10	hg/r ha/r ha/r ha/r ha/r	1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10 10	μg/L μg/L μg/L μg/L μg/L	1 1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10	μg/L μg/L μg/L	1 1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10 10	μg/L μg/L μg/L	1 1	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
	10 10	µg/L µg/L	1	6/19/2007 3:10:00 PM
)	10	μg/L	•	
)			,	0/19/2007 3:10:00 PM
)	. •		1	6/19/2007 3:10:00 PM
,	10	μg/L	1	6/19/2007 3:10:00 PM
	10	µg/L	1	6/19/2007 3:10:00 PM
	10	µg/L	1	
)	10	μg/L	1	6/19/2007 3:10:00 PM
)	10	μg/L	1	6/19/2007 3:10:00 PM
)	10	μg/L	1	6/19/2007 3:10:00 PM
)	10	µg/L	1	6/19/2007 3:10:00 PM
		. •	•	6/19/2007 3:10:00 PM
		, •		6/19/2007 3:10:00 PM
	-		•	6/19/2007 3:10:00 PM
	-			6/19/2007 3:10:00 PM
	-	, -		6/19/2007 3:10:00 PM
			·	6/19/2007 3:10:00 PM
				6/19/2007 3:10:00 PM
			· ·	6/19/2007 3:10:00 PM
			•	6/19/2007 3:10:00 PM 6/19/2007 3:10:00 PM
		10 10 10 10 10 10 10 10 10 10	10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L 10 µg/L	10

Approved By:

Qualifiers: Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PFF

Date:

7-5-07

Page 27 of 36

** Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits

Lu Engineers

Lab Order:

U0706166

Former Churchville Ford Facility

Project: Lab ID:

CLIENT:

U0706166-011

Date: 05-Jul-07

Client Sample ID: FB-3

Collection Date: 6/14/2007 4:15:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35		Analyst: LD
Phenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Chlorophenol	ND	10	µg/L	1	7/2/2007 6:24:00 PM
1.3-Dichlorobenzene	ND	10	µg/L	1	7/2/2007 6:24:00 PM
1.4-Dichlorobenzene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
1.2-Dichlorobenzene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Methylphenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Hexachloroethane	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Nitrobenzene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Isophorone	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Nitrophenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Naphthalene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
4-Chloroaniline	ND	10	µg/L	1	7/2/2007 6:24:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2,4,6-Trichlorophenol	ND	10	µg/L	1	7/2/2007 6:24:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2-Nitroaniline	ND	24	μg/L	1	7/2/2007 6:24:00 PM
Dimethyl phthalate	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Acenaphthylene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2.6-Dinitrotoluene	ND	10	µg/L	1	7/2/2007 6:24:00 PM
3-Nitroaniline	ND	24	μg/L	1	7/2/2007 6:24:00 PM
Acenaphthene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	7/2/2007 6:24:00 PM
4-Nitrophenol	ND	24	μg/L	1	7/2/2007 6:24:00 PM
Dibenzofuran	ND	10	μg/L	1	7/2/2007 6:24:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Diethyl phthalate	ND	10	μg/L	1	7/2/2007 6:24:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	7/2/2007 6:24:00 PM
	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Fluorene 4-Nitroaniline	ND	24	μg/L	1	7/2/2007 6:24:00 PM

Approved By:

Qualifiers:

PFF

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 28 of 36

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-011

Date: 05-Jul-07

Client Sample ID: FB-3

Collection Date: 6/14/2007 4:15:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SW3	3520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	7/2/2007 6:24:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	7/2/2007 6:24:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Hexachlorobenzene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Pentachlorophenol	ND	24	μg/L	1	7/2/2007 6:24:00 PM
Phenanthrene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Anthracene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Carbazole	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Di-n-butyl phthalate	ND	10	µg/L	1	7/2/2007 6:24:00 PM
Fluoranthene	ND	10	µg/L	1	7/2/2007 6:24:00 PM
Pyrene	ND	10	µg/L	1	7/2/2007 6:24:00 PM
Butyl benzyl phthalate	ND	10	µg/L	1	7/2/2007 6:24:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Benz(a)anthracene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Chrysene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Benzo(b)fluoranthene	ND	10	µg/L	1	7/2/2007 6:24:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	7/2/2007 6:24:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	7/2/2007 6:24:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	7/2/2007 6:24:00 PM
TIC: Phenol, 2,4-bis(1,1-dimethylethyl)-	8.8	0	µg/L	1	7/2/2007 6:24:00 PM
SP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Vinyl chloride	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Bromomethane	ND	10	μg/L	- 1	6/18/2007 7:00:00 PM
Chloroethane	ND	10	µg/L	1	6/18/2007 7:00:00 PM
Acetone	ND	10	µg/L	1	6/18/2007 7:00:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Carbon disulfide	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Methylene chloride	ND	10	μg/L	1	6/18/2007 7:00:00 PM
trans-1,2-Dichloroethene	ND	10	µg/L	1	6/18/2007 7:00:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
2-Butanone	ND	10	µg/L	1	6/18/2007 7:00:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 29 of 36

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 05-Jul-07

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-011

Client Sample ID: FB-3

Collection Date: 6/14/2007 4:15:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 7:00:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Benzene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
1.2-Dichloroethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Trichloroethene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/18/2007 7:00:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/18/2007 7:00:00 PM
2-Hexanone	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Z-nexamone Tetrachloroethene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Dibromochloromethane	ND	10	µg/L	1	6/18/2007 7:00:00 PM
Chlorobenzene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
	ND	10	μg/L	1	6/18/2007 7:00:00 PM
Ethylbenzene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
m,p-Xylene	ND	10	μg/L	1	6/18/2007 7:00:00 PM
o-Xylene	ND ND	10	μg/L	1	6/18/2007 7:00:00 PM
Styrene	ND	10	µg/L	1	6/18/2007 7:00:00 PM
Bromoform	ND	10	μg/L	1	6/18/2007 7:00:00 PM
1,1,2,2-Tetrachloroethane TIC: unknown	ND 5.7	0	µg/L	1	6/18/2007 7:00:00 PM

Qualifiers:

PFA

Low Leve

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 30 of 36

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

Ų0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-012

Date: 05-Jul-07

Client Sample ID: MW-JCL-1A

Collection Date: 6/15/2007 10:40:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS	SW8270C		.70C (SW	/3520)	Analyst: LD	
Phenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Bis(2-chloroethyl)ether	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Chlorophenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
1,3-Dichlorobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
1,4-Dichlorobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
1,2-Dichlorobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Methylphenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Hexachloroethane	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Nitrobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Isophorone	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Nitrophenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2,4-Dimethylphenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2,4-Dichlorophenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
1,2,4-Trichlorobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Naphthalene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
4-Chloroaniline	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Hexachlorobutadiene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
4-Chloro-3-methylphenoi	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Methylnaphthalene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Hexachlorocyclopentadiene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2,4,6-Trichlorophenol	ND	10	µg/L	1	7/2/2007 7:07:00 PM	
2,4,5-Trichlorophenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Chloronaphthalene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2-Nitroaniline	ND	24	μg/L	1	7/2/2007 7:07:00 PM	
Dimethyl phthalate	ND	10	µg/L	1	7/2/2007 7:07:00 PM	
Acenaphthylene	ND	10	μg/L	1 .	7/2/2007 7:07:00 PM	
2,6-Dinitrotoluene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
3-Nitroaniline	ND	24	μg/L	1	7/2/2007 7:07:00 PM	
Acenaphthene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2,4-Dinitrophenol	ND	24	μg/L	1	7/2/2007 7:07:00 PM	
4-Nitrophenol	ND	24	μg/L	1	7/2/2007 7:07:00 PM	
Dibenzofuran	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
2,4-Dinitrotoluene	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Diethyl phthalate	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	7/2/2007 7:07:00 PM	
Fluorene	ND	10	µg/L	1	7/2/2007 7:07:00 PM	
4-Nitroaniline	ND	24	μg/L	1	7/2/2007 7:07:00 PM	

Approved By:

PFF

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 31 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: Lu

Lu Engineers

Lab Order: U0

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-012

Date: 05-Jul-07

Client Sample ID: MW-JCL-1A

Collection Date: 6/15/2007 10:40:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	520)	Analyst: LD
4.6-Dinitro-2-methylphenol	ND	24	µg/L	1	7/2/2007 7:07:00 PM
N-Nitrosodiphenylamine	ND	10	µg/L	1	7/2/2007 7:07:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Hexachlorobenzene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Pentachlorophenol	ND	24	μg/L	1	7/2/2007 7:07:00 PM
Phenanthrene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Anthracene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Carbazole	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Fluoranthene	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Pyrene	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	7/2/2007 7:07:00 PM
3,3'-Dichlorobenzidine	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Benz(a)anthracene	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Chrysene	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Di-n-octyl phthalate	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Benzo(b)fluoranthene	ND	10	µg/L	1	7/2/2007 7:07:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	7/2/2007 7:07:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	7/2/2007 7:07:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	7/2/2007 7:07:00 PM
TIC: Caprolactam	20	0	µg/L	1	7/2/2007 7:07:00 PM
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Vinyl chloride	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Bromomethane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Chloroethane	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Acetone	ND	10	µg/L	1	6/18/2007 7:48:00 PM
1,1-Dichloroethene	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Carbon disulfide	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Methylene chloride	ND	10	µg/L	1	6/18/2007 7:48:00 PM
trans-1,2-Dichloroethene	ND	10	µg/L	1	6/18/2007 7:48:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
2-Butanone	ND	10	μg/L	1	6/18/2007 7:48:00 PM

App	roved	By:
-----	-------	-----

Qualifiers:

PFF

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 32 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-012

Date: 05-Jul-07

Client Sample ID: MW-JCL-1A

Collection Date: 6/15/2007 10:40:00 AM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Chloroform	ND	10	μg/L	1	6/18/2007 7:48:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	. 1	6/18/2007 7:48:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Benzene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
1,2-Dichloroethane	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Trichloroethene	ND	10	µg/L	1	6/18/2007 7:48:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	6/18/2007 7:48:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Toluene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
2-Hexanone	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Tetrachloroethene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Chlorobenzene	ND	10	µg/L	1	6/18/2007 7:48:00 PM
Ethylbenzene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
m,p-Xylene	ND	10	µg/L	1	6/18/2007 7:48:00 PM
o-Xylene	ND	10	μg/L	1	6/18/2007 7:48:00 PM
Styrene	ND -	10	μg/L	1	6/18/2007 7:48:00 PM
Bromoform	ND	10	µg/L	1	6/18/2007 7:48:00 PM
1,1,2,2-Tetrachloroethane	ND	10	µg/L	1	6/18/2007 7:48:00 PM
NOTES:			ha, r	t	0/10/2007 /.46(00 PM

TICS: No compounds were detected.

Approved By: PFF

Low Level

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 7-5-07 Page 33 of 36

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-013

Date: 05-Jul-07

Client Sample ID: ULI Trip Blank 20070601A

Collection Date: 6/15/2007

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER	CLP TCL VOLATILE WATER SW8260B		В		Analyst: MRN
Chloromethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Vinyl chloride	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Bromomethane	ND	10	μg/Ľ	1	6/19/2007 5:36:00 PM
Chloroethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Acetone	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Carbon disulfide	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Methylene chloride	ND	10	μg/L	1	6/19/2007 5:36:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
2-Butanone	ND	10	μg/L	1	6/19/2007 5:36:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Chloroform	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Benzene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Trichloroethene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1.2-Dichloropropane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/19/2007 5:36:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Toluene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
	ND	10	μg/L	1	6/19/2007 5:36:00 PM
2-Hexanone	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Tetrachloroethene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Chlorobenzene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
Ethylbenzene	ND	10	μg/L	1	6/19/2007 5:36:00 PM
m,p-Xylene	ND ND	10	μg/L	1	6/19/2007 5:36:00 PM
o-Xylene	ND ND	10	μg/L	1	6/19/2007 5:36:00 PM
Styrene	ND ND	10	μg/L	1	6/19/2007 5:36:00 PM
Bromoform	ND ND	10	μg/L	1	6/19/2007 5:36:00 PM
1,1,2,2-Tetrachloroethane		0	μg/L	1	6/19/2007 5:36:00 PM
TIC: unknown	5.1	U	µg/L	•	0, 10,201, 0,00,01, 11

Approved	By:
Qualifiers:	*

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 7-5-07

Page 34 of 36

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-014

Date: 05-Jul-07

Client Sample ID: ULI Trip Blank 20070601A

Collection Date: 6/15/2007

Matrix: WATER

Analyses	Result	Limit (ual Units	DF	Date Analyzed	
ASP/CLP TCL VOLATILE WATER		SW826	0B		Analyst: MRN	
Chloromethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Vinyl chloride	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Bromomethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Chloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Acetone	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,1-Dichloroethene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Carbon disulfide	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Methylene chloride	· ND	10	μg/L	1	6/19/2007 6:25:00 PM	
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,1-Dichloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
2-Butanone	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
cis-1,2-Dichloroethene	ND	10	µg/L	1	6/19/2007 6:25:00 PM	
Chloroform	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,1,1-Trichloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Carbon tetrachloride	ND	10	µg/L	1	6/19/2007 6:25:00 PM	
Benzene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,2-Dichloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Trichloroethene	ND	10	µg/L	1	6/19/2007 6:25:00 PM	
1,2-Dichloropropane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Bromodichloromethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
4-Methyl-2-pentanone	ND	10	µg/L	1	6/19/2007 6:25:00 PM	
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Toluene	ND	10	µg/L	1	6/19/2007 6:25:00 PM	
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,1,2-Trichloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
2-Hexanone	ND	10	μg/L	1		
Tetrachloroethene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Dibromochloromethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Chlorobenzene	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
Ethylbenzene	ND	10	μg/L.	1	6/19/2007 6:25:00 PM	
m,p-Xylene	ND	10	μg/L μg/L	1	6/19/2007 6:25:00 PM	
p-Xylene	ND	10	μg/L		6/19/2007 6:25:00 PM	
Styrene	ND	10		1	6/19/2007 6:25:00 PM	
Bromoform	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	6/19/2007 6:25:00 PM	
NOTES:	ואט	10	µg/L	1	6/19/2007 6:25:00 PM	

TICS: No compounds were detected.

Approved By:

Qualifiers:

* Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

7-5-07

Page 35 of 36

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 05-Jul-07

CLIENT: Lab Order: Lu Engineers

U0706166

Project:

Former Churchville Ford Facility

Lab ID:

U0706166-015

Client Sample ID: Holding Blank

Collection Date: 6/15/2007 4:25:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER	SW8260B			Analyst: MRN	
Chloromethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Vinyl chloride	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Bromomethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Chloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Acetone	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Carbon disulfide	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Methylene chloride	ND	10	μg/L	1	6/19/2007 7:13:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
2-Butanone	ND	10	μg/L	1	6/19/2007 7:13:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Chloroform	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Carbon tetrachloride	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Benzene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Trichloroethene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Bromodichloromethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	6/19/2007 7:13:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Toluene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
2-Hexanone	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Tetrachloroethene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Dibromochloromethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Chlorobenzene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Ethylbenzene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
m,p-Xylene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
o-Xylene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Styrene	ND	10	μg/L	1	6/19/2007 7:13:00 PM
Bromoform	ND	10	μg/L	1	6/19/2007 7:13:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	6/19/2007 7:13:00 PM
TIC: unknown (28.04)	16	0	μg/L	1	6/19/2007 7:13:00 PM
TIC: unknown (7.33)	5.5	0	μg/L	1	6/19/2007 7:13:00 PM

Δ	nn	rov	ver	1 H	v
\mathbf{H}	111	ľ	ľCl	ı	, Y

Qualifiers:

Low Level

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

Date: 7-5-07 Page 36 of 36

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Thain of Custody Record

6034 Corporate Drive E. Syracuse New York 13057

Phone (315) 437 0255

Date Time Received by: (sign) JLI Computer Implifemants Received by: (sign) Rec'd for Lab by: Name of Courier 195:5/10/5/19 Time Time Preservative Sampled by (Print) Exit Detweiler Time 0 ω Date Date Company: Lu Engineers 9 S Relinquished by: (sign) Relinquished by:(sign) Relinquished by:(sign) 4 1 when & Tilher က ς, 1 GRAB ULI Internal Use Only 6)1 16701016b ΰ none Former Churchville Ford Facility Coation (city/state) Address WATER GRANG WATER GARS CONTRACT GRADE WATER GRAB WATER GRAB GARB 10:40 WATCR GRAB WATER GRAB WATER GROB Worth and WATER SPAR arab STONE OF THE PROPERTY OF THE P WATER GRAB Size 40ml 32 oz 315-377-1450|2230 Penfield Road Matrix WATCH Fax (315) 437 1209 Project # Project Name Type glass glass 10:01 13:12 12:57 10/10 90:01 | 10/51/9 4:28 05:01 4:22 13:15 1076 SI:HICOLHIO Sample bottle; 6/15/07 10/14/107 6/15/07 15/01 15/67 115/07 1.0/51/9 6)H(0) 0-155 Lu Engineers Civil and Environmental ,000700G 200700014 tolding Blanc MW-JCL-3 * MS/MSD Parameter and Method Sample ID epa 8260 + 11CS FB-3 (FB-3) Eric Detweiler JES Plank MW-JCL-1A Trip 6\A NK ELEKT (1) epa 8270 3 trip:blank MW-JCL-2 MW-JCL-1 MW-21 MW-13 MW-22 9-WM MW-3 MW-1 9 O

Fair Lawn (NJ)

Binghamton

Albany

Buffalo

Rochester

Syracuse

		(
·		

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Mr. Eric Detweiler Lu Engineers 2230 Penfield Rd. Penfield, NY 14526

Monday, October 30, 2006

RE: Churchville Ford

Order No.: U0610099

Dear Mr. Eric Detweiler:

Upstate Laboratories, Inc. received 15 sample(s) on 10/4/2006 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

(Mthony J. Ocala, Anthony J. Scala

President/CEO

Note: ASP-B Package to follow. AJS

nnfidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally distributing or copying the information.

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-001

Date: 30-Oct-06

Client Sample ID: SS-01

Collection Date: 10/3/2006 10:20:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010	B (SW30	50A)	Analyst: LJ
Aluminum	7370	34.7	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Antimony	ND	5.20	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Arsenic	4.54	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Barium	78.3	17.3	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Beryllium	ND	1.04	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Cadmium	2.54	1.73	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Calcium	9980	347	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Chromium	12.4	1.73	mg/Kg-dry	1	10/16/2006 9:12:52 AN
Cobalt	ND	6.94	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Copper	21.4	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Iron	12200	20.8	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Lead	32.7	1.04	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Magnesium	5810	347	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Manganese	285	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Nickel	10.5	10.4	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Potassium	812	347	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Selenium	ND	1.73	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Silver	ND	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Sodium	ND	347	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Thallium	ND	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Vanadium	16.0	10.4	mg/Kg-dry	1	10/16/2006 9:12:52 AM
Zinc	176	3.47	mg/Kg-dry	1	10/16/2006 9:12:52 AM
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.173	mg/Kg-dry	1	10/11/2006 1:52:23 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	5700	µg/Kg-dry	10	10/21/2006 4:26:00 PM
Bis(2-chloroethyl)ether	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Chlorophenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
1,3-Dichlorobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
1,4-Dichlorobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
1,2-Dichlorobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Methylphenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
N-Nitrosodi-n-propylamine	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Hexachloroethane	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Nitrobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Isophorone	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Nitrophenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2,4-Dimethylphenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Page 1 of 54

Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-001

Client Sample ID: SS-01

Collection Date: 10/3/2006 10:20:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2,4-Dichlorophenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
1,2,4-Trichlorobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Naphthalene	ND	5700	µg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Chloroaniline	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Hexachlorobutadiene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Chloro-3-methylphenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Methylnaphthalene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Hexachlorocyclopentadiene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2,4,6-Trichlorophenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2,4,5-Trichlorophenol	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Chloronaphthalene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2-Nitroaniline	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Dimethyl phthalate	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Acenaphthylene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2.6-Dinitrotoluene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
3-Nitroaniline	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Acenaphthene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2,4-Dinitrophenol	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Nitrophenol	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Dibenzofuran	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
2.4-Dinitrotoluene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Diethyl phthalate	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Chlorophenyl phenyl ether	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Fluorene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Nitroaniline	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4,6-Dinitro-2-methylphenol	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
N-Nitrosodiphenylamine	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
4-Bromophenyl phenyl ether	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Hexachlorobenzene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Pentachlorophenol	ND	14000	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Phenanthrene	2000	5700	J μg/Kg-dry	10	10/21/2006 4:26:00 PM
Anthracene	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Carbazole	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Di-n-butyl phthalate	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Fluoranthene	7300	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Pyrene	7600	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Butyl benzyl phthalate	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM
3,3'-Dichlorobenzidine	ND	5700	μg/Kg-dry	10	10/21/2006 4:26:00 PM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

Date: 10-30-06 Page 2 of 54

- Value exceeds Maximum Contaminant Value
- Value above quantitation range E
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-001

Date: 30-Oct-06

Client Sample ID: SS-01

Collection Date: 10/3/2006 10:20:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL
Benz(a)anthracene	3000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Chrysene	5000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Bis(2-ethylhexyl)phthalate	ND	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
Di-n-octyl phthalate	ND	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
Benzo(b)fluoranthene	6300	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
Benzo(k)fluoranthene	2000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Benzo(a)pyrene	4000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Indeno(1,2,3-cd)pyrene	5000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Dibenz(a,h)anthracene	1000	5700	J	μg/Kg-dry	10	10/21/2006 4:26:00 PM
Benzo(g,h,i)perylene	7000	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
(3+4)-Methylphenol	ND	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
Bis(2-chloroisopropyl)ether	ND	5700		μg/Kg-dry	10	10/21/2006 4:26:00 PM
TIC: 1,2:4,5-Dibenzopyrene	1500	0		μg/Kg-dry	10	10/21/2006 4:26:00 PM
TIC: 11H-Benzo[a]fluorene	1600	0		μg/Kg-dry	10	10/21/2006 4:26:00 PM
TIC: 9-Octadecenamide, (Z)-	1700	0	В	μg/Kg-dry	10	10/21/2006 4:26:00 PM
TIC: Benzo[e]pyrene	3700	0		μg/Kg-dry	10	10/21/2006 4:26:00 PM
TIC: unknown	2100	0		μg/Kg-dry	10	10/21/2006 4:26:00 PM
NOTES.		J		-5.1.8 G.1	10	10/2 1/2000 4.20.00 FIVI

NOTES:

The reporting limits were raised due to the high concentration of target compounds.

ASP/CLP TCL VOLATILE SOIL		SW826	0B		Analyst: MRN
Chloromethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Vinyl chloride	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Bromomethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Chloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Acetone	43	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,1-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Carbon disulfide	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Methylene chloride	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
trans-1,2-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,1-Dichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
2-Butanone	10	17	J μg/Kg-dry	1	10/10/2006 1:39:00 PM
cis-1,2-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Chloroform	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,1,1-Trichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Carbon tetrachloride	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Benzene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,2-Dichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Trichloroethene	ND	17	µg/Kg-dry	1	10/10/2006 1:39:00 PM

Approved By: ρ_F	Appro	ved By:	PF
-----------------------	-------	---------	----

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 103006

Page 3 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-001

Client Sample ID: SS-01

Collection Date: 10/3/2006 10:20:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8260	В		Analyst: MRN
1,2-Dichloropropane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Bromodichloromethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
4-Methyl-2-pentanone	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
cis-1,3-Dichloropropene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Tóluene	ND	. 17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
trans-1,3-Dichloropropene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,1,2-Trichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
2-Hexanone	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Tetrachloroethene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Dibromochloromethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Chlorobenzene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Ethylbenzene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
m,p-Xylene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
o-Xylene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Styrene	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
Bromoform	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
1,1,2,2-Tetrachloroethane	ND	17	μg/Kg-dry	1	10/10/2006 1:39:00 PM
NOTES: TICS: No compounds were detected.					
PERCENT MOISTURE		D2216			Analyst: MG
Percent Moisture	42.4	0.00100	wt%	1	10/30/2006

Approved	By:	_P/
Qualifiers:	*	Low Level

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 10-30-06 Page 4 of 54

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-002

Date: 30-Oct-06

Client Sample ID: SS-02

Collection Date: 10/3/2006 10:25:00 AM

Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010B	(SW30	50A)	Analyst: LJ
Aluminum	7370	33.5	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Antimony	ND	5.03	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Arsenic	4.20	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Barium	63.5	16.8	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Beryllium	ND	1.01	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Cadmium	2.22	1.68	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Calcium	11800	335	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Chromium	11.4	1.68	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Cobalt	ND	6.71	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Copper	17.2	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AM
iron	11800	20.1	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Lead	32.7	1.01	mg/Kg-dry	1	10/16/2006 9:16:23 AN
Magnesium	5850	335	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Manganese	400	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Nickel	ND	10.1	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Potassium	1030	335	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Selenium	2.41	1.68	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Silver	ND	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Sodium	ND	335	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Thallium	ND	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Vanadium	15.3	10.1	mg/Kg-dry	1	10/16/2006 9:16:23 AM
Zinc	168	3.35	mg/Kg-dry	1	10/16/2006 9:16:23 AM
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.168	mg/Kg-dry	1	10/11/2006 1:53:22 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Bis(2-chloroethyl)ether	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Chlorophenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
1,3-Dichlorobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
1,4-Dichlorobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
1,2-Dichlorobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Methylphenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
N-Nitrosodi-n-propylamine	ND	5500	µg/Kg-dry	10	10/19/2006 7:48:00 PM
Hexachloroethane	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Nitrobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Isophorone	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Nitrophenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4-Dimethylphenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 5 of 54

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers Client Sample ID: SS-02

Lab Order: U0610099 Collection Date: 10/3/2006 10:25:00 AM

Project: Churchville Ford

Lab ID: U0610099-002 Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	0C (SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4-Dichlorophenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
1,2,4-Trichlorobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Naphthalene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Chloroaniline	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Hexachlorobutadiene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Chloro-3-methylphenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Methylnaphthalene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Hexachlorocyclopentadiene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4,6-Trichlorophenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4,5-Trichlorophenol	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Chloronaphthalene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2-Nitroaniline	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Dimethyl phthalate	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Acenaphthylene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,6-Dinitrotoluene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
3-Nitroaniline	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Acenaphthene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4-Dinitrophenol	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Nitrophenol	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Dibenzofuran	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
2,4-Dinitrotoluene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Diethyl phthalate	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Chlorophenyl phenyl ether	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Fluorene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Nitroaniline	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4,6-Dinitro-2-methylphenol	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
N-Nitrosodiphenylamine	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
4-Bromophenyl phenyl ether	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Hexachlorobenzene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Pentachlorophenol	ND	13000	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Phenanthrene	2000	5500	J μg/Kg-dry	10	10/19/2006 7:48:00 PM
Anthracene	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Carbazole	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Di-n-butyl phthalate	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Fluoranthene	9300	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Pyrene	7200	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Butyl benzyl phthalate	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM
3,3'-Dichlorobenzidine	ND	5500	μg/Kg-dry	10	10/19/2006 7:48:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 6 of 54

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-06

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-002

Date: 30-Oct-06

Client Sample ID: SS-02

Collection Date: 10/3/2006 10:25:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	50A)	Analyst: KL
Benz(a)anthracene	3000	5500	J	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Chrysene	5000	5500	J	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Bis(2-ethylhexyl)phthalate	ND	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
Di-n-octyl phthalate	ND	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
Benzo(b)fluoranthene	6100	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
Benzo(k)fluoranthene	2000	5500	J	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Benzo(a)pyrene	4000	5500	J	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Indeno(1,2,3-cd)pyrene	5000	5500	J	μg/Kg-dry	10	10/19/2006 7:48:00 PM
Dibenz(a,h)anthracene	ND	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
Benzo(g,h,i)perylene	7200	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
(3+4)-Methylphenol	ND	5500		μg/Kg-dry	10	10/19/2006 7:48:00 PM
Bis(2-chloroisopropyl)ether	ND	5500		µg/Kg-dry	10	10/19/2006 7:48:00 PM
TIC: 3,4:8,9-Dibenzopyrene	1200	0		μg/Kg-dry	10	10/19/2006 7:48:00 PM
TIC: Benzo[e]pyrene	4100	0		μg/Kg-dry	10	10/19/2006 7:48:00 PM
TIC: Dibenz(a,e)aceanthrylene	2100	0		μg/Kg-dry	10	10/19/2006 7:48:00 PM
TIC: Pyrene, 2-methyl-	1500	0		μg/Kg-dry	10	10/19/2006 7:48:00 PM
TIC: unknown hydrocarbon	1400	0		μg/Kg-dry	10	10/19/2006 7:48:00 PM
NOTES:				-3···3 ···)	.0	10/10/2000 / .40.00 FW

The reporting limits were raised due to the high concentration of target compounds.

ASP/CLP TCL VOLATILE SOIL		SW826	0B		Analyst: MRN
Chloromethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Vinyl chloride	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Bromomethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Chloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Acetone	43	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,1-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Carbon disulfide	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Methylene chloride	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
trans-1,2-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,1-Dichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
2-Butanone	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
cis-1,2-Dichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Chloroform	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,1,1-Trichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Carbon tetrachloride	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Benzene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,2-Dichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Trichloroethene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM

Approved	By:	2	/_
----------	-----	---	----

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 10-30-06

Page 7 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits S

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-002

Client Sample ID: SS-02

Collection Date: 10/3/2006 10:25:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL	SW8260B			Analyst: MRN	
1,2-Dichloropropane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Bromodichloromethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
4-Methyl-2-pentanone	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
cis-1,3-Dichloropropene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Toluene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
trans-1,3-Dichloropropene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,1,2-Trichloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
2-Hexanone	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Tetrachloroethene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Dibromochloromethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Chlorobenzene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Ethylbenzene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
m,p-Xylene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
o-Xylene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Styrene	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
Bromoform	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
1,1,2,2-Tetrachloroethane	ND	17	μg/Kg-dry	1	10/10/2006 2:18:00 PM
NOTES:					
TICS: No compounds were detected.					
PERCENT MOISTURE		D2216			Analyst: MG
Percent Moisture	40.3	0.00100	wt%	1	10/30/2006

Approved	By:	PE

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 10-30-06 Page 8 of 54

Value exceeds Maximum Contaminant Value

Value above quantitation range E

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-003

Date: 30-Oct-06

Client Sample ID: SS-03

Collection Date: 10/3/2006 10:45:00 AM

Matrix: SOIL

Analyses	Result	Limit Qua	d Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010B (SW305		50A)	Analyst: LJ
Aluminum	6420	31.7	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Antimony	ND	4.76	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Arsenic	6.31	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Barium	58.5	15.9	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Beryllium	ND	0.952	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Cadmium	1.82	1.59	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Calcium	22900	317	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Chromium	9.33	1.59	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Cobalt	ND	6.35	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Copper	15.6	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Iron	11900	19.0	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Lead	15.9	0.952	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Magnesium	9840	317	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Manganese	339	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AN
Nickel	10.1	9.52	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Potassium	790	317	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Selenium	ND	1.59	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Silver	ND	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Sodium	ND	317	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Thallium	ND	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Vanadium	14.3	9.52	mg/Kg-dry	1	10/16/2006 9:19:53 AM
Zinc	85.0	3.17	mg/Kg-dry	1	10/16/2006 9:19:53 AM
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1	
Mercury	ND	0.159	mg/Kg-dry	1	Analyst: LJ 10/11/2006 1:54:27 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Bis(2-chloroethyl)ether	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Chlorophenol	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
1,3-Dichlorobenzene	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
1,4-Dichlorobenzene	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
1,2-Dichlorobenzene	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Methylphenol	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
N-Nitrosodi-n-propylamine	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Hexachloroethane	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Nitrobenzene	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Isophorone	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Nitrophenol	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4-Dimethylphenol	ND	520	μg/Kg-dry	1	10/19/2006 8:31:00 PM

Approved By:

Qualifiers:

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND

Date:

Page 9 of 54

- Value exceeds Maximum Contaminant Value
- Value above quantitation range E
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-003

Client Sample ID: SS-03

Collection Date: 10/3/2006 10:45:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355	60A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4-Dichlorophenol	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
1,2,4-Trichlorobenzene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Naphthalene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Chloroaniline	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Hexachlorobutadiene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Chloro-3-methylphenol	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Methylnaphthalene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Hexachlorocyclopentadiene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4,6-Trichlorophenol	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4,5-Trichlorophenol	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Chloronaphthalene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2-Nitroaniline	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Dimethyl phthalate	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Acenaphthylene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,6-Dinitrotoluene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
3-Nitroaniline	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Acenaphthene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4-Dinitrophenol	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Nitrophenol	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Dibenzofuran	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
2,4-Dinitrotoluene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Diethyl phthalate	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Chlorophenyl phenyl ether	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Fluorene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Nitroaniline	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4,6-Dinitro-2-methylphenol	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
N-Nitrosodiphenylamine	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
4-Bromophenyl phenyl ether	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Hexachlorobenzene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Pentachlorophenol	ND	1300		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Phenanthrene	9.0	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Anthracene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Carbazole	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Di-n-butyl phthalate	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Fluoranthene	400	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Pyrene	300	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Butyl benzyl phthalate	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
3,3'-Dichlorobenzidine	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM

Approved By: P

Qualifiers: * Low Lev

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 10 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-003

Date: 30-Oct-06

Client Sample ID: SS-03

Collection Date: 10/3/2006 10:45:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	SEMIVOLATILE ORGANICS SW8270C (SW3550A)		50A)	Analyst: KL		
Benz(a)anthracene	100	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PN
Chrysene	200	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Bis(2-ethylhexyl)phthalate	80	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Di-n-octyl phthalate	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Benzo(b)fluoranthene	300	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Benzo(k)fluoranthene	100	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Benzo(a)pyrene	200	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Indeno(1,2,3-cd)pyrene	200	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Dibenz(a,h)anthracene	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
Benzo(g,h,i)perylene	200	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
(3+4)-Methylphenol	60	520	J	μg/Kg-dry	1	10/19/2006 8:31:00 PM
Bis(2-chloroisopropyl)ether	ND	520		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: .gammaSitosterol	960	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: 5-Cholestene-3-ol, 24-methy	360	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: 9-Octadecenamide, (Z)-	2000	0	В	μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Benzo[e]pyrene	190	0	_	μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Cholesta-6,22,24-trien, 4,4-dimethyl-	270	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Heptacosane	160	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Hexadecanamide	330	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Hexadecenoic acid, Z-11-	360	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: n-Hexadecanoic acid	530	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Stigmast-4-en-3-one	210	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: Tricosane	230	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (11.85)	1100	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (16.1)	160	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (17.96)	200	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (20.94)	1300	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (21.05)	200	0		µg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (23.36)	2300	0		μg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (26.88)	360	0		µg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown (28.18)	120	0		µg/Kg-dry	1	10/19/2006 8:31:00 PM
TIC: unknown hydrocarbon	190	0		µg/Kg-dry	1	10/19/2006 8:31:00 PM
SP/CLP TCL VOLATILE SOIL		SW826	60B			
Chloromethane	ND	16		ug/Kg-dry	1	Analyst: MRN 10/10/2006 2:58:00 PM
Vinyl chloride	ND	16		ug/Kg-dry	1	10/10/2006 2:58:00 PM
Bromomethane	ND	16		ug/Kg-dry	1	10/10/2006 2:58:00 PM
Chloroethane	ND	16		ug/Kg-dry	1	10/10/2006 2:58:00 PM
Acetone	23	16		ig/Kg-dry	1	10/10/2006 2:58:00 PM 10/10/2006 2:58:00 PM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 11 of 54

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-003

Client Sample ID: SS-03

Collection Date: 10/3/2006 10:45:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8	260B		Analyst: MRN
1,1-Dichloroethene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Carbon disulfide	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Methylene chloride	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
trans-1,2-Dichloroethene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,1-Dichloroethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
2-Butanone	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
cis-1,2-Dichloroethene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Chloroform	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,1,1-Trichloroethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Carbon tetrachloride	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Benzene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,2-Dichloroethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Trichloroethene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,2-Dichloropropane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Bromodichloromethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
4-Methyl-2-pentanone	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
cis-1,3-Dichloropropene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Toluene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
trans-1,3-Dichloropropene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,1,2-Trichloroethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
2-Hexanone	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Tetrachloroethene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Dibromochloromethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Chlorobenzene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Ethylbenzene	ND	16	μg/Kg-d r y	1	10/10/2006 2:58:00 PM
m,p-Xylene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
o-Xylene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Styrene	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
Bromoform	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
1,1,2,2-Tetrachloroethane	ND	16	μg/Kg-dry	1	10/10/2006 2:58:00 PM
NOTES: TICS: No compounds were detected.					
PERCENT MOISTURE		D2:	216		Analyst: MG
Percent Moisture	37.0	0.00100	wt%	1	10/30/2006

Approved	By:	P	\vdash

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: /0-30-06

Page 12 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-004

Date: 30-Oct-06

Client Sample ID: SS-04

Collection Date: 10/3/2006 10:55:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010	DB (SW30	50A)	Analyst: LJ
Aluminum	7960	29.5	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Antimony	ND	4.43	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Arsenic	4.21	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Barium	62.1	14.8	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Beryllium	ND	0.886	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Cadmium	1.86	1.48	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Calcium	10000	295	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Chromium	10.5	1.48	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Cobalt	ND	5.91	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Copper	16.3	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Iron	12800	17.7	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Lead	16.6	0.886	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Magnesium	3960	295	mg/Kg-dry	1	10/16/2006 9:30;32 AM
Manganese	536	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Nickel	8.90	8.86	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Potassium	701	295	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Selenium	4.19	1.48	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Silver	ND	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Sodium	ND	295	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Thallium	ND	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Vanadium	17.4	8.86	mg/Kg-dry	1	10/16/2006 9:30:32 AM
Zinc	92.4	2.95	mg/Kg-dry	1	10/16/2006 9:30:32 AM
TOTAL MERCURY - SOIL/SOLID/WASTE	=	SW7471	A (SW747	ΊΔ)	Analyst: LJ
Mercury	ND	0.148	mg/Kg-dry	1	10/11/2006 1:55:30 PM
CL-SEMIVOLATILE ORGANICS		SW82700	C (SW355	0A)	Analyst: KL
Phenol	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Bis(2-chloroethyl)ether	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Chlorophenol	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
1,3-Dichlorobenzene	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
1,4-Dichlorobenzene	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
1,2-Dichlorobenzene	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Methylphenol	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
N-Nitrosodi-n-propylamine	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Hexachloroethane	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Nitrobenzene	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Isophorone	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Nitrophenol	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4-Dimethylphenol	ND	490	μg/Kg-dry	1	10/19/2006 9:15:00 PM

Qualifiers:

Approved By:

- Low Level
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 10-30-06

Page 13 of 54

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-004

Client Sample ID: SS-04

Litent Sample ID. 33-04

Collection Date: 10/3/2006 10:55:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3550A)		Analyst: KL
Bis(2-chloroethoxy)methane	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4-Dichlorophenol	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
1,2,4-Trichlorobenzene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Naphthalene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Chloroaniline	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Hexachlorobutadiene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Chloro-3-methylphenol	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Methylnaphthalene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Hexachlorocyclopentadiene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4,6-Trichlorophenol	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4,5-Trichlorophenol	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Chloronaphthalene	ND	490		µg/Kg-dry	1	10/19/2006 9:15:00 PM
2-Nitroaniline	ND	1200		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Dimethyl phthalate	ND	490		µg/Kg-dry	1	10/19/2006 9:15:00 PM
Acenaphthylene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,6-Dinitrotoluene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
3-Nitroaniline	ND	1200		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Acenaphthene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4-Dinitrophenol	ND	1200		µg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Nitrophenol	ND	1200		µg/Kg-dry	1	10/19/2006 9:15:00 PM
Dibenzofuran	ND	490		µg/Kg-dry	1	10/19/2006 9:15:00 PM
2,4-Dinitrotoluene	ND	490		µg/Kg-dry	1	10/19/2006 9:15:00 PM
Diethyl phthalate	ND	490		µg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Chlorophenyl phenyl ether	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Fluorene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Nitroaniline	ND	1200		μg/Kg-dry	1	10/19/2006 9:15:00 PM
4,6-Dinitro-2-methylphenol	ND	1200		μg/Kg-dry	1	10/19/2006 9:15:00 PM
N-Nitrosodiphenylamine	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
4-Bromophenyl phenyl ether	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Hexachlorobenzene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Pentachlorophenol	ND	1200		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Phenanthrene	80	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Anthracene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Carbazole	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Di-n-butyl phthalate	90	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Fluoranthene	400	490	J	µg/Kg-dry	1	10/19/2006 9:15:00 PM
Pyrene	300	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Butyl benzyl phthalate	ND	490	-	μg/Kg-dry	1	10/19/2006 9:15:00 PM
3.3´-Dichlorobenzidine	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM

Approved By:

Qualifiers: * Low Leve

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-3/-0/0

Page 14 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-004

Date: 30-Oct-06

Client Sample ID: SS-04

Collection Date: 10/3/2006 10:55:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: K L
Benz(a)anthracene	100	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Chrysene	200	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Bis(2-ethylhexyl)phthalate	90	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Di-n-octyl phthalate	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Benzo(b)fluoranthene	300	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Benzo(k)fluoranthene	80	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Benzo(a)pyrene	200	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Indeno(1,2,3-cd)pyrene	200	490	j	μg/Kg-dry	1	10/19/2006 9:15:00 PM
Dibenz(a,h)anthracene	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Benzo(g,h,i)perylene	200	490	J	μg/Kg-dry	1	10/19/2006 9:15:00 PM
(3+4)-Methylphenol	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
Bis(2-chloroisopropyl)ether	ND	490		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: .gammaSitosterol	470	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: 5-Cholestene-3-ol, 24-methy	220	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: 9-Hexadecenoic acid	260	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: 9-Octadecenamide, (Z)-	1800	0	В	μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Benzo[e]pyrene	180	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Cyclododecane	980	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Cyclooctacosane	210	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: n-Hexadecanoic acid	440	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Pentadecanamide, 15-bromc	190	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Pentadecanoic acid	150	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Stigmasterol	120	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: Tetradecanamide	260	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (16.11)	140	0	В	μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (20.93)	1100	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (21.19)	140	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (21.37)	230	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (23.35)	2700	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (24.15)	150	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown (28.19)	220	0	В	μg/Kg-dry	1	10/19/2006 9:15:00 PM
TIC: unknown hydrocarbon	120	0		μg/Kg-dry	1	10/19/2006 9:15:00 PM
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	15		µg/Kg-dry	1	10/10/2006 3:37:00 PM
Vinyl chloride	ND	15		µg/Kg-dry	1	10/10/2006 3:37:00 PM
Bromomethane	ND	15		μg/Kg-dry	1	10/10/2006 3:37:00 PM
Chloroethane	ND	15		µg/Kg-dry	1	10/10/2006 3:37:00 PM
Acetone	110	15		μg/Kg-dry	1	10/10/2006 3:37:00 PM

Approved By:

Qualifiers:

(

Low Level

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Date: 10-30-06 Page 15 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-004

Client Sample ID: SS-04

Collection Date: 10/3/2006 10:55:00 AM

Matrix: SOIL

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8260B			Analyst: MRN
1,1-Dichloroethene	ND	15	μg/Kg-dry	1 .	10/10/2006 3:37:00 PM
Carbon disulfide	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Methylene chloride	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,1-Dichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
2-Butanone	21	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Chloroform	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Carbon tetrachloride	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Benzene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,2-Dichloroethane	ND	15 .	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Trichloroethene	ND	` 15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,2-Dichloropropane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Bromodichloromethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
4-Methyl-2-pentanone	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Toluene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
2-Hexanone	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Tetrachloroethene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Dibromochloromethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Chlorobenzene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Ethylbenzene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
m,p-Xylene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
o-Xylene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Styrene	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
Bromoform	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
1,1,2,2-Tetrachloroethane	ND	15	μg/Kg-dry	1	10/10/2006 3:37:00 PM
NOTES:					
TICS: No compounds were detected.					
PERCENT MOISTURE	•	D2216			Analyst: MG
Percent Moisture	32.3	0.00100	wt%	1	10/30/2006

Approved	By:	P	匚

Qualifiers:

- Low Level Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 16 of 54

- Value exceeds Maximum Contaminant Value
- Value above quantitation range Ε
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-005

Date: 30-Oct-06

Client Sample ID: SS-05

Collection Date: 10/3/2006 11:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW60101	3 (SW30	50A)	Analyst: LJ
Aluminum	3650	30.0	mg/Kg-dry	1	10/16/2006 9:34:02 AN
Antimony	ND	4.49	mg/Kg-dry	1	10/16/2006 9:34:02 AN
Arsenic	7.71	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Barium	34.5	15.0	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Beryllium	ND	0.899	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Cadmium	1.56	1.50	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Calcium	35500	300	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Chromium	6.52	1.50	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Cobalt	ND	5.99	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Copper	14.4	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Iron	8800	18.0	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Lead	13.0	0.899	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Magnesium	18600	300	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Manganese	360	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Nickel	ND	8.99	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Potassium	615	300	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Selenium	ND	1.50	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Silver	ND	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Sodium	334	300	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Thallium	ND	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Vanadium	10.4	8.99	mg/Kg-dry	1	10/16/2006 9:34:02 AM
Zinc	192	3.00	mg/Kg-dry	1	10/16/2006 9:34:02 AM
		0.00	mg/ng dry	'	10/10/2000 9.34.02 AN
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.150	mg/Kg-dry	1	10/11/2006 1:58:47 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Bis(2-chloroethyl)ether	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Chlorophenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
1,3-Dichlorobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
1,4-Dichlorobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
1,2-Dichlorobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Methylphenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
N-Nitrosodi-n-propylamine	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Hexachloroethane	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Nitrobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Isophorone	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Nitrophenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4-Dimethylphenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM

Approved By:

Qualifiers: Low Level

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 17 of 54

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-005

Date: 30-Oct-06

Client Sample ID: SS-05

Collection Date: 10/3/2006 11:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4-Dichlorophenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
1,2,4-Trichlorobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Naphthalene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Chloroaniline	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Hexachlorobutadiene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Chloro-3-methylphenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Methylnaphthalene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Hexachlorocyclopentadiene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4,6-Trichlorophenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4,5-Trichlorophenol	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Chloronaphthalene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2-Nitroaniline	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Dimethyl phthalate	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Acenaphthylene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,6-Dinitrotoluene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
3-Nitroaniline	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Acenaphthene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4-Dinitrophenol	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Nitrophenol	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Dibenzofuran	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
2,4-Dinitrotoluene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Diethyl phthalate	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Chlorophenyl phenyl ether	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Fluorene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Nitroaniline	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4,6-Dinitro-2-methylphenol	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
N-Nitrosodiphenylamine	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
4-Bromophenyl phenyl ether	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Hexachlorobenzene	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Pentachlorophenol	ND	6000	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Phenanthrene	3800	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Anthracene	600	2400 J		5	10/19/2006 9:58:00 PM
Carbazole	500	2400 J		5	10/19/2006 9:58:00 PM
Di-n-butyl phthalate	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Fluoranthene	9000	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Pyrene	7500	2400	μg/Kg-dry	. 5	10/19/2006 9:58:00 PM
Butyl benzyl phthalate	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM
3,3'-Dichlorobenzidine	ND	2400	μg/Kg-dry	5	10/19/2006 9:58:00 PM

Approved By:

Qualifiers:

Analyte detected in the associated Method Blank В

Η Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 10-30-06 Page 18 of 54

Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-005

Date: 30-Oct-06

Client Sample ID: SS-05

Collection Date: 10/3/2006 11:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL
Benz(a)anthracene	3100	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Chrysene	3800	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Bis(2-ethylhexyl)phthalate	ND	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Di-n-octyl phthalate	ND	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Benzo(b)fluoranthene	4300	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Benzo(k)fluoranthene	1000	2400	J	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Benzo(a)pyrene	3000	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Indeno(1,2,3-cd)pyrene	3500	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Dibenz(a,h)anthracene	800	2400	J	μg/Kg-dry	5	10/19/2006 9:58:00 PM
Benzo(g,h,i)perylene	4200	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
(3+4)-Methylphenol	ND	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Bis(2-chloroisopropyl)ether	ND	2400		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: .gammaSitosterol	1400	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: 1,2:3,4-Dibenzopyrene	1500	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: 11H-Benzo[b]fluorene	610	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: 3,4:8,9-Dibenzopyrene	760	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: 4H-	570	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
Cyclopenta[def]phenanthrene				P.S 5 7	-	10/10/2000 0:00:00 1 141
TIC: 9,10-Anthracenedione	610	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: 9-Octadecenamide, (Z)-	970	0	В	μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Benzo[e]pyrene	3200	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Dibenzo[def,mno]chrysene	750	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Hexadecanamide	530	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Indeno[1,2,3-cd]fluoranthene	870	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Perylene	1000	0		µg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: Pyrene, 2-methyl-	920	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: unknown (20.89)	1600	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: unknown (23.35)	5200	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: unknown (25.9)	670	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: unknown hydrocarbon (21.26	550	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
TIC: unknown hydrocarbon (24.35	1000	0		μg/Kg-dry	5	10/19/2006 9:58:00 PM
NOTES:						
The reporting limits were raised due to the h	nigh concentration	of target co	mpoun	ds.		
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	15		µg/Kg-dry	1	10/10/2006 4:17:00 PM
Vinyl chloride	ND	15		µg/Kg-dry	1	10/10/2006 4:17:00 PM
Bromomethane	ND	15		µg/Kg-dry	1	10/10/2006 4:17:00 PM

15

15

Approved By: D

Chloroethane

Acetone

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

ND

15

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: /0-30-0/0

µg/Kg-dry

µg/Kg-dry

Page 19 of 54

10/10/2006 4:17:00 PM

10/10/2006 4:17:00 PM

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Lu Engineers

Lab Order:

U0610099

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610099-005

Date: 30-Oct-06

Client Sample ID: SS-05

Collection Date: 10/3/2006 11:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8	260B		Analyst: MRN
1,1-Dichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Carbon disulfide	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Methylene chloride	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
trans-1,2-Dichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,1-Dichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
2-Butanone	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
cis-1,2-Dichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Chloroform	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,1,1-Trichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Carbon tetrachloride	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Benzene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,2-Dichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Trichloroethene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,2-Dichloropropane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Bromodichloromethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
4-Methyl-2-pentanone	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
cis-1,3-Dichloropropene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Toluene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
trans-1,3-Dichloropropene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,1,2-Trichloroethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
2-Hexanone	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Tetrachloroethene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Dibromochloromethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Chlorobenzene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Ethylbenzene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
m,p-Xylene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
o-Xylene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Styrene	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
Bromoform	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
1,1,2,2-Tetrachloroethane	ND	15	μg/Kg-dry	1	10/10/2006 4:17:00 PM
TIC: Cyclotrisiloxane, hexamethyl	34	0	μg/Kg-dry	1	10/10/2006 4:17:00 PM
TIC: unknown	30	0	μg/Kg-dry	1	10/10/2006 4:17:00 PM
NOTES: TICS: No compounds were detected.					
PERCENT MOISTURE		D2:	216		Analyst: MG
Percent Moisture	33.2	0.00100	wt%	1	10/30/2006

Approved	By:	PF

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 20 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-006

Date: 30-Oct-06

Client Sample ID: SS-05A

Collection Date: 10/3/2006 11:04:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010B (SW305		50A)	Analyst: LJ
Aluminum	4790	26.6	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Antimony	ND	3.98	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Arsenic	5.09	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Barium	40.2	13.3	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Beryllium	ND	0.797	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Cadmium	1.48	1.33	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Calcium	21300	266	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Chromium	7.82	1.33	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Cobalt	ND	5.31	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Copper	12.3	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Iron	9000	15.9	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Lead	12.6	0.797	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Magnesium	9790	266	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Manganese	274	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Nickel	ND	7.97	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Potassium	782	266	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Selenium	ND	1.33	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Silver	ND	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Sodium	289	266	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Thallium	ND	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Vanadium	11.7	7.97	mg/Kg-dry	1	10/16/2006 9:37:33 AM
Zinc	140	2.66	mg/Kg-dry	1	10/16/2006 9:37:33 AM
		2.00	mg/rtg-dry	,	10/10/2000 9.37.33 AIVI
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.133	mg/Kg-dry	1	10/11/2006 1:59:49 PM
CCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Bis(2-chloroethyl)ether	ND	2100	µg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Chlorophenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
1,3-Dichlorobenzene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
1,4-Dichlorobenzene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
1,2-Dichlorobenzene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Methylphenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
N-Nitrosodi-n-propylamine	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Hexachloroethane	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Nitrobenzene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Isophorone	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Nitrophenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2,4-Dimethylphenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM

Approved By:

Qualifiers:

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 21 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-006

Date: 30-Oct-06

Client Sample ID: SS-05A

Collection Date: 10/3/2006 11:04:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SV	/3550A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2,4-Dichlorophenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
1,2,4-Trichlorobenzene	ND	2100	μg/Kg-dry		10/19/2006 10:41:00 PM
Naphthalene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
4-Chloroaniline	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Hexachlorobutadiene	ND	2100	μg/Kg-dry		10/19/2006 10:41:00 PM
4-Chloro-3-methylphenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Methylnaphthalene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Hexachlorocyclopentadiene	ND	2100	μg/Kg-dry		10/19/2006 10:41:00 PM
2,4,6-Trichlorophenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2,4,5-Trichlorophenol	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Chloronaphthalene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2-Nitroaniline	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Dimethyl phthalate	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Acenaphthylene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2,6-Dinitrotoluene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
3-Nitroaniline	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Acenaphthene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2,4-Dinitrophenol	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
4-Nitrophenol	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Dibenzofuran	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
2.4-Dinitrotoluene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Diethyl phthalate	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
4-Chlorophenyl phenyl ether	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Fluorene	ND	2100	µg/Kg-dry	5	10/19/2006 10:41:00 PM
4-Nitroaniline	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
4,6-Dinitro-2-methylphenol	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
N-Nitrosodiphenylamine	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
4-Bromophenyl phenyl ether	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Hexachlorobenzene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Pentachlorophenol	ND	5300	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Phenanthrene	2000	2100	J μg/Kg-dry	5	10/19/2006 10:41:00 PM
Anthracene	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Carbazole	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Di-n-butyl phthalate	ND	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Fluoranthene	4800	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Pyrene	3600	2100	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Butyl benzyl phthalate	ND	2100	μg/Kg-dry		10/19/2006 10:41:00 PM
3,3°-Dichlorobenzidine	ND	2100	μg/Kg-dry		10/19/2006 10:41:00 PM

Approved By:

Qualifiers: *

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 22 of 54

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-006

Date: 30-Oct-06

Client Sample ID: SS-05A

Collection Date: 10/3/2006 11:04:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL
Benz(a)anthracene	2000	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Chrysene	2000	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Bis(2-ethylhexyl)phthalate	ND	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
Di-n-octyl phthalate	ND	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
Benzo(b)fluoranthene	2500	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
Benzo(k)fluoranthene	800	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Benzo(a)pyrene	2000	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Indeno(1,2,3-cd)pyrene	2000	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Dibenz(a,h)anthracene	500	2100	J	μg/Kg-dry	5	10/19/2006 10:41:00 PM
Benzo(g,h,i)perylene	2500	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
(3+4)-Methylphenol	ND	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
Bis(2-chloroisopropyl)ether	ND	2100		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: 1,2:4,5-Dibenzopyrene	1000	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: 11H-Benzo[b]fluorene	680	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: 9,10-Anthracenedione	460	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: 9-Octadecenamide, (Z)-	3600	0	В	µg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Benzo[e]pyrene	680	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Hexadecanamide	560	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Indeno[1,2,3-cd]fluoranthene	490	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Naphthalene, 1-methyl-	4400	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Perylene	1900	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: Stigmasterol, 22,23-dihydro-	820	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: unknown (20.92)	2600	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
TIC: unknown (23.34)	6600	0		μg/Kg-dry	5	10/19/2006 10:41:00 PM
NOTES:				F3.19 G13	J	10/13/2000 10.41.00 PW

The reporting limits were raised due to the high concentration of target compounds.

ASP/CLP TCL VOLATILE SOIL		SW8260		Analyst: MRN	
Chloromethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Vinyl chloride	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Bromomethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Chloroethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Acetone	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,1-Dichloroethene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Carbon disulfide	ND	13	µg/Kg-drv	1	10/10/2006 4:57:00 PM
Methylene chloride	ND	13	µg/Kg-dry	1	10/10/2006 4:57:00 PM
trans-1,2-Dichloroethene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,1-Dichloroethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
2-Butanone	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM

Approved By: D

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 23 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-006

Date: 30-Oct-06

Client Sample ID: SS-05A

Collection Date: 10/3/2006 11:04:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL	SW8260B				Analyst: MRN
cis-1,2-Dichloroethene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Chloroform	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,1,1-Trichloroethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Carbon tetrachloride	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Benzene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,2-Dichloroethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Trichloroethene	ND	13	μg/Kg-d ry	1	10/10/2006 4:57:00 PM
1,2-Dichloropropane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Bromodichloromethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
4-Methyl-2-pentanone	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
cis-1,3-Dichloropropene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Toluene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
trans-1,3-Dichloropropene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,1,2-Trichloroethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
2-Hexanone	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Tetrachloroethene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Dibromochloromethane	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Chlorobenzene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Ethylbenzene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
m,p-Xylene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
o-Xylene	ND	13	µg/Kg-dry	1	10/10/2006 4:57:00 PM
Styrene	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
Bromoform	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
1,1,2,2-Tetrachloroethane NOTES: TICS: No compounds were detected.	ND	13	μg/Kg-dry	1	10/10/2006 4:57:00 PM
PERCENT MOISTURE		D2216			Analyst: MG
Percent Moisture	24.7	0.00100	wt%	1	10/30/2006

Approved By:

Qualifiers: *

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 24 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-007

Date: 30-Oct-06

Client Sample ID: SS-06

Collection Date: 10/3/2006 11:15:00 AM

Matrix: SOIL

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010E	3 (SW30	50A)	Analyst: LJ
Aluminum	4440	28.2	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Antimony	ND	4.23	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Arsenic	7.03	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Barium	43.4	14.1	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Beryllium	ND	0.846	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Cadmium	ND	1.41	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Calcium	21500	282	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Chromium	6.57	1.41	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Cobait	ND	5.64	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Copper	11.9	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
iron	8160	16.9	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Lead	9.16	0.846	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Magnesium	9230	282	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Manganese	284	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Nickel	ND	8.46	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Potassium	592	282	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Selenium	ND	1.41	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Silver	ND	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Sodium	323	282	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Thallium	ND	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Vanadium	10.1	8.46	mg/Kg-dry	1	10/16/2006 9:41:03 AM
Zinc	63.1	2.82	mg/Kg-dry	1	10/16/2006 9:41:03 AM
			9/.19 217	•	10/10/2000 3.41.03 AW
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.141	mg/Kg-dry	1	10/11/2006 2:01:10 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Bis(2-chloroethyl)ether	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
2-Chlorophenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
1,3-Dichlorobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
1,4-Dichlorobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
1,2-Dichlorobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
2-Methylphenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
N-Nitrosodi-n-propylamine	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Hexachloroethane	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Nitrobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Isophorone	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
2-Nitrophenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM
2,4-Dimethylphenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM

Approved By: DI

Qualifiers:

- * Low Leve
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 25 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Lu Engineers

Lab Order:

U0610099

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610099-007

Date: 30-Oct-06

Client Sample ID: SS-06

Collection Date: 10/3/2006 11:15:00 AM

Matrix: SOIL

Analyses	Result	Limit Qı	ual Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: KL	
Bis(2-chloroethoxy)methane	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,4-Dichlorophenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
1,2,4-Trichlorobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Naphthalene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Chloroaniline	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Hexachlorobutadiene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Chloro-3-methylphenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2-Methylnaphthalene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Hexachlorocyclopentadiene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,4,6-Trichlorophenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,4,5-Trichlorophenol	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2-Chloronaphthalene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2-Nitroaniline	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Dimethyl phthalate	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Acenaphthylene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,6-Dinitrotoluene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
3-Nitroaniline	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Acenaphthene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,4-Dinitrophenol	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Nitrophenol	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Dibenzofuran	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
2,4-Dinitrotoluene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Diethyl phthalate	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Chlorophenyl phenyl ether	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Fluorene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Nitroaniline	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4,6-Dinitro-2-methylphenol	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
N-Nitrosodiphenylamine	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
4-Bromophenyl phenyl ether	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Hexachlorobenzene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Pentachlorophenol	ND	1100	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Phenanthrene	200	470 J	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Anthracene	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Carbazole	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Di-n-butyl phthalate	60	470 J		1	10/19/2006 11:24:00 PM	
Fluoranthene	770	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Pyrene	790	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
Butyl benzyl phthalate	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	
3,3'-Dichlorobenzidine	ND	470	μg/Kg-dry	1	10/19/2006 11:24:00 PM	

Approved By: P

Qualifiers: * Low Leve

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 26 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-007

Date: 30-Oct-06

Client Sample ID: SS-06

Collection Date: 10/3/2006 11:15:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qua	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	EMIVOLATILE ORGANICS SW8270C (SW3550A)		50A)	Analyst: KL		
Benz(a)anthracene	300	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Chrysene	500	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Bis(2-ethylhexyl)phthalate	90	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Di-n-octyl phthalate	ND	470		μg/Kg-dry	1	10/19/2006 11:24:00 PM
Benzo(b)fluoranthene	510	470		μg/Kg-dry	1	10/19/2006 11:24:00 PM
Benzo(k)fluoranthene	200	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Benzo(a)pyrene	400	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Indeno(1,2,3-cd)pyrene	400	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Dibenz(a,h)anthracene	100	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
Benzo(g,h,i)perylene	400	470	J	μg/Kg-dry	1	10/19/2006 11:24:00 PM
(3+4)-Methylphenol	ND	470		μg/Kg-dry	1	10/19/2006 11:24:00 PM
Bis(2-chloroisopropyl)ether	ND	470		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: .gammaSitosterol	510	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: 1,2:3,4-Dibenzopyrene	120	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: 1-Docosene	250	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: 4-Nonylphenol	130	0	В	μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: 5-Cholestene-3-ol, 24-methy	170	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: 9-Octadecenamide, (Z)-	2600	0	В	µg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Benzo[e]pyrene	380	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Hexadecanamide	410	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: n-Hexadecanoic acid	330	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Octadecanoic acid	150	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Perylene	130	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Phenol, nonyl-	140	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Stigmasta-5,22-dien-3-ol	140	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: Tetradecanamide	200	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: unknown (20.95)	1300	0	В	μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: unknown (23.37)	4600	0	В	μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: unknown (27.93)	150	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
TIC: unknown (28.19)	220	0		μg/Kg-dry	1	10/19/2006 11:24:00 PM
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	14		μg/Kg-dry	1	10/10/2006 5:37:00 PM
Vinyl chloride	ND	14		µg/Kg-dry	1	10/10/2006 5:37:00 PM
Bromomethane	ND	14		μg/Kg-dry	1	10/10/2006 5:37:00 PM
Chloroethane	ND	14		μg/Kg-dry	1	10/10/2006 5:37:00 PM
Acetone	ND	14		μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,1-Dichloroethene	ND	14		μg/Kg-dry	1	10/10/2006 5:37:00 PM
Carbon disulfide	ND	14		µg/Kg-dry	1	10/10/2006 5:37:00 PM

Approved By:	F
--------------	---

Qualifiers:

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 27 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-007

Client Sample ID: SS-06

Collection Date: 10/3/2006 11:15:00 AM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8260B		Analyst: MRN	
Methylene chloride	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
trans-1,2-Dichloroethene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,1-Dichloroethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
2-Butanone	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
cis-1,2-Dichloroethene	ND ·	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Chloroform	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,1,1-Trichloroethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Carbon tetrachloride	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Benzene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,2-Dichloroethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Trichloroethene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,2-Dichloropropane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Bromodichloromethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
4-Methyl-2-pentanone	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
cis-1,3-Dichloropropene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Toluene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
trans-1,3-Dichloropropene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,1,2-Trichloroethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
2-Hexanone	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Tetrachloroethene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Dibromochloromethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Chlorobenzene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Ethylbenzene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
m,p-Xylene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
o-Xylene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Styrene	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
Bromoform	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
1,1,2,2-Tetrachloroethane	ND	14	μg/Kg-dry	1	10/10/2006 5:37:00 PM
NOTES:					
TICS: No compounds were detected.					
PERCENT MOISTURE		D2216			Analyst: MG
Percent Moisture	29.0	0.00100	wt%	1	10/30/2006

Approved By:	Date:	10-30-06	Page 28 of 54
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminan	t Value

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-008

Date: 30-Oct-06

Client Sample ID: SS-07

Collection Date: 10/3/2006 11:30:00 AM

Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed	
ICP METALS, TOTAL ASP		SW6010B	(SW30	50A)	Analyst: LJ	
Aluminum	3520	39.2	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Antimony	ND	5.89	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Arsenic	ND	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Barium	31.7	19.6	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Beryllium	ND	1.18	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Cadmium	ND	1.96	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Calcium	17400	392	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Chromium	7.55	1.96	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Cobalt	ND	7.85	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Copper	21.7	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Iron	6550	23.5	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Lead	16.7	1.18	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Magnesium	8120	392	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Manganese	150	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Nickel	ND	11.8	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Potassium	502	392	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Selenium	ND	1.96	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Silver	ND	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Sodium	453	392	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Thallium	ND	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Vanadium	ND	11.8	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
Zinc	531	3.92	mg/Kg-dry	1	10/16/2006 9:44:30 AM	
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ	
Mercury	ND	0.196	mg/Kg-dry	1	10/11/2006 2:02:30 PM	
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL	
Phenol	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Bis(2-chloroethyl)ether	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
2-Chlorophenol	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
1,3-Dichlorobenzene	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
1,4-Dichlorobenzene	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
1,2-Dichlorobenzene	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
2-Methylphenol	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
N-Nitrosodi-n-propylamine	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Hexachloroethane	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Nitrobenzene	ND	6500	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Isophorone	ND	6500	µg/Kg-dry	10	10/21/2006 5:09:00 PM	
2-Nitrophenol	ND		µg/Kg-dry	10	10/21/2006 5:09:00 PM	
2,4-Dimethylphenol	ND	6500	µg/Kg-dry	10	10/21/2006 5:09:00 PM	

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 29 of 54

- ** Value exceeds Maximum Contaminant Value
- Value above quantitation range E
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-008

Client Sample ID: SS-07

Collection Date: 10/3/2006 11:30:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	V8270C (SW3550A)		50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2,4-Dichlorophenol	ND	6500	*	µg/Kg-dry	10	10/21/2006 5:09:00 PM
1,2,4-Trichlorobenzene	ND	6500		µg/Kg-dry	10	10/21/2006 5:09:00 PM
Naphthalene	ND	6500		µg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Chloroaniline	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Hexachlorobutadiene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Chloro-3-methylphenol	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2-Methylnaphthalene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Hexachlorocyclopentadiene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2,4,6-Trichlorophenol	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2,4,5-Trichlorophenol	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2-Chloronaphthalene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2-Nitroaniline	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Dimethyl phthalate	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Acenaphthylene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2,6-Dinitrotoluene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
3-Nitroaniline	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Acenaphthene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2,4-Dinitrophenol	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Nitrophenol	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Dibenzofuran	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
2.4-Dinitrotoluene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Diethyl phthalate	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Chlorophenyl phenyl ether	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Fluorene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Nitroaniline	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4,6-Dinitro-2-methylphenol	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
N-Nitrosodiphenylamine	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
4-Bromophenyl phenyl ether	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Hexachlorobenzene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Pentachlorophenol	ND	16000		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Phenanthrene	4000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM
Anthracene	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Carbazole	700	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM
Di-n-butyl phthalate	ND	6500	-	μg/Kg-dry	10	10/21/2006 5:09:00 PM
Fluoranthene	13000	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Pyrene	12000	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
Butyl benzyl phthalate	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM
3,3'-Dichlorobenzidine	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND

Date: 10-30-06 Page 30 of 54

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-008

Date: 30-Oct-06

Client Sample ID: SS-07

Collection Date: 10/3/2006 11:30:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL	
Benz(a)anthracene	5000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Chrysene	7600	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Bis(2-ethylhexyl)phthalate	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Di-n-octyl phthalate	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Benzo(b)fluoranthene	9200	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Benzo(k)fluoranthene	3000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Benzo(a)pyrene	6000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Indeno(1,2,3-cd)pyrene	6000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Dibenz(a,h)anthracene	1000	6500	J	μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Benzo(g,h,i)perylene	6600	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
(3+4)-Methylphenol	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
Bis(2-chloroisopropyl)ether	ND	6500		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: Benzo[e]pyrene	1400	0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: Indeno[1,2,3-cd]fluoranthene	1800	0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: Perylene	6600	. 0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: Stigmasterol, 22,23-dihydro-	2800	0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: unknown (20.81)	1800	0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
TIC: unknown (23.29)	4000	0		μg/Kg-dry	10	10/21/2006 5:09:00 PM	
NOTES:	,555	3		pg/11g-uly	10	10/2 1/2006 5:09:00 PM	

The reporting limits were raised due to the high concentration of target compounds.

ASP/CLP TCL VOLATILE SOIL		SW826	0B		Analyst: MRN
Chloromethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Vinyl chloride	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Bromomethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Chloroethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Acetone	25	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,1-Dichloroethene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Carbon disulfide	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Methylene chloride	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
trans-1,2-Dichloroethene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,1-Dichloroethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
2-Butanone	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
cis-1,2-Dichloroethene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Chloroform	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,1,1-Trichloroethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Carbon tetrachloride	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Benzene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,2-Dichloroethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM

Approved	By:	ρ	_

Qualifiers: Low Level

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 10-30-06 Page 31 of 54

- Value exceeds Maximum Contaminant Value
- Value above quantitation range Ε
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lab Order:

Lu Engineers

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-008

Date: 30-Oct-06

Client Sample ID: SS-07

Collection Date: 10/3/2006 11:30:00 AM

Matrix: SOIL

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8260	В		Analyst: MRN
Trichloroethene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,2-Dichloropropane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Bromodichloromethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
4-Methyl-2-pentanone	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
cis-1,3-Dichloropropene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Toluene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
trans-1,3-Dichloropropene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1.1.2-Trichloroethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
2-Hexanone	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Tetrachloroethene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Dibromochloromethane	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Chlorobenzene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Ethylbenzene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
m,p-Xylene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
o-Xylene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Styrene	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
Bromoform	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
1,1,2,2-Tetrachloroethane NOTES:	ND	20	μg/Kg-dry	1	10/10/2006 6:17:00 PM
TICS: No compounds were detected.	•				
PERCENT MOISTURE		D2216	i		Analyst: MG
Percent Moisture	49.0	0.00100	wt%	1	10/30/2006

Approved B	y: _	PE
Qualifiers:	*	Low Lev

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

Date: 10-30-06 Page 32 of 54

Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-009

Date: 30-Oct-06

Client Sample ID: SED-01

Collection Date: 10/3/2006 12:30:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010E	(SW30	50A)	Analyst: LJ
Aluminum	5780	25.1	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Antimony	ND	3.77	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Arsenic	4.71	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Barium	50.9	12.6	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Beryllium	ND	0.753	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Cadmium	1.68	1.26	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Calcium	10700	251	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Chromium	9.80	1.26	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Cobalt	ND	5.02	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Copper	12.5	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Iron	11300	15.1	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Lead	27.4	0.753	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Magnesium	5010	251	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Manganese	323	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Nickel	9.15	7.53	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Potassium	645	251	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Selenium	1.78	1.26	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Silver	ND	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Sodium	ND	251	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Thallium	ND	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Vanadium	12.3	7.53	mg/Kg-dry	1	10/16/2006 9:55:00 AM
Zinc	76.5	2.51	mg/Kg-dry	1	10/16/2006 9:55:00 AM
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW7471A)		Analyst: LJ
Mercury	ND	0.126	mg/Kg-dry	1	10/11/2006 2:06:02 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL
Phenol	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Bis(2-chloroethyl)ether	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Chlorophenol	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
1,3-Dichlorobenzene	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
1,4-Dichlorobenzene	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
1,2-Dichlorobenzene	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Methylphenol	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
N-Nitrosodi-n-propylamine	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Hexachloroethane	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Nitrobenzene	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Isophorone	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Nitrophenol	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4-Dimethylphenol	ND	410	μg/Kg-dry	1	10/21/2006 7:16:00 PM

Approved By: DF

Qualifiers:

- Low Leve
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 33 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Project:

Churchville Ford

7

CLIENT: Lu Engineers Client Sample ID: SED-01

Lab ID: U0610099-009 Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4-Dichlorophenol	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
1,2,4-Trichlorobenzene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Naphthalene	ND	410		μg/Kg-dry	. 1	10/21/2006 7:16:00 PM
4-Chloroaniline	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Hexachlorobutadiene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
4-Chloro-3-methylphenol	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Methylnaphthalene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Hexachlorocyclopentadiene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4,6-Trichlorophenol	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4,5-Trichlorophenol	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Chloronaphthalene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2-Nitroaniline	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Dimethyl phthalate	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Acenaphthylene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
2,6-Dinitrotoluene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
3-Nitroaniline	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Acenaphthene	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4-Dinitrophenol	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
4-Nitrophenol	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Dibenzofuran	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
2,4-Dinitrotoluene	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
Diethyl phthalate	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
4-Chlorophenyl phenyl ether	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
Fluorene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
4-Nitroaniline	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
4,6-Dinitro-2-methylphenol	ND	1000		µg/Kg-dry	1	10/21/2006 7:16:00 PM
N-Nitrosodiphenylamine	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
4-Bromophenyl phenyl ether	ND	410		µg/Kg-dry	1	10/21/2006 7:16:00 PM
Hexachlorobenzene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Pentachlorophenol	ND	1000		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Phenanthrene	70	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Anthracene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Carbazole	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Di-n-butyl phthalate	100	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Fluoranthene	200	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Pyrene	200	410	J	µg/Kg-dry	1	10/21/2006 7:16:00 PM
Butyl benzyl phthalate	ND	410	-	μg/Kg-dry	1	10/21/2006 7:16:00 PM
3,3'-Dichlorobenzidine	ND	410		μg/Kg-dry μg/Kg-dry	1	10/21/2006 7:16:00 PM

Approved By: DE

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 34 of 54

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-06

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-009

Date: 30-Oct-06

Client Sample ID: SED-01

Collection Date: 10/3/2006 12:30:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3550A)		Analyst: KL
Benz(a)anthracene	80	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Chrysene	90	410	j	µg/Kg-dry	1	10/21/2006 7:16:00 PM
Bis(2-ethylhexyl)phthalate	70	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Di-n-octyl phthalate	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Benzo(b)fluoranthene	100	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Benzo(k)fluoranthene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Benzo(a)pyrene	70	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Indeno(1,2,3-cd)pyrene	50	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
Dibenz(a,h)anthracene	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Benzo(g,h,i)perylene	50	410	J	μg/Kg-dry	1	10/21/2006 7:16:00 PM
(3+4)-Methylphenol	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
Bis(2-chloroisopropyl)ether	ND	410		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: .gammaSitosterol	340	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: 26-Nor-5-cholesten-3.beta 25-one	220	0		µg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: 9-Octadecenamide, (Z)-	3000	0	В	μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Cyclohexadecane	540	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Erucylamide	3400	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TiC: Ethanol, 2-(2-butoxyethoxy)-, acetate	94	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Hexadecanamide	400	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Hexatriacontane	200	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Lup-20(29)-en-3-one	180	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Octadecanamide	220	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Phenol, (1,1,3,3- tetramethylbutyl)-	120	0	В	μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: Stigmast-4-en-3-one	99	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (16.05)	160	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (16.13)	99	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (16.31)	86	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (16.39)	100	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (16.44)	97	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (20.89)	1500	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TIC: unknown (24.97)	460	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
TiC: unknown (28.09)	170	0		μg/Kg-dry	1	10/21/2006 7:16:00 PM
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Vinyl chloride	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Bromomethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date:

Page 35 of 54

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-009

Client Sample ID: SED-01

Collection Date: 10/3/2006 12:30:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW82	260B			Analyst: MRN
Chloroethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Acetone	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
1,1-Dichloroethene	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Carbon disulfide	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Methylene chloride	3	13	J	μg/Kg-dry	1	10/11/2006 12:42:00 PM
trans-1,2-Dichloroethene	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
1,1-Dichloroethane	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
2-Butanone	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
cis-1,2-Dichloroethene	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Chloroform	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
1,1,1-Trichloroethane	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Carbon tetrachloride	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Benzene	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
1,2-Dichloroethane	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Trichloroethene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
1,2-Dichloropropane	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Bromodichloromethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
4-Methyl-2-pentanone	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
cis-1,3-Dichloropropene	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Toluene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
trans-1,3-Dichloropropene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
1,1,2-Trichloroethane	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
2-Hexanone	ND	13		µg/Kg-dry	1	10/11/2006 12:42:00 PM
Tetrachloroethene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Dibromochloromethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Chlorobenzene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Ethylbenzene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
m,p-Xylene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
o-Xylene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Styrene	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
Bromoform	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
1,1,2,2-Tetrachloroethane	ND	13		μg/Kg-dry	1	10/11/2006 12:42:00 PM
NOTES:						
TICS: No compounds were detected.						
PERCENT MOISTURE		D22	216			Analyst: MG
Percent Moisture	20.3	0.00100		wt%	1	10/30/2006

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 36 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-010

Date: 30-Oct-06

Client Sample ID: SED-02

Collection Date: 10/3/2006 1:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010	B (SW30	50A)	Analyst: LJ
Aluminum	8490	29.0	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Antimony	ND	4.36	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Arsenic	9.86	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Barium	60.0	14.5	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Beryllium	ND	0.871	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Cadmium	2.00	1.45	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Calcium	29500	290	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Chromium	10.8	1.45	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Cobalt	ND	5.81	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Copper	12.3	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Iron	13100	17.4	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Lead	14.8	0.871	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Magnesium	16500	290	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Manganese	411	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Nickel	9.47	8.71	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Potassium	1430	290	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Selenium	ND	1.45	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Silver	ND	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Sodium	ND	290	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Thallium	ND	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Vanadium	17.1	8.71	mg/Kg-dry	1	10/16/2006 9:58:29 AM
Zinc	311	2.90	mg/Kg-dry	1	10/16/2006 9:58:29 AM
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ
Mercury	ND	0.145	mg/Kg-dry	1	10/11/2006 2:07:15 PM
CL-SEMIVOLATILE ORGANICS		SW82700	(SW355	0A)	Analyst: KL
Phenol	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Bis(2-chloroethyl)ether	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Chlorophenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
1,3-Dichlorobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
1,4-Dichlorobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
1,2-Dichlorobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Methylphenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
N-Nitrosodi-n-propylamine	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Hexachloroethane	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Nitrobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Isophorone	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Nitrophenol	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4-Dimethylphenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 10-30-06

Page 37 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-010

Client Sample ID: SED-02

Collection Date: 10/3/2006 1:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	S (SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4-Dichlorophenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
1,2,4-Trichlorobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Naphthalene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Chloroaniline	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Hexachlorobutadiene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Chloro-3-methylphenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Methylnaphthalene	· ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Hexachlorocyclopentadiene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4,6-Trichlorophenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4,5-Trichlorophenol	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Chloronaphthalene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2-Nitroaniline	ND	1200	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Dimethyl phthalate	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Acenaphthylene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
2,6-Dinitrotoluene	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
3-Nitroaniline	ND	1200	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Acenaphthene	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4-Dinitrophenol	ND	1200	µg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Nitrophenol	ND	1200	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Dibenzofuran	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
2,4-Dinitrotoluene	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Diethyl phthalate	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Chlorophenyl phenyl ether	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Fluorene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Nitroaniline	ND	1200	μg/Kg-dry	1	10/21/2006 7:58:00 PM
4,6-Dinitro-2-methylphenol	ND	1200	μg/Kg-dry	1	10/21/2006 7:58:00 PM
N-Nitrosodiphenylamine	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
4-Bromophenyl phenyl ether	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Hexachlorobenzene	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Pentachlorophenol	ND	1200	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Phenanthrene	200	480 J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Anthracene	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Carbazole	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Di-n-butyl phthalate	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Fluoranthene	400	480 J	µg/Kg-dry	1	10/21/2006 7:58:00 PM
Pyrene	400	480 J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Butyl benzyl phthalate	ND	480	µg/Kg-dry	1	10/21/2006 7:58:00 PM
3,3'-Dichlorobenzidine	ND	480	μg/Kg-dry	1	10/21/2006 7:58:00 PM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Not Detected at the Reporting Limit

Date:

Page 38 of 54

Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-010

Date: 30-Oct-06

Client Sample ID: SED-02

Collection Date: 10/3/2006 1:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	SW8270C (SW3550A)		50A)	Analyst: KL
Benz(a)anthracene	200	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Chrysene	200	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PN
Bis(2-ethylhexyl)phthalate	80	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Di-n-octyl phthalate	ND	480		μg/Kg-dry	1	10/21/2006 7:58:00 PM
Benzo(b)fluoranthene	300	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Benzo(k)fluoranthene	80	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Benzo(a)pyrene	200	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
Indeno(1,2,3-cd)pyrene	100	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PN
Dibenz(a,h)anthracene	ND	480		μg/Kg-dry	1	10/21/2006 7:58:00 PM
Benzo(g,h,i)perylene	100	480	J	μg/Kg-dry	1	10/21/2006 7:58:00 PM
(3+4)-Methylphenol	ND	480		μg/Kg-dry	1	10/21/2006 7:58:00 PM
Bis(2-chloroisopropyl)ether	ND	480		μg/Kg-dry	1	10/21/2006 7:58:00 PN
TIC: .gammaSitosterol	540	0		μg/Kg-dry	1	10/21/2006 7:58:00 PN
TIC: 9-Octadecenamide, (Z)-	3200	0	В	μg/Kg-dry	1	10/21/2006 7:58:00 PN
TIC: Cholesterol	350	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: Eicosane	600	0		μg/Kg-dry	1	10/21/2006 7:58:00 PN
TIC: Hexadecanamide	490	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: Hexatriacontane	440	0		µg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: n-Hexadecanoic acid	260	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: Pentadecanamide, 15-bromo	220	0		µg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: Perylene	200	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (16.05)	190	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (20.88)	1800	0		µg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (23.3)	4800	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (25.35)	200	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (25.69)	190	0		µg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (25.83)	200	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (26.5)	170	0		µg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (27.02)	240	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown (28.08)	200	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: unknown hydrocarbon	970	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
TIC: Z-12-Pentacosene	630	0		μg/Kg-dry	1	10/21/2006 7:58:00 PM
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	15	1	μg/Kg-dry	1	10/11/2006 1:21:00 PM
Vinyl chloride	ND	15		µg/Kg-dry	1	10/11/2006 1:21:00 PM
Bromomethane	ND	15		ug/Kg-dry	1	10/11/2006 1:21:00 PM
Chloroethane	ND	15		ug/Kg-dry	1	10/11/2006 1:21:00 PM
Acetone	ND	15		ug/Kg-dry	1	10/11/2006 1:21:00 PM

Approved By:

Qualifiers: *

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 39 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-010

Client Sample ID: SED-02

Collection Date: 10/3/2006 1:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8	260B			Analyst: MRN
1,1-Dichloroethene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Carbon disulfide	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Methylene chloride	5	15	J	μg/Kg-dry	1	10/11/2006 1:21:00 PM
trans-1,2-Dichloroethene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,1-Dichloroethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
2-Butanone	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
cis-1,2-Dichloroethene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Chloroform	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,1,1-Trichloroethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Carbon tetrachloride	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Benzene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,2-Dichloroethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Trichloroethene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,2-Dichloropropane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Bromodichloromethane	ND	15		μg/Kg-dry	. 1	10/11/2006 1:21:00 PM
4-Methyl-2-pentanone	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
cis-1,3-Dichloropropene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Toluene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
trans-1,3-Dichloropropene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,1,2-Trichloroethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
2-Hexanone	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Tetrachloroethene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Dibromochloromethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Chlorobenzene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Ethylbenzene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
m,p-Xylene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
o-Xylene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Styrene	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
Bromoform	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
1,1,2,2-Tetrachloroethane	ND	15		μg/Kg-dry	1	10/11/2006 1:21:00 PM
NOTES:						
TICS: No compounds were detected.						
PERCENT MOISTURE		D2:	216			Analyst: MG
Percent Moisture	31.1	0.00100		wt%	1	10/30/2006

Approved By:

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

Date: 10-30-06 Page 40 of 54

Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-011

Date: 30-Oct-06

Client Sample ID: SED-03

Collection Date: 10/3/2006 2:15:00 PM

Matrix: SEDIMENT

	WARTE SEDIMENT					
Analyses	Result	Limit Qua	al Units	DF	Date Analyzed	
ICP METALS, TOTAL ASP		SW6010E	S (SW30	50A)	Analyst: LJ	
Aluminum	999	25.2	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Antimony	ND	3.78	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Arsenic	29.3	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Barium	ND	12.6	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Beryllium	ND	0.755	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Cadmium	ND	1.26	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Calcium	145000	252	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Chromium	3.31	1.26	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Cobalt	ND	5.04	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Copper	11.6	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Iron	4870	15.1	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Lead	ND	0.755	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Magnesium	28300	252	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Manganese	220	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Nickel	ND	7.55	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Potassium	629	252	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Selenium	ND	1.26	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Silver	ND	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Sodium	457	252	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Thallium	ND	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Vanadium	ND	7.55	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
Zinc	77.4	2.52	mg/Kg-dry	1	10/16/2006 10:09:07 AM	
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: LJ	
Mercury	ND	0.126	mg/Kg-dry	1	10/11/2006 2:08:19 PM	
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: KL	
Phenol	ND	8300	µg/Kg-dry	20	10/25/2006 12:18:00 PM	
Bis(2-chloroethyl)ether	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
2-Chlorophenol	ND	8300	µg/Kg-dry	20	10/25/2006 12:18:00 PM	
1,3-Dichlorobenzene	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
1,4-Dichlorobenzene	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
1,2-Dichlorobenzene	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
2-Methylphenol	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
N-Nitrosodi-n-propylamine	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
Hexachloroethane	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
Nitrobenzene	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
Isophorone	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
2-Nitrophenol	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	
2,4-Dimethylphenol	ND	8300	μg/Kg-dry	20	10/25/2006 12:18:00 PM	

Approved By:

Qualifiers:

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 41 of 54

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-011

Client Sample ID: SED-03

Collection Date: 10/3/2006 2:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL
Bis(2-chloroethoxy)methane	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,4-Dichlorophenol	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
1,2,4-Trichlorobenzene	ND	8300		µg/Kg-dry	20	10/25/2006 12:18:00 PM
Naphthalene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Chloroaniline	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Hexachlorobutadiene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Chloro-3-methylphenol	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2-Methylnaphthalene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Hexachlorocyclopentadiene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,4,6-Trichlorophenol	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,4,5-Trichlorophenol	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2-Chloronaphthalene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2-Nitroaniline	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Dimethyl phthalate	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Acenaphthylene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,6-Dinitrotoluene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
3-Nitroaniline	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Acenaphthene	1000	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,4-Dinitrophenol	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Nitrophenol	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Dibenzofuran	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
2,4-Dinitrotoluene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Diethyl phthalate	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Chlorophenyl phenyl ether	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Fluorene	1000	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Nitroaniline	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4,6-Dinitro-2-methylphenol	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
N-Nitrosodiphenylamine	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
4-Bromophenyl phenyl ether	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Hexachlorobenzene	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Pentachlorophenol	ND	20000		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Phenanthrene	22000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Anthracene	3000	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
Carbazole	6000	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
Di-n-butyl phthalate	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Fluoranthene	41000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Pyrene	54000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Butyl benzyl phthalate	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
3,3'-Dichlorobenzidine	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
5,5 -Dichlorobenzidine	ND	0300		µg/ivg-diy	20	. 3,23,2333 12.13.33 1 141

Approved By:

Qualifiers:

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-2/-//

Page 42 of 54

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-011

Date: 30-Oct-06

Client Sample ID: SED-03

Collection Date: 10/3/2006 2:15:00 PM

Matrix: SEDIMENT

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: KL
Benz(a)anthracene	15000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Chrysene	19000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Bis(2-ethylhexyl)phthalate	900	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
Di-n-octyl phthalate	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Benzo(b)fluoranthene	19000	8300		µg/Kg-dry	20	10/25/2006 12:18:00 PM
Benzo(k)fluoranthene	5000	8300	J	μg/Kg-dry	20	10/25/2006 12:18:00 PM
Benzo(a)pyrene	11000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Indeno(1,2,3-cd)pyrene	11000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Dibenz(a,h)anthracene	3000	8300	j	μg/Kg-dry	20	10/25/2006 12:18:00 PM
Benzo(g,h,i)perylene	12000	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
(3+4)-Methylphenol	ND	8300		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Bis(2-chloroisopropyl)ether	ND	8300		µg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: 1,2:3,4-Dibenzopyrene	4700	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: 11H-Benzo[b]fluorene	3000	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: 1H-	2000	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
Cyclopropa[l]phenanthrene,1a,9b-dihyd	-	_		P9//19 4/)	20	10/20/2000 12.10.00 FIVE
TiC: 4H- Cyclopenta[def]phenanthrene	3800	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: 9,10-Anthracenedione	5600	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: 9-Octadecenamide, (Z)-	1900	0	В	μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Anthracene, 2-methyl-	1700	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Benz[e]acephenanthrylene	3700	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Benzo[b]naphtho[2,1-d]thiophene	2000	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Benzo[kl]xanthene	2300	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Naphthalene, 2- (phenylmethyl)-	1700	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Perylene	13000	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: Pyrene, 1-methyl-	5500	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
TIC: unknown hydrocarbon	2500	0		μg/Kg-dry	20	10/25/2006 12:18:00 PM
NOTES:				10		10.001 14
The reporting limits were raised due to the h	nigh concentration	of target co	mpoun	ds.		
SP/CLP TCL VOLATILE SOIL		SW82	60B			Analyst: MRN
Chloromethane	ND	13		µg/Kg-dry	1	10/11/2006 2:01:00 PM
Vinyl chloride	ND	13		µg/Kg-dry	1	10/11/2006 2:01:00 PM
Bromomethane	ND	13		µg/Kg-dry	1	10/11/2006 2:01:00 PM
Chloroothana	- 		l	נים פיים	•	13/11/2000 2.01.00 FIVI

13

13

13

Approved By:

1,1-Dichloroethene

Chloroethane

Acetone

Qualifiers:

В

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND

19

ND

Not Detected at the Reporting Limit

Date:

μg/Kg-dry

μg/Kg-dry

μg/Kg-dry

Page 43 of 54

10/11/2006 2:01:00 PM

10/11/2006 2:01:00 PM

10/11/2006 2:01:00 PM

** Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits

Churchville Ford

Date: 30-Oct-06

Client Sample ID: SED-03 CLIENT: Lu Engineers

Collection Date: 10/3/2006 2:15:00 PM U0610099 Lab Order:

Project: Matrix: SEDIMENT Lab ID: U0610099-011

Analyses	Result	Limit Q	ual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW826	0B			Analyst: MRN
Carbon disulfide	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Methylene chloride	4	13	J	μg/Kg-dry	1	10/11/2006 2:01:00 PM
trans-1,2-Dichloroethene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
1,1-Dichloroethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
2-Butanone	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
cis-1,2-Dichloroethene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Chloroform	ND	13		µg/Kg-dry	1	10/11/2006 2:01:00 PM
1,1,1-Trichloroethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Carbon tetrachloride	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Benzene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
1,2-Dichloroethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Trichloroethene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
1,2-Dichloropropane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Bromodichloromethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
4-Methyl-2-pentanone	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
cis-1,3-Dichloropropene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Toluene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
trans-1,3-Dichloropropene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
1.1,2-Trichloroethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
2-Hexanone	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Tetrachloroethene	5	13	J	μg/Kg-dry	1	10/11/2006 2:01:00 PM
Dibromochloromethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Chlorobenzene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Ethylbenzene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
m,p-Xylene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
o-Xylene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Styrene	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
Bromoform	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
1,1,2,2-Tetrachioroethane	ND	13		μg/Kg-dry	1	10/11/2006 2:01:00 PM
NOTES:						
TICS: No compounds were detected.						
PERCENT MOISTURE		D221	6			Analyst: MG
Percent Moisture	20.6	0.00100		wt%	1	10/30/2006

Approved	By:	PF

Qualifiers:

Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 10:30:06 Page 44 of 54

Value exceeds Maximum Contaminant Value

Value above quantitation range Ε

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-012

Date: 30-Oct-06

Client Sample ID: ERB-2

Collection Date: 10/3/2006 2:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		E200.7	(E200).7)	Analyst: LJ
Aluminum	ND	100	μg/L	1	10/16/2006 8:55:33 AM
Antimony	ND	15.0	μg/L	1	10/16/2006 8:55:33 AM
Arsenic	ND	10.0	μg/L	1	10/16/2006 8:55:33 AM
Barium	ND	50.0	μg/L	1	10/16/2006 8:55:33 AM
Beryllium	ND	3.00	μg/L	1	10/16/2006 8:55:33 AM
Cadmium	ND	5.00	μg/L	1	10/16/2006 8:55:33 AM
Calcium	ND	1000	μg/L	1	10/16/2006 8:55:33 AM
Chromium	ND	5.00	μg/L	1	10/16/2006 8:55:33 AM
Cobalt	ND	20.0	μg/L	1	10/16/2006 8:55:33 AM
Copper	ND	10.0	μg/L	1	10/16/2006 8:55:33 AM
Iron	ND	60.0	μg/L	1	10/16/2006 8:55:33 AM
Lead	ND	3.00	μg/L	1	10/16/2006 8:55:33 AM
Magnesium	ND	1000	μg/L	1	10/16/2006 8:55:33 AM
Manganese	ND	10.0	μg/L	1	10/16/2006 8:55:33 AM
Nickel	ND	30.0	µg/L	1	10/16/2006 8:55:33 AM
Potassium	ND	1000	μg/L	1	10/16/2006 8:55:33 AM
Selenium	7.58	5.00	μg/L	1	10/16/2006 8:55:33 AM
Silver	ND	10.0	μg/L	1	10/16/2006 8:55:33 AM
Sodium	1790	1000	μg/L	1	10/16/2006 8:55:33 AM
Thallium	ND	10.0	μg/L	1	10/16/2006 8:55:33 AM
Vanadium	ND	30.0	μg/L	1	10/16/2006 8:55:33 AM
Zinc	56.8	10.0	µg/L	1	10/16/2006 8:55:33 AM
OTAL MERCURY WATERS ASP		E245.2		2)	
Mercury	ND	0.200	(E245. μg/L	2) 1	Analyst: LJ 10/11/2006 1:47:44 PM
CL-SEMIVOLATILE ORGANICS		014/00770			
Phenol	ND	SW8270C	(SW35	•	Analyst: KL
Bis(2-chloroethyl)ether	ND	10	µg/L	1	10/25/2006 8:47:00 PM
2-Chlorophenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM
1,3-Dichlorobenzene	ND	10	μg/L "	1	10/25/2006 8:47:00 PM
1.4-Dichlorobenzene	ND ND	10	µg/L ,,	1	10/25/2006 8:47:00 PM
1,2-Dichlorobenzene		10	µg/L 	1	10/25/2006 8:47:00 PM
2-Methylphenol	ND	10	μg/L 	1	10/25/2006 8:47:00 PM
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	10/25/2006 8:47:00 PM
Hexachloroethane	ND	10	μg/L 	1	10/25/2006 8:47:00 PM
Nitrobenzene	ND	10	μg/L 	1	10/25/2006 8:47:00 PM
	ND	10	μg/Ľ	1	10/25/2006 8:47:00 PM
Isophorone	ND	10	µg/L	1	10/25/2006 8:47:00 PM
2-Nitrophenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM

Approved By: Qualifiers: *

* Low Leve

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 45 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-012

Client Sample ID: ERB-2

Collection Date: 10/3/2006 2:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3520)		Analyst: KL	
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2,4-Dichlorophenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
1,2,4-Trichlorobenzene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Naphthalene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
4-Chloroaniline	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Hexachlorobutadiene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
4-Chloro-3-methylphenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2-Methylnaphthalene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Hexachlorocyclopentadiene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2,4,6-Trichlorophenol	ND	10	µg/L	1	10/25/2006 8:47:00 PM	
2,4,5-Trichlorophenol	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2-Chloronaphthalene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2-Nitroaniline	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
Dimethyl phthalate	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Acenaphthylene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2.6-Dinitrotoluene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
3-Nitroaniline	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
Acenaphthene	· ND	10	μg/L	. 1	10/25/2006 8:47:00 PM	
2,4-Dinitrophenol	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
4-Nitrophenol	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
Dibenzofuran	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
2.4-Dinitrotoluene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Diethyl phthalate	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Fluorene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
4-Nitroaniline	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
N-Nitrosodiphenylamine	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
4-Bromophenyl phenyl ether	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Hexachlorobenzene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Pentachlorophenol	ND	24	μg/L	1	10/25/2006 8:47:00 PM	
Phenanthrene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Anthracene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Carbazole	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Di-n-butyl phthalate	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Fluoranthene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Pyrene	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
Butyl benzyl phthalate	ND	10	μg/L	1	10/25/2006 8:47:00 PM	
3,3'-Dichlorobenzidine	ND	10	μg/L	1	10/25/2006 8:47:00 PM	

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 46 of 54

- Value exceeds Maximum Contaminant Value
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-012

Date: 30-Oct-06

Client Sample ID: ERB-2

Collection Date: 10/3/2006 2:30:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SV	/3520)	Analyst: KL
Benz(a)anthracene	ND	10	-,	μg/L	1	10/25/2006 8:47:00 PM
Chrysene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Di-n-octyl phthalate	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Benzo(b)fluoranthene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Benzo(k)fluoranthene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Benzo(a)pyrene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L	1	10/25/2006 8:47:00 PM
(3+4)-Methylphenol	ND	10		μg/L	1	10/25/2006 8:47:00 PN
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	10/25/2006 8:47:00 PM
TIC: 9-Octadecenamide, (Z)-	17	0	В	μg/L	1	10/25/2006 8:47:00 PM
TIC: Benzophenone	2.5	0	_	μg/L	1	10/25/2006 8:47:00 PN
TIC: Eicosane	2.7	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: Hexadecanamide	2.2	0	В	µg/L	1	10/25/2006 8:47:00 PM
TIC: Tetradecanamide	2.4	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown (20.75)	10	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown (22.55)	3.2	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown (23.18)	29	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown hydrocarbon (11.88	20	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown hydrocarbon (22.73	3.1	0		μg/L	1	10/25/2006 8:47:00 PM
TIC: unknown hydrocarbon (23.28	2.2	0		μg/L	1	10/25/2006 8:47:00 PM
SP/CLP TCL VOLATILE WATER		SW82	60B			Analyst: IM
Chloromethane	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Vinyl chloride	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Bromomethane	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Chloroethane	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Acetone	ND	10		μg/L	1	10/12/2006 5:25:00 PM
1,1-Dichloroethene	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Carbon disulfide	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Methylene chloride	ND	10		ug/L	1	10/12/2006 5:25:00 PM
rans-1,2-Dichloroethene	ND	10		ug/L	1	10/12/2006 5:25:00 PM
1,1-Dichloroethane	ND	10	-	ug/L	1	10/12/2006 5:25:00 PM
2-Butanone	ND	10		ug/L	1	10/12/2006 5:25:00 PM
cis-1,2-Dichloroethene	ND	10		ıg/L	1	10/12/2006 5:25:00 PM
Chloroform	15	10		ıg/L	1	10/12/2006 5:25:00 PM
1,1,1-Trichloroethane	ND	10		19/L 1g/L	1	10/12/2006 5:25:00 PM 10/12/2006 5:25:00 PM

Qualifiers:

- Low Leve
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 47 of 54

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-012

Client Sample ID: ERB-2

Collection Date: 10/3/2006 2:30:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8	260B			Analyst: IM
Carbon tetrachloride	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Benzene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
1,2-Dichloroethane	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Trichloroethene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
1,2-Dichloropropane	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Bromodichloromethane	6	10	J	μg/L	1	10/12/2006 5:25:00 PM
4-Methyl-2-pentanone	ND.	10		μg/L	1	10/12/2006 5:25:00 PM
cis-1,3-Dichloropropene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Toluene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
trans-1,3-Dichloropropene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
1,1,2-Trichloroethane	ND	10		μg/L	1	10/12/2006 5:25:00 PM
2-Hexanone	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Tetrachloroethene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Dibromochloromethane	2	10	J	μg/L	1	10/12/2006 5:25:00 PM
Chlorobenzene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
Ethylbenzene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
m,p-Xylene	ND	10		μg/L	1	10/12/2006 5:25:00 PM
o-Xylene	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Styrene	ND	10		µg/L	1	10/12/2006 5:25:00 PM
Bromoform	ND	10		μg/L	1	10/12/2006 5:25:00 PM
1,1,2,2-Tetrachloroethane	ND	10		μg/L	1	10/12/2006 5:25:00 PM

NOTES:

TICS: No compounds were detected.

Approved By:

Qualifiers: * Low Leve

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 48 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-013

Date: 30-Oct-06

Client Sample ID: Field Blank

Collection Date: 10/3/2006 10:10:00 AM

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		E200.7	(E200.	7)	Analyst: LJ
Aluminum	ND	100	μg/L	1	10/16/2006 8:58:53 AN
Antimony	ND	15.0	μg/L	1	10/16/2006 8:58:53 AM
Arsenic	ND	10.0	μg/L	1	10/16/2006 8:58:53 AM
Barium	ND	50.0	μg/L	1	10/16/2006 8:58:53 AM
Beryllium	ND	3.00	μg/L	1	10/16/2006 8:58:53 AM
Cadmium	ND	5.00	μg/L	1	10/16/2006 8:58:53 AM
Calcium	ND	1000	μg/L	1	10/16/2006 8:58:53 AN
Chromium	ND	5.00	µg/L	1	10/16/2006 8:58:53 AN
Cobalt	ND	20.0	μg/L	1	10/16/2006 8:58:53 AN
Copper	ND	10.0	μg/L	1	10/16/2006 8:58:53 AN
Iron	ND	60.0	μg/L	1	10/16/2006 8:58:53 AN
Lead	ND	3.00	μg/L	1	10/16/2006 8:58:53 AN
Magnesium	ND	1000	μg/L	1	10/16/2006 8:58:53 AM
Manganese	14.4	10.0	μg/L	1	10/16/2006 8:58:53 AN
Nickel	ND	30.0	μg/L	1	10/16/2006 8:58:53 AN
Potassium	ND	1000	μg/L	1	10/16/2006 8:58:53 AM
Selenium	ND	5.00	μg/L	1	10/16/2006 8:58:53 AM
Silver	ND	10.0	μg/L	1	10/16/2006 8:58:53 AM
Sodium	1630	1000	μg/L	1	10/16/2006 8:58:53 AM
Thallium	ND	10.0	μg/L	1	10/16/2006 8:58:53 AM
Vanadium	ND	30.0	μg/L	1	10/16/2006 8:58:53 AM
Zinc	82.5	10.0	μg/L	1	10/16/2006 8:58:53 AM
OTAL MERCURY WATERS ASP		E245.2	(E245.2	1	Analyst: LJ
Mercury	ND	0.200	μg/L	1	10/11/2006 1:48:51 PM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW352	(0)	Analyst: KL
Phenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Chlorophenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Methylphenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	10/26/2006 2:35:00 PM
Hexachloroethane	ND	10	µg/L	1	10/26/2006 2:35:00 PM
Nitrobenzene	ND	10	µg/L	1	10/26/2006 2:35:00 PM
Isophorone	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Nitrophenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4-Dimethylphenol	ND	10	µg/L	1	10/26/2006 2:35:00 PM

Qualifiers:

Approved By:

Not Detected at the Reporting Limit

Date:

Page 49 of 54

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits J

Date: 30-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-013

Client Sample ID: Field Blank

Collection Date: 10/3/2006 10:10:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270			Analyst: KL
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Naphthalene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
4-Chloroaniline	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Hexachlorobutadiene	ND	10	μg/Ĺ	1	10/26/2006 2:35:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2-Nitroaniline	ND	24	μg/L	1	10/26/2006 2:35:00 PM
Dimethyl phthalate	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Acenaphthylene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2.6-Dinitrotoluene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
3-Nitroaniline	ND	24	μg/L	1	10/26/2006 2:35:00 PM
Acenaphthene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	10/26/2006 2:35:00 PM
4-Nitrophenol	ND	24	μg/L	1	10/26/2006 2:35:00 PM
Dibenzofuran	ND	10	μg/L	1	10/26/2006 2:35:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Diethyl phthalate	ND	10	μg/L	1	10/26/2006 2:35:00 PM
4-Chlorophenyl phenyl ether	ND -	10	μg/L	1	10/26/2006 2:35:00 PM
Fluorene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
4-Nitroaniline	ND	24	μg/L	1	10/26/2006 2:35:00 PM
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	10/26/2006 2:35:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	10/26/2006 2:35:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Hexachlorobenzene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Pentachlorophenol	ND	24	μg/L	1	10/26/2006 2:35:00 PM
Phenanthrene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Anthracene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Carbazole	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Fluoranthene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Pyrene	ND	10	μg/L	1	10/26/2006 2:35:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	10/26/2006 2:35:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	10/26/2006 2:35:00 PM
5,5 -DICHOLODGHZIGINE	ND	10	Par =	'	

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 50 of 54

- Value exceeds Maximum Contaminant Value **
- Value above quantitation range E
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-013

Date: 30-Oct-06

Client Sample ID: Field Blank

Collection Date: 10/3/2006 10:10:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	3	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C		(SW3520)		Analyst: KL
Benz(a)anthracene	ND	10		μg/L	(,	1	10/26/2006 2:35:00 PM
Chrysene	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Bis(2-ethylhexyl)phthalate	ND	10		μg/L		1	10/26/2006 2:35:00 PN
Di-n-octyl phthalate	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Benzo(b)fluoranthene	ND	10		µg/L		1	10/26/2006 2:35:00 PN
Benzo(k)fluoranthene	ND	10		μg/L		1	10/26/2006 2:35:00 PN
Benzo(a)pyrene	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L		1	10/26/2006 2:35:00 PN
(3+4)-Methylphenol	ND	10		μg/L		1	10/26/2006 2:35:00 PM
Bis(2-chloroisopropyl)ether	ND	10		μg/L		1	10/26/2006 2:35:00 PM
TIC: 9-Octadecenamide, (Z)-	17	0	В	μg/L		1	10/26/2006 2:35:00 PM
TIC: Benzophenone	2.4	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: Pentadecanamide, 15-bromo	2.7	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: unknown (20.74)	15	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: unknown (20.86)	4.3	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: unknown (22.43)	13	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: unknown (23.17)	17	0		μg/L		1	10/26/2006 2:35:00 PM
TIC: unknown hydrocarbon	2.0	0		μg/L		1	10/26/2006 2:35:00 PM
SP/CLP TCL VOLATILE WATER		SW82	60B				Analyst: IM
Chloromethane	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Vinyl chloride	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Bromomethane	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Chloroethane	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Acetone	ND	10		μg/L		1	10/12/2006 6:08:00 PM
1,1-Dichloroethene	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Carbon disulfide	ND	10		μg/L		1	10/12/2006 6:08:00 PM
Methylene chloride	ND	10		μg/L		1	10/12/2006 6:08:00 PM
trans-1,2-Dichloroethene	ND	10		μg/L		1	10/12/2006 6:08:00 PM
1,1-Dichloroethane	ND	10		µg/L		1	10/12/2006 6:08:00 PM
2-Butanone	ND	10		µg/L		1	10/12/2006 6:08:00 PM
cis-1,2-Dichloroethene	ND	10		ug/L		1	10/12/2006 6:08:00 PM
Chloroform	16	10		ug/L		1	10/12/2006 6:08:00 PM
1,1,1-Trichloroethane	ND	10		ug/L		1	10/12/2006 6:08:00 PM
Carbon tetrachloride	ND	10		ug/L		1	10/12/2006 6:08:00 PM
Benzene	ND	10		ıg/L		' 1	10/12/2006 6:08:00 PM 10/12/2006 6:08:00 PM
1,2-Dichloroethane	ND	10		1g/L		1	10/12/2006 6:08:00 PM 10/12/2006 6:08:00 PM

Approved By:

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-30-06

Page 51 of 54

- ** Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- \mathbf{S} Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-013

Date: 30-Oct-06

Client Sample ID: Field Blank

Collection Date: 10/3/2006 10:10:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8	260B			Analyst: IM
Trichloroethene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
1,2-Dichloropropane	ND	10		µg/L	1	10/12/2006 6:08:00 PM
Bromodichloromethane	6	10	J	µg/L	1	10/12/2006 6:08:00 PM
4-Methyl-2-pentanone	ND	10		µg/L	1	10/12/2006 6:08:00 PM
cis-1,3-Dichloropropene	ND	10		μg/L	1	10/12/2006 6:08:00 PM
Toluene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
trans-1,3-Dichloropropene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
1,1,2-Trichloroethane	ND	10		µg/L	1	10/12/2006 6:08:00 PM
2-Hexanone	ND	10		μg/L	1	10/12/2006 6:08:00 PM
Tetrachloroethene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
Dibromochloromethane	2	10	J	µg/L	1	10/12/2006 6:08:00 PM
Chlorobenzene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
Ethylbenzene	ND	10		µg/L	1	10/12/2006 6:08:00 PM
m,p-Xylene	ND	10		μg/L	1	10/12/2006 6:08:00 PM
o-Xylene	ND	10		μg/L	1	10/12/2006 6:08:00 PM
Styrene	ND	10		μg/L	1	10/12/2006 6:08:00 PM
Bromoform	ND	10		μg/L	1	10/12/2006 6:08:00 PM
1,1,2,2-Tetrachloroethane	ND	10		μg/L	1	10/12/2006 6:08:00 PM

NOTES:

TICS: No compounds were detected.

Approved By:

Qualifiers: Low Level

> Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 10-30-06 Page 52 of 54

Value exceeds Maximum Contaminant Value

Е Value above quantitation range

Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610099

Project:

Churchville Ford

Lab ID:

U0610099-014

Date: 30-Oct-06

Client Sample ID: Trip Blank

Collection Date: 10/3/2006

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	60B		Analyst: IM
Chloromethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Vinyl chloride	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Bromomethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Chloroethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Acetone	ND	10	μg/L	1	10/12/2006 6:52:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Carbon disulfide	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Methylene chloride	ND	10	μg/L	1	10/12/2006 6:52:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
1,1-Dichloroethane	· ND	10	μg/L	1	10/12/2006 6:52:00 PM
2-Butanone	ND	10	μg/L	1	10/12/2006 6:52:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Chloroform	2	10	J μg/L	1	10/12/2006 6:52:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Benzene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Trichloroethene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/12/2006 6:52:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Toluene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
2-Hexanone	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Chlorobenzene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Ethylbenzene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
m,p-Xylene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
o-Xylene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Styrene	ND	10	μg/L	1	10/12/2006 6:52:00 PM
Bromoform	ND	10	μg/L	1	10/12/2006 6:52:00 PM 10/12/2006 6:52:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L μg/L	1	10/12/2006 6:52:00 PM
NOTES:	.,,,	10	µg/∟	1	10/12/2006 6:52:00 PM

TICS: No compounds were detected.

Approved By: Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date: 10-30-06

Page 53 of 54

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

Lu Engineers

Lab Order:

U0610099

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610099-015

Date: 30-Oct-06

Client Sample ID: Holding Blank

Collection Date: 10/5/2006 4:20:00 PM

Matrix: WATER

ASP/CLP TCL VOLATILE WATER Chloromethane Vinyl chloride	ND ND ND ND	SW8260B 10 10 10 10	hg/L hg/L	1 1	Analyst: I M 10/11/2006 7:52:00 PM 10/11/2006 7:52:00 PM
Vinyl chloride	ND ND ND ND	10 10 10	μg/L	1	
•	ND ND ND	10 10			10/11/2006 7:52:00 PM
	ND ND	10	μg/L		
Bromomethane	ND			1	10/11/2006 7:52:00 PM
Chloroethane			μg/L	1	10/11/2006 7:52:00 PM
Acetone		10	μg/L	1	10/11/2006 7:52:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Carbon disulfide	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Methylene chloride	ND	10	μg/L	1	10/11/2006 7:52:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
2-Butanone	ND	10	μg/L	1	10/11/2006 7:52:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Chloroform	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Benzene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Trichloroethene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/11/2006 7:52:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Toluene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
2-Hexanone	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Chlorobenzene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Ethylbenzene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
m,p-Xylene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
o-Xylene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Styrene	ND	10	μg/L	1	10/11/2006 7:52:00 PM
Bromoform	ND	10	μg/L	1	10/11/2006 7:52:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/11/2006 7:52:00 PN

NOTES:

TICS: No compounds were detected.

Approved By:

Qualifiers: Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 10-30-06

Page 54 of 54

Value exceeds Maximum Contaminant Value

Value above quantitation range Ε

Analyte detected below quantitation limits

Dotember Description For the contract of the

Chain of Custody Record

Phone (315) 437 0255	Fax (31	Fax (315) 437 1209								
	Project #/ Pr	oject Name							12 FE	
LU ENGINEERS	CHUR	Ш	FOBD		Num					Τ
	Phone # Location (cit	Location (city/state) Address	9		nber				Remarks	
ERIC DETWEILER	585-377-1450 PENFIFI D	FID			of C					·
Sample ID	Date Time	Matrix	avao		ontai					
			a KVIS	ULI Internal Use Only		,			((
10-55	16/3/06 10:20	1 65	C.000	70007		2 3 4 5	6 7 8	9 10	ASP-B	
58-07	+	+-	ST TE	1	X 7.	×		9		
50-55	9.0	, (1	7	X	X		2		T
76700	ch:(0)	6		1	×	×		13		T
23-04	10:55	2			7		+			Т
25-05	11:00	0		7 V	13			7.		1
SS-05A (05A)	10.11	 		ń ,	<u></u>	X,		9		
SS-06	7	-		9	X	X		2		<u> </u>
	(1)			~7	× >			3		T
(15M) /SM /) 0 00	95:11	→		Y	2		^ ×			T
3ED-0	12:30	O SEDIMENT) (7			2		_
SED-02	13:15	_i			1/2 X		+	9		
SED-03		1		9)—	0		×	9	•	Γ
	20,11	>			5		<u>×</u>	Z	1 47	T
FIEN BIAN	8 4 6	十		C) —	4	×××			* 500 ml GLASS FOR METALS	13
	00	WATER	⇒	3	1.	×××		A*	* SO M GLASS FOR THE MER	可
DLANK	\ \ \	>		<i>ħ</i>) —	-			>	۵	
Throng bunding	029/1620) Wash	Orl	\\ \bar{1}				4		-
1	define /						1	Z		
1 Epa 9270 TAL METROG	Sample bottle:	Type	Size	Presentative	Johnson					
2 EPA 8260 + TICS		GLASS	8 OZ		Sampled by (Frint)	My Crint)	DENIE IFD		Name of Courier	T
_		GLASS	4 OZ	T	Company:	12) MAY	METERO			
	11417	AMBER	LITER	NONE	Relinquish	s). Aq pa		9		T
	37425	0100	500 ML	3	1	とん。ク	10 /m/h/	g (Received by: (sign)	
6 EPA 8270 +TICS, TAL METHAS	XX	7	2 2 40 ML	1:1 HCL		Jan 1801	90/1/2	7:45	Mademont	
		27.00	3×206	7	Relinquish	nquished by:(sign)	Date	Time	Received hw (cian)	
9 FDA 275 EPA 8270+TICS TAL METALS	TAL METALS	\downarrow	374.62	NONE		lenteral	0	1:05	(light):	- ,
+′		VOA	lm Qh		elinduish	Relinduished by:(sign)	Date	Time	Lawn New	
							9		cer day i den by:	
Aise R	Rochester	Buffalo	1	Albany		W	2001	- 10 × 1.5.	A A A A A A A A A A A A A A A A A A A	_
	Z		,	WDal 19	DLIQ	BINahamton	П - г	MIN	F	Т

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Mr. Eric Detweiler Lu Engineers 2230 Penfield Rd. Penfield, NY 14526

Wednesday, November 22, 2006

RE: Churchville Ford

Order No.: U0610435

Dear Mr. Eric Detweiler:

Upstate Laboratories, Inc. received 26 sample(s) on 10/24/2006 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

(nthony J. Acala Anthony J. Scala

President/CEO

Note: ASP-B Package to follow. AJS

onfidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

NY Lab ID 10170

NJ Lab ID NY750

PA Lab ID 68375

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-001

Date: 22-Nov-06

Client Sample ID: MW-1

Collection Date: 10/17/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW82	60B		Analyst: MRN
Chloromethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Vinyl chloride	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Bromomethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Chloroethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Acetone	ND	100	μg/L	10	11/1/2006 4:49:00 PM
1,1-Dichloroethene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Carbon disulfide	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Methylene chloride	ND	100	μg/L	10	11/1/2006 4:49:00 PM
trans-1,2-Dichloroethene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
1,1-Dichloroethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
2-Butanone	ND	100	μg/L	10	11/1/2006 4:49:00 PM
cis-1,2-Dichloroethene	860	100	μg/L	10	11/1/2006 4:49:00 PM
Chloroform	ND	100	μg/L	10	11/1/2006 4:49:00 PM
1,1,1-Trichloroethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Carbon tetrachloride	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Benzene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
1,2-Dichloroethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Trichloroethene	· 10	100	J μg/L	10	11/1/2006 4:49:00 PM
1,2-Dichloropropane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Bromodichloromethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	11/1/2006 4:49:00 PM
cis-1,3-Dichloropropene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Toluene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
trans-1,3-Dichloropropene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
1,1,2-Trichloroethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
2-Hexanone	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Tetrachloroethene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Dibromochloromethane	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Chlorobenzene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Ethylbenzene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
m,p-Xylene	ND	100	µg/L	10	11/1/2006 4:49:00 PM
o-Xylene	ND	100	μg/L	10	11/1/2006 4:49:00 PM
Styrene	ND	100	μg/L	10	11/1/2006 4:49:00 PM 11/1/2006 4:49:00 PM
3 Bromoform	ND	100	μg/L	10	11/1/2006 4:49:00 PM 11/1/2006 4:49:00 PM
1,1,2,2-Tetrachloroethane	ND	100	μg/L	10	
NOTES:		100	µ9/L	10	11/1/2006 4:49:00 PM

TICS: No compounds were detected.

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 11-22-06

Page 1 of 39

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Lu Engineers

Lab Order:

U0610435

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610435-002

Date: 22-Nov-06

Client Sample ID: MW-3

Collection Date: 10/17/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260			Analyst: MRN
Chloromethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Vinyl chloride	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Bromomethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Chloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Acetone	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,1-Dichloroethene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Carbon disulfide	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Methylene chloride	ND	50	μg/L	5	11/1/2006 5:27:00 PM
trans-1,2-Dichloroethene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,1-Dichloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
2-Butanone	ND	50	μg/L	5	11/1/2006 5:27:00 PM
cis-1,2-Dichloroethene	320	50	μg/L	5	11/1/2006 5:27:00 PM
Chloroform	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,1,1-Trichloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Carbon tetrachloride	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Benzene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,2-Dichloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Trichloroethene	270	50	μg/L	5	11/1/2006 5:27:00 PM
1,2-Dichloropropane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Bromodichloromethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
4-Methyl-2-pentanone	ND	50	μg/L	5	11/1/2006 5:27:00 PM
cis-1,3-Dichloropropene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Toluene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
trans-1,3-Dichloropropene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,1,2-Trichloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
2-Hexanone	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Tetrachloroethene	300	50	μg/L	5	11/1/2006 5:27:00 PM
Dibromochloromethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Chlorobenzene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Ethylbenzene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
m,p-Xylene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
o-Xylene	ND	50	μg/L	5	11/1/2006 5:27:00 PM
Styrene	ND	50	µg/L	5	11/1/2006 5:27:00 PM
Bromoform	ND	50	μg/L	5	11/1/2006 5:27:00 PM
1,1,2,2-Tetrachloroethane	ND	50	μg/L	5	11/1/2006 5:27:00 PM
NOTES:					

NOTES:

TICS: No compounds were detected.

Approved By: ________

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: //-22-06

Page 2 of 39

* Value exceeds Maximum Contaminant Value

E Value above quantitation range.

J Analyte detected below quantitation limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-003

Date: 22-Nov-06

Client Sample ID: MW-6

Collection Date: 10/18/2006 3:50:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	60B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Vinyl chloride	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Bromomethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Chloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Acetone	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Carbon disulfide	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Methylene chloride	ND	. 10	μg/L	1	11/1/2006 6:04:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
2-Butanone	ND	10	μg/L	1	11/1/2006 6:04:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Chloroform	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Carbon tetrachloride	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Benzene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Trichloroethene	8		J µg/L	1	11/1/2006 6:04:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Bromodichloromethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	11/1/2006 6:04:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Toluene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
2-Hexanone	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Tetrachloroethene	26	10	μg/L	1	11/1/2006 6:04:00 PM
Dibromochloromethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Chlorobenzene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Ethylbenzene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
n,p-Xylene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
p-Xylene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Styrene	ND	10	μg/L	1	11/1/2006 6:04:00 PM
Bromoform	ND	10	μg/L	1	11/1/2006 6:04:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	11/1/2006 6:04:00 PM
NOTES:			P9/ =	í	11/1/2000 0:04:00 PM
TICC: No commounds were detected					

TICS: No compounds were detected.

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

Date: 11-22-06

Page 3 of 39

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-004

Date: 22-Nov-06

Client Sample ID: MW-13

Collection Date: 10/17/2006 3:20:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260B			Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Acetone	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Carbon disulfide	ND	10	μg/L	. 1	10/31/2006 2:08:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 2:08:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 2:08:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Chloroform	ND	10	µg/L	1	10/31/2006 2:08:00 PM
1,1,1-Trichloroethane	ND	10	µg/L	1	10/31/2006 2:08:00 PM
Carbon tetrachloride	ND	10	µg/L	1	10/31/2006 2:08:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,2-Dichloropropane	ND	10	µg/L	1	10/31/2006 2:08:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 2:08:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,1,2-Trichloroethane	ND	10	µg/L	1	10/31/2006 2:08:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 2:08:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 2:08:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 2:08:00 PM
NOTES:					

TICS: No compounds were detected.

Approved By: DE

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-06

Page 4 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-005

Date: 22-Nov-06

Client Sample ID: MW-21

Collection Date: 10/18/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8:	260B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Acetone	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 2:46:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
2-Butanone	ND	10	µg/L	1	10/31/2006 2:46:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 2:46:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 2:46:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 2:46:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 2:46:00 PM
TIC: Undecane	15	0	μg/L	1	10/31/2006 2:46:00 PM

Approved By:

Qualifiers:

Low Level

Analyte detected in the associated Method Blank В

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date: 11-22-06 Page 5 of 39

** Value exceeds Maximum Contaminant Value

Е Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-006

Date: 22-Nov-06

Client Sample ID: MW-22

Collection Date: 10/18/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Acetone	20	10	μg/L	1	10/31/2006 3:25:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 3:25:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 3:25:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 3:25:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 3:25:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 3:25:00 PM
1,1,2,2-Tetrachloroethane NOTES:	ND	10	μg/L	1	10/31/2006 3:25:00 PM

NOTES:

TICS: No compounds were detected.

Approved By: DE

Qualifiers:

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Date:

Page 6 of 39

Value exceeds Maximum Contaminant Value

Value above quantitation range E

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-007

Date: 22-Nov-06

Client Sample ID: MW-JCL-1

Collection Date: 10/18/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	0B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Acetone	19	10	μg/L	1	10/31/2006 4:03:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Carbon disulfide	ND	10	μg/L	. 1	10/31/2006 4:03:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 4:03:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 4:03:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 4:03:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
rans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
n,p-Xylene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
-Xylene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 4:03:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 4:03:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 4:03:00 PM
NOTES:			r-9-=	•	

TICS: No compounds were detected.

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 7 of 39

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Lab Order:

Lu Engineers U0610435

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610435-008

Date: 22-Nov-06

Client Sample ID: MW-JCL-2

Collection Date: 10/17/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
Chloromethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Vinyl chloride	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Bromomethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Chloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Acetone	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,1-Dichloroethene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Carbon disulfide	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Methylene chloride	ND	50	μg/L	5	11/1/2006 6:42:00 PM
trans-1,2-Dichloroethene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,1-Dichloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
2-Butanone	ND	50	μg/L	5	11/1/2006 6:42:00 PM
cis-1,2-Dichloroethene	560	50	μg/L	5	11/1/2006 6:42:00 PM
Chloroform	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,1,1-Trichloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Carbon tetrachloride	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Benzene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,2-Dichloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Trichloroethene	360	50	μg/L	5	11/1/2006 6:42:00 PM
1,2-Dichloropropane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Bromodichloromethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
4-Methyl-2-pentanone	ND	50	μg/L	5	11/1/2006 6:42:00 PM
cis-1,3-Dichloropropene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Toluene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
trans-1,3-Dichloropropene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,1,2-Trichloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
2-Hexanone	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Tetrachloroethene	170	50	μg/L	5	11/1/2006 6:42:00 PM
Dibromochloromethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Chlorobenzene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Ethylbenzene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
m,p-Xylene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
o-Xylene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Styrene	ND	50	μg/L	5	11/1/2006 6:42:00 PM
Bromoform	ND	50	μg/L	5	11/1/2006 6:42:00 PM
1,1,2,2-Tetrachloroethane	ND	50	μg/L	5	11/1/2006 6:42:00 PM

NOTES:

TICS: No compounds were detected.

Approved By: p

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: //-22-06

Page 8 of 39

* Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-009

Date: 22-Nov-06

Client Sample ID: MW-JCL-3

Collection Date: 10/18/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW826	60B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Acetone	21	10	μg/L	1	10/31/2006 5:19:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Methylene chloride	ND	10	µg/L	1	10/31/2006 5:19:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 5:19:00 PM
cis-1,2-Dichloroethene	10	10	J μg/L	1	10/31/2006 5:19:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 5:19:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Trichloroethene	17	10	μg/L	1	10/31/2006 5:19:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 5:19:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Tetrachloroethene	7		μg/L	1	10/31/2006 5:19:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 5:19:00 PM
o-Xylene	ND	10	µg/L	1	10/31/2006 5:19:00 PM
Styrene	ND	10	µg/L	1	10/31/2006 5:19:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 5:19:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 5:19:00 PM
NOTES:		. •	F3, -	•	10/0 //2000 3. 19.00 PW

Approved By:

Qualifiers:

TICS: No compounds were detected.

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 9 of 39

** Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-010

Client Sample ID: ERB-3

Collection Date: 10/23/2006 11:00:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Acetone	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 5:57:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 5:57:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 5:57:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Tetrachioroethene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Chiorobenzene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 5:57:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 5:57:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 5:57:00 PM
NOTEO.			. •		

NOTES:

TICS: No compounds were detected.

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-06

Page 10 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-011

Date: 22-Nov-06

Client Sample ID: FB-2

Collection Date: 10/23/2006 11:05:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW82	60B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Acetone	ND	10	μg/L	1	10/31/2006 6:35:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 6:35:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 6:35:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 6:35:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Benzene	ND	10	µg/L	1	10/31/2006 6:35:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 6:35:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
1,1,2-Trichloroethane	ND	10	µg/L	1	10/31/2006 6:35:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Tetrachloroethene	ND	10	µg/L	1	10/31/2006 6:35:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
n,p-Xylene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 6:35:00 PM
3 Bromoform	ND	10	µg/∟	1	
1,1,2,2-Tetrachloroethane	ND	10		1	10/31/2006 6:35:00 PM
NOTES:	ND .	10	μg/L	1	10/31/2006 6:35:00 PM

Approved By:

Qualifiers:

* Low Level

TICS: No compounds were detected.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-00

Page 11 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Lu Engineers

Lab Order:

U0610435

Project:

CLIENT:

Churchville Ford

Lab ID:

U0610435-012

Date: 22-Nov-06

Client Sample ID: MW-JCL-1A

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	В		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Acetone	33	10	μg/L	1	10/31/2006 7:13:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 7:13:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
2-Butanone	ND	10	μ g/L	1	10/31/2006 7:13:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 7:13:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 7:13:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 7:13:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 7:13:00 PM
NOTES:			-		

NOTES:

TICS: No compounds were detected.

Approved By: PF

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-27-040

Page 12 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-013

Date: 22-Nov-06

Client Sample ID: Trip Blank

Collection Date: 10/23/2006

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW82	260B		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Acetone	20	10	μg/L	1	10/31/2006 7:50:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Methylene chloride	ND	10	μg/L	1	10/31/2006 7:50:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 7:50:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 7:50:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Dibromochloromethane	ND	10	μġ/L	1	10/31/2006 7:50:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Ethylbenzene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
n,p-Xylene	ND	10	µg/L	1	10/31/2006 7:50:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 7:50:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 7:50:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 7:50:00 PM
NOTES:			ra -	•	10/0 1/2000 7.50.00 PW

TICS: No compounds were detected.

Approved By: Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 11-22-06

Page 13 of 39

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-014

Date: 22-Nov-06

Client Sample ID: Holding Blank

Collection Date: 10/24/2006 9:15:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW8260	3		Analyst: MRN
Chloromethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Vinyl chloride	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Bromomethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Chloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Acetone	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Carbon disulfide	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Methylene chloride	ND	10	µg/L	1	10/31/2006 8:28:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
2-Butanone	ND	10	μg/L	1	10/31/2006 8:28:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Chloroform	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Carbon tetrachloride	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Benzene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,2-Dichloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Trichloroethene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Bromodichloromethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	10/31/2006 8:28:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Toluene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
trans-1,3-Dichloropropene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
2-Hexanone	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Tetrachloroethene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Dibromochloromethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Chlorobenzene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Ethylbenzene	ND	10	µg/L	1	10/31/2006 8:28:00 PM
m,p-Xylene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
o-Xylene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Styrene	ND	10	μg/L	1	10/31/2006 8:28:00 PM
Bromoform	ND	10	μg/L	1	10/31/2006 8:28:00 PM
1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	10/31/2006 8:28:00 PM
NOTES:					

Qualifiers:

TICS: No compounds were detected.

Approved By:

Low Level

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 14 of 39

Value exceeds Maximum Contaminant Value

Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-015

Date: 22-Nov-06

Client Sample ID: MW-1

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW	3520)	Analyst: LD
Phenol	ND	10		μg/L `	1	11/22/2006 11:05:00 AM
Bis(2-chloroethyl)ether	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2-Chlorophenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
1,3-Dichlorobenzene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
1,4-Dichlorobenzene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
1,2-Dichlorobenzene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2-Methylphenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
N-Nitrosodi-n-propylamine	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Hexachloroethane	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Nitrobenzene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Isophorone	2	10	J	μg/L	1	11/22/2006 11:05:00 AM
2-Nitrophenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2,4-Dimethylphenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Bis(2-chloroethoxy)methane	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2,4-Dichlorophenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
1,2,4-Trichlorobenzene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Naphthalene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
4-Chloroaniline	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Hexachlorobutadiene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
4-Chloro-3-methylphenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2-Methylnaphthalene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Hexachlorocyclopentadiene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2,4,6-Trichlorophenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2,4,5-Trichlorophenol	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2-Chloronaphthalene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
2-Nitroaniline	ND	24		μg/L	1	11/22/2006 11:05:00 AM
Dimethyl phthalate	ND	10		μg/L	1	11/22/2006 11:05:00 AM
Acenaphthylene	ND	10	,	μg/L	1	11/22/2006 11:05:00 AM
2,6-Dinitrotoluene	ND	10		μg/L	1	11/22/2006 11:05:00 AM
3-Nitroaniline	ND	24		ug/L	1	11/22/2006 11:05:00 AM
Acenaphthene	ND	10		ug/L	1	11/22/2006 11:05:00 AM
2,4-Dinitrophenol	ND	24		ug/L	1	11/22/2006 11:05:00 AM
4-Nitrophenol	ND	24		ıg/L	1	11/22/2006 11:05:00 AM
Dibenzofuran	ND	10		ıg/L	1	11/22/2006 11:05:00 AM
2,4-Dinitrotoluene	ND	10		ıg/L	1	11/22/2006 11:05:00 AM
Diethyl phthalate	ND	10		ıg/L	1	11/22/2006 11:05:00 AM
4-Chlorophenyl phenyl ether	ND	10		ıg/L	1	11/22/2006 11:05:00 AM
Fluorene	ND	10		ıg/L	1	11/22/2006 11:05:00 AM
4-Nitroaniline	ND	24		ıg/L ıg/L	1	11/22/2006 11:05:00 AM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date:

Page 15 of 39

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-015

Date: 22-Nov-06

Client Sample ID: MW-1

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	11/22/2006 11:05:00 AM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 11:05:00 AM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 11:05:00 AM
Phenanthrene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Anthracene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Carbazole	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Di-n-butyl phthalate	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Fluoranthene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Pyrene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 11:05:00 AM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Benz(a)anthracene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Chrysene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Bis(2-ethylhexyl)phthalate	3	10	J μg/L	1	11/22/2006 11:05:00 AM
Di-n-octyl phthalate	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Benzo(b)fluoranthene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Benzo(a)pyrene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Dibenz(a,h)anthracene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 11:05:00 AM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 11:05:00 AM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 11:05:00 AM
TIC: Butyl glycolate	35	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: Cyclopentane, hexyl-	20	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: Furan, 2,5-dimethyl-	20	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: Phthalic anhydride	5.4	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.27)	4.3	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.43)	190	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.47)	38	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.51)	34	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.59)	6.9	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.63)	9.8	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.85)	12	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (11.98)	2.6	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (12.53)	3.0	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (14.08)	3.7	0	μg/L	1	11/22/2006 11:05:00 AM

Approved By:

Qualifiers: *

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 16 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-015

Date: 22-Nov-06

Client Sample ID: MW-1

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

Analyses	Result Limit Qual Units		Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3520)		Analyst: LD
TIC: unknown (14.18)	5.4	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (14.22)	5.5	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (15.14)	3.0	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (19.02)	4.3	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (20.7)	3.8	0	μg/L	1	11/22/2006 11:05:00 AM
TIC: unknown (24.11)	680	0	μg/L	1	11/22/2006 11:05:00 AM

Approved By: Date: Page 17 of 39 Qualifiers: Value exceeds Maximum Contaminant Value В Analyte detected in the associated Method Blank Ε Value above quantitation range Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-016

Client Sample ID: MW-3

Collection Date: 10/23/2006 3:00:00 PM

meetion Dute. 10,20,2000 1.00

Matrix: WATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	(SW35	20)	Analyst: LD
Phenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	11/22/2006 11:48:00 AM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Isophorone	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Naphthalene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
4-Chloro-3-methylphenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2.4.6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Chloronaphthalene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 11:48:00 AM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 11:48:00 AM
Acenaphthene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 11:48:00 AM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 11:48:00 AM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 11:48:00 AM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 11:48:00 AM
4-Chlorophenyl phenyl ether	ND	10	ha\racktrian	1	11/22/2006 11:48:00 AM
Fluorene	ND	10	μg/L	1	11/22/2006 11:48:00 AM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 11:48:00 AM
4-Minoammie	140	4 7	H9, L	•	

Approved By: D

Qualifiers:

- * Low Leve
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-27-06

Page 18 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-016

Date: 22-Nov-06

Client Sample ID: MW-3

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Unit	ts	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C		(SW3520)		Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		μg/L	(,	1	11/22/2006 11:48:00 AM
N-Nitrosodiphenylamine	ND	10		μg/L		1	11/22/2006 11:48:00 AM
4-Bromophenyl phenyl ether	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Hexachlorobenzene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Pentachlorophenol	ND	24		μg/L		1	11/22/2006 11:48:00 AM
Phenanthrene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Anthracene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Carbazole	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Di-n-butyl phthalate	2	10	J	μg/L		1	11/22/2006 11:48:00 AM
Fluoranthene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Pyrene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Butyl benzyl phthalate	ND	10		μg/L		1	11/22/2006 11:48:00 AM
3,3'-Dichlorobenzidine	ND	10		µg/L		1	11/22/2006 11:48:00 AM
Benz(a)anthracene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Chrysene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Bis(2-ethylhexyl)phthalate	2	10	J	μg/L		1	11/22/2006 11:48:00 AM
Di-n-octyl phthalate	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Benzo(b)fluoranthene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Benzo(k)fluoranthene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
Benzo(a)pyrene	ND	10		µg/L		1	11/22/2006 11:48:00 AM
Indeno(1,2,3-cd)pyrene	ND	10		µg/L		1	11/22/2006 11:48:00 AM
Dibenz(a,h)anthracene	ND	10		µg/L		1	11/22/2006 11:48:00 AM
Benzo(g,h,i)perylene	ND	10		μg/L		1	11/22/2006 11:48:00 AM
(3+4)-Methylphenoi	ND	10		µg/L		1	11/22/2006 11:48:00 AM
Bis(2-chloroisopropyl)ether	ND	10		µg/L		1	11/22/2006 11:48:00 AM
TIC: 9-Octadecenamide, (Z)-	3.6	0		µg/L		1	11/22/2006 11:48:00 AM
TIC: Tetradecanamide	2.2	0		μg/L		1	11/22/2006 11:48:00 AM
TIC: unknown (11.42)	20	0		μg/L		' 1	11/22/2006 11:48:00 AM
TIC: unknown (20.21)	2.6	0		µg/L µg/L		1	11/22/2006 11:48:00 AM 11/22/2006 11:48:00 AM

Approved By:

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

Not Detected at the Reporting Limit ND

Date: 11-22-06

Page 19 of 39

Value exceeds Maximum Contaminant Value

E Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Churchville Ford

CLIENT:

Client Sample ID: MW-6 Lu Engineers

U0610435 **Collection Date:** 10/23/2006 3:50:00 PM Lab Order:

Project: Matrix: WATER Lab ID: U0610435-017

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	(SW35	20)	Analyst: LD
Phenoi	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Chiorophenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Nitrobenzene	ND	10	μ g/ L	1	11/22/2006 12:30:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Nitrophenoi	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Naphthalene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Hexachiorocyclopentadiene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Chioronaphthalene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:30:00 PM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:30:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 12:30:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 12:30:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 12:30:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 12:30:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 12:30:00 PM
Fluorene	ND	10	μg/L	1	11/22/2006 12:30:00 PM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:30:00 PM

Approved	By:	P	匚

Low Level Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 11-22-06 Page 20 of 39

Value exceeds Maximum Contaminant Value

Date: 22-Nov-06

- Value above quantitation range Ε
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-017

Date: 22-Nov-06

Client Sample ID: MW-6

Collection Date: 10/23/2006 3:50:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		μg/L	1	11/22/2006 12:30:00 PM
N-Nitrosodiphenylamine	ND	10		µg/L	1	11/22/2006 12:30:00 PM
4-Bromophenyl phenyl ether	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Hexachlorobenzene	ND	10		µg/L	1	11/22/2006 12:30:00 PM
Pentachlorophenol	ND	24		µg/L	1	11/22/2006 12:30:00 PM
Phenanthrene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Anthracene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Carbazole	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Di-n-butyl phthalate	2	10	j	μg/L	1	11/22/2006 12:30:00 PM
Fluoranthene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Pyrene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Butyl benzyl phthalate	ND	10		μg/L	1	11/22/2006 12:30:00 PM
3,3'-Dichlorobenzidine	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Benz(a)anthracene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Chrysene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Bis(2-ethylhexyl)phthalate	2	10	j	μg/L	1	11/22/2006 12:30:00 PM
Di-n-octyl phthalate	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Benzo(b)fluoranthene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Benzo(k)fluoranthene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Benzo(a)pyrene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L	1	11/22/2006 12:30:00 PM
(3+4)-Methylphenol	ND	10		μg/L	1	11/22/2006 12:30:00 PM
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	11/22/2006 12:30:00 PM
TIC: 9-Octadecenamide, (Z)-	2.0	0		μg/L	1	11/22/2006 12:30:00 PM
TIC: Erucylamide	3.6	0		μg/L	1	11/22/2006 12:30:00 PM
TIC: unknown (11.38)	20	0		μg/L	1	11/22/2006 12:30:00 PM
TIC: unknown (11.51)	11	0		μg/L	1	11/22/2006 12:30:00 PM

Approved By:

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 21 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-018

Client Sample ID: MW-13

Collection Date: 10/23/2006 3:20:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3	520)	Analyst: LD
Phenoi	ND	10	µg/L	1	11/22/2006 1:12:00 PM
Bis(2-chloroethyl)ether	ND	10	µg/L	1	11/22/2006 1:12:00 PM
2-Chiorophenoi	ND	10	μg/L	1	11/22/2006 1:12:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Nitrobenzene	ND	10	µg/L	1	11/22/2006 1:12:00 PM
Isophorone	ND	10	µg/L	1	11/22/2006 1:12:00 PM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,4-Dimethylphenol	ND	10	µg/L	1	11/22/2006 1:12:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Naphthalene	ND	10	µg/L	1	11/22/2006 1:12:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2-Chloronaphthalene	ND	10	µg/L	1	11/22/2006 1:12:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 1:12:00 PM
Dimethyl phthalate	ND	10	µg/L	1	11/22/2006 1:12:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
3-Nitroaniline	ND	24	μg/L	·1	11/22/2006 1:12:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 1:12:00 PM
4-Nitrophenol	ND	24	µg/L	1	11/22/2006 1:12:00 PM
Dibenzofuran	ND	10	µg/L	1	11/22/2006 1:12:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 1:12:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 1:12:00 PM
Fluorene	ND	10	μg/L	1	11/22/2006 1:12:00 PM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 1:12:00 PM

Approved By:

Qualifiers:

- Low Level
 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-0/0

Page 22 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-018

Date: 22-Nov-06

Client Sample ID: MW-13

Collection Date: 10/23/2006 3:20:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		μg/L	1	11/22/2006 1:12:00 PM
N-Nitrosodiphenylamine	ND	10		μg/L	1	11/22/2006 1:12:00 PM
4-Bromophenyl phenyl ether	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Hexachlorobenzene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Pentachlorophenol	ND	24		μg/L	1	11/22/2006 1:12:00 PM
Phenanthrene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Anthracene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Carbazole	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Di-n-butyl phthalate	2	10	j	μg/L	1	11/22/2006 1:12:00 PM
Fluoranthene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Pyrene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Butyl benzyl phthalate	ND	10		μg/L	1	11/22/2006 1:12:00 PM
3,3'-Dichlorobenzidine	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Benz(a)anthracene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Chrysene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Bis(2-ethylhexyl)phthalate	8	10	J	µg/L	1	11/22/2006 1:12:00 PM
Di-n-octyl phthalate	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Benzo(b)fluoranthene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Benzo(k)fluoranthene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Benzo(a)pyrene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L	1	11/22/2006 1:12:00 PM
(3+4)-Methylphenol	ND	10		μg/L	1	11/22/2006 1:12:00 PM
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	11/22/2006 1:12:00 PM
TIC: 9-Octadecenamide, (Z)-	2.7	0		μg/L	1	11/22/2006 1:12:00 PM
TIC: Caprolactam	20	0		μg/L	1	11/22/2006 1:12:00 PM
TIC: Squalene	6.4	0		µg/L	1	11/22/2006 1:12:00 PM
TIC: unknown (19.57)	4.4	0		μg/L	1	11/22/2006 1:12:00 PM
TIC: unknown (22.64)	2.9	0		ug/L	1	11/22/2006 1:12:00 PM

Approved By: DE

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 23 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-019

Client Sample ID: MW-21

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

| SW8270C 10 10 10 10 10 10 10 10 10 10 10 10 10 | (SW35: µg/L 20) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Analyst: LD 11/22/2006 1:54:00 PM
|--|--|---|---|
| 10
10
10
10
10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10
10
10
10 | µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L | 1
1
1
1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10
10 | µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L
µg/L | 1
1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10
10 | μg/L
μg/L
μg/L
μg/L
μg/L | 1
1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10
10 | µg/L
µg/L
µg/L | 1
1
1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10
10 | µg/L
µg/L
µg/L | 1 | 11/22/2006 1:54:00 PM
11/22/2006 1:54:00 PM |
| 10
10 | μg/L
μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | • | |
| | | 1 | |
| 10 | | | 11/22/2006 1:54:00 PM |
| | μ9/∟ | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 24 | µg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | i | 11/22/2006 1:54:00 PM |
| 24 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 10 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| 24 | μg/L | 1 | 11/22/2006 1:54:00 PM |
| | | 1 | 11/22/2006 1:54:00 PM |
| | | 1 | 11/22/2006 1:54:00 PM |
| 10 | | 1 | 11/22/2006 1:54:00 PM |
| | | 1 | 11/22/2006 1:54:00 PM |
| 10 | ~ 3 [,] - | • | 11/22/2006 1:54:00 PM |
| 10
10 | ua/L | | |
| 10 | μg/L
μg/L | 1 | 11/22/2006 1:54:00 PM |
| | 24
10
10 | 24 μg/L
10 μg/L
10 μg/L
10 μg/L | 24 µg/L 1 10 µg/L 1 10 µg/L 1 10 µg/L 1 |

Approved By: DE

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit

Low Level

Date:

Page 24 of 39

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-019

Date: 22-Nov-06

Client Sample ID: MW-21

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		µg/L	1	11/22/2006 1:54:00 PM
N-Nitrosodiphenylamine	ND	10		μg/L	1	11/22/2006 1:54:00 PM
4-Bromophenyl phenyl ether	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Hexachlorobenzene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Pentachlorophenol	ND	24		µg/L	1	11/22/2006 1:54:00 PM
Phenanthrene	ND	10		µg/L	1	11/22/2006 1:54:00 PM
Anthracene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Carbazole	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Di-n-butyl phthalate	2	10	J	μg/L	1	11/22/2006 1:54:00 PM
Fluoranthene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Pyrene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Butyl benzyl phthalate	ND	10		μg/L	1	11/22/2006 1:54:00 PM
3,3'-Dichlorobenzidine	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Benz(a)anthracene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Chrysene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Bis(2-ethylhexyl)phthalate	3	10	j	μg/L	1	11/22/2006 1:54:00 PM
Di-n-octyl phthalate	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Benzo(b)fluoranthene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Benzo(k)fluoranthene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Benzo(a)pyrene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L	1	11/22/2006 1:54:00 PM
(3+4)-Methylphenol	ND	10		μg/L	1	11/22/2006 1:54:00 PM
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	11/22/2006 1:54:00 PM
TIC: Caprolactam	20	0		μg/L	1	11/22/2006 1:54:00 PM

Approved By:

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 25 of 39

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-020

Client Sample ID: MW-22

Collection Date: 10/23/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual U	nits	DF	Date Analyzed
CL-SEMIVOLATILE ORGANICS		SW82	70C	(SW3	520)	Analyst: LD
Phenol	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
Bis(2-chloroethyl)ether	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2-Chlorophenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
1,3-Dichlorobenzene	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
1,4-Dichlorobenzene	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
1,2-Dichlorobenzene	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2-Methylphenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
Hexachloroethane	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
Nitrobenzene	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
Isophorone	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
2-Nitrophenol	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
2,4-Dimethylphenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
Bis(2-chloroethoxy)methane	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2,4-Dichlorophenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
1,2,4-Trichlorobenzene	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
Naphthalene	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
4-Chloroaniline	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
Hexachlorobutadiene	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
4-Chloro-3-methylphenol	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
2-Methylnaphthalene	ND	10	μο	ı/L	1	11/22/2006 2:36:00 PM
Hexachlorocyclopentadiene	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2,4,6-Trichlorophenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2,4,5-Trichlorophenol	ND	10	μς	ı/L	1	11/22/2006 2:36:00 PM
2-Chloronaphthalene	ND	10	μg	ı/L	1	11/22/2006 2:36:00 PM
2-Nitroaniline	ND	24	μg		1	11/22/2006 2:36:00 PM
Dimethyl phthalate	ND	10	μg	/L	1	11/22/2006 2:36:00 PM
Acenaphthylene	ND	10	μg		1	11/22/2006 2:36:00 PM
2,6-Dinitrotoluene	ND	10	μg		1	11/22/2006 2:36:00 PM
3-Nitroaniline	ND	24	μg		1	11/22/2006 2:36:00 PM
Acenaphthene	ND	10	μg		1	11/22/2006 2:36:00 PM
2,4-Dinitrophenol	ND	24	μg	/L	1	11/22/2006 2:36:00 PM
4-Nitrophenol	ND	24	μg		1	11/22/2006 2:36:00 PM
Dibenzofuran	ND	10	μg		1	11/22/2006 2:36:00 PM
2.4-Dinitrotoluene	ND	10	μg		1	11/22/2006 2:36:00 PM
Diethyl phthalate	ND	10	μg		1	11/22/2006 2:36:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg		1	11/22/2006 2:36:00 PM
Fluorene	ND	10	μg		1	11/22/2006 2:36:00 PM
4-Nitroaniline	ND	24	μg		1	11/22/2006 2:36:00 PM

Approved By: 🏻 🗀

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 26 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-020

Date: 22-Nov-06

Client Sample ID: MW-22

Collection Date: 10/23/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		µg/L	1	11/22/2006 2:36:00 PM
N-Nitrosodiphenylamine	ND	10		µg/L	1	11/22/2006 2:36:00 PM
4-Bromophenyl phenyl ether	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Hexachlorobenzene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Pentachlorophenol	ND	24		μg/L	1	11/22/2006 2:36:00 PM
Phenanthrene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Anthracene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Carbazole	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Di-n-butyl phthalate	2	10	J	μg/L	1	11/22/2006 2:36:00 PM
Fluoranthene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Pyrene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Butyl benzyl phthalate	ND	10		μg/L	1	11/22/2006 2:36:00 PM
3,3'-Dichlorobenzidine	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Benz(a)anthracene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Chrysene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Bis(2-ethylhexyl)phthalate	3	10	J	µg/L	1	11/22/2006 2:36:00 PM
Di-n-octyl phthalate	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Benzo(b)fluoranthene	ND	10		µg/L	1 .	11/22/2006 2:36:00 PM
Benzo(k)fluoranthene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Benzo(a)pyrene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Dibenz(a,h)anthracene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Benzo(g,h,i)perylene	ND	10		μg/L	1	11/22/2006 2:36:00 PM
(3+4)-Methylphenol	ND	10		μg/L	1	11/22/2006 2:36:00 PM
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	11/22/2006 2:36:00 PM
TIC: Cyclohexasiloxane, dodecamethyl-	19	0		μg/L	1	11/22/2006 2:36:00 PM
TIC: Cyclopropane, 1-ethyl-2-methyl-, cis-	20	0		μg/L	1	11/22/2006 2:36:00 PM
TIC: unknown (11.4)	73	0		µg/L	1	11/22/2006 2:36:00 PM
TIC: unknown (11.64)	11	0		μg/L	1	11/22/2006 2:36:00 PM
TIC: unknown (19.46)	7.7	0		μg/L	1	11/22/2006 2:36:00 PM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

Date:

Page 27 of 39

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: Lu Engineers

Lab Order: U0

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-021

Date: 22-Nov-06

Client Sample ID: MW-JCL-1

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	S (SW35	20)	Analyst: LD
Phenol	ND	10	μg/L `	1	11/22/2006 3:18:00 PM
Bis(2-chloroethyl)ether	ND	10 .	μg/L	1	11/22/2006 3:18:00 PM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
1,2-Dichlorobenzene	ND	10	´µg/L	1	11/22/2006 3:18:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Naphthalene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2-Chioronaphthalene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 3:18:00 PM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 3:18:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 3:18:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 3:18:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 3:18:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 3:18:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 3:18:00 PM
Fluorene	ND	10	μg/L	1	11/22/2006 3:18:00 PM
4-Nitroaniline	ND	24	µg/L	1	11/22/2006 3:18:00 PM

Approved By: 🏳 🗀

- Qualifiers: * Low Level
 - B Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded
 - ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 28 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-021

Date: 22-Nov-06

Client Sample ID: MW-JCL-1

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24		μg/L	1	11/22/2006 3:18:00 PM
N-Nitrosodiphenylamine	ND	10		μg/L	1	11/22/2006 3:18:00 PM
4-Bromophenyl phenyl ether	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Hexachlorobenzene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Pentachlorophenol	ND	24		μg/L	1	11/22/2006 3:18:00 PM
Phenanthrene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Anthracene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Carbazole	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Di-n-butyl phthalate	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Fluoranthene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Pyrene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Butyl benzyl phthalate	ND	10		μg/L	1	11/22/2006 3:18:00 PM
3,3'-Dichlorobenzidine	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Benz(a)anthracene	ND	10		μg/L	1	11/22/2006 3:18:00 PM
Chrysene	ND	10		µg/L	1	11/22/2006 3:18:00 PM
Bis(2-ethylhexyl)phthalate	3	10		ug/L	1	11/22/2006 3:18:00 PM
Di-n-octyl phthalate	ND	10		ug/L	1	11/22/2006 3:18:00 PM
Benzo(b)fluoranthene	ND	10		ug/L	1	11/22/2006 3:18:00 PM
Benzo(k)fluoranthene	ND	10		ıg/L	1	11/22/2006 3:18:00 PM
Benzo(a)pyrene	ND	10		ug/L	1	11/22/2006 3:18:00 PM
Indeno(1,2,3-cd)pyrene	ND	10		ıg/L	1	11/22/2006 3:18:00 PM
Dibenz(a,h)anthracene	ND	10		ıg/L	1	11/22/2006 3:18:00 PM
Benzo(g,h,i)perylene	ND	10	•	ıg/L	1	11/22/2006 3:18:00 PM
(3+4)-Methylphenol	ND	10		ıg/L	1	11/22/2006 3:18:00 PM
Bis(2-chloroisopropyl)ether	ND	10		ıg/L	1	11/22/2006 3:18:00 PM
TIC: unknown (11.89)	130	0		ıg/L	1	11/22/2006 3:18:00 PM
TIC: unknown (19.63)	20	0		ıg/L	1	11/22/2006 3:18:00 PM

Approved By:

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 11-22-06 Page 29 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-022

Date: 22-Nov-06

Client Sample ID: MW-JCL-2

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: LD
Phenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Isophorone	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Naphthalene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
4-Chioro-3-methylphenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Chloronaphthalene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 11:16:00 AM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 11:16:00 AM
Acenaphthene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 11:16:00 AM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 11:16:00 AM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 11:16:00 AM
2.4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 11:16:00 AM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Fluorene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
4-Nitroaniline	ND	24	µg/L	1	11/22/2006 11:16:00 AM

Approved By: p

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 1/-22-010

Page 30 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-022

Date: 22-Nov-06

Client Sample ID: MW-JCL-2

Collection Date: 10/23/2006 3:00:00 PM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	0C (SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	11/22/2006 11:16:00 AM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 11:16:00 AM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 11:16:00 AM
Phenanthrene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Anthracene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Carbazole	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Di-n-butyl phthalate	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Fluoranthene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Pyrene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 11:16:00 AM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Benz(a)anthracene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Chrysene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Bis(2-ethylhexyl)phthalate	6	10	J μg/L	1	11/22/2006 11:16:00 AM
Di-n-octyl phthalate	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Benzo(b)fluoranthene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Benzo(a)pyrene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Dibenz(a,h)anthracene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 11:16:00 AM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 11:16:00 AM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 11:16:00 AM
TIC: Caprolactam	20	0	μg/L	1	11/22/2006 11:16:00 AM
TIC: unknown (20.91)	5.6	0	μg/L	1	11/22/2006 11:16:00 AM
TIC: unknown (22.38)	21	0	μg/L	1	11/22/2006 11:16:00 AM
TIC: unknown (24.86)	9.7	0	μg/L	1	11/22/2006 11:16:00 AM
TIC: unknown (25.02)	10	0	μg/L	1	11/22/2006 11:16:00 AM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date: 11-22-06

Page 31 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 22-Nov-06

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-023

Client Sample ID: MW-JCL-3

Collection Date: 10/23/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: LD
Phenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
1,3-Dichlorobenzene	ND	10	µg/L	1	11/22/2006 12:00:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4-Dimethylphenol	ND	10	μgi/L	1	11/22/2006 12:00:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Naphthalene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
4-Chloro-3-methylphenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:00:00 PM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:00:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 12:00:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 12:00:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 12:00:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 12:00:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Fluorene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 12:00:00 PM

Approved By:

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date:

Page 32 of 39

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-023

Date: 22-Nov-06

Client Sample ID: MW-JCL-3

Collection Date: 10/23/2006 3:35:00 PM

Matrix: WATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	C (SW3	3520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	µg/L `	1	11/22/2006 12:00:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 12:00:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 12:00:00 PM
Phenanthrene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Anthracene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Carbazole	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Fluoranthene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Pyrene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 12:00:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Benz(a)anthracene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Chrysene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Bis(2-ethylhexyl)phthalate	5	10 J	μg/L	1	11/22/2006 12:00:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 12:00:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 12:00:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 12:00:00 PM
TIC: Caprolactam	20	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: Docosa-2,6,10,14,18- pentaen-22-al, 2,6,1	11	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: Erucylamide	52	0	µg/L	1	11/22/2006 12:00:00 PM
TIC: Hexadecanamide	6.5	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: Phenol, (1,1,3,3- tetramethylbutyl)- (17.5	3.1	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: Phenol, (1,1,3,3-tetramethylbutyl)- (17.9	2.4	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: Phenol, nonyl-	4.1	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: unknown (17.67)	2.8	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: unknown (20.9)	8.7	0	μg/L	1	11/22/2006 12:00:00 PM
TIC: unknown (22.39)	58	0	μg/L	1	11/22/2006 12:00:00 PM

Approved By:

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-00

Page 33 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-024

Date: 22-Nov-06

Client Sample ID: ERB-3

Collection Date: 10/23/2006 11:00:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	SW8270C (SW352		20)	Analyst: LD	
Phenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
1,4-Dichlorobenzene	ND	. 10	μg/L	1	11/22/2006 2:12:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Hexachloroethane	ND	10	µg/L	1	11/22/2006 2:12:00 PM
Nitrobenzene	ND	10	µg/L	1	11/22/2006 2:12:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Bis(2-chloroethoxy)methane	ND	10	µg/L	1	11/22/2006 2:12:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Naphthalene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
4-Chloro-3-methylphenol	ND	10	µg/L	1	11/22/2006 2:12:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2-Chloronaphthalene	ND	10	μg/Ĺ	1	11/22/2006 2:12:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 2:12:00 PM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 2:12:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 2:12:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 2:12:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 2:12:00 PM
2,4-Dinitrotoluene	ND	.10	μg/L	1	11/22/2006 2:12:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 2:12:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Fluorene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 2:12:00 PM

Approved By: PF

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-00

Page 34 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Lu Engineers

CLIENT: Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-024

Date: 22-Nov-06

Client Sample ID: ERB-3

Collection Date: 10/23/2006 11:00:00 AM

Matrix: WATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW3	520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	μg/L `	1	11/22/2006 2:12:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 2:12:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 2:12:00 PM
Phenanthrene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Anthracene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Carbazole	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Di-n-butyl phthalate	1	10 .	J μg/L	1	11/22/2006 2:12:00 PM
Fluoranthene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Pyrene	ND	10	µg/L	1	11/22/2006 2:12:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 2:12:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Benz(a)anthracene	ND	10	μg/L	· 1	11/22/2006 2:12:00 PM
Chrysene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Bis(2-ethylhexyl)phthalate	14	10	μg/L	1	11/22/2006 2:12:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 2:12:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 2:12:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 2:12:00 PM
TIC: Docosa-2,6,10,14,18- pentaen-22-al, 2,6,1	10	0	μg/L	1	11/22/2006 2:12:00 PM
TIC: unknown (20.92)	11	0	μg/L	1	11/22/2006 2:12:00 PM
TIC: unknown (22.34)	5.8	0	μg/L	1	11/22/2006 2:12:00 PM
TIC: unknown (22.38)	7.7	0	μg/L	1	11/22/2006 2:12:00 PM
TIC: unknown (22.59)	3.8	0	μg/L	1	11/22/2006 2:12:00 PM
TIC: unknown (23.95)	9.3	0	μg/L	1	11/22/2006 2:12:00 PM

Approved By: DE

Qualifiers:

- Low Leve
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 11-22-06

Page 35 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-025

Date: 22-Nov-06

Client Sample ID: FB-2

Collection Date: 10/23/2006 11:05:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	20)	Analyst: LD
Phenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
1,2-Dichlorobenzene	· ND	10	μg/L	1	11/22/2006 2:55:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2-Nitrophenol	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Naphthalene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
4-Chloro-3-methylphenol	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2-Methylnaphthalene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2,4,5-Trichlorophenol	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2-Chloronaphthalene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2-Nitroaniline	ND	24	µg/L	1	11/22/2006 2:55:00 PM
Dimethyl phthalate	ND	10	µg/L	1	11/22/2006 2:55:00 PM
Acenaphthylene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2,6-Dinitrotoluene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 2:55:00 PM
Acenaphthene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 2:55:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 2:55:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 2:55:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Diethyl phthalate	ND	10	μg/L	1	11/22/2006 2:55:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Fluorene	ND	10	µg/L	1	11/22/2006 2:55:00 PM
4-Nitroaniline	ND	24	µg/L	1	11/22/2006 2:55:00 PM

Approved By: \(\sum_{\bullet}

Qualifiers:

* Low Leve

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-06

Page 36 of 39

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-025

Date: 22-Nov-06

Client Sample ID: FB-2

Collection Date: 10/23/2006 11:05:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C (SW:	3520)	Analyst: LD
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	11/22/2006 2:55:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 2:55:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 2:55:00 PM
Phenanthrene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Anthracene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Carbazole	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Fluoranthene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Pyrene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 2:55:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Benz(a)anthracene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Chrysene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Bis(2-ethylhexyl)phthalate	4	10	μg/L J μg/L	1	
Di-n-octyl phthalate	ND	10	υ μg/L	1	11/22/2006 2:55:00 PM
Benzo(b)fluoranthene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Benzo(a)pyrene	ND	10		1	11/22/2006 2:55:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L μg/L	1	11/22/2006 2:55:00 PM
Dibenz(a,h)anthracene	ND	10		•	11/22/2006 2:55:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 2:55:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 2:55:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 2:55:00 PM
TIC: Squalene	45		μg/L	1	11/22/2006 2:55:00 PM
TIC: unknown	5.4	0	μg/L	1	11/22/2006 2:55:00 PM ,
rior diminorni	5.4	0	μg/L	1	11/22/2006 2:55:00 PM

Approved By: Di

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 1/-22-02

Page 37 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-026

Date: 22-Nov-06

Client Sample ID: MW-JCL-1A

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3520)		Analyst: LD
Phenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Bis(2-chloroethyl)ether	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2-Chlorophenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
1,3-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
1,4-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
1,2-Dichlorobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2-Methylphenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Hexachloroethane	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Nitrobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Isophorone	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2-Nitrophenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4-Dimethylphenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4-Dichlorophenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Naphthalene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
4-Chloroaniline	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Hexachlorobutadiene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
4-Chloro-3-methylphenol	ND	10	µg/L	1	11/22/2006 3:40:00 PM
2-Methylnaphthalene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Hexachlorocyclopentadiene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4,6-Trichlorophenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4,5-Trichlorophenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2-Chloronaphthalene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2-Nitroaniline	ND	24	μg/L	1	11/22/2006 3:40:00 PM
Dimethyl phthalate	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Acenaphthylene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2.6-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
3-Nitroaniline	ND	24	μg/L	1	11/22/2006 3:40:00 PM
Acenaphthene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4-Dinitrophenol	ND	24	μg/L	1	11/22/2006 3:40:00 PM
4-Nitrophenol	ND	24	μg/L	1	11/22/2006 3:40:00 PM
Dibenzofuran	ND	10	μg/L	1	11/22/2006 3:40:00 PM
2,4-Dinitrotoluene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Diethyl phthalate	ND	10	µg/L	1	11/22/2006 3:40:00 PM
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Fluorene	ND	10	µg/L	1	11/22/2006 3:40:00 PM
4-Nitroaniline	ND	24	μg/L	1	11/22/2006 3:40:00 PM

Approved By: DD

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: //-22-06

Page 38 of 39

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0610435

Project:

Churchville Ford

Lab ID:

U0610435-026

Date: 22-Nov-06

Client Sample ID: MW-JCL-1A

Collection Date: 10/23/2006 3:30:00 PM

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	SW8270C (SW3		3520)	Analyst: LD	
4,6-Dinitro-2-methylphenol	ND	24	μg/L	1	11/22/2006 3:40:00 PM
N-Nitrosodiphenylamine	ND	10	μg/L	1	11/22/2006 3:40:00 PM
4-Bromophenyl phenyl ether	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Hexachlorobenzene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Pentachlorophenol	ND	24	μg/L	1	11/22/2006 3:40:00 PM
Phenanthrene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Anthracene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Carbazole	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Di-n-butyl phthalate	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Fluoranthene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Pyrene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Butyl benzyl phthalate	ND	10	μg/L	1	11/22/2006 3:40:00 PM
3,3'-Dichlorobenzidine	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Benz(a)anthracene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Chrysene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Bis(2-ethylhexyl)phthalate	5	10	J μg/L	1	11/22/2006 3:40:00 PM
Di-n-octyl phthalate	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Benzo(b)fluoranthene	ND	10	µg/L	1	11/22/2006 3:40:00 PM
Benzo(k)fluoranthene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Benzo(a)pyrene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Dibenz(a,h)anthracene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Benzo(g,h,i)perylene	ND	10	μg/L	1	11/22/2006 3:40:00 PM
(3+4)-Methylphenol	ND	10	μg/L	1	11/22/2006 3:40:00 PM
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	11/22/2006 3:40:00 PM
TIC: unknown (17.62)	2.3	0	μg/L	1	11/22/2006 3:40:00 PM
TIC: unknown (19.06)	2.7	0	μg/L	1	11/22/2006 3:40:00 PM
TIC: unknown (22.39)	8.3	0	μg/L	1	11/22/2006 3:40:00 PM

Approved By:

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date:

Page 39 of 39

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Syracuse	9 9 10	6 7	1 4- 0	1 1	Parameter and Method		() side blank	TKIP BLANC	NW-JCL-/A			1	الر	2011-1-1-1011/de	-	-		7(W) - 0	MM	10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	10 VOC	D	,	LU ENGINEERS	Phone (315) 437 0255	6034 Corporate Drive E. Syracuse New York 13057	unate Laboratories,
Rochester					Sample bottle:		TO SOCKET	1,50 m								15:35	05 151	1520	85:58		10/25/ob 15:00	Date Time	585-377-1450 PENFIELD	CHUR	Project # Pn	w York 13057	
Buffalo				GLASS 40	Type AMBER		O Merce	†		5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	55	0	80	5	8		\$ \$		WATER	Matrix GRAB OR COMP	NY	CHURCHVILLE FORD	Project # Project Name	5) 437 1209	inc.
Albany				40 ML 1:1 HCL	NONE			1	$\overline{}$	d	7 11	<u> </u>) p .	18-	-7 (-65	5-	3) 40	-36	0	1	ULI Internal Use Only		O for John	nuV	·	Ciiaiii (
Binghamton	Relinguismed by (sign)	Relinquished by:(sign)	Jun Detrux	Relinquished by: (sign) Dat	_%_			ブ シ ー		w X X	(2) X X		3 XX	(A)				XXX	N XX		XXX	1 2 3 4 5 6		Th _s		ULI Computer Input Form	or chainna
Fair Lawn (NJ)	Date Time Rec'd for	Date	/d 16;α)	_ e		Name																7 8 9 10 1 10	•			ut Form XASP	INCLUIU
	for bab by:	acaps, (cigir)	Barcing (Sign)	yed by/(staps	<u> </u>	Name of Courier																DAY TAT			Remarks	CATO	

Chain of Custody Record

6034 Corporate Drive E. Syracuse New York 13057

XAS CA B. 10 X 10 DAY TAT Remarks Received(by: (sign) Name of Courier Rec'd for Lab by: 10/23/4 16:00 Azyllo R. och Date Time 0 ULI Computer Input Form ∞ Date Company: Lu Englyceurs ထ Relinquished by:(sign) by∤(sign) Sampled by (Print)
Enc Detweller Relinquished by:(sign 4 gu (situ က 133 100 m 30 ULI Internal Use Only Preservative OR COMP 1406/0435 2 0 NONE 1:1 HCL Alhanv GRAB WATER GRAB 40 ML Size LITER CHURCHVILLE FORD Matrix AMBER M Buffalo Fax (315) 437 1209 Project #/ Project Name GLASS 585-377-1450|PENFIELD, NY Type 15:00 15130 15:30 15:35 15:00 15:35 15,30 15:00 11:00 Time 1520 11:05 Sample bottle: Rochester 0/23/06 Date 10/23/01 ms/msoya 10/18/0t 10/18/06 VEC 14 10/8/ P of 18 lot वितास विवे TRIP BLANG Parameter and Method Sample ID MW-JCL-IA Syracuse ERIC DETWEILER Phone (315) 437 0255 MW-JCL-LU ENGINEERS 1 EPA 8270 + TICS **EPA 8260 +TICS** MW-JCL MW-JEL MW-22 ERB-3 MW-13 MW-21 FB-2 MW-3 MW-6 7 4 3 9

		(,

Shipping: 6034 Corporate Dr. * E. Syracuse, NY 13057-1017 * (315) 437-0255 * Fax (315) 437-1209 Mailing: Box 169 * Syracuse, NY 13206

Albany (518) 459-3134 * Binghamton (607) 724-0478 * Buffalo (716) 649-2533 Rochester (585) 436-9070 * New Jersey (201) 343-5353 * South Carolina (864) 878-3280

Mr. Eric Detweiler Lu Engineers 2230 Penfield Rd. Penfield, NY 14526

Monday, October 23, 2006

Order No.: U0609387

RE: Churchville Ford

Dear Mr. Eric Detweiler:

Upstate Laboratories, Inc. received 5 sample(s) on 9/21/2006 for the analyses presented in the following report.

All analytical results relate to the samples as received by the laboratory.

All analytical data conforms with standard approved methodologies and quality control. Our quality control narrative will be included should any anomalies occur.

We have included the Chain of Custody Record as part of your report. You may need to reference this form for a more detailed explanation of your samples. Samples will be disposed of approximately one month from final report date.

Should you have any questions regarding these tests, please feel free to give us a call.

Thank you for your patronage.

Sincerely,

UPSTATE LABORATORIES, INC.

Anthony J. Scala

President/CEO

nfidentiality Statement: This report is meant for the use of the intended recipient. It may contain confidential information, which is legally privileged or otherwise protected by law. If you have received this report in error, you are strictly prohibited from reviewing, using, disseminating, distributing or copying the information.

NY Lab ID 10170 NJ Lab ID NY750 PA Lab ID 68375

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-001

Date: 23-Oct-06

Client Sample ID: MW-JCL-1

Collection Date: 9/18/06 12:30:00 PM

Matrix: SOIL

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed	
ICP METALS, TOTAL ASP		SW6010	B (SW30	(50 A)		
Aluminum	8190	22.1	mg/Kg-dry	1	Analyst: LJ	
Antimony	ND	3.32	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Arsenic	4.09	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Barium	92.8	11.1	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Beryllium	ND	0.664	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Cadmium	ND	1.11	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Calcium	22800	221	mg/Kg-dry	•	10/4/06 10:35:16 AM	
Chromium	13.2	1.11		1	10/4/06 10:35:16 AM	
Cobalt	6.06	4.43	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Copper	15.7	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Iron	14300	13.3	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Lead	12.1	0.664	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Magnesium	9630	221	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Manganese	619		mg/Kg-dry	1	10/4/06 10:35:16 AM	
Nickel	12.6	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Potassium	948	6.64	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Selenium	948 ND	221	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Silver		1.11	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Sodium	ND	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Thallium	ND	221	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Vanadium	ND	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
Zinc	16.8	6.64	mg/Kg-dry	1	10/4/06 10:35:16 AM	
	63.5	2.21	mg/Kg-dry	1	10/4/06 10:35:16 AM	
OTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	A (SW7471A)		A	
Mercury	ND	0.111	mg/Kg-dry	1	Analyst: EA 9/28/06 8:43:20 AM	
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0 A)	Analyst: KL	
(3+4)-Methylphenol	ND	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	
1,2,4-Trichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	
1,2-Dichlorobenzene	ND	370	μg/Kg-dry	1		
1,3-Dichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	
1,4-Dichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	
2,4,5-Trichlorophenol	ND	370	µg/Kg-dry	1	10/19/06 1:57:00 PM	
2,4,6-Trichlorophenol	ND	370	μg/Kg-dry		10/19/06 1:57:00 PM	
2,4-Dichlorophenol	ND	370	µg/Kg-dry	1	10/19/06 1:57:00 PM	
2,4-Dimethylphenol	ND	370		1	10/19/06 1:57:00 PM	
,4-Dinitrophenol	ND	3700	μg/Kg-dry	1	10/19/06 1:57:00 PM	
,4-Dinitrotoluene	ND	3700	μg/Kg-dry	1	10/19/06 1:57:00 PM	
,6-Dinitrotoluene	ND		μg/Kg-dry	1	10/19/06 1:57:00 PM	
-Chloronaphthalene	ND	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	
	טא	370	μg/Kg-dry	1	10/19/06 1:57:00 PM	

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 1 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-001

Date: 23-Oct-06

Client Sample ID: MW-JCL-1

Collection Date: 9/18/06 12:30:00 PM

Matrix: SOIL

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355		Analyst: KL
2-Chlorophenol	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
2-Methylnaphthalene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
2-Methylphenol	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
2-Nitroaniline	ND	3700		μg/Kg-dry	1	10/19/06 1:57:00 PM
2-Nitrophenol	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
3,3'-Dichlorobenzidine	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
3-Nitroaniline	ND	3700		μg/Kg-dry	1	10/19/06 1:57:00 PM
4,6-Dinitro-2-methylphenol	ND	3700		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Bromophenyl phenyl ether	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Chloro-3-methylphenol	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Chloroaniline	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Chlorophenyl phenyl ether	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Nitroaniline	ND	3700		μg/Kg-dry	1	10/19/06 1:57:00 PM
4-Nitrophenol	ND	3700		μg/Kg-dry	1	10/19/06 1:57:00 PM
•	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Acenaphthene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Acenaphthylene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Anthracene	200	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Benz(a)anthracene	100	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Benzo(a)pyrene	200	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Benzo(b)fluoranthene	100	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Benzo(g,h,i)perylene	70	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Benzo(k)fluoranthene	ND	370	_	μg/Kg-dry	1	10/19/06 1:57:00 PM
Bis(2-chloroethoxy)methane	ND	370		µg/Kg-dry	1	10/19/06 1:57:00 PM
Bis(2-chloroethyl)ether	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Bis(2-chloroisopropyl)ether	90	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Bis(2-ethylhexyl)phthalate	ND	370	Ū	µg/Kg-dry	1	10/19/06 1:57:00 PM
Butyl benzyl phthalate	40	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Carbazole		370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Chrysene	200	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Di-n-butyl phthalate	100	370	J	μg/Kg-dry	1	10/19/06 1:57:00 PM
Di-n-octyl phthalate	ND			μg/Kg-dry	1	10/19/06 1:57:00 PM
Dibenz(a,h)anthracene	ND	370		μg/Kg-dry μg/Kg-dry	1	10/19/06 1:57:00 PM
Dibenzofuran	ND	370			1	10/19/06 1:57:00 PM
Diethyl phthalate	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Dimethyl phthalate	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Fluoranthene	460	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Fluorene	ND	370		μg/Kg-dry		10/19/06 1:57:00 PM
Hexachlorobenzene	ND	370		µg/Kg-dry	1	
Hexachlorobutadiene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 2 of 17

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-001

Date: 23-Oct-06

Client Sample ID: MW-JCL-1

Collection Date: 9/18/06 12:30:00 PM

Matrix: SOIL

Analyses	Result	Limit	Qua	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3	550A)	A
Hexachlorocyclopentadiene	ND	370		μg/Kg-dry	1	Analyst: KL 10/19/06 1:57:00 PM
Hexachloroethane	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM 10/19/06 1:57:00 PM
Indeno(1,2,3-cd)pyrene	100	370	J	μg/Kg-dry	1	
Isophorone	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
N-Nitrosodi-n-propylamine	ND	370		µg/Kg-dry	1	10/19/06 1:57:00 PM
N-Nitrosodiphenylamine	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Naphthalene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Nitrobenzene	ND	370		μg/Kg-dry	1	10/19/06 1:57:00 PM
Pentachlorophenol	ND	740		µg/Kg-dry	1	10/19/06 1:57:00 PM
Phenanthrene	200	370	J	μg/Kg-dry		10/19/06 1:57:00 PM
Phenol	ND	370	٠	μg/Kg-dry	1	10/19/06 1:57:00 PM
Pyrene	300	370	J	µg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: 1-Hexacosene	150	0	J		1	10/19/06 1:57:00 PM
TIC: Benzene, 1,1'-(1,3,3-trimethy	130	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
1-propene	100	U		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: Ethanol, 2-(2-butoxyethoxy)-, acetate	190	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: Perylene	130	0		μg/Kg-dry	1	10/10/06 1.57.00 D.4
TIC: unknown (16)	82	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown (20.89)	400	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown (20.92)	200	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown (21.04)	94	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown (22.19)	130	0		μg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown (23.35)	650	0				10/19/06 1:57:00 PM
TIC: unknown (24.5)	83	0		µg/Kg-dry µg/Kg-dry	1 1	10/19/06 1:57:00 PM
TIC: unknown (26.64)	130	0		· -		10/19/06 1:57:00 PM
TIC: unknown hydrocarbon (20.4)	110	0		µg/Kg-dry	1	10/19/06 1:57:00 PM
TIC: unknown hydrocarbon (22.14	170	0		ug/Kg-dry	1	10/19/06 1:57:00 PM
	., 0	U	l	ug/Kg-dry	1	10/19/06 1:57:00 PM
SP/CLP TCL VOLATILE SOIL		SW826	0B			Analyst: MRN
Chloromethane	ND	11	1	ıg/Kg-dry	1	10/4/06 4:57:00 PM
Vinyl chloride	ND	11		ıg/Kg-dry	1	10/4/06 4:57:00 PM
Bromomethane	ND	11		ıg/Kg-dry	1	10/4/06 4:57:00 PM
Chloroethane	ND	11		g/Kg-dry	1	10/4/06 4:57:00 PM
Acetone	ND	11		g/Kg-dry	1	10/4/06 4:57:00 PM
,1-Dichloroethene	ND	11		g/Kg-dry	1	10/4/06 4:57:00 PM
Carbon disulfide	ND	11		g/Kg-dry	1	10/4/06 4:57:00 PM
flethylene chloride	6	11 ,		g/Kg-dry	1	
ans-1,2-Dichloroethene	ND	11		g/Kg-dry	1	10/4/06 4:57:00 PM
,1-Dichloroethane	ND	11		g/Kg-dry g/Kg-dry	1	10/4/06 4:57:00 PM 10/4/06 4:57:00 PM

Approved By:

Qualifiers:

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 3 of 17

- * Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-001

Date: 23-Oct-06

Client Sample ID: MW-JCL-1

Collection Date: 9/18/06 12:30:00 PM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW8	260B			Analyst: MRN
2-Butanone	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
cis-1,2-Dichloroethene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Chloroform	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
1,1,1-Trichloroethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Carbon tetrachloride	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Benzene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
1,2-Dichloroethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Trichloroethene	2	11	J	μg/Kg-dry	1	10/4/06 4:57:00 PM
1,2-Dichloropropane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Bromodichloromethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
4-Methyl-2-pentanone	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
cis-1,3-Dichloropropene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Toluene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
trans-1,3-Dichloropropene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
1,1,2-Trichloroethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
2-Hexanone	2	11	J	μg/Kg-dry	1	10/4/06 4:57:00 PM
Tetrachloroethene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Dibromochloromethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Chlorobenzene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Ethylbenzene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
m,p-Xylene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
o-Xylene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Styrene	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
Bromoform 1,1,2,2-Tetrachloroethane	ND	11		μg/Kg-dry	1	10/4/06 4:57:00 PM
NOTES: TICS: No compounds were detected.						A chart Oct
TOTAL ORGANIC CARBON, SOILS Organic Carbon, Total NOTES:	15000	50.0	115.1)	mg/Kg	1	Analyst: Sub 10/6/06
TOC analysis subcontracted to NYSDOH E	LAP Lab ID# 11	140.				A
PERCENT MOISTURE Percent Moisture	9.62	0.00100	2216	wt%	1	Analyst: MG 9/26/06

				The state of the s	
Approved By:	PF			10-23-06	Page 4 of 17
Oualifiers: *	Low Le			Value exceeds Maximum Contaminant	Value
Quanners.		detected in the associated Method Blank		Value above quantitation range	
T.		times for preparation or analysis exceeded		Analyte detected below quantitation lin	
N'	-	rected at the Reporting Limit	S	Spike Recovery outside accepted recov	ery limits

ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-002

Date: 23-Oct-06

Client Sample ID: MW-JCL-2

Collection Date: 9/19/06 2:00:00 PM

Analyses	Result	Limit	Qual Units		
100	result	Dillill	Quai Units	DF	Date Analyzed
ICP METALS, TOTAL ASP Aluminum		SW60	10B (SW30)50A)	Analyst: LJ
Antimony	4470	22.1	mg/Kg-dry	1	10/4/06 10:46:09 AM
Arsenic	ND	3.32	mg/Kg-dry	1	10/4/06 10:46:09 AM
Barium	2.29	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
Beryllium	44.4	11.1	mg/Kg-dry	1	10/4/06 10:46:09 AM
Cadmium	ND	0.664	mg/Kg-dry	1	10/4/06 10:46:09 AM
Calcium	ND	1.11	mg/Kg-dry	1	10/4/06 10:46:09 AM
	61200	221	mg/Kg-dry	1	10/4/06 10:46:09 AM
Chromium Cobalt	6.54	1.11	mg/Kg-dry	1	10/4/06 10:46:09 AM
	ND	4.43	mg/Kg-dry	1	10/4/06 10:46:09 AM
Copper	10.5	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
Iron	8690	13.3	mg/Kg-dry	1	10/4/06 10:46:09 AM
Lead	6.10	0.664	mg/Kg-dry	1	10/4/06 10:46:09 AM
Magnesium	22800	221	mg/Kg-dry	1	10/4/06 10:46:09 AM
Manganese	280	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
Nickel	7.41	6.64	mg/Kg-dry	1	10/4/06 10:46:09 AM
Potassium	1090	221	mg/Kg-dry	1	10/4/06 10:46:09 AM
Selenium	ND	1.11	mg/Kg-dry	1	10/4/06 10:46:09 AM
Silver	ND	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
Sodium	ND	221	mg/Kg-dry	1	10/4/06 10:46:09 AM
Thallium	ND	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
Vanadium	10.1	6.64	mg/Kg-dry	1	10/4/06 10:46:09 AM
Zinc	134	2.21	mg/Kg-dry	1	10/4/06 10:46:09 AM
OTAL MERCURY - SOIL/SOLID/WASTE		CM747	- •		10/4/00 10:40:09 AIN
Mercury	ND	SW747 1 0.111	(~	•	Analyst: EA
CL CENTOL AND TO THE	115	0.111	mg/Kg-dry	1	9/28/06 8:50:41 AM
CL-SEMIVOLATILE ORGANICS (3+4)-Methylphenol		SW8270	C (SW355	0A)	Analyst: KL
1,2,4-Trichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
1,2-Dichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
1,3-Dichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
1,4-Dichlorobenzene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4,5-Trichlorophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4,6-Trichlorophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4-Dichlorophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4-Dimethylphenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4-Dinitrophenol	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
2,4-Dinitrotoluene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
t,6-Dinitrotoluene	ND	370	μg/Kg-dry	1	
-Chloronaphthalene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM 10/19/06 4:09:00 PM

Approved By:

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit

Date: 10-23-06

Page 5 of 17

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-002

Date: 23-Oct-06

Client Sample ID: MW-JCL-2

Collection Date: 9/19/06 2:00:00 PM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3550		Analyst: KL
2-Chlorophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2-Methylnaphthalene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
2-Methylphenol	ND	370	µg/Kg-dry	1	10/19/06 4:09:00 PM
2-Nitroaniline	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
2-Nitrophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
3,3'-Dichlorobenzidine	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
3-Nitroaniline	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
4,6-Dinitro-2-methylphenol	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
4-Bromophenyl phenyl ether	ND	370	µg/Kg-dry	1	10/19/06 4:09:00 PM
4-Chloro-3-methylphenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
4-Chloroaniline	ND	370	µg/Kg-dry	1	10/19/06 4:09:00 PM
4-Chlorophenyl phenyl ether	ND	370	µg/Kg-dry	1	10/19/06 4:09:00 PM
	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
4-Nitroaniline	ND	3700	μg/Kg-dry	1	10/19/06 4:09:00 PM
4-Nitrophenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Acenaphthene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Acenaphthylene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Anthracene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Benz(a)anthracene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Benzo(a)pyrene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Benzo(b)fluoranthene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Benzo(g,h,i)perylene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Benzo(k)fluoranthene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Bis(2-chloroethoxy)methane	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Bis(2-chloroethyl)ether		370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Bis(2-chloroisopropyl)ether	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Bis(2-ethylhexyl)phthalate	ND	370 370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Butyl benzyl phthalate	ND	370 370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Carbazole	ND	370 370	μg/Kg-dry μg/Kg-dry	1	10/19/06 4:09:00 PM
Chrysene	ND		μg/Kg-dry μg/Kg-dry	1	10/19/06 4:09:00 PM
Di-n-butyl phthalate	70	•	µg/Kg-dry	1	10/19/06 4:09:00 PM
Di-n-octyl phthalate	ND	370	μg/Kg-dry μg/Kg-dry	1	10/19/06 4:09:00 PM
Dibenz(a,h)anthracene	ND	370		1	10/19/06 4:09:00 PM
Dibenzofuran	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Diethyl phthalate	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Dimethyl phthalate	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Fluoranthene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Fluorene	ND	370	μg/Kg-dry		10/19/06 4:09:00 PM
Hexachlorobenzene Hexachlorobutadiene	ND ND	370 370	μg/Kg-dry μg/Kg-dry	1 1	10/19/06 4:09:00 PM

Approved By: PF

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 6 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-002

Date: 23-Oct-06

Client Sample ID: MW-JCL-2

Collection Date: 9/19/06 2:00:00 PM

Matrix: SOIL

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SIMB	270C (SW35		
Hexachlorocyclopentadiene	ND	370	270C (SW35 μg/Kg-dry	-	Analyst: KL
Hexachloroethane	ND	370		1	10/19/06 4:09:00 PM
Indeno(1,2,3-cd)pyrene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Isophorone	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
N-Nitrosodi-n-propylamine	ND	370	µg/Kg-dry	1	10/19/06 4:09:00 PM
N-Nitrosodiphenylamine	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Naphthalene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Nitrobenzene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Pentachlorophenol	ND	740	µg/Kg-dry	1	10/19/06 4:09:00 PM
Phenanthrene	ND		μg/Kg-dry	1	10/19/06 4:09:00 PM
Phenol	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
Pyrene	ND	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
TIC: 9-Octadecenamide, (Z)-	470	370	μg/Kg-dry	1	10/19/06 4:09:00 PM
TIC: Hexadecanamide	470 76	0	μg/Kg-dry	1	10/19/06 4:09:00 PM
TIC: unknown (20.92)	76 340	0	µg/Kg-dry	1	10/19/06 4:09:00 PM
TIC: unknown (23.35)	1500	0	µg/Kg-dry	1	10/19/06 4:09:00 PM
•	1500	0	μg/Kg-dry	1	10/19/06 4:09:00 PM
ASP/CLP TCL VOLATILE SOIL		SW82	60B		A!
Chloromethane	ND	550	μg/Kg-dry	50	Analyst: IM
Vinyl chloride	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
Bromomethane	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
Chloroethane	ND	550	μg/Kg-dry	50 50	9/29/06 2:38:00 PM
Acetone	ND	550	μg/Kg-dry	50 50	9/29/06 2:38:00 PM
1,1-Dichloroethene	ND	550	μg/Kg-dry		9/29/06 2:38:00 PM
Carbon disulfide	ND	550	μg/Kg-dry μg/Kg-dry	50	9/29/06 2:38:00 PM
Methylene chloride	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
trans-1,2-Dichloroethene	ND	550		50	9/29/06 2:38:00 PM
1,1-Dichloroethane	ND	550	µg/Kg-dry	50	9/29/06 2:38:00 PM
2-Butanone	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
cis-1,2-Dichloroethene	60		µg/Kg-dry J ua/Ka-dry	50	9/29/06 2:38:00 PM
Chloroform	ND	550		50	9/29/06 2:38:00 PM
1,1,1-Trichloroethane	ND		µg/Kg-dry	50	9/29/06 2:38:00 PM
Carbon tetrachloride	ND	550 550	μg/Kg-dry	50	9/29/06 2:38:00 PM
Benzene	ND	550 550	μg/Kg-dry	50	9/29/06 2:38:00 PM
,2-Dichloroethane	ND	550 550	μg/Kg-dry	50	9/29/06 2:38:00 PM
richloroethene	200	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
,2-Dichloropropane			J μg/Kg-dry	50	9/29/06 2:38:00 PM
Bromodichloromethane	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM
-Methyl-2-pentanone	ND	550	µg/Kg-dry	50	9/29/06 2:38:00 PM
- y = portariono	ND	550	μg/Kg-dry	50	9/29/06 2:38:00 PM

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 7 of 17

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-002

Date: 23-Oct-06

Client Sample ID: MW-JCL-2

Collection Date: 9/19/06 2:00:00 PM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
		SW8	260B			Analyst: IM
ASP/CLP TCL VOLATILE SOIL	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
cis-1,3-Dichloropropene	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
Toluene	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
trans-1,3-Dichloropropene	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
1,1,2-Trichloroethane	ND ND	550		µg/Kg-dry	50	9/29/06 2:38:00 PM
2-Hexanone		550	J	µg/Kg-dry	50	9/29/06 2:38:00 PM
Tetrachloroethene	400	550	3	μg/Kg-dry	50	9/29/06 2:38:00 PM
Dibromochloromethane	ND	_		μg/Kg-dry μg/Kg-dry	50	9/29/06 2:38:00 PM
Chlorobenzene	ND	550			50	9/29/06 2:38:00 PM
Ethylbenzene	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
m,p-Xylene	ND	550		μg/Kg-dry	50 50	9/29/06 2:38:00 PM
o-Xylene	ND	550		μg/Kg-dry		9/29/06 2:38:00 PM
Styrene	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
Bromoform	ND	550		μg/Kg-dry	50	•
1,1,2,2-Tetrachloroethane	ND	550		μg/Kg-dry	50	9/29/06 2:38:00 PM
NOTES:						
TICS: No compounds were detected.						Analyst: Sub
TOTAL ORGANIC CARBON, SOILS			15.1		1	10/6/06
Organic Carbon, Total	13000	50.0		mg/Kg	1	10/0/00
NOTES: TOC analysis subcontracted to NYSDOH E	LAP Lab ID# 11	140.				
	D2216					Analyst: MG
PERCENT MOISTURE Percent Moisture	9.63	0.00100		wt%	1	9/26/06

Approved By: PF

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 8 of 17

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-003

Date: 23-Oct-06

Client Sample ID: MW-JCL-3

Collection Date: 9/19/06 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	ial Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		SW6010	B (SW30	50A)	Analyst: LJ
Aluminum	3660	22.1	mg/Kg-dry	1	10/4/06 10:49:46 AM
Antimony	ND	3.31	mg/Kg-dry	1	10/4/06 10:49:46 AM
Arsenic	2.44	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
Barium	44.8	11.0	mg/Kg-dry	1	10/4/06 10:49:46 AM
Beryllium	ND	0.662	mg/Kg-dry	1	10/4/06 10:49:46 AM
Cadmium	ND	1.10	mg/Kg-dry	1	10/4/06 10:49:46 AM
Calcium	67100	221	mg/Kg-dry	1	10/4/06 10:49:46 AM
Chromium	5.53	1.10	mg/Kg-dry	1	10/4/06 10:49:46 AM
Cobalt	ND	4.42	mg/Kg-dry	1	10/4/06 10:49:46 AM
Copper	10.2	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
Iron	7510	13.2	mg/Kg-dry	1	10/4/06 10:49:46 AM
Lead	8.35	0.662	mg/Kg-dry	1	10/4/06 10:49:46 AM
Magnesium	28100	221	mg/Kg-dry	1	10/4/06 10:49:46 AM
Manganese	286	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
Nickel	7.08	6.62	mg/Kg-dry	1	10/4/06 10:49:46 AM
Potassium	860	221	mg/Kg-dry	1	10/4/06 10:49:46 AM
Selenium	ND	1.10	mg/Kg-dry	1	10/4/06 10:49:46 AM
Silver	ND	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
Sodium	ND	221	mg/Kg-dry	1	10/4/06 10:49:46 AM
Thallium	ND	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
Vanadium	7.54	6.62	mg/Kg-dry	1	10/4/06 10:49:46 AM
Zinc	49.1	2.21	mg/Kg-dry	1	10/4/06 10:49:46 AM
OTAL MEDCURY SOU (SOUR BALACES				•	10/4/00 10.49:40 AM
OTAL MERCURY - SOIL/SOLID/WASTE Mercury		SW7471A	(SW747	1A)	Analyst: EA
·	ND	0.110	mg/Kg-dry	1	9/28/06 8:51:51 AM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0 A)	Analyst: KL
(3+4)-Methylphenol	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
1,2,4-Trichlorobenzene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
1,2-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
1,3-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
1,4-Dichlorobenzene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,4,5-Trichlorophenol	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,4,6-Trichlorophenol	ND	360	µg/Kg-dry	1	10/19/06 4:52:00 PM
2,4-Dichlorophenol	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,4-Dimethylphenol	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,4-Dinitrophenol	ND	3600	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,4-Dinitrotoluene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
2,6-Dinitrotoluene	ND	360	µg/Kg-dry	1	10/19/06 4:52:00 PM
?-Chioronaphthalene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 9 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Date: 23-Oct-06

CLIENT:

Lu Engineers

Lab Order: U06

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-003

Client Sample ID: MW-JCL-3

Collection Date: 9/19/06 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355	-	Analyst: KL
2-Chlorophenol	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
2-Methylnaphthalene	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
2-Methylphenol	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
2-Nitroaniline	ND	3600		μg/Kg-dry	1	10/19/06 4:52:00 PM
2-Nitrophenol	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
3,3'-Dichlorobenzidine	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
3-Nitroaniline	ND	3600		µg/Kg-dry	1	10/19/06 4:52:00 PM
4,6-Dinitro-2-methylphenol	ND	3600		μg/Kg-dry	1	10/19/06 4:52:00 PM
4-Bromophenyl phenyl ether	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
4-Chloro-3-methylphenol	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
4-Chloroaniline	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
4-Chlorophenyl phenyl ether	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
4-Nitroaniline	ND	3600		µg/Kg-dry	1	10/19/06 4:52:00 PM
4-Nitrophenol	ND	3600		μg/Kg-dry	1	10/19/06 4:52:00 PM
Acenaphthene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Acenaphthylene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Anthracene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Benz(a)anthracene	200	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
Benzo(a)pyrene	100	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
Benzo(b)fluoranthene	200	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
Benzo(g,h,i)perylene	100	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
Benzo(k)fluoranthene	70	360	J	µg/Kg-dry	1	10/19/06 4:52:00 PM
Bis(2-chloroethoxy)methane	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
Bis(2-chloroethyl)ether	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Bis(2-chloroisopropyl)ether	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Bis(2-ethylhexyl)phthalate	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Butyl benzyl phthalate	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Carbazole	90	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
	200	360	J	µg/Kg-dry	1	10/19/06 4:52:00 PM
Chrysene Di-n-butyl phthalate	60	360	J	μg/Kg-dry	1	10/19/06 4:52:00 PM
Di-n-octyl phthalate	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Dibenz(a,h)anthracene	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
Dibenzofuran	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
= ·-	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Diethyl phthalate	ND	360		µg/Kg-dry	1	10/19/06 4:52:00 PM
Dimethyl phthalate	600	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Fluoranthene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Fluorene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM
Hexachlorobenzene Hexachlorobutadiene	ND	360		μg/Kg-dry	1	10/19/06 4:52:00 PM

Approved By:

Qualifiers:

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 10 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-003

Date: 23-Oct-06

Client Sample ID: MW-JCL-3

Collection Date: 9/19/06 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Q	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SW35	50Δ)	Anglierte Id
Hexachlorocyclopentadiene	ND	360	μg/Kg-dry	1	Analyst: KL 10/19/06 4:52:00 PM
Hexachloroethane	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
Indeno(1,2,3-cd)pyrene	100	360	J μg/Kg-dry	1	10/19/06 4:52:00 PM
Isophorone	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
N-Nitrosodi-n-propylamine	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
N-Nitrosodiphenylamine	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
Naphthalene	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
Nitrobenzene	ND	360	μg/Kg-dry	1	
Pentachlorophenol	ND	740	μg/Kg-dry	1	10/19/06 4:52:00 PM 10/19/06 4:52:00 PM
Phenanthrene	430	360	μg/Kg-dry	1	
Phenol	ND	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
Pyrene	400	360	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: 1H-Indene, 2,3-dihydro-1,1,3	75	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
trimethyl-3		Ū	pg//g-dry	ı	10/19/06 4:52:00 PM
TIC: 9,10-Anthracenedione	80	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: 9-Octadecenamide, (Z)-	520	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: Benzo[e]pyrene	140	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: unknown (19.66)	92	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: unknown (20.92)	340	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
TIC: unknown (23.35)	1100	0	μg/Kg-dry	1	10/19/06 4:52:00 PM
SP/CLP TCL VOLATILE SOIL		SW8260	В		
Chloromethane	ND	11	 μg/Kg-dry	1	Analyst: MRN 10/4/06 6:15:00 PM
Vinyl chloride	ND	11	μg/Kg-dry	1	
Bromomethane	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Chloroethane	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Acetone	ND	11	μg/Kg-dry	, 1	10/4/06 6:15:00 PM
1,1-Dichloroethene	ND	11	µg/Kg-dry	1	10/4/06 6:15:00 PM
Carbon disulfide	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Methylene chloride	4	11 J		1	10/4/06 6:15:00 PM
rans-1,2-Dichloroethene	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
1,1-Dichloroethane	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
2-Butanone	ND	11	μg/Kg-dry μg/Kg-dry	1	10/4/06 6:15:00 PM
cis-1,2-Dichloroethene	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Chloroform	ND	11		•	10/4/06 6:15:00 PM
,1,1-Trichloroethane	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Carbon tetrachloride	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
Benzene	ND	11	μg/Kg-dry	1	10/4/06 6:15:00 PM
,2-Dichloroethane	ND	11	µg/Kg-dry	1	10/4/06 6:15:00 PM
richloroethene	ND		μg/Kg-dry	1	10/4/06 6:15:00 PM
	ואט	11	μg/Kg-dry	1	10/4/06 6:15:00 PM

Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

Date:

Page 11 of 17

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-003

Date: 23-Oct-06

Client Sample ID: MW-JCL-3

Collection Date: 9/19/06 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE SOIL		SW82	260B			Analyst: MRN
	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
1,2-Dichloropropane	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
Bromodichloromethane	ND	11		µg/Kg-dry	1	10/4/06 6:15:00 PM
4-Methyl-2-pentanone	ND	11		ug/Kg-dry	1	10/4/06 6:15:00 PM
cis-1,3-Dichloropropene	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
Toluene	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
trans-1,3-Dichloropropene	•	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
1,1,2-Trichloroethane	ND	11		μg/Kg-dry μg/Kg-dry	1	10/4/06 6:15:00 PM
2-Hexanone	ND			•	1	10/4/06 6:15:00 PM
Tetrachloroethene	ND	11		µg/Kg-dry	1	10/4/06 6:15:00 PM
Dibromochloromethane	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
Chlorobenzene	ND	11		μg/Kg-dry	•	10/4/06 6:15:00 PM
Ethylbenzene	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
m,p-Xylene	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
o-Xylene	ND	11		μg/Kg-dry	1	• • • • • • • • • • • • • • • • • • • •
Styrene	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
Bromoform	ND	11		µg/Kg-dry	1	10/4/06 6:15:00 PM
1,1,2,2-Tetrachloroethane	ND	11		μg/Kg-dry	1	10/4/06 6:15:00 PM
NOTES: TICS: No compounds were detected.						
TOTAL ORGANIC CARBON, SOILS		E4	15.1			Analyst: Sub
Organic Carbon, Total NOTES:	18000	50.0		mg/Kg	1	10/6/06
TOC analysis subcontracted to NYSDOH E	LAP Lab ID# 11	140.				A b 4.0
PERCENT MOISTURE Percent Moisture	9.43	D2 0.00100	216	wt%	1	Analyst: MG 9/26/06

Approved By:	PE	Date:	10-23-06	Page 12 of 17
Qualifiers: * B H	Low Level Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit		Value exceeds Maximum Contaminar Value above quantitation range Analyte detected below quantitation li Spike Recovery outside accepted reco	mits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-004

Date: 23-Oct-06

Client Sample ID: Eq. Rinse Bl-1

Collection Date: 9/20/2006 8:30:00 AM

Matrix: WATER

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
ICP METALS, TOTAL ASP		E200.7	(E200.	7)	Analysts I t
Aluminum	ND	100	μg/L	1	Analyst: LJ 10/4/2006 12:07:19 PM
Antimony	ND	15.0	μg/L	1	10/4/2006 12:07:19 PM
Arsenic	ND	10.0	μg/L	1	10/4/2006 12:07:19 PM
Barium	ND	50.0	μg/L	1	10/4/2006 12:07:19 PM
Beryllium	ND	3.00	μg/L	1	10/4/2006 12:07:19 PM
Cadmium	ND	5.00	μg/L	1	10/4/2006 12:07:19 PM
Calcium	ND	1000	μg/L	1	10/4/2006 12:07:19 PM
Chromium	ND	5.00	μg/L	1	
Cobalt	ND	20.0	μg/L	1	10/4/2006 12:07:19 PM
Copper	ND	10.0	µg/L	1	10/4/2006 12:07:19 PM
Iron	ND	60.0	μg/L	1	10/4/2006 12:07:19 PM
Lead	ND	3.00	μg/L	1	10/4/2006 12:07:19 PM
Magnesium	ND	1000	μg/L	1	10/4/2006 12:07:19 PM
Manganese	ND	10.0	μg/L	1	10/4/2006 12:07:19 PM
Nickel	ND	30.0	· -		10/4/2006 12:07:19 PM
Potassium	ND	1000	μg/L	1	10/4/2006 12:07:19 PM
Selenium	ND	5.00	μg/L μg/L	1	10/4/2006 12:07:19 PM
Silver	ND	10.0	· ·	1	10/20/2006 11:37:13 AN
Sodium	ND	1000	µg/L	1	10/4/2006 12:07:19 PM
Thallium	ND	10.0	μg/L	1	10/4/2006 12:07:19 PM
Vanadium	ND	30.0	µg/L	1	10/4/2006 12:07:19 PM
Zinc	ND	10.0	μg/L	1	10/4/2006 12:07:19 PM
	ND	10.0	μg/L	1	10/4/2006 12:07:19 PM
OTAL MERCURY WATERS ASP		E245.2	(E245.2)	Analyst: EA
Mercury	ND	0.200	μg/L	1	9/28/2006 8:09:17 AM
CL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: KL
(3+4)-Methylphenol	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	
2,4-Dimethylphenol	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	10/2/2006 12:52:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	10/2/2006 12:52:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L		10/2/2006 12:52:00 PM
2-Chloronaphthalene	ND	5.0	μg/L μg/L	1 1	10/2/2006 12:52:00 PM 10/2/2006 12:52:00 PM

Approved By:

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit

Date:

Page 13 of 17

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-004

Date: 23-Oct-06

Client Sample ID: Eq. Rinse Bl-1

Collection Date: 9/20/06 8:30:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	10)	Analyst: KL
2-Chlorophenol	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
2-Methylphenol	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
2-Nitroaniline	ND	50	μg/L	1	10/2/06 12:52:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
3,3'-Dichlorobenzidine	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
3-Nitroaniline	ND	50	μg/L	1	10/2/06 12:52:00 PM
4.6-Dinitro-2-methylphenol	ND	50	μg/L	1	10/2/06 12:52:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
4-Nitroaniline	ND	50	μg/L	1	10/2/06 12:52:00 PM
4-Nitrophenol	ND	50	μg/L	1	10/2/06 12:52:00 PM
Acenaphthene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Acenaphthylene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Anthracene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Benzo(g,h,i)perylene	. ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Bis(2-ethylhexyl)phthalate	1	5.0 J	μg/L	1	10/2/06 12:52:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Carbazole	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Chrysene	1	5.0 J	μg/L	1	10/2/06 12:52:00 PM
Di-n-butyl phthalate	, ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Di-n-octyl phthalate	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Dibenzofuran	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Fluoranthene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Fluorene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Hexachlorobenzene Hexachlorobutadiene	ND ND	5.0	μg/L	1	10/2/06 12:52:00 PM

Approved	By:	_PE
----------	-----	-----

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date: 10-23-06

Page 14 of 17

Value exceeds Maximum Contaminant Value

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-004

Date: 23-Oct-06

Client Sample ID: Eq. Rinse Bl-1

Collection Date: 9/20/06 8:30:00 AM

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C (SW:	3510)	Analyst: Ki
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Hexachloroethane	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Isophorone	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Naphthalene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Nitrobenzene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
Pentachlorophenol	ND	10	μg/L	1	10/2/06 12:52:00 PM
Phenanthrene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM 10/2/06 12:52:00 PM
Phenol	ND	5.0	μg/L	1	
Pyrene	ND	5.0	μg/L	1	10/2/06 12:52:00 PM
TIC: unknown (21.86)	8.9	0	μg/L	1	10/2/06 12:52:00 PM
TIC: unknown (24.31)	6.9	0	μg/L	1	10/2/06 12:52:00 PM
ASP/CLP TCL VOLATILE WATER		-		1	10/2/06 12:52:00 PM
Chloromethane		SW826			Analyst: IM
Vinyl chloride	ND	10	μg/L	1	9/29/06 4:06:00 PM
Bromomethane	ND	10	µg/L	1	9/29/06 4:06:00 PM
Chloroethane	ND	10	µg/L	1	9/29/06 4:06:00 PM
Acetone	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,1-Dichloroethene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Carbon disulfide	ND	10	μg/L	1	9/29/06 4:06:00 PM
Methylene chloride	ND	10	µg/L	1	9/29/06 4:06:00 PM
•	ND	10	µg/L	1	9/29/06 4:06:00 PM
trans-1,2-Dichloroethene	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,1-Dichloroethane 2-Butanone	ND	10	µg/Ľ	1	9/29/06 4:06:00 PM
	ND	10	μg/L	1	9/29/06 4:06:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Chloroform	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	1	9/29/06 4:06:00 PM
Carbon tetrachloride	ND	10	μg/L	1	9/29/06 4:06:00 PM
Benzene	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,2-Dichloroethane	ND	10	µg/L	1	9/29/06 4:06:00 PM
Trichloroethene	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,2-Dichloropropane	ND	10	μg/L	1	9/29/06 4:06:00 PM
Bromodichloromethane	ND	10	μg/L	1	9/29/06 4:06:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	9/29/06 4:06:00 PM
cis-1,3-Dichloropropene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Toluene	ND	10	μg/L	1	9/29/06 4:06:00 PM

Approved By: P

Qualifiers:

- Low Lava
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date: /0-23-06

Page 15 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-004

Date: 23-Oct-06

Client Sample ID: Eq. Rinse Bl-1

Collection Date: 9/20/06 8:30:00 AM

Matrix: WATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER	SW8260B				Analyst: IM
trans-1,3-Dichloropropene	ND	10	μg/L	1	9/29/06 4:06:00 PM
1,1,2-Trichloroethane	ND	10	μg/L	1	9/29/06 4:06:00 PM
2-Hexanone	ND	10	μg/L	1	9/29/06 4:06:00 PM
Tetrachloroethene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Dibromochloromethane	ND	10	μg/L	1	9/29/06 4:06:00 PM
	ND	10	μg/L	1	9/29/06 4:06:00 PM
Chlorobenzene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Ethylbenzene	ND	10	μg/L	1	9/29/06 4:06:00 PM
m,p-Xylene	ND	10	µg/L	1	9/29/06 4:06:00 PM
o-Xylene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Styrene	ND	10	μg/L	1	9/29/06 4:06:00 PM
Bromoform 1,1,2,2-Tetrachloroethane	ND	10	μg/L	1	9/29/06 4:06:00 PM
NOTES: TICS: No compounds were detected.					
TOTAL ORGANIC CARBON (TOC)		E415.1			Analyst: DD
Organic Carbon, Total	ND	3.0	mg/L	1	9/27/06

Approved I	3у:	PF
Qualifiers:	*	Low Level
-	В	Analyte detected in the associated Method Blank
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit

Date: 10-23-06

Page 16 of 17

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-005

Date: 23-Oct-06

Client Sample ID: Trip Blank

Collection Date: 9/21/06

Matrix: WATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ASP/CLP TCL VOLATILE WATER		SW82	60B		
Chloromethane	ND	10	μg/L	1	Analyst: IN 9/29/06 9:08:00 PM
Vinyl chloride	ND	10	µg/L	1	9/29/06 9:08:00 PM 9/29/06 9:08:00 PM
Bromomethane	ND	10	μg/L	1	
Chloroethane	ND	10	μg/L	1	9/29/06 9:08:00 PM
Acetone	ND	10	μg/L	1	9/29/06 9:08:00 PM
1,1-Dichloroethene	ND	10	µg/L	1	9/29/06 9:08:00 PM
Carbon disulfide	ND	10	µg/L	1	9/29/06 9:08:00 PM
Methylene chloride	ND	10	μg/L	1	9/29/06 9:08:00 PM
trans-1,2-Dichloroethene	ND	10	µg/L	1	9/29/06 9:08:00 PM
1,1-Dichloroethane	ND	10	μg/L	1	9/29/06 9:08:00 PM
2-Butanone	ND	10	μg/L μg/L		9/29/06 9:08:00 PM
cis-1,2-Dichloroethene	ND	10	μg/L	1	9/29/06 9:08:00 PM
Chloroform	ND	10	ha\r ha\r	1 1	9/29/06 9:08:00 PM
1,1,1-Trichloroethane	ND	10	μg/L	•	9/29/06 9:08:00 PM
Carbon tetrachloride	ND	10	μg/L	1	9/29/06 9:08:00 PM
Benzene	ND	10	μg/L	1	9/29/06 9:08:00 PM
1,2-Dichloroethane	ND	10	µg/L	1	9/29/06 9:08:00 PM
Trichloroethene	ND	10		1	9/29/06 9:08:00 PM
1,2-Dichloropropane	ND	10	µg/L	1	9/29/06 9:08:00 PM
Bromodichloromethane	ND	10	µg/L	1	9/29/06 9:08:00 PM
1-Methyl-2-pentanone	ND	10	µg/L	1	9/29/06 9:08:00 PM
cis-1,3-Dichloropropene	ND		μg/L	1	9/29/06 9:08:00 PM
Toluene	ND	10 10	µg/L "	1	9/29/06 9:08:00 PM
rans-1,3-Dichloropropene	ND	10	µg/L 	1	9/29/06 9:08:00 PM
1,1,2-Trichloroethane	ND	10	μg/L 	1	9/29/06 9:08:00 PM
2-Hexanone	ND ND	10	µg/L	1	9/29/06 9:08:00 PM
etrachloroethene	ND ND	10	µg/L	1	9/29/06 9:08:00 PM
Dibromochloromethane	· · · -	10	µg/L	1	9/29/06 9:08:00 PM
Chlorobenzene	ND	10	µg/L	1	9/29/06 9:08:00 PM
Ithylbenzene	ND	10	μg/L	1	9/29/06 9:08:00 PM
n,p-Xylene	ND	10	µg/L	1	9/29/06 9:08:00 PM
-Xylene	ND	10	µg/L	1	9/29/06 9:08:00 PM
tyrene	ND	10	µg/L	1	9/29/06 9:08:00 PM
romoform	ND	10	µg/L	1	9/29/06 9:08:00 PM
,1,2,2-Tetrachloroethane	ND	10	μg/L	1	9/29/06 9:08:00 PM
VOTES:	ND	10	μg/L	1	9/29/06 9:08:00 PM
TCS: No compounds were detected.					

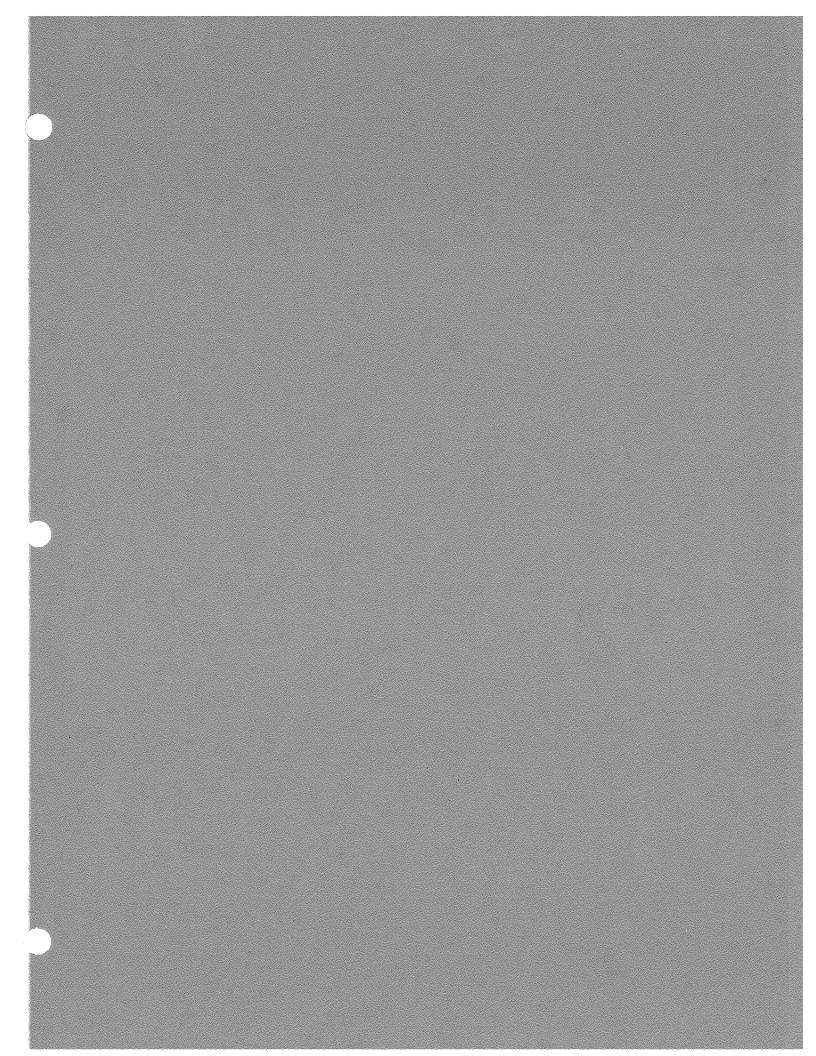
Approved By:

Qualifiers:

- Low Level
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND

10-23-06 Date:

Page 17 of 17


- Value exceeds Maximum Contaminant Value
- Value above quantitation range Е
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

ULI Computer Input Form

Rec'p for Late by: (Signature) Special Turnaround Received by: (Signature) Heceived by: (Signature) Received by: (Signature) (Lab Notification 10 DAY TAT Remarks ULTakernal Use On required) 711 19/1/00 H:70 6 Time Relinquished by: (Signature) | Date | Time jae 1 æ LU FNGINFERS ~ EPIC DETWRILER Refinquished by: (Signatura) Date Relinquished by: (Signature) Date Relinquished by/(Signature) | Date ø Chain of Custody Record <u>2</u> Sampled by: (Please Print) ₹ ଳ Company: tain-Coners ō 500 MMC)> ULT Internal Use Only Jer. IOA DXYO HCL pres. NOA 40 HC BOIHC AMB 1000 -17/05 86 402 od columns above cross-reference with the numbered columns in the upper right-har CAED 8#d9 OF ASS Grab or Com Сошр. type 74 9 S. Client Project # / Project Name CHU PCHULLE sample bottle. PAMFIELD Site Location (city/state Matrix 200 AGM "FPA & DA+TICS , TAL METALS 6S 6/23/06 1330 Fax 437 1209 6034 Corporate Drive . E. Syracuse, NY 13057-1017 Time Upstate Laboratories, Inc. 8260 + TICS EPA 8270 + TICS M W-JCL-1/ms /MSD 9/1/ /1/6 40/12/6 Date TAL METALS NO FIRE OC 8260 M) Devoture 500 4KG, 1 ENGINEERS PIP BLANK 2 EPA8260+7 FRIC DETWALLER EA RINGE 3L-MW-JC1-3 MUN-JCL-B parameter and method FOR Sample Location: (315) 437 0255 Note: The nu. Client Contac Clert 9 4 0 5 8

Ends Inum MIN

...

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A06-C193

STL Project#: NY5A946108

Site Name: NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT
Task: NYSDEC - Churchville Ford: Site #V00658

Mr. Frank Sowers New York State D.E.C. Region 8 6274 East Avon-Lima Road Avon, NY 14414

STL Buffalo

Brian J. Fischer For Project Manager

11/16/2006

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	. 200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

SAMPLE SUMMARY

			SAMPI	ŒD	RECEIVI	ED CE
LAB SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE		DATE	
A6C19302	D905-01 MW-,TCT,-2	WATER	10/17/2006	14:00	10/18/2006	15:45
	D905-01 MW-JCT-2	WATER	10/17/2006	14:00	10/18/2006	15:45
110000000000000000000000000000000000000	D905-01 MW-JCL-2	WATER	10/17/2006	14:00	10/18/2006	15:45
A6C19301	D905-02 MW-3	WATER	10/17/2006	14:15	10/18/2006	15:45

METHODS SUMMARY

Job#: <u>A06-C193</u>

STL Project#: NY5A946108
Site Name: NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT

ANALYTICAL

PARAMETER METHOD ASP00 8260 EPA ASP 2000 - METHOD 8260 VOLATILES

References:

"Analytical Services Protocol", New York State Department of Conservation, June 2000. ASP00

NON-CONFORMANCE SUMMARY

Job#: A06-C193

STL Project#: NY5A946108

Site Name: NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-C193

Sample Cooler(s) were received at the following temperature(s); 2.0 °C VOA LAB: Please search for 20 TICS.

GC/MS Volatile Data

The recovery of the analytes 1,1,2,2-Tetrachloroethane, Chloroethane, Trichloroethene and cis-1,2-Dichloroethene in the Matrix Spike and the analytes Chloroethane, Trichloroethene and cis-1,2-Dichloroethene in the Matrix Spike Duplicate of sample D905-01 MW-JCL-2 exceeded quality control limits. The Relative Percent Difference (RPD) between the Matrix Spike and the Matrix Spike duplicate of sample D905-01 MW-JCL-2 also exceeded quality control limits for the analytes Bromomethane and Tetrachloroethene. The Matrix Spike Blank recoveries were compliant, so no corrective action was performed.

For method ASP/8260, all volatile samples exhibited a pH>2 at the time of analysis. The analysis was performed after the recommended 7 days for un-preserved samples, therefore all detected concentrations should be considered minimum values and the results estimated.

The dilution of sample D905-02 MW-3 was analyzed with headspace. The volatile organic results may be biased low.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer

For Project Manager

Date

Date: 11/16/2006 Time: 20:21:37

Dilution Log w/Code Information For Job A06-C193

7/17, Page: 1

Rept: AN1266R

Client Sample 10	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution	Code
D905-02 MW-3	A6C19301DL	8260	10.00	800
0905-01 MW-JCL-2	A6C19302DL	8260	10.00	008

Dilution Code Definition:

002 - sample matrix effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 - sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product
- Indicates coelution
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Date: 11/16/2006 Time: 20:21:46

NYSDEC NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT NYSDEC - Churchville Ford: Site #V00658

Rept: AN1178

Date Received: 10/18/2006 Project No: NY5A946108 Client No: L10190

Site No:

Sample ID: D905-01 MW-JCL-2 Lab Sample ID: A6C19302 Date Collected: 10/17/2006 Time Collected: 14:00

	Detection					Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
ASP NYSDEC - AQUEOUS - METHOD 8260 VOLATI							
1,1,1-Trichloroethane	ND		10	UG/L	8260	10/27/2006 19:44	
1,1,2,2-Tetrachloroethane	ND		10	UG/L	8260	10/27/2006 19:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	UG/L	8260	10/27/2006 19:44	ВJ
1,1,2-Trichloroethane	ND		10	UG/L	8260	10/27/2006 19:44	вЈ
1,1-Dichloroethane	ND		10	UG/L	8260	10/27/2006 19:44	BJ
1,1-Dichloroethene	ND		10	UG/L	8260	10/27/2006 19:44	BJ
1,2,4-Trichlorobenzene	ND		10	UG/L	8260	10/27/2006 19:44	BJ
1,2-Dibromo-3-chloropropane	ND		10	NG/L	8260	10/27/2006 19:44	83
1,2-Dibiomoethane	ND		10	UG/L	8260	10/27/2006 19:44	B 1
1,2-Dichlor obenzene	ND		10	UG/L	0658	10/27/2006 19:44	ΒJ
1,2-Dichloroethane	ND		10	UG/L	8260	10/27/2006 19:44	BJ
1,2-Dichloropropane	ND		10	UG/L	8260	10/27/2006 19:44	81
1,3-Dichlorobenzene	ND		10	UG/L	8260	10/27/2006 19:44	BJ
1,4-Dichlor obenzene	ND		10	UG/L	0358	10/27/2006 19:44	BJ
2-Butanone	ND		10	UG/L	8260	10/27/2006 19:44	83
2-Hexanone	ND		10	UG/L	8260	10/27/2006 19:44	ВЭ
4-Methyl-2-pentanone	ND		10	UG/L	8260	10/27/2006 19:44	ВЈ
Acetone	7	j	10	UG/L	8260	10/27/2006 19:44	ВЈ
Benzene	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Bromodichloromethane	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Bromoform	ND		10	UG/L	8260	10/27/2006 19:44	81
Bromonethane	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Carbon Disulfide	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Carbon Tetrachloride	ND		10	UG/L	8260	10/27/2006 19:44	BJ
	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Chlorobenzene	ND		10	UG/L	8260	10/27/2006 19:44	BJ
Chlor oethane	ND		10	UG/L	8260	10/27/2006 19:44	B-1
Chloroform	ND		10	UG/L	8260	10/27/2006 19:44	. BJ
Chloromethane	510	E	10	UG/L	8260	10/27/2006 19:44	BJ
cis-1,2-Dichloroethene	סויכ	-	10	UG/L	8260	10/27/2006 19:44	a BJ
cis-1,3-Dichloropropene	ND		10	UG/L	8260	10/27/2006 19:44	
Cyclohexane	ND		10	UG/L	8260	10/27/2006 19:44	
Dibromochloromethane	0.9	J	10	UG/L	8260	10/27/2006 19:44	
Dichlorodifluoromethane	D D	J	10	UG/L	8260	10/27/2006 19:44	
Ethylbenzene	ND		10	UG/L	8260	10/27/2006 19:44	
Isopropylbenzene			10	UG/L	8260	10/27/2006 19:44	
Methyl acetate	ND		10	UG/L	8260	10/27/2006 19:44	
Methyl-t-Butyl Ether (MTBE)	0.9	j	10	UG/L	8260	10/27/2006 19:44	
Methylcyclohexane	ND .		10	UG/L	8260	10/27/2006 19:44	
Methylene chloride	ND		10	UG/L	8260	10/27/2006 19:44	
Styrene	ND	_		UG/L	8260	10/27/2006 19:44	
Tetrachloroethene	160	E	10		B260	10/27/2006 19:44	
Toluene	ND		10	UG/L		10/27/2006 19:44	
Total Xylenes	ND		10	UG/L	8260		
trans-1,2-Dichloroethene	0.5	J	10	UG/L	8260	10/27/2006 19:4	
trans-1,3-Dichloropropene	ND	_	10	UG/L	8260	10/27/2006 19:4	
Trichloroethene	330	E	10	UG/L	8260	10/27/2006 19:4	
Trichlorofluoromethane	ND		10	UG/L	8260	10/27/2006 19:4	
Vinyl chloride	ND		10	UG/L	8260	10/27/2006 19:4	4 BJ

NYSDEC

NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT EPA ASP 2000 - METHOD 8260 VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

				D905-0	l MW-J	CT-5
Lab Name	: STL Buffalo	Contract: C200305				
Lab Code	: <u>RECNY</u> Case No	.: SAS No.:	SDG No.:			
Matrix:	(soil/water) <u>WATER</u>		Lab Samp	le ID: <u>A6C19</u>	302_	
Sample w	z/vol: <u>5.0</u>	0 (g/mL) <u>ML</u>	Lab File	D: <u>S8018</u>	.RR	
Level:	(low/med) <u>LOW</u>		Date Sam	o/Recv: <u>10/17</u>	/2006	10/18/2006
% Moistu	re: not dec	-	Date Ana	lyzed: <u>10/27</u>	/2006	
GC Colum	n: <u>DB-624</u> ID	: <u>0.18</u> (mm)	Dilution	Factor: 1	<u>. 00</u>	
Soil Ext	ract Volume:	(uL)	Soil Alic	quot Volume: _		_ (uL)
Number T	ICs found:0		CONCENTRAT:	ION UNITS: .g/Kg) <u>UG/L</u>		
	CAS NO.	Compound Name	RT	Est. Conc.	Q	

Rept: AN1178

Date: 11/16/2006 Time: 20:21:46

NYSDEC NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT NYSDEC - Churchville Ford: Site #V00658

Date Received: 10/18/2006 Project No: NY5A946108 Client No: L10190

Site No:

Sample ID: D905-01 MW-JCL-2 Lab Sample ID: A6C19302DL Date Collected: 10/17/2006 Time Collected: 14:00

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analys
ASP NYSDEC - AQUEQUS - METHOD 8260 VOLATI							
1,1,1-Trichloroethane	סא		100	UG/L	8260	10/28/2006 10:50	
1,1,2,2-Tetrachloroethane	ND		100	UG/L	8260	10/28/2006 10:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100	UG/L	8260	10/28/2006 10:50	
1,1,2-Trichloroethane	рр		100	UG/L	8260	10/28/2006 10:50	
1, 1-Dichloroethane	ND		100	UG/L	8260	10/28/2006 10:50	
1, 1-Dichloroethene	ND		100	UG/L	8260	10/28/2006 10:50	
1,2,4-Trichlorobenzene	ND		100	UG/L	8260	10/28/2006 10:50	
1,2-Dibromo-3-chloropropane	ND		100	UG/L	8260	10/28/2006 10:50	
1,2-Dibromoethane	ND		100	UG/L	8260	10/28/2006 10:50	
1,2-Dichlorobenzene	ND		100	UG/L	8260	10/28/2006 10:50	
1,2-Dichloroethane	ND		100	UG/L	8260	10/28/2006 10:50	
1,2-Dichloropropane	ND		100	UG/L	8260	10/28/2006 10:50	
1,3-Dichlorobenzene	ОМ		100	UG/L	8260	10/28/2006 10:50	
1,4-Dichlor obenzene	NO		100	UG/L	8260	10/28/2006 10:50	
2-Butanone	ND		100	UG/L	8260	10/28/2006 10:50	
2-Hexanone	ND		100	UG/L	8260	10/28/2006 10:50	
4-Methyl-2-pentanone	ND		100	UG/L	8260	10/28/2006 1D:50	
Acetone	ND		100	UG/L	8260	10/28/2006 10:50	
Benzene	ND		100	UG/L	8260	10/28/2006 10:50) BJ
Bromodichloromethane	ND		100	UG/L	8260	10/28/2006 10:50) B1
Bromoform	ND		100	UG/L	8260	10/28/2006 10:50) BJ
Bromomethane	ND		100	UG/L	8260	10/28/2006 10:50) BJ
Carbon Disulfide	ND		100	UG/L	8260	10/28/2006 10:50	D B1
Carbon Tetrachloride	ND		100	UG/L	8260	10/28/2006 10:50	D BJ
Chlorobenzene	ND		100	UG/L	8260	10/28/2006 10:50	D BJ
Chloroethane	ND		100	UG/L	8260	10/28/2006 10:50	O BJ
Chloroform	ND		100	UG/L	8260	10/28/2006 10:5	0 83
Chloromethane	ND		100	UG/L	8260	10/28/2006 10:5	0 B1
cis-1,2-Dichloroethene	550	D	100	UG/L	8260	10/28/2006 10:5	ก ยา
cis-1,3-Dichloropropene	ND		100	UG/L	8260	10/28/2006 10:5	0 BJ
	ND		100	UG/L	8260	10/28/2006 1D:5	O BJ
Cyclohexane	ND		100	UG/L	8260	10/28/2006 10:5	O BJ
Dibromochloromethane Dichlorodifluoromethane	ND		100	UG/L	8260	10/28/2006 10:5	O BJ
	ND		100	UG/L	8260	10/28/2006 10:5	0 BJ
Ethylbenzene	ND		100	UG/L	8260	10/28/2006 10:5	0 BJ
Isopropylbenzene	ND		100	UG/L	8260	10/28/2006 10:5	O BJ
Methyl acetate	ND		100	UG/L	8260	10/28/2006 10:5	O BJ
Methyl-t-Butyl Ether (MTBE)	NO		100	UG/L	8260	10/28/2006 10:5	0 BJ
Methylcyclohexane	ND		100	UG/L	8260	10/28/2006 10:5	0 BJ
Methylene chloride	ND		100	UG/L	8260	10/28/2006 10:5	0 BJ
Styrene	170	D	100	UG/L	8260	10/28/2006 10:5	O BJ
Tetrachloroethene	ND	U	100	UG/L	8260	10/28/2006 10:5	
Toluene			100	UG/L	8260	10/28/2006 10:5	
Total Xylenes	ND		100	UG/L	8260	10/28/2006 10:5	
trans-1,2-0ichloroethene	ND		100	UG/L	8260	10/28/2006 10:5	
trans-1,3-Dichloropropene	ND	n	100	UG/L	8260	10/28/2006 10:5	
Trichloroethene	330	D	100	UG/L	8260	10/28/2006 10:5	
Trichlorofluoromethane	ND			UG/L	8260	10/28/2006 10:5	
Vinyl chloride	ND		100	JUJE	0500	10/10/1000 10.5	

NYSDEC

NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT EPA ASP 2000 - METHOD 8260 VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

			D905-01	MW-JCL	-2
Lab Name: <u>STL Buffalo</u>	Contract: C200305		<u> </u>		
Lab Code: RECNY Case No.	: SAS No.:	SDG No.:			
Matrix: (soil/water) WATER		Lab Sample ID:	A6C1930	2DL	
Sample wt/vol: 5.00	(g/mL) <u>ML</u>	Lab File ID:	<u>58027.R</u>	R	
Level: (low/med) <u>LOW</u>		Date Samp/Recv	: <u>10/17/2</u>	006 10	/18/2006
% Moisture: not dec		Date Analyzed:	10/28/2	006	
GC Column: <u>DB-624</u> ID:	0.18 (mm)	Dilution Factor	r: <u>10.0</u>	0	
Soil Extract Volume:	(uL)	Soil Aliquot Vo	olume:		(uL)
Number TICs found:0		CONCENTRATION UN (ug/L or ug/Kg)			
CAS NO.	Compound Name	RT Est	. Conc.	Q	

Rept: AN1178

Date: 11/16/2006 Time: 20:21:46

NYSDEC NYSDEC - REGION B REMEDIATION/SPILLS CONTRACT NYSDEC - Churchville Ford: Site #V00658

Sample ID: D905-02 MW-3 Lab Sample ID: A6C19301 Date Collected: 10/17/2006 Time Collected: 14:15

Date Received: 10/18/2006 Project No: NY5A946108 Client No: L10190

Site No:

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
ASP NYSDEC - AQUEOUS - METHOD 8260 VOLATI							
1,1,1-Trichloroethane	0.6	J	10	UG/L	8260	10/28/2006 10:25	BJ
1,1,2,2-Yetrachloroethane	ND		10	UG/L	8260	10/28/2006 10:25	BJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	UG/L	8260	10/28/2006 10:25	BJ
	סא		10	UG/L	8260	10/28/2006 10:25	B-J
1,1,2-Trichloroethane	1	J	10	UG/L	8260	10/28/2006 10:25	ВЈ
1,1-Dichloroethane	0.6	j	10	UG/L	8260	10/28/2006 10:25	ВЈ
1,1-Dichloroethene	ND	-	10	UG/L	8260	10/28/2006 10:25	BJ
1,2,4-Trichlorobenzene	ND		10	UG/L	8260	10/28/2006 10:25	BJ
1,2-Dibromo-3-chloropropane	ИD		10	UG/L	8260	10/28/2006 10:25	BJ
1,2-Dibramoethane	ND		10	UG/L	8260	10/28/2006 10:25	BJ
1,2-Dichlorobenzene	ND		10	UG/L	8260	10/28/2006 10:25	
1,2-Dichloroethane	ND		10	UG/L	8260	10/28/2006 10:25	
1,2-Dichloropropane	ND		10	UG/L	8260	10/28/2006 10:25	
1,3-Dichlorobenzene			10	UG/L	8260	10/28/2006 10:25	
1,4-Dichlorobenzene	ND		10	UG/L	8260	10/28/2006 10:25	
2-Butanone	ND		10	UG/L	8260	10/28/2006 10:25	
2-llexanone	ND		10	UG/L	8260	10/28/2006 10:25	
4-Methyl-2-pentanone	ND		10	UG/L	8260	10/28/2006 10:25	
Acetone	ИD		10	UG/L	8260	10/28/2006 10:25	
Benzene	ND		10	UG/L	8260	10/28/2006 10:25	
Bromodichloromethane	ND				8260	10/28/2006 10:25	
Bromoform	ND		10	UG/L	B260	10/28/2006 10:25	
Bromomethane	ND		10	UG/L	826D	10/28/2006 10:25	
Carbon Disulfide	ND		10	UG/L	8260	10/28/2006 10:25	
Carbon Tetrachloride	ND		10	UG/L		10/28/2006 10:25	
Chlorobenzene	ND		10	UG/L	8260		
Chloroethane	ND		10	UG/L	8260	10/28/2006 10:25	
Chloroform	ND		10	UG/L	8260	10/28/2006 10:25	
Chloromethane	ND		10	UG/L	8260	10/28/2006 10:25	
cis-1,2-Dichloroethene	300	E	10	UG/L	8260	10/28/2006 10:25	
cis-1,3-Dichloropropene	ND		10	UG/L	8260	10/28/2006 10:25	
Cyclohexane	ИD		10	UG/L	8260	10/28/2006 10:25	
Dibromochloromethane	ND		10	UG/L	8260	10/28/2006 10:25	
Dichlorodifluoromethane	16		10	NG/F	8260	10/28/2006 10:25	
Ethylbenzene	ND		10	UG/L	8260	10/28/2006 10:2	
Isopropylbenzene	ND		10	UG/L	8260	10/28/2006 10:2	
Methyl acetate	ND		10	UG/L	8260	10/28/2006 10:25	
Methyl-t-Butyl Ether (MTBE)	2	J	10	UG/L	8260	10/28/2006 10:2	
Methylcyclohexane	ND		10	UG/L	8260	10/28/2006 10:2	
Methylene chloride	ND		10	UG/L	8260	10/28/2006 10:25	5 8J
Styrene	ND		10	UG/L	8260	10/28/2006 10:2	5 B.J
Tetrachloroethene	310.	E	10	UG/L	8260	10/28/2006 10:2	5 BJ
Toluene	ND		10	UG/L	8260	10/28/2006 10:2	5 BJ
Total Xylenes	ND		10	UG/L	8260	10/28/2006 10:2	5 BJ
trans-1,2-Dichloroethene	1	J	10	UG/L	8260	10/28/2006 10:2	5 B-J
trans-1,3-Dichloropropene	ND		10	UG/L	8260	10/28/2006 10:2	5 BJ
Trichloroethene	260	Ε	10	UG/L	8260	10/28/2006 10:2	5 BJ
Trichtoroethene Trichtorofluoromethane	ND		10	UG/L	8260	10/28/2006 10:2	5 BJ
LE TENTE DE LA CONTROL					8260	10/28/2006 10:2	5 BJ

NYSDEC

NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT EPA ASP 2000 - METHOD 8260 VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

					D905-02	MW-3		
Lab Name	: STL Buffalo	Contract: C200305			L			J
Lab Code	: <u>RECNY</u> Case No	.: SAS No.:	SDG No.:					
Matrix:	(soil/water) <u>WATER</u>		Lab Samp	le ID:	A6C1930	01		
Sample w	t/vol: <u>5.0</u>	0 (g/mL) <u>M</u> L	Lab File	ID:	S8026.I	R		
Level:	(low/med) <u>LOW</u>		Date Sam	p/Recv:	10/17/2	2006 1	0/18/200	<u>)6</u>
% Moistu	re: not dec	-	Date Ana	lyzed:	10/28/2	2006		
GC Column	n: <u>DB-624</u> ID	:_0.18 (mm)	Dilution	Factor	:1.0	<u>00</u>		
Soil Ext	ract Volume:	(uL)	Soil Alic	quot Vol	Lume:		(uL)	
Number T	ICs found: <u>0</u>		CONCENTRATI					
	CAS NO.	Compound Name	RT	Est.	Conc.	Q		
							7	

Date: 11/16/2006 Time: 20:21:46

NYSDEC NYSDEC - REGION & REMEDIATION/SPILLS CONTRACT NYSDEC - Churchville Ford: Site #V00658

Rept: AN117B

Sample ID: D9D5-02 MW-3 Lab Sample ID: A6C19301DL Date Collected: 10/17/2006 Time Collected: 14:15

Date Received: 10/18/20D6 Project No: NY5A946108 Client No: L10190

Site No:

Elim a. months and a second and			Detection			Date/Time	
	Bankila	Flag	Limit	Units	Method	Analyzed	Analyst
Parameter	Resul t		Linit				
ASP NYSDEC - AQUEOUS - METHOD 8260 VOLATI	ND		100	UG/L	8260	10/28/2006 14:55	8.1
1,1,1-Trichloroethane	ND		100	UG/L	8260	10/28/2006 14:55	BJ
1,1,2,2-Tetrachloroethane	ND		100	UG/L	8260	10/28/2006 14:55	
1,1,2-Trichloro-1,2,2-trifluoroethane			100	UG/L	8260	10/28/2006 14:55	
1,1,2-Trichloroethane	ND ·		100	UG/L	8260	10/28/2006 14:55	
1,1-Dichloroethane	ND		100	UG/L	8260	10/28/2006 14:55	
1,1-Dichloroethene	ND		100	UG/L	8260	10/28/2006 14:55	
1,2,4-Trichlorobenzene	ND		100	UG/L	8260	10/28/2006 14:55	
1,2-Dibromo-3-chloropropane	ND		100	UG/L	8260	10/28/2006 14:55	
1,2-Dibromoethane	ND		100	UG/L	8260	10/28/2006 14:55	
1,2-Dichlorobenzene	ND			UG/L	B260	10/28/2006 14:55	
1,2-Dichloroethane	ND		100	UG/L	8260	10/28/2006 14:55	
1,2-Dichloropropane	סא		100		8260	10/28/2006 14:55	
1,3-Dichlorobenzene	סא		100	UG/L	8260	10/28/2006 14:55	
1,4-Dichlorobenzene	ND .		100	UG/L		10/28/2006 14:55	
2-Butanone	ND		100	UG/L	8260		
2-Hexanone	ND		100	UG/L	826D	10/28/2006 14:55	
4-Methyl-2-pentanone	ND		100	UG/L	8260	10/28/2006 14:55	
Acetone	ND		100	UG/L	8260	10/28/2006 14:55	
Benzene	ND		100	UG/L	8260	10/28/2006 14:55	
Bromodichloromethane	ND		100	UG/L	8260	10/28/2006 14:55	
Bromoform	ND		100	UG/L	8260	10/28/2006 14:55	
Bromomethane	ND		100	UG/L	8260	10/28/2006 14:55	
Carbon Disulfide	ND		100	UG/L	8260	10/28/2006 14:55	
Carbon Tetrachloride	ND		100	UG/L	8260	10/28/2006 14:55	
Chlorobenzene	סא		100	UG/L	8260	10/28/2006 14:55	
Chloroethane	ND		100	UG/L	8260	10/28/2006 14:55	i B.J
Chloroform	ND		100	UG/L	8260	10/28/2006 14:55	
Chloromethane	ND		100	UG/L	8260	10/28/2006 14:55	i BJ
cis-1,2-Dichloroethene	270	D	100	UG/L	8260	10/28/2006 14:55	5 BJ
cis-1,3-Dichloropropene	. ND		100	UG/L	8260	10/28/2006 14:55	6.0
Cyclohexane	ND		100	UG/L	8260	10/28/2006 14:55	5 BJ
Dibromochloromethane	ND		100	UG/L	8260	10/28/2006 14:55	B 1
Dichlarodifluoromethane	11	ΒJ	100	UG/L	8260	10/28/2006 14:5	9 B1
Ethylbenzene	ND		100	UG/L	8260	10/28/2006 14:55	5 BJ
Isopropylbenzene	ND		100	UG/L	8260	10/28/2006 14:55	S BJ
Methyl acetate	ND		100	UG/L	8260	10/28/20D6 14:5	B-1
Methyl-t-Butyl Ether (MTBE)	ND		100	UG/L	8260	10/28/20D6 14:5	BJ
Methylcyclohexane	ND		100	UG/L	8260	10/28/2006 14:5	
Methylene chloride	ND		100	UG/L	8260	10/28/2006 14:5	5 BJ
	ND		100	UG/L	8260	10/28/2006 14:55	5 BJ
Styrene	230	D	100	UG/L	8260	10/28/2006 14:55	5 BJ
Tetrachloroethene	ND		100	UG/L	8260	10/28/2006 14:5	5 BJ
Toluene	ND		100	UG/L	8260	10/28/2006 14:5	5 BJ
Total Xylenes	ND		100	UG/L	8260	10/28/2006 14:5	
trans-1,2-Dichloroethene	ND		100	UG/L	8260	10/28/2006 14:5	
trans-1,3-Dichloropropene	190	D	100	UG/L	8260	10/28/2006 14:5	
Trichloroethene		U	100	UG/L	8260	10/28/2006 14:5	
Trichlorofluoromethane	ND		100	UG/L	8260	10/28/2006 14:5	
Vinyl chloride	ND		100		2000		-

NYSDEC

NYSDEC - REGION 8 REMEDIATION/SPILLS CONTRACT EPA ASP 2000 - METHOD 8260 VOLATILES TENTATIVELY IDENTIFIED COMPOUNDS

Client No.

				D905-	02 MW-3	3
Lab Name	: STL Buffalo	Contract: C200305		L		
Lab Code	: <u>RECNY</u> Case No	.: SAS No.:	SDG No.:			
Matrix:	(soil/water) <u>WATER</u>		Lab Samp	le ID: <u>A6C1</u>	<u>9301DL</u>	
Sample w	t/vol: <u>5.0</u>	0 (g/mL) <u>ML</u>	Lab File	ID: <u>S803</u>	7.RR	
Level:	(low/med) <u>LOW</u>		Date Sam	p/Recv: <u>10/1</u>	7/2006	10/18/2006
왕 Moistu	re: not dec		Date Ana	lyzed: <u>10/2</u>	<u>8/2006</u>	
GC Column	n: <u>DB-624</u> ID	: <u>0.18</u> (mm)	Dilution	Factor: 1	0.00	
Soil Ext	cact Volume:	(uĽ)	Soil Alio	quot Volume:		_ (uL)
Number T	ICs found:0		CONCENTRATI (ug/L or 1	ION UNITS: ug/Kg) <u>UG/</u>	L_	
	CAS NO.	Compound Name	RT	Est. Conc.	Q	

TRENT	SEVERN
	במ

Dale/Time:	Company:	Received by:	Date/Time:		Company:	Relinquished by:
Date/Time:	Company:	Roceives by:	Date/Time:		Company:	Relifquished by:
Date/Time: 15:45	Company: Sブム	Recoiged by My My	Date/Time: 13: 45 Received by	5)XFC	Company:	Relinquistant by:
		,				
			orts on CD.	rovide electronic rep	nents: Please p	ns/QC Requirements & Co
samples are retained longer than 1 months Lab Archive For per contract Months	if samples are	Sample Disposal (A fee may be assessed	Vnknown	Payson B	Skin Irritant	Possible Hazard Identification Non-Harard Floremoble
				NaOH; 6= Other_I	; 4=HNO3; 5=	Preservation Used: I= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other
		7	Water 4	140% 8248		0905-01 MS/MSD
derrit, mis verstandelssensensensensensensensensensensensensen		ブー	Water 2	1400 Cass	10/17/63	1)90501 MW-JCL-2
		×	Water '2		1ehn/ce	D901 -02 MW3
Sample Specific Notes:		TCL VOC	Matrix Cont. Milly to S.	Sample Sample Time Type	Sample Date	Sample Identification
		2s + 2	_	l day	0	P O # Contract C200305
		20 T1	_	2 days		Site: V00658
		CS+	_	t week		Project Name: Churchville Ford
SDG No.		ASP	_	2 weeks		(585) 226-8696 FAX
		BR		TAT if different from Below _30 days.	TAT	(585) 226-5357 Phone
		epor		Calendar (C) or Work Days (W) _C	Calendar (Avon, NY 14414
Job No. Callout 115733-1		t t	me W	Analysis Turnaround Time	A	6274 E. Avon-Lima Road
		Lab Contact: Carrier:		TeVFax: 585.226.5357/585.226.8696	Tel/Fax: 585.	NYSDEC
	10/10/06	Site Contact: & Sawesty Date:		Project Manager: Frank Sowers, P.E.	Project Man	Client Contact
Severn Trent Laboratories, Inc.						Amnerst, NY 14286 phone 716-691-2600 fax 716-691-7991
		Chain of Custody Record	Chain o			Suite 106
SEVERN ST						STL Buffalo

APPENDIX E Soil Vapor Sample Logs

Remedial Investigation Report Former Churchville Ford Site #V00658-8

IAQ QUESTIONNAIRE

BENJAMIN J. BONARIGO, PLLC

Email: bbonarigo@bonarigomccutcheon.com

ROBERT B. McCUTCHEON, PLLC

Email: rmccutcheon@bonarigomccutcheon.com

ONE COURT STREET PLAZA BATAVIA, NEW YORK 14020-2171

April 24, 2006

TELEPHONE (585) 344-1994 FAX (585) 344-1996 (NOT FOR SERVICE OF PROCESS)

Derron L. LaBrake, P.W.S. Entrix, Inc 124 E. Park Rd. Suite 200 Havertown, PA 19083

Re: 111 South Main Street, Churchville, N.Y.

Dear Mr. LaBrake:

Enclosed please find the completed Indoor Quality Air Questionnaire in the above-entitled matter.

If you need anything further from me please advise.

Very truly yours,

BONARIGO & McCUTCHEON

Benjamin J. Bonarigo

BJB:trk

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

_			April 3, 2006
Preparer's Name Stan	tec Consulting Services Inc.	Date/Time Prepar	red <u>10 am - 2:30 p</u> m
Preparer's Affiliation _	Owner's Agent	Phone No(585)	475-1440
Purpose of Investigation	Follow-up to August 2004 - Former Churchville Ford	Soil Vapor Intrusi	on Samping Program
1. OCCUPANT: Me	yer's at Churchville LLC		
Interviewed: 🕎 N			
Last Name: Burke	First Name:	Matthew	******
Address: 111 South	Main Street Churchville, Ne	w York 14428	
County: Monroe			
Home Phone:	Office Phone: (58	85) 293-8100	
Number of Occupants/p	persons at this location 40-50	Age of Occupants V	arious
2. OWNER OR LAND	DLORD: (Check if same as occupa	ant X)	
Interviewed: Y/N			
Last Name:	First Name:		
Address:			
County:			
Home Phone:	Office Phone:	***************************************	
3. BUILDING CHAR	ACTERISTICS		
Type of Building: (Circ	cle appropriate response)		
Residential Industrial	School Commerc	cial/Multi-use	

If the property is residenti	al, type? (Circle appropri	ate response) N/A
Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:
	-	
If multiple units, how mar		
If the property is commer-	cial, type?	
Business Type(s)		
Does it include residen	ces (i.e., multi-use)? Y	N If yes, how many?
Other characteristics:		
Number of floors 1 v	v/mezzanine _{Buil}	ding age
Is the building insulated	1? Y / N How	air tight? Tight / Average / Not Tight
4. AIRFLOW		
7. 7.1.1.1.1.0		
Use air current tubes or to	racer smoke to evaluate	airflow patterus and qualitatively describe:
A ! . Ø 1 Ø		
Airflow between floors	h	non fluct floor and recomputes to the calculation
area, given the "open"	n almow is likely betw	reen first floor and mezzanine in the sales/office
area, given the open	Traduce of this area.	
Airflow near source		
Not assessed.		
Outdoor air infiltration		
	. 1 41	
Large overnead doors	in the service and "d	oll up" areas would enable outdoor air infiltration.
Infiltration into air ducts		
Not assessed.		

5.	BASEMENT	AND CONSTRUCTION CHARACTERIS	TICS (Circle all that apply)
----	----------	------------------------------	------------------------------

a. Above grade construction	i: wood frame	concrete	stone	brick metal			
b. Basement type:	full	crawlspace	slab	other			
c. Basement floor:	concrete	dirt	stone	other			
d. Basement floor:	uncovered	covered	covered with_				
e. Concrete floor:	unsealed	sealed	sealed with				
f. Foundation walls:	poured	block	stone	other			
g. Foundation walls:	unsealed	sealed	sealed with _				
h. The basement is:	wet	damp	dry	moldy			
i. The basement is:	finished	unfinished	partially finish	ned			
j. Sump present?	YN						
k. Water in sump?	Y / N / not applicab	le					
Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains) Trench Drains & an Oil/Water Separator are located in the service and "doll up" areas. Elevated PID readings were noted in connection with these trench drains.							
6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)							
Type of heating system(s) used	in this building: (c	ircle all that app	oly – note primar	y)			
Hot air circulation Space Heaters Erecure baseboard	Heat pump Stream radi Wood stove	ation Rad	water baseboard iant floor door wood boiler	Other			
The primary type of fuel used	is:						
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero Sola	osene II				
Domestic hot water tank fueled							
	i by: Natural G	Sas					

Air	conditio	ning:
-----	----------	-------

Window units Open Windows

None

4

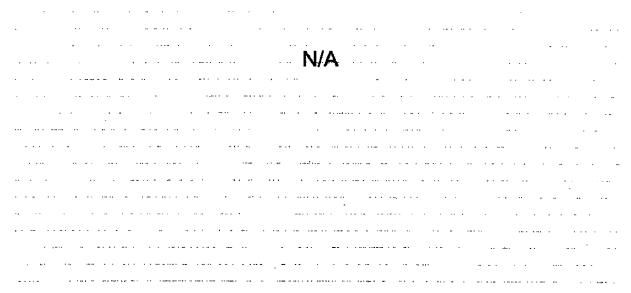
Are there air distribution ducts present?

Y/N

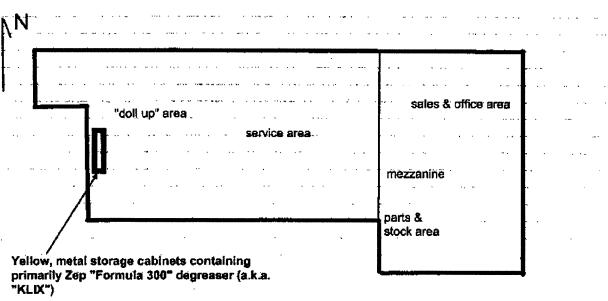
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

~			
.	Not assessed.		

			CONTROL OF THE PROPERTY OF THE
7. OCCUP	ANCY		
	/lowest level occupied? Full-time Occasio	nally Seldom	Almost Never
<u>Level</u>	General Use of Each Floor (e.g., familyroom,	bedroom, laundry,	workshop, storage)
Basement	N/A		
1 st Floor	sales and office space, RV Sales, Service	e, and "doll-up" a	activities
2 nd Floor	(mezzanine) used for sales and office sp	ace	
3 rd Floor	N/A		
4 th Floor	N/A		<u> </u>
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR QU.	ALITY	
a. Is there	an attached garage?	YN	
b. Does th	e garage have a separate heating unit?	Y/N/NA	
	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)	Y/N / NA Please speci	RV's and other motor yehicles
d. Has the	building ever had a fire?	YNWhe	en?
e. Is a ker	osene or unvented gas space heater present?	YNWhe	ere?
f. Is there	a workshop or hobby/craft area?	Y/N Where & Ty	pe? service area
g. Is there	smoking in the building?	YN How frequen	ntly?
h. Have cl	eaning products been used recently?	Y N When & Typ	Frequently, mostly Zep Brand Cleaners


i. Have cosmetic products been used recently?	YN	When & Type	?
5	•		
j. Has painting/staining been done in the last 6 mont	hs? YN	Where & Whe	en?
k. Is there new carpet, drapes or other textiles?	YN	Where & Who	en?
I. Have air fresheners been used recently?	YN	When & Type	?
m. Is there a kitchen exhaust fan?	YN	If yes, where	vented?
n. Is there a bathroom exhaust fan?	YN	If yes, where	vented?
o. Is there a clothes dryer?	YN	If yes, is it ver	nted outside? Y / N
p. Has there been a pesticide application?	YN	When & Type	?
Are there odors in the building? If yes, please describe: Odors typical of an autor	N motive repair	shop	
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechani boiler mechanic, pesticide application, cosmetologist	c or auto body	shop, painting	, fuel oil delivery,
If yes, what types of solvents are used? Zep Brand I	Degreasers		, <u></u>
If yes, are their clothes washed at work?	YМ		
Do any of the building occupants regularly use or work response)	k at a dry-clea	ning service?	(Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, work at a dry-cleaning service	88)	No Unknown	
Is there a radon mitigation system for the building/stru Is the system active or passive? Active/Passive	acture? YN	Date of Install	lation:
9. WATER AND SEWAGE			
Water Supply: Public Water Drilled Well [Oriven Well	Dug Well	Other:
Sewage Disposal: Public Sewer Septic Tank I	each Field	Dry Well	Other:
10. RELOCATION INFORMATION (for oil spill resid	dential emerge	ency) N/A	
a. Provide reasons why relocation is recommended	•		***************************************
b. Residents choose to: remain in home relocate	to friends/fami	ly reloca	te to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents? Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Residential/Commercial Development Parking Area 111-S: Main Street Building Parking Area Interstate 490			•	
Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area	•	6 · · · · · · · · · · · · · · · · · · ·	- South Main Stre	oe t -
Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area Parking Area	K KI		i	
Parking Area Parking Area 111-S: Main Street Building Parking Area			** e ; e	
Parking Area Parking Area 111-S: Main Street Building Parking Area		• • • • • • • • • • • • • • • • • • • •		
Parking Area Parking Area 111-S. Main Street Building Parking Area	Reside	ntial/Commercial · · · · · · ·	<u> </u>	
Parking Area 111 S. Main Street Building Parking Area		evelopment		··· · · · · · · · · · · · · · · · · ·
Parking Area 111 S. Main Street Building Parking Area				
Parking Area 111 S. Main Street Building Parking Area		· · · · · · · · · · · · · · · · · · ·		
Parking Area 111 S. Main Street Building Parking Area				
Parking Area 111 S. Main Street Building Parking Area				
Parking Area 114 S. Main Street Building Parking Area	Parkir	ig.Area.		
Parking Area 114 S. Main Street Building Parking Area				
Parking Area 114 S. Main Street Building Parking Area				Decidential
Parking Area	Parking Area		· · ·	Development
Parking Area		111 S. Main Street	· · · · · · · · · · · · · · · · · · ·	
		Bullding		
		s and the contract of the cont		et a me e e e e e e e e e e e e e e e e e
	Doding Ar			
Interstate 490	raiking Ait			
Interstate 490				
Interstate 490		and the second of the second o	,	
Interstate 490		The second secon		**************************************
Interstate 490				
Interstate 490 - Communication of the interstate of the communication of	**************************************	1-11-1- 400		the second secon
		Interstate 490	• • •	

13.	PRO	DUC	r in	VENT	OR	ΥŦ	ORN
-----	-----	-----	------	------	----	----	-----

Rae Systems ppb Rae Plus; rented from Ashtead Make & Model of field instrument used: Technologies (unit # R5922)

List specific products found in the residence that have the potential to affect indoor air quality.

NOTE: This list below is not comprehensive. The stock area of the building contained additional small (1-gallon or less) containers of automotive fluids (windshield washer fluid, transmission fluid, motor oil, etc.) and paints.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
stock & service	Zep "ZEPUNCH" aerosol engine degreaser	24 oz. serosol cans	UO; O	tetrachloroethylene; light aromatic naphtha; 1,2,4-trimethylbenzene, etc. (see MSDS)	no elevated PID readings noted	N
service & "doil up"	Zep "Formula 300" (a.k.a. "KLIX") industrial solvent degreaser	5-gallon & smaller	UO; O	tetrachloroethylene; methylene chloride; and light aliphatic naphtha (see MSDS)	up to 13 ppm	N
"doll up"	Zep "Formula 50" general purpose cleaner	5-gailon	UO; O	ethylene glycol morrobutyl either; sodium monosilicate; and sodium dodecylbenzane sulfonate (see MSDS)	no elevated PID readings noted	N
stock & "dolf up"	Zep "T'N'T" Liquid Truck and Trailer Wash	1-gelion & 55-gelion	UO; O	tetrasodium ethylenediamine tetrascetate; sodium metasilicate (see MSDS)	no elevated PID readings noted	N
stock area	NAPA/CRC "Brakleen" aerosol brake parts cleaner	19 oz. aerosol cans	uo; o	tetrachioroethylene & carbon dioxide	no elevated PID readings noted	N
"doll up" area	Zep "All Around" vinyt protectant	5-gallon	0	odoriess aliphatic naphtha (see MSDS)	no elevated PIO readings noted	N
"doil up" area	Zep "Flash" concrete cleaner	5-gallon	O	sodium metasilicate; sodium carbonate; and trisodium orthophosphate (see MSDS)	no elevated PID readings noted	N
stock area	Zep "Choke & Carburetor Cleaner" serosol cleaner	20 oz. serosol cans	UO	methylene chloride; xylene; methanol; ethyl benzene; morpholine (see MSDS)	no elevated PID readings noted	N
stock area	NAPA/CRC "QD" aerosol electronic cleaner	11 oz. serosol can	uo	methanol; n-hexane; isohexanes; carbon dioxide; and petroleum distillates	no elevated PID readings noted	N
stock area	Zep "Fabric Refresher" serosol cleaner	20 oz. aerosol cans	UO	hydrocarbon propellant and ethanol	no elevated PID readings noted	N
				1		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

JOB TITLE	CHURCHVILLE	FORD-Son	- VAPOR INTRU	ISION
SHEET NO.		OF		
CALCULATED	BY EO	DATE	4/4/07	
CHECKED BY		DATE _	-7-7	
PIN ST	701-11			

1	6:1:	5	A	rriv	e	ON	. د	14	e (D.1	m	me	- (h	s we	h.ci	16	For	rd.	re	vie	14/	SA	10.0	la	10	· /·	42.	
-/-		Ī		(re																									3
			100	cati	bu	IA	ri'l	1	he	in	515	J _o	6	100	+	in	<	hau	100	200	1	CC.	70		100	(244	,7,	
	<u> </u>			:1+																									
17	-00	5		gin																									
		Ī-	Sau	uple) C	. 4	la	7	ς.	5	1 4	hir	k	,,,,	C	4	100	210		700	0	500	م ص	4.	. Σ), V	h.	16	2
	 		ron	din	ne	in	c)	1474	150	7000	4	~ l.	CA	1	ave	2 (786	100	2		DIT	2	20	11/2	7	10	. 70	bo	1vcar
		<u> </u>		2.4																									
	1		2C	ρμ	17		٠		/ >	50	ال م		<	1, 6	to		<i> </i>	200	12	6	2	30	- U	7	7,4	1.	ea	90	9
17	3:	3	2	gin	7	Cal		<u></u>	20	1		200	56	-6	1/0	at	~ \	a	, 0	y .15	<u>-1</u>	(1)	_7 -^		C.	L, _	c)	ماه	\dashv
-			1 .	clo																									
	T			ΣA	1	,		•	L	f -	IV CC	CO		- COV	-			· · ·	,			2	X.CC			, (-103	-	-
17	577			gin			T		K	C	. (^	1	c	1,1	- 2	lok) 1/	6 A	~	לישנו	<u>٠</u> +	(0)	00	0.0	C	V 14 .		36	.4
<u> </u>	Sa	М.О	le	3. 1	300	-10		3	7	Di	וע	con	バツ	~ ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100	باي.	ch	20	= 1.	<u>z</u>	0 1	5	00	10	C	c.L.	7	1
	<	la	hi	n'f	his	> /		. n	L. >-		<u>'</u>	4	54	3	2,2	C.	< a	494	ole.	<i>h</i>	10	ĵ		7.	<u>س</u> ک	L	4	1	7
		,,,,,	101	th	, 2	10) Y	980	1		l	70	ادما	٥	= 4	5.	<u> プ</u> ヘ	my	(A	onk	1.	Ou		,	7	. 1	121		
			VO	um	es	3	VO	lu	mè	O	ک'۔	lat	6 h	04	e k	en	eal	4	4	4	Co	-k/	olu	<i>a</i>	P	ug	e 6	riv	
			re	adil	19	=	4.	2	PR	m	(ρ	ear	_(_													_			
18	: 15	•	Be	jin	Ša	M	oli	ng	0	Fle	١	es.	Jak	lız	his	2	ba	esu	Nχ	se	all	6	S	IS-	JC	L	-0	2	
				atio												J													
18	:16	2	Be	gin	in	do	or	a	ir	Sa	ny	le	o	di	ace	nt	te	S	2	1	CL	-0	z (I	4-	JC	L+	-02	7
18	۱:۱-	2	Be	gin	in	ido	32	a	ù	Q]	Sai	rel	le	ad	liac	ent	- 4	<i>3</i> 4	to	S 72	1 –	ic4	-0	2				
			1014	Ser	#1	4-	50	L	-0	21	us	MS	D			5													
18	:29	ŝ	Se	+4	o f	0	dr i	11	4	ird	S	ub	- ς	lak	s c	an	upl	e	Po	int	- 1	n	in!	1	01	ne	ر و	P	
				rk.						es (1										7
18	3:3	8		nisl		И.	i 1	- 1	- 1	١.	. 1		- 1		L	_	tu	اما	Na	an	4	sea	1	0	u	o a	. 2		
				nid																									
			- 1	ust			í í	- 1	4 1		- 1	1	!	i	- 1			- 1	7 1	1	()			i	JC-	- 1	7 0	- 1	
16	};4	9	~	eain						0												- 1	-						
		-		woi	3 t					e =								1		. 1	1	inc					700		
						- 1		- 1	١. ١	- 1		∠ [-	<u> </u>		<u> </u>	7	ال	<u>~ u</u>	-4	VUL	unc	-	1 41	ا ب	100	4	Nay	-
19	00	$\overline{}$	5	7	1 4	- 1	. "	- 1	1	ine		<u>.</u>	_	_	_	1,	,	10	$\frac{1}{L}$	<u>.</u>	7		+	1	11	1	_	-	-
1 1	· U	<u>ر</u>	וצ		~ N	Ì	Į	1		0	1 1		Cr	en	MC	als	, u	<u>ي</u> کود	9	Ψ	170	lih	<u> </u>) Wi	19	IN	3 0	nd	-
			Co	D	H	4	346	۲	DV	ma	× e	-							+					+	\dashv			-	-
																					1								- 1

2230 Penfield Road Penfield, New York 14526 585.377.1450 Fax 585.377.1266

JOB TITLE Churchville	Ford-Soil VAPOR INTRUSION
SHEET NO.	OF
CALCULATED BY ED	DATE 4/4/07 - 4/5/07
CHECKED BY	DATE
DIN 5701-11	

SAMPLE I.D.	CANISTER#	REGULATOR#	INITIAL PRESS.	FINAL PRESS.	START TIME/ENDTINE
SVS-JC1-01	480	180	-29 in Hg	-6 wHz	17:33/8:17
IA-JCL-OI	93	66	-29 in Hg	-1.5 mHg	17:40/7:38
SVS-JCL-02	202	271	-29 in Hg -27 in Hg -28 in Hg	-2 in Hg -2 in Hg O in Hg	18:15/7:42
IA -JCL-02	284	125	-27 in Ha	-2 nHg	18:16/7:43
IA-JCL-02MS/M	0 216	454	-28 in Hg	Oixite	18:17/7:43
5vs-JCL-03	165	374	-29 integ	Ointh	18:39 / 7:49
IA-JCL-03	107	301	-28 in ly	-3 in Hz	18:40 / 7:49
0A-JCL-04	357	54	-29 in Hg	-1 in Hg	18:49 / 8:35

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name <u>ERIC DETWEILER</u> Date/Time Prepared <u>4/4/07</u>
Preparer's Name <u>ERIC DETWEILER</u> Date/Time Prepared <u>4/4/07</u> Preparer's Affiliation <u>Lu Engineers</u> Phone No. <u>377-1450</u>
Purpose of Investigation_ RE-SAMPLE AS PER NYSDEC. REQUEST
1. OCCUPANT:
Interviewed: Y/N
Last Name: MCGuirk First Name: Mike
Address: 111 S. Main St., Churchville, NY
County: Monroe
Home Phone: Office Phone:
Number of Occupants/persons at this location Age of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: Meyer First Name: Mark
Address: 13 Boulder Creek Dr., Rush, NY
County: MONTGE
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

if the property is resident	iai, type? (Circle appro	priate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other Wavehouse workshop
If multiple units, how man	ıy?	•
If the property is commercial	cial, type?	
Business Type(s) Tru	ck & Boat Cent	<u>e1</u>
Does it include residence		
Other characteristics:		
Number of floors 2	_ Bu	uilding age 1988 (2 additions first 1989, second 19
Is the building insulated	?(Y) N Ho	ow air tight? Tight / Average (Not Tight Overhead doors)
4. AIRFLOW		
Use air current tubes or tra	acer smoke to evaluate	e airflow patterns and qualitatively describe:
Airflow between floors First floor is of this is the only po freely between floor air tight): Since a closed heating: Airflow near source Source is in S open floor plan Dutdoor air infiltration Evident @ oven	W corner of w∫high ceili	floor in second addition area (1995). wilding w/a second floor and air flows loor exists @ west end of this space as well (no are used the airflow is not influenced by workshop area which is one large ng (is' 4-) west end
nfiltration into air ducts NA		

5.	BASEMENT AN	ND CONS	STRUCTION	CHARAC	CTERISTICS (Circle all th	at annly)
J.	DUDGINERIA VI	ID COIN	S X INC C X X O I N	CHAIN		Choic an u	ιαι αρριγ /

a. Above grade construction:	wood frame	concrete	stone	brick	block/metal NO DASEMENT
b. Basement type:	full	crawlspace	slab	other	NO DASEMENT
c. Basement floor:	concrete	dirt	stone	other	AN
d. Basement floor:	uncovered	covered	covered with		
e. Concrete floor:	unsealed	sealed	sealed with <u></u>	loor tile	/epoxy
f. Foundation walls:	poured	block	stone	other	
g. Foundation walls:	unsealed	sealed	sealed with <u>E</u>	poxy	
h. The basement is:	wet	damp	dry	moldy	(NA)
i. The basement is:	finished	unfinished	partially finish	ed (NA))
j. Sump present?	YN				
k. Water in sump? Y/N	not applicable				
Basement/Lowest level depth below g	grade: <u>NA</u>	_(feet)			
Identify potential soil vapor entry po	ints and approx	timate size (e.g., o	cracks, utility p	orts, drain	ıs)
The slab floor is in ver primarily free from cracks open floor drains in work	shop which	ndition in t in very go lead to or	the works ad condition u sepanato	hop au 1; There r	ea and arelongate
6. HEATING, VENTING and AIR	CONDITIONIN	NG (Circle all that	apply)		
Type of heating system(s) used in this	building: (circl	le all that apply –	note primary)	•	
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	n Radiant i	er baseboard floor wood boiler	Other <u>forc</u>	ed hot air
The primary type of fuel used is:				5 units 4 in all	ed hot aiv inshop fice/sales area
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar		[IN ON	mer said with
Domestic hot water tank fueled by:	natural g	as			
Boiler/furnace located in: Basemen	nt Outdoor	rs Main Floo	or	Other	

Air conditioning: Central Air Window	units Open Windows None _ units in sales/showroom/office area
Are there air distribution ducts present? (Y) N	
Describe the supply and cold air return ductwork, and there is a cold air return and the tightness of duct joint diagram.	its condition where visible, including whether s. Indicate the locations on the floor plan
and sales area; duct work in	ea w/ duct work to office/showroom n very good condition
7. OCCUPANCY	•
Is basement/lowest level occupied? Full-time Oc	ccasionally Seldom Almost Never
Level General Use of Each Floor (e.g., family)	room, bedroom, laundry, workshop, storage)
D	
Basement 1st Floor Workshop / Sales / Showroon	1,20-0
2 nd Floor	~ / OSFICE
3 rd Floor	
4 th Floor	
+ F1001	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR	QUALITY
a. Is there an attached garage?	y (N)
b. Does the garage have a separate heating unit?	Y/N(NA)
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	(Y) N/NA Please specify in workshop-cars fruck
d. Has the building ever had a fire?	Y(N) When?
e. Is a kerosene or unvented gas space heater present?	Y N Where?
f. Is there a workshop or hobby/craft area?	Y N Where & Type?
g. Is there smoking in the building?	Y (N) How frequently?
h. Have cleaning products been used recently?	(D) N When & Type? Map floors Workshop

i. Have cosmetic products been used recently?	Y/N when & Type?
5	
j. Has painting/staining been done in the last 6 months?	(Y)N Where & When? June '06, March '07 late
k. Is there new carpet, drapes or other textiles?	
l. Have air fresheners been used recently?	Y/N Where & When? <u>saks area; Sumer</u> 106 Y/N When & Type?
m. Is there a kitchen exhaust fan?	Y (N) If yes, where vented?
n. Is there a bathroom exhaust fan?	N If yes, where vented?
o. Is there a clothes dryer?	YN If yes, is it vented outside? Y/N NW corner
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe: There is a slight odor from Cov - washing	of cleaning detergents in workshop
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	
If yes, what types of solvents are used? brakedeaner, lu	bricants penetrating fluids point cleaners, des repair) & painting operations, solvent wash Y(N)
If yes, are their clothes washed at work?	YN yalvitug operations, solvent wash
Do any of the building occupants regularly use or work at response)	a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	Unknown
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	re? Y N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Drive	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentic	al emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frie	ends/family relocate to hotel/motel

- c. Responsibility for costs associated with reimbursement explained? Y/N
- d. Relocation package provided and explained to residents?

Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

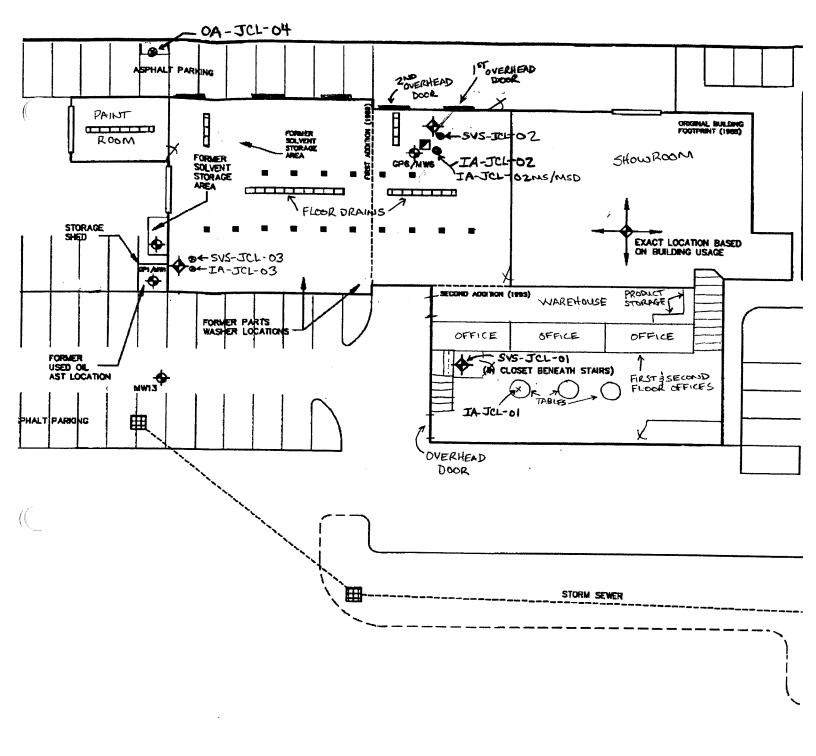
See attached building plan

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

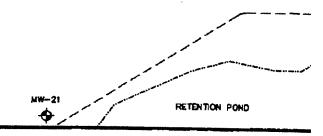
Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Workshop Product Inventory (as of 4/5/07)


PRODUCT	QUANTITY	OPENED (O) /	CONDITION	INGREDIENTS
NAME		UNOPENED (U)		
			NT BOOTH	
Lacquer Thinner	l gallon	0	Good	Toluene, methanol, light alphatic solvent naptha, acetone, glycol ether, petroleum distillates, ketones, esters
Final Klean	6 x l gallon	1 gal - O / 5 gal - U	Good / New	VM&P naptha, toluene, heptane, xylene, cyclohexane, mixed octanes
Zep Non-streaking Cleaner	24 fl. oz.	0	Good	Isopropyl alcohol, ethylene glycol monobutyl ether, Isobutane, n-butane
Grow Automotive HET Super Klean Grease, Wax & Silicone Remover	3 x 1 gallon	O	Good	VM&P naptha, naptha, toluene, isopropyl alcohol, benzene
Denatured alcohol	l gallon	0	Good	Alcohol
Dupont ChromaSystem Base Cleaner	l gallon	0	Good	Isobutyl alcohol, acetone, methyl isobutyl ketone, toluene, isopropyl alcohol, methyl amyl ketone, petroleum naptha, ethylbenzene, xylene
Dupont ChromaClear HC- 7600S	l gallon	0	Good	Acrylic polymer, acetone, MEK, methyl isobutyl ketone, toluene, ethylbenzene, xylene, synthetic resin
Dupont ChromaClear HC- 7605S	1 quart	0	Good	Isophorone Diisocyanate homopolymer, aliphatic polyisocyanate resin, butyl acetate, ethylbenzene, xylene
Dupont Variprime 620S Fast Converter	l gallon	U	New	Heptane, toluene, acetone, isobutyl alcohol, water, phosphoric acid
Reflex RX700A Grip Coat (bedliner)	5 x 5 gallon	U	New	Polyeurathane prepolymer, 4,4-Diphenylmethane Diisocyanate, Diphenylmethane Diisocyanate
Reflex RX700B	5 x 5 gallon	U	New	Polyether polyol, Diethyl toluene, diamine, tertiary amine
Paint pigments / Resin Additive	15 x l gallon	Ο/U	Good / New	Polyether polyol, Diethyltoluenediamine
Engine Compartment Enamel	10 spray cans	0	Good	Acetone, toluol, VM&P naptha, propane, n-butane
		MAIN	WORKSHOP	
PPC PC-5 Lacquer Thinner	20 gallon steel drum	0	New	Toluene, methanol, light alphatic solvent naptha, acetone, glycol ether, petroleum distillates, ketones, esters
Zep Formula 300 Industrial Solvent for Cold Degreasing	20 gallon steel drum	U	New	1,1,1-benzene, carbon tetrachloride or trichloroethylene
Zep All Around Vinyl & Rubber Protectant	l x 5 gallon	Ü	New	(NIL) No Ingredients Listed
WD-40	5 x 8 oz. spray cans	U	New	Petroleum distillates
Aratari Monster Wax	9 cans	O – 1 can U – 8 cans	New	DI water, aliphatic hydrocarbons, Dimethylpolysiloxane, 1,1-Difluoroethane
Zep 45NC Penetrating Lubricant w/ teflon	6 x 8 oz. spray cans	O – 5 cans U – 1 can	Good	Aromatic naptha, aliphatic naptha, ethanol, petroleum lubricant
Spray Adhesive	1 x 12 oz. can	0	Good	Methylene chloride

PRODUCT NAME	QUANTITY	OPENED (O) / UNOPENED (U)	CONDITION	INGREDIENTS
1424412		A CONTRACTOR OF THE PARTY OF TH) ORKSHOP (con	4 /
Power Service Diesel Fuel Supplement	1 qt.	0	Good	NIL (No Ingredients Listed)
Spray Nine Marine Cleaner	1 qt.	0	Good	n-Alkyl dimethybenzyl ammonium chloride, n- Alkyl dimethyl ethylbenzyl ammonium chloride
Zep Aid NC Silicone Spray	24 fl. oz.	O	Good	Heptane, polydimethylsiloxane, CO ₂
Zep ID Red (spray)	5 x 24 fl. oz.	O (all)	Good	Heptane, alcohol mixture, CO ₂
CRC Engine Stor Marine	13 oz.	0	Good	petroleum distillates, butyl stearate, fatty acid ester, propane, isobutene, n-butane
Aratari Monster Foam Fabric Cleaner	2 x 19 oz.	O	Good	DI water, Diethylene glycol monobutyl ether, liquefied petroleum gas
BECT Chemical Penetrating Oil	16 oz.	O	Good	Methylene chloride, aliphatic hydrocarbon, CO ₂
Zep-Flo Liquid Drain Solvent	32 fl. oz.	0	Good	Sulfuric acid, no other ingredients listed
Napa Premium Starting Fluid	11 oz.	0	Good	NIL
Sprayway Glass Cleaner	3 x 19 oz.	0	Good	2-butoxyethanol, ethyl alcohol, methyl alcohol, DI water, liquified petroleum, gas
CRC Electric Cleaner (Marine)	11 oz.	0	Good	Methanol, n-hexane, isohexane, petroleum distillates, CO ₂
Napa CRC Brakleen (spray)	1 lb. 3 oz.	U	New	Tetrachloroethylene, CO ₂
Sta-Put II Adhesive	2 x 13 oz.	О	Good	Hexane, dimethyl ether
Liquid Gold Wood Cleaner	12 oz.	0	Good	Petroleum distillates
Pyroil Brake Parts Cleaner	13 oz.	0	Good	xylene, methyl alcohol, acetone, heptane, CO ₂
Pyroil Carb & Choke Cleaner	13 oz.	0	Good	xylene, methyl alcohol, acetone, CO ₂
Zep Choke & Carb Cleaner	20 fl. oz.	0	Good	Methylene chloride, xylene, methanol, morpholine, CO ₂
Zep Zepunch Engine Degreaser	24 fl. oz.	0	Good	Light aromatic naptha, tetrachloroethylene, monoisopropylbiphenols, nonionic surfactant, CO ₂
LPS Rust Inhibitor (spray)	11 oz.	0	Good	Mineral spirits, petroleum oil, microcrystalline wax, calcium carbonate, CO ₂
		PARTS SU	UPPLY ROOM	
Zep Zepunch Engine Degreaser	10 x 24 fl. oz.	U	New	Light aromatic naptha, tetrachloroethylene, monoisopropylbiphenols, nonionic surfactant. CO ₂
Napa CRC Brakleen (spray)	11 x 1 lb. 3 oz.	U	New	Tetrachloroethylene, CO ₂
Zep Aid NC Silicone Spray	20 x 24 fl. oz.	U	New	Heptane, polydimethylsiloxane, CO ₂
Zep 40 Non- streaking Cleaner	24 fl. oz.	0	Good	Isopropyl alcohol, ethylene glycol, monobutyl ether, isobutene, n-butane
CRC Ultra Screw Loose	11 fl. oz.	0	Good	Petroleum distillates, oleic acid, CO ₂
Zep Magnet Dust Mop & Cloth Spray	20 fl. oz.	U	New	Aliphatic naptha, isobutene, propane, n-butane
Zep-Flo Liquid Drain Solvent	11 x 32 fl. oz.	U	New	Sulfuric acid, no other ingredients listed

FORMER CHURCHVILLE FORD Lu Engineers Project #5701-11


SUBSURFACE INVESTIGATION 5/18/07

PRODUCT NAME	QUANTITY	OPENED (O) / UNOPENED (U)	CONDITION	INGREDIENTS
		PARTS SUP	PLY ROOM (co	nt.)
Yamaha Ring Free Fuel Additive	12 x 32 fl. oz. 8 x 12 fl. oz.	U	New	Petroleum distillates, trimethyl benzene
Yamaha Silicone Protectant & Lube	12 x 12.5 oz.	U	New	Perchloroethylene, parafinic petroleum distillates
Evinrude/Johnson Touch-Up Paint (spray)	2 x 12 oz.	U	New	Acetone, propane, toluol, n-butane, titanium dioxide, methyl propyl ketone, isobutyl acetate, glycol ether
Zep 45NC Penetrating Lubricant w/ teflon	8 oz. spray can	U	New	Aromatic naptha, aliphatic naptha, ethanol, petroleum lubricant

ION PORT

GRAVEL PARKING AREA

APPENDIX F

Soil Vapor Analytical Results

Remedial Investigation Report Former Churchville Ford Site #V00658-8

INVESTIGATION WORK PUM)

SUMMA CANISTER RESULTS FORMER CHÜRCHVILLE FORD

	S.G-1	8-7	(C)	7-25	ς, Λ,	7775	7.33	8	5	8
Sample ID:		113	233	120	18	200				0
Sample Date:	පි	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	08/18/04	OR/1R/DA	47.2 08/18/04
Cuits:		(A)qdd	(v)qdd	(v)ddd	(A)qdd	ppb(v)	(A)qdd	(A)qdd	(A)qaa	(A)qaa
Ten-Buty Alcohol	2	Q	13	QN	욷	2	2	2	0.51	0.8.1
Propene	8	8	41	22	37	2	8	-	8	20
Dichiorodificoromethane	1,800	810	270	36	730	က	5	0.40	-	3
Chlorodiffuoromethane	ន	2	2	QN	QN	2	ت	2	£	4
Title	2	2	2	QN	Q.	2	2	0.47	-	0.87
Price more more than a partition of the	2	2	2	8	Q	0.5J	0.5J	웃	0.3	0.3
Action	<u>а</u>	8	88	61	42	3	24	₽	24	28
Acetal de	199	Q	2	Q	360	2	48	9	88	130
Activities	SS.	230	110	190	230	Q	9	운	£	QN
Most Jone Chical	Q	280	2	340	220	2	S	2	£	S
Medicine Chionge	3	42	₽	88	45	Q	5	S	2	2
Methyl t-buryl Einer	હ	2	2	Q	QN	£	0.47	ş	0.3	0.23
Mane Very	12	42	€	37	31	4	4	2	4	2
vinyi Acetale	2	Q.	ಣ	Q	QN	Q	Q	2	2	2
Gis-1, z-Dichoroemene	10	3	2	2	QN	9	2	2	0.20	1
Z-butanone	13	£	ᄝ	2	N	S	တ	-	~	7
Chine Chine	2	2	3	2	2	, 1	S	₽	2	S
Oliopodra 4.1.1.1.1.	Q)	2	2	8.0	9	QN	Ω	2	₽	2
	22.0	3	3	2	3	S	1	Q	2	
Renzene	7	22	2	2	2	2	Q	QN	2	Q
lecochana	2	702	1	6	7.7	4	4	DN	3	2
Hartone	2 7	2	23	2	3	0.57	17	Q	0.97	0.73
Trichlemothere	3 5	32	4	2	8	2	3	N	1	2
Dihomomothomo	۶	3	2	8	2	023	8	Q	9.6	9
Description of the state of the	2 !	Q	=	Q Q	2	ΩN	QN	QN	2	2
Divindud not of the marie	2	2	공 공	S	ಷ	0.7.0	ON ON	2	2	Q
Telises	88	120	1,900	440	2,100	4	2	£	-	8
	3 3	210	140	160	160	72	41	0.23	22	52
Tetrackion in the second secon	2	8	2	2	₽	2	2	S	0.93	-
2-Hovenone	4 5	45	3	8	죵	•	-12	Q	3	6
alionexall-7	3	2	<u>ح</u>	1	<u>용</u>	0.8.1	S	CZ	2	Ş

Т			_	—	Т	T	т-	Т	<u> </u>	1	_	т-	_	_
08/18/04	(v)ddd	٠	3	4 6	0.73	0.23	2	2	2	2	0.7.1	2	무	2
08/18/04	ppb(v)	ç	, a	2	0.31	2	2	2	2	2	₽	2	2	2
08/18/04	ppb(v)	Ç	3 5	2	2	2	2	2	Q	S	S	2	2	2
08/18/04	(A)qdd	4	γ	2	0.9	0.73	2	2	2	8	3	7	0.83	2
08/18/04	(A)qdd	-	40	14	7	2	4	2	24	5	24	15	S	9
08/18/04	(A)qdd	260	880	198	2	183	2	9	2	25	3	15	2	₽
08/18/04	(v)ddd	22	38	38	ß	₹	₽	Ş	₹	18.1	77	14.)	QN	QN
08/18/04	(v)qdd	240	340	128	7.7	11	ফ	QN	₩	24	æ	11	QN	QN
08/18/04	(A)qdd	1.300	3.300	810	35	58	QN	83	4∪	86	23	21	QN	Q
08/18/04	(A)qdd	94	130	34	સ	27	8	2	ਨ	17	ស	12	Q	2
Date:	Salts:													
Sample		thylbenzene	/p-Xylene	Xylene	lyrene	umene	1,2,2-Tetrachloroethane	2,3-Trichloropropane	romobenzene .	Ethyltoluene	3,5-Trimethylbenzene	2,4-Trimethylbenzene	4-Dichlorobenzene	Hexachloroethane
	08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/	18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04/04/04/04/04/04/04/04/04/04/04/04/04/	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04/04/04/04/04/04/04/04/04/04/04/04/04/	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04	Sample Date: 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04 08/18/04

ppb = parts per billion ND = Not detected at or above the limit of quantitation J = estimated value, the result is ≥ the method detection limit and < the limit of quantitation

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-001A

Date: 13-Apr-07

Client Sample ID: SVS-JCL-01

Tag Number: 480,180

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	то	-15			Analyst: RJ F
1,1,1-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1,2,2-Tetrachioroethane	ND	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605		ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	10.5	7.49		ug/m3	10	4/11/2007.
1,2-Dibromoethane	ND	1.17		ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705		ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	6.70	0.750		ug/m3	1	4/11/2007
1,3-butadiene	ND	0.337		ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10		ug/m3	1	4/11/2007
2,2,4-trimethylpentane	1.14	0.712		ug/m3	1	4/11/2007
4-ethyltoluene	6.85	0.750		ug/m3	1	4/11/2007
Acetone	50.9	7.24		ug/m3	10	4/11/2007
Allyl chloride	ND	0.477		ug/m3	1	4/11/2007
Benzene	8.44	4.87		ug/m3	10	4/11/2007
Benzyl chloride	ND	0.877		ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02		ug/m3	1	4/11/2007
Bromoform	ND	1.58		ug/m3	1	4/11/2007
Bromomethane	ND	0.592		ug/m3	1	4/11/2007
Carbon disulfide	2.69	0.475		ug/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256		ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702		ug/m3	1	4/11/2007
Chloroethane	ND [*]	0.402		ug/m3	1	4/11/2007
Chloroform	0.645	0.744	j	ug/m3	1	4/11/2007
Chloromethane	ND	0.315		ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604		ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692		ug/m3	1	4/11/2007
Cyclohexane	31.1	5.25		ug/m3	10	4/11/2007
Dibromochloromethane	ND	1.30		ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene	11.5	6.62		ug/m3	10	4/11/2007
Freon 11	1.83	0.857		ug/m3	1	4/11/2007
Freon 113	0.779	1.17		ug/m3	1	4/11/2007
Freon 114	ND	1.07		ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-001A

Date: 13-Apr-07

Client Sample ID: SVS-JCL-01

Tag Number: 480,180

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE E	BY METHOD TO1	TO-15			Analyst: RJP
Freon 12	3.42	0.754	ug/m3	1	4/11/2007
Heptane	37.9	6.25	ug/m3	10	4/11/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	38.7	5.37	ug/m3	10	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	26.0	13.2	ug/m3	10	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007.
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.91	0.530	ug/m3	1	4/11/2007
o-Xylene	8.56	0.662	ug/m3	1	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	15.2	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	3.31	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	36.4	5.75	ug/m3	10	4/11/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	0.765	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-002A

Client Sample ID: IA-JCL-01

Tag Number: 93,66

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual U	Inits	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	TO-	15			Analyst: RJF
1,1,1-Trichloroethane	ND	0.832	u	g/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05	u	g/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832	u	g/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617	u	g/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605	u	g/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13	u	g/m3	1	4/11/2007
1,2,4-Trimethylbenzene	8.24	0.749	u	g/m3	1	4/11/2007
1,2-Dibromoethane	ND	1.17	u	g/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917	u	g/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	u	g/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705	u	g/m3	1	4/11/2007
1,3,5-Trimethylbenzene	2.95	0.750	u	g/m3	1	4/11/2007
1,3-butadiene	ND	0.337	u	g/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917	u	g/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917	u	g/m3	1	4/11/2007
1,4-Dioxane	ND	1.10	ug	g/m3	1	4/11/2007
2,2,4-trimethylpentane	8.98	0.712	ug	g/m3	1	4/11/2007
4-ethyltoluene	3.55	0.750	ug	g/m3	1	4/11/2007
Acetone	36.5	7.24	uş	g/m3	10	4/11/2007
Allyl chloride	ND	0.477	u	g/m3	1	4/11/2007
Benzene	3.73	0.487	u	g/m3	1	4/11/2007
Benzyl chloride	ND	0.877	uç	g/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ug	g/m3	1	4/11/2007
Bromoform	ND	1.58	u	g/m3	1	4/11/2007
Bromomethane	ND	0.592	υį	g/m3	1	4/11/2007
Carbon disulfide	ND	0.475	uç	g/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256	uç	g/m3	1	4/11/2007
Chlorobenzene	ND	0.702	ug	g/m3	1	4/11/2007
Chloroethane	ND	0.402	uç	g/m3	1	4/11/2007
Chloroform	ND	0.744	ug	g/m3	1	4/11/2007
Chloromethane	ND	0.315	ug	g/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604	ug	g/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692	นรู	g/m3	1	4/11/2007
Cyclohexane	9.45	5.25	uç	g/m3	10	4/11/2007
Dibromochloromethane	ND	1.30	นดู	g/m3	1	4/11/2007
Ethyl acetate	ND	0.916		g/m3	1	4/11/2007
Ethylbenzene	4.19	0.662		g/m3	1	4/11/2007
Freon 11	2.17	0.857	•	g/m3	1	4/11/2007
Freon 113	0.779	1.17	•	g/m3	1	4/11/2007
Freon 114	ND	1.07	•	g/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-002A

Date: 13-Apr-07

Client Sample ID: IA-JCL-01

Tag Number: 93,66

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE I	BY METHOD TO1	TO-15			Analyst: RJP
Freon 12	3.52	0.754	ug/m3	1	4/11/2007
Heptane	30.8	6.25	ug/m3	10	4/11/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	6.77	0.537	ug/m3	1	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	14.9	1.32	ug/m3	1	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.69	0.530	ug/m3	1	4/11/2007
o-Xylene	5.16	0.662	ug/m3	1	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	9.53	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	1.17	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	43.7	5.75	ug/m3	10	4/11/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	0.546	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390	ug/m3	1	4/11/2007

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Lu Engineers

Lab Order: C0704013

Project: Churchville Ford

Lab ID:

C0704013-003A

Date: 13-Apr-07

Client Sample ID: SVS-JCL-02

Tag Number: 202,271 Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	то	-15			Analyst: RJ I
1,1,1-Trìchloroethane	26.6	16.6		ug/m3	20	4/12/2007
1,1,2,2-Tetrachloroethane	ND	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605		ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	8.74	0.749		ug/m3	1	4/11/2007
1,2-Dibromoethane	ND	1.17		ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705		ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	3.75	0.750		ug/m3	1	4/11/2007
1,3-butadiene	ND	0.337		ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10		ug/m3	1	4/11/2007
2,2,4-trimethylpentane	24.7	14.2		ug/m3	20	4/12/2007
4-ethyltoluene	4.75	0.750		ug/m3	1	4/11/2007
Acetone	530	130		ug/m3	180	4/12/2007
Allyl chloride	ND	0.477		ug/m3	1	4/11/2007
Benzene	77.3	9.74		ug/m3	20	4/12/2007
Benzyl chloride	ND	0.877		ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02		ug/m3	1	4/11/2007
Bromoform	ND	1.58		ug/m3	1	4/11/2007
Bromomethane	0.434	0.592	J	ug/m3	1	4/11/2007
Carbon disulfide	14.6	9.50		ug/m3	20	4/12/2007
Carbon tetrachloride	ND	0.256		ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702		ug/m3	1	4/11/2007
Chloroethane	0.376	0.402	J	ug/m3	1	4/11/2007
Chloroform	1.39	0.744		ug/m3	1	4/11/2007
Chloromethane	ND	0.315		ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	0.443	0.604	J	ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692		ug/m3	1	4/11/2007
Cyclohexane	271	94.5		ug/m3	180	4/12/2007
Dibromochloromethane	ND	1.30		ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene	21.2	13.2		ug/m3	20	4/12/2007
Freon 11	1.43	0.857		ug/m3	1	4/11/2007
Freon 113	ND	1.17		ug/m3	1	4/11/2007
Freon 114	ND	1.07		ug/m3	1	4/11/2007

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-003A

Client Sample ID: SVS-JCL-02

Tag Number: 202,271

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE I	BY METHOD TO1	то-	15			Analyst: RJP
Freon 12	88.5	15.1		ug/m3	20	4/12/2007
Heptane	390	112		ug/m3	180	4/12/2007
Hexachloro-1,3-butadiene	ND	1.63		ug/m3	1	4/11/2007
Hexane	567	96.7		ug/m3	180	4/12/2007
Isopropyl alcohol	113	7.50		ug/m3	20	4/12/2007
m&p-Xylene	27.4	26.5		ug/m3	20	4/12/2007
Methyl Butyl Ketone	ND	1.25		ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899		ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25		ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550		ug/m3	1	4/11/2007
Methylene chloride	2.37	0.530		ug/m3	1	4/11/2007
o-Xylene	10.6	13.2	J	ug/m3	20	4/12/2007
Propylene	ND	0.262		ug/m3	1	4/11/2007
Styrene	9.53	13.0	J	ug/m3	20	4/12/2007
Tetrachloroethylene	86.9	20.7		ug/m3	20	4/12/2007
Tetrahydrofuran	ND	0.450		ug/m3	1	4/11/2007
Toluene	142	11.5		ug/m3	20	4/12/2007
trans-1,2-Dichloroethene	ND	0.604		ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692		ug/m3	1	4/11/2007
Trichloroethene	16.4	4.37		ug/m3	20	4/12/2007
Vinyl acetate	ND	0.537		ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667		ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390		ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\ensuremath{\mathsf{JN}}$ $\,$ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-005A

Client Sample ID: IA-JCL-02 MS/MSD

Tag Number: 216,454 Collection Date: 4/4/2007

on Date. 4747200

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	тс	-15			Analyst: RJF
1,1,1-Trichloroethane	1.11	0.832		ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605		ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	42.0	15.0		ug/m3	20	4/11/2007
1,2-Dibromoethane	ND	1.17		ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705		ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	11.0	15.0	J	ug/m3	20	4/11/2007
1,3-butadiene	ND	0.337		ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dichlorobenzene	0.978	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10		ug/m3	1	4/11/2007
2,2,4-trimethylpentane	29.4	14.2		ug/m3	20	4/11/2007
4-ethyltoluene	16.0	15.0		ug/m3	20	4/11/2007
Acetone	213	65.2		ug/m3	90	4/12/2007
Allyl chloride	ND	0.477		ug/m3	1	4/11/2007
Benzene	27.3	9.74		ug/m3	20	4/11/2007
Benzyl chloride	ND	0.877		ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02		ug/m3	1	4/11/2007
Bromoform	ND	1.58		ug/m3	1	4/11/2007
Bromomethane	ND	0.592		ug/m3	1	4/11/2007
Carbon disulfide	0.570	0.475		ug/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256		ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702		ug/m3	1	4/11/2007
Chloroethane	ND	0.402		ug/m3	1	4/11/2007
Chloroform	ND	0.744		ug/m3	1	4/11/2007
Chloromethane	0.651	0.315		ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604		ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692		ug/m3	1	4/11/2007
Cyclohexane	137	10.5		ug/m3	20	4/11/2007
Dibromochloromethane	ND	1.30		ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene	23.8	13.2		ug/m3	20	4/11/2007
Freon 11	1.14	0.857		ug/m3	1	4/11/2007
Freon 113	ND	1.17		ug/m3	1	4/11/2007
Freon 114	ND	1.07		ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-005A

Date: 13-Apr-07

Client Sample ID: IA-JCL-02 MS/MSD

Tag Number: 216,454

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE I	BY METHOD TO1	TO-18	5		Analyst: RJP
Freon 12	5.08	0.754	ug/m3	1	4/11/2007
Heptane	124	56.2	. ug/m3	90	4/12/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	58.0	10.7	ug/m3	20	4/11/2007
Isopropyl alcohol	23.5	7.50	ug/m3	20	4/11/2007
m&p-Xylene	77.7	26.5	ug/m3	20	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007.
Methyl Ethyl Ketone	19.8	18.0	ug/m3	20	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	0.696	0.550	ug/m3	1	4/11/2007
Methylene chloride	2.44	0.530	ug/m3	1	4/11/2007
o-Xylene	28.2	13.2	ug/m3	20	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	12.1	13.0	J ug/m3	20	4/11/2007
Tetrachloroethylene	11.9	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	152	51.7	ug/m3	90	4/12/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	6.39	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-006A

Date: 13-Apr-07

Client Sample ID: SVC-JCL-03

Tag Number: 165,374

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	TO-1:	5		Analyst: RJP
1,1,1-Trichloroethane	41.0	8.32	ug/m3	10	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05	ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832	ug/m3	1	4/11/2007
1,1-Dichloroethane	75.3	6.17	ug/m3	10	4/11/2007
1,1-Dichloroethene	2.54	0.605	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13	ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	21.0	7.49	ug/m3	10	4/11/2007
1,2-Dibromoethane	ND	1.17	ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	8.74	0.750	ug/m3	1	4/11/2007
1,3-butadiene	ND	0.337	ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1.4-Dioxane	ND	1.10	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	15.2	7.12	ug/m3	10	4/11/2007
4-ethyltoluene	12.5	7.50	ug/m3	10	4/11/2007
Acetone	1020	587	ug/m3	810	4/12/2007
Allyl chloride	ND	0.477	ug/m3	1	4/11/2007
Benzene	49.0	4.87	ug/m3	10	4/11/2007
Benzyl chloride	ND	0.877	ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ug/m3	1	4/11/2007
Bromoform	ND	1.58	ug/m3	1	4/11/2007
Bromomethane	ND	0.592	ug/m3	1	4/11/2007
Carbon disulfide	2.44	0.475	ug/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256	ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702	ug/m3	1	4/11/2007
Chloroethane	43.7	4.02	ug/m3	10	4/11/2007
Chloroform	1.29	0.744	ug/m3	1	4/11/2007
Chloromethane	ND	0.315	ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	1570	492	ug/m3	810	4/12/2007
cis-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Cyclohexane	202	0.525	ug/m3	1	4/11/2007
Dibromochloromethane	ND	1.30	ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916	ug/m3	1	4/11/2007
Ethylbenzene	65.3	6.62	ug/m3	10	4/11/2007
Freon 11	1.09	0.857	ug/m3	1	4/11/2007
Freon 113	ND	1.17	ug/m3	1	4/11/2007
Freon 114	ND	1.07	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-006A

Client Sample ID: SVC-JCL-03

Tag Number: 165,374

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE I	BY METHOD TO1	TO-18	5		Analyst: RJP
Freon 12	1630	613	ug/m3	810	4/12/2007
Heptane	371	508	J ug/m3	810	4/12/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	360	5.37	ug/m3	10	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	189	13.2	ug/m3	10	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	2.54	0.530	ug/m3	1	4/11/2007
o-Xylene	50.8	6.62	ug/m3	10	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	10.8	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	31.0	10.3	ug/m3	10	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	323	5.75	ug/m3	10	4/11/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	45.3	2.18	ug/m3	10	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	12.0	3.90	ug/m3	10	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-007A

Date: 13-Apr-07

Client Sample ID: IA-JCL-03

Tag Number: 107,301

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	то	-15			Analyst: RJ l
1,1,1-Trichloroethane	1.39	0.832		ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605		ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	34.5	7.49		ug/m3	10	4/11/2007
1,2-Dibromoethane	ND	1.17		ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705		ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	8.49	7.50		ug/m3	10	4/11/2007
1,3-butadiene	ND	0.337		ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dichlorobenzene	1.04	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10		ug/m3	1	4/11/2007
2,2,4-trimethylpentane	31.3	7.12		ug/m3	10	4/11/2007
4-ethyltoluene	15.5	7.50		ug/m3	10	4/11/2007
Acetone	498	65.2		ug/m3	90	4/12/2007
Allyl chloride	ND	0.477		ug/m3	1	4/11/2007
Benzene	26.3	4.87		ug/m3	10	4/11/2007
Benzyl chloride	ND	0.877		ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02		ug/m3	1	4/11/2007
Bromoform	ND	1.58		ug/m3	1	4/11/2007
Bromomethane	ND	0.592		ug/m3	1	4/11/2007
Carbon disulfide	0.348	0.475	J	ug/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256		ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702		ug/m3	1	4/11/2007
Chloroethane	ND	0.402		ug/m3	1	4/11/2007
Chloroform	ND	0.744		ug/m3	1	4/11/2007
Chloromethane	ND	0.315		ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604		ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692		ug/m3	1	4/11/2007
Cyclohexane	88.2	47.2		ug/m3	90	4/12/2007
Dibromochloromethane	ND	1.30		ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene	24.7	6.62		ug/m3	10	4/11/2007
Freon 11	1.83	0.857		ug/m3	1	4/11/2007
Freon 113	ND	1.17		ug/m3	1	4/11/2007
Freon 114	ND	1.07		ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-007A

Client Sample ID: IA-JCL-03

Tag Number: 107,301

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE B)	METHOD TO1	TO-15			Analyst: RJP
Freon 12	5.48	0.754	ug/m3	1	4/11/2007
Heptane	360	56.2	ug/m3	90	4/12/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	55.9	5.37	ug/m3	10	4/11/2007
isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	85.6	13.2	ug/m3	10	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007.
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	2.93	0.530	ug/m3	1	4/11/2007
o-Xylene	27.8	6.62	ug/m3	10	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	13.0	6.49	ug/m3	10	4/11/2007
Tetrachioroethylene	11.9	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	386	51.7	ug/m3	90	4/12/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	6.39	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ${
 m JN}$ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-008A

Date: 13-Apr-07

Client Sample ID: OA-JCL-04

Tag Number: 357,54

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	то	-15			Analyst: RJP
1,1,1-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichloroethene	ND	0.605	!	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene	ND	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	ND	0.749	1	ug/m3	1	4/11/2007.
1,2-Dibromoethane	ND	1.17	1	ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917	1	ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	1	ug/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705	1	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	ND	0.750	1	ug/m3	1	4/11/2007
1,3-butadiene	ND	0.337	1	ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917	1	ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10	ı	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	ND	0.712	Į	ug/m3	1	4/11/2007
4-ethyltoluene	ND	0.750	Į	ug/m3	1	4/11/2007
Acetone	15.5	7.24	ι	ug/m3	10	4/11/2007
Allyl chloride	ND	0.477	ι	ug/m3	1	4/11/2007
Benzene	0.422	0.487	Jι	ug/m3	1	4/11/2007
Benzyl chloride	ND	0.877	ι	ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ι	ug/m3	1	4/11/2007
Bromoform	ND	1.58	ι	ug/m3	1	4/11/2007
Bromomethane	ND	0.592	ι	ug/m3	1	4/11/2007
Carbon disulfide	ND	0.475	ι	ug/m3	1	4/11/2007
Carbon tetrachloride	ND	0.256	ι	ıg/m3	1	4/11/2007
Chlorobenzene	ND	0.702	ι	ıg/m3	1	4/11/2007
Chloroethane	ND	0.402	ι	ıg/m3	1	4/11/2007
Chloroform	ND	0.744	u	ıg/m3	1	4/11/2007
Chloromethane	ND	0.315		ıg/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604		ıg/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692		ıg/m3	1	4/11/2007
Cyclohexane	1.96	0.525		ıg/m3	1	4/11/2007
Dibromochlorometharie	ND	1.30		ıg/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ıg/m3	1	4/11/2007
Ethylbenzene	ND	0.662		ıg/m3	1	4/11/2007
Freon 11	1.54	0.857		ıg/m3	1	4/11/2007
Freon 113	ND	1.17		ıg/m3	1	4/11/2007
Freon 114	ND	1.07		ıg/m3	1	4/11/2007

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Date: 13-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-008A

Client Sample ID: OA-JCL-04

Tag Number: 357,54

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE E	BY METHOD TO1	TO-15			Analyst: RJP
Freon 12	3.42	0.754	ug/m3	1	4/11/2007
Heptane	8.29	0.625	ug/m3	1	4/11/2007
Hexachloro-1,3-butadiene	ND	1.63	ug/m3	1	4/11/2007
Hexane	ND	0.537	ug/m3	1	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	ND	1.32	ug/m3	1	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.09	0.530	ug/m3	1	4/11/2007
o-Xylene	ND	0.662	ug/m3	1	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	ND	0.649	ug/m3	1	4/11/2007
Tetrachloroethylene	ND	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	1	4/11/2007
Toluene	3.60	0.575	ug/m3	1	4/11/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	ND	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1 .	· 4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	ND	0.390	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ${
 m JN}$ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

APPENDIX G

Data Usability Summary Report

Remedial Investigation Report Former Churchville Ford Site #V00658-8

DATA USABILITY SUMMARY REPORT for

Churchville Ford

ANALYSIS: METALS BY 6010B, 6020, 7470A/7471A SEMIVOLATILES BY 8270C VOLATILES BY 8260B

SAMPLE DELIVERY GROUP

PREPARED FOR:

LU ENGINEERS PENFIELD, NEW YORK

Reviewed by:

n tt

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:

Churchville Ford

Contract Task Order:

1309.001D.00

Sample Delivery Group:

Lu-005

Project Manager:

G. Andrus

Soil/Water

Matrix: QC Level:

14

No. of Samples:

No. of Reanalyses/Dilutions: Laboratory:

Upstate Laboratories

Table 1. Sample Identification

			
Sample ID	Lab ID	Matrix	Method
SS-01	U0610099-001	soil	6010, 7471, 8270C, 8260B
SS-01 RE	U0610099-001 RE	soil	8260B
SS-02	U0610099-002	soil	6010, 7471, 8270C, 8260B
SS-02 RE	U0610099-002 RE	soil	8260B
SS-03	U0610099-003	soil	6010, 7471, 8270C, 8260B
SS-04	U0610099-004	soil	6010, 7471, 8270C, 8260B
SS-04 RE	U0610099-004 RE	soil	8270C, 8260B
SS-05	U0610099-005	soil	6010, 7471, 8270C, 8260B
SS-05 RE	U0610099-005 RE	soil	8260B
SS-05A	U0610099-006	soil	6010, 7471, 8270C, 8260B
SS-06	U0610099-007	soil	6010, 7471, 8270C, 8260B
SS-06 RE	U0610099-007 RE	soil	8270C
SS-07	U0610099-008	soil	6010, 7471, 8270C, 8260B
SED-01	U0610099-009	soil	6010, 7471, 8270C, 8260B
SED-02	U0610099-010	soil	6010, 7471, 8270C, 8260B
SED-03	U0610099-011	soil	6010, 7471, 8270C, 8260B
SED-03 DL	U0610099-011 DL	soil	8270C
ERB-2	U0610099-012	water	6010, 7471, 8270C, 8260B
Field Blank	U0610099-013	water	6010, 7471, 8270C, 8260B
Trip Blank	U0610099-014	water	8260B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if

Project: Churchville Ford SDG: Lu-005

DATA VALIDATION REPORT

ODG. La-o

applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins. J The analyte was positively identified; the associated numerical value is the analyte in the sample. Inorganics The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit for perchlorate only. The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.			
not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins. Was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. J The analyte was positively identified; the associated value is an estimated quantity.	Qualifier	Organics	Inorganics
associated numerical value is the estimated quantity. approximate concentration of the		not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated	was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation
		associated numerical value is the approximate concentration of the	
N The analysis indicates the presence of Not applicable. an analyte for which there is presumptive evidence to make a "tentative identification."	,	an analyte for which there is presumptive evidence to make a	Not applicable.
NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	i i	an analyte that has been "tentatively dentified" and the associated numerical value represents its approximate	Not applicable.
The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.	! ; r r	reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely	was not detected. The associated value is an estimate and may be
The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified. The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	r 0 8	esults are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of	sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte

SDG:

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

SDG:

III. Method Analyses

Α. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: December 13, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MECX Data Validation Procedure for Metals (DVP-5, Rev. 0), EPA Methods 6010B, 7470A/7471A, and the Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP Revision 13) (9/2006).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Calibration: Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115% for mercury. Initial and continuing calibration recoveries were within 90-110% for the ICP metals, except for zinc which was recovered at 119%. Zinc detected in SED-03 was qualified as estimated, "J."
- Blanks: There were no method blank or CCB detects.
- Interference Check Samples: Recoveries were within the method-established control limits. The following analytes, which are not spiked into the ICSA or ICSAB solutions were noted to have positive and negative results, the absolute values of which were greater than the associated CRDL: antimony (-124 µg/L), arsenic (191 µg/L), cadmium (12 µg/L), copper (-67 μg/L), lead (-150 μg/L), selenium (-171 μg/L), thallium (-380 μg/L), and zinc (-73 µg/L). The reporting limits for antimony, arsenic, cadmium, selenium, and thallium were raised to the level of the highest result noted in the ICSA/B solutions: antimony (25 mg/kg), arsenic, (38 mg/kg), cadmium (2.4 mg/kg), selenium (35 mg/kg), and thallium (76 mg/kg). In cases where the analyte was detected at a concentration below the raised reporting limit, the result was qualified as an estimated nondetect, "UJ," at the level of the raised reporting limit. All results for lead were raised to the sum of the result plus the highest level of interference (30 mg/kg) and were qualified as estimated nondetect, "UJ." The remaining retained results for the aforementioned analytes were qualified as estimated, "J." for detects and, "UJ," for nondetects in all samples in this SDG.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits except for manganese in the soil LCS analyzed with the soil site samples. Manganese was recovered below the soil control limits and was qualified as an estimated detect, "J," in the site soil samples.
- Laboratory Duplicates: Laboratory duplicate analyses were performed for SS-07. The following RPDs exceeded the control limit of 20% or ±CRDL: aluminum (29%), arsenic (), calcium (43%), iron (30%, magnesium (45%), and manganese (30%). Aluminum, calcium,

6

iron, magnesium, and manganese detected in the site soil samples were qualified as estimated detects; "J." Arsenic was not qualified as it was not detected (see Interference Check Sample results). All remaining RPDs were within the control limits.

- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed for SS-07. Spike recovery limits do not apply when the native sample concentration exceeds the spike concentration by 4× or more. Thallium was not recovered; therefore, nondetected thallium in the site soil samples was rejected, "R." Selenium (60%), silver (30%), and zinc (69%) were recovered below the control limit; therefore, selenium, silver, and zinc were qualified as estimated in the site soil samples, "J," for detects and "UJ," for nondetects. All remaining recoveries were within the control limits of 75-125%.
- Serial Dilution: Serial dilution analyses were performed for SED-03 and sample Field Blank. All %Ds were less than the control limit of 10%.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. The reviewer noted that the results for SED-03 selenium and thallium were reported as -229 and -573 μg/L, respectively, in the raw data. As these results were significantly more negative than the raised reporting limits applied for the ICSA/B results, the reviewer raised the reporting limits to the level of contamination present in sample SED-03.

The laboratory reported all sample percent solids as 0%, on the sample Form Is. The results were not corrected for percent solids but the reviewer could find no indication that the samples were dried prior to preparation.

Reported nondetects are valid to the CRDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: Sodium was detected in ERB-2 at 1790 μg/L; therefore, sodium detected in the site samples, except for SED-03, was qualified as nondetected at the level of contamination. Zinc was detected in both ERB-2 and Field Blank, and manganese was detected in Field Blank, but none were at sufficient concentration to qualify the site samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

G: Lu-

B. EPA METHOD 8270C—Semivolatile Organic Compounds (SVOCs)

Reviewed By: K. Shadowlight

Date Reviewed: December 14, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (10/1999).

- Holding Times: Extraction and analytical holding times were met. The water samples were extracted within seven days of collection and the soil samples were extracted within 14 days of collection. All samples were analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
 - Calibration: Calibration criteria were met except as noted below. Initial calibration average The following %RSDs exceeded 15%: 4-chloroaniline, RRFs were ≥0.05. hexachlorocyclopentadiene, 2,4-dinitrophenol, n-nitrosodiphenylamine, pentachlorophenol, carbazole, dibenz(a,h)anthracene, and benzo(g,h,i)perylene. The results for the %RSD outliers were qualified as estimated "J," for detects and "UJ," for nondetects in the retained results of the samples of this SDG, except for SED-02.. The remaining %RSDs were ≤15%. nitrobenzene, isophorone, 4-chloroaniline. The %Ds for phenol, hexachlorocyclopentadiene, 2-chloronaphthalene, acenaphthylene, 3-nitroaniline, 4pyrene, butylbenzylpthalate, benzo(a)anthracene, nitroaniline, carbazole, ethylhexylphthalate), benzo(b)fluoranthene, benzo(k)fluoranthene and benzo(a)pyrene exceeded 20% in the continuing calibration dated 10/19/06. The results for the aforementioned continuing calibration outliers were qualified as estimated, "J," for detects and "UJ," for nondetetcts in samples SS-02, SS-03, SS-04, SS-05, and SS-05A. The %Ds for 4-chloroaniline, hexachlorocyclopentadiene, 2-nitroaniline, 2,4-dinitrophenol, 4chlorophenylphenylether, 4-nitroaniline, di-n-octylphthalate, and benzo(b)fluoranthene exceeded 20% in the continuing calibration dated 10/21/06; therefore, the aforementioned target compounds were qualified as estimated, "J," for detects and "UJ," for nondetects in the retained results of samples SS-01, SS-07, SED-01, SED-02, and SED-03. For the continuing calibration dated 10/25/06, the %Ds for the following compounds exceeded 20%: hexachlorocyclopentadiene, 4-nitroaniline, butylbenzylphthalate, ethylhexyl)phthalate, and di-n-octylphthalate. Results for the five aforementioned compounds were qualified as estimated, "J," for detects and "UJ," for nondetects in The %Ds for 4-chloroaniline, hexachlorobutadiene, samples SS-06RE and ERB-2. hexachlorocyclopentadiene, 4-nitroaniline, carbazole, pyrene, butylbenzylphthalate, and benzo(b)fluoranthene exceeded 20% in the continuing calibration dated 10/26/06; therefore, the nondetect results for the %D outliers were qualified as estimated, "UJ," in For the continuing calibration associated with SED-02 the sample FIELD BLANK. 4-chlorophenylphenylether, 4-nitroaniline, di-nfollowing %Ds exceeded 20%: Results for the aforementioned target octylphthalate, and benzo(b)fluoranthene. compounds were qualified as estimated, "J," for detects and, "UJ," for nondetects in

8

Revision 0

sample SED-02. Continuing calibration RRFs were \geq 0.05 and the remaining %Ds were \leq 20%.

- Blanks: Di-n-butylphthalate and bis(2-ethylhexyl)phthalate were reported between the MDL and the reporting limit in the aqueous method blank; however, the two target compounds were not detected in the associated water samples. Bis(2-ethylhexyl)phthalate was reported between the MDL and the reporting limit in the soil method blank. Results for bis(2-ethylhexyl)phthalate less than five times the concentration reported in the method blank were qualified as nondetects, "U," and the results were raised to the reporting limits in samples SS-03, SS-04, and SS-06RE. There were eight TICS reported in the aqueous blank and 17 TICs reported in the soil method blank.
- Blank Spikes and Laboratory Control Samples: Only five target compounds were reported by the laboratory; therefore, when one of these five target compounds were recovered outside of the control limits, the reviewer also qualified similar compounds. Compound similarity was based on internal standards, structure and retention time. 4-Nitrophenol was recovered below QC limits but >10% in the aqueous blank spike. Target compounds 2-nitrophenol and 4-nitrophenol were qualified as estimated, UJ," samples FIELD BLANK and ERB-2. For the soil blank spike, 1,4-dichlorobenzene, n-nitroso-di-n-propylamine and acenaphthene were recovered below QC limits but >10%. Nondetect results for target compounds 1,3-dichlorobenzene 1,2-dichlorobenzene, 1,4-dichlorobenzene, n-nitroso-di-n-propylamine, n-nitrosodiphenylamine, acenaphthene, acenaphthylene, fluorene, and fluoranthene were qualified as estimated "UJ," in the retained analyses of the soil samples. The remaining recoveries were within QC limits.
- Surrogate Recovery: 2,4,6-Tribromophenol was recovered below the QC limits but >10% in both aqueous samples. No qualifications were assigned as only one surrogate was recovered below QC limits but greater than 10%. Surrogate recoveries in samples analyzed at a 10× dilution or greater are considered diluted out and not further evaluated. Several surrogate recoveries were below 10% in the analysis of sample SS-05A; therefore, nondetect results were rejected, "R," and detects were qualified as estimated, "J," in sample SS-05A. The recoveries for all surrogate compounds were below QC limits but >10% in the analysis of sample SS-05; therefore, the results were qualified as estimated, "J," for detects and "UJ," for nondetects in SS-05. The remaining recoveries were within QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample SS-07 of this SDG; however, the parent sample and MS/MSDs were analyzed at a 10× dilution and are considered diluted out and not further evaluated.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

Project: Churchville Ford SDG: Lu-005

DATA VALIDATION REPORT

 Field Blanks and Equipment Rinsates: Sample FIELD BLANK was the field blank and ERB-2 was the equipment rinsate identified for the samples in this SDG. There were no target compounds detected above the MDL in the field QC samples.

- o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The area counts for 1,4-Dichlorbenzene-d4 and naphthalene-d8 in samples SS-04 and SS-06 and acenaphthene-d10 in SS-06 exceeded the upper limit. Both of these samples were reanalyzed yielding IS area counts for perylene-d12 below the lower limit but greater than -25%. The reanalysis, sample SS-04RE was rejected, "R," in favor of SS-04. The original analysis SS-06 was rejected, "R," in favor of SS-06RE. The results for the seven target compounds associated with perylene-d12 were qualified as estimated, "J," for detects and "UJ," for nondetects in sample SS-06RE. No qualifications were required for the elevated IS areas. The remaining internal standard area counts and retention times for the retained analyses were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. It should be noted that the laboratory calculated sample concentrations using the initial calibration average RRF rather than the daily continuing calibration RRF as required by Region 2 guidelines; therefore, all retained results were qualified as estimated, "J," for detects and "UJ," for nondetects in the samples of this SDG. Samples SS-01, SS-02, and SS-07 were analyzed at a 10× dilution and samples SS-05 and SS-05A were analyzed at a 5× dilution due to matrix interference. Sample SED-3 was originally analyzed at a 10× dilution for matrix interference; however, the sample was reanalyzed at a 20× dilution in order to report fluoranthene and pyrene within the linear range of the calibration. The results for fluoranthene and pyrene in sample SED-03 were rejected, "R," in favor of results in SED-03DL. All remaining results in SED-03DL were rejected, "R," in favor of those same results in SED-03. The reporting limits were supported by the low point of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were reported by the laboratory for this SDG. Any TIC reported by the laboratory was qualified as tentatively identified, "NJ."
- System Performance: Review of the raw data indicated no problems with system performance.

C. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: K. Shadowlight

Date Reviewed: December 14, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (10/1999).

- Holding Times: Analytical holding times were met. The preserved waters and soil samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met except as noted below. Initial calibration average RRFs were ≥0.05 in both initial calibrations. The %RSD for 2-butanone exceeded 15% in the initial calibration dated 9/21/06. The nondetect results for 2-butanone was qualified as estimated, "UJ," in samples ERB-2, FIELD BLANK, and TRIP BLANK. The %RSDs for chloromethane, acetone, 1,1-dichlorethene, 1,1,1-trichlorethane, cis-1,3-dichloropropene, trans-1,3-dichlorpropene, and tetrachlorethene exceeded 15% in the initial calibration dated 10/3/06; therefore, the aforementioned target compounds were qualified as estimated, "J," for detects and "UJ," for nondetects in the retained results for the soil site samples. The %RSDs for the remaining target compounds were ≤15%. The %Ds for bromomethane and chloroethane exceeded 20% in the continuing calibration dated 10/10/06. The nondetects for bromomethane and chloroethane were qualified as estimated, "UJ," in the retained results for samples SS-01, SS-02/02RE, SS-03, SS-04, SS-05, SS-05A, and SS-07. The %Ds for bromomethane, chloroethane, and carbon tetrachloride exceeded 20% in the continuing calibration dated 10/11/06. The nondetects for bromomethane, chloroethane and carbon tetrachloride were qualified as estimated, "UJ," in samples SED-01, SED-02, SED-03. SS-06. For the continuing calibration dated 10/12/06, the %Ds for acetone, 2-butanone, 4-methyl-2-pentanone, 2-hexanone, and tetrachlorethene exceeded 20%. Therefore, the five %D outliers were qualified as estimated, "UJ," for nondetects in the water samples of this SDG. Continuing calibration RRFs were ≥0.05 and the remaining %Ds were ≤20%.
- Blanks: The aqueous method blank had chloroform detected between the MDL and the
 reporting limit; therefore, the detect for chloroform between the MDL and the reporting limit
 was qualified as a nondetect, "U," and the result was raised to the reporting limit in sample
 TRIP BLANK. There were no other target compound detects above the MDL in the
 remaining method blanks.
- Blank Spikes and Laboratory Control Samples: Recoveries were within QC limits for the five target compounds reported by the laboratory.

Project: Churchville Ford SDG: Lu-005

DATA VALIDATION REPORT

 Surrogate Recovery: Toluene-d8 was recovered below QC limits but >10% in samples SS-01 and SS-02. The samples were reanalyzed with similar results. The results were qualified as estimated "J," for detects and "UJ," for nondetects in samples SS-01/01RE and SS-02/SS02RE. The remaining recoveries were within QC limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample SS-07
 of this SDG. The recovery for toluene exceeded the QC limits in the MSD The remaining
 recoveries and RPDs for the five spike compounds were within QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Trip Blanks: Sample TRIP BLANK was the trip blank identified for this SDG. Methylene chloride was reported between the MDL and the reporting limit in the trip blank sample. The results for methylene chloride between the MDL and the reporting limit were qualified as nondetects, "U," and the results were raised to the reporting limits in all soil/sediment samples except for SS-03. There were no other reportable target compounds detected above the MDL. A holding blank was also reported by the laboratory and there were no detects above the MDL in sample HOLDING BLANK.
 - o Field Blanks and Equipment Rinsates: Sample FIELD BLANK (LU005) was the field blank and ERB-2 was the equipment rinsate blank associated with this SDG. Chloroform, bromodichloromethane and dibromochloromethane were detected above the MDL in the field blank and the equipment rinsate and acetone was also reported in the equipment rinsate. Any detects for chloroform and/or acetone at concentrations less than five times the amount reported in the equipment rinsate that were above the reporting limit were qualified as estimated nondetects, "UJ," at the level of contamination in the soil/sediment samples of this SDG. Any detects for chloroform and/or acetone at concentrations less than five times the amount reported in the equipment rinsate that were below the reporting limit were qualified as nondetected, "U," and the results were raised to the reporting limits in the soil/sediment samples of this SDG. There were no detects above the MDL in the equipment rinsate.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The area count for internal standard 1,2-dichlorobenzene-d4 was below the lower limit in samples SS-01 and SS-02. The samples were reanalyzed with similar results. Sample SS-02 was rejected, "R," in favor of SS-02RE. The results for methylene chloride and toluene in sample SS-01 were rejected, "R," for those same compounds in SS-01RE. The remaining results in SS-01RE were rejected, "R," in favor of those same target compounds in SS-01. No qualifications were required for the elevated IS recovery. The retained results for the remaining internal standard area

counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.

- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. It should be noted that the laboratory calculated sample concentrations using the initial calibration average RRF rather than the daily continuing calibration RRF as required by Region 2 guidelines; therefore, all retained results were qualified as estimated, "J," for detects and "UJ," for nondetects in the samples of this SDG. The reporting limits were supported by the low point of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

SS-01

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	LIPSTAT	E LABS	NC	Co	ontract:	LU ENGINE	
Lab Name.	01 017(1						DO No. 111005
Lab Code:	10170	0	ase No.:		SAS No	o.: S	DG No.: <u>LU005</u>
Matrix: (soil/v	vater)	SOIL			La	b Sample ID:	U0610099-001A
Sample wt/vo		30	(g/ml) G		La	b File ID:	B27680.D
Level: (low/n		LOW			Da	te Received:	10/4/06
% Moisture:	42.4	d	 ecanted:(Y/N)	N	_ Da	ite Extracted:	10/13/06
Concentrated	Extract	 Volume:	1000 (uL)		Da	te Analyzed:	10/21/06
Injection Volu					Di	ution Factor:	10.0
GPC Cleanu		N	_ pH:	_			

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	UT /OIL	5700	U
108-95-2	Phenol		5700	U
95-57-8	2-Chlorophenol		5700	U
541-73-1	1,3-Dichlorobenzene	1 1/-	5700	U
106-46-7	1,4-Dichlorobenzene		5700	U
95-50-1	1,2-Dichlorobenzene	1 1 1	5700	U
108-60-1	2,2'-oxybis(1-Chloropropar	ne)	5700	U
	2-Methylphenol		5700	U
95-48-7	Hexachloroethane		5700	U
67-72-1	N-Nitrosodinpropylamine		5700	U
621-64-7 106-44-5	4-Methylphenol		5700	U
	Nitrobenzene		5700	U
98-95-3	Isophorone		5700	U
78-59-1	2-Nitrophenol		5700	U
88-75-5	2,4-Dimethylphenol		5700	U
105-67-9	bis(2-Chloroethoxy)methal	ne	5700	U
111-91-1	2,4-Dichlorophenol		5700	U
120-83-2	1,2,4-Trichlorobenzene		5700	U
120-82-1	Naphthalene		5700	U
91-20-3		c	5700	U
106-47-8	4-Chloroaniline		5700	U
87-68-3	Hexachlorobutadiene		5700	U
59-50-7	4-Chloro-3-methylphenol		5700	Ū
91-57-6	2-Methylnaphthalene		5700	Ū
77-47-4	Hexachlorocyclopentadien	16 C	5700	U
88-06-2	2,4,6-Trichlorophenol		5700	Ü
95-95-4	2,4,5-Trichlorophenol		57 0 0	Ū
91-58-7	2-Chloronaphthalene			Ū
88-74-4	2-Nitroaniline			U
208-96-8	Acenaphthylene		5700	ΙŪ
131-11-3	Dimethylphthalate		5700	U
606-20-2	2,6-Dinitrotoluene			U
83-32-9	Acenaphthene		14000	U
99-09-2	3-Nitroaniline		14000	U
51-28-5	2,4-Dinitrophenol			U
132-64-9	Dibenzofuran		5700 5700	U
121-14-2	2,4-Dinitrotoluene	- 	5700	U
100-02-7	4-Nitrophenol	VV	14000	l U

Level II.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-01

Lab Name:	UPSTA"	TE LABS I	NC.		Contract:	LU ENGINE		
Lab Code:	10170		ase No.:		SAS No	.: S	DG No.: LU00	5
Lab Code. Matrix: (soil/v		SOIL					U0610099-001	
Sample wt/vo	-	30	— (g/ml)(3	Lat	File ID:	B27680.D	
Level: (low/n	ned)	LOW			Da	te Received:	10/4/06	
% Moisture:	42.4	de	ecanted:(Y/	N) <u>N</u>	Da	te Extracted:	10/13/06	
Concentrated	Extract	Volume:	1000 (L	ıL)	Da	te Analyzed:	10/21/06	
Injection Volu	ıme: <u>2</u>	.0 (uL)			Dile	ution Factor:	10.0	_
GPC Cleanu	p: (Y/N)	Ν	pH:					

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	g) <u>UG/KG</u>	_ Q
86-73-7	Fluorene	45/411	5700	U
· 7005-72-3	4-Chlorophenylphenylether		<u> </u>	U
84-66-2	Diethylphthalate		5700	U
100-01-6	4-Nitroaniline		C 14000	U
534-52-1	4,6-Dinitro-2-methylphenol	. !	14000	U
86-30-6	n-Nitrosodiphenylamine		CL 5700	U
101-55-3	4-Bromophenylphenylether		5700	U
118-74-1	Hexachlorobenzene		5700	U
87-86-5	Pentachlorophenol	\J*	<u> </u>	U
85-01-8	Phenanthrene		2200	JD
120-12-7	Anthracene	ルカー	5700	U
84-74-2	Di-n-butylphthalate		5700	U
86-74-8	Carbazole	1	<u> </u>	U
206-44-0	Fluoranthene		7200	D
129-00-0	Pyrene	T. T.	7500	D
85-68-7	Butylbenzylphthalate	UT !	5700	U
91-94-1	3,3'-Dichlorobenzidine	(5700	U
56-55-3	Benzo(a)anthracene	7	3200	JD
218-01-9	Chrysene	T	4900	JD
117-81-7	bis(2-Ethylhexyl)phthalate	以丁!	5700	U
117-84-0	Di-n-octylphthalate	UT	<u>() 5700</u>	U
205-99-2	Benzo(b)fluoranthene	J	<u> </u>	D
207-08-9	Benzo(k)fluoranthene	- L	2400	JD
50-32-8	Benzo(a)pyrene		4300	JD
193-39-5	Indeno(1,2,3-cd)pyrene		5200	JD
53-70-3	Dibenz(a,h)anthracene		€ 1200	JD
191-24-2	Benzo(ghi)perylene	$\nabla \nabla \nabla$	C. 7000	D

Lovel I

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				35-0) l
Lab Name: UPS	TATE LABS INC.	Contrac	t: LU ENG	SINE	
Lab Code: 101	70 Case No.:	SAS I	No.:	_ SDG No.: LUC	005
Matrix: (soil/water)	SOIL	i	ab Sample	ID: <u>U0610099-0</u>	01A
Sample wt/vol:	30 (g/ml) <u>G</u>		ab File ID:	B27680.D	
Level: (low/med)	LOW	[Date Receiv	/ed: 10/4/06	
% Moisture:	42.4 decanted: (Y/N)	N [Date Extrac	ted: 10/13/06	
Concentrated Extr	act Volume: 1000 (uL)	[Date Analyz	red: 10/21/06	
Injection Volume:	2.0 (uL)	[Dilution Fac	tor: 10.0	
GPC Cleanup: (Y/	N) N pH:				
		CONCE	NTRATION	UNITS:	
Number TICs four	nd:5	(ug/L or t	ug/Kg)	UG/KG	
CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
1. 000238-84-		ŊŢ	20.01	1600	JND
2. 000301-02-		₹	20.82	1700_	JND
				0.400	1 1

unknown

5. 000192-65-4 1,2:4,5-Dibenzopyrene

Benzo[e]pyrene

3.

4. 000192-97-2

Lavel IV

2100

3600

1500

JD

JND

JND

23.29

23.84

27.85

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-02

Q

Lab Name:	UPSTA'	TE LABS	INC.	С	ontract:	LU ENGINE		
Lab Code:	10170	C	ase No.:		SAS No	.: S	DG No.: LU005	_
Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	U0610099-002A	
Sample wt/vo	ol:	30	(g/ml) <u>G</u>	-	Lat	File ID:	B27667.D	
Level: (low/n	ned)	LOW	<u></u>		Dat	te Received:	10/4/06	
% Moisture:	40.3	d	ecanted:(Y/N) _	N	_ Da	te Extracted:	10/13/06	
Concentrated	Extract	Volume:	1000 (uL)		Dat	te Analyzed:	10/19/06	
Injection Volu	ıme: 2	.0 (uL)			Dile	ution Factor:	10.0	
GPC Cleanup	o: (Y/N)	N	pH:	_				

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CASIVO.		-3	٠, -		
111-44-4	bis(2-Chloroethyl)ether	UKT /A/EC	 -	5600	U
108-95-2	Phenol	1 1	C.	5600	U
95-57-8	2-Chlorophenol			5600	U
541-73-1	1,3-Dichlorobenzene	1	1	5600	U
106-46-7	1,4-Dichlorobenzene			5600	U
95-50-1	1,2-Dichlorobenzene		1	5600	U
108-60-1	2,2'-oxybis(1-Chloropropane)			5600	U
95-48-7	2-Methylphenol	ļ		5600	U
67-72-1	Hexachloroethane			5600	U
621-64-7	N-Nitrosodinpropylamine		1	5600	U
106-44-5	4-Methylphenol			5600	U
• 98-95-3	Nitrobenzene		<u> </u>	5600	U
- 78-59-1	Isophorone		<u></u>	5600	U
88-75-5	2-Nitrophenol			5600	U
105-67-9	2,4-Dimethylphenol			5600	U
111-91-1	bis(2-Chloroethoxy)methane		<u> </u>	5600	U
120-83-2	2,4-Dichlorophenol			5600	U
120-82-1	1,2,4-Trichlorobenzene	1		5600	U
91-20-3	Naphthalene			5600	U
106-47-8	4-Chloroaniline		C	5600	U
87-68-3	Hexachlorobutadiene		<u> </u>	5600	U
59-50-7	4-Chloro-3-methylphenol		1	5600	U
91-57-6	2-Methylnaphthalene		<u> </u>	5600	U
77-47-4	Hexachlorocyclopentadiene		C	5600	U
88-06-2	2,4,6-Trichlorophenol			5600	U
95-95-4	2,4,5-Trichlorophenol			5600	U
91-58-7	2-Chloronaphthalene	1	C	5600	U
₹ 88-74-4	2-Nitroaniline			13000	U
208-96-8	Acenaphthylene		CL	5600	U
131-11-3	Dimethylphthalate		1	5600	U
606-20-2	2,6-Dinitrotoluene			5600	U
83-32-9	Acenaphthene	i	<u> </u>	5600	U
99-09-2	3-Nitroaniline		C	13000	U
· 51-28-5	2,4-Dinitrophenol		C_	13000	U
132-64-9	Dibenzofuran			5600	U
121-14-2	2,4-Dinitrotoluene			5600	U
100-02-7	4-Nitrophenol	J b		13000	U

Level I

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

02.4				SS	-02
Lab Name: <u>UPSTATE I</u>	ABS INC.			<u> </u>	
Lab Code: 10170	Case No.:	_ SAS No	.: SC	G No.: LI	U005
Matrix: (soil/water) SC	OIL	Lat	Sample ID:	U0610099	-002A
•	(g/ml) <u>G</u>	Lat	File ID:	B27667.D	
Level: (low/med) LC			te Received:	10/4/06	
-		N Da	te Extracted:	10/13/06	
			te Analyzed:		
Concentrated Extract Vol			ution Factor:		·····
Injection Volume: 2.0	_ (uL)	וווט	ution Factor.	10.0	· · · · · · · · · · · · · · · · · · ·
GPC Cleanup: (Y/N)	N pH:				
		CONC	ENTRATION (INITS:	
	COMPONIND		rug/Kg) <u>UG</u>		Q
CAS NO.	COMPOUND	(ug/L o	ug/kg) <u>oo</u>	71.0	
86-73-7	Fluorene	W / W	-TLT (L	5600	U
7005-72-3	4-Chlorophenylphenyle	ether /	1	5600	<u> </u>
84-66-2	Diethylphthalate			5600	<u>U</u>
100-01-6	4-Nitroaniline		(C.	13000	U
534-52-1	4,6-Dinitro-2-methylph	enol		13000	U
86-30-6	n-Nitrosodiphenylamin		Cin	5600	U
101-55-3	4-Bromophenylphenyle			5600	<u> </u>
118-74-1	Hexachlorobenzene			5600	U
87-86-5	Pentachlorophenol	T.	1 C	13000	U
85-01-8	Phenanthrene	-7-		2400	JD
120-12-7	Anthracene	11-5		5600	U
84-74-2	Di-n-butylphthalate	i .		5600	U
86-74-8	Carbazole			5600	U
206-44-0	Fluoranthene	-1- /		9200	D
129-00-0	Pyrene	一一一		7100	<u>D</u>
85-68-7	Butylbenzylphthalate	UT 1	<u></u>	5600	<u> </u>
91-94-1	3,3'-Dichlorobenzidine) UT		5600	U
56-55-3	Benzo(a)anthracene	T	[C.	3300	JD
218-01-9	Chrysene	3		5300	JD
117-81-7	bis(2-Ethylhexyl)phtha	late un	<u></u>	5600	UU
117-84-0	Di-n-octylphthalate	1/17		5600	U
205-99-2	Benzo(b)fluoranthene		C	6000	D
207-08-9	Benzo(k)fluoranthene		+	2500	JD
50-32-8	Benzo(a)pyrene	1	10,1	4000	JD
193-39-5	Indeno(1,2,3-cd)pyren	ne 🗸		5400	JD
53-70-3	Dibenz(a,h)anthracen		C	5600	U
191-24-2	Benzo(ghi)perylene	V É		7200	D
131-24-2	Delize Gilliper fierie				

WIN I

-59(

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		1 1					SS-0	2
Lab Name:	Name: UPSTATE LABS INC. Contract: LU ENGINE							
Lab Code:	10170	Ca	ase No.:	SAS	No.:	SD	G No.: <u>LU0</u>	05
Matrix: (soil/wa	ater)	SOIL			Lab Sample	e ID: L	J0610099-00)2A
Sample wt/vol	l:	30	(g/ml) G		Lab File ID:	: _8	327667.D	
Level: (low/m-	ed)	LOW			Date Recei	ved: 1	0/4/06	
% Moisture:	40.3	ded	canted: (Y/N)	N	Date Extra	cted: 1	0/13/06	
Concentrated	Extract \	√olume:	1000 (uL)		Date Analy:	zed: 1	0/19/06	
Injection Volur	me: <u>2.0</u>	(uL)			Dilution Fac	ctor: 1	0.0	`
GPC Cleanup	: (Y/N)	N	pH:					
				CONCE	NTRATION	I UNIT:	S:	
Number TICs	found:	5		(ug/L or	ug/Kg)	UG/K	<u>G</u>	
CAS NUMBE	ER	СОМРО	UND NAME		RT	EST	CONC.	Q

		ì		Ì
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 003442-78-2	Pyrene, 2-methyl-	20.06	1500	JND
2. 000192-97-2	Benzo[e]pyrene	23.91	4100	JND
3.	unknown hydrocarbon	25.47	1400	JD
4. 005385-75-1	Dibenz(a,e)aceanthrylene	27.95	2100	JND
5. 000189-64-0	3,4:8,9-Dibenzopyrene	28.12	1200	JND

Level IV

1B

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-03

l ah Mamai	UPSTATE LABS INC.					Contract: LU ENGINE				
Lab Name:	OFSIAI	L EADO								
Lab Code:	10170	(ase No.:			SAS No	o.: S	DG No.: LU005		
						i o	h Sample ID:	U0610099-003A		
Matrix: (soil/v	vater)	SOIL				La	u Sample ib.	00010000 0001		
Sample wt/vo	ol:	30	(g/ml) G		La	b File ID:	B27668.D		
·						Da	te Received:	10/4/06		
Level: (low/n	ned)	LOW				Da	tte neceived.	10/4/00		
% Moisture:	37	c	iecanted:	(Y/N)	N	Da	ite Extracted:	10/13/06		
Concentrated	Evtract '	Volume:	1000	(uL)		_ Da	te Analyzed:	10/19/06		
Concentiated	LAHAUL	V Oluliso.						1.0		
Injection Volu	ıme: <u>2</u> .	0 (uL)				Di	lution Factor:	1.0		
GPC Cleanup	o: (Y/N)	N	_ pH:							

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	U-71 岩田_	530	U
108-95-2	Phenol	1 1 0	530	U
95-57-8	2-Chlorophenol		530	U
541-73-1	1,3-Dichlorobenzene		530	U
106-46-7	1,4-Dichlorobenzene	1	530	U
95-50-1	1,2-Dichlorobenzene	1/2		U
108-60-1	2,2'-oxybis(1-Chloropropa	ine)	530	U
95-48-7	2-Methylphenol		530	U
67-72-1	Hexachloroethane		530	U
621-64-7	N-Nitrosodinpropylamine	T T L	530	U
106-44-5	4-Methylphenol	77	59	J
98-95-3	Nitrobenzene	US IC	530	U
78-59-1	Isophorone	<u> </u>	530	U
88-75-5	2-Nitrophenol		530	U
105-67-9	2,4-Dimethylphenol		530	U
111-91-1	bis(2-Chloroethoxy)metha	ane	530	U
120-83-2	2,4-Dichlorophenol		530	U
120-83-2	1,2,4-Trichlorobenzene		530	U
91-20-3	Naphthalene		530	U
	4-Chloroaniline	C	530	U
- <u>106-47-8</u> 87-68-3	Hexachlorobutadiene		530	U
	4-Chloro-3-methylphenol		530	U
59-50-7 91-57-6	2-Methylnaphthalene		530	U
77-47-4	Hexachlorocyclopentadie	ne C	530	U
88-06-2	2,4,6-Trichlorophenol	1	530	U
95-95-4	2,4,5-Trichlorophenol	1	530	U
95-95-4	2-Chloronaphthalene	C	530	U
88-74-4	2-Nitroaniline		1300	U
	Acenaphthylene		530	U
208-96-8 131-11-3	Dimethylphthalate		530	U
	2,6-Dinitrotoluene		530	U
606-20-2	Acenaphthene	1 1	530	U
83-32-9	3-Nitroaniline		1300	U
99-09-2	2,4-Dinitrophenol	110	1300	U
51-28-5	Dibenzofuran		530	U
132-64-9	2,4-Dinitrotoluene		530	U
121-14-2	4-Nitrophenol	1	1300	U
100-02-7	4-Nitrophenoi		1 1 5	

level II

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-03

Lab Name:	UPSTAT	TE LABS I	NC.		Contract:	LU ENGINE	00 00	
Lab Code:	10170		ase No.:		SAS No	.: S	DG No.: LU005	
Matrix: (soil/w	vater)	SOIL	_		_ Lai	Sample ID:	U0610099-003A	_
Sample wt/vo	ol:	30	 _ (g/ml)	G	Lal	File ID:	B27668.D	
_evel: (low/m	ned)	LOW			Da	te Received:	10/4/06	
% Moisture:	37	de	ecanted:(Y	/N)1	1 Da	te Extracted:	10/13/06	
Concentrated	Extract	Volume:	1000 (uL)	Da	te Analyzed:	10/19/06	
njection Volu	me: <u>2</u> .	0 (uL)			Dile	ution Factor:	1.0	
GPC Cleanup	: (Y/N)	N	pH:					

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug/k	(g)	UG/KG	Q
i	86-73-7	Fluorene	(江/4世	مدا	530	U
Ī	7005-72-3	4-Chlorophenylphenylether	1		530	U
Ī	84-66-2	Diethylphthalate			530	U
٦	100-01-6	4-Nitroaniline		C.	1300	U
Ī	534-52-1	4,6-Dinitro-2-methylphenol			1300	U
4	86-30-6	n-Nitrosodiphenylamine		CL	530	U
Į.	101-55-3	4-Bromophenylphenylether			530	U
Ī	118-74-1	Hexachlorobenzene			530	U
~	87-86-5	Pentachlorophenol	· 1	C.	1300	U
Ī	85-01-8	Phenanthrene			90	J
Ī	120-12-7	Anthracene	45		530	U
	84-74-2	Di-n-butylphthalate			530	U
. [86-74-8	Carbazole	· Ju	C	530	U
Ī	206-44-0	Fluoranthene	7	Ĺ	430	J
. !	129-00-0	Pyrene	J		340	J
. [85-68-7	Butylbenzylphthalate	47	0	530	U
Ī	91-94-1:	3,3'-Dichlorobenzidine	ut !		530	U
- [56-55-3	Benzo(a)anthracene	T	1.0	150	J
	218-01-9	Chrysene	J 18		240	J
	117-81-7	bis(2-Ethylhexyl)phthalate	UTIP	\subset	530- 83 -	JB
	117-84-0	Di-n-octylphthalate	UJ		530	U
	205-99-2	Benzo(b)fluoranthene	1	C	300	J
. [207-08-9	Benzo(k)fluoranthene		1	110	J
	50-32-8	Benzo(a)pyrene		$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	170	J
Ī	193-39-5	Indeno(1,2,3-cd)pyrene			190	J
Ī	53-70-3	Dibenz(a,h)anthracene	して		530	U
Γ	191-24-2	Benzo(ghi)perylene	エル	<u> </u>	220	J

Level II yurhalo7

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		IENIAI	IVELY IDENTI	-IED C	Olvie	JON	100	SS-03	
l -h Nomet	LIDSTAT	ΓE LABS IN	IC.	Co	ntract	: L	U ENGINE		
Lab Name:	UPSTA	E LADO IN						OG No.: LU005	
Lab Code:	10170	Ca	se No.:		SAS N				
Matrix: (soil/v	vater)	SOIL			L	ab S	Sample ID:	U0610099-003A	
Mairix. (5011)	valoij	OOIL							
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		L	ab F	File ID:	B27668.D	
Level: (low/n		LOW			D	ate	Received:	10/4/06	
•				k i	_	ata	Extracted:	10/13/06	
% Moisture:	37	dec	anted: (Y/N) _	N	- -	Jaco	LXII dolog.		
Concentrated	Extract	Volume:	1000 (uL)			ate	Analyzed:	10/19/06	
					_	rik Hi	on Factor:	1.0	
Injection Volu	ıme: <u>2.0</u>	<u>)</u> (uL)			L.)11CH	on radion.		
GPC Cleanu	p: (Y/N)	N	pH:						

CONCENTRATION UNITS:

Number TICs found:	20	(ug/L or ug/Kg)	UG/KG

CAS	S NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	7,70	unknown NC	11.85	1100	<u> </u>
2.		unknown	16.10	160	<u> </u>
 3.		unknown	17.96	200	<u>J</u>
	002416-20-8	Hexadecenoic acid, Z-11-	18.04	360	JN
<u>4.</u> 5.	000057-10-3	n-Hexadecanoic acid	18.14	530	JN
	000629-54-9	Hexadecanamide	19.68	330	JN
<u>6.</u>	000823-34-9	9-Octadecenamide, (Z)-	20.90	2000	JN
<u>7.</u>	000301-02-0	unknown	20.94	1300	J
<u>8.</u>		unknown	21.05	200	J
9.	000638-67-5	Tricosane	22.90	230	JN
10.	000038-07-3	unknown	23.36	2300	J
11.	000192-97-2	Benzo[e]pyrene	23.90	190	JN
12.	000192-37-2	Heptacosane	24.99	160	JN
13.	1000214-17-4	5-Cholestene-3-ol, 24-methyl-	25.75	360	JN
14.	1000214-17-4	Cholesta-6,22,24-trien, 4,4-dimet	25.89	270	JN
<u> 15.</u>	000083-47-6	.gammaSitosterol	26.25	970	JN
16.	000063-47-0	unknown hydrocarbon	26.66	190	J
17.		unknown	26.88	360	J
18.	001059 61 2	Stigmast-4-en-3-one	27.11	210	JN
19.	001058-61-3	unknown	28.18	120	J
20.		CHICAGO		- /	

LevelT

-61/

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-04	
-------	--

Lab Name:	UPSTATE LABS INC.				ontract:	LUENGINE		_
Lab Code:	10170		Case No.:		SAS No	S	DG No.: <u>LU005</u>	
Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	U0610099-004A	
Sample wt/vo	ol:	30	(g/ml) G		Lat	File ID:	B27669.D	
_evel: (low/n	ned)	LOW			Da	te Received:	10/4/06	
% Moisture:	32.3		decanted:(Y/N)	N	Da	te Extracted:	10/13/06	
Concentrated	Extract	Volume:	1000 (uL)		Dat	te Analyzed:	10/19/06	
njection Volu	ıme: 2.	0 (uL	.)		Dila	ution Factor:	1.0	
ODC Classic	(V/AI)	NI	aU.					

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	15/4元	490	U
108-95-2	Phenol		C 490	U
95-57-8	2-Chlorophenol		490	U
541-73-1	1,3-Dichlorobenzene		490	U
106-46-7	1,4-Dichlorobenzene		i 490	U
95-50-1	1,2-Dichlorobenzene		490	U
108-60-1	2,2'-oxybis(1-Chloroprop	ane)	490	U
95-48-7	2-Methylphenol		490	U
67-72-1	Hexachloroethane		490	U
621-64-7	N-Nitrosodinpropylamine		490	U
106-44-5	4-Methylphenol		490	U
98-95-3	Nitrobenzene		C 490	U
· 78-59-1	Isophorone		C 490	U
88-75-5	2-Nitrophenol		490	U
105-67-9	2,4-Dimethylphenol		490	U
111-91-1	bis(2-Chloroethoxy)meth	ane	490	U
120-83-2	2,4-Dichlorophenol	ļ	490	U
120-82-1	1,2,4-Trichlorobenzene		490	U
91-20-3	Naphthalene		490	U
· 106-47-8	4-Chloroaniline		490	U
87-68-3	Hexachlorobutadiene		490	U
59-50-7	4-Chloro-3-methylphenol		490	U
91-57-6	2-Methylnaphthalene		490	U
. 77-47-4	Hexachlorocyclopentadie	ne l	490	U
88-06-2	2,4,6-Trichlorophenol	1	490	U
95-95-4	2,4,5-Trichlorophenol		490	U
91-58-7	2-Chloronaphthalene		<u>C. 490</u>	U
88-74-4	2-Nitroaniline	:	1200	U
208-96-8	Acenaphthylene		<u>490</u>	U
131-11-3	Dimethylphthalate		490	U
606-20-2	2,6-Dinitrotoluene		490	U
83-32-9	Acenaphthene		490	U
99-09-2	3-Nitroaniline		<u> </u>	U
51-28-5	2,4-Dinitrophenol		<u> </u>	U
132-64-9	Dibenzofuran		490	U
121-14-2	2,4-Dinitrotoluene		490	U
100-02-7	4-Nitrophenol	ye 1	1200	U

Level V

-644-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-04

Q

	COSTAT	1 400	NINO	C	ontract:	LU ENGINE	
Lab Name:	UPSTAT	E LABS	S IIVO.		01111.000		
Lab Code:	10170 Case No.:				SAS No	.: SI	DG No.: <u>LU005</u>
					Loi	Sample ID:	U0610099-004A
Matrix: (soil/v	vater)	SOIL_			Lai	J Sample 10.	00070000
Sample wt/vo	ol:	30	(g/ml) G		Lal	b File ID:	B27669.D
•		. 014			Da	te Received:	10/4/06
Level: (low/n	ned)	LOW	LW				
% Moisture:	32.3		decanted:(Y/N)	N	Da	te Extracted:	10/13/06
Concentrated					Da	te Analyzed:	10/19/06
Concentrated	J EXHAUL	voluntie.	1000 (02)				4.0
Injection Volu	ume: <u>2</u> .	.0 (uL	_)		Dil	ution Factor:	1.0
GPC Cleanu	p: (Y/N)	N	pH:	-		•	
						-N	LIMITC

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/Kg	3)	UG/KG	Q
CAO NO.					
86-73-7	Fluorene	N.2 \ XIII	<u> </u>	490	$\frac{U}{U}$
7005-72-3	4-Chlorophenylphenylether	• 1		490	
84-66-2	Diethylphthalate			490	<u> </u>
100-01-6	4-Nitroaniline		<u> </u>	1200	<u>U</u>
534-52-1	4,6-Dinitro-2-methylphenol			1200	<u>U</u>
86-30-6	n-Nitrosodiphenylamine		<u> (</u>		U
101-55-3	4-Bromophenylphenylether			490	U
118-74-1	Hexachlorobenzene			490	U
· 87-86-5	Pentachiorophenol	4	<u>C.</u>	1200	U
85-01-8	Phenanthrene	J- 1		80	J
120-12-7	Anthracene	47		490	U
84-74-2	Di-n-butylphthalate	7		91	J
	Carbazole	ut	<u> </u>	490	<u>U</u>
86-74-8	Fluoranthene		L.	380	J
206-44-0	Pyrene	7.	C.	300	J
129-00-0	Butylbenzylphthalate	Ur I	₹	490	U
85-68-7	3,3'-Dichlorobenzidine	TI I		490	U
91-94-1	Benzo(a)anthracene		C	140	J
56-55-3		J		200	J
218-01-9	Chrysene		BC	. 90	JB _
117-81-7	bis(2-Ethylhexyl)phthalate	4.	1 / 3	490	U
117-84-0	Di-n-octylphthalate	7	0	280	J
205-99-2	Benzo(b)fluoranthene		7	77	J
207-08-9	Benzo(k)fluoranthene	<u> </u>	1	160	J
50-32-8	Benzo(a)pyrene		*		J
193-39-5	Indeno(1,2,3-cd)pyrene			490	Ü
53-70-3	Dibenz(a,h)anthracene		5	200	J
191-24-2	Benzo(ghi)perylene	<u> </u>	<u></u>	200	

LEUFL III

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		IENIA	HVELT IDE	14 11 1		JOIVII	001100		SS-04	
Lab Name:	LIPSTAT	TE LABS II	NC.		C	ontrad	t: LU ENG	INE	35-04	
			ase No.:			SAS	No ·	SE	G No.: LU005	
Lab Code:	10170		ise No							
Matrix: (soil/v	vater)	SOIL					Lab Sample	ID:	U0610099-004A	
Sample wt/vo		30	 _ (g/ml) <u>G</u>	i			Lab File ID:	-	B27669.D	
Level: (low/n	ned)	LOW					Date Receiv	ed:	10/4/06	
% Moisture:	32.3	ded	canted: (Y/N	1)	N	_	Date Extrac	ted:	10/13/06	
Concentrated	d Extract	Volume:	1000 (u	L)			Date Analyz	ed:	10/19/06	
Injection Volu	ume: <u>2.0</u>) (uL)					Dilution Fac	tor:	1.0	
GPC Cleanu	p: (Y/N)	N	pH:							

CONCENTRATION UNITS:

Number TICs found:	20	(ug/L or ug/Kg)	UG/KG

1			i	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1, 000294-62-2	Cyclododecane (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11.86	980	JN
2.	unknown	16.11	140	J
3. 001002-84-2	Pentadecanoic acid	17.03	140	JN
4. 002091-29-4	9-Hexadecenoic acid	17.96	260	JN
5. 000057-10-3	n-Hexadecanoic acid	18.12	440	JN
6. 000638-58-4	Tetradecanamide	19.68	260	JN
7. 000301-02-0	9-Octadecenamide, (Z)-	20.90	1800	JN
8.	unknown	20.93	1100	J
9. 1000163-86-1	Pentadecanamide, 15-bromo-	21.04	190	JN
10.	unknown	21.19	140	J
11.	unknown	21.37	230	J
12. 000297-24-5	Cyclooctacosane	22.89	210	JN
13.	unknown	23.35	2700	J
14. 000192-97-2	Benzo[e]pyrene	23.91	180	JN
15.	unknown	24.15	150	J
16. 1000214-17-4	5-Cholestene-3-ol, 24-methyl-	25.74	220	JN
17. 000083-48-7	Stigmasterol	25.89	120	JN
18. 000083-47-6	.gammaSitosterol	26.26	470	JN
19.	unknown hydrocarbon	27.90	120	J
20.	unknown	28.19	220	J
۷٠.				

level 10

-646-

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-04 RE

	LIDOTAT	T LADO	INIC	Co	ontract:	LU ENGINE	
Lab Name:	UPSTAT	E LABS	INC.	``	511114011		
Lab Code:	10170	С	ase No.:		SAS N		DG No.: LU005
					1 :	h Sample ID:	U0610099-004ARE
Matrix: (soil/w	vater)	SOIL			16	ab campic ic.	
Sample wt/vo	si.	30	(g/ml) G		La	ab File ID:	B27749.D
Sample wove)I.				_	ate Received:	10///06
Level: (low/n	ned)	LOW			D	ate Received.	10/4/00
% Moisture:	32.3	d	lecanted:(Y/N)	N	D	ate Extracted:	10/13/06
						ate Analyzed:	10/25/06
Concentrated	Extract	Volume:	1000 (uL)		U	ale Allalyzou.	10/20.00
tata atian Mak	ıme: 2.	.o (uL)			D	ilution Factor.	1.0
Injection Volu	1111e. <u>2.</u>	. U (uL)					
GPC Cleanu	p: (Y/N)	N	pH:				

CONCENTRATION UNITS:

	CONCENTRATI	Ort Ortino.	
COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
bis(2-Chloroethyl)ether	2/5	490	U
Phenol	Y		<u>U</u>
2-Chlorophenol			U
			<u>U</u>
			<u>U</u>
1.2-Dichlorobenzene	1		U
2.2'-oxybis(1-Chloropropa	ne)		U
			U
			U
	1		U
			U
			U
			U
			U
			U
bis(2-Chloroethoxy)metha	ne		U
			U
1.2.4-Trichlorobenzene			U
			U
			U
			U
			U
			U
Hexachlorocyclopentadie	ne		U
			U
	ì		U
			U
			U
Acenaphthylene			U
			U
			U
			U
The state of the s			U
			U
			U
	-	490	U
4-Nitrophenol		1200	. U
	bis(2-Chloroethyl)ether Phenol 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,2'-oxybis(1-Chloropropa 2-Methylphenol Hexachloroethane N-Nitrosodinpropylamine 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)metha 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadie 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthenol Dibenzofuran 2,4-Dinitrotoluene	bis(2-Chloroethyl)ether Phenol 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,2'-oxybis(1-Chloropropane) 2-Methylphenol Hexachloroethane N-Nitrosodinpropylamine 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorocytopentadiene 4-Chloro-3-methylphenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline 2,4-Dinitrotoluene Acenaphthene 3-Nitroaniline 2,4-Dinitrotoluene Acenaphthenol Dibenzofuran 2,4-Dinitrotoluene	bis(2-Chloroethyl)ether

LevelTIE

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-04 RE

t -l- Namana	UDCTATE	ABS INC.	Cont	tract:	LU ENG	INE		
								11005
Lab Code:	10170	Case No.:	S/	AS No).:	_ 51	JG No.: L	0005
Matrix: (soil/v				La	b Sample	ID:	U0610099	-004AHE
· ·		(g/ml) <u>G</u>		La	b File ID:		B27749.D	
				Da	te Receiv	ed:	10/4/06	
Level: (low/n								
% Moisture:	32.3	decanted:(Y/N) _	N				10/13/06	
Concentrated	Extract Volu	ıme: 1000 (uL)		Da	ite Analyz	ed:	10/25/06	
Injection Volu				Di	lution Fact	or:	1.0	
-	-							
GPC Cleanu	p: (Y/N)	NpH:	-					
			C	CONC	ENTRATI	ON	UNITS:	
0.0.10		COMPOUND			or ug/Kg)			Q
CAS NO).	COMPOUND	,	ug, = .				
86-73-	.7	Fluorene		121	n L		490	<u>U</u>
7005-		4-Chlorophenylphen	ylether	1			490	<u>U</u>
84-66-		Diethylphthalate		İ			490	U
100-0		4-Nitroaniline					1200	U
534-52		4,6-Dinitro-2-methylp	henol				1200	<u> </u>
86-30-		n-Nitrosodiphenylam		1			490	<u>U</u>
101-5		4-Bromophenylphen					490	U
118-7		Hexachlorobenzene					490	U
87-86-		Pentachlorophenol					1200	U
85-01-		Phenanthrene					76	J
120-1		Anthracene					490	U
84-74		Di-n-butylphthalate					84	J
86-74		Carbazole			1		490	U
206-4		Fluoranthene					310	J
200-4		Puropo					370	J

129-00-0

85-68-7

91-94-1

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

Pyrene

Chrysene

Butylbenzylphthalate

Benzo(a)anthracene

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

3,3'-Dichlorobenzidine

bis(2-Ethylhexyl)phthalate

-679

Levec IV

Ų,

U

U

J

JB

U

J

J

U

490

490

130

220

74

490

300

120

170

130

490

150

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SS-04 RE

Lab Name: UPS	STATE LABS	INC.	Contract	: LU ENG	INE L	
	_		- SAS N		SDG No.: LU0	05
Lab Code: <u>101</u>	70	Case No.:				
Matrix: (soil/water) SOIL		L	ab Sample	ID: <u>U0610099-00</u>	MANE
Sample wt/vol:	30	(g/ml) G	L	ab File ID:	B27749.D	
Level: (low/med)	LOW			ate Receiv	red: 10/4/06	
		ecanted: (Y/N)	N E	ate Extract	ted: 10/13/06	
Concentrated Ext		1000 (uL)		ate Analyz	ed: 10/25/06	
Injection Volume:			E	Dilution Fac	tor: 1.0	
GPC Cleanup: (Y		pH:				
			CONCE	NTRATION	UNITS:	
Number TICs fou	nd: 12		(ug/L or t	ug/Kg)	UG/KG	
6 10 NUMBER	COMP	OUND NAME		RT	EST. CONC.	Q
CAS NUMBER			10/1-	17.80	110	JN
1. 002416-20		cenoic acid, Z-11-	12(1)	17.95	200	JN
2. 000057-10		decanoic acid		19.52	310	JN
3. 000629-54	-9 Hexade	canamide		10,02	200	INI

Hexadecanoic acid, butyl ester

Octadecanoic acid, butyl ester

9-Octadecenamide, (Z)-

unknown

unknown

unknown

Perylene

Octacosane

Heptacosane

000629-54-9

000111-06-8

000301-02-0

000123-95-5

000630-02-4

000198-55-0

000593-49-7

4.

5.

6.

7.

8.

9.

10.

11.

12.

Level I

19.55

20.72

20.75

20.87

21.39

22.73

23.18

23.72

24.83

-680

JN

JN

J

JN

J

JN

J

JN

JN

390

1100

740

300

130

210

230

240

2400

SS-05

Lab Name:	LIPSTAT	TE LABS	INC.	С	ontract:	LU ENGINE		_
	10170		Case No.:	· · ·	SAS No		DG No.: LU005	
Lab Code: Matrix: (soil/w		SOIL	Dase No				U0610099-005A	_
Sample wt/vo	-	30	 (g/ml) G		La	b File ID:	B27670.D	
Level: (low/m		LOW			Da	ate Received:	10/4/06	
% Moisture:	33.2		lecanted:(Y/N)	N	_ Da	ate Extracted:	10/13/06	
Concentrated	Extract '	Volume:	1000 (uL)		Da	ate Analyzed:	10/19/06	
Injection Volu	me: <u>2.</u>	<u>0</u> (uL)			Dil	lution Factor:	5.0	
GPC Cleanup	o: (Y/N)	N	_ pH:	-				

CONCENTRATION UNITS:

111-44-4 bis(2-Chloroethyl)ether	CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
108-95-2	111-44-4	bis(2-Chloroethyl)ether	VO/X-ITT.S	2500	
95-57-8 2-Chlorophenol 2500 U 541-73-1 1,3-Dichlorobenzene 2500 U 106-46-7 1,4-Dichlorobenzene 2500 U 95-50-1 1,2-Dichlorobenzene 2500 U 108-60-1 2,2'-oxybis(1-Chloropropane) 2500 U 95-48-7 2-Methylphenol 2500 U 67-72-1 Hexachloroethane 2500 U 106-44-5 4-Methylphenol 2500 U 106-44-5 4-Methylphenol 2500 U 106-44-5 4-Methylphenol 2500 U 2500 U 106-44-5 4-Methylphenol 2500 U 106-44-5 4-Methylphenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-83-1 1,2,4-Trichlorobenzene 2500 U 106-47-8 4-Chloroanilline 2500 U 106-47-8 4-Chloroanilline 2500 U 105-68-3 Hexachlorobutaciene 2500 U 105-67-9 2-Methylnaphthalene 2500 U 106-47-8 4-Chloro-3-methylphenol 2500 U 106-47-8 4-Chloro-3-methylphenol 2500 U 106-47-4 Hexachlorobutaciene 2500 U 106-47-4 106-4			1/ 1/1	C. 2500	
1,3-Dichlorobenzene 1,2500 U 106.46-7 1,4-Dichlorobenzene 2500 U 2500 U 95-50-1 1,2-Dichlorobenzene 2500 U 2500 U 108.60-1 2,2'-oxybis(1-Chloropropane) 2500 U 95-48-7 2-Methylphenol 2500 U 67-72-1 Hexachloroethane 2500 U 106.44-5 4-Methylphenol 2500 U 25				2500	
106-46-7				2500	
95-50-1				2500	
108-60-1 2,2'-oxybis(1-Chloropropane) 2500 U 95-48-7 2-Methylphenol 2500 U 67-72-1 Hexachloroethane 2500 U 621-64-7 N-Nitrosodinpropylamine 1 2500 U 98-95-3 Nitrobenzene 2500 U 98-95-3 Nitrobenzene 2500 U 98-95-3 Nitrobenzene 2500 U 78-59-1 Isophorone 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-83-1 1,2,4-Trichlorobenzene 2500 U 106-47-8 4-Chloro-3-methylphenol 2500 U 106-47-8 4-Chloro-3-methylphenol 2500 U 191-57-6 2-Methylnaphthalene 2500 U 191-57-6 2-Methylnaphthalene 2500 U 195-95-4 2,4,5-Trichlorophenol 2500 U 195-95-4 2,4,5-Trichlorophenol 2500 U 108-97-98-8 Acenaphthylene 2500 U 108-97-98 Acenaphthylene 2500 U 108-97-99 3-Nitroaniline 2500 U 108-97-99 3-Ni				√ 2500	U
95-48-7 2-Methylphenol 2500 U 67-72-1 Hexachloroethane 2500 U 621-64-7 N-Nitrosodinpropylamine 1 2500 U 106-44-5 4-Methylphenol 2500 U 98-95-3 Nitrobenzene 2500 U 78-59-1 Isophorone 2500 U 88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-83-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 95-95-4 2,4,5-Trichlorophenol 2500			ine)	2500	
67-72-1 Hexachloroethane 2500 U 621-64-7 N-Nitrosodinpropylamine 1.2500 U 106-44-5 4-Methylphenol 2500 U 98-95-3 Nitrobenzene 2500 U 78-59-1 Isophorone 2500 U 88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500				2500	
621-64-7 N-Nitrosodinpropylamine 2500 U 106-44-5 4-Methylphenol 2500 U 98-95-3 Nitrobenzene 2500 U 78-59-1 Isophorone 2500 U 88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 91-57-6 2-Methylnaphthalene 2500 U -77-47-4 Hexachlorocyclopentadiene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 91-58-7 2-Chloronaphthylene 2500 <t< td=""><td></td><td></td><td></td><td>2500</td><td></td></t<>				2500	
106-44-5				2500	
98-95-3 Nitrobenzene 2500 U 78-59-1 Isophorone 2500 U 88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 131-11-3 Dimethylphthalate 2500 U 208-96-8 Acenaphthylene 2500 U		~, - 		2500	
. 78-59-1 Isophorone 2500 U 88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 131-11-3 Dimethylphthalate 2500 U 208-96-8 Acenaphthylene 2500				2500	
88-75-5 2-Nitrophenol 2500 U 105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 91-57-6 2-Methylnaphthalene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 6000 U 99-95-8-4 2,4-S-Trichlorophenol 2500 U 131-11-3 Dimethylphthalate 2500 U 208-96-8 Acenaphthylene 6000 U 132-64-9 Jibenzofuran 2500			1 1 2	2500	
105-67-9 2,4-Dimethylphenol 2500 U 111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500				2500	U
111-91-1 bis(2-Chloroethoxy)methane 2500 U 120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene C 2500 U 88-74-4 2-Nitroaniline C 2500 U 131-11-3 Dimethylphthalate 2500 U 208-96-8 Acenaphthylene 2500 U 83-32-9 Acenaphthene L 2500 U 51-28-5 2,4-Dinitrotoluene C 60				2500	U
120-83-2 2,4-Dichlorophenol 2500 U 120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene C 2500 U 91-58-7 2-Chloronaphthalene C 2500 U 208-96-8 Acenaphthylene C 2500 U 131-11-3 Dimethylphthalate 2500 U 83-32-9 Acenaphthene 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000			ine	2500	
120-82-1 1,2,4-Trichlorobenzene 2500 U 91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrotoluene				2500	
91-20-3 Naphthalene 2500 U 106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U . 77-47-4 Hexachlorocyclopentadiene C 2500 U . 88-06-2 2,4,6-Trichlorophenol 2500 U . 95-95-4 2,4,5-Trichlorophenol 2500 U . 91-58-7 2-Chloronaphthalene C 2500 U . 88-74-4 2-Nitroaniline 6000 U . 208-96-8 Acenaphthylene C 2500 U . 131-11-3 Dimethylphthalate 2500 U . 606-20-2 2,6-Dinitrotoluene 2500 U . 83-32-9 Acenaphthene L 2500 U . 99-09-2 3-Nitroaniline C 6000 U . 51-28-5 2,4-Dinitrophenol C 6000 U . 132-64-9 Dibenzofuran			ş	2500	U
106-47-8 4-Chloroaniline 2500 U 87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U . 77-47-4 Hexachlorocyclopentadiene C 2500 U . 88-06-2 2,4,6-Trichlorophenol 2500 U . 95-95-4 2,4,5-Trichlorophenol 2500 U . 91-58-7 2-Chloronaphthalene 2500 U . 88-74-4 2-Nitroaniline 6000 U . 208-96-8 Acenaphthylene 2500 U . 131-11-3 Dimethylphthalate 2500 U . 606-20-2 2,6-Dinitrotoluene 2500 U . 83-32-9 Acenaphthene L 2500 U . 99-09-2 3-Nitroaniline C 6000 U . 51-28-5 2,4-Dinitrotoluene 2500 U . 132-64-9 Dibenzofuran 2500 U				2500	
87-68-3 Hexachlorobutadiene 2500 U 59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrotoluene 2500 U 132-64-9 Dibenzofuran 2500 U				2500	U
59-50-7 4-Chloro-3-methylphenol 2500 U 91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U				2500	U
91-57-6 2-Methylnaphthalene 2500 U 77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 6000 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrotoluene 2500 U 132-64-9 Dibenzofuran 2500 U				2500	U
77-47-4 Hexachlorocyclopentadiene C 2500 U 88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 6000 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				2500	U
88-06-2 2,4,6-Trichlorophenol 2500 U 95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrotoluene 2500 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U			ne	€ 2500	
95-95-4 2,4,5-Trichlorophenol 2500 U 91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrotoluene 2500 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				2500	
91-58-7 2-Chloronaphthalene 2500 U 88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				2500	
88-74-4 2-Nitroaniline 6000 U 208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				<u> </u>	
208-96-8 Acenaphthylene 2500 U 131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				6000	
131-11-3 Dimethylphthalate 2500 U 606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U			i	<u> </u>	
606-20-2 2,6-Dinitrotoluene 2500 U 83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrotoluene 2500 U				2500	
83-32-9 Acenaphthene L 2500 U 99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2,4-Dinitrophenol 2500 U					U
99-09-2 3-Nitroaniline C 6000 U 51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2 4-Dinitrophenol 2500 U				L 2500	U
51-28-5 2,4-Dinitrophenol C 6000 U 132-64-9 Dibenzofuran 2500 U 121-14-2 2,4-Dinitrotoluene 2500 U					
132-64-9 Dibenzofuran 2500 U 121-14-2 2.4-Dipitrotoluene 2500 U				c. 6000	
121-14-2 2 4-Dinitrotoluene 2500 U				2500	
	121-14-2	2,4-Dinitrotoluene		2500	
100-02-7 4-Nitrophenol 6000 U				6000	U

trun 1

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET SS-05

			Contract:	HENGINE	SS	-05
						1005
Lab Code:	10170	Case No.:	SAS No	o.: SI	OG No.: LI	J005
	il/water)		Lal	b Sample ID:	U0610099	-005A
· ·		30 (g/ml) <u>G</u>	La	b File ID:	B27670.D	
				te Received:	10/4/06	
	v/med)					
% Moisture	e: <u>33.2</u>	decanted:(Y/N)		ite Extracted:		
Concentra	ted Extract	Volume: 1000 (uL)	Da	ite Analyzed:	10/19/06	···········
Injection V	olume: 2	.0 (uL)	Dil	lution Factor:	5.0	
-		NpH:				
ar o olear	nup. (m.)					
			CONC	ENTRATION	UNITS:	
CAS	NO.	COMPOUND	(ug/L c	or ug/Kg) <u>UG</u>	S/KG	Q
0,10						11
86-7	73-7	Fluorene		<u> </u>	2500	<u>U</u>
· · · · · · · · · · · · · · · · · · ·	5-72-3	4-Chlorophenylpher	nylether		2500	<u>U</u>
	56-2	Diethylphthalate			2500	<u>U</u>
. 100	-01-6	4-Nitroaniline			6000	<u>U</u>
534	-52-1	4,6-Dinitro-2-methy	iphenol		6000	<u>U</u>
	30-6	n-Nitrosodiphenylar	nine	CL	2500	<u>U</u>
·	-55-3	4-Bromophenylpher	nylether		2500	<u>U</u>
	-74-1	Hexachlorobenzene			2500	<u>U</u>
	86-5	Pentachlorophenol	\. J.	V C	6000	<u>U</u>
,	01-8	Phenanthrene	丁依	ms	3800	<u>D</u>
	-12-7	Anthracene		V √	630	JD
	74-2	Di-n-butylphthalate	<u> </u>	<u> </u>	2500	U
	74-8	Carbazole		YTT S C.	490	JD
F	6-44-0	Fluoranthene	1		8900	<u>D</u>
	-00-0	Pyrene	<u> </u>		7500	<u>D</u>
	68-7	Butylbenzylphthalat	e UJ.	 	2500	U
	94-1	3,3'-Dichlorobenzid	ine	L 1	2500	<u>U</u>
	55-3	Benzo(a)anthracen	e J/	YTTS C	3100	D
	3-01-9	Chrysene	4		3800	<u>D</u>
	7-81-7	bis(2-Ethylhexyl)ph	thalate VJ	1X117 C.	2500	U
	7-84-0	Di-n-octylphthalate	٠.	, <u>i</u>	2500	U
	5-99-2	Benzo(b)fluoranthe		494,8 (4300	<u>D</u>
	7-08-9	Benzo(k)fluoranthe		/ 1	1100	JD
	32-8	Benzo(a)pyrene			3000	<u>D</u>
	20.5	Indepo(1.2.3-cd)pv	rene		3500	D

Level IV

-70

Dibenz(a,h)anthracene

Benzo(ghi)perylene

53-70-3

191-24-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		1 1 1	ATTULET IDEN		00	0.100	SS-05
Lab Name:	UPSTAT	ΓE LABS	INC.	С	Contract:	LU ENGINE	
Lab Code:	10170		Case No.:		SAS No	o.:S	DG No.: <u>LU005</u>
Matrix: (soil/v	vater)	SOIL			Lal	b Sample ID:	U0610099-005A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		La	b File ID:	B27670.D
Level: (low/n	ned)	LOW			Da	te Received:	10/4/06
% Moisture:	33.2		lecanted: (Y/N)	N	Da	te Extracted:	10/13/06
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	10/19/06
Injection Volu	ıme: 2.0)(uL)		Dil	ution Factor.	5.0
GPC Cleanup	p: (Y/N)	N	pH:				

CONCENTRATION UNITS:

Number TICs found:	18	(ug/L or ug/Kg)	UG/KG
110111001 1100 1001101	. •	\-33. 3/	

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000203-64-5	4H-Cyclopenta[def]phenanthrene NT	17.92	560	JND
2. 000084-65-1	9,10-Anthracenedione	18.35	610	JND
3. 000629-54-9	Hexadecanamide	19.67	530	JND
4. 003442-78-2	Pyrene, 2-methyl-	20.07	920	JND
5. 000243-17-4	11H-Benzo[b]fluorene	20.19	610	JND
6.	unknown	20.89	1600	JD
7. 000301-02-0	9-Octadecenamide, (Z)-	20.92	970	JND
8.	unknown hydrocarbon	21.26	550	JD
9.	unknown	23.35	5200	JD
10. 000198-55-0	Pervlene	23.65	1000	JND
11. 000192-97-2	Benzo[e]pyrene	23.91	3200	JND
12.	unknown hydrocarbon	24.35	1000	JD
13. 000193-43-1	Indeno[1,2,3-cd]fluoranthene	25.47	870	JND
14.	unknown	25.90	670	JD
15. 000191-26-4	Dibenzo[def,mno]chrysene	26.21	750	JND
16. 000083-47-6	.gammaSitosterol	26.25	1400	JND
17. 000191-30-0	1,2:3,4-Dibenzopyrene	27.96	1500	JND
18. 000189-64-0	3,4:8,9-Dibenzopyrene	28.12	760	JND

LevelI

-706-

SS-05A

Q

lah Mama:	LIDCTAT	TE LABS I	NC.	С	ontract:	LU ENGINE		
Lab Name:	UFSTAT	L LADO	110.					
Lab Code:	10170	C	ase No.:		SAS No	.: S	DG No.: LU005	
Matrix: (soil/v		SOIL			Lat	Sample ID:	U0610099-006A	
Sample wt/vo		30	(g/ml) G		Lat	File ID:	B27671.D	
Level: (low/n		LOW			Da	te Received:	10/4/06	
% Moisture:	24.7		 ecanted:(Y/N)	N	Da	te Extracted:	10/13/06	
Concentrated			1000 (uL)		— Da	te Analyzed:	10/19/06	
Injection Volu					.Dili	ution Factor:	5.0	
, GPC Cleanu		N	pH:					

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		
bis(2-Chloroethyl)ether		<u>U</u>
Phenol		<u>U</u>
		<u> </u>
1,3-Dichlorobenzene		<u> </u>
1,4-Dichlorobenzene		U
1,2-Dichlorobenzene		U
2,2'-oxybis(1-Chloropropane)		U
2-Methylphenol		U
Hexachloroethane		U
N-Nitrosodinpropylamine		U
4-Methylphenol		U
Nitrobenzene		U
Isophorone		U
2-Nitrophenol		U
2,4-Dimethylphenol		U
bis(2-Chloroethoxy)methane		U
		U
1,2,4-Trichlorobenzene		U
Naphthalene		U
4-Chloroaniline		U
Hexachlorobutadiene		U
4-Chloro-3-methylphenol		U
2-Methylnaphthalene		U
		U
		<u> </u>
		<u> </u>
		<u>U</u> .
	5300	U
	2200	<u> </u>
	2200	U
	2200	U
	2200	U
	5300	U
	5300	U
	2200	U
		1 11
2,4-Dinitrotoluene	2200	U
	2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2,2'-oxybis(1-Chloropropane) 2-Methylphenol Hexachloroethane N-Nitrosodinpropylamine 4-Methylphenol Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline Acenaphthene 3-Nitroaniline Acenaphthene	Phenol 2200 2-Chlorophenol 2200 1,3-Dichlorobenzene 2200 1,4-Dichlorobenzene 2200 1,2-Dichlorobenzene 2200 2,2'-oxybis(1-Chloropropane) 2200 2-Methylphenol 2200 Hexachloroethane 2200 N-Nitrosodinpropylamine 2200 4-Methylphenol 2200 Nitrobenzene 2200 Isophorone 2200 2-Nitrophenol 2200 2,4-Dimethylphenol 2200 2,4-Dimethylphenol 2200 2,4-Dichlorophenol 2200 1,2,4-Trichlorobenzene 2200 Naphthalene 2200 4-Chloroaniline 2200 4-Chloro-3-methylphenol 2200 2-Methylnaphthalene 2200 2,4,6-Trichlorophenol 2200 2,4,5-Trichlorophenol 2200 2,4,5-Trichlorophenol 2200 2-Nitroaniline 5300 Acenaphthylene 2200 2,6-Dinitrotoluene 2200

SS-05A

Lab Name:	UPSTA"	ΓE LABS I	NC.	C	ontract:	LU ENGINE		
Lab Code:	10170		ase No.:		SAS No	o.: S	DG No.: LU005	
Matrix: (soil/v		SOIL			La	b Sample ID:	U0610099-006A	
Sample wt/vo	•	30	 (g/ml) G		La	b File ID:	B27671.D	
Level: (low/n	ned)	LOW			Da	ite Received:	10/4/06	
% Moisture:	24.7	d:	ecanted:(Y/N) _	N	Da	ite Extracted:	10/13/06	
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	10/19/06	
Injection Volu	ıme: <u>2</u> .	.0 (uL)			Dil	ution Factor:	5.0	
GPC Cleanu	p: (Y/N)	N	pH:					

CONCENTRATION UNITS:

C	CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
Ξ	86-73-7	Fluorene	215	2200	U
-	7005-72-3	4-Chlorophenylphenylether	ī	2200	U
	84-66-2	Diethylphthalate		2200	U
•	100-01-6	4-Nitroaniline	1-28	5300	U
	534-52-1	4,6-Dinitro-2-methylphenol		5300	U
. [86-30-6	n-Nitrosodiphenylamine		2200	U
Ī	101-55-3	4-Bromophenylphenylether		2200	U
	118-74-1	Hexachlorobenzene		2200	U
	87-86-5	Pentachlorophenol	一カスト	5300	<u> </u>
	85-01-8	Phenanthrene	J15	1600	JD_
	120-12-7	Anthracene	2/5	2200	U
	84-74-2	Di-n-butylphthalate	1	2200	U
	86-74-8	Carbazole	S 1,	2200	U
F	206-44-0	Fluoranthene	J/5	4800	D
	129-00-0	Pyrene	7/3 C.	3700	D
.	85-68-7	Butylbenzylphthalate	RISTS.	2200	U
	91-94-1	3,3'-Dichlorobenzidine	RIŠ	2200	U
	56-55-3	Benzo(a)anthracene	JIS C.	1800	JD
Ī	218-01-9	Chrysene	J/S	2100	JD
. [117-81-7	bis(2-Ethylhexyl)phthalate	R15 B	2200	U
Ī	117-84-0	Di-n-octylphthalate	RIS	2200	U
. [205-99-2	Benzo(b)fluoranthene	JIS C.	2500	D
. [207-08-9	Benzo(k)fluoranthene		840	JD
	50-32-8	Benzo(a)pyrene	V	1800	JD
	193-39-5	Indeno(1,2,3-cd)pyrene		2100	JD
Ī	53-70-3	Dibenz(a,h)anthracene	C	550	JD
Ī	191-24-2	Benzo(ghi)perylene		2500	D

level IV

-738-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SS-05A

UPSTAT	E LABS II	NC.	Contra	act: LU EN	GINE	
10170	Ca	ase No.:	SAS	S No.:	SI	DG No.: LU005
water)	SOIL			Lab Sampl	e ID:	U0610099-006A
ol:	30	(g/ml) G		Lab File ID	:	B27671.D
ned)	LOW			Date Recei	ived:	10/4/06
24.7	dec	anted: (Y/N)	N	Date Extra	cted:	10/13/06
Extract \	Volume:	1000 (uL)		Date Analy	zed:	10/19/06
ıme: 2.0	(uL)			Dilution Fa	ctor:	5.0
p: (Y/N)	N	pH:				
			CONC	ENTRATION	I UNI	TS:
	10170 vater) ol: ned)24.7 d Extract \under ume:2.0	10170 Cavater) SOIL ol: 30 ned) LOW 24.7 dec d Extract Volume: ume: 2.0 (uL)	vater) SOIL ol: 30 (g/ml) G ned) LOW 24.7 decanted: (Y/N) d Extract Volume: 1000 (uL) ume: 2.0 (uL)	10170	10170 Case No.: SAS No.: water) SOIL Lab Sample bl: 30 (g/ml) G Lab File ID ned) LOW Date Receive 24.7 decanted: (Y/N) N Date Extract d Extract Volume: 1000 (uL) Date Analy driver 2.0 (uL) Dilution Factor driver PH: Dilution Factor	10170 Case No.: SAS No.: S vater) SOIL Lab Sample ID: ol: 30 (g/ml) G Lab File ID: ned) LOW Date Received: 24.7 decanted: (Y/N) N Date Extracted: d Extract Volume: 1000 (uL) Date Analyzed: ume: 2.0 (uL) Dilution Factor:

Number TICs found:	12	(ug/L or ug/Kg)	UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000090-12-0	Naphthalene, 1-methyl-	12.20	4400	JND
2. 000084-65-1	9,10-Anthracenedione	18.35	460	JND
3. 000629-54-9	Hexadecanamide	19.66	560	JND
4. 000243-17-4	11H-Benzo[b]fluorene	20.07	690	JND
5. 000301-02-0	9-Octadecenamide, (Z)-	20.88	3600	JND
6.	unknown	20.92	2700	JD
7	unknown	23.34	6600	JD
8. 000192-97-2	Benzo[e]pyrene	23.65	690	JND
9. 000198-55-0	Perviene	23.91	1900	JND
10. 000193-43-1	Indeno[1,2,3-cd]fluoranthene	25.47	490	JND
11. 1000214-20-7		26.26	820	JND
12. 000192-65-4	1,2:4,5-Dibenzopyrene	27.96	1000	JND

LevelT

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name:	UPSTA	TE LAB	S INC.	(Contrac	t:	LU ENGINE	SS-	06
Lab Code:	10170		Case No.:		SAS	No.	: s	DG No.: LU	005
Matrix: (soil/w	vater)	SOIL	-		L	_ab	Sample ID:	U0610099-0	007A
Sample wt/vc	ol:	30	(g/ml) <u>G</u>		L	ab	File ID:	B27672.D	
Level: (low/m	ned)	LOW				Date	Received:	10/4/06	W-1-11
% Moisture:	29	·	decanted:(Y/N)	N		Date	Extracted:	10/13/06	
Concentrated	Extract \	Volume:	1000 (uL)			ate	Analyzed:	10/19/06	
Injection Volu	me: <u>2.</u>	0 (uL)	•			ilut	ion Factor:	1.0	
GPC Cleanup	: (Y/N)	N	pH:						

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
		(ug/c or ug/itg)	odina	_
111-44-4	bis(2-Chloroethyl)ether	B/四/沙里了	> 470	U
108-95-2	Phenol	11 17	470	U
95-57-8	2-Chlorophenol		470	U
541-73-1	1,3-Dichlorobenzene		470	Ū.
106-46-7	1,4-Dichlorobenzene		470	U
95-50-1	1,2-Dichlorobenzene		470	U
108-60-1	2,2'-oxybis(1-Chloropropar	ie)	470	Ū
95-48-7	2-Methylphenol		470	Ū
67-72-1	Hexachloroethane		470	U
621-64-7	N-Nitrosodinpropylamine		470	Ū
106-44-5	4-Methylphenol		470	Ū
98-95-3	Nitrobenzene		470	Ū
78-59-1	Isophorone		470	Ū
88-75-5	2-Nitrophenol		470	U
105-67-9	2,4-Dimethylphenol		470	Ū
111-91-1	bis(2-Chloroethoxy)methan	е	470	Ū
120-83-2	2,4-Dichlorophenol		470	Ū
120-82-1	1,2,4-Trichlorobenzene	i	470	U
91-20-3	Naphthalene		470	Ü
106-47-8	4-Chloroaniline		470	Ü
87-68-3	Hexachlorobutadiene		470	Ü
59-50-7	4-Chloro-3-methylphenol		470	Ü
91-57-6	2-Methylnaphthalene		470	Ü
77-47-4	Hexachlorocyclopentadiene		470	Ü
88-06-2	2,4,6-Trichlorophenol		470	U
95-95-4	2,4,5-Trichlorophenol		470	U
91-58-7	2-Chloronaphthalene		470	U
88-74-4	2-Nitroaniline		1100	Ū
208-96-8	Acenaphthylene		470	U
131-11-3	Dimethylphthalate		470	Ü
606-20-2	2,6-Dinitrotoluene		470	U
83-32-9	Acenaphthene		470	Ü
99-09-2	3-Nitroaniline		1100	-
51-28-5	2,4-Dinitrophenol		1100	$\frac{\sigma}{\sigma}$
132-64-9	Dibenzofuran		470	U U
121-14-2	2,4-Dinitrotoluene		470	U
100-02-7	4-Nitrophenol		1100	U

15 12/14/87 Eurl II

3/90

-763-

S INC. Contract: LU ENGINE SS-06

Lab Name: UPSTATE LA	IRS INC	Contract: LU El	NGINE L	
Lab Name: OPSTATE LA	100 1110.		SDG No : 1	U005
Lab Code: 10170	Case No.:	_ SAS No.:	3DG NO <u>E</u>	0000
Matrix: (soil/water) SOII	L	Lab Samp	ole ID: <u>U0610099</u>	-007A
Sample wt/vol: 30		Lab File I	D: <u>B27672.D</u>	
		– Date Rec	eived: 10/4/06	
Level: (low/med) LOV			acted: 10/13/06	
% Moisture:29	decanted:(Y/N)			
Concentrated Extract Volum	me: 1000 (uL)	Date Ana	lyzed: 10/19/06	
Injection Volume: 2.0		Dilution F	actor: 1.0	
-				
GPC Cleanup: (Y/N)	N pri:			
		CONCENTRA	ATION UNITS:	
	COMPOUND	(ug/L or ug/K		Q
CAS NO.	JOMPOOND	(09.20.09	J,	
90.70.7	Fluorene	1210	470	<u> </u>
86-73-7 7005-72-3	4-Chlorophenylphenyle	ether i	470	<u>U</u>
	Diethylphthalate		470	U
84-66-2	4-Nitroaniline		1100	U
100-01-6	4,6-Dinitro-2-methylpho	enol	1100	U
534-52-1	n-Nitrosodiphenylamin	e	470	U
86-30-6	4-Bromophenylphenyle	other	470	U
101-55-3	Hexachlorobenzene	2010.	470	U
118-74-1	Pentachlorophenol		1100	U
87-86-5			220	J
85-01-8	Phenanthrene		470	U
120-12-7	Anthracene		64	J
84-74-2	Di-n-butylphthalate		470	U
86-74-8	Carbazole		770	
206-44-0	Fluoranthene		790	
129-00-0	Pyrene		470	U
85-68-7	Butylbenzylphthalate		470	U
91-94-1	3,3'-Dichlorobenzidine		350	J
56-55-3	Benzo(a)anthracene		450	J
218-01-9	Chrysene	· · · · · · · · · · · · · · · · · · ·	85	JB
117-81-7	bis(2-Ethylhexyl)phtha	ılate	470	U
117-84-0	Di-n-octylphthalate		510	
205-99-2	Benzo(b)fluoranthene			J
207-08-9	Benzo(k)fluoranthene		170	J
50-32-8	Benzo(a)pyrene		360	J
193-39-5	Indeno(1,2,3-cd)pyren	ne	390	1 .1
10000	- 	1	1 45	1 4

Level II

-76

Dibenz(a,h)anthracene

Benzo(ghi)perylene

53-70-3

191-24-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: UPSTATE LABS INC. Contract: LU ENGINE Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-007A Sample wt/vol: 30 (g/ml) G Lab File ID: B27672.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: 29 decanted: (Y/N) N Date Extracted: 10/13/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:					_		LLICHONE	55-05
Matrix: (soil/water) SOIL Lab Sample ID: U0610099-007A Sample wt/vol: 30 (g/ml) G Lab File ID: B27672.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: 29 decanted: (Y/N) N Date Extracted: 10/13/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0	Lab Name:	UPSTAT	<u> TE LABS I</u>	NC.	Con	itract:	LU ENGINE	
Sample wt/vol: 30 (g/ml) G Lab File ID: B27672.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: 29 decanted: (Y/N) N Date Extracted: 10/13/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0	Lab Code:	10170	C	ase No.:	S	AS No	.: S	DG No.: LU005
Sample wt/vol: 30 (g/ml) G Lab File ID: B27672.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: 29 decanted: (Y/N) N Date Extracted: 10/13/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0	Matrix: (soil/v	vater)	SOIL			Lat	Sample ID:	U0610099-007A
% Moisture: 29 decanted: (Y/N) N Date Extracted: 10/13/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0	•	•	30	(g/ml) G		Lat	File ID:	B27672.D
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0	Level: (low/п	ned)	LOW			Da	te Received:	10/4/06
Injection Volume: 2.0 (uL) Dilution Factor: 1.0	% Moisture:	29	de	canted: (Y/N)	N	Da	te Extracted:	10/13/06
Injection volune. 2.0 (ac)	Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyzed:	10/19/06
GPC Cleanup: (Y/N) N pH:	Injection Volu	ıme: <u>2.</u> 0	(uL)			Dilt	ution Factor:	1.0
	GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

Number TICs found: 18 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000104-40-5	4-Nonylphenol 24	16.04	130	JN
2: 025154-52-3	Phenol, nonyl-	16.11	140	JN
3. 000057-10-3	n-Hexadecanoic acid	18.13	330	JN
4. 000057-11-4	Octadecanoic acid	19.57	150	JN
5. 000629-54-9	Hexadecanamide	19.69	410	JN
6. 000301-02-0	9-Octadecenamide, (Z)-	20.92	2600	JN
7.	unknown	20.95	1300	J ·
8. 000638-58-4	Tetradecanamide	21.05	200	JN
9. 001599-67-3	1-Docosene	22.90	250	JN
10.	unknown	23.37	4600	J
11. 000198-55-0	Pervlene	23.66	130	JN
12. 000192-97-2	Benzo[e]pyrene	23.91	380	JN
13. 1000214-17-4		25.75	170	JN
14. 1000214-19-8	Stigmasta-5,22-dien-3-ol	25.90	140	JN
15. 000083-47-6	.gammaSitosterol	26.26	510	JN
16.	unknown	27.93	150	J
17. 000191-30-0	1,2:3,4-Dibenzopyrene	28.13	120	JN
18.	unknown	28.19	220	J

Level 世

SS-06 RE

	LIDOTAT	T LADO INC	`	Contra	ct:	LU ENGINE	
Lab Name:	UPSTAT	E LABS INC	<i>.</i>				
I -h Codo	10170	Cas	e No.:	SAS	No.:	: SI	DG No.: LU005
Lab Code:	10170						U0610099-007ARE
Matrix: (soil/w	vater)	SOIL			Lab	Sample ib.	
Sample wt/vo		30	(g/ml) G		Lab	File ID:	B27750.D
Dampie W	/···				Date	e Received:	10/4/06
Level: (low/n	ned)	LOW					
% Moisture:	29	dec	anted:(Y/N)	N	Date	e Extracted:	10/13/06
					Date	e Analyzed:	10/25/06
Concentrated	d Extract	Volume: 1	000 (uL)				
Injection Volu	ıme: <u>2</u> .	0 (uL)			Dilu	tion Factor:	1.0
GPC Cleanu	p: (Y/N)	<u>N</u>	pH:	_			

CONCENTRATION UNITS:

		CONCENTRAL		_
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	bis(2-Chloroethyl)ether	いて存む	470	U
111-44-4	Phenol	, ,	470	U
108-95-2	2-Chlorophenol		470	U
95-57-8	1,3-Dichlorobenzene		470	U
541-73-1	1,4-Dichlorobenzene		470	U
106-46-7	1,2-Dichlorobenzene		470	U
95-50-1	2,2'-oxybis(1-Chloropropan	e)	470	<u>U</u>
108-60-1	2,2-0xybis(1-0)1010pt0part	9	470	U
95-48-7	2-Methylphenol		470	U
67-72-1	Hexachloroethane	1 2	470	U
621-64-7	N-Nitrosodinpropylamine		470	U
106-44-5	4-Methylphenol		470	U
98-95-3	Nitrobenzene		470	U
78-59-1	Isophorone		470	U
88-75-5	2-Nitrophenol		470	U
105-67-9	2,4-Dimethylphenol		470	Ū
111-91-1	bis(2-Chloroethoxy)methan	IB	470	Ū
120-83-2	2,4-Dichlorophenol		470	Ü
120-82-1	1,2,4-Trichlorobenzene		470	Ü
91-20-3	Naphthalene			Ü
106-47-8	4-Chloroaniline		470 470	U
87-68-3	Hexachlorobutadiene			U
59-50-7	4-Chloro-3-methylphenol		470	Ü
91-57-6	2-Methylnaphthalene		470	U
77-47-4	Hexachlorocyclopentadien	e 🧠 🐫	470	Ü
88-06-2	2,4,6-Trichlorophenol		470	Ü
95-95-4	2,4,5-Trichlorophenol		470	U
91-58-7	2-Chloronaphthalene		470	U
88-74-4	2-Nitroaniline		1100	
208-96-8	Acenaphthylene		470	U
131-11-3	Dimethylphthalate		470	
606-20-2	2.6-Dinitrotoluene		470	U
83-32-9	Acenaphthene		470	U
99-09-2	3-Nitroaniline		1100	U
51-28-5	2,4-Dinitrophenol		1100	U
	Dibenzofuran		470	U
132-64-9	2.4-Dinitrotoluene		470	U
121-14-2	4-Nitrophenol	1 4	1100	U
100-02-7	4-Milliophenoi		. , , , , ,	

Leso(V

٠1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SS-06 RE

Lab Name:	<u>UPSTAT</u>	TE LABS	INC.		Contract:	LU ENGINE	
Lab Code:	10170		Case No.:		SAS No	o.: S	DG No.: <u>LU005</u>
Matrix: (soil/w	vater)	SOIL			Lal	Sample ID:	U0610099-007ARE
Sample wt/vo	ol:	30	(g/ml) G		Lal	o File ID:	B27750.D
Level: (low/m	ned)	LOW			Da	te Received:	10/4/06
% Moisture:	29	(decanted:(Y/N)	N	Da	te Extracted:	10/13/06
Concentrated	Extract \	√olume:	1000 (uL)		Da	te Analyzed:	10/25/06
Injection Volu	me: <u>2.</u>	0 (uL)	•		Dilu	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	(g) <u>U(</u>	G/KG	Q
86-73-7	Fluorene	45/47	1	470	U
7005-72-3	4-Chlorophenylphenylether	1 1		470	U
84-66-2	Diethylphthalate			470	U
100-01-6	4-Nitroaniline		party.	1100	U
534-52-1	4,6-Dinitro-2-methylphenol	4		1100	U
86-30-6	n-Nitrosodiphenylamine		C1.	470	U
101-55-3	4-Bromophenylphenylether]]		470	U
118-74-1	Hexachlorobenzene			470	U
87-86-5	Pentachlorophenol	V	\subset	1100	U
85-01-8	Phenanthrene	J		230	J
120-12-7	Anthracene	以丁		470	U
84-74-2	Di-n-butylphthalate	J		63	J
86-74-8	Carbazole	WI	_	470	U
206-44-0	Fluoranthene	J	L	780	
129-00-0	Pyrene			1000	
85-68-7	Butylbenzylphthalate	45	C.	470	U
91-94-1	3,3'-Dichlorobenzidine	us		470	U
56-55-3	Benzo(a)anthracene	J		320	J
218-01-9	Chrysene	J		410	J
117-81-7	bis(2-Ethylhexyl)phthalate	R CL	?C.	76	JB
117-84-0	Di-n-octylphthalate	ILU	میں ہے	470	U
205-99-2	Benzo(b)fluoranthene	マナー ノーコ	í	610	
207-08-9	Benzo(k)fluoranthene		!	240	J
50-32-8	Benzo(a)pyrene		ł	380	J
193-39-5	Indeno(1,2,3-cd)pyrene	₩	!	280	J
53-70-3	Dibenz(a,h)anthracene	UJ	CI	470	U
191-24-2	Benzo(ghi)perylene	CA TA	C 😺	300	J

-797-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

	TENTATIVEL IDENTIFIED COM CONDO							SS-06	DE
Lab Name:	UPSTAT	ΓE LABS I	NC.	Co	ontract	:	LU ENGINE	33-00	LI #-
Lab Code:	10170 Case No.:			SASN	ol	S	DG No.: LU0	05	
Matrix: (soil/v		SOIL			L	ab.	Sample ID:	U0610099-00)7ARE
Sample wt/vo	•	30	 (g/ml) G		L	ab.	File ID:	B27750.D	
Level: (low/r		LOW				ate	e Received:	10/4/06	
% Moisture:	29	de	canted: (Y/N)	Ν	C	ate	e Extracted:	10/13/06	
Concentrated	d Extract	Volume:	1000 (uL)		_ 	ate	e Analyzed:	10/25/06	
Injection Volu						Dilu	tion Factor:	1.0	
, 000 01			nH·						

CONCENTRATION UNITS:

Number TICs found:	13	(ug/L or ug/Kg)	UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000057-10-3	n-Hexadecanoic acid	17.95	150	JN
2. 000629-54-9	Hexadecanamide	19.52	460	JN
3. 000111-06-8	Hexadecanoic acid, butyl ester	19.55	350	JN
4. 003442-78-2	Pyrene, 2-methyl-	19.90	190	JN
5. 000243-17-4	11H-Benzo[b]fluorene	20.02	110	JN
6, 000301-02-0	9-Octadecenamide, (Z)-	20.72	1400	JN
7.	unknown	20.76	1200	J
8. 000123-95-5	Octadecanoic acid, butyl ester	20.87	310	JN
9. 000239-35-0	Benzo[b]naphtho[2,1-d]thiophene	21.01	100	JN
10. 000203-12-3	Benzo[ghi]fluoranthene	21.08	97	JN
11. 000593-49-7	Heptacosane	22.73	320	JN
12.	unknown	23.19	4100	J
13. 000198-55-0	Pervlene	23.72	400	JN

level II

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

					ontract:	LU ENGINE		
Lab Name:	UPSTAI	E LABS	INC.	~			-	
Lab Code:	10170	С	ase No.:		SAS No	».: S	DG No.: LU005	
					1 2	h Sample ID	U0610099-008A	
Matrix: (soil/v	vater)	SOIL					_	_
Completel	ni•	30	(g/ml) G		La	b File ID:	B27681.D	
Sample wt/vo	л.		(9)		De	te Received:	10/4/06	
Level: (low/n	ned)	LOW						
	49	-	ecanted:(Y/N)	Ν	Da	ite Extracted:	10/13/06	
% Moisture:					— Da	ate Analyzed:	10/21/06	
Concentrated	d Extract	Volume:	1000 (uL)		Da	He Analyzeu.	10/21/00	
					Di	lution Factor:	10.0	
Injection Volu	ıme: <u>2</u>	.0 (uL)						
GPC Cleanu	p: (Y/N)	Ν	pH:					

CONCENTRATION UNITS:

			CONCENTRA	HOM OMILO:	_
CA	S NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
		The State of the State of	以7/4TI	6500	U
1	11-44-4	bis(2-Chloroethyl)ether	- C.17 - T.1	6500	U
1	08-95-2	Phenol		6500	U
9	5-57-8	2-Chlorophenol		6500	U
5	41-73-1	1,3-Dichlorobenzene		6500	U
1	06-46-7	1,4-Dichlorobenzene	i	6500	U
9	5-50-1	1,2-Dichlorobenzene		6500	U
1	08-60-1	2,2'-oxybis(1-Chloropropa	ne)	6500	Ū
5	95-48-7	2-Methylphenol		6500	Ū
E	67-72-1	Hexachloroethane			U
E	621-64-7	N-Nitrosodinpropylamine		6500 · 6500	U
	106-44-5	4-Methylphenol		6500	U
,	98-95-3	Nitrobenzene		6500	U
	78-59-1	Isophorone			U
	B8-75-5	2-Nitrophenol		6500	U
	105-67-9	2,4-Dimethylphenol		6500	U
	111-91-1	bis(2-Chloroethoxy)metha	ine	6500	U
	120-83-2	2,4-Dichlorophenol		6500	U
	120-82-1	1,2,4-Trichlorobenzene		6500	$\frac{0}{U}$
-	91-20-3	Naphthalene		• 6500	U
	106-47-8	4-Chloroaniline		<u> </u>	
	87-68-3	Hexachlorobutadiene		6500	<u>U</u>
	59-50-7	4-Chloro-3-methylphenol		6500	U
_	91-57-6	2-Methylnaphthalene		6500	U
_	91-57-6 77-47-4	Hexachlorocyclopentadie	ne	<u>6500</u>	U
		2,4,6-Trichlorophenol		6500	U
	88-06-2 95-95-4	2,4,5-Trichlorophenol		6500	U
1		2-Chloronaphthalene		6500	U
	91-58-7	2-Nitroaniline		C 16000	U
` -	88-74-4	Acenaphthylene		<u>6500</u>	U
-	208-96-8	Dimethylphthalate		6500	U
-	131-11-3	2,6-Dinitrotoluene		6500	U
	606-20-2	Acenaphthene		6500	U
L	83-32-9			16000	U
L	99-09-2	3-Nitroaniline		16000	U
٠ إ	51-28-5	2,4-Dinitrophenol		6500	U
L	132-64-9	Dibenzofuran		6500	U
1	101.11.0	2 4-Dinitrotoluene	1		1.6

16000 Level

-823

2,4-Dinitrotoluene

4-Nitrophenol

121-14-2

100-02-7

			•	1C			•	EPA SAMPLE NO.
	SEM	MIVOLA	TILE ORGA	NICS A	NALYSIS			SS-07
Lab Name:	UPSTAT	E LABS	S INC.		_ Contrac	ct:	LU ENGINE	
Lab Name.					SAS	No.	SI	OG No.: LU005
Lab Code:	10170		Case No.:					U0610099-008A
Matrix: (soil/	water)	SOIL						B27681.D
		30	(g/ml)	G		Lab	File ID:	B27001.D
Sample wt/v			. (3" /			Date	e Received:	10/4/06
Level: (low/	med)	LOW					e Extracted:	
% Moisture:	49		decanted:(\	Y/N)	N	Date	e Extracted.	
			e: 1000	(uL)		Dat	e Analyzed:	10/21/06
Concentrate	d Extract	Volume	1000	(ur)			tion Easter	100

Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N CONCENTRATION UNITS:

		COMCENTION	1011 01111	_
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
CAS NO.		165/441	6500	U
86-73-7	Fluorene			U
7005-72-3	4-Chlorophenylphenylethe		6500	U
84-66-2	Diethylphthalate		16000	U
100-01-6	4-Nitroaniline		16000	U
534-52-1	4,6-Dinitro-2-methylpheno		GL 6500	U
86-30-6	n-Nitrosodiphenylamine		6500	U
101-55-3	4-Bromophenylphenylethe		6500	U
118-74-1	Hexachlorobenzene	- 1	16000	U
87-86-5	Pentachlorophenol		4200	JD
85-01-8	Phenanthrene	UT I	6500	U
120-12-7	Anthracene	10.T	6500	U
84-74-2	Di-n-butylphthalate	- 11	690	JD
86-74-8	Carbazole		13000	D
206-44-0	Fluoranthene	$ \downarrow$	12000	D
129-00-0	Pyrene	Tir II	6500	U
85-68-7	Butylbenzylphthalate	<u> </u>	6500	U
91-94-1	3,3'-Dichlorobenzidine	- u 3	5200	JD
56-55-3	Benzo(a)anthracene	-+ 11	7600	D
218-01-9	Chrysene		6500	U
117-81-7	bis(2-Ethylhexyl)phthalate	* # <u> </u>	C 6500	U
117-84-0	Di-n-octylphthalate		9200	D
205-99-2	Benzo(b)fluoranthene	<u> </u>	3300	JD
207-08-9	Benzo(k)fluoranthene		5600	JD
50-32-8	Benzo(a)pyrene		6100	JD
193-39-5	Indeno(1,2,3-cd)pyrene		< 1500	JD
53-70-3	Dibenz(a,h)anthracene	-1-1	€ 6600	D
191-24-2	Benzo(ghi)perylene	$\frac{y}{\sqrt{y-1}}$		

Level I

Dilution Factor: 10.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

1400

6600

1800

2800

JND

JND

JND

		SS-0	7					
Lab Name: L	JPSTA	TE LABS INC).	Contrac	t: LU ENG	INE.	00-0	
Lab Code: 1	10170	Cas	e No.:	SAS	No.:	_ SDO	3 No.: <u>LU0</u>	05
- Matrix: (soil/wa	ater)	SOIL		i	_ab Sample	1D: <u>U</u>	0610099-00	08A
Sample wt/vol:	:	30	(g/ml) G		_ab File ID:	В	27681.D	
Level: (low/me	ed)	LOW		I	Date Receiv	/ed: 1	0/4/06	
% Moisture:	49	deca	nted: (Y/N)	<u>N</u>	Date Extrac	ted: 1	0/13/06	
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/21/06								
Injection Volum	ne: <u>2.</u>	0 (uL)		I	Dilution Fac	tor: 1	0.0	
GPC Cleanup:	(Y/N)	<u>N</u> p	H:	_				
				CONCE	NTRATION	UNITS	S:	
Number TICs f	found:	6	_	(ug/L or	ug/Kg)	UG/K	3	
CAS NUMBE	R	COMPOU	ND NAME		RT	EST	. CONC.	Q
1.		unknown		KIT	20.81		1800	JD
2.		unknown		1	23.29		4000	JD
3 000192-	97-2	Benzolejovi	ene		23.58		1400	JND

000192-97-2

000198-55-0

000193-43-1

Benzo[e]pyrene

Indeno[1,2,3-cd]fluoranthene

Perylene

1000214-20-7 Stigmasterol, 22,23-dihydro-

Levelt

23.58

23.84

25.40

26.22

4

SED-01

luite blanca.	UPSTAT	EIARS	SINC		С	ontract:	LU ENGINE	
Lab Name:	UPSTAT	E LADO	3 1140.					-
Lab Code:	10170		Case No.	:		SAS No	o.: S	DG No.: LU005
						10	h Sample ID:	U0610099-009A
Matrix: (soil/w	vater)	SOIL				La	D Sample 1D.	00010000
Sample wt/vo	ol:	30	(g/m	I) G		La	b File ID:	B27684.D
•		. 0.11				Da	te Received:	10/4/06
Level: (low/n	ned)	LOW						
% Moisture:	20.3		decanted	:(Y/N)	Ν	Da	ite Extracted:	10/13/06
Concentrated	Extract '	 Volume:	: 1000	(uL)		 Da	ite Analyzed:	10/21/06
				_ `		Dil	ution Factor:	1.0
Injection Volu	ıme: <u>2.</u>	<u>.0 (uL</u>	-)			ווט	ulion Factor.	1.0
GPC Cleanu	p: (Y/N)	<u>N</u>	pH:					

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	bis(2-Chloroethyl)ether	UTALIT	420	U
111-44-4	Phenol		420	U
108-95-2	2-Chlorophenol		420	U
95-57-8	1.3-Dichlorobenzene		420	U
541-73-1	1,4-Dichlorobenzene		420	U
106-46-7	1,2-Dichlorobenzene		420	U
95-50-1			420	U
108-60-1	2,2'-oxybis(1-Chloropropar	16)	420	U
95-48-7	2-Methylphenol		420	U
67-72-1	Hexachloroethane			Ū
621-64-7	N-Nitrosodinpropylamine		420	Ū
106-44-5	4-Methylphenol		420	U
98-95-3	Nitrobenzene		420	U
78-59-1	Isophorone		420	U
88-75-5	2-Nitrophenol		420	U
105-67-9	2,4-Dimethylphenol		420	U
111-91-1	bis(2-Chloroethoxy)metha	ne		U
120-83-2	2,4-Dichlorophenol		420	U
120-82-1	1,2,4-Trichlorobenzene		420	U
91-20-3	Naphthalene		420	
106-47-8	4-Chloroaniline			U
87-68-3	Hexachlorobutadiene		420	U
59-50-7	4-Chloro-3-methylphenol		420	U
91-57-6	2-Methylnaphthalene		420	U
77-47-4	Hexachlorocyclopentadier	ne <u>C</u>	420	U
88-06-2	2,4,6-Trichlorophenol		420	U
95-95-4	2,4,5-Trichlorophenol	·	420	U
91-58-7	2-Chloronaphthalene		420	U
. 88-74-4	2-Nitroaniline	; [C	1000	<u>U</u>
208-96-8	Acenaphthylene	-		U
131-11-3	Dimethylphthalate		420	U
606-20-2	2,6-Dinitrotoluene		420	U
83-32-9	Acenaphthene		420	U
	3-Nitroaniline		1000	U
99-09-2	2.4-Dinitrophenol		1000	U
51-28-5	Dibenzofuran		420	U
132-64-9	2,4-Dinitrotoluene		420	U
121-14-2			1000	U
100-02-7	4-Nitrophenol			<u> </u>

LCUE! 1

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET SED-01 UPSTATE LABS INC. Contract: LU ENGINE Lab Name: SAS No.: SDG No.: LU005 Case No.: 10170 Lab Code: Lab Sample ID: U0610099-009A Matrix: (soil/water) SOIL B27684.D Lab File ID: (g/ml) G 30 Sample wt/vol: Date Received: 10/4/06 LOW Level: (low/med) Date Extracted: 10/13/06 decanted:(Y/N) % Moisture: 20.3 Date Analyzed: 10/21/06 Concentrated Extract Volume: 1000 (uL) Dilution Factor: 1.0 Injection Volume: 2.0 (uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q CAS NO. COMPOUND U 420 177 /光灯 86-73-7 Fluorene 420 4-Chlorophenylphenylether 7005-72-3 U 420 Diethylphthalate 84-66-2 1000 U 4-Nitroaniline 100-01-6 U 1000 4,6-Dinitro-2-methylphenol 534-52-1 420 n-Nitrosodiphenylamine 86-30-6 U 420 4-Bromophenylphenylether 101-55-3 420 U Hexachlorobenzene 118-74-1 U 1000 Pentachlorophenol 87-86-5 70 Phenanthrene 85-01-8 U 420 **Anthracene** 120-12-7 120 Di-n-butylphthalate 84-74-2 U 420 86-74-8 Carbazole 190 J 206-44-0 Fluoranthene J 160 129-00-0 Pyrene U 420 Butylbenzylphthalate 85-68-7 U 420 3,3'-Dichlorobenzidine 91-94-1 J 80 Benzo(a)anthracene 56-55-3 88 J 218-01-9 Chrysene

Level I

us

43

bis(2-Ethylhexyl)phthalate

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

<u>117-81-</u>7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

191-24-2

53-70-3

70

420

110

420

68

51

420

55

JB

U

J

U

J

J

U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		TENTA	IVELY IL	JENIIL	IED (UIVIP	OU	NEO	- 1	SED-01	
	LIDOTAT	E LABS I	JC.		Co	ontrac	:t:	LU ENGINE	. L		
Lab Name:	UPSTAT	E LADS II	<u>vo.</u>							lo.: LU005	
Lab Code:	10170	Ca	se No.:			SAS					
14-t-in (2011)	untar)	SOIL				l	Lab	Sample ID:	U06	10099-009A	
Matrix: (soil/v	valer	301L		_						684.D	
Sample wt/vo	ol:	30	_ (g/ml)	<u>G</u>		1	Lab	File ID:	DZI	004.0	
•		LOW				i	Dat	e Received:	10/4	J/06	
Level: (low/n	neu)						D-+	e Extracted:	10/1	3/06	
% Moisture:	20.3	ded	canted: (`	Y/N) _	<u> N</u>	-					
Concentrated	d Extract	Volume:	1000	(uL)			Dat	e Analyzed:	10/2	21/06	
				\			rain.	ition Factor:	1.0		
Injection Volu	ume: <u>2.0</u>) (uL)					UIIL	MON ACION.			
GPC Cleanu	p: (Y/N)	N	pH: _								

CONCENTRATION UNITS:

Number TICs found:	20	(ug/L or ug/Kg)	UG/KG
(TOTAL DOT TOTAL DESIGNATION OF THE PARTY O			

40111001 1100				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q.
	Ethanol, 2-(2-butoxyethoxy)-, acet A	12.74	94	JN
1. 000124-17-4	Ethanol, 2-(2-butoxyethoxy)-, acet (4	15.98	120	JN
2. 027193-28-8	Phenol, (1,1,3,3-tetramethylbutyl)	16.05	160	J
3	unknown	16.13	99	J
4.	unknown	16.31	86	J
	unknown	16.39	100	J
6.	unknown	16.44	97	J
7.	unknown	19.63	400	JN
8. 000629-54-9	Hexadecanamide	20.85	3000	JN
9. 000301-02-0	9-Octadecenamide, (Z)-	20.89	1500	J
10.	unknown	21.00	220	JN
11. 000124-26-5	Octadecanamide	22.85	540	JN
12. 000295-65-8	Cyclohexadecane		3400	JN
13. 000112-84-5	Erucylamide	23.31	200	JN
14. 000630-06-8	Hexatriacontane	24.94	450	1
15.	unknown	24.97	220	JN
16. 007494-34-0	26-Nor-5-cholesten-3.beta25-on	25.15		JN
17. 000083-47-6	.gammaSitosterol	26.19	340	JN
18. 001617-70-5	Lup-20(29)-en-3-one	26.58	180	JN
19. 001058-61-3	Stigmast-4-en-3-one	27.03	99	JIV
20.	unknown	28.09	170	<u> </u>

Le vel III

Lab Name:	UPSTAT	ΓE LAB	S INC.		Contract:	LU ENGINE	SED-02
Lab Code:	10170		Case No.:		SAS No	o.: S	DG No.: LU005
Matrix: (soil/v	vater)	SOIL			La	b Sample ID:	U0610099-010A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		La	b File ID:	B27685.D
Level: (low/n	ned)	LOW			Da	te Received:	10/4/06
% Moisture:	31.1		decanted:(Y/N)	N	Da	ite Extracted:	10/13/06

Injection Volume: <u>2.0</u> (uL)

GPC Cleanup: (Y/N) <u>N</u> pH: ____

Concentrated Extract Volume: 1000 (uL)

CONCENTRATION UNITS:

Dilution Factor: 1.0

Date Analyzed: 10/21/06

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	U·T/XIII	480	U
108-95-2	Phenol	1	480	U
95-57-8	2-Chlorophenol		480	U
541-73-1	1,3-Dichlorobenzene	1.	480	U
106-46-7	1,4-Dichlorobenzene		480	U
95-50-1	1,2-Dichlorobenzene		480	U
108-60-1	2,2'-oxybis(1-Chloropropa	ane)	480	U
95-48-7	2-Methylphenol		480	U
67-72-1	Hexachloroethane		480	U
621-64-7	N-Nitrosodinpropylamine		480	Ų
106-44-5	4-Methyiphenol		480	U
98-95-3	Nitrobenzene		480	U
78-59-1	Isophorone		480	U
88-75-5	2-Nitrophenol		480	U
105-67-9	2,4-Dimethylphenol		480	U
111-91-1	bis(2-Chloroethoxy)meth	ane	480	U
120-83-2	2,4-Dichlorophenol		480	U
120-82-1	1,2,4-Trichlorobenzene		480	U
91-20-3	Naphthalene		480	U
106-47-8	4-Chloroaniline		480	U
87-68-3	Hexachlorobutadiene		480	U
59-50-7	4-Chloro-3-methylphenol		480	U
91-57-6	2-Methylnaphthalene		480	U
77-47-4	Hexachlorocyclopentadie	ne C	480	U
88-06-2	2,4,6-Trichlorophenol		480	U
95-95-4	2,4,5-Trichlorophenol		480	U
91-58-7	2-Chloronaphthalene		480	U
88-74-4	2-Nitroaniline		1200	U
208-96-8	Acenaphthylene	الله الله	480	U
131-11-3	Dimethylphthalate		480	U
606-20-2	2,6-Dinitrotoluene		480	U
83-32-9	Acenaphthene	j.	480	U
99-09-2	3-Nitroaniline		1200	U
51-28-5	2,4-Dinitrophenol	10	, 1200	U
132-64-9	Dibenzofuran		480	U
121-14-2	2,4-Dinitrotoluene		480	U
100-02-7	4-Nitrophenol	V V	1200	U

Leve (II

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SED-02 Lab Name: UPSTATE LABS INC. Contract: LU ENGINE SAS No.: _____ SDG No.: <u>LU005</u> Case No.: 10170 Lab Code: Lab Sample ID: <u>U0610099-010A</u> SOIL Matrix: (soil/water) B27685.D Lab File ID: (g/ml) G 30 Sample wt/vol: Date Received: 10/4/06 LOW Level: (low/med) Date Extracted: 10/13/06 decanted:(Y/N) % Moisture: 31.1

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 10/21/06 Dilution Factor: 1.0

Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	Fluerone	ur/安丽L	480	U
86-73-7	Fluorene		480	U
7005-72-3	4-Chlorophenylphenylethe	<u> </u>	480	U
84-66-2	Diethylphthalate	1 6	1200	U
100-01-6	4-Nitroaniline		1200	U
534-52-1	4,6-Dinitro-2-methylpheno	1.1		U
86-30-6	n-Nitrosodiphenylamine		480	Ū
101-55-3	4-Bromophenylphenylethe	r	480	Ü
118-74-1	Hexachlorobenzene		1200	Ū
87-86-5	Pentachiorophenol	<u> </u>	160	J
85-01-8	Phenanthrene		480	Ü
120-12-7	Anthracene	002	480	Ü
84-74-2	Di-n-butylphthalate		480	U
86-74-8	Carbazole		440	J
206-44-0	Fluoranthene	<u> </u>	430	J
129-00-0	Pyrene		430 480	Ü
85-68-7	Butylbenzylphthalate	UT		U
91-94-1	3,3'-Dichlorobenzidine	UJ L	480	J
56-55-3	Benzo(a)anthracene	J	170	J
218-01-9	Chrysene	T	240	JB
117-81-7	bis(2-Ethylhexyl)phthalate	UT B		U
117-84-0	Di-n-octylphthalate	U) 1 19		
205-99-2	Benzo(b)fluoranthene			J
207-08-9	Benzo(k)fluoranthene		75	J
50-32-8	Benzo(a)pyrene		170	J
193-39-5	Indeno(1,2,3-cd)pyrene	W	140	J
53-70-3	Dibenz(a,h)anthracene	UT C		U
191-24-2	Benzo(ghi)perylene	TVIC	140	<u> </u>
191-24-2			مسهميس ا	

level I

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTAT	FLARS	INC	С	ontract:	LU ENGINE	SED-02
Lab Code:	10170		Case No.:		SAS No		DG No.: LU005
Matrix: (soil/v		SOIL			Lai	Sample ID:	U0610099-010A
Sample wt/vo	•	30	(g/ml) <u>G</u>		Lal	File ID:	B27685.D
Level: (low/m	ned)	LOW			Da	te Received:	10/4/06
% Moisture:	31.1	d	ecanted: (Y/N)	N	Da	te Extracted:	10/13/06
Concentrated	Extract \	Volume:	1000 (uL)		Da	te Analyzed:	10/21/06
Injection Volu	ıme: <u>2.0</u>	(uL)			Dili	ution Factor:	1.0
GPC Cleanur	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

Number TICs found: 20 (ug/L or ug/Kg) UG/KG

CAS	S NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.		unknown hydrocarbon NO	11.80	970	J
2.		unknown	16.05	190	J
3.	000057-10-3	n-Hexadecanoic acid	18.06	260	JN
4.	000629-54-9	Hexadecanamide	19.63	490	JN
5.	000301-02-0	9-Octadecenamide, (Z)-	20,85	3200	JN
6.		unknown	20.88	1800	J
7.	1000163-86-1	Pentadecanamide, 15-bromo-	20.99	220	JN
8.	000112-95-8	Eicosane	22.84	600	JN
9.		unknown	23.30	4800	J
10.	000198-55-0	Perylene	23.85	200	JN
11.	000630-06-8	Hexatriacontane	24.94	430	JN -
12.	1000131-09-4	Z-12-Pentacosene	24.98	630	JN
13.	000057-88-5	Cholesterol	25.14	350	JN
14.		unknown	25.35	200	J
15.		unknown	25.69	190	J
16.		unknown	25.83	200	J
17.	000083-47-6	.gammaSitosterol	26.19	540	JN
18.		unknown	26.50	170	J
19.		unknown	27.02	240	J
20.		unknown	28.08	200	J

Level I

3/90

-879-

SED-03

lah Namai	UPSTAT	FIARS	INC	Co	ontract:	LU ENGINE	
Lab Name:	UFSTAT		1110.				-
Lab Code:	10170		Case No.:		SAS No	o.: S	DG No.: LU005
Matrix: (soil/w		SOIL			La	b Sample ID:	U0610099-011A
Sample wt/vo		30	 (g/ml) G		La	b File ID:	B27686.D
Level: (low/m		LOW			Da	ite Received:	10/4/06
% Moisture:	20.6		decanted:(Y/N)	N	Da	ite Extracted:	10/13/06
Concentrated			·		– Da	ite Analyzed:	10/21/06
Injection Volu					Di	lution Factor:	10.0
GPC Cleanu		N	pH:				

CONCENTRATION UNITS:

		CONCERNITION		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	<u> </u>	4200	Ū
108-95-2	Phenol	1/	4200	U
	2-Chlorophenol		4200	U
95-57-8	1,3-Dichlorobenzene	II L	4200	U
541-73-1	1.4-Dichlorobenzene		4200	U
106-46-7	1.2-Dichlorobenzene		4200	U
95-50-1	2,2'-oxybis(1-Chloropropa	ne)	4200	U
108-60-1	2-Methylphenol		4200	U
95-48-7	Hexachloroethane		4200	U
67-72-1	N-Nitrosodinpropylamine		4200	U
621-64-7	4-Methylphenol		4200	U
106-44-5	Nitrobenzene		4200	U
98-95-3			4200	U
78-59-1	Isophorone		4200	U
88-75-5	2-Nitrophenol		4200	U
105-67-9	2,4-Dimethylphenol	no.	4200	U
111-91-1	bis(2-Chloroethoxy)metha	IIIE	4200	Ū
120-83-2	2,4-Dichlorophenol		4200	U
120-82-1	1,2,4-Trichlorobenzene		4200	Ū
91-20-3	Naphthalene		4200	Ū
106-47-8	4-Chloroaniline		4200	Ū
87-68-3	Hexachlorobutadiene		4200	Ū
59-50-7	4-Chloro-3-methylphenol		4200	Ū
91-57-6	2-Methylnaphthalene	ne C		Ü
77-47-4	Hexachlorocyclopentadie	ne ilC	4200	Ü
88-06-2	2,4,6-Trichlorophenol		4200	U
95-95-4	2,4,5-Trichlorophenol			u
91-58-7	2-Chloronaphthalene		4200	U
88-74-4	2-Nitroaniline		10000	Ü
208-96-8	Acenaphthylene	16	4200	U
131-11-3	Dimethylphthalate		4200	U
606-20-2	2,6-Dinitrotoluene	4	4200	
83-32-9	Acenaphtnene	J 1/4	1000	JD
99-09-2		17	10000	U
51-28-5	2,4-Dinitrophenol	(T C		U
132-64-9	Dibenzofuran	<u> </u>	570	JD
121-14-2	2.4-Dinitrotoluene		4200	U
100-02-7	4-Nitrophenol	17	10000	U

Level I

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTAT	TE LABS	INC.		Contra	act:	LU ENGINE	SED-03
Lab Code:	10170		Case No.	•	SAS	No	.:S	DG No.: <u>LU005</u>
Matrix: (soil/w	vater)	SOIL				Lat	Sample ID:	U0610099-011A
Sample wt/vo	d:	30	(g/m	l) <u>G</u>		Lab	File ID:	B27686.D
Level: (low/m	ned)	LOW				Dat	te Received:	10/4/06
% Moisture:	20.6	d	ecanted:	:(Y/N) _	N	Dat	te Extracted:	10/13/06
Concentrated	Extract \	Volume:	1000	_ (uL)		Dat	te Analyzed:	10/21/06
Injection Volu	me: <u>2.</u>	0 (uL)				Dilu	ution Factor:	10.0
GPC Cleanup): (Y/N)	N	_ pH: .					

CONCENTRATION UNITS:

CAS	S NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
86	6-73-7	Fluorene	T/And :	1200	JD
· 70	05-72-3	4-Chlorophenylphenylether	in 'i	L 4200	U
84	l-66-2	Diethylphthalate	1	4200	U
- 10	00-01-6	4-Nitroaniline	116	10000	U
53	34-52-1	4,6-Dinitro-2-methylphenol		10000	U
· 86	5-30-6	n-Nitrosodiphenylamine		4200	U
10	1-55-3	4-Bromophenylphenylether		4200	U
11	8-74-1	Hexachlorobenzene		4200	U
· 87	'-86-5	Pentachlorophenol	V 1 C	10000	U
85	i-01-8	Phenanthrene	T	23000	D
12	0-12-7	Anthracene	7	2700	JD
84	-74-2	Di-n-butylphthalate	110	4200	U
86	-74-8	Carbazole		5700	D
20	6-44-0	Fluoranthene	12 D	42000	ED
12	9-00-0	Pyrene	pin	37000	ED
85	-68-7	Butylbenzylphthalate	UT STI	4200	U
91	-94-1	3,3'-Dichlorobenzidine	ut . I	4200	U
56	-55-3	Benzo(a)anthracene	7	15000	D
21	8-01-9	Chrysene	J	17000	D
11	7-81-7	bis(2-Ethylhexyl)phthalate	UT B	860	JBD
- 11	7-84-0	Di-n-octylphthalate	UJ	4200	U
. 20	5-99-2	Benzo(b)fluoranthene	JIC	. 17000	D
20	7-08-9	Benzo(k)fluoranthene		6400	D
50	-32-8	Benzo(a)pyrene		11000	D
19	3-39-5	Indeno(1,2,3-cd)pyrene		11000	D
53	-70-3	Dibenz(a,h)anthracene		3400	JD
19	1-24-2	Benzo(ghi)perylene	J & C	12000	D

Level II

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SED-03

Lab Name: UP	STATE LAB	SINC	С	ontract:	LU ENGINE		_
Lab Name. OF	SIAIL LAL	3 IIQO.				_	
Lab Code: 101	170	Case No.:		SAS No	.: S	DG No.: <u>LU005</u>	_
Matrix: (soil/wate	r) SOIL			Lat	Sample ID:	U0610099-011A	_
Sample wt/vol:	30	 (g/ml) G		Lat	File ID:	B27686.D	
Level: (low/med)		(g)		Da	te Received:	10/4/06	
•	20.6	decanted: (Y/N)	N		te Extracted:	10/13/06	
% Moisture:						10/21/06	
Concentrated Ex	tract volume	e: 1000 (uL)					
Injection Volume:	: <u>2.0</u> (u	L)		Dili	ution Factor:	10.0	
GPC Cleanup: (Y	(/N) <u>N</u>	pH:					

Number TICs found:

17. 000222-93-5

18. 000191-26-4

19. 000191-30-0

20. 005385-75-1

20

Pentaphene

Dibenzo[def,mno]chrysene

Dibenz(a,e)aceanthrylene

1,2:3,4-Dibenzopyrene

CONCENTRATION UNITS:

(ug/L or ug/Kg)

UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000486-25-9	9H-Fluoren-9-one	16.41	1000	JND
2. 000132-65-0	Dibenzothiophene /	16.56	1100	JND
3. 000613-12-7	Anthracene, 2-methyl-	17.70	1500	JND
	Anthracene, 1-methyl-	17.74	1700	JND
4. 000610-48-0 5. 000203-64-5	4H-Cyclopenta[def]phenanthrene	17.88	3100	JND
6. 002531-84-2	Phenanthrene, 2-methyl-	17.93	1200	JND
7. 000084-65-1	9.10-Anthracenedione	18.31	4900	JND
8. 000243-17-4	11H-Benzo[b]fluorene	20.02	2800	JND
9. 002381-21-7	Pyrene, 1-methyl-	20.14	1500	JND
10.	unknown	20.83	1600	JD_
11. 000243-46-9	Benzo[b]naphtho[2,3-d]thiophene	21.14	1200	JND
12.	unknown hydrocarbon	21.21	1500	JD
13.	unknown	23.29	3900	JD_
14. 000205-99-2	Benz[e]acephenanthrylene	23.59	3400	JND
15. 000198-55-0	Perylene	23.85	12000	JND
16.	unknown hydrocarbon	25.42	2700	JD_
10.		05.70	1700	JIND.

Level I

25.73

26.14

27.87

28.03

-91

JND

JND

JND

JND

1700

2900

4300

2000

Lab Name:	UPSTA	TE LABS	INC.		Contract:	LU ENGINE	SED-03 DL
Lab Code:	10170		Case No.:		SAS No	o.: S	DG No.: LU005
Matrix: (soil/v	vater)	SOIL	·		Lal	o Sample ID:	U0610099-011A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lai	o File ID:	B27751.D
Level: (low/m	ned)	LOW			Da	te Received:	10/4/06
% Moisture:	20.6	d	ecanted:(Y/N)	N	Da	te Extracted:	10/13/06
Concentrated	Extract '	Volume:	1000 (uL)		Dat	te Analyzed:	10/25/06
Injection Volu	me: <u>2.</u>	0 (uL)			Dilu	ution Factor:	20.0
GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	_ Q
111-44-4	bis(2-Chloroethyl)ether	e/h	8400	U
108-95-2	Phenol		8400	U
95-57-8	2-Chlorophenol		8400	U
541-73-1	1,3-Dichlorobenzene		8400	U
106-46-7	1,4-Dichlorobenzene		8400	U
95-50-1	1,2-Dichlorobenzene		8400	T U
108-60-1	2,2'-oxybis(1-Chloropropa	ane)	8400	Ü
95-48-7	2-Methylphenol		8400	U
67-72-1	Hexachloroethane		8400	U
621-64-7	N-Nitrosodinpropylamine		8400	T U
106-44-5	4-Methylphenol		8400	Ü
98-95-3	Nitrobenzene		8400	 ŭ
78-59-1	Isophorone		8400	T U
88-75-5	2-Nitrophenol		8400	Ü
105-67-9	2,4-Dimethylphenol		8400	Ū
111-91-1	bis(2-Chloroethoxy)metha	ne	8400	U
120-83-2	2,4-Dichlorophenol		8400	Ü
120-82-1	1,2,4-Trichlorobenzene		8400	Ū
91-20-3	Naphthalene		8400	Ŭ
106-47-8	4-Chloroaniline		8400	U
87-68-3	Hexachlorobutadiene		8400	Ū
59-50-7	4-Chioro-3-methylphenol		8400	Ū
91-57-6	2-Methylnaphthalene		8400	Ü
77-47-4	Hexachlorocyclopentadien	e	8400	Ü
88-06-2	2,4,6-Trichlorophenol		8400	Ü
95-95-4	2,4,5-Trichlorophenol		8400	Ü
91-58-7	2-Chloronaphthalene		8400	Ū
88-74-4	2-Nitroaniline		20000	Ū
208-96-8	Acenaphthylene		8400	Ū
131-11-3	Dimethylphthalate		8400	Ū
606-20-2	2,6-Dinitrotoluene		8400	U
83-32-9	Acenaphthene		1100	JD
99-09-2	3-Nitroaniline		20000	U
51-28-5	2,4-Dinitrophenol		20000	U
132-64-9	Dibenzofuran		8400	U
121-14-2	2,4-Dinitrotoluene		8400	U
100-02-7	4-Nitrophenol		20000	Ü

Level II

, 1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: UPSTATE	LABS INC. Cor	ntract: LU E	ENGINE	SEL	D-03 DL
Lab Code: 10170	Case No.:	SAS No.:	SD	G No.:	LU005
Matrix: (soil/water) SC	-	Lab Sam	nple ID: L	3061009	9-011A
Sample wt/vol: 30			ID: E		
			_		
Level: (low/med) LC	W	Date Red	ceived: 1	0/4/06	
% Moisture: 20.6	decanted:(Y/N) N	Date Ext	racted: 1	0/13/06	
Concentrated Extract Volu	ume: 1000 (uL)	Date Ana	alyzed: 1	0/25/06	
Injection Volume: 2.0	(uL)	Dilution F	Factor: 2	0.0	
GPC Cleanup: (Y/N)	- ' '				
	• •				
	•	CONCENTR	ATION U	VITS:	
CAS NO.	COMPOUND	(ug/L or ug/K	(g) <u>UG/l</u>	⟨G	. Q
86-73-7	Fluorene	R/D		1300	JD
7005-72-3	4-Chlorophenylphenylether			8400	U
84-66-2	Diethylphthalate	j		8400	U
100-01-6	4-Nitroaniline		2	0000	U
534-52-1	4,6-Dinitro-2-methylphenol		2	0000	U
86-30-6	n-Nitrosodiphenylamine			B400	U
101-55-3	4-Bromophenylphenylether			8400	U
118-74-1	Hexachlorobenzene			8400	U
87-86-5	Pentachlorophenol		2	0000	U
85 -01- 8	Phenanthrene		2:	3000	D
120-12-7	Anthracene			2700	JD
84-74-2	Di-n-butylphthalate		<u> </u>	8400	U
86-74-8	Carbazole	<u> </u>		6000	JD
206-44-0	Fluoranthene	工/光工工 나		1000	D
129-00-0	Pyrene	[/ * -11]	5	5000	D
85-68-7	Butylbenzylphthalate	<u> RID </u>		8400	U
91-94-1	3,3'-Dichlorobenzidine			8400	U
56-55-3	Benzo(a)anthracene	1		5000	D
218-01-9	Chrysene		19	9000	D
117-81-7	bis(2-Ethylhexyl)phthalate			900	JBD
117-84-0	Di-n-octylphthalate			3400	U
205-99-2	Benzo(b)fluoranthene			9000	D
207-08-9	Benzo(k)fluoranthene	i i		5300	JD
50-32-8	Benzo(a)pyrene	1		1000	D
193-39-5	Indeno(1,2,3-cd)pyrene		1	1000	D

level of

3500

12000

JD

D

Dibenz(a,h)anthracene

Benzo(ghi)perylene

53-70-3

191-24-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTA	TE LABS	INC.		Contract:	LU ENGINE	SED-03 DL
Lab Code:	10170	·····	Case No.:		SAS No	.: S	DG No.: LU005
Matrix: (soil/w	vater)	SOIL			Lat	Sample ID:	U0610099-011A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lat	File ID:	B27751.D
Level: (low/m	red)	LOW			Dat	e Received:	10/4/06
% Moisture:	20.6	d	ecanted: (Y/N)	N	Dat	e Extracted:	10/13/06
Concentrated	Extract '	√olume:	1000 (uL)		Dat	e Analyzed:	10/25/06
Injection Volu	me: <u>2.0</u>	(uL)			Dilu	ition Factor:	20.0
GPC Cleanup	: (Y/N)	N	_ pH:				

CONCENTRATION UNITS:

		CONCENTRATIO	N ONLS.
Number TICs found:	14	(ug/L or ug/Kg)	UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000613-12-7	Anthracene, 2-methyl-	17.57	16 M 1700	JND
2. 000949-41-7	1H-Cyclopropa[I]phenanthrene,1a	17.63	2100	JND
3, 000203-64-5	4H-Cyclopenta[def]phenanthrene	17.75	3800	JND
4. 000084-65-1	9,10-Anthracenedione	18.18	5600	JND
5. 000200-23-7	Benzo[ki]xanthene	19.52	2300	JND
6. 002381 - 21-7	Pyrene, 1-methyl-	19.89	5500	JND
7. 000243-17-4	11H-Benzo[b]fluorene	20.02	3000	JND
8. 000613-59-2	Naphthalene, 2-(phenylmethyl)-	20.11	1700	JND
9. 000301-02-0	9-Octadecenamide, (Z)-	20.71	1900	JND
10. 000239-35-0	Benzo[b]naphtho[2,1-d]thiophene	21.01	2000	JND
11.	unknown hydrocarbon	21.08	2500	JD
12. 000205-99-2	Benz[e]acephenanthrylene	23.46	3800	JND
13. 000198-55-0	Perylene	23.73	13000	JND
14. 000191-30-0	1,2:3,4-Dibenzopyrene	27.65	4800	JND

Level II

-950-

FIELD	BLANK
-------	-------

Lab Name:	UPSTA	E LABS I	NC.		Cont	ract:	LU ENGINE		_
Lab Code:	10170	Ca	ase No.:		SA	AS No	o.: S	DG No.: <u>LU005</u>	
Matrix: (soil/v	vater)	WATER				La	b Sample ID:	U0610099-013A	
Sample wt/vo	ol:	1000	_ (g/ml)	ML		La	b File ID:	B27788.D	
Level: (low/m	ned)	LOW				Da	te Received:	10/4/06	
% Moisture:		de	canted:(Y	//N)	N	Da	ite Extracted:	10/5/06	
Concentrated	Extract \	Volume:	1000	(uL)		Da	ite Analyzed:	10/26/06	
Injection Volu	ıme: <u>2.</u>	0 (uL)				Dil	ution Factor:	1.0	
GPC Cleanup	SPC Cleanup: (Y/N) N pH:								

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg	g) <u>UG/L</u>	Q
111-44-4	bis(2-Chloroethyl)ether	45/4111	10	U
108-95-2	Phenol	1 / 1	10	U
95-57-8	2-Chlorophenol		10	U
541-73-1	1,3-Dichlorobenzene	1	10	U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chloropropane	e)	10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitrosodinpropylamine		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene	1	10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol	1	10	U
111-91-1	bis(2-Chloroethoxy)methane		10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzene		10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	υ
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphenol		10	υ
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopentadiene		. 10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		24	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline	1 1	24	U
51-28-5	2,4-Dinitrophenol			U
132-64-9	Dibenzofuran		10	U
121-14-2	2,4-Dinítrotoluene		10	U
100-02-7	4-Nitrophenol	1, 4 1	- 24	U

Lavel V.

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

La	b Name:	UPSTATE	E LABS INC.	c	ontract:	LU ENGIN	IE FIE	LD BLANK
La	o Code:	10170	Case No.:		SAS No	.:	SDG No.:	LU005
Ма	trix: (soil/v	vater) <u>V</u>	VATER			Sample ID		
Sa	mple wt/vo	ol: <u>1</u>	000 (g/ml) ML			File ID:		
Lev	/el: (low/n	ned) L	ow			e Received		
%1	Moisture:		decanted:(Y/N)	N		e Extracted		
Cor	ncentrated	Extract Vo	plume: 1000 (uL)		_	e Analyzed:		
		me: 2.0				tion Factor:		
		o: (Y/N)					11.0	
	CAS NO.		COMPOUND			NTRATION ug/Kg) <u>U</u>		_ Q
	86-73-7	7	Fluorene		US/4	TIT-	10	U
	7005-72	2-3	4-Chlorophenylpheny	lether	<u> </u>	101	10	U
	84-66-2		Diethylphthalate		1		10	U
٠	100-01-	6	4-Nitroaniline			-	24	$\frac{1}{U}$
	534-52-	1	4,6-Dinitro-2-methylpl	henol			24	
•	86-30-6		n-Nitrosodiphenylami	ne		c.	10	
	101-55-	3	4-Bromophenylpheny	lether			10	U
	118-74-	1	Hexachlorobenzene				10	U
•	87-86-5		Pentachlorophenol			C.	24	U
	85-01-8		Phenanthrene				10	Ü
	120-12-	7	Anthracene				10	T U
	84-74-2		Di-n-butylphthalate		 		10	U
-	86-74-8		Carbazole			C	10	U
	206-44-0)	Fluoranthene		7		10	U
- [129-00-0)	Pyrene			10	10	U
` [85-68-7		Butylbenzylphthalate			C	10	U
	91-94-1		3.3'-Dichlorobenzidine		1 1			

Lover IV

10

10

10

10

10

10

10

10

10

10

10

U

U

U

U

U

U

U

U

U

U

-998

3,3'-Dichlorobenzidine

bis(2-Ethylhexyl)phthalate

Benzo(a)anthracene

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

Chrysene

56-55-3

218-01-9

117-81-7

117-84-0

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TENTATIVEET IDENTIFIED CONSC							FIELD BI	ANK	
Lab Name:	UPSTA	TE LABS IN	VC.	Contr	act:	LU ENG	INE	, ILLD DI	
Lab Code:	10170	Ca	se No.:	SA	S No	·.:	_ SDC	No.: LUO	05
Matrix: (soil/w	vater)	WATER	_		Lat	o Sample	ID: U	0610099-01	13A
Sample wt/vo	ol:	1000	(g/ml) ML		Lat	o File ID:	<u>B</u>	27788.D	
Level: (low/m	ned)	LOW	_		Da	te Receiv	ed: 1	0/4/06	
% Moisture:		dec	anted: (Y/N)	N	Da	te Extrac	ted: 1	0/5/06	
Concentrated	Extract	Volume:	1000 (uL)		Da	te Analyz	ed: 1	0/26/06	
Injection Volu	ıme: <u>2.0</u>) (uL)			Dil	ution Fac	tor: <u>1</u>	.0	
GPC Cleanup	p: (Y/N)	N	pH:						
								_	
				CONC	ENT	RATION	UNITS	S:	
Number TICs	found:	8		(ug/L d	or ug	/Kg)	UG/L		
		COMPO	IND NAME			рт	FST	CONC	O

			!	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 000119-61-9	Benzophenone NJ	15.31	2	JN
2. 1000163-86-1	Pentadecanamide, 15-bromo-	19.51	3	JN
3. 000301-02-0	9-Octadecenamide, (Z)-	20.71	17	JN
4	unknown	20.74	15	J
5.	unknown	20.86	4	J
6.	unknown	22.43	13	J
7	unknown	23.17	17	J
8.	unknown hydrocarbon	23.27	2	J

Level I

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAME	LE NO
------------	------	-------

Lab Name:	UPSTA	TE LABS	INC.		Contract:	LU ENGINE	ERB-2
Lab Code:	10170		ase No.:	*	SAS No	o.:S	DG No.: LU005
Matrix: (soil/w	vater)	WATER			Lal	b Sample ID:	U0610099-012A
Sample wt/vo	ol:	1000	(g/ml) <u>ML</u>		Lal	b File ID:	B27763.D
Level: (low/m	red)	LOW			Da	te Received:	10/4/06
% Moisture:	***	de	ecanted:(Y/N)	N	Da	te Extracted:	10/5/06
Concentrated	Extract	Volume:	1000 (uL)		Dai	te Analyzed:	10/25/06
njection Volu	me: <u>2</u> .	0 (uL)			Dilu	ution Factor:	1.0
GPC Cleanup	: (Y/N)	N	pH:				

CONCENTRATION UNITS:

04040		CONCENTRAT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_ Q
111-44-4	bis(2-Chloroethyl)ether	いて存献	10	U
108-95-2	Phenol		10	Ü
95-57-8	2-Chiorophenol		10	Ü
541-73-1	1,3-Dichlorobenzene		10	T U
106-46-7	1,4-Dichlorobenzene		10	U
95-50-1	1,2-Dichlorobenzene		10	U
108-60-1	2,2'-oxybis(1-Chloropropand	e)	10	Ü
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	1 0
621-64-7	N-Nitrosodinpropylamine		10	U
106-44-5	4-Methylphenol		10	U
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	
111-91-1	bis(2-Chloroethoxy)methane		10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzene		10	U
91-20-3	Naphthalene		10	T U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene	l d	10	Ü
59-50-7	4-Chloro-3-methylphenol		10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopentadiene		10	U
88-06-2	2,4,6-Trichlorophenol		10	U
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		24	Ü
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	
99-09-2	3-Nitroaniline		24	U
51-28-5	2,4-Dinitrophenol	11/6	24	U
132-64-9	Dibenzofuran			
121-14-2	2,4-Dinitrotoluene	 	10	U
100-02-7	4-Nitrophenol	J 1	10	<u>U</u>
	1 - MILOPHEROI	1 1	24	U

Level IV

					,	
Lab Name	: UPSTAT	E LABS INC.	Contract:	LU ENGINE		ERB-2
Lab Code:	: 10170	Case No.:	SAS No	.: 5	DG No.:	LU005
Matrix: (sc	oil/water)	WATER	Lat	Sample ID:	U061009	99-012A
Sample wi	t/vol:	1000 (g/ml) ML		File ID:		
	w/med) i		Dot	e Received:	10/4/06	
	•					
% Moistur	e:	decanted:(Y/N)	N Dat	e Extracted:	10/5/06	*****
Concentra	ted Extract V	olume: 1000 (uL)	Dat	e Analyzed:	10/25/06	
Injection V	olume: 2.0	(uL)	Dilu	tion Factor:	1.0	
GPC Clear	nup: (Y/N)	— N pH:				
			CONCE	NTRATION	UNITS:	
CASI	NO.	COMPOUND	(ug/L or	ug/Kg) U(3/L	Q
						_
86-7		Fluorene		17111	10	U
	5-72-3	4-Chlorophenylphenyl	ether		10	U
84-6	66-2	Diethylphthalate			10	U
100-		4-Nitroaniline			24	U
534-	52-1	4,6-Dinitro-2-methylph	enol		24	U
· <u>86-3</u>	0-6	n-Nitrosodiphenylamin		10	10	U
101-	55-3	4-Bromophenylphenyl	ether		10	U
118-	74-1	Hexachlorobenzene			10	U
· 87-8	6-5	Pentachlorophenol		1 0	24	U
85-0	1-8	Phenanthrene			10	Ū
120-	12-7	Anthracene	1		10	U
84-7	4-2	Di-n-butylphthalate			10	U
. 86-7	4-8	Carbazole			10	Ū
206-		Fluoranthene	i		10	Ū
129-		Pyrene		1 k	10	U
85-6		Butylbenzylphthalate		TE	10	Ū
91-9	4-1	3,3'-Dichlorobenzidine			10	U
56-5		Benzo(a)anthracene		1	10	Ū
218-0		Chrysene		- 	10	Ü
117-8		bis(2-Ethylhexyl)phthal	ate	LC.	10	Ŭ
. 117-8		Di-n-octylphthalate		16	10	U
205-9		Benzo(b)fluoranthene		112	10	U
207-0	·····	Benzo(k)fluoranthene		++	10	U
50-32		Benzo(a)pyrene		1	10	U
30-08		- Denzola/byrene			10	

Level II

10

10

10

14,2/4/07

Ü

U

U

-97

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene Benzo(ghi)perylene

193-39-5

53-70-3

191-24-2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTA	UPSTATE LABS INC.				LU ENGINE	ERB-2
Lab Code:	10170	Case	No.:	SAS	S No	.:S	DG No.: LU005
Matrix: (soil/	water)	WATER			Lat	Sample ID:	U0610099-012A
Sample wt/vo	ol:	1000	(g/ml) ML		Lab	File ID:	B27763.D
Level: (low/n	ned)	LOW			Dat	e Received:	10/4/06
% Moisture:		decan	ted: (Y/N)	N	Dat	e Extracted:	10/5/06
Concentrated	i Extract \	/olume: <u>100</u>	00 (uL)		Dat	e Analyzed:	10/25/06
Injection Volu	ıme: <u>2.0</u>	(uL)			Dilu	tion Factor:	1.0
GPC Cleanur	o: (Y/N)	N pH	ł:				

CONCENTRATION UNITS:

	· —· · · · · · · · · · · · · · · · · ·							
Number TICs found:	11	UG/L						
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q				
1.	unknown hydrocarbon	NT 11.88	20	J				
2. 000119-61-9	Benzophenone	15.32	2	JN				
3. 000638-58-4	Tetradecanamide	19.51	2	JN				
4. 000301-02-0	9-Octadecenamide, (Z)-	20.71	17	JN				
5.	unknown	20.75	10	J				
6. 000629-54-9	Hexadecanamide	20.88	2	JN				
7.	unknown	22.55	3	J				
8.	unknown hydrocarbon	22.73	3	J				
9.	unknown	23.18	29	J				
10.	unknown hydrocarbon	23,28	2	1 .1				

11. 000112-95-8 Eicosane

LevelII

24.33

-980

JN

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-01

lah Name: Instal		ostate Labs Inc.		Contract:	Lu Enginee	r	
Lab Name:				•		SDG No.: LU005	
Lab Code:	10170	Ca	ise No.:	_ SAS No			
Matrix: (soil/v	vater)	SOIL		La	b Sample ID:	U0610099-001B	
Sample wt/vo		5.0	(g/ml) G	La	b File ID:	C15410.D	
Level: (low/n		LOW		– Da	ate Received:	10/4/06	
% Moisture:		42.4		Da	ate Analyzed:	10/10/06	
			50 /mm)		lution Factor:		
GC Column:	RTX-V	<u>/ol</u> ID: <u>0</u>	.53 (mm)				/l
Soil Extract \	/olume:		(uL)	Sc	oil Aliquot Vol	ume:	(uL

CONCENTRATION UNITS:

		CONCENTRATIO	M OINTO.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q ,
74.07.2	Chloromethane	wr/+亚:	54	17	U
74-87-3	Vinyl Chloride	1 1	1	17	U
75-1-4	Bromomethane		C	17	U
74-83-9	Chioroethane			17	<u> </u>
75-00-3	Acetone	UJ I	11/2	43	
67-64-1	1.1-Dichloroethen			17	<u> </u>
75-35-4	Carbon Disulfide	1	1	17	<u> U </u>
75-15-0	Methylene Chloric	le /R /D		17	U
75-09-2	trans-1,2-Dichloro		5	17	<u> </u>
156-60-5	1.1-Dichloroethan	700,101,0	1	17	U
75-34-33	2-Butanone		i	13	J
78-93-3	cis-1,2-Dichloroet	hene UJ		17	U
156-59-2		nene o s		17	U
67-66-3	Chloroform 1,1,1-Trichloroeth	one	1/2	17	U
71-55-6	1,1,1-11ichioloeti	rido		17	U
56-23-5	Carbon Tetrachlo	ilue	1	17	Ū
71-43-2	Benzene		1	17	Ū
107-06-2	1,2-Dichloroethar	<u>ie </u>	- 1	17	U
97-01-6	Trichloroethene			17	U
<u> 78-87-5</u>	1,2-Dichloropropa		- 	17	Ū
75-27-4	Bromodichlorome			17	Ū
108-10-1	4-Methyl-2-penta		Wa.	17	Ū
10061-1-5	cis-1,3-Dichlorop			17	Ū
108-88-3	Toluene	- TE-10		17	. U
10061-2-6	trans-1,3-Dichlor		ISIC	17	U
79-00-5	1,1,2-Trichloroet	hane		17	- U
591-78-6	2-Hexanone		-10-	17	<u>U</u>
127-18-4	Tetrachloroether	ne		17	<u>U</u>
124-48-1	Dibromochlorom	ethane		17	U
108-90-7	Chlorobenzene			17	U
100-41-4	Ethylbenzene				U
108-38-3	m,p-Xylene			17	 0
95-47-6	o-Xylene			17	U
100-42-5	Styrene			17	
75-25-2	Bromoform			17	<u>U</u>
79-34-5	1,1,2,2-Tetrachlo	oroethane 🖖 🖖		<u> 17 ·</u>	<u> </u>

1(8 12/11/07

Level II

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		- · · · · · ·	<i>1</i>
Lab Name: Upstat	te Labs Inc.	Contract: Lu Engineer	SS-01
Lab Code: 10170	Case No.:		3 No.: LU005
Matrix: (soil/water)	SOIL	Lab Sample ID: U	
Sample wt/vol:	5.0 (g/ml) G		15410.D
Level: (low/med)	LOW	Date Received: 10	
% Moisture: not dec.	42.4		0/10/06
GC Column: RTX-	Vol ID: <u>0.53</u> (mm)	Dilution Factor: 1.	
Soil Extract Volume:	1 (uL)	Soil Aliquot Volume	e: 1 (uL)
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	
CAS NO.	COMPOUND NAME	RT FST	CONC O

Love II

-248-

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-01 RE

Lab Name: Upstate		tate Labs Inc.		Contract:	Lu Engineer		
Lab Code:	10170	Case No.:		SAS No	s.: S	DG No.: <u>LU005</u>	····
Matrix: (soil/v	water)	SOIL	_	La	b Sample ID:	U0610099-001B	
Sample wt/vo		5.0	(g/ml) G	La	b File ID:	C15418.D	
Level: (low/r		LOW		Da	te Received:	10/4/06	
% Moisture:		42.4		Da	ite Analyzed:	10/10/06	
GC Column:		/ol ID: 0.	53 (mm)	Dil	ution Factor:	1.0	
Soil Extract \			(uL)	Sc	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

	CONCEIN	ICA HOR OW		
CAS NO.	COMPOUND (ug/L or ug	/Kg) <u>UG</u>	KG	Q
74.07.2	Chloromethane R.J.		17	U
74-87-3 75-1-4	Vinyl Chloride		17	U
	Bromomethane		17	U
74-83-9	Chloroethane	İ	17	U
75-00-3	Acetone		120	
67-64-1	1.1-Dichloroethene		17	U
75-35-4 75-15-0	Carbon Disulfide	;	17	U
	Methylene Chloride ムゴ	/411. ST	17-4	J
75-09-2	trans-1,2-Dichloroethene	,	17	U
<u>156-60-5</u>	1.1-Dichloroethane	1	17	U
75-34-33	2-Butanone		35	
78-93-3	cis-1,2-Dichloroethene		17	U
156-59-2	Chloroform		17	U
67-66-3	1,1,1-Trichloroethane		17	U
71-55-6	Carbon Tetrachloride		17	U
56-23-5	Benzene		17	U
71-43-2	1,2-Dichloroethane		17	U
107-06-2	Trichloroethene		17	U
97-01-6	1,2-Dichloropropane		17	U
78-87-5	Bromodichloromethane		17	U
75-27-4	4-Methyl-2-pentanone		17	U
108-10-1	cis-1,3-Dichloropropene	`	17	U
10061-1-5	Toluene J/	X-TIE,S	2	J
108-88-3	trans-1,3-Dichloropropene 12	10	17	U
10061-2-6	1,1,2-Trichloroethane		17	U
79-00-5	2-Hexanone		17	U
591-78-6	Tetrachloroethene		17	U
127-18-4	Dibromochloromethane		17	U
124-48-1	Chlorobenzene		17	U
108-90-7	Ethylbenzene	1	17	U
100-41-4	m,p-Xylene		17	U
108-38-3			17	U
95-47-6	o-Xylene		17	U
100-42-5	Styrene	1	17	U
75-25-2	Bromoform	W.	17	U
79-34-5	1,1,2,2-Tetrachloroethane			

pm 12/12/07

Leve CIV

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

					NUS	- 1		
Lab Name:	Upstate	Labs Ir	ıc.	Contract:	Lu Enginee	_	SS-01 R	=
Lab Code:	10170		Case No.:	SAS No.				
Matrix: (soil/v	water)	SOIL			`		No.: <u>LU005</u>	
Sample wt/vo	ol:	5.0	(a/ml) C			UO	610099-001	3
Level: (low/n		-	(g/ml) <u>G</u>	Lab	File ID:	C18	5418.D	
% Moisture: r	•	LOW		Date	e Received:	10/4	4/06	
		42.4		Date	Analyzed:	10/	10/06	
GC Column:	RTX-V		0.53 (mm)	Dilut	tion Factor:	1.0		
Soil Extract V	'olume: _		(uL)	Soil	Aliquot Volu	me:	1	(uL)
Number TICs	found:	0		CONCENTRATION (ug/L or ug/Kg)	ON UNITS: UG/KG			. ,
CAS NO.		СОМР	DUND NAME		RT FS			

-254-

VOLATILE ORGANICS ANALYSIS DATA SHEET

eer SS-02

_ab Name:	Upstate Labs Inc.			_ Contract:	Lu Engineer		
	10170	Case No.:		SAS No	.: S	DG No.: <u>LU005</u>	
Lab Code:						U0610099-002B	
Matrix: (soil/v	vater)	SOIL					
Sample wt/vol: Level: (low/med)		5.0	(g/ml) <u>G</u>	Lal	b File ID:	C15419.D	
		LOW		Da	te Received:	10/4/06	
				Da	ite Analyzed:	10/10/06	
% Moisture:	not dec.	40.3					
GC Column: RTX-V		-Voi ID: <u>0.53</u> (mm)			ution Factor:		
Soil Extract \			_ (uL)	Sc	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG		Q
	Chloromethane	A	17	U
74-87-3	Chloronicalane		17	U
75-1-4	Vinyl Chloride		17 :	U
74-83-9	Bromomethane		17	U
75-00-3	Chloroethane		41	
67-64-1	Acetone		17	U :
75-35-4	1,1-Dichloroethene		17	U
75-15-0	Carbon Disulfide		3	J
75-09-2	Methylene Chloride		17	U
156-60-5	trans-1,2-Dichloroethene		17	U
75-34-33	1,1-Dichloroethane		17	U
78-93-3	: 2-Butanone		17	- Ū
156-59-2	cis-1,2-Dichloroethene		2	
67-66-3	Chloroform	:	17	U
71-55-6	1,1,1-Trichloroethane		17	U
56-23-5	Carbon Tetrachloride		17	U
71-43-2	Benzene	 	17	U .
107-06-2	1,2-Dichloroethane	<u> </u>	17	Ü
97-01-6	Trichloroethene		17	U.
78-87-5	1,2-Dichloropropane		17	U
75-27-4	Bromodichloromethane	 	17	U
108-10-1	4-Methyl-2-pentanone	<u> </u>	17	U
10061-1-5	cis-1,3-Dichloropropene		17	Ū
108-88-3	Toluene		17	
10061-2-6	trans-1,3-Dichloropropene			Ū
79-00-5	1,1,2-Trichloroethane		17	U
591-78-6	2-Hexanone	 	17	U
127-18-4	Tetrachloroethene		17	U
124-48-1	Dibromochloromethane			U
108-90-7	Chlorobenzene		17	<u>U</u>
100-41-4	Ethylbenzene			. U
108-38-3	m,p-Xylene	ļ	17	T U
95-47-6	o-Xylene	1	17	U
100-42-5	Styrene	1	17	
75-25-2	Bromoform	<u> </u>	17	. U
79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	17	<u>. U</u>
13-34-3	3 - 1	! .	nICTIT	

Lovel

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	Upstate	Labs Inc.		Contract:	Lu En	gineer	SS-02	Ì
Lab Code:	10170	c	ase No.:	SAS No	o.:	SDO	G No.: LU005	
Matrix: (soil/v	vater)	SOIL		La	b Samp	le ID: U	10610099-002	В
Sample wt/vo	ol:	5.0	_ (g/ml) <u>G</u>	La	b File ID); C	15419.D	
Level: (low/n	ned)	LOW		Da	te Rece	ived: 1	0/4/06	-
% Moisture: r	not dec.	40.3		Da	te Analy	/zed: 1	0/10/06	-
GC Column:	RTX-V	<u>/ol</u> ID: <u>0</u>	.53 (mm)	Dil	ution Fa	ctor: 1.	.0	~
Soil Extract V	/olume:	1	(uL)	. So	il Aliquo	t Volume	e: <u>1 · </u>	_ _ (uL)
				CONCENTRAT	10N UN	NITS:		
Number TICs	found:	0		(ug/L or ug/Kg)	<u>uc</u>	S/KG		
CAS NO.		СОМРО	UND NAME		RT	EST.	CONC.	Q.

Level VI

-16-

VOLATILE ORGANICS ANALYSIS DATA SHEET

	100111		30-02 11-	1
Lab Name: Upsta	ate Labs Inc.	Contract: Lu Engineer		j
Lab Code: 1017	0 Case No.:	0/10.1	G No.: LU005	
Matrix: (soil/water)	SOIL	Lab Sample ID: L	C15411.D	
Sample wt/vol:	5.0 (g/ml) <u>G</u>	Lab File ID: Date Received: _1		
Level: (low/med)	LOW	Date Analyzed: 1		
% Moisture: not de		Date Analyzeu		
GC Column: RT	X-Vol ID: <u>0.53</u> (mm)	Soil Aliquot Volum		L)
Soil Extract Volum	e: (uL)	Golf Aliquot Volum		

CONCENTRATION UNITS:

	COMPOUND (ug/L or ug/	Kg) <u>UG/KG</u>		Q
CAS NO.		今四多と	17	U
74-87-3	Chloromethane	17 H-P	17	U
75-1-4	Vinyl Chloride		17	U
74-83-9	Bromomethane		17	υ
75-00-3	Chloroethane	- I TE	43	
67-64-1	Acetone 0.5		17	U
75-35-4	1,1-Dichloroethene		17	U
75-15-0	Carbon Disulfide 45		17-2.	J
75-09-2	Methylene Chloride		17	U
156-60-5	trans-1,2-Dichloroethene		17	U
75-34-33	1,1-Dichloroethane		5	J
78-93-3	2-Butanone		17 .	U
156-59-2	cis-1,2-Dichloroethene		17.2	J [.]
67-66-3	Chloroform	1	17	U
71-55-6	1,1,1-Trichloroethane		17	U
56-23-5	Carbon Tetrachloride		17	U
71-43-2	Benzene		17	U
107-06-2	1,2-Dichloroethane		17	U
97-01-6	Trichloroethene		17	· U
78-87-5	1 2-Dichloropropane		17	U
75-27-4	Bromodichloromethane		17	U
108-10-1	4-Methyl-2-pentanone	- C	17	U
10061-1-5	cis-1,3-Dichloropropene			U
108-88-3	Toluene		17	U
10061-2-6	trans-1,3-Dichloropropene		17	υ
79-00-5	1,1,2-Trichloroethane		17	U
591-78-6	2-Hexanone			U
127-18-4	Tetrachloroethene		17	U
124-48-1	Dibromochloromethane		17	U
108-90-7	Chlorobenzene		17	U
100-41-4	Ethylbenzene		17	U
108-38-3	m,p-Xylene		17	U
95-47-6	o-Xylene		17	U
100-42-5	Styrene		17	U
75-25-2	Bromoform		17	U
79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	11	

17/12 12/15/10-1

Level III

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	Upstate	Labs Inc.		Cor	ntract:	Lu En	gineer	SS	-02 RE	
Lab Code:	10170		ase No.:		SAS No			G No.:	LU005	·I
Matrix: (soil/w	vater)	SOIL			Lat	Samp	ole ID:	J061009	9-002B	
Sample wt/vo	oł:	5.0	(g/ml) <u>G</u>		Lat	File II	D: <u>C</u>	C15411.[)	
Level: (low/m	ned)	LOW			Dat	te Rece	eived: 1	0/4/06		
% Moisture: n	not dec.	40.3			Dat	te Anal	yzed: 1	0/10/06		
GC Column:	RTX-V	<u>'ol</u> ID: <u>0</u>	.53 (mm)		Dilt	ition Fa	actor. 1	.0		
Soil Extract V	olume:	1	(uL)		Soi	l Aliquo	ot Volum	e: <u>1</u>		(uL)
				CONCE	NTRAT	ION U	NITS:			
Number TICs	found:	0		(ug/L or i	ug/Kg)	<u>U</u>	G/KG			
CAS NO.		COMPO	JND NAME			RT	EST	. CONC.	(Q ·

Level I

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-03

				Contract:	Lu Engineer		
Lab Name:	Upstate I	abs Inc.		SAS No		DG No.: LU005	
Lab Code:	10170	Case	e No.:	_ 3/0110	···	U0610099-003B	
Matrix: (soil/w	vater)	SOIL				C15412.D	
Sample wt/vo		5.0	(g/ml) G		b File ID:		
		LOW		Da	ate Received:	10/4/06	
Level: (low/n				D	ate Analyzed:	10/10/06	
% Moisture: 1	not dec.	37			ilution Factor:		
GC Column:	RTX-V	<u>/ol_ID: 0.5</u>	<u>3</u> (mm)				(uL
Soil Extract \			_ (uL)	S	oil Aliquot Vol	JIII 6.	•

CONCENTRATION UNITS:

	CONCENTRA	ATION UNITS.		
340 NO	COMPOUND (ug/L or ug/K			Q
CAS NO.		1 miles (4)	16	U
74-87-3	」Chloromethane ルガノ光	-IIL-C+	16	U
75-1-4	Vinyl Chloride	6	16	U
74-83-9	Bromomethane		16	U_i
75-00-3	Chloroethane		23	
67-64-1	Acetone U.3		16	U
75-35-4	1 1.1-Dichloroethene		16	U
75-15-0	Carbon Disulfide		16	U
75-09-2	Methylene Chloride		16	U
156-60-5	trans-1,2-Dichloroethene		16	U
75-34-33	1,1-Dichloroethane		8	J
78-93-3	2-Butanone		16	U
156-59-2	cis-1,2-Dichloroethene		16	U
67-66-3	Chloroform		16	U
71-55-6	1.1,1-Trichloroethane		16	U
56-23-5	Carbon Tetrachloride		16	U
71-43-2	Benzene		16	U
107-06-2	1,2-Dichloroethane		16	U
97-01-6	Trichloroethene		16	U
78-87-5	1,2-Dichloropropane		16	U
75-27-4	Bromodichloromethane		16	U
108-10-1	4-Methyl-2-pentanone	0	16	U
10061-1-5	cis-1,3-Dichloropropene		16	U
108-88-3	Toluene		16	U
10061-2-6	trans-1,3-Dichloropropene		16	U
79-00-5	1,1,2-Trichloroethane		16	U
591-78-6	2-Hexanone		16	U
127-18-4	Tetrachloroethene		16	TU
124-48-1	Dibromochloromethane		16	; U
108-90-7	Chlorobenzene		16	U
100-41-4	Ethylbenzene		16	U
108-38-3	m,p-Xylene		16	U
95-47-6	o-Xylene		16	U
100-42-5	Styrene		16	U
75-25-2	Bromoform		16	U
79-34-5	1,1.2,2-Tetrachloroethane		1000	
			منسونه متصور فرارا	1. 1

evel II

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: Upstate Labs Inc. Contract: Lu Engineer Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005

Lab Code: 10170 Case No.: SAS No.: _____ SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-003B Sample wt/vol: 5.0 (g/ml) G Lab File ID: C15412.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. 37 Date Analyzed: 10/10/06 GC Column: RTX-Vol ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: 1 (uL) Soil Aliquot Volume: 1 (uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) UG/KG

CAS NO. COMPOUND NAME RT EST. CONC. Q

Law (III

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-04

Lab Name:	Upstate	Labs Inc.		Contract:	Lu Engineer		
Lab Code:	10170		ase No.:	_ SAS No	••	DG No.: <u>LU005</u>	
Matrix: (soil/v	water)	SOIL		Lal	Sample ID:	U0610099-004B	
Sample wt/vo		5.0	(g/ml) G	La	b File ID:	C15413.D	
Level: (low/r		LOW		 Da	te Received:	10/4/06	
% Moisture:		32.3		Da	ite Analyzed:	10/10/06	
GC Column:),53 (mm)	Dil	ution Factor:	1.0	
Soil Extract \		<u> </u>	(uL)	Sc	il Aliquot Volu	ime:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG		Q
	Chloromethane ルブノナーボ	· C-1	15	U
74-87-3	Vinyl Chloride		15	U
75-1-4	Bromomethane	0.	15	<u> </u>
74-83-9	Chloroethane	1	15	U
75-00-3			110	
· <u>67-64-1</u>	Acetone 3/4-11- 1,1-Dichloroethene 35/4-11-	10 T	15	U
. 75-35-4	I, I Didition		15	U
75-15-0	Carbon bleamer	-	15-2	J
75-09-2			15	U
156-60-5	trans-1,2-Dichloroethene 45		15	U
75-34-33	1,1-Dichloroethane ルゴ		20	
78-93-3	2-Butanone		15	U
156-59-2	CIS-1,2 DIGITION CONT.		15	U
67-66-3	Chloroform P. D.	- 1	15	U
. 71-55-6	1,1,1-Trichloroethane		15	U
56-23-5	Carbon Tetrachloride	1	15	U
71-43-2	Benzene		15	U
107-06-2	1,2-Dichloroethane		15	U
97-01-6	Trichloroethene		15	- U
78-87-5	1,2-Dichloropropane		15	<u>U</u>
75-27-4	Bromodichloromethane			U
108-10-1	4-Methyl-2-pentanone		15	
10061-1-5	cis-1,3-Dichloropropene		15	<u>U</u>
108-88-3	Toluene		15	<u>U</u>
10061-2-6	trans-1,3-Dichloropropene	0	15	U
79-00-5	1,1,2-Trichloroethane		15	
591-78-6	2-Hexanone		15	U
127-18-4	Tetrachloroethene	<u> </u>	15	U
124-48-1	Dibromochloromethane		15	U
108-90-7	Chlorobenzene		15	U
100-90-7	Ethylbenzene		15	U
108-38-3	m,p-Xylene		15	U
	o-Xylene	!	15	<u>. U</u>
95-47-6	Styrene		15	U
100-42-5	Bromoform		15	U
75-25-2	1,1,2,2-Tetrachloroethane		15	U
79-34-5	1, 1, Z, Z- Tetracinordemane \$\frac{1}{2}\$			

m remos

Love III

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:	Upstate La	bs Inc.	Con	tract:	Lu Engineer	SS-04	
Lab Code:	10170	Case No.:		AS No.		DG No.: LU00)5
Matrix: (soil/v	vater) <u>S</u> (OIL				U0610099-004	
Sample wt/vo	ol: <u>5.</u>	0 (g/ml)	G		File ID:	C15413.D	-
Level: (low/m	ned) <u>LC</u>	DW		Date	e Received:	10/4/06	
% Moisture: n	ot dec. <u>32</u>	3		Date	e Analyzed:	10/10/06	
GC Column:	RTX-Vol	ID: <u>0.53</u> (m	m)		tion Factor:	1.0	
Soil Extract V	olume: 1	(uL)		Soil	Aliquot Volu	me: <u>1</u>	(uL)
					ON UNITS:		
Number TICs	found:	0	(ug/L or u	y/Ng)	UG/KG		
CAS NO.	C	OMPOUND NAM	E		RT ES	T. CONC.	Q

-281-

LOVEIN

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SS-04 RE

_ab Name:	Upstate	Labs Inc.		_ Contract:		-	
Lab Code:	10170	Cas	e No.:	SAS No	o.:	SDG No.: LU005	
Matrix: (soil/v	vater)	SOIL		La	b Sample ID	: <u>U0610099-004B</u>	
Sample wt/vo		5.0	(g/ml) G	La	b File ID:	C15428.D	
•		LOW	(5***)	 Da	ate Received	: 10/4/06	
Level: (low/r				Da	ate Analyzed	: 10/11/06	
% Moisture:		32.3			lution Factor		
GC Column:	RTX-\	<u>/ol</u> ID: <u>0.8</u>			oil Aliquot Vo		(uL)
Soil Extract \	Volume:		_ (uL)	50	oli Mildaor vo	iginio.	()

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg) <u>UG</u>	/KG	Q
74.07.0	Chloromethane	15	U
74-87-3	Vinyl Chloride	15	U
75-1-4	Bromomethane	15	U
74-83-9		15	U
75-00-3	Chloroethane	67	
67-64-1	Acetone	15	U .
75-35-4	1,1-Dichloroethene	15	U
75-15-0	Carbon Disulfide	4	J
75-09-2	Methylene Chloride	15	U
156-60-5	trans-1,2-Dichloroethene	15	U
75-34-33	1,1-Dichloroethane	11	1
78-93-3	2-Butanone	15	Ü
156-59-2	cis-1,2-Dichloroethene	15.2	J
67-66-3		15	U
71-55-6	1,1,1-Trichloroethane	15	U
56-23-5	Carbon Tetrachloride		U
71-43-2	Benzene	15	U
107-06-2	1,2-Dichloroethane	15	U
97-01-6	Trichloroethene	15	U
78-87-5	1,2-Dichloropropane	15	U
75-27-4	Bromodichloromethane	15	
108-10-1	4-Methyl-2-pentanone	15	U
10061-1-5	cis-1,3-Dichloropropene	15	U
108-88-3	Toluene	15	<u>U</u>
10061-2-6	trans-1,3-Dichloropropene	15	U
79-00-5	1,1,2-Trichloroethane	15	U
591-78-6	2-Hexanone	15	<u>'</u> U
127-18-4	Tetrachloroethene	15	U
	Dibromochloromethane	15	U
124-48-1	Chlorobenzene	15	U
108-90-7	Ethylbenzene	15	U
100-41-4	m,p-Xylene	15	U
108-38-3		15	U
95-47-6	o-Xylene	15	U
100-42-5	Styrene	15	U
75-25-2	Bromoform	15	U
79-34-5	1,1,2,2-Tetrachloroethane		

Lover VI

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS **SS-04 RE** Lab Name: Upstate Labs Inc. Contract: Lu Engineer Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-004B Sample wt/vol: 5.0 __ (g/ml) G Lab File ID: C15428.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. 32.3 Date Analyzed: 10/11/06 GC Column: RTX-Vol ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: 1 (uL) Soil Aliquot Volume: 1 (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/KG Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

Law (WE

1.4

VOLATILE ORGANICS ANALYSIS DATA SHEET

FPA	CA	NAD	1 =	NO

	•			SS-05
ab Name:	Upstate	Labs Inc.	Contract: Lu Engineer	
ab Code:	10170	Case No.:	SAS No.: SD	G No.: <u>LU005</u>
Matrix: (soil/	water)	SOIL	Lab Sample ID: L	J0610099-005B
Sample wt/v	ol:	5.0 (g/ml) G	Lab File ID:	C15414.D
_evel: (low/r	med)	LOW	Date Received: 1	10/4/06
% Moisture:	•	33.2	Date Analyzed:	10/10/06
GC Column:	RTX-\	/ol ID: 0.53 (mm)	Dilution Factor:	1.0
Soil Extract '	Volume:	(uL)	Soil Aliquot Volum	ne: (uL
		_		

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane WS / VTE C		U
75-1-4	Vinyl Chloride	15	<u>U</u>
74-83-9	Bromomethane @	15	<u> </u>
75-00-3	Chloroethane	15	U
67-64-1		15	
- 75-35-4	1,1-Dichloroethene UT	15	U
75-15-0	Carbon Disulfide U3	15	<u> </u>
75-09-2	Methylene Chloride 47	15 -2	J
156-60-5	trans-1,2-Dichloroethene 🛂	15	<u> </u>
75-34-33	1,1-Dichloroethane	15	U
78-93-3	2-Butanone	15	<u> </u>
156-59-2	cis-1.2-Dichloroethene	15	U
67-66-3	I Chloroform ₽⊅	15	<u> </u>
71-55-6	1.1.1-Trichloroethane の / 子町 (15	
56-23-5	Carbon Tetrachloride	15	U
71-43-2	Benzene	15	U
107-06-2	1.2-Dichloroethane	15	U
97-01-6	Trichloroethene	15	U
78-87-5	1,2-Dichloropropane	15	U
75-27-4	Bromodichloromethane	15	U
108-10-1	4-Methyl-2-pentanone	15	U
10061-1-5	cis-1,3-Dichloropropene	15	U
108-88-3	Toluene	15	<u> </u>
10061-2-6	trans-1,3-Dichloropropene	15	U
79-00-5	1,1,2-Trichloroethane	15	U
591-78-6	2-Hexanone	15	<u>'</u>
127-18-4	Tetrachloroethene C.	15	U
124-48-1	Dibromochloromethane	, 15	U
108-90-7	Chlorobenzene	15	<u> </u>
100-30-7	Ethylbenzene	15	U
108-38-3	m,p-Xylene	15	U
95-47-6	o-Xylene	15	U
100-42-5	Styrene	15	U
75-25-2	Bromoform	15	U
79-34-5	1,1,2.2-Tetrachloroethane	15	U

pr notate

Level II

-40-(

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS SS-05 Lab Name: Upstate Labs Inc. _ Contract: Lu Engineer Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-005B Sample wt/vol: 5.0 (g/ml) G Lab File ID: C15414.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. 33.2 Date Analyzed: 10/10/06 GC Column: RTX-Vol ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: 1 (uL) Soil Aliquot Volume: 1 (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q 1. 000541-05-9 ! Cyclotrisiloxane, hexamethyl- 名字可 16.41 JN

unknown

Lake (III

30

24.43

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SS-05 RE

Contract: Lu Engineer Lab Name: Upstate Labs Inc. SDG No.: LU005 SAS No.: _____ Case No.: ___ 10170 Lab Code: Lab Sample ID: <u>U0610099-005B</u> SOIL Matrix: (soil/water) C15429.D Lab File ID: (g/ml) <u>G</u> 5.0 Sample wt/vol: Date Received: 10/4/06 LOW Level: (low/med) Date Analyzed: 10/11/06 % Moisture: not dec. 33 Dilution Factor: 1.0 GC Column: RTX-Vol ID: 0.53 (mm) Soil Aliquot Volume: Soil Extract Volume: _____ (uL)

CONCENTRATION UNITS:

	CONCERNIAN			\sim
:AS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG		Q
	Chloromethane RD		15	U
74-87-3	Chlorottettatte		15	U
75-1-4	Vinyl Chloride		15	U
74-83-9	Bromomethane		15	U
75-00-3	Chloroethane		10	J
67-64-1	Acetone		15	U
75-35-4	1,1-Dichloroethene	_	15	<u> </u>
75-15-0	Carbon Disulfide		4	J
75-09-2	Methylene Chloride	· · · · · · · · · · · · · · · · · · ·	15	U
156-60-5	trans-1,2-Dichloroethene	i	15	U_
75-34-33	1,1-Dichloroethane		15	Ų
78-93-3	2-Butanone		15	U
156-59-2	cis-1,2-Dichloroethene		5 3	J
67-66-3	CHOOLIN		15	U
71-55-6	1,1,1-Trichloroethane		15	Ū
56-23-5	Carbon Tetrachloride		15	U
71-43-2	Benzene		15	U
107-06-2	: 1,2-Dichloroethane		15	U
97-01-6	Trichloroethene		15	U
78-87-5	1,2-Dichloropropane		15	U
75-27-4	Bromodichloromethane		15	· U
108-10-1	4-Methyl-2-pentanone		15	U
10061-1-5	cis-1,3-Dichloropropene		15	U
108-88-3	Toluene		15	i U
10061-2-6	trans-1,3-Dichloropropene		15	Ū
79-00-5	1,1,2-Trichloroethane		15	Ū
591-78-6	2-Hexanone		15	† <u>ŭ</u>
127-18-4	Tetrachloroethene		15	· U
124-48-1	Dibromochloromethane		15	. U
108-90-7	Chlorobenzene		<u>15</u>	
100-41-4	Ethylbenzene		15	Ū
	m,p-Xylene			i U
108-38-3	o-Xylene		15	T U
95-47-6	Styrene		15	T U
100-42-5	Bromoform		15	1 1
75-25-2	1,1,2,2-Tetrachloroethane		15	

Level V 15 12/11/97

-42-

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

								. 66	-05 RE	1
Lab Name:	Upstate	Labs Inc	G.	Co	ntract:	Lu E	Engineer		1-03 IXL	
Lab Code:	10170		Case No.:		SAS No).:	s	DG No.:	LU005	
Matrix: (soil/v	vater)	SOIL			Lal	b San	nple ID:	U061009	9-005B	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>		Lat	b File	ID:	C15429.	D	
Level: (low/m	ned)	LOW			Dat	te Re	ceived:	10/4/06		
% Moisture: r	not dec.	33			Dat	te An	alyzed:	10/11/06		
GC Column:	RTX-V	<u>/ol</u> ID:	0.53 (mm)		Dilu	ution	Factor:	1.0		
Soil Extract V	'olume:	1	(uL)		Soi	il Aliq	uot Volu	me: <u>1</u>		(uL)
				CONCE						
Number TICs	found:	0		(ug/L or	ug/Kg)		UG/KG			
CAS NO.		COMP	OUND NAME			RT	ES	T. CONC	;, (Q

Lovel III

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-05A

Lab Name: Upstat	e Labs Inc.	Contract: Lu Engineer	
Lab Code: 10170	Case No.:	SAS No.: SDG No.: LUC	05
Matrix: (soil/water)	SOIL	Lab Sample ID: <u>U0610099-00</u>	06B
Sample wt/vol:	5.0 (g/ml) <u>G</u>	Lab File ID: C15415.D	
Level: (low/med)	LOW	Date Received: 10/4/06	
% Moisture: not dec	. 24.7	Date Analyzed: 10/10/06	
GC Column: RTX		Dilution Factor: 1.0	
Soil Extract Volume	(uL)	Soil Aliquot Volume:	(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	J/Kg) <u>UG/</u> I	KG	Q
74-87-3	Chloromethane リンプ	itt c	13	U
75-1-4	Vinyl Chloride	•	13	U
74-83-9	Bromomethane	101	13	U
75-00-3	Chloroethane	1 1	13	<u> </u>
67-64-1	Acetone UT	F	13-9.	J
75-35-4	1,1-Dichloroethene	J	13	U
75-15-0	Carbon Disulfide UT		13	U
75-09-2	Methylene Chloride 以て	T	13 -2.	J
156-60-5	trans-1,2-Dichloroethene ਪ੍ਰਾ		13	<u> </u>
75-34-33	1,1-Dichloroethane		13	U
78-93-3	2-Butanone		13	U
156-59-2	cis-1,2-Dichloroethene		13	U
67-66-3	Chloroform		13	U
71-55-6	1.1.1-Trichloroethane	e .	13	<u>U</u> _
56-23-5	Carbon Tetrachloride		13	U
71-43-2	Benzene		13	U
107-06-2	1,2-Dichloroethane		13	U
97-01-6	Trichloroethene		13	U
78-87-5	1,2-Dichloropropane		13	U
75-27-4	Bromodichloromethane		13	U
108-10-1	4-Methyl-2-pentanone		13	U
10061-1-5	cis-1,3-Dichloropropene	ا ٿ	13	U
108-88-3	Toluene		13	U
10061-2-6	trans-1,3-Dichloropropene		13	U
79-00-5	1,1,2-Trichloroethane		13	U
591-78-6	2-Hexanone		13	U
127-18-4	Tetrachloroethene		13	U
124-48-1	Dibromochloromethane		13	U_
108-90-7	Chlorobenzene		13	U
100-41-4	Ethylbenzene		13	U
108-38-3	m,p-Xylene		13	U
95-47-6	o-Xylene		13	U
100-42-5	Styrene		13	<u> </u>
75-25-2	Bromoform		13	U
79-34-5	1,1,2,2-Tetrachloroethane	. 🕠 📗	13	<u> </u>

pm rultdor

Lacell

3/90

-29(

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		1 - 14 17	UIVELI IDEN	TIFIED COMPO	פטאנ	·		l
Lab Name:	Upstate	Labs Inc		Contract:	Lu E	Ingineer	SS-0	5A
Lab Code:	10170		Case No.:	SAS No	.:	SDO	3 No.: LUC	005
Matrix: (soil/w	/ater)	SOIL	··	Lat	Sam	nple ID: U	10610099-0	06B
Sample wt/vo	i :	5.0	(g/ml) <u>G</u>	Lat	File	ID: C	15415.D	
Level: (low/m	ned)	LOW		Da	te Re	ceived: 1	0/4/06	
% Moisture: n	ot dec.	24.7		Dat	te Ana	alyzed: 1	0/10/06	
GC Column:	RTX-\	<u>/ol</u> ID: <u>(</u>	0.53 (mm)	Dilu	ution F	actor: 1.	.0	
Soil Extract V	olume:	1	(uL)	Soi	l Aliqu	uot Volume	ə: <u>1</u>	(uL)
				CONCENTRAT				
Number TICs	found:	0		(ug/L or ug/Kg)	_	JG/KG		
CAS NO.		COMPC	UND NAME		RT	EST.	CONC.	Q

LEVERTY

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SS-06

_ab Name:	Upstate	Labs Inc.	Contrac	t: Lu En			
Lab Code:	10170	Case No.:	SAS			G No.: <u>LU005</u>	
Matrix: (soil/\	water)	SOIL		Lab Samp	ole ID:	U0610099-007B	
Sample wt/vo		5.0 (g/ml) <u>C</u>	}	Lab File II): _	C15430.D	
Level: (low/r		LOW		Date Rece	eived:	10/4/06	
% Moisture:		29		Date Anal	lyzed:	10/11/06	
			1)	Dilution F	actor:	1.0	
GC Column:		(uL)	•	Soil Alique	ot Volui	me:	(uL)
Soil Extract '	Volume:	(uL)		,			

CONCENTRATION UNITS:

	CONCENTA		О.	_
CAS NO.	COMPOUND (ug/L or ug/l	(g) <u>UG/</u> ł	<u> </u>	Q
	Chloromethane UT (-)	1111. し	14	U
74-87-3	Onlordinging	1111	14	U
75-1-4	Vinyl Chloride		14	U
74-83-9	Bromomethane	+ 1	14	U
75-00-3	Chloroethane	ा व	14-7	J
67-64-1		+ 2	14	U
75-35-4	11 0.0		14	U
75-15-0	Carbon Disulfide		14-3.	J
75-09-2			14	U
156-60-5	trans-1,2-Dichloroethene 14.5		14	U
75-34-33	1,1-Dichloroethane		14	U
78-93-3	2-Butanone		14	Ū
156-59-2	cis-1,2-Dichloroethene	SF	14-3-	J
67-66-3	OTTOTOTOTTT	105	14	Ū
71-55-6	1,1,1-Trichloroethane		14	Ū
56-23-5	Carbon Tetrachloride	- !! -	14	Ū
71-43-2	Benzene		14	Ū
107-06-2	1,2-Dichloroethane		14	U
97-01-6	Trichloroethene		14	Ü
78-87-5	1,2-Dichloropropane		14	Ü
75-27-4	Bromodichloromethane		14	U
108-10-1	4-Methyl-2-pentanone	10	14	U
10061-1-5	cis-1,3-Dichloropropene	191	14	U
108-88-3	Toluene		14	U
10061-2-6	trans-1,3-Dichloropropene		14	
79-00-5	1,1,2-Trichloroethane		14	U
591-78-6	2-Hexanone		14	u
127-18-4	Tetrachloroethene			l U
124-48-1	Dibromochloromethane		14 14	U
108-90-7	Chlorobenzene			; U
100-41-4	Ethylbenzene		14	U
108-38-3	m,p-Xylene		14	U
95-47-6	o-Xylene		14	 U
100-42-5	Styrene		14	U
75-25-2	Bromoform		14	U
79-34-5	1,1,2,2-Tetrachloroethane	Ψ	10001	

my relator

Doel IV

-315(

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: Upstate Labs Inc. SS-06 ____ Contract: Lu Engineer Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-007B Sample wt/vol: 5.0 (g/ml) G Lab File ID: C15430.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. 29 Date Analyzed: 10/11/06 GC Column: RTX-Vol ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: 1 (uL) Soil Aliquot Volume: 1 (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) Number TICs found: UG/KG CAS NO. COMPOUND NAME RT EST. CONC.

Level II

-316-

Q

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SS-07

Lab Name:	Upstate	Labs Inc	> .	_ Contract:	Lu Enginee	<u>r</u>	
Lab Code:	10170		Case No.:	SAS No	n.: S	SDG No.: LU005	
Matrix: (soil/	water)	SOIL		Lai	b Sample ID:	U0610099-008B	
Sample wt/vo		5.0	(g/ml) G	La	b File ID:	C15417.D	
Level: (low/r		LOW		Da	ite Received:	10/4/06	
% Moisture:		49		Da	ite Analyzed:	10/10/06	
GC Column:		/ol ID:	0.53 (mm)	Dil	ution Factor:	1.0	
Soil Extract			(uL)	So	il Aliquot Vol	ume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/l	(g) <u>UG/</u>	KG	Q
74-87-3	Chloromethane UT /	-117 C.	20	U
75-1-4	Vinyl Chloride	,	20	U
74-83-9	Bromomethane	<u> </u>	20	<u>U</u>
75-00-3	Chloroethane	ì	20	<u> </u>
67-64-1	Acetone ().I	7-	25	
75-35-4	1,1-Dichloroethene	V _o *	20	<u> </u>
75-35 -4 75-15-0	Carbon Disulfide		20	U_
	Methylene Chloride	T	20-3.	J
75-09-2	trans-1,2-Dichloroethene		20	U
156-60-5	1,1-Dichloroethane		20	U
75-34-33	2-Butanone		20	U
78-93-3	cis-1,2-Dichloroethene		20	U
156-59-2	Chloroform		20	U
67-66-3	1,1,1-Trichloroethane	0	20	U
71-55-6	Carbon Tetrachloride	0	20	U
56-23-5	Benzene		20	U
71-43-2	1,2-Dichloroethane		20	U
107-06-2	Trichloroethene			U
97-01-6	1,2-Dichloropropane	<u> </u>	20	U
78-87-5	Bromodichloromethane		20	U
75-27-4			20	l U
108-10-1	4-Methyl-2-pentanone		20	U
10061-1-5	cis-1,3-Dichloropropene		20	U
108-88-3	Toluene		20	U
10061-2-6	trans-1,3-Dichloropropene		20	U
79-00-5	1,1,2-Trichloroethane		20	. U
591-78-6	2-Hexanone	10	20	U
127-18-4	Tetrachloroethene		20	Ū
124-48-1	Dibromochloromethane		20	Ū
108-90-7	Chlorobenzene		20	U
100-41-4	Ethylbenzene		20	Ū
108-38-3	m,p-Xylene		20	. <u>U</u>
95-47-6	o-Xylene		20	U
100-42-5	Styrene	- $+$	20	<u>ب</u> ل
75-25-2	Bromoform		20	. U
79-34-5	1,1,2,2-Tetrachloroethane 🖟	<u> </u>		

Leuce II

m 12/11/07

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		IENI	ATIVELYIDEN	TIFIED COMPOU	INDS			
Lab Name:	Upstate	Labs In	C.	Contract:	Lu Engine	er	SS-07	
Lab Code:	10170		Case No.:	SAS No.		SDO	3 No.: LU005	
Matrix: (soil/w	vater)	SOIL		Lab	Sample II	D: U	0610099-008E	}
Sample wt/vo	ol;	5.0	(g/ml) <u>G</u>	Lab	File ID:	C	15417.D	
Level: (low/m	ned)	LOW		Dat	e Received	d: 10	D/4/06	
% Moisture: r	ot dec.	49		Dat	e Analyzed	i: 10	0/10/06	
GC Column:	RTX-\	<u>/ol</u> ID:	<u>0.53</u> (mm)	Dilu	tion Factor	: 1.	0	
Soil Extract V	olume:	1	(uL)	Soil	Aliquot Vo	lume	e: <u>1</u>	(uL)
Number TICs	found:	0		CONCENTRAT		•		
CAS NO.		COMP	OUND NAME		RT I	EST.	CONC.	Q
						J-P.U	re (III	

-323-

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SED-01

Lab Name:	Upstate	Labs Inc	C.	Contract:	Lu Enginee	er	
Lab Code:	10170		Case No.:	SAS No).:	SDG No.: LU005	
Matrix: (soil/w	vater)	SOIL		La	b Sample ID	: <u>U0610099-009B</u>	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	La	b File ID:	C15425.D	
Level: (low/m	ned)	LOW		Da	te Received	: 10/4/06	
% Moisture: r	not dec.	20.3		Da	ite Analyzed:	10/11/06	
GC Column:	RTX-V	<u>/ol</u> ID:	0.53 (mm)	Dil	ution Factor:	1.0	
Soil Extract V	/olume:		(uL)	Sc	il Aliquot Vol	lume:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (u	g/L or ug/Kg)	UG/KG_		Q
- 74-87-3	Chloromethane	WI/ +I	fd	12	U
75-1-4	Vinyl Chloride	1 1		12	U
74-83-9	Bromomethane	i		12	U
75-00-3	Chloroethane		1	12	U
• 67-64-1	Acetone		1	12	υ
75-35-4	1,1-Dichloroethene	*	V.	12	U
75-15-0	· Carbon Disulfide	してい		12	U
75-09-2	Methylene Chloride	U.S	-1	123	J
156-60-5	trans-1,2-Dichloroethe	ene UJ		12	U
75-34-33	1,1-Dichloroethane			12	U
78-93-3	2-Butanone			12	U
156-59-2	cis-1,2-Dichloroethene	e 🖖 , 🖟		12	U
67-66-3	Chloroform .	U.以 / 约1	TEXT	12-4	J
71-55-6	1,1,1-Trichloroethane	(灯)	<u></u>	12	U
56-23-5	Carbon Tetrachloride		<u>C-1</u>	12	U
71-43-2	Benzene			12	U
107-06-2	1,2-Dichloroethane			12	U
97-01-6	Trichloroethene			12	U
78-87-5	1,2-Dichloropropane			12	U
75-27-4	Bromodichloromethan	ne		12	U
. 108-10-1	4-Methyl-2-pentanone			12	U
10061-1-5	cis-1,3-Dichloroprope	ne / /	<u> Ci</u>	12	U
108-88-3	Toluene			12	U
. 10061-2-6	trans-1,3-Dichloroprop	oene i	<u>a </u>	12	U
79-00-5	1,1,2-Trichloroethane			12	U
591-78-6	2-Hexanone			12	U
127-18-4	Tetrachloroethene		<u> </u>	12	U
124-48-1	Dibromochloromethar	ne .		12	U
108-90-7	Chlorobenzene	1 1		12	U
100-41-4	Ethylbenzene			12	U
108-38-3	m,p-Xylene	1	1	12	U
95-47-6	o-Xylene			12	U
100-42-5	Styrene			12	U
75-25-2	Bromoform			12	U
79-34-5	1,1,2,2-Tetrachloroeth	nane 🎍 🎍		12	U

17/17/07

Level II Ichalon

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS

		1 2001 1	ACTIVILE TO LIV	THIED COMPOC	פטאוו			1
Lab Name:	Upstate	Labs In	С.	Contract:	Lu Er	ngineer	SED-0)1
Lab Code:	10170		Case No.:	SAS No	.:	SD	G No.: LU0	05
Matrix: (soil/w	/ater)	SOIL		Lab	Sam	ple ID: L	J0610099-00	9B
Sample wt/vo	l:	5.0	(g/ml) <u>G</u>	Lab	File I	D: C	15425.D	
Level: (low/m	ned)	LOW		Dat	e Rec	eived: 1	0/4/06	
% Moisture: n	ot dec.	20.3		Dat	e Ana	lyzed: 1	0/11/06	To Francis
GC Column:	RTX-V	<u>′ol</u> ID:	0.53 (mm)	Dilu	ition F	actor: 1	.0	
Soil Extract Vo	olume:	1	(uL)	Soil	Alique	ot Volume	e: <u>1</u>	(uL)
Number TICs	found:	0		CONCENTRAT (ug/L or ug/Kg)		NITS: G/KG		
CAS NO.		COMP	OUND NAME		RT	EST.	CONC.	Q
						Leu	ee TU	

-329-

1A **VOLATILE ORGANICS ANALYSIS DATA SHEET**

EPA SAMPLE NO.

SED-02

_ab Name:	Upstate	pstate Labs Inc.			Lu Engineer		
Lab Code:	10170		No.:	SAS No	o.: S	DG No.: LU005	
Lab Oode. Matrix: (soil/\		SOIL		_ La	b Sample ID:	U0610099-010B	-
·		5.0	(g/ml) G	La	b File ID:	C15426.D	
Sample wt/vo		LOW	(9)	— Da	ate Received:	10/4/06	
Level: (low/r				Da	ate Analyzed:	10/11/06	
% Moisture:		31.1		•	ilution Factor:	1.0	
GC Column:	RTX-\	/ol ID: 0.5			oil Aliquot Volu	ıme:	(uL)
Soil Extract \	Volume:		(uL)	٠,	Jii / liiquot voit		

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG		Q
	Chloromethane US / *TT c	-	14	U
74-87-3	Chlorottettatte		14	U
75-1-4	Vinyl Chloride	1	14	U
74-83-9	Bromometrane		14	U
75-00-3	Chloroethane	FH	14	J
67-64-1	Acetone	,	14	U
75-35-4	1,1-Dichloroethene VIT	;	14	U
75-15-0	Carbon Disulfide		14 -5-	J
75-09-2	MELITATE CHOING		14	Ū
156-60-5	trans-1,2-Dichloroethene US		14	Ū
75-34-33	1,1-Dichloroethane		14	- U
78-93-3	2-Butanone		14	U
156-59-2	cis-1,2-Dichloroethene	ar l	14-2	J
67-66-3	CHOIOIOIII		14	Ū
71-55-6	1,1,1-Trichloroethane	19-	14	i U
56-23-5	Carbon Tetrachloride	14	14	Ü
71-43-2	Benzene		14	U
107-06-2	1,2-Dichloroethane		14	<u> </u>
97-01-6	Trichloroethene	1 '	14	 U
78-87-5	1,2-Dichloropropane	 	14	
75-27-4	Bromodichloromethane		14	U
108-10-1	4-Methyl-2-pentanone	+	14	T U
10061-1-5	cis-1,3-Dichloropropene	19-	14	† U
108-88-3	Toluene	 _ 	14	1 U
10061-2-6	trans-1,3-Dichloropropene		14	U U
79-00-5	1,1,2-Trichloroethane		14	$+\frac{\upsilon}{\upsilon}$
591-78-6	2-Hexanone	100	14	- Ü
127-18-4	Tetrachloroethene	15-	14	U
124-48-1	Dibromochloromethane			U
108-90-7	Chlorobenzene		14	+ U
100-41-4	Ethylbenzene		14	
108-38-3	m,p-Xylene		14	· U
95-47-6	o-Xylene		14	
	Styrene		14	<u> </u>
100-42-5	Bromoform	<u> </u>	14	<u>U</u> _
75-25-2 79-34-5	1,1,2,2-Tetrachloroethane	<u> </u>	14	U

PM 12/12/07

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			ALIVEL IDEN	THED COMPO		İ		
Lab Name:	Upstate	Labs Inc	<u>. </u>	Contract:	Lu Engin	eer	SED-02	2
Lab Code:	10170	i	Case No.:	SAS No		SDO	G No.: LU00	5
Matrix: (soil/w	ater)	SOIL		Lat	Sample I	-	 10610099-010	
Sample wt/vo	l:	5.0	(g/ml) <u>G</u>		File ID:		15426.D	
Level: (low/m	ied)	LOW		Dat	e Receive		0/4/06	
% Moisture: n	ot dec.	31.1		Dat	e Analyze	d: 10	0/11/06	_
GC Column:	RTX-V	<u>/ol</u> ID:	0.53 (mm)	Dilu	ition Facto	or: 1.	.0	
Soil Extract Vo	olume:	1	(uL)	Soil	Aliquot V	olume	e: 1	 (uL)
Number TICs	found:	0	· · · · · · · · · · · · · · · · · · ·	CONCENTRAT (ug/L or ug/Kg)			_	
CAS NO.		СОМРО	DUND NAME		RT	EST.	CONC.	Q

Level III

VOLATILE ORGANICS ANALYSIS DATA SHEET

SED-003

ab Name: Upstate Labs Inc.				Contract: Lu Engineer						
Lab Code:	10170 Case No.:			SAS No.:S	DG No.: LU005					
Matrix: (soil/v	vater)	SOIL		Lab Sample ID:	U0610099-011B					
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	Lab File ID:	C15427.D					
Level: (low/n	ned)	LOW		Date Received:	10/4/06					
% Moisture: ı	not dec.	20.6		Date Analyzed:	10/11/06					
GC Column:	RTX-\	ol ID:	0.53 (mm)	Dilution Factor:	1.0					
Soil Extract \	/olume:		(uL)	Soil Aliquot Volu	ume:	(uL				

CONCENTRATION UNITS:

	CONCENTRA	HOM OME	5.	
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/F	⟨G	Q
74-87-3	Chloromethane 43/+7	ir c.	13	U
75-1-4	Vinyl Chloride	**	13	U
74-83-9	Bromomethane	간 '	13	U
75-00-3	Chloroethane 😾		13	U
67-64-1	Acetone 5		20	
75-35-4	1,1-Dichloroethene はず	\v_	13	U
75-15-0	Carbon Disulfide ルゴ		13	U
75-09-2	Methylene Chloride レン	1	13 4	J
156-60-5	trans-1,2-Dichloroethene ひて		13	U
75-34-33	1,1-Dichloroethane ルゴ		13	U_
78-93-3	2-Butanone	1	5	J
156-59-2	cis-1,2-Dichloroethene ロゴノマ		13	U
67-66-3	Chloroform リガン/ デ	<i>沖</i> 和.	[3-1	J
71-55-6	1,1,1-Trichloroethane ム	10	13	U
56-23-5	Carbon Tetrachloride	70	13	U
71-43-2	Benzene		13	U
107-06-2	1,2-Dichloroethane		13	U
97-01-6	Trichloroethene		13,	<u>U</u>
78-87-5	1,2-Dichloropropane		13	U
75-27-4	Bromodichloromethane		13	U
108-10-1	4-Methyl-2-pentanone		13	U
10061-1-5	cis-1,3-Dichloropropene	C	13	U
108-88-3	Toluene		13	U
10061-2-6	trans-1,3-Dichloropropene	0	13	U
79-00-5	1,1,2-Trichloroethane		13	U
591-78-6	2-Hexanone		13	U
127-18-4	Tetrachloroethene	10	4 !	J
124-48-1	Dibromochloromethane 4.5		13	U
108-90-7	Chlorobenzene		13	U
100-41-4	Ethylbenzene		13	U
108-38-3	m,p-Xylene		13	U
95-47-6	o-Xylene		13	U
100-42-5	Styrene		13	U
75-25-2	Bromoform		13	U
79-34-5	1,1,2,2-Tetrachloroethane		13	U

m 12/11/07

Laver W

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: Upstate Labs Inc. SED-003 _____ Contract: Lu Engineer Lab Code: 10170 Case No.: SAS No.: SDG No.: LU005 Matrix: (soil/water) SOIL Lab Sample ID: U0610099-011B Sample wt/vol: 5.0 _ (g/ml) G Lab File ID: C15427.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. 20.6 Date Analyzed: 10/11/06 GC Column: RTX-Vol ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: 1 (uL) Soil Aliquot Volume: 1 (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC. Q

LOVE! II

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	V	OLATILE OF	(0) ((1) 00)			EKD-2	1
_ab Name:	UPSTAT	E LABS INC	D	Contract:		-	
Lab Code:	10170		e No.:	_ SAS No	DG No.: <u>LU005</u>	-	
Matrix: (soil/\	water)	WATER				U0610099-012C	
Sample wt/v		5.0	(g/ml) ML		ab File ID:	D16129.D	
Level: (low/r		LOW	-		ate Received:		
% Moisture:				•	ate Analyzed:		
GC Column:	DB-62	4 ID: 0.5	53 (mm)		ilution Factor: oil Aliquot Vol		(uL)
Soil Extract	Volume:		_ (uL)	5	Oll Aliquot voi	unite.	,

CONCENTRATION UNITS:

		CONCENTRATION UNITS.				
CAS NO.	COMPOUND (ug/L or ug/Kg)		40	U		
74 07 3	Chloromethane 47 /410	7	10	U		
74-87-3	Vinul Chlorida		10	U		
75-1-4	Bromomethane	₫.	10	- U		
74-83-9	Chloroethane	1	10 8			
75-00-3	Acotone		10	U		
67-64-1	1,1-Dichloroethene uT	<u> </u>	10	U		
75-35-4	Carbon Disulfide		10	Ü		
75-15-0	Methylene Chloride			U		
75-09-2	trans-1,2-Dichloroethene		10	U		
156-60-5	1,1-Dichloroethane		10			
75-34-33	2-Butanone	<u>C</u>	10	-		
78-93-3	cis-1,2-Dichloroethene		10	В		
156-59-2	Chloroform		15	U		
67-66-3	1,1,1-Trichloroethane	8.1	10	$-\frac{0}{0}$		
71-55-6	Carbon Tetrachloride	2	10	U		
56-23-5	Benzene		10	U		
71-43-2	1,2-Dichloroethane		10 !	<u>U</u>		
107-06-2	Trichloroethene		10	<u>U</u>		
97-01-6	1,2-Dichloropropane		10	J		
78-87-5	Bromodichloromethane 5	<u> </u>	6			
75-27-4	4-Methyl-2-pentanone ਪ੍ਰ		10	<u>U</u>		
- 108-10-1	cis-1,3-Dichloropropene		10	<u> </u>		
10061-1-5	Toluene		10	<u>U</u>		
108-88-3	trans-1,3-Dichloropropene		10	U		
10061-2-6	1,1,2-Trichloroethane	!	10	<u>U</u>		
79-00-5	2-Hexanone	C	10	<u>U</u>		
· <u>591-78-6</u>	Tetrachloroethene	<u> </u>	10	U		
127-18-4	Dibromochloromethane T		2	<u> </u>		
124-48-1	Chlorobenzene UT		10	<u> </u>		
108-90-7	CHOTOBERIZOTO		10	U		
100-41-4	Ethylberizerie		10	<u>U</u>		
108-38-3	m,p-Xylene	!	10	U		
95-47-6	o-Xylene		10	<u> U</u>		
100-42-5	Styrene		10	U		
75-25-2	Bromoform	;	10	U_		
79-34-5	1.1.2.2-1 etrachiorocariano	时见	14 12/11/			

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		IENIAI	ENTIF	NIFIED COMPOUNDS						1	
Lab Name:	UPSTA	ΓE LABS IN	IC.		Contract	t:	LU ENGINE	Ξ		ERB-2	
Lab Code:	10170	Ca	se No.:		SAS N	- :.ov	: 5	SD(G No.:	LU005	
Matrix: (soil/w	ater)	WATER	_		L	.ab	Sample ID:	U	061009	99-0120)
Sample wt/vol	l:	5.0	(g/ml)	ML	L	.ab	File ID:	D	16129.	.D	
Level: (low/m	ed)	LOW	_			ate	Received:	1	0/4/06		
% Moisture: n	ot dec.					ate	Analyzed:	1	0/12/06		
GC Column:	DB-624	4 ID: <u>0.5</u>	53 (m	m)		Dilut	ion Factor:	1.	.0		
Soil Extract Vo	olume: _		_ (uL)		S	oil .	Aliquot Volu	ıme	a:		(uL)
Number TICs	found:	0	_		NCENTRA g/L or ug/Kç		ON UNITS: UG/L		***************************************		
CAS NO.		COMPOU	ND NAM	IE .		*	RT ES	ST.	CONC	·.	Q
							Level		W.		

-350-

VOLATILE ORGANICS ANALYSIS DATA SHEET

Field Blank

Lab Name:	UPSTA	TE LABS IN	IC.	Contract: LU ENGI	NE	
Lab Code: 10170		Ca	se No.:	SAS No.:	SDG No.: LU005	
Matrix: (soil/w	vater)	WATER	_	Lab Sample i	ID: <u>U0610099-013C</u>	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lab File ID:	D16130.D	
Level: (low/n	ned)	LOW	_	Date Receive	ed: 10/4/06	
% Moisture: r	not dec.		_	Date Analyze	ed: 10/12/06	
GC Column:	DB-62	4 ID: 0.	53 (mm)	Dilution Facto	or: 1.0	
Soil Extract V	/olume:		(uL)	Soil Aliquot V	/olume:	(uL)
			C	NOENTRATION UNIT	rs·	

10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U	CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L	Q
75-1-4	74_87_3	Chloromethane V5 XIII.	10	U
74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 67-64-1 Acetone 0 10 U 75-35-4 1,1-Dichloroethene 10 U 75-35-4 1,1-Dichloroethene 10 U 75-15-0 Carbon Disulfide 10 U 75-15-0 Methylene Chloride 10 U 156-60-2 Methylene Chloride 10 U 75-34-33 1,1-Dichloroethane 10 U 78-93-3 2-Butanone 10 U 156-59-2 cis-1,2-Dichloroethane 10 U 156-59-2 cis-1,2-Dichloroethane 10 U 67-66-3 Chloroform 7 16 B 71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethane 10 U			10	
75-00-3			10	U
67-64-1			10	
75-35-4			_ 10	
75-15-0 Carbon Disulfide			10	
75-09-2 Methylene Chloride			10	
156-60-5 trans-1,2-Dichloroethene 10 U 75-34-33 1,1-Dichloroethane 10 U 78-93-3 2-Butanone 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 67-66-3 Chloroform 16 B 71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6				
75-34-33 1,1-Dichloroethane 10 U 78-93-3 2-Butanone 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 67-66-3 Chloroform 7 16 B 71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 127-18-4 Tetrachloroethene 10 U 10			10	U
78-93-3 2-Butanone 10 U 156-59-2 cis-1,2-Dichloroethene 10 U 67-66-3 Chloroform 16 B 71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 109-89-6 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 108-90-7 Chlorobenzene <td></td> <td></td> <td>10</td> <td></td>			10	
156-59-2 cis-1,2-Dichloroethene			10	
67-66-3 Chloroform 16 B 71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 109-88-3 Toluene 10 U 79-00-5 1,1,2-Trichloropropene 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 108-90-7 Chlorobenzene 10 U 108-38			10	U
71-55-6 1,1,1-Trichloroethane 10 U 56-23-5 Carbon Tetrachloride 10 U 77-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-10-1 4-Methyl-2-pentanone 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 108-88-3 Toluene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene			16	В
56-23-5 Carbon Tetrachloride 10 U 71-43-2 Benzene 10 U 107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 108-8-10-1 4-Methyl-2-pentanone 10 U 108-8-3 Toluene 10 U 108-8-8-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U			10	<u>'</u> U
71-43-2 Benzene			10	U
107-06-2 1,2-Dichloroethane 10 U 97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 0 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			10	
97-01-6 Trichloroethene 10 U 78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 95-47-6 o-Xylene 10 U			, 10	
78-87-5 1,2-Dichloropropane 10 U 75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			10	
75-27-4 Bromodichloromethane 6 J 108-10-1 4-Methyl-2-pentanone 10 U 10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 0 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U		1.2-Dichloropropane	10	U
108-10-1 4-Methyl-2-pentanone 10 U 10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			6	J
10061-1-5 cis-1,3-Dichloropropene 10 U 108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U		Company of the Compan	10	U
108-88-3 Toluene 10 U 10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			10	
10061-2-6 trans-1,3-Dichloropropene 10 U 79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone 10 U 127-18-4 Tetrachloroethene 0 10 U 124-48-1 Dibromochloromethane 2 J 108-90-7 Chlorobenzene 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			. 10	
79-00-5 1,1,2-Trichloroethane 10 U 591-78-6 2-Hexanone C 10 U 127-18-4 Tetrachloroethene C 10 U 124-48-1 Dibromochloromethane C 2 J 108-90-7 Chlorobenzene U 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U			i 10	
10 U 127-18-6 2-Hexanone C 10 U 127-18-4 Tetrachloroethene C 10 U 124-48-1 Dibromochloromethane C 10 U 108-90-7 Chlorobenzene U 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U			10	
127-18-4 Tetrachloroethene			10	
124-48-1 Dibromochloromethane	b	Tetrachloroethene	10	U
108-90-7 Chlorobenzene UT 10 U 100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U		Dibromochloromethane 5	2	<u> </u>
100-41-4 Ethylbenzene 10 U 108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U		41.	10	
108-38-3 m,p-Xylene 10 U 95-47-6 o-Xylene 10 U	· · · · · · · · · · · · · · · · · · ·		10	
95-47-6 o-Xylene 10 U			10	U
10 : 11	P		10	
1111-47-5	100-42-5	Styrene	10	! U !
75-25-2 Bromoform 10 U				
79-34-5 1,1,2,2-Tetrachloroethane 10 U			10	U

Level III

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				The second control						ŀ	
Lab Name:	UPSTA	TE LABS IN	IC.		Contrac	ot:	LU E	NGINE	Fie	d Blan	k
Lab Code:	10170	Ca	se No.:		SAS				G No.:	1.11005	J
Matrix: (soil/w	ater)	WATER			_				J061009		
Sample wt/vo	l:	5.0	(g/ml) M	L			File II	_	D16130.		
Level: (low/m	ed)	LOW			- [Date	e Rec	_	10/4/06		
% Moisture: n	ot dec.						e Anal	-	0/12/06		
GC Column:	DB-62	4 ID: <u>0.5</u>	3 (mm)				tion Fa	-	1.0		
Soil Extract Vo	olume:		_ (uL)					t Volum			(uL)
				CON	ICENTR/	ATI	ON UI	NITS:			
Number TICs	found:	0	-	(ug/L	or ug/K	g)	U	G/L			
CAS NO.		COMPOU	ND NAME				RT	EST	. CONC.		٦ 2
								Leve	1 IV	·	

-357-

1A . VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: UPST	ATE LABS INC.	Contract: LU ENGINE	
Lab Code: 10170	Case No.:	SAS No.: SE	OG No.: LU005
Matrix: (soil/water)	WATER -	Lab Sample ID:	U0610099-014A
Sample wt/vol:	5.0 (g/ml) ML	Lab File ID:	D16131.D
Level: (low/med)	LOW .	Date Received:	10/4/06
% Moisture: not dec).	Date Analyzed:	10/12/06
GC Column: DB-	624 ID: <u>0.53</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume	: (uL)	Soil Aliquot Volur	ne: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
74-87-3	Chloromethane	瓜子茶缸		10	U
75-1-4	Vinyl Chloride	1		10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
67-64-1	Acetone		د ا	10	U
75-35-4	1,1-Dichloroethene		1	10	U
75-15-0	Carbon Disulfide	4		10	U
75-09-2	Methylene Chloride	Č		1	J
156-60-5	trans-1,2-Dichloroet	hene 💯		10	U
75-34-33	1,1-Dichloroethane			10	U
78-93-3	2-Butanone		4	10	U
156-59-2	cis-1,2-Dichloroethe	ne 🗸 📗	Ì	10 '	U
67-66-3	Chloroform	ত্র প্রবি		10.2	JB_
71-55-6	1,1,1-Trichloroethan	ie UT	u de	10 .	U
56-23-5	Carbon Tetrachlorid			10	U
71-43-2	Benzene		,	10	U
107-06-2	1,2-Dichloroethane		i	10	U
97-01-6	Trichloroethene			10	U
78-87-5	1,2-Dichloropropane			10	U
75-27-4	Bromodichlorometh			10	U
108-10-1	4-Methyl-2-pentanoi	ne	<u>a.</u>	10	U
10061-1-5	cis-1,3-Dichloroprop	ene	i	10	U
108-88-3	Toluene	ļ		10	U
10061-2-6	trans-1,3-Dichloropr	opene	ĺ	10	U
79-00-5	1,1,2-Trichloroethan	ne		10	U
591-78-6	2-Hexanone		4	10	U
127-18-4	Tetrachloroethene		<u>al</u>	10	U
124-48-1	Dibromochlorometh	ane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene	j		10	<u> </u>
108-38-3	m,p-Xylene			10	<u> </u>
95-47-6	o-Xylene			10	U
100-42-5	Styrene	i		10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2-Tetrachloroe	ethane	ام	10	U

rm virtot

Level II

3/90

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO. TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: UPSTATE LABS INC. Trip Blank Contract: LU ENGINE Lab Code: 10170 Case No.: SAS No.: _____ SDG No.: LU005 Matrix: (soil/water) WATER Lab Sample ID: U0610099-014A Sample wt/vol: 5.0 (g/ml) ML Lab File ID: D16131.D Level: (low/med) LOW Date Received: 10/4/06 % Moisture: not dec. Date Analyzed: 10/12/06 GC Column: <u>DB-624</u> ID: <u>0.53</u> (mm) Dilution Factor: 1.0 Soil Extract Volume: _____ (uL) Soil Aliquot Volume: **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: CAS NO. COMPOUND NAME RT EST. CONC.

-364-

			υ.	s. EPA	- C	LP				,	
				1				•	CLIEN	T SAMP ID	
		IN	ORGANIC		s I	ATA SH	EET			SS-01	
								3710		22-01	İ
Lab Name:	Upstate L	aboratories	, Inc.		COI	tract:	700	3710	L		
Lab Code:	10170	Case No.		SAS	S N	0.:				.: <u>LU005</u>	
Matrix (sc	il/water):	SOIL				Lab Sa	mple	ID:	<u>U0610099-</u>	001	
Level (low	/med):	FOM				Date R	ecei	ved:	10/4/06		
% Solids:		0.0									
	Concentra	tion Units	(ug/L or	mg/kg	dry	/ weigh	t):	MG/K	<u>.G</u>		
	CAS No.	Analyte	Concent	ration	С	Q	M				
	7429-90-5	Aluminum J.	€ ,	4250		*	P				
	7440-36-0		Zem,\$	2.5 3-0	ע		P				
	7440-38-2		EAM'S	პგ.26		•	P				
	7440-39-3	Barium		45.2 0.60	17		P				
	7440-41-7		Gent, \$	2.41-5			P				
	7440-43-9			5750		*	P				
	7440-70-2			7.2	1 1		P				
	7440-47-3			4.0	} ;		P				
*	i	/	111	12.3	i 1		P				
	7440-50-8		lε	7050	1 4	*	P				
	7439-89-6		4111,\$	49 1-8 -8	1 '		P	1			-12
	7439-95-4			3350	1 1	*	P				
	7439-96-5			165		*	P				
	7439-97-6		1-1-	0.20	U	N	CV				
	7440-02-0			6.0	В		P				
	7440-09-7	Potassium		468			P				
		Selenium 0	小句味而是	55-10		N	P				
	7440-22-4	Silver U	ĭV≪.	2.0		N	P				
	7440-23-5	Sodium	L .	200	1		P				
	7440-28-0	Thallium R	19.18	762.0		N	P				
	7440-62-2	Vanadium		9.2	1	4.7	P	1			
	7440-66-6	Zinc	1/0/2111	101		N					
Color Bef	ore: BROWN	N Cla	rity Bef	ore: ()PA(QUE	-	extur			
Color Aft			rity Aft		CLE	AR	I	Artifa	cts: YES		
	er: <u>1555</u>										
pm 12/13/07		Level	- IV	•							
Comments:											

ILMO4.1

	U.S. EPA	- CLP			
	1 INORGANIC ANALYS	SIS DATA S	HEET	CLIENT SAMP ID)
Lab Name: Upstate Laborato	ories, Inc.	Contract	: 768710	SS-02	1
Lab Code: 10170 Case	No. SF	AS No.:		SDG No.: LU005	
Matrix (soil/water): SOIL		Lab S	ample ID:	U0610099-002	
Level (low/med): LOW				10/4/06	
% Solids: 0.0					
Concentration Un	its (ug/L or mg/kg	dry weigh	nt): MG/K	<u>.</u> G	
CAS No. Analyt	ce Concentration	C Q	М		
7440-38-2 Arsenic Barium Pression Pression Barium Pression Pressio	マ (以) (本川、	U * B			-1209-
~ · · · · · · · · · · · · · · · · · · ·		PAQUE	Texture Artifact		
Comments:					

Comments:
ROOTS

FORM I - IN

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

SS-03

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

Case No.

Lab Sample ID: <u>U0610099-003</u>

Level (low/med):

Lab Code: 10170

TOM

Date Received: 10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum J	€ 4040		*	P
7440-36-0		1411.4 25.3.0	ט		P
7440-38-2	Arsenic VJ	K. # 111 38 4-0		*	P
7440-39-3	Barium	36.9	В		P ·
7440-41-7	Beryllium	0.60	ט		P
7440-43-9	Cadmium J	公山\$ 2.41-2			P
7440-70-2	Calcium J/	14500		*	₽
7440-47-3	Chromium	5.9			P
7440-48-4	Cobalt U	4.0	บ		P
7440-50-8	Copper JAN				P
7439-89-6	Iron J.			*	P
7439-92-1	Lead UT/*	11,6 4010.0	1		P
7439-95-4	Magnesium J.	E 6210		*	P
7439-96-5	Manganese J,			*	P
7439-97-6	Mercury U	0.20	U	N	CV
7440-02-0	Nickel	6.4	В		P
7440-09-7	Potassium	498	B		P
7782-49-2	Selenium VJ	10 EU 35 2-0	U	N	P
7440-22-4		76 2.0	U	N	P
7440-23-5	Sodium U	200 VQ,\$ 762.0	U		₽
7440-28-0	Thallium 2	1Q1\$ 762.0	U	Ŋ	P
7440-62-2	Vanadium	9.0	В		P
7440-66-6	Zinc J	(Q MII) 53.6		N	P
			1		!

-12(

Color Before:

BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

my 12/13/07

LEVEL IV

Comme	ents:
	ROOTS

CLIENT SAMP ID INORGANIC ANALYSIS DATA SHEET SS-04 Lab Name: Upstate Laboratories, Inc. Contract: 768710 Lab Code: 10170 Case No. SAS No.: SDG No.: LU005 Matrix (soil/water): SOIL Lab Sample ID: U0610099-004 Level (low/med): LOW Date Received: 10/4/06 % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): MG/KG CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 5390 P Antimony WAR & Arsenic VI (+ 111) \$ 7440-36-0 253.0 U P 7440-38-2 382.9 ₽ 7440-39-3 Barium 42.1 P 7440-41-7 Beryllium U 0.60 0 P 7440-43-9 ustremis Cadmium 2.41-3 P J/E 7440-70-2 Calcium 6800 Ρ 7440-47-3 Chromium 7.1 P 7440-48-4 Cobalt 45 4.0 U P J/4: 111 7440-50-8 Copper 11.0 ₽ 7439-89-6 Iron JE 8670 P い到神川寺 7439-92-1 Lead 4/11.2 p -1211-7439-95-4 Magnesium JE 2680 P 7439-96-5 Manganese JEL 363 Р 7439-97-6 Mercury U 0.20 U CV 7440-02-0 Nickel 6.0 B P 7440-09-7 Potassium 475 B P 7782-49-2 Selenium UT/ SAII,\$ 35 2-8 N P UZYQ 7440-22-4 Silver 2.0 0 P 7440-23-5 Sodium . 200 U P Thallium & Q,\$ 7440-28-0 7 62-0 U P 7440-62-2 Vanadium 11.8 Þ 工作品 7440-66-6 Zinc 62.6 Ď Color Before: BROWN Clarity Before: OPAQUE Texture: Color After: YELLOW Clarity After: CLEAR Artifacts: YES AVA 12/12/07 EVEL (V

Comments: ROOTS

1

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

Lab Name: Upstate Laboratories, Inc.

Contract: <u>768710</u>

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

Lab Sample ID:

U0610099-005

Level (low/med):

LOW

Date Received:

10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum J	€ 2440		*	P
7440-36-0		/km;\$ 25 3-0	U		P
7440-38-2		5 4 5 38 5 -1		*	P
7440-39-3	Barium	23.0	В	!	P
7440-41-7	Beryllium U	0.60	U		P
7440-43-9	Cadmium UT	Chilist 2.4 1-0			P
7440-70-2	Calcium J.	(€ 23700		*	P
7440-47-3	Chromium	4.4			P
7440-48-4	Cobalt U	4.0	υ		P
7440-50-8	Copper JA	kili 9.6			P
7439-89-6	Iron J/	5870	'	*	P
7439-92-1	Lead 03/8	111,8 39 8-7			P
7439-95-4		E 12400		*	P
7439-96-5	Manganese J.	EL 240		*	P
7439-97-6		0.20	U	И	CV
7440-02-0	Nickel U	6.0	U		P
7440-09-7	Potassium	410	В	ŀ	P
7782-49-2	Selenium VI	(QXIII, \$ 35 1-0	U	N	P
7440-22-4	Silver 03	∤a. 2.0	U	N	P
7440-23-5	Godium V/F	223	1	1	P
7440-28-0	Thallium &	Qi\$ 762-0	U	N	P
7440-62-2	Vanadium	6.9	В	1	P
7440-66-6	Zinc 5/	(2.州) 128		N	P
	•		1	<u> </u>	<u> </u>

Color Before:

BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

PAN 12/13/07

LEVEL IV:

Comme	ents:
	ROOTS

			1					CLIENT SAMP I	
		INOF	GANIC ANALYS	SIS	DATA S	HEET	7	CBIENT SAMP I	.D
Lab Name:	Upstate	Laboratories,						SS-05A	
	JPD GGCC	Daboracories,	Inc.	Cc	ntract	: 7	68710		
Lab Code:	10170	Case No.	S	rs i	No.:			SDG No.: LU005	
Matrix (so	oil/water)	: SOIL			Lab S	ampl	e ID:	<u>U0610099-006</u>	
Level (low	v/med):	FOM					ived:		
% Solids:		0.0							
	Concentr	ation Units (u	g/L or mg/kg	dr	y weig	ht):	MG/K	<u>:G</u>	
	CAS No.	Analyte Co	oncentration	С	Q	M	7		
	7429-90-5	Aluminum T/F	2610	-	<u> </u>	 	4		
	7440-36-0	Antimony USA	3610 1,\$ 253-0		*	P			
	7440-38-2	Arsenic UJ	1)4 25 3-0 111,\$ 38 3-8		*	P		·	
	7440-39-3	- 13. 14	30.3	1 1	•	P			
	7440-41-7		, 0.60			P			
	7440-43-9	Cadmium us Asu	45 2.41-1			P			
	7440-70-2		16000		*	P			
	7440-47-3	Chromium	5.9	l		P	1		
	7440-48-4	Cobalt U	4.0	77		P			
	7440-50-8	Copper JAN				P			
	7439-89-6	Iron JA	6780	- 1	*	P			
	7439-92-1	Lead UJ/# 11,\$	409.5	1		P			
	7439-95-4	Magnesium J/c	7370	- 1	*	P			-
	7439-96-5	Manganese J/m /	207		*	P			
	7439-97-6	Mercury U	0.20	u	N	cv			
	7440-02-0	Nickel U	6.0	- 1	4,	P			
ļ	7440-09-7	Potassium	500	1		P			
	7782-49-2	Selenium USA Q	Ells 3 35 1.0		N	P			
	7440-22-4	Silver UNIO	1	ט ו	N	P			
	7440-23-5	Sodium U/F	218	•	• •	P			
	7440-28-0	Thallium 2/2,\$	76.2-0		N	P			
ļ	7440-62-2	Vanadium	8.8		**	P			
	7440-66-6	Zinc JAN	105		N	P			
lor Beīor	e: BROWN	Clarity	Before: OP	AQU	J	 	xture:		
lor After	: YELLOW			EAR				s: YES	
(M12/13/05		,						And the state of t	
		LEVEL	<i>iv</i>						
mments:									
ROOTS									

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

SS-06

Lab Name: Upstate Laboratories, Inc.

Contract: <u>768710</u>

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

U0610099-007 Lab Sample ID:

Level (low/med):

LOW

Date Received: 10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum 57	S 3150		*	P
	Antimony UJ	Villins 253-0	ט	ì	P
	Arsenic UU/			*	P
7440-39-3	Barium	30.8			P
7440-41-7	Beryllium ()	0.60	บ		P
	Cadmium UT	A:111, \$ 2.4 = 0	U		P
	Calcium J/			*	P
1 . =	Chromium	4.7			P
1	Cobalt U	4.0	U		P
+	Copper JA	8.5			P
	Iron J	5790		*	P
	Lead UT/	kill, \$ 37 6-5			P
7439-95-4	Magnesium J	E 6550		*	P
7439-96-5	Manganese J	E.L 201		*	P
7439-97-6	Mercury U	0.20	ł	N	CV
7440-02-0	Nickel U	6.0	U		P
7440-09-7	Potassium	420	Į.		P
7782-49-2	Selenium 🖾	√0,411,4 35 d-0	U	N	P
7440-22-4	Silver UT	∤ Q 2.0	U	N	P
7440-23-5	Sodium U/F	229	1		P
7440-28-0	Thallium R			N	P
7440-62-2	Vanadium	7.2	B		P
7440-66-6	Zinc J7	D. (#11) 44.8		N	P
			!		<u> </u>

Color Before:

BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

coloibio Mg

LEVEL IV

Comme	ents:
	ROOTS

U.S. EPA - CLP CLIENT SAMP ID INORGANIC ANALYSIS DATA SHEET SS-07 Lab Name: Upstate Laboratories, Inc. Contract: 768710 Lab Code: 10170 Case No. SAS No.: SDG No.: LU005 Matrix (soil/water): SOIL Lab Sample ID: U0610099-008 Level (low/med): LOW Date Received: 10/4/06 % Solids: 0.0 Concentration Units (ug/L or mg/kg dry weight): CAS No. Analyte Concentration | C Q М 7429-90-5 Aluminum J/E 1790 Ρ 7440-36-0 Antimony 5 41113\$ 25 3-0 U P 7440-38-2 Arsenic UT/2 11,\$ 38 2.0 U P 7440-39-3 Barium 16.2 B Ρ 7440-41-7 Beryllium U 0.60 0 P Cadmium 10 4(11,\$ 7440-43-9 2.41.0 U P 7440-70-2 Calcium J/E 8850 P 7440-47-3 Chromium 3.8 P 7440-48-4 Cobalt 0 4.0 U P JAMI 7440-50-8 Copper 11.1 P 7439-89-6 2/E Iron 3340 P 7439-92-1 UJAMII, & Lead 39 8-5 P -1215-Magnesium J/c 7439-95-4 4140 P 7439-96-5 Manganese JAEL 76.7 P 7439-97-6 Mercury 0.20 0 CV 7440-02-0 Nickel 6.0 U ₽ 7440-09-7 |Potassium 256 B P 7782-49-2 |Selenium vt/0,200,\$ 35 1-0 U Р 7440-22-4 UI/Q Silver 2.0 U ₽ 7440-23-5 Sodium 이/년 231 B P 7440-28-0 E. /C. S Thallium 762-0 U P 7440-62-2 V Vanadium 6.0 U P JAHA Q KILL 7440-66-6 Zinc 271 P Color Before: BLACK Clarity Before: OPAQUE Texture: Color After: YELLOW Clarity After: CLEAR Artifacts: YES DA PHIBLOT EVEL IV Comments: ROOTS

The second second second second

FORM I - IN

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

Lab Name: Upstate Laboratories, Inc.

Contract: <u>768710</u>

SED-01

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

Lab Sample ID:

U0610099-009

Level (low/med):

Lab Code: 10170

LOW

Date Received:

10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentratio	n C	Q	М
7429-90-5	Aluminum J	46	00	*	P
7440-36-0		FAXII, \$ 253	-0 U		P
7440-38-2	Arsenic UU/		B	*	P
7440-39-3	Barium	40	.6		P
7440-41-7	Beryllium U	0.	60 U		₽
7440-43-9	Cadmium U	M. III, \$ 2.4 1	-3		P
7440-70-2	Calcium J		00	*	P
7440-47-3		7	. 8		P
7440-48-4		4	. o U		P
7440-50-8	1	4:101	10		P
7439-89-6	Iron J	E 90	10	*	P
7439-92-1		kiii,3 4221	8		P
7439-95-4			90	*	₽
17439-96-5	, 5	1 ***	58	*	P
7439-97-6	Mercury U	0.	20 U	N	CV
7440-02-0	· ·	1	.3 B		P
7440-02-0		5	14 B		P
7782-49-2		10 pm 4 35 3	-4	N	P
7440-22-4			. o U	N	P
7440-23-5			00 U		P
7440-23-5		1	U 0.	N	P
			. B B		P
7440-62-2	I	1).9	N	P
7440-66-6	Zinc J	firms of state of			

-12

Color Before:

BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

PM 12/13/07

LEVEL IV

Comme	nts:
	ROOTS

INORGANIC ANALYSIS DATA SHEET Lab Name: Upstate Laboratories, Inc.

CLIENT SAMP ID

Contract: <u>768710</u>

SED-02

Lab Code: <u>10170</u>

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

Lab Sample ID:

<u>U0610099-010</u>

Level (low/med):

LOW

Date Received: 10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

				_		
CAS No.	Analyte	Concentration	С	Q	М	_
7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8	Aluminum J/Antimony CANTENNIC CONTROL	5850 5850 25 3-0 36 6-8 41.3 0.60 24 1-4 20300 7.4 4.0	U	* *	P P P P P P P P P	
7439-89-6 7439-92-1	7	9040		*	P	
	Magnesium 5 6 Manganese 5 6 Mercury 0 Nickel Potassium	11400 283 0.20 U 6.5 E 988 E 2.0 U 200 U	3	* * N N N	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY
		214		N	P	

-1217-

Color Before:

BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

DIA 12/13/07

LEVEL IV

Commen	its:	
	OOTS	
-		

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

SED-03

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): SOIL

Lab Sample ID:

U0610099-011

Level (low/med):

TOM

Date Received:

10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum J/	794		*	P
7440-36-0	Antimony W	Aur. \$ 25 3.0	U		P
7440-38-2	Arsenic UU/	54111,\$ 3823-3		*	P
7440-39-3	Barium U	10.0	U		P
7440-41-7	Beryllium U	0.60	U		P
7440-43-9	Cadmium UJ	たい。 第 2.4 1.0 116000	U		P
7440-70-2	Calcium J/	116000		*	₽
7440-47-3	Chromium	2.6			P
7440-48-4	Cobalt U	4.0	υ		P
7440-50-8	Copper JA	14 9.2			P
7439-89-6	Iron JA	,		*	P
7439-92-1	Lead UT/	4111 30 0-60	υ		P
7439-95-4	Magnesium J/			*	P
7439-96-5	Manganese J/			*	P
7439-97-6	Mercury U	0.20	U	N	CV
7440-02-0	Nickel U	6.0	U		P
7440-09-7	Potassium	500	В		P
7782-49-2	Selenium UT	(QHIII,\$ 46 1-0	ט	N	P
7440-22-4	Silver UT.		บ	N	₽
7440-23-5	Sodium	363	В	1	P
7440-28-0	Thallium &	Q\$ 115 2.0	U	N	P
7440-62-2	Vanadium U		ı		P
7440-66-6		HAR RIGHT 61.4		N	P

Color Before: BLACK

YELLOW

Clarity Before:

OPAQUE

Texture:

Color After:

Clarity After:

CLEAR

Artifacts: YES

70/E1/15/ MEG

EVEL IV

Comments:				
VAIROUS	SIZE	ROCKS		

			U.S. EPA	-	CLP			
		II	1 ORGANIC ANALYS	ars ·	TATA SHI	- 	CLIENT SAMP II	D
Lab Name:	Unctate	Laboratories				ד מני	ERB-2	
		Laboratories	, Inc.	Cor	itract:	768710		
Lab Code:		Case No.	SI	AS N	0.:		SDG No.: LU005	
Matrix (so	oil/water)	: WATER			Lab Sam	mple ID:	<u>U0610099-012</u>	
Level (low	/med):	LOW			Date Re	ceived:	10/4/06	
% Solids:		0.0						
	Concentr	ation Units	(ug/L or mg/kg	dry	weight): <u>UG/I</u>		
	CAS No.	Analyte	Concentration	С	Q	М		
	7429-90-5	Aluminum U	100	TT		P		
	7440-36-0	Antimony U	4:11,\$ 12.0-15.0	1 1		P	•	
	7440-38-2	Arsenic U	10+9-10-0	1 !		P		
	7440-39-3		50.0	ט		P		
	17440-41-7	2	3.0	ט		P		
	7440-43-9 7440-70-2	1	5.0			P		
	7440-70-2	1	1000		1	P		
	7440-48-4		5.0		1	P		
	7440-50-8	1	20.0		1	P		
	7439-89-6				1	P		
	7439-92-1		60.0 1113\$ 150 -3-0			P		
		Magnesium U	1000		1	P P		-121
	7439-96-5	Manganese	10.0)	P		
	7439-97-6	Mercury	0.20			ŽV		
	7440-02-0	Nickel	30.0			P		
	7440-09-7	Potassium V	, 1000		1	P		
	7782-49-2	Selenium	1115 170 7.6		į.	P		
	7440-22-4		10.0	υ	•	P		
	7440-23-5		1790		1 '	P		
	7440-28-0	Thallium OJ	0.01 350 10.0		1 -	P		
,	7440-62-2	Vanadium ()	30.0		i	P		
	7440-66-6	Zinc J/	56.8] 1	P		
Color Befor	e: COLORI	ESS Clari	ty Before: CL	EAR		 Texture		
Color After	: COLORI			EAR		Artifac	*****	
PM 12/13/07		1 ~						
		Level	/v					
Comments:								
· · · · · · · · · · · · · · · · · · ·								
								

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

Field Blank

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU005

Matrix (soil/water): WATER

Lab Sample ID: <u>U0610099-013</u>

Level (low/med):

LOW

Date Received: 10/4/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum U	100	υ		P
7440-36-0	Antimony Wife	kulis 120 15.0	υ		P
7440-38-2		10.0	υ		P
7440-39-3	1	50.0	ט		P
7440-41-7	1 ()	3.0	υ		P
7440-43-9	1 -	5.0	บ		P
7440-70-2	1 1	1000	υ		P
7440-47-3	1 1	5.0	υ		P
7440-48-4	1	20.0	ប		P
7440-50-8		10.0	บ	,	P
7439-89-6	Iron 6	60.0	U		P
7439-92-1	Lead UTA	:11,5 150 3.0	υ		P
7439-95-4		1000			P
7439-96-5	1 7	14.4	В	İ	P
7439-97-6	!,	0.20	ט		CV
7440-02-0	, - , ,	30.0			P
7440-02-0		1000	1		P
7782-49-2			3		P
		10.0	ł	ĺ	P
7440-22-4		1630	ı		P
7440-23-5	1"	14:11,\$ 38010-0			P
7440-28-0		30.0			P
7440-62-2	1		1	1	P
7440-66-6	Zinc JA	111 82.3		!	-

_	٦	2

Color Before: COLORLESS

COLORLESS

Clarity Before: CLEAR

Texture:

Color After:

Clarity After:

CLEAR

Artifacts:

PM 12/13/07

LEVEL IV

Comments:	

DATA USABILITY SUMMARY REPORT for

Churchville Ford

ANALYSIS: METALS BY 6010B, 6020, 7470A/7471A SEMIVOLATILES BY 8270C VOLATILES BY 8260B

SAMPLE DELIVERY GROUP

PREPARED FOR:

LU ENGINEERS PENFIELD, NEW YORK

Reviewed by:

Reviewed by

Approved by:

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

SDG:

I. INTRODUCTION

Task Order Title:

Churchville Ford

Contract Task Order:

1309.001D.00

Sample Delivery Group:

Lu-004

Project Manager:

G. Andrus

Matrix:

Soil/Water

QC Level:

IV

No. of Samples:

5 2

No. of Reanalyses/Dilutions:

Laboratory:

Upstate Laboratories

Table 1. Sample Identification

Sample ID	Lab ID	Matrix	Method
MW-JCL-1	U0609387-001	Soil	415.1, 6010, 7471A, 8270C, 8260B
MW-JCL-1 RE	U0609387-001 RE	Soil	8260B
MW-JCL-2	U0609387-002	Soil	415.1, 6010, 7471A, 8270C, 8260B
MW-JCL-2 RE	U0609387-002RE	Soil	8270C
MW-JCL-3	U0609387-003	Soil	415.1, 6010, 7471A, 8270C, 8260B
MW-JCL-3 RE	U0609387-003 RE	Soil	8270C, 8260B
EQ. RINSE BL-1	U0609387-004	Water	415.1, 6010, 7470A, 8270C, 8260B
Trip Blank	U0609387-005	Water	8260B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
*!!, *!!!	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: December 11, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0), EPA Methods 6010B, 7470A/7471A, and the Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP Revision 13) (9/2006).

The National Functional Guidelines for Inorganic Data Review (10/2004) advocates assigning bias when qualifying sample results. The reviewer did not assign bias to the qualified metals results as it was not possible to evaluate all QC sample results and qualitatively determine the overall sign of the bias.

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Calibration: Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115% for mercury. Initial and continuing calibration recoveries were within 90-110% for the ICP metals, except for potassium which was recovered at 87%. Potassium detected in the associated soil samples was qualified as estimated, "J."
- Blanks: Zinc was detected in a CCB but not as a concentration sufficient to qualify the site samples. There were no other method blank or CCB detects.
- Interference Check Samples: Recoveries were within the method-established control limits. The following analytes, which are not spiked into the ICSA or ICSAB solutions were noted to have positive and negative results, the absolute values of which were greater than the associated CRDL: arsenic (-12 μg/L), cadmium (6.0 μg/L), copper (-47 μg/L), lead (-15 μg/L), selenium (-19 μg/L), thallium (-74 μg/L), and zinc (42 μg/L). Results for arsenic, cadmium, copper, lead, selenium, thallium, and zinc were qualified as estimated, "J," for detects and, "UJ," for nondetects in the site soil samples. Additionally, the soil reporting limits for cadmium selenium, and thallium were raised to the level of the highest result noted in the ICSA solutions: cadmium (1.3 mg/kg), selenium (4.4 mg/kg), and thallium (15 mg/kg).

The following analytes, which are not spiked into the ICSA or ICSAB solutions were noted to have positive and negative results, the absolute values of which were greater than the associated CRDL: copper (-70 μ g/L), lead (-131 μ g/L), thallium (-358 μ g/L), and zinc (-105 μ g/L). Nondetected results for the aforementioned analytes in sample Eq. Rinse BL-1

were qualified as estimated nondetects, "UJ," and the aqueous reporting limits were raised to the level of the highest result, as noted parenthetically above.

- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits except for sodium in the soil LCS analyzed with the soil site samples.
 Sodium was recovered below the soil control limits and was qualified as an estimated nondetect, "UJ," in the site soil samples.
- Laboratory Duplicates: Laboratory duplicate analyses were performed for MW-JCL-1. All RPDs were less than the control limits of 20% except for calcium (34%) and magnesium (28%); therefore, calcium and magnesium detected in the site soil samples were qualified as estimated detects, "J."
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed for MW-JCL-1. Spike recovery limits do not apply when the native sample concentration exceeds the spike concentration by 4× or more. All recoveries were within the control limits of 75-125% except for antimony (49%), selenium (71%), silver (34%), and thallium (43%). Nondetected results for antimony, selenium, silver, and thallium were qualified as estimated nondetects, "UJ."
- Serial Dilution: Serial dilution analyses were performed for MW-JCL-3 and sample Eq. Rinse BL-1. All %Ds were less than the control limit of 10% except for manganese in the serial dilution analysis of MW-JCL-3; therefore, manganese detected in the site soil samples was qualified as an estimated detect, "J."
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Selenium was not reported on the Form I for sample Eq. Rinse BL-1. The reviewer hand-corrected the Form I to include the result from the raw data. Reported nondetects are valid to the CRDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: Selenium was detected in sample Eq. Rinse BL-1 but was not detected in the site soil samples. Zinc was detected in sample Field Blank (SDG Lu-005) at 82.5 µg/L; therefore zinc detected in MW-JCL-1 and MW-JCL-3 was qualified as nondetected at the level of contamination. Manganese and sodium were also detected in sample Field Blank, but sodium was not reported in the site samples and the site sample manganese results exceeded 5× the Field Blank result.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

6

B. EPA METHOD 8270C—Semivolatile Organic Compounds (SVOCs)

Reviewed By: K. Shadowlight

Date Reviewed: December 13, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (10/1999).

- Holding Times: Extraction and analytical holding times were met. The water samples were extracted within seven days of collection and the soil samples were extracted within 14 days of collection. All samples were analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met except as noted below. Initial calibration average RRFs were ≥0.05 in both initial calibrations. The %RSD for 2,4-dinitrophenol in the initial calibration dated 9/26/06 and the %RSDs for 4-chloroaniline, hexachlorocyclopentadiene, 2,4-dinitrophenol, n-nitrosodiphenylamine, pentachlorophenol. carbazole. dibenz(a,h)anthracene, and benzo(g,h,i)perylene in the initial calibration dated 8/29/06 exceeded 15%. The nondetect for 2,4-dinitrophenol was qualified as estimated, "UJ," in all samples. The results for the remaining %RSD outliers were qualified as estimated "J," for detects and "UJ," for nondetects in the retained results for the soil samples of this SDG. The remaining %RSDs were ≤15%. The %Ds for phenol, nitrobenzene, isophorone, 4chloroaniline, hexachlorocyclopentadiene, 2-chloronaphthalene, acenaphthylene, 3nitroaniline, 4-nitroaniline, carbazole, pyrene, butylbenzylpthalate, benzo(a)anthracene, bis(2-ethylhexylphthalate). benzo(b)fluoranthene. benzo(k)fluoranthene benzo(a)pyrene exceeded 20% in the continuing calibration dated 10/19/06. The results for the aforementioned continuing calibration outliers were qualified as estimated, "J," for detects and "UJ," for nondetetcts in samples MW-JCL-1 and MW-JCL-3. The %Ds for 2nitroaniline, 4-nitroaniline. 4-chlorophenylphenylether. di-n-butylphthalate. benzo(b)fluoranthene exceeded 20% in the continuing calibration dated 10/21/06; therefore, the nondetect results were qualified as estimated, "UJ," in associated sample MW-JCL-02RE. The %Ds for 4-nitrophenol and pentachlorophenol exceeded 20% in the continuing calibration dated 10/2/06; however, 2-nitrophenol, 4-nitrophenol, and pentachlorophenol were rejected in associated sample EQ. RINSE BL-1 and were not further qualified (see Blank Spike section). Continuing calibration RRFs were ≥0.05 and the remaining %Ds were ≤20%.
- Blanks: Di-n-butylphthalate and bis(2-ethylhexyl)phthalate were reported above the MDL but below the reporting limit in both the aqueous and soil method blanks; the results for di-n-butylphthalate and bis(2-ethylhexyl)phthalate were qualified as nondetects, "U," and the results were raised to the reporting limits in the retained analyses of this SDG. There were four TICS reported in the aqueous blank and 15 TICs reported in the soil method blank.

- Blank Spikes and Laboratory Control Samples: Only five target compounds were reported by the laboratory; therefore, when one of these five target compounds were recovered outside of the control limits, the reviewer also qualified similar compounds. Compound similarity was based on internal standards, structure and retention time. Dichlorobenzene and 1,2,4-trichlorobenzene were recovered below QC limits but >10% and 4-nitrophenol and pentachlorophenol were recovered <10% or not at all in the aqueous blank spike. Target compounds 2-nitrophenol, 4-nitrophenol, pentachlorophenol were rejected, "R," and 1,3-Dichlorobenzene 1,2-dichlorobenzene, 1,4dichlorobenzene, and 1,2,4-trichlorobenzene were qualified as estimated, UJ," in EQ RINSE BL-1. For the soil blank spike, 2-Chlorophenol, 1,4-dichlorobenzene, n-nitroso-din-propylamine, 1,2,4-trichlorobenzene, and acenaphthene were recovered below QC limits but >10%. Nondetect results for target compounds 2-chlorophenol, 2-methylphenol 1,3dichlorobenzene 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, nacenaphthene. nitroso-di-n-propylamine, n-nitrosodiphenylamine, fluorene, and fluoranthene were qualified as estimated "UJ," in the retained analyses of the soil samples. The remaining recoveries were within QC limits.
- Surrogate Recovery: Nitrobenzene-d5 and 2-fluorobiphenyl were recovered below the QC limits but >10% in MW-JCL-2/2RE and MW-JCL-3/3RE. 2-Fluorophenol and phenol d-5 were recovered below the QC limits but >10% in MW-JCL-3/3RE. The nondetect results for the target compounds associated with the BN surrogates were qualified as estimated, "UJ," in sample MW-JCL-2RE. All target compounds were qualified as estimated "J," for detects and "UJ," for nondetects in sample MW-JCL-3. The original analysis for MW-JCL-2 was rejected and not further qualified (see IS section). Sample MW-JCL-3 was reanalyzed and the reanalysis yielded similar results to the original analysis, MW-JCL-03; therefore, MW-JCL-3RE was rejected, "R," in favor of MW-JCL-3. It should be noted that the advisory surrogates 2-chlorophenol-d4 and 1,2-dichlorobenzene-d4 were not added to the site samples or QC samples. The remaining recoveries were within QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample MW-JCL-1 of this SDG. Seven out of 11 recoveries were below QC limits but >10% in the MS only, and seven RPDs exceeded QC limits in the MS/MSD pair. The remaining recoveries and RPDs were within QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: Sample FIELD BLANK (LU005) was the field blank and EQ RINSE BL-1 was the equipment rinsate identified for the samples in this SDG. There were no target compounds detected above the MDL in the field QC samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT

- Internal Standards Performance: Five out of six internal standard areas exceeded the control limits in sample MW-JCL-2. The results for the reanalysis yielded only two IS outliers above QC limits; therefore, the original analysis, MW-JCL-2, was rejected, "R," in favor of the reanalysis, MW-JCL-2RE. No qualifications were required for the elevated IS areas. The remaining internal standard area counts and retention times for the retained analyses were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. It should be noted that the laboratory calculated sample concentrations using the initial calibration average RRF rather than the daily continuing calibration RRF as required by Region 2 guidelines; therefore, all retained results were qualified as estimated, "J," for detects and "UJ," for nondetects in the samples of this SDG. The reporting limits were supported by the low point of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were reported by the laboratory for this SDG. Any TIC reported by the laboratory was qualified as tentatively identified, "NJ."
- System Performance: Review of the raw data indicated no problems with system performance.

C. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: K. Shadowlight

Date Reviewed: December 13, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (10/1999).

- Holding Times: Analytical holding times were met. The preserved waters and soil samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met except as noted below. Initial calibration average RRFs were ≥0.05 in both initial calibrations. The %RSD for 2-butanone exceeded 15% in the initial calibration dated 9/21/06. The nondetect results for 2-butanone were qualified as

9

DATA VALIDATION REPORT

estimated, "UJ," in samples MW-JCL-2, EQ RINSE BL-1, and TRIP BLANK. The %RSDs for chloromethane, acetone, 1,1,1-trichlorethane, cis-1,3-dichloropropene, trans-1,3-dichlorpropene, and tetrachlorethene exceeded 15% in the initial calibration dated 10/3/06; therefore, the aforementioned target compounds were qualified as estimated, "J," for detects and "UJ," for nondetects in the retained results for all soil site samples, except MW-JCL-2. The %RSDs for the remaining target compounds were ≤15%. The %Ds for bromomethane, 1,1-dichloroethene, and carbon tetrachloride exceeded 20% in the continuing calibration dated 9/29/06. The nondetects for bromomethane, 1,1-dichloroethene, and carbon tetrachloride were qualified as estimated, "UJ" in MW-JCL-2 and the water samples. Continuing calibration RRFs were ≥0.05 and the remaining %Ds were ≤20%.

- Blanks: The water method blank had no target compound detects above the MDL. The low-level soil method blank had numerous detects above the MDL but below the reporting limit. According to the case narrative for this SDG, the low-level detects reported in the method blank may have been due to carry-over from a previous IC standard. The detects below the reporting limit for chloroform, trichloroethene, and tetrachloroethene were qualified as nondetects, "U," and the results were raised to the reporting limit in sample MW-JCL-1.
- Blank Spikes and Laboratory Control Samples: Recoveries were within QC limits for the five target compounds that were evaluated for the low-level soil blank spike. The recoveries for 1,1-dichloroethene and trichlorethene exceeded QC limits in the aqueous blank spike; however, no qualifications were required for the elevated recoveries.
- Surrogate Recovery: Toluene-d8 was recovered below QC limits but >10% in the analyses of samples MW-JCL-1 and MW-JCL-3. The samples were reanalyzed with similar results. The results for acetone and 2-butanone were rejected, "R," in samples MW-JCl-1 and MW-JCL-3 in favor of the same results in MW-JCL-01RE and MW-JCL-03RE. The remaining results in MW-JCL-01RE and MW-JCL-03RE were rejected, "R," in favor of those same compounds in MW-JCL-01 and MW-JCL-03. The results were qualified as estimated "J," for detects and "UJ," for nondetects in samples MW-JCL-1/1RE and MW-JCL-3/3RE. The remaining recoveries were within QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample MW-JCL-1 of this SDG. Recoveries and RPDs for the five spike compounds were within QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Trip Blanks: Sample TRIP BLANK was the trip blank identified for this SDG. There were no target compounds detected above the MDL.

- o Field Blanks and Equipment Rinsates: Sample FIELD BLANK (LU005) was the field blank and EQ RINSE BL-1 was the equipment rinsate blank associated with this SDG. Chloroform, bromodichloromethane and dibromochloromethane were detected above the MDL in the field blank; however, there were no reportable detects for the aforementioned target compounds in the site samples. There were no detects above the MDL in the equipment rinsate.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard 1,4-difluorobenzene exceeded the QC limits in sample MW-JCL-03RE. Internal standard 1,2-dichlorobenzene-d4 was also recovered below QC limits in the reanalyses of MW-JCL-01RE and MW-JCL-03RE; however, there were no associated target compounds reported in the samples of this SDG. The results for acetone and 2-butanone were qualified as estimated, "J," in sample MW-JCL-3RE. The retained results for the remaining internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. It should be noted that the laboratory calculated sample concentrations using the initial calibration average RRF rather than the daily continuing calibration RRF as required by Region 2 guidelines; therefore, all retained results were qualified as estimated, "J," for detects and "UJ," for nondetects in the samples of this SDG. The reporting limits were supported by the low point of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

D. VARIOUS EPA METHODS—Total Organic Carbon

Reviewed By: P. Meeks

Date Reviewed: December 12, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 415.1, Lloyd Kahn, and the Validation of Metals for the Contract Laboratory Program (CLP) based on SOW ILMO5.3 (SOP Revision 13) (9/2006).

- Holding Times: The analytical holding times, 7 days for aqueous TOC and 28 days for soil TOC, were met.
- Calibration: Calibration criteria for Method 415.1 were met. The initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The reviewer was not able to calculate the TOC response factor for TOC analyzed by Lloyd Kahn.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed on MW-JCL-1.
 The recovery was within the laboratory-established control limit of 80-120%.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. The reviewer was not able to verify the result for MW-JCL-3. The reported result, 18,000 mg/kg, and the result calculated by the reviewer, 16,000 mg/kg, differed by 11%D. No transcription errors or calculation errors were noted.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: TOC was not detected in sample Eq. Rinse
 BL-1. The samples in this SDG had no associated field blank.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

1

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

MW-JCL-1

Lab Name: Upstate Laboratories, Inc.

Contract: <u>768710</u>

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU004

Matrix (soil/water): SOIL

Lab Sample ID: <u>U0609387-001</u>

Level (low/med):

LOW

Date Received: 9/21/06

% Solids:

90.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

				1	
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	8190		i	P
7440-36-0	Antimony	UJ /⟨Q 3.3	υ	N	P
7440-38-2	Arsenic	T/1811 4.1			P
7440-39-3	Barium	92.8			P
7440-41-7	Beryllium	્∪ 0.66	U		P
7440-43-9	Cadmium	以不停部 1.3 4.4	υ		P
7440-70-2	Calcium	% 22800		*	P
7440-47-3	Chromium	13.2			P
7440-48-4	Cobalt	6.1	В		P
7440-50-8	Copper	J/#11 15.7			p
7439-89-6	Iron	14300	ĺ		P
7439-92-1	Lead	丁/光川 12.1	Ì		P
7439-95-4	Magnesium	च/ह 9630		*	P
7439-96-5	Manganese	五/4 619		E	P
i7439-97-6	Mercury	0.22	U		CV
7440-02-0	Nickel	12.6			P
7440-09-7	Potassium	J/R 948			P
7782-49-2	Selenium	105/ 111 \$ 12 4.41-1	U	N	P
7440-22-4		ਪੋ ਹ /Q 2.2	U	N	P
7440-23-5	Sodium	OJ/L 221			P
7440-28-0	Thallium	157/5 0 KI 15 2-2	U	N	P
7440-62-2		16.8			P
7440-66-6	Zinc U/⊊	63.5			₽

-759-

Color Before:

BROWN YELLOW Clarity Before:

OPAQUE

Texture:

Color After:

Clarity After:

CLEAR

Artifacts: YES

pm 12/11/07

LEVIEL IV

Comme	ents:
	Small Stones
V	
	:

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

MW-JCL-2

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

Lab Code: 10170

Case No.

SAS No.:

SDG No.: <u>LU004</u>

Matrix (soil/water): SOIL

Lab Sample ID: <u>U0609387-002</u>

Level (low/med):

LOW

Date Received: 9/21/06

% Solids:

90.4

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentr	ation	C	Q	M
7429-90-5	Aluminum		4470			P
7440-36-0	Antimony	ট্র্যু'জ্	3.3	U	N	₽
7440-38-2	Arsenic	丁茶111	2.3			P
7440-39-3	Barium		44.4			P
7440-41-7	Beryllium	U	0.66			P
7440-43-9	Cadmium	13 05/5 × 111	1.3 1-1	U		₽
7440-70-2	Calcium	11/2	61200		*	P
7440-47-3	Chromium	:	6.5			₽
7440-48-4	Cobalt	U	4.4	U		Þ
7440-50-8	Copper	J/41.11	10.5			P
7439-89-6	Iron	1	8690			P
7439-92-1	Lead	जिल्ला ।	6.1			P
7439-95-4	Magnesium	₩.	22800		*	P
7439-96-5	Manganese	J/A	280		E	P
7439-97-6	Mercury	j.	0.22	U		CV
7440-02-0	Nickel	<u> </u>	7.4	В		P
7440-09-7	Potassium	J/R.	1090			P
7782-49-2	Selenium	02.1411120	4.41-1	υ	N	P
7440-22-4	Silver	UT/9	2.2		N	P
7440-23-5	Sodium	CAT/L	221	U		P
7440-28-0	Thallium	<i>प्ज/</i> ६,०,८०	15 2-2	U	N	p
7440-62-2	Vanadium	, , , , ,	10.1			P
7440-66-6	Zinc	1/1/ III	134			P
!	1					

Color	Before:	BROWN	Clarity	Before:	OPAQUE	Texture:	
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	YES

74 12/11/67

JEVEL IV

Comme	nts:
	Small Stones

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

MW-JCL-3

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU004

Matrix (soil/water): SOIL

Lab Sample ID: <u>U0609387-003</u>

Level (low/med):

LOW

Date Received: 9/21/06

% Solids:

90.6

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	3660			P
7440-36-0	Antimony	UT/Q 3.3	U	N	P
7440-38-2	Arsenic	JA:111 2.4	Ì		P
7440-39-3	Barium	44.8			P
7440-41-7	Beryllium	ប 0.66	U		P
7440-43-9	Cadmium	1202/8 411 104-7	U		P
7440-70-2	Calcium	TV€ 67100		*	₽
7440-47-3	Chromium	5.5			₽
7440-48-4	Cobalt	U 4.4	U		P
7440-50-8	Copper	10.2			P
7439-89-6	Iron	7510	!		P
7439-92-1	Lead	丁/公田 8.4			P
7439-95-4	Magnesium	丁/6 28100		*	P
7439-96-5	Manganese	57/A 286	İ	E	P
7439-97-6	Mercury	0.22	U		CV
7440-02-0	Nickel	7.1	В	-	P
7440-09-7	Potassium	J/R 860			P
7782-49-2	Selenium	UT/*111,\$,Q 442-1	U	N	P
7440-22-4	Silver	03/9 2.2		N	P
7440-23-5	Sodium	WT/L 221	_		P
7440-28-0	Thallium	U5/\$,Q 15.2.2	U	N	P
7440-62-2	Vanadium	7.5			P
7440-66-6	Zinc U/F	于朱州 49.1			P
	İ				

-761-

Color Before: BROWN

Clarity Before:

OPAQUE

Texture:

Color After:

YELLOW

Clarity After:

CLEAR

Artifacts: YES

An 12/11/07

ENEL IV

Comments:

Small Stones

FORM I - IN

ILM04.1

INORGANIC ANALYSIS DATA SHEET

CLIENT SAMP ID

Eq. Rinse Bl-1

Lab Name: Upstate Laboratories, Inc.

Contract: 768710

Lab Code: 10170

Case No.

SAS No.:

SDG No.: LU004

Matrix (soil/water): WATER

Lab Sample ID: <u>U0609387-004</u>

Level (low/med):

LOW

Date Received: 9/21/06

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration C Q	М
7429-90-5	Aluminum	U 100 U	P
7440-36-0	Antimony	15.0 U	Р
7440-38-2	Arsenic	10.0.U	P
7440-39-3	Barium	50.0 U	P
7440-41-7	Beryllium	3.0 U	P
7440-43-9	Cadmium	5.0 U	P
7440-70-2	Calcium	1000 U:	P
7440-47-3	Chromium	5.0 U	P
7440-48-4	Cobalt	₩ 20.0 U	P
7440-50-8	Copper	UT/\$\#\\\\ 7010.0 U	P
7439-89-6	Iron	U 60.0 U	P
7439-92-1	Lead	U	P
7439-95-4	Magnesium	1000 U:	P
7439-96-5	Manganese	10.0 U	P
7439-97-6	Mercury	0.20 U	CV
7440-02-0	Nickel	30.0	P
7440-09-7	Potassium	1000 U	P
7440-22-4	Silver	10.0 U	P
7440-23-5	Sodium	1000 U	P
7440-28-0	Thallium	UJ /4,8:11 360 10.0 U	P
17440-62-2	Vanadium	ਹ ੰ 30.0 ਹ	P
7440-66-6		02/\$'MII 110 TO-0 A	P
7782-41-2	Selenium	6.3 6.3	P

-762

Color Before: COLORLESS

COLORLESS

Clarity Before: CLEAR

Texture:

Color After: 例 证标的

Clarity After:

CLEAR

Artifacts:

EVEL IV

Comme	ents:								
		 	•	 	 	 	 	 	
		 		 	 	 	 ·	 	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTAT	TE LABS I	NC.	C	ontract:	LU ENGINE	MINE-OCE-1
Lab Code:	10170	с	ase No.:		SAS No	.:S	DG No.: LU004
Matrix: (soil/w	vater)	SOIL			Lat	Sample ID:	U0609387-001A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lab	File ID:	B27659.D
Level: (low/m	ned)	LOW	Walkings		Dat	te Received:	9/21/06
% Moisture:	9.62	de	ecanted:(Y/N)	N	_ Dat	e Extracted:	9/30/06
Concentrated	f Extract \	√olume:	1000 (uL)		Dat	te Analyzed:	10/19/06
Injection Volu	ıme: <u>2</u> .	0 (uL)			Dilu	ition Factor:	1.0
GPC Cleanuc	o: (Y/N)	Ν	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	UT/47F1	370	: U
- 108-95-2	Phenol	1 /	370	Ū
. 95-57-8	2-Chlorophenol	1	370	Ü
541-73-1	1,3-Dichlorobenzene	1 1 1	370	Ū
106-46-7	1,4-Dichlorobenzene		370	Ū
95-50-1	1.2-Dichlorobenzene		370	Ū
108-60-1	2,2'-oxybis(1-Chloropropa	ine)	370	Ū
- 95-48-7	: 2-Methylphenol		370	Ū
67-72-1	Hexachloroethane	!	370	U
621-64-7	N-Nitrosodinpropylamine		370	U
106-44-5	4-Methylphenol		370	U
98-95-3	; Nitrobenzene	0	370	U
78-59-1	Isophorone		370	U
88-75-5	2-Nitrophenol		370	U .
105-67-9	2,4-Dimethylphenol		370	U
111-91-1	bis(2-Chloroethoxy)metha	ine	370	U
120-83-2	2,4-Dichlorophenol		370	U
120-82-1	1,2,4-Trichlorobenzene		370	U
91-20-3	Naphthalene		370	U !
106-47-8	4-Chloroaniline		370	U
87-68-3	Hexachlorobutadiene		370	Ū
59-50-7	4-Chloro-3-methylphenol		370	U
91-57-6	2-Methylnaphthalene		370	Ū
· 77-47-4	Hexachlorocyclopentadier	re (1	370	U
88-06-2	2,4,6-Trichlorophenol		370	U
95-95-4	2,4,5-Trichlorophenol	ı	370	U
91-58-7	2-Chloronaphthalene	. C	370	U
88-74-4	2-Nitroaniline		890	U,
208-96-8	: Acenaphthylene	1 101	370	U
131-11-3	Dimethylphthalate		370	Ų
606-20-2	2,6-Dinitrotoluene		370	U
83-32-9	Acenaphthene		370	U
· <u>99-09-2</u>	3-Nitroaniline		890	U
51-28-5	2,4-Dinitrophenol		890	U
. 132-64-9	Dibenzofuran		370	U
121-14-2	2,4-Dinitrotoluene		370	Ū
100-02-7	4-Nitrophenol	Ja Va	890 i	U

-12-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

 Lab Name:
 UPSTATE LABS INC.
 Contract:
 LU ENGINE
 MW-JCL-1

 Lab Code:
 10170
 Case No.:
 SAS No.:
 SDG No.:
 LU004

 Matrix: (soil/water)
 SOIL
 Lab Sample ID:
 U0609387-001A

 Sample wt/vol:
 30
 (g/ml) G
 Lab File ID:
 B27659.D

Level: (low/med) LOW Date Received: 9/21/06
% Moisture: 9.62 decanted:(Y/N) N Date Extracted: 9/30/06

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06
Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) ___ N __ pH: ____

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug/Kg		UG/KG	Q
• }	86-73-7	Fluorene	U3/X	而上	370	U
	7005-72-3	4-Chlorophenylphenylether	. 1		370	U
	84-66-2	Diethylphthalate			370	U
٠.	100-01-6	4-Nitroaniline		C	- 890	U
	534-52-1	4,6-Dinitro-2-methylphenol			890	U
	86-30-6	n-Nitrosodiphenylamine		LC	370	: U
	101-55-3	4-Bromophenylphenylether		1	370	υ
	118-74-1	Hexachiorobenzene			370	U
•	87-86-5	Pentachlorophenol	V	10	. 890	. U .
	85-01-8	Phenanthrene	J		180	J
į	120-12-7	Anthracene	UJ I		370	U
:	84-74-2	Di-n-butylphthalate	15 J	B	370 1110	JB
	86-74-8	Carbazole	7		40	J
٠,	206-44-0	Fluoranthene	· T-	11	460	
• 1	129-00-0	Pyrene	7 1	C.	290	J
٠.	85-68-7	Butylbenzylphthalate	U.J	<u></u>	370	U
	91-94-1	3,3'-Dichlorobenzidine	15	:	370	U
٠.	56-55-3	Benzo(a)anthracene	7		160	J
_	218-01-9	Chrysene	J		200	J
•	117-81-7	bis(2-Ethylhexyl)phthalate	U.T.	R C	370 87	JB
_	117-84-0	Di-n-octylphthalate	ut I		370	U .
٠.	205-99-2	Benzo(b)fluoranthene	J	6	190	J
•	207-08-9	Benzo(k)fluoranthene		10	75	J
	50-32-8	Benzo(a)pyrene	I = I	: <	130	J
	193-39-5		4		130	J
•	53-70-3	Dibenz(a,h)anthracene	3	10	370	Ū
4	191-24-2		7 4	10	140	J

feet IV 12/367

-13-

1F

· SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS						*****		
Lab Name:	UPSTATE LABS INC.			Contrac	ct: LU EN	GINE)L-WM	SL-1
_ab Code:	10170	Case	No.:	SAS	No.:	SD	G No.: LU	004
Matrix: (soil/w	vater)	SOIL			Lab Sample	∍ID: L	J0609387-0	01A
Sample wt/vo	d:	30 (g/ml) <u>G</u>		Lab File ID:	: E	327659.D	
_evel: (low/med) LOW				Date Received: 9/21/06			*** ****	
% Moisture:	9.6	2 decant	ed: (Y/N)	N	Date Extrac	ted: 9	/30/06	
Concentrated Extract Volume: 1000 (uL)					Date Analyz	zed: 1	0/19/06	
njection Volume: 2.0 (uL) Dilution Factor: 1.0								
GPC Cleanup): (Y/N)	NpH				_		
CONCENTRATION UNITS:								
Number TICs found: 14				(ug/L or	ug/Kg)	UG/K	3	•
CAS NUMBI	ER	COMPOUND	NAME		RT	EST	. CONC.	
1. 000124				nu) noet				Q
2.	<u>:-</u>	unknown	DUTOVACUIOX	A)- acer	12.79 16,00	147	190 83	JN J
3. 006258	-73-7	Benzene, 1,1	-(1.3.3-trime	thyl-1-n	16.16	<u> </u>	130	JN
4.		unknown hydi			20.40	 	110	J
5.		unknown			20.89		400	J

unknown

unknown

unknown

unknown

Perylene

unknown

unknown

1-Hexacosene

unknown hydrocarbon

8.

9.

10.

11.

12.

13.

14.

018835-33-1

000198-55-0

130 Level IV

200

94

170

140

150

650

130

83

JN

J

JN

20.92

21.04

22.14

22.19

22.89

23.35

23.90

24.50

26.64

-14-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTA	TE LAB	S INC.	С	ontract:	LU ENGINE	IMAA-2CF-5
Lab Code:	10170		Case No.:		SAS No	.: S	
Matrix: (soil/w	/ater)	SOIL			Lal	Sample ID:	U0609387-002A
Sample wt/vo	d:	30	(g/ml) <u>G</u>		Lal	File ID:	B27662.D
Level: (low/m	ned)	LOW			Da	te Received:	9/21/06
% Moisture:	9.63		decanted:(Y/N)	N	Da	te Extracted:	9/30/06
Concentrated Extract Volume: 1000 (uL)				Da	te Analyzed:	10/19/06	
Injection Volu	me: <u>2</u>	0 (uL	.)		Dilt	ution Factor:	1.0
GPC Cleanup	: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/	Kg) <u>UG/KG</u>	Q
111-44-4	bis(2-Chloroethyl)ether	2/7	370	U
108-95-2	Phenol	1	370	U
95-57-8	2-Chlorophenol		370	U
541-73-1	1,3-Dichlorobenzene		370	U
106-46-7	1,4-Dichlorobenzene		370	U
95-50-1	1,2-Dichlorobenzene		370	U
108-60-1	2,2'-oxybis(1-Chloropropar	ne)	370	U
95-48-7	2-Methylphenol		370	U
67-72-1	Hexachloroethane		370	U
621-64-7	N-Nitrosodinpropylamine		370	U
106-44-5	4-Methylphenol		370	U
98-95-3	Nitrobenzene		370	U
78-59-1	Isophorone		370	U
88-75-5	2-Nitrophenol	<u>-</u>	370	U
105-67-9	2,4-Dimethylphenol		370	U
111-91-1	bis(2-Chloroethoxy)methar	e i	370	U
120-83-2	2,4-Dichlorophenol		370	U
120-82-1	1,2,4-Trichlorobenzene		370	U
91-20-3	Naphthalene		370	U
106-47-8	4-Chloroaniline		370	U
87-68-3	Hexachlorobutadiene		370	U
59-50-7	4-Chloro-3-methylphenol		370	U
91-57-6	2-Methylnaphthalene		370	U
77-47-4	Hexachlorocyclopentadiene)	370	U
88-06-2	2,4,6-Trichlorophenol		370	U
95-95-4	2,4,5-Trichlorophenol		370	U
91-58-7	2-Chloronaphthalene		370	U
88-74-4	2-Nitroaniline		890	U
208-96-8	Acenaphthylene		370	U
131-11-3	Dimethylphthalate		370	U
606-2 0 -2	2,6-Dinitrotoluene	į	370	U
83-32-9	Acenaphthene		370	Ū
99-09-2	3-Nitroaniline	!	890	U
51-28-5	2,4-Dinitrophenol	š .	890	Ū
132-64-9	Dibenzofuran	i	370	Ū
121-14-2	2,4-Dinitrotoluene	į	370	Ū
100-02-7	4-Nitrophenol	- レ	890	Ū

LOVELINE

-40

EPA SAMPLE NO.

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

MW-JCL-2 Lab Name: UPSTATE LABS INC. _____ Contract: LU ENGINE Lab Code: 10170 Case No.: SAS No.: SDG No.: LU004 Matrix: (soil/water) SOIL Lab Sample ID: U0609387-002A Sample wt/vol: 30 (g/ml) G Lab File ID: B27662.D Level: (low/med) LOW Date Received: 9/21/06 % Moisture: 9.63 decanted:(Y/N) Date Extracted: 9/30/06 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		*	-
86-73-7	Fluorene 20	370	U
7005-72-3	4-Chlorophenylphenylether	370	U
84-66-2	Diethylphthalate	370	U
100-01-6	4-Nitroaniline	890	U
534-52-1	4,6-Dinitro-2-methylphenol	890	U
86-30-6	n-Nitrosodiphenylamine	370	Ü
101-55-3	4-Bromophenylphenylether	370	U
118-74-1	Hexachlorobenzene	370	U
87-86-5	Pentachlorophenol	890	U
85-01-8	Phenanthrene	370	U
120-12-7	Anthracene	370	U
84-74-2	Di-n-butylphthalate	70	JB
86-74-8	Carbazole	370	U
206-44-0	Fluoranthene	370	U
129-00-0	Pyrene	370	U
85-68-7	Butylbenzylphthalate	370	U
91-94-1	3,3'-Dichlorobenzidine	370	U
56-55 -3	Benzo(a)anthracene	370	U
218-01-9	Chrysene	370	U
117-81-7	bis(2-Ethylhexyl)phthalate	370	U
117-84-0	Di-n-octylphthalate	370	U
205-99-2	Benzo(b)fluoranthene	370	U
207-08-9	Benzo(k)fluoranthene	370	U
50-32-8	Benzo(a)pyrene	370	U
193-39-5	Indeno(1,2,3-cd)pyrene	370	U
53-70-3	Dibenz(a,h)anthracene	370	U
191-24-2	Benzo(ghi)perylene	370	U

Level I

-433-

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

							1	
Lab Name:	UPSTA	ATE LABS I	NC.	Contrac	t: LU EN	GINE	MW-J	CL-2
Lab Code:	10170	с	ase No.:	SAS	No.:	SD	G No.: LU	004
Matrix: (soil/w	vater)	SOIL			Lab Sampl	e ID: \	J0609387-0	02A
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lab File ID	: E	327662.D	
Level: (low/m	ned)	LOW			Date Recei	ved: 9	9/21/06	
% Moisture:	9.6	3 de	canted: (Y/N)	N	Date Extra	cted: 9	9/30/06	
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06								
Injection Volume: 2.0 (uL) Dilution Factor: 1.0						.0		
GPC Cleanup	o: (Y/N)	N	pH:					
				CONCE	NTRATION	UNITS	3 :	
Number TICs	found:	4		(ug/L or	ug/Kg)	UG/K	G	•
CAS NUMB	ER	СОМРО	JND NAME	,	RT	EST	. CONC.	Q
1. 000629	-54-9	Hexadeca	ınamide	810	19.66		76	JN
2. 000301	-02-0	9-Octadeo	cenamide, (Z)-		20.89		470	JN
3.]	unknown		[20.92		340	j

unknown

LevelI

23.35

1500

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTA	TE LABS	SINC.	(Contract:	LU ENGINE	WWW-JCL-2 RE
Lab Code:	10170		Case No.:		SAS N	o.: S	DG No.: <u>LU004</u>
Matrix: (soil/v	vater)	SOIL			La	ab Sample ID:	U0609387-002ARE
Sample wt/vo	ol:	30	(g/ml) <u>G</u> ·		La	ab File ID:	B27677.D
Level: (low/m	ned)	LOW			Da	ate Received:	9/21/06
% Moisture:	9.63		decanted:(Y/N)	N	Da	ate Extracted:	9/30/06
Concentrated	Extract	Volume:	1000 (uL)		Da	ate Analyzed:	10/21/06
Injection Volu	ıme: <u>2.</u>	0 (uL)		Di	lution Factor:	1.0
GPC Cleanur	o: (Y/N)	N	nH·				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/k	(g) <u>U(</u>	G/KG	Q
111-44-4	bis(2-Chloroethyl)ether	U-T / 34.T	1-5	370	U
108-95-2	Phenol	1	,	370	Ū
95-57-8	2-Chlorophenol	1	1	370	Ü
541-73-1	1,3-Dichlorobenzene	į	15	370	Ū
106-46-7	1,4-Dichlorobenzene		9	370	U
95-50-1	1,2-Dichlorobenzene	:	1 15	370	Ū
108-60-1	2,2'-oxybis(1-Chloropropar	e)	5	370	U
95-48-7	2-Methylphenol		1	370	U
67-72-1	Hexachloroethane		v	370	U
621-64-7	N-Nitrosodinpropylamine			370	U
106-44-5	4-Methylphenol			370	U
98-95-3	Nitrobenzene		S	370	U
78-59-1	Isophorone		S	370	U .
88-75-5	2-Nitrophenol			370	U
105-67-9	2,4-Dimethylphenol			370	U
111-91-1	bis(2-Chloroethoxy)methan	e !	.5	370	U
120-83-2	2,4-Dichlorophenol			370	U
120-82-1	1,2,4-Trichlorobenzene		LS	370	U
91-20-3	Naphthalene		5	370	U
106-47-8	4-Chloroaniline		; C.	370	U
87-68-3	Hexachlorobutadiene		Y	370	U
59-50-7	4-Chloro-3-methylphenol			370	U
91-57-6	2-Methylnaphthalene		5	370	U
77-47-4	Hexachlorocyclopentadiene		5.C	370	U
88-06-2	2,4,6-Trichlorophenol			370	U
95-95-4	2,4,5-Trichlorophenol			370	U
91-58-7	2-Chloronaphthalene		5	370	U
88-74-4	2-Nitroaniline		5 C	890	U
208-96-8	Acenaphthylene		SL	370	U
131-11-3	Dimethylphthalate	·	<	370	U
606-20-2	2,6-Dinitrotoluene	!	5	370	U
83-32-9	Acenaphthene	ŧ	<u> </u>	370	U
99-09-2	3-Nitroaniline		5,	890	U
51-28-5	2,4-Dinitrophenol		\overline{C}	890	U
132-64-9	Dibenzofuran		7	370	U
121-14-2	2,4-Dinitrotoluene		Ś	370	U
100-02-7	4-Nitrophenol		,	890	U

Level V

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

						RANAI	ICL 2 DE
Lab Name: L	JPSTATE	LABS INC.	Contra	ict: LUE	NGINE	MAA	JCL-2 RE
Lab Code: 1	10170	Case No.:	SAS	8 No.:	SDO	G No.:	LU004
Matrix: (soil/wa	iter) S0	OIL		Lab Sam	ple ID: U	1060938	37-002ARE
Sample wt/vol:	30	(g/ml) G		Lab File I	D: B	27677.	D
Level: (low/me					eived: 9		
•	•	**************************************					*
% Moisture:		• ,		Date Extr	racted: 9	/30/06	
Concentrated E	Extract Vol	ume: 1000 (uL)		Date Ana	lyzed: 10	0/21/06	
Injection Volum	ne: 2.0	(uL)		Dilution F	actor: 1.	.0	
GPC Cleanup:	(Y/N)	N pH:			Waltersta		
o. o o.ouap.	(,,,,	PTI.					
			COI	NCENTRA	AU NOITA	NITS:	
CAS NO.		COMPOUND	(ug/	L or ug/Ko	g) UG/k	(G	Q
							-
86-73-7		Fluorene		「米亚」		370	U
7005-72-	-3	4-Chlorophenylphe	enylether †		<u>s e</u>	370	U
84-66-2		Diethylphthalate			5	370	U
100-01-6	j .	4-Nitroaniline	<u> </u>		<u> 5 C. </u>	890	U
534-52-1		4,6-Dinitro-2-meth	ylphenol	<u> i </u>		890	U
· · <u>86-30-6</u>		n-Nitrosodiphenyla	ımine		3 (L	370	U
101-55-3	,	4-Bromophenyiphe	enylether		5	370	U
118-74-1		Hexachlorobenzen	ie			370	U
87-86-5		Pentachlorophenol	i /		<u>(</u> 1,	890	U
85-01-8		Phenanthrene	1			370	U
120-12-7		Anthracene	1		3	370	U
84-74-2		Di-n-butylphthalate	· UJ		370		JB
86-74-8		Carbazole	ŪŢ			370	U
206-44-0		Fluoranthene)			370	U
129-00-0		Pyrene				370	Ū
85-68-7		Butylbenzylphthala	te			370	U
91-94-1		3,3'-Dichlorobenzio		13		370	Ü
56-55-3		Benzo(a)anthracen				370	U
218-01-9		Chrysene	<u>.</u>		· · · · · · · · · · · · · · · · · · ·	370	U .
117-81-7		bis(2-Ethylhexyl)ph	thalate		1	370	U
117-84-0		Di-n-octylphthalate				370	Ü
205-99-2		Benzo(b)fluoranthe					U
207-08-9		Benzo(k)fluoranthe		i-l-i		370	U
50-32-8		Benzo(a)pyrene	116			370	
						370	U
193-39-5		Indeno(1,2,3-cd)py		!!!		370	U
53-70-3		Dibenz(a,h)anthrac	ene !		C :	370	U

Lowel III!

-446

Benzo(ghi)perylene

191-24-2

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTA	TE LABS II	NC.	Contract:	LU ENG	INE	MW-JCL-2 RE
Lab Code:	10170	Ca	ase No.:	SAS N	o.:	SD	G No.: <u>LU004</u>
Matrix: (soil/v	vater)	SOIL	<u> </u>	La	ab Sample	ID: L	J0609387-002ARE
Sample wt/vo	of:	30	(g/ml) G	La	ab File ID:	E	327677.D
Level: (low/n	ned)	LOW		Da	ate Receiv	ed: 9)/21/06
% Moisture:	9.63	dec	canted: (Y/N)	N Da	ate Extract	ed: 9	9/30/06
Concentrated	i Extract '	Volume:	1000 (uL)	Da	ate Analyz	ed: <u>1</u>	0/21/06
Injection Volu	ıme: <u>2.0</u>	(uL)		Di	lution Fact	or. <u>1</u>	.0
GPC Cleanup	o: (Y/N)	N	pH:				
				CONCEN ⁻	TRATION !	UNITS	S:
Number TICs	found:	5		(ug/L or ug	_J /Kg) !	JG/K	G

7						
	CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
	1. 000638-58-4	Tetradecanamide	NT	19.61	75	JN
	2. 000301-02-0	9-Octadecenamide, (Z)-	;	20.83	450	JN
i	2	Linknown	1	20.96	300	1

unknown

21.67 75 23.31 1300

-447-

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTATE L	ABS INC.	Contract:	LU ENGINE	MAA-2CT-2
Lab Code:	10170	Case No.:	SAS No	.: S	DG No.: LU004
Matrix: (soil/v	vater) <u>SOI</u>	<u>L</u>	Lat	Sample ID:	U0609387-003A
Sample wt/vo	ol: <u>30</u>	(g/ml) <u>G</u>	Lat	File ID:	B27663.D
Level: (low/m	ned) <u>LO</u> \	<u>V</u>	Dat	te Received:	9/21/06
% Moisture:	9.43	decanted:(Y/N)	N Dat	te Extracted:	9/30/06
Concentrated	l Extract Volui	me: <u>1000</u> (uL)	Dat	te Analyzed:	10/19/06
Injection Volu	me: <u>2.0</u>	(uL)	Dilu	ıtion Factor:	1.0
GPC Cleanup	o: (Y/N)	N pH:			

CONCENTRATION UNITS:

		CONCENTRATI	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	45 84711	370	U
108-95-2	Phenol	1110	370	U
95-57-8	2-Chlorophenol		370	U
541-73-1	1,3-Dichlorobenzene		370	U
106-46-7	1,4-Dichlorobenzene		370	U
95-50-1	1,2-Dichlorobenzene	V	370	U
108-60-1	2,2'-oxybis(1-Chloropropal	ne)	370	U
95-48-7	2-Methylphenol		370	Ū
67-72-1	Hexachloroethane		370	U
621-64-7	N-Nitrosodinpropylamine		370	Ū
106-44-5	4-Methylphenol		370	U
98-95-3	Nitrobenzene		370	U
78-59-1	Isophorone	TITE	370	U
88-75-5	2-Nitrophenol		370	U
105-67-9	2,4-Dimethylphenol		370	U
111-91-1	bis(2-Chloroethoxy)methar	ne	370	Ū
120-83-2	2,4-Dichlorophenol		370	Ū
120-82-1	1,2,4-Trichlorobenzene	1 4	370	Ū
91-20-3	Naphthalene		370	Ū
106-47-8	4-Chloroaniline	110	370	Ū
87-68-3	Hexachlorobutadiene		370	Ü
59-50-7	4-Chloro-3-methylphenol		370	Ū
91-57-6	2-Methylnaphthalene		370	Ū
77-47-4	Hexachlorocyclopentadien	e	370	U
88-06-2	2,4,6-Trichlorophenol		370	Ū
95-95-4	2,4,5-Trichlorophenol		370	U
91-58-7	2-Chloronaphthalene		370	U
88-74-4	2-Nitroaniline		880	Ū
208-96-8	Acenaphthylene	I I ICL		Ū
131-11-3	Dimethylphthalate		370	Ū
606-20-2	2,6-Dinitrotoluene		370	Ū
83-32-9	Acenaphthene		370	Ū
99-09-2	3-Nitroaniline		880	Ū
51-28-5	2,4-Dinitrophenol		880	U
132-64-9	Dibenzofuran		370	Ū
121-14-2	2,4-Dinitrotoluene		370	U
100-02-7	4-Nitrophenol	V V	880	Ü

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

MW-JCL-3

Lab Name:	UPSTAT	E LABS	INC.		Contract:	LU ENGINE	IMAN-2CF-2
Lab Code:	10170	(Case No.:		SAS No	.: S	DG No.: LU004
Matrix: (soil/v	vater)	SOIL			Lal	Sample ID:	U0609387-003A
Sample wt/vo	oi:	30	(g/ml) G		Lai	File ID:	B27663.D
Level: (low/m	ned) <u>I</u>	LOW			Da	te Received:	9/21/06
% Moisture:	9.43		decanted:(Y/N) _	N	Da	te Extracted:	9/30/06
Concentrated	I Extract V	olume:	1000 (uL)		Da	te Analyzed:	10/19/06
Injection Volu	ıme: <u>2.0</u>	(uL)			Dilt	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	Ν	pH:				

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug/k	(g) <u>UG</u>	KG	Q
	86-73-7	Fluorene	四米 记	S	370	U
	7005-72-3	4-Chlorophenylphenylether		1	370	U
	84-66-2	Diethylphthalate		1	370	U
٠	100-01 - 6	4-Nitroaniline		(C)	880	U
	534-52-1	4,6-Dinitro-2-methylphenol			880	U
	86-30-6	n-Nitrosodiphenylamine		104	370	U
	101-55-3	4-Bromophenylphenylether			370	U
	118-74-1	Hexachlorobenzene	1	1	370	U
.	87-86-5	Pentachlorophenol	Ψ	10.	880	U
ļ	85-01-8	Phenanthrene	T		430	
į	120-12-7	Anthracene	UJ		370	U
1	84-74-2	Di-n-butylphthalate	MJ.	lis	55	JB
. [86-74-8	Carbazole	ゴ	TC	93	J
• 1	206-44-0	Fluoranthene	1	1	600	
3	129-00-0	Pyrene	4	<i>C.</i>	400	
	85-68-7	Butylbenzylphthalate	以 丁	10	370	U
	91-94-1	3,3'-Dichlorobenzidine	UJ	1	370	U
. [56-55-3	Benzo(a)anthracene	-/-	10	160	J
	218-01-9	Chrysene	7		190	J
- [117-81-7	bis(2-Ethylhexyl)phthalate	ur	C	370	U
- 1	117-84-0	Di-n-octylphthalate	U.T		370	U
٠.	205-99-2	Benzo(b)fluoranthene	.37	IC.	190	J
٠.	207-08-9	Benzo(k)fluoranthene		IC	66	J
٠: <u>-</u>	50-32-8	Benzo(a)pyrene		10	120	J
ſ	193-39-5	Indeno(1,2,3-cd)pyrene	/le		110	J
۳ -	53-70-3	Dibenz(a,h)anthracene	uJ Lu	C	370	U
L	191-24-2	Benzo(ghi)perylene	T 4	10	110	J

LOVE! I

-460-

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTA	TE LABS INC.	Contrac	t: LU EN	GINE	MW-JC	-L-3
Lab Code:	10170	Case No.:	SAS	No.:	SD	G No.: LUC	004
Matrix: (soil/w	/ater)	SOIL		Lab Sample	e ID: اِ	J0609387-0	03A .
Sample wt/vo	d:	30 (g/ml) G		Lab File ID:	<u> </u>	327663.D	
Level: (low/m	ned)	LOW		Date Recei	ved: 9	9/21/06	
% Moisture:	9.43	decanted: (Y/N)	N	Date Extra	cted: 9	9/30/06	
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10/19/06							
Injection Volume: 2.0 (uL) Dilution Factor: 1.0							
GPC Cleanup	: (Y/N)	N pH:					
			CONCE	NTRATION	UNIT	S:	
Number TICs	found:	7	(ug/L or	ug/Kg)	UG/K	G	
					·		
CAS NUMBI	ER	COMPOUND NAME		RT	EST	CONC.	Q
1. 003910	-35-8	1H-Indene, 2,3-dihydro-1,	1,3-trim Ni.	16.16		75	JN
2. 000084	-65-1	9,10-Anthracenedione	1	18.34		79	JN
3.		unknown		19.66]	91	J
4. 000301	-02-0	9-Octadecenamide, (Z)-	j	20.88		520	JN
5.		unknown	1	20.92		340	J
6	1	unknoum	1	22.25	1	1100	•

000192-97-2 | Benzo[e]pyrene

LoveIII

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	UPSTA	TE LABS	SINC.	Contra	ct:	LU ENGINE	MAA-JCE-3 KE
Lab Code:	10170		Case No.:	_ SAS	No	.: S	DG No.: LU004
Matrix: (soil/	water)	SOIL			Lat	Sample ID:	U0609387-003ARE
Sample wt/vo	ol:	30	(g/ml) G		Lat	File ID:	B27678.D
Level: (low/n	ned)	LOW			Dat	te Received:	9/21/06
% Moisture:	9.43		decanted:(Y/N)	N	Dat	te Extracted:	9/30/06
Concentrated	Extract	Volume:	1000 (uL)		Dat	te Analyzed:	10/21/06
Injection Volu	ıme: <u>2</u> .	0 (uL)		Dilu	ution Factor:	1.0
GPC Cleanup	o: (Y/N)	N	pH:				

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
111-44-4	bis(2-Chloroethyl)ether	PIDI	370	U
108-95-2	Phenol		370	U
95-57-8	2-Chlorophenol		370	U
541-73-1	1,3-Dichlorobenzene		370	U
106-46-7	1,4-Dichlorobenzene		370	U
95-50-1	1,2-Dichlorobenzene		370	U
108-60-1	2,2'-oxybis(1-Chloropropane))	370	U
95-48-7	2-Methylphenol		370	U
67-72-1	Hexachloroethane		370	U
621-64-7	N-Nitrosodinpropylamine		370	U
106-44-5	4-Methylphenol		370	U
98-95-3	Nitrobenzene		370	U
78-59-1	Isophorone		370	U
88-75-5	2-Nitrophenol		370	U
105-67-9	2,4-Dimethylphenol		370	U
111-91-1	bis(2-Chloroethoxy)methane	•	370	U
120-83-2	2,4-Dichlorophenol		370	U
120-82-1	1,2,4-Trichlorobenzene		370	U
91-20-3	Naphthalene		370	U
106-47-8	4-Chloroaniline		370	U
87-68-3	Hexachlorobutadiene		370	U
59-50-7	4-Chloro-3-methylphenol		370	U
91-57-6	2-Methylnaphthalene		370	U
77-47-4	Hexachlorocyclopentadiene		370	U
88-06-2	2,4,6-Trichlorophenol		370	U
95-95-4	2,4,5-Trichlorophenol		370	U
91-58-7	2-Chloronaphthalene		370	U
88-74-4	2-Nitroaniline		880	U
208-96-8	Acenaphthylene		370	U
131-11-3	Dimethylphthalate		370	U
606-20-2	2,6-Dinitrotoluene		370	U
83-32-9	Acenaphthene	i	370	U
99-09-2	3-Nitroaniline		880	U
51-28-5	2,4-Dinitrophenol		880	U
132-64-9	Dibenzofuran		370	U
121-14-2	2,4-Dinitrotoluene		370	U
100-02-7	4-Nitrophenol	J.	880	U

LoveLI

-480-

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: UPS	TATE I ADO INI	•	Cor	straat	III ENG	INIE	MW-	JCL-3 RE
Lab Code: 1017		e No.:	>		.:			v_m.
Matrix: (soil/water)	SOIL			Lab	Sample	ID: U	060938	37-003ARE
Sample wt/vol:	30	(g/ml) G		Lat	File ID:	В	27678.	D
Level: (low/med)				Dat	e Receiv	ed: 9/	/21/06	
% Moisture:	0.43 deca	anted:(Y/N)	N	Dat	e Extract	ed: 9	/30/06	
Concentrated Extr	act Volume: 10	000 (uL)		Dat	e Analyz	ed: 10	0/21/06	
Injection Volume:					ition Fac			
		mLl.		5				
GPC Cleanup: (Y/I	1) 14	μπ.						
•			C	CONCE	NTRATI	ON UN	NTS:	
CAS NO.	COMPO	UND	(ug/L or	ug/Kg)	UG/k	(G	Q
86-73-7	Fluore	ne		RID			370	U
7005-72-3	4-Chlo	rophenylpheny	lether				370	U
84-66-2	Diethyl	phthalate					370	U
100-01-6	4-Nitro	aniline		ļ			880	U
534-52-1	4,6-Dir	itro-2-methylpl	nenol				880	U
86-30-6		sodiphenylamii					370	U
101-55-3	4-Brom	ophenylpheny	lether				370	U
118-74-1	Hexacl	lorobenzene		!			370	U
87-86-5	Pentac	hlorophenol					880	U
85-01-8	Phenar	nthrene					430	
120-12-7	Anthrac	cene					370	U
84-74-2		tylphthalate					56	JB
86-74-8	Carbaz	ole					97	J
206-44-0	Fluorar	thene					710	
129-00-0	Pyrene						360	J
85-68-7		nzylphthalate					370	U
91-94-1		hlorobenzidine	<u> </u>				370	U
56-55-3	Benzo(a)anthracene					160	J
218-01-9	Chryse						190	J
117-81-7	bis(2-E	thylhexyl)phtha	late			ar in anti-taranteen min	370	U
117-84-0	Di-n-oc	tylphthalate					370	U
205-99-2		b)fluoranthene					200	J
207-08-9	Benzo(k)fluoranthene		- 1			80	J
50-32-8		a)pyrene					130	J
193-39-5	Indeno	1,2,3-cd)pyren	e	1			88	J
53-70-3	Dibenz	a,h)anthracen	e				370	U

revel I

-48

Benzo(ghi)perylene

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTAT	ΓE LABS I	NC.		Contract:	LU ENGINE	MW-JCL-3 RE
Lab Code:	10170	с	ase No.:		SAS No	o.: S	DG No.: LU004
Matrix: (soil/w	vater)	SOIL			Lal	b Sample ID:	U0609387-003ARE
Sample wt/vo	ol:	30	(g/ml) <u>G</u>		Lal	b File ID:	B27678.D
Level: (low/m	ned)	LOW			Da	te Received:	9/21/06
% Moisture:	9.43	de	canted: (Y/N)	N	Da	te Extracted:	9/30/06
Concentrated	Extract \	√olume:	1000 (uL)		Dai	te Analyzed:	10/21/06
njection Volu	me: <u>2.0</u>	(uL)			Dilu	ution Factor:	1.0
SPC Cleanun	· (Y/N)	N	nH·				

CONCENTRATION UNITS:

Number TICs found:	7	(ug/L or ug/Kg)	UG/KG

CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q		
1. 000084-65-1	9,10-Anthracenedione	eh	18.29	98	JN		
2. 000629-54-9	Hexadecanamide		19.62	92	JN		
3. 000301-02-0	9-Octadecenamide, (Z)-		20.84	570	JN		
4.	unknown	\	20.88	420	J		
5.	unknown		20.98	110	J		
6. 000112-84-5	Erucylamide	1	23.30	1300	JN		
7. 000198-55-0	Perylene	\\/	23.85	140	JN		
Level IV							

-482-

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

EQ	RINSE	BL-1
----	-------	------

Lab Name:	UPSTA	TE LABS I	NC.		Contract:	LU ENGINE		
Lab Code:	10170	с	ase No.:		SAS No	o.: S	DG No.: LU004	
Matrix: (soil/v	vater)	WATER	_		Lai	b Sample ID:	U0609387-004B	
Sample wt/vo	ol:	1000	(g/ml) ML		Lai	b File ID:	AE2180.D	
Level: (low/m	ned)	LOW			Da	te Received:	9/21/06	
% Moisture:		de	ecanted:(Y/N)	N	Da	te Extracted:	9/26/06	
Concentrated	i Extract '	Volume:	1000 (uL)		Da	te Analyzed:	10/2/06	
Injection Volu	ıme: <u>2.</u>	0 (uL)			Dile	ution Factor:	1.0 -	
GPC Cleanur	o: (Y/N)	Ν	pH:					

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
111-44-4	bis(2-Chloroethyl)ether	47/5/1	10	U
108-95-2	Phenol	7 1 1	10	Ū
95-57-8	2-Chlorophenol		10	Ū
541-73-1	1,3-Dichlorobenzene	THE TIES	10	Ū
106-46-7	1,4-Dichlorobenzene		10	Ū
95-50-1	1,2-Dichlorobenzene	: 1	10	U
108-60-1	2,2'-oxybis(1-Chloropropa	ne)	10	U
95-48-7	2-Methylphenol		10	U
67-72-1	Hexachloroethane		10	U
621-64-7	N-Nitrosodinpropylamine		10	Ū
106-44-5	4-Methylphenol	.	10	U i
98-95-3	Nitrobenzene		10	Ū
78-59-1	Isophorone	W.W.	10	U
88-75-5	2-Nitrophenol	RW W/L	- 10	U
105-67-9	2,4-Dimethylphenol	114.17 \$721)		U
111-91-1	bis(2-Chloroethoxy)methal		10	U
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichlorobenzene		10	U
91-20-3	Naphthalene		10	U
106-47-8	4-Chloroaniline		10	U
87-68-3	Hexachlorobutadiene		10	U
59-50-7	4-Chloro-3-methylphenol		10	U
91-57-6	2-Methylnaphthalene		10	U
77-47-4	Hexachlorocyclopentadien	e	10	U
88-06-2	2,4,6-Trichlorophenol		10	Ū
95-95-4	2,4,5-Trichlorophenol		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline	:	24	U
208-96-8	Acenaphthylene		10	U
131-11-3	Dimethylphthalate		10	U
606-20-2	2,6-Dinitrotoluene		10	U
83-32-9	Acenaphthene		10	U
99-09-2	3-Nitroaniline		24	U
51-28-5	2,4-Dinitrophenol	IC.	24	U ,
132-64-9	Dibenzofuran	;	10	U
121-14-2	2,4-Dinitrotoluene	N N	10	U
100-02-7	4-Nitrophenol	K WRII	24	U

FORM I SV-1

LEVER II

3/90

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: UPSTATE	LABS INC.	Contract:	LU ENGINE	EQR	INSE BL-1
Lab Code: 10170	Case No.:	SAS No	.: S	DG No.:	LU004
Matrix: (soil/water) W	'ATER	Lat	Sample ID:	U060938	37-004B
Sample wt/vol: . 10	000 (g/ml) ML	. Lat	File ID:	AE2180.	.D
Level: (low/med) LC		Dai	te Received:	0/21/06	
`	· · · · · · · · · · · · · · · · · · ·				
% Moisture:	decanted:(Y/N) N	Dat	te Extracted:	9/26/06	
Concentrated Extract Vol	ume: 1000 (uL)	Dat	te Analyzed:	10/2/06	
Injection Volume: 2.0	(uL)	Dilu	ution Factor:	1.0	
GPC Cleanup: (Y/N)	N pH:	•			
· ` ` -					
		CONCE	ENTRATION	UNITS:	
CAS NO.	COMPOUND	(ug/L or	ug/Kg) UG	3/L	Q
		····/	- I		
86-73-7	Fluorene	u5/-		10	U
7005-72-3	4-Chlorophenylphenyleth	ier		10	<u>i</u> U
84-66-2	Diethylphthalate			10	U
100-01-6	4-Nitroaniline			24	<u> U</u>
534-52-1	4,6-Dinitro-2-methylphen	ol	{	24	U
86-30-6	n-Nitrosodiphenylamine		<u> </u>	10	U
101-55-3	4-Bromophenylphenyleth	ier	i	10	U
118-74-1	Hexachlorobenzene	<u> </u>	مراب	10	U
87-86-5	Pentachlorophenol	2		24	U
85-01-8	Phenanthrene	us /-	4111	10	U
120-12-7	Anthracene	114/7		10	U
84-74-2	Di-n-butylphthalate	UT / *	- m R	10.1	JB
86-74-8	Carbazole	リナル	Trit	10	U
206-44-0	Fluoranthene	1/1		10	U
129-00-0	Pyrene			10	U
85-68-7	Butylbenzylphthalate	1 (10	U
91-94-1	3,3'-Dichlorobenzidine	2		10	U
56-55-3	Benzo(a)anthracene			10	U
218-01-9	Chrysene	<u> </u>		10	U
117-81-7	bis(2-Ethylhexyl)phthalate		TITE PL	104	JB
117-84-0	Di-n-octylphthalate		777	10	Ū

LoveIII

10

10

10

10

10

10

U

U

U

U

Ü

Ū

-502-

Di-n-octylphthalate

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-JCL-1

Lab Name: UPS	STATE LABS	NC.	_ Contract: LU ENGINE	
Lab Code: 101	70 C	ase No.:	SAS No.: S	DG No.: LU004
Matrix: (soil/water) SOIL		Lab Sample ID:	U0609387-001B
Sample wt/vol:	5.0	 (g/ml) G	Lab File ID:	C15350.D
Level: (low/med)	LOW		Date Received:	9/21/06
% Moisture: not d	ec. 9.62		Date Analyzed:	10/4/06
GC Column: R	TX-VO ID: ().53 (mm)	Dilution Factor:	1.0
Soil Extract Volun	ne:	(uL)	Soil Aliquot Volu	ıme: (uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG		Q
74-87-3	Chloromethane	切似主	r.s.cl-	11	U .
75-1-4	Vinyl Chloride	1	. 1	11	U
74-83-9	Bromomethane			11	<u> </u>
75-00-3	Chloroethane	<u> </u>	4	11	<u> </u>
67-64-1	Acetone	RD i	7 a_	11	<u> </u>
75-35-4	1.1-Dichloroethene	uT I	3	11	<u> </u>
75-15-0	Carbon Disulfide	ur l		11	U
75-09-2	Methylene Chloride			7	J
156-60-5	trans-1,2-Dichloroe			11	U
75-34-33	1,1-Dichloroethane		V	11	<u> </u>
78-93-3	2-Butanone	i2 In		11	U .
156-59-2	cis-1,2-Dichloroeth	ene US	S	11	U
67-66-3	Chloroform	45/B	ŧ	11.4	JB
71-55-6	1,1,1-Trichloroetha		10	11	U
56-23-5	Carbon Tetrachlori		1	11	U
71-43-2	Benzene			11 .	U
107-06-2	1.2-Dichloroethane	. 4	i	11	<u> </u>
97-01-6	Trichloroethene	45/8		11 2	JB
78-87-5	1,2-Dichloropropar	ne I		11	U
75-27-4	Bromodichloromet		1	11	<u> </u>
108-10-1	4-Methyl-2-pentane	one		11	U
10061-1-5	cis-1,3-Dichloropro		1 ("	11	<u> </u>
108-88-3	Toluene			11	U
10061-2-6	trans-1,3-Dichlorop	propene		11	<u> </u>
79-00-5	1,1,2-Trichloroetha		!	11	U
591-78-6	2-Hexanone	4		11	<u> </u>
127-18-4	Tetrachloroethene	MTB	(C)	11.2	JB
124-48-1	Dibromochloromet		1	11	<u> </u>
108-90-7	Chlorobenzene		1	<u> </u>	
100-41-4	Ethylbenzene		[1.	11	U
108-38-3	m,p-Xylene			11 (U
95-47-6	o-Xylene	,		11	U
100-42-5	Styrene			11	U
75-25-2	Bromoform			11	U
79-34-5	1,1,2,2-Tetrachloro	oethane 🍀 🛝	/ ¥	11	<u> </u>

Lever V

-8-

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

							MW-	JCL-1	
Lab Name:	UPSTAT	E LABS	SINC.	Contract:	LU EN	IGINE	,,,,,		
Lab Code:	10170		Case No.:	SAS N	o.:	SDC	3 No.: Ll	J004	
Matrix: (soil/w	vater)	SOIL		La	ab Samp	le ID: U	0609387-	-001B	
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>	La	ab File ID); C	:15350.D		
Level: (low/m	ned)	LOW		D	ate Rece	ived: 9	/21/06		
% Moisture: n	not dec.	9.62		D	ate Analy	/zed: 10	0/4/06		
GC Column:	RTX-V	<u>D</u> ID:	0.53 (mm)	Di	lution Fa	ctor: 1.	.0		
Soil Extract V	olume: 1		(uL)	So	oil Aliquo	t Volume	e: <u>1</u>	(uL	.)
				CONCENTRA		NITS: B/KG			
Number TICs	found:	0		(agre or agring	, 50	3/10			
CAS NO.		COMP	OUND NAME	1	RT	EST.	CONC.	Q	_;

Lever I

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-JCL-1 RE Lab Name: UPSTATE LABS INC. Contract: LU ENGINE Lab Code: 10170 Case No.: SAS No.: ____ SDG No.: LU004 Matrix: (soil/water) SOIL Lab Sample ID: U0609387-001B Sample wt/vol: 5.0 (g/ml) G Lab File ID: C15351.D Level: (low/med) LOW Date Received: 9/21/06 % Moisture: not dec. 9.62 Date Analyzed: 10/4/06 GC Column: RTX-VO ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS:

0.0		CONCENTRATIC	IN DINITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane	T RID	11	
75-1-4	Vinyl Chloride		11	U
74-83-9	, Bromomethane		11	<u> </u>
75-00-3	Chloroethane		11	<u> </u>
67-64-1	Acetone			<u> </u>
75-35-4	1,1-Dichloroethen	e / R/D		_
75-15-0	Carbon Disulfide	<u> </u>		U
75-09-2	Methylene Chlorid	Α	11	U
156-60-5	trans-1,2-Dichloro			<u>J</u>
75-34-33	1,1-Dichloroethane	a	1111	<u> </u>
78-93-3	2-Butanone	<u> </u>	11	U
<u> 156-59-2</u>	cis-1,2-Dichloroeth	nene 以(()	10	J
67-66-3	Chloroform	iche way	11 2	- <u>U</u>
71-55-6	1,1,1-Trichloroetha	ane	<u> </u>	JB_
56-23-5	Carbon Tetrachlori		11	<u> </u>
71-43-2	Benzene		11	<u> </u>
107-06-2	1,2-Dichloroethane	1	11	<u> </u>
97-01-6	Trichloroethene		2	<u> </u>
78-87-5	1,2-Dichloropropar	ne l	11	<u>JB</u>
75-27-4	Bromodichloromet	nane	1 11	<u> </u>
108-10-1	4-Methyl-2-pentano	ne	11	
10061-1-5	cis-1,3-Dichloropro	nene	11	
108-88-3	Toluene	Pono	11	<u> </u>
10061-2-6	trans-1,3-Dichlorop	ronene	11	<u> </u>
79-00-5	1,1,2-Trichloroetha	ne	11	U
591-78-6	2-Hexanone		11	! U
127-18-4	Tetrachloroethene		: 2	JB
124-48-1	Dibromochlorometh	nane	11	
108-90-7	Chlorobenzene		11	<u> </u>
100-41-4	['] Ethylbenzene		! 11	U
108-38-3	m,p-Xylene		11	
95-47-6	o-Xylene			<u> </u>
100-42-5	Styrene		11	<u>U</u>
75-25-2	Bromoform		1 11	U !
79-34-5	1,1,2,2-Tetrachloroe	ethane	·	U
		- unane	11	U

Level II

-10-

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

PERTURED COM CONDS								1
Lab Name: L	UPSTAT	ΓE LABS	SINC.	Contract:	LU ENGI	٧E	MW-JCL-1	RE
Lab Code: 1	10170		Case No.:	SAS No.		SDC	3 No.: LU00	4
Matrix: (soil/wa	eter)	SOIL		Lab	Sample II	D: U	 0609387-001	В
Sample wt/vol:	:	5.0	(g/ml) <u>G</u>	Lab	File ID:	C	15351.D	
Level: (low/me	∋d)	LOW		Dat	e Receive	d: 9/	/21/06	
% Moisture: no	ot dec.	9.62		Dat	e Analyzed	d: 10	0/4/06	
GC Column:	RTX-V	O_ID:	0.53 (mm)	Dilu	tion Factor	 -: 1.	0	
Soil Extract Vol	lume: 1	1	(uL)	Soil	Aliquot Vo	lume	e: <u>1</u>	(uL)
				CONCENTRAT	ION UNITS	S:		
Number TiCs fo	ound:	0		(ug/L or ug/Kg)	UG/K	3		
CAS NO.		СОМР	OUND NAME	:	RT E	EST.	CONC.	Q

LOVE! IV

-11-

VOLATILE ORGANICS ANALYSIS DATA SHEET

MW-JCL-2 Contract: LU ENGINE Lab Name: UPSTATE LABS INC. SAS No.: SDG No.: LU004 Lab Code: 10170 Case No.: Lab Sample ID: U0609387-002B SOIL Matrix: (soil/water) Lab File ID: D15966.D Sample wt/vol: 5.0 (g/ml) G Date Received: 9/21/06 Level: (low/med) MED Date Analyzed: 9/29/06 % Moisture: not dec. 9.63 Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm) Soil Aliquot Volume: 100 (uL) Soil Extract Volume: 5000 (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
74-87-3	Chloromethane 以て / 井爪	560	U
75-1-4	Vinyl Chloride	560	U
74-83-9	Bromomethane	560	U
75-00-3	Chloroethane	560	U
67-64-1	Acetone	560	U
75-35-4	1,1-Dichloroethene	560_	U
75-15-0	Carbon Disulfide	560	U
75-09-2	Methylene Chloride	560	U
156-60-5	trans-1,2-Dichloroethene	560	U
75-34-33	1,1-Dichloroethane	560	U
78-93-3	2-Butanone ♥ C.	560	U
156-59-2	cis-1,2-Dichloroethene	64	J
67-66-3	Chloroform MT	560	U
71-55-6	1,1,1-Trichloroethane	560	U
56-23-5	Carbon Tetrachloride C	560	U
71-43-2	Benzene .	560	U
107-06-2	1,2-Dichloroethane	560	U
97-01-6	Trichloroethene 5	150	J
78-87-5	1,2-Dichloropropane U.S	560	U
75-27-4	Bromodichloromethane	560	U
108-10-1	4-Methyl-2-pentanone	560	U
10061-1-5	cis-1,3-Dichloropropene	560	U
108-88-3	Toluene	560	IJ
10061-2-6	trans-1,3-Dichloropropene	560	U
79-00-5	1,1,2-Trichloroethane	560	U
591-78-6	2-Hexanone	560	U
127-18-4	Tetrachloroethene 5	380	J
124-48-1	Dibromochloromethane 45	560	U
108-90-7	Chlorobenzene	560	U
100-41-4	Ethylbenzene	560	U
108-38-3	m,p-Xylene	560	U
95-47-6	o-Xylene	560	U
100-42-5	Styrene	560	U
75-25-2	Bromoform	560	U
79-34-5	1,1,2,2-Tetrachloroethane	560	U

Level I

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

							2 2 2 2 4 1 7	
Lab Name:	UPSTA'	TE LABS	INC.	Contrac	t: LUEN	GINE	MW-JC	5L-2
Lab Code:	10170		Case No.:	SAS	No.:	SDC	S No.: LUC	004
Matrix: (soil/v	water)	SOIL	·		_ab Sampl	e ID: U	0609387-0	02B
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>		_ab File ID	: <u>D</u>	15966.D	
Level: (low/m	ned)	MED		[Date Recei	ived: 9/	21/06	
% Moisture: r	not dec.	9.63		ĺ	Date Analy	zed: 9/	/29/06	
GC Column:	DB-62	4_ ID: (0.53 (mm)	[Dilution Fa	ctor: 1.	0	
Soil Extract V	/olume:	5000	(uL)	9	Soil Aliquot	Volume	e: <u>100</u>	(uL)
				CONCENTR				
Number TICs	found:	0		(ug/L or ug/K	g) <u>UG</u>	S/KG		
CAS NO.		COMPO	UND NAME		RT	EST.	CONC.	Q

Level IV.

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLĘ NO.

M	W	-J	C	L	-3	

			-	0	LU ENGINE	:	-
Lab Name:	UPSTA	TE LAB	S INC.	Contract:			
Lab Code:	10170		Case No.:	SAS No		DG No.: LU004	
Matrix: (soil/w	vater)	SOIL		La	b Sample ID:	U0609387-003B	
Sample wt/vo		5.0	 (g/ml) G	La	b File ID:	C15352.D	
·		LOW		 Da	ite Received:	9/21/06	
Level: (low/m	ieu)	LOVV		5	Amali madi	10/4/06	
% Moisture: r	not dec.	9.43		Da	ate Analyzed:	10/4/00	
GC Column:	RTX-V	O ID:	0.53 (mm)	Dil	lution Factor:	1.0	
Soil Extract V	/olume:		(uL)	Sc	il Aliquot Volu	ıme:	(uL)
CAC NO		CO	MPOUND	CONCENTRA		_	
CAS NO).		AVII COME	1-3			

CAS NO.	COMPOUND (ug/L or ug/Kg) \underline{U}	G/KG	Q
74-87-3	Chloromethane 47/47[Sc	11	U
75-1-4	Vinyl Chloride	11	U
75-1-4	Bromomethane	11	U
	Chloroethane	11	U
75-00-3	Acetone (2-1)	11	U
67-64-1	1,1-Dichloroethene UT 41TS	11	U
75-35-4	Carbon Disulfide	11	U
75-15-0	Methylene Chloride	5	J
75-09-2	trans-1,2-Dichloroethene	11	U
156-60-5	1,1-Dichloroethane	11	U
75-34-33	2-Butanone	11	<u> </u>
78-93-3	cis-1,2-Dichloroethene	11	l U
156-59-2	Chloroform	11	U
67-66-3	1,1,1-Trichloroethane	C 11	U
71-55-6	Carbon Tetrachloride	11	U
56-23-5		11	U
71-43-2	Benzene	11	U
107-06-2	1,2-Dichloroethane	11	U
97-01-6	Trichloroethene	11	U
78-87-5	1,2-Dichloropropane	11	U
75-27-4	Bromodichloromethane	11	U
108-10-1	4-Methyl-2-pentanone	C. 11	U
10061-1-5	CIS-1,3-DICHIOTOPROPERIO	11	U
108-88-3	Toluene	C. 11	U
10061-2-6	trans-1,3-Dichioroproperie	11	U
79-00-5	1,1,2-Trichloroethane	11	U
591-78-6	2-Hexanone	c 11	U
127-18-4	Tetrachloroethene	11	Ū
124-48-1	Dibromochloromethane	11	U
108-90-7	Chlorobenzene	11	Ū
100-41-4	Ethylbenzene	11	U
108-38-3	m,p-Xylene	11	U
95-47-6	o-Xylene	11	U
100-42-5	Styrene	11	U
75-25-2	Bromoform	11	1 0
79-34-5	1,1,2,2-Tetrachloroethane	! I !	<u> </u>

Level II

-202-

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	UPSTA	TE LABS	INC.	Contrac	t: LUEN	IGINE	MW-JC	CL-3
Lab Code:	101,70		Case No.:	SASI			G No.: LUC	004
Matrix: (soil/v	vater)	SOIL		L	ab Samp	ie ID: L	J0609387 - 0	03B
Sample wt/vo	ol:	5.0	(g/ml) <u>G</u>		ab File ID): <u>C</u>	C15352.D	
Level: (low/m	ned)	LOW			Date Rece	ived: 9	/21/06	
% Moisture: r	not dec.	9.43			Date Analy	zed: 1	0/4/06	
GC Column:	RTX-\	/O ID: (0.53 (mm)		Dilution Fa	ctor: 1	.0	
Soil Extract V	olume:	1	(uL)	S	Soil Aliquo	t Volum	e: <u>1</u>	(uL)
Number TICs	found:	0		CONCENTRA (ug/L or ug/K		NITS: S/KG		
CAS NO.		COMPC	OUND NAME		RT	EST	. CONC.	Q
						Lev	$e(\underline{\mathbb{T}}$	

-203-

1A_{\(\)} VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

						MW-JCL-3 F	\
_ab Name: _L	UPSTAT	E LABS IN	C.	Contract:	LU ENGINE	l'	
Lab Code: 1	10170	Ca	se No.:	SAS No.	.: s	DG No.: <u>LU004</u>	
Matrix: (soil/wa	ater)	SOIL	_	Lab	Sample ID:	U0609387-003B	·
Sample wt/vol:	:	5.0	(g/ml) G	Lab	File ID:	C15353.D	
_evel: (low/me	∍d)	LOW		Dat	e Received:	9/21/06	
% Moisture: no	ot dec.	9.43		Dat	e Analyzed:	10/4/06	
GC Column:	RTX-V	O ID: 0.5	53 (mm)	Dilu	ition Factor:	1.0	
Soil Extract Vol	olume: _		_ (uL)	Soil	l Aliquot Volu	me:	(uL)
				CONCENTRAT			
CAS NO.		COMP	DUND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q	
74-87-3		Chlore	omethane	R10		11 U	

CAS NO.	COM COND (agree of agring)		
74-87-3	Chloromethane 🐰	11	U
75-1-4	Vinyl Chloride	11	U
74-83-9	Bromomethane	11	U
75-00-3	Chloroethane	11	U
67-64-1	Acetone T/+TESCI	100	
75-35-4	1,1-Dichloroethene	11	U
75-15-0	Carbon Disulfide	11	U
75-09-2	Methylene Chloride	3	J
156-60-5	trans-1,2-Dichloroethene	11	U
75-34-33	1,1-Dichloroethane	11	U
78-93-3	2-Butanone T/ ATIST	16	
156-59-2	cis-1,2-Dichloroethene	11	U
67-66-3	Chloroform	11	U
71-55-6	1,1,1-Trichloroethane	11	U
56-23-5	Carbon Tetrachloride	11	U
71-43-2	Benzene	11	U
107-06-2	1,2-Dichloroethane	11	U
97-01-6	Trichloroethene	11	U
78-87-5	1,2-Dichloropropane	11	U
75-27-4	Bromodichloromethane	11	<u> </u>
108-10-1	4-Methyl-2-pentanone	11	U
10061-1-5	cis-1,3-Dichloropropene	11	U
108-88-3	Toluene	11	
10061-2-6	trans-1,3-Dichloropropene	11	U
79-00-5	1,1,2-Trichloroethane	11	U
591-78-6	2-Hexanone	11	U
127-18-4	Tetrachloroethene	11	U
124-48-1	Dibromochloromethane	11	U
108-90-7	Chlorobenzene ·	11	U
100-41-4	Ethylbenzene	11	U
108-38-3	m,p-Xylene	11	U
95-47-6	o-Xylene	11	U
100-42-5	Styrene	11	U
75-25-2	Bromoform	11	U
79-34-5	1,1,2,2-Tetrachloroethane	11	U

Level II

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

								MW-	JCL-3 F	2E
Lab Name: L	UPSTAT	TE LABS	INC.	Contrac	t: J	LU ENG	INE			
Lab Code:	10170		Case No.:	SAS	No.:		_ SD	G No.:	LU004	
Matrix: (soil/wa	ater)	SOIL			Lab	Sample	ID: L	J060938	7-003B	1
Sample wt/vol:	:	5.0	(g/ml) <u>G</u>		Lab	File ID:	_	C15353.E	2	
Level: (low/me	ed)	LOW		1	Date	Receiv	ed: <u>9</u>	9/21/06		
% Moisture: no	ot dec.	9.43		į	Date	: Analyz	ed: <u>1</u>	0/4/06		
GC Column:	RTX-V	O ID:	0.53 (mm)	ŧ	Diluti	ion Fact	or: 1	.0		
Soil Extract Vo	lume: _	1	(uL)	\$	Soil	Aliquot \	√olum	ie: <u>1</u>		(uL)
Number TICs f	ound:	0		CONCENTR (ug/L or ug/K		ON UNI UG/	-			
CAS NO.		COMPO	DUND NAME			RT	EST			 Q
CAS NO.		COMPC	JOIND WAINE			171		. 00140.	- 1	₩.

Levelt

3/90

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EQ RINSE BL-1

Lab Name:	e: UPSTATE LABS INC.		Contract:	LU ENGINE	<u> </u>		
Lab Code:	10170	Case No). :	_ SAS No	o.: S	DG No.: LU004	
Matrix: (soil/v	vater)	WATER		La	b Sample ID:	U0609387-004A	
Sample wt/vo	ol:	5.0 (g/n	nI) <u>ML</u>	_ La	b File ID:	D15968.D	
Level: (low/n	ned)	LOW		Da	te Received:	9/21/06	
% Moisture:	not dec.			Da	te Analyzed:	9/29/06	
GC Column:	DB-62	4 ID: <u>0.53</u>	(mm)	Dil	ution Factor:	1.0	
Soil Extract V	/olume:	(uL	.)	So	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

	CONCENT	RATION UNITS);	
CAS NO.	COMPOUND (ug/L or ug/	/Kg) <u>UG/L</u>		Q
74-87-3	Chloromethane UST/	ATT.	10	U
75-1-4	Vinyl Chloride		10	U
74-83-9	Bromomethane	100	10	U
75-00-3	Chioroethane		10	U
67-64-1	Acetone		10	U
75-35-4	1,1-Dichloroethene	()	10	U
75-15-0	Carbon Disulfide		10	U
75-09-2	Methylene Chloride		10	U
156-60-5	trans-1,2-Dichloroethene		10	U
75-34-33	1,1-Dichloroethane		10	U
78-93-3	2-Butanone	C 1	10	U
156-59-2	cis-1,2-Dichloroethene		10	U
67-66-3	Chloroform		10	U
71-55-6	1,1,1-Trichloroethane		10	U
56-23-5	Carbon Tetrachloride	- C	10	U
71-43-2	Benzene	i	10	U
107-06-2	1,2-Dichloroethane		10	U
97-01-6	Trichloroethene		10	U
78-87-5	1,2-Dichloropropane		10	U
75-27-4	Bromodichloromethane		10	U
108-10-1	4-Methyl-2-pentanone		10	U
10061-1-5	cis-1,3-Dichloropropene	i	10	U
108-88-3	Toluene		10	U
10061-2-6	trans-1,3-Dichloropropene		10	U
79-00-5	1,1,2-Trichloroethane		10	U
591-78-6	2-Hexanone		10	U
127-18-4	Tetrachloroethene		10	U
124-48-1	Dibromochloromethane	i	10	U
108-90-7	Chlorobenzene		10	U
100-41-4	Ethylbenzene		10	U
108-38-3	m,p-Xylene		10	U
95-47-6	o-Xylene		10	U
100-42-5	Styrene		10	U
75-25-2	Bromoform		10	U
79-34-5	1,1,2,2-Tetrachloroethane	Ų.	10	U

Level II

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: <u>U</u>	PSTA	TE LABS IN	IC.	Cont	ract:	LU EN	SINE	EQ RINS	E BL-1
Lab Code: 10	0170	Ca	se No.:	SA	AS No	·.:	SE	DG No.: LU	004
Matrix: (soil/wat	er)	WATER	_		Lat	Sample	e ID:	U0609387-0	004A
Sample wt/vol:		5.0	(g/ml) ML	 	Lat	File ID:		D15968.D	
Level: (low/med	d)	LOW	-	•	Dat	te Recei	ved:	9/21/06	
% Moisture: not dec Date Analyzed:				red:	9/29/06				
GC Column: DB-624 ID: 0.53 (mm) Dilution Fa			ution Fac	tor:	1.0				
Soil Extract Volume: (uL)				Soi	l Aliquot	Volum	ne:	(uL)	
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L									
CAS NO.		COMPOU	ND NAME			RT	EST	CONC.	Q
								Level I	T

-216-

VOLATILE ORGANICS ANALYSIS DATA SHEET

TRIP BLANK

Lab Name:	UPSTATE LABS INC.				Contract:	LU ENGINE	<u> </u>	
Lab Code:	10170	Cas	e No.:		SAS No	o.: S	SDG No.: <u>LU004</u>	
Matrix: (soil/w	vater)	WATER			Lal	b Sample ID:	U0609387-005A	<u> </u>
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lal	b File ID:	D15975.D	
Level: (low/m	ned)	LOW			Da	te Received:	9/21/06	
% Moisture: r	not dec.				Da	te Analyzed:	9/29/06	
GC Column:	DB-62	4 ID: <u>0.5</u>	3_ (m	ım)	· Dilu	ution Factor:	1.0	
Soil Extract V	olume:		_ (uL)		Soi	il Aliquot Volu	ıme:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or	ug/Kg)	UG/L	Q
74-87-3	Chloromethane	US /4:TIT	10	U
75-1-4	Vinyl Chloride	1	10	U
74-83-9	Bromomethane	10		U
75-00-3	Chloroethane	1	10	U
67-64-1	Acetone		10	U
75-35-4	1,1-Dichloroethene	1 1	^ i 10	U
75-15-0	Carbon Disulfide		10	U
75-09-2	Methylene Chloride		10	U
156-60-5	trans-1,2-Dichloroethene	1	10	U
75-34-33	1,1-Dichloroethane	1	10	U
78-93-3	2-Butanone	• (U
156-59-2	cis-1,2-Dichloroethene		10	U
67-66-3	Chloroform	i i	10	U
71-55-6	1,1,1-Trichloroethane		10	<u>U</u>
56-23-5	Carbon Tetrachloride	1	10	U
71-43-2	Benzene		10	U
107-06-2	1,2-Dichloroethane		10	l U
97 -01- 6	Trichloroethene		10	j U
78-87-5	1,2-Dichloropropane		10	U
75-27-4	Bromodichloromethane		10	U
108-10-1	4-Methyl-2-pentanone		10	U
10061-1-5	cis-1,3-Dichloropropene		10	U
108-88-3	Toluene		10	U
10061-2-6	trans-1,3-Dichloropropene		10	U
79-00-5	1,1,2-Trichloroethane		10	U
591-78-6	2-Hexanone		10	U
127-18-4	Tetrachloroethene		10	U
124-48-1	Dibromochloromethane		10	U
108-90-7	Chlorobenzene	i	10	U
100-41-4	Ethylbenzene		10	U
108-38-3	m,p-Xylene		10	U
95-47-6	o-Xylene		10	U
100-42-5	Styrene		10	U
75-25-2	Bromoform		10	U
79-34-5	1,1,2,2-Tetrachloroethane		10	U

Level I

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TENTATIVEET IDENTITIED COMP COMES									
Lab Name:	UPSTA	TE LABS IN	IC.	Contrac	ct:	LU ENG	SINE	TRIP BLANK	
Lab Code:	10170	Ca	se No.:	SAS	No.		SDO	3 No.: <u>LU0</u>	04
Matrix: (soil/v	vater)	WATER	<u>.</u>		Lab	Sample	D: U	0609387-00)5A
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab	File ID:	D	15975.D	
Level: (low/m	ned)	LOW	_		Dat	e Receiv	/ed: <u>9</u> /	/21/06	
% Moisture: r	not dec.	****			Dat	e Analyz	ed: 9	/29/06	
GC Column:	DB-62	4 ID: 0.5	53 (mm)	!	Dilu	ition Fac	tor: 1.	.0	
Soil Extract Volume:		(uL)		:	Soil Aliquot Volum			e:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L									
CAS NO.		COMPOU	ND NAME			RT	EST.	CONC.	Q Q
						reference	live	见见	

-221 -

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

						l E	Q RINSE	BL-1
Lab Name:	UPSTA	TE LABS IN	C.	Contrac	t: LU ENG			
Lab Code:	10170	Cas	se No.:	SAS	No.:	SDG N	o.: <u>LU0</u> 0)4
Matrix: (soil/w	ater)	WATER	_		Lab Sample	ID: <u>U060</u>	9387-00	4B
Sample wt/vol	:	1000	(g/ml) ML		Lab File ID:	AE2	180.D	
Level: (low/m	ed)	LOW	_	+	Date Receiv	red: 9/21/	06	
% Moisture:	****	deca	anted: (Y/N)	<u>N</u>	Date Extrac	ted: 9/26/	06	
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 10						ed: 10/2/	06	
njection Volur	njection Volume: 2.0 (uL) Dilution Factor: 1.0							
GPC Cleanup	: (Y/N)	<u>N</u>	pH:	-				
				CONCE	NTRATION	UNITS:		
Number TICs	found:	2		(ug/L or	ug/Kg)	UG/L		
CAS NUMBE	ΞR	COMPOU	ND NAME		RT	EST. CO	DNC.	Q
1.		unknown		NI	21.86		9	J

unknown

Level IV

Date: 23-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Lab ID:

Churchville Ford

Client Sample ID: MW-JCL-1

Collection Date: 9/18/06 12:30:00 PM

U0609387-001

Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TOTAL ORGANIC CARBON, SOILS	E415.1				Analyst: Sub
Organic Carbon, Total	15000	50.0	mg/Kg	1	10/6/06

NOTES:

-923-

LEVEL IV

Approved l	By: _		Date:	Page 1 of 4
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ИD	Not Detected at the Reporting Limit	S	Spike Recovery outside accepted recovery limits

TOC analysis subcontracted to NYSDOH ELAP Lab ID# 11140.

Lu Engineers

CLIENT: Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-002

Date: 23-Oct-06

Client Sample ID: MW-JCL-2

Collection Date: 9/19/06 2:00:00 PM

Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TOTAL ORGANIC CARBON, SOILS		E415.1			Analyst: Sub
Organic Carbon, Total	13000	50.0	mg/Kg	1	10/6/06

TOC analysis subcontracted to NYSDOH ELAP Lab ID# 11140.

LEVEL IV

Approved By:

Qualifiers: Low Level

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 2 of 4

- Value exceeds Maximum Contaminant Value
- Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date: 23-Oct-06

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-003

Client Sample ID: MW-JCL-3

Collection Date: 9/19/06 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TOTAL ORGANIC CARBON, SOILS	E415.1			Analyst: Sub	
Organic Carbon, Total	18000	50.0	mg/Kg	1	10/6/06

TOC analysis subcontracted to NYSDOH ELAP Lab ID# 11140.

LEVEL IV

-925-

Approved By:

Qualifiers:

Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 3 of 4

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT:

Lu Engineers

Lab Order:

U0609387

Project:

Churchville Ford

Lab ID:

U0609387-004

Date: 23-Oct-06

Client Sample ID: Eq. Rinse Bl-1

Collection Date: 9/20/06 8:30:00 AM

Matrix: WATER

Analyses	Result	Limit Qual Units	DF	Date Analyzed
TOTAL ORGANIC CARBON (TOC) Organic Carbon, Total	U ND	E415.1 3.0 mg/L	1	Analyst: DD 9/27/06

Approved By:

Qualifiers:

Low Level

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 4 of 4

Value exceeds Maximum Contaminant Value

- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

DATA USABILITY SUMMARY REPORT for

Churchville Ford Site

ANALYSIS: METALS BY VOLATILES by TO-15

SAMPLE DELIVERY GROUP C0704013

PREPARED FOR:

LU ENGINEERS PENFIELD, NEW YORK

Prepared by

proved by:

MEC^x, LP 12269 East Vassar Drive Aurora, CO 80014

Churchville Ford Site SDG: C070413

I. INTRODUCTION

Task Order Title:

Churchville Ford Site

Contract Task Order:

1309.001D.00

Sample Delivery Group:

C0704013

Project Manager:

Greg Andrus

Matrix:

Air

QC Level:

IV

No. of Samples:

7

No. of Reanalyses/Dilutions:

0

Laboratory:

Centek Laboratories, LLC

Table 1. Sample Identification

Client Sample ID	Laboratory Sample ID	Matrix	Method	Date Sampled
SVS-JCL-01	C0704013-001A	Air	TO-15	4/4/07
IA-JCL-01	C0704013-002A	Air	TO-15	4/4/07
SVS-JCL-02	C0704013-003A	Air	TO-15	4/4/07
IA-JCL-02-MS/MSD	C0704013-005A	Air	TO-15	4/4/07
SVC-JCL-03	C0704013-006A	Air	TO-15	4/4/07
IA-JCL-03	C0704013-007A	Air	TO-15	4/4/07
OA-JCL-04	C0704013-008A	Air	TO-15	4/4/07

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory intact and in good condition. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were not present on the coolers

Churchville Ford Site SDG: C070413

Data Qualifier Reference Table

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Churchville Ford Site SDG: C070413

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Ε	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Churchville Ford Site SDG: C070413

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

Churchville Ford Site SDG: C070413

III. Method Analyses

Α. **EPA METHOD TO-15—Volatile Organic Compounds (VOCs)**

Reviewed By: E. Wessling Date Reviewed: June 8, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MECX Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method TO-15, and the National Functional Guidelines for Organic Data Review (2/99).

- Holding Times: Analytical holding times were met. The samples were analyzed within 30 days of collection as recommended by the method.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 24 hours of the BFB injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤15% or r² values ≥0.995. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: Method blanks had no target compound detects above the RL.
- · Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits of 70-130% for LCS samples BS1UT-041107 with the exception of 1,2,4-trichlorobenzene which was recovered below QC limits. The recoveries were within QC limits for all compounds for LCS BS1UT-041208. All site samples were qualified as estimated, "J," for detects and "UJ," for nondetects for the 1,2,4-trichlorobenzene.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analysis was performed on sample IA-JCL-02-MS/MSD. Recoveries and RPDs were within laboratory-established QC limits for all compounds where the spike amount was above 4 times the amount in the parent sample. with the exception of 1,3-butadiene, bromoform, cis-1,2-dichloroethene, cis-1,3dichloropropene, isopropyl alcohol, methyl tert-butyl ether, styrene and trans-1,2dichloroethene. The parent sample was qualified as estimated, "J," for detects and "UJ," for nondetects for the aforementioned recovery outliers.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - o Trip Blanks: This SDG had no identified trip blank.

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts were outside of ±40% for all internal standards in samples SVS-JCL-02, IA-JCL-02-MS/MSD, and SVC-JCL-03. Chlorobenzene-d5 was out in samples SVS-JCL-01 and IA-JCL-03. Associated target compounds were qualified in the site samples. The samples were analyzed at dilutions to report target compounds within the linear range of the instrument. The internal standards associated with the dilution analyses for these target compounds showed improvement in recoveries and fewer target compounds were qualified from dilutions. Retention times were within ±30 seconds as established in the opening daily standard.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration. Any results reported below the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit. Sample results forms were presented in ug/m³ in this report as these were the reporting units requested by the project. The laboratory also reported the data in ppbV units; however, these data were not presented in this report as the data are duplicate data.

Freon 12 in sample IA-JCL-03-MS/MSD was qualified as estimated, "J," for potential carryover from the neat run of sample SVC-JCL-03 which needed to be analyzed at a 810X dilution for Freon 12.

- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

Date: 28-Apr-07

***************************************		7707 147 147 147 147 147 147 147 147 147 14	
CLIENT:	Lu Engineers	Client Sample ID:	SVS-JCL-01
Lab Order:	C0704013	Tag Number:	480,180
Project:	Churchville Ford	Collection Date:	4/4/2007
Lab ID:	C0704013-001A	Matrix:	AIR

Analyses	Result	Limit (Qual U	nits	DF	Date Analyzed
UG/M3 W/ 0,25UG/M3 CT&TCE BY MET	HOD TO1	TO-	15			Analyst: RJF
1,1,1-Trichloroethane	ND	0.832	U	g/m3	1	4/11/2007
1.1.2,2-Tetrachioroethane us 7 / I	ND	1.05	u	g/m3	1	4/11/2007
1,1,2-Trichioroethane	ND	0.832	u	g/m3	1	4/11/2007
1,1-Dichloroethane	ФИ	0.617	u-	g/m3	1	4/11/2007
1.1-Dichloroethene	ND	0.605	U	g/m3	1	4/11/2007
1.2,4-Trichlorobenzene 6 5 / L I	ND	1.13	u	g/m3	1	4/11/2007
1,2,4-Trimethylbenzene	10.5	7.49	u	g/m3	10	4/11/2007
1,2-Dibromoethane LLD / T	ND	1,17	U	g/m3	1	4/11/2007
1,2-Dichlorobenzene W.5/II	ND	0.917	Ľ	g/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	u	g/m3	1	4/11/2007
1,2-Dichloropropane	ND	0.705	u	g/m3	1	4/11/2007
1,3,5-Trimethylbenzene J / I	6.70	0.750	ü	g/m3	1	4/11/2007
1,3-butadiene U	ND	0.337	u	g/m3	1	4/11/2007
1,3-Dichlorobenzene U.J. / F	ND	0.917	u	g/m3	1	4/11/2007
1,4-Dichlorobenzene Set 37 / III	ФИ	0.917	u	g/m3	1	4/11/2007
1,4-Dioxane U.	ND	1.10	u	g/m3	1	4/11/2007
2,2,4-trimethylpentane	1.14	0.712	ti	ig/m3	1	4/11/2007
4-ethyltoluene 3/I	6 85	0.750	u	g/m3	1	4/11/2007
Acetone	50.9	7.24	u	ig/in3	10	4/11/2007
Allyl chloride U.	ND	0.477	ŧ	g/m3	1	4/11/2007
Benzene	8.44	4.87	u	g/m3	10	4/11/2007
Benzyl chloride	ND	0.877	·	ig/in3	1	4/11/2007
Bromodichloromethane (A	ND	1.02	·	g/m3	1	4/11/2007
Bromoform U.S./ III	מא	1.58	u	g/m3	1	4/11/2007
Bromomethane (3)	ND	0.592	Ĺ	g/m3	1	4/11/2007
Carbon disulfide	2.69	0.475	į	ıg/m3	1	4/11/2007
Carbon tetrachloride U.	ND	0.256	ι	ig/m3	1	4/11/2007
Chlorobenzene US / II	ND	0.702	L.	<i>ig/</i> m3	1	4/11/2007
Chloroethane 4	ND	0.402	ι	g/m3	1	4/11/2007
لي Chloroform	0.645	0.744	Jι	ıg/m3	1	4/11/2007
Chloromethane U.	ND	0.315	ŧ	ıg/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604	ŧ	.g/m3	1	4/11/2007
cis-1,3-Dichloropropene	ND	0.692	ı	g/m3	1	4/11/2007
Cyclohexane	31.1	5.25	Į,	ug/m3	10	4/t 1/2007
Dibromochloromethane US I / II	ND	1.30	t	ug/m3	1	4/11/2007
Ethyl acetate	ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene 37 7 T	11.5	6.62	t	ug/m3	10	4/11/2037
Freon 11	1.83	0.857	(ug/m3	1	4/11/2007
Freon 113 3	0.779	1.17		ug/m3	1	4/11/2007
Freon 114	ND	1.07		ug/m3	1	4/11/2007

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 14

Page 16 of 352.

THE THE PERSONNEL WAS A SECTION OF THE PERSONNEL WAS A SECTION

CLIENT: Lab Order: Lu Engineers C0704013

Project:

Churchville Ford

Lab ID:

C0704013-001A

Date: 28-Apr-07

Client Sample ID: SVS-JCL-01

Tag Number: 480,180

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		TO-15			Analyst: RJP
Freon 12	3.42	0.754	ug/m3	1	4/11/2007
Heptane	37.9	6.25	ug/m3	10	4/11/2007
Hexachlero-1,3-butadlene	ND	1.63	ug/m3	1	4/11/2007
Hexane	38.7	5.37	ug/m3	10	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	26.0	13.2	ug/m3	10	4/11/2007
Methyl Bulyl Ketone 45 1 T	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	מא	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Kelone will / I	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.91	0.530	ug/m3	1	4/11/2007
o-Xylene 5 / T	8.56	0.662	ug/m3	1	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene J/F	15.2	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	3.31	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	ND	0.450	ug/m3	~ 1	4/11/2007
Toluene J/I	36.4	5.75	ug/m3	10	4/11/2007
trans-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	0.765	0.218	ug/m3	1	4/11/2007
Vinyl acetate Q	ND	0.537	ug/m3	1	4/11/2007
Vlnyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	/ ND	0.390	ug/m3	1	4/11/2007

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 28-Apr-07

CLIENT:

Lu Engineers

Client Sample ID: IA-JCL-01

Lab Order:

C0704013

Tag Number: 93,66 Collection Date: 4/4/2007

Project: Lab ID: Churchville Ford C0704013-002A

Matrix: AIR

Analyses	Result	Limit Qu:	al Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		TO-15		Analyst:	
1,1,1-Trichloreethane	CA NO	0 832	ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	DN	1.05	ug/m3	1	4/11/2007
1,1.2-Trichloroethane	ND	0.832	ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1,1-Dichloroethene	ND ND	0.605	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene CECLIF	Z L ND	1.13	ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	8.24	0.749	ug/m3	1	4/11/2007
1,2-Dibromoethane	∪ ND	1.17	ug/m3	1	4/11/2007
1.2-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1,2-Dichloropropane	NO NO	0.705	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	2.95	0.750	ug/m3	1	4/11/2007
1,3-butadiene	U ND	0.337	ug/m3	1	4/11/2007
1,3-Dichlorobenzone	ND	0.917	ug/m3	1	4/11/2007
1,4-Dichlorabenzene	ND	0.917	ug/m3	1	4/11/2007
1,4-Dioxane	∵ NO	1 10	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	8.98	0.712	ug/m3	1	4/11/2007
4-ethyltoluene	3.55	0.750	ug/m3	1	4/11/2007
Acetone	35.5	7 24	ug/m3	10	4/11/2007
Allyl chloride	LL ND	0.477	ug/m3	1	4/11/2007
Benzene	3.73	0.487	ug/m3	1	4/11/2007
Benzyl chloride	LA ND	0.877	ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ug/m3	1	4/11/2007
Bromoform	ND	1.58	ug/m3	1	4/11/2007
Bromomethane	ND	0.592	ug/m3	1	4/11/2007
Carbon disulfide	ND	0.475	ug/m3	1	4/11/2007
Carbon tetrach:oride	ND	0.258	ug/m3	1	4/11/2007
Chlorobenzene	ИD	0.702	ug/m3	1	4/11/2007
Chloroethane	NO	0.402	ug/m3	1	4/11/2007
Chloroform	ND	0.744	ug/m3	1	4/11/2007
Chloromethane	ND	0.315	ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	V ND ⋅	0.604	ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	₹ ND	0.692	ug/m3	1	4/11/2007
Cyclohexane	9.45	5.25	ug/m3	10	4/11/2007
Dibromochloromethane	U ND	1.30	ug/m3	1	4/11/2007
Ethyl acetate	LA ND	0.916	ug/m3	1	4/11/2007
Ethylbenzene	4.19	0.662	ug/m3	1	4/11/2007
Freon 11	2.17	0.857	ug/m3	i	4/11/2007
Freon 113	<i>-</i> 3 0.779	1.17	ug/m3	1	4/11/2007
Freon 114	UL ND	1.07	ug/m3	1	4/11/2007

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-mutine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 14

Page 20 of 352.

Date: 28-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-002A

Client Sample ID: IA-JCL-01

Tag Number: 93,66

Collection Date: 4/4/2007

Matrix:	AIR
---------	-----

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	TO-15			Analyst: RJP
Freon 12	3.52	0.754	ug/m3	1	4/11/2007
Heptane	30.8	6.25	ug/m3	10	4/11/2007
Hexachloro-1,3-butadiene	U ND	1.63	ug/m3	1	4/11/2007
Hexane	6.77	0.537	ug/m3	1	4/11/2007
Isopropyl alcohol	U ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	14.9	1.32	ug/m3	1	4/11/2007
Methyl Butyl Ketone	LL ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	\ ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	√ ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.69	0.530	ug/m3	1	4/11/2007
o-Xylene	5.16	0.662	ug/m3	1	4/11/2007
Propylene	LL ND	0.262	ug/m3	1	4/11/2007
Styrene	9.53	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	1.17	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	U ND	0.450	ug/m3	1	4/11/2007
Toluene	43.7	5.75	Em\gu	10	4/11/2007
trans-1,2-Dichloroethene	U. ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichtoropropene	U ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	0.546	0.218	ug/m3	1	4/11/2007
Vinyl acetate	✓ NO	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	\ ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	Δ/ ND	0.390	ug/m3	1	4/11/2007

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 28-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-003A

Client Sample ID: SVS-JCL-02

Tag Number: 202,271

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit C	ual Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	TO-1	5		Analyst RJF
1,1,1-Trichlorcethane	26.6	16.6	ug/m3	20	4/12/2007
1,1,2,2-Tetrachloroethane	J/J ND	1.05	ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND	0.832	ug/m3	1	4/11/2007
1,1-Dichloroethane	DN	0.617	ug/m3	1	4/11/2007
1,1-Dichloroethene	✓ ND	0.605	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene U. 3 /	CL, IL NO	1.13	ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	ナノエ 8.74 ·	0.749	ug/m3	1	4/11/2007
1,2-Dibromoethane	35/I ND	1.17	ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND ND	0.917	ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1,2-Dichloropropane	A A ND	0.705	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	厂/工 3.75	0.750	ug/m3	1	4/11/2007
1,3-butadiene	LI / T ND	0.337	ug/m3	1	4/11/2007
1,3-Dichlorobenzene	, ND	0.917	ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,4-Dloxane	J ↓ ND	1.10	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	24.7	14.2	ug/m3	20	4/12/2007
4-ethyltoluene	J / T 4.75	0.750	ug/m3	1	4/11/2007
Acetone	530	130	ug/m3	180	4/12/2007
Allyl chloride	IJ/I ND	0.477	ug/m3	1	4/11/2007
Benzene	77.3	9.74	ug/m3	20	4/12/2007
Benzyl chloride	UJ/エ ND	0.877	ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ug/m3	1	4/11/2007
Bromoform	J V ND	1.58	ug/m3	1	4/11/2007
Bromomethane	J/I 0.434	0.592	J ug/m3	1	4/11/2007
Carbon disulfide	14.6	9.50	ug/m3	20	4/12/2007
Carbon tetrachloride	UT/I ND	0.256	ug/m3	1	4/11/2007
Chlorobenzene	J. J. ND	0.702	ug/m3	1	4/11/2007
Chlorcethane	J/I 0.376	0.402	J ug/m3	1	4/11/2007
Chloreform	丁/ 1.39	0.744	ug/m3	1	4/11/2007
Chloromethane	US/T ND	0.315	ug/m3	1	4/11/2007
cls-1,2-Dichloroethene	J/I 0.443	0.604	J ug/m3	1	4/11/2007
cis-1,3-Dichlcropropene	UJ/T ND	0.692	ug/m3	1	4/11/2007
Cyclohexane	271	94.5	ug/m3	180	4/12/2007
Dibromochloromethane	UJ/I ND	1.30	ug/m3	1	4/11/2007
Ethyl acetate	US/I ND	0.916	ug/m3	1	4/11/2007
Ethylbenzene	1 /1 21.2	13.2	ug/m3	20	4/12/2007
Freon 11	J/J 1.43	0.857	ug/m3	1	4/11/2007
Freon 113	U 3 / 3 ND	1.17	ug/m3	1	4/11/2007
Freon 114	US/J ND	1.07	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte, Quantitation estimated,
 - Spike Recovery outside accepted recovery limits
- B Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-003A

Date: 28-Apr-07

Client Sample ID: SVS-JCL-02

Tag Number: 202,271

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		то	TO-15			Analyst: RJP
Freon 12	88.5	15.1		ug/m3	20	4/12/2007
Heptane	390	112		ug/m3	180	4/12/2007
Hexachloro-1,3-butadiene	US /I NO	1.63		ug/m3	1	4/11/2007
Hexane	567	96.7		ug/m3	180	4/12/2007
Isopropyl alcohol	113	7.50		ug/m3	20	4/12/2007
m&p-Xylene	J / I 27.4	26.5		ug/m3	20	4/12/2007
Methyl Butyl Ketone	UT/I ND	1.25		ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899		սց/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25		ug/m3	1	4/11/2007
Methyl tert-butyl ether	₹ ∧ ND	0.550		ug/m3	1	4/11/2007
Methylene chloride	ゴ/エ 2.37	0.530		ug/m3	1	4/11/2007
o-Xylene ,	J / II 10.6	13.2	J	ug/m3	20	4/12/2007
Propylene	UI/I ND	0.262		ug/m3	1	4/11/2007
Styrene	エ / エ 9.53	13.0	j	ug/m3	20	4/12/2007
Tetrachloroethylene	86.9	20.7		ug/m3	20	4/12/2007
Tetrahydrofuran	US/I ND	0.450		ug/m3	1	4/11/2007
Toluene	J/J 142	11.5		ug/m3	20	4/12/2007
trans-1,2-Dichloroethene	MJ/I ND	0.604		ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	US II NO	0.692		ug/m3	1	4/11/2007
Trichloroethene	16.4	4.37		ug/m3	20	4/12/2007
Vinyl acetate	LAS /IT ND	0.537		ug/m3	1	4/11/2007
Vinyl Bromide	\ \ ND	0.667		ug/m3	1	4/11/2007
Vinyi chloride	T A ND	0.390		ug/m3	1	4/11/2007

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Date: 28-Apr-07

CLIENT: Lu Engineers

Client Sample ID: IA-JCL-02 MS/MSD Tag Number: 216,454

Lab Order: Project:

Lab ID:

C0704013 Churchville Ford C0704013-005A

Collection Date: 4/4/2007 Matrix: AIR

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT&	TCE BY METHOD TO1	то	-15			Analyst: RJI
1.1.1-Trichicroethane	3 /J 1.11	0.832		ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	UJ/I NO	1.05		ug/m3	1	4/11/2007
1,1,2-Trichloroethane	ND :	0.832		ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617		ug/m3	1	4/11/2007
1,1-Dichlorcethene	V → ND	0.605		ug/m3	1	4/11/2007
1,2 4-Trichtorobenzene 💢	I / L , I NO	1.13		ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	42.0	15.0		ug/m3	20	4/11/2007
1,2-Dibromoethane	MJ/I NO	1.17		ug/m3	1	4/11/2007
1,2-Dichiorobenzene	NO	0.917		ug/m3	1	4/11/2007
1,2-Dichloroethane	ON CON	0.617		ug/m3	1	4/11/2007
1,2-Dichloropropane	↓ √ ND	0 705		ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	11.0	15.0	j	ug/m3	20	4/11/2007
1,3-butadiene	US/ I/QND	0.337		ug/m3	1	4/11/2007
1,3-Dichlorobenzene	NO INT	0.917		սց/m3	1	4/11/2007
1.4-Dichlorebenzene	3 / J 0.978	0.917		ug/m3	1	4/11/2007
1,4-Dioxane	USIE NO	1.10		ug/m3	1	4/11/2007
2.2,4-trimethylpentane	29 4	14.2		ug/m3	20	4/11/2007
4-ethyltoluene	16.0	15.0		ug/m3	20	4/11/2007
Acetone	213	65.2		ug/m3	90	4/12/2007
Allyl chloride	はな / エ ND	0.477		ug/m3	1	4/11/2007
Benzene	27.3	9.74		ug/m3	20	4/11/2007
Benzyl chloride	UT/I NO	0.877		ug/m3	1	4/11/2007
Bromodichloromethane	ND ND	1.02		ug/m3	1	4/11/2007
Bromoform	, a ND	1.58		ug/m3	1	4/11/2007
Bromomethane	↓ ↓ NO	0.592		ug/m3	1	4/11/2007
Carbon disulfide	3 / 7 0.570	0.475		ug/m3	1	4/11/2007
Carbon letrachloride	US/I NO	0.256		ug/m3	1	4/11/2007
Chlorobenzene	, ND	0.702		ug/m3	1	4/11/2007
Chloroethane	ND	0.402		ug/m3	1	4/11/2007
Chlaroform	↓ ↓ ND	0.744		ug/m3	1	4/11/2007
Chioromethane	コ / 」 7 0.651	0.315		ug/m3	1	4/11/2007
cis-1,2-Dichlorcethene	GS/JA ND	0.604		ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	was a stand	0.692		ug/m3	1	4/11/2007
Cyclohexane	137	10.5		ug/m3	20	4/11/2007
Dibromochloromethane	45/I NO	1.30		ug/m3	1	4/11/2007
Ethyl acetate	US/J ND	0.916		ug/m3	1	4/11/2007
Ethylbenzene	23.8	13.2		ug/m3	20	4/11/2007
Freon 11	3/丘 1.14	0.857		ug/m3	1	4/11/2007
Freon 113	US/I NO	1 17		ug/m3	1	4/11/2007
Freon 114	₩ WD	1.07		ug/m3	1	4/11/2007

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- N Non-routine analyte Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 14

Page 28 of 352.

Date: 28-Apr-07

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-005A

Client Sample ID: IA-JCL-02 MS/MSD

Tag Number: 216,454 Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed	
UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		TO-18	5		Analyst: RJP	
Freon 12	5.08	0.754	ug/m3	1	4/11/2007	
Heptane	124	56.2	ug/m3	90	4/12/2007	
Hexachloro-1,3-butadiene	JII ND	1,63	ug/m3	1	4/11/2007	
Hexane	58.0	10,7	ug/m3	20	4/11/2007	
Isopropyt alcohol	I / 🔍 23.5	7.50	ug/m3	20	4/11/2007	
m&p-Xylene	77.7	26.5	ug/m3	20	4/11/2007	
Methyl Butyl Ketone	T/工 ND	1.25	ug/m3	1	4/11/2007	
Methyl Ethyl Ketone	19.8	18.0	ug/m3	20	4/11/2007	
Methyl Isobutyl Ketone	IJ/I ND	1.25	ug/m3	1	4/11/2007	
Methyl tert-butyl ether	1 II G 0.696	0.55 0	ug/m3	1	4/11/2007	
Methylene chloride	/ 1 2,44	0.530	մ ց/m 3	1	4/11/2007	
o-Xylene	28.2	13.2	ug/m3	20	4/11/2007	
Propylene i	AS II NO	0.262	ug/m3	1	4/11/2007	
Styrene	\mathcal{F}/\odot 12.1	13.0	J ug/m3	20	4/11/2007	
Tetrachloroethylene	J / エ 11.9	1.03	ug/m3	1	4/11/2007	
Tetrahydrofuran	UJIT ND	0.450	ug/m3	1	4/11/2007	
Toluene	152	51.7	ug/m3	90	4/12/2007	
trans-1,2-Dichloroothene	UT /JOND	0.604	ug/m3	1	4/11/2007	
trans-1,3-Dichloropropene	MJ/I ND	0.692	ug/m3	1	4/11/2007	
	ゴ / エ 6.39	0.218	ug/m3	1	4/11/2007	
Vinyl acetate	45/I ND	0.537	ug/m3	1	4/11/2007	
Vinyl Bromide	\ ND	0.667	ug/m3	1	4/11/2007	
Vinyl chloride .	↓ V ND	0,390	ug/m3	1	4/11/2007	

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Lab Order: Lu Engineers C0704013

Project:

Churchville Ford

Lab ID:

Analyses

C0704013-006A

Result

Date: 28-Apr-07

DF

Client Sample ID: SVC-JCL-03

Collection Date: 4/4/2007

Tag Number: 165,374

Limit Qual Units

Matrix: AIR

Date Analyzed 1UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1 TO-15 Analyst: RJP 1,1,1-Trichloroethane 41.0 8 32 սց/m3 10 4/11/2007 1,1,2,2-Tetrachloroethane W5 / I ND 1.05 ug/m3 1 4/11/2007 1,1,2-Trichloroethane ND 0.832 UT / I ug/m3 1 4/11/2007 1,1-Dichloroethane 75.3 6.17 ug/m3 10 4/11/2007 TIT 1,1-Dichloroethene 2.54 0.605 ug/m3 1 4/11/2007 1,2,4-Trichiorobenzene 14,5 ND 1.13 ug/m3 1 4/11/2007 1,2,4-Trimethylbenzene 1 1 21.0 7.49 ug/m3 10 4/11/2007 1.2-Dibromoethane 457 / J ND 1.17 ug/m3 1 4/11/2007 1,2-Dichlorobenzene ND 0.917 ug/m3 1 4/11/2007 1,2-Dichloroethane ND 0.617 ug/m3 1 4/11/2007 1,2-Dichloropropane ND 0.705 ug/m3 4/11/2007 1,3,5-Trimethylbenzene 51 8.74 L 0.750 ug/m3 1 4/11/2007 1,3-butadiene 451I ND 0.337 ug/m3 4/11/2007 1,3-Dichlorobenzene ND 0.917 ug/m3 4/11/2007 1,4-Dichlorobenzene ND 0.917 ug/m3 1 4/11/2007 1,4-Dioxane NO 1.10 ug/m3 4/11/2007 2,2,4-trimethylpentane 15.2 7.12 ug/m3 10 4/11/2007 4-ethylloluene 12.5 7.50 ug/m3 10 4/11/2007 Acetone 1020 587 ug/m3 810 4/12/2007 W57/T Allyl chloride ND 0.477 ug/m3 1 4/11/2007 Benzene 49.0 4.87 ug/m3 10 4/11/2007 Benzyl chloride いてして NO 0.877 ug/m3 1 4/11/2007 Bromodichloromethane ND 1.02 ug/m3 1 4/11/2007 Bromoform ND 1.58 ug/m3 1 4/11/2007 Bromomethane ND 0.592 սց/m3 1 4/11/2007 J/ I 2.44 Carbon disulfide 0.475 ug/m3 1 4/11/2007 Carbon tetrachloride ロオノエ ND 0.256 ug/m3 1 4/11/2007 Chiorobenzene J. ND 0.702 ug/m3 1 4/11/2007 Chloroethane 43.7 4.02 ug/m3 10 4/11/2007 Chloroform J/I 1.29 0.744 ug/m3 1 4/11/2007 Chloromethane WIT IT NO 0.315 ug/m3 1 4/11/2007 cis-1,2-Dichloroethene 1570 492 ug/m3 810 4/12/2007 UJII ND cis-1,3-Dichloropropene 0.692 ug/m3 1 4/11/2007 Cyclohexane J/ 5 202 0.525 ug/m3 4/11/2007 Dibromochioromethane JULY STATE 1.30 ug/m3 1 4/11/2007

Qualifiers:

Freon 11

Freon 113

Freon 114

Ethyl acetate

Ethylbenzene

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

WS/II ND

15

いゴ / エ

65.3

1.09 1

NO

ND

- ML Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- Analyte detected at or below quantitation limits

1

10

1

1

4/11/2007

4/11/2007

4/11/2007

4/11/2007

4/11/2007

Not Detected at the Reporting Limit

0.916

6.62

0.857

1.17

1.07

սց/m3

ug/m3

ug/m3

ug/m3

ug/m3

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab 1D:

C0704013-006A

Date: 28-Apr-07

Client Sample ID: SVC-JCL-03

Tag Number: 165,374

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		TO-15				Analyst: RJP
Freon 12	1630	613		ug/m3	810	4/12/2007
Heptane	 371	508	J	ug/m3	810	4/12/2007
Hexachloro-1,3-butadiene	WI / I ND	1.63		ug/m3	1	4/11/2007
Hexane	360	5.37		ug/m3	10	4/11/2007
Isopropyi alcohol	WI / I NO	0.375		ug/m3	1	4/11/2007
m&p-Xylene	J / T 189	13.2		ug/m3	10	4/11/2007
Methyl Butyl Ketone	UIT/I NO	1.25		ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899		ug/m3	1	4/11/2007
Methyl isobutyl Ketone	ND	1.25		ug/m3	1	4/11/2007
Methyl tert-bulyl ether	↓ ↓ ND	0.550		ug/m3	1	4/11/2007
Methylene chloride	J / J. 2.54	0.530		ug/m3	1	4/11/2007
o-Xylene	J/I 50.8	6.62		ug/m3	10	4/11/2007
Propylene	UT/I ND	0.262		ug/m3	1	4/11/2007
Styrene	7 / 1 10.8	6.49		ug/m3	10	4/11/2007
Tetrachloroethylene	丁/丁 31.0	10.3		ug/m3	10	4/11/2007
Tetrahydrofuran	MIT/I ND	0.450		ug/m3	1	4/11/2007
Toluene	323	5.75		ug/m3	10	4/11/2007
trans-1,2-Dichloroethene	WO /IT NO	0.604		ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	Jy J ND	0.692		ug/m3	1	4/11/2007
Trichloroethene	45.3	2.18		ug/m3	10	4/11/2007
Vinyl acetate	US II NO	0.537		ug/m3	1	4/11/2007
Vinyl Bromide	U.5 / I NO	0.667		ug/m3	1	4/11/2007
Vinyl chloride	12.0	3.90		ug/m3	10	4/11/2007

- B. Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 - Spike Recovery outside accepted recevery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Lu Engineers
Lab Order: C0704013

Project: Churchville Ford Lab ID: C0704013-007A

Date: 28-Apr-07

Client Sample ID: IA-JCL-03

Tag Number: 107,301 Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT&TCE BY N	IETHOD TO1	TO-15			Analyst: RJP
1,1,1-Trichloroethane	1.39	0 832	ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	I ND	1.05	ug/m3	1	4/11/2007
1,1,2-Trichloroethane	UK ND	0.832	ug/m3	1	4/11/2007
1,1-Dichloroethane	∪ ND	0.617	սց/m3	1	4/11/2007
1,1-Dichloroothene	U. ND	0.605	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene US I / L.,	L ND	1.13	ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene 37 / 72	34.5	7.49	ug/m3	10	4/11/2007
1,2-Dibromoethane	NO	1.17	ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,2-Dichloroethane	U. ND	0.617	ug/m3	1	4/11/2007
1,2-Dichloropropane	U. ND	0.705	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	8.49	7.50	ug/m3	10	4/11/2007
1,3-butadiene	LA. ND	0.337	ug/m3	1	4/11/2007
1,3-Dichlorobenzene	/ II ND	0.917	ug/m3	1	4/11/2007
1,4-Dichlorobenzene J	1.04	0.917	ug/m3	1	4/11/2007
1,4-Dioxane	U. ND	1.10	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	31.3	7.12	ug/m3	10	4/11/2007
4-ethyltoluene	L 15.5	7.50	ug/m3	10	4/11/2007
Acetone	498	65.2	ug/m3	90	4/12/2007
Allyl chloride	UL ND	0.477	ug/m3	1	4/11/2007
Benzene	26.3	4.87	ug/m3	10	4/11/2007
Benzyl chloride) ND	0.877	ug/m3	1	4/11/2007
Bromodichloromethane	U, ND	1.02	ug/m3	1	4/11/2007
Bromoform CAT/I	ND	1.58	սց/m3	1	4/11/2007
Bromomethane	UC ND	0.592	ug/m3	1	4/11/2007
Carbon disulfide	J 0.348	0.475 J	ug/m3	1	4/11/2007
Carbon tetrachloride	E4. ND	0.256	ug/m3	1	4/11/2007
Chlorobenzene UT /I	ND	0.702	ug/m3	1	4/11/2007
Chloroethane	S ND	0.402	ug/m3	1	4/11/2007
Chloroform	ND	0.744	ug/m3	1	4/11/2007
Chloromethane	ND	0.315	ug/m3	1	4/11/2007
cis-1,2-Dichloroethene	ND	0.604	ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	₹ ND	0.692	ug/m3	1	4/11/2007
Cyclohexane	88.2	47.2	ug/m3	90	4/12/2007
	□ ND	1.30	ug/m3	1	4/11/2007
Ethyl acetate	L ND	0.916	ug/m3	1	4/11/2007
Fihylhenzene	24.7	6.62	ug/m3	10	4/11/2007
Freon 11	1.83	0.857	ug/m3	1	4/11/2007
Freon 113	U. ND	1.17	ug/m3	i	4/11/2007
Freon 114	U ND	1.07	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT: Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-007A

Date: 28-Apr-07

Client Sample ID: IA-JCL-03

Tag Number: 107,301

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE BY METHOD TO1		TO-15			Analyst: RJP
Freon 12	5.48	0.754	ug/m3	1	4/11/2007
Heptane	360	56.2	υ g/m3	90	4/12/2007
Hexachloro-1,3-butadiene しよず / 3	ND	1.63	ug/m3	1	4/11/2007
Hexane	5 5 .9	5.37	ug/m3	10	4/11/2007
Isopropyl alcohol	UND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	85.6	13.2	ug/m3	10	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	U ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone ピゴノエ	" ND	1,25	ug/m3	1	4/11/2007
Methyl teri-butyl ether	U ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	2.93	0.530	ug/m3	1	4/11/2007
o-Xylene	27.8	6.62	ug/m3	10	4/11/2007
Propylene	U. ND	0.262	ug/m3	1	4/11/2007
Styrene 3 / TE	13.0	6.49	ug/m3	10	4/11/2007
Tetrachloroethylene	11.9	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	U. ND	0.450	ug/m3	1	4/11/2007
Toluene 5 /	<u>7</u> 386	51.7	ug/m3	90	4/12/2007
trans-1,2-Dichloroethene	Ų ND	C.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	U. ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	6.39	0.218	ug/m3	1	4/11/2007
Vinyl acetate	U ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide) ND	0.667	ug/m3	1	4/11/2007
Vlnyl chloride	√ ND	0 390	ug/m3	1	4/11/2007

B Analyte detected in the associated Method Blank

H | Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

CLIENT: Lu Engineers

Lab Order:

C0704013

Project:

Churchville Ford

Lab ID:

C0704013-008A

Date: 28-Apr-07

Client Sample ID: OA-JCL-04

Tag Number: 357,54

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT&TCE E	TO-1	5		Analyst: RJF	
1,1,1-Trichloroethane	₩ ND	0.832	ug/m3	1	4/11/2007
1,1,2,2-Tetrachloroethane	ND	1.05	ug/m3	1	4/11/2007
1,1,2-Trichloroethane	מא	0.832	ug/m3	1	4/11/2007
1,1-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1,1-Dichloroethene		0.605	ug/m3	1	4/11/2007
1,2,4-Trichlorobenzene 🔾 💆 /	L ND	1.13	ug/m3	1	4/11/2007
1,2,4-Trimethylbenzene	√ ND	0.749	ug/m3	1	4/11/2007
1,2-Dibromoethane	ND	1.17	ug/m3	1	4/11/2007
1,2-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,2-Dichloroethane	ND	0.617	ug/m3	1	4/11/2007
1.2-Dichloropropane	ND	0.705	ug/m3	1	4/11/2007
1,3,5-Trimethylbenzene	ND	0.750	ug/m3	1	4/11/2007
1,3-butadiene	ND	0.337	ug/m3	1	4/11/2007
1,3-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,4-Dichlorobenzene	ND	0.917	ug/m3	1	4/11/2007
1,4-Dioxane	ND	1.10	ug/m3	1	4/11/2007
2,2,4-trimethylpentane	DИ	0.712	ug/m3	1	4/11/2007
4-ethyltoluene	₩ ND	0.750	ug/m3	1	4/11/2007
Acetone	15.5	7.24	ug/m3	10	4/11/2007
Allyl chloride	UL ND	0.477	ug/m3	1	4/11/2007
Benzene	0.422	0.487	J ug/m3	1	4/11/2007
Benzyl chloride	U ND	0.877	ug/m3	1	4/11/2007
Bromodichloromethane	ND	1.02	ug/m3	1	4/11/2007
Bromoform	ND	1.58	ug/m3	1	4/11/2007
Bromomethane	ND	0.592	ug/m3	1	4/11/2007
Carbon disulfide	ND	0.475	ug/m3	1	4/11/2007
Carbon tetrachioride	ND	0.255	ug/m3	1	4/11/2007
Chlorobenzene	ND	0.702	ug/m3	1	4/11/2007
Chloroethane	ND	0.402	vg/m3	1	4/11/2007
Chloroform	CIA	0.744	ug/m3	1	4/11/2007
Chloromethane	ND	0.315	ug/m3	1	4/11/2007
cis-1,2-Dichlorcethene	ND	0.604	ug/m3	1	4/11/2007
cis-1,3-Dichloropropene	₩ ND	0.692	ug/m3	1	4/11/2007
Cyclohexane	1.96	0.525	ug/m3	1	4/11/2007
Dibromochloromethane	$\cup_{\mathcal{C}}$ ND	1.30	ug/m3	1	4/11/2007
Ethyl acetate	, ND	0.916	ug/m3	1	4/11/2007
Ethylbenzene	J ND	0.662	ug/m3	1	4/11/2007
Freon 11	1.54	0.857	ug/m3	1	4/11/2007
Freon 113	₩ ND	1.17	ug/m3	1	4/11/2007
Freon 114	U ND	1.07	ug/m3	1	4/11/2007

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 - Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

CLIENT:

Lu Engineers

Lab Order:

C0704013

Project: Lab ID: Churchville Ford

C0704013-008A

Date: 28-Apr-07

Client Sample ID: OA-JCL-04

Tag Number: 357,54

Collection Date: 4/4/2007

Matrix: AIR

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT&TCE	BY METHOD TO1	TO-15			Analyst: RJP
Freon 12	3.42	0.754	ug/m3	1	4/11/2007
Heptane	8.29	0.625	ս ը/m3	1	4/11/2007
Hexachloro-1,3-butadiene	U. ND	1.63	ug/m3	1	4/11/2007
Hexane	, ND	0.537	ug/m3	1	4/11/2007
Isopropyl alcohol	ND	0.375	ug/m3	1	4/11/2007
m&p-Xylene	ND	1 32	ug/m3	1	4/11/2007
Methyl Butyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl Ethyl Ketone	ND	0.899	ug/m3	1	4/11/2007
Methyl Isobutyl Ketone	ND	1.25	ug/m3	1	4/11/2007
Methyl tert-butyl ether	√ ND	0.550	ug/m3	1	4/11/2007
Methylene chloride	1.09	0.530	ug/m3	1	4/11/2007
o-Xylene	U ND	0.662	ug/m3	1	4/11/2007
Propylene	ND	0.262	ug/m3	1	4/11/2007
Styrene	ND	0.649	ug/m3	1	4/11/2007
Tetrachloroethylene	В	1.03	ug/m3	1	4/11/2007
Tetrahydrofuran	₩ ND	0.450	ug/m3	1	4/11/2007
Toluene	3.60	0.575	ug/m3	1	4/11/2007
trans-1,2-Dichloroethene	₩ ND	0.604	ug/m3	1	4/11/2007
trans-1,3-Dichloropropene	, ND	0.692	ug/m3	1	4/11/2007
Trichloroethene	ДИ	0.218	ug/m3	1	4/11/2007
Vinyl acetate	ND	0.537	ug/m3	1	4/11/2007
Vinyl Bromide	ND	0.667	ug/m3	1	4/11/2007
Vinyl chloride	J∕ ND	0.390	ug/m3	1	4/11/2007

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

APPENDIX H

Investigation Derived Waste and Disposal Information

Remedial Investigation Report Former Churchville Ford Site #V00658-8

INVESTIGATION-DERIVED WASTE INVENTORY SHEET								
Site: CHURCHVILLE FORD No. of Drums:								
Inventory Date:	12/12/06							
Waste Source	Drum/Container ID Number	Date Generated	Contents (Solid, Liquids, etc.)	Approximate Volume	Drum Location/ Comments			
MW-JCL-1		9/12/08	SOIL CUTTINGS	3 DRUMS				
Mw.JCL-2		9/19/06	SOIL CUTTINGS	3 DRUMS				
MW-JCL-3		9/19/06	SOIL CUTTINGS	2 DRUMS				
DECON PAD		9/20/06	Soir, HzO, POLY	1 Drum	(1/2 Fuei)			
DECON WATER DEVELOPMENT	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9/18/06- 9/20/06 9/22/06;	WATER	2 DRUMS	1- Devel. H20 Mui. Tri-17			
PURGE WATER		9/26/06,10/16/	6 WATER	5 DRUMS	1- Devel. H20 MW. ICL-1,3 1- Purple MW-22 1- MW-1, MW-13, MW. ICL-1, MW-21 (PURGE) 1- DEUEL-P MW. ICL-2			
PREVIOUS IN	VESTIGATION	حت حت	***************************************					
	EHIND SHES	>	A SECURIOR SECTION OF PROPERTY					
9 SOLID								
2 LIQUI	D							
					(PARTIALLY FULL)			
					1 WASTECOOLANT (POLY)			
5 MOSTLY	EMPTY DAWN	S OF ANT	IFREEZE (PLAC ICUS INVEST.)	9 Scil				
11 DRUMS	BEHIND SH	ED CYREV	icus Invest.)	2 WATER)			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 1			<u> </u>				
NYETECH			FROM INSIDE	_				
	Lu < 8	SOLIDS CS	CON PAD, SCUL/POL	4) TAKEN AS	SOIL 20 TOTAL			
De la Anne Cia	9	SOLID (SOI	L FROM PREVIOUS)				

REMAINS (12/12/06): Lu -> 2 DECONJOTZO, 5 DEVEL/PURGE

PREVIOUS -> 6 WATER, 3 CLEANER/DEGREERS ER?, 1 WASTE COCLAN

	NON-HAZARDOUS 1. Ge WASTE MANIFEST		st Doc. No. 2. Page 6. 3. 2 2 of	1		
3.	Generator's Name and Mailing Address CHURCHVIL		5. 3. 2 2 or Site:	-	<u> </u>	
-	RT. 36		RT. 3			
		LE NY 14428	i i	CHVILLE N	Y 1442	? 8
	Generator's Phone (585 436–7503					
5.	Transporter 1 Company Name NEW YORK ENVIRONMENTAL	6. US EPA ID Number NYD986983		sporter's Phone (585) 43 6	<u> </u>	
7.	Transporter 2 Company Name	8. US EPA ID Number		sporter's Phone	0-3000	
L				•		
9.	Designated Facility Name and Site Address	10. US EPA ID Number	C. Facil	ity's Phone		
	ENVIRONMENTAL PRODUCTS & S 532 STATE FAIR BLVD.	VCS OF VT,		(800) 533-	_2225	
	SYRACUSE NY 13204	1		(000) 335	-000	
11	. Waste Shipping Name and Description			12. Containers	13. Total	
	MACRID MOST DODS GOVERNO NO	C (COTT CHARTINGS)		No. Type		· \ \ \ \ \ \ \
a.	WASTE NON-RCRA SOLIDS, NO	s (Soil Cuitings)	(A)	0-0-8 D M	1020	0 4
				0.2.0	117 10 10	
b.	Waste Non-RCRA LIQUIDS, N	OS (DECON WATER)				
		\mathcal{A}		003 01	4001	6-5
c.	WASTE NON-RCRA LIQUIDS, N	OS (PURGE MATER)			 	-+
J.				005 01	002	7.5
					<u> </u>	
d.						
D.	Additional Descriptions for Materials Listed Above		E. Hand	ling Codes for Wa	stes Listed Abo	ove
	a.1206					
		c.1206	a.S		:.SO1	
	b.1206	c.1206	a.s/ b.s/		:.S01	
15	b.1206	c.1206			: . S01	
15.	b.1206 Special Handling Instructions and Additional Information	c.1206			: . S01	***
15.	b.1206		b.S/	01		اسر مر بع
15.	b.1206 Special Handling Instructions and Additional Information			01	585) 436	-566
15.	b.1206 Special Handling Instructions and Additional Information		b.S/	01		-566
15.	b.1206 Special Handling Instructions and Additional Information		b.S/	01		-566
	b.1206 Special Handling Instructions and Additional Information	IN CA	b.so	Ol GENCY: (5	585) 436	
16.	b.1206 Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de	IN CA	b.so	Ol GENCY: (5	585) 436- sal of Hazardous	s Waste.
16.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name EAC DETA.EA	IN CA	b.so	Ol GENCY: (5	585) 436- sal of Hazardous	s Waste. Day 1
16.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name FIG. DETAGI Transporter 1 Acknowledgement of Receipt of Materials	IN CA escribed above on this manifest are not subject to fee Signature	b.so	Ol GENCY: (5	585) 436- sal of Hazardous <i>Month</i>	s Waste. Day
16.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name EAC DETA.EA	IN CA	b.so	Ol GENCY: (5	585) 436- sal of Hazardous <i>Month</i>	s Waste. Day
16.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials	IN CA escribed above on this manifest are not subject to fee Signature	b.so	Ol GENCY: (5	585) 436- sal of Hazardous <i>Month</i>	s Waste. Day
16.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	IN CA escribed above on this manifest are not subject to fee Signature	b.so	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day ()
17.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	IN CA escribed above on this manifest are not subject to fed Signature Signature	b.so	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day 12 Day Day
17.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials	IN CA escribed above on this manifest are not subject to fed Signature Signature	b.so	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day 12 Day Day
17.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	IN CA escribed above on this manifest are not subject to fed Signature Signature	b.so	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day 12 Day
16. 17.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Discrepancy Indication Space	IN CA escribed above on this manifest are not subject to fed Signature Signature Signature	SE OF EMERO	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day 12 Day Day
16. 17.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	IN CA escribed above on this manifest are not subject to fed Signature Signature Signature	SE OF EMERO	Ol GENCY: (5	sal of Hazardous Month Month	s Waste. Day 12 Day Day
16. 17. 18.	Special Handling Instructions and Additional Information Job#R5000 PO# GENERATOR'S CERTIFICATION: I certify the materials de Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Discrepancy Indication Space	IN CA escribed above on this manifest are not subject to fed Signature Signature Signature	SE OF EMERO	Ol GENCY: (5	sal of Hazardous Month Month Month	s Waste. Day 12 Day

The state of the s

Checrett 41738

INITIAL SEWER USE PERMIT

County of Monroe Pure Waters District No. 555.35	Permit No: <u>51-113</u>
	Expires: May 31, 22 1
	Fee: \$40.00
Firm Name CKar Equipment Co.	fri.
Address 768 Branks Ave	
Rochester NY	14619
Type of Business or Service Peroleum Eguipm	19619 ent + Service Comping.
I. The above-named applicant is permitted to discharge wastes into the Pure W by an application dated and verified by the applicant except terms and conditions to govern the permitted discharge: A	the Director of Pure Waters requires the following
II. The applicant further agrees to:	
1. Accept and abide by all provisions of the Sewer Use Law of Monroe County or shall be adopted in the future.	and of all pertinent rules or regulations now in force
2. Notify the Director of Pure Waters in writing of any revision to the plant sev to the public sewers listed in Exhibit "B". The latter encompasses either (1) an strength of wastes listed in Exhibit "B" or (2) new wastes that were not listed in	increase or decrease in average daily volume or
3. Furnish the Director of Pure Waters upon request any additional information which this permit is sought.	related to the installation or use of sewer or drain for
4. Operate and maintain any waste pretreatment facilities, as may be required a the industrial wastes involved, in an efficient manner at all times, and at no exp	
5. Cooperate with the Director of Pure Waters or his representatives in their insprovided for pretreatment.	specting, sampling, and study of wastes, or the facilities
6. Notify the Director of Pure Waters immediately of any accident, negligence, occurrence that occasions discharge to the public sewers of any wastes or process.	
Applicant's Signature Captil	Date 12/14/06
Applicant's Name John K Campbell Title	President
Emergency Contact John Campbell Phone	436-7503
Permit Approved by John E Graham Date Director of Pure Waters	1-16-2007

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

Okar Equipment Co. Inc.

PERMIT NUMBER: ST-113

768 Brooks Ave.

DISTRICT NUMBER: 8535

Rochester, NY 14619

SITE LOCATION: Former Churchville Ford Site

111 North Main Street Churchville, NY 14428

TYPE OF BUSINESS: Former Car Dealership

This is a State of New York DEC Site(V00658-8)

SAMPLE POINT: Containerized ground water (Holding Tank) from monitoring well

Development.

REQUIRED MONITORING

SELF MONITORING FREQUENCY: Each/Every Batch Discharge

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40 CFR Part 136 and amendments thereto. In the absence of 40 CFR Part 136 testing methodology, a New York State Department of Health, approved method is acceptable. A representative grab sample, collected from the above noted sample point shall be analyzed for the following:

Total VOC's - Volatile Organic Compounds

Discharge Limitations: The summation of all VOC's reported

grater than 10 ug/l shall not exceed: 2.13ppm

SPECIAL CONDITIONS:

- Sample results must be reviewed and approved by Monroe County Prior to each discharge to the sanitary sewer system.
- 2. Discharge location and flow rate must be approved by the Churchville Sewer Department prior to discharge.
- 3. Solids discharges are to be kept to a minimum.

January 9, 2006 7

Monroe County Department of Environmental Services Division of Pure Waters Industrial Waste Code Section 444 East Henrietta Road Bldg. 15 Rochester, New York 14620

Attn: Mr. Harry Reiter

Re: Short Term Sewer Use Permit Application

Investigation-Derived Waste Water Disposal

Former Churchville Ford Site NYSDEC Site #V00658-8 Lu Engineers Project 5701-11

Dear Mr. Reiter:

As we discussed last month, Lu Engineers has been contracted with the owners of the subject site to assist with disposal of investigation-derived wastes as part of our voluntary site investigation efforts. Our client, Okar Equipment Company, Incorporated is seeking a Short Term Permit for disposal of investigation-derived waste water into the Monroe County sanitary sewer system serving the property.

In accordance with the Short Term Permit Instructions, we submit the following information for your review:

1.

a) Contractor or environmental representative name:
 Lu Engineers
 2230 Penfield Road
 Penfield, New York 14526

b) Contact person name, phone number, pager number and fax number: Gregory L. Andrus, CHMM
Project Manager
Ph. (585) 377-1450 ext. 1215
Fx. (585) 377-1266
Cell (585) 732-5786

c) Site name and address:
 Former Churchville Ford Site
 NYSDEC VCP Site #V00658-8
 111 North Main Street
 Churchville, New York 14428

- d) Description of site work and history of commercial/industrial activity:
 A NYSDEC Fact Sheet on the site is attached as Attachment 1 for reference, which includes a thorough description of the site history and environmental setting.
- e) Former/current contents of underground storage tanks and/or material spilled and/or history of site contaminants:
 Please refer to the attached NYSDEC Fact Sheet (Attachment 1).
- f) Quantity of wastewater to be discharged and rate:
 A total discharge volume of less than 500 gallons is anticipated. The discharge rate will be less than 10 gallons per minute.
- g) Method of treatment (if applicable):
 Our plan is to discharge the consolidated wastewater directly into the site sanitary sewer access. The location of the sanitary sewer connection at the site is indicated on the attached plan (Attachment 2) obtained from the Village of Churchville.
- h) Method to control solids discharge (applicable):
 Discharge of solids is not anticipated. Assurance that solids will not be discharged will be provided by visual inspection during discharge.
- Statement on status of compliance with New York State Standards for Erosion and Sediment Control and the New York State Stormwater Management Design Manual: No stormwater discharge, collection or control is anticipated.
- j) Expected Date of Discharge: Pending receipt of analytical results, the planned date of discharge is January 10, 2007.
- k) Project duration:We anticipate a one-day project duration.

2.

- a) With respect to part 2a of the Short Term Permit Instructions, the water to be discharged is not considered petroleum contaminated. Rather, the presence of detected analytes is considered a result of past improper disposal of cleaning solvents as described in the attached NYSDEC Fact Sheet.
- b and c) Representative analytical results are attached (Attachment 3) for both the 2004 and 2006 rounds of well sampling that resulted in the generation of these wastes. Unfortunately, although the detected contaminant concentration totals do no exceed the 2.13 part per million threshold, elevated quantitation limits are indicated. Upstate Laboratories, Incorporated indicates that multiple sample runs were performed (evidenced by lower than quantitation limit concentrations being reported). Therefore, we do not anticipate the presence of elevated contaminant concentrations other than those reported in the attached analytical data.

Lu Engineers proposes to consolidate the water into a pre-cleaned 500-gallon plastic holding tank and obtain a water sample from the tank to represent the water to be discharged. This sample will be analyzed by EPA Methods 8260 and 8270. Results will be forwarded to your office upon receipt for review and permit approval.

- d) Lu Engineer has been in contact with the Village of Churchville and an acceptable discharge point has been identified. The location of this discharge point is indicated on the plan provided as Attachment 2.
- e) Our planned discharge rate is less than 10 gallons per minute. The flow rate will be verified on site and controlled with a manual valve.
- f) We will contact your office prior to any discharge to arrange a mutually agreeable time for inspection.

Attachment 4 contains copies of Okar's Worker's Compensation Insurance information. Attachment 5 contains a signed permit application form and a check for the application fee of \$40.00.

As we discussed, the enclosed data is being sent in lieu of sample data for the bulk volume to be discharged. That data will be sent within the next two weeks. Until discharge approval is granted, we will store the water in a polyethylene tank located within the facility's work shop area to avoid freezing.

Please contact our office with any questions or comments you may have.

Respectfully submitted,

Gregory L. Andrus, CHMM

Project Manager

John Campbell - Okar Equipment Frank Sowers - NYSDEC Joe Albert - MC DOH 5701-11 file

December 15, 2006

New York State Department of Environmental Conservation Division of Solid and Hazardous Materials Bureau of Hazardous Waste and Radiation Management 625 Broadway Albany, New York 12233-7258

Attn: Mr. Henry Wilkie

Re: Investigation-Derived Waste Soil Disposal Determination

Former Churchville Ford Site NYSDEC Site #V00658-8

Lu Engineers Project No. 5701-11

Dear Mr. Wilkie:

Per our conversation on December 13, 2006, this letter is intended to serve as a request for relief from the determination of the referenced waste soils as F-listed hazardous waste for purposes of disposal. It is our opinion that this request is well supported by the attached documentation, which addresses all of the questions discussed during our conversation.

The owners of the subject site are in the process of completing a Voluntary Investigation as part of their Voluntary Cleanup Program Agreement with NYSDEC. A copy of the application for this program is provided as Attachment 1. This application provides a brief synopsis of Site use and conditions for your reference.

We are disposing of a total of 20, 55-gallon drums containing soils from soil borings and well installations throughout the subject Site. A portion of the soils (12 of 20 drums total) were generated and abandoned on the Site by a previous consultant. The soil contaminant concentrations representative of these soils are provided as Attachment 2. The results are representative of various depths and locations. Based on more recent test results, these data are interpreted as representative of the "worst case" findings at each sampled location observed during soil boring and/or probing. A sample location map is provided in Attachment 2 for your reference.

The eight (8) drums generated by Lu Engineers' activities in September 2006 are represented by the data provided in Attachment 3. Again, the sampled soils were intended to represent "worst-case" contaminant conditions as observed during the installation of three new wells. A sample location plan (including all Site wells) is also provided in Attachment 3.

The permitted facility we hope to use for disposal of these materials is Waste Management's High Acres Landfill located at 425 Perinton Parkway, Fairport, NY 14450. The NYSDEC's Solid Waste permit reference number for this facility is ID# 8-2644-00048/00032.

Please verify that this relief addresses applicable federal regulatory requirements.

As we discussed, we have been asked to expedite this process to the extent possible. If you have any questions regarding the site please feel free to call Frank Sowers, P.E. of Region 8 Avon at (585) 226-5357 or me (x1215).

Please respond at your earliest convenience.

Respectfully submitted,

Gregory L. Andrus, CHMM

Enclosures as noted

Cc. John Campbell - Okar Frank Sowers, P.E. - NYSDEC, Region 8 5701-11 file

New York State Department of Environmental Conservation

Division of Solid & Hazardous Materials

Jureau of Hazardous Waste and Radiation Management

625 Broadway, Albany, NY 12233-7258 **Phone:**(518) 402-8594 • **FAX:**(518) 402-8646

Website: www.dec.state.ny.us

December 19, 2006

Mr. Gregory L. Andrus, CHMM LU ENGINEERS Civil and Environmental 2230 Penfield Road Penfield, NY 14526

RECEIVED
DEC 2 1 2006

'U ENGINEERS

Re:

Investigation -Derived Soil Waste Disposal Determination

Former Churchville Ford Site NYSDEC Site #V00658-8 Lu Engineers Project No. 5701-11

Dear Mr. Andrus:

We have completed our review of the data submitted with your December 15, 2006 request for a "contained-in" determination at the referenced project site.

Concentrations detected for individual VOCs were all significantly less than their current "contained-in" soil action levels and Land Disposal Restriction concentrations. Concentrations for cis-1,2-dichloroethene, trichloroethene and tetrachloroethene, were below the soil "contained-in" action level and the Land Disposal Restriction concentration. The 20, 55-gallon drums containing soil generated from soil borings and well installations throughout the Former Churchville Ford Site do not have to be managed as hazardous waste and can be transported offsite to Waste Management's High Acres Landfill located at Fairport, NY.

Should you have any questions regarding the content of this letter, please do not hesitate to contact me at (518) 402-8594 or email me at hjwilkie@gw.dec.state.ny.us.

Henry Wilkie

Environmental Engineer 1

Hazardous Waste Engineering Eastern Section

cc: F. Sowers, Region 8

APPENDIX I

Fish and Wildlife Impact Analysis Decision Key

Remedial Investigation Report Former Churchville Ford Site #V00658-8

APPENDIX 3C

Fish and Wildlife Resources Impact Analysis Decision Key

		If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	13.	2.
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13.	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4.	9.
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5.
5.	Has the contamination gone off site?	6.	14.
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7.	14.
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8.
8.	Does contamination exist at concentrations that could exceed SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14.
9.	Does the site or any adjacent or downgradient property contain any of the following resources? a. Any endangered, threatened or special concern species or rare plants or their habitat b. Any NYSDEC designated significant habitats or rare NYS Ecological Communities c. Tidal or freshwater wetlands d. Stream, creek or river e. Pond, lake, lagoon f. Drainage ditch or channel g. Other surface water feature h. Other marine or freshwater habitat i. Forest j. Grassland or grassy field k. Parkland or woodland l. Shrubby area		
	m. Urban wildlife habitat n. Other terrestrial habitat	11.	10.
10.	Is the lack of resources due to the contamination?	Section 3.10.1	14.
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14.	12.
12.	Does the site have widespread soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	13.
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact NYSDEC for information regarding endangered species.)	Section 3.10.1	14.
14.	No Fish and Wildlife Resources Impact Analysis needed.		

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 8

6274 East Avon-Lima Road, Avon, New York 14414-9519

Phone: (585) 226-2466 • FAX: (585) 226-8696

Website: www.dec.ny.gov

September 3, 2008

Mr. Antonio Gabrielle 1214 Lake Road Webster, New York 14580

Mr. Joseph Ognibene 5875 North Byron Road Byron, New York 14422

Dear Messrs. Gabriele and Ognibene:

Re: Churchville Ford Site # V00658-8 Remedial Investigation Report, July 2008 Village of Churchville, Monroe County

The New York State Department of Environmental Conservation (NYSDEC) has completed its review of the investigation report for the Churchville Ford site entitled, "Remedial Investigation Report" dated July 2008 and amended by the attached replacement pages for pages 35, 36, 39, and 52 and the new additional pages of field notes for Appendix C. The Department has determined that the report substantially addresses the requirements of the voluntary agreement and Voluntary Cleanup Program Work Plan dated August 2006. The remedial investigation report is hereby approved.

Based upon the results of the investigation, NYSDEC has determined that remediation of the site is necessary. The remedial investigation report indicated that the groundwater at the site contained chlorinated volatile organic compounds at concentrations exceeding 6 NYCRR Part 703 ambient groundwater standards and guidance values. Total chlorinated volatile organic compound concentrations up to approximately 1,140 ppb were detected in the groundwater at the site. Additionally, mitigation is recommended per NYSDOH guidance to address vapor intrusion concerns associated with trichloroethene and cis-12-dichloroethene.

After evaluating the nature and extent of contamination as well as the exposure assessments associated with this site, the following site-specific preliminary remedial action objectives have been identified:

GROUNDWATER

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.
- Restore groundwater to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Prevent the further migration of contaminated groundwater.
- Remove the source of groundwater or surface water contamination.

Messrs. Gabriele and Ognibene September 3, 2008 Page 2

SOIL

- Restore soil to pre-release conditions, to the extent practicable.
- Prevent ingestion/direct contact with contaminated soil and sediment.
- Prevent inhalation of, or exposure from, contaminants volatilizing from contaminants in soil (including odors).
- Prevent inhalation of, or exposure from, airborne particulate matter from contaminants in soil.
- Prevent migration of contaminants that would result in groundwater or surface water contamination.

SOIL VAPOR

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the site.

By October 3, 2008, please amend the final report with the attached pages and submit to my attention one (1) hardcopy of the complete report (ASP-B laboratory packages attached on CDs), along with five (5) electronic copies of the complete report on CD (excluding ASP-B laboratory packages). Please ensure that the electronic copies are provided as a single pdf file and that the text of the report is searchable.

The next step in the process is to complete the Remedial Action Work Plan. NYSDEC is currently reviewing the revised Remedial Action Work Plan dated August 2008 which was prepared by Lu Engineers.

Thank you for your cooperation and please contact me at (585) 226-5357 if you have any questions.

Sincerely,

Frank Sowers, P.E.

Environmental Engineer 2

Frunk Sowers

attach

cc: w/attach

Benjamin Bonarigo - Bonarigo & McCutcheon

John Campbell - Oakar Equipment Gregory Andrus - Lu Engineers

file

ec: w/attach

- B. Putzig
- D. McNaughton
- J. Kosmala
- J. Hausbeck
- R. Knizek
- G. Lacetti

TABLE 5.3F Detected VOCs in Subsurface Soils (Lu Engineers 2006)

PARAMETERS ¹	MW-JCL-1 (4-6')	MW-JCL-2 (6-8')	MW-JCL-3 (3-5')	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	REC. SOIL CLEANUP OBJECTIVES ³ (ppb)
MTBE	ND	ND	ND	500,000	N/A
Methylene Chloride	6 J	ND	4 J	500,000	100
1,1-dichloroethane	ND	ND	ND	240,000	100
Cis-1,2-DCE	ND	60 J	ND	500,000	300
Benzene	ND	ND	ND	44,000	60
Trichloroethene	2 J	200 J	ND	200,000	700
Toluene	ND	ND	ND	500,000	1,500
Tetrachloroethene	2 J	400 J	ND	150,000	1,400
Ethylbenzene	ND	ND	ND	390,000	5,500
Acetone	ND	ND	ND	500,000	200
2-butanone	ND	ND	ND	500,000	300
4-methyl-2-pentanone	ND	ND	ND	N/A	1,000
Xylene	ND	ND	ND	500,000	1,200
Methylcyclohexane	ND	ND	ND	N/A	N/A
isopropylbenzene	ND	ND	ND	N/A	N/A

- Results represented as micrograms per kilogram (ug/kg)
- Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
- Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

N/A- Not Applicable

Low levels of SVOCs were detected in four of the Entrix soil boring samples, as summarized in the following table.

Detected SVOCs in Subsurface Soils (Entrix 2004) **TABLE 5.3G**

PARAMETERS ¹	SB-C (2-4')	SB-H (4-6')	SB-K (2-4')	SB-L (2-4')	6 NYCRR Part 375 Restricted Commercial Use ³ (ppb)	REC. SOIL CLEANUP OBJECTIVES ² (ppb)
benzo(a)anthracene	ND	270	240 J	40 J	1,000	224 or MDL
bis(2- ethylhexyl)phthalate	200 J	ND	110 J	900	N/A	50,000 ***
chrysene	ND	320	250 J	50 J	3,900	400
fluoranthene	ND	800 J	620	130 J	100,000	50,000 ***
pryene	71	620 J	510 J	140 J	100,000	50,000 ***

- Results represented as micrograms per kilogram (ug/kg)
- Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94) Restricted Commercial Use Guidance Values (6 NYCRR Part 375)

ND - None Detected

SVOCs were detected below the RCU Guidance Values in the well boring soil samples collected by Lu Engineers, in 2006, as shown in the following table.

TABLE 5.3H Detected SVOCs in Subsurface Soils (Lu Engineers 2006)

PARAMETERS ¹	MW-JCL-1 (4-6')	MW-JCL-2 (6-8')	MW-JCL-3 (3-5')	6 NYCRR Part 375 Restricted Commercial Use ² (ppb)	REC. SOIL CLEANUP OBJECTIVES ³ (ppb)
benzo(a)anthracene	200	ND	200	1,000	224 or MDL
benzo(a)pyrene	100	ND	100	1,000	61 or MDL
benzo(b)fluoranthene	200	ND	200	1,000	1,100
benzo(g,h,i)perylene	100	ND	100	100,000	50,000 ***
benzo(k)fluoranthene	70	ND	70	3,900	1,100
bis(2-ethylhexyl)phthalate	90	ND	ND	N/A	50,000 ***
carbozole	40	ND	90	N/A	N/A
chrysene	200	ND	200	3,900	400
di-n-butyl phthalate	100	70	60	N/A	8,100
fluoranthene	460	ND	600	100,000	50,000 ***
indeno(1,2,3-cd)pryene	100	ND	100	500	3,200
phenanthrene	200	ND	300	100,000	50,000 ***
Pryene	300	ND	400	100,000	50,000 ***

- 1 Results represented as micrograms per kilogram (ug/kg)
- 2 Restricted Commercial Use Guidance Values (6 NYCRR Part 375)
- 3 Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

Metals were detected in subsurface soils below the RCU Guidance Values, as shown in the following tables.

ND - None Detected

N/A- Not Applicable

MDL- Method Detection Limit

^{***} As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm.

1-50

2,000-550,000

100-5,000

50-5,000

.5-25

8,500-43,000

6,000-8,000

1-300

25 or SB

2,000 or SB

SB

SB

SB

13 or SB

SB

150 or SB

PARAMETERS ¹	MW-JCL-1 (4-6')	MW-JCL-2 (6-8')	MW-JCL-3 (3-5')	6 NYCRR Part 375 Restricted Commercial Use ² (ppm)	REC. SOIL CLEANUP OBJECTIVES ³ (ppm)	EASTERN USA Back-ground (ppm)
aluminum	8,190	4,470	3,660	NA	SB	33,000
arsenic*	4.09	2.29	2.44	16	7.5 or SB	3-12*
barium*	92.8	44.4	44.8	400	300 or SB	15-600
calcium	22,800	61,200	67,100	NA	SB	130-35,000
chromium*	13.2	6.54	5.53	400 or 1,500	10 or SB	1.5-40**
cobalt	6.06	ND	ND	NA	300 or SB	2.5-600

10.2

7,510

8.35

28,100

286

7.08

860

7.54

49.1

TABLE 5.3J Metals in Subsurface Soils (Lu Engineers 2006)

10.5

8,690

6.10

22,800

280

7.41

1,090

10.1

134

copper

iron

lead*

nickel

zinc

magnesium manganese

potassium

vanadium

15.7

14,300

12.1

9,630

619

12.6

948

16.8

63.5

270

NA

1,000

NA

10,000

310

NA

NA

A review of the subsurface soil analytical results noted above shows the following information:

- No VOCs were detected in subsurface soils above the RCU Guidance Values or RSCOs in TAGM 4046.
- PAH compounds were detected at concentrations above TAGM 4046, but below the RCU Guidance Values.
- Calcium, magnesium, and zinc were detected above Eastern USA Background levels at most of the sample locations, however, no metals were detected above the RCU Guidance Values.

5.4 Groundwater Sampling Results

Groundwater samples were collected during three rounds of sampling. On August 19, 2004, Entrix collected groundwater samples from six of the on-site monitoring wells, that were either installed by Entrix (MW-21 and MW-22) or upgraded from existing Sear-Brown Group monitoring wells (MW-1, MW-3, MW-6, and MW-13). On November 17-18, 2006 and June 14-15, 2007, Lu Engineers collected groundwater samples from all nine groundwater monitoring wells. Samples were collected using disposal polyethylene bailers attached to new polyethylene twine.

¹ Results represented as milligrams per kilogram (mg/kg)

² Restricted Commercial Use Guidance Values (6 NYCRR Part 375-6)

³ Recommended Soil Cleanup Objectives (NYSDEC TAGM 4046, 1/94)

ND - None Detected

SB - Site Background

^{*} NYS Background (NYSDEC TAGM 4046)

^{**} Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

exposure to contaminated groundwater is indicated. In addition, there are no documented wells located within a 0.1-mile radius of the Site.

Volatilization to indoor air is a potential exposure route, as elevated levels of TCE were identified in two of the three Lu Engineer's indoor air sampling locations.

Potential exposure pathways can be mitigated during the proposed remedial phase of this project through the use of a site specific HASP. This plan was prepared for the Site prior to the commencement of investigation activities and will be amended prior to cleanup operations to prevent exposures to site workers and the public.

7.2 Environmental Exposure Assessment

The Fish and Wildlife Resources Impact Analysis Decision Key was completed for the Site as part of DER-10 and indicated that no Fish and Wildlife Impact Analysis was needed. There are no significant or navigable waterways at or adjacent to the Site. The Fish and Wildlife Resources Impact Analysis Decision Key is included in Appendix I.

8.0 Summary and Conclusions

8.1 Summary

8.1.1 Nature and Extent of Contamination

Sampling at the Site has verified the vertical and horizontal extent of identified contaminants. A Full Target Compound List scan of collected samples has verified the type of contaminants present. The extent of groundwater contamination is depicted on Figures 12, 13, and 14.

The approximate area of the Site apparently underlain by contaminated groundwater exceeding 5 ug/l is located on the southwestern portion of the interior and exterior of the main building. This area covers approximately 22,636 ft².

The apparent vertical extent of chlorinated solvent contamination in subsurface soils has been estimated based on Lu Engineers soil boring logs, sample depths and results, and previous investigation findings. Lu Engineers estimated the vertical extent of soil contamination to be approximately 9 feet bgs. Prior investigations have identified similar maximum depths of contaminant occurrence. Detectable levels of contaminants in subsurface soils have not been identified at depths greater than 9 feet bgs. The deepest borings installed to date, MW-JCL-01 (44.5 feet bgs) and MW-JCL-02 (36.0 feet bgs), indicate no occurrence of contamination at greater depths.

Groundwater and soil vapor analyses indicate that the same area is contaminated with chlorinated solvents (i.e., TCE, PCE, cis-1,2-DCE) resulting from former solvent storage in the area. It is anticipated that this area will be addressed

Project / Client

CLEANING & WASTE REMOURL IN OIL/WATER 10:45 ARRIVE ON SITE TO OVERSEE ハのまったとう

OF O'W SEP., HE INFORMS ME TAKE W UAC, TRUCK, REMOVING, CONTENTS SAFETY KLEGN DRIVER IS ON SITE

- THERE WAS A TOTAL OF 49" OF

WASTE WITHIN 0/W SEP. (20" OF SOUD MATERIAL OVERLAIN BY 29"

1/4-1/2" OF OIL ON SURFACE OF OF WATER) THERE WAS APPRIX.

四十二二十二五年一四

WATER WHEN HE BEGAN PUMPING

TANK IS CONSTRUCTED ENTIRELY OF CONCRETE DUT TANK

TAUL DIMENSIONS:

72" WIDE x 34" LONG x 72" TRUL (APPRIN) = 176,756 in3 = 102 A3 = 763 gallon capacity (Approximate)

- I PRESSURE- WACHED BUTILE INTERNOLOF THAK - DUCE ALC WASTE/WATER HAD BEEN

EMPTY TANK; TANK APPEARS TO BE REALOUTED INSPECTED INSIDE OF

THERE WAS NO OL FACTORY OF USUAL GUTLET TO SANGTARY SEWER 15 FIXED COMPROMISED CONCRETE ON ANY OF THE AND SITS APPROXIMATELY 8" OFF OF GUDGICE OF CONTAMINATION OBSECUED OU THE EAST SIDE OF 0/W SEP, THUK INDICATIONS OF ANY CRACKING OF SIDEWALLS AND/OR FLOOR, H" PUC THE FLOOR OF THE TANK

THET'S STAIN! CONSCRETE MENTE. かしとろう 017 4. PIC OUTLET 0 PLAN CIEW

Location F. MER CHURCHUILE FORDATE 2/29/68

Project / Client OKAL EQUIPMENT

CHUSANATED SOLUTIONES (GOVING POIN) THE TO KUN A "CUK-D-TECT" KIT ON THE BESLIEF DANS ALSO THEREFORED ALSO THEREFORED FRO THEREFORED 大一年を一ろのことのは、日本一大 PERCON HE ROAL POWENCE OF THENCED STATES TO CHECK FOR A COUNTY HE WARD A Contrary 2

* TOTAL WASTE LIEWINED: Scills, 367 GALLOUS LICHID

ĸŝ

James Washburn Vaouum Service Representative

Safety-Kiren Systems, Inc. 1525 W. Henrietta Road Avon, NY 14414

Tel 585.226.2411

1 000