Periodic Review Report - 2013/2014

Former Churchville Ford, Inc. Site NYSDEC Voluntary Cleanup Program Site #V00658 Village of Churchville, Town of Riga, Monroe County, New York

> Prepared for: BLW Properties of Churchville, LLC 7520 State Route 415 Bath, New York 14810

> > Prepared by:

August 2014

Table of Contents

Page

1.0	Executive Summary	1
2.0	, Site Overview	2
3.0	Remedy Performance, Effectiveness, and Protectiveness	4
4.0	Institutional Controls/Engineering Control Plan Compliance	5
5.0	Monitoring Plan Compliance Report	9
6.0	Operation and Maintenance Plan Compliance Report	.12
7.0	Conclusions and Recommendations	. 12

<u>Tables</u>

Table 1- Groundwater Results - VOCs

Table 2- Groundwater Results - Metals

<u>Figures</u>

- Figure 1- Site Location Map
- Figure 2- Groundwater Contours and Analytical Results June 2013
- Figure 3- Groundwater Contours and Analytical Results November 2013
- Figure 4- Groundwater Contours and Analytical Results June 2014

<u>Attachments</u>

- Attachment A- Site Inspection Forms
- Attachment B- Groundwater Sampling Logs
- Attachment C- Laboratory Analytical Data
- Attachment D Institutional and Engineering Controls Certification Form
- Attachment E Site Photographs (2013 Improvements)

1.0 Executive Summary

This Periodic Review Report (PRR) document is required as an element of ongoing site management at the former Churchville Ford site (hereinafter referred to as the "site") under the New York State (NYS) Voluntary Cleanup Program (VCP) administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with and subject to Voluntary Cleanup Agreement (VCA) # B8-0640-03-09, Site # V00658-8 which was executed on September 29, 2003 and amended on April 9, 2009.

The VCA was executed by former owners Joseph Ognibene and Antonio Gabriele. The most recent transfer of ownership occurred on December 1, 2011, changing from Meyers at Churchville, LLC to BLW Properties of Churchville, LLC. This report is intended to satisfy the reporting requirements set forth in the approved Site Management Plan (SMP), dated December 2011. The SMP was approved by the NYSDEC on January 3, 2012, signifying the beginning of the annual requirements set forth within the SMP. The purpose of this report is to present the findings of the bi-annual sampling of residual groundwater contamination and to certify that the site was in compliance with the protocols and controls established in the SMP during this reporting period.

The former Churchville Ford site is located at 111 South Main Street in the Village of Churchville, Town of Riga, Monroe County, New York (Figure 1). The site consists of approximately 6 acres and has been used as a commercial auto, boat and recreational vehicle sales and service facility in recent years. In 2002, subsurface soil and groundwater contamination was discovered during environmental investigation work completed in conjunction with the transfer of ownership of the property. A remedial investigation (RI) was conducted between 2004 and 2008.

Investigation results indicated that volatile organic compounds (VOCs), including the chlorinated VOCs tetrachloroethene (PCE), tricholorethene (TCE), and associated breakdown components, were detected in subsurface soils and groundwater. A source area was defined by the RI and contained elevated levels of PCE, TCE, and cis-1,2-dichloroethene (cis-1,2-DCE) in groundwater beneath the southwestern portion of the building at levels exceeding applicable groundwater standards. This area was formerly used for solvent and waste oil storage.

Based on the findings of the RI, remedial action was recommended to address chlorinated solvents detected in groundwater at levels exceeding NYSDEC Part 703.5 Groundwater Standards and NYSDEC guidance (Technical and Operational Guidance Series (TOGS) 1.1.1).

Remedial activities completed at the Site were conducted in accordance with procedures outlined in the approved RAWP for the former Churchville Ford Site dated December 2008 and a minor modification dated September 4, 2009. Remedial activities were completed at the Site between May 2009 and January 2010. In-situ chemical oxidation (ISCO) using injected sodium permanganate (NaMnO4) was initiated in June 2009 and completed in January 2010. The

injection process included the direct injection of NaMnO4 into the contaminated zone of the saturated soils and groundwater underlying the southwest portion of the building.

Additional soil vapor intrusion (SVI) sampling was conducted beneath the workshop floor slab after the oxidant injection was completed to determine if additional vapor intrusion mitigation or long-term monitoring measures were needed. As detailed in the Site Management Plan (SMP), a Sub-Slab Depressurization System (SSDS) was installed in June 2011 in the western portion of the building (workshop), precluding the need for further soil vapor intrusion sampling.

The effectiveness of the remedial program has been monitored through subsequent SVI and groundwater sampling. Post-remedial SVI and groundwater sampling results indicate that residual contamination persists in saturated soils and groundwater in the immediate vicinity of the former source area. Groundwater samples collected during this reporting period (June 2013 through June 2014) exceeded applicable groundwater standards and CVOC concentrations fluctuated during that time period. Further groundwater sampling in the source area will determine the long-term effectiveness of the remedy and natural attenuation of identified contaminants.

No areas of non-compliance were observed during the 3 inspection events in regards to the major components of the Site Management Plan (SMP). All Institutional and Engineering Controls were in place and in compliance during this reporting period. Significant improvements were made to one of the two Engineering Controls at the site during this period. All procedures outlined in the Monitoring Plan and Operation and Maintenance Plan were complied with during this reporting period.

Based on the observations made and results of the work completed during this reporting period, Lu Engineers does not recommend modification of the SMP at this time.

2.0 Site Overview

The former Churchville Ford site is located at 111 South Main Street in the Village of Churchville, Town of Riga, Monroe County, New York (Figure 1). The site consists of approximately 6 acres and has been used as a commercial auto, boat and recreational vehicle sales and service facility in recent years. The site is situated immediately north of Interstate Route 490 and Sanford Road. The majority of the site is generally flat but drops in elevation rather abruptly to Sanford Rd. to the south and gently to the adjacent property to the west.

The site is bound by residential and commercial land to the north, South Main Street and residential housing to the east, Sanford Road and Interstate Route 490 to the south and a commercial Camping World Recreational Vehicle sales facility to the west. The majority of the site is covered with asphalt pavement and the site sales/service building.

Contamination was discovered at the Site in 2002 during an environmental investigation conducted in conjunction with a property transfer. A Remedial Investigation (RI) was conducted between 2004 and 2008. Subsurface soil analytical results did not reveal VOCs, SVOCs, or metals above the Restricted Commercial Use (RCU) Guidance Values (6 New York Codes, Rules, and Regulation (NYCRR) Part 375-6), therefore, soil remediation was not warranted. Tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE) were detected in shallow groundwater beneath the southwestern portion of the building at levels exceeding 6 NYCRR Part 703 Class GA drinking water standards. This area was formerly used for solvent and waste oil storage. The extent of contamination appears to be limited to beneath the southwest portion of the site building (workshop area) and immediately west of the west wall of the building. Based on the findings of the RI, remedial action was recommended to address chlorinated solvents detected in groundwater at levels exceeding applicable guidance criteria.

Remedial activities completed at the Site were conducted in accordance with procedures outlined in the NYSDEC-approved RAWP for the Churchville Ford Site dated December 2008, with a minor modification dated September 4, 2009. Remedial activities were completed at the Site between May 2009 and January 2010. The remedial strategy involved treating groundwater and subsurface soils via In-Situ Chemical Oxidation (ISCO) using sodium permanganate (NaMnO4). When this chemical oxidant comes into contact with organic compounds such at TCE, PCE, and associated breakdown products, a reaction occurs oxidizing the organic contaminants to relatively benign compounds, such as carbon dioxide (CO2) and water (H2O). The chemical oxidant was introduced via a Geoprobe, Inc. GS2000 cart-mounted injection system and was administered through a series of shallow injection wells (primarily 4 to 11.5 feet with a maximum depth of 20 feet (ft)) to treat saturated soils, as well as groundwater. This was to target groundwater with chlorinated solvent concentrations in excess of 5 parts per billion (ppb) and 2 ppb for vinyl chloride.

Soil vapor intrusion (SVI) sampling was conducted after the oxidant injection was completed to determine if additional vapor intrusion mitigation or long-term indoor air monitoring measures were needed. Based on the results and as detailed in the SMP, a SSDS was installed in June 2011 in the western portion of the building. The presence of the SSDS precludes the need for monitoring of indoor air.

Implementation of the SMP requires the imposition of an Institutional Control (IC) in the form of a Deed Restriction (DR) that requires a) limiting the use and development of the property to commercial use, which also permits industrial use; b) compliance with the approved SMP; c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH); and d) the property owner to complete and submit an annual certification of Institutional and Engineering Controls (IC/EC).

Long term management of remaining contamination, as required by the DR, includes plans for ECs including; 1) monitoring; 2) operation and maintenance; and 3) reporting. The specific ECs

implemented at the site include: a) semi-annual groundwater sampling of monitoring wells MW-3, MW-6, MW-13 and MW-JCL-02 for VOCs, iron and manganese; b) management and inspection of the existing soil cover system (the cap); and c) operation, maintenance and inspection of the SSDS.

3.0 Remedy Performance, Effectiveness, and Protectiveness

Based on post-remedial groundwater and SVI sampling conducted to date, residual groundwater and soil vapor contamination persists in the immediate source area on Site. On January 15, 2010, Lu Engineers completed the last remedial ISCO injection event. Eight (8) post-remedial groundwater sampling events and one (1) SVI sampling event have been conducted at the Site since the completion of the ISCO program. All nine (9) events were conducted in accordance with and as outlined in the RAWP and SMP. The following is a list of post-remedial sampling events conducted to date.

- February and August 2010 (per RAWP)
- December 2011 (per SMP)
- June and November 2012 (per SMP)
- June and November 2013 (per SMP)
- June 2014 (per SMP)

Tables 1 and 2, included as an attachment to this report, indicate bi-annual CVOC sample concentrations since June 2012 following full implementation of the protocols outlined in the approved SMP. Table 1 illustrates detected VOC concentrations in groundwater samples compared to the applicable NYSDEC 6 NYCRR Part 703.5 Class GA and TOGs 1.1.1 groundwater standards. Table 2 illustrates detected iron and manganese, known indicators of natural attenuation, in comparison to applicable groundwater standards. Both tables include graphical presentations of contaminant concentration trends in groundwater since June 2012.

Following a significant decrease in CVOC concentrations observed in the post-remedial 2010 groundwater sampling events, CVOC concentrations rebounded in 2011 and 2012, generally exceeding applicable groundwater standards in each well tested except MW-13. It is noted that no VOCs have been detected in MW-13 since June 2012.

As indicated in the 2012 Annual Report, wells MW-03, MW-JCL-02 and MW-06 all revealed CVOC detections exceeding NYSDEC Part 703.5 ground water standards in 2012. Sample results indicated a rise in PCE concentrations in source area wells MW-3, MW-JCL-02 and MW-6 over the December 2011 results. TCE and cis-1,2-dichloroethene concentrations dropped in MW-03 but increased in MW-JCL-02 compared to December 2011 results. CVOC concentrations

decreased significantly in June 2012. No VOCs were detected in well MW-13 during either sampling event.

Iron (Fe) and manganese (Mn) levels fluctuated between December 2011 and June 2012, generally dropping during that time period. Fe and Mn exceeded applicable groundwater standards in both 2012 sampling events for all wells except MW-03, which was below standards for both metals in June 2012. Due to the relatively low permeability of Site soils and previous remedial injection of NaMnO4 at the site, it is anticipated that Fe and Mn concentrations may fluctuate over time as oxidation occurs.

Source area samples collected from MW-03, MW-06, and MW-JCL-02 continue to exceed groundwater standards through the most recent sampling event conducted in June 2014.

The Institutional Controls established for the site have been and continue to be in strict compliance since SMP approval. Though documented residual contamination exists in the subsurface soils and groundwater in the site source area, these controls successfully minimize the potential for human exposure. The Engineering Controls established for the site also have been effective in greatly limiting the potential for human exposure to known site contaminants. The intended remedy continues to be protective of human health and effective for the current site use.

4.0 Institutional Controls/Engineering Control Plan Compliance

Since remaining contaminated soil, groundwater, and soil vapor exists beneath the Site, EC/ICs are required to protect human health and the environment. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

Institutional Controls (ICs)

A series of ICs are required by the SMP to: (1) implement, maintain and monitor EC systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial and industrial uses only. Adherence to these ICs on the Site is required by the Deed Restriction (DR) and implemented under the SMP.

The Institutional Controls developed for the site include the following three primary components:

<u>Landuse Restriction</u> – Site property use is limited to Commercial and Industrial uses only; the site is currently used as a commercial Recreational Vehicle sales and service facility and has fully met the requirements of this restriction throughout this reporting period.

<u>Groundwater Use Restriction</u> – Use of groundwater as a potable or process water source is prohibited; the site is currently connected to a supplied potable water source from the Village of Churchville and does not use site groundwater in any capacity, therefore fully meeting the requirements of this restriction throughout this reporting period.

<u>Site Management Plan (SMP)</u> – Compliance with the SMP is required, including required periodic certifications; the site is currently in strict compliance with all components of the site-specific SMP and has been throughout this reporting period.

Additional site restrictions that apply to the Controlled Property are:

- The property may not be used for a higher level of use, without additional remediation and amendment of the DR, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, any potential impacts that are identified must be monitored or mitigated;
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.
- NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Institutional Controls identified in the DR may not be discontinued without an amendment to or extinguishment of the DR.

Engineering Controls

Soil Cover System (Cap)

Exposure to remaining contamination in subsurface soil/fill, groundwater and soil vapor at the Site is prevented by a soil cover system placed over the Site (the "Cap"). This cover system is comprised of asphalt pavement, concrete-covered sidewalks, and concrete building slabs. Procedures for maintaining the Cap are documented in the Operation and Maintenance Plan in Section 4 of the SMP.

The Excavation Work Plan (EWP) in Appendix A of the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection, maintenance and monitoring of this cover are provided in the Monitoring Plan included in Section 3 of the SMP.

As indicated on the Site Inspection Form included as Attachment A of this report, the Cap was overall in good condition in June 2013. The asphalt cover surrounding the building revealed some minor cracking and potholes along the north side of the site building, and some minor cracking along the west end of the building near the source area. The concrete floor in the workshop area of the building was and continues to be in very good condition. It is epoxy coated throughout the workshop, has revealed no evidence of significant cracking and is unchanged since inspection began in 2012.

In October 2013, improvements were made to the site cap (EC). Per the provisions outlined in the SMP, the NYSDEC was notified of the planned improvement. The former cap was milled and repaved with new asphalt, including in the contaminant source area immediately west of the site building. Approximately 2/3 of the site was repaved (central and eastern portions) as illustrated on Figure 3 and Figure 4. No soil was disturbed as part of the re-surfacing process, therefore no monitoring was required per the Excavation Work Plan (EWP) in the SMP. The cap replacement was completed in October 2013 and continued to function as new as of June 2014. No cracking or holes have been observed in the asphalt since it was replaced. It is noted that as a component of the cap replacement, TREC Environmental was contracted to install new flushmount protective boxes around all wells located within the repaving area. This included wells MW-03, MW-13, MW-JCL-02, and MW-JCL-03. The elevations of the solid PVC well risers

at each well did not change during the protective box replacements. Photographs of the new asphalt surface and well completions are included as Attachment E of this report.

Other 2013 Improvements

Two other site improvements were made during this reporting period, in September and October. Per the SMP the NYSDEC was notified of the planned improvements and all procedures outlined in the EWP were followed. The improvements included the following:

- Installation of a retaining wall along the south entrance of the site at Sanford Rd.
- Installation of a waterline from Bay 1 of the workshop on north side of the building to the edge of the asphalt/grass near northern property line.

Retaining Wall

A shallow trench excavation (approximately 2 feet deep) was installed for establishing proper drainage and as a base for the retaining wall. Appropriate air monitoring with a PID was conducted during all excavation activities. A representative soil sample was collected of the excavated soils and sent for laboratory analysis of TCL VOCs. Sample results were non-detect for VOCs. The retaining wall was constructed prior to the repaving of the site cap and subsequently new asphalt was paved up to both sides of the wall. The location of the wall is illustrated on Figure 3 and Figure 4 and laboratory analytical results are included in Attachment C of this report. Photographs are provided in Attachment E of this report.

Waterline Installation

In October 2013, a waterline was installed adjacent to the west side of the Bay 1 overhead door (eastern-most bay) of the workshop and running north across the paved area to the edge of the grass north of the building (see Figure 3). The trench excavation was dug four (4) feet deep and approximately one (1) foot wide. Soils were continuously screened with a PID during excavation and were placed on the asphalt. No elevated PID readings were observed during excavation and no stained soils or odors were noted.

A representative soil sample was collected and analyzed for TCL VOCs. Laboratory results indicated no VOCs were detected. Once the waterline was installed, the trench was backfilled with the excavated soils. The waterline was installed and backfilled prior to the repaving of the site cap. Laboratory analytical results are included in Attachment C of this report and photographs are provided in Attachment E.

<u>SSDS</u>

Exposure to remaining contamination in soil vapor beneath the building is prevented by a SSDS installed beneath the western portion of the shop area of the building. The SSDS was installed in June 2011 in accordance with the NYSDEC-approved May 2011 Sub-Slab Depressurization System Design prepared by Lu Engineers and the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). The SSDS was installed by Mitigation Tech, a national Environmental Health Association (NEHA) certified mitigation contractor. The Procedures for the inspection and maintenance of this SSDS are provided in the Monitoring Plan included in Section 3 of the SMP.

Procedures for maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 4 of the SMP). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of the SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the Site, occurs. The active SSDS will not be discontinued unless prior written approval is granted by the NYSDEC.

As indicated on the Site Inspection Forms included as Attachment A of this report, the SSDS has operated as normal during this reporting period. No changes have been observed with the system or its performance since it was installed. During each site monitoring/inspection visit, both fans were generating the same amount of vacuum as the day they were installed. The Bay 3 fan continuously draws 0.8" WC and the Bay 5 fan continuously draws 0.5" WC. All system piping is in very good condition and is properly labeled. No air returns exist in proximity to the system exhaust on the building roof. No deficiencies have been observed with the SSDS and no changes are recommended.

The required IC/EC certification has been completed as a component of this report and a copy is included as Attachment D.

5.0 Monitoring Plan Compliance Report

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified in the table below.

Monitoring/Inspection Schedule

Monitoring	Frequency*	Matrix	Analysis
Program			
1	Biannually (seasonal high and	Groundwater	EPA Method 8260
	low groundwater)		EPA Method 6010
			Manganese and Iron
2	Annually	SSDS	N/A
3	Biannually	Soil Cover	N/A

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

Monitoring activities completed during this reporting period (2013-2014) included the following:

- Bi-annual groundwater sampling of site wells MW-03, MW-JCL-02, MW-06, and MW-13
- Bi-annual inspection of site building SSDS (even though only required annually)
- Bi-annual inspection of the site soil cover system, including the asphalt surrounding the building (and source area) and concrete building floor (primarily in workshop area)

Groundwater Sampling

The following table summarizes the details of the groundwater sampling program to be completed during each bi-annual sampling event.

Sample Type	Sample Location	Analytical	Frequency	QA/QC	Total
		Parameters			
Groundwater	MW-03, 06, 13,	EPA 8260	Semi-Annual	Trip Blank	5
	MW-JCL-02	EPA 6010	(twice each	(1)	
		Manganese	year during		
		and Iron	seasonal high		
			and low		
			groundwater)		

Media Sampling and Analysis Summary

The previously-mentioned site wells were sampled bi-annually with dedicated bailers per the procedures outlined in the SMP. Each well was purged a minimum of 3 well volumes prior to sampling. Groundwater quality measurements including temperature, turbidity, pH, conductivity and ORP were collected during the purging process at each well. Purge water from each well was containerized in steel 55-gallon drums. At each well, samples were collected for

TCL VOCs by EPA Method 8260B, iron and manganese. Groundwater sampling logs are included as Attachment B of this report.

Results of the groundwater sampling conducted during this period are summarized in Tables 1 and 2 and on Figures 2, 3, and 4. Table 1 presents the analytical results of VOCs detected in groundwater from June 2012 through June 2014 compared to the applicable standards. Table 2 presents the analytical results of iron and manganese (natural attenuation indicators) from June 2012 through June 2014. Both tables include graphical presentations of the data in an effort to establish trends in the sample results. Figure 2 illustrates the detected VOCs and associated concentrations in groundwater that exceed applicable standards for June 2013. Figure 3 illustrates the detected VOCs and associated concentrations in groundwater that exceed applicable standards for November 2013. Figure 4 illustrates the detected VOCs and associated concentrations in groundwater that exceed applicable standards for June 2014. Each figure also illustrates groundwater contours based on water level measurements collected at each well during each sampling event. It is noted that groundwater generally flows south and west across the site, primarily following topography.

The following sections summarize the analytical results for each year within this reporting period.

<u>2013</u>

CVOC concentrations in the source area wells continued to fluctuate in both 2013 sampling events and site contaminants of concern (PCE, TCE, cis-1,2-DCE) continued to exceed applicable groundwater standards. Acetone was detected in source area wells MW-03 and MW-JCL-02 at concentrations exceeding applicable standards during both sampling events. Iron and manganese were detected at concentrations exceeding groundwater standards in both biannual sampling events in all four (4) wells tested, with the exception of in MW-03 in June 2013.

<u>2014</u>

Acetone was no longer detected in source area wells MW-03 and MW-JCL-02 in June 2014. In MW-03, PCE and cis-1,2-DCE concentrations decreased since November 2013, and the TCE concentration slightly increased in this well. In the adjacent deeper source area well MW-JCL-02, all three CVOCs increased slightly in concentration from the November 2013 results. PCE decreased in concentration slightly in MW-06 and MW-13 continued to be non-detect for VOCs. All of the wells tested revealed iron and manganese concentrations above applicable groundwater standards except for MW-06 which was below standards for both metals. It is

noted that the concentrations of these metals decreased in all four (4) wells since the November 2013 sampling event.

In conclusion, groundwater in the source area remained out of compliance with applicable NYSDEC ambient groundwater standards during this reporting period for the CVOCs of concern for the site. A copy of all laboratory analytical data is included as Attachment C of this report. It is noted that all groundwater samples were analyzed at Paradigm Environmental Services, Inc., an appropriately certified laboratory located in Rochester, New York. All sampling methods and QA/QC measures were adhered to during each sampling event as outlined in the approved SMP.

6.0 Operation and Maintenance Plan Compliance Report

The only ECs in place at the Site are the building floor slab, sidewalks and asphalt pavement, collectively referred to as the "Cap" or soil cover system, and an SSDS installed in the westernmost portion of the Site building (workshop area). Operation and maintenance is limited to periodic inspection of the Cap and SSDS, which are documented using the Site-Wide Inspection Form. Copies of the Site-Wide Inspection Form are included as Attachment A in this report. The Operation and Maintenance Plan located in the SMP describes the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the Site. Descriptions of the Cap and SSDS inspections and conditions are provided in Section 4.0 of this report.

7.0 Conclusions and Recommendations

IC/EC Compliance

The requirements set forth in the SMP for all ICs were met during this reporting period. This includes the following:

<u>Landuse Restriction</u> – The site is currently used as a commercial recreational vehicle sales and service facility and has fully met the requirements of this restriction throughout this reporting period.

<u>Groundwater Use Restriction</u> – The site is currently connected to a supplied potable water source and does not use site groundwater in any capacity, therefore fully meeting the requirements of this restriction throughout this reporting period.

<u>Site Management Plan (SMP)</u> – The site is currently in compliance with all components of the site-specific SMP and all requirements have been met during this reporting period.

The requirements set forth in the SMP for all ECs were met during this reporting period. This includes the following:

<u>Soil Cover System (Cap) –</u> The site Cap, a component of the ECs established for the site, was in compliance with the SMP in June 2013, prior to replacement in October 2013. Following asphalt replacement per the provisions outlined in the SMP, the Cap met and continues to meet the necessary compliance requirements as established in the SMP. All requirements have been met during this reporting period.

<u>SSDS -</u> The SSDS, a component of the ECs established for the site, has operated as normal during this reporting period. No changes have been observed with the system or its performance since it was installed in 2011. All requirements have been met during this reporting period.

ISCO via injection was the primary remedial component employed in saturated shallow subsurface soils and groundwater at the site. CVOC contaminant destruction in the source area appeared to be temporarily effective. Likely due to dense, primarily fine-grained soils encountered in the saturated source area, radial influence during ISCO injection may have been limited. Contaminant rebound appears to have occurred since the implementation of the monitoring component of the SMP was initiated in 2012.

Based on post-remedial groundwater and SVI sampling conducted to date, residual groundwater and soil vapor contamination persists in the source area. It does not appear that residual contamination is migrating on site. The previously discussed site-specific ICs and ECs established as part of the SMP for this site continue to effectively achieve the remedial objectives for the site while establishing protection of human health. The continued effective performance of the ICs/ECs and improvements made to the site Cap have allowed the remedial objectives at this site to be achieved for this reporting period.

Lu Engineers recommends that the frequency of the PRR submission remain unchanged for the next time period. Lu Engineers also recommends that the Department considers discontinuing the bi-annual monitoring of monitoring well MW-13 due to five consecutive rounds of sampling resulting in no VOC detections.

Former Churchville Ford Site (#V00658-8)

Village of Churchville

Table 1 Groundwater Results - VOCs

Town of Riga

	NVC									<u>15</u> u											
	Groundwater	dwater MW-03						MW-06				MW-13				MW-JCL-02					
Detected Parameters ¹	Standard ²	2 Post Remediation						Post Remediation				Post Remediation				Post Remediation					
		Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14
Acetone	50*	ND	ND	2270	1,200 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	314	626 B	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	995 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	118 J	ND	ND	ND
Methyl Ethyl Ketone (2-butanone)	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND	17.4	1.75 J	3.59	3.15	4.01	ND	ND	ND	ND	ND	90 J	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-Tert-Butyl Ether (MTBE)	10*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	11,000	9,140	3480	14,000	7,530	14.7	8.51	8.89	11.9	9.01	ND	ND	ND	ND	ND	1,600	480	812	659	1,910
Trichloroethene	5	8,940	4,760	5300	6,340	6,930	2.22	1.92 J	1.5 J	1.78 J	1.47 J	ND	ND	ND	ND	ND	3,070	1,280	2240	1,900	2,770
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	5,900	3,170	4030	7,380	6,150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,490	1,490	2410	1,800	3,030

~ parameter detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

J - value is estimated

ND - Not detected above reporting limit

1 - Results presentend in ug/L or parts per billion (ppb)

2 - NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

* - NYSDEC Guidance Value (TOGS 1.1.1)

Former Churchville Ford Site (#V00658-8)

Village of Churchville Town of Riga

		MW-03				MW-06				MW-13				MW-JCL-02							
	Groundwater		Post	Remedi	ation			Post Remediation				Post Remediation				Post Remediation					
Parameters ¹	Standards ²	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14	Jun-12	Nov-12	Jun-13	Nov-13	Jun-14
Iron	300**	134	7,370	229	1,740	789	360	378	1,340	1,110	102 D	875	1,670	1,800	6,130	1,390	5,250	611	6140	10,600	4,630
Manganese	300**	293	67,600	1,250	7,350	3,350	1,290	920	1,940	1,470	160	606	576	411	655	574	2,260	1,290	1580	2,710	2,190

Table 2 Groundwater Results - Metals

~ parameter detected above NYS Ambient Groundwater Standard or applicable NYSDEC Guidance Value

1 - Results presentend in parts per billion (ppb)

2 - NYS Ambient Groundwater Standards (6 NYCRR Part 703.5)

** - Sum total of Iron and Manganese results is 500 ug/L per NYSDEC Part 703.5 Class GA groundwater standards

Grou Monitoring Well MW-03 MW-06 MW-13 MW-13 MW-22 MW-JCL-01	ndwater Elevati PVC Elevation 591.76 591.73	on - June 2014 Depth to Water 3.57	Elevation (ft
Monitoring Well MW-03 MW-06 MW-13 MW-22 MW-JCL-01 MW/JCL-02	PVC Elevation 591.76 591.73	Depth to Water 3.57	Elevation (ft)
MW-03 MW-06 MW-13 MW-22 MW-JCL-01	591.76 591.73	3.57	A STATISTICS STATISTICS
MW-06 MW-13 MW-22 MW-JCL-01	591.73		588.19
MW-13 MW-22 MW-JCL-01		4.15	587.58
MW-22 MW-JCL-01	591.08	1.10	589.98
MW-JCL-01	585.73	1.51	584.22
MIM/ ICL 02	587.08	4.43	582.65
IVIVV-JCL-02	591.51	4.73	586.78
MW-22 MW-22 MW-22			
MW-03: Manganese: 1 Acetone: 2,270 Tetrachloroeth Trichloroether cis-1,2-Dichlor MW-JCL-02: Iron: 6,140 Manganese: 1 Acetone: 314	,250 0 nene: 3,480 ne: 5,300 roethene: 4,030	0	
Tetrachloroet	nene: 812		MW-13:
Trichloroether	ne: 2,240		Iron: 1,800
cis-1,2-Dichlor	oethene: 2,41	0	Manganese:
	NT 13 2	A DECK DECK	9 (4)
STO IN	1 100		0.000
	1	- V	0
	50		10000
S IL	(part)		
A 100 10-	A	1 1800	
The		1.000	
PARTY INCOME			Competition (
	N 1000		2 4 1

06: 1,340 ganese: 1,940 chloroethene: 8.89	DATE: JULY 2014 PROJECT NO: 50185-02 DRAWN/CHECKED: ED/SMK DATA SOURCE: ESRI BASEMAP
	FIGURE 2 GROUNDWATER CONTOURS AND ANALYTICAL RESULTS JUNE 2013 WILKINS RV, INC. RIGA, NY
 Monitoring Well - Not Sampled Monitoring Well - Sampled 	
Groundwater Contour June 2013	ers on - sint
Groundwater Flow Direction	jine wsramo
Analytical results displayed in ug/L exceed NYCRR Part703.5 Groundwater Standards	
1 inch = 40 feet	
20 40 60 80 100 Feet	
-	

A - Site Inspection Forms

SITE-WIDE INSPECTION FORM FORMER CHURCHVILLE FORD VCP SITE 6/14/13 Date: Name: Eric Detweifer Company: Lu Engineers

Position of person(s) conducting maintenance/inspection activities: Environmental Censultant

Document the following information during each biannual site visit for groundwater sampling:

1. Compliance with all ECs/ICs, including site usage

- 2. An evaluation of the condition and continued effectiveness of the Site Cap and SSDS Site Cap: Asphalt generally in good condition surrounding building. Some cracking and pot holes exist on north side of building with some patchine in place (not within source area); also some minor cracking and patched asphalt on west end of bldg. In source area (this area overall in good our ditron); <u>ISDS</u>: Interior work shop floor in very good condition throughout (unchanged) and epoxy could. SDS working as intended and drawing same vacuum 3. General site conditions at the time of the inspection revels as at time of install. Site is averall in very good condition, house keeping in workshop and is very good; no solvents or chemicals of concern obsorved
- 4. The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection This is first round of bi-annual Groundwater sampling for 2013 and site inspection (including SSDS); No an sampling veguired due to SSDS being in place; Monitoring wells Sampled per SMP = NW-3, MW-6, NW-13, MW-JCL-02 5. Compliance with permits and schedules included in the Operation and Maintenance Plan

6. Confirm that site records are up to date

Yes

7. Conduct a visual inspection of the complete SSDS (i.e., vent fan, piping, warning device,

labeling on systems, etc.). Both SSDS fans running as normal, vacuum generated at each point is same as at time of system install: Bay 3 fan drawing 0.8"wc, Bay 5 fan drawing 0.5" WC - All system piping in excellent condition and properly labeled

- 8. Conduct an inspection of all surfaces to which vacuum is applied. Workshop concrete floor in very good condition; no apparent new Cracking or settling observed; Epoxy coated throughout floor surface.
- 9. Inspect all components for condition and proper operation. Are both fans operational? Both SSDS fans are operational & functioning at same vacuum as at time of install
- 10. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby. No air intakes have been added or located near SSDS exhaust
- 11. Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYSDOH Guidance (i.e.; with the systems running, smoke tubes will used to check for leaks through concrete cracks, floor joints and at the suction points and any leaks will be resealed until smoke is no longer observed flowing through the opening).

No leaks detected

12. Interview an appropriate occupant seeking comments and observations regarding the operation of the System.

Shop manger indicated that SSDS vacuum has not changed and is checked frequently

Any Questions or Service needed to the SSDS call MITIGATION TECH at 1-800-637-9228

End of Inspection Form

SITE-WIDE INSPECTION FORM FORMER CHURCHVILLE FORD VCP SITE

Date: 11/21/13 Name: Eriz Detweiter Company: Lu Eugineers

Position of person(s) conducting maintenance/inspection activities: Environmental Consultant

Document the following information during each biannual site visit for groundwater sampling:

1. Compliance with all ECs/ICs, including site usage Yes, all ECs/ICs in compliance

An evaluation of the condition and continued effectiveness of the Site Cap and SSDS
 Site Caps The cap is brand new as of 10/2014. former cap was milled and
 new asphalt was placed across majority of site; no subsurface soil was
 disturbed during ve-paving process.

 SSDS: This system still functioning as new and as intended per design; continu
 to draw same vacuum at each point as when installed (0.8 wc Bay 3, 0.5 wc Bay 5)

 General site conditions at the time of the inspection
 Site is well kept, free of clutter and chemicals; Overall in good condition;
 cleaning supplies properly stored, no solvents observed.

- 4. The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection Site management activities include: groundwater sampling of 4 site wells. (MW-3, MW-6, MW-13, MW-TCL-02) for VOC & Fe/Mu analysis; inspection of SSDS in Workship Portion of site building; cap inspection including asphalt & building slabs
- 5. Compliance with permits and schedules included in the Operation and Maintenance Plan Yes, this is the second round of groundwater sampling for 2013 (bi-annual and site inspection
- 6. Confirm that site records are up to date

Yes

7. Conduct a visual inspection of the complete SSDS (i.e., vent fan, piping, warning device, labeling on systems, etc.).

. Both SSDS fans are currently functioning as intended and at same Vacuum levels as when installed: Bay 3 fan drawing 0.8" wc Bay 5 fan drawing 0.5" wc

· All system piping properly labeled and in excellent condition

8. Conduct an inspection of all surfaces to which vacuum is applied. Concrete floor of workshop is in very good condition and unchanged since SSDS installation (no evidence of new cracking or settling). Floor has epoxy coating throughout workshop.

- 9. Inspect all components for condition and proper operation. Are both fans operational? All working components of system are in good condition and operational. Both vacuum fans operating as designed/intended
- 10. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby. No air intakes near discharge points; same as at time of system install.
- 11. Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYSDOH Guidance (i.e.; with the systems running, smoke tubes will used to check for leaks through concrete cracks, floor joints and at the suction points and any leaks will be resealed until smoke is no longer observed flowing through the opening).

No leaks detected within system

12. Interview an appropriate occupant seeking comments and observations regarding the operation of the System.

Facility manager has indicated that the system has been continuously operational since install.

Any Questions or Service needed to the SSDS call MITIGATION TECH at 1-800-637-9228

End of Inspection Form

SITE-WIDE INSPECTION FORM FORMER CHURCHVILLE FORD VCP SITE Date: 6/19/14

Name: Eriz Detweiler

Company: Lu Engineers

Position of person(s) conducting maintenance/inspection activities: Environmental Consultant

Document the following information during each biannual site visit for groundwater sampling:

1. Compliance with all ECs/ICs, including site usage

Yes, all ECS/ICs appear to be in compliance

2. An evaluation of the condition and continued effectiveness of the Site Cap and SSDS

· Asphalt cap in excellent condition since replacement in October 2013. No cracks or potholes exist within the limits of the report area. Building floor slab in very good condition throughout.

•SSDS 5 is functioning as designed and continues to draw a vacuum at same level as at time of installation (0.8" we in Bay 3, 0.5" we in Bay 5)

3. General site conditions at the time of the inspection The site is generally very well kept and in good condition. Items are properly stored; no unusual chemicals or chemicals of concern observed. Site much improved since change of ownership.

Site much improved since change of ownership. 4. The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection

Site management activities include: sampling of 4 site monitoring wells (MW-3, MW-6, MW-JCL-02, MW-13) for TCL VOCs and Fe/Mn analysis, inspection of Cap and building slabs, inspection of SSDS 5. Compliance with permits and schedules included in the Operation and Maintenance Plan

- 5. Compliance with permits and schedules included in the Operation and Maintenance Plan Yes; this is first & round of bi-annual Sampling and inspection for 2014.
- Confirm that site records are up to date
 Yes

7. Conduct a visual inspection of the complete SSDS (i.e., vent fan, piping, warning device, labeling on systems, etc.).

Both SSDS fans are functioning as normal and generating same sub-slab vacuum as upon installation (Bay 3 fan drawing 0.8" wc and Bays fan drawing 0.5" wc); all piping in excellent condition and proper labeling is intact

- 8. Conduct an inspection of all surfaces to which vacuum is applied. Concrete workshop floor is in very good condition, un changed since SSDS installation. Epoxy coating throughout.
- 9. Inspect all components for condition and proper operation. Are both fans operational? Both fans are operational and manameters are functioning as normal.
- 10. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby. No air intakes near discharge points; some as at time of System install.
- 11. Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYSDOH Guidance (i.e.; with the systems running, smoke tubes will used to check for leaks through concrete cracks, floor joints and at the suction points and any leaks will be resealed until smoke is no longer observed flowing through the opening).
- No leaks detected within system
- 12. Interview an appropriate occupant seeking comments and observations regarding the operation of the System.

Facility manager has indicated that the system has been continuously operational since install.

Any Questions or Service needed to the SSDS call MITIGATION TECH at 1-800-637-9228

End of Inspection Form

B - Groundwater Sampling Logs

Project 1 Location Activity	Name Wi n ID M Time	1kins RV : W-JCL 10:00	-02	Field Sam	l Sample II ple Time) <u>MW-JC</u> 12:00	<u>1-02_06-</u> 0	-14-13	Job #_ <u>50185-62</u> Sampling Event # <u>3</u> Date <u>6/14/13</u>
SAMPL	ING NOT	ES							/ /
Initial D Final De Screen L Total Vc [purge volu Volume of PURGE	epth to Wa pth to Wa Length blume Pur, time (milliliter Water in casi DATA	ater $4,7$ ter $35,7$ ged 16 rs per minute) 7 ng -2^{n} diamet	$\frac{13}{31} \frac{\text{fee}}{\text{fee}}$ $\frac{31}{\text{fee}}$ $\frac{1}{3}$	et Meas et Well et Pumj lons PID n (minutes) x lons per foot	Surement P Depth p Intake De Well Head 0.00026 gal/m of depth, 4" dia	oint <u>TO</u> 35.75 pth	PR <u>fe</u> NA JA 3 gallons per	foot of dep	Well Diameter 2 ⁴ Well Integrity: Cap <u>/</u> Casing <u>/</u> Locked <u>/</u> oth Collar <u>/</u>
Time	Depth to Water (ft)	Purge Rate	Temp.	pH	Dissolved	Turbidity	Cond.	ORP	
10.45	Water (It)		$\frac{(\text{deg. C})}{1r}$	(units)	02 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
11:23	35.2		140 .	7.27		23.9	1.2	-21	
12:00	35,31		15.10	7,80		19 10	1 nea	~7/	
SAM	PLE		10.00			11:0	1.007		
Pt EQUIPMI Type of P Type of T Type of W ANALYTI Parameter VOCs Fe, Mn	Inge Observate Inge Wate Inge Wate Under Qual ICAL PAH Valu 2x 4 1x 2	TVATIONS: <u>C</u> TCONTAINER TUMENTAT UMENTAT UMENTAT THOPE A ity Meter: <u>1</u> AMETER: <u>Mes</u> <u>S</u> 0 ml 50 ml	Ilen, Slog ized:y FION JA Horiba U-2 S ample Col	<u>ktuj cie</u> 2 <u>c;</u> LaMot	<u>udy at b</u>	LOC LOC LOC Tron Flu	Calibra Calibra <u>ATION No</u> rell Vol <u>Acuete con</u> <u>A frost</u> ah with	ted: <u>OTES</u> = 5 ge mpletion top of bottom	Ithin 0.4 of dry I him bloc heaved NC vises is now of protective box
Signature: Checked B		(mi Di	hil		•	so s whe	ediment/ en J-plu	surface giz ven	weler canget in noved.

÷

-

Project Name <u>W</u> Location ID <u>N</u> Activity Time	<u> Ikins Ru</u> 1 <u>W-3</u> 10:00	V	Field Samp	Sample II ple Time	MW-07 11:40	3_ 06-14-13	J B S . I	ob #_50185-02_ ampling Event #_3_ Date6/14/13
SAMPLING NOTE	<u>US</u>							
Initial Depth to Wa Final Depth to Wat Screen Length Total Volume Purg [purge volume (milliliters Volume of Water in casin PURGE DATA	tter 3.5 15.6 10 15 15 15 15 15 15 15 12 15 12 12 12 13 12 13 12 13	57 feet 7 feet feet gall time duration er = 0.163 gall	Meas Well Pump ons PID (minutes) x ons per foot	Surement Po Depth D Intake De Well Head 0.00026 gal/m of depth, 4" dia	oint <u>TO</u> 21.35 ppth <u>N</u> illiliter] ameter = 0.65	R feet NA A 3 gallons per fo	V V pot of depth	Vell Diameter <u>2</u> Vell Integrity: Cap <u>Casing</u> Locked <u>Collar heaved</u>
Time Depth to	Purge Rate	Temp.	pH	Dissolved	Turbidity	Cond.	ORP	
$10^{\circ}20$ (5	(mi/min)		(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
11:00 13.5		14.5	749		74.4	1.060	17	atter 5gr
11:30 20.81		14.1	7.77		0.35	1.080	48	after NGal
SAMPLE								and 13 gad
					· · · · · · · · · · · · · · · · · · ·			
2								
Purge Obser	vations.	CIPHA 11.4	-h1 14 a	a) van 116	a) (left my	++(110-4		
Purge Water	r Container	rized:	ves	in revisor	CUCITON		new rust	y then cited again
			/					
EQUIPMENT DOC	<u>UMENTA</u>	<u>TION</u>						
Type of Pump: N	JA - hai	lea						
Type of Tubing:		NA						
Type of Water Qual	lity Meter:	Horiba U-2	22; LaMo	tte 2020		Calibrat	ed:	
		_						
ANALYTICAL PAR	<u>RAMETER</u>	<u>(S</u> Semmle Cel	Ilantad			CATION NO	DTES	(\cdot , \cdot)
$\frac{1}{2}$ VOCs $\frac{1}{2}$ x 4	$\frac{11105}{0}$ ml	<u>Sample Col</u>	llected			well vol	= 2.9	(9 gul=3)
Fe. Mn 1x2	50 ml		· · · ·		XA	fer Dung	ina 14	cal water
			1. 1	_	hea	vily rust	colored	= turbid/well beiled
•·····································				_	neo	uly dry)	continu	ie purging to
		10			wi	Thin 6 of	dry y	ucter cleans after
Signature:	mi Di	tail			ev	acyating	15 gal	total heared
Checked Bv:		, -(_	120	MOUTE LO	mphoto	VI TICLIVEC
				_				

Lu Engineers

5×.,	1								
Grour	ndwater Field	Sampling I Record	9		Ŀ				S oryn
Project Locatio Activity SAMPL	Name n ID y Time JNG NOT	Wilkins 1W+06 3:20 ES	<u>N</u>	Field Sam	d Sample I ple Time _	D <u>Mw-a</u> _ <i>13:50</i>	<u>6_06-14-</u>	<u>13</u> 	Job # <u>50185-02</u> Sampling Event # <u>3</u> Date <u>6/14/13</u>
Initial D Final Do Screen I Total Vo [purge volu Volume of PURGE	Depth to Wa epth to Wa Length olume Pur ume (millilite Water in casi DATA	fater $4/7$ ter 728 10 ged 75 rs per minute) , ng - 2" diamet	$\frac{5}{2} \qquad \frac{6}{14} \qquad \frac{6}{2}$	et Mea <u>et</u> Well <u>et</u> Pum <u>llons</u> PID n (minutes) x lons per foot	surement P Depth p Intake Do Well Head 0.00026 gal/m of depth, 4" dj	oint <u>TC</u> pth pilliliter] ameter = 0.6:	DR fee 53 gallons per f	<u>≥t</u> − foot of dept	Well Diameter 2^{h} Well Integrity: Cap <u> </u>
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond	OPP	
11mc	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
12:25			17.5	7.62	<u> </u>	14,5	1.13	23	
13:50	17 87		17.0	7.61	<u> </u>	7.42	1.17	86	
500	IT VOL		16.6	7.68		6.4	1.36	115	
Pi	urge Obsei	vations:							
r	urge wate	Container	zed:	yes					
<u>QUIPM</u>	ENT DOC	UMENTAT	TION	•					
ype of P ype of T ype of V	Pump: b Yubing:_ <u>-4</u> Vater Qual	aler "HDPE ity Meter: <u>I</u>	NA Ioriba U-2	2; LaMot	te 2020		Calibrat	ed:	
NALYT arameter OCs	ICAL PAR Volu 2 x 4	AMETERS mes S 0 ml 50mL	<u>ample Col</u>	lected		<u>LOC</u> // <i>B</i> 4	ATION NO	0TES 2.59 in 1/2 1	4. draj
		6.7	<u> </u>	· O	-				

Project Name Location ID Activity Time	Wilkins R MW-12 12:00	<u>V SMP</u>	Field Samj	Sample II ple Time	D <u>MW-12</u> 13:15	3_06-14-12	Ja 2 S _ D	ob # <u>50185-02</u> ampling Event # <u>03</u> Date <u>6/14/13</u>
SAMPLING N Initial Depth to Final Depth to Screen Length Total Volume [purge volume (mill Volume of Water in PURGE DATA	Water Water Water Uo Purged iliters per minute) casing - 2" diamet	D feet j feet gall x time duration ter = 0.163 gall	t Meas Well Pump lons PID	Surement P Depth p Intake De Well Head 0.00026 gal/m of depth, 4" di	oint <u>TC</u> 16.81 epth <u></u> illiliter] ameter = 0.65	DR fee 53 gallons per f	W	Vell Diameter 2" Vell Integrity: Cap Casing Locked Collar
Time Depth 12:10 6.4 \$3:25 54pap/c	to Purge Rate (ft) (ml/min)	Temp. (dcg. C) 17, 7 /9, 2	pH (units) 7,30 7,80	Dissolved O2 (mg/L)	Turbidity (NTU) 7.17 28.9	Cond. (mS/cm) 0.683 0.679	ORP (mV) - 100 -86	
Purge C Purge W EOUIPMENT I Type of Pump: Type of Tubing Type of Water of	bservations: /ater Containe DOCUMENTA bailer : <u>42" HDPE</u> Quality Meter:	rized: TION Horiba U-:	<u>үе</u> ς 22; LaMo	tte 2020		Calibra	ted:	
ANALYTICAL Parameter VOCs Fe, Mn Signature: Checked Pur	PARAMETER Volumes Lx 40 ml x Z.SOnd	<u>Sample Co</u>	<u>11ected</u>			CATION NO	OTES 2.5 gal	

The local

Project NameWilkins RV - SMP SamplingJob # 50185-02Location ID $M \sqrt{-13}$ Field Sample ID $M \sqrt{-13}$ Sampling Event # 0Activity Time $1121-13$ Sample TimeDate				
SAMPLING NOTES 4.89 Initial Depth to Water 51 feet Measurement Point TOR Well Diameter 2 ^h				
Final Depth to Water 0.65 feet Well Depth 16.81 feet Well Integrity:				
Total Volume Purged Cap Cap				
[purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter] Locked				
Volume of Water in casing $-2^{"}$ diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth Collar				
Depth to TimePurge Rate (ml/min)Temp. (deg. C)pH (units)Dissolved O2 (mg/L)Turbidity (NTU)Cond. (mS/cm)ORP (mV)Comments				
11:45 9.9 7.40 3100 0.004 -31.2				
12:00 12.9 7.21 127 0.329 88.5				
Purge Observations: Slight Dday, low turbidity				
Purge Water Containerized: <u>yes</u>				
EQUIPMENT DOCUMENTATION				
Type of Fump: <u>NA – sample by baller</u>				
Type of Water Quality Meter: <u>YSI Pro, LaMotte 2020</u> Calibrated:				

ANALYTICAL PARAMETERS

Parameter	Volumes	Sample Collected		
VOCs	2 x 40 ml			
Fe, Mn	1 x 250 ml			
6				

Signature	»:
Checked	By

:	fin Deful	
By:	• • • • • • • • •	

1 WEI 101 - 114
& New flushmount box was set too
low Lunky paving so j-plug won't
fit on and allow cover to bolt on.
will cut a re-survey PUC riser

feet

Well Integrity:

Cap ____

Casing

Locked Collar ____

Groundwater Sampling Field Record

Project Name <u>Wilkins R</u> Location ID <u>Mu</u> Activity Time <u>10;30</u>	<u>V – SMP Sampl</u> - <u>3</u>	Field Sample ID MW-03_11-21-13 Sample Time110	Job # <u>50185-02</u> Sampling Event #04 Date <u>11/21/13</u>
SAMPLING NOTES			
Initial Denth to Water	4.65 feet	Measurement Point TOR	Well Diameter <u>2</u> "

4.65	<u>feet</u>	Measurement P	oint _
18.5	feet	Well Depth	2
10	feet	Pump Intake De	epth _
Alect	8 gallons	PID Well Head	
	<u> </u>	$\begin{array}{c c} 4 & 65 & \text{feet} \\ \hline 8 & 5 & \text{feet} \\ \hline 10 & \text{feet} \\ \hline \hline 8 & 60 & \text{gallons} \end{array}$	<u>4.65 feet</u> Measurement P <u>18,5 feet</u> Well Depth <u>10 feet</u> Pump Intake De <u>Actor</u> 8 gallons PID Well Head

[purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter]

Volume of Water in casing - 2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth **PURGE DATA**

Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments	
10.25			14.8	7.24		158		1015-	2.3	
10.56			13.5	7.45		73.2	0,109	87.6		
A.0										
*** **										
•										
. * * .										
,										
]	Purge Obse	ervations:	Witter &	turbidi	ty increa	ised dur	ing punge	no shee	n, no purple	
]	Purge Wat	er Containe	rized: <u>ye</u>	s-drun	nmed	~			22	
			TION							
OUIP	<u>QUIPMENT DOCUMENTATION</u>									

Well Depth _____ 21.35

Pump Intake Depth

Type of Pump: <u>NA – sample by bailer</u> Type of Tubing: ________ Type of Water Quality Meter: <u>YSI Pro, LaMotte 2020</u>

ANALYTICAL PARAMETERS

Parameter	<u>Volumes</u>	Sample Collected
VOCs	<u>2 x 40 ml</u>	YRS
Fe, Mn	1 x 250 ml	Yes

Signature:	Findefin
Checked By:	

2.	1 99	=	we	II VO	<u> </u>
				. <u> </u>	
ailed	within	2'	ofdr	<u> </u>	

Calibrated:

Groundwater Sampling Field Record

Project Name Wil	Jo	ob # <u>50185-02</u>								
Location ID <u>MW-06</u> Field Sample ID <u>MW-06_11-21-13</u>								ampling Event #24		
Activity Time	12:45		Samp	le Time	13:25		. D	ate $11/21/13$		
SAMPLING NOTES										
Initial Depth to Wa	ater 4	8 feet	Meas	urement P	oint TO	R	W	Vell Diameter $2^{"}$		
Final Depth to Wat	ter <u> 6</u>	80 feet	Well	Depth	20,10	feet	W	/ell Integrity:		
Screen Length IO Feet Pump Intake Depth Cap										
Total Volume Purg	Total Volume Purged 7.8 gallons PID Well Head Casing									
[purge volume (milliliter	s per minute)	time duration	(minutes) x ().00026 gal/m .f.danth _A" di	illiliter] amatan = 0.65	2 collons mor fr	at af danth	Locked		
PURGE DATA	ng – 2° diamet	er = 0.105 game	ons per 1001 d	n depin, 4 di	ameter $= 0.05$	5 ganons per n	ot of deput			
<u>r unus prim</u>										
Depth to	Purge Rate	Temp.	pH	Dissolved	Turbidity	Cond.	ORP	Commonte		
Time Water (ft)	(ml/min)		(units)	02 (mg/L)	(NTU) 112 O	(mS/cm)	(mv)	Comments		
1:00		$\frac{11.0}{\sqrt{2}}$	1.5C		101 118	0.00	112 5			
1.22	-		1.40		22.0	N ALE	1088			
1.2		10.1	1.52		20.8	-0.005	100,0			
	<u></u>									
Purge Obse	rvations:	purge mate	r rose.11	rust color	after rei	noving 1	Lgal, c	leaved duning purge		
Purge Wate	er Containe	rized: <u> </u>	es-din	M		0	0 ,	`		
FOUDMENT DO		TION								
EQUIPMENT DO		TION								
Type of Pump: NA	– sample	by bailer								
Type of Tubing:	NA									
Type of Water Qua	ality Meter	: <u>YSI Pro, I</u>	_aMotte 2	020		Calibra	ted:			
							0			
ANALYTICAL PA	RAMETE	<u>RS</u> Somela Co	Ilected			CATION N	<u>OTES</u>	0		
<u>Parameter</u> <u>vol</u>	$\frac{\text{umes}}{40 \text{ ml}}$	Sample Co	ollected		1.0	vervor	6100	jack		
$\frac{v_{OCS}}{Fe Mn} = \frac{2x}{1x}$	$\frac{40 \text{ m}}{250 \text{ m}}$	V								
						·				
	6-N	$\int \int$	J							
Signature:	nu)	erre				1				
UTELNET DV.										

Project Name <u>Wilkins RV – SMP S</u> Location ID <u>Mw-JCL-02</u> Activity Time <u>10:30</u>	ampling Field Sample ID Sample Time	MW-JCL-02_ 11:30	.11-21-13	Job # <u>50185-02</u> Sampling Event # <u>6</u> <u>4</u> Date <u>11 / 21 / 13</u>
SAMPLING NOTES				. ,
Initial Depth to Water <u>6.40</u> Final Depth to Water <u>35'</u> Screen Length <u>70</u> Total Volume Purged <u>74</u> [purge volume (milliliters per minute) x time dur Volume of Water in casing – 2" diameter = 0.163 <u>PURGE DATA</u>	feetMeasurement PofeetWell DepthfeetPump Intake DeggallonsPID Well Headation (minutes) x 0.00026 gal/mitgallons per foot of depth, 4" dia	Dint <u>TOR</u> 35.75 pth lliliter] meter = 0.653 gallon	feet s per foot of depth	Well Diameter Z ⁴ Well Integrity: Cap Casing Locked collar
Time Depth to Purge Rate Temp (ml/min) (deg	p. pH Dissolved	Turbidity Con	d. ORP	
10:30 - 14,5	7.67	21.7 0.045	$\frac{m}{2}$ $\frac{mv}{2}$	Comments
11:30 12.	1 7.53	117 6	$\frac{2}{11}$ $\frac{2}{100}$ $\frac{2}{2}$	<u> </u>
11:30 11.6	7.50	199 0.2	<u>14</u> 207	
			V 20.1	
Purge Observations:	bidity increased du	ring purge		
Purge Water Containerized:	Yes"-chummed			
EQUIPMENT DOCUMENTATION				
Type of Pump: <u>NA – sample by baile</u> Type of Tubing:	r			
Type of Water Quality Meter: YSI Pre-	o, LaMotte 2020	Cal	ibrated:	
ANALYTICAL PARAMETERS	Callested	LOCATIO	<u>N NOTES</u>	
VOCs 2 x 40 ml	Collected	$\frac{4}{2} \frac{8}{3} \frac{3}{3} \frac{3}{2} =$	well vol.	
$\frac{1}{\text{Fe}, \text{Mn}} = \frac{1 \times 250 \text{ ml}}{1 \times 250 \text{ ml}}$		affer e	ackating	2 well volumes
		<u> </u>	<u> </u>	
	2		······	
Signature: <u>Encloyed</u> Checked By:				

	Grou	ndwater Field	Samplin d Record	g		RA	LUE Envirónmen			VIL	
	Project Locatio Activit	t Name on ID y Time	Wilkins MW-3 12:20	RV	Field Sam	d Sample I ple Time _	D MW-63	3 <u>-06-19-</u> 5	J 1 <u>4</u> S I	ob # 50185-02 Sampling Event # 0 Date 6/19/14	5
	SAMP Initial I Final D Screen Total V (purge vo Volume o PURGE	LING NOT Depth to Wa Depth to Wa Length Volume Pur lume (millilite f Water in case C DATA	ES vater 3.7 ater 12. 10 rged 9 rs per minute) ing - 2" diame	<u>fee</u> <u>fee</u> <u>gal</u> x time duratior ter = 0.163 gal	<u>t</u> Mea <u>t</u> Well <u>t</u> Pum lons PID (minutes) x lons per foot	surement P l Depth p Intake De Well Head 0.00026 gal/m of depth, 4" di	$\frac{21.35}{\text{epth}}$	PR fea 3 gallons per f	V <u>et</u> V foot of depth	Vell Diameter _2 Vell Integrity: Cap Casing Locked Collar	
	Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp.	pH (units)	Dissolved	Turbidity	Cond.	ORP		٦
		5,5	(moniny)	16.4	(units)	02 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments	
		A .8		13.4	7.60	1.56	44.0	1.03	-212	70	-
		11.6		13.1	7.62	1.45	32.3	1.03	-15.7	Sqax	-
		13,8		12.8	7.66	1.67	12.45	1.04	-17.6	logar	+
									110	origen	+
											1
											1
											1
											1
l	P	urge Obser	vations:	douder +	hyoust in	rd	- Ne -]
	Р	urge Water	r Container	ized:	VIPS	na-punge	2 Then c	Lean, NO	odor, NO.	sheen	
Ē	QUIPM	IENT DOC	UMENTA	FION	402			_			
T T T	ype of I ype of 7 ype of V	Pump: Tubing: Water Qual	ity Meter:	VSI Pro, L	a Motte 20:	<u>-</u> 20	Calib	prated:			
	NALYT irameter X×TCL Fe, Mu	TCAL PAR Volu V6C ₅ 44	$\frac{AMETERS}{mes} = S$ $\frac{Dml(2)}{50ml}$	<u>s</u> ample Coll yes yes	<u>ected</u>	-	LOC. 1 w	ATION NO e)\ Uol = Z -Y clean	<u>TES</u> 2.9 gal sample		2
Sig Ch	gnature: ecked I	 By:	in Det	i O							

Grour	ndwater Field	Sampline I Record	g		Ŀ				S
Project Locatio Activit	Name <u> </u>	<u>JILKINS Í</u> AW-JCL 10:45	2v -02	Field Sam	1 Sample I) ple Time _	D MW-JCL	-02_06-1 5	<u>9-</u> 14	Job # <u>50185-02</u> Sampling Event # <u>05</u> Date <u>6/19/14</u>
SAMPI Initial I Final D Screen Total V [purge vol Volume of PURGE	<u>JNG NOT</u> Depth to Wa lepth to Wa Length 'olume Pur lume (millilite f Water in cas <u>DATA</u>	ES ater 5.0 ater 35.3 70 ged $11.$ rs per minute) ing - 2" diame	3 fee 58 fee 5 gal x time duration ter = 0.163 gal	<u>t</u> Meas <u>t</u> Well <u>t</u> Pump llons PID a (minutes) x llons per foot	surement P Depth p Intake Do Well Head 0.00026 gal/m of depth, 4" di	$\frac{\text{oint } TO}{35.75}$ $epth $ $\frac{N}{1000}$ $\frac{N}{1000}$ $\frac{N}{1000}$ $\frac{N}{1000}$ $\frac{N}{1000}$ $\frac{N}{1000}$	1 <u>R</u> <u>fe</u> NA 4 3 gallons per	 foot of depth	Well Diameter 2" Well Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity	Cond.	ORP	
11:05	6.5		16.2	8.14	3.05	1,87	(ms/cm)	- 101.5	Comments
L	21.75		13.4	7.85	2.02	9.63	1.21	-88.6	5000
4	33.60		13,5	7.87	2,00	37.0	1.23	-91,6	10 rul
	35.00		13.4	7.88	2.02	79.4	1.21	- 52.0	11 gul
F	Purge Obse	ervations:	light furl	pidity (chi	udy) after	removing	10 ocl · M		
P EOUIPN	'urge Wate	r Container	rized: <u>ye</u>	25			- ر- د -		shach
Type of Type of Type of	Pump: Tubing: Water Qua	Bailer lity Meter:	VST Prop	lus, La Mot	Te 2020	Cali	brated:		
ANALYT Paramete 2×TCL Fe,M	NOC5	<u>RAMETER</u> <u>imes 5</u> <u>40 n1</u> 250 ml	<u>S</u> Sample Col	<u> lected</u> 	-	<u>LOC</u>	ell vo	<u>OTES</u> = 5.0 g	al
Signature Checked	9: By:	i De;	tel						

-

ř.

Groundwater Sampling Field Record

Project Name	Wilkins RV
Location ID	MW-06
Activity Time	1:50

Field Sample ID <u>MW-06_06-19-14</u> Sample Time <u>2:30</u>

-

Lu Engineers

Job # 50×-02 Sampling Event # 0×5 Date 6/19/14

Well Diameter Z

Cap_

Casing_

Locked

Collar

Well Integrity:

SAMPLING NOTES

Initial Depth to Water3.37feetFinal Depth to Water16.35feetScreen Length10feetTotal Volume Purged8.3gallo

 feet
 Measurement Point
 TOR

 feet
 Well Depth
 20.1
 feet

 feet
 Pump Intake Depth
 NA

 gallons
 PID Well Head
 NA

Volume of Water in casing -2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth **PURGE DATA**

		Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.	ORP	
╎╟╌	ſime	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
		7.5		18.3	7.76	2.47	1.85	0.95	-8.8	
1		<u>9.15</u>		16.4	7.82	1.34	9.21	0,99	31.8	3 gal
		11.82		15.7	7.75	1.74	11.40	1.13	52.9	5-5 gal
		17.65		15.2	7.8	1.65	18.3	1.26	70.2	8.2 gal
-										
-										
		01								
	P D	urge Obse	rvations:	very a	lear, no	oder, no	sheen	2		
	1	uige wate	r Container	1zed:	yes					
EQU	U IPM	ENT DOC	UMENTA	ΓΙΟΝ						
Тур	e of F	ump:	barler							
Тур	e of]	Tubing:	<u> </u>			<u>.</u>				
Тур	e of V	Vater Qua	lity Meter:	YSI Pro P	his LaMa	#e2020	Cali	brated:		
	TVT			0						
Para	meter	r Volu	MANE I EK	<u>S</u> Sample Col	lastad		LOC	ATION NO	DTES	0
2x	TCL	VOCs 4	$O_{m0}(7)$	Mec	lected		<u>I</u> w	<u>en voi =</u>	2-1g	el
Fe	Mu	Ix	250ml	- 402		1	- pu	yec > vi	20	
-)									
A.c.						_	<u> </u>			<u> </u>
						-				
Sign	Signature:									
Chec	ked l	Зу:			(<u></u>				· <u>····</u> ·	
_			· · · · · · · · · · · · · · · · · · ·					12		

Groundwater Sampling **Field Record**

Project Name _	Wilkins RV
Location ID	MW-13
Activity Time	1200

Field Sample ID <u>MW-13_06-19-14</u> Sample Time 1:30

SAMPLING NOTES

Initial Depth to Water _______ feet Final Depth to Water 2.17 feet Screen Length _____ feet

Measurement Point <u>TOR</u> Well Depth (16.81) Now 16.61 feet Pump Intake Depth NA NA

[purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter]

Volume of Water in casing -2" diameter = 0.163 gallons per foot of depth, 4" diameter = 0.653 gallons per foot of depth **PURGE DATA**

Depth to Purge Rate Temp. pH Dissolved Turbidity Cond. ORP Time Water (ft) (ml/min) (deg. C) (units) O2 (mg/L) (NTU) (mS/cm) (mV) Comments 3.7 20.2 7.82 5.67 2,90 0.131 102.8 4.3 16.5 7.18 1.00 14.03 0.83 -93.1 Z.S.gal 2.8 18.Z 7.20 0,86 13,89 0.82 5 gal -95.5 3.3 18.4 7.20 0.67 14.14 0.83 -90 7.5 gal Purge Observations: very clear, no odor, no sheen Purge Water Containerized: ves **EQUIPMENT DOCUMENTATION** bailer Type of Pump:____ Type of Tubing:_____ Type of Water Quality Meter: VSI Proplus LaMote 2020 Calibrated: _____ ANALYTICAL PARAMETERS LOCATION NOTES Parameter Volumes * check new PVC viser elevation (for DTW) Sample Collected ZXTCLVOGS 40ml (2) I well vol= 2.4gal Yes Fe Mn 1x250ml Fast recharge yes Signature: _____ Checked By:

Well	Diameter	24
Well	Integrity:	1
	Cap	V
	Casing_	~
	Locked	\sim
h	Collar	V

Job # 50185-07

Date 6/19

Sampling Event # 0 5

C - Analytical Data

Analytical Report For

Lu Engineers, Inc.

For Lab Project ID

132206

Referencing

Wilkins RV - SMP Semi-Annual GW Sampling

Prepared Monday, July 08, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	<u>Lu En</u>	<u>gineers, Inc.</u>						
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling							
Sample Identifier:	MW	/-03_06-14-13						
Lab Sample ID:	132	206-01		Date Samp	oled: 6/14	4/2013		
Matrix:	Water Date Received							
Metals								
Analyte			Result	<u>Units</u>	Qualifier	Date Analyzed		
Iron			0.229	mg/L		6/25/2013		
Manganese			1.25	mg/L		6/25/2013		
Method Referen	ice(s):	EPA 6010C EPA 3005						
Data File:		062513b						

Client:	<u>Lu Engineers, Inc.</u>				
Project Referenc	e: Wilkins RV - SMP Semi-Annu	ual GW Sampling			
Sample Identifi	ier: MW-03_06-14-13				
Lab Sample ID:	132206-01		Date Sampled:	6/1-	4/2013
Matrix:	Water		Date Received:	6/1-	4/2013
Volatile Org	anics				
Analyte		Result	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-T	richloroethane	< 400	ug/L		6/19/2013
1,1,2,2	-Tetrachloroethane	< 400	ug/L		6/19/2013
1,1,2-1	Trichloroethane	< 400	ug/L		6/19/2013
1,1-Dic	chloroethane	< 400	ug/L		6/19/2013
1,1-Dic	chloroethene	< 400	ug/L		6/19/2013
1,2,3-1	Frichlorobenzene	< 1000	ug/L		6/19/2013
1,2,4-1	Frichlorobenzene	< 1000	ug/L		6/19/2013
1,2-Dil	bromo-3-Chloropropane	< 2000	ug/L		6/19/2013
1,2-Dil	bromoethane	< 400	ug/L		6/19/2013
1,2-Dio	chlorobenzene	< 400	ug/L		6/19/2013
1,2-Dio	chloroethane	< 400	ug/L		6/19/2013
1,2-Die	chloropropane	< 400	ug/L		6/19/2013
1,3-Die	chlorobenzene	< 400	ug/L		6/19/2013
1,4-Die	chlorobenzene	< 400	ug/L		6/19/2013
1,4-dic	oxane	< 4000	ug/L		6/19/2013
2-Buta	inone	< 2000	ug/L		6/19/2013
2-Hexa	anone	< 1000	ug/L		6/19/2013
4-Metl	hyl-2-pentanone	< 1000	ug/L		6/19/2013
Acetor	ne	2270	ug/L	В	6/19/2013
Benzei	ne	< 140	ug/L		6/19/2013
Bromo	ochloromethane	< 1000	ug/L		6/19/2013
Bromo	odichloromethane	< 400	ug/L		6/19/2013
Bromo	oform	< 1000	ug/L		6/19/2013
Bromo	omethane	< 400	ug/L		6/19/2013
Carbo	n disulfide	< 400	ug/L		6/19/2013
Carboi	n Tetrachloride	< 400	ug/L		6/19/2013
Chloro	bbenzene	< 400	ug/L		6/19/2013

Client: Project Reference:	<u>Lu Eng</u> Wilkins	i <mark>neers, Inc.</mark> RV - SMP Semi-Ar	unual GW Sampling		
Sample Identifier:	MW-	03_06-14-13			
Lab Sample ID:	1322	06-01		Date Sampled:	6/14/2013
Matrix:	Wate	r		Date Received:	6/14/2013
Chloroethan	e		< 400	ug/L	6/19/2013
Chloroform			< 400	ug/L	6/19/2013
Chlorometha	ane		< 400	ug/L	6/19/2013
cis-1,2-Dichl	oroethene		4030	ug/L	6/19/2013
cis-1,3-Dichl	oropropene		< 400	ug/L	6/19/2013
Cyclohexane	1		< 2000	ug/L	6/19/2013
Dibromochlo	oromethane		< 400	ug/L	6/19/2013
Dichlorodiflu	uoromethan	e	< 400	ug/L	6/19/2013
Ethylbenzen	e		< 400	ug/L	6/19/2013
Freon 113			< 400	ug/L	6/19/2013
Isopropylber	nzene		< 400	ug/L	6/19/2013
m,p-Xylene			< 400	ug/L	6/19/2013
Methyl aceta	ate		< 400	ug/L	6/19/2013
Methyl tert-l	butyl Ether		< 400	ug/L	6/19/2013
Methylcyclo	hexane		< 400	ug/L	6/19/2013
Methylene cl	hloride		< 1000	ug/L	6/19/2013
o-Xylene			< 400	ug/L	6/19/2013
Styrene			< 1000	ug/L	6/19/2013
Tetrachloroe	ethene		3480	ug/L	6/19/2013
Toluene			< 400	ug/L	6/19/2013
trans-1,2-Di	chloroethen	e	< 400	ug/L	6/19/2013
trans-1,3-Di	chloroprope	ene	< 400	ug/L	6/19/2013
Trichloroeth	iene		5300	ug/L	6/19/2013
Trichloroflu	oromethane		< 400	ug/L	6/19/2013
Vinyl chlorid	le		< 400	ug/L	6/19/2013
Method Refere	ence(s):	EPA 8260B EPA 5030			
Data File:		X06142.D			

Data File:

062513b

Client:	<u>Lu Eng</u>	ineers, Inc.		·			
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling						
Sample Identifier:	MW-	JCL-02_06-14-13					
Lab Sample ID:	1322	06-02		Date Samp	ed:	6/14	4/2013
Matrix:	Wate	er		Date Receiv	ved:	6/14	4/2013
<u>Metals</u>							
<u>Analyte</u>			Result	<u>Units</u>	Qua	lifier	Date Analyzed
Iron			6.14	mg/L			6/25/2013
Manganese			1.58	mg/L			6/25/2013
Method Referen	ice(s):	EPA 6010C					
		EPA 3005					

Lab Project ID: 132206

Client:	<u>Lu Engineers. Inc.</u>			
Project Reference:	Wilkins RV - SMP Semi-Annua	l GW Sampling	5	
Sample Identifier:	MW-JCL-02_06-14-13			
Lab Sample ID:	132206-02		Date Sampled:	6/14/2013
Matrix:	Water		Date Received:	6/14/2013
Volatile Organic	S			
Analyte		<u>Result</u>	<u>Units</u> Qua	lifier Date Analyzed
1,1,1-Trichlo	proethane	< 50.0	ug/L	6/19/2013
1,1,2,2-Tetra	achloroethane	< 50.0	ug/L	6/19/2013
1,1,2-Trichle	proethane	< 50.0	ug/L	6/19/2013
1,1-Dichloro	oethane	< 50.0	ug/L	6/19/2013
1,1-Dichloro	oethene	< 50.0	ug/L	6/19/2013
1,2,3-Trichle	orobenzene	< 125	ug/L	6/19/2013
1,2,4-Trichle	orobenzene	< 125	ug/L	6/19/2013
1,2-Dibromo	o-3-Chloropropane	< 250	ug/L	6/19/2013
1,2-Dibrom	oethane	< 50.0	ug/L	6/19/2013
1,2-Dichloro	obenzene	< 50.0	ug/L	6/19/2013
1,2-Dichloro	bethane	< 50.0	ug/L	6/19/2013
1,2-Dichloro	opropane	< 50.0	ug/L	6/19/2013
1,3-Dichloro	obenzene	< 50.0	ug/L	6/19/2013
1,4-Dichloro	obenzene	< 50.0	ug/L	6/19/2013
1,4-dioxane		< 500	ug/L	6/19/2013
2-Butanone		< 250	ug/L	6/19/2013
2-Hexanone		< 125	ug/L	6/19/2013
4-Methyl-2-	pentanone	< 125	ug/L	6/19/2013
Acetone		314	ug/L	B 6/19/2013
Benzene		< 17.5	ug/L	6/19/2013
Bromochlor	romethane	< 125	ug/L	6/19/2013
Bromodichl	oromethane	< 50.0	ug/L	6/19/2013
Bromoform		< 125	ug/L	6/19/2013
Bromometh	lane	< 50.0	ug/L	6/19/2013
Carbon disu	lfide	< 50.0	ug/L	6/19/2013
Carbon Teti	rachloride	< 50.0	ug/L	6/19/2013
Chlorobenz	ene	< 50.0	ug/L	6/19/2013

Client:	<u>Lu En</u> g	<u>gineers, Inc.</u>						
Project Reference:	Wilkin	Wilkins RV - SMP Semi-Annual GW Sampling						
Sample Identifier:	MW	-JCL-02_06-14-13						
Lab Sample ID:	132	206-02		Date Sampled:	6/14/2013			
Matrix:	Wat	er		Date Received:	6/14/2013			
Chloroethan	e		< 50.0	ug/L	6/19/2013			
Chloroform			< 50.0	ug/L	6/19/2013			
Chlorometha	ne		< 50.0	ug/L	6/19/2013			
cis-1,2-Dichl	oroethene		2410	ug/L	6/19/2013			
cis-1,3-Dichl	oropropen	e	< 50.0	ug/L	6/19/2013			
Cyclohexane			< 250	ug/L	6/19/2013			
Dibromochlo	romethan	e	< 50.0	ug/L	6/19/2013			
Dichlorodiflu	iorometha	ne	< 50.0	ug/L	6/19/2013			
Ethylbenzen	e		< 50.0	ug/L	6/19/2013			
Freon 113			< 50.0	ug/L	6/19/2013			
Isopropylbei	nzene		< 50.0	ug/L	6/19/2013			
m,p-Xylene			< 50.0	ug/L	6/19/2013			
Methyl aceta	te		< 50.0	ug/L	6/19/2013			
Methyl tert-l	outyl Ether		< 50.0	ug/L	6/19/2013			
Methylcyclol	nexane		< 50.0	ug/L	6/19/2013			
Methylene cl	hloride		< 125	ug/L	J 6/19/2013			
o-Xylene			< 50.0	ug/L	6/19/2013			
Styrene			< 125	ug/L	6/19/2013			
Tetrachloroe	ethene		812	ug/L	6/19/2013			
Toluene			< 50.0	ug/L	6/19/2013			
trans-1,2-Di	chloroethe	ne	< 50.0	ug/L	6/19/2013			
trans-1,3-Di	chloroprop	bene	< 50.0	ug/L	6/19/2013			
Trichloroeth	ene		2240	ug/L	6/19/2013			
Trichloroflu	oromethar	ie	< 50.0	ug/L	6/19/2013			
Vinyl chlorid	le		< 50.0	ug/L	6/19/2013			
Method Refere	ence(s):	EPA 8260B EPA 5030						
Data File:		X06143.D						

				Lab Projec	t ID:	132	206
Client:	<u>Lu En</u>	<u>gineers, Inc.</u>					
Project Reference:	Wilkir	ns RV - SMP Semi-Ann	ual GW Sampling				
Sample Identifier:	MW	/-13_06-14-13					
Lab Sample ID:	132	206-03		Date Sampl	ed:	6/14	4/2013
Matrix:	Wa	ter		Date Receiv	/ed:	6/14	4/2013
<u>Metals</u>							
Analyte			Result	<u>Units</u>	Qua	lifier	Date Analyzed
Iron			1.80	mg/L			6/25/2013
Manganese			0.411	mg/L			6/25/2013
Method Refere	ence(s):	EPA 6010C					
Data File:		ЕРА 3005 062513Ъ					

Client:	Lu Engineers, Inc.			
Project Reference:	Wilkins RV - SMP Semi-Annu	ual GW Sampling		
Sample Identifier	: MW-13_06-14-13			
Lab Sample ID:	132206-03		Date Sampled:	6/14/2013
Matrix:	Water		Date Received:	6/14/2013
Volatile Organ	nics			
Analyte		Result	<u>Units</u> Qua	lifier Date Analyzed
1,1,1-Trio	chloroethane	< 2.00	ug/L	6/19/2013
1,1,2,2-Te	etrachloroethane	< 2.00	ug/L	6/19/2013
1,1,2-Trio	chloroethane	< 2.00	ug/L	6/19/2013
1,1-Dichl	oroethane	< 2.00	ug/L	6/19/2013
1,1-Dichl	oroethene	< 2.00	ug/L	6/19/2013
1,2,3-Trie	chlorobenzene	< 5.00	ug/L	6/19/2013
1,2,4-Tri	chlorobenzene	< 5.00	ug/L	6/19/2013
1,2-Dibro	omo-3-Chloropropane	< 10.0	ug/L	6/19/2013
1,2-Dibro	omoethane	< 2.00	ug/L	6/19/2013
1,2-Dichl	orobenzene	< 2.00	ug/L	6/19/2013
1,2-Dichl	oroethane	< 2.00	ug/L	6/19/2013
1,2-Dichl	oropropane	< 2.00	ug/L	6/19/2013
1,3-Dichl	lorobenzene	< 2.00	ug/L	6/19/2013
1,4-Dichl	orobenzene	< 2.00	ug/L	6/19/2013
1,4-dioxa	ane	< 20.0	ug/L	6/19/2013
2-Butanc	one	< 10.0	ug/L	6/19/2013
2-Hexand	one	< 5.00	ug/L	6/19/2013
4-Methyl	l-2-pentanone	< 5.00	ug/L	6/19/2013
Acetone		< 10.0	ug/L	6/19/2013
Benzene		< 0.700	ug/L	6/19/2013
Bromoch	lloromethane	< 5.00	ug/L	6/19/2013
Bromodi	chloromethane	< 2.00	ug/L	6/19/2013
Bromofo	rm	< 5.00	ug/L	6/19/2013
Bromom	ethane	< 2.00	ug/L	6/19/2013
Carbon d	lisulfide	< 2.00	ug/L	6/19/2013
Carbon T	Fetrachloride	< 2.00	ug/L	6/19/2013
Chlorobe	enzene	< 2.00	ug/L	6/19/2013

Client: Project Ref	L ference: V	. u Engin Vilkins F	<mark>eers. Inc.</mark> RV - SMP Semi	-Annual GW Sampling		
Sample Io Lab Samp Matrix:	dentifier: ble ID:	MW-13 13220 Water	3_06-14-13 6-03		Date Sampled: Date Received:	6/14/2013 6/14/2013
	Chloroethane			< 2.00	ug/L	6/19/2013
	Chloroform			< 2.00	ug/L	6/19/2013
	Chloromethane			< 2.00	ug/L	6/19/2013
	cis-1,2-Dichloroe	ethene		< 2.00	ug/L	6/19/2013
	cis-1,3-Dichlorog	propene		< 2.00	ug/L	6/19/2013
	Cyclohexane			< 10.0	ug/L	6/19/2013
	Dibromochloron	nethane		< 2.00	ug/L	6/19/2013
	Dichlorodifluoro	omethane		< 2.00	ug/L	6/19/2013
	Ethylbenzene			< 2.00	ug/L	6/19/2013
	Freon 113			< 2.00	ug/L	6/19/2013
	Isopropylbenzer	ne		< 2.00	ug/L	6/19/2013
	m,p-Xylene			< 2.00	ug/L	6/19/2013
	Methyl acetate			< 2.00	ug/L	6/19/2013
	Methyl tert-buty	l Ether		< 2.00	ug/L	6/19/2013
	Methylcyclohexa	ane		< 2.00	ug/L	6/19/2013
	Methylene chlor	ide		< 5.00	ug/L	6/19/2013
	o-Xylene			< 2.00	ug/L	6/19/2013
	Styrene			< 5.00	ug/L	6/19/2013
	Tetrachloroethe	ene		< 2.00	ug/L	6/19/2013
	Toluene			< 2.00	ug/L	6/19/2013
	trans-1,2-Dichlo	roethene		< 2.00	ug/L	6/19/2013
	trans-1,3-Dichlo	ropropen	e	< 2.00	ug/L	6/19/2013
	Trichloroethene	è		< 2.00	ug/L	6/19/2013
	Trichlorofluoror	methane		< 2.00	ug/L	6/19/2013
	Vinyl chloride			< 2.00	ug/L	6/19/2013
	Method Reference Data File:	(s):	EPA 8260B EPA 5030 K06140.D			

Client:	<u>Lu Engineers, Inc.</u>						
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling						
Sample Identifier:	MW-06_06-14-13						
Lab Sample ID:	132206-04		Date Sampled:	6/14/2013			
Matrix:	Water		Date Received:	6/14/2013			
<u>Metals</u>			<u></u>				
Analyte		Result	<u>Units</u> Qua	llifier Date Analyzed			
Iron		1.34	mg/L	6/25/2013			
Manganese		1.94	mg/L	6/25/2013			
Method Reference	e(s): EPA 6010C						
Data File:	EPA 3005 062513b						

Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV - SMP Semi-Ann	ual GW Sampling		
Sample Identifier:	MW-06_06-14-13			
Lab Sample ID:	132206-04		Date Sampled:	6/14/2013
Matrix:	Water		Date Received:	6/14/2013
Volatile Organic	S			
<u>Analyte</u>		Result	<u>Units</u> Qua	lifier Date Analyzed
1,1,1-Trichlo	proethane	< 2.00	ug/L	6/19/2013
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L	6/19/2013
1,1,2-Trichlo	proethane	< 2.00	ug/L	6/19/2013
1,1-Dichloro	ethane	< 2.00	ug/L	6/19/2013
1,1-Dichloro	ethene	< 2.00	ug/L	6/19/2013
1,2,3-Trichlo	orobenzene	< 5.00	ug/L	6/19/2013
1,2,4-Trichlo	orobenzene	< 5.00	ug/L	6/19/2013
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L	6/19/2013
1,2-Dibromo	bethane	< 2.00	ug/L	6/19/2013
1,2-Dichloro	benzene	< 2.00	ug/L	6/19/2013
1,2-Dichloro	bethane	< 2.00	ug/L	6/19/2013
1,2-Dichloro	propane	< 2.00	ug/L	6/19/2013
1,3-Dichloro	benzene	< 2.00	ug/L	6/19/2013
1,4-Dichloro	benzene	< 2.00	ug/L	6/19/2013
1,4-dioxane		< 20.0	ug/L	6/19/2013
2-Butanone		< 10.0	ug/L	6/19/2013
2-Hexanone		< 5.00	ug/L	6/19/2013
4-Methyl-2-	pentanone	< 5.00	ug/L	6/19/2013
Acetone		< 10.0	ug/L	6/19/2013
Benzene		< 0.700	ug/L	6/19/2013
Bromochlor	omethane	< 5.00	ug/L	6/19/2013
Bromodichl	oromethane	< 2.00	ug/L	6/19/2013
Bromoform		< 5.00	ug/L	6/19/2013
Bromometh	ane	< 2.00	ug/L	6/19/2013
Carbon disu	lfide	< 2.00	ug/L	6/19/2013
Carbon Tetr	achloride	< 2.00	ug/L	6/19/2013
Chlorobenze	ene	< 2.00	ug/L	6/19/2013

Client:	Lu Engineers	Inc.								
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling									
Sample Identifier: Lab Sample ID:	MW-06_06 132206-04	14-13		Date Sampled:	6/14/2013					
Matrix:	Water			Date Received:	6/14/2013					
Chloroethane			< 2.00	ug/L	6/19/2013					
Chloroform			< 2.00	ug/L	6/19/2013					
Chloromethane	9		< 2.00	ug/L	6/19/2013					
cis-1,2-Dichlor	oethene		< 2.00	ug/L	6/19/2013					
cis-1,3-Dichlor	opropene		< 2.00	ug/L	6/19/2013					
Cyclohexane			< 10.0	ug/L	6/19/2013					
Dibromochloro	omethane		< 2.00	ug/L	6/19/2013					
Dichlorodifluo	romethane		3.59	ug/L	6/19/2013					
Ethylbenzene			< 2.00	ug/L	6/19/2013					
Freon 113			< 2.00	ug/L	6/19/2013					
Isopropylbenze	ene		< 2.00	ug/L	6/19/2013					
m,p-Xylene			< 2.00	ug/L	6/19/2013					
Methyl acetate			< 2.00	ug/L	6/19/2013					
Methyl tert-but	tyl Ether		< 2.00	ug/L	6/19/2013					
Methylcyclohe	xane		< 2.00	ug/L	6/19/2013					
Methylene chlo	oride		< 5.00	ug/L	6/19/2013					
o-Xylene			< 2.00	ug/L	6/19/2013					
Styrene			< 5.00	ug/L	6/19/2013					
Tetrachloroeth	iene		8.89	ug/L	6/19/2013					
Toluene			< 2.00	ug/L	6/19/2013					
trans-1,2-Dich	Ioroethene		< 2.00	ug/L	6/19/2013					
trans-1,3-Dich	loropropene		< 2.00	ug/L	6/19/2013					
Trichloroether	ıe		1.50	ug/L	J 6/19/2013					
Trichlorofluor	omethane		< 2.00	ug/L	6/19/2013					
Vinyl chloride			< 2.00	ug/L	6/19/2013					
Method Reference	ce(s): EPA 82 EPA 50 X0614	0B 0								

Method Blank Report

Client:	<u>Lu Engineers, Inc.</u>
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling
Lab Project ID:	132206
SDG #:	2206-01
Matrix:	Water

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	<2.00	ug/L		6/19/2013
1,1,2,2-Tetrachloroethane	<2.00	ug/L		6/19/2013
1,1,2-Trichloroethane	<2.00	ug/L		6/19/2013
1,1-Dichloroethane	<2.00	ug/L		6/19/2013
1,1-Dichloroethene	<2.00	ug/L		6/19/2013
1,2,3-Trichlorobenzene	<5.00	ug/L		6/19/2013
1,2,4-Trichlorobenzene	<5.00	ug/L		6/19/2013
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		6/19/2013
1,2-Dibromoethane	<2.00	ug/L		6/19/2013
1,2-Dichlorobenzene	<2.00	ug/L		6/19/2013
1,2-Dichloroethane	<2.00	ug/L		6/19/2013
1,2-Dichloropropane	<2.00	ug/L		6/19/2013
1,3-Dichlorobenzene	<2.00	ug/L		6/19/2013
1,4-Dichlorobenzene	<2.00	ug/L		6/19/2013
1,4-dioxane	<20.0	ug/L		6/19/2013
2-Butanone	<10.0	ug/L		6/19/2013
2-Hexanone	<5.00	ug/L		6/19/2013
4-Methyl-2-pentanone	<5.00	ug/L		6/19/2013
Acetone	6.34	ug/L	J	6/19/2013
Benzene	<0.700	ug/L		6/19/2013
Bromochloromethane	<5.00	ug/L		6/19/2013
Bromodichloromethane	<2.00	ug/L		6/19/2013
Bromoform	<5.00	ug/L		6/19/2013
Bromomethane	<2.00	ug/L		6/19/2013
Carbon disulfide	<2.00	ug/L		6/19/2013
Carbon Tetrachloride	<2.00	ug/L		6/19/2013
Chlorobenzene	<2.00	ug/L		6/19/2013
Chloroethane	<2.00	ug/L		6/19/2013

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Friday, June 28, 2013

Method Blank Report

Client:	Lu Engineers. Inc.
Project Reference:	Wilkins RV - SMP Semi-Annual GW Sampling
Lab Project ID:	132206
SDG #:	2206-01
Matrix:	Water

Volatile Organics

<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Chloroform		<2.00	ug/L		6/19/2013
Chloromethane		<2.00	ug/L		6/19/2013
cis-1,2-Dichloroethene		<2.00	ug/L		6/19/2013
cis-1,3-Dichloropropen	e	<2.00	ug/L		6/19/2013
Cyclohexane		<10.0	ug/L		6/19/2013
Dibromochloromethan	e	<2.00	ug/L		6/19/2013
Dichlorodifluorometha	ne	<2.00	ug/L		6/19/2013
Ethylbenzene		<2.00	ug/L		6/19/2013
Freon 113		<2.00	ug/L		6/19/2013
Isopropylbenzene		<2.00	ug/L		6/19/2013
m,p-Xylene		1.01	ug/L	J	6/19/2013
Methyl acetate		<2.00	ug/L		6/19/2013
Methyl tert-butyl Ether		<2.00	ug/L		6/19/2013
Methylcyclohexane		<2.00	ug/L		6/19/2013
Methylene chloride		<5.00	ug/L		6/19/2013
o-Xylene		<2.00	ug/L		6/19/2013
Styrene		<5.00	ug/L		6/19/2013
Tetrachloroethene		<2.00	ug/L		6/19/2013
Toluene		<2.00	ug/L		6/19/2013
trans-1,2-Dichloroethe	ne	<2.00	ug/L		6/19/2013
trans-1,3-Dichloroprop	ene	<2.00	ug/L		6/19/2013
Trichloroethene		<2.00	ug/L		6/19/2013
Trichlorofluoromethan	e	<2.00	ug/L		6/19/2013
Vinyl chloride		<2.00	ug/L		6/19/2013
Method Reference(s): Data File:	EPA 8260B EPA 5030 X06136.D				
QC Batch ID: OC Number:	voawu61913 1				

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Friday, June 28, 2013

Comments: Approved By:					-					Manganese	Iron		Analyte		Field ID No.:	Field I continu	Client Job No.:	Client Job Site:	Client:	PARA
* - Outside QC													Date Analyzed		N/A	N/A	Semi-Annual (Wilkins RV - S	Lu Engineers	ADIG
limits										< TO'O >	< 0.100	mg/L	Method Blank				JW Sampling	MP	<u>Inc</u>	ž
										1.00	2.50	mg/L	LCS Added						- 	179 Lake Aven
										1.U4	2.39	mg/L	LCS Recovered	Laborator						ue, Rochester, N
										104	101	%	LCS Recovery	y Report for)						Y 14608 (585) (
ad je 1										1,00	1.00	mg/L	LCS Dup Added	Metals Analys						547-2530 F AX
										0.904	2.29	mg/L	LCS Dup Recovered	sis in Water						(585) 647-3311
										90. 1	91.0	%	LCS Dup Recovery							
										0110	4.00	. %	LCS Dup Percent Difference			Date Sample Date Receive	лашр те турс	Cample Trme	Lab Project N Lab Sample I	
										20.070	20.0%	30 QQ	Percent Difference Limits			ă đ	<u>•</u>		Vo.:	
	ELAP ID No.:10958										90.0% - 120%	00 00/ 1200/	% Recovery Limits			N/A N/A		Water	132206 ICP LCS 6/24 w	

- Caller

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers, Inc.

PARADIGM

Client Job Site:	Wilkins RV - SMP Semi-Annual GW Sampling	Lab Project Number: Lab Sample Number:	132206 Blk 6/19
Client Job Number:	N/A		
Field Location:	N/A	Date Sampled:	N/A
Field ID Number:	N/A	Date Received:	N/A
Sample Type:	Water	Date Analyzed:	06/19/2013

Compound	Results in ug / L	Compound	Results in ug / L
Acetone	JB 6.34	1,2-Dichloropropane	< 2.00
Benzene	< 0.700	cis-1,3-Dichloropropene	< 2.00
Bromochloromethane	< 5.00	trans-1,3-Dichloropropene	< 2.00
Bromodichloromethane	< 2.00	1,4-Dioxane	< 20.0
Bromoform	< 5.00	Ethylbenzene	< 2.00
Bromomethane	< 2.00	Freon 113	< 2.00
2-Butanone	< 10.0	2-Hexanone	< 5.00
Carbon disulfide	< 2.00	Isopropylbenzene	< 2.00
Carbon Tetrachloride	< 2.00	Methyl acetate	< 2.00
Chlorobenzene	< 2.00	Methyl tert-butyl Ether	< 2.00
Chloroethane	< 2.00	Methylcyclohexane	< 2.00
Chloroform	< 2.00	Methylene chloride	< 5.00
Chloromethane	< 2.00	4-Methyl-2-pentanone	< 5.00
Cyclohexane	< 10.0	Styrene	< 5.00
Dibromochloromethane	< 2.00	1,1,2,2-Tetrachloroethane	< 2.00
1,2-Dibromo-3-Chloropropane	< 10.0	Tetrachloroethene	< 2.00
1,2-Dibromoethane	< 2.00	Toluene	< 2.00
1,2-Dichlorobenzene	< 2.00	1,2,3-Trichlorobenzene	< 5.00
1,3-Dichlorobenzene	< 2.00	1,2,4-Trichlorobenzene	< 5.00
1,4-Dichlorobenzene	< 2.00	1,1,1-Trichloroethane	< 2.00
Dichlorodifluoromethane	< 2.00	1,1,2-Trichloroethane	< 2.00
1,1-Dichloroethane	< 2.00	Trichloroethene	< 2.00
1,2-Dichloroethane	< 2.00	Trichlorofluoromethane	< 2.00
1,1-Dichloroethene	< 2.00	Vinyl chloride	< 2.00
cis-1,2-Dichloroethene	< 2.00	m,p-Xylene	JB 1.01
trans-1,2-Dichloroethene	< 2.00	o-Xylene	< 2.00
ELAP Number 10958	Analytical Me	ethod: EPA 8260B	Data File: X06136.D
	Prep Met	hod: EPA 5030	

Comments: ug / L = microgram per Liter

Signature:

Signature: Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 132206B1 Page 17 of 23

					15	а.						
			-24	44		84	24	6				
		2	28		88			x	έ.			
	12	z			х.	- 22			e	ε.		
14	2	s				- 64				÷.	с.	
2	83			æ	R.					s	2	
æ	24			22	12	10					R	
æ		8				- 62					£	
2					н						5	
æ	æ			88	c.	-					R	
8					H					8	F.	
2	ε.				n	-18	s			8		
2	а,							s	8	ĸ	х.	
	2	8	88		5				s			
			-		a		2	8				
				22	÷	22	5					
				1								
				- 7								
			ж.				P.					
			К			γ.						
						- 1						
					г							
			-									
			**		۰.							
			я.									
			ж.		_	1	ŀ					
			-	1.4								
			н.	17		-						
			*									
			.4		r	۰.	÷.					
			÷	۰.			۰.					
			γ.	. 6								
			•••									
			-									
			22	- 1								
			~	з.	۰.							
2			<									
			**	Υ.								
			P	. 4								
			•		۰.		1					
			-				۶.					
			÷		-							
			08			-						
			÷	-			2					
			2		-	2						
			6	1	6		×					2
				. 7								
												2

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: Lu Engineers, Inc.

Field ID Number: Sample Type:	Client Job Number:	Client Job Site:
WA Water	Semi-Annual GW Sampling N/A	Wilkins RV - SMP
Date Received: Date Analyzed:	Lab Sample Number:	Lab Project Number:
N/A 06/19/2013	LCS 6/19	132206
		SDG# : 2206-01

1	Chlorober	Toluene	Trichloroe	Benzene	1,1-Dichlc		Spiked C
Por 10050	nzene		thene		oroethene		ompound
Data Eila: YOS138	~ 2.00	< 2.00	< 2.00	< 0.700	< 2.00	in ug / L	Blank Results
כ	50. O	50.0	50.0	50.0	50.0	in ug / L	LCS Spiked
ata File: X06135.D	46.4 	45.4	49.2	47.6	49.4	in ug / L	LCS Results
	92.8 1	90.8	98.4	95.2	98.8	Recovery	LCS Percent
	NA	N/A	N/A	N/A	N/A	in ug / L	MSD Spiked
	NA	N/A	N/A	N/A	N/A	in ug / L	MSD Results
Me	X	N/A	N/A	N/A	N/A	Recovery	MSD Percent
thod: EPA 8260B	X	N/A	N/A	N/A	N/A	% RPD	MS / MSD

	of Berlin			
	2 11			
	ာမ			
	• D>			
	*			
	 T 			
	~~~			
	: <b>T</b>			
	2.00			
	5.22.2			
	~ -			
	1 C			
	- C - C - C - C - C - C - C - C - C - C			
	-		1	
	$\sim c_0$		÷	
	2.147			
	S			
		5		
	2 <b>.</b>			
	. 37	-		
н				
٥.				
-				
-				
1				
-				
C.				
-				
,				
-				
_				

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

# Volatile Analysis Report for Surrogate Recoveries

# Client: Lu Engineers, Inc.

Client Job Site:	Wilkins RV - SMP	Lab Project Number:	132206	SDG Group:	2206-
	Semi-Annual GW Sampling			-	
Client Job Number:	N/A	Data Campled:	2 FUCI / 1/30		
		Date Sampled:	06/14/2013		
		Date Received:	06/14/2013		
Sample Type:	Water	Date Analyzed:	06/19/2013		

						r	
ELAP Number 10958	132206-04	132206-03	132206-02	132206-01	LCS 6/19	Blk 6/19	Lab Sample Number
	N/A	N/A	N/A	N/A	N/A	N/A	Field Number
	MW-06_06-14-13	MW-13_06-14-13	MW-JCL-02_06-14-13	MW-03_06-14-13	N/A	N/A	Field Location
	117	118	117	115	114	116	Pentafluorobenzene % Recovery
	96 	98.5	97.6	98.2	96.6	96.8	1,2-Dichloroethane-d4 % Recovery
Me	110	111	107	108	110	108	T <b>oluene-d8</b> % Recovery
thod: EPA 8260B	99 . &	100	101	99.7	102	100	4-BFB % Recovery

PARADIGM

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

# Volatile Analysis QC Limits

Limits effective: May 29,2013 Through: Jun 30,2013

				DDD I imite	Water Sni	ke limite	Water % RPI	O Limits
Spiked Compound		Ke Limits	Lower %	Upper %	Lower %	Upper %	Lower %	Upper %
		108		15.5	84.8	109	0	14.1
11,1-Dichloroethene	02.0				5	200	c	1000
Benzene	83.2	107	0	12.1	84.3	103	) C	) - C. C
Trichloroethene	85.0	105	0	11.8	86.4	103		9.77
Toluene	84.1	104	0	11.4	85.7	102	0	10.4
Chlorobenzene	83.5	104	0	13.7	84.4	103	0	10.2
Surrogate*	Soil Surro	gate Limits			Water Surro	ogate Limits		
(	Lower %	Upper %			Lower %	Upper %		
Pentafluorobenzene	80.0	120			80.0	120		
1.2-Dichloroethane-d4	80.0	120			80.0	120		
Tohiene-D8	80.0	120			80.0	120		
					2000	100		
4-Bromofluorobenzene	80.0	120			80.0	120		
							Me	thod: EPA 8260
ELAP Number 10958								

and the warning limit will be investigated, but will not invalidate the batch. Note: When the lower acceptance limit is calculated to be below 10% recovery, a warning limit of 10% is established. Recoveries between the lower acceptance limit

*Due to an equipment change, generic limits are being used for surrogates until enough data are collected to generate new limits



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

*"J"* = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958



Page 22 of 23

ON	$\mathcal{I}$
2.01	1



# Chain of Custody Supplement

Client:		Lu Engineers	Completed by:	Mail
Lab Project ID:		132206	Date:	6/14/23
		Sample Condition Per NELAC/ELAP 21	on Requirements 0/241/242/243/244	
Condition	N	ELAC compliance with the sample Yes	condition requirements upor No	n receipt N/A
Container Type				
Co	omments			
Transferred to method compliant container	d-	]		
Headspace (<1 mL) Co	omments	<u>Y</u>		
Preservation Co	omments			
Chlorine Absent (<0.10 ppm per test Cc	t strip) omments			
Holding Time Co	omments	<u> </u>		
Temperature Co	omments	X 3°Cicel 6 No astude seals di	21612 6/14/13 ent delivered	from Sangles
Sufficient Sample Q Co	<b>)uantity</b> omments			



# Analytical Report For

# Lu Engineers, Inc.

For Lab Project ID

# 134478

Referencing

# Wilkins RV - SMP Semi-Annual Groundwater Sampling

Prepared

Monday, December 02, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958



Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - SMP Semi-Ann	nual Groundwater	Sampling		
Sample Identifier:	MW-JCL-02_11-21-13				
Lab Sample ID:	134478-01		Date Sample	e <b>d:</b> 11/	21/2013
Matrix:	Groundwater		Date Receive	ed: 11/	21/2013
<u>Metals</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Iron		10.6	mg/L		11/26/2013
Manganese		2.71	mg/L		11/26/2013
Method Reference	ce(s): EPA 6010C				
	EPA 3005				
Data File:	112613a				



Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - SMP Semi-Annua	l Groundwater	Sampling		
Sample Identifier:	MW-JCL-02_11-21-13				
Lab Sample ID:	134478-01		Date Sampled:	11/2	21/2013
Matrix:	Groundwater		Date Received:	11/2	21/2013
Volatile Organics	Σ				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-Trichlo	roethane	< 100	ug/L		11/22/2013
1,1,2,2-Tetra	chloroethane	< 100	ug/L		11/22/2013
1,1,2-Trichlo	roethane	< 100	ug/L		11/22/2013
1,1-Dichloroe	ethane	< 100	ug/L		11/22/2013
1,1-Dichloroe	ethene	< 100	ug/L		11/22/2013
1,2,3-Trichlo	robenzene	< 250	ug/L		11/22/2013
1,2,4-Trichlo	robenzene	< 250	ug/L		11/22/2013
1,2-Dibromo	-3-Chloropropane	< 500	ug/L		11/22/2013
1,2-Dibromo	ethane	< 100	ug/L		11/22/2013
1,2-Dichlorol	benzene	< 100	ug/L		11/22/2013
1,2-Dichloroe	ethane	< 100	ug/L		11/22/2013
1,2-Dichloroj	propane	< 100	ug/L		11/22/2013
1,3-Dichlorol	benzene	< 100	ug/L		11/22/2013
1,4-Dichlorol	benzene	< 100	ug/L		11/22/2013
1,4-dioxane		< 1000	ug/L		11/22/2013
2-Butanone		< 500	ug/L		11/22/2013
2-Hexanone		< 250	ug/L		11/22/2013
4-Methyl-2-p	pentanone	< 250	ug/L		11/22/2013
Acetone		626	ug/L I	3	11/22/2013
Benzene		< 35.0	ug/L		11/22/2013
Bromochloro	omethane	< 250	ug/L		11/22/2013
Bromodichlo	promethane	< 100	ug/L		11/22/2013
Bromoform		< 250	ug/L		11/22/2013
Bromometha	ine	< 100	ug/L		11/22/2013
Carbon disul	fide	< 100	ug/L		11/22/2013
Carbon Tetra	achloride	< 100	ug/L		11/22/2013
Chlorobenze	ne	< 100	ug/L		11/22/2013



Client: <u>Lu</u>	<u>ı Engineers, Inc.</u>			
<b>Project Reference:</b> W	ilkins RV - SMP Semi-Annua	l Groundwater	Sampling	
Sample Identifier: Lab Sample ID:	MW-JCL-02_11-21-13 134478-01		Date Sampled:	11/21/2013
Matrix:	Groundwater		Date Received:	11/21/2013
Chloroethane		< 100	ug/L	11/22/2013
Chloroform		< 100	ug/L	11/22/2013
Chloromethane		< 100	ug/L	11/22/2013
cis-1,2-Dichloroet	hene	1800	ug/L	11/22/2013
cis-1,3-Dichloropr	opene	< 100	ug/L	11/22/2013
Cyclohexane		< 500	ug/L	11/22/2013
Dibromochlorome	ethane	< 100	ug/L	11/22/2013
Dichlorodifluorom	nethane	< 100	ug/L	11/22/2013
Ethylbenzene		< 100	ug/L	11/22/2013
Freon 113		< 100	ug/L	11/22/2013
Isopropylbenzene		< 100	ug/L	11/22/2013
m,p-Xylene		< 100	ug/L	11/22/2013
Methyl acetate		< 100	ug/L	11/22/2013
Methyl tert-butyl l	Ether	< 100	ug/L	11/22/2013
Methylcyclohexan	e	< 100	ug/L	11/22/2013
Methylene chlorid	e	< 250	ug/L	11/22/2013
o-Xylene		< 100	ug/L	11/22/2013
Styrene		< 250	ug/L	11/22/2013
Tetrachloroethene	9	659	ug/L	11/22/2013
Toluene		< 100	ug/L	11/22/2013
trans-1,2-Dichloro	pethene	< 100	ug/L	11/22/2013
trans-1,3-Dichloro	opropene	< 100	ug/L	11/22/2013
Trichloroethene		1900	ug/L	11/22/2013
Trichlorofluorome	ethane	< 100	ug/L	11/22/2013
Vinyl chloride		< 100	ug/L	11/22/2013
Method Reference(s) Data File	: EPA 8260C EPA 5030 x09908 D			



Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - SMP Semi-Annu	ual Groundwater	Sampling		
Sample Identifier:	MW-03_11-21-13				
Lab Sample ID:	134478-02		Date Sampled:	11/	21/2013
Matrix:	Groundwater		Date Received:	11/	21/2013
<u>Metals</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qu	alifier	Date Analyzed
Iron		1.74	mg/L		11/26/2013
Manganese		7.35	mg/L		11/26/2013
Method Reference	e(s): EPA 6010C				
	EPA 3005				
Data File:	112613a				


Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - SMP Semi-Ann	ual Groundwater	Sampling		
Sample Identifier:	MW-03_11-21-13				
Lab Sample ID:	134478-02		Date Sampled:	11/2	21/2013
Matrix:	Groundwater		Date Received:	11/2	21/2013
Volatile Organic	<u>s</u>				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-Trichlo	proethane	< 200	ug/L		11/22/2013
1,1,2,2-Tetra	achloroethane	< 200	ug/L		11/22/2013
1,1,2-Trichlo	proethane	< 200	ug/L		11/22/2013
1,1-Dichloro	ethane	< 200	ug/L		11/22/2013
1,1-Dichloro	ethene	< 200	ug/L		11/22/2013
1,2,3-Trichlo	probenzene	< 500	ug/L		11/22/2013
1,2,4-Trichlo	probenzene	< 500	ug/L		11/22/2013
1,2-Dibromo	o-3-Chloropropane	< 1000	ug/L		11/22/2013
1,2-Dibromo	bethane	< 200	ug/L		11/22/2013
1,2-Dichloro	benzene	< 200	ug/L		11/22/2013
1,2-Dichloro	ethane	< 200	ug/L		11/22/2013
1,2-Dichloro	propane	< 200	ug/L		11/22/2013
1,3-Dichloro	benzene	< 200	ug/L		11/22/2013
1,4-Dichloro	benzene	< 200	ug/L		11/22/2013
1,4-dioxane		< 2000	ug/L		11/22/2013
2-Butanone		< 1000	ug/L		11/22/2013
2-Hexanone		< 500	ug/L		11/22/2013
4-Methyl-2-j	pentanone	< 500	ug/L		11/22/2013
Acetone		1200	ug/L I	В	11/22/2013
Benzene		< 70.0	ug/L		11/22/2013
Bromochlore	omethane	< 500	ug/L		11/22/2013
Bromodichlo	promethane	< 200	ug/L		11/22/2013
Bromoform		< 500	ug/L		11/22/2013
Bromometha	ane	< 200	ug/L		11/22/2013
Carbon disul	lfide	< 200	ug/L		11/22/2013
Carbon Tetra	achloride	< 200	ug/L		11/22/2013
Chlorobenze	ene	< 200	ug/L		11/22/2013



Client:	<u>Lu En</u>	<u>gineers, Inc.</u>				
Project Reference:	Wilkir	ns RV - SMP Sem	i-Annual Ground	water	Sampling	
Sample Identifier:	MW	7-03_11-21-13				
Lab Sample ID:	134	478-02			Date Sampled:	11/21/2013
Matrix:	Gro	undwater			Date Received:	11/21/2013
Chloroethane	9		<	200	ug/L	11/22/2013
Chloroform			<	200	ug/L	11/22/2013
Chlorometha	ne		<	200	ug/L	11/22/2013
cis-1,2-Dichle	oroethene		7	380	ug/L	11/22/2013
cis-1,3-Dichl	oroproper	e	<	200	ug/L	11/22/2013
Cyclohexane			<	1000	ug/L	11/22/2013
Dibromochlo	romethan	e	<	200	ug/L	11/22/2013
Dichlorodiflu	iorometha	ne	<	200	ug/L	11/22/2013
Ethylbenzen	е		<	200	ug/L	11/22/2013
Freon 113			<	200	ug/L	11/22/2013
Isopropylber	nzene		<	200	ug/L	11/22/2013
m,p-Xylene			<	200	ug/L	11/22/2013
Methyl aceta	te		<	200	ug/L	11/22/2013
Methyl tert-b	outyl Ether		<	200	ug/L	11/22/2013
Methylcycloł	nexane		<	200	ug/L	11/22/2013
Methylene ch	nloride		<	500	ug/L	11/22/2013
o-Xylene			<	200	ug/L	11/22/2013
Styrene			<	500	ug/L	11/22/2013
Tetrachloroe	thene		14	-000	ug/L	11/22/2013
Toluene			<	200	ug/L	11/22/2013
trans-1,2-Dic	chloroethe	ne	<	200	ug/L	11/22/2013
trans-1,3-Dic	chloroprop	ene	<	200	ug/L	11/22/2013
Trichloroeth	ene		6	340	ug/L	11/22/2013
Trichlorofluc	oromethan	e	<	200	ug/L	11/22/2013
Vinyl chlorid	e		<	200	ug/L	11/22/2013
Method Refere	nce(s):	EPA 8260C EPA 5030				
Data File:		x09909.D				



Client:	Lu Engineers, Inc.						
Project Reference: Wilkins RV - SMP Semi-Annual Groundwater Sampling							
Sample Identifier:	MW-06_11-21-13						
Lab Sample ID:	134478-03		Date Sample	ed: 11/	21/2013		
Matrix:	Groundwater	<b>Date Received:</b> 11/21/2013			21/2013		
<u>Metals</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed		
Iron		1.11	mg/L		11/26/2013		
Manganese		1.47	mg/L		11/26/2013		
Method Referenc	e(s): EPA 6010C						
	EPA 3005						
Data File:	112613a						



Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV - SMP Semi-Ann	ual Groundwater	Sampling	
Sample Identifier:	MW-06_11-21-13			
Lab Sample ID:	134478-03		Date Sampled:	11/21/2013
Matrix:	Groundwater		Date Received:	11/21/2013
Volatile Organic	<u>.s</u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	llifier Date Analyzed
1,1,1-Trichl	oroethane	< 2.00	ug/L	11/22/2013
1,1,2,2-Tetr	achloroethane	< 2.00	ug/L	11/22/2013
1,1,2-Trichl	oroethane	< 2.00	ug/L	11/22/2013
1,1-Dichloro	bethane	< 2.00	ug/L	11/22/2013
1,1-Dichloro	bethene	< 2.00	ug/L	11/22/2013
1,2,3-Trichl	orobenzene	< 5.00	ug/L	11/22/2013
1,2,4-Trichl	orobenzene	< 5.00	ug/L	11/22/2013
1,2-Dibrom	o-3-Chloropropane	< 10.0	ug/L	11/22/2013
1,2-Dibrom	oethane	< 2.00	ug/L	11/22/2013
1,2-Dichloro	obenzene	< 2.00	ug/L	11/22/2013
1,2-Dichloro	bethane	< 2.00	ug/L	11/22/2013
1,2-Dichloro	opropane	< 2.00	ug/L	11/22/2013
1,3-Dichloro	obenzene	< 2.00	ug/L	11/22/2013
1,4-Dichloro	obenzene	< 2.00	ug/L	11/22/2013
1,4-dioxane		< 20.0	ug/L	11/22/2013
2-Butanone		< 10.0	ug/L	11/22/2013
2-Hexanone	2	< 5.00	ug/L	11/22/2013
4-Methyl-2-	pentanone	< 5.00	ug/L	11/22/2013
Acetone		< 10.0	ug/L	11/22/2013
Benzene		< 0.700	ug/L	11/22/2013
Bromochlor	romethane	< 5.00	ug/L	11/22/2013
Bromodichl	oromethane	< 2.00	ug/L	11/22/2013
Bromoform		< 5.00	ug/L	11/22/2013
Bromometh	ane	< 2.00	ug/L	11/22/2013
Carbon disu	lfide	< 2.00	ug/L	11/22/2013
Carbon Tetr	achloride	< 2.00	ug/L	11/22/2013
Chlorobenze	ene	< 2.00	ug/L	11/22/2013



Client: Project Reference:	<b>Lu Eng</b> Wilkins	i <b>neers, Inc.</b> RV - SMP Semi-	Annual Groundw	vater	Sampling	
Sample Identifier: Lab Sample ID: Matrix:	MW- 1344 Grou	06_11-21-13 78-03 ndwater			Date Sampled: Date Received:	11/21/2013 11/21/2013
Chloroethane			- 2	00	ug/I	11/22/2013
Chloroform			< 2.	00	ug/L	11/22/2013
Chloromethar	no		< 2.	00	ug/L	11/22/2013
cis 1.2 Dichlo	roothono		< 2.	00	ug/L	11/22/2013
cis-1,2-Dichlo	ronronene		< 2.	00	ug/L	11/22/2013
Cyclobeyane	nopropene		< 2.	00 1 0	ug/L	11/22/2013
Dibromochlor	romethane		< 10	00	ug/L	11/22/2013
Dichlorodiflu	oromethan	2	3 1	5	ug/L	11/22/2013
Ethylbenzene			- 2	00	ug/L	11/22/2013
Ethylbelizene Freen 113			< 2.	00	ug/L	11/22/2013
Isopropylben	7010		< 2.	00	ug/L	11/22/2013
m n-Xulene	Zene		< 2.	00	ug/L	11/22/2013
Methyl acetat	ē		< 2.	00	ug/L	11/22/2013
Methyl tert-h	utvl Fther		< 2.	00	ug/L	11/22/2013
Methylcyclob	evane		< 2.	00	ug/L	11/22/2013
Methylene ch	loride		< 5	00	ug/L	11/22/2013
o-Xvlene	lonae		< 2	00	ug/L	11/22/2013
Styrene			< 5	00	ug/L	11/22/2013
Tetrachloroet	hene		11	<b>9</b>	ug/L	11/22/2013
Toluene	linelle		< 2	.,	ug/L	11/22/2013
trans-1 2-Dick	hloroethen	2	< 2.	00	ug/L	11/22/2013
trans-1 3-Dick	hloronrone	ne	< 2	00	ug/L	11/22/2013
Trichloroethe	ne ne		1.7	v8	ug/L	11/22/2013
Trichlorofluor	romethane		< 2	00	ug/L	11/22/2013
Vinvl chloride			< 2	00	ug/L	11/22/2013
Method Referen	ice(s):	EPA 8260C EPA 5030			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Data File:		x09910.D				



Client:	Lu Engineers, Inc.							
Project Reference:	Wilkins RV - SMP Semi-Annual Groundwater Sampling							
Sample Identifier:	MW-13_11-21-13							
Lab Sample ID:	134478-04		Date Sampled	: 11/	21/2013			
Matrix:	Groundwater <b>Date Received:</b> 11/21/2			21/2013				
<u>Metals</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Q	<u>ualifier</u>	Date Analyzed			
Iron		6.13	mg/L		11/26/2013			
Manganese		0.655	mg/L		11/26/2013			
Method Reference	e(s): EPA 6010C							
	EPA 3005							
Data File:	112613a							



Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - SMP Semi-Ann	ual Groundwater	Sampling		
Sample Identifier:	MW-13_11-21-13				
Lab Sample ID:	134478-04		Date Sampled:	11/2	21/2013
Matrix:	Groundwater		Date Received:	11/2	21/2013
Volatile Organic	<u>CS</u>				
Analyte		Result	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-Trichl	oroethane	< 2.00	ug/L		11/22/2013
1,1,2,2-Tetr	achloroethane	< 2.00	ug/L		11/22/2013
1,1,2-Trichl	oroethane	< 2.00	ug/L		11/22/2013
1,1-Dichloro	oethane	< 2.00	ug/L		11/22/2013
1,1-Dichloro	oethene	< 2.00	ug/L		11/22/2013
1,2,3-Trichl	orobenzene	< 5.00	ug/L		11/22/2013
1,2,4-Trichl	orobenzene	< 5.00	ug/L		11/22/2013
1,2-Dibrom	o-3-Chloropropane	< 10.0	ug/L		11/22/2013
1,2-Dibrom	oethane	< 2.00	ug/L		11/22/2013
1,2-Dichloro	obenzene	< 2.00	ug/L		11/22/2013
1,2-Dichloro	oethane	< 2.00	ug/L		11/22/2013
1,2-Dichloro	opropane	< 2.00	ug/L		11/22/2013
1,3-Dichloro	obenzene	< 2.00	ug/L		11/22/2013
1,4-Dichloro	obenzene	< 2.00	ug/L		11/22/2013
1,4-dioxane		< 20.0	ug/L		11/22/2013
2-Butanone		< 10.0	ug/L		11/22/2013
2-Hexanone		< 5.00	ug/L		11/22/2013
4-Methyl-2-	pentanone	< 5.00	ug/L		11/22/2013
Acetone		< 10.0	ug/L		11/22/2013
Benzene		< 0.700	ug/L		11/22/2013
Bromochlor	romethane	< 5.00	ug/L		11/22/2013
Bromodichl	oromethane	< 2.00	ug/L		11/22/2013
Bromoform		< 5.00	ug/L		11/22/2013
Bromometh	ane	< 2.00	ug/L		11/22/2013
Carbon disu	lfide	< 2.00	ug/L		11/22/2013
Carbon Tetr	rachloride	< 2.00	ug/L		11/22/2013
Chlorobenz	ene	< 2.00	ug/L		11/22/2013



Client:	<u>Lu En</u> g	<u>gineers, Inc.</u>				
Project Reference:	Wilkin	s RV - SMP Sen	ni-Annual Groundv	vater Samp	ling	
Sample Identifier:	MW	-13 11-21-13				
Lab Sample ID:	134	478-04		Dat	e Sampled:	11/21/2013
Matrix:	Gro	undwater		Dat	e Received:	11/21/2013
Chloroethane			< 2.	00 1	ug/L	11/22/2013
Chloroform			< 2.	00 1	ug/L	11/22/2013
Chlorometha	ne		< 2.	00 1	ug/L	11/22/2013
cis-1.2-Dichlo	roethene		< 2.	00 1	ug/L	11/22/2013
cis-1,3-Dichlo	ropropen	e	< 2.	00 1	ug/L	11/22/2013
Cvclohexane	1 1		< 10	).0 ı	ug/L	11/22/2013
Dibromochlo	romethan	e	< 2.	00 1	ug/L	11/22/2013
Dichlorodiflu	orometha	ne	< 2.	00 1	ug/L	11/22/2013
Ethylbenzene			< 2.	00 1	ug/L	11/22/2013
Freon 113			< 2.	00 1	ug/L	11/22/2013
Isopropylben	zene		< 2.	00 1	ug/L	11/22/2013
m,p-Xylene			< 2.	00 1	ug/L	11/22/2013
Methyl acetat	e		< 2.	00 1	ug/L	11/22/2013
Methyl tert-b	utyl Ether		< 2.	00 1	ug/L	11/22/2013
Methylcycloh	exane		< 2.	00 1	ug/L	11/22/2013
Methylene ch	loride		< 5.	00 1	ug/L	11/22/2013
o-Xylene			< 2.	00 1	ug/L	11/22/2013
Styrene			< 5.	00 1	ug/L	11/22/2013
Tetrachloroet	hene		< 2.	00 1	ug/L	11/22/2013
Toluene			< 2.	00 1	ug/L	11/22/2013
trans-1,2-Dic	nloroethe	ne	< 2.	00 1	ug/L	11/22/2013
trans-1,3-Dic	nloroprop	ene	< 2.	00 1	ug/L	11/22/2013
Trichloroethe	ne		< 2.	00 1	ug/L	11/22/2013
Trichlorofluo	romethan	e	< 2.	00 1	ug/L	11/22/2013
Vinyl chloride	9		< 2.	00 1	ug/L	11/22/2013
Method Referen	ce(s):	EPA 8260C				, ,
Data File:		EPA 5030 x09911.D				



Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV - SMP Semi-Annua	al Groundwater	Sampling	
Sample Identifier:	Trip Blank_11-21-13			
Lab Sample ID:	134478-05		Date Sampled:	11/21/2013
Matrix:	Water		Date Received:	11/21/2013
Volatile Organic	<u></u>			
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	llifier Date Analyze
1,1,1-Trichl	oroethane	< 2.00	ug/L	11/22/201
1,1,2,2-Tetr	achloroethane	< 2.00	ug/L	11/22/201
1,1,2-Trichl	oroethane	< 2.00	ug/L	11/22/201
1,1-Dichloro	bethane	< 2.00	ug/L	11/22/201
1,1-Dichloro	bethene	< 2.00	ug/L	11/22/201
1,2,3-Trichl	orobenzene	< 5.00	ug/L	11/22/201
1,2,4-Trichl	orobenzene	< 5.00	ug/L	11/22/201
1,2-Dibrom	o-3-Chloropropane	< 10.0	ug/L	11/22/201
1,2-Dibrom	oethane	< 2.00	ug/L	11/22/201
1,2-Dichloro	obenzene	< 2.00	ug/L	11/22/201
1,2-Dichloro	oethane	< 2.00	ug/L	11/22/201
1,2-Dichloro	opropane	< 2.00	ug/L	11/22/201
1,3-Dichloro	obenzene	< 2.00	ug/L	11/22/201
1,4-Dichloro	obenzene	< 2.00	ug/L	11/22/201
1,4-dioxane		< 20.0	ug/L	11/22/201
2-Butanone		< 10.0	ug/L	11/22/201
2-Hexanone		< 5.00	ug/L	11/22/201
4-Methyl-2-	pentanone	< 5.00	ug/L	11/22/201
Acetone		< 10.0	ug/L	11/22/201
Benzene		< 0.700	ug/L	11/22/201
Bromochlor	romethane	< 5.00	ug/L	11/22/201
Bromodichl	oromethane	< 2.00	ug/L	11/22/201
Bromoform		< 5.00	ug/L	11/22/201
Bromometh	ane	< 2.00	ug/L	11/22/201
Carbon disu	lfide	< 2.00	ug/L	11/22/201
Carbon Tetr	rachloride	< 2.00	ug/L	11/22/201
Chlorobenz	ene	< 2.00	ug/L	11/22/201



Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV - SMP Semi-Ar	nnual Groundwater	Sampling	
Sample Identifier:	Trip Blank_11-21-13			
Lab Sample ID:	134478-05		Date Sampled:	11/21/2013
Matrix:	Water		Date Received:	11/21/2013
Chloroethane		< 2.00	ug/L	11/22/2013
Chloroform		< 2.00	ug/L	11/22/2013
Chloromethane		< 2.00	ug/L	11/22/2013
cis-1,2-Dichloro	oethene	< 2.00	ug/L	11/22/2013
cis-1,3-Dichloro	propene	< 2.00	ug/L	11/22/2013
Cyclohexane		< 10.0	ug/L	11/22/2013
Dibromochloro	methane	< 2.00	ug/L	11/22/2013
Dichlorodifluor	omethane	< 2.00	ug/L	11/22/2013
Ethylbenzene		< 2.00	ug/L	11/22/2013
Freon 113		< 2.00	ug/L	11/22/2013
Isopropylbenze	ne	< 2.00	ug/L	11/22/2013
m,p-Xylene		< 2.00	ug/L	11/22/2013
Methyl acetate		< 2.00	ug/L	11/22/2013
Methyl tert-but	yl Ether	< 2.00	ug/L	11/22/2013
Methylcyclohex	ane	< 2.00	ug/L	11/22/2013
Methylene chlor	ride	< 5.00	ug/L	11/22/2013
o-Xylene		< 2.00	ug/L	11/22/2013
Styrene		< 5.00	ug/L	11/22/2013
Tetrachloroethe	ene	< 2.00	ug/L	11/22/2013
Toluene		< 2.00	ug/L	11/22/2013
trans-1,2-Dichle	proethene	< 2.00	ug/L	11/22/2013
trans-1,3-Dichle	propropene	< 2.00	ug/L	11/22/2013
Trichloroethene	9	< 2.00	ug/L	11/22/2013
Trichlorofluoro	methane	< 2.00	ug/L	11/22/2013
Vinyl chloride		< 2.00	ug/L	11/22/2013
Method Reference	(s): EPA 8260C EPA 5030			



## Method Blank Report

Client:	<u>Lu Engineers, Inc.</u>
Project Reference:	Wilkins RV - SMP Semi-Annual Groundwater Sampling
Lab Project ID:	134478
SDG #:	4478-01
Matrix:	Groundwater

### Metals

	<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
	Iron		<0.100	mg/L		11/26/2013
	Manganese		< 0.0150	mg/L		11/26/2013
	Method Reference(s):	EPA 6010C EPA 3005				
<i>°</i> ≩	Data File: OC Batch ID:	112613a 0C131125waters				
	QC Number:	1				

Viget.

1.85° ....

Ŕ

Ę.

A A A A A A A A A A A A A A A A A A A
---------------------------------------

## PARADIGM

Į.

# **<u><b>QC Report for Laboratory Control Sample and Control Sample Duplicate**</u>

Page 17 of 25

Chent:	<u>ភិពក្នុ</u> រាក	TILET S	<u>, IIIC.</u>											
<b>Project Reference:</b>	Wilkins	s RV - S	MP Sei	mi-Annı	ual Groi	undwate	r Sampling							
Lab Project ID:	134478	ω												
SDG #:	4478-0	Ā												
Matrix:	Ground	lwater												
Metals				·										
	LCS	LCSD	<u>Spike</u>	LCS	LCSD	LCS %	LCSD %	<u>% Rec</u>	<u>LCS</u>	LCSD	Relative %	<u>RPD</u>	<u>RPD</u>	Date
Analyte	Added	<u>Added</u>	Units	<u>Result</u>	<u>Result</u>	Recovery	Recovery	Limits	Outliers	Outliers	Difference	<u>Limit</u>	<b>Outliers</b>	Analyzed
Iron	2.50	2.50	mg/L	2.45	2.47	98.1	98.9	85 - 115			0.830	20		11/26/2013
Manganese	1.00	1.00	mg/L	0.982	0.979	98.2	97.9	85 - 115			0.347	20		11/26/2013
Method Reference(s):	EPA 60: EPA 30(	10C												
Data File:	112613	д												
QC Number:	1													
QC Batch ID:	QC1311	25waters												

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

. 0

With the sample condition a Report Prepared Wedness	NC = Not Calculable. Applic ten times the spike added.	Method Refer QC Batch ID:	Manganese	<u>Analyte</u> Iron	Metals	Lab Sample ID: Sample Identifier: Matrix:	<b>Project Reference:</b>	Client:		PA R
requirements tay, Novembe	able to RPD ij	ence(s);	0.655	<u>Sample</u> <u>Results</u> 6.13		1344 MW- Grou	Wilkins	Lu Engi		ADIG
s upon receip <b>r 27, 2013</b>	^r sample or di	EPA 6010C EPA 3005 112613a QC131125wa	mg/L	Result Units mg/L		78-04 13_11-21-3 ndwater	RV - SMP	neers, Inc		Z
off.	uplicate rest	ters	1.00	Spike Added 2.50		G	Semi-Ann	l¥ -	QC Repo	
	ult is non-c		1.64	<u>Spike</u> <u>Result</u> 8.44			ual Grou		nt for S	
	letect or estin		98.9	Spike % Recovery 92.2			ndwater Sa		ample Spi	
A A A A	nated (see prin		75 - 125	<u>% Rec</u> <u>Limits</u> 75 - 125			umpling		ke and Sa	
d famous	n <b>ary report</b> Custody n			<u>Spike</u> Outliers	-				mple Du	
	for data flay		0.667	Duplicate Result 6.13					plicate	
	gs). Applicable		1.85	Relative % Difference 0.0137		Date Samı Date Rece		Lab Proje	SDG #:	
	to MS if so		20	<u>RPD</u> Limit 20		ived:		ct ID: 1		
	ample is grea			<u>RPD</u> Outliers		L1/21/201 L1/21/201		134478	1478-01	
	ter or equal to		11/26/2013	<u>Date</u> <u>Analyzed</u> 11/26/2013		ωω	o Andrea			
									Page 18 of	f 25



## Method Blank Report

Client:	<u>Lu Engineers, Inc.</u>
<b>Project Reference:</b>	Wilkins RV - SMP Semi-Annual Groundwater Sampling
Lab Project ID:	134478
SDG #:	4478-01
Matrix:	Groundwater

## Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	<u>Date Analyzed</u>
1,1,1-Trichloroethane	<2.00	ug/L		11/22/2013
1,1,2,2-Tetrachloroethane	<2.00	ug/L		11/22/2013
1,1,2-Trichloroethane	<2.00	ug/L		11/22/2013
1,1-Dichloroethane	<2.00	ug/L		11/22/2013
1,1-Dichloroethene	<2.00	ug/L		11/22/2013
1,2,3-Trichlorobenzene	<5.00	ug/L		11/22/2013
1,2,4-Trichlorobenzene	<5.00	ug/L		11/22/2013
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		11/22/2013
1,2-Dibromoethane	<2.00	ug/L		11/22/2013
1,2-Dichlorobenzene	<2.00	ug/L		11/22/2013
1,2-Dichloroethane	<2.00	ug/L		11/22/2013
1,2-Dichloropropane	<2.00	ug/L		11/22/2013
1,3-Dichlorobenzene	<2.00	ug/L		11/22/2013
1,4-Dichlorobenzene	<2.00	ug/L		11/22/2013
1,4-dioxane	<20.0	ug/L		11/22/2013
2-Butanone	<10.0	ug/L		11/22/2013
2-Hexanone	<5.00	ug/L		11/22/2013
4-Methyl-2-pentanone	<5.00	ug/L		11/22/2013
Acetone	21.2	ug/L		11/22/2013
Benzene	<0.700	ug/L		11/22/2013
Bromochloromethane	<5.00	ug/L		11/22/2013
Bromodichloromethane	<2.00	ug/L		11/22/2013
Bromoform	<5.00	ug/L		11/22/2013
Bromomethane	<2.00	ug/L		11/22/2013
Carbon disulfide	<2.00	ug/L		11/22/2013
Carbon Tetrachloride	<2.00	ug/L		11/22/2013
Chlorobenzene	<2.00	ug/L		11/22/2013
Chloroethane	<2.00	ug/L		11/22/2013

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, December 02, 2013



## Method Blank Report

Client:	Lu Engineers, Inc.
Project Reference:	Wilkins RV - SMP Semi-Annual Groundwater Sampling
Lab Project ID:	134478
SDG #:	4478-01
Matrix:	Groundwater

Volatile Organics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	<u>Date Analyzed</u>
Chloroform		<2.00	ug/L		11/22/2013
Chloromethane		<2.00	ug/L		11/22/2013
cis-1,2-Dichloroet	chene	<2.00	ug/L		11/22/2013
cis-1,3-Dichlorop	ropene	<2.00	ug/L		11/22/2013
Cyclohexane		<10.0	ug/L		11/22/2013
Dibromochlorom	ethane	<2.00	ug/L		11/22/2013
Dichlorodifluoror	nethane	<2.00	ug/L		11/22/2013
Ethylbenzene		<2.00	ug/L		11/22/2013
Freon 113		<2.00	ug/L		11/22/2013
Isopropylbenzene	9	<2.00	ug/L		11/22/2013
m,p-Xylene		<2.00	ug/L		11/22/2013
Methyl acetate		<2.00	ug/L		11/22/2013
Methyl tert-butyl	Ether	<2.00	ug/L		11/22/2013
Methylcyclohexa	ne	<2.00	ug/L		11/22/2013
Methylene chlorid	le	<5.00	ug/L		11/22/2013
o-Xylene		<2.00	ug/L		11/22/2013
Styrene		<5.00	ug/L		11/22/2013
Tetrachloroethen	e	<2.00	ug/L		11/22/2013
Toluene		<2.00	ug/L		11/22/2013
trans-1,2-Dichlor	oethene	<2.00	ug/L		11/22/2013
trans-1,3-Dichlor	opropene	<2.00	ug/L		11/22/2013
Trichloroethene		<2.00	ug/L		11/22/2013
Trichlorofluorom	ethane	<2.00	ug/L		11/22/2013
Vinyl chloride		<2.00	ug/L		11/22/2013
Method Reference(s Data File: OC Batch ID:	): EPA 8260C EPA 5030 x09906.D yoaw112213				

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

1

QC Number:



**Client:** 

Lu Engineers, Inc.

**Project Reference:** 

Wilkins RV - SMP Semi-Annual Groundwater Sampling

Lab Project ID:

134478

## PARADIGM

## **QC Report for Laboratory Control Sample**

SDG #:	4478-01							
Matrix:	Groundwater							
Volatile Organics								
		<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	<u>LCS %</u>	<u>% Rec</u>	<u>LCS</u>	<u>Date</u>
Analyte		Added	<u>Units</u>	<u>Result</u>	Recovery	Limits	<u>Outliers</u>	Analyzed
1,1,1-Trichloroethane		50.0	ug/L	59.8	120	73.8 - 118.4	*	11/22/2013
1,1,2,2-Tetrachloroethane		50.0	ug/L	52.8	106	80.8 - 117.8		11/22/2013
1,1,2-Trichloroethane		50.0	ug/L	49.8	99.6	77.3 - 109.8		11/22/2013
1,1-Dichloroethane		50.0	ug/L	53.9	108	74.6 - 112.3		11/22/2013
1,1-Dichloroethene		50.0	ug/L	58.1	116	66.1 - 117.1		11/22/2013
1,2-Dichlorobenzene		50.0	ug/L	51.9	104	79.5 - 108.2		11/22/2013
1,2-Dichloroethane		50.0	ug/L	58.6	117	71.3 - 120.3		11/22/2013
1,2-Dichloropropane		50.0	ug/L	53.3	107	78.3 - 105.9	¥	11/22/2013
1,3-Dichlorobenzene		50.0	ug/L	51.9	104	79.7 - 106.2		11/22/2013
1,4-Dichlorobenzene		50.0	ug/L	51.5	103	77.8 - 103.4		11/22/2013
Benzene		50.0	ug/L	53.8	108	83.8 - 109.8		11/22/2013

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Monday, December 02, 2013

Bromoform

50.0

50.0

ug/L

117

50.0 50.0

ug/L

58,4 55.0 42.0 61.6

123

72.3 - 123.6

11/22/2013 11/22/2013 11/22/2013 11/22/2013

ug/L ug/L

110 84.0

80.7 -76.2 -41.4 -

119.8 121 156.7

Bromodichloromethane

Bromomethane

**Carbon Tetrachloride** 



**Project Reference:** 

Wilkins RV - SMP Semi-Annual Groundwater Sampling

Client:

Lu Engineers, Inc.

## PARADIGM

## **OC Report for Laboratory Control Sample**

Lab Project ID:	134478						
SDG #:	4478-01						
Matrix:	Groundwater						
Volatile Organics					, a desta de la consta de la const		
		<u>Spike</u>	<u>Spike</u>	LCS	LCS %	<u>% Rec</u>	<u>LCS</u>
Analyte		Added	<u>Units</u>	Result	<u>Recovery</u>	<u>Limits</u>	<u>Outlier</u>
Chlorobenzene		50.0	ug/L	51,3	103	80.8 - 104.3	
Chloroethane		50.0	ug/L	55.5	111	77.6 - 121.5	
Chloroform		50.0	ug/L	56.1	112	76.6 - 111.1	*
Chloromethane		50.0	ug/L	59.8	120	80.6 - 135.8	

(							
	<u>Spike</u>	<u>Spike</u>	LCS	LCS %	<u>% Rec</u>	<u>LCS</u>	Date
Analyte	Added	<u>Units</u>	Result	Recovery	Limits	<b>Outliers</b>	Analyzed
Chlorobenzene	50.0	ug/L	51.3	103	80.8 - 104.3		11/22/2013
Chloroethane	50.0	ug/L	55.5	111	77.6 - 121.5		11/22/2013
Chloroform	50.0	ug/L	56.1	112	76.6 - 111.1	*	11/22/2013
Chloromethane	50.0	ug/L	59.8	120	80.6 - 135.8		11/22/2013
cis-1,3-Dichloropropene	50.0	ug/L	56.1	112	85.2 - 114.3		11/22/2013
Dibromochloromethane	50.0	ug/L	56.9	114	80.3 - 125.5		11/22/2013
Ethylbenzene	50.0	ug/L	54.3	109	82.4 - 107.9	*	11/22/2013
Methylene chloride	50.0	ug/L	55.8	112	75.7 - 114.7		11/22/2013
Tetrachloroethene	50.0	ug/L	53.9	108	74.9 - 119.8		11/22/2013
Toluene	50.0	ug/L	53.8	108	81.6 - 110.3		11/22/2013
trans-1,2-Dichloroethene	50.0	ug/L	58.1	116	75.3 - 114.5	*	11/22/2013
trans-1,3-Dichloropropene	50.0	ug/L	58.3	117	76.5 - 124.2		11/22/2013
Trichloroethene	50.0	ug/L	54.4	109	81.7 - 111.6		11/22/2013
Trichlorofluoromethane	50.0	ug/L	61.1	122	69.1 - 131		11/22/2013
Vinyl chloride	50.0	ug/L	53.2	106	63.8 - 132.8		11/22/2013

PAR,	ADIGM							6.25	i 25
	<u>OC R</u>	eport for La	boratory Co	ntrol Sam	ple			22	age 23 c
Client:	<u>Lu Engineers, Inc.</u>							D	Pa
<b>Project Reference:</b>	Wilkins RV - SMP Semi-Annu	ual Groundwa	ter Sampling						
Lab Project ID:	134478								
SDG #:	4478-01								
Matrix:	Groundwater						And and a second se		
Volatile Organics									
		<u>Spike</u>	<u>Spike</u>	<u>LCS</u>	LCS %	<u>% Rec</u>	LCS	Date	
Analyte		Added	Units	Kesult	Kecovery	<u>situit</u>	<u>ounis</u>	нлатуден	
Method Reference(s):	EPA 8260C דיטא בחסח								
Data File:	x09905.D								
QC Number:	1								
Several marginal QC ou	tliers; affected compounds were not	t detected in sam	ıples.						
							÷		
This report is part of a mi	ultipage document and should only b	be evaluated in it	s entirety. The (	hain of Custo	dy provides additi	onal sample info	rmation, includit	đđ	
รณาประการระการการระการ	มันการเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็นเป็น	بہ دیا ہے۔							

Report Prepared Monday, December 02, 2013

Standard 5 day	Turnaround Time Availability contingent upon lab a	0	4 6 5 °	4 11/21/13 12:10 2	3 11/21/13 13:25 X	111/21/13 11:30 X		WILKINS KV - SMP Semi-annus Groundwarter	PROJECT REFERENCE
Basic EDD NYSDEC EDD	Report Supplements pproval; additional fees may apply.		TRIP BLANK_11-	MW-13-11-21-13	MW-06_11-21-13	MW-JCL-02_11-21-13	SAMPLE IDENTIFIER	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	179 Lake Avenue, CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIENT: CLIEN
Relinquished By	Eve Detweiler Sua k			¥ 3 2 /	3 2	WG 3 2 1	×-z+>z wmoon TO zmwzcz wzmz->+zon TCL VOGS 8260 FC, MA	WA - Water DW - Drinking Water WG - Groundwater WW - Wastewater AMW - Wastewater AMAL	Rochester, NY 14608 Office (585) 647-2530 Fax (585) HAIN OF CUSTODY INVOICE 1 Surve 20 DIDRESS: ZIP: VIS34 OFFIC: ATTN:
terTime 3 (532 terTime 3 (532 terTime	Ushtan 11-21-13	en ulziliz @ 1528					REMARKS	SO - Soil SD - Solid WP - Wip SL - Sludge PT - Paint CK - Cau	647-3311 0: 134478 134478 Quotation #: MS67 Email:
		lived	2	°0 c 1 ∧ 1	0	00-	PARADIGM LAB SAMPLE NUMBER	ulk AR - Air	Page 24 of 25





## Chain of Custody Supplement

Client:	Le Eng	Completed by:	\$5L
Lab Project ID:	134478	Date:	11/20/13
	Sample Condition Per NELAC/ELAP 21	on Requirements 10/241/242/243/244	
N Condition	ELAC compliance with the sample Yes	condition requirements upo No	n receipt N/A
Container Type Comments	X 13, ZV		
Transferred to method- compliant container			
Headspace (<1 mL) Comments	X VoA		
Preservation Comments	×		
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
<b>Temperature</b> Comments	5°C iud delived	by hand on 1	X Metals
Sufficient Sample Quantity Comments			



Client:	<u>Lu Engineers,</u>	<u>Inc.</u>					
Project Reference:	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-JCL-02_	06-19-14					
Lab Sample ID:	142587-01			Date Sample	<b>l:</b> 6/1	9/2014	
Matrix:	Groundwate	r		Date Receive	<b>Received:</b> 6/19/2014		
<u>Metals</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	
Iron			4.63	mg/L		6/23/2014	
Manganese			2.19	mg/L		6/23/2014	
Method Referen	nce(s): EPA 6010	С					
Data File:	EPA 3005 062314b						



Client:	<u>Lu Engineers, Inc.</u>						
Project Reference:	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-JCL-02_06-19-14						
Lab Sample ID:	142587-01		Date Sampled:	6/19/2014			
Matrix:	Groundwater		Date Received:	6/19/2014			
<b>Volatile Organics</b>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier Date Analyzed			
1,1,1-Trichlor	oethane	< 100	ug/L	6/23/2014			
1,1,2,2-Tetrac	hloroethane	< 100	ug/L	6/23/2014			
1,1,2-Trichlor	oethane	< 100	ug/L	6/23/2014			
1,1-Dichloroet	thane	< 100	ug/L	6/23/2014			
1,1-Dichloroet	thene	< 100	ug/L	6/23/2014			
1,2,3-Trichlor	obenzene	< 250	ug/L	6/23/2014			
1,2,4-Trichlor	obenzene	< 250	ug/L	6/23/2014			
1,2-Dibromo-3-Chloropropane		< 500	ug/L	6/23/2014			
1,2-Dibromoe	thane	< 100	ug/L	6/23/2014			
1,2-Dichlorob	enzene	< 100	ug/L	6/23/2014			
1,2-Dichloroet	thane	< 100	ug/L	6/23/2014			
1,2-Dichlorop	ropane	< 100	ug/L	6/23/2014			
1,3-Dichlorob	enzene	< 100	ug/L	6/23/2014			
1,4-Dichlorob	enzene	< 100	ug/L	6/23/2014			
1,4-dioxane		< 1000	ug/L	6/23/2014			
2-Butanone		< 500	ug/L	6/23/2014			
2-Hexanone		< 250	ug/L	6/23/2014			
4-Methyl-2-pe	entanone	< 250	ug/L	6/23/2014			
Acetone		< 500	ug/L	6/23/2014			
Benzene		< 35.0	ug/L	6/23/2014			
Bromochloron	nethane	< 250	ug/L	6/23/2014			
Bromodichlor	omethane	< 100	ug/L	6/23/2014			
Bromoform		< 250	ug/L	6/23/2014			
Bromomethan	ie	< 100	ug/L	6/23/2014			
Carbon disulfi	de	< 100	ug/L	6/23/2014			
Carbon Tetrac	hloride	< 100	ug/L	6/23/2014			
Chlorobenzen	е	< 100	ug/L	6/23/2014			

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

PARADIGM PARADIGM



Client:	<u>Lu Er</u>	igineers, Inc.						
Project Reference:	Wilki	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MV	V-JCL-02_06-19-14						
Lab Sample ID:	142	2587-01		Date Sampled:	6/19/2014			
Matrix:	Gro	oundwater		Date Received:	6/19/2014			
Chloroetha	ne		< 100	ug/L	6/23/2014			
Chloroform	L		< 100	ug/L	6/23/2014			
Chlorometh	nane		< 100	ug/L	6/23/2014			
cis-1,2-Dicł	loroethene	9	3030	ug/L	6/23/2014			
cis-1,3-Dich	loroprope	ne	< 100	ug/L	6/23/2014			
Cyclohexan	e		< 500	ug/L	6/23/2014			
Dibromoch	loromethai	ne	< 100	ug/L	6/23/2014			
Dichlorodif	luorometh	ane	< 100	ug/L	6/23/2014			
Ethylbenze	ne		< 100	ug/L	6/23/2014			
Freon 113			< 100	ug/L	6/23/2014			
Isopropylbe	enzene		< 100	ug/L	6/23/2014			
m,p-Xylene			< 100	ug/L	6/23/2014			
Methyl acet	ate		< 100	ug/L	6/23/2014			
Methyl tert	-butyl Ethe	r	< 100	ug/L	6/23/2014			
Methylcyclo	ohexane		< 100	ug/L	6/23/2014			
Methylene	chloride		< 250	ug/L	6/23/2014			
o-Xylene			< 100	ug/L	6/23/2014			
Styrene			< 250	ug/L	6/23/2014			
Tetrachloro	oethene		1910	ug/L	6/23/2014			
Toluene			< 100	ug/L	6/23/2014			
trans-1,2-D	ichloroeth	ene	< 100	ug/L	6/23/2014			
trans-1,3-D	ichloropro	pene	< 100	ug/L	6/23/2014			
Trichloroet	hene		2770	ug/L	6/23/2014			
Trichloroflu	uorometha	ne	< 100	ug/L	6/23/2014			
Vinyl chlori	de		< 100	ug/L	6/23/2014			
Method Refer	rence(s):	EPA 8260C EPA 5030						
Data File:		x143/0.D						

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

PARADIGM PARADIGM



Client:	<u>Lu Engineers, Inc.</u>						
Project Reference:	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-03_06-19-14						
Lab Sample ID:	142587-02		Date Sampled	6/1	9/2014		
Matrix:	Groundwater Date Received: 6/19/			/2014			
<u>Metals</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Q	ualifier	Date Analyzed		
Iron		0.789	mg/L		6/23/2014		
Manganese		3.35	mg/L		6/23/2014		
Method Reference	re(s): EPA 6010C						
	EPA 3005						
Data File:	062314b						



Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV Semi-Annual Gro	oundwater Samp	ling		
Sample Identifier:	MW-03_06-19-14				
Lab Sample ID:	142587-02		Date Sampled:	6/19	9/2014
Matrix:	Groundwater		Date Received:	6/19	9/2014
Volatile Organics	1				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-Trichlo	roethane	< 200	ug/L		6/23/2014
1,1,2,2-Tetra	chloroethane	< 200	ug/L		6/23/2014
1,1,2-Trichlo	roethane	< 200	ug/L		6/23/2014
1,1-Dichloroe	ethane	< 200	ug/L		6/23/2014
1,1-Dichloroe	ethene	< 200	ug/L		6/23/2014
1,2,3-Trichlo	robenzene	< 500	ug/L		6/23/2014
1,2,4-Trichlo	robenzene	< 500	ug/L		6/23/2014
1,2-Dibromo	-3-Chloropropane	< 1000	ug/L		6/23/2014
1,2-Dibromo	ethane	< 200	ug/L		6/23/2014
1,2-Dichlorol	benzene	< 200	ug/L		6/23/2014
1,2-Dichloroe	ethane	< 200	ug/L		6/23/2014
1,2-Dichlorop	propane	< 200	ug/L		6/23/2014
1,3-Dichlorol	benzene	< 200	ug/L		6/23/2014
1,4-Dichlorol	benzene	< 200	ug/L		6/23/2014
1,4-dioxane		< 2000	ug/L		6/23/2014
2-Butanone		< 1000	ug/L		6/23/2014
2-Hexanone		< 500	ug/L		6/23/2014
4-Methyl-2-p	entanone	< 500	ug/L		6/23/2014
Acetone		< 1000	ug/L		6/23/2014
Benzene		< 70.0	ug/L		6/23/2014
Bromochloro	omethane	< 500	ug/L		6/23/2014
Bromodichlo	romethane	< 200	ug/L		6/23/2014
Bromoform		< 500	ug/L		6/23/2014
Bromometha	ne	< 200	ug/L		6/23/2014
Carbon disulf	fide	< 200	ug/L		6/23/2014
Carbon Tetra	chloride	< 200	ug/L		6/23/2014
Chlorobenzer	ne	< 200	ug/L		6/23/2014



Client:	<u>Lu En</u>	<u>gineers, Inc.</u>						
Project Reference:	Wilkiı	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier: Lab Sample ID:	MW 142	7-03_06-19-14 587-02		Date Sampled:	6/19/2014			
Matrix:	Gro	undwater		Date Received:	6/19/2014			
Chloroethan	e		< 200	ug/L	6/23/2014			
Chloroform			< 200	ug/L	6/23/2014			
Chlorometha	ane		< 200	ug/L	6/23/2014			
cis-1,2-Dichl	oroethene		6150	ug/L	6/23/2014			
cis-1,3-Dichl	oroproper	ie	< 200	ug/L	6/23/2014			
Cyclohexane			< 1000	ug/L	6/23/2014			
Dibromochle	oromethan	e	< 200	ug/L	6/23/2014			
Dichlorodifl	uorometha	ine	< 200	ug/L	6/23/2014			
Ethylbenzen	e		< 200	ug/L	6/23/2014			
Freon 113			< 200	ug/L	6/23/2014			
Isopropylbe	nzene		< 200	ug/L	6/23/2014			
m,p-Xylene			< 200	ug/L	6/23/2014			
Methyl aceta	ite		< 200	ug/L	6/23/2014			
Methyl tert-l	outyl Ethe		< 200	ug/L	6/23/2014			
Methylcyclo	hexane		< 200	ug/L	6/23/2014			
Methylene c	hloride		< 500	ug/L	6/23/2014			
o-Xylene			< 200	ug/L	6/23/2014			
Styrene			< 500	ug/L	6/23/2014			
Tetrachloroe	ethene		7530	ug/L	6/23/2014			
Toluene			< 200	ug/L	6/23/2014			
trans-1,2-Di	chloroethe	ne	< 200	ug/L	6/23/2014			
trans-1,3-Di	chloroprop	bene	< 200	ug/L	6/23/2014			
Trichloroeth	ene		6930	ug/L	6/23/2014			
Trichloroflu	oromethar	ie	< 200	ug/L	6/23/2014			
Vinyl chloric	le		< 200	ug/L	6/23/2014			
Method Refere	ence(s):	EPA 8260C EPA 5030						
Data File:		x14377.D						



Client:	<u>Lu Engineers, Inc.</u>						
Project Reference:	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-13_06-19-14						
Lab Sample ID:	142587-03		Date Sampled:	6/1	9/2014		
Matrix:	Groundwater Date Received: 6/19/2			9/2014			
<u>Metals</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qu	alifier	Date Analyzed		
Iron		1.39	mg/L		6/23/2014		
Manganese		0.574	mg/L		6/23/2014		
Method Referenc	<b>e(s):</b> EPA 6010C						
	EPA 3005						
Data File:	062314b						



Client:	<u>Lu Engineers, Inc.</u>							
Project Reference:	Wilkins RV Semi-Annual Gro	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-13_06-19-14							
Lab Sample ID:	142587-03		Date Sampled:	6/19	9/2014			
Matrix:	Groundwater		Date Received:	6/19	9/2014			
Volatile Organic	<u>.</u>							
Analyte		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed			
1,1,1-Trichle	oroethane	< 2.00	ug/L		6/23/2014			
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L		6/23/2014			
1,1,2-Trichle	oroethane	< 2.00	ug/L		6/23/2014			
1,1-Dichloro	bethane	< 2.00	ug/L		6/23/2014			
1,1-Dichloro	bethene	< 2.00	ug/L		6/23/2014			
1,2,3-Trichle	orobenzene	< 5.00	ug/L		6/23/2014			
1,2,4-Trichle	orobenzene	< 5.00	ug/L		6/23/2014			
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L		6/23/2014			
1,2-Dibromoethane		< 2.00	ug/L		6/23/2014			
1,2-Dichloro	obenzene	< 2.00	ug/L		6/23/2014			
1,2-Dichloro	bethane	< 2.00	ug/L		6/23/2014			
1,2-Dichloro	ppropane	< 2.00	ug/L		6/23/2014			
1,3-Dichloro	obenzene	< 2.00	ug/L		6/23/2014			
1,4-Dichloro	bbenzene	< 2.00	ug/L		6/23/2014			
1,4-dioxane		< 20.0	ug/L		6/23/2014			
2-Butanone		< 10.0	ug/L		6/23/2014			
2-Hexanone		< 5.00	ug/L		6/23/2014			
4-Methyl-2-	pentanone	< 5.00	ug/L		6/23/2014			
Acetone		< 10.0	ug/L		6/23/2014			
Benzene		< 0.700	ug/L		6/23/2014			
Bromochlor	omethane	< 5.00	ug/L		6/23/2014			
Bromodichl	oromethane	< 2.00	ug/L		6/23/2014			
Bromoform		< 5.00	ug/L		6/23/2014			
Bromometh	ane	< 2.00	ug/L		6/23/2014			
Carbon disu	lfide	< 2.00	ug/L		6/23/2014			
Carbon Tetr	rachloride	< 2.00	ug/L		6/23/2014			
Chlorobenze	ene	< 2.00	ug/L		6/23/2014			



Client:	<u>Lu Er</u>	igineers, Inc.						
Project Reference:	Wilki	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MV	V-13_06-19-14						
Lab Sample ID:	142	2587-03		Date Sampled:	6/19/2014			
Matrix:	Gro	oundwater		Date Received:	6/19/2014			
Chloroethan	е		< 2.00	ug/L	6/23/2014			
Chloroform			< 2.00	ug/L	6/23/2014			
Chlorometha	ane		< 2.00	ug/L	6/23/2014			
cis-1,2-Dichl	oroethene	2	< 2.00	ug/L	6/23/2014			
cis-1,3-Dichl	oroprope	ne	< 2.00	ug/L	6/23/2014			
Cyclohexane	<u>.</u>		< 10.0	ug/L	6/23/2014			
Dibromochlo	oromethai	ie	< 2.00	ug/L	6/23/2014			
Dichlorodiflu	uorometha	ane	< 2.00	ug/L	6/23/2014			
Ethylbenzen	e		< 2.00	ug/L	6/23/2014			
Freon 113			< 2.00	ug/L	6/23/2014			
Isopropylbe	nzene		< 2.00	ug/L	6/23/2014			
m,p-Xylene			< 2.00	ug/L	6/23/2014			
Methyl aceta	ite		< 2.00	ug/L	6/23/2014			
Methyl tert-l	butyl Ethe	r	< 2.00	ug/L	6/23/2014			
Methylcyclo	hexane		< 2.00	ug/L	6/23/2014			
Methylene cl	hloride		< 5.00	ug/L	6/23/2014			
o-Xylene			< 2.00	ug/L	6/23/2014			
Styrene			< 5.00	ug/L	6/23/2014			
Tetrachloroe	ethene		< 2.00	ug/L	6/23/2014			
Toluene			< 2.00	ug/L	6/23/2014			
trans-1,2-Di	chloroethe	ene	< 2.00	ug/L	6/23/2014			
trans-1,3-Di	chloropro	pene	< 2.00	ug/L	6/23/2014			
Trichloroeth	iene		< 2.00	ug/L	6/23/2014			
Trichloroflu	orometha	ne	< 2.00	ug/L	6/23/2014			
Vinyl chlorid	le		< 2.00	ug/L	6/23/2014			
Method Refere	ence(s):	EPA 8260C EPA 5030						
Data File:		x14376.D						



Client:	<u>Lu Engineers, Inc.</u>						
Project Reference:	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-06_06-19-14						
Lab Sample ID:	142587-04		Date Sampl	ed: 6/19	9/2014		
Matrix:	Groundwater Date Received: 6/1				9/2014		
<u>Metals</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed		
Iron		0.102	mg/L	D	6/23/2014		
Manganese		0.160	mg/L		6/23/2014		
Method Referenc	<b>e(s):</b> EPA 6010C						
	EPA 3005						
Data File:	062314b						



Client:	<u>Lu Engineers, Inc.</u>							
Project Reference:	Wilkins RV Semi-Annual Gro	Wilkins RV Semi-Annual Groundwater Sampling						
Sample Identifier:	MW-06_06-19-14							
Lab Sample ID:	142587-04		Date Sampled:	6/19	9/2014			
Matrix:	Groundwater		Date Received:	6/19	9/2014			
Volatile Organic	<u>'S</u>							
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed			
1,1,1-Trichl	oroethane	< 2.00	ug/L		6/23/2014			
1,1,2,2-Tetr	achloroethane	< 2.00	ug/L		6/23/2014			
1,1,2-Trichl	oroethane	< 2.00	ug/L		6/23/2014			
1,1-Dichloro	bethane	< 2.00	ug/L		6/23/2014			
1,1-Dichloro	bethene	< 2.00	ug/L		6/23/2014			
1,2,3-Trichl	orobenzene	< 5.00	ug/L		6/23/2014			
1,2,4-Trichl	orobenzene	< 5.00	ug/L		6/23/2014			
1,2-Dibrom	o-3-Chloropropane	< 10.0	ug/L		6/23/2014			
1,2-Dibrom	oethane	< 2.00	ug/L		6/23/2014			
1,2-Dichloro	obenzene	< 2.00	ug/L		6/23/2014			
1,2-Dichloro	bethane	< 2.00	ug/L		6/23/2014			
1,2-Dichloro	opropane	< 2.00	ug/L		6/23/2014			
1,3-Dichloro	obenzene	< 2.00	ug/L		6/23/2014			
1,4-Dichloro	obenzene	< 2.00	ug/L		6/23/2014			
1,4-dioxane		< 20.0	ug/L		6/23/2014			
2-Butanone		< 10.0	ug/L		6/23/2014			
2-Hexanone	•	< 5.00	ug/L		6/23/2014			
4-Methyl-2-	pentanone	< 5.00	ug/L		6/23/2014			
Acetone		< 10.0	ug/L		6/23/2014			
Benzene		< 0.700	ug/L		6/23/2014			
Bromochlor	omethane	< 5.00	ug/L		6/23/2014			
Bromodichl	oromethane	< 2.00	ug/L		6/23/2014			
Bromoform		< 5.00	ug/L		6/23/2014			
Bromometh	ane	< 2.00	ug/L		6/23/2014			
Carbon disu	lfide	< 2.00	ug/L		6/23/2014			
Carbon Tetr	achloride	< 2.00	ug/L		6/23/2014			
Chlorobenze	ene	< 2.00	ug/L		6/23/2014			



Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV Semi-Annua	l Groundwater Samp	oling	
Sample Identifier: Lab Sample ID:	MW-06_06-19-14 142587-04		Date Sampled:	6/19/2014
Matrix:	Groundwater		Date Received:	6/19/2014
Chloroethane		< 2.00	ug/L	6/23/2014
Chloroform		< 2.00	ug/L	6/23/2014
Chloromethan	e	< 2.00	ug/L	6/23/2014
cis-1,2-Dichlo	roethene	< 2.00	ug/L	6/23/2014
cis-1,3-Dichlo	ropropene	< 2.00	ug/L	6/23/2014
Cyclohexane		< 10.0	ug/L	6/23/2014
Dibromochlor	omethane	< 2.00	ug/L	6/23/2014
Dichlorodifluc	romethane	4.01	ug/L	6/23/2014
Ethylbenzene		< 2.00	ug/L	6/23/2014
Freon 113		< 2.00	ug/L	6/23/2014
Isopropylbenz	ene	< 2.00	ug/L	6/23/2014
m,p-Xylene		< 2.00	ug/L	6/23/2014
Methyl acetate		< 2.00	ug/L	6/23/2014
Methyl tert-butyl Ether		< 2.00	ug/L	6/23/2014
Methylcyclohexane		< 2.00	ug/L	6/23/2014
Methylene chloride		< 5.00	ug/L	6/23/2014
o-Xylene		< 2.00	ug/L	6/23/2014
Styrene		< 5.00	ug/L	6/23/2014
Tetrachloroethene		9.01	ug/L	6/23/2014
Toluene		< 2.00	ug/L	6/23/2014
trans-1,2-Dichloroethene		< 2.00	ug/L	6/23/2014
trans-1,3-Dichloropropene		< 2.00	ug/L	6/23/2014
Trichloroethene		1.47	ug/L	6/23/2014
Trichlorofluoromethane		< 2.00	ug/L	6/23/2014
Vinyl chloride		< 2.00	ug/L	6/23/2014
Method Reference Data File:	ce(s): EPA 8260C EPA 5030 x14375.D			



Client:	<u>Lu Engineers, Inc.</u>			
Project Reference:	Wilkins RV Semi-Annual Gr	oundwater Samp	ling	
Sample Identifier:	Trip Blank T-511			
Lab Sample ID:	142587-05		Date Sampled:	6/19/2014
Matrix:	Water		Date Received:	6/19/2014
<b>Volatile Organics</b>				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier Date Analyzed
1,1,1-Trichloro	ethane	< 2.00	ug/L	6/23/2014
1,1,2,2-Tetrach	loroethane	< 2.00	ug/L	6/23/2014
1,1,2-Trichloro	ethane	< 2.00	ug/L	6/23/2014
1,1-Dichloroetl	hane	< 2.00	ug/L	6/23/2014
1,1-Dichloroetl	hene	< 2.00	ug/L	6/23/2014
1,2,3-Trichloro	benzene	< 5.00	ug/L	6/23/2014
1,2,4-Trichloro	benzene	< 5.00	ug/L	6/23/2014
1,2-Dibromo-3-Chloropropane		< 10.0	ug/L	6/23/2014
1,2-Dibromoethane		< 2.00	ug/L	6/23/2014
1,2-Dichlorobe	nzene	< 2.00	ug/L	6/23/2014
1,2-Dichloroetl	hane	< 2.00	ug/L	6/23/2014
1,2-Dichloropr	opane	< 2.00	ug/L	6/23/2014
1,3-Dichlorobe	nzene	< 2.00	ug/L	6/23/2014
1,4-Dichlorobenzene		< 2.00	ug/L	6/23/2014
1,4-dioxane		< 20.0	ug/L	6/23/2014
2-Butanone		< 10.0	ug/L	6/23/2014
2-Hexanone		< 5.00	ug/L	6/23/2014
4-Methyl-2-per	ntanone	< 5.00	ug/L	6/23/2014
Acetone		< 10.0	ug/L	6/23/2014
Benzene		< 0.700	ug/L	6/23/2014
Bromochlorom	ethane	< 5.00	ug/L	6/23/2014
Bromodichloro	omethane	< 2.00	ug/L	6/23/2014
Bromoform		< 5.00	ug/L	6/23/2014
Bromomethane	e	< 2.00	ug/L	6/23/2014
Carbon disulfid	le	< 2.00	ug/L	6/23/2014
Carbon Tetrach	ıloride	< 2.00	ug/L	6/23/2014
Chlorobenzene	9	< 2.00	ug/L	6/23/2014



Client:	<u>Lu En</u>	<u>gineers, Inc.</u>			
Project Reference:	Wilki	ns RV Semi-Annual Groundwater Sampling			
Sample Identifier: Lab Sample ID: Matrix:	Trij 142 Wa	o Blank T-511 587-05 ter		Date Sampled: Date Received:	6/19/2014 6/19/2014
Chloroetha	ne		< 2.00	ug/L	6/23/2014
Chloroforn	1		< 2.00	ug/L	6/23/2014
Chloromet	hane		< 2.00	ug/L	6/23/2014
cis-1,2-Dic	hloroethene	!	< 2.00	ug/L	6/23/2014
cis-1,3-Dic	hloropropei	ie	< 2.00	ug/L	6/23/2014
Cyclohexar	ie		< 10.0	ug/L	6/23/2014
Dibromoch	loromethar	e	< 2.00	ug/L	6/23/2014
Dichlorodi	fluorometha	ine	< 2.00	ug/L	6/23/2014
Ethylbenze	ene		< 2.00	ug/L	6/23/2014
Freon 113			< 2.00	ug/L	6/23/2014
Isopropylbenzene		< 2.00	ug/L	6/23/2014	
m,p-Xylene		< 2.00	ug/L	6/23/2014	
Methyl acetate		< 2.00	ug/L	6/23/2014	
Methyl tert-butyl Ether		< 2.00	ug/L	6/23/2014	
Methylcyclohexane		< 2.00	ug/L	6/23/2014	
Methylene chloride		< 5.00	ug/L	6/23/2014	
o-Xylene			< 2.00	ug/L	6/23/2014
Styrene		< 5.00	ug/L	6/23/2014	
Tetrachloroethene		< 2.00	ug/L	6/23/2014	
Toluene		< 2.00	ug/L	6/23/2014	
trans-1,2-Dichloroethene			< 2.00	ug/L	6/23/2014
trans-1,3-Dichloropropene		< 2.00	ug/L	6/23/2014	
Trichloroethene		< 2.00	ug/L	6/23/2014	
Trichlorofluoromethane		< 2.00	ug/L	6/23/2014	
Vinyl chlor	Vinyl chloride		< 2.00	ug/L	6/23/2014
Method Refe Data File:	rence(s):	EPA 8260C EPA 5030 x14374.D			



## **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Availability contingent upon lab approv       Availability contingent upon lab approv       Standard 5 day     Batch QC       Rush 3 day     Category A       Rush 2 day     Category B       Rush 1 day     Other       please indicate:     Other	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE COLLECTED MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLI
Image: second component second component second	MW-JCL-02_06-19-14 MW-03_06-19-14 MW-06_06-19-14 MW-06_06-19-14 TRIP BLANK T-SII Jer Label Jer Label	179 Lake Avenue, Roci INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: INI: I
piled By navisjed By elved By elved @ Lab By	$ \begin{array}{c}                                     $	AIN OF CUSTODY AIN OF CUSTODY INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO INVO
6/19/14 PateFlime DateFlime Col19/14 3:52 DateFlime Col19/14 1822 DateFlime JateFlime DateFlime	St ind b received Ch	ICE TO: ICE
P.I.F.	9/14 @ 1615	d WP-Wipe OL-OII the CK-Caulk AR-AIT NUMBER
2012



### Chain of Custody Supplement

Client:	Ly Eng	Completed by:	millyvil
Lab Project ID:	142587	Date:	Q Q 1Q
	Sample Condit Per NELAC/ELAP :	<i>ion Requirements</i> 210/241/242/243/244	. /
Condition	NELAC compliance with the sampl Yes	e condition requirements upo No	n receipt N/A
<b>Container Type</b> Comme	ents		
Transferred to method-			
Compliant container Headspace (<1 mL) Comme	ents		
Preservation Comme	ents		
<b>Chlorine Absent</b> (< <b>0.10 ppm per test stri</b> j Comme	p) ents		
Holding Time	ents		
<b>Temperature</b> Comme	ents5°	al hand delived	) recud 6/19/14 @ 1615hz
Sufficient Sample Quant	ity		

# **2013 IMPROVEMENTS – ANALYTICAL DATA**

SOIL SAMPLE RESULTS (RETAINING WALL TRENCH & WATERLINE TRENCH)



### Analytical Report For

## Lu Engineers, Inc.

For Lab Project ID

### 133745

Referencing

Wilkins RV, 50185-02

*Prepared* Wednesday, October 02, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958



**Lab Project ID:** 133745

Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV, 50185-02				
Sample Identifier: Lab Sample ID: Matrix:	Ret. Wall soil 133745-01 Soil	<b>Date/Time Sampled:</b> 9/30/2013 12:20 <b>Date Received:</b> 9/30/2013			
Volatile Organic	2				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qualifier	<u>Date/Time Analyzed</u>	
1,1,1-Trichle	proethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,1,2,2-Tetra	achloroethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,1,2-Trichlo	proethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,1-Dichloro	ethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,1-Dichloro	ethene	< 8.37	ug/Kg	10/1/2013 19:50	
1,2,3-Trichlo	orobenzene	< 20.9	ug/Kg	10/1/2013 19:50	
1,2,4-Trichlo	orobenzene	< 20.9	ug/Kg	10/1/2013 19:50	
1,2-Dibromo	o-3-Chloropropane	< 41.8	ug/Kg	10/1/2013 19:50	
1,2-Dibromo	oethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,2-Dichloro	benzene	< 8.37	ug/Kg	10/1/2013 19:50	
1,2-Dichloro	ethane	< 8.37	ug/Kg	10/1/2013 19:50	
1,2-Dichloro	propane	< 8.37	ug/Kg	10/1/2013 19:50	
1,3-Dichloro	benzene	< 8.37	ug/Kg	10/1/2013 19:50	
1,4-Dichloro	benzene	< 8.37	ug/Kg	10/1/2013 19:50	
1,4-dioxane		< 83.7	ug/Kg	10/1/2013 19:50	
2-Butanone		< 41.8	ug/Kg	10/1/2013 19:50	
2-Hexanone		< 20.9	ug/Kg	10/1/2013 19:50	
4-Methyl-2-	pentanone	< 20.9	ug/Kg	10/1/2013 19:50	
Acetone		< 41.8	ug/Kg	10/1/2013 19:50	
Benzene		< 8.37	ug/Kg	10/1/2013 19:50	
Bromochlor	omethane	< 20.9	ug/Kg	10/1/2013 19:50	
Bromodichle	oromethane	< 8.37	ug/Kg	10/1/2013 19:50	
Bromoform		< 20.9	ug/Kg	10/1/2013 19:50	
Bromometha	ane	< 8.37	ug/Kg	10/1/2013 19:50	
Carbon disu	lfide	< 8.37	ug/Kg	10/1/2013 19:50	
Carbon Tetra	achloride	< 8.37	ug/Kg	10/1/2013 19:50	
Chlorobenze	ene	< 8.37	ug/Kg	10/1/2013 19:50	
Chloroethan	e	< 8.37	ug/Kg	10/1/2013 19:50	

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



#### **Lab Project ID:** 133745

Client:	<u>Lu Engineers, In</u>	<u>IC.</u>		
Project Reference:	Wilkins RV, 5018			
Sample Identifier: Lab Sample ID: Matrix:	Ret. Wall soil 133745-01 Soil		Date/Time Sampl Date Received:	ed: 9/30/2013 12:20 9/30/2013
Chloroform		< 8.37	ug/Kg	10/1/2013 19:50
Chlorometha	ine	< 8.37	ug/Kg	10/1/2013 19:50
cis-1,2-Dichl	oroethene	< 8.37	ug/Kg	10/1/2013 19:50
cis-1,3-Dichl	oropropene	< 8.37	ug/Kg	10/1/2013 19:50
Cyclohexane		< 41.8	ug/Kg	10/1/2013 19:50
Dibromochlo	oromethane	< 8.37	ug/Kg	10/1/2013 19:50
Dichlorodiflu	ioromethane	< 8.37	ug/Kg	10/1/2013 19:50
Ethylbenzen	e	< 8.37	ug/Kg	10/1/2013 19:50
Freon 113		< 8.37	ug/Kg	10/1/2013 19:50
Isopropylbe	nzene	< 8.37	ug/Kg	10/1/2013 19:50
m,p-Xylene		< 8.37	ug/Kg	10/1/2013 19:50
Methyl aceta	te	< 8.37	ug/Kg	10/1/2013 19:50
Methyl tert-l	outyl Ether	< 8.37	ug/Kg	10/1/2013 19:50
Methylcyclo	nexane	< 8.37	ug/Kg	10/1/2013 19:50
Methylene cl	ıloride	< 20.9	ug/Kg	10/1/2013 19:50
o-Xylene		< 8.37	ug/Kg	10/1/2013 19:50
Styrene		< 20.9	ug/Kg	10/1/2013 19:50
Tetrachloroe	ethene	< 8.37	ug/Kg	10/1/2013 19:50
Toluene		< 8.37	ug/Kg	10/1/2013 19:50
trans-1,2-Die	chloroethene	< 8.37	ug/Kg	10/1/2013 19:50
trans-1,3-Die	chloropropene	< 8.37	ug/Kg	10/1/2013 19:50
Trichloroeth	ene	< 8.37	ug/Kg	10/1/2013 19:50
Trichloroflue	oromethane	< 8.37	ug/Kg	10/1/2013 19:50
Vinyl chloric	e	< 8.37	ug/Kg	10/1/2013 19:50
Method Refere	nce(s): EPA 8260B EPA 5035A			

x08668.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Sample Condition: Per NELAC/ELAP 210/ Receipt Parameter Container Type: Comments: Preservation: Comments: Holding Time: Comments: Temperature:	191/20/13 12:20 2 4 4 5 5 6 6 6 7 7 7 8 8 9 9 10 10 10	DATE TIME OC	PROJECT NAME/SITE NAME:
<u></u>	NE	© ⊳ ฆ ด Men	
43/244       Y       Y       NELAC Compliance       Y       N       N       N       N       N       N       N       N       N       N       N       N	Ret. Wall Soil	S: SAMPLE LOCATION/FIELD ID	REPORT TO: Lic Engineers 175 Sully's Trail 175 Sully's Trail 175 Sully's Trail 175 Sully's Trail 175 Sully's Trail 175 Sully's Trail
Sampled By Sampled By Received @ Lab By		х - л - > З л m o з c z 9 л m z - > - z o o 82(co TCL VCC CREQUESTED ANALYSIS	2, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647- CHAIN OF CUSTODY INVOICE TO: INVOICE TO: Suite 201 ADDRESS: ZIP/45324 CITY: STATE: ZIP/45324 CITY: FAX: ATTIN: ATTIN:
13:45 13:30 13:56 P.I.F.		Quotation #	3311 LAB PROJECT #: CLIENT PROJECT #: 133745 SUI85-02 ZIP: TURNAROUND TIME: (WORKING DAYS) TURNAROUND TIME: (WORKING DAYS) STD OTH STD OTH

20/2



## Chain of Custody Supplement

Client:	Ly Engineers	Completed by:	Mail
Lab Project ID:	133745	Date:	4130/3
	Sample Conditi Per NELAC/ELAP 2	<b>on Requirements</b> 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements upo No	on receipt N/A
Container Type		<del>25935</del>	
Comme	ents		
Transferred to method- compliant container			$\rightarrow$
Headspace (<1 mL) Comme	ents		
Preservation Comm	ents		
Chlorine Absent (<0.10 ppm per test stri Comm	p)		$\Box \not \Box$
Holding Time	ents		
<b>Temperature</b> Comm	ents <u>S</u> °Cicel		
Sufficient Sample Quant	ity		



**Lab Project ID:** 133838

Client:	<u>Lu Engineers, Inc.</u>				
Project Reference:	Wilkins RV - Churchville SMP M	onitoring 50	185-02		
Sample Identifier:	Waterline Excavation - 01				
Lab Sample ID:	133838-01		Date Sampled:	10/	7/2013
Matrix:	Soil		Date Received:	10/	7/2013
Volatile Organic	<u>s</u>				
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qua	lifier	Date Analyzed
1,1,1-Trichlo	proethane	< 3.75	ug/Kg		10/7/2013
1,1,2,2-Tetra	achloroethane	< 3.75	ug/Kg		10/7/2013
1,1,2-Trichlo	proethane	< 3.75	ug/Kg		10/7/2013
1,1-Dichloro	ethane	< 3.75	ug/Kg		10/7/2013
1,1-Dichloro	ethene	< 3.75	ug/Kg		10/7/2013
1,2,3-Trichlo	probenzene	< 9.37	ug/Kg		10/7/2013
1,2,4-Trichlo	probenzene	< 9.37	ug/Kg		10/7/2013
1,2-Dibromo	o-3-Chloropropane	< 18.7	ug/Kg		10/7/2013
1,2-Dibromo	bethane	< 3.75	ug/Kg		10/7/2013
1,2-Dichloro	benzene	< 3.75	ug/Kg		10/7/2013
1,2-Dichloro	ethane	< 3.75	ug/Kg		10/7/2013
1,2-Dichloro	propane	< 3.75	ug/Kg		10/7/2013
1,3-Dichloro	benzene	< 3.75	ug/Kg		10/7/2013
1,4-Dichloro	benzene	< 3.75	ug/Kg		10/7/2013
1,4-dioxane		< 37.5	ug/Kg		10/7/2013
2-Butanone		< 18.7	ug/Kg		10/7/2013
2-Hexanone		< 9.37	ug/Kg		10/7/2013
4-Methyl-2-	pentanone	< 9.37	ug/Kg		10/7/2013
Acetone		< 18.7	ug/Kg		10/7/2013
Benzene		< 3.75	ug/Kg		10/7/2013
Bromochlor	omethane	< 9.37	ug/Kg		10/7/2013
Bromodichlo	promethane	< 3.75	ug/Kg		10/7/2013
Bromoform		< 9.37	ug/Kg		10/7/2013
Bromometha	ane	< 3.75	ug/Kg		10/7/2013
Carbon disul	lfide	< 3.75	ug/Kg		10/7/2013
Carbon Tetra	achloride	< 3.75	ug/Kg		10/7/2013
Chlorobenze	ene	< 3.75	ug/Kg		10/7/2013
			- 0/0		

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



### **Lab Project ID:** 133838

Client:	<u>Lu En</u>	<u>gineers, Inc.</u>			
Project Referen	ce: Wilkir	ns RV - Churchville SMP	Monitoring 50	185-02	
Sample Identi	fier: Wat	terline Excavation - 01			
Lab Sample ID	: 133	838-01		Date Sampled:	10/7/2013
Matrix:	Soil			Date Received:	10/7/2013
Chlor	oethane		< 3.75	ug/Kg	10/7/2013
Chlor	oform		2.57	ug/Kg J	10/7/2013
Chlor	omethane		< 3.75	ug/Kg	10/7/2013
cis-1,2	2-Dichloroethene		< 3.75	ug/Kg	10/7/2013
cis-1,3	3-Dichloroproper	ie	< 3.75	ug/Kg	10/7/2013
Cyclo	hexane		< 18.7	ug/Kg	10/7/2013
Dibro	mochloromethan	e	< 3.75	ug/Kg	10/7/2013
Dichlo	orodifluorometha	ne	< 3.75	ug/Kg	10/7/2013
Ethyll	oenzene		< 3.75	ug/Kg	10/7/2013
Freon	113		< 3.75	ug/Kg	10/7/2013
Isopro	opylbenzene		< 3.75	ug/Kg	10/7/2013
m,p-X	ylene		< 3.75	ug/Kg	10/7/2013
Methy	/l acetate		< 3.75	ug/Kg	10/7/2013
Methy	/l tert-butyl Ether		< 3.75	ug/Kg	10/7/2013
Methy	lcyclohexane		< 3.75	ug/Kg	10/7/2013
Methy	lene chloride		< 9.37	ug/Kg	10/7/2013
o-Xyle	ene		< 3.75	ug/Kg	10/7/2013
Styre	ne		< 9.37	ug/Kg	10/7/2013
Tetra	chloroethene		< 3.75	ug/Kg	10/7/2013
Tolue	ne		< 3.75	ug/Kg	10/7/2013
trans-	1,2-Dichloroethe	ne	< 3.75	ug/Kg	10/7/2013
trans-	1,3-Dichloroprop	bene	< 3.75	ug/Kg	10/7/2013
Trichl	oroethene		< 3.75	ug/Kg	10/7/2013
Trichl	orofluoromethan	e	< 3.75	ug/Kg	10/7/2013
Vinyl	chloride		< 3.75	ug/Kg	10/7/2013
Metho	d Reference(s):	EPA 8260B			
D-1 5	1	EPA 5035 Modified			
Data F	ne:	x00/04.D			

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method *5035 guidance document from 11/15/2012.* 

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

		Dete/Time	the w	Received @ Lab By	Other EDD		Other please indicate:		Other please indicate:
	270 PILE	Date/Time		Received By			Calegoly b	8	Rush 1 day
	7	Date/Time		Relinquished By	NYSDEC EDD		Category A		Rush 3 day
	Inter Cost.	21 51/4/ %	North C	sampled by	Basic EDD		Batch QC		Standard 5 day
	Tatal Cost	10/11/15	STANK (		fees may apply.	proval; additional	nt upon lab ap	ability continger	Avail
	0621 201 10 10 10 10 10 10 10 10 10 10 10 10 1				plements	Report Supp		nd Time	Turnarou
	No Custoon Seal	Henry C							10
	p 9 8								0
									8
									4 0
									) (J)
									ω 4
	13	4		-					2
0	use report informing	A Pla	×	1 05 10-1	line Excavation	Water	8	10:30	1 16 7 13
PARADIGM LAB SAMPLE NUMBER	REMARKS		TCL VO(s 8260	×−ਸ਼⊣>Ξ のつつの つの лтდ≦cz のлтz->⊣z00	SAMPLE IDENTIFIER		〒 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	TIME COLLECTED	DATE COLLECTED
		ANALYSIS	REQUESTED						
OL - Oil AR - Air	SD - Solid WP - Wipe PT - Paint CK - Caulk	ater <b>SO</b> - Soil sr <b>SL</b> - Sludge	<b>DW</b> - Drinking Wa WW - Wastewate	WA - Water WG - Groundwater	s: queous Liquid on-Aqueous Liquid	- Matrix Code: AQ - AQ NQ - NQ		ignitioning	SANDN
1-205, 000	eletwentereturersin			ATTN:	Detwoler	ATTN: BCC	NCE	RV- (W	PROJ Wilkins
	Email:	MANC		PHONE	8-8202	PHONE: 27			
	Quotation #:	STATE: A CUB		21P: 14534 OTT:	SFOR STATE NY	SUN VIII			1
	LAB PROJECT ID		)			ADDRESS:		A U G	
		OICE TO:	W					) ) ) )	) )
		•	CUSTODY	CHAIN OF					
5		ax (585) 647-3311	Office (585) 647-2530 F	าบe, Rochester, NY 14608	179 Lake Aver				

242



## Chain of Custody Supplement

Client:	Ly Eng	Completed by:	Mulail
Lab Project ID:	13383 8	Date:	10/7/13
,	Sample Condition Per NELAC/ELAP 23	on Requirements 10/241/242/243/244	
Condition	NELAC compliance with the sample Yes	condition requirements upo No	n receipt N/A
Container Type		× 5035	
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
<b>Preservation</b> Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
<b>Temperature</b> Comments	15°C No custo	Ely seals hand de	livered
Sufficient Sample Quantity Comments			

# D - Institutional and Engineering Controls Certification Form





#### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



Si	Site Details te No. V00658	Box 1	
Si	te Name Churchville Ford, Inc.		
Sit Cit Cc Sit	te Address: 111 South Main Street Zip Code: 14428 ty/Town: Churchville bunty: Monroe te Acreage: 6.0		
Re	eporting Period: January 31, 2013 to July 07, 2014		
		YES	NO
1.	Is the information above correct?	×	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	a 	×
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification for	ce n.	
5.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form is the site currently undergoing development?	ce n.	×
5.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form is the site currently undergoing development?	ce n. D Box 2	×
5.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form is the site currently undergoing development?	ce n. Box 2 YES	X NO
5.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form is the site currently undergoing development?	ce n. Box 2 YES X	ÌX NO □
5. 6. 7.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed?	ce n. Box 2 YES X X	<b>X</b> NO
5. 6. 7.	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES	<b>NO</b>
5. 6. 7.	If you answered YES to questions 2 thru 4, include documentation or evidend that documentation has been previously submitted with this certification for Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES	NO U
5. 6. 7. <b>A</b> (	If you answered YES to questions 2 thru 4, include documentation or evidend that documentation has been previously submitted with this certification for Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. Corrective Measures Work Plan must be submitted along with this form to address gnature of Owner, Remedial Party or Designated Representative Date	ce n. Box 2 YES X X and these iss	NO 

Description o	f Institutional Controls	
Parcel	<u>Owner</u>	Institutional Control
143.17-1-50	BLW Properties of Churchville, LLC	•
		Ground Water Use Restriction Landuse Restriction Site Management Plan
<ol> <li>Site use is limited</li> <li>Groundwater use</li> <li>Compliance with</li> <li>Periodic certifica</li> </ol>	I to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required.	
<ol> <li>Site use is limited</li> <li>Groundwater use</li> <li>Compliance with</li> <li>Periodic certifica</li> </ol>	to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required.	Box
<ol> <li>Site use is limited</li> <li>Groundwater use</li> <li>Compliance with</li> <li>Periodic certifica</li> </ol> Description o	to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required. <b>f Engineering Controls</b>	Box
<ol> <li>Site use is limited</li> <li>Groundwater use</li> <li>Compliance with</li> <li>Periodic certifica</li> </ol> <b>Description o</b> <u>Parcel</u>	to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required. <b>f Engineering Controls</b> <u>Engineering Control</u>	Box
1. Site use is limited 2. Groundwater use 3. Compliance with 4. Periodic certifica <b>Description o</b> <u>Parcel</u> 143.17-1-50	to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required. <b>f Engineering Controls</b> <u>Engineering Control</u>	Box
<ol> <li>Site use is limited</li> <li>Groundwater use</li> <li>Compliance with</li> <li>Periodic certifica</li> </ol> Description o	to Commercial and industrial uses. e is prohibited. a Site Management Plan is required. tions are required. <b>f Engineering Controls</b>	

	Box 5
	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted and compete
	engineering practices, and the mormation presented is accurate and compete. YES NO
	<b>X</b> 🗆
	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutiona or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged sin the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	× □
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
;	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00658	
	Box 6
<b>SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE</b> I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	
I <u>Eric Defweiler</u> at <u>Lu Engineers-175 Sully</u> print name print business address am certifying as <u>Remedial Party (in Engineers)</u> (Owner	<u>s Trail, fittsh</u> ad, NY, or Remedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Date	/14

#### **IC/EC CERTIFICATIONS**

Box 7

#### **Professional Engineer Signature**

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

<u>Print name</u> at <u>175 Sullys Trail</u> <u>Pittsford M</u> print business address (Owner or Remedial Party) OF NEW 08-15-14 Stamp FESSION Signature of Professional Engineer, for the Owner or Date Remedial Party, Rendering Certification (Required for PE)



### Site Photographs – 2013 Improvements 111 South Main Street, Churchville, NY



Photo 1. View to north, shallow retaining wall trench excavation.





Photo 2. View to south, asphalt cut and shallow trench excavation.



Photo 3. View to southwest, retaining wall construction at N. Sanford Rd. entrance.

Photo 4. View to west, new retaining wall construction.



Photo 5. View to east, asphalt cutting for waterline installation.



Photo 6. View of asphalt removal prior to trenching for waterline.



## Site Photographs – 2013 Improvements

111 South Main Street, Churchville, NY



Photo 7. View of waterline trench excavation.



Photo 8. View of interior concrete coring for waterline access.



Photo 9. View to south, new waterline & spigot installed.



10/11/2013



Photo 11. View of new protective curb boxes & new asphalt pavement at MW-3, MW-JCL-02.



Photo 12. View of new pavement & box, MW-13.

