STORMWATER POLLUTION PREVENTION PLAN FOR WILKINS R.V. - ROCHESTER

Village of Churchville, County of Monroe, State of New York

PREPARED FOR:

Chrisanntha Construction Corp. 4661 Dewey Avenue. P.O. Box 165 Gorham, New York 14461

PREPARED BY:

ENGINEERING

217 Lake Avenue Rochester, New York 14608

PROJECT NO. 6028

MARCH, 2015

REVISED: JULY, 2015

OVERVIEW	1
SCOPE OF PROJECT	
BASIS FOR DESIGN	
DESCRIPTION OF SOIL	S2
EXISTING CONDITION	S2-3
DEVELOPED CONDITIO	DNS
ROUTED OUTFLOWS	
SUMMARY OF PEAK FL	OW RATES4-5
WATER QUALITY, CHA	NNEL PROTECTION & RUNOFF REDUCTION VOLUME
STORMWATER MANAC	GEMENT PLANNING
TECHNICAL JUSTIFICA	TION FOR RUNOFF REDUCTION REQUIREMENTS
EROSION AND SEDIME	ENT CONTROL MEASURES
ONSITE CONSTRUCTIO	ON MATERIAL STORAGE
SEQUENCE OF MAJOR	ACTIVITIES9
LOCATION OF EROSIO	N CONTROL MEASURES9
IMPLEMENTATION SCI	HEDULE10
MAINTENANCE AND IN	NSPECTION SCHEDULE
IMPLEMENTATION OF	RESPONSIBILITY11
CONCLUSION	
APPENDIX I	LOCATION MAP SITE SOIL DATA, SITE WATER TABLE DATA NYS DEC ENVIRONMENTAL RESOURCE MAP, NATIONAL WETLANDS INVENTORY MAP CULTURAL RESOURCE INFORMATION SYSTEM MAP, SHPO RESPONSE LETTER EXISTING DRAINAGE AREA MAP EXISTING DRAINAGE AREA CALCULATIONS AND HYDROGRAPHS
APPENDIX II	DEVELOPED DRAIANAGE AREA MAP DEVELOPED DRAINAGE AREA CALCULATIONS AND HYDROGRAPHS WQV, CPV, RRV CALCULATIONS, BIORETENTION SIZING CALCULATION
APPENDIX III	NOTICE OF INTENT, MS4 SWPPP ACCEPTANCE FORM SAMPLE INSPECTION FORM NYSSESC GUIDANCE FOR EROSION & SEDIMENT CONTROL PRACTICE INSTILLATION SOIL RESTORATION REQUIREMENTS GENERAL AND SUB CONTRACTOR SIGNATURE PAGE STORMWATER MAINTENANCE AGREEMENT
APPENDIX IV	UTILITY PLAN 6028 CA-120 GRADING AND EROSION CONTROL PLAN 6028 CA-130

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 1 of 11

WILKINS R.V. - ROCHESTER VILLAGE OF CHURCHVILLE, MONROE COUNTY, STATE OF NEW YORK STORMWATER POLUTION PREVENTION PLAN

OVERVIEW

The Stormwater Pollution Prevention Plan for site improvements on a 16.3± acre parcel at 111 and 97 South Main Street in the Village of Churchville, New York is outlined in this report. Refer to the location sketch in Appendix I. The proposed development project consists of the demolition of an existing building, pavements, utilities and constructing a new 44,300 square foot building, with associated utilities and drives. A Stormwater Management Pond is proposed to detain stormwater runoff from the development. Bio-retention basins will be constructed to provide the required Runoff Reduction Volume.

SCOPE OF PROJECT

This report addresses the mitigation of stormwater runoff due to the increase in impervious area associated with the development. The proposed design incorporates measures which reduce developed peak flow rates to levels below existing conditions and provide green infrastructure practices which meet water quality and quantity volumes required under the SPDES Phase II General Construction Permit (GP-0-15-002).

There are not any listed threatened or endangered species habitat designated in the area, nor are there any state or federal wetlands or 100 year flood plains within the area. (See Appendix I). The site is within an archeologically sensitive area per the Cultural Resource Information System mapper. Contact has been made with the State Historic Preservation Office (SHPO) to determine if additional research is required. Stormwater runoff from the development discharges to an unnamed stream tributary to Black Creek. The unnamed tributary is classified as a class 'C' stream per NYS DEC. Black Creek is listed as a 303(d) impaired water.

This report will also detail the installation and maintenance of erosion and sediment control devices prior to and during the period of construction activity. Approximately 17.6± acres of this site will be disturbed, during construction activities. A 5-acre waiver will need to be required from the Department of Environmental Conservation, as cuts will be placed in fills in a single continuous operation. A sequence of construction activities has been prepared to ensure proper erosion and stormwater control. This report describes the best management practices and a schedule of implementation. These practices have been designed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control", August 2005.

BASIS FOR DESIGN

The design criteria used for this analysis is based on the "New York State Department of Environmental Conservation's Phase II Stormwater Rules" and the "New York State Stormwater Management Design Manual", dated August 2010 in association with "SPDES General Permit for Stormwater Discharges from Construction Activity", dated January, 2015 (GP-0-15-002). Existing and developed drainage areas will be modeled using the SCS method to determine volume and peak rates of stormwater runoff. Developed peak

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 2 of 11

rates will be reduced at or below existing peak rates for onsite disturbed areas, through the use of the proposed stormwater management facility.

DESCRIPTION OF SOILS

According to the Monroe County Soil Survey, the original predominant soils present onsite are the Ontario and Hilton Series. These soils have been classified as Hydrologic Soil Group (HSG) C-D. Refer to the soils map and water table map in Appendix 1.

The Ontario series (HSG Type C), consists of deep or very deep, well drained soils formed in till which is strongly influenced by limestone and sandstone. The potential for surface runoff ranges from low to very high. Slopes range from 3 to 8 percent.

The Hilton Series (HSG Type D), consists of very deep, moderately well drained soils formed in till. The potential for surface runoff ranges from very low to medium. Slopes range from 3 to 8 percent.

EXISTING CONDITIONS

Under Existing Conditions there are three distinct drainage areas. Existing Drainage Area 1 is comprised of 12.56 acres, Time of Concentration (Tc) = 16.4 minutes, Curve Number (CN) = 70, and currently drains via sheet and shallow concentrated flow in a northwesterly direction to an to an unnamed tributary of Black Creek offsite. This drainage area is mostly undeveloped.

Existing Drainage Area 2 is comprised of 2.26 acres, Tc=3.4 minutes, CN=96, and currently drains via sheet and shallow concentrated flow in a southwesterly direction, ultimately draining to North Sanford Road right-of-way. An existing building and parking lot currently occupy this area. This area is not treated in a stormwater management facility.

Existing Drainage Area 3 is comprised of 3.29 acres, Tc=2.1 minutes, CN=95, and currently drains via sheet and shallow concentrated flow to the eastern property line, ultimately draining to South Main Street right-ofway. An existing building and parking lot currently occupy this area. This area is not treated in a stormwater management facility. The existing drainage areas are shown on the drawing entitled, "Existing Drainage Area Map" (See Appendix 1). Table 1 provides a summary of existing peak flow rates.

Area Designation	Q ₁ (cfs)	Q ₂ (cfs)	Q10 (cfs)	Q ₁₀₀ (cfs)
(E-1) (12.56 ac.)	3.46	5.62	15.59	29.20
(E-2) (2.26 ac.)	6.63	7.65	11.36	15.69
(E-3) (3.29 ac.)	9.31	10.81	16.25	22.60

TABLE 1 - EXISTING PEAK FLOW RATES (18.11 Acres)

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 3 of 11

All supporting data and calculations used to derive these results can be found in Appendix 1.

DEVELOPED CONDITIONS

The developed drainage areas are shown on the "Developed Drainage Area Map" (See Appendix 2). Under developed conditions, a majority of the sites area, and all of the new impervious areas will be directed to the proposed stormwater management pond. The overall site discharge has been reduced below existing conditions.

Developed Drainage Area 1 is comprised 14.43 acres, Time of Concentration (Tc) = 3.4 minutes), Curve Number (CN) =94, and is the area containing the proposed building and parking lot. Drainage area 1 will be routed through multiple bio-retention filters, and ultimately draining into the proposed stormwater management pond.

Developed Drainage Area 2 is comprised of 2.11 acres, Tc=2.4 minutes, CN=96, and will continue to flow via sheet and shallow concentrated flow to North Sanford Road right-of-way. Following construction, less area will drain undetained to the southwest; therefore a reduction in peak flow rates will be achieved.

Developed Drainage Area 3 is comprised of 1.57 acres, Tc=3.7 minutes, CN=93, and will sheet flow to the east property line. The existing building will be demolished, and repaved. Following construction, less area will drain undetained to South Main Street right-of-way; therefore a reduction in peak flow rates will be achieved.

Table 2 summarizes the undetained developed peak flow rates for the drainage areas (before stormwater management facility routing in area 1).

TIDEE 2 DEVELOTED TEINTEOUV MITES (10.11 Mites)					
Area Designation	Q1	Q ₂	Q10	Q100	
Alea Designation	(cfs)	(cfs)	(cfs)	(cfs)	
(D-1) (14.43 ac.)	39.25	45.85	69.87	97.92	
(D-2) (2.11 ac.)	6.19	7.14	10.60	14.65	
(D-3) (1.57 ac.)	4.09	4.81	7.44	10.51	

TABLE 2 - DEVELOPED PEAK FLOW RATES (18.11 Acres)

All supporting data and calculations used to derive the developed peak flow rates can be found in Appendix 2.

ROUTED OUTFLOWS

The proposed stormwater management facility is designed to reduce the developed peak flow rates from the site to less than existing rates. Table 3 summarizes the results of routing the developed area 1 hydrograph through the facility using an inflow-storage-outflow scenario.

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 4 of 11

Storm Frequency (yrs)	Inflow Hydrograph Peak (cfs)	Storage Provided (ft. ³)	Maximum Water Elevation (ft.)	Peak Outflow (cfs)
1	39.25	68,812 53,418	563.97 564.17	0.32 1.17
2	45.85	82,323 63,864	564.30 564.48	0.35 1.28
10	69.87	100,680 <mark>85,137</mark>	564.74 565.07	3.44 7.91
100	97.92	138,127 121,989	565.57 566.01	5.77 10.21

TABLE 3 - HYDROGRAPH RESERVOIR ROUTINGS (AREA 1) (14.43 Acres)

All supporting data and calculations used to derive the routed outflows can be found in Appendix 2.

SUMMARY OF PEAK FLOW RATES

Tables 4, 5, and 6 compares the existing vs. developed peak flow rates for all 3 discharge points.

	TABLE 4 EXISTING VS. DEVELOTED TERM TEOV MITES (INCLUD)					
Storm Frequency	Q _{Existing} (cfs)	Q _{Developed} (cfs)	% Reduction			
1	3.46	0.32 1.17	91 66			
2	5.62	0.35 1.28	94 77			
10	15.59	3.44 7.91	78 49			
100	29.20	5.77 10.21	81 65			

TABLE 4 - EXISTING VS. DEVELOPED PEAK FLOW RATES (AREA 1)

TABLE 5 - EXISTING VS. DEVELOPED PEAK FLOW RATES (AREA 2)

Storm	QExisting	QDeveloped	
Frequency	(cfs)	(cfs)	% Reduction
1	6.63	6.19	7
2	7.65	7.14	7
10	11.36	10.60	7
100	15.69	14.65	7

TABLE 6 - EXISTING VS. DEVELOPED PEAK FLOW RATES (AREA 3)

Storm	QExisting	QDeveloped	
Frequency	(cfs)	(cfs)	% Reduction
1	9.31	4.09	56
2	10.81	4.81	56
10	16.25	7.44	54
100	22.60	10.51	53

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 5 of 11

These results show a reduction in overall peak flow discharge rates from the site to all discharge points is achieved for the 1 through 100 year storm events.

WATER QUALITY, CHANNEL PROTECTION & RUNOFF REDUCTION VOLUME

In keeping with the goals of the NYSDEC Stormwater Pollution Prevention Control and SPDES General Permit GP-0-15-002 associated with long term development, in order to meet pollutant removal goals, Runoff Reduction and Source Control practices have been implemented to provide at least minimum required Runoff Reduction volume. The basin has also been designed pursuant to the current NYSDEC Stormwater Management Design Manual. In order to meet pollutant removal goals, the basin provides adequate storage, in a permanent pool below the static elevation of the pond surface, for the required water quality volume (WQv) for the site. Calculations for Runoff Reduction and water quality volume can be found in Appendix 2, Calculations. In addition to the water quality volume and also pursuant to the New York State Design Manual, the channel protection volume (CPv) has also been provided. Calculations for the channel protection volume can also be found in the calculations section of Appendix 2.

1	/ //// <u>X</u>				
Water Quality			Channel Protection		
WQv Req'd	WQv Provided	Elevation	CPv Req'd	CPv Provided	Elevation
(ac-ft)	(ac-ft)	(ft.)	(ac-ft)	(ac-ft)	(ft.)
0.778	1.634 1.353	562.0 <mark>562.4</mark> 0	1.245	2.010 1.479	564.5

TABLE 7 - WATER QUALITY & CHANNEL PROTECTION

T.	ABLE 8 - RUNO	FF REDUCTION

RRv Req'd (Min)	RRv Provided
(ac-ft)	(ac-ft)
0.19	0.21

The required Runoff Reduction volume has been met for this site using Bio-Retention.

STORMWATER MANAGEMENT PLANNING

The NYS Stormwater Design Manual has created a five-step planning process for addressing stormwater management in new developments. This process is intended to guide the designer through steps that maintain pre-construction hydrologic conditions of the site.

The five steps include:

- 1. Site planning to preserve natural features and reduce impervious cover,
- 2. Calculations of the water quality volume for the site,
- 3. Incorporation of green infrastructure techniques and standard SMP's with Runoff Reduction Volume (RRv) capacity,

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 6 of 11

- 4. Use of standard SMP's where applicable, to treat the portion of water quality volume not addressed by green infrastructure techniques and standard SMP's with RRv capacity, and
- 5. Design of volume and peak rate control practices where required.

The five-step process has been applied to this site as follows:

- 1. The proposed project was designed to disturb the minimum amount of natural features while providing the required parking areas that the client requires. The proposed impervious cover is the minimum required to provide for the use. Existing parking areas will be repaved instead of creating additional impervious surfaces.
- 2. Calculations for water quality volume can be found in Appendix 2.
- 3. A Bioretention area has been designed to provide Runoff Reduction volume for the development. See the calculations in Appendix 2.
- 4. A Wet pond has been designed to treat the remaining required water quality volume for both the development. (See Appendix 2)
- 5. A Wet pond has been designed to control the peak flows. (See Appendix 2)

TECHNICAL JUSTIFICALTION FOR RUNOFF REDUCTION REQUIREMENTS (Per NYS SWDM Ch. 5)

Preservation of Natural Features and Conservation Design

- **Preservation of Undisturbed Areas:** No work will occur outside of the limits of disturbance. Undisturbed areas will be preserved.
- **Preservation of Buffers:** There are no perennial streams, rivers, or shorelines within or adjacent to the site that require preservation. Vegetated buffers outside of the limits of disturbance will remain undisturbed after construction.
- **Reduction of Clearing and Grading:** Clearing and Grading limits shall be the minimum necessary to build the parking lot, driveways, foundations, utilities, and the stormwater management facilities.
- Locating Development in Less Sensitive Areas: The development is located in an area that will avoid sensitive resource areas such as floodplains, steep slopes, erodible soils, wetlands, mature forests and critical habitat areas. Buildings, roadways and parking areas will be located to fit the terrain and in areas that will create the least impact.
- **Open Space Design:** This development proposes to concentrate the disturbance in as compact an area as possible.
- **Soil Restoration:** Soil amendments (profile or approved equal) will be added to the hydro seed mix, and used in all grass areas.

Planning Practices for Reduction of Impervious Cover

• **Roadway Reduction:** Road lengths and widths have been minimized as much as possible for the use.

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 7 of 11

- **Sidewalk Reduction:** The minimum amounts of sidewalks are proposed to provide customer access and ADA accessibility.
- **Driveway Reduction:** Driveway lengths and widths have been minimized as much as possible for the use.
- Cul-de-sac Reduction: Cul-de-sacs are not proposed for this development.
- **Building Footprint Reduction:** The footprint is the smallest necessary to accommodate the use.
- **Parking Reduction:** The proposed parking lot is the smallest necessary to meet the clients requirements.

Techniques for Runoff Reduction

- **Conservation of Natural Areas:** This site will not incorporate a conservation of the undisturbed areas. There are no buffers on site that require conservation.
- Sheet flow to Riparian Buffers or Filter Strips: A majority of the sites impervious area will be captured in the storm water management facility before being discharged off site. the remaining areas sheet to existing grass surfaces offsite.
- Vegetated Swale: Vegetated swales will be used as a pre-treatment and conveyance practice.
- **Tree Planting:** Trees and shrubs are proposed within the bio-retention filter areas.
- Rooftop Disconnection: Rooftop runoff will discharge into the bioretention area.
- Stream Daylighting: There are no streams within the project limits.
- Rain Gardens: Rooftop runoff will discharge into either the bioretention area.
- Green Roofs: Green roofs are not proposed for this development.
- Stormwater Planters: Planters are not proposed for this development.
- **Rain Barrels/Cisterns:** Infrequent use of the collection system by the property owner could cause unintended discharge of the collected water.
- **Porous Pavement:** Porous pavement is not proposed for this development due to the restrictive native soils present onsite.

EROSION AND SEDIMENT CONTROL MEASURES

All erosion and sediment control measures were designed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control." The site contractor shall adhere to all erosion and sediment control measures shown on the Storm Water Pollution Prevention Plan. The following temporary measures must be followed to control any potential pollutants leaving the construction site.

Temporary stabilization practices for this site include siltation fence, stone and block inlet protection in paved areas, filter fabric drop inlet protection of new inlets, stone filter check dam(s) and stabilized construction entrance. Installation and Maintenance instructions per the N.Y. Standards and Specifications for Erosion and Sediment Control Manual are included in Appendix III for each of the proposed Erosion and Sediment Control practices.

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 8 of 11

Permanent stabilization practices for this site include new pavement, crushed stone and permanent seeding of all lawn areas.

ONSITE CONSTRUCTION MATERIAL STORAGE

All site work shall be performed in accordance with Title 29 of the Federal Regulations, Part 1926 Safety and Health Regulations for Construction (OSHA). In addition, the site subcontractor(s) shall follow all material management practices that will reduce the risk of exposure of any material to stormwater runoff. The site subcontractor(s) shall adhere to all of the following construction practices in regard to material storage:

- All materials shall be stored in an orderly manner with their appropriate manufacturer's labels and storage recommendations visible, and where possible, store any spillable materials under a roof or in a storage container.
- Materials should not be mixed with one another unless recommended by the manufacturer. All materials mixed or not mixed shall be sealed properly when not being used.
- Subcontractor shall follow manufacturer's storage recommendations for proper storage of all materials, and a regular inspection shall be made. .
- Every vehicle shall be checked for leakage regularly. Any containers used to store petroleum or other liquids for vehicles shall be stored in proper containers and in a place protected from spilling or mixing with other liquids and placed in secondary containment.
- Subcontractor(s) shall provide proper storage for fertilizers, herbicides, pesticides and paints with manufacturer's labels and storage recommendations visible. All fertilizers, herbicides, pesticides and paints shall be applied using the minimum amount recommended by the manufacturer.

In addition to the standard management practices to be followed above, the sites Subcontractor(s) shall also follow the following spill cleanup procedures:

- Spills of petroleum, toxins or hazardous materials will be reported to the New York State Health Department and the New York State Department of Environmental Conservation. NYSDEC Spill Hotline #: 1-800-457-7362
- Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be made aware of the procedures and location of clean up supplies.
- Materials and equipment necessary for cleanup will be kept in a material storage area onsite to be identified by the site subcontractor(s). Equipment and materials will include, but not be limited to brooms, dust pans, mops, rags, gloves, goggles, speed-dry, sand, sawdust and trash containers.
- Spills will be cleaned up immediately upon discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with the spilled substance.
- A spill report will be completed and filed on site.

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 9 of 11

SEQUENCE OF MAJOR ACTIVITIES

The contractor will be responsible for implementing the following erosion control and storm water management control measures. The contractor may designate these tasks to certain subcontractors as he sees fit, but the ultimate responsibility for implementing these controls and ensuring their proper functioning remains with the contractor. The order of activities will be as follows:

- A. Construct temporary stabilized construction exit at location shown on the SWPPP Plan Sheet.
- B. Install perimeter silt fences in the locations shown on the SWPPP Plan Sheet.
- C. Raze existing buildings.
- D. Begin asphalt removal operations. Asphalt removal shall be done only in areas where earthwork will be performed and only in areas where building is planned to commence within 14 days after asphalt removal.
- E. Commence site grading.
- F. The application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased.
- G. The *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- H. Install inlet/outlet protection at the locations of all grate inlets, curb inlets, and at the ends of all exposed storm sewer pipes.
- I. Construct Stormwater Management Pond. Stormwater Pond shall be utilized as a temporary sedimentation basin during construction. The sedimentation basin shall provide 3,600 cu.ft. of storage volume per acre draining to the basin. (3,600 cu.ft. x 14.43 ac. = 51,948 cu. ft.) Cumulative volume up to elevation 561.50 = 56,111 cu.ft. Remove sediment from basin when it reaches elevation 561.50.
- J. Finalize pavement subgrade preparation.
- K. Construct all curb, curb inlets, area inlets, and storm sewer manholes, as shown on the plans. Inlet protection may be removed temporarily for this construction.
- L. Remove inlet protection around inlets and manholes no more than 48 hours prior to placing stabilized base course.
- M. Install base material as required for pavement.
- N. Carry out final grading, seeding, and plantings.
- O. Remove silt fencing only after all paving is complete and exposed surfaces are stabilized.
- P. Remove temporary construction exits only prior to pavement construction in these areas. (these areas are the last to be paved)

LOCATION OF EROSION CONTROL MEASURES

See drawing numbers CA130, and CA500 entitled, "Grading and Erosion Control Plan", and "Detail Sheet".

Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 10 of 11

IMPLEMENTATION SCHEDULE

Stabilization measures shall initiate as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, however in no case more than fourteen (14) days after the construction activity in that portion of the site has temporarily or permanently ceased.

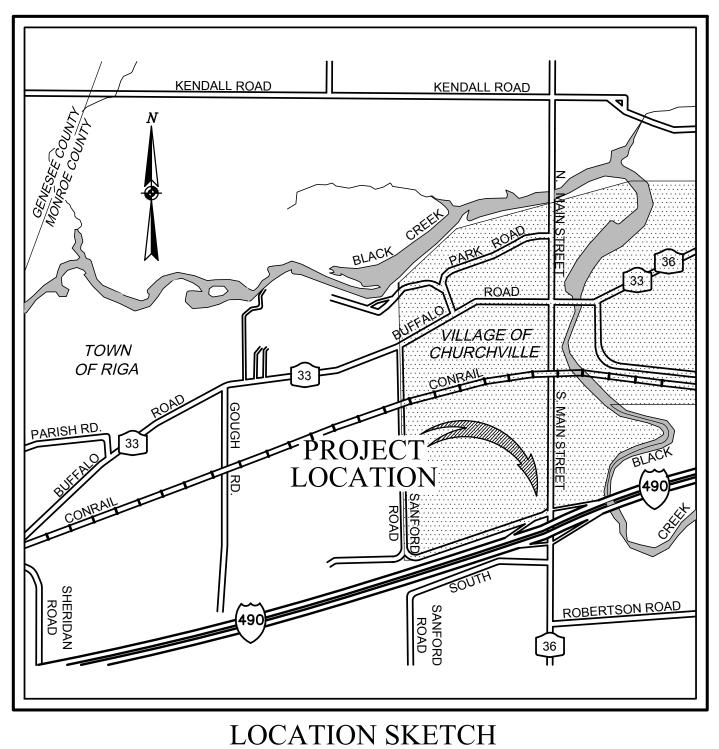
The onsite construction supervisor shall visually inspect all erosion control measures daily. Any measure that is damaged, becomes inoperative or has been in place for a three-month period shall be replaced immediately. Sediment shall be removed from sediment traps when 50% of the capacity is silted in. All erosion/sediment control measures must remain in place and be properly inspected and operable until all disturbed areas have been stabilized.

MAINTENANCE AND INSPECTION SCHEDULE

A qualified site supervisor shall assess the site prior to construction beginning and certify in an inspection report that all erosion and sediment facilities have been completely and properly installed and functional. Once construction begins, an inspection shall be done every seven (7) days and two times every seven days when more than five (5) acres are disturbed at any one time. The following should be included in the inspectors report following each site visit:

- On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 7-day period.
- Indicate on a site plan areas that have had temporary or permanent stabilization.
- Indicate on a site plan areas that have not had active site work within the past 7 days.
- All erosion and sediment controls shall be inspected and the approximate percent of remaining silt storage capacity (in the sediment trap basins) shall be reported in the inspection report on a weekly basis.
- Inspection of erosion and sediment control practices and any maintenance requirements should be
 recorded. Depths of sediment should be measured, and effectiveness should be recorded. If any
 methods of erosion or sediment control are found to be inadequate, a recommendation should be made
 that would bring all facilities to standards set forth by the NYSDEC.
- An onsite logbook shall be maintained and weekly inspections should be kept updated and available for permitting authorities upon request. Prior to construction, the site supervisor shall certify in the site logbook that the SWPPP prepared in accordance with the stormwater permit GP-0-10-001 meets all Federal, and State erosion and sediment control requirements. Prior to filing notice of Termination or the end of the permit, the site supervisor shall perform a final site inspection. The site supervisor shall report that 80% germination has been completed. The report should also state all erosion and sediment methods have been removed.

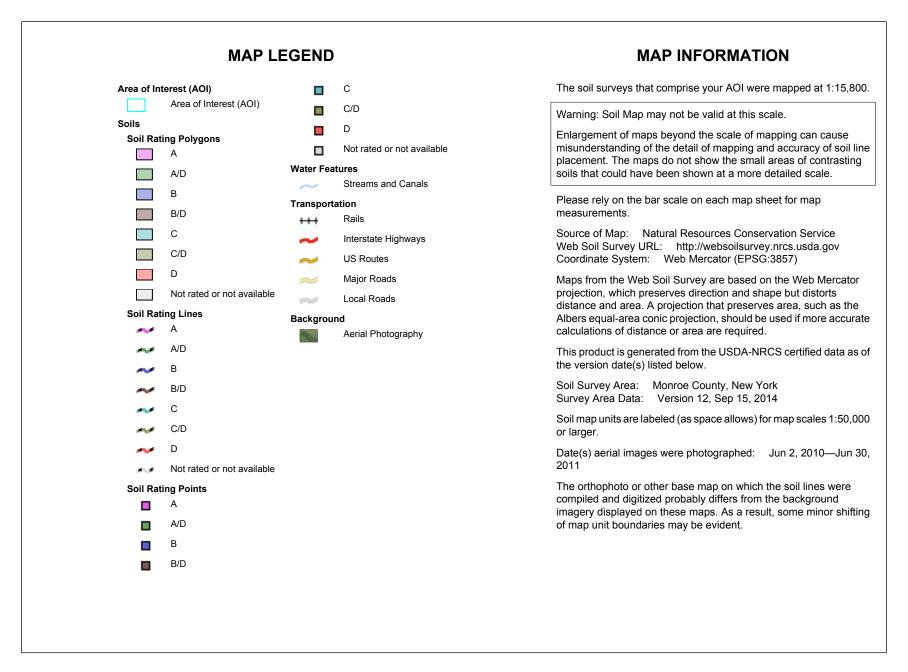
Project No. 6028 March 12, 2015 Revised: July 9, 2015 Page 11 of 11


IMPLEMENTATION OF RESPONSIBILITY

Each contractor(s) and subcontractor(s) shall be responsible for implementing the SWPPP temporary practices, structures and controls. The property owner shall be responsible for implementing all permanent operation and maintenance practices and procedures. All contractor(s) and subcontractor(s) and owner shall sign the certification statement at the end of this document. Any new contractor(s) or subcontractor(s) must likewise be added to the certification.

CONCLUSION

Stormwater runoff from the site will be captured and conveyed to the Stormwater Management Facility. The stormwater management facility will provide 1 through 100-year storm event peak flow attenuation for the site as well as water quality and stream channel protection volumes. The Bio-retention Basins will provide Runoff Reduction volume for the site. Design and construction criteria conform with the "New York State Department of Environmental Conservation's Phase II Stormwater Rules" and the "New York State Stormwater Management Design Manual", dated August 2010 in association with "SPDES General Permit for Stormwater Discharges from Construction Activity", dated January, 2015 (GP-0-15-002).


APPENDIX I

NOT TO SCALE

Conservation Service

Hydrologic Soil Group

Hydr	Hydrologic Soil Group— Summary by Map Unit — Monroe County, New York (NY055)						
Map unit symbol	Acres in AOI	Percent of AOI					
HIB	Hilton loam, 3 to 8 percent slopes	B/D	7.7	42.4%			
OdA	Odessa silt loam, 0 to 2 percent slopes	C/D	1.0	5.3%			
OnB	Ontario loam, 3 to 8 percent slopes	С	9.5	52.3%			
Totals for Area of Interest			18.1	100.0%			

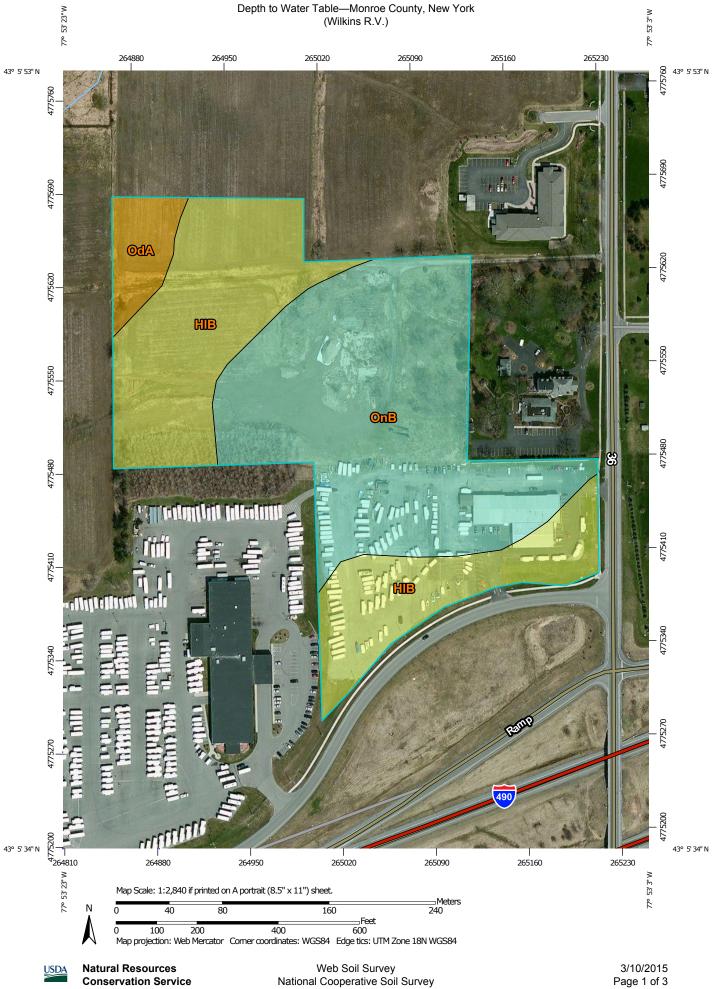
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

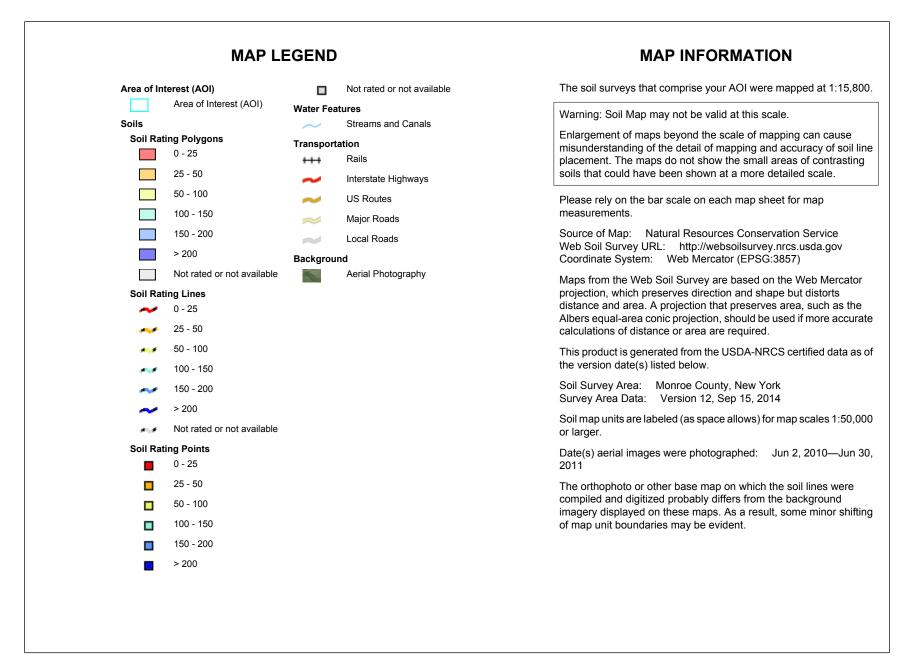
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

USDA

Conservation Service

USDA

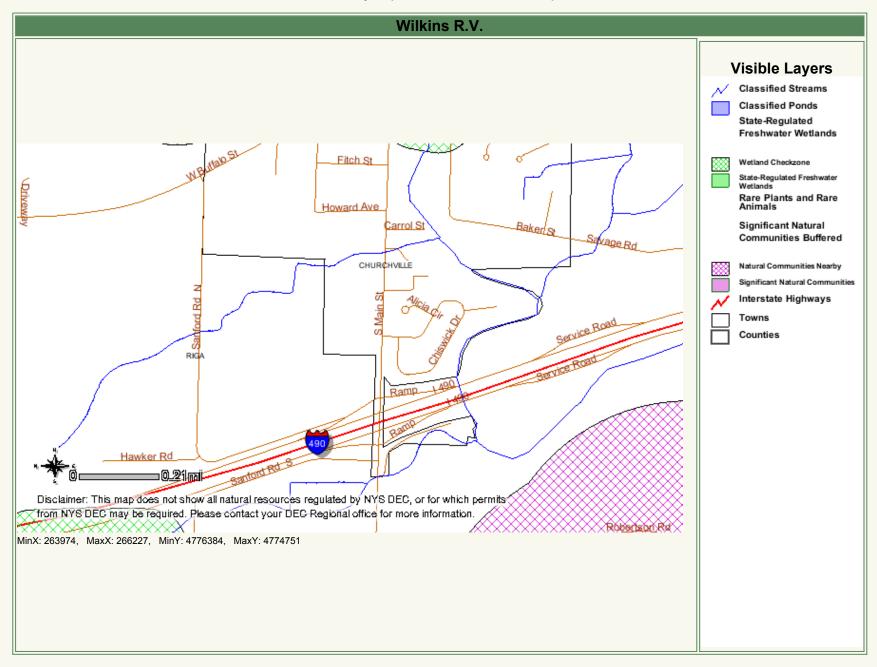
Depth to Water Table

Depth to Water Table— Summary by Map Unit — Monroe County, New York (NY055)						
Map unit symbol Map unit name Rating (centimeters) Acres in AOI Percer						
HIB	Hilton loam, 3 to 8 percent slopes	54	7.7	42.4%		
OdA	Odessa silt loam, 0 to 2 percent slopes	31	1.0	5.3%		
OnB	Ontario loam, 3 to 8 percent slopes	101	9.5	52.3%		
Totals for Area of Interest			18.1	100.0%		

Description

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.


Rating Options

Units of Measure: centimeters Aggregation Method: Dominant Component Component Percent Cutoff: None Specified Tie-break Rule: Lower Interpret Nulls as Zero: No Beginning Month: January Ending Month: December

Page 1 of 1

[print page] [close window]

Please set your printer orientation to "Landscape".

Disclaimer: This map was prepared by the New York State Department of Environmental Conservation using the most current data available. It is deemed accurate but is not guaranteed. NYS DEC is not responsible for any inaccuracies in the data and does not necessarily endorse any interpretations or products derived from the data.

15011

HOME SUBMIT

SEARCH COMMUNICATE

Parks, Recreation, and Historic Preservation

ANDREW M. CUOMO Governor ROSE HARVEY Commissioner

June 03, 2015

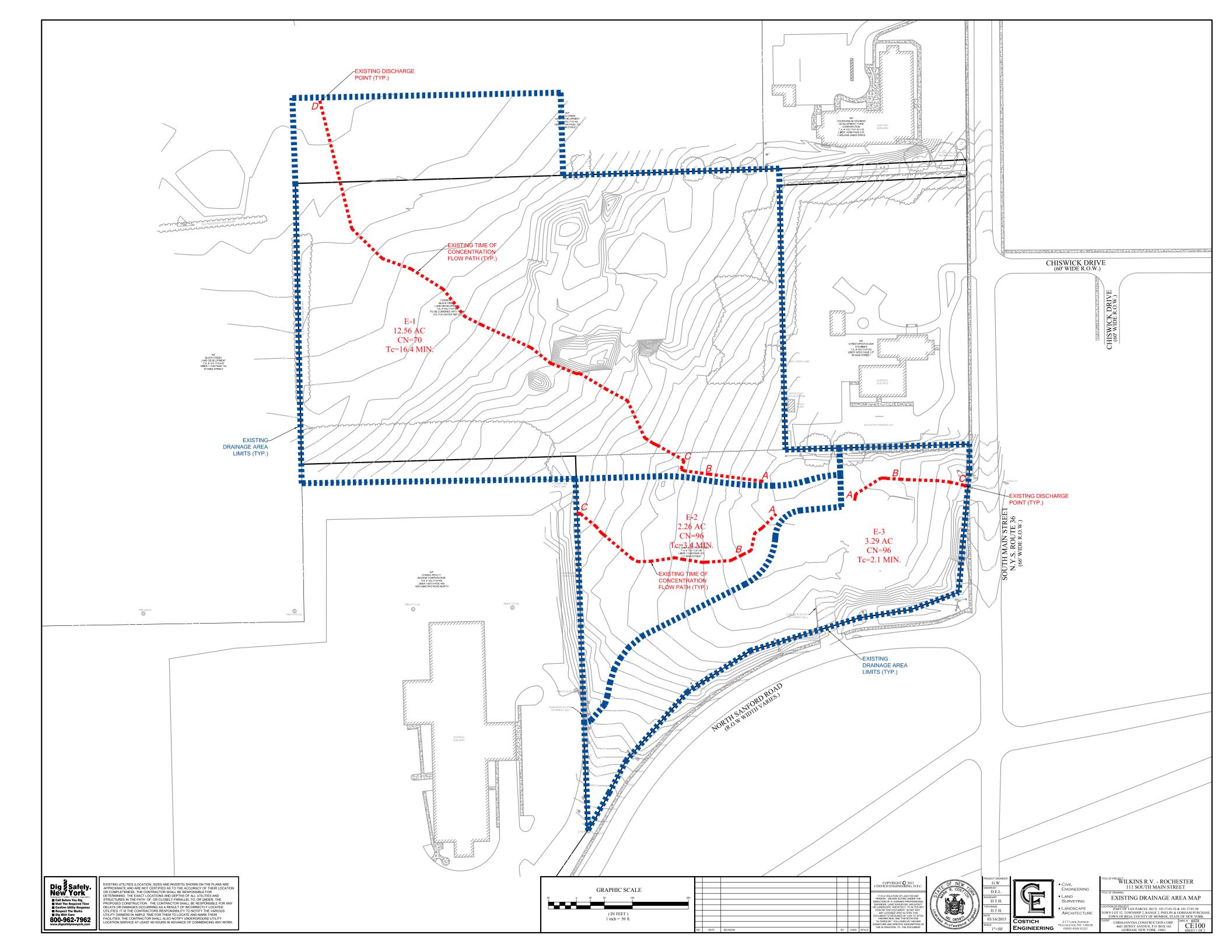
Mr. Christopher Centola Senior Landscape Architect Costich Engineering 217 Lake Avenue Rochester, NY 14608

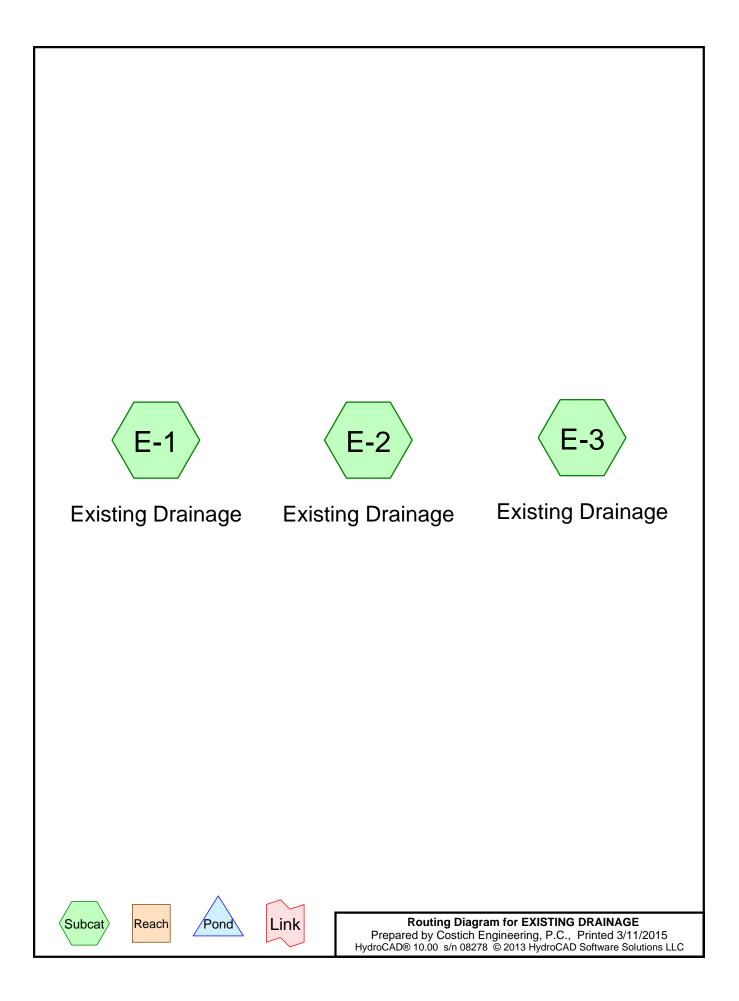
Re: DEC

Wilkins RV, 97 South Main Street Village of Churchville, Monroe County, NY 15PR00983

Dear Mr. Centola:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the project in accordance with the New York State Historic Preservation Act of 1980 (Section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the Division for Historic Preservation and relate only to Historic/Cultural resources. They do not include potential environmental impacts to New York State Parkland that may be involved in or near your project. Such impacts must be considered as part of the environmental review of the project pursuant to the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8) and its implementing regulations (6NYCRR Part 617).


The Wilkins RV building is not eligible for listing on the State and National Registers of Histroic Places. Adjacent to the project site, is Building R (former Boice Residence/Ormrod Farm) which has been determined to be eligible for listing on the State and National Registers of Historic Places. We understand that the existing Wilkins RV building will be demolished and a new 44,000 SF RV sales and service building is proposed to be built with additional parking. We have reviewed the Site and Pavement Marking Plan dated 3/16/2015. We recommend that proposed lighting and fuel/propane operations are located as to not impact the park-like landscape at the adjacent eligible property. Based upon this review, it is the OPRHP's opinion that your project will have No Adverse Impact upon cultural resources in or eligible for inclusion in the State and National Register of Historic Places.


If further correspondence is required regarding this project, I can be reached at (518) 268-2164 or at <u>eric.kuchar@parks.ny.gov</u>. Please be sure to refer to the Project Review (PR) number.

Sincerely,

Eric N. Kuchar Historic Preservation Technical Specialist

via e-mail only

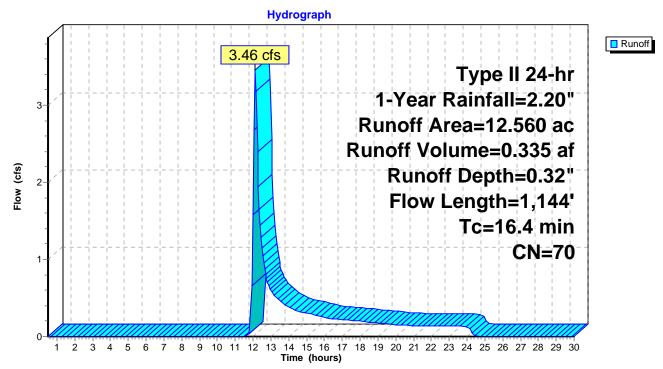
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.260	84	50-75% Grass cover, Fair, HSG D (E-2)
0.191	74	>75% Grass cover, Good, HSG C (E-3)
0.296	80	>75% Grass cover, Good, HSG D (E-3)
6.021	65	Brush, Good, HSG C (E-1)
5.045	73	Brush, Good, HSG D (E-1)
2.990	98	Paved parking, HSG C (E-1, E-2, E-3)
2.164	98	Paved parking, HSG D (E-2, E-3)
0.495	73	Woods, Fair, HSG C (E-1)
0.648	79	Woods, Fair, HSG D (E-1)
18.110	78	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
9.697	HSG C	E-1, E-2, E-3
8.413	HSG D	E-1, E-2, E-3
0.000	Other	
18.110		TOTAL AREA

				``	,		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.260	0.000	0.260	50-75% Grass cover, Fair	E-2
0.000	0.000	0.191	0.296	0.000	0.487	>75% Grass cover, Good	E-3
0.000	0.000	6.021	5.045	0.000	11.066	Brush, Good	E-1
0.000	0.000	2.990	2.164	0.000	5.154	Paved parking	E-1, E-2,
							E-3
0.000	0.000	0.495	0.648	0.000	1.143	Woods, Fair	E-1
0.000	0.000	9.697	8.413	0.000	18.110	TOTAL AREA	


Ground Covers (all nodes)

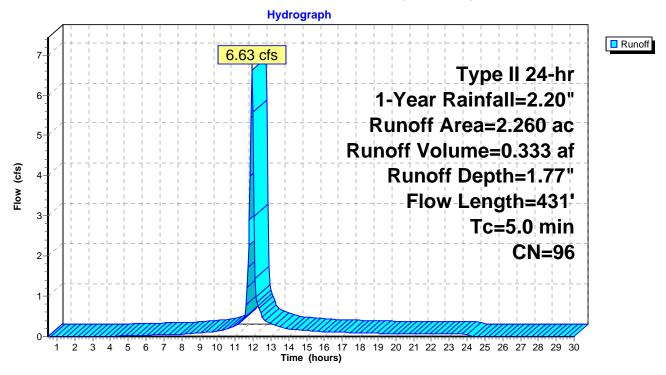
Summary for Subcatchment E-1: Existing Drainage

Runoff = 3.46 cfs @ 12.13 hrs, Volume= 0.335 af, Depth= 0.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

	Area	(ac) C	CN Des	cription		
	0.	351	98 Pave	ed parking	, HSG C	
	0.	495		ods, Fair, H		
	0.	648		ods, Fair, H		
				sh, Good, H		
	6.	021	65 Brus	sh, Good, F	ISG C	
			•	ghted Aver	0	
	12.	209		1% Pervio		
	0.351 2.79% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.1	100	0.0360	1.54		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.3	65	0.0260	3.27		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	15.0	979	0.0240	1.08		Shallow Concentrated Flow, C-D
_						Short Grass Pasture Kv= 7.0 fps
	16.4	1,144	Total			

Subcatchment E-1: Existing Drainage

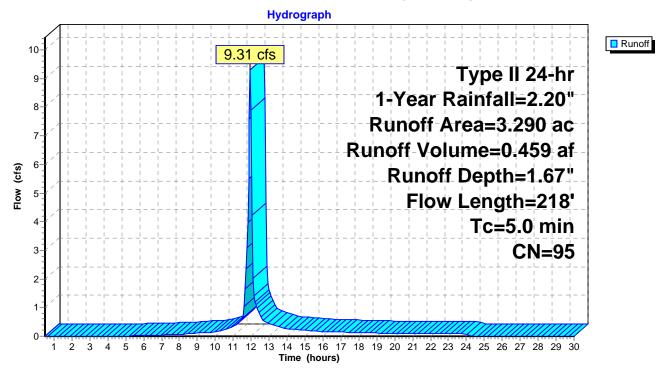

Summary for Subcatchment E-2: Existing Drainage

Runoff = 6.63 cfs @ 11.95 hrs, Volume= 0.333 af, Depth= 1.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

 Area	(ac) C	CN Des	cription					
0.2	268	98 Pav	ed parking	, HSG D				
1.	1.732 98 Paved parking, HSG C							
 0.2	260	84 50-7	5% Grass	cover, Fair	, HSG D			
2.2	260	96 Wei	ghted Aver	age				
0.2	260	11.5	0% Pervio	us Area				
2.	000	88.5	0% Imperv	/ious Area				
Тс	Length	Slope	Velocity	Capacity	Description			
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.8	100	0.0100	0.92		Sheet Flow, A-B			
					Smooth surfaces n= 0.011 P2= 2.50"			
1.6	331	0.0290	3.46		Shallow Concentrated Flow, B-C			
					Paved Kv= 20.3 fps			
3.4	431	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Subcatchment E-2: Existing Drainage

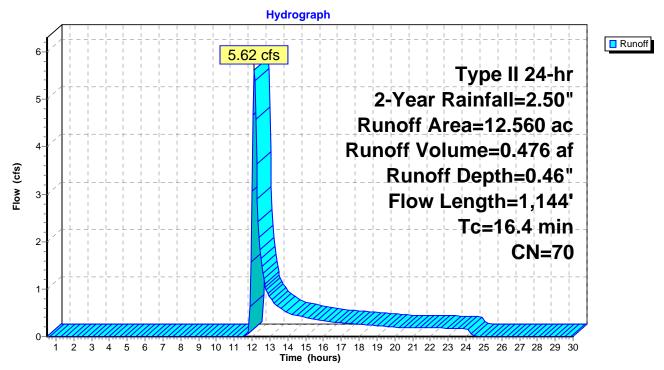

Summary for Subcatchment E-3: Existing Drainage

Runoff = 9.31 cfs @ 11.95 hrs, Volume= 0.459 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

_	Area	(ac)	CN	Desc	cription					
	1.896 98 Paved parking, HSG D									
	0.296 80 >75% Grass cover, Good, HSG D									
	0.191 74 >75% Grass cover, Good, HSG C									
	0.	907	98	Pave	ed parking,	, HSG C				
	3.	290	95	Weig	hted Aver	age				
	0.	487		14.8	0% Pervio	us Area				
	2.	803		85.20	0% Imperv	vious Area				
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	1.6	100	0.0	0130	1.02		Sheet Flow, A-B			
	0.5	118	3 0.0	0380	3.96		Smooth surfaces n= 0.011 P2= 2.50" Shallow Concentrated Flow, B-C Paved Kv= 20.3 fps			
	2.1	218	3 To	Total, Increased to minimum Tc = 5.0 min						

Subcatchment E-3: Existing Drainage



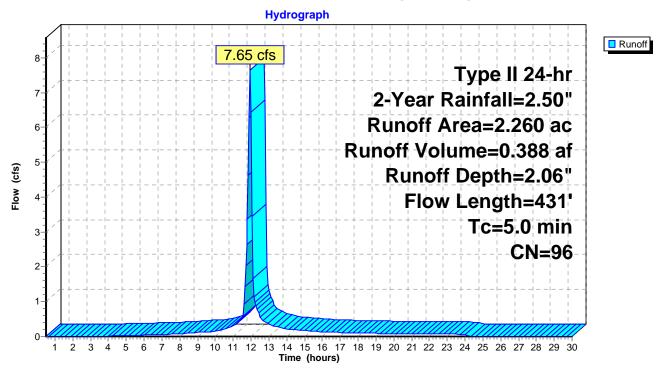
Summary for Subcatchment E-1: Existing Drainage

Runoff = 5.62 cfs @ 12.12 hrs, Volume= 0.476 af, Depth= 0.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

	Area	(ac) C	CN Des	cription		
	0.	351	98 Pave	ed parking	, HSG C	
	0.	495		ods, Fair, H		
	0.	648		ods, Fair, H		
				sh, Good, H		
	6.	021	65 Brus	sh, Good, F	ISG C	
			•	ghted Aver	0	
	12.	209		1% Pervio		
	0.351 2.79% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.1	100	0.0360	1.54		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.3	65	0.0260	3.27		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	15.0	979	0.0240	1.08		Shallow Concentrated Flow, C-D
_						Short Grass Pasture Kv= 7.0 fps
	16.4	1,144	Total			

Subcatchment E-1: Existing Drainage

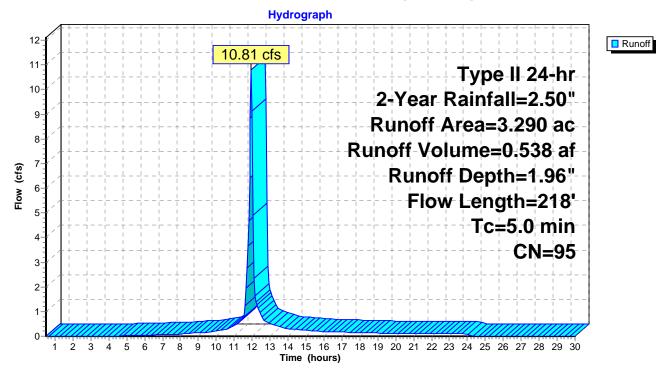

Summary for Subcatchment E-2: Existing Drainage

Runoff = 7.65 cfs @ 11.95 hrs, Volume= 0.388 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

 Area	(ac) C	N Des	cription		
0.	268	98 Pav	ed parking	, HSG D	
1.	732	98 Pave	ed parking	, HSG C	
 0.	260	84 50-7	5% Grass	cover, Fair	, HSG D
2.	260	96 Weig	ghted Aver	age	
0.	260	11.5	0% Pervio	us Area	
2.	000	88.5	0% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.8	100	0.0100	0.92		Sheet Flow, A-B
					Smooth surfaces n= 0.011 P2= 2.50"
1.6	331	0.0290	3.46		Shallow Concentrated Flow, B-C
					Paved Kv= 20.3 fps
3.4	431	Total, I	ncreased t	o minimum	Tc = 5.0 min

Subcatchment E-2: Existing Drainage

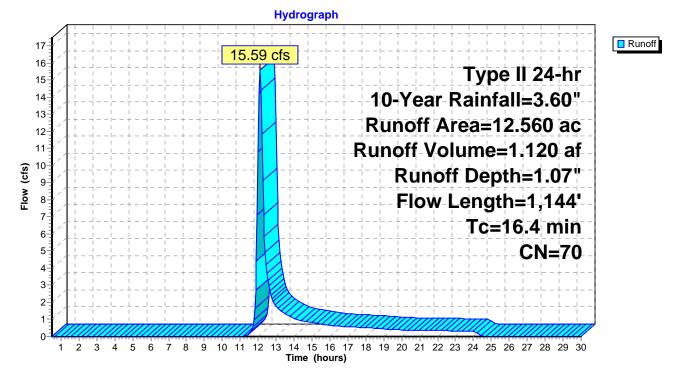

Summary for Subcatchment E-3: Existing Drainage

Runoff = 10.81 cfs @ 11.95 hrs, Volume= 0.538 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

_	Area	(ac) (CN De	escription		
	1.	896	98 Pa	aved parking	, HSG D	
	0.	296	80 >7	75% Grass c	over, Good	, HSG D
	0.	191	74 >7	75% Grass c	over, Good	, HSG C
	0.	907	98 Pa	aved parking	, HSG C	
	3.	290	95 W	eighted Ave	rage	
	0.	487	14	1.80% Pervic	ous Area	
	2.	803	85	5.20% Imper	vious Area	
	Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
	1.6	100	0.013	0 1.02		Sheet Flow, A-B
	0.5	118	0.038	0 3.96		Smooth surfaces n= 0.011 P2= 2.50" Shallow Concentrated Flow, B-C Paved Kv= 20.3 fps
	2.1	218	Total,	Increased	to minimum	n Tc = 5.0 min

Subcatchment E-3: Existing Drainage



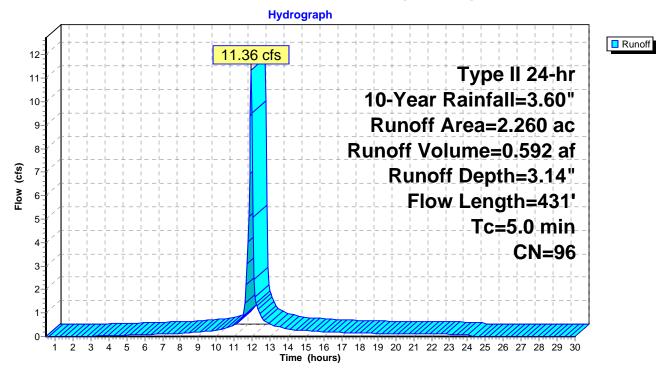
Summary for Subcatchment E-1: Existing Drainage

Runoff = 15.59 cfs @ 12.10 hrs, Volume= 1.120 af, Depth= 1.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

	Area	(ac) C	N Des	cription		
	0.	351	98 Pave	ed parking	, HSG C	
	0.	495	73 Woo	ds, Fair, H	ISG C	
	0.	648		ds, Fair, H		
	5.	045		sh, Good, H		
	6.	021	65 Brus	sh, Good, F	ISG C	
	12.	560	70 Weig	ghted Aver	age	
	12.	209	97.2	1% Pervio	us Area	
	0.	351	2.79	% Impervi	ous Area	
	т.	1	01		O an a site :	Description
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.1	100	0.0360	1.54		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.3	65	0.0260	3.27		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	15.0	979	0.0240	1.08		Shallow Concentrated Flow, C-D
_						Short Grass Pasture Kv= 7.0 fps
	16.4	1,144	Total			

Subcatchment E-1: Existing Drainage

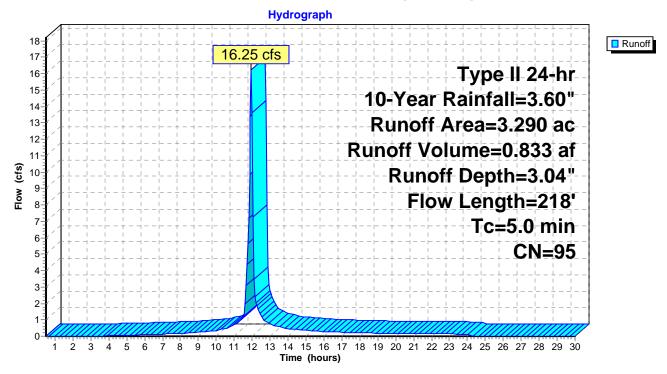

Summary for Subcatchment E-2: Existing Drainage

Runoff = 11.36 cfs @ 11.95 hrs, Volume= 0.592 af, Depth= 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

	Area	(ac) C	N Dese	cription		
	0.	268 9	98 Pave	ed parking	, HSG D	
	1.	732 9	98 Pave	ed parking	, HSG C	
_	0.	<u>260 8</u>	<u>34 50-7</u>	5% Grass	cover, Fair	; HSG D
	2.	260 9	96 Weig	ghted Aver	age	
	0.	260	11.5	0% Pervio	us Area	
	2.	000	88.5	0% Imperv	/ious Area	
	-				o <i>i</i>	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.8	100	0.0100	0.92		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	1.6	331	0.0290	3.46		Shallow Concentrated Flow, B-C
_						Paved Kv= 20.3 fps
	3.4	431	Total.	ncreased t	o minimum	Tc = 5.0 min

Subcatchment E-2: Existing Drainage

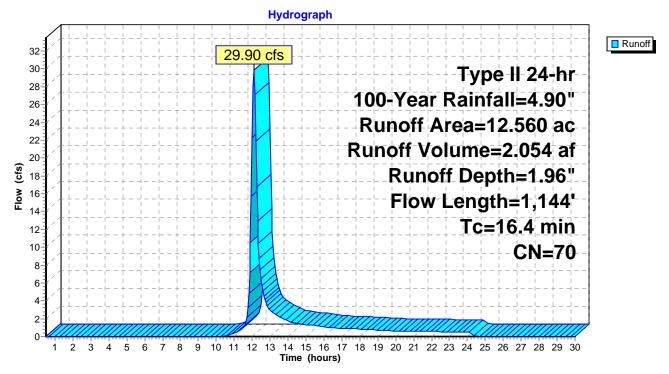

Summary for Subcatchment E-3: Existing Drainage

Runoff = 16.25 cfs @ 11.95 hrs, Volume= 0.833 af, Depth= 3.04"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

	Area	(ac)	CN	Desc	cription		
	1.	896	98	Pave	ed parking,	HSG D	
	0.	296	80	>75%	6 Grass co	over, Good	, HSG D
	0.	191	74	>75%	6 Grass co	over, Good	, HSG C
	0.	907	98	Pave	ed parking,	, HSG C	
	3.	290	95	Weig	hted Aver	age	
	0.	487		14.8	0% Pervio	us Area	
	2.	803		85.2	0% Imperv	vious Area	
	_		_				
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.6	100	0.0	0130	1.02		Sheet Flow, A-B
							Smooth surfaces n= 0.011 P2= 2.50"
	0.5	118	3 0.0	0380	3.96		Shallow Concentrated Flow, B-C
							Paved Kv= 20.3 fps
	2.1	218	3 To	otal, Ir	ncreased t	o minimum	Tc = 5.0 min

Subcatchment E-3: Existing Drainage



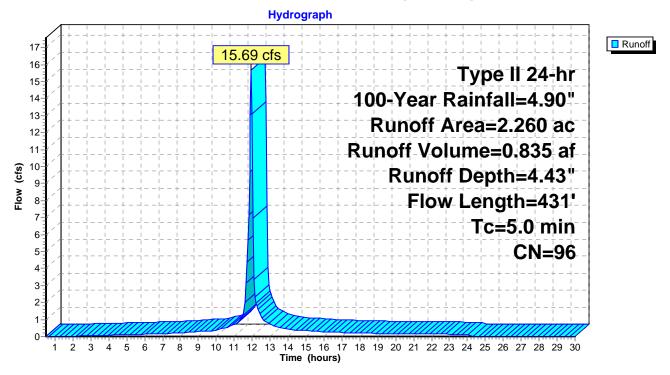
Summary for Subcatchment E-1: Existing Drainage

Runoff = 29.90 cfs @ 12.09 hrs, Volume= 2.054 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"

	Area	(ac) C	N Des	cription		
	0.	351	98 Pave	ed parking	, HSG C	
	0.	495	73 Woo	ds, Fair, H	ISG C	
	0.	648		ds, Fair, H		
	5.	045		sh, Good, H		
	6.	021	65 Brus	sh, Good, F	ISG C	
	12.	560	70 Weig	ghted Aver	age	
	12.	209	97.2	1% Pervio	us Area	
	0.	351	2.79	% Impervi	ous Area	
	т.	1	01		O an a site :	Description
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.1	100	0.0360	1.54		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.3	65	0.0260	3.27		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
	15.0	979	0.0240	1.08		Shallow Concentrated Flow, C-D
_						Short Grass Pasture Kv= 7.0 fps
	16.4	1,144	Total			

Subcatchment E-1: Existing Drainage

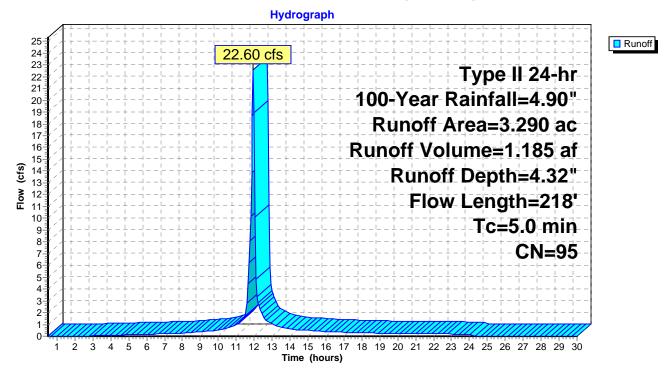

Summary for Subcatchment E-2: Existing Drainage

Runoff = 15.69 cfs @ 11.95 hrs, Volume= 0.835 af, Depth= 4.43"

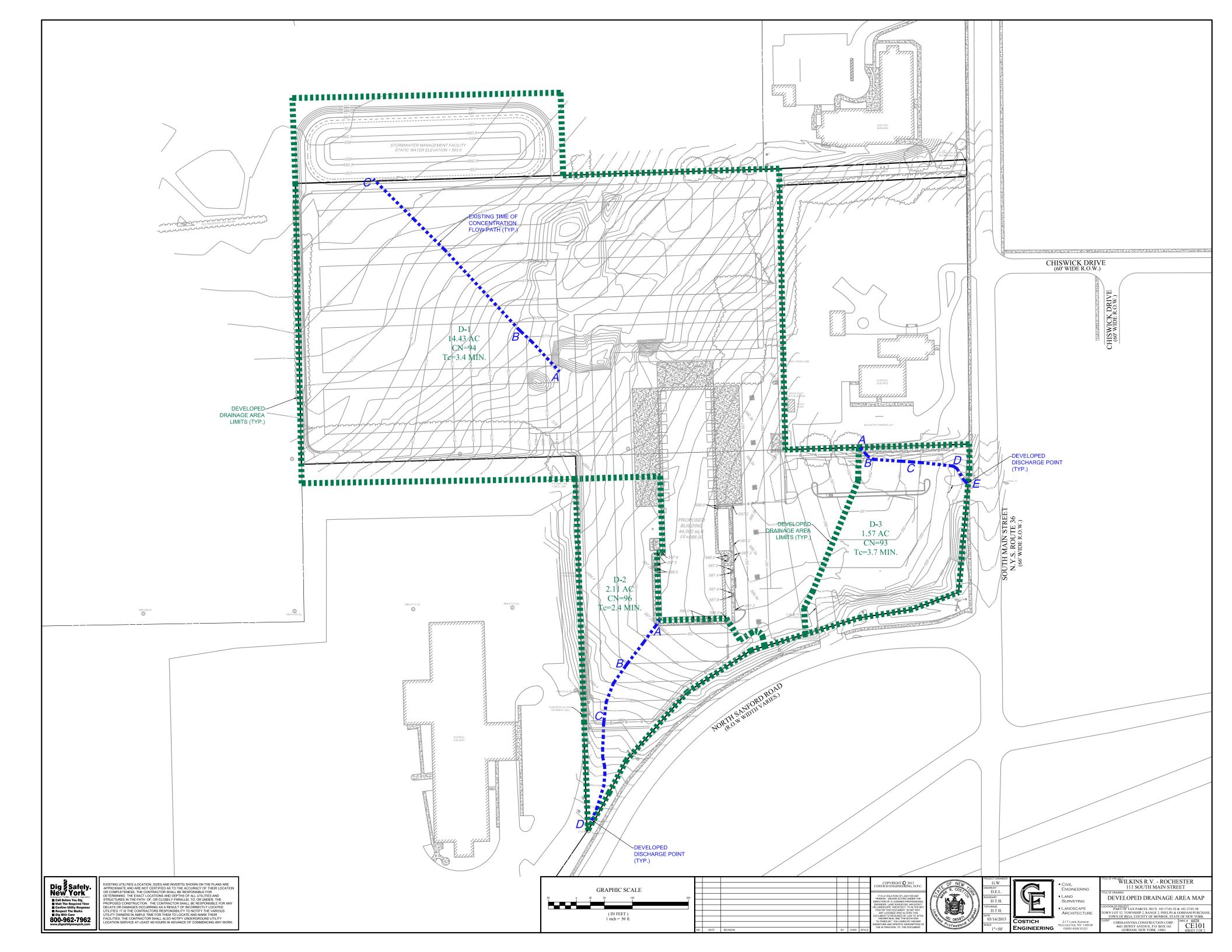
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"

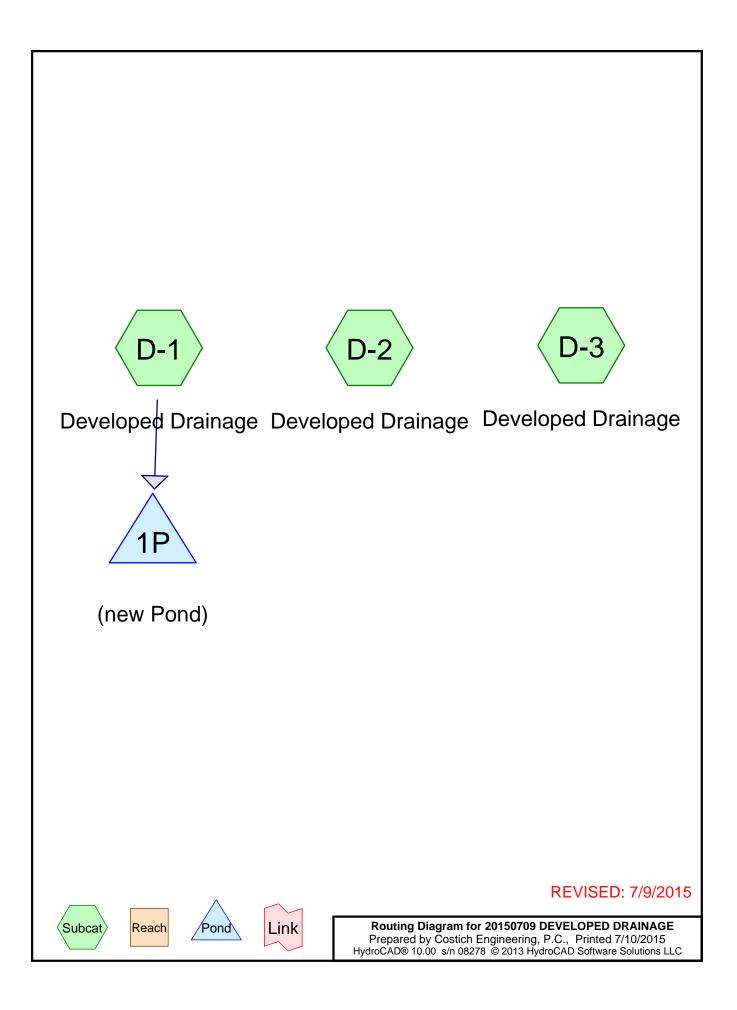
	Area	(ac) C	N Des	cription		
	0.	268 9	98 Pav	ed parking	, HSG D	
	1.	732 9	98 Pav	ed parking	, HSG C	
_	0.	260 8	84 50-7	75% Grass	cover, Fair	, HSG D
	2.	260	96 Wei	ghted Aver	age	
	0.	260	11.5	50% Pervio	us Area	
	2.	000	88.5	50% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.8	100	0.0100	0.92		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	1.6	331	0.0290	3.46		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
_	3.4	431	Total.	ncreased t	o minimum	Tc = 5.0 min

Subcatchment E-2: Existing Drainage


Summary for Subcatchment E-3: Existing Drainage

Runoff = 22.60 cfs @ 11.95 hrs, Volume= 1.185 af, Depth= 4.32"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"


_	Area	(ac) (CN	Desc	ription		
	1.	896	98	Pave	d parking	HSG D	
	0.	296	80	>75%	6 Grass co	over, Good	, HSG D
	0.	191	74	>75%	6 Grass co	over, Good	, HSG C
	0.	907	98	Pave	ed parking,	, HSG C	
	3.	290	95	Weig	hted Aver	age	
	0.	487		14.80	0% Pervio	us Area	
	2.	803		85.20	0% Imperv	vious Area	
	Tc (min)	Length (feet)		ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.6	100	0.0	130	1.02		Sheet Flow, A-B
	0.5	118	0.03	380	3.96		Smooth surfaces n= 0.011 P2= 2.50" Shallow Concentrated Flow, B-C Paved Kv= 20.3 fps
	2.1	218	Tot	al, Ir	ncreased t	o minimum	Tc = 5.0 min

Subcatchment E-3: Existing Drainage

APPENDIX II

Prepared by Costich Engineering, P.C. HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

Area Listing (all nodes)

A	vrea CN	1	Description
(ac	res)		(subcatchment-numbers)
0.	260 84	4	50-75% Grass cover, Fair, HSG D (D-2)
1.	539 74	4	>75% Grass cover, Good, HSG C (D-1, D-3)
1.	161 80	C	>75% Grass cover, Good, HSG D (D-1, D-3)
13.	202 98	3	Paved parking, HSG C (D-1, D-2, D-3)
1.	388 98	3	Paved parking, HSG D (D-2, D-3)
0.	240 73	3	Woods, Fair, HSG C (D-1)
0.	320 79	Э	Woods, Fair, HSG D (D-1)
18.	110 94	4	TOTAL AREA

Prepared by Costich Engineering, P.C. HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
14.981	HSG C	D-1, D-2, D-3
3.129	HSG D	D-1, D-2, D-3
0.000	Other	
18.110		TOTAL AREA

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE

Prepared by Costich Engineering, P.C. Print HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

Printed 7/10/2015 Page 4

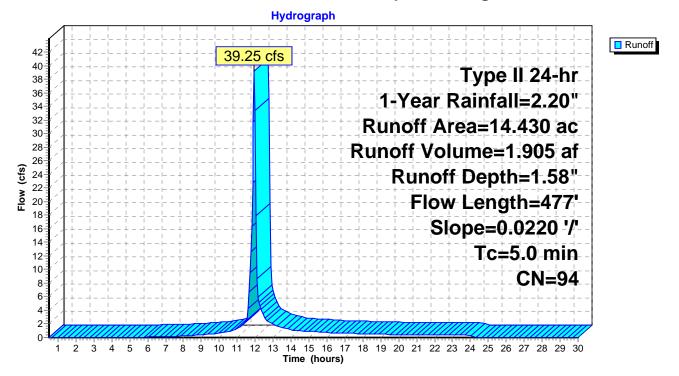
Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.260	0.000	0.260	50-75% Grass cover, Fair	D-2
0.000	0.000	1.539	1.161	0.000	2.700	>75% Grass cover, Good	D-1, D-3
0.000	0.000	13.202	1.388	0.000	14.590	Paved parking	D-1, D-2,
							D-3
0.000	0.000	0.240	0.320	0.000	0.560	Woods, Fair	D-1
0.000	0.000	14.981	3.129	0.000	18.110	TOTAL AREA	

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE Prepared by Costich Engineering, P.C. <u>HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD</u>	Type II 24-hr 1-Year Rainfall=2.20" Printed 7/10/2015 D Software Solutions LLC Page 5
Runoff by SCS TR-2	30.00 hrs, dt=0.05 hrs, 591 points 20 method, UH=SCS, Weighted-CN ns method - Pond routing by Stor-Ind method
	Runoff Area=14.430 ac 80.25% Impervious Runoff Depth=1.58" Slope=0.0220 '/' Tc=5.0 min CN=94 Runoff=39.25 cfs 1.905 af
Subcatchment D-2: Developed Drainage	Runoff Area=2.110 ac 87.68% Impervious Runoff Depth=1.77" Flow Length=355' Tc=5.0 min CN=96 Runoff=6.19 cfs 0.311 af
Subcatchment D-3: Developed Drainage	Runoff Area=1.570 ac 73.89% Impervious Runoff Depth=1.50" Flow Length=214' Tc=5.0 min CN=93 Runoff=4.09 cfs 0.196 af
Pond 1P: (new Pond)	Peak Elev=564.17' Storage=53,417 cf Inflow=39.25 cfs 1.905 af Outflow=1.17 cfs 1.487 af

Total Runoff Area = 18.110 ac Runoff Volume = 2.412 af Average Runoff Depth = 1.60" 19.44% Pervious = 3.520 ac 80.56% Impervious = 14.590 ac

Summary for Subcatchment D-1: Developed Drainage

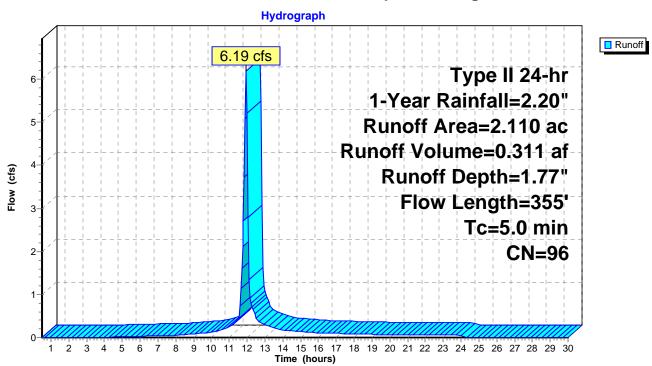

[49] Hint: Tc<2dt may require smaller dt

Runoff = 39.25 cfs @ 11.95 hrs, Volume= 1.905 af, Depth= 1.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

	Area	(ac)	CN	Desc	cription		
	11.	580	98	Pave	ed parking	HSG C	
	0.	240	73	Woo	ds, Fair, H	ISG C	
	0.	320	79	Woo	ds, Fair, H	ISG D	
	1.	400	74	>75%	% Grass co	over, Good,	, HSG C
	0.	890	80	>75%	% Grass co	over, Good,	, HSG D
	14.	430	94	Weig	ghted Aver	age	
	2.	850		19.7	5% Pervio	us Area	
	11.	580		80.2	5% Imperv	vious Area	
	Тс	Length	า 5	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	100	0.	0220	1.26		Sheet Flow, A-B
							Smooth surfaces n= 0.011 P2= 2.50"
	2.1	377	7 0.	0220	3.01		Shallow Concentrated Flow, B-C
							Paved Kv= 20.3 fps
_	3.4	477	7 To	otal, Ir	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-1: Developed Drainage


Summary for Subcatchment D-2: Developed Drainage

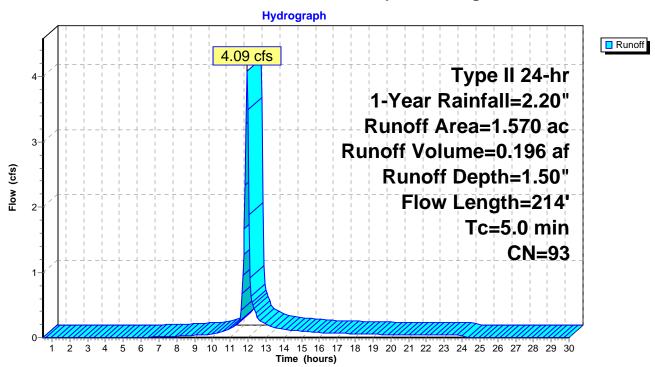
[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.19 cfs @ 11.95 hrs, Volume= 0.311 af, Depth= 1.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

_	Area	(ac) C	N Desc	cription			
	0.	528 9	8 Pave	ed parking	, HSG D		
	1.	322 9	8 Pave	ed parking, HSG C			
_	0.	260 8	84 50-7	5% Grass	cover, Fair	r, HSG D	
	2.	110 9	6 Weig	ghted Aver	age		
	0.260 12.32% Pervious Area				us Area		
	1.	850	87.6	8% Imperv	vious Area		
	_						
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	1.3	100	0.0250	1.33		Sheet Flow, A-B	
						Smooth surfaces n= 0.011 P2= 2.50"	
	0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D	
						Paved Kv= 20.3 fps	
	0.7	182	0.0660	4.14		Shallow Concentrated Flow, D-E	
						Unpaved Kv= 16.1 fps	
	2.4	355	Total, I	ncreased t	o minimum	Tc = 5.0 min	

Subcatchment D-2: Developed Drainage


Summary for Subcatchment D-3: Developed Drainage

[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.09 cfs @ 11.95 hrs, Volume= 0.196 af, Depth= 1.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 1-Year Rainfall=2.20"

Area	(ac) C	N Desc	cription		
0.	860 9	98 Pave	ed parking	HSG D	
0.	271 8	30 >75%	% Grass co	over, Good,	, HSG D
0.				over, Good,	, HSG C
0.	300 9	8 Pave	ed parking	HSG C	
1.	570 9		ghted Aver		
-	410		1% Pervio		
1.	160	73.8	9% Imperv	vious Area	
То	Longth	Slope	Valagity	Conocity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.0		0.1500	0.17	(013)	Shoot Flow A P
2.0	20	0.1500	0.17		Sheet Flow, A-B Grass: Dense n= 0.240 P2= 2.50"
1.0	80	0.0250	1.27		Sheet Flow, B-C
1.0	00	0.0250	1.21		Smooth surfaces $n=0.011$ P2= 2.50"
0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
					Paved $Kv = 20.3 \text{ fps}$
0.3	41	0.0250	2.55		Shallow Concentrated Flow, D-E
					Unpaved Kv= 16.1 fps
3.7	214	Total, li	ncreased t	o minimum	Tc = 5.0 min

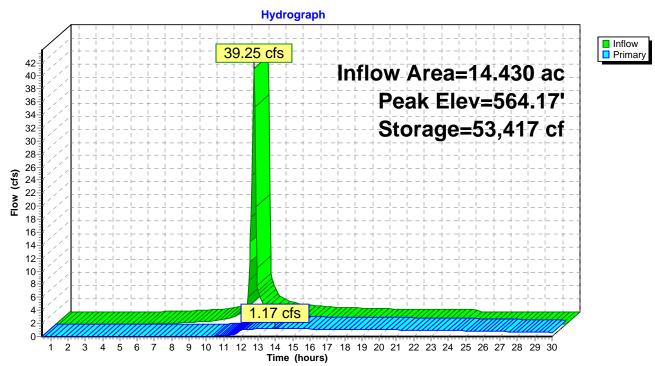
Subcatchment D-3: Developed Drainage

Summary for Pond 1P: (new Pond)

Inflow = 39.25 cfs @ 11 Outflow = 1.17 cfs @ 13	25% Impervious, Inflow Depth = 1.58" for 1-Year event 1.95 hrs, Volume= 1.905 af 3.95 hrs, Volume= 1.487 af, Atten= 97%, Lag= 120.0 min 3.95 hrs, Volume= 1.487 af								
Routing by Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Peak Elev= 564.17' @ 13.95 hrs Surf.Area= 33,614 sf Storage= 53,417 cf									
Center-of-Mass det. time= 399.0 m									
Volume Invert Avail.Stor	rage Storage Description								
#1 562.40' 164,16	63 cf Custom Stage Data (Prismatic)Listed below (Recalc)								
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)								
562.40 26,630	0 0								
567.00 44,745	164,163 164,163								
Device Routing Invert	Outlet Devices								
#1 Primary 562.40'	15.0" Round Culvert								
	L= 30.0' Box, headwall w/3 square edges, Ke= 0.500								
	Inlet / Outlet Invert= 562.40' / 562.40' S= 0.0000 '/' Cc= 0.900								
	n= 0.013, Flow Area= 1.23 sf								
#2 Device 1 564.50'	24.0" x 24.0" Horiz. Top of Grate C= 0.600								
#3 Device 1 562.40'	Limited to weir flow at low heads 6.0" Vert. low flow orifice C= 0.600								
#3 Device 1 562.40' #4 Primary 566.20'	20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)								
#4 Filliary 500.20									
Primary OutFlow Max-1 17 cfs @	0 13 95 hrs HW=564 17' (Free Discharge)								

Primary OutFlow Max=1.17 cfs @ 13.95 hrs HW=564.17' (Free Discharge)

-1=Culvert (Passes 1.17 cfs of 4.80 cfs potential flow)


2=Top of Grate (Controls 0.00 cfs) 3=low flow orifice (Orifice Controls 1.17 cfs @ 5.94 fps)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE

Prepared by Costich Engineering, P.C.

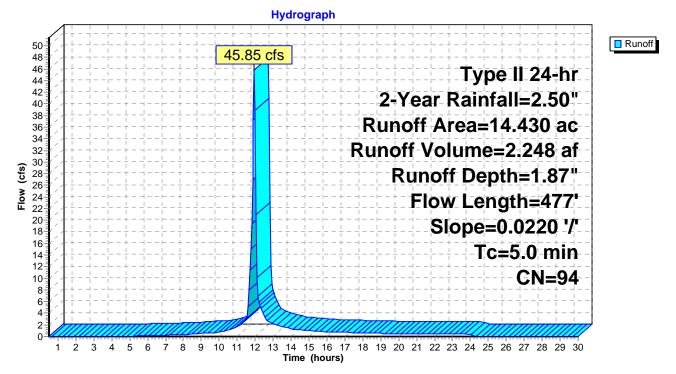
HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

Pond 1P: (new Pond)

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE Prepared by Costich Engineering, P.C. <u>HydroCAD® 10.00 s/n 08278 © 2013 HydroCA</u>	Printed 7/10/2015
Runoff by SCS TR	9-30.00 hrs, dt=0.05 hrs, 591 points 2-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment D-1: Developed Drainage Flow Length=477'	Runoff Area=14.430 ac 80.25% Impervious Runoff Depth=1.87" Slope=0.0220 '/' Tc=5.0 min CN=94 Runoff=45.85 cfs 2.248 af
Subcatchment D-2: Developed Drainage	Runoff Area=2.110 ac 87.68% Impervious Runoff Depth=2.06" Flow Length=355' Tc=5.0 min CN=96 Runoff=7.14 cfs 0.362 af
Subcatchment D-3: Developed Drainage	Runoff Area=1.570 ac 73.89% Impervious Runoff Depth=1.78" Flow Length=214' Tc=5.0 min CN=93 Runoff=4.81 cfs 0.233 af
Pond 1P: (new Pond)	Peak Elev=564.48' Storage=63,863 cf Inflow=45.85 cfs 2.248 af Outflow=1.28 cfs 1.688 af

Total Runoff Area = 18.110 ac Runoff Volume = 2.843 af Average Runoff Depth = 1.88" 19.44% Pervious = 3.520 ac 80.56% Impervious = 14.590 ac

Summary for Subcatchment D-1: Developed Drainage

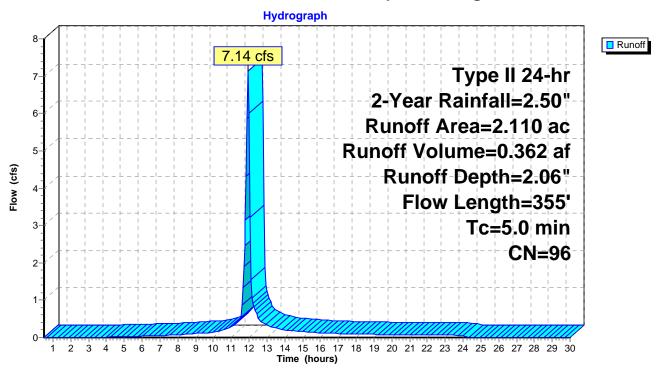

[49] Hint: Tc<2dt may require smaller dt

Runoff = 45.85 cfs @ 11.95 hrs, Volume= 2.248 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

	Area	(ac)	CN	Desc	cription		
	11.	580	98	Pave	ed parking,	HSG C	
	0.	240	73	Woo	ds, Fair, H	ISG C	
	0.	320	79	Woo	ds, Fair, H	ISG D	
	1.	400	74	>75%	% Grass co	over, Good,	, HSG C
	0.	890	80	>75%	% Grass co	over, Good,	, HSG D
	14.	430	94	Weig	ghted Aver	age	
	2.	850		19.7	5% Pervio	us Area	
	11.	580		80.2	5% Imperv	vious Area	
	Тс	Length	n S	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	100) 0.0	0220	1.26		Sheet Flow, A-B
							Smooth surfaces n= 0.011 P2= 2.50"
	2.1	377	0.0	0220	3.01		Shallow Concentrated Flow, B-C
							Paved Kv= 20.3 fps
_	3.4	477	′ To	otal, li	ncreased t	o minimum	Tc = 5.0 min
				-			

Subcatchment D-1: Developed Drainage


Summary for Subcatchment D-2: Developed Drainage

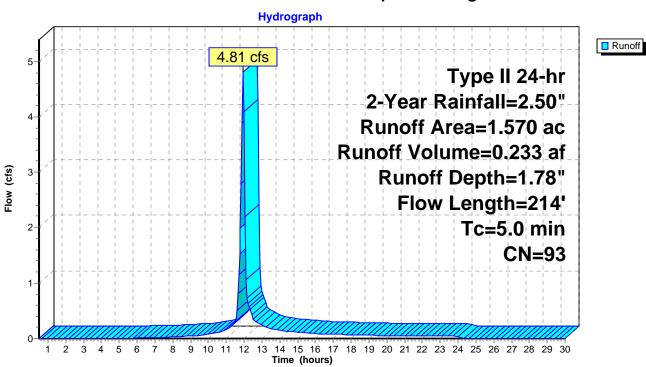
[49] Hint: Tc<2dt may require smaller dt

Runoff = 7.14 cfs @ 11.95 hrs, Volume= 0.362 af, Depth= 2.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

_	Area	(ac) C	N Dese	cription		
	0.	528 9	8 Pave	ed parking,	, HSG D	
	1.	322 9	8 Pave	ed parking,	, HSG C	
0.260 84 50-75% Grass cover, Fair, HSG D						, HSG D
	2.	110 9	6 Weig	ghted Aver	age	
	0.	260	12.3	2% Pervio	us Area	
	1.	850	87.6	8% Imperv	vious Area	
	_		-			
	TC	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	100	0.0250	1.33		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
						Paved Kv= 20.3 fps
	0.7	182	0.0660	4.14		Shallow Concentrated Flow, D-E
_						Unpaved Kv= 16.1 fps
	2.4	355	Total, I	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-2: Developed Drainage


Summary for Subcatchment D-3: Developed Drainage

[49] Hint: Tc<2dt may require smaller dt

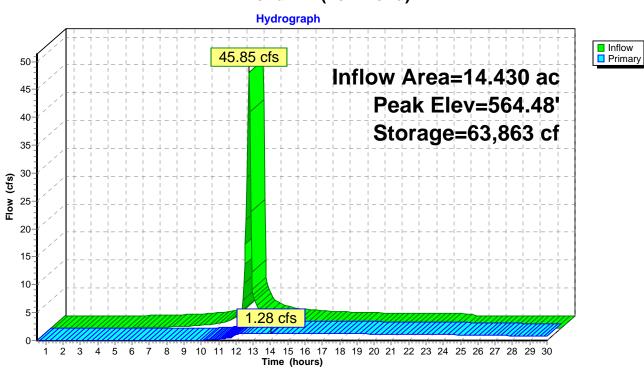
Runoff = 4.81 cfs @ 11.95 hrs, Volume= 0.233 af, Depth= 1.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.50"

Area	(ac) C	N Desc	cription		
0.	860 9	8 Pave	ed parking	HSG D	
0.	271 8	80 >75%	% Grass co	over, Good,	, HSG D
0.				over, Good,	, HSG C
0.	300 9	8 Pave	ed parking	HSG C	
1.	570 9	93 Weig	ghted Aver	age	
-	410		1% Pervio		
1.	160	73.8	9% Imperv	vious Area	
-		~		a <i>i</i>	
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.0	20	0.1500	0.17		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 2.50"
1.0	80	0.0250	1.27		Sheet Flow, B-C
					Smooth surfaces $n=0.011$ P2= 2.50"
0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
					Paved Kv= 20.3 fps
0.3	41	0.0250	2.55		Shallow Concentrated Flow, D-E
					Unpaved Kv= 16.1 fps
3.7	214	Total, li	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-3: Developed Drainage

Summary for Pond 1P: (new Pond)


Inflow A Inflow Outflow Primary	= =	45.85 cfs @ 1 1.28 cfs @ 1	25% Impervious, Inflow Depth = 1.87" for 2-Year event 1.95 hrs, Volume= 2.248 af 4.06 hrs, Volume= 1.688 af, Atten= 97%, Lag= 126.6 min 4.06 hrs, Volume= 1.688 af							
	Routing by Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Peak Elev= 564.48' @ 14.06 hrs Surf.Area= 34,816 sf Storage= 63,863 cf									
	Plug-Flow detention time= 497.3 min calculated for 1.688 af (75% of inflow) Center-of-Mass det. time= 407.9 min (1,199.4 - 791.4)									
Volume	Inv	ert Avail.Sto	brage Storage Description							
#1	562.4	164,10	63 cf Custom Stage Data (Prismatic)Listed below (Recalc)							
Elevatio (fee	-	Surf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)							
562.4	40	26,630	0 0							
567.0	00	44,745	164,163 164,163							
Device	Routing	Invert	Outlet Devices							
#1	Primary	562.40'	15.0" Round Culvert L= 30.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 562.40' / 562.40' S= 0.0000 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf							
#2	Device 1	564.50'								
#3	Device 1	562.40'								
#4	Primary	566.20'								
	,									

Primary OutFlow Max=1.28 cfs @ 14.06 hrs HW=564.48' (Free Discharge)

-1=Culvert (Passes 1.28 cfs of 6.04 cfs potential flow)

2=Top of Grate (Controls 0.00 cfs) **3=low flow orifice** (Orifice Controls 1.28 cfs @ 6.51 fps)

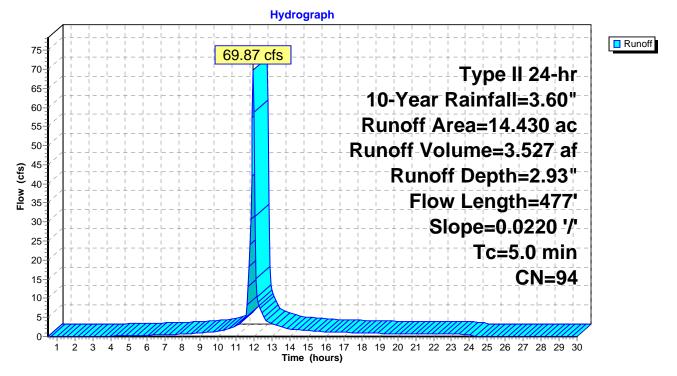
-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: (new Pond)

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE Prepared by Costich Engineering, P.C. <u>HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Sol</u>	Type II 24-hr 10-Year Rainfall=3.60" Printed 7/10/2015 utions LLC Page 23
Time span=0.50-30.00 hrs, dt= Runoff by SCS TR-20 method, U Reach routing by Stor-Ind+Trans method	H=SCS, Weighted-CN
	4.430 ac 80.25% Impervious Runoff Depth=2.93" '/' Tc=5.0 min CN=94 Runoff=69.87 cfs 3.527 af
	=2.110 ac 87.68% Impervious Runoff Depth=3.14" 5' Tc=5.0 min CN=96 Runoff=10.60 cfs 0.553 af
	=1.570 ac 73.89% Impervious Runoff Depth=2.83" 14' Tc=5.0 min CN=93 Runoff=7.44 cfs 0.370 af
Pond 1P: (new Pond) Peak Elev=56	5.07' Storage=85,137 cf Inflow=69.87 cfs 3.527 af Outflow=7.91 cfs 2.826 af

Total Runoff Area = 18.110 ac Runoff Volume = 4.450 af Average Runoff Depth = 2.95" 19.44% Pervious = 3.520 ac 80.56% Impervious = 14.590 ac

Summary for Subcatchment D-1: Developed Drainage

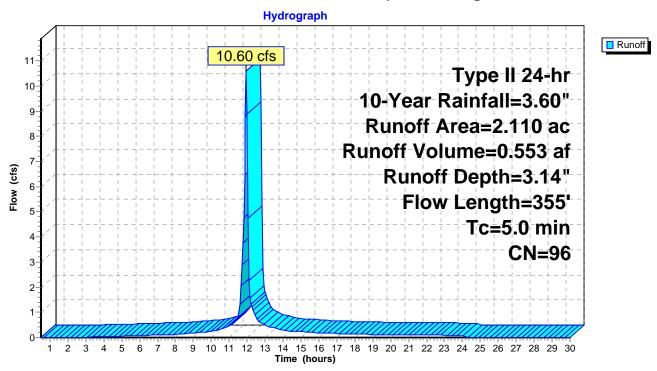

[49] Hint: Tc<2dt may require smaller dt

Runoff = 69.87 cfs @ 11.95 hrs, Volume= 3.527 af, Depth= 2.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

 Area	(ac)	CN	Desc	cription		
11.	580	98	Pave	ed parking,	HSG C	
0.	240	73	Woo	ds, Fair, H	ISG C	
0.	320	79	Woo	ds, Fair, H	ISG D	
1.	400	74	>75%	% Grass co	over, Good,	, HSG C
 0.	890	80	>75%	% Grass co	over, Good,	, HSG D
14.	430	94	Weig	ghted Aver	age	
2.	850		19.7	5% Pervio	us Area	
11.	580		80.2	5% Imperv	vious Area	
Тс	Lengt	h :	Slope	Velocity	Capacity	Description
 (min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
1.3	10	0 0	.0220	1.26		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
2.1	37	7 0.	.0220	3.01		Shallow Concentrated Flow, B-C
						Paved Kv= 20.3 fps
3.4	47	7 T	otal, lı	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-1: Developed Drainage


Summary for Subcatchment D-2: Developed Drainage

[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.60 cfs @ 11.95 hrs, Volume= 0.553 af, Depth= 3.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

Area (ac) CN Description 0.528 98 Paved parking, HSG D									
	0.	528 9	8 Pave	ed parking	, HSG D				
	1.	322 9	8 Pave	ed parking	, HSG C				
_	0.	<u>260 8</u>	<u>34 50-7</u>	5% Grass	cover, Fair	, HSG D			
	2.	110 9	6 Weig	ghted Aver	age				
		260	12.3	2% Pervio	us Area				
	1.	850	87.6	8% Imperv	vious Area				
	τ.	1	01		0	Description			
	TC	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.3	100	0.0250	1.33		Sheet Flow, A-B			
						Smooth surfaces n= 0.011 P2= 2.50"			
	0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D			
						Paved Kv= 20.3 fps			
	0.7	182	0.0660	4.14		Shallow Concentrated Flow, D-E			
_						Unpaved Kv= 16.1 fps			
	2.4	355	Total, I	ncreased t	o minimum	Tc = 5.0 min			

Subcatchment D-2: Developed Drainage

Summary for Subcatchment D-3: Developed Drainage

[49] Hint: Tc<2dt may require smaller dt

7.44 cfs @ 11.95 hrs, Volume= 0.370 af, Depth= 2.83" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.60"

Area	(ac) C	N Desc	cription		
0.	860 9	8 Pave	ed parking,	HSG D	
0.	271 8	80 >75%	% Grass co	over, Good,	, HSG D
0.	139 7			over, Good,	, HSG C
0.	300 9	8 Pave	ed parking,	HSG C	
1.	570 9		ghted Aver		
-	410	-	1% Pervio		
1.	160	73.8	9% Imperv	vious Area	
_				a 1.	— • • • •
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.0	20	0.1500	0.17		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 2.50"
1.0	80	0.0250	1.27		Sheet Flow, B-C
					Smooth surfaces n= 0.011 P2= 2.50"
0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
					Paved Kv= 20.3 fps
0.3	41	0.0250	2.55		Shallow Concentrated Flow, D-E
					Unpaved Kv= 16.1 fps
3.7	214	Total, li	ncreased t	o minimum	Tc = 5.0 min

Hydrograph Runoff 8-7.44 cfs Type II 24-hr 7-10-Year Rainfall=3.60" Runoff Area=1.570 ac 6-Runoff Volume=0.370 af 5-Flow (cfs) Runoff Depth=2.83" 4-Flow Length=214' Tc=5.0 min 3-**CN=93** 2-1-0-14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours) 3 4 6 7 8 9 10 11 12 13 2 5 1

Subcatchment D-3: Developed Drainage

Summary for Pond 1P: (new Pond)

Inflow Area	a =	14.430 ac, 80.25% Impervious, Inflow Depth = 2.93" for 10-Year event	
Inflow	=	69.87 cfs @ 11.95 hrs, Volume= 3.527 af	
Outflow	=	7.91 cfs @ 12.27 hrs, Volume= 2.826 af, Atten= 89%, Lag= 19.0 min	
Primary	=	7.91 cfs @ 12.27 hrs, Volume= 2.826 af	
	.		

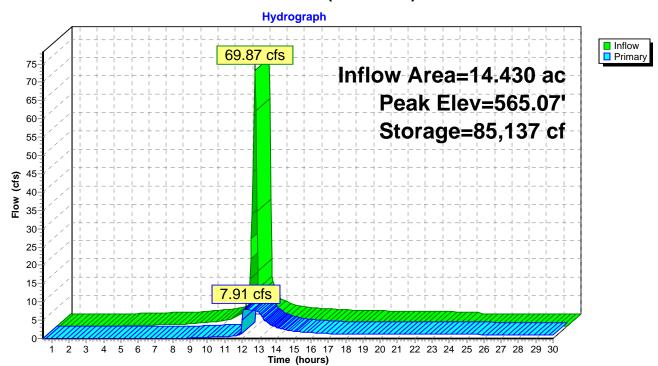
Routing by Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Peak Elev= 565.07' @ 12.27 hrs Surf.Area= 37,144 sf Storage= 85,137 cf

Plug-Flow detention time= 353.4 min calculated for 2.826 af (80% of inflow) Center-of-Mass det. time= 273.9 min (1,052.9 - 779.1)

Volume	Inve	rt Avail.Sto	rage	Storage	Description				
#1	562.40	562.40' 164,16		Custom	Stage Data (P	rismatic)Listed below (Recalc)			
Elevatio	et)	Surf.Area (sq-ft)		Store: c-feet)	Cum.Store (cubic-feet)				
562.4	40	26,630		0	0				
567.0	00	44,745	16	64,163	164,163				
Device #1	Routing Primary	Invert 562.40'	15.0 L= 3 Inlet n= 0	Outlet Devices 15.0" Round Culvert L= 30.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 562.40' / 562.40' S= 0.0000 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf					
#2	Device 1	564.50'		24.0" x 24.0" Horiz. Top of Grate C= 0.600 Limited to weir flow at low heads					
#3	Device 1	562.40'	6.0"	Vert. low	flow orifice	C= 0.600			
#4	Primary	566.20'	20.0	' long Sha	arp-Crested Re	ectangular Weir 2 End Contraction(s)			
Duine and	0		A ∩ C						

Primary OutFlow Max=7.91 cfs @ 12.27 hrs HW=565.07' (Free Discharge)

-1=Culvert (Barrel Controls 7.91 cfs @ 6.45 fps)


-2=Top of Grate (Passes < 11.25 cfs potential flow)

—3=low flow orifice (Passes < 1.47 cfs potential flow)

4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE

Prepared by Costich Engineering, P.C. HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

Pond 1P: (new Pond)

Page 31

Printed 7/10/2015

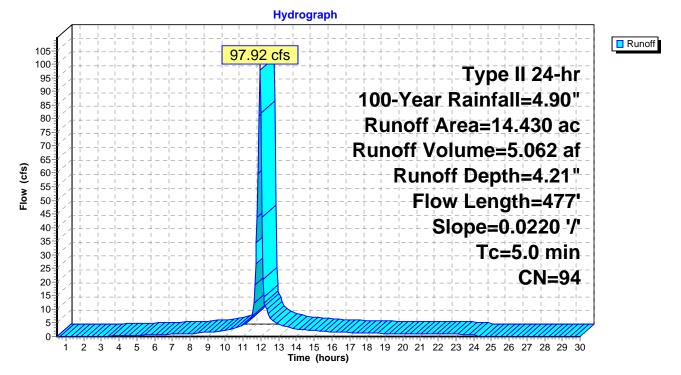
Type II 24-hr 10-Year Rainfall=3.60"

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE Prepared by Costich Engineering, P.C. HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC Printed 7/10/2015 Printed 7/10/2015 Page 32								
Time span=0.50-30.00 hrs, dt=0.05 hrs, 591 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method								
Subcatchment D-1: Developed Drainage Flow Length=477'Runoff Area=14.430 ac Slope=0.0220 '/' Tc=5.0 min CN=94Runoff Depth=4.21" Runoff=97.92 cfs								
Subcatchment D-2: Developed Drainage Runoff Area=2.110 ac 87.68% Impervious Runoff Depth=4.43" Flow Length=355' Tc=5.0 min CN=96 Runoff=14.65 cfs 0.779 af								
Subcatchment D-3: Developed Drainage Runoff Area=1.570 ac 73.89% Impervious Runoff Depth=4.10" Flow Length=214' Tc=5.0 min CN=93 Runoff=10.51 cfs 0.536 af								
Pond 1P: (new Pond) Peak Elev=566.01' Storage=121,988 cf Inflow=97.92 cfs 5.062 af Outflow=10.21 cfs 4.256 af								
Total During the Annual Annual During the National Control Automatic During the Annual Control Automat								

Total Runoff Area = 18.110 ac Runoff Volume = 6.378 af Average Runoff Depth = 4.23" 19.44% Pervious = 3.520 ac 80.56% Impervious = 14.590 ac

Summary for Subcatchment D-1: Developed Drainage

Page 33


[49] Hint: Tc<2dt may require smaller dt

97.92 cfs @ 11.95 hrs, Volume= 5.062 af, Depth= 4.21" Runoff =

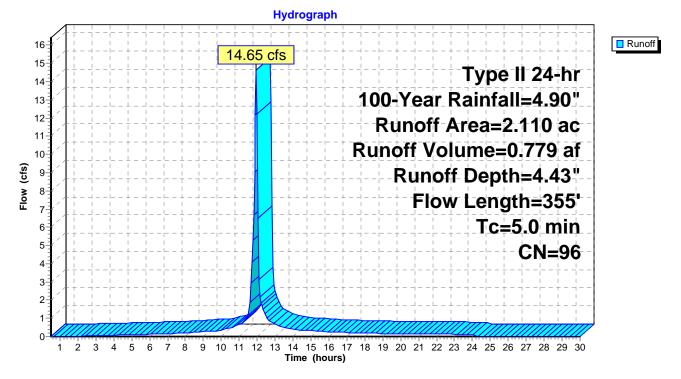
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"

_	Area	(ac)	CN	Desc	cription		
	11.	580	98	Pave	ed parking,	HSG C	
	0.2	240	73	Woo	ds, Fair, H	ISG C	
	0.3	320	79	Woo	ds, Fair, H	ISG D	
	1.4	400	74	>75%	% Grass co	over, Good,	, HSG C
	0.8	890	80	>75%	% Grass co	over, Good,	, HSG D
	14.4	430	94	Weig	ghted Aver	age	
	2.	850		19.7	5% Pervio	us Area	
	11.	580		80.2	5% Imperv	vious Area	
	Тс	Lengt	h :	Slope	Velocity	Capacity	Description
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	10	0 0	.0220	1.26		Sheet Flow, A-B
							Smooth surfaces n= 0.011 P2= 2.50"
	2.1	37	7 0.	.0220	3.01		Shallow Concentrated Flow, B-C
							Paved Kv= 20.3 fps
	3.4	47	7 T	otal, Ir	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-1: Developed Drainage

Printed 7/10/2015

Page 35


[49] Hint: Tc<2dt may require smaller dt

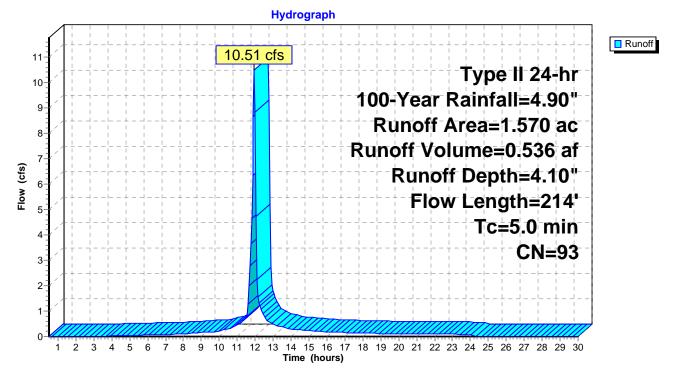
14.65 cfs @ 11.95 hrs, Volume= 0.779 af, Depth= 4.43" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"

_	Area	(ac) C	N Desc	cription		
	0.	528 9	8 Pave	ed parking	, HSG D	
	1.	322 9	8 Pave	ed parking	, HSG C	
_	0.	<u>260 8</u>	<u>34 50-7</u>	5% Grass	cover, Fair	, HSG D
	2.	110 9		ghted Aver		
	0.	260	12.3	2% Pervio	us Area	
	1.	850	87.6	8% Imperv	vious Area	
	_		-			
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.3	100	0.0250	1.33		Sheet Flow, A-B
						Smooth surfaces n= 0.011 P2= 2.50"
	0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
						Paved Kv= 20.3 fps
	0.7	182	0.0660	4.14		Shallow Concentrated Flow, D-E
_						Unpaved Kv= 16.1 fps
	2.4	355	Total, li	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-2: Developed Drainage

Summary for Subcatchment D-3: Developed Drainage


[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.51 cfs @ 11.95 hrs, Volume= 0.536 af, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.90"

Area	(ac) C	N Desc	cription		
0.	860 9	8 Pave	ed parking	, HSG D	
0.	271 8	80 >75%	% Grass co	over, Good	, HSG D
				over, Good	, HSG C
0.	300 9	8 Pave	ed parking	, HSG C	
1.	570 9	93 Weig	ghted Aver	age	
0.	410		1% Pervio		
1.	160	73.8	9% Imperv	vious Area	
_				a 1	- · · · ·
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.0	20	0.1500	0.17		Sheet Flow, A-B
					Grass: Dense n= 0.240 P2= 2.50"
1.0	80	0.0250	1.27		Sheet Flow, B-C
					Smooth surfaces n= 0.011 P2= 2.50"
0.4	73	0.0250	3.21		Shallow Concentrated Flow, C-D
					Paved Kv= 20.3 fps
0.3	41	0.0250	2.55		Shallow Concentrated Flow, D-E
					Unpaved Kv= 16.1 fps
3.7	214	Total, li	ncreased t	o minimum	Tc = 5.0 min

Subcatchment D-3: Developed Drainage

Summary for Pond 1P: (new Pond)

Inflow A Inflow Outflow Primary	= =	97.92 cfs @ 1 10.21 cfs @ 12	25% Impervious, Inflow Depth = 4.21" for 100-Year event 1.95 hrs, Volume= 5.062 af 2.31 hrs, Volume= 4.256 af, Atten= 90%, Lag= 21.8 min 2.31 hrs, Volume= 4.256 af							
	Routing by Stor-Ind method, Time Span= 0.50-30.00 hrs, dt= 0.05 hrs Peak Elev= 566.01' @ 12.31 hrs Surf.Area= 40,865 sf Storage= 121,988 cf									
•	Plug-Flow detention time= 284.9 min calculated for 4.249 af (84% of inflow) Center-of-Mass det. time= 215.7 min (985.3 - 769.6)									
-			rage Storage Description							
#1	562.	40 164,10	63 cf Custom Stage Data (Prismatic)Listed below (Recalc)							
Elevatio		Surf.Area (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)							
562.4	40	26,630	0 0							
567.0	00	44,745	164,163 164,163							
Device	Routing	Invert	Outlet Devices							
#1	Primary	562.40'	15.0" Round Culvert L= 30.0' Box, headwall w/3 square edges, Ke= 0.500 Inlet / Outlet Invert= 562.40' / 562.40' S= 0.0000 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf							
#2 Device 1 564.50'			24.0" x 24.0" Horiz. Top of Grate C= 0.600 Limited to weir flow at low heads							
#3	Device	1 562.40'								

#4 Primary 566.20' 20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=10.21 cfs @ 12.31 hrs HW=566.01' (Free Discharge)

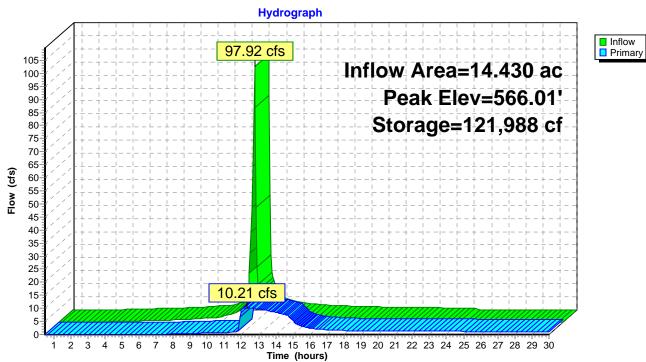
-1=Culvert (Barrel Controls 10.21 cfs @ 8.32 fps)

-2=Top of Grate (Passes < 23.70 cfs potential flow)

—3=low flow orifice (Passes < 1.73 cfs potential flow)

4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

H:\job\6028\Documents\SWPPP\ 20150709 DEVELOPED DRAINAGE


Prepared by Costich Engineering, P.C.

HydroCAD® 10.00 s/n 08278 © 2013 HydroCAD Software Solutions LLC

 Type II 24-hr
 100-Year Rainfall=4.90"

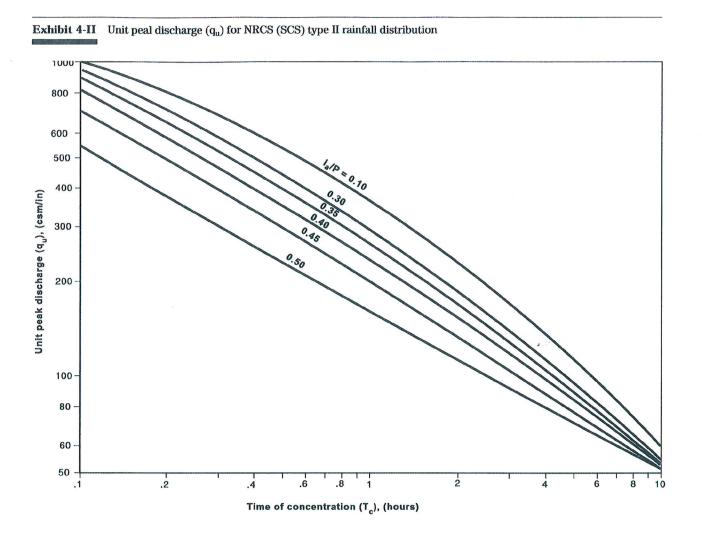
 Printed
 7/10/2015

 LC
 Page 40

Pond 1P: (new Pond)

	LATED BY:	Wilkins R.V. MOR		<i>GW</i> Developed Co Soil Types:	onditions		
	$\frac{[(P)(R_v)(A)]}{12}$ 9.334 12	-	$A=P=I=R_v^*=R_v=$	0.85 79		pervious surface (expressed as a percentage)
WQ _v req'd:	0.778 33882.59	ac-ft ft ³	:				
Elevation	<u>Area (ft²)</u>	<u>Depth (ft)</u>	Volume (ft ³)	<u>Σ Volume</u>	VQ _v provided:	:	58932.95 ft ³
558 560.5 562.4	5249 12306 26630	0 2.5 1.9	0 21943.75 36989.2	0 21943.75 58932.95			<u>1.353 ac-ft</u>
<u>Channel Prot</u>	ection Volun	<u>ne:</u>					
CP _v : CP _v : CP_v req'd :	$\frac{(V_r)(V_s/V_r)(A)}{12}$ $\frac{14.935}{12}$ 1.245 54213.10	ac-ft	-	$I_{a} = P =$ $V_{r} =$ $I_{a}/P =$ $q_{o}/q_{i} =$ $V_{s}/V_{r} =$ $V_{s}/V_{r} =$	0.85 1.580 0.150 980 0.02 0.683-1.43(qo	(I _a =200/CN-2) (1-yr cumulative (Exhibit 4-II in ¹ (Fig. B-1 from 1 /qi)+1.64(qo/qi) ²	NYSSMDM)
<u>Elevation</u> 562.4 564.5	<u>Area (ft²)</u> 26630 34707	Depth (ft) 0 2.1	<u>Volume (ft³)</u> 0 64403.9	<u>Σ Volume</u> 0 64403.9		CP _v provided:	64403.9 ft ³ 1.479 ac-ft

WILKINS R.V.


E#6028

.

Chapter 4

Graphical Peak Dischage Method

Technical Release 55 Urban Hydrology for Small Watersheds

$$T_c = 3.4 \text{ minutes}$$

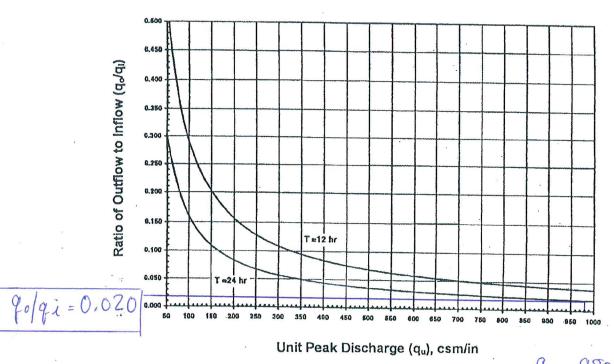
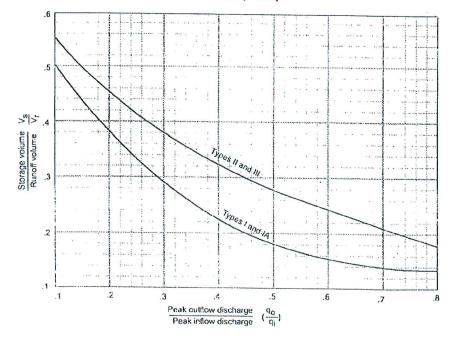
 $T_a/P = 0.15$
 $g_u = 980 \text{ csm}[in]$

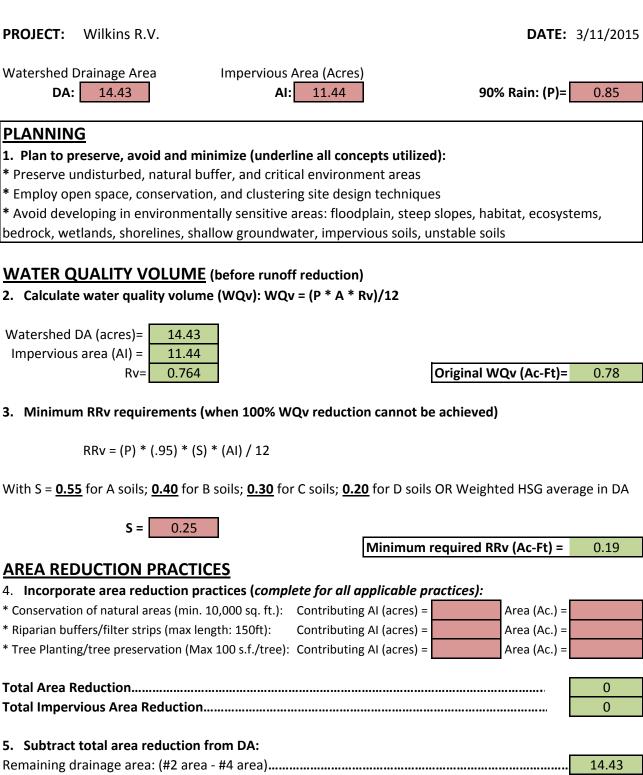
WILKINS R.V.

New York State Stormwater Management Design Manual

6028

While the TR-55 short-cut method reports to incorporate multiple stage structures, experience has shown that an additional 10-15% storage is required when multiple levels of extended detention are provided.


Figure B.1 Detention Time vs. Discharge Ratios (Source: MDE, 2000)

 $q_{u=980}$ (sm/in T=24 hours

Figure B.2 Approximate Detention Basin Routing For Rainfall Types I, IA, II, and III (Source: NRCS, 1986)

STORMWATER MANAGEMENT PLANNING AND PRACTICE SELECTION WORKSHEET

Remaining drainage area: (#2 area - #4 area)	14.43
Remaining impervious area: (#2 AI - #4 AI)	11.44

6. Incorporate impervious area disconnection:

Total disconnected impervious area (now considered pervious for RV calcs.)

Costich Engineering, P.C.
217 Lake Avenue
Rochester, New York 14608

STORMWATER MANAGEMENT PLANNING AND PRACTICE SELECTION WORKSHEET

7. Recalculate WQv for site area re	emaining after area reductions and	impervious di	isconnecti	ions:
Remaining DA (acres) = 14.43	Remaining AI (acres)=	11.44	Rv=	0.764
	-			
Reduced WQv (Ac-ft)				0.78
Runoff Reduction Volume (Ac-ft)				0.00

SOURCE CONTROL WQv TREATMENT PRACTICES

(From attached worksheet)

8a. Subtotal DA tributary to Source Control treatment practices (Acres)	7.8
8b. Subtotal AI tributary to Source Control treatment practices (Acres)	7.8
8c. Subtotal Source Control WQv Treatment Volume (Ac-Ft)	0.524
8d. Subtotal Runoff Reduction Volume (RRv) (Ac-Ft)	0.209

TOTAL RUNOFF REDUCTION VOLUME (RRv)

9. Total RRv provided (Ac-Ft)	0.21
10. Is RRv ≥ original WQv ? Yes: No: <u>X</u> If Yes, skip to #12	
11. Is RRv \geq minimum RRv? Yes: X No:	
12. Total drainage area treated with runoff reduction/source control practices (Acres)	7.80
(Area reduction (from #4) + total DA tributary to source control (#8a.)	

STANDARD WQv TREATMENT

13. Provide treatment for any remaining untreated watershed DA with standard practices:	
Remaining untreated DA = (Watershed DA(#2)) - (Treated DA(#12))(Acres)	6.63
Remaining impervious area = Total AI (#2)) - Treated AI (#4 + #6 + #8)	3.64
Rv for Standard Practice	0.544
WQv required in a Standard Practice (Ac-Ft)	0.26

	Sub total (Rv) RRv = $\frac{\partial_{.}/39}{(ac-ft)}$		11c. Subtotal Runoff Reduction Volume (RRv):	r
			11b. Subtotal Source Control WQv Treatment Volume =(ac-ft)	
		(acres)	11a. Subtotal DA tributary to Source Control WQv Treatment practices =	
1	100% of WQv = ac-ft (A/B soils only)	WQv = (ac-ft)	DA tributary to practice: acre(s) AI = acre(s) RV =	F
			 Porous pavement (A/B soils only) 	
	100% of WQy = ac-ft	WQv = (ac-ft)	Roof area = acre(s) Rv = .95	
			 Cistems/rain barrels 	
	100% of WQv = ac-ft	WQv = (ac-ft)	DA tributary to practice: acre(s) AI = acre(s) RV =	-
			 Stormwater planters (maximum 15,000-s.f. DA) 	
	100% of WQv = ac-ft	WQv = (ac-ft)	Roof area = acre(s) Rv = .95	
			 Rain Garden (maximum 1,000 square foot roof) 	
	100% of WQv =ac-ft	WQv = (ac-ft)	Roof area = acre(s) Rv = .95	
			 Green roof 	
	20% of WQv =ac-ft (A/B soils only) OR 10% of WQv =ac-ft (C/D soils)	WQv = (ac-ft)	DA tributary to practice: acre(s) AI = acre(s) RV =	1
			 Vegetated open swale (maximum 5-acre DA) 	
			Green Intrastructure Practices	
	40% of WQv =ac-ft (A/B soils only) OR 20% of WQv =ac-ft (C/D soils)	WQv = (ac-ft)	DA tributary to practice: acre(s) AI = acre(s) RV =	
			Dry Swale (maximum 5-acre DA)	
	80% of WQv =ac-ft (A/B soils only) OR 40% of WQv = 0.134 ac-ft (C/D soils)	WQv = 0,336 (ac-ft)	DA tributary to practice: 5.00 acre(s) AI = 5.00 acre(s) RV = 0.95	1
			* Bioretention	
and the second se	90% of WQv =ac-ft (A soils only)	WQv =(ac-ft)	DA tributary to practice: acre(s) AI = acre(s) RV =	
			 Infiltration (A soils only) (maximum 1-20 acre DA) 	
5	Allowable Runoff Reduction Volume (RRv)		Standard Practices (used as source control)	N
- Andrewski († 1930) 1	for all applicable practices and soil types).		11. SOURCE CONTROL WOV TREATMENT PRACTICES WORKSHEET - (complete	11
				1. L

WILKINS R.V. AREA I (NORTHI)

COSTICH ENGINEERING 117 Lake Avenue ROCHESTER, NEW YORK 14608 585) 458-3020 Fax (585) 458-2731

JOB WILK	INS R.V. C	E# 602	8
SHEET NO.	۱	OF	l
CALCULATED BY	M.O.R.	DATE	3/12/2015
REV. BY	m.o.R.	DATE	10/2015
SCALE NO	SCALE		

DETERMINE SIZE OF BIORETENTION FILTER AREA (NORTH AREA)

- PER NYS SWOM : $A_f = (WQ_v)(d_f) \div [(\kappa)(h_f + d_f)(t_f)]$

WHERE:

Af = REQUIRED SURFACE APEA OF FILTER BED (FT2)

- WQV = REQUIRED WATER QUALITY TREATMENT VOLUME PER SOURCE CONTROL WQV TREATMENT PRACTICES WORKSHEET
 - = $0.336 \text{ AC-FT} = 14,636 \text{ FT}^3$

de = FILTER BED DEPTH (FT.) = 3FT.

K = COEFF. OF PERMEABILITY OF FILTER MEDIA = 0.5 FT/DAY

hr = AVG. HEIGHT OF WATER ABOVE FILTER BED = 0.5 FT.

to = FILTER BED DRAIN TIME = 2DAYS

Af = (14,636 FT3) (3 FT.) - [(0.5 FT/DAY) (0.5 FT+3 FT) (2 DA-15)]

= 12,545ft2 - REQUIRED AREA

AREA OF PROPOSED BIORETENTION FILTER = 12,606 FTZ PROVIDED > REQUIRED ... OK

11c. Subtotal Runoff Reduction Volume (RRv):	11b. Subtotal Source Control WQv Treatment Volume =(ac-ft)	11a. Subtotal DA tributary to Source Control WQv Treatment practices =(acres)	DA tributary to practice: acre(s) AI = acre(s) RV = (ac-ft)	 Porous pavement (A/B soils only) 	Roof area = acre(s) Rv = .95 WQv = (ac-ft)	Cisterns/rain barrels	DA tributary to practice: acre(s) AI = acre(s) RV = Wov = (ac-ft)	Stormwater planters (maximum 15,000-s.f. DA)	Roof area = acre(s) Rv = .95 WQv = (ac-ft)	 Rain Garden (maximum 1,000 square foot roof) 	Roof area = acre(s) Rv = .95 WQv = (ac-ft)	Green roof	DA tributary to practice:acre(s) AI =acre(s) RV = WQv =(ac-ft)	 Vegetated open swale (maximum 5-acre DA) 	Green Intrastructure Practices	DA tributary to practice: acre(s) AI = acre(s) RV = WQv = (ac-ft)	Dry Swale (maximum 5-acre DA)	DA tributary to practice: 2.80 acre(s) AI = 2.80 acre(s) RV = 0.95 WQv = 0.188 (ac-ft)	* Bioretention	DA tributary to practice; acre(s) AI = acre(s) RV = WQv = (ac-ft)	 Infiltration (A soils only) (maximum 1-20 acre DA) 	complete for all applicable practices and soil types).	11. SOURCE CONTROL WOW TREATMENT BRACTICES WORKSHEET	WILKINS R.V. AREA-I (SOUTH)
Sub total (Rv) RRv = 0.075 (ac-ft)			100% of WQv = ac-ft (A/B soils only)		100% of WQy = ac-ft		100% of WQv = ac-ft	<u>6.88</u>	100% of WQv = ac-ft		100% of WQv =ac-ft		20% of WQv =ac-ft (A/B soils only) OR 10% of WQv =ac-ft (C/D soils)) 40% of WQv =ac-ft (A/B soils only) OR 20% of WQv =ac-ft (C/D soils)		$\frac{80\% \text{ of WQv} = _ac-ft (A/B \text{ soils only}) \text{ OR}}{40\% \text{ of WQv} = 0.07Sac-ft (C/D \text{ soils})}$) 90% of WQv =ac-ft (A soils only)	Allowable Runoff Reduction Volume (RRv)	i applicable practices and soil types).		

*

COSTICH ENGINEERING 217 Lake Avenue ROCHESTER, NEW YORK 14608 (585) 458-3020 Fax (585) 458-2731 JOB WILKINS R.V. CE# 6028

SHEET NO.	1	OF	1	
CALCULATED BY_	M.O.R.	DATE	3/12	12015
REV.BY	m.o.e.	DATE	110	2015
SCALE NO	SCALE	_		

- PER NYS SWOM : Af = (WQv)(df) ÷ [(K)(hf+df)(tf)]

WHERE:

Af = REQUIRED SURFACE AREA OF FILTER BED (FT2)

WQV = REQUIRED WATER QUALITY TREATMENT VOLUME PER SOURCE CONTROL WQV TREATMENT PRACTICES WORKSHEET

 $= 0.188 \text{ AC-FT} = 8,189 \text{ FT}^3$

df = FILTER BED DEPTH (FT.) = 3FT.

K = COEFF. OF PERMEABILITY OF FILTER MEDIA = 0.5FT/DAY

hr = AVG. HEIGHT OF WATER ABOVE FILTER BED = 0.5 FT.

to = FILTER BED DRAIN TIME = 2DAYS

 $A_{f} = (8,189 \ FT^{3})(3 \ FT.) \div [(0.5 \ FT/DAY)(0.5 \ FT+3 \ FT)(2 \ DAYS)]$ = 7,019 FT - REQUIRED AREA AREA OF PROPOSED BIORETENTION FILTER = 7.329 FT²

PROVIDED > REQUIRED ... OK

APPENDIX III

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information	\backslash
Owner/Operator (Company Name/Private Owner Name/Municipality Name)	
Owner/Operator Contact Person Last Name (NOT CONSULTANT)	
Owner/Operator Contact Person First Name	
Owner/Operator Mailing Address	
City	
State Zip	
Phone (Owner/Operator) Fax (Owner/Operator) - -	
Email (Owner/Operator)	_
FED TAX ID (not required for individuals)	

Project Site Informa	tion									
Project/Site Name										
Street Address (NOT P.O. BOX)										
Side of Street O North O South O East O West										
City/Town/Village (THAT ISSUES BUILDING PERMIT)										
State Zip County DEC Region										
Name of Nearest Cross Street										
Distance to Nearest Cross Street (Feet)	Project In Relation to Cross Street O North O South O East O West									
Tax Map Numbers Section-Block-Parcel	Tax Map Numbers									

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you **must** go to the NYSDEC Stormwater Interactive Map on the DEC website at:

www.dec.ny.gov/imsmaps/stormwater/viewer.htm

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.

х	Coc	rdi	nate	es (Eas	ting	J)

ΥC	loor	dina	ates	(N	ortł	ning)

3.	Select the predominant land use for both p SELECT ONLY ONE CHOICE FOR EACH	re and post development conditions.
	Pre-Development Existing Land Use	Post-Development Future Land Use
	○ FOREST	○ SINGLE FAMILY HOME <u>Number_</u> of Lots
	\bigcirc PASTURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION
	○ CULTIVATED LAND	○ TOWN HOME RESIDENTIAL
	○ SINGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL
	○ SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
	\bigcirc TOWN HOME RESIDENTIAL	○ INDUSTRIAL
	○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
	○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
	\bigcirc INDUSTRIAL	○ ROAD/HIGHWAY
	○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD
	○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
	○ RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
	○ BIKE PATH/TRAIL	○ PARKING LOT
	\bigcirc LINEAR UTILITY	○ CLEARING/GRADING ONLY
	○ PARKING LOT	\bigcirc DEMOLITION, NO REDEVELOPMENT
	O OTHER	\bigcirc WELL DRILLING ACTIVITY *(Oil, Gas, etc.)

*Note: for gas well drilling, non-high volume hydraulic fractured wells only

4. In accordance with the larger common plan of enter the total project site area; the total existing impervious area to be disturbed (for activities); and the future impervious area disturbed area. (Round to the nearest tenth	area to be disturbed; r redevelopment constructed within the
	Future Impervious Area Within Disturbed Area
5. Do you plan to disturb more than 5 acres of	soil at any one time? O Yes O No
6. Indicate the percentage of each Hydrologic S	oil Group(HSG) at the site.
A B C ● ● ● ●	D %
7. Is this a phased project?	\bigcirc Yes \bigcirc No
8. Enter the planned start and end dates of the disturbance activities.	End Date

8600089821

																									~
/	dentify ischarge		arest	surfa	ace	wat	erbo	dy(ies)	to	wh	ich	COI	nst:	ruc	tio	on	sit	e :	run	ofi	Ēw	ill		
Name														<u>г г</u>					-					T T	
9a.	Туре о	of wate	cbody	ident	cifi	.ed i	in Qı	uest	cion	9?															
01	Wetland	/ State	Juri	sdict	ion	On	Site	e (<i>I</i>	nsw	er 9	9b)														
0 1	Wetland	/ State	Juri	sdict	ion	Off	5 Sit	ce																	
0 1	Wetland	/ Feder	al Ju	ırisdi	.cti	on C	n Si	lte	(An	swei	2 9	b)													
	Wetland	/ Feder	al Ju	ırisdi	cti	on C	off S	Site	2																
\bigcirc	Stream /	Creek	On Si	te																					
0:	Stream /	Creek	off s	Site																					
01	River Or	Site																							
01	River Of	f Site								9b	•	Hov	w wa	as 1	the	we	etl	and	lio	len	tif	ie	d?		
01	Lake On	Site											-												
0	Lake Off											Re													
Ŭ) De										_			
	Other Ty																		Co	rps	5 O	ΕĒ	ngiı	nee	rs
	Other Ty	pe Off	Site								(her	(i)	der.	iti:	fy)				-				,
			- 1 1			-																			
10.		ne surfa segmen										een	id€	enti	ifi	ed	as	a		0	Ye	s	() n	ō	
11.		ls proje lix C o:					e of	the	e Wa	ter	she	ds i	lder	ntii	Eie	d i	ln			0	Ye	s	O N	o	
12.	areas waters	e projec associa s? , skip (ated w	vith A	AA a															0	Ye	s	() N	o	

13.	Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?	O Yes	O No

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes O No area?

•	6403089820	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?
16.	What is the name of the municipality/entity that owns the separate storm sewer system?
17.	Does any runoff from the site enter a sewer classified O Yes O No O Unknown as a Combined Sewer?
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? \bigcirc Yes \bigcirc No
19.	Is this property owned by a state authority, state agency, O Yes O No federal government or local government?
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup O Yes O No Agreement, etc.)
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS O Yes O No Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and O Yes O No Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS O Yes O No Stormwater Management Design Manual?

0251089825

24.		Th	e	sto	orn	nwa	te	r 1	Pol	lu	tio	on	Pr	eve	ent	cic	n	Pl.	an	(S	WP	PP)) W	vas	p	rej	par	red	b	y:							
•	P	rof	es	si	ona	a 1	En	gi	nee	er	(P	. Е.	.)																								
С	S	oil	. a	nd	Wa	ate	er	Co	nse	erv	rat	ior	ı I	is	tr	ic	E (SW	CD)																	
С	R	egi	st	er	ed	La	nd	sc	ape	A	rc	hit	ec	t	(R	.L	.A)																				
С	C	ert	if	ie	d I	Pro	ofe	88	ior	nal	. i:	n I	Erc	si	on	a	nđ	Se	di	mer	nt	Co	nt:	rol	. (CP	ES	2)									
С	0	wne	er/	Op	era	ato	or																														
С	0	the	er		-				-				-	-	-		-	-	-						-		-	-	-							-	
	L												1											_				_									
SWPPP		1					-		~	-		-	-	-	-		a			P					122								1	T			
CO	S	T	I	C	Η		E	N	G	1	Ν	E	E	R	T	Ν	G	'		D	•	P	•	C	•												
Conta	ct	Na	ame	e (La	st	, 5	Spa	ce	, 1	Fir	st)																1	-				-			
U I	Ν	Т	E	R	K	0	R	Ν	,		G	A	R	Т	H																						
Maili	ng	A	ddı	res	s			_																								_	_	_	_		
2 1	7		L	Α	K	Ε		A	V	Е	Ν	U	Ε																								
City																																_		-		_	
RO	С	Η	Ε	S	Т	Ε	R																														
State		Zi	ç			_																															
NY		1	4	6	0	8	-																														
Phone											1									Faz	c		,									7					
58	5	-	4	5	8	-	3	0	2	0										5	8	5	-	4	5	8	-	2	7	3	1						
Email																													1								
GW	Ι	Ν	Т	Е	R	K	0	R	Ν	@	С	0	S	Т	Ι	С	Η	•	C	0	Μ																
					115	1909																1	-		224									-	-		1

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Name	MI
G A R T H	
Last Name	
W I N T E R K O R N	
Signature]
Jarth Winterkorn	Date 0 3 / 1 2 / 2 0 1 5

25.	•		as a ract										ce :	scl	heo	du	ıle	fo	r	the	p.	lanı	ne	d	ma	ana	age	eme	nt	;			С) Ye	s	С) Nc	>
26.			elec nplo:	ye	d c	on	th	er	pro	oje	ct	S	ite	:	seo	di	.mer	ıt	CC	ontr	ol													-				
			-	.e	шр		ar	Y	ы	LIL		u.	ral	-								<u>v</u>	eç	Je	LC	ac	τv	re	M	ea	S	IT 6	22	5				
			⊖ Ch	ec	k i	Dan	ıs														С	Br	us	sh	M	at	ti	ng										
			⊖ Cc	ns	str	uct	ic	n	Rc	ad	Sta	ab	ili	za	ti	0	n				С	Du	ne	•	St	ab	i1	iza	it:	ioı	n							
			0 Du	st	C C	ont	rc	1													С	Gr	as	sse	ed	W	at	erw	va	Y								
			⊖ Ea	rt	h	Dik	ce														С	Mu	lc	:h:	in	g												
			⊖ Le	ve	1	Spr	ea	de	r												С	Pr	ot	e	ct:	in	g	Veg	je	tat	ti	on						
			⊖ Р €	ri	me	ter	: I	lik	e/	'Swa	ale										С	Re	cr	ea	at:	io	n	Are	ea	II	np	rov	ze	emen	t			
			0 Pi	pe	e S	lor	e	Dr	ai	n											С	Se	eð	liı	ng													
			() Pc	rt	ab	le	Se	di	me	ent	Та	nk	:								С) So	dd	liı	ng													
			⊖ Rc	cl	D	am															С) St	ra	w,	/Н	ay	в	ale) 	Dil	ce							
			⊖ Se	di	me	nt	Ba	si	n												С) St	re	aı	mb	an	k	Prc	ote	ect	ti	on						
			⊖ Se	d	me	nt	Tr	ap	s												С	Те	mŗ		ra	ry	S	wal	le									
			⊖ si	l t	F	enc	e														С	То	ps	30	i 1	in	g											
			0 st	ał	i l	ize	ed	Co	ns	stru	ict:	ic	n E	Int	ra	in	ce				С	Ve	ge	eta	at	in	g	Wat	e	rwa	aya	s						
			O St									ot	ect	ic	n							P	er	rm	ar	ne	nt	S	t:	ru	ct	cur	ra	<u>al</u>				
			O St			_									1	_		_			С	De	br	:i:	s 1	Ва	si	n										
			○ Te			_							_					g			С	Di	ve	er	si	on	L											
			○ Te ○ Te			_					111	L	тле	1.5	i T C	211					С	Gr	aċ	le	S	ta	bi	liz	a	tid	on	st	:r	uct	ur	e		
			0 Ie 0 Tu			_															С	La	nd	10	Gra	ad	in	g										
			0 IU			_		uL	La												С	Li	ne	ed	W	at	er	way	,	(R	ocl	k)						
			U Wa		÷Г.	Dai	. 5														С	Pa	ve	ed	C	ha	nn	el	()	Coi	nci	ret	:e	e)				
			в	id	ote	ch	m	LCa	al	_											С	Pa	ve	ed	F	lu	me											
										_											С	Re	ta	ii	ni	ng	W	all	L									
			ОВ:					ınç	3												С	Ri	pr	a	p	sl	op	еF	Pro	ote	ect	tic	on	L				
			() Wa	at	tli	.ng																Ro																
																						st																
<u>(</u>)th	her			1			1			<u>г</u> т		1 1								-											1	-		_	-	-	1

Post-construction Stormwater Management Practice (SMP) Requirements

<u>Important</u>: Completion of Questions 27-39 is not required if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - \bigcirc Preservation of Undisturbed Areas
 - Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - Roadway Reduction
 - \bigcirc Sidewalk Reduction
 - Driveway Reduction
 - Cul-de-sac Reduction
 - Building Footprint Reduction
 - Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Tota	L WQv	Re	qui	lre	đ
					acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

7738089822

Table 1	-
---------	---

Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

	Total Contributing		Total Contributing			
RR Techniques (Area Reduction)	Area (acres)	Im	perviou	s i	Area	a(acres)
O Conservation of Natural Areas (RR-1)		and/or				
O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or				
○ Tree Planting/Tree Pit (RR-3)	•	and/or		_		
\bigcirc Disconnection of Rooftop Runoff (RR-4)	•	and/or				
RR Techniques (Volume Reduction)						
\bigcirc Vegetated Swale (RR-5) \cdots	• • • • • • • • • • • • • • • • • • •					
\bigcirc Rain Garden (RR-6)	•••••••••••••••••	• • • • • •		_		
\bigcirc Stormwater Planter (RR-7)		• • • • • •		_ •		
\bigcirc Rain Barrel/Cistern (RR-8)		•••••				
○ Porous Pavement (RR-9)	•••••	• • • • • •				
\bigcirc Green Roof (RR-10)				-		
Standard SMPs with RRv Capacity						
\bigcirc Infiltration Trench (I-1) ·····		• • • • • •				
○ Infiltration Basin (I-2) ······						
○ Dry Well (I-3)						
O Underground Infiltration System (I-4)						
O Bioretention (F-5)				-		
\bigcirc Dry Swale (0-1)				-		
Standard SMPs						
\bigcirc Micropool Extended Detention (P-1)		•••••				
○ Wet Pond (P-2)		••••				
○ Wet Extended Detention (P-3) ······						
○ Multiple Pond System (P-4) ·····		••••				
\bigcirc Pocket Pond (P-5) · · · · · · · · · · · · · · · · · · ·		• • • • •				
\bigcirc Surface Sand Filter (F-1) $\cdots \cdots \cdots$	•••••	• • • • • •				
○ Underground Sand Filter (F-2) ······						
\bigcirc Perimeter Sand Filter (F-3)	• • • • • • • • • • • • • • • • • •					
○ Organic Filter (F-4)	••••••	••••		-		
\bigcirc Shallow Wetland (W-1)	• • • • • • • • • • • • • • • • • •					
\bigcirc Extended Detention Wetland (W-2)						
○ Pond/Wetland System (W-3)						
○ Pocket Wetland (W-4)						
\bigcirc Wet Swale (O-2)				-		

0762089822									_
	Table 2 -	Alternativ (DO NOT IN USED FOR I	NCLUDE PF			ſĠ			
Alternative SMP							al Contr vious Ar		
	·	• • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • •	··			_
O Other Provide the name proprietary pract					(i.e.	•• 🗌	• [_		
Name									
	ent projects which ons 28, 29, 33 and ed and total WQv	d 33a to p	rovide SI	MPs us	ed, tot				
	ne Total RRv prov MPs with RRv capa						me Reduo	ction)	and
Total RRv	provided	et							
total WQv r If Yes, go	al RRv provided (required (#28). to question 36.	#30) great	er than	or equ	al to	the	0	Yes	O No
	e Minimum RRv req Rv Required = (P)				c)]				
Minimum RR	v Required	et							
Minimum RRV If Yes, go <u>Note</u> : Us specific 100% of specific 100% of SWPPP. If No, sizi	al RRv provided (r Required (#32)? to question 33. se the space prove site limitation WQv required (#2 c site limitation the WQv required .ng criteria has SWPPP preparer m	rided in qu s and just 8). A <u>det</u> s and just (#28) mus not been m	estion # ificatio <u>ailed</u> ev ificatio t also b et, so N	39 to n for aluati n for e incl OI can	summar not rea on of not rea uded in not b a	<u>ize</u> the ducing the ducing n the e	e	Yes	O No

1766089827

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29. WQv Provided acre-feet Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual) Provide the sum of the Total RRv provided (#30) and 34. the WQv provided (#33a). Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? 🔾 Yes 🔷 No If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria. Provide the total Channel Protection Storage Volume (CPv) required and 36. provided or select waiver (36a), if applicable. CPv Required CPv Provided acre-feet acre-feet 36a. The need to provide channel protection has been waived because: O Site discharges directly to tidal waters or a fifth order or larger stream. \bigcirc Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development	Post-development
Total Extreme Flood Control	Criteria (Qf)
Pre-Development	Post-development
CFS	CFS

37a.	The need to meet the Qp and Qf criteria has been waived because:
	\bigcirc Site discharges directly to tidal waters
	or a fifth order or larger stream.
	\bigcirc Downstream analysis reveals that the Qp and Qf
	controls are not required

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been
O Yes
No developed?

If Yes, Identify the entity responsible for the long term Operation and Maintenance

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a) This space can also be used for other pertinent project information.

. 4285089826

40.	Identify other DEC permits, existing and new, that are required for this project/facility.
	○ Air Pollution Control
	○ Coastal Erosion
	\bigcirc Hazardous Waste
	\bigcirc Long Island Wells
	\bigcirc Mined Land Reclamation
	🔿 Solid Waste
	\bigcirc Navigable Waters Protection / Article 15
	○ Water Quality Certificate
	○ Dam Safety
	○ Water Supply
	○ Freshwater Wetlands/Article 24
	\bigcirc Tidal Wetlands
	\bigcirc Wild, Scenic and Recreational Rivers
	\bigcirc Stream Bed or Bank Protection / Article 15
	○ Endangered or Threatened Species(Incidental Take Permit)
	○ Individual SPDES
	○ SPDES Multi-Sector GP
	0 0ther
	○ None

41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	⊖ Yes	0 No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○Үез	() No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	⊖ Yes	O No
44.	If this NOI is being submitted for the purpose of continuing or trans coverage under a general permit for stormwater runoff from constructi activities, please indicate the former SPDES number assigned.	-	

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
Print Last Name	
Owner/Operator Signature	
	Date

NYS Department of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505							
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form for Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)							
I. Project Owner/Operator Information							
1. Owner/Operator Name: BLW PROPERTIES OF CHURCHVILLE, LLC							
2. Contact Person: BRIAN WILKINS							
3. Street Address: 111 and 97 South main street							
4. City/State/Zip: CHURCHVILLE/NY/14428							
II. Project Site Information							
5. Project/Site Name: WILKINS R.V.							
6. Street Address: 111 AND 97 SOUTH MAIN STREET							
7. City/State/Zip: CJURCHVILLE/NY/14428							
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information							
8. SWPPP Reviewed by:							
9. Title/Position:							
10. Date Final SWPPP Reviewed and Accepted:							
IV. Regulated MS4 Information							
11. Name of MS4:							
12. MS4 SPDES Permit Identification Number: NYR20A							
13. Contact Person:							
14. Street Address:							
15. City/State/Zip:							
16. Telephone Number:							

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:

Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

Stormwater Construction Site Inspection Report

General Information							
Project Name	Wilkins R.V.						
SPDES Tracking No.		Location	111 South Main Street				
Date of Inspection		Start/End					
		Time					
Inspector's Name(s)							
Inspector's Contact Information							
Inspector's Qualifications							
Describe present phase of							
construction							
Type of Inspection:							
RegularPre-storm event	During storm event	Post-storm ev	vent				
	Weather Info	rmation					
Has there been a storm event since	e the last inspection? \Box	es 🗆 No					
If yes, provide:							
Storm Start Date & Time:	Storm Duration (hrs):	Approxima	te Amount of Precipitation (in):				
Weather at time of this inspection?		_					
	Sleet Fog Sno	owing 🛛 High Wi	nds				
□ Other:	Temperature:						
Have any discharges occurred since	• the last inspection? $\Box V$	es 🗆 No					
Have any discharges occurred since the last inspection? If yes, describe:							
Are there any discharges at the tim If yes, describe:	e of inspection? □Yes □	No					

Site-specific BMPs

- Number the structural and non-structural BMPs identified in your SWPPP on your site map and list them below (add as many BMPs as necessary). Carry a copy of the numbered site map with you during your inspections. This list will ensure that you are inspecting all required BMPs at your site.
- Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.

	BMP	BMP	BMP	Corrective Action Needed and Notes
		Installed?	Maintenance	
			Required?	
1	Silt Fence	□ Yes □No	□ Yes □No	
2	Stabilized Construction	□ Yes □No	🛛 Yes 🖵 No	
	Entrance			
3	Inlet protection	□Yes □ No	□Yes □ No	
4	Stabilization	□ Yes □No	Yes I No	
5	Stormwater	□ Yes □No	🛛 Yes 🖵 No	
	Management Facility			

Overall Site Issues

Below are some general site issues that should be assessed during inspections. Customize this list as needed for conditions at your site.

	BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
1	Are all slopes and disturbed areas not actively being worked properly stabilized?	□Yes □ No	Ŷes No	
2	Are natural resource areas (e.g., streams, wetlands, mature trees, etc.) protected with barriers or similar BMPs?	□ Yes □ No	Yes No	
3	Are perimeter controls and sediment barriers adequately installed (keyed into substrate) and maintained?	□Yes □ No	Yes No	
4	Are discharge points and receiving waters free of any sediment deposits?	□Yes □ No	□ Yes □No	
5	Are storm drain inlets properly protected?	□Yes □No	□Yes □No	
6	Is the construction exit preventing sediment from being tracked into the street?	□Yes □ No	□ Yes □No	
7	Is trash/litter from work areas collected and placed in covered dumpsters?	□Yes □ No	□ Yes □No	
8	Are washout facilities (e.g., paint, stucco, concrete) available, clearly marked, and maintained?	□Yes □ No	□ Yes □No	
9	Are vehicle and equipment fueling, cleaning, and maintenance areas free of spills, leaks, or any other deleterious material?	□Yes □ No	☐ Yes ☐No	
10	Are materials that are potential stormwater contaminants stored inside or under cover	□Yes □ No	□ Yes □No	
11	Are non-stormwater discharges (e.g., wash water, dewatering) properly controlled?	□Yes □No	□Yes □No	

	BMP/activity	Implemented?	Maintenance Required?	Corrective Action Needed and Notes
12	Temporary basin	□Yes □No	Yes No	□ Yes □No

Non-Compliance

Describe any incidents of non-compliance not described above:

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Print name and title:

Signature:_____ Date:_____

Chapter 5:Green Infrastructure PracticesSection 5.1Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

5.1.6 Soil Restoration

Description

Soil Restoration is a required practice applied across areas of a development site where soils have been disturbed and will be vegetated in order to recover the original properties and porosity of the soil. Healthy soil is vital to a sustainable environment and landscape. A deep, well drained soil, rich in organic matter, absorbs rainwater, helps prevent flooding and soil erosion, filters out water pollutants, and promotes vigorous plant growth that requires less irrigation, pesticides, and fertilizer.

Soil Restoration is applied in the cleanup, restoration, and landscaping phase of construction followed by the permanent establishment of an appropriate, deep-rooted groundcover to help maintain the restored soil structure. Soil restoration includes mechanical decompaction, compost amendment, or both.

Many runoff reduction practices need Soil Restoration measures applied over and adjacent to the practice to achieve runoff reduction performance. (See typical compacted soil in Figure 5.15). Consult individual profile sheets for specific design criteria.

Key Benefits

- More marketable buildings and landscapes
- Less stormwater runoff, better water quality
- Healthier, aesthetically pleasing landscapes
- Increased porosity on redevelopment sites where impervious cover is converted to pervious
- Achieves performance standards on runoff reduction practices
- Decreases runoff volume generated and lowers the demand on runoff control structures
- Enhances direct groundwater recharge
- Promotes successful long-term revegetation by restoring soil organic matter, permeability, drainage and water holding capacity for healthy root system development of trees, shrubs and deep-rooted ground covers, minimizing lawn chemical requirements, plant drowning during wet periods, and burnout during dry periods

Typical Perceived Obstacles and Realities

Figure 5.14 Shows typical compacted soils that nearly reach the bulk density of concrete (Schueler et al 2000)

Chapter 5:Green Infrastructure PracticesSection 5.1Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

- Higher cost due to soil restoration- application of soil de-compaction and enhancement may have additional initial cost; however, they provide benefit in reducing the need for conveyance structures.
- Space constraints and obstruction for use of equipment *post construction space may limit the ability of some of the de-compaction equipment, however, alternative equipment and sensible planning help overcome this obstacle.*

Discussion

Tilling exposes compacted soil devoid of oxygen to air and recreates temporary air space. In addition, research has shown that the incorporation of organic compost, can greatly improve temporary water storage in the soil and subsequent runoff reduction through infiltration and evapotranspiration.

Soils that have a permanent high water table close to the surface (0-12 inches), either influenced by a clay or other highly impervious layer of material, may have bulk densities so naturally high that compaction has little added impact on infiltration (Lacey 2008). However, these soils will still benefit from the addition of compost. The water holding capacity, penetration, structural stability, and fertility of clay soils were improved with compost mixing (Avnimelech and Cohen 1988).

Table 5.3 describes various soil disturbance activities related to land development, soil types and the requirements for soil restoration for each activity. Soil Restoration or modification of curve numbers is a <u>required</u> practice. Restoration is applied across areas of a development site where soils have been compacted and will be vegetated according to the criteria defined in Table 5.3. If Soil Restoration is not applied according to these criteria, designers are required to:

- a) Increase the calculated WQv by factoring in the compacted areas that have not been kept as impervious cover (including areas of cut or fill, heavy traffic areas on site, or Impervious Cover reduction in redevelopment projects unless aeration or full soil restoration is applied, per Table 5.3).
- b) Change by one level the post-construction hydrologic soil group (HSG) to a less permeable group than the original condition. This is applied to all volumetric and discharge rate control computations.

Chapter 5: Green Infrastructure Practices

Section 5.1 Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

	Table 5.3 Soil Restoration Requirements				
Type of Soil Disturbance	Soil Restoration Requirement		Comments/Examples		
No soil disturbance	Restoration not permitted		Preservation of Natural Features		
Minimal soil disturbance	Restoration not required		Clearing and grubbing		
Areas where topsoil is	HSG A &B	HSG C&D	Protect area from any ongoing construction activities.		
stripped only - no change in grade	apply 6 inches of topsoil	Aerate* and apply 6 inches of topsoil			
	HSG A &B	HSG C & D			
Areas of cut or fill	Aerate and apply 6 inches of topsoil	Apply full Soil Restoration **			
Heavy traffic areas on site (especially in a zone 5-25 feet around buildings but not within a 5 foot perimeter around foundation walls)	Apply full Soil Restoration (de- compaction and compost enhancement)				
Areas where Runoff Reduction and/or Infiltration practices are applied	Restoration not required, but may be applied to enhance the reduction specified for appropriate practices.		Keep construction equipment from crossing these areas. To protect newly installed practice from any ongoing construction activities construct a single phase operation fence area		
Redevelopment projects	Soil Restoration is required on redevelopment projects in areas where existing impervious area will be converted to pervious area.				

*Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which function like a mini-subsoiler.

** Per "Deep Ripping and De-compaction, DEC 2008".

Using this Practice

During periods of relatively low to moderate subsoil moisture, the disturbed subsoils are returned to rough grade and the following Soil Restoration steps applied:

1) Apply 3 inches of compost over subsoil

Chapter 5: Green Infrastructure Practices

Section 5.1 Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

- Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor-mounted disc, or tiller, mixing, and circulating air and compost into subsoils
- Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site
- 4) Apply topsoil to a depth of 6 inches
- 5) Vegetate as required by approved plan.

At the end of the project an inspector should be able to push a 3/8" metal bar 12 inches into the

Figure 5.15 Soil aerator implement

soil just with body weight. Figures 5.16 and 5.17 show two attachments used for soil decompaction. Tilling (step 2 above) should not be performed within the drip line of any existing trees or over utility installations that are within 24 inches of the surface.

COMPOST SPECIFICATIONS

Compost shall be aged, from plant derived materials, free of viable weed seeds, have no visible free water or dust produced when handling, pass through a half inch screen and have a pH suitable to grow desired plants.

Maintenance

A simple maintenance agreement should identify where Soil Restoration is applied, where newly restored areas are/cannot be cleared, who the responsible parties are to ensure that routine vegetation improvements

are made (i.e., thinning, invasive plant removal, etc.). Soil compost amendments within a filter strip or grass channel should be located in public right of way, or within a dedicated stormwater or drainage easement.

First year maintenance operations includes:

• Initial inspections for the first six months (once after each storm greater than half- inch)

Figure 5.16 Soil aerator implement

Chapter 5: Green Infrastructure Practices

Section 5.1 Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

- Reseeding to repair bare or eroding areas to assure grass stabilization
- Water once every three days for first month, and then provide a half inch of water per week during first year. Irrigation plan may be adjusted according to the rain event.
- Fertilization may be needed in the fall after the first growing season to increase plant vigor
- Ongoing Maintenance:

Two points help ensure lasting results of decompaction:

- 1) Planting the appropriate ground cover with deep roots to maintain the soil structure
- 2) Keeping the site free of vehicular and foot traffic or other weight loads. Consider pedestrian footpaths. (Sometimes it may be necessary to de-thatch the turf every few years)

References/Further Resources

- Avnimelech, Y. and M. Kochva, Y. Yotal, D. Shkedy. 1988. THE USE OF COMPOST AS A SOIL AMENDMENT
- Balusek. 2003. Quantifying decreases in stormwater runoff from deep-tilling, chisel-planting and *compost amendments*. Dane County Land Conservation Department. Madison, Wisconsin. http://www.countyofdane.com/lwrd/landconservation/papers/quantifyingdecreasesinswrunoff.pdf
- Chollak, T. and P. Rosenfeld. 1998. Guidelines for Landscaping with Compost-Amended Soils City of Redmond Public Works. http://www.ci.redmond.wa.us/insidecityhall/publicworks/environment/pdfs/compostamendedsoils. pdf
- City of Portland. 2008. Soil Specification for Vegetated Stormwater Facilities. Portland Stormwater Management Manual. Portland, Oregon
- Composting Council (TCC). 1997. Development of a landscape architect specification for *compost utilization*. Alexandria, VA. http://www.cwc.org/organics/org972rpt.pdf
- DRAFT VA DCR STORMWATER DESIGN SPECIFICATION No. 4, SOIL COMPOST AMENDMENT, VERSION 1.5 June 22, 2009

http://www.chesapeakestormwater.net/storage/first-draft-baywide-designspecificationsi/BAYWIDE%20No%204%20SOIL%20AMENDMENT%20SPECIFICATION.pdf

Holman-Dodds, L. 2004. Chapter 6. Assessing infiltration-based stormwater practices. PhD Dissertation. Department of Hydroscience and Engineering. University of Iowa. Iowa City, IA.

King County Department of Development & Environmental Services, *Achieving the Post-construction Soil Standard*, January 1, 2005. http://www.metrokc.gov/DDES/forms/ls-inf-SoilPost-ConStd.pdf

Chapter 5: Green Infrastructure Practices

Section 5.1 Planning for Green Infrastructure: Preservation of Natural Features and Conservation Design

- Lacey, John. 2008. NYSDEC Deep-Ripping and Decompaction, *Guidelines for Infiltration and Decompaction*, New York State Department of Environmental Conservation.
- Lenhart, J. 2007. Compost as a soil amendment for water quality treatment facilities. Proceedings 2007 LID Conference. Wilmington, NC
- Low Impact Development Center. *Guideline for Soil Amendments*. http://www.lowimpactdevelopment.org/epa03/soilamend.htm
- NYS Dept. of Ag & Markets http://www.agmkt.state.ny.us/AP/agservices/constructG8.html
- Roa-Espinosa. 2006. An introduction to soil compaction and the subsoiling practice. technical note. Dane County Land Conservation Department. Madison, Wisconsin.
- Schueler, T. 2000. "*The Compaction of Urban Soils*" The Practice of Watershed Protection. P. 210-214. Center for Watershed Protection
- SERAIEG, Southern Extension and Research Activity Information Exchange Group, Interpreting Soil Organic Matter Tests, (2005). http://www.clemson.edu/agsrvlb/sera6/SERA6-ORGANIC_doc.pdf
- Soils for Salmon. 2003. Soil Restoration and compost amendments. http://www.soilsforsalmon.org/pdf/SoilsforSalmonLIDrev9-16-04.pdf

US Composting Council, www.compostingcouncil.org

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION

Definition

A temporary, somewhat permeable barrier, installed around inlets in the form of a fence, berm or excavation around an opening, trapping water and thereby reducing the sediment content of sediment laden water by settling.

Purpose

To prevent heavily sediment laden water from entering a storm drain system through inlets.

Conditions Where Practice Applies

This practice shall be used where the drainage area to an inlet is disturbed, it is not possible to temporarily divert the storm drain outfall into a trapping device, and watertight blocking of inlets is not advisable. <u>It is not to be used in</u> **place of sediment trapping devices.** This may be used in conjunction with storm drain diversion to help prevent siltation of pipes installed with low slope angle.

Types of Storm Drain Inlet Practices

There are four (4) specific types of storm drain inlet protection practices that vary according to their function, location, drainage area, and availability of materials:

- I. Excavated Drop Inlet Protection
- II. Fabric Drop Inlet Protection
- III. Stone & Block Drop Inlet Protection
- IV. Curb Drop Inlet Protection

Design Criteria

Drainage Area – The drainage area for storm drain inlets shall not exceed one acre. The crest elevations of these practices shall provide storage and minimize bypass flow.

Type I – Excavated Drop Inlet Protection

See details for Excavated Drop Inlet Protection in Figure 5A.11 on page 5A.29.

Limit the drainage area to the inlet device to 1 acre. Excavated side slopes shall be no steeper than 2:1. The minimum depth shall be 1 foot and the maximum depth 2 feet as measured from the crest of the inlet structure. Shape the excavated basin to fit conditions with the longest dimension oriented toward the longest inflow area to provide maximum trap efficiency. The capacity of the excavated basin should be established to contain 900 cubic feet per acre of disturbed area. Weep holes, protected by fabric and stone, should be provided for draining the temporary pool.

Inspect and clean the excavated basin after every storm. Sediment should be removed when 50 percent of the storage volume is achieved This material should be incorporated into the site in a stabilized manner.

Type II – Fabric Drop Inlet Protection

See Figure 5A.12 for details on Filter Fabric Drop Inlet Protection on page 5A.30.

Limit the drainage area to 1 acre per inlet device. Land area slope immediately surrounding this device should not exceed 1 percent. The maximum height of the fabric above the inlet crest shall not exceed 1.5 feet unless reinforced.

The top of the barrier should be maintained to allow overflow to drop into the drop inlet and not bypass the inlet to unprotected lower areas. Support stakes for fabric shall be a minimum of 3 feet long, spaced a maximum 3 feet apart. They should be driven close to the inlet so any overflow drops into the inlet and not on the unprotected soil. Improved performance and sediment storage volume can be obtained by excavating the area.

Inspect the fabric barrier after each rain event and make repairs as needed. Remove sediment from the pool area as

necessary with care not to undercut or damage the filter fabric. Upon stabilization of the drainage area, remove all materials and unstable sediment and dispose of properly. Bring the adjacent area of the drop inlet to grade, smooth and compact and stabilize in the appropriate manner to the site.

If straw bales are used in lieu of filter fabric, they should be placed tight with the cut edge adhering to the ground at least 3 inches below the elevation of the drop inlet. Two anchor stakes per bale shall be driven flush to bale surface. Straw bales will be replaced every 4 months until the area is stabilized.

Type III – Stone and Block Drop Inlet Protection

See Figure 5A.13 for details on Stone and Block Drop Inlet Protection on page 5A.31.

Limit the drainage area to 1 acre at the drop inlet. The stone barrier should have a minimum height of 1 foot and a maximum height of 2 feet. Do not use mortar. The height should be limited to prevent excess ponding and bypass flow.

Recess the first course of blocks at least 2 inches below the crest opening of the storm drain for lateral support. Subsequent courses can be supported laterally if needed by placing a 2x4 inch wood stud through the block openings perpendicular to the course. The bottom row should have a few blocks oriented so flow can drain through the block to dewater the basin area.

The stone should be placed just below the top of the blocks on slopes of 2:1 or flatter. Place hardware cloth of wire mesh with ½ inch openings over all block openings to hold stone in place.

As an optional design, the concrete blocks may be omitted and the entire structure constructed of stone, ringing the outlet ("doughnut"). The stone should be kept at a 3:1 slope toward the inlet to keep it from being washed into the inlet. A level area 1 foot wide and four inches below the crest will further prevent wash. Stone on the slope toward the inlet should be at least 3 inches in size for stability and 1 inch or smaller away from the inlet to control flow rate. The elevation of the top of the stone crest must be maintained 6 inches lower than the ground elevation down slope from the inlet to ensure that all storm flows pass over the stone into the storm drain and not past the structure. Temporary diking should be used as necessary to prevent bypass flow.

The barrier should be inspected after each rain event and repairs made where needed. Remove sediment as necessary to provide for accurate storage volume for subsequent rains. Upon stabilization of contributing drainage area, remove all materials and any unstable soil and dispose of properly.

Bring the disturbed area to proper grade, smooth, compact and stabilized in a manner appropriate to the site.

Type IV – Curb Drop Inlet Protection

See Figure 5A. 14 for details on Curb Drop Inlet Protection on page 5A.32.

The drainage area should be limited to 1 acre at the drop inlet. The wire mesh must be of sufficient strength to support the filter fabric and stone with the water fully impounded against it. Stone is to be 2 inches in size and clean. The filter fabric must be of a type approved for this purpose with an equivalent opening size (EOS) of 40-85. The protective structure will be constructed to extend beyond the inlet 2 feet in both directions. Assure that storm flow does not bypass the inlet by installing temporary dikes (such as sand bags) directing flow into the inlet. Make sure that the overflow weir is stable. Traffic safety shall be integrated with the use of this practice.

The structure should be inspected after every storm event. Any sediment should be removed and disposed of on the site. Any stone missing should be replaced. Check materials for proper anchorage and secure as necessary.

Figure 5A.11 Excavated Drop Inlet Protection

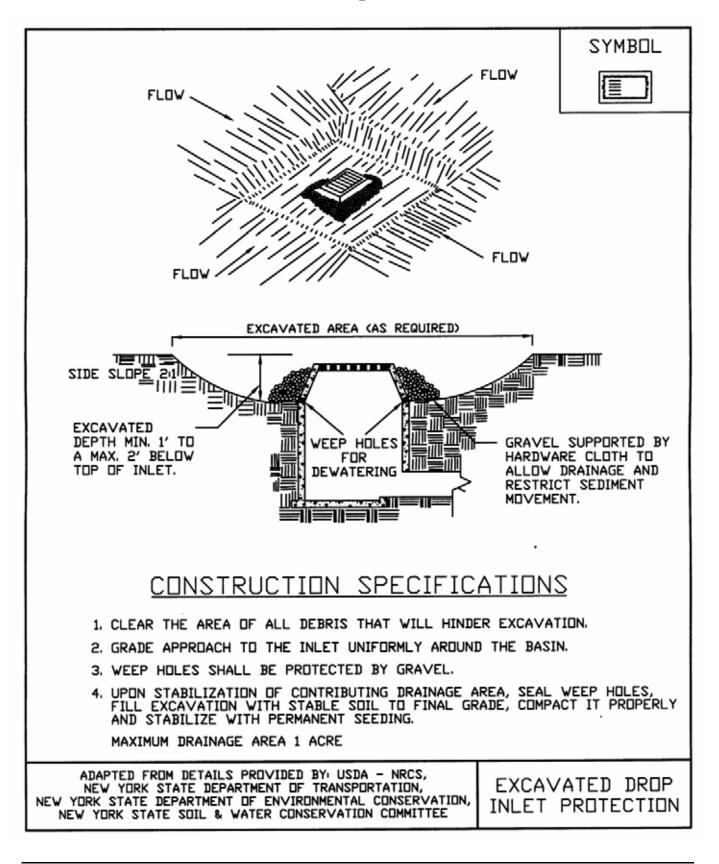


Figure 5A.12 Filter Fabric Drop Inlet Protection

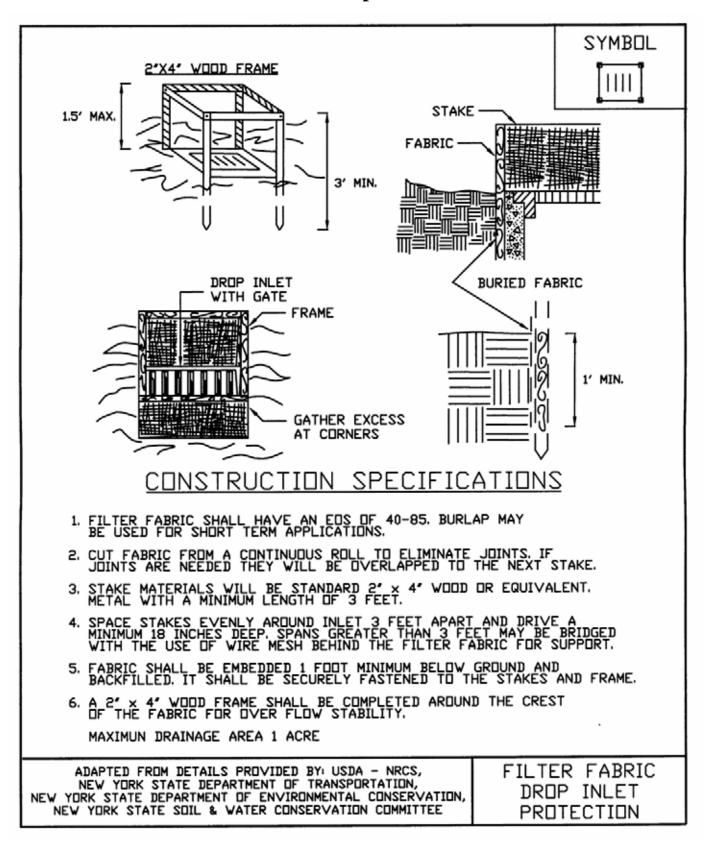
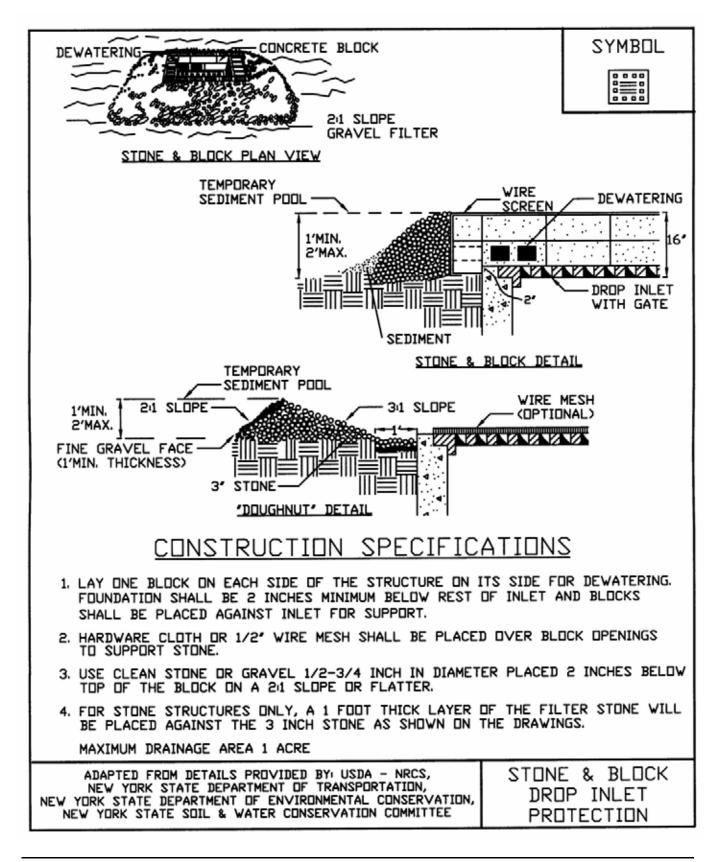
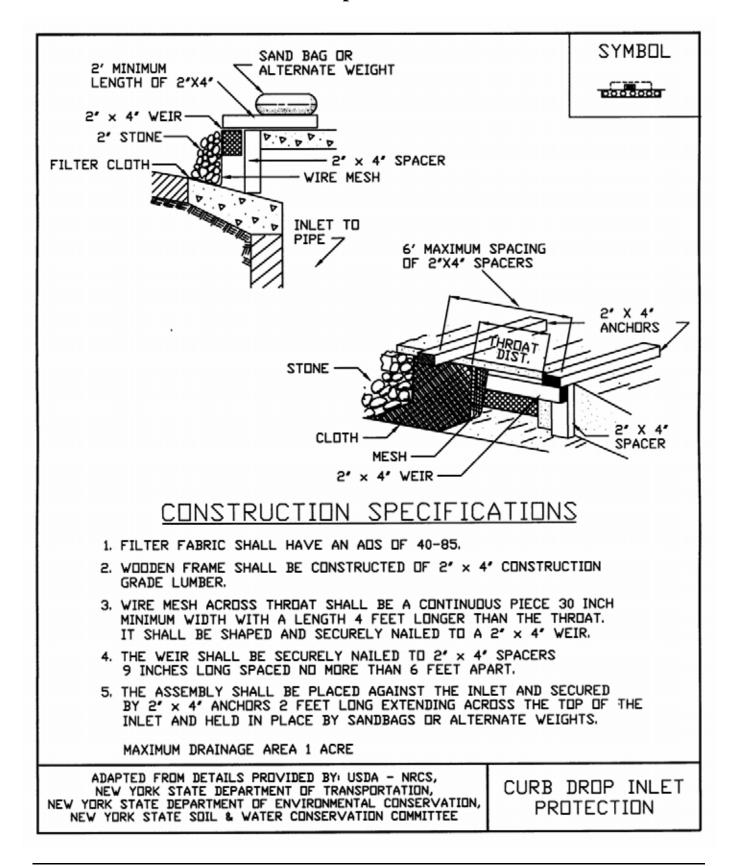




Figure 5A.13 Stone & Block Drop Inlet Protection

Figure 5A.14 Curb Drop Inlet Protection

STANDARD AND SPECIFICATIONS FOR SILT FENCE

Definition

A temporary barrier of geotextile fabric installed on the contours across a slope used to intercept sediment laden runoff from small drainage areas of disturbed soil.

Purpose

The purpose of a silt fence is to reduce runoff velocity and effect deposition of transported sediment load. Limits imposed by ultraviolet stability of the fabric will dictate the maximum period the silt fence may be used (approximately one year).

Conditions Where Practice Applies

A silt fence may be used subject to the following conditions:

1. Maximum allowable slope lengths contributing runoff to a silt fence placed on a slope are:

Maximum Length (ft.)
25
50
75
100

- 2. <u>Maximum drainage area for overland flow to a silt</u> <u>fence shall not exceed ¼ acre per 100 feet of fence</u>, with maximum ponding depth of 1.5 feet behind the fence; and
- 3. Erosion would occur in the form of sheet erosion; and
- 4. There is no concentration of water flowing to the barrier.

<u>Design Criteria</u>

Design computations are not required for installations of 1 month or less. Longer installation periods should be designed for expected runoff. All silt fences shall be placed as close to the areas as possible, but at least 10 feet from the toe of a slope to allow for maintenance and roll down. The area beyond the fence must be undisturbed or stabilized.

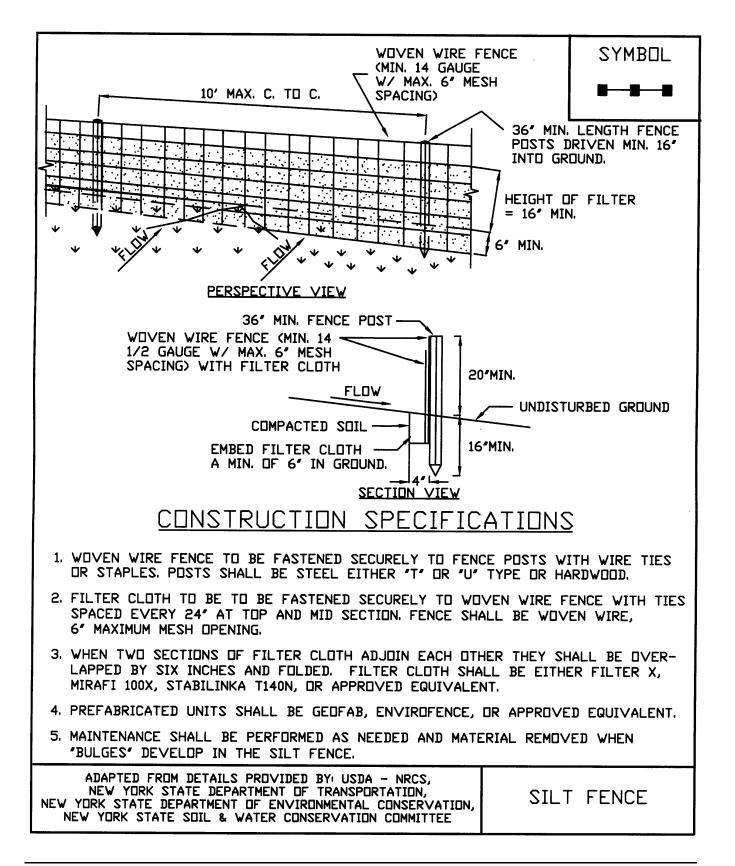
Sensitive areas to be protected by silt fence may need to be reinforced by using heavy wire fencing for added support to prevent collapse.

Where ends of filter cloth come together, they shall be overlapped, folded and stapled to prevent sediment bypass. A detail of the silt fence shall be shown on the plan. See Figure 5A.8 on page 5A.21 for details.

Criteria for Silt Fence Materials

1. Silt Fence Fabric: The fabric shall meet the following specifications unless otherwise approved by the appropriate erosion and sediment control plan approval authority. Such approval shall not constitute statewide acceptance.

Fabric Properties	Minimum Acceptable Value	Test Method
Grab Tensile Strength (lbs)	90	ASTM D1682
Elongation at Failure (%)	50	ASTM D1682


Mullen Burst Strength (PSI)	190	ASTM D3786
Puncture Strength (lbs)	40	ASTM D751 (modified)
Slurry Flow Rate (gal/min/sf)	0.3	
Equivalent Opening Size	40-80	US Std Sieve CW-02215
Ultraviolet Radiation Stability (%)	90	ASTM G-26

2. Fence Posts (for fabricated units): The length shall be a minimum of 36 inches long. Wood posts will be of sound quality hardwood with a minimum cross sectional area of 3.0 square inches. Steel posts will be standard T and U section weighing not less than 1.00 pound per linear foot.

3. Wire Fence (for fabricated units): Wire fencing shall be a minimum 14 gage with a maximum 6 in. mesh opening, or as approved.

4. Prefabricated Units: Envirofence, Geofab, or approved equal, may be used in lieu of the above method providing the unit is installed per details shown in Figure 5A.8.

Figure 5A.8 Silt Fence

STANDARD AND SPECIFICATIONS FOR CHECK DAM

Definition

Small barriers or dams constructed of stone, bagged sand or gravel, or other durable material across a drainage way.

Purpose

To reduce erosion in a drainage channel by restricting the velocity of flow in the channel.

Condition Where Practice Applies

This practice is used as a temporary or emergency measure to limit erosion by reducing velocities in small open channels that are degrading or subject to erosion and where permanent stabilization is impractical due to short period of usefulness and time constraints of construction.

Design Criteria

Drainage Area: Maximum drainage area above the check dam shall not exceed two (2) acres.

Height: Not greater than 2 feet. Center shall be maintained 9 inches lower than abutments at natural ground elevation.

Side Slopes: Shall be 2:1 or flatter.

Spacing: The check dams shall be spaced as necessary in the channel so that the crest of the downstream dam is at the

elevation of the toe of the upstream dam. This spacing is equal to the height of the check dam divided by the channel slope.

Therefore:

$$S = h/s$$

Where:

S = spacing interval (ft.) h = height of check dam (ft.) s = channel slope (ft./ft.)

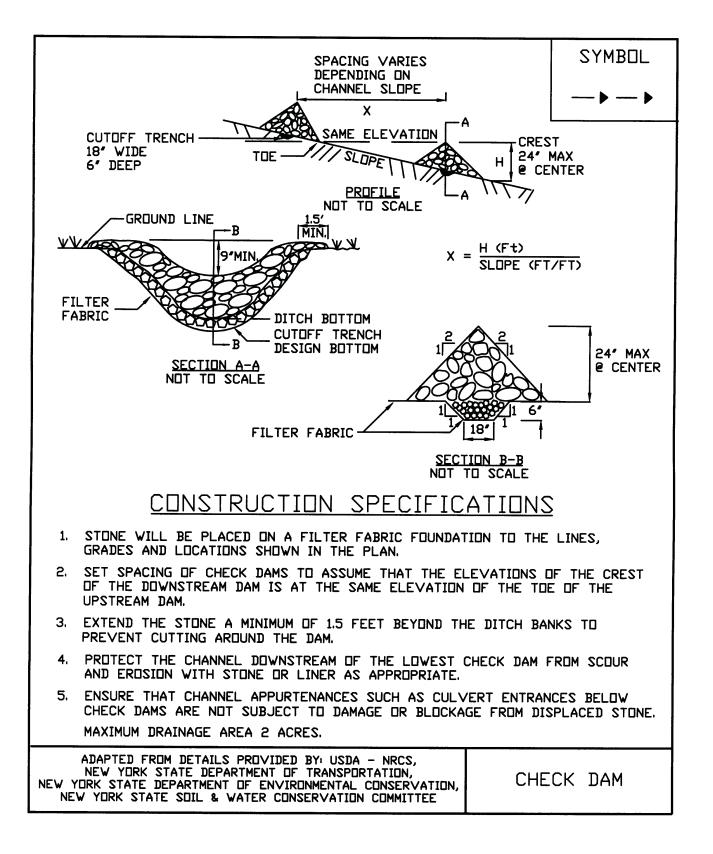
Example:

For a channel with a 4% slope and 2 ft. high stone check dams, they are spaced as follows:

$$S = \frac{2 \text{ ft.}}{.04 \text{ ft/ft.}} = 50 \text{ ft.}$$

Stone size: Use a well graded stone matrix 2 to 9 inches in size (NYS – DOT Light Stone Fill meets these requirements).

The overflow of the check dams will be stabilized to resist erosion that might be caused by the check dam. See Figure 5A.9 on page 5A.24 for details.


Check dams should be anchored in the channel by a cutoff trench 1.5 ft. wide and 0.5 ft. deep and lined with filter fabric to prevent soil migration.

Maintenance

The check dams should be inspected after each runoff event. Correct all damage immediately. If significant erosion has occurred between structures, a liner of stone or other suitable material should be installed in that portion of the channel.

Remove sediment accumulated behind the dam as needed to allow channel to drain through the stone check dam and prevent large flows from carrying sediment over the dam. Replace stones as needed to maintain the design cross section of the structures.

Figure 5A.9 Check Dam

STANDARD AND SPECIFICATIONS FOR STABILIZED CONSTRUCTION ENTRANCE

Definition

A stabilized pad of aggregate underlain with geotextile located at any point where traffic will be entering or leaving a construction site to or from a public right-of-way, street, alley, sidewalk, or parking area.

Purpose

The purpose of stabilized construction entrance is to reduce or eliminate the tracking of sediment onto public rights-ofway or streets.

Conditions Where Practice Applies

A stabilized construction entrance shall be used at all points of construction ingress and egress.

Design Criteria

See Figure 5A.35 on page 5A.76 for details.

Aggregate Size: Use a matrix of 1-4 inch stone, or reclaimed or recycled concrete equivalent.

Thickness: Not less than six (6) inches.

Width: 12-foot minimum but not less than the full width of points where ingress or egress occurs. 24-foot minimum if there is only one access to the site.

Length: As required, but not less than 50 feet (except on a single residence lot where a 30 foot minimum would apply).

Geotextile: To be placed over the entire area to be covered with aggregate. Filter cloth will not be required on a single-family residence lot. Piping of surface water under entrance shall be provided as required. If piping is impossible, a mountable berm with 5:1 slopes will be permitted.

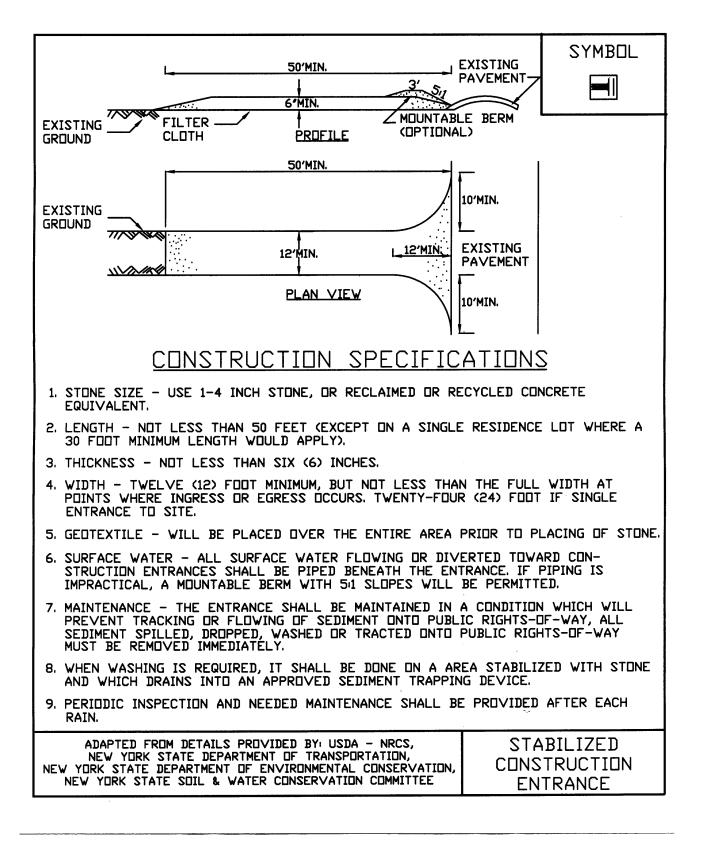
Criteria for Geotextile

The geotextile shall be woven or nonwoven fabric consisting only of continuous chain polymeric filaments or yarns of polyester. The fabric shall be inert to commonly encountered chemicals, hydro-carbons, mildew, rot resistant, and conform to the fabric properties as shown:

Fabric Properties ³	Light Duty ¹ Roads Grade <u>Subgrade</u>	Heavy Dut Haul Roads Rough <u>Graded</u>	•
Grab Tensile Strength (lbs)	200	220	ASTM D1682
Elongation at Failure (%)	50	60	ASTM D1682
Mullen Brust Strength (lbs)	190	430	ASTM D3786
Puncture Strength (lbs)	40	125	ASTM D751 modified
Equivalent	40-80	40-80	US Std Sieve
Opening Size			CW-02215
Aggregate De	pth 6	10	

¹Light Duty Road: Area sites that have been graded to subgrade and where most travel would be single axle vehicles and an occasional multiaxle truck. Acceptable materials are Trevira Spunbond 1115, Mirafi 100X, Typar 3401, or equivalent.

²Heavy Duty Road: Area sites with only rough grading, and where most travel would be multi-axle vehicles. Acceptable materials are Trevira Spunbond 1135, Mirafi 600X, or equivalent.


³Fabrics not meeting these specifications may be used only when design procedure and supporting documentation are supplied to determine aggregate depth and fabric strength.

Maintenance

The entrance shall be maintained in a condition which will prevent tracking of sediment onto public rights-of-way or streets. This may require periodic top dressing with additional aggregate. All sediment spilled, dropped, or washed onto public rights-of-way must be removed immediately.

When necessary, wheels must be cleaned to remove sediment prior to entrance onto public rights-of-way. When washing is required, it shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device. All sediment shall be prevented from entering storm drains, ditches, or watercourses.

Figure 5A.35 Stabilized Construction Entrance

STORMWATER POLLUTION PREVENTION PLAN GENERAL CONTRACTOR'S CERTIFICATION

Wilkins R.V.

Village of Churchville, County of Monroe State of New York

STORM WATER POLLUTION PREVENTION PROGRAM DATED MARCH 2015

GENERAL CONTRACTOR'S CERTIFICATION:

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings. "

Name:	
(Print)	
Signature:	
· · · · · · · · · · · · · · · · · · ·	
Title:	
Company Name:	
Address:	
Telephone Number:	
Date :	
Scope of Services: <u>Site Contractor</u>	

STORMWATER POLLUTION PREVENTION PLAN SUBCONTRACTOR'S CERTIFICATION

Wilkins R.V.

Village of Churchville, County of Monroe State of New York

STORM WATER POLLUTION PREVENTION PROGRAM DATED MARCH 2015

SUBCONTRACTOR'S CERTIFICATION:

"I hereby certify that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the *owner or operator* must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings. "

Name:
(Print)
Signature:
Title:
Company Name:
Address:
Telephone Number:
Date:
Scope of Services:

STORMWATER CONTROL FACILITY MAINTENANCE AGREEMENT

 Whereas, the Village of ______Churchville_____ and _____BLW Properties of Churchville, LLC. ______(FACILITY OWNER & ADDRESS)

 want to enter into an agreement to provide for the long term maintenance and continuation of stormwater control measures approved by the Village of ______for the ______for the ______(VILLAGE/MUNICIPALITY)

 ______Wilkins R.V._____located at ______111 and 97 South Main Street ______.

 ______(PROJECT TITLE)
 (PROJECT LOCATION)

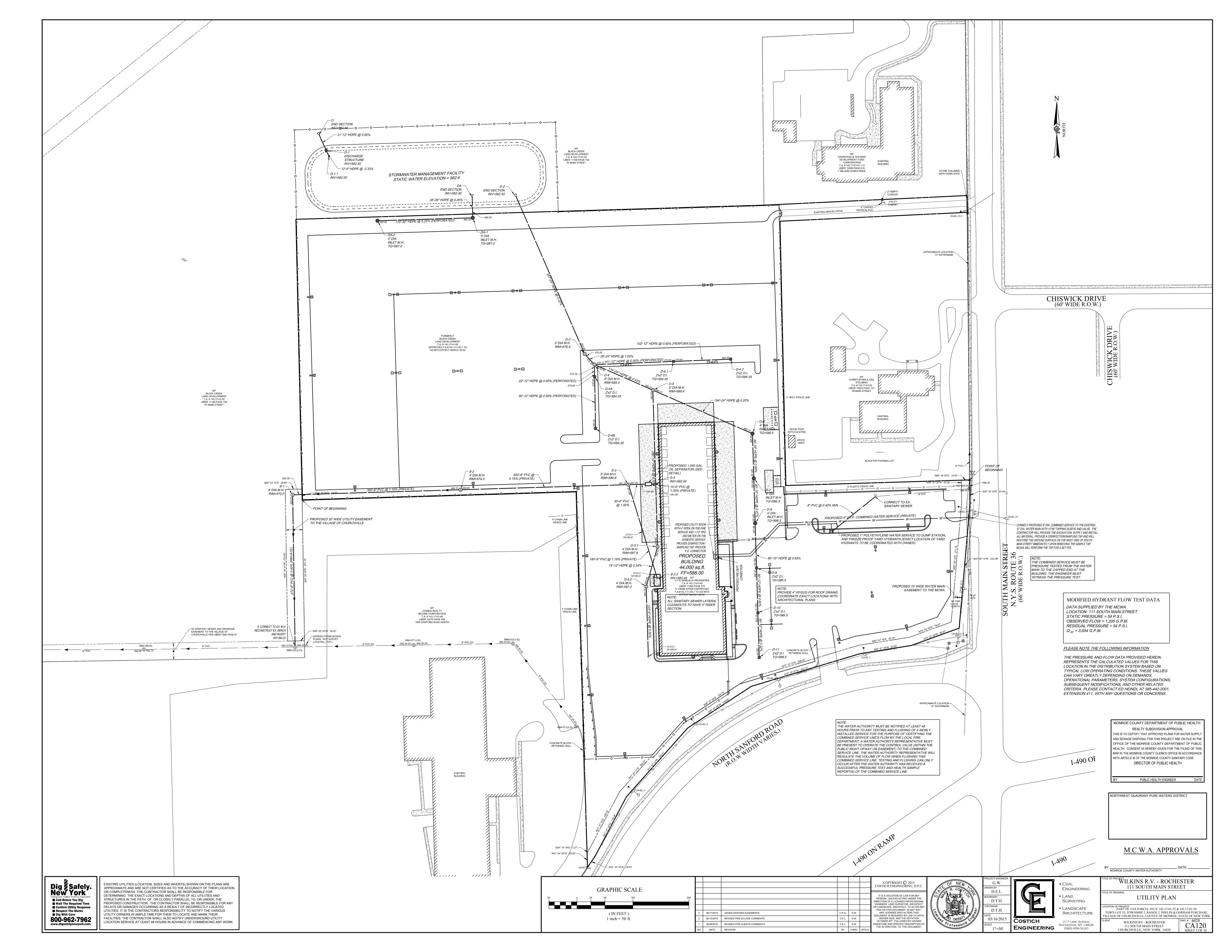
Whereas, the Village and the facility owner desire that the stormwater control measures be built in accordance with the approved project plans and thereafter be maintained, cleaned, repaired, replaced and continued in perpetuity in order to ensure optimum performance of the components. Therefore, the Village and the facility owner agree as follows:

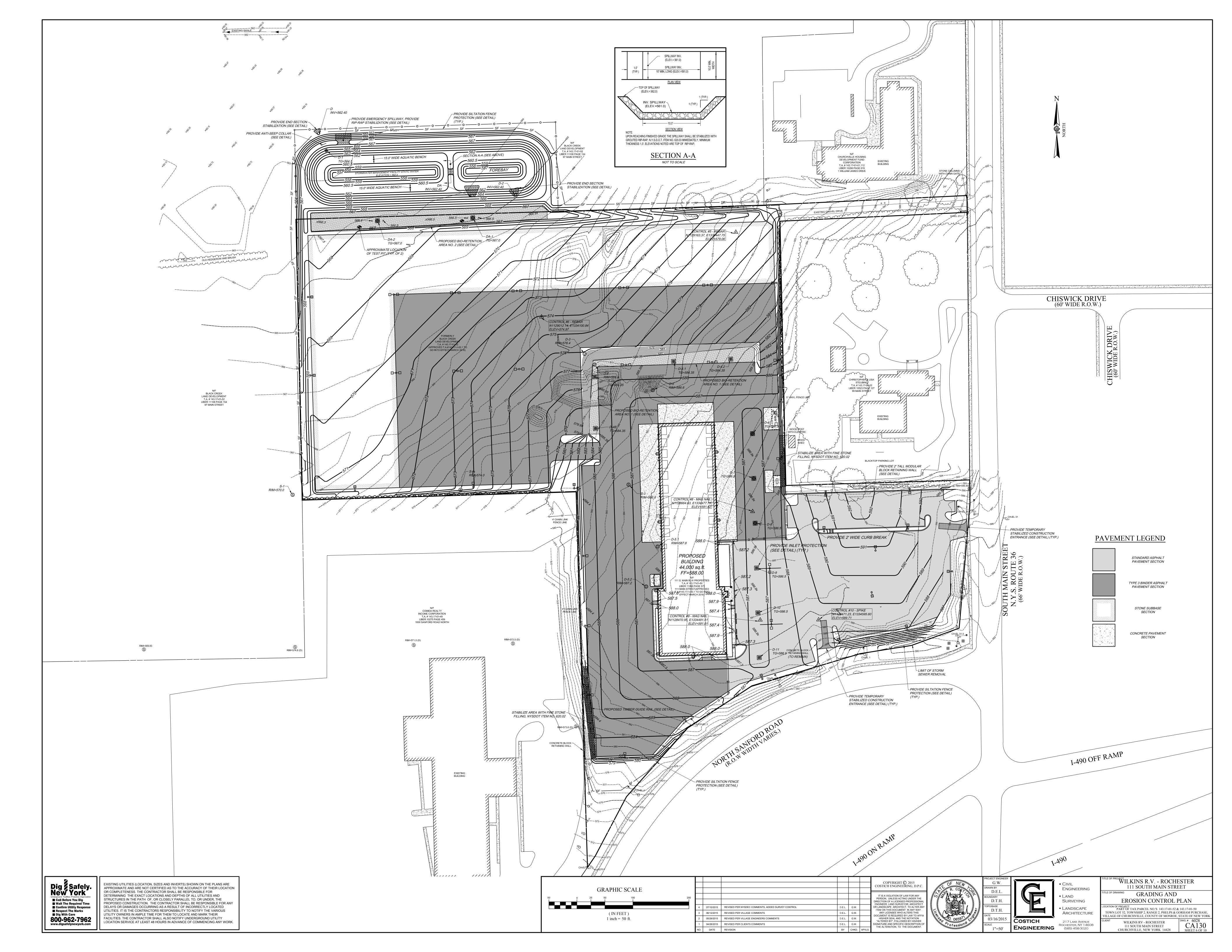
- This agreement binds the Village and the facility owner, its successors and assigns, to the maintenance provisions depicted in the approved final site plan, which are attached as Appendix A of this agreement.
- 2. The facility owner shall maintain, clean, repair, replace (if necessary) the stormwater control measures depicted in Schedule A as necessary to ensure optimum performance of the measures as designed.
- The facility owner shall be responsible for all expenses related to maintenance of stormwater management and shall establish a means for collection and distribution of expenses among parties for any commonly owner facilities.
- 4. The facility owner shall provide periodic inspection of stormwater control measures, not less than once every three-year period, to determine the condition and integrity of the measures. A Professional Engineer licensed by the State of New York shall perform such inspections. The inspecting engineer shall prepare and submit a report of the findings, including recommended actions, to the Village within 30 days of the inspection.
- The facility owner shall not authorize, undertake or permit alteration, abandon, modification or discontinuation of the stormwater control measures without written approval of the Village.

- 6. The facility owner shall undertake necessary repairs and replacement of the stormwater control measures at the direction of the Village or in accordance with the recommendation of the inspecting engineer.
- 7. The agreement shall be recorded in the Office of the County Clerk, County of

 $\underline{\text{Monroe}}_{\text{(COUNTY)}} \text{ together with the deed for the common property.}$

- 8. If ever the Village determines that the facility owner has failed to construct or maintain the stormwater control measures in accordance with the project plans or has failed to undertake required corrective measures, the Village is authorized to undertake steps reasonably necessary for the preservation, continuation or maintenance of the facility and to affix the expenses as a lien against the property.
- 9. This agreement is effective on _____


(DATE)


Signature of Owner: _____

Signature of Village Official: _____

Notary Public:

APPENDIX IV

