Buffalo Business Park

ERIE COUNTY, NEW YORK

Annual Report

2015-2016

NYSDEC Site Number: V00663-9

Prepared for:

Buffalo Business Park

1800 Broadway Street Buffalo, New York

Prepared by:
Environmental & Geologic Management Services. LLC

15 Briar Hill Road Orchard Park, New York 14127

Table of Contents

- I. Introduction
- II. Site Overview
- III. Remedy Performance, Effectiveness, and Protectiveness
- IV. IC/EC Plan Compliance
- V. Monitoring Plan Compliance Report
- VI. Operation & Maintenance (O&M) Plan Compliance Report
- VII. Overall Conclusions and Recommendations

List of Figures

Figure 1- Water Table Map during Pumping

Figure 2- Water Table Map with Pumps Turned Off

List of Tables

Table 1 - Pumping History

Table 2 - Groundwater Quality History

Appendices

Appendix A - Certification

Appendix B - May 2016 Laboratory Data

Appendix C - May 2016 Field Data

Appendix D – Buffalo Sewer Authority Notice of Violation

Appendix E – Sub-slab Depressurization Certified Inspection Form

I. Introduction

A. Remedial History

The Buffalo Business Park site is a warehousing & light manufacturing industrial park located on the site of an old railroad yard. It is suspected that the groundwater contamination on the site is the result of activities associated with this previous use.

The site contains two operable units: Unit 1 was an area of soil contamination which has been remediated by removal of contaminated soils: and Unit 2 is an area of groundwater contamination located in the same area where the soil contamination was located. In addition to the groundwater remedial program, there was concern regarding the potential for vapor intrusion into one of the buildings located south of the area of groundwater contamination.

B. Effectiveness of the Remedial Program

Remediation of the groundwater contamination at the site consists of a groundwater pumping system using three wells (MW-3BR, MW-4BR and MW-5BR) located in the groundwater contaminant plume. Wells are pumped using appropriate controllers to achieve drawdown of the water table and thus achieve hydraulic capture of contaminated groundwater. Wells are sampled periodically to evaluate if decreases in contaminant levels are being achieved. The primary goal of the pumping program is to achieve groundwater flow control such that flow of contaminated groundwater does not leave the site but is captured by the pumping system. Based on groundwater contour maps, this goal is being achieved.

Groundwater quality data has historically shown reductions in contaminant concentrations in some wells. Contaminant concentrations in all wells rose in 2015; however contaminant concentrations have again decreased in 2016, likely as a result of the significant increase in the amount groundwater that was collected and discharged to the sewer authority in 2016. At this time, there are no clear trends showing significant reductions in contaminant levels.

The pumping rate decreased in MW 2-BR to the point that it is no longer used as a pumping well. The pumping rate also decreased significantly at MW 4-BR. The pumping rate at MW-5BR has also declined but to a lesser extent.

MW-3BR is now being used as a pumping well and had the highest level of groundwater production in 2016.

Operation of the pumping system has historically demonstrated that the primary goal of capture can be achieved with ongoing pumping operations. Achievement of the secondary goal of contaminant reduction may be achievable, but it may take longer to achieve this goal.

Operation of the sub-slab venting system is effectively preventing soil vapors from entering the building and is ongoing.

C. Compliance

The facility is operating the pumping and venting systems in compliance with the Site Management Plan. The Buffalo Sewer Authority (BSA) Permit has been renewed for a three year period and collected groundwater continues to be pumped to the BSA. However, in June 2016 Buffalo Business Park received a notice of violation that the groundwater discharged to the BSA exceeds the daily maximum limit for tetrachloroethylene and will be required to investigate this occurrence in order to continue to discharge groundwater to the BSA.

D. Recommendations

At this time, no changes to the Site Management Plan (SMP) are recommended. The requirements for discontinuing the SMP have not been met.

Pumping volumes, water level measurements along with sampling and analysis of groundwater will continue as described in the SMP.

II. Site Overview

A. Site Description

The site consists of a 1 Acre portion of the Buffalo Business Park property located at 1800 Broadway in Buffalo, New York. The site is located at the entrance to the property and consists primarily of parking and driveway areas and a portion of the commercial/industrial building fronting on Broadway.

B. Remedial Program for the site

The remedial program for the site consists of the following:

- excavation of contaminated soil (completed);
- pumping of contaminated groundwater to achieve capture (no contaminated groundwater leaving the site) as well as reduction of groundwater contaminant concentrations; and
- installation and operation of a sub-slab depressurization system in the building (ongoing).

III. Remedy Performance, Effectiveness, and Protectiveness

A. Groundwater Capture

A review of potentiometric surface maps for groundwater from 2009 through 2016 show that the use of pumping wells has historically prevented contaminated groundwater from leaving the site. However, in 2014-2015, pumping rates declined at MW-2BR due to the general lack of groundwater recharge in this well. As a result, MW-2BR was returned to the status of groundwater monitoring well and groundwater monitoring well MW-3BR was converted to a groundwater pumping well. 107,920 gallons of water were pumped at MW-3BR; 24,320 gallons of water were pumped at MW-5BR; and 2,680 gallons were pumped at MW-4BR. Table 1 provides a summary of pumping history, and summarizes the pumping volumes by well for the 2015 – 2016 reporting period.

B. Groundwater Contamination Levels

There are three principal contaminants present in groundwater: tetrachloroethene, trichloroethene and dichloroethene. Two of these compounds (trichloroethene and dichloroethene) are degradation products of tetrachloroethene. Review of groundwater data from the 2004 monitoring event to 2016 (Table 2) shows that the concentrations of these compounds increased in all the wells that were sampled during the 2014 to 2015 operational period. The concentration of tetrachloroethene decreased in all wells sampled during the 2015 to 2016 operational period.

The concentration of trichloroethene also decreased in all the wells that were sampled during the 2015 to 2016 operational period, except at MW-5BR. The concentration of dichloroethene decreased in MW-2BR and MW-3BR during the 2015 to 2016 operational period, but increased at MW-4BR and MW-5BR and MW-5A BR.

The analytical data package is attached as Appendix B.

IV. Institutional Controls/Engineering Controls Plan Compliance (IC/EC Plan)

A. IC/EC Requirements and Compliance

Buffalo Business Park has both engineering controls (Groundwater Pumping; Sub slab venting) and institutional controls (Deed Restriction) in place.

Institutional Controls - The site continues to be owned and managed by Buffalo Business Park. No sale of the property has been made or is currently contemplated. ICs are noted on survey maps of the area are subject to deed restrictions.

Engineering Controls - Buffalo Business Park continues to operate and maintain the groundwater pumping system. The sub slab venting system is continuously operational.

Corrective Measures: There are currently no operational deficiencies in the EC/IC operations.

No changes to EC/IC Plan are recommended at this time. The IC/EC certification is provided in Appendix A.

Buffalo Business Park received a notice of violation from the Buffalo Sewer Authority dated June 17, 2016 that the groundwater discharged to the BSA exceeds the daily maximum limit for tetrachloroethylene and will be required to investigate this occurrence in order to continue to discharge groundwater to the BSA. Buffalo Business Park responded to the BSA and will start the follow up investigation in August, 2016. The Notice of Violation letter from the BSA and Buffalo Business Park's letter of response are provided in Appendix D.

V. Monitoring Plan Compliance Report

A. Monitoring Plan Requirements

The monitoring plan requires that wells (MWBR-2, MW – 3BR, MWBR-4, MW – 5BR and MWBR-5A) are sampled annually and samples analyzed for volatile organic compounds (VOCs). Annual groundwater sampling was completed on May 27, 2016.

The plan also requires that all wells be measured for groundwater elevation to evaluate groundwater flow. This measurement was completed on May 26 and 27, 2016.

B. Summary of Monitoring Completed during Reporting Period

Copies of the field data are provided in Appendix C. A potentiometric contour map based on the elevation data is provided as Figure 1. Equilibrium conditions are shown on Figure 2. Groundwater analytical data is included in Appendix B.

C. Comparisons with Remedial Objectives

Groundwater monitoring results show that the remedial objective of onsite capture of contaminated groundwater is being met. Groundwater quality objectives have shown an historic decrease in contaminant levels until 2014, when the contaminant concentrations in groundwater increased at monitoring wells MW2-BR and MW4-BR.

Contaminant concentrations increased again in 2015; however groundwater quality improved during the 2015 – 2016 annual period. Overall, groundwater quality objectives are not being met.

D. Monitoring Deficiencies:

There were no monitoring deficiencies in this period. Groundwater elevations were measured in January 2015 and again in June 2016.

E. Conclusions and Recommendations

No changes to the monitoring program are recommended at this time.

VI. Operation & Maintenance (O & M) Plan Compliance Report

A. Components of O&M Plan

Inspections and data recording are being conducted as required. Deficiencies are corrected and corrective actions are documented.

B. Summary of O & M Completed During Reporting Period

O&M activities are summarized and details of O & M actions are recorded in the monthly inspection reports and are kept onsite. The sub-slab depressurization blowers were recently inspected. This certified inspection form is attached as Appendix

C. Evaluation of Remedial Systems

The remedial systems are operating as designed at MW-4BR and MW-5ABR. The pumping system at MW-2BR was removed due to the general lack of groundwater in this well and a pumping system has been installed in MW-3BR. Maintenance performed is routine and not unusual (ex. Pump failure). No changes to the remedial systems are recommended at this time.

D. O & M Deficiencies

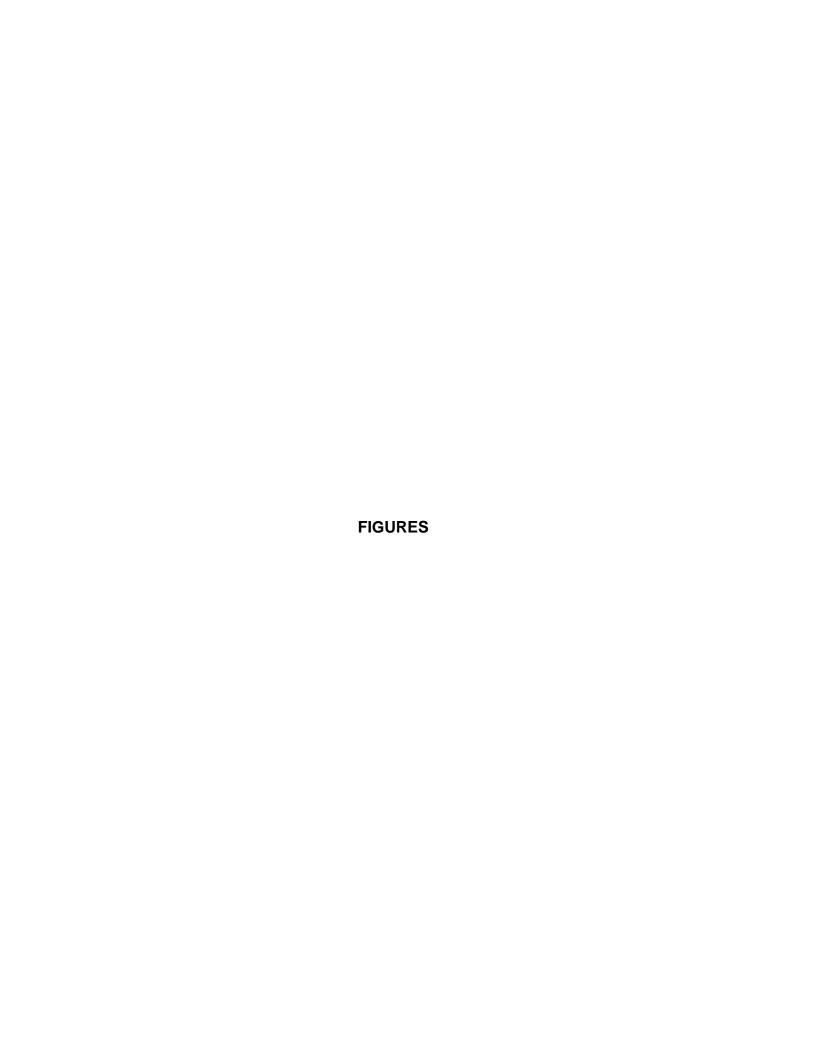
There are no operational or maintenance deficiencies at this time.

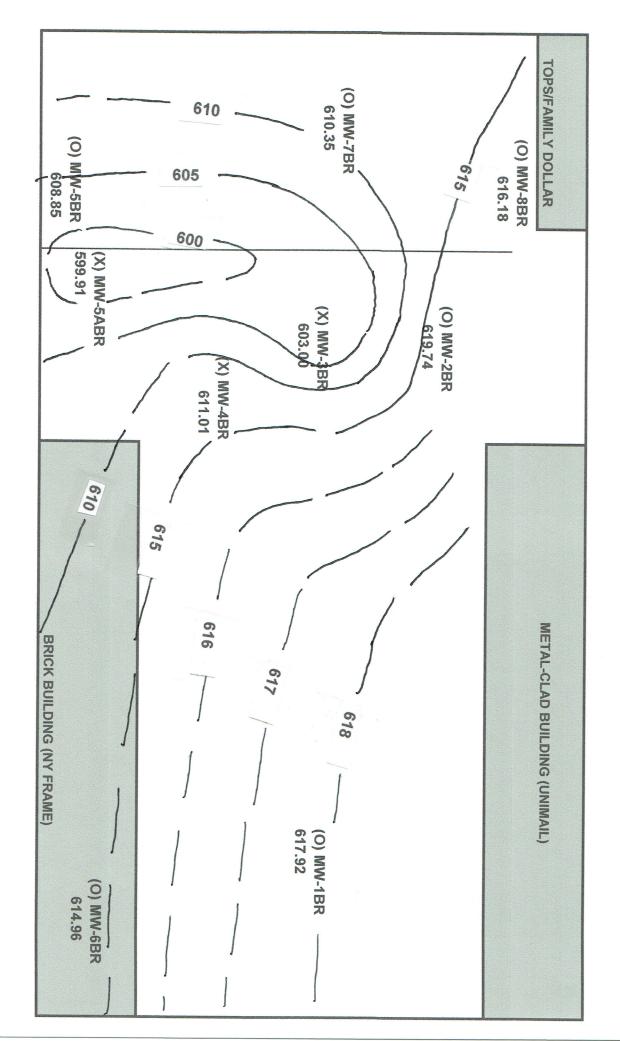
E. Conclusions and Recommendations for Improvements

The remedial system as designed and operated is capturing contaminated groundwater at the site. There are no recommendations for improvement to the remedial system. No changes to the O & M plan are recommended.

VII. Overall Conclusions and Recommendations

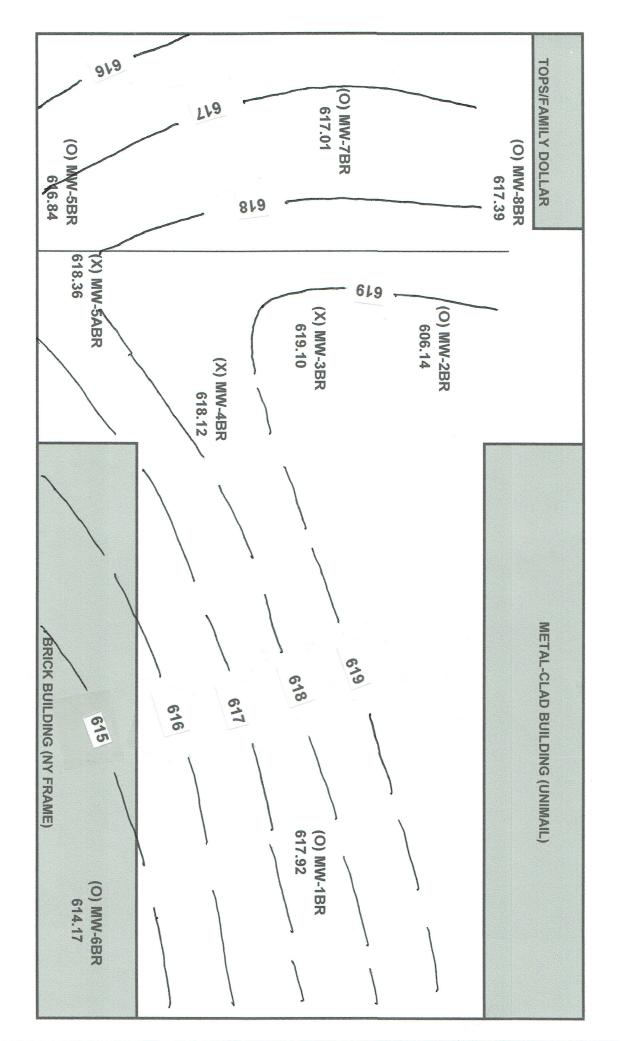
A. Compliance with SMP

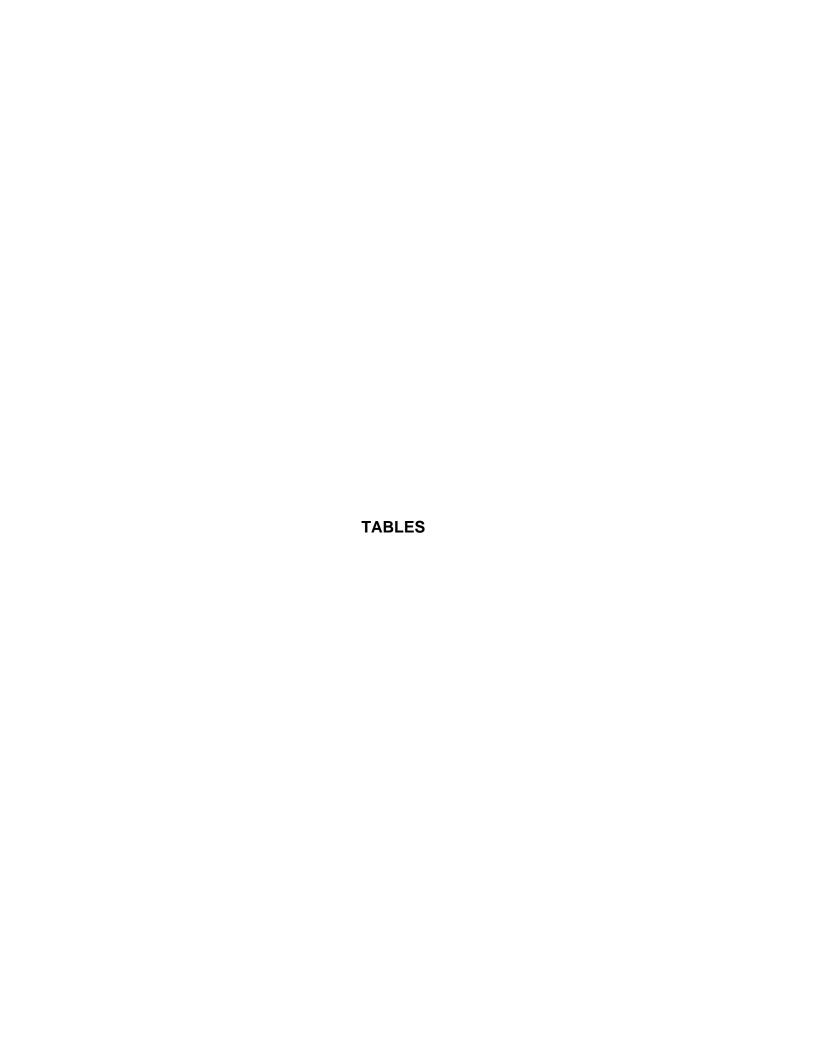

Buffalo Business Park has complied with all aspects of the SMP (IC/EC; O & M and Monitoring) for the period 2015 to 2016.


B. Performance and Effectiveness of the Remedy

The remedy has been effective in containing groundwater contamination and preventing contamination from leaving the site. Groundwater quality criteria have not been met and pumping should continue.

C. Future Submittals


Frequency of reporting should remain as currently required.


(O) MONITORING WELL

(X) PUMPING WELL - TURNED ON

(O) MONITORING WELL

(X) PUMPING WELL - TURNED ON

TABLE 1: PUMPING WELL TOTALIZERS BUFFALO BUSINESS PARK

DATE	MW-4 BR**	MW-2 BR*	MW-3 BR***	MW-5A BR
8/7/2008	0	na	na	na
8/26/2008	15575	na	na	na
10/13/2008	52364	na	na	na
10/1/2009	137280	na	na	na
12/15/2009	148600	0	na	na
9/8/2010	194590	na	na	na
9/15/2010	na	na	na	0
4/27/2011	231020	1220	na	44170
5/31/2012	256870	4930	na	116430
5/8/2013	289130	5180	na	170960
5/15/2014	403380	5310	na	224850
1/19/2015	421440	5310	na	254600
5/27/2015	421460	5310	na	272660
7/17/2015	424105	na	na	279160
1/7/2016	424130	na	60	279160
3/9/2016	424140	na	18650	287420
5/26/2016	424140	na	107920	296980

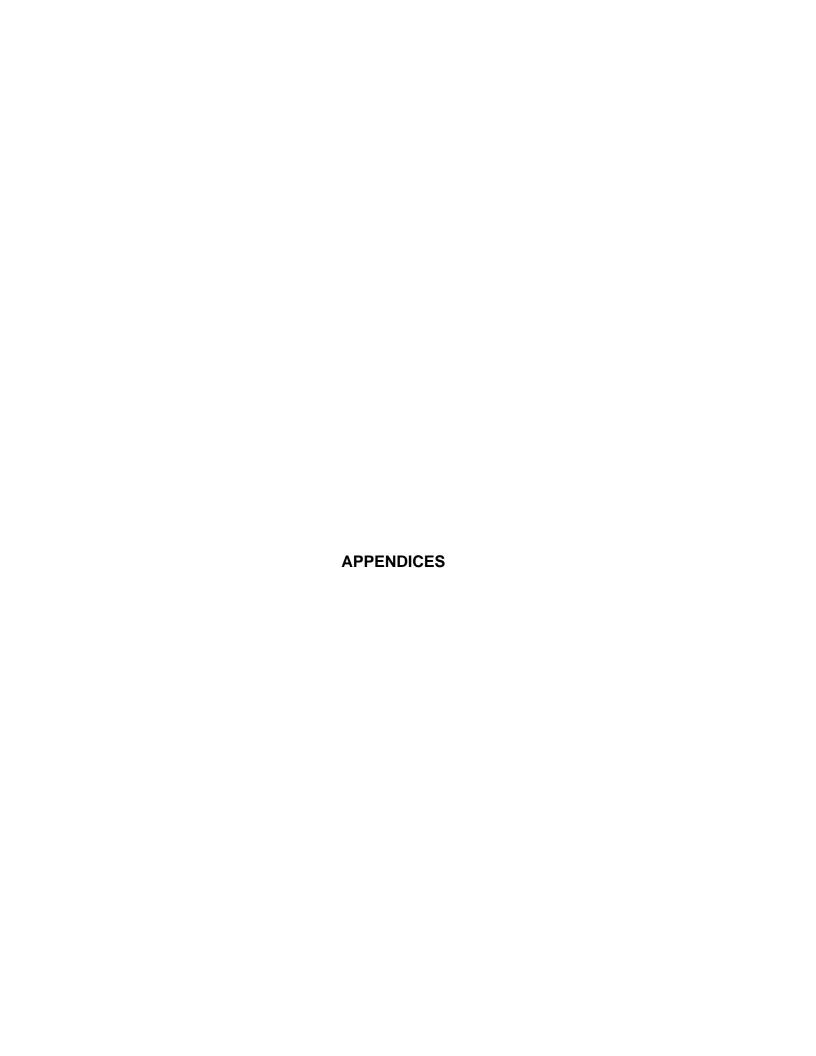
Total Water Pumped during 2015-2016 Reporting Season:

MW-3 BR 107,920 gallons

MW-4 BR 2,680 gallons

MW-5A BR 24,320 gallons

Total


* MW-2 BR - pump removed due to poor recharge - 5/27/15
**MW-4 BR - pump not running, GFI replaced and well started - 5/27/15
*** MW-3 BR - pump started - 1/7/16

Edivis			TA	BLE 2. VOL		ANIC COMPO		ROUNDWAT	ER				
					BUFF	ALO BUSINES	SS PARK						
Well ID			MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR
Date			9/17/2004	2/15/2006			4/13/2009	4/27/2011	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016
Parameter	Units	Criteria											
1,2-Dichloroethene (cis)	ug/l	5	ND	ND	Not	Not	11	1.5	17	100	2300	4800	2500
1,2-Dichloroethene, Total	ug/l				Sampled	Sampled		1.5		100	2300	4800	2500
Tetrachloroethene	ug/l	5	4600	2600			9,600	1	20	8.1	5500	18,000	95
Trichloroethene	ug/l	5	ND	30			75		2.2	0.92J	1000	1,600	69
							9,686	4.0	39.2	208.1	11,100	29,200	5,164
Well ID						Name and Address of the Owner, who	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR
Date							4/13/2009	4/27/2011	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016
Parameter	Units	Criteria	1				ARTHUR DESIGNATION OF THE PERSON NAMED IN COLUMN 1	1	1				
1,2-Dichloroethene (cis)	ug/l	5	1				620	430	220	1800	520	1,400	1100
1,2-Dichloroethene, Total	ug/l		1				***************************************	430		1800	520	1400	1100
Tetrachloroethene	ug/l	5	1				2,200	4,200	1400	16000	4100	21,000	4400
Trichloroethene	ug/l	5					570	360	78	810	180	1,200	630
							3,390	5,420	1,698	20,410	5,320	25,000	7,230
								1	1 2,050	20,720	3,320	23,000	1,200
Well ID			T	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR
Date				2/15/2006	5/1/2008	10/13/2008	4/13/2009	4/27/2011	5/31/2012	5/9/2013	5/9/2014	CONTROL OF THE PROPERTY OF THE	Name and Address of the Owner, where
Parameter	Units	Criteria		2/15/2000	3/1/2000	10/13/2008	4/13/2003	4/2//2011	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016
1,2-Dichloroethene (cis)	ug/l	5		1400	1000	620	630	21.0	730	000	1700	200	- 2000
1,2-Dichloroethene, Total	ug/l	-		1400	1000	020	030	22.0	/30	990	1700	890	2900
Tetrachloroethene	ug/l	5		30000	31000	4300	12,000	-	12000	1000	1700	890	2900
Trans-1,2-Dichlorowthene	ug/l			30000	31000	4500	13,000	710.0	13000	11000	12000	20,000	520
Trichloroethene	ug/l	5		3600	3500	980	1,400	640	1500	1600	2200	2.600	40
Vinyl chloride	ug/l	2		3000	3300	360	1,400	64.0	1500	1600	2200	2,600	290
	1 ugn						45.050						130
	+						15,030	817	15,230	14,590	17,600	24,380	6,780
Well ID			·						-	-	-		open and the contract of the c
Date	-						MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR
Parameter	Units	Critoria					4/13/2009	4/27/2011	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016
1.1-Dichloroethene	Units	Criteria											
1,2-Dichloroethene (cis)	110/1						1111	-				15	-
1,2-Dichloroethene, Total	ug/l	5					1,100	2700.0	3500	2100	740	3,000	3700
Tetrachloroethene	ug/l ug/l	5					45.000	2700.0		2100	750	3,000	3700
Trichloroethene	NAME OF TAXABLE PARTY.	5					15,000	1300.0	220	320	110	2,100	1500
Vinyl chloride	ug/l	2					-	850.0	160	290	77	1,000	1300
The state of the s	ug/i						45.450			100	110	130	
	 						16,100	7,550	3,880	4,910	1,787	9,245	10,200
Well ID	_											-	-
Date								MW5A-BR	MW5A-BR	MW5A-BR	MW5A-BR	MW5A-BR	MW5A-BR
	Unite	Oritaria						4/27/2011	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016
Parameter	Units	Criteria											
1,1-Dichloroethene												9.6	
1,2-Dichloroethene (cis)	ug/l	5						970.0	1900	870	170	1,500	2100
1,2-Dichloroethene, Total	ug/l							970.0		880	170	1,500	2100
Tetrachloroethene	ug/l	5						4300.0	8900	1300	410	12,000	4000
Trichloroethene	ug/l	5						1300.0	2000	370	110	2,300	1400
Vinyl chloride	ug/l	2										76	

EGMS

7,540

12,800

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details No. V00663	Box 1	
Site	Name Buffalo Business Park		
City	Address: 1800 Broadway Zip Code: 14212-2001 //Town: Buffalo unty: Erie Acreage: 1.4		
Re	porting Period: September 15, 2015 to June 15, 2016		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		x
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		x
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	•
			NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	Box 2	NO
6. 7.	Commercial and Industrial	Box 2 YES	
	Commercial and Industrial	Box 2 YES X	
7.	Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and	Box 2 YES X	
7.	Commercial and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	Box 2 YES X	

SITE NO. V00663 Box 3

Description of Institutional Controls

Parcel

<u>Owner</u>

101.19-1-5.1

Gary Crewson

Institutional Control

Ground Water Use Restriction

Site Management Plan Soil Management Plan

Ground Water Use Restriction

Landuse Restriction Monitoring Plan O&M Plan IC/EC Plan

The deed restriction was filed on 11-19-2010. The Controlled Property (1.4137 acres) is subject to the Site Management Plan. The Controlled Property is the south west corner of the entire Buffalo Business Park property (19.93 acres).

Restrictions:

- 1. The Controlled Property may be used only for industrial or commercial purposes, excluding day care, child care, and medical care uses.
- 2. The Groundwater beneath the Controlled Property may not be used for potable or non-potable purposes;
- 3. The Site Management Plan must be implemented for the Controlled Property;
- 4. Soils at the Controlled Property shall be managed in accordance with the Site Management plan.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

101.19-1-5.1

Groundwater Treatment System

Vapor Mitigation

- 1. SSDS: A sub slab depressurization system (SSDS) is installed in the western end of New York frame building consisting of two active vents.
- 2. Pumping System: Three bedrock monitoring wells MW4-BR, MW3-BR and MW5A-BR are operated as pumping wells. Recovered groundwater is discharged to BSA.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted	
	engineering practices; and the information presented is accurate and compete. YES NO	
	х 🗆	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	3
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	 (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control; 	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	X 🗆	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	
		-

IC CERTIFICATIONS SITE NO. V00663

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, Gary Crewson at Buffalo Business Park, 1800 Broadway, Bldg 1, Buffalo NY 14212, am certifying as Owner of the property for the Site named in the Site Details Section of this form.

Signature of Owner/Remedial Party, or Designated Representative Rendering Certification

Date

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, Norman Wohlabaugh at Environmental & Geologic Mgt Services, LLC, 15 Briar Hill Rd, Orchard Park, NY 14127 am certifying as a Qualified Environmental Professional for the Buffalo Business Park.

(Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

Stamp

(Required for PE)

Date

APPENDIX B MAY 2016 LABORATORY DATA

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-100824-1

Client Project/Site: Buffalo Business Park Sampling Event: Buffalo Business Park

or:

Environmental Sampling & Services Inc 7183 Balla Drive North Tonawanda, New York 14120

Attn: Robert Chiodo

Indistina ml Obeet

Authorized for release by: 6/6/2016 11:39:30 AM
Christina Dosier, Project Mgmt. Assistant christina.dosier@testamericainc.com

Designee for

Ryan VanDette, Project Manager II (716)504-9830 ryan.vandette@testamericainc.com

····· Links ·····

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	21
QC Sample Results	22
QC Association Summary	30
Lab Chronicle	31
Certification Summary	33
Method Summary	34
Sample Summary	35
Detection Limit Exceptions Summary	36
Chain of Custody	37
Field Data Sheets	38
Receipt Checklists	39

3

4

£

9

10

12

14

10

47

Definitions/Glossary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.

F2 MS/MSD RPD exceeds control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Job ID: 480-100824-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-100824-1

Comments

No additional comments.

Receipt

The samples were received on 5/27/2016 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-304411 recovered outside acceptance criteria, low biased, for 1,1,2-Trichloro-1,2,2-trifluoroethane, Chloromethane, and Cyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported. The following samples are impacted: MW 2-BR (480-100824-1), MW 3-BR (480-100824-2), MW 4-BR (480-100824-3) and DUP@MW 4-BR (480-100824-6).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW 2-BR (480-100824-1), MW 3-BR (480-100824-2), MW 4-BR (480-100824-3) and DUP@MW 4-BR (480-100824-6). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW 5-BR (480-100824-4), MW 5-BR (480-100824-4[MS]), MW 5-BR (480-100824-4[MSD]) and MW 5A-BR (480-100824-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-304269 recovered outside acceptance criteria, low biased, for 1,1,2-Trichloro-1,2,2-trifluoroethane and Cyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analytes, the data have been reported. The following samples are impacted: MW 5-BR (480-100824-4), MW 5A-BR (480-100824-5) and TRIP BLANK (480-100824-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

E

6

9

10

12

13

14

16

45

TestAmerica Job ID: 480-100824-1

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

Client Sample ID: MW 2-BR

Lab Sample ID: 480-100824-1

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.65	-			SU	1	_	Field Sampling	Total/NA
Specific Conductance	996				umhos/cm	1		Field Sampling	Total/NA
Temperature	17.6				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-28.7				millivolts	1		Field Sampling	Total/NA
Turbidity	4.85				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	5.30				ft	1		Field Sampling	Total/NA
Well Depth	26.55				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	2500	-	80	32	ug/L	40	_	8260C	Total/NA
cis-1,2-Dichloroethene	2500		40	32	ug/L	40		8260C	Total/NA
Tetrachloroethene	95		40	14	ug/L	40		8260C	Total/NA
Trichloroethene	69		40	18	ug/L	40		8260C	Total/NA

Client Sample ID: MW 3-BR

Lab Sample ID: 480-100824-2

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.50				SU	1	_	Field Sampling	Total/NA
Specific Conductance	1476				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.2				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-20.5				millivolts	1		Field Sampling	Total/NA
Turbidity	3.22				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	20.99				ft	1		Field Sampling	Total/NA
Well Depth	28.60				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	1100		200	81	ug/L	100	_	8260C	Total/NA
cis-1,2-Dichloroethene	1100		100	81	ug/L	100		8260C	Total/NA
Tetrachloroethene	4400		100	36	ug/L	100		8260C	Total/NA
Trichloroethene	630		100	46	ug/L	100		8260C	Total/NA

Client Sample ID: MW 4-BR

Lab Sample ID: 480-100824-3

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.39				SU	1	_	Field Sampling	Total/NA
Specific Conductance	1034				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.4				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-14.1				millivolts	1		Field Sampling	Total/NA
Turbidity	3.04				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	11.78				ft	1		Field Sampling	Total/NA
Well Depth	27.75				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	2900		80	32	ug/L	40	_	8260C	Total/NA
cis-1,2-Dichloroethene	2900		40	32	ug/L	40		8260C	Total/NA
Tetrachloroethene	520		40	14	ug/L	40		8260C	Total/NA
trans-1,2-Dichloroethene	40		40	36	ug/L	40		8260C	Total/NA
Trichloroethene	290		40	18	ug/L	40		8260C	Total/NA
Vinyl chloride	130		40	36	ug/L	40		8260C	Total/NA

Client Sample ID: MW 5-BR

Lab Sample ID: 480-100824-4

This Detection Summary does not include radiochemical test results.

Page 5 of 39

TestAmerica Job ID: 480-100824-1

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

Client Sample ID: MW 5-BR (Continued)

Lab Sample	ID 400 4	00004.4
i an Samnia	11 1' AXN_7	ハハメンル_ル
Lab Sallible	1D. 400-1	UUU <u>L</u> H-4

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.13				SU	1	_	Field Sampling	Total/NA
Specific Conductance	2030				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.2				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-0.4				millivolts	1		Field Sampling	Total/NA
Turbidity	3.70				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	13.57				ft	1		Field Sampling	Total/NA
Well Depth	26.70				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	3700		160	65	ug/L	80	_	8260C	Total/NA
cis-1,2-Dichloroethene	3700	F1	80	65	ug/L	80		8260C	Total/NA
Tetrachloroethene	1500		80	29	ug/L	80		8260C	Total/NA
Trichloroethene	1300		80	37	ug/L	80		8260C	Total/NA

Client Sample ID: MW 5A-BR

Lab Sample ID: 480-100824-5

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.15				SU	1	_	Field Sampling	Total/NA
Specific Conductance	2470				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.6				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-1.3				millivolts	1		Field Sampling	Total/NA
Turbidity	2.36				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	19.85				ft	1		Field Sampling	Total/NA
Well Depth	25.40				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	2100		400	160	ug/L	200	_	8260C	Total/NA
cis-1,2-Dichloroethene	2100		200	160	ug/L	200		8260C	Total/NA
Tetrachloroethene	4000		200	72	ug/L	200		8260C	Total/NA
Trichloroethene	1400		200	92	ug/L	200		8260C	Total/NA

Client Sample ID: DUP@MW 4-BR

Lab Sample ID: 480-100824-6

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Field pH	7.39				SU	1	_	Field Sampling	Total/NA
Specific Conductance	1034				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.4				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-14.1				millivolts	1		Field Sampling	Total/NA
Turbidity	3.04				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	11.78				ft	1		Field Sampling	Total/NA
Well Depth	27.75				ft	1		Field Sampling	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	2900		80	32	ug/L	40	_	8260C	Total/NA
cis-1,2-Dichloroethene	2900		40	32	ug/L	40		8260C	Total/NA
Tetrachloroethene	580		40	14	ug/L	40		8260C	Total/NA
trans-1,2-Dichloroethene	41		40	36	ug/L	40		8260C	Total/NA
Trichloroethene	350		40	18	ug/L	40		8260C	Total/NA
Vinyl chloride	120		40	36	ug/L	40		8260C	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-100824-7

No Detections.

This Detection Summary does not include radiochemical test results.

Page 6 of 39

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Lab Sample ID: 480-100824-1

TestAmerica Job ID: 480-100824-1

Matrix: Water

Client Sample ID: MW 2-BR Date Collected: 05/27/16 08:24 Date Received: 05/27/16 10:00

		MDL	Unit	D	Prepared	Analyzed	Dil Fa
ND	40	33	ug/L			06/01/16 05:09	4
ND	40	8.4	ug/L			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40					06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
	80		-			06/01/16 05:09	4
							4
			•				4
			-				4
							4
			-				4
			•				4
			-				4
			-				4
			_				4
			-				4
			_				4
			-				4
							4
			-				
			-				4
							4
			-				4
			•				4
			-				4
			_				4
			-				4
			-				4
			-				4
							4
							4
							4
			-				4
							4
							4
ND			-				4
95	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40		-			06/01/16 05:09	4
ND	40	15	ug/L			06/01/16 05:09	4
69	40	18	ug/L			06/01/16 05:09	4
ND	40	35	ug/L			06/01/16 05:09	4
ND	200	34	ug/L			06/01/16 05:09	4
ND	40	36	ug/L			06/01/16 05:09	4
	Result Quality	ND 40 ND <	Result Qualifier RL MDL ND 40 33 ND 40 8.4 ND 40 12 ND 40 15 ND 40 16 ND 40 29 ND 40 32 ND 40 32 ND 40 32 ND 40 34 ND 40 120 ND 40 120 ND 40 16 ND 40 16 ND 40 16 ND	Result Qualifier RL MDL Unit ND 40 33 ug/L ND 40 8.4 ug/L ND 40 9.2 ug/L ND 40 12 ug/L ND 40 15 ug/L ND 40 16 ug/L ND 40 16 ug/L ND 40 32 ug/L ND 40 32 ug/L ND 40 34 ug/L ND 40 35 ug/L ND 40 36 ug/L ND 40 31 ug/L ND 40 32 ug/L ND 40 31 ug/L ND 40 32 ug/L ND 40 34 ug/L ND 40 35 ug/L ND 40 36 ug/L ND 40 35 ug/L N	Result Qualifier RL	Result Qualifier RL MDL Unit D Prepared	Result Qualifier

TestAmerica Buffalo

Page 7 of 39

2

3

5

6

8

10

12

1 1

15

6/6/2016

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-1

Matrix: Water

Client Sampl	le ID:	MW 2	-BK
Data Callagan	05/07/	40 00-4	2.4

Date Collected: 05/27/16 08:24 Date Received: 05/27/16 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		80	26	ug/L			06/01/16 05:09	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		66 - 137					06/01/16 05:09	40
4-Bromofluorobenzene (Surr)	107		73 - 120					06/01/16 05:09	40
Toluene-d8 (Surr)	87		71 - 126					06/01/16 05:09	40

Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.65			SU			05/27/16 08:24	1
Specific Conductance	996			umhos/cm			05/27/16 08:24	1
Temperature	17.6			Degrees C			05/27/16 08:24	1
Oxidation Reduction Potential	-28.7			millivolts			05/27/16 08:24	1
Turbidity	4.85			NTU			05/27/16 08:24	1
Depth to Water from Top of	5.30			ft			05/27/16 08:24	1
Casing								
Well Depth	26.55			ft			05/27/16 08:24	1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Client Sample ID: MW 3-BR

Lab Sample ID: 480-100824-2

TestAmerica Job ID: 480-100824-1

Matrix: Water

Date Collected: 05/27/16 08:36 Date Received: 05/27/16 10:00

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	100	82	ug/L			06/01/16 05:33	100
1,1,2,2-Tetrachloroethane	ND	100	21	ug/L			06/01/16 05:33	100
1,1,2-Trichloroethane	ND	100	23	ug/L			06/01/16 05:33	100
1,1,2-Trichlorotrifluoroethane	ND	100	31	ug/L			06/01/16 05:33	100
1,1-Dichloroethane	ND	100	38	ug/L			06/01/16 05:33	100
1,1-Dichloroethene	ND	100	29	ug/L			06/01/16 05:33	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L			06/01/16 05:33	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L			06/01/16 05:33	100
1,2-Dibromoethane	ND	100	73	ug/L			06/01/16 05:33	100
1,2-Dichlorobenzene	ND	100	79	ug/L			06/01/16 05:33	100
1,2-Dichloroethane	ND	100	21	ug/L			06/01/16 05:33	100
1,2-Dichloroethene, Total	1100	200	81	ug/L			06/01/16 05:33	100
1,2-Dichloropropane	ND	100		ug/L			06/01/16 05:33	100
1,3-Dichlorobenzene	ND	100		ug/L			06/01/16 05:33	100
1,4-Dichlorobenzene	ND	100		ug/L			06/01/16 05:33	100
2-Butanone (MEK)	ND	1000		ug/L			06/01/16 05:33	100
2-Hexanone	ND	500		ug/L			06/01/16 05:33	100
4-Methyl-2-pentanone (MIBK)	ND	500		ug/L			06/01/16 05:33	100
Acetone	ND	1000		ug/L			06/01/16 05:33	100
Benzene	ND	100	41	-			06/01/16 05:33	100
Bromodichloromethane	ND	100		ug/L			06/01/16 05:33	100
Bromoform	ND	100		ug/L			06/01/16 05:33	100
Bromomethane	ND	100		ug/L			06/01/16 05:33	100
Carbon disulfide	ND	100		ug/L			06/01/16 05:33	100
Carbon tetrachloride	ND	100		ug/L			06/01/16 05:33	100
Chlorobenzene	ND	100		ug/L			06/01/16 05:33	100
Chlorodibromomethane	ND	100		ug/L			06/01/16 05:33	100
Chloroethane	ND	100		ug/L			06/01/16 05:33	100
Chloroform	ND	100		ug/L			06/01/16 05:33	100
Chloromethane	ND	100		ug/L			06/01/16 05:33	100
cis-1,2-Dichloroethene	1100	100		ug/L			06/01/16 05:33	100
cis-1,3-Dichloropropene	ND	100		ug/L			06/01/16 05:33	100
Cyclohexane	ND	100					06/01/16 05:33	100
Dichlorodifluoromethane	ND	100		ug/L			06/01/16 05:33	100
	ND ND	100		ug/L ug/L			06/01/16 05:33	100
Ethylbenzene				•				
Isopropylbenzene Methyl costate	ND	100		ug/L			06/01/16 05:33	100
Methyl acetate	ND	100		ug/L			06/01/16 05:33	100
Methyl tert-butyl ether	ND	100		ug/L			06/01/16 05:33	100
Methylcyclohexane	ND	100		ug/L			06/01/16 05:33	100
Methylene Chloride	ND	100		ug/L			06/01/16 05:33	100
Styrene	ND	100		ug/L			06/01/16 05:33	100
Tetrachloroethene	4400	100		ug/L			06/01/16 05:33	100
Toluene	ND	100		ug/L			06/01/16 05:33	100
trans-1,2-Dichloroethene	ND	100		ug/L			06/01/16 05:33	100
trans-1,3-Dichloropropene	ND	100		ug/L			06/01/16 05:33	100
Trichloroethene	630	100		ug/L			06/01/16 05:33	100
Trichlorofluoromethane	ND	100		ug/L			06/01/16 05:33	100
Vinyl acetate	ND	500		ug/L			06/01/16 05:33	100
Vinyl chloride	ND	100	90	ug/L			06/01/16 05:33	100

TestAmerica Buffalo

Page 9 of 39 6/6/2016

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-2

Matrix: Water

Client Sample I	D: MW 3-BR
Data Callantada OF	107/40 00-00

Date Collected: 05/27/16 08:36 Date Received: 05/27/16 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		200	66	ug/L			06/01/16 05:33	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		66 - 137					06/01/16 05:33	100
4-Bromofluorobenzene (Surr)	110		73 - 120					06/01/16 05:33	100
Toluene-d8 (Surr)	87		71 - 126					06/01/16 05:33	100

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.50				SU			05/27/16 08:36	1
Specific Conductance	1476				umhos/cm			05/27/16 08:36	1
Temperature	16.2				Degrees C			05/27/16 08:36	1
Oxidation Reduction Potential	-20.5				millivolts			05/27/16 08:36	1
Turbidity	3.22				NTU			05/27/16 08:36	1
Depth to Water from Top of	20.99				ft			05/27/16 08:36	1
Casing									
Well Depth	28.60				ft			05/27/16 08:36	1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-3

Matrix: Water

Client Sample ID: MW 4-BR
Date Collected: 05/27/16 08:47
Date Received: 05/27/16 10:00

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	40	33	ug/L		-	06/01/16 05:57	4
1,1,2,2-Tetrachloroethane	ND	40	8.4	ug/L			06/01/16 05:57	4
1,1,2-Trichloroethane	ND	40		ug/L			06/01/16 05:57	4
1,1,2-Trichlorotrifluoroethane	ND	40		ug/L			06/01/16 05:57	4
1,1-Dichloroethane	ND	40		ug/L			06/01/16 05:57	4
1,1-Dichloroethene	ND	40		ug/L			06/01/16 05:57	4
1,2,4-Trichlorobenzene	ND	40		ug/L			06/01/16 05:57	4
1,2-Dibromo-3-Chloropropane	ND	40		ug/L			06/01/16 05:57	4
1,2-Dibromoethane	ND	40		ug/L			06/01/16 05:57	4
1,2-Dichlorobenzene	ND	40		ug/L			06/01/16 05:57	4
1,2-Dichloroethane	ND	40		ug/L			06/01/16 05:57	4
1,2-Dichloroethene, Total	2900	80		ug/L			06/01/16 05:57	4
1,2-Dichloropropane	ND	40		ug/L			06/01/16 05:57	4
1,3-Dichlorobenzene	ND	40		ug/L			06/01/16 05:57	4
1,4-Dichlorobenzene	ND	40		ug/L			06/01/16 05:57	4
2-Butanone (MEK)	ND	400		ug/L			06/01/16 05:57	4
2-Butanone (MEK)	ND ND	200		ug/L ug/L			06/01/16 05:57	4
	ND ND	200		ug/L ug/L			06/01/16 05:57	4
4-Methyl-2-pentanone (MIBK)								
Acetone	ND ND	400		ug/L			06/01/16 05:57	4
Benzene	ND	40		ug/L			06/01/16 05:57	4
Bromodichloromethane	ND	40		ug/L			06/01/16 05:57	4
Bromoform	ND	40		ug/L			06/01/16 05:57	4
Bromomethane	ND	40		ug/L			06/01/16 05:57	4
Carbon disulfide	ND	40		ug/L			06/01/16 05:57	4
Carbon tetrachloride	ND	40		ug/L			06/01/16 05:57	4
Chlorobenzene	ND	40		ug/L			06/01/16 05:57	4
Chlorodibromomethane	ND	40		ug/L			06/01/16 05:57	4
Chloroethane	ND	40		ug/L			06/01/16 05:57	4
Chloroform	ND	40	14	ug/L			06/01/16 05:57	4
Chloromethane	ND	40		ug/L			06/01/16 05:57	4
cis-1,2-Dichloroethene	2900	40		ug/L			06/01/16 05:57	4
cis-1,3-Dichloropropene	ND	40	14	ug/L			06/01/16 05:57	4
Cyclohexane	ND	40	7.2	ug/L			06/01/16 05:57	4
Dichlorodifluoromethane	ND	40	27	ug/L			06/01/16 05:57	4
Ethylbenzene	ND	40	30	ug/L			06/01/16 05:57	4
Isopropylbenzene	ND	40	32	ug/L			06/01/16 05:57	4
Methyl acetate	ND	40	52	ug/L			06/01/16 05:57	4
Methyl tert-butyl ether	ND	40	6.4	ug/L			06/01/16 05:57	4
Methylcyclohexane	ND	40	6.4	ug/L			06/01/16 05:57	4
Methylene Chloride	ND	40	18	ug/L			06/01/16 05:57	4
Styrene	ND	40		ug/L			06/01/16 05:57	4
Tetrachloroethene	520	40		ug/L			06/01/16 05:57	4
Toluene	ND	40		ug/L			06/01/16 05:57	4
trans-1,2-Dichloroethene	40	40		ug/L			06/01/16 05:57	4
trans-1,3-Dichloropropene	ND	40		ug/L			06/01/16 05:57	4
Trichloroethene	290	40		ug/L			06/01/16 05:57	4
Trichlorofluoromethane	ND	40		ug/L			06/01/16 05:57	4
Vinyl acetate	ND	200		ug/L			06/01/16 05:57	4
Vinyl chloride	130	40		ug/L ug/L			06/01/16 05:57	4

TestAmerica Buffalo

Page 11 of 39

6/6/2016

3

5

9

11

1 1

15

17

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Date Received: 05/27/16 10:00

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-3

Matrix: Water

Client Sample ID: MW 4-BR	
Date Collected: 05/27/16 08:47	

Method: 8260C - V	olatile Organic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		80	26	ug/L			06/01/16 05:57	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr) 82		66 - 137					06/01/16 05:57	40
4-Bromofluorobenzene	(Surr) 109		73 - 120					06/01/16 05:57	40
Toluene-d8 (Surr)	86		71 - 126					06/01/16 05:57	40

Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.39			SU			05/27/16 08:47	1
Specific Conductance	1034			umhos/cm			05/27/16 08:47	1
Temperature	16.4			Degrees C			05/27/16 08:47	1
Oxidation Reduction Potential	-14.1			millivolts			05/27/16 08:47	1
Turbidity	3.04			NTU			05/27/16 08:47	1
Depth to Water from Top of	11.78			ft			05/27/16 08:47	1
Casing								
Well Depth	27.75			ft			05/27/16 08:47	1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-4

Matrix: Water

Client Sample ID: MW 5-BR Date Collected: 05/27/16 08:05 Date Received: 05/27/16 10:00

Analyte	Result Qualific		MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	80	66	ug/L			05/31/16 13:24	80
1,1,2,2-Tetrachloroethane	ND	80	17	ug/L			05/31/16 13:24	80
1,1,2-Trichloroethane	ND	80	18	ug/L			05/31/16 13:24	80
1,1,2-Trichlorotrifluoroethane	ND	80	25	ug/L			05/31/16 13:24	80
1,1-Dichloroethane	ND	80	30	ug/L			05/31/16 13:24	80
1,1-Dichloroethene	ND	80	23	ug/L			05/31/16 13:24	80
1,2,4-Trichlorobenzene	ND	80	33	ug/L			05/31/16 13:24	80
1,2-Dibromo-3-Chloropropane	ND	80	31	ug/L			05/31/16 13:24	80
1,2-Dibromoethane	ND	80	58	ug/L			05/31/16 13:24	80
1,2-Dichlorobenzene	ND	80	63	ug/L			05/31/16 13:24	80
1,2-Dichloroethane	ND	80	17	ug/L			05/31/16 13:24	80
1,2-Dichloroethene, Total	3700	160	65	ug/L			05/31/16 13:24	80
1,2-Dichloropropane	ND	80	58	ug/L			05/31/16 13:24	80
1,3-Dichlorobenzene	ND	80	62	ug/L			05/31/16 13:24	80
1,4-Dichlorobenzene	ND	80		ug/L			05/31/16 13:24	80
2-Butanone (MEK)	ND	800		ug/L			05/31/16 13:24	80
2-Hexanone	ND	400		ug/L			05/31/16 13:24	80
4-Methyl-2-pentanone (MIBK)	ND	400		ug/L			05/31/16 13:24	80
Acetone	ND	800		ug/L			05/31/16 13:24	80
Benzene	ND	80		ug/L			05/31/16 13:24	80
Bromodichloromethane	ND F1	80		ug/L			05/31/16 13:24	8
Bromoform	ND	80		ug/L			05/31/16 13:24	80
Bromomethane	ND	80		ug/L			05/31/16 13:24	80
Carbon disulfide	ND	80		ug/L			05/31/16 13:24	80
Carbon tetrachloride	ND	80		ug/L			05/31/16 13:24	81
Chlorobenzene	ND	80		ug/L			05/31/16 13:24	80
Chlorodibromomethane	ND	80		ug/L			05/31/16 13:24	8
Chloroethane	ND F2	80		ug/L			05/31/16 13:24	80
Chloroform	ND 12	80		ug/L			05/31/16 13:24	8
Chloromethane	ND	80		ug/L			05/31/16 13:24	80
cis-1,2-Dichloroethene	3700 F1	80		ug/L			05/31/16 13:24	
cis-1,3-Dichloropropene	ND	80		ug/L			05/31/16 13:24	80
Cyclohexane	ND	80		ug/L			05/31/16 13:24	80
Dichlorodifluoromethane	ND	80		ug/L			05/31/16 13:24	80
Ethylbenzene	ND	80		ug/L			05/31/16 13:24	80
Isopropylbenzene				ug/L			05/31/16 13:24	80
Methyl acetate	ND ND	80		ug/L			05/31/16 13:24	80
	ND ND	80					05/31/16 13:24	80
Methyl tert-butyl ether				ug/L			05/31/16 13:24	
Methylogo Chlorida	ND ND	80		ug/L			05/31/16 13:24	80
Methylene Chloride				ug/L				
Styrene	ND	80		ug/L			05/31/16 13:24	80
Tetrachloroethene	1500	80		ug/L			05/31/16 13:24	80
Toluene	ND	80		ug/L			05/31/16 13:24	80
trans-1,2-Dichloroethene	ND	80		ug/L			05/31/16 13:24	8
trans-1,3-Dichloropropene	ND	80		ug/L			05/31/16 13:24	
Trichloroethene	1300	80		ug/L			05/31/16 13:24	8
Trichlorofluoromethane	ND	80		ug/L			05/31/16 13:24	80
Vinyl acetate	ND	400		ug/L			05/31/16 13:24	
Vinyl chloride	ND	80	72	ug/L			05/31/16 13:24	8

TestAmerica Buffalo

3

5

R

10

11

1 /

15

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park Client Sample ID: MW 5-BR

Date Collected: 05/27/16 08:05

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-4

Matrix: Water

Date Received: 05/27/16 10:00	

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		160	53	ug/L			05/31/16 13:24	80
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		66 - 137					05/31/16 13:24	80
4-Bromofluorobenzene (Surr)	108		73 - 120					05/31/16 13:24	80
Toluene-d8 (Surr)	87		71 - 126					05/31/16 13:24	80

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.13				SU			05/27/16 08:05	1
Specific Conductance	2030				umhos/cm			05/27/16 08:05	1
Temperature	16.2				Degrees C			05/27/16 08:05	1
Oxidation Reduction Potential	-0.4				millivolts			05/27/16 08:05	1
Turbidity	3.70				NTU			05/27/16 08:05	1
Depth to Water from Top of	13.57				ft			05/27/16 08:05	1
Casing									
Well Depth	26.70				ft			05/27/16 08:05	1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-5

Matrix: Water

Client Sample ID: MW 5A-BR Date Collected: 05/27/16 09:04

Date Received: 05/27/16 10:00

/lethod: 8260C - Volatile Orgar	-				_	_		
analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND	200		ug/L			05/31/16 13:48	20
,1,2,2-Tetrachloroethane	ND	200		ug/L			05/31/16 13:48	20
,1,2-Trichloroethane	ND	200		ug/L			05/31/16 13:48	20
,1,2-Trichlorotrifluoroethane	ND	200		ug/L			05/31/16 13:48	20
,1-Dichloroethane	ND	200	76	ug/L			05/31/16 13:48	20
,1-Dichloroethene	ND	200		ug/L			05/31/16 13:48	2
,2,4-Trichlorobenzene	ND	200		ug/L			05/31/16 13:48	2
,2-Dibromo-3-Chloropropane	ND	200		ug/L			05/31/16 13:48	2
,2-Dibromoethane	ND	200		ug/L			05/31/16 13:48	2
,2-Dichlorobenzene	ND	200	160	ug/L			05/31/16 13:48	2
,2-Dichloroethane	ND	200	42	ug/L			05/31/16 13:48	2
,2-Dichloroethene, Total	2100	400	160	ug/L			05/31/16 13:48	2
,2-Dichloropropane	ND	200	140	ug/L			05/31/16 13:48	2
,3-Dichlorobenzene	ND	200	160	ug/L			05/31/16 13:48	2
,4-Dichlorobenzene	ND	200	170	ug/L			05/31/16 13:48	2
-Butanone (MEK)	ND	2000	260	ug/L			05/31/16 13:48	2
-Hexanone	ND	1000	250	ug/L			05/31/16 13:48	2
-Methyl-2-pentanone (MIBK)	ND	1000	420	ug/L			05/31/16 13:48	2
cetone	ND	2000	600	ug/L			05/31/16 13:48	2
enzene	ND	200	82	ug/L			05/31/16 13:48	2
romodichloromethane	ND	200	78	ug/L			05/31/16 13:48	2
romoform	ND	200		ug/L			05/31/16 13:48	2
Bromomethane	ND	200		ug/L			05/31/16 13:48	2
arbon disulfide	ND	200		ug/L			05/31/16 13:48	2
Carbon tetrachloride	ND	200		ug/L			05/31/16 13:48	2
chlorobenzene	ND	200		ug/L			05/31/16 13:48	2
Chlorodibromomethane	ND	200		ug/L			05/31/16 13:48	2
Chloroethane	ND	200		ug/L			05/31/16 13:48	2
Chloroform	ND	200		ug/L			05/31/16 13:48	2
Chloromethane	ND	200		ug/L			05/31/16 13:48	2
is-1,2-Dichloroethene	2100	200		ug/L			05/31/16 13:48	2
is-1,3-Dichloropropene	ND	200		ug/L			05/31/16 13:48	2
Cyclohexane	ND	200		ug/L			05/31/16 13:48	2
Dichlorodifluoromethane	ND	200		ug/L			05/31/16 13:48	2
Ethylbenzene	ND	200		ug/L			05/31/16 13:48	2
sopropylbenzene	ND	200		ug/L			05/31/16 13:48	2
lethyl acetate	ND	200		ug/L			05/31/16 13:48	
lethyl tert-butyl ether	ND	200		ug/L			05/31/16 13:48	2
Methylcyclohexane	ND	200					05/31/16 13:48	2
				ug/L				
lethylene Chloride	ND ND	200		ug/L			05/31/16 13:48	2
tyrene	ND	200		ug/L			05/31/16 13:48	2
etrachloroethene	4000	200		ug/L			05/31/16 13:48	
oluene	ND	200		ug/L			05/31/16 13:48	2
ans-1,2-Dichloroethene	ND	200		ug/L			05/31/16 13:48	2
ans-1,3-Dichloropropene	ND	200		ug/L			05/31/16 13:48	
richloroethene	1400	200		ug/L			05/31/16 13:48	2
richlorofluoromethane	ND	200		ug/L			05/31/16 13:48	2
'inyl acetate	ND	1000	170	ug/L			05/31/16 13:48	2

TestAmerica Buffalo

3

5

6

8

40

12

1 /

15

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-5

Matrix: Water

Client Sample ID: MW 5A-BR	
Data Callacted: 05/27/46 00:04	

Date Collected: 05/27/16 09:04 Date Received: 05/27/16 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		400	130	ug/L			05/31/16 13:48	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		66 - 137					05/31/16 13:48	200
4-Bromofluorobenzene (Surr)	110		73 - 120					05/31/16 13:48	200
Toluene-d8 (Surr)	88		71 - 126					05/31/16 13:48	200

Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.15			SU			05/27/16 09:04	1
Specific Conductance	2470			umhos/cm			05/27/16 09:04	1
Temperature	16.6			Degrees C			05/27/16 09:04	1
Oxidation Reduction Potential	-1.3			millivolts			05/27/16 09:04	1
Turbidity	2.36			NTU			05/27/16 09:04	1
Depth to Water from Top of	19.85			ft			05/27/16 09:04	1
Casing								
Well Depth	25.40			ft			05/27/16 09:04	1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-6

Matrix: Water

Client Sample ID: DUP@MW 4-BR

Date Collected: 05/27/16 08:48 Date Received: 05/27/16 10:00

Method: 8260C - Volatile Orga						_	_	
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND	40		ug/L			06/01/16 06:21	4
I,1,2,2-Tetrachloroethane	ND	40		ug/L			06/01/16 06:21	4
,1,2-Trichloroethane	ND	40	9.2	ug/L			06/01/16 06:21	4
,1,2-Trichlorotrifluoroethane	ND	40	12	ug/L			06/01/16 06:21	4
,1-Dichloroethane	ND	40	15	ug/L			06/01/16 06:21	4
1,1-Dichloroethene	ND	40	12	ug/L			06/01/16 06:21	2
,2,4-Trichlorobenzene	ND	40	16	ug/L			06/01/16 06:21	4
,2-Dibromo-3-Chloropropane	ND	40	16	ug/L			06/01/16 06:21	
,2-Dibromoethane	ND	40	29	ug/L			06/01/16 06:21	
,2-Dichlorobenzene	ND	40	32	ug/L			06/01/16 06:21	
,2-Dichloroethane	ND	40	8.4	ug/L			06/01/16 06:21	4
,2-Dichloroethene, Total	2900	80	32	ug/L			06/01/16 06:21	4
,2-Dichloropropane	ND	40	29	ug/L			06/01/16 06:21	
,3-Dichlorobenzene	ND	40	31	ug/L			06/01/16 06:21	
,4-Dichlorobenzene	ND	40		ug/L			06/01/16 06:21	
2-Butanone (MEK)	ND	400		ug/L			06/01/16 06:21	
?-Hexanone	ND	200		ug/L			06/01/16 06:21	
-Methyl-2-pentanone (MIBK)	ND	200		ug/L			06/01/16 06:21	
Acetone	ND	400		ug/L			06/01/16 06:21	
Benzene	ND	40		ug/L			06/01/16 06:21	
romodichloromethane	ND	40		ug/L			06/01/16 06:21	
romoform	ND	40		ug/L			06/01/16 06:21	
Bromomethane	ND	40		ug/L			06/01/16 06:21	
Carbon disulfide	ND	40		ug/L			06/01/16 06:21	
Carbon tetrachloride	ND	40		ug/L			06/01/16 06:21	
Chlorobenzene	ND	40		ug/L			06/01/16 06:21	
Chlorodibromomethane	ND	40		ug/L			06/01/16 06:21	
Chloroethane	ND	40		ug/L			06/01/16 06:21	
Chloroform	ND	40		ug/L			06/01/16 06:21	
Chloromethane	ND	40		ug/L			06/01/16 06:21	
cis-1,2-Dichloroethene	2900	40		ug/L			06/01/16 06:21	
sis-1,3-Dichloropropene	ND	40		ug/L			06/01/16 06:21	
Cyclohexane	ND	40		ug/L			06/01/16 06:21	
Dichlorodifluoromethane	ND	40		ug/L			06/01/16 06:21	
Ethylbenzene	ND	40		ug/L			06/01/16 06:21	
•	ND	40		ug/L			06/01/16 06:21	
sopropylbenzene flethyl acetate	ND	40		ug/L			06/01/16 06:21	
	ND ND	40		ug/L ug/L			06/01/16 06:21	
fethyl tert-butyl ether	ND ND			-			06/01/16 06:21	
Methylcyclohexane		40		ug/L				
Methylene Chloride	ND ND	40		ug/L			06/01/16 06:21	
tyrene	ND	40		ug/L			06/01/16 06:21	
etrachloroethene	580	40		ug/L			06/01/16 06:21	
oluene	ND	40		ug/L			06/01/16 06:21	
rans-1,2-Dichloroethene	41	40		ug/L			06/01/16 06:21	
ans-1,3-Dichloropropene	ND	40		ug/L			06/01/16 06:21	
richloroethene	350	40		ug/L			06/01/16 06:21	
richlorofluoromethane	ND	40		ug/L			06/01/16 06:21	
/inyl acetate	ND	200		ug/L ug/L			06/01/16 06:21 06/01/16 06:21	

TestAmerica Buffalo

3

5

7

9

11

13

15

Client: Environmental Sampling & Services Inc

Client Sample ID: DUP@MW 4-BR

Project/Site: Buffalo Business Park

Date Collected: 05/27/16 08:48

Date Received: 05/27/16 10:00

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-6

Metric Metri

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)	

Analyte Xylenes, Total	Result ND	Qualifier	RL 80	MDL 26	Unit ug/L	D	Prepared	Analyzed 06/01/16 06:21	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		66 - 137			•		06/01/16 06:21	40
4-Bromofluorobenzene (Surr)	110		73 - 120					06/01/16 06:21	40
Toluene-d8 (Surr)	86		71 - 126					06/01/16 06:21	40

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.39				SU			05/27/16 08:48	1
Specific Conductance	1034				umhos/cm			05/27/16 08:48	1
Temperature	16.4				Degrees C			05/27/16 08:48	1
Oxidation Reduction Potential	-14.1				millivolts			05/27/16 08:48	1
Turbidity	3.04				NTU			05/27/16 08:48	1
Depth to Water from Top of	11.78				ft			05/27/16 08:48	1
Casing									
Well Depth	27.75				ft			05/27/16 08:48	1

6

8

10

11

12

14

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Client Sample ID: TRIP BLANK

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-7

Matrix: Water

Date Collected: 05/27/16 07:55 Date Received: 05/27/16 10:00

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			05/31/16 11:47	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			05/31/16 11:47	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			05/31/16 11:47	
1,1,2-Trichlorotrifluoroethane	ND	1.0	0.31	ug/L			05/31/16 11:47	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			05/31/16 11:47	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			05/31/16 11:47	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			05/31/16 11:47	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			05/31/16 11:47	
1,2-Dibromoethane	ND	1.0	0.73	ug/L			05/31/16 11:47	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			05/31/16 11:47	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			05/31/16 11:47	
1,2-Dichloroethene, Total	ND	2.0	0.81	ug/L			05/31/16 11:47	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			05/31/16 11:47	
1,3-Dichlorobenzene	ND	1.0		ug/L			05/31/16 11:47	
1,4-Dichlorobenzene	ND	1.0		ug/L			05/31/16 11:47	
2-Butanone (MEK)	ND	10		ug/L			05/31/16 11:47	
2-Hexanone	ND	5.0		ug/L			05/31/16 11:47	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			05/31/16 11:47	
Acetone	ND	10		ug/L			05/31/16 11:47	
Benzene	ND	1.0		ug/L			05/31/16 11:47	
Bromodichloromethane	ND	1.0		ug/L			05/31/16 11:47	
Bromoform	ND	1.0		ug/L			05/31/16 11:47	
Bromomethane	ND	1.0		ug/L			05/31/16 11:47	
Carbon disulfide	ND	1.0		ug/L			05/31/16 11:47	
Carbon tetrachloride	ND	1.0		ug/L			05/31/16 11:47	
Chlorobenzene	ND	1.0		ug/L			05/31/16 11:47	
Chlorodibromomethane	ND	1.0		ug/L			05/31/16 11:47	
Chloroethane	ND	1.0		ug/L			05/31/16 11:47	
Chloroform	ND	1.0		ug/L			05/31/16 11:47	
Chloromethane	ND	1.0		ug/L			05/31/16 11:47	
cis-1,2-Dichloroethene	ND	1.0		ug/L			05/31/16 11:47	
cis-1,3-Dichloropropene	ND	1.0		ug/L			05/31/16 11:47	
Cyclohexane	ND	1.0		_				
Dichlorodifluoromethane	ND			ug/L ug/L			05/31/16 11:47 05/31/16 11:47	
	ND ND	1.0 1.0		ug/L ug/L			05/31/16 11:47	
Ethylbenzene				-				
sopropylbenzene	ND	1.0		ug/L			05/31/16 11:47	
Methyl acetate	ND	1.0		ug/L			05/31/16 11:47	
Methyl tert-butyl ether	ND	1.0		ug/L			05/31/16 11:47	
Methylcyclohexane	ND	1.0		ug/L			05/31/16 11:47	
Methylene Chloride	ND	1.0		ug/L			05/31/16 11:47	
Styrene	ND	1.0		ug/L			05/31/16 11:47	
Tetrachloroethene	ND	1.0		ug/L			05/31/16 11:47	
Toluene	ND	1.0		ug/L			05/31/16 11:47	
rans-1,2-Dichloroethene	ND	1.0		ug/L			05/31/16 11:47	
rans-1,3-Dichloropropene	ND	1.0		ug/L			05/31/16 11:47	
Trichloroethene	ND	1.0		ug/L			05/31/16 11:47	
Trichlorofluoromethane	ND	1.0		ug/L			05/31/16 11:47	
Vinyl acetate	ND	5.0		ug/L			05/31/16 11:47	
Vinyl chloride	ND	1.0	0.90	ug/L			05/31/16 11:47	

TestAmerica Buffalo

3

5

8

10

12

14

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Date Received: 05/27/16 10:00

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-7

Client Sample ID: TRIP BLANK Date Collected: 05/27/16 07:55

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Method: 02000 - Volatile Of	garne compo	unda by C	Child (Collin	iucuj					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		2.0	0.66	ug/L			05/31/16 11:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		66 - 137			-		05/31/16 11:47	1
4-Bromofluorobenzene (Surr)	108		73 - 120					05/31/16 11:47	1
Toluene-d8 (Surr)	89		71 - 126					05/31/16 11:47	1

Surrogate Summary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surrogat	te Recovery (Acceptance L
		12DCE	BFB	TOL	
ab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	
80-100824-1	MW 2-BR	85	107	87	
80-100824-2	MW 3-BR	83	110	87	
80-100824-3	MW 4-BR	82	109	86	
80-100824-4	MW 5-BR	87	108	87	
80-100824-4 MS	MW 5-BR	86	112	89	
80-100824-4 MSD	MW 5-BR	79	112	90	
80-100824-5	MW 5A-BR	86	110	88	
80-100824-6	DUP@MW 4-BR	86	110	86	
80-100824-7	TRIP BLANK	82	108	89	
CS 480-304269/6	Lab Control Sample	82	110	88	
CS 480-304411/10	Lab Control Sample	82	113	89	
1B 480-304269/8	Method Blank	83	108	88	
1B 480-304411/7	Method Blank	82	105	85	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Buffalo

Page 21 of 39

2

3

4

6

9

11

4.0

Client: Environmental Sampling & Services Inc

Method: 8260C - Volatile Organic Compounds by GC/MS

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 480-304269/8 Clie

Matrix: Water

Analysis Batch: 304269	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/31/16 10:16	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/31/16 10:16	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/31/16 10:16	•
1,1,2-Trichlorotrifluoroethane	ND		1.0	0.31	ug/L			05/31/16 10:16	• • • • • • • • • • • • • • • • • • • •
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/31/16 10:16	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/31/16 10:16	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/31/16 10:16	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/31/16 10:16	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/31/16 10:16	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/31/16 10:16	• • • • • • • • •
1,2-Dichloroethane	ND		1.0		ug/L			05/31/16 10:16	
1,2-Dichloroethene, Total	ND		2.0	0.81	-			05/31/16 10:16	
1,2-Dichloropropane	ND		1.0		ug/L			05/31/16 10:16	
1,3-Dichlorobenzene	ND		1.0		ug/L			05/31/16 10:16	
1,4-Dichlorobenzene	ND		1.0	0.84	-			05/31/16 10:16	
2-Butanone (MEK)	ND		10		ug/L			05/31/16 10:16	,
2-Hexanone	ND		5.0		ug/L			05/31/16 10:16	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			05/31/16 10:16	
Acetone	ND		10		ug/L			05/31/16 10:16	
Benzene	ND		1.0	0.41	-			05/31/16 10:16	
Bromodichloromethane	ND		1.0		ug/L			05/31/16 10:16	
Bromoform	ND		1.0		ug/L			05/31/16 10:16	
Bromomethane	ND		1.0	0.69	-			05/31/16 10:16	
Carbon disulfide	ND		1.0		ug/L			05/31/16 10:16	
Carbon tetrachloride	ND		1.0	0.27	-			05/31/16 10:16	,
Chlorobenzene	ND		1.0	0.75	-			05/31/16 10:16	
Chlorodibromomethane	ND		1.0		ug/L			05/31/16 10:16	
Chloroethane	ND		1.0		ug/L			05/31/16 10:16	,
Chloroform	ND		1.0		ug/L			05/31/16 10:16	
Chloromethane	ND		1.0		ug/L			05/31/16 10:16	
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/31/16 10:16	,
cis-1,3-Dichloropropene	ND		1.0	0.36				05/31/16 10:16	
Cyclohexane	ND		1.0		ug/L			05/31/16 10:16	
Dichlorodifluoromethane	ND		1.0		ug/L			05/31/16 10:16	
Ethylbenzene	ND		1.0	0.74				05/31/16 10:16	
Isopropylbenzene	ND		1.0		ug/L			05/31/16 10:16	
Methyl acetate	ND		1.0		ug/L			05/31/16 10:16	
Methyl tert-butyl ether	ND		1.0		ug/L			05/31/16 10:16	
Methylcyclohexane	ND		1.0		ug/L			05/31/16 10:16	
Methylene Chloride	ND		1.0		ug/L			05/31/16 10:16	,
Styrene	ND		1.0		ug/L			05/31/16 10:16	
Tetrachloroethene	ND		1.0		ug/L ug/L			05/31/16 10:16	
Toluene	ND		1.0		ug/L ug/L			05/31/16 10:16	
trans-1,2-Dichloroethene	ND ND		1.0		ug/L ug/L			05/31/16 10:16	
	ND ND		1.0		ug/L ug/L			05/31/16 10:16	
trans-1,3-Dichloropropene Trichloroethene									
	ND		1.0		ug/L			05/31/16 10:16 05/31/16 10:16	
Trichlorofluoromethane Vinyl acetate	ND ND		1.0 5.0		ug/L ug/L			05/31/16 10:16	

TestAmerica Buffalo

Page 22 of 39

2

3

4

6

10

14

14

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Lab Sample ID: MB 480-304269/8

TestAmerica Job ID: 480-100824-1

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 304269

MB MB

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result Qualifier	RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND —	1.0	0.90 ug/L			05/31/16 10:16	1
Xylenes, Total	ND	2.0	0.66 ug/L	-		05/31/16 10:16	1

		MB	MB				
Surr	ogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-L	Dichloroethane-d4 (Surr)	83		66 - 137		05/31/16 10:16	1
4-Bro	omofluorobenzene (Surr)	108		73 - 120		05/31/16 10:16	1
Tolu	ene-d8 (Surr)	88		71 - 126		05/31/16 10:16	1

Lab Sample ID: LCS 480-304269/6

Matrix: Water

Prep Type: Total/NA

Analyte Added Result Qualifier Unit D %Resc. Limits 1.1.1Trichloroethane 25.0 26.8 ug/l. 10.7 73.126 1.1.1.2Erischloroethane 25.0 26.9 ug/l. 108 70.126 1.1.2Trichloroethane 25.0 27.4 ug/l. 109 76.122 1.1.2Trichloroethane 25.0 22.1 ug/l. 96 71.129 1.1.1.2.Irichloroethane 25.0 22.1 ug/l. 87 58.121 1.1.2.Irichloroethane 25.0 22.5 ug/l. 107 76.122 1.1.2.Pulchloroethane 25.0 25.5 ug/l. 102 70.122 1.2.2.Dichloroethane 25.0 26.2 ug/l. 105 77.120 1.2.Dichloroethane 25.0 24.9 ug/l. 105 76.122 1.2.Dichloroethane 25.0 24.9 ug/l. 100 77.120 1.2.Dichloroethane 25.0 25.1 ug/l. 100	Analysis Batch: 304269						
1,1,1-Trichloroethane 25.0 26.8 ug/L 107 73.126 1,1,2,2-Tetrachloroethane 25.0 26.9 ug/L 108 70.126 1,1,2-Trichloroethane 25.0 27.4 ug/L 109 76.122 1,1-Dichloroethane 25.0 23.9 ug/L 85 52.148 1,1-Dichloroethene 25.0 23.9 ug/L 36 71.129 1,2-Dichloroethene 25.0 25.5 ug/L 102 70.122 1,2-Dichloroebazene 25.0 25.5 ug/L 102 70.122 1,2-Dichloroebracene 25.0 26.2 ug/L 105 77.120 1,2-Dichloroebracene 25.0 26.3 ug/L 105 75.127 1,2-Dichloropopane 25.0 26.3 ug/L 105 75.127 1,2-Dichloropopane 25.0 26.3 ug/L 105 75.127 1,2-Dichloropopane 25.0 24.0 ug/L 100 77.120 1,3-Dichloroben							
1,1,2,2-Tetrachloroethane 25.0 26.9 ug/L 108 70 - 126 1,1,2-Trichloroethane 25.0 27.4 ug/L 85 76 - 122 1,1,2-Trichloroethane 25.0 21.1 ug/L 85 52 - 148 1,1-Dichloroethane 25.0 23.9 ug/L 96 71 - 129 1,1-Dichloroethane 25.0 25.5 ug/L 102 70 - 122 1,2-Dirhoroethane 25.0 25.0 30.0 ug/L 120 56 - 134 1,2-Dirhoroethane 25.0 26.2 ug/L 105 77 - 120 1,2-Dirhoroethane 25.0 26.3 ug/L 105 75 - 127 1,2-Dirhoroethane 25.0 26.3 ug/L 105 75 - 127 1,2-Dirhoroethane 25.0 26.1 ug/L 100 77 - 120 1,3-Dirhoroethane 25.0 24.1 ug/L 100 77 - 120 1,3-Dirhoroethane 25.0 25.1 ug/L 100 77 - 120 1,3-Dirhoroethane 25.0 25.1 ug/L 100 77 - 120							
1,1,2-Trichloroethane 25.0 27.4 ug/L 109 76-122 1,1,2-Trichloroethane 25.0 21.1 ug/L 85 52 - 148 1,1-Dichloroethane 25.0 21.1 ug/L 86 52 - 148 1,1-Dichloroethane 25.0 25.0 21.7 ug/L 87 58.121 1,2-Dichromoethane 25.0 25.5 ug/L 102 70 - 122 1,2-Dichropopane 25.0 26.2 ug/L 105 77 - 120 1,2-Dichloroethane 25.0 26.2 ug/L 196 76 - 127 1,2-Dichloroethane 25.0 26.2 ug/L 196 76 - 127 1,2-Dichloroethane 25.0 24.0 ug/L 196 76 - 120 1,3-Dichloroethane 25.0 25.1 ug/L 190 77 - 120 1,3-Dichloroethane 25.0 25.1 ug/L 190 77 - 120 1,3-Dichlorobenzene 25.0 25.1 ug/L 190 77 - 120 1,4-Dichloroethane 125 136 ug/L 190 65 - 127				-			
1,1,2-Trichlorotrifluoroethane 25.0 21.1 ug/L 85 52.148 1,1-Dichloroethane 25.0 23.9 ug/L 87 78 a 121 1,1-Dichloroethene 25.0 21.7 ug/L 87 58 a 121 1,2,4-Trichlorobenzene 25.0 25.5 ug/L 102 70 - 122 1,2-Dibromo-9-Chloropropane 25.0 30.0 ug/L 120 56 - 134 1,2-Dichlorobenzene 25.0 24.9 ug/L 195 77 - 120 1,2-Dichlorobenzene 25.0 24.9 ug/L 105 75 - 127 1,2-Dichloropropane 25.0 24.9 ug/L 105 75 - 127 1,2-Dichlorobenzene 25.0 24.0 ug/L 106 76 - 120 1,3-Dichlorobenzene 25.0 24.7 ug/L 190 75 - 120 1,4-Dichlorobenzene 25.0 24.7 ug/L 190 75 - 120 1,4-Dichlorobenzene 25.0 24.7 ug/L 190 75 - 120 1,4-Dichlorobenzene 125 115 ug/L 190 75 -	1,1,2,2-Tetrachloroethane			-			
1,1-Dichloroethane 25.0 23.9 ug/L 86 71-128 1,1-Dichloroethene 25.0 21.7 ug/L 87 88-121 1,2-Dibromo-3-Chloropropane 25.0 25.5 ug/L 102 70-122 1,2-Dibromoethane 25.0 26.2 ug/L 105 77-120 1,2-Dichlorobenzene 25.0 26.3 ug/L 199 80-124 1,2-Dichloroptane 25.0 26.3 ug/L 196 76-120 1,2-Dichloroptane 25.0 26.3 ug/L 196 76-120 1,2-Dichloroptopane 25.0 24.0 ug/L 196 76-120 1,3-Dichlorobenzene 25.0 24.1 ug/L 196 76-120 1,4-Dichlorobenzene 25.0 24.7 ug/L 190 77-120 1,4-Dichlorobenzene 25.0 24.7 ug/L 190 76-120 2-Hexanone 125 115 ug/L 190 95-120 2-Hexanone 125 125 ug/L 100 56-142 Benzene 2	1,1,2-Trichloroethane	25.0	27.4	ug/L	109		
1,1-Dichloroethene 25.0 21.7 ug/L 87 58.121 1,2-A-Trichlorobenzene 25.0 25.5 ug/L 102 70.122 1,2-Dibromo-3-Chloropropane 25.0 30.0 ug/L 120 56.134 1,2-Dichloroethane 25.0 26.2 ug/L 105 77.120 1,2-Dichloropropane 25.0 24.9 ug/L 105 75.127 1,2-Dichloropropane 25.0 24.0 ug/L 96 76.120 1,2-Dichloropropane 25.0 24.0 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 24.7 ug/L 100 77.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 10 75.120 2-Butanone (MEK) 125 125 ug/L 10 56.127 4-Me	1,1,2-Trichlorotrifluoroethane	25.0	21.1	ug/L	85	52 - 148	
1,2,4-Trichlorobenzene 25.0 25.5 ug/L 102 70-122 1,2-Dibromo-9-Chloropropane 25.0 30.0 ug/L 105 56.134 1,2-Dibrhomoethane 25.0 26.2 ug/L 105 77-120 1,2-Dichlorobenzene 25.0 24.9 ug/L 99 80.124 1,2-Dichloropropane 25.0 26.3 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 24.0 ug/L 99 75.127 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 199 75.120 2-Hexanone 125 136 ug/L 109 65.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 100 76.142 Benzene 25.0 23.8 ug/L 100 75.142 Bromodichloromethane 25.0 25.0 22.0 ug/L 113 80.122	1,1-Dichloroethane	25.0	23.9	ug/L	96	71 - 129	
1,2-Dibromo-3-Chloropropane 25.0 30.0 ug/L 120 56.134 1,2-Dibromoethane 25.0 26.2 ug/L 105 77.120 1,2-Dichloroberane 25.0 24.9 ug/L 99 80-124 1,2-Dichloropthane 25.0 26.3 ug/L 105 75.127 1,2-Dichloropthane 25.0 24.0 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 99 75.140 2-Hexanone 125 136 ug/L 109 65.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71.125 Acetone 125 125 ug/L 103 71.125 Mectonic 25.	1,1-Dichloroethene	25.0	21.7	ug/L	87	58 - 121	
1,2-Dibromoethane 25.0 26.2 ug/L 195 77.120 1,2-Dichlorobenzene 25.0 24.9 ug/L 99 80 - 124 1,2-Dichloroperhane 25.0 26.3 ug/L 105 75.127 1,2-Dichloroperpane 25.0 24.0 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 109 65.127 2-Hexanone 125 136 ug/L 109 66.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 100 56.142 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 113 80.122	1,2,4-Trichlorobenzene	25.0	25.5	ug/L	102	70 - 122	
1,2-Dichlorobenzene 25.0 24.9 ug/L 99 80 · 124 1,2-Dichlorobertane 25.0 26.3 ug/L 105 75 · 127 1,2-Dichloropropane 25.0 24.0 ug/L 96 76 · 120 1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77 · 120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75 · 120 2-Butanone (MEK) 125 115 ug/L 109 65 · 127 2-Heanone 125 136 ug/L 109 65 · 127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71 · 125 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 100 56 · 142 Benzene 25.0 23.8 ug/L 103 71 · 124 Beromodichloromethane 25.0 23.8 ug/L 113 80 · 122 Bromoform 25.0 25.6 ug/L 109 52 · 132 Bromomethane 25.0 25.0 25.6 ug/L 105 72 · 134	1,2-Dibromo-3-Chloropropane	25.0	30.0	ug/L	120	56 - 134	
1,2-Dichloroethane 25.0 26.3 ug/L 105 75.127 1,2-Dichloropropane 25.0 24.0 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 109 65.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71.125 Acetone 125 125 ug/L 100 56.142 Benzene 25.0 23.8 ug/L 100 56.142 Bromodichloromethane 25.0 28.2 ug/L 100 56.142 Bromoform 25.0 28.2 ug/L 113 80.122 Bromoform 25.0 28.2 ug/L 109 52.132 Bromodichloromethane 25.0 25.6 ug/L 102 55.144 Carbon tetrachloride 25.0 25.0 25.0 ug/L 105 72.134 Chlorodibromomethane	1,2-Dibromoethane	25.0	26.2	ug/L	105	77 - 120	
1,2-Dichloropropane 25.0 24.0 ug/L 96 76.120 1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77.120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 109 65.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71.125 4-Methyl-2-pentanone (MIBK) 125 125 ug/L 100 56.142 Benzene 25.0 23.8 ug/L 100 56.142 Benzene 25.0 23.8 ug/L 113 80.122 Bromoform 25.0 28.2 ug/L 113 80.122 Bromomethane 25.0 27.3 ug/L 103 75.144 Carbon disulfide 25.0 25.6 ug/L 102 55.144 Carbon tetrachloride 25.0 26.3 ug/L 105 72.134 Chlorobenzene 25.0 25.0 ug/L 105 75.125 Chlorothane 25.0 <	1,2-Dichlorobenzene	25.0	24.9	ug/L	99	80 - 124	
1,3-Dichlorobenzene 25.0 25.1 ug/L 100 77 - 120 1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75 - 120 2-Butanone (MEK) 125 115 ug/L 92 57 - 140 2-Hexanone 125 136 ug/L 109 65 - 127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71 - 125 Acetone 125 125 ug/L 100 56 - 142 Benzene 25.0 23.8 ug/L 95 71 - 124 Bromodichloromethane 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 25.6 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 10 72 - 120 Chlorobenzene 25.0 25.	1,2-Dichloroethane	25.0	26.3	ug/L	105	75 - 127	
1,4-Dichlorobenzene 25.0 24.7 ug/L 99 75.120 2-Butanone (MEK) 125 115 ug/L 92 57.140 2-Hexanone 125 136 ug/L 109 65.127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71.125 Acetone 125 125 ug/L 100 56.142 Benzene 25.0 23.8 ug/L 95 71.124 Bromodichloromethane 25.0 28.2 ug/L 113 80.122 Bromoform 25.0 27.3 ug/L 109 52.132 Bromofethane 25.0 25.6 ug/L 102 55.144 Carbon disulfide 25.0 23.6 ug/L 94 59.134 Carbon tetrachloride 25.0 26.3 ug/L 105 72.134 Chlorodenzene 25.0 25.0 ug/L 105 72.120 Chlorodifloromethane 25.0 29.8 ug/L 119 75.125 Chlorofform 25.0 25.5	1,2-Dichloropropane	25.0	24.0	ug/L	96	76 - 120	
2-Butanone (MEK) 125 115 ug/L 92 57 - 140 2-Hexanone 125 136 ug/L 109 65 - 127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71 - 125 Acetone 125 125 ug/L 100 56 - 142 Benzene 25.0 23.8 ug/L 95 71 - 124 Bromodichloromethane 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 25.6 ug/L 102 55 - 144 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 25.0 ug/L 105 72 - 134 Chloroethane 25.0 25.0 29.8 ug/L 119 75 - 125 Chloroform 25.0 25.5 ug/L 105 69 - 136 Chloroformet	1,3-Dichlorobenzene	25.0	25.1	ug/L	100	77 - 120	
2-Hexanone 125 136 ug/L 109 65 - 127 4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71 - 125 Acetone 125 125 ug/L 100 56 - 142 Benzene 25.0 23.8 ug/L 95 71 - 124 Bromodichloromethane 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroform 25.0 25.5 ug/L 105 69 - 136 Chloroform 25.0	1,4-Dichlorobenzene	25.0	24.7	ug/L	99	75 - 120	
4-Methyl-2-pentanone (MIBK) 125 129 ug/L 103 71-125 Acetone 125 125 ug/L 100 56-142 Benzene 25.0 23.8 ug/L 95 71-124 Bromodichloromethane 25.0 28.2 ug/L 113 80-122 Bromoform 25.0 27.3 ug/L 109 52-132 Bromomethane 25.0 25.6 ug/L 102 55-144 Carbon disulfide 25.0 23.6 ug/L 94 59-134 Carbon tetrachloride 25.0 26.3 ug/L 105 72-134 Chlorobenzene 25.0 25.0 25.0 ug/L 100 72-120 Chlorodidibromomethane 25.0 25.0 29.8 ug/L 119 75-125 Chloroform 25.0 26.2 ug/L 105 69-136 Chloroform 25.0 25.5 ug/L 102 73-127 Chloromethane 25.0 25.0 25.5 ug/L 468-124 cis-1,3-Dichloropropene </td <td>2-Butanone (MEK)</td> <td>125</td> <td>115</td> <td>ug/L</td> <td>92</td> <td>57 - 140</td> <td></td>	2-Butanone (MEK)	125	115	ug/L	92	57 - 140	
Acetone 125 125 ug/L 100 56 - 142 Benzene 25.0 23.8 ug/L 95 71 - 124 Bromodichloromethane 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 25.0 ug/L 119 75 - 125 Chloroform 25.0 29.8 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 105 69 - 136 Chloromethane 25.0 25.5 ug/L 74 68 - 124 cis-1,2-Dichlorogropene 25.0 23.5 ug/L 103 74 - 124 cis-1,3-Dichlorogropene 25.0 <td>2-Hexanone</td> <td>125</td> <td>136</td> <td>ug/L</td> <td>109</td> <td>65 - 127</td> <td></td>	2-Hexanone	125	136	ug/L	109	65 - 127	
Benzene 25.0 23.8 ug/L 95 71.124 Bromodichloromethane 25.0 28.2 ug/L 113 80-122 Bromoform 25.0 27.3 ug/L 109 52.132 Bromomethane 25.0 25.6 ug/L 102 55.144 Carbon disulfide 25.0 23.6 ug/L 94 59.134 Carbon tetrachloride 25.0 26.3 ug/L 105 72.134 Chlorobenzene 25.0 25.0 ug/L 100 72.120 Chlorodibromomethane 25.0 29.8 ug/L 119 75.125 Chloroform 25.0 26.2 ug/L 105 69.136 Chloroform 25.0 25.5 ug/L 102 73.127 Chloromethane 25.0 25.5 ug/L 74 68.124 cis-1,2-Dichlorogethene 25.0 25.6 ug/L 103 74.124 Cyclohexane 25.0 19.5 ug/L 78 59.135 Dichlorodifluoromethane 25.0 21.5 <td>4-Methyl-2-pentanone (MIBK)</td> <td>125</td> <td>129</td> <td>ug/L</td> <td>103</td> <td>71 - 125</td> <td></td>	4-Methyl-2-pentanone (MIBK)	125	129	ug/L	103	71 - 125	
Bromodichloromethane 25.0 28.2 ug/L 113 80 - 122 Bromoform 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroform 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.5 ug/L 4 68 - 124 cis-1,2-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0	Acetone	125	125	ug/L	100	56 - 142	
Bromoform 25.0 27.3 ug/L 109 52 - 132 Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroform 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Benzene	25.0	23.8	ug/L	95	71 - 124	
Bromomethane 25.0 25.6 ug/L 102 55 - 144 Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroethane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Bromodichloromethane	25.0	28.2	ug/L	113	80 - 122	
Carbon disulfide 25.0 23.6 ug/L 94 59 - 134 Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chlorotethane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Bromoform	25.0	27.3	ug/L	109	52 - 132	
Carbon tetrachloride 25.0 26.3 ug/L 105 72 - 134 Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chlorothane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Bromomethane	25.0	25.6	ug/L	102	55 - 144	
Chlorobenzene 25.0 25.0 ug/L 100 72 - 120 Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroethane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Carbon disulfide	25.0	23.6	ug/L	94	59 ₋ 134	
Chlorodibromomethane 25.0 29.8 ug/L 119 75 - 125 Chloroethane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Carbon tetrachloride	25.0	26.3	ug/L	105	72 - 134	
Chloroethane 25.0 26.2 ug/L 105 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Chlorobenzene	25.0	25.0	ug/L	100	72 - 120	
Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Chlorodibromomethane	25.0	29.8	ug/L	119	75 ₋ 125	
Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Chloroethane	25.0	26.2	ug/L	105	69 - 136	
Chloromethane 25.0 18.6 ug/L 74 68 - 124 cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Chloroform	25.0	25.5		102	73 - 127	
cis-1,2-Dichloroethene 25.0 23.5 ug/L 94 74 - 124 cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	Chloromethane	25.0	18.6	-	74	68 - 124	
cis-1,3-Dichloropropene 25.0 25.6 ug/L 103 74 - 124 Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	cis-1,2-Dichloroethene	25.0	23.5	_	94	74 - 124	
Cyclohexane 25.0 19.5 ug/L 78 59 - 135 Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	cis-1,3-Dichloropropene	25.0	25.6		103	74 - 124	
Dichlorodifluoromethane 25.0 21.5 ug/L 86 59 - 135 Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	• •	25.0	19.5	•	78	59 ₋ 135	
Ethylbenzene 25.0 26.2 ug/L 105 77 - 123	•	25.0	21.5	ū	86	59 ₋ 135	
, ·					105		
	Isopropylbenzene	25.0	25.8	ug/L	103	77 - 122	

TestAmerica Buffalo

Page 23 of 39

-

3

5

8

10

11

13

14

16

TestAmerica Job ID: 480-100824-1

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-304269/6

Matrix: Water

Analysis Batch: 304269

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl acetate	125	113		ug/L		90	74 - 133	
Methyl tert-butyl ether	25.0	26.6		ug/L		106	64 - 127	
Methylcyclohexane	25.0	22.2		ug/L		89	61 - 138	
Methylene Chloride	25.0	24.2		ug/L		97	57 - 132	
Styrene	25.0	25.9		ug/L		103	70 - 130	
Tetrachloroethene	25.0	23.8		ug/L		95	74 - 122	
Toluene	25.0	24.6		ug/L		99	80 - 122	
trans-1,2-Dichloroethene	25.0	23.2		ug/L		93	73 - 127	
trans-1,3-Dichloropropene	25.0	28.2		ug/L		113	72 - 123	
Trichloroethene	25.0	24.7		ug/L		99	74 - 123	
Trichlorofluoromethane	25.0	24.9		ug/L		100	62 - 152	
Vinyl acetate	50.0	46.5		ug/L		93	50 - 144	
Vinyl chloride	25.0	20.9		ug/L		84	65 - 133	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	82	66 - 137
4-Bromofluorobenzene (Surr)	110	73 - 120
Toluene-d8 (Surr)	88	71 - 126

Lab Sample ID: 480-100824-4 MS

Matrix: Water

Client Sample ID: MW 5-BR Prep Type: Total/NA

Analysis Batch: 304269										
7a.yo.o 2 ato 00 1200	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		2000	2340		ug/L		117	73 - 126	
1,1,2,2-Tetrachloroethane	ND		2000	2160		ug/L		108	70 - 126	
1,1,2-Trichloroethane	ND		2000	2140		ug/L		107	76 - 122	
1,1,2-Trichlorotrifluoroethane	ND		2000	1790		ug/L		89	52 - 148	
1,1-Dichloroethane	ND		2000	2100		ug/L		105	71 - 129	
1,1-Dichloroethene	ND		2000	1950		ug/L		98	58 - 121	
1,2,4-Trichlorobenzene	ND		2000	1980		ug/L		99	70 - 122	
1,2-Dibromo-3-Chloropropane	ND		2000	2450		ug/L		123	56 ₋ 134	
1,2-Dibromoethane	ND		2000	2150		ug/L		108	77 - 120	
1,2-Dichlorobenzene	ND		2000	2030		ug/L		101	80 - 124	
1,2-Dichloroethane	ND		2000	2220		ug/L		111	75 - 127	
1,2-Dichloropropane	ND		2000	2050		ug/L		103	76 - 120	
1,3-Dichlorobenzene	ND		2000	2030		ug/L		101	77 - 120	
1,4-Dichlorobenzene	ND		2000	2000		ug/L		100	75 - 120	
2-Butanone (MEK)	ND		10000	9480		ug/L		95	57 ₋ 140	
2-Hexanone	ND		10000	11000		ug/L		110	65 - 127	
4-Methyl-2-pentanone (MIBK)	ND		10000	10800		ug/L		108	71 - 125	
Acetone	ND		10000	9710		ug/L		97	56 - 142	
Benzene	ND		2000	2110		ug/L		105	71 - 124	
Bromodichloromethane	ND	F1	2000	2500	F1	ug/L		125	80 - 122	
Bromoform	ND		2000	2240		ug/L		112	52 - 132	
Bromomethane	ND		2000	2600		ug/L		130	55 - 144	
Carbon disulfide	ND		2000	2140		ug/L		107	59 - 134	
Carbon tetrachloride	ND		2000	2320		ug/L		116	72 - 134	

TestAmerica Buffalo

TestAmerica Job ID: 480-100824-1

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-100824-4 MS

Matrix: Water

Analysis Batch: 304269

Client Sample ID: MW 5-BR **Prep Type: Total/NA**

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobenzene	ND		2000	2060		ug/L		103	72 - 120	
Chlorodibromomethane	ND		2000	2350		ug/L		118	75 - 125	
Chloroethane	ND	F2	2000	2680		ug/L		134	69 - 136	
Chloroform	ND		2000	2190		ug/L		109	73 - 127	
Chloromethane	ND		2000	1660		ug/L		83	68 - 124	
cis-1,2-Dichloroethene	3700	F1	2000	5660		ug/L		98	74 - 124	
cis-1,3-Dichloropropene	ND		2000	2230		ug/L		112	74 - 124	
Cyclohexane	ND		2000	1720		ug/L		86	59 - 135	
Dichlorodifluoromethane	ND		2000	1770		ug/L		89	59 - 135	
Ethylbenzene	ND		2000	2230		ug/L		111	77 - 123	
Isopropylbenzene	ND		2000	2100		ug/L		105	77 - 122	
Methyl acetate	ND		10000	9390		ug/L		94	74 - 133	
Methyl tert-butyl ether	ND		2000	2200		ug/L		110	64 - 127	
Methylcyclohexane	ND		2000	1890		ug/L		94	61 - 138	
Methylene Chloride	ND		2000	2100		ug/L		105	57 - 132	
Styrene	ND		2000	2190		ug/L		109	70 - 130	
Tetrachloroethene	1500		2000	3360		ug/L		95	74 - 122	
Toluene	ND		2000	2130		ug/L		106	80 - 122	
trans-1,2-Dichloroethene	ND		2000	2080		ug/L		104	73 - 127	
trans-1,3-Dichloropropene	ND		2000	2320		ug/L		116	72 - 123	
Trichloroethene	1300		2000	3340		ug/L		102	74 - 123	
Trichlorofluoromethane	ND		2000	2390		ug/L		119	62 - 152	
Vinyl acetate	ND		4000	3790		ug/L		95	50 - 144	
Vinyl chloride	ND		2000	1970		ug/L		98	65 - 133	
	MS	MS								

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		66 - 137
4-Bromofluorobenzene (Surr)	112		73 - 120
Toluene-d8 (Surr)	89		71 - 126

Lab Sample ID: 480-100824-4 MSD

Matrix: Water

Analysis Batch: 304269

Alialysis Datcil. 304203											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		2000	2100		ug/L		105	73 - 126	11	15
1,1,2,2-Tetrachloroethane	ND		2000	2200		ug/L		110	70 - 126	2	15
1,1,2-Trichloroethane	ND		2000	2200		ug/L		110	76 - 122	3	15
1,1,2-Trichlorotrifluoroethane	ND		2000	1640		ug/L		82	52 - 148	9	20
1,1-Dichloroethane	ND		2000	1860		ug/L		93	71 - 129	12	20
1,1-Dichloroethene	ND		2000	1730		ug/L		86	58 - 121	12	16
1,2,4-Trichlorobenzene	ND		2000	1990		ug/L		99	70 - 122	0	20
1,2-Dibromo-3-Chloropropane	ND		2000	2470		ug/L		124	56 - 134	1	15
1,2-Dibromoethane	ND		2000	2130		ug/L		106	77 - 120	1	15
1,2-Dichlorobenzene	ND		2000	2010		ug/L		100	80 - 124	1	20
1,2-Dichloroethane	ND		2000	2080		ug/L		104	75 - 127	7	20
1,2-Dichloropropane	ND		2000	1870		ug/L		94	76 - 120	9	20
1,3-Dichlorobenzene	ND		2000	2000		ug/L		100	77 - 120	2	20

TestAmerica Buffalo

Client Sample ID: MW 5-BR

Prep Type: Total/NA

Page 25 of 39

TestAmerica Job ID: 480-100824-1

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-100824-4 MSD

Matrix: Water

Analysis Batch: 304269

Client Sample ID: MW 5-BR **Prep Type: Total/NA**

Analysis Buton. 004200	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	ND		2000	1960	-	ug/L		98	75 - 120	2	20
2-Butanone (MEK)	ND		10000	9030		ug/L		90	57 ₋ 140	5	20
2-Hexanone	ND		10000	10900		ug/L		109	65 - 127	0	15
4-Methyl-2-pentanone (MIBK)	ND		10000	10900		ug/L		109	71 - 125	1	35
Acetone	ND		10000	9250		ug/L		93	56 - 142	5	15
Benzene	ND		2000	1930		ug/L		97	71 - 124	9	13
Bromodichloromethane	ND	F1	2000	2280		ug/L		114	80 - 122	9	15
Bromoform	ND		2000	2320		ug/L		116	52 - 132	4	15
Bromomethane	ND		2000	2360		ug/L		118	55 - 144	9	15
Carbon disulfide	ND		2000	1940		ug/L		97	59 - 134	10	15
Carbon tetrachloride	ND		2000	2130		ug/L		107	72 - 134	8	15
Chlorobenzene	ND		2000	2060		ug/L		103	72 - 120	0	25
Chlorodibromomethane	ND		2000	2420		ug/L		121	75 - 125	3	15
Chloroethane	ND	F2	2000	2100	F2	ug/L		105	69 - 136	24	15
Chloroform	ND		2000	2020		ug/L		101	73 - 127	8	20
Chloromethane	ND		2000	1500		ug/L		75	68 - 124	10	15
cis-1,2-Dichloroethene	3700	F1	2000	5080	F1	ug/L		70	74 - 124	11	15
cis-1,3-Dichloropropene	ND		2000	2040		ug/L		102	74 - 124	9	15
Cyclohexane	ND		2000	1520		ug/L		76	59 - 135	12	20
Dichlorodifluoromethane	ND		2000	1540		ug/L		77	59 - 135	14	20
Ethylbenzene	ND		2000	2160		ug/L		108	77 - 123	3	15
Isopropylbenzene	ND		2000	2040		ug/L		102	77 - 122	3	20
Methyl acetate	ND		10000	9080		ug/L		91	74 - 133	3	20
Methyl tert-butyl ether	ND		2000	2100		ug/L		105	64 - 127	5	37
Methylcyclohexane	ND		2000	1710		ug/L		86	61 - 138	10	20
Methylene Chloride	ND		2000	1920		ug/L		96	57 - 132	9	15
Styrene	ND		2000	2110		ug/L		105	70 - 130	4	20
Tetrachloroethene	1500		2000	3250		ug/L		89	74 - 122	3	20
Toluene	ND		2000	1980		ug/L		99	80 - 122	7	15
trans-1,2-Dichloroethene	ND		2000	1900		ug/L		95	73 - 127	9	20
trans-1,3-Dichloropropene	ND		2000	2290		ug/L		115	72 - 123	1	15
Trichloroethene	1300		2000	2990		ug/L		84	74 - 123	11	16
Trichlorofluoromethane	ND		2000	2070		ug/L		103	62 - 152	14	20
Vinyl acetate	ND		4000	3640		ug/L		91	50 - 144	4	23
Vinyl chloride	ND		2000	1770		ug/L		88	65 - 133	11	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	79		66 - 137
4-Bromofluorobenzene (Surr)	112		73 - 120
Toluene-d8 (Surr)	90		71 - 126

Lab Sample ID: MB 480-304411/7

Matrix: Water

Analysis Batch: 304411

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB RL **MDL** Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 1,1,1-Trichloroethane 1.0 05/31/16 23:25 ND 0.82 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 05/31/16 23:25

TestAmerica Buffalo

Page 26 of 39

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-304411/7

Matrix: Water

Analysis Batch: 304411

Client Sample ID: Method Blank

Prep Type: Total/NA

Amaliata	MB		- ;			_	.		D.: -
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		1.0		ug/L			05/31/16 23:25	
1,1,2-Trichlorotrifluoroethane	ND		1.0		ug/L			05/31/16 23:25	1
1,1-Dichloroethane	ND		1.0		ug/L			05/31/16 23:25	1
1,1-Dichloroethene	ND		1.0		ug/L			05/31/16 23:25	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			05/31/16 23:25	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			05/31/16 23:25	1
1,2-Dibromoethane	ND		1.0		ug/L			05/31/16 23:25	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/31/16 23:25	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/31/16 23:25	1
1,2-Dichloroethene, Total	ND		2.0	0.81	ug/L			05/31/16 23:25	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/31/16 23:25	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/31/16 23:25	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/31/16 23:25	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/31/16 23:25	1
2-Hexanone	ND		5.0	1.2	ug/L			05/31/16 23:25	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/31/16 23:25	1
Acetone	ND		10	3.0	ug/L			05/31/16 23:25	1
Benzene	ND		1.0		ug/L			05/31/16 23:25	1
Bromodichloromethane	ND		1.0		ug/L			05/31/16 23:25	1
Bromoform	ND		1.0		ug/L			05/31/16 23:25	1
Bromomethane	ND		1.0		ug/L			05/31/16 23:25	1
Carbon disulfide	ND		1.0		ug/L			05/31/16 23:25	1
Carbon tetrachloride	ND		1.0		ug/L			05/31/16 23:25	· · · · · · · · 1
Chlorobenzene	ND		1.0		ug/L			05/31/16 23:25	1
Chlorodibromomethane	ND		1.0		ug/L			05/31/16 23:25	1
Chloroethane	ND		1.0		ug/L			05/31/16 23:25	· · · · · · · · 1
Chloroform	ND		1.0		ug/L			05/31/16 23:25	1
Chloromethane	ND		1.0		ug/L			05/31/16 23:25	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			05/31/16 23:25	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			05/31/16 23:25	1
Cyclohexane	ND		1.0		ug/L			05/31/16 23:25	1
Dichlorodifluoromethane	ND		1.0		ug/L			05/31/16 23:25	
Ethylbenzene	ND		1.0		ug/L			05/31/16 23:25	1
Isopropylbenzene	ND		1.0		ug/L			05/31/16 23:25	1
Methyl acetate	ND		1.0		ug/L			05/31/16 23:25	
	ND		1.0	0.16	-			05/31/16 23:25	1
Methyl tert-butyl ether	ND ND		1.0					05/31/16 23:25	
Methylone Chloride	ND				ug/L				1
Methylene Chloride			1.0		ug/L			05/31/16 23:25	1
Styrene	ND		1.0		ug/L			05/31/16 23:25	1
Tetrachloroethene	ND		1.0		ug/L			05/31/16 23:25	1
Toluene	ND		1.0		ug/L			05/31/16 23:25	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			05/31/16 23:25	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			05/31/16 23:25	1
Trichloroethene	ND		1.0		ug/L			05/31/16 23:25	1
Trichlorofluoromethane	ND		1.0		ug/L			05/31/16 23:25	1
Vinyl acetate	ND		5.0		ug/L			05/31/16 23:25	
Vinyl chloride	ND		1.0		ug/L			05/31/16 23:25	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/31/16 23:25	1

TestAmerica Buffalo

Page 27 of 39

6/6/2016

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MR MR

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Client Sample ID: Method Blank

Lab Sample ID: MB 480-304411/7

Matrix: Water

Analysis Batch: 304411

Prep Type: Total/NA

1		III					
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	82		66 - 137		05/31/16 23:25	1
	4-Bromofluorobenzene (Surr)	105		73 - 120		05/31/16 23:25	1
l	Toluene-d8 (Surr)	85		71 - 126		05/31/16 23:25	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 480-304411/10 **Matrix: Water**

Analysis Batch: 304411	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	24.6		ug/L		99	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	70 ₋ 126	
1,1,2-Trichloroethane	25.0	25.6		ug/L		102	76 ₋ 122	
1,1,2-Trichlorotrifluoroethane	25.0	18.5		ug/L		74	52 - 148	
1,1-Dichloroethane	25.0	22.2		ug/L		89	71 ₋ 129	
1,1-Dichloroethene	25.0	20.3		ug/L		81	58 ₋ 121	
1,2,4-Trichlorobenzene	25.0	22.3		ug/L		89	70 - 122	
1,2-Dibromo-3-Chloropropane	25.0	28.6		ug/L		115	56 ₋ 134	
1,2-Dibromoethane	25.0	23.7		ug/L		95	77 - 120	
1,2-Dichlorobenzene	25.0	22.9		ug/L		92	80 - 124	
1,2-Dichloroethane	25.0	24.3		ug/L		97	75 ₋ 127	
1,2-Dichloropropane	25.0	22.4		ug/L		90	76 ₋ 120	
1,3-Dichlorobenzene	25.0	23.0		ug/L		92	77 - 120	
1,4-Dichlorobenzene	25.0	22.8		ug/L		91	75 - 120	
2-Butanone (MEK)	125	116		ug/L		93	57 ₋ 140	
2-Hexanone	125	133		ug/L		107	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	123		ug/L		98	71 ₋ 125	
Acetone	125	155		ug/L		124	56 ₋ 142	
Benzene	25.0	22.3		ug/L		89	71 - 124	
Bromodichloromethane	25.0	26.4		ug/L		106	80 - 122	
Bromoform	25.0	23.7		ug/L		95	52 ₋ 132	
Bromomethane	25.0	30.0		ug/L		120	55 ₋ 144	
Carbon disulfide	25.0	21.9		ug/L		88	59 ₋ 134	
Carbon tetrachloride	25.0	23.9		ug/L		95	72 - 134	
Chlorobenzene	25.0	23.7		ug/L		95	72 - 120	
Chlorodibromomethane	25.0	26.5		ug/L		106	75 - 125	
Chloroethane	25.0	23.3		ug/L		93	69 ₋ 136	
Chloroform	25.0	23.9		ug/L		95	73 - 127	
Chloromethane	25.0	21.2		ug/L		85	68 - 124	
cis-1,2-Dichloroethene	25.0	22.1		ug/L		89	74 - 124	
cis-1,3-Dichloropropene	25.0	22.5		ug/L		90	74 - 124	
Cyclohexane	25.0	17.8		ug/L		71	59 ₋ 135	
Dichlorodifluoromethane	25.0	26.7		ug/L		107	59 ₋ 135	
Ethylbenzene	25.0	24.7		ug/L		99	77 - 123	
Isopropylbenzene	25.0	23.6		ug/L		94	77 - 122	
Methyl acetate	125	104		ug/L		83	74 - 133	
Methyl tert-butyl ether	25.0	23.1		ug/L		92	64 - 127	
Methylcyclohexane	25.0	20.0		ug/L		80	61 - 138	
Methylene Chloride	25.0	23.8		ug/L		95	57 - 132	

TestAmerica Buffalo

Page 28 of 39

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-304411/10

Matrix: Water

Analysis Batch: 304411

Amaryolo Batom Go FFT	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Styrene	25.0	24.4		ug/L		98	70 - 130	
Tetrachloroethene	25.0	22.3		ug/L		89	74 - 122	
Toluene	25.0	23.8		ug/L		95	80 - 122	
trans-1,2-Dichloroethene	25.0	22.4		ug/L		90	73 - 127	
trans-1,3-Dichloropropene	25.0	24.3		ug/L		97	72 - 123	
Trichloroethene	25.0	22.0		ug/L		88	74 - 123	
Trichlorofluoromethane	25.0	26.3		ug/L		105	62 - 152	
Vinyl acetate	50.0	41.9		ug/L		84	50 - 144	
Vinyl chloride	25.0	22.7		ug/L		91	65 - 133	

LCS LCS

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	82		66 - 137
4-Bromofluorobenzene (Surr)	113		73 - 120
Toluene-d8 (Surr)	89		71 - 126

Prep Type: Total/NA

QC Association Summary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

GC/MS VOA

Analysis Batch: 304269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-100824-4	MW 5-BR	Total/NA	Water	8260C	
480-100824-4 MS	MW 5-BR	Total/NA	Water	8260C	
480-100824-4 MSD	MW 5-BR	Total/NA	Water	8260C	
480-100824-5	MW 5A-BR	Total/NA	Water	8260C	
480-100824-7	TRIP BLANK	Total/NA	Water	8260C	
LCS 480-304269/6	Lab Control Sample	Total/NA	Water	8260C	
MB 480-304269/8	Method Blank	Total/NA	Water	8260C	

Analysis Batch: 304411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-100824-1	MW 2-BR	Total/NA	Water	8260C	
480-100824-2	MW 3-BR	Total/NA	Water	8260C	
480-100824-3	MW 4-BR	Total/NA	Water	8260C	
480-100824-6	DUP@MW 4-BR	Total/NA	Water	8260C	
LCS 480-304411/10	Lab Control Sample	Total/NA	Water	8260C	
MB 480-304411/7	Method Blank	Total/NA	Water	8260C	

Field Service / Mobile Lab

Analysis Batch: 304711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-100824-1	MW 2-BR	Total/NA	Water	Field Sampling	
480-100824-2	MW 3-BR	Total/NA	Water	Field Sampling	
480-100824-3	MW 4-BR	Total/NA	Water	Field Sampling	
480-100824-4	MW 5-BR	Total/NA	Water	Field Sampling	
480-100824-5	MW 5A-BR	Total/NA	Water	Field Sampling	
480-100824-6	DUP@MW 4-BR	Total/NA	Water	Field Sampling	

9

£

9

10

12

IJ

15

16

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

Client Sample ID: MW 2-BR

Lab Sample ID: 480-100824-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 05/27/16 08:24 Date Received: 05/27/16 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		40	304411	06/01/16 05:09	GTG	TAL BUF
Total/NA	Analysis	Field Sampling		1	304711	05/27/16 08:24	FLD	TAL BUF

Client Sample ID: MW 3-BR Lab Sample ID: 480-100824-2

Date Collected: 05/27/16 08:36

Date Received: 05/27/16 10:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		100	304411	06/01/16 05:33	GTG	TAL BUF
Total/NA	Analysis	Field Sampling		1	304711	05/27/16 08:36	FLD	TAL BUF

Client Sample ID: MW 4-BR Lab Sample ID: 480-100824-3 **Matrix: Water**

Date Collected: 05/27/16 08:47

Date Received: 05/27/16 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		40	304411	06/01/16 05:57	GTG	TAL BUF
Total/NA	Analysis	Field Sampling		1	304711	05/27/16 08:47	FLD	TAL BUF

Lab Sample ID: 480-100824-4 Client Sample ID: MW 5-BR

Date Collected: 05/27/16 08:05

Date Received: 05/27/16 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		80	304269	05/31/16 13:24	RRS	TAL BUF
Total/NA	Analysis	Field Sampling		1	304711	05/27/16 08:05	FLD	TAL BUF

Client Sample ID: MW 5A-BR Lab Sample ID: 480-100824-5

Date Collected: 05/27/16 09:04 Date Received: 05/27/16 10:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		200	304269	05/31/16 13:48	RRS	TAL BUF
Total/NA	Analysis	Field Sampling		1	304711	05/27/16 09:04	FLD	TAL BUF

Lab Sample ID: 480-100824-6 Client Sample ID: DUP@MW 4-BR

Date Collected: 05/27/16 08:48

Date Received: 05/27/16 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		40	304411	06/01/16 06:21	GTG	TAL BUF

TestAmerica Buffalo

Page 31 of 39

Lab Chronicle

Client: Environmental Sampling & Services Inc

Client Sample ID: DUP@MW 4-BR

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID: 480-100824-6

Date Collected: 05/27/16 08:48 **Matrix: Water** Date Received: 05/27/16 10:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Field Sampling 304711 05/27/16 08:48 FLD TAL BUF

Client Sample ID: TRIP BLANK Lab Sample ID: 480-100824-7

Date Collected: 05/27/16 07:55 **Matrix: Water**

Date Received: 05/27/16 10:00

Batch Dilution **Batch Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab TAL BUF Total/NA 8260C 304269 05/31/16 11:47 RRS Analysis

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
ew York	NELAP		2	10026	03-31-17
The following analytes	s are included in this repor	t, but certification is	not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
8260C		Water	1,2-Di	chloroethene, Total	
Field Sampling		Water	Depth	to Water from Top of C	asing
Field Sampling		Water	Field	PΗ	
Field Sampling		Water	Oxida	tion Reduction Potential	
Field Sampling		Water	Specit	fic Conductance	
Field Sampling		Water	Temp	erature	
Field Sampling		Water	Turbio	lity	
Field Sampling		Water	Well D	Depth	

3

5

7

0

10

13

Method Summary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
Field Sampling	Field Sampling	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

_

7

9

4 4

12

14

16

Sample Summary

Client: Environmental Sampling & Services Inc Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-100824-1	MW 2-BR	Water	05/27/16 08:24 05/27/16 10:0
480-100824-2	MW 3-BR	Water	05/27/16 08:36 05/27/16 10:0
480-100824-3	MW 4-BR	Water	05/27/16 08:47 05/27/16 10:0
480-100824-4	MW 5-BR	Water	05/27/16 08:05 05/27/16 10:0
480-100824-5	MW 5A-BR	Water	05/27/16 09:04 05/27/16 10:0
480-100824-6	DUP@MW 4-BR	Water	05/27/16 08:48 05/27/16 10:0
480-100824-7	TRIP BLANK	Water	05/27/16 07:55 05/27/16 10:0

Detection Limit Exceptions Summary

Client: Environmental Sampling & Services Inc

Project/Site: Buffalo Business Park

TestAmerica Job ID: 480-100824-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but great than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedure do not indicate corrective action for detections below the laboratory's PQL.

Method Matrix 8260C Water

Analyte Methyl acetate

Units ug/L

Client RL 1.0 Lab PQL 2.5

5-27-16 Chain of Custody Record

Phone (716) 691-2600 Fax (716) 691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

TestAmerica Buffalo

TestAmerica 1

THE LEADER IN CANEED AND THE TESTING

S - H2SO4 T - TSP Dodecahydrate Special Instructions/Note: 0 - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes 480-83762-2266.1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MacOH
G - Amchlor
H - Ascorbic Acid 1000 Page 1 of 1 480-100824 Chain of Custody 4 4 4 A A A A A N IBJOT 4 井 05 上 Date/Time: / Jate/Time: Method of Shipment Analysis Requested Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements yan.vandette@testamericainc.com Received by: Received by: Lab PM: VanDette, Ryan T XX × × X X × X × 2,260B - (MOD) TCL list OLM04.2 Perform MS/MSD (Yes or No) Time: Company Company E-Mail: Preservation Code: (W=water, S=solid, O=waste/oil, Water Matrix Water Water Water Water Water Water Water Water Company Type (C=comp, G=grab) Radiological S り り S S S 00:00 \$0.08 \$0:00 \$.77 \$0. 5.27-16 7:55 8:3¢ 72:00 8:05 40.0 \$ 7.00 Sample PO#. Purchase Order not requir Date: Material States TAT Requested (days): Due Date Requested: Unknown 5.27-12 Sample Date Project #: 48004043 SSOW#: Date/Time: Phone: Poison B Buffalo Business Park/ Event Desc: Buffalo Business Park Skin Irritant Jeliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: D MWS-BR 2 MW 5-BR Environmental Sampling & Services Inc Flammable Possible Hazard Identification Kit Reilinquished by Custody Seals Intact:
△ Yes △ No Client Information Sample Identification ess@roadrunner.com North Tonawanda Non-Hazard DUP@MW 4-BR '183 Balla Drive Robert Chiodo MS elinquished by: SD TRIP BLANK State, Zip: NY, 14120 MW 5A-BR oject Name MW 3-BR MW 4-BR New York MW 2-BR MW 5-BR hone:

•		

3	Č
_	,
Ш	Ĺ
<	l
۵	Ī
_	
U	1
7	i
V	į
Ц	
7	,
U	1
_	í
Ω	
_	
C)
	Ì
7	7
	Ļ
Щ	_
Ш	_
_	1
7	′
П	ì

_
\Box
\simeq
T
2
$\overline{\mathbf{z}}$
سلما
\mathbf{C}
\mathbf{Y}
Щ
_
Ĺ
Ш
_
Щ

The state of the s		1		<u> </u>	
	-28.7	-20.5	-14.1	-0.4	-1.3
	4.85	3.22	3.04	3.70	2.36
<u>j</u> e	17.6	16.2	16.4	16.2	16.6
	966	1476	1034	2030	2470
	7.65	7.50	7.39	7.13	7.15
	5/27/16	5/27/16	5/27/16	5/27/16	5/27/16
	26.55	28.60	27.75	26.70	25.40
	5.30	20.99	11.78	13.57	19.85
	5/26/16	5/26/16	5/26/16	5/26/16	5/26/16
	MW - 2 BR	MW - 3 BR	MW - 4 BR	MW - 5 BR	MW - 5A BR

* FROM THE TOP OF RISER

Login Sample Receipt Checklist

Client: Environmental Sampling & Services Inc Job Number: 480-100824-1

Login Number: 100824 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Critis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ES+S
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

4

9

11

13

15

1 6

APPENDIX C

FIELD DATA

WELL NUMBER	RISER ELEVATION	DEPTH TO WATER	WATER LEVEL ELEVATION
MW-1 BR	624.44	6.52	617.92
MW-2 BR	625.04	5.30	619.74
MW-3 BR	623.99	20.99	603.00
MW-4 BR (note 1)	622.79	11.78	611.01
MW-5A BR	619.76	19.85	599.91
MW-5 BR	622.42	13.57	608.85
MW-6 BR	623.57	8.61	614.96
MW-7 BR	623.34	12.99	610.35
MW-8 BR	625.87	9.69	616.18

* WATER LEVELS TAKEN WITH PUMPS TURNED ON *

Note 1 - Pump may or may not be running. Totalizer not moving, but water level down. Could be drawn down from other pumping wells

WELL NUMBER	RISER ELEVATION	DEPTH TO WATER	WATER LEVEL ELEVATION
MW-1 BR	624.44	6.52	617.92
MW-2 BR (note 1)	625.04	18.90	606.14
MW-3 BR	623.99	4.89	619.10
MW-4 BR	622.79	4.67	618.12
MW-5A BR	619.76	1.40	618.36
MW-5 BR	622.42	5.58	616.84
MW-6 BR	623.57	9.40	614.17
MW-7 BR	623.34	6.33	617.01
MW-8 BR	625.87	8.48	617.39

* WATER LEVELS TAKEN WITH PUMPS TURNED OFF *

Note 1 - Purged to dryness on May 26, 2016, not fully recharged.

eH (mdd)	-28.7	-20.5	-14.1	-0.4	-1.3
TURB. (NTU)	4.85	3.22	3.04	3.70	2.36
TEMP. (C)	17.6	16.2	16.4	16.2	16.6
SPEC. CONDUCT. (umhos/cm)	966	1476	1034	2030	2470
pH (S.U.)	7.65	7.50	7.39	7.13	7.15
SAMPLE	5/27/16	5/27/16	5/27/16	5/27/16	5/27/16
DEPTH TO BOTTOM (FT.) *	26.55	28.60	27.75	26.70	25.40
DEPTH TO WATER (FT.) *	5.30	20.99	11.78	13.57	19.85
PURGE	5/26/16	5/26/16	5/26/16	5/26/16	5/26/16
SAMPLE ID#	MW - 2 BR	MW - 3 BR	MW - 4 BR	MW - 5 BR	MW - 5A BR

* FROM THE TOP OF RISER

SITE NAME: BUF	FALO BUSIN	NESS PARK	<u> </u>		POINT ID:	TRIP BI	LANK
LOCATION:	BUFFALO, NE	W YORK		FIELD REP	RESENTATIVE:	ES&S-R.	CHIODO
SAMPLE MATRIX:	DEIONI	ZED WATER	₹	LAB SAMP	LE / PROJECT #	:NA	
EVACUATION INFORM INITIAL-WATER LEVEL	IATION (FEET)			DEPTH TO	BOTTOM (FEET		
ELEVATION, MEAS.PT.	(MSL):						
DATE				TIME: STAR	T/FINISH		
METHOD OF EVACUAT () PVC BAILER (() S.S. BAILER (<u>ION:</u>) S.S. BAILE) WELL WIZ	R ()	GRUNDFOS OTHER	PUMP	EVACUATION () YES	EQUIPMENT ()	DEDICATED: NO
WELL RISER DIAMETE	ER (IN.):() 2	()3 ()	4 ()6	() OTH	ER		
ONE (1) RISER VOLUM	ME (GAL)		-	WAS WELL	. PURGED TO I	DRYNESS ()	YES () NO
TOTAL VOLUME EVACU	JATED (GAL)_			WATER LE	VEL AFTER PUI	RGE (FI.)	
TURBIDITY OF PURGI	NGS : START_	:		FINIS	SH		
EVACUATION STABILIZE	ZATION DATA	<u>\</u>					
PURGE_RATE C TIME (gpm/htz)	VOLUME	TEMP. (C)	pH (Std.Unit		. CONDUCTANC (umhos/cm)	TURBIDITY (NTU)	OTHER [eh (mV)]
SAMPLING INFORMAT	ION						
DATE/TIME 5-27	7-16,7	155	WAT	ER LEVEL	PRIOR TO SAML	ING (FT.)	NA
() S.S. BAILER () S.S. BAILE) WELL WIZ	ARD (X	GRUNDFOS) OTHER		SAMPLING EG () YES (X) NO		
SAMPLING FIELD MEA							
pH TIME (Std.Units)	- 1	. CONDUCT nhos/cm)	TEMP. (C)	TURBIDIT' (NTU)	Y eH (mV)	DISS. OXY. (PPM)	OTHER ()
NA NA		NA	NA	NA	NA	NA	NA
GENERAL INFORMATION WEATHER CONDITION	<u>ON</u> IS AT TIME (OF SAMPLIN	G: Syn	Ny, 7:	SOF		
SAMPLE CHARACTERI	ISTICS:	CLEAR		/			
COMMENTS:TO	CL VOLATILES	ONLY					
	SAMPLI	E COLLECTION	ON NUMBER	1			

SITE NAME:BUFFAL	O BUSINESS PARK	<u> </u>		POINT ID:	MW -	5 BR
LOCATION: BUFF	ALO, NEW YORK		FIELD REPRESENTATIVE:		ES&S-R.CHIODO	
SAMPLE MATRIX:	MPLE MATRIX: GROUNDWATER		LAB SAMPLE / PROJECT #		:NA	
EVACUATION INFORMATION INITIAL WATER LEVEL (FEET) 13.57			DEPTH TO BOTTOM (FEET26			.70
ELEVATION, MEAS.PT.(MSL	622.42	_	ELEVATION, G/W (MSL): 608.85			8,85
DATE 5-26-			TIME: START	/FINISH	8:40 ,	8:52
METHOD OF EVACUATION: () PVC BAILER () W () S.S. BAILER (X) 1	ELL WIZARD () OTHER		EVACUATION () YES		
WELL RISER DIAMETER (I	N.): (x) 2 () 3 () 4	() 6	() OTHER		
ONE (1) RISER VOLUME (0	GAL) 2.10		WAS WELL F	PURGED TO (ORYNESS ()	YES (X) NO
TOTAL VOLUME EVACUATE	:D (GAL) 7.00		WATER LEVE	EL AFTER PU	RGE (FT.)	5.90
TURBIDITY OF PURGINGS	A04000 00 00			CE		
EVACUATION STABILIZATION	ON DATA					
PURGE RATE CUMU TIME (gpm/htz) VOI	JLATIVE TEMP. (C)	pH (Std.Unit	100	CONDUCTANC mhos/cm)	TURBIDITY (NTU)	OTHER [eh (mV)]
SAMPLING INFORMATION						
DATE / TIME 5-27-16 / 8:05 WATER LEVEL PRIOR TO SAMLING (FT.) 5.58						
METHOD OF SAMPLING: SAMPLING EQUIPMENT DEDICATED:				EDICATED:		
(X) PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER () GRUNDFOS PUMP) OTHER		(X) YES		
() S.S. BAILER () GRUNDFOS PUMP () NO SAMPLING FIELD MEASUREMENT DATA						
pH	SPEC. CONDUCT	TEMP.	TURBIDITY	eH	DISS. OXY.	OTHER
TIME (Std.Units)	(umhos/cm)	(C)	(NTU)	(mV)	(PPM)	
8:08 7.13	2030	16.2	3,70	-0.4	NA	NA
GENERAL INFORMATION WEATHER CONDITIONS AT TIME OF SAMPLING: SUNDY, 75						
SAMPLE CHARACTERISTICS: CUEAR						
COMMENTS:TCL VOLATILES ONLY						
MS / SI	D TAKEN					
	SAMPLE COLLECTI	ION NUMBER	2			

SITE NAME: BUFFALO BUSINESS PARK	POINT ID: MW - 2 BR				
LOCATION: BUFFALO, NEW YORK	FIELD REPRESENTATIVE: ES&S-R.CHIODO				
SAMPLE MATRIX: GROUNDWATER	LAB SAMPLE / PROJECT #:NA				
INITIAL WATER LEVEL (FEET) 5.30	DEPTH TO BOTTOM (FEET				
ELEVATION, MEAS.PT.(MSL): 625.04	ELEVATION, G/W (MSL): 619.74				
DATE 5-26-16	TIME: START/FINISH 9:13 , 9:27				
METHOD OF EVACUATION: () PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER (X) 12 VOLT PUMP	EVACUATION EQUIPMENT DEDICATED: () YES (X) NO				
WELL RISER DIAMETER (IN.): () 2 () 3 (X)	4 () 6 () OTHER				
ONE (1) RISER VOLUME (GAL) 13.81	WAS WELL PURGED TO DRYNESS (X) YES () NO				
TOTAL VOLUME EVACUATED (GAL) DRY 214	WATER LEVEL AFTER PURGE (FT.) DRY				
TURBIDITY OF PURGINGS: START CLEAR AMBEL					
EVACUATION STABILIZATION DATA					
PURGE RATE CUMULATIVE TEMP. p TIME (gpm/htz) VOLUME (C) (Std.U	H SPEC. CONDUCTANC TURBIDITY OTHER (umhos/cm) (NTU) [eh (mV)]				
SAMPLING INFORMATION					
DATE / TIME 5-27-16 / 8:24	VATER LEVEL PRIOR TO SAMLING (FT.) 18,90				
METHOD OF SAMPLING: (X) PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER () GRUNDFOS PUMP	SAMPLING EQUIPMENT DEDICATED: (X) YES () NO				
SAMPLING FIELD MEASUREMENT DATA					
pH SPEC. CONDUCT TEMP. (Std.Units) (umhos/cm) (C) 8.24 7.65 996 17.6	TURBIDITY eH DISS. OXY. OTHER (NTU) (mV) (PPM) () 4.85 - 28,7 NA NA				
	Noy, 75°F				
SAMPLE CHARACTERISTICS: CLEAR					
COMMENTS: TCL VOLATILES ONLY					
8 					
SAMPLE COLLECTION NUMBE	_R _3_				

SITE NAME: BUFFALO BUSINESS PARK	POINT ID: MW - 3 BR				
LOCATION: BUFFALO, NEW YORK	FIELD REPRESENTATIVE: ES&S-R.CHIODO				
SAMPLE MATRIX: GROUNDWATER	LAB SAMPLE / PROJECT #:NA				
INITIAL WATER LEVEL (FEET) 20.99	DEPTH TO BOTTOM (FEET28.60				
ELEVATION, MEAS.PT.(MSL):623.99	ELEVATION, G/W (MSL): 603.00				
DATE 5-26-16	TIME: START/FINISH NA / NA				
METHOD OF EVACUATION: () PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER (X) GRUNDFOS PUMP	EVACUATION EQUIPMENT DEDICATED: (X) YES () NO				
WELL RISER DIAMETER (IN.): () 2 () 3 (\times) 4	() 6 () OTHER				
ONE (1) RISER VOLUME (GAL)	WAS WELL PURGED TO DRYNESS ()YES (X)NO				
TOTAL VOLUME EVACUATED (GAL) NA	WATER LEVEL AFTER PURGE (FT.) ~ A				
TURBIDITY OF PURGINGS : START NA	FINISHNA				
EVACUATION STABILIZATION DATA					
PURGE RATE CUMULATIVE TEMP. pH TIME (gpm/htz) VOLUME (C) (Std.Uni	OTHER				
SAMPLING INFORMATION DATE / TIME 5-27-16 / 8:36 WATER LEVEL PRIOR TO SAMLING (FT.) 4.89					
METHOD OF SAMPLING:	SAMPLING EQUIPMENT DEDICATED:				
(X) PVC BAILER () WELL WIZARD () GRUNDFOS () S.S. BAILER () WELL WIZARD () OTHER	PUMP (X) YES () NO				
SAMPLING FIELD MEASUREMENT DATA					
pH SPEC. CONDUCT (UMhos/cm) TEMP. (C) 8,38 7,50 1476 16.2	TURBIDITY eH DISS. OXY. OTHER (NTU) (mV) (PPM) () 3.22 -20.5 NA NA				
GENERAL INFORMATION WEATHER CONDITIONS AT TIME OF SAMPLING: Sun	TO IVA				
SAMPLE CHARACTERISTICS: CLEAR - BLACK TINT					
COMMENTS: CONTINUOUS PUMPING WELL					
TCL VOLATILES ONLY					
SAMPLE COLLECTION NUMBER	4				

SITE NAME:	BUFFALO BUS	NESS PARK	<u> </u>			POINT ID:	MW -	4 BR
LOCATION:	BUFFALO, N	EW YORK		FIELD REPRESENTATIVE: _ E S 8		_ E S & S - R.	CHIODO	
SAMPLE MATRIX:	GROU	NDWATER		LAB SAMPLE / PROJECT #:NA				
EVACUATION INFO	PRMATION (EL (FEET)	11.78		DEPTH TO BOTTOM (FEET		Г 27.75		
ELEVATION, MEAS.	PT.(MSL):	622.79	1	ELEVATION, G/W (MSL):		611.01		
DATE5	5-26-16	<u>-</u> -				/FINISH	NA ,	
METHOD OF EVACU () PVC BAILER () S.S. BAILER	() WELL WI) OTHER			EVACUATION (X) YES		
WELL RISER DIAM	ETER (IN.): () 2 () 3 (🗴) 4	() 6		() OTHER		
ONE (1) RISER VC	LUME (GAL)	NA	<u></u>	WAS \	WELL F	PURGED TO D	DRYNESS ()	YES (X) NO
TOTAL VOLUME EV	ACUATED (GAL)					EL AFTER PUR		
TURBIDITY OF PUI	RGINGS : STAR	44		-	FINISH	NA		
EVACUATION STAF	BILIZATION DAT	<u>A</u>						
PURGE RAT TIME (gpm/htz)	VOLUME	TEMP. (C)	pH (Std.Unit	2 100	STATES PROTESTING	CONDUCTANCI mhos/cm)	TURBIDITY (NTU)	OTHER [eh (mV)]
DATE / TIME 5-27-16 /8:47 & 8:48 WATER LEVEL PRIOR TO SAMLING (FT.) 4.67								
METHOD OF SAMPL	.ING:					SAMPLING E	OUIPMENT DE	DICATED:
(X) PVC BAILER () WELL WIZARD () OTHE		OTHER			(X) YES		JIOITIES.	
() S.S. BAILER						() NO		
SAMPLING FIELD N		**************************************						
pH TIME (Std.U		C. CONDUCT mhos/cm)	TEMP. (C)		SIDITY (U)	eH (mV)	DISS. OXY. (PPM)	OTHER
8:50 7.3	9 1	034	16.4	3,0		-14.1	NA	NA
GENERAL INFORMATION WEATHER CONDITIONS AT TIME OF SAMPLING: SUNDY, 75 0F								
SAMPLE CHARACTERISTICS: CLEAR - BLACK TINT								
COMMENTS:	CONTINUOUS	PUMPING WE	ELL	TCL VC	LATILE	ES ONLY		
	DUP TAKEN (#	6 @ 8:48)					
	SAMPL	E COLLECTI	ON NUMBER	5 8	6			

SITE NAME: BUFFALO BUSINESS PARK	POINT ID:	MW - 5A BR		
LOCATION: BUFFALO, NEW YORK	FIELD REPRESENTATIVE: ES&	ES&S-R.CHIODO		
SAMPLE MATRIX: GROUNDWATER	LAB SAMPLE / PROJECT #:	. NA		
EVACUATION INFORMATION INITIAL WATER LEVEL (FEET) 19.85	DEPTH TO BOTTOM (FEET	25 40		
ELEVATION, MEAS.PT.(MSL): 619.76	ELEVATION, G/W (MSL):	Period Security Control of Contro		
DATE 5-26-16		A , NA		
METHOD OF EVACUATION: () PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER (X) GRUNDFOS PUMP	EVACUATION EQUIP			
WELL RISER DIAMETER (IN.): () 2 () 3 (★) 4	() 6 () OTHER			
ONE (1) RISER VOLUME (GAL)	WAS WELL PURGED TO DRYNES	SS () YES (X) NO		
TOTAL VOLUME EVACUATED (GAL) PA	WATER LEVEL AFTER PURGE (FT	T.) ~A		
TURBIDITY OF PURGINGS : START PA	FINISH ~A			
EVACUATION STABILIZATION DATA				
PURGE RATE CUMULATIVE TEMP. pH TIME (gpm/htz) VOLUME (C) (Std.U		IDITY OTHER 'U) [eh (mV)]		
SAMPLING INFORMATION				
DATE / TIME 5-27-16 / 9:04 WATER LEVEL PRIOR TO SAMLING (FT.) / 46				
METHOD OF SAMPLING: SAMPLING EQUIPMENT DEDICATED:				
(X) PVC BAILER () WELL WIZARD () OTHER () S.S. BAILER () GRUNDFOS PUMP	(X) YES			
() S.S. BAILER () GRUNDFOS PUMP () NO SAMPLING FIELD MEASUREMENT DATA				
pH SPEC. CONDUCT TEMP.	TURBIDITY eH DISS.	OXY. OTHER		
TIME (Std.Units) (umhos/cm) (C) 9',07 7.15 2470 16.6	(NTU) (mV) (PF	A CONTRACTOR OF THE SECOND SEC		
	2.36 -1.3 NA	A NA		
GENERAL INFORMATION WEATHER CONDITIONS AT TIME OF SAMPLING: SUNNY, 75°F				
SAMPLE CHARACTERISTICS: CEAR				
COMMENTS: CONTINUOUS PUMPING WELL				
TCL VOLATILES ONLY	. 7			
SAMPLE COLLECTION NUMBER	R /			

APPENDIX D BSA NOTICE OF VIOLATION

&

RESPONSE LETTER

Gary Crewson

Buffalo Business Park, Inc. 1800 Broadway Avenue, B-1D Buffalo, New York 14212

President

June 17, 2016

ADMINISTRATIVE OFFICES

1038 CITY HALL 65 NIAGARA SQUARE BUFFALO, NY 14202-3378 PHONE: (716) 851-4664 FAX: (716) 856-5810

WASTEWATER TREATMENT PLANT

FOOT OF WEST FERRY 90 WEST FERRY STREET BUFFALO, NY 14213-1799 PHONE: (716) 851-4664 FAX: (716) 883-3789

RE: Buffalo Business Park, Inc. Notice of Violation

Dear Mr. Crewson:

The Buffalo Sewer Authority (BSA) conducted its annual monitoring at Buffalo Business Park, Inc., BPDES Permit #14-11-BU124, on 5/6/2016. Enclosed, please find the results.

Our review of these monitoring results shows that your facility is in non-compliance with your daily maximum limit for Tetrachloroethylene as follows:

1. On 5/6/2016, the result for Tetrachloroethylene was 930 ug/L which is equivalent to 0.93 mg/L (the daily maximum limit is 0.267 mg/L).

Due to this violation, you must conduct an internal investigation into the cause of the violation, sample for one day for Tetrachloroethylene and pH and provide this office with the written results of your investigation and the corrective measures that will be instituted to prevent the reoccurrence of these violations by July 18, 2016.

If you have any questions, please contact me directly at 716-851-4664, ext. 5250 or Traserra Adams, Legal Investigator, at ext. 5255.

Very truly yours,

BUFFALO SEWER AUTHORITY

Isla sudit

Leslie Sedita

Industrial Waste Administrator

Enc.

cc: M. Letina T. Adams

SAMPLE COLLECTION FIELD SHEET -----

Date Submitted:

05/06/2016

IW Sample No.:

16-00242 Investigator: TA

Industry No.: BU124 BUFFALO BUSINESS PARK

1800 BROADWAY AVE. B-1D BUFFALO

Sample Point Number:

1

Type of Sample:

GRAB

05/06/2016

Sample Point Description:

Flow Measuring Method: Total Flow:

0

Installation Data

Date & Time:

Crew: MS-CM

Sample Interval:

15 MINUTE Preservation Used: ICE

Type of Bottle: GLASS

Collection Data

Date & Time:

Crew: MS-CM

pH: 8.0

Temperature: 10C

Observation: CLEAR COLORLESS/SEDIMENT

09:00:00

% of Flow:

CHAIN OF CUSTODY

Sampler's Signature:

Sample No. Location

Relinquished by:

Representing:

Received by: Representing:

Date

Time

Type

#Containers

Date:

Date:

Time:

Time:

Lab No.: 008

MONITORING REQUEST ======= Lab Name: Alpha Analytical

	Sample Date	Pol. Code	Pollutant Description	M/U	Results
*****	05/06/2016	A65	624 SCAN (1624)	MicroGram	1330
	05/06/2016	A13	TETRACHLOROETHYLENE	MicroGram	930
	05/06/2016	A12	TRICHLOROETHYLENE	MicroGram	400
	05/06/2016	N06	рН	Standard	7.0

15 Briar Hill Road Orchard Park, New York 14127 (716) 445-2105 nwohlabaugh@gmail.com

July 18, 2016

Leslie Sedita Industrial Waste Administrator Buffalo Sewer Authority Foot of West Ferry 90 West ferry Street Buffalo, New York 14213-1799

Phone: (716) 851-4664 ext 5250 Email: lsedita@sa.ci.buffalo.ny.us

RE: Buffalo Business Park Notice of Violation

Ms Sedita:

This correspondence is in response to the June 17th, 2016 Buffalo Sewer Authority (BSA) Notice of Violation letter that was received by Buffalo Business Park (BBP). Per the request of the BSA, BBP will conduct an internal investigation of the concentration of tetrachloroethylene. BBP will collect a confirmation sample of the groundwater that it is discharging to the BSA by August 15, 2016. The sample will be analyzed by a NYSDOH Certified Laboratory for volatile organic compounds using USEPA Method 624, which is the analytical method that was used by BSA.

Once the analytical results are received, BBP will provide those results to BSA. If tetrachloroethylene does not exceed BSA's daily maximum limit of 0.267 mg/L, then BBP will continue to discharge groundwater to the BSA using the present collect and discharge system. If the concentration of tetrachloroethylene exceeds BSA's daily maximum limit, BBP will proved a remedial action plan to BSA along with a schedule for implementation of the plan.

Please advise if this approach is acceptable to BSA.

Sincerely,

Norman K. Wohlabaugh Norman K. Wohlabaugh PG, CPG Geologist/President

Environmental & Geologic Management Services, LLC 15 Briar Hill Road

Orchard Park, New York 14127

(716) 445-2105 nwohlabaugh@gmail.com

Environmental Consultant for Buffalo Business Park

APPENDIX E SUB-SLAB DEPRESSURIZATION CERTIFICATION FORM

Form A Buffalo Business Park Sub Slab Depressurization System Log Sheet

Date: 9/19/16 Time: 10:45 AM
Checked by: ANDREW TERRAGNOUL P. E.
Vent #1 Power on: Y X N If no provide reason:
When was problem corrected?
Fan operational: Y X N If no provide reason:
When was problem corrected?
Vent #2 Power on: Y N If no provide reason:
When was problem corrected?
Fan operational: Y N If no provide reason:
When was problem corrected?
TEOFNEW PO

