2022

PERIODIC REVIEW REPORT

FOR BUFFALO BUSINESS PARK SITE 1800 BROADWAY STREET NYSDEC SITE #V00663-9 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

BUFFALO BUSINESS PARK, INC.

1800 Broadway Street, Building #1D Buffalo, New York 14212

REPORTING PERIOD: SEPTEMBER 1, 2021 TO SEPTEMBER 1, 2022

<u>TAB</u>	LE OF	CONTENTS	
EXE	<u>CUTIV</u>	E SUMMARY	1
<u>1</u>	<u>SITE</u>	OVERVIEW	3
1.1	GEOL	OGY AND HYDROGEOLOGY	4
1.2	SITE 1	HISTORY	5
		ARY OF SELECTED REMEDY	6
		RE AND EXTENT OF REMAINING CONTAMINATION	8
	SOIL GRO	UNDWATER	8 11
<u>2</u>	IC/E	C PLAN COMPLIANCE REPORT	13
2.1	IC/E	C REQUIREMENTS AND COMPLIANCE	13
		TITUTIONAL CONTROLS	13
		INEERING CONTROLS	13
Z.Z	IC/E	CERTIFICATION	14
<u>3</u>	<u>SITE</u>	INSPECTION	14
		w of Institutional Controls	14
3.2	REVII	W OF ENGINEERING CONTROLS	15
<u>4</u>	CON	CLUSIONS	15
		LIANCE WITH SITE MANAGEMENT PLAN DRMANCE AND EFFECTIVENESS OF THE REMEDY	15 15
FIG	URES		
Figu	RE 1	WATER TABLE MAP WITH PUMPS (Эn
Figu	RE 2	WATER TABLE MAP WITH PUMPS O	FF
Figu	RE 3		τS
	BLES		
Tabi	LE 1	Water Levels – Pumps (NC
Таві	LE 2	Water Levels – Pumps O	FF
Таві	LE 3	PUMPING HISTO	RY

Table 4GROUNDWATER QUALITY HISTORY GROUNDWATER SUMMARY 2022 TABLE 5 **GRAPHS** TOTAL CVOC GRAPH 1 **APPENDICES** APPENDIX AInstitutional and Engineering Controls Certification Forms APPENDIX B......LABORATORY DATA PACKAGE APPENDIX C.....FIELD SAMPLE LOGS APPENDIX D......Sub-slab Depressurization System Inspection Certification APPENDIX E.....BSA DISCHARGE PERMIT RENEWAL SAMPLING **ACRONYM LIST AAR** ALTERNATIVES ANALYSIS REPORT **BBP** BUFFALO BUSINESS PARK BROWNFIELD CLEANUP AGREEMENT BCA **BCP** Brownfield Cleanup Program BGS BELOW GROUND SURFACE DD **DECISION DOCUMENT** DER DEPARTMENT OF ENVIRONMENTAL REMEDIATION EC **ENGINEERING CONTROLS HFM** HISTORIC FILL MATERIAL IC INSTITUTIONAL CONTROLS NYSDEC New York State Department of Environmental Conservation NYSDOH NEW YORK STATE DEPARTMENT OF HEALTH 0&M OPERATION AND MAINTENANCE PAH POLYCYCLIC AROMATIC HYDROCARBONS

POLYCHLORINATED BIPHENYLS

PARTS PER MILLION

PCBs

PPM

Periodic Review Report Buffalo Business Park Site NYSDEC SITE #V00663-9

RAOS REMEDIAL ACTION OBJECTIVES

RAWP REMEDIAL ACTION WORK PLAN

RI REMEDIAL INVESTIGATION

SCOS SOIL CLEANUP OBJECTIVES

SITE 1.004-ACRE PORTION OF THE BUFFALO BUSINESS PARK, BUFFALO, NEW

York

SMP SITE MANAGEMENT PLAN

SVOCS SEMI-VOLATILE ORGANIC COMPOUNDS

UG/L MICROGRAMS PER LITER

VOCS VOLATILE ORGANIC COMPOUNDS

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2022 Periodic Review Report for a 1.413-acre portion of the Buffalo Business Park Site (hereinafter referred to as the Site) located at 1800 Broadway Street in Buffalo, New York.

The Site contains two operable units: Unit 1 was an area of soil contamination which has been remediated by removal of contaminated soils; and Unit 2 is an area of groundwater contamination located in the same area where the soil contamination was located. In addition to the groundwater remedial program, there was concern regarding the potential for vapor intrusion into one of the buildings located south of the area of groundwater contamination.

Remediation of the groundwater contamination at the Site consists of a groundwater pumping system using three wells (MW-3BR, MW-4BR and MW-5 ABR) located within the groundwater contaminant plume. Wells are pumped using appropriate controllers to achieve drawdown of the water table and thus achieve hydraulic capture of contaminated groundwater. Wells are sampled periodically to evaluate if decreases in contaminant levels are being achieved.

The primary goal of the pumping program is to achieve groundwater flow control such that flow of contaminated groundwater does not leave the site but is captured by the pumping system. Based on groundwater contour maps, this goal is being achieved.

Operation of the sub-slab venting system is effectively preventing soil vapors from entering the building and is ongoing.

Areas with remaining contamination will be monitored and maintained as specified in the approved Site Management Plan (SMP).

The SMP was prepared by American Consulting Professionals of New York, PLLC on behalf of Buffalo Business Park, Inc., in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. The SMP addresses the means for implementing the Intuitional Controls (ICs) and/or Engineering Controls (ECs) that are required by the Environmental Easement for the Site. A summary of the SMP is provided below.

Buffalo, New York	00 Broadway Street,				
VCP Site No. V00663-9					
1. The property may be used for commercial industrial use.					
2. All ECs must be inspected at a frequency and in a manner defined in the SMP.					
3. The use of groundwater un prohibited without necessar treatment as determined by the County Department of Health to as drinking water or for industruser must first notify and obtain do so from the Department.	ry water quality NYSDOH or the Erie render it safe for use ial purposes, and the				
4. Compliance with the Depart Management Plan and Periodic required.					
5. The remedial party or site owner is required to complete and submit a periodic certification of institutional and engineering controls to the Department in accordance with 6NYCRR Part 375-1.8(h)(3).					
6. The potential for vapor intrusion must be evaluated for any buildings developed in the area and any potential impacts that are identified must be monitored or mitigated					
1. Vapor Intercept System: Mai system in Building 1A.	ntain the active SSD				
2. Groundwater Pumping Sy monitoring wells MW4-BR, MW are operated as pumping wells.					
	Frequency				
mping System and SSD System	Annually				
	1. The property may be use industrial use. 2. All ECs must be inspected at manner defined in the SMP. 3. The use of groundwater ur prohibited without necessat treatment as determined by the County Department of Health to as drinking water or for industruser must first notify and obtain do so from the Department. 4. Compliance with the Depart Management Plan and Periodic required. 5. The remedial party or site of complete and submit a periodic required. 5. The remedial party or site of complete and submit a periodic required. 6. The potential for vapor evaluated for any buildings deand any potential impacts that a monitored or mitigated 1. Vapor Intercept System: Mais system in Building 1A. 2. Groundwater Pumping Symonitoring wells MW4-BR, MW are operated as pumping wells.				

Site Identification:	Buffalo Busine	ess Park Site:	1800 Broadwa	v Street.
orce racmemeation.	Danaio Dasini	JUD I WITE DICCI	1000 Diouawa	y Derce

Buffalo, New York

VCP Site No. V00663-9

Monitoring:			
1. Groundwater sampling	Annually		
Maintenance:			
1. Groundwater Pumping System and SSD System repair	As needed		
Reporting: 1. Periodic Review Report	Annually		

The Institutional and Engineering Controls Certification form is provided in **Appendix A**.

1 SITE OVERVIEW

The Buffalo Business Park property is located in the Buffalo, New York, County of Erie (see **Figure 1**) and is identified as Block 1, Lots 5.1 and 5.2 on the County of Erie Tax Map. The Buffalo Business Park property is an approximately 22 acre area bounded by NYSDOT property to the north and east, Broadway Street to the south, and TOPS Market to the west.

Buffalo Business Park (BBP) entered into a VCA with the NYSDEC to remediate a 1.004-acre portion of property located in Buffalo, New York ("Site"). This VCA required the Remedial Party, Buffalo Business Park, to investigate and remediate contaminated media at the Site.

The Site consists of a 1 Acre portion of the Buffalo Business Park property located at 1800 Broadway in Buffalo, New York. The site is located at the entrance to the property and consists primarily of parking and driveway areas and a portion of the commercial/industrial building fronting on Broadway.

The owner of the site parcels at the time of issuance of this PRR is/are:

Buffalo Business Park, Inc.

1800 Broadway

Buffalo, NY 14212

1.1 Geology and Hydrogeology

Several environmental studies have previously been conducted at BBP from which subsurface conditions have been generally characterized. The overburden materials are approximately 14 feet in thickness at BBP. They generally consist of fill materials that are variable in thickness to a depth of approximately two feet. Fill material is generally described as sands and gravel with some ash, brick, wood and railroad ties which is consistent with its past use as a rail yard. This is underlain by native materials consisting of brown gravelly sands with some silt. This material is laterally variable, but is generally 14 to 16 feet in thickness. Bedrock is at approximately 14 feet below ground surface (BGS), and consists of gray, crystalline Limestone (Onondaga Limestone.)

Groundwater is present in the overburden with groundwater flow direction to the southwest and southeast. Groundwater in bedrock reportedly flows to the southeast; however, the overburden and bedrock hydraulic zones are likely connected given the highly permeable nature of the overburden gravelly sands.

1.2 Site History

The Site and the vicinity were historically used for railroad transport/tracks associated with the Pullman Car Company from 1900 until at least 1950.

Previous investigations identified the presence of VOCs in site soils and groundwater including tetrachloroethene in soil, and tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, methylene chloride and vinyl chloride in groundwater. Based on this information, the site was divided into two operable units for purposes of investigation and remediation:

- Operable Unit #1, consisting of that area of site with defined contaminated soils; and
- Operable Unit #2, consisting of that area of the site with defined groundwater contamination.

In October 2003, a remedial action work plan (RAWP) was prepared to excavate soils from Operable Unit #1 at the site, described as an area of soil contamination. This remedy proposed the excavation of impacted soils and treatment in an ex-situ soil vapor extraction system. This RAWP was submitted to the NYSDEC for review and was subsequently approved on August 10, 2005. The approved remedy was subsequently reviewed and modified to consist of excavation of contaminated soil

with off-site disposal. The revised RAWP was subsequently approved by the NYSDEC on January 10, 2006.

1.3 Summary of Selected Remedy

The remedial program for the Site consists of the following:

- Excavation of contaminated soil was completed in April 2006;
- Pumping of contaminated groundwater to achieve capture (no contaminated groundwater leaving the site) as well as reduction of groundwater contaminant concentrations. The current Groundwater Pumping System was completed in December 2009; and
- Installation and operation of a sub-slab depressurization system in the building was completed in late 2008.

2 IC/EC PLAN COMPLIANCE REPORT

2.1 IC/EC Requirements and Compliance

2.1.1 Institutional Controls

The institutional controls for this Site are:

- The property may only be used for commercial/industrial use. The long-term Engineering and Institutional Controls included in this SMP must be employed.
- The property may not be used for a higher level of use, such as unrestricted/ restricted residential use without additional remediation and amendment of the Deed Restriction, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP; any excavated soils should be handled as specified in the Soil Management Plan.
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area and any potential impacts that are identified must be monitored or mitigated.
- Vegetable gardens and farming on the property are prohibited.
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Restricted Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Restricted Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.1.2 Engineering Controls

The engineering controls for this Site are:

- Vapor Intercept System: The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC.
- Groundwater Pumping System: Groundwater monitoring wells MW3-BR, MW4-BR and MW5A-BR are operated as pumping wells. The groundwater pumping system will not be discontinued unless prior written approval is granted by the

NYSDEC. In the event that monitoring data indicates that the groundwater pumping system is no longer required, a proposal to discontinue the system will be submitted by Buffalo Business Park. Conditions that warrant discontinuing the groundwater pumping system include contaminant concentrations in groundwater that: (1) reach levels that are consistently below ambient water quality standards, (2) have become asymptotic to a low level over an extended period of time as accepted by the NYSDEC, or (3) the NYSDEC has determined that the groundwater pumping system has reached the limit of its effectiveness. This assessment will be based in part on post-remediation contaminant levels in groundwater collected from monitoring wells located throughout the site. Systems will remain in place and operational until permission to discontinue their use is granted in writing by the NYSDEC.

2.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix A**.

2.3 Review of Institutional Controls

The following observations, related to the Site's ICs were noted at the time of the site reconnaissance:

- The Site has not changed owners and the land use of the Site has not changed.
 All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.
- No groundwater was observed being used at the property. No potable or groundwater supply wells were observed.
- No new buildings or structures have been constructed at the property.
- No vegetable gardens or farming is being conducted at the property.

2.4 Review of Engineering Controls

The following observations, related to the ECs were noted during the site reconnaissance:

- The remedial systems are operating as designed at MW-3BR, MW-4BR and MW-5ABR. Maintenance performed is routine and not unusual (ex. Pump failure). No changes to this remedial system are recommended at this time.
- The sub-slab venting system was continuously operated during the reporting period. No changes to this remedial system are recommended at this time.
- No excavation or importation of materials occurred to the areas under the Environmental Easement within the certifying period.

3 Monitoring Plan Compliance Report

3.1 Monitoring Plan Requirements

The monitoring plan requires that wells (MW-2BR, MW-3BR, MW-4BR, MW -5BR and MW-5ABR) are sampled annually and samples analyzed for VOCs. Annual groundwater sampling was completed on July 20, 2022.

The plan also requires that all wells are measured for groundwater elevation to evaluate groundwater flow during both equilibrium conditions (pumps turned off) and pumping conditions. Groundwater elevations during pumping conditions were measured on June 24, 2022, and at equilibrium conditions on July 20, 2022.

3.2 Summary of Monitoring Completed during Reporting Period

Copies of the field sampling logs are provided in **Appendix B**. A potentiometric contour map based pumping conditions is provided as **Figure 2**. Equilibrium conditions are shown as **Figure 1**.

2022 groundwater analytical results are included in **Appendix B**. Groundwater results over time are presented in **Graph 1**.

3.3 Comparisons with Remedial Objectives

There are three principal contaminants present in groundwater: tetrachloroethene, trichloroethene and dichloroethene. Vinyl chloride is also present in some wells at lesser concentrations. Three of these compounds (trichloroethene, dichloroethene and vinyl chloride) are degradation products of tetrachloroethene. Review and comparison of the 2022 groundwater analytical results shows the following:

- **MW-2BR.** Eight volatile organic compounds (VOCs) were present in the groundwater sample. In 2022, Dichoroethene is present at slightly lower concentration of 170 micrograms per liter (ug/l) than in 2021 (190 ug/l). Tetrachloroethene is present at 4.1 ug/l, which is below NY TOGS, and significantly below the previous concentration in 2021 (44 ug/l). Trichloroethene is present at 3.6 ug/l, which is below NY TOGS, and below the previous concentration in 2021 (16 ug/l). Vinyl chloride is present at 46 ug/l which is higher than the concentration detected in 2021 (15ug/l).
- **MW-3BR.** Five VOCs were present in the groundwater sample. In 2022, Dichoroethene was present at slightly lower concentration of 5,820 ug/l than in 2021 (5,900 ug/l). Tetrachloroethene was present at 4,600 ug/l, which is higher than the concentration detected 2021 (3,000 ug/l). Trichloroethene was present at 2,800 ug/l, which is a higher concentration detected 2021 (1,800 ug/l).
- **MW-4BR**. Five VOCs were present in the groundwater. The concentration of Dichloroethene was higher in 2022 (4,009.9 ug/l) compared to the 2021 concentration (2400 ug/l). The 2022 concentration of Tetrachloroethene

significantly decreased (94 ug/l) versus 2021 (4,900 ug/l). In 2022, Trichloroethene significantly decreased (60 ug/l) versus 2021 (1,300 ug/l). Lastly, vinyl chloride was detected at 60 ug/l which is an increase from 2021 (Not detected).

- **MW-5BR.** Six VOCs was present in the groundwater sample. The 2022 concentration of dichloroethene (3,032.2 ug/l) significantly decreased from the 2021 concentration of 4,700 ug/l. Tetrachloroethene is present at 12 ug/l, this concentration is higher than the previous concentration in 2021 (Not detected). Trichloroethene is present at 24 ug/l, this concertation is higher than the previous concentration in 2021 (Not detected). Vinyl chloride is present at 280 ug/l which is higher than the concentration detected in 2021 (Not dected).
- MW-5ABR. Six VOCs were present in the groundwater sample. In 2022, Dichoroethene was present at significantly lower concentration of 2,223.8 ug/l than in 2021 (12,000 ug/l). Tetrachloroethene was present at 750 ug/l, which is higher than the concentration detected 2021 (Not detected). Trichloroethene was present at 500 ug/l, which is a higher concentration detected 2021 (320 ug/l). Lastly, vinyl chloride was detected at 45 ug/l which is an increase from 2021 (Not detected).

Field sample logs are attached in **Appendix C**.

3.4 Monitoring Deficiencies

There were no monitoring deficiencies in this period. Groundwater elevations were measured during this period on an annual basis on June 24, 2022 and again on July 20, 2022.

3.5 Conclusions and Recommendations

Groundwater monitoring results show that the remedial objective of on-site hydraulic capture of contaminated groundwater is being met. Based on the potentiometric data, natural groundwater flow (pumps off) forms a slight ridge on the western boundary of the VCP Site. Groundwater appears to flow to the southeast and southwest. With the pumps on the groundwater flow significantly changes; the ridge is gone and groundwater elevations fall toward the three pumping wells.

Groundwater quality objectives have shown an historic decrease in contaminant levels until 2014, when the contaminant concentrations in groundwater increased at monitoring wells MW-2BR and MW-4BR.

Contaminant concentrations decreased again during the 2015-2016 period; however, contaminant concentrations increased overall again during the 2016-2017 period. In 2018, contaminant concentrations decreased in four of the five wells sampled, and increased in one of the site wells sampled. In 2019, contaminant concentrations again decreased in three of the five wells. In 2020, contaminant concentrations again decreased in three of the five wells sampled and analyzed. In

2021, the types of contaminants and concentrations have decreased in a few wells, most wells showed an increase from the previous sample event.

Sample results from 2022 indicate that Site is continuing to dechlorinate at a variable rate Based on the historic data CVOC concentrations seem to increase or decrease each year. The levels of CVOCs likely change based on:

- the rate of breakdown of TCE into daughter products;
- the rate of desorption of TCE from the soil; and
- the rate of groundwater flow through the soil to the pumping wells.

We expect CVOC concentrations to continue increase and decrease each year. No changes to the monitoring program are recommended at this time.

4 OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT

4.1 Components of O&M Plan

Inspections and data recording were completed as described in the Site Management Plan. There were no deficiencies this recording period.

4.2 Summary of O&M Completed During Reporting Period

0&M activities will be summarized and details of 0&M actions will be recorded in the monthly inspection reports that are kept onsite. The sub-slab depressurization blowers were recently inspected. This certified inspection form is attached as **Appendix D**.

- In March 2022 the pump for the carbon tank and check valve needed to be replaced due to a build up of rusty sediment. The same pump size and model was replaced on March 29, 2022. The sediment was removed and placed in a 55-gallon drum and is staged next to the carbon tank for future clean outs.
- In June 2022 the pump in MW-3BR was not working correctly. It was determined that the pump needed to be replaced. The pump was immediately ordered; however, due to supply chain interruptions the pump was not received. The same pump size and model was replaced on November 2, 2022. It is possible that the monitoring well fouled due to a build up of iron bacteria creating a rusty sediment that ruined the pump motor.
- In August 2022 the pump in MW-4BR went offline and was not working. It was determined that the issue was an electrical malfunction. At the time, a new pump was received to replace MW-3BR. Considering that MW-4BR was adjacent to the building, the new pump was installed in MW-4BR. The same pump size and model was replaced on August 2, 2022.
- On August 17, 2022, MW-3BR was purged and flushed out in order to remove sediment that cause the breakdown of the pump. NW Contracting was retained to flush the monitoring well with clean water. Purge water was containerized in

two 55-gallon drums. Water was then pumped into the onsite carbon treatment system. A photographic log of the monitoring well clean out is provided in **Appendix E**.

• If other monitoring wells require cleanout, the procedures used for MW-3BR will be implemented.

4.3 Evaluation of Remedial Systems

4.3.1 Groundwater Pumping System

- Buffalo Business Park continues to operate and maintain the groundwater pumping system. Review of the totalizer information for pumping wells MW-3BR, 4BR and 5ABR for the 2020 2022 reporting period indicates that these wells operated for most of the year (Table 3); except for MW-3BR which was removed in June 2022. The combined number of gallons pumped from the three well totalizers was 372,670, a significant decrease over the last annual reporting period.
- The remedial systems are operating as designed at MW-3BR, MW-4BR and MW-5ABR. Maintenance performed is routine and not unusual (ex. Pump failure). No changes to this remedial system are recommended at this time.
- The groundwater pre-treatment system is operating as designed to meet the BSA discharge limits.
- Buffalo Business Park will receive renewal of the Buffalo Sewer Authority Permit
 in 2022. As part of the permit renewal, post treatment water samples, from the
 500 pound activated carbon system, were collected and analyzed for VOCs and
 mercury in July 2022. The results showed the system is performing as designed.
 The analytical results from these sampling events are presented in **Appendix E**.
- The following are typical flow rates observed during the reporting period.

Pumping Well	Average Gallons per Day
MW-3BR	0.9
MW-4BR	0.2
MW-5ABR	0.08

4.3.2 Vapor Intercept System

• The sub-slab venting system is also operating as designed. No changes to this remedial system are recommended.

4.4 **O&M Deficiencies**

There are no operational or maintenance deficiencies at this time.

4.5 Conclusions and Recommendations

The remedial system as designed and operated is capturing contaminated groundwater at the site. There are no recommendations for improvement to the remedial system. No changes to the O&M plan are recommended

5 CONCLUSIONS

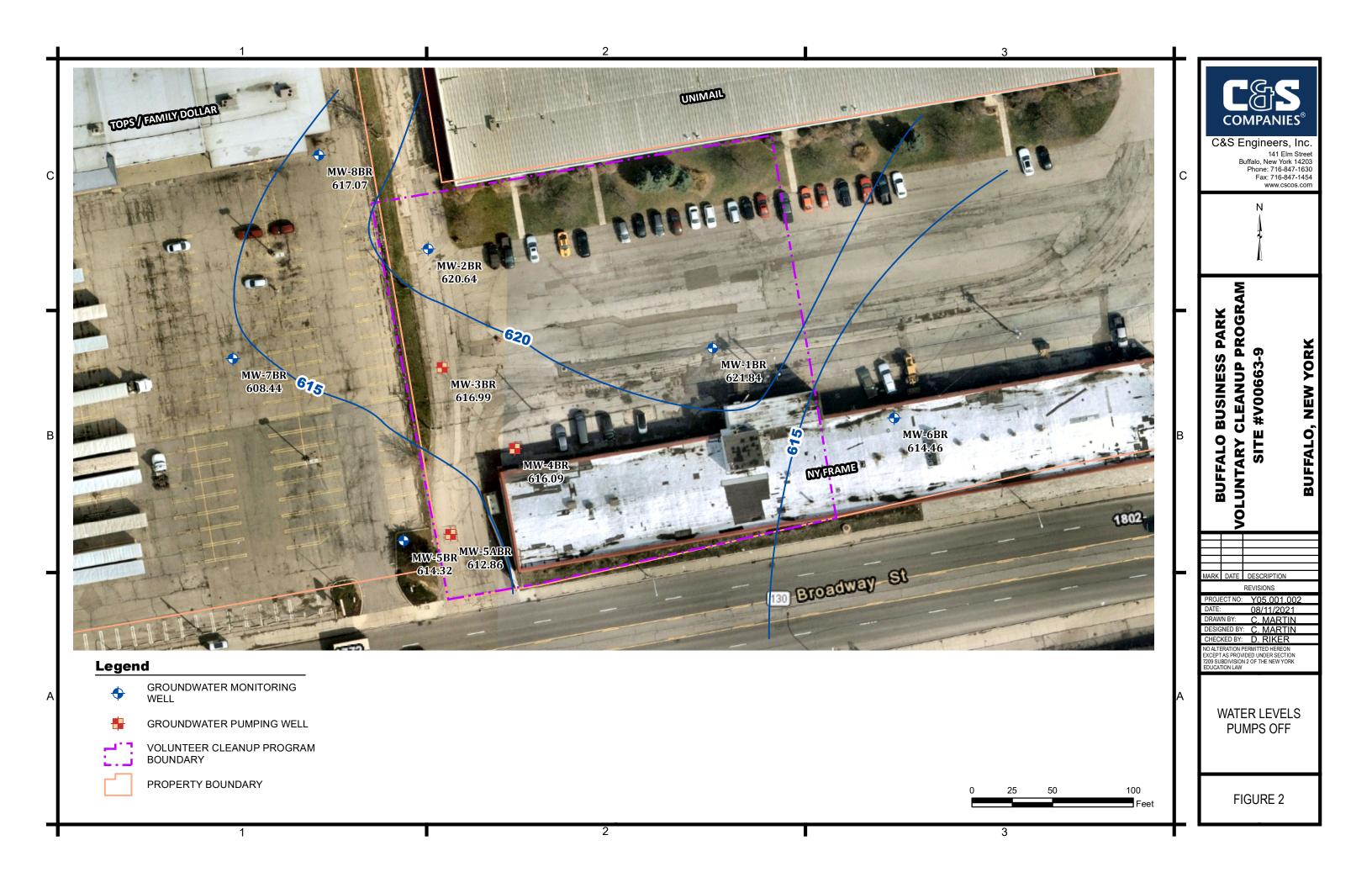
5.1 Compliance with Site Management Plan

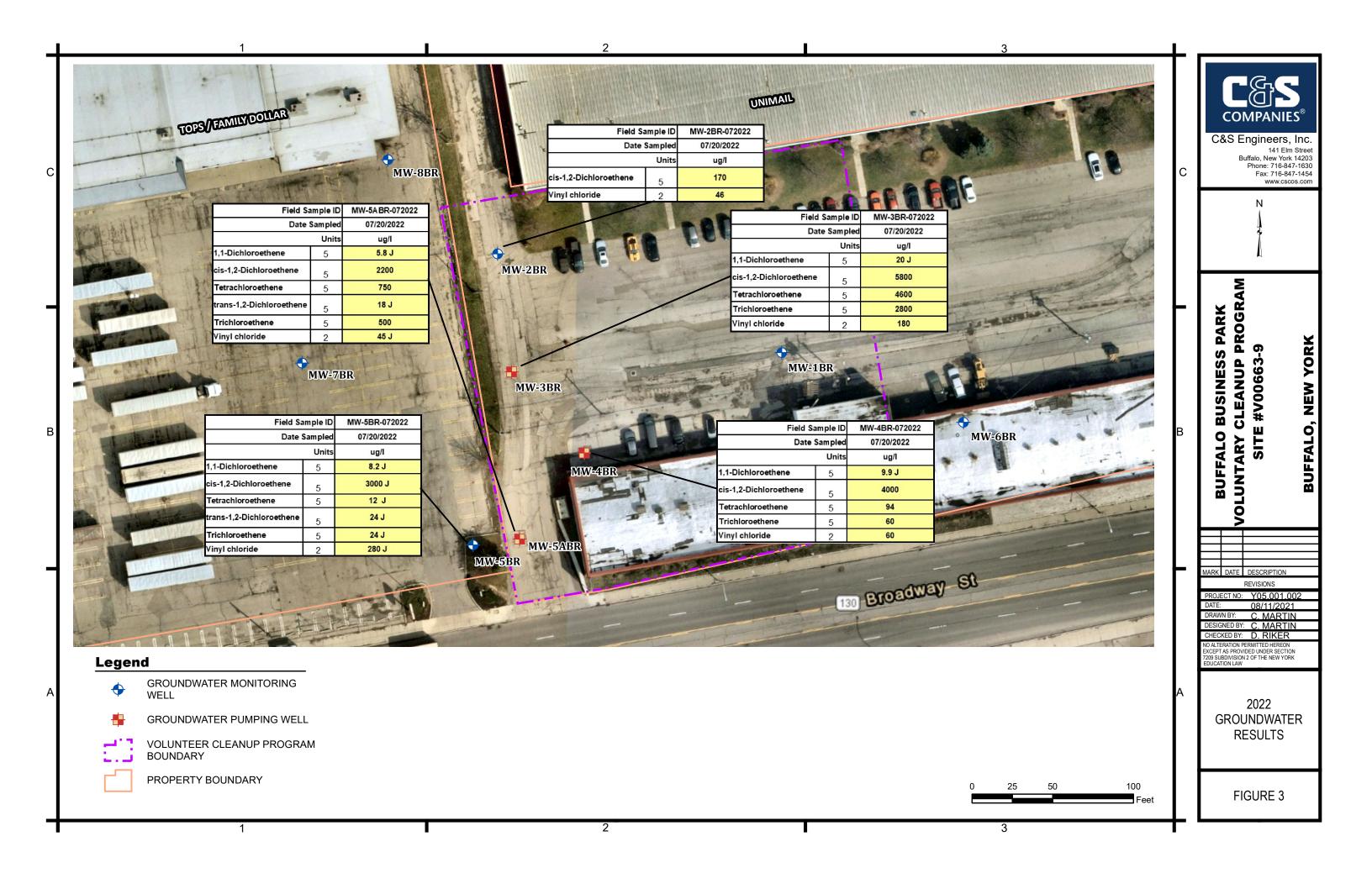
The sub-slab venting system was continuously operational during the 2021 - 2022 period.

Buffalo Business Park will comply with all aspects of the SMP (IC/EC; O&M and Monitoring) during the next annual reporting period (2023).

No changes to EC/IC Plan are recommended at this time. The IC/E certification is provided in **Appendix A**.

The requirements of the SMP appear to be satisfied.


5.2 Performance and Effectiveness of the Remedy


The remedy has been effective in containing groundwater contamination and preventing contamination from leaving the site. Groundwater quality criteria have not been met and pumping should continue.

 $F:\Project\Y05 - Buffalo\ Business\ Park\Y05001001 - Buffalo\ Business\ Park\ EQuIS\Planning-Study\Reports\2021\ PERIODIC\ REVIEW\ REPORT.docx$

FIGURES

TABLES

BUFFALO BUSINESS PARK WATER LEVELS PUMPS TURNED ON 6/24/2022

WELL NUMBER	RISER ELEVATION (FT)	DEPTH TO WATER (FT)	WATER LEVEL ELEVATION (FT)
MW-1 BR	624.44	6.58	617.86
MW-2 BR	625.04	5.58	619.46
MW-3 BR *	623.99	15.90	608.09
MW-4 BR *	622.79	17.60	605.19
MW-5 ABR *	619.76	20.20	599.56
MW-5 BR	622.42	13.33	609.09
MW-6 BR	623.57	9.11	614.46
MW-7 BR	623.34	14.90	608.44
MW-8 BR	625.87	9.00	616.87

^{*} Pumping Wells

Groundwater levels were provided by Buffalo Business Park

Monthly groundwater levels are recorded and kept in a log onsite

BUFFALO BUSINESS PARK WATER LEVELS PUMPS TURNED OFF July 20, 2022

WELL NUMBER	RISER ELEVATION (FT)	DEPTH TO WATER (FT)	WATER LEVEL ELEVATION (FT)
MW-1 BR	624.44	2.60	621.84
MW-2 BR	625.04	4.40	620.64
MW-3 BR *	623.99	7.00	616.99
MW-4 BR *	622.79	6.70	616.09
MW-5 ABR *	619.76	6.90	612.86
MW-5 BR	622.42	8.10	614.32
MW-6 BR	623.57	9.11	614.46
MW-7 BR	623.34	14.90	608.44
MW-8 BR	625.87	8.80	617.07

^{*} Pumping Wells

Groundwater levels were provided by Buffalo Business Park

PUMPING WELL TREATMENT SYSTEM TOTALIZERS BUFFALO BUSINESS PARK

DATE	MW-4 BR	MW-2 BR	MW-3 BR	MW-5A BR	Treatment
10/1/2009	137,280	NA	NA	NA	System
12/15/2009	148,600		NA	NA	Totalizer
9/8/2010	194,590	NA	NA	NA	
9/15/2010	NA	NA	NA		
4/27/2011	231,020	1,220	NA	44,170	
5/31/2012	256,870	4,930	NA	116,430	
5/8/2013	289,130	5,180	NA	170,960	
5/15/2014	403,380	5,310	NA	224,850	
1/19/2015	421,440	5,310	NA	254,600	
5/27/2015	421,460	5,310	NA	272,660	
7/17/2015	424,105	NA	NA	279,160	
1/7/2016	424,130	NA	60	279,160	
3/9/2016	424,140	NA	18,650	287,420	
5/26/2016	424,140	NA	107,920	296,980	
9/22/2016	424,220	NA	123,410	297,650	
12/23/2016	58	NA	235,347	305,340	
5/17/2017	19,531	NA	490,000	310,500	
11/15/2018		NA			
11/29/2018	80,460	NA	687,690	320,500	
3/19/2019		NA			57,955
8/19/2019		NA			96,495
10/30/2019	80,460	NA	30	64,900	
11/28/2019		NA			121,350
10/21/2020	130,169	NA	365,940	102,990	535,500
8/24/2021	8/24/2021 134,619		787,330	111,910	923,100
9/26/2022	223,760	NA	NA	148,910	372,670

MW-2 BR - pump removed due to poor recharge - 5/27/15

MW-3 BR - pump started - 1/7/16

MW-3 BR - pump removed due to issues - 6/24/22

Totalizer readings are recorded monthly and kept in a log onsite

HISTORIC GROUNDWATER ANALYTICAL RESULTS BUFFALO BUSINESS PARK

		Well ID	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR
	Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/30/2019	8/24/2021	
Parameter	Units	Criteria										
1,2-Dichloroethene (cis)	ug/l	5	17	100	2300	4800	2500	1600	450	280	133	190
1,2-Dichloroethene, Total	ug/l			100	2300	4800	2500	1600				
Tetrachloroethene	ug/l	5	20	8.1	5500	18,000	95	42				44
Trichloroethene	ug/l	5	2.2	0.92J	1000	1,600	69					16
Vinyl chloride	ug/l	2							67	25	14.7	15
Total VOC			39	208	11100	29200	5164	3242	517	305	148	265

		Well ID	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR
	Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021	
Parameter	Units	Criteria										
1,2-Dichloroethene (cis)	ug/l	5	220	1800	520	1,400	1100	1800	5400	5800	2390	5900
1,2-Dichloroethene, Total	ug/l			1800	520	1400	1100	1800				
Tetrachloroethene	ug/l	5	1400	16000	4100	21,000	4400	4300	1300	2800	3170	3000
Trichloroethene	ug/l	5	78	810	180	1,200	630	1100	510	1000	995	1800
Vinyl chloride	ug/l	2							630	240	76.4	
Total VOC			1698	20410	5320	25000	7230	9000	7840	9840	6631	10700

		Well ID	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
2-Butanone (MEK)										150J		
1,1-Dichloroethene								12J				
1,2-Dichloroethene (cis)	ug/l	5	730	990	1700	890	2900	3300	2500	2300	2760	2400
1,2-Dichloroethene, Total	ug/l			1000	1700	890	2900	3300				
Tetrachloroethene	ug/l	5	13000	11000	12000	20,000	520	7100	5500	1300	1960	4900
Trans-1,2-Dichloroethene							40	56				
Trichloroethene	ug/l	5	1500	1600	2200	2,600	290	2200	1700	870	877	1300
Vinyl chloride	ug/l	2					130				52.5	
m , luoc	•	•	4 = 0.00	4.4500	45600	0.4000	6500	45056	0500	4.450	= (10 =	0.600

Total VOC 15230 14590 17600 24380 6780 15956 9700 4470 5649.5 8600

HISTORIC GROUNDWATER ANALYTICAL RESULTS BUFFALO BUSINESS PARK

		Well ID	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
1,1-Dichloroethene						15						
1,2-Dichloroethene (cis)	ug/l	5	3500	2100	740	3,000	3700	6300	3100	3500	6080	4700
1,2-Dichloroethene, Total	ug/l			2100	750	3,000	3700	6300				
Tetrachloroethene	ug/l	5	220	320	110	2,100	1500		12000	510	<100	
Trichloroethene	ug/l	5	160	290	77	1,000	1300	190	2700	290	<100	
Vinyl chloride	ug/l	2		100	110	130		130		170	178	
Total VOC			3880	4910	1787	9245	10200	12920	17800	4470	6258	4700

		Well ID	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
1,1-Dichloroethene						9.6						
1,2-Dichloroethene (cis)	ug/l	5	1900	870	170	1,500	2100	5100	2800	2900	6070	12000
1,2-Dichloroethene, Total	ug/l			880	170	1,500	2100	5100				
Tetrachloroethene	ug/l	5	8900	1300	410	12,000	4000	180		3900	<100	
Trichloroethene	ug/l	5	2000	370	110	2,300	1400	1400		960	353	320
Vinyl chloride	ug/l	2				76			80	39J	<100	
Total VOC			12800	3420	860	17385.6	9600	11780	2880	7760	6423	12320

BUFFALO BUSINESS PARK GROUNDWATER SUMMARY 2022

	NY-AWQS	SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX: NY-TOGS-GA	7/20/2022		DUP-072022 7/20/2022 WATER		MW-5ABR-072022 7/20/2022 WATER		MW-4BR-072022 7/20/2022 WATER		MW-3BR-072022 7/20/2022 WATER		MW-2BR-072022 7/20/2022 WATER		TRIP BL 7/20/2 WATI	022
	(ug/l)	(ug/l)	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg
VOLATILE ORGANICS	(**8/ -)	(8/ -)	rtooure	1.6	resure	8	rtodare	* * * 8	resure	1.8	Hoodie	8	resure	8	Ttobuit	118
1,1,1-Trichloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	1	1	ND		ND		ND		ND		ND		ND		ND	
1,1-Dichloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1-Dichloroethene	5	5	8.2	ī	10	I	5.8	I	9.9	I	20	I	0.43	I	ND	
1,2,4-Trichlorobenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,2,4-Trimethylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,2-Dibromo-3-chloropropane	0.04	0.04	ND	UJ	ND		ND	UJ	ND		ND		ND		ND	
1,2-Dibromoethane	0.0006	0.0006	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloroethane	0.6	0.6	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane	1	1	ND		ND		ND		ND		ND		ND		ND	
1,3,5-Trimethylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,3-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
2-Butanone	50	50	ND		ND		ND		ND		ND		ND		ND	
2-Hexanone	50	50	ND		ND		ND		ND		ND		ND		ND	
4-Methyl-2-pentanone	NA	NA	ND		ND		ND		ND		ND		ND		ND	
Acetone	50	50	ND		ND		ND		ND		ND		ND		2.8	
Benzene	1	1	ND		ND		ND		ND		ND		0.26	J	ND	
Bromodichloromethane	50	50	ND	UJ	ND		ND	UJ	ND		ND		ND		ND	
Bromoform	50	50	ND		ND		ND		ND		ND		ND		ND	
Bromomethane	5	5	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ
Carbon disulfide	60	60	ND		ND		ND		ND		ND		ND		ND	
Carbon tetrachloride	5	5	ND		ND		ND		ND		ND		ND		ND	
Chlorobenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Chloroethane	5	5	ND	UJ	ND		ND	UJ	ND		ND		ND		ND	
Chloroform	7	7	ND		ND		ND		ND		ND		ND		ND	
Chloromethane	NA	NA	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ
cis-1,2-Dichloroethene	5	5	3000	J	3300		2200		4000		5800		170		ND	
cis-1,3-Dichloropropene	0.4	0.4	ND		ND		ND		ND		ND		ND		ND	
Cyclohexane	NA	NA	ND		ND		ND		ND		ND		1.1	J	ND	
Dibromochloromethane	50	50	ND		ND		ND		ND		ND		ND		ND	
Dichlorodifluoromethane	5	5	ND		ND	UJ	ND		ND	UJ	ND	UJ	ND	UJ	ND	UJ
Ethylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Freon-113	5	5	ND		ND		ND		ND		ND		ND		ND	
Isopropylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Methyl Acetate	NA	NA	ND		ND		ND		ND		ND		ND		ND	
Methyl cyclohexane	NA	NA	ND		ND		ND		ND		ND		0.44	J	ND	
Methyl tert butyl ether	10	10	ND		ND		ND		ND		ND		ND		ND	
Methylene chloride	5	5	ND		ND		ND		ND		ND		ND		ND	
n-Butylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
n-Propylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Naphthalene	10	10	ND	UJ	ND		ND	UJ	ND		ND		ND		ND	

BUFFALO BUSINESS PARK GROUNDWATER SUMMARY 2022

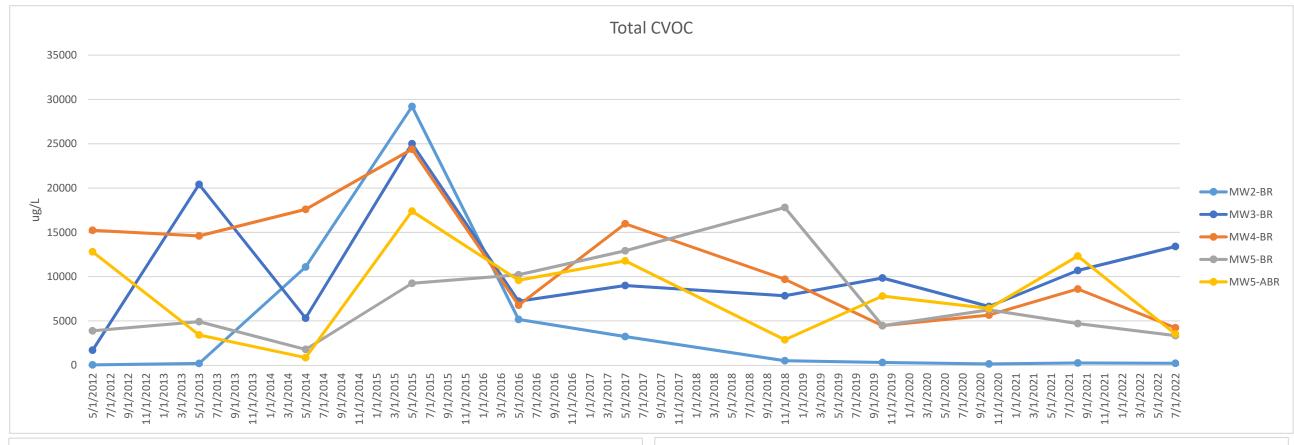
		SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX:	MW-5BR-072 7/20/202 WATER	22	DUP-072 7/20/20 WATE	22	MW-5ABR-072 7/20/2022 WATER	-	MW-4BR-07202 7/20/2022 WATER	7/20/20	MW-3BR-072022 7/20/2022 WATER		2022	TRIP BLANK 7/20/2022 WATER	
	NY-AWQS	NY-TOGS-GA													
	(ug/l)	(ug/l)	Result	Flg	Result	Flg	Result	Flg	Result	lg Result	Flg	Result	Flg	Result	Flg
VOLATILE ORGANICS															
o-Xylene	5	5	ND		ND		ND		ND	ND		ND		ND	
p-Isopropyltoluene	5	5	ND		ND		ND		ND	ND		ND		ND	
p/m-Xylene	5	5	ND		ND		ND		ND	ND		ND		ND	
sec-Butylbenzene	5	5	ND		ND		ND		ND	ND		ND		ND	
Styrene	5	930	ND		ND		ND		ND	ND		ND		ND	
tert-Butylbenzene	5	5	ND		ND		ND		ND	ND		ND		ND	
Tetrachloroethene	5	5	12	J	320	J	750		94	4600		4.1		ND	
Toluene	5	5	ND		ND		ND		ND	ND		ND		ND	
trans-1,2-Dichloroethene	5	5	24	J	ND		18	J	ND	ND		ND		ND	
trans-1,3-Dichloropropene	0.4	0.4	ND		ND		ND		ND	ND		ND		ND	
Trichloroethene	5	5	24	J	310	J	500		60	2800		3.6		ND	
Trichlorofluoromethane	5	5	ND		ND		ND		ND	ND		ND		ND	
Vinyl chloride	2	2	280	J	110	J	45	J	60	180		46		ND	
Tota	al VOC		3348.2		4050		3518.8		4223.9	13400		225.93		2.8	

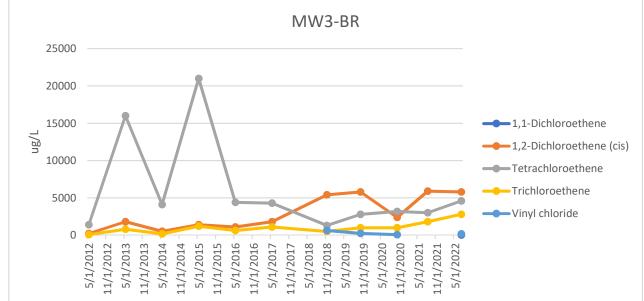
NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

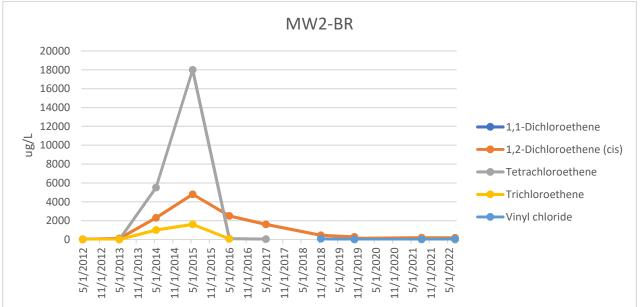
NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

Qualifier Key

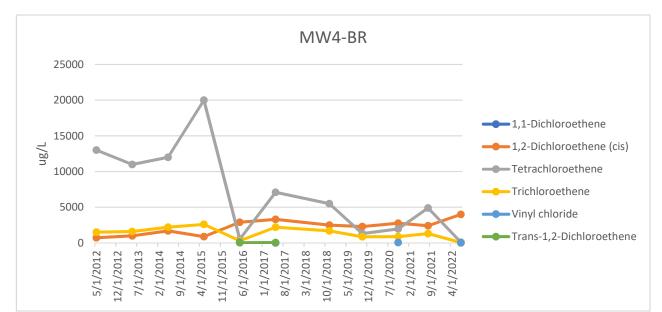
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) I The lower value for the two columns has been reported due to obvious interference.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

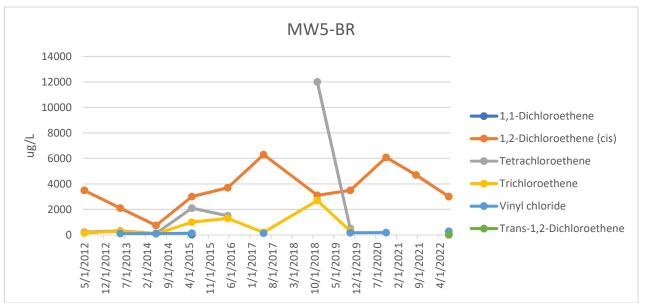

RE - Analytical results are from sample re-extraction.

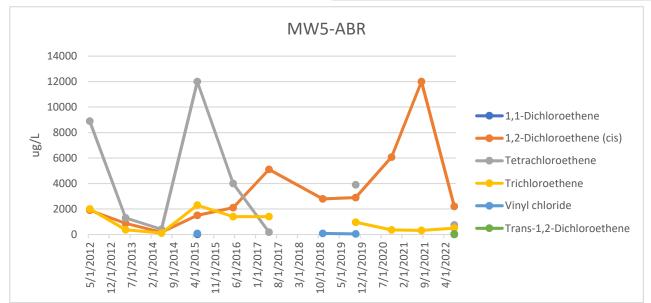

- R Analytical results are from sample re-analysis.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria. U Not detected at the reported detection limit for the sample.
- \mbox{M} Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- S Analytical results are from modified screening analysis.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).


GRAPHS

BUFFALO BUSINESS PARK SITE NYSDEC SITE #V00663-9







BUFFALO BUSINESS PARK SITE NYSDEC SITE #V00663-9

APPENDICES

APPENDIX A

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	V00663	Site Details	Box 1	
Sit	e Name Bu	ffalo Business Pa	rk		
City Co	e Address: y/Town: Bu unty:Erie e Acreage:		Zip Code: 14212-2001		
₹e	porting Perio	od: September 01,	2021 to September 01, 2022		
				YES	NO
	Is the inform	mation above correc	ct?	×	
	If NO, inclu	de handwritten abo	ve or on a separate sheet.		
			perty been sold, subdivided, merged, or undergone a is Reporting Period?		×
		peen any change of RR 375-1.11(d))?	use at the site during this Reporting Period		×
			r local permits (e.g., building, discharge) been issued is Reporting Period?		×
			stions 2 thru 4, include documentation or evidenc n previously submitted with this certification form		
j	Is the site of	currently undergoing	g development?		×
				Box 2	
				YES	NO
		ent site use consiste al and Industrial	ent with the use(s) listed below?	×	
	Are all ICs	in place and functio	oning as designed?		
	IF TH		THER QUESTION 6 OR 7 IS NO, sign and date below TE THE REST OF THIS FORM. Otherwise continue.	and	
, C	Corrective M	easures Work Plan	must be submitted along with this form to address	these iss	ues.
	inature of Ow	ner. Remedial Party	or Designated Representative Date		

SITE NO. V00663 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

101.19-1-5.1 GARY CREWSON

Ground Water Use Restriction

Site Management Plan
Soil Management Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

O&M Plan IC/EC Plan

The deed restriction was filed on 11-19-2010. The Controlled Property (1.4137 acres) is subject to the Site Management Plan. The Controlled Property is the south west corner of the entire Buffalo Business Park property.

Restrictions:

- 1. The Controlled Property may be used only for industrial or commercial purposes, excluding day care, child care, and medical care uses.
- 2. The Groundwater beneath the Controlled Property may not be used for potable or non-potable purposes;
- 3. The Site Management Plan must be implemented for the Controlled Property;
- 4. Soils at the Controlled Property shall be managed in accordance with the Site Management plan.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

101.19-1-5.1

Groundwater Treatment System

Vapor Mitigation

- 1. SSDS: A sub slab depressurization system (SSDS) is installed in the western end of New York frame building consisting of two active vents.
- 2. Pumping System: Three bedrock monitoring wells MW4-BR, MW3-BR and MW5A-BR are operated as pumping wells. Recovered groundwater is discharged to BSA.

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	old x
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	f X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00663

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	print business address
am certifying as <u>Owner</u>	(Owner or Remedial Party)
for the Site named in the Site Details Section	on of this form.
Signature of Owner, Remedial Party, or Des	signated Representative $\frac{9/36/32}{\text{Date}}$

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I Cody Martin	at 141 Elm	Street, Suite 100,	Buffalo, NY
print name	print b	usiness address	
am certifying as a Qualified Environm	nental Professional for	the Owner (Owner or Rem	nedial Party)
Signature of Qualified Environmental the Owner or Remedial Party, Rende		Stamp (Required for PE)	9/27/2022 Date

APPENDIX B LABORATORY DATA PACKAGE

DATA USABILITY SUMMARY REPORT (DUSR)

Buffalo Business Park 180 Roadway **Buffalo, NY Project # Y05001002**

SDG: L2238704

6 Water Samples and 1 Trip Blank

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 **Attention: Cody Martin**

September 2022

Table of Contents

			Page No
REV	IEWER'S NARRA	TIVE	
1.0	SUMMARY		1
2.0	INTRODUCTIO	N	1
3.0	SAMPLE AND A	ANALYSIS SUMMARY	2
4.0	GUIDANCE DO	CUMENTS AND DATA REVIEW CRITERIA	2
5.0	DATA VALIDA	TION QUALIFIERS	3
6.0	RESULTS OF TI	HE DATA REVIEW	4
7.0	TOTAL USABL	E DATA	4
	ENDIX A	Validated Analytical Results	
	ENDIX B	Laboratory QC Documentation	
APP.	ENDIX C	Validator Qualifications	

Tables

Table 4-1 Data Validation Guidance Documents

Table 4-2 Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

Table 6-1 VOCs

REVIEWER'S NARRATIVE C&S Companies SDG L2238704 Buffalo Business Park

The data associated with this Sample Delivery Groups (SDG) L2238704, analyzed by Alpha Analytical, Westborough, MA have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Míchael K. Perry	Date:	9/12/2022	
	Michael K. Perry			
	Chemist			

1.0 EVENT SUMMARY

SITE: Buffalo Business Park

180 Roadway Buffalo, NY

Project #: Y05001002

SAMPLING DATEs: July 20, 2022

SAMPLE TYPE: 6 water samples and 1 trip blank

LABORATORY: Alpha Analytical

Westborough, MA

SDG No.: SDGs L2238704

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,

Compliance with established analyte holding times,

Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,

Adherence to established analytical protocols,

Conformance of data summary sheets with raw analytical data, and

Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for 6 water samples and 1 trip blank collected on 7/20/22. These samples were analyzed for Volatile Organic Compounds (VOCs).

All laboratory analyses were submitted to Alpha Analytical, Westborough, MA and analyzed as SDG L2238704. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES)	USEPA SOP HW-3a, Rev. 1	September 2016
Metals (Hg & CN)	USEPA SOP HW-3c, Rev. 1	September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances (PFAS)	* NYSDEC	January 2021
General Chemistry Parameters	per NYSDEC ASP	July 2005

^{*} Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)

Completeness of Pkg
Sample Preservation
Holding Time
Canister Certification
Instrument Tuning
Initial Calibration and
Instrument Performance
Daily Calibration
Blanks
Lab Control Sample
Field Duplicate

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the concentration of the analyte in the sample.

 (The magnitude of any value associated with the result is not determined by data validation).
- J+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- **UJ** The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may inaccurate or imprecise.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Table 6-1. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG L2238704, seven samples were analyzed and results were reported for 406 analytes. Even though some results were flagged with a "J" as estimated, all results (100 %) are considered usable. See the summary table for the analyses that have been rejected and qualified and the associated QC reasons.

SDG L2238704

		•	• • •	
DUP-072022 MW-4BR-072022 MW-3BR-072022 MW-2BR-072022 Trip Blank	Chloromethane	J detects UJ non-detects	LCS < QC limit	Data are estimated
MW-5BR-072022	cis-1,2-Dichloroethene	J detects UJ non-detects	MS/MSD < QC limit	Data are estimated
MW-5BR-072022	Chloromethane Chloroethane Vinyl chloride Dichlorodifluoromethane Methyl acetate	J detects	MS/MSD > QC limit	Data are estimated
MW-5BR-072022 MW-5ABR-072022	Trichloroethene Bromodichloromethane	J detects UJ non-detects	ICAL RF < minimum0	Data are estimated
DUP-072022 MW-4BR-072022 MW-3BR-072022 MW-2BR-072022 Trip Blank	Dichlorodifluoromethane	J detects UJ non-detects	ICV > QC limit	Data are estimated
DUP-072022 MW-4BR-072022 MW-3BR-072022 MW-2BR-072022 Trip Blank	Chloromethane Bromomethane	J detects UJ non-detects	CCV > QC limit	Data are estimated

SDG L2238704

MW-5BR-072022 MW-5ABR-072022	Chloromethane Vinyl chloride Bromomethane Chloroethane DBCP Naphthalene	J detects UJ non-detects	CCV > QC limit	Data are estimated
---------------------------------	---	-----------------------------	----------------	--------------------

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

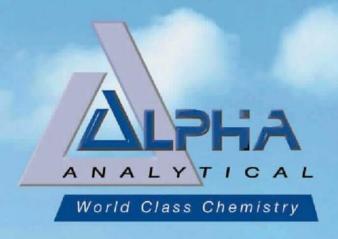
RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL


Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2238704

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: BUFFALO BUSINESS PARK

Project Number: Not Specified

 Lab Number:
 L2238704

 Report Date:
 08/03/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2238704-01	MW-5BR-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 09:30	07/20/22
L2238704-02	DUP-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 09:30	07/20/22
L2238704-03	MW-5ABR-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 10:00	07/20/22
L2238704-04	MW-4BR-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 10:55	07/20/22
L2238704-05	MW-3BR-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 11:20	07/20/22
L2238704-06	MW-2BR-072022	WATER	180 BROADWAY BUFFALO, NY	07/20/22 11:50	07/20/22
L2238704-07	TRIP BLANK	WATER	180 BROADWAY BUFFALO, NY	07/20/22 12:30	07/20/22

Project Name:BUFFALO BUSINESS PARKLab Number:L2238704Project Number:Not SpecifiedReport Date:08/03/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: (attlin Wallehu

Report Date: 08/03/22

Title: Technical Director/Representative

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 0	Way	95	Page / o		THE RESERVE OF THE PARTY OF THE	Rec'd Lab	7/21	122	ALPHA Job# /-723	8704
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	No.				Deliverable	es	TEST!	ME TO SE	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Bus	PALO BUS	iness p	ARK		ASP	-A	Y AS	SP-B	Same as Clie	nt Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 18	D RADA	D WAY	BUFFA	o m	▼ EQu	IS (1 File)	E0	QuIS (4 File)	PO#	
Client Information		Project #		7		7	Othe	er				
Client: C+5 Engin	reas	(Use Project name as I	Project #)				Regulatory	Requireme	nt	a Committee	Disposal Site Infor	mation
Address: 131 Eu	M ST.	Project Manager: 12	CH BAC	hent			NYT	ogs	NY NY	Part 375	Please identify below	location of
BUKEALO N	Y	ALPHAQuote #:					☐ AWQ	Standards	☐ NY	CP-51	applicable disposal fa	scilities.
Phone: 714 7	194 3520	Turn-Around Time			Minto	4 10 3 3 4 6	☐ NY R	estricted Use	Oti	her	Disposal Facility:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fax:		Standa	rd K	Due Date:			☐ NY U	Inrestricted Us	ie		□ NJ 🗷	NY
Email: Abackert	- OCSCOS, COM	Rush (only if pre approve	ed)	# of Days:			☐ NYC	Sewer Discha	irge		Other:	
These samples have b							ANALYSIS	S			Sample Filtration	T
Other project specific	ISD WHELT	ED PROM	MW-56	BR-07	wir		Leo Voc				Done Lab to do Preservation Lab to do	t a l B opelow) t
ALPHA Lab ID	S-0	male ID	Colle	ection	Sample	Sampler's	22					
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	0				Sample Specific Co	mments e
38904 -01	MW-588	-072022	9/20/22	9:30	Gw	PB.	×					3
20	DUP-072	022	7/20/22	9:30	Gw	RB	7					3
701	MS-0720		7/2022	9:30	aw	RR	4					3
10	MID- 072	orr	Thola	9:30	Cow	213	4					3
73	MW- 5ABR	-072022	From	10:00		DB	4				¥	7
204	MW-4BR-	07 2022	Fluir	10:55	Giv	nB	70					3
705	MW-3BR-	072022	Frehr	11:20	Gw	RB	7					3
26	MW-2B2	-072022	7/20/22	11:50	Caw	RB	5					3
707	TRIP BLAN		Hole	12:30	Gw	pB	م					2
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification		7/		ntainer Type Preservative	٧ 8				Please print cle and completely, not be logged in turnaround time start until any a	Samples can and clock will not
F = MeOH	C = Cube O = Other	Religiuished	d By:	Date/	Time		Received B	у:	D	ate/Time	resolved. BY EX	
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	focelymze	Day (AAD)	7/20/22			ym 7	COYPAN		0/22 B:0	THIS COC, THI HAS READ AN TO BE BOUND TERMS & CON (See reverse si	D AGREES BY ALPHA'S DITIONS.
Form No: 01-25 HC (rev. 3	0-Sept-2013)					1			1		100010100001	OR AL

GC/MS 8260 Analysis

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-01D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : MW-5BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 08/01/22 09:17

Dilution Factor Sample Matrix : WATER : 25 : MV **Analytical Method** Analyst : 1,8260C Lab File ID Instrument ID : GONZO : VG220801A06 Sample Amount GC Column : RTX-502.2 : 0.4 ml

ug/L

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	62	18.	U	
75-34-3	1,1-Dichloroethane	ND	62	18.	U	
67-66-3	Chloroform	ND	62	18.	U	
56-23-5	Carbon tetrachloride	ND	12	3.4	U	
78-87-5	1,2-Dichloropropane	ND	25	3.4	U	
124-48-1	Dibromochloromethane	ND	12	3.7	U	
79-00-5	1,1,2-Trichloroethane	ND	38	12.	U	
127-18-4	Tetrachloroethene	12	12	4.5	J	
108-90-7	Chlorobenzene	ND	62	18.	U	
75-69-4	Trichlorofluoromethane	ND	62	18.	U	
107-06-2	1,2-Dichloroethane	ND	12	3.3	U	
71-55-6	1,1,1-Trichloroethane	ND	62	18.	U	
75-27-4	Bromodichloromethane	ND	12	4.8	U U.	J
10061-02-6	trans-1,3-Dichloropropene	ND	12	4.1	U	
10061-01-5	cis-1,3-Dichloropropene	ND	12	3.6	U	
75-25-2	Bromoform	ND	50	16.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	12	4.2	U	
71-43-2	Benzene	ND	12	4.0	U	
108-88-3	Toluene	ND	62	18.	U	
100-41-4	Ethylbenzene	ND	62	18.	U	
74-87-3	Chloromethane	ND	62	18.	U U.	J
74-83-9	Bromomethane	ND	62	18.	U U.	J
75-01-4	Vinyl chloride	280	25	1.8	J	
75-00-3	Chloroethane	ND	62	18.	u U.	J
75-35-4	1,1-Dichloroethene	8.2	12	4.2	J	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-01D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : MW-5BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 08/01/22 09:17

Sample Matrix **Dilution Factor** : 25 : WATER **Analytical Method** : 1,8260C Analyst : MV Lab File ID Instrument ID : VG220801A06 : GONZO GC Column Sample Amount : 0.4 ml : RTX-502.2

ug/L

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
156-60-5	trans-1,2-Dichloroethene	24	62	18.	J	J		
79-01-6	Trichloroethene	24	12	4.4		J		
95-50-1	1,2-Dichlorobenzene	ND	62	18.	U			
541-73-1	1,3-Dichlorobenzene	ND	62	18.	U			
106-46-7	1,4-Dichlorobenzene	ND	62	18.	U			
1634-04-4	Methyl tert butyl ether	ND	62	18.	U			
179601-23-1	p/m-Xylene	ND	62	18.	U			
95-47-6	o-Xylene	ND	62	18.	U			
156-59-2	cis-1,2-Dichloroethene	3000	62	18.		J		
100-42-5	Styrene	ND	62	18.	U			
75-71-8	Dichlorodifluoromethane	ND	120	25.	U			
67-64-1	Acetone	ND	120	36.	U			
75-15-0	Carbon disulfide	ND	120	25.	U			
78-93-3	2-Butanone	ND	120	48.	U			
108-10-1	4-Methyl-2-pentanone	ND	120	25.	U			
591-78-6	2-Hexanone	ND	120	25.	U			
106-93-4	1,2-Dibromoethane	ND	50	16.	U			
104-51-8	n-Butylbenzene	ND	62	18.	U			
135-98-8	sec-Butylbenzene	ND	62	18.	U			
98-06-6	tert-Butylbenzene	ND	62	18.	U			
96-12-8	1,2-Dibromo-3-chloropropane	ND	62	18.	U	UJ		
98-82-8	Isopropylbenzene	ND	62	18.	U			
99-87-6	p-isopropyitoluene	ND	62	18.	U			
91-20-3	Naphthalene	ND	62	18.	U	UJ		
103-65-1	n-Propylbenzene	ND	62	18.	U			

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-01D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : MW-5BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 08/01/22 09:17

Sample Matrix: WATERDilution Factor: 25Analytical Method: 1,8260CAnalyst: MVLab File ID: VG220801A06Instrument ID: GONZOSample Amount: 0.4 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	62	18.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	62	18.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	62	18.	U	
79-20-9	Methyl Acetate	ND	50	5.8	U	
110-82-7	Cyclohexane	ND	250	6.8	U	
76-13-1	Freon-113	ND	62	18.	U	
108-87-2	Methyl cyclohexane	ND	250	9.9	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-02D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : DUP-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 04:04

: 40 Sample Matrix : WATER **Dilution Factor Analytical Method** : 1,8260C Analyst : MV Instrument ID Lab File ID : V01220729N24 : VOA101 Sample Amount GC Column : RTX-502.2 : 0.25 ml

ug/L

			ug/∟		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	100	28.	U
75-34-3	1,1-Dichloroethane	ND	100	28.	U
67-66-3	Chloroform	ND	100	28.	U
56-23-5	Carbon tetrachloride	ND	20	5.4	U
78-87-5	1,2-Dichloropropane	ND	40	5.5	U
124-48-1	Dibromochloromethane	ND	20	6.0	U
79-00-5	1,1,2-Trichloroethane	ND	60	20.	U
127-18-4	Tetrachloroethene	320	20	7.2	J
108-90-7	Chlorobenzene	ND	100	28.	U
75-69-4	Trichlorofluoromethane	ND	100	28.	U
107-06-2	1,2-Dichloroethane	ND	20	5.3	U
71-55-6	1,1,1-Trichloroethane	ND	100	28.	U
75-27-4	Bromodichloromethane	ND	20	7.7	U
10061-02-6	trans-1,3-Dichloropropene	ND	20	6.6	U
10061-01-5	cis-1,3-Dichloropropene	ND	20	5.8	U
75-25-2	Bromoform	ND	80	26.	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.7	U
71-43-2	Benzene	ND	20	6.4	U
108-88-3	Toluene	ND	100	28.	U
100-41-4	Ethylbenzene	ND	100	28.	U
74-87-3	Chloromethane	ND	100	28.	u UJ
74-83-9	Bromomethane	ND	100	28.	U UJ
75-01-4	Vinyl chloride	110	40	2.8	J
75-00-3	Chloroethane	ND	100	28.	U
75-35-4	1,1-Dichloroethene	10	20	6.8	J

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-02D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : DUP-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 04:04

Sample Matrix **Dilution Factor** : WATER : 40 **Analytical Method** : 1,8260C Analyst : MV Lab File ID Instrument ID : V01220729N24 : VOA101 : 0.25 ml GC Column Sample Amount : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	100	28.	U
79-01-6	Trichloroethene	310	20	7.0	J
95-50-1	1,2-Dichlorobenzene	ND	100	28.	U
541-73-1	1,3-Dichlorobenzene	ND	100	28.	U
106-46-7	1,4-Dichlorobenzene	ND	100	28.	U
1634-04-4	Methyl tert butyl ether	ND	100	28.	U
179601-23-1	p/m-Xylene	ND	100	28.	U
95-47-6	o-Xylene	ND	100	28.	U
156-59-2	cis-1,2-Dichloroethene	3300	100	28.	
100-42-5	Styrene	ND	100	28.	U
75-71-8	Dichlorodifluoromethane	ND	200	40.	U UJ
67-64-1	Acetone	ND	200	58.	U
75-15-0	Carbon disulfide	ND	200	40.	U
78-93-3	2-Butanone	ND	200	78.	U
108-10-1	4-Methyl-2-pentanone	ND	200	40.	U
591-78-6	2-Hexanone	ND	200	40.	U
106-93-4	1,2-Dibromoethane	ND	80	26.	U
104-51-8	n-Butylbenzene	ND	100	28.	U
135-98-8	sec-Butylbenzene	ND	100	28.	U
98-06-6	tert-Butylbenzene	ND	100	28.	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	28.	U
98-82-8	Isopropylbenzene	ND	100	28.	U
99-87-6	p-Isopropyltoluene	ND	100	28.	U
91-20-3	Naphthalene	ND	100	28.	U
103-65-1	n-Propylbenzene	ND	100	28.	U

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-02D
 Date Collected
 : 07/20/22 09:30

 Client ID
 : DUP-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 04:04

Sample Matrix: WATERDilution Factor: 40Analytical Method: 1,8260CAnalyst: MVLab File ID: V01220729N24Instrument ID: VOA101Sample Amount: 0.25 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	100	28.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	100	28.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	100	28.	U	
79-20-9	Methyl Acetate	ND	80	9.4	U	
110-82-7	Cyclohexane	ND	400	11.	U	
76-13-1	Freon-113	ND	100	28.	U	
108-87-2	Methyl cyclohexane	ND	400	16.	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-03D
 Date Collected
 : 07/20/22 10:00

 Client ID
 : MW-5ABR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 08/01/22 09:43

Sample Matrix : WATER **Dilution Factor** : 20 **Analytical Method** : 1,8260C Analyst : MV Lab File ID Instrument ID : VG220801A07 : GONZO GC Column Sample Amount : 0.5 ml : RTX-502.2

			ug/ L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	50	14.	U	
75-34-3	1,1-Dichloroethane	ND	50	14.	U	
67-66-3	Chloroform	ND	50	14.	U	
56-23-5	Carbon tetrachloride	ND	10	2.7	U	
78-87-5	1,2-Dichloropropane	ND	20	2.7	U	
124-48-1	Dibromochloromethane	ND	10	3.0	U	
79-00-5	1,1,2-Trichloroethane	ND	30	10.	U	
127-18-4	Tetrachloroethene	750	10	3.6		
108-90-7	Chlorobenzene	ND	50	14.	U	
75-69-4	Trichlorofluoromethane	ND	50	14.	U	
107-06-2	1,2-Dichloroethane	ND	10	2.6	U	
71-55-6	1,1,1-Trichloroethane	ND	50	14.	U	
75-27-4	Bromodichloromethane	ND	10	3.8	U	UJ
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.3	U	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	U	
75-25-2	Bromoform	ND	40	13.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.3	U	
71-43-2	Benzene	ND	10	3.2	U	
108-88-3	Toluene	ND	50	14.	U	
100-41-4	Ethylbenzene	ND	50	14.	U	
74-87-3	Chloromethane	ND	50	14.	U	UJ
74-83-9	Bromomethane	ND	50	14.	U	UJ
75-01-4	Vinyl chloride	45	20	1.4		J
75-00-3	Chloroethane	ND	50	14.	U	UJ
75-35-4	1,1-Dichloroethene	5.8	10	3.4	J	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-03D
 Date Collected
 : 07/20/22 10:00

 Client ID
 : MW-5ABR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 08/01/22 09:43

Sample Matrix **Dilution Factor** : 20 : WATER **Analytical Method** : 1,8260C Analyst : MV Lab File ID : VG220801A07 Instrument ID : GONZO GC Column Sample Amount : 0.5 ml : RTX-502.2

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
156-60-5	trans-1,2-Dichloroethene	18	50	14.	J		
79-01-6	Trichloroethene	500	10	3.5			
95-50-1	1,2-Dichlorobenzene	ND	50	14.	U		
541-73-1	1,3-Dichlorobenzene	ND	50	14.	U		
106-46-7	1,4-Dichlorobenzene	ND	50	14.	U		
1634-04-4	Methyl tert butyl ether	ND	50	14.	U		
179601-23-1	p/m-Xylene	ND	50	14.	U		
95-47-6	o-Xylene	ND	50	14.	U		
156-59-2	cis-1,2-Dichloroethene	2200	50	14.			
100-42-5	Styrene	ND	50	14.	U		
75-71-8	Dichlorodifluoromethane	ND	100	20.	U		
67-64-1	Acetone	ND	100	29.	U		
75-15-0	Carbon disulfide	ND	100	20.	U		
78-93-3	2-Butanone	ND	100	39.	U		
108-10-1	4-Methyl-2-pentanone	ND	100	20.	U		
591-78-6	2-Hexanone	ND	100	20.	U		
106-93-4	1,2-Dibromoethane	ND	40	13.	U		
104-51-8	n-Butylbenzene	ND	50	14.	U		
135-98-8	sec-Butylbenzene	ND	50	14.	U		
98-06-6	tert-Butylbenzene	ND	50	14.	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	14.	U	UJ	
98-82-8	Isopropylbenzene	ND	50	14.	U		
99-87-6	p-Isopropyltoluene	ND	50	14.	U		
91-20-3	Naphthalene	ND	50	14.	U	UJ	
103-65-1	n-Propylbenzene	ND	50	14.	U		

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

Lab ID : L2238704-03D Date Collected : 07/20/22 10:00
Client ID : MW-5ABR-072022 Date Received : 07/20/22
Sample Location : 180 BROADWAY BUFFALO, NY Date Analyzed : 08/01/22 09:43

Sample Matrix: WATERDilution Factor: 20Analytical Method: 1,8260CAnalyst: MVLab File ID: VG220801A07Instrument ID: GONZOSample Amount: 0.5 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	50	14.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	50	14.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	50	14.	U	
79-20-9	Methyl Acetate	ND	40	4.7	U	
110-82-7	Cyclohexane	ND	200	5.4	U	
76-13-1	Freon-113	ND	50	14.	U	
108-87-2	Methyl cyclohexane	ND	200	7.9	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-04D
 Date Collected
 : 07/20/22 10:55

 Client ID
 : MW-4BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 03:17

Sample Matrix **Dilution Factor** : WATER : 50 **Analytical Method** : 1,8260C Analyst : MV Lab File ID : V01220729N22 Instrument ID : VOA101 GC Column Sample Amount : 0.2 ml : RTX-502.2

			ug/ =		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	120	35.	U
75-34-3	1,1-Dichloroethane	ND	120	35.	U
67-66-3	Chloroform	ND	120	35.	U
56-23-5	Carbon tetrachloride	ND	25	6.7	U
78-87-5	1,2-Dichloropropane	ND	50	6.8	U
124-48-1	Dibromochloromethane	ND	25	7.4	U
79-00-5	1,1,2-Trichloroethane	ND	75	25.	U
127-18-4	Tetrachloroethene	94	25	9.0	
108-90-7	Chlorobenzene	ND	120	35.	U
75-69-4	Trichlorofluoromethane	ND	120	35.	U
107-06-2	1,2-Dichloroethane	ND	25	6.6	U
71-55-6	1,1,1-Trichloroethane	ND	120	35.	U
75-27-4	Bromodichloromethane	ND	25	9.6	U
10061-02-6	trans-1,3-Dichloropropene	ND	25	8.2	U
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.2	U
75-25-2	Bromoform	ND	100	32.	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	8.4	U
71-43-2	Benzene	ND	25	8.0	U
108-88-3	Toluene	ND	120	35.	U
100-41-4	Ethylbenzene	ND	120	35.	U
74-87-3	Chloromethane	ND	120	35.	u UJ
74-83-9	Bromomethane	ND	120	35.	U UJ
75-01-4	Vinyl chloride	60	50	3.6	
75-00-3	Chloroethane	ND	120	35.	U
75-35-4	1,1-Dichloroethene	9.9	25	8.4	J

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-04D
 Date Collected
 : 07/20/22 10:55

 Client ID
 : MW-4BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 03:17

Sample Matrix **Dilution Factor** : WATER : 50 **Analytical Method** : 1,8260C Analyst : MV Lab File ID : V01220729N22 Instrument ID : VOA101 GC Column Sample Amount : 0.2 ml : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	120	35.	U
79-01-6	Trichloroethene	60	25	8.8	
95-50-1	1,2-Dichlorobenzene	ND	120	35.	U
541-73-1	1,3-Dichlorobenzene	ND	120	35.	U
106-46-7	1,4-Dichlorobenzene	ND	120	35.	U
1634-04-4	Methyl tert butyl ether	ND	120	35.	U
179601-23-1	p/m-Xylene	ND	120	35.	U
95-47-6	o-Xylene	ND	120	35.	U
156-59-2	cis-1,2-Dichloroethene	4000	120	35.	
100-42-5	Styrene	ND	120	35.	U
75-71-8	Dichlorodifluoromethane	ND	250	50.	U UJ
67-64-1	Acetone	ND	250	73.	U
75-15-0	Carbon disulfide	ND	250	50.	U
78-93-3	2-Butanone	ND	250	97.	U
108-10-1	4-Methyl-2-pentanone	ND	250	50.	U
591-78-6	2-Hexanone	ND	250	50.	U
106-93-4	1,2-Dibromoethane	ND	100	32.	U
104-51-8	n-Butylbenzene	ND	120	35.	U
135-98-8	sec-Butylbenzene	ND	120	35.	U
98-06-6	tert-Butylbenzene	ND	120	35.	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	120	35.	U
98-82-8	Isopropylbenzene	ND	120	35.	U
99-87-6	p-Isopropyltoluene	ND	120	35.	U
91-20-3	Naphthalene	ND	120	35.	U
103-65-1	n-Propylbenzene	ND	120	35.	U

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-04D
 Date Collected
 : 07/20/22 10:55

 Client ID
 : MW-4BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 03:17

Sample Matrix: WATERDilution Factor: 50Analytical Method: 1,8260CAnalyst: MVLab File ID: V01220729N22Instrument ID: VOA101Sample Amount: 0.2 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	120	35.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	120	35.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	120	35.	U	
79-20-9	Methyl Acetate	ND	100	12.	U	
110-82-7	Cyclohexane	ND	500	14.	U	
76-13-1	Freon-113	ND	120	35.	U	
108-87-2	Methyl cyclohexane	ND	500	20.	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-05D
 Date Collected
 : 07/20/22 11:20

 Client ID
 : MW-3BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:54

Sample Matrix **Dilution Factor** : 50 : WATER **Analytical Method** : 1,8260C Analyst : MV Lab File ID : V01220729N21 Instrument ID : VOA101 GC Column Sample Amount : 0.2 ml : RTX-502.2

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	120	35.	U
75-34-3	1,1-Dichloroethane	ND	120	35.	U
67-66-3	Chloroform	ND	120	35.	U
56-23-5	Carbon tetrachloride	ND	25	6.7	U
78-87-5	1,2-Dichloropropane	ND	50	6.8	U
124-48-1	Dibromochloromethane	ND	25	7.4	U
79-00-5	1,1,2-Trichloroethane	ND	75	25.	U
127-18-4	Tetrachloroethene	4600	25	9.0	
108-90-7	Chlorobenzene	ND	120	35.	U
75-69-4	Trichlorofluoromethane	ND	120	35.	U
107-06-2	1,2-Dichloroethane	ND	25	6.6	U
71-55-6	1,1,1-Trichloroethane	ND	120	35.	U
75-27-4	Bromodichloromethane	ND	25	9.6	U
10061-02-6	trans-1,3-Dichloropropene	ND	25	8.2	U
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.2	U
75-25-2	Bromoform	ND	100	32.	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	8.4	U
71-43-2	Benzene	ND	25	8.0	U
108-88-3	Toluene	ND	120	35.	U
100-41-4	Ethylbenzene	ND	120	35.	U
74-87-3	Chloromethane	ND	120	35.	u UJ
74-83-9	Bromomethane	ND	120	35.	U UJ
75-01-4	Vinyl chloride	180	50	3.6	
75-00-3	Chloroethane	ND	120	35.	U
75-35-4	1,1-Dichloroethene	20	25	8.4	J

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-05D
 Date Collected
 : 07/20/22 11:20

 Client ID
 : MW-3BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:54

Sample Matrix **Dilution Factor** : WATER : 50 **Analytical Method** : 1,8260C Analyst : MV Lab File ID Instrument ID : V01220729N21 : VOA101 GC Column Sample Amount : 0.2 ml : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	120	35.	U
79-01-6	Trichloroethene	2800	25	8.8	
95-50-1	1,2-Dichlorobenzene	ND	120	35.	U
541-73-1	1,3-Dichlorobenzene	ND	120	35.	U
106-46-7	1,4-Dichlorobenzene	ND	120	35.	U
1634-04-4	Methyl tert butyl ether	ND	120	35.	U
179601-23-1	p/m-Xylene	ND	120	35.	U
95-47-6	o-Xylene	ND	120	35.	U
156-59-2	cis-1,2-Dichloroethene	5800	120	35.	
100-42-5	Styrene	ND	120	35.	U
75-71-8	Dichlorodifluoromethane	ND	250	50.	U UJ
67-64-1	Acetone	ND	250	73.	U
75-15-0	Carbon disulfide	ND	250	50.	U
78-93-3	2-Butanone	ND	250	97.	U
108-10-1	4-Methyl-2-pentanone	ND	250	50.	U
591-78-6	2-Hexanone	ND	250	50.	U
106-93-4	1,2-Dibromoethane	ND	100	32.	U
104-51-8	n-Butylbenzene	ND	120	35.	U
135-98-8	sec-Butylbenzene	ND	120	35.	U
98-06-6	tert-Butylbenzene	ND	120	35.	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	120	35.	U
98-82-8	Isopropylbenzene	ND	120	35.	U
99-87-6	p-Isopropyltoluene	ND	120	35.	U
91-20-3	Naphthalene	ND	120	35.	U
103-65-1	n-Propylbenzene	ND	120	35.	U

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-05D
 Date Collected
 : 07/20/22 11:20

 Client ID
 : MW-3BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:54

Sample Matrix: WATERDilution Factor: 50Analytical Method: 1,8260CAnalyst: MVLab File ID: V01220729N21Instrument ID: VOA101Sample Amount: 0.2 mlGC Column: RTX-502.2

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	120	35.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	120	35.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	120	35.	U	
79-20-9	Methyl Acetate	ND	100	12.	U	
110-82-7	Cyclohexane	ND	500	14.	U	
76-13-1	Freon-113	ND	120	35.	U	
108-87-2	Methyl cyclohexane	ND	500	20.	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-06
 Date Collected
 : 07/20/22 11:50

 Client ID
 : MW-2BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:30

Dilution Factor Sample Matrix : WATER : 1 : MV **Analytical Method** : 1,8260C Analyst Lab File ID Instrument ID : V01220729N20 : VOA101 Sample Amount GC Column : RTX-502.2 : 10 ml

CAS NO.	Parameter	Results	RL	MDL	Qualifier
CAS NO.	raiametei	nesuits	nL_	MIDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	4.1	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	0.26	0.50	0.16	J
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U UJ
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	46	1.0	0.07	
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	0.43	0.50	0.17	J

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-06
 Date Collected
 : 07/20/22 11:50

 Client ID
 : MW-2BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:30

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : MV : 1,8260C Analyst Lab File ID Instrument ID : V01220729N20 : VOA101 GC Column : RTX-502.2 Sample Amount : 10 ml

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
450.00.5		N.D.				
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	3.6	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	170	2.5	0.70		
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	u UJ	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-06
 Date Collected
 : 07/20/22 11:50

 Client ID
 : MW-2BR-072022
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:30

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MVLab File ID: V01220729N20Instrument ID: VOA101Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	1.1	10	0.27	J	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	0.44	10	0.40	J	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-07
 Date Collected
 : 07/20/22 12:30

 Client ID
 : TRIP BLANK
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:07

Sample Matrix : WATER **Dilution Factor** : 1 : MV **Analytical Method** : 1,8260C Analyst Lab File ID Instrument ID : V01220729N19 : VOA101 Sample Amount GC Column : RTX-502.2 : 10 ml

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	u UJ
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-07
 Date Collected
 : 07/20/22 12:30

 Client ID
 : TRIP BLANK
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:07

Sample Matrix : WATER **Dilution Factor** : 1 : MV **Analytical Method** : 1,8260C Analyst Lab File ID Instrument ID : V01220729N19 : VOA101 Sample Amount GC Column : RTX-502.2 : 10 ml

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	2.8	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Lab ID
 : L2238704-07
 Date Collected
 : 07/20/22 12:30

 Client ID
 : TRIP BLANK
 Date Received
 : 07/20/22

 Sample Location
 : 180 BROADWAY BUFFALO, NY
 Date Analyzed
 : 07/30/22 02:07

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MVLab File ID: V01220729N19Instrument ID: VOA101Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U			
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U			
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U			
79-20-9	Methyl Acetate	ND	2.0	0.23	U			
110-82-7	Cyclohexane	ND	10	0.27	U			
76-13-1	Freon-113	ND	2.5	0.70	U			
108-87-2	Methyl cyclohexane	ND	10	0.40	U			

Appendix B

Laboratory QC Documentation

Laboratory Control Sample Summary Form 3 **Volatiles**

Lab Number : L2238704

Project Number :

Client : C&S Companies Lab Nu
Project Name : BUFFALO BUSINESS PARK Project
Matrix : WATER
LCS Sample ID : WG1669558-3 Analysis Date : 07/29/22 19:04 File ID : V01220729N01 LCSD Sample ID : WG1669558-4 Analysis Date : 07/29/22 19:28 File ID : V01220729N02

	Laboratory Control Sample Laboratory C								ry RPD Limit				
_	True	Found	%R	True	Found	%R	RPD	Recovery					
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit				
Madedone delecte	40	40	400	40	40	400	•	70.400	00				
Methylene chloride	10	10	100	10	10	100	0	70-130	20				
1,1-Dichloroethane	10	10	100	10	10	100	0	70-130	20				
Chloroform	10	10	100	10	10	100	0	70-130	20				
Carbon tetrachloride	10	10	100	10	10	100	0	63-132	20				
1,2-Dichloropropane	10	10	100	10	10	100	0	70-130	20				
Dibromochloromethane	10	9.7	97	10	10	100	3	63-130	20				
1,1,2-Trichloroethane	10	10	100	10	10	100	0	70-130	20				
Tetrachloroethene	10	10	100	10	10	100	0	70-130	20				
Chlorobenzene	10	10	100	10	10	100	0	75-130	20				
Trichlorofluoromethane	10	10	100	10	10	100	0	62-150	20				
1,2-Dichloroethane	10	9.9	99	10	9.9	99	0	70-130	20				
1,1,1-Trichloroethane	10	10	100	10	10	100	0	67-130	20				
Bromodichloromethane	10	9.8	98	10	9.9	99	1	67-130	20				
trans-1,3-Dichloropropene	10	10	100	10	10	100	0	70-130	20				
cis-1,3-Dichloropropene	10	10	100	10	10	100	0	70-130	20				
Bromoform	10	9.6	96	10	9.8	98	2	54-136	20				
1,1,2,2-Tetrachloroethane	10	10	100	10	10	100	0	67-130	20				
Benzene	10	10	100	10	10	100	0	70-130	20				
Toluene	10	10	100	10	10	100	0	70-130	20				
Ethylbenzene	10	10	100	10	9.9	99	1	70-130	20				
Chloromethane	10	4.8	48 0	10	4.9	49 Q	2	64-130	20				
Bromomethane	10	4.4	44	10	4.7	47	7	39-139	20				
Vinyl chloride	10	9.8	98	10	9.6	96	2	55-140	20				
Chloroethane	10	11	110	10	11	110	0	55-138	20				
1,1-Dichloroethene	10	11	110	10	10	100	10	61-145	20				
trans-1,2-Dichloroethene	10	11	110	10	10	100	10	70-130	20				

Laboratory Control Sample Summary Form 3 **Volatiles**

: C&S Companies : BUFFALO BUSINESS PARK Lab Number : L2238704 Client

Project Name **Project Number:**

Matrix : WATER LCS Sample ID : WG1670386-3 Analysis Date : 08/01/22 07:07 File ID : VG220801A01 LCSD Sample ID : WG1670386-4 Analysis Date : 08/01/22 07:33 File ID : VG220801A02

	Laborator	y Control Sam	ple	Laborator	y Control Dup		D Bassyamı	, RPD	
Danamatan	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Methylene chloride	10	9.4	94	10	10	100	6	70-130	20
1,1-Dichloroethane	10	11	110	10	12	120	9	70-130	20
Chloroform	10	10	100	10	11	110	10	70-130	20
Carbon tetrachloride	10	9.8	98	10	11	110	12	63-132	20
1,2-Dichloropropane	10	10	100	10	11	110	10	70-130	20
Dibromochloromethane	10	8.8	88	10	9.8	98	11	63-130	20
1,1,2-Trichloroethane	10	9.7	97	10	11	110	13	70-130	20
Tetrachloroethene	10	10	100	10	11	110	10	70-130	20
Chlorobenzene	10	10	100	10	11	110	10	75-130	20
Trichlorofluoromethane	10	10	100	10	11	110	10	62-150	20
1,2-Dichloroethane	10	10	100	10	12	120	18	70-130	20
1,1,1-Trichloroethane	10	9.9	99	10	11	110	11	67-130	20
Bromodichloromethane	10	11	110	10	12	120	9	67-130	20
trans-1,3-Dichloropropene	10	9.6	96	10	10	100	4	70-130	20
cis-1,3-Dichloropropene	10	9.7	97	10	11	110	13	70-130	20
Bromoform	10	8.4	84	10	9.6	96	13	54-136	20
1,1,2,2-Tetrachloroethane	10	9.5	95	10	11	110	15	67-130	20
Benzene	10	10	100	10	11	110	10	70-130	20
Toluene	10	10	100	10	11	110	10	70-130	20
Ethylbenzene	10	10	100	10	11	110	10	70-130	20
Chloromethane	10	12	120	10	12	120	0	64-130	20
Bromomethane	10	12	120	10	12	120	0	39-139	20
Vinyl chloride	10	12	120	10	13	130	8	55-140	20
Chloroethane	10	21	210	10	22	220 Q	5	55-138	20
1,1-Dichloroethene	10	10	100	10	11	110	10	61-145	20
trans-1,2-Dichloroethene	10	10	100	10	11	110	10	70-130	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Client Sample ID
 : MW-5BR-072022
 Matrix
 : WATER

 Lab Sample ID
 : L2238704-01
 Analysis Date
 : 08/01/22 09:17

 Matrix Spike
 : WG1670386-6
 MS Analysis Date
 : 08/01/22 17:36

 Matrix Spike Dup
 : WG1670386-7
 MSD Analysis Date
 : 08/01/22 18:03

		Matrix Spike Sample			Matrix Spi	ke Duplicate				
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Methylene chloride	ND	250	260	104	250	260	104	0	70-130	20
1,1-Dichloroethane	ND	250	300	120	250	310	124	3	70-130	20
Chloroform	ND	250	270	108	250	270	108	0	70-130	20
Carbon tetrachloride	ND	250	260	104	250	260	104	0	63-132	20
1,2-Dichloropropane	ND	250	270	108	250	270	108	0	70-130	20
Dibromochloromethane	ND	250	230	92	250	240	96	4	63-130	20
1,1,2-Trichloroethane	ND	250	270	108	250	270	108	0	70-130	20
Tetrachloroethene	12	250	260	99	250	250	95	4	70-130	20
Chlorobenzene	ND	250	250	100	250	250	100	0	75-130	20
Trichlorofluoromethane	ND	250	290	116	250	290	116	0	62-150	20
1,2-Dichloroethane	ND	250	300	120	250	300	120	0	70-130	20
1,1,1-Trichloroethane	ND	250	270	108	250	270	108	0	67-130	20
Bromodichloromethane	ND	250	290	116	250	300	120	3	67-130	20
trans-1,3-Dichloropropene	ND	250	240	96	250	240	96	0	70-130	20
cis-1,3-Dichloropropene	ND	250	240	96	250	240	96	0	70-130	20
Bromoform	ND	250	230	92	250	230	92	0	54-136	20
1,1,2,2-Tetrachloroethane	ND	250	270	108	250	290	116	7	67-130	20
Benzene	ND	250	290	116	250	300	120	3	70-130	20
Toluene	ND	250	260	104	250	260	104	0	70-130	20
Ethylbenzene	ND	250	260	104	250	250	100	4	70-130	20
Chloromethane	ND	250	410	164 0	250	420	168 Q	2	64-130	20
Bromomethane	ND	250	210	84	250	200	80	5	39-139	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Client Sample ID
 : MW-5BR-072022
 Matrix
 : WATER

 Lab Sample ID
 : L2238704-01
 Analysis Date
 : 08/01/22 09:17

 Matrix Spike
 : WG1670386-6
 MS Analysis Date
 : 08/01/22 17:36

 Matrix Spike Dup
 : WG1670386-7
 MSD Analysis Date
 : 08/01/22 18:03

		Matrix Spike Sample			Matrix Spike Duplicate					
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Vinyl chloride	280	250	680	160 Q	250	680	160 Q	0	55-140	20
Chloroethane	ND	250	490	196 0	250	520	208 Q	6	55-138	20
1,1-Dichloroethene	8.2J	250	290	116	250	270	108	7	61-145	20
trans-1,2-Dichloroethene	24J	250	300	120	250	300	120	0	70-130	20
Trichloroethene	24	250	280	102	250	280	102	0	70-130	20
1,2-Dichlorobenzene	ND	250	230	92	250	240	96	4	70-130	20
1,3-Dichlorobenzene	ND	250	240	96	250	240	96	0	70-130	20
1,4-Dichlorobenzene	ND	250	240	96	250	240	96	0	70-130	20
Methyl tert butyl ether	ND	250	260	104	250	270	108	4	63-130	20
p/m-Xylene	ND	500	490	98	500	490	98	0	70-130	20
o-Xylene	ND	500	500	100	500	500	100	0	70-130	20
cis-1,2-Dichloroethene	3000	250	3200	80	250	3100	40	3	70-130	20
Styrene	ND	500	490	98	500	500	100	2	70-130	20
Dichlorodifluoromethane	ND	250	400	160 Q	250	410	164 0	2	36-147	20
Acetone	ND	250	380	152 0	250	360	144	5	58-148	20
Carbon disulfide	ND	250	320	128	250	320	128	0	51-130	20
2-Butanone	ND	250	300	120	250	290	116	3	63-138	20
4-Methyl-2-pentanone	ND	250	300	120	250	310	124	3	59-130	20
2-Hexanone	ND	250	300	120	250	300	120	0	57-130	20
1,2-Dibromoethane	ND	250	250	100	250	260	104	4	70-130	20
n-Butylbenzene	ND	250	260	104	250	250	100	4	53-136	20
sec-Butylbenzene	ND	250	250	100	250	240	96	4	70-130	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number :

 Client Sample ID
 : MW-5BR-072022
 Matrix
 : WATER

 Lab Sample ID
 : L2238704-01
 Analysis Date
 : 08/01/22 09:17

 Matrix Spike
 : WG1670386-6
 MS Analysis Date
 : 08/01/22 17:36

 Matrix Spike Dup
 : WG1670386-7
 MSD Analysis Date
 : 08/01/22 18:03

		Matrix Sp	ike Sample		Matrix Spi	ke Duplicate				
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
tert-Butylbenzene	ND	250	240	96	250	230	92	4	70-130	20
1,2-Dibromo-3-chloropropane	ND	250	220	88	250	230	92	4	41-144	20
Isopropylbenzene	ND	250	240	96	250	240	96	0	70-130	20
p-Isopropyltoluene	ND	250	240	96	250	230	92	4	70-130	20
Naphthalene	ND	250	220	88	250	240	96	9	70-130	20
n-Propylbenzene	ND	250	250	100	250	250	100	0	69-130	20
1,2,4-Trichlorobenzene	ND	250	220	88	250	240	96	9	70-130	20
1,3,5-Trimethylbenzene	ND	250	240	96	250	240	96	0	64-130	20
1,2,4-Trimethylbenzene	ND	250	240	96	250	240	96	0	70-130	20
Methyl Acetate	ND	250	340	136 Q	250	350	140 Q	3	70-130	20
Cyclohexane	ND	250	300	120	250	290	116	3	70-130	20
Freon-113	ND	250	280	112	250	270	108	4	70-130	20
Methyl cyclohexane	ND	250	250	100	250	240J	96	4	70-130	20

Initial Calibration Summary Form 6 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number : Instrument ID : GONZO Ical Ref : ICAL19212

Calibration dates : 07/27/22 15:30 07/27/22 19:24

Calibration dates . 07/21/22 15.50 07/21/22 15

Calibration Files

L11 =VG220727N04.D L1 =VG220727N06.D L2 =VG220727N08.D L3 =VG220727N09.D L4 =VG220727N10.D

L6 =VG220727N11.D L8 =VG220727N12.D L10 =VG220727N13.D

	Compound		L1		L3	L4	L6	L8	L10	Avg	%RSD
40) TP	1,1-Dichloropr				0.220	0.219	0.224	0.223	0.225	0.208	12.65
41) TP	Benzene	0.496	0.496	0.583	0.642	0.643	0.645	0.644	0.653	0.600	11.33
42) TP	Tertiary-Amyl Methyl Ether 1,2-Dichloroethane-d4		0.391	0.438	0.452	0.457	0.481	0.474	0.491	0.455	7.39
43) S	1,2-Dichloroethane-d4	0.331	0.325	0.328	0.333	0.319	0.315	0.311	0.319	0.323	2.45
	1,2-Dichloroet							0.224			3.81
47) TP	Methyl cyclohe		0.200	0.204	0.291	0.297	0.300	0.302	0.300	0.271	17.44
48) TP	Trichloroethene	0.159	0.139	0.154	0.175	0.175	0.171	0.173	0.173	.165#	8.01
50) TP	Dibromomethane		0.079	0.096	0.095	0.095	0.100	0.097	0.101	0.095	7.75
51) TC	1,2-Dichloropr		0.166	0.181	0.175	0.176	0.171	0.173	0.173	0.174	2.77
53) TP	2-Chloroethyl		0.087	0.103	0.111	0.113	0.119	0.117	0.122	0.110	10.88
54) TP	Bromodichlorom		0.183	0.195	0.193	0.190	0.191	0.189	0.192	0.190#	1.94
57) TP	1,4-Dioxane		0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002#	4.26
58) TP	cis-1,3-Dichlo		0.213	0.257	0.265	0.265	0.274	0.269	0.278	0.260#	8.41
59) I	Chlorobenzene-d5			I	STD						
60) S	Toluene-d8	1.286	1.296	1.289	1.277	1.279	1.270	1.265	1.268	1.279	0.85
61) TC	Toluene		0.419	0.497	0.517	0.523	0.518	0.518	0.519	0.501	7.41
62) TP	4-Methyl-2-pen		0.077	0.077	0.079	0.081	0.087	0.083	0.086	0.081	5.02
63) TP	Tetrachloroethene		0.168	0.199	0.229	0.235	0.234	0.237	0.235	0.220	12.02
65) TP	trans-1,3-Dich		0.258	0.292	0.301	0.313	0.327	0.321	0.328	0.306	8.16
67) TP	Ethyl methacry		0.262	0.271	0.275	0.279	0.294	0.283	0.294	0.279	4.26
68) TP	1,1,2-Trichlor		0.133	0.139	0.143	0.146	0.153	0.149	0.153	0.145#	5.08
69) TP	Chlorodibromom		0.166	0.194	0.199	0.210	0.225	0.222	0.230	0.207	10.78
70) TP	1,3-Dichloropr		0.267	0.287	0.301	0.309	0.319	0.311	0.321	0.302	6.40
71) TP	1,2-Dibromoethane		0.146	0.176	0.176	0.182	0.192	0.187	0.194	0.179#	9.08
72) TP	2-Hexanone		0.160	0.184	0.174	0.176	0.186	0.178	0.188	0.178	5.28
73) TP	Chlorobenzene		0.455	0.533	0.558	0.562	0.562	0.561	0.566	0.542	7.40
74) TC	Ethylbenzene		0.849	0.932	1.022	1.032	1.019	1.029	1.025	0.987	7.11
75) TP	1,1,1,2-Tetrac		0.173	0.191	0.200	0.208	0.213	0.213	0.217	0.202	7.80
76) TP	p/m Xylene		0.309	0.357	0.395	0.402	0.395	0.399	0.393	0.379	9.01
77) TP	o Xylene		0.294	0.349	0.385	0.387	0.382	0.384	0.379	0.366	9.32
78) TP	Styrene		0.475	0.585	0.623	0.637	0.646	0.646	0.640	0.607	10.26
79) I	1,4-Dichlorobenzene-d4			I	STD						
80) TP	Bromoform		0.155	0.227	0.241	0.251	0.276	0.277	0.291	0.246	18.64
82) TP	Isopropylbenzene		1.260	1.527	1.834	1.818	1.796	1.835	1.838	1.701	13.19
83) S	4-Bromofluorobenzene	0.933	0.928	0.943	0.929	0.911	0.895	0.900	0.908	0.918	1.87
84) TP	Bromobenzene		0.353	0.433	0.437	0.432	0.444	0.439	0.447	0.427	7.71

Evaluate Continuing Calibration Report

Data Path : I:\VOLATILES\VOA101\2022\220725NICAL\

Data File : V01220725N19.D

Acq On : 26 Jul 2022 7:45 am

Operator : VOA101:PD Sample : C8260STD10PPB Misc : WG1667457,ICAL

ALS Vial : 19 Sample Multiplier: 1

Quant Time: Jul 26 09:40:37 2022

Quant Method : I:\VOLATILES\VOA101\2022\220725NICAL\V101_220725N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Tue Jul 26 09:35:04 2022

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I 2 TP 3 TP 4 TC 5 TP 6 TP 7 TP 8 TP 10 TC 11 TP 12 TP 13 TP 14 TP 15 TP 16 TP	Fluorobenzene Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Ethyl ether 1,1-Dichloroethene Carbon disulfide Freon-113 Iodomethane Acrolein Methylene chloride Isopropyl alcohol	1.000 0.264 0.573 0.334 0.136 0.177 0.354 0.101 0.212 0.584 0.223 * 10.000 0.034 0.237	1.000 0.181 0.456 0.323 0.119 0.178 0.340 0.114 0.201 0.554 0.223 0.000 0.030 0.228	0.0 126 0.00 31.4 81 0.00 20.4 92 0.00 3.3 115 0.00 12.5 128 0.00 -0.6 117 0.00 4.0 114 0.00 -12.9 141 0.00 5.2 117 0.00 5.1 121 0.00 0.0 119 0.00 100.0 0 0 -3.22 11.8 105 0.00 3.8 122 0.00 16.4 117 0.00
17 TP 18 TP	Acetone trans-1,2-Dichloroethene	* 10.000 0.230	8.401 0.223	16.0 103 0.00 3.0 121 0.00
19 TP 20 TP 21 TP 22 TP 23 TP 24 TP	Methyl acetate Methyl tert-butyl ether tert-Butyl alcohol Diisopropyl ether 1,1-Dichloroethane Halothane	0.155 0.479 0.013 1.120 0.528 0.181	0.133 0.468 0.013 1.013 0.521 0.175	14.2 108 0.00 2.3 123 0.00 0.0 122 0.00 9.6 110 0.00 1.3 122 0.00 3.3 119 0.00
25 TP 26 TP 27 TP 28 TP 29 TP	Acrylonitrile Ethyl tert-butyl ether Vinyl acetate cis-1,2-Dichloroethene 2,2-Dichloropropane	0.071 0.711 0.519 0.257 0.321	0.072 0.663 0.447 0.245 0.280	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
30 TP 31 TP 32 TC 33 TP 34 TP 35 TP	Bromochloromethane Cyclohexane Chloroform Ethyl acetate Carbon tetrachloride Tetrahydrofuran	0.104 0.617 0.422 0.194 0.331 0.067	0.105 0.548 0.403 0.184 0.318 0.058	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
36 S 37 TP 38 TP 39 TP 40 TP	Dibromofluoromethane 1,1,1-Trichloroethane 2-Butanol 2-Butanone 1,1-Dichloropropene	0.264 0.364 0.012 0.090 0.333	0.261 0.368 0.011 0.066 0.321	1.1 123 0.00 -1.1 125 0.00 8.3 126 0.00 26.7# 102 0.00 3.6 119 0.00

V101_220725N_8260.m Tue Jul 26 11:47:42 2022

Continuing Calibration

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number : Instrument ID : VOA101 Calibration Date : 07/29/22 19:04

 Lab File ID
 : V01220729N01
 Init. Calib. Date(s)
 : 07/26/22
 07/26/22

 Sample No
 : WG1669558-2
 Init. Calib. Times
 : 01:51
 05:23

Channel:

			Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	124	0
Dichlorodifluoromethane	0.264	0.264	-	0	20	117	0
Chloromethane	0.573	0.276	-	51.8*	20	55	0
Vinyl chloride	0.334	0.326	-	2.4	20	114	0
Bromomethane	0.136	0.059	-	56.6*	20	63	0
Chloroethane	0.177	0.199	-	-12.4	20	129	0
Trichlorofluoromethane	0.354	0.367	-	-3.7	20	121	0
Ethyl ether	0.101	0.109	-	-7.9	20	133	0
1,1-Dichloroethene	0.212	0.225	-	-6.1	20	130	0
Carbon disulfide	0.584	0.616	-	-5.5	20	133	0
Freon-113	0.223	0.242	-	-8.5	20	128	0
Acrolein	0.034	0.032	-	5.9	20	109	0
Methylene chloride	0.237	0.248	-	-4.6	20	130	0
Acetone	10	10.141	-	-1.4	20	120	0
trans-1,2-Dichloroethene	0.23	0.245	-	-6.5	20	131	0
Methyl acetate	0.155	0.144	-	7.1	20	116	0
 Methyl tert-butyl ether	0.479	0.499	-	-4.2	20	130	0
 tert-Butyl alcohol	0.013	0.014	-	-7.7	20	128	0
Diisopropyl ether	1.12	1.089	-	2.8	20	117	0
1,1-Dichloroethane	0.528	0.537	-	-1.7	20	124	0
 Halothane	0.181	0.188	-	-3.9	20	126	0
Acrylonitrile	0.071	0.073	-	-2.8	20	128	0
 Ethyl tert-butyl ether	0.711	0.752	-	-5.8	20	129	0
Vinyl acetate	0.519	0.52	-	-0.2	20	122	0
 cis-1,2-Dichloroethene	0.257	0.266	-	-3.5	20	128	0
2,2-Dichloropropane	0.321	0.353	-	-10	20	136	0
Bromochloromethane	0.104	0.114	-	-9.6	20	127	0
Cyclohexane	0.617	0.634	-	-2.8	20	120	0
Chloroform	0.422	0.428	-	-1.4	20	124	0
Ethyl acetate	0.194	0.191	-	1.5	20	115	0
 Carbon tetrachloride	0.331	0.333	-	-0.6	20	117	0
Tetrahydrofuran	0.067	0.056	-	16.4	20	101	0
Dibromofluoromethane	0.264	0.261	-	1.1	20	121	0
1,1,1-Trichloroethane	0.364	0.364	-	0	20	122	0
2-Butanone	0.09	0.077	-	14.4	20	117	0
1,1-Dichloropropene	0.333	0.346	-	-3.9	20	127	0
Benzene	0.977	1.011	-	-3.5	20	127	0
 tert-Amyl methyl ether	0.415	0.467	-	-12.5	20	141	0
1,2-Dichloroethane-d4	0.314	0.293	-	6.7	20	115	0
1,2-Dichloroethane	0.326	0.321	-	1.5	20	120	0
Methyl cyclohexane	0.398	0.426	-	-7	20	129	0
 Trichloroethene	0.239	0.253	-	-5.9	20	126	0
Dibromomethane	0.121	0.126	-	-4.1	20	127	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number : Instrument ID : GONZO : 08/01/22 07:07

 Lab File ID
 : VG220801A01
 Init. Calib. Date(s)
 : 07/27/22
 07/27/22

 Sample No
 : WG1670386-2
 Init. Calib. Times
 : 15:30
 19:24

Channel :

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	54	0
Dichlorodifluoromethane	0.1	0.109	-		20	55	0
Chloromethane	0.148	0.181	-	-22.3*	20	65	0
Vinyl chloride	0.13	0.161	-	-23.8*	20	62	0
Bromomethane	0.071	0.086	-	-21.1*	20	73	0
Chloroethane	10	20.913	-	-109.17	20	99	0
Trichlorofluoromethane	0.198	0.206	-		20	56	0
Ethyl ether	0.074	0.065	-	12.2	20	48	0
1,1-Dichloroethene	0.125	0.125	-	0	20	51	0
Carbon disulfide	0.314	0.348	-	-10.8	20	57	0
Freon-113	0.126	0.138	-	-9.5	20	55	0
Acrolein	0.023	0.022	-	4.3	20	53	0
Methylene chloride	0.157	0.148	-	5.7	20	54	0
Acetone	0.05	0.051	-	-2	20	62	0
trans-1,2-Dichloroethene	0.14	0.144	-	-2.9	20	53	0
Methyl acetate	0.118	0.114	-	3.4	20	55	0
Methyl tert-butyl ether	0.428	0.377	-	11.9	20	48	0
tert-Butyl alcohol	0.019	0.014	-	26.3*	20	43	0
Diisopropyl ether	0.533	0.632	-	-18.6	20	62	0
1,1-Dichloroethane	0.282	0.311	-	-10.3	20	57	0
Halothane	0.119	0.116	-	2.5	20	52	0
Acrylonitrile	0.061	0.06	-	1.6	20	55	0
Ethyl tert-butyl ether	0.516	0.522	-	-1.2	20	54	0
Vinyl acetate	0.345	0.462	-	-33.9*	20	78	0 NT
cis-1,2-Dichloroethene	0.164	0.162*	-	1.2	20	52	0
2,2-Dichloropropane	0.236	0.262	-	-11	20	56	0
Bromochloromethane	0.077	0.072*	-	6.5	20	49	0
Cyclohexane	0.284	0.338	-	-19	20	61	0
Chloroform	0.277	0.284	-	-2.5	20	54	0
Ethyl acetate	0.173	0.172	-	0.6	20	57	0
Carbon tetrachloride	0.214	0.21	-	1.9	20	50	0
Tetrahydrofuran	0.055	0.056	-	-1.8	20	55	0
Dibromofluoromethane	0.259	0.256	-	1.2	20	53	0
1,1,1-Trichloroethane	0.245	0.244	-	0.4	20	51	0
2-Butanone	0.092	0.078	-	15.2	20	44	0
1,1-Dichloropropene	0.208	0.222	-	-6.7	20	54	0
Benzene	0.6	0.636	-	-6	20	53	0
tert-Amyl methyl ether	0.455	0.407	-	10.5	20	48	0
1,2-Dichloroethane-d4	0.323	0.351	-	-8.7	20	57	0
1,2-Dichloroethane	0.223	0.234	-	-4.9	20	56	0
Methyl cyclohexane	0.271	0.294	-	-8.5	20	54	0
Trichloroethene	0.165	0.161*	-	2.4	20	50	0
Dibromomethane	0.095	0.091	-	4.2	20	51	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2238704

Project Name : BUFFALO BUSINESS PARK Project Number Instrument ID : GONZO Calibration Date

 Instrument ID
 : GONZO
 Calibration Date
 : 08/01/22 07:07

 Lab File ID
 : VG220801A01
 Init. Calib. Date(s)
 : 07/27/22
 07/27/22

 Sample No
 : WG1670386-2
 Init. Calib. Times
 : 15:30
 19:24

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
n-Butylbenzene	1.26	1.445	-	-14.7	20	57	0
1,2-Dichlorobenzene	0.764	0.725	-	5.1	20	50	0
1,2,4,5-Tetramethylbenzene	1.206	1.122	-	7	20	49	0
1,2-Dibromo-3-chloropropan	0.077	0.054	-	29.9*	20	39	0
1,3,5-Trichlorobenzene	0.525	0.505	-	3.8	20	50	0
Hexachlorobutadiene	0.21	0.23	-	-9.5	20	56	0
1,2,4-Trichlorobenzene	0.46	0.419	-	8 9	20	49	0
Naphthalene	1.07	0.786	-	26.5*	20	41	0
1,2,3-Trichlorobenzene	0.393	0.334*	-	15	20	45	0

^{*} Value outside of QC limits.

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

APPENDIX C

FIELD SAMPLING & MONITORING LOGS

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name	:			
Site Name:	Buscalo	BUS:NESS	PANK	
Project No.:				
Field Staff:	RICH BAC	KFAT		

WELL DATA

Date	7/20/0	7/20/22	7/20/22	
Well Number	MIJ-8BR		MLJ SAR	
Diameter (inches)	211	217	2"	
Total Sounded Depth (feet)	15	15 18	15	
Static Water Level (feet)	8.8.	14.9	8.1	
H ₂ O Column (feet)	4.2'			
Pump Intake (feet)				
Well Volume (gallons)	- Tal			
Amount to Evacuate (gallons)				
Amount Evacuated (gallons)				

FIELD READINGS

Date	Stabilization	7/20/22 7	refer	7/20/22		
Time	Criteria		1:10	9:30	1	
pH (Std. Units)	+/-0.1			8.32		
Conductivity (mS/cm)	3%			1.66		
Turbidity (NTU)	10%			0.60		
D.O. (mg/L)	10%			2.12		
Temperature (°C) (°F)	3%			110.510		
ORP ³ (mV)	+/-10 mv			-256		
Appearance	100 5 100			C		
Free Product (Yes/No)	25 0 2 5			rone		
Odor				rene		
Comments	- WRUS	DEPTH	IR+ NW.	78n were Hr.	only mens	weel

DARKING LOT WELL DEFTH TO WATER - 9.11
WHEN WELL DEFTH TO WATER - 9.11

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name	:			
Site Name:	Bureau	BUSINESS	PARN	
Project No.:				
Field Staff:	DECKA	DACHENT		

WELL DATA

Date	Fleder		
Well Number	MU-SAME		
Diameter (inches)	4"		
Total Sounded Depth (feet)	# 20		
Static Water Level (feet)	6.9		
H₂O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	I S TIME I		

FIELD READINGS

Date	Stabilization	7/20/22	7hdr2		
Time	Criteri 4	Sua/me	10:00		
pH (Std. Units)	+/-0.1	8.08	7.53		
Conductivity (mS/cm)	3%	.944	.897		
Turbidity (NTU)	10%	0.00	0.00		
D.O. (mg/L)	10%		5.3 %		
Temperature (°C) (°F)	3%	19720	15.9400		
ORP ³ (mV)	+/-10 mv	-156	-53		51
Appearance		C	C		
Free Product (Yes/No)		NONE	LONE		
Odor		long	make		
Comments					
			1		

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:			
Site Name:	Buccaco Rusiness	PARK	
Project No.:			
Field Staff:	ailst accuracy		

WELL DATA

Date	7/20/22 NW 3RR		
Well Number	MW. 3RR		
Diameter (inches)	411		
Total Sounded Depth (feet)	20		
Static Water Level (feet)	7.0'		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)	15:01173		
Amount Evacuated (gallons)			

FIELD READINGS

Date	Stabilization	7/20/22	7/20/22	7/20/22					
Time	Criteria	11:10	11:15	11:20					
pH (Std. Units)	+/-0.1	7.74	7.94	774					
Conductivity (mS/cm)	3%	,514	715	.720					
Turbidity (NTU)	10%	40.9	47.6	0.00					
D.O. (mg/L)	10%	187	- 68	.45					
Temperature (°C) (°F)	3%	27.1600	16.5000	16.180C					
ORP ³ (mV)	+/-10 mv	-170	-27U	284					
Appearance		C	e	6.					
Free Product (Yes/No)		rane	rong	none					
Odor			rowr	NONE			,		
Comments	-STEVE AND	ciain	the	punp	on?	- Pros	lucing	Sino	lse

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:				
Site Name:	PURPICO	Bus inps	PANER	
Project No.:				
Field Staff:	Michton	rent		

WELL DATA

Date	7/20/27	ι							
Well Number	MW-48	n							
Diameter (inches)	40								
Total Sounded Depth (feet)	20								
Static Water Level (feet)	4.7								
H₂O Column (feet)									
Pump Intake (feet)									
Well Volume (gallons)									
Amount to Evacuate (gallons)									
Amount Evacuated (gallons)									

FIELD READINGS

Date	Stabilization	span	7/20/22	7/20/22	Mrder	
Time	Criteria	10:40	10:48	10:80	10.58	
pH (Std. Units)	+/-0.1	7.65	747	7.47	7.45	
Conductivity (mS/cm)	3%	.787	.747	.772	.748	
Turbidity (N TU)	10%	108	249	14.9	13.4	
D.O. (mg/L)	10%	-90	63	.82	.54	
Temperature (°C) (°F)	3%	26.2100	24.42%	2407°C	23.80°	
ORP ³ (mV)	+/-10 mv	-131	-188	-194	-Pile	
Appearance	and the state of	C	C	C	0	
Free Product (Yes/No)		ront	NOW	rock	Nonh	
Odor		rzwk	NONE	rone	LORR	
Comments						

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name		9 .1	.04.394.	
Site Name:	BUFFRE	bus wes	P. A. KILL	
Project No.:				
Field Staff:	RICH ZA	CHERT		

WELL DATA

Date	7/20/21		
Well Number	MW-28/2		
Diameter (inches)	40		
Total Sounded Depth (feet)	10		
Static Water Level (feet)	4.4		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)			

FIELD READINGS

				DICADIN					
Date	Stabilization	7/20/22	7/20/20	7 Kolze	- 7/20/22	7/20/22			
Time	Criteria	11:35	11:40	11:48	11:50	11:58			
pH (Std, Units)	+/-0.1	7.87		7.70	4.71	7.72			
Conductivity (mS/cm)	3%	.564	0593	.588	.590	.587			
Turbidity (NTU)	10%	270	128	117	90.8	97.8			
D.O. (mg/L)	10%	.78	.46	.102	· le l	, le			
Temperature (°C) (°F)	3%	21.45	18.80 0	19.250	19.3900	19.350			
ORP ³ (mV)	+/-10 mv	-168	-201	-212	1218	200			
Appearance		C	C	(C	ف			
Free Product (Yes/No)		LONE	LONE	NONE	NONE	WAG			
Odor			NONE	NONE	wir	work			
Comments	TUIB	oicli4	began	, 70 9	io up	on s	Thy	The s	MYC

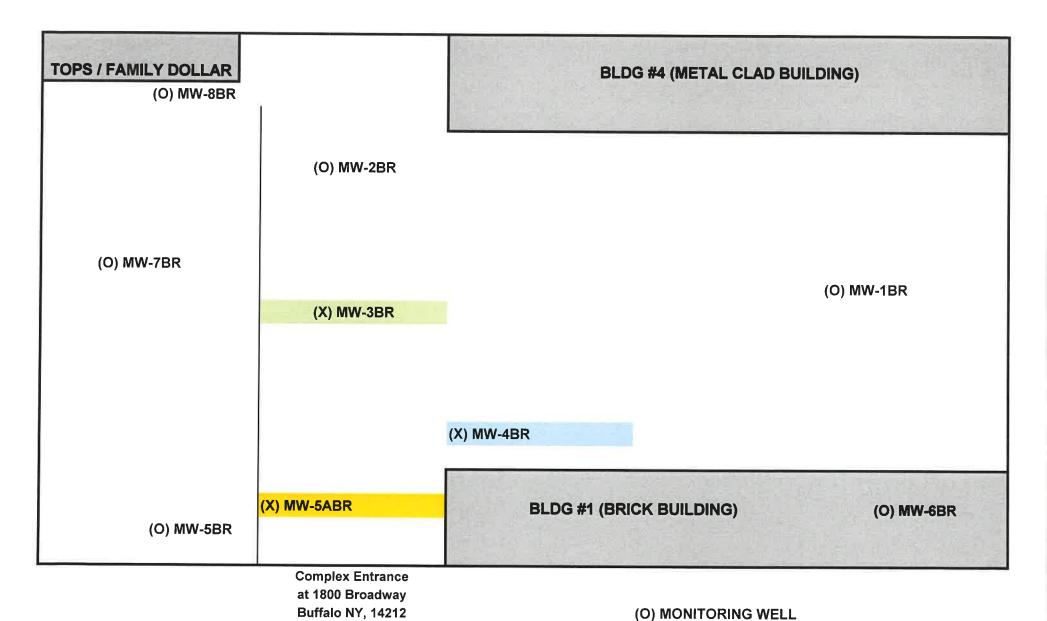
of man

BUFFALO BUSINESS PARK

CARBON TANK LOG

2021

	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-18-21	1-24-21	3-25-21	4-26-21	5-17-21	6-21-21
Totalizer Reading:	0656,5	0101.8	0743.5	0785.3	0815.9	0857.9
Performed By:	<u> </u>	8-	8-	gw_	_5	8
Comments:	·			¥	Charaged	
					CARBON 5/29/21	\$ F
	: 		V 		0830.5	
¥-	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-27-21	8-23-21	9-27-21	10-21-21	11-19-21	12-22-21
Totalizer Reading:	0906.1	0923,1	0928.1	0941.6	0984.3	1035,5
Performed By:	8-	Su	<u>~_</u>	<u> </u>	S-	-
Comments:		1-		-		
			: 		·	


7/8/21 7:35AM 2 hauged inside pump @ TANK 0880,4

NESS PARK	GROUND WATER	LOG	WELL #: MW-3BR		2021
JAN	FEB	MAR	APR	MAY	JUN
1-18-21	2-24-21	3-25-21	4-26-21	5-17-21	6.21-21
0492,160	0553.170	0588,000	0633.560	0662.870	6703. 770
143	143	15'6	_15'	156	15 3
8W	Sr_	Su	- Sm	- S-	
*					
		<u> </u>			
					
JUL	AUG	SEP	ОСТ	NOV	DEC
7-27-21	8-22-21	9-27-21	10-21-21	11-19-21	12-22-21
0752.050	0787.300	÷	0842.110	0883,080	0976,97
153	151	149	142	148	145
<u></u> 6 2	-				
				a	
	JAN /-18-2/ 0492,160 /+3 8W JUL	JAN FEB 1-18-21 2-24-21 0492,160 0553,170 143 143 8W 92 JUL AUG 7-27-21 8-22-21	JAN FEB MAR 1-18-21 2-24-21 3-25-21 0492,160 0553,170 0588,000 143 15'6 8W 9L SW JUL AUG SEP 7-27-21 8-22-21 9-27-21	JAN FEB MAR APR 1-18-21 2-24-21 3-25-21 4-26-21 0492.160 0553.170 0588.000 0633.560 143 156 5 8w 9m Sm Sm JUL AUG SEP OCT 7-27-21 8-22-21 9-27-21 10-21-21 0752.850 0787.300 0806.530 0842.110	JAN FEB MAR APR MAY [-18-2] 2-24-21 3-25-21 4-26-21 5-17-21 0492.160 0553.170 0588.000 0633.560 0662.870 143 156 5' 156 8W 9L 5W 5W 5W 5W 5W 7-27-21 8-22-21 9-21.21 10-21-21 11-19-21 0752.850 0787.300 0806.530 0842.110 0883.090

BUFFALO BUS	ALO BUSINESS PARK GROUND WATER LOG		LOG	WELL #: MW-4BR		2021	
	JAN	FEB	MAR	APR	MAY	JUN	
Date Read:	1-18-21	2-24-21	3-25.21	4-26-21	5-17-21	6-21-21	
Totalizer Reading:	0/30,/80	_130,180	NA	130.480	130,980	0131.680	
Water Level Height:	126	124	_12 2	165	_28	2218	
Performed By:	Sω	<u> </u>	- Ju	~~~	3	5-	
Comments:		Ponoven pump	Poul oddeted Delayed Luc to	New PUMD AND OUTLET installed			
	JUL	AUG	SEP	ОСТ	NOV	DEC	
Date Read:	7-27-21	8-27-21	9-27-21	10-21-22	11-19-71	12.22-21	
Totalizer Reading:	the second secon	0134,610	0149.850	189 ,100	0192,510	0196.080	
Water Level Height:	203	196	217	215	204	202	
Performed By:		. 00		·			
Comments:	Home depot pompto	150A					

INESS PARK GROUND WATER LOG		WELL #: MW-5ABI	2021		
JAN	FEB	MAR	APR	MAY	JUN
1-18-21	2-21-21	3-25-21	4-26-21	5-77-21	6-21-21
0/06.330	107.210	167,650	0/08,380	0108.940	409. Cope
11/		11.9.		- B3	128
SW	gn	- Ju	Su	-8u	S-
		10	3		
		<u> </u>			
		-		2 2	
JUL	AUG	SEP	ОСТ	NOV	DEC
7-27-21	8-23-21	9-27-21	10-21-21	11-19-21	12-22-21
0110 920	0111,920	6112,410	6113.130	114,290	116.070
196	187	214	20°	183	176
:					
	JAN 1-18-21 0/06.330 11/ SW JUL 7-27-21 01/0 920	JAN FEB 1-18-21 221-21 0106.330 107.20 111 11 SW 30 JUL AUG 7-27-21 8-23-21 0110 920 0111.920	JAN FEB MAR 1-18-21 2-21-21 3-25-2) 0/06.330 107.210 107.650 11 9 11.9' SW m gw JUL AUG SEP 7-27-21 8-21-21 9-27-21 0/10 920 0/11.920 6/12,410	JAN FEB MAR APR 1-18-21 22-21 3-25-21 4-26-21 0/06-330 107.20 107.650 0/08,380 11/ 11 9 11.9' 1/4 SW SW SW SW 7-27-21 8-23-21 9-27-21 10-21-21 0/10 920 0/11,920 6/12,410 6/13,130	JAN FEB MAR APR MAY 1-18-21 221-21 3-25-2) 4-26-21 5-77-71 0106.330 107.210 107.650 0108.380 10108.940 111 118 11.9' 114 833 SW gw gw 82 JUL AUG SEP OCT NOV 7-27-21 8-27-21 9-27-21 10-21-21 11-19-21 0110 920 0111.920 6112.410 6113.130 114.290

.

(X) PUMPING WELL - TURNED ON

BUFFALO BUSINESS PARK

CARBON TANK LOG

2022

v	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-20-72	2-21-22	3-23-22	4-25-22	8-25-22	6-24-22
Totalizer Reading:	1086,4	1/28,9	1185.2	1237.9	1286.4	1331.6
Performed By:		5	2		3	
Comments:	S=			·	-	· · · · · · · · · · · · · · · · · · ·
	-	-		-	-	
	:		· 	·	-	•
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-20.22	5-34-22	9-26-22	10.21-22		*
Totalizer Reading:	1337.9	1353,6	1369.4	1382.8		
Performed By:				1	12	
Comments:	-	8		0 <u></u>		
		5	2	2		
		* Cody here		×		

3-29-22

TRSTALLED NEW PUMD & CALBON

TANK, INSTALLED NEW CHEKVALVE

COMMON TANK, CARBON TANK

HAC CRUST Which CAUSED PUMPTO

BURN OUT - WATER COULD NOT

BRAIN IN TANK, Debus From

TANK CLEANING IN SERLED

55901 GRUM, APPROXIMATELY

4 SGAL BUCKET IN SECON

Sh 3.29-22

fump # model # THD 1035

BUFFALO BUSINESS PARK

GROUND WATER LOG

WELL #: MW-3BR

2022

	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-24-22	2-21-22	3-23-22	4-25-22	\$-25-2Z	-6-24-22
Totalizer Reading:	0990.230	1004.400	1046.180		1/05.380	
Water Level Height:	143	_52	_151	48	163	153
Performed By:	5		8			
Comments:						gulled pump
						Today.
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-20-22 *	SEE ATTACK	9-26.22	10-21-22		
Totalizer Reading:	Sill wasting	NOTE	1105.380	110\$,380		
Water Level Height:	NO Charges		<u> 8''</u>	7'2		
Performed By:						
Comments:			STILL WAITING	Still warding		
ä				or fomp		
			per: NICILE ServenT Romes	9/2 Maurichan	1-22	
-			SPIWERT RUMPS	1/0/22 101	V	

Wed they 17th

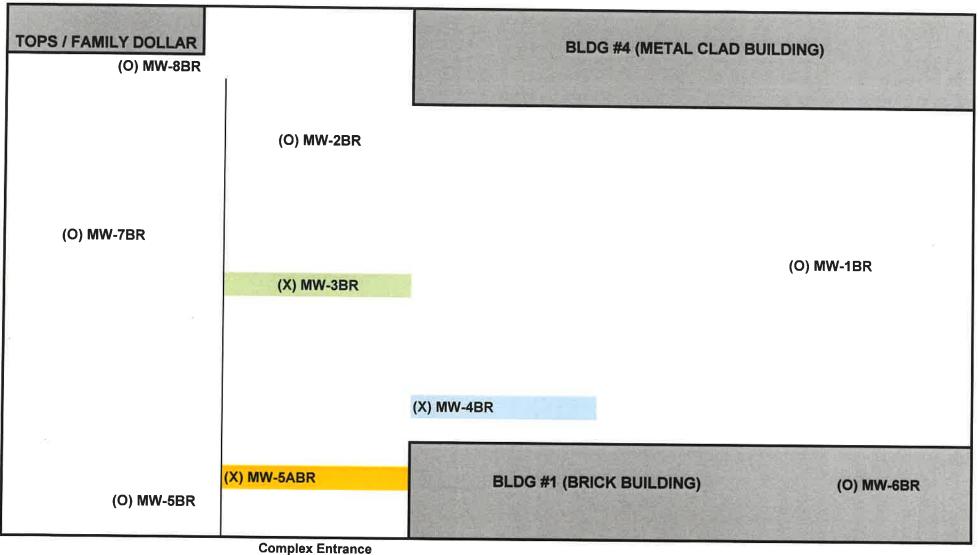
11h Stange For USE ON CAGOSTANK Clanson 55gallow Chems. france they'n to lackon Worked Dewis & prince Appose 30 gal closed Well 3. WASTE WOTH They pumper into TAME Appose 110 gallows of work then NW Constanting on Ste & wash our word into tank , thems then put

2022
JUN
22 6-24-22
70 0210.300
176

DEC
×
w
7

2202-	
Such	
DES Aug	
1	

Well MW 48C Pomp NoT Working roads TO go For Seavice. (Maybe wider wascany) TAILLED Le Cals from C.S. About to feed wells pemping.


Sent pumo la Syowar Ego. in habeble nuy 8-2-22 by 405

BUFFALO BUS	SINESS PARK	GROUND WATER	LOG	WELL #: MW-5ABR		2022
	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-24-22	1-21-22	3-23-22	4-25-22	9-25-22	6-24-22
Totalizer Reading:	117,770	0120.450	123, SZO	126.330	0128,630	130,200
Water Level Height:		152	132		159	20,2
Performed By:	Sm	-				_=
Comments:		V		2 		(
		(-		
		1				N=====================================
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-20-22	8-24-22	9-26-22	10-22-22		
Totalizer Reading:	0136,210	0142.570	0148.910	6154.320		
Water Level Height:	6.9		18 2	102		·
Performed By:					·	·
Comments:	Coch on					
	Site for CNATER Samples					
	100000000000000000000000000000000000000			-	#	

BUFFALO BUSIN	IESS PARK	GROUND WATER	LOG	WELL #:		2022
	JAN	FEB	MAR	APR	MAY	JUN
Date Read:		<u> </u>	3-29-22			
Totalizer Reading:			3-29-22 Installed		4	
Water Level Height: _		- Y	New Pump			
Performed By:			New Pump inshop w/ Check walve			
Comments:		8 (<u></u>	E CLEANEL CARBONTANK			
=		8 	Debris 1955			
-			CALBON TANIC		0 -	
-	JUL	AUG	Reading - 119	4.2 ост	NOV	DEC
Date Read:		Aug , 7th				
Totalizer Reading:		N.W Contening		• •		
Water Level Height:		well 3 trom		**************************************		
Performed By:		Studge PUT 110 GAL SAGAT DAVINS		,		
Comments:		pumped into			-	
_		CARBONTANK				
X 		CARDONTANK ADROX, 150gal WILL WASHOUT IN COULDED.	м			
		Included.				

BUFFA_O BUSINESS PARK - WELL SITE MAP

Complex Entrance at 1800 Broadway Buffalo NY, 14212

(O) MONITORING WELL

(X) PUMPING WELL - TURNED ON

APPENDIX D

SUB-SLAB DEPRESSURIZATION SYSTEM INSPECTION CERTIFICATION

studio T3

2495 Main Street, Suite 301 Buffalo, NY 14214 phone: (716) 803-6400 fax: (716) 810-9504

August 17, 2022

Buffalo Business Park ATTN: Gary Crewson 1800 Broadway, Bldg. 1D Buffalo, New York 14212

Reference: SSDS System Site Inspections

Dear Mr. Crewson,

I completed an inspection of both sub-slab depressurization systems (SSDS) at the Buffalo Business Park in Buffalo, New York on Wednesday, August 17, 2022 at 10:30 AM. The inspection results are summarized in the table below:

BUFFALO BUSINESS PARK SSDS INSPECTIONS - 8/17/22									
ADDRESS	REFERENCE#	VACUUM	ELECTRIC POWER	PIPING	DRAW	SUCTION			
1800 BROADWAY - BLDG 1A	B-1	OPERATIONAL	ON	INTACT	SATISFACTORY	AUDIBLE			
1800 BROADWAY - BLDG 1A	B-2	OPERATIONAL	ON	INTACT	SATISFACTORY	AUDIBLE			

Based on the results both of the soil vapor extraction systems are functional and operating optimally.

Please do not hesitate to contact me with any questions regarding the above.

Andrew Terragnoli, P.E.

APPENDIX E

BSA DISCHARGE PERMIT RENEWAL SAMPLING

C&S Companies

141 Elm Street Suite 100 Buffalo, NY 14203 p: (716) 847-1630 f: (716) 847-1454 www.cscos.com

February 15, 2022

Traserra Adams, J.D.
Legal Investigator
Industrial Waste Section
Buffalo Sewer Authority
Foot of Ferry Street
90 West Ferry
Buffalo, New York 14213-1799

Re: Buffalo Business Park Semi-Annual Self-Monitoring Report February 15, 2022

Dear Ms. Adams:

Pursuant to guidelines described in the Buffalo Sewer Authority Permit #22-01-BU124, Buffalo Business Park (BBP) is providing this semi-annual self-monitoring report which provides the analytical results of a post treatment system water (effluent) sample that was collected on February 2, 2022. In addition, a reading from the system totalizer is also provided.

TREATMENT SYSTEM CARBON CHANGE OUT

The spent carbon in the 500 gallon treatment canister was removed and replaced with new activated carbon on May 27, 2021. The spent carbon was tested and disposed of as hazardous waste.

ANALYTICAL RESULTS

A post treatment water sample was collected on the morning of February 2, 2022 for laboratory analysis. The sample was subsequently hand delivered to Alpha Analytical for analysis as follows:

- USEPA Method 4500 for pH;
- USEPA Method 245.1 for mercury; and
- USEPA 624.1 for volatile organic compounds.

The pH of the sample was analyzed at 6.90.

Mercury was not detected (ND) in the water sample that was analyzed.

There were no volatile organic compounds (VOCs) detected in the water sample collected from the treatment system above the detection limit except for trichloroethene detected at 0.00034 mg/L. Table 1 provides a summary of key compounds historically detected in groundwater at the site. The laboratory analytical data package is attached as **Appendix A**.

VOLUMETRIC INFORMATION

The totalizer coming into the onsite treatment system was read on February 2, 2022 to provide volumetric information. The volume of groundwater treated since the start of treatment operations was 1,096,600 gallons. The totalizer reading for the last reporting period (August 2021) was 897,700 gallons. Therefore, a total of 198,900 gallons of groundwater were treated and discharged to the BSA during this reporting period. A photo of the totalizer reading is provided as **Appendix B**.

Should you have any questions regarding this letter or require additional information, please feel free to contact the undersigned.

Sincerely,

C&S ENGINEERS, INC.

Daniel E. Riker, P.G.

Department Manager

Cody A. Martin

Project Environmental Scientist

 $f:\project\y05-buffalo\ business\ park\y05001002-smp\ support\planning-study\pl$

CERTIFICATION

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Official: Jeffrey Crewson

ń

Signature:

Title: We of operations

Date: $\frac{2/15/22}{}$

BUFFALO BUSINESS PARK TREATMENT SYSTEM RESULTS COMPARED TO BSA CRITERIA FEBRUARY 2022

Parameter	BSA Discharge Limit	Post-Treatn Sample Feb. 202	
VOCs - mg/l			
Tetrachloroethene	0.267	ND	
trans-1,2-Dichloroethene	0.285	N14	
Trichloroethene	0.712	0.00034	I
Metals - mg/l			
Mercury	0.0008	MIL	
General Chemistry - SU			
рН	5.0 12.0	6.9	

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- *+ LCS and/or LCSD is outside acceptance limits, high biased.
- ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
- B Compound was found in the blank and sample.
- F1 MS and/or MSD recovery exceeds control limits.
- F2 MS/MSD RPD exceeds control limits
- H Sample was prepped or analyzed beyond the specified holding time
- ${\bf J}$ Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- vs Reported analyte concentrations are below 200 μ ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications.

APPENDIX A LABORATORY ANALYTICAL PACKAGE

ANALYTICAL REPORT

Lab Number:

L2205487

Client:

C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN:

Cody Martin

Phone:

(716) 847-1630

Project Name:

BUFFALO BUSINESS PARK

Project Number:

Y03.001.001

Report Date:

02/09/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ALDEA

BUFFALO BUSINESS PARK Project Name:

Project Number:

Y03.001.001

02/02/22 08:30 02/02/22 00:00 Collection Date/Time Not Specified Not Specified Sample Location WATER WATER Matrix BSA- 020222 TRIP BLANK Client ID L2205487-02 L2205487-01 Alpha Sample ID

Receive Date L2205487 02/09/22 02/02/22 02/02/22 Report Date:

Lab Number:

Project Name: BUFFALO BUSINESS PARK

Lab Number: L2205487 Project Number: Y03.001.001 Report Date: 02/09/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

BUFFALO BUSINESS PARK

Project Number:

Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2205487-02: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was not analyzed.

Volatile Organics by Method 624

The WG1601655-3 LCS recovery, associated with L2205487-01, is above the acceptance criteria for acrolein (145%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 02/09/22

ORGANICS

VOLATILES

BUFFALO BUSINESS PARK

Project Number:

Y03.001.001

SAMPLE RESULTS

Lab Number:

L2205487

Report Date:

02/09/22

Lab ID:

L2205487-01

Client ID:

BSA- 020222

Sample Location:

Date Collected:

02/02/22 08:30

Date Received: Field Prep:

02/02/22

Not Specified

Not Specified

Sample Depth:

Matrix:

Water

Analytical Method:

128,624.1

Analytical Date:

02/03/22 14:21

Analyst:

GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ugh Lab					
Methylene chloride	ND		ug/l	1.0	0.56	i
1,1-Dichloroethane	ND		ug/l	1.5	0.40	ã
Chloroform	ND		ug/l	1.0	0.38	Ĭ
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
Dibromochloromethane	ND		ug/l	1.0	0.27	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
Tetrachloroethene	ND		ug/l	1.0	0.26	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
1,2-Dichloroethane	ND		ug/l	1.5	0.47	i
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	it
Bromodichloromethane	ND		ug/l	1.0	0.28	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	3.
Bromoform	ND		ug/l	1.0	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	Ť
Chloromethane	ND		ug/l	5.0	1.0	Ť
Bromomethane	ND		ug/l	5.0	1.2	1
Vinyl chloride	ND		ug/l	1.0	0.38	1
Chloroethane	ND		ug/l	2.0	0.37	
1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
Trichloroethene	0.34	J	ug/l	1.0	0.33	1

Project Name: BUFFALO BUSINESS PARK

Project Number: Y03.001.001

SAMPLE RESULTS

Lab Number: Report Date:

L2205487

02/09/22

Lab ID: Client ID:

L2205487-01 BSA- 020222

Date Collected: Date Received: 02/02/22 08:30

Not Specified Sample Location:

Field Prep:

02/02/22 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1	
Acrolein	ND		ug/l	8.0	1.8	1	
Acrylonitrile	ND		ug/l	10	0.33	ĩ	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	83	60-140	
Fluorobenzene	108	60-140	
4-Bromofluorobenzene	92	60-140	

Project Number:

BUFFALO BUSINESS PARK

Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method:

128,624.1

Analytical Date:

02/03/22 11:14

Analyst:

GΤ

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lat	o for sample	(s): 01	Batch:	WG1601655-4
Methylene chloride	ND		ug/l	1.0	0.56
1,1-Dichloroethane	ND		ug/l	1.5	0.40
Chloroform	ND		ug/l	1.0	0.38
Carbon tetrachloride	ND		ug/l	1.0	0.24
1,2-Dichloropropane	ND		ug/l	3.5	0.46
Dibromochloromethane	ND		ug/l	1.0	0.27
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND		ug/l	10	0.35
Tetrachloroethene	ND		ug/l	1.0	0.26
Chlorobenzene	ND		ug/l	3.5	0.30
1,2-Dichloroethane	ND		ug/l	1.5	0.47
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29
Bromodichloromethane	ND		ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31
Bromoform	ND		ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20
Benzene	ND		ug/l	1.0	0.38
Toluene	ND		ug/l	1.0	0.31
Ethylbenzene	ND		ug/l	1.0	0.28
Chloromethane	ND		ug/l	5.0	1.0
Bromomethane	ND		ug/i	5.0	1.2
Vinyl chloride	ND		ug/l	1.0	0.38
Chloroethane	ND		ug/l	2.0	0.37
1,1-Dichloroethene	ND		ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33
Trichloroethene	ND		ug/l	1.0	0.33
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28

Project Number:

BUFFALO BUSINESS PARK

Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

Method Blank Analysis Batch Quality Control

Analytical Method:

128,624.1

Analytical Date:

02/03/22 11:14

Analyst:

GT

Result (Qualifier Units	RL	MDL	
Westborough Lab for	or sample(s): 01	Batch:	WG1601655-4	
ND	ug/l	5.0	0.27	
ND	ug/l	5.0	0.29	
ND	ug/l	8.0	1.8	
ND	ug/l	10	0.33	
	Westborough Lab for ND ND ND ND	Westborough Lab for sample(s): 01 ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 8.0	ND ug/l 5.0 0.27 ND ug/l 5.0 0.27 ND ug/l 5.0 0.29 ND ug/l 8.0 1.8

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
Pentafluorobenzene	99		60-140	
Fluorobenzene	116		60-140	
4-Bromofluorobenzene	89		60-140	

Lab Control Sample Analysis Batch Quality Control

BUFFALO BUSINESS PARK

Y03.001.001

Project Number: Project Name:

L2205487

Lab Number:

02/09/22

Limits RPD

Qual

RPD

Report Date:

%Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

	28	49	54	41	55	90	45	71	39	53	49	36	56	98	58	42	61	61	41	63	09	61	99
	3	3	*	9)	EQ.	(V)	7)(#	*	*	*	<u>()</u>	90	*16	(*)	9	N.	8	*	*	٠	Æ	6
	60-140	50-150	70-135	70-130	35-165	70-135	70-130	1-225	70-130	65-135	70-130	70-130	65-135	50-150	25-175	70-130	60-140	65-135	70-130	60-140	1-205	15-185	5-195
Batch: WG1601655-3																							
	Æ	92	0.63	100	20	21	2	×	•	•27	•6	•6)(10)		111	æ	x	10	ĸ	Ė	G E	((●))	Э
ab Associated sample(s): 01	06	110	105	100	110	80	06	120	75	80	115	105	06	80	06	80	100	110	82	96	120	115	110
Volatile Organics by GC/MS - Westborough Lab Associated	Methylene chloride	1,1-Dichloroethane	Chloroform	Carbon tetrachloride	1,2-Dichloropropane	Dibromochloromethane	1,1,2-Trichloroethane	2-Chloroethylvinyl ether	Tetrachloroethene	Chlorobenzene	1,2-Dichloroethane	1,1,1-Trichloroethane	Bromodichloromethane	trans-1,3-Dichloropropene	cis-1,3-Dichloropropene	Bromoform	1,1,2,2-Tetrachloroethane	Benzene	Toluene	Ethylbenzene	Chloromethane	Bromomethane	Vinyl chloride

Lab Control Sample Analysis

Batch Quality Control

BUFFALO BUSINESS PARK

Y03.001.001

Project Number:

Project Name:

L2205487 Lab Number:

02/09/22 Report Date:

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1601655-3

Limits RPDQual RPD Limits Qual "Recovery Qua/ "Recovery **Parameter**

GSD7

"Recovery

48 78 32 45 22 43 30 9 57 50-150 70-130 40-160 65-135 65-135 70-130 65-135 60-140 60-140 O 100 100 100 145 128 8 75 75 82 trans-1,2-Dichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethene Trichloroethene Chloroethane Acrylonitrile Acrolein

Acceptance Criteria 60-140 60-140 60-140 Qual "Recovery TCSD Qual "Recovery 96 109 87 Pentafluorobenzene Fluorobenzene Surrogate

4-Bromofluorobenzene

ALPHA

METALS

BUFFALO BUSINESS PARK

Lab Number:

L2205487

Project Number:

Y03.001.001

Report Date:

02/09/22

Lab ID:

L2205487-01

Date Collected:

02/02/22 08:30

Client ID:

Date Received:

02/02/22

Sample Location:

BSA- 020222 Not Specified

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - M	ansfield Lab										
Mercury, Total	ND		mg/l	0.00020	0.00009	1	02/03/22 17:2	6 02/07/22 10:08	EPA 245.1	3,245.1	AC

SAMPLE RESULTS

BUFFALO BUSINESS PARK

Project Number: Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

Method Blank Analysis Batch Quality Control

Dilution Date **Date Analytical Parameter Result Qualifier Units** RL MDL **Factor Prepared Analyzed** Method Analyst

Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1601217-1

Mercury, Total ND

mg/l

0.00020 0.00009

1

3,245.1 AC

Prep Information

Digestion Method:

EPA 245.1

Lab Control Sample Analysis Batch Quality Control

BUFFALO BUSINESS PARK

Y03.001.001

Project Number: Project Name:

L2205487 Lab Number:

02/09/22 Report Date:

> %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1601217-2

88

Mercury, Total

85-115

RPD Limits

Qual

RPD

Matrix Spike Analysis Batch Quality Control

BUFFALO BUSINESS PARK

Y03.001.001

Project Number: Project Name:

Lab Number:

L2205487 02/09/22

Report Date:

arameter Sample Added	Native Sample	Added Added	Found	%Recovery	MSD Qual Found	MSD	MSD Recovery %Recovery Qual Limits	Qual	Recovery Limits	RPD Qual Limits	Qual	RPD Limits
eld Lab As	sociated san	ru :(s)eidi	CC Batch	C Batch ID: WG1601217-3 CC Sample: L2205269-01 Client ID: MS Sample	-3 QC 8	amble: L	2205269-01	Client	ID: MS S	ample		
	S	0.005	0.00446	88		ć, 1			70-130	•		20

BUFFALO BUSINESS PARK Project Name:

Y03.001.001 Project Number:

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L2205487 02/09/22

Report Date:

RPD Limits 20 otal Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1601217-4 QC Sample: L2205269-01 Client ID: DUP Sample Qual SC RPD Units mg/l **Duplicate Sample** 9 Native Sample 9 Mercury, Total 'arameter

INORGANICS & MISCELLANEOUS

BUFFALO BUSINESS PARK

Project Number: Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

SAMPLE RESULTS

Lab ID:

L2205487-01

Client ID:

BSA- 020222

Sample Location: Not Specified

Date Collected:

02/02/22 08:30

Date Received:

02/02/22

Field Prep:

Not Specified

Sample Depth:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Seneral Chemistry - V	Vestborough Lab									
эH (H)	6.9		SU	S#	NA	1	*	02/03/22 18:09	121,4500H+-B	AS

Lab Control Sample Analysis Batch Quality Control

L2205487 Lab Number:

02/09/22 Report Date:

Y03.001.001 Project Number:

BUFFALO BUSINESS PARK

Project Name:

LCSD %Recovery Qual LCS %Recovery

100

%Recovery Limits

Qual

Qual RPD

RPD Limits

General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1601255-1

Parameter

표

99-101

2

BUFFALO BUSINESS PARK Project Name:

Y03.001.001 Project Number:

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2205487 02/09/22 Report Date:

RPD Limits Seneral Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1601255-2 QC Sample: L2205389-01 Client ID: DUP Sample Qual RPD Units **Duplicate Sample** Native Sample arameter

SU 9.7

7.7

표

BUFFALO BUSINESS PARK

Project Number: Y03.001.001 Project Name:

Sample Receipt and Container Information

Lab Number: L2205487 Report Date: 02/09/22

Were project specific reporting limits specified?

YES

Custody Seal Absent Cooler

Cooler Information

Container Information Container ID Contai	rmation Container Type	Cooler	Initial pH	Final pH	Temp deg C Pres	Pres	Seal	Frozen Date/Time
L2205487-01A	Vial Na2S2O3 preserved	∢	¥		2.2	>	Absent	
L2205487-01B	Vial Na2S2O3 preserved	⋖	Ą		2.2	>	Absent	
L2205487-01C	Vial Na2S2O3 preserved	∢	Ϋ́		2.2	>	Absent	
L2205487-01D	Plastic 120ml unpreserved	∢	7	7	2.2	>	Absent	
L2205487-01E	Plastic 250ml HNO3 preserved	∢	<2	7	2.2	>	Absent	
L2205487-02A	Vial Na2S2O3 preserved	⋖	Ą	A A	2.2	>	Absent	
L2205487-02B	Vial Na2S2O3 preserved	∢	Ϋ́	¥	2.2	>	Absent	

Analysis(*)

624.1(3) 624.1(3) 624.1(3) PH-4500(.01)

HG-U(28)

ARCHIVE() ARCHIVE() **Project Name: BUFFALO BUSINESS PARK**

Project Number: Y03.001.001 Lab Number:

L2205487

Report Date:

02/09/22

GLOSSARY

Acronyms

DL

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA

Environmental Protection Agency.

LCS

- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

- Laboratory Control Sample Duplicate: Refer to LCS.

LFB

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDI.

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD

Matrix Spike Sample Duplicate: Refer to MS.

NA

- Not Applicable.

NC

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI

- Not Ignitable.

NP

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP

- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ

- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers **Project Name: BUFFALO BUSINESS PARK** Lab Number:

L2205487

Y03.001.001

Report Date:

02/09/22

Footnotes

Project Number:

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in A
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C - Co-clution: The target analyte co-clutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- \mathbf{G} - The concentration may be biased high due to matrix interferences (i.e, co-clution) with non-target compound(s). The result should be considered estimated.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- 1 - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: BUFFALO BUSINESS PARK

MODERALO BUSINESS PA

Lab Number:

L2205487

Project Number: Y03.

Y03.001.001

Report Date:

02/09/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: Project Number:

BUFFALO BUSINESS PARK

Y03.001.001

Lab Number:

L2205487

Report Date:

02/09/22

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Revision 19

Title: Certificate/Approval Program Summary

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg, EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

<u>Araha</u>	NEW YORK CHAIN OF CUSTODY	Service Centers. Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12265: 14 Walker Way Tonawanda, NY 14150: 275 Cuoper Ave, Suite 105	5 Julie 105	Page of	Date Rec'd In Lab	ate Rec'd In Lab D2 03 23	ALPHA JOB#
8 Walkup Dr. TEL. S.58-498-9220 FAX: 508-698-9193	320 Forbes Blvd TEL 558-622-9100 FAX: 508-822-3288	Project Name: SAFT IS Project Lacation:	Business	Stark	Deliversities A ASP-A Couls (1 File)	ASP-8	Billing Information Same as Client Info
Client Information	T Shows To	Project # 165, 201 c O	12		Other	_	100.100.501
Address: (4)	to Con	Project Manager			Negulatory Negulieliteni	NY Pert 375	Disposal Site Information
	N.	ALPHAQuote #:			AWC Standards	NY CP-51	applicable disposal facilities
Phone: Fax: Email: Marka	Jegg.can	Turn-Around Time Standard Kush (only if pre approved)	Dive Date:		NY Crirestrated Use NY Unrestrated Use	Action 854	Disposal Facility.
samples he	en previously analyze	ad by Alpha			ANALYSIS		Sample Filtration
Other project specific requirements/comments:	requirements/comm	nents:			1		
					20		Lab to do
Please specify Metals or TAL	or TAL.				79) H		Lab to do
					/ ·		(Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	Sample ID	Collection	Sample Sampler's	100 101 121		
10-tonso	120-	277	3	+			Sample specific comments
					-		
eservative Code: = None	Container Code P = Plasisc	Westboro: Certification No. MAB35	2	Container Type	100		Please print clearly, legibly
	A = Arnber Glass V = Vial	Mansfield: Certification No. MA015	-L				and completely. Samples can not be logged in and
	G = Glass B = Bacteria Cup	1000		Preservative	ACH		turnaround time clock will not start until any ambiguities are
= MeOH = NaHSO,	C = Cube	Rethiguistific By.	Date/Time	0	Received By:		resolved. BY EXECUTING
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaCH O = Other	E = Encore D = BOD Bottle	AND MAN	refere	14.00	that I	2/3/22 000	HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS
Form No: 01-25 HC (rev. 30-Sapt-2013)	-Supl-2013}						(See reverse side.)
Page 29 of 29							

Page 29 of 29

APPENDIX B PHOTOGRAPH OF SYSTEM TOTALIZER

141 Elm Street Suite 100 Buffalo, NY 14203 p: (716) 847-1630 f: (716) 847-1454 www.cscos.com

September 1, 2022

Traserra Adams, J.D.
Legal Investigator
Industrial Waste Section
Buffalo Sewer Authority
Foot of Ferry Street
90 West Ferry
Buffalo, New York 14213-1799

Re: Buffalo Business Park Semi-Annual Self-Monitoring Report August 9, 2022

Dear Ms. Adams:

Pursuant to guidelines described in the Buffalo Sewer Authority Permit #22-01-BU124, Buffalo Business Park (BBP) is providing this semi-annual self-monitoring report which provides the analytical results of a post treatment system water (effluent) sample that was collected on August 9, 2022. In addition, a reading from the system totalizer is also provided.

TREATMENT SYSTEM CARBON CHANGE OUT

The carbon in the 500-gallon treatment canister was not replaced during this reporting period.

ANALYTICAL RESULTS

A post treatment water sample was collected on the morning of February 2, 2022 for laboratory analysis. The sample was subsequently hand delivered to Alpha Analytical for analysis as follows:

- USEPA Method 4500 for pH;
- USEPA Method 245.1 for mercury; and
- USEPA 624.1 for volatile organic compounds.

The pH of the sample was analyzed at 7.2.

Mercury was not detected (ND) in the water sample that was analyzed.

There were no volatile organic compounds (VOCs) detected in the water sample collected from the treatment system above the detection limit except for tetrachloroethene detected at 0.00044 mg/L, trans-1,2-dichloroethene detected at 0.0022 mg/L, and trichloroethene detected at 0.00034 mg/L. **Table 1** provides a summary of key compounds historically detected in groundwater at the site. The laboratory analytical data package is attached as **Appendix A**.

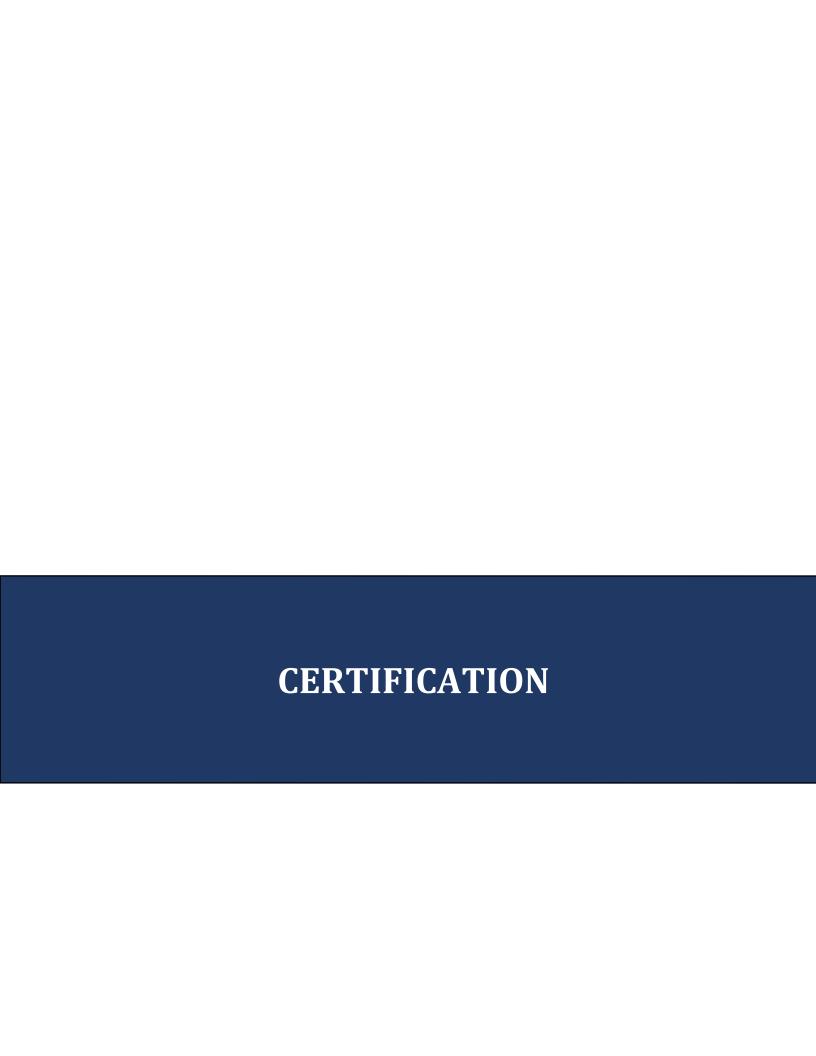
VOLUMETRIC INFORMATION

The totalizer coming into the onsite treatment system was read on August 9, 2022 to provide volumetric information. The volume of groundwater treated since the start of treatment operations was 1,342,900 gallons. The totalizer reading for the last reporting period (February 2022) was 1,096,600 gallons. Therefore, a total of 246,300 gallons of groundwater were treated and discharged to the BSA during this reporting period. A photo of the totalizer reading is provided as **Appendix B**.

Should you have any questions regarding this letter or require additional information, please feel free to contact the undersigned.

Sincerely,

C&S ENGINEERS, INC.


Daniel E. Riker, P.G.

Department Manager

Cody A. Martin

Project Environmental Scientist

f:\project\y05 - buffalo business park\y05001002 - smp support\planning-study\reports\march self-monitoring report\self-monitoring report.docx

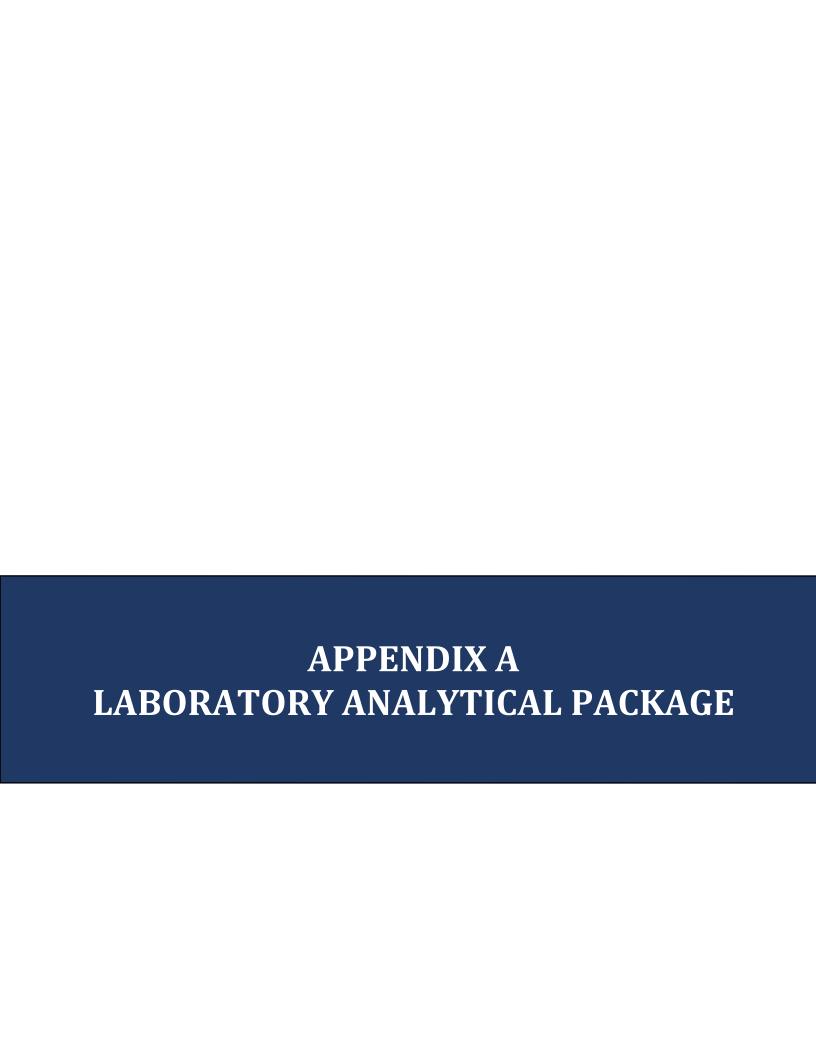
Semi-Annual Self-Monitoring Report September 1, 2022 Page 3

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Official:	Title:	
Cignatura	Dato	

BUFFALO BUSINESS PARK TREATMENT SYSTEM RESULTS COMPARED TO BSA CRITERIA SEPTEMBER 2022



Parameter	BSA Discharge	Post-Treatm Sample	ent
	Limit	Aug. 2022	2
VOCs - mg/l			
Tetrachloroethene	0.267	0.00044	J
trans-1,2-Dichloroethene	0.285	0.0022	
Trichloroethene	0.712	0.00170	
Metals - mg/l			
Mercury	0.0008	ND	
General Chemistry - SU			
рН	5.0 12.0	7.2	

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- *+ LCS and/or LCSD is outside acceptance limits, high biased.
- ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
- B Compound was found in the blank and sample.
- F1 MS and/or MSD recovery exceeds control limits.
- F2 MS/MSD RPD exceeds control limits
- $\ensuremath{\mathrm{H}}$ Sample was prepped or analyzed beyond the specified holding time
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications.

ANALYTICAL REPORT

Lab Number: L2242655

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Report Date: 08/23/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

 Lab Number:
 L2242655

 Report Date:
 08/23/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2242655-01	BSA-080922	WATER	Not Specified	08/09/22 09:30	08/09/22
L2242655-02	TRIP BLANK	WATER	Not Specified	08/09/22 00:00	08/09/22

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/23/22

Lifani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

L2242655

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

SAMPLE RESULTS

Lab Number:

Report Date: 08/23/22

Lab ID: L2242655-01 Date Collected: 08/09/22 09:30

Client ID: Date Received: 08/09/22 BSA-080922 Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 08/11/22 00:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	1.0	0.56	1
1,1-Dichloroethane	ND		ug/l	1.5	0.40	1
Chloroform	ND		ug/l	1.0	0.38	1
Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
Dibromochloromethane	ND		ug/l	1.0	0.27	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
Tetrachloroethene	0.44	J	ug/l	1.0	0.26	1
Chlorobenzene	ND		ug/l	3.5	0.30	1
1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
Bromodichloromethane	ND		ug/l	1.0	0.28	1
trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	1
Bromoform	ND		ug/l	1.0	0.22	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Benzene	ND		ug/l	1.0	0.38	1
Toluene	ND		ug/l	1.0	0.31	1
Ethylbenzene	ND		ug/l	1.0	0.28	1
Chloromethane	ND		ug/l	5.0	1.0	1
Bromomethane	ND		ug/l	5.0	1.2	1
Vinyl chloride	ND		ug/l	1.0	0.38	1
Chloroethane	ND		ug/l	2.0	0.37	1
1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
trans-1,2-Dichloroethene	2.2		ug/l	1.5	0.33	1
Trichloroethene	1.7		ug/l	1.0	0.33	1

Project Name: BUFFALO BUSINESS PARK Lab Number: L2242655

Project Number: Y05.001.001 **Report Date:** 08/23/22

SAMPLE RESULTS

Lab ID: L2242655-01 Date Collected: 08/09/22 09:30

Client ID: BSA-080922 Date Received: 08/09/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
Acrolein	ND		ug/l	8.0	1.8	1
Acrylonitrile	ND		ua/l	10	0.33	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	101	60-140	
Fluorobenzene	96	60-140	
4-Bromofluorobenzene	98	60-140	

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

SAMPLE RESULTS

L2242655

Report Date: 08/23/22

Lab Number:

Lab ID: L2242655-02

Date Collected: 08/09/22 00:00 Client ID: Date Received: 08/09/22 TRIP BLANK

Field Prep: Sample Location: Not Specified Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 08/10/22 05:25

1,1-Dichloroethane ND ug/l 1.5 0.40 1 Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 1.0 0.24 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.25 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.0 0.28 1 1,1-1-Trichloroethane ND ug/l 1.5 0.31	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 1.0 0.38 1 Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethyfvinyl ether ND ug/l 1.0 0.26 1 1-Chlorobene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 1.5 0.30 1 Chlorobenzene ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromochloromothane ND ug/l 1.5 0.31 1 Leans-1,3-Dichloropropene ND ug/l 1.5 0.31	Methylene chloride	ND		ug/l	1.0	0.56	1
Carbon tetrachloride ND ug/l 1.0 0.24 1 1,2-Dichloropropane ND ug/l 3.5 0.46 1 Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethane ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.5 0.31 1 Bromodichloromethane ND ug/l 1.5 0.31 1 Lass-1,3-Dichloropropene ND ug/l 1.5 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>1.5</td><td>0.40</td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	1.5	0.40	1
1,2-Dichloropropane ND Ug/l 3.5 0.46 1	Chloroform	ND		ug/l	1.0	0.38	1
Dibromochloromethane ND ug/l 1.0 0.27 1 1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 1.0 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1-Trichloroethane ND ug/l 1.0 0.28 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.31 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0	Carbon tetrachloride	ND		ug/l	1.0	0.24	1
1,1,2-Trichloroethane ND ug/l 1.5 0.34 1 2-Chloroethylvinyl ether ND ug/l 10 0.35 1 Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 Chloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 tis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>3.5</td> <td>0.46</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	3.5	0.46	1
ND	Dibromochloromethane	ND		ug/l	1.0	0.27	1
Tetrachloroethene ND ug/l 1.0 0.26 1 Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 5.0 1.0 1 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td>0.34</td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	1.5	0.34	1
Chlorobenzene ND ug/l 3.5 0.30 1 1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 1,1,1-Trichloroethane ND ug/l 1.0 0.28 1 1 1,1,1-Trichloroperopene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.38 1 1 1 1 1 1 1 1 1	2-Chloroethylvinyl ether	ND		ug/l	10	0.35	1
1,2-Dichloroethane ND ug/l 1.5 0.47 1 1,1,1-Trichloroethane ND ug/l 2.0 0.29 1 Bromodichloromethane ND ug/l 1.0 0.28 1 trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 Bromofermen ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.22 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 5.0 1.0 1 Chloromethane ND ug/l 5.0 1.2 1 </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.26</td> <td>1</td>	Tetrachloroethene	ND		ug/l	1.0	0.26	1
1,1,1-Trichloroethane ND	Chlorobenzene	ND		ug/l	3.5	0.30	1
ND	1,2-Dichloroethane	ND		ug/l	1.5	0.47	1
trans-1,3-Dichloropropene ND ug/l 1.5 0.31 1 cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 5.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1 1,1-Dichloroethene ND ug/l 1.0 0.38 1	1,1,1-Trichloroethane	ND		ug/l	2.0	0.29	1
cis-1,3-Dichloropropene ND ug/l 1.5 0.34 1 1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromodichloromethane	ND		ug/l	1.0	0.28	1
1,3-Dichloropropene, Total ND ug/l 1.5 0.31 1 Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	trans-1,3-Dichloropropene	ND		ug/l	1.5	0.31	1
Bromoform ND ug/l 1.0 0.22 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	cis-1,3-Dichloropropene	ND		ug/l	1.5	0.34	1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.20 1 Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,3-Dichloropropene, Total	ND		ug/l	1.5	0.31	1
Benzene ND ug/l 1.0 0.38 1 Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromoform	ND		ug/l	1.0	0.22	1
Toluene ND ug/l 1.0 0.31 1 Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 1.0 0.38 1 I,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.20	1
Ethylbenzene ND ug/l 1.0 0.28 1 Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Benzene	ND		ug/l	1.0	0.38	1
Chloromethane ND ug/l 5.0 1.0 1 Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Toluene	ND		ug/l	1.0	0.31	1
Bromomethane ND ug/l 5.0 1.2 1 Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Ethylbenzene	ND		ug/l	1.0	0.28	1
Vinyl chloride ND ug/l 1.0 0.38 1 Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloromethane	ND		ug/l	5.0	1.0	1
Chloroethane ND ug/l 2.0 0.37 1 1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Bromomethane	ND		ug/l	5.0	1.2	1
1,1-Dichloroethene ND ug/l 1.0 0.31 1 trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Vinyl chloride	ND		ug/l	1.0	0.38	1
trans-1,2-Dichloroethene ND ug/l 1.5 0.33 1	Chloroethane	ND		ug/l	2.0	0.37	1
	1,1-Dichloroethene	ND		ug/l	1.0	0.31	1
Trichloroethene ND ug/l 1.0 0.33 1	trans-1,2-Dichloroethene	ND		ug/l	1.5	0.33	1
	Trichloroethene	ND		ug/l	1.0	0.33	1

Project Name: BUFFALO BUSINESS PARK Lab Number: L2242655

Project Number: Y05.001.001 **Report Date:** 08/23/22

SAMPLE RESULTS

Lab ID: L2242655-02 Date Collected: 08/09/22 00:00

Client ID: TRIP BLANK Date Received: 08/09/22 Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	0.28	1
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	1
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	1
Acrolein	ND		ug/l	8.0	1.8	1
Acrylonitrile	ND		ug/l	10	0.33	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	108		60-140	
Fluorobenzene	90		60-140	
4-Bromofluorobenzene	100		60-140	

Project Name: BUFFALO BUSINESS PARK Lab Number: L2242655

Project Number: Y05.001.001 **Report Date:** 08/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/10/22 04:54

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1673822-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

L2242655

Project Name: BUFFALO BUSINESS PARK Lab Number:

Project Number: Y05.001.001 **Report Date:** 08/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/10/22 04:54

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westb	orough Lab	for sampl	e(s): 02	Batch:	WG1673822-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
Pentafluorobenzene	107	60-140
Fluorobenzene	94	60-140
4-Bromofluorobenzene	98	60-140

Project Name: BUFFALO BUSINESS PARK Lab Number: L2242655

Project Number: Y05.001.001 **Report Date:** 08/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/10/22 17:11

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01 Batch:	WG1674146-4
Methylene chloride	ND	ug/l	1.0	0.56
1,1-Dichloroethane	ND	ug/l	1.5	0.40
Chloroform	ND	ug/l	1.0	0.38
Carbon tetrachloride	ND	ug/l	1.0	0.24
1,2-Dichloropropane	ND	ug/l	3.5	0.46
Dibromochloromethane	ND	ug/l	1.0	0.27
1,1,2-Trichloroethane	ND	ug/l	1.5	0.34
2-Chloroethylvinyl ether	ND	ug/l	10	0.35
Tetrachloroethene	ND	ug/l	1.0	0.26
Chlorobenzene	ND	ug/l	3.5	0.30
1,2-Dichloroethane	ND	ug/l	1.5	0.47
1,1,1-Trichloroethane	ND	ug/l	2.0	0.29
Bromodichloromethane	ND	ug/l	1.0	0.28
trans-1,3-Dichloropropene	ND	ug/l	1.5	0.31
cis-1,3-Dichloropropene	ND	ug/l	1.5	0.34
1,3-Dichloropropene, Total	ND	ug/l	1.5	0.31
Bromoform	ND	ug/l	1.0	0.22
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.20
Benzene	ND	ug/l	1.0	0.38
Toluene	ND	ug/l	1.0	0.31
Ethylbenzene	ND	ug/l	1.0	0.28
Chloromethane	ND	ug/l	5.0	1.0
Bromomethane	ND	ug/l	5.0	1.2
Vinyl chloride	ND	ug/l	1.0	0.38
Chloroethane	ND	ug/l	2.0	0.37
1,1-Dichloroethene	ND	ug/l	1.0	0.31
trans-1,2-Dichloroethene	ND	ug/l	1.5	0.33
Trichloroethene	ND	ug/l	1.0	0.33
1,2-Dichlorobenzene	ND	ug/l	5.0	0.28

L2242655

Project Name: BUFFALO BUSINESS PARK Lab Number:

Project Number: Y05.001.001 **Report Date:** 08/23/22

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/10/22 17:11

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Westk	oorough Lal	o for sampl	e(s): 01	Batch:	WG1674146-4	
1,3-Dichlorobenzene	ND		ug/l	5.0	0.27	
1,4-Dichlorobenzene	ND		ug/l	5.0	0.29	
Acrolein	ND		ug/l	8.0	1.8	
Acrylonitrile	ND		ug/l	10	0.33	

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
Pentafluorobenzene	102	60-140
Fluorobenzene	99	60-140
4-Bromofluorobenzene	99	60-140

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number: L2242655

Report Date: 08/23/22

Parameter	LCS %Recovery	LCSD Qual %Recov	,	ry RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 02 Batch:	WG1673822-3			
Methylene chloride	95	-	60-140	-	28	
1,1-Dichloroethane	90	-	50-150	-	49	
Chloroform	90	-	70-135	-	54	
Carbon tetrachloride	100	-	70-130	-	41	
1,2-Dichloropropane	85	-	35-165	-	55	
Dibromochloromethane	110	-	70-135	-	50	
1,1,2-Trichloroethane	105	-	70-130	-	45	
2-Chloroethylvinyl ether	115	-	1-225	-	71	
Tetrachloroethene	130	-	70-130	-	39	
Chlorobenzene	110	-	65-135	-	53	
1,2-Dichloroethane	85	-	70-130	-	49	
1,1,1-Trichloroethane	95	-	70-130	-	36	
Bromodichloromethane	115	-	65-135	-	56	
trans-1,3-Dichloropropene	120	-	50-150	-	86	
cis-1,3-Dichloropropene	125	-	25-175	-	58	
Bromoform	100	-	70-130	-	42	
1,1,2,2-Tetrachloroethane	95	-	60-140	-	61	
Benzene	85	-	65-135	-	61	
Toluene	125	-	70-130	-	41	
Ethylbenzene	115	-	60-140	-	63	
Chloromethane	110	-	1-205	-	60	
Bromomethane	65	-	15-185	-	61	
Vinyl chloride	110	-	5-195	-	66	

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number:

L2242655

Report Date:

08/23/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 02	Batch: WG1	673822-3					
Chloroethane	100		-		40-160	-		78	
1,1-Dichloroethene	105		-		50-150	-		32	
trans-1,2-Dichloroethene	90		-		70-130	-		45	
Trichloroethene	90		-		65-135	-		48	
1,2-Dichlorobenzene	110		-		65-135	-		57	
1,3-Dichlorobenzene	110		-		70-130	-		43	
1,4-Dichlorobenzene	110		-		65-135	-		57	
Acrolein	82		-		60-140	-		30	
Acrylonitrile	78		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Pentafluorobenzene	102		60-140	
Fluorobenzene	81		60-140	
4-Bromofluorobenzene	93		60-140	

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number: L2242655

Report Date: 08/23/22

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch	n: WG1674146-3				
Methylene chloride	95	-		60-140	-	28	
1,1-Dichloroethane	100	-		50-150	-	49	
Chloroform	100	-		70-135	-	54	
Carbon tetrachloride	100	-		70-130	-	41	
1,2-Dichloropropane	100	-		35-165	-	55	
Dibromochloromethane	95	-		70-135	-	50	
1,1,2-Trichloroethane	100	-		70-130	-	45	
2-Chloroethylvinyl ether	105	-		1-225	-	71	
Tetrachloroethene	105	-		70-130	•	39	
Chlorobenzene	105	-		65-135	•	53	
1,2-Dichloroethane	100	-		70-130	-	49	
1,1,1-Trichloroethane	100	-		70-130	-	36	
Bromodichloromethane	100	-		65-135	-	56	
trans-1,3-Dichloropropene	95	-		50-150	-	86	
cis-1,3-Dichloropropene	105	-		25-175	-	58	
Bromoform	90	-		70-130	-	42	
1,1,2,2-Tetrachloroethane	90	-		60-140	-	61	
Benzene	100	-		65-135	-	61	
Toluene	110	-		70-130	-	41	
Ethylbenzene	110	-		60-140	-	63	
Chloromethane	110	-		1-205	-	60	
Bromomethane	85	-		15-185	-	61	
Vinyl chloride	110	-		5-195	-	66	

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number:

L2242655

08/23/22

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated s	sample(s): 0	1 Batch: WG1	674146-3					
Chloroethane	110		-		40-160	-		78	
1,1-Dichloroethene	105		-		50-150	-		32	
trans-1,2-Dichloroethene	100		-		70-130	-		45	
Trichloroethene	100		-		65-135	-		48	
1,2-Dichlorobenzene	100		-		65-135	-		57	
1,3-Dichlorobenzene	100		-		70-130	-		43	
1,4-Dichlorobenzene	100		-		65-135	-		57	
Acrolein	78		-		60-140	-		30	
Acrylonitrile	85		-		60-140	-		60	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	103		60-140
Fluorobenzene	96		60-140
4-Bromofluorobenzene	101		60-140

METALS

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

SAMPLE RESULTS

Lab ID:L2242655-01Date Collected:08/09/22 09:30Client ID:BSA-080922Date Received:08/09/22Sample Location:Not SpecifiedField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala N	Acceptal all als										
Total Metals - M	iansileid Lab										
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/11/22 12:0	2 08/11/22 21:58	EPA 245.1	3,245.1	DMB

L2242655

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Report Date: 08/23/22

Lab Number:

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Batch: WG1673632-1 Total Metals - Mansfield Lab for sample(s): 01 3,245.1 Mercury, Total 0.00017 mg/l 0.00020 0.00009 1 DMB

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2242655

Project Number: Y05.001.001 Report Date:

08/23/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1673632-2								
Mercury, Total	115		-		85-115	-		

Project Name:

BUFFALO BUSINESS PARK

Matrix Spike Analysis Batch Quality Control

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number:

L2242655

Report Date:

08/23/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01	QC Batch	ID: WG167363	2-3	QC Sample	: L2242858-01	Clier	nt ID: MS Sa	ample		
Mercury, Total	0.00015J	0.005	0.00514	103		-	-		70-130	-		20

L2242655

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

Project Name: BUFFALO BUSINESS PARK Batch Quality

Project Number: Y05.001.001 **Report Date:** 08/23/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG167363	32-4 QC Sample:	L2242858-01	Client ID: DU	IP Sample	
Mercury, Total	0.00015J	0.00009J	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: BUFFALO BUSINESS PARK Lab Number: L2242655

Project Number: Y05.001.001 **Report Date:** 08/23/22

SAMPLE RESULTS

 Lab ID:
 L2242655-01
 Date Collected:
 08/09/22 09:30

 Client ID:
 BSA-080922
 Date Received:
 08/09/22

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
pH (H)	7.2		SU	-	NA	1	-	08/10/22 12:29	121,4500H+-B	KS

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2242655

Project Number: Y05.001.001 Report Date: 08/23/22

Parameter	LCS %Recovery Qu	LCSD ial %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1673458-	1					
рН	100	-		99-101	-		5	

Project Name:

BUFFALO BUSINESS PARK

Lab Duplicate Analysis

Batch Quality Control

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05.001.001

Lab Number:

L2242655

Report Date:

08/23/22

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1673458-2	QC Sample:	L2242655-01	Client ID:	BSA-080922
рН (Н)	7.2	7.2	SU	0		5

Serial_No:08232213:46 *Lab Number:* L2242655

Project Name: BUFFALO BUSINESS PARK
Project Number: Y05.001.001

Report Date: 08/23/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation			Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2242655-01A	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2242655-01B	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2242655-01C	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2242655-01D	Plastic 120ml unpreserved	Α	7	7	3.8	Υ	Absent		PH-4500(.01)
L2242655-01E	Plastic 250ml HNO3 preserved	Α	<2	<2	3.8	Υ	Absent		HG-U(28)
L2242655-02A	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)
L2242655-02B	Vial Na2S2O3 preserved	Α	NA		3.8	Υ	Absent		624.1(3)

Project Name: Lab Number: **BUFFALO BUSINESS PARK** L2242655 **Project Number:** Y05.001.001 **Report Date:** 08/23/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert but

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:BUFFALO BUSINESS PARKLab Number:L2242655Project Number:Y05.001.001Report Date:08/23/22

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

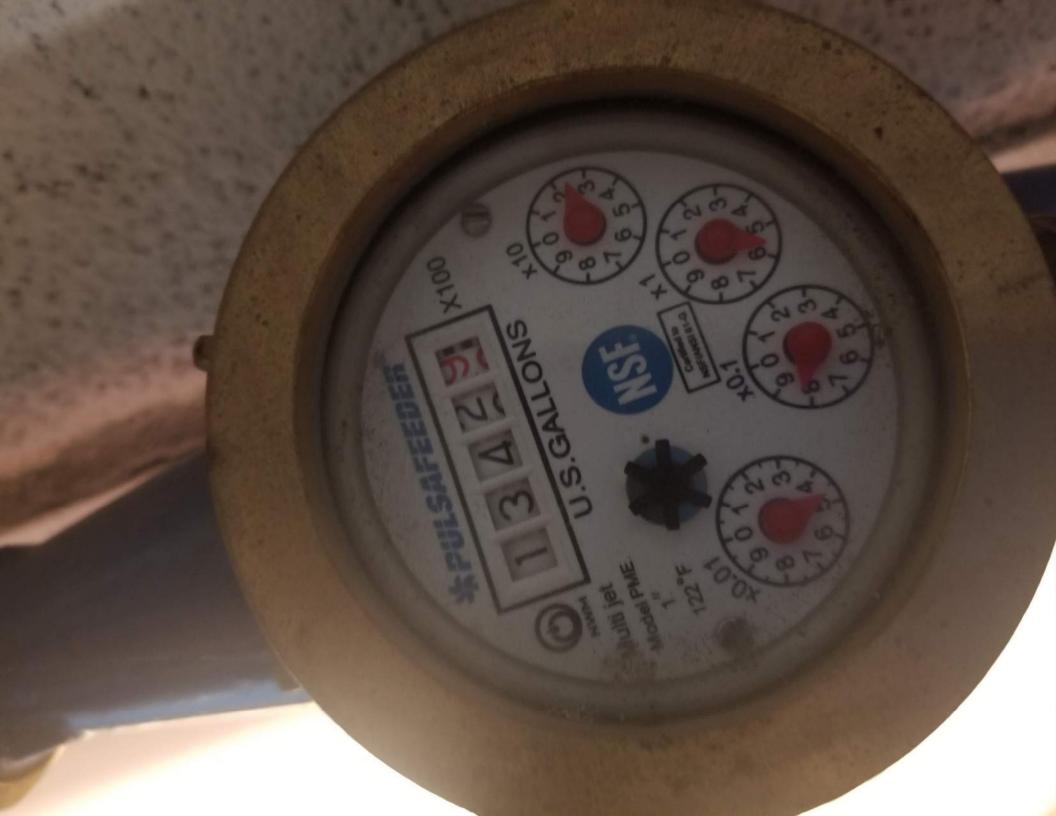
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-828-9393 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: Buffa Bus Project Location:	Page / of	/	Deliv	in l erable ASP-		A	ASP-B		ALPHA Job # 2012 655 Billing Information Same as Client Info
Client Information	Project # 165.001.001			H	Other	Supposition of the second		Eddio (11110)	10.0
Client ES Fraireers, Inc	(Use Project name as Project #)	Q		Regu		Requirem	ent	2011	- BOOK	Disposal Site Information
Address: 14/ Egm St. Buffalo NX	Project Manager: Cody ALPHAQuote #:	ortin			NY TO	GS Standards		NY Part 3 NY CP-51		Please identify below location of applicable disposal facilities.
Phone: Fax: Email: CManfine CSCAS, com	Turn-Around Time Standard Due Date:						se arge	SA	Disposal Facility: NJ Other:	
These samples have been previously analyzed by Alpha										Sample Filtration
Other project specific requirements/comm	ents:				Ha 25.1	624.				□ Done t Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	mple ID Collection Date	on Sample Sample Matrix	Sampler's Initials	HC	10-la	100				Sample Specific Comments
436550 BSA-08	10922 89/22 S	1:30 GN	CM	+	7	1				3
	Plan plan									
			_	-	-	-	+	-	+	
								-	+	
to sale di di sale										
Preservative Code: Container Code										
A = None	Westboro: Certification No: MA935 Mansfield: Certification No: MA015		ner Type servative	PA	P C	V H				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
S = NaHSO ₄	Jacobyn Zoby (AAL) 8	9/12 10:25	food	Receiv	_	h(tex)	89	Date/Tim 22_10 22_00):25	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

