2023

PERIODIC REVIEW REPORT

FOR BUFFALO BUSINESS PARK SITE 1800 BROADWAY STREET NYSDEC SITE #V00663-9 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S ENGINEERS, INC.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

BUFFALO BUSINESS PARK, INC.

1800 Broadway Street, Building #1D Buffalo, New York 14212

NOVEMBER 13, 2023
REPORTING PERIOD:
SEPTEMBER 1, 2022 TO SEPTEMBER 1, 2023

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	1
<u>1</u>	SITE OVERVIEW	3
1.1	GEOLOGY AND HYDROGEOLOGY	4
1.2		4
1.3	SUMMARY OF SELECTED REMEDY	5
<u>2</u>	IC/EC PLAN COMPLIANCE REPORT	6
2.1	IC/EC REQUIREMENTS AND COMPLIANCE	6
2.1.1	Institutional Controls	6
2.1.2	ENGINEERING CONTROLS	6
2.2	IC/EC CERTIFICATION	7
2.3	REVIEW OF INSTITUTIONAL CONTROLS	7
2.4	REVIEW OF ENGINEERING CONTROLS	7
<u>3</u>	MONITORING PLAN COMPLIANCE REPORT	8
3.1	MONITORING PLAN REQUIREMENTS	8
3.2	SUMMARY OF MONITORING COMPLETED DURING REPORTING PERIOD	8
3.3	COMPARISONS WITH REMEDIAL OBJECTIVES	8
3.4	MONITORING DEFICIENCIES	9
3.5	CONCLUSIONS AND RECOMMENDATIONS	10
<u>4</u>	OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT	10
4.1	COMPONENTS OF O&M PLAN	10
4.2	SUMMARY OF O&M COMPLETED DURING REPORTING PERIOD	11
	EVALUATION OF REMEDIAL SYSTEMS	11
4.3.1	GROUNDWATER PUMPING SYSTEM	11
4.3.2	VAPOR INTERCEPT SYSTEM	12
4.4	O&M DEFICIENCIES	12
4.5	CONCLUSIONS AND RECOMMENDATIONS	12

<u>5</u>	CONC	CLUSIONS 12
5.1 5.2		PLIANCE WITH SITE MANAGEMENT PLAN 12 DRMANCE AND EFFECTIVENESS OF THE REMEDY 13
FIGU	JRES	
Figu	re 1	
Figu	re 2	
Figu	re 3	
TAB		
TABL	.E 1	Water Levels – Pumps On
TABL	.E 2	WATER LEVELS – PUMPS OFF
TABL	.E 3	Pumping History
TABL	.E 4	
TABL	.E 5	
GRA	APHS	
GRAI	РН 1	TOTAL CVOC
	PENDI ENDIX <i>P</i>	CES AInstitutional and Engineering Controls Certification Forms
Арре	endix E	B LABORATORY DATA PACKAGE
Арре	ENDIX (FIELD SAMPLE LOGS
Арре	NDIX [D Sub-slab Depressurization System Inspection Certification
Арре	endix E	BSA DISCHARGE PERMIT RENEWAL SAMPLING

ALTERNATIVES ANALYSIS REPORT

ACRONYM LIST

AAR

Periodic Review Report Buffalo Business Park Site NYSDEC SITE #V00663-9

BBP BUFFALO BUSINESS PARK

BCA BROWNFIELD CLEANUP AGREEMENT

BCP BROWNFIELD CLEANUP PROGRAM

BGS BELOW GROUND SURFACE

DD DECISION DOCUMENT

DER DEPARTMENT OF ENVIRONMENTAL REMEDIATION

EC ENGINEERING CONTROLS

HFM HISTORIC FILL MATERIAL

IC INSTITUTIONAL CONTROLS

NYSDEC New York State Department of Environmental Conservation

NYSDOH NEW YORK STATE DEPARTMENT OF HEALTH

O&M OPERATION AND MAINTENANCE

PAH POLYCYCLIC AROMATIC HYDROCARBONS

PCBs POLYCHLORINATED BIPHENYLS

PPM PARTS PER MILLION

RAOS REMEDIAL ACTION OBJECTIVES

RAWP REMEDIAL ACTION WORK PLAN

RI REMEDIAL INVESTIGATION

SCOS SOIL CLEANUP OBJECTIVES

SITE 1.004-ACRE PORTION OF THE BUFFALO BUSINESS PARK, BUFFALO, NEW

York

SMP SITE MANAGEMENT PLAN

SVOCS SEMI-VOLATILE ORGANIC COMPOUNDS

UG/L MICROGRAMS PER LITER

VOCS VOLATILE ORGANIC COMPOUNDS

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2023 Periodic Review Report for a 1.413-acre portion of the Buffalo Business Park Site (hereinafter referred to as the Site) located at 1800 Broadway Street in Buffalo, New York.

The Site contains two operable units: Unit 1 was an area of soil contamination which has been remediated by removal of contaminated soils; and Unit 2 is an area of groundwater contamination located in the same area where the soil contamination was located. In addition to the groundwater remedial program, there was concern regarding the potential for vapor intrusion into one of the buildings located south of the area of groundwater contamination.

Remediation of the groundwater contamination at the Site consists of a groundwater pumping system using three wells (MW-3BR, MW-4BR and MW-5 ABR) located within the groundwater contaminant plume. Wells are pumped using appropriate controllers to achieve drawdown of the water table and thus achieve hydraulic capture of contaminated groundwater. Wells are sampled periodically to evaluate if decreases in contaminant levels are being achieved.

The primary goal of the pumping program is to achieve groundwater flow control such that flow of contaminated groundwater does not leave the site but is captured by the pumping system. Based on groundwater contour maps, this goal is being achieved.

Operation of the sub-slab venting system is effectively preventing soil vapors from entering the building and is ongoing.

Areas with remaining contamination will be monitored and maintained as specified in the approved Site Management Plan (SMP).

The SMP was prepared by American Consulting Professionals of New York, PLLC on behalf of Buffalo Business Park, Inc., in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. The SMP addresses the means for implementing the Intuitional Controls (ICs) and/or Engineering Controls (ECs) that are required by the Environmental Easement for the Site. A summary of the SMP is provided below.

Site Identification:	Buffalo Business Park Site: 1800 Broadway Street, Buffalo, New York VCP Site No. V00663-9
Institutional Controls:	1. The property may be used for commercial/industrial use.
	2. All ECs must be inspected at a frequency and in a manner defined in the SMP.
	3. The use of groundwater underlying the Site is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
	4. Compliance with the Department approved Site Management Plan and Periodic Review Reporting is required.
	5. The remedial party or site owner is required to complete and submit a periodic certification of institutional and engineering controls to the Department in accordance with 6NYCRR Part 375-1.8(h)(3).
	6. The potential for vapor intrusion must be evaluated for any buildings developed in the area and any potential impacts that are identified must be monitored or mitigated
Engineering Controls:	1. Vapor Intercept System: Maintain the active SSD system in Building 1A.

Site Identification:	adway Street,									
	VCP Site No. V00663-9									
	2. Groundwater Pumping System: Groundwater monitoring wells MW4-BR, MW3-BR and MW5A-BR are operated as pumping wells.									
Inspections:	Frequency									
 Groundwater P inspection 	Annually									
Monitoring:										
1. Groundwater sa	mpling	Annually								
Maintenance:										
1. Groundwater Pun	nping System and SSD System repair	As needed								
Reporting: 1. Periodic Review R	Annually									

The Institutional and Engineering Controls Certification form is provided in **Appendix A**.

1 SITE OVERVIEW

The Buffalo Business Park property is located in the Buffalo, New York, County of Erie (see **Figure 1**) and is identified as Block 1, Lots 5.1 and 5.2 on the County of Erie Tax Map. The Buffalo Business Park property is an approximately 22 acre area bounded by NYSDOT property to the north and east, Broadway Street to the south, and TOPS Market to the west.

Buffalo Business Park (BBP) entered into a VCA with the NYSDEC to remediate a 1.004-acre portion of property located in Buffalo, New York ("Site"). This VCA required the

Remedial Party, Buffalo Business Park, to investigate and remediate contaminated media at the Site.

The Site consists of a 1.413-acre portion of the Buffalo Business Park property located at 1800 Broadway in Buffalo, New York. The site is located at the entrance to the property and consists primarily of parking and driveway areas and a portion of the commercial/industrial building fronting on Broadway.

The owner of the site parcels at the time of issuance of this PRR is/are:

Buffalo Business Park, Inc.

1800 Broadway

Buffalo, NY 14212

1.1 Geology and Hydrogeology

Several environmental studies have previously been conducted at BBP from which subsurface conditions have been generally characterized. The overburden materials are approximately 14 feet in thickness at BBP. They generally consist of fill materials that are variable in thickness to a depth of approximately two feet. Fill material is generally described as sands and gravel with some ash, brick, wood and railroad ties which is consistent with its past use as a rail yard. This is underlain by native materials consisting of brown gravelly sands with some silt. This material is laterally variable, but is generally 14 to 16 feet in thickness. Bedrock is at approximately 14 feet below ground surface (BGS), and consists of gray, crystalline Limestone (Onondaga Limestone.)

Groundwater is present in the overburden with groundwater flow direction to the southwest and southeast. Groundwater in bedrock reportedly flows to the southeast; however, the overburden and bedrock hydraulic zones are likely connected given the highly permeable nature of the overburden gravelly sands.

1.2 Site History

The Site and the vicinity were historically used for railroad transport/tracks associated with the Pullman Car Company from 1900 until at least 1950.

Previous investigations identified the presence of VOCs in site soils and groundwater including tetrachloroethene in soil, and tetrachloroethene, trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, methylene chloride and vinyl chloride in

groundwater. Based on this information, the site was divided into two operable units for purposes of investigation and remediation:

- Operable Unit #1, consisting of that area of site with defined contaminated soils;
 and
- Operable Unit #2, consisting of that area of the site with defined groundwater contamination.

In October 2003, a remedial action work plan (RAWP) was prepared to excavate soils from Operable Unit #1 at the site, described as an area of soil contamination. This remedy proposed the excavation of impacted soils and treatment in an ex-situ soil vapor extraction system. This RAWP was submitted to the NYSDEC for review and was subsequently approved on August 10, 2005. The approved remedy was subsequently reviewed and modified to consist of excavation of contaminated soil with off-site disposal. The revised RAWP was subsequently approved by the NYSDEC on January 10, 2006.

1.3 Summary of Selected Remedy

The remedial program for the Site consists of the following:

- Excavation of contaminated soil was completed in April 2006;
- Pumping of contaminated groundwater to achieve capture (no contaminated groundwater leaving the site) as well as reduction of groundwater contaminant concentrations. The current Groundwater Pumping System was completed in December 2009; and
- Installation and operation of a sub-slab depressurization system in the building was completed in late 2008.

2 IC/EC PLAN COMPLIANCE REPORT

2.1 IC/EC Requirements and Compliance

2.1.1 Institutional Controls

The institutional controls for this Site are:

- The property may only be used for commercial/industrial use. The long-term Engineering and Institutional Controls included in this SMP must be employed.
- The property may not be used for a higher level of use, such as unrestricted/ restricted residential use without additional remediation and amendment of the Deed Restriction, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP; any excavated soils should be handled as specified in the Soil Management Plan.
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area and any potential impacts that are identified must be monitored or mitigated.
- Vegetable gardens and farming on the property are prohibited.
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Restricted Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Restricted Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.1.2 Engineering Controls

The engineering controls for this Site are:

- Vapor Intercept System: The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC.
- Groundwater Pumping System: Groundwater monitoring wells MW3-BR, MW4-BR and MW5A-BR are operated as pumping wells. The groundwater pumping system will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the groundwater pumping system is no longer required, a proposal to discontinue the system will be submitted by Buffalo Business Park. Conditions that warrant discontinuing the groundwater pumping system include contaminant concentrations in groundwater that: (1) reach levels that are consistently below ambient water quality standards, (2) have become asymptotic to a low level over an extended period of time as accepted by the NYSDEC, or (3) the NYSDEC has determined that the groundwater pumping system has reached the limit of its effectiveness. This assessment will be based in part on post-remediation contaminant levels in groundwater collected from monitoring wells located throughout the site. Systems will remain in place and operational until permission to discontinue their use is granted in writing by the NYSDEC.

2.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix A**.

2.3 Review of Institutional Controls

The following observations, related to the Site's ICs were noted at the time of the site reconnaissance:

- The Site has not changed owners and the land use of the Site has not changed. All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.
- No groundwater was observed being used at the property. No potable or groundwater supply wells were observed.
- No new buildings or structures have been constructed at the property.
- No vegetable gardens or farming is being conducted at the property.

2.4 Review of Engineering Controls

The following observations, related to the ECs were noted during the site reconnaissance:

- The remedial systems are operating as designed at MW-3BR, MW-4BR and MW-5ABR. Maintenance performed is routine and not unusual (ex. Pump failure). No changes to this remedial system are recommended at this time.
- The sub-slab venting system was continuously operated during the reporting period. No changes to this remedial system are recommended at this time.
- No excavation or importation of materials occurred to the areas under the Environmental Easement within the certifying period.

3 Monitoring Plan Compliance Report

3.1 Monitoring Plan Requirements

The monitoring plan requires that wells (MW-2BR, MW-3BR, MW-4BR, MW -5BR and MW-5ABR) are sampled annually and samples analyzed for VOCs. Annual groundwater sampling was completed on August 17, 2023.

The plan also requires that all wells are measured for groundwater elevation to evaluate groundwater flow during both equilibrium conditions (pumps turned off) and pumping conditions. Groundwater elevations during pumping conditions were measured on August 17, 2023, and at equilibrium conditions on September 27, 2023.

3.2 Summary of Monitoring Completed during Reporting Period

Copies of the field sampling logs are provided in **Appendix B**. A potentiometric contour map based pumping conditions is provided as **Figure 1**. Equilibrium conditions are shown as **Figure 2**.

2023 groundwater analytical results are included in **Appendix B**. Groundwater results over time are presented in **Graph 1**.

3.3 Comparisons with Remedial Objectives

There are three principal contaminants present in groundwater: tetrachloroethene, trichloroethene and total dichloroethene. Vinyl chloride is also present in some wells at lesser concentrations. Three of these compounds (trichloroethene, total dichloroethene and vinyl chloride) are degradation products of tetrachloroethene. Review and comparison of the 2023 groundwater analytical results shows the following:

 MW-2BR. Six volatile organic compounds (VOCs) were present in the groundwater sample. In 2023, Dichoroethene is present at slightly lower concentration of 150.21 micrograms per liter (ug/l) than in 2022 (170.43 ug/l). Tetrachloroethene is present at 4.3 ug/l, which is below NY TOGS, and consistent with the previous concentration in 2022 (4.1 ug/l). Trichloroethene is present at 1.8 ug/l, which is below NY TOGS, and below the previous concentration in 2022 (3.6 ug/l). Vinyl chloride is present at 20 ug/l which is lower than the concentration detected in 2022 (46 ug/l).

- MW-3BR. Five VOCs were present in the groundwater sample. In 2023, Dichoroethene was present at 1,204.2 ug/l, which is above NY TOGS, and below the previous concentration in 2022 (5,820 ug/l). Tetrachloroethene was present at 2,800 ug/l, which is lower than the concentration detected 2022 (4,600 ug/l). Trichloroethene was present at 740 ug/l, which is a lower concentration detected 2022 (2,800 ug/l). Vinyl chloride is present at 19 ug/l which is lower than the concentration detected in 2022 (180 ug/l).
- MW-4BR. Four VOCs were present in the groundwater. The concentration of Dichloroethene was lower in 2023 (2,600 ug/l) compared to the 2022 concentration (4,009.9 ug/l). The 2023 concentration of Tetrachloroethene significantly increased (5,100 ug/l) versus 2022 (94 ug/l). In 2023, Trichloroethene significantly increased (980 ug/l) versus 2022 (60 ug/l). Lastly, vinyl chloride was detected at 66 ug/l which is higher than the 2022 sampling (60 ug/l).
- **MW-5BR.** Three VOCs was present in the groundwater sample. The 2023 concentration of dichloroethene (3,908.2 ug/l) increased from the 2022 concentration of 3,008.2 ug/l. Tetrachloroethene is not detected, this concentration is lower than the previous concentration in 2022 (12 ug/l). Trichloroethene is not detected, this concertation is lower than the previous concentration in 2022 (24 ug/l). Vinyl chloride is present at 140 ug/l which is lower than the concentration detected in 2022 (280 ug/l).
- MW-5ABR. Five VOCs were present in the groundwater sample. In 2023, Dichoroethene was present at higher concentration of 4,909.1 ug/l than in 2022 (2,223.8 ug/l). Tetrachloroethene was present at 24 ug/l, which is significantly lower than the concentration detected 2022 (750 ug/l). Trichloroethene was present at 27 ug/l, which is significantly lower than the concentration detected 2022 (500 ug/l). Lastly, vinyl chloride was detected at 44 ug/l which is unchanged from 2022 (45 ug/l).

Field sample logs are attached in **Appendix C**.

3.4 Monitoring Deficiencies

There were no monitoring deficiencies in this period. Groundwater elevations were measured during this period on an annual basis on August 17, 2023 and again on September 27, 2023.

3.5 Conclusions and Recommendations

Groundwater monitoring results show that the remedial objective of on-site hydraulic capture of contaminated groundwater is being met. Based on the potentiometric data, natural groundwater flow (pumps off) forms a slight ridge on the western boundary of the VCP Site. Groundwater appears to flow to the southeast and southwest. With the pumps on the groundwater flow significantly changes; the ridge is gone and groundwater elevations fall toward the three pumping wells.

Groundwater quality objectives have shown an historic decrease in contaminant levels until 2014, when the contaminant concentrations in groundwater increased at monitoring wells MW-2BR and MW-4BR.

Contaminant concentrations decreased again during the 2015-2016 period; however, contaminant concentrations increased overall again during the 2016-2017 period. In 2018, contaminant concentrations decreased in four of the five wells sampled, and increased in one of the site wells sampled. In 2019, contaminant concentrations again decreased in three of the five wells. In 2020, contaminant concentrations again decreased in three of the five wells sampled and analyzed. In 2021-2022, the types of contaminants and concentrations have decreased in a few wells, most wells showed an increase from the previous sample event.

Sample results from 2023 indicate that Site is continuing to dechlorinate at a variable rate. Based on the historic data CVOC concentrations seem to increase or decrease each year. The levels of CVOCs likely change based on:

- the rate of breakdown of TCE into daughter products;
- the rate of desorption of TCE from the soil; and
- the rate of groundwater flow through the soil to the pumping wells.

We expect CVOC concentrations to continue increase and decrease each year. No changes to the monitoring program are recommended at this time.

4 OPERATION & MAINTENANCE (O&M) PLAN COMPLIANCE REPORT

4.1 Components of O&M Plan

Inspections and data recording were completed as described in the Site Management Plan. There were no deficiencies this recording period.

4.2 Summary of O&M Completed During Reporting Period

O&M activities will be summarized and details of O&M actions will be recorded in the monthly inspection reports that are kept onsite. The sub-slab depressurization blowers were recently inspected. This certified inspection form is attached as **Appendix D**.

- In February 2023, a new pump (same pump size and model was replaced) and 55gallon holding tank used to discharge water from the carbon vessel to the sanitary sewer was installed.
- The pump at MW-3BR was replaced on November 2, 2022. The same pump size and model was installed.
- Well disinfection did not occur during the certifying period.
- Carbon replacement did not occur during the certifying period.

4.3 Evaluation of Remedial Systems

4.3.1 Groundwater Pumping System

- Buffalo Business Park continues to operate and maintain the groundwater pumping system. Review of the totalizer information for pumping wells MW-3BR, 4BR and 5ABR for the 2022 2023 reporting period indicates that these wells operated for most of the year (**Table 3**). The combined number of gallons pumped from the three well totalizers was 1,943,600, a significant increase over the last annual reporting period.
- The remedial systems are operating as designed at MW-3BR, MW-4BR and MW-5ABR. Maintenance performed is routine and not unusual (ex. Pump failure). No changes to this remedial system are recommended at this time.
- The groundwater pre-treatment system is operating as designed to meet the BSA discharge limits.
- Buffalo Business Park received renewal of the Buffalo Sewer Authority Permit in November 22, 2021. As part of the permit renewal, post treatment water samples, from the 500-pound activated carbon system, were collected and analyzed for VOCs and mercury in August 2023. The results showed the system is performing as designed; however, an activated carbon replacement is recommended. The analytical results from these sampling events are presented in Appendix E.
- Typical flow rates have been revised from the last certifying period due to a calculation error. The following are typical flow rates observed during the reporting period.

Pumping Well	Average Gallons per Day
MW-3BR	1,200
MW-4BR	60
MW-5ABR	70

4.3.2 Vapor Intercept System

- The sub-slab venting system is also operating as designed.
- In order to better inspect the vapor intercept system, on February 14, 2023, the two
 risers for this system received vacuum pressure detectors. Detectors were installed
 by Buffalo Business Park staff. Monthly pressure readings are provided in **Appendix**C.

4.4 O&M Deficiencies

There are no operational or maintenance deficiencies at this time.

4.5 Conclusions and Recommendations

The remedial system as designed and operated is capturing contaminated groundwater at the site. There are no recommendations for improvement to the remedial system. No changes to the O&M plan are recommended.

5 Conclusions

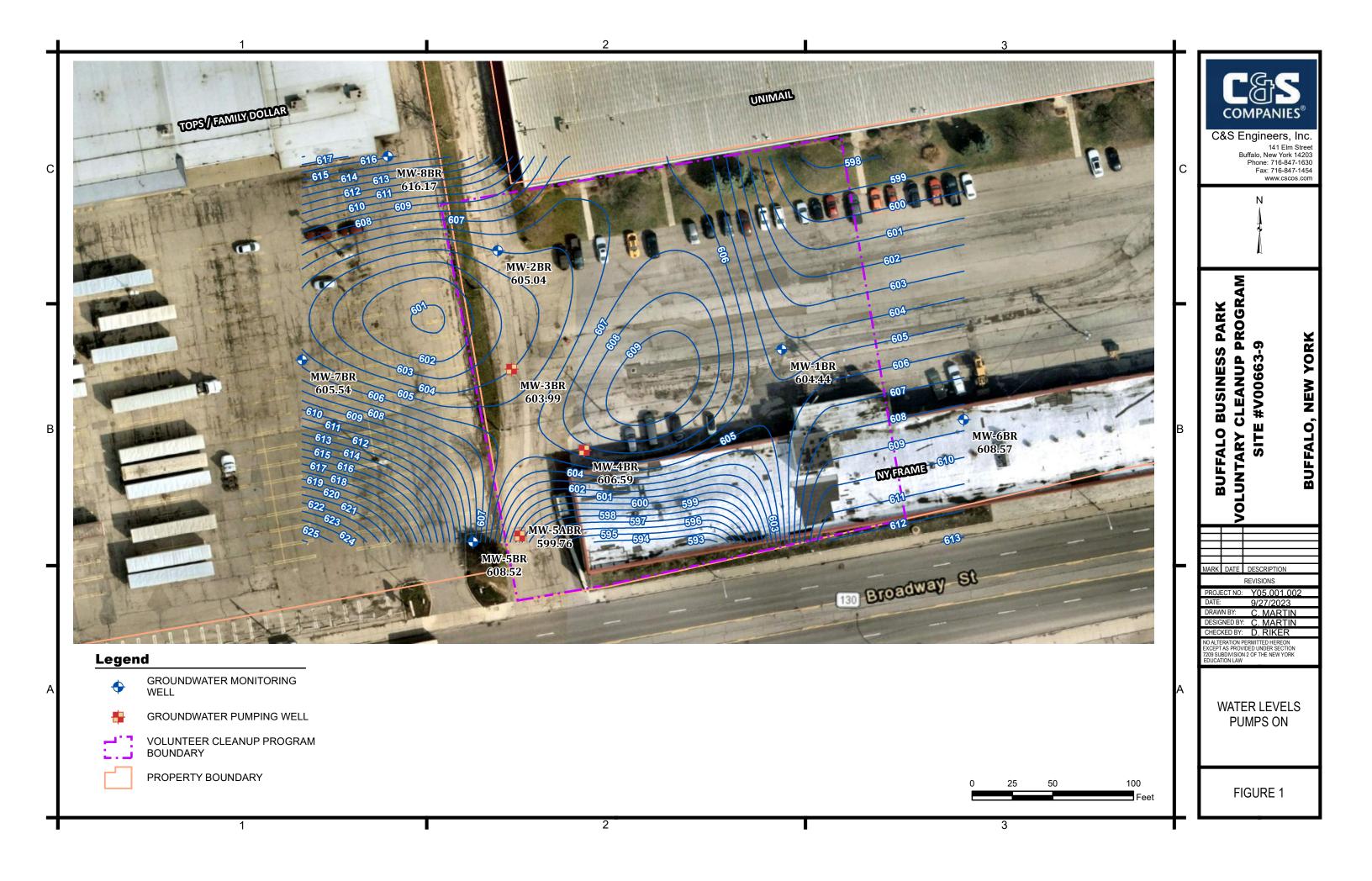
5.1 Compliance with Site Management Plan

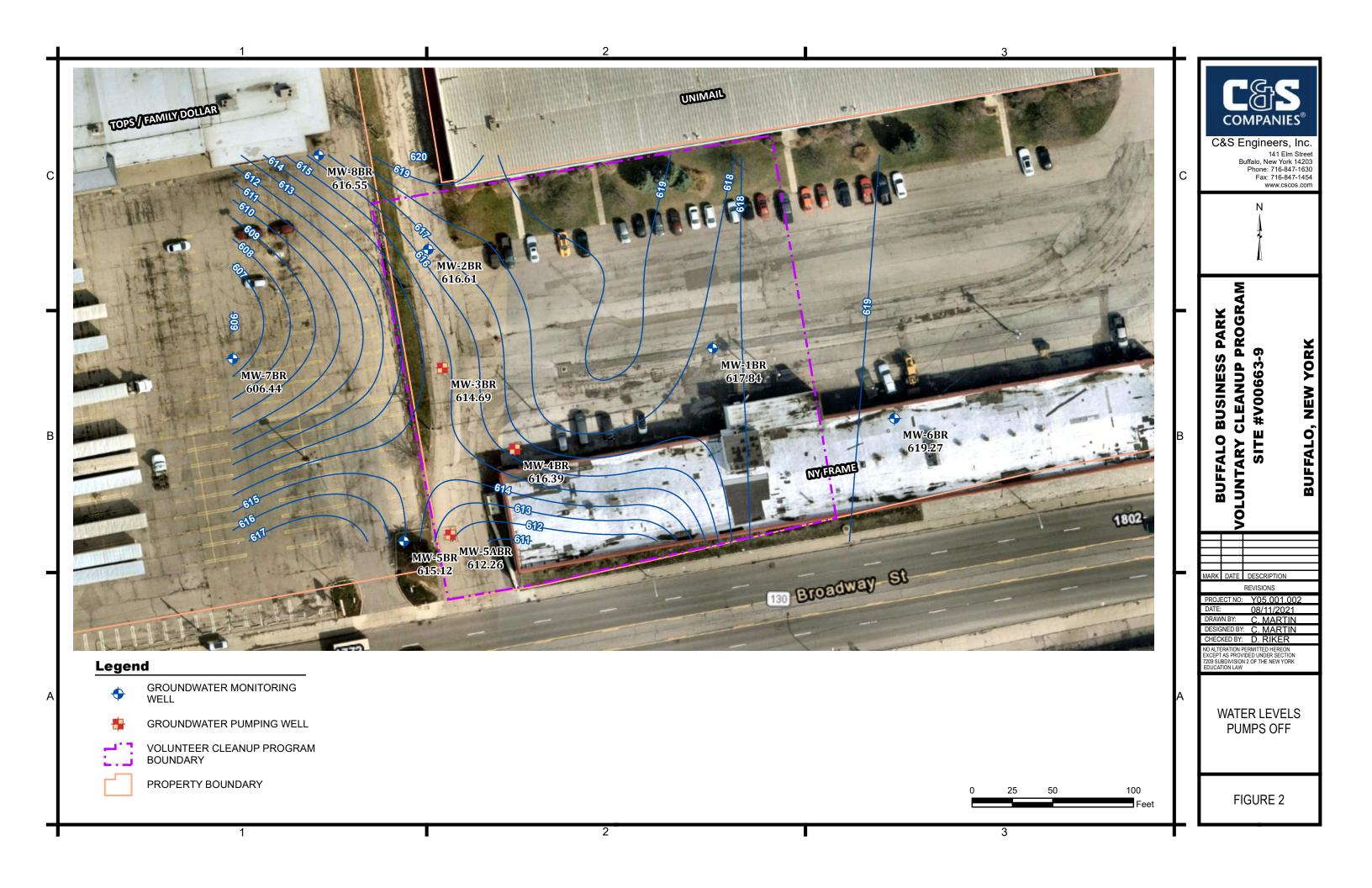
The sub-slab venting system was continuously operational during the 2022 - 2023 period.

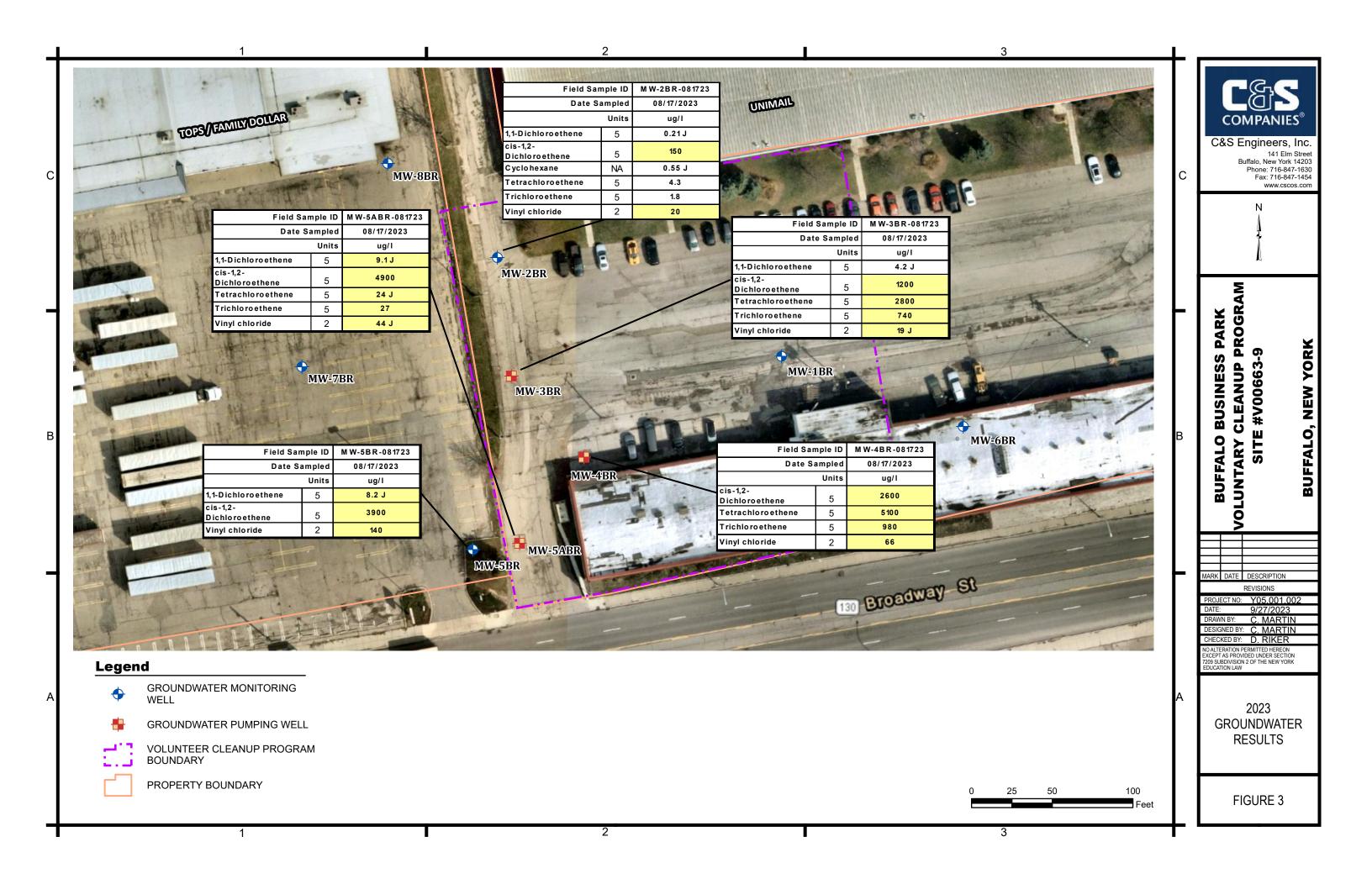
Buffalo Business Park will comply with all aspects of the SMP (IC/EC; O&M and Monitoring) during the next annual reporting period (2024).

No changes to EC/IC Plan are recommended at this time. The IC/E certification is provided in **Appendix A**.

The requirements of the SMP appear to be satisfied.


5.2 Performance and Effectiveness of the Remedy


The remedy has been effective in containing groundwater contamination and preventing contamination from leaving the site. Groundwater quality criteria have not been met and pumping should continue.


In March 2022, at the request of the NYSDEC, C&S provided a work plan to evaluate the effectiveness of the engineering controls. This work has been delayed due to the Site being a candidate for a City of Buffalo redevelopment program. If the Site is selected, the project will enter the BCP. The evaluation will occur under the BCP. It is expected that the site owners will know if they are selected in early 2024.

F:\Project\Y05 - Buffalo Business Park\Y05001001 - Buffalo Business Park EQuIS\Planning-Study\Reports\2021 PERIODIC REVIEW REPORT.docx

FIGURES

TABLES

BUFFALO BUSINESS PARK WATER LEVELS PUMPS TURNED ON 8/17/2023

WELL	RISER	DEPTH TO	WATER LEVEL
NUMBER	ELEVATION (FT)	WATER (FT)	ELEVATION (FT)
MW-1 BR	624.44	20.00	604.44
MW-2 BR	625.04	20.00	605.04
MW-3 BR *	623.99	20.00	603.99
MW-4 BR *	622.79	16.20	606.59
MW-5 ABR *	619.76	20.00	599.76
MW-5 BR	622.42	13.90	608.52
MW-6 BR	623.57	15.00	608.57
MW-7 BR	623.34	17.80	605.54
MW-8 BR	625.87	9.70	616.17

^{*} Pumping Wells

Groundwater levels were provided by Buffalo Business Park

Monthly groundwater levels are recorded and kept in a log onsite

BUFFALO BUSINESS PARK WATER LEVELS PUMPS TURNED OFF 9/27/2023

WELL	RISER	DEPTH TO	WATER LEVEL
NUMBER	ELEVATION (FT)	WATER (FT)	ELEVATION (FT)
MW-1 BR	624.44	6.60	617.84
MW-1 BR	625.04	8.43	616.61
MW-3 BR *	623.99	9.30	614.69
MW-4 BR *	622.79	6.40	616.39
MW-5 ABR *	619.76	7.50	612.26
MW-5 BR	622.42	7.30	615.12
MW-6 BR	623.57	4.30	619.27
MW-7 BR	623.34	16.90	606.44
MW-8 BR	625.87	9.32	616.55

^{*} Pumping Wells

Groundwater levels were provided by Buffalo Business Park

PUMPING WELL TREATMENT SYSTEM TOTALIZERS BUFFALO BUSINESS PARK

DATE	MW-4 BR	MW-2 BR	MW-3 BR	MW-5A BR	Treatment
10/1/2009	137,280	NA	NA	NA	System
12/15/2009	148,600		NA	NA	Totalizer
9/8/2010	194,590	NA	NA	NA	
9/15/2010	NA	NA	NA		
4/27/2011	231,020	1,220	NA	44,170	
5/31/2012	256,870	4,930	NA	116,430	
5/8/2013	289,130	5,180	NA	170,960	
5/15/2014	403,380	5,310	NA	224,850	
1/19/2015	421,440	5,310	NA	254,600	
5/27/2015	421,460	5,310	NA	272,660	
7/17/2015	424,105	NA	NA	279,160	
1/7/2016	424,130	NA	60	279,160	
3/9/2016	424,140	NA	18,650	287,420	
5/26/2016	424,140	NA	107,920	296,980	
9/22/2016	424,220	NA	123,410	297,650	
12/23/2016	58	NA	235,347	305,340	
5/17/2017	19,531	NA	490,000	310,500	
11/15/2018		NA			
11/29/2018	80,460	NA	687,690	320,500	
3/19/2019		NA			57,955
8/19/2019		NA			96,495
10/30/2019	80,460	NA	30	64,900	
11/28/2019		NA			121,350
10/21/2020	130,169	NA	365,940	102,990	535,500
8/24/2021	134,619	NA	787,330	111,910	923,100
9/26/2022	223,760	NA	NA	148,910	372,670
8/17/2023	256,490	NA	1,471,140	181,150	1,943,600

MW-2 BR - pump removed due to poor recharge - 5/27/15

MW-3 BR - pump started - 1/7/16

MW-3 BR - pump removed due to issues - 6/24/22; new pump installed 9/21/2022

Totalizer readings are recorded monthly and kept in a log onsite

HISTORIC GROUNDWATER ANALYTICAL RESULTS BUFFALO BUSINESS PARK

		Well ID	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR	MW2-BR
	Date			5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/30/2019	8/24/2021
Parameter	Units	Criteria										
1,2-Dichloroethene (cis)	ug/l	5	17	100	2300	4800	2500	1600	450	280	133	190
1,2-Dichloroethene, Total	ug/l			100	2300	4800	2500	1600				
Tetrachloroethene	ug/l	5	20	8.1	5500	18,000	95	42				44
Trichloroethene	ug/l	5	2.2	0.92J	1000	1,600	69					16
Vinyl chloride	ug/l	2							67	25	14.7	15
Total VOC			39	208	11100	29200	5164	3242	517	305	148	265

		Well ID	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR	MW3-BR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
1,2-Dichloroethene (cis)	ug/l	5	220	1800	520	1,400	1100	1800	5400	5800	2390	5900
1,2-Dichloroethene, Total	ug/l			1800	520	1400	1100	1800				
Tetrachloroethene	ug/l	5	1400	16000	4100	21,000	4400	4300	1300	2800	3170	3000
Trichloroethene	ug/l	5	78	810	180	1,200	630	1100	510	1000	995	1800
Vinyl chloride	ug/l	2							630	240	76.4	
Total VOC			1698	20410	5320	25000	7230	9000	7840	9840	6631	10700

		Well ID	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR	MW4-BR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
2-Butanone (MEK)										150J		
1,1-Dichloroethene								12J				
1,2-Dichloroethene (cis)	ug/l	5	730	990	1700	890	2900	3300	2500	2300	2760	2400
1,2-Dichloroethene, Total	ug/l			1000	1700	890	2900	3300				
Tetrachloroethene	ug/l	5	13000	11000	12000	20,000	520	7100	5500	1300	1960	4900
Trans-1,2-Dichloroethene							40	56				
Trichloroethene	ug/l	5	1500	1600	2200	2,600	290	2200	1700	870	877	1300
Vinyl chloride	ug/l	2					130				52.5	
m , luoc	•	•	4 = 0.00	4.4500	45600	0.4000	6500	45056	0500	4.450	= (10 =	0600

Total VOC 15230 14590 17600 24380 6780 15956 9700 4470 5649.5 8600

HISTORIC GROUNDWATER ANALYTICAL RESULTS BUFFALO BUSINESS PARK

		Well ID	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR	MW5-BR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
1,1-Dichloroethene						15						
1,2-Dichloroethene (cis)	ug/l	5	3500	2100	740	3,000	3700	6300	3100	3500	6080	4700
1,2-Dichloroethene, Total	ug/l			2100	750	3,000	3700	6300				
Tetrachloroethene	ug/l	5	220	320	110	2,100	1500		12000	510	<100	
Trichloroethene	ug/l	5	160	290	77	1,000	1300	190	2700	290	<100	
Vinyl chloride	ug/l	2		100	110	130		130		170	178	
Total VOC			3880	4910	1787	9245	10200	12920	17800	4470	6258	4700

		Well ID	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR	MW5-ABR
		Date	5/31/2012	5/9/2013	5/9/2014	5/28/2015	5/27/2016	5/18/2017	11/13/2018	10/30/2019	10/22/2020	8/24/2021
Parameter	Units	Criteria										
1,1-Dichloroethene						9.6						
1,2-Dichloroethene (cis)	ug/l	5	1900	870	170	1,500	2100	5100	2800	2900	6070	12000
1,2-Dichloroethene, Total	ug/l			880	170	1,500	2100	5100				
Tetrachloroethene	ug/l	5	8900	1300	410	12,000	4000	180		3900	<100	
Trichloroethene	ug/l	5	2000	370	110	2,300	1400	1400		960	353	320
Vinyl chloride	ug/l	2				76			80	39J	<100	
Total VOC			12800	3420	860	17385.6	9600	11780	2880	7760	6423	12320

BUFFALO BUSINESS PARK GROUNDWATER SUMMARY 2022

	NY-AWQS	SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX: NY-TOGS-GA	MW-5BR-07 7/20/202 WATER	22	DUP-072 7/20/20 WATE)22	MW-5ABR-07 7/20/202 WATER	22	MW-4BR-0720 7/20/2022 WATER	22	MW-3BR-072 7/20/202 WATER		MW-2BR-072 7/20/202 WATER	22	TRIP BL 7/20/2 WATI	2022
	(ug/l)	(ug/l)	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg
VOLATILE ORGANICS	Cary	(-8/-)		8		8						<u> </u>				
1,1,1-Trichloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	1	1	ND		ND		ND		ND		ND		ND		ND	
1,1-Dichloroethane	5	5	ND		ND		ND		ND		ND		ND		ND	
1,1-Dichloroethene	5	5	8.2	I	10	I	5.8	I	9.9	I	20	I	0.43	I	ND	
1,2,4-Trichlorobenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,2,4-Trimethylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,2-Dibromo-3-chloropropane	0.04	0.04	ND	UI	ND		ND	UI	ND		ND		ND		ND	
1,2-Dibromoethane	0.0006	0.0006	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloroethane	0.6	0.6	ND		ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane	1	1	ND		ND		ND		ND		ND		ND		ND	
1,3,5-Trimethylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
1,3-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3	3	ND		ND		ND		ND		ND		ND		ND	
2-Butanone	50	50	ND		ND		ND		ND		ND		ND		ND	
2-Hexanone	50	50	ND		ND		ND		ND		ND		ND		ND	
4-Methyl-2-pentanone	NA	NA	ND		ND		ND		ND		ND		ND		ND	
Acetone	50	50	ND		ND		ND		ND		ND		ND		2.8	
Benzene	1	1	ND		ND		ND		ND		ND		0.26	I	ND	
Bromodichloromethane	50	50	ND	UI	ND		ND	UI	ND		ND		ND		ND	
Bromoform	50	50	ND		ND		ND	-,	ND		ND		ND		ND	
Bromomethane	5	5	ND	UI	ND	UI	ND	UI	ND	UI	ND	UI	ND	UI	ND	UJ
Carbon disulfide	60	60	ND		ND		ND	-,	ND	-,	ND		ND		ND	
Carbon tetrachloride	5	5	ND		ND		ND		ND		ND		ND		ND	
Chlorobenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Chloroethane	5	5	ND	UJ	ND		ND	UJ	ND		ND		ND		ND	
Chloroform	7	7	ND		ND		ND		ND		ND		ND		ND	
Chloromethane	NA	NA	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ
cis-1,2-Dichloroethene	5	5	3000	J	3300		2200		4000		5800		170		ND	
cis-1,3-Dichloropropene	0.4	0.4	ND		ND		ND		ND		ND		ND		ND	
Cyclohexane	NA	NA	ND		ND		ND		ND		ND		1.1	J	ND	
Dibromochloromethane	50	50	ND		ND		ND		ND		ND		ND	-	ND	
Dichlorodifluoromethane	5	5	ND		ND	UJ	ND		ND	UJ	ND	UJ	ND	UJ	ND	UJ
Ethylbenzene	5	5	ND		ND	İ	ND		ND		ND		ND		ND	
Freon-113	5	5	ND		ND	İ	ND		ND		ND		ND		ND	
Isopropylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Methyl Acetate	NA	NA	ND		ND		ND		ND		ND		ND		ND	
Methyl cyclohexane	NA	NA	ND		ND		ND		ND		ND		0.44	J	ND	
Methyl tert butyl ether	10	10	ND		ND		ND		ND		ND		ND		ND	
Methylene chloride	5	5	ND		ND		ND		ND		ND		ND		ND	
n-Butylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
n-Propylbenzene	5	5	ND		ND		ND		ND		ND		ND		ND	
Naphthalene	10	10	ND	UI	ND		ND	UI	ND		ND		ND		ND	

BUFFALO BUSINESS PARK GROUNDWATER SUMMARY 2022

		SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX:	MW-5BR-072 7/20/202 WATER		DUP-072 7/20/20 WATE	22	MW-5ABR-072 7/20/2022 WATER		MW-4BR-072022 7/20/2022 WATER	7/20/202 WATER	2	MW-2BR-072 7/20/202 WATER	.	TRIP BLAI 7/20/202 WATER	22
	NY-AWQS	NY-TOGS-GA													
	(ug/l)	(ug/l)	Result	Flg	Result	Flg	Result	Flg	Result F	g Result	Flg	Result	Flg	Result	Flg
VOLATILE ORGANICS															
o-Xylene	5	5	ND		ND		ND		ND	ND		ND		ND	
p-Isopropyltoluene	5	5	ND		ND		ND		ND	ND		ND		ND	
p/m-Xylene	5	5	ND		ND		ND		ND	ND		ND		ND	
sec-Butylbenzene	5	5	ND		ND		ND		ND	ND		ND		ND	
Styrene	50	5	ND		ND		ND		ND	ND		ND		ND	
tert-Butylbenzene	5	5	ND		ND		ND		ND	ND		ND		ND	
Tetrachloroethene	5	5	12	J	320	J	750		94	4600		4.1		ND	
Toluene	5	5	ND		ND		ND		ND	ND		ND		ND	
trans-1,2-Dichloroethene	5	5	24	J	ND		18	J	ND	ND		ND		ND	
trans-1,3-Dichloropropene	0.4	0.4	ND		ND		ND		ND	ND		ND		ND	
Trichloroethene	5	5	24	J	310	J	500		60	2800		3.6		ND	
Trichlorofluoromethane	5	5	ND		ND		ND		ND	ND		ND		ND	
Vinyl chloride	2	2	280	J	110	J	45	J	60	180		46		ND	
Total	VOC		3348.2		4050		3518.8		4223.9	13400		225.93		2.8	

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

Qualifier Key

NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) I The lower value for the two columns has been reported due to obvious interference.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- RE Analytical results are from sample re-extraction.
- R Analytical results are from sample re-analysis.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria. U Not detected at the reported detection limit for the sample.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- S Analytical results are from modified screening analysis.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

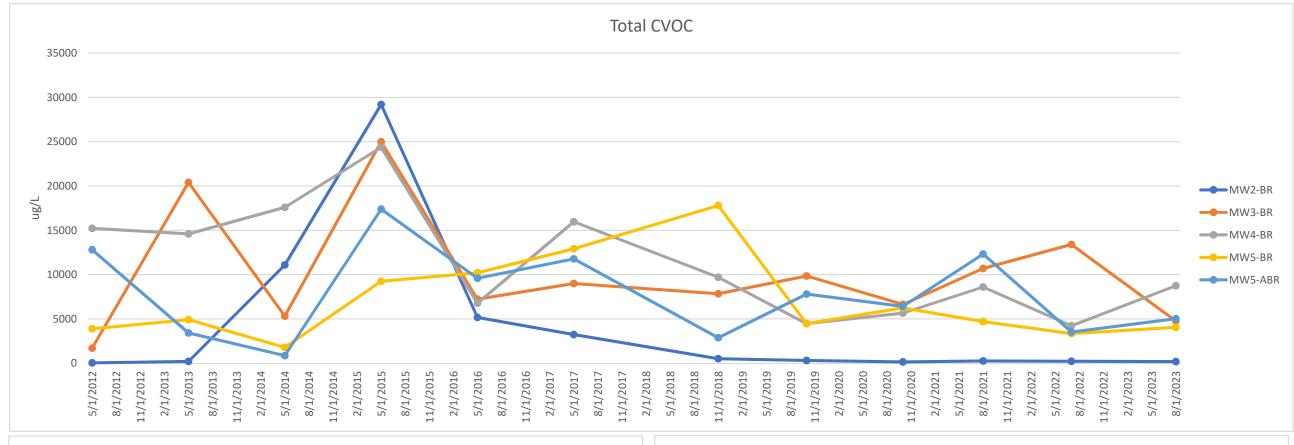
BUFFALO BUSINESS PARK GROUNDWATER SUMMARY 2023

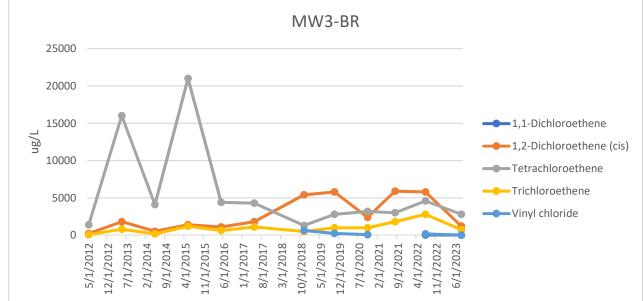
		SAMPLE ID:	MW-5BR-08	1723	DUP-081723	MW-5AB	R-081723	MW-4BR-	081723	MW-3BR-0	81723	MW-2BF	R-081723	TRIP B	LANK
	COLL	ECTION DATE:	8/17/202		8/17/2023	8/17/		8/17/2		8/17/2			/2023	8/17/	
						1 .									
		MPLE MATRIX:	WATER		WATER	WA	IEK	WAT	EK	WATE	:K	WA	ATER	WA ⁻	IEK
	NY-AWQS	NY-TOGS-GA													
	(ug/l)	(ug/l)	Result	Flg	Result Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg
VOLATILE ORGANICS															
1,1,1-Trichloroethane	5	5	ND		ND	ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	5	5	ND		ND	ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	1	1	ND		ND	ND		ND		ND		ND		ND	
1,1-Dichloroethane	5	5	ND		ND	ND		ND		ND		ND		ND	
1,1-Dichloroethene	5	5	8.2	J	ND	9.1	J	ND		4.2	J	0.21	J	ND	
1,2,4-Trichlorobenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
1,2,4-Trimethylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	-
1,2-Dibromo-3-chloropropane	0.04	0.04	ND		ND	ND		ND		ND		ND		ND	
1,2-Dibromoethane	0.0006	0.0006	ND		ND	ND		ND		ND		ND		ND	
·						+									
1,2-Dichlorobenzene	3	3	ND		ND	ND		ND		ND		ND		ND	
1,2-Dichloroethane	0.6	0.6	ND		ND	ND		ND		ND		ND		ND	
1,2-Dichloropropane	1	1	ND		ND	ND		ND		ND		ND		ND	
1,3,5-Trimethylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
1,3-Dichlorobenzene	3	3	ND		ND	ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3	3	ND		ND	ND		ND		ND		ND		ND	
2-Butanone	50	50	ND		ND	ND		ND		ND		ND		ND	
2-Hexanone	50	50	ND		ND	ND		ND		ND		ND		ND	
4-Methyl-2-pentanone	NA	NA	ND		ND	ND		ND		ND		ND		ND	
Acetone	50	50	ND		ND	ND		ND		ND		ND		6.5	
Benzene	1	1	ND		ND	ND		ND		ND		ND		ND	
Bromodichloromethane	50	50	ND		ND	ND		ND		ND		ND		ND	
Bromoform	50	50	ND		ND	ND		ND		ND		ND		ND	
-						+									
Bromomethane	5	5	ND		ND	ND		ND		ND		ND		ND	
Carbon disulfide	60	60	ND		ND	ND		ND		ND		ND		ND	
Carbon tetrachloride	5	5	ND		ND	ND		ND		ND		ND		ND	
Chlorobenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
Chloroethane	5	5	ND		ND	ND		ND		ND		ND		ND	
Chloroform	7	7	ND		ND	ND		ND		ND		ND		ND	
Chloromethane	NA	NA	ND		ND	ND		ND		ND		ND		ND	
cis-1,2-Dichloroethene	5	5	3900		4200	4900		2600		1200		150		ND	
cis-1,3-Dichloropropene	0.4	0.4	ND		ND	ND		ND		ND		ND		ND	
Cyclohexane	NA	NA	ND		ND	ND		ND		ND		0.55	J	ND	
Dibromochloromethane	50	50	ND		ND	ND		ND		ND		ND		ND	
Dichlorodifluoromethane	5	5	ND		ND	ND		ND		ND		ND		ND	
Ethylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
Freon-113	5	5	ND		ND	ND		ND		ND		ND		ND	
Isopropylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
						_								-	
Methyl Acetate	NA NA	NA NA	ND		ND	ND		ND		ND		ND		ND	
Methyl cyclohexane	NA 10	NA 10	ND		ND	ND		ND		ND		ND		ND	
Methyl tert butyl ether	10	10	ND		ND	ND		ND		ND		ND		ND	
Methylene chloride	5	5	ND		ND	ND		ND		ND		ND		ND	
n-Butylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
n-Propylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
Naphthalene	10	10	ND		ND	ND		ND		ND		ND		ND	
o-Xylene	5	5	ND		ND	ND		ND		ND		ND		ND	
p-Isopropyltoluene	5	5	ND		ND	ND		ND		ND		ND		ND	
p/m-Xylene	5	5	ND		ND	ND		ND		ND		ND		ND	
sec-Butylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
Styrene	5	930	ND		ND	ND		ND		ND		ND		ND	
tert-Butylbenzene	5	5	ND		ND	ND		ND		ND		ND		ND	
Tetrachloroethene	5	5	ND		ND	24	J	5100		2800		4.3		ND	-
		5	ND		ND	ND	-	ND		ND		ND		ND	
	_	J			ND	ND						ND			
Toluene	5	_	NID.		1 1311 /	i ND		ND		ND		1 1/11/		ND	
trans-1,2-Dichloroethene	5	5	ND		 	+	i							N.D.	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	5 0.4	0.4	ND		ND	ND		ND		ND		ND		ND	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	5 0.4 5	0.4 5	ND ND		ND ND	ND 27		ND 980		ND 740		ND 1.8		ND	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane	5 0.4 5 5	0.4 5 5	ND ND ND		ND ND ND	ND 27 ND		ND 980 ND		740 ND		ND 1.8 ND		ND ND	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene	5 0.4 5	0.4 5	ND ND		ND ND	ND 27	J	ND 980		ND 740	J	ND 1.8		ND	

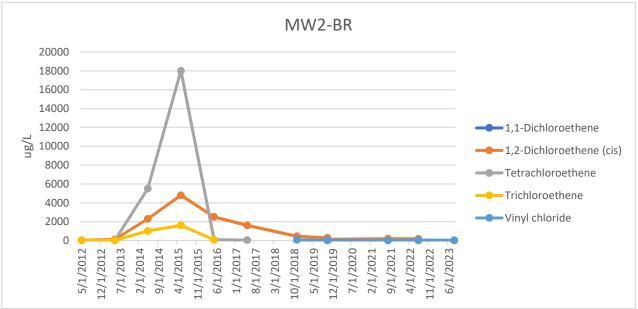
NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

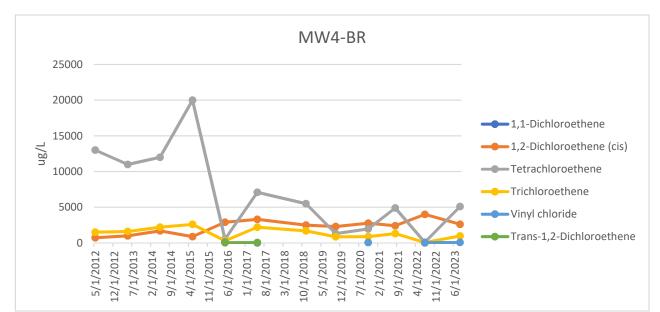
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

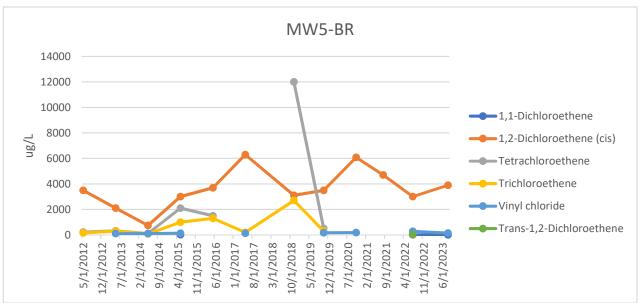

 Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) I The lower value for the two columns has been reported due to obvious interference.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process. E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- RE Analytical results are from sample re-extraction.
- R Analytical results are from sample re-analysis. D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria. U Not detected at the reported detection limit for the sample
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- B Analytical results are from modified screening analysis.

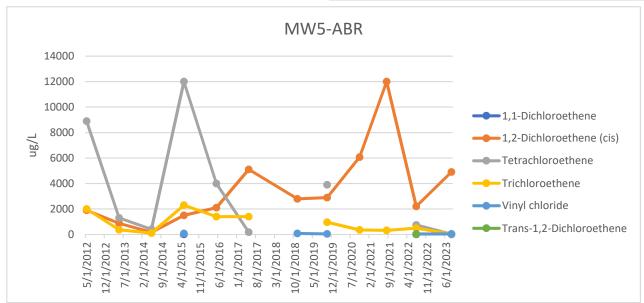

 B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentration found in the blank. For moderation found in the blank. For moderation found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have


GRAPHS

BUFFALO BUSINESS PARK SITE NYSDEC SITE #V00663-9







BUFFALO BUSINESS PARK SITE NYSDEC SITE #V00663-9

APPENDICES

APPENDIX A

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	No.	V00663	Site Details	Box 1	
Site	Name Bu	ıffalo Business Pa	rk		
City. Cou	Address: /Town: Bu inty:Erie Acreage:		Zip Code: 14212-2001		
lep	orting Perio	od: September 01,	2022 to September 01, 2023		
				YES	NO
	Is the infor	mation above corre	ct?	X	
	If NO, inclu	ude handwritten abo	ove or on a separate sheet.		
		•	perty been sold, subdivided, merged, or undergone a is Reporting Period?		X
		been any change of CRR 375-1.11(d))?	f use at the site during this Reporting Period		X
			or local permits (e.g., building, discharge) been issued is Reporting Period?		X
			stions 2 thru 4, include documentation or evidenc n previously submitted with this certification form		
	Is the site	currently undergoing	g development?		X
				Box 2	
				YES	NO
		ent site use consiste al and Industrial	ent with the use(s) listed below?	X	
	Are all ICs	in place and function	oning as designed?		
	IF TI		THER QUESTION 6 OR 7 IS NO, sign and date below TE THE REST OF THIS FORM. Otherwise continue.	and	
C	orrective M	leasures Work Plan	must be submitted along with this form to address	these iss	sues.
Sian	nature of Ov	vner. Remedial Party	or Designated Representative Date		

SITE NO. V00663 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

Portion of 101.19-1-5.1 Gary Crewson

Soil Management Plan Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan

O&M Plan

The deed restriction was filed on 11-19-2010. The Controlled Property (1.413 acres) is subject to the SMP. The Controlled Property is the southwest corner of the entire Buffalo Business Park property.

Restrictions:

- 1. The Controlled Property may be used for only industrial and commercial purposes, excluding day care, child care, and medical care uses.
- 2. The groundwater beneath the Controlled Property may not be used for potable or non-potable purposes.
- 3. The SMP must be implemented for the Controlled Property.
- 4. Soils at the Controlled Property shall be managed in accordance with the SMP.

Box 4

Description of Engineering Controls

Parcel <u>Engineering Control</u>

Portion of 101.19-1-5.1

Groundwater Treatment System

Vapor Mitigation

- 1. SSDS: A sub-slab depressurization system (SSDS) is installed in the western end of the NY frame building consisting of two active vents.
- 2. Pumping System: Three bedrock monitoring wells MW-3BR, MW-4BR, and MW-5ABR are operated as pumping wells. Recovered groundwater is discharged to BSA.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	X —
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X \square
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. V00663

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 Veffrey Crewson at 1800 print name	Broadway, Buffalo, NY 14212 print business address
am certifying as Owher	(Owner or Remedial Party)
for the Site named in the Site Details Section of this Signature of Owner, Remedial Party, or Designated Rendering Certification	9/28/2023

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Cody Martin	at 141 Elm Street,	Suite 100, B	uffalo, NY			
print name						
am certifying as a Qualified Environment	tal Professional for the _	Owner				
		(Owner or Ren	nedial Party)			
Cochy A Mit			9/26/2023			
Signature of Qualified Environmental Protection of Remedial Party, Rendering		amp lequired for PE)	Date			

APPENDIX B LABORATORY DATA PACKAGE

DATA USABILITY SUMMARY REPORT (DUSR)

Buffalo Business Park Buffalo, NY Project # Y05

SDG: L2347781

6 Water Samples and 1 Trip Blank

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 **Attention: Cody Martin**

September 2023

Table of Contents

			Page No			
REVI	EWER'S NARRATIV	E				
1.0	SUMMARY		1			
2.0	INTRODUCTION		1			
3.0	SAMPLE AND ANA	LYSIS SUMMARY	2			
4.0	GUIDANCE DOCU	MENTS AND DATA REVIEW CRITERIA	2			
5.0	DATA VALIDATION QUALIFIERS					
6.0	RESULTS OF THE I	DATA REVIEW	4			
7.0	TOTAL USABLE DA	ATA	4			
APPI	ENDIX A ENDIX B ENDIX C	Validated Analytical Results Laboratory QC Documentation Validator Qualifications				

Tables

- Table 4-1 Data Validation Guidance Documents
- Table 4-2 Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

Table 6-1 VOCs

REVIEWER'S NARRATIVE C&S Companies SDG L2347781 Buffalo Business Park

The data associated with this Sample Delivery Groups (SDG) L2347781, analyzed by Alpha Analytical, Westborough, MA have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Míchael K. Perry	Date:	9/25/2023	
<u> </u>	Michael K. Perry			
	Chemist			

1.0 EVENT SUMMARY

SITE: Buffalo Business Park

Buffalo, NY Project #: Y05

SAMPLING DATEs: August 17, 2023

SAMPLE TYPE: 6 water samples and 1 trip blank

LABORATORY: Alpha Analytical

Westborough, MA

SDG No.: SDG L2347781

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,

Compliance with established analyte holding times,

Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,

Adherence to established analytical protocols,

Conformance of data summary sheets with raw analytical data, and

Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for 6 water samples and 1 trip blank collected on August 17, 2023. These samples were analyzed for Volatile Organic Compounds (VOCs).

All laboratory analyses were submitted to Alpha Analytical, Westborough, MA and analyzed as SDG L2347781. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES)	USEPA SOP HW-3a, Rev. 1	September 2016
Metals (Hg & CN)	USEPA SOP HW-3c, Rev. 1	September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances	* NYSDEC	January 2021
(PFAS)	** US Dept. of Defense	November 2022
Radiological Analysis		
Uranium	USEPA Method 908.0	June 1999
Radium-226	USEPA Method 903.1	1980
General Chemistry Parameters	per NYSDEC ASP	July 2005

^{*} Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

^{**} Data Validation Guidelines Module 6: Data Validation Procedures for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-24

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

TABLE 4-2

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)	Radiological (U and Ra)
Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation
Holding Time	Holding Time
Canister Certification	Sample Specific Yield
Instrument Tuning	Required Detection Limit
Initial Calibration and	Laboratory Control Sample
Instrument Performance	Matrix Spikes
Daily Calibration	Method Blank
Blanks	Instrument Calibration
Lab Control Sample	
Field Duplicate	

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the concentration of the analyte in the sample.

 (The magnitude of any value associated with the result is not determined by data validation).
- J+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Table 6-1. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG L2347781, seven samples were analyzed and results were reported for 406 analytes. Even though some results were flagged with a "J" as estimated, all results (100 %) are considered usable. See the summary table for the analyses that have been rejected and qualified and the associated QC reasons.

SDG L2347781

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
MW-5BR-081723 DUP-081723 MW-5ABR-081723 MW-4BR-081723 MW-3BR-081723 MW-2BR-081723 Trip Blank	Bromomethane Dichlorodifluoromethane Acetone Methyl acetate	J detects UJ non-detects	ICV and/or CCV > QC limits	Data are estimated
Trip blank (RE)	Bromomethane Dichlorodifluoromethane Acetone Methyl acetate 2-Butanone Naphthalene	J detects UJ non-detects	ICV and/or CCV > QC limits	Data are estimated

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL


Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2347781

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: BUFFALO BUSINESS PARK

Project Number: Y05

Lab Number: L2347781 **Report Date:** 08/31/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2347781-01	MW-5BR-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 09:10	08/17/23
L2347781-02	DUP-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 09:10	08/17/23
L2347781-03	MW-5ABR-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 12:05	08/17/23
L2347781-04	MW-4BR-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 09:55	08/17/23
L2347781-05	MW-3BR-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 10:20	08/17/23
L2347781-06	MW-2BR-081723	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 11:20	08/17/23
L2347781-07	TRIP BLANK	WATER	180 BROADWAY, BUFFALO, NY	08/17/23 00:00	08/17/23

Project Name:BUFFALO BUSINESS PARKLab Number:L2347781Project Number:Y05Report Date:08/31/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2347781-07: The Trip Blank has a result for acetone present above the reporting limit. The sample was reanalyzed and did not confirm the original results. The results of both analyses are reported.

The WG1819403-6/-7 MS/MSD recoveries, performed on L2347781-01, are outside the acceptance criteria for cis-1,2-dichloroethene (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Melissa Sturgis

Report Date: 08/31/23

Title: Technical Director/Representative

ansfield, MA 02048 320 Forbes Blvd (EL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Rule Project Location: 18	GALD Ru	Hell Marie				0	18123		1L2347781	
EL: 508-822-9300	Project Name: Bur	GALD RU				Deliverable	s	TE DE	NAME OF	Billing Information	(3) H
AX: 508-822-3288		1,000	SINESS P	alle		ASP-	A	Do AS	P-B	Same as Client	Info
	10	O BROAD			NY	EQui:	S (1 File)	☐ EC	ulS (4 File)	PO#	
	Project # YOS		1.		1	Other					
es	(Use Project name as	Project #)				Regulatory	Requireme	The latest lates		Disposal Site Inform	ation
57.	Project Manager: /	ICH BACK	capt			☐ NY TO	GS	M NA	Part 375		
	ALPHAQuote #:	101 00 101				AWQ:	Standards	□ NY	CP-51	applicable disposal facil	ties.
3520	Turn-Around Time				divide	NY Re	stricted Use	Oth	er	Disposal Facility:	
	Standa	rd 🗓	Due Date	1		NY Un	restricted Us	e		□ NJ 🖾	NY
CSCOS. COM	Rush (only if pre approve	ed) 🔲	# of Days	\$		☐ NYC S	ewer Discha	rge		Other:	
reviously analyze	ed by Alpha					ANALYSIS	-			Sample Filtration	
	,	1W-5B	R-081	723		se voc				□ Done □ Lab to do Preservation □ Lab to do (Please Specify bel	t a l B o t
Con	male ID	Coll	ection	Sample	Sampler's	2					t t
Sar	mpie ID	Date	Time	Matrix	Initials	S .				Sample Specific Comm	nents e
W-5BR-0	81727	8/17/23	9.10	600	RB	K					3
		8/11/23	9:10	Gw	PB	F					3
15 - OKI	723	8/17/23	9:10	BW	no	×					3
ISD - OKT	723	8/17/27	9:10	GW	RB	4					3
		1/17/23	12:05		RB	×					3
		8/17/23	9:55	-	CB	7					3
W-3BR	- 081727	8/0/23	10:20		N.	×					3
w-2B1C-	0817 23	8/17/23	11:20		120	×					3
MD BLAN	UC	8/17/23	1:00	aw	PB	У					2
astic	Mansfield: Certification	No: MA015	Date/ 8/17/23	Р	reservative	B Received By:		3/12/23	1350	and completely. So not be logged in an turnaround time clo start until any amb resolved. BY EXEC THIS COC, THE C HAS READ AND A TO BE BOUND BY	amples can ad ack will not guities are CUTING LIENT GREES ALPHA'S
Service Servic	ST. 3526 CSCOS. COT reviously analyze irements/comm D COIIC AL. Sal W-582-0 15-081 SD-081 SD-08	ALPHAQuote #: 3520 ALPHAQuote #: Turn-Around Time Standa Rush (only if pre approve reviously analyzed by Alpha irements/comments: D COLLECTED FROM AL. Sample ID W-586-0817-27 OUP-OS 17-23 ISD-0817-23 W-586-0817-23 W-586-0817-23 W-386-0817-23 W-38	ALPHAQuote #: Standard XI Rush (only if pre approved) reviously analyzed by Alpha irements/comments: D COLLECTED FROM MW-58 AL. Sample ID Coll Date W-58C-081727 SIG123 SSD-081723 SIG123 SSD-081723 SIG123 SSD-081723 SIG123 S	ALPHAQuote #: 3520 Turn-Around Time: Standard A Due Date Rush (only if pre approved) # of Days reviously analyzed by Alpha irrements/comments: D COLIC ACCUL FROM MW-5 BiL-08 I AL. Sample ID Collection Date Time W-5 BiL-08 I 723 9/10 OUP-08 1723 9/10	Project Manager: / Lick Backers	Project Manager: /// Racker ALPHAQuote #: 357. Project Manager: /// Racker ALPHAQuote #: Standard XI Due Date: Rush (only if pre approved) # of Days: reviously analyzed by Alpha	NYTO ALPHAQuote #: ANGLE NY TOGS	NY TOS	NY TOGS	Project Manager:	

GC/MS 8260 Analysis

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-01D Date Collected : 08/17/23 09:10
Client ID : MW-5BR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:26

Dilution Factor : 40 Sample Matrix : WATER **Analytical Method** : 1,8260D Analyst : LAC Lab File ID Instrument ID : ELAINE : VE230823A15 Sample Amount GC Column : RTX-502.2 : 0.25 ml

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	100	28.	U	
75-34-3	1,1-Dichloroethane	ND	100	28.	U	
67-66-3	Chloroform	ND	100	28.	U	
56-23-5	Carbon tetrachloride	ND	20	5.4	U	
78-87-5	1,2-Dichloropropane	ND	40	5.5	U	
124-48-1	Dibromochloromethane	ND	20	6.0	U	
79-00-5	1,1,2-Trichloroethane	ND	60	20.	U	
127-18-4	Tetrachloroethene	ND	20	7.2	U	
108-90-7	Chlorobenzene	ND	100	28.	U	
75-69-4	Trichlorofluoromethane	ND	100	28.	U	
107-06-2	1,2-Dichloroethane	ND	20	5.3	U	
71-55-6	1,1,1-Trichloroethane	ND	100	28.	U	
75-27-4	Bromodichloromethane	ND	20	7.7	U	
10061-02-6	trans-1,3-Dichloropropene	ND	20	6.6	U	
10061-01-5	cis-1,3-Dichloropropene	ND	20	5.8	U	
75-25-2	Bromoform	ND	80	26.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.7	U	
71-43-2	Benzene	ND	20	6.4	U	
108-88-3	Toluene	ND	100	28.	U	
100-41-4	Ethylbenzene	ND	100	28.	U	
74-87-3	Chloromethane	ND	100	28.	U	
74-83-9	Bromomethane	ND	100	28.	U	UJ
75-01-4	Vinyl chloride	140	40	2.8		
75-00-3	Chloroethane	ND	100	28.	U	
75-35-4	1,1-Dichloroethene	8.2	20	6.8	J	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-01D Date Collected : 08/17/23 09:10
Client ID : MW-5BR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:26

Dilution Factor Sample Matrix : WATER : 40 **Analytical Method** : LAC : 1,8260D Analyst Instrument ID Lab File ID : ELAINE : VE230823A15 GC Column : RTX-502.2 Sample Amount : 0.25 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	100	28.	U	
79-01-6	Trichloroethene	ND	20	7.0	U	
95-50-1	1,2-Dichlorobenzene	ND	100	28.	U	
541-73-1	1,3-Dichlorobenzene	ND	100	28.	U	
106-46-7	1,4-Dichlorobenzene	ND	100	28.	U	
1634-04-4	Methyl tert butyl ether	ND	100	28.	U	
179601-23-1	p/m-Xylene	ND	100	28.	U	
95-47-6	o-Xylene	ND	100	28.	U	
156-59-2	cis-1,2-Dichloroethene	3900	100	28.		
100-42-5	Styrene	ND	100	28.	U	
75-71-8	Dichlorodifluoromethane	ND	200	40.	U	UJ
67-64-1	Acetone	ND	200	58.	U	 UJ
	Carbon disulfide	ND ND	200		U	
75-15-0				40.		
78-93-3	2-Butanone	ND	200	78.	U	
108-10-1	4-Methyl-2-pentanone	ND	200	40.	U	
591-78-6	2-Hexanone	ND	200	40.	U	
106-93-4	1,2-Dibromoethane	ND	80	26.	U	
104-51-8	n-Butylbenzene	ND	100	28.	U	
135-98-8	sec-Butylbenzene	ND	100	28.	U	
98-06-6	tert-Butylbenzene	ND	100	28.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	28.	U	
98-82-8	Isopropylbenzene	ND	100	28.	U	
99-87-6	p-Isopropyltoluene	ND	100	28.	U	
91-20-3	Naphthalene	ND	100	28.	U	
103-65-1	n-Propylbenzene	ND	100	28.	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Project Name : BUFFALO BUSINESS PARK Project Number : Y05
Lab ID : L2347781-01D Date Collected : 08/17/23 09:10

Client ID : MW-5BR-081723 Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:26

Sample Matrix : WATER Dilution Factor : 40
Analytical Method : 1,8260D Analyst : LAC
Lab File ID : VE230823A15 Instrument ID : ELAINE
Sample Amount : 0.25 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	100	28.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	100	28.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	100	28.	U	
79-20-9	Methyl Acetate	ND	80	9.4	U	UJ
110-82-7	Cyclohexane	ND	400	11.	U	
76-13-1	Freon-113	ND	100	28.	U	
108-87-2	Methyl cyclohexane	ND	400	16.	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Client ID : DUP-081723 Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:50

Dilution Factor : 40 Sample Matrix : WATER **Analytical Method** : 1,8260D Analyst : LAC Lab File ID Instrument ID : ELAINE : VE230823A16 Sample Amount GC Column : RTX-502.2 : 0.25 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	100	28.	U	
75-34-3	1,1-Dichloroethane	ND	100	28.	U	
67-66-3	Chloroform	ND	100	28.	U	
56-23-5	Carbon tetrachloride	ND	20	5.4	U	
78-87-5	1,2-Dichloropropane	ND	40	5.5	U	
124-48-1	Dibromochloromethane	ND	20	6.0	U	
79-00-5	1,1,2-Trichloroethane	ND	60	20.	U	
127-18-4	Tetrachloroethene	ND	20	7.2	U	
108-90-7	Chlorobenzene	ND	100	28.	U	
75-69-4	Trichlorofluoromethane	ND	100	28.	U	
107-06-2	1,2-Dichloroethane	ND	20	5.3	U	
71-55-6	1,1,1-Trichloroethane	ND	100	28.	U	
75-27-4	Bromodichloromethane	ND	20	7.7	U	
10061-02-6	trans-1,3-Dichloropropene	ND	20	6.6	U	
10061-01-5	cis-1,3-Dichloropropene	ND	20	5.8	U	
75-25-2	Bromoform	ND	80	26.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.7	U	
71-43-2	Benzene	ND	20	6.4	U	
108-88-3	Toluene	ND	100	28.	U	
100-41-4	Ethylbenzene	ND	100	28.	U	
74-87-3	Chloromethane	ND	100	28.	U	
74-83-9	Bromomethane	ND	100	28.	U	UJ
75-01-4	Vinyl chloride	140	40	2.8		
75-00-3	Chloroethane	ND	100	28.	U	
75-35-4	1,1-Dichloroethene	ND	20	6.8	U	

ug/L

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Client ID : DUP-081723 Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:50

Dilution Factor Sample Matrix : WATER : 40 **Analytical Method** Analyst : LAC : 1,8260D Lab File ID Instrument ID : ELAINE : VE230823A16 Sample Amount GC Column : RTX-502.2 : 0.25 ml

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	100	28.	U	
79-01-6	Trichloroethene	ND	20	7.0	U	
95-50-1	1,2-Dichlorobenzene	ND	100	28.	U	
541-73-1	1,3-Dichlorobenzene	ND	100	28.	U	
106-46-7	1,4-Dichlorobenzene	ND	100	28.	U	
1634-04-4	Methyl tert butyl ether	ND	100	28.	U	
179601-23-1	p/m-Xylene	ND	100	28.	U	
95-47-6	o-Xylene	ND	100	28.	U	
156-59-2	cis-1,2-Dichloroethene	4200	100	28.		
100-42-5	Styrene	ND	100	28.	U	
75-71-8	Dichlorodifluoromethane	ND	200	40.	U	UJ
67-64-1	Acetone	ND	200	58.	U	UJ
75-15-0	Carbon disulfide	ND	200	40.	U	
78-93-3	2-Butanone	ND	200	78.	U	
108-10-1	4-Methyl-2-pentanone	ND	200	40.	U	
591-78-6	2-Hexanone	ND	200	40.	U	
106-93-4	1,2-Dibromoethane	ND	80	26.	U	
104-51-8	n-Butylbenzene	ND	100	28.	U	
135-98-8	sec-Butylbenzene	ND	100	28.	U	
98-06-6	tert-Butylbenzene	ND	100	28.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	28.	U	
98-82-8	Isopropylbenzene	ND	100	28.	U	
99-87-6	p-Isopropyltoluene	ND	100	28.	U	
91-20-3	Naphthalene	ND	100	28.	U	
103-65-1	n-Propylbenzene	ND	100	28.	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Client ID : DUP-081723 Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:50

Sample Matrix: WATERDilution Factor: 40Analytical Method: 1,8260DAnalyst: LACLab File ID: VE230823A16Instrument ID: ELAINESample Amount: 0.25 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	100	28.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	100	28.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	100	28.	U	
79-20-9	Methyl Acetate	ND	80	9.4	U	UJ
110-82-7	Cyclohexane	ND	400	11.	U	
76-13-1	Freon-113	ND	100	28.	U	
108-87-2	Methyl cyclohexane	ND	400	16.	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-03D Date Collected : 08/17/23 12:05
Client ID : MW-5ABR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:15

Sample Matrix **Dilution Factor** : 50 : WATER **Analytical Method** : LAC : 1,8260D Analyst Lab File ID Instrument ID : VE230823A17 : ELAINE GC Column : RTX-502.2 Sample Amount : 0.2 ml

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	120	35.	U	
75-34-3	1,1-Dichloroethane	ND	120	35.	U	
67-66-3	Chloroform	ND	120	35.	U	
56-23-5	Carbon tetrachloride	ND	25	6.7	U	
78-87-5	1,2-Dichloropropane	ND	50	6.8	U	
124-48-1	Dibromochloromethane	ND	25	7.4	U	
79-00-5	1,1,2-Trichloroethane	ND	75	25.	U	
127-18-4	Tetrachloroethene	24	25	9.0	J	
108-90-7	Chlorobenzene	ND	120	35.	U	
75-69-4	Trichlorofluoromethane	ND	120	35.	U	
107-06-2	1,2-Dichloroethane	ND	25	6.6	U	
71-55-6	1,1,1-Trichloroethane	ND	120	35.	U	
75-27-4	Bromodichloromethane	ND	25	9.6	U	
10061-02-6	trans-1,3-Dichloropropene	ND	25	8.2	U	
10061-01-5	cis-1,3-Dichloropropene	ND	25	7.2	U	
75-25-2	Bromoform	ND	100	32.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	25	8.4	U	
71-43-2	Benzene	ND	25	8.0	U	
108-88-3	Toluene	ND	120	35.	U	
100-41-4	Ethylbenzene	ND	120	35.	U	
74-87-3	Chloromethane	ND	120	35.	U	
74-83-9	Bromomethane	ND	120	35.	U	UJ
75-01-4	Vinyl chloride	44	50	3.6	J	
75-00-3	Chloroethane	ND	120	35.	U	
75-35-4	1,1-Dichloroethene	9.1	25	8.4	J	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-03D Date Collected : 08/17/23 12:05
Client ID : MW-5ABR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:15

Sample Matrix **Dilution Factor** : WATER : 50 **Analytical Method** : LAC : 1,8260D Analyst Lab File ID : VE230823A17 Instrument ID : ELAINE : 0.2 ml GC Column : RTX-502.2 Sample Amount

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	120	35.	U	
79-01-6	Trichloroethene	27	25	8.8		
95-50-1	1,2-Dichlorobenzene	ND	120	35.	U	
541-73-1	1,3-Dichlorobenzene	ND	120	35.	U	
106-46-7	1,4-Dichlorobenzene	ND	120	35.	U	
1634-04-4	Methyl tert butyl ether	ND	120	35.	U	
179601-23-1	p/m-Xylene	ND	120	35.	U	
95-47-6	o-Xylene	ND	120	35.	U	
156-59-2	cis-1,2-Dichloroethene	4900	120	35.		
100-42-5	Styrene	ND	120	35.	U	
75-71-8	Dichlorodifluoromethane	ND	250	50.	U	UJ
67-64-1	Acetone	ND	250	73.	U	UJ
75-15-0	Carbon disulfide	ND	250	50.	U	
78-93-3	2-Butanone	ND	250	97.	U	
108-10-1	4-Methyl-2-pentanone	ND	250	50.	U	
591-78-6	2-Hexanone	ND	250	50.	U	
106-93-4	1,2-Dibromoethane	ND	100	32.	U	
104-51-8	n-Butylbenzene	ND	120	35.	U	
135-98-8	sec-Butylbenzene	ND	120	35.	U	
98-06-6	tert-Butylbenzene	ND	120	35.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	120	35.	U	
98-82-8	Isopropylbenzene	ND	120	35.	U	
99-87-6	p-Isopropyltoluene	ND	120	35.	U	
91-20-3	Naphthalene	ND	120	35.	U	
103-65-1	n-Propylbenzene	ND	120	35.	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-03D Date Collected : 08/17/23 12:05
Client ID : MW-5ABR-081723 Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:15

Sample Matrix : WATER Dilution Factor : 50
Analytical Method : 1,8260D Analyst : LAC
Lab File ID : VE230823A17 Instrument ID : ELAINE
Sample Amount : 0.2 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	120	35.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	120	35.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	120	35.	U	
79-20-9	Methyl Acetate	ND	100	12.	U	UJ
110-82-7	Cyclohexane	ND	500	14.	U	
76-13-1	Freon-113	ND	120	35.	U	
108-87-2	Methyl cyclohexane	ND	500	20.	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781

Project Name : BUFFALO BUSINESS PARK Project Number : Y05
Lab ID : L2347781-04D Date Collected : 08/17/23 09:55

Client ID : MW-4BR-081723 Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:39
Sample Matrix : WATER Dilution Factor : 40

Analytical Method : 1,8260D Analyst : LAC
Lab File ID : VE230823A18 Instrument ID : ELAINE
Sample Amount : 0.25 ml GC Column : RTX-502.2

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
75-09-2	Methylene chloride	ND	100	28.	U			
75-34-3	1,1-Dichloroethane	ND	100	28.	U			
67-66-3	Chloroform	ND	100	28.	U			
56-23-5	Carbon tetrachloride	ND	20	5.4	U			
78-87-5	1,2-Dichloropropane	ND	40	5.5	U			
124-48-1	Dibromochloromethane	ND	20	6.0	U			
79-00-5	1,1,2-Trichloroethane	ND	60	20.	U			
127-18-4	Tetrachloroethene	5100	20	7.2				
108-90-7	Chlorobenzene	ND	100	28.	U			
75-69-4	Trichlorofluoromethane	ND	100	28.	U			
107-06-2	1,2-Dichloroethane	ND	20	5.3	U			
71-55-6	1,1,1-Trichloroethane	ND	100	28.	U			
75-27-4	Bromodichloromethane	ND	20	7.7	U			
10061-02-6	trans-1,3-Dichloropropene	ND	20	6.6	U			
10061-01-5	cis-1,3-Dichloropropene	ND	20	5.8	U			
75-25-2	Bromoform	ND	80	26.	U			
79-34-5	1,1,2,2-Tetrachloroethane	ND	20	6.7	U			
71-43-2	Benzene	ND	20	6.4	U			
108-88-3	Toluene	ND	100	28.	U			
100-41-4	Ethylbenzene	ND	100	28.	U			
74-87-3	Chloromethane	ND	100	28.	U			
74-83-9	Bromomethane	ND	100	28.	U	UJ		
75-01-4	Vinyl chloride	66	40	2.8				
75-00-3	Chloroethane	ND	100	28.	U			
75-35-4	1,1-Dichloroethene	ND	20	6.8	U			

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-04D Date Collected : 08/17/23 09:55
Client ID : MW-4BR-081723 Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:39

Dilution Factor Sample Matrix : WATER : 40 **Analytical Method** Analyst : LAC : 1,8260D Lab File ID Instrument ID : ELAINE : VE230823A18 Sample Amount GC Column : RTX-502.2 : 0.25 ml

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	100	28.	U	
79-01-6	Trichloroethene	980	20	7.0		
95-50-1	1,2-Dichlorobenzene	ND	100	28.	U	
541-73-1	1,3-Dichlorobenzene	ND ND	100	28.	U	
106-46-7		ND	100	28.	U	
	1,4-Dichlorobenzene					
1634-04-4	Methyl tert butyl ether	ND	100	28.	U	
179601-23-1	p/m-Xylene	ND	100	28.	U	
95-47-6	o-Xylene	ND	100	28.	U	
156-59-2	cis-1,2-Dichloroethene	2600	100	28.		
100-42-5	Styrene	ND	100	28.	U	
75-71-8	Dichlorodifluoromethane	ND	200	40.	U	UJ
67-64-1	Acetone	ND	200	58.	U	UJ
75-15-0	Carbon disulfide	ND	200	40.	U	
78-93-3	2-Butanone	ND	200	78.	U	
108-10-1	4-Methyl-2-pentanone	ND	200	40.	U	
591-78-6	2-Hexanone	ND	200	40.	U	
106-93-4	1,2-Dibromoethane	ND	80	26.	U	
104-51-8	n-Butylbenzene	ND	100	28.	U	
135-98-8	sec-Butylbenzene	ND	100	28.	U	
98-06-6	tert-Butylbenzene	ND	100	28.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	100	28.	U	
98-82-8	Isopropylbenzene	ND	100	28.	U	
99-87-6	p-Isopropyltoluene	ND	100	28.	U	
91-20-3	Naphthalene	ND	100	28.	U	
103-65-1	n-Propylbenzene	ND	100	28.	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-04D Date Collected : 08/17/23 09:55
Client ID : MW-4BR-081723 Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 14:39
Sample Matrix : WATER Dilution Factor : 40
Analytical Method : 1,8260D Analyst : LAC
Lab File ID : VE230823A18 Instrument ID : ELAINE

Sample Amount : 0.25 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	100	28.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	100	28.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	100	28.	U	
79-20-9	Methyl Acetate	ND	80	9.4	U	UJ
110-82-7	Cyclohexane	ND	400	11.	U	
76-13-1	Freon-113	ND	100	28.	U	
108-87-2	Methyl cyclohexane	ND	400	16.	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-05D Date Collected : 08/17/23 10:20
Client ID : MW-3BR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 15:04

Sample Matrix **Dilution Factor** : 20 : WATER **Analytical Method** : LAC : 1,8260D Analyst Lab File ID : VE230823A19 Instrument ID : ELAINE GC Column : RTX-502.2 Sample Amount : 0.5 ml

	Parameter					
CAS NO.		Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	50	14.	U	
75-34-3	1,1-Dichloroethane	ND	50	14.	U	
67-66-3	Chloroform	ND	50	14.	U	
56-23-5	Carbon tetrachloride	ND	10	2.7	U	
78-87-5	1,2-Dichloropropane	ND	20	2.7	U	
124-48-1	Dibromochloromethane	ND	10	3.0	U	
79-00-5	1,1,2-Trichloroethane	ND	30	10.	U	
127-18-4	Tetrachloroethene	2800	10	3.6		
108-90-7	Chlorobenzene	ND	50	14.	U	
75-69-4	Trichlorofluoromethane	ND	50	14.	U	
107-06-2	1,2-Dichloroethane	ND	10	2.6	U	
71-55-6	1,1,1-Trichloroethane	ND	50	14.	U	
75-27-4	Bromodichloromethane	ND	10	3.8	U	
10061-02-6	trans-1,3-Dichloropropene	ND	10	3.3	U	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.9	U	
75-25-2	Bromoform	ND	40	13.	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	3.3	U	
71-43-2	Benzene	ND	10	3.2	U	
108-88-3	Toluene	ND	50	14.	U	
100-41-4	Ethylbenzene	ND	50	14.	U	
74-87-3	Chloromethane	ND	50	14.	U	
74-83-9	Bromomethane	ND	50	14.	U	UJ
75-01-4	Vinyl chloride	19	20	1.4	J	
75-00-3	Chloroethane	ND	50	14.	U	
75-35-4	1,1-Dichloroethene	4.2	10	3.4	J	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-05D Date Collected : 08/17/23 10:20
Client ID : MW-3BR-081723 Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 15:04

Dilution Factor Sample Matrix : WATER : 20 **Analytical Method** : LAC : 1,8260D Analyst Lab File ID Instrument ID : ELAINE : VE230823A19 Sample Amount GC Column : RTX-502.2 : 0.5 ml

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	50	14.	U	
79-01-6	Trichloroethene	740	10	3.5		
95-50-1	1,2-Dichlorobenzene	ND	50	14.	U	
541-73-1	1,3-Dichlorobenzene	ND	50	14.	U	
106-46-7	1,4-Dichlorobenzene	ND	50	14.	U	
1634-04-4	Methyl tert butyl ether	ND	50	14.	U	
179601-23-1	p/m-Xylene	ND	50	14.	U	
95-47-6	o-Xylene	ND	50	14.	U	
156-59-2	cis-1,2-Dichloroethene	1200	50	14.		
100-42-5	Styrene	ND	50	14.	U	
75-71-8	Dichlorodifluoromethane	ND	100	20.	U	UJ
67-64-1	Acetone	ND	100	29.	U	UJ
75-15-0	Carbon disulfide	ND	100	20.	U	
78-93-3	2-Butanone	ND	100	39.	U	
108-10-1	4-Methyl-2-pentanone	ND	100	20.	U	
591-78-6	2-Hexanone	ND	100	20.	U	
106-93-4	1,2-Dibromoethane	ND	40	13.	U	
104-51-8	n-Butylbenzene	ND	50	14.	U	
135-98-8	sec-Butylbenzene	ND	50	14.	U	
98-06-6	tert-Butylbenzene	ND	50	14.	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	50	14.	U	
98-82-8	Isopropylbenzene	ND	50	14.	U	
99-87-6	p-Isopropyltoluene	ND	50	14.	U	
91-20-3	Naphthalene	ND	50	14.	U	
103-65-1	n-Propylbenzene	ND	50	14.	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-05D Date Collected : 08/17/23 10:20
Client ID : MW-3BR-081723 Date Received : 08/17/23
Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 15:04

Sample Matrix: WATERDilution Factor: 20Analytical Method: 1,8260DAnalyst: LACLab File ID: VE230823A19Instrument ID: ELAINESample Amount: 0.5 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	50	14.	U	
108-67-8	1,3,5-Trimethylbenzene	ND	50	14.	U	
95-63-6	1,2,4-Trimethylbenzene	ND	50	14.	U	
79-20-9	Methyl Acetate	ND	40	4.7	U	UJ
110-82-7	Cyclohexane	ND	200	5.4	U	
76-13-1	Freon-113	ND	50	14.	U	
108-87-2	Methyl cyclohexane	ND	200	7.9	U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-06 Date Collected : 08/17/23 11:20

Client ID : MW-2BR-081723 Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:01

Dilution Factor Sample Matrix : WATER : 1 **Analytical Method** : 1,8260D : LAC Analyst Lab File ID Instrument ID : ELAINE : VE230823A14 Sample Amount GC Column : RTX-502.2 : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	4.3	0.50	0.18	
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	20	1.0	0.07	
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	0.21	0.50	0.17	J

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 13:01
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260D Analyst : LAC
Lab File ID : VE230823A14 Instrument ID : ELAINE
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 Trichloroethene 1.8 0.50 0.18	CAS NO.	Parameter	Results	RL	MDL	Qualifier	
79-01-6 Trichloroethene 1.8 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 U 166-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cls-1,2-Dichloroethene 150 2.5 0.70 U 156-59-2 cls-1,2-Dichloroethene 150 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 75-71-8 Dichlorodifluoromethane ND							
95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 U 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 0-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 156-69-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 175-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 175-15-0 Carbon disulfide ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.5 0.70 U 106-93-4 1,2-Dibromoethane ND 2.5 0.70 U 106-93-8 sec-Butylbenzene ND 2.5 0.70 U 107-128-8 1,2-Dibromoethane ND 2.5 0.70 U 108-10-1 Sec-1-1 ND 1.0	156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 U 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 97-71-8 Acetone ND 5.0 1.5 U UJ 75-71-8 Dichlorodifluoromethane ND 5.0 1.5 U UJ 75-71-8 Dichlorodifluoromethane ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U U 108-10-1 </td <td>79-01-6</td> <td>Trichloroethene</td> <td>1.8</td> <td>0.50</td> <td>0.18</td> <td></td> <td></td>	79-01-6	Trichloroethene	1.8	0.50	0.18		
106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodiffuoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U UJ 75-71-8 Dichlorodiffuoromethane ND 5.0 1.0 U U 75-71-8 Dichlorodiffuoromethane ND 5.0 1.0 U U 75-15-0 Carbon disulfide ND 5.0 1.0 U U 78-93-3 2-Butanone ND 5.0 1.0 U U U U <td>95-50-1</td> <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>2.5</td> <td>0.70</td> <td>U</td> <td></td>	95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodiffuoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U U 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5	541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.5 0.70 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70<	106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
95-47-6 o-Xylene ND 2.5 0.70 U 156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodiffuoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U UJ To To U UJ To To U To To U UJ To To U UJ To To U UJ To To U UJ To U UJ To U UJ To U To To U U To To To U To To U To To To To U	1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
156-59-2 cis-1,2-Dichloroethene 150 2.5 0.70 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 98-82-8 Isopropyltenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5	179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
100-42-5	95-47-6	o-Xylene	ND	2.5	0.70	U	
75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 99-87-6 p-Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene	156-59-2	cis-1,2-Dichloroethene	150	2.5	0.70		
67-64-1 Acetone ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyttoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5	100-42-5	Styrene	ND	2.5	0.70	U	
75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
78-93-3 2-Butanone ND 5.0 1.9 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	67-64-1	Acetone	ND	5.0	1.5	U	UJ
108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	75-15-0	Carbon disulfide	ND	5.0	1.0	U	
591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	78-93-3	2-Butanone	ND	5.0	1.9	U	
106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
104-51-8 n-Butylbenzene ND 2.5 0.70 U 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	591-78-6	2-Hexanone	ND	5.0	1.0	U	
135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
98-06-6 tert-Butylbenzene ND 2.5 0.70 U 96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
96-12-8 1,2-Dibromo-3-chloropropane ND 2.5 0.70 U 98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-82-8 Isopropylbenzene ND 2.5 0.70 U 99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
99-87-6 p-Isopropyltoluene ND 2.5 0.70 U 91-20-3 Naphthalene ND 2.5 0.70 U	96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
91-20-3 Naphthalene ND 2.5 0.70 U	98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
	99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
103-65-1 n-Propylbenzene ND 2.5 0.70 U	91-20-3	Naphthalene	ND	2.5	0.70	U	
• •	103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

 Lab ID
 : L2347781-06
 Date Collected
 : 08/17/23 11:20

 Client ID
 : MW-2BR-081723
 Date Received
 : 08/17/23

 Somple Leastion
 : 180 PROADWAY PHEFALO NY

Sample Location: 180 BROADWAY, BUFFALO, NYDate Analyzed: 08/23/23 13:01Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260DAnalyst: LAC

Lab File ID: VE230823A14Instrument ID: ELAINESample Amount: 10 mlGC Column: RTX-502.2Level: LOW%Solids: N/AExtract Volume (MeOH): N/AInjection Volume: N/A

ug/L CAS NO. Results MDL Qualifier **Parameter** RL 120-82-1 1,2,4-Trichlorobenzene ND 2.5 0.70 U ND U 108-67-8 1,3,5-Trimethylbenzene 2.5 0.70 95-63-6 1,2,4-Trimethylbenzene ND 2.5 0.70 U UJ 79-20-9 **Methyl Acetate** ND 2.0 0.23 п 110-82-7 Cyclohexane 0.55 10 0.27 J 2.5 ND U 76-13-1 Freon-113 0.70 ND 108-87-2 Methyl cyclohexane 10 0.40 U

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-07 Date Collected : 08/17/23 00:00

Client ID : TRIP BLANK Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 12:36

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : LAC : 1,8260D Analyst Instrument ID Lab File ID : ELAINE : VE230823A13 GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Client ID : TRIP BLANK Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 12:36

Sample Matrix **Dilution Factor** : WATER : 1 **Analytical Method** : 1,8260D Analyst : LAC Lab File ID : VE230823A13 Instrument ID : ELAINE GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	6.5	5.0	1.5		J
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Client ID : TRIP BLANK Date Received : 08/17/23 Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 12:36

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260DAnalyst: LACLab File ID: VE230823A13Instrument ID: ELAINESample Amount: 10 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L				
Parameter	Results	RL	MDL	Qualifier		
1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
1,2,4-Trimethylbenzene	ND	2.5	0.70	U		
Methyl Acetate	ND	2.0	0.23	U	UJ	
Cyclohexane	ND	10	0.27	U		
Freon-113	ND	2.5	0.70	U		
Methyl cyclohexane	ND	10	0.40	U		
	1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Methyl Acetate Cyclohexane Freon-113	1,2,4-Trichlorobenzene ND 1,3,5-Trimethylbenzene ND 1,2,4-Trimethylbenzene ND Methyl Acetate ND Cyclohexane ND Freon-113 ND	Parameter Results RL 1,2,4-Trichlorobenzene ND 2.5 1,3,5-Trimethylbenzene ND 2.5 1,2,4-Trimethylbenzene ND 2.5 Methyl Acetate ND 2.0 Cyclohexane ND 10 Freon-113 ND 2.5	Parameter Results RL MDL 1,2,4-Trichlorobenzene ND 2.5 0.70 1,3,5-Trimethylbenzene ND 2.5 0.70 1,2,4-Trimethylbenzene ND 2.5 0.70 Methyl Acetate ND 2.0 0.23 Cyclohexane ND 10 0.27 Freon-113 ND 2.5 0.70	Parameter Results RL MDL Qualifier 1,2,4-Trichlorobenzene ND 2.5 0.70 U 1,3,5-Trimethylbenzene ND 2.5 0.70 U 1,2,4-Trimethylbenzene ND 2.5 0.70 U Methyl Acetate ND 2.0 0.23 U Cyclohexane ND 10 0.27 U Freon-113 ND 2.5 0.70 U	

MKP 9/25/2023

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Lab ID : L2347781-07R Date Collected : 08/17/23 00:00
Client ID : TRIP BLANK Date Received : 08/17/23

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 21:00

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260D Analyst : MAG Instrument ID Lab File ID : ELAINE : VE230823N05 GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	ų U.	J
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Sample Matrix **Dilution Factor** : WATER : 1 **Analytical Method** : 1,8260D Analyst : MAG Lab File ID : VE230823N05 Instrument ID : ELAINE GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	ND	5.0	1.5	U	UJ
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	UJ
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Sample Location : 180 BROADWAY, BUFFALO, NY Date Analyzed : 08/23/23 21:00
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260D Analyst : MAG : ELAINE Lab File ID : VE230823N05 Instrument ID Sample Amount : 10 ml GC Column : RTX-502.2 %Solids Level : LOW : N/A

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

MKP 9/25/2023

Appendix B

Laboratory QC Documentation

Laboratory Control Sample Summary Form 3 **Volatiles**

Client : L2347781 : C&S Companies Lab Number **Project Number: Y05**

Project Name : BUFFALO BUSINESS PARK Proje
Matrix (Level) : WATER (LOW)
LCS Sample ID : WG1819403-3 Analysis Date : 08/23/23 07:38 File ID : VE230823A01 LCSD Sample ID : WG1819403-4 Analysis Date : 08/23/23 08:03 File ID : VE230823A02

	Laboratory Control Sample			Laboratory Control Duplicate					
	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l) (ug/l)		(ug/l)		(ug/l)			Limits	Limit
1,2,4-Trimethylbenzene	10	9.6	96	10	9.4	94	2	70-130	20
Methyl Acetate	10	13	130	10	14	140 Q	7	70-130	20
Cyclohexane	10	10	100	10	10	100	0	70-130	20
Freon-113	10	10	100	10	11	110	10	70-130	20
Methyl cyclohexane	10	11	110	10	10	100	10	70-130	20

Laboratory Control Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Matrix (Level) : WATER (LOW)

LCS Sample ID : WG1819924-3 Analysis Date : 08/23/23 19:21 File ID : VE230823N01 LCSD Sample ID : WG1819924-4 Analysis Date : 08/23/23 19:45 File ID : VE230823N02

	Laboratory Control Sample			Laborator	Laboratory Control Duplicate					
	True	Found	%R	True	Found	%R	RPD	Recovery	RPD	
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit	
Trichloroethene	10	9.1	91	10	9.3	93	2	70-130	20	
1,2-Dichlorobenzene	10	9.9	99	10	9.2	92	7	70-130	20	
1,3-Dichlorobenzene	10	9.8	98	10	9.3	93	5	70-130	20	
1,4-Dichlorobenzene	10	10	100	10	9.4	94	6	70-130	20	
Methyl tert butyl ether	10	9.7	97	10	10	100	3	63-130	20	
p/m-Xylene	20	20	100	20	20	100	0	70-130	20	
o-Xylene	20	19	95	20	20	100	5	70-130	20	
cis-1,2-Dichloroethene	10	9.9	99	10	9.9	99	0	70-130	20	
Styrene	20	19	95	20	20	100	5	70-130	20	
Dichlorodifluoromethane	10	10	100	10	11	110	10	36-147	20	
Acetone	10	13	130	10	15	150 Q	14	58-148	20	
Carbon disulfide	10	10	100	10	10	100	0	51-130	20	
2-Butanone	10	13	130	10	13	130	0	63-138	20	
4-Methyl-2-pentanone	10	9.0	90	10	9.1	91	1	59-130	20	
2-Hexanone	10	11	110	10	11	110	0	57-130	20	
1,2-Dibromoethane	10	9.3	93	10	9.2	92	1	70-130	20	
n-Butylbenzene	10	9.3	93	10	8.7	87	7	53-136	20	
sec-Butylbenzene	10	9.1	91	10	8.7	87	4	70-130	20	
tert-Butylbenzene	10	9.0	90	10	8.5	85	6	70-130	20	
1,2-Dibromo-3-chloropropane	10	8.6	86	10	9.2	92	7	41-144	20	
Isopropylbenzene	10	9.1	91	10	8.6	86	6	70-130	20	
p-Isopropyltoluene	10	9.0	90	10	8.4	84	7	70-130	20	
Naphthalene	10	8.0	80	10	7.8	78	3	70-130	20	
n-Propylbenzene	10	9.3	93	10	8.9	89	4	69-130	20	
1,2,4-Trichlorobenzene	10	9.0	90	10	8.6	86	5	70-130	20	
1,3,5-Trimethylbenzene	10	9.1	91	10	8.8	88	3	64-130	20	

Laboratory Control Sample Summary Form 3 **Volatiles**

Client Lab Number : L2347781 : C&S Companies Project Name : BUFFALO BUSINESS PARK Project Matrix (Level) : WATER (LOW)
LCS Sample ID : WG1819924-3 Analysis Date : 08/23/23 19:21 **Project Number: Y05**

File ID : VE230823N01 LCSD Sample ID : WG1819924-4 Analysis Date : 08/23/23 19:45 File ID : VE230823N02

	Laboratory Control Sample			Laboratory Control Duplicate					
	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)			Limits	Limit
1,2,4-Trimethylbenzene	10	9.2	92	10	8.8	88	4	70-130	20
Methyl Acetate	10	13	130	10	14	140 Q	7	70-130	20
Cyclohexane	10	10	100	10	10	100	0	70-130	20
Freon-113	10	11	110	10	10	100	10	70-130	20
Methyl cyclohexane	10	10	100	10	10	100	0	70-130	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

 Client Sample ID
 : MW-5BR-081723
 Matrix (Level)
 : WATER (LOW)

 Lab Sample ID
 : L2347781-01
 Analysis Date
 : 08/23/23 13:26

 Matrix Spike
 : WG1819403-6
 MS Analysis Date
 : 08/23/23 17:55

 Matrix Spike Dup
 : WG1819403-7
 MSD Analysis Date
 : 08/23/23 18:19

		Matrix Sp	ike Sample	Sample Matrix Spike Duplicate						
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
tert-Butylbenzene	ND	400	360	90	400	340	85	6	70-130	20
1,2-Dibromo-3-chloropropane	ND	400	360	90	400	330	82	9	41-144	20
Isopropylbenzene	ND	400	370	92	400	350	88	6	70-130	20
p-Isopropyltoluene	ND	400	350	88	400	330	82	6	70-130	20
Naphthalene	ND	400	300	75	400	300	75	0	70-130	20
n-Propylbenzene	ND	400	370	92	400	350	88	6	69-130	20
1,2,4-Trichlorobenzene	ND	400	330	82	400	330	82	0	70-130	20
1,3,5-Trimethylbenzene	ND	400	370	92	400	350	88	6	64-130	20
1,2,4-Trimethylbenzene	ND	400	360	90	400	340	85	6	70-130	20
Methyl Acetate	ND	400	540	135 0	400	560	140 Q	4	70-130	20
Cyclohexane	ND	400	460	115	400	420	105	9	70-130	20
Freon-113	ND	400	460	115	400	430	108	7	70-130	20
Methyl cyclohexane	ND	400	430	108	400	390J	98	10	70-130	20

Evaluate Continuing Calibration Report

Data Path : K:\Elaine\2023\230725NICAL\

Data File: VE230725N19.D

: 26 Jul 2023 3:43 am Acq On

Operator : ELAINE:PID : C8260STD10PPB Sample : C820051210 : WG1807846,ICAL Misc

ALS Vial : 1 Sample Multiplier: 1

Quant Time: Jul 26 08:22:04 2023

Quant Method: K:\Elaine\2023\230725NICAL\Elaine_230725N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Wed Jul 26 08:20:35 2023 Response via : Initial Calibration

Min. RRF 0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area	a% De	v(min)
	I	Fluorobenzene	1.000	1.000		100	0.00
2		Dichlorodifluoromethane	0.290	0.161	44.5#	49#	0.00
3	TP	Chloromethane	0.368	0.296	19.6	72	0.00
4	TC	Vinyl chloride	0.388	0.353	9.0	81	0.00
5	TP	Bromomethane	0.227	0.213	6.2	87	0.00
6	TP	Chloroethane	0.234	0.240	-2.6	92	0.00
7	TP	Trichlorofluoromethane	0.367	0.393	-7.1	94	0.00
8	TP	Ethyl ether	0.122	0.132		100	0.00
10	TC	1,1-Dichloroethene	0.208	0.188	9.6	81	0.00
11		Carbon disulfide	0.644	0.599	7.0	84	0.00
12		Freon-113	0.215	0.215	0.0	86	0.00
13		Iodomethane	0.264	0.243	8.0	90	0.00
14		Acrolein	0.034	0.029	14.7	84	0.00
15	TP	Methylene chloride	0.251	0.239	4.8	93	0.00
17		Acetone	* 10.000	9.997	0.0	97	0.00
18	TP	trans-1,2-Dichloroethene	0.227	0.216	4.8	86	0.00
19		Methyl acetate	0.142	0.127	10.6	90	0.00
21		Methyl tert-butyl ether	0.574	0.554	3.5	97	0.00
22		tert-Butyl alcohol	0.014	0.015		106	0.00
	TP	Diisopropyl ether	0.934	0.887	5.0	91	0.00
	TP	1,1-Dichloroethane	0.548	0.550	-0.4	90	0.00
	TP	Halothane	0.172	0.179	-4.1	92	0.00
27		Acrylonitrile	0.071	0.075	-5.6	99	0.00
28	TP	Ethyl tert-butyl ether	0.876	0.826	5.7	94	0.00
29		Vinyl acetate	0.347	0.360		109	0.00
30		cis-1,2-Dichloroethene	0.261	0.247	5.4	86	0.00
31		2,2-Dichloropropane	0.379	0.338	10.8	83	0.00
33		Bromochloromethane	0.111	0.110	0.9	92	0.00
34		Cyclohexane	0.582	0.555	4.6	85	0.00
35		Chloroform	0.420	0.424	-1.0	95	0.00
	TP	Ethyl acetate	0.191	0.199		104	0.00
37		Carbon tetrachloride	0.304	0.313	-3.0	93	0.00
38	TP	Tetrahydrofuran	0.058	0.063		103	0.00
39	S	Dibromofluoromethane	0.282	0.290		102	0.00
	TP	1,1,1-Trichloroethane	0.375	0.379	-1.1	92	0.00
	TP	2-Butanone	0.083	0.071	14.5	91	0.00
43	TP	1,1-Dichloropropene	0.314	0.314	0.0	92	0.00
45	TP	Benzene	0.943	0.923	2.1	93	0.00
46	TP	tert-Amyl methyl ether	0.588	0.564	4.1	97	0.00

Elaine_230725N_8260.m Wed Jul 26 08:50:16 2023

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2347781

Project Name : BUFFALO BUSINESS PARK Project Number : Y05
Instrument ID : ELAINE Calibration Date : 08/23/23 07:38

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	92	0
Dichlorodifluoromethane	0.29	0.314	-	-8.3	20	89	0
Chloromethane	0.368	0.431	-	-17.1	20	97	0
Vinyl chloride	0.388	0.399	-	-2.8	20	84	0
Bromomethane	0.227	0.169	-	25.6*	20	64	0
Chloroethane	0.234	0.258	-	-10.3	20	92	01
Trichlorofluoromethane	0.367	0.391	-	-6.5	20	86	0
Ethyl ether	0.122	0.127	-	-4.1	20	89	0
1,1-Dichloroethene	0.208	0.211	-	-1.4	20	84	0
Carbon disulfide	0.644	0.692	-	-7.5	20	90	0
Freon-113	0.215	0.227	-	-5.6	20	83	0
Acrolein	0.034	0.039	-	-14.7	20	102	0
Methylene chloride	0.251	0.252	-	-0.4	20	90	0
Acetone	10	13.279	-	-32.8*	20	115	01
trans-1,2-Dichloroethene	0.227	0.242	-	-6.6	20	90	0
Methyl acetate	0.142	0.189	-	-33.1*	20	124	0
Methyl tert-butyl ether	0.574	0.6	-	-4.5	20	97	0
tert-Butyl alcohol	0.014	0.018	-	-28.6*	20	116	01 NT
Diisopropyl ether	0.934	1.215	-	-30.1*	20	116	0 N
1,1-Dichloroethane	0.548	0.522	-	4.7	20	79	0
Halothane	0.172	0.183	-	-6.4	20	87	0
Acrylonitrile	0.071	0.08	-	-12.7	20	97	0
Ethyl tert-butyl ether	0.876	0.849	-	3.1	20	89	0
Vinyl acetate	0.347	0.604	-	-74.1*	20	170	0 N
cis-1,2-Dichloroethene	0.261	0.272	-	-4.2	20	88	0
2,2-Dichloropropane	0.379	0.392	-	-3.4	20	89	0
Bromochloromethane	0.111	0.119	-	-7.2	20	92	0
Cyclohexane	0.582	0.594	<u> </u>	-7.2	20	84	0
Chloroform	0.42	0.421	<u> </u>	-0.2	20	87	0
Ethyl acetate	0.191	0.421	<u> </u>	-31.4*	20	121	
Carbon tetrachloride	0.304	0.231	<u> </u>	-31.4	20	87	0 NT 0
	0.058	0.082	-	-41.4*	20	123	
Tetrahydrofuran	0.282	0.082		-41.4	20	94	0 <u>NT</u>
Dibromofluoromethane			-				
1,1,1-Trichloroethane	0.375	0.374	-	0.3	20	84	0
2-Butanone	0.083	0.093	-	-12	20	109	0
1,1-Dichloropropene	0.314	0.341	-	-8.6	20	93	0
Benzene	0.943	1.021	-	-8.3	20	95	0
tert-Amyl methyl ether	0.588	0.622	-	-5.8	20	99	01
1,2-Dichloroethane-d4	0.37	0.336	-	9.2	20	79	0
1,2-Dichloroethane	0.384	0.341	-	11.2	20	78	0
Methyl cyclohexane	0.409	0.438	-	-7.1	20	94	0
Trichloroethene	0.255	0.253	-	0.8	20	85	0
Dibromomethane	0.128	0.139	-	-8.6	20	95	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Project Name : BUFFALO BUSINESS PARK Project Number : Y05
Instrument ID : ELAINE Calibration Date : 08/23/23 19:21

 Lab File ID
 : VE230823N01
 Init. Calib. Date(s)
 : 07/25/23
 07/26/23

 Sample No
 : WG1819924-2
 Init. Calib. Times
 : 21:39
 01:41

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	89	0	
Dichlorodifluoromethane	0.29	0.308	-	-6.2	20	83	0	
Chloromethane	0.368	0.401	-	-9	20	87	0	
Vinyl chloride	0.388	0.362	-	6.7	20	73	0	
Bromomethane	0.227	0.119	-	47.6*	20	43	0	
Chloroethane	0.234	0.231	-	1.3	20	79	0	
Trichlorofluoromethane	0.367	0.369	-	-0.5	20	78	0	
Ethyl ether	0.122	0.125	-	-2.5	20	84	0	
1,1-Dichloroethene	0.208	0.199	-	4.3	20	76	0	
Carbon disulfide	0.644	0.667	-	-3.6	20	83	0	
Freon-113	0.215	0.23	-	-7	20	81	0	
Acrolein	0.034	0.036	-	-5.9	20	92	0	
Methylene chloride	0.251	0.24	-	4.4	20	83	0	
Acetone	10	13.362	-	-33.6*	20	111	01	
trans-1,2-Dichloroethene	0.227	0.231	-	-1.8	20	82	0	
Methyl acetate	0.142	0.181	-	-27.5*	20	113	0	
Methyl tert-butyl ether	0.574	0.556	-	3.1	20	86	01	
tert-Butyl alcohol	0.014	0.016	-	-14.3	20	99	01	
Diisopropyl ether	0.934	1.138	-	-21.8*	20	104	0	NT
1,1-Dichloroethane	0.548	0.497	-	9.3	20	72	0	
Halothane	0.172	0.172	-	0	20	79	0	
Acrylonitrile	0.071	0.081	-	-14.1	20	94	0	
Ethyl tert-butyl ether	0.876	0.813	-	7.2	20	82	0	
Vinyl acetate	0.347	0.574	-	-65.4*	20	154	0	NT
cis-1,2-Dichloroethene	0.261	0.26	-	0.4	20	81	0	
2,2-Dichloropropane	0.379	0.365	-	3.7	20	80	0	
Bromochloromethane	0.111	0.112	-	-0.9	20	83	0	
Cyclohexane	0.582	0.586	-	-0.7	20	79	0	
Chloroform	0.42	0.413	-	1.7	20	82	0	
Ethyl acetate	0.191	0.243	-	-27.2*	20	112	0	NT
Carbon tetrachloride	0.304	0.301	-	1	20	79	0	
Tetrahydrofuran	0.058	0.073	-	-25.9*	20	104	01	NT
Dibromofluoromethane	0.282	0.287	-	-1.8	20	89	0	141
1,1,1-Trichloroethane	0.375	0.366	-	2.4	20	79	0	
2-Butanone	0.083	0.107	-	-28.9*	20	121	0	
1,1-Dichloropropene	0.314	0.322	-	-2.5	20	84	0	
Benzene	0.943	0.963	-	-2.1	20	86	0	
tert-Amyl methyl ether	0.588	0.572	-	2.7	20	87	01	
1,2-Dichloroethane-d4	0.37	0.346	-	6.5	20	78	01	
1,2-Dichloroethane	0.384	0.328	-	14.6	20	72	0	
Methyl cyclohexane	0.409	0.417		-2	20	86	01	
Trichloroethene	0.255	0.233	<u> </u>	8.6	20	75	0	
Dibromomethane	0.128	0.128	-	0.0	20	84	0	

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : C&S Companies Lab Number : L2347781
Project Name : BUFFALO BUSINESS PARK Project Number : Y05

Instrument ID : ELAINE Calibration Date : 08/23/23 19:21

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
n-Butylbenzene	1.914	1.789	-	6.5	20	83	0
1,2-Dichlorobenzene	1.055	1.048	-	0.7	20	91	0
1,2,4,5-Tetramethylbenzene	1.994	1.623	-	18.6	20	75	0
1,2-Dibromo-3-chloropropan	0.062	0.053	-	14.5	20	78	0
1,3,5-Trichlorobenzene	0.715	0.662	-	7.4	20	86	0
Hexachlorobutadiene	0.211	0.191	-	9.5	20	81	0
1,2,4-Trichlorobenzene	0.617	0.555	-	10	20	85	0
Naphthalene	1.522	1.215	-	20.2*	20	78	0
1,2,3-Trichlorobenzene	0.562	0.493	-	12.3	20	84	0

^{*} Value outside of QC limits.

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

APPENDIX C

FIELD SAMPLING & MONITORING LOGS

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:				
Site Name:	BUFFINO	Business	Panic	
Project No.:				
Field Staff:	NICH BACK	CEPT		

WELL DATA

Date	8/17/23	
Well Number	Milu-85A	
Diameter (inches)	2"	
Total Sounded Depth (feet)	15"	
Static Water Level (feet)	97	
H ₂ O Column (feet)	5.3'	
Pump Intake (feet)	ENERGY CONTRACTOR	
Well Volume (gallons)		
Amount to Evacuate (gallons)	51601	
Amount Evacuated (gallons)		

FIELD READINGS

Date	Stabilization	9/17/23						
Time	Criteria	8:45						
pH (Std. Units)	+/-0.1	¥1						
Conductivity (mS/cm)	3%							
Turbidity (NTU)	10%							
D.O. (mg/L)	10%							
Temperature (°C) (°F)	3%							
ORP ³ (mV)	+/-10 mv							
Appearance								
Free Product (Yes/No)								
Odor								
Comments	-DEF	1/1 70	WATI	Ep Co	icretra) onl	y .	

Well Sampling Field Data Sheet

Well Casing Unit Volume
(gal/l.f.)

1¼" = 0.08 2" = 0.17 3" = 0.38

4" = 0.66 6" = 1.5 8" = 2.6

Site Name:	BUSER	40 Business	PANE
Project No.:	100		

WELL DATA

Date	8/17/23	
Vell Number	Mw-TBR	
Diameter (inches)	2"	
Total Sounded Depth (feet)	15	
Static Water Level (feet)	12.81	
H₂O Column (feet)	2.21	
Pump Intake (feet)		
Vell Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)		

FIELD READINGS

TIELD READINGS									
Date	Stabilization	צודווצ'	3						
Time	Criteria	848							
pH (Std. Units)	+/-0.1								
Conductivity (mS/cm)	3%						-		
Turbidity (NTU)	10%								
D.O. (mg/L)	10%								
Temperature (°C) (°F)	3%								
ORP ³ (mV)	+/-10 mv								
Appearance									
Free Product (Yes/No)	455								
Odor									
Comments	- ONLY	DRA	VA V	B WATA	tp Co	llectel			

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	925				
Site Name:	BUKER	100 Bu	sinhss	PANIC	
Project No.:	0				
Field Staff:	PICH	Ancheria			

WELL DATA

Date		8/11/23				
Well Number		MW-SBR				
Diameter (inches)		211				
Total Sounded Depth (feet)	Part W. Same	151				
Static Water Level (feet)		13.9'				
H₂O Column (feet)		1.1				
Pump Intake (feet)						
Well Volume (gallons)						
Amount to Evacuate (gallons)						
Amount Evacuated (gallons)						

FIELD READINGS

				D IXEADII					
Date	Stabilization	8/17/23	V/11/23						
Time	Criteria	4:63	9:10						
pH (Std. Units)	+/-0.1	8.54	4.97						
Conductivity (mS/cm)	3%	5.57	5.79						
Turbidity (NTU)	10%	0.00	0.00						
D.O. (mg/L)	10%	2.14	1,30						
Temperature (°C) (°F)	3%	14.31%	15.33%						
ORP³(mV)	+/-10 mv	-141	-227						
Appearance		C	C						
Free Product (Yes/No)		NONE	NONE						
Odor			NOME.						
Comments	Dug), MS,	MSD	COLL	EET FD	Fnor	1 Mu	5B	R.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:			
Site Name:	BUFFALO	BUSINESS	PARIZ
Project No.:			
Field Staff:			

WELL DATA

Date	8/17/23	
Well Number	MWSARA	
Diameter (inches)	4"	
Total Sounded Depth (feet)	20'	
Static Water Level (feet)	6.1	
H ₂ O Column (feet)	13.9'	
Pump Intake (feet)		
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)	1 4 5 1	

FIELD READINGS

Date	Stabilization \$//	1/23 8/17/23 8/	117/13 8/17/23			
Time	Criteria 9	125 11:55 1	2:00 12:08			
pH (Std. Units)	+/-0.1	6.93	0.99 7.04			
Conductivity (mS/cm)	3%	3.10 2	.80 2.43			
Turbidity (NTU)	10%	0.00 1	7.1 0.00			
D.O. (mg/L)	10%	1.15 6	75 ,71			
Temperature (°C) (°F)	3%	17.050 1	7.09% 17.08%			
ORP ³ (mV)	+/-10 mv		264 -276			
Appearance		C	CC			
Free Product (Yes/No)		NONE N	DIE NONE.			
Odor	V Link Ed	MONE N	DNE NORE			
Comments		s Dry. Cecharad w	hu we	CAME BE		

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name					
Site Name:	RIFE	ALO.	Bus: WESS	PAME	
Project No.:					
Field Staff:	RICH	BACK	LERT		

WELL DATA

Date		8/17/23			
Well Number		MW 4BR			
Diameter (inches)	A THAI SERVE	411			
Total Sounded Depth (feet)		20			
Static Water Level (feet)	4-7-1	14.2'			
H ₂ O Column (feet)		3.8'			
Pump Intake (feet)					
Well Volume (gallons)					
Amount to Evacuate (gallons)					
Amount Evacuated (gallons)					

FIELD READINGS

				- 1,-1,-211			
Date	Stabilization	8/17/23	8/11/23	8/10/0	8/11/2>		
Time	Criteria	9:40	9:45	9:50	4:85		
pH (Std. Units)	+/-0.1	7.41	4.76	6.47	626		
Conductivity (mS/cm)	3%	.797	.753	.735	.730		
Turbidity (NTU)	10%	72.7	24.0	0.00	0.00		
D.O. (mg/L)	10%	3.24	2.42	2.23	1.91		
Temperature (°C) (°F)	3%	17.43°C			17.0900		
ORP ³ (mV)	+/-10 mv	-49	-49	-48	- 44		
Appearance		e	C	C	C		
Free Product (Yes/No)		NONE	NONE	NOME	none		
Odor		NONE	NONE	now	NONE		
Comments							

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:				
Site Name:	BUFFAL	o BusiNess	PARK	
Project No.:				
Field Staff:	Rilu	RACKERT		

WELL DATA

Date	1×611	8/17/23				
Well Number		MW-3BM	L			
Diameter (inches)		411				
Total Sounded Depth (feet)		20'				
Static Water Level (feet)		11.2				
H ₂ O Column (feet)		8.8				
Pump Intake (feet)						
Well Volume (gallons)						
Amount to Evacuate (gallons)						
Amount Evacuated (gallons)						

FIELD READINGS

				D KLADII					
Date	Stabilization	8/17/23	8/17/03	8/11/23					u e
Time	Criteria	10:10	10:15	10.50					
pH (Std. Units)	+/-0.1	6.41	4.44	6.44					
Conductivity (mS/cm)	3%	3.55	3.78	4.27					
Turbidity (NTU)	10%	0.00	0.00	0.00					
D.O. (mg/L)	10%	1.03	287	.79					
Temperature (°C) (°F)	3%	110100	15.82°C	15.6300					
ORP ³ (mV)	+/-10 mv	-90	-116	-126					
Appearance		C	C	E					
Free Product (Yes/No)		rono	LONE	NONE					
Odor	1 A	NON.	MONE	NONE					
Comments	- STE	IR BA	E AMOD	ep we	tli Mi	0.38n	itab	RECEIVE	y

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name	:			
Site Name:	RUFFAL	o Businkss	PARK	
Project No.:				
Field Staff:	RICH	BACKENT.		

WELL DATA

Date	Y/17/23				
Well Number	MW ZOR				
Diameter (inches)	411				
Total Sounded Depth (feet)	20				
Static Water Level (feet)	5.4				
H₂O Column (feet)	14.6				
Pump Intake (feet)					
Well Volume (gallons)					
Amount to Evacuate (gallons)					
Amount Evacuated (gallons)					

FIELD READINGS

			1155	DICADII	100				
Date	Stabilization	8/17/23	8/17/23	8/17/23	8/17/2)	8/17/23	8/17/27	8/17/23	
Time	Criteria	10:50	10:55	11:00	11:05	11:10	11:15	11:20	
pH (Std. Units)	+/-0.1	7.19	7.04	7.03	7.01	4.86	6.81	6.81	
Conductivity (mS/cm)	3%	.576	.559	0858	.558		0588	.558	
Turbidity (NTU)	10%	365	208	160	/34	12	80.9	78.8	
D.O. (mg/L)	10%	. 93	.73	.71	,72	. 94	.96	.91	
Temperature (°C) (°F)	3%	16.950	14.75%	16.80%	14.8906	17.05°C	17,15°C	17.21%	
ORP ³ (mV)	+/-10 mv	-106	- 145	-156	-157	-128	-118	-112	
Appearance	HHU 158	BROWN	C	C	C	6	C	C	
Free Product (Yes/No)		sonte	NONE	NONE	NONE	rort	ront	NONE	
Odor			NONE	NONE	NONE	NONE	NONTO	NONE	
Comments	-TW	b.d.ty	NONE IN	Iw. rbr	Stayer	· Consi	TON A	NI CIN	NST

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	<u> </u>	
Site Name:	BUDEALO BUSINE	s paper
Project No.:		
Field Staff:	RICH BACKERT	

WELL DATA

Date	8/17/23	
Well Number	MW-IBA	
Diameter (inches)	411	
Fotal Sounded Depth (feet)	20	
Static Water Level (feet)	6.3	
H₂O Column (feet)	13.7'	
Pump Intake (feet)	in the	
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)		

FIELD READINGS

				LD KLADI				
Date	Stabilization	8/17/23						
Time	Criteria	11:35						
pH (Std. Units)	+/-0.1							
Conductivity (mS/cm)	3%							
Turbidity (NTU)	10%							
D.O. (mg/L)	10%							
Temperature (°C) (°F)	3%							
ORP ³ (mV)	+/-10 mv							
Appearance	WAN DE							
Free Product (Yes/No)								
Odor								
Comments	-only	DEP	H 10	WAT	er wh	s Ruci	PROED.	

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name):			
Site Name:	Busino	Business	PARK	
Project No.:				
Field Staff:	RICH B	acher		

WELL DATA

Date		(10/23				
Well Number		Mw-losa				
Diameter (inches)		2"				
Total Sounded Depth (feet)		15'				
Static Water Level (feet)	11 11 2 10 (91				
H ₂ O Column (feet)		""				
Pump Intake (feet)						
Well Volume (gallons)						
Amount to Evacuate (gallons)						
Amount Evacuated (gallons)						

FIELD READINGS

		1							
Date	Stabilization	8/17/23							
Time	Criteria	11:40							
pH (Std. Units)	+/-0.1								
Conductivity (mS/cm)	3%		4						
Turbidity (NTU)	10%								
D.O. (mg/L)	10%								
Temperature (°C) (°F)	3%								
ORP ³ (mV)	+/-10 mv								
Appearance									
Free Product (Yes/No)									
Odor	<u>Salue say</u>								
Comments	- 004	SERT	H 10	WHITE	WAS	Cellh	ited FR	04 110	s-lebpe

BUFFALO BUSINESS PARK

CARBON TANK LOG

2022

i. di	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-24-22	2-21-22	3-23-22	4-25-22	8-25-22	6-24-22
Totalizer Reading:	1086.4	1/28,9	1185.2	1237.9	1286.4	1331.6
Performed By:		5	2		-	Su
Comments:		 ;	S 		\ <u></u>	
			: 	•	S	2
	 -				-	
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-20-22	5-34-22	9-2622	10.21-22	11-16-22	12-20-22
Totalizer Reading:	1337.9	1353,6	1369.4	1382.8	1411,5	14699
Performed By:		·			V	
Comments:			 8			
					Chatboth	
	A	\$ Cody here 8.9-22 BSA SAMPLES			TOOK SAMPLES 11-15-22	

Ö
507
X
1
Ö
CARBC
S
ARK
PA
ESS
N
BÜ
9
FA
F F

2023

JAN FEB 1528, 4 1567.5 2528, 4 1567.5 3011 JUL 1902.2 1943.6 2002.2 1943.6 2002.2 1943.6
--

* Installed New Dumpon Floor, 2-14-23
* Installed meters on 5505 System. Besing Reading, 2.72

BUFFALO BUSINESS PARK

GROUND WATER LOG

WELL #: MW-3BR

2022

	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-24-22	7-21-22	3-23-22	4-25-22	4-25-22	-6-24-22
Totalizer Reading:	0990.230	1004, 400	1046.180	10-	1/05.380	
Water Level Height:	143	52	_15/_	48	_163	159
Performed By:	5	2	8			:
Comments:		:				Quiled pump
		·		-	-	Today -
						-
	JUL	AUG	SEP	ост	NOV	DEC
Date Read:	7-20-22 7	KSER ATTACK	(=) 9.26.22	10-21-22	11-16-22	12-20-22
Totalizer Reading:	Sill Waiting	NOTE	1105.380	1108,380	1/24.020	1172 300
Water Level Height:	NO Changes		_8"_	7'2	13 9	15
Performed By:	///			V	-	
Comments:):	STILL WAITINS		Installed new pomo	***************************************
	123		from Manstactor			
		2	Pen: NICILE Seiwent Romas	9/20/22 meals	11-22 830 pm 1105.38	······································

	C/s (or
--	---------

BUFFALO BUSINESS PARK

GROUND WATER LOG

WELL #: MW-4BR

2022

	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	11.24-22	2-21-22	2-23-22	4-2522	5-25-22	6-24-22
Totalizer Reading:	0199,650	0202.210	0205,040	0207,680	0208,770	0210.300
Water Level Height:	197		173	219	Z 4 5	176
Performed By:	<u> </u>		5_			ş ;
Comments:			-			
						1
	-			 :	-	
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	1-20-22	8-24.22	9-26-22	10-21-22	11-16-22	12-20-22
Totalizer Reading:	03/0.300	0218,00	0225.760	6232.780	0237. 550	0240;830
Water Level Height:	6-7	19 5	20'8	115	235	_24
Performed By:	Codyon	:				***************************************
Comments:	Site for	Installed New		· · · · · · · · · · · · · · · · · · ·		
	SAMPLES	AMP SEENOTER				
						

	2023	NUC	62-11-5	0253 ,320	12° C				DEC						
		MAY	52-11-5	022/120	() (0)				NON						
	WELL #: MW-4BR	APR	4-17-23	028 0.350	702				OCT						
	907	MAR	2-23-23	0248.610	161				SEP						
8	GROUND WATER LOG	FEB	1-15-23	0245.760	21'3				AUG	8-17-23	0580.480	ich	2	mel penings;	WATER SAMPLES
	INESS PARK	JAN	52.52-1	028.870	23,				JUL	7-26-63	0255.380	23 %	م رُ		
ě	BUFFALO BUSINESS PARK		Date Read:	Totalizer Reading:	Water Level Height:	Performed By:	Comments:			Date Read:	Totalizer Reading:	Water Level Height:	Performed By:	Comments:	

BUFFALO BUS	SINESS PARK	GROUND WATER	LOG	WELL #: MW-5AE	IR .	2022
	JAN	FEB	MAR	APR	MAY	JUN
Date Read:	1-24-22	1-21-22	3-23-22	4-25-22	9-25-22	6-24-22
Totalizer Reading:	117,770	0120.450	123,520	126.330	0128,630	130,200
Water Level Height:	_/7'	152	132		159	20,2
Performed By:	Sm			-		
Comments:				·)	
	***************************************					-
	·					
	JUL	AUG	SEP	ОСТ	NOV	DEC
Date Read:	7-20-22	8-24-22	9-26-22	10-22-22	11-16-22	12-20-22
Totalizer Reading:	0/36,210	0142.570	0148.910	6154.320	0158550	D162.190
Water Level Height:	6.9	179	18 2	102	207	147
Performed By:			3 	¥		
Comments:	Cody on Sike for					
	WATER Sample	-	-			

SSDS CARBON-TANK-LOG

2023

NUC	6-19-23		412.8	#23.2			DEC						
MAY	82-11-5		4/209	1/2 3,1	•		NON						
APR	4-17-23		L'2-7#	#2-3,1			OCT						
MAR	2.22.2		£1.2.8	#23,1			SEP						
8							AUG	8-17.23	802 1#	#2.3.1			
JAN			#12.8.				JUL	7-26.23	8.2 1#	#2 3.0	c)		
	Date Read:	Totalizer Reading:	SSDS Reading:	Performed By:	Comments:	ž.		Date Read:	Totalizer Reading:	SSDS Reading:	Performed Bv:	Comments:	

BUFFALO BUSINESS PARK	SINESS PARK	GROUND WATER LOG		WELL #:		2023
	JAN	FEB	MAR	APR	MAY	NUC
Date Read:						
Totalizer Reading:						
Water Level Height:						
Gallons Pumped:						
Performed By:						
Comments:						
ä						
	JUL	AUG	SEP	ОСТ	NON	DEC
Date Read:						
Totalizer Reading:						
Water Level Helght:						
Gallons Pumped:						
Performed By:						
Comments:						

2023	Nnr						DEC							
Î	MAY						NON							
WELL#:	APR						OCT							
907	MAR						SEP							
GROUND WATER LOG	FEB						AUG							
NESS PARK	JAN						JUL							
BUFFALO BUSINESS PARK		Date Read:	Totalizer Reading:	Water Level Height:	Performed By:	Comments:		Date Read:	Totalizer Reading:	Water Level Height:	Performed By:	Comments:	34	

:

APPENDIX D

SUB-SLAB DEPRESSURIZATION SYSTEM INSPECTION CERTIFICATION

studio T3

2495 Main Street, Suite 301 Buffalo, NY 14214 phone: (716) 803-6400 fax: (716) 810-9504

August 10, 2023

Buffalo Business Park ATTN: Gary Crewson 1800 Broadway, Bldg. 1D Buffalo, New York 14212

Reference: SSDS System Site Inspections

Dear Mr. Crewson,

I completed an inspection of both sub-slab depressurization systems (SSDS) at the Buffalo Business Park in Buffalo, New York on Thursday, August 10, 2023 at 10:05 AM. The inspection results are summarized in the table below:

BU	BUFFALO BUSINESS PARK SSDS INSPECTIONS - 8/10/23									
ADDRESS	REFERENCE #	VACUUM	ELECTRIC POWER	PIPING	DRAW	SUCTION				
1800 BROADWAY - BLDG 1A	B-1	OPERATIONAL	ON	INTACT	SATISFACTORY	AUDIBLE				
1800 BROADWAY - BLDG 1A	B-2	OPERATIONAL	ON	INTACT	SATISFACTORY	AUDIBLE				

Based on the results both of the soil vapor extraction systems are functional and operating optimally. Vacuum pressure detector monitors have also been installed per NYSDEC and are fully operational (see photos on following pages).

Please do not hesitate to contact me with any questions regarding the above.

Andrew Terragnoli, P.E.

bondene Ionograli

APPENDIX E

BSA DISCHARGE PERMIT RENEWAL SAMPLING

AUTHORIZATION TO DISCHARGE UNDER BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM

PERMIT NUMBER: 22-01-BU124

USEPA Category: 40 CFR 403

In accordance with the provisions of the Federal Water Pollution Control Act, as amended, the Sewer Regulations of the Buffalo Sewer Authority, authorization is hereby granted to:

BUFFALO BUSINESS PARK, INC.

To discharge groundwater from a remediation facility located at:

1800 BROADWAY AVENUE, B-1D BUFFALO, NEW YORK 14212

To the Buffalo Municipal Sewer System.

Issuance of this permit is based upon a permit application filed on **September 22, 2021** and analytical data. This permit is granted in accordance with discharge limitations, monitoring requirements and other conditions set forth in Part I and II hereof.

Effective this 1st day of January, 2022

To Expire the 31st day of December, 2024

General Manager, Buffalo Sewer Authority

Issued this 22Nb day of November , 2021

PART 1: SPECIFIC CONDITIONS

A. DISCHARGE LIMITATIONS & MONITORING REQUIREMENTS

During the period beginning the effective date of this permit and lasting until the expiration date, discharge from the permitted facility outfall(s) (see attached map) shall be limited and monitored semi-annually by the permittee as specified below:

Sampling for the pollutants below will be conducted at Sample Point 001.

Sample Point 001 is adjacent to the carbon cannister located within the middle of the facility that is parallel to Broadway.

Sample Point 001: Footnotes found on page 3.

Regulation	2 5	Discharge	Discharge	Discharge	Discharge	M.A.I.D	Sampling	Sampling
		Limit	Limit	limit	Limit		Requirement	Requirement
40 CFR	Parameter	Daily	Daily	Monthly	Monthly		Time Period ⁽¹⁾	Type ⁽²⁾
		Conc. (mg/L)	Mass (lbs)	Conc. (mg/L)	Mass (lbs)	Conc. (mg/L)		
403	pH (s.u.)	5.0-12.0	X	X	X	X	1 Day	Grab
403	Mercury ⁽³⁾	0.0008	X	Х	х	X	1 Day	Grab
403	USEPA Test Method 624 ⁽⁴⁾	To be monitored	Х	Х	Х	Х	1 Day	Grab
403	Total Flow	No Limit	Х	Х	Х	Х	1 Day	Discharge Meter Reading

PART 1: SPECIFIC CONDITIONS

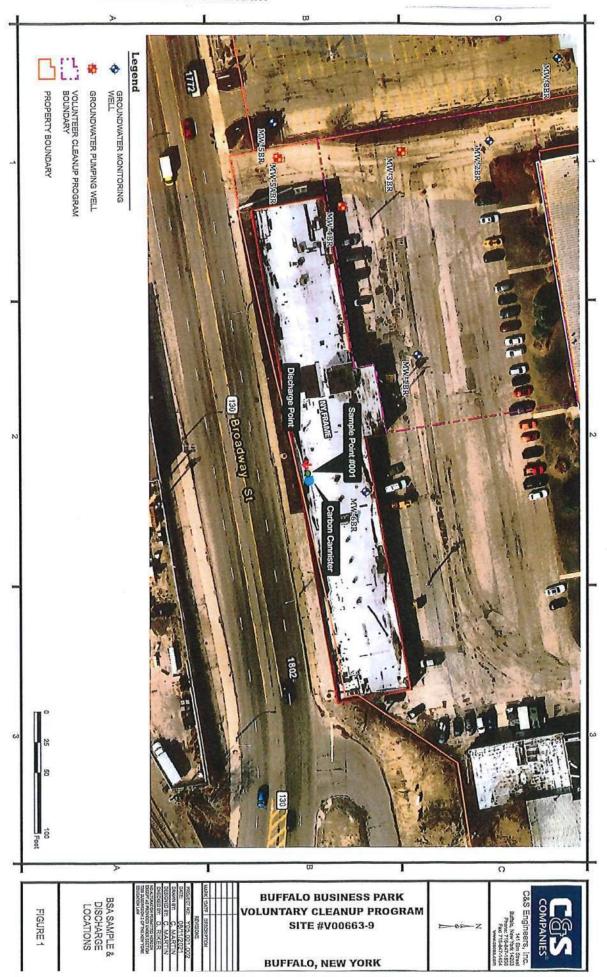
B. FOOTNOTES:

1. Sampling Requirement, Time Period: One (1) day shall mean 1 consecutive 24 hour day.

- 2. Sampling Requirement, Sampling Type:
 - Grab sample: A single discreet sample collected over a period that is not to exceed 15 minutes.
 - Composite sample: The two methods of obtaining a composite sample are flowproportional composite sampling or time-proportional composite sampling. Please indicate the sampling method utilized.
- 3. This limit is the compliance level for the BSA's Industrial Pretreatment Program approved local limits. When testing for Mercury, EPA Test Method 245 is acceptable. However, the BSA may occasionally request EPA Test Method 1631, Low Level Mercury analysis, and EPA Test Method 1669. EPA Test Method 1669 is the required sampling method for EPA Test Method 1631 when it is believed that Mercury may be present in the manufacturing process or analytical results consistently show the presence of Mercury.
- 4. The permittee must report any compound whose concentration is greater than 0.01 mg/l. The permittee is not authorized to discharge any of the parameters evaluated by this test procedure which may cause or contribute to a violation of water quality standards or harm the sewerage system. Any parameter detected may, at the discretion of the Buffalo Sewer Authority, be specifically limited and incorporated into the permit.

PART I: SPECIFIC CONDITIONS

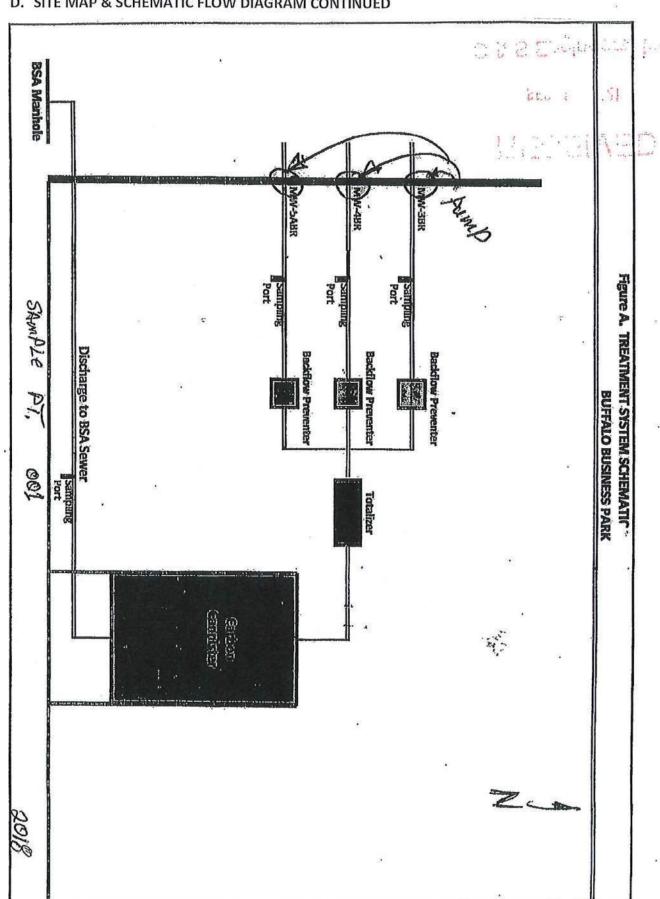
C. DISCHARGE MONITORING REPORTING REQUIREMENTS


1. During the period beginning the effective date of this permit lasting until the expiration date, discharge monitoring results shall be summarized and reported semi-annually by the permittee on the days specified below:

Sample Point	Parameter	Initial Report	Subsequent Reports
001	All parameters	March 1, 2022	September 1, 2022
			March 1, 2023
			September 1, 2023
	E .		March 1, 2024
			September 1, 2024

2. To renew your Discharge Permit, a Discharge Permit Application is required six months prior to the expiration of this permit. Please submit by June 30, 2024.

Part I: SPECIFIC CONDITIONS


D. SITE MAP & SCHEMATIC FLOW DIAGRAM

Permit #: 22-01-BU124

Part I: SPECIFIC CONDITIONS

D. SITE MAP & SCHEMATIC FLOW DIAGRAM CONTINUED

BRANKY AUC.

BUFFALO POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT PART II: GENERAL CONDITIONS

A. MONITORING AND REPORTING

1. Local Limits

Except as otherwise specified in this permit, the permit holder shall comply with all specific prohibitions, limits on pollutants or pollutant parameters set forth in the Buffalo Sewer Authority Sewer Use Regulations, as amended from time to time, and such prohibitions, limits and parameters shall be deemed pretreatment standards for purposes for the Clean Water Act.

2. Definitions

Definitions of terms contained in this permit are as defined in the Buffalo Sewer Authority Sewer Use Regulations.

3. Discharge Sampling Analysis

All Wastewater discharge samples and analyses and flow measurements shall be representative of the volume and character of the monitored discharge. Methods employed for flow measurements and sample collections and analyses shall conform to the Buffalo Sewer Authority "Sampling Measurement and Analytical Guidelines Sheet".

4. Recording of Results

For each measurement or sample taken pursuant to the requirements of the permit, the permittee shall record the information as required in the "Sampling Measurement and Analytical Guidelines Sheet".

5. Additional Monitoring by Permittee

If the permittee monitors any pollutants at the location(s) designated herein more frequently than required by this permit, using approved analytical methods as specified in 40 CFR Part 136 the results of such monitoring shall be included in the calculation and reporting of values required under Part I, B. Such increased frequency shall also be indicated.

6. Reporting

All reports prepared in accordance with this Permit shall be submitted to:

Industrial Waste Section
Buffalo Sewer Authority Treatment Plant
90 West Ferry Street
Buffalo, New York 14213

All self-monitoring reports shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines Sheet". These reporting requirements shall not relieve the permittee of any other reports, which may be required by the N.Y.S.D.E.C. or the U.S.E.P.A.

7. Certification Statement

All self-monitoring reports shall include the following certification statement, signed by the preparer of the report:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations".

B. PERMITTEE REQUIREMENTS

1. Change in Discharge

All discharges authorized herein shall be consistent with the terms and conditions of this permit and with the information contained in the BPDES permit application on which basis this permit is granted. In the event of any facility expansions, production increases, process modifications or the installation, modification or repair of any pretreatment equipment which may result in new, different or increased discharges of pollutants, a new BPDES Permit application must be submitted prior to any change. Following receipt of an amended application, the BSA may modify this permit to specify and limit any pollutants not previously limited. In the event that the proposed change will be covered under an applicable Categorical Standard, a Baseline Monitoring Report must be submitted at least ninety (90) days prior to any discharge.

2. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed, calibration and maintenance of instrumentation, and recordings from continuous monitoring instrumentation shall be retained at this facility for a minimum of three (3) years, or longer if requested by the General Manager.

3. Slug Control Plan

Upon written notification by the BSA that a slug control plan is necessary for the permittee, the plan shall be prepared in accordance with the BSA "Sampling Measurement and Analytical Guidelines" sheet. Within 90 days of the BSA notification, the permittee must implement the slug control plan

4. Notification of Slug, Accidental Discharge or Spill

In the event that a slug, accidental discharge or any spill occurs at the facility for which this permit is issued, it is the responsibility of the permittee to immediately notify the B.S.A. Treatment Plant of the quantity and character of such discharge. During normal business hours, Monday – Friday, 7:30 AM - 3:00 PM call 716-851-4664, ext. 5374. After normal business hours call 716-851-4664, ext. 600. For all slug discharges, and when requested by the BSA following an accidental discharge or spill, within five (5) days following all such discharges, the permittee shall submit a report describing the character and duration of the discharge, the cause of the discharge, and measures taken or that will be taken to prevent a recurrence of such discharge.

5. Noncompliance Notification

If, for any reason, the permittee does not comply with or will be unable to comply with any discharge limitation specified in this permit, the permittee or their assigns must verbally notify the Industrial Waste Section at 716-851-4664 ext. 5374 within twenty-four (24) hours of becoming aware of the violation. The permittee shall provide the Industrial Waste Section with the following information, in writing, within five (5) days of becoming aware of such condition:

- a. a description of the discharge and cause of noncompliance and;
- b. The period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate and prevent recurrence of the noncomplying discharge.

Additionally, the permittee shall repeat the sampling and analysis and submit these results of the report analysis to the Industrial Waste Section within 30 days after becoming aware of the violation.

6. Adverse Impact

The permittee shall take all reasonable steps to minimize any adverse impact to the Buffalo Sewerage System resulting from noncompliance with any discharge limitations specified in this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge.

7. Waste Residuals

Solids, sludges, filter backwash or other pollutants removed in the course of treatment or control of wastewaters and/or the treatment of intake waters, shall be disposed of in a manner such as to prevent any pollutant from such materials from entering the Buffalo Sewer System.

8. Power Failures

In order to maintain compliance with the discharge limitations and prohibitions of this permit, the permittee shall provide an alternative power source sufficient to operate the wastewater control facilities; or, if such alternative power source is not provided the permittee shall halt, reduce or otherwise control production and/or controlled discharges upon the loss of power to the wastewater control facilities.

9. Treatment Upsets

- a. Any industrial user which experiences an upset in operations that places it in a temporary state of noncompliance, which is not the result of operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation, shall inform the Industrial Waste Section immediately upon becoming aware of the upset. Where such information is given verbally, a written report shall be filed by the user within five (5) days. The report shall contain:
 - A description of the upset, its cause(s) and impact on the discharger's compliance status;
 - (ii) The duration of noncompliance, including exact dates and times of noncompliance, and if the non-compliance is continuing, the time by which compliance is reasonably expected to be restored;
 - (iii) All steps taken or planned to reduce, eliminate, and prevent recurrence of such an upset.
- b. An industrial user which complies with the notification provisions of this Section in a timely manner shall have an affirmative defense to any enforcement action brought by the Industrial Waste Section for any

noncompliance of the limits in this permit, which arises out of violations attributable to and alleged to have occurred during the period of the documented and verified upset.

10. Treatment Bypasses

- a. A bypass of the treatment system is prohibited unless the following conditions are met:
 - (i) The bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; or
 - (ii) There was no feasible alternative to the bypass, including the use of auxiliary treatment or retention of the wastewater; and
 - (iii) The industrial user properly notified the Industrial Waste Section as described in paragraph b. below.
- b. Industrial users must provide immediate notice to the Industrial Waste Section upon discovery of an unanticipated bypass. If necessary, the Industrial Waste Section may require the industrial user to submit a written report explaining the cause(s), nature, and duration of the bypass, and the steps being taken to prevent its recurrence.
- c. An industrial user may allow a bypass to occur which does not cause pretreatment standards or requirements to be violated, but only if it is for essential maintenance to ensure efficient operation of the treatment system. Industrial users anticipating a bypass must submit notice to the Industrial Waste Section at least ten (10) days in advance. The Industrial Waste Section may only approve the anticipated bypass if the circumstances satisfy those set forth in paragraph a above.

C. PERMITTEE RESPONSIBILITIES

1. Permit Availability

The originally signed permit must be available upon request at all times for review at the address stated on the first page of this permit.

2. Inspections

The permittee shall allow the General Manager of the Buffalo Sewer Authority and/or his authorized representatives, upon the presentation of credentials and during normal working hours or at any other reasonable times, to have access to and copy any records required in this permit; and to sample any discharge of pollutants.

3. Transfer of Ownership or Control

In the event of any change in control or ownership of facilities for which this permit has been issued the permit shall become null and void. The succeeding owner shall submit a completed Buffalo Sewer Authority permit application prior to discharge to the sewer system.

D. PERMITTEE LIABILITIES

1. Permit Modification

After notice and opportunity for a hearing, this permit may be modified, suspended, or revoked in whole or in part during its term for cause including, but not limited to the following:

- a. Violation of any terms or conditions of this permit,
- b. Obtaining this permit by misrepresentation or failure to disclose fully all relevant facts,
- c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

2. Imminent Danger

In the event there exists an imminent danger to health or property, the permitter reserves the right to take immediate action to halt the permitted discharge to the sewerage works.

3. Civil and Criminal Liability

Nothing in this permit shall relieve the permittee from any requirements, liabilities, or penalties under provisions of the "Sewer Regulations of the Buffalo Sewer Authority" or any Federal, State and/or local laws or regulations.

E. NATIONAL PRETREATMENT STANDARDS

If a pretreatment standard or prohibition (including any Schedule of Compliance specified in such pretreatment standard or prohibition) is established under Section 307 (b) of the Act for a pollutant which is present in the discharge and such standard or prohibition is more stringent than any limitation for such pollutant in this permit, this permit shall be revised or modified in accordance with such pretreatment standard or prohibition.

F. PLANT CLOSURE

In the event of plant closure, the permittee is required to notify the Industrial Waste Section in writing as soon as an anticipated closure date is determined, but in no case later than five days of the actual closure.

G. CONFIDENTIALITY

Except for data determined to be confidential under Section 308 of the Act, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Buffalo Sewer Authority. As required by the Act, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the Act.

H. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

141 Elm Street Suite 100 Buffalo, NY 14203 p: (716) 847-1630 f: (716) 847-1454 www.cscos.com

February 27, 2023

Traserra Adams, J.D.
Legal Investigator
Industrial Waste Section
Buffalo Sewer Authority
Foot of Ferry Street
90 West Ferry
Buffalo, New York 14213-1799

Re: Buffalo Business Park Semi-Annual Self-Monitoring Report February 8th, 2023

Dear Ms. Adams:

Pursuant to guidelines described in the Buffalo Sewer Authority Permit #22-01-BU124, Buffalo Business Park (BBP) is providing this semi-annual self-monitoring report which provides the analytical results of a post treatment system water (effluent) sample that was collected on February 8, 2023. In addition, a reading from the system totalizer is also provided.

TREATMENT SYSTEM CARBON CHANGE OUT

The carbon in the 500-gallon treatment canister was not replaced during this reporting period.

ANALYTICAL RESULTS

A post treatment water sample was collected on the morning of February 8, 2023 for laboratory analysis. The sample was subsequently hand delivered to Alpha Analytical for analysis as follows:

- USEPA Method 4500 for pH;
- USEPA Method 245.1 for mercury; and
- USEPA 624.1 for volatile organic compounds.

The pH of the sample was analyzed at 7.0.

Mercury was not detected (ND) in the water sample that was analyzed.

There were no volatile organic compounds (VOCs) detected in the water sample collected from the treatment system above the detection limit except for tetrachloroethene detected at 0.0180 mg/L, trans-1,2-dichloroethene detected at 0.00896 mg/L, and trichloroethene detected at 0.198 mg/L. **Table 1** provides a summary of key compounds historically detected in groundwater at the site. The laboratory analytical data package is attached as **Appendix A**.

VOLUMETRIC INFORMATION

The totalizer coming into the onsite treatment system was read on February 8, 2023 to provide volumetric information. The volume of groundwater treated since the start of treatment operations was 1,555,700 gallons. The totalizer reading for the last reporting period (August 2022) was 1,342,900 gallons. Therefore, a total of 212,800 gallons of groundwater were treated and discharged to the BSA during this reporting period. A photo of the totalizer reading is provided as **Appendix B**.

Should you have any questions regarding this letter or require additional information, please feel free to contact the undersigned.

Sincerely,

C&S ENGINEERS, INC.

Daniel E. Riker, P.G.

Department Manager

Cody A. Martin

Project Environmental Scientist

 $\colongreen{line} \colongreen{line} \colongree$

Semi-Annual Self-Monitoring Report February 27, 2023 Page 3

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Official:	Title:	
Cignatura	Dato	

BUFFALO BUSINESS PARK TREATMENT SYSTEM RESULTS COMPARED TO BSA CRITERIA FEBRUARY 2023

Parameter	BSA Discharge Limit	Post-Treatment Sample
	Lillit	Feb. 2023
VOCs - mg/l		
Tetrachloroethene	0.267	0.0180
trans-1,2-Dichloroethene	0.285	0.00896
Trichloroethene	0.712	0.19800 J
Metals - mg/l		
Mercury	0.0008	ND
General Chemistry - SU		
рН	5.0 12.0	7.0

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- *+ LCS and/or LCSD is outside acceptance limits, high biased.
- ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
- B Compound was found in the blank and sample.
- ${\rm F1}$ ${\rm MS}$ and/or ${\rm MSD}$ recovery exceeds control limits.
- F2 MS/MSD RPD exceeds control limits
- H Sample was prepped or analyzed beyond the specified holding time
- \boldsymbol{J} Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications.

Service Request No:R2301056

Cody Martin C&S Engineers, Inc. 141 Elm St Buffalo, NY 14203

Laboratory Results for: Buffalo Business Park

Dear Cody,

Enclosed are the results of the sample(s) submitted to our laboratory February 08, 2023 For your reference, these analyses have been assigned our service request number **R2301056**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:C&S Engineers, Inc.Service Request: R2301056Project:Buffalo Business ParkDate Received: 02/08/2023

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 02/08/2023. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

	Michran Pedro			
Approved by	<u> </u>	Date	02/21/2023	

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: BSA-020823	Lab ID: R2301056-001					
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	49.2			1.00	ug/L	624.1
cis-1,2-Dichloroethene	44.8	D		2.00	ug/L	624.1
pH	6.99				pH Units	SM 4500-H+ B
Temperature of pH Analysis	20.9				deg C	SM 4500-H+ B
Tetrachloroethene (PCE)	18.0			1.00	ug/L	624.1
Tetrachloroethene (PCE)	16.4	D		2.00	ug/L	624.1
trans-1,2-Dichloroethene	8.96			1.00	ug/L	624.1
trans-1,2-Dichloroethene	9.48	D		2.00	ug/L	624.1
Trichloroethene (TCE)	211	E		1.00	ug/L	624.1
Trichloroethene (TCE)	198	D		2.00	ug/L	624.1

Sample Receipt Information

Client: C&S Engineers, Inc. Service Request:R2301056

Project: Buffalo Business Park/Y05001002

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2301056-001	BSA-020823	2/8/2023	0930
R2301056-002	trip blank	2/8/2023	0930

Λ	Chain of Custody / Analytical Request Form 71200								SR#:											
(ALS)	1565 Jefferson Road, Buildi					-1 58	5 28	38 5	380	• al	sglo	bal.	com	i			Page	l	of	
	Report To:	ALL SHADED AREA	IENT / SAMPLER		Pr	eserv	ative								440	Y				0. None
Company: Contact: Email: Phone:	LES Engineers dy Martin Partinal CSOS. Com	Project Name Project Number: ALS Quote #: Sampler's Signature:	Busine 1002	as Erk	ew ww	LS.		24.524.TCLP	• 625 • TCLP	8 • TCLP		CLP	Below	- Field / In-Lab Filter	45.	44500	had You			1. HCl 2. HNO3 3. H2SO4
Address: 14	Elm St.	Email CC:	<u> </u>		SW DW S L	Containers		A - 8260•624	SVOA - 8270	-8081 • 608	809 • 7	-8151 • TCLP	Metals, Total - Select Below	Metals, Dissolved - Fi	2	F F	To Note that			4. NAOH5. Zn Acet.6. MeOH
- 67.0		State Samples Collected (Circle or Write):	NY, MA, PA, CT	, Other:		er of	ISD?	S VOA	S SV	Pesticides	- 8082	Herbicides	s, To	s, Dis	3		7			7. NaHSO4
Lab ID		lection Informa	tion:		Matrix	Number	MS/MSD	GC/MS	GC/MS	stic	PCBs	rbi	etal	eta	<u> </u>	¥	7			8. Other
(ALS)	Sample ID:		Date	Time		Ž	Σ	Ğ	9	Pe	ΡC	He	Σ	Σ	2	(1)				Notes:
	BSA-020823	<u> </u>	2/8/23	9:30	GW	5	,								1	ム	1			
	· · · · · · · · · · · · · · · · · · ·		' '		ļ				'						\sqcup	_				
			· 		<u> </u>													<u> </u>		
		· · · · · · · · · · · · · · · · · · ·			_									<u> </u>						<u> </u>
																	_			
	-																			
Special Ins	tructions / Comments:			Turnarour	ıd Re	quire	men	ts	R	ерог	t Rec	quire	men	ts	Metal	s: RC	RA 8•PP	13+TAL 2	3•TCLP•	Other (List)
				Rush (Surc *Subject to Avai *Please Check w	lability	•			X			A -Res		QC			λ Repo i тнм • 0		CL • BTI	X • TCLP •
				Standard	(10 Bu	ısiness	Days)		Valida						ſn	voic	e To:	Sam	e as R	eport To)
				Date Required:				:	EDD:		Yes _	N	0		PO #:					
				<u> </u>					EDD 1	ype:					Compa					
	Relinguished By: Recei	ved By: Re	linquished By:	Received B	y:		Reline	quishe	ed By:			Receiv	ed By	":	Contac	t:				
Signa	ature ody Mile Re	de James		Hattle											Email:					
Printed N	lame Carly Wartin Keith	- Wares 7	Erth On noe	Mathure	York	V									Phone:	20	204	nee Nee		5
Com		. Keit	// -	ALS											Add	16 Er	301	DOU nc. Park		
Date/	Time 2/8/23 27.	-23 2-3-2	14.	2/8/23/14	130															
Distribution: W	hite - Lab Copy; Yellow - Return to Originator															111(1)				ZV 12 DY ALS GTOUP

PC Secondary Review: _

Cooler Receipt and Preservation Check Form

(AL	S)	Cooler	IXCCC.	ipi a	nu i i	CSCI	v atioi	Cut	CK I	OI III				
Project/Clie	ent				_Folde	r Nur	nber				_•			
-	ed on $2/8/2$	23	by: <u>[]</u>	\mathcal{U}	_	COU	RIER:	ALS	UPS	FEDE	X VEL	OCITY CLI	ENT	
		outside of coole			Y (N')	5a	Perch	orate s	amples	have re	quired he	adspace?	Y	V (NA)
2 Custody	papers proper	ly completed (in	k_sign	ed)?	\widehat{YN}	5b	Did V	OA via	ls, Alk,	or Sulfic	le have si	g* bubbles?	Y()	NA KI
		good condition	<u> </u>		Y'N	6	ļ <u>.</u>			origina		ALS/ROC	CLIE	ENT
		Ice Gel packs	•	ent?		7	Soil V	OA rec	eived a	s: B	ulk E			(AV
		1	<i>,</i> -			-L							\rightarrow	
8. Temperatur		Date: <u>2/8</u> /	13		7٠ ما)		ID:	IR#7	IR#11	<u> </u>	From:	Temp Blanl	⟨ San	ple Bottle
Observed To		9,2	-	15	7						-		ļ	
Within 0-6%		(Y) N	-	Y(1			N	<u> </u>	N	<u>Y</u>	N	Y N	Y	
	re samples froz			Y 1	N		<u>N </u>	Y	N	<u>Y</u>	N	Y N	<u>Y</u>	
	-	note packing/ic	e cond	-	I: A		Ice melt				described	-	Same 1	Day Rule
&Chent A	Approval to R	un Sampies:	21-		4 4 4		//				lient noti	ned by.		
•	held in storag		1-10	<u>12</u> b:	700		n 2/8/2							
5035 sample	es placed in sto	orage location:		by	y	o	n	_ at _		within 4	18 hours	of sampling?	Y	N
					T 10			1						
Cooler Br	eakdown/Prese	rvation Check**	: Date	ઃ_Q	1012) 3	_Time:_		Ω	by	:_S	.2		
		labels complete (bels and tags agr					c.)?			NO NO				
		ntainers used for) i				NO				
		s acceptable (no				g)?		3	ES	ио (Д	<u>D</u> AO			
		metals filtered i								NO (VA.		ر د ت	
	Air Samples: C Lot of test	assettes / Tubes	Intact \ Preser		vith MS Lot Red		Canis	ers Pre	ssurize Samp		edlar® E Vol.	Bags Inflated (Lot Add		Final
pН	paper	Reagent	Yes	No	LUI NO	SCIVCU	•	Exp	Adjus		Added		ica	pH
≥12		NaOH	ļ				•	İ						
≤2	806722	HNO ₃			3033	3091	DOI.	11/3	3		<u> </u>		~ 	ļ
≤2	ļ	H ₂ SO ₄						<u> </u>			 		,	<u> </u>
<4 5-9		NaHSO ₄	 . -	╁	No=Not	ifi for	2day		ļ		+			
Residual	 	For 608pest For CN,	+	 	If +, con			 			+	- 		
Chlorine		Phenol, 625,	1		Na ₂ S ₂ O ₃									
(-)		608pest, 522			CN), asc	orbic (p	henol).							i
.,		Na ₂ S ₂ O ₃												
		ZnAcetate		-				<u> </u>				e tested before a samples with ch		
		HCI	**	**							just repres		ennear pr	esci vatives
	\sim	<u> </u>	Δc	Ξ ΛΛ	^^	2 A:	. ^							
Bottle lot	numbers: O	2-11-16	, UE	PUC	dd-	<u> </u>	$\mathcal{M}\mathcal{A}_{-}$				· · · · · · · · · · · · · · · · · · ·	·		
Explain a	ii Discrepancio	es/ Other Comm	ients:											
	,													
												7500	on I n	пи
												· HPR		DT
												HTH		DT
												SUE		GFB
T -1- 1-		viewed by:	385									ALS	1 11	.3541
Labels	secondary re	viewed by:	<u> </u>	7,									,	

Page 8 of 44

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

01/23/2023

Miscellaneous Forms

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- Е Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- Organics- Concentration has exceeded the Е calibration range for that specific analysis.
- Concentration is a result of a dilution, D typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF_routine rev 6.doc

- + Correlation coefficient for MSA is <0.995.
- Ν Inorganics- Matrix spike recovery was outside laboratory limits.
- Organics- Presumptive evidence of a compound Ν (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- Concentration >40% difference between the two P GC columns.
- \mathbf{C} Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations¹

NELAP States	
Florida ID # E87674	
New Hampshire ID # 2941	
New York ID # 10145	
Pennsylvania ID# 68-786	
Virginia #460167	

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

9/30/21

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002

Non-Certified Analytes

Certifying Agency: New York Department of Health

Method	Matrix	Analyte
624.1	Water	1,2,3-Trichlorobenzene
624.1	Water	1,2,4-Trichlorobenzene
624.1	Water	1,2-Dibromo-3-chloropropane (DBCP)
624.1	Water	1,2-Dibromoethane
624.1	Water	1,4-Dioxane
624.1	Water	2-Butanone (MEK)
624.1	Water	2-Hexanone
624.1	Water	Carbon Disulfide
624.1	Water	Cyclohexane
624.1	Water	Isopropylbenzene (Cumene)
SM 4500-H+ B	Water	Temperature of pH Analysis
SM 4500-H+ B	Water	рН

Analyst Summary report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002

Sample Name: BSA-020823 Date Collected: 02/8/23

Lab Code: R2301056-001 **Date Received:** 02/8/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

245.1 CDISTEFANO NMANSEN

624 FNAEGLER SM 4500-H+ B SBIRNBERG

Sample Name: BSA-020823 Date Collected: 02/8/23

Lab Code: R2301056-001.R01 **Date Received:** 02/8/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

624 FNAEGLER

Sample Name: trip blank Date Collected: 02/8/23

Lab Code: R2301056-002 **Date Received:** 02/8/23

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

624 FNAEGLER

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation Method					
6010C	3050B					
6020A	3050B					
6010C TCLP (1311)	3005A/3010A					
extract						
6010 SPLP (1312) extract	3005A/3010A					
7199	3060A					
300.0 Anions/ 350.1/	DI extraction					
353.2/ SM 2320B/ SM						
5210B/ 9056A Anions						
For analytical methods not listed, the preparation method is the same as the analytical method reference.						

Sample Results

Volatile Organic Compounds by GC/MS

Analytical Report

Client:C&S Engineers, Inc.Service Request:R2301056Project:Buffalo Business Park/Y05001002Date Collected:02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

 Sample Name:
 BSA-020823
 Units: ug/L

 Lab Code:
 R2301056-001
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.00 U	1.00	1	02/13/23 18:51	
1,1,2,2-Tetrachloroethane	1.00 U	1.00	1	02/13/23 18:51	
1,1,2-Trichloroethane	1.00 U	1.00	1	02/13/23 18:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.00 U	1.00	1	02/13/23 18:51	
1,1-Dichloroethane (1,1-DCA)	1.00 U	1.00	1	02/13/23 18:51	
1,1-Dichloroethene (1,1-DCE)	1.00 U	1.00	1	02/13/23 18:51	
1,2,3-Trichlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
1,2,4-Trichlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
1,2-Dibromo-3-chloropropane (DBCP)	1.00 U	1.00	1	02/13/23 18:51	
1,2-Dibromoethane	1.00 U	1.00	1	02/13/23 18:51	
1,2-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
1,2-Dichloroethane	1.00 U	1.00	1	02/13/23 18:51	
1,2-Dichloropropane	1.00 U	1.00	1	02/13/23 18:51	
1,3-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
1,4-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
1,4-Dioxane	40.0 U	40.0	1	02/13/23 18:51	
2-Butanone (MEK)	5.00 U	5.00	1	02/13/23 18:51	
2-Hexanone	5.00 U	5.00	1	02/13/23 18:51	
4-Methyl-2-pentanone	5.00 U	5.00	1	02/13/23 18:51	
Acetone	5.00 U	5.00	1	02/13/23 18:51	
Benzene	1.00 U	1.00	1	02/13/23 18:51	
Bromodichloromethane	1.00 U	1.00	1	02/13/23 18:51	
Bromoform	1.00 U	1.00	1	02/13/23 18:51	
Bromomethane	1.00 U	1.00	1	02/13/23 18:51	
Carbon Disulfide	10.0 U	10.0	1	02/13/23 18:51	
Carbon Tetrachloride	1.00 U	1.00	1	02/13/23 18:51	
Chlorobenzene	1.00 U	1.00	1	02/13/23 18:51	
Chloroethane	1.00 U	1.00	1	02/13/23 18:51	
Chloroform	1.00 U	1.00	1	02/13/23 18:51	
Chloromethane	1.00 U	1.00	1	02/13/23 18:51	
Cyclohexane	1.00 U	1.00	1	02/13/23 18:51	
Dibromochloromethane	1.00 U	1.00	1	02/13/23 18:51	
Dichlorodifluoromethane (CFC 12)	1.00 U	1.00	1	02/13/23 18:51	
Dichloromethane	1.00 U	1.00	1	02/13/23 18:51	
Ethylbenzene	1.00 U	1.00	1	02/13/23 18:51	
Isopropylbenzene (Cumene)	1.00 U	1.00	1	02/13/23 18:51	
Methyl tert-Butyl Ether	1.00 U	1.00	1	02/13/23 18:51	
Styrene	1.00 U	1.00	1	02/13/23 18:51	
Tetrachloroethene (PCE)	18.0	1.00	1	02/13/23 18:51	
Toluene	1.00 U	1.00	1	02/13/23 18:51	
Trichloroethene (TCE)	211 E	1.00	1	02/13/23 18:51	
Trichlorofluoromethane (CFC 11)	1.00 U	1.00	1	02/13/23 18:51	
Vinyl Chloride	1.00 U	1.00	1	02/13/23 18:51	

Printed 2/21/2023 4:03:01 PM

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002 Date Collected: 02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

 Sample Name:
 BSA-020823
 Units: ug/L

 Lab Code:
 R2301056-001
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	49.2	1.00	1	02/13/23 18:51	
cis-1,3-Dichloropropene	1.00 U	1.00	1	02/13/23 18:51	
m,p-Xylenes	2.00 U	2.00	1	02/13/23 18:51	
o-Xylene	1.00 U	1.00	1	02/13/23 18:51	
trans-1,2-Dichloroethene	8.96	1.00	1	02/13/23 18:51	
trans-1.3-Dichloropropene	1.00 U	1.00	1	02/13/23 18:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	108	73 - 125	02/13/23 18:51	_
4-Bromofluorobenzene	94	85 - 122	02/13/23 18:51	
Toluene-d8	100	87 - 121	02/13/23 18:51	

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002 Date Collected: 02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

 Sample Name:
 BSA-020823
 Units: ug/L

 Lab Code:
 R2301056-001
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	2.00 U	2.00	2	02/15/23 19:00	
1,1,2,2-Tetrachloroethane	2.00 U	2.00	2	02/15/23 19:00	
1,1,2-Trichloroethane	2.00 U	2.00	2	02/15/23 19:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	2.00 U	2.00	2	02/15/23 19:00	
1,1-Dichloroethane (1,1-DCA)	2.00 U	2.00	2	02/15/23 19:00	
1,1-Dichloroethene (1,1-DCE)	2.00 U	2.00	2	02/15/23 19:00	
1,2,3-Trichlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
1,2,4-Trichlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
1,2-Dibromo-3-chloropropane (DBCP)	2.00 U	2.00	2	02/15/23 19:00	
1,2-Dibromoethane	2.00 U	2.00	2	02/15/23 19:00	
1,2-Dichlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
1,2-Dichloroethane	2.00 U	2.00	2	02/15/23 19:00	
1,2-Dichloropropane	2.00 U	2.00	2	02/15/23 19:00	
1,3-Dichlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
1,4-Dichlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
1,4-Dioxane	80.0 U	80.0	2	02/15/23 19:00	
2-Butanone (MEK)	10.0 U	10.0	$\frac{-}{2}$	02/15/23 19:00	
2-Hexanone	10.0 U	10.0	2	02/15/23 19:00	
4-Methyl-2-pentanone	10.0 U	10.0	2	02/15/23 19:00	
Acetone	10.0 U	10.0	2	02/15/23 19:00	
Benzene	2.00 U	2.00	2	02/15/23 19:00	
Bromodichloromethane	2.00 U	2.00	2	02/15/23 19:00	
Bromoform	2.00 U	2.00	2	02/15/23 19:00	
Bromomethane	2.00 U	2.00	2	02/15/23 19:00	
Carbon Disulfide	20.0 U	20.0	2	02/15/23 19:00	
Carbon Tetrachloride	2.00 U	2.00	2	02/15/23 19:00	
Chlorobenzene	2.00 U	2.00	2	02/15/23 19:00	
Chloroethane	2.00 U	2.00	2	02/15/23 19:00	
Chloroform	2.00 U	2.00	2	02/15/23 19:00	
Chloromethane	2.00 U	2.00	2	02/15/23 19:00	
Cyclohexane	2.00 U	2.00	2	02/15/23 19:00	
Dibromochloromethane	2.00 U	2.00	2	02/15/23 19:00	
Dichlorodifluoromethane (CFC 12)	2.00 U	2.00	2	02/15/23 19:00	
Dichloromethane	2.00 U	2.00	2	02/15/23 19:00	
Ethylbenzene	2.00 U	2.00	2	02/15/23 19:00	
Isopropylbenzene (Cumene)	2.00 U	2.00	2	02/15/23 19:00	
Methyl tert-Butyl Ether	2.00 U	2.00	2	02/15/23 19:00	
Styrene	2.00 U	2.00	2	02/15/23 19:00	
Tetrachloroethene (PCE)	16.4 D	2.00	2	02/15/23 19:00	
Toluene	2.00 U	2.00	$\frac{2}{2}$	02/15/23 19:00	
Trichloroethene (TCE)	198 D	2.00	2	02/15/23 19:00	
Trichlorofluoromethane (CFC 11)	2.00 U	2.00	$\overset{2}{2}$	02/15/23 19:00	
Vinyl Chloride	2.00 U	2.00	2	02/15/23 19:00	
vinyi Cinoriae	2.00 U	2.00	L	02/13/23 19:00	

Printed 2/21/2023 4:03:01 PM

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002 Date Collected: 02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

 Sample Name:
 BSA-020823
 Units: ug/L

 Lab Code:
 R2301056-001
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	44.8 D	2.00	2	02/15/23 19:00	
cis-1,3-Dichloropropene	2.00 U	2.00	2	02/15/23 19:00	
m,p-Xylenes	4.00 U	4.00	2	02/15/23 19:00	
o-Xylene	2.00 U	2.00	2	02/15/23 19:00	
trans-1,2-Dichloroethene	9.48 D	2.00	2	02/15/23 19:00	
trans-1.3-Dichloropropene	2.00 U	2.00	2	02/15/23 19:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	102	73 - 125	02/15/23 19:00	
4-Bromofluorobenzene	96	85 - 122	02/15/23 19:00	
Toluene-d8	98	87 - 121	02/15/23 19:00	

Analytical Report

Client:C&S Engineers, Inc.Service Request:R2301056Project:Buffalo Business Park/Y05001002Date Collected:02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

 Sample Name:
 trip blank
 Units: ug/L

 Lab Code:
 R2301056-002
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.00 U	1.00	1	02/13/23 18:30	
1,1,2,2-Tetrachloroethane	1.00 U	1.00	1	02/13/23 18:30	
1,1,2-Trichloroethane	1.00 U	1.00	1	02/13/23 18:30	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.00 U	1.00	1	02/13/23 18:30	
1,1-Dichloroethane (1,1-DCA)	1.00 U	1.00	1	02/13/23 18:30	
1,1-Dichloroethene (1,1-DCE)	1.00 U	1.00	1	02/13/23 18:30	
1,2,3-Trichlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
1,2,4-Trichlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
1,2-Dibromo-3-chloropropane (DBCP)	1.00 U	1.00	1	02/13/23 18:30	
1,2-Dibromoethane	1.00 U	1.00	1	02/13/23 18:30	
1,2-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
1,2-Dichloroethane	1.00 U	1.00	1	02/13/23 18:30	
1,2-Dichloropropane	1.00 U	1.00	1	02/13/23 18:30	
1,3-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
1,4-Dichlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
1,4-Dioxane	40.0 U	40.0	1	02/13/23 18:30	
2-Butanone (MEK)	5.00 U	5.00	1	02/13/23 18:30	
2-Hexanone	5.00 U	5.00	1	02/13/23 18:30	
4-Methyl-2-pentanone	5.00 U	5.00	1	02/13/23 18:30	
Acetone	5.00 U	5.00	1	02/13/23 18:30	
Benzene	1.00 U	1.00	1	02/13/23 18:30	
Bromodichloromethane	1.00 U	1.00	1	02/13/23 18:30	
Bromoform	1.00 U	1.00	1	02/13/23 18:30	
Bromomethane	1.00 U	1.00	1	02/13/23 18:30	
Carbon Disulfide	10.0 U	10.0	1	02/13/23 18:30	
Carbon Tetrachloride	1.00 U	1.00	1	02/13/23 18:30	
Chlorobenzene	1.00 U	1.00	1	02/13/23 18:30	
Chloroethane	1.00 U	1.00	1	02/13/23 18:30	
Chloroform	1.00 U	1.00	1	02/13/23 18:30	
Chloromethane	1.00 U	1.00	1	02/13/23 18:30	
Cyclohexane	1.00 U	1.00	1	02/13/23 18:30	
Dibromochloromethane	1.00 U	1.00	1	02/13/23 18:30	
Dichlorodifluoromethane (CFC 12)	1.00 U	1.00	1	02/13/23 18:30	
Dichloromethane (CFC 12)	1.00 U	1.00	1	02/13/23 18:30	
Ethylbenzene	1.00 U	1.00	1	02/13/23 18:30	
Isopropylbenzene (Cumene)	1.00 U	1.00	1	02/13/23 18:30	
Methyl tert-Butyl Ether	1.00 U	1.00	1	02/13/23 18:30	
Styrene	1.00 U	1.00	1	02/13/23 18:30	
Tetrachloroethene (PCE)	1.00 U	1.00	1	02/13/23 18:30	
Toluene	1.00 U	1.00	1	02/13/23 18:30	
Trichloroethene (TCE)	1.00 U	1.00	1	02/13/23 18:30	
Trichlorofluoromethane (CFC 11)	1.00 U	1.00	1	02/13/23 18:30	
		1.00	1		
Vinyl Chloride	1.00 U	1.00	1	02/13/23 18:30	

Printed 2/21/2023 4:03:02 PM

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002 Date Collected: 02/08/23 09:30

Sample Matrix: Water Date Received: 02/08/23 16:30

Sample Name:trip blankUnits: ug/LLab Code:R2301056-002Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	1.00 U	1.00	1	02/13/23 18:30	
cis-1,3-Dichloropropene	1.00 U	1.00	1	02/13/23 18:30	
m,p-Xylenes	2.00 U	2.00	1	02/13/23 18:30	
o-Xylene	1.00 U	1.00	1	02/13/23 18:30	
trans-1,2-Dichloroethene	1.00 U	1.00	1	02/13/23 18:30	
trans-1.3-Dichloropropene	1.00 U	1.00	1	02/13/23 18:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	105	73 - 125	02/13/23 18:30		
4-Bromofluorobenzene	95	85 - 122	02/13/23 18:30		
Toluene-d8	99	87 - 121	02/13/23 18:30		

Metals

Analytical Report

Client: C&S Engineers, Inc.

Project:

Service Request: R2301056 **Date Collected:** 02/08/23 09:30 Buffalo Business Park/Y05001002

Date Received: 02/08/23 16:30 **Sample Matrix:** Water

Sample Name: BSA-020823 Basis: NA

Lab Code: R2301056-001

Inorganic Parameters

Analysis **Analyte Name** Method Result MRL Dil. **Date Analyzed Date Extracted** Units Mercury, Total 245.1 0.20 U ug/L 0.20 02/17/23 11:22 02/16/23

General Chemistry

Analytical Report

Client: C&S Engineers, Inc.

Service Request: R2301056 **Date Collected:** 02/08/23 09:30 Buffalo Business Park/Y05001002

Date Received: 02/08/23 16:30 **Sample Matrix:** Water

Sample Name: BSA-020823 Basis: NA

Lab Code: R2301056-001

Project:

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
рН	SM 4500-H+ B	6.99	pH Units	-	1	02/10/23 14:21	Н
Temperature of pH Analysis	SM 4500-H+ B	20.9	deg C	-	1	02/10/23 14:21	Н

QC Summary Forms

Volatile Organic Compounds by GC/MS

QA/QC Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project: Buffalo Business Park/Y05001002

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Extraction Method:

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Toluene-d8
Sample Name	Lab Code	73-125	85-122	87-121
BSA-020823	R2301056-001	108	94	100
BSA-020823 DL	R2301056-001	102	96	98
trip blank	R2301056-002	105	95	99
Method Blank	RQ2301604-04	106	94	99
Method Blank	RQ2301718-06	106	95	101
Lab Control Sample	RQ2301604-02	102	99	99
Lab Control Sample	RQ2301604-03	102	92	96
Lab Control Sample	RQ2301718-03	102	101	99
Lab Control Sample	RQ2301718-05	104	96	98

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project:Buffalo Business Park/Y05001002Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2301604-04
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.00 U	1.00	1	02/13/23 15:14	
1,1,2,2-Tetrachloroethane	1.00 U	1.00	1	02/13/23 15:14	
1,1,2-Trichloroethane	1.00 U	1.00	1	02/13/23 15:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.00 U	1.00	1	02/13/23 15:14	
1,1-Dichloroethane (1,1-DCA)	1.00 U	1.00	1	02/13/23 15:14	
1,1-Dichloroethene (1,1-DCE)	1.00 U	1.00	1	02/13/23 15:14	
1,2,3-Trichlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
1,2,4-Trichlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
1,2-Dibromo-3-chloropropane (DBCP)	1.00 U	1.00	1	02/13/23 15:14	
1,2-Dibromoethane	1.00 U	1.00	1	02/13/23 15:14	
1,2-Dichlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
1,2-Dichloroethane	1.00 U	1.00	1	02/13/23 15:14	
1,2-Dichloropropane	1.00 U	1.00	1	02/13/23 15:14	
1,3-Dichlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
1,4-Dichlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
1,4-Dioxane	40.0 U	40.0	1	02/13/23 15:14	
2-Butanone (MEK)	5.00 U	5.00	1	02/13/23 15:14	
2-Hexanone	5.00 U	5.00	1	02/13/23 15:14	
4-Methyl-2-pentanone	5.00 U	5.00	1	02/13/23 15:14	
Acetone	5.00 U	5.00	1	02/13/23 15:14	
Benzene	1.00 U	1.00	1	02/13/23 15:14	
Bromodichloromethane	1.00 U	1.00	1	02/13/23 15:14	
Bromoform	1.00 U	1.00	1	02/13/23 15:14	
Bromomethane	1.00 U	1.00	1	02/13/23 15:14	
Carbon Disulfide	10.0 U	10.0	1	02/13/23 15:14	
Carbon Tetrachloride	1.00 U	1.00	1	02/13/23 15:14	
Chlorobenzene	1.00 U	1.00	1	02/13/23 15:14	
Chloroethane	1.00 U	1.00	1	02/13/23 15:14	
Chloroform	1.00 U	1.00	1	02/13/23 15:14	
Chloromethane	1.00 U	1.00	1	02/13/23 15:14	
Cyclohexane	1.00 U	1.00	1	02/13/23 15:14	
Dibromochloromethane	1.00 U	1.00	1	02/13/23 15:14	
Dichlorodifluoromethane (CFC 12)	1.00 U	1.00	1	02/13/23 15:14	
Dichloromethane (CFC 12)	1.00 U	1.00	1	02/13/23 15:14	
Ethylbenzene	1.00 U	1.00	1	02/13/23 15:14	
Isopropylbenzene (Cumene)	1.00 U	1.00	1	02/13/23 15:14	
Methyl tert-Butyl Ether	1.00 U	1.00	1	02/13/23 15:14	
Styrene	1.00 U	1.00	1	02/13/23 15:14	
Tetrachloroethene (PCE)	1.00 U	1.00	1	02/13/23 15:14	
Toluene	1.00 U	1.00	1	02/13/23 15:14	
Trichloroethene (TCE)	1.00 U	1.00	1	02/13/23 15:14	
Trichlorofluoromethane (CFC 11)	1.00 U	1.00	1	02/13/23 15:14	
Vinyl Chloride	1.00 U	1.00	1	02/13/23 15:14	
vinyi Chioriae	1.00 U	1.00	1	04/13/43 13:14	

Printed 2/21/2023 4:03:03 PM

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project:Buffalo Business Park/Y05001002Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2301604-04Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	1.00 U	1.00	1	02/13/23 15:14	
cis-1,3-Dichloropropene	1.00 U	1.00	1	02/13/23 15:14	
m,p-Xylenes	2.00 U	2.00	1	02/13/23 15:14	
o-Xylene	1.00 U	1.00	1	02/13/23 15:14	
trans-1,2-Dichloroethene	1.00 U	1.00	1	02/13/23 15:14	
trans-1,3-Dichloropropene	1.00 U	1.00	1	02/13/23 15:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	106	73 - 125	02/13/23 15:14	
4-Bromofluorobenzene	94	85 - 122	02/13/23 15:14	
Toluene-d8	99	87 - 121	02/13/23 15:14	

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project:Buffalo Business Park/Y05001002Date Collected:NASample Matrix:WaterDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2301718-06
 Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.00 U	1.00	1	02/15/23 12:47	
1,1,2,2-Tetrachloroethane	1.00 U	1.00	1	02/15/23 12:47	
1,1,2-Trichloroethane	1.00 U	1.00	1	02/15/23 12:47	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.00 U	1.00	1	02/15/23 12:47	
1,1-Dichloroethane (1,1-DCA)	1.00 U	1.00	1	02/15/23 12:47	
1,1-Dichloroethene (1,1-DCE)	1.00 U	1.00	1	02/15/23 12:47	
1,2,3-Trichlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
1,2,4-Trichlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
1,2-Dibromo-3-chloropropane (DBCP)	1.00 U	1.00	1	02/15/23 12:47	
1,2-Dibromoethane	1.00 U	1.00	1	02/15/23 12:47	
1,2-Dichlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
1,2-Dichloroethane	1.00 U	1.00	1	02/15/23 12:47	
1,2-Dichloropropane	1.00 U	1.00	1	02/15/23 12:47	
1,3-Dichlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
1,4-Dichlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
1,4-Dioxane	40.0 U	40.0	1	02/15/23 12:47	
2-Butanone (MEK)	5.00 U	5.00	1	02/15/23 12:47	
2-Hexanone	5.00 U	5.00	1	02/15/23 12:47	
4-Methyl-2-pentanone	5.00 U	5.00	1	02/15/23 12:47	
Acetone	5.00 U	5.00	1	02/15/23 12:47	
Benzene	1.00 U	1.00	1	02/15/23 12:47	
Bromodichloromethane	1.00 U	1.00	1	02/15/23 12:47	
Bromoform	1.00 U	1.00	1	02/15/23 12:47	
Bromomethane	1.00 U	1.00	1	02/15/23 12:47	
Carbon Disulfide	10.0 U	10.0	1	02/15/23 12:47	
Carbon Tetrachloride	1.00 U	1.00	1	02/15/23 12:47	
Chlorobenzene	1.00 U	1.00	1	02/15/23 12:47	
Chloroethane	1.00 U	1.00	1	02/15/23 12:47	
Chloroform	1.00 U	1.00	1	02/15/23 12:47	
Chloromethane	1.00 U	1.00	1	02/15/23 12:47	
Cyclohexane	1.00 U	1.00	1	02/15/23 12:47	
Dibromochloromethane	1.00 U	1.00	1	02/15/23 12:47	
Dichlorodifluoromethane (CFC 12)	1.00 U	1.00	1	02/15/23 12:47	
Dichloromethane	1.00 U	1.00	1	02/15/23 12:47	
Ethylbenzene	1.00 U	1.00	1	02/15/23 12:47	
Isopropylbenzene (Cumene)	1.00 U	1.00	1	02/15/23 12:47	
Methyl tert-Butyl Ether	1.00 U	1.00	1	02/15/23 12:47	
Styrene	1.00 U	1.00	1	02/15/23 12:47	
Tetrachloroethene (PCE)	1.00 U	1.00	1	02/15/23 12:47	
Toluene	1.00 U	1.00	1	02/15/23 12:47	
Trichloroethene (TCE)	1.00 U	1.00	1	02/15/23 12:47	
Trichlorofluoromethane (CFC 11)	1.00 U	1.00	1	02/15/23 12:47	
		1.00	1		
Vinyl Chloride	1.00 U	1.00	1	02/15/23 12:47	

Printed 2/21/2023 4:03:04 PM

Analytical Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project:Buffalo Business Park/Y05001002Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2301718-06Basis: NA

Volatile Organic Compounds by GC/MS, Unpreserved

Analysis Method: 624.1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
cis-1,2-Dichloroethene	1.00 U	1.00	1	02/15/23 12:47	
cis-1,3-Dichloropropene	1.00 U	1.00	1	02/15/23 12:47	
m,p-Xylenes	2.00 U	2.00	1	02/15/23 12:47	
o-Xylene	1.00 U	1.00	1	02/15/23 12:47	
trans-1,2-Dichloroethene	1.00 U	1.00	1	02/15/23 12:47	
trans-1,3-Dichloropropene	1.00 U	1.00	1	02/15/23 12:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	106	73 - 125	02/15/23 12:47	
4-Bromofluorobenzene	95	85 - 122	02/15/23 12:47	
Toluene-d8	101	87 - 121	02/15/23 12:47	

QA/QC Report

Client: C&S Engineers, Inc.

Project: Buffalo Business Park/Y05001002 **Date Analyzed:** 02/13/23

Sample Matrix: Water

Printed 2/21/2023 4:03:02 PM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

Units:ug/L Basis:NA

Service Request: R2301056

Lab Control Sample

RQ2301604-02

Analytical

	Analytical				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	624.1	23.7	20.0	118	70-130
1,1,2,2-Tetrachloroethane	624.1	19.8	20.0	99	60-140
1,1,2-Trichloroethane	624.1	20.3	20.0	102	70-130
1,1,2-Trichloro-1,2,2-trifluoroethane	624.1	22.7	20.0	113	67-124
1,1-Dichloroethane (1,1-DCA)	624.1	22.5	20.0	112	70-130
1,1-Dichloroethene (1,1-DCE)	624.1	22.0	20.0	110	50-150
1,2,3-Trichlorobenzene	624.1	19.9	20.0	99	67-136
1,2,4-Trichlorobenzene	624.1	21.9	20.0	110	75-132
1,2-Dibromo-3-chloropropane (DBCP)	624.1	20.0	20.0	100	55-136
1,2-Dibromoethane	624.1	21.3	20.0	107	82-127
1,2-Dichlorobenzene	624.1	20.0	20.0	100	65-135
1,2-Dichloroethane	624.1	21.4	20.0	107	70-130
1,2-Dichloropropane	624.1	22.3	20.0	112	35-165
1,3-Dichlorobenzene	624.1	20.5	20.0	102	70-130
1,4-Dichlorobenzene	624.1	20.5	20.0	102	65-135
1,4-Dioxane	624.1	407	400	102	44-154
2-Butanone (MEK)	624.1	21.4	20.0	107	61-137
2-Hexanone	624.1	19.3	20.0	96	63-124
4-Methyl-2-pentanone	624.1	20.3	20.0	102	66-124
Acetone	624.1	22.0	20.0	110	40-161
Benzene	624.1	21.9	20.0	110	65-135
Bromodichloromethane	624.1	22.5	20.0	113	65-135
Bromoform	624.1	21.4	20.0	107	70-130
Bromomethane	624.1	26.7	20.0	133	15-185
Carbon Disulfide	624.1	20.7	20.0	104	66-128
Carbon Tetrachloride	624.1	22.6	20.0	113	70-130
Chlorobenzene	624.1	20.2	20.0	101	65-135
Chloroethane	624.1	22.9	20.0	115	40-160
Chloroform	624.1	23.2	20.0	116	70-135
Chloromethane	624.1	23.4	20.0	117	1-205
Cyclohexane	624.1	22.1	20.0	111	69-120
Dibromochloromethane	624.1	21.9	20.0	109	70-135
Dichlorodifluoromethane (CFC 12)	624.1	17.2	20.0	86	59-155
D: 4 1 2/21/2022 4 02 02 DM			g .	D C 02 0000	0.52001 00

QA/QC Report

Client: C&S Engineers, Inc.

Service Request: R2301056 **Project:** Buffalo Business Park/Y05001002 **Date Analyzed:** 02/13/23

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample

RQ2301604-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichloromethane	624.1	20.5	20.0	103	60-140
Ethylbenzene	624.1	21.7	20.0	109	60-140
Isopropylbenzene (Cumene)	624.1	22.2	20.0	111	77-128
Methyl tert-Butyl Ether	624.1	22.4	20.0	112	75-118
Styrene	624.1	22.4	20.0	112	80-124
Tetrachloroethene (PCE)	624.1	21.2	20.0	106	70-130
Toluene	624.1	22.7	20.0	114	70-130
Trichloroethene (TCE)	624.1	20.7	20.0	104	65-135
Trichlorofluoromethane (CFC 11)	624.1	24.5	20.0	122	50-150
Vinyl Chloride	624.1	20.6	20.0	103	5-195
cis-1,2-Dichloroethene	624.1	22.4	20.0	112	80-117
cis-1,3-Dichloropropene	624.1	22.9	20.0	114	25-175
m,p-Xylenes	624.1	43.9	40.0	110	80-126
o-Xylene	624.1	21.4	20.0	107	79-123
trans-1,2-Dichloroethene	624.1	23.1	20.0	115	70-130
trans-1,3-Dichloropropene	624.1	26.3	20.0	132	50-150

QA/QC Report

Client: C&S Engineers, Inc.

Project: Buffalo Business Park/Y05001002 **Date Analyzed:** 02/15/23

Sample Matrix: Water

Printed 2/21/2023 4:03:03 PM

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

Units:ug/L Basis:NA

Service Request: R2301056

Lab Control Sample

RQ2301718-03

Analytical

	Anaiyucai				
Analyte Name	Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	624.1	22.8	20.0	114	70-130
1,1,2,2-Tetrachloroethane	624.1	20.0	20.0	100	60-140
1,1,2-Trichloroethane	624.1	20.5	20.0	103	70-130
1,1,2-Trichloro-1,2,2-trifluoroethane	624.1	22.1	20.0	111	67-124
1,1-Dichloroethane (1,1-DCA)	624.1	23.5	20.0	118	70-130
1,1-Dichloroethene (1,1-DCE)	624.1	22.0	20.0	110	50-150
1,2,3-Trichlorobenzene	624.1	21.4	20.0	107	67-136
1,2,4-Trichlorobenzene	624.1	22.1	20.0	110	75-132
1,2-Dibromo-3-chloropropane (DBCP)	624.1	18.3	20.0	91	55-136
1,2-Dibromoethane	624.1	20.3	20.0	102	82-127
1,2-Dichlorobenzene	624.1	20.5	20.0	103	65-135
1,2-Dichloroethane	624.1	21.1	20.0	105	70-130
1,2-Dichloropropane	624.1	21.6	20.0	108	35-165
1,3-Dichlorobenzene	624.1	22.1	20.0	110	70-130
1,4-Dichlorobenzene	624.1	21.1	20.0	106	65-135
1,4-Dioxane	624.1	353	400	88	44-154
2-Butanone (MEK)	624.1	19.5	20.0	98	61-137
2-Hexanone	624.1	18.0	20.0	90	63-124
4-Methyl-2-pentanone	624.1	18.4	20.0	92	66-124
Acetone	624.1	22.7	20.0	114	40-161
Benzene	624.1	21.4	20.0	107	65-135
Bromodichloromethane	624.1	21.8	20.0	109	65-135
Bromoform	624.1	20.8	20.0	104	70-130
Bromomethane	624.1	23.8	20.0	119	15-185
Carbon Disulfide	624.1	21.2	20.0	106	66-128
Carbon Tetrachloride	624.1	23.4	20.0	117	70-130
Chlorobenzene	624.1	20.2	20.0	101	65-135
Chloroethane	624.1	21.4	20.0	107	40-160
Chloroform	624.1	22.1	20.0	110	70-135
Chloromethane	624.1	25.9	20.0	129	1-205
Cyclohexane	624.1	21.4	20.0	107	69-120
Dibromochloromethane	624.1	20.8	20.0	104	70-135
Dichlorodifluoromethane (CFC 12)	624.1	19.8	20.0	99	59-155
D: 4 1 2/21/2022 4 02 02 DM			C 41	D C 22.0000	0.52001 00

QA/QC Report

Client: C&S Engineers, Inc.

Service Request: R2301056 **Project:** Buffalo Business Park/Y05001002 **Date Analyzed:** 02/15/23

Sample Matrix: Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS, Unpreserved

Units:ug/L Basis:NA

Lab Control Sample

RQ2301718-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Dichloromethane	624.1	21.3	20.0	107	60-140
Ethylbenzene	624.1	22.0	20.0	110	60-140
Isopropylbenzene (Cumene)	624.1	22.4	20.0	112	77-128
Methyl tert-Butyl Ether	624.1	21.4	20.0	107	75-118
Styrene	624.1	22.8	20.0	114	80-124
Tetrachloroethene (PCE)	624.1	20.8	20.0	104	70-130
Toluene	624.1	22.8	20.0	114	70-130
Trichloroethene (TCE)	624.1	19.7	20.0	98	65-135
Trichlorofluoromethane (CFC 11)	624.1	23.6	20.0	118	50-150
Vinyl Chloride	624.1	20.7	20.0	104	5-195
cis-1,2-Dichloroethene	624.1	21.8	20.0	109	80-117
cis-1,3-Dichloropropene	624.1	23.5	20.0	118	25-175
m,p-Xylenes	624.1	44.4	40.0	111	80-126
o-Xylene	624.1	21.8	20.0	109	79-123
trans-1,2-Dichloroethene	624.1	22.8	20.0	114	70-130
trans-1,3-Dichloropropene	624.1	26.4	20.0	132	50-150

Metals

Analytical Report

Client: C&S Engineers, Inc.

Service Request: R2301056

Project: Buffalo Business Park/Y05001002

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Sample Name:

Method Blank

Basis: NA

Lab Code: R2301056-MB

Inorganic Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Mercury, Total	245.1	0.20 U	ug/L	0.20	1	02/17/23 11:00	02/16/23	

QA/QC Report

Client: C&S Engineers, Inc. **Service Request:**

R2301056

Project:

Buffalo Business Park/Y05001002

Date Collected:

02/08/23

Sample Matrix: Water **Date Received:**

02/08/23

Date Analyzed:

02/17/23

Date Extracted:

02/16/23

Duplicate Matrix Spike Summary

Inorganic Parameters

Sample Name:

BSA-020823

Units:

ug/L

Lab Code:

Prep Method:

R2301056-001

Basis:

NA

Analysis Method:

245.1 Method

Matrix Spike

Duplicate Matrix Spike

R2301056-001MS

R2301056-001DMS

RPD Sample **Spike Spike** % Rec Analyte Name Result % Rec Limits **RPD** Result Amount Result **Amount** % Rec Limit 0.98 98 1.26 126 20 Mercury, Total 0.20 U 1.00 1.00 70-130 26*

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: C&S Engineers, Inc.

Project: Buffalo Business Park/Y05001002 Date Analyzed: 02/17/23

Sample Matrix: Water

Lab Control Sample Summary Inorganic Parameters

> Units:ug/L Basis:NA

Service Request: R2301056

Lab Control Sample

R2301056-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury, Total	245.1	1.03	1.00	103	85-115

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project Buffalo Business Park/Y05001002 Date Collected: 02/08/23

Sample Matrix: Water Date Received: 02/08/23

Date Analyzed: 02/10/23

0.10

6.99

Replicate Sample Summary General Chemistry Parameters

Sample Name: BSA-020823 Units: pH Units

Lab Code: R2301056-001 **Basis:** NA

SM 4500-H+ B

Duplicate Sample

6.99

R2301056-

Sample 001DUP
Analyte Name Analysis Method MRL Result Result Average RPD RPD Limit

6.99

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

pН

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: C&S Engineers, Inc. Service Request: R2301056

Project Buffalo Business Park/Y05001002 Date Collected: 02/08/23

Sample Matrix: Water Date Received: 02/08/23

Date Analyzed: 02/10/23

Replicate Sample Summary General Chemistry Parameters

Sample Name: BSA-020823 Units: deg C

Lab Code: R2301056-001 **Basis:** NA

Duplicate Sample

R2301056-

Sample 001DUP

Analysis Method MDI Result Result Average

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitTemperature of pH AnalysisSM 4500-H+ B-20.920.920.9<1</td>20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

September 1, 2023

Traserra Adams, J.D. Legal Investigator **Industrial Waste Section Buffalo Sewer Authority** Foot of Ferry Street 90 West Ferry Buffalo, New York 14213-1799

Re: Buffalo Business Park Semi-Annual Self-Monitoring Report August 17, 2023

Dear Ms. Adams:

Pursuant to guidelines described in the Buffalo Sewer Authority Permit #22-01-BU124, Buffalo Business Park (BBP) is providing this semi-annual self-monitoring report which provides the analytical results of a post treatment system water (effluent) sample that was collected on August 17, 2023. In addition, a reading from the system totalizer is also provided.

TREATMENT SYSTEM CARBON CHANGE OUT

The carbon in the 500-gallon treatment canister was not replaced during this reporting period.

ANALYTICAL RESULTS

A post treatment water sample was collected on the morning of August, 17 2023 for laboratory analysis. The sample was subsequently hand delivered to Eurofins for analysis as follows:

- USEPA Method 4500 for pH;
- USEPA Method 245.1 for mercury; and
- USEPA 624.1 for volatile organic compounds.

The pH of the sample was analyzed at 7.5.

Mercury was not detected (ND) in the water sample that was analyzed.

There were no volatile organic compounds (VOCs) detected in the water sample collected from the treatment system above the detection limit except for tetrachloroethene detected at 0.28 mg/L, trans-1,2-dichloroethene detected at 0.011 mg/L, 1,2-dichloroethene detected at 0.78 mg/L, and trichloroethene detected at 0.62 mg/L. Tetrachloroethene slightly exceeded BSA

Discharge Limit of 0.267 mg/L. **Table 1** provides a summary of key compounds historically detected in groundwater at the site. The laboratory analytical data package is attached as Appendix A.

VOLUMETRIC INFORMATION

The totalizer coming into the onsite treatment system was read on August 17, 2023 to provide volumetric information. The volume of groundwater treated since the start of treatment operations was 1,943,600 gallons. The totalizer reading for the last reporting period (February 2023) was 1,555,700 gallons. Therefore, a total of 387,900 gallons of groundwater were treated and discharged to the BSA during this reporting period. A photo of the totalizer reading is provided as **Appendix B**.

Should you have any questions regarding this letter or require additional information, please feel free to contact the undersigned.

Sincerely,

C&S ENGINEERS, INC.

Daniel E. Riker, P.G.

Service Group Manager

Cody A. Martin

Project Environmental Scientist

ody A Mit

f:\project\y05 - buffalo business park\y05001003 - buffalo business park smp\planning-study\reports\2023\september 2023 self monitoring report\selfmonitoring report.docx

CERTIFICATION STATEMENT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

BUFFALO BUSINESS PARK TREATMENT SYSTEM RESULTS COMPARED TO BSA CRITERIA AUGUST 2023

Parameter	BSA Discharge Limit	Post-Treatmen Sample Aug. 2023	
VOCs - mg/l			
Tetrachloroethene	0.267	0.2800	
trans-1,2-Dichloroethene	0.285	0.01100	J
Trichloroethene	0.712	0.62000	
Metals - mg/l			
Mercury	0.0008	ND	
General Chemistry - SU			
рН	5.0 12.0	7.5	

ND indicates analyte was not detected.

Blank space indicates analyte was not analyzed for in that sample.

- *+ LCS and/or LCSD is outside acceptance limits, high biased.
- ^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
- B Compound was found in the blank and sample.
- F1 MS and/or MSD recovery exceeds control limits.
- F2 MS/MSD RPD exceeds control limits
- $\ensuremath{\mathrm{H}}$ Sample was prepped or analyzed beyond the specified holding time
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications.

4 4

ANALYTICAL REPORT

PREPARED FOR

Attn: Cody Martin C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203

Generated 8/28/2023 8:30:19 AM

JOB DESCRIPTION

Buffalo Business Park

JOB NUMBER

480-211964-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 8/28/2023 8:30:19 AM

Authorized for release by John Beninati, Project Manager John.Beninati@et.eurofinsus.com (716)504-9874

3

4

7

10

Client: C&S Engineers, Inc. Project/Site: Buffalo Business Park Laboratory Job ID: 480-211964-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	
Client Sample Results	6
Lab Chronicle	
Certification Summary	8
Method Summary	
Sample Summary	10
Receipt Checklists	11
Chain of Custody	12

A

6

8

9

Definitions/Glossary

Client: C&S Engineers, Inc.

Job ID: 480-211964-1

Project/Site: Buffalo Business Park

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly	used abbreviations ma	v or mav no	t be present in this report.
ADDICTION	THOSE COMMISSION	, asca appic viations ina	y or may mo	t be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

3

Page 4 of 12 8/28/2023

Case Narrative

Client: C&S Engineers, Inc.

Project/Site: Buffalo Business Park

Job ID: 480-211964-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-211964-1

Comments

No additional comments.

Receipt

The sample was received on 8/17/2023 9:20 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 18.4° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: BSA-081723 (480-211964-1). Elevated reporting limits (RLs) are provided.

Method 624.1: The continuing calibration verification (CCV) associated with batch 680413 recovered outside acceptance criteria, low biased, for Acrolein and Bromoform. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated sample is impacted: BSA-081723 (480-211964-1).

Method 624.1: The preservative used in the sample containers provided is not compatible with the Method 624 analytes requested. The following sample was received preserved with hydrochloric acid: BSA-081723 (480-211964-1). The requested target analyte list contains 2-Chloroethyl vinyl ether and/or Acrolein, which are acid-labile compounds that degrade in an acidic medium.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: BSA-081723 (480-211964-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-211964-1

3

4

5

6

1

_

1.0

a a

Client Sample ID: BSA-081723

Date Collected: 08/17/23 09:00 Date Received: 08/17/23 09:20

Analyte

pH (SM 4500 H+ B)

Temperature (SM 4500 H+ B)

Lab Sample ID: 480-211964-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			08/17/23 23:54	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			08/17/23 23:54	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			08/17/23 23:54	10
1,1-Dichloroethane	ND		50	5.9	ug/L			08/17/23 23:54	10
1,1-Dichloroethene			50	8.5	ug/L			08/17/23 23:54	10
1,2-Dichlorobenzene	ND			08/17/23 23:54	10				
1,2-Dichloroethane	ND		50	6.0	•		08/17/23 23:54	10	
1,2-Dichloroethene, Total	780		100	32	ug/L			08/17/23 23:54	10
1,2-Dichloropropane	ND		50	6.1	ug/L	g/L 08/17/:		08/17/23 23:54	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L	08/17/23		08/17/23 23:54	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			08/17/23 23:54	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			08/17/23 23:54	10
Acrolein	ND		1000	170	ug/L			08/17/23 23:54	10
Acrylonitrile	ND		500	19	ug/L			08/17/23 23:54	10
Benzene	ND		50	6.0	ug/L			08/17/23 23:54	10
Bromoform	ND		50	4.7	ug/L			08/17/23 23:54	10
Bromomethane	ND		50	12	ug/L			08/17/23 23:54	10
Carbon tetrachloride	ND		50	5.1	ug/L			08/17/23 23:54	10
Chlorobenzene	ND		50	4.8	ug/L			08/17/23 23:54	10
Chlorodibromomethane	ND		50	4.1	ug/L	08/17/23 23		08/17/23 23:54	10
Chloroethane	ND		50	8.7	ug/L	08/17		08/17/23 23:54	10
Chloroform	ND		50	5.4	ug/L	08/17/23 23:5		08/17/23 23:54	10
Chloromethane	ND		50	6.4	ug/L			08/17/23 23:54	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			08/17/23 23:54	10
Dichlorobromomethane	ND		50	5.4	ug/L			08/17/23 23:54	10
Ethylbenzene	ND		50	4.6	ug/L			08/17/23 23:54	10
Methylene Chloride	ND		50	8.1	ug/L			08/17/23 23:54	10
Tetrachloroethene	280		50	3.4	ug/L			08/17/23 23:54	10
Toluene	ND		50	4.5	ug/L			08/17/23 23:54	10
trans-1,2-Dichloroethene	11	J	50	5.9	ug/L			08/17/23 23:54	10
trans-1,3-Dichloropropene	ND		50	4.4	ug/L			08/17/23 23:54	10
Trichloroethene	620		50	6.0	ug/L			08/17/23 23:54	10
Vinyl chloride	ND		50	7.5	ug/L			08/17/23 23:54	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	112		68 - 130					08/17/23 23:54	10
4-Bromofluorobenzene (Surr)	102		76 - 123					08/17/23 23:54	10
Dibromofluoromethane (Surr)	111		75 - 123					08/17/23 23:54	10
Toluene-d8 (Surr)	103		77 - 120					08/17/23 23:54	10
Method: EPA 245.1 - Mercu	• •								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000043	ma/l		08/23/23 10:37	08/23/23 14:29	1

Eurofins Buffalo

Analyzed

08/24/23 16:33

08/24/23 16:33

RL

0.1

0.001

RL Unit

0.001 Degrees C

0.1 SU

Prepared

Result Qualifier

7.5 HF

20.7 HF

Dil Fac

Lab Chronicle

Client: C&S Engineers, Inc. Job ID: 480-211964-1

Project/Site: Buffalo Business Park

Client Sample ID: BSA-081723

Lab Sample ID: 480-211964-1 Date Collected: 08/17/23 09:00

Matrix: Water

Date Received: 08/17/23 09:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	624.1		10	680413	ATG	EET BUF	08/17/23 23:54
Total/NA	Prep	245.1			680963	NVK	EET BUF	08/23/23 10:37
Total/NA	Analysis	245.1		1	681082	NVK	EET BUF	08/23/23 14:29
Total/NA	Analysis	SM 4500 H+ B		1	681250	KB	EET BUF	08/24/23 16:33

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: C&S Engineers, Inc.

Job ID: 480-211964-1

Project/Site: Buffalo Business Park

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		rogram	Identification Number	Expiration Date	
New York	N	ELAP	10026	03-31-24	
The following analyte	s are included in this rep	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic	
the agency does not o		Matrix	Analyto		
Analysis Method	offer certification. Prep Method	Matrix	Analyte		
		Matrix Water	Analyte 1,2-Dichloroethene, Total		
Analysis Method					

Method Summary

Client: C&S Engineers, Inc.

Project/Site: Buffalo Business Park

Job ID: 480-211964-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	EPA	EET BUF
245.1	Mercury (CVAA)	EPA	EET BUF
SM 4500 H+ B	рН	SM	EET BUF
245.1	Preparation, Mercury	EPA	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

7

8

9

Sample Summary

Client: C&S Engineers, Inc.

Project/Site: Buffalo Business Park

Job ID: 480-211964-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 480-211964-1
 BSA-081723
 Water
 08/17/23 09:00
 08/17/23 09:20

Δ

6

8

9

Login Sample Receipt Checklist

Client: C&S Engineers, Inc.

Job Number: 480-211964-1

Login Number: 211964 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wanace, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

3

4

8

9

10

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

Environment Testing

: eurofins

0 - AsnaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone U - Acetone V - MCAA W - pH 4.5 Special Instructions/Note: Z - other (specify) Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-187800-39610.1 Preservation Codes 20 026 H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA 480-211964 Chain of Custody Total Number of containers Date/Time: Method of Shipment State of Origin: Analysis Requested Special Instructions/QC Requirements Lab PM Beninati, John E-Mait John, Beninati@et. eurofinsus.com Hd - +H 005+WS Sooler Temper Received by: Received by: 224.1_PREC - PP List VOA - 624.1 Perform MS/MSD (Yes or No) (W=water, S=solid, O=waste/oil, Preservation Code: Matrix Water Company company Type (C=comp, G=grab) Radiological Sample PWSID: △ Yes △ No Sample standar Unknown Due Date Requested: AT Requested (day) Compliance Project: Sample Date Po #: Y05001003 Project #: 48024218 SSOW#: Date/Time Poison B Skin Irritant Other (specify) Custody Seal No. Flammable Possible Hazard Identification Deliverable Requested: /, II 141 Elm Street Suite 100 Custody Seals Intact: Client Information Sample Identification Buffalo Business Park cmartin@cscos.com Company: C&S Engineers, Inc. △ Yes △ No 716-847-1630(Tel) Non-Hazard linquished by: Cody Martin State, Zip: NY, 14203 City: Buffalo

