FILE NAME

 ${\it ``Report.VCP.v00674.2008-05-20.RIR_Site2.pdf''}$

NOTE

- Contains folded images. Images must be copied in their entirety.
- Images may contain color.
- Documents must be returned in the same arrangement in which they were received.

Please return electronic copies to Sally Dewes

The Port Authority of New York and New Jersey

Comprehensive Remedial Investigation Report Site 2 (VCP Site V00674-2) HHMT - Port Ivory Facility

HHMT – Port Ivory Facility April 2008

MAY 2 0 2008

2B, in the vicinity of GW-1; the samples were designated with a GW-1 prefix to identify location and not to reference GW-1 as an AOC. Field screening identified the limits of the petroleum impacts at the above listed AOCs through visual, olfactory and field instrumentation. Analytical results confirmed the conclusions rendered through field screening activities performed during the field investigation component of the RI. Thus, the RI implemented at Site 2A/2B has successfully delineated petroleum impacts at Area A, Area B-3, Area B-2, Area OP-1, Area GW-14 and Area FS-1B on Site 2A.

With respect to Area MW-10D located on Site 2B, the RI has successfully delineated the extent of potential petroleum impacts to the north, west and east, however, the RI activities to the south were limited by the presence of an active pipeline. Based on the results of the RI, the Port Authority has reviewed remedial alternatives to address potential petroleum impacts at Site 2A/2B. Given the redevelopment plan (i.e., the contemplated use) for Site 2A/2B, it was determined that the most appropriate remedial alternative to address the petroleum-impacted areas is hot spot excavation with off-site disposal for the majority of the above listed areas. With regard to Area MW-10D further evaluation is being performed based on the presence of the nearby pipeline. A discussion of the selected remedial alternative is presented in Section 12.

In addition, the potential UST Areas were reviewed in conjunction with building/site demolition activities and resulted in the identification of two tanks at the UST7 Area. Tank removal actions are presented in Section 11 of this report.

10.0 EXPOSURE ASSESSMENT

This Exposure Assessment (EA) addresses conditions at Site 2A/2B. As previously stated, this portion of B the former industrial site is being redeveloped as the intermodal component of an intermodal/container storage facility. This EA describes the exposure setting, the nature of on-site contaminants, potential exposure points and routes and identifies potential exposure populations.

10.1 Exposure Setting

The HHMT-Port Ivory Facility is situated in an industrial section in the northwestern portion of Staten Island. Generally, the site is bordered by industrial/commercial businesses, roadways, surface water bodies (Arthur Kill and Bridge Creek) and undeveloped/vacant areas. No residential populations are situated immediately adjacent to Site 2A/2B. Site 2A/2B encompasses 22.6 acres and, at the time of Port Authority purchase, was improved by approximately twenty-nine buildings. Site 2A/2B was utilized for

offices, boiler buildings, furnace structures, manufacturing and development buildings, locomotive maintenance, security stations, cafeteria, a sewage treatment plant and a reservoir for fire protection. Tanks, both USTs and ASTs, as well as an underground network of piping for drainage control were formerly situated at Site 2A/2B.

The entire HHMT-Port Ivory Facility including Site 2A/2B is serviced by connections to the potable water and sanitary system of New York City. No septic systems or potable water wells are reported to be located or have been located at Site 2A/2B, or elsewhere on the HHMT-Port Ivory Facility. Storm water generated on the site is directed via a sheet flow to on-site catch basins. These catch basins discharge, through the facilities underground stormwater sewer system, to the adjacent waterways, roadways, and marshland. Bridge Creek though not directly located on the site is within the proximity of Site 2A/2B and was therefore included in site investigation activities. This creek is a tidal, saline stream, which has been classified as SD by the NYSDEC. This classification indicates that due to man-made/natural conditions the stream cannot meet primary or secondary criteria. The stream can support fish survival and limited fishing.

In addition, several utility easements and pipelines traverse the subject site. Colonial Pipeline, Exxon (now known as ExxonMobil) and Texas Pipeline (maintained by SOHIO) maintain the easements. Colonial Pipeline maintains a 10-foot pipeline easement that extends in a north/south direction along the western property boundary of Sites 1 and 2A. The easement initiates in the far southwestern corner of Site 2B and extends along the southern and southwestern corner into Site 2A. The easement traverses through the southern portion of Site 2A in a northeasterly direction and enters the southwestern corner of Site 1. The pipeline continues through Site 1 extending across Richmond Terrace and through the western portion of Future Site 4 (Block 1309, Lot 10). The easement terminates at the northern end of Future Site 4 (Block 1309, Lot 10). ExxonMobil maintains an 18-foot easement that is located generally east of the Colonial Pipeline easement. This easement parallels the Colonial Pipeline easement initiates at the western portion of Site 2A, just south of Site 1 and extends through Site 1 to Richmond Terrace where it turns in an easterly direction and extends along the southern boundary of Future Site 4 (Block 1309, Lot 10). Two Texas Pipeline (maintained by SOHIO) easements extend in a east/west direction through Site 2B. In addition, Tidewater Pipe Company LTD formerly operated a pipeline (consisting of approximately 7 pipes) that extend in north/south direction through Site 3. These abandoned pipes extend in an east/west direction through Site 2B, continue in a northerly direction through Site 3, across Richmond

Terrace and extend along the easterly property boundary of Future Site 4. These pipes have been identified as a potential source of LNAPL present at Site 3.

Investigative activities undertaken as part of the previously described SI and RI indicate that the HHMT-Port Ivory Facility consists of non-indigenous fill on top of organic clays and peat or sand deposits. Fill was placed upon tidal salt-marsh or sand deposits to raise the elevation of the land for development. The fill is reported to have included: sand, silt, gravel mixed with debris, cinders generated from on-site coal-fired boilers, calcium carbonate and other carbonate salts generated as a by-product from soap manufacturing processes, spent diatomaceous filter earth from vegetable oil refining operations, and carbonaceous filter material from glycerin recovery operations. Generally, Site 2A/2B is characterized by the presence of urban fill material including cinders. The presence of by-product fill material at Site 2A/2B is generally limited to the northwestern portion of Site 2A along the boundary line between Site 1 and Site 2A.

10.2 Nature of On-Site Contaminants

The SI/RI activities undertaken by HMM included investigation of the soil and groundwater at Site 2A/2B as well as sediment and surface water of Bridge Creek. The SI/RI for soil at Site 2A/2B included the installation of over 50 soil borings and the collection of over 80 soil samples. Groundwater investigations included the installation of 5 monitoring wells, one temporary well, recording water levels from all newly installed wells and four existing wells, reviewing wells for the presence of free phase floating product and the collection and laboratory analysis of 10 groundwater samples.

In soil, only three VOCs, trans-1,3-dichloropropene (0.43 mg/kg), dichloromethane (0.17 mg/kg) and benzene (0.32 mg/kg) were detected in excess of corresponding RSCOs in the SI. No elevated concentrations of VOCs were detected during the RI. In the instances, when the contaminant was detected, it was marginally above the MDL for the compound. The total VOCs concentration was below the NYSDEC guidance criteria of 10 mg/kg for all samples collected from Site 2A/2B. A number of SVOCs were detected in soil samples collected from Sites 2A/2B during the SI and RI. However, the vast majority of these compounds were detected below NYSDEC TAGM RSCOs. The following SVOCs were detected at concentrations above corresponding RSCOs in one or more soil samples from Site 2A/2B: acenaphthaene, anthracene, flouranthene, flourene, pyrene, phenanthrene, naphthalene, benzo(a)pyrene, benzo(a)anthracene, dibenz[a,h]anthracene, benzo(k)flouranthene, indeno(1,2,3-cd)pyrene, and phenol. The total SVOC concentration was below the NYSDEC guidance

criteria for all samples except the surface sample collected from location PG-STAIN-03, situated on Site 2A. The sample also exhibited the presence of a few PAH compounds in excess of 50 mg/kg. No PCBs were detected at concentrations in excess of corresponding RSCOs for surface or subsurface soil, as applicable.

Five pesticides (chlordane, endrin, dieldrin, heptachlor and heptachlor epoxide) were detected in excess of corresponding TAGM RSCOs in only a few samples collected from Site 2A/2B. Specifically, Dieldrin was detected at concentrations in excess of its corresponding RSCO in three samples; chlordane and endrin were both detected in excess of their individual RSCO in two samples; and, heptachlor and heptachlor epoxide were each detected in excess of their RSCO in only a single sample.

The NYSDEC TAGM generally regards site background as an appropriate concentration for the 24 TAL metals and has only established RSCOs for a portion of the targeted metals. Therefore, analytical results from investigative efforts were compared to the upper limit of the Eastern USA Background Range in the absence of a RCSO standard. This application is particularly appropriate in this instance given the presence of fill material and the urban nature of the site and site area. Analytical results revealed exceedances of RSCOs in one or more soil samples for 12 of the 13 of the metals with established guidance criteria; vanadium as not detected in excess of its RSCO in any of the soil samples from Site 2A/and 2B. Lead is reviewed by the NYSDEC on a case-by-case basis with 500 mg/kg established as the upper limit of the Eastern USA Background Range. Levels of lead in samples collected from Site 2A/2B ranged from not detected to 950 mg/kg.

Guidance criteria have not been established for cyanide or total phenolics. The presence of these types of contaminants is reviewed on a case-by-case basis by the NYSDEC. Cyanide was detected in several soil samples collected from Site 2A/2B. In the majority of instances, cyanide was detected at a concentration of less than 1 mg/kg. Total phenolics ranged from not detected to 5.5 mg/kg in 2 samples.

Four samples exhibited concentrations of TPHC in excess of 10,000 mg/kg. All four exhibiting concentrations above 10,000 mg/kg samples were collected from Site 2A. Eight samples exhibited a concentration of oil/grease above 10,000 mg/kg.

Samples collected ranged in pH from 3.8 to 12 with a little less then the majority, approximately 46%, of the values falling between 7.0 and 8.5. It should be noted that all of the samples exhibiting pH

concentrations at or above 10 were collected from soil borings installed into the by-product fill material present at the site. SI/RI activities identified three types of fill at Site 2A/2B: urban fill (historic fill) including soil fill, vegetative debris, construction debris (wood, glass, brick, concrete); cinder fill consisting of ash and ash-type materials with some slag; and by-product fill from production activities (calcium carbonate, spent diatomaceous earth, and spent carbonaceous filter material). As previously stated, by-product fill was generally limited to the northwestern portion of Site 2A and was not identified at Site 2B. The majority of fill material encountered of Site 2A/2B consisted of urban fill and cinder fill.

Several petroleum-impacted areas were identified within areas consisting of fill material. Further sampling efforts (i.e., RI phase) performed at these petroleum-impacted areas delineated the extent of "impacted" areas, which may be unrelated to the fill material. Analytical results from endpoint sampling during the RI did not reveal the presence of any VOCs and revealed relatively low levels of PAH compounds.

Overall, very few contaminants were detected in groundwater samples collected from Site 2A/2B. No VOCs, pesticides or PCBs were detected in groundwater samples and only a single SVOC, bis(2-thylhexyl)phthalate, was detected in excess of its corresponding SGV in groundwater samples from Site 2A/2B. Bis(2ethylhexyl) phthalate is frequently identified as a laboratory contaminant and, in fact, this compound was identified as being a laboratory contaminant in other groundwater samples collected with regard to this project.

A number of TAL metals were detected in one or more groundwater samples collected as part of the groundwater investigation of Site 2A/2B. However, only six TAL metals were detected at concentrations in excess of corresponding NYSDEC SGVs: arsenic, barium, iron, magnesium, manganese, and sodium. Barium was detected in one sample whereas arsenic, iron, manganese, magnesium and sodium were detected in several samples at elevated levels. Cyanide was detected below its corresponding SGV and total phenolics were not detected in any groundwater samples. TPHC was not detected in the groundwater samples from Site 2A/2B. In contrast, O/G was detected in six of eleven groundwater samples.

Four sediment and four surface water samples were collected at locations along Bridge Creek generally within the boundary of Site 2A. Analytical results from surface water and sediment samples revealed the presence of several metals at concentrations in excess of NYSDEC screening and guidance criteria. Sediment samples were compared to the Human Health Bioaccumulation criteria as published in the

Guidance Document Technical Guidance for Screening Contaminated Sediments dated January 1999. The Human Health Bioaccumulation criteria were developed as screening criteria; that is, to assist in the preliminary assessment of potential risks to human health and the environment and to determine whether further investigation or remediation is necessary. Four pesticide compounds; chlordane, P,P'-DDD, P,P'-DDT and P,P'-DDE were detected in sediment samples in excess of the Human Health Bioaccumulation criteria during the RI. Total PCB concentrations and concentrations of Arclor-1260 were detected in all sediment samples in excess of the Human Health Bioaccumulation criteria. No contaminant gradient was identified with respect to the detected contaminants indicating that the presence of same is a product of the urban nature of the stream corridor. Cessation of manufacturing activities at the site and the redevelopment of the site by the Port Authority is expected to continue to enhance the quality of Bridge Creek.

Based on the findings of the SI, HMM performed RI activities to delineate the presence of petroleum impacts at certain site locations. The RI successfully delineated the extent of petroleum impacts in soil and, in some instances, provided additional information pertaining to UST areas. The RI did not identify the presence of any VOCs in excess of NYSDEC guidance criteria or any free product conditions at Site 2A/2B. The specifics of the RI and UST evaluation efforts were presented earlier in this Report. Based on the results of the SI and RI, the Port Authority has proposed to address petroleum-impacted soil through source area excavation and removal. The remainder of the contaminants will be addressed as part of site redevelopment through the use of engineering and institutional controls.

10.3 Potential Exposure Points and Routes

The SI/RI revealed elevated concentrations (i.e., concentrations in excess of the NYDEC AGVs, RSCOs, and SGVs) of contaminants have been detected in environmental media at the site. These contaminants however are expected given the sites historical usage and its location in a historically urbanized area. In addition to contaminants that occurred directly as an outcome of historical site activities it can be assumed that contaminants at the site have migrated to the site from various sources found in historically urban areas. Generally the contaminants and levels that were found during the SI are believed to relate to both the sites historical use, location, and the fill reported to have been emplaced at the site as part of site development activities. Generally, the contaminants detected at concentrations in excess of NYSDEC soil guidance criteria included typical historic fill contaminants such as PAH compounds, metals, low levels of PCBs/pesticides, TPHC and O/G. As previously stated, non-fill contaminants such as VOCs were detected at elevated concentrations in only 3 of over 80 soil samples collected from Site 2A/2B.

In groundwater, no VOCs and only one SVOC were detected in excess of NYSDEC groundwater standards. The TAL metals iron, arsenic, barium, magnesium, manganese, and sodium were detected in excess of NYSDEC groundwater standards. In sediment, the several metals, pesticides/PCBs exceeded NYSDEC screening criteria. Analytical results did not reveal the presence of any contaminants at concentrations in excess of NYSDEC guidance criteria in one or more surface water samples.

On most sites, the most likely route of exposure for human receptors would be through ingestion of the contaminated soil, sediment or water or inhalation of airborne dust/particulates created through soil erosion in exposed areas of the site. However, on this site, a low potential exists for human contact, and thus few exposure points exist with regard to contaminants present at the site based on the two following conditions: (1) No human populations are situated in the immediate vicinity of the site. Persons present at the site are limited to Port Authority personnel or contractors retained by the Port Authority; and, (2) The Port Authority has implemented health and safety measures to minimize contact with contaminants by all persons currently performing tasks at the site. In addition, the Port Authority requires that contractors have and implement health and safety plans based on their tasks.

As previously stated, groundwater is not utilized for potable purposes and thus human populations will not contact groundwater. Bridge Creek is situated west of Site 2A. However, the Creek's physical position between the HHMT-Port Ivory Facility and the Howland Hook Marine Terminal does not provide easy access for area persons. Further, a fence is present along Bridge Creek, which further restricts access. Thus, Bridge Creek is considered to have a low potential as a point of exposure for human populations.

Any contamination remaining after the performance of remedial actions will be addressed through redevelopment efforts including engineering and institutional controls. Thus, exposure points will be eliminated in conjunction with site redevelopment.

10.4 Receptor Populations

As previously stated, no human population reside at or in the immediate vicinity of the Site 2A/2B. Further, persons currently present at the site are limited to Port Authority personnel or contractors retained by the Port Authority. To minimize exposure, the Port Authority and its contractors have implemented health and safety measures to minimize contact with contaminants by all persons currently performing tasks at the site. Additional persons will be present on site subsequent to the completion of

site redevelopment. As the site will be redeveloped for industrial purposes (intermodal/container storage facility), no resident population will occupy the site. Contamination at the site will have been addressed prior to these future worker populations being present at the site.

10.5 Exposure Assessment Summary

Information gained through the SI/RI has revealed the presence of fill material and a contaminant profile, which is consistent with urban sites located in the New York Metropolitan Region. The presence of contaminants in the soil does not appear to have significantly impacted groundwater quality at the site. Based on delineation efforts, petroleum impacts (identified through assessment and investigation activities) will be addressed through excavation of source areas. Any residual contamination will be addressed through and in conjunction with site redevelopment efforts.

Human receptors have not been identified in the immediate vicinity of the site and health and safety procedures are employed by the Port Authority and its contractors to minimize exposure to persons working at the site during ongoing redevelopment efforts. The intended future redevelopment of the site as an intermodal/container storage facility will further restrict contaminant pathways/routes through the installation of pavement and other semi-impervious material, which will function as an environmental cap throughout the entire site. This action will stabilize contaminants in the soil and fill material by impending infiltration as well as minimize or, in some cases, prevent erosion, as well as forming a barrier to human exposure to impacted soil and groundwater. Redevelopment of the site also is anticipated to continue to reduce any residual contamination in sediment/surface water at Bridge Creek, thus enhancing water quality and virtually eliminating this creek as a pathway of contaminants to human receptors.

The Port Authority will continue to implement appropriate actions to minimize exposure to human populations during remedial efforts and site redevelopment. In addition, the Port Authority will monitor the integrity of any engineering controls employed as part of the overall site remedial and redevelopment strategy. Given the above, no further action is required with regard to exposure assessment for Site 2A/2B.

11.0 UST REMOVAL

During the demolition of the concrete foundation located in the vicinity of Building S-35, in September 2002, the Port Authority identified the presence of an UST. A review of available historical records

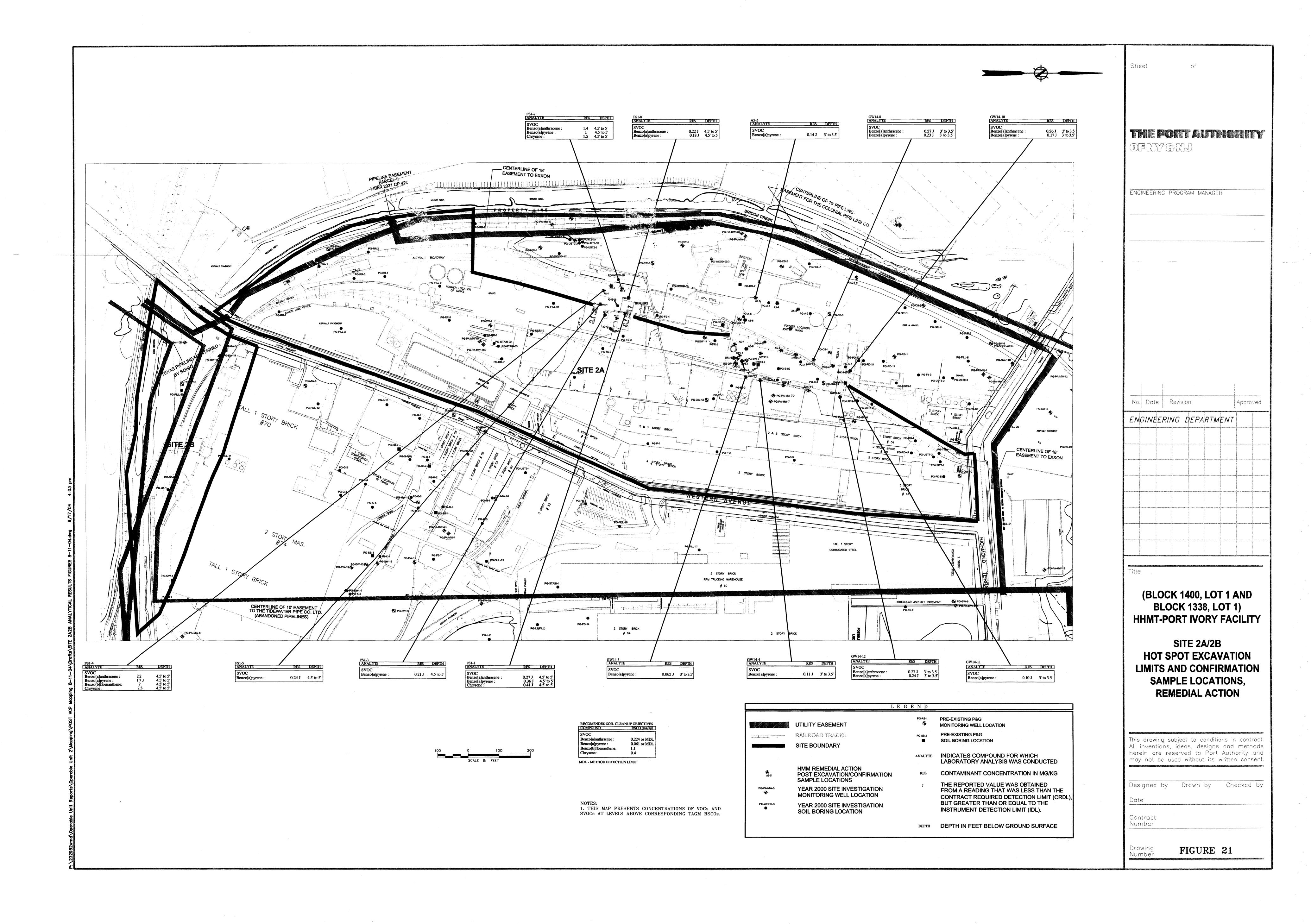
revealed that the UST encountered during the demolition activities was a former #6 fuel oil tank, which had been closed in place by P&G.

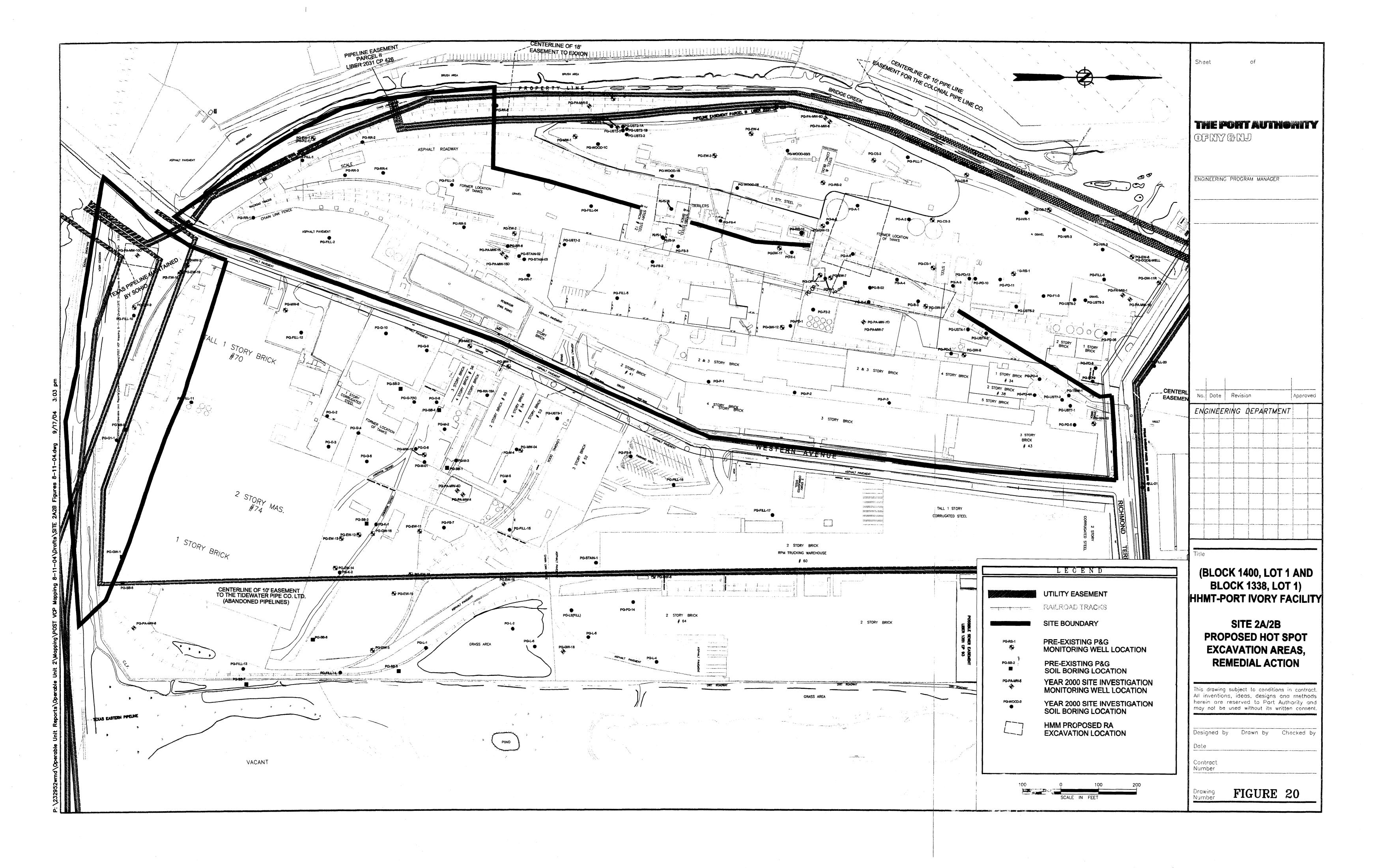
Subsequently, the Port Authority removed surface soil surrounding the UST and identified a second UST situated adjacent to the originally encountered tank. Further evaluation revealed that both tanks were located within concrete vaults and were filled with inert material (bricks, stone and sand). Subsequently, the Port Authority removed the tanks and the surrounding concrete vaults. Indications of petroleum impacts to the surrounding soil were observed during excavation activities. As a result, the Port Authority excavated visually impacted soil immediately adjacent to the vaults. Excavated soil was stockpiled on-site pending off-site disposal at an appropriate recycling/disposal facility. The excavation measured approximately 25 feet in length, 20 feet in width, and approximately 11 feet in depth; groundwater was encountered at approximately 8 feet bgs. The USTs and all connected piping were removed and set aside for off-site recycling with the other recycled materials from the demolition activities. Subsequently, the area was backfilled with existing site soil/crushed concrete. Based on the above described tank removal actions, no further action is proposed with regard to UST7.

12.0 SUMMARY OF REMEDIAL ACTIONS

12.1 Proposed Remedial Actions

The SI of Site 2A/2B revealed a variety of contaminants at a wide-range of concentrations in samples collected from soil, sediment, surface water and groundwater. The presence of these contaminants was not unexpected given the former use and location of the site. Overall, given that the subject site is located in a highly urbanized and historically industrial area, it is reasonable to assume that diffuse anthropogenic pollution has contributed, over many decades, to the contaminants present in site soil, sediment, surface water and groundwater. Diffuse anthropogenic pollution is typically defined as pollution emanating from a variety of sources including automobile exhaust and industrial smokestacks. The primary contaminants of concern associated with these types of sources are lead and PAH compounds, but it is not unusual to encounter other types of contaminants associated with sustained urban activity. Regulatory agencies have indicated that most areas are likely to have been impacted, to some degree, by anthropogenic activity, but recognize that the greatest impacts are to those sites located in urban areas such as the subject site. However, the SI also revealed the presence of two issues (the presence of several potential petroleum-impacted areas and the potential presence of USTs), which required additional investigation or delineation prior to the redevelopment of Site 2A/2B. Subsequently, the RI successfully delineated the extent of


potential petroleum issues at all of the identified locations. The RI, in conjunction with other field efforts, has resolved UST related issues at the four potential UST areas (UST1, UST3, UST4 and UST7). As described in Section 11, investigations at UST 7 revealed two tanks, which had been closed in place by P&G. These tanks were removed as part of site redevelopment efforts.


Based on the information gained through the RI and the intended future usage of Site 2A/2B, hot spot excavation was identified as the appropriate remedial action to address petroleum-impacted soil at the following areas: Area B-3/B-2, Area GW-14, Area OP-1, Area A-5 and Area FS-1B. It was proposed to remove "delineated" hot spots of potentially petroleum-impacted soil at these locations in accordance with NYSDEC remedial procedures. Proposed excavation areas are presented in Figure 20. Further, it was proposed to collect samples from resultant excavation limits to confirm the success of the remedial efforts. Samples were to be analyzed for VOCs (8270) and PAH compounds (8260) based on the findings from prior sampling efforts. A summary of the actions undertaken prior to entering the VCP Program are provided in Section 12.2.

With regard to other site contaminants including fill material, the SI/RI activities identified the presence of contaminants at Site 2A/2B, which are typical to urban sites in the New York Metropolitan region. Further, the presence of contaminants in soil does not appear to have adversely impacted groundwater quality at Site 2A/2B. Overall, industrial/commercial usage such as the Port Authority's planned usage of the site as an intermodal facility and container terminal is not inconsistent with the levels of contamination noted to be present in site soil and groundwater. In fact, it is anticipated that the Port Authority's redevelopment of the site will have a positive impact on site environmental quality. In particular, the Port Authority intends to install material such as pavement and other semi-impervious material, which will function as an environmental cap throughout the entire site. This action will tend to stabilize contaminants present in soil and fill material by impeding infiltration, thereby reducing the potential for contaminants in soil to leach from the unsaturated zone to groundwater. In addition, the placement of such materials will safeguard the public by preventing exposure to contaminants in soil and groundwater. Additional information pertaining to development actions is provided in Section 13.

12.2 Completed Remedial Actions

To accommodate site redevelopment efforts, hot spot excavation was performed at locations within Site 2A. No remedial efforts have been proposed or performed at Site 2B. A summary of the excavation and sampling at 2A is presented by AOC in the following Sections. Excavation and sampling were performed

Table 12 Summary of Remedial Actions and Sampling Site 2A/2B: HHMT- Port Ivory Facility

Initial SI AOC	SI Soil Boring Location	Description of Issues	Description of Actions and Sampling	Analytical Parameters
Area A	A-5	The RI delineated potential petroleum-impacted soil surrounding the borings located in Area A.	The delineated area consisting of Area A was excavated to the groundwater table to address potential petroleum impacted soil. Although not located on Site 1, the excavations for A-2 and A-5 were combined based upon field observations. Soil samples were collected from the 0.0-0.5 foot interval above the groundwater table, approximately 3.0-3.5 feet bgs.	VOC 8260; BN 8270
			The excavation measured approximately 170 feet by 147 feet. Additional excavation, measuring approximately 68 feet by 32 feet, was performed off the northwest corner to address visual signs of potential petroleum impacts. Eight confirmation samples were collected from the A-5 excavation: A5-1, A5-2, A5-3, A5-4, A5-5, A5-6, A5-7, and A5-8. All samples were submitted for laboratory analysis. Excavated soil was stockpiled on site pending off-site disposal.	
			The majority of this excavation is located on Site 1, with only a small area at Site 2A.	
Area B	B-2, B-3, GW-14	The RI delineated potential petroleum-impacted soil surrounding the borings located in Area B including sheen noted on	The delineated area consisting of Area B including B-2 and B-3 and Area GW-14 was excavated to the groundwater table to address potential petroleum impacted soil. Soil samples were collected from the 0.0-0.5 foot interval above the groundwater table. The excavated soil was stockpiled on site pending off-site disposal. The B-2/B-3 excavations joined the GW-14 excavation with resultant sampling utilized the GW-14 designation.	VOC 8260; BN 8270
		groundwater at GW-14.	The Area GW-14 excavation extended approximately 305 feet in length (north to south) and 110 feet in width (east to west). The excavation was extended to a depth of approximately 3.5 feet; the excavation activities encountered groundwater at some locations. Approximately three-quarters of the excavation	i.

Table 12 Summary of Remedial Actions and Sampling Site 2A/2B: HHMT- Port Ivory Facility

Initial SI AOC	SI Soil Boring Location	Description of Issues	Description of Actions and Sampling	Analytical Parameters
			is located on Site 2A, while one-quarter is located in Site 1.	
OP-1	OP-1	A sheen was noted on the groundwater surface of OP-1	The Area OP-1 excavation extended approximately 30 feet in length and 30 feet in width and was extended 3.5 feet in depth. No readings above background were recorded on the PID. The Area OP-1 excavation was located to the south of the Area GW-14 excavation, and situated entirely within Site 2A. All visually impacted soils were removed from Area OP-1. No groundwater was encountered during excavation activities. Four soil samples were collected from the sidewalls of the excavation at 3-3.5 feet bgs. Excavated soil was stockpiled onsite pending off-site disposal.	VOC 8260; BN 8270
Former Structures – FS-1B	FS-1B	The RI delineated potential petroleum-impacted soil surrounding the FS-1B location.	The delineated area surrounding FS-1B was excavated to the groundwater table to address potential petroleum impacted soil. Soil samples were collected from the 0.0-0.5 foot interval above the groundwater table. The excavation measured 100 feet by 83 feet. Eight confirmation soil samples were collected: FS1-1, FS1-2, FS1-3, FS1-4, FS1-5, FS1-6, FS1-7, and FS1-8. Soil samples were taken at the base of the sidewalls at the 0.0-0.5 foot interval above the groundwater table (approximately 4.5-5' bgs). Excavated soil was stockpiled onsite pending off-site disposal. The majority of this excavation is located on Site 1, with only a small area at Site 2A.	VOC 8260; BN 8270

in accordance with NYSDEC protocols. Continuous field screening, utilizing a photoionization detector (PID) was performed through excavation and sampling efforts. The limits of the hot spot excavation areas and the locations of samples are provided on Figure 21 and a summary of sampling is presented in Table 12.

12.2.1 Area B-3/B-2

The Area B-3/B-2 excavation was extended to address visual indications of petroleum impacts resulting in the joining of the Area B-3/B-2 excavation and the Area GW-14 excavation. As such, the excavation and sampling for Area B-3/B-2 are described in detail under Area GW-14 in Section 12.2.2 below.

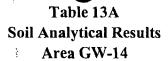
12.2.2 Area GW-14

The Area GW-14 excavation extended approximately 305 feet in length (north to south) and 110 feet in width (east to west). The excavation was extended to a depth of approximately 3.5 feet; the excavation activities encountered groundwater at some locations. Approximately three-quarters of the excavation is located on Site 2A, while one-quarter is located in Site 1. Visually impacted soils located from within the limits of the excavation ranged from cinder and ash fill, red clays, silts and sands. PID readings were continuously recorded and ranged from not detected to 1500 parts per million (ppm). No measurable free product was observed to be present or to form on groundwater, where present.

During the removal of soil, piping was noted extending north to south along the eastern portion of the excavation. All piping was removed from the excavation. Based on field observations and historical site maps, it appears that the piping was associated with a former storm sewer line. Additional piping was uncovered in the northern corner of the excavation. The piping was traced and noted to extend to the north. The expansion of the excavation revealed the presence of a UST measuring 4 feet wide by 8 feet long by 6 feet in diameter. Based on historical information, it appeared that the UST was utilized as part of a former oil/water separator system. The UST appeared intact and additional efforts were undertaken to inspect and removed the vessel. Inspection of the tank and the underlying soil did not reveal the presence of residual materials or visually impacted soils. Field screening did not reveal the any readings above background. Due to the presence of the UST, the excavation was expanded in an easterly direction. The extension revealed the presence of three concrete tubs. The tubs were connected with piping and appeared to be part of the oil/water separators system. The system was removed from the excavation for off-site disposal.

Table 13A Soil Analytical Results Area GW-14

Volatile Organic Compounds Site 2A/2B - HHMT-Port Ivory Facility


Location	Recommended	GW14-1	GW14-2	GW14-3	GW14-4	GW14-5	GW14-6
Sample Date	Soil Cleanup	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
1,3,5-trimethlybenzene	NS	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
4-isopropyltoluene	NS	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0024
Benzene	0.06	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Ethylbenzene	5.5	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Isopropylbenzene	NS	0.0014U	0.0013U	0.0048	0.0012U	0.0012U	0.0013U
M&p-Xylenes	1.2*	0.0028U	0.0026U	0.0024U	0.0025U	0.0024U	0.0025U
Methyl-t-butyl ether	NS	0.0014U	0.0013U	0:0012U	0.0012U	0.0012U	0.0013U
Naphthalene	13	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
N-butylbenzene	NS	0.0014U	0.0013U	0.0013	0.0012U	0.0012U	0.0013U
N-Propylbenzene	NS	0.0014U	0.0013U	0.0047	0.0012U	0.0012U	0.0013U
O-Xylene	1.2*	0.0014U	0.0013U	0.0012U	0.0012U	0.0012U	0.0013U
Sec-butylbenzene	NS	0.0014U	0.0013U	0.0046	0.0012U	0.0012U	0.0013U
T-butylbenzene	NS	0.0014U	0.0013U	0.0049	0.0012U	0.0012U	0.0013U
Toluene	1.5	0.011	0.0084	0.011	0.0084	0.0076	0.0099
Total VOCs	10	0.011	0.0084	0.0313	0.0084	0.0076	0.0123

U Undetectable Levels

ND Not Detected

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Volatile Organic Compounds

Site 2A/2B - HHMT-Port Ivory Facility

Location	Recommended	GW14-7	GW14-8	GW14-9	GW14-10	GW14-11	GW14-12
Sample Date	Soil Cleanup	4/9/2003*	4/9/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
1,3,5-trimethlybenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
4-isopropyltoluene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0088	0.0086
Benzene	0.06	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Ethylbenzene	5.5	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Isopropylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
M&p-Xylenes	1.2*	0.0029U	0.0025U	0.0028U	· 0.0022U	0.0022U	0.0022U
Methyl-t-butyl ether	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Naphthalene	13	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
N-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
N-Propylbenzene	NS	0.0014U	0.001 2 U	0.0014U	0.0011U	0.0011U	0.0011U
O-Xylene	1.2*	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Sec-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
T-butylbenzene	NS	0.0014U	0.0012U	0.0014U	0.0011U	0.0011U	0.0011U
Toluene	1.5	0.015	0.0054	0.0014U	0.0011U	0.0011U	0.0011U
Total VOCs	10	0.015	0.0054	ND	ND	0.0088	0.0086

U Undetectable Levels

ND Not Detected

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 13B Soil Analytical Results Area GW-14 **PAH Compounds** Site 2A/2B - HHMT-Port Ivory, Facility

Location	Recommended	GW14-1	GW14-2	GW14-3	GW14-4	GW14-5	GW14-6	GW14-7	GW14-8	GW14-9	GW14-10	GW14-11	GW14-12
Sample Date	Soil Cleanup	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	_mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.69ป	0.64U	0.61U	0.62U	0,60U	0.63U	0.096J	0.14J	0.69U	0.14J	0.088J	0.079J
Anthracene	50	0.69U	0.64U	0.61U	0.11J	0.60U	0.63U	0.71U	0.62U	0.69U	0.15J	0.062J	0.12J
Benzo(a)anthracene	0.224 or MDL	0.69U	0.64U	0.086J	0.16J	0.60U	0.082J	0.084J	0.27J	0.69U	0.26J	0.13J	0.123 0.27J
Benzo(a)pyrene	0.061 or MDL	0.69U	0.64U	0.062J	0.11 J	0.60U	0.63U	0.71U	0.23J	0.69U	0.17J	0.10J	0.24J
Benzo(b)fluoranthene	1.1	0.69U	0.64U	0.14J	0.16J	0.60U	0.084J	0.18J	0.53J	0.69U	0.36J	0.18J	0.35J
Benzo(g,h,i)perylene	50	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.093J	0.69U	0.56U	0.54J	0.081J
Benzo(k)fluoranthene	1.1	0.69U	0.64U	0.61U	0.070J	0.60U	0.63U	0.71U	0.14J	0.69U	0.12J	0.54J	0.12J
Chrysene	0.4	0.69U	0.64U	0.11J	Ó. Í 8J	0.60U	0.075J	0.12J	0.37J	.0.69U	0.31J	0.14J	0.29J
Dibenzo(a,h)Anthracene	0.014 or MDL	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.62U	0.69U	0.56U	0.54U	0.56U
Fluoranthene	50	0.69U	0.64U	0.20J	0.35J	0.60U	0.21J	2.4	8.7	0.15J	0.91	0.37J	0.86
Fluorene	50	0.69U	0.64U	0.61U	0.080J	0.60U	0.63U	0.71U	0.62U	· 0.69U	0.12J	0.071J	0.098J
Indeno(1,2,3-cd)pyrene	3.2	0.69U	0.64U	0.61U	0.62U	0.60U	0.63U	0.71U	0.099J	0.69U	0.56U	0.54U	0.079J
Napthalene	13	0.074J	0.64U	0.61U	0:62U	0.60U	0.63U	0.16J	0.15J	0.095J	0.20J	0.083.1	0.079J
Phenanthrene	50	0.69U	0.64U	0.15J	0.19J	0.60U	0.19J	1.5	0.62U	0.16J	0.79	0.0833 0.24J	0.76
Pyrene	50	0.69U	0.64U	0.18J	0.30J	0.60U	0.17J	0.22J	0.84	0.10J	0.61	0.33J	0.70 0.55J
Total PAH Compounds U Undetectable Levels	500	0.074	ND	0.928	1.71	ND	0.811	4.76	11.562	0.505	4.14	2.874	3.986

ND Not Detected

MDL Method Detection Limit

Table 14A Soil Analytical Results Area OP-1

Volatile Organic Compounds Site 2A/2B - HHMT - Port Ivory Facility

Location	Recommended	OP1-1	OP1-2	OP1-3	OP1-4
Sample Date	Soil Cleanup	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0013U	0.0011U	0.0012U	0.0011U
1,3,5-trimethlybenzene	NS	'0.0013U	0.0011U	0. 0012 U	0.0011U
4-isopropyltoluene	NS	0.0013U	0.0011U	0.0012U	0.0011U
Benzene	0.06	0.0013U	0.0011U	0.0012U	0.0011U
Ethylbenzene	5.5	0.0013U	0.0011U	0.0012U	0.0011U
Isopropylbenzene	NS	0.0013U	0.0011U	0.0012U	0.0011U
M&p-Xylenes	1.2*	0.00 25 U	0.0023U	0.0023U	0.0022U
Methyl-t-butyl ether	NS	0.0013U	0.0011U	0.0012U	0.0011U
Naphthalene	13	0.0013U	0.0011U	0.0012U	0.0011U
N-butylbenzene	NS	0.0 0 13U	0.0011U	0.0012U	0.0011U
N-Propylbenzene	NS	0.0013U	0.0011U	0.0012U	0.0011U
O-Xylene	1.2*	0.0013U	0.0011U	0.0012U	0.0011U
Sec-butylbenzene	NS .	0.0013U	0.0011U	0.0012U	0.0011U
T-butylbenzene	NS	0.0013U	0.0011U	0.0012U	0.0011U
Toluene	1.5	0.0013U	0.0011U	0.0012U	0.0011U
Total VOCs	10	ND	ND	ND	ND

U Undetectable Levels

NS No Standard

ND Not Detected

^{*} Total Xylene Recommended Cleanup Standard

Table 14B Soil Analytical Results Area OP-1 PAH Compounds

Site 2A/2B - HHMT- Port Ivory Facility

Location	Recommended	OP1-1	OP1-2	OP1-3	OP1-4
Sample Date	Soil Cleanup	4/24/2003	4/24/2003	4/24/2003	4/24/2003
Sample Depth (ft)	Objective	3-3.5	3-3.5	3-3.5	3-3.5
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		:			
Acenaphthene	41	0.63U	0.57U	0.58U	0.55U
Anthracene	50	0.63U	0.57U	0.58U	0.55U
Benzo(a)anthracene	0.224 or MDL	· 0.072J	0.57U	0.58U	0.55U
Benzo(a)pyrene	0.061 or MDL	0.63U	0.57U	0.58U	0.55U ģ
Benzo(b)fluoranthene	1.1	0.63U	0.57U	0.58U	0.071J
Benzo(g,h,i)perylene	50	. 0.63U	0.57U	0.58U	0.55U
Benzo(k)fluoranthene	1.1	0.63U	0.57U	0.58U	0.55U
Chrysene	0.4	0.071J	0.57U	0.58U	0.060J
Dibenzo(a,h)Anthracene	0.014 or MDL	0.63U	0.57U	0.58U	0.55U
Fluoranthene	. 50	0.123	0.57U	0.058J	0.18J
Fluorene	50	0.63U	0.57U	0.58U	0.55U
Indeno(1,2,3-cd)pyrene	3.2	0.63U	0.57U	0.58U	0.55U
Napthalene	13	0.064J	0.57U	0.58U	0.55U
Phenanthrene	50	0.088J	0.57U	0.58U	0.11J
Pyrene	50	0.14J	0.57U	0.58U	0.10J
Total PAH Compounds	500	0.555	ND	0.058	0.521

U Undetectable Levels

ND Not Detected

MDL Method Detection Limit

Twelve soil samples were collected from the sidewalls of the excavation at the soil/ground water interface (3-3.5 feet bgs). All soil samples were analyzed for PAH Compounds (8260) and VO Compounds (8270). VOCs were either not detected or were detected at concentrations below corresponding RSCOs. No samples exceeded the RSCO of 10 mg/kg for total VOCs. Only two PAH Compounds, benzo(a)anthracene and benzo(a)pyrene, were detected above corresponding RSCOs. Benzo(a)anthracene was detected at concentrations in excess of its RSCO in three samples ranging from 0.26 mg/kg in sample GW14-10 to 0.27 mg/kg in samples GW14-8 and GW14-12. Benzo(a)pyrene was detected at concentrations in excess of its RSCO in six samples ranging from 0.062 mg/kg in sample GW14-3 to 0.24 mg/kg in sample GW14-12. None of the samples were noted to exceed 50 mg/kg guidance for individual PAH Compounds or the 500 mg/kg guidance criteria for total PAH compounds. Please refer to Tables 13A and 13B for a summary of all analytical results.

12.2.3 Area OP-1

The Area OP-1 excavation extended approximately 30 feet in length and 30 feet in width and was extended 3.5 feet in depth. No readings above background were recorded on the PID. The Area OP-1 excavation was located to the south of the Area GW-14 excavation, and situated entirely within Site 2A. All visually impacted soils were removed from Area OP-1. No groundwater was encountered during excavation activities. Four soil samples were collected from the sidewalls of the excavation at 3-3.5 feet bgs. All samples were analyzed for PAH Compounds (8260) and VOCs (8270).

No VOCs were detected in the four samples collected from the excavation. All PAH compounds were detected at concentrations below corresponding RSCOs and no sample exceeded the 500 mg/kg guidance threshold for total PAH compounds. Please refer to Tables 14A and 14B for a summary of analytical results.

12.2.4 Area A-5

The Area A-5 excavation measured approximately 170 feet in length (east to west) and 150 feet in width (north to south) and extended 3.5 feet in depth. No readings above background were recorded on the PID. The northeastern corner of the Area A-5 excavation overlaps the southwestern excavation of the Area GW-14 (Area B-3/B-2) excavation. Approximately one-quarter of the Area A-5 excavation is situated within the limits of Site 2A, the majority of the excavation is located on Site 1. Access to the underlying soils was possible after the removal of railroad tracks and concrete slabs. Visually impacted soils located

from within the limits of the excavation consisted of a mix of cinder, ash, lime sludge/by-product fill, fine black sand and tan sand. The depth of the excavation was limited by the presence of groundwater (3.5 feet bgs) as well as the presence of lime sludge/by-product fill and numerous tree trunks (4 feet to 15 feet bgs).

Eight soil samples were collected from the interface of the sidewalls/ground water table. All samples were analyzed for PAH Compounds (8260) and VOCs (8270). No VOCs were detected at concentrations above corresponding RSCOs and no sample exceeded the total VOC guidance threshold of 10 mg/kg. PAH compounds were either not detected or detected at concentrations below the RSCO in all but one sample. Benzo(a)pyrene was detected at 0.14 mg/kg in Sample A5-5. None of the samples collected exceeded the guidance threshold of 500 mg/kg for total PAH compounds. Please refer to Tables 15A and 15B for a summary of the analytical results.

12.2.5 FS-1B Area

The Area FS-1B measured approximately 100 feet in length (east to west) and 83 feet in width (north to south) and extended approximately 5.0 feet in depth, just above the groundwater table. No readings above background were recorded on the PID. The Area FS-1B excavation is located to the southwest of the Area GW-14 excavation. Approximately one-quarter of the excavation is located on Site 2A, the majority of the excavation is located on Site 1. Visually impacted soils located from within the limits of the excavation consisted of a mix of cinder, ash, lime sludge/by-product fill material, sand, tree timbers and concrete sections.

During the soil removal effort, a concrete structure was encountered at the southeast corner. No visual indications of contaminants were noted and no readings above background were recorded on the PID. The concrete structure was removed from the excavation for off-site disposal along with other concrete demolition debris.

Eight soil samples were collected from the excavation; two from each sidewall and submitted for PAH Compound (8260) and VOC (8270) analyses. VOCs were either not detected or were detected at concentrations below the corresponding RSCO. None of the samples exceeded the guidance threshold of 10 mg/kg for total VOCs. Four PAH compounds were detected at concentrations in excess of corresponding RSCOs in several samples collected from Area FS-1B excavation. Benzo(a)anthracene was detected in excess of its RSCO in three samples with concentrations ranging from 0.27 mg/kg in sample

Table 15A Soil Analytical Results

Area A-5

Volatile Organic Compounds Site 2A/2B - HHMT-Port Ivory Facility

Location		A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7	A5-8
Sample Date	Recommended	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Soil Cleanup Objective mg/kg	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	Objective mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014Ü	0.0012U
1,3,5-trimethlybenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
4-isopropyltoluene	NS	0.0039	0.0046	0.0035	0.012	0.0084	0.0013U	0.0014U	0.0012U
Benzene	0.06	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Ethylbenzene	5.5	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Isopropylbenzene	NS	0.0015U	' 0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
M&P-Xylenes	1.2*	0.0031U	0.0027U	0.0027U	0.0029U	0.0025U	0.0026U	0.0027U	0.0025U
Methyl-t-butyl ether	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Naphthalene	13	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
N-butylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.001 2 U	0.0013U	0.0014U	0.0012U
N-Propylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
O-Xylene	1.2*	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Sec-butylbenzene	NS	0.0015U	0.0014U	0.0013U	0.0014U	0.0012U	0.0013U	0.0014U	0.0012U
Toluene	1.5	0.033	0.014	0.012	0.0065	0.021	0.031	0.018	0.02
Total VOCs	10	0.0369	0.0186	0.0155	0.0185	0.0294	0.031	0.018	0.02

U Undetectable Levels .

NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 15B Soil Analytical Results Area A-5 PAH Compounds

Site 2A/2B - HHMT- Port Ivory Facility

Location		A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7	A5-8
Sample Date	Recommended	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003	4/9/2003
Sample Depth (ft)	Soil Cleanup Objective mg/kg	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5	3-3.5
Units	Objective mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Anthracene	50	0.77U	0.68U	0.67U	0.71U	0.043J	0.66U	0.68U	0.62U
Benzo(a)anthracene	0.224 or MDL	0.77U	0.68U	0.67U	0.076J	0.15J	0.66U	0.68U	0.62U
Benzo(a)pyrene	0.061 or MDL	0.77U	0.68U	0.67U	0.71U	- 0.14J	0.66U	0.68U	0.62U
Benzo(b)fluoranthene	1.1	0.77U	0.68U	0.67U	0.71U	0.22J	0.66U	0.68U	0.62U
Benzo(g,h,i)perylene	50	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Benzo(k)fluoranthene	1.1	0.77U	0.68U	0.67U	0.71U	0.083J	0.66U	0.68U	0.62U
Chrysene	0.4	0.77U	0.68U	0.67U	0.087J	0.18J	0.075J	0.68U	0.62U
Dibenzo(a,h)Anthracene	0.014 or MĎL	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Fluoranthene	50	0.77U	0.68U	0.67U	0.13J	0.26J	0.19J	0.14J	0.13J
Fluorene	50	0.77U	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Indeno(1,2,3-cd)pyrene	3.2	0.77U .	0.68U	0.67U	0.71U	0.40U	0.66U	0.68U	0.62U
Napthalene	13	0.83	0.68U	0.67U	0.091J	0.070J	0.66U	0.68U	0.62U
Phenanthrene	50	0.77U	0.68U	0.67U	0.12J	0.20J	0.14J	0.68U	0.62U
Pyrene	50	0.77U _	0.68U	0.67U	0.12J	0.30J	0.14J	0.10J	0.093J
Total PAH Compounds U Undetectable Levels	500	0.83	ND	ND	0.624	1.646	0.545	0.24	0.223

U Undetectable Levels

ND Not Detected

MDL Method Detection Limit

FS1-1 to 2.2 mg/kg in sample FS1-4. Benzo(a)pyrene was detected in excess of its RSCO in six samples ranging in concentrations from 0.18 mg/kg in sample FS1-8 to 1.7 mg/kg in sample FS1-4. Benzo(b)flouranthene was detected in excess of its RSCO in one sample, FS1-4 at 2.0 mg/kg. Chrysene was detected in excess of its RSCO in three samples ranging in concentrations from 0.41 mg/kg in sample FS1-1 to 2.3 mg/kg in sample FS1-4. None of the samples exhibited concentrations in excess of the guidance threshold of 500 mg/kg for total PAH Compounds. Please refer to Tables 16A and 16B for a summary of the analytical results.

13.0 SUMMARY OF PROPOSED SITE DEVELOPMENT ACTIONS

The Port Authority is currently redeveloping Site 2A/2B for use as an intermodal facility, which will function as part of the larger container terminal/intermodal facility including the entire HHMT-Port Ivory Facility. The findings from the assessment/investigation actions have revealed that the Port Authority's planned usage of the site as an intermodal facility and container terminal is not inconsistent with the levels of contamination noted to be present in site soil and groundwater and that contamination can be addressed through site redevelopment.

The Port Authority had developed Preliminary Site Plans for the proposed redevelopment of Sites 1 and 2A/2B. Please refer to Appendix D for information related to site development including a Preliminary Site Plan dated January 2003 and a Preliminary Site Plan with Phasing, also dated January 2003. As shown on these plans, the majority of Site 2A (as well as Site 1) will be dedicated to a railway system which will continue through the southern end of Site 2A and onto Site 2B. Although the elements proposed for Site 2B are not depicted in detail on the Site Plan Figures included in Appendix D, the continuation of the rail system is illustrated on a schematic drawing designated as SK16 and dated October 13, 2003; drawing SK16 is also provided in Appendix D. At this time, it is anticipated that two buildings (Buildings 40 and 41) will remain at Site 2A and will be utilized for security and offices associated with the operation of the facility. To address structural issues presented by the presence of fill material, the Port Authority's development plan includes a process of surcharging portions of Site 1 and Site 2A/2B, with geotechnically suitable clean fill, to achieve a stable base for future construction. Figure SK1, Sequencing of Surcharge Areas along with an associated schedule, is provided in Appendix D.

As part of the geotechnical site preparation work, the Port Authority performed a surcharge pilot study at an area of Site 1 in 2002/2203. The study included the systematic placement of soil/fill over an area measuring approximately 75 feet by 75 feet and the measurement of settlement. As part of the pilot

Table 16A Soil Analytical Results Area FS-1B

Volatile Organic Compounds Site 2A/2B - HHMT- Port Ivory Facility

Location		FS1-1	FS1-2	FS1-3	FS1-4	FS1-5	FS1-6	FS1-7	FS1-8
Sample Date	Recommended	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002
Sample Depth (ft)	Soil Cleanup Objective mg/kg	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0
Units	Objective ing/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4-trimethylbenzene	3.4	0.001 2 U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
1,3,5-trimethlybenzene	NS	0.001 2 U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
4-isopropyltoluene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0022	0.0020U	0.0016U
Benzene	0.06	0.0012U	[0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.00 2 0U	0.0016U
Ethylbenzene	5.5	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Isopropylbenzene	NS	0.0012U	:0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
M&p-Xylenes	1.2*	0.0012U	0.0028U	0.0032U	0.0039U	0.0035U	0.0025U	0.0040U	0.0032U
Methyl-t-butyl ether	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Naphthalene	13	0.0012U	:0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
N-butylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
N-Propylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
O-Xylene	1.2*	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Sec-butylbenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
T-Butlybenzene	NS	0.0012U	0.0014U	0.0016U	0.0020U	0.0018U	0.0013U	0.0020U	0.0016U
Toluene	1.5	0.0031	; 0.0037	0.0016U	0.0020U	0.0028	0.0025	0.0023	0.0016U
Total VOCs	10	0.0031	0.0037	ND	ND	0.0028	0.0047	0.0023	ND

U Undetectable Levels

ND Not Detected

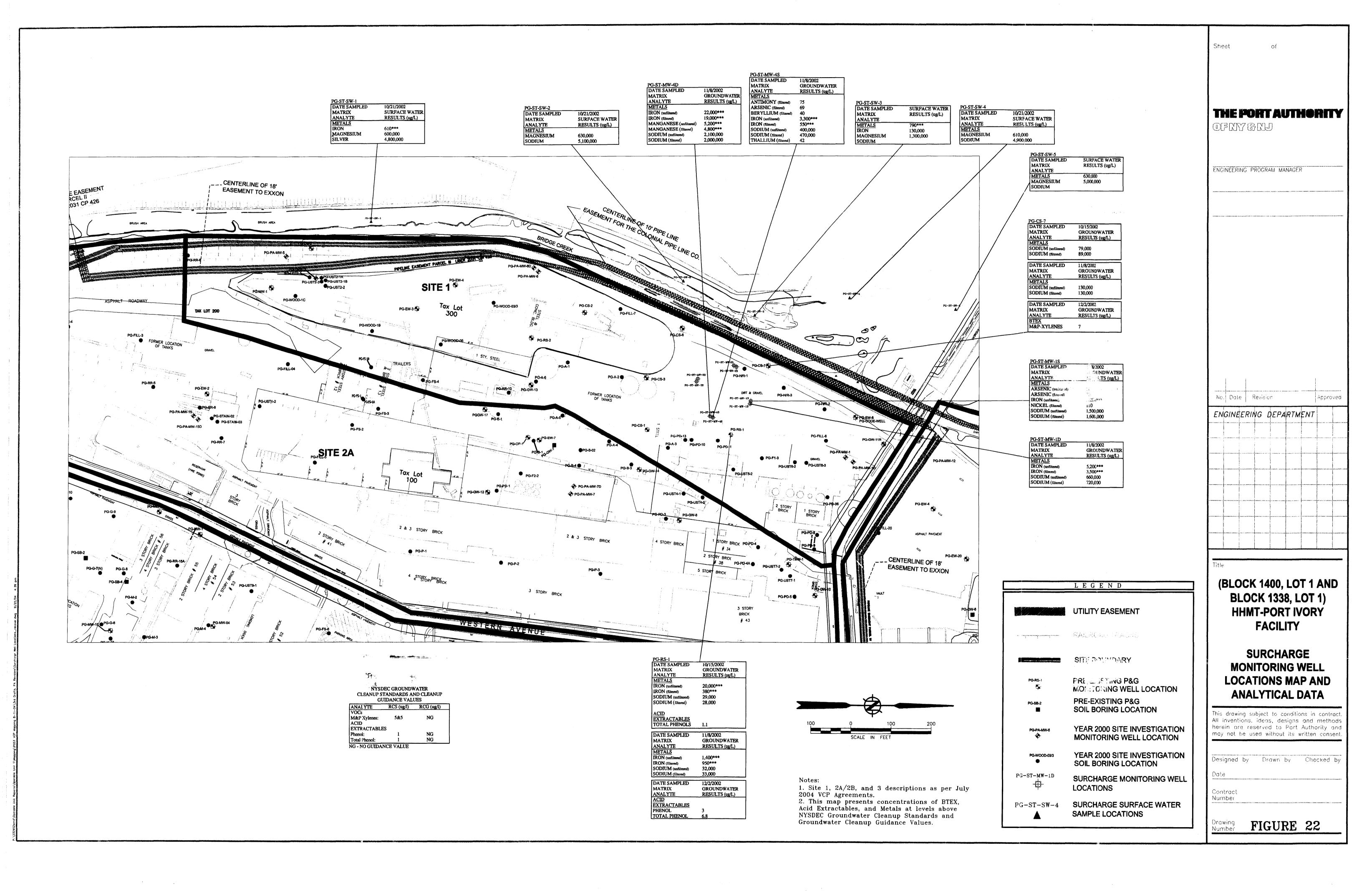
NS No Standard

^{*} Total Xylene Recommended Cleanup Standard

Table 16B Soil Analytical Results Area FS-1B PAH Compounds Site 2A/2B - HHMT-Port Ivory Facility

Location	Recommended	FS1-1	FS1-2	FS1-3	FS1-4	FS1-5	FS1-6	FS1-7	FS1-8
Sample Date	Soil Cleanup	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002	12/3/2002
Sample Depth (ft)	Objective	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0	4.5-5.0
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Acenaphthene	41	0.045J	0.47U	0.52U	2.0U	0.58U	0.42U	0.27J	0.54U
Anthracene	50	₹0.12J	0.47U	0.52U	2.0U	0.58U	0.42U	0.67	0.063J
Benzo(a)anthracene	0.224 or MDL	0.27J	0.47U	0.1J	2.2	0.19J	0.071J	1.4	0.22J
Benzo(a)pyrene	0.061 or MDL	0.36J	0.47U	0.21J	∌#1.7J*	0.24J	0.059J	1	0.18J
Benzo(b)fluoranthene	1.1	0.6	0.47U	0.36J	. 2	0.29J	0.10J	0.96	0.31J
Benzo(g,h,i)perylene	50	0.13J	0.47U	0.52U	0.69J	0.58U	0.42U	0.2J	0.54U
Benzo(k)fluoranthene	1.1	0.27J	0.47U	0.087J	0.52J	0.069J	0.42U	0.43J	0.54U
Chrysene	0.4	0.41 J	0.14J	0.15J	2.3	0.35J	0.092J	1.5	0.32J
Dibenzo(a,h)Anthracene	0.014 or MDL	0.42U	0.47U	0.52U	2.0U	0.58U	0.42U	0.67U	0.54U
Fluoranthene	50	0.66	0.47U	0.17J	0.82J	0.24J	0.11J	1.9	0.28J
Fluorene	50	0.055J	0.47U	0.52U	2.0U	0.58U	0.42U	0.29J	0.54U
Indeno(1,2,3-cd)pyrene	3.2	0.13J	0.47U	0.52U	0.55J	0.58U	0.42U	0.18J	0.54U
Napthalene	13	0.14J	0.16J	0.082J	0.52J	0.58U	0.045J	2.2	0.19J
Phenanthrene	50	0.54	0.19J	0.16J	0.66J	0.20J	0.089J	3.5	0.35J
Pyrene	50	0.81	0.47U	0.17J	2	0.35J	0.11J	3.3	0.41J
Total PAH Compounds	500	4.54	0.49	1.489	13.96	1.929	1.516	17.8	2.323

U Undetectable Levels


MDL Method Detection Limit

study, the Port Authority reviewed potential environmental impacts to groundwater and Bridge Creek. The environmental review for groundwater included the installation and sampling of nested monitoring well pairs (one shallow and one deep well) at four locations around the pilot study area. The wells were constructed approximately 15 feet from the edge of the surcharge material pile. Groundwater samples were collected from the eight newly installed wells as well as from two additional existing well locations, PG-CS-7 and PG-RS-1. Three rounds of groundwater sampling were performed on the two existing wells with all rounds including phenols and BTEX (benzene, toluene, ethylbenzene and xylenes) and one round including phenols, BTEX, TAL Metals and pH. One round of groundwater sampling was performed for the eight newly installed wells with analysis for TAL Metals and pH. A summary of analytical results is provided in Tables 17A (BTEX), 17B (phenols), and 17C (TAL Metals and pH). The pilot study area and well locations are presented on Figure 22. In addition, exceedences of applicable groundwater SGVs are also presented, by location, on Figure 22. A summary of analytical results is presented in Tables 17A-17C.

With respect to Bridge Creek, the environmental review included the inspection of the eastern bank of Bridge Creek for the presence of seeps, precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. It should be noted that the surface water and sediment sampling undertaken as part of the RI of Site 2A/2B was performed during the surcharge pilot test period. As such, the information generated from that evaluation has been utilized as part of the environmental review for the pilot study. Information related to sampling of Bridge Creek is presented in Sections 8.3 and 9.3 of this Report. In addition, two rounds of surface water sampling were performed as part of the surcharge pilot study. Five samples were collected from representative locations during both rounds and samples were analyzed for TAL Metals and pH. The surface water locations and associated analytical results are presented on Figure 22 and Table 17C. Given the purpose of the study, the surface water samples were compared to applicable groundwater SGVs.

Overall, the environmental evaluation performed as part of the pilot study did not reveal any adverse impacts as a result of the compaction process. Inspection of the eastern bank did not reveal the presence of seeps, additional/increased occurrence of precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. Analytical results from the surface water and the groundwater sampling did not reveal any increased contaminant concentrations over the period of study. It should be noted that m&p xylenes (reported as a combined concentration) was/were detected in the groundwater sample from the third round of sampling of PG-CS-7 but not in the first or second rounds. This is not regarded as

Table L/A

Surcharge Pilot Study -Groundwater Results

BTEX

Site 2A/2B: HHMT - Port Ivory Facility

Location			CS-7	RS-1	FB-1	T B -1	CS-7	RS-1	TB-1	FB-1	TB-1	CS-7	RS-1
Date	Recommended Groundwater	Recommended Groundwater	10/15/2002	10/15/2002	10/15/2002	10/15/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/7/2002	12/2/2002	12/2/2002
LAB ID#	Cleanup Standard	Cleanup Guidance	AB70453	AB70455	AB70457	AB70459	AB72292	AB72294	AB72304	AB72305	AB72397	AB74079	AB74081
Concentration	UG/L	1	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Benzene	1	NG	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U	0.49U
Ethylbenzene	5	NG	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	0.63U	2.4	0.63U
m&p-xylenes	5&5	NG	1.1U	1.1U	1.1U	1.1U	1.1U	1.1U	1.1U	1.10	1.1U	7	1.1U
O-xylenes	5	NG	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U	0.59U
Toluene	5	NG	0.79U	0.79ับ	0.79U	0.79U	0.79U	0.79U	0.79ับ	0.79U	0.79U	0.79U	0.79U

U Undetectable Levels

NG No Guidance

Table 17B Surcharge Pilot Study - Groundwater Results Acid Extractables

Site 2A/2B: HHMT Port Ivory Facility

Location	Recommended	Recommended	CS-7	RS-1	FB-1	CS-7	
Date	Groundwater	Groundwater	10/15/2002	10/15/2002	10/15/2002	11/6/2002	
Lab ID	Cleanup	Cleanup	AB70453	AB70455	AB70457	AB72292	
Concentration	Standard Guidance UG/L UG/L		UG/L UG/L		UG/L	UG/L	
2,4,5-trichlorophenol	NS	NG	0.6U	0.6U	0.6U	0.6U	
2,4,6-trichlorophenol	NS	NG	0.65U	0.65U	0.65U	0.65U	
2,4-dichlorophenol	5	NG	0.57U	0.57U	0.57U	0.57U	
2,4-dimethylphenol	NS	50	0.49U	0.49U	0.49U	0.49U	
2,4-dinitrophenol	NS	10	3.1U	3.1U	3.1U	3.1U	
2-chlorophenol	NS	NG	0.49 U	0.49U	0.49U	0.49U	
2-methylphenol	NS	NG	0.61U	0.61U	0.61U	0.61U	
2-nitrophenol	NS	NG	0.64U	0.64U	0.64U	0.64U	
3&4-methylphenol	NS	NG	5.4U	1.1J	5.4U	5.4U	
4,6-dinitro-2-methylphenol	NS	NG	0.36U	0.36U	0.36U	0.36U	
4-chloro-3-methylphenol	NS	NG	0.38U	0.38U	0.38U	0.38U	
4-nitrophenol	NS	NG	0.27U	0.27U	0.27U	0.27U	
pentachlorophenol	1 (total phenols)	NG	0.57U	0.57U	0.57U	0.57U	
phenol	1 (total phenols)	NG	0.14U	0.14U	0.14U	0.14U	
Total phenols	1	NG	ND	1.1	ND	ND	

U Undetectable Levels

NS No Standard

NG No Guidance

ND Not Detected

Table 17B

Surcharge Pilot Study - Groundwater Results Acid Extractables

Site 2A/2B: HHMT Port Ivory Facility

Location	Recommended	Recommended	RS-1	FB-1	CS-7	RS-1
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	12/2/2002	12/2/2002
Lab ID	Cleanup	Cleanup	AB72294	AB72305	AB74079	AB74081
Concentration	Standard UG/L	Guidance UG/L	UG/L	UG/L	UG/L	UG/L
2,4,5-trichlorophenol	NS	NG	0.6U	0.6Ú	0.6U	0.6U
2,4,6-trichlorophenol	NS	: NG	0.65U	0.65U	0.65U	0.65U
2,4-dichlorophenol	5	NG	0.57U ·	0.57U	0.57U	0.57U
2,4-dimethylphenol	NS	50	0.49U	0.49U	0.49U	0.49U
2,4-dinitrophenol	NS	10	3.1U	3.1U	3.1U	3.1U
2-chlorophenol	NS	NG	0.49U	0.49U	0.49U	0.49U
2-methylphenol	NS	NG ,	0.61U	0.61U	0.61U	0.61U
2-nitrophenol	NS	NG	0.64U	0.64U	0.64U	0.64U
3&4-methylphenol	NS	NG	5.4U	5.4U	5.4U	3.8J
4,6-dinitro-2-methylphenol	NS	NG	0.36U	0.36U	0.36U	0.36U
4-chloro-3-methylphenol	NS	NG	0.38U	0.38U	0.38U	0.38U
4-nitrophenol	NS	NG	0.27U	0.27U	0.27U	0.27U
pentachlorophenol	1 (total phenols)	NG	0.57U	0.57U	0.57U	0.57U
phenol	1 (total phenols)	NG	0.14U	0.14U	0.14U	3
Total phenols	1	NG	ND	ND	ND	6.8

U Undetectable Levels

NS No Standard

NG No Guidance

ND Not Detected

Table 1/C

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 2A/2B: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-SW1	ST-SW2	ST-SW3	ST-SW4	ST-SW5	CS-7	CS-7	RS-1
Date	Groundwater	Groundwater	10/21/2002	10/21/2002	10/21/2002	10/21/2002	10/21/2002	10/15/2002	10/15/2002	10/15/2002
Lab ID	Cleanup	Cleanup	AB70895	AB70896	AB70460	AB70897	AB70898	AB70453	AB70454	AB70455
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L_		•				unfiltered	filtered	unfiltered
Aluminum	NS	NG	570	400	140	190	330	100U	100U	170
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	NG	4.0U	5.4	4.0U	10	4.0U	4.0U	4.0U	4.1
Barium	1000	NG	27	25U	45	25U	25U	25U	25 U	59
Beryllium	NS	3	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U
Cadmium	5	NG NG	2.5	2.5	2.0U	2.5	2.5	2.0U	2.0U	2.0U
Calcium	NS	NG	150000	160000	93000	170000	160000	110000	120000	130000
Chromium	50	NG	25U	25U	25U	25U	25Ú	25U	25U	36
Cobalt	NS	NG	10U	10U	10U	10U	10U	10U	10U	10U
Copper	200	NG	25U	25U	25U	25U	25U	25U	25U	
Iron	300***	NG	610***	280***	790***	150U		210	150U	20000***
Lead	25	NG	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U
Magnesium	NS	35000	600000	200 50 2 2 25 20 4 2 2	32.7537		a the second of	47000	52000	
Manganese	300***	NG	82***	69***	260***	67	61	25U	25U	180***
Nickel	100	NG	25U					25U	25U	
Potassium	NS	NG	250000	260000	58000	250000	260000	13000	15000	.5800
Selenium	10	NG	25U			25U	25U	25U	25U	25U
Silver	50	NG	4800000	. 10U			10U	10U	10U	10U
Sodium	20000	NG	50000ป	5100000	1300000	4900000	5000000	79000	89000	29000
Thallium	NS	0.5	5.0U			5.0U	5.0U	5.0U	5.0L	5.0U
Vanadium	NS	NG	25U		25U			25U	25U	25U
Zinc	NS	2000	47		25U	32	31	64	67	440
Mercury	0.7	NG	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.20	0.2U
pH	NS	NG	7.5	7.6	7.7	7.6	7.6	7	7	7.2

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

collected from surface water

Table (C

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 2A/2B: HHMT - Port Ivory Facility

Location	Recommended	Recommended	RS-1	FB-1	FB-1	ST-SW1	ST-SW2	ST-SW3	ST-SW4	ST-SW5
Date	Groundwater	Groundwater	10/15/2002	10/15/2002	10/15/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002
Lab ID	Cleanup	Cleanup	AB70456	AB70457	AB70458	AB72569	AB72570	AB72571	AB72572	AB72573
Concentration	Standard	Guidance	UG/L '	UG/L	UG/L	ug/l	ug/l	ug/l	ug/l	ug/l
Filtered or Unfiltered	UG/L	UG/L	filtered	unfiltered	filtered]		1	1
Aluminum	NS	NG	100U	100U	100U	430	420	340	550	290
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	NG	4.0U	4.0U	4.0U	4.0U	4.0U	4.1	5.4	4.0U
Barium	1000	NG	52		25U	28	25U	37	25U	25U
Beryllium	NS	3	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U	4.0U
Cadmium	5	NG	2.0U	2.0U	2.0U	2.6	2.8	2.6	2.8	2.8
Calcium	NS	NG	130000	1000U	1000U	160000	170000	170000	180000	180000
Chromium	50	NG	25U		25U	25U	25U	25 U	25U	25U
Cobalt	NS	NG	10U		10U			10U	10U	
Copper	200	NG	25U	25U	25U			25U	25U	25U
Iron	300***	NG	380***	150U	150U	400***	290	360***	460***	
Lead	25	NG	5.0U		5.0U			5U	5U	5U
Magnesium	NS	35000	26000	· 1000U	1000U	620000	680000	610000	710000	730000
Manganese	300***	NG	170***			72***	53	100***	48***	36
Nickel	100	NG	25U				25U	25U	25U	25U
Potassium	NS	NG	5500	2500U	2500U	300000	340000	300000	360000	380000
Selenium	10	NG	25U		25U	25U	25U	25U	25U	25U
Silver	50	NG	10U	10U	10U	10U	10U	- 10L	10L	10U
Sodium	20000	NG	28000	25000U	25000U	5100000	5500000	5000000	5500000	5900000
Thallium	NS	0.5	5.0U	5.0U	5.0U	5U	5U	5t	5U	5U
Vanadium	NS	NG	25L	25U	25U	25L	25U	25U	25U	25U
Zinc	NS	2000	25U	25U	25U	26	25U	28	250	25U
Mercury	0.7	NG	0.21	0.21	0.2U	0.2U	0.2U	0.21	0.20	J 0.2U
pН	NS	NG	7.2	4.2	4.2	7.7	7.6	7.7	7.8	

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

collected from surface water

Table 11 C

Surcharge Pilot Study - Groundwater and Surface Water Results

Metals and pH

Site 2A/2B: HHMT - Port Ivory Facility

Location	Recommended	Recommended	CS-7	ĊS-7	RS-1	RS-1	ST-4S	ST-4S	ST-4D	ST-4D
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002
Lab ID	Cleanup	1	AB72292	AB72293	AB72294	AB722945	AB72296	AB72297	AB72298	AB72299
Concentration	Standard	· •	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
Aluminum	NS	NG	100U	t. 100U	100U	100U	970	2300	140	100U
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	75	7.5U	7.5U
Arsenic	25	NG	7.5	5.9	4.1	4.6	15	69	8.1	8.3
Barium	1000	NG	25U	25U	78	76	80	130	780	710
Beryllium	NS	3	4U	4U	4U	4U	4U	-≟∵40	4U	4U
Cadmium	5	NG	2U	2 U	2U	2 U	2U	3.2	. 2 U	2U
Calcium	NS	NG	83000	81000	130000	120000	200000	90000	290000	230000
Chromium	50	NG	25U	25U	25U	25U	25U	46	25U	25 U
Cobalt	NS	NG	10U	10U	10U	10U	10U	220	10U	10U
Copper	200	NG	25U	25U	25U	25U	25U	160	25U	25U
Iron	300***	NG	150U	150U	1400***	950***	3300***	550***	22000***	19000***
Lead	25	NG	5U	5U	5U	5U	5U	5U	5U	5U
Magnesium	NS	35000	34000	34000	18000	19000	2000		97000	89000
Manganese	300***	NG	25U	25U	170**	170***	28***	150***	5200***	4800***
Nickel	100	NG	25U	25U	25U	25U	25U	49	25U	25U
Potassium	NS	NG	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	10	NG	25U	25U	25U	25U	25U	25U	25U	25U
Silver	50	NG	10U	10U	10U	10U	10U	10U	,10U	10U
Sodium	20000	NG	130000	130000	32000	33000	400000	470000	2100000	2000000
Thallium	NS	0.5	5U	5U	5U	5U	5U	42	5U	5U
Vanadium	NS	NG	25U	25U	25U	25U	25U	25U	28	26
Zinc	NS	2000	49	25U	130	34	26	920	25U	25U
Mercury	0.7	NG	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
рН	NS	NG	8	8	8	8	11	11	7	7

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

collected from surface water

Table 11 C

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 2A/2B: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-1S	ST-1S	ST-1D	ST-1D	FB-1	FB-1	FB-1	FB-1
Date	Groundwater	Groundwater	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/6/2002	11/7/2002	11/7/2002
Lab ID	Cleanup	Cleanup	AB72300	AB72301	AB72302	AB72303	AB72305	AB72306	AB72395	AB72396
Concentration	Standard	Guidance	UG/L	ÚG/L	UG/L	,	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	unfiltered	i i	unfiltered	filtered	unfiltered	filtered
Aluminum	NS	NG	3200	350	910		100U		100U	100U
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	NG	90	∵√ 53	8	6.2	4U		7.50 4U	
Barium	1000	NG	190	150			25U		25U	25U
Beryllium	NS	3	4U	- 4U	4U	4U	4U		4U	
Cadmium	5	NG	3.2	2.5	2U	2U	2U	2U	2U	2U
Calcium	NS	NG	690000	350000	74000	74000	1000U	1000U	1000U	1000U
Chromium	50	NG	25U	25U	25U	25U	25U		25U	25U
Cobalt	NS	NG	10U	10U	10U	10U	10U	10U	10U	10U
Copper	200	NG	25U	25U	25U	25U	25U	25U	25U	25U
Iron	300***	NG	2200***	150U	5200***	3500***	150U		150U	150U
Lead	25	NG	5U	5U	5U	5U	5U	5U	5U	5U
Magnesium	NS	35000	12000	1000U	58000	59000	1000U	1000U	1000U	1000U
Manganese	300***	NG	54***	25U	120***	110***	25U	25U	25U	+
Nickel	100	NG	92	110	25U	25U	25U	25U	25U	
Potassium	NS	NG	ND	ND	ND	ND	ND		ND	
Selenium	10	NG	25U	25U	25U	25U	25U	25U	25U	25U
Silver	50	NG	10U	10U	10U	10U	10U	10U	10U	10U
Sodium	20000	NG	1500000	1600000	660000	720000	2500U	2500U	2500U	2500U
Thallium	NS	0.5	5U	5U	5U	5U	5U		5U	5U
Vanadium	NS	NG	32	25U	25U		25U	25U		25U
Zinc	NS	2000	. 44	25U	25U		25U	25U	25U	25U
Mercury	0.7	NG	0.2U	0.21	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
рН	NS	NG	13	13	7.3	7.3	6.5	6.5	6.8	6.8

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

collected from surface water

Table ...

Surcharge Pilot Study - Groundwater and Surface Water Results Metals and pH

Site 2A/2B: HHMT - Port Ivory Facility

Location	Recommended	Recommended	ST-2S	ST-2S	ST-2D	ST-2D	ST-3D	ST-3D	ST-3S	ST-3S
Date	Groundwater	Groundwater	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002	11/7/2002
Lab ID	Cleanup	Cleanup	AB72398	AB72398	AB72400	AB72401	AB72402	AB72403	AB72404	AB72405
Concentration	Standard	Guidance	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Filtered or Unfiltered	UG/L	UG/L	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered	unfiltered	filtered
Aluminum	NS	NG	2400	800	1400	670	680	100U	4400	420
Antimony	3	NG	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U	7.5U
Arsenic	25	NG	28	23	8.2	6.2	8.2	4U	61	9.7
Barium	1000	NG	160		120	110	91	83	510	430
Beryllium	NS	3	4U		4U		4U	4U	4U	4U
Cadmium	5	NG	2U	2 U	2U	2 U	2U	2U	2.7	2U
Calcium	NS	NG	420000	420000	120000	110000	220000	220000	880000	430000
Chromium	50	NG	25U	· 25U	25U	25U	25U	25U	25U	25U
Cobalt	NS	NG	10U	10U	10U	10U	10U	10U	10U	10U
Copper	200	NG	25U	·· 25U	25U			25U	25U	25U
Iron	300***	NG	1100***	150U	6600***	4900***	8500***	8200***	2100***	150U
Lead	25	NG	6.7	5U	5U				5U	5U
Magnesium	NS	35000	2400	1000U	83000	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the contract of the contract o	(1977) A		1000U
Manganese	300***	NG	25U		430***	400***	2300***	2500***		
Nickel	100	NG	39U	37						
Potassium	NS	NG	52000					74000	250000	2500
Selenium	10	NG	25U		25U			25U	25U	
Silver	50	NG	10U		10U				10U	10U
Sodium	20000	NG	780000	* 850000	740000	540000	2200000	2300000	2100000	25000
Thallium	NS	0.5	5U						7.1	
Vanadium	NS	NG	27				55	52	2 27	25U
Zinc	NS	2000	56				25U	25L	130	25U
Mercury	0.7	NG	0.2U	0.2U	0.2U	0.2U	0.2U	0.21	1.7	
рН	NS	NG	13	13	7.8	7.8	7.2	7.2	13	13

ND No Data

U Undetectable Levels

NS No Standard

NG No Guidance

*** Total for Iron and Manganese is > 500

Note-1: pH listed is the pH recorded in the field

Note-2: ST-SW1 through ST-SW5 represents samples

collected from surface water

increase in contaminant concentration during the pilot study since xylenes were detected at a higher concentration in the SI sampling round performed in November 2000. As shown on the surcharging phasing study and schedule, surcharging has been completed at the two areas labeled Phase 1A has been completed and has been initiated at the area labeled Phase 1B North. Although the pilot study did not reveal the presence of adverse impacts to groundwater or Bridge Creek, additional monitoring efforts are proposed to confirm the findings of the pilot study. The proposed actions will mimic those performed during the pilot study but will utilize five existing monitoring wells situated in both Site 1 and Site 2A at locations adjacent to Bridge Creek; the proposed locations include EW-1 (Site 2A), MW-5 (Site 1) MW-6/MW-6D (Site 2A) and CS-7 (Site 2A). The proposed monitoring program will also include sampling of two sets of wells (MW-15/MW-15D located on Site 2A and MW-1/MW-1D located at Site 1) to provide additional groundwater information. The samples will be analyzed for TCL VOCs, phenols, TAL Metals and pH. Based on current information, four rounds of sampling will be performed over the next 12 months with collection occurring once per quarter.

The monitoring program will include a review of conditions at Bridge Creek and the sampling of both surface water and sediment/precipitate. The proposed sediment/surface water sampling will be performed in conjunction with the proposed groundwater sampling events and will include samples from five locations. Sediment and surface water samples also will be analyzed for TCL VOCs, phenols, TAL Metals and pH. In addition, monthly inspection will be performed to document conditions along the eastern bank of Bridge Creek. The inspections will be performed during low tide and will note the presence of seeps, precipitate, bank failure or other evidence of mass movement of subsurface material or liquids. All sampling will be performed in accordance with NYSDEC protocol and laboratory analysis will be performed by a NYSDEC certified laboratory. Again, information from the pilot study has not identified any adverse impacts to groundwater or Bridge Creek, however, the Port Authority intends to confirm these findings through the above-described program.

14.0 CONCLUSIONS

This report presents a summary of assessment, investigation, delineation and remedial actions which have been undertaken at Site 2A/2B from 2000 through 2003. By and large, assessment and investigation efforts identified relatively few environmental issues with respect to Site 2A/2B. Generally, the issues involved the presence of fill material, previously closed USTs and the presence of a few petroleum-impacted areas. As described herein, the environmental conditions at this Site 2A/2B as well as Sites 1 and 3 of the HHMT-Port Ivory Facility have been evaluated with respect to the HHMT-Port Ivory

Facility's proposed usage. Further, the Port Authority has undertaken actions to address residual petroleum related contamination through source removal. The actions undertaken at these areas also have included the removal of two previously closed USTs (closed in place by P&G) and an abandoned oil/water separator system from Site 2A. Based on assessment and investigation activities, no remedial actions were warranted with respect to Site 2B. With regard to the presence of fill material, the SI/RI activities identified the presence of contaminants at Site 2A/2B, which are typical to urban sites in the New York Metropolitan region. The presence of the fill material and residual levels of fill-related contaminants in soil does not appear to have adversely impacted groundwater quality at Site 2A/2B or Bridge Creek, situated adjacent to the western property boundary of Site 2A/2B and Site 1.

Overall, industrial/commercial usage such as the Port Authority's planned usage of the site as an intermodal facility and container terminal is not inconsistent with the residual levels of contamination noted to be present in site soil and groundwater. The Port Authority has addressed several petroleum-impacted areas through source removal and will address fill material and residual contamination (associated with the fill material and prior industrial usage of the site by P&G) through site redevelopment including the use of engineering and institutional controls, which will minimize potential impacts to human health and the environment. Specifically, the Port Authority intends to install material such as pavement and other semi-impervious material, which will function as an environmental cap at Site 2A/2B and the entire HHMT-Port Ivory Facility. This action will tend to stabilize contaminants present in soil and fill material by impeding infiltration, thereby reducing the potential for contaminants in soil to leach from the unsaturated zone to groundwater. Further, the placement of such materials will safeguard the public by preventing exposure to contaminants in soil and groundwater.

P:\232952wmd\Operable Unit Reports\Operable Unit 2\Post VCP Revisions\Report\Final Draft Report Site 2A 2B 92004.doc

GEOPHYSICAL SURVEY PROCTOR & GAMBLE PORT IVORY FACILITY STATEN ISLAND, NEW YORK

Prepared for:

Killam Associates 27 Bleeker Street PO Box 1008 Millburn, New Jersey 07041-1008

Prepared by:

Hager-Richter Geoscience, Inc. 8 Industrial Way - D10 Salem, New Hampshire 03079

File 00D59 December, 2000

©2000 Hager-Richter Geoscience, Inc.

0. EXECUTIVE SUMMARY

Hager-Richter Geoscience, Inc. conducted a geophysical survey at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York for Killam Associates (Killam)in October and November, 2000. The scope of the project and areas of interest were specified by Killam. The geophysical survey is part of a environmental investigation of the site being conducted by Killam on behalf of the Port Authority of New York and New Jersey.

The site is a large inactive industrial facility located in the northwestern portion of Staten Island. The Site consists of several buildings, gravel and paved parking areas, rail spurs, foundations and slabs of demolished buildings, and open areas. Hager-Richter was contracted by Killam to locate utilities in the vicinity of as many as 210 proposed boring locations and to locate possible USTs that may be present at nine locations identified at the Site by Killam. The locations of utilities detected as part of the boring program were marked on site as specified by Killam, and are not discussed further.

According to information provided by Killam, as many as 19 USTs might be present in nine areas of the site, designated by Killam UST Area 1 through UST Area 9. Four of the nine areas may contain multiple USTs, and five areas may contain a single UST.

The objective of the geophysical survey was to detect possible USTs in each of the nine areas of interest specified by Killam, and if any were detected, to determine the locations of each.

The geophysical survey consisted of time domain electromagnetic induction metal detector (EM61) surveys followed by focused GPR surveys in each of the areas of interest. The EM61 data were acquired at approximately 8-inch intervals along profile lines spaced 5 feet apart across the accessible portions of the areas of interest. In order to aid in the identification of the objects, a focused GPR survey was conducted at the locations of anomalies detected with the EM.

The results of the geophysical survey conducted at the Proctor & Gamble Port Ivory Facility can be summarized as follows:

• Several areas of buried metal were detected in the nine areas of interest at the site on the basis of the EM61 data. None of the identified areas of buried metal could be definitively identified as a UST due to the limited GPR signal penetration and/or surface features such as concrete slabs, metal piping, and rail spurs. Whether the buried metal is a UST is present cannot be determined on the basis of the geophysical data alone.

HAGER-RICHTER GEOSCIENCE, INC.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

• Several other EM61 anomalies are interpreted as possible utilities.

TABLE OF CONTENTS

0.	Executive Summary i
1	Introduction 1
2.	Equipment and Procedures 2 2.1 General 2 2.2 EM61 2 2.3 GPR 2 2.4 Site Specific 4
3.	Results and Discussion 5 3.1 General 5 3.2 UST Area 1 5 3.3 UST Area 2 6 3.4 UST Area 3 6 3.5 UST Area 4 7 3.6 UST Area 5 7 3.7 UST Area 6 8 3.8 UST Area 7 8 3.9 UST Area 8 9 3.10 UST Area 9 9
4.	Conclusions
5.	Limitations
	FIGURES
1. 2. 3. 4. 5. 6. 7.	Site Location EM61 - UST Area 1 GPR survey & Integrated Interpretation - UST Area 1 EM61 - UST Area 2 GPR survey & Integrated Interpretation - UST Area 2 EM61 - UST Area 3 GPR survey & Integrated Interpretation - UST Area 3

HAGER-RICHTER GEOSCIENCE, INC.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59
December, 2000

8.	EM61 - UST Area 4
9.	GPR survey & Integrated Interpretation - UST Area 4
10.	EM61 - UST Area 5
11.	GPR survey & Integrated Interpretation - UST Area 5
12.	EM61 - UST Area 6
13.	GPR survey & Integrated Interpretation - UST Area 6
14.	EM61 - UST Area 7
15.	GPR survey & Integrated Interpretation - UST Area 7
16.	EM61 - UST Area 8
17	GPR survey & Integrated Interpretation - UST Area 8
18.	EM61 - UST Area 9
19.	GPR survey & Integrated Interpretation - UST Area 9

PLATE

1. Site Plan

APPENDIX

EM61 Surveys
 GPR Surveys

- iv -

1. INTRODUCTION

Hager-Richter Geoscience, Inc. conducted a geophysical survey at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York for Killam Associates (Killam) October 25 - November 15, 2000. The scope of the project and areas of interest were specified by Killam. The geophysical survey is part of a environmental investigation of the site being conducted by Killam on behalf of the Port Authority of New York and New Jersey.

The site is a large inactive industrial facility located in the northwestern portion of Staten Island. The general location of the Site is shown in Figure 1, and Plate 1 is a site plan. The Site consists of several buildings, gravel and paved parking areas, rail spurs, foundations and slabs of demolished buildings, and open areas. Hager-Richter was contracted by Killam to locate utilities in the vicinity of as many as 210 proposed boring locations and to locate possible USTs that may be present at nine locations identified at the Site by Killam. The locations of utilities detected as part of the boring program were marked on site as specified by Killam, and are not discussed further.

According to information provided by Killam, as many as 19 USTs might be present in nine areas of the site, designated by Killam as UST Area 1 through UST Area 9. Four of the nine areas may contain multiple USTs, and five areas may contain a single UST. The locations of the nine areas specified by Killam are shown as hatched areas on Plate 1.

The objective of the geophysical survey was to detect possible USTs in each of the nine areas of interest specified by Killam, and if any were detected, to determine the locations of each.

The geophysical survey consisted of time domain electromagnetic induction metal detector (EM61) surveys followed by focused GPR surveys in each of the areas of interest. The EM61 survey detects and outlines areas containing buried metal. However, the EM method cannot provide information on the type of objects causing the EM anomaly. In order to aid in the identification of the objects, a focused GPR survey was conducted at the locations of anomalies detected with the EM61.

James Coffman, Jeffrey Reid, P.G., and Jeffrey Sullivan of Hager-Richter conducted the field operations on October 30, November 8, 9, 14, and 15, 2000. The project was coordinated with Ms. Jennifer Kohlsaat of Killam. Mr. Daniel Davis and Mr. Charles Springer, both of Killam, specified the areas of interest for the survey and were present for portions of the field work.

2. EQUIPMENT AND PROCEDURES

2.1 General

The equipment, limitations, and general procedures of EM61 high sensitivity metal detector and GPR surveys are described below. Details specific to this project are given in the Site Specific section below

2.2 EM61

Equipment. The EM survey was conducted using a Geonics Model EM61 time domain electromagnetic induction metal detector, the industry standard for this type of geophysical survey. The EM61 produces a pulsed primary magnetic field in the earth that induces eddy currents in the ground and in nearby metal objects. The receiver is timed to measure the secondary magnetic field produced by eddy currents after those in the ground have dissipated, i.e., only the current in the metal objects. The data are recorded on a digital data logger. The EM61 is relatively insensitive to nearby cultural interferences such as buildings.

Limitations of the Method. The data from an EM61 survey are affected by surface metal debris in the survey area, and its depth sensitivity is limited to about 15 feet. The instrument is relatively cumbersome, and works best where the 1-meter square transmit and receive coils can be hand pulled in a small trailer.

Detection and identification should be clearly differentiated. Detection is the recognition of the presence of a metal object, and the electromagnetic method is excellent for such purposes. Identification, on the other hand, is determination of the nature of the causative body (i.e., what is the body—a cache of drums, UST, automobile, white goods, etc.?). Although the EM61 data cannot be used to *identify* all buried metal objects, they provide excellent guides to the identification of some objects. For example, buried metal utilities produce anomalies with lengths many times their widths.

2.3 GPR

Song calebra Son

Equipment. The GPR survey was conducted using a Geophysical Survey Systems SIR-2 digital GPR system equipped with a survey wheel to trigger recording of data at equal horizontal distances. The GPR system was used with a 500 MHz antenna and a 60 nsec time window. The GPR traverses were spaced approximately 5 feet apart, and were conducted at the locations of EM61 anomalies.

Limitations of the Method. There are limitations of the GPR technique as used to detect and/or locate targets such as those of the subject Site: (1) surface conditions, (2) electrical conductivity of the ground, (3) contrast of the electrical conductivities of the targets and the ground, and (4) spacing between lines. Of these limitations, only the fourth, line spacing, is controlled by the operator.

The condition of the ground surface can affect the quality of the GPR data and the depth of penetration of the GPR signal. Sites covered with high grass, bushes, landscape structures, debris, obstacles, soil mounds, etc. limit the survey access and the coupling of the GPR antenna with the ground. In many cases, the GPR signal will not penetrate below concrete pavement, especially inside of buildings, and a target may not be detectable.

The electrical conductivity of the ground determines the attenuation of the GPR signals, and thereby limits the maximum depth of exploration. The GPR signal does not penetrate clay-rich soils, and targets buried in clay can be missed.

A definite contrast in the electrical conductivities of the ground and the target is required to obtain a reflection of the GPR signal. If the contrast is too small, possibly due to construction details or extremely corroded conditions of metal targets, then the reflection may be too weak to recognize, and the target can be missed.

The spacing between lines is under control of the GPR operator, and the design of the survey is based on the dimensions of the smallest feature of interest. Targets with dimensions smaller than the spacing between GPR survey lines can be missed.

2.4 Site Specific

As noted in the Introduction, Killam specified nine areas of interest for the geophysical survey. A local survey grid was established in each of the UST survey areas and tied to fixed landmarks.

EM61 data were acquired at approximately 8-inch intervals along lines spaced 5 feet apart in the accessible portions of each area. The EM61 was operated with the 1-meter square transmit/receive coils mounted on a hand-drawn trailer with a survey wheel that measures distance and triggers data collection at equal intervals. The EM61 data were recorded digitally and processed in the field using software provided by the manufacturer. A color contour plot of the data was generated using commercially available software (Geosoft).

A focused GPR survey was conducted at the locations of anomalies detected by the EM61 survey to attempt to identify the causative body(ies). GPR traverses were located along the same

HAGER-RICHTER GEOSCIENCE, INC.

Geophysical Survey
Proctor & Gamble Port Ivory Facility
Staten Island, New York
File 00D59 December, 2000

lines as the EM61 survey and spacing was variable based on the size of the EM anomalies and surface conditions. The GPR antenna was pulled by hand for all traverses.

GPR data were acquired with a 300 MHz antenna and a 60 nsec time window. GPR signal penetration varied significantly at the Site. Based on handbook values of time-to-depth conversions for the GPR signal in average soils, the GPR signal penetration is estimated to have varied from about 1 foot to about 5 feet.

3. RESULTS AND DISCUSSION

3.1 General

The geophysical survey consisted of a time domain electromagnetic induction metal detector (EM61) survey followed by a focused GPR survey where the EM61 survey indicated possible buried metal. Plate 1 is a Site Plan provided by Killam showing the locations of the survey areas.

Interpretation of EM61 data is based on the *relative* response (in millivolts) of the top and bottom instrument coils to local conditions. The differential response, the difference between the top and bottom coils, is typically used as the best indication of the location of buried metal objects, and is shown in the figures for this report. The instrument is not calibrated to provide an absolute measure of a particular property, such as the conductivity of the soil or of buried metal objects. Subsurface metal objects produce sharply defined positive anomalies when the EM61 is positioned directly over them. Such anomalies are colored red and pink on the color plots presented herein. Acquiring data at short intervals along closely spaced lines, as was done at the present site, provides high spatial resolution of the location and footprint of the targets. Thus, buried metal is recognized in contour plots of EM61 data by positive anomalies (red or pink zones) roughly corresponding to the dimensions of the buried metal.

Many surface metal objects and objects containing metal are present in the UST survey areas such as manhole covers, railroad tracks, fences, and reinforced concrete. The locations of such objects are shown on the figures for each of the areas. Because these objects contain metal, they can produce significant EM anomalies. The presence or absence of buried metal in these areas cannot be determined due to the anomalies caused by such surface objects.

In general, GPR signal penetration at the site was limited, with reflections received for less than about 30 nsec. The limited signal penetration is likely due to conductive soils, and in many places, concrete at the surface. Based on handbook time-to-depth conversions for the GPR signal in average soils, the GPR signal penetration is estimated to have been no more than about 2 to 3 feet for most of the areas of interest.

3.2 UST Area 1

UST Area 1 is located on the north side of Building 20, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 2 is a color contour plot of the EM61 data for UST Area 1, and Figure 3 shows the locations of the GPR traverses and the

interpretation of both the EM61 and GPR data. Five areas of possible buried metal were detected within the survey area, and their locations are shown on Figure 3. GPR traverses were conducted in the central portion of the area. GPR signal penetration was limited to less than 2 feet. Therefore, no additional information regarding the causative bodies was determined for this area with the GPR traverse.

Based on the shapes and sizes of the EM anomalies for UST Area 1, we infer that a utility and several other buried objects are present. Whether the objects are USTs cannot be determined on the basis of the geophysical data alone. If any of the buried metal objects is a UST, its capacity is likely 1000 gallons or less.

3.3 UST Area 2

UST Area 2 is located south of a wood shavings stockpile area, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 4 is a color contour plot of the EM61 data for UST Area 2, and Figure 5 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. One area of possible buried metal was detected within the survey area. The area is located about 35 feet south of a concrete pad. GPR traverses were conducted over the location of the EM anomaly. GPR signal penetration is estimated to have been about 4 to 5 feet for this area, but GPR reflections typical of a UST were not detected in the area included in the GPR survey.

Based on the presence of the EM anomaly in UST Area 2, we infer that a buried metal object is present. Whether the object is a UST cannot be determined on the basis of the geophysical data alone. Because no GPR reflections typical of a UST were observed in the records for the effective depth of penetration of the GPR signal (about 5 feet), and the EM anomaly is small in amplitude, we conclude that if a UST is present, it would likely be located at a depth greater than 5 feet.

3.4 UST Area 3

X ...

UST Area 3 is located north of the northeast corner of Building 13, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 6 is a color contour plot of the EM61 data for UST Area 3, and Figure 7 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Two areas of possible buried metal were detected within the survey area as well as a possible utility. One buried metal object is located about 25 feet east of a trailer, the other is located about 60 feet east of the trailer, and the locations of both are shown on Figure 7.

GPR signal penetration is estimated to have been about 2 to 3 feet for this area. GPR reflections typical of a UST were not detected in the area included in the GPR survey. GPR reflections typical of a flat structure, such as a concrete pad, are present at the location of the southern end of the EM anomaly closer to the trailer.

Based on the presence of the EM anomalies in UST Area 2, we infer that two buried metal objects are present. The GPR data indicate that at least part of one of the EM anomalies may be related to a flat concrete-like structure. Whether the concrete object is a UST cannot be determined on the basis of the geophysical data alone.

3.5 UST Area 4

UST Area 4 is located west of Buildings 34 and 38 and north of a former floor slab for a demolished building, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 8 is a color contour plot of the EM61 data for UST Area 4, and Figure 9 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data.

The western portion of the survey area is covered by a concrete pad. Three significant EM anomalies are present in this portion of the survey area and one large EM anomaly is present along the southeast edge of the survey area. The areas of the EM anomalies are shown as areas of buried metal on Figure 9. The large EM anomalies may be caused by structures located under the concrete slab. The GPR signal penetration over the concrete slab is limited to less than about 1 foot and GPR reflections typical of USTs were not detected. Whether USTs are located under the slab cannot be determined on the basis of the geophysical data alone. The remaining portion of UST Area 4 is generally free of buried metal.

3.6 **UST Area 5**

UST Area 5 is located along a rail spur southwest of Building 17, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 10 is a color contour plot of the EM61 data for UST Area 5, and Figure 11 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Two rail spurs and a reinforced concrete surface drainage swale are present in the area. High amplitude EM anomalies are present near the concrete drainage swale and low amplitude negative EM anomalies are observed for the rail spurs.

GPR traverses were conducted in the northwest corner of the survey area, but the GPR signal penetration was limited to less than about 1 foot and no GPR reflection typical for a UST were detected.

3.7 UST Area 6

UST Area 6 is located along a rail spur west of Building 17, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 12 is a color contour plot of the EM61 data for UST Area 6, and Figure 13 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. A rail spur and iron rimmed surface drain are present along the east side of the survey area.

Five EM anomalies not related to the surface features were identified, and their locations are shown on Figure 13. The two large circular anomalies located in the northeast portion of the survey area are likely caused by buried concrete. A small portion of a slab was visible on site and its presence was confirmed with the GPR. The remaining three anomalies are low amplitude and small in extent and are likely too small to be caused by USTs.

3.8 UST Area 7

UST Area 7 is located south of Building S-#35, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 14 is a color contour plot of the EM61 data for UST Area 7, and Figure 15 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Surface objects such as a rail spur, a concrete loading dock, a steel plate, transformers, and a tower are present in the survey area. The EM data were adversely affected at such locations.

Four EM anomalies not related to the surface features were identified, and their locations are shown on Figure 15. A large EM anomaly is present in the central portion of the survey area. The GPR data for the area of the large anomaly indicate the presence of a shallow buried reinforced concrete slab or structure at a depth of about 1 foot in the southern part of the anomaly. GPR records for the traverses conducted in the vicinity of the remaining anomalies contain no reflections characteristic of USTs. Such areas are shown as areas of buried metal. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

3.9 UST Area 8

UST Area 8 is located at the northeast corner of Building 55, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 16 is a color contour plot of the EM61 data for UST Area 8, and Figure 17 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data. Surface objects such as a concrete pad and vertical pipes cut at grade are present in the survey area and such objects are shown on Figure 17.

Three anomalies attributed to buried metal objects were identified by the EM survey and their locations are shown on Figure 17. EM anomalies attributed to subsurface utilities were also identified. GPR signal penetration in the areas of the EM anomalies was limited to a depth of about 1 foot and no GPR reflections typical of a UST were detected. Therefore, no information regarding the causative bodies could be determined. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

3.10 UST Area 9

UST Area 9 is located between Buildings 52 and 53, and its location is shown on Plate 1. EM61 data were acquired along survey lines spaced 5 feet apart, and GPR data were acquired at most locations where the EM data indicated the presence of buried metal. Figure 18 is a color contour plot of the EM61 data for UST Area 9, and Figure 19 shows the locations of the GPR traverses and the interpretation of both the EM61 and GPR data.

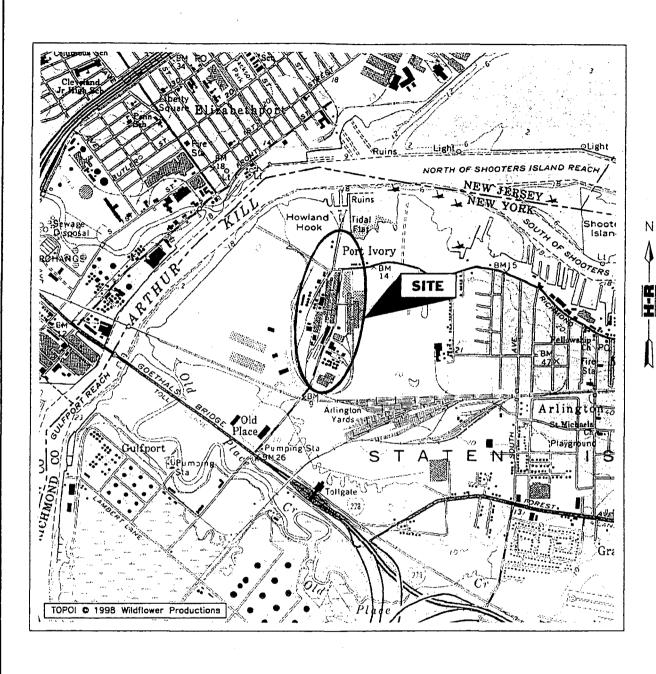
Several surface metal objects, such as valve box covers, transformers, and overhead pipes are present in the survey area. Four 4-inch pipes, cut at the surface, are present in the southeast corner of the survey area. Significant EM anomalies are present at the locations of the surface features and may mask the presence of buried metal objects, if any, at such locations.

Three anomalies not associated with surface metal were identified by the EM survey. These anomalies have been attributed to buried metal objects. GPR signal penetration in the areas of the EM anomalies was limited to a depth of about 1 foot and no GPR reflections typical of a UST were detected. Therefore, no information regarding the causative bodies could be determined. Whether the buried metal objects are USTs cannot be determined on the basis of the geophysical data alone.

4. CONCLUSIONS

Based on the geophysical survey conducted at the Proctor & Gamble Port Ivory Facility located on Staten Island, New York, we conclude:

- Several areas of buried metal were detected in the nine areas of interest at the site on the basis of the EM61 data. None of the identified areas of buried metal could be definitively identified as a UST due to the limited GPR signal penetration and/or surface features such as concrete slabs, metal piping, and rail spurs. Whether the buried metal is a UST is present cannot be determined on the basis of the geophysical data alone.
- Several other EM61 anomalies are interpreted as possible utilities.


5. LIMITATIONS

This letter report was prepared for the exclusive use of Killam Associates and the Port Authority of New York and New Jersey (Client). No other party shall be entitled to rely on this Report or any information, documents, records, data, interpretations, advice or opinions given to Client by Hager-Richter Geoscience, Inc. (H-R) in the performance of its work. The Report relates solely to the specific project for which H-R has been retained and shall not be used or relied upon by Client or any third party for any variation or extension of this project, any other project or any other purpose without the express written permission of H-R. Any unpermitted use by Client or any third party shall be at Client's or such third party's own risk and without any liability to H-R.

H-R has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by H-R should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

The detection of subsurface utilities and/or other subsurface objects was not an objective of this portion of the geophysical survey, and the survey was not designed to detect such. However, some utilities and/or other subsurface objects were detected and their locations are provided as a courtesy. Other utilities and/or other subsurface objects may be present and the Client or any third party shall not rely on this report for information on such.

Except as expressly provided in this limitations section, H-R makes no other representation or warranty of any kind whatsoever, oral or written, expressed or implied; and all implied warranties of merchantability and fitness for a particular purpose, are hereby disclaimed.

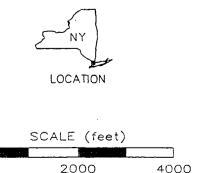
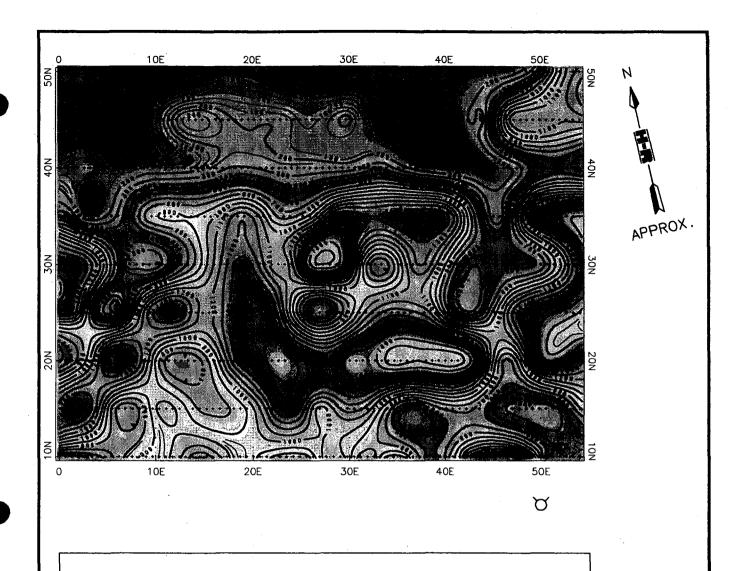



Figure 1 General Site Location Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

BUILDING #20

LEGEND

EM DATA STATION

D .

WATER VALVE

D

HYDRANT

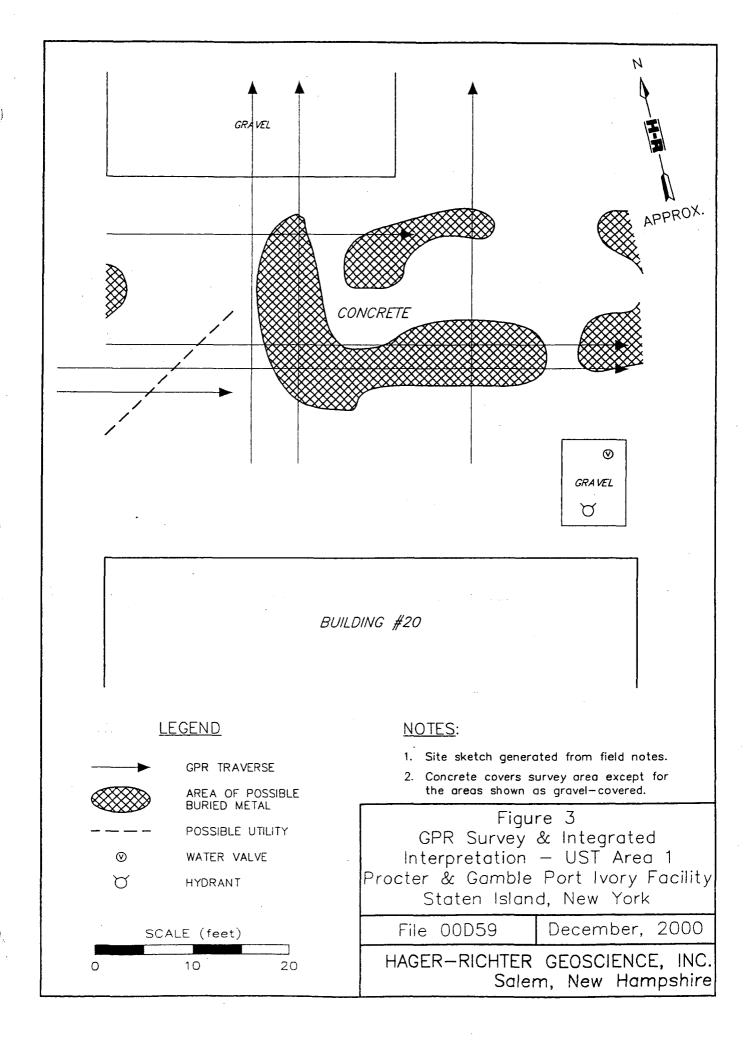
SCALE (feet)

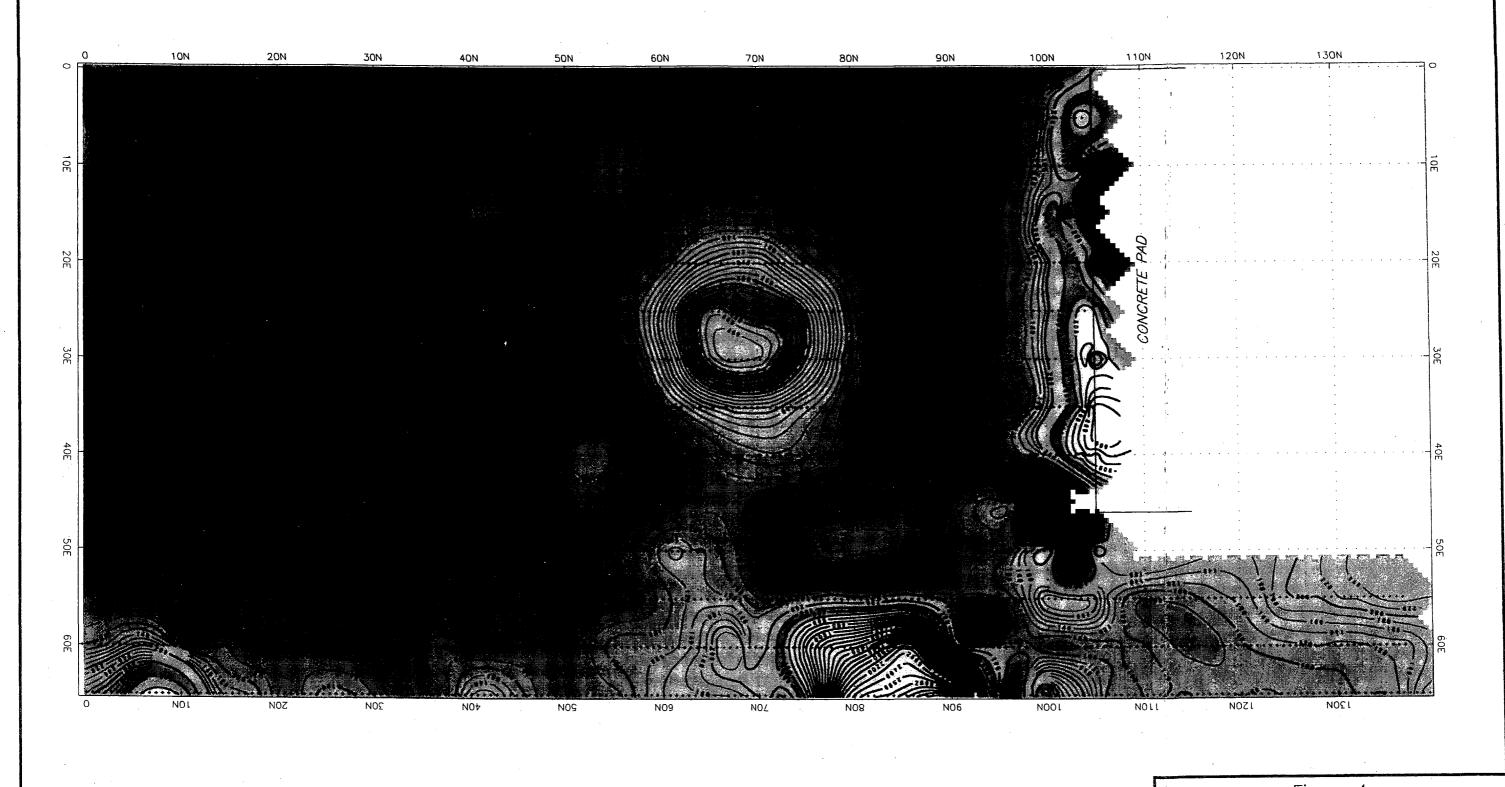
0

10 20

NOTES:

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.


Figure 2


EM61 Survey - UST Area 1 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

NOTES:

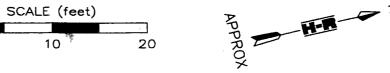
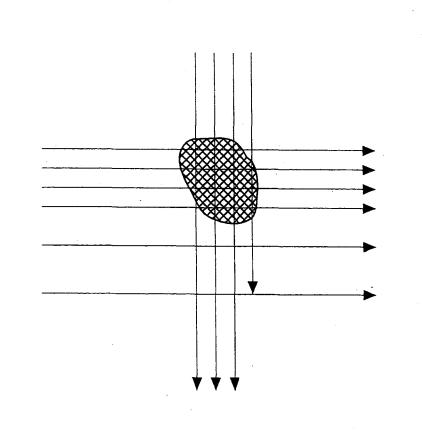
1. Site sketch generated from field notes.

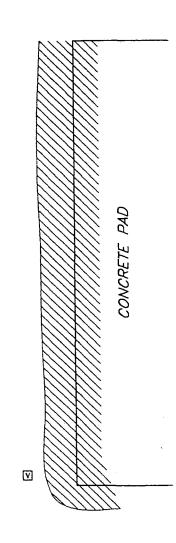
2. Contour Interval = 20 mV.

EM DATA STATION

WATER VALVE

MONITORING WELL


Figure 4
EM61 Survey — UST Area 2
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

GPR TRAVERSE

AREA OF POSSIBLE BURIED METAL

EM ANOMALY ATTRIBUTED TO EFFECTS OF SURFACE OBJECTS. THE PRESENCE OR ABSENCE OF BURIED METAL WITHIN THIS AREA CANNOT BE DETERMINED ON THE BASIS OF THE GEOPHYSICAL DATA ALONE.

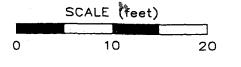


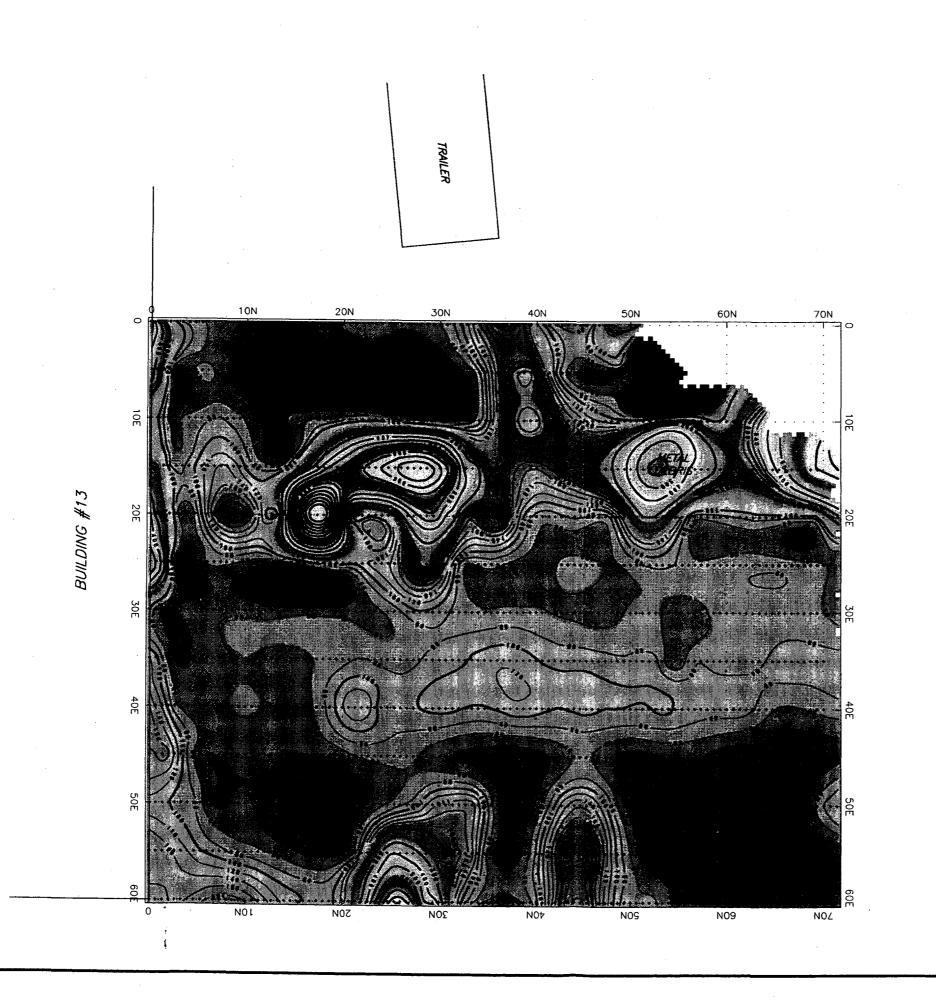
Figure 5
GPR Survey & Integrated
Interpretation — UST Area 2
Procter & Gamble Port Ivory Facility
Staten Island, New York

File 00D59

December, 2000

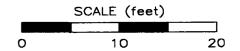
HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

NOTE:


Site sketch generated from field notes.

V

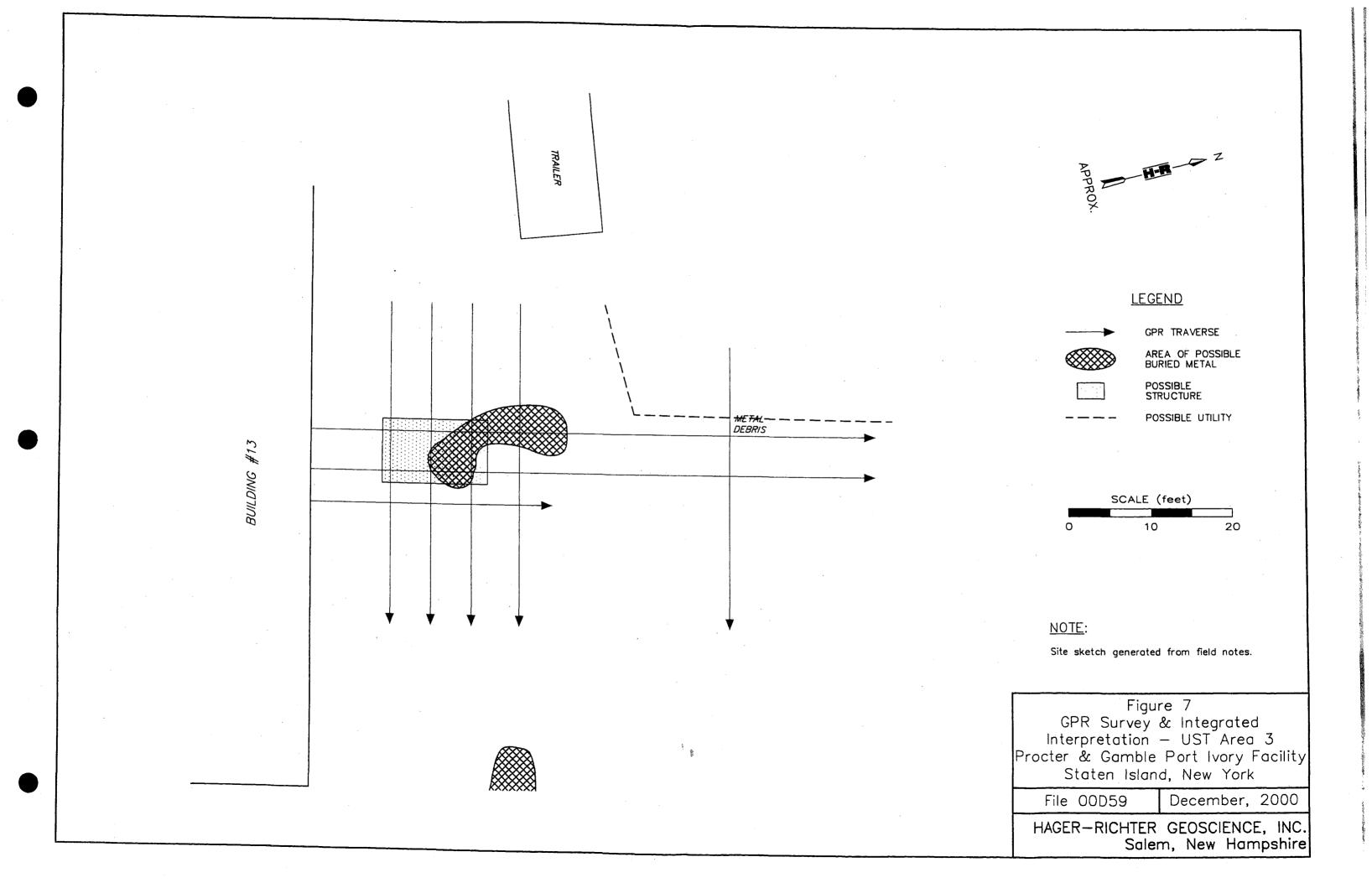
WATER VALVE

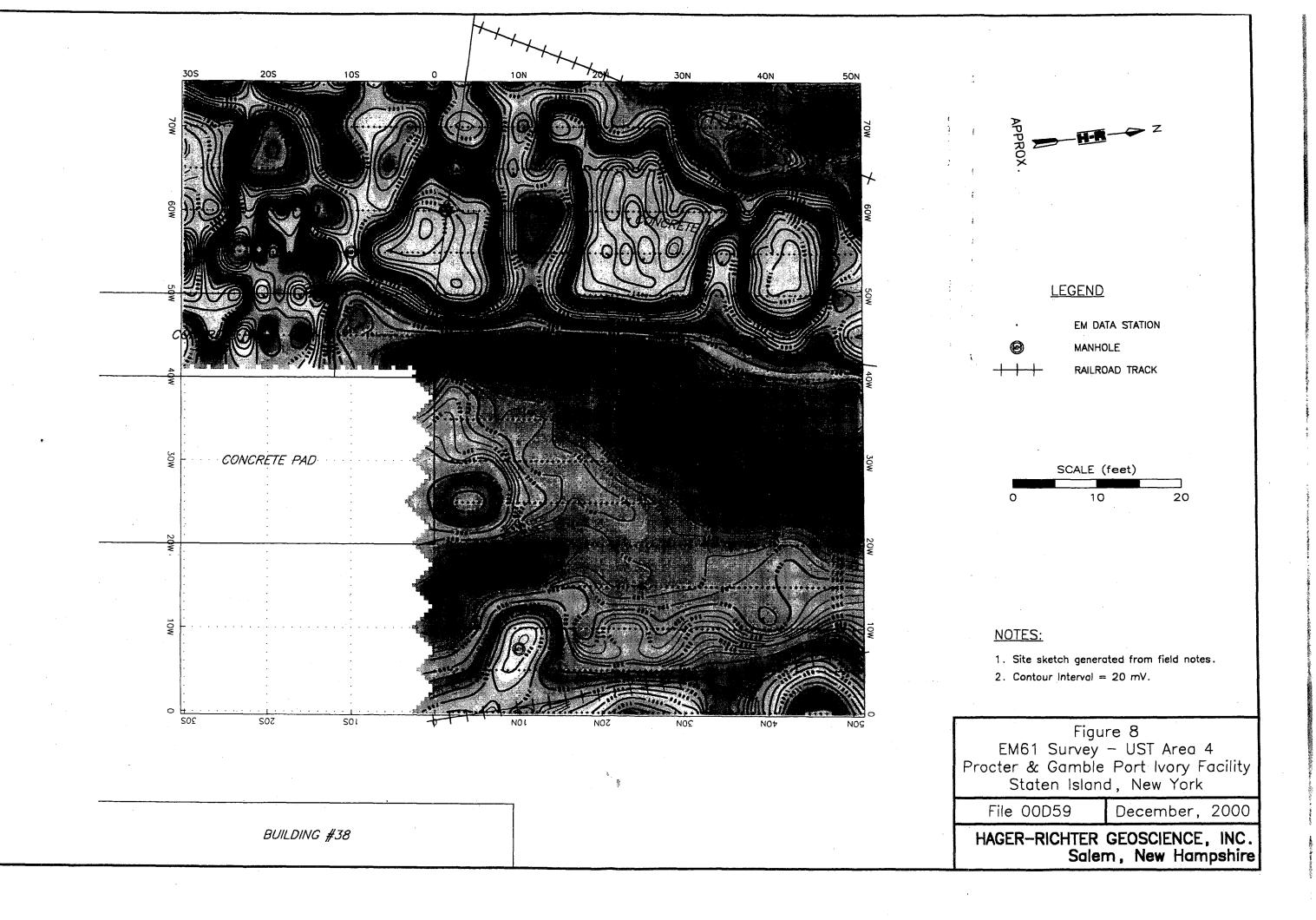

•

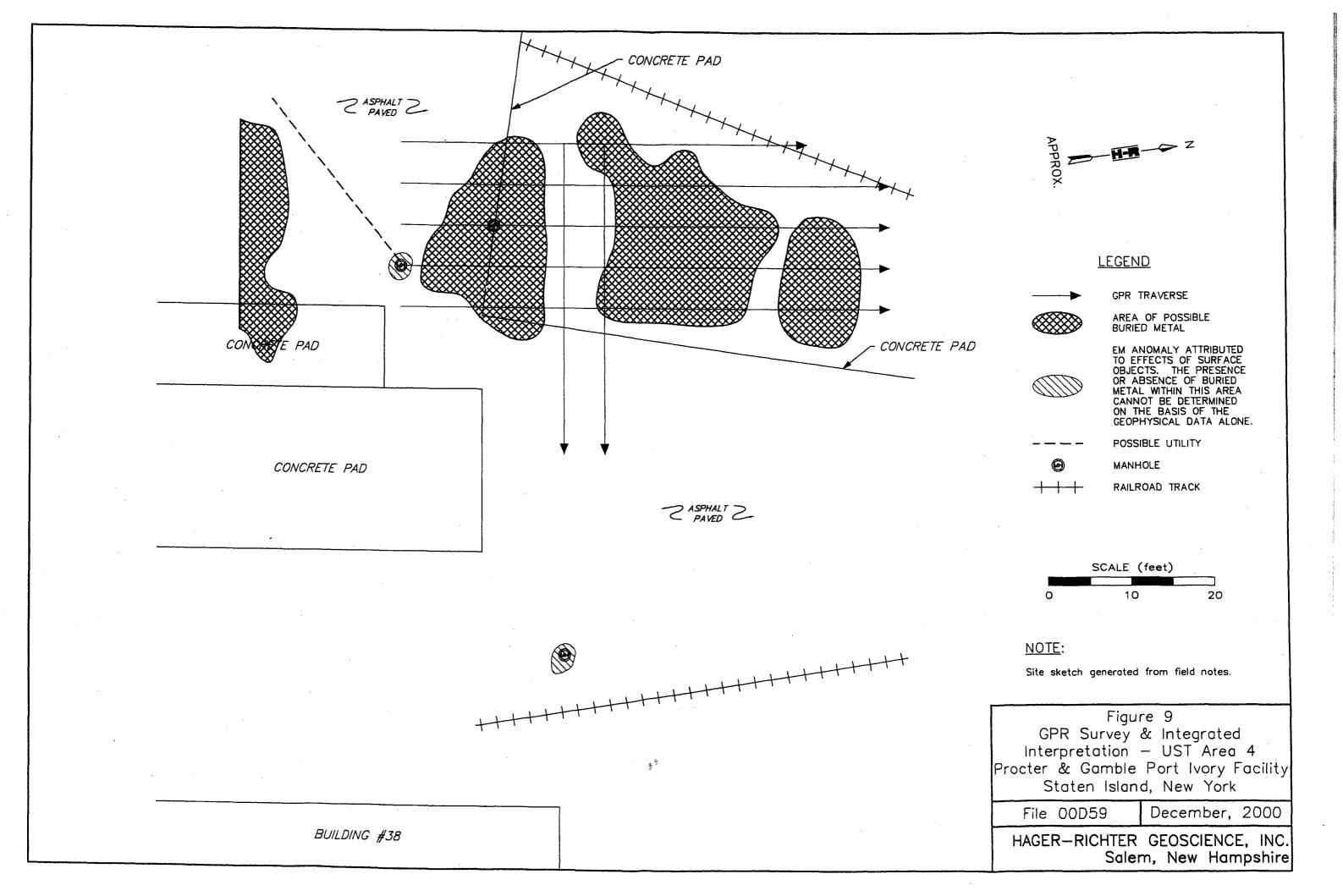
MONITORING WELL

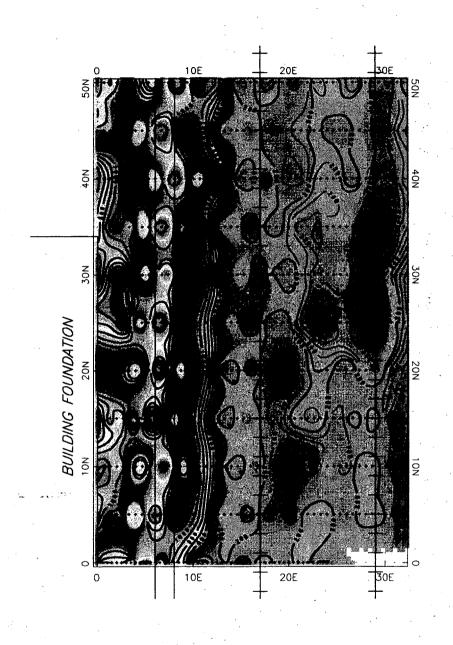
EM DATA STATION

NOTES:


- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.


Figure 6 EM61 Survey - UST Area 3 Procter & Gamble Port Ivory Facility Staten Island, New York


File 00D59


December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

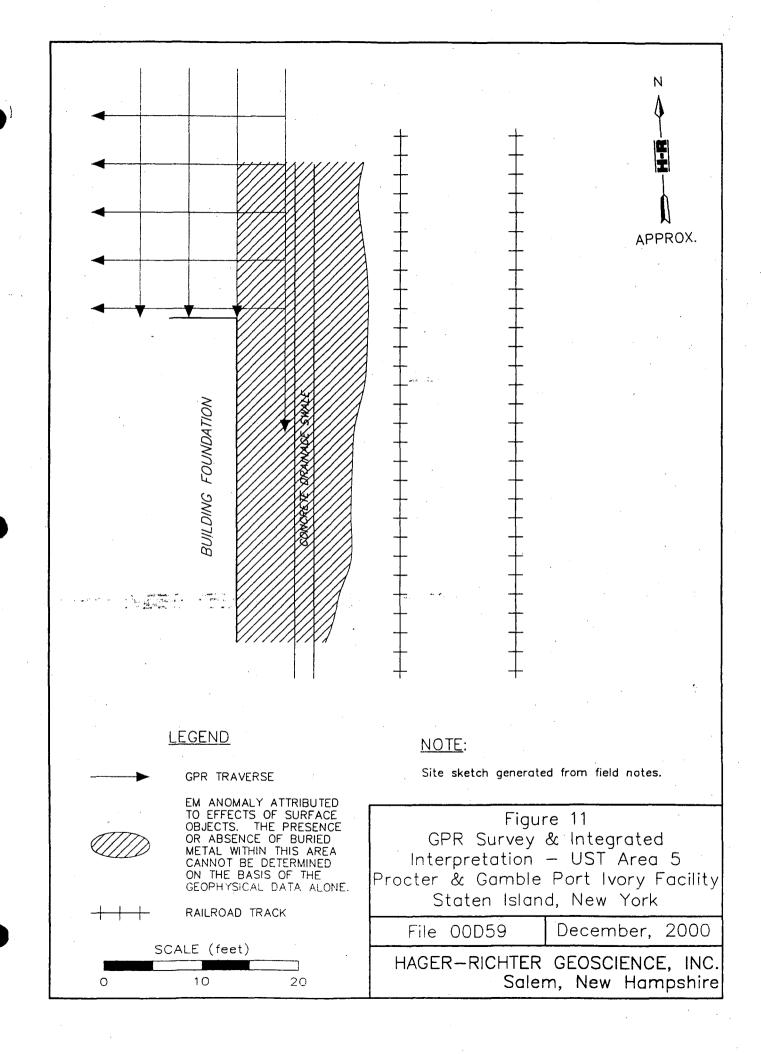
NOTES:

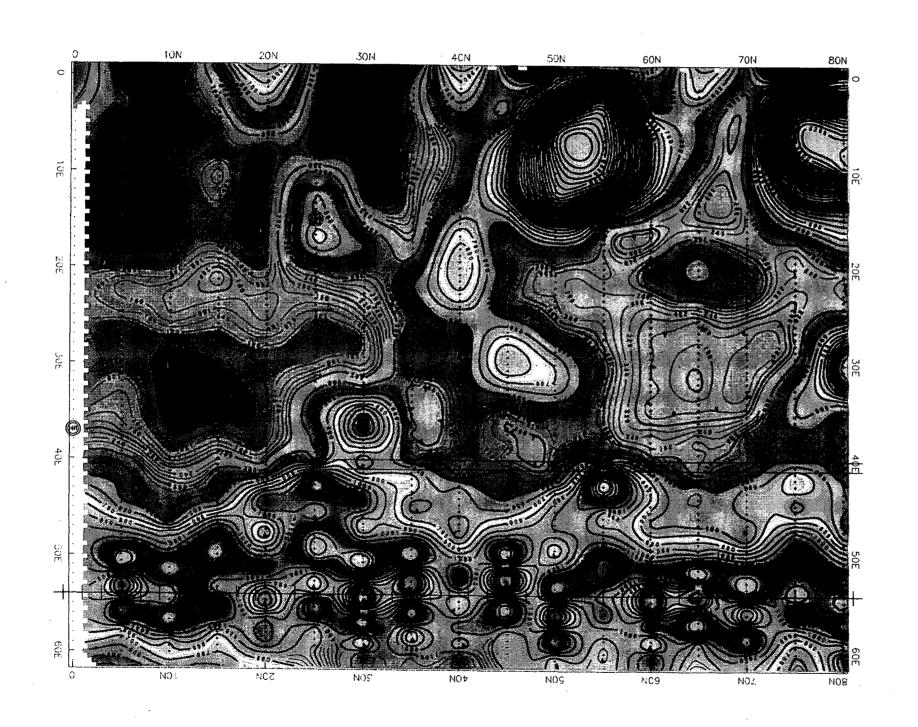
- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.

Figure 10 EM61 Survey - UST Area 5 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

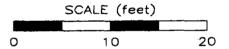

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire


LEGEND

EM DATA STATION
RAILROAD TRACK

SCALE (feet)

0 10 20


EM DATA STATION

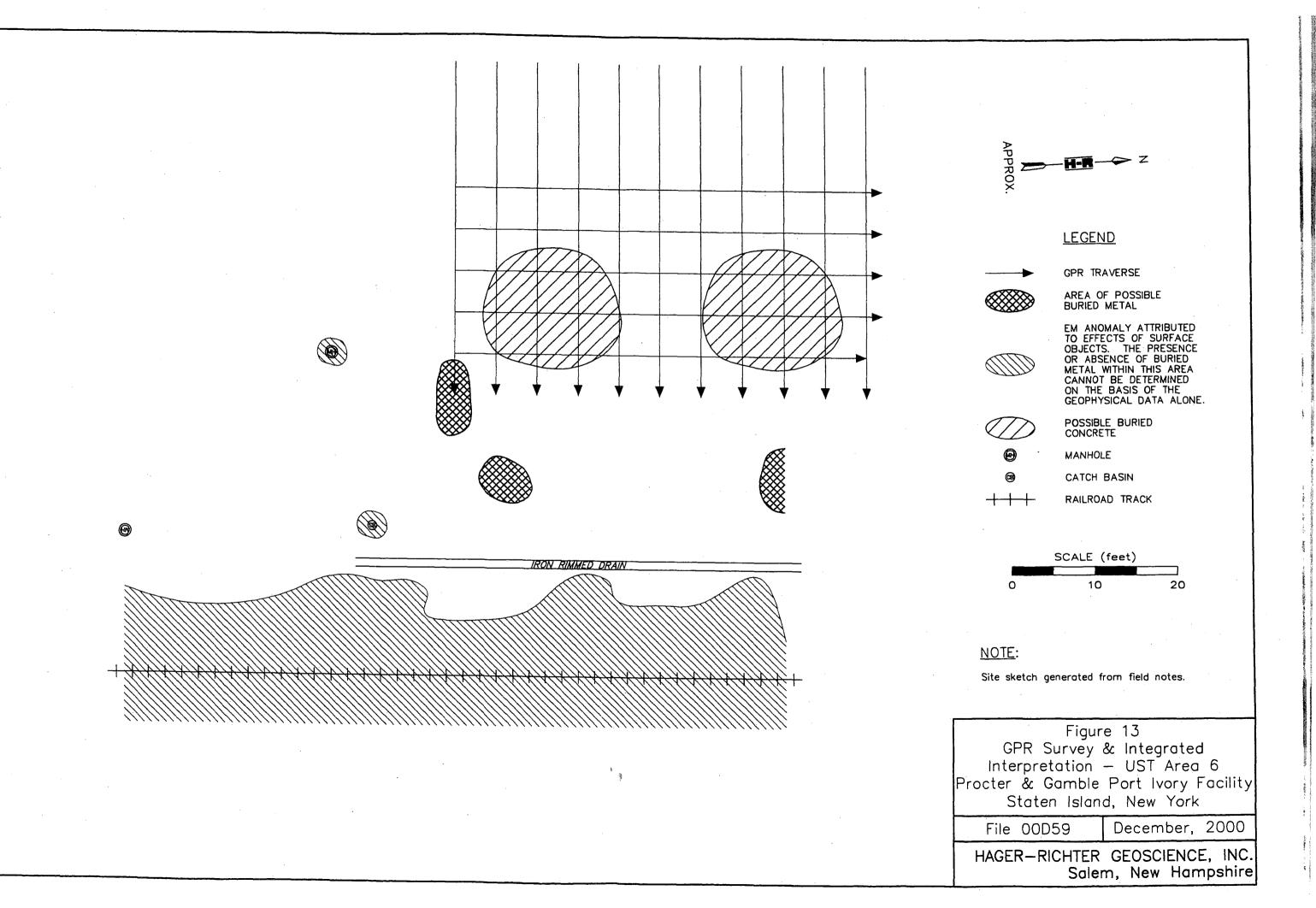
B)

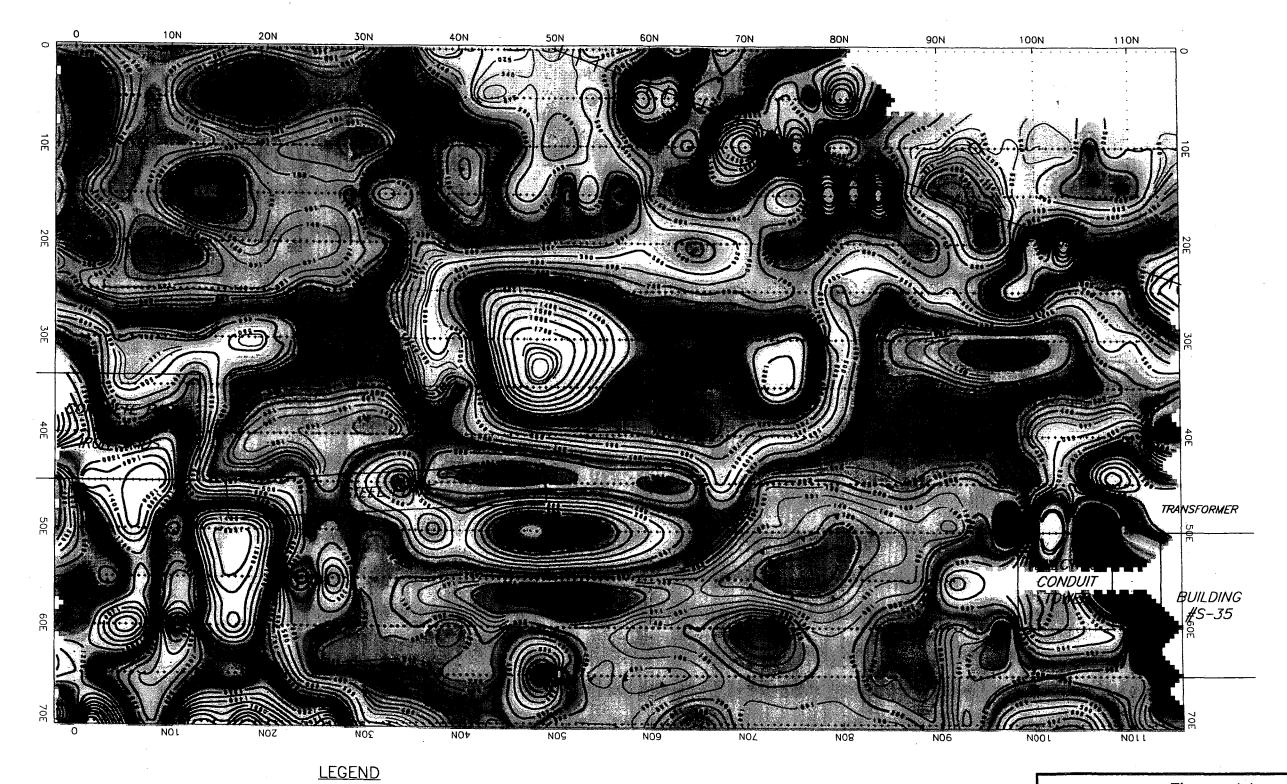
CATCH BASIN

MANHOLE

RAILROAD TRACK

NOTES:


- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.


Figure 12 EM61 Survey – UST Area 6 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

NOTES:

1. Site sketch generated from field notes.

2. Contour interval = 20 mV.

EM DATA STATION

RAILROAD TRACK

) MA

MANHOLE

HYDRANT

SCALE (feet)

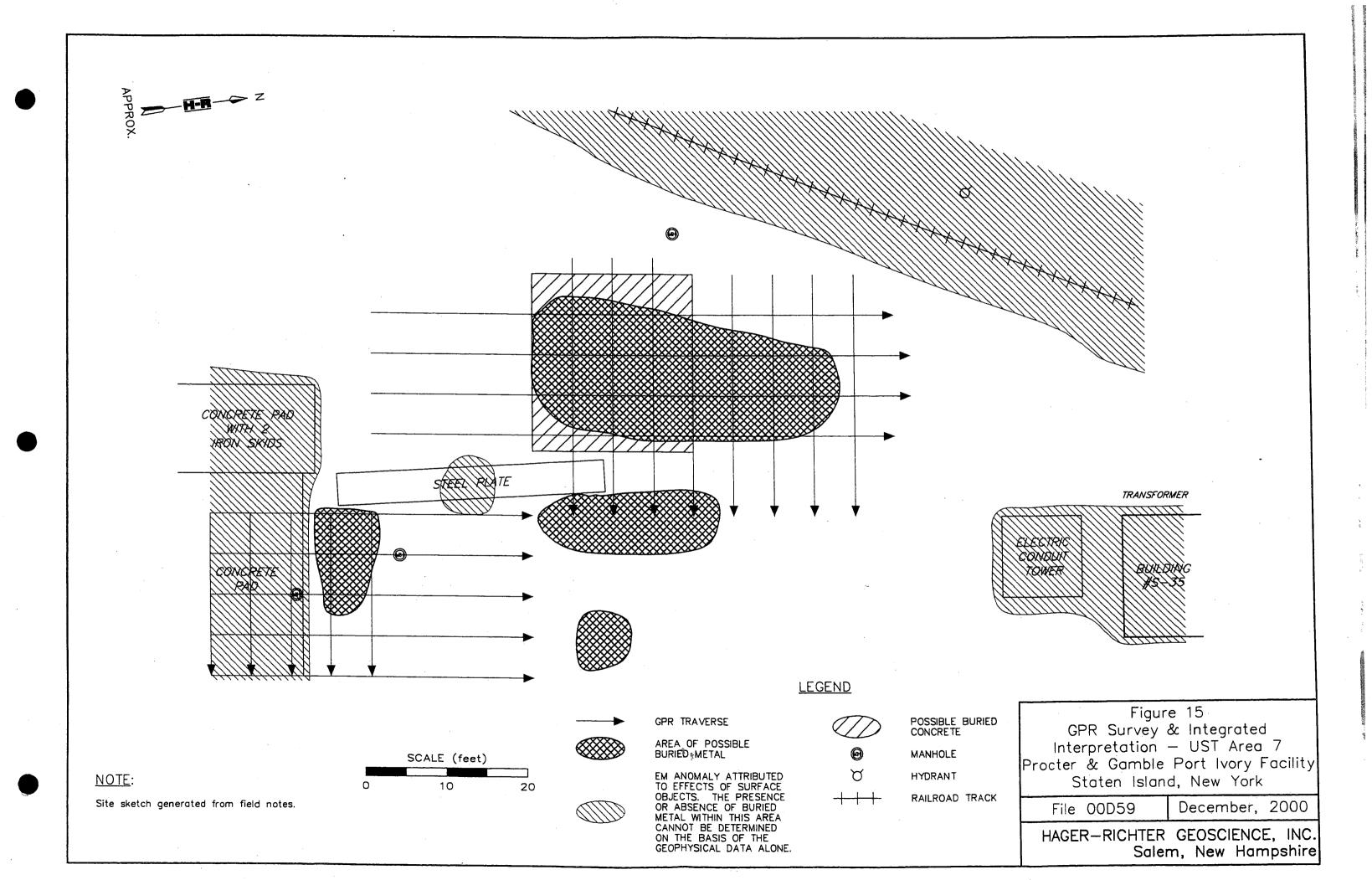
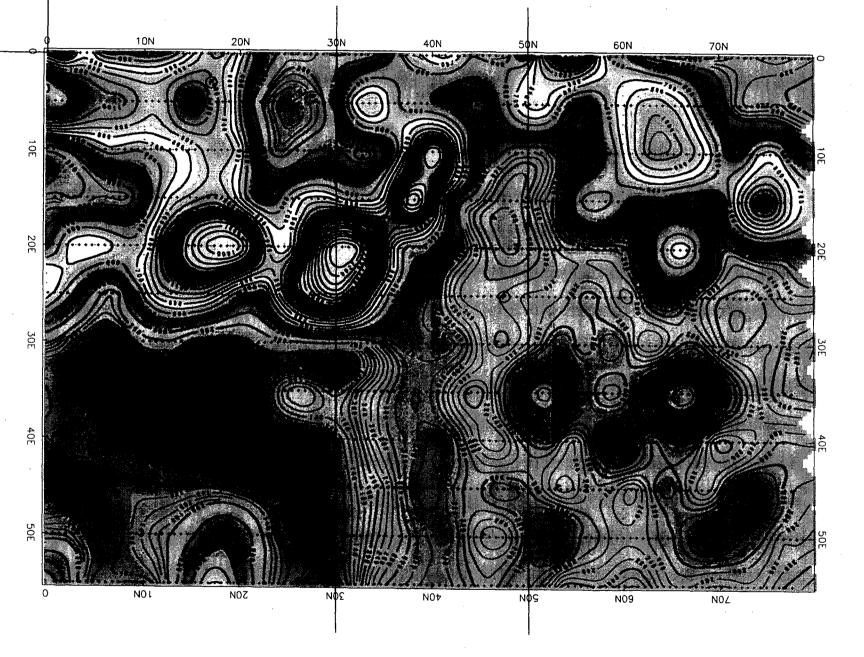
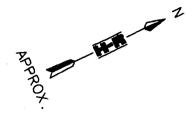


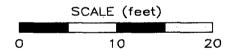
Figure 14
EM61 Survey - UST Area 7
Procter & Gamble Port Ivory Facility
Staten Island, New York


File 00D59


December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

BUILDING #55

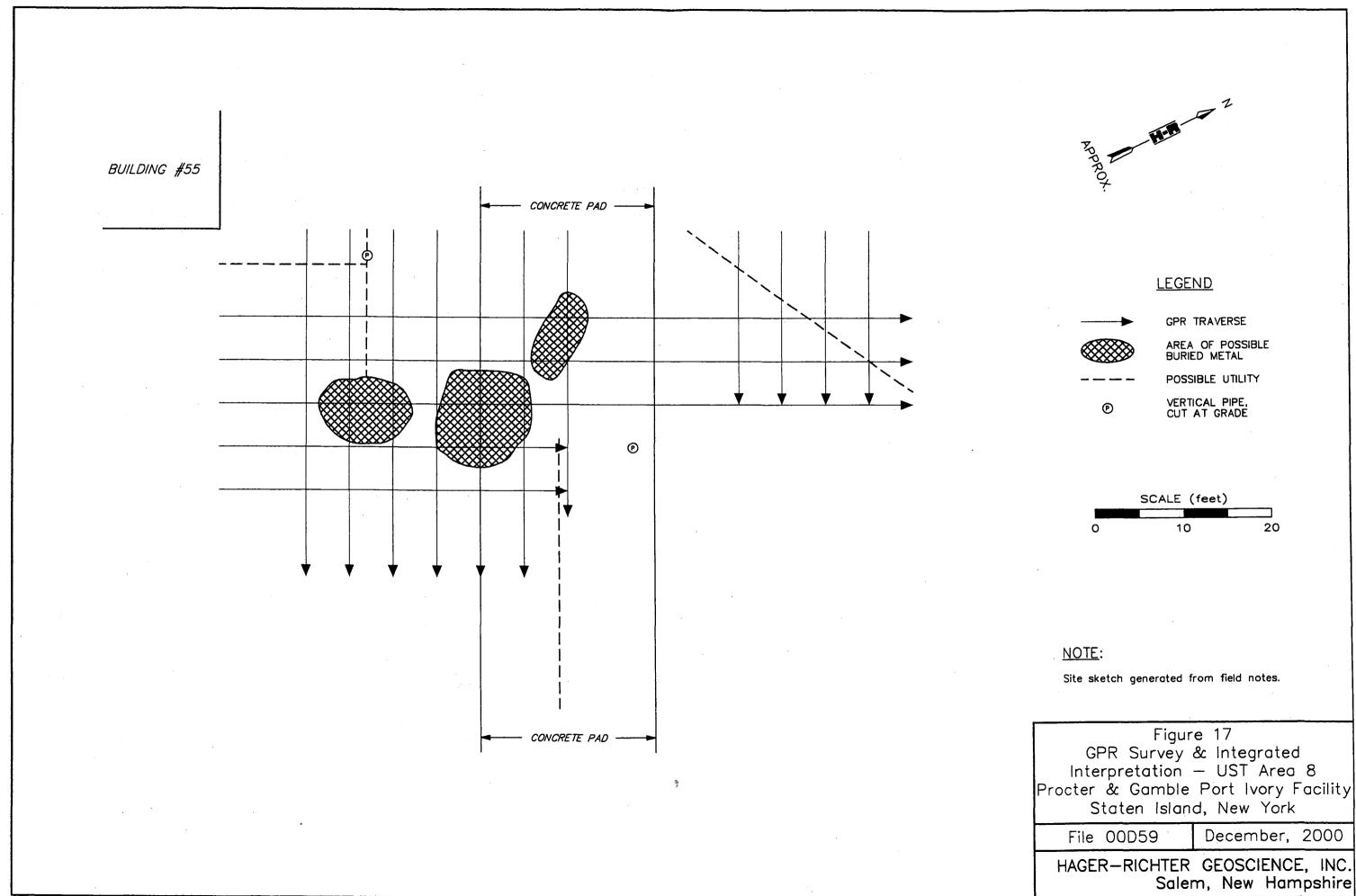


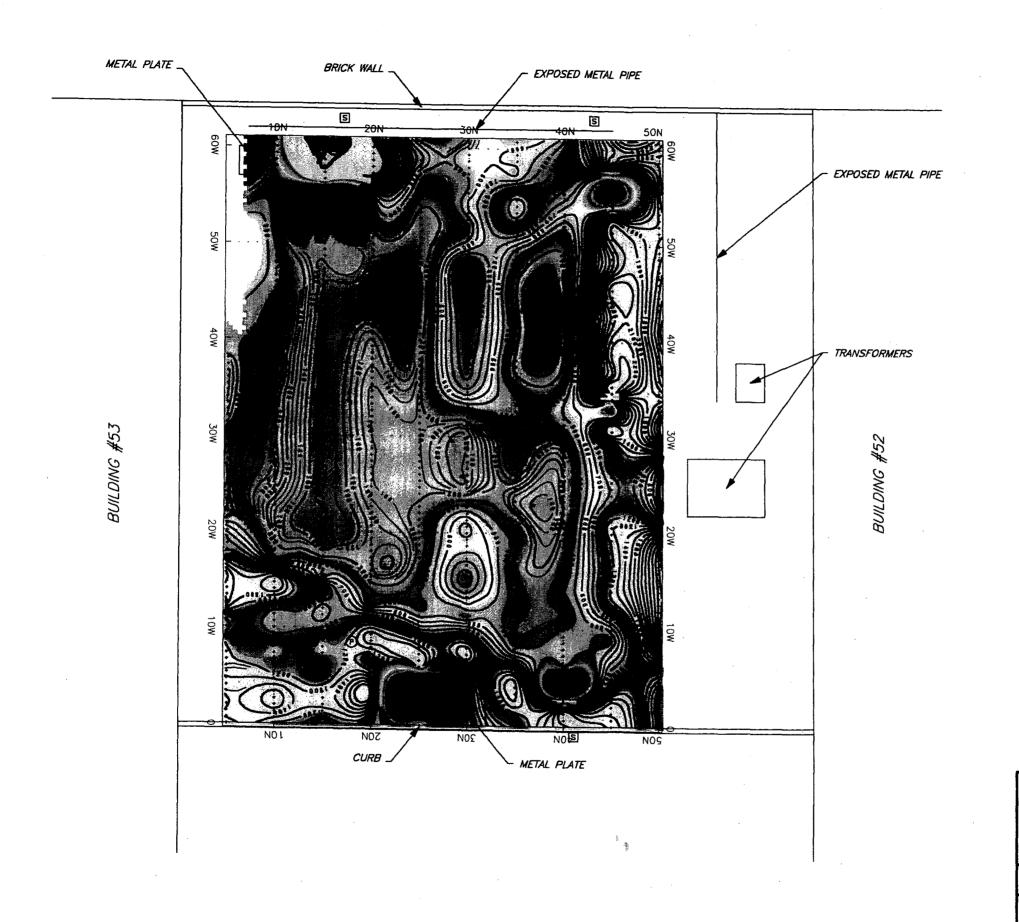
LEGEND

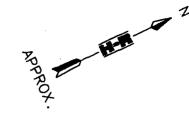
EM DATA STATION

) PI

NOTES:

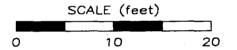

- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.


Figure 16
EM61 Survey – UST Area 8
Procter & Gamble Port Ivory Facility
Staten Island, New York


File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire



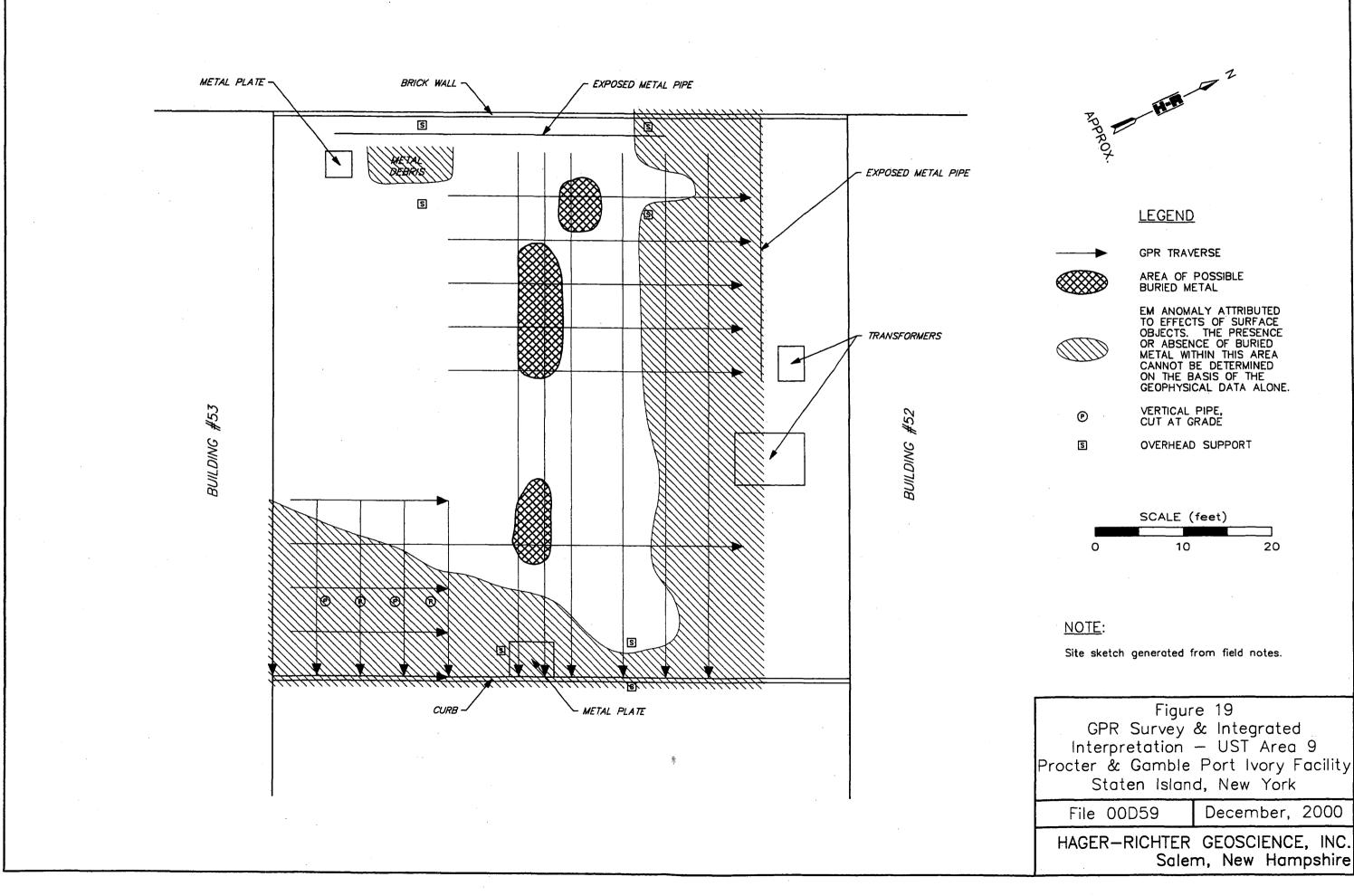
LEGEND

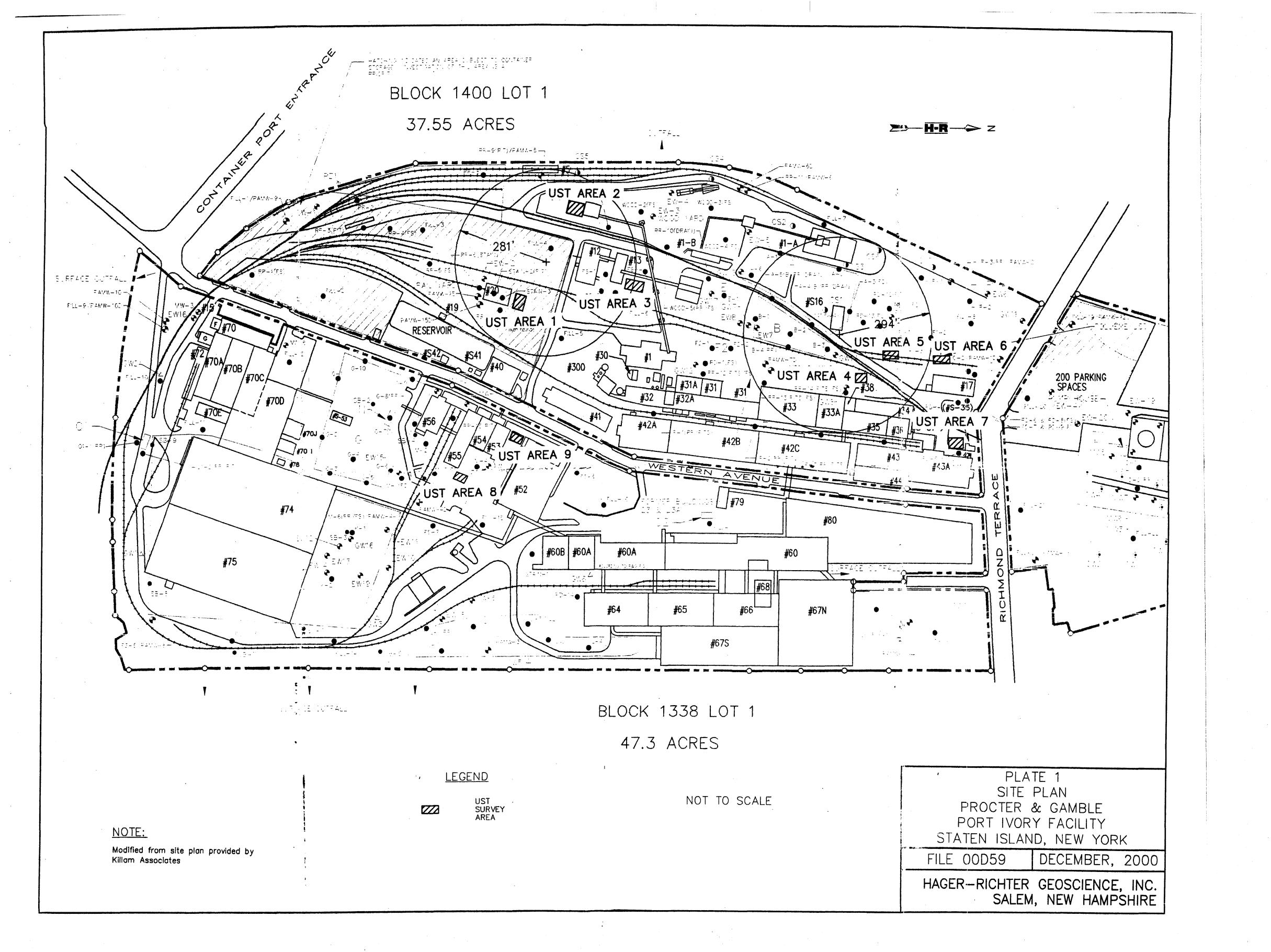
EM DATA STATION

PIPE

S OVERHEAD SUPPORT

NOTES:


- 1. Site sketch generated from field notes.
- 2. Contour Interval = 20 mV.


Figure 18 EM61 Survey - UST Area 9 Procter & Gamble Port Ivory Facility Staten Island, New York

File 00D59

December, 2000

HAGER-RICHTER GEOSCIENCE, INC. Salem, New Hampshire

APPENDIX EM61 Metal Detector Surveys

Equipment. The Geonics EM61Metal Detector is a time-domain electromagnetic induction type instrument designed solely for detecting buried metal objects. The manufacturer's specifications are attached. An air-cored 1-meter square transmitter coil generates a pulsed primary magnetic field in the earth, thereby inducing eddy currents in nearby metal objects. The decay of the eddy current produces a secondary magnetic field that is sensed by two receiver coils, one coincident with the transmitter and one positioned 40 cm above the main coil. By measuring the secondary magnetic field after the current in the ground has dissipated but before the current in metal objects has dissipated, the instrument responds only to the secondary magnetic field produced by metal objects. Two channels of secondary response are measured in mV and are recorded on a digital data logger. The system is generally operated by pulling the coils as a trailer with an odometer mounted on the axle to trigger the data logger automatically at 20-cm intervals.

Data Analysis and Interpretation. EM61 survey data are most commonly plotted as color contour plots of Channel 2, the lower of the two receiver coils, and the difference between Channel 1 and Channel 2. The differential plot suppresses the effects of surface metal objects.

A buried metal object produces a single, sharply defined, positive peak response when the EM61 is located directly over the object. Thus, the interpretation of the plotted data is relatively straightforward in terms of the presence and location of buried metal objects. The depth of metal objects can be estimated by the width or "footprint" of the peak response.

According to the manufacturer's literature, the EM61 can detect a single 55-gallon drum buried at a depth of 10 feet. The instrument provides excellent lateral location accuracy and discrimination of multiple targets due to the data density (20 cm) possible along each traverse. The EM61 is not as affected by interference from surface metal and electrical objects as other geophysical methods and has the advantage of detecting both ferrous and non-ferrous metal objects.

Limitations of the Method. The EM61 detects metal objects that are present below the 1-meter square coils of the instrument, but it is not very sensitive to the presence of small metal objects located to the sides of the coils. It is possible, then, that metal objects could be missed in an EM61 survey if the survey data are collected at intervals greater than 1 meter.

Detection and identification should be clearly differentiated. Detection in this context is the recognition of the presence of a metal object, and the EM61 is excellent for such purposes. Identification, on the other hand, is determination of the nature of the causative body (i.e., what is the body -- a cache of drums, UST, automobile, white goods, etc.?), and the EM61 cannot identify the buried metal object.

APPENDIX GROUND PENETRATING RADAR SURVEYS

Field Work. A Geophysical Survey Systems, Inc. Model SIR-2 ground penetrating radar system was used for this survey. The SIR-2 is a fully digital system and includes a color monitor, grey-scale thermal printer, and 10-Gbyte digital tape backup system. The transmit/receive antenna is housed in a box that is moved across the surface. The antenna transmits electromagnetic signals into the subsurface and then detects, amplifies, and displays reflections of the signals in real-time on the color monitor. The result is a radar record of the subsurface.

The maximum depth of penetration of the GPR signal and the resolution of the reflections are controlled in part by the frequency of the antenna used and in part by the electrical properties of the subsurface. Hager-Richter owns antennas with the following center frequencies: 120 MHz, 300 MHz, 500 MHz, and 1000 MHz. The total time during which radar signals are recorded can be varied from a few to 1,000 nanoseconds (nsec). However, there is a trade-off between total time, corresponding to depth range, and resolution. As the total time of recording is increased, the resolution of the GPR records decreases. For a given site, the total time window is set to detect features located somewhat below the maximum expected target depths.

Interpretation. The horizontal axis of a GPR record represents distance across the surface and the vertical axis represents round-trip travel time of the radar signal. The round-trip travel time can be converted to approximate depth by correlating with reflections from targets of known depth or by using handbook values of velocities for materials in the subsurface. For those sites where the subsurface is electrically heterogeneous, the travel times of the radar signal may be different in the various materials, and the vertical scale for the radar records is not necessarily uniform with depth.

The reflections in a GPR record are produced by spatial changes in the physical properties (e.g., type of material, subsurface fluids, porosity, etc.) and related changes in the electrical properties (dielectric constant) of the subsurface materials in the path of the signals. The greater the difference in electrical properties between two materials in the subsurface, the stronger the reflection observed in the GPR record.

The size, shape, and amplitude of the GPR reflections are the characteristics that are considered in the interpretation of the data from any site. Because the electrical properties of metal USTs, utilities, and conduits different significantly from those of the soils in which they are buried, such objects produce GPR reflections with high amplitude and distinctive shapes that permit identification with a high degree of reliability. Most other objects, although readily detectable, require "ground truth" for identification. Only excavations provide positive identification for most objects identified in GPR surveys.

For GPR profiles oriented perpendicular to the long axis of a tank, the signature is similar to a hyperbola, the shape of which is a function of the diameter and depth of burial of the tank. For GPR profiles oriented parallel to the long axis of a tank, the signature is a set of parallel, high amplitude reflections that terminate sharply at the ends of the tank. GPR, then, is useful for determining the exact location and dimensions of USTs.

Limitations of the Method. The maximum depth to which GPR signals can penetrate depends on the electrical properties of the subsurface materials. The higher the electrical conductivity of the subsurface materials, the lower the radar signal penetration. Clay minerals and/or brackish water in the subsurface, for example, attenuate the GPR signal, so reflections are not received from materials at greater depths.

There are limitations of the GPR technique as used to detect and/or locate particular targets: (1) surface conditions, (2) electrical conductivity of the ground, (3) contrast of the electrical conductivities of the targets and the ground, and (4) spacing between lines. Of these limitations, only the fourth, line spacing, is controlled by the operator.

The condition of the ground surface can affect the quality of the GPR data and the depth of penetration of the GPR signal. Sites covered with high grass, bushes, landscape structures, debris, obstacles, soil mounds, etc. limit the survey access and the coupling of the GPR antenna with the ground. In many cases, the GPR signal will not penetrate below concrete pavement, and a target may not be detectable.

The electrical conductivity of the ground determines the attenuation of the GPR signals, and thereby limits the maximum depth of exploration. The GPR signal does not penetrate clayrich soils, and targets buried in clay can be missed.

A contrast in the electrical conductivities of the ground and the target is required to obtain a reflection of the GPR signal. If the contrast is too small, possibly due to extremely corroded conditions of a metal target, then the reflection may be too weak to recognize, and the target can be missed.

The spacing between lines is under control of the GPR operator, and the design of the survey is based on the dimensions of the smallest target of interest. Targets with dimensions smaller than the spacing between GPR survey lines can be missed.

Accurate determination of the depth to any interface requires calibration of the site specific GPR signal velocity. Where targets of a known depth are not available at a site, the time-to-depth conversion of the GPR signal can be estimated from handbook values, but such depth estimations might contain significant error.

Interpretation of GPR data is subjective. As noted above, "ground truth" through correlation with borings and excavations is required for positive identification of most objects detected on the basis of GPR data.

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / OF 3		
PROJECT					NAME OF CONT			BORING NO.	SURFACE ELEV.		
	TOR an	1 GAMBU	<u> </u>		CRAI	5	CONTRACT NO.				
LOCATION	_			15 .		1/-3-50					
	VUKED	out in T	No Fie	יכי סיי	KILLIA	m Asso		426-99-006	17-3-60		
SPOON	~ 2/c	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL						
<u> </u>	.D. 278	"I.D. H.S. Aug	ers		Date	Time	Depth		Remarks		
HAMMER (S	FALL :		FALL		11/3	Am	3.2'				
DRILLER		Pennell									
INSPECTOR		Dudeh		·.							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2				SCRIPTION AND REMAR TES CHANGE OF PROFI			
4.5	0	Hard	8011	1	Fill-dark				He Gravel frace Silt 12'		
Augers		AugeR	,	2				trace Groves. to			
		/,									
				3	FIM- dal	K Drow	~ -e-8	SAND From GI	institucis Sint		
								IME			
	> 5 ◀	 	- <i> </i>		Fill-	_ 		ine			
		<u> </u>	V	4							
		7-8	24"		Fiu-		<	AME			
			01	5			a				
		11-13	ļ								
		4-10	20"	,	Fill- b	rowr c-	151	ND, frace Gray	el trace Silt		
	_	11-15		6			<i>v</i> -				
	> ,0 ◀			<u> </u>	 				,		
		5-11	24"	7	FILL -		=	<u> </u>			
		13.10	,	7.3				•			
		٠٨ ،٠	110	_	Fill-						
		10-12	24"	8	1,11-		,=	DAME			
		12-14									
	- 15 ◀	7-9	"ابد		FILL- D	m 24 - 4	1	GAND, trace Gran	ul trace Silt		
	> /> \	11-15		9		A CONTRACTOR	10		<u> </u>		
1											
		5-13	٦١"		Fill ced	brewn	c-L_5&	ND Little Grave	P. Frais Crusted Pack		
1 1	-	20-19		G	l lit	the Si	QU		•		
1		8-11	20"					. A.ILA- E.AL	7		
			20"	11	TILL red	JOHN m		ND, little Silt	Trace Craves		
V	- 20	14-16									
		27-17	<i>∂</i> 2"	Δ	Fiu-		SAM	16			
		16-20	00	121							
		10-10			100 - Drow		uLT_		22.0'		
					All Sampla	s sained 1	n 2 on	of. JAP & 1402.	bottom of boring 1		
	-	-			244	Pollar	د. احد دده	5 d d d	100		
				-	12177112		CELP!	70-3: 5# / wes	<u>roi</u>		
	25				Dove. S.	#12B ú	795 50L	in I one pt.	TAP \$ 1 4 OF JAR.		

Engineering Department Construction Division
Materials Engineering Section

BORING REPORT

					SHEET / OF G
PROJECT	4.			-	NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
Howler	A Hock 1	Port Ivory 1	165.73	0	Craix Vrilling PR-2
LOCATION	•				CONTRACT NO DATE
t 10'0	vastaf	ong loc			476-98-006 11/4/cc
SPOON	<i>a</i> ,	4 CASING SIZ	ZE HOLE	TYPE	GROUND WATER LEVEL
ろ・0	D.D. 77	1.D. XW	ーコ	<u> </u>	Date Time Depth Remarks
HAMMER	Safor				
140 *	FALL 3/)		FALL	- 1	11/4/a Jan 29 while Hond Augering
DRILLER					
	S	Burns		į	
INSPECTOR	^				
	U	Move			
CASING		SPOON	RE- 1	SAMP.2	² SAMPLE DESCRIPTION AND REMARKS
BLOWS/FT.	DEPTH	BLOWS/6*	COA,D	NO.	LINE LOCATES CHANGE OF PROFILE
Xand		Hand Augy	Full	١,	
		11200 17027	1		
Augy					Fill-Cludge
]]			
	 ,	 		2	
<u> </u>	· · <u>_</u> _	$-\nu$	V		Same
Ju	_	TappedSpan	244		
	>2	1	,	3	
Casing		<u> </u>			Same 60
		2-2	1	٠,,	
		2-/	12"	4.	
			10		Graf Organic SITY Cky + Brown Port O. 2 810
		WOR			
Drill		1-8	9"	5	Black Brown Post U.Z 10.0
	- l∂ -	 			Black Brown PORT 6.2 10.0
Bhad		3-8		,	
with		10-10	101	6	Far Soud Tr SiT 130
					F Gray Sand, Tr SiT 120
Mud		5-7		-	
		10-13	144	/	F Brown Sand, JVS, IT +
—-W	-		1 17		1 VIOWN JOHY, 18 JIII UT
	► 15: <	6-8		C	
7	· 1).	४४	911	8	Same 16.0
		`			Jame 1600
					L
					Bottom of Boring
					11 - 24 (C = 30 0 0 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
					NJO 5# 6-8 Taken WITH 2" Speak
	. 0 . 1				
	> 20 ◀				C 1 7 1 1 7 0 0 0 0 0 0
					Sample. # 1-5 checked with PIDNOTOS SH 1-4 Saved for ENVIR TOSTERS
			·		SH 1-4 Sound for ENDING TOTHER
	_				Geo Tach Sample on 1911
		ļ		,	v
	> 25	1			

Engineering Department Construction Division Materials Engineering Section ED ALDRICH
10-4750
(6 pages)

BORING REPORT

									Sheet / OF /
PROJECT		-			NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
· TRE	ンピアシス	& GAMB	LE		===7(0)			R1 3	
LOCATION					CONTRACT NO.			CONTRACT NO.	DATE
	MARKE	12 OUT IN	s thé	FIEL	0 34 K	Man 1	95502.	426-44-506	11-3-00
SPOON		CASING SI	ZE HOLE	TYPE			GRO	UND WATER LEVEL	
3 :	$2^{3}/6$	3 -1.0. H.S. Aug	ers		Date	Time	Depth		marks
HAMMER /	SAFETY)	HAMMER				2:115	11/1	1 0 452	
140	FALL ?	50 -	# FALL		11/3/00	2:45p	14.5	In5#3	·
DRILLER			٠.						
	<u>r.</u>	Pennell							
INSPECTOR		2							
	<u>ң.</u>	Dudel				<u> </u>	<u> </u>		
CASING		SPOON	RE- '	SAMP.2	ŀ			SCRIPTION AND REMARK	
BLOWS/FT.	DEPTH -	BLOWS/6"	COV'D	NO.		L!	NE LOCAT	ES CHANGE OF PROFILE	₹ ∂.o¹
		HAND	Full			(~	SHED	BOCK_	
		J	1						/15
	<u> </u>	AUGER	 	 			U	Soms Grave L. tre	
		1			FILL - Grow	- 4-6 5	AND,	trace Gravel fro	ecc Sist
				Z		- 0 -		· 	
		 	 		 				
	- 5			_	Fill.		SAZ	<u> </u>	
			1	3					
	-		-		 				
lungers		12-13	24"		F:11. dar	<u> </u>	c-1 =	AND from Grave	V. train Silt
ν, Ι		20-22	. '	4			\boldsymbol{O} .	• .	
-11		<u> </u>	 						
		5-5	24"	5	Fire to	192 - 1-4	<u> 5240</u>	trac Gravel	+ trace Dist
	→ 10 →	7-19	that .	>	Accommission to the contract of the contract o	• • • •	e malerie de de	May putter mi	
	-10 -	6-18			7-07-0	A C	0.0 1	Siet to Grave	
	_			6	har by	wa IN-D	<u> بهمد</u>	mer - M Dave	<u> </u>
		21-20	18"						
	_	10-12			San	 nl			
- 1 /			2 11	7					
\mathcal{N}		15-15	-20"	7					
	٠	5-9			San	4.1 ·		- · · · · · · · · · · · · · · · · · · ·	
	- 15		17"	8		<u> </u>			
		10-12	11	<u></u>				·····	16.01
								•	
						- 	<u></u>	7-77-	
			ļi				1301	Town Borning	
	•								· i
									- — — —
	-20 ◀								
ſ									
, 					71 	7		¿ Ivoa jan u	
*					11 2 CE - C	<u> </u>	1900	E Ivon jan u	as swed from
1		ļ			each o	amale	0	' 0 -	. •
					<u></u>		<u> </u>		. — — —
	[م	ļ							
	- 11.3 -								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane

3 - Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division **Materials Engineering Section**

					BURING REPURI
					SHEET / OF
PROJECT,	- P'E	6			NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
LOCATION	out h	Killer	Rson		CONTRACT NO. DATE /1/4/00
SPOON	رد د	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL
HAMMER	D.D. 6/8	"I.D. H.S.Q. HAMMER	yes 1		Date Time Depth Remarks
140 #	FALL 37) ·	FALL		11/4/00 11:57 m 40' In 5.#4
DRILLER	J.Cr	ui.			
INSPECTOR	T.R	G-			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. NO.	LINE LOCATES CHANGE OF PROFILE
	0	Hand	July		CRUSHED STONE 0.5
		auger	Rec	1	Till-By M-FSend some by little circles, some Brick
		\ <u>\</u>		2.	Same 3.0'
				-	Fill- Ple Br clay Silt extite G, to Cinders.
	-5-		1	3	Michel-fld Br Clay Silt, some G, theone, to word, to Br.
Ogens .		6-9		4	Gray FSand to Platfibers
0		9-8	//'	7	
		2-14		5	Br. M-F. Sand, to Sit, to Gravel.
	- 1/8 -	4-5	12''		
	<u> </u>	2-4	10"	6	
		9->	10	4	Banu
		11-11	Zt''	7	- ouna
		3-5	10"	8	i Same 150
	_				
	•				V. # 1 =
					Note: Sample # 1-5 were saved for environtesting to per (Suringer (Killon Ossor). all other samples were screened in) PID? then
					allother son her was some Dal BIN? It.
					descarded
			<u> </u>		

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET / OF 3
PROJECT					N/	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
Houlan	2 Hout	Port Thory	PAC	פנו		Craix 0	milling		RR-5	
LOCATION	0 1002	1 1011 2019			<u>. </u>	-,			CONTRACT NO.	DATE
± par	$C \approx A$	- Rld 20		Rlack	- 1	400 La	7-1		426-99-006	11/1/00
SPOON	JOUIN 61	Bldy 20 Easing siz	TE HOLE	TYPE		100 00	<i>l</i>	00/		111100
3 "	23/	A. a. a		, ,		<u> </u>	-		OUND WATER LEVEL	
	D.D. 01/2	"I.D. HAMMER		1		Date	Time	Depth	nei nei	marks
HAMMER	Safet FALL 30	7 1	FALL			11/7/00	7第	210	while House	Augoring
DRILLER		Burs					/3			
INSPECTOR		Hove								
CASING		SPOON	RE- 1	SAMP.		<u> </u>			SCRIPTION AND REMARK	S
BLOWS/FT.	DEPTH ◀	BLOWS/6"	COA.D	NO.	↓_		<u>LI</u>	NE LOCA	TES CHANGE OF PROFILE	0.0
Mand		Hand Augu	Full	1 5		F11-CL	uders			1.0
Auxa		1	1	/				Sau	of TV Endon, Trs	. IT
" 7	 				╁╌	<i></i>	, <u> </u>		1 Carried 1	
	-			2	<u> </u>			. —— –		
				_		Same				4.0
	> 2	 	- -	. 3	 	NV. D &	<u> </u>			
<u> Y</u>					┼	13-10	rown Sa	not 1	<u> </u>	
Oller		2-2	<u>. </u>		L					
STAM		3-7	.14"	4		Forou	w Sand	Trsi	<u>π</u>	
Augs		6-8		-			,			
		10-13	77"	5	Γ	Same				
	>' (ల ≺	10-13			1	<u> </u>	<u></u>			
		20-24	24"	6	厂	Same	·			
		10-13			†-			- -		
	 		24"	7	-	- _				
	2141	16-17	04		<u> </u>	Same				
.,		5-7			1					. 1
	12 <	8-12	24"	8	\vdash			·		160
	_	- , ,	- ,		-					
					<u> </u>					
					-			·	Bo Dom of Bella	<u>s</u>
					L	<u> </u>				
	200					DI	Samo	650	hockal with	PIO NOTON
						57	1-2	5-11-	/ Car To. To.	# 140 X
					<u> </u>	<u>-</u> -	Tata	<u> </u>		Asom Let
	_				-		125100	/	Lockal WITH CosTing S making Sample	NO CO POLO
	- -				<u> </u>			· '	· · · · · · · · · · · · · · · · · · ·	
	-				<u> </u>					
	25				<u> </u>					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

								SHEET / OF 3
PROJECT	/ N. L.	Port Ivory	مرور	C.T.	NAME OF CONTRACTOR		ORING NO. RR-6	SURFACE ELEV.
nowlove	1 flour,	101) TUOIY	100	114	Cray Drilli	1	2177127 112	DATE
LOCATION	_ ,	01/ 4A	12	1 , ,	10 . 1		· ···	DATE
South	Side	Alde #70	ZE HOLE	lock 1	log Lati		476-99-006	11/6/00
SPOON 3				TYPE			ND WATER LEVEL	
HAMMER	.o. 8 %	"I.D. Dugis	1 1		Date Time	Depth		marks
140 #	FALL 30	/	FALL		11/c/a 35	6.0	5#4	
DRILLER		Burus						
INSPECTOR		DHowe						-
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.			RIPTION AND REMARKS CHANGE OF PROFIL	
Hand	0 1	Mand Augu	1211	١	Fill- Cinders			1.0
Augr					Fill- M-F Brown	, Sand L	ITTO CINDERS Tr	S, Is
				_		•		
		1.		2	Ell-M-D D			Tr. 6. /
		 	 - - 		FII- M-P Brow	~ 29Nd/ 1	K (notes, 12)111	Ir Uraces
	> 5			2			<u> </u>	
			J	3	Same			60
		1-0	4					
$-\omega$	<u> </u>	1-0		y				
Stary	i	0-1	241	7	M-F Brown Sa	wal IN Sil	IT	
Augus		1-4				<u>/</u>		
	> 0 .≤	3-10	211	5	Same			
		10-8					· · · · · · · · · · · · · · · · · · ·	e Kenneng Meneral Propinsi Sebesah Seb Langgar Persah Sebesah
	<u>. </u>	10-20	23"	6	M-F. Brown S.	and Ir M.	Fary Sard, TVS	<u> </u>
		8-14	b	フ			· /	
V	and Commentation and	24-40	241		M-F Brown	Sand, Tr	<u> SIT</u>	
1	-12 -	9-10		8			. <u> </u>	
		16-20	16.					16.0
1		ļ .				•		
							Bo Damof E	Boring
		·					·	
	> 20€				17-11 San	mplas ch	ecked with P	y only Hax Spiscopolod
						Saval +	For Enviro Postn	x only Hax
					R. T.	\sqrt{R}	San Na	Percent 1
	_					100	water in -amilie	> 100000
								
				!				
	- 27 4							

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

							•			SHEET / OF 3
PROJECT	nd Mar	uk, Poit Ivon	~ PfG	 SIT0	N/	AME OF CONTI	RACTOR Orillia	vC .	BORING NO. RR-7	SURFACE ELEV.
LOCATION	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1013 4231	7	-13 \	٠	- - 3 - 3 - 3	<i></i>		CONTRACT NO.	DATE
As Law	Louth	CASING SE	Issac	EasJ	_ 5	Je Bldg	20		426-99-006	11/6/00
SPOON	3,	CASING SI	ZE HOLE	TYPE		-	,	GRO	UND WATER LEVEL	
3 .0	.D. 0 /8	TI.D. BUSIN	5 1	ل ا		Date	Time	Depth	Re	marks
HAMMER 140 #	.D. 03/8 Safa FALL 30	HAMMER	FALL			11/6/00	1 pm	6.0	Stry	
DRILLER		Burus								
INSPECTOR		D Nows								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.					CRIPTION AND REMARK ES CHANGE OF PROFILI	
Hand	<i>- 0</i>	Hand Bugar	Fu!/)					- J4-	
Augr						F11-M-	F Brown	Sond,	LITE SIT, Trova	vol
				_		•		1	0.]	
				2	F	-111 -M-F	Brown	Sand, L	ITTO Gravel TISil	IT, Tr Clay clumps 11
	> 5			2	E					
¥	·		V	3	<u> </u>	M-F 1	Brown S	and, Tr	SIT, Tr Grass	
שני	.*	11-10		1/						
STAM	_	8-8	15'	4		Same				જ જ
Augs		6-4								
9	— — ►. 0 ::<	9-13	2211	5		F Brown	ush Gray	Sond	Some Silf, TrGri	aug/ 10.0
		2-11		/						
		17-19	∂0"	6		P Brow	IN SOND	Trs	SUT.	
		5-17		—				,		
	<u> </u>	25-29	74"	7		Same				
	. 15	11-17								•
	<u> </u>	18 -34	2411	8		Same				16.0
										<i>a</i>
	_ ·	· · · · ·						- 	Buttern of	R. W.
					-				DODOMOI	<u> </u>
	- 20 <						11 Sama	oles ch	ectal with PID	MoTer
						<u> </u>	1-1-3	Sam	I for De Tion S	"HAD TO BETTE
					-		Remains	1/4 Sa	of for In Diring S	· · · · · · · · · · · · · · · · · · ·
								8-3		
	[سرو]									
	C) <									

THE PORT AUTHORITY OF MYSKLI

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

			SHEET 1 OF 3
Port Ivary P&G	NAME OF CONTRACTOR	BORING NO.	SURFACE ELEV.
LOCATION 1 4 U	i significant	CONTRACT NO.	DATE
± 30 W of Bldg 31 Block 140 SPOON CASING SIZE HOLE TYPE	so Lot 1	426-99-006	11-20-00/11-21-00
SPOON CASING SIZE HOLE TYPE	GRO	OUND WATER LEVEL	, , , , , , , , , , , , , , , , , , ,
3 "O.D. 2 3/8 "I.D. Augers 1 HAMMER Autom, HAMMER	Date Time Depth		marks
		1	
140 # FALL 30 " # FALL "	11-20-00 12.20pm 5.5	SAMPLE #3	
DRILLER C. C. A. A. A. C. A.			
INSPECTOR - J. Craig			
Zarks -			
CASING SPOON RE- 1 SAMP.2	SAMPLE DES	SCRIPTION AND	
BLOWS/FT. DEPTH BLOWS/6" COV'D NO.	LINE LOCAT	TES CHANGE OF PROFILE	
Handauge Hand auger Full			υ.7.
	Fill brown c- [SAN	1 little Ground 4	SIT
	TIII DOWN C = JAN	y, mare viewel,	1 -2111
			
	SAME		
		•	
5 - 3	SAME		
	JAME		
M 2 - 4			
AUGERS 3-3 10" 4	SAME		
·	· ·		
3-3 5	TII 1		
10 5-4 24° 5	Fill brown c- & SAND, 1	ittle bravel to	<u> </u>
1 1 2 4	-	•	
9-9 14" 6 *	Fill greyish - black c- f	SAND LO 1	- Sill 120
J-3 1	TILL Grey Sh - DIOCK C-)	Siting It bradel, 1	F 9111
			-
13-13 24" 7	Reddish - brown Silty C	lau.	34.0
15	3	/	A
12	<u> </u>	0 1 1.	———— —
	Note: 2 samples saved	for testing.	
	All other samples	screened with	
	PID meter 1 d	lis cardeal	/
			Bottom of Boring
			
20			
			
			
			

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET OF 3
PROJECT		0 10	····························· ······		NAME OF CONT		1	BORING NO.	SURFACE ELEV.
PROJECT	voru	b & C			Craia	drilling	, ,	PD 3	<u> </u>
LOCATION	1	1		, .	, , , , ,	J	1. 3	CONTRACT NO.	DATE
+ 251	M of B	Ida 33 A	BI	ock	1400 Lot			426-99-006	11-28-00/11.29-0
SPOON		. CASING S	ZE I HOLE	TYPE			GRO	UND WATER LEVEL	`
3 0).D. 2 ³ /	8-1.D. Auger HAMMER	-s	1	Date	Time	Depth	R	emarks
						DN			
140 *	FALL J 3	0 -	# FALL		11-28-00	_ 3:27 ′′	1.81	Sample #1	
DRILLER	A . I	Kides				•			
INSPECTOR	7.	Zarks							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.		3SAI LII	MPLE DES	SCRIPTION AND REMARITES CHANGE OF PROFIL	KS E 0.0
Cutter Head	0.	Culter Head	Fuli Rec					NCRETE	0.5
Handauge	<u> </u>	Handauger		∤ .					
		1 1		1 1	Fill areu	c - [9	SANDa	- Gravel Cobbles	tr.SIT
					1 3 3	7	. 9		
	<u> </u>	 	 -			`			
				2	Fill greu	1 brown	<u> </u>	P SAND some	rovel little Silt
				*	1 1				
	> 5 <	-	 	1	 				
	· ·		<u> </u>	3	Reddish	brown C	Sillu_	CLAY Some C-	SAND tr. Grave 6
ν		7-10					J		
AWUER S			 	/	 				_ `
AHUEK 7		14-20	12"	4_	SAME_				
		15-19	}]				
		13-19	011	5	5 444				
	> 10 ◄	121-27	8"	<u> </u>	SAME	_ ,			
	. , •	6-9		7,7	}	•		HANDE SAME MATER	
		100	9 4"	6	SAME				
		12-16	2.4		SAME				
		12-14		[`	[•			
			24	17	SAME				
Y	_ ` _	14-20	LA.		JATIE				14.0
	► 15 <								
	(10)								7
		 			Note: 2 S	amples s	aved	for testing — _	
					A\L_	samples	checked	with PID meter	
						1:-			Bottom of Boring
		-				discarde	<u> </u>		
						-			
	≻ <	 	<u> </u>		 				
	 ·								
· • • • • • • • • • • • • • • • • • • •									
<u> </u>									

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

_					SHEET OF 3
PROJECT		010			NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
Port !	Ivory	P & G			Craig drilling PD 4
					J CONTRACT NO. DATE
20'W	. BH PI) 4 A & 25 1	Nol B	da 361	(NW corner) Block 1400 lot 1 426 - 99 - 006 12 - 2 -00 GROUND WATER LEVEL
SPOON	1	CASING SI	ZE HOLE	TVPE	GROUND WATER LEVEL
3 "	o.d. 23/8	TI.D. Awger	-5 1	ļ	Date Time Depth Remarks
HAMMER	Auto	HAMMER			
		0-	FALL	-	12-2-00 2:13 PM 6.0' Tap sample#4
DRILLER					
	A Kic	les			
INSPECTOR	7 7	•			
·		arks			
CASING	J	SPOON	RE- 1	SAMP.2	
BLOWS/FT.	DEPTH O	BLOWS/6"	COV.D	NO.	LINE LOCATES CHANGE OF PROFILE 0.0
Handauger	}	Handauger	Full Rec	1	Fill grey c - SAND & Gravel some Cobbles tr Sill 10
	<u> </u>				
	- -		┾╌├	نسلسا	Red - brown c - I SAND with silty Clay some Grown 20
ļ.					
				9	DILL CILL PLAY COLOR
	 -	 	 - 		Reddish - brown Silty Clay some c- & SAND & Grovel
	5 ▼			ļ	
1				3	SAME
y 0	- -	X	 		+3VIIC
		1 -2		,	
ARGERS		3 - 3	20"	4	
			_~~	<u>:</u>	
		3 - 2		_ *	<u> </u>
	10.	2 - 2	24"	5	SAME
		manufact of	-		
_	 -	5 - 2	 	,	
		4-5	22"	6	Reddish - brown ClayEY SIIT.
		- G			
		5 - 7			
· 🛊		9-16	2 0	_7_	SAME 14.0
_			14, 3	1	Note could need I bedie All dated in Dip with
	► 15 <		· · · · · ·		Note: sample saved for testing. All checked w. PID mituge
					Remaining samples discarded
	_		 		
		·			Bottom of Boril
				• .	<i>'</i>
			<u> </u>		
	→ ◀				
	<u> </u>	-		_	<u></u>
	<u> </u>				
				,	
					·

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

											SHEET 1 C)F 2
PROJECT		חוח			N/	AME OF CONT	RACTOR		BORING N		SURFACE ELEV.	
Port I	vory	b & C				Lraia	drilling		PD	ίΑ	<u> </u>	
LOCATION	p / 1.	PD 4 R P	23 1	•/	1	i i	3. J		CONTRAC	т но. 39 - 0 0 6	DATE	Ì
	of BH	CASING S	Block IZE HOLE	TYPE	L	o[]		CP/			12-2-00	-
ar oon He	arld auger D.D.					GROUND WATER LEVEL Date Time Depth Remarks						
HAMMER		1.D. Handau	J									
	FALL		# FALL	-								
DRILLER	A Kid	૯૬							· .			
INSPECTOR	7.Z	rks								•		
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP.2 NO.						N AND REMAR		
Sinter the	> on <	Cutter Head	Full Rec	NO.	_		<u>LI</u>	TE LUCA	AS DHALL		<u></u>	0.0
Handanger		HAND ANGER	-	}	F							===
					Ľ	Till greyis	sh-black	<u>c-f</u> _	<u>SAND</u>	te Gravel,	<u> </u>	
	1			9				1		<i>.</i>		
+		4		. 2		SAME						3.5
	 		<u> </u>	1	Η.							-7
	> 5 <				μ	Note: Ub	struction	<u> at</u>	3.5 A	pipeline i	/+ BH	-2
			ļ		L	— — HOV	e 1 2 East	, 				
	<u> </u>			i	L							:
										τ	Poltom of B	onny
	_		 		一	 -						
	├		 		⊢							
			<u> </u>	or market of the	<u> </u>	-	 					
					L		_ ·					
			1									1
			<u> </u>	1								
·	├ -	 	 	}	\vdash		- — —					
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	ļ		\vdash							
					L						·	
	_				Г							
	-				_							
	 - -	·			<u> </u>							
			<u> </u>									
			}		l							
	_											
			<u> </u>		\vdash							
	<u> </u>	! 	ļ		<u> </u>							
					L	_ 	-					
												1
	- -				一							$ \neg$
_		I	1	l	ı							1

Engineering Department Construction Division Materials Engineering Section

nateriais	Engin	reening	Section
BORI	NG	REP	ORT

							_	•		SHEET OF 2
PROJECT		0 1 0			N/	AME OF CONT			BORING NO,	SURFACE ELEV.
Port Ive	oru	P & G			ļ	fraia	drilling	n	PD 4B	
LOCATION	J	' 					<u> </u>)	CONTRACT NO.	DATE
+ 20' N	AF BI	do Z/a front	ting BI	lack 1	4	oo lot	1	_	426-99-006	12-2-00
SPOON	<u> </u>	dg 36 (cen) Casing si	ZE HOLE	TYPE		1	!	GRO	UND WATER LEVEL	
3 0.0	9 3/			1		Date	Time	Depth		emarks
HAMMER A	utom	8 "I.D. Augs	(12)	<u>'</u>						
1	ALL 3	1	FALL							
DRILLER .			TALL							
A	. Kid	0.6		ſ						
INSPECTOR						· · · · · · · · · · · · · · · · · · ·		-		
	7 7	arks						<u> </u>		
CASING	J	SPOON	RE- 1	SAMP.2	T		3SAI	MPLE DES	CRIPTION AND REMAR	KS
BLOWS/FT.	DEPTH	BLOWS/6"	COA,D	NO.		· 	LII	NE LOCAT	ES CHANGE OF PROFIL	.E
Cutter Head	. 0	Culter Head	Full					nerete		0.7
Handander		Handauger	1		-	_,				
				l _ l	t	ill greyis	1-howa-c	2-PSA	ND & Gravel,	tr. <u>Silt</u>
						_ 2_1_		7		
		 	 	۱ ۵	H					
				2		Keddish -	brown	c-1_5A	ND & Gravel wi	L Silty CIAY
	_			1	1			1		
├──├	· 5 -			3	⊣			- - =	- 01111	
		*		3	IK	eddish	- brown	7111	V CLAY Some	France & C- (SAND 6.0
					Γ				TE_SLAB	
		 		ł	-			JIVU NE		
					L			· 		
[]										
 		 		ł	\vdash					ottom of Boring
	-10 =								Refusal B	Boring .
	10] "			ľ		,	•	• •	
l		 		1	┝					
<u> </u>				1	匚					
		· .			l					
					一		 -			
					_				d water groups and an	
<u> </u>] .							· ·	
	15				Г					
 		ļ			<u> </u>		_ <u></u>			
]							•	•		
										
	—				<u> </u>		- 			
					\vdash					
 	• •	<u> </u>								
					}				•	
			-		Г					
		ļ			<u> </u>					
Г <u>_</u>		1			\vdash					
				:	<u> </u>					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

			•			* *				SHEET OF 3
PROJECT					N.	AME OF CONT	RACTOR	В	ORING NO.	SURFACE ELEV.
		P&G	•		1	Craig c	deilling	1	D-5	
LOCATION	vory	- 			<u> </u>	cialy t	ar tilling	- <u>'</u>	ONTRACT NO.	DATE
LIGHT	1 211	1-1 9+50	te Pui		11.1	Malack	1/22 9 2	.F + 17	26-99-006	
SPOON	of Diad	43 A & ±50 CASING SI	J OL N	W Corner	þΙσ	19th NIOCK	1400 -0			12-02-00
SPOON	9.3/-	A A	ZE HOLE	1					ND WATER LEVEL	
3 .0	.D. 2 ³ /8	3 "I.D. Auge	<u>rsl</u>			Date	Time	Depth	Н	temarks
HAMMER						1 :			1	
	FALL 3	o * L	FALL			12-2-00	3:32	7.0'	SAMPR# A	
DRILLER A	1/ 1						·		1 '	}
<u>_</u>	Kides									
INSPECTOR	7 7	1 .								·
	I.Za	rks								
CASING		SPOON	RE- 1	SAMP.2	1				RIPTION AND REMAR	
BLOWS/FT.	DEPTH	BLOWS/6"	COV'D	NO.	L		LI		S CHANGE OF PROFIL	
Culter Head		Cutter Head	Full		<u> </u>				ONCRETE	
Handauger	 . 	Handauger	 	ł	HB	Il grewich	- trown	-cP SAI	JD & Gravet Cob	bles to Silla 1.5
				*		ad - promo	Silty Cla	V THE	JD > Gravet , Cob	tarkel.
					Γ					
			 	ł					· — — — -	
			1 1	9 .	[Rod-hmu	12 C-P C	S (NA.	Gravel with S	silly CIAY
			 		┪	<u> </u>	4 + -	71 117 11 2	OTCO ET TOTAL	
	► 5 ◀				L	<u> </u>				
<u> </u>		1 1	1 <u>1</u>	3	l	SAM	1			
11 11			 	 	┢	1.13 (1)				
N		5 - 5			Ĺ					
EM		10	14	1 /	1	2 al lich	l	CIL	Clay_	
Angers		10 - 10	14	1-4-	IJ	redaisn	- prow	D _ 2 (III	 	
ן ץ	•	8 - 13	1		į				l	
			18"	5	7	2 11.1		Cut = 0	7/7/	
	► 10 ◄	17 - 19	18		-	reddish -	brown	SHITY !	JIM J	10.0
			17 m	-		Note : 29	samples	Sauced C	ertesting	
				1	Г					
		-			<u> </u>	<u>B</u>	ll checked	لندالعلا	<u>meter</u>	
· ·						0.		san ales	discorded.	
	-			1	┝	N	an with ny	- Som bies	_discorded	B.11- C B
			<u> </u>		L					Bottom of Boring
[•						j., 41 <u>9</u>	Control of the Contro	
	- 15∢			1	<u> </u>	_ _	_ ·			
Ł	· .	! !			L					
	-	ļ		l	├					
ļ		}								
				ĺ						
·					<u> </u>					
L		j				•				
	-									
					<u> </u>				- 	
					⊢					
					<u> </u>					
	_				_					

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

•		SHEET) OF 3
PROJECT		ORING NO. SURFACE ELEV.
Port Ivory P& G	Craia drilling	F 2 - 2
LOCATION		ONTRACT NO. DATE
\$75 W of Blog 31 Block 1400 lot SPOON CASING SIZE HOLE TYPE	4	26-99-006 11-20-00
SPOON CASING SIZE HOLE TYPE	GROU	ND WATER LEVEL
3 .0.0. 23/8.1.0. Augers	Date Time Depth	Remarks
HAMMER Safety HAMMER	1 1	
	11-20-00 10:45 7.0	5#4
DRILLER 7 C		"
J. Craig		
INSPECTOR		
CASING SPOON RE- 1 SAMP.	3044PLF DEGG	PURTION AND DEMARKS
CASING U SPOON RE- 1 SAMP. BLOWS/FT. DEPTH BLOWS/6* COV'D NO.		RIPTION AND REMARKS S CHANGE OF PROFILE
Culter Head Full	Concr	ete o.s.
Handange Handangen	Fill brown C - 1 SAND , to Grav	el tr.SilT
	Till brown C- [SAND	to Gravel to SIT
7		
1 1 2	- CARE	
	SAME	
 		
	SAME	
1 4 - 4 /		
	E.11	
Augers 6-7 18"	Fill brown & grey c.	SAND to Grave to Sill
11-11/		i
10 12-20 24' 5	Fill grey c- [SAN	N & Court I S.IT
10 - 10 - 10 - 10	Fill grey c- & SAN	1 F. Grawa 1 + - 2111 -
11-12/	•	
20-47 14" 6	SAME	
8-20		
26-30 247 7	SAME	
_ O A	SAME	14.5
10-13 24 86	Keddish - brown Silly	CIAY with tr Gravel 160
	J	
	Note: 2 Samples saved	for resting
	_ sion hold. All ath	er samples Bottom of B
	scruned w. PiD m	1 a discussed
20◀	Scrunget w. 111 Am	eter y and mound
		
		·

Engineering Department Construction Division Materials Engineering Section

			-		BO	RING F	REPORT	_		SHEET	OF 3
PROJECT LOCATION	P+ f) ¿ G	 -		NAM	E OF CONTI	RACTOR		BORING NO.	SURFACE	
المالا المال	ه لانه بد ت	NAME IN THE	Pit	South	End	, U	ock-1400))	CONTRACT NO. 426-59-006	DATE //	1/00
SPOON C	ار کا	FILD. QUICERS	1	ITPE	-	Date	Time	GRC Depth	OUND WATER LEVEL	emarks	
HAMMER 140 # DRILLER	FALL 50	<u></u>	FALL	•		11/11/00	12%	6.0	while Have	d Digor	/ny
INSPECTOR	0.00	love	· · · · · · · · · · · · · · · · · · ·								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.					SCRIPTION AND REMAR TES CHANGE OF PROFIL		
							ای اوبدو	Flu	or IN Side Bldg	-2	736
					 	Hdo i	'n weg	section	PIT FlowF		
											0.0
					C	ONCRIT	ف 				1.0
No/		Hard Aux	Fill	1					own Sand, Little		2,0
Huger				2		M-F	Black Br.	owy So	of Little STIT, The	VOST	310
-				3		FBig	Wy San	of Tr	Silly Trugit		
	> 450.≺			The same			· ———				
				4			ne				
Augus		13-24	244	5				· · · · · ·			
	→ (0) <	16-15						· — –			
		15-16	194	6		Sam	٩				12,0
			,						Bo Damof Box		
	> 15				_	$-\frac{\kappa}{S}$	# 1-3	pbsc Sau	hocked with	P10 M	eTor,
							ama IVI	v 8 8 9	mplas Oscarde	rd	
O :	- 70									_	

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

											SHEET 1 OF 3
PROJECT			0 : 0			N/	ME OF CONT			BORING NO.	SURFACE ELEV.
Lvori	, Pa	sinŁ	P&G				Craio	drilling		Stain-3	
LOCATION)		1			<u></u>	_	J		CONTRACT NO.	DATE
Bast	Bo	٧.	ENSINE &	1 0USD 1	Blda a	C		•		426-99-006	11-10-00
SPOON		//-	CASING S	ZE HOLE	TYPE				GRO	OUND WATER LEVEL	
7 .	D.D.	ኢ ^ጄ /	8 "LD. Auge	rs	1 1		Date	Time	Depth		marks
Z "C		· · · · · ·	8 "I.D. Auge HAMMER		•						
		. 3		# FALL	•						ł
i DRILI FR	_	Osi				•					
INSPECTOR	<u>.</u>		•							- 	
		<u></u>	arks		, l		<u> </u>	<u> </u>	<u> </u>		
CASING BLOWS/FT.		PTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.	ľ		LI	NE LOCA	SCRIPTION AND REMARK TES CHANGE OF PROFIL	
Handauga		0	Handauger	Full				C,	ushed (Rock -DGABC	
1 0	-	_	1 - 1 -	1 1	 				- Wood	en block	
		_							- D-CA	M) Gravel, to Silt	L CIAY
	l		1 (11		1	in Adefies	r Blown .	+ 37	and the same of th	
1					2	F	Il yellowi	sk-gray	e - † S A	IND, some silly Ch	Wood'
	_	5 -									9)
		• ر _								Bottomof Borrobstuton, SI	
		_			1	Γ				abstruth. ST	20/ PlaTa
, ———	—	_	 	 	1	H				00311 m 1010 + 37-	3 L 1 G/C
	_		<u> </u>	 	1	<u> </u>					
	İ		ļ					• .			
					1			p	11 San	mples chocked 5+1+2 Sau	OIG ITIN
	-	10			. ~		 ,		17.	1 × 1 + 2 C +	/ Con Tate
<u></u>		_	 	 	1	Ŀ			reley_	5 1 F 2 3 au	00 TOV 1-511NY
				l "	ł	1			•		
				1							
	<u> </u>	-	 	 	1	 					
		_		<u> </u>]	L		<u></u>			
]	1		of the series			
		4	9	 	,	-					
				<u> </u>		<u></u>					
·				1							
	_		1		1						
				 	}	<u> </u>					
					} .	Г					
		•		 -		\vdash					
			<u> </u>	<u> </u>	}	L					
			1	 	(├					
						L					
			 	 		-					
·			1								

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

											SHEET / OF)
PROJECT					N.A	ME OF CONT				PRING NO.	SURFACE ELEV.
PROJECT (OY)	Dun, 1	PAG SITE				Craix	Drille	M/	_ Հ	Jame 3 A	
LOCATION	/								CC	NTRACT NO.	DATE / /
≯ - 3′ ·	shot	STOW 3 CASING SI	EGST	Bay.	B	lde de			1	126-99-000	11/11/00
SPOON		CASING SI	ZE HOLE	TYPE				GR		ID WATER LEVEL	
• •	D.D.	"I.D.		/		Date	Time	Depth			marks
HAMMER		HAMMER				. 1		2			
#	FALL.		FALL			11/1/		1 Pr	_		· · · · · · · · · · · · · · · · · · ·
DRILLER	1	1 050c4	÷					'	,		
INSPECTOR		Oxowe								A-0 .	
CASING BLOWS/FT.	DEPTM	SPOON BLOWS/6"	RE- 1	SAMP.2		·	*S.	AMPLE DE	SCF	RIPTION AND REMARKS CHANGE OF PROFILE	s E OO
Yard	DEPTH	Hard Buggy	Fili	<u> </u>		,				0-4' See L	
Huyr)									= 6
				-						Taken	
								— <u></u>			4.0
	- T									Ba Dam ct	
	3									obstruction, S	Fre I PloTa
]							
		·									
		* to the second								<u></u>	1
·											,
				·		o v. jon iki †					
	> 12 <										
:											
										<u> </u>	
						·	·				
	> 7€ -										
-	26										

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET / OF 3
PROJECT		מומ -		-	N/	AME OF CONT			BORING NO.	SURFACE ELEV.
Porl	Wory	, PAG Si	Te .		L	Cracy	Drilling		STain 3B	
LOCATION	,	· /			_	U	0		CONTRACT NO.	11/11/co
E4SJ	Bay, 181	S CASING SE	- //`S	cut h	J.	- STGIN.	3 <i>A</i> -		426-98-00	11/1/100
3 *0	234	CASING SI	ZE HOLE	TYPE					OUND WATER LEVEL	
HAMMER	.D. 0 /8	"I.D. HAMMER	<u> </u>	<u> </u>		Date	Time	Depth	Re	emarks
140 #	FALL 30	TAMMEN #	FALL			11/11/00	95	5,51	Cehilo Hand	Augring
DRILLER	0	Osuch								
INSPECTOR	Y						:			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.					SCRIPTION AND REMARK TES CHANGE OF PROFIL	
Hand		Hard Auga	FU!	,		Misc Fi	11 Cind	1/15 S	and, Groud, ETC	
Augor									inders	し <u>う</u> 2,ひ
1	_				1			×1,—4.5. S		
				2	\vdash'		`		<u></u>	
				<u> </u>	<u> </u>	E-11-E	Brown.	Sand_		_ — — — —
		1	- 1		F	Same		4		
	5	1/2		3	F			+, p	L SUT	
a'au		(_ 1)		 		P- Alack Gi	ray > mor,	IV DI	ok 3///	
	_	6-4		4	-					
STAM		3-3	16"	<u></u>	L	FBrow	in Sand	41110	<u>si/</u>	
Augus		2-4					,			,
o l		6-7	18"	5		Sam	 o			
	10	8 12		,	Γ			1 2		
	_	8-10	221	6	Г	Scim				
		6-7			T	_ <u></u>	<u> </u>			
		8-12	24	7	卜	Sam		- -		
		12-12	121	8		San		· · · · · · · · · · · · · · · · · · ·		12:0
	- 12 -			<u> </u>	Γ					d
	- :-				-				$\overline{n} = \overline{n}$	<i></i>
				,	Ŀ		- 	. —— —	Bottomof Bi	
				,					· 	
	- +				-					
	> 2U ◀			•		,	,			
					L	&	+11 Sam	pla c	shocked with	PID MOTOR
					$\lceil \rceil$	<u> </u>	# 12	24 5	Sula / 5th 1,2	to BOT-STU
					 		- 1	<u>·</u>	1 1 1 2	<u> </u>
				٠,	<u> </u>		omelun	y Jan	yplos WISCANDLOF	
								·		
	> 25 ←				Щ_					

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

						*		•	SHEET 1 OF 2
PROJECT	- T.	OLC S	Ta		NAME OF CONT	^		BORING NO.	SURFACE ELEV.
TOIL	Ivory	PHG Si	IX		Craig L	Julian		Q1-1	
LOCATION South a	what Let	, NexTITE T	Truck- <	cale	R)c	.lc 1338	477	contract no. 476-99-006	DATE 11/30/00
SPOON		, NexTTO] CASING SI	ZE HOLE	TYPE				UND WATER LEVEL	
3 .	0.D. 7 3/2	ID BUSEY	5	l	Date	Time	Depth		emarks
HAMMER	Sof 27.	HAMMER					1		
140.	FALL 30	<i>t</i>	# FALL		17/30	1016	10	in crushed 5.	tone
DRILLER	<u>S</u>	Burus							
INSPECTOR	0)	Your							
CASING		SPOON	RE- 1	SAMP.2	1			SCRIPTION AND REMARK	
BLOWS/FT.	DEPTH ◀	BLOWS/6"	COA.D	NO.			INE LOCAT	TES CHANGE OF PROFIL	E 0.0
	L -				CONCre	<u>Te</u>			1,0
Mand	<u> </u>	Hand Augr	Fil		Crushe	1 STone			20
Ayor			1	,					<u> </u>
L	_				F11-1	M-PG	Ley Sav	w/ LITE SITE Tr	Cholen Tr Gravel 4
Nollow		Tapped						of LITE SITY Tr	omAle
SIm		Spoon	184	2	F	Braye	and, 1	MeSITY Tr Black	Rost, Tr Graces 6.
Sirs		8-10						,	
		12-15	5"	3	P	Brouw	Sond. 1	100 SIT, Ir Gra	
		4-3							
		3 ~6	199	4	PB	row. C	and Tr	SITI, TrugT,	Tr Growl
	- 10 m	6-17	-		 		= - = 4		<u> </u>
		37-27	200	2	P	Brown S	and Ti	SIII, TY Grove	
1.		6-12				<u></u>			<u> </u>
1,		19-21	15"	6	PA	Bour S-	of Tul	P Gray Sonof, Tr SI	Titr Grace 140
V		5-12					1	y 2-41.01, 11 31	THE THE
	15	12-66	187	7	F.	irey Sa	-		160
	_	·				1=4 -a	Nati	<u>,)111</u>	1
					 			Bottomof Boria	
	<u> </u>				·			TO DOWN DONE	} — — — —
			<u> </u>		<u> </u>	+11 5-		1. 1	
	> 20 ◀				$-\frac{\nu}{c_1}$	K 12	7105 C	hoctorius The Found for Exuit	Total
	- -				$-\frac{3}{6}$	-42	<u> </u>	al O - 1	<u> </u>
		· · · · · · · · · · · · · · · · · · ·			├─ <i>─</i>	maining	× Jam	plos ascarda	
									
	> 25							· · · · · · · · · · · · · · · · · · ·	

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

			*			4				SHEET OF 3
PROJECT_	ig.	1.0				NAME OF CON	TRACTOR		BORING NO.	SURFACE ELEV.
Port Iv	raru 🧣	4 (Craig c	rilling	٠	Pi	
LOCATION	J 🥞	1		betw. Rai	ad }	inches)	J		CONTRACT NO.	DATE
Between	blda /a	1 & bl	da z	2, Bl.	ock 14	oo Lot 1	-		426-99-006	11-22-00
SPOON		CAS	SING SIZ	E HOLE	TYPE	**		GRO	OUND WATER LEVEL	
	D.D. 2 3/8		<i>Lagr</i> s	l .		Date	Time	Depth		emarks
	mpw.		MMER	<u> </u>			 			
	FALL 30			FALL		11 - 22-0	1:49 PM	6.0	S# 4	
DRILLER				TALL		11 - 22-00	1,75	10.0	J# 7	
	$\mathfrak{D}.\mathcal{C}_{\mathbf{c}}$	oke 🕾				1				
INSPECTOR								ļ		
	77	ar								
CASING	J -	SPOO	N I	RE- 1	SAMP.		.u.z 3SA	MPLE DE	SCRIPTION AND REMARI	KS
BLOWS/FT.	DEPTH	BLOWS		COA,D	NO.				TES CHANGE OF PROFIL	
	> 0 <			Full				ASD	TIAL	9.3
	<u> </u>	 							AST & Crushed	
			•		1	Fill areu	A2 1.2	& CUI	Gravel tr. Si	IT.
						 3 J				
		 			*					
		1	1		2	Fill redd	ish - brow	n C-	SAND tr. Gravel	.trSiT
									T	
	> 5 ≺	 				<u></u>				
4		1		1	3	SAM	5			
)' ''' 'W		/ /			_	 				
- M	<u> </u>	4-6	2		, ,	<u></u>				· _
Augers	* *	5_	4	20"	4	Brauk	, c D	SAN	D to Grave to S	Sills
		 -	1	~-	-1-		<u> </u>	xt111	D , tr. Gravel, to	
		1-2		····	*					
		4-8	}	24"	5	Brown	c - P	SAND	tr Gravel, tr. C	JAY & SIIT
	10 ≺	,		~~			<u> </u>	VI	Jir Willey Min, Min Se	
	<u> </u>	6-2			i	<u> </u>				
↓		15 - 2	2	24"	6	SAM	E			120
₹		,~	_							
						<u> </u>	:			
\ <u></u>	_	[ŀ			Note . 9	Sample	Salle	d for testing	71
	-	 		7 **	···					<i>-</i>
	15	<u> </u>				A	Il other	Sample	s checked	
			.						discarded	Bottom of Boris
	- -					w	_ · · · · · · · · · · · · · · · · · · ·			
	<u> </u>	ļ				<u> </u>				
	• . •					1		*		
						<u> </u>				
		<u> </u>				L				
		I	•					. –		
	> ◀					<u> </u>				
								- -		
		<u> </u>				 				
								Ł		
					•			!-	·	
						<u> </u>				
			1							

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET 1 OF 3
PROJECT					NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
POUTT	Uars/	PAG SiTie			Crais Or	Mira		P-2	1
POVT I	-0017	<u> </u>			1		- 7	CONTRACT NO.	DATE ,
		32A 742	R		Blech	you lo	T/	426-99-006	11/30/00
SPOON	w mag	32 A 7 42 CASING SI	ZE HOLE	TYPE	These I	(00 (0)		IND WATER LEVEL	
3 10	n 23/8	ALIO	ای	1 1	Date	Time	Depth		Remarks
HAMMER	Safar	1.D. Augo					1	<u> </u>	<u> </u>
140 *	FALL 30	/ 1	FALL				7,0	while Ho.	nd Augricy
DRILLER	· S	Burus							
INSPECTOR	(Howe	- '						
CASING		SPOON	RE- 1	SAMP.2		3SA	MPLE DES	CRIPTION AND REMAR	RKS
BLOWS/FT.	DEPTH	BLOWS/6"	COA.D	NO.		Ll	NE LOCATE	ES CHANGE OF PROF	
	0				A-Splan				0,3
		11- /10	 	1	 ,	7		_ 	
Mard		Hand Auge	Ful		crushod	3 Jane		۸۶۶۳ .	20
Accer			(.\pgM	
126	_ _		 	1 (5			
					18115CF	<u>, 1/~ > </u>	and),	75, Caden Br	106,616
	_						•		′
	> 5 ◀			2			<u> </u>	1000 /5-	ic T
		 	I/	ļ	17/17/	-uray, 1	010000	+ PB Squal Trs	11) 11 (Vary
					!	•			
				3	<u> </u>				
<u> </u>	_	W			5 gme				8ن
H. HOW		6-8	1		[·
~		8-14	144	4	Role		17 61	T. F. 7	T. C. /
thises	>.1U ₹				The Or	کستر ج	$U \neq \mathcal{L}(\mathbf{e})$	y Tr E Soudy	Truxavel
		8-10		1	·				
		10-2	2011	3	Sam	o			130
		-			300,	~			
		·			<u> </u>		· 		
		·						Buttom of Box	14.0 J
		y 12 (\$\$70 \$10 \$10)	3,34					10110 40 BOI	'~~~ — — —
	► 5 <								
,	(1)]						•	,
					— ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		7	- <i>,</i> ,	
					<u> </u>	1 <u>>grmp</u>	105 C10	of for Envi	PIO Mesor,
					5#	12-3	- Sava	I for FAUL	re Tasino
		1			- P			1 0 1	
						maining	Jamy	ples Ascarde	<u>'4 — — — — </u>
Ĺ						L	, ,	•	!
	> 2₩ <				 				
								•	
			~	;					
								 	
	<u> </u>								
	- 26								

*

PA 547 6-90

THE PORT AUTHORITY OF MY & NJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

OF 3 BORING NO. SURFACE ELEV. PROJECT NAME OF CONTRACTOR Port Ivory Craig drilling DATE . LOCATION CONTRACT NO. Block 1400 20'W of Bldg 42 426-99-006 Between 252 bldg 33 A 11-22-00 SPOON OASING SIZE HOLE TYPE GROUND WATER LEVEL 3/8 *1.D. Augers Date Time Depth Remarks "O.D. HAMMER Autom. HAMMER 4.51 9:50 140 # FALL # FALL DRILLER INSPECTOR **CASING SPOON** SAMP.2 SAMPLE DESCRIPTION AND REMARKS BLOWS/FT. DEPTH BLOWS/6" COV'D LINE LOCATES CHANGE OF PROFILE NO. Full Rec ASPHAIT Handauger AND Gravel Handowge SAME 4.0 5 W Muyers 24" 33 SAME 10 42 SAME Note: 2 samples soved fac testing PID meter 15 Bottom of Baring dis carded ಬ

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

2 — U = undisturbed; A = auger; OER = open end rod; V = vane

^{3 -} Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

								SHEET	OF 2
PROJECT	 Тт.	DL-C 2			NAME OF CONTRACTOR		BORING NO.	SURFACE	
POY)	WOIY	PtGSITE			Craig Drilling	<i>Y</i>	PBMU-70 CONTRACT NO.	DATE	
LOCATION	STOR PX	TNW-7 Wes	of RI	dc 33	Rock 1400 Pati		426-19-006	DATE 11/13	la
SPOON	2	CASING SI	ZE HOLE	TYPE	Block 1400 LOTI	GRO	OUND WATER LEVEL	1 1/1/	700
HAMMER	D.D. 1/5	1.D. 14	1.B.1	Aunitor	Date Time	Depth	····	lemarks	
HAMMER	Sator	HAMMER							
PRILLER	FALL 30		FALL					 :	
Dination	J	Finel				ļ			
INSPECTOR	<u>-</u>	More							
CASING		SPOON	RE- 1	SAMP.2			SCRIPTION AND REMAR		0.0
BLOWS/FT.	► DEPTH <	BLOWS/6"	COV.D	NO.		LINE LOCA	TES CHANGE OF PROFIL	<u>.c</u>	0.0
CUTTON			 						
head]	for STral	à 0-1	16 Soo log for	<u> </u>	
Hand Hypr		Hand Buyer		}	pomu-7	No	Samples Taken	0-16'	
1		1		}	<u> </u>				
	- -	t — f		ĺ					
	> %	-							_
_\\	_ 6 -	<u>Ψ</u>		1					
esmi				ļ					
		*					,		
				1					
	→ 1/2<			!					
2	_								160
0,11		11-16		١					
Phred		93-51	741	,	Rad Brown S. 17	Clay, 1	r FSqu		18.0'
WITh		11-16		,		77			
Rouse	- ^ -	16-24	12"	2	F DK Brown Sc	17			
1	> 20	12-15					<u> </u>		
		16-18	11"	3					
			11		FDE Brown Sa	wod Ir	Delly) t brakel_		
	-	10-16		4				_ . _	
		16-21	12"		PDE Brown S	and, 1	V 5/11		
} [-	9-14			NoTO AFTEN S	545	HW advanced f	for 16-7	=241
	52 <	16-21	16"	5	Same				26.0
	- :	23-29							
			17"	6	F Q C	//			
		19-19	1/		F Brown San	of LIVI	Le SIII		
		8-8		7					
	3~/	13 -23	94		Same				

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

						SHEET 7 OF 5
PROJECT	_	-O) a - a			NAME OF CONTRACTOR BORING NO.	SURFACE ELEV.
Port	Ivory	PHG-SiTu			Craig Orilling PAMW-70	
LOCATION	a b				CONTRACT NO.	DATE 11/14/oc
		PD-MW-7 CASING SI	WAS)	TYPE		111/1/00
2 "0	.D. 13/8	"I.D. Rayer		מסרו מט	GROUND WATER LEVEL Date Time Depth	Remarks
HAMMER	Safel	HAMMER	10 12	(0)-(10)		
140 ,	FALL 30	' 1	FALL			
DRILLER		Finch_				
INSPECTOR		D Nowe				·
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP.2 NO.	3SAMPLE DESCRIPTION AND REMA LINE LOCATES CHANGE OF PROF	
Drill	30	12-22		8		
Bhead		20-32	16"	8	FBrown Sand, LITTLO SIT	
with	•	14-16		9	,	
ROUNT		28-28	12/1	1	Same	
		25-23			Noto: After 5# 10 HU Casing a leaves	1 from 24 15 34'
	> 32.	13-12	101	10	F-Brown Sand, TrSilT	36.0'
		5-9			7 = = = =	
		12-14	1211	11	F Rad Brown Sand, Some claya, Si	T
		20-11		10		
	- 40 -	11-11	781	12	FRed Brown Sand Some Sill	
		14-15		13		
		14-15	33"	ワ	Same	420'
		7-6				
		5-5	71"	14	FRed Brown Sand, Same clayay S	iit 440'
	Y5	7-8		15		
		11-9	2411	15	FRed Brown Some, LITTLE clayers	in 46.0'
		10-10		16		<u> </u>
		10-12	194	10	FRed Brown Sand, LITTLE SIT	
	_	9-8		1-7		
	► ©0 <	11-11	24"	17	F Rad Brown Sand Some SITT	
		11-12		10.		
		13-18	2411	18	Seime	
		7-8		19 A		
		11-10	724	17 <u>B</u>	FRED Brown Sand, LITTLE CLAYER SITT, Tra	sauel
	-65	10-19	20"	20	Same	

Engineering Department Construction Division
Materials Engineering Section

BORING REPORT

					SHI	ET 3 OF 5				
PROJECT					1 · · · · · · · · · · · · · · · · · · ·	RFACE ELEV.				
POTTI	vory Pa	t G SiTe			Craig Drilling PAMW-7D					
LOCATION	,				CONTRACT NO. DA	re / /				
720'W	ost of Pl	Mw 7, w	stof B	ldc33	Block 1400 Lot/ 426-99-006	11/16/00				
SPOON				TYPE	GROUND WATER LEVEL					
2.0	D. 1/8	"I.D. ROWT	- J.B.1	HONITON)	Date Time Depth Remarks					
HAMMER	Safan	/ HAMMER								
140 #	FALL 30		FALL	•						
DRILLER		J Fruch	٠							
INSPECTOR	٠.	DHow								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.	SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE					
Phill	DEPTH	30-32	23"	20	FRed Brown Sand, LITTLE Clayer SiT, Tro	rand				
Had		15-18		21						
with	· .	21-24	11'		Same					
Recept		17-19		22						
	60	27 - 30	7"		FRed Brown Soury Someclayer, SITT, Tr Rodsh	6, Tr Ground				
		7-10								
		20-61	12"	23	FRON Brown Sand, Some Clayay S. 18y, Li Me Gro	ud, Ti Ravshale				
	·	23-20		24						
		48-37	121	C	T-Rad Brown Sand, Little Gravel, LITTLE Clayer SITS	J. Rolshale				
	- 65	44-35	11/11	25						
		34-48	14"		FRA Brown Sand, Some Grand, Tr Chayey, Tr	Roof Shale blic				
	<u>.</u>	20-29		26						
		87-58	フ'	00	Recomposed Rad Shole Some Grow LITTLE FS	and				
		27-08		27						
	>70 ≺	100Ku 7. 54	14"	0 /	Same	76.0				
		24-94		200		yey SITE				
		96 58	12"	7-8	T-Rod Brown Sand Some Decomposal Bol State, L					
		54-10% 44"	10"	29	Pecomposal Red Shele, LITTE clayer, Sill,]	2 PSeul 732				
1		12/2" 596"								
	> 75	*		,	Refusal, Soo Pulling	Report _				
			<u> </u>							
						- <i>-</i> #-				
			-4.		BoDamat Boring					
	80									

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

2 — U = undisturbed; A = auger; OER = open end rod; V = vane

3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

*300lb Ham mer Used

PA 2255 6-90

THE PORT AUTHORITY OF NY & NJ

Engineering Department Construction Division **Materials Engineering Section**

-	•			D	RILL	ING REPORT			11
PROJECT					NAME OF	CONTRACTOR	BO	RING NO.	SHEET 7 OF 2
Part	÷1,	P76-51	Τ.	i	Cro	is Otilling		PA-MU-7D	
4017	Toold	VO 0- 311	14		<u> </u>	of strike		NTRACT NO.	DATE
LOCATION		014 *		0 0	_	01			1
DOO'U	west of	PD MU	1 Wesjo	CONBARR	3	Block 1400 LOTI		176-99-006	11/16/00
TYPE OF DR	ILL RIG.			CON BARR	EL	CORE DRILL	SIZE	CONDITION OF DIA	
	Mahl	B-58			SINGLE	DOUBLE D' WITE	lino	1.D. Go	
DEPTH BOT		0 - 30	START CORING	DRILLEF		TODE / WITH	117024	MICRECTOR	
		DEPT		DHILLER		r E /		DHO	_
[ろ	4.0'		73,21			Fluch		V/lo	rup
Til	ME 1		DRILL 2	WASH 3	4	ROCK-DESCRIPTION	AND DE	MARKS	
Start	End	DEPTH	BEHAVIOR	WASH		LINE LOCATE	D END	OF RUN	73.2
		> 73.2 <							
8	Mus/PT	1	STeady	Losingurs,	_				
14)			1	10		- 0 + 1 p		1 e	y & Fractured
10		<u> </u>				CONTRACT R	ed of	ite Degm	J Frac Jured
9				Blockmery		· -		, · · · ·	<i>,</i> "
		<u> </u>	1						
12				10000					·
	 	 	 	Cosylusa					
18	1 3.	7- ~	1 1	Blackingup					78.2
, , ,		- 78.2≺	γΨ	 					
				j l					7
				† -				7	v
				[Battomat	Boring
				<u> </u>	<u> </u>				
			i						
	ļ			 					
	·		1	[
	 	>832 ✓	 	 					
		_	1	j i				•	
		-	†	 					
							. •		
			1.1 1.1						
		<u> </u>							
						· — — —			
				<u> </u>					
			[·						
	<u> </u>	> 882∢							
]]					·
				 					
									# # # # # # # # # # # # # # # # # # #
	,			 					
[]					
		> 93.2 √							
	<u></u>		· · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
	RUN NO.	FROM	то	LENGTH DR	ILLED	LENGTH RECOVERED	%	RECOVERED	NO. PIECES
	,		[^	% /	
NOTES		73.2	78.2	5.0	'	4,5	90	0 %	17 Places of Frees
NOTES			 			 			11.
ON								,	<u> </u>
j			L			 		 	
DRILL									
DUNG							_		<u> </u>
RUNS									
									
			l j			ļ			
į					 				
	.]		T						
J	· j	·				j l			1

NOTES: 1 — Record the time to start and end of each foot of drilling 2 — Log drill behavior (i.e., steady, chatter, grinding, etc.)

 ^{3 —} Log wash water return (i.e., color, loss, blocking, etc.)
 4 — Log type, color and condition of rock (i.e., broken, soft, seamy, hard, etc.), log character of wash return solids

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

PROJECT POIT I VOIY, POG SITE LOCATION POURS TOF PARMY 7 WOSTOF Blog 33, Black 140c LOT! WELL TYPE PORMY-70 WELL TYPE PORMY-70 PORMY-70 DATE 11/16/00 Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)	Chidineeting be	partinent - wie	ateriais	DIVISION		1 .	
POT TUDING POG SITE CONTROLLOR POWER OF SITE CONTROLLOR POWER OF SITE CONTROLLOR POWER OF SITE CONTROLLOR POWER OF SITE CONTROLLOR WALLEN OF MALE TYPE WATER LEVEL REFORM PY dia. Manhole cover 21. dia. PVC pipe w/locking cap L1 = 93 L2 = 39.7 L3 = 100 L3 DOI: Cap POWER OF SITE Comments Comments POWER OF SITE Comments Com	V Installation R	leport		•		<i>,</i>	Sheet 5 of 5
## 20' west of PANW-7 west of Blog 33 Block 140c Lot Charge by Mental True Charge by Marken Lavel True Charge by Marken Lavel True Charge by Marken Lavel Nation Charge by Marken La	PROJECT POIT TUOIN ,	PJG SITE					426-99-006
Well Development Report MATERILEVEL SEPONE MATERILEVEL READMOS PROM TOP OF PVC) MATERILEVEL SEPONE MATERILEVEL SEPONE MATERILEVEL AFTER TANEM MINUTES AF Property Property Property Property Property	to Trew of #	PAME-7 U	vost of	Blds 33, Bl	ack 1400	LOTI	Craig Dr. Iling
WATER LEVEL BEFORE 9° dia. Manhole cover 2'' · dia. PVC pipe w/ locking cap L1 = \(\frac{\alpha}{3}\) L2 = \(\frac{\gamma \gamma}{37.0'}\) L3 = \(\frac{\lambda \gamma}{37.0'}\) Top of surface & cement grout 35.0' Top of bentonite seal 37.0' Top of well gravel filter Cap 49.0' Bottom of well 78.2' Bottom of borring	WELL NO.	WELL TYPE		INSPECTOR DHO	. DI	RILLER	11/16/0C
9° dia. Manhole cover 2'' · dia. PVC pipe w/ locking cap L1 = 03' L2 = 39.7' L3 = 10.0' L3 Cap 49.0' Bottom of well Bottom of boring	Well Development	Report (NOTE: V	WATER LEVEL REA	ADINGS FROM TOP OF P	VC)	·.	
9° dia. Manhole cover 2'' · dia. PVC pipe w/ locking cap L1 = 03' L2 = 39.7' L3 = 10.0' L3 Cap 49.0' Bottom of well Bottom of boring		TER LEVEL REFORE		WATER LEVEL AFTER		TAKEN	MINITES AFTER
L1 = $\frac{\sigma 3'}{12}$ L2 = $\frac{37.7}{12}$ L3 = $\frac{100}{12}$ L3 = $\frac{100}{12}$ L3 = $\frac{100}{12}$ Cap H3 = $9900000000000000000000000000000000000$	<u> </u>		cover ——	7			
L2 = $\frac{39.7}{100}$ Top of bentonite seal $\frac{37.0}{100}$ Top of well gravel filter L3 = $\frac{39.7}{100}$ Top of well gravel filter Cap $\frac{49.0}{100}$ Bottom of well Bottom of boring	L1 = 0.3	L1 *					
Cap — Y" Boring diameter Top of well gravel filter 19 6/ Bottom of well 78.2' Bottom of boring	$L2 = \frac{39.7}{100}$	L2					
Cap Cap Will Tr.2' Bottom of well Boring diameter		*			<u> </u>	Top of well grave	el filter
Cap Cap Will Tr.2' Bottom of well Boring diameter			and the second		• • • • • • • • • • • • • • • • • • •		10 10 10 10 10 10 10 10 10 10 10 10 10 1
Cap		L3		· · · · · · · · · · · · · · · · · · ·			
Cap	•						·
Boring diameter		<u> </u>					,
Hule Backfilled 49,0-5510 WITH Well Ground		C:	K -	<u> </u>		Bottom of boring	
	Hule Backfillo	1 49,0-55	io wiJ	The Well Gra	wel		
11 550-78.2 WITH Holo Play	11	550- 78	2 10	וע גע וד	٠		

Engineering Department Construction Division Materials Engineering Section

				·	BO	RING F	REPORT	r		SHEET \ OF U
ROJECT					NAN	IE OF CONTI	RACTOR		BORING NO.	SURFACE ELEV.
PROJECT Park T	Voru	ጉ & G			(braig c	Irillina		PAME-7	
OCATION	J							*	CONTRACT NO.	DATE
3'SW	of ari	ginal loca	ation	В	olod	k 1400	Lot 1		426-99-006	11-11-00
POON	7	CASING SI		TYPE				GRO	OUND WATER LEVEL	
3 0	.D. 2 3/8	3 -1.D. Augers	, ANN	ONITON		Date	Time	Depth	Re	emarks
IAMMER	Safa	1- HAMMER		[. 1. 1	812		- *	
RILLER	FALL 30	<u> </u>	FALL	-	<u> </u> _	11/13/00	8	7.0	5#3	
HILLER	T	Firch								
NSPECTOR					-	į.	<u> </u>	 		
NOFECTOR	\mathcal{D}_{c}	Home					•			
CASING LOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.					SCRIPTION AND REMARITES CHANGE OF PROFIL	
utter -	- "o" <	Cutter Head	F		 			NE LOOK		<u> </u>
Head		 	ļ	1	<u></u>					
							Concret			
and pesu		Kand Augu	Fi'Y	ļ	<u> </u>					
Desw		1	1	ا ا	5	II NY	P. D.		/ T-C / -	40
-+		 		 	T	111- 181-	Porcu	11/ 2000	(TrsiT	
	5 -			2			·			
	· 2		1		1 5	11 -M-	F Black	- Savol	, TYSIT	
'i'w		31-45	"	_#p		Sam		4	<u> </u>	7,0
Sizani		54-82	194	3B				50.1	TrSiIT	
Access		97-12	 • • • • • • • • • • • • • • • • • • •	F		Some				87
124.)	-	52-60	244	"4" E	 	Roll	lah Aran	 . (l.) .	SITT & Saw TI F	Plack Sand 14
10	► 10 ◀	4-8	"		-	1280	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ciache	7 1110 2001, 12 1-	"I LE JENO"
_	<u> </u>	14-20	181.	5		Rod F	3mm 5 1	n C/.	1 LITTL FS and Tre	Could To FRINGS
		15-17	1 "		 		11000 311	14 47	Atorio I sand Inc	The state of the s
		 	 	6	<u> </u>					
V	·	24-28	24	, D		_Bed!	Brown Si	My do	Y To FS Good Tr Gre	·w/
		11-15						,	,, , , , , , , , , , , , , , , , , , , ,	•
}	► 15 <	32-34	24"		-	· — —				16.0
		0 0 0 8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>		Sam	<u>e</u>			10.0
		<u> </u>		1	<u></u>				<u> </u>	
				· ·					Bottom of Burny	,
				İ					· · · · · · · · · · · · · · · · · · ·	<u></u>
	. .		 		-			<u> </u>		
	> 20 -			[Samp	Lo_che	ecked with PID ON POSTINS + 1-4	INOPON
	_	<u></u>		j	L	- 5H	1-4 '5	uned f	or DesThis, 1-4	to Be Tosky
			<u> </u>	1		<u></u>	Tal	ا مصد د دامرسک	on 91/	
			 	} .	-	<u></u>	1 100	ما السمار	<u> </u>	
							•			
			<u> </u>							

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

Well, Installation Report	Sheet 2 of Y
PORT IVON, POGSITE	CONTRACT NO. 476-99-006
+3' Swofory Loc Plact 1400 LOT 1	Crany Orolling
WELL NO. WELL TYPE INSPECTOR DRILLER TIME TIME TIME	DATE
Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)	
DATE)	CEN_20 MINUTES AFTER
9" dia. Manhole cover —	
Top of si	urtana
L1 & cemen	
L1 = 0.3	
$L2 = \frac{3.7'}{2}$ L2 Top of b	entonite seal
$L3 = lo_1o'$	ell gravel filter
* Top or w	en graver inter
	•
	,
	• •
L3 SPENINGS	
$\frac{14.0'}{11}$ Bottom of	well
Cap 1 76 1 Bottom of	boring
Boring diameter	
S:	
Holo Back Filled 14-16 WITH Well Gravel	

THE PORT AUTHORITY OF RYSKY

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

				•	SHEET / OF 5
PROJECT	1 Hack	POIT IVORY	Pte	SiDo	NAME OF CONTRACTOR (rais Oilling PA-MW 150) SURFACE ELEV.
LOCATION	1 cut l	killeu CASING SI	Assoc	300	CONTRACT NO. DATE 476-99-006 11/3/00
SPOON	2 00) 0	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL
2 .0	.D. 13/8	1.D. HW			Date Time Depth Remarks
HAMMER 140 #	Safa)-1 FALL 3U	4	# FALL		
DRILLER		S Burus			
INSPECTOR		0 Howe			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.	3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE
HU	0			,	
Casina		٠.			No Samples Taken
)					No Samples Tator for STrate 0-16 Soclog
					for PAMW-15
	 ► 5 •				
	→ 10 -				
	<u> </u>				
	► 15 <				
<u> </u>					16.0
Drill		11-12		1	
Bhand		15-13	14"		F Brown Sand, Ir Sill, Tr Grawl
with		6-8	1.16	2	
Rover	> 20 ◀	11-13	141		
		11-12	1 . 1 .	3	
		13-13	1811	<u>ر</u>	- F Brave Sand, LITTLE SIT, Tr Grove/
		10-12	l='	4	
		18-18	15'		
7	> >5	9-10	16"	5	Same

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

Mobile Mobile Motor Pot Sile Craig Dilling SPRAME TSD						•		SHEET OF
## 11/3 out by Elland ## 155a	PROJECT	4.4.	0 —	Λ1 s =		l • • • • • • • • • • • • • • • • • • •		SURFACE ELEV.
## 11/3 out by Elland ## 155a	Howland	Hock, 1	OITIVOIY	MAG S	الم	Crais Utilling		DATE
SPOON 7	LOCATION	105	by killon	L A	500	•	1	
Date Date Time Depth Remarks Mover Salay Name SPOON	3.	CASING SI	ZE HOLE	TYPE	GR		1,	
140	J .0							Remarks
INSPECTOR Dollar Samp		Safar]			
S BUTUS NAMPLE DESCRIPTION AND REMARKS CASING SHOWSO' COV'D NO. LINE LOCATES CHANGE OF PROFILE BLOWSOFT. DEPTH BLOWSO' COV'D NO. LINE LOCATES CHANGE OF PROFILE DI) 13 - 12 15" 5 FBrown Sand, Little Sitt, It Grows 13 - 18		FALL JO		FALL				
CASING SPOON RE- SAMP: SAMP: SAMP: SAMP: SAMPE DESCRIPTION AND REMARKS BLOWS FT. DEPTH BLOWS OV D'N NO. LINE LOCATES CHANGE OF PROFILE DIVIT ST. 12-12 16" 5 F Brown Sand, Little Sill, tr Grand WITH 74-22 15" 6 Same RE- SAMP: LINE LOCATES CHANGE OF PROFILE DIVIT 13-18		S	Burus		<u>:</u>			
BLOWS/FT. DEPTH BLOWS/S COVD NO. LINE LOCATES CHANGE OF PROFILE DI)	INSPECTOR	(Dowe					
13-18 13-18 11-16 11-16 11-16 12-12 15" 6 Same 11-16 12-12 8" 7 Same 30.0" 12-11 13-12 15" 9 Brown Sill, Little Fsond 34.0" 13-12 15" 9 Brown Sond, Same Silt 36.0" 37-6 18" 10 F Brown Sond, Same Silt 36.0" 3-4 15" 35 37-9 16" 13 Same 37-9 37-2 37-9	CASING BLOWS/FT.		SPOON					
Bhud 13-18 5 5 5 5 5 5 5 5 5	Dell	22	12-12	7.64	5	F Brown Sand Lil	TO STIF Tr Grove	,
WITH 74-22 15" & Same 11-16				- *	/			
RUM 11-16 12-12 8" 7 Same 30.0" 12-11 8 Brown Silf, Little FSond 34.0" 13-14 11" 8 Brown Silf, Little FSond 34.0" 13-12 15" 9 Brown Sond Some Silt 36.0" 8-8 11 = Brown Sond Some Silt 36.0" 8-8 11 = Brown Sond Some Silt 36.0" 2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 40 3-2 1-1 19" 14 Same 45 3-2 1-4 34" 15 Same 460 5-4 3-4 32" 16 F Brown Sond Little Silt 48.0			 	151	6	Sa.		
12-12 8" Same 30.0" 12-11 8 Brown Sill, Little FSond 34.0" 37-12 15" 9 Brown Sill, Little FSond 34.0" 37-6 18" 10 F Brown Sand, Same Sill 36.0" 3-8 11 F Brown Sand, Some Silly Clay 2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 45 3-2 1-1 19" 14 Same 45 3-2 1-4 34" 15 Same 460 5-4 3-4 32" 16 F Brown Sand, Little Silt 48.0		-		- / -	<u> </u>			
30 12-11 8 Brown SIT, LITTL FSond 34.0' 13-12 15" 9 Brown SIT LITTL FSond 34.0' 35 10-17 10 F Brown Sond Some SIT 36.0' 8-8 11 F Brown Sond Some SITY Clay 2-2 12 Some 3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 45 3-2 1-4 34" 15 Same 460 5-4 3-4 22" 16 F Brown Sond, LITTO SITT 48.0	W Upri		 	alı	7			
13-14 11 8 Brown Sit Little Food 9-11 9 Brown Sit Little Food 34.01 13-12 15" 9 Brown South Food 34.01 13-66 18" 10 F Brown South Some Sit 36.01 8-8 11 F Brown South Some Sity Clay 2-2 12 Some 3-2 13 Some 3-2 3-4 16" 13 Some 4" 5" 5" 5" 5" 5" 5" 5"		> 30 ◀		0	<u> </u>	Same_		30.0
9-11 13-12 15" 9 Brown S.IT F FSOND 34.0" 13-12 15" 10 F Brown Sond, Some S.IT 36.0" 8-8 11 F Brown Sond, Some S.ITY Clay 2-2 3-4 15" 12 Some 3-2 3-4 16" 13 Some 45 3-2 1-1 19" 14 Some 1-1 19" 15 Some 3-2 1-4 34" 15 Some 460 5-4 3-4 22" 16 F Brown Sond, LITTIO S.ITT 48.0			· · · · · · · · · · · · · · · · · · ·		8			
13-12 15" 9 Brown S. 1 T & FS. Sand 34.0" 13-12 15" 10 F Brown S. 1 T 36.0" 13-6 18" 11 F Brown S. 1 T Clay 2-2 12" 12 Same 3-4 16" 13 Same 4-2 1-1 19" 14 Same 4-2 1-1 19" 15 Same 45 3-2 15 Same 460 5-4 3-4 22" 16 F Brown S. 1 T 5 17 48.0			13-14	11"	0	Brown SUT; LITIL F	-5011 J	
13-12 15" Brown S, 11 & FSand 340" 35 10-17 10 F Brown Sand Same S, 11 360" 360" 37-6 18" 1 F Brown Sand Some S, 17 Clay 2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 460 5-4 3-4 22" 16 F Brown Sand Lytho S, 17 48.0	7		9-11		0	<i>,</i> , , , , , , , , , , , , , , , , , ,		
13-16 18" 10 F Brown Sand, Same SIT 36.0' 8-8 11 F Brown Sand, Some SITY Clay 2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 4-2 1-1 19" 15 Same 460 5-4 3-4 22" 16 F Brown Sand, LITTO SITT 48.0			13-12	15"	7	Brown SITY FS	and	34.01
13-6 18" 10 F Brown Sand Same SIT 36.0' 8-8 7-6 18" 11 F Brown Sand Some SITY Clay 2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 1-4 34" 15 Same 45-9 3-4 22" 16 F Brown Sand LITTO 5.1T 48.0				,				
8-8 7-6 18" 11		> 35` <		1811	10	F Brau Co V C		36 01
7-6 18" F Brown Sand, Some SITY Clay 2-2 3-4 15" Same 3-2 3-4 16" Same 4-2 1-1 19" Y Same 45 3-2 1-4 34" Same 460 5-4 3-4 22" 6 F Brown Sand, Little SITT 48:0				10		1 GIOGLI SOMY SOM	<u> </u>	70.0
2-2 3-4 15" 12 Same 3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 45 3-2 1-4 34" 15 Same 5-4 3-4 22" 16 F Brown Sand, Little 5, 1T 48.0				1011	11	<u> </u>		
3-4 15" 12 Same 3-2 13 Same 4-2 14 19" 14 Same 1-1 19" 15 Same 1-4 24" 15 Same 5-4 22" 16 F Brown Sand, LITTO 5, IT 48.0				10		TOOWN SAND, SOM	DITY Clay	
3-9 15' Same 3-2 13 Same 3-4 16" 13 Same 1-1 19" 14 Same 1-4 34" 15 Same 460 5-4 3-4 22" 16 F Brown Sand, LITTLO S, IT 48.0		 . 		10-11	12			
3-2 3-4 16" 13 Same 4-2 1-1 19" 14 Same 3-2 1-4 34" 15 Same 5-4 3-4 22" 16 F Brown Sand, LITIO S, IT 48.0		¥0 ◄		15"		Same		
4-2 1-1 19" 14 Same 3-2 1-4 34" 15 Same 460 5-4 3-4 22" 16 F Brown Sand, LITIO 5,7T 48:0			3-2		12		<u> </u>	
1-1 19" 14 Same 3-2 15 Same 1-4 34" 15 Same 460 5-4 16 F Brown Sand, LITIO 5,7T 48.0			3-4	16"	り	Same		
3-2 1-4 34" 15 Same 460 5-4 16 F Brown Sand, LITIO 5,77 48.0			4-2					
3-2 15 Same 460 5-4 16 F Brown Sand, LITIO S, IT 48.0			1-1	19"	14	Samo		
1-4 24" Same 460 5-4 16 F Brown Sand, LITIO S, IT 48.0			3~>	•				
3-4 22" 16 F Brown Sand, LITIO S, IT 48.0		- 45 <	1-4	244	15	Same		
3-9 20 Forown Sand, 4116 3,11 10:0			17	στ		Julik		190
3-9 20 Forown Sand, 4116 3,11 10:0			<u> </u>	22//	16			
3-4 M-P Roddish Brown Sond, Little Silly To Red Shaley			3-4	20		I Brown Sand, LITTLE	5,11	
1 5-6 23' / When of Fan Coud billion of Gun classes Sitt		_	3-4		17	M-P Reddish Brown	Sond, LITTLE SILTY	To Red Shaley
1703103 85 1 0/24 30/04, 17 64/37 (13 0/24 6/24/3/11)		√ 50 ◀	5-6	73"	(/	14'Lens of FGIAY Sono	1. B" Layer of Gray	clayey SiTT

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

_									SHEET 3 OF 5
PROJECT					NAME OF CONT			BORING NO.	SURFACE ELEV.
Nowbard	1 Hook	POIT IVOIN	PAG S	Te	Cross	Dr. Iling	/	PA MW-15D	
								CONTRACT NO.	DATE
DS Lau	d CUT	by Ellam	Assoc	_				486-99-006	11/3/00
SPOON	2	CASING SI	ZE HOLE	TYPE			GRO	UND WATER LEVEL	
	.D. 1 1/8	1.D. RevorT	- B, W	aniloy	Date	Time	Depth		emarks
HAMMER	FALL Se	HAMMER							
140 #	FALL 30		# FALL						
DRICLER		5 Burs		. [
INSPECTOR	,	Dolowe							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP.2				SCRIPTION AND REMAR	
Prill	\$0°	6-9	COVD	, <i>b</i>	FA			c 7	51.0
Bhed		31-22	2011	18 7		Sand,			
	_		101	<u>B</u>	DI-T-P	NET.	Squa, >	omo Clayey Silly Li	Me Red 5 hate Grand 5
WiTI		8-3	\ \	19				Holo Cesard from 1	
ROUDIT	-	8-10	12"		Ked Hrow	uclayay	5.11	LITTLOM-FSOND, L	-1 170 Grace/ 540
	25	9-13		20					Rad Shola
		77-22	18"	00	Raddish Bi	rown Clay	17172 yes	LIDLA M-FSand, 7	2 Decomposar 56:0
	_	10-15					, 		
		23-30	194	31	Red Bro	Sil war	T, Tr	FSond	
		8-11				~	-1		
		19-43	1111	55	Rod Brown	- (6v= 15	5/[, 5-	M-FS and Tr Gro	vel, TV Radshale 600
	> 60 -	10-26		,		17			
		72-2/	n''	23	M-FROI	Brown C	/ \$~	an SITILITIL Grav	ed Little Rokhole (22)
	_	7-10	11"	24	Parama	and R	151.1.	1. The Mat Parl	ed, LITILD ROSSHOLD GZA Brown Sand (3,6
		100/8, A1/2 1/2.	' ''	04	PUCOM PO		<u> </u>	Think it was	11 200 2009 - 63,65
		%						0, 1 8 7 1	- -
	- 65	天					Ke7	Fusal, Soo Drille	is Keport -
								 	
							<u> </u>		
_									/
									
	<u> </u>								_
	>70 -				L			BOTTOM of B	Oriva
									
		ļ							
					 				
	> 75 ◀		L	L	<u> </u>				
	(iore								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MY & MU

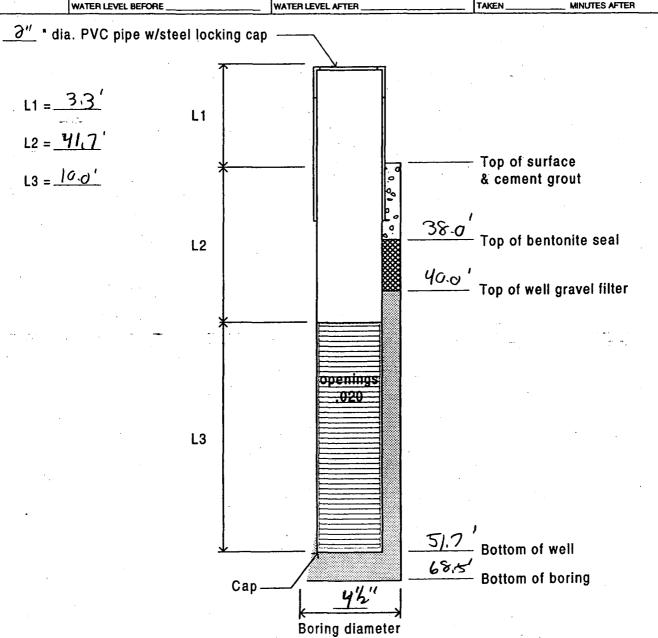
Engineering Department Construction Division **Materials Engineering Section**

			_	U		ING REPORT		
PROJECT	- 1)/- /	POTT	Mark D	LC S.T.	_	CONTRACTOR Drilling	PAMW 15	SHEETOF
LOCATION	TUO SICOL	1011 L	vory Pd	שלוכ ש		all willing	CONTRACT NO.	DATE
Dsl	and ou	Thy	Killen	PSSOC_			426-99-006	11/4/00
TYPE OF DR	RILL RIG. Mobi			COE BARR	EL SINGLE TUBE	DOUBLE TUBE		Po of
	TOM CASING		START CORING	DRILLES			INSPECTOR	
	ko	, <u>.</u>	63.5	<u>, </u>	<u> </u>	S Burus		loue
Start	ME ¹	DEPTH	DRILL 2 BEHAVIOR	WASH 3 WATER		ROCK—DESCRIPTION /	AND REMARKS D END OF RUN	63.5
7	Mus/FT	►63.5×	STandy	Full Ray				
10	1. 1		/			Rut 1 Ro	of Shale, Seam	y + FracTured
1)			I				7	
15	1		Chattering	Blockstup				
13		(5,-	Ч	Losing wo Tar				68.5
		685		-				1
	<u> </u>	_				·	Bottom of	BOLINE
								
		777						
		> 73,5€				<u> </u>	_ 	
	<u> </u>		 					
	gr 4 220		·					
		<u>. </u>						
								
		78:5						
		-						
		· .						
	<u> </u>		<u> </u>					·
	J	►83 15<				· · · · · · · · · · · · · · · · · · ·		
	RUN NO.	FROM	то	LENGTH DR		LENGTH RECOVERED	% RECOVERED	NO. PIECES
NOTES		63.5	68,5	50	/	3.9'	78%	7 Pixos + Frags
ON								
DRILL								
RUNS	·				an			
		· ;						+
i					*	1		1

NOTES: 1 — Record the time to start and end of each foot of drilling 2 — Log drill behavior (i.e., steady, chatter, grinding, etc.)

3 — Log wash water return (i.e., color, loss, blocking, etc.)
 4 — Log type, color and condition of rock (i.e., broken, soft, seamy, hard, etc.), log character of wash return solids

PORT AUTHORITY OF NY & NJ


Engineering Department - Materials Division

Well Installation Report			Sheet 5 of +
Howland Hock, Poit Ivory PdG	SiTie		CONTRACT NO. 426-99-006
Deslard out by Fillam Assoc			CYCLIF Dr. lhay
WELL NO. WELL TYPE YA' MONITON	INSPECTOR DOWN	DRILLER S BUTUS	DATE 11/4/00

Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

DATE

WATER LEVEL BEFORE WATER LEVEL AFTER TAKEN MINUTES AFTER

Hole Back Filled 51.7 - 68,5 with Male Pkg

THE PORT AUTHORITY OF MY & RU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

							•		SHEET) OF 4
PROJECT					NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
V	Houle	ParTIvory	PAG S	70		Drilling		PA MW-15	
TOWNER OF	1000	John Troky	1 40- 71	76	1 0.01	- Julius		CONTRACT NO.	DATE
N - /	1 41	kii no					. 1	486-99-006	DATE 11/3/oc
HS Laid	1 OM MY	Fillem ODS	ZE HOLE	TVDE					1 111190
SPOON	23/2	LASING SI	ZE HOLE	ITPE		·		UND WATER LEVEL	
٥٠ ().D. 0/8	Killam Dos Casing Si "I.D. Hugus HAMMER	1		Date	Time	Depth	Re	marks
HAMMER	547) FALL 30	/ HAMMER				800	ta		, _{at}
140 *	FALL 30'	<u> </u>	FALL	-	11/3/00	8	5.9	while Hond	Hugring
DRILLER		· •							
		Burns							
INSPECTOR) Howe							
CASING		SPOON	RE- 1	SAMP.		3SA	MPLE DES	SCRIPTION AND REMARK	S
BLOWS/FT.	DEPTH	BLOWS/6"	COV.D	NO.				ES CHANGE OF PROFIL	
Hand	0	Hand Aigar	Ful/						
		10	1	1 (1 X = 10	11	/ n	1 5 16	lere 2a
Augr	<u> </u>	 	 	 	INIZC LI	11-CINO	MOKS D	shos Sand Craw	1, ETE C.a
		}					•	,	
		 		2_	T //				T. C. U
		 	 	 	<u> </u>	N-F O	focus:	Sand, Trs. 15,	TrGracel 40
()	_ :	1 /	1 1						
 	>2		 	3	<u> </u>	<u> </u>			
					F// -	M-F- Bro	XVV Samo	of LIDIO DEBrown	Send, INSIT-60
-i/ae	-	1-0	-						
				4	<u> </u>			,	
SIm		1-0	18"	L '_	[F.11- F	- Bicu	v Sewel	LIDIOSHI Tru	vort 80
Augs		1-0			I			,	
77/2				2					
	in -	1-4	144		FII- P	Brown	Squal, L	TIG SIT, Tr SIT	y Clary lod
	→ 10 ◄	7-8					7		
			 	6				<u> </u>	
1		5-11	181	"]! <u>-</u>	Browns	and T	SIT, TrGravel	•
		 -:/	· · •						
		10-12	<u> </u>	7	X	a Samp	6_Sule	L	
	:	18.08	2411	/	Same				
- Y -			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 			, -		
	15	4-10		.0/	L				
	- (3 -	15-01	2011	8	Same				16.0
			-		-20116				
	· · · · · · · · · · · · · · · · · · ·				L				
								Bo Ticmof &	
		 	ļ		<u> </u>			- vo voma) D	
					1		• •		
					<u>n</u> .	11 <		1 / 1, 7 0,	7 N 7
	> 20 <				<u> </u>	11 <u> </u>	pus CF	Socarded The Pl	V INDIAL
					[<h< td=""><td>+ 1-6</td><td>78</td><td>Savort for To</td><td>Tinel</td></h<>	+ 1-6	78	Savort for To	Tinel
					F - 2			7	
1					<u> </u>	malux	<u> /اعج</u>	uscarded	
7						•			
									
				•	J				
				•	<u> </u>				
_	> 25 <			L	<u> </u>				

:3

PORT AUTHORITY OF NY & NJ

Engineering Department - Mater	rials Divis	<u>sion</u>			
installation Report					Sheet 2 of 4
Howland Mode, Part Ivory	Ptcsize				СОМТРАСТ ИО. 476-99-006 СОМТРАСТОЯ
Ds Laid out by Filler	· · · · · · · · · · · · · · · · · · ·				Chaig
WELL TYPE PA MW-K WELL TYPE TH' MONITON	INSF	DAOWE	S B	irez	DATE 11/3/00
Well Development Report (NOTE: WATER	LEVEL READINGS FF	ROM TOP OF PVC)	. ·		
DATE 11/3/00 WATER LEVEL BEFORE 8.0	WATER L	EVEL AFTER 91	7′	TAKEN_60	MINUTES AFTER
الله على ال	ng cap ——	<u></u>			
*			***		•
$L1 = \frac{3.0}{10.0}$ $L2 = \frac{10.0}{10.0}$					
L2 = 4.0			•		
L3 = 10.0		000		Top of su & cement	
L2			200	Top of be	entonite seal
			30	Top of we	ell gravel filter
				٠.,	•
	ne Proposition (m. 1924) e e e e e e e e e e e e e e e e e e e		in the second property of the second		
		openings			·
L3	The second second				
				,	
	•		•		
			140	Bottom o	f well
		7	16.0'	Bottom o	
	Cap	7"		20110III 0	·
	K - Bo	oring diameter			

How Back Filled 14-16 with well Grawl

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

	•	•					-			SHEET OF 3
ROJECT	13	2			NA	ME OF CONT			BORING NO.	SURFACE ELEV.
HOWL	OH CHAR	OK, PORET	1404.	+6 SIE	<u> </u>	CRA16	- Dranc His		UST 7-1	
OCATION		,							CONTRACT NO.	DATE 11/28/00
Norm	OF Bon	DING 537	-15	WEST)F	UST7-	IA		426-99-006	11/20/00
		CASING S	IZE HOLE	TYPE	T		,	7	OUND WATER LEVEL	
		-1.D. AUGER		1]_	Date	Time	Depth	R	temarks
HO #	FALL SAFET	HAMMER	# FALL			11/28/00	15:30	6 to 7	OBSERVED DURI	
RILLER	J	(ROIG								A STATE OF THE STA
NSPECTOR	DAN	DAVIS			Ī				and a parameter of the last of	
CASING LOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.					SCRIPTION AND REMAR TES CHANGE OF PROFIL	
(A 10 A 1. (O		Ban Duca	~			ASPHANT	AN STONE	-		0.51
AND PUBER		HAMP AUGOR	For		- <i>E</i>			~MD E	SLACK FINE TO M	EUWN SAND +
	_ "					GOEN	とレ -			
- Autor	- A STATE OF THE S			2		GAME				3.5
Are Land				<u> </u>		FILL - REC	DSH/BROW	L CLAY	ex sir, Little 6	RATEL AND
				1	1		SAND			101
- 	> 5	 	 , 	3	-					
V	/	₩	V		_	F14- B1	AUX-STAINED	LAYER (1/16"- THICK), GAAD	ES TO BROWN 90
		23	311			SAME			File	VE SAND, SOWIE SILT
F Control of the cont		4 4		4						ES TO BROWN 40 WE SAND, SOVING SILT RACE CLAY
		и С	511	/		Files	18 n.A.	IEV (IIT	- SOME SMALL I	O LADING LADIE
 		7	-	5	 		•			
	- 10 -	5 8	ļ			EN!)	FNE S	AND S	STRONG PETROLEUM	<u>000R10'</u>
1		10 10	18"	,					SILT, THE CL	
1/			10	6.	 	- 1/41×	* robon	Nami4	- 114100 CM	''/
<u> </u>	_	19 34			ļ					12'
ľ						1				
						- — /—	g	~ ?-		
	,			11.343.6	<u> </u>		Bottom	OC_JM	<u> </u>	
L	_		1							
	- 1									
			 		<u> </u>	 				
<u> </u>					L	<u>- Аи</u>	< Some	B 50	MENED WITH DIJ	METER
	_					_	vac. # (Anh 1	LAND FOR CALL	11RONMENTAL TESTINO
			 		<u> </u>	· \(\frac{1}{\sqrt{1}}	<u>"'W\$5" </u>	viri) (SAMEY 10K EIN	dental Fame 1821 141
					L	<u>- Hu</u>	L KEMPINA	46 ZAW	MES DISURDE	<u> </u>
}			[]						1/	
	► ◀		t							
							·	~		
			 							
			 			·				<u> </u>
	► 38 - -		L	,						· · · · · · · · · · · · · · · · · · ·

Engineering Department Construction Division Materials Engineering Section

						-	REPOR	T		
						DOMING		•		SHEET OF 3
ECT Por	10001	P	\$65	ITE			ONTRACTOR DRIWING		UST 7-1 A	SURFACE ELEV.
rion Nc	RTH OF								CONTRACT NO. 426-99-006	DATE 11/28/00
4	1	-	CASING SI	ZE HOLE	TYPE			GRO	OUND WATER LEVEL	
<u>"0</u> ER	.D.	"I.D.	HAMMER			Date	Time	Depth		Remarks
	FALL		[FALL						
R			<u> </u>			1		1		
<u> </u>	CRA	16								
TOR	1)AVI	4							
NG S/FT.	DEPTH _	S	SPOON OWS/6"	RE- 1	SAMP,	2	,,3 S ,	AMPLE DE	SCRIPTION AND REMA TES CHANGE OF PROF	RKS
	>		DANGEL	Full	l	FILL			J F-M SAN	
2		1 m	1	1000	1*	- IIW			<u>v 1- m 200)</u>	4 20me _
	_ : _	 				 	_5 GRA	<u> </u>		
		ļ	1	ļ	2	Sm	έ		3,5	
							1			
				.			L BOTTOM	OF BORD	NG (UNCLETE PA	25)
	- 5 -						بر خند حند	<u> </u>	- from -	
					٠.					
										
	*	.								•
		^.								
-	- 10 -	-		zwp .		24 Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A STATE OF THE STA	·	The second secon	
		<u> </u>		 				- ,		
					,					
	_ 🐔									
				*						0.0
	- 15 ◀			-	, ,				CREENED WITH	
									GR ENVIRONM	
							- PEMAIN	146	SAMPLES DISC	AR-DED_
					,					
		-								
	-70 <									
	_ · _						·	<u> </u>		
							_			·
					,					
-+	∹, —	-				<u> </u>				+
_ 1	/					Ì)

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

					·			+ 		•	SHEET OF 3
PROJECT		<u> </u>	<u> </u>			NA	ME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
PORT	- Vory	74	6 SI	TE			RAK U	ZILLING		VST 7-1 B	
					.0				,	CONTRACT NO.	DATE 71/70/0
N	URINY OF	DUI	WING "	55+	78	W	rest of	UST7-1 A		426-99-006	77/28/00
SPOON			CASING SI	ZE HOLE	I YPE		Pate	- 1		UND WATER LEVEL	iomorko
HAMMER	O.D.	"I.D.	HAMMER		<u> </u>		Date	Time	Depth	<u> </u>	emarks
	# FALL		i	# FALL			*				
DRILLER		<u> </u>		7 1 1122	7.		I				
	<u>ا ک</u>	JPA	16								
NSPECTOR	1										
$-\nu$	1) AVIS			T					l		
CASING LOWS/FT.	DEPTH		SPOON .OWS/6"	RE- 1	SAMP.2 NO.					SCRIPTION AND REMAR 'ES CHANGE OF PROFII	
		-		JONE	110.					LO ONANGE OF THOM	
HAND	┼	tt riv	El	ļ	1	L'	H STONE	AND WO			
ANGE	<u> </u>	<u> </u>					_ 				
			1,		2	F	TH - BLAC	k strinet	FINE	TO MEDIUM SHIN	D-PETROLEUM OD
\overline{V}	 	1_1	<i>y</i>			二					
	 	1 -			}	-					
	- 6-	┫—				<u></u>					
						1					
											
	 	-				<u> </u>		- <u> </u>			
	<u></u>					<u> </u>		•		LES SCREEN	1615 MITH
								_ Pm _n	NETER		
	//										ENVIRON MENTAL
	► 10 ±	1 .				 				2017 1 01- 0	
	 	 				<u> </u>		_ 1BIN			
						L		Au I	29MAI	VING SAMPLES	_ DIS CARDED_
	 	1									
	 	+				-	-, 				
	16	—	· · · · · · · · · · · · · · · · · · ·			<u> </u>		- 			
	[13					1			•		
										· -	
	 - -	1				 					
	 	 				<u> </u>					
											·
					,					. — — — —	
	•	•				-					
	 					<u> </u>		- 			
	<u>L</u> .					L					
t					-						
	_	 									
		 		-		ļ		- 			
						1					

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane 3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MYSKY

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

_									SHEET / OF 2
ROJECT	11	0 /			NAME OF CONT			BORING NO.	SURFACE ELEV.
Howi	AND HOOK	:, P+6 s	51TE		L CRAIG	Derunb		15T7-1 C	
OCATION	,	^					,	CONTRACT NO.	11/28/00
VORAH	OF BULL	101NG S 37	-> &	5' 500)TH OF U	ST7-11	<u> </u>	426-99-006	11/28/00
POON		CASING S	IZE HOLE	TYPE			GROU	JND WATER LEVEL	
	*O.D.	*1.D.	1		Date	Time	Depth	F	emarks
AMMER		HAMMER							
DU 1 55	# FALL	•	# FALL					<u> </u>	
RILLER	J (RAG					,		•
NSPECTO	' 1 1 .	DAVIS							
	LAN .			1 00000 2		30.4	ADI E DEG	DIDTION AND DEMAN	1/0
CASING LOWS/F		SPOON BLOWS/6"	COV'D	SAMP. ² NO.				CRIPTION AND REMAR ES CHANGE OF PROFIL	
MAN S		HAND AVGER	Fun		<u> </u>	ND DARK B			-
Burg								MEDIUMSAND	
				2	Fur - BLA	KK STAINES	FINE 7	TO MEDIUM SAND	PETROLEUM OPIR
-1 -		<u> </u>				- 			
			1	↓	<u> </u>				
]	L 301	tum of	BURIN	6 (concrete Pi	۳۷:)
	75]					
	 		+	1 .					
	 		ļ						
			1]		•		
	 			1					
		<u> </u>	 	1					
<u>.</u>									
				1	· Same	•			
				1	<u> </u>				
			 	l ·	<u> Hu</u>	- SAMPLE	s Scn	ENED WITH P	10 meters
					AL	L SAM	PLES ?	DISCARDED _	
] .		_ 	- 		
	 - -		 	1	 				
·			<u> </u>	1					
	 		†						·
	+ -		 						
	 		 						
			1		<u> </u>				
	[·]			,					
	+ -		†						
·			ļ			- <u></u>			
-						•			
	T .		 					 	
-			 						

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

BORING	REPORT
--------	--------

				,					SHEET 1	OF 3
PROJECT			· ·	.,	NAME OF CONTE	RACTOR	i e	BORING NO.	SURFACE E	
\sim τ	oru	ЬfĊ			Craig d			UST 7-2		
LOCATION		1,,+	15' E of	rail row	1. J	<u> </u>	1	CONTRACT NO.	DATE	
±75' Nor	th ol	Bldg 363-	Block	140				426-99-006	11-21	-00
SPOON	. 1	CASING SI	ZE HOLE	TYPE			GROU	IND WATER LEVEL		
<u> </u>	<u>2 %</u>	1.0. Auger	s L	<u> </u>	Date	Time	Depth	Rei	marks	
HAMMER Auto		HAMMER			1 1	• • • • •		Canal		
HO # FALL	<u>. 30</u>)	FALL		11-21-00	1:50 PM	7.0	SAMPLE # 4	·	
7	Crai	۵		-				. '	•	
NSPECTOR	· -7	J,								
	1. 4	arks	,							
CASING	, 	SPOON	RE- 1	SAMP.2	•			RIPTION AND REMARK		
Cutter Head	BTH ◀	BLOWS/6" Cutter Head	COV'D	NO.		U		S CHANGE OF PROFILE	<u> </u>	<u> </u>
dandauge		Handauger						CONCRETE		<u> </u>
		"		1	Fill granch - 1	plack of		some Gravel, to SITT		
				 	, , ,	1				
	-		 			rown Clay	ey_SLIT,I	ille Gravel same m.	- Y SAND	-
				2	SAME	<u> </u>				4.0
	· _]						•			
	5			3	F. []		G-2I	and c-[SAN]	<u> </u>	CIAVEVO
follow	-		*	-2-	1111 reddish	· brown	vravel	and C-1 SAIN	Some	CINTE / SI
ST		6.6	·	,			·	· .		
"	1	10-10	241	4	Reddish -	brown	Silly C	JAY and Grav	el	
.		9		*						
	-	<u> </u>	9 / 11	_	<u> </u>					
─	0	10-10	24"	5	SAME		- <u> </u>	_ (oil)		
· ·		5 - 7	•	***	<u> </u>	· ·	· _ <u></u> : ·			
	一一	11-11	24"	6	SAME			(oil)	- 	
	-		~~	<u> </u>	24TI E			- 4		
		5-7								
		8 - 8	24"	7.5	SAME	·		<u> </u>		
		10-15		7						. — -
	15	i		8	C A =	 				
		20-20	24."	. 0	SAME					16.0
										<i></i>
					Maka: 350	mples ^	لمعيم	for testing	-	7
										/-
					All of	h <u>er sam</u> p	des scr	eened with		
	lo 🚽				Pil m	eter 2	discarde	dBo	ttom of	Baring
7	T								. =	7
	+			•						
			i	}		. — —	·			
					<u> </u>					
				ļ						-
	+			}						
	ار			į						

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT SHEET BORING NO. NAME OF CONTRACTOR SURFACE ELEV. PROJECT UST4-Craia drilling CONTRACT NO. DATE LOCATION 6-99-006 11-20-00 CASING SIZE | HOLE TYPE SPOON **GROUND WATER LEVEL** Augers Time "I.D. Date Depth Remarks "O.D. HAMMER HAMMER 140 # FALL 11-20-00 DRILLER raid INSPECTOR SAMPLE DESCRIPTION AND REMARKS RE-SAMP.2 CASING SPOON LINE LOCATES CHANGE OF PROFILE 3LOWS/FT **DEPTH** BLOWS/6* COA.D NO. Ö Tandaugu ASPHAIT Handauge 0, Ful SAME 3, Augen 18 No wood 8 1/ Black SAND some Gravel to Silt circles Same 15 SB 20 3 - 3 Coctesting screened with PID melin discarded. Bottom & Boring

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane

^{3 --} Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

. 🕶				•			,	,	SHEET 1 OF Z
ROJECT		P&G	·		NAME OF CONTRA			BORING NO. UST4-2	SURFACE ELEV.
Port I	vory	1° \$ 0			Craig 1	drilling	}	UDI4-Z CONTRACT NO.	DATE
± 100 W	ا عرام 13	ldg 38			-		,	426-99-006	11-20-00
POON	1	J CASING SI		TYPE				UND WATER LEVEL	
3 .0.	.D. 23/	8 1.0. Auger	5	1	Date	Time	Depth		Remarks
LAMMER		HAMMER			Ţ.		1	6 1 11	
	FALL 3	0 -	# FALL		11-20-00	1:30 pM	5.0	Sample #	3
RILLER	7 Cra	i o							
NSPECTOR	7 a	'y				····			
	<u>].Z</u>	arks							
CASING	J	SPOON	RE- 1	SAMP.2				CRIPTION AND REMAR	
LOWS/FT.	P DEPTH	BLOWS/6"	COA.D	NO.			AS Ph	ES CHANGE OF PROFI	LE 0,0
andaugu		Handauger	Full	1					
			<u>'l_</u> _	1	Fill black	2-2	SAND	Some Gravel	te.SiT
						T		,	
			 	2	SAME				
		 	 		DAME			 	
	- 5 -	-		*					
				3	SAME				
ollow		7 1							
AI OS		100	16"	14	51111	- 0 c	/ A18 A	C. 1 1 C:	
-	<u> </u>	8-19	16	7	Till black	c-> 2	ב, עצוא	ir staney 'the	It, cinders. wood
		25-6	ļ				<u> </u>		
	- 10 -	6-6	8"	5	Mise Fill	black	2-13	AND tr. Gravel	to Silt cinder wood
	10	16-5			1. 1.		1		
		- ·	9 11	6	SAME				
		5 - 4	<u> </u>		- 54116				
		2-2		*		<u> </u>			
		2-2	10"	17	SAME				
		6-12							
	15		, , , ,	8	_ SAME		0.1		
V		17-6	10"	U	Brown P	LAT &	-fiber:	<u> </u>	16.0
						<u> </u>	- 		
		<u>. </u>			Note: 2	_Samo	er so	wed for testi	ng/
					Δ	l all		screened with	フーフー
		 				۱ <u>۰ ۲</u> ۰٬۷۶۲ ــ	Samples.	1. II	Bottom of Baril
	20 -				<u> </u>	V mete	4 <u>4</u> 4	discarded	
			1						
;								~ ~ ~ ~ ~ ~ 	
						 			
-	·	<u> </u>							
_		•							· · · · · · · · · · · · · · · · · · ·

THE PORT AUTHORITY OF MY & NJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										SHEET OF
PROJECT		010				AME OF CONT		1 .	ORING NO.	SURFACE ELEV.
Port	Lvory	P & G			1	Craig d	rillina		FS-1	
LIULAIRUR	U	211	1						ONTRACT NO.	DATE
±15	10 2/5	Bldg 12	Front s	ide)	مال	ck 140	0 10+1		26-99-006	11-17-00
SPOON	1	DASING S	SIŽE HOLE	TYPE		<u> </u>	·		ND WATER LEVEL	
	D.D.	"1.D.		i	ĺ	Date	Time	Depth	ļ	Remarks
HAMMER		HAMMER								
	FALL		# FALL				<u> </u>		<u> </u>	
DRILLER	SB	urns								
INSPECTOR	<u> </u>	urns	**							
	7.7	arks		٠		1			}	
CASING	フラー	SPOON	RE- 1	SAMP.	T		3SAI	MPLE DESC	RIPTION AND REM	ARKS
BLOWS/FT.	DEBTH -	BLOWS/6"	COA.D	NO.	1		u	NE LOCATE	S CHANGE OF PRO	OFILE •.1
HANDAUGE		HANDAU GER	Full Rec	A	₹.	Il block 1	. dark bo	wn c - 6	SAND Some G	reavel, tr. Sill, coal sinders b
TIC WARRIES		AAADAU GEA	THE INC.		_					
 		 	 -	1.5	r	ll reddish	-promu >	ily_UAX	with c-f SA	ND & Gravel.
				2	2	AME		. 		
♥.		¥	y y	~	↓_					3.9
					✝				CLAR	<u></u>
	> 5 <		ļ		-		<u>Lonc</u>	rete_	SIAB - ob	struction 4_
S-F			<u></u>		L					
- 2.										
			 		—					Bottom of Borin
			_		_					
					L					
•										
	> {		1			-, -,- ,- -,- ;		· · · · · · · · · · · · · · · · · · ·		·
	_		 		<u> </u>	- ·				
	•				L					<u> </u>
			1		\vdash					
		a affinishmen egite	 		 			. 		
	ا ا		<u> </u>		L					
	-		 		 					
	_				<u> </u>			. <u></u>		
							- 			
			 -		-					
	► 1				<u> </u>					
ſ	!]									
			├	•						
		·								
	7									
	- +				_					
	اد	•	1 1	i						1

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

_										SHEET	OF /	\neg
PROJECT	-	חות			NA	ME OF CONT	RACTOR		BORING NO.	SURFACE	ELEV.	•
Port	Lvory	7 & G			$\bot \langle$	craig o	drillina		FS-1 A			
LOCATION			,			J	J		CONTRACT NO.	DATE		
±17'5	of Bldg	13 Block	1400	-ot	1	·			426-99-006	<u> 11 - 1</u>	7-00	
LOCATION ± 17 5 SPOON	1 J	CASING S	IZE HOLE	TYPE				Т.	UND WATER LEVEL		<i>!</i> 	
3 (C	Safety FALL 3	1.D. Auge	rs			Date	Time	Depth	Re	emarks		
HAMMER	Safety	HAMMER			ł							ŀ
			# FALL		ļ							
DRILLER	S Bur	ns										
INSPECTOR		arks										
CASING		SPOON	RE- 1	SAMP.2	1		3SA	MPLE DES	CRIPTION AND REMARK	(S		
BLOWS/FT.	DEPTH	BLOWS/6"	COV.D	NO.	<u> </u>			NE LOCAT	ES CHANGE OF PROFIL			00
Handauger		Handauger	Full Rec		-	11 1-1-1-1-	2 black C	ALPHAIF	Gravel tr Sill coal c	امنا بالمئة		-44
1 3		130	 		L		1					1.5
	<u> </u>			1	E	<u>ill reoldish</u>	brown . Si	Hy Clay	with c- [SAND and	Gravel .		_
:					İ			-	1			
				2		SAM	 F					
	⊢ -	 	 	<i>&</i>	\vdash	→ WIL	<u> </u>				- ' -	_
ý	5 5		W	4			<u>-</u>				5.	<u>o</u> "
											į	1
					H	,					4	\dashv
					<u> </u>		<u>-oncrel</u>	ie_SI	Ab - obstruction	<u> 21</u>	/_	
			1		┢	- — —				Bottom	of Bonn	10
					<u> </u>						1	Щ
,	د ماد			من نے ب	-	and the second of the second o	entra de la compania		sug <u>i Maka Makatan</u> Jawa Kalan	2	2 1	-
	> 10 <											
	<u> </u>	· · · · · · · · · · · · · · · · · · ·										\dashv
		·							_· ·			
		[:	ĺ							
		`										\dashv
		* * * * * * * * * * * * * * * * * * *	 									_
												_ [
	► 15 <								_ 			
			 		\vdash							\dashv
					L				· · · · · · · · · · · · · · · · · · ·			\Box
					Ì							
	-		 		 							\dashv
					<u> </u>							_
	. 9											
	> 20 ◀											\neg
			 		<u> </u>	- 						
;			1									
			<u> </u>	·								-
_			1/1	· · · · · · · · · · · · · · · · · · ·				:				_
				ſ								
	▶ ∢											

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

													SHEET	OF 3
PROJECT		0 : 0			NAME OF CONTRACTOR BORING NO.								SURFACE ELE	<u>v.</u>
<u> </u>	rt Ivo	ru Peli			Craig drilling FSIB							*		
LOCATION		,)	1 011		Δ ι	\)	J			NTRAC			DATE	<u> </u>
40	to Mic	BH-FSI b	etw. bld	9122	ble	1913 Bl	ock 1400				<u>-99-</u>		11-17-0	00
SPOON	1	CASING S	IZE HOLI	TYPE			· ·			D WAT	ER LEV			
HAMMER C	D.D. <u> </u>	8 "I.D. Augei	rs			Date	Time	Depth	\dashv		·	Res	marks	
			# FALL		Ì	11-17-00	11.00	7.01	1	S	1.4	4 /.		
DRILLER			# FALL			11-17-00	11.20	1.0	$\neg \dagger$	Jun	ple#	· 4		
	SB	urns												
INSPECTOR														
	1.4	arks	·		Ļ_	² SAMPLE DESCRIPTION AND REMARKS								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	'	•	S	•						
Handauge		Handauger	Full Rec	1	L			0.0						
1		1,30.			L	-1 1	⊔	CAND	£.	AUE.	i. S IF c	on dees	-cost- ====	
						Eil arenish	yellow e.f.S	AND AND	<u> </u>	Hu CI	Ay oir	iders.	read, cool	
					Π	7.7	.		,	J		,	,	
	-		 	2	-									
	<u> </u>	 	 	~	Ti	II greyish	- black l	عر لعسمه	oμ.•	<u> - </u>	SAND	,tr. <u>Bil</u>	T, cirders	
	5 4			_	<u> </u>					'			· —— ·	
	5] [1	3	'	Fill growie	L black (rayel	501	m e. C.	- P SA	ND to	SITT cinde	ns 6.0
F J		4 - 7	•	* A	M	ise Fill yello	wish - white	dietomac	cour	grey .	LISAND	Gravel	SIT cinde	
ALLES		 	18"		-									
- 1	<u> </u>	4-3	18	48	1	<u>ill greyi</u> s	sh-black	Gravel	, <u>So</u>	me c	-C SAI	<u>ND tr</u>	SilT, cinder	
		1-4									<u> </u>		<i>·</i>	
		1-0	241	5	1	Il amuic	L White	Diel		0.00	السند م		c (SAND &	Garal
	- Janes O v / <		\ \\ \alpha_1 \\ \.		-"	r. Andre	11	- <u> </u>	<u> </u>	<u> </u>		44	C. Sale	Uraver
		wight of		6	7	Sample fal	1	<u> </u>			-	 -		
	<u> </u>	HAMMER	.0."	O	L	•				 -				
İ		W.o.Hz.	18 *	* 1	<u>F</u> i	Il grey J	Dietomace	ous =		وللن	rey C -	SAN	D & Grave	13.5
		. 18" 736 unce	100/0"	7	Г									7
	The second second	, , , , , , , , , , , , , , , , , , ,	10"	-	<u> </u>					 -				-/-
	15 <				<u></u>			 		 -		<u> - : -</u>		
			·		L		·	<u> </u>	<u>_K</u>	<u>elus</u>	al-P	otto	n of Be	oring
					N	ote: 3	SAMPLES	5046)	
					-17		• •				_		1.	
					-		samples						neter	
						the	other	sample	<u>.</u>	_dis	card	ed_		
	20 -							•						
	- 44													-
						<u> </u>								
				. •										
													,	
	_													
				ŀ		 								
	→													

THE PORTAUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

		*			<u>*</u>						SHEET OF	3
PROJECT	_	0 1	^	-9		N/	AME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.	-
1 Brt	Ivory	۲ ٤	G				Craia o	Irillina	İ	FS-2		
LOCATION	J		_				,)		<u>-</u>	CONTRACT NO.	DATE	
± 50	" NE	ol' Bla	10 12	Block	1400	L	at 1	•	ì	426-99-006	11-17-00	,
SPOON			OASING SI	ZE HOLI	TYPE				GRO	UND WATER LEVEL		
3 .	O.D. 2	% "I.D.	Auge				Date	Time	Depth		marks	
HAMMER	Safety		HAMMER									
	# FALL	30 .		# FALL	-		11-17-00	PM	7.0	Sample#4	•	
DRILLER							14		1	1 - 1		
	5. B	urns	,									ĺ
INSPECTOR	1							d				
	14	ZARK	(5								————————————————————————————————————	
CASING	7		POON	RE- 1	SAMP.2	_				CRIPTION AND REMARK		
BLOWS/FT	DEPTH		OWS/6"	COA.D	NO.	1_				ES CHANGE OF PROFILE		0.0
'		HAL	1DA4CR	Full W		 		<u> </u>	shea K	och DGABC		
	T '				1. 1	Г	D A 11 4 4	·	1 1			
	 	_		├╂		L		ST - Cr				<u>2.0</u>
						F	Il red - b	rown C	- PS	AND tr. Gravel	te SilT	
	†				\ \chi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Same		***	<u></u>	,	
	+- ·		-	 	 'C	⊢	Jame.		- -			
	5]	L						
Ţ			7	T	3	Г	SAME					
W.	 -		V	—		-	<u>JALIC</u>					- 6.4
- M-	<u>L</u> .	3	- 3		/	-						
Augu	,	7	L	12."	1 4	T		- 0 - 0	V NI V	10 1 1 Si	- 	
1,2,7	╊	- 		<u> </u>	'	ш	m -deeA -	-c-+ -3	₩₩ <u>₩</u>	tr. Gravel, tr SI	- 	
	<u></u>	8.	_ 9		7			'	<u> </u>		<u> </u>	_ ·
		٩	- 10	24 W	5		SAM	F . /.	الله	good splinters)		
	-10	<u> </u>		~~		-			NEW TO	1000x Sprin ess		es 22
	<u> </u>	5	- 3	ļ	/	<u> </u>		· 	· <u></u> -			
1		9	- 25	20"	6	•	SAM	FT	with w	1000		
	 			- V			ـ پيدانــا	-	. · ···· . W	<u> </u>		
		40	-28		_			- — —		 		
		38	8-25	24 ⁿ		F	illoreu	C-P SAI	S an	Gravel tr. Sil	Wood	1.
	T -				1		- 77		· 	<u> </u>	·	
	15	4 KO	-12		8				 _			
	\perp	18.	-27	20"	O	_	SAME			ND & Gravet fo. Sil		
	Γ -		-1	Ţ	, 4		Fill greyist	black c	- (SA	ND & Grave Fr. SI	T& wood .	
	 -		- 38		a	•		een c-				
₩		68.	- 88	2.4°	x J B	J.	reuish - ar	een c- (SAN)		
					~		-00					A
		+			}							- - 7- -
	20	_				No	ste:3 5	amples s	Barea	for Testing_		
	20					٠.	All il	7		1 7	0 11	6
 					}		- Till othe	r Eamb	1 es s c	reened with _	Bottom of	Bocin
	L						- PiD M	uter &	discor	ded	. 1	
	- · -			-	Ī							
	-				}							- —
	<u> </u>	1	<u> </u>	113.4	į					·	·	
					;; ;; [
····	•	┫——			لللثيث							

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

			•		,				SHEET OF 3
PROJECT	· +	£ .	^		NAME OF CONT			BORING NO.	SURFACE ELEV.
11	ort ly	ory P&	<u> </u>		<u> Lraig</u>	drilling		FS-23	1000
LOCATION	As laid		11.0	elol	0			CONTRACT NO. 426-99-006	DATE
SPOON		CASING SI	7E 1 HOLE	TYPE			GRO	OUND WATER LEVEL	111-12-00
ス・	O.D. 2 3/6	3 1.D. Auger	5 1		Date	Time	Depth		emarks
								6 1 4 6	
	FALL 3	0 -	# FALL		11-15-00	11:45	8.5	Sample # 5)
DRILLER	D.0s1	مام			ļ			. •	
INSPECTOR		1				 	· · · · · · · · · · · · · · · · · · ·		
	1.4	arks							
CASING BLOWS/FT.	>	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.				SCRIPTION AND REMARK TES CHANGE OF PROFIL	=
Handauge		Handauga	Full Rec	NO.		DGABO		LS CHANGE OF FROME	<u>0.0</u>
- total	 		-						
	<u> </u>		<u> </u>		Hisc Till gr	eyish-bloc	<u>k c-{</u>	SANDA Grovel, tr. Sill,	cinders, wood, coalete
					L		<u> </u>	· ·	<u> </u>
				2	Fill brown	c 1994	ND Ir.	Gravel , Ir. Silty C	LAY to cool
				· 	THE SHOWN	+ =-	<u>. • • • • • • • • • • • • • • • • • • •</u>	The state of the s	mr, 1935
	→ 5 <			3	CAME				
<u> </u>	├		J		SAME_				
, M	<u> </u>	4 - 4		/ ×					
ANGERS		5 - 5	14"	4	Fill reddi	sh - brow	n Clay	LEY SIT Will.	c-f SAND, tr. Grave
1		1. /.						- , 	
		9 - 4	911	5	GUAAF				10.0
	> 10 <	17 - 14	1		SAME		California (Cal	Contraction in the contraction	
	 	4 - 5		" / "	<u> </u>				
	<u> </u>	6.5	20"	6	Fill_box	war-S	SAND	AND Red-bro	un Clayey Sill, little
		2 - 2		· ·	SAME	7			12.8
	Γ. –	3-4	24"	7		DEAT	50	grey CIAY	14.0
- Contract Special	 	3-7	~~~	-/	DIGWII		JOINE	4.69 0.47	14.0
	► 15 <				<u> </u>	- 			
	 		ļ <u>.</u>					were source	
								screened with	
								were discard	
	 - -							R ₀	ttom of Boring
	▶ ∢								
	<u> </u>		ļ						
		·							
				,					
								 	
	t l	*	ı i					•	

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF RYSKY

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

_			•		SHEET 1 OF 3
PROJECT P	of To	Jorn P	& G	 -	NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
LOCATION	U10 1	1			CONTRACT NO. DATE
Δ.	المنماء	out in t	Y= 6	لمامن	126-99-006 11-15 -00
SPOON	DIN. E	CASING S	IZE HOLE	TYPE	GROUND WATER LEVEL
3 .	30 9 H2	1.D. Auger Hammer	ر ا	_	Date Time Depth Remarks
HAMMER	<u>~ (0</u>	HAMMER	<u> </u>		
140	FALL 30)	# FALL		11-15-00 1:40 PM 8.0 Sample #5 (top)
DRILLER	_	·· · ·	- 17100		
	D.0s	uch		i	
INSPECTOR	7 7	Zarks			
04000	} - *		DE 1	CAMP	2 JOANNI E DESCRIPTION AND DEMARKS
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP. ² NO.	l
HANDAUG		HAND AUGER			LINE LOCATES CHANGE OF PROFILE 0.0
	<u> </u>	 		*	
					Fill grey c-f SAND and Grovel tr. SIIT.
		 		1	J-J-T
	- -		 	_ *	
				١ ٦	Fill greyish - black c- (SAND some Gravel to Sill cinders, coal, w
	- 5 -		 	-	
•		1		3	SAME
1	<u> </u>	1 -			
- 1 · ·	├ -	4-5	 ,	4	
HIGEN	L _	5-5	24"	14	SAME
		1. 1.			
	 	7 - 4	11	1	CANAC
	10	9-3	20"	5	SAME (wood)
		8 - 12			
-	-	0 - 12	-	6	
		8-6	8"	<u> </u>	SAME (wood)
		9 9			
		1 /		7	OAMs.
	<u> </u>	4-4	7.4		SAME
	. مر	2-2		*	
	> 15 <		- 11	Ω	Brown Peat to gray silty CLAY
y		2-2	20"	0	Drown reat to gray Silty CIAY
			1		
	<u> </u>		ļ		Note: Samples 1:218 saved for testing
					All samples screened with PiD meter
]		
	- 20 -		 		and discarded Bottom of Boring
					,
		ļ			
		1			
		!			

THE PORT AUTHORITY OF MY & NJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET OF 3
PROJECT _		0 1		Τ,	NAME OF CONT	RACTOR	В	ORING NO.	SURFACE ELEV.
٢	oul I	vory P+65	ild		CVAIR "	Duilling	F 1	FS-7	
LOCATION							, c	ONTRACT NO.	DATE
V	vest o	F 812 55					1.	476-99.00(12/1/00
SPOON	2.	/ CASING SI	ZE HOLE	TYPE				ND WATER LEVEL	
3 %	.b. 27	8 -1.D. Aug 01		1	Date	Time	Depth		Remarks
HAMMER					12/1/20	MAC	c1.	1. 4	
140.	54F FALL 3	ð · * ,	FALL		12/1/00	0825	6'	HA	
DRILLER									
JeF	F CVA	is							,
INSPECTOR									
· (Charl:	e Spring	ev						
CASING	(B)-4	SPOON	RE- 1	SAMP.				RIPTION AND REMAR	
BLOWS/FT.	DEPTH -	BLOWS/6"	COV.D	NO.		LII	NE LOCATE	S CHANGE OF PROFI	
HINDAUEV		Hand auger	Full	1	CONCLOTE				.55'
1000		1.20			GUNT FILL	- w/Gred M	2H1X -		
			 - - - - - - - 		 	-,			
1 .	•		1 1	1*	Fine to Me	5 2MG	- Traces	LT/Some Girel	DONBrown
				ーム			•	<i></i>	40
			 	ļ					110
	- 5 -			3				•	
V)	1	J)	FIND C.	AND T	LACO S	,IT IT	Blower
		-	<u> </u>		<u> </u>				
FV		8-14	2'	4			·		
		H-10		1,	Sang	,			
			2/	- 1					
		12-14	2′	54	<u></u>			<u></u>	
リンし		16-18			Some				
- <u> </u>	> ∦ 10 _<	4-6	7ر	,					
		 		6	<u> </u>		: <u></u>		
·		10-7			Sine	•			120
						2 -24	- E 12	01: 11: 0:	
				1	 	BOTTUM			
					L				
	. –								THE STREET
	► 15 <	f			— — —	÷ 	· :		
	 -				-4154	Mrs Sci	Dered 1	4 LD _	
]]		1 - Sample	525	SA	VPCD vod For Em	1. toshing
		1				D 44		C D	
		-			<u> </u>	ICEN ON, V	24 DI	os Discord	<u> </u>
		1			l				
							·		
	> 20 <	4						- 	
			<u> </u>	ı	L	··			
									
		 			 	· — —	· — . — -		
	<u></u>			ĺ					
			1						
									
	•				•				

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

										•	SHEET / OF	3
PROJECT						N/	AME OF CONT	RACTOR	ORING NO.	SURFACE ELEV.		
Houle	of Horse	PENT IL	014	PJG	SiTo		Craic	Valling	/ ., ,	#11-1	· ·	
LOCATION	9,000.	1-73 45-1	-			•	Book	Unlling 1400 to	71 0	ONTRACT NO.	DATE / /	
+751	South	CASIN	f Tr	uck	Scale		Near Su	UTH GOT	e' l	126-99-006	11/7/00	
SPOON		CASI	VO SIZE	HOLE	TYPE	7				ND WATER LEVEL		
J- 0	.D. 18	"I.D. CASI	vyr	_			Date	Time	Depth		emarks	
HAMMER		HAMA	MER					35-				
140 #	FALL 30	•	# F/	ALL			11/1/00	9茅	3,0	while Hand	Accring	
DRILLER		. 0										
		Burus									·	
INSPECTOR		PHouse						,				
CASING	++ -	SPOON		RE- 1	SAMP.2					RIPTION AND REMARK	(S	.
BLOWS/FT.	DEPTH ◀	BLOWS/6	5" C	OV'D	NO.	Ļ.,	. <u></u>		NE LOCATE	S CHANGE OF PROFIL	E	<u>Öc</u>
Hand	0	Hond Dy	car 1	5//	ر ا	\vdash	Crushod .	5 Jour	 			0,5
		1	r' '	1	1	-		[] Q.		T c + T C 1		
Auger				\perp		1/	F/11- 14-1	Dioux	- SONO!	Trsit, Tr Gush	al Slove	
					_				•	•		
				1	ے		- M -	- -	-			
			 -	-		<u> </u>	- 1 <u>11-1-</u>	Brown	Danol,)	<u> </u>		
					_	1					·	
	> 2			1.	3		Sam					
<u> </u>		<u> </u>		Ψ	<u> </u>	-					 ·	
bow		4-3			4	L	San	æ				7.0
STATOS		3-3		1910	7	Γ	M-F	- Gra	Soud Th	SUT		
Augus		3-3			7		Note	5*	4- 4-	Taken wim 8	2' Spoor	
9		6-12		18"	5				_	SONO LITTLE SITI		
	> .ml_0, <	7-9		<u> </u>		╀		10000	4	<u> </u>		
		<u>'</u>	1		6	<u> </u>			;	- 		
	:	13-1		1811			_ <u> </u>	rown !	Sand	Tr SIT		
		6-11	. 1 -									
		11-14		16"	1	-						
				(W)		_	<u>Sar</u>	ne		سلمگششد للله للله	_	
	- 15	4-6			æ		Sam	<u> </u>				510
	(1)	7-9		144	8		M-FGr	y Savol,	LITE SIL	Ţ		5.5
						-	- Drown	V 2000,	30/me 311	<u> </u>		200
									·		/	/
ł										Be Temot Bo	י אינועני	
						-						
			-			L						
	- 20 -					_	<u></u>	Sample	chace	For Envire	MeTery _	
					. •		_ <u>S</u> #	100	Saus	/ For ENVIVE	TosTiris.	
	─ · ─						- R		<u> </u>	Ala Disant		
		· · · · · · · · · · · · · · · · · · ·				-	🗠	maning	- samy	165 Discerolo	9	
						L			· ·	·		
			Ì	Í								- 1
					,	 			·	 		
	こつとる	ı	- 1	ł			•					

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET / OF	3
PROJECT			·		NAME OF	CONTRAC	TOR		BORING NO.	SURFACE ELEV.	
PR	octoe .	& GAMA	SLÉ		CR	AIG			FILL-Z		
LOGATION				· .		generally and the second			CONTRACT NO.	DATE	
AS	MARKET	D OUT IN	THE	FIELD	r R-Y	KILL	Au A	ssoc.	426-99-006	11.3.00	
				TYPE				GRO	UND WATER LEVEL	•	
3 :0	.o. 29e	HAMMER	es		Da	te	Time	Depth		Remarks	
HAMMER (S		_	# FALL		11-3		Am	4.1'	Fourd in	5#3	
DRILLER	· · · · · · · · · · · · · · · · · · ·	Pennell									
INSPECTOR		Oudel									
CASING		SPOON	RE- 1	SAMP.2	r - 1		3CA1	MDI E DES	CRIPTION AND REMA	RKS	
BLOWS/FT.	DEPTH	BLOWS/6"	COA,D	NO.	_		LIP	NE LOCAT	ES CHANGE OF PROF		
15			1				ASPRO	Hen Veu	ement Zock		014
		HAND	Full								
Augers		AUGER		l l	Fill- 0	layic tro	ر ے سد	SANT	some Gravel, trai	e Silt, frage Coust	-deock
	 ·		 	 					1	$\frac{1}{2}$	- —
	 ·	· ·	 	2	till- t	stown c	<u></u>	DAMP V.	rair Gravel, +	race Sixt	
	< _	1		6			U				
	-]							
			<u> </u>	 	-						
		4-4	20"	3	FILL-			<u> 5 A</u>	<u>m E</u>		
		67				•					
											
		5-6	20"	4	Fill-			> <u>A</u>	<u>me</u>		- —
	- <u>1</u> 0 <	10-12		7							
		8-11	24"		Fill-	<u> </u>		5 _/ A	- E	At the take the	
 	_		97	5	112				<u> </u>		
		14-17				 -					
		10-10	24"		Fill-	. \		3	AME		1
			7-	6		7	<u> </u>				
-		13-15			ļi				A Commission Conference		
	-15	9-11	24"	7	FILL		_)		mE	· · · · · · · · · · · · · · · · · · ·	
	1>	18.22		7			7				6.0'
		20					· · · · · ·				00
1										Dottom	1
											1
										of boring -	- —
		·			J11/	Sami	plas i	were ?	Sourd	0 0	
	→ 20 ◄					7		***	! , , , , , , , , , , , , , ,		-
						L one	12.	V Mas &	Sourd		
									_ <u> </u>		
				. [
											- —
											- —
	20]	Ø		j						•	

Engineering Department Construction Division **Materials Engineering Section**

					BORING REPORT
					SHEET OF
PROJECT P	t G		•		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
LOCATION _	1	1/- 64 -			TO CONTRACT NO. DATE 12' CONTRACT NO. DATE 12' CONTRACT NO. 1/4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
aslando	nt 1	y Killia	nus	soc.	To provide the second s
SPOON *O.D.	23/8	"LD. HS-QUE			GROUND WATER LEVEL Date Time Depth Remarks
HAMMER		HAMMER			
140 # FALL	30		FALL		11/6/00 10:5A 7.5' In 5#4
J.	Craig			- · · · · · · · · · · · · · · · · · · ·	
INSPECTOR	Ra				
CASING	ртн	SPOON BLOWS/6"	RE- 1	SAMP.	SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE
	0	Hand	Tull		CRUSPEN STONE 0.5
	-	augen	Rec	1-1	Mine Fill- Sand, Condus, Brick, Core
		1	1	_	Same ul to metal
				2	
		1 1		72 Å	I want to meia 50'
	,]		V		The section of the se
uo		7-15			30mg
		11-27	13"		
	_	13-31		5	
	0	54-45	22")	<u></u>
-1	_	+-17	(1)	6	- Sane
	-	18-31	20"		
	-	11-17	14"	7	Sant
V		27-28	12"	3	Sans 1501
1	S 4		10	<u> </u>	
	·				Rotton of Borring
	. 📑				
					Noto: Samplet 1-4 were sand for testing all
					other samples were screened w/ PID & then discarded.
					Sample #4 was saved & placed on Hold.
		·			

THE PORT AUTHORITY OF MYS MU

Engineering Department Construction Division Materials Engineering Section

PROJECT HH-PEG LOCATION)
LOCATION As laid out by Kiddon Rosor (= 103 So. of Rlds 12) HOOLY 26-55-006 SPOON SPOON 3 "O.D. 23/8" LD. CASING SIZE HOLE TYPE CASING BLOWS/6" CASING BLOWS/6" CASING BLOWS/6" COV'D NO. CASING SPOON RE- SAMPLE DESCRIPTION AND REMARKS (Green Kerner) NO. CASING BLOWS/6" COV'D NO. COV'D NO. CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING Depth Remarks CASING SLOWS/6" COV'D NO. CASING SCROUND WATER LEVEL CASING SCROUND	
DRILLER P Panell INSPECTOR CASING BLOWS/FT. DEPTH Date Time Depth Depth France III / 00 / 4 fm 5.9	
DRILLER P Pennell INSPECTOR CASING BLOWS/FT. DEPTH Hand Line LOCATES CHANGE OF PROFILE (Grave Kovery Line Locates Change of Profile (Change of Pro	
INSPECTOR CASING BLOWS/6" CASING BLOWS/6" COV'D NO. CASING BLOWS/6" COV'D NO. COV'	
INSPECTOR The Casing Blows/6" COV'D SAMP.2 Sample DESCRIPTION AND REMARKS (Green Koren Line Locates Change of Profile (Green Koren Line Line Locates Change of Profile (Green Koren Line Line Line Line Line Line Line Li	<u> </u>
CASING DEPTH DEPTH BLOWS/6" COV'D NO. SAMP.2 Sample DESCRIPTION AND REMARKS (Grove Kovers) LINE LOCATES CHANGE OF PROFILE (Grove Kovers) Light Rec 2 Samp Samp Samp Samp Samp Samp Samp Samp	
Hand Intl Vill-Cindry Sand, Little Br, Little Glass' Ohyer Rec 1 Same Samp Samp	
Ouyer Rec 1 2 Same 5	<u>)</u>
Ouyer Ruc 1 Same Same Same Same	
Samo S	
Samo S	
Till-Aum-Eca O O-tho and + C. O	o'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
us 2-3 y Same	
3-6 19" Rr FSend poor Sitt, some Plant febers (org. odor)	
3-6 19" Rr FSend pour Sitt, some Plant febers (org. odor) 1-1 Barre FSend, to Sixt, to Gravel.	
70 2-2 17" >	
1-2 1 Dame	
7-2 13" 6	
10-15 7 Sone	
11-15 24" +	
15 11-14 12" 8 Sant	o'
Bottom of Boring	
Note: Samples # 1-5 were saved for exvision	\searrow
testing. all other samples were screened uf P/)
if then discarded Sampli 5 was saved & doced on	الدر

THE PORTAUTHORITY OF MYSINJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET OF 3			
PROJECT				···	NAME OF CONT	RACTOR	T	BORING NO.	SURFACE ELEV.			
-n - T	voru	b & C	44		Crain o	drilling]	Fill 5				
LOCATION	v 	- - - - - - - - - - 	344			<u> </u>		CONTRACT NO.	DATE			
+ 1801	E of E	Blog 12 - Blog	k 140	o Loi	426-99-006 11-18-00							
SPOON		U CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL							
3 "0	o.o. 23/8	1.0. Auger	s i	۱	Date	Time	Depth	Rei	marks			
	safety	HAMMER						10 0				
140 #	FALL Z		FALL	•	11-18-00	12:30 PM	7.5	Bottom of	Sounble # 4			
DRILLER		En 1					7	X				
<u> </u>	James	Finch										
INSPECTOR	7 7	1 2										
		arks					<u> </u>					
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	COV'D	SAMP.2 NO.				CRIPTION AND REMARK ES CHANGE OF PROFILE				
Handauger	>	HAND AU GER	Full Rec		-	Crush		k + DGABC				
namoranger			run Nec	İ		crust	SOL VOC	X * 06A0C	0.5			
		1	1 1	1 1	FIL	ا ماء	- PCA	ND, little Bravel, tr.	Lift rindom			
	- -	 	 		tin -acadi	河(一口(の利力	- CE - 18	und, in a vi aver ter	and the second			
·				^	`				-,			
· .		1 '		١	Pil reddis	h hrown	12 9 - 2	AND to bravel to S	ilt wood			
		 		~_	Tim Terevision	1 0 0 0 0 1 1		TO STANSON TO				
	> 5. ≺		<u> </u>	!	<u> </u>							
		1 1		3	$ \leq A$	ME						
l' w		r 1-		*	1	· ·						
	·	5 - 5	ļ	. /								
AUGERS		16-6	20"	4	till brow	NC-1 3	<u>SANU.</u>	tr. Gravel tr Sill w	ith bl. organic fibers")			
		4-3						— — , —				
		4-2	 	5								
	> "10" -	3-5	lo)	SAME	=	· 					
	.10,	3 - 4	<u> </u>									
			18x	/_	SAME							
		7-11	10	0	JAME	<u> </u>						
		11 - 13										
			111	フ	511			CANNIO	TICH			
		15-21	24"		Till grey	N promp	r === c -	SAND to Grave	ਗ [ੇ] ‡c·ਤ∏ਾ			
	► 15 ◄	7-10				•	ŀ		:			
	- 15	10 - 13	9 1.11	8		0 0 N M	1	Grave tr. Si	IT 16:0'			
		10 - 13	.67		Trey C-	1 244	11	Grabel , tr. Si	10.0			
					L	_'						
				,	late c	am. n.l.a	أسما	L for testing	5			
		<u> </u>			HDIG. KS	mobies_		L for lesting				
					AIL	other so	amples	checked w.				
	. ^				PID	meter 3	die	a raled				
	> 20 <				J 14		c —O1197	Batton	of Boring			
		ļ					·	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	of voring			
†												
	<u>.</u> <u></u>											
		1		' .	}				<u> </u>			
				:								
		d	l .		1				·			

THE PORTAUTHORITY OF MYSKLI

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

FROMERT Port					•				·	SHEET OF 3			
		~			•	1 _	^	1 -		SURFACE ELEV.			
	YOUT	Luory	PtG SIT	<u> </u>		Chais	Ut. 1/1NC						
SPOON	LOCATION	,	· .	-			ď	C					
3 - 0.0 3 & 10. 14	25/0	twood	Chipper	15/0c/	1400	LOT /	12/4/00						
DRILLER S BUTLY INSPECTOR O NOW- CASING LINE LOCATES CHANGE OF PROFILE CONCENTS CONCENTS DEPTH BLOWS/F. DEPTH BLOW	SPOON.	- 23	CASING SI	,	A TYPE	<u> </u>	marke						
DRILLER S BUTLY INSPECTOR O NOW- CASING LINE LOCATES CHANGE OF PROFILE CONCENTS CONCENTS DEPTH BLOWS/F. DEPTH BLOW	HAMMER		HAMMER	<u> </u>	<u> </u>	Date		Debru	 	marks			
DRILLER S BUTLY NRSPECTOR D/OCLUB CASING BLOWS/FT. DEPTH BLOWS/F' COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD NO. COVD COVD COVD COVD NO. COVD NO. COVD COVD COVD COVD COVD COVD COVD COVD	140.	FALL 3d	, ,			124	900	10.0	576				
Notice Spoon Re- Samp					(:				
SPOON BLOWS/F. OV'D SNO. SAMP. SAMP. SAMP. SAMP. SAMP. SAMP. LINE LOCATES CHANGE OF PROFILE CO. CON CRITE 9.7 CON CRITE 9.7	INSPECTOR												
Hand Augr Fill 13 Mix Fill, Soud, Growl, Geology, wood, Silt feet How 2 Same 4.0 V S V Same 4.0 V S V Same 5.00 How 10-11 Y Same 10-0 How 17-9 5 Same 10-0 10 3-2 6 Fill - white Platomercous Earth 10-0 15 2-2 341 8 Same 2-2 2-2 341 8 Same 2-2 2-2 341 9 Same 2-2 341 10 Fill - white Platomercous Earth 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platomercous 10 Fill - white Platom	CASING BLOWS/FT.	DEPTH	SPOON										
Hand they Fill 1 Mix Fill Sand Growl, Geology, Wood Still FEC		0	T. sake			Con cri	te						
10 3 MISC F. 11 Gradis Graul ETC 16-11 19" Y Same 17-9 5 Same 1000 3-2 1-1 24" 6 Fill-white Platomaccous Earth wolf 7 Same 15 2-2 33" 8 Same 2-2 2-2 34" 9 Same 25-45 15" 10 Fill-white Platomaccous Earth wolf 7 Same 25-45 15" 10 Fill-white Platomaccous Earth wolf 7 3-2 18" 11 Fill-white Platomaccous Earth wolf 7 3-2 18" 11 Fill-white Platomaccous Earth 13" 25 15" 10 Fill-white Platomaccous Earth 23" 25"	Hand		 	Fill	1-%	Mix Fill,	Sand, G	rawl Ci	ders wood Sist				
2 Same 4.0 3 Nisc F. 11 Gudiz Graul ETC 16-11 19" Y Same 16-18 19" Y Same 17-9 5 Same 100 3-2 6 Fill-white Platomaceus Earth wold 3-2 30" Same 1-/ 24" Same 100 15 2-2 23" 8 Same 2-2 34" 9 Same 2-18" 10 Fill-white Platomaceus Earth Lilla Cadas, Tr Gravel 7-3 3-2 18" 11 Fill-white of Gray Pintamaceus Earth 3-2 18" Some 33.0 1-/ 18" 28 Brown Peat 240	Aum			1		,		7		,			
No. No.					1 2	Same				4.0			
No No No No No No No No			 	 		Sam							
No No No No No No No No		→ √ <	 	 	3	<u> </u>							
16-18 19" Y Same 100	Ψ			<u> </u>		Misc F. 1	1, Gnd	115 Grau	U, ETC				
16-18 19" 19 10 17-9 15 5 5 5 5 5 5 5 5	- Ilou	•	16-11				'	,	·	•			
17-9 10 4-3 30 5 Same 1-/ 34 6 Fill-white Platomacous Earth woll-1 2-2 33" 8 Same 2-2 34" 9 Same 2-2 34" 9 Same 2-18 10 Fill-white Platomacous Earth, Libra Codas, Tr Grave/ 7-3 18" 11 Fill-white & Gray Pintamacous Earth 3-2 18" Same 1-/ 18" 12 B Brown Pant 240			16-18	19"	1 7	Same							
10 3-2 6 Fill-white Platomacous Earth wolf 7 Same 15 2-2 33" 8 Same 2-2 34" 9 Same 2-2 34" 9 Same 2-18 10 Fill-white Platomacous Earth Lidle Cuden Tr Grave/ 7-3 18" 11 Fill-white Forey Platomacous Earth 3-2 18" 12 B Brown Pent 240			17-9	- ' '	3	3come	-	 					
3-2 6 Fill-white Platomacous Earth wolf 7 Same	1		4-3	90:	5	Same		- 		100			
1-/ 24 6 Fill-white Platomacous Earth wolf 7 Same 15 2-2 23" 8 Same 2-2 24" 9 Same 2-2 34" 10 Fill-white Platomacous Earth, Lidle Cades, Tr Grave/ 7-3 18" 11 Fill-white & Gray Pintamacous Earth 3-2 18" 12 B Brown Part 240		- 10 -	3 -2										
Wolf 7 Same			, ,		6								
WOH-1 8 Same 2-2 39" 8 Same 2-2 34" 9 Same 2-2 34" 9 Same 25-45 15" 10 Fill-white hatamassass Earth, Lidla Coolar, Tr Graves 3-2 18" 11 Fill-white & Grey Diatamassass Earth 3-2 18" 12 8 Brown Peat 240			1-/	84.		Fi1/- 4	chilo-	19 Jom	aceous Early	, <u></u>			
15 2011 8 Same 2-2 39" 8 Same 2-2 34" 9 Same 2-18 10 Fill-while heterogenes Earth, Lidle Carden, Tr Grave/ 7-3 11 Fill-while of Gray Distance Earth 3-2 18" 11 Fill-while of Gray Distance Earth 3-2 18" 12 8 8 8 8 8 8 8 8 8			wox		 -, .				<u></u>				
15 2-2 23" 8 Same 2-2 24" 9 Same			lease	241	/ `	90	m0.						
2-2 33" 8 Same 2-2 34" 9 Same 2-2 34" 9 Same 25-45 15" 10 Fill-white hatomacous Earth, Lide Codes, Tr Grower 7-3 11 Fill-white & Grey Distanceous Earth 3-2 18" 11 Fill-white & Grey Distanceous Earth 3-2 B Brown Peat 23:0						<u> </u>		- -					
2-2 34" 9 Same 9-18 10 Fill-white Diatomaceus Earth, Lidle Codes, Tr Grave/ 7-3 11 Fill-white & Grey Diatomaceus Earth 3-2 B Brown Pent 29-18 20 7-3 1-1 18" 2 B Brown Pent 20 7-3 210 22 7-2 18" 11 Fill-white & Grey Diatomaceus Earth 23:0	} }	► 15 <		22//	8								
2-2 34" Same 9-18 25-45 5' O Fill-while Piatomaceus Earth, Lidle Codes, Tr Grave/ 7-3 11 Fill-while Grey Piatomaceus Earth 3-2 8" Some 33:0 1-1 18" 2 B Brown Peat 240		_		B5"			me			- 			
20 -18 O Fill-white Diatomaceus Earth, Lilla Cadas, Tr Grave/ 7-3 II Fill-white & Gray Diatomaceus Earth 3-2 B Some 23:0 1-1 181 2 B Brown Pent			2-2		a		<u> </u>						
9-18 25-45 15' 10 Fill-white Diatemaceus Earth, Lidla Cadas, Tr Grave/ 7-3 11 Fill-white & Gray Diatemaceus Earth 3-2 18' 11 Fill-white & Gray Diatemaceus Earth 3-2 B Brown Peat 240	1		2-2	2411	(-	Sa	me			,			
25-45 15' CO Fill-white Diatomasseus Earth, Lidle Codes, Tr Gravel 7-3 11 Fill-white & Gray Diatomasseus Earth 3-2 B Some 1-1 18' 12 B Brown Peat 25-45 15' Cravel 3-2 240			9-18				·						
7-3 11 Fill-white Gray Dintamacaus Earth 3-2 1811 18 Same 1-1 181 2 B Brown Pont 20 7-3 1-1 181 2 B Brown Pont				15	lo	PU - 1 3	0 T						
1-3 3-2 18" 11 Fill-White & Grey Dintamacaus Earth 3-2 18" Some 23:0 1-1 18" 2 B Brown Pont 240		> 20 ◀	03 73	19		+111- Whilb.	Via Janua	cous E	arth, LIUYO CAROLO	3 IV Graves			
3-2 12 # Same 23:0 1-1 181 2 B Brown Pent 240			1-3		, ,		·		· ·	<u> </u>			
3-2 Brown Pent 240	<u> </u>	[2-2	184	17	Fill-WhiT.	of Gran	Distar	MOCOCUS EONT	<u> </u>			
1-/ 18 Brown Pent			3-2		TH.	\mathcal{C}	e			23.0			
		_	1-/	181	R	Brown	Pest						
								R_	Tam of Box				

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used

2 — U = undisturbed; A = auger; OER = open end rod; V = vane

3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

By Samples Checked with PID Metel 3 to 13 to 5 and 6 Samed

for the color of wash water, loss of water, artesian water, sand heave in casing, etc.

Por the color of wash water, loss of water, artesian water, sand heave in casing, etc.

The color of wash water, loss of water, artesian water, sand heave in casing, etc.

Engineering Department
Construction Division
Materials Engineering Section /

DC	D	MC	REF	20	DT
$\mathbf{D}_{\mathbf{L}}$	m		NEI	-u	n.

				·			-	•	SHEET OF 3			
PROJECT		•			NAME OF COM			BORING NO.	SURFACE ELEV.			
Por	Lyon,	PHC SITE	······································		(raig	Dilling	F111-8	DATE				
LOCATION		T 7 -		h	•	Black 140c CoTI 426-99-006						
000011		STE, 75 SOUT	TE LUOLE	TYPE	Vioca	Black 140c (ct) 426-99-006 12/200 GROUND WATER LEVEL						
3 6	D.D. 87	"I.D. DICAMER		ا آ	Date							
HAMMER	Safat	HAMMER				3c	, -					
14C .	Safot FALL 30	/ -	FALL	-	12/2	儿童	3,0	while Hand	Argering			
DRILLER	_	Burns							•			
INSPECTOR		D Howe					1					
CASING		SPOON	RE- 1	SAMP.2		3SAMPLE DESCRIPTION AND REMARKS						
BLOWS/FT.	DEPTH -	BLOWS/6"	COA.D	NO.		<u>Ll</u>	NE LOCATE	ES CHANGE OF PROFIL	E 00			
Hard		Hand Briger	FU)	<u></u>							
Bucer	* . ******		1_1		Misc	F,11-5	and Si	15, B) xt, Grave	/ MoTal, ETC			
1								_ 	7 7			
	-			2	 							
 		 			 				4.0			
	5	- 	 	3								
		W			<u> </u>	Grey R.	a Tomec	eous Earth Little	Mocfill			
11/160		1-1				•		· /				
Dorm		1-1	19"	4	F11-	Gray P.	atama	cows Earth				
Huyrs		woy			1	•						
	 ►W <	wood	23'	5	F11/ -1	ehiTo & Gr	A, A,7	umacous Eart	<u> </u>			
e se en en	a residence sulti-	WoH -	المثياء بخسوان الد	Carlos Carlos	the common solutions are the common solutions.	in a sign may a trail of	. Latinger on one ge	gar ngaréng ganggapan nangan alam sangan sa	opening and larger on a group of the contract			
		HOW	724	6		jame_						
		leay										
		WOH	2211	フ		ame_	_ 	 				
	- 12 →	WOX		~	# A light look to							
		Mon	294	8		ame						
		Kow		P		ame						
		WOH-1	244	$9\frac{n}{B}$	1	Post			180			
							B	ottomat Baria				
	- ~ - - ~ -											
			7 - 7 - 7			D-11 S	Samula	checkerly 17	TO PIO MOTO			
						- () / / /	+ 4 5	s checkedus)	ToeTics			
						- 5 - 6	<u> </u>	Wed OF ENU	2 12 MM? -			
					 	Kema	ming 5	comples ascon				
	> ><				L							

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

THE PORT AUTHORITY OF MYSIMU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

							_		SHEET OF			
PROJECT	SUTTVO	our P+C	5176	2	NAME OF CON	TRACTOR		BORING NO. F/140	SURFACE ELEV.			
LOCATION	south o	F BLD 7	72				DATE 12/1/00					
CROON		CASING	17E UM E	TYPE		GROUND WATER LEVEL						
HAMMER	D.D. 278	*I.D. Auge	レ <u> </u>	<u> </u>	Date	Time	Depth	· · ·	Remarks			
140 g	FALL 3	O .	# FALL		141/00	1025	5.8'					
DRILLER	EFF CL	** 4.										
INSPECTOR	howe	Spurgo	,									
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.	3SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE							
H. A.		.н.A.	Full	1					0,2			
				<i>L</i>	FINE SAM	1 Some	SIT_	Rod Bra				
	<u> </u>			↑ ^					3			
				AND	Fine S	INC SUI	me sut	- Wasnel	Red BM			
	s			7				<u></u>	· ·			
Ą		<u> </u>	1	3								
h." ~		5-8	1,3'	ه ب	ري ليروي	Coldholic	Judous	Cuciex en woe	2d - R10			
		5-23		4.8		Sl'x1	hT OS	concrete puoc				
,		4-4	21	5	Pest							
	10	4-4			real s	· · · · · · · · · · · · · · · · · · ·			lau			
9 g. 1 g s	a i a i i i i i i i i i i i i i i i i i	n de Marian de New Yorke e d	, inc	المراجع المناسبة		Eu	NOF	Bourg 101				
٦					<u> </u>		·					
					•	-21/50	uplos	Screened u	/PDD			
	15					Sayl	032	b+4 Sand	/PDD			
						-011 R	ساهم	c Suplos [Discudend			
							- — •					
												
	20						· · · · · · · · · · · · · · · · · · ·					
	20											
												
				Ì								
	_			l l			<u> </u>					
				ŀ								
	▶ ◀			1								

THE PORTAUTHORITY OF MYS MJ

Engineering Department
Construction Division
Materials Engineering Section

BORING REPORT

										SHEET OF 3
PROJECT YOR	· · · · · · · · · · · · · · · · · · ·	0 7			NAM	NE OF CONTI			BORING NO.	SURFACE ELEV.
YOR	4 VO	RY 1+6	SITE		\bot (RAIG	DRILLIN		151	
COCATION	LOCK 140	O, BORING	B1 /1	NEST C)F	BUILDI	N + 31	Block) 1400	CONTRACT NO. 426-99-006	12/4/00
22221		CASING SI	ZE HOLE	TYPE					OUND WATER LEVEL	
3 .	D.D. <u>23/8</u>		<u>- 1</u>			Date	Time	Depth	Re	marks
HAMMER 140 *	FALL SAF	HAMMER	FALL	•		12/4/00	1230	10 to 12		
DRILLER	JIM	FINCH						,		
INSPECTOR	DAN	DAVIS								
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1 COV'D	SAMP. ² NO.					SCRIPTION AND REMARK TES CHANGE OF PROFILI	
amerikasi inga		<u> </u>				Concrete	<u>{</u>			
		ļ							·	20
Hono Ave	<u>K</u>	HAMP ANDER	Four	2**		CINDERS V	ent? Sma	u Gra	<u>va</u>	
	<u> </u>	<u> </u>	 		<u> </u>	SANE				
	- 5 -			3 A						
· 🔰	, ,		🖖	JB	Re	DOUSH Brow	4 CLAMEY	SIUT, LI	THE GRAVE	
1		3 4	16"	4*	3	AME				
1 , "		56								
		3 5	15"	5 A		AME				9.0
	16	78		3 8	[BLACK FIN	E SAND, T	RACE SHO	r 	· ·
	- 10 -	3 4	14"	6	├	SAME			1	11.0
		46	0	0.				EDIUM	SMID, TRACE SILT	12.0
		78	8"	7		Brown	PEAT_			
		9 11		· /			· · · · · · · · · · · · · · · · · · ·			14.0
	- 1/			**************************************		1-				
	15				L -	L Box	Jum 01	<u> </u>	DORING	
										
										
					<u> </u>	- Aw	Some	ES .	SCREENED WITH P	ID METER
						Sam	DIES 2	14	AND SB SAVE	D FOR
	- 20 <					KAI	1 KOHWEI	STOL -	iiry eig wiele Nestikle	<u> </u>
						A	Roma	nhV.	SAMPLES DISCAR	DED -
				,	 		רציישיו	MINO S	Shark Co Miscale	<u> </u>
	· ·									
									·	

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / OF 3
PROJECT	- T.	01007	`		NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
For!	Wary	PAG SIT	e		1 Crais	Drilling		B. Z	1 225
LOCATION	vı ,	1 1	21 / 5	_				CONTRACT NO.	DATE
SPOON	Hrza	CASING SI	Ildy 3	TVDE				426-99-006	11/10/ac-11/14
		3 ·1.D. Auger		1176	Date	Time	GRO Depth	UND WATER LEVEL	emarks
HAMMER S	iality	HAMMER	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	Date	I dife	Debut	, 51	STINGLED
		1	# FALL		11-16-00	9:08 AM	9.01	Sample #5	•
DRILLER					10.00	1			
	. 5	Buris			L		5.2	Open hole	
INSPECTOR	<u> </u>	Howe /	7 7	1					
· · · · · · · · · · · · · · · · · · ·	<i>_</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.	<u>arks</u>	<u></u>	<u> </u>			
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2 NO.	· .	""3SAI	MPLE DES	CRIPTION AND REMARIES CHANGE OF PROFIL	KS E 00
Eufler Head	► "\	Cutter Head	Full Rec	NO.			DEADC	CRUSHED ROCK	A.
			-			-1 2040 10			
		1.			Concre	te sla	b . w.	ribars	. !
TAND HUCE		HAND AUGER		*	T				
 		 	 			-, ,			
		<u> </u>		2	till greyi	sh-black	1-c-X	SAND & Grovel, +	r. Silt Cinders, coal, b
				_	1 00		}	·	
A and	-5			3	SAME				
		Y	 Y -		1				
DERS.		5 - 5	ļ	/ *		<u>225,8 pp</u>	<u>~-</u>		
THE RS		6- 1	24	4	I SAME	w/	oil :		
		8 - 19							
	_ · _		- 11	K		123.9p	1 <u>1</u>		
	- 10- -	13-15	1.8	<u> </u>	1 SAME	_w/	wood	<u> </u>	
y_		100/31	3"(1					
				6					7
		 	1		 				
	<u> </u>	· · ·			<u> </u>				~— —
			إفسيد الدارية فهورش	r _k		· · · · · ·		Recusal.	Botton of Bori
				·	Nato.	2 5 AMP	<u> </u>	saved for te	
	- 15 -		 -		14000	M offer	1 <u>65</u> _	Juved 101 181	
	<u> </u>	·			<u> </u>	BL Sam	oles _	checked with F	11) meter
						& disc	arded		
						::*3	· · · · · · · · · · · · · · · · · · ·		
	-	<u> </u>	-		 				
					<u> </u>				
	· 101 -								į
	- 20 ◀								
	- '				<u> </u>				
					· — –			·	
	_								
	_ , 		<u> </u>						
	2				•				
	- U) <								

THE PORT AUTHORITY OF RIVERLY

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

										SHEET OF 3
PROJECT							RACTOR		BORING NO.	SURFACE ELEV.
Port I	voru f	2 G			Crai	ام ما	Irilling		B-LA	
LOCATION	J					J	<u> </u>		B-& A contract no.	DATE 222
10'5	a Vo	H.B.2							426-99-006	11-16-00
SPOON	1	H.B.2.	ZE HOLE	TYPE				GRO	UND WATER LEVEL	•
3 -0	D.D. 2 3/8	3 T.D. Auger	rs	1	D	ate	Time	Depth		emarks
HAMMER C	afety	HAMMER								
	FALL 3		# FALL		lu-	16-00	10:30	5,1	Sample # !	3
DRILLER										
	6. Mc.	Aneny			L					
INSPECTOR				• 1	· .					
	1.40	irks						L		
CASING)	SPOON	RE- 1	SAMP.2		1,55	3SAI	MPLE DES	SCRIPTION AND REMARK	(S
BLOWS/FT.	DEPTH -	BLOWS/6" Cutbe Head	COA.D	NO.			u	NE LOCAT	TES CHANGE OF PROFIL	<u>E</u>
CHIEN HEOD		Carac nead	Ful						· .	
	Π . –			1	Γ –					
HANDLAUGER	 	HANDAUGER	 	 	 			.— –		
	<u> </u>		<u> </u>	.	L	ىم أ_	r Soi	<u> </u>	trata 00' -	8.0
				2					g_report_B	
	 -	 	 				_ 2E4	OPLI	id Ticker in o	
	> 5 ◀	<u> </u>			ļ		· <u> </u>		<u> </u>	
				3	•					
V V		,							 	
-, 🕒		<u> </u>	<u> </u>	, ,	<u> </u>					
Asser		_	-	4		-				·
		4-5		*		11				
- 1	<u> </u>		 	l ' '	<u> </u>	_ <i></i>	o htom	\ \ = 5		
	10	7-8	20"	5	Misc	Fill	black c-	<u>rsan</u>	D some braveltr	Sill Ginders Coal wage
V		7-8		T						10.3
				6	SAME	- 5	7ρρ~			
						_ <u><</u>	<u> √66√√</u>			
					Not		1 cample	. 4K	saved Re	Prisal Bottom of
						عظم اد	1 300.40	** _ .	All - 11	Bonin
	<u> </u>	all and a second	,							
					Screen	ed 1	or PiDn	eadina	s X discard	ed,
								- -		
		<u> </u>						·		
									. <u> </u>	
								— - -,		
	- · -						-			
	 , ,						 			
		1 17							•	•
	►									'
			1		<u> </u>					
ļ		J		`	• •					
								·		
								·	,	
						,144		· .		
				ľ			·		100 m	
							31		See the figure	

THE PORT AUTHORITY OF MY & N.J.

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

		•								SHEET C)F
PROJECT		0 1	\overline{A}		N/	AME OF CONT			ORING NO.	SURFACE ELEV.	
Port	Ivori	ba	b			L'rai a	drilling	ا ـ ــــــــــــــــــــــــــــــــــ	B - 3	·	
LOCATION		∫ ·	-1.		•			. C	ONTRACT NO.	DATE	
4015	ol Blda	16 \$ 200 Wol	Bldo 3	BA BI	oc	k 1400	loti		126-99-006	12-4-00	,
SPOON	T	CASING \$	ZE HOLE	TYPE				GROU	ND WATER LEVEL		
3 0	o.d. 2 3/8	TI.D. Aug	ers			Date	Time	Depth	Re	marks	
HAMMER		HAMMERI				,					i
140 #	FALL 3	0 -	# FALL			12-4-00	9:30	3.5	Sample # 2	<i></i>	
DRILLER -	י י ע	1				[į
	D. Coo	ke	<u>,</u>								
INSPECTOR	ョフ	1									ļ
		rks		<u> </u>		L					
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ² NO.		Cravel			RIPTION AND REMARK S CHANGE OF PROFILI		
Handauger	> 0 <	Handauger	 	110.	1						
nunciander.		manadager	Full Rec	1	\vdash			ONCRETE			0.3
	·	1		. 1	17	ul dar	ara.	i c - P	CAND to Great	el_tr_Sill_	امور مساودة
	- -			 	†	عباسك مبا	15 - YE	7	ملك لللث الشوسي على	كوا ل الع دد السوسانة	<u>u.u.</u>
			 	*	<u> </u>			<u> </u>			
				2		SAME	•				
				1	Γ	_ ~					
	> 5 ∢		 	-	١.,	<u> </u>			- 		
		1		3_		SAME_	· · ·		· ·		
H. 11-W		0 7		*							- · ·
ERS		2-3		/			- 			, — — — —	
		3-5	20"	4	Ł	<u>11_c-f</u>	<u> 5AND</u>	tr Gra	we , to Sill,	CINders, C	لەم
		12 - 18				7		, ,			1
		,		ے ا	\vdash	- GA	11/1/-		. 		
Marin di Arri	► 10 <	22 - 24	24"		<u> </u>	フ/	JAE_	The Residence of the Control	The state of the s	- 1	
		6-6	. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and southern's street		me Mary pages - 1 mm - me Changes in a real of Change of Changes		Street, Street, St.	agentigity or physical games on these agency or given as a long accountainty	A STATE OF THE STA	
			24"	/		<_	ME -				
		7-7	7.4		 - -	<i>2<u>r</u></i>	116		· 		
		8-12				<u> </u>					
		12-15	20"	7	C	SAME					
- . 		or moreover,	-~-	/	-	<u> </u>		· , ·			
	15 ◄	3 - 5		_	<u> </u>			. <u> </u>	- 		
		6-7	20"	8		SAME	•				
1 1		1 1	~~								$\overline{}$
		4 - 4	· .	9	اح	AME-					- 172
4		4 - 4	20"			Brown	Peak		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	18.0
								, 0	ı .l.		1
		·			No	<u>te: 250m</u>	1 .				-6-1
	- 20				L	_ All_so	imples c	hecked w	·PD meter		/
	- ,~~										
					├-	remain	som	pies aisc	arald	- 1	
34.							- — —			Boltom el	Coring
4	,		7	İ				;		•	7
											_ —
			·					. — —	· ·		
		ĺ	ĺ	· [•			- 1
	▶ ◀		1								

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

		•					•				SHEET OF 3		
PROJECT) ,		0 /			N/	ME OF CONT			BORING NO.	SURFACE ELEV.		
1	ort VI	7KY	146	SME		L	(RMG	DRILLING	9	B4			
LOCATION			¥ 22	_	11.4"			_		CONTRACT NO.	DATE		
WEST	OF BU	mon6	CASING SI	3/100	1408		Block	1400	l	426-99-006	12/4/00		
SPOON	.D. 23/B	.	CASING SI	ZE HOLE	TYPE	GROUND WATER LEVEL							
HAMMER			HAMMER			Date Time Depth Remarks							
111 -	SAFE1				_		12/4/60	2:00	4165	Pupine HAND	Awaring		
DRILLER	FALL			FALL			'			 			
	Sim F	net			ļ		[· .		
INSPECTOR													
	Sport		ANIS										
CASING	DESTI		POON	RE- '	SAMP.2								
BLOWS/FT. DEPTH BLOWS/6" COV'D NO.							A. J. IL mo	LIN	E LUCA	ES CHANGE OF PROFIL	<u>.E</u>		
Hong Alean		Himin	AUGR	·	1 A	L	Asphalt and	STONE		Alpha Marin and	+		
			1		B	1/2	CINDERS A	MAN GARV	IEL-				
			T		7# PETROLEUM ODOR								
		 	+	 	250-400 ppm								
		 	-}	 	<u> </u>	-			(OO DE				
	- (-			<u> </u>	3 A	_	·		·		5.0		
	っ				1 72	FILL	GRM FINE	SAND THA	VE SILT	- PETRITUM OOOR	50-4008.0		
16P		5	10	15"	1, 0*	Fill	, REDOKH BR	OWN CLAYE	YSILT		71		
		6			765								
		3	<u> </u>	0	B FU BROWN FINE SAND, TRACE SILT								
		13	<u> </u>	2"		<u> </u>	SAME						
	► 10° -	15	8)	L		<u> </u>			10.5		
	1.2	14	4	10"	,5 mg.	<u> </u>	BROWN PE	//		· · · · · · · · · · · · · · · · · · ·	10.9		
V	· ·	7	11		6		BONN F	NE SAN	0 18	MESILT	12.0		
		╅		 		<u> </u>	1	100 07:10	V/ 11	BORING	7,5.0		
		-					- — [,			7			
	-رُ	3 13 14. 5				<u> </u>		<u>buttom</u>	of_	DOKING			
	- 16 -			<u> </u>			<u> </u>			·			
	- IJ]							.				
	- -	1				_	- M:	. CAMPI	65 6	CREENED WITH	PID MESER		
		+	· · · · · · · · · · · · · · · · · · ·	 		-							
		+				<u> </u>				38 AND 40 SAVE	<u> </u>		
		ļ					<u>&</u>	MKONME	NML	TESTING			
Į	- 20-						- A	u REW	HINNE	SAMRES D	ISCARDED		
	- v ·							* * \ <u>__</u>	. •				
		+				L							
		↓ _				_							
	_	1						-	· — -				
	-	ه		L									

Engineering Department Construction Division

					aterials Engineering Section BORING REPORT
PROJECT	21/T	Ducy	P+1		NAME OF CONTRACTOR BORING NO. SURFACE ELEV.
		12 1-A			O CONTRACT NO DATE
SPOON		CASING SI			GROUND WATER LEVEL
		1.0. RUGOV	l	<u> </u>	Date Time Depth Remarks
HAMMER SUPTY HAMMER 140 # FALL 1					12/4/00 7:45 8,0 PURING 3PLIT-SPOONING
DRILLER 5A7					
inspector Charlie Springer					
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.	² SAMPLE DESCRIPTION AND REMARKSLINE LOCATES CHANGE OF PROFILE
HA.		HA,	Fd)	١,	
				\	Grond u/ Sand SILT MOTVIX
		·			75
				2	
1-1			 	 	diotonoshas Earth white
1	> 5		1	3	CINCORS + GUNL BOOK
10			15"		
OER-	·i	78	12	4	SAME
		9 7	13"	5	
	- > ,@ ∢	3 3)	
		76	20"	order of money	SAME WITH 41 LAVER DIATUMACEUUS BARTH TOP OF
		53		6	SPOUN
		31	3"	-7	
		23		/ _	H'
	15	21	14"	8	BROWN PEAT
V		12	,	D	Lo
	_ · _				1
		·			BUTTOM OF BORING
					- ALL SAMPLES SCREENED WITH PIP METER
	20			÷	· · · · · · · · · · · · · · · · · · ·
			. 1		- SAMPLE # 2 SAVED FUR ENTIRONMENTAL TESTING
					- ALL REMAINING SAMPLES TUSCARDED
	_				
. 1	i				

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

		•							SHEET OF	3
PROJECT	A 1/4	m, P+ (۲:۵ ع		NAME OF CONT			BORING NO.	SURFACE ELEV.	
					Craid	Dull's	ne	<u> </u>		
LOCATION	SW of	Building	16	Capi	no. Go fee	et)	0	CONTRACT NO.	DATE 11 29 200	ه
SPOON		CASING SI	ZE HOLE	TYPE		* -	GRO	UND WATER LEVEL		
3 .	o.o>3				Date	Time	Depth		Remarks	
HAMMER		(-ty HAMMER			11/29/00	0815	4.0'			
	FALL 3	140	# FALL	-	11/21/30	-				
RILLER	Doivid	cooks								
NSPECTOR	m. Pe	itel								
CASING	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP.2				SCRIPTION AND REM. TES CHANGE OF PRO		
Home	- - - - - - - - - -	Hand	Full	1.0.	[-11 Pla					
<u> </u>		7794	 -	1					CML SAND	
	<u> </u>				trace 5	17 tec	ace mf	Gravel, Rue	k, cinder, et	<u>\ </u>
_	<u> </u>	<u> </u>		7	white	Dicto	maca	cem car	H material	<u>-</u>
			\vdash		<u> </u>					
	> '5' <			3	white 3	Gray	201	<u>me</u>		
	3		1			,		÷ 1		
394		wo	24"		white	D		us earth h	atinal	
	-	Н		4		<u> </u>				
		1.0	24"	5			SAM	<u> </u>		
	10 <	10								
	Fr editering waarn	10	٦٠''		rape our series	्रक्ता रूपालिक	SAME	5		
		11		6						
	-	, ,	16"				SAM	-		,
	-,-			フ						
- 	- -	<u> </u>	18"				SAM			
	15	9, 15	1 7	8	Black	cm/ a			SAND ROCK,	150
	_ _	20,15	10"			- — —		<u>, </u>		
		5, 6	, -	9	 		SAME			
	- -	10,5	18"							
		1, 1	18	10			SAME 			- —
4	>	1, 1							wood c PEAT)	
					·	Bothm .	of Hole	= A 20.0'		
					All so	,) samp	les o	hecked for	PIP meters	
				:	Samn	<u>le 34 / 34</u>	2 5	eved for E	nvivmmentel te	54.27
			,					In are als		
	_					_ 				
	_ <									

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

							` `		SHEET OF 3
PROJECT	• .	DIA			NAME OF CONT		1	BORING NO.	SURFACE ELEV.
LOCATION	vory	b f G			Craig d	<u>cilling</u>		PA - 3:	DATE
1 2	s laid	out in t	ha lie	Jd -		V		426-99-006	11-16-00
SPOON		CASING S	IZE HOLE	TYPE			GROL	JND WATER LEVEL	
	0.D. 2.3//	3 "I.D. Auger	ş <u> </u>	1	Date	Time	Depth	R	emarks
HAMMER Q	safety FALL 3	HAMMER	# FALL		11 1/ 00	1:05 PM	2.0'	SAMPLE # 9	?
DRYLER	_		FALL		11 - 10 - 00	~·0 J		JANES II.	<u>.~</u>
	G.Mc A	lneny							
INSPECTOR	マ フ	ARKS	47	1					
CASING	0	SPOON	RE- 1	SAMP.2				CRIPTION AND REMAR	
BLOWS/FT.	DEPTH	BLOWS/6" Cutter Head	Full Re	NO.			NE LOCATE	ES CHANGE OF PROFIL	LE 0.0
Handarge		Cuttot Head	Full ICE				- "		
			<u> </u>		Fill grey	<u>c - 1 91</u>	AND and	d Gravel , tr. S	Ⅲ
				. *	SAM	16 7	· 	<u> </u>	٤.
	<u> </u>		·	2	Fill greuis	sh-area	n Silt	tr. m- C SA	ND 4.0
					J'- J'Egi	311 - YI PA	<u> </u>	7	· · · · · · · · · · · · · · · · · · ·
	5 -			3	Fill gre	- 	T -	Silf & CLAY	
**************************************		/ /	<u> </u>		III - grey	rish b	gck	DIN PURI	
AL RS		b - 6		14	- 1-11		- T		
		8 10	24"	4	Fill blo	ock -	حالم	& CIAY	8.0
		7 - 8					- —-	<u>.</u>	
	1 O. ◄	9-15	24	5	Fill grey	C-9-5	AND.	greenish-White	Dietomaceous.
		4-5		/ *	. , U . I	· · · · · · · · · · · · · · · · · · ·	· ,	¥ .	
		6 6	2.411	6	Fill what	e c-lo	SAND (raid Diator	cutedia 12.0
		9 9			~ 111		1	, , , , , , , , , , , , , , , , , , , ,	
	-	2 /	2011	7	fill ble	nck S	14.0		
*************************************		7-4	70	-1	<u> </u>	<u> </u>	. ∽	by some	CNUMS.
-	► 15 <		0 /11	2	TIII .		σ	CIT -	
		1-2	24"	<u></u>		black	<u> Lloy</u>	SIT	
	-	2-2		9			· — —		
		2-2	24"		SAI	<u> 7t </u>			<u> </u>
		1-2							
, ide	- 20 €	2-2	24"	10	Brown	, Pi	EAT		
	- LU -					**************************************			4
		:		1	Note: 3 9	amples	Saved	for Testing	
				ŀ	- All	other sa	mples s	creened with	R LL P
				ŀ		<u>metrs</u>	r'discou	did	_ Bottom of Bari
	- -			}					
	>			<u>. </u>				·	

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

.....

THE PORT AUTHORITY OF MYSKU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

							•	,				SHEET	OF 3
PROJECT		0 1	^			N.	AME OF CONT		-	BORING NO.		SURFACE I	LEV.
Port I	vory	bf	G				Craig c	Irilling		A - 4			·
LOCATION	1 Y	-1		١ ٨	1 1		J		3/3	CONTRACT NO.	,	DATE	
	As la	id ou	<u>it in t</u>	he fie	:ld					426-99-00		11 - 16	-00
SPOON	7	,	CASING S		TYPE		<u> </u>			OUND WATER LEVEL			<u> </u>
3 "	<u>۲.۵. کې ۲.</u>	8 "I.D.	Auger	5			Date	Time	Depth		Ren	narks	
HAMMER S	Afety		HAMMER				,	: /AM		SAMPLE	# 9	9	
140 #	FALL ?	00 .	L	# FALL			11-16-00	11.24	30	SHIMLIE	# 1	<u> </u>	
DRILLER	. Mc 1				•							٠.,	į
INSPECTOR	7. 11C F	meny											
	77	rks											
CASING	D. ~~		POON	RE- 1	SAMP.2		·	3SAI	MPLE DE	SCRIPTION AND REI	MARKS	 S	
BLOWS/FT.	DEPTH	BL	OWS/6"	COA.D	NO.		<u> </u>		NE LOCAT	TES CHANGE OF PR			ص.٥
CutterHead	0	Cul	ter Head	Full Rec		_				CABC			0.5
	<u> </u>		1	1 1		 		1111		CRETE -			
HANDAUGER	<u> </u>	LAU	DAUGER		1	ᄲ	isc Fill gr	eyish-black	: c={-\$A	ND & Gravel, to Silt	بلممار	Ciaders ,Br	ck woodele
WALLE WAREN			PHUGER			ŀ	U	V	ŀ			-	· l
					2	Γ	SAME	· · · · · ·					
				 		20	2711					· — —	
	5	4				L							
↓			1		3	(SAME_						
₹ .W		1			*	T	7.HTD —						
	<u></u>	4-	4		,			,				- 	
5.4		· 3 -	. 3	18"	4		SAME	•					
Augers		1.	. 3										
_					5	\vdash	C A NA 1-						
	10	13	-3	14"	<u> </u>	L	SAME		——, . —				
		14	- 3	1 au 2011 Aug 1							•		
		7		20"	6		SAME						
		<u> </u>	-4	LO			- SALIE		 -				
		14	-6			L							
		1	- 4	20"	7 *		SAME						
			-	~ ~ ∪		┢						· — · · · ·	
	► 15.	4	-2			<u> </u>	SAME				-		14.8
*			2-2	18"	8	Γ.	Brown	PEAT	_				16.
						 		· — —		<u> </u>	.		
						N	ote: Sampl	<u>es # 4 1</u>	¥_#1	saved for-	testin	9	
					-		اللہ ۵۱۱	امدت د	" • " "	reened with PID	أميد	ر معا	
		<u> </u>								CONCLE WITH CIP			
	▶.	┥				L	_ <u> </u>	scorder	gi			. 	/
					·	L			•	<u> </u>	Botto	om de	Boring
	 _											7	
						L						· · · · · ·	
		*						÷					
													
		.		1									

THE PORT AUTHORITY OF MY & MU

Engineering Department
Construction Division

								DRING F	_			•
							0 (JNINU I	16FUR		,	SHEET OF 3
PROJECT	Port	Tv	nru	P	& G		N	Crain	RACTOR drilli	na	BORING NO. A - 5	SURFACE ELEV.
LOCATION			out	in H	he fi	eld.			`	J	CONTRACT NO. 426-99-006	DATE 11-14-00
SPOON		3/-		CASING SI		TYPE					OUND WATER LEVEL	·
3 "	O.D. 2	78	"I.D.	Auger HAMMER		L		Date	Time	Depti	Re	marks
	FALL		ا ، ه		FALL		. '	11-15-00	7.46	8.0	Sample #5	,
	D. 0								1			
INSPECTOR	J		ark	-\$								
CASING BLOWS/FT.	DEP	· ГИ		POON WS/6"	RE- 1	SAMP.	1				ESCRIPTION AND REMARK TES CHANGE OF PROFILI	*
Handauger	7	™ ≺		lauger	FWII		Ļ	Fill DG	ABC.			<u>a</u>
	+		 	 	 	,	i i		COWN C - T	∌AN)_,!	irovel, tr Sill, and	&rs
	}			 	 		I -	SAME				
	 		 			*	<u> </u>					
	<u></u>				<u> </u>	2	Fi	greyis	h-black	<u>2 1 - 2</u>	AND, Grovel, tr. Sill	cinders coal
	- 5]	1		3 7		- 1		,
	P =					3		SAME		·		
N	<u> </u>	_	<u></u>	- 8			T					
Augers	-				1211	1	M			1 7	001112	
1	 			-17	12	4	Ш	<u> </u>	hediay p	lack c	J SAND, Gravel, tr.	DIT CInders, wood, co
	_		7-	- පි	10		\vdash					
	- 10	,	7	- 9	-20 ["]	<u>- 5</u>	ļ	SAM		<u> </u>	garante de la Papara de la Signa de la Signa de la Signa de la Signa de la Signa de la Signa de la Signa de la La Carta de la Carta de la Carta de la Carta de la Carta de la Carta de la Carta de la Carta de la Carta de la	<u></u>
			12	. b				. 				
	,		6	- 7	24"	6		SAME				
			10								· .	
	Ι.	_			12"	7	-	SAME	· .			
	 	-		14				SAHE				14.6
	- 15	₹ ₹	4-	- 3	. 14	0						
	 	_	_3.	- 4	24"	8	Ł	brown	PEA!	itte	Silty Clay	16.
						,				. ·	<u> </u>	
							N	ata: sa-	nle # 9,	90,100	d for testing.	
			,				 "					hu day
	_	\neg					 		ampies w	ece_50	reened with PiD	of Borin
	> 20	2						o vi	disco	rdeol_		
	-	_			· ,		<u> </u>			·		
	L]			· —— ——		. -		
					, ,]				-		· ——	
	_								· — ·			
	-						<u> </u>					

1. 1. 1.

THE PORT AUTHORITY OF RIYE RU

Engineering Department Construction Division **Materials Engineering Section**

BORING REPORT

									SHEET / OF 3
PROJECT		01-			NAME OF CONT			BORING NO.	SURFACE ELEV.
POYT	Ivory	PJG SITE			Craix	Villing		13-6	
LOCATION	,		nı,	1		notice?		CONTRACT NO.	DATE
E97)	of KIN	& 1 1 CASING S	3/oc6	1400	LOT/			426-99-06	11/10/00 -11/11
			ZE HOLE	TYPE				UND WATER LEVEL	
<u>る。</u> で HAMMER	D.D. 23/8	HAMMER			Date	Time	Depth	Re	marks
	7 -	1			11/10/00	45	6,0	while Manor	/ Dungerla.
DRILLER	FALL 30		# FALL		11(10.00			White Homos	170521116
	S	Burns			11/11/00	1:05 P	6.5	Sample # 4	
INSPECTOR									
	l	Moue /	J. Zar	c S					
CASING	DERTI.	SPOON	RE- 1	SAMP.2				CRIPTION AND REMARK	
BLOWS/FT.	DEPTH ◀	BLOWS/6"	COA.D	NO.	1 7			ES CHANGE OF PROFIL	
Hand		Mard Augr	Ful/		Crusho,	15TON	0-14/	TLO MISEFILE	0.1vr4
Ducor)	1			-		
9				/	Miss E.	11 C.		no Sand Brick,	=
		 	 		1 13C F1	11 Chas	ns crue	MI JONY DVICK	
				5					
	6		1 1	_	Sam	.		•	
	2 <		V	- 3	San				
_ ~		/ -	-			<u> </u>			
N N		4-3		/					
		3-6	20"	4	SA	ME_			
Augers		1 :-				ــــ حيام ت			
		4-5	0 11	5		NAIS			
	> .lo . ≺	6-6	20")	<i>⊃P</i>	ME	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
. 100		6-8		· , · ·			· -		
		6-11	24"	6	SAM				
			L.7		<u> </u>	ــــ ــــــ			
		18 - 18		7	<u> </u>		- — -	_ 	
		12-3	18"	_/	Misc Fi	11 Cinde	ers, bla	ack c-[SAND	Grovel etc 140
	_	W. 0						as arrange .	,
	12 ≤	., .	24"	8	Brown	P. 7			
		 H. 	124	U	IN I DWI	ILAI	, Sor	ne grey Silty	CIAY 16.0
					<u></u>		·		
							-		2
									Bottom of Boring
					 				
	20								
						A-11 <	anala	charles 1 11. Th	DID MATEL
	_						CALLED CO	upd for Tor Jing	- 11 - 11
		· · · · · · · · · · · · · · · · · · ·				7, 19	2 20	Aulter Las Pan	
.]						sample d	4 Q G	saved (On hale	1) for tection
							r_ <u>()</u>		*/*
	25 <				<u> </u>				

THE PORT AUTHORITY OF N.Y. & N.J.

MATERIALS ENGINEERING DIVISION

WELL MONITORING DATA SHEET

				<u>ioini orai</u>	10 DATA SI	<u> </u>		
PROJECT:	HH-Pa	RT IVOR	y PAG	SITE	JOB NO:	501-2	33-29	95
WELL DES	IGNATION	: TW2			DATE:	12-2-00		
CHECK	BOX FOR	LOWFLOW	13 IRATE	(Hr):	CASING D		<u>2</u>	Inch
WEATH	ER CON	DITIONS:	SUND	<u> </u>	51	CK-UP DISTA	NCE:	2-0
STATIC WATE	KLEVEL	DMIONS:	ORD'	:LO	V(5:	<u> </u>	AT.:	
-					OP OF PIPE	TO:		
		TIME	WATER		PRODUCT			
PRE-PURG		11:1500	6.	77				•
POST PUR	GE:	12:20pm	6.	85				
		- 112-11				·		
•	DEPTH OF				11.03		 -	FEET
		WATER C	OLUMN		6.17			FEET
			OLOWIN		0.612			TELL
WELL PURGE	FACIO			<u> </u>		<u> </u>	==	
	WOLUM	ie to Bef	<u> RIMOVED</u>	<u> </u>	2.65			
TIME	рΗ	TEMP	CONDUC		SALINITY	TURBID	TY	DISS. O2
_ \	(SU)	(C)		tan) pes	(0/00)			(mg/l)
1.91 W	7.18	16.90	39		1.5	<u> = 2</u>		
11:30AM	7.28	16.2	316		1-1-5-1	1,006		
11:40	7.10	17./	31	38	1-1-/	736	*	
						 		
10 GEORGE					1		·	
					1			
					11		ş	
					 		*	
	 	 		··	1			
 	 	 			1			
	 	 			1			
	 	 		 				
<u> </u>	 	 			1			
	<u> </u>	1	 					
		1.		•		·		
`								
SAMPLED	BY:						Contraction of the Contraction o	
OMMEN	<u>ΓS:</u>		heen	Visible	· in	Purye	<u>d</u>	volumes
	,	16	Mtth	<u> </u>	Out h	الما	سوسیر د زیس	<u></u>
_			METALS Well S			OPM	FILTE	
		*	wer 5	ampled	a ja o	UPM1		

	WELL MONITORING DATA SHEET											
PROJECT:	HH - Pa	RT IVOR	y P&G	SITE	JOB NO:	501-2	33-29	5				
WELL DES	IGNATION	MW	PZ-1		DATE:	11-24-0						
CHECKE	30x FOR	LOWFLOW	13 RATE	(ur):		IAMETER:	a	Inch				
WEATH STATIC WATE	ER CON	DITIONS:	SUMI	344	= 51	chupoist	ANCE: 2	4				
STATIC WATE	RLEVEL	795 CC	ORD'S	iLo	N/5:	1.	AT.:					
-					OP OF PIPE							
		TIME	WATER		PRODUCT							
PRE-PURG	E:	210PM	4.6		1	11 22.7		•				
POST PUR		2 49PM	4.9									
**************************************			· · · · · · · · · · · · · · · · · · ·	<u> </u>	- 1							
	DEPTH OF	WELL		<u> </u>	14	/3		FEET				
·	DEPTH TO				у.	63		FEET				
	DEPTH OF	WATER C	OLUMN		9.	5		FEET				
	FACTO	PR # .		X	0.61	8						
WELL PURGE		LETOBEL	REMOVED		. 5.8							
TIME	рН	TEMP	CONDUC	TIVITY	SALINITY	TURBID	ITY	DISS. O2				
•	(SU)	(C)	(umohs		(0/00)			(mg/l)				
1:15Pm	7.32	13.60	/a4.	5	0.6	95	· · · · · · · · · · · · · · · · · · ·					
2 alpm	7.20	14.40	123		0.6 0.6	110		-				
2 35Pm	7.02	15.60	./260)	0.6	110	*					
					11							
								1				
* * *					, wheelers .	·	·	ļ				
	}			·		· · · · · · · · · · · · · · · · · · ·		II				
}												
 		 	<u></u>					∤ {				
			<u></u>	····	-			 				
					1			1				
 		 					·	 				
		 	 		-}			 -				
·					1			1				
					1			1				
		1										
				•								
SAMPLED	SAMPLED BY: R6. /J.M.											
					1	general process of the second						
COMMENT	S:	W	e// 5	ampled	1	a 45PM						
			METALS	Fil	Total	() ()						
		•	*******									
						··						

			BY WELL M	ONITORI	NG DATA SH	<u>IEET</u>			
PROJECT:	HH- Pa	RTIVOR	V PEG	SITE	JOB NO:	501-2	27- 29		<i>:</i> ·
WELL DES	IGNATION:	PAMW		 	DATE:		0/00	'	
CHECK	BOXFOR	LOWFLOW	PATE	(HL):	CASING D		2	Inch	
WEATH	ER CONI	DITIONS:	Good		151	CK-UP DISTA	NKE:	3.20'	
STATIC WAT	ERLEVEL	FPS CO	ORD'S	:Lo	N(T:	LA	4T.:		•
-			V		OP OF PIPE				
		TIME	WATER		PRODUCT				
PRE-PURG	E:	10,07		59		(,,		•	
POST PUR	GE:								
	DEPTH OF					00		FEET	
	DEPTH TO		011001		4-			FEET	•
	<u> </u>	WATER C	OLUMN		6.0		·	FEET	
WELL PURGE	FACTO			X.	0.6	8			· ·
VELLTONGE	Walum	LETOBER	LEMOVED		.3.4	6			,
TIME	рН	TEMP	CONDUC	TIVITY	SALINITY	TURBIDI	īΥ	DISS. O2	·
·•.	(SU)	(C)	(umohs		(0/00)			(mg/l)	
10:44	6-48	16.0	37		0.2	05			
11:00	6-48	15.3	36		0.2	05			
11:10	6146	16.4	37		0.2	650			
12:15	1.59	16-0	39		0-2	205			acallical.
12-73		161	57	'	- 2, 2	205			OS 7 off scale
	 				1			1	•
						· · · · · · · · · · · · · · · · · · ·			•
						4-1-1	ş		
	ļ	ļ				·			
 	ļ	<u> </u>	7						
<u> </u>	ļ							 	
		 							
	 	 							
	 	 			-			1	
	1			· · · · · · · · · · · · · · · · · · ·			 		
		1							
		.1	7 1 0	- 1,		- Avo-e-Huongton			
SAMPLED	BY:		2 9 É	41,					<i>,</i> ,
<u>∩OMMEN</u>	<u>TS:</u>	Well	ives de	y Ato	e each v	elup - Ve	ry muc	ldy il bail	Consulfor setting groved
		Lowk	lon wis	med 1	o la lo	el fuib	dita	in it	(colling a world
		colle	et som	<u>ماو.</u> کے	molins	coenci	d 01	2.16→	· Jerry 9 ··
		Use	10.450	-1:00	pi -et	S			
					U				

* FACTOR = 0.618 FOR LINCH DIAMETER WELL CASENG

	WELL MONITORING DATA SHEET										
PROJECT:	HH - Pa	RTIVOR	y PAG	SITE	JOB NO:	501-2	33-299				
WELL DES	IGNATION:	: FAA	1W-15D		DATE:		1/20/00				
CHECKE	SOX FOR	LOWFLOW	i RATE	(HL):	CASING D	AMETER:	2"	Inch			
WEATH	ER CONI				1511	CK-UP DIST	ANCE:				
STATIC WATE		PS CC		Lor	3/2:	ر خور در برد ا	AT.:				
-					OP OF PIPE	TO:					
		TIME	WATER		PRODUCT						
PRE-PURG	E:	10:08		, q q	-	-		• .			
POST PUR	GE:										
					-						
	DEPTH OF				52.			FEET			
	DEPTH TO				9.0			FEET			
		WATER C	OLUMN		42-		FEET				
WELL PURGE	FACTO			<u> </u>	0.6						
WELL PURGE	VOLUM	ETOBEL	REMOVED		26-	<u> 27</u>					
TIME	pН	TEMP	CONDUC	TIVITY	SALINITY	TURBIC	OTTY	DISS. O2			
_	(SU)	(C)	(umohs		(0/00)			(mg/l)			
12-23	6.83	15-7		32	1.1	0.5					
13:05	14-76.9	· · · · · · · ·	21	62	1-1	Or.					
13:48	687	15.4		.57	1-2	ام ي					
14:15	6-99	15-6		64	1-2	0-					
14:20	7.00	15-7	22	90	1-2	0-	<i>)</i> -				
14,33	7 , 2,10	15.5		70	1-6		<u> </u>				
					 		···	<u>-</u>			
<u> </u>					1						
							ş				
					**						
											
	 		<u> </u>				<u> </u>				
							· · · · · · · · · · · · · · · · · · ·				
ļ 			ļ		ļ						
ļ	<u> </u>		ļ				·				
ļ	<u></u>	ļ	ļ					 			
 	ļ		 								
L	<u> </u>	<u> </u>	<u> </u>		ليسيسا			<u> </u>			
SAMPLED	SAMPLED BY: AZ dEM										
		· /	. :		. , 1	20 0 1					
OWWENT	<u>s:</u>	V2/2:	~ uddy	F_i	itered 1	letal)				
		-	- U								

THE PORT AUTHORITY OF N.Y. & N.J.

MATERIALS ENGINEERING DIVISION

WELL MONITORING DATA SHEET

PROJECT:	HH-Pa	RT IVOR	y P&G SITE MW-15D (Re	JOB NO:	501-233-	295
WELL DES	IGNATION:	PA	MW-15D (Re	peut DATE:	11 30/00 IAMETER:	
IC HECK F	loy For	LOWFLOW	I IRATE (MI):	ICASING D		
WEATH	ER CON	MIONS:		51	CK-UP DISTANCE	
STATIC WATE	RLEVEL	795 CC	PORD'S : L	ONIT:	LAT.	:
-	ک بیه					·
			DISTANCE FRO			
DE BUDO	_ .	TIME 8:16	WATER (FEET) PRODUCT	(FEET)	•
PRE-PURG		9:56	13.23			
POST POR	GE:	4:56	15.53			
	DEPTH OF	- NACEL 1		<i>CO.</i> 1		
	DEPTH TO			52-4 13-2		FEET
		WATER C	:OLUMN	39.		FEET
	FA					
WELL PURGE	FACTO		X.	0.61		
WELL TO NOL	Valum	ETOBES	REMOVED	.24	26	
TIME	рН	TEMP	CONDUCTIVIT	Y SALINITY	TURBIDITY	DISS. O2
4	(SU)	(C)	(umohs/cm)	(0/00)		(mg/l)
8:45	7.5-3	14.2	2274	1-2	D.R.	
4:18	7.43	16.4	2337	1.2	O.R.	_
9:33	7.40	18.0	2332	1.2	O.R.	
			programme and the second second			
<u> </u>						
						
ļ	ļ		on validation	Say year special		<u></u>
· · · · · · · · · · · · · · · · · · ·						
	 					
						
	ļ	<u> </u>			· 	
	 	ļ				
	 	 	<u> </u>			
}	 					
	 	}	 		O. R-004	curze
	 					
L	<u> </u>	<u> </u>	<u> </u>			
SAMPLED	pv.	AZ 4	166			
SAMI ELD	<u>D1.</u>	1127				
COMMENT	rs·	Vose	an Ide	low remains	.i01	aliment
- Comment	<u> </u>	704	1-(100) -)	المحادث المحادث	is, well o	1 CA-1 D
		F. I	1 volumes			
_			rea - eliv)		

	WELL MONITORING DATA SHEET												
PROJECT:	HH-PO	RT I VOR	Y PAG	SITE	JOB NO:	501-2	33-29	<					
WELL DESI	GNATION:	1	4 MW-11	OD	DATE:	//	130/00						
CHECKE	OX FOR	LOWFLOW	PRATE	(HI):	CASING DI	AMETER:	2	Inch					
LIFATUS	B CON	THOUSE		<u> </u>	131	A-UPDIST							
STATIC WATE	RLEVEL	0/ /	-002	+1-	101	יוסח ותעי							
WEATHE STATIC WATE	I.C.						AT.:						
					OP OF PIPE								
	_	TIME	WATER		PRODUCT	(FEET)							
PRE-PURG		14:36		7-18									
POST PURGE: 15:30 7-68													
t	DEPTH OF	: VA/E-1 1	·	,	9 7	CO							
	DEPTH TO			ļ		-58		FEET					
	DEPTH OF		OLINAN.			18		FEET					
3			OLUMIA			40	 	FEET					
WELL PURGE	FACTO			X.		6.18							
WELL FORGE	VOLUM	ETOBER	REMOVED	ł	. 16	32							
TIME	рН	TEMP	CONDUC	TIVITY	SALINITY	TURBIC	YTI	DISS. O2					
	(SU)	(C)	(umohs		(0/00)			(mg/l)					
14:46	6-76	14-8	27	142	1-4	32	-						
14:56	6-74	15.6	26	86	1-4	40							
15=07	6-76	15-8	. 27	29	1-4	35							
						the first see the second see	age to the						
			the	***									
					7								
		·		· · · · · · · · · · · · · · · · · · ·									
							ş						
			7.4	- j									
							:						
			· · · · · · · · · · · · · · · · · · ·				··						
				. ,									
					1								
	ļ	 			1								
								-{					
ļ		 	 	•									
 	ļ	 	 	· · · · · · · · · · · · · · · · · · ·	-1			-					
L	L	4.5	·		<u></u>	· · · · · · · · · · · · · · · · · · ·							
SAMPLED	<u>BY:</u>	AL	\$ E.	7	·								
OMMENT	s:	6		,	/E1								
<u> </u>		0	00 /2	~~~	- //			·····					
				· · · · · · · · · · · · · · · · · · ·									
			· · · · · · · · · · · · · · · · · · ·										

THE PORT AUTHORITY OF N.Y. & N.J.

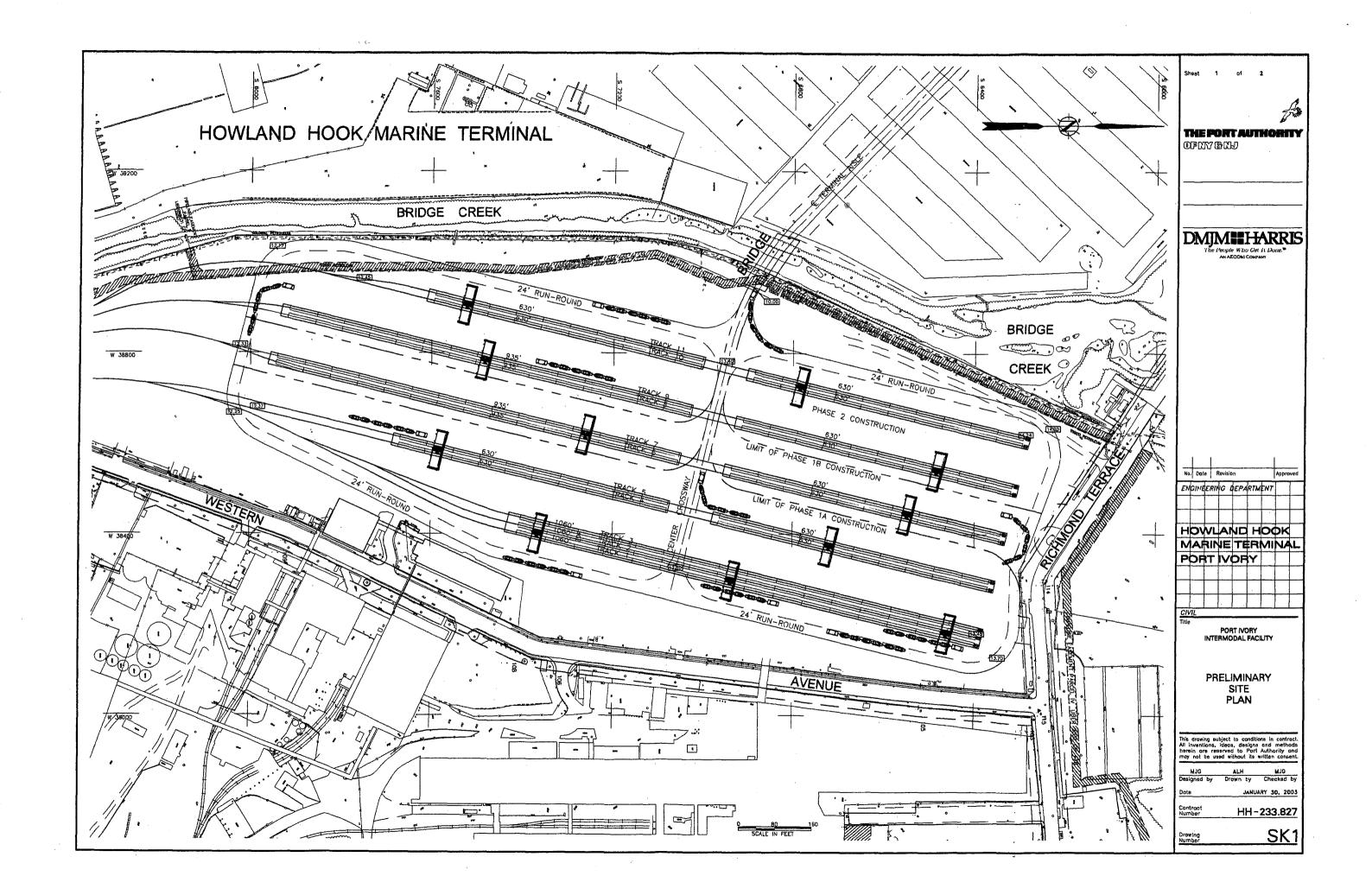
MATERIALS ENGINEERING DIVISION

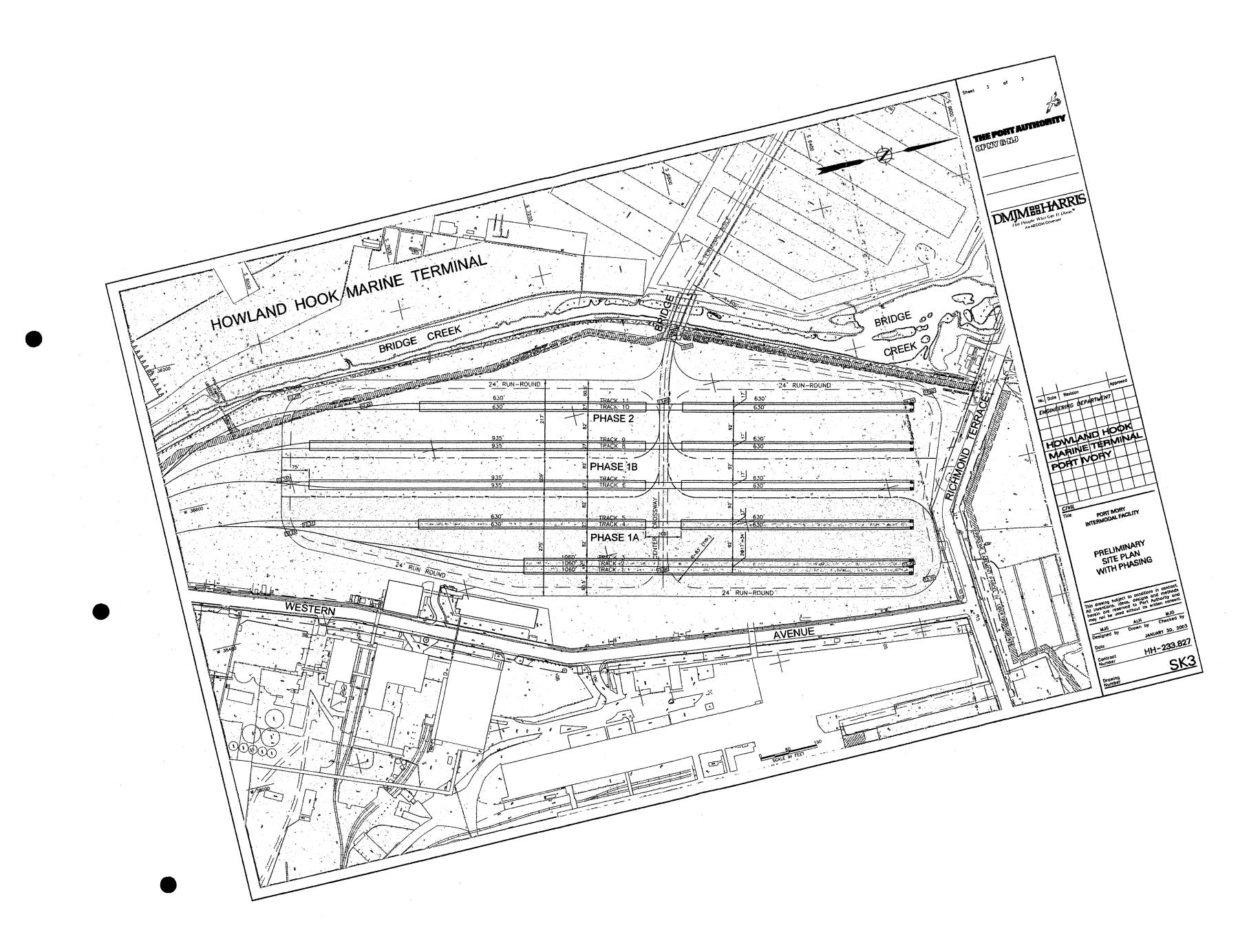
WELL MONITORING DATA SHEET

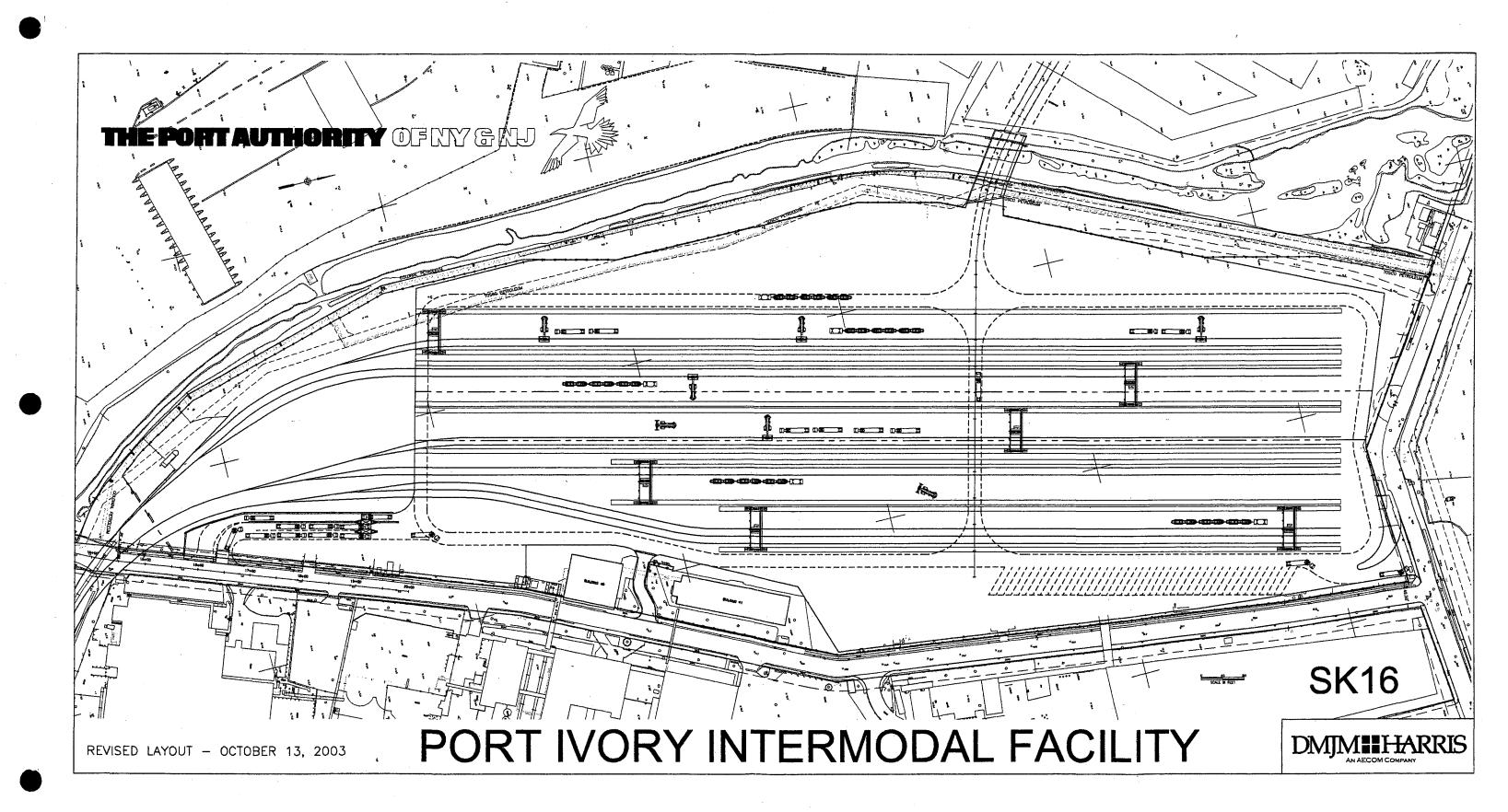
				<u></u>	<u>io bitiin on</u>	<u> </u>	
PROJECT:	HH-Pa	RTIVOR	y PIG	SITE	JOB NO:	501-23	3-295
WELL DES	IGNATION:	PAMW'	7		DATE:	111	27/03
	30XFOR			(HT):	CASING DI		Inch
WEATH	ER CON	DITIONS:			1511	CK-UPDISTAN	ke:
STATIC WATE	KLEVEL C	<u> </u>	ORD's	LO	S(T:		T.:
*			DISTANCE	FROM TO	OP OF PIPE	TO:	
4 4 4		TIME	WATER		PRODUCT		
PRE-PURG	E:	8:10	6.63				•
POST PUR	GE:	10:25	7.0	3			
							-
	DEPTH OF			13.			FEET
	DEPTH TO				63		FEET
					47		FEET
WELL PURGE	FACTO		2"		.618	-	-
	WOLUM	le to Bel	REMOVED	<u> </u>	3.99		
TIME	рН	TEMP	CONDUC		SALINITY	TURBIDIT	Y DISS, O2
	(SU)	(C)	(umo hs	rcm) MS	(0/00)		(mg/l)
:25 *	7.06	14.9	1 2			700	1.06
70:50	2.40	15.6	1.00	·	0.5	270	
10:55	7.41	15.8	0.96		0.5	120	
n:00	7.42	(3.1)	0,9	2	10.2	210	
					1		
					1		
			 			· · · · · · · · · · · · · · · · · · ·	
							. 5
	<u> </u>				 	·	
<u></u>					 		
					 		<u></u>
	 	 	 		 		
	 	 	 		 		
ļ	 	 			 		
	 		 		1		
		1		•	1		
			1		1	_	
SAMPLED	BY:	-					
~~B###~*	FO-	5	0 1	1. (1	1	.1 4	.
OMMENT	19:	JUMPIA	10' Met	415 711	KLEG! WI	ah turbiti	11.
		T Well But	nged contin	ucusi./ to	l) next ras	nng	

THE PORT AUTHORITY OF N.Y. & N.J.

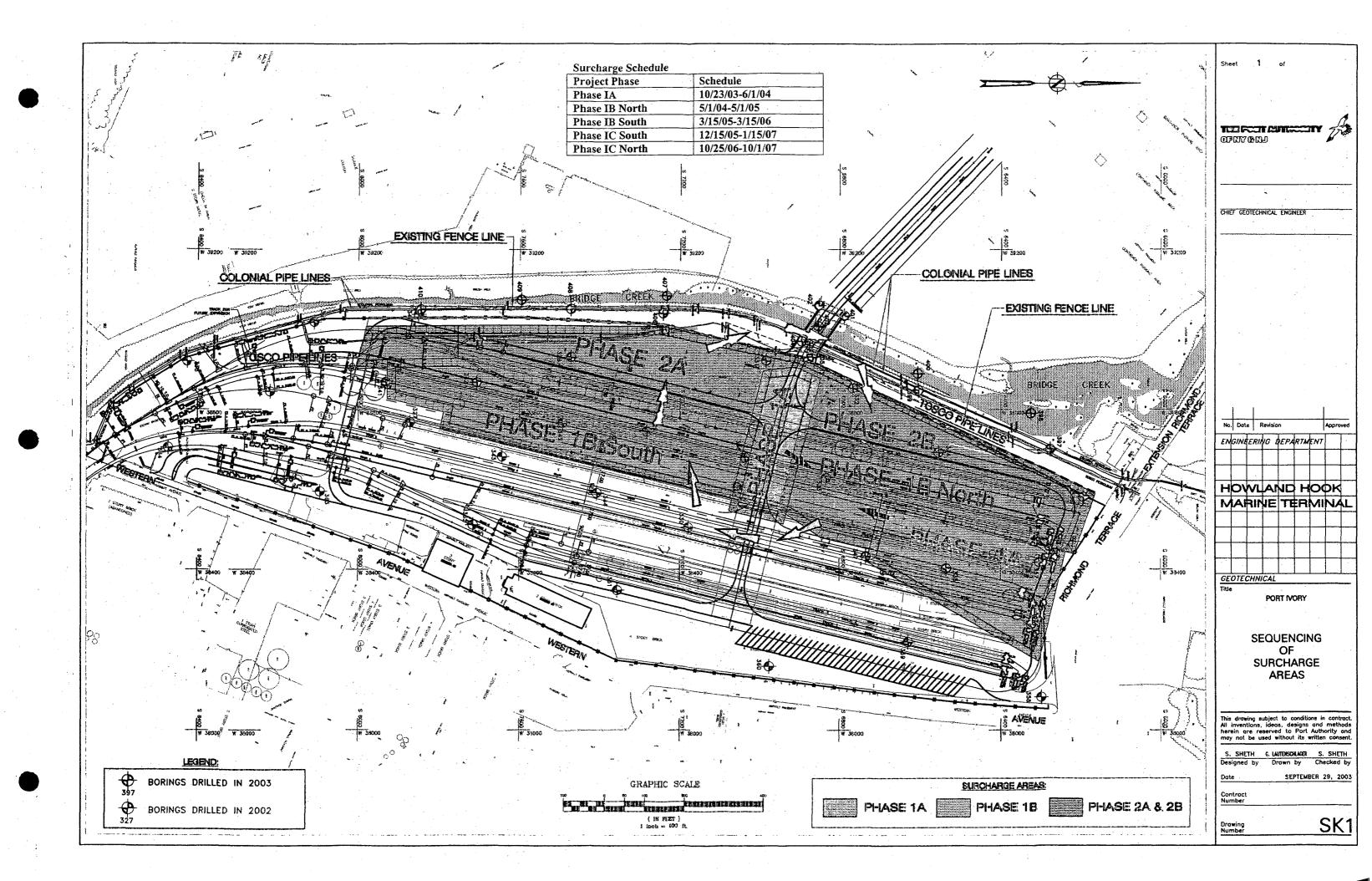
MATERIALS ENGINEERING DIVISION


WELL MONITORING DATA SHEET


													
PROJECT:	HH-P	RT IVOR	y PIG	SITE	JOB NO:	501-233-2	95						
WELL DES	IGNATION	: PA	MW- 7	D	DATE:	11/30/	00						
CHECK	30x FOR	LOWFLOW	12 IRATE	(HL):	CASING D		2" Inch						
WEATH	ER CON	DITIONS:			151	CK-UP DISTANCE:							
STATIC WATE	KIEVEL	7P5 C0	ORD'S	:LO	N(T:	LAT.:							
•		. 1			OP OF PIPE	TO:							
	TIME WATER (FEET) PRODUCT (FEET)												
	PRE-PURGE: 0:08 1/01 -												
POST PUR	GE:	11:25											
DEDITION WELL													
	DEPTH OF		· · · · · · · · · · · · · · · · · · ·	 	46.40	0	FEET						
	DEPTH TO	WATER C	· COLLINAL	<u> </u>	11.61		FEET						
	}		OLUMN		35-39		FEET						
WELL PURGE	FACTO			<u> </u>	0.618								
1,5551,91191	WOLUM	le to Bes	REMOVED	<u> </u>	21.8	<u>/</u>							
TIME	рН	TEMP	CONDUC	TIVITY	SALINITY	TURBIDITY	DISS. O2						
	(SU)	(C)	(umohs		(0/00)		(mg/l)						
10.22	7.78	15.2		54	1-4	110							
10-35	7.32	16.8		86	2.4	950							
11:00	7-34	17.0		94	1.6	0.R.							
11:16	1/31	16-9	31	23	1-6	UIRI							
	· · · · · · · · · · · · · · · · · · ·												
					 								
 			<u></u>		1								
					1								
						ş							
	 			 		<u> </u>							
<u></u>	<u> </u>				-								
	ļ												
	 	ļ											
	 	ļ	 	, <u>-</u>									
	 		 										
	<u> </u>	<u> </u>		•	1								
·	1	†		·	11								
SAMPLED	BY:	A	24E	·M.									
OMMENT	<u>rs:</u>	Very	5/07	, reco	erery = 1	t runs alm	of da						
		_ Filte	red in	stal?									


	,		BY WELL N	IONITORI	NG DATA SH	<u>IEET</u>	
PROJECT:	HH - Pa	RT TWO	y PIG	CITE	JOB NO:	501-233-	o a r
WELL DES	IGNATION:	MA	1- GW-	7	DATE:	11/24/01	
CHECKE					CASING D	IAMETER:	2 " Inch
I TE AGIL	50X FOR	LUMPLUM	74 717115	O.F.			
WEATHI STATIC WATE	RIEVEL	71110N2:	- 00 2		1011	CH-UP DISTANCE:	
	IC	FPS CC	OKD.	ialo	N(x:	LAT.:	
-	·				OP OF PIPE		
1	·	TIME	WATER		PRODUCT	(FEET)	
PRE-PURG		11:14	8.	82			-
POST PUR	GE:	12:36	9.	26			
	SEBTI OF	- \ A Pr-1 1					_
	DEPTH OF		· · · · · · · · · · · · · · · · · · ·	ļ	14.9		FEET
	DEPTH TO	WATER	OI LINE	}	8.8		FEET
			OLUMN	 	6.1		FEET
יייים אייים אייים	FACTO	R # .		X	. 0-6		
WELL PURGE	VOLUM	ETOBER	REMOVED	<u> </u>	3-8	<u>'I</u>	
TIME	рН	TEMP	CONDUC	TIVITY	SALINITY	TURBIDITY	DISS. O2
	(SU)	(C)	(umohs	/cm)	(0/00)		(mg/i)
11:36	6.87	1507/4	1.7 70	7	0.4	60	-
111:39	6.60	16.6	70	2	0.3	14	-
11:45	6.61	16.7	.70	4	0.3	5.1	
11:50	6.60	16.7	701	J-2	0.3	5.5	_
		a and the c			71		
					1		
						۶	
		- regign the refske					
							
					11		
					- 	_ 	
			<u> </u>		1		
<u> </u>	 	 			-		
 	 	 	 				
	 		 				
 	 	}					
L	<u> </u>	1	<u></u>			· · · · · · · · · · · · · · · · · · ·	
SAMPLED	BY:	A	2 4 Df	2			
001444	-0	And the Control of th	The second secon				
COMMENT	<u>5:</u>						

							·


WELL MONITORING DATA SHEET

PROJECT:	HH - P	RT Time	y PEG	CITE	JOB NO:	501-233-2	ar					
WELL DES	IGNATION	Gw-	<u> </u>) (/ E		367-233-2 1-24-00	75					
CHECK	BOXFOR			(HL):	CASING D	IAMETER: 2	Inch					
LIFATU	FR CON	THOUS.	SUDAY	ZYOE	159	CK-UP DISTANCE:	00					
STATIC WATE	RLEVEL	FPS CC	ORD	Loc	V(7:	LAT.:						
-					OP OF PIPE							
f		TIME	WATER		PRODUCT							
PRE-PURG	E:	3 2681	6.9			<u> </u>	. •					
POST PURGE: 4:19PM 7.8!												
DEPTH OF WELL 13.42 FEET												
	DEPTH OF											
		WATER C	OI LIMN		6.98 6.44		FEET					
	TACCO		OLOMIN T	X	0.618							
WELL PURGE	,) (Mayler		3.18							
		ETOBER										
TIME	pH (SU)	TEMP (C)	CONDUC	/cm) (v S)	SALINITY (0/00)	TURBIDITY	DISS, O2					
8.30 Pm	8.13	15.20	262/		1.4	50	(mg/l)					
3:42/M	8.07	15.19	252	}	1.3	30						
3:50PM	7.69	15.2°	2718		1.4	ā5						
3:59PM	7.72	15.30	2712		1.4	٦3						
				·								
ļ			ļ 		<u> </u>							
<u></u>					 							
					 							
						Ţ	_					
	right and said after The											
	47											
ļ		····				<u>-</u>						
}												
 	 											
	 				1							
				•	·							
<u> </u>												
SAMPLED	BY:	Re	2/EM.									
CARRACAD	-c.		well	Sample	1 0	4:17191						
OMMENT	<u>u,</u>	(m-17-14-14-14-14-14-14-14-14-14-14-14-14-14-	レンじリ	Jampie.	<u>u</u> (u)	1111						
												
				·		**-						

PA 547 6-90

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

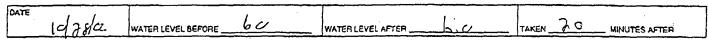
		-				BOITIN	is ii			•	Г	SHEET)	OF 3
PROJECT						NAME OF	CONTRA	ACTOR		BORING NO.		SURFACE E	LEV.
HHM	T- PorT	Lucia	5.	urchan	TosT	Cro	w D.	+, lling		PG-ST-15	·		,
LOCATION		_ ′					•			CONTRACT NO.		DATE	/
As La	douter	field a	5 POL	Dease	us 1	Yar74 81.	La			426-99-00		101	23/02
SPOON	D.D. 13/8	C	ASÍNG SI O	ZE HOLE	TYPE					UND WATER LEVI			
- 2 0	0.0. 1/8	"I.D. f	trions	101	MORTOR	Da	le	Time	Depth		Rema	rks	
HAMMER	AUGO FALL 30	, n			_	10/2	ila	12 45	3.7	Le hilo.	Wa 11	7	
DRILLER				# FALL		1 1 1	-11.4.2		- '!'	1 41167	nace n	Canal	
		D Cool	co										
INSPECTOR													
		V House	<u></u>		·					<u> </u>			
CASING BLOWS/FT.	DEPTH	SP0 BLOW		RE- '	SAMP.					CRIPTION AND RE			0.0
Mand		Mard	Aven	R11							•		
Augr)	i] [E II		- n . e		/ (1			
17081	<u> </u>	 						<u> </u>	cyclos	Concrese Ag	¥		
· .	<u> </u>				2 8		ame						3.C
1					- B	F/11 -	- Cru	sled 57	eno.	•			
	-				_								· ——
	5 4	4			3								
		<u> </u>		4		24	mo						6.0
Hollan		1-4	vH										•
STONE		wo	H	19"	4	Fill	6.6.1	26.		stone Story			
	_	14				<u> </u>	· <u>~ · · · ·</u>	<u> </u>	/	27026 21014			
Ayon	<u> </u>	1 ~ c	,		5					_ `			
	10		H	23"		<u></u>	ane						
\	,,,	4	}	1	•	}							
	-		H	24"	,6								
				<i>4</i> 9		<u> </u>	me_			_ ` _	 .		
		الام			 ,		· ;						
	İ		H	247	7	Sa	me					•	
		4					 .						
	12 <		-		8	<u> </u>							
			H	241		<u> </u>	me_						
		4			9								
			H	20"	(ime						
	-	4.	1	-	. n					- 			
		ho	-	1/2	10 2			e limes	1000	olury			19.0
	20		4	16"	<u>"B</u>	Black	e Pe	nt.					300
													7
										Ballanot	$\frac{1}{\rho}$.		$\nearrow \neg$
	_				ŀ						. W.L. L	-	
·					}			 ,,					
<u> </u>]					LITH PID M			
	25					No	Samo	by Sau	L A	1 Piscardar			

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wosh water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

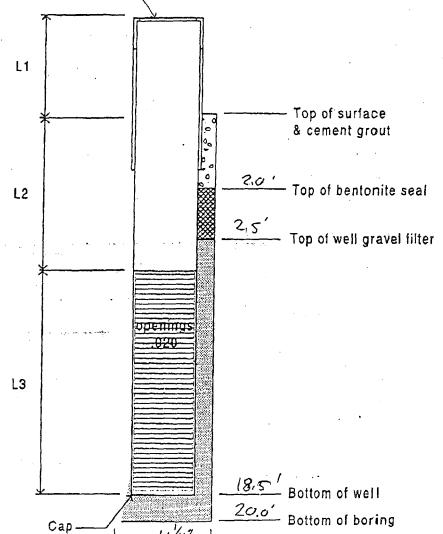
Engineering Department - Materials Division

Well Installation Report	Sheet 2 of 3
PROJECT HHMT-Pail Ivan, Surcharge Text	CONTRACT NO. 426-99-006
DESLOCATION FIELD SON DICKING IYOTH Sido	Contractor Cray Otelling


PTS Laid GUTINFIOLD C PON DICKING 1401Th Side Cray Drilling
WELLING. WELLTYPE INSPECTOR DRILLER DATE
PG-ST-25 B"MONTOR D'HOUX D'CCOFO 10/24/02

Well Development Report (NOTE:

L3 = 15,5'


£, 4

(NOTE: WATER LEVEL READINGS FROM TOP OF PYC)

L1 = 30 L2 = 30

2" dia. PVC pipe w/steel locking cap

REMARKS.

Hele Backfulled 18,5-20,0' with Bentonitio

Boring diameter

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 3 of 3 PROJECT: HY MT- POIT IVON Surchage ToiT 10/22/12

BORING NO	. PG- ST	15			DATE: 10/23/a
FIELD REAL	DINGS BY:	Odow			PID Model: MILL REE
				100/4	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	REMARKS
Pt X	1		0.0		
	2 H		0.0		
	23		0.0		
PN	3.		00		
-	4		00	·	
	2		0.0		
	6		0.0	,	
	7		0.0		
	8		00		
	9		0.0		
	UA		00		
VI	IUB		0.3		Part
		•	c sdc		` .
					,
	-				
		·			
			-		
	·				

PA 547 6-90

THE PORT AUTHORITY OF MY & MU

Engineering Department Construction Division Materials Engineering Section

Hand Kand Burger Full 1 Fill- RCA Rocycled Cuscusto Dags										SHEET / OF
LOCATION HS Laid OLT IN Flold GS. P. Drayley Nort in Side SPOON O.D. 134 "I.D. HW B' MUNITON Date O'O.D. 134 "I.D. HW B' MUNITON Date Time Daph Remarks HAMMER 140 # FALL O'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE O'COKE HOWSIFT. DEPTH BLOWSIFT DEPTH BLOWSIFT RII- CCH Rocycled Cucreso Drg	PROJECT		· · · · · · · · · · · · · · · · · · ·			NAME OF CON	TRACTOR		BORING NO.	SURFACE ELEV.
LOCATION HS Laid OLT IN Flold GS. P. Drayley Nort in Side SPOON O.D. 134 "I.D. HW B' MUNITON Date O'O.D. 134 "I.D. HW B' MUNITON Date Time Daph Remarks HAMMER 140 # FALL O'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'Coke INSPECTOR D'SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE O'COKE HOWSIFT. DEPTH BLOWSIFT DEPTH BLOWSIFT RII- CCH Rocycled Cucreso Drg	TMKK	- POIT I	ioni Surche	KR TOST	_	Craic 1	Prillips	1	PG-5T-10	
SPOON O.D. 198 "I.D. HW B MONIJON HAMMER 140 # FALL ORILLER Date Time Depth Remarks Loly 1035 5.0 while How Arguing DRILLER DRILLER DRILLER DROON EASING BLOWS/6" COV'D NO. HE-1 SAMP.2 LINE LOCATES CHANGE OF PROFILE OROUND WATER LEVEL GROUND WATER LEVEL Date Time Depth Remarks Loly 1035 5.0 while How Arguing Spoon Re-1 SAMP.2 SAMPLE DESCRIPTION AND REMARKS BLOWS/FT. DEPTH BLOWS/6" COV'D NO. Hand Hover Fill— & Recycled Cucres. Arguing Fill— & Recycled Cucres.	LOCATION		,			0	7		CONTRACT NO.	DATE
The popular remarks HAMMER 140 # FALL 30 " # FALL " (2) 24 10 35 5,0 while How August DRILLER DRIL	As Lais	lout in fi	Isld 45 MI Dra	41451	NorTi	n SiLo			426-79-006	10/24/02
HAMMER 140 # FALL 30 " # FALL " DRILLER DRILLER DROCKE INSPECTOR DROCKE CASING BLOWS/FT. DEPTH BLOWS/6" COV'D NO. HAMMER #FALL " DROCKE INSPECTOR DROCKE SPOON BLOWS/6" COV'D NO. The locates change of profile DROCKE The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The loca	SPOON	.3,	CASING	SIZE HOLI				GRO	UND WATER LEVEL	
HAMMER 140 # FALL 30 " # FALL " DRILLER DRILLER DROCKE INSPECTOR DROCKE CASING BLOWS/FT. DEPTH BLOWS/6" COV'D NO. HAMMER #FALL " DROCKE INSPECTOR DROCKE SPOON BLOWS/6" COV'D NO. The locates change of profile DROCKE The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The locates change of profile The loca	9 .	0.0. 178		B.	MUNIJON	Dale	Time	Depth		Remarks
ORILLER D Cooke INSPECTOR D Howe CASING BLOWS/FT. DEPTH BLOWS/6" COV'D NO. And Dury Full Fill—RCA Rocycled Curento Age 2 SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE OO Fill—RCA Rocycled Curento Age 2	1	<u> </u>	HAMMER	İ		1 1 .	1 . 35	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
INSPECTOR D'House CASING BLOWS/FT. DEPTH BLOWS/6" COV'D NO. SAMPLE DESCRIPTION AND REMARKS LINE LOCATES CHANGE OF PROFILE OO Hand Huger Fill—RCH Rocycled Cucvelo Bg		#FALL 30		# FALL		12/14	10-2	10,0	Cehilo Acul Di	solist
CASING BLOWS/FT. DEPTH BLOWS/6" COV'D NO	DRILLER	PG	icke							
Howsift. DEPTH BLOWSIG" COV'D NO. LINE LOCATES CHANGE OF PROFILE And Howar Full Fill- RCA Rocycled Cureto Dag 2	INSPECTOR									* .,
Hover Rocycled Cucreto By										
Aver Fill- RCA Rocycled Cascrelo Bgg	Hand		Hand Burge	Full	,					
	Auser	ļ ·	1 10	1.1.	L'_	I F/1-1	CA R	cycled	Cucroso Des	
	9							, –		
		-	 	+	2		-			
5am 410	 	 -	 -	- - 		Jame	_			910
				<u> </u>	5	L				
Fill- Croshed, Stone S.17, Soud ETC		[]		11)	F,11- C	roshed ST	S17:	T. Sand ETC	
Jul 6	NW	- 6 -						7		
Casing For STr. Ta 6-20' Sep Los PG-ST-25				1		Ba	STETO	-7 C S	- La Cor PG-ST	- 1 <
1073711/4 0 20 25 25 25 25 25 25 25 25 25 25 25 25 25	1.	 		+			JJ 777 4 (<i>ep</i> (<i>e</i>) <i>x y y y y y y y y y y</i>	
		_		 		<u> </u>			-	
→ → → → → → → → → → → → → → → → → → →		→ 20 →				 				
	 		1-0	 	4	 				
1-1 8° Black & Brown Post			1-1	કે'		Black	- Brown !	Post	· · · · · · · · · · · · · · · · · · ·	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			WOH-1				_			-,-
2-2 234 5 Same			2-2	234		Sa	me_			
1 00 (40H-1)			WCH-1		(
				117	6	San			·	260
3 - 3		_								
				-	7					
4-5 12" F Gray Sand, Tr S. IT			9-5	194		F-Gray	Sand, Ir	· <u>Si 1T</u>		
						·	,	•		
					Ī					
30 3-5		> 30. ₹	3 ~	 						
				+	8					
6-7 10" 8 Same	_		6-7	10"		<u>Same</u>	- 			
					-					
					<u> </u>	·				
					}					

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used 2 — U = undisturbed; A = auger; OER = open end rod; V = vane 3 — Log depth of change in color of wash water, ioss of water, artesian water, sand heave in casing, etc.

PA 547 6-90

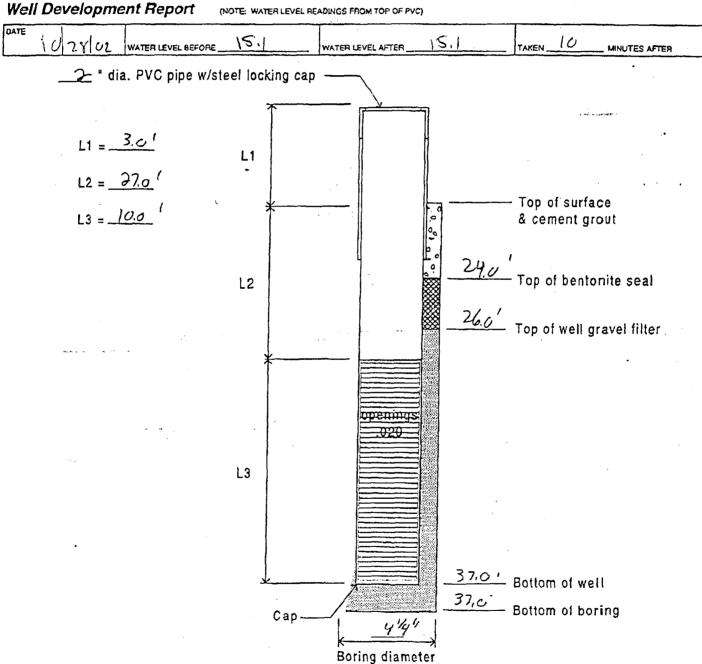
THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

											_			SHEET 2	OF (
PROJECT							E OF C					BORING NO.		SURFACE EL	.Ev.
MAK	T-POIT I	Luch	, Surc	hanso J	آ ده	C	rais &	Prell	les			PG-57-	10	1	
LOCATION		7					•					CONTRACT N	0.	DATE,	,
1 DS) and	Low Two for	ald a	SMOI DY	AWILE.	North	Sid	9				j	426-99	-006	10/2	Hor
SPOON	Coutin for		CASING S	IZE HOLE	TYPE						GRO	UND WATER			
2 -	0.0. 13/8	*1.0	HU	, d.	MULLION		Date	\top	Time		Depth			emarks	
HAMMER	Belo	1.0.	HAMMER			 -									
	FALL 30	*	1	# FALL						-		}			
DRILLER	PALL JO		<u> </u>	" TALL											
No.	* ***	0 0	colne		İ	(
INSPECTOR		D X						1.			·····				
CASING	T		POON	RE- 1	SAMP.	 				SAME	OLE DES	CRIPTION A	ND REMARK	(5	
BLOWS/FT.	DEPTH		ows/6"	COA.D	NO.					LINE	LOCAT	ES CHANGE	OF PROFIL	Ĕ	35.0
HW	35	14	-4	İ	0										
Casing		5	5-5	100	9		M-P	- RL		500	1, 1,5				370
13/04	- -	1				1			SUD	9,20	7, 7, 5	1.7	· ·		91
<u></u>		 								 -	 , 				//
				ļ								<u> Kaljon</u>	of Bori	<u>v</u>	§
	40]		{ · .	 	•									
	10							D-h	Sam	ءاء	char	61.7	PID NE		
1								الم	المراجعة	THES.	_ <u></u>	Ked with	_ · <u>· · · · · · · · · · · · · · · · · ·</u>		
<u> </u>						 		140	<u> 24 m</u>	<u>pla</u> -	<u> 24000</u>	4 DU -K	S Cardo	<u> </u>	
						<u> </u>		<u> </u>		 -	_				
					-										
	45			.											,
	. 13														
								<u> </u>							
					ĺ							·			,
													•		
				Ì	İ										
	► 50 -				j										
	_				1										
				j	}										
	 				. }			 -							
					1					·				<u> </u>	
	\sim)								-				
	-22				ŀ										
					ŀ							-			-
					+							~ 		. 	
	T			7	ſ									 -	
	- , +				f									· ·	
	10		_ 1												į.

NOTES: 1 — Length recovered; 0" — Lose of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ


Engineering Department - Materials Division

Well Installation Report

Sheet 2 of 4

PROJECT HUMT- POIT	Ivory Surchasse Post			CONTRACT NO. 426-99-006
DS LandouTIL				Crais Orlling
WELL NO. PG-ST-10	B Maritor	INSPECTOR O. Howe	DHOUSE	DATE 10/2+/cz

Well Development Report

	REMARKS:		
		•	
ŀ			<u> </u>
ı			
	·		

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

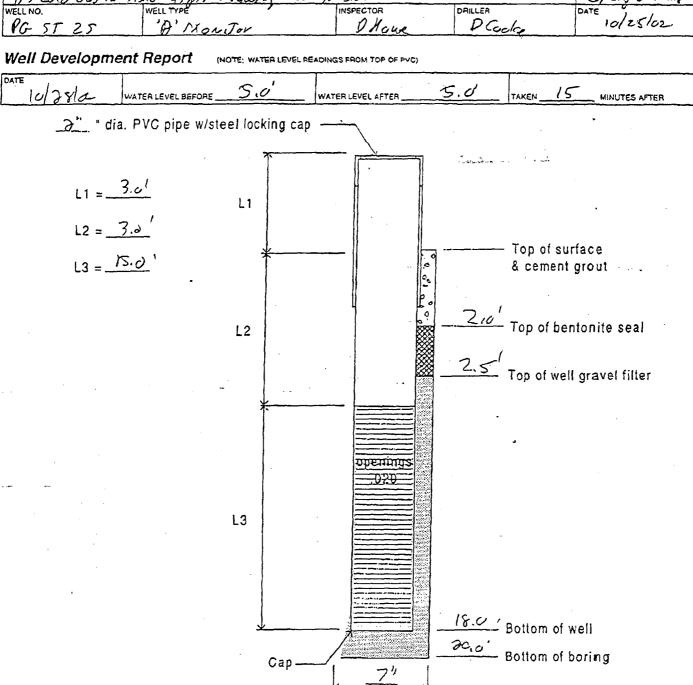
Sheet 4 of 4

PROJECT:	HUMT-	Post Ivory	Surchaige T	257	
BORING N	10. PG- 5	7. 20			DATE: 10/24/02
FIELD REA	DINGS BY:	D How			PID Model: Mini RALE
		เพ-รเทบ	HEAD-	BREATHI	
ТІМЕ	SAMPLE No.	Split Spoon Reading	Space Reading	Zone Reading	REMARKS
AM	1.		0.0		
	2		00		
	3		00		
$ \cdot $	4		0.0		
	5		00		
Pm	6		0.0	-	
.	. 7		0.0		
	8		0.0		
V	9		. 0.0		
				ļ	
				·	
			:		
·	ķ,				
					~
	Į.	1	!	- 1	1

6-90

THE PORTAUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section


•									SHEET OF 3
PROJECT					NAME OF CO	À	1	BORING NO.	SURFACE ELEV.
TMKK	- POITI	wory Surcha	ires Tos	<i></i>	Crais	Driller		PG ST 25	
LOCATION		_ ′				•		CONTRACT NO.	DATE ,
As Laid	cut in f	Casing s	traw inv	Was	ST Side			426-99-006	10/25/02
SPOON	3/		l l		1 1		GROL	IND WATER LEVEL	
7 -0	D.D. 1/8	"I.D. HUGETS	75%	XCATOR	Date	Time	Dopth	Re	marks
HAMMER	Busc	HAMMER				450			
140 #	FALL 30	•	# FALL	•	10/25/	2 845	3,0	while Hond	Accordan
DRILLER]]				0
	<u> </u>	Cooks							
INSPECTOR	\mathcal{D}	Howe							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP,				RIPTION AND REMARK S CHANGE OF PROFIL	
Hard	0	Hand Bugs	Full	I A	F.11- C			od slow, Courate	
		1	1	$\frac{1}{B}$		1121		T ()	
Augo		 	 -	<u> </u>	 	While 8-0	rey Lime	osTone Slurry	
'\				2					
		T		2	Sam				
		 	 						
	► .55 ◄		 	3	\				<u></u>
1	5	1		ر	San	ـهـ			· •
Mollow	 ,	4						- 	
	- , -	100		4					-
STOM		81	341	1	Sam	<u> </u>			
Augus		4					**		ws + 1.15= 4 - 2.4 m.
		0,,	24"	5					,
	> 10 <	H	04		Sam	<u> </u>			
		12-2	<u> </u>	. ,					
		1-1	224	6	Sau	e Tru			-
			00				oud		· — — — —
		1-0		フ	<u> </u>			. —. —. —	. <u> </u>
	v."	1-1	2-3"		Sam	<u>a</u> .			
	-	4-2					·		
+	- 15 -	1-2	5''	8	- <		<u> </u>		
1		le			Jan	o Trod	-wood		
		H	12,	9	San				
V-		2-1	10		Jan	<u>. J</u>			
		1-2	7-2"	10	RI	ed Brown	Part		70.Q
	> 20 ◀				1)166	o prown	129)	Bettomet Bo	
	-			}			-	-00 maj 50	
				ļ	77.11	Samal- C	hartali	WITH PIO MOTOS	
	-			Ì	<u> </u>	~ · · · · · · · · · · ·	/ 0	10 10 11	· — — — —
				Ļ	41	Serger S	aread 171	1 Discordad	
	25						•	•	
	-) -								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Well Installation	Report			Sheet Zof 3
HUMI- POIT	Ivary Surcharge)	Tost .		CONTRACT NO. 426-95-006
LOCATION	Field 95 per Pravive	WOST Sido		CYDIC DYMINS
WELL NO.	WELL TYPE	INSPECTOR	DAILLEA	DATE
PG- 5T 25	B' MONJON	DHave	D Cooks	10/25/02

Holo Back filled 18.0-200 WITH BENTONITY

Boring diameter

P. 11

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

PROJECT: HH MT. POIT IVORY SUrcheig Tosk

BORING No. PG ST 25

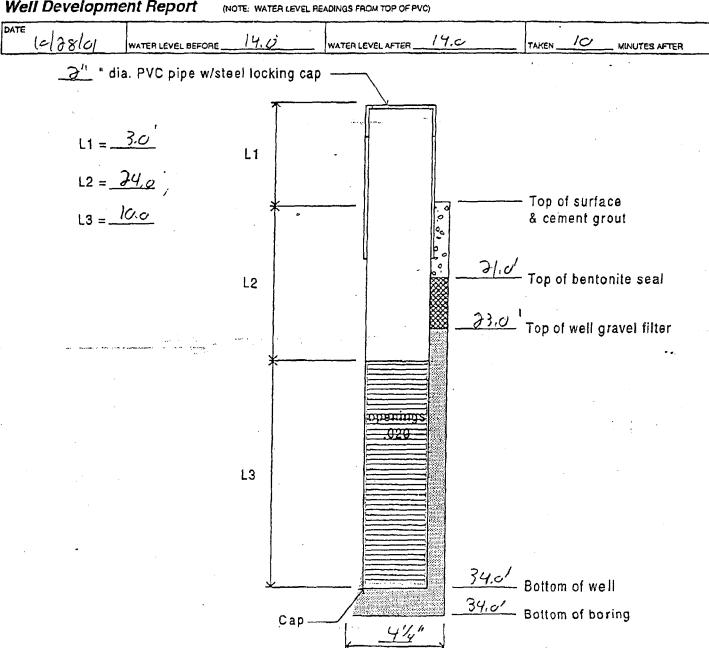
PID Model: Min PALE

FIELD REAL	DINGS BY:	D How			PID Model: Mini PALE
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	
HM	1.A		OD	·	
1	18		00		
	2		0.0		
	3.		00		
·	4.		0.0		
	5		00		
	6		0.0		
71	7		00		
	8		0.0		
	9		0.0		
1	10		0.7		Post
	·				
					·
-	Š.				`
		·			
	·				

PA 547

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section


								<u> </u>	SHEET OF 3
PROJECT					NAME OF CONT	_		BORING NO.	SURFACE ELEV.
HUMT- P	or I Tu	21-1 Su	rcharse	TOST	Cray 0	rilling		PG-ST-20	
LOCATION		7			U		1	CONTRACT NO.	DATE ;
As Landow T	in field	as Por I	four my	وصما	J S.La			426-95-0CG	10/25/02
SPOON	٦,	CASING S	ZE HOE	TYPE			GRO	JND WATER LEVEL	
2 ~0.D.	3/8 °1.D.		[BN	oniTor	Date	Time	Depth		Remarks
HAMMER	A Jo	HAMMER				, on	20	1/4	/ 0
140 #FALL	30 1		# FALL		10/25		3.0	while Hand	Hesping
DRILLER	D Ca	ka							
INSPECTOR	D How	e							
CASING BLOWS/FT. DEF		SPOON .OWS/6"	RE- '	SAMP.2 NO.		°SAI	MPLE DESC	CRIPTION AND REMAR	IKS LE 0,0
Hand	Hose	1 Buser	PUI	, p	F.11- Ciac	Larg Grawl	Crushod	STOND, SAND, ETC	
Augu		1	1	B		TIL	1	CI.	
17030	-		 		1.11	12 Dans	<u> </u>	- Sturry	
			<u> </u>	_					
1 1 1		1 .		2	Same				,
5			 	3	<u> </u>				
		<u> </u>			Same_	·			
du 1º									
		-,,			-	<u> </u>	1 0 / 1	- /	
Casing			 		rer	5/2-19	2-20	Toolog for PG-57	_21
				-		·	· — —		
	, i				•				
		- 11							
	100	04		4					
		-1	14"		Black of	Brown Pr	or T		•
		ر ح		æ	Same				23.0
			18°	5 %					0 1.7,
		-ک	(6	2	~ ~ ~ ·	Black Sax	of Tro	ũŒ	
25			}		!	•		•	25. ₀
-3	2.	7		,					
				6		·		- 	
 	3	-5	7'1		- F-Gray	Sand, I	<u> </u>	·	
			1	}		•			
								· 	
 				}					
30	, 🚣				B-11_Sa	males ch	ocked w	IN PIO MOTA	
] -			-	Nr. S	andle So	Y Y	1) Discarded	
				f		عديد المسالة	- D	1 2 13 54 10000	
 			+						32.0
	15	-3		7					·
	5	-4	94	7	FRI	wu Sara	1.TV 5	/T	34.0
¥			'		1 1/0	we rund	1 -1		
35	- 🕹							BOTTOM of Box	-141

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ **Engineering Department - Materials Division**

well installation Report			Sheet 2 of 5
PROJECT			CONTRACT NO.
HAMT-Port Ivory Surcherse Test			426-99-006
LOCATION			CONTRACTOR
Aslandows in field as per Practing 1	NOST Sido		Craix Prillas
WELL NO. WELL TYPE	INSPECTOR	DRILLER	DATE
PG-ST-20 B"MONTON	Volowe	1 D Cocks	10/28/cr

Well Development Report

Ā	EMARKS:			
i	•	•		
-				
		•		

Boring diameter

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT
MATERIALS ENGINEERING DIVISION
PID READINGS

			P	id reading	S	Sheet	3 or 3
PROJECT:	: HHMT-	Pari Ivory	Surcharge	Tor			
BORING N		7 20	· ·	. offi	DATE:	10/25/02	
FIELD REA	DINGS BY:	Odous			PID Model:	MINI RBE	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHI Zone Reading		REMARKS	
PM	1.4		0.0				
	18		0.0				
	2		0.0			•	
	3		0.0				
	4		0.2		Post		
	50		0.3		\/	1	
	SB		Oc				
	6		00				
	7		0.0				
	To the contract of the contrac		_				
				·			•
						•	
				·		•	
٠			·				
·							
						~ . 	
		1		Ì			1

PA 547 6-90

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

										SHEET / OF 3
PROJECT						NAME OF CONTE	_		BORING NO.	SURFACE ELEV.
HAMT-P	可工	1514	Surc	have I	DST-	Craix Dr	Mas		PG-57 - 35	
LOCATION		,		-		•		}	CONTRACT NO.	DATE
As Laid OL	Ju f	le le	S) Der	Prouve	<u>So.</u>	eth Side			426-99-006	10/22/02
SPOON	. 3.		CASING SI	ZE HOL	ETYPE			GRO	UND WATER LEVEL	
J0.D.	11/8	″I.D.	PUCALS HAMMER	9,	MONITOR	Date	Time	Depth	Re	emarks
HAMMER	DUTO		HAMMER				- 15			
140 # FALL	.32	•		FALL	-	10/20/0	8/2	215	while Hord	Ausprice
DRILLER	_	(out	ć							-3
INSPECTOR		How								
CASING	<u></u>		POON	RE-	SAMP.	<u> </u>	³ SAI	MPLE DESC	CRIPTION AND REMARK	(S
	EPTH -		WS/8"	COA.D	NO.	<u> </u>			S CHANGE OF PROFIL	
Hand		Man	d Auger	Full			·			
Auger				1		F11-Cro	shalsto	45.15,	Group Cobblez L	ETC 20
4	1					Ţ., .		,	7	
	-		 		12		·			
						1-11- by	rey tu	1.10 1	mesTore Slury	<u> </u>
111.	_					1	,		,	
	5		1,	1	3	Same				
Hollow		W			1,1					
		 _	g_{-1}	0	4	 				
STem			7	24	<u> </u>	Same		<u></u>		
Ducerc .	}	4								and the second s
	n	,	01,	24"	5	~~				
	10	-,		09		Same				·
		W			/					
		· · · · · · · · · · · · · · · · · · ·	H	727	6	Same		· ——		,
		<u> </u>				some				
		40	08		フ					
	ļ	1 -	- /	704	/	Same				
		V						 		
	5		7	12+	8	Same				
	-	``	- "	10.	n					
		H.			GB	Same				لـــــ ــــ ـــــ ــــــــــــــــــــ
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	[H	18"	1 -	B/4c/= P	205			18.0
	$-\tau$									d
										
7	>c -								Bottom of	Bering
	+									
)		2 amp	los check	WITH PID DE	Tr
]		No	Sample	_Sqle	faluith PID De	24
			1						/	
	-		 -		}					· — — — —
2	<-]						

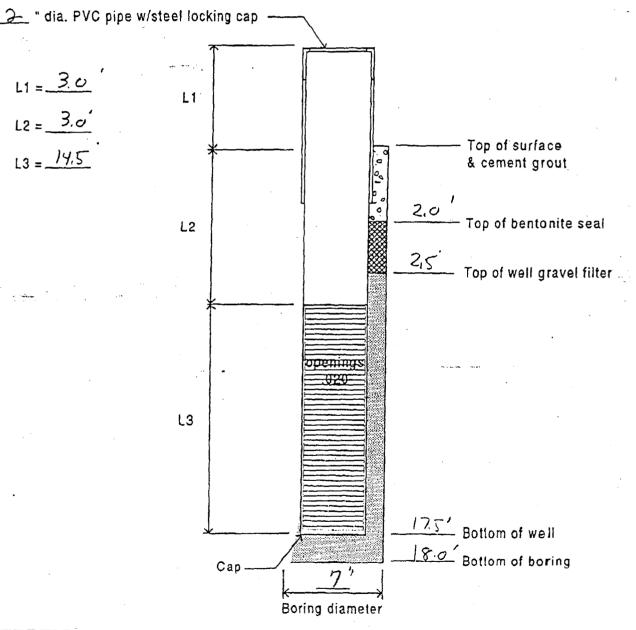
NOTES: 1 — Length recovered: 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ

Engineering Department - Materials Division

Well Installation Report

Sheet 7 of ?


PROJECT					CONTRACT NO.
JHMT-Pai	TLVORY				426-99 006
LOCATION	-		,		CONTRACTOR
As Laid Out 1	r field as per l	tokiu	South Side		Crois Dullier
	harry Date	. 40, 20,		DRILLER	
METT NO'	WELL TYPE	υ,	INSPECTOR	DAILLEH	DATE
100-57 35	"A" MONITO	,	1) Here a	1 V Cocks	10/22/02
10 37 33	1) JONIJE	·	Voluce	U CO079	10/2010

Well Development Report

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

			
DATE		· - 1	,
10/02/-	11 c' 1	4.7	/ \
10/29/02 WATER LEVEL BEFORE_	WATER LEVEL	AFTER TAKE	EN MINUTES AFTER

L1 = 30 L2 = 3.0° L3 = 14.5

Hule Backfiller 17.5-18.0' with Bentonito

9735657649

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 3 of 3 PROJECT: MMMT- POIT IVOIN Surchard TOST

BORING No	. PG-5	T- 35	×		DATE	: 10/22/cz 1: 14,1, RDE
FIELD REAL		DHour			PID Mode	1: MILI ROE
TIME	SAMPLE No.	IN-SMU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	G	REMARKS
AN	1.		60			
)	۲,		00			
	3		0.0			
	Y		.00	1		
/	5		0.0			
	6		G.0			
	7		00			
	8		0.0			
	9B-		00			
	9B		υ.2		Post	
					upor force in results	
	Ì					·

PA 547 6-90

THE PORT AUTHORITY OF MY & MJ

Engineering Department Construction Division Materials Engineering Section

							SHEET 1 OF 3
PROJECT			, .		NAME OF CONTRACTOR	BORING NO.	SURFACE ELEV.
MAK	T-POIT	Ivory			Craix Vrilling	PG-5T-30	
LOCATION		•	^	_	,	CONTRACT NO.	DATE
Asland	louting	field 95 Por Casing s	Vrouse	r, Scu'	Th Sido	426-99-006	101 22102
			IZE HOLI	ETYPE		GROUND WATER LEVEL	
	0.0.1/8			Mauta	Date Time I	Depth R	emarks
	FALL 30		# FALL	je	1dzta 11 2	215 while Hord	Augerio
DRILLER	0	Coole					
INSPECTOR	0	House					
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- '	SAMP.2 NO.		E DESCRIPTION AND REMAR OCATES CHANGE OF PROFIL	
Hard		Hard Diger	FU				
Augr			1		Fill- (rushofsTone,	S, IT, Growl, Sand Leco	1, ETC 2.0
10							
				5	Fill-Cray Judita	Imos Tone Sterry	
	► © ◄				, , , , , , , , , , , , , , , , , , ,		
	,			3	Sanc		
ole	— «6 —		 			5 Sooles Sur Pb-	-
	- , -					- 10- (08 80) · 0-	<u></u>
Cosus.	-18-	1/ 2				- <u> </u>	
		ho H	100	. 4			
	> ఎల ≺	H	15.	,	Black & Brown P.	29	
		40 4		5			
		Н	13		Same		
		1-/			at return pass		
		2-3	23	6	Sama Traff	Alack Soud in tip of	poor 240
		l-l		\neg			
	25	2-2	74		FR. C. C	1 7. 5 . 7	
					F Brown Gray Son	3 12 3/11	
	_				All Samuelos a	hoke with PID M	076-
	_				No Samuel 3	broked with PIR M sweet, 14th Discorde	
1				ľ		areach in miscarcia	<i>4</i> — — —
	30	3-5				·	
		$\frac{3}{2}$	71	8			
		8-8	_ / ′		12 Crey Sand, Tr	21 <i>15</i>	
			-				
		$\frac{2-3}{1}$		9			
V	- 35	6-7	1511		Same		35.0 of Barin, 7
	NOTES	S: 1 — Length red	covered; O	" - Loss	of Sample, T — Trap used OER = open end rod; V = vane	B. 77.	A Barie J
•		3 - Log depth	of change	in color	of wash water, loss of water, arrest	an water, sand heave in casing	, etc.

35.01 Bottom of well

35101 Bottom of boring

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

						•
Well Installation Report	•	"				Sheet 2 of 3
HAMT- PORT TUONS LOCATION AS A COLOT OF SALVES OF			do			CONTRACT NO. 126-99-006 CONTRACTOR Cyary Dr. Ilian
PG-ST-30 WELLTYPE PG-ST-30 B' MC	enta	INSP	ECTOA D Hous	DAILLER	oek.	OATE 10/29/02
Well Development Report	NOTE: WATER LEVEL I	READINGS FR	OM TOP OF PVC)			
DATE 10/23/02 WATER LEVEL BEFORE	13.5	WATER LE	VEL AFTER	13.5	TAKEN_15	MINUTES AFTER
2 " dia. PVC pipe w/st	eel locking ca	р ——	\			
	*		<u> </u>			
L1 = <u>"3.0"</u>	£1	·				
L2 = 25,0'					•	
L3 = <u>L0,0</u>	*		.0.0,		Top of su & cement	
	L2	Ĺ		22,01	Top of be	ntonite seal
				24.01	Top of wel	l gravel filter
	.	-	openings		· (•	• •
	L3	·	.020			
• • • • • • • • • • • • • • • • • • •		·				

Ç	ARKS:
-	

Boring diameter

Cap-

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

Sheet 3 of 3

PROJECT	T: HUMI	- POIT IV	rony Su	irchare T	est	
BORING	No. PG-	ST-30				DATE: 10/22/02
FIELD RE	ADINGS BY:	DHouse			P	10 Model: MINI RAE
		IN-SITU	I HEAD	- BREATI	HING	
TIME	SAMPL No.		on Space	e Zon	e	REMARKS
PM	1.	reducing	0.0	11000	-	
10001	2		0.0			
	1 3		0.0			
	1 4		. 0.0		$\neg \vdash$	
	5		0.0			
PM	16		CO		1	
)	1 7		G.C		1	
	8		0.0		_	
	19		CO			
	·					
•						
				de ser la la la la la la la la la la la la la		
	•				·	
		·				
					 	
1	!				1	

PA 547 6-90

THE PORT AUTHORITY OF MYS MJ

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

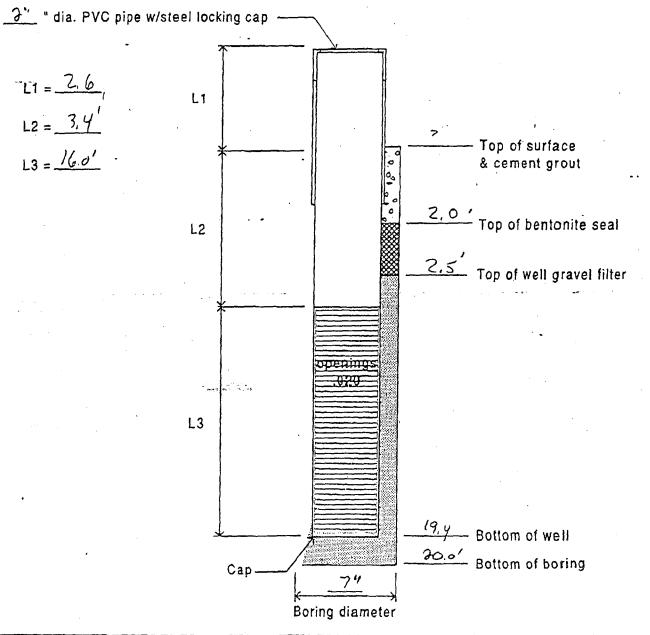
					,				SHEET OF 3
PROJECT					NAME OF CO			BORING NO.	SURFACE ELEV.
-IMKK	POSTIVO	Juche Surche	KUTST	-	1 Crais	Drilling		P6-51-45	
LOCATION	,	^	^	7	T- ()			CONTRACT NO. 476-99-006	DATE
SPOON SPOON	OUTIN:	Field as per Casing	Utowike	, <u>– 5</u>	st Sido				10118107
3 ·	- 13/c	CASING .	י מי	Nin to	Date	Time	Depth	UND WATER LEVEL	Remarks
HAMMER	0.0. 178 Duta	"I.D. Aug	7 10	1001168	Date		1		TELLIBILE
	FALL 30		# FALL	_#	10/18	118	3.0	while Hood A	west here I
DRILLER									4. 8
		Coolea					 		
INSPECTOR	Ľ	Noue							
CASING BLOWS/FT.	DEPTH	SPOON BLOWS/6"	RE- 1	SAMP. ¹ NO.	<u> </u>			CRIPTION AND REMAP ES CHANGE OF PROFI	
Hord	0_	Hard Arga	RII) <u>p</u>	Fill - P	CA Recy	cled co	increto Ass	1.0
Disa		1 - 1	1-1-	<u>' B</u>	F.11- C	rushod sTon	4 5,15,5	and Surciota, Etc	<u> </u>
	_			n B	· .	mi	' 		3 c
				2 8	Fill W	Lited Gray	Limest	can Slurry	
		1-1-							
 	5			3	San				
Hollow	- , -	1-1							
F 1	-	WOH	214	4	<u> </u>				
STon	- -	1000	101	<u> </u>	San	در			
Augn		14	 	5					
	10	H	Jer"		San	<u> </u>			
		WCH		: _					•
		1-1	110	6	Sam	<u> </u>			
		W							
		H	91	7					
 	<u> </u>	h	L.		Sam	<u>e </u>			
	-15-		 	8					
		H	ו"כן	<u> </u>	Sans	2			
		4	1 1	0					
		H	157	9	San	<u> </u>	* ************************************		
		woy		. , A					19.0
		1-1	201	10 8	DI			· · · · · · · · · · · · · · · · · · ·	
	> 20 <		80	B	0/50	k Poot			240
		-						Bottomof	-Baring J'_
				Į.					
					Ď	11 Samo los	schold	With PID A	M o Tru
				t			المنطاع المنطقة الم	NA O	/
		 		}		-amples	salvary	AM Discarde	4
	25								

NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wesh water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ **Engineering Department - Materials Division**

Well Installation Report

Sheet 2 of 3


PROJECT				CONTRACT NO.
HAMT-POT	Ivory Surchaine Tost			426-95-006
LOCATION	· · · · · · · · · · · · · · · · · · ·			CONTRACTOR
As LandouTin	field as por Drowing Eq	ST 5.66		Crais Drillian
WELL NO.	WELLTYPE	INSPECTOR	DRILLER	DATE /
PG-5T-45	"A" MORITOR	Dlove	Voorte	10/18/a

Well Development Report

(NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

	· · · · · · · · · · · · · · · · · · ·
DATE 10/18/02 WATER SUEL BEFORE 3.7	16
WATER LEVEL BEFORE WATER LEVEL AFTER TAKEN	MINUTES AFTER

 $L1 = \frac{2.6}{3.4}$ L3 = 16.0'

Mole Beck filled 19,4-20.0 WITH BUNTON. Te

9735657649

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS

•						Sheet	1 3 of
PROJECT:	HUMT-	Port Ivory	Surcha	re test			
BORING N	o. PG-5	T-45			DATE:	Mu RAE	
FIELD REA	DINGS BY:	OHouse			PID Model:	MILL RAFE	
TIME	SAMPLE No.	IN-SITU Split Spoon Reading	HEAD- Space Reading	BREATHING Zone Reading	G	REMARKS	
AM	13		0.0				
	18		0.0				
	24		00				
	28		00				
	3		0.0				•
	У		0.0			·	
	45		0.0		,		
pty	6		00				
	7		0.0				4
	8		0.0				
	9		0.0			<u> </u>	
	los		0.0	· .			· ·
	108		0.0				
						·	
						·	
	i.						
							~
							···
							· · · · · · · · · · · · · · · · · · ·
ı	ı	1	1	i			

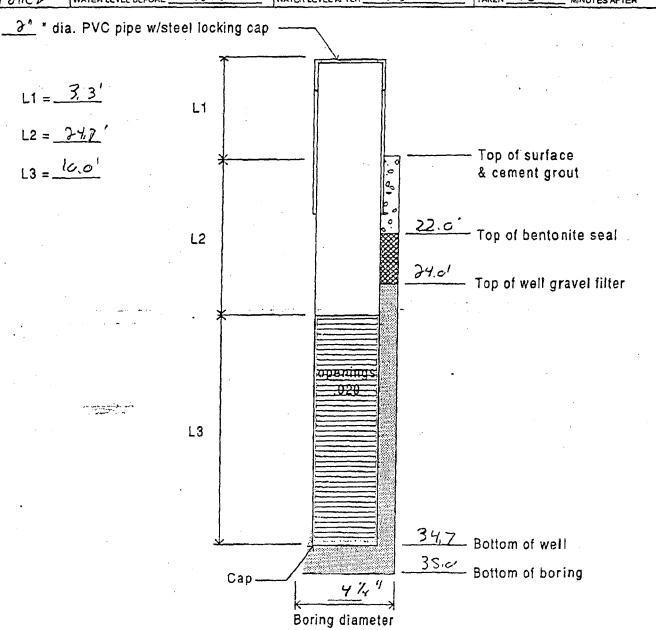
PA 547 6-90

THE PORT AUTHORITY OF MYS MU

Engineering Department Construction Division Materials Engineering Section

BORING REPORT

								SHEET / OF 3
PROJECT				NAME OF CONT	RACTOR		BORING NO.	SURFACE ELEV.
HMMT-POTTUOS	1., Sura	horse	1095	Craix	Drilling		PG-ST-40	
				S			CONTRACT NO.	DATE
As Landoutinfield	1 asper Di	acer'm	East	T. 5, de			426-99-606	10/21/02
						GRO	UND WATER LEVEL	
2 -0.0.1%	1.D. Hu	87	landor	Date	Time	Depth		Remarks
HAMMER AUTO	HAMMER			1-1	9~	1		
140 # FALL 30		FALL	•	10/21/02	<u> </u>	3.0	while Hand Ar	series
DAILLER	ocke							
INSPECTOR DH								
CASING BLOWS/FT. DEPTH	SPOON BLOWS/6"	RE- '	SAMP.				CRIPTION AND REMAR ES CHANGE OF PROFI	
1	Hand Aver	FU	Ð	F.11- P.C	A Pa	1.1	Concrete Age	1.0
Auger)	1	B	Fill Cro	shod 570	y coa		, , ,
1			- A		tme_			3.0
			2 8					
		}	<u>B</u>	Fill Wh	·Tod Gra	1 <u>Limes</u>	Toroslum	
	1	-	2		• ′		/	
7 7			3		·			
M 6 -+	-¥	يا		<u>Same</u>				
Ju _			·					
Casing	1			1				•
<u></u>					, -	- 	2 - 7	
					c	14 6-	de Soe log fo	<u>~</u>
20.	a second in the control		•	` P	G ST 4	15 for	Jrstz 6-20'	
	1 0. H							*
		0.01	9					
	1-2	∂3 ".		Breand	Black	Post_		
	1-2							
	2-3	35.	5					2//
				Jane T	r F OKC	nex Sexon	1, v Tip of space	. 24.0
	noy		/			•	•	-
	Lett-2	1911	6	P DL C		TUCY		
	-0.	·		- FDKG	4 Dond	الد سما	<u> </u>	
			1	<u> AIL S</u>	eaple c	1_ had_1	4 Mg PID NOTON	
		1	1	No S	amales	Salent	All Discorder	
			ţ		The same			
			-				·	<u> </u>
2 - 1								300
30	2-3							
		1~"	/ }				-	
	4-3	12"		P Brown	Sand!	TrSILI		
	1	1	1		,			
33	3 - 3							
-		1211	8					
35	8-8	13,,		12 Brown	+ 612)	and, Tr	3,17	35.0


NOTES: 1 — Length recovered; 0" — Loss of Sample, T — Trap used
2 — U = undisturbed; A = auger; OER = open end rod; V = vane
3 — Log depth of change in color of wash water, loss of water, artesian water, sand heave in casing, etc.

PORT AUTHORITY OF NY & NJ Engineering Department - Materials Division

Well installation Report	•		Sheet 2 of 7
HAMT-POIT Ivory Surchary 1	To it		CONTRACT NO. 426-99-066
DS Laid out in Field as Por Drawing	E+17 51-6		Charge Orlling
PG ST- 40 WELL TYPE PG ST- 40 B' Marijor	INSPECTOR DHowe	D Cocks	DATE

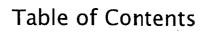
Well Development Report (NOTE: WATER LEVEL READINGS FROM TOP OF PVC)

				
DATE	1 ,			
l	101/21/00	Luciana i Piro parama	1315	
	101 BILLY	WATER LEVEL BEFORE [] /]	WATER LEVEL AFTER	TAKEN 13 MINUTES AFTER

Hale Back filled 34,7 To 35,0 with well Crown

THE PORT AUTHORITY OF N.Y & N.J.

ENGINEERING DEPARTMENT MATERIALS ENGINEERING DIVISION PID READINGS


Sheet 3 of 3

PROJ	ECT:	HMMI-	Port Ivary	Surching	TOST	3 61)
BORI	NG No	o. PG- 51	- 40			DATE: 10/2/12
HELD	REAL		PHa		·	PID Model: Nm, PAE
			เพ.รทบ	HEAD-	BREATH	ING
TII	ΝE	SAMPLE No.	Split Spoon Reading		Zone	REMARKS
BIN		1.4		0.0		
1	<u>,</u>	18		0.0		
		2A	ļ	0.0		
		28		. 0.0	·	
		3		U.a.		
		Ý		0.2		Pat
		S		0.3		Pat
		6		00		
		7		0.0		
	4	8		0.0		
				est visites		
		a in more consideration and				
		<u> </u>				
	\perp					
<u> </u>	_		· .			
	\perp					
		1		l	ł	·

4.0 SRI REPORT-SITE 2

The Port Authority of New York and New
Jersey
Supplemental Remedial Investigation Report
Site 2 (VCP Site 00674-2)
HHMT - Port Ivory Facility
November 2006

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	
3.0	BACKGROUND 3.1 HHMT-Port Ivory Facility-Location and Description	
	3.2 Site 2 Easements and Historical Land Use	
	3.3 Regional and Local Hydrogeologic Setting	
	3.3.1 Regional Hydrogeologic Setting	
	3.3.2 Local Hydrogeologic Setting	18
4.0	SUMMARY OF PREVIOUS INVESTIGATIVE AND REMEDIAL EFFORTS 4.1 Stain-3 AOC	
	4.2 AOC-UST7	
	4.3 AOC-Bldg20	
	4.4 AOC-Bldg32/32A	
5.0	SRI GOAL AND SCOPE OF WORK	23
	5.1 Scope of Work – SRI at Site 2 (Area 2A)	27
	5.1.1 Scope of Work – AOC-Stain3	
	5.1.2 Scope of Work – AOC-UST7	
	5.1.3 Scope of Work - AOC - Bldg20 and AOC-Bldgs32/32A	
	5.2 Scope of Work – SRI at Site 2 (Area 2B)	
	5.2.1 Scope of Work – First Mobilization	
6.0	SRI METHODS	
	6.1 Geophysical Survey Methods	
	6.2 Drilling Methods – Soil Borings	
	6.3 Soil Sampling Methods	
	6.4 Installation of Temporary Wells.6.5 Collection of Groundwater Samples	
	6.5 Collection of Groundwater Samples	40
7.0	SRI RESULTS	40
	7.1 Geophysical Surveys	
	7.2 Field Observations	
	7.2.1 Summary of Hydrogeology	
	7.2.2 Field Observations	
	7.3 Analytical Results	
	7.3.1 Soil Sampling Results – Site 2 (Area 2A)	
	7.3.2 Soil Sampling Results – Site 2 (Area 2B)7.3.3 Groundwater Sampling Results	5 <i>5</i>
	• •	
8.0	DISCUSSION/CONCLUSION	89

	8.1	Soil An	alytical Results and Field Observations – Site 2 (Area 2A)	90
	8.2	SRI Res	sults - Site 2 (Area 2B)	95
		8.2.1	Results of the Geophysical Surveys	96
		8.2.2	Presence/Absence of LNAPL - Impacted Soil Along the Tidewater Pipelines	96
		8.2.3	Limits of LNAP- Impacted Soil Along the Tidewater Pipelines	98
		8.2.4	Concentrations of Regulated Compounds and Metals in Soil	100
		8.2.5	Groundwater Analytical Results	102
9.0	IND	OOR AI	R QUALITY ASSESSMENT	104
	9.1		pling Inventory	
	9.2		ture Soil Gas Sampling Methods and Results	
		9.2.1	Substructure Soil Gas Sampling Method I	
		9.2.2	Substructure Soil Gas Sampling Method II	
	9.3	Indoor A	ir Sampling Program	
	9.4		Air Sampling Program	
	9.5		Assurance/Quality Control (QA/QC) Program	
	9.6		al Results	
		9.6.1	Soil Gas Sampling Results	
		9.6.2	Indoor Air Sampling Results	120
		9.6.3	Ambient Air Sampling Results	120
		9.6.4	QA/QC Sampling Results	
	9.7	Soil Gas	and Ambient Air Sampling - Discussion	
		9.7.1	Soil Gas Sample SG-1	121
		9.7.2	Soil Gas Sample SG-5	
		9.7.3	Soil Gas Sample SG-6	
		9.7.4	Soil Gas Sample SG-7	
	9.8	Soil Gas	and Indoor and Ambient Air Sampling – Conclusions	124
10.0			ESTIGATION OF AOC-WESTERN AREA	
	10.1		bservations	
			al Results	
	10.3	Discussi	on of Results - Initial Investigation of AOC Western Area	133
11.0	SRI	SUMMA	RY AND CONCLUSIONS	134
12.0	REC	OMMEN	IDATIONS	136
13.0	REP	ORTING	SCHEDULE	137

List of Figures

(All figures are provided in text by order of reference)

Figure 1 - Site Location Map	11
Figure 2 - Map of Easements and Current and Former Conditions Sites 2	15
Figure 3 - Site 2 Sampling Locations Map	32
Figure 4 - Site 2 (Area 2A) Groundwater and Soil Analytical Results Map	49
Figure 5 - Site 2 (Area 2B) Soil Sampling Analytical Results Map	54
Figure 6 - Site 2 (Area 2B) Groundwater Sampling Analytical Results Map	86
List of Tables	
(All tables are provided in text in order of first reference)	
Table 1 - Summary of Field Observations and Soil Sampling Program	25
Table 2A-2D Summary of Soil Sampling Analytical Results	
Table 2A – VOCs	57
Table 2B - SVOCs	
Table 2C- Metals	76
Table 2D- TPHC	84
Table 3A- 3B Summary of Groundwater Analytical Results	
Table 3A – VOCs	87
Table 3B – SVOCs	88
Table 4 – Summary of Soil Gas and Indoor and Ambient Air Analytical Results	106
Table 5 - Summary of Results of the Pre-Sampling Inventory	112
Table 6 - Summary of Soil Gas Measurement and Summa Canister Data	116
Table 7A - 7C Summary of Soil Sampling Analytical Results, AOC-Western Area	
Table 7A – VOCs, AOC Western Area	. 127
Table 7B - SVOCs, AOC Western Area	128
Table 7C - TPHC, AOC Western Area	130
Tables 8A - 8B Summary of Groundwater Analytical Results, AOC-Western Area	•
Table 8A - VOCs, AOC Western Area	. 131
Table 8B - SVOCs, AOC Western Area	. 132

1.0 Executive Summary

The Port Authority of New York and New Jersey (Port Authority) is currently redeveloping the former Proctor & Gamble (P&G) Port Ivory Facility, now known as the Howland Hook Marine Terminal (HHMT) – Port Ivory Facility. The HHMT-Port Ivory Facility is located at 40 Western Avenue in Staten Island, Richmond County, New York and consists of three parcels: Block 1309, Lot 10; Block 1338, Lot 1; and, Block 1400, Lot 1. This report addresses conditions at only the eastern portion of Block 1400, Lot 1 and the southern portion of Block 1338, Lot 1. These portions of the HHMT-Port Ivory facility are also known as Area 2A and Area 2B, respectively; collectively, these portions of the facility are referred to as Site 2.

Prior to conducting the Supplemental Remedial Investigation (SRI), Hatch Mott MacDonald (HMM) conducted various phases of environmental investigation at Site 2 between calendar years 2000 and 2003 on behalf of the Port Authority. The overall goal of these investigations was to determine the appropriate remedial actions, if any, for soil and/or groundwater at Site 2 given the proposed site redevelopment for commercial (intermodal facility) purposes. For the purposes of this document, an intermodal facility is a commercial site where products are received via one mode of transportation and are ultimately distributed via a different mode of transportation. Prior to the SRI, HMM's environmental investigation efforts have included the performance of a Phase I Environmental Site Assessment with an additional file review (Phase I ESA), Site Investigation (SI), and Remedial Investigation (RI). The results of the Phase I ESA, SI, and RI are summarized in the report entitled Revised – Site Investigation and Conceptual Remedial Action Workplan Site 2A/2B and dated September 2004, which has been submitted to the NYSDEC.

Although information from previous investigations has been included as necessary for clarity, this report primarily summarizes the findings of the SRI conducted at Site 2 between October 2004 and April 2005. The overall goal of the SRI was to determine whether additional investigative and/or remedial action, of any medium, was necessary at Site 2. In addition, this report summarizes the indoor air quality assessment data required by the New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) at Area 2A and the initial investigation of soil impacted by light, non-aqueous phase liquid (LNAPL-impacted soil) encountered during construction activities in the western portion of Area 2B. An investigation of indoor air quality was not required at Area 2B as no buildings currently exist or are proposed for Area 2B.

In the Phase I ESA, the Port Authority identified Areas of Concern (AOCs) at both Area 2A and at Area 2B. The AOCs were generally grouped into the following categories (the location of the AOCs in each category is provided in parenthesis):

- Underground Storage Tanks (Area 2A);
- Precipitate at Bridge Creek (Area 2A);
- Fill Material (Area 2A and Area 2B);
- Previously Identified Soil and Groundwater Contamination (Area 2A and Area 2B);
- Railroad Tracks and Siding (Area 2A and Area 2B);
- Surface Staining (Area 2A);
- Pits and Drains (Area 2A);
- Former Structures (Area 2A and Area 2B); and,
- Groundwater (Area 2A and Area 2B).

All AOCs identified at Area 2A and Area 2B during the Phase I ESA were investigated during the SI and RI. Based on the results of these investigations, it was determined that no additional investigation and/or remedial actions were warranted at the majority of the AOCs. However, as set forth in the *Site Investigation Workplan Addendum - Sites 1 and 2A/2B* (SIWP) dated March 24, 2005, additional investigation was proposed at four AOCs located at Area 2A and at one AOC located at Area 2B. The four AOCs located at Area 2A were identified as AOC-Stain3, AOC-UST7, AOC-Bldg20, and AOC-Bldg32/32A. The AOC identified as AOC-Stain3 was associated with staining observed on the unpaved (i.e., soil) floor of former Building No. 20. The remaining three AOCs located at Area 2A were associated with former underground storage tanks (USTs), including two AOCs (AOC-Bldg20 and AOC-Bldg32) where USTs were removed by P&G during the 1990s (i.e., prior to the property transfer to the Port Authority) and one area (AOC-UST7) where USTs previously utilized by P&G were identified and removed by the Port Authority.

The AOC that was located at Area 2B and was included in the March 24, 2005 SIWP was AOC-Southern Area, which was referenced as "Southern LNAPL Area" in the SIWP. This AOC was associated with inactive underground pipelines that were previously used to transport petroleum and that are situated within an easement believed to have been owned at one time by the Tidewater Pipeline Co., Ltd. (Tidewater). The investigation of soil along these pipelines was initiated because, during implementation of the SI and RI activities at Site 3, located immediately north of Area 2B, LNAPL-impacted soil was encountered at several locations along the pipelines. Maps provided by the Port Authority indicated that

the easement and the pipelines are present in Site 3 and extend into and through Area 2B. Since these pipelines were a potential LNAPL source, the Port Authority investigated soil quality along the pipelines.

The performance of an indoor air quality assessment was required at Area 2A by the NYSDEC and NYSDOH. This investigative effort was required in three Buildings located at Area 2A: Building No. 40, then an unoccupied building; Building No. 41, the primary office building utilized by the Port Authority; and, Building No. 45, a guard shack. Building No. 41 and Building No. 45 are the only remaining buildings at Area 2A. Building No. 40 has since been razed, and two temporary modular offices are currently being constructed in the footprint of former Building No. 40.

The Port Authority voluntarily conducted initial investigative activities at Area 2B when LNAPL-impacted soil was encountered during August 2005 along the sidewalls of an excavation that was not located within any known AOC. The Port Authority encountered the LNAPL-impacted soil while modifying storm water infrastructure in the western portion of Area 2B. As part of the preliminary investigation of this new AOC, identified as AOC-Western Area, the Port Authority implemented a soil and groundwater sampling program.

Summary of SRI Scope and Results - Area 2A

The SRI effort at Area 2A included the investigation of AOC-Stain3, AOC-UST7, AOC-Bldg20, and AOC-Bldg32/32A. The objective for the SRI at Area 2A was to confirm the successful remediation of soil at the previously-investigated AOCs. The scope of work included the drilling of 16 soil borings and the collection of 16 soil samples that were analyzed for Target Compound List (TCL) volatile organic compounds with a 10-compound library search (VOC+10), TCL semivolatile organic compounds with a 15-compound library search (SVOC+15), Target Analyte List (TAL) metals, and total petroleum hydrocarbons (TPHC).

Field observations made during implementation of the SRI at Area 2A indicated limited soil impacts at these AOCs. Discolored soil was observed at AOC-Stain3, AOC-UST7, and AOC-Building32/32A. Isolated "pockets" of LNAPL-impacted soil were encountered at two locations at AOC-UST7. No indications of LNAPL-impacted soil were observed at AOC-Bldg20 and AOC-Bldg32/32A.

Analytical results for soil samples collected during the SRI revealed similarly limited impacts attributable to prior land use and prior P&G operations at these four AOCs. The concentrations of six semivolatile

organic compounds (SVOCs) and nine metals exceeded corresponding NYSDEC Recommended Soil Cleanup Objectives (RSCOs). However, with the exception of arsenic detected in soil at AOC-Stain3, these SVOC compounds and metals have been detected at similar concentrations in soil throughout the HHMT-Port Ivory Facility and are attributable to the previous placement of fill materials throughout the property by P&G. The concentration of arsenic in soil at AOC-Stain3 is atypically high relative to the concentrations of arsenic detected in fill materials throughout the property; however, because the environmentally degraded soil is more than five feet above the water table and will be covered by impervious materials, precluding direct contact with the soil and migration of arsenic to groundwater by water percolating through the unsaturated zone, no remedial action is warranted with respect to the soil degraded by arsenic. It is the Port Authority's intent to address soil impacts that remain at Area 2A through completion of the proposed redevelopment of Area 2A and the establishment of an area-wide Environmental Easement to the NYSDEC. No further investigation or remediation is warranted for soil at these AOCs.

Summary of SRI Scope and Results- Area 2B

The SRI at Area 2B included the investigation of the environmental quality of soil and groundwater at AOC-Southern Area. The objectives for this portion of the SRI were as follows: to determine the locations of the underground pipelines in the Tidewater easement; to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines; to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines; to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines; and, to determine whether the presence of LNAPL-impacted soil along the Tidewater pipelines has degraded groundwater quality (i.e., is a source area for regulated compounds in groundwater). The scope of work included the completion of geophysical surveys, the drilling of soil borings, the installation of temporary wells, and the collection of soil and groundwater samples.

The Tidewater pipelines were located using geophysical methods, which included ground penetrating radar (GPR) surveys, induced electromagnetic (EM-61) surveys, and line tracing methods. During implementation of the line tracing, a test pit (EXT-1) was excavated to expose the pipelines so that an electric current could be applied directly to the pipelines. Soil borings were drilled at intervals of approximately 50 feet along the previously-located sections of the Tidewater pipelines. LNAPL-impacted soil, identified based on the presence of odor, discolored soil, LNAPL, and/or elevated concentrations of volatile organic vapors, was encountered at test pit location EXT-1 and soil boring

locations TW43A, TW-47 and TW-48. Additional soil borings were drilled to delineate the extent of the LNAPL-impacted soil and temporary wells were installed to evaluate groundwater quality at these areas.

The approximate volume of LNAPL-impacted soil is 1,300 cubic feet (48 cubic yards) in the vicinity of test pit location EXT-1, including soil boring location TW-43A and 38,400 cubic feet (1,420 cubic yards) in the vicinity of soil boring locations TW-47 and TW-48. Soil sampling analytical results indicate that higher LNAPL saturation in soil, as determined by field observations, is associated with the presence of tentatively identified volatile organic compounds (VOC TICs) and TPHC. No RSCOs have been established with respect to these compounds. Based on the groundwater sampling analytical results, the presence of the LNAPL-impacted soil does not appear to have degraded groundwater quality with respect to regulated organic compounds.

While the presence of LNAPL in soil is itself an impact, soil and groundwater sampling analytical results indicate that the presence of LNAPL-impacted soil has not degraded the environmental quality of soil or groundwater with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G. However,, the Port Authority intends to remove free (i.e., mobile) LNAPL via pumping and limited soil excavation. The LNAPL is most likely to be mobile where it is present at relatively high saturation. Based on the concentration of volatile organic vapors and TPHC in soil, HMM identified four locations in AOC-Southern Area where mobile LNAPL was most likely to be present; this portion of Area 2B was targeted for remediation during the proposed Interim Remedial Measure (IRM). Except for the areas where mobile LNAPL is encountered and removed during the IRM, no further investigation or remediation is warranted at this AOC.

Initial Investigation of AOC-Western Area – Area 2B

As noted above, this investigation was conducted by the Port Authority following the observation of LNAPL-impacted soil in the western portion of Area 2B. A set of five pipelines, identified as the Tidewater pipelines, and a single, inactive 12-inch-diameter pipeline within an easement granted to Texas Eastern were observed within the excavation. Fine-grained, organic meadowmat soil was observed within the excavation at a depth of approximately six feet below ground surface (bgs); soil beneath this meadowmat soil is not anticipated to be degraded with respect to environmental quality.

The investigation of AOC-Western Area involved the collection of five soil samples and one groundwater sample from the excavation. The soil sampling analytical results indicate that, in some soil samples, concentrations of TPHC are above those generally detected throughout the HHMT-Port Ivory Facility. No other soil impacts attributable to the presence of LNAPL-impacted soil are apparent based on the soil sampling analytical data. Groundwater analytical data reveal only low concentrations of two PAH compounds, a subset of SVOCs.

Additional investigation of soil and groundwater quality is warranted in the vicinity of AOC-Western Area. While soil and groundwater quality has been investigated in the vicinity of the Tidewater pipelines, an investigation of soil and groundwater quality is warranted along the Texas Eastern pipeline.

Indoor Air Quality Assessment - Area 2A

As noted above, the NYSDEC and NYSDOH required the Port Authority to complete an indoor air quality assessment at Area 2A. The goal of the assessment was to determine whether the presence of volatile organic compounds in soil gas (if any) has resulted in elevated concentrations of volatile organic vapors within any building scheduled to be occupied following redevelopment of Area 2A. Two buildings, the guard shack (Building No. 45) and the engineers' office building (Building No. 41), are currently scheduled to be occupied following redevelopment. A building adjacent to the guard shack, Building No. 40, has been demolished. Two temporary modular offices are currently under construction in the footprint of Building No. 40, a soil gas sample was collected adjacent to this building. Please note Building No. 40 was razed after performance of the indoor air quality assessment.

Air sampling results revealed concentrations of volatile organic vapors are present within Building No. 41 and Building No. 45. In general, the concentrations of these vapors are below guidance values and standards promulgated by the NYSDOH; in all cases, the concentrations of these vapors are below the Recommended Exposure Limits (RELs) set by the National Institute for Occupational Safety and Health (NIOSH). The sources of these volatile organic vapors include ambient outdoor air, cleaning supplies and other sources within the buildings, and volatile organic vapors in soil gas. The modular offices that will be constructed in the footprint of Building No. 40 will be mounted on piers and elevated above land surface. Therefore, any vapors migrating out of the ground will be vented and/or diluted so that the occupants of the trailers will not be exposed. Based on the results of this investigation, no further action is warranted with respect to indoor air quality at Area 2A.

Summary of Recommendations - Site 2

No further investigative or remedial actions are warranted at any AOC at Area 2A or with respect to indoor air quality at Area 2A. Additional investigative activities are warranted at AOC-Western Area at Area 2B. Remedial actions, which have been proposed as part of an IRM, are warranted for the removal of mobile LNAPL from the subsurface at AOC-Southern Area at Area 2B.

2.0 Introduction

The Port Authority Howland Hook Marine Terminal (HHMT)-Port Ivory Facility is located at 40 Western Avenue in Staten Island, Richmond County, New York, as presented on Figure 1. The HHMT-Port Ivory Facility consists of three parcels: Block 1309, Lot 10; Block 1338, Lot 1; and, Block 1400, Lot 1. The Port Authority of New York and New Jersey (Port Authority) purchased these three parcels from Proctor and Gamble (P&G) in 2000. The HHMT-Port Ivory Facility is bordered by Bridge Creek to the west, the Arthur Kill to the north, wetlands and vacant land to the east, and a railroad to the south. Public roadways separate the three parcels: Western Avenue separates Block 1400, Lot 1 from Block 1338, Lot 1 and Richmond Terrace separates Block 1309, Lot 10 from Block 1338, Lot 1.

The Port Authority is in the process of redeveloping the HHMT-Port Ivory Facility for a commercial end use; specifically, the Port Authority intends to utilize the property as an intermodal facility. For the purpose of this report, an intermodal facility is defined as a facility where cargo transported by ship is transferred to intermediate and final destinations via train or truck. Following redevelopment, the majority of the HHMT-Port Ivory Facility, including Site 2, will be paved or otherwise covered with impermeable or low permeability materials.

As part of the facility redevelopment, the Port Authority entered into the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP) in August 2002. The Port Authority's objective for entering into the VCP program with the NYSDEC was to address the presence of contamination due to prior operations at the facility that were unrelated to the Port Authority. The Port Authority has established different redevelopment schedules for different portions of the facility. To accommodate the Port Authority's redevelopment schedule for Block 1400, Lot 1, in particular the northwest portion of this parcel, the NYSDEC has agreed to expedite the review of information pertaining to certain portions of the facility. Thus, the Port Authority agreed to address the facility as four "Sites" and to present assessment, investigation, and remedial action information/documentation for each individual Site. Please note, the VCP agreements have been executed for only three of the four Sites to

date; the fourth Site is referred to as a "Future Site." The Sites have been defined as follows: Site 1 consists of the northwestern portion of Block 1400, Lot 1; Site 2 consists of the eastern and southern portions of Block 1400, Lot 1 (Area 2A) and the southern portion of Block 1338, Lot 1 (Area 2B); Site 3 consists of the central and northern portions of Block 1338, Lot 1; and, Future Site 4/2C consists of Block 1309, Lot 10.

This report includes information associated only with Site 2. Figure 1 presents the location of Site 2 in relation to the locations of Sites 1 and 3 and Future Site 4/2C. Figure 2 depicts the easements located at Area 2A and Area 2B.

2.1 Environmental Investigations at Site 2

On behalf of the Port Authority, Hatch Mott MacDonald (HMM) has completed several phases of investigation at the site, including a Phase I Environmental Site Assessment and Supplemental File Review (Phase I ESA), a Site Investigation (SI), a Remedial Investigation (RI), and a Supplemental Remedial Investigation (SRI). The Phase I ESA and SI were conducted to identify and characterize Areas of Concern (AOCs) at the facility in 2000, prior to the Port Authority's purchase of the facility. The RI and SRI were conducted following the transfer of the property from P&G to the Port Authority. The RI was conducted to further investigate selected AOCs that, based upon the results of the SI, were deemed to warrant additional investigation. Some of the AOCs targeted for investigation during the RI were inaccessible due to their proximity to buildings and other structures; subsequent to the RI, most of these buildings were demolished and these AOCs were therefore accessible during the SRI. In addition, field observations made during the SI and RI indicated that soil impacted by light, non-aqueous phase liquid (LNAPL-impacted soil) was present at certain locations at the facility. The SRI, the subject of this report, was conducted at Area 2A to confirm the success of previous remedial activities conducted at four AOCs by P&G and the Port Authority. In addition, the NYSDEC and NYSDOH required that the Port Authority assess indoor air quality at all buildings that will be occupied following the redevelopment of Area 2A. The SRI was conducted at Area 2B to further evaluate the physical location of the pipelines and potential impacts to environmental media from any petroleum compounds that may have discharged from these pipelines. In addition, LNAPL-impacted soil was observed during modification to the stormwater system in the western portion of Area 2B. The area of LNAPL-impacted soil, identified as AOC-Western Area, was subject to an initial investigative effort, which consisted of the analysis of five soil samples and one groundwater sample. This report summarizes the SRI efforts and results at both Area 2A and Area

2B, the indoor air quality assessment (Area 2A), and the initial investigative effort at AOC-Western Area (Area 2B).

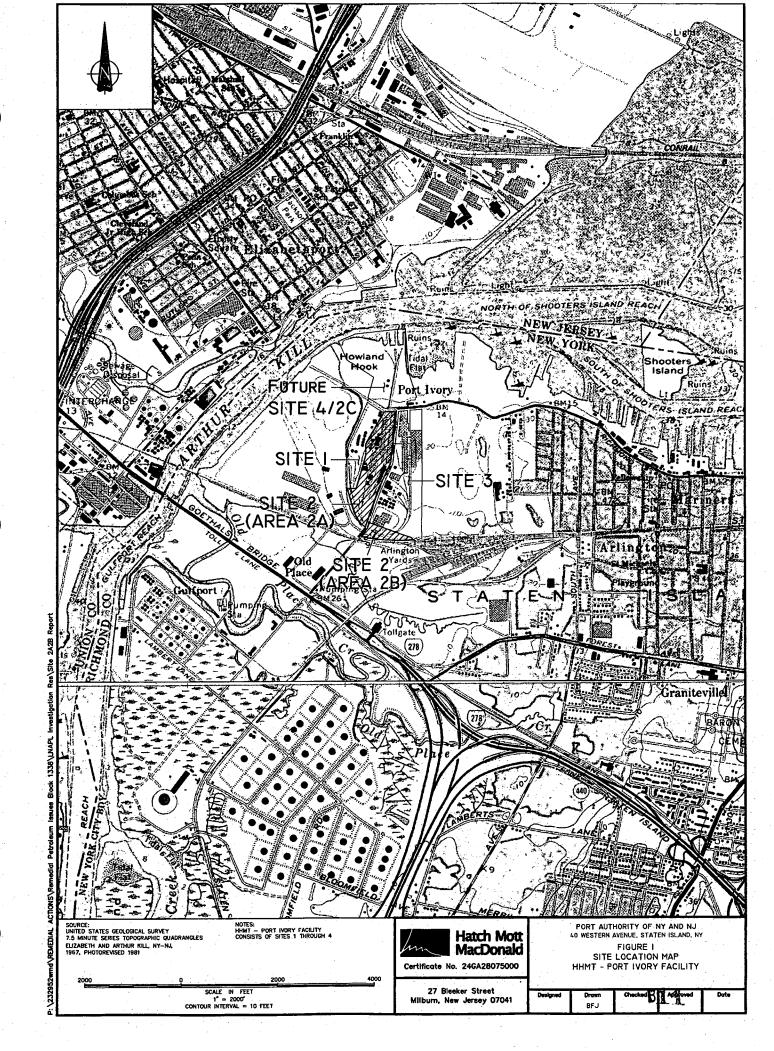
It should be noted that additional investigation was simultaneously performed at Site 1, Site 3, and Future Site 4/2C. These efforts are described in reports prepared for those sites under schedules established by individual VCP agreements. This report addresses those issues associated with Site 2 in an effort to determine whether additional investigative and/or remedial action was necessary at any AOC. This report is submitted pursuant to the VCP Agreement (VCP Site 00674-2), established for Site 2.

2.2 Report Goal and Organization

The overall goal of the SRI was to determine whether additional investigative and/or remedial action, of any medium, was necessary at any AOC atSite 2. The objective of the SRI at Area 2A was to confirm the successful remediation of soil at the four previously-identified AOCs. The objectives of the SRI at Area 2B were to determine the locations of the underground pipelines in the Tidewater easement, to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines, to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines, to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines, and to determine whether the presence of LNAPL-impacted soil along the Tidewater pipelines has degraded groundwater quality (i.e., is acting as a source area for regulated compounds in groundwater).

Analytical data and field observations generated during the SRI, and as necessary, from the SI and/or RI, are summarized in tabular form and, as appropriate, in figures. Section 3 provides background information regarding the site history and the regional and local hydrogeologic conditions. Section 4 summarizes the results of previous environmental investigations. Sections 5 through 8 present the goal, scope of work, methods used, findings, and conclusions for the SRI. Section 9 summarizes the scope of work, methods used, findings, and conclusions for the indoor air quality assessment. Section 10 summarizes the results of the initial investigation of AOC-Western Area. Sections 11 and 12 present the Port Authority's conclusions and recommendations with respect to whether additional investigative and/or remedial action is warranted at each open AOC at Area 2A or Area 2B. The scope of work and remedial actions proposed in this report were developed based on a predetermined end-use for Site 2 as an intermodal facility and with recognition of the regional impacts that exist in the vicinity or the HHMT-Port Ivory Facility.

Background 3.0


This section includes general information pertaining to the location and operating history of the entire HHMT-Port Ivory facility, specific information on the previous and current land use of Site 2, and a summary of regional and local hydrogeology. These three topics are discussed in Sections 3.1 through 3.3, respectively. Please note, some of this information was previously submitted to NYSDEC in a report entitled Revised - Site Investigation and Conceptual Remedial Workplan, Site 2A/2B; however, this information is repeated as a courtesy to the reader.

3.1 HHMT-Port Ivory Facility – Location and Description

As previously stated, the HHMT-Port Ivory Facility is located at 40 Western Avenue, Staten Island, Richmond County, New York and is comprised of the three following tax blocks/lots: Block 1309, Lot 10, Block 1338, Lot 1 and Block 1400, Lot 1. Together, these three parcels encompass 123.75 acres. The latitude/longitude of the Port Authority facility, as determined from the center of the facility, is 40 degrees 38 minutes 15 seconds North, 74 degrees 10 minutes 50 seconds West. At the time of the Phase I ESA and SI activities, the facility was owned by P&G; the Port Authority purchased the facility from P&G in December 2000 and it is now known as the HHMT-Port Ivory Facility. Subsequent to the purchase of the facility, the Port Authority performed RI and SRI activities.

The HHMT-Port Ivory Facility can be accessed via driveways located along Western Avenue and Richmond Terrace. Western Avenue extends in a north-south direction between Block 1400, Lot 1 (Site 1 and Area 2A) and Block 1338, Lot 1 (Site 3 and Area 2B) and terminates at Richmond Terrace. One of the three parcels, Block 1309, Lot 10 (Future Site 4/2C) is situated north of Richmond Terrace and the two remaining parcels, Block 1400, Lot 1 (Sites 1 and Area 2A) and Block 1338, Lot 1 (Site 3 and Area 2B), are situated south of Richmond Terrace. The relationship of the VCP Sites to one another is presented on Figure 1.

The facility is and has been serviced by connections to the potable water and sanitary sewer system of New York City. No septic systems, potable water wells, or dry wells are reported to be or to have been located on the subject site. Stormwater generated on the site is directed via sheet flow to on-site catch basins. These catch basins discharge to pipes that comprise the facility's underground stormwater sewer system. Ultimately, stormwater discharges to permitted outfalls located along the adjacent waterways, roadways, and marshland areas. Electrical service is supplied to the subject site via connection to the Consolidated Edison system servicing this section of Staten Island. In addition to the utility infrastructure

maintained by the facility, several utility easements traverse the facility. The easements contain pipelines that are underground for most of their length and that were or are utilized to transport natural gas or fuel oil. As indicated on Figure 2, some of the easements are inactive, while others are believed to be active.

In the early 1900s, P&G developed portions of the current facility for use as a consumer goods manufacturing facility. Reportedly, the consumer goods manufactured included soap, detergent and foodstuffs. The specific consumer goods produced at the facility and the operations/activities performed at specific site areas changed based upon corporate requirements. Manufacturing operations ceased in approximately 1991.

According to representatives of P&G and information provided in reports supplied by same, P&G constructed the initial Port Ivory manufacturing facility at this site in 1906-1907. The original 77-acre facility included portions of Site 1 and Area 2A and Future Site 4/2C and was developed on an open, vegetated, marshy area. Over the years, P&G acquired additional acreage (Site 3 and Area 2B) and emplaced fill materials at low-lying areas of Sites 1, 2, 3 and Future Site 4/2C expanding the original facility to include the current site limits that are shown on Figure 1. The fill used by P&G in conjunction with site development is reported to have included the following: sand, silt, gravel mixed with debris, cinders generated from on-site coal-fired boilers, and manufacturing by-products (i.e. calcium carbonate, carbonate salts from soap productions, nickel catalyst, diatomaceous filter earth from vegetable oil refining operations, carbonanaceous filter material from glycerin recovery operations, etc.).

3.2 Site 2 Easements and Historical Land Use

Site 2 includes the eastern portion of Block 1400, Lot 1 (Area 2A) and the southern portion of Block 1338, Lot 1 (Area 2B). Area 2A has an area of 23.94 acres and Area 2B has an area of 4.66 acres. Collectively, Site 2 constitutes 28.6 acres of the 123.75-acre HHMT-Port Ivory Facility.

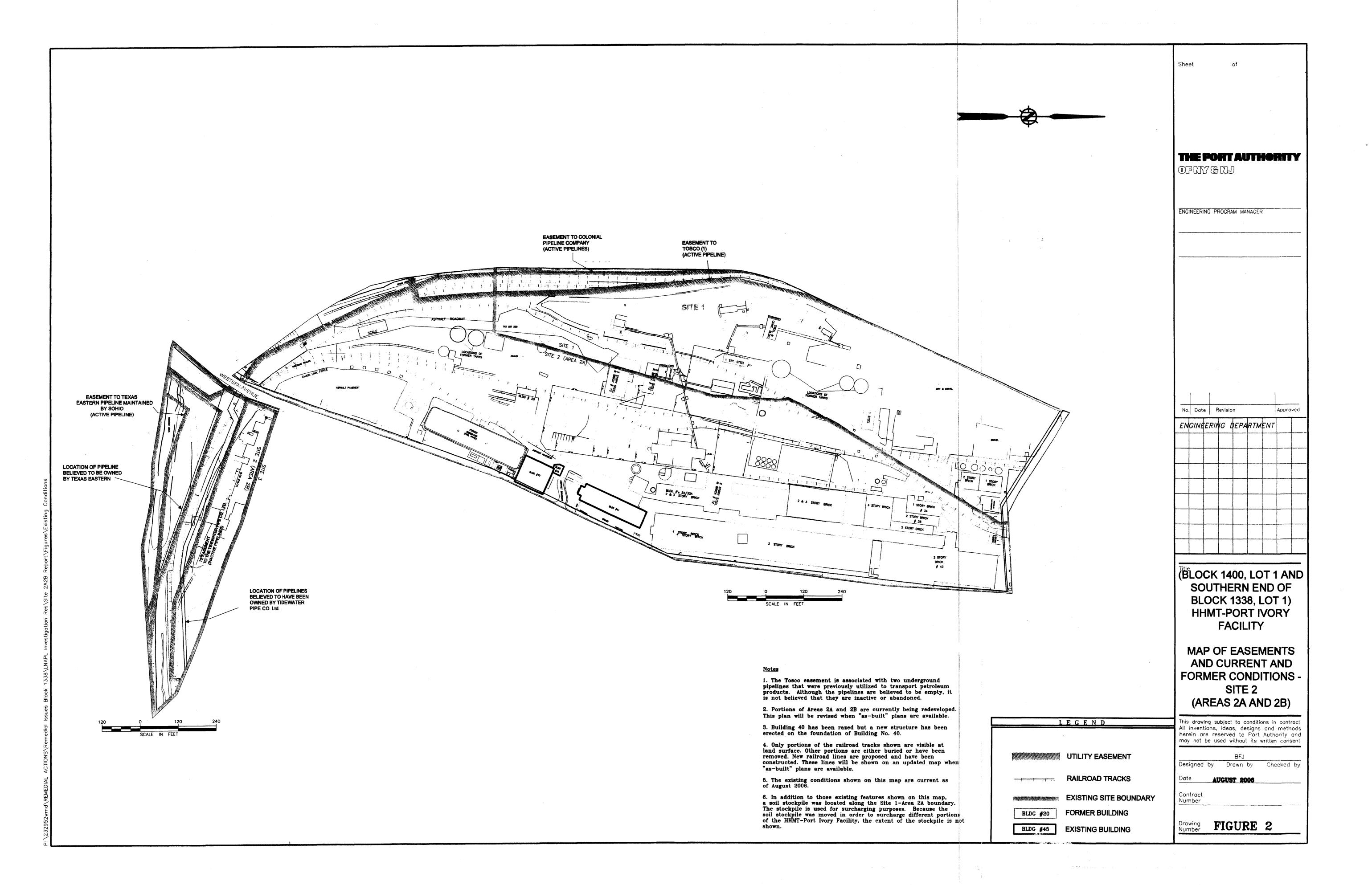
Area 2A is bordered by Site 1 to the west, Future Site 4/2C to the north, Western Avenue to the east, and a railroad to the south. Vehicular access to the northern portion of Area 2A is provided from the west by a paved access road from Site 1. Vehicular access to the central and southern portions of Area 2A is provided by two paved access roads, one located between Building Nos. 41 and 45 and the second located at the extreme southern portion of Area 2A (see Figure 2 for a map of the current and former conditions of Site 2). At the time of the Phase I ESA and SI, Area 2A was improved by numerous buildings and paved roadways and parking lots. The majority of these improvements have been razed in preparation for

site redevelopment. Area 2A is currently improved by three buildings: a structure in the footprint of former Building No. 40, which has bee razed; Building No. 41, and Building No. 45. Please note, and the structure in the footprint of former Building No. 40 consists of two temporary modular offices. A chain-linked fence borders Area 2A to the north, east, and south. Unused railroad spurs, unimproved land where former buildings or other structures were demolished and razed, and paved areas are located to the west of the existing buildings at Area 2A. The railroad tracks extend off the southern portion of Area 2A, cross over Western Avenue, and extend across Area 2B. Area 2A exhibits little relief and is devoid of vegetation. A soil pile is currently located along the western boundary of Area 2A; this soil pile was used for surcharging purposes and will be regraded or transported off site during redevelopment of Area 2A. Please note, Area 2A is currently undergoing redevelopment; railroad spurs and macadam pavement are currently being constructed at Area 2A.

Area 2B is bordered by Western Avenue to the west, Site 3 to the north, marshland to the east, and a railroad and stream to the south. Area 2B exhibits a slight upward grade to the east. The northern boundary of Area 2B extends along the southern building wall of Building Nos. 74/75 such that Area 2B does not include the interior of Building Nos. 74/75 but includes exterior areas to the south of the buildings. Vehicular access to Area 2B is provided from Western Avenue and from Site 3. At the time of the Phase I ESA and SI, Area 2B was improved by (the southern portions of) Building Nos. 70, 70 A/B/C, 70F, 70G and 72. These buildings have been razed, and Area 2B is currently improved only by recently constructed railroad tracks trending in a east to west direction, paved roadways, and an out-of-service truck scale located within one of the roadways. Vegetation is present at most portions of Area 2B that are not paved; the densest vegetation occurs along a small stream located along the southern boundary of Area 2B.

Four utility easements traverse Area 2B; two of the easements, granted to Colonial Pipeline Company (Colonial) and Texas Eastern (maintained by Sohio), are believed to contain active pipelines. A second easement to Texas Eastern contains an inactive pipeline. The fourth easement, reported to have been owned at one time by the Tidewater Pipe Co., Ltd. (Tidewater), contains seven abandoned underground pipelines (Tidewater pipelines) that were formerly utilized to transmit petroleum products. All four easements are between 8 and 15 feet wide. Three of the easements, including the easement to Texas Eastern that contains an active pipeline, trend approximately parallel to Western Avenue in the western portion of Area 2B before turning approximately 90 degrees to the east and trending from west-northwest to east-southeast through most of Area 2B. The remaining active easement, believed to be owned and

maintained by Colonial, trends approximately north-south through the western portion of Area 2B before turning approximately 90 degrees and passing under Western Avenue onto Area 2A.


Two utility easements, both associated with underground petroleum pipelines, are located at Area 2A. As noted above, one easement, maintained by Colonial, is present beneath both Area 2A and Area 2B. This easement, associated with one active pipeline, runs along the western side of Area 2A and crosses the Area 2A-Site 1 boundary. The second easement, to Tosco, is associated with two inactive pipelines that cross Bridge Creek in the southern portion of Area 2A and turn north, ultimately crossing the Area 2A-Site 1 boundary. The locations of all known easements on Sites 2A and 2B are presented on Figure 2.

As noted above, P&G constructed the initial Port Ivory manufacturing facility at this site in 1906-1907. The original 77-acre facility included portions of Area 2A but did not include any of Area 2B and was developed on an open, vegetated, marshy area. Additional acreage was gained at Site 2 through the filling of additional marshlands with the following: sand, silt, gravel mixed with debris, cinders generated from on-site coal-fired boilers, and manufacturing by-products. Visual review of subsurface conditions during SI and RI activities indicates that all of the above listed types of fill materials may have been emplaced at Site 2.

Historical aerial photographs and pre- and post-1900 mapping were reviewed for the existence of any structures that were present prior to the Phase I ESA. The review identified the following improvements at Area 2A: a structure referenced as the Kettle House; Building Nos. 10, 10A, 11, 14 (labeled "Lye"), 22, and 23; and, ASTs. Other structures at Area 2A included a sewage treatment facility, fire suppression systems, and a chimney stack. Historical mapping indicates that a network of railroad tracks were also present alongside, and terminating at, former and existing buildings. Historical mapping did not identify the presence of former structures or tanks at Area 2B.

Historical information sources indicate some variability in the operations performed at specific site locations throughout the operation of the facility. However, in general, Sites 1 and 2A (Block 1400, Lot 1) were utilized as a single facility for the production, packaging, and storage of soap, comet, and glycerin manufacturing as well as for utility functions (i.e., boiler houses, wood processing for the boilers, sewage treatment, locomotive maintenance, etc.) from the early 1900's to the cessation of activities. The following materials were reported to have been stored in ASTs present and/or maintained at Area 2A: caustics, various vegetable and fish oils, fuel oil, waste oil, soap, spent acids, spent nickel catalyst, grease,

coke, and resin. The storage methods are not identified on the maps. Historical maps also identify the use of "tanks" in at least four areas (referred to as UST1, UST3, UST4 and UST7 in the SI and RI) at Area 2A. Historical information indicates that the tanks at all four areas contained petroleum products. Tanks containing ethanol and enzymes are also reported to have been present at Area 2A; however, none of the remaining AOCs at Area 2A are associated with the tanks containing ethanol or enzymes.

Area 2B included the southern portions of Building Nos. 70, 70 A/B/C/, 70 F, 70 G, and 72 that were utilized for storage and warehousing of finished products and the production and packaging of orange juice. Railroad tracks were and are present at Area 2B.

3.3 Regional and Local Hydrogeologic Setting

The following subsections summarize the geology and hydrogeology of Staten Island and the facility, respectively.

3.3.1 Regional Hydrogeologic Setting

Physiographic provinces within Staten Island include both the Atlantic Coastal Plain and the Triassic lowlands section of the Piedmont physiographic province. The Precambrian-Cretaceous unconformity defines the boundary between these two physiographic provinces extending northeastward from Fresh Kills to north of Stapleton and continuing eastward across Long Island. The northwestern portion of Staten Island is underlain by bedrock of the Piedmont physiographic province, while Coastal Plain sediments are present in the southeastern portion of Staten Island.

Coastal Plain sediments include interlayered clay, silt, sand, and gravel deposits of the Raritan formation that thicken downdip (i.e., to the southeast). The bedrock in the Piedmont physiographic province includes shales, mudstones, and siltstones of the Stockton, Lockatong, and Passaic formations and intrusive diabase dikes. Less frequent sandstones and conglomerates occur in the Passaic formation and occasional limestones occur in the Lockatong formation. Basement rock underlying both the Coastal Plain sediment and bedrock of the Stockton, Lockatong, and Passaic formations is metamorphic rock of the Manhattan Prong.

In the extreme northeast portion of Staten Island, bedrock of the Passaic formation is overlain by glacial outwash deposits in turn overlain by finer-grained tidal marsh deposits. The glacial outwash deposits consist chiefly of stratified fine to coarse sand and gravel. The thickness of the glacial outwash deposits

varies from approximately 20 feet to more than 50 feet. The overlying marsh deposits consist of primarily of organic silts and clays with occasional lenses of sand that represent stream channels and/or storm deposits. The marsh deposits are generally thin (i.e., likely no thicker than 15 feet).

Groundwater flow in the Raritan formation is anticipated to be seaward. In places where silts and clays overlie sands, groundwater may exist under confined conditions; otherwise, groundwater is anticipated to be under water table (i.e., unconfined) conditions. Groundwater flow occurs through the interstices between the individual soil grains. Although silts and clays have relatively high porosities, the mobility of groundwater through the pores is limited because the pore spaces are relatively small. Therefore, groundwater flow velocity is faster through the coarser-grained deposits than through the finer-grained deposits and most groundwater flow occurs through the sand layer.

Groundwater flow through the Lockatong, Stockton, and Passaic formations is expected to be seaward and occurs primarily through secondary porosity (e.g., bedding plane partings, fractures, etc.). In sandstone and conglomerate deposits, however, groundwater flow can occur through porosity in the rock itself, particularly if the cement that holds the individual sand and gravel grains together has been weathered and eroded. Water in these formations occurs under unconfined or confined conditions, depending on the frequency of vertical fractures in the interbedded shales, mudstones, siltstones, and coarser-grained deposits. The fractures become less frequent and narrower with depth so that the likelihood of groundwater being under confined conditions also increases with depth. The diabase dikes exhibit very low hydraulic conductivity and therefore tend to act as hydraulic barriers to groundwater flow.

Groundwater in the glacial outwash and marsh deposits that overlie bedrock in the northwestern portion of Staten Island is generally anticipated to flow seaward. However, the groundwater may also be tidally influenced, and surface water may flow into confined aquifers or aquifers that have been subjected to pumping. Groundwater flow is similar to that through the Coastal Plain sediments in that it occurs through interstices between soil grains and occurs more rapidly through deposits of coarser-grained sediments that through deposits of finer-grained sediments. Groundwater in the glacial outwash deposits can be under confined or water table conditions, depending in part upon the thickness and vertical hydraulic characteristics of the overlying deposits. The horizontal flow is estimated to range from less than 0.1 to approximately 1.5 feet/day in glacial deposits comprised of sand and gravel. Where overlying deposits are thick and have low hydraulic conductivities, groundwater in the glacial outwash deposits is

more likely to be under confined conditions. Groundwater in the overlying marsh deposits is under water table conditions.

Groundwater is not currently used for public water supply on Staten Island. Estimates of groundwater recharge rates on Staten Island are comparable to Kings and Queens Counties, approximately 0.25 to 0.5 million gallons per day per square mile. Before 1970, the surface water supply from upstate New York was supplemented by pumping a maximum of 5 million gallons per day of groundwater from aquifers beneath Staten Island. Higher pumping rates induced saline groundwater infiltration. Due to saline intrusion of aquifers in the area caused by former groundwater use, future development of aquifers for potable purposes in the general area is unlikely.

3.3.2 Local Hydrogeologic Setting

The Passaic Formation underlies Site 2 and consists of reddish-brown to greyish-red siltstone and shale, with a maximum thickness of 3,600 meters. According to available technical literature, the Passaic Formation in the vicinity of Site 2 strikes approximately north 50 degrees east and dips approximately of 9 to 15 degrees to the northwest. Groundwater flow in the Passaic formation is anticipated to generally conform to that discussed above. According to previous environmental investigations as well as limited information from the SI, tidal fluctuations were not observed in bedrock of the Passaic Formation.

The subsurface unconsolidated deposits at Site 2, as well as at the remainder of the HHMT-Port Ivory facility, include a complex of stratified drift, glacial till, and tidal marsh deposits consisting of glacial outwash, marsh deposits, and anthropogenic fill. In general, the following five soil strata (listed from land surface downwards) have been identified at Site 2: (1) fill consisting of sand, silt, clay, and gravel in a generally loose condition mixed with carbonaceous material and/or vegetative, wood, brick, concrete, and glass debris that covers most of Site 2 with a maximum thickness of about 19.5 feet; (2) organic clays and peats, consisting of soft and highly compressible tidal marsh deposits, in the northern portion of Area 2A (and absent throughout much of Area 2A) and throughout Area 2B with a maximum thickness of at least three feet; (3) loose to medium dense fine sand with varying amounts of silt that represent marine or glacio-fluvial deposits ranging in thickness from four to 19 feet; (4) glacial clay, silt, and sand deposits ranging in thickness from approximately 12 to 22 feet; and, (5) brown gravel, gravel, sand, and silt that represents either fluvial deposits or proximal alluvial fan deposits. Please note, Area 2A is much larger than Area 2B and the scope of the previous investigation at Area 2A was larger than at Area 2B (i.e.,

more soil borings were drilled to deeper depths and more monitoring wells were installed at Area 2A than at Area 2B. Therefore, more of the strata described above were encountered at Area 2A than at Area 2B.

Essentially, the SI and the RI confirmed that the soil strata of Site 2 was consistent with that documented in the region, although the marsh deposits were absent in much of Area 2A, likely as a result of fluvial erosion. In addition, fill material was placed upon tidal salt-marsh or sand deposits at Site 2 to raise the elevation of the land to allow for development.

Groundwater was encountered in new and previously existing wells at depths ranging from approximately two to eleven feet below ground surface (bgs) at Site 2. The variation in the depth to groundwater was based on the land surface elevation, which is generally higher at Area 2A than at Area 2B, and the presence or absence of impervious materials at land surface. The impervious materials limit groundwater recharge, and groundwater is generally shallower where impervious materials are not present. Generally, groundwater flow velocity through unconsolidated deposits in the site area depends on the gravel, sand, silt, and clay compositions of the glacial outwash and non-indigenous fill. Information from the groundwater investigation component of the SI and RI indicates groundwater conditions are generally consistent with those of the region.

4.0 Summary of Previous Investigative and Remedial Efforts

The previous soil investigation and remediation, consisting of soil removal, that was conducted at each of the AOCs during the SI and RI is summarized below. Groundwater analytical results from the SI and RI are also discussed, as necessary, to demonstrate the effect of the presence of degraded (with respect to environmental quality) and LNAPL-impacted soil on groundwater quality. Please note, the two remaining AOCs (AOC-Southern Area and AOC-Western Area) located at Area 2B were identified subsequent to the SI and RI efforts. Therefore, no information pertaining to these AOCs is presented in this section.

4.1 Stain-3 AOC

Discolored soil was observed on a portion (approximately 50 square feet) of the unpaved floor of Building No. 20 during the Phase I ESA. Four soil samples were collected from the top 2.5 feet of soil at two soil borings, identified as STAIN-3 and STAIN-3B, advanced in this AOC during the SI effort. The soil samples were analyzed for Target Compound List (TCL) volatile organic compounds with a ten-

compound library search (VOC+10), TCL Semivolatile Organic Compounds with a 15-compound library search (SVOC+15), Target Analyte List (TAL) metals, pesticides, polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPHC), total phenolics, total cyanide, pH, and oil and grease (O&G). Based on the analytical results for the three soil samples, soil in the top 2.5 feet bgs had been degraded (with respect to environmental quality) primarily by various polycyclic aromatic hydrocarbons (PAH compounds), a subset of SVOCs, and metals at concentrations above their respective NYSDEC Recommended Soil Cleanup Objectives (RSCOs). The concentration of total PAH compounds in soil from the 1.7-2.5 foot bgs depth interval at location STAIN-3 was over 2,400 mg/kg. The soil sample collected from the top 2 feet of the soil column at location STAIN-3B contained 13 of the 23 TAL metals at concentrations above their respective RSCOs. The concentrations of arsenic and lead, in particular, in the top 2 feet of the soil column at STAIN-3B were elevated relative to the concentrations of these metals in soil throughout the HHMT-Port Ivory Facility. The deeper soil samples collected from the 2.5-3.5 and 2-4 foot bgs depth intervals at the STAIN-3 and STAIN-3B locations, respectively, exhibited lower concentrations of PAH compounds and metals. In fact, the concentrations of PAH compounds and metals in the deeper soil samples were similar to those detected in the fill previously placed throughout the Port Ivory-HHMT Facility. Vertical delineation was therefore achieved at approximately 2-2.5 feet bgs at AOC-Stain3.

Soil excavation activities were completed by the Port Authority during demolition of Building No. 20. As described in Section 5.1.1, the SRI activities at AOC-Stain3 were conducted to document the success of the Port Authority's soil removal effort and to confirm that additional remedial actions were unnecessary at this AOC.

4.2 AOC-UST7

HMM's review of P&G reports and Sanborn Maps during the Phase I ESA identified the potential presence of a UST in the northern portion of Area 2A. As such, the Port Authority implemented a geophysical survey, consisting of both ground penetrating radar (GPR) and induced electromagnetic (EM-61) investigations, to confirm the presence or absence of a UST in this area. The results of the geophysical investigation were inconclusive; therefore, a subsurface evaluation of AOC-UST7 was initiated during the SI.

The subsurface evaluation consisted of the collection of soil samples at four soil boring locations, the conversion of one soil boring to a temporary well, and the collection of a groundwater sample from the

temporary well. Five soil samples were collected at four soil boring locations, identified as UST7-1, UST7-1A, UST7-1B, and UST7-2. The soil samples collected at locations UST7-1 and UST7-2 were collected from between 8 and 12 feet bgs. The soil samples collected at locations UST7-1A and UST7-1B were collected from the top 3.5 feet of the soil column at these locations. All soil samples were analyzed for TCL VOCs, TCL SVOCs, TAL metals, pesticides, PCBs, TPHC, total cyanide, total phenolics, pH, and O&G. Analytical results revealed higher concentrations of TPHC (5,500 and 12,000 mg/kg, respectively) in the soil samples collected at UST7-1A and UST7-1B as compared to the relatively low concentrations of TPHC (ranging from 290 to 1,100 mg/kg), in the three soil samples collected at locations UST7-1 and UST7-2. Although the concentration of at least one individual compound and metal exceeded the applicable RSCO in each of the five soil samples collected at this AOC, the concentrations of these compounds and metals were not elevated relative to concentrations of the same substances detected in fill previously placed throughout the HHMT-Port Ivory Facility.

One groundwater sample was collected at temporary well TMW-01, previously located in AOC-UST7. The groundwater sample was analyzed for TCL VOCs, TCL SVOCs, TAL metals, pesticides, PCBs, TPHC, total cyanide, total phenolics, pH, and O&G. Based on the analytical results, only the SVOC bis(2-ethylhexyl)phthalate and the metals iron, manganese, and lead were detected at concentrations greater than their respective NYSDEC cleanup objectives. The presence of bis(2-ethylhexyl)phthalate, a laboratory solvent, is likely attributable to laboratory contamination of the sample. The listed metals have all been detected at similar concentrations throughout the HHMT-Port Ivory Facility and are attributable to the former placement of fill by P&G.

During demolition of Building No. S-35, located adjacent to AOC-UST7, the Port Authority encountered two USTs, at least one of which was recorded to have contained #6 fuel oil. Both USTs were located within concrete vaults and were filled with inert material (bricks, stone, and sand). The Port Authority removed the USTs, the appurtenant piping, and the surrounding concrete vaults. Indications of petroleum impacts to the surrounding soil were observed during excavation activities. As a result, the Port Authority excavated LNAPL-impacted soil immediately adjacent to the vaults. Excavated soil was stockpiled on-site pending off-site disposal at an appropriate recycling/disposal facility. The excavation measured approximately 25 feet in length, 20 feet in width, and approximately 11 feet in depth; groundwater was encountered at approximately 8 feet bgs. The USTs and all connected piping were removed and set aside for off-site recycling with the other recycled materials from the demolition activities. The excavation area was backfilled with existing site soil/crushed concrete.

As described in Section 5.1.2, the SRI activities were completed at this AOC to document the success of the Port Authority's soil removal effort and to confirm that additional remedial actions were unnecessary at this AOC.

4.3 AOC-Bldg20

The review of historical documents during the Phase I ESA revealed the presence of a former UST adjacent to Building No. 20. The former 8,000-gallon UST was reportedly used to store #6 fuel oil and was located in a concrete vault adjacent to Building No. 20. The UST was reportedly removed by P&G during the 1990s (i.e., prior to the sale of the property to the Port Authority) in accordance with NYSDEC protocols and with NYSDEC oversight. According to information provided by P&G, discolored soil was observed outside of the concrete vault, and approximately 200 tons of LNAPL-impacted soil were removed from the resultant excavation. NYSDEC assigned Case Number 920-3451 to the closure/removal effort. However, due to the proximity of Building No. 20 and associated utilities, limited quantities of LNAPL-impacted soil and a portion of the concrete vault were reportedly left in place to the east of Building No. 20. Following excavation activities, four post-excavation soil samples were collected along the sidewalls from the 0.5-foot depth interval above the water table. Three of these post-excavation soil samples contained PAH compound(s) at concentrations above their respective RSCOs. The concentration of PAH compound(s) detected is within the range attributable to the former placement of fill throughout the HHMT-Port Ivory facility by P&G.

Due to the proximity of this AOC to Building No. 20 and associated utilities, no subsurface investigation activities were proposed or implemented during the SI or RI. The Port Authority completed demolition activities in the vicinity of Building No. 20 subsequent to the RI investigation. Demolition activities included the excavation of the Building No. 20 foundation. As described in Section 5.1.3, the SRI was conducted in this AOC to document the success of the Port Authority's removal of LNAPL-impacted soil adjacent to the eastern side of the foundation for former Building No. 20 and to confirm that additional remedial actions were unnecessary at this AOC.

4.4 **AOC-Bldg32/32A**

The review of historical documents during the Phase I ESA revealed the presence of a former UST adjacent to Building No. 32 and two USTs adjacent to Building No. 32A. The former 3,000-gallon UST located in a concrete vault adjacent to Building No. 32 was reportedly used to store diesel fuel. This UST

was reportedly removed by P&G during the 1990s (i.e., prior to the sale of the property to the Port Authority) in accordance with NYSDEC protocols and with NYSDEC oversight. Discolored soil was observed outside of the concrete vault, and approximately 50 tons of LNAPL-impacted soil was reportedly removed. NYSDEC assigned Case Number 920-3697 to the closure/removal effort. However, due to the presence of Building No. 32 and associated utilities, limited quantities of LNAPL-impacted soil were reportedly left in place to the east of Building 32. Following excavation activities, two post-excavation soil samples were collected from the sidewalls in the 0.5-foot depth interval above the water table. No compounds were detected at concentrations above their respective RSCOs in either of the soil samples.

Each of the former USTs located adjacent to Building No. 32A reportedly had a capacity of 12,500 gallons. One of the former USTs was used to store #6 fuel oil, while the second was used to store #2 fuel oil. These USTs were reportedly removed by P&G during the 1990s (i.e., prior to the sale of the property to the Port Authority) in accordance with NYSDEC protocols and with NYSDEC oversight. According to information provided by P&G, discolored soil was observed outside of the concrete vault, and approximately 50 tons of LNAPL-impacted soil was removed from the resultant excavation. NYSDEC assigned Case Number 920-3697 to the closure/removal effort. However, due to the proximity of Building No. 32, Building No. 32A, and associated utilities, limited quantities of LNAPL-impacted soil were reportedly left in place to the east of Building No. 32 and Building No. 32A: Following excavation activities, two post-excavation soil samples were collected along the sidewalls from the 0.5-foot depth interval above the water table. No compounds were detected at concentrations above their respective RSCOs in either of the soil samples. Due to the proximity of these former USTs to Building No. 32, Building No. 32A, and associated utilities, no subsurface investigation activities were proposed or implemented during the SI or RI. The Port Authority completed demolition activities, including excavation of the foundations, in the vicinity of Building No. 32 and Building No. 32A subsequent to the RI investigation. As described in Section 5.1.4, the SRI was conducted in this AOC to document the success of the Port Authority's removal of LNAPL-impacted soil adjacent to former Building No. 32 and former Building No. 32A and to confirm that additional remedial actions were unnecessary at this AOC.

5.0 SRI Goal and Scope of Work

The overall goal of the SRI was to determine whether additional investigative and/or remedial efforts were required at any AOC located at Area 2A or Area 2B. The proposed scope of work for the SRI was

summarized in the NYSDEC-approved document entitled Site Investigation Workplan Addendum - Sites 1 and 2A/2B (SIWP) dated March 24, 2005. As previously stated, the results of the indoor air quality assessment at Area 2A and the initial investigation of AOC-Western Area, located at Area 2B, are presented in this report; however, these efforts are not part of the SRI and are summarized separately in Sections 9 and 10, respectively. The locations of the AOCs investigated during as part of the SRI conducted at Site 3 are shown on Figure 3. The SRI soil sampling program is summarized in Table 1.

Objectives for those portions of the SRI conducted at Area 2A were different from those for the SRI conducted at Area 2B. The objective of the SRI at Area 2A was to confirm the successful remediation of soil at the four previously-investigated AOCs: AOC-Stain3, AOC-UST7, AOC-Bldg20, and AOC-Bldg32/32A. All four of these AOCs were identified during the Phase I ESA, are located at Area 2A, and could not be fully evaluated due to the proximity of utilities and/or structures. As part of the Port Authority's redevelopment process, the utilities in this area have been rendered inactive and/or have been removed, and the buildings have been demolished. The SRI conducted at these four AOCs consisted of the drilling of 16 soil borings and the collection of one soil sample at each soil boring location. Soil samples were collected from depths where field observations indicated the presence of LNAPL-impacted soil, or, in the absence of indications of LNAPL-impacted soil, from the six-inch depth interval immediately above the water table. The soil samples were analyzed for the parameters specified in Sections 5.1.1 through 5.1.3, which provide additional detail regarding the scope of work for the four AOCs investigated at Area 2A during the SRI.

The objectives of the SRI at Area 2B were as follows: to determine the locations of the underground pipelines in the Tidewater easement, to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines, to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines, and to determine whether the presence of LNAPL-impacted soil along the Tidewater pipelines has degraded groundwater quality (i.e., is acting as a source area for regulated compounds in groundwater). The Tidewater pipelines were identified as potential sources of LNAPL subsequent to the RI. LNAPL was observed during the RI at two locations in the vicinity of the Tidewater pipelines at Site 3. An LNAPL investigation was initiated for soil along the Tidewater pipelines at Site 3, and the extent of LNAPL and/or LNAPL-impacted soil was significant. Because the Tidewater pipelines are also present at Area 2B, these pipelines were considered to be potential source areas for LNAPL at Area 2B.

TABLE

SUMMARY OF FIELD OBSERVATIONS AND SOIL SAMPLING PROGRAM SITE 2 (AREAS 2A AND 2B) HHMT-PORT IVORY FACILITY

Site/A OC	Date Collected	Location	Sample Depth (ft bgs)	LNAPL-Impacted Soil Present in Sample Interval? (Yes/No)	Depth Interval where Indications of Soil Impacts Observed (ft bgs)	Maximum PID (ppm)	Depth to Water (ft bgs)	Sampling Rationale
ite 2 (Area 2A)/AO							<u> </u>
	3/29/2005	UST7-C1	6.0 to 6.5	No	-	0.0	6.5	Sample collected at the first interval above ground water.
L	3/29/2005	UST7-C2	8.0-9.0	Yes	7.0-11.0	13	>9.0	Sample collected at most impacted interval based on PID measurement and free product present.
[3/30/2005	UST7-C3	9.5-10.0		-	0.0	10.0	Sample collected at the first interval above ground water
	3/29/2005	UST7-C4	8.0-9.0	Yes	7.0-11.0	9.4	9.0	Sample collected at most impacted interval based on PID measurement.
	3/25/2005	UST7-C5	8.0-9.0	No		0.5	7.0	Sample collected at most impacted interval based on PID measurement.
	3/25/2005	UST7-C6	9.0-9.5	No	•	0.0	9.0	Sample collected at the first interval below ground water
te 2 (Area 2A)/AO	C-Bldg20					···	
. [BLDG20-C1	5.0-6.0	No		0.0	6.0	Sample collected at the first interval above ground water
[3/24/2005	BLDG20-C2	3.0-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water
ite 2 (Area 2A)/AO	C-Bldg32/32A						
$\neg \neg$	3/25/2005	BLDG32-C1	4.0-5.0	No	-	0.0	5.0	Sample collected at the first interval above ground water
[3/25/2005	BLDG32-C2	3.0-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water
[3/25/2005	BLDG32-C3	5.0-6.0	Note 4	5.0-6.0	0.0	4.5	Sample collected at interval where stained/discolored material was observed.
	3/24/2005	BLDG32-C4	3.0-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water
Ī	3/24/2005	BLDG32-C5	3.0-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water
ite 2	Area 2A)/AO	C-Stain3				<u> </u>	, <u>, , , , , , , , , , , , , , , , , , </u>	
	3/24/2005	STAIN03-C1	1.5-2.0	Note 4	1.5-2.0	0.0	>2.0	Sample collected at interval where stained/discolored material was observed.
Ì	3/24/2005	STAIN03-C2	1.0-1.5	Note 4	1.0-2.0	0.0	>2.0	Sample collected at interval where stained/discolored material was observed.
- [3/24/2005	STAIN03-C3	1.0-1.5	Note 4	1.5-2.0	0.0	>2.0	Sample collected at interval where stained/discolored material was observed.
ite 2	(Area 2B)/AO	C Southern Ar	ea				· · · · · · · · · · · · · · · · · · ·	<u> </u>
	12/23/2004	TW-37	6.5-7.0	Note 3	6.0-7.0	0.0	3,5	Sample collected at depth interval where greatest petroleum odor was observed
- 1	12/23/2004	TW-38	8.0-8.5	Note 3	3.0-9.0	0.0	3.0	Sample collected at depth interval where greatest petroleum odor was observed.
1	12/9/2004	TW-39	Note 2	No	-	0.0	4.5	Note 2
Ì	12/9/2004	TW-40	Note 1	No	ă -	0.0	Note 6	Note 1
i	12/9/2004	TW-40A	Note 1	No	-	0.0	> 4.3	Note 1
- 1	12/9/2004	TW-40B	5.5-6.0	No	-	0.0	4.0	Sample collected at depth interval where greatest petroleum odor was observed
	12/9/2004	1 VV-40B	8.5-9.0	No	-	0.0	4.0	Sample collected from clean interval below impacted interval.
	12/8/2004	TW-41	Note 2	No	-	0.0	2.0	Note 2
Ì	12/8/2004	TW-42	Note 2	No		1.2	2.5	· Note 2
- 1	12/8/2004	TW-43	Note 1	No	-	0.0	> 3.5	Note 1
	12/8/2004	TW-43A	7.5-8.0	Yes	5.5-6.0 and 7.5-8.0	8.4	4.5	Sample collected at most impacted interval based on PID measurement.
[12/8/2004	TW-45	4.0-4.5	No	-	0.0	4.5	Sample collected at the first interval above ground water.
	12/28/2004	TW-46	Note 1	No	-	0.0	> 2.0	Note 1
	12/28/2004	TW-46A	Note 1	No	-	0.0	> 2.5	Note 1
,	12/28/2004	TW-46B	Note 1	No	 	0.0	> 2.5	Note 1
	12/28/2004	TW-46C	Note 1	No	1	0.0	> 1.1	Note 1
	12/22/2004	T18/ A7	3.5-4.0	Yes	3.0-5.0	920	4.0	Sample collected at depth interval where greatest petroleum odor was observed.
	12/22/2004	TW-47	8.5-9.0	No	3.0-5.0	920	4.0	Sample collected from clean interval below impacted interval.

TABL

SUMMARY OF FIELD OBSERVATIONS AND SOIL SAMPLING PROGRAM SITE 2 (AREAS 2A AND 2B) HHMT-PORT IVORY FACILITY

Site/A OC	Date Collected	Location	Sample Depth (ft bgs)	LNAPL-Impacted Soil Present in Sample Interval? (Yes/No)	Depth Interval where Indications of Soil Impacts Observed (ft bgs)	Maximum PID (ppm)	Depth to Water (ft bgs)	Sampling Rationale
	40/00/0004	T)41.40	8.5-9.0	Yes	4.5-9.0	17	3.0	Sample collected at most impacted interval based on PID measurement.
	12/23/2004	TW-48	9.5-10.0	No	4.5-9.0	0.0	3.0	Sample collected from clean interval below impacted interval.
1	12/28/2004	TW-49	3.5-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water.
Ī	12/28/2004	TW-50	3.5-4.0	No	-	0.0	4.0	Sample collected at the first interval above ground water.
	12/29/2004	TW-51	2.5-3.0	No	-	0.0	3.0	"Sample collected at the first interval above ground water.
	12/29/2004	TW-52	2.0-2.5	No	-	0.0	2.5	Sample collected at the first interval above ground water.
[3/31/2005	TW-68	2.5-3.0	No		0.0	2.5	Sample collected at the first interval below ground water.
[3/31/2005	TW-69	5.5-6.0	No	-	0.0	5.0	Sample collected at depth interval where greatest petroleum odor was observed.
[3/31/2005	TW-70	Note 1	No		0.0	Not Encountered	Note 1
Γ	3/31/2005	TW-70A	3.5-4.0	No	-	0.0	4.0 ·	Sample collected at the first interval above ground water.
ſ	3/31/2005	TW-71	Note 1	No	-	7.7	2.5	Note 1
- [4/1/2005	TW-71A	5.0-6.0	Yes	4.0-5.0	196	3.0	Sample collected at most impacted interval based on PID measurement.
l	4/1/2003		7.0-8.0	No	4.0-5.0	32.6	3.0	Sample collected from clean interval below impacted interval.
[4/4/2005	TW-72	3.0-4.0	Yes	2.0-6.0	65.4	2.0	Sample most impacted interval based on PID measurement.
Ī	4/4/2005	TW-73	4.0-5.0	Yes	4.0-6.0	151	2.5	Sample most impacted interval based on PID measurement.
ì	_ 4/4/2003		7.0-8.0	No	4.0-6.0	0.0	2.5	Sample collected from clean interval below impacted interval.
- 1	4/1/2005	TW-74	3.0-3.5	No	-	0.0	3.5	Sample collected at the first interval above ground water.
	4/1/2005	TW-75	2.5-3.0	No	-	0.0	2.0	Sample collected at the first interval below ground water.
	4/5/2005	TW-76	5.0-6.0	No	-	0.0	5.0	Sample collected at the first interval below ground water.
	4/5/2005	TW-77	3.0-4.0	No	-	0.0	3.5	Sample collected at the first interval below ground water.
	4/5/2005	TW-78	2,0-3.0	No		0.0	2.5	Sample collected at the first interval below ground water.
	3/30/2005	TWP-13	3.5-4.0	No		0.0	4.5	Sample collected at the first interval above ground water.
	4/1/2005	TWP-14	6.0-6.5	Yes	6.0-8.0	1290	2.5 ·	Sample most impacted interval based on PID measurement.
- 1	7/1/2003	1 4 4 7 - 1-4	8.0-8.5	Yes	6.0-8.0	1290	2.5	Sample collected from clean interval below impacted interval.

otes and Abbreviations

Refusal was encountered above the depth interval where LNAPL-impacted soil could potentially be present. No soil sample was collected, and a step-out soil boring was advanced.

No indications of LNAPL-impacted soil was observed, and no sample was collected.

The indications of imapcted soil observed at soil boring locations TW-37 and TW-38 are believed to be attributable to the presence of peat/meadowmat soil in the borehole rather than to petroleum impacts.

Although discolored soil was observed at the soil boring location, no odor or elevated concentration of volatile organic vapors was present. Therefore, although the soil appeared to be impacted, it is not believed to be impacted by petroleum.

Any depth to water that includes a ">" prefix indicates that groundwater was not encountered in the borehole. The value provided is the depth of the borehole.

Groundwater was encountered at 1.5 ft bgs, but was not encountered at 4.3 ft bgs at soil boring location TW-40A and was encountered at 4.0 ft bgs at soil boring location TW-40. Therefore, the groundwater encountered at 1.5 ft bgs is believed to be perched.

OC = Area of Concern

bgs = Feet below ground surface

D = Photoionization detector

m = Parts per million

The SRI at Area 2B was conducted in two separate mobilizations. During the first mobilization, the location of the Tidewater pipelines was confirmed, and soil borings were drilled at intervals of approximately 50 feet along the pipelines. Based on field observations, one to two soil samples were collected at each soil boring location. LNAPL-impacted soil was observed at two separate locations along the Tidewater pipelines during this mobilization; these locations are referred to collectively as AOC-Southern Area. The second mobilization consisted of the drilling of soil borings, the collection of one to two soil samples per soil boring, the installation of temporary wells, and the collection of one groundwater sample at each temporary well. The soil borings and temporary wells were located at AOC-Southern Area. The soil samples were analyzed for the parameters specified in Section 5.2, which provides additional details regarding the scope of work for the SRI conducted at AOC-Southern Area. The additional work (i.e., the indoor air quality assessment and the investigation of AOC-Western Area) is not considered to be part of the SRI, despite the inclusion of the resulting data in this report. The additional work was performed to address different objectives than the SRI objectives. The scope of work for the indoor air quality assessment is summarized in Section 9, and that for the investigation of AOC-Western Area is summarized in Section 10.

5.1 Scope of Work – SRI at Area 2A

The scope of work for the SRI at Area 2A included the investigation of the four previously-identified AOCs: AOC-Stain3, AOC-UST7, AOC-Bldg20, and AOC-Bldg32/32A. The sections below summarize the scope of the SRI at each of these AOCs.

5.1.1 Scope of Work – AOC-Stain3

As stated in the September 2004 Revised Site Investigation and Conceptual Remedial Action Workplan Site 2A/2B, initial assessment activities performed by HMM identified surface staining at several site locations including an area within Building 20. Analytical results for the soil samples collected from the top 2 to 2.5 feet of the soil column at locations STAIN-3 and STAIN-3B revealed elevated concentrations of total SVOCS and of various metals, respectively. Soil samples collected from depth intervals below 2-2.5 feet bgs at locations STAIN-3 and STAIN-3B revealed significantly lower concentrations of SVOCs and metals. As described in the September 2004 Revised Site Investigation and Conceptual Remedial Action Workplan Site 2A/2B, the Port Authority addressed the discolored area during building (Building 20) demolition activities by removing the discolored/degraded (with respect to environmental quality) soil. The investigation performed at AOC-Stain3 during the SRI included the drilling of soil borings and

the collection of soil samples from the area surrounding sampling location STAIN-3 and adjacent sampling location STAIN-3B to confirm the success of the soil removal.

Based on previous sampling results and the limited size of the discolored area, three soil samples were collected from the STAIN-3 Area. One soil sample was collected from the 1.5-2 foot bgs depth interval at the (former) STAIN-3 sampling location, and two additional soil samples were collected from the 1-1.5 foot bgs depth interval at locations immediately beyond the previously observed limits of staining. The three soil samples were submitted to STL-Edison, a NYS-certified laboratory (Certification No. 11452) for analysis of TCL VOC+10, TCL SVOC +15, TAL metals, and TPHC.

5.1.2 Scope of Work - AOC-UST7

Initial Phase I ESA efforts revealed the potential for USTs (that were not identified by P&G) to be present at the HHMT-Port Ivory Site, including in an area at the northeastern portion of Area 2A. This area was determined to be an AOC, and was designated AOC-UST7 (see Figure 3 for the location of AOC-UST7). Geophysical surveys performed at AOC-UST7 identified several anomalies and, as a result, soil borings were drilled during the SI to investigate the anomalies. A temporary well, identified as TMW-01, was also installed at AOC-UST7. With the exception of the concentration of TPHC in soil samples collected from the top 3.5 feet of the soil column at AOC-UST7, soil sampling analytical results indicated that the majority of compounds and metals were present at similar concentrations to those in fill placed throughout the HHMT-Port Ivory Facility by P&G. Analytical results for the groundwater sample previously collected at this AOC indicated similarly minimal impacts; only the SVOC bis(2ethylhexyl)phthalate and the metals iron, manganese, and lead were detected at concentrations greater than their respective NYSDEC Ambient Water Quality Standards and Guidance Values (AWOSGVs). The presence of bis(2-ethylhexyl)phthalate, a laboratory solvent, is likely attributable to laboratory contamination of the sample. The reported concentrations of iron, manganese, and lead were similar to those detected in groundwater throughout the HHMT-Port Ivory Facility and, thus, were considered background conditions.

Much of the shallow soil sampled during the SI was removed from AOC-UST7 during subsequent demolition activities. In addition, two USTs were observed during demolition. The USTs were located within concrete vaults and were filled with inert material (bricks, stone and sand). Upon removing the USTs and the associated concrete vaults, the Port Authority encountered indications of petroleum impacts in the soil surrounding the vaults; the LNAPL-impacted soil was excavated, stockpiled on-site pending

off-site disposal, and disposed of at an appropriate recycling/disposal facility. The excavation area was backfilled with existing site soil and crushed concrete. The investigation performed at AOC-UST7 during the SRI included the drilling of soil borings and the collection of soil samples from the vicinity of the former Port Authority excavation to confirm the success of the soil removal.

Based on the size of the excavation footprint (approximately 25 feet southwest-northeast by 20 feet southeast-northwest), six soil samples were collected from the AOC-UST7 Area. Two soil samples were collected from a six-inch depth interval between 9 and 10 feet bgs (i.e., near the bottom of the former excavation), while the remaining four soil samples were collected from the sidewalls of the former excavation. All six soil samples were submitted to STL-Edison, an NYS-certified laboratory, for analysis of TCL VOC+10, TCL SVOC+15, TAL metals, and TPHC.

5.1.3 - Scope of Work - AOC -Bldg 20 and AOC-Bldgs32/32A

P&G removed several USTs during the 1990s; all removal efforts are reported to have been in accordance with NYSDEC protocols and with NYSDEC oversight. However, due to the proximity to structures and/or utilities, limited quantities of LNAPL-impacted soil were reported to remain at the following three locations at Area 2A: east of Building No. 20, east of Building No. 32, and east of Building No. 32A. The general locations of the former UST areas are presented on Figure 3. A brief discussion of each prior removal effort is provided below.

- Building No. 20: P&G removed one concrete-vaulted 8,000-gallon UST containing #6 fuel oil from the area east of Building No. 20. The presence of discolored soil was observed during the tank removal and was addressed through the removal of approximately 200 tons of LNAPL-impacted soil from the tank area. NYSDEC assigned case number 920-3451 to the closure/removal effort. Due to the proximity of the tank to the foundation of Building No. 20, some LNAPL-impacted soil and a portion of the containment vault were left in place.
- Building No. 32: P&G removed one 3,000-gallon concrete vaulted UST containing diesel fuel from the area east of Building No. 32. Approximately 50 tons of LNAPL-impacted soil was removed from the area surrounding the UST based upon visual signs of staining. The closure was assigned case number #920-3697. The excavation was extended to the groundwater table to address LNAPL-impacted soil. However, remedial efforts were limited due to the proximity of underground utilities and building foundations.

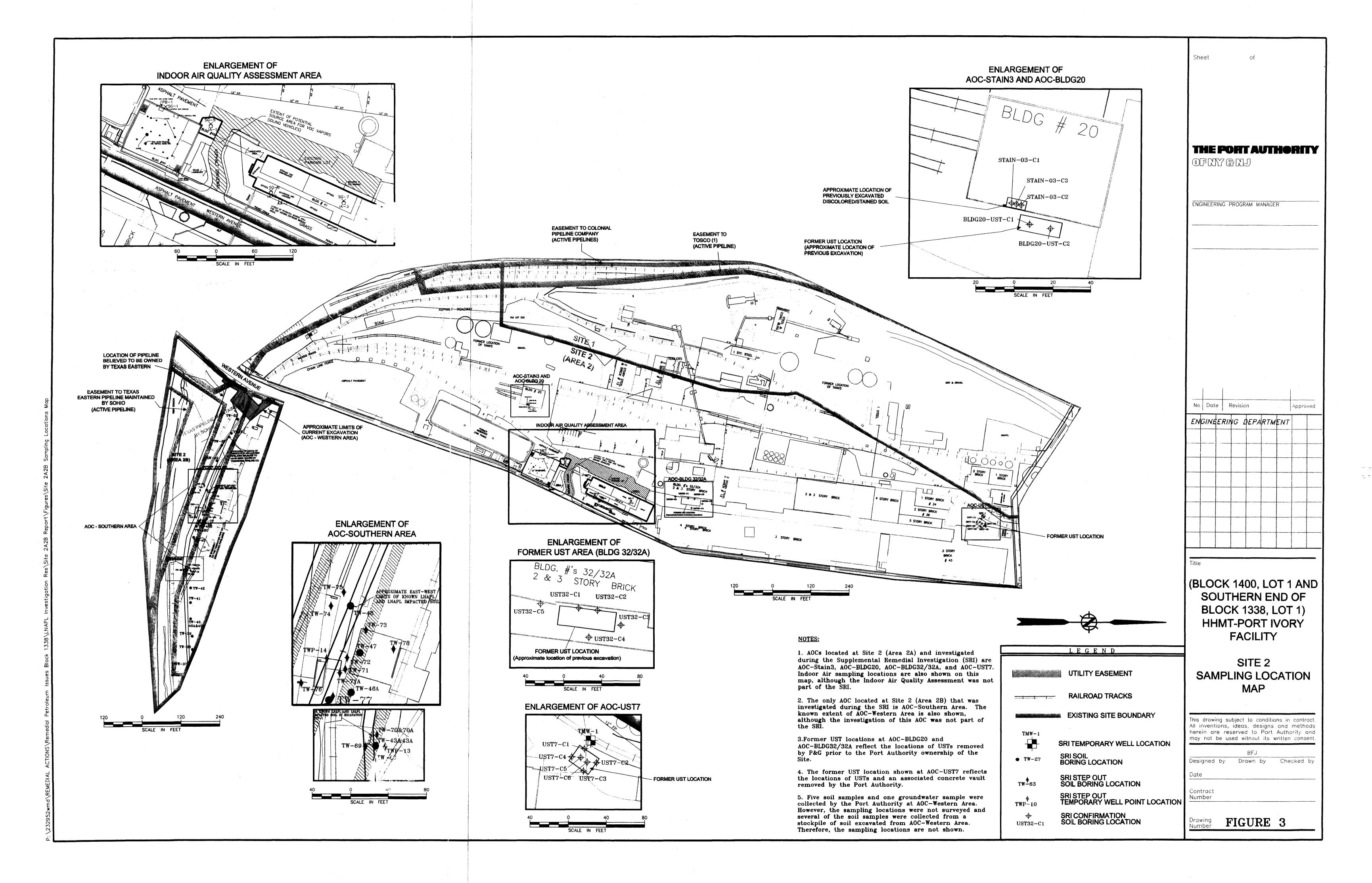
• Building No. 32A: P&G removed two 12,500-gallon USTs east of Building No. 32A. One UST was utilized for the storage of #6 oil and the other was utilized to store #2 oil. P&G removed approximately 75 tons of LNAPL-impacted soil from the area surrounding the USTs to LNAPL-impacted soil. The closure was assigned case number #920-4269. The excavation was extended to the groundwater table to address LNAPL-impacted soil. However, remedial efforts were limited due to the presence of building foundations and underground utilities. All accessible LNAPL-impacted soil was reported to have been removed

It should be noted that the Port Authority razed Building Nos. 20, 32, and 32A and concrete foundations and abandoned or removed former utility lines as part of site redevelopment. The demolition activities resulted in the removal of some soil at the former UST areas associated with AOC-Bldg20 and AOC-Bldg32/32A. The SRI performed at AOC-Bldg20 and AOC-Bldgs32/32A included the drilling of soil borings and the collection of soil samples from the areas where LNAPL-impacted soil was reportedly left in place to determine whether additional soil excavation was warranted at these areas.

During the SRI, two soil borings were drilled at AOC-Bldg20 and five soil borings were drilled at AOC-UST32/32A. At each soil boring location, one soil sample was collected from the depth interval exhibiting indications (based on the concentration of volatile organic vapors, as measured using a PID, and on visual and olfactory field observations) of LNAPL-impacted soil or, in the absence of any indications of LNAPL-impacted soil, from the 6-inch depth interval above groundwater. All soil samples were submitted to STL-Edison, a NYS-certified laboratory, for analysis of TCL-VOC+10, TCL SVOC+15, TAL metals, and TPHC.

5.2 Scope of Work – SRI at Area 2B

The objectives of the SRI at Area 2B were as follows: to determine the locations of the underground pipelines in the Tidewater easement; to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines; to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines; to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines; and, to determine whether the presence of LNAPL-impacted soil along the Tidewater pipelines has degraded groundwater quality (i.e., is acting as a source area for regulated compounds in groundwater). As previously noted, the SRI at Area 2B was completed in two separate mobilizations. The general scope of work for the first mobilization was to locate the inactive underground Tidewater pipelines at Area 2B



utilizing geophysical survey techniques, to drill soil borings along the Tidewater pipelines, and to collect soil samples at the soil boring locations. The general scope of work for the second mobilization was to drill soil borings and install temporary wells in the two separate areas where LNAPL-impacted soil was observed during the first mobilization and to collect soil and groundwater samples. Additional details about the scope of work completed during each mobilization of the SRI at Area 2B are provided in sections 5.2.1 and 5.2.2. Figure 3 indicates the soil boring and temporary well locations at Area 2A and Area 2B. Table 1 summarizes the field observations and the soil sampling depth intervals.

5.2.1 Scope of Work - First Mobilization

The geophysical survey included three types of geophysical testing: electromagnetic surveys using EM-61 methods, pipe tracing surveys, and ground penetrating radar (GPR) methods. In order to better utilize pipe tracing techniques, a test pit, identified as EXT-1, was excavated so that electric current could be applied directly to the Tidewater pipelines, rather than being induced from land surface. Once the pipelines were located, soil borings were drilled at an approximate frequency of one soil boring per 50 feet of pipeline. These soil borings were identified as TW-37 through TW-40, TW-40A, TW-40B, TW-41 through TW-43, TW-43A, TW-45, TW-46, TW-46A through TW-46C, and TW-47 through TW-52. Because the geophysical surveys successfully located approximately 650 linear feet of the Tidewater pipelines, soil borings were advanced at 15 locations, not including step-out soil borings. Letter suffixes were applied to step-out soil borings, drilled where refusal was encountered; the first step-out location is identified by an "A" suffix, the second by a "B" suffix, and the third by a "C" suffix. Please note, no soil boring was drilled and no test pit was excavated at proposed location TW-44 because the Tidewater pipelines could not be located in the vicinity of TW-44 using geophysical methods and the risk of breaking a Tidewater pipeline (or other subsurface utility) and potentially releasing additional LNAPL to the subsurface was considered to outweigh the benefits of investigating the relatively short length of the Tidewater pipelines in the vicinity of TW-44. Furthermore, the presence of reinforced concrete, a reinforced-concrete truck scale, and asphalt at ground surface in the vicinity of TW-44 prevented manual drilling of the proposed soil boring.

At each soil boring drilled during the first mobilization, the soil column was inspected for indications (elevated concentrations of volatile organic vapors, as measured using a photoionization detector (PID), and the presence of LNAPL, sheen, discolored soil, or odor) of LNAPL-impacted soil. Except where refusal was encountered, each soil boring was drilled to a depth interval below the smear zone (i.e., a depth interval where the soil appeared clean based on field observations) at locations where field observations indicated the presence of LNAPL-impacted soil or to approximately two feet below the

water table, at locations where indications of LNAPL-impacted soil were not observed. Based upon field observations, either one or two soil samples were collected from the soil boring and submitted for analysis of TCL VOC+10, TCL SVOC+15, and TAL metals. In general, one soil sample was collected at soil boring locations where indications of LNAPL-impacted soil were not observed; at these locations, the soil sample was collected from the six-inch depth interval above the water table. Two soil samples were collected at locations where LNAPL-impacted soil was observed; the shallower soil sample was collected from the depth interval that exhibited the highest concentrations of VOC vapors or the most significant visual indications of LNAPL-impacted soil, while the deeper sample was collected from a depth interval that appeared to be clean (i.e., where indications of LNAPL-impacted soil were not observed). The only exceptions to the soil sampling procedure were that no soil sample was collected at locations TW-39, TW-40, TW-40A, TW-43, and TW-46 and the step-out locations from TW-46. No soil sample was collected at location TW-39 because indications of LNAPL-impacted soil were not observed and because an extra soil sample was collected at location TW-40B in order to investigate potential impacts at that location. No soil samples were collected at locations TW-40, TW-40A, TW-43, and TW-46 and the stepout locations from TW-46 because refusal was encountered above the smear zone at these soil boring locations.

5.2.2 Scope of Work - Second Mobilization

The second mobilization effort at Area 2B was conducted at each of the two separate areas where LNAPL-impacted soil was encountered during the first mobilization to delineate the extent of LNAPL-impacted soil and to determine whether soil or groundwater quality was degraded based on the presence of the observed LNAPL-impacted soil.

Sixteen soil samples and one duplicate soil sample were collected at 13 soil boring locations (not including step-out locations) during the second mobilization. The soil borings were identified as TW-68, TW-69, TW-70, TW-70A, TW-71, TW-71A, TW-72 through TW-78, TWP-13, and TWP-14. Soil borings TW-68, TW-69, TW-70, TW-70A, and TWP-13 were drilled in the vicinity of one area where LNAPL-impacted soil was observed during the first mobilization (i.e., in the vicinity of test pit location EXT-1), while the remaining soil borings were drilled in the other area where LNAPL-impacted soil was observed (in the vicinity of soil boring locations TW-47 and TW-48). As indicated above, the suffix "A" indicates a step-out soil boring drilled because refusal was encountered at the initial soil boring location. In addition, soil borings TWP-13 and TWP-14 were converted to temporary wells.

The SRI work plan proposed the drilling of soil boring TWP-15, which would be converted to a temporary well; however, location TWP-15 could not be accessed by the drill rig. Following the demolition of Building Nos. 70/72, location TWP-15 was located in a low spot at the site. Water gathered in this area, and the soil was too soft for the rig to drive to and to drill (i.e., the jacks would have pushed into the soil). Therefore, location TWP-15 was offset approximately 30 feet east of TWP-14. Auger and split spoon refusal (caused by concrete or other subsurface obstruction/debris) was encountered at approximately 3 feet bgs at TWP-15. Based on the presence of underground utilities and adjacent roads, any offset of TWP-15 would result in this boring being even closer (within approximately 15 feet of) to TWP-14. It was determined that wells within 15 feet of one another would yield approximately the same information. In addition, the presence of LNAPL at temporary well TWP-14 was well established based on field observations; therefore, groundwater at temporary well TWP-14 would be in contact with the LNAPL and would be expected to be impacted. Since the second offset location for temporary well TWP-15 would also be within the area where LNAPL was encountered, groundwater quality data from this temporary well would not advance the investigation. Therefore, proposed temporary well TWP-15 was not installed.

In general, the soil sampling program was the same as that followed during the first mobilization; the soil column at each soil boring location was inspected for indications of LNAPL-impacted soil, and either one or two soil samples were collected at the soil boring location. The soil sampling depths were as discussed above. The only exception to the sampling protocol was that only one soil sample was collected at location TW-72 because the PID malfunctioned in the field, and it was not learned until later, when the soil could be screened with a functioning PID, that an elevated concentration of volatile organic vapors was present in the soil column. All soil samples were submitted to STL-Edison, an NYS-certified laboratory, for analysis of TCL VOC+10, TCL SVOC+15, and TPHC. TAL metals were not targeted for analysis because, based on the analytical results for soil samples collected during the first mobilization, the metals were determined not to be contaminants of concern (i.e., the LNAPL was not chelating with metals) at this area.

The groundwater sampling program included the collection of one groundwater sample from each of the two temporary wells. Temporary well TWP-13 was installed in the vicinity of test pit location EXT-1, one location where LNAPL-impacted soil was observed during the first mobilization, while temporary well TWP-14 was installed in the vicinity of soil boring locations TW-47 and TW-48, the other location where LNAPL-impacted soil was observed during the first mobilization. Standard (3 to 5-volume purge)

methods were utilized in collection of the groundwater samples. All groundwater samples were analyzed for TCL VOC+10 and TCL SVOC+15 by STL-Edison, an NYS-certified analytical laboratory. The library search was conducted for comparison to the AWQSGV for Principal Organic Contaminants (POCs), which are compounds that are not regulated individually (i.e., do not have established AWQSGVs), but that are in one of six classes of organic compounds.

Please note, the SRI work plan proposed the collection and analysis of LNAPL samples from the soil column at selected soil boring locations and from any LNAPL that accumulated within any of the temporary wells. However, LNAPL could not be sampled at any of these locations because it was present in insufficient quantities (i.e., could not be separated from the soil matrix) at all SRI soil boring locations and did not accumulate within either of the two temporary wells installed during the SRI.

6.0 SRI – METHODS

This section describes the methodology utilized during all field activities conducted during the SRI. The following activities were conducted at Area 2A and/or Area 2B during the SRI: the completion of geophysical surveys, the drilling of soil borings, the collection of soil samples, the installation of temporary wells, and the collection of groundwater samples. The sections below provide details on the methodology utilized to complete each of these tasks.

Descriptions of the methods used to complete the SRI activities, including the performance of geophysical surveys, the drilling of soil borings, the collection of soil samples, the installation of temporary wells, and the collection of groundwater samples are provided below in sections 6.1 through 6.5, respectively.

6.1 Geophysical Survey Methods

The geophysical surveys conducted at Area 2B were performed on October 11 and 12, 2004, and December 16, 2004. The purpose of the geophysical surveys was to locate the underground pipelines believed to be present in the Tidewater easement at Area 2B. The geophysical survey included electromagnetic methods (EM-61), line tracing methods, and GPR methods.

Several EM-61 surveys also were utilized to locate the pipelines; each survey was conducted across a different portion of the pipelines. In each survey, parallel transect lines (spaced at approximately 5-foot

intervals) were established. The wheel-mounted EM-61 transmitter and receiver were pulled along the transect lines at a uniform rate, and the electric field strength was measured every eight inches along each transect line. The field strength data were contoured using the computer application Surfer. Anomalies were identified based on the contour map, marked on the pavement, and investigated though observation (where above-grade indications of utilities such as manhole covers and catch basins were observed) or through pipe tracing methods as described below.

EM-61 surveys were also used to confirm that the pipe tracing methods had identified the outermost (i.e., the western and eastern) pipelines. In these cases, the transect lines were oriented perpendicular to the pipelines and established so that the pipelines ran through the center of the grid. The data measurement and reduction was performed as described above. The locations of the outermost pipelines were marked on the macadam pavement.

As noted above, the line tracing methods were utilized to confirm that the anomalies detected in the EM-61 surveys were pipelines and that the pipelines were continuous between EM-61 survey areas. Line tracing efforts consisted of inducing a current along the pipeline and tracing the current along the pipeline until the current was no longer detectable. The current was induced from a radio-frequency transmitter that was placed at grade or an electric current applied to the pipeline directly. All line tracing work completed on October 11 and 12, 2004 involved placing the transmitter at grade above the pipeline and oriented in approximately the same direction as the pipeline. In no case was the receiver, the instrument used to detect the current, placed within 50 feet of the transmitter. Prior to conducting the line tracing work on December 16, 2004, a test pit was excavated immediately east of the truck scale in order to allow access to a minimum of one pipeline. Once a pipeline was exposed, an electrode was attached to the pipeline, and an electric current was induced in the pipeline.

At the completion of the line tracing effort, markings were painted on the macadam to indicate the results. If applicable, the results were compared to the EM-61 survey results to confirm that the pipelines detected in the line tracing survey produced anomalies in the EM-61 survey.

GPR surveys were conducted at only two locations where the pipelines were previously identified using pipe tracing techniques. The purpose of the GPR surveys was to confirm the depth of the pipelines. Transect lines were established approximately perpendicular to the pipelines, and the GPR combination

transmitter/receiver was pulled along the transect lines at a uniform rate. The GPR data were downloaded into a laptop computer for display and contouring purposes.

6.2 Drilling Methods - Soil Borings

As indicated above, the soil borings at Area 2A were drilled in one mobilization, while the soil borings at Area 2B were drilled in two mobilizations. During the first mobilization, 15 soil borings were drilled at Area 2B between December 7 and 31, 2004. During the second mobilization, 16 soil borings were drilled at Area 2A between March 23 and 29, 2005, 11 delineation soil borings were drilled at Area 2B between March 31 and April 5, 2005, and two soil borings that were subsequently converted to temporary wells were drilled at Area 2B on March 30 and April 1, 2005. The delineation soil borings were drilled to allow collection of subsurface soil samples and to delineate LNAPL-impacted soil away from soil boring location TW-47 and away from the excavation located immediately east of the concrete pad that surrounds the truck scale. Please note, the summary of soil borings presented above does not include eight step-out soil borings drilled at Area 2B because refusal was encountered at proposed soil boring locations.

All soil borings were drilled in accordance with NYSDEC regulations and guidance documents. Soil borings were drilled using manual and/or hollow stem auger drilling methods. As per Port Authority protocols for the protection of existing utilities, soil borings were drilled to a depth of six feet bgs using manual methods except for locations where macadam was present at ground surface. At locations where macadam was present at land surface, augers were used to drill through the macadam and the borehole was advanced below the macadam to a depth of six feet using manual methods. Matual methods included use of post-hole diggers and/or soil augers advanced by hand. These tools were used to advance the borehole and to collect six-inch-long soil cores for inspection.

At depths below six feet below grade, the soil boring was either extended to depth using manual methods or was drilled to depth using hollow stem auger drilling methods. The borehole was drilled to depth using manual methods only if two conditions were met: 1) the borehole was not observed to collapse and 2) soil impacts were not observed. Hollow stem auger drilling included the use of 4 ¼-inch augers, a center rod with a floating plug, and a 3-inch inner diameter split spoon sampler. The floating plug was inserted into the bottom auger, and the augers were advanced to approximately six feet bgs (i.e., to the bottom of the borehole advanced manually). The floating plug was removed, and the split spoon was driven two feet below the bottom of the auger using a 140-pound hammer that was repeatedly dropped approximately 30

inches onto rods connected to the split spoon. The split spoon was retrieved and the soil column was logged. The floating plug was inserted back into the augers, and the augers were advanced an additional two feet. The floating plug was removed, the split spoon was inserted into the augers, and an additional two feet of the soil column were recovered and inspected. This process continued until the soil boring was completed. Completion depths varied, but the soil borings were advanced to the bottom of the impacted soil (for soil borings where LNAPL-impacted soil were encountered) or to at least two feet below the water table (for soil borings where LNAPL-impacted soil was not observed) unless auger refusal was encountered. If auger refusal was encountered, the borehole was abandoned and a new soil boring was drilled adjacent to the abandoned boring location.

The soil column was logged continuously at all soil boring locations for (at a minimum) the following conditions: color; texture; moisture content; and, indications of LNAPL-impacted soil, including elevated concentrations of volatile organic vapors (as measured using a PID), discolored soil, sheen, LNAPL, and odor. Boring logs are included in Appendix A. Soil boring locations are shown on Figure 3.

6.3 Soil Sampling Methods

Forty-four soil borings were drilled at Site 2, including two soil borings that were subsequently converted to temporary wells but not including eight step-out soil borings that were drilled because refusal was encountered at the proposed soil boring location during the SRI. The sampling program included the collection of 14 soil samples from soil borings drilled at Area 2B during the first mobilization (i.e., during December 2004), 16 soil samples and one duplicate soil sample from step-out soil borings and soil borings subsequently converted to temporary wells that were drilled during the second mobilization (i.e., during March and April 2005), and 16 soil samples from soil borings drilled at Area 2A during March 2005. All soil samples were collected in accordance with NYSDEC requirements and guidance documents.

At Area 2A, one soil sample was collected from each soil boring location. Except for soil samples collected from soil borings drilled at AOC-Stain3, soil samples were collected from the depth interval that exhibited the most significant indications of LNAPL-impacted soil; if no indications of LNAPL-impacted soil were observed, the soil sample was collected from a depth interval that was predetermined based on previous field observations. Soil samples collected from soil borings drilled at AOC-Stain3 were collected at predetermined depth intervals based on previous field observations and soil sampling analytical results.

At Area 2B, as many as two soil samples were collected from each soil boring, depending on field observations. If LNAPL-impacted soil was observed, one soil sample was collected from the depth interval that exhibited the most significant indications of LNAPL-impacted soil and a second soil sample was collected from soil that appeared clean and was below the LNAPL-impacted soil. If soil impacts were not observed, a soil sample was either not collected or was collected from soil immediately above the water table. Please note that at least one soil sample was collected from each step-out soil boring drilled during the second mobilization to Area 2B.

Soil samples were collected using a stainless steel sampling device that was decontaminated between samples. Decontamination involved rinsing the device with laboratory-quality DI water, a DI water-alconox solution, and an organic solvent, generally acetone or hexane. Soil was transferred from the sampling device (i.e, the split spoon, hand auger, or post-hole digger) directly into sampling jars. The samples were labeled and placed on ice in a cooler. All soil samples were transported to the analytical laboratory under chain-of-custody documentation.

6.4 Installation of Temporary Wells

Two soil borings drilled at Area 2B during the second mobilization (i.e., during March and April 2005) were converted to temporary wells. The SRI conducted at Area 2A did not include a groundwater investigation component. The temporary wells were installed at Area 2B to allow collection of groundwater samples, to determine the mobility of the LNAPL, and, if possible based on the mobility of the LNAPL, to allow for collection of an LNAPL sample. The groundwater samples were collected to determine whether the LNAPL-impacted soil encountered at locations TW-47 and EXT-1 was a source area for groundwater impacts. Temporary well TWP-13 was constructed of 2-inch diameter PVC screen and riser, while temporary well TWP-14 was constructed of 4-inch diameter PVC screen and riser. Both temporary wells were constructed using 0.010-inch slot size screen that extended from approximately two feet above groundwater to the bottom of the borehole. The sand pack for both wells consisted of number 2 size sand, and was installed to a depth of approximately one to two feet above the top of the screen. Bentonite pellets were installed above the sand pack in both wells to preclude storm water or perched water from entering the sand pack. Well TWP-13 was completed as a flush-mount monitoring well with a road plate because it was located in an access road. Well TWP-14 was completed as a stick-up well because it was located outside the access road.

6.5 Collection of Groundwater Samples

As indicated above, one groundwater sample was collected from each of the two wells installed at Area 2B. Groundwater sampling was performed in accordance with NYSDEC requirements and guidance documents. Standard (3 to 5 volume purge) purging and sampling methods were used.

Prior to groundwater sampling, the presence or absence of LNAPL in the temporary well was confirmed and the depth to water in the well was measured relative to a surveyed reference point using an electronic oil-water interface meter. The volume of water within the well was calculated. The well was purged of three to five times the calculated volume of water using a centrifugal pump. After the water level recovered, a dedicated Teflon bailer was lowered into the well, allowed to fill with water, and was removed from the well. The groundwater sample was transferred from the bailer into laboratory-prepared sampling jars. The samples were labeled and placed on ice in a cooler. All soil samples were transported to the analytical laboratory under chain-of-custody documentation.

7.0 SRI RESULTS

The SRI conducted at Site 2 included the following components: completion of geophysical surveys, drilling of soil borings, collection of soil samples, installation of temporary wells, and collection of groundwater samples. During implementation of each component, field observations and measurements were recorded. In addition, soil and groundwater samples were analyzed for the parameters specified in Section 5. The results of the SRI efforts are presented below. Sections 7:1, 7.2, and 7.3 summarize the results of the geophysical investigations, the field observations pertaining to site hydrogeology and the distribution of LNAPL-impacted soil, and the soil and groundwater sampling analytical results, respectively.

7.1 Geophysical Surveys

Three types of geophysical surveys were utilized to locate the inactive underground pipelines present in the Tidewater easement: an electromagnetic survey (utilizing EM-61), a line tracing survey, and a GPR survey. Initial efforts revealed that the GPR survey was ineffective to detect the pipelines and/or gauge their depths because the penetration depth of the GPR at Area 2B was only a few feet below grade, and the pipelines of interest were situated below this depth.

The EM-61 methods successfully utilized the pipelines from the eastern edge of the concrete pad that surrounds the truck scale to a point approximately 50 feet east of the concrete pad. The pipelines were not traceable to the east of these locations due to interference from railroad tracks and other near-surface metal debris at this portion of Area 2B. Similarly, the lines could not be traced to the west due to interference from a metal frame in the truck scale and rebar in the concrete pad that surrounded the truck scale. EM-61 methods were utilized to the west of the concrete pad surrounding the truck scale. However, the presence of metal at the surface (the fence lines and rebar in the Jersey barriers, for example) and the relatively high density of subsurface utilities precluded a positive identification of the pipelines at this area.

As such, line tracing methods were utilized since the signal induced on a pipeline can be traced even in the vicinity of near-surface metal debris. Using the line tracing methods, the pipelines were located from the eastern edge of the concrete pad surrounding the truck scale to approximately 150 feet east of the concrete pad. Beyond this distance, the current induced in the pipelines was too weak to detect. Thus, the pipelines could not be traced beneath the concrete pad surrounding the truck scale because the current was induced not only in the pipelines, but also in the rebar present in the concrete pad surrounding the truck scale. Again, the current was too weak to detect on the west side of the concrete pad surrounding the truck scale.

In order to trace the pipelines further, a test pit, identified as EXT-1 (see Figure 3), was excavated immediately to the east of the concrete pad surrounding the truck scale; this location was chosen because it was the westernmost area of the known pipeline location. A pipeline was exposed at a depth of approximately 5.5 feet bgs, and an electrode was taped to the pipeline. Utilizing the line tracing technique, the pipeline was traced an additional 500 feet to the west. The trend of the pipeline was marked on the macadam using spray paint and was mapped relative to existing, mapped features such as a nearby fence line.

Once one pipeline was traced over this distance, EM-61 methods were utilized to confirm the locations of the outermost pipeline of the seven pipelines within the easement. EM-61 transect lines were established approximately perpendicular to the trend of the pipeline as determined by the line tracing results. The EM-61 results confirmed that all seven pipelines were within approximately ten to fifteen feet of one-another. Figure 2 indicates the location of the pipelines determined using the methods described above.

7.2 Field Observations

The following summary of field observations includes a summary of hydrogeologic conditions and a description of the extent of LNAPL-impacted or potentially degraded (with respect to environmental quality) soil. The summary of hydrogeologic conditions at Site 2 in Section 7.2.1 is based upon field observations made in the SRI and includes information regarding the depth to groundwater, the thickness of the fill materials, and the consistency of the fill materials and native soils encountered during the field effort. Because the soil borings advanced during the SRI were drilled to depths of less than fifteen feet bgs, but some soil borings drilled during the SI and RI were drilled to deeper depths, some information that is included in Section 3.2.2 of this report was not verified during the SRI and is not included in Section 7.2.1.

The summary of the extent of potential soil impacts, as identified visually (i.e., the presence of LNAPL, discolored soil, sheen, etc.) and through field screening methods (i.e., the use of a PID to measure the concentration of volatile organic compounds in the soil column) is provided in Section 7.2.2. As noted above, the objective of the SRI at Area 2A was to confirm the successful remediation of soil at the four previously identified AOCs. Section 7.2.2 includes only field observations; the soil sampling analytical data are summarized below in Section 7.3.

The objectives of the SRI at Area 2B were to determine the locations of the underground pipelines in the Tidewater easement, to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines, to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines, to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines, and to determine whether the presence of LNAPL-impacted soil along the Tidewater pipelines has degraded groundwater quality (i.e., is acting as a source area for regulated compounds in groundwater). The results of the geophysical investigation, conducted to locate the underground pipelines, were summarized in Section 7.1. Section 7.2.2 identifies the locations where LNAPL-impacted soil was observed and the extent of the LNAPL-impacted soil. Field observations pertaining to the magnitude and extent of the impacts are also provided. Soil and groundwater sampling analytical results are summarized in Section 7.3 and 7.4, respectively.

7.2.1 Summary of Hydrogeology

Field observations pertaining to the hydrogeology are summarized below.

Area 2A

Sixteen soil borings, identified as BLDG20-C1 and C2; STAIN03-C1, C2, and C3; UST32-C1 through C5; and, UST7-C1 through C6, were drilled at Area 2A, and the location of each soil boring was surveyed by the Port Authority and mapped by HMM (see Figure 3). The completion depth varied from approximately two to 11 feet bgs, depending on the AOC being investigated. Soil boring logs are included in Appendix A, and a summary of field observations is included in Table 1.

Soils encountered at Area 2A consisted primarily of fine to medium grained sand with varying amounts of gravel, silt, clay, and cinder fill material. Construction and demolition debris such as concrete, brick, wood, and metal were observed at or near the ground surface at all sixteen soil boring locations. Native soil, encountered at depths of approximately 7.5 to 9 feet bgs, consisted of red-brown silty clay that contained layers of fine angular gravel. Neither organic clays nor peat was encountered at Area 2A at any soil boring location drilled during the SRI.

Groundwater was encountered at depths of between approximately 4 to 4.5 feet bgs in the central portion of Area 2A (in the vicinity of soil boring PG-Bldg32-C3) and depths of approximately 7 to 10 feet bgs in the northern portion of Area 2A (in the vicinity of soil boring PG-UST7-C4). The SRI for Area 2A did not include the installation of monitoring wells. However, as stated in the previously submitted *Revised* – *Site Investigation and Conceptual Remedial Action Workplan Area 2A/2B* dated September 2004; shallow groundwater is anticipated to flow towards and ultimately discharge into Bridge Creek.

Area 2B

Twenty-six soil borings (identified as TW-37 through TW-43, TW-45 through TW-52, and TW-68 through TW-78) were drilled, one test pit (identified as EXT-1) was excavated, and two temporary wells (identified as TWP-13 and TWP-14) were installed at Area 2B during the SRI. The location of each soil boring, test pit, and well point was surveyed by the Port Authority and mapped by HMM (see Figure 3). The elevation of the land surface adjacent to each location was also surveyed by the Port Authority. The completion depth varied from approximately four to 11 feet bgs, depending on the vertical extent of the LNAPL-impacted soil or the depth to groundwater. As noted above, the soil borings at Area 2B were advanced to at least two feet below the water table (where no LNAPL-impacted soil was observed) or to

below the depth of the LNAPL-impacted soil (where LNAPL-impacted soil was observed). Soil boring logs are included in Appendix A, and a summary of field observations is included in Table 1.

Most of the soil borings, the test pit, and the temporary wells were advanced through macadam or concrete that was present at land surface. Soils encountered at Area 2B consisted primarily of fine to medium grained sand with varying amounts of cobbles, gravel, silt, clay, construction and demolition debris (for example, glass, brick, and wood fragments), and cinder fill material. As compared to the fill at Area 2A, cinders were more common and construction and demolition debris were less common. Native soil, encountered at depths of approximately six to ten feet bgs, consisted of organic clays and silts with plant fragments (i.e., meadowmat) or, at some soil boring locations, gray or brown soils that consisted of clay, silt, and sand.

Groundwater was encountered at varying depths across Area 2B. Beneath paved areas, the depth to groundwater ranged from approximately 1.0 to 5.0 feet bgs. Beneath unpaved areas, the depth to water ranged from approximately 0.5 (following a rain storm) to 3.0 feet bgs. As only two temporary wells were installed at Area 2B, it was not possible to determine the direction of groundwater flow. However, shallow groundwater is anticipated to flow towards and ultimately discharge into the small stream at the southern boundary of Area 2B, to Bridge Creek (located to the west of Area 2B), and/or to the marshlands located to the east of Area 2B. Based on prior depth to groundwater measurements at the HHMT-Port Ivory Facility, a groundwater flow divide is likely present at Area 2B, with some groundwater discharging to each of the three areas identified above.

7.2.2 Field Observations

Field observations pertaining to LNAPL-impacted soil and potentially degraded (with respect to environmental quality) soil are summarized below.

Area 2A

As noted above, 16 soil borings were drilled at Area 2A during the SRI. Indications of LNAPL-impacted and/or potentially degraded (with respect to environmental quality) soil were observed at six of these soil boring locations. Discolored soils were observed at four locations at Area 2A. At AOC-Stain3, gray discoloration was observed at approximately 1.5 to 2.0 feet bgs at locations STAIN03-C1 and C3 while the same discoloration was observed from 1.7 to 2.0 feet bgs in location STAIN03-C2. A similar gray discoloration was observed in the 5-6 foot bgs depth interval at location PG-BLDG32-C3, located in

AOC-BLDG32. Except as noted below, no discolored soils were observed at other soil boring locations in AOC-BLDG32 or at any soil boring location in AOC-Bldg7 or AOC-UST7. At all four locations where discolored soil was observed, the discoloration was gray and, because no odor was present in the soil, no sheen was observed, and the PID readings for this depth interval were not greater than background, the discoloration did not appear to be related to petroleum.

LNAPL-impacted soil was observed at discrete depth intervals at locations PG-UST7-C2 and PG-UST7-C4, which were both located in AOC-UST7. No indications of LNAPL-impacted soil were observed at any other locations at Area 2A during the SRI. The LNAPL-impacted soil was encountered in the 7-7.5 and 9-11 foot bgs depth intervals at PG-UST7-C2 and the 8-11 foot bgs depth interval at PG-UST7-C4. PID readings for the soils in these depth intervals and at these locations ranged from 3.2 to 13 parts per million (ppm) greater than background. Discolored soil with a dark gray hue was encountered between nine and 11 feet bgs at PG-UST7-C2 and between eight and 11 feet bgs at PG-UST7-C4. Discrete ganglia of residual LNAPL were present in split spoon samples collected from eight feet to nine feet bgs at PG-UST7-C2. LNAPL-impacted soil was not encountered at any other soil boring location at Area 2A. Please note, locations PG-UST7-C2 and PG-UST7-C4 were not adjacent and that the LNAPL appears to be present in residual saturation at isolated depths and locations in AOC-UST7.

Area 2B - Tidewater Pipelines

For the purposes of this section, no distinction will be made between the field observations recorded during the first mobilization in December 2004 and those recorded during the second mobilization in March 2005. Twenty-six soil borings were advanced during the SRI, inclusive of both the first and second mobilizations. Port Authority surveyors surveyed the locations of all 26 soil borings (see Figure 3 for the soil boring locations). As noted above, manual methods were used to advance the borehole to a depth of six feet bgs at all locations. Hollow stem auger drilling methods were used to advance the borehole to the completion depth at most soil borings advanced to depths of more than six feet bgs; at other locations, primarily those inaccessible to the drill rig, the soil boring was advanced to the completion depth using manual drilling methods. Soil boring logs are included in Appendix A.

Indications of LNAPL-impacted and/or degraded (with respect to environmental quality) soil were observed at three separate locations along the pipelines: in the vicinity of soil boring locations TW-37 and TW-38; in the vicinity of soil boring location TW-43A and EXT-1, the test pit excavated as part of the geophysical investigation; and, in the vicinity of soil boring locations TW-47 and TW-48. Soil impacts

encountered at locations TW-37 and TW-38 included odor and elevated concentrations of volatile organic vapors (PID readings of 9.4 to 62.1 ppm) in the six to seven foot bgs depth interval at location TW-37 and sheen, odor, and discolored soil in the one to nine foot bgs depth interval at location TW-38. Because LNAPL was not encountered at either location, and because elevated concentrations of volatile organic vapors were not measured at location TW-38, the soil impacts do not appear to be related to petroleum. Rather, at least some of the field observations (the elevated concentrations of volatile organic compounds, e.g.) may be attributable to the presence of peat/meadowmat soils at soil boring locations TW-37 and TW-38. As a result, soil samples were collected in the vicinity of TW-37 and TW-38, but no delineation activities were performed at these locations.

Discolored soil, odor, and elevated concentrations of volatile organic vapors (as high as 45 ppm) were observed at location EXT-1. Neither LNAPL nor sheen was observed to flow into the test pit. However, based on the field observations, LNAPL-impacted soil was present at location EXT-1 and soil boring location TW-43A. Except for the presence of odor in the five to six foot bgs depth interval at location TW-69, no indications of LNAPL-impacted soil were observed at step-out soil boring locations TW-68 through TW-70A or at temporary well location TWP-13.

Indications of LNAPL-impacted soil were also observed in the vicinity of locations TW-47 and TW-48. As indicated on Figure 3, several step-out soil borings were drilled to delineate the LNAPL-impacted soil observed at TW-47 and TW-48. Therefore, this summary of field observations indicates where LNAPL-impacted soil was observed, where LNAPL-impacted soil was not observed, and the field observations made in this portion of Area 2B in general rather than the field observation at each individual location. LNAPL-impacted soil was observed at soil boring locations TW-47, TW-48, TW-71A, TW-72, and TW-73 and at temporary well location TWP-14 while the borehole for this temporary well was being drilled. Indications of LNAPL-impacted soil included the presence of odor, sheen, discolored soil, and elevated concentrations of volatile organic compounds (as great as 1,290 ppm at temporary well location TWP-14). Indications of LNAPL-impacted soil were not observed at locations TW-74, TW-75, TW-76, TW-77, and TW-78.

7.3 Analytical Results

To meet the above-mentioned objectives, the SRI included the collection of soil samples at Area 2A and the collection of both soil and groundwater samples at Area 2B. Section 7.3.1 and Section 7.3.2

summarize the analytical results for soil samples collected from Area 2A and Area 2B, respectively. Section 7.3.3 summarizes the analytical results for groundwater samples collected from Area 2B.

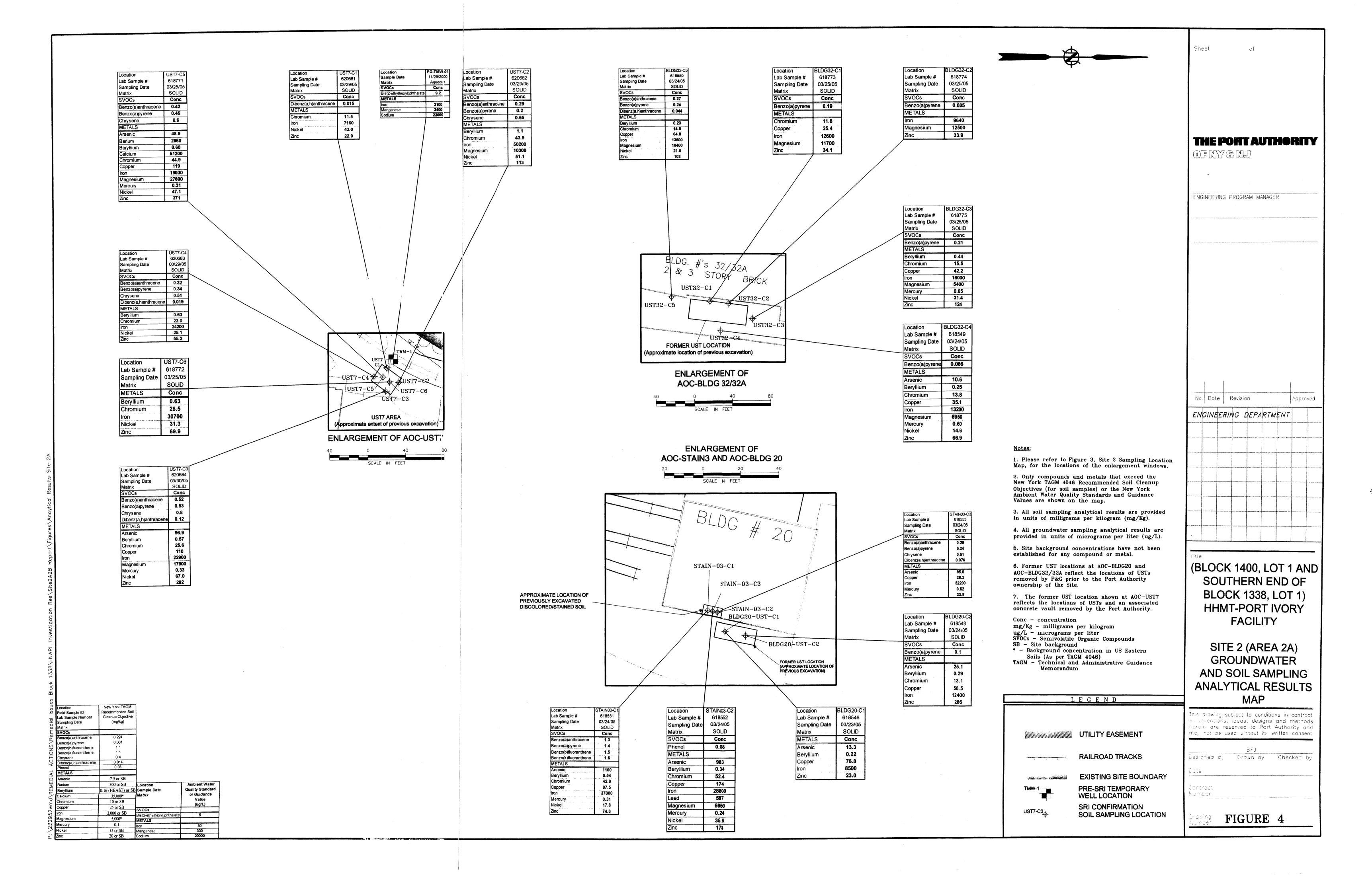
7.3.1 Soil Sampling Results - Area 2A

The soil sampling component of the SRI at Area 2A was conducted to confirm the presence or absence of LNAPL-impacted soil and/or degraded (with respect to environmental quality) soil at the four previously identified AOCs. Soil is considered to be degraded if it contains metals or compounds at concentrations above NYSDEC objectives and above those detected throughout the HHMT-Port Ivory Facility that are be attributable to fill materials that were formerly placed at the facility by P&G. For the purposes of this summary, the soil sampling results have been compared to the RSCOs set forth in the January 1994 NYSDEC Division of Technical and Administrative Guidance Memorandum (TAGM) 4046. Please note, the reference to these cleanup objectives in this report does not represent any agreement or concurrence that the same are appropriate for usage at this site.

The NYSDEC TAGM 4046 generally regards site background as an appropriate concentration for metals and provides RSCOs for only some metals. RSCOs are provided for the following metals: arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, mercury, nickel, selenium, vanadium and zinc. Based on TAGM 4046, the RSCOs for all other metals are the background concentrations of the metals in site soils. However, given the presence of fill material and the urban nature of the site, it is difficult to establish a site background concentration for metals. As such, in accordance with TAGM 4046, the upper limit of the Eastern USA Background Range was utilized as the background concentration for aluminum, calcium, lead, magnesium, manganese, potassium, and sodium. It is important to recognize that the presence of a metal above an established background concentration does not constitute an exceedance of a regulatory standard. As the NYSDEC TAGM 4046 does not provide RSCOs for antimony, silver, or thallium and the background concentrations of these metals in the Eastern USA has not been established, the concentrations of these metals in soil samples collected at Area 2A were not compared to any cleanup objectives.

In accordance with the sampling program described above, one soil sample was collected from each of 16 soil borings drilled at Area 2A between March 23 and 29, 2005. The date of sample collection, the depth interval sampled, and the rationale for selecting the depth interval are provided in Table 1. The soil samples were collected to confirm the environmental quality of soil at four AOCs located at Area 2A:

AOC-Stain3, AOC-Bldg20, AOC-Bldg32/32A, and AOC-UST7. Soil boring locations are shown on Figure 3. Soil sampling results are summarized in Table 2A-D and on Figure 4.


AOC-Stain3 Area Soil Sampling Results

The sampling program for AOC-Stain3 included the collection of one soil sample from the top two feet of the soil column at each of three soil boring locations. One soil sample was collected at the former sampling location identified as STAIN03, and two soil samples were collected from locations adjacent to previous sampling location STAIN03. The samples were all analyzed for TCL SVOC and TAL metals.

No VOCs were detected at concentrations greater than their respective RSCOs in any of the three soil samples collected from AOC-Stain3. In fact, the only VOCs detected in at least one of the soil samples were methylene chloride and acetone. Methylene chloride and acetone, common laboratory solvents, were also detected in method blanks prepared and analyzed by the laboratory. The concentrations of these two compounds in the soil samples are therefore attributable to laboratory contamination. In no case was the concentration of tentatively identified compounds (TICs) estimated to be greater than or equal to one mg/kg.

The following SVOCs were detected at concentrations that exceeded their respective RSCOs in at least one of the three soil samples collected in this AOC: phenol, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, and dibenz(a,h)anthracene. All these compounds except for phenol are PAH compounds, a subset of SVOCs that have been detected in fill throughout the HHMT-Port Ivory Facility. Phenol was detected only in sample STAIN03-C2. The concentration of phenol in that sample was below the detection limit, and was estimated to be 0.08 mg/kg.

Several metals (arsenic, beryllium, chromium, copper, iron, mercury, nickel, and zinc) were detected at concentrations that exceeded their respective RSCOs in at least one of the three soil samples collected in this AOC. Magnesium was also detected at concentrations greater than its maximum background concentration for magnesium in the Eastern US. For the most part, these metals have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility. However, soil samples STAIN03-C1 and STAIN03-C2 both contained elevated concentrations of arsenic (1100 and 983 mg/kg). These concentrations are greater than concentrations detected in other soil samples collected at Area 2A or Area 2B during the SRI and than the concentrations of arsenic generally associated with the prior placement of fill materials at the HHMT-Port Ivory Facility.

The concentrations of TPHC detected in the soil samples collected at this AOC ranged from 311 mg/kg (at soil boring STAIN03-C3) to 2,140 mg/kg (at soil boring STAIN03-C2). No RSCO has been established for TPHC in soil. TPHC has been detected at similar concentrations throughout the HHMT-Port Ivory Facility.

AOC-UST7

The sampling program for AOC-UST7 included the collection of one soil sample from each of six soil borings drilled to depths of approximately 11 feet bgs. Four soil samples were collected from the sidewalls of the previous excavation area and two soil samples were collected from near the bottom of the former excavation. The sampling depths were based upon field observations. The samples were analyzed for TCL VOC, TCL SVOC, and TAL metals.

No VOCs were detected at concentrations greater than their respective RSCOs in any of the six soil samples collected from AOC-UST7. In fact, the only VOCs detected in at least one of the soil samples were methylene chloride, acetone, carbon disulfide, and 2-butanone. Methylene chloride and acetone, common laboratory solvents, were also detected in method blanks prepared and analyzed by the laboratory. The concentrations of these two compounds in the soil samples are therefore attributable to laboratory contamination. In no case was the concentration of tentatively identified compounds (TICs) estimated to be greater than or equal to one mg/kg.

The following SVOCs were detected at concentrations that exceeded their respective RSCOs in at least one of the six soil samples collected in this AOC: benzo(a)anthracene, benzo(a)pyrene, chrysene, and dibenz(a,h)anthracene. All these compounds are PAH compounds, a subset of SVOCs that have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

Several metals (arsenic, barium, beryllium, chromium, copper, iron, mercury, nickel, and zinc) were detected at concentrations that exceeded their respective RSCOs in at least one of the six soil samples collected in this AOC. Calcium and magnesium were also detected at concentrations greater than the maximum background concentrations for these metals in the Eastern US. These metals have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

The concentrations of TPHC detected in the soil samples collected at this AOC ranged from 149 mg/kg (at UST7-C3) to 3,810 mg/kg (at UST7-C2). No RSCO has been established for TPHC in soil. TPHC has been detected at similar concentrations throughout the HHMT-Port Ivory Facility.

AOC-Bldg20

The sampling program for AOC-Bldg20 included the collection of one soil sample from each of two soil borings drilled to depths of approximately eight feet bgs. The sampling depths were based upon field observations. The samples were analyzed for TCL VOC, TCL SVOC, and TAL metals.

No VOCs were detected at concentrations greater than their respective RSCOs in either of the two soil samples collected from AOC-Bldg20. In fact, the only VOCs detected in at least one of the soil samples were methylene chloride and acetone, common laboratory solvents that were also detected in method blanks prepared and analyzed by the laboratory. The concentrations of these two compounds in the soil samples are therefore attributable to laboratory contamination. In no case was the concentration of tentatively identified compounds (TICs) estimated to be greater than or equal to one mg/kg.

Benzo(a)pyrene was the only SVOC that was detected at a concentration exceeding its respective RSCO in sample Bldg20-C2. No SVOCs were detected at concentrations greater than their respective RSCOs in sample Bldg20-C1. Benzo(a)pyrene is classified as a PAH compound. PAH compounds are a subset of SVOCs, and several PAH compounds, including benzo(a)pyrene, have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

Several metals (arsenic, beryllium, chromium, copper, iron, and zinc) were detected at concentrations that exceeded their respective RSCOs in at least one of the two soil samples collected in this AOC. These metals have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

The concentrations of TPHC detected in the soil samples collected at this AOC were 25 mg/kg at Bldg20-C1 and 275 mg/kg at Bldg20-C2. No RSCO has been established for TPHC in soil. TPHC has been detected at similar (and higher) concentrations throughout the HHMT-Port Ivory Facility.

AOC-Bldg32/32A

The sampling program for AOC-UST32/32A included the collection of one soil sample from each of five soil borings drilled to depths of approximately eight feet bgs. The sampling depths were based upon field

observations. The samples were analyzed for TCL VOC, TCL SVOC, and TAL metals.

No VOCs were detected at concentrations greater than their respective RSCOs in any of the five soil samples collected from AOC-Bldg32/32A. In fact, the only VOCs detected in at least one of the soil samples were methylene chloride, acetone, and carbon disulfide. Methylene chloride and acetone, common laboratory solvents, were also detected in method blanks prepared and analyzed by the laboratory. The concentrations of these two compounds in the soil samples are therefore attributable to laboratory contamination. The concentration of carbon disulfide, detected only in only the sample collected at location BLDG32-C3, was estimated to be 0.0022 mg/kg, more than three orders of magnitude below the RSCO for carbon disulfide (2.7 mg/kg). In no case was the concentration of tentatively identified compounds (TICs) estimated to be greater than or equal to one mg/kg.

Three SVOCs were detected at concentrations that exceeded their respective RSCOs in at least one of the five soil samples collected in this AOC: benzo(a)anthracene, benzo(a)pyrene, and dibenz(a,h)anthracene. All these compounds are PAH compounds, a subset of SVOCs, that have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

Several metals (arsenic, beryllium, chromium, copper, iron, magnesium, mercury, nickel, and zinc) were detected at concentrations above their respective RSCOs in at least one soil sample collected in AOC-Bldg32/32A. The concentrations of these metals in soil at AOC-Bldg32/32A were consistent with those in fill materials previously placed at the HHMT-Port Ivory Facility by P&G.

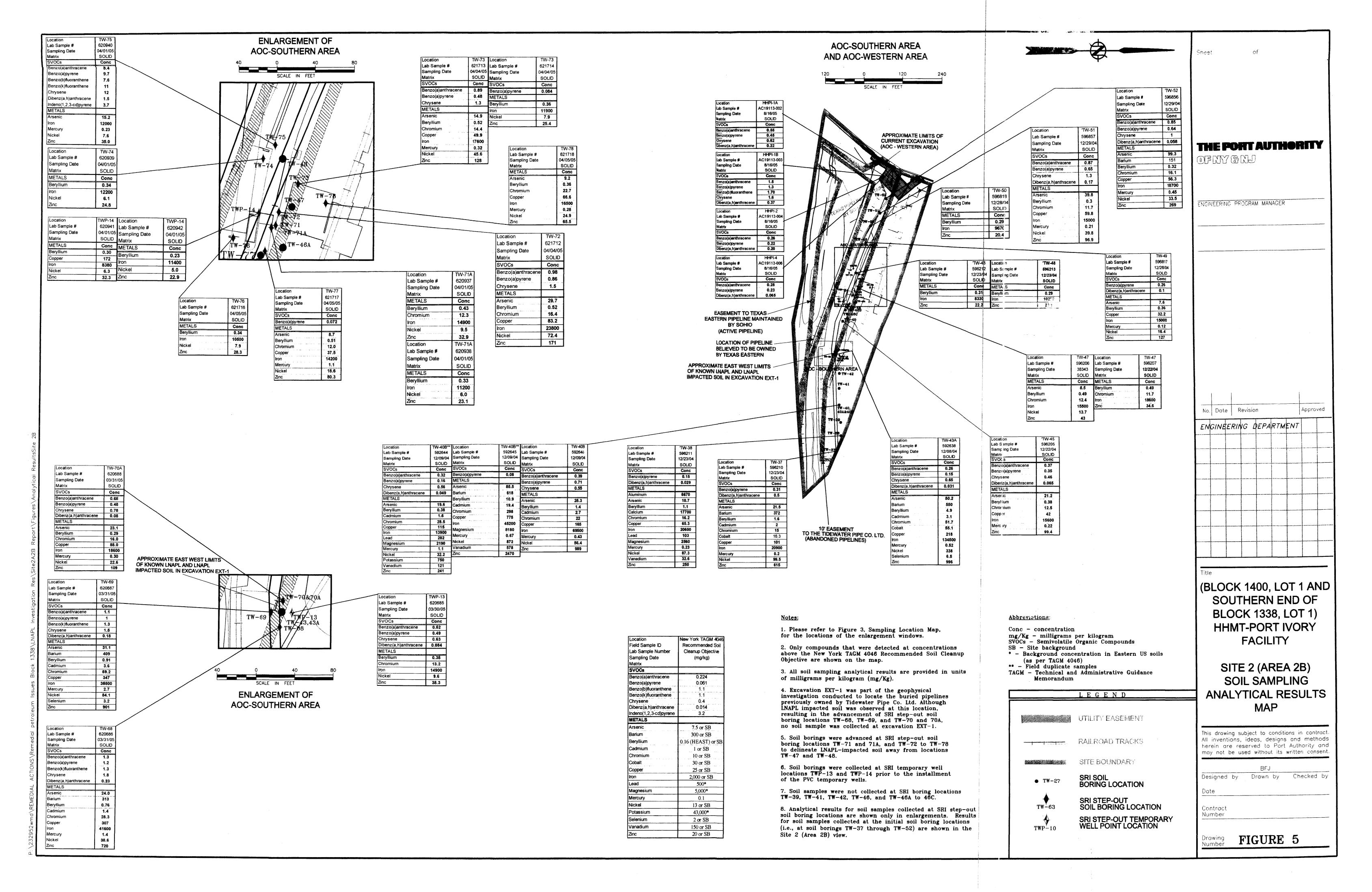
The concentrations of TPHC detected in the soil samples collected at this AOC ranged from 543 mg/kg (at Bldg32-C4) to 1,510 mg/kg (at Bldg32-C5). No RSCO has been established for TPHC in soil. TPHC has been detected at similar concentrations throughout the HHMT-Port Ivory Facility.

Quality Assurance/Quality Control - Area 2A

To monitor the effectiveness of field decontamination procedures, field blanks were collected. The Port Authority prepared four field blanks and analyzed the blanks for VOCs. No VOCs were identified any of the four field blanks. Because no VOCs were detected in the field blanks, it can be concluded that field decontamination procedures were effective. No duplicate sample was collected at Area 2A.

7.3.2 Soil Sampling Results - Area 2B

The majority of the soil sampling component of the SRI at Area 2B was conducted to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines, including in areas where LNAPL-impacted soil was observed.


In accordance with the sampling program described above, 31 soil samples, including a duplicate sample, were collected from 36 soil borings, including 8 step-out soil borings, drilled at Area 2B between December 7 and 31, 2004 (first mobilization) and March 31 to April 5, 2005 (second mobilization). The date of sample collection, depth interval sampled, and the rationale for selecting the depth interval are provided in Table 1. During the first mobilization, soil samples were collected to characterize soil quality along the Tidewater pipelines. During the second mobilization, soil samples were collected to confirm the extents of LNAPL-impacted soil in the two areas (the vicinity of soil boring locations TW-47 and TW-48 and the vicinity of test pit location EXT-1) along the Tidewater pipelines where LNAPL-impacted soil was previously encountered. The summary below includes the soil sampling results from both mobilizations. Soil boring locations are shown on Figure 3. Soil sampling results are summarized in Tables 2A-2D and on Figure 5.

Please note, the VOC and SVOC minimum detection limits reported for all but two of the soil samples (those collected at soil boring locations TW-50 and TW-51) collected during the first mobilization were revised by the analytical laboratory. The detection limits were revised to show the actual detection limit of the instrument rather than the method reporting limit required for each compound. The actual soil analytical results were unaffected by this revision. The original detection limits supplied by the analytical laboratory are indicated on Tables 2A and 2B as "reporting limits," while the revised limits are indicated as "minimum detection limits."

For discussion purposes, the soil sampling results have been compared to current NYSDEC regulatory objectives. The objectives utilized are the RSCOs as set forth in the January 1994 NYSDEC TAGM 4046. Please note, the reference to these objectives in this report does not represent any agreement or concurrence that the same are appropriate for usage at this site.

The NYSDEC TAGM 4046 generally regards site background as an appropriate concentration for metals and provides RSCOs for only some metals. RSCOs are provided for the following metals: arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, mercury, nickel, selenium, vanadium and

zinc. Based on TAGM 4046, the RSCOs for all other metals are the background concentrations of the metals in site soils. However, given the presence of fill material and the urban nature of the site, it is difficult to establish a site background concentration for metals. As such, in accordance with TAGM 4046, the upper limit of the Eastern USA Background Range was utilized as the background concentration for aluminum, calcium, lead, magnesium, manganese, potassium, and sodium. It is important to recognize that the presence of a metal above an established background concentration does not constitute an exceedance of a regulatory standard. As the NYSDEC TAGM 4046 does not provide RSCOs for antimony, silver, or thallium and the background concentrations of these metals in the Eastern USA has not been established, the concentrations of these metals in soil samples collected at Future Site 4/2C were not compared to any cleanup objectives.

Methylene chloride, acetone, 2-butanone, trichloroethene, and carbon disulfide were the only VOCs detected in any soil sample collected at Area 2B during the SRI. All five of these VOCs were detected at concentrations below their respective RSCOs. In addition, because methylene chloride, a common laboratory solvent, was also detected in at least one method blank prepared and analyzed by the laboratory, the concentration of methylene chloride in the soil samples is considered to be attributable to laboratory contamination. The concentration of tentatively identified volatile organic compounds (VOC TICs) was estimated to be less than five mg/kg in all soil samples except those collected from the depth intervals that exhibited the most significant indications of LNAPL-impacted soil at soil boring locations TW-71A, TW-72, and TW-73; the concentrations of VOC TICs at these locations were 202, 83.5, and 68.7 mg/kg, respectively.

The following SVOCs were detected at concentrations that exceeded their respective RSCOs in at least one of the 31 soil samples collected in this AOC: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene. All these compounds are PAH compounds, a subset of SVOCs that have been detected at similar concentrations in fill throughout the HHMT-Port Ivory Facility.

The soil samples collected and analyzed during the first mobilization were analyzed for metals in addition to VOCs and SVOCs, but were not analyzed for TPHC. The metals arsenic, barium, beryllium, cadmium, chromium, copper, iron, mercury, nickel, selenium, and zinc were detected at concentrations that exceeded their respective RSCOs in at least one of the 31 soil samples collected in this AOC. Magnesium and lead were also detected at concentrations greater than their maximum background concentrations in

the Eastern US. These metals have been detected at similar concentrations at locations throughout the HHMT-Port Ivory Facility.

The soil samples collected and analyzed during the second mobilization were analyzed for TPHC in addition to VOCs and SVOCs, but were not analyzed for metals. The concentrations of TPHC detected in these soil samples ranged from 25 mg/kg (in the deeper samples collected at soil boring location TW-76 and temporary well location TWP-14) to 13,000 mg/kg (at soil boring location TW-72). No RSCO has been established for TPHC in soil. For the most part, the concentrations of TPHC in soil samples collected at Area 2B during the SRI are similar to those in soil samples collected throughout the HHMT-Port Ivory Facility during other investigations.

Quality Assurance/Quality Control - Area 2B

To monitor the effectiveness of the field decontamination procedures and laboratory consistency, quality assurance and quality control (QA/QC) samples were collected. The Port Authority collected six field blanks and one duplicate sample for analysis at Area 2B. No VOCs were identified in the six field blanks. It can therefore be inferred that the field decontamination procedures were effective. Analytical results for field blanks are summarized in Table 2A-D.

A duplicate sample was collected from the 5.5-6 foot bgs depth interval at soil boring location TW-40B. Analytical results for compounds with confident concentrations (i.e., the reported concentrations for targeted compounds that do not have a "J" qualifier) were compared in the sample and the duplicate sample to assess laboratory consistency. Results for VOCs, SVOCs, and metals were reasonably consistent. All the reported results were within an order of magnitude of one another (see Table 2A-D for a summary of the analytical data).

7.3.3 Groundwater Sampling Results

The groundwater sampling component of the SRI at Area 2B was conducted to determine whether LNAPL-impacted soil is a source area for regulated compounds in groundwater. In accordance with the sampling program described above, one groundwater sample was collected from each of two temporary wells, identified as TWP-13 and TWP-14, which were installed at Area 2B on March 30 and April 2, 2005, respectively. Specifically, temporary well TWP-13 was installed and sampled to determine whether the LNAPL-impacted soil encountered at test pit location EXT-1 had degraded groundwater quality, and temporary well TWP-14 was installed and sampled to determine whether LNAPL-impacted

SUMMARY OF SOIL SAMPLNIG ANALYTICAL RESULTS - VOCs SITE 2

						HH	MT-PORT	IVORY FA	CILITY								
Location	New York TAGM	Τ	BLDG20-C	1	BLDG20-C2 BLDG32-C1 BLDG32-C2 BLDG32-C3												
Field Sample ID	Recommended Soil	B20C1-032305S003				B20C2-032405S002									BLDG32-C3		
Lab Sample Number	Cleanup Objective		618546	0000	618548			C1032505S003			032505S002			032505S003			
Sampling Date	(mg/kg)	j	03/23/05		1	03/24/05		{	618773			618774		618775			
Matrix	(5 9/	03/23/05 SQLID			03/24/05 SOLID				03/25/05			03/25/05		İ	03/25/05		
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	- C		SOLID			SOLID			SOLID		
Chloromethane	NS	ND	0.0062	Qual			Quai	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	
Bromomethane	NS NS	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056		
VinylChloride	0.2	ND			ND	0.0054		· ND	0.0055		ND	0.0052		ND	0.0056		
Chloroethane	1.9	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056		
MethyleneChloride	0.1	0.026	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056		
Acetone	0.1			В	0.022		В	ND	0.0033		ND	0.0031		ND	0.0034		
CarbonDisulfide	2.7	0.13		В	0.1		В	0.012		. B	ИD	0.0052		0.049		В	
1,1-Dichloroethene	0.4	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		0.0022			
1.1-Dichloroethane	0.4	ND	0.0025		ND	0.0022		ND	0.0022		ND	0.0021		ND	0.0022		
trans-1,2-Dichloroethene	0.2	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056	l	
cis-1,2-Dichloroethene	NS	ND	0.0062	<u> </u>	ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056		
Chloroform	NS 0.3	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056	l	
1,2-Dichloroethane		ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056	·	
2-Butanone	0.1	ND	0.0025		ND	0.0022		ND	0.0022		ND	0.0021		ND	0.0022		
1,1,1-Trichloroethane	0.3	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0022		
CarbonTetrachloride	0.8	ND	0.0062		ND	0.0054		ND	0.0055		ND -	0.0052		ND	0.0056	l	
Bromodichloromethane	0.6	ND	0.0025		ND	0.0022		ND	0.0022		ND	0.0021		- ND	0.0038		
1,2-Dichloropropane	NS	ND	0.0012		ND	0.0011		ND	0.0011		ND	0.001	 	ND	0.0022		
	NS	ND	0.0012		ND	0.0011		ND	0.0011		ND	0.001		ND	0.0011		
cis-1,3-Dichloropropene Trichloroethene	NS	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0056	ļ	
	0.7	ND	0.0012		ND	0.0011		ND	0.0011		ND	0.001		ND	0.0036		
Dibromochloromethane	NS	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052	 	ND	0.0056	 	
1,1,2-Trichloroethane	NS	ND	0.0037		ND	0.0032		ND	0.0033		ND	0.0031		ND	0.0036		
Benzene	0.06	ND	0.0012		ND	0.0011		ND	0.0011		ND	0.0031		ND ND	0.0034	·	
trans-1,3-Dichloropropene	NS	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		סא			
Bromoform	NS	ND	0.005		ND	0.0043		ND	0.0044		ND	0.0032	 -	ND	0.0056		
4-Methyl-2-Pentanone	1	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052		ND	0.0045		
2-Hexanone	NS	ND	0.0062		ND	0.0054		ND	0.0055		ND	0.0052			0.0056		
Tetrachloroethene	1,4	ND	0.0012		ND:	0.0011		ND	0.0033		ND ND	0.0052	 -	ND	0.0056		
1,1,2,2-Tetrachloroethane	0.6	ND	0.0012		ND	0.0011		ND	0.0011		ND	0.001	 -	ND	0.0011		
Toluene	1.5	ND	0.0062		ND	0.0054		ND	0.0055		ND			ND	0.0011		
Chlorobenzene	1.7	ND	0.0062		ND	0.0054		ND	0.0055		ND ND	0.0052	<u> </u>	ND	0.0056		
Ethylbenzene	5.5	ND	0.005		ND	0.0043		ND	0.0033	·	ND ND	0.0052	ļ	ND	0.0056		
Styrene	NS	ND	0.0062		ND	0.0054		ND -	0.0055				ļ	ND	0.0045	ı———	
Xylene(Total)	1.2	ND	0.0062		ND	0.0054		ND	0.0055		ND_	0.0052	<u> </u>	ND	0.0056	 	
Fotal VOC Concentration	10	0.156	1		0.122	3.0004		0.012	0.0000		ND_	0.0052		ND	0.0056	·	
Total VOC TICs Concentration	NS	0			0			0.012			00	 -	ļ	0.0512			

Votes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York
- TAGM Recommended Soil Cleanup Objective.
- !) All results provided in units of mg/kg.
- The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reported.
- * = Field duplicate samples
- = The compound was detected at a concentration below the MDL and is estimated
- 'OC TICs = Tentatively identified volatile organic compounds
- i = The compound was detected in an associated method blank
- ID = The compound was not detected onc = Concentration
- lual = Laboratory Data Qualifier
- 1DL = Method Detection Limit IS = No standard
- ng/kg = Milligrams per kilograms

SUMMARY OF SOIL SAMPLNIG ANALYTICAL RESULTS - VOCs SITE 2

HHMT-PORT IVORY FACILITY

						HH.	MT-PORT	IVORY FA	CILITY								
Location	New York TAGM	,	BLDG32-C4	1	1	BLDG32-C	5		TAIN03-C	1		TAIN03-C	STAIN03-C3				
Field Sample ID	Recommended Soil	B32C4-032405S002				B32C5-032405S002			STA03C1-032405S3					1			
Lab Sample Number	Cleanup Objective	1	618549			618550			618551			STA03C2-032405S2			STA03C3-032405S3		
Sampling Date	(mg/kg)	03/24/05			03/24/05			618551 03/24/05			618552			618553			
Matrix		Į.	SOLID		03/24/05 SOLID				SOLID	•	1	03/24/05		03/24/05			
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	<u> </u>	SOLID		SOLID			
Chloromethane	NS	ND	0.0056		ND	0.0054	_ wuai	ND	0.0053	Quai	Conc	MDL	Qual	Conc	MDL	Qual	
Bromomethane	NS	ND	0.0056		ND	0.0054		ND			ND	0.0063		ND	0.006		
VinylChloride	0.2	ND	0.0056		ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Chloroethane	1.9	ND	0.0056		ND	0.0054		ND	0.0053	···	ND	0.0063		ND	0.006		
MethyleneChloride	0.1	0.017	- 5.0000	В	0.024	0.0054	В	0.011	0.0053		ND	0.0063		ND_	0.006		
Acetone	0.2	0.12		<u>B</u>	0.024		В В			В	0.0019		JB	0.0019		JB	
CarbonDisulfide	2.7	ND	0.0056		ND	0.0054		0.11		В	0.0067		8	0.0069		В	
1,1-Dichloroethene	0.4	ND	0.0022		ND	0.0034		ND	0.0053		ND_	0.0063		ND	0.006		
1,1-Dichloroethane	0.2	ND	0.0022		ND	0.0054	L	ND	0.0021		ND	0.0025		ND	0.0024		
trans-1,2-Dichloroethene	0.3	ND	0.0056		ND	0.0054		ND_	0.0053		ND	0.0063		ND	0.006		
cis-1,2-Dichloroethene	NS	ND	0.0056		ND	0.0054		ND	0.0053	-	ND	0.0063		ND	0.006		
Chloroform	0.3	ND	0.0056		ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
1,2-Dichloroethane	0.1	ND	0.0022		ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
2-Butanone	0.3	ND	0.0022		ND	0.0022		ND	0.0021		ND	0.0025		ND .	0.0024		
1,1,1-Trichloroethane	0.8	ND	0.0056		ND ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
CarbonTetrachloride	0.6	ND	0.0022		ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Bromodichloromethane	NS	ND	0.0022		ND	0.0022		ND	0.0021		ND	0.0025		ND	0.0024		
1,2-Dichloropropane	NS	ND	0.0011		ND	0.0011		ND	0.0011		ND	0.0013		ND	0.0012		
cis-1,3-Dichtoropropene	NS	ND	0.0056		ND	0.0054		ND	0.0011		ND	0.0013		ND	0.0012		
Trichloroethene	0.7	ND	0.0011		ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Dibromochloromethane	NS	ND	0.0056		ND	0.0054		ND	0.0011		ND	0.0013		ND	0.0012		
1,1,2-Trichloroethane	NS	ND	0.0034		ND	0.0034	·	ND	0.0053		ND	0.0063		ND	0.006		
Benzene	0.06	ND	0.0011		ND ND	0.0032		ND	0.0032		ND	0.0038		ND	0.0036		
trans-1,3-Dichloropropene	NS	ND	0.0056		ND	0.0054		ND	0.0011		ND	0.0013		ND	0.0012		
Bromoform	NS	ND ND	0.0035		ND			ND	0.0053		ND	0.0063	·	ND	0.006		
4-Methyl-2-Pentanone	1	ND	0.0056		ND ND	0.0043		ND	0.0042		ND	0.0051		ND	0.0048	Ī	
2-Hexanone	NS	ND -	0.0056		ND ND			ND	0.0053		ND	0.0063		ND	0.006		
Tetrachloroethene	1.4	ND	0.0038		ND ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
1,1,2,2-Tetrachloroethane	0.6	ND	0.0011		ND			ND .	0.0011		ND	0.0013		ND	0.0012		
Toluene	1,5	ND	0.0056		ND -	0.0011		ND	0.0011		ND	0.0013		ND	0.0012		
Chlorobenzene	1.7	ND	0.0056			0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Ethylbenzene	5.5	ND	0.0036		ND ND	0.0054		ND	0.0053.		ND	0.0063		ND	0.006	1	
Styrene	NS	ND	0.0045		~~~	0.0043		ND	0.0042	<u> </u>	ND	0.0051		ND	0.0048		
Xylene(Total)	1.2	ND	0.0056		ND ND	0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Total VOC Concentration	10	0.137	0.0000			0.0054		ND	0.0053		ND	0.0063		ND	0.006		
Total VOC TICs Concentration	NS	0.137			0.112	<u> </u>		0.121			0.0086			0.0088			
		<u>`</u> _				<u> </u>		0.			0.0077		J .	0.058		J	

Notes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- ?) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- * = Field duplicate samples
- I = The compound was detected at a concentration below the MDL and is estimated
- /OC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- VD = The compound was not detected
- Conc = Concentration Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit 1S = No standard
- ng/kg = Milligrams per kilograms

TABLA

SUMMARY OF SOIL SAMPLNIG ANALYTICAL RESULTS - VOCs SITE 2

HHMT-PORT IVORY FACILITY

HHMT-PORT IVORY FACILITY																	
Location	New York TAGM UST7-C1								UST7-C3			UST7-C4			11077.05		
Field Sample ID	Recommended Soil		032905\$004			UST7-C2 032905S006			33005500	c '	١,		-	UST7-C5			
Lab Sample Number	Cleanup Objective	1	620681			620682						32905800	5	032505\$006			
Sampling Date	(mg/kg)	ļ	03/29/05			03/29/05			620684			620683		618771			
Matrix	. 3 3,		SOLID		l	SOLID			03/30/05			03/29/05		03/25/05			
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	SOLID			SOLID			SOLID		
Chloromethane	NS	ND	0.0055		ND	0.01	Wuar			Qual	Conc	MDL	Qual	Conc	MDL	Qual	
Bromomethane	NS	ND	0.0055		ND	0.01		ND	0.0053		ND	0.0056	·	ND	0.0055		
VinylChloride	0.2	ND	0.0055		ND	0.01		_ ND	0.0053		ND	0.0056		ND	0.0055		
Chloroethane	1.9	ND	0.0055		ND	0.01		ND ND	0.0053		ND	0.0056		ND	0.0055		
MethyleneChloride	0.1	0.0009	0.0000	JB	ND	0.0061		ND	0.0053		ND	0.0056		ND	0.0055		
Acetone	0.2	0.011	l		0.062	0.0001	В	ND .	0.0032		ND	0.0033	L	0.002		JB B	
CarbonDisulfide	2.7	ND	0.0055		0.0023		<u> </u>	0.014		В	0.028		В	0.083		В	
1,1-Dichloroethene	0.4	ND	0.0022		ND	0.0041	J	ND	0.0053		0.0017		J	ND	0.0055	L	
1,1-Dichloroethane	0.2	ND	0.0055		ND	0.0041		ND	0.0021		ND	0.0022		ND	0.0022	i	
trans-1,2-Dichloroethene	0.3	ND	0.0055		ND ND	0.01		ND ND	0.0053		ND	0.0056		ND	0.0055	L	
cis-1,2-Dichloroethene	NS	ND	0.0055		ND	0.01		ND ND	0.0053		ND	0.0056		ND	0.0055	i—	
Chloroform	0.3	ND	0.0055		ND-	0.01		ND	0.0053		ND	0.0056		ND	0.0055		
1,2-Dichloroethane	0.1	ND	0.0022		ND	0.0041		ND ND	0.0053		ND	0.0056		ND	0.0055		
2-Butanone	0.3	ND	0.0055		0.018	0.0041		ND ND	0.0021		ND	0.0022		ND	0.0022		
1,1,1-Trichloroethane	0.8	ND	0.0055		ND	0.01		ND ND	0.0053		ND	0.0056		ND	0.0055	·	
CarbonTetrachloride	0.6	ND	0.0022		ND	0.0041		ND	0.0053		ND	0.0056		ND	0.0055	·—	
Bromodichloromethane	NS	ND	0.0011		ND	0.002		ND	0.0021		ND	0.0022		ND	0.0022		
1,2-Dichloropropane	NS	ND	0.0011		ND	0.002		· ND	0.0011		ND	0.0011		ND	0.0011		
cis-1,3-Dichloropropene	NS	ND	0.0055		ND	0.002		ND	0.0011		ND	0.0011		ND	0.0011		
Trichloroethene	0.7	ND	0.0011		ND	0.002		ND	0.0053		ND	0.0056		ND	0.0055		
Dibromochloromethane	NS	ND	0.0055		ND	0.002		ND	0.0053		ND	0.0011		· ND	0.0011	l	
1,1,2-Trichloroethane	NS	ND	0.0033		ND	0.0061		ND	0.0053		ND	0.0056		ND	0.0055		
Benzene	0.06	ND	0.0011		ND	0.002		ND			ND	0.0033		ND	0.0033		
trans-1,3-Dichloropropene	NS	ND	0.0055		ND	0.002		ND ND	0.0011		ND	0.0011		ND	0.0011		
Bromoform	NS	ND	0.0044		ND	0.0082		ND	0.0053		ND	0.0056		ND	0.0055	l	
4-Methyl-2-Pentanone	1	ND	0.0055		ND	0.0082		ND	0.0042 0.0053	<u> </u>	ND	0.0045		ND	0.0044		
2-Hexanone	NS	ND	0.0055		ND	0.01		ND	0.0053		ND	0.0056		ND	0.0055		
Tetrachloroethene	1.4	ND	0.0011		ND	0.002		ND	0.0053		ND	0.0056		ND	0.0055		
1,1,2,2-Tetrachloroethane	0.6	ND	0.0011		ND	0.002		ND	0.0011		ND	0.0011		ND	0.0011	J	
Toluene	1.5	ND	0.0055		ND	0.01		ND	0.0053		ND	0.0011		ND	0.0011		
Chlorobenzene	1.7	ND	0.0055		ND	0.01		ND	0.0053		ND	0.0056		ND	0.0055		
Ethylbenzene	5.5	ND	0.0044		ND	0.0082		ND	0.0053		ND ND	0.0056		ND	0.0055		
Styrene	NS	ND	0.0055		ND	0.0002		ND	0.0042		ND	0.0045		ND	0.0044		
Xylene(Total)	1.2	ND	0.0055		ND	0.01		ND	0.0053			0.0056		ND	0.0055		
Total VOC Concentration	10	0.0119	1122		0.0823	0.01		0.014	0.0053		ND	0.0056		ND	0.0055		
Total VOC TICs Concentration	NS	0			0.805			0.014			0.0297	 		0.085			
Natara and Alaka and an						L			<u> </u>		0.34	L	J	0			

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.
- ?) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- * = Field duplicate samples
- I = The compound was detected at a concentration below the MDL and is estimated
- /OC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- ID = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit
- 1S = No standard
- ng/kg = Milligrams per kilograms

SUMMARY OF SOIL SAMPLNIG ANALYTICAL RESULTS - VOCS SITE 2

HHMT-PORT IVORY FACILITY

			_					ORT FACIL	_111									
Location	New York TAGM		UST7-C6			TW	-37		T	TW	-38		TW-40B**					
Field Sample ID	Recommended Soil	0	32505 S 00	5		TW-37-12	2304S012			TW-38-12								
Lab Sample Number	Cleanup Objective	ļ	618772		1		210			596		TP40B-120904SO06						
Sampling Date	(mg/kg)	1	03/25/05			12/2			l	12/2				592644				
Matrix		1	SOLID		1		LID		1	SO			ĺ	12/09				
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	RL	Qual	MDL	Conc	RL	Qual	Conc	SOL					
Chloromethane	NS	ND	0.0056		ND	0.0089		0.00059	ND	0.0089	Quai	MDL		RL	Qual	MDL		
Bromomethane	NS	ND	0:0056		ND	0.0089		0.00053	ND	0.0089		0.00059	ND	0.0062	ļl	0.00041		
VinylChloride	0.2	ND	0.0056		ND	0.0089		0.0004	ND 7			0.00064	ND	0.0062	<u>ا</u> ـــــا	0.00045		
Chloroethane	1.9	ND	0.0056		ND	0.0089		0.00062	ND	0.0089		0.00041	ND	0.0062		0.00028		
MethyleneChloride	0.1	0.0096		В	ND	0.0054		0.00082		0.0089		0.00062	ND	0.0062		0.00043		
Acetone	0.2	0.11		В	0.035	0.0004	В	0.00041	ND 0.046	0.0054		0.00041	ND	0.0037		0.00028		
CarbonDisulfide	2.7	0.0015			0.0015		<u> </u>	0.00053			В	0.0043	0.12		В	0.003		
1,1-Dichloroethene	0.4	ND	0.0022	<u>-</u> -	ND	0.0036		0.00058	0.0066		J	0.00053	0.026			0.00037		
1,1-Dichloroethane	0.2	ND	0.0056		ND	0.0030		0.00038	ND	0.0036		0.00058	ND	0.0025		0.0004		
trans-1,2-Dichloroethene	0.3	ND	0.0056		ND	0.0089	<u> </u>	0.00043	ND	0.0089		0.00043	ND	0.0062		0.0003		
cis-1,2-Dichloroethene	NS	ND	0.0056		ND -	0.0089	ļ		_ ND	0.0089		0.00053	ND	0.0062		0.00037		
Chloroform	0.3	ND	0.0056		ND	0.0089	 -	0.00053	ND	0.0089		0.00053	ND	0.0062		0.00037		
1,2-Dichloroethane	0.1	ND	0.0022		ND	0.0036		0.00041	ND	0.0089		0.00041	ND	0.0062	L	0.00028		
2-Butanone	0.3	ND	0.0056		ND	0.0036		0.00029	ND	0.0036		0.00029	ND	0.0025		0.0002		
1,1,1-Trichloroethane	0.8	ND	0.0056		ND	0.0089		0.0018	ND ND	0.0089		0.0018	0.037			0.0012		
CarbonTetrachloride	0.6	ND	0.0022		ND	0.0089		0.0005	ND	0.0089		0.0005	ND	0.0062		0.00035		
Bromodichloromethane	NS	ND	0.0022		ND	0.0036	ļ	0.00038	ND	0.0036		0.00038	ND	0.0025		0.00026		
1,2-Dichloropropane	NS	ND	0.0011		ND			0.00043	ND	0.0018		0.00043	ND	0.0012		0.00029		
cis-1,3-Dichloropropene	NS	ND	0.0056		ND ND	0.0018		0.00052	ND	0.0018		0.00052	ND	0.0012		0.00035		
Trichloroethene	0.7	ND	0.0011			0.0089		0.00053	ND	0.0089		0.00053	ND	0.0062	i	0.00037		
Dibromochloromethane	NS	ND	0.0056		ND	0.0018		0.00049	ND	0.0018		0.00049	ND	0.0012		0.00032		
1,1,2-Trichloroethane	NS	ND	0.0033	 -	ND	0.0089		0.00028	ND	0.0089		0.00028	ND	0.0062		0.0002		
Benzene	0.06	ND	0.0033		ND	0.0054		0.00047	ND	0.0054		0.00047	ND	0.0037		0.00032		
trans-1,3-Dichloropropene	NS NS	ND	0.0056		ND	0.0018		0.00041	ND .	0.0018		0.00041	ND	0.0012		0.00028		
Bromoform	NS	ND	0.0036		ND ·	0.0089		0.00021	ND	0.0089		0.00021	ND	0.0062		0.00015		
4-Methyl-2-Pentanone	1	ND	0.0044		ND	0.0072		0.00049	ND	0.0071		0.00048	ND	0.005		0.00092		
2-Hexanone	NS .	ND	0.0056	L	ND	0.0089		0.0013	ND	0.0089		0.0013	ND	0.0062		0.00095		
Tetrachloroethene	1,4	ND	0.0036		ND	0.0089		0.0014	ND	0.0089		0.0014	ND	0.0062		0		
1.1.2.2-Tetrachloroethane	0.6	ND	0.0011		ND	0.0018		0.0003	ND	0.0018		0.0003	ND	0.0012	1	0.0002		
Toluene	1,5	ND	0.0056		ND	0.0018		0.00059	ND	0.0018		0.00059	ND	0.0012		0.0004		
Chlorobenzene	1.7	ND	0.0056		ND	0.0089		0.00036	0.0022		J	0.00036	ND	0.0062		0.00025		
Ethylbenzene	5.5	ND ND	0.0056		ND	0.0089		0.00027	ND	0.0089		0.00027	ND	0.0062		0.00019		
Styrene	NS NS	ND -	0.0044		ND	0.0072		0.00036	0.0015		J	0.00035	ND	0.005		0.00025		
Xylene(Total)	1.2	ND	0.0056		ND	0.0089		0.00021	ND	0.0089		0.00021	ND	0.0062		0.00015		
Total VOC Concentration	10	0.1211	0.0056		ND	0.0089		0.00085	0.0072		J	0.00085	ND	0.0062	1	0.0006		
Total VOC TICs Concentration	NS	0.1211		L	0.0365				0.0635				0.183					
1 1 2 7.700 00.7007.714.001		0.395		ليا	0.0498			J	1.97			J	NA					

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- ** = Field duplicate samples
- J = The compound was detected at a concentration below the MDL and is estimated
- VOC TICs = Tentatively identified volatile organic compounds
- B = The compound was detected in an associated method blank
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit
- NS = No standard
- mg/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

						нни	MT-PORT IV	ORY FA	CILITY								
Location	New York TAGM		TW-40)B**			TW-4	OB			TW-4	2.0		г	T14/	15	
Field Sample ID	Recommended Soil	1	40B-12090	4S006D			120904			· -	W43A-120			! .	TW-	-	. 1
Lab Sample Number	Cleanup Objective	1	5926	45			5926			'	5926			[TW-45-122		3
Sampling Date	(mg/kg)]	12/09	/04		-	12/09				12/08			1	5962		
Matrix		ł	SOL	ID			SOL			•	SOL		41	l	12/22		j
Volatile Organic Compounds (VOCs)		Conc	RL	Qual	MDL	Conc	RL	Qual	MDL	Conc	RL	Qual	MDL	Conc	SOL		
Chloromethane.	NS	ND	0.029		0.0019	ND	0.0099	- doar	0.00065	ND	0.015	Qual			RL	Qual	MDL
Bromomethane	NS	ND	0.029		0.0021	ND	0.0099		0.00071	ND	0.015		0.00099	. ND	0.0055		0.00036
VinylChloride	0.2	ND	0.029		0.0013	ND	0.0099		0.00071	ND		<u> </u>	0.0011	ND	0.0055	ļ	0.0004
Chloroethane	1.9	ND	0.029		0.002	ND	0.0099		0.00046	ND ND	0.015		0.00069	ND	0.0055		0.00025
MethyleneChloride	0.1	ND	0.018		0.0014	0.0048	0.0033	JB	0.00045	ND ND	0.015		0.001	ND	0.0055		0.00038
Acetone	0.2	0.6		В	0.014	0.39		B	0.0048		0.009	 _	0.00069	0.0008	 _	JB_	0.00025
CarbonDisulfide	2.7	0.17		 -	0.0017	0.028			0.00059	0.38		В	0.0073	0.043		В	0.0027
1,1-Dichloroethene	0.4	ND	0.012		0.0019	ND	0.004		0.00059		0.000	ļ	0.0009	0.0012		J	0.00033
1,1-Dichloroethane	0.2	ND	0.029	 	0.0014	ND	0.0099			ND	0.006		0.00096	ND	0.0022		0.00035
trans-1,2-Dichloroethene	0.3	ND	0.029		0.0017	ND	0.0099	L	0.00048	ND	0.015		0.00072	ND	0.0055	l	0.00026
cis-1,2-Dichloroethene	NS ·	ND	0.029		0.0017	ND	0.0099		0.00059	ND	0.015		0.0009	ND	0.0055		0.00033
Chloroform	0.3	ND	0.029	 	0.0017	ND	0.0099		0.00059	ND	0.015		0.0009	ND	0.0055		0.00033
1,2-Dichloroethane	0.1	ND	0.012		0.00096	ND			0.00046	ND	0.015		0.00069	ND	0.0055		0.00025
2-Butanone	0.3	0.12	- 0.012	 	0.0057	0:12	0.004		0.00032	ND	0.006	L	0.00048	ND	0.0022		0.00018
1,1,1-Trichloroethane	0.8	ND	0.029	 -	0.0037	ND	0.000		0.002	0.092			0.003	ND	0.0055		0.0011
CarbonTetrachloride	0.6	ND	0.023		0.0018	ND ND	0.0099		0.00055	. ND	0.015	Ì	0.00084	ND	0.0055		0.00031
Bromodichloromethane	NS	ND	0.0058	 	0.0012	ND	0.004		0.00042	. ND	0.006		0.00063	ND	0.0022		0.00023
1,2-Dichloropropane	NS	ND	0.0058		0.0017	ND -			0.00048	ND	0.003		0.00072	ND	0.0011		0.00026
cis-1,3-Dichloropropene	NS	ND	0.029	 	0.0017	ND -	0.002		0.00058	ND	0.003		0.00087	ND	0.0011		0.00032
Trichloroethene	0.7	ND	0.0058		0.0017	ND ND	0.0099		0.00059	ND	0.015		0.0009	ND	0.0055		0.00033
Dibromochloromethane	NS	ND	0.029	 -	0.00093	ND			0.00054	ND	0.003	<u> </u>	0.00081	ND	0.0011		0.0003
1,1,2-Trichloroethane	NS	ND	0.023	 	0.00093	ND	0.0099		0.00032	ND	0.015		0.00048	ND	0.0055		0.00018
Benzene	0.06	ND	0.0058		0.0018	ND ND	0.0059		0.00051	ND	0.009	<u> </u>	0.00078	_ND	0.0033		0.00028
trans-1,3-Dichloropropene	NS	ND	0.029	ļ	0.0013	ND	0.002		0.00046	ND	0.003		0.00069	ND	0.0011		0.00025
Bromoform	NS	ND	0.023		0.0007	ND ND	0.0099		0.00024	ND	0.015		0.00036	ND	0.0055		0 00013
4-Methyl-2-Pentanone	1	ND	0.029		0.0018	ND ND	0.0079		0.00053	ND	0.012		0.00081	ND	0.0044		0.0003
2-Hexanone	NS	ND	0.029		0.0043		0.0099		0.0015	ND .	0.015		0.0022	ND	0.0055		0.00081
Tetrachloroethene	1.4	ND	0.0058		0.00099	ND ND	0.0099		0.0015	ND	0.015		0.0023	ND	0.0055		0.00085
1,1,2,2-Tetrachloroethane	0.6	ND	0.0058		0.00099	ND ND	0.002		0.00034	ND	0.003		0.00051	ND	0.0011		0.00019
Toluene	1.5	ND	0.0030	 	0.0019		0.002		0.00066	ND	0.003		0.00099	ND	0.0011		0.00036
Chlorobenzene	1.7	ND	0.029	ļ	0.00012	ND ND	0.0099		0.0004	ND	0.015		0.0006	ND	0.0055		0.00023
Ethylbenzene	5.5	ND	0.023		0.00087		0.0099		0.0003	ND	0.015	1.4	0.00045	ND	0.0055		0.00016
Styrene	NS NS	ND	0.023	 -	0.0007	ND ND	0.0079		0.0004	ND	0.012		0.0006	ND	0.0044		0.00022
Xylene(Total)	1.2	ND	0.029		0.0007	ND ND	0.0099		0.00024	ND	0.015		0.00036	ND	0.0055		0.00013
Total VOC Concentration	10	0.89	0.023	 	0.0028		0.0099		0.00095	ND	0.015		0.0014	ND	0.0055		0.00053
Total VOC TICs Concentration	NS	NA	 	 		0.5428	<u> </u>			0.494				0.045			
			Ь			NA	L			NA				0			
Notes and Abbasistics																	

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- " = Field duplicate samples
- J = The compound was detected at a concentration below the MDL and is estimated
- VOC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected Conc = Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit NS = No standard
- ng/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

						ним	T-PORT IV	URY FA	CILITY								
Location	New York TAGM		TW-	47			TW-	17			TW-	19					
Field Sample ID	Recommended Soil	.	TW-47-122	204S007			TW-47-122				. vv- TW-48-122					-48	
Lab Sample Number	Cleanup Objective	l	5962				5962				5962		'			2304S018	
Sampling Date	(mg/kg)	l	12/22		l		12/22		į		. 12/23		,			213	
Matrix		<u> </u>	SOL		•		SOL		,		, 12/23 SOL					3/04	
Volatile Organic Compounds (VOCs)		Conc	RL	Qual	MDL	Conc	RL	Qual	MDL	Conc	RL	Qual	MDL	Conc	SO RL	LID	1 4401
Chloromethane	NS	ND	0.0073		0.00079	ND	0.0059		0.00039	, ND	0.0058	Quai				Qual	MDL
Bromomethane	NS	ND	0.0073		0.00047	ND	0.0059		0.00039	, ND ND			0.00038	ND	0.006		0.0004
VinylChloride	0.2	ND	0.0073		0.00055	ND	0.0059		0.00042	ND	0.0058		0.00042	ND	0.006		0.00043
Chloroethane	1.9	ND	0.0073		0.00068	ND	0.0059		0.00027	. ND	0.0058 0.0058	<u> </u>	0.00027	ND	0.006		0.00028
MethyleneChloride	0.1	ND	0.0044		0.00019	ND	0.0035		0.00027	, ND	0.0034		0.0004	ND	0.006		0.00042
Acetone	0.2	0.038			0.0028	0.015	0.0033	- B	0.00027	0.014	0.0034		0.00026	ND	0.0036		0.00028
CarbonDisulfide	2.7	ND	0.0073		0.00038	ND	0.0059		0.00035	ND	0.0058	В	0.0028	0.021	·· 	B	0.0029
1,1-Dichloroethene	0.4	ND	0.0029		0.00035	ND	0.0039		0.00038	ND	0.0058		0.00035	0.0012		J	0.00036
1,1-Dichloroethane	0.2	ND	0.0073		0.00036	ND	0.0059		0.00038	, ND	0.0023	<u> </u>	0.00037	ND	0.0024		0.00038
trans-1,2-Dichloroethene	0.3	ND	0.0073		0.0003	ND	0.0059		0.00028	ND	0.0058	ļ	0.00028	ND	0.006		0.00029
cis-1,2-Dichloroethene	NS	ND	0.0073		0.00032	ND	0.0059		0.00035	ND			0.00035	ND	0.006		0.00036
Chloroform	0.3	ND	0.0073		0.00025	ND	0.0059		0.00035	ND	0.0058		0.00035	ND	0.006		0.00036
1,2-Dichloroethane	0.1	ND	0.0029		0.00016	ND	0.0039		0.00027	ND	0.0058	 	0.00027	ND	0.006		0.00028
2-Butanone	0.3	ND	0.0073		0.0029	ND	0.0059		0.00019		0.0023		0.00018	ND	0.0024		0.00019
1,1,1-Trichloroethane	8.0	ND	0.0073		0.00054	ND	0.0059		0.00033	ND ND	0.0058		0.0011	ND	0.006		0.0012
CarbonTetrachloride	0.6	ND	0.0029		0.00056	ND	0.0024		0.00033	ND ND	0.0058		0.00032	ND	0.006		0.00034
Bromodichloromethane	NS .	ND	0.0014		0.00011	ND	0.0012		0.00029	ND ND	0.0023	ļ,	0.00024	ND	0.0024		0.00025
1,2-Dichloropropane	NS	ND	0.0014		0.00024	ND	0.0012		0.00029	ND	0.0012	L	0.00029	ND	0.0012		0.00029
cis-1,3-Dichloropropene	NS	ND	0.0073		0.00033	ND	0.0059		0.00035	ND	0.0012		0.00035	ND	0.0012		0.00035
Trichloroethene	0.7	ND	0.0014		0.00035	0.0015	0,0003		0.00033	0.0009	0.0058		0.00035	ND	0.006		0.00036
Dibromochloromethane	NS	ND	0.0073		0.00025	ND	0.0059		0.00032	0.0009 ND	0.0058	J	0.00032	ND	0.0012		0.00032
1,1,2-Trichloroethane	NS	ND	0.0044		0.00025	ND	0.0035		0.00019	, ND	0.0058	i	0.00018	ND	0.006		0 00019
Benzene	0.06	ND	0.0014		0.00029	ND	0.0012		0.0003	ND ND			0.00029	ND	0.0036		0.00031
trans-1,3-Dichloropropene	NS	ND	0.0073		0.00013	ND	0.0059		0.00028	1 ND	0.0012		0.00028	ND	0.0012		0.00028
Bromoform	NS	ND	0.0058		0.00035	ND	0.0047		0.00032	ND	0.0058	·	0.00014	ND	0.006		0.00014
4-Methyl-2-Pentanone	1	ND	0.0073		0.0016	ND	0.0059		0.00087	ND ND			0.00031	ND	0.0048		0.00032
2-Hexanone	NS	ND	0.0073		0.0016	ND	0.0059		0.00091	, ND	0.0058	ļ	0.00086	ND	0.006		0.00089
Tetrachloroethene	1.4	ND	0.0014	····	0.00047	ND	0.0012		0.00091	, ND	0.0058		0.00089	ND	0.006		0.00092
1,1,2,2-Tetrachloroethane	0.6	ND	0.0014		0.0003	ND	0.0012		0.0002	ND	0.0012		0.0002	ND	0.0012		0.0002
Toluene	1.5	ND	0.0073		0.00025	ND	0.0012		0.00024	ND	0.0012		0.0004	ND	0.0012		0.0004
Chlorobenzene	1.7	ND	0.0073		0.00012	ND	0.0059		0.00024		0.0058		0.00023	ND	0.006		0.00024
Ethylbenzene	5.5	ND	0.0058		0.00025	ND	0.0039		0.00018	ND	0.0058	<u> </u>	0.00017	DN	0.006		0.00018
Styrene	NS	ND	0.0073		0.00023	ND	0.0059		0.00023	ND	0.0046		0.00023	ND	0.0048		0.00024
Xylene(Total)	1.2	ND	0.0073		0.00024	ND	0.0059	 -		ND	0.0058		0.00014	ND	0.006		0.00014
Total VOC Concentration	10	0.038	3.00.0		3.00034	0.0165	0.0009	 	0.00057	ND	0.0058	ļ — — i	0.00056	ND	0.006		0.00058
Total VOC TICs Concentration	NS	4,91				0.0165				0.0149				0.0222			
Notes and Abbreviations			L		<u>`</u>	0.034			J	0		·		0.0879			J

Votes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- ?) All results provided in units of mg/kg.
- I) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- * = Field duplicate samples
- = The compound was detected at a concentration below the MDL and is estimated
- 'OC TICs = Tentatively identified volatile organic compounds
- i = The compound was detected in an associated method blank
- ID = The compound was not detected onc = Concentration
- tual = Laboratory Data Qualifier
- IDL = Method Detection Limit
- IS = No standard
- ng/kg = Milligrams per kilograms

Page 6 of 12

HHMT-PORT IVORY FACILITY

Location New York TAGM TW-9-1220045002 T	-1						ннмт-	PORT IVO	RY FACILIT	Υ .						
Feld Sample IO	Location	New York TAGM		TW-49		Υ	TW-50			TVA	.51			TIM	-	
Lab Sample Number Cleanup Objective 596817 1272804 12728		Recommended Soil	TW-	49-122804	S002	l tw-		5002								
Samping Gale Conc. Conc. MDL Conc. Conc. MDL Conc. MDL Conc. Conc. Conc. Conc. MDL Conc. MDL Conc. Conc. Conc. Conc. MDL Conc. C		Cleanup Objective	1	596817		1		,,,,,	}				ì			
Matrix		(mg/kg)	i	12/28/04		i			l				Į.			
Volatile Organic Compounds (VOCs) Conc MDL Qual Conc MDL Qual Conc R. Qual MDL Conc R. Qual)	SOLID]			Ì				1			
Chloromethane			Conc	MDL	Qual	Conc		Qual	Conc			MDI	Conc			MOL
Brommethane		N\$	ND	0.0058	i	ND	0.0058		<u></u>		Guai				Quai	
Viny(Chiorde		NS	ND	0.0058		ND										
Chicroethane		0.2	ND	0.0058	l	4					-					
MethyleneChloride		1.9	ND	0.0058	l											
Acetone		0.1	0.0056		В		0.0050	R		0.0002						
Carbon-Disulfide		0.2	0.034								<u>-</u> -			0.0035		
1,1-Dichloroethane		2.7	ND	0.0058			0.0058	·								
1,1-Dickloroethane		0.4	ND							0.0035	<u>J</u>					
trans-12-Dichloroethene		0.2	ND	~												
cis-1_2-Dichloroethene NS ND 0.0058 ND 0.0058 ND 0.0052 0.0037 ND 0.0059 0.0035 Choroform 0.3 ND 0.0058 ND 0.0062 0.00037 ND 0.0059 0.00021 1_2-Dichloroethane 0.1 ND 0.0023 ND 0.0023 ND 0.0025 0.0002 ND 0.0025 2-Butanone 0.3 ND 0.0058 ND 0.0058 ND 0.0062 0.0012 ND 0.0059 0.0021 1_1,1-Trichoroethane 0.8 ND 0.0058 ND 0.0058 ND 0.0062 0.0012 ND 0.0059 0.0012 Carbon Tetrachloride 0.6 ND 0.0023 ND 0.0023 ND 0.0025 0.00035 ND 0.0059 0.0021 1_2-Dichloropropane NS ND 0.0012 ND 0.0012 ND 0.0012 0.00033 ND 0.0023 ND 0.0012	trans-1,2-Dichloroethene	0.3			 									*****		
Chloroform	cis-1,2-Dichloroethene	NS			<u> </u>											
1,2-Dichloroerthane	Chloroform	0.3														
2-Butanone	1,2-Dichloroethane	0.1			 											
1,1,1-frichloroethane	2-Butanone				 			- -			<u> </u>					
CarbonTetrachloride	1,1,1-Trichloroethane															
Bromodichioromethane	CarbonTetrachloride				 											
1.2-Dichloropropane	Bromodichloromethane				 						\					
cis-1_3-Dichloropropene NS ND 0.0058 ND 0.0012 ND 0.0012 0.00037 ND 0.0013 0.0013 ND 0.0012 0.00037 ND 0.0059 0.00035 Trichloroethene 0.7 ND 0.0012 ND 0.0012 ND 0.0012 0.00032 ND 0.0059 0.00032 1,1,2-Trichloroethane NS ND 0.0058 ND 0.0058 ND 0.0062 0.0002 ND 0.0059 0.00019 Benzene 0.06 ND 0.0034 ND 0.0058 ND 0.0037 0.00032 ND 0.0059 0.00019 Benzene 0.06 ND 0.0012 ND 0.0012 ND 0.0012 0.00038 ND 0.0033 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 ND 0.0003 <t< td=""><td>1,2-Dichloropropane</td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td></t<>	1,2-Dichloropropane				 						ļ					
Trichloroethene	cis-1,3-Dichloropropene						~~~~~									
Dibromochloromethane	Trichloroethene				 											
1,1,2-Trichloroethane	Dibromochloromethane				 										I	
Benzene 0.06	1,1,2-Trichloroethane				 											
Trans-1,3-Dickloropropense NS ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0062 0.00015 ND 0.0012 0.00028	Benzene				 							4				
Bromoform NS ND 0.0046 ND 0.0046 ND 0.005 0.00034 ND 0.0047 0.00034	trans-1,3-Dichloropropene				 											
4-Methyl-2-Pentanone 1 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0062 0.00034 ND 0.0067 0.00039 2-Hexanone NS ND 0.0058 ND 0.0058 ND 0.0062 0.00095 ND 0.0059 0.00037 Tetrachloroethene 1.4 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 0.0002 ND 0.0012 0.0002 1.1,2,2-Tetrachloroethane 0.6 ND 0.0012 ND 0.0012 ND 0.0012 0.0002 ND 0.0012 0.0002 Toluene 1.5 ND 0.0058 ND 0.0058 ND 0.0062 0.00025 ND 0.0012 Chlorobenzene 1.7 ND 0.0058 ND 0.0058 ND 0.0062 0.00025 ND 0.0059 0.00024 Ethylbenzene 5.5 ND 0.0046 ND 0.0046											ļ					
2-Hexanone NS ND 0.0058 ND 0.0058 ND 0.0062 0.00092 ND 0.0059 0.00087	4-Methyl-2-Pentanone				 											0.00032
Tetrachloroethene											<u> </u>					
1,1,2,2-Tetrachloroethane	Tetrachioroethene				ł.———											0.00091
Toluene					 						l					0.0002
Chlorobenzene					ļ											0.0004
Ethylbenzene 5.5 ND 0.046 ND 0.0046 ND 0.0052 0.0019 ND 0.0059 0.0018 Styrene NS ND 0.0058 ND 0.0058 ND 0.0062 0.0015 ND 0.0059 0.00018 Xylene(Total) 1.2 ND 0.0058 ND 0.0062 0.00015 ND 0.0059 0.00014 Total VOC Concentration 10 0.0396 0.0566 0.0773 0.0067 0.0867	Chlorobenzene															0.00024
Styrene NS ND 0.0058 ND 0.0058 ND 0.0062 0.00015 ND 0.0059 0.00015					 						ļ					
Xylene(Total) 1.2 ND 0.0058 ND 0.0062 0.00015 ND 0.0059 0.00014					}						ļ					
Total VOC Concentration 10 0.0396 0.0566 ND 0.062 0.0060 ND 0.0057 Total VOC TICs Concentration NS 0 0.0566 0.0773 0.0867 0.0867	Xylene(Total)				 						ļ					0.00014
Total VOC TICs Concentration NS 0.0867	Total VOC Concentration			0.0038	 		0.0058			0.0062		0.0006		0.0059		0.00057
	Total VOC TICs Concentration				 											
	22	110			L	1 0	L		1 0				0			

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit
- (RL) for most samples collected form soil borings TW-37
- through TW-52, but subsequently provided the Method
- Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- " = Field duplicate samples
- J = The compound was detected at a concentration below the MDL and is estimated
- VOC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected Conc = Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit
- IS = No standard
- ng/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

Location Press TW-88 TW-89 TW-89 TW-704 TW-714 TW-							нни	MT-PORT	IVORY FA	CILITY	•						
Performed Sample D	Location	New York TAGM		TW-68			TW-69			TM 704	 -		714/ 744				
Lab Sample Number Cleanup Objective e20688		Recommended Soil		033105S00	1			,	1		, 1			_			
Sampling Date (mg/kg)		Cleanup Objective				Ì		·			٤	,		5	'		7
Matrix		(mg/kg)	í														
Volatile Organic Compounds (VOCs) Conc MDL Qual Conc Conc Qual Conc Conc Qual Conc Qual Conc Conc Qual Conc Conc Qual Conc Conc Qual Con			1									ı			Ì		
Chicoreshane	Volatile Organic Compounds (VOCs)		Conc		Qual	Conc		Onal	Cana		0	- 2					
Seminaria NS ND 0.0079 ND 0.0059 ND 0.0054 ND 0.66 ND 0.0057	Chloromethane	NS	ND					Quar			Qual			Qual			Qual
Viny/Chorder 0.2	Bromomethane	NS						 -						 			
Chioroethane	VinylChloride	0.2			 -												
MethyleneChloride	Chloroethane	1.9			- 11 ·			ļI								0.0057	
Acetone	MethyleneChloride						0.009							l		0.0057	
CarbonDisulfide	Acetone			0.0047						0.0032							
1,1-Dichloroethane	CarbonDisulfide			0.0079							В			L			В
1,1-Dichloroethane	1,1-Dichloroethene				 		0.0030										J
Second Color Seco	1,1-Dichloroethane				 									 _			
Cis-1_2-Dichloroethene	trans-1,2-Dichloroethene													L		0.0057	
Chicoform 0.3	cis-1,2-Dichloroethene													ļ		0.0057	
1.2-Dichloroethane	Chloroform				1			l								0.0057	
2-Butanone	1,2-Dichloroethane				 			ļ								0.0057	
1,1-Trichloroethane	2-Butanone				 			ļ							ND	0.0023	
CarbonTetrachloride	1,1,1-Trichloroethane															0.0057	
Bromodichloromethane	CarbonTetrachloride													<u> </u>		0.0057	
1.2-Dichloropropane	Bromodichloromethane				 											0.0023	
cis-13-Dichloropropene NS ND 0.0079 ND 0.008 ND 0.001 ND 0.12 ND 0.0011 Trichloroethene 0.7 ND 0.0016 ND 0.0018 ND 0.0011 ND 0.0657 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0011 ND 0.0051 ND 0.0057 ND 0.0011 ND 0.0011 ND 0.0057 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.032 ND 0.36 ND 0.0057 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0057 ND 0.0054 ND <td>1,2-Dichloropropane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0011</td> <td></td>	1,2-Dichloropropane							l								0.0011	
Trichloroethene																0.0011	
Dibromochloromethane	Trichloroethene															0.0057	
1.1.2-Trichloroethane	Dibromochloromethane							<u> </u>						L		0.0011	
Benzene 0.06 ND 0.0016 ND 0.0018 ND 0.0032 ND 0.36 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0034 ND 0.0035 ND 0.0035 ND 0.0035 ND 0.0035 ND 0.0035 ND 0.0035 ND 0.0034 ND 0.0046 ND 0.0046 ND 0.0046 ND 0.0046 ND 0.0046 ND 0.0046 ND 0.0057 ND 0.0035 ND 0.0057 ND 0.0035 ND 0.0057 ND 0.0035 ND 0.0057 ND 0.0035 ND 0.0057 ND 0.0035 ND 0.0057 ND 0.0035 ND 0.0048 ND 0.0048 ND 0.0057 ND 0.0048 ND 0.0057 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0048 ND 0.0057	1,1,2-Trichloroethane							I			<u> </u>					0.0057	
Itans-1.3-Dichloropropene	Benzene														ND	0.0034	
Bromoform	trans-1,3-Dichloropropene				{											0.0011	
4-Methyl-2-Pentanone 1	Bromoform				 -			ļ								0.0057	
2-Hexanone NS ND 0.0079 ND 0.009 ND 0.0054 ND 0.6 ND 0.0057 Tetrachloroethene 1.4 ND 0.0016 ND 0.0018 ND 0.0011 ND 0.12 ND 0.0051 1.1.2.2-Tetrachloroethane 0.6 ND 0.0016 ND 0.0018 ND 0.0011 ND 0.12 ND 0.0011 1.1.2.2-Tetrachloroethane 0.6 ND 0.0016 ND 0.0018 ND 0.0011 ND 0.12 ND 0.0011 1.5 ND 0.0079 ND 0.009 ND 0.0054 ND 0.6 ND 0.0057 1.1.2 ND 0.0079 ND 0.0054 ND 0.6 ND 0.0057 2.1	4-Methyl-2-Pentanone				 -			}i			·			1		0.0046	
Tetrachloroethene	2-Hexanone	NS														0.0057	
1.1.2.2-Tetrachloroethane	Tetrachloroethene .															0.0057	
Toluene	1,1,2,2-Tetrachloroethane															0.0011	
Chlorobenzene															ND	0.0011	
Ethylbenzene 5.5 ND 0.0063 ND 0.0072 ND 0.0054 ND 0.66 ND 0.0057	Chlorobenzene				 			Į						l	ND	0.0057	
Styrene NS ND 0.0079 ND 0.009 ND 0.0054 ND 0.66 ND 0.0057	Ethylbenzene				 			ļ						L			
Xylene(Total) 1.2 ND 0.0079 ND 0.0094 ND 0.66 ND 0.0057	Styrene				 									l			
Total VOC Concentration 10 0.059 ND 0.009 ND 0.0054 ND 0.6 ND 0.0057 Total VOC TICs Concentration NS 0 0 0 0 0.0316	Xylene(Total)				<u> </u>										ND	0.0057	
Total VOC TICs Concentration NS 0 0.0316				0.0079	 		0.009			0.0054			0.6		ND	0.0057	
0 202 J 0.248 J	Total VOC TICs Concentration			f	 		 	II		 							
		<u> </u>	<u> </u>	<u> </u>				'ـــــــــــــــــــــــــــــــــــــ	0	<u> </u>	لـــــا	202		J	0.248		J

Notes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York
- TAGM Recommended Soil Cleanup Objective. 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit
- (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported
- for these samples. For all other samples, only the MDL is reporte
- " = Field duplicate samples
- J = The compound was detected at a concentration below the MDL and is estimated
- VOC TICs = Tentatively identified volatile organic compounds

Master Analytical Data Site 2A2B

- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected Conc = Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit 4S = No standard
- ng/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

frage and the second se							PORTIVO	KI I ACILII	•							
Location	New York TAGM		TW-72			TW-73		Γ	TW-73			TW-74			TW-75	
Field Sample ID	Recommended Soil	TW-	72-0404055	5004	TW-	73-0404055	3005	TW-	73-0404058	8008	Δ.	-040105500	15	i .	177-75 040105S00€	
Lab Sample Number	Cleanup Objective	ł	621712		1	621713			621714		7	620939	,,	l '	620940	•
Sampling Date	· (mg/kg)	<u> </u>	04/04/05		ł	04/04/05		l	04/04/05			04/01/05		l	04/01/05	
Matrix		<u></u>	SOLID		l	SOLID		i .	SOLID			SOLID		1		
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual		SOLID	0.1
Chloromethane	NS	ND.	0.63		ND	0.63		ND	0.0059	Guar	ND		Quar	Conc	MDL	Qual
Bromomethane	NS	ND	0.63		ND	0.63		ND	0.0059			0.0056		ND	0.0069	
VinylChloride	0.2	ND	0.63		ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Chloroethane	1.9	ND	0.63		ND	0.63	 	ND -		}	ND	0.0056	 	ND	0.0069	
MethyleneChloride	0.1	ND	0.38		ND	0.38	L	ND D	0.0059	ļ.— i	ND	0.0056		ND	0.0069	
Acetone	0.2	ND	0.63		ND	0.63			0.0035		ND	0.0033		ND	0.0041	
CarbonDisulfide	2.7	ND	0.63		ND	0.63	————	0.1		В	ND	0.0056		ND	0.0069	
1,1-Dichloroethene	0.4	ND	0.25		ND	0.03		ND	0.0059		ND	0.0056		ND	0.0069	
1,1-Dichloroethane	0.2	ND I	0.63	 	ND	0.23		ND	0.0024		ND	0.0022		ND	0.0028	
trans-1,2-Dichloroethene	0.3	ND	0.63		ND	0.63		ND	0.0059	ļ;	ND	0.0056		ND	0.0069	
cis-1,2-Dichloroethene	NS .	ND	0.63	 	ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Chloroform	0.3	ND	0.63		ND		L	ND	0.0059		ND	0.0056		ND	0.0069	
1,2-Dichloroethane	0.1	ND	0.83		ND ND	0.63 0.25		ND	0.0059		ND	0.0056		ND	0.0069	
2-Butanone	0.3	ND	0.63		ND			ND	0.0024		ND	0.0022		ND	0.0028	
1.1.1-Trichloroethane	0.8	ND	0.63		ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
CarbonTetrachloride	0.6	ND	0.03	ļ.——.	ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Bromodichloromethane	NS NS	ND	0.13		ND ND	0.25		ND	0.0024		ND	0.0022		ND	0.0028	
1,2-Dichloropropane	NS	ND	0.13		ND	0.13 0.13		ND	0.0012	ļ	ND	0.0011		ND	0.0014	
cis-1,3-Dichloropropene	NS	ND	0.63	<u> </u>	ND	0.13		ND	0.0012		ND	0.0011		· ND	0.0014	
Trichloroethene	0.7	ND	0.13		ND	0.63		ND -	0.0059		ND	0.0056		ND	0.0069	_
Dibromochloromethane	NS	ND	0.63		ND	0.13		ND	0.0012		ND	0.0011		ND	0.0014	
1,1,2-Trichloroethane	NS	ND	0.38		ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Benzene	0.06	ND	0.13		ND	0.36		ND	0.0035		ND	0.0033		ND	0.0041	
trans-1,3-Dichloropropene	NS	ND	0.63	h	ND	0.13		ND	0.0012		ND	0.0011		ND	0.0014	
Bromoform	NS	ND	0.51		ND	0.03		ND	0.0059		ND	0.0056		ND	0.0069	
4-Methyl-2-Pentanone	1	ND	0.63	ļ	ND	0.63		ND	0.0047		ND	0.0045		ND	0.0055	
2-Hexanone	NS	ND	0.63		ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Tetrachloroethene	1.4	ND	0.13		ND	0.03		ND	0.0059		ND	0.0056		ND	0.0069	
1,1,2,2-Tetrachloroethane	0.6	ND	0.13		ND	0.13		ND	0.0012		ND	0.0011		ND	0.0014	
Toluene	1.5	ND	0.63	<u> </u>	ND	0.13		ND	0.0012		ND	0.0011		ND	0.0014	
Chlorobenzene	1.7	ND	0.63		ND ND			ND	0.0059		ND	0.0056		ND	0.0069	
Ethylbenzene	5.5	ND	0.51		ND	0.63 0.5		ND	0.0059		ND	0.0056		ND	0.0069	
Styrene	NS	ND	0.63		ND ND			ND	0.0047	ļ <u></u>	ND	0.0045		ND	0.0055	
Xylene(Total)	1.2	ND	0.63		ND	0.63		ND	0.0059		ND	0.0056		ND	0.0069	
Total VOC Concentration	10	0	0.03		0	0.63	 	ND	0.0059		ND	0.0056		ND	0.0069	
Total VOC TICs Concentration	NS NS	83.5			68.7	ļ	 	0.1	 		0	ļ <u>.</u>		0		
		00.0			00.7	L		0.011	<u> </u>	J	0			0		

- Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.
- All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- " = Field duplicate samples
- ${\it I}$ = The compound was detected at a concentration below the MDL and is estimated
- /OC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit
- IS = No standard
- ng/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

Field Sample (D. Lab Sample (D. Lab Sample (D. Lab Sample (D. Lab Sample (D. Lab Sample (D. Lab Sample (Los Sampling Date (mg/kg)) **Clearup Opticity (mg/kg)** **Clearup Opticity (mg/k		<u></u>					HHM1-	PORT IVO	RY FACILIT	ſΥ							
Field Sample ID Recommended Soil TW-77-0405055006 TW-77-0405055004 TW-77-0405055004 TW-77-0405055004 TW-77-0405055004 TW-77-0405055004 TW-77-0405055004 TW-77-040505007 TW-77-0405007 TW-77-040505007 TW-77-0405007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-0405007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-040505007 TW-77-04	Location			TW-76		· · · · · ·	TW-77			T\M.79			TMC 40				
Lab Sampling Number Cleanup Objective (moyby) 621716 621717 621718 621717 6200855 6300005 6405005 6405005 6405005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005 6300005 6405005		Recommended Soil	l ⊤w.	76-0405055	3006	I TW.		5004	TW		2002	1 .		_	4		
Sampling Date		Cleanup Objective	ł			l '''		3004	'**		5003	· '		2	4		17
Marity Valide Organic Compounds (VOCs) Cone MOL Qual C	Sampling Date	(mg/kg)	1			l '			l			ļ			Į		
Volatile Organic Compounts (VOCs) Conc MOL Conc Co	Matrix	. 3 3,	1						ĺ			i .			i		
Chloromethane	Volatile Organic Compounds (VOCs)		Conc		Qual	Conc		Oual	-						<u> </u>		
Bomomethane	Chloromethane	NS			4401			Quai			Qual			Qual		MDL	Qual
VirylChiorde 0 2 ND 0.0057 ND 0.006 ND 0.0052 ND 0.0058 ND 0.0052 Choloroethane 1 9 ND 0.0537 ND 0.006 ND 0.0058 ND 0.0052 Acetone 0 2 0.064 B 0.077 B 0.0055 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0052 AD 0.0058 ND 0.0052 ND 0.0058 ND 0.0052 ND 0.0053 ND 0.0052 ND 0.0053 ND 0.0052 ND 0.0053 ND 0.0053 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND 0.0054 ND	Bromomethane													L		0.0062	
Chloroshane	VinylChloride				·										ND	0.0062	
MethyleneChloride	Chloroethane												0.0058		ND	0.0062	
Acetone 0.2	MethyleneChloride												0.0058		ND	0.0062	
Carbonisuffide	Acetone			0.0034			0.0036			0.0037				JB	ND	0.0037	
1,1-Dichloroethene	CarbonDisulfide			0.0057			<u> </u>	В			В	4	L	В			В
1.1-DicNoroethane	1,1-Dichloroethene													L	0.0035		J
trans-12-Dichforoethene 0.3 ND 0.0057 ND 0.0068 ND 0.0052 ND 0.0058 ND 0.0062 cls-12-Dichforoethene NS ND 0.0057 ND 0.0066 ND 0.0062 ND 0.0058 ND 0.0062 Chlorotorm 0.3 ND 0.0057 ND 0.0066 ND 0.0062 ND 0.0058 ND 0.0062 2-Butanone 0.1 ND 0.0023 ND 0.0024 ND 0.0023 ND 0.0052 1,1-Trichloroethane 0.8 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0023 ND 0.0058 ND 0.0058 ND 0.0058 ND 0.0062 ND 0.0063 ND 0.0062 ND 0.0023 ND 0.0062 ND 0.0058 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0052 <td< td=""><td>1,1-Dichloroethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0025</td><td></td></td<>	1,1-Dichloroethane															0.0025	
Clist 2-Dichloroethene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062	trans-1,2-Dichloroethene														ND	0.0062	
Chloroform	cis-1.2-Dichloroethene												0.0058		ND	0.0062	
12-Dichloroethane	Chloroform											ND	0.0058		ND	0.0062	
2.8btanone	1.2-Dichloroethane								·				0.0058		ND	0.0062	
1,1-1-richloroethane 0.8	2-Butanone												0.0023		ND	0.0025	
CarbonTetrachloride	1.1.1-Trichloroethane												0.0058		ND	0.0062	
Bromodichloromethane												ND	0.0058		ND	0.0062	
1.2-Dichloropropane NS ND 0.0011 ND 0.0012 ND 0.0012 ND 0.0012 cis-1,3-Dichloropropene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0012 ND 0.0012 Trichloropropene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Dibromochloromethane NS ND 0.0057 ND 0.006 ND 0.0012 ND 0.0012 ND 0.0058 ND 0.0062 1,1,2-Trichloroethane NS ND 0.0034 ND 0.0066 ND 0.0037 ND 0.0068 ND 0.0058 ND 0.00612 Itans-1,3-Dichloropropene NS ND 0.0057 ND 0.006 ND 0.0012 ND 0.0012 ND 0.0051 Bromoform NS ND 0.0067 ND 0.006 ND 0.0062 ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0023</td><td></td><td>ND</td><td>0.0025</td><td></td></t<>													0.0023		ND	0.0025	
cis-1,3-Dichloropropene NS ND 0.0017 ND 0.0012 ND 0.0012 ND 0.0012 Trichloropthene 0.7 ND 0.0011 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Dibromochloromethane NS ND 0.0057 ND 0.006 ND 0.0012 ND 0.0058 ND 0.0062 Brozene NS ND 0.0057 ND 0.006 ND 0.0052 ND 0.0058 ND 0.0062 Benzene NS ND 0.0034 ND 0.0036 ND 0.0037 ND 0.0062 Benzene 0.06 ND 0.0011 ND 0.0012 ND 0.0037 ND 0.0058 ND 0.0062 Benzene 0.06 ND 0.0011 ND 0.0012 ND 0.0052 ND 0.0052 ND 0.0052 ND 0.0052 ND 0.0052 ND					<u> </u>										ND	0.0012	
Trichloroethene 0.7 ND 0.0011 ND 0.0012 ND 0.0062 ND 0.0058 ND 0.0062 Dibromochloromethane NS ND 0.0057 ND 0.0012 ND 0.0012 ND 0.0058 ND 0.0062 J.1,2-Trichlorothane NS ND 0.0037 ND 0.0058 ND 0.0062 Benzene 0.06 ND 0.0011 ND 0.0036 ND 0.0035 ND 0.0037 trans-1,3-Dichloropropene NS ND 0.0057 ND 0.006 ND 0.0012 ND 0.0035 ND 0.0037 trans-1,3-Dichloropropene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0037 trans-1,3-Dichloropropene NS ND 0.0065 ND 0.0062 ND 0.0058 ND 0.0062 trans-1,3-Dichloropropene NS ND 0.0046 ND	cis-1,3-Dichloropropene												0.0012		ND	0.0012	
Dibromochloromethane NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0012 ND 0.0012	Trichloroethene							 							ND	0.0062	
1,1,2-Trichloroethane	Dibromochloromethane															0.0012	
Benzene 0.06	1,1,2-Trichloroethane														ND	0.0062	
Itans-1,3-Dichloropropene NS ND 0.0057 ND 0.006 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0062 ND 0.0064 ND 0.0064 ND 0.0065 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0012 ND 0.0065 ND 0.006	Benzene														ND	0.0037	
Bromoform NS ND 0.0046 ND 0.0048 ND 0.0062 ND 0.0058 ND 0.0062	trans-1,3-Dichloropropene														ND	0.0012	
4-Methyl-2-Pentanone 1 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0012 ND 0	Bromoform						1							l	ND	0.0062	
2-Hexanone NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Tetrachloroethene 1.4 ND 0.0011 ND 0.0012 ND 0.0058 ND 0.0062 1,1.2,2-Tetrachloroethane 0.6 ND 0.0011 ND 0.0012 ND	4-Methyl-2-Pentanone												0.0046		ND	0.005	
Tetrachloroethene 1.4 ND 0.0011 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 1,1,2,2-Tetrachloroethane 0.6 ND 0.0011 ND 0.0012 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0058 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0062 ND 0.0064	2-Hexanone														ND	0.0062	
1,1,2,2-Tetrachloroethane 0.6 ND 0,0011 ND 0,0012 ND 0,0062 ND 0,0058 ND 0,0062 ND 0,0062 ND 0,0062 ND 0,0064 ND 0,0062 ND 0,0064 ND 0,0062 ND 0,0	Tetrachloroethene														ND	0.0062	
Toluene 1.5 ND 0.0057 ND 0.0012 ND 0.0012 ND 0.0012 Chlorobenzene 1.7 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Ethylbenzene 5.5 ND 0.0046 ND 0.0048 ND 0.0049 ND 0.0058 ND 0.0062 Styrene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC Concentration 10 0.064 0.077 0.06 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC TICs Concentration NS 0.023 1 0.06 0.06 0.0099 0.0355 0.0355	1,1,2,2-Tetrachloroethane												0.0012		ND	0.0012	
Chlorobenzene 1.7 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Ethylbenzene 5.5 ND 0.0046 ND 0.0048 ND 0.0049 ND 0.0046 ND 0.0062 Styrene NS ND 0.0057 ND 0.006 ND 0.0062 ND 0.0046 ND 0.0055 Sylene(Total) 1.2 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0065 Total VOC Concentration 10 0.064 0.077 0.06 0.06 0.0099 0.0355 Total VOC TICs Concentration NS 0.023 1 0 0.06 0.0099 0.0355	Toluene												0.0012		ND	0.0012	
Ethylbenzene 5.5 ND 0.0046 ND 0.0068 ND 0.0058 ND 0.0062 Styrene NS ND 0.0057 ND 0.0048 ND 0.0049 ND 0.0046 ND 0.005 Xylene(Total) 1.2 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC Concentration 10 0.064 0.077 0.06 ND 0.0058 ND 0.0062 Total VOC TICs Concentration NS 0.023 1 0 0.06 0.0099 0.0355	Chlorobenzene											ND	0.0058		ND	0.0062	
Styrene NS ND 0.045 ND 0.0048 ND 0.0049 ND 0.0046 ND 0.005 Xylene(Total) 1.2 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC Concentration 10 0.064 0.077 0.06 ND 0.0099 0.0355 Total VOC TICs Concentration NS 0.023 1 0.06 0.06 0.0099 0.0355	Ethylbenzene														ND	0.0062	
Xylene(Total) 1.2 ND 0.0057 ND 0.006 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC Concentration 10 0.064 0.077 0.06 ND 0.0099 0.0355 Total VOC TICs Concentration NS 0.023 1 0.06 0.06 0.0099 0.0355	Styrene				·										ND	0.005	
Total VOC Concentration 10 0.064 0.007 ND 0.0062 ND 0.0058 ND 0.0062 Total VOC TICs Concentration NS 0.023 1 0.066 0.0099 0.0355	Xylene(Total)											ND	0.0058		ND	0.0062	
Total VOC TICs Concentration NS 0.023 1 0.07 0.06 0.0099 0.0355	Total VOC Concentration			0.0057			0.006	ļ		0.0062			0.0058		ND	0.0062	
0.025 J 0.01 J 0 0.57							<u> </u>					0.0099			0.0355		
		110	0.023		J	L 0	L		0.01		J_	0			0,57		J

- Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- * = Field duplicate samples
- 1 = The compound was detected at a concentration below the MDL and is estimated
- /OC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- 1D = The compound was not detected
- Conc ≃ Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit
- IS = No standard
- ng/kg = Milligrams per kilograms

HHMT-PORT IVORY FACILITY

						HHMT	-PORT IVO	RY FACILIT	ΓY							
Location Field Sample ID Lab Sample Number Sampling Date Matrix Volatile Organic Compounds (VOCs)	New York TAGM Recommended Soil Cleanup Objective (mg/kg)		TWP-14 040105S009 620942 04/01/05 SOLID		FB0	Field Blank 1-032305W 618547 03/23/05 WATER			Field Blank 1-032405W 618554 03/24/05 WATER	-		Field Blank 32505WQ0 618776 03/25/05 WATER			Field Blank 32905WQ0 620689 03/29/05 WATER	
Chloromethane		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Bromomethane	NS	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND	0.4	
	NS	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND	0.3	
VinylChloride	0.2	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND	0.4	
Chloroethane	1.9	ND	0.0073		ND	5.0		ND	5.0	(ND	5.0		ND	0.4	
MethyleneChloride	0.1	ND	0.0044		. ND	3.0		ND	3.0	· · · · · ·	ND	3.0		ND	0.9	
Acetone	0.2	ND	0.0073		ND	5.0		ND	5.0	f	ND	5.0		ND	1.0	
CarbonDisulfide	2.7	ND	0.0073		ND	. 5.0		ND	5.0		ND	5.0		ND	0.2	h
1,1-Dichloroethene	0.4	ND	0.0029		ND	2.0		ND	2.0	·	ND	2.0		ND ND	0.2	
1,1-Dichloroethane	0.2	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND	0.3	
trans-1,2-Dichloroethene	0.3	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND ND		
cis-1,2-Dichloroethene	NS	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		DND	0.3	
Chloroform	0.3	ND	0.0073		ND	5.0		ND	5.0	 	ND	5.0			0.4	<u> </u>
1,2-Dichloroethane	0.1	ND	0.0029		ND	2.0		ND	2.0	!	ND			ND	0.3	
2-Butanone	0.3	ND	0.0073		ND	5.0		ND	5.0	<u> </u>	ND	2.0 5.0		ND	0.4	
1,1,1-Trichloroethane	8.0	ND	0.0073		ND	5.0	f	ND	5.0	 -	ND	5.0		ND	0.9	<u> </u>
CarbonTetrachloride	0.6	ND	0.0029		ND	2.0		ND	2.0		ND			ND	0.3	<u> </u>
Bromodichloromethane	NS	ND	0.0014		ND	1.0		ND	1.0		ND	2.0		ND	0.3	L
1,2-Dichloropropane	NS	ND	.0.0014		ND	1.0		ND	1.0		ND	1.0		ND	0.3	L
cis-1,3-Dichloropropene	NS	ND	0.0073		ND	5.0		ND	5.0		ND	1.0 5.0		ND	0.4	ļ
Trichloroethene	0.7	ND	0.0014		ND ·	1.0		ND	1.0		ND			ND	0.3	
Dibromochloromethane	NS	ND	0.0073		ND	5.0		ND	5.0	<u> </u>	ND	1.0		ND	0.4	
1,1,2-Trichloroethane	NS	ND	0.0044		ND	3.0		ND	3.0		ND	5.0 3.0		ND	0.2	
Benzene	0.06	ND	0.0014		ND	1.0		ND	1.0	[ND			ND	0.3	l
trans-1,3-Dichloropropene	NS	ND	0.0073		ND	5.0		ND	5.0	ļ	ND ND	1.0		ND	0.3	ļ
Bromoform	NS	ND	0.0058		ND	4.0		ND ND	4.0		ND	5.0		ND	0.4	
4-Methyl-2-Pentanone	1	ND	0.0073		ND	5.0		ND	5.0		ND	4.0		ND	0.3	
2-Hexanone	NS	ND	0.0073		ND	5.0		ND	5.0			5.0		ND	0.4	
Tetrachloroethene	1.4	ND	0.0014		ND	1.0		ND	1.0	i	ND	5.0		ND	0.9	
1,1,2,2-Tetrachloroethane	0.6	ND	0.0014		ND	1.0		ND ND	1.0	ļ	ND ND	1.0		ND	0.4	<u> </u>
Toluene	1.5	ND	0.0073		ND	5.0		ND			ND	1.0		ND	0.5	L
Chlorobenzene	1.7	ND	0.0073		ND	5.0		ND	5.0		ND	5.0		ND	0.3	
Ethylbenzene	5.5	ND	0.0058		ND-	4.0		ND ND	5.0		ND .	5.0		ND	0.3	l
Styrene	NS	ND	0.0073		ND	5,0			4.0	l	ND	4.0		ND	0.3	i
Xylene(Total)	1.2	ND	0.0073	·	ND	5.0		ND	5.0		ND	5.0		ND	0.3	
Total VOC Concentration	10	0	0.0070		10	5.0		ND	5.0	L	ND	5.0		ND	0.2	
Total VOC TICs Concentration	NS	0	 		0		 	0			0			0		
Notes and Abbreviations		<u> </u>	L			L		0	L	L	0			0		

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- " = Field duplicate samples
- J = The compound was detected at a concentration below the MDL and is estimated
- /OC TICs = Tentatively identified volatile organic compounds
- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected Conc = Concentration
- Qual ≈ Laboratory Data Qualifier
- ADL = Method Detection Limit
- IS = No standard
- ng/kg = Milligrams per kilograms

Location	New York TAGM		Field Blank	•
Field Sample ID	Recommended Soil) 0	33005WQ0	1
Lab Sample Number	Cleanup Objective	1	620690	
Sampling Date	(mg/kg)	l	03/30/05	
Matrix			WATER	
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual
Chloromethane	NS	ND	0.4	
Bromomethane	NS	ND	0.3	
VinylChloride	0.2	ND	0.4	
Chloroethane	1.9	ND	0.4	
MethyleneChloride	0.1	ND	0.9	
Acetone	0.2	ND.	1.0	
CarbonDisulfide	2.7	ND	0.2	
1,1-Dichloroethene	0.4	ND	0.3	
1,1-Dichloroethane	0.2	ND	0.4	
trans-1,2-Dichloroethene	0.3	ND	0.3	
cis-1,2-Dichloroethene	N\$	ND	0.4	
Chloroform	0.3	ND	0.3	
1,2-Dichloroethane	0.1	ND	0.4	
2-Butanone	0.3	ND	0.9	
1,1,1-Trichloroethane	0.8	ND	0.3	
CarbonTetrachloride	0.6	ND	0.3	†
Bromodichloromethane	NS	ND	0.3	T
1,2-Dichloropropane	NS	ND	0.4	
cis-1,3-Dichloropropene	NS	ND	0.3	
Trichlaroethene	0.7	ND	0.4	
Dibromochloromethane	NS	ND	0.2	
1,1,2-Trichloroethane	NS	ND	0.3	T
Benzene	0.06	ND	0.3	
trans-1,3-Dichloropropene	NS	ND	0.4	
Bromoform	NS	ND	0.3	
4-Methyl-2-Pentanone	1	ND	0.4	1
2-Hexanone	NS	ND	0.9	
Tetrachloroethene	1.4	ND	0.4	1
1,1,2,2-Tetrachloroethane	0.6	ND	0.5	1
Toluene	1.5	ND	0.3	· · · · · ·
Chlorobenzene	1.7	ND	0.3	
Ethylbenzene	5.5	ND	0.3	
Styrene	NS	ND	0.3	1
Xylene(Total)	1.2	ND	0.2	
Total VOC Concentration	10	0	1	
Total VOC TICs Concentration	NS	0	 	

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- 3) The analytical laboratory initally provided the Reporting Limit (RL) for most samples collected form soil borings TW-37 through TW-52, but subsequently provided the Method Detection Limits (MDLs). Both the RL and MDL are reported for these samples. For all other samples, only the MDL is reporte
- * = Field duplicate samples
- I = The compound was detected at a concentration below the MDL and is estimated

/OC TICs = Tentatively identified volatile organic compounds

- 3 = The compound was detected in an associated method blank
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- ADL = Method Detection Limit
- 4S = No standard
- ng/kg = Milligrams per kilograms

SITE 2
HHMT-PORT IVORY FACILITY

Location Field Sample ID	New York TAGM Recommended Soil		BLDG20-0 C1-03230			BLDG20-C			BLDG32-C	07		8LDG32-C			LOG32-C			BLDG32-C			BLDG32-C	
ab Sample Number	Cleanup Objective	l .	618546			518548	2002	۲	618773	03	'	032505500)2		32505800	3	B320	24-032405	S002	B320	C5-032405	5002
Sampling Date	(mq/kq)	[03/23/05		ţ	03/24/05						618774		1	618775		1	618549			618550	
Vatrix	1	1	SOLID		1	SOLID		l	03/25/05 SOLID			03/25/05			03/25/05		1	03/24/05			03/24/05	
Semivolatile Organic Compounds (SV	OCs)	Conc	MDL	Qual	Conc	MDL	Qual					SOLID		L	SOLID		ł	SOLID		1	SOLID	
1,2,4-Trichlorobenzene	34	I ND	0.042	GOST			_ uuai	Conc	MDL	Qual	Conc	MOL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
1,2-Dichlorobenzene	7,9	ND		-	ND	0.073		ND	0.036		ND	0.036		ND	0.2		ND	0 037		ND	0.072	
1,3-Dichloropenzene	1.6	ND	0.42	 `	ND	0 73	L	ND	0.36		ND	0.36		ND	2		ND	0.37	———	ND		⊢
1,4-Dichloropenzene	85		0.42	·	ND	0.73		ND	0.36		ND	0.36		ND			NO	0.37			0 72	
2.4.5-Trichlorophenol		NO	0.42		ND	0.73		ND	0 36		ND	0.36		ND	2					ND	0 72	
2,4,6-Trichiaraphenol	0.1	ND	0 42	<u> </u>	ND	0.73		NO	0.36		ND	0.36		ND	2		ND	0.37		ДN	0.72	<u></u>
2.4-Dichlorophenol	NA NA	ND	0.42		ND	0 73		ND	0.36		ND	0.36		ND.			ND	0 37		ND	0.72	
	0.4	ND	0.42	1	ND	0.73	1	ND	0.36		ND	0.36					ND	0.37	L	ND	0.72	
2.4-Dimethylphenol	NA NA	ND	0 42		ND	0.73		ND	0 36					ND	2		ND	0.37		ND	0 72	
2,4-Dinitrophenal	0.2	ND	1.7		ND	29	 	ND	1.4		ND	0.36	ļ	ND	2		ND	0.37		NO	0.72	
2,4-Dinitrololuene	NA NA	ND	0.083		ND	0.15	1	ND-	0.073		ND	1.4		ND	- 8		ND	1.5		เม	2.9	1
2,6-Dinitrotoluene	1	ND	0.083		NO	0.15	 	ND			ND	0.072		ND	0.4		ND	0.075		ND	0.14	
2-Chloronaphthalene	NA NA	ND	0 42		ND	073		ND	0 073		ND	0.072	L.	ND	0.4		ND	0 075		ND	0.14	
2-Chlorophenol	0.8	ND	0.42	 	ND	0.73			0.36		ND	0 36		ND	2		ND	0.37		ПD	0.72	
2-Methylnaphthalene	36.4	ND	0 42	+	0.063	0.13	1	ND	0.36		ND	0 36		ND	2		ND	0.37		ND	0.72	1
2-Methylphenol	0.1	ND	0.42	+	ND ND	0.73	 	0.028			ND	0.36	L	0.14		J	0 075		J	ND	0.72	
2-Nitroaniline	0.43	ND	0.83	+	ND			_ND_	0.36		ND	0.36		ND	2		ND	0.37	- -	ND	0.72	
2-Nitrophenol	0.33	NO	0.42			1.5	ļ	ND	0.73		ND	0.72		ND	4		NO	0.37	<u> </u>	ND		
3,3'-Dichloropenzdine	NA NA	ND	0.83		NO	0.73	! -	ND	0.38		ND	0 36		ND	2		ND	0 37		NO	0.72	
3-Nitroantine	05	ND	0.83	+	ND	1.5	 	ND	0.73		ND	0.72		ND			ND	0.75		ND -		
4,6-Dinitro-2-methylphenol	NA NA			 -	ND	1.5		ND	0.73		ND	0.72		ND	4		ND				1.4	
4-Bromaphenyl-phenylether	NA NA	ND	1.7	 	ND	2.9	 	ND	1,4		ND	1.4		ND .			ND	0.75	 -	ND	14	
4-Chioro-3-methylphenol	0.24		0.42	 -	ND	8.73		ND	0.36		ND	0 36		ND	2		DN	0.37	 		2.9	
4-Chloroanitine	0.22	ND NO	0 42	 	ND	0.73		NO	0.36		ND	0.36		ND	2					ND_	0.72	
4-Chlorophenyl-phenylether	NA NA	ND	0 42	 -	NO	0.73		ND	0.36		ND	0.36	 -	0.15			ND	0.37	 -	ND	0.72	
1-Methylahenol	NA	ND	0 42	 	ND	0 73	1	ND	0.36		ND	0.36		ND	2		- ND	0.37		ND	0.72	
4-Nitroanitne	NA	ND	0.42	├ ─-	ND	0.73		ND	0 36		ND	0.36		0.2			ND	0.37		ND	0.72	
4-Nitrophenol	0.1	ND	0.83	 	ND	1.5		ND	0.73		ND	0.72		ND	4		DO			ND	0.72	<u> </u>
Acenaphthene	50	ND	1.7	-	ND	29		ND	1.4		ND	1,4		ND	8		ON D	0.75	·	ND	1.4	
Acenaphthylene		ND	0 42	ļ	ND	0 73		0.18			ND	0.36	— —	0.049				1.5	ļ	ND	2.9	
Anthracene	41	ND	0.42	!	0.079		J	0.031			ND	0 36	 	NO.	- 2		0,015		٠.,	0.097		1
Benzo(a)anthracene	0 224	ND	0.42	 	0.078			0.14		J	0.02	1		0.096			0 02	 -		0.044		1
Benzo(a)pyrene		0.0085	ļ	l J	0.089			0.21			0.059	 		0.096			0 029	l		0.12		
Benzo(b)fluoranthene	0 061	0.0093	<u> </u>		0.1		L	0.10			0.085			0.21			0 066			0,27		I
Benzo(g,h,i)perylene	1!	0 013	L	3	0.12	L		0 24			0,1	1	- -	0.28			0.066		 	0.24		L
Benzo(k)fluoranthene	50	0 011	<u> </u>	J	0.15		J	ND	0.36		ND.	0.36	h	ND ND			0 078		<u> </u>	0.27		ļ
bis(2-Chloroethoxy)methane	1.1	0.01	L	J	0.12	L .		0.26			0 12	1 -5.50		0.29	2		0.045	<u> </u>	L	0.1		J 5
bis(2-Chloroethy)ether	NA	ND	0.42		NO	0.73	1	ND	0.36		ND	. 036		0.29 ND			0.08			031		
	NA NA	ND	0.042		ND	0.073	1	ND.	0.036		ND	0.036			- 2		ND	0 37	L	ND	0.72	
bis(2-chlororsopropyl)ether	NA NA	ND	0.42	1	ND	0.73	1	ND	0.36		ND	0.36		ND	0.2		ND	0.037	L	ND	0.072	
bis(2-Ethythexyl)phthalate	50	ND	0.42		ND	0.73		0.19			0.084	0.30		ND	2		ND	0.37		ΝĐ	0.72	
Butybenzyphlhalate	50	_ ND	0.42		ND	0.73		ND	0 36		ND ND	0.36		ND			0.083			0 15	L	J
Carbazole	NA	NO	0.42		0.023		1	0.048	- -		ND			ND			ND	0.37		ND	0.72	1
Chrysene	04	0 013		J	0.14		 	0.26			0.086	0.36		ND	2		0.0081		J	0 035		J
Dibenz(a,h)anthracene	0 014	ND	0 042		ND	0.073	†	ND	0.036				L-7	0 33			0.1		,	0.35		j
Dibenzofuran	6.2	ND	0.42	1	ND	0.073	 	0.1	0.036		ND	0.036		ND	0.2		ND	0 037		0.044		1
										J	ND	0.36		0.061	-	3	0.02		1	0.038		1-5
Diethylphthalate	7 1	NO	0.42		ND		1	Nn-	0.75												0.72	
Dimethylphthalate	2	ND ND			ND ND	0 73	<u> </u>	ND	0 36		ND	0.36		ND	2		ND	0.37	1	ND		
Dimethylphthalate Di-n-butylphthalate	2 8 1		0.42		ND	0 73 0 73		ND ND	0 36		ND ND	0.36		ND	2			0.37 0.37		ND ND	0.72	
Dimethylphthalate Di-n-bulylphthalate Di-n-octylphthalate	8 1 50	ND	0.42 0.42		ND ND	0 73 0 73 0 73		ND ND ND	0 36		ND ND	0.36 0.36 0.36		ND ND	2		00 00 08				0.72	
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Juoranthene	2 8 1	ND ND ND	0.42 0.42 0.42		ND ND NO	0 73 0 73		ND ND ND	0 36		ND ND ND	0.36		ND			ND DA	0 37 0 37		ND	0.72 0.72	
Dimethylphthalate Dim-bulylphthalate Dim-octylphthalate Fluoranthene Fluorene	8 1 50	ND ND ND 0.017	0.42 0.42 0.42 0.42	J	ND ND ND 0.12	0 73 0 73 0 73 0 73		ND ND ND ND	0 36		ND ND ND ND	0.36 0.36 0.36		ND ND	2		00 00 08	0 37		ND 00	0.72	
Dimethylohthalate Di-n-butylohthalate Di-n-octylohthalate Fluoranthene Fluorene Hexachtorobenzene	2 8 1 50 50	ND ND ND 0.017 ND	0.42 0.42 0.42 0.42	J	ND ND ND 0.12 ND	0 73 0 73 0 73 0 73 0 73	J	ND ND ND ND 0.54 0.14	0 36 0 36 0 36		ND ND ND ND O.07	0.36 0.36 0.36 0.36	j	20 00 00 00	2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 37 0 37		ND ND NO 061	0.72 0.72	
Dimethylohthalate Dimethylohthalate Dimethylohthalate Fluoranthene Fluorane Texachlorobenzene Texachlorobujadiene	2 8 1 50 50 50	ND ND ND 0.017 ND ND	0.42 0.42 0.42 0.42 0.42	J	NO NO NO 0.12 NO NO	0 73 0 73 0 73 0 73 0 73 0 73	J	ND ND ND ND 0.54 0.14	0 36 0 36 0 36 0 36		ND ND ND ND 0.07 ND ND	0.36 0.36 0.36 0.36 0.36	j	ND ND ND 0 31	2		ND ND ND ND 0 12 0.017	0 37 0 37 0 37	J	ND ND ND 0.61 0.036	0.72 0.72 0.72	
Dimethylothidale Din-butylothidale Din-octylothidale Lioranthene Ejorene rexachlorobutadene fexachlorobutadene	2 8 1 50 50 50	ND ND ND 0.017 ND ND ND	0.42 0.42 0.42 0.42 0.42 0.42 0.042 0.083	J	NO NO NO 0.12 NO NO	0 73 0 73 0 73 0 73 0 73 0 73 0 073 0 15	J	NO ND ND ND 0.54 0.14 ND	0 36 0 36 0 36 0 36 0 073		ND ND ND ND ND ND ND ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.036	j	ND ND ND 031	2 2		ND ND ND ND 0 12	0 37 0 37 0 37		ND ND 061 0,036 ND	0.72 0.72 0.72 0.72	
Dimethylothylale Din-butylothylale Din-octylothylalate Din-octylothylalate Loranihene Loranihene Lorane Loranihene Lorane	2 8 1 50 50 50 0 41	ND ND ND 0.017 ND ND ND	0.42 0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42	J	ND ND ND 0.12 ND ND ND	0 73 0 73 0 73 0 73 0 73 0 73 0 073 0 15 0 73	J	ND ND ND ND 0.54 0.14 ND ND	0 36 0 36 0 36 0 36 0 073 0 0 36		ND ND ND ND 0.07 ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.072	J	ND ND ND ND ND ND	2 2 0.2		ND ND ND ND 012 0017 ND ND	0 37 0 37 0 37 0 37	, ,	ND ND ND 0.61 0.036 ND ND	0.72 0.72 0.72 0.72	J J
Omethyohithalale O-n-butyohithalale O-n-octyohithalale Loranthene Loranthene Lesanthorobenzene Lesachtorobulsdene Lesachtorobulsdene Lesachtorocyclopenisdiene Lesachtorocyclopenisdiene	2 8 1 50 50 50 50 0.41 NA NA	ND ND ND 0.017 ND ND ND ND ND	0.42 0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042	J	ND ND ND 0.12 ND ND ND ND	0 73 0 73 0 73 0 73 0 73 0 73 0 073 0 15	J	ND ND ND ND 0.54 0.14 ND ND ND ND	0 36 0 36 0 36 0 36 0 036 0 073 0 36 0 036		ND ND ND ND ND ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.072 0.36	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 0.2 0.4 2	J	2D 2D 2D 2D 012 0017 2D 2D 2D	0 37 0 37 0 37 0 37 0.037 0 075 0 37	, ,	ND ND ND 061 0,036 ND ND	0.72 0.72 0.72 0.72 0.072 0.14 0.72	j
Dimethylothylale Din-butylothylale Din-octylothylalate Din-octylothylalate Din-octylothylalate Din-octylothylalate Din-octylothylalate Laoraniane Laoraniane Laoraniane Lexachiorobuladiane Lexachiorobuladiane Lexachiorobuladiane	2 81 50 50 50 0.41 NA NA NA NA	ND ND ND 0.017 ND ND ND ND ND	0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042 0.042	J	ND ND ND 0.12 ND ND ND ND ND ND ND	0 73 0 73 0 73 0 73 0 73 0 73 0 073 0 073 0 073 0 073	1	ND ND ND ND 0.54 0.14 ND ND ND ND ND	0 36 0 36 0 36 0 36 0 036 0 073 0 36 0 036		ND ND ND ND 0.07 ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.072	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 0.2 0.4 2 0.2	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 37 0 37 0 37 0 37		2D 2D 2D 061 0.036 2D 2D 2D 2D	0.72 0.72 0.72 0.72	j
Jimethyohinkilale Ji-bulyohinkilale Ji-bulyohinkilale Ji-bulyohinkilale Jiboranhene Jiboran	2 8 1 50 50 50 0 41 NA NA NA NA	ND ND ND 0.017 ND ND ND ND ND ND	0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042 0.042 0.042	J	ND ND ND 0.12 ND ND ND ND ND ND ND ND	0 73 0 73 0 73 0 73 0 73 0 73 0 073 0 15 0 73	J	NO NO NO NO 0.54 0.14 NO NO NO NO NO NO NO NO NO NO NO NO NO	0 36 0 36 0 36 0 36 0 036 0 073 0 36 0 036		ND ND ND ND ND ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.072 0.36	,	2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 0.2 0.4 2 0.2	J.	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.37 0.37 0.37 0.037 0.037 0.075 0.37 0.037		ND ND 061 0.036 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.72 0.72 0.72 0.72 0.72 0.14 0.72 0.072	j
Jimethyohindale Ji-heukyohindale Ji-heukyohindale Ji-heckyohindale Jiudranhine	2 8 1 50 50 50 0 41 NA NA NA 3 2 4 4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042 0.042 0.042 0.042	J	ND ND ND 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.73 0.73 0.73 0.73 0.73 0.73 0.073 0.15 0.73 0.073	J	ND ND ND ND 0.54 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND	0 36 0 36 0 36 0 36 0 036 0 073 0 073 0 036 0 036 0 036		ND ND ND ND ND ND ND ND ND ND ND	0.36 0.36 0.36 0.36 0.36 0.036 0.072 0.36 0.036	J	2225222222	2 2 0.2 0.4 2 0.2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 37 0 37 0 37 0 37 0.037 0 075 0 37		ND NO 061 0 07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.72 0.72 0.72 0.72 0.72 0.14 0.72 0.072	j
Jimethydphindale Jin-budydphindale Jin-budydphindale Jin-budydphindale Joranne	2 8 1 50 50 50 50 041 MA NA NA 132 4.4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042 0.042 0.042 0.42 0.42 0.42	J	ND ND ND 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.73 0.73 0.73 0.73 0.73 0.73 0.15 0.73 0.073	.,	NO NO NO NO 0.54 0.14 NO NO NO NO NO NO NO NO NO NO NO NO NO	0 36 0 36 0 36 0 36 0 036 0 073 0 36 0 036	J	XD XD XD XD XD XD XD XD XD XD	0.36 0.36 0.36 0.36 0.36 0.036 0.072 0.36 0.036 0.036	J	2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 0.2 0.4 2 0.2 0.2 0.2	J	ND ND ND 012 0017 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.37 0.37 0.37 0.037 0.037 0.075 0.37 0.037		ND ND 061 0.036 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.72 0.72 0.72 0.72 0.072 0.14 0.72 0.072	j
Jimethyohindale Ji-houlyohindale Ji-hockyohindale Ji-hockyohindale Ji-hockyohindale Jiudranhine	2 8 1 50 50 50 0.41 NA NA NA 1 2 4 4 13	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.42 0.042 0.083 0.42 0.042 0.042 0.42 0.42 0.42 0.42 0.42	J	ND ND ND 0,12 ND ND ND ND ND ND ND ND 0,067 ND	0.73 0.73 0.73 0.73 0.73 0.073 0.15 0.073 0.073 0.073	J	ND ND ND ND 0.54 0.14 ND ND ND ND ND ND ND ND ND ND ND ND ND	0 36 0 36 0 36 0 36 0 036 0 073 0 073 0 036 0 036 0 036	J	XD XD XD XD XD XD XD XD XD XD	0.36 0.36 0.36 0.36 0.36 0.036 0.072 0.36 0.036 0.036 0.036	J	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 0.2 0.4 2 0.2 0.2 0.2 2		ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.37 0.37 0.37 0.037 0.037 0.037 0.37 0.	, , ,	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.72 0.72 0.72 0.72 0.14 0.72 0.072 0.72 0.72 0.72	j
Jimethydphihalale Jin-Budydhhalale Jin-Budydhhalale Jin-Budydhhalale Jisaranhen	2 8 1 50 50 50 0 41 NA NA NA NA 13 2 4 4 13 0 2 NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042	J	ND ND ND 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.73 0.73 0.73 0.73 0.73 0.73 0.15 0.73 0.073	J	ND ND ND ND ND 0.54 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.36 0.36 0.36 0.36 0.073 0.36 0.036 0.36 0.36	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.036 0.036 0.036 0.036		22222222222222	2 2 0.2 0.4 2 0.2 0.2 0.2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.37 0.37 0.37 0.037 0.075 0.37 0.037 0.037	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.72 0.72 0.72 0.72 0.072 0.072 0.072 0.72 0.	
Jimethydohladale Jin-budydohlad	2 8 1 50 50 50 0 41 NA NA NA 1 3 2 4 4 1 13 0 2 NA NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042 0.042 0.083 0.42 0.042 0.042 0.042 0.042 0.042	J	ND ND ND 0,12 ND ND ND ND ND ND ND ND 0,067 ND	0.73 0.73 0.73 0.73 0.73 0.073 0.15 0.073 0.073 0.073	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0 36 0 36 0 36 0 36 0 036 0 036 0 036 0 036 0 036 0 036 0 036	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036	J	22222222222222222	2 2 0.2 0.4 2 0.2 0.2 0.2 2 0.2 2		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 37 0 37 0 37 0 37 0 075 0 075 0 037 0 037 0 037 0 037	J	2 D D D D D D D D D D D D D D D D D D D	0.72 0.72 0.72 0.72 0.14 0.72 0.072 0.72 0.72 0.072 0.072	
Jimethydphthdale Ji-h-dus/dphthalate Ji-h-dus/dph	2 8 1 50 50 50 0 41 NA NA NA NA 3 2 4 4 13 0 2 NA NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042	J	ND ND ND 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.73 0.73 0.73 0.73 0.73 0.073 0.073 0.073 0.073 0.073	J	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.36 0.36 0.36 0.36 0.073 0.36 0.036 0.36 0.36	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.036 0.036 0.036 0.036		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 0.2 0.4 2 0.2 0.2 0.2 2	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.37 0.37 0.37 0.037 0.075 0.37 0.037 0.037	j	ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD Z	0.72 0.72 0.72 0.72 0.072 0.072 0.072 0.72 0.	j
Jimethydhindale Ji-houlydhind	2 8 1 50 50 50 0.41 NA NA 3 2 4.4 13 0.2 NA NA 1 1 50	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042 0.042 0.083 0.42 0.042 0.042 0.042 0.042 0.042	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.73 0.73 0.73 0.73 0.73 0.073 0.073 0.073 0.073 0.073	J	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.36 0.36 0.36 0.036 0.073 0.036 0.036 0.036 0.036 0.036	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.036 0.036 0.072 0.36 0.036 0.036 0.036 0.036 0.036	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 02 04 2 02 02 02 2 02 2 02 2 02 2 8		ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.037 0.037 0.037 0.037 0.075 0.037 0.037 0.037 0.037 0.037 0.037	J	2 D D D D D D D D D D D D D D D D D D D	0.72 0.72 0.72 0.72 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072	
Jimethylophindale Jin-bulyohhindale Jin-bulyohhindale Jin-bulyohhindale Jin-bulyohhindale Jin-bulyohhindale Jin-bulyohindale Jin-bu	2 8 1 50 50 50 0 41 NA NA NA NA 3 2 4 4 13 0 2 NA NA 1 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.73 0.73 0.73 0.73 0.73 0.073 0.073 0.073 0.073 0.073 0.073	J	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0 36 0 36 0 36 0 36 0 036 0 036 0 036 0 036 0 036 0 036 0 036	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.36 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036		20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 0.2 0.4 2 0.2 0.2 0.2 2 0.2 2	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0 37 0 37 0 37 0 37 0 075 0 075 0 037 0 037 0 037 0 037	j	ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD ZD Z	0.72 0.72 0.72 0.72 0.14 0.72 0.072 0.72 0.72 0.072 0.072	
imethylophisalae in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate in-butyothhalate e-sachlorobutyothhalate e-sachlorobutyothhalate e-sachlorobutyothhalate e-sachlorobutyothhalate in-butyothhalate br>8 1 50 50 50 0.41 NA NA 3 2 4.4 13 0.2 NA NA 1 1 50	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.42 0.42 0.42 0.42 0.042	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.73 0.73 0.73 0.73 0.73 0.073 0.073 0.073 0.073 0.073 0.073	J	NO NO NO NO NO NO NO NO NO NO NO NO NO N	0.36 0.36 0.36 0.036 0.073 0.036 0.036 0.036 0.036 0.036	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.36 0.36 0.36 0.36 0.036 0.036 0.072 0.36 0.036 0.036 0.036 0.036 0.036	J	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 02 04 2 02 02 02 2 02 2 02 2 02 2 8	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.037 0.037 0.037 0.037 0.075 0.037 0.037 0.037 0.037 0.037 0.037	J	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	0.72 0.72 0.72 0.72 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072	J.	

- Notes and Abbreviations

 1) Bold concentrations in shaded cells exceed the New York

 TAGM Recommended Soil Cleanup Objective.

 2) All results provided in units of mg/Mg.

 3) The analytical laboration visitally provided the Reporting Limit

 (RL) for most samples collected form soil borrings TW-37

 Invoush TW-52, bit subsequently growded the Method

 Detection Limits (MDLs) Both the RL and MDL are reported

 for these samples. For all other samples, only the MDL is reported.

- J The compound was detected at a concentration below the MDL and is estimated
 ** = Field duplicate samples
 SVOC TICs = Tentativeth identified semivolable organic compounds
 ND = The compound was not detected
 Conc = Concentration
 Coul = Laboratory Oata Qualifier
 MDL = Method Detection Limit
 NS = No standard
 mg/kg = Milligrams per kilograms

Field Sample ID As Sample Number Sampling Date Majrix Semivoliatile Organic Compounds (SVOC 1, 2, 4-Trichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 2, 4, 5-Trichlorobenzene 2, 4, 5-Trichlorobenzene 2, 4, 5-Trichlorobenol 2, 4-Dichlorophenol 2, 4-Dintrophenol	Recommended Soil Cleanup Objective (mg/kg) 3.4 7.9 1.6 8.5 0.1 NA 0.4 NA 0.2 NA 1.1 NA 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1	STA03	0.075 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Qual	Conc ND NO ND ND ND ND ND ND ND ND	STAIN03-C 03C2-0324 618552 03/24/05 SOLID MOL 0 072 0 72 0 72 0 72 0 72 0 72 0 72 0 7		Cone ND ND ND ND ND ND	STAIN03-C 03C3-0324 618553 03/24/05 SOLID MDL 0 038 0.38 0.38		Conc NO NO	UST7-C1 032905S00 620681 03/29/05 SOLID MDL 0 037	Quaf	Conc	UST7-C2 32905S00 620682 03/29/05 SOLID MDL 0 14	6 Qual	Conc	UST7-C3 033005S00 620684 03/30/05 SOLID MDL 0.038	06	Conc	UST7-C4 32905S00 620683 03/29/05 SOLID MDL 0 079	5 Qual	0:	UST7-C5 32505-S00 618771 03/25/05 SOLID MDL 0.038	
Sampling Date Matrix Semivolatile Organic Compounds (SVOC 2, 4-Trichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 1, 3-Dichlorobenzene 2, 4-Dinichlorobenzene 2, 4, 5-Trichlorophenol 2, 4-Dinichlorobenol	(mg/kg) 3.4 7.9 1.6 6.5 0.1 NA 0.4 NA 0.2 NA 1 NA 0.8 3.6 4	Conc ND ND ND ND ND ND ND N	03/24/05 SOLID MDL	Qual	Conc ND NO NO ND ND ND ND ND ND ND	618552 03/24/05 SOLID MOL 0 072 0 72 0 72 0 72 0 72 0 72 0 72 0 7		Cone ND ND ND ND ND ND ND	618553 03/24/05 SOLID MDL 0 038 0 38 0 38		Conc NO NO	620681 03/29/05 SOLID MDL 0 037		Conc	620682 03/29/05 SOLID MDL		Conc	620684 03/30/05 SOLID MDL		Conc	620683 03/29/05 SOLID MDL		Conc	618771 03/25/05 SOLID MDL 0.038	
Matrix Samivolatile Organic Compounds (SVOC 2,4-1 richiorobenzene 1,2 Octhorobenzene 1,2 Octhorobenzene 1,3 Octhorobenzene 1,4 Dichiorobenzene 1,4 Dichiorobenzene 2,5 7 richiorobenzene 2,5 7 richiorobende 1,4 Sinchiorobende 2,6 Sinchiorobende 2,6 Sinchiorobende 2,4 Octhorophend 2,4 Octhorophend 2,4 Octhorophend 2,4 Octhorophend 2,4 Omitrotoluene 2,4 Omitrotoluene 2,4 Omitrotoluene 2 (Noronaphihalene) 2 (Noronaphihalene 2 (Noronaphihalene)	3.4 7.9 1.6 6.5 0.1 NA 0.4 NA 0.2 NA 1 1 NA 0.8	Conc ND ND ND ND ND ND ND ND ND ND ND ND ND	SOLID MDL 6 0.075 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Qual	20 20 20 20 20 20 20 20 20 20 20	SOLID MOL 0 072 0 72 0 72 0 72 0 72 0 72 0 72 0 72 0 72	Qual	2	SOLID MDL 0 038 0.38 0.38 0.38	Qual	ND ND	03/29/05 SOLID MDL 0 037	Quaf	ND	03/29/05 SOLID MDL	Qual		03/30/05 SOLID MDL		-	03/29/05 SOLID MDL	Qual	Conc	03/25/05 SOLIO MDL 0.038	Qual
Semivolatis Organic Compounds (SVOC 1, 2, 4 Trichloroberizene 1, 2, 4 Trichloroberizene 1, 3 Orchloroberizene 1, 3 Orchloroberizene 2, 4, 5 Trichloroberizene 2, 4, 5 Trichloroberizene 2, 4, 5 Trichloroberizene 2, 4 Orchlorophenol	3.4 7.9 1.6 8.5 0.1 NA 0.4 NA 0.2 NA 1 1 NA 0.8	ND	MDL 0.075 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Qual	20 20 20 20 20 20 20 20 20 20 20	MOL 0 072 0 72 0 72 0 72 0 72 0 72 0 72 0 7	Qual	2	MDL 0 038 0.38 0.38 0.38	Qual	ND ND	MDL 0 037	Quaf	ND	SOLID MDL	Qual		SOLID		-	SOLID MDL	Qual	Conc	SOLIO MDL 880.0	Quai
1.2.4-Irichlorobenzene 1.2.0-Envirobenzene 1.3-Oben hiorobenzene 1.3-Oben hiorobenzene 1.3-Oben hiorobenzene 2.4.5-Irichlorobende 2.4.5-Irichlorobende 2.4.5-Irichlorobende 2.4.5-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.4-Dintripolhende 2.Chloropaphihalene 2.Chloropaphihalene 2.Chloropaphihalene 2.Chloropaphihalene 2.Chloropaphihalene 2.Veltriyophende 2.Veltriyophende 2.Veltriyophende 2.Veltriyophende 2.Veltriyophende	3.4 7.9 1.6 8.5 0.1 NA 0.4 NA 0.2 NA 1 1 NA 0.8	00 00 00 00 00 00 00 00 00 00 00 00 00	0.075 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Qual	20 20 20 20 20 20 20 20 20 20 20	0 072 0 72 0 72 0 72 0 72 0 72 0 72 0 72	Qual	2	0.38 0.38 0.38 0.38	Qual	ND ND	0 037	Quaf	ND	MDL	Qual		MDL	Qual	-	MDL	Qual	ND	MDL 0.038	Qual
1.2 Obchlorobenzene 1.4 Dichlorobenzene 2.4 5 Tichlorobenzene 2.4 5 Tichlorobenzene 2.4 5 Tichlorobehend 2.4 Dichlorobehend 2.4 Dichlorobehend 2.4 Dinitrobehend	7.9 1.6 8.5 0.1 NA 0.4 NA 0.2 NA 1 1 NA 0.8	00 00 00 00 00 00 00 00 00 00 00 00	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75		20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.72 0.72 0.72 0.72 0.72 0.72		2 2 2 2 2	0.38 0.38 0.38		ND			ND					- Quai	-		Qual	ND	0.038	Quai
1.3-Dichlorobenzene 1.4-Dichlorobenzene 2.4-S-Trichlorophenol 2.4-S-Trichlorophenol 2.4-S-Trichlorophenol 2.4-Dichlorophenol 2.4-Dinnitophenol 2.4-Dinnitophenol 2.4-Dinnitophenol 2.4-Dinnitophenol 2.4-Dinnitophenol 2.4-Dinnitophenol 2.5-Dinnitophenol 2.Chlorophenol 2.Chlorophenol 2.Chlorophenol 2.Heltnynaphhalene 2.Chlorophenol 2.Heltnynaphhalene	1 6 8.5 0.1 NA 0.4 NA 0.2 NA 1 NA 0.8	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75		ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.72 0.72 0.72 0.72 0.72		2222	0.38		ND									ND I	0.079	1			Ę
1.4-Dichlorobenzene 2.4.5-Trichlorobene 2.4.5-Trichlorobene 2.4-Dichlorophene 2.4-Dichlorophene 2.4-Dinatrobene 2.4-Dinatrobene 2.4-Dinatrobene 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 2.5-Dinitroblore 3.5-Dinitroblore 8.5 0.1 NA 0.4 NA 0.2 NA 1 NA 0.8 36.4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.75 0.75 0.75 0.75 0.75 0.75 3 0.15 0.15		00 00 00 00 00	0.72 0.72 0.72 0.72		222	0.38					ИD	1.4		ND	0,38								
2.4.5-Tirchlargahenol 2.4-Dirchlargahenol 2.4-Dirchlargahenol 2.4-Dirahorgahenol 2.4-Dirahorgahenol 2.4-Dirahorgahenol 2.4-Dirahorgahenol 2.4-Dirahorgahenol 2.4-Dirahorgahenol 2.5-Dirahorgahenol 2.5-Dirahorgahenol 2.5-Dirahorgahenol 2.1-Mirahorgahenol 2.4-Mirahorgahenol 2.4-Mirahorgahenol 2.4-Mirahorgahenol 2.4-Mirahorgahenol 2.4-Mirahorgahenol	0.1 NA 0.4 NA 0.2 NA 1 NA 0.8 36.4	ND ND ND ND ND ND ND	0.75 0.75 0.75 0.75 3 0.15 0.15		ND ND ND ND ND	0.72 0.72 0.72		ND ON			ND	0.37		ND	14		ND	0.38		ND ND	0.79			0.38	
2. 4. 5-Triethoroshenol 2. 4-Diriethorphenol 2. 4-Direthorphenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Direthydhenol 2. 4-Mitrydhenol 2. 4-Mitrydhenol 2. 4-Mitrydhenol	NA 0 4 NA 0 2 NA 1 NA 0 8 36.4	ND ND ND ND ND ND	0.75 0.75 0.75 3 0.15 0.15		20 20 20 20 20	0.72 0.72		ND	0.38		ND	0.37		ND	14		ND	0.38	 	ND.	0.79		ND	0.38	
2.4-Dimethylahenol 2.4-Dimitophenol 2.4-Dimitophenol 2.4-Dimitophenol 2.6-Dimitopleuene 2.6-Dimitopleuene 2.Chlorophenol 2.Chlorophenol 2.Methylahenol 2.Methylahenol 2.Mitophinel	0 4 NA 0 2 NA 1 NA 0 8 36.4	ND ND ND ND ND ND	0.75 0.75 3 0.15 0.15		ND ND ND	0.72					DIN	0 37		ND	14		ND	0.38	 	ND	0 79		ND ND	0.38	
2.4-Dimethylahenol 2.4-Dimitophenol 2.4-Dimitophenol 2.4-Dimitophenol 2.6-Dimitopleuene 2.6-Dimitopleuene 2.Chloronaphinalene 2.Chlorophenol 2.Methylahenol 2.Methylahenol 2.Mitophinel	NA 0 2 NA 1 NA 0 8 36.4	ND ND NO NO NO	0.75 3 0.15 0.15	\exists	ND ND				0.38		ND	0.37		ND	14		ND	0.38	I	ND	0.79		ND ON	0.38 0.38	
2.4-Dinitrotoluene 2.6-Dinitrotoluene 2.Chloronaphinalene 2-Chlorophenol 2-Methylnaphinalene 2-Methylphenol 2-Nitroanitrine	0 2 NA 1 NA 0 8 36.4	ND	3 0 15 0 15		ND	1 0.72 1		ND	0.38		ND	0.37		ND	1,4		ND	0.38	t	NO	0.79		NO	0.38	
2.6-Dinitrotoluene 2. Chloronaphthalene 2. Chtorophenol 2. Methylnaphthalene 2. Methylnaphthalene 2. Methylohenol 2. Nitroanline	1 NA 0 8 36.4	ND ND ND	0 15 0 15			2.9		20	0.38		ND	0.37		ND	14		ND	0.38	1	ND	0.79		NO	0.38	
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	0 8 36.4	ND ND	0 15		ND	0.14		- 00 - 00	0.077		ND	1.5		ND	5.6		ND	1.5		ND	3 2		ND	1.5	
2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	0 8 36.4			$\neg \neg$	ND	0.14		ND	0.077		ND	0.075		ND	0.28		ND	0.076		NO	0 16		ND.	0,075	
2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	36.4	ND T	0 75		ND	0.72		ND	0.38		ND	0 075		ND	0.28		ND	0.076		ND	0 16		ND	0 075	
2-Methylphenol 2-Nitroaniline			0 75		ND	0.72		GN	0.38		ND ND	0 37		ON	1.4		ND	0 38		ND	0.79		ND	0.38	
2-Nitroaniline	01	0 14		j	0.36		-	0.14	0.50		0 022	0.37		NO	14		ND	0.38		ND	0 79		ON	0.38	·
		ND	0.75		0.02			ND	0.38		ND	0.37		ND ND	1.4		0.45			7.4			0.22		J
	0 43	ND	1.5		ND	1.4		ND	077		ND	0.37		NO.	2.8		ND	0.38	├	ND	0 79		ND	0.38	
3,3'-Dichlorobenzidine	0.33 NA	ND	0.75	I	NO	0.72		ИD	0.38		ND	0.37		NO	14		ND	0.76	 	ND	1.6		ND	0.75	
3-Nitroanitine	0.5	ND	1.5		ND	1.4		ND	0.77		ND	0.75		ND	2.8		ND	0.76		ND QN	0.79		ND	0.38	ļ
4.6-Dinitro-2-methylphenol	NA NA	ND DN	1.5		ND	1.4		ND	0.77		ND	0.75		ND	2.8		ND	0.76	t	ND ND	16		ND	0.75	
4-Bromophenyl-phenylether	NA NA	ND ND	0.75		ND ND	2.9		ND	15		ND	1.5		ND	56		ND	15	1	ND	3.2		ND .	0.75	
4-Chloro-3-methylphenol	0.24	ND	0.75		- UN	0.72		ND	0.38		ND	0 37		ND	1.4		ND	0.38		ND	0.79		ND	0.38	
4-Chloroaniline	0.22	ND ND	0.75		ND	0.72		00	0.38	ļ	ND	0.37		ND	1 4		ND	0.38		NO	0.79		ND	0.38	
4-Chlorophenyl-phenylether	NA	ND	0.75		-ND	0.72		ND DA	0.38		ND	0,37		ΝĎ	1.4		0.029			ND	0.79		ND	0.38	
4-Methylphenol	0.9	NO	0.75		0.045	0.72		0.049	0.38		ND	0.37		ND .	1.4		ND	0.38		NO	0.79		ND	0.38	
4-Nitroanitine	NA NA	ND	1.5		ND	14		ND	0.77		ND ND	0.37		ND.	1.4		0.014		J	ND	0.79		0 0077		J
4-Nilrophenol	01	ND	_3		ND	2.9		ND	1.5		ND	0.75		ND	2.8		ND	0 76		ND	16		DN	0.75	
Acenaphthene Acenaphthylene	50	0.046		J	0.051		J	0.011			0.02	1.5		ND 0.52	5.6		ND	1.5		ND ND	3.2		NO	1.5	
Anthracene	41	0.51		1	0 36			0.1			0,012			ND	14		0.21		-! -	0.5		<u> </u>	0.11		J
Benzo(a)anthracene	50	0 58		J	0.32		J	0.14		-	0.023			0.91			0.48			ND	0.79		0 12		
Benzo(a)pyrene	0.224 0.061	1.3			0.68			0.26			0.052			0.29			5 0.52 S		 	1.1			0.33		J
Benzo(b)fluoranthene	1.1	354.4			0.66	LI		0.24			0.044			0.7	-		0.533			0.32			0.42		
Benzo(g,h,i)perytene	50	0.57	 }	-, 	0.94			031			0,046			0.08			0.67	 	 	ND	0.079		0.45	— — I	
Benzo(k)fluoranthene	11	71.870			0 29			0.16	ļ	J	0.039		7	0.22		J	0.38			0.21	0079		0.65		
bis(2-Chloroethoxy)methane	NA NA	ND	0.75		ND ND	0.72		0.33 ND			0.047			0.061		J	0.64			ND	0.079		0.62		i
bis(2-Chloroethyl)ether	NA		0.075		ND	0.072		ND	0.38		ND	0 37		ND	14		ND	0.38		ND	0.79		ND	0.38	
bis(2-chloroisopropyl)ether	NA NA	ND	0 75		ND	0.72		D	0.38		ND	0 037		ND	0 14		ND	0 038		ND	0 079		NO	0 038	
bis(2-Ethythexyl)phthalate	50	ND	0.75		ND	0.72		ND	0.38		0.2	0.37		ND	1.4		NO	0.38		ND	0.79		NO	0.38	·
Butylbenzylphthalale	50	ND	0.75		ND	0.72		ND	0.38		ND ND	0.37		ND	1.4		0 11			ND	0.79		0.15		J
Carbazole	NA NA	0.077		J	0.086		j	0 027	5.00		0.013	0.37		ND ND	1.4		ND	0.38	11	ND	0.79		ND	0.36	
Chrysene Dibenz(a,h)anthracene	0.4	r 2			0.81			0.51			0.074			0.65	1,4		0.13	L		ND	0 79		0 04		J
Dibenzoluran	0 014 6 2	0.23			. 0.098			0.078			#0.015 €			ND	0 14		0.8			×0.51			0.8		
Diethylphthalate	71	0.068 ND		J	0 12	L	J	0.051		J	0,016		j	NO	1.4		0.26	F		0.019	0.70		ND	0 038	
Dimethylphthatate	7 1	ND	0.75	}	ND ND	0.72		ND	0.38		ND	0.37		ND	14		ND	0.38	 	ND ND	0.79		0.079 ND	0 38	
Di-n-bulyiphihalale	8,1	ND	0.75		- ND	0.72		ND	0 38		ND	0 37		ND	14		ND	0.38	1	ND	0.79		ND	0 38	
Di-n-octylphthalate	50	ND	0.75		-ND	0.72		20	0 38	L	ND	0.37		ND	1.4		ND	0.38	 	ND	0.79		ND	0.38	
Fluoranthene	50	14			1.4	0.72		0.41	0.38		ND	0.37		NO	1.4		ND	0.38	T	ND	0.79		0.2	0.30	J
Fluorene	50	0 041			0.05			0.018			0.11	L	<u> </u>	0.54)	1		I	0.53			0 62	+	
Hexachlorobenzene	0.41		0.075	<u> </u>	ND	0.072		ND	0.038		0.02		J	1.2		J	0.2		J	1.3			0.2		J
Hexachlorobutadiene	NA NA	ND	0 15		ND	0.14		ND	0.038		ND ND	0.075		ND	0.14		ND	0.038		ND	0 079		ND	0.038	
Hexachlorocyclopentadiene Hexachloroethane	NA NA	ND	0.75		ND	0 72		ND	0.38	<u> </u>	ND	0.075		ND	0.28	<u>-</u> -	ND.	0 076		ND	0 16		ND	0 075	
Indeno(1,2,3-cd)pyrene	NA NA		0.075		ND	0.072		ND	0.038		ND	0.037		ND	0.14		ND ND	0.38		ND	0.79		ND	0 38	
Isophorone	3.2	0.55		F	02			0.16			0.029		j	0 067	V. 14		0.32	0 038	 	ND ND	0.079		ND_	0 038	
Naphthalene	13	0 27	0.75		ND	0.72		ND	0.38		ND	0.37		ОИ	14		ND ND	0.38	++	0 063			0.12	١	
Nitrobenzene	02		0.075		0.72	I	J	0.34		J	0.05		J	ND	1.4		0.38	0.30	 	0.38	0.79		ND	0.38	
N-Nitroso-di-n-propylamine	NA NA		0.075	- $+$	ND	0.072		ND	0.038		ND	0.037		ND	0.14		ND	0 038	 	ND ND	0.079		0.17	-0.000	
N-Nitrosodiphenylamine	NA NA	ND	0.75		ND	0 072		ND	0.038		ND	0.037		ND	0 14		ND	0.038	\vdash \vdash \vdash	ND	0.079		ND	0.038	
Pentachlorophenol	174	ND ND	3	+	ND	0.72		ND	0 38		ИD	0.37		ND	1.4		ND ND	0.038	 	ND ND	0.079		ND	0.038	
Phenanthrene	50	0.3	 +-	-,+	ND 0 4	2.9		ND	1.5		ND	1.5		NO	56		ND	1.5	tt	ND	3.2		ND ND	0 38	
Phenol	0.03	ND	0.75		50.08%	├	<u>-</u> -	0.33		J	0 076		J	1.5			0.95		tI	46	J. C		0.43	1.5	
Pyrene	50	19	<u> </u>		1 2			ND	0 38		ND	0.37		ND	1.4		ND	0.38	 	ND	0.79		ND	0 38	
otal SVOC Concentration	500	14 482			9 79	 		0.38			0 11	 	J	2.5			12			3			2	- JO	
Total SVOC TICs Concentration	NS	4.44		7-1	8.28	 		12.72			1.018 4 12	ļI		8.738 156			9 6 1 3 8.68			20.272			7,6667		

- Notes and Abbreviations

 1) Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.

 2) All results provided in units of mg/ng.

 3) The analytical laboratory initially provided the Reporting Limit
 (RL) for most samples collected form soil borings TW-37
 through TW-52, but subsequently provided the Method
 Detection Limits (MDLs). Both the RL and MDL are reported
 for these samples. For all other samples, only the MDL is repor
- J. The compound was detected at a concentration below the MDL and is estimated
 " = Field dupticate samples
 SVOC TICs = Tentatively identified semivolatile organic compounND = The compound was not detected
 Conc = Concentration
 Qual = Laboratory Data Qualifier
 MDL = Method Detection Limit
 NS = No standard

Master Annytical Data Site 2A26

mg/kg = Milligrams per kilograms

SUMMARY OF SOIL SAMPLING A EYTICAL RESULTS - SVOCS

SITE 2 HHMT-PORT IVORY FACILITY

Part Service Color																			New York TAGM	Location
La Sareni, Nuclear (Cannon Demons) (Cannon Dem	TW-40B	V-40R**	TV		W-408**	T	$\overline{}$						TW-37		•	. [UST7-C6	l,		
Company Comp	TP40B120904SO12			206	-120904506	TP40B	1	111			1	/1Z			l	٠		l '		Lab Sample Number
Communication Communicatii Communication Communication Communication Communication	592646			- 1			ł				ł							i		
Section Sect	12/09/04						j				İ				ļ			ļ		
12-0	SOLID							luoi o			Conc	MOI Rev			Conc	Qual		Conc		
1.21 - 1.22 - 1					Qual				4081				1		ND		0 079			
1.50 1.50					 										ND					
12.5 1.5					11									3						
Fig. Conting and Conting Con					┧╌╼╌╌ ┧					0.54	ND									
Section Column					 															
\$1.0						0.86	ND						├ ──┤	1						
24 Deminstered			ND 2	011		0.86			ļ				-tI							
Applications Appl													+					ND	0.2	
Consideration Table Constitution Table Constitution Table Constitution Table Constitution Table Constitution Table Constitution Table Constitution Table Constitution Table Tabl	ND 27 0.092								 -								0.16		NA NA	
Company Comp					++								1	06	ND				11	
Extensional part 10					11							0.44								
Teacher Color Co										0 54	ND									
American 0.00 16					1 1		0 098	0 025					4	- 3 -						
2 2 2 2 2 2 2 2 2 2			ND 2	0.078									+	+					0.43	2-Nitroaniline
31_Obstitute feeting 15			ND 4						 -				+							
Application	ND 068 0069				↓]				 				t				1.6	ND		
Administration Admi	ND 1.4 0.28				 				 				1							
Acceptably Acc					 				† -			0.43								
Constrainte					 						ND									
Acceptation primeter AA NO 0.79 NO 3 0.38 NO 0.94 NO 0.96 0.96 NO 0.1 NO 2 0.71 NO 0.86 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO 0.96 0.96 NO					1			0.047					47							
HAMERSPERING	ND 0.68 0.081		ND 2										 	· · · · · · ·						
Alternative Ma. MO 16 MO 0 911 MO 17 0.005 MO 2 0.005 MO 2 0.005 MO 17 MO 17 MO 17 MO 18 MO 17 MO 18 MO 17 MO 18 MO 17 MO 18	ND 068 0038	0 11			1	0.86			<u> </u>				+							
Control Cont					1	 							†							
According Acco					+								1				3.1			
Abthresene 50 0.72 0.79 0.00 3 0.025 0.059 1 0.0068 0.069 1 0.0073 NO 2 0.077 NO 700 88 Enrolalestratesere 0.024 0.041 1 0.0073 NO 2 0.015 NO 2					++							0.025				J				
Secretar Communication C					1 , 1	1-335			J								0.79			
Pennodicipare 0.061					1 1				J				 				tI			
Benote 11 MD 0.079			0.1	0 024		1			ļ	 			+ $ -$	 					0 061	Benzo(a)pyrene
Semigraphysistem So	0.71.60 0.005	3 1 0.013				4							1-1-	 			0.079			
Section Sect					 	 				 			1- <u>i</u>							
Dist2 Conformer MA										├ ──										
bast/2-chroshopopopylehies NA ND 079 ND 03					+	0.86					NO		1	3						
bast/Ethy/hear/pinhalate 59 ND 079 ND 3 0.18 0.17 1 0.094 0.055 ND 2 0.13 NO 0.68					†		ND	0.044					L'l							bis(2-chloroisopropyl)ether
Bull-pheny(phin-plaine) Bull-pheny(phin-						0.86				0.54			+							bis(2-Ethylhexyt)phthalate
Carbadrie		J 0 12	0.48			1			<u> </u>				+					ND	50	
Disention Disenting Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Disention Dise		0.081			-					0.54							0 79			
Demotration Demotration					 - , - 	0.86				 										
Delimphylmhalate		0.020			┿╌┼╌┧						0.029	0 02	ī							
Dimetriprintalizate 2						1					0.66		1	3						
Dis-pulsyInthitable						0.86	ND						├ ──┤						2	
Di-nock/phthalate 50 ND 0.79 ND 3 0.005 ND 0.94 0.016 ND 0.86 0.025 ND 2 0.0056 ND 0.086					J	1							 							
Fluorannee 50 0.067 J 0.13 J 0.097 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ND 0.68 0.02	0.058			ļI								1					ND		
Following Foll					 	U.86				1			J J			J	LI			
					+	 					077						0.020			
Hexachlorocyclopentaldiene					+	0.086		0 02					4							
Hexaclioroethane													+							Hexachiorocyclopentadiene
Indeno(1,2,3-cd)pvrene 3.2 ND 0.079			NO 2	0 054	1								1						NA NA	Hexachloroethane
Sopherone	ND 0 068 0 024				$+$ $ \Box$	0.086				0.054			1	- · · · ·			0.079	ND		
National Content	0 13 0 0044				1-1-1	0.00				0.54			1	3	ND					
N-Nirroso-di-n-propylamine NA ND 0.079 ND 0.3 0.17 ND 0.054 0.031 ND 0.086 0.049 ND 0.2 0.11 ND 0.058 N-Nitroso-di-n-propylamine NA ND 0.079 ND 0.3 0.11 ND 0.054 0.02 ND 0.086 0.032 ND 0.2 0.075 ND 0.086 N-Nitroso-di-n-propylamine NA ND 0.79 ND 3 0.14 ND 0.54 0.025 ND 0.086 0.032 ND 0.2 0.075 ND 0.086 N-Nitroso-di-n-propylamine NA ND 0.79 ND 3 0.14 ND 0.54 0.025 ND 0.86 0.032 ND 0.2 0.075 ND 0.086 N-Nitroso-di-n-propylamine NA ND 0.54 0.025 ND 0.86 0.04 ND 0.2 0.075 ND 0.088 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND 0.086 N-NITroso-di-n-propylamine NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND NA ND ND					+-,	0.86				V.V.				3						
N-Nitrosodiphenylamine NA ND 0.079 ND 0.3 0.11 ND 0.054 0.02 ND 0.086 0.032 ND 0.2 0.075 ND 0.068					+	0.086				0.054		0.17				1				
Pentaction opened 1 ND 3.1 ND 3.2 0.14 ND 0.54 0.025 ND 0.86 0.04 ND 2 0.075 ND 0.88 0.04 ND 2 0.092 ND 0.88 0.04 ND 2 0.092 ND 0.88 0.04 ND 2 0.092 ND 0.88 0.04 ND 2 0.092 ND 0.88 0.04 ND 2 0.092 ND 0.88 0.04 ND 0.093 ND 0.094 ND 0.095 0.094 ND 0.095 0.094 ND 0.095 0.094 ND 0.095 0.094 ND 0.095 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 ND 0.095 0.095 0.095 ND 0.095 0.095 0.095 0.095 ND 0.095 0.09					 															
Phenantitrene 50 0.2 J 0.13 J 0.025 ND 2.2 0.1 ND 3.4 0.16 ND 6.1 0.032 ND 0.27					+-+					0.54	ND		1						1	
Pheno 0.03 NO 0.79 NO 3 0.028 1.4 0.005 0.29 J 0.0079 0.16 J 0.018 0.16					1		ND	0.1		2.2			↓	12			J.1		50	
Pytene 50 0.34 J 0.15 J 0.021 0.74 0.072 ND 0.86 0.12 ND 2 0.27 ND 0.68 Total SVOC Concentration 500 1.462 3.59 J 0.021 0.74 0.0038 0.8 J 0.0061 0.38 J 0.014 1.7 Total SVOC TICs Concentration NS 68.7 J 255.6 J 24.37 J NA NA NA					1		0.29	0.005		1			+				0.79			Phenol
Cold SVOC Concentration 500 1.462 3.59 3.59 3.71 3.71 3.72 3.73 3.74 3.75 3.						0.86				0.54			1						50	
Class SVDC 1 (Cs Concentration NS 68.7 J 255.6 J 24.37 J NA NA NA NA NA NA NA	1.7 0.0048		0 38	0.0061	1 7	 		0 0038	 -	 		U UZ1	 ' 		3.59			1.462		
The state of the s	5.813				1	 		 					 					68 7	l NS	rotal SVOC TICs Concentration
Notes and Abbreviations	NA NA		NA	<u> </u>			I NA	1			6-7-37									Notes and Abbasis

- Notes and Abbreviations

 1) Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.

 2) All results provided in units of mg/ng

 3) The analytical taboratory initially provided the Reporting Limit
 (RL) for most samples collected form soil borings TW-37
 through TW-52, but subsequently provided the Method
 Detection Limits (MDLs). Both the RL and MDL are reported
 for these samples. For all other samples, only the MDL is repor
- J The compound was detected at a concentration below the MDL and is estimated
 " = Field dupticate samples
 SVOCTICs = Tentativety identified semivolatile organic compounND = The compound was not detected
 Conc = Concentration.

- Conc = Concentration

 Qual = Laboratory Data Qualifier

 MDL = Method Detection Limit

 NS = No standard

- mg/kg = Milligrams per kilograms

SUMMARY OF SOIL SAMPLING AN TICAL RESULTS - SVOC SITE 2 HHMT-PORT IVORY FACILITY

Location	New York TAGM																				
Field Sample ID	Recommended Soil	ľ		W-43A -120804SC		i		TW-45				TW-47				TW-47				TW-48	
Lab Sample Number	Cleanup Objective	1		-1208045C	10			12220450	103			-122204SI	007		TW-47	-122 20 4S0	17	1		122304501	6
Sampling Date	(mg/kg)	1		2/08/04				96205				596206		i		596207		1		96212	•
Matrix	1	1		SOLID		1		2/22/04 SOLID		1		2/22/04		ı		12/22/04		l		2/23/04	
Semivolatile Organic Compounds (SVI	OCs)	Conc	RL		MDL Rev	Conc	RL		MDL Rev	Conc	RL	SOLID	1			SOLID				SOLID	
1,2,4-Trichlorobenzene	3 4	ND	0.1		0.073	ND	0 038	- 004	0.028			Qual	MDL Rev	Conc	RL	Qual	MDL Rev	Conc	RL	Qual I	MDL Rev
1,2-Dichlorobenzene	79	ND	1		0.12	NO	0.38		0.044	ND ND	0.08		0.059	ND	0.04		0.029	ND	0 039		0.029
1,3-Dichlorobenzene	16	ND	1		0.13	ND	0.38		0.048	DO	0.8		0.093	ND	0.4		0.046	ND	0.39		0.045
1,4-Dichlorobenzene 2,4,5-Trichlorophenal	8 5	ND	1		0.1	ND	0.38	 	0.04	ND	08		0.1	ND ND	0.4	ļ	0.051	ND	0.39		0.05
2,4,5-Trichlorophenal	01	ND.	1_		0 19	ND	0.38	$\overline{}$	0.072	NO	08	 	0 15	ND	04		0.042	ND	0.39		0 041
2.4-Dichlorophenol	NA NA	ND	1		0 049	ND	0.38	1	0.018	ND	0.8	-	0 039	ND	1 04	 -	0 076	ND	0.39		0 074
2.4-Dimethylphenol	0.4	NO	1		0 13	ND	0.38		0.05	ND	0.8		0,1	ND	04		0 02	ND.	0.39	ļ. <u></u>	0 019
2.4-Dinitrophenol	NA NA	ND	1	L	0.092	ND	0.38		0.035	ND	0.8	†	0.074	ND	0,4		0 037	ND ND	0 39	ļ ———	0 051
2.4-Dimtrototuene	0.2	NO	4.1	L	0 14	NO	15		0.051	ND	32	 	011	ND	1.6		0.054	ND ON	0.39		0 036
2,6-Dinitrotoluene	NA NA	ND ND	0.2	<u> </u>	0.041	ИD	0.077		0.016	ND	0.15		0,033	ND	0.079	 	0.034	ND	0.079		0.054
2-Chloronaphthalene	NA NA	ND	1		0.019	ND	0 077		0.015	ND	0.16		0 031	ND	0.079	1	0.015	ND	0.079	 	0.015
2-Chlorophenal	0.8	ND			0 14	ND	0.38		0 055	ND	0.8		0.12	ND	0.4		0.058	ND	0 39	1	0 057
2-Methylnaphthalene	36 4	0.078	 -	 - , -	0.12	ND	0.38	⊢	0.047	ND	8.0		0.099	ND	0.4]	0.05	ND	0.39	 	0 048
2-Methylphenol	0.1	ND	<u> </u>		0.047	0.083 ND	0.38	J	0 018	1.2			0.038	ND	04		0.019	ND	0.39	1	0.018
2-Nitroaniline	0 43	ND	2		0.031	ND NO	0.38		0.034	ND	0.8		0.073	ND	04		0 036	ND	0.39	t	0 035
2-Nitrophenol	0.33	ND	1		01	ND	0.38	 	0.038	ND	1.6	⊢	0.057	ND	0.79		0.028	ND	0 79		0 028
3,3'-Dichlorobenzidine	NA NA	ND	2		0.4	ND	0.77	 	0.038	ND ND	1.6		0.081	ND.	04	-	0.04	ND	0 39		0.039
3-Nitroantine	0.5	ND	2		0 059	ND	0.77		0.023	ND	1.6	 	0.32	ND	0.79	 	0 16	ND	0.79		0.16
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	NA NA	ND	4.1		0,14	ND	1.5	 -	0.053	ND	3.2		0.047	ND ND	0 79	+	0 023	ND	0 79		0.023
4-Chloro-3-methylphenol	NA 0.24	ND	1		0.054	ND	0 38	ī. — — —	0.021	ND	0.8		0.044	ND	04	 _	0.057	ND ON	16	L	0 057
4-Chloroaniane	0.24	ND	11		0 087	ND	0.38		0.033	ND	0.8		0.069	ND	0.4		0.022	ND ND	0 39		0.021
4-Chlorophenyl-phenylether	NA NA	ND	1	ļ	0.12	ND	0.38		0.045	ND	0.8	·	0.096	ND ND	0.4	 	0 048	ND	0.39		0 034
4-Methylphenol	0.9	ND ND	1	ļ	0.056	ND	0.38		0.021	ND	0.8		0.045	ND	04	 	0.022	ND	0.39	l	0.046
4-Nitroaniline	NA NA	ND	2		0.099	ND	0.38		0 038	ND	0.8		0 079	ND	04	-	0.04	ND.	0.39		0 022
4-Nitrophenol	0.1	ND	4.1		0.048	ND	0.77		0.018	ND	16		0.038	ND	0.79	-	0.019	ND.	0.39	 -	0.019
Acenaphihene	50	011			0.0085	0.085	1.5	<u> </u>	0.011	ND	3.2		0.024	ND	1.6		0.012	ND.	1,6		0.013
Acenaphthylene	41	0.039			0 0085	0.003			0.0032	0.25		J	0.0068	ND	0.4	1	0.0034	ND	0.39	 	0.0033
Anthracene	50	0 24			0.0077	0 2	·	J -	0.0032	ND	0.8		0.0068	ND	0.4		0 0034	ND	0 39		0 0033
Benzo(a)anthracene	0.224	0.26			0 027	0.37	 		0.0029	0.13			0.0062	ND	04	1	0 0031	ND	0.39 .		0 003
Benzo(a)pyrene	0.061	-> 0.15 ·			0.0074	0.35			0.0028	0.059		1	0.022	ND	0 04		0.011	ND	0.039		0.011
Benzo(b)fluoranthene	11	0.39			0.0077	0.36			0 0029	0 035			0.0059	ND	0.04		0 003	ND	0.039		0.0029
Benzo(q,h,i)perylene	50	0 11		3	0.011	0 18		1	0 0041	0.058			0.0086	ND ND	0.04		0 0031	ND.	0 039		0.003
Senzo(k)fluoranthene bis(2-Chloroethoxy)methane	1.1 NA	0.34	ļ		0.01	0.47			0.004	0.023		 _ j _	0.0083	NO	0.04	1	0.0043	ND ND	0.39		0.0042
bis(2-Chloroethyt)ether	NA NA	ND ND	-1-	L	0.072	ND	0 38		0.027	ND	0.8		0.057	ND	0.4	 	0.029	-ND	0.039	l	0 0041
bis(2-chloroisopropyl)ether	NA NA	ND ND	01		0.081	ND	0.038		0.031	_ ND	0.08		0.064	ND	0.04	+	0.032	ND	0 39	l	0 028
bis(2-Ethythexyl)phthalate	50	0.28	<u> </u>		0.064	ND	0.38		0.024	ND	0.8		0.051	ND	0.4		0.026	ND	0.39		0.025
Butylbenzylphthalale	50	ND ND	<u> </u>		0.041	ND _	0 38		0 023	ND	0.8		0 048	018	1	J	0.024	ND	0.39		0.023
Carbazole	NA NA	ND	-		0.0074	0.033	0.38		0.015	ND	0.6		0.032	ND	0.4		0.015	ND	0 39		0 016
Chrysene	0.4	0.85		1	0.0074	0.033	 -	<u> </u>	0.0028	ND	0.8		0.0059	ND	0.4		0.0029	ND	0 39		0.0029
Dibenz(a,h)anthracene	0.014	0.031		J	0.0066	0.065			0.0047	0.1 ND	0.08	J	0.0099	ND	0.4		0.005	ND	0.39		0 0048
Dibenzofuran Diethylphthelate	6.2	0.09			0 052	0.08	-	J	0.02	0.36	0.00		0 0053	ND	0.04		0 0026	ND	0 039		0 0026
Dimethylphihaiale	7.1	ND	1		0.027	ND	0.38		0.01	ND	0.8	 '	0.022	ND ND	0.4	 	0 021	ND	0 39		0.02
Di-n-butylphinalale	8.1	ND			0 043	ND	0.38		0.015	ND	0.8	 -	0.034	ND	0.4	 	0.011	ND ND	0 39		0.01
Di-n-octyphthalate	50	ND			0.029	ND	0 38		0 011	ND	0.8		0.023	ND	0.4	+	0.017	ND -	0 39	 	0.017
Fluoranthene	50	1.8			0.045	ND	0.38		0.017	ND	0.8		0 036	ND	0.4	 	0.012	ND	0 39	 +	0.011
Fluorene	50	013		<u> </u>	0 0032	0.77			0 0012	0.1			0.0026	ND	04	1	0.0013	- ND	0.39	l	0.017
Hexachlorobenzene	0.41	ND	0.1		0.0069	0.089 ND		<u> </u>	0 0026	0.39			0.0055	ND	0.4		0.0028	NO	0.39	 	0 0013
Hexachlorobuladiene	NA NA	ND	0.2		0.037	ND	0.038		0.014	ND	0.08		0.03	ND	0.04		0.015	ND	0 039		0 014
Hexachlorocyclopenladiene	NA NA	NO	1		0.063	ND	0.077		0.036	ND	0.16		0.074	NO	0 079	1	0.037	ND	0 079		0.037
Hexachloroethane	. NA	ND	0,1		0.036	ND	0.038		0.014	ND DN	0.8	 -	0.051	ND	0.4		0 025	ND	0 39		0.025
Indeno(1,2,3-cd)pyrene	3.2	0.1		J	0 0065	0.17			0.0025	ND	0.08		0.029	ND	0.04	_	0.014	ND	0.039		0 014
Isophorone Naphthalene	4.4	ND	_1_		0.076	ND	0.38		0.029	ND	0.8	 -	0.061	ND ND	0.04	 	0 0026	ND	0.039		0.0025
Nitrobenzene	13	0 067	I	J	0.0088	0.079		,	0.0034	ND	0.8	 -	0.061	ND	0.4	 -	0 03	ND	0.39		0,03
N-Nitroso-di-n-propylamine	0.2	ND	01		0.057	ND	0.038		0.022	ND	0.08		0.045	ND	0.04		0.0035	ND	0 39	 	0 0034
N-Nitrosodiphenylamine	NA NA	NO	0.1		0 038	ND	0 038		0.014	ND	0.08	 	0.03	NO	0,04	 	0.023	ND	0.039		0 022
Pentachiorophenol	NA	ND_	!		0.046	ND	0.38		0.018	ND	0.8		0.03	ND-	0.4		0.015	ON ON	0.039	l	0.015
Phenanthrene	50	ND O	4.1		0.19	NO	1.5		0 069	ND	3 2		0 15	-ND-	16		0.073	ND ND	0.39	⊦	0.018
Phenal	0 03	0.99	1		0.0092	0.32		J	0 0035	0.78		J.	0 0074	ND	04	t	0.0037	ND	16	├──-	0.073
Pyrene	50	1.3			0.13	ND	0 38		0.051	ND	0.8		0 11	ND	04	 	0.054	ND	0.39		0.0036
Total SVOC Concentration	500	7.155			0.0071	5.051			0 0027	0.21		J	0.0056	ND	04	1	0.0028	NO -	0.39	 -	0 0028
Total SVOC TICs Concentration	NS	NA				17	 			3 764				0.18	I			0		 	
						1 1 / :	1		i j	165.6		1		0.33	1		1	0			

Notes and Abbreviations

1) Bold concent alons in shaded cells exceed the New York
TAGM Recommended Sot Cleanup Objective.

2) All results provided in units of morks.

3) The analytical blooratory indealy provided the Reporting Limit
(RL) for most samples collected form sof borings TW-37

brough TW-32, but subsequently provided the Nethood
Detection Limits (MDLs). Both the RL and MDL are reported
for these samples. For all other samples, only the MDL is reported

J - The compound was detected at a concentration below the MDL and is estimated

= = field duplicate samples

SVOC TICS = Tentalswelly identified semivolatile organic compounds

ND = The compound was not defected

Cone = Concentration

Owal = Laboratory Data Qualifier

ND = Method Detection Limit

NS = No standard

mg/kg = Milligrams per kilograms

Location	New York TAGM	1		TW-48			TW-49			D4: -:												
Field Sample ID	Recommended Soil	1		-12230450	18	l 17w.	100-49 49-122804	SOOS		TW-50 -50-122804				TW-51				W-52		T	TW-58	
Lab Sample Number	Cleanup Objective			596213		""	596817	3002	1 '**	-50-122809 596818	5002	i		-122904S0	002	i		12290450	02	i	033105500)1
Sampling Date Matrix	(mq/kq)	ļ		2/23/04		1	12/28/04		٠.	12/28/04		1		596857 2/29/04		1		96856		ì	620686	
Semivolatile Organic Compounds (S)	100	-		SOLID		L	SOLID			SOLID		ľ		SOLID 5/58/04		1		2/29/04		1	03/31/05	
1,2,4-Trichlorobenzene	70(s) 3 4	Conc	RL	Qual	MDL Rev	Conc	MOL	Qual	Conc	MDL	Qual	Conc	RL		MDL Rev	Conc	RL	SOLID	MDL Rev	Conc	SOLID	
1.2-Dichlorobenzene	7.9	ND	0.041		0.03	ДИ	0.039		ND	0.04		NO	0.043		0.032	ND	0.04	- Cuar	0 029		MDL	Qual
1,3-Dichlorobenzene	1.6	- DN - DN	0.41		0 048	_ND_	0 39		ND	0.4		ND	043		0.05	ND	0.4		0,046	ND	0 054	
1,4-Dichlorobenzene	8.5	ND	0.41	 	0.052 0.043	ND	0 39		ND	0.4		ND	0.43		0.055	ND	0.4		0.051	ND	0.54	
2.4.5-Trichlorophenol	0.1	ND	0.41		0.078	ND	0.39		_ND	0.4		ND	0 43		0.045	ND	0.4		0 042	ND	0.54	
2,4,6-Trichlarophenal	NA NA	ND	0.41		0.02	ND	0.39		ND ND	04	<u> </u>	ND	0.43		0.082	ND	0.4		0,076	ND	0.54	1
2,4-Dichlorophenol	0.4	ND	0.41		0 054	ND	0.39		ND	0.4		ND	0.43		0 021	NO	0.4		0 02	ND	0.54	1
2,4-Dimethylphenol	NA NA	ND	0.41		0 038	ND	0.39	 -	ND-	0.4	 	ND	0 43		0.056	ND	0.4		0 052	ND	0 54	
2.4-Dinitrophenal	0.2	ND	1,6		0.054	ND	1.6		ND	16		ND	0.43		0.04	ND_	04		0 037	ND	0.54	
2,4-Dinitrototuene 2,6-Dinitrototuene	NA NA	ND	0.082		0.017	ND	0.079		ND	0 08	 -	ND	0.086	·	0.058	ND	16		0 054	ND	2.1	
2-Chioronaphthalene	NA NA	ND	0.082		0.016	ND	0.079		ND	0.08		ND	0.086		0.018	ND ND	0 079		0.016	ND.	0.11	<u></u>
2-Chlorophenol	0.8	ND ND	0.41		0.06	ND	0.39		ND	0.4		ND	0.43		0.063	ND	04		0 015	ND	0.11	 -
2-Methylnaphthalene	36.4	ND	0.41		0.051	NO	0.39		ND	0.4		ND	0.43		0.053	ND	0.4		0.05	- ND	0.54	
2-Methylphenol	0.1	ND	041	 	0.019	0.052 ND	0.70		ND	0.4		0.26		J	0.02	0.18			0,019	0.78		1
2-Nitroaniline	0.43	ND	0,82		0.029	ND	0.39		ND -	04	<u> </u>	ND	0.43	<u> </u>	0.039	ND	0.4		0.036	0.011		3
2-Nitrophenol	0.33	ND	0.41	r	0.041	NO	0.79	 	ND NO	0.4	 	ND ND	0.86		0.031	ND	0.79		0.028	ND	1.1	
3,3'-Dichlorobenzidine	NA NA	ND	0.82		0.16	ND	0.79		NO	0.8	 	ND	0.43		0 044	ND.	0.4		0 04	ND	0.54	
3-Nitroaniline 4,6-Dinitro-2-methylphenol	0.5	ND	0.82		0.024	ND	0.79		ND	0.8		ND	0.86	 	0.17	ND	0.79		0.16	ND	11	
4-Bromophenyl-phenylether	NA NA	ND	1.6		0.057	ND	1.6		ND	1.6	t	ND	1.7	 	0.06	ND ND	0 79	ļ	0 023	ND	11	
4-Chloro-3-methylphenol	0.24	ND ND	0.41	 -	0.022	NO	0 39		ND	0.4	1	ND	0 43		0.08	ND	1.6		0.057	ND DN	2.1	1
4-Chloroaniline	0.22	ND .	0.41		0 036	ND	0 39		ND	0.4		ND	0.43	1	0.037	ND -	0.4		0.022	ND ND	0 54	
4-Chlorophenyl-phenylether	NA NA	ND	0.41		0.049	ND	0.39		ND	0.4		ND	0 43		0.051	ND	0.4		0.048	ND	0.54	
4-Methylphenol	0.9	ND	0.41		0.023	ND	0.39		ND	0.4		ND.	0 43		0.024	ND	0.4		0 022	ND	0.54	
4-Nitroaniline	NA NA	ND	0.82	 	0.02	ND	0.39	 	ND	0.4		0.045		J	0.043	ND	0 4		0 04	0.022		1
4-Nitrophenol	0.1	ND	1.6		0 012	ND	16		ND ND	16	ļ	ND	0.86		0.021	ND	0 79		0.019	ND	11	
Acenaphthene	50	ND	0.41		0.0035	0.034			ND	04		0 12	1.7		0 013	ND	1.6		0.012	ND	2.1	
Acenaphthylene Anthracene	41	ND	0.41		0 0035	0.26	-	,	ND	0.4		0.55			0 0036	0.082			0.0034	0.36		J
Benzo(a)anthracene	50 0 224	ND	0.41		0.0032	0 074		J	ND	0.4		0.37			0.0036	0.056		<u>J</u>	0.0034	0 25		J
Benzo(a)pyrene	0.061	ND ND	0 041		0.011	0 18			ND	0.04		20.87			0.012	₩ 0.85 %	 -	J	0.0031	0.72	L	L
Benzo(b)fluoranthene	111	ND	0.041	<u> </u>	0.003	0.26			ND	0.04		0.65		t	0.0032	0.64			0.003	1.2	 	
Benzo(g,h,ı)perylene	50	ND	0.41	 	0.0032	0.22			ND	0.04		0 68			0.0033	0.67			0.0031	1 1		
Benzo(k)fluoranthene	11	ND	0.041		0.0043	0.22		,	ND	0.4		0.46			0.0046	0.23			0.0043	0.74		
bis(2-Chloroethoxy)methane	NA NA	ND	0.41		0.029	ND	0.39		ND	0.04	<u> </u>	1			0.0045	1			0.0042	-1.3 a.		
bis(2-Chloroethyl)ether	NA NA	ON	0,041		0.033	ND	0.039		ND	04	 	ND	0.43		0.031	ND	0.4		0 029	ND	0.54	1
bis(2-chloroisopropyl)ether	NA NA	ND	0.41	T	0.026	ND	0.39		ND	0.04		ND	0.043		0 035	ND	0.04		0.035	ND	0 054	
bis(2-Ethylhexyl)phthalate	50	ND	0.41		0.025	ND	0.39		ND	0.4	 	0 088	0.43	 -	0.028	ND	0.4		0 026	ND	0.54	
Bulylbenzylphihalale Carbazole	50 NA	ND	0.41		0.017	_ ND	0.39		ND	0.4		ND	0 43		0.026	0 088 ND			0.024	0.26	L	J
Chrysene	0.4	ND	0.41		0.003	0 0092			ND	0.4	·	0.05		 ,-	0 0032	0 037	04		0 016	ND	0.54	
Dibenz(a,h)anthracene	0.014	ND ND	0.41		0.0051	0 29		,	ND	0.4		A 13 %		 	0.0053	20037	 	J	0.0029 0.005	0,14	<u> </u>	1
Dibenzofuran	6,2	ND	0.041		0.0027	201			_ ND	0.04		0.17			0.0028	0.058			0.0026	0.23	 	
Diethylphthalate	7.1	ND	0.41		0 021	ND.	0.39	ļ	ND	0.4		0.16		j	0.022	0.14			0.021	0.43		
Dimethylphthalate	2	ND	0.41		0.018	ND ND	0.39	├──	ND ND	0.4	<u> </u>	ND	0.43		. 0 012	ND	0.4		0.011	ND	0 54	
Di-n-bufylphthalate	8 1	ND	0.41		0.012	ND	0.39		ND	0.4		ND	0.43	L	0.018	ND	0.4		0.017	ND	0.54	
Di-n-octylphthalate Fluoranthene	50	ND	0.41		0.018	ND	0.39		ND	0.4		ND ND	0.43		0.012	ND	04		0.012	ND	0 54	
Fluoranthene	50	ND	0.41		0.0013	0.11			ND -	0.4	 	1.4	0.43	 	0 019	ND	0.4		0.018	ND	0 54	
Hexachlorobenzene	50 0.41	ND	0 41		0.0028	0.025			ND	0.4	 	0 19			0.0014	0.16	 -	<u></u>	0.0013	29		
Hexachlorobutadiene	0.41 NA	ND ND	0.041		0.015	ND	0.039		ND	0.04		ND	0.043		0.003	ND	0.04		0 0028	0 44	A	1
Hexachlorocyclopentadiene	NA NA	ND ON	0.082		0.038	ND	0.079		ПD	0.08		ND	0.086		0.04	ND-	0 079		0 015	140	0.054	
Hexachloroethane	NA NA	ND	0.041		0.026	ND	0.39	 	ND	0.4		_ND	0.43		0.027	ND	0.4		0 025	ND	0 11	
Indeno(1,2,3-cd)pyrene	3.2	NO	0.041		0.015	ND 0.10	0.039		ND	0.04		ND	0.043		0 016	ND	0.04		0.014	ND	0.054	·
Isophorone	4.4	NO	0.41		0.0027	0.19 NO	0.70		ND	0.04		0 44			0 0028	0.22	[0 0026	0.6	0.034	
Naphthalene	13	ND	0.41		0.0036	ND	0 39		ND	0.4	l	ND	0.43		0.033	ND	0.4		0 03	ND	0.54	
Nitrobenzene	0.2	ND	0 041		0 023	ND	0 039		ND	0.4	 -	0.2	0.5:-	J	0.0038	0.11		J	0.0035	0.88		
N-Nitroso-di-n-propylamine	NA NA	ND	0.041		0.015	ND	0 039		ND	0.04		ND	0 043	L	0.024	ND	0.04		0.023	ND	0.054	
N-Nitrosodiphenylamine	NA NA	NO	0.41		0.019	ND	0.39		ND	0.4		ND ND	0.043	 	0 016	NO	0.04		0 015	ND	0 054	-
Pentachlorophenol Phenanihrene	1	ND	1.6		0.073	ND	1.6		ND ND	1.6	 -	ND ON	0.43	 -	0 02	ND	0.4		0.018	ND	0.54	
Phenol	50	ND	0.41		0.0038	0.14			ND	0.4		0 96	1.7	 	0.078	ND 0.7	16		0.073	ND	2.1	
Pyrene	0 03 50	ND	0.41		0 055	ND	0.39		ND	0.4		ND ND	0.43	 	0.004	0.7 ND	<u></u>		0.0037	2.4		-
Total SVOC Concentration	500	ND 0	0.41		0.0029	0.27		,	ND	0.4		1.8			0.056	1.8	0.4	<u> </u>	0.054	ND -	0.54	
Total SVOC TICs Concentration	NS NS	0		<u> </u>		2.8542			0			11.763				9.991			0.0028	2 5 20 363	 -	
						8.61			0			27.85			·							1

- Notes and Abbreviations

 1) Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soit Cleanup Objective.

 2) All results provided in units of mg/kg.

 3) The analytical laboratory initially provided the Reporting Limit
 (RL) for most samples collected form soil borrings TW-37
 through TW-32, but subsequently provided the Method
 Detection Limits (MDLs). Both the RL and MDL are reported
 for these samples. For all other samples, only the MDL is report
- J The compound was defected at a concentration below the MDL and is estimated

 " = Field dupticate samptes

 SVOC TICs = Tentativety identified semivolatile organic compoun

 ND = The compound was not defected

 Conc = Concentration

 Qual = Laboratory Data Qualifier

 MDL = Method Detection Limit

 NS = No standard

- mg/kg = Milligrams per kilograms

Location	T																					
Field Sample ID	New York TAGM Recommended Soil	(TW-69			TW-70A		$\overline{}$	TW-71A			TW-71A			TW-72			TW-73				
Lab Sample Number	Cleanup Objective	1 '	033105500	4	Į.	033105500)2	Ì	040105500	5		040105500	07	Tw.	72-040405	SOOM	DA.	73-040405	5005		TW-73	
Sampling Date	(mg/kg)	1	620687		ł	620688			620937			620938		i '**	621712	3004	1 '**	621713	5005	TW-7	3-040405	3008
Matrix	(migrig)	1	03/31/05		l	03/31/05		ł	04/01/05		į.	04/01/05		i	04/04/05			04/04/05	ľ		621714	
Semivolatile Organic Compounds (SV	(OCs)	Conc	SOLID	-	-	SOLID		L	SOLID		\	SOLID		1	SOLID		ł	SOLID	- 1		04/04/05 SOLID	1
1,2,4-Trichlorobenzene	3,4			Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Quat	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	
1,2-Dichtorobenzene	79	ND	0.06		ND	0.037		ND	0.2		ND	0.04	-	ND	0.44		I ND	0.21	400			Qual
1.3-Dichlorobenzene	1.6	ND ON	0.6	 -	ND	0 37	 _	ND_	2		ND	04		ND	4.4		ND	2.1	 	ND ND	0.039	
1,4-Dichlorobenzene	8.5	ND	0.6		ND	0.37	ļ	ND.	2		ND	0.4		ND	44		ND	2.1	1	ND	0.38	
2,4,5-Trichlorophenol	01	ND	0.6		ND ND	0.37		ND	2		ND	0.4		ND	4.4		ND	2.1		ND	0 39	
2,4,6-Trichlorophenol	NA NA	ND	0.6		ND ND	0.37	├ -	ND	2		ND	0.4		ND	44	<u> </u>	NO	2.1		ND	0.39	
2,4-Dichlorophenol	0.4	ND	0.6		ND	0.37	<u> </u>	ND	2		ND	0.4		ND	44		ND	2 1		ND	0.39	·
2,4-Dimethylphenal	NA NA	ND	0.6		ND ND	0.37		_ ND	2		ND	0.4		ND	. 4.4		ND	21		ND	0.39	·
2.4-Dinitrophenol	0.2	ND	2.4		NO NO	0.37		ND ND	8.1		ND	0.4		ND	44		ND	2.1		NO 1	0 39	
2.4-Dinitrotoluene	NA NA	ND	0.12		ND	0.075		ND	041		ND	1.6		ND	18		ND	8.5		ND	1.6	$\overline{}$
2.6-Dinitrotoluene	11	ND	0 12		ND	0.075		ND ND	0.41	├ ─~	ND	0.08		ND	0.89		ND	0 42		_ ND	0.079	
2-Chloronaphthalene	NA NA	ND	0.6		ND	0.37	├	ND	2		ND ND	0.08		ND	0.89	L	ND	0.42		_ ND	0 079	
2-Chlorophenol 2-Methylnaphthalene	0.8	ND	0.6		ND	0.37	1	ND	2		NO	0.4	 	ND	4.4	L	ND	2.1		ND	0.39	
2-Methylphenol	36.4	0.63			0 22	I	1	0.57	 -		ND	0.4		ND ND	44	 -	ND.	2.1		ND	0.39	
2-Nitroaniline	0.1	ND	0.6		ND	0.37		ND	2	 _	ND	0.4		ND	4.4		0.46	L		0.015		
2-Nitrophenol	0.43	ND	1.2		ND	0.75	1	ND	4.1		ND	0.8	 	ND	8.9	 	ND ND	4.2	 	ND	0.39	ı——!
3.3'-Dichlorobenzidine	NA NA	ND	0.6	 -	ND	0.37		ND	2		ND	04	t	ND	4.4		ND ND	2.1	 	ND ND	0.79	,l
3-Nitroaniline	0.5	ND	1.2		ND	0.75		ND	4.1		ND	0.8	T	ND	8.9		ND	4.2	 	ND	0.39	
4,6-Dinitro-2-methylphenol	NA NA	ND	2.4		ND	0.75	 	ND	4.1.		ND	0.B		ND	8.9		ND	4:2	H	ND	0 79	I
4-Bromophenyl-phenylether	NA NA	ND	0.6	\vdash	ND ND	0 37	 -	ND	8.1	<u> </u>	ND	1.6		ND	18		ND	8.5		ND	16	rJ
4-Chloro-3-methylphenol	0.24	ND	0.6		ND		 	ND	2		ND	0.4		ND	44		ND	2.1		ND ND	0.39	i
4-Chloroaniline	0.22	ND	0.6		ND ND	0.37	 	ND ND	2		ND	04		ND	4.4		ND	21		ND	0.39	/I
4-Chlorophenyl-phenylether	NA NA	ND	0.6		ND	0.37		ND	2	<u> </u>	ND	0.4		ND	44		ИD	21		ND	0.39	;
4-Methylphenol	0.9	0.064			0.01	0.37	 	ND-			ND	04	L	ND	44		ND	2.1		ND	0.39	
4-Nitroaniline	NA NA	ND	1.2		ND	0.75	 -	ND ND	4.1	 	ND ND	04	<u> </u>	ND	4.4		ND	2,1		ND	0 39	i — — !
4-Nitrophenol Acenaphthene	0.1	ND_	2 4		ND	1.5	 -	ND	8.1		ND	0.8		ND	8.9		ND	4 2		DN	0 79	
Acenaphthylene	50	0 28		J	0.18		J	0.5	- • · · -		ND	04	 	ND	18		ND	8.5		ND	16	
Anthracene	50	0.2		-	0.11			ND	2		ND	04	 	1.2 ND	4.4		2.4			0.1		, j
Benzo(a)anthracene	0 224	0.58			0.59			0.29	1	7	ND	0.4		0.92	4.4		ND 1.9	2.1		ND	0.39	·
Benzo(a)pyrene	0,061	54.1% 5-15%			0.65			_ND	0.2		ND	0.04		×0.08			0.89			0.32		J
Benzo(b)fluoranthene	1,1	0 69231 (864)	ļi		0.48			ND	0.2		ND	0.04		0.86			0.48			0 16		<i>!</i>
Benzo(q,h,i)perviene	50	0.56			0 52			ND	0.2		ND	0 04		0.8			0.45	···	├ <i>─</i> ─{	0.063		j
Benzo(k)fluoranthene	11	13.5			0.53			ND	2		ND .	0.4		ND	44		ND	2,1		0.027		
bis(2-Chloroethoxy)methane	NA NA	ND	0.6		ND	0.37	 	ND ND	0.2	<u> </u>	ND	0 04		1			0 47			0.09		
bis(2-Chloroethyl)ether	NA NA	ND	0.06		ND	0.037		ND	0.2		ND	0.4	-	ND	4.4		_ ND	2.1		ND	0 39	
bis(2-chloroisopropyl)ether	NA NA	ND	0,6		ND	0.37		ND	2		ND ND	0 04		ND	0.44		ND	0 21		ND	0 039	
bis(2-Ethylhexyt)phthalate Butylbenzylphthalate	50	0.29		J	0 15		J	ND			0.12	0.4		ND	4.4		ND	21		ND	0 39	
Carbazole	50	ND	0.6		ND	0.37		ND	2		ND ND	04		ND ND	4.4		ND	2.1		ND	0 39	
Chrysene	NA 0,4	0.13			0 16			_ ND	2		ND	0.4	 	ND	4.4		ND 17	2.1	├	ND	0.39	
Dibenz(a,h)anthracene	0.014	0.184			0.78			0.26		J	ND	04		Selson.			3.1.303			0 14		
Dibenzofuran	6.2	0.34			0.08	<u> </u>		ND	0.2		ND	0.04		ND	0 44		ND	0.21		0.12 ND	0.039	J
Diethylphthalate	71	ND I	0.6		0.22 NO	0.37		ND	2		ND	0.4		ND	4.4		0.86			0.052	0.039	
Dimethylphthalate	2	ND	06		ND	0.37		ND	2		ND	04		ND	44		ND	21		ND	0.39	
Di-n-buly/phthalate	8.1	ND	0.6		ND	0.37	 	ND ND	2		ND	0.4		ND	4.4		ND	21		ND	0 39	
Di-n-octylphthalate	50	ND	0.6		ND -	0.37		ND	2		ND ND	0.4	— ——	ND	4.4		ND	2.1		ND	0 39	
Fluoranthene Fluorene	50	2.6			1.8			0.11	t- - -		ND	0.4		ND	4.4	<u> </u>	ND	2.1		ND	0 39	
Hexachlorobenzene	50	0 35		J	0.21			1	1		0 018	0.4		2.1 0.62			4 2			0 57		
Hexachlorobuladiene	NA NA	ND	0.06		ND	0.037		ND	0.2		ND	0.04	 '	ND ND	0 44		1.8		J	0 11		
Hexachiorocyclopentadiene	NA NA	ND DN	0 12		ND	0.075		ND	0.41		ND	0.08		ND ND	0.89		ND ND	0 21	 	ND	0.039	
Hexachloroethane	NA NA	ND	0.6		ND	0.37		ND	2		ND	0.4	t	ND	4.4	r	ND	21	├ ├	ND	0.079	
Indeno(1.2,3-cd)pyrene	3.2	0.5	0.00		ND	0 037	<u> </u>	ND	0.2		ND	0.04		ND	0.44		ND	0.21	 	ND ND	0.39	
Isophorone	4.4	ND I	0.6		0.22 ND			ND	0.2		ND	0 04	["!	ND	0 44		ND	0.21	 	0 033	0.039	
Naphthalene	13	0.74			0 18	0.37	 -	ND	2		ND	0.4		ND	44		ND	2.1	 	- ND	0.39	
Nitrobenzene	0.2	ND I	0.06		ND ND	0 037		ND	2		ИD	0.4		ND	44		041			- ND	0.39	
N-Nitroso-di-n-propylamine	NA NA	NO	0.06		ND ND	0 037	 	ND	0.2		ND	0.04		ND	0.44		ND	0 21	┌──┤	ND	0.039	
N-Nitrosodiphenylamine	NA NA	ND	0.6		ND	0.37	 	ND	0.2		ND	0.04		ND	0.44		ND	0.21		ND	0.039	
Pentachlorophenol	1	ND	2.4		ND	1.5		ND.	2		ND	0.4		ND	44		ND	21		ND	0.039	
Phenanthrene	50	1.8			1.5	1.3		ND 2.4	8.1		ND	1.6	 _	ND	18		ND	8.5		ND	1.6	
Phenol	0.03	ND	0.6		ND	0.37	 	ND ND	2	·	0 044		J	12		J	84			0.72		
Pyrene Total SVOC Constant	50	2.3			1.5			0 18	h		ND ND	0 4	 	_ ND	4.4		ND	2 1		ND	0.39	
Total SVOC Concentration Total SVOC TICs Concentration	500	17.444			10 32			5.31			0.182	04	 	2.1		J	3.2			0 46		
. Grading the concentration	NS	85.1			2.44		J	265 2			7 41			13.28 312.1			28 92 105.5			3 064		
																			J	0 (

- Notes and Abbreviations

 1) Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.

 2) All results provided in units of mg/kg.

 3) The analytical aboratory initally provided the Reporting Limit
 (RL) for most samples collected form soil borings TW-37
 Ihrough TW-52, but subsequently provided the Method
 Detection Limits (MDLs). Both the RL and MDL are reported
 for these samples. For all other samples, only the MDL is report
- J The compound was detected at a concentration below the MDL and is estimated
 ** Fixed duplicate samples*
 SVOC TICs ** Tentativety identified semivolatile organic compounND ** The compound was not detected
 Conc ** Concentration

- Qual = Laboratory Data Qualifier
 MDL = Method Detection Limit
 NS = No standard
- mg/kg = Milligrams per kilograms

Location	New York TAGM		TW-74			Sec. 22																			
Field Sample ID	Recommended Soil	4.	-040105S00	15		TW-75 40105S006	1		TW-76			TW-77			TW-78			TWP-13			TWP-14			TWP-14	
Lab Sample Number	Cleanup Objective	_	620939	~		620940			i-040505Si 621716	006	TW.	77-040505	5004	TW-	78-0405059	5003		330055002	2	. 4	040105500	07	O.	401055009	ıq.
Sampling Date	(ma/kg)		04/01/05			04/01/05	1		04/05/05			621717 04/05/05		1	621718		1	620685	1		620941			620942	
Matrix			SOLID		L	SOLID	- 1		SOLID			04/05/05 SOLID		l	04/05/05		l	03/30/05			04/01/05			04/01/05	
Semivolatile Organic Compounds (SVOC	TO 100 100 100 100 100 100 100 100 100 10	Conc	MDL	Qual	Conc		ıal Co		MDL	Qual	Conc	MDL	Qual	Conc	SOLID	Qual	Conc	SOLIO			\$OLID			SOLID	
1,2,4-Trichlorabenzene 1,2-Oichlorabenzene	3.4	ND:	0 039		· NO	0.24	N	5	0.039		ND	0.041		ND I	0.042	Cuai	ND	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
1,3-Dichlorobenzene	7.9	ND	0.39		ND	2.4	N(0.39		DN	041		ND	0.42		ND	0.038		_ND_	0 044		ND L	0.039	
1,4-Dichlorobenzene	1.6 8.5	20.00	0.39		ND	2.4	N		0 39		ND	041		ND	0.42		ND	0.38		ND ND	0 44		ND	0 39	
2.4.5-Trichtorophenol	01	ND	0.39		ND NO	2.4	N		0 39		ND	041		_ ND	0.42		ND	0.38		ND	0 44		ND NO	0 39	
2.4,6-Trichlarophenal	NA NA	ND	0.39		ND	2.4	NI NI		0.39		ND	0.41		ND	0 42		ND	0.38	-	ND	0.44	·	ND	0 39	
2,4-Dichlorophenol	0.4	ND	0.39		ND	24			0.39		<u>ND</u>	0.41		ND !	0.42		ND	0 38		ND	0 44		ND	039	
2.4-Dimethylphenol	NA NA	ND	0.39		0.16		NI NI		0 39		ND	0 41		ND	0.42		NO	0.38		ND	0.44		ND	0.39	
2,4-Dinitrophenol	0.2	ND	1.6		ND	9.4	NI		16		ND ND	1,6		ND (0.42		ND	0.38		ND	0.44		ND	0.39	
2,4-Dinitrataluene 2,6-Dinitrataluene	NA NA	D	0.079		ND	0 47	N	5	0.078		ND	0.082		- ND - ON	0 084	·	ND	1.5		ND	18	L	ND:	16	
2-Chloronaphthalene	NA NA	ND	0,079		ND	0.47	N		0.07B		ND	0.082		ND	0.084		ND	0.076		ND	0.088		ND.	0.078	
2-Chlorophenol	0.8	ND ND	0 39		ND	2.4	NI		0 39		ND	0.41		ND	0.42		ND	0.076		ND	0 068		ND	0.078	
2-Methylnaphihalene	36 4	ND	0.39		ND 17	2.4	NI		0.39		NO	0.41		GM	0.42		ND	0 38		NO	044		ND ND	0 39	
2-Methylphenol	01	ND	0.39		0 098) NI		0 39		0 042		J	0.045		J	0.15		J	0.014			ND -	0.39	
2-Nitro andine	0.43	ND	0.79		ND	47	N N		0.78		ND ND	0.82	<u> </u>	ND ND	0 42		ND	0.38		ND	0 44		ND	0.39	1
2-Nitrophenol 3,3'-Dichlorobenzidine	0.33	ND	0.39		ND	24	NI		039		ND	0.62		ND ND	0.84		ND ND	0.76		_ND_	68.0		ND	0.79	
3-Nitroantine	NA 0.5	ND	0.79		ND	47	NI)	0.78		-ND	0.82		ND ND	0.42		ND	0.38		ND	D 44		ND	0 39	
4.6-Dmitro-2-methylphenol	NA NA	ND ND	0 79		ND	4.7	N1		0.78		ND	0.82		ND	0.84		ND	0.76		ND	0.88		ND NO	0.78	
4-Bromophenyl-phenylether	NA NA	ND NO	0.39		ND NO	9.4	Ni		1.6		ND	16		ND	1.7		ND	1.5		ND ND	1.8		ND I	0.78	
4-Chloro-3-methytphenol	0.24	ND	0.39		- ND	24	NI NI		0.39		ND	0.41		ND	0.42		ND	0.38		ND	0 44		ND ND	0 39	
4-Chloroandine	0.22	ND	0.39		NO	24	- NI		0.39		ND.	0.41		DN	0.42		ND	0.36		ND	0 44		ND	0 39	
4-Chlorophenyl-phenylether	NA.	ND	0.39		ND	2.4	- NI		0.39		NO	0.41		ND	0 42		ND	0.38		ND	0 44		ND	0.39	
4-Methylphenol 4-Nitroaniline	. 09	ND	0 39		0.2		I N		0.39		ND	0.41		ND ND	0.42		ND	0.38		ND_	0 44		ND	0.39	
4-Nitrophenol	NA 0.1	ND	0.79		ND	4.7	N		0.78		ND	0.82		ND I	0 84		ND	0.38		ND	0 44		· ND	0 39	
Acenaphihene	50	ND	1.6 0.39		ND	9.4	N		16		ND	16		ND	1.7		NO NO	1.5		ND ND	0.88		ND ND	0.78	ļ
Acenaphthylene	41	ND ND	0.39		5.3) NI		0 39		ND	0.41		ND	0.42		0.067			ND	0 44		NE NE	1.6 0.39	ļ
Anthracene	50	NO	0.33		27	+	N		0.39		ND	041		ND	0.42		0.1		3	ND	0.44		ND I	0.39	
Benzo(a)anthracene	0 224	ND	0.039		378.45W		- N		0.39		0.016	 	1	0.018		_	0.33		J	ND	0 44		ND	0.39	 -
Benzo(a)pyrene	0.061	ND	0 039		0.7		NI NI		0.039		0.072			0.045 ND	0.042		0.52			0.028		J	ND	0 039	1
Benzo(b)fluoranthene Benzo(g,h,i)perviene	1.1	ND	0.039		7.6		N		0.039		0 084	 		ND	0.042		0.49			0.02		J	NO	0.039	
Benzo(k)fluoranthene	50	_ DN	0.39		41		N		0.39		ND	0.41		ND ND	0.042		03			0 02			ND.	0.039	
bis(2-Chloroethoxy)methane	NA NA	GN	0.039		发票11 条件		NI		0.039		0.08			ND	0.042		0 38			0 02			ND	0 39	
bis(2-Chloroethyl)ether	NA NA	ND	0.039		ND ND	0.24	NI NI		0.39		ND	0 41		ND	0.42		ND	0.38		ND	0 44		ND	0 039	
bis(2-chloroisopropyl)ether	NA NA	ND	0 39		ND	2.4	NI NI		0.039		ND	0 041		ND	0.042		ND	0.038		ND	0.044		ND	0 039	
bis(2-Ethylhexyl)phihalate	50	0.091			ND	2.4	NI NI		0.39		ND DA	0.41		_ ND	0 42		ND.	0 38		ND	0.44		ND	0.39	
But/benz/lphihalale Carbazole	50	ND	0.39		ND	2.4	NI		0 39		ND	0.41		ND ON	0.42		ND	0.38		0.21		J	0 16		,
Chrysene	NA 0.4	NO	0.39		0.068		I N		0.39		ND	041		ND	0.42		0.019	0.38		ND	0 44		ND	0.39	
Dipenz(a,h)anthracene	0.014	ND	0.39		12		N		0 39		0 091			0.057			8.63		 _	0.036	0 44		ND	0 39	
Dibenzofuran	6 2	ND -	0.39		ND	-2.4	N		0 039		ND	0.041		ND	0.042		0.084			ND ND	0 044		ND -	0.39	
Diethylphthalate	7,1	ND	0.39		ND	2.4	NI NI		0.39		0 015		J	0 014		J	0.042			ND	0 44		ND -	0.039	
Dimethylphthalate	2	ND	0.39		ND	2.4	- N		0.39		ND	0.41		ND	0 42		ND	0.38		ND	0 44		ND -	0.39	
Di-n-butylphthalate Di-n-octylphthalate	8 1	ND	0 39		ND	2.4	NI NI		0.39		ND ND	0.41	<u> </u>	ND ND	0 42		. NO	0.38		ND	0.44		ND_	0 39	
Fluoranthene	50	ND .	0 39		ND	2.4	. N	D	0.39		ND	0.41		ND ND	0 42		ND	0.38	L	ND .	0 44		ND	0 39	
Fluorene	50	_ DN GN	0 39		47		N		0.39		0.11	T		0 07	-042		11	0.38	i	ND 0 042	0 44		ND	0.39	
Hexachlorobenzene	0.41	ND ND	0 039		0.59		l NI		0 39		ND	041		ND	0.42		0 22		-;-	0 0096			ND	0.39	- -
Hexachlorobutadiene	NA NA	- GN	0.079		ND ND	0 24	NI NI		0.039		ND	0 041		ND	0 042		ND	0 038		ND	0 044		ND	0 39	
Hexachlorocyclopentadiene	NA	ND	0 39		ND	24	NI NI		0.078		ND	0.082		ND	0 084		ND	0.076		ND	0.088		- ND	0 078	
Hexachloroethane	NA NA	ND	0.039		NO	0.24	NI NI		0 039		ND	0.041		ND	0.42		ND	0 38		ND	0 44		ND	0 39	t
indeno(1.2.3-cd)pyrene	3.2	ND	0.039		3.1		NI NI		0.039		ND ND	0.041		ND ND	0.042		ND	0.038		ND	0.044		ND	0 039	
Isophorone Naphthalene	44	ND ND	0.39		ND.	24	NI	5	0.39		ND	0.41		ND :	0.042		0.23 ND			0.019		J	ND	0.039	
Nitrobenzene	13	ND ND	0 39		1.3		NI NI		0.39		0 074	1	7	0 35	042	~	019	0.38		0 0 1 8	0.44		ND	0.35	
N-Nitroso-di-n-propylamine	NA NA	- DN	0.039		ND	0 24	N		0 039		ND	0.041		ND	0.042		ND	0 036		ND	0 044		ND ND	0.39	
N-Nitrosodiphenylamine	NA NA	-ND	0.039		ND ND	0.24	NI		0.039		ND	0.041		ND	0 042		ND T	0.038		-ND	0 044		ND ND	0 039	
Pentachlorophenol	1	ND	16		- ND	94	NI NI		0.39		ND	0.41		ND	0 42		ND	0.030		ND	0 44		- ND	0.39	
Phenanthrene	50	ND	0 39		7.1	34	- N		16		ND	16		ND	1.7		ND	1.5		ND	1.8		NO	16	
Phenol	0.03	ND	0.39		ND	24	NI NI		0.39		0.079		J	0 07 -		J	1.7			0 027			ND	0 39	
Pyrene	50	ND	0 39		13		NI NI		0.39		ND	041		ND	0.42		ND	0.38		ND	0 44		ND I	0.39	
Total SVOC Concentration Total SVOC TICs Concentration	500 NS	0 091			96.416 204.3		- 6		0.39		0 16			0 11 '			1.5 8.392			0.044		J	ND	0.39	

- Notes and Abbraviations
 1) Bold concentrations in shaded cells exceed the New York
 TAGM Recommended Soil Cleanup Objective.
 2) All results provided in units of ma/kg.
 3) The analytical alboratory intally provided the Reporting Limit
 (RL) for most samples collected form soil borings TW-37
 through TW-25, but subsequently provided the Method
 Detection Limits (MDLs). Both the RL and MDL are reported
 for these samples. For all other samples, only the MDL is reporte

- J The compound was delected at a concentration below the MDL and is estimated
 ** Field duplicate samples
 SVOC TICs = Tentializer withing semi-volatile organic compounds
 ND = The compound was not detected
 Conc = Concentration
 Cual = Laboratory Data Cualifier
 MDL = Method Detection Lund
 NS = No standard
 mg/kg = Miligrams per kilograms

Location	New York TAGM	T .	BLDG20-C	1	T F	LDG20-C	2		BLDG32-C			U DO20 0							
Field Sample ID	Recommended Soil		1-032305			2-032405			032505S0			32505S00			3LDG32-C		_	LDG32-C	
Lab Sample Numb	Cleanup Objective	1	618546			618548	0002	Ŭ,	618773	03	Ì	32303300 618774	2	} '	32505S00 618775	3	B320	4-032405	S002
Sampling Date	(mg/kg)	ì	03/23/05		i	03/24/05		i	03/25/05			03/25/05		ļ	03/25/05			618549	
Matrix			SOLID		1	SOLID			SOLID			SOLID		•	SOLID			03/24/05 SOLID	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Aluminum	33,000*	3870			1760			3600			2990		- Gran	5820	IVIDE	Qual	4260	MIDE	Quai
Antimony	SB	ND	0.97		ND	0.86		ND	0.85	-	ND	0.85		ND	0.93		ND	0.87	
Arsenic	7.5 or SB	13.3			25.1			1.9			1.5			5.0	0.93	 	10.6	U.01	
Barium	300 or SB	24.3		J	170			25.7			14.6			75.1		 	No. of the Name of Street,		
Beryllium	0.16 (HEAST) or SB	0.22		J	0.29			0.15		<u>`</u>	0.14			0.44			69.5 0.25		
Cadmium	l or SB	ND	0.100		0.10		J	ND	0.088	<u>-</u> -	ND	0.087		ND	0.096		10 1017 - 120100		J
Calcium	35,000*	843		J	7030			20,100			21800	0.007		13700	0.090		ND	0.090	<u> </u>
Chromium	10 or SB	6.8			13.1			11.8			8.5			COLUMN TO SERVICE OF THE SERVICE OF	<u> </u>		32400		
Cobait	30 or SB	1.5	,	J	4.3		1	4.7	<u> </u>	 	3.9			1 5.5		ļ	2 13.8 €		
Copper	25 or SB	76.8			58.5		<u> </u>	25.4			12.9		J	42.2		<u> </u>	3.6 - 35.1		-
Iron	2,000 or SB	8500			12400			12600			9640			16000					
Lead	500*	34.0			103			10.4			8.4			CARCO COLLEGE AV		 -	13200		
Magnesium	5,000*	520		J	2860			11700			12500			43.4 5400		ļ— <i>—</i> —	35.5		
Manganese	5,000*	23.2			81.5		 -	120			94.9			The state of the s			6950		
Mercury	0.1	0.06			0.04		 	0.04		ļ	0.04		,	188			127		
Nickel	13 or SB	4.9		J	10.9		 	13.0			12.8			0.65	ļ		0.60		ļ
Potassium	43,000*	185		j	388			519			377			31.4		<u> </u>	14.8		
Selenium	2 or SB	ND	1.2		ND	1.0	-	ND	1.0	<u>'</u>	ND ND		J :	856	ļ	J	494		J
Sitver	SB ·	ND	0.20		ND	0.18	 	ND	0.18		ND	1.0		ND_	1.1		ND	1.1	ļ
Sodium	*000	ND	89.9		118			374	0.16	 	168	0.17		ND	0.19	·	ND	0.18	ļ
Thallium	SB	ND	1,1		ND	0.97		ND	0.96	<u>`</u>	ND	0.06	<u>J</u>	373	<u> </u>		236		J
Vanadium	150 or SB	11.3		J	18.0			16.8	0.90	 		0.96		ND	1.1	}	ND	0.99	ļ
Zinc	20 or SB	23.0			286		 	34.1	 		15.0 33.9			59.7		ļ	46.0		
		- 1000 CO 100 CO 100 CO		<u> </u>	THE PARTY OF THE PARTY.		<u> </u>			l	33.8		-	£124	İ	l	68.9		ł

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration.
- = No Recommended Cleanup Objective has been established. The value provided is the background concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit

ND = The compound was not detected Conc = Concentration

Qual = Laboratory Data Qualifier

MDL = Method Detection Limit

SB = Site Background Concentration

mg/kg = Milligrams per kilograms

Master Analytical Data Site 2A2B

Page 1 of 8

Location	New York TAGM	F	BLDG32-C	5	1 -	TAIN03-C		T	*										_
Field Sample ID	Recommended Soil		C5-032405	-		3C1-0324			TAIN03-C	_		TAIN03-C			UST7-C1			UST7-C2	
Lab Sample Numb	Cleanup Objective		618550		. 3170	618551	0333	SIAC	3C2-0324 618552	0552	STAC	3C3-0324	05S3	•	032905S00)4	0	3 29 05S00	16
Sampling Date	(mg/kg)	ı	03/24/05		1	03/24/05		1	03/24/05		ļ	618553 03/24/05			620681		\	620682	
Matrix			SOLID		ł	SOLID		1	SOLID		1	SOLID			03/29/05 SOLID			03/29/05	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	(A	<u> </u>	SOLID	
Aluminum	33,000*	3700			3080			3060			1220	MIDE	Quai	1940	MDL	Qual	Conc	MDL	Qual
Antimony	SB	1.1		J	2.9			6.7		 -	ND ND	0.90		ND	1.2	ļ	21600		
Arsenic	7.5 or SB	3.6			1100			-983			95.6	0.30			1.3	 	ND	2.4	
Barium	300 or SB	22.9		· J.	87.6			149		 -	74.3			1.5		<u> </u>	ND	1.3	
Beryllium_	0.16 (HEAST) or SB	0.23		j	0.54			0.34		ļ	0.08		 -	17.8		<u> </u>	90.5		
Cadmium	1 or SB	0.15		J	ND	0.090		0.39			ND	0.092	J	0.10		J	1.1		
Calcium	35,000*	19700			10600			18600			6220	0.092		ND	0.090	<u> </u>	ND	0.17	ļ
Chromium	10 or SB	14.9			42.9			52.4		ļ	9.8			6800	ļ		2310		
Cobait	30 or SB	5.7		J	3.9			4.7		 	1.6			§11.5	ļ	ļ	43.9		
Copper	25 or SB	64.8			97.5		<u>-</u>	1748			28.2		J	-4-	ļ.—	<u> </u>	26.7		
Iron	2,000 or SB	13600			37000			28800			52200			9.3			16.0		
Lead	500*	29.0			262			587		 	80.8			7160		<u> </u>	50200		
Magnesium	5,000*	10400			2440			5950		ļ	847			9.8			25.2		
Manganese	5,000*	120			84.8			241		ļ	42.3		J	1810	ļ	 	10300		
Mercury	0.1	0.04		·	0.31			0.24		·	0.62			41.9			880		
Nickel	13 or SB	21.0	·		17.8			35.6		 	7.4			0.09	ļ	ļ	ND	0.035	
Potassium	43,000*	401		J	736			513			1180		J	43.0	ļ		51.1		
Selenium	2 or SB	ND	1.0		ND	2.6		ND	1.0		ND	5.4		235		J	3590		
Silver	SB	ND	0.17		ND	0.18		ND	0.17	 	ND	0.18	L	ND	0.94	<u> </u>	ND	1.8	
Sodium	8,000*	488	· · ·	J	1220			365	0.17		2340	0.18		ND	0.31	ļ	ND	0.59	
Thallium	SB	ND	0.95		ND	0.99	 	ND	0.96		ND	1.5		177	ļ	<u> </u>	928		J
Vanadium	150 or SB	20.3			38.8			21.1	0.50	ļ	23.6	1.5		ND 17.0	1.1		ND	2.0	
Zinc	20 or SB	- 103			74.8			178		 -	23.9			17.8	ļ		46.0		<u> </u>

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier MDL = Method Detection Limit
- SB = Site Background Concentration
- mg/kg = Milligrams per kilograms

TABLE 2C

SUMMARY OF SOIL SAMPLING ANALYTICAL RESULTS - METALS SITE 2

HHMT-PORT IVORY FACILITY

Location	New York TAGM	Τ	UST7-C3			UST7-C4			UST7-C5		Γ	UST7-C6			TW-37		Γ	'TW-38	
Field Sample ID	Recommended Soil	0:	33005\$000	6	0:	32905S00	5	0	32505800	6 .	0	32505S00	5	TW-	37-1223043	5012	TW-3	88-1223049	3011
Lab Sample Numb	Cleanup Objective	i	620684			620683			618771		1	618772			596210		1	596211	j
Sampling Date	(mg/kg)	1 .	03/30/05			03/29/05		, i	03/25/05			03/25/05			12/23/04		ł	12/23/04	ļ
Matrix		<u> </u>	SOLID			SOLID			SOLID		<u> </u>	SOLID			SOLID		<u> </u>	SOLID	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Aluminum	33,000*	6410			11800			7550			14400			5370			6670		
Antimony	SB	ND	1.3		ND	1.2		4.4			ND	0.92		ND	2.1		ND	1.9	
Arsenic	7.5 or SB	~ 96.9 €			1.7			48.9			.ND	0.83		21.5			10.7		
Barium	300 or SB	207			55.9			2960			42.2		J	372			176		
Beryllium	0.16 (HEAST) or SB	0.57			0.63			0.68			3, 0.83 €			1.6			4.1.1		
Cadmium	1 or SB	0.38		J	ND	0.086		0.14		J	ND	0.094		2 -			0.84		J
Calcium	35,000*	33900			1200			151200			761		J	12400			17700		
Chromium	10 or SB	25.6			22.0			44.9			€ 28.5 °			15			16.2		
Cobalt	30 or SB	10.0		J	11.0		J	15.3			15.1			16.3		j	9.3		J
Copper	25 or SB	49110.			13.4			119			12.6			101			65.3		
iron	2,000 or SB	22900			24200			19000			30700		T	20900		T	20600		
Lead	500*	178			12.4			190			14.2			102		1	103		
Magnesium	5,000*	17900			4920			27800			6460			1810			2560		
Manganese	5,000*	284			403			370			570		1	282			212		
Mercury	0.1	©.0.33			ND	0.017		0.31			ND	0.020		0.2			0.23		
Nickel	13 or SB	87.Q			25.1			47.1			31.3			99.5			87.3		
Potassium	43,000*	558		J	1510			1650			2250			652		J	573		J
Selenium	2 or SB	ND	0.96		ND	0.90		ND	1.1		ND	1.1		2		T	ND	1.4	
Silver	SB	ND	0.32		ND	0.30		ND	0.18		0.51		J	ND	0.5		ND	0.45	
Sodium	8,000*	626		J	380		J	1100	[J	589	1	J	1020		J	719		J
Thallium	SB	ND	1.1		ND	1.0		ND	0.99		ND	1.0	1	ND	1.7	1	ND	1.5	
Vanadium	150 or SB	31.4			25.1			27.1		Ţ	26.7		Ţ	22.4		1	32.6		
Zinc	20 or SB	ੋ292			55.2		T	371			69.9			615			250		

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- * = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit
- SB = Site Background Concentration
- mg/kg = Milligrams per kilograms

Location	New York TAGM	7	TW-40B**			TW-40B**			774/ 400										
Field Sample ID	Recommended Soil		B-120904	SO06		-120904SO	nen	704	TW-40B 0B120904S	~~		TW-43A		1 .	TW-45			TW-47	
Lab Sample Numb	Cleanup Objective		592644	3000	100	592645	NOD	1940	592646	012	1W43	3A-1208045	5010	TW-	45-122204	S003	TW-	17-1222043	S007
Sampling Date	(mg/kg)	Į.	12/09/04			12/09/04		I	12/09/04			592638		1	596205			596206	
Matrix	0.	1 .	SOLID		1	SOLID		1	12/09/04 SOLID		1	12/08/04		i	12/22/04		1	12/22/04	
METALS		Conc	MDL	Qual	Conc	MDL	Quai	Conc	MDL	Qual	Conc	SOLID		 	SOLID		ļ,	SOLID	
Aluminum	33,000*	4780			30800			10100		Quan	18000	MUL	Qual	4840	MDL	Qual.	Conc	MDL	Qual
Antimony	SB	2.7			ND	4.7	f	ND	1.6		ND	2.4		ND	4.0	 	10100		ļ
Arsenic	7.5 or SB	19.6			* 85.5			25.3			50.2				1.2		ND	1.4	
Barium	300 or SB	211			618			263			550			21.2		}	8.5		
Beryllium	0.16 (HEAST) or SB	0.38		J	10.9			3.1.4 %			4.9			75.3		<u> </u>	33.8		J
Cadmium	1 or SB	₩ 1.6			19.4		 	2.7			3.1			-, 0.38 ⊬.,		J			
Calcium	35,000*	4770			17300		 	12300			14100			0.51		J	0.25		JJ
Chromium	10 or SB	28.5			298			22 4			1			3210			1790		
Cobalt	30 or SB	4.8			94.5			17.1			51.7			×12.5		<u> </u>	12.4	<u> </u>	
Copper	. 25 or SB	. 115			775		 -	165 E		J	55.1 218			4.5		J	4.2		J
Iron	2,000 or SB	13900			* 45200		<u> </u>	69500			134500			7. 42			15.5		
Lead	500*	282			303			139			261			15600			15500		
Magnesium	5,000*	2190			8180		 	1970		J .				69.4			15.4		
Manganese	5,000*	158	·		386			399			2450 443		J	1240		 	1860		
Mercury	0.1	521.1%			0.67		 -	₩ 0.43 *			0.52		<u> </u>	151		ł	76.3		
Nickel	13 or SB	₹ 32.2			872			-56.4			338			0.22 ∜			0.06		
Potassium	43,000*	750		J	2160			364		٠.,	741		 _	11.8		ļ	13.7		ļ
Selenium	2 or SB	1.9			ND	5.7	-	3.1			6.5		J	579		J	459		J
Silver	SB	0.93		J	1.7			ND	0.33		ND	0.49		ND	0.88		ND	1	ļ
Sodium	8,000*	255		J	1760		7.5	598	0.55	J	1940	0.49		ND	0.29		ND	0.33	
Thallium	SB	ND	1.1		ND	5.3	 	ND	1.8		ND ND			143		}J	118		J
Vanadium	150 or SB	121			578*			27.2			69.8	2.7	 	ND	0.99	ļ	ND	1.1	ļ
Zinc	20 or SB	. 241 →			2470			989			996			24.5			17.7		

Notes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- * = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit

ND = The compound was not detected Conc = Concentration

Qual = Laboratory Data Qualifier . MDL = Method Detection Limit

SB = Site Background Concentration

mg/kg = Milligrams per kilograms

Location	New York TAGM	T	'TW-47		Γ	'TW-48			'TW-48			T147.40							
Field Sample ID	Recommended Soil	TW-	47-122204	S017	i . Tw	48-122304	5016	T\\(\alpha\)	48-1223045	2010	, may	TW-49			'TW-50			'TW-51	
Lab Sample Numb	Cleanup Objective	i	596207			596212	5010		596213	010	1 1 1 1 1 1 1	19-1228045	002	1W-	50-1228049	5002	TW-	51-1229045	S002
Sampling Date	(mg/kg)	1	12/22/04			12/23/04		•	12/23/04		[596817			596 8 18			596857	
Matrix		1	SOLID		{	SOLID		ł	SOLID		ł	12/28/04		1	12/28/04		1	12/29/04	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	 	SOLID		<u> </u>	SOLID		<u> </u>	SOLID	
Aluminum	33,000*	6740			4530		Qual	2700	MUL	Quai	2780	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Antimony	SB	ND	1.4		ND	1.4		ND	1.4		ND ND			3200			3480		
Arsenic	7.5 or SB	6.1			5.9		 	1			7.6	1.4		ND	1.4		ND	1.5	
Barium	300 or SB	13.4		J	25.6			6.7		-	55.3			5.9			39.8		
Beryllium	0.16 (HEAST) or SB	0.49			# 0.31°		J	0.29		- -	0.38			11.5 0.29		J	108		<u> </u>
Cadmium	1 or SB	0.32		J	0.11		1 -	ND	0.098	-	ND	0.095	J	Comment of the control of	0.000	J	0.3		J
Calcium	35,000*	429		J	281		J	213	0.050		1620	0.095		ND	0.096		ND	0.1	ļ
Chromium	10 or SB	11.7			8.2			6.6			9.4			329		J	2190		}
Cobalt	30 or SB	7.4		J	7.6		 	2.3		 ,	3.3			7.2			>-:11.7 % ·		
Copper	25 or SB	8.3			5.5		<u> </u>	4.3			32.2			2.4		J	5.3	<u> </u>	. J
Iron	2,000 or SB	18600		ļ	8330			10200		— <u> </u>	15000			12.7 9670			59.8		<u></u>
Lead	500*	5.5			4.1		 	3.2		<u> </u>	51.1						15000		
Magnesium	5,000*	1450			860			482			1160			4.7			86.9		ļ
Manganese	5,000*	103.			29.6			29.1			103			549		J	797		J
Mercury	0.1	ND	0.02		ND	0.02		ND	0.02	·	0.12			31.8		ļ	146		
Nickel	13 or SB	8.8		J	6.3			3.4			16.4			ND	0.02	ļ	0.21		
Potassium	43,000*	724		J	462			411			368			4.1 311		<u>J</u>	39.8		
Selenium	2 or SB	ND	1	t	ND	1	t	ND	1	<u>-</u> -	1.8			ND ND		J	343		J
Silver	SB	ND	0.33		ND	0.33		ND	0.34		ND	0.33		ND	- 1		1.2		J
Sodium	*000	136		J	107		<u> </u>	111			90.2	<u>v.ss</u>			0.33		ND	0.36	
Thallium	SB	ND	1.1		ND	1.1	 	ND	1.2	-	ND ND	1.1	J	ND ND	94.6		ND	103	
Vanadium	150 or SB	20		T	13.4			12.9	1.2		17,3			ND.	1.1		ND ND	1.2	
Zinc	20 or SB	34.6			22.2		 	20,1			127			12.9 20.4			26.5 96.9		ļ

Notes and Abbreviations

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- ⇒ No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit

ND = The compound was not detected Conc = Concentration

Qual = Laboratory Data Qualifier

MDL = Method Detection Limit

SB = Site Background Concentration

mg/kg = Milligrams per kilograms

,

Location	New York TAGM	T	'TW-52			TW-68		т	TW-69		, 	TIAL TOA							
Field Sample ID	Recommended Soil	TW-	52-122904	S002	۱ ،	33105S00) ,	33105S00		i.	TW-70A	_]	TW-71A			TW-71A	
Lab Sample Numb	Cleanup Objective	i	596856		ľ	620686	' '	1 "	620687	14	"	33105500	2	٥ ١	40105800	5	0	040105 S 00	7
Sampling Date	(mg/kg)	}	12/29/04		1	03/31/05		ł	02/31/05		1	620688 03/31/05		1	620937]	620938	
Matrix			SOLID		i	SOLID		ł	SOLID		i	SOLID			04/01/05			04/01/05	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	SOLID			SOLID	
Aluminum	33,000*	5000			8020			8320		- Guai	5650	- 11101	Quai		MDL	Qual	Conc	MDL	Qual
Antimony	SB	ND	1.4		5.1			4.7		 	ND ND	4.2		9990		<u> </u>	4620		ļ
Arsenic	7.5 or SB	99.3			24.0			3111			23.1	1.2	·	ND	0.95	ļ	ND	0.93	
Barium	300 or SB	151			313		 	409		 -	91.1			3.4			4.2		
Beryllium	0.16 (HEAST) or SB	0.32	···	J	0.76		t	0.91			0.29		ļ	12.8		J	7.6		J_
Cadmium	I or SB	ND	0.095		1.4		 	3.6		 	ANT 100 TO 100 T	0.000	J	0:43		J	0.33		<u> </u>
Calcium	35,000*	10900			21200		t	17500			ND 17700	0.082		ND	0.098	ļ	ND	0.096	1
Chromium	10 or SB	16.1			28.3			59.2			16.0			537		J	335		J
Cobalt	30 or SB	5.1		J	9.8		 	10.9						12.3		ļ	8.1		
Copper	25 or SB	- 56.3			307		† - -	347		<u> </u>	7.5 88.0		J	4.0		J	4.0		L_J_
Iron	2,000 or SB	18700		 	41800		 	35800		 -	18600.			10.8			6.6	L	ļ
Lead	500*	65.7			541			660		 	80.7		<u> </u>	14900	<u> </u>	ļ	×11200		l
Magnesium	5,000*	3890			3780		 	3560	 -		9030			6.5		ļ	3.8		L
Manganese	5,000*	111			631		 	293		<u> </u>	218			1690			814		J
Mercury	0.1	€ 0.45			41.4		 -	2.7		 -	0.30		ļ	61.2			36.1		
Nickel	13 or SB	33.5			38.6	·······	 -	84.1		[22,6			ND	0.020	ļ	ND	0.020	Ļ
Potassium	43,000*	352		J	1080		J	887		 ,	476		ļ	.9.5 ்			₹6.0 .		<u>J</u>
Selenium	2 or SB	1.3			1.9			3.2					J	484		J	493		_ J_
Silver	SB	ND	0.33	l	0.79		 	1.3		 	11.1		ļ	ND	1.1		ND	1.1	L
Sodium	*000,8	ND	93.8		270		 	354			ND	0.29		ND	0.20		DN	0.19	ļ
Thallium	SB	ND	1.1		ND ND	1.5	 	ND ND	1.5	ļ	275	0.00	J	106		J	ND	86.5	<u></u>
Vanadium	150 or SB	73.7			62.2			80.9	1.0	 	ND 30.8	0.96		ND	1.1		ND	1.1	ļ
Zinc	20 or SB	269			720		 	901		 	30.8			17.6	<u> </u>		14.3		l
					ASSATE TO WAR		<u> </u>	1-3- 901			109			32.9		ſ	23.1		

- Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- * = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit
- SB = Site Background Concentration
- mg/kg = Milligrams per kilograms

Location	New York TAGM	T	TW-72			TW-73													
Field Sample ID	Recommended Soil	TW-	72-040405	Snn4	TW.	1 VV - 7 3 73-040405	cone		TW-73		1	TW-74			TW-75			TW-76	
Lab Sample Numb	Cleanup Objective	1	621712	3004	1 , , , , ,	621713	2002	100	73-040405	S008	4-	040105S0	05	0	40105\$00	6	TW-	76-040505	S006
Sampling Date	(mg/kg)	ı	04/04/05		1	04/04/05			621714		l	620939	•		620940		Į.	621716	
Matrix	· • • • • • • • • • • • • • • • • • • •	l l	SOLID		l	SOLID			04/04/05		1	04/01/05		1	04/01/05		.	04/05/05	
METALS		Conc	MDL	Qual	Conc	MDL	Qual		SOLID		<u> </u>	SOLID			SOLID			SOLID	
Aluminum	33,000*	5820			6950	MUL	Quai	7040	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Quai	Conc	MDL	Qual
Antimony	SB	ND	0.94		ND	1.00		ND	0.92	ļ	4650			1610		ļ	5800		
Arsenic	7.5 or SB	29.7			14.9	1.00		4.5	0.92		ND 7.4	0.92		ND	1.1	ļ	ND	0.92	
8arium	300 or SB	173			107			11.5			12.9			15.2		<u> </u>	2.7		
Beryllium	0.16 (HEAST) or SB	₹ 0.52			0.52			20.36			0.34		<u>J</u>	45.4			10.7		J
Cadmium	1 or SB	ND	0.097		ND	0.10		NO	0.095	- -	ND			0.16			- 0.34		<u> </u>
Calcium	35,000*	7340			3900			376	0.053		584	0.094		ND	0.11		ND	0.094	
Chromium	10 or SB	16.4			14.4			10.0			8.1		J	1190		J	484		J
Cobalt	- 30 or SB	7.9		J	6.1			5.3			3.4			5.5		ļ	8.7		
Copper	25 or SB	83.2			49.9		-	9.6			22.4		<u>J</u>	2.5		J	2.6		J
Iron	2,000 or SB	23800			17600			11900			12200			20.5		ļ	7.7		
Lead	500*	138			77.1			5.3			6.5			312000		L	10500		<u> </u>
Magnesium	5,000*	2810			1970			1280		 -	828			62.3		 	4.6		
Manganese	5,000*	163			109			47.5			74.9			373		J	937		J
Mercury	0.1	0.59			0.32			ND	0.020		ND ND	0.020		122 0.23			40.9		
Nickel	13 or SB	×72.4			¥45.6			3.7.9	0.020		6.1	0.020		75		<u> </u>	ND	0.020	
Potassium	43,000*	515		J	569		<u>J</u>	546			391		<u>J</u> _	7.8		J	7.9		J
Selenium	2 or SB	ND	2.3		ND	1.2	<u>-</u>	ND	1.1	 -	1.3		J	418		J_	374		L . J
Silver	SB	ND	0.19		ND	0.20		ND	0.19		ND ND	0.19		ND	6.6		ND	1.1	
Sodium	8,000*	ND	87.4		101		j	ND	85.4		ND			ND	0.23		ND	0.19	İ
Thallium	SB	ND	1.1		ND	1.1	<u>-</u> -	ND	1.0		ND ON	85.2		ND	102	<u> </u>	371		J
Vanadium	150 or SB	25.4			22.9		 -	15.3	1.0		14.3	1.0		ND	1.9		ND	1.0	
Zinc	20 or SB	12171			128			25.4			24.8			13.4		J	13.5		
		*			* * * * * * * * * * * * * * * * * * *						24.8			35.0			28.3		L

Notes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- * = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
- ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit
- ND = The compound was not detected

Conc = Concentration

Qual = Laboratory Data Qualifier

MDL = Method Detection Limit

SB = Site Background Concentration

mg/kg = Milligrams per kilograms

Location	New York TAGM	T	TW-77		T	TW-78			TWP-13			TWP-14		T	TWP-14	
Field Sample ID	Recommended Soil	TW-7	7-040505	5004	TW-7	8-0405055	5003	0:	33005S00	2	40	040105S00	07	0	40105S00	9
Lab Sample Numb	Cleanup Objective	1	621717		•	621718			620685		}	620941		1	620942	
Sampling Date	(mg/kg) · ·	1	04/05/05		Į.	04/05/05		1	03/30/05		ļ	04/01/05		ŀ	04/01/05	
Matrix			SOLID		L	SOLID		<u> </u>	SOLID		<u> </u>	SOLID		<u> </u>	SOLID	
METALS		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
Aluminum	33,000*	4460			5350			5830			5690			4180		
Antimony	SB	ND	0.97		ND	0.98		ND	1.3		ND	1.0		ND	0.91	
Arsenic	7.5 or SB .	₹0 8.7			9.2			3.8			5.4			3.3		
Barium	300 or SB	69.2			122			44.3			24.2		J	6.9		J
Beryllium	0.16 (HEAST) or SB	0.51			0.36		J	€0,35		J	0.30		J	0.23		J
Cadmium	l or SB	ND	0.099		ND	0.10		ND	0.091		ND	0.11		ND	0.093	
Calcium	35,000*	1440			8940			2160			1060		J	263		J
Chromium	10 or SB	12.0			22.7			- 13.2			8.8			9.0		
Cobalt	30 or SB	4.7		j	2.5		J	4		J	2.2		J	3.0		J
Copper	25 or SB	37.5			66.8			19.9			. 172°			5.8		
Iron	2,000 or SB	14200			18500			14900			8380			311400		
Lead	500*	52.6			53.5			19.4			45.5			3.5		
Magnesium	5,000*	716		J	2310			1830			758	, , , , , , , , , , , , , , , , , , ,	J	958		J
Manganese	5,000*	84.2			82.2			197			37.8			52.2		1
Mercury	0.1	1.1			0.28			0.06			0.05			ND	0.019	1
Nickel	13 or SB	18.6			24.9			9.6			6.3		J	5.0		J
Potassium	43,000*	404		J	415		J	566		J	386		J	491	I	j
Selenium	2 or SB	ND	2.3	T	ND	1.2		ND	0.96		ND	1.2	1	ND	1.1	
Silver	SB	ND	0.20		ND	0.20		ND	0.32		ND	0.21	1	ND	0.19	
Sodium	*000,8	148		J	144		J	100		J	99.9		J	ND	84.1	
Thallium	SB	ND	1.1		ND	1.1		ND	1.1		ND.	1.7		ND	1.0	
Vanadium	150 or SB	17.1			18.0			27.1			13.7			14.6		
Zinc	20 or SB	∴ 80.3		1	65.5			38.3		 	32.3			22.9		1

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective or Eastern US background concentration
- * = No Recommended Cleanup Objective has been established. The value provided is the backgroun concentration value from TAGM 4046.
 ** = Field Duplicate Samples
- J = Reported value is less than the reporting limit but greater than the instrument detection limit
- ND = The compound was not detected
- Conc ≈ Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit
- SB = Site Background Concentration
- mg/kg = Milligrams per kilograms

Location	Field Sample ID	Lab Sample Number	Sampling Date	Matrix	TPHC Concentration (mg/kg)
BLDG20-C1	B20C1-032305S003	618546	03/23/05	SOLID	25.0
BLDG20-C2	B20C2-032405S002	618548	03/24/05	SOLID	275
BLDG32-C1	C1032505S003	618773	03/25/05	SOLID	1490
BLDG32-C2	0325058002	618774	03/25/05	SOLID	1060
BLDG32-C3	032505\$003	618775	03/25/05	SOLID	544
BLDG32-C4	B32C4-032405S002	618549	03/24/05	SOLID	543
BLDG32-C5	B32C5-032405S002	618550	03/24/05	SOLID	1510
STAIN03-C1	STA03C1-032405S3	618551	03/24/05	SOLID	535
STAIN03-C2	STA03C2-032405S2	618552	03/24/05	SOLID	2140
STAIN03-C3	STA03C3-032405S3	618553	03/24/05	SOLID	311
UST7-C1	032905S004	620681	03/29/05	SOLID	347
UST7-C2	032905S006	620682	03/29/05	SOLID	3810
UST7-C3	033005S006	620684	03/30/05	SOLID	149
UST7-C4	032905S005	620683	03/29/05	SOLID	825
UST7-C5	032505S006	618771	03/25/05	SOLID	947
UST7-C6	032505S005	618772	03/25/05	SOLID	1140
TW-68	033105S001	620686	03/31/05	SOLID	691
TW-69	033105S004	620687	03/31/05	SOLID	294
TW-70A	033105S002	620688	03/31/05	SOLID	87.5
TW-71A	040105S005	620937	04/01/05	SOLID	4980
TW-71A	040105S007	620938	04/01/05	SOLID	183
TW-72	TW-72-040405S004	621712	04/04/05	SOLID	13000
TW-73	TW-73-040405S005	621713	04/04/05	SOLID	4030
TW-73	TW-73-040405S008	621714	04/04/05	SOLID	29.6
TW-74	4-040105S005	620939	04/01/05	SOLID	25.0
TW-75	040105S006	620940	04/01/05	SOLID	83.9
TW-76	TW-76-040505S006	621716	04/05/05	SOLID	25.0
TW-77	TW-77-040505S004	621717	04/05/05	SOLID	152
TW-78	TW-78-040505S003	621718	04/05/05	SOLID	132
TWP-13	033005S002	620685	03/30/05	SOLID	52
TW-14	4040105S007	620941	04/01/05	SOLID	310
TWP-14	040105S009	620942	04/01/05	SOLID	25.0

Notes and Abbreviations

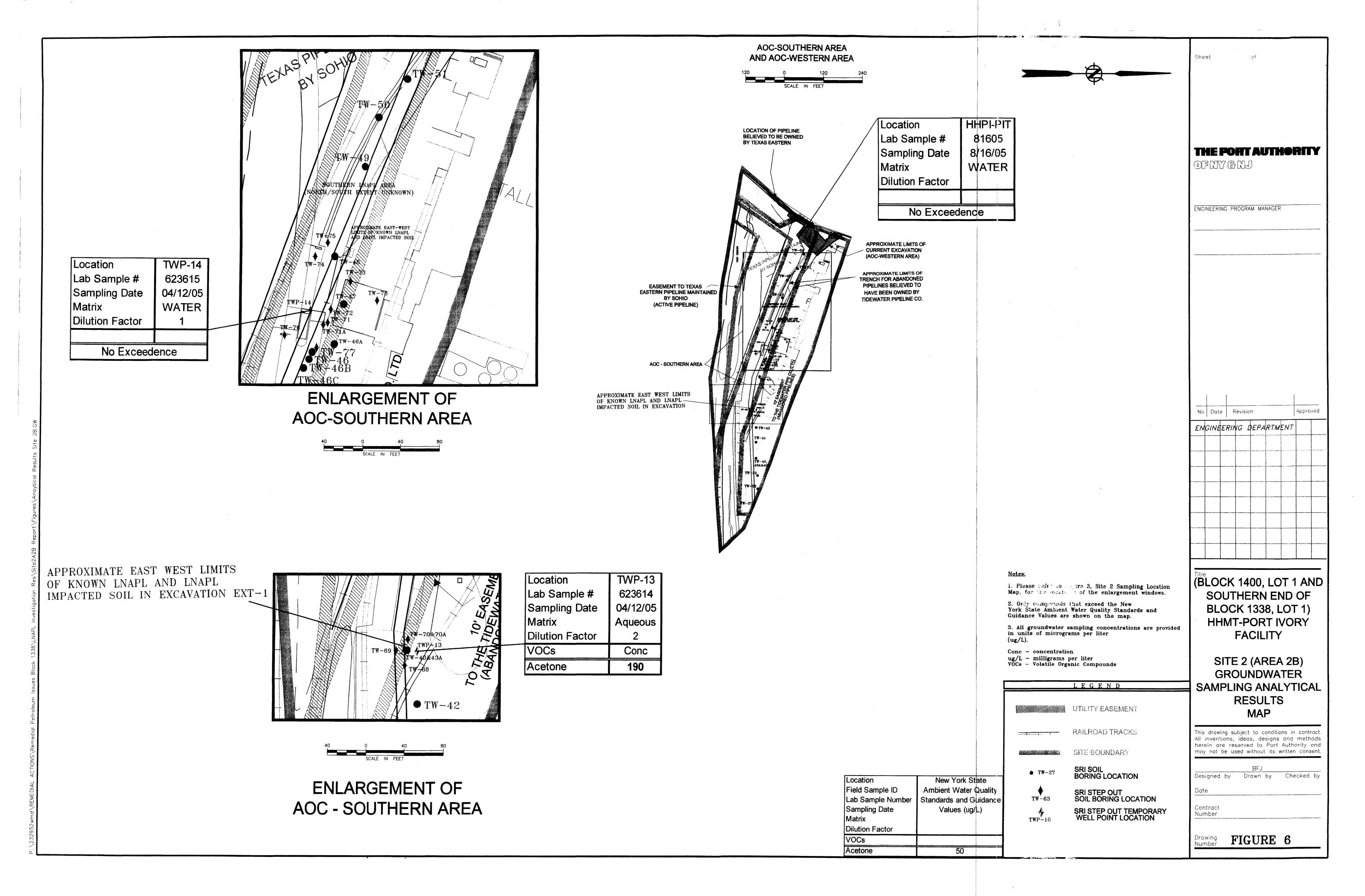
1) No New York TAGM Recommended Soil Cleanup Objective has been established for TPHC.

mg/kg = Milligrams per kilograms
TPHC = Total petroleum hydrocarbons

soil encountered in the vicinity of soil boring location TW-47 had degraded groundwater quality. Both groundwater samples were analyzed for TCL VOCs and TCL SVOCs. Groundwater sampling results are summarized in Table 3A-B and on Figure 6. Temporary well locations are shown on Figure 3.

For the purposes of this summary of analytical results, the results have been compared to current NYSDEC AWQSGVs. The NYSDEC AWQSGVs assume that groundwater is classified as GA, a potential drinking water source. Given the location of the site and the potential for the groundwater to be saline, the published AWQSGVs are not appropriate for use at this site. However, at this time, these represent the only guidance available for ambient groundwater. Please note, the reference of these cleanup objectives in this report does not represent any agreement or concurrence that same are appropriate for usage at this site. A discussion of the analytical results from the groundwater component of the investigation is provided below.

Acetone, a common laboratory solvent, was the only compound detected at a concentration greater than its AWQSGV. The total concentration of VOC TICs detected in the groundwater sample collected at location TWP-13 was 190 ug/L. No VOC TICs were detected in the groundwater sample collected at location TWP-14.


Neither targeted SVOCs nor SVOC TICs were detected in the groundwater samples collected at temporary well locations TWP-13 and TWP-14.

Quality Assurance/Quality Control – Groundwater Samples

To monitor the effectiveness of the field decontamination procedures and the degree to which the laboratory may have contaminated the groundwater samples, QA/QC samples were collected. The Port Authority collected one field blank and one trip blank. The field blank was analyzed for TCL SVOCs and was prepared by running laboratory-grade DI water over the sampling equipment. The trip blank was prepared by the analytical laboratory and was shipped with the groundwater sampling jars from the laboratory and transported to the laboratory with the groundwater samples. The field blank was analyzed for TCL VOC and TCL SVOC, while the trip blank was analyzed for VOCs only.

No targeted VOCs, VOC TICs, targeted SVOCs, or SVOC TICs were detected in the field blank (see Table 3A-B for a summary of the QA/QC results). It can therefore be inferred that the field decontamination procedures were effective.

TABLE 3A SUMMARY OF GROUNDWATER ANALYTICAL RESUTLS - VOCs SITE 2 HHMT-PORT IVORY FACILITY

Location	New York State	TWP-13			TWP-14			Field Blank			Trip Blank		
Field Sample ID	Ambient Water Quality	13-041205WG01			14-041205WG01			FB-01-041205WQ01			TB-01-041205WQ01		
Lab Sample Number	Standards and Guidance	623614 04/12/05 WATER			623615 04/12/05 WATER			623616 04/12/05 WATER			623617 04/12/05 WATER		
Sampling Date	Values (ug/L)												
Matrix	1												
Dilution Factor	!	2			1			<u> </u>			1		
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
1.1.1-Trichtoroethane	5	ND	10		ND	5.0		ND	5.0		ND	5.0	
1 1.2.2-Tetrachioroethane	5	ND	2.0	<u>L</u>	ND	1.0	J	ND	1.0		ND	1.0	J
1.1.2-Trichloroethane	1	ND	6.0	<u> </u>	ND	3.0		ND	3.0		ND	3.0	
1 1-Dichloroethane	5	ND	10	l	ND	5.0		ND	5.0		ND	5.0	
1 1-Dichlorgethene	5	ND	4.0	<u> </u>	ND	2.0	\	ND	2.0		ND	2.0	·
1 2-Dichloroethane	0.6	ND	4.0		ND	2.0	ļ	ND_	2.0		ND	2.0	ļ
1.2-Dichloropropane	1	ND	2.0		ND	1.0	ļ	<u>ND</u>	1.0		ND	1.0	ļ
2-Butanone	50	2.7		J	ND	5.0		ND	5,0	ļ	ND	5.0	
2-Hexanone	50	ND_	10	<u> </u>	ND	5.0	<u> </u>	ND	5.0		ND	5.0	
4-Methyl-2-Pentanone	NS	ND	10		ND	5.0		ND	5.0	ļ	ND	5.0	<u> </u>
Acetone	50	190 🐭			ND	5.0	<u> </u>	ND	5.0		ND	5.0	
Benzene	1	ND	2.0		ND	1.0	1	ND	1.0	ļ	ND	1.0	l
Bromodichloromethane	50	ND	2.0		ND	1.0	L	ND	1.0		ND	1.0	ļ
Bromoform	50	ND	8.0	I	ND .	4.0		ND	4.0		ND	4.0	ļ
Bromomethane	5	ND	10		ND	5.0		ND	5.0	<u> </u>	ND	5.0	ļ
CarbonDisulfide	NS	ND	10	Ι	ND	5.0		ND	5.0		ND	5.0	
CarbonTetrachloride	5	ND	4.0		ND	2.0		ND	2.0	L	ND	2.0	ļi
Chlorobenzene	5	ND	10	I	ND	5.0		ND	5.0		ND	5.0	ļ
Chloroethane	5	ND	10		ND	5.0		ND	5.0	<u></u>	ND	5.0	L
Chloroform	7	ND	10		0.3	<u> </u>	J	ND	5.0	J	ND	5.0	ļ
Chloromethane	5	ND	10		ND	5.0	L	ND	5.0	ļ	ND	5.0	Ļ
cis-1,2-Dichloroethene	5	ND_	10		ND	5.0	l	ND	5.0	1	ND	5.0	ļ
cis-1.3-Dichloropropene	*0.4	ND	10		ND	5.0	Ii	ND	5.0	ļ	ND	5.0	
Dibromochloromethane	50	ND	10	1	ND	5.0	<u> </u>	ND	5.0	<u> </u>	ND	5.0	<u> </u>
Ethylbenzene	5	ND	8.0		ND	4.0	L	ND	4.0	ļ	ND	4.0	_
MethyleneChloride	5 .	ND	6.0	1	ND	3.0	L	ND	3.0		ND	3.0	
Styrene	5	ND	10		ND	5.0	I	ND	5.0	L	ND	5.0	
Tetrachioroethene	5 .	ND_	2.0	I	ND	1.0	l'	ND	1.0		ND	1.0	<u> </u>
Toluene	5	ND	10		ND	5.0		ND	5.0		ND	5.0	II
trans-1,2-Dichloroethene	5	ND	10	l	ND	5.0		ND	5.0		ND	5.0	
trans-1,3-Dichloropropene	*0.4	ND	10		ND	5.0	L	ND	5.0	 	ND	5.0	ļ
Trichloroethene	5	ND	2.0		ND	1.0		ND	1.0	 	ND	1.0	
VinylChloride	2	ND	10	L	ND	5.0	L	ND	5.0	L	ND	5.0	L
Xylene(Total)	5	ND	10	1	ND	5.0	L	ND	5.0	1	ND	5.0	
Total VOC Concentration	NS	192.7			0.3			0		ļļ	. 0		├
Total VOC TICs Concentration	NS	190		J	0	L	<u> </u>	0			0		

Notes and Abbreviations

1) All results provided in units of micrograms per liter (ug/L).

2) Bold font in a shaded box indicates an exceedance of the standard or guidance value for the compound.

* = The standards are for total 1,3-Dichloropropene isomers VOC TICs = Tentatively identified volatile organic compounds

ND = Not detected

J = The compound was detected at a concentration below the method detection limit (MDL). The concentration provided is an estimate.

NS = No standard or guidance value is available

Conc = Concentration

MDL = Method detection limit -

Qual = Laboratory data qualifier

B 87

11/20/2006 1:59 PM

Page 1 of 1

Master GW Analytical Date Site 2A2B

TABLE 3B SUMMARY OF GROUNDWATER ANALYTICAL RESUTLS - SVOCS SITE 2 HHMT-PORT IVORY FACILITY

	•												
Location	New York State TWP-13					TWP-14			ield Blank		Trip Blank		
Field Sample ID	Ambient Water Quality	13-041205WG01 623614 04/12/05			14-041205WG01 623615 04/12/05			FB-01	1-041205W	Q01	TB-01	-041205W	/Q01
Lab Sample Number	Standards and Guidance								623616			623617	
Sampling Date	Values (ug/L)								04/12/05		ĺ	04/12/05	
Ollution Factor		WATER			. '	WATER			WATER		l	WATER	
		_ 2			1			11			1		
Semivolatile Organic Compounds (SVOCs)	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qua
1,2,4-Trichlorobenzene	10	ND	1.0		ND	1,1		ND	1.1		NR .		
1.2-Dichlorobenzene	3	ND	10	<u> </u>	ND	11		ND	11		NR		
1.3-Dichlorobenzene	3	ND	10	<u> </u>	ND	11	ļ	ND_	11	<u> </u>	NR_	ļ	-
1.4-Dichlorobenzene	3	ND	10		ND	11	I	ND	11		NR NR		
2,4,5-Trichlorophenol	••1	ND	10		ND	11	ļ	ND	11	_	NR NR	}	
2,4,6-Trichlorophenol		ND.	10	ļ—	ND	11		ND ND	11		NR		
2,4-Dichlorophenol	**1	ND	10		ND ND	11	 	ND	11	 	NR]·	-}
2,4-Dimethylphenol	**1	ND	40	ļ.——	ND	44	1	ПD	42	 	NR	l	+
2,4-Dinitrophenol		ND ON	2.0		ND	2.2		ND	2,1		NR		
2,4-Dinitrotoluene	<u>5</u>	ND	2.0		ND	2.2	 	ND	2.1	 	NR		T
2,6-Dinitrotoluene	10	ND	10		ND	11		ND	11		NR		1
2-Chioronaphthaiene	**1	ND	10		ND	11	Ţ	ND	11		NR		
2-Chlorophenol	NS	ND	10		ND	11	T	ND	11		NR		
2-Methylphenol	**1	ND	10	 -	ND	11		ND	11		NR		
2-Methylphenol 2-Nitroaniline	5	NO	20	1	ND	22		ND	21		NR		
2-Nitrophenol	••1	ND	10		ND	11		ND	11	<u> </u>	NR		
3.3'-Dichlorobenzidine	5	ND	20		ND	22		ND	21		NR :		
3-Nitroaniline	5	ND	20		ND	22	<u> </u>	ND	21		NR		
4,6-Dinitro-2-methylphenol	**1	ND	40	L	ND	44	 	ND	42	<u> </u>	NR		
4-Bromophenyl-phenylether	**1	ND	10	<u> </u>	ND	11	ļ	ND	11	ļ	NR	ļ	
4-Chloro-3-methylphenol	••1	ND	10		ND	11		ND	!!	ļ	NR NR		
4-Chloroaniline	5	ND	10	ļ	ND	11.	L	ND ND	11		NR		+
4-Chlorophenyl-phenylether	NS	ND	10	<u> </u>	ND ND	11	łi	ND	 		NR		 -
4-Methylphenol	••1	ND	10		ND	22	 	ND	21	<u> </u>	NR		
4-Nitroaniline	5	ND	40		ND	44		ND	42	 	NR		1
4-Nitrophenol	*1	ND ND	10		ND -	11	 	ND	11	<u> </u>	NR		
Acenaphthene	· 20	ND	10		ND	-11	 	ND	11		NR		1
Acenaphthylene	50	ND	10		ND	11		ND	11		NR		
Anthracene	0.002	ND ND	1.0		ND	1.1		ND	1.1		NR		
Benzo(a)anihracene	MDL	ND	1.0		ND	1.1,		ND	1.1		NR		
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	ND	1.0	1	ND	1.1		ND	1,1		NR		
Benzo(g,h,i)perylene	NS	ND	10		ND	11		ND	11		NR		
Benzo(k)fluoranthene	0.002	ND	1.0		ND	1.1		ND	1.1		NR		<u> </u>
bis(2-Chloroethoxy)methane	5	ND	10		ND	11		ND	11		NR		}
bis(2-Chloroethyl)ether	1	ND	1.0	ļ	ND	1,1		ND	. 1.1		NR .		├
bis(2-chloroisopropyl)ether	5	ND	10		ND	11		ND ND	11		NR NR		
bis(2-Ethylhexyl)phthalate	5	ND	10		ND	11		ND	11	ļ	NR		-
Butylbenzylphthalate	50	ND	10		ND ND	11		ND	11		NR		
Carbazole	NS NS	ND ND	10		ND	11		ND -	11		NR		1
Chrysene	0.002	NO	1.0		ND	1.1		ND	1.1	-	NR		T
Dibenz(a,h)anthracene	NS NS	NO	10		ND	11	·	ND	11		NR		-
Dibenzoluran	50	-ND	10	tI	ND	11		ND	11		NR		
Diethylphthalate Dimethylphthalate	50	ND	10		ND	11		ND	11		ŅR		ļ
Di-n-butylphthalate	50	ND	10		ND	11		ND	11		NR		1
Di-n-octylphthalate	50	ND	10		ND	11		ND	11		NR		
Fluoranthene	50	ND	10		ND	11		ND	11	L	NR NR		ļ
Fluorene	50	ND	10		ND	11		ND	11		NR		
Hexachlorobenzene	0.04	ND	1.0		ND	1.1		ND	1.1		NR NR	<u> </u>	
Hexachlorobutadiene	0.5	ND	2.0		ND	2.2		NO .	2.1		NR		
Hexachlorocyclopentadiene	5	ND	10	ļI	ND	11		ND_	11	<u> </u>	NR NR		
Hexachloroethane	5	ND	1.0	} <i>-</i>	ДИ	1.1	 	ND	1.1	i	NR NR		
indeno(1,2,3-cd)pyrene	0.002	ND	1.0	∤ -{	ND	1.1		ND ND	11		NR NR		-
Isophorone	50	ND	10		ND ND	11		ND	11		NR		
Naphthalene	10	ND ND	1.0	-	ND	1.1	} <u> </u>	ND	1.1		NR		
Nitrobenzene	5	ND QN	1.0		ND	1,1	-	ND	1.1		NR		t
N-Nitroso-di-n-propylamine	50 50	ND ND	1.0	} 	ND	11	 	ND	11		NR NR		1
N-Nitrosodiphenylamine	**1	ND	40		ND	44		NO	42		NR		T
Pentachlorophenol	50	ND	10		ND	11		ND	11		NR		
Phenanihrene	**1	ND	10		ND	11		ND	11		NR		
Phenoi	50	ND	10	-	ND	11		ND	11		NR		
Pyrene Total SVOC Concentration	NS NS	0	· · · · · ·		0			0			NR		
2 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1 G 1					0						NR		

Notes and Abbreviations

1) All results provided in units of micrograms per liter (ug/L).

** = The standards are for total chlorinated and non-chlorinated isomers SVOC TICs = Tentatively identified semivolatile organic compound

ND = Not detected
NS = No standard or guidance value is available

onc = Concentration
DL = Method detection limit
Qual = Laboratory data qualifier

NR = Not analyzed

Master GW Analytical Data Site 2A2B

Neither targeted VOCs nor VOC TICs were detected in the trip blank. This is one indication that the analytical laboratory may not have contaminated the groundwater samples, although other QA/QC sample results must also be analyzed as required by the method in order to confirm this conclusion.

8.0 DISCUSSION/CONCLUSIONS

The overall goal of these investigations was to determine whether further investigative and/or remedial efforts are warranted for media at Site 2 given the proposed site redevelopment for commercial (intermodal facility) purposes. To meet the previously stated objectives, the SRI included the collection of soil samples at Area 2A and the collection of both soil and groundwater samples at Area 2B.

While the presence of LNAPL in soil is itself an impact, the field component of the SRI indicated that the majority of soil at Area 2A and soil and groundwater at Area 2B have not been degraded with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G. In general, the concentrations of metals and organic compounds detected in the soil samples collected at Area 2A during the SRI are similar to those detected in soil throughout the HHMT-Port Ivory Facility and are attributable to the former placement of fill by P&G. Soil in areas of concern AOC-Bldg20 and AOC-Bldg32/32A did not suggest the presence of LNAPL-impacted soil and did not contain any metal or compound that was targeted for analysis at a concentration above its respective RSCO. However, LNAPL-impacted soil was encountered at locations within AOC-UST7 and arsenic was detected in soil at locations within AOC Stain 3 at concentrations in excess of those detected throughout the HHMT-Port Ivory Facility (i.e., in excess of the arsenic concentrations believed to be attributable to the former placement of fill by P&G).

In general, the concentrations of metals and compounds detected in soil at Area 2B were similar to those detected throughout the HHMT-Port Ivory Facility and are attributable to the former placement of fill by P&G. Soil at three soil boring locations (TW-71A, TW-72, and TW-73) contained TPHC and VOC TICs at concentrations that were greater than those typically encountered in fill materials placed by P&G. LNAPL-impacted soil was encountered at two separate locations along the Tidewater pipelines. Based on the analytical data for groundwater samples collected at temporary well locations TWP-13 and TWP-14, both installed where LNAPL-impacted soil was present, LNAPL-impacted soil at Area 2B is not a source of groundwater impacts.

The following is a discussion of the data, including field observations, geophysical data, analytical data, and data generated prior to this SRI (as necessary). The discussion is organized based on the different objectives for the SRI. The data obtained during implementation of the SRI at Area 2A are discussed in Section 8.1. The data obtained during implementation of the SRI at Area 2B are discussed in Sections 8.2.1 through 8.2.6, each of which addresses one of the objectives of the SRI at Area 2B.

8.1 Soil Analytical Results and Field Observations – Area 2A

The following sections discuss the analytical results and the field observations associated with each of the four AOCs investigated at Area 2A during the SRI: AOC-Stain3, AOC-UST7, AOC-Bldg20, and AOC-Bldg32/32A.

AOC-Stain3

AOC-Stain3 was investigated to confirm that the Port Authority's previous removal of discolored soil from the unfinished floor of Building No. 20 had successfully remediated soil at this portion of the facility. One soil sample was collected from the top two feet of each of three soil borings advanced at AOC-Stain3. Discolored soil was observed at all three soil boring locations. However, based on field observations (i.e., the lack of odor, the lack of elevated PID readings, and the light gray color of the soil), the discoloration is not associated with petroleum impacts.

The analytical results for the soil samples collected at AOC-Stain3 indicate that, although the SVOC phenol, various PAH compounds, and various metals were detected at concentrations above their respective RSCOs, the presence of these compounds and metals is generally attributable to the former placement of fill at the HHMT-Port Ivory Facility by P&G. However, the concentrations of arsenic detected in the soil samples collected at locations STAIN03-C1 and STAIN03-C2 was greater than those typically detected in the fill materials placed by P&G. The concentration of arsenic detected in the soil sample collected at STAIN03-C3 exceeded the RSCO for arsenic but is consistent with arsenic concentrations detected in fill placed at HHMT-Port Ivory by P&G.

A comparison between the analytical data generated for soil in this AOC during the SI and SRI indicates that soil impeated by PAH compounds has been successfully remediated through soil removal efforts completed after the SI but before the SRI. The sample collected at AOC-Stain3 prior to removal of the soil (i.e., during the SI), identified as soil sample STAIN03, contained a concentration of total PAH

compounds of more than 2,300 mg/kg. In addition, the concentrations of individual PAH compounds were as great as 540 mg/kg. In the three soil samples collected at AOC-Stain3 during the SRI, the concentrations of total PAH compounds ranged from approximately 3.9 to 14.3 mg/kg and the greatest concentration of any individual PAH compound was 2 mg/kg.

A comparison of the soil analytical data from the SI to that generated during the SRI indicates a general decline in the concentrations of TAL metals detected in soil. Of the eight TAL metals (arsenic, beryllium, chromium, copper, iron, mercury, nickel, and zinc) detected at concentrations above their respective RSCOs in the soil samples collected during the SRI, six were detected at greater concentrations in the SI sample STAIN-3B. Therefore, with exception of the metals arsenic and nickel, the soil that was removed from AOC-Stain3 (by the Port Authority) appears to have contained metals at higher concentrations than the soil currently present in that AOC. In addition, the concentration of nickel in soil at this AOC has increased only slightly, from a maximum concentration of 34 mg/kg in soil sampled during the SI to a maximum concentration of 35.6 mg/kg in samples of soil that remains at AOC-Stain3. The overall reduction in the concentration of total metals, which was as great as almost 117,000 mg/kg, currently ranges up to approximately 64,400 mg/kg (i.e., a 45% reduction). This reduction further demonstrates that the soil removal efforts by Port Authority resulted in a significant decrease in the concentration of contaminants present at AOC-Stain 3. Aluminum, calcium, iron, magnesium, potassium, and sodium together constitute, by mass, approximately 96% to 99.5% of the metals that were detected in soil at this AOC. The listed metals are not considered to pose a significant threat to human health, and consequently are not listed in the US Environmental Protection Agency's Integrated Risk Information System (IRIS) database except when they form compounds with hazardous materials (e.g., calcium cyanide is listed, but calcium itself is not).

Based on the SRI soil sampling analytical data, samples collected from soil currently at AOC-Stain3 generally contain lower concentrations of PAH compounds and metals than samples collected during the SI. The soil sampled during the SI was removed by the Port Authority. Although soil degraded (with respect to environmental quality) by arsenic remains at location AOC-Stain3, the construction of impervious cover over this soil will prevent both direct contact with the soil and migration of the arsenic to groundwater. Therefore, no further investigative or remedial actions are warranted with respect to soil at AOC-Stain3.

AOC-UST7

AOC-UST7 was investigated to confirm that the Port Authority's removal of two USTs that were closed in place by P&G (i.e., were filled with inert materials) and the associated soil removal effort had successfully remediated LNAPL-impacted soil at this portion of the facility. One soil sample was collected from each of six soil borings drilled at AOC-UST7.

Indications of LNAPL-impacted soil were observed at only two soil boring locations, UST7-C2 and UST7-C4. The indications of potentially LNAPL-impacted soil were encountered at depths of between 7 and 11 feet bgs and included one or more of the following: discolored soil, elevated concentrations of volatile organic vapors in the soil (as measured using a PID), and odors. In addition, discrete ganglia of LNAPL were encountered between 8 and 9 feet bgs at soil boring location UST7-C2. The LNAPL did not appear to be present as a saturating fluid, and therefore is not expected to be mobile.

The analytical results for the soil samples collected at AOC-UST7 exhibited similarly minimal impacts. Four PAH compounds were detected at concentrations above their respective RSCOs. These PAH compounds have been detected at similar concentrations in many soil samples collected at the facility during the SI and the RI and are attributable to fill placed by P&G.

Nine metals (arsenic, barium, beryllium, chromium, copper, iron, mercury, nickel, and zinc) were identified at AOC-UST7 at concentrations above their respective RSCOs. These metals are not associated with the petroleum products that were formerly stored in USTs at this AOC; therefore, the presence of these metals in soil at this AOC is likely due to the fill placed in this location by P&G. In addition, these metals have been detected in many soil samples collected at the facility during the SI and the RI and are believed to be attributable to the former placement of fill at the facility.

No other compounds were detected at concentrations greater than their RSCOs in any soil sample collected at AOC-UST7. The concentration (3,810 mg/kg) of TPHC detected in the soil sample collected from the depth interval where ganglia of LNAPL were observed in the soil was the greatest concentration of TPHC detected in any soil sample collected at AOC-UST7 during the SRI. The concentration of TPHC in this sample was close to the maximum typically detected in fill materials placed by P&G; however, as indicated below, this concentration is not indicative of free (i.e., mobile) LNAPL. The following is an estimation of the LNAPL saturation in the sample collected from a silty clay soil at location UST7-C2. By definition, the LNAPL saturation in the soil is the volume of LNAPL per cubic

centimeter divided by the volume of pore space per cubic centimeter. Assuming that the soil has a bulk density of 1.6 tons per cubic yard (approximately 1.9 grams per cubic centimeter) and based on the analytical data showing that the LNAPL constitutes 3.81 parts per thousand of the dry soil-LNAPL mix, there are approximately 0.0072 grams of LNAPL per cubic centimeter of soil and void. Assuming that the LNAPL has a specific gravity of about 1, the volume of LNAPL per cubic centimeter of soil and void is 0.0072 cubic centimeters. For the purposes of this analysis, the porosity of the soil is assumed to be between 10% and 50%, a wide range that likely includes the actual porosity. A porosity of 10% constitutes 0.1 cubic centimeters of void space per cubic centimeter of soil and void space, while a porosity of 50% corresponds to 0.5 centimeters of void space per cubic centimeter of soil and void space. Therefore, the saturation of LNAPL in the soil ranges from approximately 1.4% to 7.2% and the LNAPL is almost certainly in a residual (i.e., immobile state). The remaining 92.8% to 98.6% of the porosity is filled with water, effectively isolating the LNAPL. In addition, according to Physical and Chemical Hydrogeology (Domenico and Schwartz, 1998), the residual saturation for LNAPL in the saturated zone is between 10% and 50%. This analysis confirms the field observation that the LNAPL was present in discrete "ganglia" within the silty clay soil.

Because the concentrations of PAH compounds and metals in the soil are attributable to the former placement of fill at the HHMT-Port Ivory Facility by P&G, neither additional investigative nor remedial activities are warranted with respect to the concentrations of these substances in soil at AOC-UST7. LNAPL-impacted soil appears to be present in residual quantities at two locations at AOC-UST7. The fact that these locations are not adjacent suggests that the majority of LNAPL-impacted soil was removed successfully by P&G, but that limited quantities of LNAPL-impacted soil were left in place at the edges of the excavation. Groundwater samples collected during the SI at temporary well location TMW-01 did not indicate that groundwater was degraded by these limited quantities of LNAPL-impacted soil. Therefore, no further investigative or remedial actions are required with respect to AOC-UST7.

AOC-Bldg20

AOC-Bldg20 was investigated to confirm that P&G's closure of a UST containing #6 fuel oil and its associated soil removal effort had successfully remediated LNAPL-impacted soil at this portion of the facility. One soil sample was collected from each of two soil borings at AOC-Bldg20. No indications of LNAPL-impacted soil were observed at either soil boring location.

Benzo(a)pyrene was detected at a concentration slightly greater than its RSCO. This PAH compound has been detected at similar concentrations in many soil samples collected at the facility during the SI and the RI and is believed to be attributable to fill placed by P&G.

Six metals (arsenic, beryllium, chromium, copper, iron, and zinc) were identified at AOC-Bldg20 at concentrations above their respective RSCOs. These metals are not associated with the petroleum products that were formerly stored in USTs at this AOC; therefore, the presence of these metals in soil at this AOC is likely due to the former placement of fill at this location by P&G. In addition, these metals have been detected at similar concentrations in many soil samples collected at the facility during the SI and the RI and are believed to be attributable to fill placed by P&G.

No other compound was detected at a concentration greater than its RSCO in either soil sample collected at AOC-Bldg20. The concentrations of TPHC in the soil samples collected at this AOC were low relative to what may be expected for soil impacted by petroleum, but are consistent with TPHC concentrations attributable to fill placed by P&G.

Based on the relatively low concentrations of TPHC and the absence of indications of LNAPL impacts, soil at this AOC does not appear to be impacted by fuel oil/petroleum. Analytical results confirm that soil impacts in this AOC are relatively minor and are attributable to fill placed by P&G. The soil at this AOC is unlikely to be a source area for groundwater contamination. Therefore, neither additional investigative nor remedial actions are warranted at this AOC.

withing the term of the general property being a secre-

AOC-Bldg32/32A

AOC-Bldg32/32A was investigated to confirm that P&G's closure of three USTs containing #6 and #2 fuel oils and diesel fuel and its associated soil removal effort had successfully remediated LNAPL-impacted soil at this portion of the facility. One soil sample was collected from each of five soil borings at AOC-Bldg32/32A.

Indications of potentially degraded (with respect to environmental quality) soil were observed at only one soil boring location, Bldg32-C3, that was drilled in this AOC. Discolored soil was observed in the five to six foot bgs depth interval. Because neither odor nor sheen were observed and because the concentration of volatile organic vapors (as measured using a PID) in soil was not elevated above background in this depth interval, the discoloration is not believed to be attributable to petroleum.

Three PAH compounds, Benzo(a)anthracene, Benzo(a)pyrene, and Dibenz(a,h)anthracene, were detected at concentrations greater than their respective RSCOs in at least one soil sample collected at this AOC during the SRI. These PAH compounds have been detected at similar concentrations in many soil samples collected at the facility during the SI and the RI and are believed to be attributable to fill placed by P&G.

Eight metals (arsenic, beryllium, chromium, copper, iron, mercury, nickel, and zinc) were identified at AOC-Bldg32/32A at concentrations above their respective RSCOs. These metals are not associated with the petroleum products that were formerly stored in USTs at this AOC; therefore, the presence of these metals in soil at this AOC is likely due to the former placement of fill at this location by P&G. In addition, these metals have been detected at similar concentrations in many soil samples collected at the facility during the SI and the RI and are believed to be attributable to fill placed by P&G.

No other compound was detected at a concentration greater than its RSCO in either soil sample collected at AOC-Bldg32/32A. The concentrations of TPHC in the soil samples collected at this AOC were low relative to what may be expected for soil impacted by fuel oil, but were consistent with those attributable to fill placed by P&G.

Based on the relatively low concentrations of TPHC and the absence of indications of LNAPL impacts, soil at this AOC does not appear to be impacted by fuel oil. The analytical results confirm that soil impacts in this AOC are relatively minor and are attributable to the former placement of fill at the facility. The soil at this AOC is unlikely to be a source area for groundwater contamination. Therefore, neither additional investigative efforts nor additional remedial efforts are warranted at this AOC.

8.2 SRI Results – Area 2B

The following sections discuss the data generated during the SRI with respect to the objectives for that portion of the SRI conducted at Area 2B. As stated above, the objectives were to determine the locations of the underground pipelines in the Tidewater easement, to confirm the presence or absence of LNAPL-impacted soil along the Tidewater pipelines, to delineate areas of LNAPL-impacted soil that were located along the Tidewater pipelines, to quantify the concentrations of regulated compounds in soil along the Tidewater pipelines, and to determine whether the presence of LNAPL-impacted soil along the Tidewater

pipelines has degraded groundwater quality (i.e., is acting as a source area for regulated compounds in groundwater). These objectives are discussed in Sections 8.2.1 through 8.2.5; respectively.

8.2.1 Results of the Geophysical Surveys

The geophysical surveys were conducted to locate the inactive underground pipelines in the Tidewater easement. Approximately 650 linear feet of the pipelines were identified (see Figure 2). Based on field observations made at test pit location EXT-1, the pipelines are buried at approximately 5.5 feet bgs.

Please note that, based upon the results of the geophysical investigations conducted at Site 3, located immediately to the north of Area 2B, seven pipelines are present within the easement. These pipelines are not parallel within the utility trench. However, the large-scale trend of the utility trench is linear.

8.2.2 Presence/Absence of LNAPL-Impacted Soil Along the Tidewater Pipelines

The confirmation of the presence or absence of LNAPL-impacted soil along the Tidewater Pipeline was accomplished primarily by field observations, although analytical results were used to determine the likelihood of free (i.e., mobile) LNAPL being present.

LNAPL was not observed along the Tidewater pipelines, but LNAPL-impacted soil was observed along the Tidewater pipelines at two separate areas, collectively referred to as AOC-Southern Area. The locations where LNAPL-impacted soil was observed were test pit location EXT-1 and soil boring locations TW-43A, TW-47 and TW-48. The odor and elevated concentrations of volatile organic compounds (as measured using a PID) suggest that the impacted soil is associated with petroleum LNAPL rather than vegetable oil LNAPL, a type of LNAPL that has been observed at other locations at the HHMT-Port Ivory Facility.

Indications of LNAPL-impacted soil, including elevated concentrations of volatile organic vapors (up to 50 ppm) and the presence of discolored soil, were observed in the test pit excavated at location EXT-1. Please note that the test pit excavated at location EXT-1 was excavated as part of the geophysical survey work, and as such, no soil samples were collected at this location. Indications of LNAPL-impacted soil and sheen were observed at soil boring location TW-43A. The LNAPL-impacted soil at TW-43A was present between depths of 5.5 and 6 feet bgs, slightly below groundwater.

Indications of LNAPL-impacted soil at locations TW-47 and TW-48 included elevated PID measurements (up to 920 ppm) and the presence of odor, discolored soil, and sheen. The LNAPL-impacted soil was present between depths of 3 and 9 feet bgs.

Please note, potentially impacted soil was also encountered in the vicinity of soil borings TW-37 and TW-38, located to the east of test pit location EXT-1. An elevated concentration of volatile organic vapors (62.1 ppm) was measured in the 6.5-7 foot bgs depth interval at TW-37. The vapors were within the top few inches of a peat/meadowmat layer, and are likely related to the decay of organic matter rather than to the presence of petroleum. The maximum concentration of volatile organic vapors measured at soil boring location TW-38 was 0.5 ppm, and was also associated with a peat layer. However, discolored soils, odor, and/or sheen were present in the 3-9 foot bgs depth interval at location TW-38. Because these indications of impacted soil were not associated with elevated PID measurements (0-0.5 ppm), it is unlikely that LNAPL-impacted soil was present at this location. Please note, two soil samples were collected at TW-37 and TW-38 from the depth intervals where the soil impacts were observed. Neither of these two soil samples contained any organic compounds or metals at concentrations greater than those attributable to fill placed throughout the facility by P&G.

The SRI identified LNAPL-impacted soil, but not separate phase LNAPL, along the Tidewater pipelines; however, the potential exists for separate phase LNAPL to be present in the vicinity of soil borings drilled through LNAPL-impacted soil. Depending upon its saturation, LNAPL can be free (i.e., mobile) or residual (i.e., immobile). LNAPL that is present at low saturation (i.e., is discontinuous within the soil matrix) is immobile. LNAPL that is present at high saturation (i.e., as a continuous mass) may be mobile, depending on properties of the soil and the LNAPL. Any LNAPL that is observed to flow into a soil boring or a test pit, or that accumulates within a well or temporary well is considered to be free LNAPL. Please note that LNAPL was not observed to flow into test pit EXT-1 and that LNAPL had not accumulated within either well as of April 12, 2005, twelve days after the installation and development of well TWP-13 and eight days after the installation and development of well TWP-14. However, not observing evidence of free/mobile LNAPL does not conclusively indicate the absence of free/mobile LNAPL. Therefore, the Port Authority will investigate and/or remediate soil that is most likely to contain free LNAPL based on field observations and soil sampling analytical results. Field observations, such as the concentration of volatile organic vapors in the soil column, and analytical results, such as the concentration of TPHC, are likely indicators of LNAPL saturation. That is, soil that exhibits high concentrations of volatile organic vapors and/or TPHC is more likely to contain LNAPL at relatively high

saturation (i.e., is more likely to contain free LNAPL) than soil that exhibits lower concentrations of volatile organic vapors and/or TPHC.

Concentrations of volatile organic vapors and TPHC were noted to be higher at a few locations as compared to all other locations along the Tidewater pipelines. At all locations except for soil boring location TW-47 and temporary well location TWP-14, the concentration of volatile organic vapors was below 50 ppm. However, the concentrations of volatile organic vapors at TW-47 and TWP-14 were 935 and 1,290 ppm, respectively. Likewise, except for the TPHC concentrations detected at soil boring locations TW-71A, TW-72, and TW-73, the concentration of TPHC was below 691 mg/kg (detected at location TW-68). While the TPHC concentration of 691 mg/kg and the volatile organic vapor concentration of 50 ppm do not have any particular regulatory meaning, the above analysis is intended to show the large difference between the concentrations of TPHC/volatile organic vapors detected at locations TW-71A, TW-72, and TW-73 and the concentrations detected at all other locations at Area 2B. The concentrations of TPHC at locations TW-71A, TW-72, and TW-73 were 4980, 13000, and 4030 mg/kg, respectively. Based on these results, free LNAPL is most likely to be present in the vicinity of locations TWP-14, TW-47, TW-71A, TW-72, and TW-73. Since locations TWP-14, TW-47, TW-71A, and TW-72 are located within close proximity of one another, soil in these locations will be addressed through implementation of an Interim Remedial Measure (IRM). If, during implementation, LNAPLimpacted soil in the vicinity of locations TWP-14, TW-47, TW-71A, and TW-72 is determined to contain free LNAPL, the presence of free LNAPL in the vicinity of location TW-73 also will be investigated. Please note although elevated concentrations of volatile organic compounds were measured using a PID and elevated concentrations of TPHC were detected along the Tidewater pipelines; the concentrations appear similar to those detected at other locations at the HHMT-Port Ivory facility as part of other investigations unrelated to the SRI.

8.2.3 Limits of LNAPL-impacted soil along the Tidewater pipelines

The extent of LNAPL-impacted soil at each of two locations along the Tidewater pipelines was determined primarily by field observations made during the SRI. As noted above, the first mobilization to Area 2B included the drilling of soil borings at intervals of approximately 50 feet along those portions of the Tidewater pipelines located during the geophysical investigation. In addition, a test pit (EXT-1) was excavated as part of the geophysical investigation. LNAPL-impacted soil was observed at soil boring locations TW-43A, TW-47, and TW-48 and at the test pit location EXT-1.

Based on the identification of LNAPL-impacted soil at these locations, additional soil borings were drilled and temporary wells were installed during the second mobilization. The purpose of the investigative work conducted during the second mobilization was to delineate the lateral and vertical extents of LNAPL-impacted soil away from locations TW-47, TW-48, TW-43A, and EXT-1.

Based on the field observations made during the second mobilization, the lateral extent of LNAPL-impacted soil in the vicinity of test pit location EXT-1, including TW-43A has been delineated at soil boring locations TW-68 (to the east of EXT-1), TW-69 (to the south of EXT-1), and TW-70A (to the west of EXT-1) and by temporary well location TWP-13 (to the north of EXT-1). Please note, discolored soil and odor were present in the 5.5-6 foot bgs depth interval at location TW-69; however, the extent of LNAPL-impacted soil was limited and the concentration of TPHC at this location was 294 mg/kg, which is within the range attributable to the former placement of fill throughout the HHMT-Port Ivory facility by P&G. The vertical extent of LNAPL-impacted soil in the vicinity of EXT-1 is approximately six feet bgs, as determined by field observations at EXT-1. The upper two feet of soil encountered during the excavation at test pit location EXT-1 appeared to be clean. Based on these field observations, the maximum extent of LNAPL-impacted soil in the vicinity of test pit location EXT-1, including soil boring location TW-43A is approximately 1,300 cubic feet, equivalent to approximately 48 cubic yards.

Based on the field observations made during the second mobilization, the lateral extent of LNAPL-impacted soil in the vicinity of soil boring locations TW-47 and TW-48 has been delineated at soil boring locations TW-74 (to the south of TW-48), TW-75 (to the southwest of TW-48), TW-78 (to the northeast of TW-48 and the northwest of TW-47), TW-77 (to the east-northeast of TW-47), and TW-76 (to the southeast of TW-47). The maximum vertical extent of LNAPL-impacted soil is nine feet bgs, as determined by field observations made at location TW-48. The depth to the top of the LNAPL-impacted soil varies throughout this area, being relatively shallow in areas where the water table is shallow (i.e., at location TW-72, where pavement is not present) and deeper at locations such as TW-48, where the water table is deeper (i.e., pavement is present at land surface). The minimum depth to the LNAPL-impacted soil was two feet bgs at location TW-72. Based on these field observations, the maximum volume of LNAPL-impacted soil in the vicinity of locations TW-47 and TW-48 is approximately 38,400 cubic feet, approximately 1,420 cubic yards.

As indicated above, two soil samples were collected at locations where LNAPL-impacted soil was observed. The shallower sample was collected from the depth interval that exhibited the most significant

indications of LNAPL impacts, as determined primarily by the concentration of volatile organic vapors and secondarily by other field observations. The deeper soil sample was collected from a depth interval where the soil appeared to be clean (i.e., where indications of LNAPL-impacted soil were not observed). At locations where the entire soil column appeared to be clean, one soil sample was collected from the six-inch depth interval above the water table. Therefore, although field observations were the primary basis for determining the extents of LNAPL-impacted soil, the soil sampling analytical results were reviewed to confirm the limits of the LNAPL-impacted and degraded (with respect to regulated metals or compounds) soil. Analytical results for soil samples that were collected at soil boring locations that appeared to be clean or from depth intervals in the soil column below LNAPL-impacted soil did not indicate concentrations of any metal or compound at greater than those attributable to fill placed by P&G. Therefore, the analytical results confirm the maximum volumes of LNAPL-impacted soil (as based on field observations) identified above.

8.2.4 Concentrations of Regulated Compounds and Metals in Soil

This discussion of the concentrations of regulated compounds and metals in soil along the Tidewater pipelines is based on the soil sampling analytical results summarized in Table 2A-D. As indicated above, two soil samples were collected at locations where LNAPL-impacted soil was observed. The shallower sample was collected from the depth interval where the most significant indications of LNAPL-impacted soil were observed, as determined primarily by the concentration of volatile organic vapors and secondarily by other field observations. The deeper soil sample was collected from a depth interval where the soil appeared to be clean (i.e., indications of LNAPL-impacted soil were not observed). At locations where the entire soil column appeared to be clean, one soil sample was collected from the six inch depth interval above the water table. During the first mobilization, the soil samples were analyzed for VOCs, SVOCs, and TAL metals. Once it became apparent that the presence of organic compounds was not affecting the concentrations of metals (i.e., between the first and second mobilizations), the soil samples were analyzed for VOCs, SVOCs, and TPHC.

As noted above, for the purposes of this discussion, the soil sampling analytical results were compared to the RSCOs published in NYSDEC TAGM 4046. TAGM 4046 generally regards site background as an appropriate concentration for metals and provides RSCOs for only some metals. RSCOs are provided for the following metals: arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, mercury, nickel, selenium, vanadium and zinc. Based on TAGM 4046, the RSCOs for all other metals are the background concentrations of the metals in site soils. However, given the presence of fill material and the

urban nature of the site, it is difficult to establish a site background concentration for metals. As such, in accordance with TAGM 4046, the upper limit of the Eastern USA Background Range was utilized as the background concentration for aluminum, calcium, lead, magnesium, manganese, potassium, and sodium. It is important to recognize that the presence of a metal above an established background concentration does not constitute an exceedance of a regulatory standard. As the NYSDEC TAGM 4046 does not provide RSCOs for antimony, silver, or thallium and the background concentrations of these metals in the Eastern USA has not been established, the concentrations of these metals in soil samples collected at Area 2B were not compared to any cleanup objectives.

In general, the concentrations of compounds and metals in soil were similar to those detected at other portions of the HHMT-Port Ivory Facility. The presence of these metals and compounds in the soil is believed to be attributable to the former placement of fill at the HHMT-Port Ivory Facility by P&G. The following summarizes the analytical results by compound class.

No targeted VOCs were detected at concentrations that were typical for the fill placed at the HHMT-Port Ivory Facility by P&G. Please note, however, that the total concentration of VOC TICs detected at locations TW-71A, TW-72, and TW-73, all locations where LNAPL-impacted soil was observed, ranged from 68.7 to 202 mg/kg, which was more than an order of magnitude greater than the concentrations of VOC TICs in soil samples at locations where the soil appeared to be clean.

The SVOCs detected were generally PAH compounds, a subset of SVOCs. No SVOCs, including PAH compounds, were detected at concentrations that were atypical for the fill. Although the concentrations of individual PAH compounds were frequently above their respective RSCOs, the concentration of total PAH compounds ranged from 0 to 90.5 mg/kg, which is below the RSCO for total SVOCs. In addition, the concentration of total PAH compounds does not appear to be correlated with the presence of LNAPL-impacted soil or the concentration of TPHC. The greatest concentration of PAH compounds was detected in the soil sample collected at location TW-75, where LNAPL-impacted soil was not observed. LNAPL-impacted soil was observed at locations TW-47, TW-48, TW-71A, TW-72, and TW-73, but the concentrations of total PAH compounds in three of the four soil samples collected at these locations were lower than those collected at locations TW-51 and TW-70A, where the soil appeared to be clean. Likewise, the soil sample containing the greatest concentration of total PAH compounds (i.e., the soil sample collected at location TW-75) contained only 83.9 mg/kg TPHC, while the soil sample that contained the greatest concentration of TPHC (the soil sample collected at location TW-72) was only in

the 70th percentile for the concentration of total PAH compounds. The concentration of total PAH compounds has been detected at similar concentrations at soil sampling locations throughout the facility. Therefore, the presence of PAH compounds in the soil along the Tidewater pipelines at Area 2B is not believed to be attributable to the presence of LNAPL-impacted soil, but rather to the fill placed by P&G.

No metals were detected at concentrations that were atypical for the fill placed at the HHMT-Port Ivory Facility by P&G. Please note, however, that only those soil samples collected during the first mobilization were analyzed for metals.

TPHC was detected at concentrations that are atypical for the fill at two SRI soil sampling locations (TW-71A and TW-72). In addition, the concentration of TPHC was at the upper limit that is typical of the fill at one sampling location (TW-73). The TPHC concentrations for soil samples collected at soil boring locations TW-71A, TW-72, and TW-73 from the depth intervals that exhibited the most significant indications of LNAPL-impacted soil were 4980 mg/kg, 13000, and 4030 mg/kg, respectively. All three soil samples were collected at locations where LNAPL-impacted soil was observed during drilling.

8.2.5 Groundwater Analytical Results

The objective of the groundwater sampling effort conducted at Area 2B during the SRI was to determine whether LNAPL-impacted soil along the Tidewater pipelines was a source area for regulated compounds in groundwater. As noted above, LNAPL-impacted soil was observed at two separate locations, the vicinity of test pit location EXT-1, including soil boring location TW-43A and the vicinity of soil boring locations TW-47 and TW-48) along the Tidewater pipelines. One temporary well was installed at each of these two locations to determine whether the presence of LNAPL-impacted soil had degraded groundwater quality. One groundwater sample was collected at each temporary well location, and both groundwater samples were analyzed for VOCs and SVOCs.

The analytical results for the groundwater sample collected at temporary well location TWP-13, installed in the vicinity of EXT-1, indicate that the presence of LNAPL-impacted soil has not resulted in groundwater impacts. The only VOCs detected in the groundwater sample collected at TWP-13 were acetone, a common laboratory solvent, and 2-butanone. Based upon previous analytical results, the acetone, which was the only VOC detected at a concentration above its AWQSGV, is not associated with the LNAPL encountered at Area 2B or other portions of the HHMT-Port Ivory Facility. It is likely that

the presence of acetone in this groundwater sample is attributable to laboratory or field contamination of the groundwater sample. The VOC 2-butanone was detected at an estimated concentration of 2.7 ug/L, more than an order of magnitude below its AWQSGV of 50 ug/L. The only VOC TIC identified in this groundwater sample was 2-propanol, present at a concentration of 190 ug/L. No AWQSGV has been established for 2-propanol, nor is this compound included in the six classes of compounds that are defined as Principal Organic Contaminants (POCs): halogenated alkanes; halogenated ethers; halobenzenes and substituted halobenzenes; benzenes and alkyl- or nitrogen-substituted benzenes; substituted, unsaturated hydrocarbons; and, halogenated non-aromatic cyclic hydrocarbons. Neither targeted SVOCs nor SVOC TICs were detected in the groundwater sample collected at temporary well TWP-13.

The analytical results for the groundwater sample collected at temporary well location TWP-14, installed in the vicinity of soil boring locations TW-47 and TW-48, where LNAPL-impacted soil was observed, indicate that the presence of LNAPL-impacted soil has not resulted in groundwater impacts. The only VOC detected in the groundwater sample collected at TWP-14 was chloroform, detected at an estimated concentration of 0.3 ug/L. This concentration is more than an order of magnitude lower than the AWQSGV for chloroform, 7 ug/L. No VOC TICs were detected in this groundwater sample. Neither targeted SVOCs nor SVOC TICs were detected in the groundwater sample collected at temporary well TWP-14.

As discussed in section 8.2.4, the environmental quality of the soil has not been significantly impacted by the presence of LNAPL; however, VOC TICs do appear to be present at greater concentrations at locations and depths where LNAPL-impacted soil was encountered. Based on the soil analytical data, the presence of LNAPL-impacted soil also appears to be associated with elevated TPHC concentrations. However, no targeted SVOCs or SVOC TICs, surrogates for the TPHC in groundwater, were detected in either of the two groundwater samples collected at Area 2B during the SRI. Since the VOC TICs and the TPHC were the only soil impacts that appear to be associated with the presence of LNAPL-impacted soil at Area 2B and the groundwater in the vicinity of the LNAPL-impacted soil has not been significantly impacted by any compounds, including VOC TICs and TPHC (as determined by the SVOC analytical data), the LNAPL-impacted soil along the Tidewater pipeline is not a source area for groundwater impacts.

Please note, the results of investigations at Site 3, located immediately north of Area 2B, indicate that the LNAPL may be almost two decades old. It is likely that the soluble compounds have previously leached

out of the LNAPL and the surrounding soil. Other compounds that are subject to biodegradation and/or volatilization, for example benzene, may have been depleted via these processes.

9.0 INDOOR AIR QUALITY ASSESSMENT

The NYSDEC and NYSDOH required the Port Authority to conduct an indoor air quality assessment at Area 2A. Substructure soil gas, ambient air, and indoor air were sampled to determine whether volatile organic compounds in soil and/or groundwater have impacted or could potentially impact air quality in buildings scheduled to remain following the redevelopment of Area 2A. Results of prior sampling efforts, including results from the SRI, have detected minimal concentrations of VOCs in both soil and groundwater; in most instances, VOCs were detected at concentrations below applicable NYSDEC cleanup objectives. The VOCs that have been detected in soil at Site 2 are as follows: benzene, chloroform, dichloromethane, ethylbenzene, 4-isopropyl toluene, toluene, trans-1,3-dichloropropene, trichloroethene, and various isomers of xylene. The VOCs that have been detected in groundwater at Site 2 are toluene and vinyl chloride. Other VOCs detected in soil and/or groundwater samples, for example acetone, are believed to be attributable to laboratory contamination of the sample, and these VOCs are not listed above.

The Port Authority intends to redevelop Site 2 for use as an intermodal facility. Following redevelopment, only two existing buildings (Building No. 41, the office building, and Building No. 45, known as the guard shack) will remain and two modular offices (under construction) will be installed within the footprint of Building No. 40, which has been demolished. No other permanent structures will be present at Area 2A subsequent to the redevelopment of that Site, although modular offices will be staged in the footprint of Building No. 40 and will be used byfacility personnel. All three buildings identified above are located at Area 2A. No buildings are currently located at Area 2B, nor are occupied buildings anticipated at Area 2B following facility redevelopment.

The scope of work for the indoor air quality assessment conducted at Area 2A was summarized in the NYSDEC-approved document entitled *Revised Substructure Soil Gas and Ambient and Indoor Air Sampling Plan* and dated March 2005. The sampling effort was conducted in accordance with applicable NYSDEC and NYSDOH guidance documents. Section 9.1 discusses the methods and results of the presampling indoor inventory. Sections 9.2 through 9.5 summarize the methods and results of the substructure soil gas sampling program, indoor air sampling program, and ambient air sampling program,

respectively. Section 9.6 discusses the results of the Quality Assurance/Quality Control (QA/QC) program. Section 9.7 presents conclusions. All sampling locations are depicted on Figure 3 and a summary of the sampling results is provided in Table 4.

9.1 Pre-Sampling Inventory

In accordance with NYSDOH protocol, an Indoor Air Quality Questionnaire and Building Inventory was completed one week prior to initiating air quality sampling activities. The purpose of the inventory was to identify any potential interferences with the proposed air quality sampling program. As part of the inventory, the type, quantity, method of storage, and location of such items as utilities, cleaning supplies, paint, etc. were recorded. In addition, the atmosphere in the vicinity of the above listed areas/items was screened using a VRae multigas meter that includes a photoionization detector (PID) equipped with a 10.6 electron-volt ionization potential lamp.

Potential interferences that were observed included the following: paint remover, spray paint, and cleaning supplies (see Table 5 for a listing of the potential interferences listed by building). In Building No. 45, the cleaning supplies were stored in the one room guard shack, albeit at a level above the soil gas and indoor air sampling locations. In Building No. 41, all supplies were stored in a closet accessible only from the receptionist's office/copy room. No such potential sources for VOCs were observed in Building No. 40, which was vacant. No PID readings greater than background were measured in the Building No. 41 supply closet or any other portion of any of the three buildings. It was reported to HMM personnel that the following activities did not occur in the same room as the sampling locations within 24 hours prior to the indoor air sampling: smoking, use of portable heating devices such as a kerosene heater, storage of fuel, use of petroleum-based cleaning fluids, use of air fresheners, or application of pesticides.

9.2 Substructure Soil Gas Sampling Methods and Results

Substructure soil gas sampling was conducted to determine the concentration of VOC vapors in the soil below existing concrete foundations for slab-on-grade buildings (Building Nos. 41 and 45) as well as VOC vapors in soil adjacent to Building No. 40. The concentration of VOC vapors in soil gas below the concrete slabs of Building Nos. 41 and 45 represents the worst-case potential exposure for personnel inside these buildings. Because Building No. 40 was demolished and temporary construction trailers will be staged in or adjacent to the footprint of this building, the concentration of VOC vapors below grade in the vicinity of Building No. 40 represents the worst-case potential exposure for personnel inside the proposed trailers.

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A) HHMT - PORT IVORY FACILITY

Location Sample Date	US EPA	NYSDOH		AA-1		-	SG-5			IA-1			AA-1	****		SG-6	
	BASE	Air -	03	3/14/20	05	03	3/14/200	5	03	3/14/200	05	03	3/14/20	05	n'	3/14/20	
Laboratory Sample ID	Data, Offices	Guideline	1	611634	Į.	١ .	611639			611640		l.	611634	-	[61163	
Sample Type (Note 1)	1994-1998	Values		nbient .		i	Soil Gas										
Dilution	1007 1000		` ^'		~!!	3		'	"	ndoor A	ır	Ar	nbient .	Aır		Soil Ga	
Units	,	mcg/m3	<u> </u>	0.50			1.00*			0.50			0.50		\	1.00	
Volatila Organia Company	 		ļ	ug/m³		<u> </u>	ug/m³			ug/m³		_	ug/m³			ug/m³	3
Dieblorodiffusenmeth			conc	qual	pql	conc	qual	pql	conc	qual	pql	conc	qual	pgl	conc	qual	pql
1,2-Dichlorotetrafluoroethane	NB	NG	2.6			ND	U	2.5	2.3			2.6			3		
Chloromethane	NB NB	NG	ND	<u> </u>	0.7	ND	U	1.4	ND	Ū	0.7	ND	U	0 7	ND	Ū	1.4
Vinyl Chloride	2.1-3.1	NG	1			ND	U	1	0.99			1			ND	Ū	1
1,3-Butadiene	<0.9	NG	ND	U	0.26	ND		0.51	ND	Ü	0.26	ND	υ	0.26	ND	Ū	0.51
Bromomethane	NB	NG	ND	U	0.22	ND	U	0.44	ND	U	0.22	ND	U	0.22	24		
Chloroethane	<0.9	NG	ND	U	0.39	ND		0.78	ND	U	0.39	ND	Ü	0.39	ND	U	0.78
Bromoethene	NB NB	NG	ND	U	0.26	ND	U	0.53	ND	U	0.26	ND	U	0.26	NĎ	Ū	0.53
Trichlorofluoromethane	NB	NG	ND	U	0.44	ND	U	0.87	ND	U	0.44	ND	U	0.44	ND	U	0.87
Freon TF	NB NB	NG	1.2			1.3			1.2			1.2			1.2		
1,1-Dichloroethene	NB NB	NG	ND	U	0.77	ND	U	1.5	ND	U	0.77	ND	Ū	0.77	ND	U	1.5
Acetone	<1.1	NG	ND	U	0.4	ND		0.79	ND	U	0.4	ND	U	0.4	ND	U	0.79
Carbon Disulfide	32-60	NG	ND	U	5.9	≥110 ·	D		8.8			ND	U	5.9	81		
3-Chloropropene	NB	NG	ND	U	0.78	ND	u	1.6	ND	U	0.78	ND	U	0.78	ND	υ	1.6
Methylene Chloride	NB	NG	ND	U	0.31	ND		0.63	ND	U	0.31	ND	U	0.31	ND	U	0.63
tert-Butyl Alcohol	<1.7-5.0	60	ND	. U	0.87	ND	U	1.7	ND	Ų	0.87	ND	U	0.87	ND	U	1.7
Methyl tert-Butyl Ether	NB	NG	ND	<u>U</u>	7.6	ND	U	15	ND	U	7.6	ND	U	7.6	16		
trans-1,2-Dichloroethene	<1.7-12	NG	ND	U	0.9	2			ND	· U	0.9	ND	U	0.9	3.6		
n-Hexane	NB 1.6-6.4	NG	ND	U	0.4	ND	U	0.79	ND	U	0.4	ND	U	0.4	ND	U	0.79
1,1-Dichloroethane	<0.5	NG	ND	U	0.35	2.4			ND	U	0.35	ИD	U	0.35	6.3		
Methyl Ethyl Ketone	NB	NG	ND	U	0.4	ND	U	0.81	ND	U	0.4	ND	U	0.4	ND	U	0.81
cis-1,2-Dichloroethene		NG	ND	U	0.74	1.8			ND	U	0.74	ND	U	0.74	8.8		
Chloroform	<1.0 <0.5	NG NG	ND	U	0.4	ND		0.79	ND	U	0.4	ND	U	0.4	ND	U	0.79
1,1,1-Trichloroethane	2.6-11	NG NG	ND	U	0.49	ND		0.98	ND	U	0.49	ND	U	0.49	ND	Ü	0.98
Cyclohexane	NB	NG NG	ND	<u> </u>	0.55	ND	U	1.1	ND	U	0.55	ND	U	0.55	1.6		
Carbon Tetrachloride	<3.1	NG NG	ND ND	<u>U</u>	0.34	ND		0.69	ND	U	0.34	ND	U	0.34	0.89		
2,2,4-Trimethylpentane	NB	NG	ND	U	0.63	ND	U	1.3	ND_	U	0.63	ND	U	0.63	ND_	U	1.3
Benzene	2.1-5.1	NG	0.54		0.47	ND 1.1	U	0.93	ND	U	0.47	ND	U	0.47	ND	U	0.93
1,2-Dichloroethane	<0.6	NG	ND	U	0.4				0.54			0.54			38		
n-Heptane	NB	NG	ND	-	0.41	ND		0.81	ND	U	0.4	ND	U	0.4	ND	U	0.81
Trichloroethene	<1.2-1.2	5	ND	-	0.41	ND ND		0.82	9.4			ND	U	0.41	8.2		
1,2-Dichloropropane	<1.4	NG	ND	Ü	0.54		U	1.1	ND	<u>U</u> _	0.54	ND	U	0.54	ND	U	1.1
Bromodichloromethane	NA NA	NG -	ND	-U -	0.46	ND		0.92	ND	U	0.46	ND	U	0.46	ND	U_	0.92
cis-1,3-Dichloropropene	NB	NG	ND	- -	0.67	ND	U	1.3	ND	U	0.67	ND	U	0.67	ND	U_	1.3
Methyl Isobutyl Ketone	NB	NG	ND	- u -	1	ND ND	U	0.91	ND	Ü	0.45	ND	U	0.45	ND	U	0.91
Toluene	10.7-26	NG	0.75	<u> </u>	!	5.7	U	2	6.6			ND	U	1	2.2		
trans-1,3-Dichloropropene	NB	NG NG	ND	U	0.45	ND		0.04	2.5		0.05	0.75			.45		
1,1,2-Trichloroethane	<1.3	NG	ND -	- U	0.45	ND ND	<u>U</u> U	0.91	ND	U	0.45	ND	U	0.45	ND	U.	0.91
Tetrachloroethene	<1.9-5.9	100	ND	_ U	0.55	ND		1.1	ND	<u>U</u>	0.55	ND	U	0.55	ND	U	1.1
Dibromochloromethane	NA	NG	ND				<u>U.</u>	1.4	ND	U	0.68	ND	U	0.68	1.9		
1,2-Dibromoethane	<1.3	NG NG	ND	 U	0.85	ND	U	1.7	ND	U	0.85	ND	U	0.85	ND	U	1.7
Chlorobenzene	<0.7	NG	ND	- U -		ND	U	1.5	ND	U	0.77	ND	U	0.77	ND	U	1.5
Ethylbenzene	<1.6-3.4	NG	ND	<u>U</u>	0.46	ND 0.91	U	0.92	_ND	U	0.46	ND	U	0.46	ND	U	0.92

TA

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A)

HHMT - PORT IVORY FACILITY

Location	US EPA	NYSDOH		AA-1			SG-5			IA-1			AA-1			SG-6	
Sample Date	BASE	Air	03	/14/20	05	03	3/14/200)5	03	/14/200	05	03	/14/20	05	03	/14/200	05
Laboratory Sample ID	Data, Offices	Guideline	1	611634	ļ .] '	611639		(611640	١ ١		611634	1	│ €	611637	']
Sample Type (Note 1)	1994-1998	Values	Ar	nbient.	Air) :	Soil Gas	5	ln	idoor A	ir	Ar	nbient .	Air	S	Soil Ga	s
Dilution		mcg/m3		0.50			1.00*			0.50			0.50		ļ	1.00	
Units			. <u> </u>	ug/m³		l	ug/m³			ug/m³			ug/m³			ug/m³	
Volatile Organic Compound			conc	qual	pql	conc	qual	pql	conc	qual	pql	conc	qual	pql	conc	lsup	lpq
Xylene (m,p)	4.1-12	NG	ND	U	0.43	2.8			0.48			ND	U	0.43	120		
Xylene (o)	<2.4-4.4	NG	ND	U	0.43	0.87			ND	U	0.43	ND	U	0.43	35		
Styrene	<1.8	NG	ND	U	0.43	ND ,	U	0.85	ND	U	0.43	ND	U	0.43	ND	U	0.85
Bromoform	NB	NG	ND	Ü	1	ND	_ U	2.1	ND	U	1	ND	U	1_	ND	<u> </u>	2.1
1,1,2,2-Tetrachloroethane	NB	NG	ND	_ U_	0.69	ND	υ_	1.4	ND	U	0.69	ND	<u> U </u>	0.69	ND	U	1.4
4-Ethyltoluene	NB	NG	ND	Ü	0.49	ND	U	0.98	ND	υ	0.49	ND	υ	0.49	3.1		
1,3,5-Trimethylbenzene	<0.25-0.44	NG	ND	U	0.49	ND	U	0.98	ND	U	0.49	ND	U	0.49	1.2		
2-Chlorotoluene	NB	NG	ND	U	0.52	ND	U,	1	ND	U	0.52	ND	U	0.52	ND	U	1
1,2,4-Trimethylbenzene	1.7-5.1	NG	ND	U	0.49	ND	U	0.98	ND	U	0.49	ND	U	0.49	4.3		
1,3-Dichlorobenzene	<0.8	NG	ND	Ū	0.6	ND	U	1.2	ND	U	0.6	ND	U	0.6	ND	U	1.2_
1,4-Dichlorobenzene	NB	NG	ND	Ű	0.6	ND	U	1.2	ND	Ū	0.6	ND	Ū	0.6	4.3		
1,2-Dichlorobenzene	<0.9	NG	ND	Ū	0.6	ND	· U	1.2	ND	U	0.6	ND	Ū	0.6	ND	U	1.2
1,2,4-Trichlorobenzene	NB	NG	ND	U	1.9	ND	υ	3.7	ND	U	1.9	ND	U	1.9	ND	U	3.7
Hexachlorobutadiene	NB	NG	ND	U	1.1	ND	U	2.1	ND	υ	1.1	ND	U	1.1	ND	U	2.1
Naphthalene	<2.5	NG	ND	U	1.3	ND	U	2.6	ND	U	1.3	ND	υ	1.3	3.3		

Notes and Abbreviations:

- Soil gas samples were collected from below land surface, indoor air samples were collected from the lowest floor of the building, the ambient air sample was collected from a location immediately east of Building No. 41, and the laboratory blank was prepared at the analytical laboratory.
- The laboratory blank was prepared on the same day that the samples were analyzed.
- Bold values in highlighted cells exceed the greater of the New York State Department of Health (NYSDOH) Air Guideline Values and the United States Environmental Protection Agency (US EPA) BASE data.
- 4) The samples are grouped based on potential sources for the indoor air sampling results. For example, the source for compounds detected in indoor air sample IA-1 could be ambient air (sample AA-1) or soil gas (SG-5) collected from below the concrete slab at a location adjacent to IA-1.
- 5) The samples ABLKW2 and ABLKW4 are associated laboratory blanks.

ug/m3 = Micrograms per cubic meter

conc = Concentration

qual = Laboratory data qualifier

pgl = Practical quantitation limit

ND = The targeted compound was not detected (laboratory data qualifier "U") at a concentration greater than the practical quantitation limit.

AA = Ambient Air Sample

SG = Soil Gas Sample

IA = Indoor Air Sample

NB = No BASE data were available for the compound

NG = No guideline value has been published for the compound

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A)

	•	,
HHMT	- PORT IVORY	FACILITY

Location					•	_		
Sample Date	US EPA	NYSDOH	1A-2	AA-1	SG-7	1A-3	AA-1	SG-1
	BASE	Air	03/14/2005	03/14/2005	03/14/2005	03/14/2005	03/14/2005	03/14/2005
Laboratory Sample ID	Data, Offices	Guideline	611638	611634	611635	611636	611634	611641
Sample Type (Note 1)	1994-1998	Values	Indoor Air	Ambient Air	Soil Gas	Indoor Air		1
Dilution		mcg/m3	0.50	0.50	ł .		Ambient Air	Soil Gas
Units		illeg/illo			1.00	0.50	0.50	5.00*
Volatile Organic Compound			ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³
Dichlorodifluoromethane	115		conc qual pql	conc qual pql	conc qual pql	conc qual pql	conc qual pql	conc qual pol
1,2-Dichlorotetrafluoroethane	NB NB	NG	2.2	2.6	2.5	3.2	2.6	
Chloromethane	2.1-3.1	NG	ND U 0.7	ND U 0.7	ND U 1.4	ND U 0.7	ND U 0.7	ND U 12 ND U 7
Vinyl Chloride	<0.9	NG	1.3	1	ND U 1	1.3	1	ND U 5.2
1,3-Butadiene	NB	NG NG	ND U 0.26	ND U 0.26	ND U 0.51	ND U 0.26	ND U 0.26	ND U 2.6
Bromomethane	<0.9	NG	ND U 0.22	ND U 0.22	ND U 0.44	0.31	ND U 0.22	ND U 2.2
Chloroethane	NB	NG NG	ND U 0.39	ND U 0.39	ND U 0.78	ND U 0.39	ND U 0.39	ND U 3.9
Bromoethene	NB	NG NG		ND U 0.26	ND U 0.53	ND U 0.26	ND U 0.26	ND U 2.6
Trichlorofluoromethane	NB	NG NG	ND U 0.44	ND U 0.44	ND U 0.87	ND U 0.44	ND U 0.44	ND U 4.4
Freon TF	NB	NG	ND U 0.77	1.2 ND U 0.77	1.4	1.2	1.2	11
1,1-Dichloroethene	<1.1	NG	ND U 0.4		ND U 1.5	ND U 0.77	ND U 0.77	ND U 7.7
Acetone	32-60	NG	11	ND U 0.4 ND U 5.9	ND U 0.79	ND U 0.4	ND U 0.4	ND U 4
Carbon Disulfide	NB	NG NG	ND U 0.78	ND U 0.78	§.90 ⊰	26	ND U 5.9	170
3-Chloropropene	NB	NG	ND U 0.31	ND U 0.78	ND U 1.6 ND U 0.63	ND U 0.78	ND U 0.78	ND U 7.8
Methylene Chloride	<1.7-5.0	60	ND U 0.87	ND U 0.87		ND U 0.31	ND U 0.31	ND U 3.1
tert-Butyl Alcohol	NB	NG	ND U 7.6	ND U 7.6	ND U 1.7	1.4	ND U 0.87	ND U 8.7
Methyl tert-Butyl Ether	<1.7-12	NG	1.3	ND U 0.9	ND U 1.8	ND U 7.6	ND U 7.6	ND U 76
trans-1,2-Dichloroethene	NB	NG	ND U 0.4	ND U 0.4	ND U 0.79		ND U 0.9	ND U 9
n-Hexane	1.6-6.4	NG	5.6	ND U 0.35	4.6	ND U 0.4	ND U 0.4 ND U 0.35	ND U 4
1,1-Dichloroethane	<0.5	NG	ND U 0.4	ND U 0.4	ND U 0.81	ND U 0.4	ND U 0.35 ND U 0.4	ND U 3.5
Methyl Ethyl Ketone	NB	NG	5	ND U 0.74	7.1	6.8	ND U 0.74	ND U 4
cis-1,2-Dichloroethene	<1.0	NG	ND U 0.4	ND U 0.4	ND U 0.79	ND U 0.4	ND U 0.4	5.9
1.1.1-Trichloroethane	<0.5	NG	ND U 0.49	ND U 0.49	14	ND U 0.49	ND U 0.49	180
Cyclohexane	2.6-11	NG	1.8	ND U 0.55	13 €	3.4	ND U 0.55	ND U 5.5
Carbon Tetrachloride	NB	NG	2.5	ND U 0.34	ND U 0.69	2	ND U 0.34	ND U 3.4
2,2,4-Trimethylpentane	<3.1	NG	ND U 0.63	ND U 0.63	ND U 1.3	ND U 0.63	ND U 0.63	28
Benzene	NB	NG	1.5	ND U 0.47	ND U 0.93	2	ND U 0.47	ND U 4.7
1,2-Dichloroethane	2.1-5.1	NG	2.5	0.54	0.67	3.5	0.54	3.8
n-Heptane	<0.6	NG	ND U 0.4	ND U 0.4	ND U 0.81	ND U 0.4	ND U 0.4	ND U 4
Trichloroethene	NB	NG	11	ND U 0.41	1.5	3.5	ND U 0.41	ND U 4.1
1,2-Dichloropropane	<1.2-1.2	5	0.64	ND U 0.54	4.7	1.1	ND U 0.54	910
Bromodichloromethane	<1.4	NG	ND U 0.46	ND U 0.46	ND U 0.92	ND U 0.46	ND U 0.46	ND U 4.6
cis-1,3-Dichloropropene	NA NB	NG	ND U 0.67	ND U 0.67	ND U 1.3	ND U 0.67	ND U 0.67	ND U 6.7
Methyl Isobutyl Ketone	NB NB	NG NG	ND U 0.45	ND U 0.45	ND U 0.91	ND U 0.45	ND U 0.45	ND U 4.5
Toluene	10.7-26	NG NG	ND U 1	ND U 1	5.7	ND U 1	ND U 1	ND U 10
trans-1,3-Dichloropropene	NB		28	0.75	11	×57 (j)	0.75	6
1,1,2-Trichloroethane	<1.3	NG NG	ND U 0.45	ND U 0.45	ND U 0.91	ND U 0.45	ND U 0.45	ND U 4.5
Tetrachloroethene	<1.9-5.9	100	ND U 0.55 ND U 0.68	ND U 0.55	ND U 1.1	ND U 0.55	ND U 0.55	ND U 5.5
Dibromochloromethane	NA	NG	0.00	ND U 0.68	ND U 1.4	ND U 0.68	ND U 0.68	ND U 6.8
1,2-Dibromoethane	<1.3	NG NG	ND U 0.85 ND U 0.77	ND U 0.85	ND U 1.7	ND U 0.85	ND U 0.85	ND U 8.5
Chlorobenzene	<0.7	NG NG		ND U 0.77	ND U 1.5	ND U 0.77	ND U 0.77	ND U 7.7
Ethylbenzene	<1.6-3.4	NG NG	ND U 0.46 2.8	ND U 0.46	ND U 0.92	ND U 0.46	ND U 0.46	ND U 4.6
	-1.0-0.4	1,0	4.0	ND U 0.43	3	4.3	ND U 0.43	ND U 4.3

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A)

HUMT	- DODT	MOBY	FACILITY
HMI	- PURI	IVURT	PACILITY

Location	US EPA	NYSDOH		1A-2			AA-1			SG-7			IA-3			AA-1			SG-1	
Sample Date	BASE	Air	03	/14/200	05	03	/14/20	05	03	/14/200)5	03/	14/200	95	03	/14/200	5	03	3/14/200)5
Laboratory Sample ID	Data, Offices	Guideline		611638			311634	ا ا	€	311635		6	11636	; '	,	611634	1		611641	1
Sample Type (Note 1)	1994-1998	Values	lr	idoor A	ir	An	nbient.	Air	S	Soil Gas	3	Inc	door A	jr	Ar	nbient A	Air	5	Soil Gas	,
Dilution		mcq/m3		0.50			0.50			1.00			0.50	1		0.50	,		5.00*	i
Units				ug/m³			ug/m³			ug/m³		1	ug/m³			ug/m³			ug/m³	
Volatile Organic Compound			conc	qual	pql	conc	qual	pq	conc	qual	pql	conc	quai	pq)	conc	qual	pqì	conc	qual	pql
Xylene (m,p)	4.1-12	NG	9.1			ND	Ū	0.43	9.6			. 15ોનું			ND	U	0.43	4.8		
Xylene (o)	<2.4-4.4	NG	2.8			ND	U	0.43	2.5			4.3			ND	U	0.43	ND	u	4.3
Styrene	<1.8	NG	ND	U	0.43	ND	U	0.43	ND	U	0.85	ND	U	0.43	ND	, U	0.43	6.4		
Bromoform	NB	NG	ND	Ü	1	ND	U	1	ND	U	2.1	ND	U	1	ND	U	1	ND	U	10
1,1,2,2-Tetrachloroethane	NB	NG	ND	U	0.69	ND ·	U	0.69	ND	υ	1.4	ND	U	0.69	ND	U	0.69	ND	U_	6.9
4-Ethyltoluene	NB	NG	2.5			ND	U	0.49	ND	U	0.98	4.2			ND	U	0.49	ND	_ U	4.9
1,3,5-Trimethylbenzene	<0.25-0.44	NG	0.69			ND	U	0.49	ND	U	0.98	1.2			ND	U	0.49	ND	Ū_	4.9
2-Chlorotoluene	NB	NG	ND	U	0.52	ND	U	0.52	ND	Ū	, 1	ND	Ü	0.52	ND	U	0.52	ND	U	5.2
1,2,4-Trimethylbenzene	1.7-5.1	NG	2.8			ND	U	0.49	1.2			4.7			ND	U	0.49	8.4		
1,3-Dichlorobenzene	<0.8	NG	ND	U	0.6	ND	υ	0.6	ND	U	1.2	ND	U	0.6	ND	U	0.6	ND	U	6
1,4-Dichlorobenzene	NB	NG	5.8			ND	U	0.6	ND	Ū	1.2	14			ND	U	0.6	ND	U_	6
1,2-Dichlorobenzene	<0.9	NG	ND	U	0.6	ND	Ü	0.6	ND	U	1.2	ND	U	0.6	ND	U	0.6	ND	U	6
1,2,4-Trichlorobenzene	NB	NG	ND	Ų	1.9	ND	U	1.9	ND	U	3.7	ND	U	1.9	ND	U	1.9	ND	U_	19
Hexachlorobutadiene	NB	NG	ND	U	1.1	ND	Ü	1.1	ND	U	2.1	ND	Ú	1.1	ND	Ū	1.1	ND	Ü	11
Naphthalene	<2.5	NG	ND	U	1.3	ND	U	1.3	ND	U	2.6	ND	U	1.3	ND	U	1.3	1000	D	

Notes and Abbreviations:

- 1) Soil gas samples were collected from below land surface, indoor air samples were collected from the towest floor of the building, the ambient air sample was collected from a location immediately east of Building No: 41, and the laboratory blank was prepared at the analytical laboratory.
- 2) The laboratory blank was prepared on the same day that the samples were analyzed.
- 3) Bold values in highlighted cells exceed the greater of the New York State Department of Health (NYSDOH) Air Guideline Values and the United States Environmental Protection Agency (US EPA) BASE data.
- 4) The samples are grouped based on potential sources for the indoor air sampling results. For example, the source for compounds detected in indoor air sample IA-1 could be ambient air (sample AA-1) or soil gas (SG-5) collected from below the concrete slab at a location adjacent to
- 5) The samples ABLKW2 and ABLKW4 are associated laboratory blanks.

ug/m3 = Micrograms per cubic meter

conc = Concentration

qual = Laboratory data qualifier

pgl = Practical quantitation limit

ND = The targeted compound was not detected (laboratory data qualifier "U") at a concentration greater than the practical quantitation limit.

AA = Ambient Air Sample

SG = Soil Gas Sample

IA = Indoor Air Sample

NB = No BASE data were available for the compound

NG = No guideline value has been published for the compound

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A) HHMT - PORT IVORY FACILITY

Location	US EPA	NYSDOH	Λ.	BLKW	, 1		BLKW	4
	1				- 1			1
Sample Date	BASE	Air	,	Note 2	1	,	Note 2	' I
Laboratory Sample ID	Data, Offices	Guideline	Α	BLKW.	2	Α	BLKW	4
Sample Type (Note 1)	1994-1998	Values	Labor	ratory E	Blank	Labo	atory l	Blank
Dilution	1	mcq/m3		0.50			0.50	l
Units	ł	"		ug/m³			ug/m³	- 1
Volatile Organic Compound	 	 	conc	qual	pal	conc	qual	pgl
	NB	NG	ND	U	pq1 1.2	ND	U	1.2
			ND	-	0.7	ND	Ü	0.7
1,2-Dichlorotetrafluoroethane	NB	NG					_ U	0.7
Chloromethane	2.1-3.1	NG NG	ND	<u>U</u>	0.52	ND	U	0.52
Vinyl Chloride	<0.9		ND	U	0.28	ND	-U	0.20
1,3-Butadiene	NB	NG				ND	U_	0.22
Bromomethane	<0.9	NG	ND	U	0.39			0.39
Chloroethane	NB	NG	ND			ND	U	
Bromoethene	NB	NG	ND	U	0.44	ND	<u> </u>	0.44
Trichlorofluoromethane	NB	NG	ND	U	0.56	ND	U	0.56
Freon TF	NB	NG	ND	U	0.77	ND	U	
1,1-Dichloroethene	<1.1	NG	ND	U	0.4	ND	U	0.4
Acetone	32-60	NG	ND	υ	5.9	ND	υ	5.9
Carbon Disulfide	NB	NG	ND	U	0.78	ND	U	0.78
3-Chloropropene	NB	NG	ND	U	0.31	ND	_ <u>U</u> _	0.31
Methylene Chloride	<1.7-5.0	60	ND	U	0.87	ND	U	0.87
tert-Butyl Alcohol	NB	NG	ND	Ü	7.6	ND	U	7.6
Methyl tert-Butyl Ether	<1.7-12	NG	ND	U	0.9	ND	<u>U</u>	0.9
trans-1,2-Dichloroethene	NB	NG	ND	· U	0.4	ND	U	0.4
n-Hexane	1.6-6.4	NG	ND	U	0.35	ND	U	0.35
1,1-Dichloroethane	<0.5	NG	ND	U	0.4	ND	U	0.4
Methyl Ethyl Ketone	NB	NG	ND	U	0.74	ND	U	0.74
cis-1,2-Dichloroethene	<1.0	NG	ND	U	0.4	ND	U U	0.49
Chloroform	<0.5	NG	ND					
1,1,1-Trichloroethane	2.6-11	NG	ND	<u>U</u>	0.55	ND	U	0.55
Cyclohexane	NB	NG	ND	U	0.34	ND ND	U	0.34
Carbon Tetrachloride	<3.1	NG	ND	<u>U</u>				0.63
2,2,4-Trimethylpentane	NB	NG	ND	U	0.47	ND	U	
Benzene	2.1-5.1	NG	ND	<u>U</u>	0.32		U	0.32
1,2-Dichloroethane	<0.6	NG	ND	U	0.4	ND	U	0.4
n-Heptane	NB	NG	ND	U	0.41	ND	U	
Trichloroethene	<1.2-1.2	5	ND	U	0.54		U	0.54
1,2-Dichloropropane	<1.4	NG	ND	U	0.46		U	0.46
Bromodichloromethane	NA	NG	ND	U	0.67		U	0.67
cis-1,3-Dichloropropene	NB	NG	ND	U	0.45		Ü	0.45
Methyl Isobutyl Ketone	NB	NG	ND	U	1	ND	U	1_
Toluene	10.7-26	NG	ND	U	0.38		U	0.38
trans-1,3-Dichloropropene	NB	NG	ND	U	0.45		U	0.45
1,1,2-Trichloroethane	<1.3	NG	ND	U	0.55		U	0.55
Tetrachloroethene	<1.9-5.9	100	ND	U	0.68		U	0.68
Dibromochloromethane	NA	NG	ND	U	0.85		U	0.85
1,2-Dibromoethane	<1.3	NG	ND	U	0.77		U	0.77
Chlorobenzene	<0.7	NG	ND	U	0.46		U	0.46
Ethylbenzene	<1.6-3.4	NG	ND	υ	0.43	ND	Ū	0.43

TA

SUMMARY OF SOIL GAS AND INDOOR AND AMBIENT AIR ANALYTICAL RESULTS SITE 2 (AREA 2A)

HHMT - PORT IVORY FACILITY

Location	US EPA	NYSDOH	A	BLKW	2	A	BLKW	4
Sample Date	BASE	Air	(Note 2)	, ,	. (Note 2) [
Laboratory Sample ID	Data, Offices	Guideline	Α	BLKW	2	. Δ	BLKW	4
Sample Type (Note 1)	1994-1998	Values	Labo	ratory E	Blank	Labo	ratory 8	3lank
Dilution		mcg/m3		0.50			0.50	
Units				ug/m³			ug/m^3	
Volatile Organic Compound			conc	qual	pql	conc	qual	pql
Xylene (m,p)	4.1-12	NG	ND	.U	0.43	ND	U	0.43
Xylene (o)	<2.4-4.4	NG	ND	U	0.43	ND	Ū	0.43
Styrene	·<1.8	NG	ND	U	0.43	ND	U	0.43
Bromoform .	NB	NG	ND	U	1	ND	U	1
1,1,2,2-Tetrachloroethane	NB	NG	ND	U	0.69	ND	U	0.69
4-Ethyltoluene	NB	NG	ND	U	0.49	ND	U	0.49
1,3,5-Trimethylbenzene	<0.25-0.44	NG	ND	U	0.49	ND	U	0.49
2-Chlorotoluene	NB	NG	ND	U	0.52	ND	U	0.52
1,2,4-Trimethylbenzene	1.7-5.1	NG	ND	U	0.49	ND	U	0.49
1,3-Dichlorobenzene	<0.8	NG	ND	U	0.6	· ND	U	0.6
1,4-Dichlorobenzene	NB	NG	ND	U	0.6	ND	Ü	0.6
1,2-Dichlorobenzene	<0.9	NG	· ND	U	0.6	ND	Ü	0.6
1,2,4-Trichlorobenzene	NB	NG	ND	U	1.9	ND	U	1.9
Hexachlorobutadiene	NB	NG	ND	U	1.1	ND	U	1.1
Naphthalene	<2.5	NG	ND	U	1.3	ND	U	1.3

Notes and Abbreviations:

- Soil gas samples were collected from below land surface, indoor air samples were collected from the lowest floor of the building, the ambient air sample was collected from a location immediately east of Building No. 41, and the laboratory blank was prepared at the analytical laboratory.
- The laboratory blank was prepared on the same day that the samples were analyzed.
- Bold values in highlighted cells exceed the greater of the New York State
 Department of Health (NYSDOH) Air Guideline Values and the United States
 Environmental Protection Agency (US EPA) BASE data.
- 4) The samples are grouped based on potential sources for the indoor air sampling results. For example, the source for compounds detected in indoor air sample IA-1 could be ambient air (sample AA-1) or soil gas (SG-5) collected from below the concrete slab at a location adjacent to IA-1
- 5) The samples ABLKW2 and ABLKW4 are associated laboratory blanks.

ug/m3 = Micrograms per cubic meter

conc = Concentration

qual = Laboratory data qualifier

pql = Practical quantitation limit

ND = The targeted compound was not detected (laboratory data qualifier "U") at a concentration greater than the practical quantitation limit.

AA = Ambient Air Sample

SG = Soil Gas Sample

IA = Indoor Air Sample

NB = No BASE data were available for the compound

NG = No guideline value has been published for the compound

TABLE 5 SUMMARY OF RESULTS OF THE PRE-SAMPLING INVENTORY SITE 2 (AREA 2A) HHMT-PORT IVORY FACILITY

Building	Description of Item/Product	Nearest Indoor Air Sampling Location
Building No. 40	Note 1	Note 1
Building No. 41	Spray Paint (Mostly unopened) in storage closet	IA-3
	Air freshener in storage closet	IA-3
Building No. 45	Limpiador Cleaner/Sanitizer beneath desk	IA-1

Notes and Abbreviations

- 1) Because Building No. 40 was scheduled for demolition, no indoor air samples were collected and no pre-sampling invesntory was conducted.
- 2) No elevated concentration of volatile organic vapors was measured (using a photoionization detector, or PID) in Building No. 41 or Building No. 45, including in the vicinity of the listed item/product.
- Other items were observed in the storage closet in Building No. 41, but only those items/products that contained volatile organic compounds are listed.

Two methods (Method I and Method II) were used to collect subsurface soil gas samples. In Method I, utilized beneath the concrete floors of Building Nos. 41 and 45 at sampling locations SG-5 through SG-7 (see Figure 3), soil gas samples were collected from immediately below the concrete slab because these buildings are slab-on-grade construction. As specified by the NYSDOH during a December 9, 2004 conference call, two soil gas samples was collected from below Building No. 41, and one sample was collected from below Building No. 45. Because the bottom floor of Building No. 40 was a basement constructed below the water table, Method II was utilized for sample collection adjacent to this building. The depth to water immediately west of Building No. 40 was measured at a temporary well, identified as PB-1. Because the water table was measured to be above the bottom of the basement of Building No. 40, it was not possible to collect a soil gas sample from beneath the concrete floor in the basement. Therefore, as per the NYSDOH, one soil gas sample was collected the soil column within 18 inches of the water table at a location, identified as SG-1 (see Figure 3), to the north of PB-1 and immediately west of Building No. 40.

9.2.1 Substructure Soil Gas Sampling Method I

Soil gas samples SG-5 through SG-7 were collected using Method I equipment and techniques. The sampling locations were selected to characterize the concentrations of VOC vapors in soil beneath the concrete slabs of Building Nos. 41 and 45 in frequently-occupied portions of the buildings. Sample location SG-5 was located in a one-room guard shack that was, at that time, occupied 24 hours per day, seven days per week. The guard shack has no walls or other partitions that may limit air movement. Sample locations SG-6 and SG-7 were collected from Building No. 41, an office building that is usually occupied for approximately ten hours per day, six days per week. Soil gas sample SG-6 was collected from within offices located near the southeast corner of Building No. 41, while sample SG-7 was collected from within offices to the north and west of the center of Building No. 41.

As noted above, the ground floors of Building Nos. 41 and 45 were inspected on March 4, 2005 for features where soil gas could potentially migrate from below the concrete slab into the building. The concrete slab that formed the floor was covered in both Building No. 41 and Building No. 45. In Building No. 41, the concrete slab was covered by tile. In Building No. 45, the floor was covered by thin rubber matting. Therefore, no cracks were observed in the concrete slab that forms the floors of these buildings. No floor drains, support columns, or subsided areas were present within ten feet of any of the three indoor sampling locations.

A temporary sampling port was constructed at each subsurface soil gas sampling location on March 10, 2005. The borehole for each sampling port was advanced through the bottom of the concrete slab using a 3/8-inch drill bit. Based on field observations made during drilling, the thickness of the concrete slab in Building No. 41 ranged from approximately 1.4 (at sampling location SG-7) to 2.0 feet (at sampling location SG-6). The thickness of the concrete slab in Building No. 45 was approximately 0.8 feet, as determined by field observations made during drilling at sampling location SG-5.

Each sampling port consisted of a ¼-inch nipple, Teflon threaded compression fitting, rubber tube, and a seal that was placed around the rubber tube to preclude indoor air from being drawn into the subsurface soil gas sample. The compression fitting was pushed through the rubber tube so that the bottom of the compression fitting was below the bottom of the rubber tube. The compression fitting was tightened so that the rubber tube was forced against the sides of the borehole. The seal consisted of beeswax and a 1-inch diameter laboratory-grade rubber stopper, with a 3/8-inch diameter center hole. The tubing was pushed through the rubber stopper, and the tubing and stopper were inserted into the hole that was drilled through the concrete slab. The beeswax was melted and used to form a seal around the rubber stopper. After the wax hardened, soil gas was purged through the tubing using the VRae multigas meter. The PID reading and oxygen content of the soil gas were recorded and are provided in Table 6. The multigas meter was removed, and the tube was immediately plugged using a laboratory-grade rubber stopper.

All subsurface soil gas samples were collected using 1-liter SUMMA canisters. All SUMMA canisters were equipped with particulate filters and were calibrated by STL-Edison, an NYSDEC-certified laboratory (Certification No.11452), to allow soil vapors into the canister throughout an eight-hour sampling period at a rate of less than 0.2 liters per minute. All canisters had an initial vacuum reading of at least 25 inches of mercury. Sample collection was initiated as close as possible to 9:00 A.M. on March 14, 2005. The time, pressure reading, and SUMMA canister serial number were recorded (see Table 6). At the end of the eight-hour sampling period (i.e., at approximately 5:00 P.M.), all canisters were closed.

Each SUMMA canister was transported to the analytical laboratory under full Chain of Custody documentation for analysis of VOCs in accordance with United States Environmental Protection Agency (USEPA) Method TO-15 using selective ion monitoring (SIM). The method detection limits achieved by the analytical laboratory are summarized with the analytical results in Table 4.

9.2.2 Substructure Soil Gas Sampling Method II

In the second type of subsurface soil gas sampling, a soil gas sample was collected from within 18 inches of the water table from a location outside of Building No. 40 because the water table was measured to be above the basement floor of Building No. 40. A pilot boring, identified as PB-1 on Figure 3, was drilled on March 10, 2005 to confirm the depth of the water table, which was measured at 5.5 feet bgs using an electronic water level meter. Hollow rods equipped with a disposable drive point were advanced through macadam to a depth of 4.5 feet bgs and were retracted to approximately 4.0 feet bgs, allowing soil gas in the 4-4.5 foot bgs depth interval (i.e., within 18 inches of the water table) to be sampled. A nipple was attached to the top of the hollow rods, which were equipped with threads and Teflon tape, in order to allow the SUMMA canisters and VRae multigas meter to be attached. Beeswax was melted and used to form a seal around the rods.

After the wax hardened, soil gas was purged through the tubing using the VRae multigas meter. The PID reading and oxygen content of the soil gas were recorded and are provided in Table 6. The multigas meter was removed, and the tube was immediately plugged using a laboratory-grade rubber stopper.

The subsurface soil gas sample was collected using a 1-liter SUMMA canister. The SUMMA canister was equipped with a particulate filter and was calibrated by STL-Edison, an NYSDEC-certified laboratory, to allow soil vapors into the canister throughout an eight-hour sampling period at a rate of less than 0.2 liters per minute. The SUMMA canister had an initial vacuum reading of 30 inches of mercury, greater than the required 25 inches of mercury. Sample collection was initiated as close as possible to 9:00 A.M. on March 14, 2005. The time, pressure reading, and SUMMA canister serial number were recorded (see Table 6). At the end of the eight-hour sampling period (i.e., at approximately 5:00 P.M.), the SUMMA canister was closed.

The SUMMA canister was transported to the analytical laboratory under full Chain of Custody documentation for analysis of VOCs in accordance with USEPA Method TO-15 using SIM. The MDLs achieved by the analytical laboratory are summarized with the analytical results in Table 4.

9.3 Indoor Air Sampling Program

Indoor air sampling was conducted to determine the concentration of VOC vapors in the breathing zone inside the two buildings that are scheduled to remain following redevelopment (Buildings No. 41 and No.

TABLE 6 SUMMARY OF SOIL GAS MEASUREMENTS AND SUMMA CANISTER DATA SITE 2 (AREA 2A) HHMT-PORT IVOERY FACILITY

Location ID	Sample Type	Pre-purge Soil Gas I	Measurements	SUMMA Canister No.	Initial Pressure (in Hg)	Time Opened	Time Closed	Final Pressure (in Hg)
	l	PID Reading (ppm)	Oxygen (%)	1	* *			
AA-1	Ambient Air	Note 1	Note 1	854	-28	8:54 A.M.	4:56 P.M.	-2.5
IA-1	Indoor Air	Note 1	Note 1	7048	-30	8:59 A.M.	4:59 P.M.	-10
IA-2	Indoor Air	Note 1	Note 1	7012	-30	8:57 A.M.	4:53 P.M.	-4
IA-3	Indoor Air	Note 1	Note 1	6481	-30	8:56 A.M.	4:55 P.M.	-9
SG-1	Soil Gas	5.6	17.4	7033	-30	9:03 A.M.	4:57 P.M.	-8
SG-5	Soil Gas	0.0	20.9	7058	-30	8:59 A.M.	4:59 P.M.	-9
SG-6	Soil Gas	0.3	20.4	6776	-29	8:57 A.M.	4:53 P.M.	-4
SG-7	Soil Gas	0.0	20.9	6462	-30	8:56 A.M.	4:55 P.M.	-2.5

Notes and Abbreviations

- Purging was conducted only at soil gas sampling locations in order to purge the sampling apparatus of any indoor air that may have been trapped beneath the apparatus.
- 2) Pressures are negative because the Summa canisters must be operated under vacuum.
- 3) The PID reading is the concentration of volatile organic compounds, as measured using a PID.
- 4) The Location ID is as per Figure 3.

PID = Photoionization detector ppm = parts per million in Hg = Inches of mercury

45). Because the buildings will be utilized only by facility personnel and not by children, the breathing zone was considered to be approximately 4.5-5 feet above the floor.

All indoor air samples will be collected using SUMMA canisters. STL-Edison equipped each SUMMA canister with a particulate filter and calibrated the SUMMA canisters to allow air in throughout an eighthour sampling period and at a rate of less than 0.2 liters per minute. The metering valve was opened and immediately closed to ensure that the vacuum within the canister was at least 25 inches of mercury. The SUMMA canister valve was opened to initiate sample collection as close as possible to 9:00 A.M. on March 14, 2005 (i.e., at approximately the same time as the valve on the adjacent subsurface soil gas SUMMA canister, if any, was opened). The time, pressure reading, and SUMMA canister serial number were recorded and are provided in Table 6. At the end of the eight-hour sampling period (i.e., at approximately 5:00 P.M.), the SUMMA canister valve was closed.

The SUMMA canisters were transported to the analytical laboratory under full Chain of Custody documentation for analysis of VOCs in accordance with United States Environmental Protection Agency (USEPA) Method TO-15 using selective ion monitoring (SIM). The method detection limits (MDLs) achieved by the analytical laboratory are summarized with the analytical results in Table 4.

9.4 Ambient Air Sampling Program

Ambient air sampling was conducted to determine whether the results of the indoor air sampling were potentially affected by the concentration of VOC vapors in ambient air outside the building. The Port Authority facility is located in Staten Island, immediately across the Hudson River from Elizabeth and Linden, New Jersey. Due to the heavily industrialized and populated character of this area, HMM anticipated that VOC vapors may be present in the ambient atmosphere.

Because the indoor air samples were collected from two buildings, Building Nos. 41 and 45, separated by only approximately 75 feet, the ambient air outside Building No. 41 was expected to be of the same quality as the ambient air outside Building No. 45. Therefore, only one ambient air sample was collected. The ambient air sampling location (see Figure 3) was selected based upon the potential for positive bias in the results (i.e., for point sources to contribute to the ambient air vapor concentrations). To the extent possible, HMM did not locate the ambient air sample at a location adjacent to such a potential point source. Figure 3 indicates the potential point sources of VOC vapors that were identified by HMM.

The ambient air sample was collected using a SUMMA canister with an intake in the breathing zone (i.e., approximately 4.5-5 feet above the ground surface) set up immediately east of Building No. 41. STL-Edison equipped each SUMMA canister with a particulate filter and calibrated the SUMMA canisters to allow air in throughout an eight-hour sampling period and at a rate of less than 0.2 liters per minute. The metering valve was opened and immediately closed to ensure that the vacuum within the canister was at least 25 inches of mercury. The SUMMA canister valve was opened to initiate sample collection as close as possible to 9:00 A.M. on March 14, 2005 (i.e., at approximately the same time as the valve on the adjacent subsurface soil gas SUMMA canister, if any, was opened). The time, pressure reading, and SUMMA canister serial number were recorded and are provided in Table 6. At the end of the eight-hour sampling period (i.e., at approximately 5:00 P.M.), the SUMMA canister valve was closed.

The SUMMA canister was transported to the analytical laboratory under full Chain of Custody documentation for analysis of VOCs in accordance with USEPA Method TO-15 using SIM. The MDLs achieved by the analytical laboratory are summarized with the analytical results in Table 4.

9.5 Quality Assurance/Quality Control (QA/QC) Program

The QA/QC Program consisted of procedural protocols and laboratory sampling. Procedural protocols included confirming that the metering valve was working properly by checking vacuum pressure within the SUMMA canister. Vacuum readings for all SUMMA canisters were monitored periodically to ensure proper functioning of the valve. In addition, the final vacuum in the SUMMA canister, as measured using the gauge, was checked to confirm a vacuum of at least 2 inches of mercury. Final gauge readings are provided in Table 6.

Laboratory QA/QC samples were prepared and analyzed at a frequency dictated by the TO-15 method. The results for the associated method blanks are provided in Table 4.

9.6 Analytical Results

As noted above, all soil gas, indoor air, and ambient air samples were analyzed for VOCs. Sampling locations are shown on Figure 3. The analytical results for all samples are summarized below and in Table 4. As per the NYSDOH document entitled "Draft Guidance for Evaluating Soil Vapor Intrusion in New York" and dated February 2005, the analytical data were compared to the NYSDOH Air Guideline Values (AGV), when available, or the USEPA BASE data set if no AGV had been established for a compound. AGVs have been established for the following VOCs only: methylene chloride,

tetrachloroethene, and trichloroethene. Concentrations in the BASE data set represent concentrations of VOCs in indoor air samples collected at industrial and commercial facilities by the US EPA. The levels provided in the referenced guidance document are the 25th and 75th percentile concentrations in the BASE data set; the analytical results for the samples collected at the HHMT-Port Ivory Facility were compared to the 75th percentile concentrations. Please note, neither the NYSDEC nor the NYSDOH regulates the concentrations of VOC compounds in soil gas. In addition, the BASE data set concentrations are background data only and have no significance with regards to exposure assessments or health hazards. The comparison of analytical results for soil gas samples to AGVs and BASE data and the comparison of analytical results for indoor and ambient air to the BASE data does not indicate acceptance that these are appropriate objectives.

9.6.1 Soil Gas Sampling Results

Four soil gas samples, identified as SG-1, SG-5, SG-6, and SG-7, were collected from four different locations on March 14, 2005. The sampling locations are shown on Figure 3. Soil gas samples SG-5, SG-6, and SG-7 were collected using Method I (see Section 8.2.1), and soil gas sample SG-1 was collected using Method II (see Section 8.2.2). Soil gas sampling analytical results are summarized in Table 4.

No VOCs were detected at concentrations greater than their corresponding NYSDOH AGVs, except for the concentration of trichloroethene (TCE) in the soil gas sample collected at location SG-1. TCE was detected at a concentration of 910 micrograms per cubic meter (ug/m³), and the AGV for TCE is 5 ug/m³.

Fourteen VOCs, including two isomers of xylene, were detected at concentrations greater than the concentration listed in the US EPA BASE data set. These VOCs included compounds associated with petroleum hydrocarbons (benzene, ethylbenzene, naphthalene, n-hexane, styrene, toluene, 1,2,4-Trimethylbenzene, and isomers of xylene), with non-chlorinated solvents (acetone), and with chlorinated solvents (carbon tetrachloride, chloroform, cis-1,2-Dichloroethene, 1,1,1-trichloroethane, and trichloroethene).

Please note, most of the VOCs detected at concentrations greater than the concentrations in the BASE data set were detected in soil gas samples SG-1 and SG-6. The only VOCs detected in samples SG-5 and/or SG-7 at concentrations greater than the concentrations in the BASE data set were acetone (in both SG-5 and SG-7) and chloroform and 1,1,1-Trichloroethane (in SG-7 only).

9.6.2 Indoor Air Sampling Results

Three indoor air samples, identified as IA-1, IA-2, and IA-3, were collected from three different locations on March 14, 2005. The sampling locations are shown on Figure 3. Soil gas sampling analytical results are summarized in Table 4.

No VOCs were detected at concentrations greater than their corresponding NYSDOH AGVs in any of the indoor air samples. In addition, no VOCs were detected at concentrations greater than the concentrations in the BASE data set in sample IA-1. Toluene was the only VOC detected in sample IA-2 at a concentration (28 ug/m³) slightly greater than the concentration (26 ug/m³) in the BASE data set. The concentrations of the following compounds were detected in sample IA-3 at a concentration greater than the concentration in the BASE data set: ethylbenzene, n-hexane, toluene, and the m/p isomer(s) of xylene.

9.6.3 Ambient Air Sampling Results

One ambient air sample, identified as AA-1, was collected from a location to the east of Building No. 41 (see Figure 3) on March 14, 2005. Ambient air sampling analytical results are summarized in Table 4.

The only VOCs detected in the ambient air sample were benzene, chloromethane, dichlorodifluoromethane, toluene, and trichlorofluoromethane. The NYSDOH has not established AGVs for these VOCs. Of the five VOCs detected in sample AA-1, only benzene, chloromethane, and toluene are included in the BASE data set; none of these three compounds were detected at concentrations greater than the concentration in the BASE data set.

9.6.4 QA/QC Sampling Results

As noted above, the samples analyzed for QA/QC purposes were two laboratory blanks, identified as ABLKW2 and ABLKW4. No VOCs were detected in either blank.

9.7 Soil Gas and Indoor and Ambient Air Sampling – Discussion

The following discussion of the analytical data is organized similarly to Table 4 (i.e., by soil gas sampling location). Soil gas sampling location SG-1 was collected from within 18 inches of the water table to determine whether soil gas vapors could potentially migrate into two trailers that will be anchored within the footprint of Building No. 40 subsequent to the demolition of this building. The trailers will be

anchored onto concrete or stone foundations so that there is a space between the bottom of the trailer and ground surface.

Please note, this discussion is for completeness only, as the NYSDEC and NYSDOH have concluded that no further investigation or remediation is warranted at Area 2A with respect to indoor air quality.

9.7.1 Soil Gas Sample SG-1

The concentrations of VOCs detected in sample SG-1 are greater than the concentrations of the same VOCs detected in ambient air. Therefore, the VOCs detected in soil gas sample SG-1 are either not attributable to ambient air quality or are only partially attributable to ambient air quality. Regardless of the concentration of VOCs in the soil gas, however, any VOCs that migrate into the atmosphere at land surface are expected to be diluted/vented immediately and will not pose a health hazard to workers within the trailers. Therefore, no additional monitoring or remedial actions are necessary with respect to (anticipated) indoor air quality in the trailers that will be anchored in the footprint of Building No. 40.

9.7.2 Soil Gas Sample SG-5

Soil gas sample SG-5 was collected below the concrete slab in Building No. 45 and adjacent to indoor air sample IA-1. The concentrations of VOCs in the ambient air sample AA-1 were lower then the concentrations of the same VOCs in soil gas sample SG-5 and indoor air sample IA-1. Therefore, the VOCs detected in the soil gas sample SG-1 and the indoor air sample IA-1 are either not attributable to ambient air quality or are only partially attributable to ambient air quality.

The concentrations of VOCs in SG-5 were generally greater than those in IA-1; therefore, soil gas may be a source for VOCs detected in indoor air sample IA-1. Acetone was the only compound detected in sample SG-5 at a concentration greater than the 75th percentile concentration in the BASE data set (indoor air quality baseline). No VOCs were detected in sample IA-1 at concentrations greater than the indoor air quality baseline. Based on the data, acetone is the only VOC in soil gas that could potentially migrate into Building No. 45 at a concentration greater than the applicable indoor air quality baseline, 60 micrograms per cubic meter (ug/m³). Acetone is not a highly toxic compound; it is not a carcinogen and has a NIOSH REL (590 milligrams per cubic meter, or mg/m³, equivalent to 590,000 ug/m³) more than 5,000 times as high as the concentration detected in SG-5. In addition, assuming that all acetone in the indoor air sample was from soil gas migrating into the building, the attenuation factor for acetone was

12.5. Therefore, in order for the indoor air to contain acetone at a concentration above 60 ug/m³, the indoor air quality baseline for acetone, the soil gas would need to contain acetone at a concentration of at least 750 ug/L, approximately seven times as high as the detected concentration. No additional monitoring or remedial actions are necessary with respect to indoor air quality in Building No. 45.

9.7.3 Soil Gas Sample SG-6

Soil gas sample SG-6 was collected below the concrete slab in an office area in Building No. 41 and immediately adjacent to indoor air sample IA-2. The concentrations of VOCs in the ambient air sample AA-1 were lower then the concentrations of the same VOCs in soil gas sample SG-6 and indoor air sample IA-2. Therefore, the VOCs detected in the soil gas sample SG-6 and the indoor air sample IA-2 are either not attributable to ambient air quality or are only partially attributable to ambient air quality.

The concentrations of VOCs in SG-6 were frequently greater than those in IA-2; therefore, soil gas may be a source for VOCs detected in indoor air sample IA-2. Acetone, benzene, ethylbenzene, naphthalene, toluene, and two isomers of xylene were the only compounds detected in sample SG-6 at concentrations greater than indoor air quality baseline. Based on the data, these compounds are the only VOCs that could potentially migrate from the soil gas into the southeast portion of Building No. 41 at a concentration greater than the applicable indoor air quality baseline. All of these VOCs except benzene have NIOSH REL values of at least 1,000 times greater than the concentration of benzene in sample SG-6. In addition, benzene is the only carcinogen in the VOCs listed above. Benzene was detected in soil gas at a concentration (38 ug/m³) more than eight times below the NIOSH REL for benzene. Assuming that all the benzene detected in the indoor air sample attributable to the migration of benzene from soil gas into the building, the attenuation factor for benzene was 15.2. Therefore, in order for the indoor air to contain benzene at a concentration above 5.1 ug/m³, the soil gas would need to contain acetone at a concentration of at least 77.5 ug/m³, approximately twice as high as the detected concentration.

Toluene was the only VOC detected in indoor air sample IA-2 at a concentration greater than the indoor air baseline. Toluene is not a highly toxic compound; it is not a carcinogen and has a NIOSH REL (375 milligrams per cubic meter) more than 13,000 times as high as the concentration detected in sample IA-2. In addition, toluene is a common constituent in aerosol cans (air fresheners, e.g.). No additional monitoring or remedial actions are necessary with respect to toluene in indoor air in the southeast portion of Building No. 41.

9.7.4 Soil Gas Sample SG-7.

Soil gas sample SG-7 was collected below the concrete slab in an office area in Building No. 41 and immediately adjacent to indoor air sample IA-3. The concentrations of VOCs in the ambient air sample AA-1 were lower then the concentrations of the same VOCs in soil gas sample SG-7 and indoor air sample IA-3. Therefore, the VOCs detected in the soil gas sample SG-7 and the indoor air sample IA-3 are either not attributable to ambient air quality or are only partially attributable to ambient air quality.

A total of 24 VOCs were detected in soil gas sample SG-7 and/or indoor air sample IA-3. Sixteen of the VOCs were detected at greater concentrations in the indoor air sample than in the soil gas sample, while only eight VOCs were detected at greater concentrations in the soil gas sample than in the indoor air sample. Soil gas may potentially be a source for only the eight VOCs detected at greater concentrations in the soil gas sample than in the indoor air sample. These eight compounds were acetone; trichlorofluoromethane; tertiary butyl alcohol; methyl ethyl ketone; chloroform; 1,1,1-trichloroethane; trichloroethene; and,methyl isobutyl ketone. Of these compounds, only acetone, chloroform, and 1,1,1-trichloroethane were detected at concentrations greater than the indoor air quality baseline in soil gas sample SG-7, but not in indoor air sample IA-3. The NIOSH RELs for acetone, chloroform, and 1,1,1-Trichloroethane are, respectively, more than 6500, 690, and 145,000 times as great as the concentrations of these VOCs detected in soil gas sample SG-7. Chloroform is the only carcinogen in the VOCs listed above.

Assuming that all the acetone detected in the indoor air sample was from soil gas, the attenuation factor for acetone was 3.5. Therefore, in order for the indoor air to contain acetone at a concentration above 60 ug/m³, the indoor air quality baseline for acetone, the soil gas would need to contain acetone at a concentration of at least 210 ug/m³, more than twice as high as the detected concentration. Chloroform was not detected in the indoor air sample, so an attenuation factor cannot be calculated, and analysis similar to that above cannot be performed. Assuming that all the 1,1,1-trichloroethane detected in the indoor air sample was from soil gas, the attenuation factor for 1,1,1-trichloroethane was 3.8. Therefore, in order for the concentration of 1,1,1-trichloroethane in indoor air to exceed 11 ug/m³, the indoor air quality baseline, the concentration of 1,1,1-trichloroethane in soil gas would have to be at least 41.8 ug/m³, more than three times as high as the detected concentration.

No additional monitoring or remedial actions are necessary with respect to indoor air quality in Building No. 41.

9.8 Soil Gas and Indoor and Ambient Air Sampling - Conclusions

As a result of the soil gas and indoor and ambient air sampling results, HMM has drawn the following conclusions. Please note, in all cases, HMM concurs with the NYSDEC and NYSDOH that neither additional monitoring nor remediation are necessary with regard to indoor air quality at Area 2A.

- Although the soil gas at location SG-1 contained several VOCs at concentrations above the indoor air quality baseline, the trailers will be elevated above land surface. Any vapors that migrate from the subsurface to land surface beneath the trailers will therefore be diluted and vented. Indoor air quality within the trailers is not anticipated to be impacted.
- No VOCs were detected in indoor air in Building No. 45 at concentrations greater than the indoor air quality baseline. Therefore, indoor air quality has not been significantly impacted by the presence of VOC vapors in soil gas beneath Building No. 45.
- Based on the analytical data for soil gas sample SG-5, acetone is the only VOC that could potentially migrate into Building No. 45 at a concentration above the applicable indoor air quality baseline; to do so, the concentration of acetone in the soil gas would need to increase by a factor of at least seven. Therefore, indoor air quality in building No. 45 is not expected to be impacted by the presence of VOC vapors in soil gas beneath the building.
- The VOCs ethylbenzene, n-hexane, toluene, and two indistinguishable isomers (meta- and para-) of xylene were detected at concentrations above the indoor air quality baseline in the indoor air samples (IA-2 and IA-3) collected in Building No. 41. Toluene is not toxic (its NIOSH REL is more than 6,500 times as great as the concentration detected in indoor air sample IA-2 and more than 13,000 times as great as that detected in sample IA-3). Since the concentrations of the other VOC vapors were greater in the indoor air sample than in the corresponding soil gas sample, the presence of these VOCs is not attributable to the migration of VOC vapors in soil gas into Building No. 41. Therefore, indoor air quality has not been significantly impacted by the presence of VOC vapors in soil gas beneath Building No. 41.
- Based on the analytical data for soil gas samples SG-6 and SG-7, the soil gas samples collected from beneath Building No. 41, the only VOCs that have the potential to migrate from soil gas into Building No. 41 at concentrations above the applicable indoor air quality baseline are acetone, benzene, chloroform, ethylbenzene, naphthalene, toluene, 1,1,1-trichloroethane, and xylene (all

three isomers). With the exception of benzene and chloroform, which are considered to be carcinogens, none of these compounds are highly toxic. In order for benzene to migrate from the soil gas into Building No. 41 at a concentration greater than the indoor air quality baseline, the concentration of benzene beneath Building N. 41 would have to increase by a factor of between two (based on the analytical data for sample SG-6) and 116 (based on the analytical data for sample SG-7). The NIOSH REL for chloroform is more than 690 times higher than the concentration of chloroform in soil gas sample SG-7. Please note, chloroform was not detected in soil gas sample SG-6. Therefore, indoor air quality in building No. 45 is not expected to be impacted by the presence of VOC vapors in soil gas beneath the building.

 Neither additional investigation nor any remediation is warranted with respect to indoor air quality at Area 2A.

10.0 Initial Investigation of AOC-Western Area

During modification to the stormwater system in the southwestern portion of Area 2B on August 16, 2005, the Port Authority encountered one 12-inch-diameter pipeline, five pipelines with diameters that varied from four to eight inches, and, LNAPL-impacted soil. This AOC was identified as AOC-Western Area. As part of the construction effort at this AOC, LNAPL-impacted soil was excavated, stockpiled, and disposed of off-site to the Middlesex County Landfill, an NJDEP-permitted landfill operated by the Middlesex County Utilities Authority. The following summarizes the field observations made during excavation activities at this AOC and analytical results for soil and groundwater samples collected directly from the excavation.

10.1 Field Observations

The Area 2B excavation was inspected on two occasions: August 16 and September 14, 2005. LNAPL-impacted soil was first encountered in the excavation in August 2005. Indications of LNAPL-impacted soil included the elevated concentrations of volatile organic vapors, the presence of sheen, odor, and discolored (gray) soil. LNAPL was not observed to be floating on the water surface during either inspection. However, sheen was observed on August 16, 2005. For the most part, the sheen appeared to be thick and solid and was unrelated to petroleum. However, near the eastern extents of the excavation, thinner, iridescent sheen was observed. Therefore, the LNAPL-impacted soil was likely to be more significant to the east of the excavation. This observation agreed with the apparent impacts to soil

exposed along the sidewalls. Please note, meadowmat was encountered at the bottom of the excavation at a depth of approximately 5-6 feet bgs.

The excavation was expanded to the north in late August and early September 2005. HMM inspected the newly exposed sidewalls. The inspection effort included screening soil along the sidewalls for volatile organic vapors using a PID. The concentration of volatile organic vapors was low (maximum PID reading less than 10 ppm) in all instances, but was greatest in the southern and eastern portions of the excavation. LNAPL was not observed to be floating on the water in the excavation or seeping out of the excavation sidewalls. Indications of LNAPL-impacted soil included the elevated concentrations of volatile organic vapors, the presence of sheen, odor, and discolored (gray) soil.

10.2 Analytical Results

The initial investigation of soil and groundwater quality at AOC-Western Area was not presented in any NYSDEC-approved work plan because the Port Authority needed to respond rapidly to this emergent issue that resulted from construction activities unrelated to actions being undertaken pursuant to the VCP Agreement. As a preliminary investigation to determine the effect of the LNAPL-impacted soil on the environmental quality of soil and groundwater in AOC-Western Area, five soil samples and one groundwater sample were collected in AOC-Western Area. Because the excavation extended below the water table, the Port Authority collected all five soil samples, identified as HHPI-1-A, HHPI-1-B, and HHPI-2 through HHPI-4, from the excavation sidewalls and from stockpiled soil that had been excavated previously. The groundwater sample, identified as HHPI-PIT, was collected from water that had accumulated within the excavation. All soil and groundwater samples collected at this AOC were analyzed for PP VOC + 10 and xylene, PP SVOC, and TPHC. Soil and groundwater analytical results are summarized in Tables 7A-C and 8A-B, respectively.

The only VOCs detected in the soil samples were acetone, carbon disulfide, methylene chloride, and toluene. Acetone and methylene chloride are common laboratory solvents, and methylene chloride was detected in an associated method blank. The occurrence of acetone and methylene chloride in these soil samples is likely due to laboratory contamination of the samples. Carbon disulfide was detected at an estimated concentration of 0.0023 mg/kg in the soil sample collected at location HHPI-2, but was not detected in any other sample. Toluene was detected at a concentration of 0.0019 mg/kg in the sample collected at location HHPI-1B, but was not detected in any other sample. None of these VOCs were detected at concentrations above their respective RSCOs in any soil samples.

TABLETA

SUMMARY OF SOIL SAMPLNIG ANALYTICAL RESULTS - VOCs, AOC-WESTERN AREA SITE 2 (AREA 2B)

HHMT-PORT IVORY FACILITY

		,				НН	MT-PORT	IVORY FA	CILITY							
Location	New York TAGM		HHPI-1A			HHPI-1B			HHPI-2			HHPI-3			111101	
Field Sample ID	Recommended Soil	HHPI-	1-A-081605	5-S001	HHPI-	1-B-08160	5-5001	нны	I-2-081605	5001	LUD	1-3-081605	0004		HHPI-4	
Lab Sample Number	Cleanup Objective		C19113-00)2	•	C19113-00			C19113-00						l-4-081605-	
Sampling Date	(mg/kg)	1	8/16/05		i ^	8/16/05		1 ^	8/16/05	U4	· "	C19113-00 8/16/05	15	A	C19113-00	/6
Matrix	1		SOLID		l	SOLID		t	SOLID		l			i	8/16/05	
Volatile Organic Compounds (VOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	SOLID	Our		SOLID	
1,1,1,2-Tetrachloroethane	NS	ND	0.0072		ND	0.0086	400	ND	0.01	Quai			Qual	Conc	MDL	Qual
1,1,1-Trichloroethane	0.8	ND	0.0072		ND	0.0086		ND		ļ	ND	0.0065		ND	0.0062	
1,1,2,2-Tetrachloroethane	0.6	ND	0.0072		ND	0.0086			0.01	<u> </u>	ND	0.0065		ND	0.0062	
1,1,2-Trichloroethane	NS	ND	0.0072		ND	0.0086		ND ND	0.01	ļ	ND	0.0065		ND	0.0062	
1,1-Dichloroethane	0.2	ND	0.0072		ND	0.0086			0.01	ļ. 	ND	0.0065		ND	0.0062	
1,1-Dichloroethene	0.4	ND	0.0072		ND	0.0086		ND NO	0.01		ND	0.0065		ND	0.0062	İ
1,2-Dichloroethane	0.1	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
1,2-Dichloropropane	NS	ND	0.0072		ND			ND NO	0.01	ļ	ND	0.0065		ND	0.0062	L
2-Butanone	0.3	ND	0.0072		ND	0.0086		ND	0.01	ļ	ND	0.0065		ND	0.0062	
2-Chloroethylvinylether	NS	ND	0.0072		ND ND	0.0086	ļ	ND	0.01		ND	0.0065		ND	0.0062	
2-Hexanone	NS	ND	0.0072		ND	0.0086		ND	0.01	<u> </u>	ND	0.0065		ND	0.0062	
4-Methyl-2-Pentanone	1	ND	0.0072					ND.	0.01		ND	0.0065		ND	0.0062	
Acetone	0.2	0.12	0.0072		ND ·	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
Acrolein	NS	ND	0.036		0.064			0.069			0.034	•		0.046		
Acrylonitrile	· NS	ND	0.0072		ND	0.043		ND	0.051		ND	0.032		ND	0.031	
Benzene	0.06				ND	0.0086		ND	0.01	1	ND	0.0065		ND	0.0062	
Bromodichloromethane	NS	ND ND	0.0014	t	ND	0.0017		ND	0.002	1	ND	0.0013		ND	0.0012	
Bromoform	NS NS	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	i
Bromomethane	NS NS	ND -	0.0072	·	ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	i
CarbonDisulfide	2.7	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
CarbonTetrachloride	0.6	ND	0.0072		ND	0.0086		0.0023		J	ND	0.0065		ND	0.0062	i
Chlorobenzene	1.7	ND	0.0072		ND	0.0086		ND	0.01	L	ND	0.0065		ND	0.0062	1
Chloroethane	1.9	ND			ND .	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
Chloroform	0.3	ND	0.0072		ND.	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
Chloromethane	NS	ND	0.0072		ND .	0.0086		ND	0.01		ND .	0.0065		ND	0.0062	ı
cis-1,2-Dichloroethene	NS .	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
cis-1,3-Dichloropropene	NS NS	ND -			ND	0.0086		ND	0.01		ND	0.0065		ND .	0.0062	
Dibromochloromethane	NS NS	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
Ethylbenzene	5.5	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	i
m&p-Xylene (Total)	1.2	ND	0.0014		ND	0.0017		ND	0.002		ND	0.0013		ND	0.0012	
MethyleneChloride	0.1	0.0059	0.0029		ND	0.0034	·	ND_	0.0041		ND	0.0026		ND	0.0025	
o-Xylene	1.2		0.004	В	0.019		В	0.024		В	0.02		В	0.011		В
Styrene	NS NS	ND ND	0.0014		ND	0.0017		ND	0.002		ND	0.0013		ND	0.0012	
Tetrachloroethene	1,4	ND ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
Toluene	1.5		0.0072		ND	0.0086	L	ND	0.01		ND	0.0065		ND	0.0062	i
trans-1,2-Dichloroethene	0.3	ND	0.0014		0.0019			ND	0.002		ND	0.0013		ND	0.0012	
trans-1,3-Dichloropropene	NS	ND	0.0072		ND	0.0086		ND.	0.01	,	ND	0.0065		ND	0.0062	
Trichloroethene	0.7	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	
VinylChloride	0.7	ND	0.0072		ND	0.0086		ND	0.01		ND	0.0065		ND	0.0062	i
Total VOC Concentration	10	ND	0.0072		ND	0.0086		ND	0.01	I .	ND	0.0065		ND	0.0062	
Total VOC TICs Concentration	NS	0.1259			0.0849			0.0953			0.054			0.057		
TOTAL TO THOS CONCENTIATION	I NO	0.945	ı l	1 1	2.99		J	2.18			2.76	• 		0.1515	·	

Notes and Abbreviations

1) All results provided in units of mg/kg.

^{** =} Field duplicate samples

J = The compound was detected at a concentration below the MDL and is estimated

VOC TICs = Tentatively identified volatile organic compounds

B = The compound was detected in an associated method blank

ND = The compound was not detected

Conc = Concentration

Qual ≈ Laboratory Data Qualifier

MDL = Method Detection Limit

NS = No standard

ng/kg = Milligrams per kilograms

SUMMARY OF SOIL SAMPLING ANALYTICAL RESULTS - SVOCs, AOC-WESTERN AREA SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Location	New York TAGM		HHPI-1A		T	HHPI-1B		Γ	HHPI-2			HHPI-3			HHPI-4	
Field Sample ID	Recommended Soil	HHPI-	1-A-081605	5-8001	HHPI-1	I-B-08160	5-S001	нны.	-2-081605-	S001	HHDI	-3-081605	6001	l uuoi		C004
Lab Sample Number	Cleanup Objective	İ A	C19113-00)2		C19113-00			C19113-00			C19113-00		1	-4-081605	
Sampling Date	(mg/kg)	1	8/16/05		1	8/16/05		l ^`	8/16/05	,~	. ^	8/16/05	15	1 ^	C19113-0	36
Matrix			SOLID		l	SOLID		İ	SOLID	:		SOLID		l	8/16/05	
Semivolatile Organic Compounds (SVO	Cs)	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual		SOLID	
1,2,4-Trichlorobenzene	3.4	ND	0.48		ND	0.57		ND	0.48	Quai	ND		Quar	Conc	MDL	Qual
1,2-Dichlorobenzene	7.9	ND	1.2		ND	1.4		ND	1.7			0.43		ND	0.41	
1,2-Diphenylhydrazine	NS	ND	0.48		ND	0.57		ND			ND	0.43		ND	0.41	
1,3-Dichlorobenzene	1.6	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	ļ
1,4-Dichlorobenzene	8.5	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	l
2,4-Dinitrotoluene	NS	ND	0.48		ND	0.57		ND ND	0.48		ND	0.43		ND	0.41	
2,6-Dinitrotoluene	1	ND	0.48		ND	0.57			0.48		ND	0.43		ND	0.41	<u> </u>
2-Chloronaphthalene	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
2-Methylnaphthalene	36.4	0.25	0.40	J	0.32	0.57		ND	0.48		ND	0.43		ND	0.41	
2-Nitroaniline	0.43	ND	0.48	J	ND	0.57	J	0.17		J	ND	0.43		0.32		J
3,3'-Dichlorobenzidine	NS NS	ND	0.48		ND			ND	0.48		ND	0.43		ND	0.41	
3-Nitroaniline	0.5	ND	0.48		ND	0.57		ND	0.48		ND	0:43		ND	0.41	
4-Bromophenyl-phenylether	NS NS	ND	0.48			0.57		ND	0.48		ND	0.43		ND	0.41	1
4-Chloroaniline	0.22	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
4-Chlorophenyl-phenylether	NS	ND			ND	0.57		ND	0.48		ND	0.43		ND	0.41	
4-Nitroaniline	NS NS		0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
Acenaphthene	50	ND 0.50	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	1
Acenaphthylene	41	0.50			0.97			ND	0.68		0.12		J	0.14		J
Anthracene	50	ND 0.00	0.48		ND	0.57	<u> </u>	ND	0.48		ND	0.43		0.047		J
Benzidene	50 NS	0.29		J	0.59		J	ND	1.7		ND ·	0.43		0.13		J
Benzo(a)anthracene	0.224	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
Benzo(a)pyrene	0.061	0.55						as 0.26 🕸		J	ND	0.43		0.28		J
Benzo(b)fluoranthene	1,1	0.45		J	13		J	0.22		J	ND	0.43		0.23		1-j-
Benzo(g,h,i)perylene	50	0.70			1.70			0.38		J	ND	0.43		0.43		-
Benzo(k)fluoranthene		0.55			1.2			0.56		J	ND	0.43		0.21		
Benzyl Alcohol	1.1 NS	0.27		J	0.54		J	0.21		J	ND	0.43		0.15		
bis(2-Chloroethoxy)methane	NS NS	ND	0.48	<u> </u>	ND	0.57		ND	0.48		ND	0.43		ND	0.41	
bis(2-Chloroethyl)ether		ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
bis(2-chloroisopropyl)ether	NS NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	l
bis(2-Ethylhexyl)phthalate	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
Butylbenzylphthalate	50	0.18		J	0.11		J	0.18		J	ND	0.43		ND	0.41	
Carbazole	50	ND	0.48	·	ND	0.57		ND	0.48		ND	0.43		ND	0.41	l
Chrysene	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		0.044		ļ <u>-</u>
Dibenz(a,h)anthracene	0.4	0.62			1.8			0.40		j	0.10		J	0.39	 -	
Dibenz(a,n)anthracene Dibenzofuran	0.014	₹.0.22 ₃		7	0.37		J	0.20		Ĵ	ND	0.43		0.065		- J
Diethylphthalate	6.2	0.22		J	0.37		J	ND	0.68		ND	0.43		0.15		
	7.1	ND .	0.48		ND	0.57		ИD	0.48		ND	0.43		ND ND	0.41	ļ
Dimethylphthalate	2	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	 -
Di-n-butylphthalate	8.1	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND ND	0.41	ļ
Di-n-octylphthalate	50	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	 -
Fluoranthene	50	0.90			2.10			0.33			0.061	U.43	 	0.79	0.41	
Fluorene	50	0.31		7	0.65			ND ND	0.68		ND	0.43		0.79		
Hexachlorobenzene	0.41	ND	0.48		ND	0.57		ND	0.48		ND	0.43		0.17 ND	0.44	J
Hexachlorobutadiene	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43			0.41	ļ
Hexachlorocyclopentadiene	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
Hexachloroethane	NS	ND	0.48		ND	0.57		ND	0.48		ND			ND	0.41	
Indeno(1,2,3-cd)pyrene	3.2	0.44		J	1.0			0.37	0.40			0.43		ND	0.41	L
Isophorone	4.4	ND	0.48		ND	0.57		ND ND			ND	0.43		0.17		J
Ninetabeles :						0.07		L NO 1	0.48		ND	0.43		ND	0.41	
Naphthalene Nitrobenzene	13	0.23		· J	0.33		J	0.15			ND	0.43		0.21	0.41	

SUMMARY OF SOIL SAMPLING ANALYTICAL RESULTS - SVOCs, AOC-WESTERN AREA SITE 2 (AREA 2B)

HHMT-PORT IVORY FACILITY

D	No. Vol. TAGIA											1111010			111151	
Location	New York TAGM	HHPI-1A		HHPI-1B		HHPI-2		HHPI-3		HHPI-4						
Field Sample ID	Recommended Soil	HHPI-1-A-081605-S001		HHPI-1-B-081605-S001		HHPI-2-081605-\$001		HHPI-3-081605-\$001		HHPI-4-081605-S001						
Lab Sample Number	Cleanup Objective	AC19113-002		AC19113-003		AC19113-004		AC19113-005		AC19113-006						
Sampling Date	(mg/kg)	8/16/05 8/1		8/16/05		8/16/05		8/16/05		8/16/05						
Matrix	<u>L</u>	SOLID SOLID		SOLID		SOLID		SOLID								
Semivolatile Organic Compounds (SVOCs)		Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual	Conc	MDL	Qual
N-Nitrosodi-methylamine	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
N-Nitroso-di-n-propylamine	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
N-Nitrosodiphenylamine	NS	ND	0.48		ND	0.57		ND	0.48		ND	0.43		ND	0.41	
Phenanthrene	50	0.74		J	2.0			0.26		J	ND	0.43		0.63		
Pyrene	50	1			2.3			0.37		J	0.16		J	0.66		
Total SVOC Concentration	500	8.42			18.95			4.06		· · · · · · · · · · · · · · · · · · ·	0.441			5.216		
Total SVOC TICs Concentration	NS	23.36		J	24.3		J	42.4		J	24.4		J	18.62		J

Notes and Abbreviations

- 1) Bold concentrations in shaded cells exceed the New York TAGM Recommended Soil Cleanup Objective.
- 2) All results provided in units of mg/kg.
- J The compound was detected at a concentration below the MDL and is estimated
- SVOC TICs = Tentatively identified semivolatile organic compounds
- ND = The compound was not detected
- Conc = Concentration
- Qual = Laboratory Data Qualifier
- MDL = Method Detection Limit
- NS = No standard
- mg/kg = Milligrams per kilograms

TABLE 7C SUMMARY OF SOIL SAMPLING ANALYTICAL RESULTS - TPHC, AOC-WESTERN AREA SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Location	Field Sample ID	Lab Sample Number	Sampling Date	Matrix	TPHC Concentration (mg/kg)
HHPI-1A	HHPI-1-A-081605-S001	AC19113-002	8/16/05	SOLID	4500
HHPI-1B	HHPI-1-B-081605-S001	AC19113-003	8/16/05	SOLID	6300
HHPI-2	HHPI-2-081605-S001	AC19113-004	8/16/05	SOLID	6300
HHPI-3	HHPI-3-081605-S001	AC19113-005	8/16/05	SOLID	4300
HHPI-4	HHPI-4-081605-S001	AC19113-006	8/16/05	SOLID	1800

Notes and Abbreviations

1) No New York TAGM Recommended Soil Cleanup Objective has been established for TPHC.

mg/Kg = Milligrams per kilograms TPHC = Total petroleum hydrocarbons

TABLE 8A SUMMARY OF GROUNDWATER ANALYTICAL RESUTLS - VOCs, AOC-Western Area SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Location	New York State	1	HPI-GW01		
Field Sample ID	Ambient Water Quality	HHPI-PIT-081605-GW01			
Lab Sample Number	Standards and Guidance	AC19113-001			
Sampling Date	Values (ug/L)	8/16/05			
Matrix	V 5.005 (0g/2)	1	WATER		
Dilution Factor			1		
Volatile Organic Compounds (VOCs)		Conc	T MDL	Qual	
1,1,1-Trichloroethane	5	ND	0.45	†	
1.1.1.2-Tetrachloroethane	5	ND	0.40		
1,1,2,2-Tetrachloroethane	5	ND ON	0.28	ļ	
1,1,2-Trichloroethane	1	ND	0.40	·	
1.1-Dichloroethane	5	ND -	0.29		
1,1-Dichloroethene	5	ND	0.48	 	
1,2-Dichloroethane	0.6	ND	0.22	 	
1,2-Dichloropropane	1	ND	0.22		
2-Hexanone	50	ND	0.39	 	
4-Methyl-2-Pentanone	NS	ND	0.53	<u> </u>	
Acetone	50	ND	4.0		
Acrolein	5	ND	5.4	 	
Acrylonitrile	5 .	ND	5.6		
Benzene	1	ND	0.43	 	
Bromodichloromethane	50	ND	0.46	 	
Bromoform	50	ND	0.47		
Bromomethane	5	ND	0.76		
CarbonDisulfide	NS	ND	0.51		
CarbonTetrachloride	5	ND	0.54		
Chlorobenzene	5	ND	0.20		
Chloroethane	5	ND	0.53	·	
Chloroform	7	ND	0.38		
Chloromethane	5	ND	0.32		
cis-1,2-Dichloroethene	5	ND	0.50		
cis-1,3-Dichloropropene	*0.4	ND	0.18		
Dibromochloromethane	50	ND	0.56		
Ethylbenzene .	5	ND	0.49		
MethyleneChloride	5	ND	0.87		
Styrene	5	. ND	0.29		
Tetrachloroethene	5	ND	0.31		
Toluene	5	ND	0.31		
trans-1,2-Dichloroethene	5	ND	0.50		
trans-1,3-Dichloropropene	*0.4	ND	0.40		
Trichloroethene	5	ND	0.36		
VinylChloride	2	NĐ	0.54		
Xylene(Total)	5	ND	1.41		
Total VOC Concentration	NS	0			
Total VOC TICs Concentration	NS	0			

Notes and Abbreviations

- 1) All results provided in units of micrograms per liter (ug/L).
- Bold font in a shaded box indicates an exceedance of the standard or guidance value for the compound.
- * = The standards are for total 1,3-Dichloropropene isomers

VOC TICs = Tentatively identified volatile organic compounds

ND = Not detected

J = The compound was detected at a concentration below the method detection limit (MDL). The concentration provided is an estimate.

NS = No standard or guidance value is available

Conc = Concentration

MDL = Method detection limit

Qual = Laboratory data qualifier

B131

TABLE 8B SUMMARY OF GROUNDWATER ANALYTICAL RESUTLS - SVOCs, AOC-WESTERN AREA SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Location Field Sample ID	New York State Ambient Water Quality		IHPI-GW01 IT-081605-	
Lab Sample IU Lab Sample Number	Standards and Guidance	1	11-081605- C19113-00	
Sampling Date	Values (ug/L)		8/16/05	r
Matrix	Values (ug/L)	1	WATER	
Dilution Factor			1	
Semivolatile Organic Compounds (SVOCs)		Conc	MDL	Qua
1,2,4-Trichlorobenzene	10	ND	0.17	1 200
1,2-Dichlorobenzene	3	ND ND	0.40	-
1,2-Diphenylhydrazine	MDL	ND	0.33	<u> </u>
1,3-Dichlorobenzene	3	ND	0.28	
1,4-Dichlorobenzene	3	ND	0.18	
2,4-Dinitrotoluene	5	ND	0.36	1
2,6-Dinitrotoluene	5	ND	0.45	-
2-Chloronaphthalene	10	ND	0.11	1
2-Methylnaphthalene	NS	ND	1.7	-[
2-Nitroaniline	5	ND	1.3	-
3,3'-Dichlorobenzidine	5	ND	1.8	
3-Nitroaniline	5	ND	2.5	
4-Bromophenyl-phenylether	**1	ND	0.41	
4-Chloroaniline	5	ND	6.8	
4-Chlorophenyl-phenylether	NS	ND	0.28	
4-Nitroaniline	5	ND	1.5	
Acenaphthene	20	2.5		
Acenaphthylene	NS	ND	0.15	
Anthracene	50	ND	0.20	
Benzidine	5	ND	10	<u> </u>
Benzo(a)anthracene	0.002	ND	0.14	<u> </u>
Benzo(a)pyrene	MDL	ND	0.17	L
Benzo(b)fluoranthene	0.002	ND	0.28	<u> </u>
Benzo(g,h,i)perylene	NS	ND	0.14	ļ
Benzo(k)fluoranthene	0.002	ND	0.35	ļ
bis(2-Chloroethoxy)methane	5	ND	0.23	ļ
bis(2-Chloroethyl)ether		ND	0.44	ļ
bis(2-chloroisopropyl)ether	5 5	ND	0.21	ļ
bis(2-Ethylhexyl)phthalate	50	ND ND	0.63	<u> </u>
Butylbenzylphthalate	NS NS	ND 02	0.27	
Carbazole Chrysene	0.002	ND	0.19	
Dibenz(a,h)anthracene	NS	ND	0.28	ļ
Dibenzofuran	NS NS	ND	1.3	
Diethylphthalate	50	ND	0.24	
Dimethylphthalate	50	ND	0.17	
Di-n-butylphthalate	50	ND	0.20	
Di-n-octylphthalate	50	ND	0.34	
Fluoranthene	50	ND	0.16	
Fluorene	50	ND	0.24	
Hexachlorobenzene	0.04	DN	0.41	
Hexachlorobutadiene	0.5	ND	0.25	I—
Hexachlorocyclopentadiene	5	ND	2.7	
Hexachloroethane	5	ND	0.35	
Indeno(1,2,3-cd)pyrene	0.002	ND	0.17	
Isophorone	50	ND	5.3	
Naphthalene	10	ND	0.097	
Nitrobenzene	5	ND	0.28	
N-Nitrosodimethylamine	NS	ND	11	
N-Nitroso-di-n-propylamine	50	ND	0.32	
N-Nitrosodiphenylamine	50	ND	0.27	
Phenanthrene	50	1.2		
Pyrene	50	ND	0.23	
otal SVOC Concentration	. NS	3.7		
otal SVOC TICs Concentration	NS	29		J
otal Petroleum Hydrocarbons	NS	3,300		

Notes and Abbreviations

1) All results provided in units of micrograms per liter (ug/L).

 ** = The standards are for total chlorinated and non-chlorinated isomers \rightarrow

SVOC TICs = Tentatively identified semivolatile organic compound

ND = Not detected

NS = No standard or guidance value is available

Conc = Concentration

MDL = Method detection limit

Qual ≈ Laboratory data qualifier

NR = Not analyzed

J = The compound was detected at a concentration below the MDL. The value provided is estimated.

B 132

Several SVOCs, primarily PAH compounds, were detected in each of the five soil samples. The concentration of total PAH compounds in the soil samples ranged from 0.38 mg/kg to nearly 19 mg/kg. These concentrations of total PAH compounds are similar to those that have been detected throughout the HHMT-Port Ivory Facility and that are attributable to fill placed by P&G.

The concentration of TPHC detected in the soil samples ranged from 1,800 (in the soil sample collected at location HHPI-4) to 6,300 mg/kg (in the soil samples collected at locations HHPI-1B and HHPI-2). The lowest TPHC concentration, 1,800 mg/kg, is similar to those that have been detected throughout the HHMT-Port Ivory Facility and that are attributable to fill placed by P&G. The greatest concentration, 6.300 mg/kg, is slightly higher than the concentration of TPHC that has typically been detected in the fill placed by P&G.

The groundwater sample collected from the excavation at AOC-Western Area was collected to determine whether the LNAPL-impacted soil encountered in this AOC had degraded groundwater quality. The sample was analyzed for PP VOC+15 and xylene, PP SVOC+15, and TPHC. No VOCs or VOC TICs were detected in the groundwater sample collected from the excavation at AOC-Western Area. The PAH compounds acenaphthene and phenanthrene were detected in the groundwater sample collected from this excavation; however, neither of these compounds was detected at a concentration above its AWQSGV. SVOC TICs were detected in the groundwater sample collected from the excavation. Only one SVOC TIC, 3,3,4-trimethyl-Decane, was identified. This TIC is not a POC, and no AWQSGV has been established for the compound. The concentration of TPHC detected in the groundwater sample collected from the excavation was 3.3 milligrams per liter (mg/L).

10.3 Discussion of Results - Initial Investigation of AOC-Western Area

Based on the fact that inactive pipelines that formerly contained petroleum products were encountered within the excavation, at least one of these pipelines is likely to be the source of the LNAPL-impacted soil encountered at this AOC. Based on the field observations, soil impacts are more significant near the single, 12-inch-diameter Texas Eastern pipeline than near the Tidewater pipelines. No indications of free (i.e., mobile) LNAPL were made during the field inspections. Initial soil and groundwater samples collected directly from the excavations indicate little impact to soil and groundwater quality. While soil and groundwater quality along the Tidewater pipelines has been investigated in Area 2B, no investigation of soil or groundwater quality along the Texas Eastern pipeline has been conducted to date. Continued

investigation of soil and groundwater quality is warranted in the vicinity of AOC-Western Area and along the Texas Eastern pipeline.

11.0 SRI Summary and Conclusions

Based on the data generated during the SRI, during the Indoor Air Quality Assessment, and the investigation of AOC-Western Area, HMM has drawn the following conclusions:

- The Port Authority's previous soil removal efforts at AOC-Stain3, located at Area 2A, were largely successful with regards to PAH compounds and metals, the contaminants of concern for this AOC. Although arsenic remains at elevated concentrations in soil at this AOC, the degraded (with respect to environmental quality) soil is more than five feet above the water table. The soil in this AOC will be covered by impervious materials, which will preclude direct contact with the soil and migration of arsenic to the water table in water percolating downwards through the unsaturated zone, following completion of the proposed redevelopment at Area 2A. Therefore, no further investigative or remedial actions are warranted at this AOC.
- The Port Authority's previous soil removal efforts at AOC-UST7, located at Area 2A, were largely successful, except for residual LNAPL in soil encountered at discrete depth intervals at two (non-adjacent) soil boring locations. While the presence of LNAPL in soil is itself an impact, soil sampling analytical results from the SRI at AOC-UST7 and groundwater sampling analytical results from the SI indicate that the presence of the LNAPL-impacted soil has not degraded the environmental quality of soil or groundwater with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G. Therefore, no further investigative or remedial actions are warranted at this AOC.
- The Port Authority's previous soil removal efforts at AOC-Bldg20, located at Area 2A, were entirely successful with respect to the removal of all LNAPL-impacted soil at this AOC. No indications of LNAPL-impacted soil were observed during the SRI. Based on the soil sampling analytical data, the environmental quality of soil in this AOC has not been degraded with respect to regulated metals and organic compounds and relative to the impacts attributable to fill

materials placed at the HHMT-Port Ivory Facility by P&G. Therefore, no further investigative or remedial actions are warranted at this AOC.

- The Port Authority's previous soil removal efforts at AOC-Bldg32/32A, located at Area 2A, were entirely successful with respect to the removal of all LNAPL-impacted soil at this AOC. Based on the soil sampling analytical data, the environmental quality of soil in this AOC has not been degraded with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G.. The minimal soil impacts detected in AOC-Bldg32/32A are attributable to fill placed by P&G. Therefore, no further investigative or remedial actions are warranted at this AOC.
- LNAPL-impacted soil is present in AOC-Southern Area, an AOC that includes two separate areas along the Tidewater pipelines. This bullet item addresses LNAPL-impacted soil at one of these areas, which is located in the vicinity of soil boring locations TW-47, TW-71A, TW-72, and TW-73 and temporary well TWP-14. The next bullet item addresses LNAPL-impacted soil encountered at the other area, which is located in the vicinity of locations EXT-1 and TW-43A. The presence of LNAPL-impacted soil at locations TW-47, TW-71A, TW-72, TW-73, and TWP-14 is itself an impact, and the presence of free LNAPL is suspected in this portion of Area 2B. The presence of LNAPL-impacted soil at this location along the Tidewater pipelines has degraded the environmental quality of the soil with respect to VOC TICs and TPHC. No specific RSCOs have been established for VOC TICs or TPHC. The Port Authority has proposed the removal of free LNAPL in the vicinity of locations TW-47, TW-71A, TW-72, TW-73, and TWP-14 as part of an Interim Remedial Measure (IRM). It is not anticipated that additional (i.e., subsequent to completion of the IRM) investigative or remedial actions are warranted in the vicinity of locations TW-47, TW-71A, TW-72, TW-73, and TWP-13.
- The other area within AOC-Southern Area where LNAPL-impacted soil was encountered during the SRI was the area in the vicinity of test pit location EXT-1 and soil boring location TW-43A. During excavation of test pit EXT-1, neither LNAPL nor sheen was observed to flow into the test pit. Based on this observation and other field observations and soil sampling analytical results, free (i.e., mobile) LNAPL is not likely to be present in the vicinity of EXT-1. Therefore, no further investigative or remedial actions are warranted at EXT-1 and TW-43A, at this portion of AOC-Southern Area.

- Soil gas sampling results indicate that VOC vapors in the soil gas have not to this point, and/or are not anticipated to, impact indoor air quality in Building No. 41 of Building No. 45 or the trailers proposed in the footprint of Building No. 40. Investigation of indoor air quality is not warranted at Area 2B because occupied structures are neither currently present nor proposed at Area 2B. Therefore, no further investigative and remedial activities are warranted with respect to indoor air quality at Site 2.
- LNAPL-impacted soil was initially observed in AOC-Western Area during construction activities. While the presence of LNAPL in soil at AOC-Western Area is itself an impact, soil and groundwater sampling analytical results from the initial investigation of AOC-Western Area indicate that the presence of LNAPL-impacted soil at this AOC has not degraded the environmental quality of soil or groundwater with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G. LNAPL-impacted soil excavated at AOC-Western Area has been disposed of properly off site. However, additional investigation of soil and groundwater quality along a pipeline present in an easement to Texas Eastern is necessary. Additional investigation of soil and groundwater quality is also warranted in the vicinity of AOC-Western Area, particularly to the east and south of this AOC. Based on the results of these additional investigations, remedial efforts beyond the soil removal already completed may or may not be warranted.

12.0 Recommendations

Based on the conclusions presented in Section 11, the Port Authority recommends the following:

- Implementation of the proposed IRM to remove recoverable free product at Site 2B;
- Subsequent to completion of the proposed IRM at Area 2B, preparation of a Remedial Action Workplan (RAW) for Site 2, indicating that no additional remediation is warranted beyond the completion of the proposed redevelopment of Site 2 and the granting of an Environmental Easement to the State of New York;

- Investigation of the extent of LNAPL-impacted soil and the environmental quality of soil and groundwater in the vicinity of AOC-Western Area; and,
- Investigation of the presence of LNAPL-impacted soil and the environmental quality of soil along an underground pipeline in an easement to Texas Eastern. Please note, based on the results of this investigation, groundwater quality will be investigated at any area(s) where LNAPL-impacted soil is encountered along the underground pipeline in the easement to Texas Eastern.

13.0 Reporting Schedule

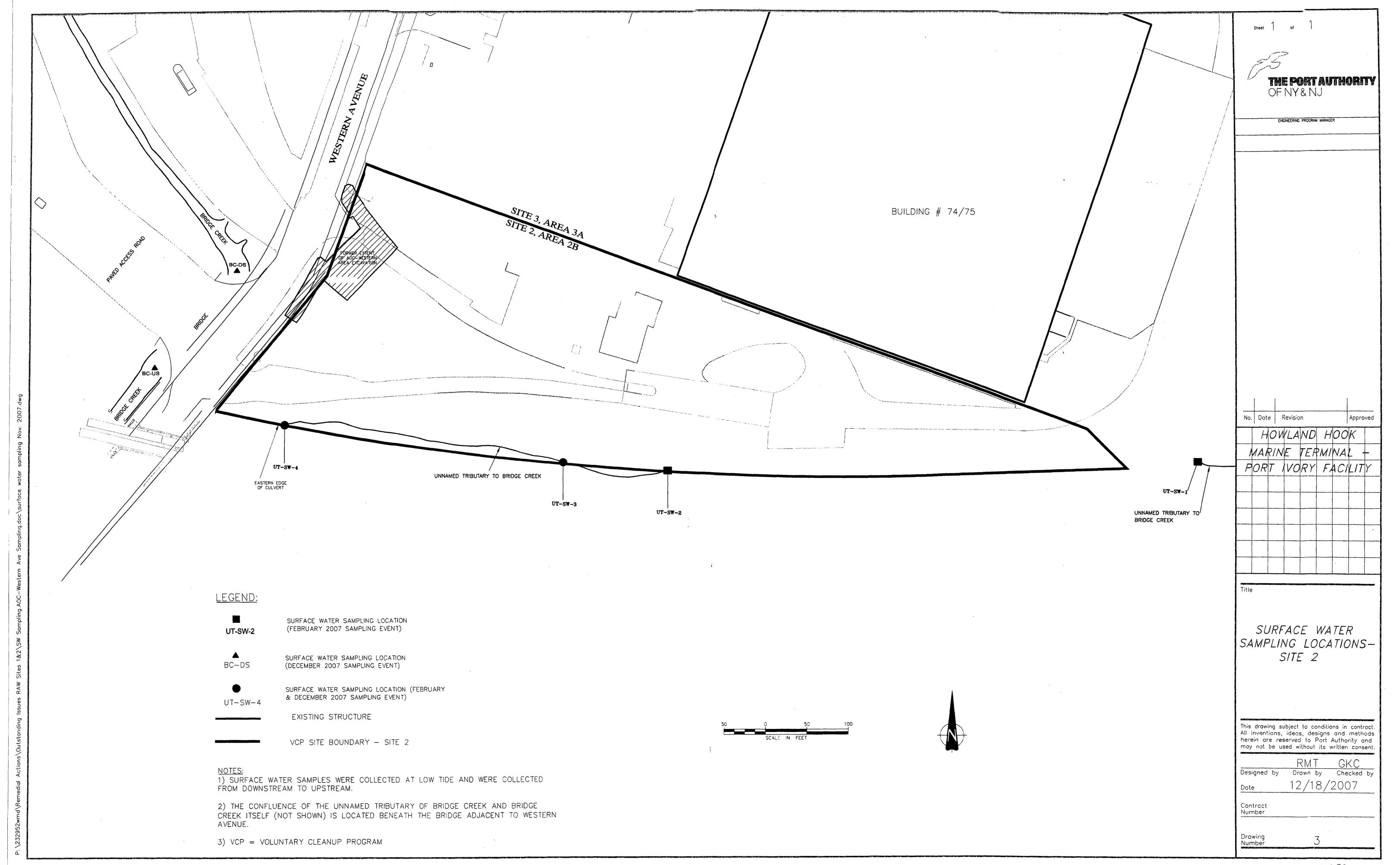
Below is a schedule for submitting documents associated with additional investigations planned at Site 2. The results of these activities and previously collected data will be summarized in a final comprehensive Remedial Investigation (RI) Report that will address the nature and extent of contamination for investigative work completed to date. The final RI Report will include an on-site/off-site exposure assessment, meeting the Citizen Participation Program requirements, and submitting a data usability summary report.

Report	Date of Draft Submittal	Date of Final Submittal
Remedial Action Workplan (RAWP) Site 2	September 2006	December 2006
Interim Remedial Measure (IRM) Workplan Area 2B*	August 2005	June 2006
Investigation Workplan AOC-Western Area (Area 2B)**	October 2006	December 2006
Investigation Workplan Texas Eastern Pipeline (Area 2B)**	October 2006	December 2006
Final Comprehensive Remedial Investigation Report	December 2006	

^{*}Please note the IRM Workplan includes Site 3 as well.

^{**}These documents were combined into one Workplan.

5.0 2007 SURFACE WATER SAMPLING


Surface water samples were collected from two locations along Bridge Creek and four locations along an unnamed tributary stream to Bridge Creek in 2007 (See Figure 3). Maps provided by P&G showed the unnamed stream located to the south of Site 2. Subsequent surveying and mapping efforts, however, have confirmed that portions of this stream are present within the boundaries of VCP Site 2 (Area 2B). Therefore, investigation of surface water quality within this stream was required to confirm that soil and/or groundwater impacts at Area 2B have not impacted surface water quality.

Two surface water sampling events were conducted in 2007, the first in February and the second in December. During both events, samples were collected as close to low tide as possible so that groundwater seeps would be visible and so that surface water would be flowing towards Bridge Creek. The samples were collected from downstream to upstream (e.g., in February 2007, UT-SW-4 was collected first, followed by UT-SW-3, etc.) so as to minimize disturbances to downstream sampling locations. At each sampling location, the surface water was examined for the presence of sheen or other indications of potential impacts.

Surface water samples were collected using a decontaminated stainless steel pond sampler. The sample was transferred directly from the pond sampler to laboratory-prepared sampling jars, which were labeled and placed in a cooler with ice. The samples were transported to Veritech Laboratories, a New York-certified analytical laboratory, under full Chain-of-Custody documentation.

February 2007 Surface Water Sampling

During the February effort, four surface water samples were collected at the following locations along the unnamed tributary stream to Bridge Creek: at the eastern edge of a culvert that conveys the stream under Western Avenue (sample UT-SW-4); near the central portion of Area 2B (sample UT-SW-3); at the western end of a culvert that conveys the stream under existing railroad tracks at Area 2B (sample UT-SW-2); and, at a location immediately to the east of Area 2B (designated as UT-SW-1). All four surface water samples collected were analyzed for Priority Pollutant (PP) VOCs with a 15-compound library search (VOCs+15), PP SVOCs with a 25-compound library search (SVOCs+25), and PP Metals. This list was selected because VOCs and metals have been detected in groundwater at Area 2B at concentrations above their AWQSGVs and VOCs, SVOCs, and metals have been detected in soil at Area 2B at concentrations above their RSCOs. No other organic compound classes (e.g., pesticides) have been

detected in soil or groundwater at Area 2B at concentrations above their respective RSCOs or AWQSGVs.

Field observations were recorded before and during sample collection. Neither sheen nor other indications of petroleum impacts were observed at any of the four surface water sample locations. Field parameters, including pH, conductivity, turbidity, dissolved oxygen, temperature, and oxygen reduction potential, were recorded at each sampling location and reported on the field sampling log included as Appendix A. Surface water analytical results are summarized in Tables 2A-2C, respectively. The laboratory analytical results are included in Appendix B.

To monitor the effectiveness of the field decontamination procedures, The Port Authority prepared a field blank by running laboratory-grade DI water over the sampling equipment. A duplicate surface water sample was collected at location UT-SW-4. The field blank and duplicate samples were analyzed for the same parameters as the surface water samples collected. A trip blank sample accompanied the sampling jars during transport from the laboratory and the samples during transport to the laboratory. The trip blank was analyzed for PP VOCs+15.

The surface water sampling analytical results were compared to the AWQSGVs for Class SD surface water. The NYSDEC has classified Bridge Creek and its tributaries as SD, which indicates that the stream cannot meet primary or secondary criteria due to man-made/natural conditions. The best use of surface water within the stream is for fish survival and limited fishing.

The targeted organic compounds and metals were either not detected or were detected at concentrations below their respective AWQSGV in all samples, except the duplicate sample. The duplicate sample contained copper and zinc at concentrations of 43 micrograms per liter (ug/L) and 110 ug/L, respectively. These concentrations slightly exceed the AWQSGV for copper (4.8 ug/L) and zinc (95 ug/L). HMM conducted additional sampling in December to further investigate these apparent impacts.

December 2007 Surface Water Sampling

Because the concentrations of copper and zinc exceeded their respective AWQSGV in one of two samples collected at location UT-SW-4 in February 2007, a third sample was collected to confirm the presence or absence of metal impacts at this location. In addition, surface water samples were collected at UT-SW-3 and at two locations (BC-US and BC-DS) in Bridge Creek, in the event delineation was

ABLE 2A SUMMARY OF SURFA ATER ANALYTICAL RESULTS-VOCs SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Sample (i)	New York	וט	r-SW-1		UT-SW-2		Ι	UT-SW-3	,		UT-SW-4			UT-SW-4°	
Lab ID	State	AC2	8390-001	1 /	AC28390-00	02	_ A	C28390-0			C28390-00		1	C28390-0	
Date Collected	AWQSGV	1 02	2/01/07	}	02/01/07			02/01/07	••	· '	02/01/07		· '	02/01/07	
Matenal	(Surface Water*)		Nater	}	Water		l	Water		ł	Water		1	Water	
Units	ug/L		ug/L	l	ug/L		Į	nalr		}	ug/L		{	ug/L	
	ļ	j		ł	J		1	3 -			-9-		ł	-5/-	
Volatile Organic Compounds (VOCs)		Conc	Qual MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL
1,1,1,2-Tetrachioroethane	NS	ND	0.46	ND		0.46	ND		0.46	ND		0.46	ND		0.46
1,1,1-Trichloroethane	NS	ND	0.33	ND		0.33	ND		0.33	ND		0.33	ND		0.33
1,1,2,2-Tetrachioroethane	NS	ND	0.21	ND		0.21	ND		0.21	ND		0.21	ND .		0.21
1.1.2-Trichioroethane	NS	ND	0.25	NO		0.25	ND		0.25	ND		0.25	ND		0.25
1,1-Dichloroethane	NS	ND	0.34	ND		0.34	ND	 -	0.34	ND		0.34	ND		0.34
1,1-Dichiproethene	NS NS	ND:	0.53	NO	·	0.53	ND		0.53	ND		0.53	ND		0.53
1,2-Dichloroethane	NS	ND	0.21	NO	 	0.21	ND		0.21	ND		0.33	ND ND		0.21
1,2-Dichloropropane	NS	ND	0.46	NO	·	0.46	ND		0.46	ND ND		0.46	ND	 	0.46
2-Butanone	NS	ND	0.38	NO		0.38	ND		0.38	ND		0.38	ND	 	
2-Chloroetnylvinylether	NS	ND	0.26	NO	t	0.26	ND -		0.26	ND ND		0.36	ND		0.38
2-Hexarione	NS NS	ND	0.36	ND	·	0.36	ND	ļ ————	0.36	ND ND				·	0.26
4-Methy -2-Pentanone	NS	ND	0.17	ND	 	0.17	ND -	 				0.36	ND	·	0.36
Acetone	NS NS	ND	2.7	ND ND	····	·	· · ·		0.17	ND	ļ	0.17	ND	ļ	0.17
Acrolein	NS NS	ND -	1.5	ND	 	2.7	ND	ļ	2.7	ND	l	2.7	ND		2.7
Acrylonitrile	NS NS	ND -				1.5	ND	l	1.5	ND	l	1.5	ND		1.5
Benzene	10		0.54	ND	<u> </u>	0.54	ND	ļ	0.54	ND		0.54	ND	\	0.54
Bromodichloromethane		ND	0.25	ND	·	0.25	ND	ļ	0.25	ND	l	0.25	ND	ļ	0.25
Bromotom	NS NS	ND	0.33	ND	ļ. ———	0.33	ND	<u> </u>	0.33	ND	L	0.33	ND	 _	0.33
Bromomethane		ND	0.29	ND	 	0.29	ND_		0.29	ND	l	0.29	ND_	l	0.29
Carbon disulfide	NS NS	ND	0.23	ND		0.23	ND	ļ	0.23	ND	l	0.23	_ND	l	0.23
Carbon tetrachloride	NS	ND	0.23	ND	ļ	0.23	ND	ļ	0.23	ND	L	0.23	ND		0.23
Chlorobenzene	NS	ND	0.44	ND		0.44	ND		0.44	ND	L	0.44	ND	l	0.44
Chloroethane	400	ND	0.21	ND	L	0.21	ND	<u></u>	0.21	ND	I	0.21	ND		0.21
	NS	ND	0.22	ND	i	0.22	ND	<u></u>	0.22	ND	l	0.22	ND		0.22
Chloroform	NS	ND.	0.42	ND		0.42	ND		0.42	ND	l	0.42	ND	I	0.42
Chloromethane	NS	ND	0.51	ND	ļ	0.51	ND		0.51	ND	L	0.51	ND_	L	0.51
Cis-1,2-Dichloroethene	5	ND -	0.31	ND		0.31	ND	<u> </u>	0.31	ND	ļ	0.31	ND	<u> </u>	0.31
Cis-1,3-Dichloropropene	NS	ND	0.2	ND		0.2	ND	<u> </u>	0.2	ND		0.2	ND	l	0.2
Dibromochloromethane	NS	ND .	0.2	ND_	·	0.2	ND	L	0.2	ND	<u> </u>	0.2	ND		0.2
Ethylbenzene	NS	ND	0.4	ND		0.4	ND	1	0.4	ND		0.4	ND		0.4
M&p-Xylenes	170 (total)	ND	0.36	ND	·	0.36	ND]	0.36	ND	I	0.36	ND	I	0.36
Methylene chioride	NS	_ND	0.47	ND		0.47	ND		0.47	ND		0.47	ND		0.47
O-Xylene	170 (total)	ND	0.16	ND		0.16	ND	1	0.16	ND	1	0.16	ND		0.16
Styrene	NS	ND	0.18	ND		0.18	ND	I	0.18	ND]	0.18	ND	1	0.18
Tetrachio oethene	1	ND	0.24	ND		0.24	ND		0.24	ND		0.24	ND	[· · · · · ·	0.24
Toluene	430	ND	0.18	ND		0.18	ND		0.18	ND		0.18	ND		0.18
Trans-1,2 Dichloroethene	5	ND	0.4	ND		0.4	ND	1	0.4	ND	1	0.4	ND.		0.4
Trans-1,3-Dichloropropene	NS	ND	0.15	ND		0.15	ND	1	0.15	ND	· ~	0.15	ND		0.15
Trichloroethene	40	ND	0.28	ND	1	0.28	ND	·	0.28	ND		0.28	ND		0.28
Vinyl chloride	NS NS	ND	0.65	ND		0 65	ND		0.65	ND ND	1	0.65	ND -	†	0.65
Total VCC: TICs	NS	ND		NO			ND	 		ND			ND	}	+

Notes and Abbreviations;

AWQSGV = Ambient Groundwater Standards and Guidance Values as published in the Division of Water Technical and Operational Guidance

Series (1,1.1), dated June 1998.

* Using SD water classification with protection for human consumption

of fish (saline water).

** Field duplicate sample
UG/L = Micrograms per Liter

TICs= Terratively identified compounds

ND = Not Detected

NS = No Standard

Qual = Laboratory Qualifer

Conc = Concentration

MDL = Method Detection Limit

TABLE 2B SUMMARY OF SURFACE WATER ANALYTICAL RESULTS- SVOCS SITE 2 (AREA 2B) HHMT-PORT IVORY FACILITY

Sample ID	New York	T	UT-SW-1		· · · ·	UT-SW-2		Ţ	UT-SW-3		<u> </u>	UT-SW-4		T	UT-SW-4*	
Lab ID	State		C28390-0	01		C28390-0		1	C28390-0			C28390-0	04		C28390-00	
Date Collected	AWQSGV	!	02/01/07		1	02/01/07		1	02/01/07		l	02/01/07		1	02/01/07	
Malenal	(Surface Water*)	i	Water		l	Water		ĺ	Water		1	Water		1	Water	
Units	ug/L	1	ug/L Qual	MOL	- Cana	ug/L Qual	MDL	Cons	ug/L	MDL		ug/L Oual	C CIPS		ug/L	
SemiVolatile Organic Compounds		Conc	Uuai		Conc	Ovar		Conc	Qual		Conc	Quar	MDL	Conc	Qual	MDL
1,2,4-Trichlorobenzene	50	ND		0.51	ND		0.48	ND		0.48	ND ND		0.48	ND NO		0.48 0.57
1,2-Dichlorobenzene	NS	ND		0.14	ND		0.14	ND-	}	0.14	ND		0.14	ND		0.14
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	50	ND -		0.74	ND		0.7	ND		0.7	ND	l · · ·	0.7	ND		0.7
1,4-Dichlorobenzene	50	ND		0.79	ND		0.75	ND	l	0.75	ND		0.75	ND		0.75
2,4,5-Trichlorophenol	NS	ND		2	ND	1	1.9	ND		1.9	ND		1.9	ND		1.9
2,4,6-Trichlorophenol	NS	_ ND		0.92	ND		0.88	ND	1	0.88	ND		0.88	ND	" ' "	0.88
2,4-Dichlorophenol	NS.	ND		1.3	ND		1.3	ND		1.3	_ ND_		1.3	ND.		1.3
2,4-Dimethylphenol	1000	_ ND		2.1	ND		2	ND_		2	ND	-i	2	ND.		. 2
2.4-Dinitrophenol	400	ND	<u></u>	0.67	, ND		0.63	ND .		0.63	ND.		0.63	ND		0.63
2,4-Dinitrotoluene	NS NS	_ND		0.38	ND ND		0.36	ND.		0.36	_ ND		0.36	ND		0.36
2.6-Dinitrotofuene	NS NS	ND -		0.35	ND		0.33	ND		0.41	ND		0.33	ND ND		0.33
2-Chloronaphthalene 2-Chlorophenol	NS	ND		1.5	ND		1.5	ND		1.5	ND		1.5	ND		1.5
2-Melhylnaphihalene	NS NS	ND		3.7	ND		3.5	ND		3.5	ND		3.5	ND		3.5
2-Methylphenol	NS	ND		4.1	ND		3.9	ND		3.9	ND		3.9	ND		. 3.9
2-Nitroaniline	NS	ND		1.7	ND		1.7	ND		1.7	ND		1.7	ND		1.7
2-Nitrophenol	NS	ND		0.85	ND	I	0.61	ND		0.81	ND		0.81	ND		0.81
384-Methylphenol	NS	ND		4.3	ND		4.1	ND		4.1	ND		4.1	ND		4.1
3,3'-Dichlorobenzidine	NS	ND		0.84	ND		0.8	ND		0.8	ND		8.0	ND		0.8
3-Nitroaniline	NS	ND.		2.7	ND.		2.6	ND		2.6	. ND		2.6	ND)	2.6
4.8-Dinitro-2-methylphenol	NS.	ND.		0.85	ND		0.81	ND		0.81	ND		0.81	ND.		0.81
4-Bromophenyl-phenylether	NS	ND		0.55	ND		0.53	ND.		0.53	ND_		0.53	. ND		0.53
4-Chloro-3-methylphenol	NS	ND ND		1.2	ND.		1.1.	ND			ND		1.1	ND		1,1, .
4-Chloroaniline	NS.	ND		3. <u>2</u>	ND		0.38	ND .		0.38	ND		0.38	ND.	1	3 0.38
4-Chlorophenyl-phenylether	NS	ND		1.6	ND		1.6	ND		1,6	ND		1.6	ND.		
4-Nitroaniline 4-Nitrophenal	NS	ND "		1,1	ND		1.1	ND		1.1	DN	}	1,1	ND		1.6
Acenaphthene	60	ND ND		0.27	ND		0.25	ND -	}	0.25	ND		0.25	ND		0.25
Acenaphthylene	20	ND -		0.26	ND	· ·	0.24	ND		0.24	ND		0.24	ND		0.24
Anthracene	50	ND		0.19	ND		0.19	ND		0.19	ND		0.19	ND		0.19
Benzidine	5	ND		9.1	ND		8.6	ND		8.6	ND	}	8.6	ND	, "	8.6
Benzo[s]anthracene	0.002	ND		0.24	ND		0.22	ND		0 22	ND		0.22	ND		0 22
Benzo[s]pyrene	Detection Limit	ND		0.17	ND		0.16	ND		0.16	ND		0.16	, ND		0.16
Benzo[b]fluoranthene	0.002	_ ND		0.22	ND		0.21	ND		0.21	ND		0.21	ND	ļ	0.21
Benzo[g.h,i]perylene	5	ND .		0.3	ND		0.29	, ND		0.29	ND		0.29	ND		0.29
Benzojk)fluoranthene	0.002	ND		0.33	ND		0.31	ND		0.31	ND		0.31			0.31
Bis(2-Chloroethoxy)methane	5	_ ND		0.2	ND ND		0.19	- ND		0.19	ND ND		0.19	ND		0.19
Bis(2-Chloroethyl)Ether	NS	ND ND		0.24	ND		0.23	ND	- :	0 23	ND		0.23	ND	·	0.23
Bis(2-Chloroisopropyl)ether	NS NS	ND		0.39	ND.		0.37	ND .		0.37	ND		0.37	ND		0.23
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	NS	ND		0.24	ND] · ·	0 23	ND		0.23	ND		0.23	ND		0.23
Carbezole	NS NS	ND		0.17	ND		0.16	ND		0.16	ND		0.16	ND -		0 16
Chrysene	NS	ND		0.2	ND		0,19	ND		0.19	ND		0.19	ND		0 19
benzo[a.h]Anthracene	NS	ND		0.26	ND		0.25	ND		0.32	_ 00		0.25	ND		0.25
benzoluran	NS	ND		1.7	ND_		1.6	ND		0.19	ND		1.6	ND		1.6
ciethylphthalate	NS	ND		0.3	ND	I	0.28	ND		0.25	ND		0 28	ND	[]	0.28
Dimethylphthalate	_ NS	ND		0.18	ND		0.18	ND	1,20	1.6	ND_		0.18	ND		0.18
Di-n-butylphthalate	NS	ND		0.34	ND		0.32	ND]	0.28	_ ND		0.32	ND		0.32
Di-n-octylphthalate	NS	ND		0.2	ND		0.19	ND .		0,18	ND.		0.19	NO		0 19
Fluoranthene	NS	ND		0.16	ND.		0.15	ND		0.15	ND		0.15	_ ND		0.15
Fluorene	0.00003	ND ND		0.16	ND		0.15	ND		0.15	- ND		0.15	DN		0 15
Hexachtorobenzene Hexachtorobutadiene	0.01	ND		0.29	. אט		0.27	ND		0.27	ND.		0.62	ND		0.27 0.62
Hexachlorocyclopentadiene	0.01	- מא		4.9	ND		4.6	- ND	,	4.6	ND -		4.6	- 00 - 00		4.6
Hexachloroethane	0.6	ND		0.72	ND		0.68	ND.		0.68	ND I		0.68	- QN		0.68
Indeno[1,2,3-cd]pyrene	NS NS	ND		0.19	ND		0.18	ND		0.18	ND		0.18	ND		0 18
Isophorone	NS	ND		0 15	ND		0.14	ND	****	0.14	ND		0.14	ND	* 1	0.14
Naphthalene	140	ND		0.47	ND		0.44	ND		0.26	ND		0.44	ND		0 44
Nitrobenzene	0.4	ND		0.25	ND		0.24	ND		8.8	ND		0.24	ND		0.24
N-Nitrosodimethylamine	NS	ND		9.2	ND		8.8	ND		0.15	ND		8.8	ND		8.8
N-Nitroso-Di-N-Propylamine	NS	ND		0.27	ND		0.26	ND		0.44	ΝD		0 26	ND		0.26
N-Nitrosodiphenylamine	NS	ND .		0.16	ND		0.15	ND		0 24	ND		0.15	. ND		0.15
Pentachlorophenol	NS	ND		0.8	ND		0.76	ND		0.76	ND		D.76	ND		0.76
Phenanthrene		ND		0.24	NO		0.23	ND		0.23	ND		0 23	ND		0.23
Phenoi	NS	ND		1.5	ND.		1.5	ND		1.5	ND.		1.5	ND .		1.5
Pyrene	NS	ND		0.15	ND	<u> </u>	0.15	ND ND	 	0 15	ND ND		0.15	ND		0.15
Total TICs	NS	ND		li	ND			טא			ND			6.1	_ 3	

Total Tics

Notes and Abbreviations:

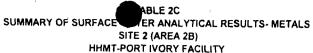
Notes and Abbreviations:

NOTES and Abbreviations:

NOTES and Abbreviations:

NOTES and Abbreviations:

NOTES and Abbreviations:


NOTES and Abbreviations

NOTES and Control of Water Technical and Operational Guidance Series
(1.1.1), dated June 1998.

'Using SD water classification with protection for human consumption of fish
(saline water).

'Field duplicate sample
UGA = Micrograms per Liter
ND = Not Detected
NS=No Standard
TiCs = Tentatively Identified Compounds
Qual = Laboratory Qualifier
Conc = Concentiation

MDL = Method Detection Limit
J= estimated value below the calibration range

3116 2	(WILEW	401
HMT-PORT	IVORY	FACILITY

Sample ID Lab ID	New York		UT-SW-1			UT-SW-2			UT-SW-3			UT-SW-4			UT-SW-4°	
Date Collected	State AWQSGV	A	C28390-00 02/01/07	01	^	.C28390-0 02/01/07	02	A	C28390-00	03	A	C28390-0		A	C28390-0	
Material	(Surface Water*)	1	Water		1	Water	,	l	02/01/07 Water			02/01/07 Water		·	02/01/07	
Units	ug/L	<u></u> _	ug/L			ug/L	İ	(ug/L		ŀ	ug/L		1	Water ug/L	
Priority Pollutant Metals		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual .	MDL	Conc	Qual	MDL
Antimony	NS	ND		7.5	ND		7.5	ND		7.5	ND	 	7.5	ND		7.5
Arsenic	120	ND		4	ND		4	41		4	5.9] <u></u>	13		
Barium	NS	100		25	97		25	95		25	99		25	170		35
Beryllium	NS	ND D	A	4	ND		4	ND		A	ND			ND ND		
Cadmium	21	ND		2	ND			ND			ND	}		ND ND		4
Chromium	NS	ND		25	ND		25	מא		25	ND	ļ	25	- ND		<u> </u> =
Copper	4.8	ND		25	ND		25	ND		25	ND -					25
Lead	204	ND		5	ND			ND					25	43		25
Mercury	0.0026	ND		0.2	ND		0.2	ND			- 8 -		5	27		5
Nickel	74	ND ND		10	- ND					0.2	ND		0.2	ND		0.2
Selenium	NS	ND		25	ND -	~	10	ND_		2.1	ND		10	10		10
Silver	2.3	ND					25	ND		0.67	ND		25	ND		25
Thallium	NS	ND		10	ND		10	ND		0.38	ND		10	ИD		10
Zinc	95	V		3	ND		5	ND		0.35	ND_		55	ND		5
		ND		25	34		25	ND		0.43	51	{	25	110		25

Notes and Abbreviations:

AWQSGV = Ambient Water Quality Standards and Guidance Values as published in the Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998

* Using SD water classification with protection for human consumption of fish

UG/L = Micrograms per Liter

** Field duplicate sample

ND = Not Detected

NS = No standard or guidance value

Qual = Laboratory Qualifier

Conc = Concentration

MDL = Method Detection Limit

NA= Not analyzed

Bold concentrations in shaded cells exceed the AWQSGVs.

required. All four samples were analyzed for copper and zinc. Quality assurance/quality control (QA/QC) samples were not collected in December 2007 because the February data confirm that the impacts are not due to laboratory or field contamination.

Field observations were recorded before and during sample collection. Neither sheen nor other indications of petroleum impacts were observed at any of the four surface water sample locations. Field parameters, including pH, conductivity, turbidity, dissolved oxygen, temperature, and oxygen reduction potential, were recorded at each sampling located and reported on the field sampling log included as Appendix A. Surface water analytical results are summarized in Table 3. The laboratory analytical results are included in Appendix B.

Copper was not detected in any of the four surface water samples collected. Zinc concentrations ranged from 26 to 39 ug/L, below its AWGSGV of 95 ug/L for class SD surface water. In addition, the concentration of zinc was slightly greater in Bridge Creek than in the unnamed tributary to Bridge Creek.

5.1 Discussion of Surface Water Sampling

The field observations and analytical results confirm that surface water in the unnamed tributary to Bridge Creek is not impacted by organic compounds. In addition, only one (12.5%) of the eight samples collected in February and December 2007 contained any metal at a concentration above its AWQSGV. The duplicate sample collected at UT-SW-4 in February 2007 contained slight exceedances of copper and zinc. Copper was not detected in any other surface water sample, indicating that this result was anomalous and possibly the result of the suspension of fine-grained sediments during sampling. On the contrary, zinc was detected in the majority (75%) of the eight surface water samples, suggesting that dissolved zinc is likely present in Bridge Creek and its unnamed tributary.

However, the weight of evidence indicates that dissolved zinc is not generally present in surface water at concentrations above its AWQSGV. The sample collected at UT-SW-4 in December 2007 did not contain either metal at a concentration above its AWQSGV. Therefore, only one of three surface water samples collected at this location contained zinc at a concentration above its AWQSGV. In addition, the average concentration of zinc in samples collected to date at UST-SW-4 is 62.3 ug/L, below the AWQSGV for zinc (95 ug/L).

SUMMARY OF SURFACE WATER ANALYTICAL RESULTS (DECEMBER 2007) SITE 2

HHMT-PORT IVORY FACILITY

Sample ID	New York		UT-SW-3			UT-SW-4			BC-US		1	BC-DS	
Lab ID	State	l A	C34641-0	31	l a	C34641-0	02	A	C34641-0	03	l 🛕	C34641-0	ns
Date Collected	AWQSGV	ł	12/04/07		1	12/04/07			12/04/07		· `	12/04/07	
Material	(Surface Water*)	1	Water		ļ	Water		j	Water		1	Water	
Units	ug/L	ł	ug/L		ł	ug/L]	ug/L]	ug/L	
Priority Pollutant Metals		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Antimony	NS	NA			NA			. NA		 	NA	 	+
Arsenic	120	NA			NA	}	ļ	NA		i	NA		
Barium	NS	NA			NA		<u> </u>	ÑΑ			NA		
Beryllium	NS	NA			NA		1	NA			NA		·
Cadmium	21	NA			NA			NA			NA		
Chromium	NS	NA			NA			NA			NA		
Copper	4.8	ND		0.5	ND		0.5	ND		0.5	ND		0.5
Lead	204	NA			NA			NA			NA		\ <u>-</u>
Mercury	0.0026	NA			NA		 	NA			NA NA		ļ
Nickel	74	NA			NA		·	NA			NA		1
Selenium	NS	NA			NA	l	l	NA			NA		+
Silver	2.3	NA			NA			NA	l		NA NA		
Thallium	NS	NA			NA			NA	 	·	NA		
Zinc	95	ND		0.5	26		0.5	37		0.5	39		0.5

Notes and Abbreviations:

AWQSGV = Ambient Water Quality Standards and Guidance Values as published in the Division of Water Technical and Operational Guidance Series (1.1.1), dated June 1998

* Using SD water classification with protection for human consumption of fish

UG/L = Micrograms per Liter

ND = Not Detected

NS = No standard or guidance value

Qual = Laboratory Qualifier

Conc = Concentration

MDL = Method Detection Limit

NA= Not analyzed

Comprehensive RIR Site 2

Based on the information above, surface water in Bridge Creek and its tributary is not believed to be impacted by any targeted organic compounds or metals.

6.0 EXPOSURE ASSESSMENT

The Port Authority completed an exposure assessment to determine if the potential exists for human and ecological receptors to be exposed to known contaminants at the HHMT-Port Ivory Facility. The exposure assessment is described in Sections 6.1 through 6.4.

6.1 Nature of Contaminants at Site 2

The following summarizes the impacts to all environmental media characterized to date. The following environmental media have been investigated at and immediately adjacent to Site 2: soil, groundwater, surface water in Bridge Creek and its unnamed tributary, sediments along the eastern bank/bed of Bridge Creek, and indoor air in remaining structures at Area 2A. The western bank of Bridge Creek is located to the west of the HHMT-Port Ivory Facility. The sections below document metals and classes of organic compounds that have been identified at concentrations greater than applicable NYSDEC Standards, Criteria, and Guidance (SCGs) in environmental media investigated. The specific metals and organic compounds detected at concentrations in excess of the applicable NYSDEC guidance values, including those believed to be attributable to laboratory contamination of the sample or to background conditions, are listed in Table 4.

6.1.1 Soil

The analytical results for soil indicate that three VOCs, various SVOCs, various metals, and four pesticides are present in soils at Site 2 at concentrations greater than their respective RSCOs the selected soil SCG. The contaminants are present primarily in the historic fill. As previously indicated, the elevated concentration of TPHC at AOC-Western Area (Area 2B) and AOC-Area 2A Southeast will be investigated during subsequent investigations currently underway. An investigation is underway at an Area 2B AOC (AOC-TE Pipeline) to characterize the soil quality along underground pipelines formerly and currently used to transport petroleum.

6.1.2 Groundwater

For this project, the groundwater analytical results have been compared to current NYSDEC AWQSGVs, the selected groundwater SCG, for class GA groundwater. Given the location of the Site and the high potential for water to be saline, the class GA groundwater AWQSGVs are not appropriate for use at this Site. However, at this time, these represent the only guidance available for groundwater. Please note, reference to these standards in this report does not represent any agreement or concurrence that the same

ble 4

Metals and Compounds Detected at Concentrations above NYSDEC Standards, Criteria, and Guidance (SCGs) Howland Hook Marine Terminal-Port Ivory Facility- Site 2 40 Western Avenue

Staten Island, New York

SOIL				
VOCs	SVOCs	Pest &PCBs	Metais	TPHC; O&G pH; CN; Tot Ph
DICHLOROMETHANE	4-CHLORO-3-METHYLPHENOL	DIELDRIN	ALUMINUM	Petroleum Hydrocarbons (NYSDEC has
BENZENE	4-NITROPHENOL	ENDRIN	ARSENIC	not established a RSCO for TPH;
TRANS-1,3DICHLOROPROPENE	BENZO[A]ANTHRACENE	HEPTACHLOR EPOXIDE	BARIUM	however, TPH concentrations were above
	BENZO[A]PYRENE	CHLORDANE	BERYLLIUM	500 mg/kg, the total SVOCs allowed by
	BENZO[B]FLOURANTHENE		CADMIUM	NYSDEC.)
	DIBENZO[A,H]ANTHRACENE		CALCIUM METAL	Note:RSCO=Recommended soil cleanup
	PHENOL		CHROMIUM	objective
	CHRYSENE		COBALT	
	ANTHRACENE		COPPER	
	BENZOKIFLOURANTHENE		IRON	
	FLUORANTHENE		LEAD	
·	INDENO[1,2,3-CD]PYRENE		MAGNESIUM	
	PHENANTHRENE		MERCURY	
	PYRENE		NICKEL	
	PHENOL		POTASSIUM	
	FLUORENE		SELENIUM	
	NAPHTHALENE		SODIUM	,
	ACENAPHTYLENE		ZINC	
GROUNDWATER	1			
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
ACETONE	BIS(2-ETHYLHEXYL)PHTHALATE	NONE	ARSENIC	NONE
			BARIUM	
			IRON	
			LEAD	
			MAGNESIUM	
			MANGANESE	
			SODIUM	
SEDIMENT				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
NONE	NONE	P,P'-DDD	ANTIMONY	NONE
		P,P'-DDE	ARSENIC	
		P,P'-DDT	CADMIUM	
		TOTAL PCBS	CHROMIUM	
		CHLORDANE	LEAD	
			MERCURY	
			NICKEL	
	L	1	ZINC	

Metals and Compounds Detected at Concentrations above NYSDEC Standards, Criteria, and Guidance (SCGs) Howland Hook Marine Terminal-Port Ivory Facility- Site 2

40 Western Avenue Staten Island, New York

SURFACE WATER				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
NONE	NONE	NONE	NONE	NONE
Indoor Air				
VOCs	SVOCs	Pest &PCBs	Metals	TPHC; O&G pH; CN; Tot Ph
TRICHLOROETHENE	NONE	NONE	NONE	NONE
Notes:		Ì		
VOCs= Volatile organic compound				
SVOCs= Semi-volatile organic com	pounds			
Pest= Pesticides			1	
PCBs= Polychlorinated biphenyls				
TPHC= Total Petroleum Hydrocarb	ons			
O&G= Oil and Grease				
CN= Cyanide		1		·
Tot Ph= Total Phenols				
This list of SCGs is required by the	NYSDEC Draft DER-10 Technical G	uidance for Site Investigation	and Remediation, date	d 2002.
1: This table lists the metals and or	ganic compounds by medium tested	•		
2: Samples were collected and ana	llyzed from the following media: soil,	groundwater, sediment and s	urface water.	
3: None= None detected above SC	Gs.			

are appropriate for use at Site 2 or the HHMT-Port Ivory Facility. The analytical results for groundwater indicate that the following metals are present in groundwater at concentrations greater than their respective AWQSGVs: arsenic, barium, iron, lead, magnesium, manganese, and sodium. The groundwater analytical results for groundwater samples collected show the presence of one VOC (acetone), and one SVOC (bis2-ethylhexylphthalate) above their respective AWQSGV. Acetone and bis(2-ethylhexyl)phthalate are common laboratory contaminants, and in fact, the compounds were identified as being laboratory contaminants in groundwater samples collected at the same time from (at a minimum) adjacent VCP Site 3. Therefore, groundwater at Site 2 is impacted by only the seven metals listed above.

6.1.3 Surface Water

The quality of surface water in Bridge Creek and its unnamed tributary were investigated because Bridge Creek is located adjacent to Area 2A and portions of its unnamed tributary are situated within the boundaries of Area 2B. Bridge Creek and its tributaries are tidal, saline streams, which have been classified as SD by the NYSDEC. This classification indicates that due to man-made/natural conditions the stream(s) cannot meet primary or secondary criteria. The best possible use of surface water in these stream(s) is fish survival and limited fishing.

Surface water samples collected from Bridge Creek did not contain metals or organic compounds above the NYSDEC AWQSGVs for Class SD surface water, the selected SCG for surface water. As indicated in Section 5.0, surface water quality in the tributary stream is not impacted by targeted organic compounds or metals.

6.1.4 Sediment

Sediment samples collected from Bridge Creek contained eight metals at concentrations greater than their respective NYSDEC Lower Effects Level (LEL) or the Severe Effects Level (SEL): antimony, arsenic, cadmium, chromium, lead, mercury, nickel and zinc. The LEL and SEL are the appropriate SCGs for metals in sediment.

Four pesticide compounds (P,P'-DDD, P,P'-DDE, P,P'-DDT and chlordane), and total PCBs were detected at concentrations above the Human Health Bioaccumulation criteria, the appropriate SCG for pesticides and PCBs.

The potential sources for these sediment impacts include not only the HHMT-Port Ivory Facility, but also the following: facilities on the western side of Bridge Creek; stormwater runoff from Western Avenue, which passes over Bridge Creek in two locations that are upgradient of the HHMT-Port Ivory Facility; and, impacted sediments at upstream (during low tide) portions of Bridge Creek. In particular, sediment quality upgradient of the HHMT-Port Ivory Facility is known to be degraded with respect to metals and pesticides/PCBs.

The NYSDEC completed a wetlands restoration effort along Bridge Creek upstream (during low tide) of the HHMT-Port Ivory Facility. As part of their restoration effort, the NYSDEC collected soil/sediment samples in and adjacent to Bridge Creek and analyzed the samples for, among other parameters, pesticides and PCBs and the metals arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analytical results indicate that pesticides/PCBs and the following metals are present at concentrations above their respective SCGs in soil/sediment upstream (during low tide) of the HHMT-Port Ivory Facility: arsenic, cadmium, chromium, lead, mercury, and silver. Pesticides/PCBs and all the metals except for silver have also been detected at concentrations above their respective SCGs in sediment samples collected along Bridge Creek adjacent to the HHMT-Port Ivory Facility. Therefore, the presence of these impacts cannot be conclusively attributed to former land uses at Area 2A.

In accordance with the *Revised Focused SRI Work Plan- Area 2B*, dated December 12, 2006, sediment quality was not evaluated in the unnamed tributary of Bridge Creek because surface water is not impacted in this stream.

6.1.5 Indoor Air

The performance of an indoor air quality assessment was required at Area 2A by the NYSDEC and NYSDOH. This investigative effort was required in three buildings located at Area 2A: Building No. 40, then an unoccupied (since demolished) building; Building No. 41, the primary office building utilized by The Port Authority; and, Building No. 45, a guard shack. Building No. 41 and Building No. 45 are the only remaining permanent structures at Area 2A. Modular construction trailers have been installed on elevated piers in the footprint of former Building No. 40; although skirts have been constructed below the trailers for aesthetic purposes, the skirts are not airtight, and vapors are not anticipated to accumulate below the trailers.

Air sampling results indicate that low concentrations of volatile organic vapors are present within Building No. 41 and Building No. 45. Indoor air samples were not collected at Building No. 40 because that building was scheduled for demolition. Instead, a soil gas sample was collected at a location adjacent to Building No. 40 in accordance with an NYSDOH approved sampling plan.

The sources of the volatile organic vapors detected in Building No. 41 and Building No. 45 include ambient outdoor air, cleaning supplies and other sources within the buildings, and volatile organic vapors in soil gas. None of the indoor air sampling results exceeded the NYSDOH guidance values that have been established for specific halogenated organic compounds. In addition, the concentrations of the volatile organic vapors inside these buildings are significantly lower than the guidance values promulgated by the National Institute for Occupational Safety and Health. Therefore, indoor air quality is not considered to be an issue for Building No. 41 and Building No. 45.

The source for the volatile organic vapors detected in the subsurface adjacent to Building No. 40 may potentially be organic compounds in soil or groundwater. Indoor air samples were not collected at Building No. 40 because that building was scheduled for demolition. Trichloroethene was the only compound detected at a concentration above its NYSDOH guidance value in the soil vapor sample collected adjacent to Building No. 40. However, any vapors, including trichloroethene, migrating from the subsurface to the area beneath the trailers are anticipated to be diluted and/or vented. Although indoor air is not considered to be a concern, the NYSDOH has requested that a venting system be installed beneath the trailers situated within the footprint of Building No. 40. This system will be constructed to prevent vapors that could potentially accumulate beneath these structures from migrating into the trailers. The venting system will consist of louvered vents with a minimum of one vent per side of the trailers, which will be installed during implementation of the RAWP. Periodic inspection, maintenance, and repair of this passive venting system will be specified in the Remedial Action Report.

6.2 Potential Receptors

Two types of potential receptors have been identified at and adjacent to Site 2: human and ecological/environmental receptors. There are no residential properties adjacent to Site 2; in fact, except for one residential property located along Richmond Terrace adjacent to Site 3 and northeast of Area 2A, no residential populations are situated in the immediate vicinity of the HHMT-Port Ivory Facility. Therefore, the occupants of the residential property are considered the only potential off-site human receptors in the vicinity of the HHMT- Port Ivory Facility. Persons present at the site are limited to

personnel, tenants, or contractors retained by The Port Authority. The Port Authority has implemented health and safety measures to minimize contact with contaminants by all persons currently performing tasks at the facility and the one residential property located in the site vicinity. Notwithstanding this, personnel at the Facility and residents at the referenced property are considered to be potential human receptors.

The potential ecological/environmental receptors adjacent to Site 2 are an unnamed tributary of Bridge Creek and Bridge Creek itself. Where not culverted, the unnamed tributary of Bridge Creek meanders on and off Area 2B along the southern property boundary of the HHMT Port Ivory Facility. The Arthur Kill tidally influences Bridge Creek. During low tide, surface water in Bridge Creek and the unnamed tributary of Bridge Creek flows towards and discharges into the Arthur Kill, but during high tide, the direction of surface water flow is from the Arthur Kill and up Bridge Creek and its unnamed tributary.

The majority of the surface drainage from Site 2 appears to be collected by storm drains, which discharge into Bridge Creek or its unnamed tributary identified above. The unnamed tributary of Bridge Creek collects minor surface drainage via overland flow. Site 2 is serviced by connections to the potable water and sanitary system of New York. No septic systems or potable water wells are located on or near the site.

6.3 Migration Pathways

The section presents an evaluation of potential migration pathways from impacted media at the site to potential receptors, which have been determined to be Bridge Creek, the unnamed tributary to Bridge Creek, and personnel working at the facility are evaluated in this section. Migration pathways are considered under both pre-redevelopment conditions and post-redevelopment conditions. Redevelopment, which will be completed for economic purposes, will improve environmental conditions at the site through the construction of an environmental cap. The cap will reduce the mobility of contaminants to receptors. In each of the subsections below, the identification and discussion of the potential migration pathways is organized according to medium and contaminant class.

6.3.1 Pre-Redevelopment Pathways

Soil samples collected at Site 2 exhibited varying concentrations of VOCs, SVOCs, metals, pesticides, PCBs, and TPHC, including some metals and organic compounds at concentrations above their respective NYSDEC RSCOs. Area 2A is relatively flat, but does slope gently to the east and south toward Bridge

Creek. Area 2B is also relatively flat, but exhibits a slight slope to the south (i.e., toward the unnamed tributary of Bridge Creek). Therefore, surface soil may be eroded from Site 2 via wind or water transport, and the potential exists that the adsorbed metals and compounds could migrate into Bridge Creek or the unnamed tributary of Bridge Creek. The Port Authority has not established the prevailing wind direction. To be conservative, The Port Authority assumes that metals and organic compounds adsorbed to surface soil have the potential to migrate toward the unnamed tributary of Bridge Creek and to Bridge Creek itself and that personnel working at the facility may also be exposed to these metals and compounds via inhalation. As noted previously, The Port Authority and its subcontractors implement health and safety measures to lessen the likelihood of exposure.

Metals and organic compounds in surface or subsurface soil have the potential to migrate to potential ecological/environmental receptors (unnamed tributary of Bridge Creek and Bridge Creek itself) if impacted soil is disturbed during intrusive activities. Personnel may be exposed to metals and organic compounds (likely SVOCs since VOCs would likely volatilize during the soil disturbance) through the inhalation or ingestion of airborne particulate matter or through dermal contact with soil. Personnel may be exposed, via inhalation, to volatile organic vapors released from the subsurface while the intrusive activity is being conducted. As noted previously, The Port Authority and its tenants or subcontractors will implement health and safety measures to lessen the likelihood of exposure.

Metals and organic compounds may also be mobilized by desorbing from soil and dissolving in rainwater that ultimately recharges groundwater (i.e., may leach). Alternatively, VOCs and SVOCs may desorb from the soil and dissolve in the soil vapor (i.e., may volatilize), and may subsequently dissolve in rainwater that ultimately recharges groundwater. Because both pathways result in metals or organic compounds in groundwater, these migration pathways are considered to be identical to the groundwater pathway discussed below.

Groundwater at Site 2 is not utilized for any potable or non-potable purpose. Therefore, the only potential receptors for groundwater are the unnamed tributary of Bridge Creek and Bridge Creek. Groundwater impacts at Site 2 are limited to the metals arsenic, barium, iron, lead, magnesium, manganese and sodium. Groundwater and any metals dissolved in the groundwater are anticipated to flow towards and discharge into the unnamed tributary of Bridge Creek or into Bridge Creek itself. Of course, the mass loading of metals into Bridge Creek and its unnamed tributary is low relative to the flow of water within Bridge

Creek. Therefore, metals that may be transported via the groundwater migration pathway are diluted upon entering either surface water body.

Potential human receptors (i.e., personnel at the HHMT-Port Ivory Facility) are unlikely to be exposed to the groundwater impacts detected at Site 2. Groundwater at the HHMT-Port Ivory Facility is not used as a source of potable water; therefore, exposure to dissolved contaminants is possible only when intrusive activities are conducted below the water table. When such intrusive work is being conducted, personnel could potentially be exposed to metals via dermal contact. However, as noted above, groundwater impacts at Site 2 are minimal, and The Port Authority and its subcontractors implement health and safety measures to lessen the likelihood of exposure.

Based on the sampling and analytical investigations conducted to date, there is no conclusive evidence that the soil and groundwater impacts detected at Area 2A have impacted surface water or sediment quality in the portion of Bridge Creek adjacent to Area 2A. In fact, surface water sampling results show that the environmental quality of surface water in this portion of Bridge Creek is not impacted. In addition, the sediment impacts detected in the portion of Bridge Creek adjacent to Area 2A may be attributable to non-point sources or, based on offsite NYSDEC sampling results, to the presence of impacted soil/sediment at upstream (during low tide) portions of Bridge Creek or to other non-point source impacts.

Additionally, surface water sampling results show that the environmental quality of surface water in the unnamed tributary of Bridge Creek, part of which is situated within Site 2 (Area 2A), is not impacted.

6.3.2 Post-Redevelopment Pathways

The following is an assessment of the potential migration pathways for metals and organic compounds adsorbed to surface and/or subsurface soil subsequent to redevelopment. As additional potential pathways will not be created during redevelopment, only the potential migration pathways identified in Section 6.3.1 (Pre-Redevelopment Pathways) are assessed below.

Following redevelopment with impervious surfaces or the placement of clean fill, erosion of impacted surface soil is not considered to be a significant migration pathway. Furthermore, the integrity of the impervious cover (i.e., cap) will be inspected on an annual basis, and repairs will be made as necessary.

Following redevelopment, the impervious surfaces will decrease the mass of metals and organic compounds that may leach from soil into groundwater. Therefore, infiltration is considered to be a less significant migration pathway subsequent to redevelopment.

Once the impervious cover has been constructed and the clean fill has been placed, the potential for personnel working at the facility to have direct contact with impacted soil will be reduced. However, this pathway cannot be completely eliminated given that impacted soil may be disturbed in the future (to accommodate utility upgrades, repairs, etc.). Therefore, direct contact with soil and groundwater is considered a potential migration pathway following redevelopment.

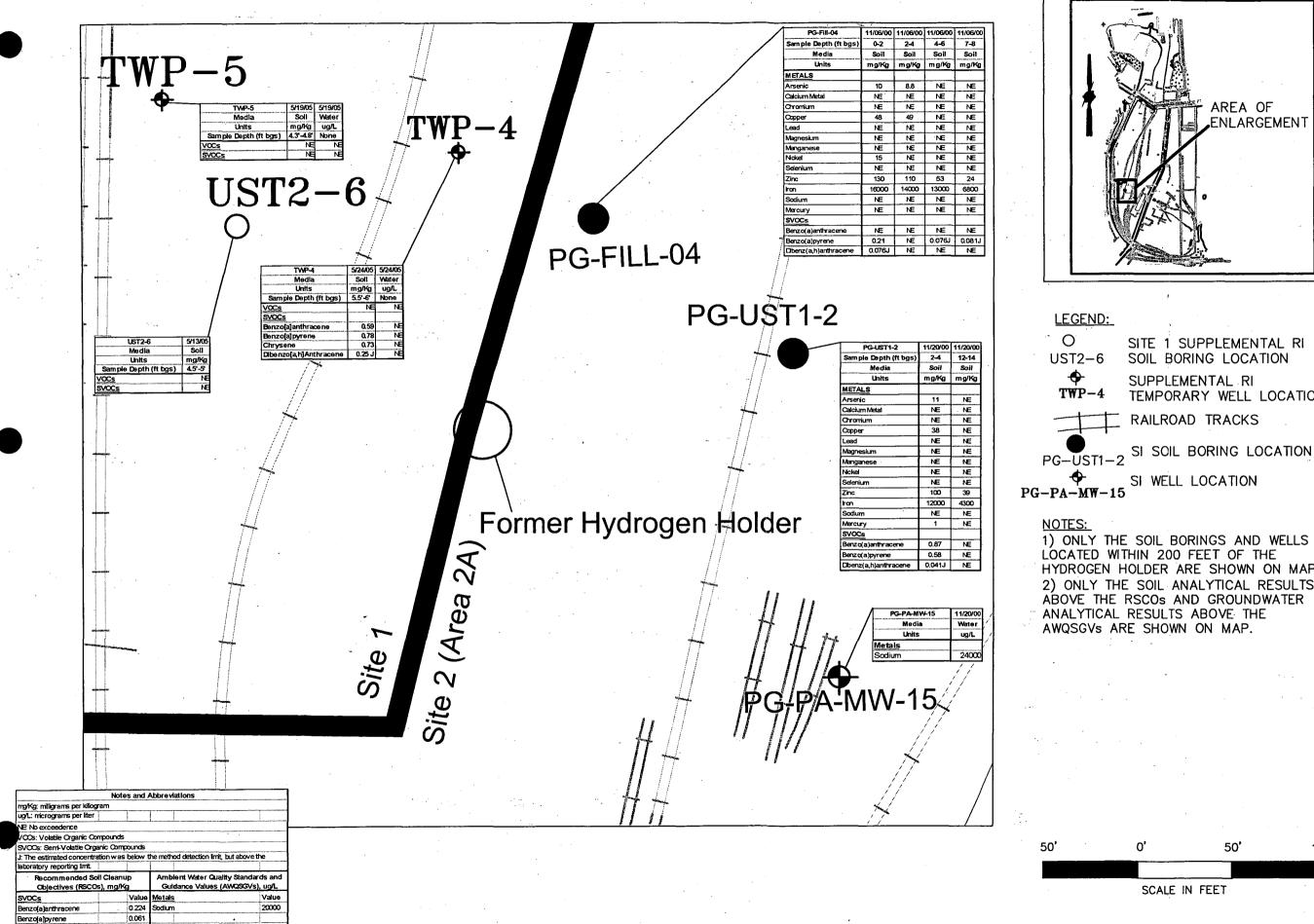
Groundwater is not utilized for any potable or non-potable purpose. Therefore, except for direct contact with impacted groundwater by workers (during construction), the only potential receptors for groundwater are Bridge Creek and its unnamed tributary. Groundwater and any metals or organic compounds dissolved in the groundwater are anticipated to flow towards and discharge into one of these surface water bodies. However, the mass loading of these metals and organic compounds to groundwater will decrease subsequent to redevelopment; likewise, mass loading of these substances to Bridge Creek and its tributary will also be reduced.

6.4 Exposure Assessment Summary

As the redevelopment of Site 2 is considered to be part of the remedial action for the site, this Exposure Assessment Summary evaluates post-redevelopment conditions at the site. The presence of metals and organic compounds in soil, and metals in groundwater, at concentrations above their respective criteria is not anticipated to be a concern for residents of the property located along Richmond Terrace.

As noted above, the impacted soil and groundwater that will remain following implementation of the Site 2 RAWP, including the redevelopment of Site 2, is a concern to facility personnel only in the event that subsurface activities are being conducted and the humidity is low. The pathway cannot be completely eliminated given that impacted soil may be disturbed in the future (to accommodate utility upgrades, repairs etc.). Therefore, direct contact with soil and groundwater is considered a potential migration pathway following redevelopment. The concern to personnel is not considered to be significant given the low concentrations of organic compounds and metals in the soil.

Except for direct contact with impacted groundwater by workers (during construction), the only potential receptors for groundwater are Bridge Creek and its unnamed tributary. Groundwater and any dissolved constituents are anticipated to flow towards and discharge into one of these surface water bodies. Following redevelopment, groundwater at Site 2 and surface water in Bridge Creek and its unnamed tributary will be monitored to confirm that contaminant concentrations in groundwater decrease or remain constant and that the remaining impacts do not degrade Bridge Creek or its unnamed tributary.


7.0 HYDROGEN HOLDER INVESTIGATION

The Revised SICRAWP identified former hydrogen holder(s) at Area 2A, but did not provide further information regarding these structures. In its December 20, 2004 comment letter, the NYSDEC requested confirmation of former hydrogen holder(s) at Site 2 (Area 2A). The NYSDEC further required documentation of its/their location(s) and any associated analytical results. The information related to the presence of hydrogen holder(s) at Area 2A is included below.

Based on a review of Sanborn Maps, a hydrogen holder (HH) was located approximately 50 feet north of a former silicate warehouse, on the southern portion of Area 2A, adjacent to the eastern Site 1 border. No other hydrogen holders were identified on the site. As part of the CRI, HMM reviewed analytical data for groundwater and soil samples collected in the vicinity of the former HH. The soil sampling locations located within 200 feet of the former hydrogen holder (as referenced on Sanborn maps) are PG-Fill-04, PG-UST1-2 and PG-PA-MW-15, TWP-4, TWP-5, and UST2-6. Please note, sampling locations TWP-4, TWP-5, and UST2-6 are located at Site 1. Together these sampling locations were used to evaluate soil and groundwater quality in the vicinity of the HH. The sampling locations in proximity to the HH are shown on Figure 4.

The concern regarding the hydrogen holders is not that the holders themselves could have discharged regulated substances to soil and/or groundwater, but rather that appurtenant equipment (air compressors, e.g.) could have discharged these substances. Nine soil samples were collected from PG-Fill-04, PG-UST1-2, UST2-6, TWP-4, and TWP-5; no soil samples were collected at PG-PA-MW-15. PG-UST1-2 and PG-Fill-04 were analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, total cyanide, total phenolics, O&G, TPHC, and pH. UST2-6, TWP-4, and TWP-5 were analyzed for PP VOCs, PP SVOCs, and TPHC. Groundwater samples were collected at PG-PA-MW-15, TWP-4, and TWP-5. PG-PA-MW-15 was analyzed for PP VOCs, PP SVOCs, PP pesticides and PCBs, TAL metals, total cyanide, total phenolics, O&G, TPHC, and pH. TWP-4 and TWP-5 were analyzed for PP VOCs and PP SVOCs. The soil and groundwater sampling analytical results are included on Figure 4.

The soil sampling analytical results indicate that soil impacts above the RSCOs in the vicinity of the former HH are limited to the PAH compounds benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthracene, chrysene, and the metals arsenic, copper, iron, mercury, nickel, and zinc. The four PAH compounds detected are the only compounds or metals that are listed above and that could be related to the presence of the former HH and appurtenant equipment (if any). However, the

ENLARGEMENT

TEMPORARY WELL LOCATION

HYDROGEN HOLDER ARE SHOWN ON MAP. 2) ONLY THE SOIL ANALYTICAL RESULTS

THE PORT AUTHORITY ENGINEEDING PROCRAM MANAGET

> ENGINEERING DEPARTMENT HOWLAND HOOK

SOIL AND GROUNDWATER INVESTIGATION -HYDROGEN HOLDER

8/6/2008

100'

Drowing FIGURE 4

concentrations of these PAH compounds were similar to those detected in soil throughout the Facility and are attributable to the former placement of historic fill at the Facility by P&G. No remedial action is warranted with respect to the soil in the vicinity of the former HH.

Groundwater monitoring wells were installed and sampled at locations PG-PA-MW15, TWP-4, and TWP-5 listed above. Sodium was the only regulated organic compound or metal detected above the AWQSGVs in groundwater upgradient of the HH, at PG-PA-MW-15. Sodium is not related to the presence of hydrogen holders rather from historic industrial site uses. Groundwater downgradient (i.e., at well TWP-4 and TWP-5) of the location of the former HH is not impacted by VOCs and SVOCs. As such, it does not appear that the presence of the HH has impacted groundwater quality. No further action is recommended with respect to the former presence of the HH at Site 2.

8.0 CONCLUSIONS AND RECOMMENDATIONS

All 19 AOCs identified during the Phase I ESA were investigated during the SI, RI, and SRI as necessary. Each subsequent phase of environmental investigation resulted in the additional characterization of soil, groundwater, surface water, and/or sediment at or adjacent to the HHMT-Port Ivory Facility. Five AOCs were identified subsequent to the Phase I ESA. Currently, only 3 of the 24 AOCs (i.e., 13%) identified at Site 2 are considered to warrant further investigative and/or remedial efforts. These AOCs are AOC-Western Area, AOC-TE Pipeline, and AOC-Area 2A Southeast. The findings of additional investigations at these AOCs will be summarized in subsequent reports.

Based on the investigative activities completed to date, no further investigative or remedial actions are warranted with respect to the following AOCs:

- AOC-UST 1
- AOC-UST 3
- AOC-UST 4
- AOC-Precipitate at Bridge Creek
- AOC-Area E (S&S Tank Field, Super Fat Trap/Block 1400)
- AOC-Area F2 (Waste Oil Drum Storage Area/Block 1400)
- AOC-Area P (Former Product Unloading Pit/Block 1400)
- AOC-Area Q1 (Existing Scale Pit/Block 1338)
- AOC-Railroad Tracks and Siding
- AOC-Pits and Drains
- AOC-Groundwater: Groundwater impacts at GW-14 were addressed by the excavation of soil at Area B (see Area GW-14 below). Groundwater impacts at OP-1 were addressed by the excavation of soil (see Area OP-1 below). Although sheen was encountered on groundwater at MW-10D, and soil in the vicinity of this well is impacted by benzene (See AOC-Area MW-10D below), the groundwater is not impacted by any organic compounds. This AOC excludes potential groundwater impacts at AOCs where investigation is underway.
- AOC-Area MW-10D (soil): Delineation completed in 2007 (4,800 square feet). Benzene impacts in soil have not impacted groundwater and are of no concern relative to human health.
- AOC-Hydrogen Holder

Remedial actions were conducted at the following AOCs. Based on the results of field observations and post excavation soil sample analytical results, no further investigative activities are warranted with respect to these AOCs:

- AOC-UST-7: Approximately 204 cubic yards of LNAPL-impacted soil was removed.
- AOC-Bldg. 20: Approximately 200 tons of LNAPL-impacted soil was removed.
- AOC-Bldg 32/32A: Approximately 50 tons of LNAPL-impacted soil was removed.
- AOC-Area A West Tank Field Southwest of Building 16)/Block 1400: Approximately 3,306 cubic yards of LNAPL-impacted soil was removed.
- AOC-Area B Former Raw Product and By-product AST Areas/Block 1400: Approximately 4,349 cubic yards of LNAPL-impacted soil was removed.
- AOC-Staining: AOC-Stain 3; unknown quantity of soil removed.
- AOC-Former Structures: Approximately 1,537 cubic yards of LNAPL-impacted soil was removed.
- AOC-Area GW-14: Groundwater impacts were addressed by the removal of approximately 4,349 cubic yards of LNAPL-impacted soil with AOC-Area B.
- AOC-Area OP-1: Groundwater impacts were addressed by the removal of approximately 117 cubic yards of LNAPL-impacted soil in the vicinity of OP-1.
- AOC-Southern Area: Approximately 200 cubic yards of LNAPL/LNAPL-impacted soil was removed at one location during the IRM. All mobile (i.e., free) LNAPL appears to have been removed at this location.

The following AOCs were identified subsequent to the performance of the Phase I ESA, SI and RI and require additional investigation and/or remedial actions.

• AOC-Western Area: LNAPL-impacted soil was initially observed in AOC-Western Area during construction activities. While the presence of LNAPL in soil at AOC-Western Area is itself an impact, soil and groundwater sampling analytical results from the initial investigation of AOC-Western Area indicate that the presence of LNAPL-impacted soil at this AOC has not degraded the environmental quality of soil or groundwater with respect to regulated metals and organic compounds and relative to the impacts attributable to fill materials placed at the HHMT-Port Ivory Facility by P&G. Additional investigation of soil and groundwater quality is warranted in

the vicinity of AOC-Western Area, particularly to the east and south. Based on the results of these additional investigations, remedial efforts beyond the soil removal already completed may or may not be warranted.

- AOC-TE Pipeline: LNAPL-impacted soil was encountered during an investigation of soil and groundwater along the Tidewater pipelines in AOC-Southern Area; however, the investigation of soil and groundwater quality along a pipeline in an easement to Texas Eastern is ongoing. Additionally, soil and groundwater quality along a second pipeline previously owned by Texas Eastern and currently owned by IMTT located southeast of AOC-Western Area near the unnamed tributary of Bridge Creek is ongoing. Due to their close proximity, both pipelines were identified as AOC-TE Pipeline. Therefore, the investigation of soil and groundwater quality along both pipelines is being conducted simultaneously.
- AOC-Area 2A Southeast: While performing storm water drainage improvements along Western Avenue subsequent to the SRI, LNAPL-impacted soil was encountered in an excavation located immediately adjacent to the west of Western Avenue (Area 2A). The excavation was determined to be located approximately three feet from the Tidewater pipelines. Initial soil sample results indicated TPHC concentrations ranged from 1,200 mg/kg to 14,000 mg/kg in the analyzed soil samples. The concentration of TPHC in two samples exceeded 5,000 mg/kg, the site-specific threshold at which the potential presence of free LNAPL must be investigated. Further investigative activities are ongoing at AOC-Area 2A Southeast.

The following AOC warrants additional remedial actions for soil, but not groundwater, quality. Should AOC-Western Area, AOC-TE Pipeline, and AOC-Area 2A Southeast warrant remedial actions, these areas will be remediated as specified in the approved Site 2 RAWP. Although the environmental quality of groundwater at Site 2 is not believed to warrant remedial action, groundwater quality will be monitored during post-redevelopment monitoring. All remedial actions and post-remedial monitoring will be implemented as per the approved Site 2 RAWP.

Historic Fill Material: An impervious cap will be constructed throughout approximately 50-90% of Site 2. Any areas at the site that will remain uncapped following redevelopment will be covered with a minimum of one foot of clean cover material with a demarcation barrier (i.e., geotextile, plastic liner, or equivalent) between the original land surface and the cover.

APPENDIX A SURFACE WATER SAMPLING LOGS

MATERIALS ENGINEERING DIVISION WATER QUALITY DATA SHEET

PROJECT: HHMT - PORT IVORY	CHARGE CODE: CP11634502
Surface Water from Bridge Creek & Unnamed Tributary	DATE: 12 / 04 / 2007
WEATHER CONDITIONS: Cloudy and Snowing - 32°F	

SAMPLE ID	SAMPLE TIME	ANALYSIS TIME	pH (SU)	COND (ms/m)	DO (mg/L)	TEMP (°C)	ORP (mV)	TURB (NTU)
UT-SW-4	10:03	10:04	8.24	127.0	11.05	1.86	65	2.04
UT-SW-3	10:11	10:13	8.07	53.9	9.29	2.79	13	2.78
UT-SW-2		><	\times	>>	\times	\nearrow	>	\times
UT-SW-1			\nearrow	\searrow	\times	\nearrow		
BC-US	9:52	9:53	6.81	992.0	9.79	0.37	124	38.80
BC-DS	9:45	9:47	5.74	673.0	11.22	2.10	186	26.10
	:							
	:							
	<u>:</u>							
	:				·			
	:							
	:				<u> </u>			
	:							
							_	

SAMPLED BY:	T. Gard / S. Byrne		
COMMENTS:			
ВС	C-US: ice layer on surface of water.		
		•	
-			

MATERIALS ENGINEERING DIVISION WATER QUALITY DATA SHEET

PROJECT: PORT IVORY	CHARGE CODE: CP11-233-295						
Surface Water from Unnamed Tributary	DATE: 02 / 01 / 07						
WEATHER CONDITIONS: cloudy, 34°F							

SAMPLE ID	TIME	pH (SU)	COND (ms/m)	TURB (NTU)	DO (mg/L)	TEMP (oC)	SALINITY (%)	TDS (g/L)	SPG	ORP (mV)	
UT-SW-4	14:48	7.51	101.0	55.0	9.27	4.2		*		2	
UT-SW-3	15:02	7.50	70.4	61.0	9.49	2.8				-3	
UT-SW-2	15:15	7.58	67.0	56.3	9.87	2.4				15	
UT-SW-1	15:31	7.51	77.1	52.3	9.86	2.1				36	
	<u>:</u>			<u> </u>							
	:				, -	0 *					
	<u>:</u>				<u> </u>						
	:										
	<u>:</u>										
	:										
	::					<u></u>					
	:					L					
	:										
	::										
	<u>:</u>									 	
	:]
	:_					l ;					
	:										
	:										

SAMPLED BY:	T. Gard / B. Swofford	 	 	
COMMENTS:				

APPENDIX B

SURFACE WATER SAMPLING ANALYTICAL RESULTS

CT#: PH-0671

MA#: NJ386

NY#: 11408

NJ #: 14622

PA #: 68-463

Report Of Analysis veritech laboratories

o: PORT AUTHORITY OF NY & NJ

MATERIALS ENGINEERING DIV.

241 ERIE ST.

JERSEY CITY

ROOM 234

Attention:

07310-1397

NJ

D.Bailey/A.Zafirelis

Project: Port Ivory

Date Collected:

2/1/2007

Date Submitted:

2/2/2007

Date Reported:

: 2/12/2007

#: AC28390-001 TestGroup	SampleID: PIT-UT-SW-1-02			MDLVDO	DRAFT	
restGroup	Analyte	DF	Units	MDL/PQ	L/RL RESULT	
28390-001	PIT-UT-SW-1-020107SW1					
Mercury (W	/ater) 245.1				•	
* **	Mercury	1	ug/L	0.20	ND	
PP Metals (V	Vater) 200.7					
	Antimony	0.5	ug/L	7.5	ND	
	Arsenic	0.5	ug/L	4.0	ND	* .
	Barium	0.5	ug/L	25	100	
	Beryllium	0.5	ug/L	4.0	ND	
	Cadmium	0.5	ug/L	2.0	ND	
	Chromium	0.5	ug/L	25	ND	
	Copper	0.5	ug/L	25	ND	
	Lead	0.5	ug/L	5.0	ND	
	Nickel	0.5	ug/L	10	ND	
•	Selenium	0.5	ug/L	25	ND	
	Silver	0.5	ug/L	10	ND	
	Thallium	0.5	ug/L	5.0	ND	
	Zinc	0.5	ug/L	25	ND	

Lab#: AC28390-001	SampleID: PIT-UT-SW-1-020107	'SW1			DRAFT	
TestGroup	Analyte	DF	Units	MDL/PQL/	RL RESULT	
Semivolatile Or	ganics + 25 (625)					
LIBRARY SEARCH:	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND	
LIBRARY SEARCH:	:TotalSemiVolatileTic	1	ug/L	NA(r.t.)	ND	
•	1,2,4-Trichlorobenzene	1	ug/L	0.51	ND	
	1,2-Dichlorobenzene	1	ug/L	0.60	ND	
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND	
	1,3-Dichlorobenzene	1	ug/L	0.74	ND	
	1,4-Dichlorobenzene	1	ug/L	0.79	ND	*
•	2,4,5-Trichlorophenol	1	ug/L	2.0	ND	
	2,4,6-Trichlorophenol	. 1	ug/L	0.92	ND	
	2,4-Dichlorophenol	1	ug/L	1.3	ND	
	2,4-Dimethylphenol	1	ug/L	2.1	ND	•
	2,4-Dinitrophenol	-1	ug/L	0.67	ND	
	2,4-Dinitrotoluene	1	ug/L	0.38	ND	
	2,6-Dinitrotoluene	1	ug/L	0.35	ND	
	2-Chloronaphthalene	1	ug/L	0.43	ND	
•	2-Chlorophenol	1	ug/L	1.5	ND	
	2-Methylnaphthalene	1	ug/L	3.7	ND	
	2-Methylphenol	1	ug/L	4.1	ND	
	2-Nitroaniline	1	ug/L	1.7	ND	
	2-Nitrophenol	1	ug/L ug/L	0.85	ND	
	3&4-Methylphenol	. 1	ug/L	4.3	ND	
	3,3'-Dichlorobenzidine	1	ug/L ug/L	0.84	ND	
	3-Nitroaniline	4	ug/L	2.7	ND	
	4,6-Dinitro-2-methylphenol	. 4	ug/L ug/L	2.7 0.85	ND	•
•		1	ug/L ug/L	0.55	ND	
•	4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	4	ug/L ug/L	1.2	ND	
	4-Chloroaniline	4	ug/L ug/L	3.2	ND	
	4-Chlorophenyl-phenylether	1	ug/L ug/L	0.40	ND ND	
	4-Nitroaniline	1.	ug/L	1.6	ND .	
	4-Nitrophenol		ug/L	1.1	ND .	
•	•	4	_	0.27		
	Acenaphthulana	1	ug/L		ND	
	Acenaphthylene Anthracene	1	ug/L	0.26	ND	
	Benzidine		ug/L	0.19	ND	
		4	ug/L	~ 9.1	ND ND	
	Benzo[a]anthracene	4	ug/L	0.24		
	Benzo[a]pyrene	1	ug/L	0.17	ND	•
	Benzo[b]fluoranthene	1	ug/L	0.22	ND	
	Benzo[g,h,i]perylene	1	ug/L	0.30	ND .	
	Benzo[k]fluoranthene	4	ug/L	0.33	ND	
	Bis(2-Chloroethoxy)methane	1	ug/L	0.20	ND	
	Bis(2-Chloroethyl)ether	1	ug/L	0.45	ND	
	Bis(2-Chloroisopropyl)ether	1	ug/L	0.24	ND	
	Bis(2-Ethylhexyl)phthalate	1	ug/L	0.39	ND	
•	Butylbenzylphthalate	1	ug/L	0.24	ND	
:	Carbazole	1	ug/L	0.17	ND	
	Chrysene	1	ug/L	0.20	ND	
	Dibenzo[a,h]anthracene	1	ug/L	0.26	ND	
	Dibenzofuran	1	ug/L	1.7	ND	
	Diethylphthalate	1	ug/L	0.30	ND	
	Dimethylphthalate	1	ug/L	0.18	ND	
	Di-n-butylphthalate	1	ug/L	0.34	ND	
	Di-n-octylphthalate	1	ug/L	0.20	ND	
	Fluoranthene	1	ug/L	0.16	ND	
	Fluorene	1	ug/L	0.16	ND	
	Hexachlorobenzene	1	ug/L	0.29	ND	

AC28390-001	SampleID: PIT-UT-SW-1-02010				DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL/R	L RESULT
·	Hexachlorobutadiene	1	ug/L	0.66	ND
	Hexachlorocyclopentadiene	1	ug/L	4.9	ND
	Hexachloroethane	• 1	ug/L	0.72	ND
	Indeno[1,2,3-cd]pyrene	1	ug/L	0.19	ND
	Isophorone	1	ug/L	0.15	ND
	Naphthalene	1	ug/L	0.47	ND
	Nitrobenzene	1	ug/L	0.25	ND
	N-Nitrosodimethylamine	1	ug/L	9.2	ND .
	N-Nitroso-di-n-propylamine	1	ug/L	0.27	ND
	N-Nitrosodiphenylamine	1	ug/L	0.16	ND
	Pentachlorophenol	1	ug/L	0.80	ND
	Phenanthrene	1	ug/L	0.24	ND
	Phenol	1		1.5	ND
			ug/L		
	Pyrene	1	ug/L	0.15	ND
Volatile Organic					
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
IBRARY SEARCH:	:TotalVolatileTic	1	ug/L	NA(r.t.)	ND
	1,1,1,2-Tetrachloroethane	1	ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/L	0.33	ND
	1,1,2,2-Tetrachloroethane	1	ug/L	0.21	ND
	1,1,2-Trichloroethane	1	ug/L	0.25	ND
	1,1-Dichloroethane	1	ug/L	0.34	ND
	1,1-Dichloroethene	1	ug/L	0.53	ND
	1,2-Dichloroethane	1	ug/L	0.21	ND
	1,2-Dichloropropane	1	ug/L	0.46	ND
	2-Butanone	1	ug/L	0.38	ND
	2-Chloroethylvinylether	1	ug/L	0.26	ND
	2-Hexanone	1	ug/L	0.36	ND
	4-Methyl-2-Pentanone	1	ug/L	0.17	ND
	Acetone	1	ug/L	2.7	ND
	Acrolein	•	ug/L	1.5	ND
		1	-	0.54	
	Acrylonitrile	-	ug/L		ND
•	Benzene	1	ug/L	0.25	ND .
	Bromodichloromethane	1	ug/L	0.33	ND
	Bromoform	1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND
	Chloroethane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
	cis-1,3-Dichloropropene	1	ug/L	0.20	ND
	Dibromochloromethane	1	ug/L	0.20	ND
	Ethylbenzene	1	ug/L	0.40	ND
•	m&p-Xylenes	1	ug/L	0.36	ND
	Methylene chloride	1	ug/L	0.47	ND
	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	1	ug/L ug/L	0.18	ND
		4			
	Toluene	1	ug/L	0.18	ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
	trans-1,3-dichloropropene	1	ug/L ug/L	0.15	ND ,
	Trichloroethene	1		0.28	ND

#: AC28390-002	SampleID: PIT-UT-SW-2-	020107SW1 ,			DRAFT
TestGroup	Analyte	DF	Units	MDL/PQ	L/RL RESULT
28390-002	PIT-UT-SW-2-020107SW1				
Mercury (Wa	ter) 245.1			• .	
	Mercury	1	ug/L	0.20	ND
PP Metals (W	ater) 200.7				
	Antimony	0.5	ug/L	7.5	ND
	Arsenic	0.5	ug/L	4.0	ND
	Barium	0.5	ug/L	25	97
	Beryllium	0.5	ug/L	4.0	ND
	Cadmium	0.5	ug/L	2.0	ND
	Chromium	0.5	ug/L	25	ND
	Copper	0.5	ug/L	25	ND
	Lead	0.5	ug/L	5.0	ND
	Nickel	0.5	ug/L	10	ND
	Selenium	0.5	ug/L	25	ND
	Silver	0.5	ug/L	10	ND
	Thallium	0.5	ug/L	5.0	ND
	Zinc	0.5	ug/L	25	34

AC28390-002	SampleID: PIT-UT-SW-2-02010		J. Inite	Marian	DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL	RL RESULT
	ganics + 25 (625)				
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
IBRARY SEARCH:	:TotalSemiVolatileTic	1	ug/L	NA(r.t.)	ND
	1,2,4-Trichlorobenzene	1	ug/L	0.48	ND
	1,2-Dichlorobenzene	1	ug/L	0.57	ND
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND
	1,3-Dichlorobenzene	1	ug/L	0.70	ND
	1,4-Dichlorobenzene	1	ug/L	0.75	ND
	2,4,5-Trichlorophenol	1	ug/L	1.9	ND
	2,4,6-Trichlorophenol	1	ug/L	0.88	ND
	2,4-Dichlorophenol	1	ug/L	1.3	ND
	2,4-Dimethylphenol	1	ug/L	2.0	ND
	2,4-Dinitrophenol	1	ug/L	0.63	ND
	2.4-Dinitrotoluene	1	ug/L ug/L	0.36	ND
	•	1			
	2,6-Dinitrotoluene	1	ug/L	0.33	ND ND
	2-Chlorophonol	-	ug/L	0.41	ND
	2-Chlorophenol	1	ug/L	1.5	ND
	2-Methylaborel	1	ug/L	3.5	ND
	2-Methylphenol	1	ug/L	3.9	ND
	2-Nitroaniline	1	ug/L	1.7	ND
	2-Nitrophenol	1	ug/L	0.81	ND .
	3&4-Methylphenol	1	ug/L	4.1	ND
	3,3'-Dichlorobenzidine	1	ug/L	0.80	ND
	3-Nitroaniline	1	ug/L	2.6	ND
	4,6-Dinitro-2-methylphenol	1	ug/L	0.81	ND
	4-Bromophenyl-phenylether	1	ug/L	0.53	ND
	4-Chloro-3-methylphenol	1	ug/L	1.1	ND
	4-Chloroaniline	1	ug/L	3.0	ND
	4-Chlorophenyl-phenylether	1	ug/L	0.38	ND
	4-Nitroaniline	1	ug/L	1.6	ЙD
	4-Nitrophenol	1	ug/L	1.1	ND
	Acenaphthene	1	ug/L	0.25	ND
	Acenaphthylene	1	ug/L	0.24	ND
	Anthracene	1	ug/L	0.19	ND
	Benzidine	1	ug/L	8.6	ND .
	Benzo[a]anthracene	1	ug/L	0.22	ND
	Benzo[a]pyrene	1	ug/L	0.16	ND
	Benzo[b]fluoranthene	1	ug/L	0.21	ND
	Benzo[g,h,i]perylene	1	ug/L	0.29	ND
	Benzo[k]fluoranthene	1	ug/L	0.31	ND
	Bis(2-Chloroethoxy)methane	1	ug/L	0.19	ND
	Bis(2-Chloroethyl)ether	1	ug/L	0.43	ND
	Bis(2-Chloroisopropyl)ether	1	ug/L	0.23	ND
	Bis(2-Ethylhexyl)phthalate	1	ug/L	0.37	ND
	Butylbenzylphthalate	1	ug/L	0.23	ND
	Carbazole	1	ug/L	0.16	ND
	Chrysene	4	ug/L ug/L	0.18	ND
		4	_		
	Dibenzo[a,h]anthracene	1	ug/L	0.25	ND ND
	Dibenzofuran	1	ug/L	1.6	ND
	Diethylphthalate	. 1	ug/L	0.28	ND
	Dimethylphthalate	1	ug/L	0.18	ND
	Di-n-butylphthalate	1.	ug/L	0.32	ND
	Di-n-octylphthalate	1	ug/L	0.19	ND
	Fluoranthene	1	ug/L	0.15	ND
	Fluorene	1 .	ug/L	0.15	ND
	Hexachlorobenzene		ug/L	0.27	

AC28390-002	SampleID: PIT-UT-SW-2-02010				DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL/RL	RESULT
	Hexachlorobutadiene	1	ug/L	0.62	ND
	Hexachlorocyclopentadiene	1	ug/L	4.6	ND .
	Hexachloroethane	1	ug/L	0.68	ND
	Indeno[1,2,3-cd]pyrene	1	ug/L	0.18	ND
	Isophorone	1	ug/L	0.14	ND
	Naphthalene	1	ug/L	0.44	ND
	Nitrobenzene	1	ug/L	0.24	ND
	N-Nitros odimethylamine	1.	ug/L	8.8	ND
	N-Nitroso-di-n-propylamine	1	ug/L	0.26	ND
	N-Nitrosodiphenylamine	1	ug/L	0.15	ND
	Pentachlorophenol	1	ug/L	0.76	ND
	Phenanthrene	1	ug/L	0.23	ND
	Phenol	1	ug/L ug/L	1.5	ND
			-		
	Pyrene	1	ug/L	0.15	ND
Volatile Organic	•				
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
BRARY SEARCH:		1	ug/L	NA(r.t.)	ND
	1,1,1,2-Tetrachloroethane	1	ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/Ľ	0.33	ND
	1,1,2,2-Tetrachloroethane	1	ug/L	0.21	ND
	1,1,2-Trichloroethane	1	ug/L	0.25	ND
	1,1-Dichloroethane	1	ug/L	0.34	ND
	1,1-Dichloroethene	1	ug/L	0.53	ND
	1,2-Dichloroethane	1	ug/L	0.21	ND
	1,2-Dichloropropane	· 1	ug/L	0.46	ND
	2-Butanone	1	ug/Ľ	0.38	ND
	2-Chloroethylvinylether	1	ug/L	0.26	ND
	2-Hexanone	1	ug/L	0.36	ND
	4-Methyl-2-Pentanone	1	ug/L	0.17	ND
-	Acetone	1		2.7	ND
			ug/L		
	Acrolein	1	ug/L	1.5	ND
	Acrylonitrile	1	ug/L 	0.54	ND
	Benzene	1	ug/L	0.25	ND
	Bromodichloromethane	1	ug/L	0.33	ND
	Bromoform	1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND
	Chloroethane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
	cis-1,3-Dichloropropene	1	ug/L	0.20	ND
	Dibromochloromethane	1	ug/L	0.20	ND
			-		
	Ethylbenzene	1	ug/L	0.40	ND
	m&p-Xylenes	1	ug/L	0.36	ND
	Methylene chloride	1	ug/L	0.47	ND
	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	1	ug/L	0.24	ND
	Toluene	1	ug/L	0.18	ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
•	trans-1,3-dichloropropene	1	ug/L	0.15	ND
	Trichloroethene	1	ug/L	0.28	ND

b#: AC28390-003	SampleID: PIT-U	T-SW-3-020107SW1		DRA	
TestGroup	Analyte	DF	Units	MDL/PQI	L/RL RESULT
28390-003	PIT-UT-SW-3-020107SW1				
Mercury (Wa	iter) 245.1				
	Mercury	1	ug/L	0.20	ND
PP Metals (W	ater) 200.7				
·	Antimony	0.5	ug/L	7.5	ND
	Arsenic	0.5	ug/L	4.0	4.1
n - 1	Barium	0.5	ug/L	25	95
• •	Beryllium	0.5	ug/L	4.0	ND
	Cadmium	0.5	ug/L	2.0	ND
•	Chromium	0.5	ug/L	25	ND
	Copper	. 0.5	ug/L	25	ND
	Lead	0.5	ug/L	5.0	ND
	Nickel	0.5	ug/L	10	ND
	Selenium	0.5	ug/L	25	ND
	Silver	0.5	ug/L	10	ND
	Thallium	0.5	ug/L	5.0	ND
	Zinc	0.5	ug/L	25	ND

Lab#: AC28390-003 SampleID: PIT-UT-SW-3-020107SW1 DRAF						
TestGroup	Analyte	DF	Units	MDL/PQL/R		
Semivolatile C	Organics + 25 (625)					
	: :No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND	
	: :TotalSemiVolatileTic	1	ug/L	NA(r.t.)	ND	
	1,2,4-Trichlorobenzene	1	ug/L	0.48	ND	
•	1,2-Dichlorobenzene	1	ug/L	0.57	ND	
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND	
	1,3-Dichlorobenzene	1	ug/L	0.70	ND .	
	1,4-Dichlorobenzene	1	ug/L	0.75	ND	
	2,4,5-Trichlorophenol	1	ug/L	1.9	ND	
	2,4,6-Trichlorophenol	1	-	0.88		
	2,4-Dichlorophenol	1	ug/L ug/L	1.3	ND	
		1			ND	
	2,4-Dimethylphenol		ug/L	2.0	ND	
	2,4-Dinitrophenol	1	ug/L	0.63	ND	
	2,4-Dinitrotoluene	1	ug/L	0.36	ND	
	2,6-Dinitrotoluene	1	ug/L	0.33	ND	
	2-Chloronaphthalene	1	ug/L	0.41	ND	
	2-Chlorophenol	1	ug/L	1.5	ND	
	2-Methylnaphthalene	1	ug/L	3.5	ND	
	2-Methylphenol	1	ug/L	3.9	ND	
	2-Nitroaniline	1	ug/L	1.7	, ND	
	2-Nitrophenol	1	ug/L	0.81	ND	
	3&4-Methylphenol	1	ug/L	4.1	ND	
	3,3'-Dichlorobenzidine	1	ug/L	0.80	ND	
	3-Nitroaniline	• 1	ug/L	2.6	ND	
	4,6-Dinitro-2-methylphenol	1	ug/L	0.81	ND	
	4-Bromophenyl-phenylether	1	ug/L	0.53	ND	
·	4-Chloro-3-methylphenol	1	ug/L	1.1	ND	
	4-Chloroaniline	1	ug/L	3.0	ND	
	4-Chlorophenyl-phenylether	1	ug/L	0.38	ND	
•	4-Nitroaniline	1	ug/L	1.6	ND	
	4-Nitrophenol	1	ug/L	1.1	ND	
	Acenaphthene	1	ug/L	0.25	ND	
	Acenaphthylene	1	ug/L	0.24	ND	
1.	Anthracene	1	ug/L	0.19	ND	
	Benzidine	1	ug/L	8.6	ND	
	Benzo[a]anthracene	1	ug/L	0.22	ND	
•	Benzo[a]pyrene	1	ug/L	0.16	ND	
	Benzo[b]fluoranthene	1	ug/L	0.21	ND	
	Benzo[g,h,i]perylene	1	ug/L	0.29	ND	
	Benzo[k]fluoranthene	1	ug/L	0.31	ND	
	Bis(2-Chloroethoxy)methane	1	ug/L	0.19	ND	
	Bis(2-Chloroethyl)ether	1	ug/L	0.43	ND .	
,	Bis(2-Chloroisopropyl)ether	1	ug/L	0.23	ND	
•	Bis(2-Ethylhexyl)phthalate	1	ug/L	0.37	ND	
	Butylbenzylphthalate	1	ug/L	0.23	ND	
	Carbazole	1	ug/L	0.16	ND	
	Chrysene	1	ug/L	0.19	ND	
	Dibenzo[a,h]anthracene	1	ug/L	0.25	ND	
	Dibenzofuran	1	ug/L	1.6	ND	
* .	Diethylphthalate	1	ug/L	0.28	ND	
	Dimethylphthalate	1	ug/L	0.18	ND	
	Di-n-butylphthalate	4				
		4	ug/L	0.32	ND ND	
	Di-n-octylphthalate	4	ug/L	0.19	ND ND	
	Fluoranthene	7	ug/L	0.15	ND	
	Fluorene	1	ug/L	0.15	ND	
	Hexachlorobenzene	1	ug/L	0.27	ND	

.ab#: AC28390-003	SampleID: PIT-UT-SW-3-020107	1 Topis	DRAFT		
TestGroup	Analyte	DF	Units	MDL/PQL/	RL RESULT
	Hexachlorobutadiene	1	ug/L	0.62	ND
	Hexachlorocyclopentadiene	1	ug/L	4.6	ND
	Hexachloroethane	1	ug/L	0.68	ND
	Indeno[1,2,3-cd]pyrene	1	ug/L	0.18	ND
	Isophorone	1	ug/L	0.14	ND ·
	Naphthalene	1	ug/L	0.44	ND
	Nitrobenzene	1	ug/L	0.24	ND
	N-Nitrosodimethylamine	1	ug/L	8. 8	ND
	N-Nitroso-di-n-propylamine	1	ug/L	0.26	ND
	N-Nitrosodiphenylamine	1	ug/L	0.15	ND
	Pentachlorophenol	1	ug/L	0.76	ND
•	Phenanthrene	1	ug/L	0.23	ND
	Phenol	1	ug/L	1.5	ND
	Pyrene	1	ug/L	0.15	ND
Volatile Organic	•				
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
LIBRARY SEARCH:	•	1	ug/L ug/L	NA(r.t.)	ND
LIDITAN'I SEARON.	1,1,1,2-Tetrachloroethane	1	ug/L ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/L ug/L	0.33	ND
	1,1,2,2-Tetrachloroethane	1	_	0.33	ND
	1.1.2-Trichloroethane	1	ug/L ug/L	0.25	ND
	1,1-Dichloroethane	1	ug/L ug/L	0.34	ND ND
	1,1-Dichloroethene	. 1	ug/L ug/L	0.53	ND ND
	1,2-Dichloroethane		-	0.53	
	·	1	ug/L		ND .
	1,2-Dichloropropane 2-Butanone	1	ug/L	0.46 0.38	ND
		1	ug/L	0.36	ND ND
	2-Chloroethylvinylether	1	ug/L	0.36	ND
	2-Hexanone	1	ug/L		ND ND
•	4-Methyl-2-Pentanone	1	ug/L	0.17	ND ND
	Acetone		ug/L	2.7	ND
	Acrolein	1	ug/L	1.5	ND
	Acrylonitrile	1	ug/L	0.54	ND
	Benzene	1	ug/L	0.25	ND
	Bromodichloromethane	1	ug/L	0.33	ND
	Bromoform	1 1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND
	Chlorothane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
	cis-1,3-Dichloropropene	1	ug/L	0.20	ND
	Dibromochloromethane	1	ug/L	0.20	ND
	Ethylbenzene	1	ug/L	0.40	ND
	m&p-Xylenes	1	ug/L	0.36	ND
	Methylene chloride	1	ug/L	0.47	ND
	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	1	ug/L	0.24	ND
	Toluene	1	ug/L	0.18	ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
	trans-1,3-dichloropropene	1	ug/L	0.15	ND
	Trichloroethene	1	ug/L	0.28	ND
A	Vinyl chloride	1	ug/L	0.65	ND

Veritech Project: 7020216

AC28390-004	SampleID: PIT-UT-SW-4-02	0107SW1	Company of the Company	Contract	DRAFT
TestGroup	Analyte	DF	Units	MDL/PQ	L/RL RESULT
90-004	PIT-UT-SW-4-020107SW1				
Mercury (Wa	ter) 245.1		. —		
	Mercury	1	ug/L	0.20	ND
PP Metals (W	ater) 200.7				
	Antimony	0.5	ug/L	7.5	ND
	Arsenic	0.5	ug/L	4.0	5.9
	Barium	0.5	ug/Ľ	25	99
	Beryllium	0.5	ug/L	4.0	ND
	Cadmium	0.5	ug/L	2.0	ND
	Chromium	0.5	ug/L	25	ND
	Copper	0.5	ug/L	25	ND
	Lead	0.5	ug/L	5.0	8.0
	Nickel	0.5	ug/L	10	ND
	Selenium	0.5	ug/L	25	ND
	Silver	0.5	ug/L	10	ND
	Thallium	0.5	ug/L	5.0	ND
	Zinc	0.5	ug/L	25	51

AC28390-004	SampleID: PIT-UT-SW-4-020107				DRAFT	
TestGroup	Analyte	DF	Units	MDL/PQL	RL RESULT	_
Semivolatile Or	ganics + 25 (625)	•				
LIBRARY SEARCH:	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND	
LIBRARY SEARCH:	:TotalSemiVolatileTic	1	ug/L	NA(r.t.)	ND	
	1,2,4-Trichlorobenzene	1	ug/L	0.48	ND	
	1,2-Dichlorobenzene	1	ug/L	0.57	ND ·	
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND	
	1,3-Dichlorobenzene	1	ug/L	0.70	ND	
	1,4-Dichlorobenzene	1	ug/L	0.75	ND	
	2,4,5-Trichlorophenol	1	ug/L	1.9	ND	
	2,4,6-Trichlorophenol	1	ug/L	0.88	ND	
	2,4-Dichlorophenol	1	ug/L	1.3	ND	
	· ·	-				
	2,4-Dimethylphenol	1	ug/L	2.0	ND	
	2,4-Dinitrophenol	1	ug/L	0.63	ND	
	2,4-Dinitrotoluene	1	ug/L 	0.36	ND	
	2,6-Dinitrotoluene	1	ug/L	0.33	ND	
	2-Chloronaphthalene	1	ug/L	0.41	ND	
	2-Chlorophenol	1	ug/L	1.5	ND	
	2-Methylnaphthalene	1	ug/L	3.5	ND	
	2-Methylphenol	1	· ug/L	3.9	ND	
	2-Nitroaniline	1	ug/L	1.7	ND	
	2-Nitrophenol	1	ug/L	0.81	ND	
	3&4-Methylphenol	1	ug/L	4.1	ND	
	3,3'-Dichlorobenzidine	1	ug/L	0.80	ND	
	3-Nitroaniline	1	ug/L	2.6	ND	
	4,6-Dinitro-2-methylphenol	1	ug/L	0.81	ND	
•	4-Bromophenyl-phenylether	1	ug/L	0.53	ND	
	4-Chloro-3-methylphenol	1	ug/L	1.1	ND	
	4-Chloroaniline	1	ug/L	3.0	ND	
	4-Chlorophenyl-phenylether	1	ug/L	0.38	ND	
	4-Nitroaniline	1	ug/L	1.6	ND	
	4-Nitrophenol	1	ug/L	1.1	ND	
	Acenaphthene	1	ug/L	0.25	ND	
	Acenaphthylene	=		0.23		
		1	ug/L		ND	
	Anthracene	1	ug/L	0.19	ND	
	Benzidine	1	ug/L 	8.6	ND	
	Benzo[a]anthracene	1	ug/L	0.22	ND	
	Benzo[a]pyrene	1	ug/L 	0.16	ND	
	Benzo[b]fluoranthene	1	ug/L	0.21	ND	
	Benzo[g,h,i]perylene	1	ug/L	0.29	. ND	
	Benzo[k]fluoranthene	1	ug/L	0.31	ND	
	Bis(2-Chloroethoxy)methane	1	ug/L	0.19	ND	
	Bis(2-Chloroethyl)ether	1	ug/L	0.43	ND	
	Bis(2-Chloroisopropyl)ether	.1	ug/L	0.23	ND	
	Bis(2-Ethylhexyl)phthalate	1	ug/L	0.37	ND	
	Butylbenzylphthalate	1	ug/L	0.23	ND	
	Carbazole	1	ug/L	0.16	ND	
	Chrysene	1	ug/L	0.19	ND	
	Dibenzo[a,h]anthracene	1	ug/L	0.25	ND	
	Dibenzofuran	1	ug/L	1.6	ND	
	Diethylphthalate	1	ug/L	0.28	ND	
	Dimethylphthalate	1	ug/L	0.18	ND	
	Di-n-butylphthalate	1	ug/L	0.32	ND	
	Di-n-octylphthalate	1	ug/L	0.19	ND	
	Fluoranthene	1	ug/L	0.15	ND	
	Fluorene	1	ug/L	0.15	ND	

p#: AC28390-004	SampleID: PIT-UT-SW-4-02010	SWI,	<u>, , , , , , , , , , , , , , , , , , , </u>	••••	DRAFT	
TestGroup	Analyte	DF	Units	MDL/PQL	RL RESULT	
	Hexachlorobutadiene	1	ug/L	0.62	ND	
	Hexachlorocyclopentadiene	1	ug/L	4.6	ND	
\	Hexachloroethane	1	ug/L	0.68	ND .	
	Indeno[1,2,3-cd]pyrene	, 1	ug/L	0.18	ND	
	Isophorone	1	ug/L	0.14	ND	
	Naphthalene	. 1	ug/L	0.44	ND	
	Nitrobenzene	1	ug/L	0.24	ND	
	N-Nitrosodimethylamine	1	ug/Ļ	8.8	ND	
	N-Nitroso-di-n-propylamine	1	ug/L	0.26	ND	
	N-Nitrosodiphenylamine	1	ug/L	0.15	ND	
	Pentachlorophenol	1	ug/L	0.76	ND	
	Phenanthrene	1	ug/L	0.23	ND	
	Phenol	1	ug/L	1.5	ND .	
	Pyrene	1	ug/L	0.15	ND	
		•		,	.,,	
Volatile Organic				0(-4)	ND	
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND	
LIBRARY SEARCH:		1	ug/L	NA(r.t.)	ND	
	1,1,1,2-Tetrachloroethane	1	ug/L	0.46	ND	
	1,1,1-Trichloroethane	1	ug/L	0.33	ND	
	1,1,2,2-Tetrachloroethane	1	ug/L	0.21	ND .	
	1,1,2-Trichloroethane	, 1	ug/L	0.25	ND	
	1,1-Dichloroethane	1	ug/L	0.34	ND	
	1,1-Dichloroethene	1	ug/L	0.53	ND	
	1,2-Dichloroethane	1	ug/L	0.21	ND	
	1,2-Dichloropropane	1	ug/L	0.46	ND	
	2-Butanone	1	ug/L	0.38	ND	
	2-Chloroethylvinylether	1	ug/L '	0.26	ND	
	2-Hexanone	1	ug/L	0.36	ND	
	4-Methyl-2-Pentanone	1 .	ug/L	0.17	ND .	
	Acetone	1	ug/L	2.7	ND	
	Acrolein	1	ug/L	1.5	ND	
	Acrylonitrile	1	ug/L	0.54	ND	*
	Benzene	1	ug/L	0.25	ND	
	Bromodichloromethane	1	ug/L	0.33	ND	
	Bromoform	1	ug/L	0.29	ND	
	Bromomethane	1	ug/L	0.23	ND	
	Carbon disulfide	1	ug/L	0.23	ND	
	Carbon tetrachloride	1	ug/L	0.44	ND	
	Chlorobenzene	1	ug/L	0.21	ND	
	Chloroethane	1	ug/L	0.22	ND	
	Chloroform	4	ug/L	0.42	ND	
	Chloromethane	4	_	0.51	ND .	
		1	ug/L			
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND	
	cis-1,3-Dichloropropene	1.	ug/L	0.20	ND	
	Dibromochloromethane	1	ug/L	0.20	ND	
	Ethylbenzene	1	ug/L	0.40	ND	
* .	m&p-Xylenes	1	ug/L	0.36	ND	
	Methylene chloride	1	ug/L	0.47	ND	
	o-Xylene	1	ug/L	0.16	ND	
	Styrene	1	ug/L	0.18	ND	
	Tetrachloroethene	1	ug/L	0.24	ND	
	Toluene	1	ug/L	0.18	ND	
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND .	
	trans-1,3-dichloropropene	1	ug/L	0.15	ND	
	Trichloroethene	1	ug/L	0.28	ND	
	Vinyl chloride	1	ug/L	0.65	ND	

ab#: AC28390-00	5 SampleID: PIT-UT	SampleID: PIT-UT-SWDUP-020107SW1				
TestGroup	Analyte	DF	Units	MDL/PQ	DRAFT L/RL RESULT	
C28390-005	PIT-UT-SWDUP-020107SW	/1				
Mercury (Nater) 245.1					
	Mercury	1	ug/L	0.20	ND	
PP Metals	(Water) 200.7					
	Antimony	0.5	ug/L	7.5	ND ·	
	Arsenic	0.5	ug/L	4.0	13	
	Barium	0.5	ug/L	25	170	
	Beryllium	0.5	ug/L	4.0	ND	
	Cadmium	0.5	ug/L	2.0	ND	
	Chromium	0.5	ug/L	25	ND	
	Copper	0.5	ug/L	25	43	
	Lead	0.5	ug/L	5.0	27	
	Nickel	0.5	ug/L	10	10	
	Selenium	0.5	ug/L	25	ND	
ř	Silver	0.5	ug/L	10	ND	
	Thallium	0.5	ug/L	5.0	ND	
	Zinc	0.5	ug/L	25	110	

Lab#: AC28390-005	SampleID: PIT-UT-SWDUP-020	0107SW1	;		DRAFT	
TestGroup	Analyte	DF	Units	MDL/PQL	RL RESULT	
Semivolatile Or	ganics + 25 (625)					
LIBRARY SEARCH:	:TotalSemiVolatileTic	1	ug/L	NA(r.t.)	6.1J	
LIBRARY SEARCH:	:unknown	1	ug/L	11.5(r.t.)	6.1J	
	1,2,4-Trichlorobenzene	, 1	ug/L	0.48	ND	
	1,2-Dichlorobenzene	1	ug/L	0.57	ND	
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND ·	
•	1,3-Dichlorobenzene	1	ug/L	0.70	ND	
	1,4-Dichlorobenzene	1,	ug/L	0.75	ND · ··	
	2,4,5-Trichlorophenol	1	ug/L	1.9	ND	
	2,4,6-Trichlorophenol	1	ug/L	0.88	ND	
	2,4-Dichlorophenot	1	ug/L	1.3	ND	
	2,4-Dimethylphenol	1	ug/L	2.0	ND	
	2,4-Dinitrophenol	. 1	ug/L	0.63	ND	
	2,4-Dinitrotoluene	1	ug/L	0.36	ND	
	2,6-Dinitrotoluene	1	ug/L	0.33	ND	*
	2-Chloronaphthalene	1	ug/L	0.41	ND	
1	2-Chlorophenol	1	ug/L	1.5	ND	
	2-Methylnaphthalene	1	ug/L	3.5	ND	
	2-Methylphenol	1	ug/L	3.9	ND	-
	2-Nitroaniline	1	ug/L	1.7	ND	
	2-Nitrophenol	1	ug/L	0.81	ND	
	3&4-Methylphenol	1	ug/L	4.1	ND	
	3,3'-Dichlorobenzidine	1	ug/L	0.80	ND	
	3-Nitroaniline	1	ug/L	2.6	ND	
•	4,6-Dinitro-2-methylphenol	1	ug/L	0.81	ND	
•	4-Bromophenyl-phenylether	1	ug/L	0.53	ND	
	4-Chloro-3-methylphenol	1	ug/L	1.1	ND	
	4-Chloroaniline	1	ug/L	3.0	ND	
	4-Chlorophenyl-phenylether	. 1	ug/L	0.38	ND	
	4-Nitroaniline	1	ug/L	1.6	ND	
	4-Nitrophenol	1	ug/L	1.1	ND	
	Acenaphthene	1	ug/L	0.25	ND	
	Acenaphthylene	1	ug/L	0.24	ND	
	Anthracene	1	ug/L	0.19	ND	
	Benzidine	1	ug/L	8.6	ND	
	Benzo[a]anthracene	1	ug/L	0.22	ND	
	Benzo[a]pyrene	1	ug/L	0.16	ND	
	Benzo[b]fluoranthene	1	ug/L	0.21	ND	
	Benzo[g,h,i]perylene	1	ug/L	0.29	ND	
•	Benzo[k]fluoranthene	•	ug/L	0.31	ND	
	Bis(2-Chloroethoxy)methane	1	ug/L	0.19	ND	
	Bis(2-Chloroethyl)ether	;	ug/L ug/L	0.43	ND .	
	Bis(2-Chloroisopropyl)ether	;	ug/L	0.23	ND .	
	Bis(2-Ethylhexyt)phthalate	•	ug/L	0.37	ND	*, *
		4				
	Butylbenzylphthalate Carbazole	4	ug/L	0.23 0.16	ND ND	
	Charage	1	ug/L		ND	
	Chrysene	1	ug/L	0.19	ND	
	Dibenzo[a,h]anthracene	1	ug/L	0.25	ND	
	Dibenzofuran	1	ug/L	1.6	ND	*
	Diethylphthalate	1	ug/L	0.28	ND .	
	Dimethylphthalate	1	ug/L	0.18	ND	
	Di-n-butylphthalate	1	ug/L	0.32	ND	
	Di-n-octylphthalate	1	ug/L	0.19	ND	
	Fluoranthene	1	ug/L	0.15	ND	
_	Fluorene	1	ug/L	0.15	ND	
	Hexachlorobenzene	4	ug/L	0.27	ND	

AC28390-005			A Page 1 Commence		DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL/I	RL RESULT
	Hexachlorobutadiene	1	ug/L	0.62	ND
	Hexachlorocyclopentadiene	1	ug/L	4.6	ND
	Hexachloroethane	1	ug/L	0.68	ND
	Indeno[1,2,3-cd]pyrene	1	ug/L	0.18	ND
	Isophorone	1	ug/L	0.14	ND
	Naphthalene	1	ug/L	0.44	ND
	Nitrobenzene	1	ug/L	0.24	ND
	N-Nitrosodimethylamine	1	ug/L	8.8	ND
	N-Nitroso-di-n-propylamine	1	ug/L	0.26	ND
	N-Nitrosodiphenylamine	1	ug/L	0.15	ND
	Pentachlorophenol	- 1	ug/L	0.76	ND
	Phenanthrene	1	ug/L	0.23	ND
	Phenol	1	ug/L	1.5	ND
		1		0.15	ND
	Pyrene	1	ug/L	0.15	ND
Volatile Organic					
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
LIBRARY SEARCH:		1	ug/L	NA(r.t.)	ND
	1,1,1,2-Tetrachloroethane	1	ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/L	0.33	ND
	1,1,2,2-Tetrachloroethane	1	ug/L	0.21	ND
	1,1,2-Trichloroethane	1	ug/L	0.25	ND
	1,1-Dichloroethane	1	ug/L	0.34	ND
	1,1-Dichloroethene	1	ug/L	0.53	ND
	1,2-Dichloroethane	1	ug/L	0.21	ND
	1,2-Dichloropropane	1	ug/L	0.46	ND
	2-Butanone	1	ug/L	0.38	ND
	2-Chloroethylvinylether	1	ug/L	0.26	ND
	2-Hexanone	1	ug/L	0.36	ND
	4-Methyl-2-Pentanone	1	ug/L	0.17	ND
	Acetone	1	ug/L "	2.7	ND
	Acrolein	1	ug/L	1.5	ND
		1	ug/L ug/L	0.54	ND
	Acrylonitrile	•	=		
	Benzene Benzene	1	ug/L	0.25	ND
	Bromodichloromethane	1	ug/L "	0.33	ND
	Bromoform	1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND "
	Chloroethane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
	cis-1,3-Dichloropropene	. 1	ug/L	0.20	ND
	Dibromochloromethane	1	ug/L	0.20	ND
	Ethylbenzene	1	ug/L	0.40	ND
	m&p-Xylenes	1	ug/L	0.36	ND
	Methylene chloride	1	ug/L ug/L	0.47	ND
		4			•
	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	1	ug/L	0.24	ND
	Toluene	1	ug/L	0.18	ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
	trans-1,3-dichloropropene	1	ug/L	0.15	ND
	Trichloroethene	1	ug/L	0.28	ND
	Vinyl chloride	1	ug/L	0.65	ND

ab#: AC28390-006	SampleID:	PIT-UT-SWFB-020107SW1	a 👬 Lagra		DRAFT
TestGroup	Analyte	DF	Units	MDL/PQ	L/RL RESULT
C28390-006	PIT-UT-SWFB-02	0107SW1			
Mercury (W	/ater) 245.1		-		
	Mercury	1	ug/L	0.20	ND
PP Metals (\	V ater) 200.7				
	Antimony	0.5	ug/L	7.5	ND
	Arsenic	0.5	ug/L	4.0	ND
	Barium	0.5	ug/L	25	ND
	Beryllium	0.5	ug/L	4.0	ND
	Cadmium	0.5	ug/L	2.0	ND
	Chromium	0.5	ug/L	25	ND
	Copper	0.5	ug/L	25	ND
	Lead	0.5	ug/L	5.0	ND
	Nickel	0.5	ug/L	10	ND
	Selenium	0.5	ug/L	25	ND
	Silver	0.5	ug/L	10	ND .
	Thallium	0.5	ug/L	5.0	ND
	Zinc	0.5	ug/L	25	ND

AC28390-006	SampleID: PIT-UT-SWFB-02010				DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL/	RL RESULT
Semivolatile Or	ganics + 25 (625)				,
LIBRARY SEARCH:	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
LIBRARY SEARCH:	:TotalSemiVolatileTic	1	ug/L	. NA(r.t.)	ND
	1,2,4-Trichlorobenzene	1	ug/L	0.49	ND
	1,2-Dichlorobenzene	1	ug/L	0.59	ND
	1,2-Diphenylhydrazine	1	ug/L	0.14	ND
	1,3-Dichlorobenzene	1	ug/L	0.72	ND
	1,4-Dichlorobenzene	1	ug/L	0.77	ND
	2,4,5-Trichlorophenol	1	ug/L	2.0	ND
	2,4,6-Trichlorophenol	1	ug/L	0.90	ND
	2,4-Dichlorophenol	1	ug/L	1.3	ND
	2,4-Dimethylphenol	1	ug/L	2.0	ND
	2,4-Dinitrophenol	1	ug/L	0.65	ND
	2.4-Dinitrotoluene	1	ug/L	0.37	ND
	2.6-Dinitrotoluene	: 1	ug/L	0.34	ND
	2-Chloronaphthalene	1	ug/L ug/L	0.42	ND
	2-Chlorophenol	1	ug/L ug/L	1.5	ND
	2-Methylnaphthalene	1	ug/L ug/L	3.6	ND
	2-Methylphenol	1	ug/L ug/L	4.0	ND
-	2-Nitroaniline	1	ug/L ug/L	1.7	ND
	2-Nitrophenol	1	ug/L	0.83	ND
	3&4-Methylphenol	1	ug/L	4.2	ND ·
	3,3'-Dichlorobenzidine	1	ug/L ug/L	0.82	ND
	3-Nitroaniline	1	ug/L ug/L	2.7	ND
	4,6-Dinitro-2-methylphenol	1	ug/L ug/L	0.83	ND
	4-Bromophenyl-phenylether	1	ug/L ug/L	0.54	ND
	4-Chloro-3-methylphenol	1	ug/L	1.1	ND .
	4-Chloroaniline	1	ug/L ug/L	3.1	ND .
	4-Chlorophenyl-phenylether	1	ug/L	0.39	ND
	4-Nitroaniline	1	ug/L	1.6	ND
	4-Nitrophenol	1	ug/L ug/L	1.1	ND
	Acenaphthene	1	ug/L	0.26	ND
	Acenaphthylene	1	ug/L	0.25	ND
	Anthracene	1	ug/L	0.19	ND .
	Benzidine	1	ug/L	8.8	ND
	Benzo[a]anthracene	1	ug/L	0.23	ND .
	Benzo[a]pyrene	1	ug/L	0.17	ND
	Benzo[b]fluoranthene	1	ug/L	0.22	ND
	Benzo[g,h,i]perylene	1	ug/L	0.29	ND
	Benzo[k]fluoranthene	1	ug/L	0.32	ND ·
	Bis(2-Chloroethoxy)methane	i	ug/L ug/L	0.19	ND
	Bis(2-Chloroethyl)ether	1	ug/L	0.44	ND
	Bis(2-Chloroisopropyl)ether	1	ug/L ug/L	0.23	ND
	Bis(2-Ethylhexyl)phthalate	1	ug/L	0.38	ND
	Butylbenzylphthalate	1	ug/L ug/L	0.24	ND
	Carbazole	i	ug/L	0.17	ND
		1	ug/L ug/L	0.17	ND
	Chrysene Dibenzela blanthracene	1	-	0.19	ND ND
	Dibenzo[a,h]anthracene	-	ug/L		
•	Dibenzofuran	1	ug/L	1.6	ND
	Diethylphthalate	1	ug/L	0.29	ND
	Dimethylphthalate	1	ug/L	0.18	ND
	Di-n-butylphthalate	1	ug/L	0.33	ND
	Di-n-octylphthalate	1	ug/L	0.19	ND
	Fluoranthene	1	ug/L	0.16	ND
	Fluorene	1	ug/L	0.15	ND
	Fluorene Hexachlorobenzene	1 1	ug/L ug/L	0.15 0.28	ND ND

AC28390-006	SampleID: PIT-UT-SWFB-02010				DRAFT
TestGroup	Analyte	DF	Units	MDL/PQL/R	L RESULT
	Hexachlorobutadiene	1	ug/L	0.64	ND
	Hexachlorocyclopentadiene	1	ug/L	4.7	ND
	Hexachloroethane	1	ug/L	0.70	ND
	Indeno[1,2,3-cd]pyrene	• 1	ug/L	0.18	ND
	Isophorone	1	ug/L	0.14	ND
	Naphthalene	1	ug/L	0.45	ND
	Nitrobenzene	1	ug/L	0.24	ND
	N-Nitrosodimethylamine	1	ug/L	9.0	ND
	N-Nitroso-di-n-propylamine	1	ug/L	0.26	ND
	N-Nitrosodiphenylamine	1	ug/L	0.16	ND
	Pentachlorophenol	1	ug/L	0.78	ND
	Phenanthrene	1	ug/L	0.24	ND
	Phenol	1	ug/L	1.5	ND
	Pyrene	1	ug/L	0.15	ND
	•	• .	ug/L	0.13	ND
Volatile Organic		. 4		0/- 4.3	ND
	:No Unknown Compounds Detected	1	ug/L	0(r.t.)	ND
IBRARY SEARCH:		1	ug/L 	NA(r.t.)	ND
	1,1,1,2-Tetrachloroethane	1	ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/L	0.33	ND
	1,1,2,2-Tetrachioroethane	1	ug/L	0.21	ND
	1,1,2-Trichloroethane	1	ug/L	0.25	ND
	1,1-Dichloroethane	. 1	ug/L	0.34	ND _.
	1,1-Dichloroethene	1	ug/L	0.53	ND
	1,2-Dichloroethane	1	ug/L	0.21	ND
	1,2-Dichloropropane	1	ug/L	0.46	ND
	2-Butanone	1	ug/L	0.38	ND
	2-Chloroethylvinylether	1	ug/L	0.26	ND ·
	2-Hexanone	1	ug/L	0.36	ND
	4-Methyl-2-Pentanone	1	ug/L	0.17	ND
	Acetone	1	ug/L	2.7	ND
	Acrolein	1	ug/L	1.5	ND
	Acrylonitrile	1	ug/L	0.54	ND
	Benzene	1	ug/L	0.25	ND
	Bromodichloromethane	1	ug/L	0.33	ND
	Bromoform				
		. 1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
•••	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND
	Chloroethane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
•	cis-1,3-Dichloropropene	1	ug/L	0.20	ND
	Dibromochloromethane	. 1	ug/L	0.20	ND
	Ethylbenzene	1	ug/L	0.40	ND
	m&p-Xylenes	1	ug/L:	0.36	ND
	Methylene chloride	1	ug/L	0.47	2.0B
*	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	4	ug/L	0.16	ND
		1		0.18	
	Toluene	•	ug/L		ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
	trans-1,3-dichloropropene	1	ug/L ug/L	0.15	ND
	Trichloroethene	1		0.28	ND

AC28390-007	SampleID: PIT-UT-SWTB-02010			DRAFT	
TestGroup	Analyte	DF	Units	MDL/PQL/RL	RESULT
390-007	PIT-UT-SWTB-020107SW1			٠.	* * * * * * * * * * * * * * * * * * *
Volatile Organi	cs + 15 (624) :No Unknown Compounds Detected	1	ua/l	0/- 4)	ND
LIBRARY SEARCH:		1	ug/L ug/L	0(r.t.) NA(r.t.)	ND ND
LIBRART SEARCH.	1,1,1,2-Tetrachloroethane	1	ug/L ug/L	0.46	ND
	1,1,1-Trichloroethane	1	ug/L	0.33	ND
	1,1,2,2-Tetrachloroethane	1	ug/L	0.21	ND
	1,1,2-Trichloroethane	1	ug/L	0.25	ND
	1,1-Dichloroethane	1	ug/L	0.34	ND
	1,1-Dichloroethene	1	ug/L	0.53	ND
	1,2-Dichloroethane	1	ug/L	0.21	ND
	1,2-Dichloropropane	1	ug/L	0.46	ND
	2-Butanone	. 1	ug/L	0.38	ND
	2-Chloroethylvinylether	1	ug/L	0.26	ND
	2-Hexanone	1	ug/L	0.36	ŅD
	4-Methyl-2-Pentanone	1	ug/L	0.17	ND
	Acetone	1	ug/L	2.7	ND
	Acrolein	·1	ug/L	1.5	ND
	Acrylonitrile	1	ug/L	0.54	ND
·	Benzene	1	ug/L	0.25	ND
	Bromodichloromethane	1	ug/L	0.33	ND
	Bromoform	1	ug/L	0.29	ND
	Bromomethane	1	ug/L	0.23	ND
	Carbon disulfide	1	ug/L	0.23	ND
	Carbon tetrachloride	1	ug/L	0.44	ND
	Chlorobenzene	1	ug/L	0.21	ND
	Chloroethane	1	ug/L	0.22	ND
	Chloroform	1	ug/L	0.42	ND
	Chloromethane	1	ug/L	0.51	ND
	cis-1,2-Dichloroethene	1	ug/L	0.31	ND
	cis-1,3-Dichloropropene	1	ug/L	0.20	ND
	Dibromochloromethane	1	ug/L	0.20	ND
	Ethylbenzene	1	ug/L	0.40	ND
	m&p-Xylenes	1	ug/L	0.36	ND
	Methylene chloride	1	ug/L	0.47	ND
	o-Xylene	1	ug/L	0.16	ND
	Styrene	1	ug/L	0.18	ND
	Tetrachloroethene	1	ug/L	0.24	ND
	Toluene	1	ug/L	0.18	ND
	trans-1,2-Dichloroethene	1	ug/L	0.40	ND
	trans-1,3-dichloropropene	. 1	ug/L	0.15	ND
e . ·	Trichloroethene	1	ug/L	0.28	ND
	Vinyl chloride	1	ug/L	0.65	ND

Lab#:	AC28390-007	SampleID: , , PIT-UT-S	SWTB-020107SW1	11	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	DRAFT
	TestGroup	Analyte	DF	Units	MDL/PQL/RL	RESULT
RL D		SW846 Organics reported SW846 Inorganics reporte				
		Clean Water Act Organics Clean Water Act Inorganio	•			
		CLP Organics reported to CLP Inorganics reported				
	,	a true report of results obtained from ate liability of Veritech to all parties s				•
			Or			
,	Jeri Rossi - Qu	ality Assurance Director	Stanley	y Gilewicz -	Laboratory Directo	r

Materials Engineering Bivision - 241 Eric Street, Room 234 Jersey City, NJ 07310

lwl ol

TG/BS

Sampling Method: SS Pond Dipper

Sampled By:

Relinquished By:

Relinquished By: Relinquished By:

UP

0 2 0

Preservatives:

1. Ice 4. NaOH 2. HCl

Date: 2-02

Date:

5. MeOH

Facility	Port Ivory	
Project Info.	Port Ivory	
Charge Code #	CP11-233-295	

EQuIS Sys_Sample_Code

Chain-of-Custody

PAGE _1_OF_2_ PA PROJECT SDG NO__

										70	202	16			
		Contact	Name		Dorian i	Bailey / /	Angelos	Za	afirelis						
		Contact	Phone I	No.	201-216	-216-2963 / 201-216-2960									
		Contact	Fax No.		201-216	5-2158						_			
		Contact	Email		dbailey	ailey@PANYNJ.gov / azafirel@PANYNJ.gov									
Destination Laboratory				oratory	:				HCV		Lab Case/SDG:				
Sa	ntract Lab ample ID	Date of Collection Year 2007	Time of Collection	Geotech Cross ID	# of Containers	Preservative Code (MeOH No.)	Grab or Composite		PP VOAS+15+xylenes	PP BNA+26	PP Metals (13)				EQUIS / PDF
		2/1/2007	15:30		5	422	CDAR		х	x	x				x
	-001	2/1/2007	15.30]	1, 2, 3	1, 2, 3 GRAB Field			Field ph: 7.51 @ 2.1C @ 15:31					
		2/1/2007	15:14	·	5	1, 2, 3	GRAB	Γ	X.	x	X ·				х
- 1	-002	211/2001	15.14			',2,3	GRAB	Γ	Field ph: 7.58 @ 2.4C @ 15:15						
T									х	х	х				х
	-03	2/1/2007	15:01	t	5	1, 2, 3	GRAB		Field ph:	7.50 @ 2.80	C @ 15:02				
T				-				Γ	х	х	х	,			x
	-004	2/1/2007	14:47		5	1, 2, 3	GRAB	r	Fleid ph:	7.51 @ 4.20	C @ 14:48				<u> </u>
T	-605	2/1/2007			5	1, 2, 3	GRAB		· x	х	х				×
V	-006	2/1/2007	15:40		5	1, 2, 3	GRAB		х	×	х				x
. HC		3. HNO3 6. H2SO4			TAT:		TD		-	3-7	Delive OTHE		NY ASP I	, EXCEL	
<u>-</u> -:	2-07		1340	Receive	d By: C	il j	Pariso Ven	۔) , (# 4	1	Date: 2	<u>-0</u> 2/0	7 /3	11:45

THE PORT AUTHORITY OF MYS MU

Chain-of-Custody

PAGE _2_OF_2_ PA PROJECT SDG NO__

Materials Engineering Division - 241 Eri	Street,	Reem	234
Jareay City, NJ 67310	,		

Facility	Port Ivory	
Project Info.	Port Ivory	
Charge Code #	CP11-233-295	

Contact Name	Dorian Bailey / Ang	elos Zafirelis					
Contact Phone No. 201-216-2963 / 201-216-2960							
Contact Fax No.	201-216-2158		1.				
Contact Email	dbailey@PANYNJ.	gov / azafirel@PAI	NYNJ.gov				
Destination Laborato	ry:	HCV	Lab Case/SDG:				

		÷			E	Qu	IS	Sy	s_S	San	npl	e_(Cod	de							Sa	Lab imp ID		ate of Collection	Year 2007	Time of College		Geotech Cross ID	-	# of Containers	Preservative Code (MeOH No.)		Grab or Composite		PP VOAS+15+xylenes	PP BNA+25		PP Metals (13)					EQUIS / PDF	
_	П	- _T						_	T		_	T	<u> </u>	<u> </u>	Т	Т	T	Т	_	_				1		-		·	_					1			_	1.						-
Ŀ	Ш	_	U	7	·	s	w	Ţ	В	Ŀ	0	2	0	1	٥	1	4	s	w	1	\	/ ¬	007	2/1	/2007				1	2	1	\bot	GRAB	\perp	X								х	╛
			1											1	l		1												1			1								1				İ
Γ	П	T						Г				Γ			Τ	Τ	Т	Т	T	T									T			٦		T										1
	\sqcap	1	\dashv	7			_			Г	†	T	T	T	T	Ť	1	1	7	T						<u> </u>			1			1		1			T					-		1
-	Ħ	7	1	\dashv	┪			\vdash		-	T	l	t	╁	T	t	†	†	+	┪				<u> </u>					1			7	•	\dagger						┪				1
H	H	+	\dashv	ᅥ	-			\vdash		\vdash	┢	H	十	十	t	+	†	\dagger	\dashv	\dashv			-	H		╁			十			+		$^{+}$						1				1
\vdash	H	+	+	\dashv	\dashv	_	_	┝	╁	┝	┢	┝	╁	╁	╀	╁	+	+	+	+				┢	<u>-</u>	╁			╅			\dashv		+			+			ᅱ			 	┨
L	Н	4	4	_	4	_		<u> </u>	 	L	_	Ļ	1	↓_	1	1	4	4	4	4				_		<u> </u>	_		4			4	ļ	+			_			4			ļ	_
L													L	L																					, 1		_		÷]				
Γ															Γ	T.	T																											1
					,												7	1	1	1																					•			1

Sampled By: ____TG/BS_ Sampling Method: SS Pond Dipper Preservatives:

1. Ice 4. NaOH 2. HCl 5. MeOH 3. HNO3 6. H2SO4 TAT: STD OTHER

Deliverables: NY ASP B, EXCEL OTHER

Relinquished By:	TOWN	CA	2
Relinquished By:	تسلم سان	10-Jul	

Date: 0.0-0

1340

Received By: V Ch Thurst- P

Date: 2-62-07 11:45

Date: 2/2/07 134

Relinquished By:

_ Date:____

rived By:

Date:

HCV

CT#: PH-0671

MA#: NJ386

NY #: 11408

NJ#: 14622

PA #: 68-463

Report Of Analysis

veritech laboratories

PORT AUTHORITY OF NY & NJ

MATERIALS ENGINEERING DIV.

Attention: Project:

D.Bailey/A.Zafirelis HHMT-Port Ivory

Date Collected:

12/4/2007

Date Submitted:

12/5/2007

Date Reported:

12/10/2007

241 ERIE ST. **ROOM 234**

AC34641-0	NJ 07310-1397 SampleID: PI-UT-SW-4-1204073	SW1		green to be to	
TestGrou	· · · · · · · · · · · · · · · · · · ·	DF	Units		DRAFT
1641-001	PI-UT-SW-4-120407SW1				
Metals Pa	air 200.7/8			÷	
	Copper -	0.5	ug/L	25	ND
	Zinc	0.5	ug/L	25	26
641-002	PI-UT-SW-3-120407SW1				
Metals Pa	air 200.7/8	•			
	Copper	0.5	ug/L	25	ND.
	Zinc	0.5	ug/L	25	ND
641-003	PI-BC-US-120407SW001				
Metals Pa	air 200.7/8			*	
	Copper	0.5	ug/L	25	ND
	Zinc	0.5	ug/L	25	37
641-004	PI-BC-DS-120407SW001				
Metals Pa	air 200.7/8				
	Copper	0.5	ug/L	25	ND
	Zinc	0.5	ug/L	25	39
641-005	PI-UT-SWFB-120407SW1				
Metals Pa	air 200.7/8				
	Copper	0.5	ug/L	25	ND
	Zinc	0.5	ug/L	25	ND
efinitions:	SW846 Organics reported to PQL SW846 Inorganics reported to PQL	-			
	Clean Water Act Organics reported Clean Water Act Inorganics reported				
	CLP Organics reported to CRDL	~ •	•		
	3 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				

This report is a true report of results obtained from our tests of this material. In lieu of a formal contract document, the total aggregate liability of Veritech to all parties shall not exceed Veritech's total fee for analytical services rendered.

Jeri Rossi - Quality Assurance Director

CLP Inorganics reported to CRDL

Stanley Gilewicz - Laboratory Director

THE PORT AUTHORITY OF MYS MJ

Facility

Project Info.

Materials Engineering Division - 241 Eric Jersey City, NJ 07310

HHMT - Port Ivory

Port Ivory Surface Water

e Street, Room 2	34

Chain-of-Custody

Contact Name

Contact Phone No.

Contact Fax No.

PAGE 1 OF 1 PA PROJECT SDG NO

7120518 Dorian Bailey / Angelos Zafirelis 201-216-2963 / 201-216-2960

dbailey@PANYNJ.gov / azafirel@PANYNJ.gov Contact Email

201-216-2158

C	Charge Code # CP11-634.502																		Destinat	ion Lab	oratory					HCV		Lab Ca	se/SDG					
	EQuIS Sys_Sample_Code											Contract Lab Sample ID	Date of Collection	Time of Collection	Geotech Cross ID	# of Containers	Preservative Code (MeOH No.)	Grab or Composite		Copper & Zinc						Equis / PDF								
Γ.		-	u	т	-	s	w	-	4	-	1	2	0	4	0	7	s	w	1	-001	12/4/2007	10:03		1	1, 3	GRAB	+	Х				· .		х
-	+	- 	U	7		8	w	1	3.	-	1	2	0	4	٥	7	8	w	1	-002	12/4/2007	10:11		1.	1, 3	GRAB	1	×		6°C @ 10:0				x
-	+				-		\dashv	1	\dashv			-		_			\dashv	+	+	207		·-·	-				Field ph: 8.07 @ 2.			8°C @ 10:1	1	· · ·		х
Ľ		<u> </u>	В	ြိ			s		1	2	°	4	Ů	1	8	w	°	٥	1	-003	12/4/2007	9:52		1	1, 3	GRAB	ļ	Field ph: 6.81 @ 0.37°C @ 09:53						
	١,	-	В	С	-	D	s	-	1	2	0	4	•	7	8	w	0	۰	1	-004	12/4/2007	9:45		1	1, 3	GRAB	Ļ	X Field ph: 5.74 @ 2.10°C @ 09:47						×
-	1	_	υ	τ	-	s	w	F	В	•	1	2	Ö	•	0	7	s	w	1	y -005	12/4/2007	10:20		1	. 1, 3	GRAB	+	x						x
																				ķ.														. ,

Sampled By: TG/SB_ Sampling Method: SS Pond Dipper	Preservatives: 1. Ice 2. HCl 3. HNO3 4. NaOH 5. MeOH 6. H2SO4	72 ns rde 14 TAT: 48-HOUR	Deliverables: NY ASP B
Relinquished By: Relinquished By:	Date: 12507 1500	Received By: Received By: 16-56	Date: 12/5/07 1420 Date: 12/5/07 1600
Relinquished By:	Date:	Received By:	Date: