FILE NAME

 ${\it ``Report.VCP.v00674.2007-08-06.IRM.Site2B_3A.pdf''}$

NOTE

- Contains folded images. Images must be copied in their entirety.
- Images may contain color.
- Documents must be returned in the same arrangement in which they were received.

Please return electronic copies to Sally Dewes

The Port Authority of New York and New Jersey
Interim Remedial Measure Report
Sites 2 (Area 2B) and 3 (Area 3A)
HHMT - Port Ivory Facility
July 2007

40 Western Avenue, Staten Island, New York

Engineering Department

July 27, 2007

Thomas Gibbons, Project Manager NY State Dept. of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233

RE: Interim Remedial Measure Report

Howland Hook Marine Terminal – Port Ivory Facility (40 Western Avenue) Staten Island, New York 10303

Dear Mr. Gibbons:

Please find enclosed two copies of the Interim Remedial Measure (IRM) Report for Site 2 (Area 2A) and Site 3 (Area 3A) at the above referenced facility. The IRM Report is submitted pursuant to the Voluntary Cleanup Program (VCP) Agreement between the NYSDEC and the Port Authority of New York and New Jersey.

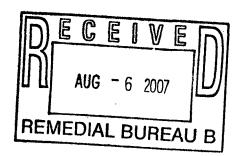
If you have any questions or comments, please feel free to contact Ed Aldrich at 973-565 7553.

Very truly yours,

Port Authority of New York and New Jersey

Robert P. Pruno, P.E.

Chief - Environmental Engineer


T 973,565,7620 F 973,565,7649

rpruno@panynj.gov

cc: B. Callaghan (NYSDOH)

E. Aldrich (PANYNJ)

G. Clark (HMM)

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION 2.1 Summary of Previous Investigations of LNAPL-Impacted Soil 2.2 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Southern Area 2.3 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Central Area 2.4 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Northern Area 2.5 LNAPL Characteristics 2.6 Relationship Between IRM and Site 3 Redevelopment/Remedial Action Work Plan	
3.0	2.6 Relationship Between IRM and Site 3 Redevelopment/Remedial Action Work Plan REVISED IRM WORK PLAN	
4.0	DEVIATIONS FROM IRM WORK PLAN METHODS. 4.1 Groundwater Removal/Disposal. 4.2 Observation Period. 4.3 Sheen. 4.4 Backfill Materials.	24
5.0	IRM EXCAVATION ACTIVITIES	26
6.0	IRM ACTIVITIES CONDUCTED DURING EXCAVATION 6.1 LNAPL 6.2 On-site Groundwater Treatment and Release 6.3 Management of Excavated Soil	31
7.0	POST-EXCAVATION IRM ACTIVITIES. 7.1 Collection of Post-Excavation Soil Samples. 7.2 Collection, Preparation, and Analysis of LNAPL Leachate Samples. 7.3 Collection of Groundwater Samples. 7.4 Site Restoration. 7.4.1 Backfilling and Collection of Backfill Soil Samples. 7.4.2 Removal of Components of Groundwater Treatment System.	57778282
8.0	CONCLUSIONS AND RECOMMENDATIONS	100

List of Figures

(All figures are provided in text by order of reference)

Figure 1 - Site Location Map	3
Figure 2 - Map of AOCs (AOC-Northern, Central and Southern Areas)	5
Figure 3 - Map of Removal Areas/Trenches (Proposed vs. Actual Extents)	27
Figure 4 - Post Excavation Soil Sample Location Plan (Removal Areas/Trenches).	
List of Tables	
(All tables are provided in text in order of first reference)	
Table 1A-1B Summary of Groundwater Analytical Results	
Table 1A – VOCs	16
Table 1B – SVOCs	19
Table 2 - Summary of Reduced-duration Observation Periods	24
Table 3 - Summary of Removal Areas/Trenches	
Table 4 - Summary of Additional Excavation Activities	30
Table 5A-5B Summary of Influent/Effluent Analytical Results	
Table 5A – VOCs	33
Table 5B – SVOCs	47
Table 6 - Summary of Total Petroleum Hydrocarbons (TPH) Analytical Results	55
Table 7 - Summary of Post Excavation Soil Sample Collection	57
Table 8A- 8B Summary of Post Excavation Soil Analytical Results	•
Table 8A – VOCs	60
Table 8B – SVOCs	70
Table 9A- 9B Summary of LNAPL Leachate Analytical Results	
Table 9A - VOCs	80
Table 9B – SVOCs	81
Table 10A- 10B Summary of Backfill Soil Analytical Results	
Table 10A – VOCs	84
Table 100 CVOCe	0.2

List of Appendices

Appendix A - Revised IRM Work Plan

Appendix B - NYSDEC Correspondence

Appendix C - Soil and LNAPL Disposal Manifests (Under Separate Cover)

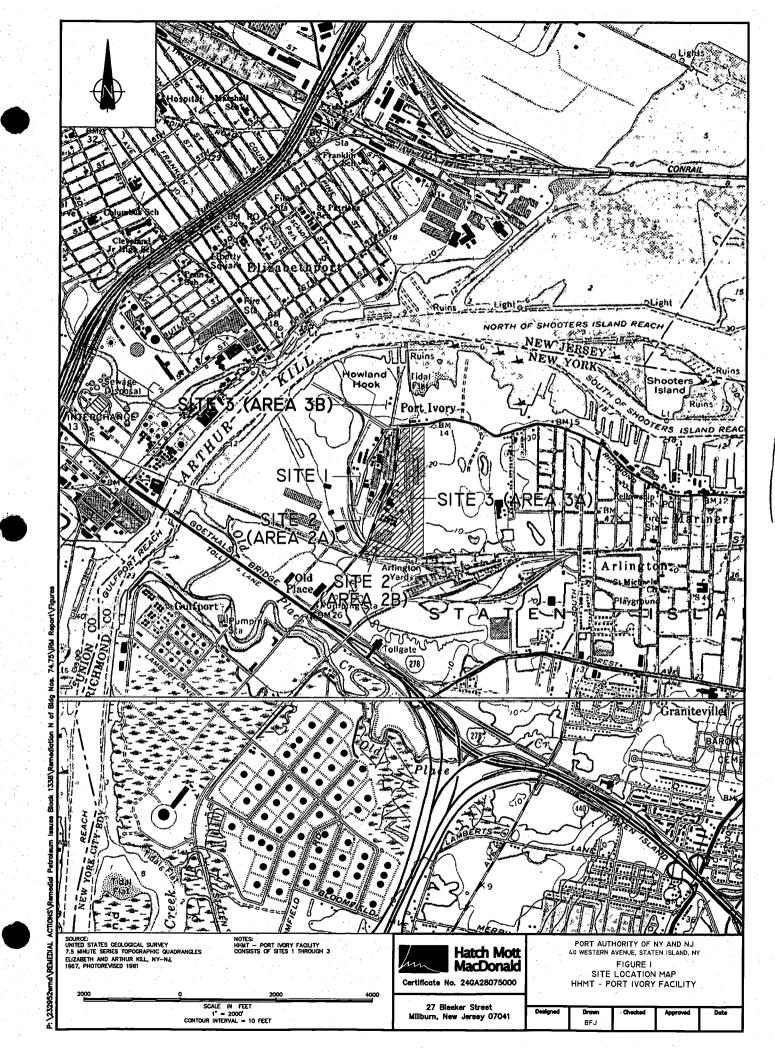
Appendix D - Laboratory Results (Under Separate Cover)

Appendix E - Data Usability Summary Reports (Under Separate Cover)

1.0 EXECUTIVE SUMMARY

The Port Authority of New York and New Jersey (Port Authority) is currently redeveloping the former Procter & Gamble (P&G) Port Ivory Facility, now known as the Howland Hook Marine Terminal (HHMT) – Port Ivory Facility. The Port Authority executed three Voluntary Cleanup Agreements with the New York State Department of Environmental Protection (NYSDEC), with each agreement addressing different portions of the 123.75-acre HHMT-Port Ivory Facility in 2002. Under the auspices of the NYSDEC Voluntary Cleanup Program (VCP), the Port Authority completed various phases of environmental investigation and conducted various remedial efforts. This report summarizes the methods and results of the most recent remedial effort, an Interim Remedial Measure (IRM) that was conducted to address light, non-aqueous phase liquid (LNAPL) at two portions (Site 2, Area 2B and Site 3, Area 3A) of the HHMT-Port Ivory Facility.

The goal of the IRM was to remove recoverable mobile LNAPL via the excavation of soil containing LNAPL and pumping of LNAPL from previously identified areas within Site 2 (Area 2A) and Site 3 (Area 3A). The designated areas (Removal Areas/Trenches) were identified based on site/remedial investigation field observations, including the following: the presence of elevated concentrations of volatile organic vapors, the presence of elevated concentrations of total petroleum hydrocarbons (TPHC), the re-accumulation of LNAPL in test pits, and/or the presence of LNAPL in monitoring wells.

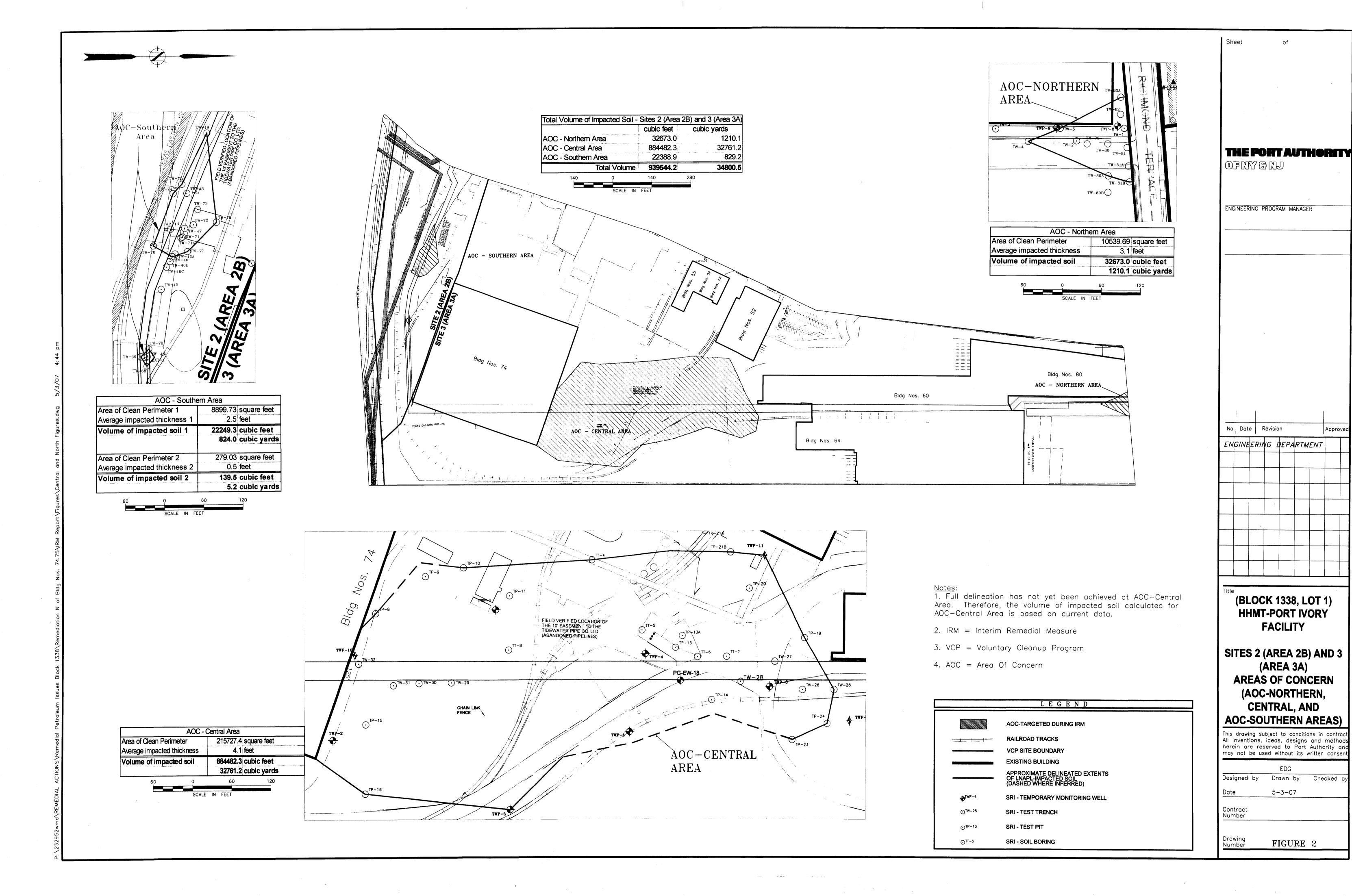

The IRM was highly successful in achieving its goal of removing mobile LNAPL. In fact, further remedial efforts will be required in the vicinity of only one of the Removal Areas/Trenches; these additional remedial efforts will be identified in the Remedial Action Work Plan (RAWP) for Site 3 (Area 3A). The IRM resulted in the removal of more than 91,000 pounds of LNAPL. With few exceptions, the LNAPL that remains seems to be sufficiently weathered that it does not impact groundwater with respect to regulated organic compounds. The exceptions are identified in this report, and recommendations for additional investigation and/or remedial actions are also offered in this report.

2.0 INTRODUCTION

The Port Authority Howland Hook Marine Terminal (HHMT)-Port Ivory Facility is located at 40 Western Avenue in Staten Island, Richmond County, New York, as presented on Figure 1, and is comprised of the following parcels: Block 1309, Lot 10; Block 1338, Lot 1; and, Block 1400, Lot 1. Public roadways separate the three parcels: Western Avenue separates Block 1400, Lot 1 from Block 1338, Lot 1 and Richmond Terrace separates Block 1309, Lot 10 from Block 1338, Lot 1 and Block 1400, Lot 1. The HHMT-Port Ivory Facility is bordered by Bridge Creek to the west, the Arthur Kill to the north, wetlands and undeveloped land to the east, and an unnamed railway to the south.

The Port Authority purchased the HHMT-Port Ivory Facility from Procter and Gamble (P&G) in 2000, and is currently redeveloping the property for a commercial end use; specifically, the Port Authority is redeveloping the HHMT-Port Ivory Facility for use as a container terminal and intermodal facility. For the purpose of this report, an intermodal facility is defined as a facility where cargo transported by ship is transferred to intermediate and final destinations via train or truck. Approximately 90% of the HHMT-Port Ivory Facility will therefore be paved or otherwise capped following final construction.

As part of the overall site redevelopment, the Port Authority entered into the NYSDEC VCP in August 2002. The Port Authority's objective for entering into the VCP program with NYSDEC was to address the presence of contamination attributable to prior site usage and activities unrelated to the Port Authority. To accommodate the Port Authority's overall redevelopment schedule, the NYSDEC agreed to expedite the review of information pertaining to certain portions of this site. Thus, the Port Authority agreed to address the HHMT-Port Ivory Facility as multiple "Sites" present assessment, investigation, and and remedial information/documentation for each individual unit, or Site. Please note, the VCP agreement for Site 3 (VCP Agreement Site V-00675-2, VCP Index Number W2-0987-02-04), now known as Site 3 (Area 3A) has been revised to incorporate Block 1309, Lot 10 (formerly known as Site 4 and currently known as Site 3, Area 3B). The Sites presented on Figure 1 and are designated as


follows: Site 1 consists of the northwestern portion of Block 1400, Lot 1; Site 2, which is further subdivided into Areas 2A and 2B, consists of the eastern and southern portions of Block 1400, Lot 1 (Area 2A) and the southern portion of Block 1338, Lot 1 (Site 2, Area 2B); Site 3, which is further subdivided into Areas 3A and 3B, consists of the northern portion of Block 1338, Lot 1 and Block 1309, Lot 10.

This report addresses the methods utilized during, and the results of, an IRM conducted at Sites 2 (Area 2B) and 3 (Area 3A), hereinafter referred to as Area 2B and Area 3A, respectively, which was implemented in accordance with a NYSDEC-approved *Revised Interim Remedial Action Work Plan*. The IRM Work Plan was dated August 17, 2005 and the NYSDEC issued a comment letter regarding that document on September 26, 2005. Based on the NYSDEC comments, a document entitled *Revised Interim Remedial Action Work Plan* and dated June 1, 2006 was prepared and submitted to the NYSDEC and New York State Department of Health (NYSDOH). The NYSDEC approved this document in a letter dated June 14, 2006.

2.1 Summary of Previous Investigations of LNAPL-Impacted Soil

On behalf of the Port Authority, Hatch Mott MacDonald (HMM) has performed environmental assessment and investigative activities to characterize site conditions and delineate historic fill material and contaminants in environmental media at the HHMT-Port Ivory Facility, including at Area 2B and Area 3A. During these environmental assessment and investigative activities, HMM encountered LNAPL at three Areas of Concern (AOCs) at these two areas. For discussion purposes, these AOCs have been identified as AOC-Southern Area, AOC-Central Area, and AOC-Northern Area. AOC-Southern Area is located at Area 2B and AOC-Central Area and AOC-Northern Area are located at Area 3A (See Figure 2 for the locations of these AOCs).

The source of LNAPL-impacted soil at AOC-Southern Area, ACO-Central Area, and AOC-Northern Area is believed to be one or more buried pipelines situated within an easement believed to have been owned at one time by Tidewater Pipe Co., Ltd. (Tidewater). Since the LNAPL-impacted soil appeared to be attributable to the Tidewater pipelines, the Port Authority investigated soil quality along the entire length of the Tidewater pipelines at Area 2B and Area

3A during the SRI. Sections 2.2 through 2.4 summarize the occurrence and extent of LNAPL-impacted soil at AOC-Southern Area, AOC-Central Area, and AOC-Northern Area, respectively.

2.2 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Southern Area

The SRI at Area 2B included the investigation of the environmental quality of soil and groundwater along the Tidewater pipelines and concluded that LNAPL-impacted soil is present at two portions of Area 2B, which collectively comprise AOC-Southern Area (referenced as "Southern LNAPL Area" in the March 24, 2005 SI Work Plan). Specifically, LNAPL-impacted soil was encountered in the vicinity of test pit EXT-1 and in the vicinity of soil borings TW-47 and TW-48.

EXT-1

During the SRI, 0.5 feet (average thickness) of LNAPL-impacted soil was encountered between depths of two and six feet below ground surface (bgs) in the vicinity of EXT-1. The horizontal limits of LNAPL-impacted soil in this portion of AOC-Southern Area were defined by soil borings TW-68 (to the east of EXT-1), TW-69 (to the south of EXT-1), and TW-70A (to the west of EXT-1) and by temporary well location TWP-13 (to the north of EXT-1) (See Figure 2). Based on field observations, LNAPL-impacted soil exists within a 279-square foot area in the vicinity of test pit EXT-1 with a resulting volume of approximately 5.2 cubic yards of LNAPL-impacted soil in this portion of AOC-Southern Area.

Analytical results for soil samples colleted at AOC-Southern Area in the vicinity of test pit EXT-1 indicate impacts of metal and regulated organic compounds attributable to the former placement of fill at the HHMT-Port Ivory Facility by P&G, but do not indicate that the presence of LNAPL has impacted soil with respect to regulated organic compounds. Further, based on groundwater analytical results from a groundwater sample collected at TWP-13, the presence of the LNAPL-impacted soil does not appear to have impacted groundwater quality in the vicinity of test pit EXT-1. Based on field observations and soil analytical results of the SRI, free (i.e., mobile) LNAPL is not believed to be present in the vicinity of test pit EXT-1. Therefore, this

portion of AOC-Southern Area was not targeted for excavation or LNAPL removal during the IRM.

TW-47 and TW-48

During the SRI, 2.5 feet (average thickness) of LNAPL-impacted soil was encountered between two and nine feet bgs in the vicinity of TW-47 and TW-48. The horizontal limits of LNAPL-impacted soil in this portion of AOC-Southern Area were defined by soil borings TW-74 (to the south of TW-48), TW-75 (to the southwest of TW-48), TW-78 (to the northeast of TW-48 and the northwest of TW-47), TW-77 (to the east-northeast of TW-47), and TW-76 (to the southeast of TW-47) (See Figure 2). Based on field observations, LNAPL-impacted soil is present within an 8,900-square foot area in the vicinity of soil borings TW-47 and TW-48 with a resulting volume of approximately 824 cubic yards of LNAPL-impacted soil in this portion of AOC-Southern Area.

Analytical results for soil samples collected in the vicinity of soil borings TW-47 and TW-48 indicate that higher LNAPL saturation in soil, as determined by field observations, is associated with the presence of tentatively identified volatile organic compounds (VOC TICs) and TPHC. However, New York State has not established Recommended Soil Cleanup Objectives (RSCOs) for these compounds. Based on groundwater analytical results from a groundwater sample collected at TWP-14, the presence of the LNAPL-impacted soil does not appear to have impacted groundwater quality in the vicinity of soil borings TW-47 and TW-48.

As the presence of LNAPL-impacted soil at AOC-Southern Area has not impacted soil or groundwater quality with respect to regulated organic compounds, the IRM was conducted at AOC-Southern Area for the sole purpose of removing mobile LNAPL. The elevated concentrations of volatile organic vapors, VOC TICs, and/or TPHC in soil at two soil boring locations in the vicinity of TW-47 and TW-48 suggested the presence of mobile LNAPL in this portion of AOC-Southern Area. Therefore, the IRM at AOC-Southern Area targeted the area proximal to soil borings TW-47 and TW-48.

Please note, larger volumes of LNAPL-impacted soil were previously reported for AOC-Southern Area in the document entitled *Site 2 Supplemental Remedial Investigation Report* (*Site 2 SRIR*) and dated November 2006; however, these larger volumes were calculated using the maximum thicknesses of LNAPL-impacted soil rather than the average thicknesses of LNAPL-impacted soil. Therefore, the lower volumes specified in this report are considered to be more accurate than those presented in the *Site 2 SRIR*.

2.3 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Central Area

The SI, RI, and SRI at Area 3A identified the presence of LNAPL and/or LNAPL-impacted soil to the north of Building Nos. 74/75 and to the south of Building No. 60. This AOC has been termed AOC-Central Area. The horizontal limits of LNAPL-impacted soil at AOC-Central Area are defined by soil borings TW-25, TW-63, TW-65A, and TW-66B; test pits TP-8, TP-10, TP-16, TP-19, TP-21B, TP-23, and TP-24; test trench TP-4; and, temporary wells TWP-3 and TWP-11. Thus, the LNAPL-impacted soil at AOC-Central Area was encountered within an area of approximately 215,725 square feet.

During the SRI, vertical delineation was completed at all locations where LNAPL-impacted soil was observed at AOC-Central Area. The LNAPL-impacted soil was encountered at depths from approximately 1 to 10 feet bgs. The thickness of LNAPL-impacted soil ranged from two to seven feet with an average thickness of 4.1 feet. Using the average thickness of LNAPL-impacted soil encountered at AOC-Central Area, approximately 32,761 cubic yards of LNAPL-impacted soil are present at AOC-Central Area.

As the presence of LNAPL in AOC-Central Area did not generally result in impacts to soil or groundwater quality with respect to regulated organic compounds, the IRM was conducted at AOC-Central Area for the purpose of removing mobile LNAPL. Based on the results of previous investigations, elevated concentrations of volatile organic vapors, elevated concentrations of TPHC, and/or the presence of mobile LNAPL were encountered at eight areas within AOC-Central Area. Therefore, the IRM at AOC-Central Area targeted these eight areas.

2.4 Occurrence and Extent of LNAPL-Impacted Soil at AOC-Northern Area

The RI and SRI at Area 3A identified the presence of LNAPL-impacted soil immediately to the south of Richmond Terrace. This AOC has been termed AOC-Northern Area. The horizontal limits of LNAPL-impacted soil at AOC-Northern Area are defined by soil boring locations TW-3, TW-4, TW-80A, TW-81B, and TW-82A and temporary well location TWP-9. In addition, well PG-GW-9, which is located to the east of soil boring location TW-2, has historically not contained LNAPL despite the observation of LNAPL at location TW-2. Complete horizontal delineation of the LNAPL-impacted soil was not achieved to the north since the LNAPL-impacted soil is believed to extend under Richmond Terrace, a public roadway; delineation to the north will be addressed during investigations at Site 3 (Area 3B). The LNAPL-impacted soil was encountered within an area of approximately 10,540 square feet.

During the SRI, vertical delineation was completed at all locations where LNAPL-impacted soil was observed at AOC-Northern Area. The LNAPL-impacted soil was encountered at depths from approximately 3.5 to 8 feet bgs. The average thickness of LNAPL-impacted soil was 3.1 feet. Using the average thickness of LNAPL-impacted soil encountered at AOC-Northern Area, approximately 1,200 cubic yards of LNAPL-impacted soil are present at AOC-Northern Area. With respect to regulated organic compounds, the presence of LNAPL in AOC-Northern Area did not result in impacts to soil quality and resulted in minor impacts to groundwater quality (four semivolatile organic compounds, or SVOCs, were detected at concentrations above their respective NYSDEC Ambient Water Quality Standards and Guidance Values, or AWQSGVs). Therefore, the IRM was conducted at AOC-Central Area and AOC-Northern Area for the sole purpose of removing mobile LNAPL, although additional groundwater investigation in AOC-Northern Area and at Site 3, Area 3A, Area 3B is recommended with respect to groundwater quality in this portion of the HHMT-Port Ivory Facility. Based on the results of previous investigations, elevated concentrations of volatile organic vapors and/or elevated concentrations of TPHC were encountered at three areas within AOC-Northern Area. Therefore, the IRM at AOC-Central Area targeted these eight areas.

2.5 LNAPL Characteristics

The results of an LNAPL Study (conducted in 2003-2004) indicated that the LNAPL was varied in nature (62.5% of the LNAPL sample fingerprinting results revealed a crude oil component, but the remainder included other petroleum products such as diesel fuel and fuel oils), significantly weathered, and between one and two decades old. The LNAPL is generally present at residual saturation (i.e., is immobile), but is present as a free (i.e., mobile) phase in only discrete areas within Area 2B and Area 3A. The results of the hot tapping portion of the LNAPL Study indicated the presence of residual petroleum in only one of the seven Tidewater pipelines.

With respect Area 3A and Area 2B, the distribution of the LNAPL and LNAPL-impacted soil suggests that the Tidewater pipelines are the source area for the petroleum that impacted soil in AOC-Central Area and AOC-Northern Area. The LNAPL and LNAPL-impacted soil at AOC-Central Area and AOC-Northern Area are present to both the east and the west of the Tidewater pipelines. The plume of LNAPL and LNAPL-impacted soils at AOC-Central Area is the shape of a "teardrop," widening in the direction of groundwater flow. The fact that there are two discrete areas of LNAPL-impacted soil along the pipelines at Area 3A also suggests that the pipelines are the source of LNAPL. Further, GC fingerprinting analysis confirmed that the ages of the LNAPL in AOC-Central Area and within the pipelines (sampled during the hot tapping effort, which was documented in the Revised - Site Investigation and Conceptual Remedial Workplan, Site 3, Area 3A, dated October 2004), are consistent. Therefore, the Port Authority is confident that the Tidewater Pipelines are the source area for the petroleum-type LNAPL encountered in AOC-Central and AOC-Northern Areas. The distribution of LNAPL and LNAPL-impacted soil also suggests that the Tidewater pipelines are the source of petroleum that impacted soil in AOC-Southern Area; however no LNAPL samples from AOC-Southern Area were analyzed using fingerprinting methods.

2.6 Relationship Between IRM and Area 3A Redevelopment/RAWP

The IRM is considered to be a response to the presence of free (i.e., mobile) LNAPL at Area 2B and Area 3A. Although the work completed during the IRM is anticipated to reduce the scope of

the remedial action(s) conducted at Area 2B and Area 3A, the IRM is distinct from those remedial actions that will be specified in the RAWPs for Sites 2 and 3. The IRM was successful in removing LNAPL and LNAPL-impacted soil from 11 of 12 (i.e., approximately 92%) of the Removal Areas/Trenches at the site. The only Removal Area/Trench where additional remediation is warranted is Area F located at AOC-Central Area, Area 3A. LNAPL reaccumulation continued at Area F despite repeated LNAPL removal and groundwater pumping efforts. In addition, the efforts undertaken during the IRM revealed that free (mobile) LNAPL in the vicinity of Area F extended beyond previously determined limits. Area F could not be expanded further due to the presence of railroad tracks, a soil stockpile, and underground utilities. Therefore, the Port Authority has elected to address the mobile LNAPL remaining at Area F during the final remedial action for Area 3A, which will be proposed in the RAWP for Site 3, Area 3A. Beyond the removal of mobile LNAPL at Area F, no further investigative or active remedial actions are warranted at AOC-Southern Area, AOC-Central Area, or AOC-Northern Area. However, following the IRM, residual (i.e., immobile) LNAPL will remain at all three AOCs and will be addressed through redevelopment of Area 2B and Area 3A, groundwater rea 2B and Area 3A, surface water monitoring at Area 2B, and the establishment of an environmental easement at Area 2B and Area 3A.

As previously indicated, the Port Authority proposes to redevelop the HHMT-Port Ivory Facility into a container terminal and intermodal facility, which is defined as a facility where cargo transported by ship is temporarily staged prior to being transferred to intermediate and final destinations via train or truck. Therefore, approximately 90% of the facility will therefore be paved or otherwise capped following final construction. Where impervious, the cover and cap will limit surface water infiltration and will prevent mobilization of contaminants remaining on the site through the soil column and into groundwater. Where not impervious, the cover will limit direct contact with impacted soil. Additionally, an environmental easement will be established to preclude unauthorized disturbance of the cover, cap, and impacted soil that remains in place. An inspection of the integrity of the impervious cover will be conducted in accordance with a Site Management Plan (SMP), which will set forth a program for the monitoring/inspection of the impervious cover and cap will certify that the institutional controls

and engineering controls are in place and that nothing has occurred that would impair the ability of the controls to protect public health or the environment or would constitute a violation or failure to comply with the SMP. Post-remedial monitoring activities will include groundwater and surface water monitoring. The results of the monitoring will be summarized in a report (SMP Report) that will be submitted to the NYSDEC on an annual basis until the NYSDEC notifies the property owner in writing that this certification is no longer needed. The specifics of the post-remedial monitoring activities will be provided in the SMPs for Sites 2 and 3.

3.0 REVISED IRM WORK PLAN

The Revised IRM Work Plan dated June 1, 2006 was approved by the NYSDEC in cooperation with the NYSDOH in a letter dated June 14, 2006. The goal of the IRM was to remove as much of the mobile LNAPL at Area 2B and Area 3A as feasible. The objectives of the IRM were as follows: 1) to remove as much LNAPL as possible via pumping; 2) to remove soil from which LNAPL was previously observed to seep into the excavation (i.e., soil where the remaining LNAPL is approximately at its residual saturation); and, 3) to document the removal efforts and the total volumes of LNAPL and impacted soil removed from Area 2B and Area 3A. The Revised IRM Work Plan, provided in Appendix A, was developed to meet these objectives. The NYSDEC letter approving the Revised IRM Work Plan is also included in Appendix A.

HMM identified the locations at Area 2B and Area 3A where LNAPL was most likely to be free (i.e., mobile) in the *Revised IRM Work Plan*. In order to be cost-effective, HMM used surrogate parameters, as opposed to measuring LNAPL saturation directly, to identify areas where free LNAPL was likely to be present. Specifically, HMM selected areas that met as least one of the following criteria: areas where soil contained elevated levels of volatile organic vapors as determined using a photoionization detector (PID); areas where soil contained elevated concentrations TPHC; areas where LNAPL has been observed in monitoring wells; and, areas where LNAPL was observed to re-accumulate in test pits following its removal from the test pits.

The Revised IRM Work Plan proposed a combination of soil excavation and LNAPL removal via pumping to meet the IRM goal and objectives. The Revised IRM Work Plan identified the soil excavation areas as Removal Areas/Trenches. The proposed horizontal limits of the Removal Areas/Trenches were based on previous field observations. The proposed vertical limits for the Removal Areas/Trenches were to be determined based on field observations; the bottom of each Removal Area/Trench was to be the shallowest soil that appeared to be clean based on field screening.

In order to allow for accurate field measurements/observations and to increase the likelihood of LNAPL flowing into the excavation, the *Revised IRM Work Plan* proposed dewatering at each Removal Area/Trench. Groundwater pumped from the excavation was to be disposed of by Lorco Petroleum Services Inc. (LPS), located in Elizabeth, New Jersey. Any LNAPL observed to flow into any Removal Area/Trench was to be pumped from the excavation, and the approximate location where it flowed into the excavation was to be recorded. Additional soil excavation was to be conducted along the sidewall where the mobile LNAPL was observed to flow into the excavation. As per the *Revised IRM Work Plan*, the Removal Area/Trench could be backfilled when LNAPL did not flow into the Removal Area/Trench for a one-month observation period following the most recent additional excavation and dewatering efforts.

Deviations from the *Revised IRM Work Plan*, which were approved by the NYSDEC prior to their implementation, are identified in Section 4.0. Documentation of the NYSDEC approvals is included in Appendix B. Section 5.0 summarizes the scope of the excavation activities and associated field observations. Section 6.0 summarizes other activities, including the removal and management of LNAPL, groundwater, and soil, that were conducted concurrently with excavation. Section 7.0 summarizes activities conducted after the completion of the excavation task.

4.0 DEVIATIONS FROM THE REVISED IRM WORK PLAN

In general, the IRM was completed in accordance with the *Revised IRM Work Plan* summarized above and included as Appendix A. However, actual field conditions required some minor modifications of the approved actions. The deviations are described by type, as follows: groundwater removal/disposal (Section 4.1), observation period (Section 4.2), sheen (Section 4.3), and backfill soil quality (Section 4.4).

4.1 Groundwater Removal/Disposal

The Revised IRM Work Plan proposed to contain all water and LANPL pumped out of the Removal Areas/Trenches until such time as they could be disposed of in accordance with all applicable, local, state, and federal laws. Although it is not explicitly stated, the intent was to transport water to an off-site disposal facility.

During the excavation of Removal Areas/Trenches A through I, it was determined that the rate at which the groundwater flowed into the Removal Areas/Trenches was greater than anticipated. As a result, the Port Authority faced management and disposal of more than 100,000 gallons of water. To manage this greater-than-anticipated volume of water in a cost-efficient manner, the Port Authority proposed to treat the water at the HHMT-Port Ivory Facility and to release the treated water to a retention basin at Area 3A. The proposed system included temporary storage of groundwater in frac tanks followed by its treatment using bag filters and activated carbon units. Following treatment, the Port Authority proposed to discharge water to an on-site retention basin. To verify the success of the treatment process, the Port Authority proposed to collect daily influent and effluent samples.

Bag filters were selected to remove entrained solids from the groundwater pumped from the Removal Areas/Trenches. However, the use of carbon filtration units required more attention. Carbon filtration is generally more effective in removing non-polar organic matter than polar organic matter, in removing organic compounds with high molecular weights than those with low molecular weights, and in removing low or moderate concentrations of organic matter than

high concentrations of same. To confirm that the groundwater could be adequately treated using carbon filtration, HMM collected one groundwater sample at each Removal Area/Trench using a dedicated Teflon bailer. All samples were transported to Veritech, a New York State-certified laboratory (Certification No. 11408) under Chain of Custody documentation with instructions to be analyzed for Priority Pollutant (PP) VOCs and PP SVOCs. The analytical results are summarized on Tables 1A and 1B, respectively.

In general, the analytical results confirmed the results of groundwater sampling conducted at AOC-Southern Area, AOC-Central Area, and AOC-Northern Area during the SRI in that groundwater contained low concentrations of only a few organic compounds. The groundwater samples collected from Areas A, C, D, and E did not contain any VOCs or SVOCs at concentrations above the NYSDEC AWQSGVs. However, at least one of the following compounds was detected at a concentration above its respective AWQSGV in the samples collected at Areas B, F, G, H, and I: the VOC acetone and the SVOCs acenaphthene, anthracene, benzo(a)anthracene, fluoranthene, fluorene, phenanthrene, and pyrene.

Acetone was detected in groundwater at only Area F, and, as such, would pose no difficulties with respect to the treatment of groundwater from the other 11 Removal Areas/Trenches. Volatilization of acetone in groundwater at Area F was considered a potential issue with respect to air quality. However, as a result of the concentration of acetone in groundwater coupled with the dilution of the acetone vapors in ambient air, no air quality issues were detected during air monitoring activities conducted in accordance with the Community Air Monitoring Plan. In addition, the acetone proved not to be a problem with respect to breakthrough in the water treatment process. Acetone was not detected in the effluent because, being volatile, it likely volatilized during pumping of groundwater from Area F or while the water remained in the frac tanks.

The SVOCs detected at concentrations above their respective AWQSGVs were non-polar and of sufficiently high molecular weight to be removed using carbon filtration. The concentration of organic matter in the groundwater was also not problematic; the greatest concentration of total

SUMMARY OF GROUND R ANALYTICAL RESULTS-VOCs REMOVAL AREAS/TRENCHES

INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab ID	New York		AREA A-W AC24354-00		. ,	AREA B-W			REA B-W		Γ,	AREA C-V			AREA C-W			AREA D -V			AREA E -W	
Date Collected	State	1	06/29/06			06/27/06		ļ.	7/13/06		l '	06/28/06		l '	08/31/06			06/26/06	~	_ ^	06/26/06	,,
Material	AWQSGV	1	Water			Water		١.	Water			Water			Water		4.	Water		•	Water	
Units	1	i	ug/L			ug/L			ug/L			ug/L			ug/L			ug/L		ŀ	ug/L	
· ·						-			-3-			-5-			- ugr			ug ic			ug/L	
Volatile Organic Compounds (VOCs)		Conc	Qual	MDL	Conc	Quai	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	0.09 Total	ND		0.3	ND		0.3	ND		0.33	ND		0.3	ND		0.46	ND	Qua.	0.3	ND	Guai	
1,1,1-Trichloroethane	5	ND		0.53	ND		0.53	ND		0.43	ND		0.53	ND		0.33	ND		0.53	ND	 	0.3 0.53
1,1,2,2-Tetrachloroethane	5	ND		0.2	ND		0.2	ND		0.37	ND		0.2	ND		0.33	ND		0.33	ND	\longrightarrow	
1,1,2-Trichloroethane	1	ND		0.44	ND		0.44	ND		0.25	ND ND	l .	0.44	ND		0.25	ND	 	0.44	ND	\vdash	0.2
1,1-Dichloroethane	5	ND		0.38	ND		0.38	ND		0.28	ND		0.38	ND		0.34	ND		0.38	ND	i	
1,1-Dichloroethene	5	ND		0.29	ND		0.29	ND		0.4	ND		0.29	ND	t	0.53	ND	-	0.38	ND	├	0.38
1,2-Dichloroethane	0.6	ND		0.37	ND		0.37	ND		0.42	ND		0.37	ND		0.33	ND		0.29		 	0.29
1,2-Dichloropropane	1	ND		0.56	ND		0.56	ND		0.48	ND		0.56	ND		0.46	ND			ND	├ ──	0.37
2-Butanone	50	ND		0.84	ND		0.84	ND		0.92	ND		0.84	ND		0.48	ND		0.56	ND	-	0.56
2-Chloroethylvinylether	NS	ND		0.52	ND		0.52	ND		0.33	ND		0.52	ND		0.36	ND	 -		ND_		0.84
2-Hexanone	50	ND		0.66	ND		0.66	ND		0.58	ND		0.66	ND		0.26	ND ND		0.52	ND		0.52
4-Methyl-2-Pentanone	50	ND		0.24	ND		0.24	ND		0.55	ND		0.24	ND ND		0.17			0.66	ND	─ ─	0.66
Acetone	50	ND	t	2.8	31		2.8	ND		2.5	ND ND		2.8	ND	 		ND		0.24	ND	↓	0.24
Acrotein	5	ND		2.1	ND		2.1	ND		5.9	ND		2.8	ND		2.7	ND		2.8	ND	├	2.8
Acrylonitrile	5	ND	 	1.1	ND		1.1	ND		0.47	ND ND					1.5	ND		2.1	ND	ļI	2.1
Benzene	1	ND	 	0.2	- ND		0.2	ND		0.15	ND ND		0.2	ND		0.54	ND		1.1	ND	<u> </u>	1.1
Bromodichloromethane	50	ND	 	0.46	ND		0.46	ND		0.13	ND			ND		0.25	ND		0.2	ND		0.2
Bromoform	50	ND	 	0.39	ND		0.39	ND		0.36			0.46	ND	ļ	0.33	ND		0.46	ND	↓	0.46
Bromomethane	5	ND	 	0.43	ND		0.43	ND		0.61	ND ND		0.39	ND		0.29	ND		0.39	ND	└─	0.39
Carbon disulfide	50	ND		0.18	ND		0.18	ND D		0.62	ND ND		0.43	ND	 	0.23	ND		0.43	ND	↓	0.43
Carbon tetrachloride	5	ND	 	0.3	ND		0.3	ND		0.44	ND ND		0.16	ND ND	 	0.23	ND		0.18	ND		0.18
Chlorobenzene	5	ND		0.089	ND		0.089	ND		0.29	ND		0.089	ND ND	-	0.44	ND		0.3	ND		0.3
Chloroethane	5	ND	 	0.66	ND		0.66	ND		0.6	ND ND	 	0.66	ND		0.21	ND		0.089	ND	└	0.089
Chloroform	7	ND		0.93	ND		0.93	ND		0.24	ND ND		0.93	ND -		0.22	ND		0.66	ND	\vdash	0.66
Chloromethane	NS	ND		0.74	ND		0.74	ND		0.64	ND		0.74	ND -			ND		0.93	ND	ļ	0.93
Cis-1,2-Dichloroethene	5	ND	1	0.47	ND		0.47	ND		0.42	ND		0.74	ND	-	0.51	ND	<u> </u>	0.74	ND	i	0.74
Cis-1,3-Dichloropropene	NS	ND	<u> </u>	0.26	ND		0.26	ND		0.45	ND		0.47	ND		0.31	ND	<u> </u>	0.47	ND		0.47
Dibromochloromethane	50	ND		0.34	ND		0.34	ND		0.39	ND	-	0.34	ND			ND		0.26	ND		0.26
Ethylbenzene	5 .	ND	1	0.53	ND ND		0.53	ND		0.67	ND		0.53	ND ND		0.2	ND ND		0.34	ND		0.34
M&p-Xylenes	5	ND	1	0.5	ND		0.5	ND		0.71	ND ND		0.53	ND ND		0.4	ND		0.53	ND		0.53
Methylene chloride	5	ИD		0.97	1.4	В	0.97	ND		0.91	1.2	В	0.97	ND		0.30	ND	i	0.5	ND		0.5
O-Xylene	5	ND	T	0.11	ND		0.11	ND		0.45	ND		0.97	ND		0.47			0.97	ND	<u> </u>	0.97
Styrene	5	ND		0.27	ND		0.27	ND		0.43	ND	 	0.11	ND			ND		0.11	ND ND	\vdash	0.11
Tetrachioroethene	5	ND	1	0.5	ND		0.5	ND		0.35	ND		0.5			0.18	ND		0.27	ND		0.27
Toluene	5	ND	1	0.32	1.2		0.32	ND		0.33	ND ND		0.32	ND ND		0.24	ND		0.5	ND		0.5
Trans-1,2-Dichloroethene	5	ND	T	0.38	ND		0.38	ND		0.44	ND	 	0.32		-		1.4		0.32	1.1		0.32
Trans-1,3-Dichloropropene	NS	ND	†	0.24	ND ND	 	0.24	ND		0.44	ND ND	 		ND_	<u> </u>	0.4	ND	L	0.38	ND		0.38
Trichloroethene	5	ND	 	0.38	ND	-	0.24	ND -		0.22	UND DND	-	0.24	ND ND		0.15	ND	ļ	0.24	ND		0.24
Vinyl chloride	2	ND		0.54	ND		0.54	ND		0.31	ND ND		0.38	ND		0.28	ND	<u> </u>	0.38	ND		0.38
Total VOC TICs	NS	NA NA	 	V.5-	NA NA		0.34	NU -		0.71	NA NA		0.54	ND		0.65	ND	 	0,54	ND		0.54
Notes and Abbreviations:	•	<u> </u>		ч——		Щ.		_ <u>`</u> _	<u> </u>	L	L. NA		1	ND			NA	<u> </u>		NA .		1

Notes and Abbreviations:

AWQSGV = Ambient Groundwater Standards and Guidance Values

UG/L = Micrograms per Liter

TiCs= Tenatively identified compounds

ND = Not Detected

NS = No Standard NA= Not analyzed

Qual = Laboratory Qualifer

Conc = Concentration

B = Analyte was detected in the associated method blank,
J = The estimated concentration was detected below the MDL, but above the laboratory's reporting limits.

MDL = Method Detection Limit

1) Two groundwater samples were collected at Removal Areas/Trenches B.C.E.I.K and L. The second grounwater sample collected at these Removal Areas/Trenches was collected either because the Removal Area/Trench was bacfilled sooner than planned or to ensure that the on-site treatment system would be effective.

2) Concentration exceeding the AGWSGV are shown in bold font and are in highlighted cells.

ANALYTICAL RESULTS-VOCS SUMMARY OF GROUND REMOVAL INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A)

HHMT-PORT IVORY FACILITY

Sample ID Lab ID	New York		REA E-W			AREA F-W			AREA G-V			AREA H-V			AREA I-W			AREA I-W(AREA J -W	
Date Collected		1 1	C24506-0	J2	_ A	C24256-0	01) A	C24190-00)5	_ A	C24190-0	06	A	C24190-0	02	ļ <i>f</i>	C24506-0	03	≉	AC24830-00	4
	State	1	07/13/06	,		06/26/06			06/23/06			06/23/06			06/23/06			07/13/06			8/2/2006	
Material	AWQSGV	1	Water			Water			Water	100		Water			Water			Water		l	Water	
Units			ug/L	-		ug/L			ug/L			ug/L			ug/L		1	ug/L	*		ug/L	
Volatile Organic Compounds (VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	шы
1.1.1.2-Tetrachioroethane	0.09 Total	ND	 	0.33	ND		0.3	ND		0.33	ND	- Cau	0.33		Qual			Qual			Quai	MDL
1,1,1-Trichlorgethane	5	ND		0.43	ND		0.53	ND		0.43	ND ND		0.33	ND ND		0.33	ND		0.33	ND	└── ′	0.46
1.1.2.2-Tetrachioroethane	5	ND	 	0.37	ND		0.2	ND	-	0.37	ND		0.43			0.43	ND	ļ <u>.</u>	0.43	ND	!	0.33
1.1.2-Trichloroethane	1 1	ND	 	0.25	ND		0.44	ND ND		0.37	ND ND		0.37	ND ND		0.37	ND		0.37	ND	ļ!	0.21
1.1-Dichloroethane	5	ND	 	0.28	ND		0.38	ND		0.28	ND					0.25	ND	<u> </u>	0.25	ND	Ļ'	0.25
1,1-Dichloroethene	5	ND ND	†- 	0.4	ND ND		0.29	ND	-	0.4	ND ND	-	0.28	ND_	<u> </u>	0.28	ND		0.28	ND		0.34
1,2-Dichloroethane	0.6	ND	 	0.42	ND	 	0.29	ND	 	0.42	ND ND	 	0.4	ND ND		0.4	ND	 	0.4	ND	ļ'	0.53
1,2-Dichloropropane	1 1	ND ND	 	0.42	ND	 	0.56	ND		0.42	ND ND		0.42		<u> </u>	0.42	ND		0.42	ND		0.21
2-Butanone	50	ND	 	0.92	20	 	0.84	ND	 	0.92	ND	 	0.48	ND	 	0.48	ND	ļ	0.48	ND	ļ'	0.46
2-Chloroethylvinylether	NS NS	ND	 	0.32	ND		0.52	ND		0.92				ND		0.92	ND	ļ	0.92	ND		0.38
2-Hexanone	50	ND	 	0.58	ND		0.52	ND		0.58	ND ND		0.33	ND		0.33	ND		0.33	ND	<u> </u>	0.26
4-Methyl-2-Pentanone	50	ND	 	0.55	ND		0.00	ND					0.58	ND		0.58	ND		0.58	ND	L'	0.36
Acetone	50	ND	 	2.5	64		2.8	18		0.55	ND		0.55	ND		0.55	ND		0.55	ND	 '	0.17
Acrolein	1 5	ND	+	5.9	ND ND		2.0	ND		2.5	ND	<u> </u>	2.5	ND		2.5	ND	<u> </u>	2.5	ND	<u> </u>	2.7
Acrylonitrile	5	ND	 	0.47	ND		1.1	ND		5.9	ND		5.9	ND		5.9	ND		5.9	ND	 '	1.5
Benzene	 	ND	 	0.47	ND		0.2	ND ND		0.47	ND		0.47	ND	<u> </u>	0.47	ND		0.47	, ND	 '	0.54
Bromodichloromethane	50	ND	 	0.13	ND		0.46	ND		0.15	ND DN		0.15	ND		0.15	ND		0.15	ND	L'	0.25
Bromoform	50	ND	 	0.36	ND		0.39	ND		0.36			0.2	ND		0.2	ND		0.2	ND		0.33
Bromomethane	5	ND	 	0.61	ND		0.43	ND		0.50	ND		0.36	ND		0.36	ND		0.36	ND	 '	0.29
Carbon disulfide	50	ND	 	0.62	ND		0.18	ND		0.62	ND		0.61	ND	ļ	0.61	ND		0.61	ND	 	0.23
Carbon tetrachloride	5	ND		0.44	ND		0.18	ND		0.62	ND DN		0.62	ND	ļ	0.62	ND		0.62	ND		0.23
Chlorobenzene	5	ND ND		0.29	ND		0.089	ND	 	0.29	ND		0.44	ND		0.44	ND		0.44	ND	Ļ'	0.44
Chloroethane	5	ND		0.6	ND		0.66	ND	 	0.6	ND		0.29	ND ND		0.29	ND	<u> </u>	0.29	ND	 	0.21
Chloroform	7	ND	†	0.24	ND		0.93	ND	 	0.24	ND		0.24	ND		0.6	ND ND		0.6	ND	 	0.22
Chloromethane	NS	ND	1	0.64	ND		0.74	ND		0.64	ND		0.64	ND		0.24	ND ND		0.24	ND	├ ──	0.42
Cis-1,2-Dichloroethene	5	NO	1	0.42	ND	_	0.47	ND		0.42	- RD		0.42	ND	├──				0.64	ND	 	0.51
Cis-1,3-Dichloropropene	NS	ND	 	0.45	ND		0.26	ND		0.42	ND		0.42	ND	<u> </u>	0.42	ND ND		0.42	ND	├	0.31
Dibromochloromethane	50	ND	 	0.39	ND		0.34	ND		0.39	ND	 	0.39	ND		0.45	ND	 	0.45	ND	 	0.2
Ethylbenzene	5	ND	1	0.67	ND		0.53	ND		0.67	ND	 	0.59	ND	 	0.39	ND ND	 	0.39	ND	├ '	0.2
M&p-Xylenes	5	ND	1	0.71	ND		0.5	ND	 	0.71	ND	 -	0.07	ND	 -	0.67	ND ND		0.67	ND_	├	0.4
Methylene chloride	5	ND		0.91	ND	—	0.97	ND	t	0.71	ND	 	0.71	ND	 	0.71	ND ND	 -	0.71	ND	├ ─	0.36
O-Xylene	5	ND	1	0.45	ND		0.11	ND	 	0.45	ND		0.45	ND	 	0.45	ND ND	 	0.91	ND	├	0.47
Styrene	5	ND	1	0.37	ND		0.27	ND		0.37	ND		0.37	ND	 	0.45	ND ND		0.45	ND ND	├ ──	0.16
Tetrachloroethene	5	ND	1	0.35	ND	_	0.5	ND		0.35	ND	-	0.35	ND	 	0.37	ND ND	 			 	0.18
Toluene	5	ND	1	0.31	1		0.32	ND		0.33	ND		0.33	ND	 	0.35	ND ND		0.35	ND		0.24
Trans-1,2-Dichloroethene	5	ND	t —	0.44	ND	—	0.38	ND	 	0.44	ND		0.44	ND	 	0.44	ND ND	 	0.31	ND	├	0.18
Trans-1,3-Dichloropropene	NS	ND	1	0.22	ND		0.24	ND		0.22	ND		0.44	ND		0.44	ND ND	-	0.44	ND ND	├ ───	0.4
Trichloroethene	5	ND	t —	0.31	ND		0.38	ND	-	0.31	ND		0.22	ND ND	 	0.22	ND	\vdash	0.22	ND		0.15
Vinyl chloride	2	ND	1	0.71	ND		0.54	ND		0.71	ND ND		0.71	ND ND		0.31	ND ND	-	0.31	ND ND	├	0.28
Total VOC TICs	NS	ND	1	· · · · · · · · · · · · · · · · ·	NA			NA.		- 	NA NA	 	0.71	NA NA		0.71	ND ND		0./1	ND NA		0.65
Notes and Abbreviations:								110	1		147		Щ.,	L INA	L	Щ	שיי			NA NA		·

Notes and Abbreviations:

AWQSGV = Ambient Groundwater Standards and Guidance Values

UG/L = Micrograms per Liter

TtCs= Tenatively identified compounds

ND = Not Detected

NS ≃ No Standard NA= Not analyzed

Qual = Laboratory Qualifer

Conc = Concentration

B = Analyte was detected in the associated method blank.

J = The estimated concentration was detected below the MDL, but above the laboratory's reporting limits.

MDL = Method Detection Limit

1) Two groundwater samples were collected at Removal Areas/Trenches B.C.E.I.K and L. The second grounwater sample collected at these Removal Areas/Trenches was collected either because the Removal Area/Trench was bacfilled sooner than planned or to ensure that the on-site treatment system would be effective.

Concentration exceeding the AGWSGV are shown in bold font and are in highlighted cells.

SUMMARY OF GROUND ANALYTICAL RESULTS-VOCs REMOVAL AREAS/TRENCHES INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A)

HHMT-PORT IVORY FACILITY

Sample ID Lab ID	Name	AREA K - W AC24830-003				AREA K-W		·	AREA L-W			AREA L-W	
	New York	1 1)3	,	C25169-00			AC24830-00	06		AC25169-00	02
Date Collected	State	1	8/2/2006		1	8/22/2006			8/2/2006		i	8/22/2006	
Material	AWQSGV	1	Water			Water]	Water		ļ	Water	
Units			ug/L			ug/L		İ	ug/L		1	ug/L	
Volatile Organic Compounds (VOCs)													
		Conc	Qual	MDL.	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL.
1.1.1.2-Tetrachloroethane	0.09 Total	ND		0.38	ND		0.33	ND		0.46	ND		0.33
1,1,1-Trichloroethane	5	ND		0.4	ND		0.43	ND		0.33	ND	L	0.43
1,1,2,2-Tetrachloroethane	. 5	ND		0.25	ND		0.37	ND		0.21	ND		0.37
1,1,2-Trichloroethane	1	ND	L	0.34	ND		0.25	ND		0.25	ND		0.25
1,1-Dichloroethane	5	ND		0.39	ND		0.28	. ND		0.34	ND		0.28
1,1-Dichloroethene	5	ND	L	0.39	ND		0.4	ND		0.53	ND		0.4
1.2-Dichloroethane	0.6	ND		0.49	ND		0.42	ND	l	0.21	ND		0.42
1,2-Dichloropropane	1	ND	L	0.5	ND		0.48	ND		0.46	ND		0.48
2-Butanone	50	ND ND		1.7	ND		0.92	ND		0.38	ND	i	0.92
2-Chloroethylvinylether	NS	ND		0.44	ND		0.33	ND		0.26	ND		0.33
2-Hexanone	50	ND	Ĭ	1.4	ND		0.58	ND		0.36	ND		0.58
4-Methyl-2-Pentanone	50	ND		0.21	ND		0.55	ND		0.17	ND		0.55
Acetone	50	ND		5.6	ND		2.5	ND		2.7	ND		2.5
Acrolein	5	ND		6	ND		5.9	ND		1.5	ND		5.9
Acrylonitrile	5	ND		1.6	ND		0.47	ND		0.54	ND		0.47
Benzene	1	ND		0.14	ND		0.15	ND		0.25	ND	l	0.15
Bromodichloromethane	50	ND		0.33	ND		0.2	ND		0.33	ND	-	0.2
Bromoform -	50	ND		0.62	ND		0.36	ND		0.29	ND		0.38
Bromomethane	5	ND		0.87	ND		0.61	ND		0.23	ND	· · · · ·	0.61
Carbon disulfide	50	ND		0.2	ND		0.62	ND		0.23	ND		0.62
Carbon tetrachloride	5	ND		0.53	ND		0.44	ND		0.44	ND ND		0.02
Chlorobenzene	5	ND		0.17	ND		0.29	ND		0.21	ND		0.29
Chloroethane	5	ND		0.42	ND		0.6	ND		0.22	ND		0.6
Chloroform	7	ND		0.4	ND	-	0.24	ND		0.42	ND		0.24
Chloromethane	NS	ND		0.65	ND		0.64	ND		0.51	ND ND		0.64
Cis-1,2-Dichloroethene	5	ND	i	0.34	ND		0.42	ND		0.31	ND		0.42
Cis-1,3-Dichloropropene	NS	ND		0.34	ND		0.45	ND		0.2	ND		0.42
Dibromochloromethane	50	ND		0.49	ND		0.39	ND		0.2	ND		0.45
Ethylbenzene	5	ND	l	0.31	ND		0.67	ND	 	0.4	ND ND	-	0.39
M&p-Xylenes	5	ND		0.49	ND		0.71	ND	 	0.36	ND ND		0.67
Methylene chloride	5	ND ND		1.2	1.7	В	0.71	ND ND		0.47	ND ND	 	
O-Xylene	5	ND	l —	0.21	ND		0.45	ND		0.47	ND ND	 	0.91
Styrene	5	ND	 	0.21	ND		0.43	ND ND	 	0.16	ND ND		0.45
Tetrachloroethene	5	ND	 	0.46	ND		0.37	ND ND		0.18	ND ND	-	0.37
Toluene	5	ND ND		0.21	ND		0.33	ND ND		0.24		-	0.35
Trans-1,2-Dichloroethene	5	ND		1.4	ND ND	· ·	0.31	ND ND			ND	L	0.31
Trans-1,3-Dichloropropene	NS NS	ND ND	 	0.51	ND ND		0.44	ND ND		0.4	ND	-	0.44
Trichloroethene	5	ND	 	0.76	ND	-	0.22	ND ND		0.15	ND		0.22
Vinvi chloride	2 -	ND		0.48	ND ND	ļ				0.28	ND		0.31
Total VOC TICs	NS NS	NA NA	-	U.40	148.7	J	0.71	ND NA		0.65	ND ND		0,71

AWQSGV = Ambient Groundwater Standards and Guidance Values

UG/L = Micrograms per Liter

TICs= Tenatively identified compounds

ND = Not Detected

NS ≃ No Standard

NA= Not analyzed Qual = Laboratory Qualifer

Conc = Concentration

B = Analyte was detected in the associated method blank. J = The estimated concentrartion was detected below the MDL, but above the laboratory's reporting limits.

MDL = Method Detection Limit

 Two groundwater samples were collected at Removal Areas/Trenches R.C.E.I.K and L. The second grounwater sample collected at these Removal Areas/Trenches was collected either because the Removal Area/Trench was bacfilled sooner than planned or to ensure that the on-site treatment system would be effective.

2) Concentration exceeding the AGWSGV are shown in bold font and are in highlighted cells.

TABLE 1B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS REMOVAL AREAS/TRENCHES

INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

		n	NW I-POI	(I IVOK)	FACILIT								
Sample ID			AREA A-W			AREA B-W			REA B-W(AREA C-V	
Lab ID	New York	AC24354-001 06/29/06 Water			\ ∧	C24256-00	04	Α.	C24506-00)1) A	C24297-0	03
Pate Collected	State					06/27/06		l	7/13/06		ľ	06/28/06	
daterial	AWQSGV					Water		İ	Water		l	Water	
Units			ug/L		ļ	ug/L			ug/L			ug/L	
					l			i					
				TIME:	ļ <u>. </u>	- A - I		-0		D/B)			- 1751
SemiVolatile Organic Compounds		Conc	Qual	MDE	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,2,4-Trichlorobenzene	5	ND		0.48	ND		0.48	ND	ļ	0.46	ND		0.48
1,2-Dichlorobenzene	3	ND		0.57	ND		0.57	ND		0.57	ND		0.57
1,2-Diphenythydrazine	NS NS	ND		0.14	ND	<u> </u>	0.14	ND	\vdash	0.14	ND		0.14
1,3-Dichlorobenzene	33	ND		0.7	ND		0.7	ND	<u> </u>	0.7	ND		0.7
1,4-Dichlorobenzene	3	ND.		0.75	ND	ļ	0.75	ND		0.75	ND		0.75
2,4,5-Trichlorophenol	1*	ND		1.9	ND		1.9	ND	ļl	1.9	ND		1.9
2,4,6-Trichlorophenol	1°	ND		0.88	ND		0.88	ND		0.88	ND		0.88
2,4-Dichlorophenol	1**	ND		1.3	ND		1.3	ND		1.3	ND		1.3
2,4-Dimethylphenol	1**	ND		2	ND		2	ND		2	ND		2
2,4-Dinitrophenol	1.	ND		0.63	ND		0.63	ND		0.63	ND		0.63
2,4-Dinitrotoluene	5	ND		0.36	ND	<u> </u>	0.36	ND		0.36	ND		0.36
2,6-Dinitrotoluene	55	ND		0.33	ND		0.33	ND		0.33	ND		0.33
2-Chloronaphthalene	10	ND		0.41	ND		0.41	ND	└	0.41	ND		0.41
2-Chlorophenol	1	ND		1.5	ND		1.5	ND	ļ	1.5	ND		1.5
2-Methylnaphthalene	NS	ND	l	3.5	780		3.5	ND		3.5	ND		3.5
2-Methylphenol	1*	ND	l	3.9	ND		3.9	ND		3.9	ND		3.9
2-Nitroaniline	5	ND		1.7	ND		1.7	ND	└ ──Ј	1.7	ND		1.7
2-Nitrophenol	1*	ND		0.81	ND	L	0.81	ND		0.81	ND		0.81
3&4-Methylphenol	1*	ND		4.1	ND		4.1	ND	┷	4.1	ND		4.1
3,3'-Dichlorobenzidine	5	ND		0.8	ND		0.8	ND	igsquare	0.8	ND		0.8
3-Nitroaniline	5	ND		2.6	ND	<u></u>	2.6	ND	Ļ	2.6	ND		2.6
4,6-Dinitro-2-methylphenol	1	ND		0.81	ND		0.81	ND		0.81	_ ND		0.81
4-Bromophenyl-phenylether	NS	ND		0.53	ND_		0.53	ND		0.53	ND		0.53
4-Chloro-3-methylphenol	1*	מא		1.1	ND		1.1	ND		1.1	ND		1.1
4-Chloroaniline	5	ND .	L	3	ND_		3	ND		3	ND		3
4-Chlorophenyl-phenylether	1*	ND		0,38	ND		0.38	ND	igsquare	0.38	ND	,	0.38
4-Nitroaniline	5	ND		1.6	ND		1.6	ND		1.6	ND		1.6
4-Nitrophenol	1*	ND		1.1	ND		1.1	ND		1.1	ND		1.1
Acenaphthene	20	ND		0.25	210_		0.25	ND		0.25	ND		0.25
Acenaphthylene	20	ND		0.24	ND		0.24	ND		0.24	ND		0.24
Anthracene	50	ND		0.19	130		0.19	ND	ļ	0.19	ND		0.19
Benzidine	5	ND		8.6	ND		8.6	ND	1	8.6	ND		8.6
Benzo[a]anthracene	0.002	ND		0.22	ND		0.22	ND		0.22	ND		0.22
Benzo[a]pyrene	0.002	ND		0.16	ND		0.16	ND		0.16	ND		0.16
Benzo[b]fluoranthene	0.002	ND		0.21	ND	l	0.21	ND	ļJ	0.21	ND		0.21
Benzo[g,h,i]perylene	5	ND		0.29	ND		0.29	ND	LI	0.29	ND		0.29
Benzo[k]fluoranthene	0.002	ND		0.31	ND		0.31	ND		0.31	ND		0.31
Bis(2-Chloroethoxy)methane	5	ND		0.19	ND		0.19	ND		0.19	ND		0.19
Bis(2-Chloroethyl)Ether	11	ND		0.43	ND_		0.43	ND	ļl	0.43	ND		0.43
bis(2-Chloroisopropyl)ether	NS	ND		0.23	ND		0.23	ND	└	0.23	ND		0.23
Bis(2-Ethylhexyl)phthalate	5	ND		0.37	ND_		0.37	1.5	L	0.37	ND		0.37
Butylbenzylphthalate	50	ND		0.23	ND		0.23	ND		0.23	ND ND		0.23
Carbazole	NS	ND		0.16	ND		0.16	ND	 	0.16	ND		0.16
Chrysene	0.002	ND		0.19	ND		0.19	ND.	 	0.19	ND		0.19
Dibenzo[a,h]Anthracene	50	ND		0.25	ND		0.25	ND		0.32	ND		0.25
Dibenzofuran	5	ND		1.6	ND		1.6	ND	 	0.19	ND		1.6
Diethylphthalate	50	ND		0.28	ND		0.28	ND		0.25	ND		0.28
Dimethylphthalate	50	ND		0.18	ND		0,18	ND	ļ	1.6	ND		0.18
Di-n-butylphthalate	50	ND		0.32	ND		0.32	ND		0.28	ND		0.32
DI-n-octylphthalate	50	ND		0.19	ND		0.19	ND	<u></u>	0.18	ND		0.19
Fluoranthene	50	ND		0.15	130		0.15	ND		0.15	ND		0.15
Fluorene	50	ND		0.15	320		0.15	ND		0.15	ND		0.15
Hexachlorobenzene	0.04	ND		0.27	ND		0.27	ND	↓ _i	0.27	ND		0.27
Hexachlorobutadiene	0.5	ND		0.62	ND		0.62	ND		0.62	ND		0.62
Hexachlorocyclopentadiene	5	ND		4.6	ND		4.6	ND.	L	4.6	ND ·		4.6
Hexachloroethane	5	ND		0.68	ND		0.68	ND	[ـــــــا	0.68	ND		0.68
Indeno[1,2,3-cd]pyrene	0.002	ND		0.18	ND		0.18	ND		0.18	ND		0.18
Isophorone	50	ND		0.14	ND		0.14	ND	L	0.14	ND		0.14
Naphthalene	10	ND		0.44	ND		0,44	ND]	0.26	ND		0.44
Nitrobenzene	0.4	ND		0.24	ND		0.24	ND]	8.8	ND		0.24
N-Nitrosodimethylamine	NS	ND		8.8	ND		8.8	ND]	0.15	ND		8.8
N-Nitroso-Di-N-Propylamine	NS	ND		0.26	ND		0.26	ИD		0.44	ВD		0.26
N-Nitrosodiphenylamine	50	ND		0.15	ND		0.15	ND	<u> </u>	0.24	ND		0.15
Pentachlorophenol	1*	ND		0.76	ND		0.76	ND		0.76	ND		0.76
	50	ND		0.23	160		0.23	ND		0.23	ND		0.23
Phenanthrene				4 -			1,5	ND	()	1.5	ND		1.5
Phenantriene Phenol	1*	ВD		1.5	ND								
	1* 50	ND ND NA		0.15	260 NA		0.15	ND 7.8	3	0.15	ND NA		0,15

Notes and Abbreviations:

AWQSGV = Ambient Water Quality Standards and Guidance Values

UG/L = Micrograms per Liter

ND = Not Detected

J = The estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

TICs = Tentatively identified Compounds
NA = Not analyzed
NS = No standard or guidance value
Qual = Laboratory Qualifier
Conc = Concentration

MDL = Method Detection Limit

MDL = Method Detection Limit

1) Concentrations exceeding the AGWSGV are provided in bold

font and are in highlighed cells.

Two groundwater samples were collected at Removal Areas/Trenches

C.E.I.K. and L. The second sample collected at the Removal Areas Trenches

was collected either because the Removal Area/Trench was bacfilled sooner
than planned or to ensure that the on-site treatment system would be effective.

3) Higher SVOC concentrations detected in sample Area B-W collected on

6/27/06 was potentially associated with LNAPL present on groundwater.

TABLE 1B

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS REMOVAL AREAS/TRENCHES

INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

			HMT-POI	VI IVOKI	FACILIT	<u> </u>							
Sample ID Lab ID Pate Collected	New York State		AREA C-W AC25432-00 08/31/06			AREA D-W C24256-00 06/23/06			AREA E -W C24256-00 06/26/06			C24506-01 07/13/06	02
Aatenal Units	AWQSGV	Water ug/L Conc Quel MDL				Water ug/L			Water ug/L			Water ug/L	
SemiVolatile Organic Compounds		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL	Conc	Qual	MDL
1,2,4-Trichlorobenzene	5	ND		0.48	ND		0.48	ND		0.48	ND		0.48
1,2-Dichlorobenzene	33	ND_		0.57	ND		0.57	ND		0.57	ND	<u> </u>	0.57
1,2-Diphenylhydrazine	NS	ND_		0.14	ND		0.14	ND		0.14	ND		0.14
1,3-Dichlorobenzene	3	ND_		0.7	ND		0.7	ND		0.7	ND ND	<u> </u>	0.7
1.4-Dichlorobenzene	3 1*	ND D		0.75 1.9	ND ND		0.75 1.9	ND ND		0.75 1.9	ND		0.75
2,4,5-Trichlorophenol	i•	ND	 -	0.88	ND		0.88	ND	<u> </u>	0.88	ND		0.88
2,4-Dichlorophenol	1**	ND		1.3	ND		1.3	ND		1.3	ND		1.3
2,4-Dimethylphenol	1**	ND		2	ND		2	ND		2	ND		2
2,4-Dinitrophenol	1*	ND		0.63	ND		0.63	ND		0.63	ND		0.63
2,4-Dinitrotoluene	. 5	ND		0.36	ND		0.36	ND		0.36	ND		0.36
2,6-Dinitrotoluene	5	ND		0.33	ND		0.33	ND		0.33	ND	L	0.33
2-Chloronaphthalene	10	ND_		0.41	ND		0.41	ND ND		0.41	ND ND		0.41
2-Chlorophenol		ND ND		1.5 3.5	ND 1.3	J	1.5 3.5	ND		1.5 3.5	ND	<u> </u>	1.5 3.5
2-Methylnaphthalene	NS 1*	ND ON	ļ	3.9	ND ND		3.9	ND		3.9	ND		3.9
2-Methylphenol 2-Nitroaniline	5	ND		1.7	ND		1.7	ND		1.7	ND		1.7
2-Nitrophenol	1*	ND		0.81	ND		0.81	ND		0.81	ND		0.81
3&4-Methylphenol	1.	ND		4,1	ND		4.1	ND		4.1	ND		4.1
3,3'-Dichlorobenzidine	5	ND		0.8	ND		0.8	ND		0.8	ND		0.8
3-Nitroaniline	5	ND		2.6	ND		2.6	ND		2.6	ND		2.6
4,6-Dinitro-2-methylphenol	1	ND		0.81	ND		0.81	ND		0.81	ND		0.81
4-Bromophenyl-phenylether	NS	ND_		0.53	ND		0.53	ND.		0.53	ND		0.53
4-Chloro-3-methylphenol	1*	ND_	 	1.1	ND ND		1.1	ND ND		1.1	ND ND		1.1
4-Chloroaniline	5	ND ND		0.38	ND ND		0.38	- ND	\vdash	0.38	ND		0.38
4-Chlorophenyl-phenylether	1* 5	ND -		1.6	ND		1.6	ND		1.6	ND		1.6
4-Nitroaniline 4-Nitrophenol	1*	ND		1,1	ND		1.1	ND		1.1	ND		1.1
Acenaphthene	20	ND		0.25	ND		0.25	ND		0.25	ND		0.25
Acenaphthylene	20	ND		0.24	ND		0.24	ND		0.24	ND		0.24
Anthracene	50	ND		0.19	ND		0.19	ND		0.19	ND		0.19
Benzidine	5	ND		8.6	ND		8.6	ND		8.6	ND		8.6
Benzojajanthracene	0.002	ND		0.22	ND		0.22	ND		0.22	ND		0.22
Benzo(a)pyrene	0.002	ND		0.16	ND		0.16	ND ND		0.16 0.21	ND ND		0.16
Benzo(b)fluoranthene	0.002	ND ND	<u> </u>	0.21	ND ND		0.21 0.29	ND		0.29	ND		0.21
Benzo[g,h,i]perylene	5 0.002	ND ND		0.25	ND		0.31	ND		0.31	ND		0.31
Benzo[k]fluoranthene Bis(2-Chloroethoxy)methane	5	ND		0.19	ND		0.19	ND		0.19	ND		0.19
Bis(2-Chloroethyl)Ether	1	ND		0.43	ND		0.43	ND		0.43	ND		0.43
Bis(2-Chloroisopropyl)ether	NS	ND		0.23	ND		0.23	ND		0.23	ND		0.23
Bis(2-Ethylhexyl)phthalate	5	ND		0.37	ND		0.37	ND		0.37	1.4		0.37
Butylbenzylphthalate	50	ND		0.23	ND		0.23	ND		0.23	ND		0.23
Carbazole	NS	ND		0.16	ND		0.16	ND_		0.16	ND.		0.16
Chrysene	0.002	ND		0.19	ND		0.19 0.25	ND ND		0.19 0.25	ND ND		0.19
Dibenzo[a,h]Anthracene	50 5	ND ND	ļ	0.25 1.6	ND ND		1.6	ND		1,6	ND		0.19
Dibenzofuran Diethylphthalate	50	ND		0.28	ND		0.28	ND		0.28	ND		0.25
Dimethylphthalate	50	ND		0.18	ND		0.18	ND		0.18	ND		1.6
Di-n-butylphthalate	50	ND		0.32	ND		0.32	ND		0.32	ND		0.28
Di-n-octylphthalate	50	ND		0.19	ND		0.19	ND		0.19	ND		0.18
Fluoranthene	50	ND		0.15	ND		0.15	ND		0.15	ND		0.15
Fluorene	50	ND_		0.15	ND		0.15	ND		0.15	ND		0.15
Hexachlorobenzene	0.04	ND_		0.27	ND		0.27	ND		0.27	ND ND		0.27
Hexachlorobutadiene	0.5 5	ND _	 	0.62 4.6	ND ND		0.62 4.6	ND		4.6	ND		4.6
Hexachlorocyclopentadiene	5	ND -		0.68	ND		0.68	ND		0.68	ND		0.68
Hexachloroethane Indeno[1,2,3-cd]pyrene	0.002	ND ND		0.18	ND		0.18	ND		0.18	ND		0.18
Isophorone	50	ND		0.14	ND		0.14	ND		0.14	ND		0.14
Naphthalene	10	ND		0.44	ND		0.44	ND		0.44	ND		0.26
Nitrobenzene	0.4	ND		0.24	ND		0.24	ND		0.24	ND		8.8
N-Nitrosodimethylamine	NS	ND		8.8	ND		8.8	ND		8.8	ND		0.15
N-Nitroso-Di-N-Propylamine	NS	ND	ļ	0.26	ND		0.26	ND		0.26	ND ND		0.44
N-Nitrosodiphenylamine	50	ND	ļi	0.15	ND ND		0.15	ND ND	-	0.15 0.76	ND ND		0.24
Pentachtorophenol	1*	ND		0.76	ND		0.76 0.23	ND ND		0.76	ND		0.76
Phenanthrene	50	ND ND	\vdash	0.23 1.5	ND ND		1.5	ND		1.5	ND		1.5
Phenol Pyrene	50	ND -		0.15	ND		0.15	ND		0.15	ND		0.15
								י טא ו					

Notes and Abbreviations; AWQSGV = Ambient Water Quality Standards and Guidance Values UG/L = Micrograms per Liter ND = Not Detected

ND = Not Detected.

J = The estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.
TICs = Tentatively Identified Compounds
NA = Not analyzed

NS = No standard or guidance value
Quat = Laboratory Qualifier
Conc = Concentration
MDL = Method Detection Limit

Concentrations exceeding the AGWSGV are provided in bold font and are in highlighted cells.

Two groundwater samples were collected at Removal Areas/Trenches

C.E.I.K. and L. The second sample collected at the Removal Areas Trenches

was collected either because the Removal Area/Trench was bacfilled sooner
than planned or to ensure that the on-site treatment system would be effective. 3) Higher SVOC concentrations detected in sample Area B-W collected on 6/27/06 was potentially associated with LNAPL present on groundwater.

TABLE 1B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS REMOVAL AREAS/TRENCHES

INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

					FACILIT				4 D F 4 17 11			105111	
Sample ID	Nav Vot		AREA F V			AREA G-W .C24180-00			AREA H-W .C24190-00			AREA I-W C24190-0	
Lab ID	New York	1 "		J1	1 ^	06/23/06	13] "	06/23/06	<i>S</i> C	,	06/23/06	UZ
Pate Collected	State	1	06/26/06		l			1					
Material	AWQSGV		Water			Water			Water			Water	
Units		ļ	ug/L		l	ug/L			ug/L			ug/L	
·		1											
SemiVolatile Organic Compounds	 	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MD
1,2,4-Trichlorobenzene	5	ND		0.48	ND		4.8	ND		2.4	ND	I	3.2
1.2-Dichlorobenzene	3	ND		0.57	ND		5.7	ND		2.9	ND		3.8
1,2-Diphenylhydrazine	NS	ND		0.14	Ø		1.4	ND		89,0	ND		0.9
1,3-Dichlorobenzene	3	ND		0.7	ND		7	ND		3.5	ND		4.7
1,4-Dichlorobenzene	3	ND		0.75	ND		7.5	ND		3.8	ND		5
2,4,5-Trichlorophenol	1*	ND		1.9	ND		19	ND		9.5	ND		13
2,4,6-Trichlorophenol	1.	ND		0.88	ND		8.8	ND		4.4	ND		5.8
2,4-Dichlorophenol	1**	ND		1.3	ND		13	ND		6.3	ND		8.3
2,4-Dimethylphenol	1**	ND		2	ND		20	ND		9.9	ND		13
2,4-Dinitrophenol	1.	ND		0.63	ND		6.3	ND		3.2	ND		4.2
2.4-Dinitrotoluene	5	ND		0.36	ND		3.6	ND		1.8	ND		2.4
2,6-Dinitrotoluene	5	ND		0.33	ND		3.3	ND		1.7	ND		2.2
2-Chloronaphthalene	10	ND		0.41	ND		4.1	ND		2	ND	I .	2.7
2-Chlorophenol	1	ND		1.5	ND		15	ND		7.3	ND		9.8
2-Methylnaphthalene	NS	20		3.5	ND		35	500		17	99		23
2-Methylphenol	1*	ND		3.9	ND		39	ND		19	ND		26
2-Nitroaniline	5	ND		1.7	ND		17	ND		8.3	ND		11
2-Nitrophenol	1.	ND		0.81	ND		8.1	ND		4	ND		5.4
3&4-Methylphenol	1*	ND		4.1	ND		41	ND		20	ND		27
3,3'-Dichlorobenzidine	5	ND		0.8	ND		8	ND		4	ND		5.3
3-Nitroaniline	5	ND		2.6	ND		26	ND		13	ND		17
4,6-Dinitro-2-methylphenol	1	ND		0.81	ND		8.1	ND		4.1	ND		5.4
4-Bromophenyl-phenylether	NS	ND		0.53	ND		5.3	ND		2.6	ND		3.5
4-Chloro-3-methylphenol	1.	ND		1.1	ND		11	ND		5.5	ND		7.3
4-Chloroaniline	5	ND		3	ND		30	ND		15	ND		20
4-Chlorophenyl-phenylether	1*	ND		0.38	ND		3.8	ND		1.9	ND		2.5
4-Nitroaniline	5	ND		1.6	ND		16	ND		7.8	ND		10
4-Nitrophenol	1*	ND		1,1	ND		11	ND		5.4	ND	i	7.2
Acenaphthene	20	3.4		0.25	27		2.5	33		1.3	46		1.7
Acenaphthylene	20	ND		0.24	ND		2.4	ND		1.2	ND		1.6
Anthracene	50	ND		0.19	14		1.9	21		0.93	25	l ———	1.2
Benzidine	5	ND		8.6	ND		86	ND		43	ND		57
Benzo[a]anthracene	0.002	ND		0.22	ND		2.2	ND		1.1	ND		1.5
Benzo[a]pyrene	0.002	ND		0.16	ND		1.6	ND		0.81	ND	l	1.1
Benzo[b]fluoranthene	0.002	ND		0.21	ND		2.1	ND		1.1	ND		1.4
Benzo(g,h,i)perylene	5	ND		0.29	ND		2.9	ND		1.4	ND		1.9
Benzo[k]fluoranthene	0.002	ND		0.31	ND		3.1	ND		1.6	ND		2.1
Bis(2-Chloroethoxy)methane	5	ND		0.19	ND		1.9	ND		0.94	ND		1.3
Bis(2-Chloroethyl)Ether	1	ND		0.43	ND		4.3	ND		2.1	ND		2.9
Bis(2-Chloroisopropyl)ether	NS	ND		0.23	ND		2.3	ND		1.1	ND		1.5
Bis(2-Ethylhexyl)phthalate	5	ND		0.37	ND		3.7	ND		1.9	ND		2.5
Butylbenzylphthalate	50	ND		0.23	ND		2.3	ND		1.2	ND		1.5
Carbazole	NS	ND		0.16	ND		1.6	ND		0.82	ND		1.1
Chrysene	0.002	ND		0.19	ND		1.9	ND		0.94	ND		1,3
Dibenzo[a,h]Anthracene	50	ND	l	0.25	ND		2.5	ND		1.2	ND		1.7
Dibenzofuran	5	3.5	l	1.6	ND		16	ND		7.8	Ď		10
Diethylphthalate	50	ND		0.28	ND		2.8	ND		1.4	ND		1.9
Dimethylphthalate	50	ND		0.18	ND		1.8	ND		0.88	ND		1.2
Di-n-butylphthalate	50	ND		0.32	ND		3.2	ND		1.6	ND		2.1
Di-n-octylphthalate	50	ND		0.19	ND		1.9	ND		0.95	ND		1.3
Fluoranthene	50	ND		0.15	ND		1.5	ND		0.77	ND		1
Fluorene	50	7.9		0.15	45		1.5	66		0.75	90		0.9
Hexachlorobenzene	0.04	ND	<u>-</u>	0.27	ND		2.7	ND		1.4	ND		1,8
Hexachlorobutadiene	0.5	ND		0.62	ND		6.2	ND		3.1	ND		4.2
Hexachlorocyclopentadiene	5	ND		4.6	ND		46	ND		23	ND		31
Hexachloroethane	5	ND		0.68	ND		6.8	ND		3.4	ND		4.5
Indeno[1,2,3-cd]pyrene	0.002	ND		0.18	ND		1.8	ND		0.9	ND		1,2
Isophorone	50	ND		0.14	ND		1.4	ND		0.71	ND		0.9
Naphthalene	10	ND		0.44	ND		4.4	ND		2.2	ND		3
Naphthaiene Nitrobenzene	0.4	ND		0.24	ND	-	2.4	ND		1.2	ND		1.6
N-Nitrosodimethylamine	NS NS	ND		8.8	ND		88	ND		44	ND		58
N-Nitroso-Di-N-Propylamine	NS NS	ND	-	0.26	ND		2.6	ND		1.3	ND		1.7
	50	ND		0.15	ND		1.5	ND		0.77	ND		1
N-Nitrosodiphenylamine Pentachlorophenol	1*	ND	<u> </u>	0.76	ND		7.6	ND		3.8	ND		5.1
Pentachiorophenol Phenanthrene	50	11		0.23	58		2.3	94		1.1	150		1.5
	1*	ND	-	1.5	ND		15	ND		7.3	ND		9.7
Phenoi	50	2.8	 -	0.15	ND		1.5	5.3		0.73	7.4		0.9
Pyrene Total TICs	NS NS	NA		7.14	NA .			NA	_		NA.		

Notes and Abbreviations: AWQSGV = Ambient Water Quality Standards and Guidance Values UG/L = Micrograms per Liter ND = Not Detected

J = The estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.
TICs = Tentatively Identified Compounds
NA = Not analyzed

NS = No standard or guidance value Qual = Laboratory Qualifier

Conc = Concentration

MDL = Method Detection Limit

Concentrations exceeding the AGWSGV are provided in bold font and are in highlighted cells.

font and are in highlighted cells.

Two groundwater samples were collected at Removal Areas/Trenches

C.E.J.K., and L. The second sample collected at the Removal Areas Trenches
was collected either because the Removal Area/Trench was bacfilled sooner
than planned or to ensure that the on-site treatment system would be effective.

3) Higher SVOC concentrations detected in sample Area B-W collected on

6/27/06 was potentially associated with LNAPL present on groundwater.

TABLE 18 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS **REMOVAL AREAS/TRENCHES** INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

		•			Y FACILIT	•							
Sample ID	1	1 /	AREA I-W(2)	1	AREA J-W		T	AREA K-W	,		AREA K-W	2
Lab ID	New York	AC24506-003 07/13/06			C24830-00	1	1	AC24830-00		l	AC25169-00		
Date Collected	State	l '			l '	8/2/2006	•	l '	8/2/2006	,,,	i	8/22/2006	, ı
Material	AWQSGV	i	Water			Water			Water			Water	
Units	,,,,,,,,,,,		ug/L			ug/L		1					
Onits	į.		ug/L		ļ	ug/L		1	ug/L			ug/L	
	•				1						l		
SemiVolatile Organic Compounds	† · · · · · · · · · · · · · · · · · · ·	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,2,4-Trichlorobenzene	5	ND		0.53	ND	<u> </u>	0.51	ND	1	0.53	ND	- Cuur	
1,2-Dichlorobenzene	3	ND		0.64	ND		0.61	ND	 	0.53			0.3
1,2-Dighenylhydrazine	NS	ND		0.15	ND				ļ . .		ND		0.36
1,3-Dichtorobenzene	3	ND				F	0.14	ND		0.15	ND		0.085
				0.78	ND	ł	0.74	ND	ļ	0.78	ND		0.44
1,4-Dichlorobenzene	3	ND		0.84	ND	ļ	0.8	ND	ļ	0.84	ND		0.47
2,4,5-Trichlorophenol	1.	ND		2.1	ND		2	ND	ļ	2.1	ND	<u> </u>	1.2
2,4,6-Trichlorophenol	1.	ND		0.97	ND	ļ	0.93	ND		0.97	ND	i	0.55
2,4-Dichlorophenol	1**	ND		1.4	ND		1.3	ND		1.4	ND		0.78
2,4-Dimethylphenol	1**	ND		2.2	ND		2.1	ND	L	2.2	ND		1.2
2,4-Dinitrophenol	. 1°	ND ND		0.7	ND		0.67	ND		0.7	ND		0.4
2,4-Dinitrotoluene	5	ND	l	0.4	ND		0.39	ND		0.4	ND		0.23
2,6-Dinitrotoluene	5	ND	l	0.37	ND		0.35	ND	1	0.37	ND		0.21
2-Chloronaphthalene	10	ND		0.45	ND		0.43	ND		0.45	ND		0.25
2-Chlorophenol	1	ND		1.6	ND		1.6	ND		1.6	ND		0.92
2-Methylnaphthalene	NS	ND		3.9	17		3.7	3.1	J	3.9	27		2.2
2-Methylphenol	1*	ND		4.3	ND		4.1	ND	1 - <u> </u>	4.3	ND		2.4
2-Nitroaniline	5	ND		1.8	ND	 	1.8	ND	t	1.8	ND		1
2-Nitrophenol	1*	ND		0.9	ND		0.86	ND	 	0.9	ND	L	
3&4-Methylphenol	1*	ND	·	4.6	ND		4.4	ND					0.51
3.3'-Dichlorobenzidine	5	ND		0.89	ND ND		0.85		 -	4.6	ND	L	2.6
3-Nitroaniline		ND						ND	-	0.89	ND		0.5
4.6-Dinitro-2-methylphenol	5			2.9	ND		2.8	ND	—	2.9	ND		1.6
	1 NS	ND		0.9	ND		0.86	ND	ļ	0.9	ND		0.51
4-Bromophenyl-phenylether	NS	ND		0.58	ND		0.56	ND		0.58	ND		0.33
4-Chloro-3-methylphenol	1*	ND.		1.2	ND		1.2	ND		1.2	ND		0.69
4-Chloroaniline	5	ND		3.4	ND		3.2	ND		3.4	ND		1.9
4-Chlorophenyl-phenylether	1*	ND		0.42	ND		0.4	ND		0.42	ND		0.24
4-Nitroaniline	5	ND		1.7	ND		1.7	ND		1.7	ND		0.97
4-Nitrophenol	11*	ND		1.2	ND		1.2	ND		1.2	ND		0.68
Acenaphthene	20	ND		0.28	1.4		0.27	ND		0.28	2.6		0.16
Acenaphthylene	20	ND		0.27	ND		0.26	ND		0.27	ND		0.15
Anthracene	50	2		0.21	ND		0.2	ND		0.21	1		0.12
Benzidine	5	ND		9.6	ND		9.2	ND		9.6	ND		5.4
Benzo[a]anthracene	0.002	ND		0.25	ND		0.24	ND		0.25	ND		0.14
Benzo[a]pyrene	0.002	ND		0.18	ND		0.17	ND		0.18	ND		0.1
Benzo[b]fluoranthene	0.002	ND		0.24	ND		0.23	ND		0.24	ND		0.13
Benzo[g,h,i]perylene	5	ND	+	0.32	ND		0.31	ND		0.32	ND	\longrightarrow	0.13
Benzo[k]fluoranthene	0.002	ND		0.35	ND		0.34	ND		0.35	ND		
Bis(2-Chloroethoxy)methane	5	ND		0.33	ND		0.34	ND			ND		0.2
	1	ND		0.48	ND.		0.46	ND ND		0.21			0.12
Bis(2-Chloroethyl)Ether	NS	ND								0.48	ND		0.27
Bis(2-Chloroisopropyl)ether				0.25	ND		0.24	ND ND		0.25	ND		0.14
Bis(2-Ethylhexyl)phthalate	5	1.8		0.42	ND		0.4	ND		0.42	ND		0.23
Butylbenzylphthalate	50	ND		0.26	ND		0.25	ND		0.26	ND		0.14
Carbazole	NS	ND		0.18	ND		0.17	ND		0.18	ND		0.1
Chrysene	0.002	ND		0.21	ND		0.2	ND		0.21	ND		0.12
Dibenzo[a,h]Anthracene	50	ND		0.36	ND		0.26	ND		0.28	ND		0.16
Dibenzofuran	5	ND		0.21	1.9		1.7	ND		1.7	ND		0.98
Diethylphthalate	50	ND		0.28	ND		0.3	ND	T	0.32	ND		0.18
Dimethylphthalate	50	ND	I	1.7	ND	T	0.19	ND		0.2	ND		0.11
Di-n-butylphthalate	50	ND		0.32	ND	T.	0.34	ND		0.36	ND		0.2
DI-π-octylphthalate	50	ND		0.2	ND		0.2	ND		0.21	ND		0.12
Fluoranthene	50	ND		0.17	ND		0.16	ND		0.17	ND		0.097
Fluorene	50	ND		0,17	2.9		0.16	ND		0.17	4.1		0.093
Hexachlorobenzene	0.04	ND		0.3	ND		0.29	ND		0.3	ND		0.17
Hexachlorobutadiene	0.5	ND	- 1	0.69	ND		0.66	ND		0.69	ND		0.39
Hexachlorocyclopentadiene	5	ND		5.1	ND		4.9	ND		5.1	ND	- +	2.9
Hexachloroethane	5	ND	-	0.76	ND		0.72	ND		0.76	ND	-+	0.43
Indeno[1,2,3-cd]pyrene	0.002	ND	 	0.2	ND		0.19	ND ND	+	0.78	ND		0.43
Isophorone	50	ND		0.16	ND		0.15	ND		0.16	ND ND		0.088
Naphthalene	10	ND		0.18	ND		0.13	ND		0.16	ND		
		ND											0.28
Nitrobenzene	0.4			9.7	ND		0.25	ND		0.26	ND		0.15
N-Nitrosodimethylamine	NS	ND		0.17	ND		9.3	ND		9.7	ND		5.5
N-Nitroso-Di-N-Propylamine	NS	ND		0.49	ND		0.27	ND		0.28	ND		0.16
N-Nitrosodiphenylamine	50	ND		0.26	ND		0.16	ND		0.17	ND		0.097
Pentachlorophenol	1	ND		0.85	ND		0.81	ND		0.85	ND		0.48
Phenanthrene	50	7.3		0.25	5.3		0.24	ND		0.25	7.5		0.14
Phenol	1*	ND		1.6	ND		1.6	ND	T	1.6	ND		0.91
Pyrene Total TiCs	50 NS	ND 791	- , ,	0.16	ND NA		0.16	ND NA		0.16	ND 773		0.092

Notes and Abbreviations; AWQSGV = Ambient Water Quality Standards and Guidance Values UG/L = Micrograms per Liter ND = Not Detected

ND = Not Detected

J = The estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

TICs = Tentatively Identified Compounds

NA = Not analyzed

NS = No standard or guidance value

Qual = Laboratory Qualifier

Conc = Concentration

MDL = Methol J Detection Limit

MDL = Methc J Detection Limit

J Concentrations exceeding the AGWSGV are provided in bold
font and are in highlighted cells.

Two groundwater samples were collected at Removal Areas/Trenches

C,E,I,K, and L. The second sample collected at the Removal Areas Trenches

was collected either because the Removal Area/Trench was bacfilled sooner
than planned or to ensure that the on-site treatment system would be effective.

3) Higher SVOC concentrations detected in sample Area B-W collected on

6/27/06 was potentially associated with LNAPL present on groundwater.

TABLE 1B SUMMARY OF GROUNDWATER ANALYTICAL RESULTS REMOVAL AREAS/TRENCHES INTERIM REMEDIAL MEASURE SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

		н	HMT-PORT IVOR	Y FACILI	TY	
Sample ID Lab ID Oate Collected Iaterial Units	New York State AWQSGV		AREA L-W C24830-006 8/2/2006 Water ug/L	,	AREA L-W AC25169-0 8/22/2006 Water ug/L	02
SemiVolatile Organic Compounds	· <u></u>	Conc	Qual MDL	Conc	Qual	MDI
1,2,4-Trichlorobenzene	5	ND	0.53	ND	1	0.48
1,2-Dichlorobenzene	3	ND	0.64	ND.	 	0.57
1,2-Diphenylhydrazine	NS	ND	0.15	ND	 	0.14
1,3-Dichlorobenzene	3	ND	0.78	ND		0.7
1,4-Dichlorobenzene	3	ND	0.84	ND		0.75
2,4,5-Trichlorophenol	1*	ND	2.1	ND		1.9
2,4,6-Trichlorophenol	1*	ND	0.97	ND	<u> </u>	0.88
2,4-Dichlorophenol	1**	ND_	1.4	ND	1	1.3
2,4-Dimethylphenol	1.	ND ND	2.2 0.7	ND ND	 	0.63
2,4-Dinitrophenol 2,4-Dinitrotoluene	5	ND D	0.7	ND		0.36
2,6-Dinitrotoluene	5	ND	0.37	ND	 	0.33
2-Chloronaphthalene	10	ND	0.45	ND		0.41
2-Chlorophenol	1	ND	1.6	ND	1	1.5
2-Methylnaphthalene	NS	ND	3.9	ND		3.5
2-Methylphenol	1*	ND	4.3	ND	L	3.9
2-Nitroaniline	5	ND	1.8	ND.		1.7
2-Nitraphenol	1*	ND	0.9	ND	ļ .	0.81
3&4-Methylphenol	<u></u>	ND	4.6	ND		4.1
3,3'-Dichtorobenzidine	5	ND	0.89	ND ND	ļ	0.8
3-Nitroaniline	5	ND ND	2.9	ND ND		2.6
4,6-Dinitro-2-methylphenol	<u> </u>	ND	0.9	ND ND		0.81
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	NS 1*	ND ND	0.58 1.2	ND ND		0.53
4-Chloroaniline	5 .	ND ND	3.4	ND		1,1
4-Chlorophenyl-phenylether	1*	ND	0.42	ND		0.38
I-Nitroaniline	5	ND	1.7	ND		1.6
4-Nitrophenol	1.	ND	1.2	ND		1.1
Acenaphthene	20	1.7	0.28	ND		0.25
Acenaphthylene	20	ND	0.27	ND		0.24
Anthracene	50	ND	0.21	ND		0.19
Benzidine	5	ND	9.6	ND		8.6
Benzo[a]anthracene	0.002	1.3	0.25	ND		0.22
Benzo[a]pyrene	0.002	ND ND	0.18	ND	ļ	0.16
Benzo(b)fluoranthene	0.002	ND ND	0.24	ND ND		0.21
Benzo(g,h,i)perylene	5 0.002	ND ND	0.32 0.35	ND ND		0.29
Benzo[k]fluoranthene Bis(2-Chloroethoxy)methane	5	ND ND	0.33	ND	-	0.31
Bis(2-Chloroethyl)Ether	1	ND	0.48	ND		0.43
Bis(2-Chloroisopropyl)ether	NS	ND ND	0.25	ND		0.23
Bis(2-Ethylhexyl)phthalate	5	ND	0.42	ND		0.37
Butylbenzylphthalate	50	ND	0.26	ND		0.23
Carbazole	NS	ND	0.18	ND		0.16
Chrysene	0.002	ND	0.21	ND		0.19
Dibenzo[a,h]Anthracene	50	ND	0.28	ND		0.25
Dibenzofuran	5	ND	1.7	ND		1.6
Diethylphthalate	50	ND ND	0.32	ND		0.28
Dimethylphthalate	50	ND ND	0.2	ND		0.18
Di-n-butylphthalate	50 50	ND ND	0.36 0.21	ND ND		0.32
0i-n-octylphthalate iuoranthene	50	ND	0.21	ND ND		0.15
luoranthene	50	1.8	0.17	ND		0.15
lexachlorobenzene	0.04	ND ND	0.17	ND		0.27
lexachlorobutadiene	0.5	ND ND	0.69	ND		0,62
lexachlorocyclopentadiene	5	ND	5.1	ND		4.6
lexachloroethane	5	ND	0.76	ND		0.68
ndeno[1,2,3-cd]pyrene	0.002	ND	0.2	ND		0.18
sophorone	50	ND	0.16	ND		0.14
aphthalene	10	ND	0.49	ND		0.44
litrobenzene	0.4	ND	0.26	ND		0.24
-Nitrosodimethylamine	NS	ND	9.7	ND		8.8
I-Nitroso-Di-N-Propylamine	NS 50	ND	0.28	ND		0.26
I-Nitrosodiphenylamine	50 1°	ND ND	0.17	ND ND		0.15 0.76
Pentachlorophenol Phenanthrene	50	1.9	0.85 0.25	ND ND		0.76
Phenol	1°	ND ND	1.6	ND		1.5
Pyrene	50	1.2	0.16	1.2		0.15
otal TICs	NS NS	NA NA	1 0.10	4.5	- J	J. 13

Notes and Abbreviations: AWQSGV = Ambient Water Quality Standards and Guidance Values UG/L = Micrograms per Liter ND = Not Detected

INU = NOT Detected

J = The estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

TICs = Tentatively Identified Compounds

NA = Not analyzed

NS = No appropriate - 1

NS = No standard or guidance value
Qual = Laboratory Qualifier
Conc = Concentration
MDL = Method Detection Limit

Concentrations exceeding the AGWSGV are provided in bold font and are in highlighted cells.

font and are in highlighted cells.
Two groundwater samples were collected at Removal Areas/Trenches
C,E,I,K, and L. The second sample collected at the Removal Areas Trenches
was collected either because the Removal Area/Trench was bacfilled sooner
than planned or to ensure that the on-site treatment system would be effective.
3) Higher SVOC concentrations detected in sample Area B-W collected on
6/27/06 was potentially associated with LNAPL present on groundwater.

SVOCs and VOCs detected in any groundwater sample was only slightly more than 2 milligrams per liter (i.e., 2 parts per million, or approximately 0.0002%). For comparison, activated carbon filtration is generally effective for between 1 and 5% organic matter.

The groundwater treatment methods summarized above were proposed in a July 18, 2006 letter to the NYSDEC. The NYSDEC response letter dated July 20, 2006 approved the proposed treatment and on-site discharge. The equipment and methods used to treat groundwater were in accordance with those proposed and are summarized in Section 6.2, below.

4.2 Observation Period

The observation period specified in the *Revised IRM Work Plan* was one month following the most recent removal of LNAPL from the Removal Area/Trench. However, the excavations were expanded based on the extent of free (mobile) LNAPL. Areas B, C, J, K, and L were located adjacent to facility buildings, facility roadways, or public streets and sidewalks. The Port Authority Resident Engineer required the backfilling of these excavations in order to protect the structures. During verbal communication on August 3, 2006 (see the Record of Telephone Conversation in Appendix B) with the NYSDEC regarding this issue, the NYSDEC gave permission to backfill Removal Areas/Trenches after a reduced waiting period if the backfilling was necessary to protect existing structures. As shown in Table 2, the excavations at Areas B, C, J, K, and L were therefore backfilled sooner than specified in the *Revised IRM Work Plan*. Please note, the excavations at the other seven Areas remained open for the specified observation period.

Table 2: Summary of Reduced-duration Observation Periods

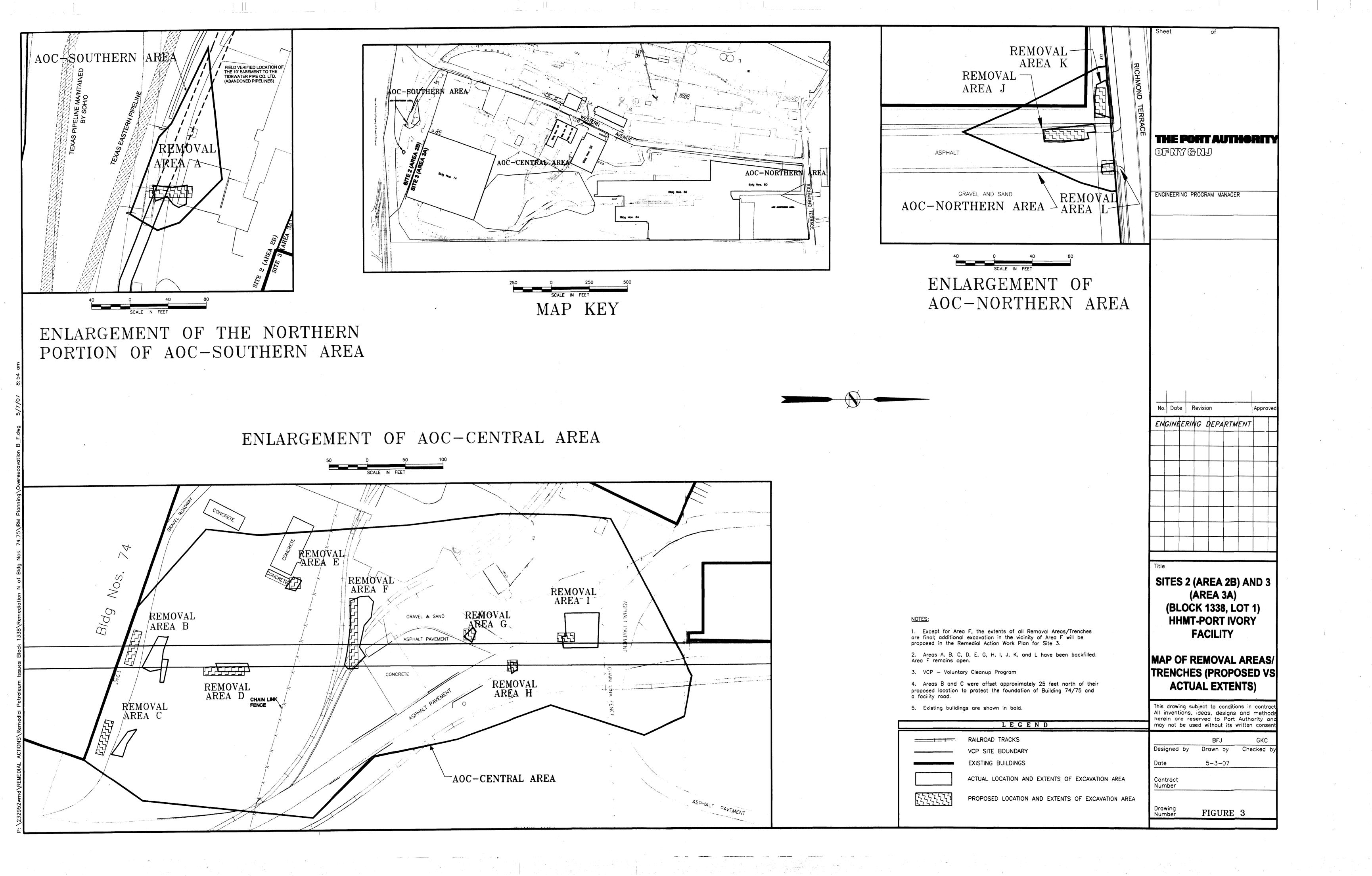
	Amount of Days Open Prior to Backfilling	1
В	14 days	To protect access road for Building 74/75.
С	7 days	To protect access road for Building 74/75.
j	14 days	To protect the foundation for Building #80.
К	12 days	To protect the foundation for Building #80.
L	5 days	To protect the public sidewalk

adjacent to Richmond Terrace.

4.3 Sheen

As per the Revised IRM Work Plan, sheen as well as product, was to be considered mobile LNAPL. During the IRM, LNAPL was encountered at varying thickness on the groundwater surface in each Removal Area/Trench. Initially after excavation, LNAPL thickness ranged from immeasurable (i.e., less than 0.01 feet) in Areas A though E and G through L to approximately 0.1-foot at Area F. As of the completion of the IRM, LNAPL was not observed to re-accumulate within any Removal Area/Trench except Area F and sheen was observed on the groundwater surface only at Areas A, D, E, and I. However, unlike LNAPL, sheen was never observed to flow into the Removal Areas/Trenches through any of the sidewalls, and, despite significant overexcavation at Areas A, D, E, and I, spots of sheen were observed on the water surface throughout the observation period. At all Removal Areas/Trenches except Area F, mobile LNAPL was successfully removed from the water surface and from the adjacent soil. Further, additional excavation did not appear to effectively remove the sheen at these four Removal Areas/Trenches and removing sheen is considered to be an inefficient method for remediating both free and residual LNAPL. Therefore, it was determined that the IRM was successful in remediating mobile LNAPL at all Removal Areas/Trenches except Area F, despite discontinuous spots of sheen observed on the water surface at Areas A, D, E, and I.

4.4 Backfill Materials


The Revised IRM Work Plan indicated that soil excavated during the IRM could be reused as backfill so long as it met three conditions: 1) it appears to be clean (i.e., does not contain LNAPL, is not stained, etc.), 2) it does not exhibit concentrations of volatile organic vapors of more than 5 parts per million (ppm), and 3) it does not contain any organic compounds at concentrations more than an order of magnitude greater than the RSCOs. Soil that was targeted for use as backfill met conditions 1 and 2, but some PAH compounds (benzo(a)anthracene and benzo(a)pyrene) that have relatively low RSCOs were detected at concentrations more than an order of magnitude above their RSCOs. However, the soil sampling analytical results were consistent with previous analytical results from fill materials placed throughout the HHMT-Port

Ivory Facility by P&G. Since the proposed backfill materials were of similar or better environmental quality to the surrounding soil, with the significant difference that the proposed backfill material was not visually impacted by LNAPL, the Port Authority requested that this material be considered acceptable for reuse as backfill. The NYSDEC approved this proposal in an email (see Appendix B) dated September 20, 2007. Section 7.4 summarizes backfill quality.

5.0 IRM EXCAVATION ACTIVITIES

Railroad Construction Company Inc. (RCC) excavated soil at all 12 Areas, designated Area A through Area L, between June 29, 2006 and August 17, 2006. Area A was located at AOC-Southern Area (Area 2B); Areas B, C, D, E, F, G, H, and I were located at AOC-Central Area (Area 3A); and, Areas J, K, and L were located at AOC-Northern Area (Area 3A). As previously indicated, LNAPL was expected to be present at the greatest saturation levels (i.e., was deemed most likely to be mobile) in these areas due to the presence of at least one of the following: elevated levels of volatile organic vapors as determined using a PID; elevated concentrations of total petroleum hydrocarbons (TPHC); LNAPL in monitoring wells; and/or, LNAPL reaccumulation in test pits. Two of the Removal Areas/Trenches, Areas B and C, were offset from their proposed locations. Areas B and C were offset approximately 25 feet north of their proposed locations in order to protect the foundation of Building Nos. 74/75 and an adjacent access road.

RCC excavated each Removal Area/Trench using either a track-mounted or rubber tire excavator (see Section 6.3 for a discussion of the management of excavated soil). As per the *Revised IRM Work Plan*, additional excavation was conducted at each Removal Area/Trench where mobile LNAPL was encountered. In addition, the sidewalls of some Removal Areas/Trenches collapsed, which enlarged the Removal Area/Trench footprints. Therefore, the actual limits of the Removal Areas/Trenches were larger than the final extents of the Removal Area/Trenches (See Figure 3).

The depth of each Removal Area/Trench was based on field observations. Each excavation was deepened until either a silty clay, clay, or sand substratum that appeared to be clean was encountered. A substratum was considered to be clean based on the absence of the following: odor, elevated concentrations of volatile organic vapors (as detected using a PID meter) sheen, stained soil, LNAPL, and other visual indications of impacted soil.

The following summarizes the field observations made during excavation. Groundwater was generally encountered between 3 and 6 feet bgs. Two types of LNAPL, identified as Type I and Type II, were encountered during the IRM. Type I LNAPL consisted of brown to dark brown weathered petroleum distillates encountered in a "smear zone" that straddled the water table. Type II LNAPL consisted of a dark brown to black, highly viscous (tar-like) material that was encountered at depths above the water table. Please note, for the purposes of this report, the term LNAPL will correspond to Type I LNAPL unless otherwise specified.

LNAPL and/or LNAPL-impacted soil were encountered in the depth interval between 3 feet to 9 feet bgs in the Removal Areas/Trenches. The LNAPL-impacted soil consisted of fill materials, including slag, cinders, construction and demolition debris, sand, silt, and/or clay. The clean substratum consisted of similar fill materials. The Tidewater pipelines were present at Areas A, B, F, J, K, and I.

The Tidewater pipelines were present at Areas A, P, L, K, and I.

Following initial excavation at each Removal Area/Trench, LNAPL removal and groundwater pumping were performed in accordance with the *Revised IRM Work Plan* and as summarized in Sections 6.1 and 6.2. Additional excavation was conducted at each Removal Area/Trench where LNAPL was observed to re-accumulate. Additional LNAPL removal and groundwater pumping was performed following each round of additional excavation. This iterative process continued until LNAPL was not observed to re-accumulate in the Removal Area/Trench during the NYSDEC-approved observation period (See Section 4.2 and Table 2 for more information about the length of the observation period). Tables 3 and 4, below, summarize the schedule for excavating and backfilling the Removal Areas/Trenches and summarize the additional excavation efforts, respectively.

Type II LNAPL was observed approximately 2 to 3 feet bgs above groundwater at both Area B and Area J. At Area B, the Type II LNAPL was observed to slowly flow into the excavation from the north, east, and south sidewalls. Additional excavation was completed to remove the Type II LNAPL to the north and east of Area B. Type II LNAPL was not completely removed to the south of Area B in order to protect the facility roadway located to the south of Area B. At Area J, Type II LNAPL was encountered below and adjacent to the Tidewater pipelines. Type II LNAPL at Area J was removed to the extent that the excavation at Area J could be expanded without jeopardizing the pipelines and Building No. 80, which is located immediately to the west of Area J. Some Type II LNAPL remains along the western sidewall of Area J, which is now backfilled.

Removal Date Initially Last Date of Additional Type(s) of End of **Backfill Date** Excavated Excavation, LNAPL Removal, LNAPL Area Observation and Groundwater Pumping Present Period 6/29&30/2006 8/8/2006 9/7/2006 Α 1 9/22/2006 6/27/2006 8/17&29/2006 (Note 1) 8/31/2006 В 1,2 8/31/2006 C 6/27/2006 8/24/2006 1 9/7/2006 8/31/2006 D 7/31/2006 6/26/2006 1 8/30/2006 9/1/2006 Ε 6/26/2006 7/31/2006 1 8/30/2006 9/1/2006 F 6/23&8/4 2006 9/18/2006 1 Note 3 Note 3 G 6/22/2006 8/4/2006 1 9/4/2006 9/22/2006 Н 6/22/2006 8/4/2006 9/4/2006 1 9/22/2006 6/21/2006 10/24/2006 11/23/2006 12/18/2006 (Note 2) 8/1/2006 9/7/2006 9/21/2006 1, 2 9/22/2006 K 8/1/2006 8/10/2006 8/24/2006 8/22/2006 1 8/1/2006 8/17/2006 8/31/2006

Table 3: Summary of Removal Areas/Trenches

L

1

LNAPL Type I: Various degraded, weathered petroleum distillates.

LNAPL Type II: Viscous "tar like" LNAPL.

8/22/2006

^{1.} Groundwater removal on 8/29/2006 was performed not because LNAPL was re-accumulating, but to confirm that all mobile LNAPL was removed from the vicinity of Area B.

^{2.}A portion of Area I was backfilled on October 16, 2006 to protect a facility roadway, while the remainder of Area I was backfilled on December 18, 2006.

^{3.} Although IRM activities have been suspended at Area F, the Port Authority recognizes that additional excavation (anticipated in an area of up to 11,600 square feet) is necessary in the vicinity of Area F. Free LNAPL remaining at Area F is proposed to be removed as part of the Remedial Action for Site 3, Area 3A, which will be specified in the Site 3, Area 3A RAWP.

Removal Area	Date(s) of Additional Excavation	Amount of Overexcavation
В	8/4 and 9/25/2006	Excavated (Type I) LNAPL-impacted soil in a 30-square
·		foot area to the west of Area B and Type II LNAPL in a 227 square-foot area to the north and east of Area B.
F	8/22/2006	Area F was enlarged from approximately 1,400 square feet to approximately 2,037 square feet because LNAPL was observed to flow into the excavation through all sidewalls.
I	8/4,9/15, and 9/27/2006	Area I was enlarged from approximately 550 square feet to approximately 1,990 square feet because LNAPL was observed to flow into the excavation through all sidewalls.
J	9/1/2006	Excavated Type II LNAPL encountered below and adjacent to the Tidewater pipelines in an 80 square-foot area to the north of Area J.

Table 4: Summary of Additional Excavation Activities

Notes:

The combination of additional excavation and subsequent LNAPL removal/groundwater pumping was successful to the extent practical at all Removal Areas/Trenches except for Area F. LNAPL has been observed to re-accumulate from the north, south, and west sidewalls of Area F since September 18, 2006, the last day of groundwater pumping. The amount of LNAPL and LNAPL-impacted soil encountered at Area F was greater than originally anticipated. To estimate the extent of free (mobile) LNAPL remaining in the vicinity of Area F, the Port Authority excavated additional test pits. Based on field observations at these test pits, as much as 2,160 cubic yards of soil remaining in the vicinity of Area F may contain free (i.e., mobile) LNAPL. The footprint of the area where free LNAPL may be present encompasses as much as 11,600 square feet. Completion of the IRM activities at Area F will be completed as part of the remedial action for Site 3, Area 3A.

6.0 IRM ACTIVITIES CONDUCTED DURING EXCAVATION

This section summarizes activities conducted concurrently with the soil excavation activities described in Section 5.0. These activities, which are summarized in Sections 6.1 through 6.3,

^{1.} Table 4 includes only those areas that required additional excavation beyond that proposed in the Revised IRM Work Plan.

^{2.} The actual excavation limits of the other eight Removal Areas/Trenches vary slightly from the proposed extents due to field conditions and surface obstructions (i.e., proximity to buildings, roadways, buried pipelines and underground utilities). However, the footprints of these excavations are approximately the same as those proposed in the *Revised IRM Work Plan* (See Figure 3).

respectively, include the removal and disposal of LNAPL; the pumping and treatment of groundwater; and, the stockpiling of soil pending its reuse or disposal.

6.1 LNAPL

Lorco Petroleum Services (LPS) removed LNAPL from the surface of the Removal Areas/Trenches using a vactor truck. LNAPL removal was conducted immediately following each iteration of excavation at all Removal Areas/Trenches to remove LNAPL from the water's surface. Once LNAPL was removed from the water's surface, groundwater was pumped out of the Removal Area/Trench to temporarily lower the water level and induce LNAPL to reaccumulate within the Removal Area/Trench. LNAPL removal using this process continued until no LNAPL re-accumulated in the corresponding Removal Area/Trench for the NYSDEC-approved observation period (see Section 4.2).

LPS disposed of approximately 24,976 gallons of LNAPL/water mixture from the Removal Areas/Trenches. This total does not include the LNAPL removed on October 17 and 18, 2006, when the frac tanks were being cleaned by Applied Earth Solutions Inc. (AES).

6.2 On-site Groundwater Treatment and Release

AES pumped groundwater out of the Removal Areas/Trenches following LNAPL removal and during backfilling activities. As discussed in Section 4.0, the Port Authority initially proposed to dispose of groundwater offsite. However, the proposed disposal methodology was changed to improve cost-efficiency and time-efficiency. Therefore, the Port Authority proposed, and the NYSDEC approved, the on-site treatment and release of groundwater (see Section 4.3). The process is further described below.

Groundwater was pumped into three interconnected frac tanks prior to treatment. Treatment consisted of allowing solids to settle out of suspension in the frac tanks and pumping the water through two bag filters and two activated carbon filtration units. The complete treatment system consisted of (from upstream to downstream) the interconnected frac tanks, two pressure gauges, two bag filters, two 2,000-pound activated carbon units, and a totalizing flow meter. A

centrifugal pump was utilized at the Removal Areas/Trenches to lift the water from the excavations to the frac tanks, and a submersible transfer pump was used to convey the water from the frac tanks through the treatment system and ultimately to an on-site retention basin located along Western Avenue. Pipes, hoses, valves, and connection fittings were used as necessary. The treatment system and frac tanks were staged to the southwest of Area E.

The volume of water in each of the three frac tanks was measured on a daily basis, and the cumulative volume of water treated was recorded on a daily basis. A total of 415,721 gallons of groundwater was treated and discharged to the retention basin throughout the 7-week duration of the IRM.

To ensure the effectiveness of the treatment system and to confirm that water discharged to the retention basin did not contain any VOCs or SVOCs above the New York AWQSGV, the Port Authority collected influent and effluent samples on a daily basis when groundwater was being discharged. Each influent sample was collected from the top of the water column in the frac tank, closest in series to the treatment system, using a disposable polyethylene bailer. Each effluent sample was collected by transferring water directly into laboratory-prepared sampling jars via a valve located downstream of the bag filters and activated carbon units. Because the contaminants of concern were organic compounds from an LNAPL source, all influent and effluent samples were analyzed for PP VOC+15 and PP SVOC+25. The analytical results are summarized on Table 5A and 5B, respectively. Both the influent and effluent samples were analyzed on an expedited (24-hour turnaround time) basis by Severn Trent Laboratories Inc. (STL-Edison, certification number NYS #11452) under chain-of-custody documentation.

The retention basin itself discharges to a marsh area located to the east of Area 3A, which in turn discharges to an unnamed tributary to Bridge Creek, in turn to bridge Creek itself, and ultimately to the Arthur Kill. Therefore, the influent and effluent analytical results were compared to the AWQSGV for both surface water (Class SD with protection for human consumption of fish in saline waters) and groundwater (Class GA for use as potable water). Class SD was selected because the Arthur Kill adjacent to the HHMT-Port Ivory facility is assigned that classification. Class GA

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT- PORT IVORY FACILITY

Sample ID				i-1 Influen	t		E-1 Effluer	nt		I-2 Influent	
Lab Sample No.	New York Ambient Water	New York Ambient Water		757433		ļ	757434			758041	•
Sampling Date	Quality Standards and	Quality Standards and	i	08/01/06		ļ	08/01/06			08/03/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER		1	WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1		ĺ	1			1	
Units				ug/L			ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND	<u> </u>	0.3	ND		0.3
Chloroethane	. 5	NS	ND		0.2	ND	————	0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.2	ND		0.2
1,1-Dichloroethene	5	NS	ND		0.4	-ND		0.4	ND		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND	 	0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND	<u> </u>	0.4	ND		0.3
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND	<u> </u>	0.5	ND		0.4
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		.0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND	 	0.3	ND		0.3
Bromodichloromethane	50	NS	ND	<u> </u>	0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND	-	0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.3
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.2
Dibromochloromethane	50	NS	ND		0.3	ND	 	0.3	ND		0.4
1,1,2-Trichloroethane	1	NS NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND		0.3
trans-1,3-Dichloropropene	NS	· NS	ND		0.2	ND		0.2	ND		0.3
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND -		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	2.4		0.4	ND		0.4	ND		0.3
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.4
Xylene (Total)	5	170	0.4		0.4	ND		0.4	ND		0.5
Total Confident Conc.	NA	NA NA	2.8	<u> </u>		0		0.7	0		0.4
VOC TICs (Total Estimated Conc.)	NS	NS	0			Ö			0		

Notes

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

SUMMARY OF INFLUENT/EFFLJENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) **HHMT-PORT IVORY FACILITY**

Sample ID				E-2 Effluer	nt		I-3 Influen	1		E-3 Effluer	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		758042	•	i	758425		l	758426	
Sampling Date	Quality Standards and	Quality Standards and		08/03/06		İ	08/04/06			08/04/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1	İ	l	1	,	l	1	
Units		1		ug/L			ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND	<u> </u>	0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	. 5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND	Ī	0.2	ND		0.2	ND		0.2
1,1-Dichloroethene	5.	NS	ND		0.4	ND		0.4	ND		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND		0.5	ND		0.5
1,2-Dichloroethane	0.6	NS	ND	1	0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene	5	40 .	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND	1	0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	. 430	ND		0.4	ND		0.4	ND		0.4
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.5
Xylene (Total)	5	170	ND		0.4	ND		0.4	ND	1	0.4
Total Confident Conc.	NA NA	NA NA	0			0			0		T
VOC TICs (Total Estimated Conc.)	NS NS	NS	0			0			0	†	

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water). ug/L= micrograms per liter

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) **HHMT-PORT IVORY FACILITY**

Sample ID				I-4 Influen	t	<u> </u>	E-4 Effluen	nt .		I-5 Influen	
Lab Sample No.	New York Ambient Water	New York Ambient Water		759139			759140	••		761489	
Sampling Date	Quality Standards and	Quality Standards and		08/08/06			08/08/06			08/15/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			VVAIER	
Units	, , , , , , , , , , , , , , , , , , , ,	, 55.2		ug/L			ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND	Quai	0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.3	ND	 	0.3
Methylene Chloride	5	NS	ND		0.5	ND		0.2	ND		0.2
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.3	ND		0.5
1,1-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.2
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.4	ND		0.4
trans-1,2-Dichloroethene	5 .	NS	ND		0.4	ND		0.4	ND		0.3
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND ND		0.4
Chloroform	7	NS	ND		0.5	ND		0.5	ND		0.4
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.5
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND	ļ	0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.3	ND		0.3	ND ND		0.3
Trichloroethene	5	. 40	ND		0.2	ND		0.2	ND	<u> </u>	0.2
Dibromochloromethane	50	NS	ND	 	0.3	ND		0.4	ND ND		0.4
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND	 -	0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.3	ND		0.3	ND		0.3
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND	-	0.2
Bromoform	50	NS	ND		0.2	ND		0.4	ND		0.4
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND ND		0.2
1,1,2,2-Tetrachloroethane	. 5	NS	ND		0.3	ND		0.3	ND		0.4
Toluene	5	430	ND		0.4	ND		0.3	ND ND	 	0.3
Chlorobenzene	5	400	ND	L	0.4	ND		0.4	ND	 	0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.4
Xylene (Total)	5	170	ND		0.4	ND		0.3	ND		0.5
Total Confident Conc.	NA NA	NA NA	0			0		0.7	0	-	0.4
VOC TICs (Total Estimated Conc.)	NS	NS	ō			0			19.8	- , -	<u> </u>

ug/L= micrograms per liter ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

LE 5A

SUMMARY OF INFLUENT/EFFEGENT ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID		1		E-5 Effluer	nt		I-6 Influen	-		E-6 Effluer	
Lab Sample No.	New York Ambient Water	New York Ambient Water		761490	•••		762183	•		762184	
Sampling Date	Quality Standards and	Quality Standards and	•	08/15/06		l	08/17/06			08/17/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1		ļ	1	:		1	
Units				ug/L		ł	ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND	1	0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND	-	0.3	ND		0.3
Vinyl Chloride	2 .	NS	ND		0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND	 -	0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND	<u> </u>	0.2	ND		0.2
1,1-Dichloroethene	5	NS	ND		0.4	ND	-	0.4	ND		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND	 	0.4	ND		0.4
Chloroform	7	NS	ND	-	0.5	ND		0.5	ND	-	0.5
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetraciiloride	5	NS	ND		0.3	ND -		0.3	ND		0.3
Bromodichloromethane	. 50	NS	ND	· · · · · · ·	0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND	t	0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene .	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND	<u> </u>	0.3	ND		0.3	ND		0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND	T	0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	ND		0.4	1.4	 	1.4	ND		0.4
Chlorobenzene	5	400	ND		0.4	ND	<u> </u>	0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.5
Xylene (Total)	5	170	ND		0.4	ND		0.4	ND	·	0.4
Total Confident Conc.	NA	NA NA	0			1.4		0.7	0	-	
VOC TICs (Total Estimated Conc.)	NS	NS	0	-		25			0		

Notes

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water). ug/L= micrograms per liter

SUMMARY OF INFLUENT/EFFLJENT ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	72			I-7 Influent		_	E-7 Effluen	ıt	F	I-8 Influen	t
Lab Sample No.	New York Ambient Water	New York Ambient Water		764575			764576			765516	
Sampling Date	Quality Standards and	Quality Standards and		08/24/06			08/24/06		ļ	08/29/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER		l	WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			1	
Units		, 15.1		ug/L			ug/L		1	ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3	ND	-	0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.2	ND		0.3
1,1-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND	<u> </u>	0.4
1,1-Dichloroethane	5 .	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND	·	0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND		0.5	ND		0.5
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND	—- 	0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND		0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND	i	0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachioroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	2		0.4	ND		0.4	1.1		0.4
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.5
Xylene (Total)	5	170	4.5		0.4	ND		0.4	1.3		0.4
Total Confident Conc.	NA	NA NA	6.5			0			2.4		Ü.,
VOC TICs (Total Estimated Conc.)	NS	NS NS	3.5	J		0			128.8	J	

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water). ug/L= micrograms per liter

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT- PORT IVORY FACILITY

Sample ID				E-8 Effluer	nt		I-9 influent			E-9 Effluer	ıt .
Lab Sample No.	New York Ambient Water	New York Ambient Water		765517			766153		·	766154	•
Sampling Date	Quality Standards and	Quality Standards and		08/29/06			08/31/06			08/31/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			1	
Units		l '		ug/L			ug/L			ug/L	,
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND	·	0.2	ND		0.3	ND		0.3
1,1-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND -		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	. 5	NS	ND		0.4	ND		0.4	ND		0.3
cis-1,2-Dichloroethene	. 5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND		0.5	ND		0.4
1,2-Dichloroethane	0.6	NS	ND		0.3	ND	·	0.3	ND ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND	ļ -	0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.3
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.2
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND		0.3
trans-1,3-Dichloropropene	· NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50 .	1 .	ND		0.4	ND		0.4	ND -		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	ND		0.4	ND		0.4	ND		0.3
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.4
Xylene (Total)	5	170	ND		0.4	ND		0.4	ND		0.5
Total Confident Conc.	NA	NA NA	ND		 -	0		V. 7	0		0.4
VOC TICs (Total Estimated Conc.)	NS	NS	.0			50.1	J	å,	0		

Notes

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

ug/L= micrograms per liter

One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample Io Lab Sample No. New York Ambient Water Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards and Quality Standards	uent
Sampling Date Quality Standards and Matrix Guidance Values (Groundwater*) ug/L Units Ug/L	
Matrix Guidance Values Guidance Values Guidance Values (Surface Water**) ug/L	-
Dilution Factor Units Un	
Units	AX.
VOLATILE ORGANIC COMPOUNDS (VOCs)	
Bromomethane	
Brommethane	0.3
Vinyl Chloride 2 NS ND 0.3 ND 0.3 ND Chloroethane 5 NS ND 0.2 ND 0.2 ND Methylene Chloride 5 NS ND 0.5 ND 0.5 ND Trichloroethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.4 ND 1,1-1-Trichloroethane 5 NS ND 0.5 ND 0.5 ND 1,1-1-Trichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-1-Trichloroethane 5 NS	0.3
Chloroethane	0.3
Methylene Chloride 5 NS ND 0.5 ND 0.5 ND Trichlorofluoromethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.5 ND Chloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS	0.2
Trichlorofluoromethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethane 5 NS ND 0.5 ND 0.5 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,2-Dichloroethane 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloroethane 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloroethane 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropene 1	0.5
1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.3 ND 0.3 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.5 ND 1,1-Trichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS	0.3
1.1-Dichloroethane	0.2
trans-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cls-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Cib-1,2-Dichloroethene 5 NS ND 0.5 ND 0.4 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 2arbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropane NS NS ND 0.2 ND 0.2 ND ricchioroethene	0.4
cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.5 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropane NS NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropane NS NS ND 0.2 ND 0.2 ND cis-1,3-Dichloropropane NS NS ND 0.2 ND 0.2 ND Dibromochloromethane	0.3
Chloroform	0.4
1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane NS NS NS ND 0.3 ND 0.3 ND 1,2-Dichloropropene NS NS NS ND 0.2 ND 0.2 ND 1,2-Dichloropropene NS NS ND 0.4 ND 0.4 ND 0.4 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.3	0.4
1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropane NS NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND 0.2 ND Dibromochloromethane 50 NS ND 0.3 ND 0.	0.3
Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND Tetrachloroethane 50	0.3
Bromodichloromethane 50	0.3
1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane NS NS ND 0.3 ND 0.3 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform	0.3
cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND Bromoform 50 NS ND 0.4 ND 0.4 ND Tetrachloroethene 50 1 ND 0.4 ND 0.2 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND 1,1,2,2-Tetrachloroethane 5	0.3
Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.4 ND 0.4 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 430 ND 0.4 ND 0.4 ND 1,0 chem 5 430<	0.3
Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.4 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 <td< td=""><td>0.4</td></td<>	0.4
1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.4 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41	0.3
Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.3
trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.3
2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.3
Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chiorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.4
Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.4
1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.2
Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.4
Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.3
Ethylbenzene 5 41 ND 0.5 ND 0.5 ND	0.4
V.I (T.I)	0.4
	0.5
Total Confident Conc. NA NA 2.4 0 0	- 0.4
VOC TICs (Total Estimated Conc.) NS NS 26.7 J 0 3.2 J	

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water). ug/L= micrograms per liter

SUMMARY OF INFLUENT/EFFEGENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT- PORT IVORY FACILITY

Lab Sample No. New York Ambient Water Outsity Standards and Ou	Sample ID		I	F	-11 Efflue	nt		l-12 influer	ıt.		-12 Effluer	nt
Sampling Date Quality Standards and Guidance Values (Surface Water*) ug/L Units	Lab Sample No.		New York Ambient Water	_			l		••	l '		
Matrix Guidance Values Guidance Values Guidance Values (Surface Water**) ug/L 1		Quality Standards and	Quality Standards and									
Dilution Factor Units Un	Matrix									ŀ		
VOLATILE ORGANIC COMPOUNDS (VOCs)	Dilution Factor	(Groundwater*) ug/L		,	1			1			VVAIER 1	
VOLATILE ORGANIC COMPOUNDS (VOCs)			, 232		ug/L			ua/L		l	ua/I	
Chloromethane	VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc		MDL	Conc		MDL	Conc		MDL
Brommethane		NS	NS	ND		0.3	ND		0.3		1	0.3
Vinyl Chloride 2 NS ND 0.3 ND 0.3 ND Chloroethane 5 NS ND 0.2 ND 0.2 ND Methylene Chloride 5 NS ND 0.5 ND 0.5 ND Trichloroethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.3	Bromomethane	5	NS	ND			ND					0.3
Chloroethane	Vinyl Chloride	2	NS									0.3
Methylene Chloride 5 NS ND 0.5 ND 0.5 ND 1,1-Dichlorofluoromethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethane 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.5 ND 1,1-1-Trichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-1-Trichloroethane 5	Chloroethane	5										0.3
Trichlorofluoromethane 5 NS ND 0.2 ND 0.2 ND 1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.3 ND 0.3 ND trans-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethane 5 NS ND 0.4 ND 0.4 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-1-Tichloroethane 5 NS ND 0.3 ND 0.3 ND 1,1-1-Tichloroethane 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloroprotenae 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropene	Methylene Chloride	5	NS					· · · · · · · · · · · · · · · · · · ·			-	0.2
1,1-Dichloroethene 5 NS ND 0.4 ND 0.4 ND 1,1-Dichloroethane 5 NS ND 0.3 ND 0.3 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Cis-1,2-Dichloroethane 0.6 NS ND 0.5 ND 0.5 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.5 ND 0.3 ND	Trichlorofluoromethane	5	NS									0.3
1.1-Dichloroethane 5 NS ND 0.3 ND 0.3 ND trans-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND cis-1,2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.4 ND 0.5 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND 1,2-Dichloroethane 1	1,1-Dichloroethene	5	NS									0.2
trans-1,2-Dichloroethene	1,1-Dichloroethane	5						 			 	0.4
Cis-1_2-Dichloroethene 5 NS ND 0.4 ND 0.4 ND Chloroform 7 NS ND 0.5 ND 0.5 ND 1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS NS ND 0.2 ND 0.2 ND 1,2-Dichloropropene NS NS ND 0.2 ND 0.2 ND Dibromochlorom	trans-1,2-Dichloroethene	5									 i	0.3
Chloroform 7	cis-1,2-Dichloroethene											0.4
1,2-Dichloroethane 0.6 NS ND 0.3 ND 0.3 ND 1,1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane NS NS ND 0.3 ND 0.2 ND 1,2-Dichloropropene NS NS ND 0.2 ND 0.2 ND Dibromochloromethane 5 40 ND 0.4 ND 0.3 ND 1,1,2-Trichloroethane 1 <td>Chloroform</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4</td>	Chloroform	7										0.4
1.1,1-Trichloroethane 5 NS ND 0.3 ND 0.3 ND Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropane NS NS ND 0.2 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND cis-1,3-Dichloropropene S 40 ND 0.4 ND 0.4 ND Dibromochloromethane 5 40 ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND benzene 1 1 NS ND 0.3 ND 0.3 ND benzene <td< td=""><td>1,2-Dichloroethane</td><td>0.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.3</td></td<>	1,2-Dichloroethane	0.6										0.3
Carbon Tetrachloride 5 NS ND 0.3 ND 0.3 ND Bromodichloromethane 50 NS ND 0.3 ND 0.3 ND 1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl	1,1,1-Trichloroethane	5										0.3
Bromodichloromethane 50	Carbon Tetrachloride	5						 -				0.3
1,2-Dichloropropane 1 NS ND 0.3 ND 0.3 ND cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroperhene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND 3-0 NS	Bromodichloromethane	50						· · · · · · · · · · · · · · · · · · ·				0.3
cis-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS NS ND 0.3 ND 0.3 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene	1,2-Dichloropropane	1						<u> </u>				0.3
Trichloroethene 5 40 ND 0.4 ND 0.4 ND Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND 1 10 ND 0.3 ND 0.3 ND 2-Chloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.4 ND 0.4 ND Tetrachloroethene 50 1 ND 0.4 ND 0.2 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND 1,1,2,2-Tetrachloroethane 5 430 ND	cis-1,3-Dichloropropene	NS										0.3
Dibromochloromethane 50 NS ND 0.3 ND 0.3 ND 1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.4 ND 0.4 ND Tetrachloroethene 50 1 ND 0.4 ND 0.2 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND 1,1,2,2-Tetrachloroethane 5 430 ND 0.4 ND 0.4 ND Toluene 5	Trichloroethene	5										0.2
1,1,2-Trichloroethane 1 NS ND 0.3 ND 0.3 ND Benzene 1 10 ND 0.3 ND 0.3 ND trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND 2-Chloroethyl Vinyl Ether SO NS ND 0.4 ND 0.4 ND 2-Chloroethyl Vinyl Ether SO NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether SO NS ND 0.2 ND 0.2 ND 0.2 ND <td>Dibromochloromethane</td> <td>50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>0.3</td>	Dibromochloromethane	50						 				0.3
Benzene	1,1,2-Trichloroethane	1						<u> </u>				0.3
trans-1,3-Dichloropropene NS NS ND 0.2 ND 0.2 ND 2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	Benzene	1	10					<u> </u>				0.3
2-Chloroethyl Vinyl Ether NS NS ND 0.4 ND 0.4 ND Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	trans-1,3-Dichloropropene	NS	NS									0.3
Bromoform 50 NS ND 0.2 ND 0.2 ND Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	2-Chloroethyl Vinyl Ether	NS	NS					· · · · · · · · · · · · · · · · · · ·				0.4
Tetrachloroethene 50 1 ND 0.4 ND 0.4 ND 1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chiorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	Bromoform	50										0.4
1,1,2,2-Tetrachloroethane 5 NS ND 0.3 ND 0.3 ND Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	Tetrachloroethene	50	1									0.2
Toluene 5 430 ND 0.4 ND 0.4 ND Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND	1,1,2,2-Tetrachloroethane	5	NS									0.4
Chlorobenzene 5 400 ND 0.4 ND 0.4 ND Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND Total Confident Cone NA	Toluene	5										0.3
Ethylbenzene 5 41 ND 0.5 ND 0.5 ND Xylene (Total) 5 170 ND 0.4 ND 0.4 ND Total Confident Cone NA	Chlorobenzene											0.4
Xylene (Total) 5 170 ND 0.4 ND 0.4 ND Total Confident Cone NA NA NA NA NA NA NA N	Ethylbenzene											0.4
Total Confident Cone	Xylene (Total)							<u> </u>				0.5
	Total Confident Conc.	NA NA	NA NA	0		0.7	0		- 0.4	0		U.4
VOC TICs (Total Estimated Conc.) NS NS 0 14.5 J 0	VOC TICs (Total Estimated Conc.)											

Notes:

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	~			-13 Influen	nt	E	-13 Efflue	nt ·		-14 Influer	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		769934			769935		· ·	770359	
Sampling Date	Quality Standards and	Quality Standards and		09/15/06			09/15/06			09/18/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			1	
Units	·	1		ug/L			ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	S (VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND	1	0.3	ND		0.3
Bromomethane	. 5	NS	ND	·-··	0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3 .	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND	****	0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.2	ND	<u> </u>	0.2
1,1-Dichloroethene	5	NS	ND	 	0.4	ND		0.4	ND	 	0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND	 	0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND	.,,,-	0.5	ND		0.5	ND		0.5
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	. ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND	-	0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND	-	0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND	· · · · · · · · · · · · · · · · · · ·	0.3
Benzene	1	10	ND		0.3	ND		0.3	ND	<u> </u>	0.3
trans-1,3-Dichloropropene	NS .	NS	ND		0.2	ND		0.2	ND	··	0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	ND		0.4	ND		0.4	ND		0.4
Chlorobenzene	5	400	ND		0.4	ND	·	0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.5
Xylene (Total)	5	170	ND		0.4	ND		0.4	ND		0.3
Total Confident Conc.	NA	NA NA	0			0			0		
VOC TICs (Total Estimated Conc.)	NS	NS	138.1	J		0			76.6		

Notes

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

SUMMARY OF INFLUENT/EFPEJENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT- PORT IVORY FACILITY

Sample ID			Ε	-14 Efflue	nt	1	-15 Influer	nt	E	-15 Efflue	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		770360			770599			770598	
Sampling Date	Quality Standards and	Quality Standards and		09/18/06			09/19/06			09/19/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER		l	WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			1	
Units		1		ug/L			ug/L		l	ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND		0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.2	ND		0.2
1,1-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND	-	0.5	ND		0.5
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	МD		0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	ND		0.4	ND		0.4	ND		0.4
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND		0.5
Xylene (Total)	5	170	ND		0.4	ND		0.4	ND		0.4
Total Confident Conc.	NA NA	NA NA	0			0			0		
VOC TICs (Total Estimated Conc.)	NS	NS	0			84.7	J		0		

Notes

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

SUMMARY OF INFLUENT/EFFLUENT ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID				l-16 Influer	nt	F	-16 Efflue	nt		l-17 Influer	
Lab Sample No.	New York Ambient Water	New York Ambient Water	'	772761] '	772762			775240	н
Sampling Date	Quality Standards and	Quality Standards and		09/26/06			09/26/06			10/04/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1			VVAIER	
Units		'''''' , ''g''		ug/L		ł	ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND -		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND	<u> </u>	0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND	l	0.2	ND		0.2	ND		0.3
Methylene Chloride	5	NS	ND	<u> </u>	0.5	ND		0.5	ND		0.2
Trichlorofluoromethane	5	NS	ND	 	0.2	ND		0.3	ND	 -	0.3
1,1-Dichloroethene	. 5	NS	ND		0.4	ND	<u> </u>	0.2	ND	 	0.2
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.4
trans-1,2-Dichloroethene	5	NS	ND	 	0.4	ND		0.3	ND ND	· · · · · ·	0.3
cis-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND	<u> </u>	0.5	ND		0.5	ND	<u> </u>	0.4
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND	 -	0.3
1,1,1-Trichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND	 	0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.3
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.4
1,1,2-Trichloroethane	1	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND	 -	0.3	ND		0.3	ND		0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.3
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.4	ND		0.4
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND ND		0.2
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND	-	0.4
Toluene	5	430	ND	 	0.4	ND		0.3	ND		
Chlorobenzene	5	400	ND		0.4	ND		0.4	ND ND		0.4
Ethylbenzene	5	41	ND	 	0.4	ND		0.4	ND ND		0.4
Xylene (Total)	5	170	ND	·	0.4	ND		0.5	ND		0.5
Total Confident Conc.	. NA	NA NA	0	<u> </u>	0.7	0		U. - 4	0		0.4
VOC TICs (Total Estimated Conc.)	NS	NS	150	J	-	0			293.4		

Notes:

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

LE 5A

SUMMARY OF INFLUENT/EFFECENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID			E	-17 Efflue	nt		-18 influer	nt	- 1	-18 Efflue	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		775241			777150	7. 7.	· ·	777151	
Sampling Date	Quality Standards and	Quality Standards and		10/04/06		1	10/12/06	4.		10/12/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER		l	WATER			WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1	•	l	1			1	
Units		. •		ug/L			ug/L	*		ug/L	
VOLATILE ORGANIC COMPOUNDS	S (VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND .		0.3	ND		0.3	ND		0.3
Bromomethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Vinyl Chloride	2	NS	ND	l	0.3	ND		0.3	ND		0.3
Chloroethane	5	NS	ND		0.2	ND		0.2	ND		0.2
Methylene Chloride	5	NS	ND		0.5	ND		0.5	ND		0.5
Trichlorofluoromethane	5	NS	ND		0.2	ND		0.2	ND ND		0.2
1,1-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND	 	0.3
cis-1,2-Dichloroethene	. 5	NS	ND		0.4	ND		0.4	ND		0.4
Chloroform	7	NS	ND		0.5	ND		0.5	ND		0.5
1,2-Dichloroethane	0.6	NS	ND		0.3	ND	·	0.3	ND		0.3
1,1,1-Trichloroethane	5	NS:	ND	***************************************	0.3	ND		0.3	ND		0.3
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.3	ND		0.3	ND	 -	0.3
1,2-Dichloropropane	1	NS	ND		0.3	ND		0.3	ND		0.3
cis-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1 ,	NS	ND		0.3	ND		0.3	ND		0.3
Benzene	1	10	ND		0.3	ND		0.3	ND	····	0.3
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.4	ND	-	0.4	ND		0.4
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND	<u> </u>	0.2
1,1,2,2-Tetrachloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
Toluene	5	430	ND		0.4	ND		0.4	ND		0.4
Chlorobenzene	5	400	ND	l	0.4	ND		0.4	ND		0.4
Ethylbenzene	5	41	ND		0.5	ND		0.5	ND	·	0.5
Xylene (Total)	5	170	ND		0.4	1		0.4	ND		0.3
Total Confident Conc.	NA	NA NA	0		NA.	1		J. 4	0		0.4
VOC TICs (Total Estimated Conc.)	NS	NS	0		NA	298.3	J		0		

Notes

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

SUMMARY OF INFLUENT/EFFEDENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) **HHMT-PORT IVORY FACILITY**

			1	-19 Influer	ıt	E	-19 Effluer	nt		-20 Influer	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		778005			778006		i '	778365	
Sampling Date	Quality Standards and	Quality Standards and		10/16/06			10/16/06		I	10/17/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER			WATER		l	WATER	Ī
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1			1 -		l	1	
Units	,	, ,		ug/L			ug/L			ug/L	
VOLATILE ORGANIC COMPOUNDS	(VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.4	ND		0.4	ND		0.4
Bromomethane	5	NS	ND		0.4	ND		0.4	ND		0.4
Vinyl Chloride	2	NS	ND	· · · · · · · · · · · · · · · · · · ·	0.2	ND		0.2	ND		0.2
Chloroethane	5	NS	ND		0.4	ND		0.4	ND		0.4
Methylene Chloride	5	NS	ND		0.4	ND		0.4	ND		0.4
Trichlorofluoromethane	5	NS	ND		0.4	ND		0.4	ND	·	0.4
1,1-Dichloroethene	5	NS	ND		0.5	ND		0.5	ND		0.5
1,1-Dichloroethane	5	NS	ND		0.3	ND		0.3	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4	ND		0.4	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.3	ND		0.3	ND		0.4
Chloroform	7	NS	ND		0.2	ND		0.2	ND		0.3
1,2-Dichloroethane	0.6	NS	ND		0.3	ND		0.3	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.4	ND		0.4	ND		0.4
Carbon Tetrachloride	5	NS	ND		0.3	ND		0.3	ND		0.3
Bromodichloromethane	50	NS	ND		0.2	ND		0.2	ND		0.2
1,2-Dichloropropane	1	NS	ND		0.5	ND	·	0.5	ND		0.5
cis-1,3-Dichloropropene	NS	NS	ND		0.1	ND		0.1	ND		0.1
Trichloroethene	5	40	ND		0.4	ND		0.4	ND		0.4
Dibromochloromethane	50	NS	ND		0.3	ND		0.3	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.2	ND		0.2	ND		0.2
Benzene	1	10	ND		0.2	ND .		0.2	ND		0.2
trans-1,3-Dichloropropene	NS	NS	ND		0.2	ND		0.2	ND		0.2
2-Chloroethyl Vinyl Ether	NS	NS	ND		0.2	ND		0.2	ND		0.2
Bromoform	50	NS	ND		0.2	ND		0.2	ND		0.2
Tetrachloroethene	50	1	ND		0.4	ND		0.4	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.4	ND		0.4	ND		0.4
Toluene	5	430	ND		0.3	ND		0.3	ND .		0.3
Chlorobenzene	5	400	ND		0.2	ND		0.2	ND		0.3
Ethylbenzene	5	41	ND		0.4	ND		0.4	ND		0.4
Xylene (Total)	5	170	1		0.4	ND		0.4	1		0.4
Total Confident Conc.	NA	NA NA	0			0			Ö		- 0 .7
VOC TICs (Total Estimated Conc.)	NS	NS	102.1	J		0			283.8	J	—

ug/L= micrograms per liter

ND= Not detected

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

SUMMARY OF INFLUENT/EFFLUENT ANALYTICAL RESULTS- VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT- PORT IVORY FACILITY

Sample ID	I		E	-20 Efflue	nt
Lab Sample No.	New York Ambient Water	New York Ambient Water		777151	
Sampling Date	Quality Standards and	Quality Standards and		10/17/06	
Matrix	Guidance Values	Guidance Values (Surface		WATER	
Dilution Factor	(Groundwater*) ug/L	Water**) ug/L		1	
Units	, ,	, , , ,		ug/L	
VOLATILE ORGANIC COMPOUND	S (VOCs)		Conc	Qual	MDL
Chloromethane	NS	NS	ND		0.4
Bromomethane	5	NS	ND		0.4
Vinyl Chloride	2	NS	ND		0.2
Chloroethane	5	NS	ND		0.4
Methylene Chloride	5	NS	ND:		0.4
Trichlorofluoromethane	5	NS	ND		0.4
1,1-Dichloroethene	5	NS	ND		0.5
1,1-Dichloroethane	5	NS	ND		0.3
trans-1,2-Dichloroethene	5	NS	ND		0.4
cis-1,2-Dichloroethene	5	NS	ND		0.3
Chloroform	7	NS	ND		0.2
1,2-Dichloroethane	0.6	NS	ND		0.3
1,1,1-Trichloroethane	5	NS	ND		0.4
Carbon Tetrachloride	5	NS	ND		0.3
Bromodichloromethane	50	NS	ND	<u> </u>	0.2
1,2-Dichloropropane	1	NS	ND		0.5
cis-1,3-Dichloropropene	NS	NS	ND	1	0.1
Trichloroethene	5	40	ND		0.4
Dibromochloromethane	50	NS	ND		0.3
1,1,2-Trichloroethane	1	NS	ND		0.2
Benzene	1	10	ND		0.2
trans-1,3-Dichloropropene	NS	NS	ND		0.2
2-Chloroethyl Vinyl Ether	NS	. NS	ND		0.2
Bromoform	50	NS	ND		0.2
Tetrachloroethene	50	1	ND		0.4
1,1,2,2-Tetrachloroethane	5	NS	ND		0.4
Toluene	5	430	ND		0.3
Chlorobenzene	5	400	ND		0.2
Ethylbenzene	5	41	ND		0.4
Xylene (Total)	5	170	ND		0.4
Total Confident Conc.	NA NA	NA NA	0		
VOC TICs (Total Estimated Conc.)	NS	NS NS	0		

Notes

ug/L= micrograms per liter ND= Not detected

Conc= Concentration

Conc= Concentration

MDL= Method Detection Limit

NS= No standard or guidance value

TICs= Tentatively identified compounds

NA=Not applicable

One influent sample was collected at a point upstream of the treatment system and one effluent sample was collected at a point downstream of the treatment system on each day that treated water to the treatment system on each day that treated water to the treatment system on each day that treated water to the treatment system on each day that treated water to the treatment system on each day that the system of the syst

was discharged at the HHMT-Port Ivory Facility.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

Sample ID Lab Sample No. Sampling Date Matrix Units	New York State Ambient Water Quality Standards and Guidance Values (Groundwater*) ug/L	New York State Ambient Water Quality Standards and Guidance Values (Surface Water**) ug/L		I-1 Influent 757433 08/01/06 WATER ug/L			757434 08/01/06 WATER ug/L	11		1-2 influen 758041 08/03/06 WATER ug/L			758042 08/03/06 WATER	t		1-3 Influent 758425 08/04/06 WATER			E-3 Effluent 758426 08/04/06 WATER	
SEMIVOLATILE VOLATILE ORGAN	IC COMPOUNDS (SVOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	ug/L Qual	MDL		ug/L			ug/L	
Phenol	1	NS	ND		0.7	ND	- Guai	0.7	ND	quai	0.6	ND	Quai		Conc	Qual	MDL	Conc		MDL
2-Chlorophenol	1	NS	ND		1.2	ND		1.2	ND		1.1	ND		0.6	ND ND		0.6	ND.		0.6
2-Nitrophenol	1	NS	ND		1.7	ND		1.8	ND		1.6	ND ON		1.1			1.1	ND		1.1
2,4-Dimethylphenol	1	1,000	ND		2.2	ND		2.3	ND		2.1	ND		2.1	ND ND		1.6	ND ND	 	1.6
2,4-Dichlorophenol	1	NS	ND		1.6	ND		1.6	ND		1.5	ND		1.5	ND		1.4	ND ND	├──-	2
4-Chloro-3-methylphenol	1	NS	ND		1.8	ND		1.9	ND		1.7	ND	-	1.7	ND		1.6			1,4
2,4,6-Trichlorophenol	1	NS	ND		2.4	ND		2.5	ND		2.2	ND		2.2	ND		2.2	ND ND		1.6
2,4-Dinitrophenol		400	ND		1	ND		1	ND		0.9	ND		0.9	ND	—	0.9	- ND		0.9
4-Nitrophenol	. 1	NS	ND		1	ND		1	ND		0.9	ND		0.9	ND		0.9	ND ND		0.9
4,6-Dinitro-2-methylphenol	NS NS	NS	ND		1.4	ND		1.4	ND		1.2	ND	_	1.2	ND		1.2	ND		1.2
Pentachlorophenol	1	NS	ND		2.3	ND		2.4	ND		2.1	ND		2.1	ND		2.1	ND		2.1
N-Nitrosodimethylamine	50	NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND		0.7	ND		0.7
ois(2-Chloroethyf)ether	1	NS	ND		1	ND		1	ND		0.9	ND		0.9	ND		0.9	ND		0.9
1,3-Dichlorobenzene	3	50	ND		1.1	ND		1.1	ND		1	ND		1	ND	t	1	ND	 	1
1,4-Dichlorobenzene	3	50	ND		1	ND		1	ND		0.9	ND		0.9	ND	<u> </u>	0.9	ND ND	 	0.9
1,2-Dichlorobenzene	3	50	ND		1.2	ND .		1.2	ND	_	1.1	ND		1.1	ND		1.1	ND-		1.1
bis(2-chloroisopropyl)ether	NS	NS	ND		0.9	ND		1	ND		0.9	ND		0.9	ND		0.8	ND		0.8
N-Nitroso-di-n-propylamine	NS	NS	ND		0.8	ND		0.8	ND		0.8	ND		0,8	ND	†	0.7	ND		0.7
Hexachloroethane	5	0.6	ND		1	ND		1	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Nitrobenzene	0.4	NS	ND		1.1	ND		1.1	ND		1	ND		1	ND		1	ND ND	 	1
Isophorone	50	NS	ND		1	ND		1.1	ND		1	ND		i	ND	-	0.9	ND ND	 	0.9
bis(2-Chloroethoxy)methane	5	NS	ND		1	ND		1	ND		0.9	ND		0.9	ND ·		0.9	ND		0.9
1,2,4-Trichlorobenzene	5	50	ND		1	ND		1	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Naphthalene	10	140	ND		0.2	ND		0.2	ND		0.2	ND	_	0.2	ND		0.2	ND ND		0.5
Hexachlorobutadiene	0.5	0.01	סא		0.7	ИD		0.7	ND		0.6	ND		0.6	ND		0.6	ND		0.6
Hexachlorocyclopentadiene	5	0.7	ND		0.7	ND		0.7	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Chloronaphthalene	10	NS	ND		1.2	ND		1.2	ND		1.1	ND		1.1	ND	-	1.1	ND		1.1
Dimethylphthalate	50	NS	ND		1.2	В		1.2	ND		1.1	ND		1.1	ND		1.1	ND		1.1
Acenaphthylene	20	NS	ND		0.1	ND		0,1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
2,6-Dinitrotoluene Acenaphthene	5	NS	ND		1,4	ND		1.5	ND		1.3	ND		1.3	ND		1.3	ND.		1.3
2,4-Dinitrotoluene	20 5	60	ND		0.1	ND		0.2	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Diethylphthalate	50	NS	ND		1.3	ND		1,3	ND		1.2	ND		1.2	ND		1.1	ND		1.1
4-Chlorophenyl-phenylether	50	NS	ND		0.9	ND		0.9	ND		0.8	ND		0.8	ND		0.8	ND		0.8
Fluorene	50	NS	ND	L	1.2	ND		1.2	ND		1.1	ND		1.1	ND		1	ND	t — t –	1
N-Nitrosodiphenylamine	NS NS	23 NS	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND		0.2
4-Bromophenyl-phenylether	NS NS	NS NS	ND		1.2	ND		1.2	ND		1.1	ND		1.1	ND		1,1	ND		1.1
Hexachlorobenzene	0.04	0.00003	ND		1.3	ND		1.4	ND		1.2	ND		1.2	ND		1.2	ND		1.2
Phenanthrene	50	14	ND		0.4	ND		0.4	ND		0.3	ND		0.3	ND		0.3	ND		0.3
Anthracene	50	NS NS	ND ND		0.089	ND ND		0.092	ND		0.082	ND]	0.082	ND	L	0.082	ND		0.082
Di-n-butylphthalate	50	NS NS	ND ND			ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Fluoranthene	50	NS NS	ND ON		0.1	ND ND		1.2	ND.		1	ND	L	1	ND		1	ND		1
Pyrene	50	NS NS	ND		0.1	ND		0.2 0.2	ND		0.1 0.1	ND	-	0.1	ND	 	0.1	ND		0.1
Benzidine	5	NS	ND		8	ND		8.3	ND	ļ <u> </u>	7.4	ND		0.1	ND		0.1	ND		0.1
Butylbenzylphthalate	50	NS NS	ND		1.2	ND		1.2	ם מ		1.1	ND DD	\vdash	7.4	ND.	 	7.2	ND	↓ ↓	7.2
3,3'-Dichlorobenzidine	5	NS	ND	-	5.5	ND		5.6	ND		1.1	ND	\vdash	1.1	ND	<u> </u>	1	ND	↓ ——	_1_
Benzo(a)anthracene	0.002	NS	ND		0.2	ND	-	0.2	ND	<u> </u>	0.2	ND ND		0.2	ND.		4.9	ND		4.9
Chrysene	0.002	NS	ND		0.2	ND		0.2	ND		0.2	ND					0.2	ND		0.2
ois(2-Ethylhexyl)phthalate	5	NS	3.8	\vdash	1.2	ND		1.2	2.1		1.2	ND	——	0.2	ND.	 	0.2	ND	 	0.2
Di-n-octylphthalate	50	NS	ND		1.1	ND		1.1	ND		1 1	ND	——	1.1	1.5 ND	 	1.1	ND ND	├──	_!_
Benzo(b)fluoranthene	0.002	NS	ND		0.1	ND		0.2	ND		0,1	ND ND		0.1	ND ND	 	1	ND	 	_1_
Benzo(k)fluoranthene	0.002	NS	ND		0.1	ND	-	0.1	ND	<u> </u>	0.092	ND		0.092	ND ND		0.1	ND		0.1
Benzo(a)pyrene	0.002	0.0006	ND		0.067	ND	-	0.069	ND		0.092	ND ND	 	0.092	ND ND		0.09	ND		0.09
ndeno(1,2,3-cd)pyrene	0.002	NS	ND		0.089	ND		0.092	ND		0.082	. ND				<u> </u>	0.06	ND		0.06
Dibenz(a,h)anthracene	50	NS	ND		0.003	ND		0.092	ND		0.082	ND ND		0.082	ND		0.08	ND		80.0
Benzo(g,h,i)perylene	5	NS	ND		0.1	ND		0.1	ND		0.092	ND		0.1	ND ND		0.1	ND		0.1
otal Confident Conc.	NA NA	NA NA	3.8			0			2.1		0.032	0		0.092	ND	——	0.09	ND	 	0.09
otal SVOC TICs (Estimated Conc.)	NS	NS							4.1						1.5		1	0	1 1	

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

ug/L= micrograms per liter conc.= concentration MDL= Method detection limit

J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value

TiCs= Tentatively identified compounds (estimated)

NA=Not applicable

The relative spaceciams of the treatment system and one effluent sample was point upstream of the treatment system and one effluent sample was at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port hory Facility.

2) Concentrations highlighted and in bold exceed the New York AWQSGV for either groundwarter or surface water.

Sample ID Lab Sample No. Sampling Date Matrix	New York State Ambient Water Quality Standards and Guidance Vatues (Groundwater*) ug/L	New York State Ambient Water Quality Standards and Guidance Values (Surface Water**) ug/l.		I-4 Influent 759139 08/08/06 WATER			E-4 Effluen 759140 08/08/06 WATER	t		1-5 Influent 761489 08/15/06 WATER			E-5 Effluent 761490 08/15/06 WATER			I-6 Influent 762183 08/17/06 WATER			E-6 Effluen 762184 08/17/06 WATER	
Units SEMIVOLATILE VOLATILE ORGAN		1100. 7494		ug/L			ug/L_			ug/L	-	L	ug/L			ug/L			ug/L	
Phenol	IC COMPOUNDS (SVOCS)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
2-Chlorophenol	1	NS NS	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Nitrophenol	 	NS NS	ND ND		1.1	ND ND		1.1	_ ND		1.1	ND		1.1	ND		1.1	ND		1.1
2,4-Dimethylphenol	1	1,000	ND		2.1	ND		1.6 2.1	ND		1.6	ND		1.6	ND		1.6	ND		1.6
2,4-Dichlorophenol	· · · · · · · · · · · · · · · · · · ·	NS NS	ND		1.5	ND		1.5	ND ND		1.4	ND	L	2.1	ND	<u> </u>	2	ND		2
4-Chioro-3-methylphenol	i	NS	ND	 	1.7	ND		1.7	ND			ND		1.5	ND	L	1.4	ND		1.4
2,4,6-Trichlorophenol	1 1	NS	ND	 	2.2	ND		2.3	ND		1.6 2.2	ND ND		1.7 2.3	ND		1.6	ND		1.6
2,4-Dinitrophenol	1	400	ND		0.9	ND		0.9	- ND		0.9	ND	 	0.9	ND ND	 	2.2	ND		2.2
4-Nitrophenol	1	NS	ND	-	0.9	ND		0.9	ND		0.9	ND		0.9	ND ND	ļ	0.9	ND ND	ļ	0.9
4,6-Dinitro-2-methylphenol	NS	NS	ND		1.2	ND		1.3	ND		1.2	ND	 	1.3	ND		1.2	ND ND		0.9 1.2
Pentachiorophenol	1	NS	ND		2.1	ND		2.2	ND		2.1	ND		2.2	ND	 	2.1	ND ND		2.1
N-Nitrosodimethylamine	50	NS	ND	T	0.8	ND		0.8	ND		0.8	ND	 	0.8	ND	 	0.7	ND		0.7
bis(2-Chloroethyl)ether	1	NS	ND		0.9	ND		0.9	ND		0.9	ND	-	0.9	ND	 	0.9	ND GN		0.7
1,3-Dichlorobenzene	3	50	ND		1	ND		1	ND		1	ND		1	ND	\vdash	1	ND		1
1,4-Dichlorobenzene	3	50	ND		0.9	ND		1	ND		0.9	ND		i	ND		0.9	ND		0.9
1,2-Dichlorobenzene	3	50	ND		1.1	ND		1.1	ÑD		1.1	ND		1.2	ND		1.1	ND		1.1
bis(2-chloroisopropyl)ether	NS	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	-	0.8	ND	—	0.8
N-Nitroso-di-n-propylamine	NS	NS	ND		0.8	ND		8.0	ND		8.0	ND		0.8	ND		0.7	ND		0.7
Hexachloroethane	5	0.6	ND		0.9	ND		1	ND		0.9	ND		1	ND		0.9	ND		0.9
Nitrobenzene	0.4	NS	ND		1	_ ND		1	ND		1	ND		1	ND		1	ND		1
Isophorane	50	NS	ND		1	ND		1	ND		1	ND		1	ND		0.9	ND	1	0.9
bis(2-Chloroethoxy)methane 1,2,4-Trichlorobenzene	5	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Naphthalene	5 10	50	ND		0.9	ND		1	ND		0.9	ND		1	ND		0.9	ND		0.9
Hexachlorobutadiene	0.5	140	ND		0.2	ND		0.2	ND.		0.2	ND		0.2	ND		0.2	ND		0.2
Hexachtorocyclopentadiene	5	0.01 0.7	ND ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Chloronaphthalene	10	NS NS	ND		0.6	ND ND		0.7	ND		0.6	ND		0.7	ND		0.6	2		0.6
Dimethy(phthalate	50	NS NS	ND ND		1.1			1.1	ND		1.1	ND		1.1	ND		1.1	ND		1.1
Acenaphthylene	20	NS NS	ND		1.1 0.1	ND ND		1.1	ND		1.1	ND	L	1.2	ND		1.1	ND		1.1
2.6-Dinitrotoluene	5	NS NS	ND		1.3	ND ND		0.1	ND ND		0.1	ND	<u> </u>	0.1	ND	L	0.1	ND		0.1
Acenaphthene	20	60	ND		0.1	ND		0.1	ND		1.3 0.1	ND		1.4	ND		1.3	ND		1.3
2,4-Dinitrotoluene	5	NS	ND		1.2	ND		1,2	ND		1.2	ND ND		0.1	ND	l	0.1	_ND	ļ	0.1
Diethylphthalate	50	NS	ND	\vdash	0.8	ND		0.8	ND		0.8	ND		0.8	ND ND	 	1.1	ND		1.1
4-Chlorophenyl-phenylether	1	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND	}i	0.8	ND ND		0.8
Fluorene	50	23	ND	T	0.2	ND		0.2	ND		0.2	ND	 	0.2	ND	├ ──	0.2	ND ND		0.2
N-Nitrosodiphenylamine	NS	NS	ND		1,1	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND ND		1.1
4-Bromophenyl-phenylether	NS	NS	ND		1.2	ND		1.3	ND		1.2	ND		1.3	ND		1.2	ND	<u> </u>	1.2
Hexachlorobenzene	0.04	0.00003	ND		0.3	ND		0.3	ND		0.3	ND		0.3	ND		0.3	ND		0.3
Phenanthrene	50	14	1		0.082	ND		0.084	ND		0.081	ND		0.085	ND		0.082	ND		0.08
Anthracene	50	NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Di-n-butylphthatate	50	NS	ND		1	ND		1.1	ND		1	ND		1.1	ND		1	ND		1
Fluoranthene Pyrene	50	NS NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Benzidine	50 5	NS.	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Butylbenzylphthalate	50	NS	ND		7.4	ND.		7.6	ND		7.3	ND		7.7	ND		7.2	ND		7.2
3.3'-Dichlorobenzidine	50	NS NS	ND .	ļ	1.1	ND		1.1	ND		1.1	ND		1,1	ND		1	ND		1
Benzo(a)anthracene	0.002	NS NS	ND ND		- 5 0.2	ND ND	ļ	5.2	ND		5	ND		5.2	ND		4.9	ND		4.9
Chrysene	0.002	NS NS	ND		0.2			0.2	ND		0.2	ND		0.2	ND	L	0.2	ND		0.2
bis(2-Ethylhexyl)phthalate	5	NS NS	1.5	 	1.1	ND ND		0.2	ND 0.0		0.2	ND	L—	0.2	ND		0.2	ND		0.2
Di-n-octylphthalate	50	NS NS	ND ND	 		ND DA		1.1	2.6		1.1	ND	└ ── ┤	1.1	1.4		1.1	ND		1
Benzo(b)fluoranthene	0.002	NS NS	ND	 - 	0.1	ND		1	ND.		1	ND		1.1	ND		1	ND		1
Benzo(k)fluoranthene	0.002	NS NS	ND	 	0.092			0.1	ND		0.1	· ND	<u>-</u>	0.1	ND		0.1	ND		0.1
Benzo(a)pyrene	0.002	0.0006	ND ND	 	0.092	ND ND		0.095	ND ND		0.091	ND		0.096	ND		0.09	ND		0.09
Indeno(1,2,3-cd)pyrene	0.002	NS	ND	 	0.082	GN		0.063	ND ND		0.061	ND		0.064	ND		0.06	ND		0.06
Dibenz(a,h)anthracene	50	NS NS	ND		0.062	ND ND		0.084	ND ND		0.081	ND	L	0.085	ND ON		0.08	ND		0.08
Benzo(g,h,i)perylene	5	NS	ND	 	0.092	ND		0.095	ND		0.091	ND		0.1	90	I	0.1	ND	ļ	0.1
Total Confident Conc.	NA NA	NA NA	2.5			-10		5.555	2.6		0.031	- ND		0.090	ND 1		0.09	ND O		0.09

Total SVOC TICs (Estimated Conc.) Notes:

^{*} Using GA water classification with protection for drinking water (groundwater).

Using SD water classification with protection for furnish consumption of fish (saline water).

"Using SD water classification with protection for human consumption of fish (saline water).

"Using SD water classification with protection for human consumption of fish (saline water).

"Using SD water classification with protection for human consumption of fish (saline water).

MDL= Method detection limit

J= Thes estimated value wa, detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value
TICs= Tentstively identified compounds (estimated)

NA=Not applicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was

at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port hory

Facility.

2) Concentrations highlighted and in bold exceed the New York AWQSGV for either groundwater or surface water.

BLE 5B SUMMARY OF INFLUENT/E ENT ANALYTICAL RESULTS-SVOCs IRM

ď	-	SITES	21	A	2B)	AND	3	(AREA	3A)
		HHM	r.Þ	ORT	VOR	Y FA	11	ITV	

Sample ID Lab Sample No. Sampling Date	New York State Ambient Water Quality Standards and Guidance Values	New York State Ambient Water Quality Standards and Guidance Values (Surface		I-7 Influent 764575 08/24/06		'	E-7 Effluen 764576 08/24/06	ı		765516 08/29/06	ı		E-8 Effluent 765517 08/29/06	ı		766153 08/31/06	ı		766154	ıt
Watrix	(Groundwater*) ug/L	Water**) ug/L		WATER		l	WATER			WATER			WATER			WATER			08/31/06 WATER	
Jnits		water jug/c		ug/L		l	ug/L			ua/L			ug/L			ug/L		1		
SEMIVOLATILE VOLATILE ORGANI	C COMPOUNDS (SVOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	ug/L Qual	I MD
Phenol	1	NS	ND		0.6	ND		0.6	ND		0.6	ND	I Gum	0.6	ND	Qual	0.6	ND	Quai	0.6
2-Chlorophenol	1	NS	ND		1.1	ND		1.1	ND		1.1	ND	 	1.1	ND ND	 	1.1	ND ND	 	
2-Nitrophenol	1 .	NS	ND		1.6	ND		1.6	ND		1.6	ND	 	1.6	ND ND	 		ND ND	<u> </u>	1.1
2,4-Dimethylphenol	1	1,000	ND		2	ND		2	ND		2	ND	 	2	ND	 	1.6	ND -	↓	1.6
2,4-Dichlorophenol	1	NS	ND		1.4	ND		1.4	ND		1.4	ND	 	1.4	ND	 -	1.4	ND D	 	
4-Chloro-3-methylphenol	1	NS	ND		1.6	ND		1.6	ND		1.6	ND	 	1.6	ND	 -	1.6	ND		1.0
2,4,6-Trichlorophenol	1	NS	ND		2.2	ND		2.2	ND		2.2	ND	!	2.2	ND ND	 	2.2	ND		2.
2,4-Dinitrophenol	1	400	0.9		0.9	ND		0.9	ND		0.9	ND	 	0.9	ND	 	0.9	ND	+	0.
4-Nitrophenol	1	NS	ND		0.9	ND		0.9	ND		0.9	ND	 	0.9	ND	 -	0.9	ND	+	0.5
4.6-Dinitro-2-methylphenol	NS	NS	ND		1.2	ND		1.2	ND		1.2	ND	├	1.2	ND	 	1.2	ND ND	┼	1.3
Pentachlorophenol	1	NS	ND ND		2.1	ND		2.1	ND	<u> </u>	2.1	ND	 	2.1	ND	 	2.1	ND ND	 	2.1
N-Nitrosodimethylamine	50	NS	ND		0.7	ND		0.7	ND		0.7	ND	 	0.7	ND	 	0.7	ND -	 	0.
bis(2-Chloroethyf)ether	1	NS	ND		0.9	ND		0.9	ND	 	0.9	ND	 	0.9	ND	 	0.9	ND	 	0.9
1,3-Dichlorobenzene	3	50	ND		1	ND		1	ND		1	ND	├ -	1	ND		1	ND ND	 	1 0.3
1,4-Dichlorobenzene	3	50 .	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND -	+	0.9	ND ND	+	-0
1,2-Dichlorobenzene	3	50	ND		1.1	ND		1.1	ND		1.1	ND	 -	1.1	ND	 	1.1	ND	+	1.
bis(2-chloroisopropyl)ether	NS	NS	ND		0.8	ND		0.8	ND		0.8	ND	 	0.8	ND ND	 	0.8	ND	+	
N-Nitroso-di-n-propylamine	NS	NS	ND		0.7	ND		0.7	ND	 	0.7	ND	 - 	0.6	ND ND	 			+'	0
Hexachloroethane	5	0.6	ND		0.9	ND		0.9	ND	 	0.9	ND	 	0.7	ND ND	 	0.7	ND	 	0.
Nitrobenzene	0.4	NS	ND		1	ND		1	ND	 	1	ND	 	1	ND ND	 	0.9	ND		0.
Isophorone	50	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND ND	 	0.9	ND ND	+	 1
bis(2-Chloroethoxy)methane	5	NS	ND		0.9	ND		0.9	ND		0.9	ND	 	0.9	ND ND	 	0.9	ND ND	+	0.
1,2,4-Trichlorobenzene	5	50	ND		0.9	ND		0.9	ND		0.9	ND	 	0.9	ND ND	+	0.9	ND ND	 -	0.
Naphthalene	10	140	0.3		0.2	ND		0.2	0.2	·	0.9	ND		0.9	0.2	 -				0.
Hexachlorobutadiene	0.5	0.01	ND		0.6	ND		0.6	ND		0.6	ND	 	0.2	ND	 	0.2	ND	+ -'	0.
Hexachlorocyclopentadiene	5	0.7	ND		0.6	ND		0.6	ND		0.6	ND	 	0.6	ND ND	 	0.6	ND	- '	0.
2-Chloronaphthalene	10	NS	ND		1.1	ND		1.1	ND		1.1	ND	 			 	0.6	ND	 '	0.
Dimethylphthalate	50	NS	ND		1.1	ND	-	1.1	ND		1.1	ND	 	1.1	ND ND	 	1.1	ND		1.
Acenaphthylene	20	NS	ND		0.1	ND		0.1	ND		0.1	ND	 	0.1	ND ND	 	1.1	ND	 '	1.
2,6-Dinitrotoluene	5	NS	ND		1.3	ND		1.3	ND		1.3	ND .	 	1,3	ND ND		0.1	ND	 '	0.
Acenaphthene	20	60	0.3		0.1	ND		0.1	ND		0.1	ND	\vdash	0.1	ND ND	 -	1.3	ND	 	1.
2,4 Dinitrotoluene	5	NS	ND		1.1	ND		1.1	ND		1,1	ND ND	 	1.1	ND ND	 	0.1	ND	 '	C
Diethylphthalate	50	NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND ND		1.1	ND		1.
4-Chlorophenyl-phenylether	1	NS	ND		1	ND		1	ND		1 -	ND	f	1		 	0.8	ND	 '	0.0
Fluorene	50	23	ND		0.2	ND.		0.2	ND		0.2	ND ND	 	0.2	ND	 	1	ND	ļ!	1
N-Nitrosodiphenylamine	NS	NS	ND		1.1	ND		1.1	ND		1.1	ND	ii	1.1	ND ND	 	0.2	ND		0.
4-Bromophenyl-phenylether	NS	NS	ND		1.2	ND		1.2	ND		1.2	ND	 	1.1	ND ND	 	1.1	ND	+ '	1.1
Hexachlorobenzene	0.04	0.00003	ND		0.3	ND		0.3	ND	 	0.3	ND ND	 	0.3	ND ND	+	0.3	ND ND		1.
Phenanthrene	50	14	0.3		0.08	ND		0.08	ND	 	0.08	ND	 	0.08	ND ND	 	0.08	ND ND	+ /	0.
Anthracene	50	NS	ND		0.1	ND		0.1	ND		0.00	ND	 	0.00	ND ND		0.08	ND ND		0.0
Oi-n-butylphthalate	50	NS	ND		1	ND		1	ND		1	ND -	$\vdash \vdash \vdash$	1	ND ND	-	1 1	ND ON		0.
Fluoranthene	50	NS	ND		0.1	ND		0.1	ND	\vdash	0.1	ND ND	 	0.1	ND	 	0.1	ND	├── ┤	0.
Pyrene	50	NS	0.3		0.1	ND		0.1	ND	 -	0.1	ND -	 	0.1	0.2	 	0.1	ND DN	├ ──	0.
8enzidine	5	NS	ND		7.2	ND		7.2	ND	 -	7.2	ND	 	7.2	ND	 	7.2	ND	├ /	7
Butylbenzylphthalate	50	NS	ND		1	ND		1	ND	<u> </u>	1	ND	 	1	ND	 	1	ND	├ ──	 '
3,3'-Dichlorobenzidine	5	NS	ND		4.9	ND		4.9	ND	 	4.9	ND	 	4.9	ND	 	4.9	ND	├ ──	4.
Benzo(a)anthracene	0.002	NS	DN		0.2	ND		0.2	ND	 	0.2	ND	 	0.2	ND	 	0.2	ND ND	 	
Chrysene	0.002	NS	ND		0.2	ND		0.2	ND		0.2	ND	 	0.2	ND ND	 	0.2	ND ND	⊢—-	0
bis(2-Ethylhexyl)phthalate	5	NS	44		1.1	ND		1	NO	 	1.1	ON	 	1	1.1	 	1.1	ND ND	 	0.
Di-n-octylphthalate	50	NS	ND		1	ND		-	ND		1 1	ND	 		ND ND		1.1	ND ND	 	1
Benzo(b)fluoranthene	0.002	NS	ND		0.1	ND		0.1	ND		0.1	ND	 	0.1	ND ND	 	0.1	ND ND	├	<u> </u>
Benzo(k)fluoranthene	0.002	NS	ND		0.09	ND		0.09	ND	 	0.09	ND ND	┝┈─┤	0.09	ND -	 	0.1		₩-	0.
Benzo(a)pyrene	0.002	0.0006	ND		0.06	ND		0.06	ND		0.05	ND	 			 -		ND	\vdash	0.0
ndeno(1,2,3-cd)pyrene	0.002	NS	ND		0.08	ND		0.08	ND		0.08	ND.		0.06	ND	 	0.06	ND		0.0
Dibenz(a,h)anthracene	50	NS	ND		0.1	ND		0.00	ND	ļ	0.08	OZ OZ	 	0.08	ND	 	0.08	ND		0.0
Benzo(g,h,i)perylene	5	NS	ND		0.09	ND ND		0.09	ND ND		0.09	GN	 	0.1	ND	 	0.1	ND	⊢	0.
Total Confident Conc.	NA NA	NĀ.	46.1		0.03	- ND		0.08	0.3		9,09		┝──┤	0.09	ND	ļ	0.09	ND	└	0.0
									0.5			0			1.3	1		0	. –	

^{*} Using GA water classification with protection for drinking water (groundwater).

This is a best water classification with protection for human consumption of fish (saline water).

Using SD water classification with protection for human consumption of fish (saline water).

Ugf.= micrograms per liter

conc.= concentration

MDL= Method detection limit

J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value TICs= Tentatively identified compounds (estimated)

NA≖Not applicable

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port hory Facility.

²⁾ Concentrations highlighted and in bold exceed the New York AWQSGV for either groundwater or surface water.

BLE 5B ENT ANALYTICAL RESULTS-SVOCs SUMMARY OF INFLUENT/

	PILL WINTER HONE MEDGEL
IRM - SITES 2	A 2B) AND 3 (AREA 3A)
HHMT-	PORT IVORY FACILITY

Sample ID Lab Sample No. Sampling Date	New York State Ambient Water Quality Standards and Guidance Values	New York State Ambient Water Quality Standards and Guidance Vatues (Surface		I-10 Influent 766651 09/01/06		E	766652 09/01/06	nt .		11 Influen 766983 09/05/06	1		E-11 Effluer 7666984 09/05/06	nt		1-12 Influer 767616 09/07/06	nt		E-12 Effluer 767617 09/07/06	rt .
Matrix Units	(Groundwater*) ug/L	Water**) ug/L		WATER			WATER		Ī	WATER			WATER			WATER		·	WATER	
SEMIVOLATILE VOLATILE ORGAN	IC COMPOUNDS (SVOCs)	L	Conc	ug/L Qual	MDL	Conc	ug/L Qual	MDL	Conc	ug/L Qual	MDL		ug/L Qual	1401		ug/L	1	<u> </u>	ug/L	
Phenol	1	l NS	ND		0.6	ND	Quai	0.6	ND	Quai	0.6	Conc	Quai	MDL 0.6	Conc	Qual	MDL	Conc	Qual	MDL
2-Chlorophenol	1	NS	ND		1.1	ND		1.1	ND		1.1	ND	 	1.1	ND	 	0.6	ND	 	0.6
2-Nitrophenol	1	NS	ND		1.6	ND		1.6	ND		1.6	ND		1.6	ND	<u> </u>	1.6	ND ND	├	1.1
2,4-Dimethylphenol	11	1,000	B		2	ND		2	ND		2	ND	- I	2	ND		2	ND	 	2
2,4-Dichlorophenol	1	NS	ND		1.4	ND		1.4	ND		1.4	ND		1.4	ND		1.4	ND		1.4
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol		NS	ND		1.6	ND		1.6	ND		1.6	ND		1.6	ND	-	1.6	ND	 	1.6
2.4-Dinitrophenol	l	NS	ND_		2.2	ND		2.2	ND		2.2	ND		2.2	ND		2.2	ND	1	2.2
4-Nitrophenol	 	400 NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
4.6-Dinitro-2-methylphenol	- NS	NS NS	ND ND		0.9	ND ND		0.9	ND		0.9	ND	L	0.9	ND		0.9	ND		0.9
Pentachlorophenol		NS NS	ND		2.1	ND		1.2	ND		1,2	ND	łl	1.2	ND		1.2	ND		1.2
N-Nitrosodimethylamine	50	NS	ND		0.7	ND I		2.1 0.7	ND D		2.1	ND		2.1	ND.		2.1	ND	<u> </u>	2.1
bis(2-Chloroethyl)ether	1	NS NS	ND		0.7	ND ND		0.7	םא .		0.7	ND ON	 	0.7	ND	 _	0.7	ND	 	0.7
1,3-Dichlorobenzene	3	50	ND		1	ND		1	ND		1	ND ND		0.9	ND ND	<u> </u>	0.9	ND.	─ ─	0.9
1,4-Dichlorobenzene	3	50	ND		0.9	ND		0.9	ND		0.9	ND ND	++	0.9	ND ND	 -	0.9	ND		1-2-
1,2-Dichlorobenzene	3	50	ND		1.1	ND		1,1	ND	-	1.1	ND		1.1	ND ND	 	1.1	ND ND	├ ──	0.9
bis(2-chloroisopropyl)ether	NS	NS	ND		0.8	ND		0.8	ND	<u> </u>	0.8	ND		0.8	ND ND	 	0.8	ND ND	├ -	0.8
N-Nitroso-di-n-propylamine	NS	NS	ND .		0.7	ND		0.7	ND		0.7	ND	t	0.7	ND		0.7	ND		0.8
Hexachloroethane	5	0.6	ND		0.9	ND		0.9	ND		0.9	ND	1	0.9	ND	<u> </u>	0.9	ND ND		0.7
Nitrobenzene	0.4	NS	ND		11	ND		1	ND		1	ND	-	1	ND		1	ND	 /	1
Isophorone	50	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	 	0.9	ND		0.9
bis(2-Chloroethoxy)methane	5	NS	ND		0.9	ND		0.9	ND		0.9	ND.		0.9	ND		0.9	ND		0.9
1,2,4-Trichlorobenzene	5	50	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	\vdash	0.9
Naphthalene Hexachlorobutadiene	10 0.5	140	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND	 	0.2
Hexachlorocyclopentadiene	<u> </u>	0.01	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Chloronaphthalene	10	0.7 NS	ND		0.6	ND.		0.6	ND		0.6	ND		0.6	ND		0.6	ND	,	0.6
Dimethylphthalate	50	NS NS	ND ND		1.1	ND ND		1.1	ND		1.1	ND	ļ	1.1	ND		1.1	ND		1.1
Acenaphthylene	20	NS NS	ND		0,1	- DA		1.1 0.1	ND QN		1.1	ND		1.1	ND	L	1.1	ND		1.1
2,6-Dinitrotoluene	5	NS	ND		1.3	ND		1.3	ND UND		0.1 1.3	ND ND	} ───	0.1	ND		0.1	ND		0.1
Acenaphthene	20	60	ND		0.1	ND		01	ND ND		0.1	ND ND		1,3 0,1	ND DN		1.3	ND_	 	1.3
2,4-Dinitrotoluene	5	NS	ND		1.1	ND		1.1	ND		1.1	ND.	-	1.1	ND		0.1	ND ND	L	0.1
Diethylphthalate	50	NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND D		0.8	ND	f	0.8
4-Chlorophenyl-phenylether	1	NS NS	ND		1	ND		1	ND		1	ND	1	1	ND		1	ND	 	1
Fluorene	50	23	2.4		0.2	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND	-	0.2
N-Nitrosodiphenylamine	NS	NS NS	ND		1.1	ND		1.1	ND		1,1	ND		1,1	ND		1.1	ND		1,1
4-Bromophenyl-phenylether Hexachlorobenzene	NS 0.04	NS 0,00003	ND		1.2	ND		1.2	ND		1,2	ND		1.2	ND		1.2	ND		1.2
Phenanthrene	50	0.00003	ND		0.3	ND		0.3	ND		0,3	ND		0.3	ND		0.3	ND		0.3
Anthracene	50	14 NS	4.4 ND	 	0.08	ND ND		0.08	ND		0.08	ND		0.08	DN		0.08	ND		0.08
Di-n-butylphthalate	50	NS NS	ND		0.1	ND ND		0.1	0.2		0.1	ND	II	0.1	ND		0.1	ND		0.1
Fluoranthene	50	NS NS	1.9		0.1	ND		0,1	ND ND		0.1	ND ND		1	NO		1 1	ND	└ ─	1
Pyrene	50	NS NS	3.1		0.1	ND		0.1	0.2	<u> </u>	0.1	ND D	 	0.1	ND		0.1	ND		0,1
Benzidine	5	NS	ND		7.2	ND		7.2	ND ND		7.2	ND	 	7.2	ND	<u> </u>	0.1	ND		0.1
Butylbenzylphthalate	50	NS	ND	-	1	ND		1	ND		1	ND ND	 	1.2	ND ND	<u> </u>	7.2	ND ND		7.2
3,3'-Dichlorobenzidine	5	NS	ND		4.9	ND		4.9	ND		4.9	ND	-	4.9	ND		4.9	ND ND	\vdash	4.9
Benzo(a)anthracene	0.002	NS	0.9		0.2	ND		0.2	0.059		0.051	ND-	 	0.2	ND		0.2	ND		0.2
Chrysene	0.002	NS	1.9		0.2	ND		0.2	ND		0.2	ND	-	0.2	ND		0.2	ND	\vdash	0.2
bis(2-Ethylhexyl)phthalate	5	NS	15		1	ND		1	ND		1.1	ND	1	1	1.4		1.1	ND		1
Di-n-octylphthalate	50	NS	ND		1	ND		1	ND		1	ND		1	ND		1	ND		1
Benzo(b)fluoranthene	0.002	NS NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND	1	0.1
Benzo(k)fluoranthene Benzo(a)pyrene	0.002	NS	ND		0.09	ND		0.09	ND		0.09	ND		0.09	ND		0.09	ND	r	0.09
Indeno(1,2,3-cd)pyrene	0.002	0.0006	ND		0.06	ND		0.06	ND		0.06	ND		0.06	ND		0.06	ND		0.06
Dibenz(a,h)anthracene	50	NS NS	0.5 ND		0.08	ND		0.08	ND		0.08	ND		0.08	ND		0.08	ND		0.08
Benzo(g,h,i)perylene	5	NS NS	םא מא	\vdash	0.1	ND		0.1	ND		0.1	ND	└	0.1	ND		0.1	ND		0.1
Total Confident Conc.	NA NA	NA NA	30.1		0.09	ND		0.09	ND		0.09	ND		0.09	ND		0.09	ND		0.09
Total SVOC TICs (Estimated Conc.)	NS NS	NS NS	1441	—		- 0		NA NA	0.459			0			1.4			0		
Notes:		L 149	1441					NA	10	J		0						0		

Facility.
2) Concentrations highlighted and in bold exceed the New York AWQSGV for either groundwater or surface water.

^{*} Using GA water classification with protection for drinking water (groundwater).

^{**} Using SD water classification with protection for human consumption of fish (saline water).

ug/L= micrograms per liter

conc.= concentration

MDL= Method detection limit

J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value TICs= Tentatively identified compounds (estimated)

NA=Not applicable

¹⁾ One influent sample was collected at a point upstream of the treatment system and one effluent sample was

at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port lvory

SUMMARY OF INFLUENT/E NT ANALYTICAL RESULTS-SVOCs IRM - SITES 2 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	New York State Ambient Water	New York State Ambient		l-13 Influen			-13 Effluer	nt		l-14 Influent			E-14 Effluer		1	I-15 Influent	_		-15 Effluer	
Lab Sample No.	Quality Standards and	Water Quality Standards and		769934		-	769935	-		770359		i '	770360		ŀ	770599		•	770598	д
Sampling Date	Guidance Values			09/15/06		ì	09/15/06		i	09/18/06		1	09/18/06		}	09/19/06	1	ľ	09/19/06	
Matrix	(Groundwater*) ug/L	Guidance Values (Surface		WATER		l	WATER			WATER		1	WATER		i	WATER	1		WATER	
Units	(Groundwater) ug/L	Water**) ug/L		ug/L		ł	ua/L		Į.	ug/L		l	ug/L			ua/L				
SEMIVOLATILE VOLATILE ORGAN	IC COMPOUNDS (SVOCs)	^	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc		1/5		ug/L	
Phenol	1	l NS	ND	3337	0.6	ND	Qual	0.6	ND	Quai			Quai			Qual	MDL	Conc	Qual	MDL
2-Chlorophenol	<u> </u>	NS NS	ND ND		1.1	ND		1.1	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Nitrophenol	 	NS NS	ND		1.6	ND.		1.6			1.1	ND		1.1	ND		1.1	ND		1.1
2,4-Dimethylphenol	 	1,000	ND ND						ND		1.6	ND	 	1.6	ND.	 	1.6	ND		1.6
2.4-Dichlorophenal		1,000 NS	ND		2	ND		2	ND		2	ND		22	ND		2	ND		2.1
4-Chloro-3-methylphenol	 	NS NS			1.4	ND		1.4	ND		1.4	ND	L	1,4	ND		1.4	ND		1.5
2,4,6-Trichlorophenol	 		ND		1.6	ND		1.6	ND		1.6	ND		1.6	ND	i	1.6	ND		1.7
2.4-Dinitrophenol	 	NS 400	DD		2.2	ND		2.2	ND		2.2	ND.	ļ	2.2	ND		2.2	ND		2.2
4-Nitrophenol			ND		0.9	ND		0.9	ND		0.9	ND	L	0.9	ND	I	0.9	ND		0.9
4,6-Dinitro-2-methylphenol	NS .	NS NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	I T	0.9	ND		0.9
	NS NS	NS	ND		1.2	ND		1.2	ND		1.2	ND		1.2	ND		1.2	ND		1.3
Pentachlorophenol		NS	ND		2.1	ND		2.1	ND	L l	2.1	ND		2.1	ND		2.1	ND		2.1
N-Nitrosodimethylamine	50	NS	ND		0.7	ND		0.7	ND		0.7	ND		0.7	ND	-	0.8	ND		0.8
bis(2-Chloroethyl)ether	1	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	1	0,9	ND		0.9
1,3-Dichlorobenzene	3	50	ND		1	ND		1	ND		1	ND		1	ND	 	1	ND		1
1,4-Dichlorobenzene	3	50	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND	1	0.9	ND		0.9
1,2-Dichlorobenzene	3	50	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND	 +	1.1	ND		1.1
bis(2-chloroisopropyl)ether	NS	NS	ND		0.8	ND		0.8	ND		0.8	ND	1	0.8	ND		0.9	ND		0.9
N-Nitroso-di-n-propylamine	NS	NS	ND		0.7	ND		0.7	ND		0.7	ND		0.7	ND	 -	0.8	ND		0.8
Hexachloroethane	5	0.6	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Nitrobenzene	0.4	NS	ND		1	ND		1	ND		1	ND	1	1	ND	 	1	ND		
Isophorone	50	NS	ND		0.9	ND		0.9	- ND		0.9	QN	\leftarrow	0.9	ND		- +	ND ND		 -
bis(2-Chloroethoxy)methane	5	NS	ND	h	0.9	ND		0.9	ND		0.9	ND	 	0.9	ND		0.9			1
1,2,4-Trichlorobenzene	5	50	ND		0.9	ND		0.9	ND		0.9	ND.	 	0.9	ND	1	0.9	ND ND		0.9
Naphthalene	10	140	ND		0.2	ND	-	0.2	ND		0.2	ND	1	0.3	0.3	├	0.9	ND ND		0.9
Hexachlorobutadiene	0.5	0.01	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND	 	0.6	ND ND		
Hexachlorocyclopentadiene	5	0.7	ND		0.6	ND		0.6	ND		0.6	ND	-	0.6	ND	 	0.6			0.6
2-Chloronaphthalene	10	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND ND	 -	1.1	ND ND		0.6
Dimethylphthalate	50	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND ND		1.1
Acenaphthylene	20	NS	ND		0.1	ND		0.1	0.2		0.1	ND		0.1	ND	}	0.1			1.1
2,6-Dinitrotoluene	5	NS	ND		1.3	ND		1.3	ND		1.3	ND -		1.3	ND ND	 		ND		0.1
Acenaphthene	20	60	1.8		0.1	ND		0.1	1.4		0.1	ND				 	1.3	ND		1.3
2,4-Dinitrotoluene	5	NS	ND		1.1	ND		1.1	ND		1.1	ND ND		1.1	1.1	 -	0.1	ND		0.1
Diethylphthalate	50	NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND ND	 	1.2 0.8	ND		1.2
4-Chlorophenyl-phenylether	1	NS	ND		1	ND		1	ND.		1	ND		U,D	ND	 		ND_		0.8
Fluorene	50	23	2.7		0.2	ND		0.2	ND 1		0.2	ND	ļi	- 1		├	1.1	ND		1.1
N-Nitrosodiphenylamine	NS	NS	ND		1.1	ND		1.1	ND.		1.1			0.2	ND	 _	0.2	ND		0.2
4-Bromophenyl-phenylether	NS	NS	ND		1.2	ND		1.2	ND ND	<u> </u>		ND		1.1	ND	<u> </u>	1.1	ND		1.1
Hexachlorobenzene	0.04	0.00003	ND	\vdash	0.3	ND		0.3	ND.	<u> </u>	1.2 0.3	ND	 	1.2	ND	{ ↓	1.2	ND		1.2
Phenanthrene	50	14	3.2		0.08	ND		0.08	0.6	├		ND	 	0.3	ND	├	0.3	ND_		0.3
Anthracene	50	NS NS	ND		0.1	ND		0.08	ND		0.08	ND		0.08	0.2		0.08	ND		0.082
Di-n-butytphthalate	50	NS NS	ND		1	ND		1 1	- ND		0.1	ND	-	0.1	ND	↓	0.1	ND		0.1
Fluoranthene	50	NS	ND	<u> </u>	0.1	ND ND		0.1			1	ND		1	ND	I—L	_1_	ND		1
Pyrene	50	NS NS	ND ND	 	0.1	ND			0.3	├ ─	0.1	ND		0.1	0.2	ļ	0.1	ND		0.1
Benzidine	5	NS NS	ND ND	 	7.2	ND D		7.2	0.2		0.1	ND		0.1	0.2	 	0.1	ND		0.1
Butylbenzylphthalate	50	NS NS	ND		1			1.2	ND		7.2	ND		7.2	ND	L	7.3	ND		7.4
3,3'-Dichlorobenzidine	70 5	NS NS	ND		4.9	ND ND		<u> </u>	ND			ND	L	1	ND	LL	1.1	ND_		1.1
Benzo(a)anthracene	0.002	NS NS	ND					4.9	ND		4.9	ND		4.9	ND	11	5	ND_		5.1
Chrysene	0.002				0.2	ND		0.2	ND		0.2	ND	L.,	0.2	ND		0.2	ND_		0.2
bis(2-Ethylhexyl)phthalate	5	NS NS	_ ND	L	0.2	ND		0.2	ND		0.2	ND		0.2	ND	1	0.2	ND_		0.2
		NS	ND	L		ND		1	ND		1.1	ND	\Box	11	ND	L	. 1	ND		1.1
Di-n-octylphthalate	50	NS	ND	ļ	1	ND		1	ND		1	ND		1	ND		1	ND		1
Benzo(b)fluoranthene	0.002	NS	ND		0.1	ND		0,1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Benzo(k)fluoranthene	0.002	NS	ND		0.09	ND		0.09	ND		0.09	ND		0.09	ND	T	0.091	ND		0.093
Benzo(a)pyrene	0.002	0.0006	ND		0.06	ND		0.06	ND		0.06	ND		0.06	ND		0.061	ND		0.062
Indeno(1,2,3-cd)pyrene	0.002	NS	ND		0.08	ND		0.08	ND		80.0	ND		0.06	ND -	\leftarrow	0.081	ND		0.002
Dibenz(a,h)anthracene	50	NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND	t	0.1	ND CN		0.1
Benzo(g,h,i)perylene	5	NS	NO		0.09	ND		0.09	ND		0.09	ND	1	0.09	ND	1	0.091	ND		0.093
Total Confident Conc.	NA NA	NA NA	7.7			0			3.7			- 112	t		7	++		100		

Total SVOC TICs (Estimated Conc.) Notes:

210.9

^{*} Using GA water classification with protection for drinking water (groundwater).

Using SD water classification with protection for human consumption of fish (saline water).

ug/L# micrograms per liter conc.4 concentration

MDL= Method detection limit

J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value

TICs= Tentatively identified compounds (estimated)

NA=Not applicable

RLE 5B SUMMARY OF INFLUENT/E NT ANALYTICAL RESULTS-SVOCs IRM - SITES 2 A 28) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab Sample No. Sampling Date	New York State Ambient Water Quality Standards and	New York State Ambient Water Quality Standards and		I-16 Influent 772761		Ε	-16 Effluen 772762	nt .		1-17 Influen 775240	1	E	-17 Effluen 775241	t		i-18 Influen 777150	t		E-18 Effluer 777151	it
Matrix .	Guidance Values (Groundwater*) ug/L	Guidance Values (Surface Water**) uc/L		09/26/06 WATER	-		09/26/06 WATER			10/04/06 WATER			10/04/06 WATER			10/12/06 WATER			10/12/06 WATER	ļ
Units		Trailer / ug/2		ug/L			ug/L		<u> </u>	ug/L		L	ug/L		1.	_ug/L		Ì	ug/L	
SEMIVOLATILE VOLATILE ORGAN	IC COMPOUNDS (SVOCS)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
2-Chlorophenol		NS NS	ND ND		0. 6	ND DA		0.6	ND		0.6	ND .		0.6	ND		0.6	ND		0.6
2-Nitrophenol	 	NS .	ND		1.6	ND ND		1.1	ND		1.1	ND		1,1	ND	ļ	1.1	ND		1.1
2,4-Dimethylphenol	li	1,000	ND		2	ND		2.1	ND ND		1.6	ND ND		1.6	ND	L	1.6	ND		1.6
2,4-Dichlorophenol	1	NS	ND		1.4	ND		1.5	ND		1.4	ND ND		2.1 1.5	ND		2	ND		2.1
4-Chloro-3-methylphenol	1	NS	ND		1.6	ND		1.7	ND	<u> </u>	1.6	ND		1.7	ND ND		1.4	ND ND		1.5
2,4,6-Trichlorophenol	1	NS	ND		2.2	ND		2.2	ND		2.2	ND		2.2	ND		2.2	ND		1.7
2,4-Dinitrophenol	1	400	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
4-Nitrophenol	1	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
4,6-Dinitro-2-methylphenol	NS.	NS	2		1.2	ND	-	1.3	ND		1.2	ND		1.3	ND		1.2	ND		1.3
Pentachlorophenol	11	NS	ND		2.1	ND		2.1	ND		2.1	ND		2.1	ND		2.1	ND		2.1
N-Nitrosodimethylamine	50	NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND		0.8
bis(2-Chloroethyl)ether		NS	ND		0.9	ND		0.9	ND		0.9	, ND		0.9	ND		0.9	ND		0.9
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	50	ND		1	ND		1	ND		1_	ND		11	ND		1	ND		1
1,4-Dichlorobenzene	3 3	50 50	ND ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	. ND		0.9
bis(2-chloroisopropyl)ether	NS NS				1,1	ND		1.1	ND		1.1	. ND		1.1	ND		1.1	ND		1.1
N-Nitroso-di-n-propylamine	NS NS	NS NS	ND ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Hexachioroethane	5	0.6	ND		0.9	ND ND		0.8	ND		0.8	ND		0.8	ND		0.8	ND		0.8
Nitrobenzene	0.4	NS NS	ND ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Isophorone	50	NS NS	ND			ND		1	ND ND			ND ND		1	ND		1	ND		1
bis(2-Chloroethoxy)methane	5	NS	ND	\vdash	0.9	DI	-	0.9	ND		0.9	ND ND		0.9	ND		1 1	ND		1
1,2,4-Trichlorobenzene	5	50	ND		0.9	ND		0.9	ND	-	0.9	ND		0.9	ND ND		0.9	ND ND		0.9
Naphthalene	10	140	ND		0.2	ND		0.2	ND		0.2	ND		0.2	ND		0.9	ND		0.9
Hexachlorobutadiene	0.5	0.01	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.2
Hexachlorocyclopentadiene	5	0.7	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6	ND		0.6
2-Chloronaphthalene	10	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND		1.1
Dimethylphthalate	50	NS	ND		1.1	ND		1.1	ND		1.1	ND		1,1	ND		1.1	ND		1.1
Acenaphthylene 2.6-Dinitrotoluene	20	NS	0.1		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Acenaphthene	5 20	NS	ND		1,3	ND		1.3	ND		1.3	ND		1.3	ND		1.3	GN		1.3
2.4-Dinitrotoluene	20	60 NS	0.7 ND		0,1	20		0.1	ND		0.1	ND		0.1	1.6		0.1	ND		0.1
Diethylphthalate	50	NS NS	ND		0.8	ND ND		1.2 0.8	ND		1.2	ND		1.2	ND		1.2	ND		1.2
4-Chlorophenyl-phenylether	1	NS	ND		1.1	ND		1.1	ND ND		0.8	ND ND		0.8	ND		0.8	ND		0.8
Fluorene	50	23	0.8		0.2	ND		0.2	ND		0.2	ND		1.1 0.2	ND 3.4		1.1 0.2	ND ND		1.1
N-Nitrosodiphenylamine	NS	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND		1.1	ND		0.2
4-Bromophenyl-phenylether	NS	NS	ND		1.2	ND		1.2	ND		1.2	ND		1.2	ND ND		1.2	ND		1.1
Hexachlorobenzene	0.04	0.00003	ND		0.3	ND		0.3	ND		0.3	ND		0.3	ND		0.3	ND		0.3
Phenanthrene	50	14	0.5		0.08	ND		0.082	ND		0.082	ND		0.082	4.6		0.081	ND		0.081
Anthracene	50	NS	ND		0.1	NO		0.1	ND		0.1	ND		0.1	2.1		0.1	ND		0.1
Di-n-butytphthalate Fluoranthene	50 50	NS	ND		1	ND		1 :	ND		1	ND		11	ND		1	ND		1
Pyrene	50	NS NS	ND	-	0.1	ND		0,1	ND		0.1	ND		0.1	0.7		0.1	ND		0.1
Benzidine	5 5	NS NS	0.2 ND		7.3	ND ND		0.1 7.4	ND ND		0.1 7.3	ND		0.1	1.2		0.1	ND		0.1
Butylbenzylphthalate	50	NS	ND		1.1	ND		1.1	ND		1.1	ND ND		7.4	ND		7.3	ND		7.4
3,3'-Dichlorobenzidine	5	NS NS	ND	 	5	ND		5.1	ND ND		5	ND I		1.1 5.1	ND ND		1.1	ND		1.1
Benzo(a)anthracene	0.002	NS	ND		0.2	ND	-	0.2	ND		0.2	ND		0.2			0.2	ND		5.1
Chrysene	0.002	NS	ND		0.2	ND		0.2	ND	<u> </u>	0.2	ND		0.2	ND 0.7		0.2	ND ND		0.2
bis(2-Ethylhexyl)phthalate	5	NS	3.1		1.1	ND		1.1	1.4		1.1	ND		1.1	25		1.1	ND		1.1
Di-n-octylphthalate	50	NS	ND		1	ND		1	ND		1	ND		1	ND ND		1	ND		1
Benzo(b)fluoranthene	0.002	NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Benzo(k)fluoranthene	0.002	NS	ND		0.091	ND		0.093	ND		0.091	ND		0.093	ND		0.091	ND		0.091
Benzo(a)pyrene	0.002	0.0006	ND		0.061	ND		0.062	ND		0.061	ND		0.062	ND		0.061	ND		0.061
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	0.002	NS NS	ND		0.081	ND		0.082	ND		0.081	ND		0.082	ND		0.081	ND		0.081
Benzo(g,h,i)perylene	50 5	NS NS	ND ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Total Confident Conc.	NA NA	NS NA			0.091	ND		0.093	ND		0.091	ND		0.093	ND		0.091	ND		0.091
Total SVOC TICs (Estimated Conc.)	NS NS	NS NS	5.4 76.1	\vdash		0			1.4	ا ــــــــــــــــــــــــــــــــــــ		0			39.3			0		
Notes:			70.1						30.4	J		0			1337	J		0		

^{*} Using GA water classification with protection for drinking water (groundwater).

Using SD water classification with protection for human consumption of fish (saline water).

ug/L= micrograms per liter

conc.= concentration

MDL= Method detection limit

J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value

TICs= Tentatively identified compounds (estimated)

NA-Not explicable

1) One influent sample was collected at a point upstream of the treatment system and one effluent sample was

at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port Ivory a a point commencer or the Commencer of

SUMMARY OF INFLUENT/E OF INFLUENT/S ENT ANALYTICAL RESULTS-SVOCS IRM - SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	New York State Ambient Water	Name West Co. A. A. C. C.		i-19 Influen	,	T	E-19 Effluer		T	I-20 Influen			5 00 5m	
Lab Sample No.	Quality Standards and	New York State Ambient		778005	•	l '	778006	11		778365	π		E-20 Effluer	nt
Sampling Date	Guidance Values	Water Quality Standards and		10/16/06		ł	10/16/06			10/17/06		1	778366	
Matrix	(Groundwater*) ug/L	Guidance Values (Surface Water**) ug/L		WATER		l	WATER			WATER		i	10/17/06 WATER	
Units		water) ug/L		ug/L		1	ug/L			ug/L		1	ug/L	l
SEMIVOLATILE VOLATILE ORGAN	IC COMPOUNDS (SVOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL	Conc	Qual	MDL.
Phenol	1	NS	ND		0.6	ND	1	0.6	ND.	- Quan	0.6	ND	Qual	
2-Chlorophenol	1	NS	ND		1.1	ND		1.1	ND -	 	1.1	ND ND	-	0.6
2-Nitrophenol	1	NS	ND		1.6	ND	-	1.6	ND	 	1.6	ND-		1.1
2,4-Dimethylphenol	11	1,000	ND		2	ND		2.1	ND	-	2	ND		2.1
2,4-Dichlorophenol	11	NS	ND		1.4	ND		1.5	NO	 	1,4	ND		1.5
4-Chloro-3-methylphenol	11	NS	ND		1.6	ND		1.7	ND	t	1.6	ND		1.7
2,4,6-Trichlorophenol	1	NS	ND		2.2	ND		2.2	ND		2.2	ND.		2.2
2,4-Dinitrophenal	11	400	ND		0.9	ND		0.9	ND		0.9	ND		0.9
4-Nitrophenol	11	NS	ND		0.9	ND		0.9	ND		0.9	NO	·	0.9
4,6-Dinitro-2-methylphenol	NS	NS	ND		1.2	ND		1.3	ND		12	ND		1.3
Pentachlorophenol	1	NS	ND		2.1	ND		2.1	ND		2.1	ND	-	2.1
N-Nitrosodimethylamine	50	NS NS	ND		0.8	ND		0.8	ND		0.8	ND.		0.8
bis(2-Chloroethyl)ether	1	NS	ND		0.9	ND		0.9	ND		0.9	ND		0.9
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	50	ND		1	ND		1	ND		1	ND		1
1,4-Dichlorobenzene	3 3	50	ND		0.9	ND		0.9	ND		0.9	ND		0.9
bis(2-chloroisopropyl)ether	NS NS	50	ND		1.1	ND		1.1	ND		1.1	ND		1.1
N-Nitroso-di-n-propylamine	NS NS	NS	ND		0.9	ND		0.9	ND	L	0.9	ND		0.9
Hexachloroethane		NS	ND		0.8	ND		0.8	ND		0.8	ND		0.8
Nitrobenzene	5	0.6	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Isophorone	0.4 50	NS NS	ND		1	ND		1	ND		1	ND		1
bis(2-Chloroethoxy)methane	50	NS	ND		1	ND _		1	ND		1	ND		1
1,2,4-Trichlorobenzene	5	NS	ND		0.9	ND		0.9	ND:		0.9	ND		0.9
Naphthalene	10	50 140	ND		0.9	ND		0.9	ND		0.9	ND		0.9
Hexachlorobutadiene	0.5	0.01	ND		0.2	ND		0.2	ND		0.2	ND		0.2
Hexachlorocyclopentadiene	5	0.01	ND ND		0.6	ND		0.6	ND	ļ	0.6	ND		0.6
2-Chloronaphthalene	10	NS NS	ND ND		0.6	ND	 	0.6	ND		0.6	ND		0.6
Dimethylphthalate	50	NS ,	ND		1.1	ND ND		1,1	ND		1:1	ND		1.1
Acenaphthylene	20	NS NS	ND		0.1	ND ND	 	1.1	ND		1.1	ND		1.1
2,6-Dinitrotoluene	5	NS	ND		1.3	ND	 	0.1	ND ND		0.1	ND		0.1
Acenaphthene	20	60	0.8		1.2	ND		1.3 0.1			1.3	ND	L	1.3
2,4-Dinitrotoluene	5	NS	ND		1.2	ND		1.2	2.5 ND		0.1	ND		0.1
Diethylphthalate	50	NS	ND		0.8	ND		0.8	ND		1.2 0.8	ND		1.2
4-Chlorophenyl-phenylether	1	NS	ND		1.1	ND		1,1	ND		1,1	ND ND		0.8
Fluorene	50	23	0.5		0.2	ND		0.2	2.8	 	1.1	ND		1.1 0.2
N-Nitrosodiphenylamine	NS NS	NS	ND		1.1	ND	l	1,1	ND		1.1	ND	-	1.1
4-Bromophenyl-phenylether	NS	NS	ND		1.2	ND		1.2	ND		1.2	ND		1.2
Hexachlorobenzene	0.04	0.00003	ND		0.3	ND		0.3	ND		0.3	ND	<u> </u>	0.3
Phenanthrene	50	14	ND		0.08	ND		0.08	1.4	<u> </u>	0.08	ND		0.08
Anthracene	50	NS	ND		0.1	ND		0.1	ND	1	0.1	ND		0.1
Di-n-butylphthalate	50	NS	ND		1	ND		1	ND		1	ND		1
Fluoranthene	50	NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Pyrene	50	NS	ND		0.1	ND		0.1	ND		0.1	ND		0.1
Benzidine .	. 5	NS	ND		7.3	ND		7.4	ND		7.3	ND		7.4
Butylbenzylphthalate	50	NS	ND		1.1	ND		1.1	ND		1.1	ND		1.1
3,3'-Dichlorobenzidine	5	NS	ND		5	ND		5.1	ND		5	ND		5.1
Benzo(a)anthracene Chrysene	0.002	NS	ND		0.2	ND		0.2	ND		0.2	ND		0.2
bis(2-Ethylhexyl)phthalate	0.002	NS	ND		0.2	ND		0.2	ND		0.2	ND		0.2
Di-n-octylphthalate	55	NS	ND		1.1	ND		1,1	ND		1.1	ND		1.1
Benzo(b)fluoranthene	50	NS NS	ND		1	ND		1	ND	L	1	ND		
Benzo(k)fluoranthene	0.002	NS	ND		0.1	ND		0.1	ND	I	0.1	ND		0.1
Benzo(a)pyrene	0.002	NS	ND		0.09	ND		0.09	ND		0.09	ND		0.09
Indeno(1,2,3-cd)pyrene	0.002	0.0006	ND		0.06	ND		0.06	ND		0.06	ND		0.06
Dibenz(a,h)anthracene	0.002	NS	ND		0.08	ND		0.08	ND		0.08	ND		0.08
Benzo(g,h,i)perylene	50 5	NS	ND		0.1	8		0.1	ND		0.1	ND		0.1
Total Confident Conc.	NA NA	NS	ND		0.09	20		0.09	ND		0.09	ND		0.09
Total SVOC TICs (Estimated Conc.)		NA NA	1.3			0			6.7			0		
Total GVOC TICS (Esumated Conc.)	NS NS	NS	30.1	Ĺ		0			222.8	J		D		****

^{*} Using GA water classification with protection for drinking water (groundwater).

[&]quot;Using SD water classification with protection for human consumption of fish (saline water).

ug/L= micrograms per liter

[|] conc.= concentration

MDL= Method detection limit

[}] J= Thes estimated value was detected at a concentration below the MDL, but above the laboratory's reporting limits.

NS= No standard or guidance value

TICs= Tentatively identified compounds (estimated)

<sup>i) Une influent sample was collected at a point upstream of the treatment system and one effluent sample was at a point downstream of the treatment system on each day the treated water was discharged at the HHMT-Port lvory Facility.

2) Concentrations highlighted and in bold exceed the New York AMPRESS.</sup>

groundwater standards were selected because, at this time, these represent the only guidance available for ambient groundwater. However, given the location of the HHMT-Port Ivory Facility and the potential for the groundwater to be saline, the published Class GA AWQSGVs are not appropriate for use at this site.

The analytical data demonstrate the effectiveness of the groundwater treatment system. All organic compounds detected at concentrations above their respective AWQSGVs in the influent samples were either not detected or were detected at concentrations below Class SD (surface water) or Class GA (groundwater) AWQSGVs in the corresponding effluent samples. The only targeted organic compounds detected at concentrations above their respective AWQSGVs in any influent sample were the SVOCs nitrobenzene, 4-chlorophenyl-phenylether, and benzo(a)anthracene; as noted above, these compounds were effectively treated before the water was discharged to the retention basin. The total concentrations of VOC TICs in influent samples ranged from non-detect to 298.3 ug/L, while that for the SVOC TICs ranged from non-detect to 1,441 ug/L. Except for the effluent samples collected on September 15 and 18, 2006, no VOC or SVOC TICs were detected in any effluent sample. AWQSGVs have not been established for the TICs in the September 15th and 18th effluent samples, and the TICs do not meet the definition of Principal Organic Contaminants (POCs). Based on the data, the treatment and on-site discharge of groundwater continued throughout the IRM without interruption.

6.3 Management of Excavated Soil

As per the NYSDEC-approved Revised IRM Work Plan, impacted and clean soil were stockpiled separately. Soil was deemed to be impacted if it exhibited one or more of the following characteristics: sheen, LNAPL, stained soil, or elevated PID measurements. Impacted soil was stockpiled on plastic and staged near its corresponding Removal Area/Trench. The stockpiled soil was elevated at least one foot at the edges and covered with plastic secured using concrete block or brick. Please note that impacted soil from Areas J, K and L was stockpiled at one location so as to prevent impacting facility operations in the limited space to the east of Bldg. No. 80. Following the completion of all excavation activities and the waste characterization sampling described below, the stockpiles of impacted soil were combined into one larger

stockpile, located in the vicinity of Area G. Stockpiled soil that appeared to be clean based on the absence of the characteristics listed above was sampled and reused during backfilling (see Section 7).

Soil samples were collected from the stockpiles of impacted soil for waste characterization purposes. Prior to soil excavation activities, one discrete soil sample was collected at each of Area B and Area I; these soil samples were analyzed for total petroleum hydrocarbons (TPHC). The analytical results indicated a wide variation in the concentration of TPHC at these two Removal Areas/Trenches. Based on the analytical results, disposal of the soil at Area B carried a greater unit cost than the soil excavated from Area I. In order to complete the IRM in a cost-efficient manner, the Port Authority collected waste characterization samples from all Removal Areas to characterize the soil for disposal purposes. One composite soil sample was collected from the stockpile at each Removal Area except that soil excavated from Area B was not sampled, a second sample was collected at the Area I stockpile to confirm the previous results, and only one composite soil sample was collected from soil excavated at Areas J, K, and L. Soil excavated at Area B had already been characterized.

One composite soil sample was collected from soil excavated at Areas J, K, and L because soil from these Removal Areas/Trenches was staged as a single stockpile. Each composite sample consisted of five discrete samples that were composited by the laboratory. Soil samples were not collected from stockpiles generated during the additional excavation activities conducted at certain Removal Areas/Trenches (see Section 5). All grab and composite samples were transported to Veritech (Certification No. 11408) under standard Chain of Custody procedures for analysis of TPHC concentration. The analytical results are summarized in Table 6.

Table 6: Summary of Total Petroleum Hydrocarbons (TPH) Analytical Results

Removal Area/Trench	TPH Results (mg/kg)
Area A	5,800
Area B	52,000*
Area C	18,000

Area D	3,800
Area E	360
Area F	15,000
Area G	9,500
Area H	21,000
Area I	12,000*/18,000
Area J	11,000**
Area K	11,000**
Area L	11,000**

Notes: *Results for a discrete ("grab") soil sample.

7.0 POST-EXCAVATION IRM ACTIVITIES

Activities conducted after excavation included the following:

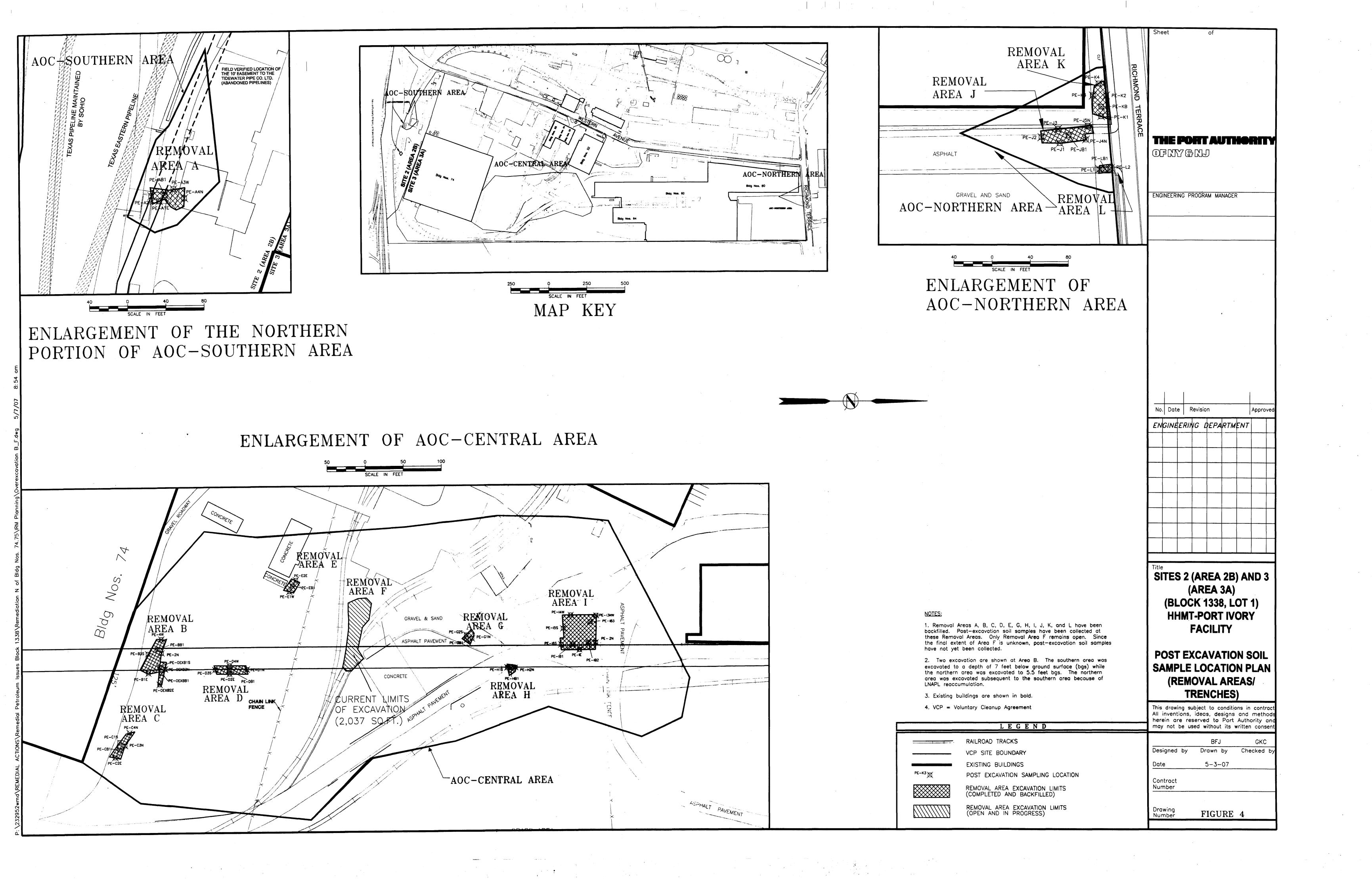
- Collection and analysis of post-excavation soil samples;
- Collection, preparation, and analysis of LNAPL leachate samples;
- Collection and analysis of groundwater samples; and,
- Completion of demobilization and site restoration activities.

These activities are summarized below in Sections 7.1 through 7. 4, respectively.

For discussion purposes, the analytical results from soil sampling have been compared to current NYSDEC RSCOs set forth in the January 1994 NYSDEC Division of Environmental Remediation Technical and Administrative Guidance Memorandum (TAGM) #4046. Please note, reference to the RSCOs in this report does not represent any agreement or concurrence that the same are appropriate for usage at the HHMT-Port Ivory Facility.

he LNAPL leachate and groundwater sampling analytical results have been compared to ment NYSDEC AWQSGVs for groundwater classified as GA, a potential drinking water turce. As previously stated, given the location of the site and the potential for the groundwater e saline, the published AWQSGVs are not appropriate for use at this site. However, at this

^{**}One composite soil sample was collected from the stockpile of impacted soil excavated from Areas J, K, and L.


time, these represent the only guidance available for ambient groundwater. Please note, the reference of these cleanup objectives in this report does not represent any agreement or concurrence that the same are appropriate for usage at this site.

7.1 Collection of Post-Excavation Soil Samples

Prior to backfilling, HMM, at the direction of the Port Authority collected post-excavation soil samples from the sidewalls and bottom of each Removal Area/Trench to document the environmental quality of the soil that would remain at the HHMT-Port Ivory Facility. The samples were transferred directly from the bucket of an excavator provided by RCC into the laboratory-provided sampling jars using a dedicated stainless steel trowel or scoop. All samples were transported to Veritech (Certification No. 11408) under Chain of Custody documentation for analysis of target compound list (TCL) VOC+10 and TCL SVOC+20. The post-excavation soil samples were collected at the frequency specified in DER-10 and the Revised IRM Work Plan; specifically, one sample was collected from each 30 linear feet of sidewall and one sample was collected from each 900 feet of bottom area (see Table 7). Soil sample locations and depth intervals were biased towards the most significantly impacted soil, as determined by volatile organic vapor concentrations or field observations of stained soil or petroleum odors. In the absence of visual indications of impacted soil in a thirty-foot section of sidewall, the sample was collected at the 0.5-foot depth interval immediately above the water table thirty feet from the prior sampling location at that Removal Area/Trench perimeter. The locations of the postexcavation soil samples are shown on Figure 4.

Table 7: Summary of Post-Excavation Soil Sample Collection

Excavation Area		Bottom Area (sq. ff)	Number of Sidewall Samples Collected	
Α	98	558	4	1
В	119	550	4	1
B (over-ex.)*	73	550	3	1
С	93	477	4	1
D	119	531	4	1
E	57	199	2	. 1
F	168	2037	Note 3	Note 3

G	57	202	2	1
Н	43	116	2	1
1	176	1990	6	3
J	116	631	5	1
K	97	467	4	1
L	46	118	2	1

Notes and Abbreviations:

- 1. The dimensions of the Removal Areas/Trenches are considered approximate and are based upon GPS measurements of each excavation.
- 2. Post-excavation sample frequency is in accordance with the NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation dated December 2002 and the *Revised IRM Work Plan*.
- 3. Post-excavation samples were not collected at Area F because the IRM is incomplete at that Removal Area/Trench.
- *B (over-ex.) = Additional excavation was performed subsequent to the backfill of Removal Area/Trench B for the purpose of removing viscous tar-like (Type II) LNAPL encountered above groundwater.

 ft. feet
- sq. ft. square feet

Post-excavation soil analytical results are summarized in Tables 8A and 8B, respectively. In general, the concentrations of regulated organic compounds detected in the post-excavation soil samples are similar to those detected at other portions of the HHMT-Port Ivory Facility and are attributable to the fill materials placed by P&G. Acetone, benzene, methylene chloride, and total xylenes were the only VOCs detected above their respective RSCOs in the post-excavation soil samples. Acetone, a commonly-used laboratory solvent, was detected above its RSCO only in post-excavation soil samples collected at Areas C, D, G, H, and I. Only slightly more than half (14 of 23) of the post-excavation soil samples collected at those areas contained acetone at a concentration above its RSCO; acetone was not detected in several of the post-excavation samples from these Removal Areas. Benzene and total xylenes were detected at concentrations slightly above their RSCOs only in one sidewall sample, sample PE-D3, collected at Area D. Benzene was detected at a concentration of 0.33 mg/kg, slightly above its RSCO of 0.06 mg/kg, and total xylenes was detected at a concentration of 1.4 mg/kg, slightly above the RSCO of 1.2 mg/kg for total xylenes. Methylene chloride was also detected in the method blanks prepared and analyzed by the laboratory; therefore, the concentration of methylene chloride in the postexcavation samples is considered to be attributable to laboratory contamination.

SUMMARY OF POST EXCAVA NEW SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) **HHMT-PORT IVORY FACILITY**

Sample ID		P	E-A1E(5-5.	5')		PE-AB1(6.5-7	")	F	PE-A2S(5-5.	5')	P	E-A3W(5-5.	5')	r .	PE-A4N(3.5-	4' \
Lab Sample No.	New York State	,	AC25828-00	3	l	AC25828-004	4		AC25828-00			AC25828-00			AC25828-0	
Sampling Date	Recommended Soil Cleanup		9/22/2006			9/22/2006			9/22/2006	-	l '	9/22/2006		1	9/22/2006	
Matrix	Objectives (mg/kg)		SOIL			SOIL		1	SOIL		ļ	SOIL		l	SOIL	
Units			mg/Kg			mg/Kg		1	mg/Kg		!	mg/Kg		Ì	mg/Kg	
VOLATILE ORGANIC COMPOUN		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.89	ND		0.0013	ND	1	0.0072	ND		0.0077	ND	- Quan	0.0065
1,1,1-Trichloroethane	0.8	ND		0.89	ND		0.0013	ND		0.0072	ND	 	0.0077	ND	 	0.0065
1,1,2,2-Tetrachloroethane	0.6	ND	T	0.89	ND	1	0.0063	ND	1	0.0072	ND	 	0.0077	ND ND		0.0065
1,1,2-Trichloroethane	NS NS	ND	l	0.89	ND		0.0063	ND		0.0072	ND	 	0.0077	ND		0.0065
1,1-Dichloroethane	0.2	.ND		0.89	ND		0.0013	ND	!	0.0072	ND	1	0.0077	ND		0.0065
1,1-Dichloroethene	0.4	ND		0.89	ND]	0.0013	ND	1	0.0072	ND	 	0.0077	ND .		0.0065
1,2-Dichloroethane	0.1	ND		0.89	ND		0.0013	ND	·	0.0072	ND	 	0.0077	ND		0.0065
1,2-Dichloropropane	NS	ND		0.89	ND		0.0013	ND		0.0072	ND	 -	0.0077	ND		0.0065
2-Butanone	0.3	ND	I	0.89	ND	1	0.0013	ND	<u> </u>	0.0072	ND	 	0.015	ND	 	0.0003
2-Chloroethylvinylether	NS	ND	I	0.89	ND	T	0.0013	ND		0.0072	ND		0.0077	ND		0.0065
2-Hexanone	NS	ND		0.89	ND		0.0013	ND		0.0072	ND		0.0077	ND		0.0065
4-Methyl-2-Pentanone	1	ND		0.89	ND		0.0013	ND	 	0.0072	ND		0.0077	ND ND	 	0.0065
Acetone	0.2	ND		4.5	ND		0.032	0.14	†	0.036	0.093	 	0.0077	0.029		0.0003
Acrolein	NS	ND		4.5	ND		0.0063	ND	 	0.036	ND		0.038	ND	+	0.032
Acrylonitrile	NS	ND		0.89	ND		0.0063	ND	 	0.0072	ND	 	0.0077	ND ND		0.0065
Benzene	0.06	ND		0.18	ND		0.0013	ND		0.0014	ND		0.0017	ND -	 	0.0063
Bromodichloromethane	NS	ND		0.89	ND		0.0013	ND	 	0.0072	ND		0.0077	ND ND		0.0013
Bromoform	NS	ND		0.89	ND	·	0.0013	ND		0.0072	ND -		0.0077	ND ND	 	
Bromomethane	NS	ND		0.89	ND		0.0013	ND		0.0072	ND	 	0.0077	ND ND		0.0065
Carbon disulfide	2.7	ND		0.89	ND		0.0013	ND	 	0.0072	ND-	 	0.013	ND		0.013
Carbon tetrachloride	0.6	ND		0.89	ND		0.0013	ND		0.0072	ND ND		0.0077	ND D	 	0.0065 0.0065
Chlorobenzene	1.7	ND		0.89	ND		0.0063	ND		0.0072	ND	 	0.0077	ND D	<u> </u>	
Chloroethane	NS	ND		0.89	ND		0.0013	ND ND	 	0.0072	ND ND	 	0.0077	ND ND	 	0.0065
Chloroform	0.3	ND		0.89	ND	-	0.0013	ND	 	0.0072	ND	 	0.0077	ND	 	0.0065
Chloromethane	NS	ND		0.89	ND		0.0063	ND	t	0.0072	ND	 -	0.0077	-ND	 	0.0065
Cis-1,2-Dichloroethene	NS	ND		0.89	ND		0.0013	ND	-	0.0072	ND -	 	0.0077	ND ND	 	0.0065
Cis-1,3-Dichloropropene	NS NS	ND		0.89	ND		0.0013	ND		0.0072	ND		0.0077	ND	 	0.0065
Dibromochloromethane	NS	ND		0.89	ND		0.0013	ND		0.0072	ND		0.0077	ND	 	0.0065
Ethylbenzene	5.5	ND		0.18	ND		0.0013	ND	-	0.0014	ND	 	0.0015	ND	 	0.0003
M&p-Xylenes	1.2 (Total)	ND		0.36	ND		0.0025	ND		0.0029	ND	 	0.0031	ND	 	0.0013
Methylene chloride	0.1	0.44	В	0.89	0.036	В	0.0063	0.028	В	0.0072	0.047	В	0.0077	0.04	B	0.0026
O-Xylene	1.2 (Total)	ND		0.18	ND	-	0.0013	ND		0.0014	ND	1	0.0015	ND		0.0003
Styrene	NS	ND		0.89	ND		0.0063	ND		0.0072	ND		0.0077	ND		0.0065
Tetrachloroethene	1.4	ND		0.89	ND		0.0013	ND		0.0072	ND	t	0.0077	ND		0.0065
Toluene	1.5	ND		0.18	ND		0.0013	ND		0.0014	ND	 	0.0015	ND		0.0003
Trans-1,2-Dichloroethene	0.3	ND		4 0.89	ND	1	0.0013	ND		0.0072	ND		0.0077	ND		0.0013
Trans-1,3-Dichloropropene	NS	ND		0.89	ND		0.0063	ND ND		0.0072	ND		0.0077	ND		0.0065
Trichloroethene	0,7	ND		0.89	ND	<u> </u>	0.0063	ND	 	0.0072	ND		0.0077	ND ND		0.0065
Vinyl chloride	0.2	ND		0.89	ND		0.0013	ND	 	0.0072	ND -		0.0077	ND		0.0065
Total VOCs Conc.	10	0.44			0.036			0.168			0.14			0.033		0.000
VOC TICs	NS	97.8	J		0.0169	J	 	0.1723			0.0224		1	ND		
Notes:			·							L	0.022.7	<u> </u>	l	NU		

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs) TAGM=Technical and Administrative Guidance Memorandum #4046 NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth interval the samples as collected. For example, PE-A1E (5-5.5') was collected from 5-5.5 t bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	r		F DD4 (C.C.	70		E B+E // E	5 0												
Lab Sample No.	New York State		E-BB1 (6.5- AC25433-00			E-B1E (4.5			E-B2N (4.5			E-B3S (4.5			E-B4W (4.5			-0EXBB1(5-	
Sampling Date	Recommended Soil Cleanup	l . 1	8/31/2006			AC25433-00		/	AC25433-0		,	AC25433-00		1 /	AC25433-0			AC25847-00	02
Matrix	Objectives (mg/kg)		SOIL			8/31/2006		1	8/31/2006	5	l .	8/31/2006		l	8/31/2006	5	l .	9/25/2006	i
Units	Objectives (mg/kg)		mg/Kg			SOIL		l	SOIL			SOIL		i	SOIL		1	SOIL	
VOLATILE ORGANIC COMPO'INDS	(GC/MS)	Conc	Qual	MDL	Conc	mg/Kg Qual	LAMBI	l	mg/Kg	1 445		mg/Kg	-	<u> </u>	mg/Kg			mg/Kg	
1,1,1,2-Tetrachloroethane	NS NS	ND	Quai	0.038	ND	Quai	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Cial	MDL
1,1,1-Trichloroethane	0.8	ND ND		0.038	ND		0.036	ND		0.0068	ND	<u></u>	0.04	ND		0.033	ND		0.0083
1.1.2.2-Tetrachloroethane	0.6	ND	·	0.038	ND		0.036	ND	ļ	0.0068	ND	<u> </u>	0.04	ND		0.033	ND		0.0083
1,1,2-Trichloroethane	NS NS	ND		0.038			0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
1.1-Dichloroethane	0.2	ND		0.038	ND	<u> </u>	0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
1,1-Dichloroethene	0.4	ND -			ND		0.036	ND	ļ	0.0068	ND	<u> </u>	0.04	ND	<u> </u>	0.033	ND	1	0.0083
1,2-Dichloroethane	0.1	ND ND	-	0.038	ND ND	ļ	0.036	ND	L	0.0068	ND	1	0.04	ND		0.033	ND		0.0083
1,2-Dichloropropane	NS NS	ND		0.038	ND	ļ	0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
2-Butanone	0.3	ND _					0.036	ND ND		0.0068	ND	·	0.04	ND		0.033	ND		0.0083
2-Chloroethylvinylether	NS NS	ND ND		0.038	ND ND		0.036	ND		0.0068	ND	1	0.04	ND	L	0.033	0.033		0.017
2-Hexanone	NS NS	ND UND				l 	0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
4-Methyl-2-Pentanone	N3 1	ND		0.038	ND		0.036	ND		0.0068	ND		0.04	ND	·	0.033	ND		0.0083
Acetone	0.2	ND ND		0.038	ND		0.036	ND	ļ	0.0068	ND		0.04	ND		0.033	ND		0.0083
Acrolein	0,2 NS			0.19	ND		0.18	ND		0.034	ND		0.2	ND		0.16	0.15		0.042
Acrylonitrile	NS NS	ND		0.19	ND		0.18	ND		0.034	ND		0.2	ND		0.16	ND		0.042
Benzene	0.06	ND ND		0.038	ND		0.036	ND		0.0068	ND:		0.04	ND		0.033	ND		0.0083
Bromodichloromethane	NS NS	ND		0.0077	ND	<u> </u>	0.0071	ND		0.0014	ND		0.0081	ND		0.0066	ND	T	0.0017
Bromoform	NS NS	ND		0.038	ND		0.036	ND		0.0068	ND	<u> </u>	0.04	ND		0.033	ND		0.0083
Bromomethane	NS NS	ND ND		0.038	ND		0.036	ND		0.0068	ND	L	0.04	ND		0.033	ND		0.0083
Carbon disulfide	2.7	ND ND		0.038	ND		0.036	ND		0.0068	ND	L	0.04	ND	I.	0.033	ND		0.017
Carbon tetrachloride	0.6	ND		0.038	ND		0.036	ND	<u> </u>	0.0068	ND	ļ	0.04	ND		0.033	0.0017	J	0.0083
Chlorobenzene	1.7	ND ND		0.038	.ND		0.036	ND	ļ	0.0068	ND		0.04	ND		0.033	ND		0.0083
Chloroethane	NS NS	ND		0.038	ND ND		0.036	ND		0.0068	ND ND		0.04	ND		0.033	ND		0.0083
Chloroform	0.3	ND ND		0.038	ND		0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Chloromethane	NS NS	ND		0.038	ND ND		0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Cis-1,2-Dichloroethene	NS NS	ND	<u> </u>	0.038	ND ND		0.036	ND		0.0068	ND	<u> </u>	0.04	ND		0.033	ND		0.0083
Cis-1,3-Dichloropropene	NS NS	ND		0.038	ND ND		0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Dibromochloromethane	NS NS	ND		0.038	ND ND	ļ	0.036	ND ND		0.0068	ND	i	0.04	ND		0.033	ND		0.0083
Ethylbenzene	5.5	ND		0.0077	ND ND		0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
M&p-Xylenes	1.2 (Total)	ND		0.0077	ND		0.0071	ND		0.0014	ND		0.0081	ND		0.0066	ND		0.0017
Methylene chloride	0.1	0.092	B	0.013	0.051	В-	0.014	ND		0.0027	ND		0.016	ND		0.013	ND		0.0033
O-Xylene	1.2 (Total)	ND	В	0.038	ND	8_	0.036	0.013	В	0.0068	0.11	В	0.04	0.052	8	0.033	0.024	В	0.0083
Styrene	NS NS	ND		0.038	ND		0.0071	ND ND	<u> </u>	0.0014	ND		0.0081	ND		0.0066	ND		0.0017
Tetrachloroethene	1.4	ND		0.038	ND		0.036			0.0068	ND		0.04	ND		0.033	ND		0.0083
Toluene	1.5	ND		0.038	ND ND	 -		ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Trans-1,2-Dichloroethene	0.3	ND		0.0077	ND	 	0.0071	ND ND	<u> </u>	0.0014	ND		0.0081	ND		0.0066	ND		0.0017
Trans-1,3-Dichloropropene	NS NS	ND		0.038	ND ND	<u> </u>	0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Trichloroethene	0.7	ND		0.038	ND -		0.036	ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Vinyl chloride	0.2	ND	- -	0.038	ND ND		0.036 0.036	ND ND		0.0068	ND		0.04	ND		0.033	ND		0.0083
Total VOCs Conc.	10	0.092		0.000	0.051		0.036			0.0068	ND		0.04	ND		0.033	ND		0.0083
VOC TICs	NS -	43.5			4.24			0.013	ļ		0.11			0.052			0.2087		
Notes:		70.0	J	<u> </u>	4.24	_ · J	L	0.369		1	69.3	J		22.1	J		0.013		1

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs) TAGM=Technical and Administrative Guidance Memorandum #4046 NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

1) The number at the end of the sample ID indicate the depth intervithe sample the collected. For example, PE-A1E (5-5.5') was collected from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVA N SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID		PF.	PE-0EXB1S(2-2.5)			-0EXB2E(2-	2 5'\	DE	-0EXB3N(2.	5 2"\		- 010 /5 5	CIL		E 004 (E E	<u> </u>			
Lab Sample No.	New York State		AC25847-00			-0EXB2E(2- AC25847-00			-UEXB3N(2. AC25847-00			E-C1S (5.5			E-CB1 (5.5			E-C2E (5.5-	
Sampling Date	Recommended Soil Cleanup	l .	9/25/2006	•	l '	9/25/2006		i '	9/25/2006		l "	C25433-00 8/31/2006	Л	l '	AC25433-00	15		C25433-00	
Matrix	Objectives (mg/kg)		SOIL			SOIL		Į	SOIL		Į.	8/31/2006 SOIL		Į.	8/31/2006			8/31/2006	
Units	, , , , , , ,		mg/Kg			mg/Kg		ļ	mg/Kg		l .	ma/Ka			SOIL	-		SOIL	
VOLATILE ORGANIC COMPOUND	S (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	0	mg/Kg	1 101
1,1,1,2-Tetrachloroethane	l NS	ND		0.0056	ND		0.0058	ND	- Quui	0.0062	ND	Quai	0.013	ND	r Quai		Conc	Qual	MDL
1,1,1-Trichloroethane	0.8	ND ·		0.0056	ND		0.0058	ND -		0.0062	ND		0.013	ND ND		0.0067	ND ND		0.01
1,1,2,2-Tetrachloroethane	0.6	ND		0.0056	ND		0.0058	ND		0.0062	ND ND		0.013	ND ND		0.0067	ND ND		0.01
1,1,2-Trichloroethane	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND ND		0.01
1,1-Dichloroethane	0.2	ND		0.0056	ND		0.0058	: ND		0.0062	ND		0.013	ND	 	0.0067	ND ND		0.01
1,1-Dichloroethene	0.4	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND		0.01
1,2-Dichloroethane	0.1	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND		0.0067	ND		0.01
1,2-Dichloropropane	NS	ND		0.0056	ND		0.0058	ND	t	0.0062	ND		0.013	ND	 	0.0067	ND ND		0.01
2-Butanone	0.3	ND		0.0056	ND		0.0058	ND		0.0062	0.086		0.013	ND ND		0.0067	ND		0.01
2-Chloroethylvinylether	NS	ND		0.0056	ND	 	0.0058	ND		0.0062	ND	~	0.013	ND	<u> </u>	0.0067	ND		0.01
2-Hexanone	NS	ND		0.0056	ND	·	0.0058	ND	 	0.0062	ND		0.013	ND ND	 	0.0067	ND ND		0.01
4-Methyl-2-Pentanone	1	ND		0.0056	ND		0.0058	ND -	-	0.0062	ND		0.013	ND		0.0067	ND ND	·	0.01
Acetone	0.2	ND		0.028	0.026	 	0.029	0.036		0.031	0.18.		0.066	ND		0.0007	ND		0.052
Acrolein	NS	ND		0.028	ND	<u> </u>	0.029	ND		0.031	ND.		0.066	ND -		0.033	ND		0.052
Acrylonitrile	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.000	ND		0.0067	ND ND		0.052
Benzene	0.06	ND	l — — —	0.0011	ND		0.0012	ND		0.0012	ND		0.0026	ND		0.0007	ND		0.0021
Bromodichloromethane	NS	ND		0.0056	ND	 	0.0058	ND		0.0062	ND		0.0026	ND	 	0.0013	ND ND		0.0021
Bromoform	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND ND	 	0.0067	ND		0.01
Bromomethane	NS	ND	1	0.0056	ND	-	0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND		
Carbon disulfide	2.7	ND	1	0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND ND	 	0.0067	ND ND		0.01
Carbon tetrachloride	0.6	ND		0.0056	ND	<u> </u>	0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND -		0.01
Chlorobenzene	1.7	ND		0.0056	ND	i — —	0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND		0.01
Chloroethane	NS	ND	1	0.0056	ND		0.0058	ND	_	0.0062	ND		0.013	ND ND	 	0.0067	ND		0.01
Chloroform	0.3	ND		0.0056	ND	1	0.0058	ND		0.0062	ND ND		0.013	ND ND		0.0067	ND		0.01
Chloromethane	NS	ND		0.0056	ND	1	0.0058	ND		0.0062	ND		0.013	ND		0.0067	ND ND		0.01
Cis-1,2-Dichloroethene	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND	-	0.01
Cis-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND.	1	0.0067	ND		0.01
Dibromochloromethane	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND		0.01
Ethylbenzene	5.5	ND		0.0011	ND		0.0012	ND		0.0012	ND		0.0026	ND		0.0013	ND		0.0021
M&p-Xylenes	1.2 (Total)	ND		0.0022	ND		0.0023	ND		0.0025	ND		0.0053	ND		0.0027	ND		0.0042
Methylene chloride	0.1	0.013	В	0.0056	0.013	В	0.0058	0.011	В	0.0062	0.02	В	0.013	0.011	B	0.0067	0.019	В	0.01
O-Xylene	1.2 (Total)	ND		0.0011	ND		0.0012	ND		0.0012	ND		0.0026	ND	 -	0.0013	ND	-	0.0021
Styrene	NS	ND		0.0056	ND	[0.0058	ND		0.0062	ND		0.013	ND		0.0067	ND		0.01
Tetrachloroethene	1.4	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	†	0.0067	ND		0.01
Toluene	1.5	ND		0.0011	0.0014		0.0012	ND		0.0012	ND		0.0026	ND	 	0.0007	ND		0.0021
Trans-1,2-Dichloroethene	0.3	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0013	ND		0.0021
Trans-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND	 	0.0067	ND		0.01
Trichloroethene	0.7	ND		0.0056	ND		0.0058	ND	1	0.0062	ND		0.013	ND	-	0.0067	ND		0.01
Vinyl chloride	0.2	ND		0.0056	ND		0.0058	ND		0.0062	ND		0.013	ND		0.0067	ND		0.01
Total VOCs Conc.	10	0.013			0.0404			0.047		1	0.286			0.011			0.019		
VOC TICs	NS	0.0378	J		0.221	J		0.228	J		1.27	J		0.411			1.212		
Notes:							·	•			<u> </u>		Ь						

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs)

TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

c. Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth intervithe sample was collected. For example, PE-A1E (5-5.5') was collecte from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVA SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	1		PE-C3N (5.5-6') AC25433-003			E-C4N (5.5-	6')	P	E-D1N (3.5	-4 ')	F	E-D2E (3.5~	4')	P	E-D3S (3.5-	4')	Р	E-D4W (3.5	A11
Lab Sample No.	New York State	Α.		13	1	C25433-00	14		AC25440-00			AC25440-00			AC25440-00			AC25440-00	
Sampling Date	Recommended Soil Cleanup		8/31/2006			8/31/2006			9/1/2006			9/1/2006	-	·	9/1/2006	•	1	9/1/2006	"
Matrix	Objectives (mg/kg)		SOIL			SOIL	*	i '	SOIL			SOIL			SOIL			SOIL	
Units			mg/Kg			mg/Kg			mg/Kg			mg/Kg		ļ	ma/Ka		l	mg/Kg	
VOLATILE ORGANIC COMPOUND	OS (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
1,1,1-Trichloroethane	0.8	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
1,1,2,2-Tetrachloroethane	0.6	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
1,1,2-Trichloroethane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
1,1-Dichloroethane	0.2	ND		0.046	ND		0.018	ND	<u> </u>	0.87	ND		0.042	ND		0.83	ND		0.032
1,1-Dichloroethene	0.4	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
1,2-Dichloroethane	0.1	ND	1	0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND	L	0.032
1,2-Dichloropropane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
2-Butanone	0.3	ND		0.046	0.2		0.018	ND	T	0.87	ND	i	0.042	ND		0.83	ND -		0.032
2-Chloroethylvinylether	NS	ND		0.046	ND		0.018	ND	<u> </u>	0.87	ND	· · · · · ·	0.042	ND		0.83	ND		0.032
2-Hexanone	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND ND		0.83	ND		0.032
4-Methyi-2-Pentanone	. 1	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Acetone	0.2	ND		0.23	0.52		0.089	ND		4.3	0.32		0.012	ND		4.2	0.3		0.032
Acrolein	NS	ND		0.23	ND		0.089	ND		4.3	ND		0.21	ND		4.2	ND		0.16
Acrylonitrile	NS	ND		0.046	ND		0.018	ND		0.87	ND.		0.042	ND.		0.83	ND ND		0.032
Benzene	0.06	ND	·	0.0093	ND		0.0036	ND	 	0.17	ND		0.0083	0.33		0.03	ND		
Bromodichloromethane .	NS	ND	*****	0.046	ND		0.018	ND		0.87	ND		0.0003	ND		0.17			0.0063
Bromoform	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND ND		0.83	ND ND		0.032
Bromomethane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND ND		0.83	ND		
Carbon disulfide	2.7	ND		0.046	ND		0.018	ND	· · · · · · · · · · · · · · · · · · ·	0.87	ND	-	0.042	ND		0.83	ND		0.032
Carbon tetrachloride	0.6	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Chlorobenzene	1.7	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND	 -	0.83	ND		0.032
Chloroethane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Chloroform	0.3	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Chloromethane	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Cis-1,2-Dichloroethene	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Cis-1,3-Dichloropropene	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Dibromochloromethane	NS	ND	<u> </u>	0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Ethylbenzene	5.5	ND		0.0093	ND		0.0036	ND		0.17	ND		0.0083	0.76		0.17	ND		0.0063
M&p-Xylenes	1.2 (Total)	ND		0.019	ND		0.0071	ND	i — —	0.35	ND		0.017	1.4		0.33	ND		0.0003
Methylene chloride	0.1	0.089	В	0.046	0.027	В	0.018	ND		0.87	0.14	В	0.042	ND		0.83	0.1	- В	0.032
O-Xylene	1.2 (Total)	ND		0.0093	ND		0.0036	ND		0.17	ND		0.0083	ND		0.17	ND		0.0063
Styrene	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND ND		0.83	ND		0.0003
Tetrachloroethene	1,4	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND ND		0.83	ND		0.032
Toluene	1.5	ND		0.0093	ND		0.0036	ND		0.17	ND		0.0083	ND ND		0.17	ND		0.0063
Trans-1,2-Dichloroethene	0.3	ND		0.046	ND		0.018	ND	1	0.87	ND		0.042	ND		0.83	ND		0.032
Trans-1,3-Dichloropropene	NS	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND		0.83	ND		0.032
Trichloroethene	0.7	ND		0.046	ND		0.018	ND		0.87	ND	·	0.042	ND		0.83	ND		0.032
Vinyl chloride	0.2	ND		0.046	ND		0.018	ND		0.87	ND		0.042	ND -		0.83	ND		0.032
Total VOCs Conc.	10	0.089			0.747			ND			0.46			1.73			0.4		10.002
VOC TICs	NS	13.33	J		3.05			240			28.37	 	 	207.9			42.5		

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs)

TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL≃Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth intervithe sample was collected. For example, PE-A1E (5-5.5') was collecte

from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab Sample No.	New York State		E-DB1 (6-6. AC25440-00			E-E1W (4.5			E-E2E (4.5			E-EB1 (6.5-			E-GB1(7-7.			E-G2S(5.5- AC25828-00	
Sampling Date	Recommended Soil Cleanup	ľ	9/1/2006	-		9/1/2006		1 '	9/1/2006	-	1 ´	9/1/2006	~) ^	9/22/2006		ì '	9/22/2006	
Matrix	Objectives (mg/kg)		SOIL			SOIL			SOIL		l	SOIL			SOIL				
Units			mg/Kg			mg/Kg			mg/Kg		i	mg/Kg		ļ	mg/Kg		Į.	SOIL	
VOLATILE ORGANIC COMPOUND	S (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND	- Quai	0.0061	ND	Quai	0.0079
1,1,1-Trichloroethane	0.8	ND		0.0063	ND	1	0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND	ł	0.0079
1,1,2,2-Tetrachloroethane	0.6	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND ND		0.0061	ND		0.0079
1,1,2-Trichloroethane	NS	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND		0.0079
1,1-Dichloroethane	0.2	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND ND		0.0079
1,1-Dichloroethene	0.4	ND		0.0063	ND		0.0076	ND	 	0.035	ND	 	0.0061	ND		0.0061	ND ND		0.0079
1,2-Dichloroethane	0.1	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND	 	0.0079
1,2-Dichloropropane	NS	ND		0.0063	ND		0.0076	ND	 	0.035	ND		0.0061	ND ND		0.0061	ND ND		0.0079
2-Butanone	0.3	ND	-	0.0063	ND	 	0.0076	ND		0.035	ND		0.0061	ND		0.0061	0.09		0.0079
2-Chloroethylvinylether	NS	ND		0.0063	ND		0.0076	ND	 	0.035	ND		0.0061	ND		0.0061	ND	 	0.0079
2-Hexanone	NS	ND	·	0.0063	ND	 	0.0076	ND	 	0.035	ND		0.0061	ND ND		0.0061	ND	_	0.0079
4-Methyl-2-Pentanone	1	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061		ļ	
Acetone	0.2	0.056		0.032	0.097		0.038	0.19	ļ	0.17	0.054		0.0001	ND ND		0.0081	ND 0.25	 	0.0079
Acrolein	NS	ND	·	0.032	ND	 	0.038	ND	├ ──∸	0.17	ND		0.03	ND					0.04
Acrylonitrile	NS	ND		0.0063	ND.		0.0076	ND		0.035	ND		0.0061	ND ND		0.03	ND		0.04
Benzene	0.06	ND		0.0013	ND ND		0.0015	ND	 	0.0069	ND	 	0.0012	ND ND		0.0061	ND		0.0079
Bromodichloromethane	NS	ND		0.0063	ND		0.0076	ND		0.0005	ND	 	0.0012	ND			ND	 _	0.0016
Bromoform	NS	ND		0.0063	ND	 	0.0076	ND		0.035	ND		0.0061	ND ND		0.0061	ND ND	 	0.0079
Bromomethane	NS	ND		0.0063	ND	 	0.0076	ND	 	0.035	ND		0.0061	ND		0.0061			0.0079
Carbon disulfide	2.7	ND		0.0063	ND	!	0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND		0.0079
Carbon tetrachloride	0.6	ND		0.0063	ND		0.0076	ND		0.035	- ND		0.0061	ND ND		0.0061	ND	ļ	0.0079
Chlorobenzene	1.7	ND		0.0063	ND		0.0076	ND -		0.035	ND	——	0.0061	ND		0.0061	ND ND		0.0079
Chloroethane	NS	ND	·	0.0063	ND	 	0.0076	ND	 	0.035	ND		0.0061	ND		0.0061	ND ND		0.0079
Chloroform	0.3	ND		0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061			0.0079
Chloromethane	NS	ND	-,-	0.0063	ND		0.0076	ND		0.035	ND		0.0061	ND		0.0061	ND ND		0.0079
Cis-1,2-Dichloroethene	NS	ND		0.0063	ND		0.0076	ND	<u> </u>	0.035	ND		0.0061	ND ND		0.0061			0.0079
Cis-1,3-Dichloropropene	NS	ND		0.0063	ND	t	0.0076	ND	 	0.035	ND		0.0061	ND		0.0061	ND ND		0.0079
Dibromochloromethane	NS	NĎ		0.0063	ND		0.0076	ND.	 	0.035	ND		0.0061	ND		0.0061	ND		0.0079
Ethylbenzene	5.5	ND		0.0013	ND		0.0015	ND	 	0.0069	ND		0.0001	ND		0.0012	ND ND		0.0079
M&p-Xylenes	1.2 (Total)	ND		0.0025	ND		0.003	ND		0.014	ND	·	0.0012	ND		0.0012	ND		0.0016
Methylene chloride	0.1	0.021	- 8	0.0063	0.017	В	0.0076	0.094	B	0.035	0.019	a	0.0024	0.014B	В	0.0024	0.016		0.0032
O-Xylene	1.2 (Total)	ND		0.0013	ND	 	0.0015	ND		0.0069	ND		0.0012	ND ND		0.0001	ND	В	0.0079
Styrene	NS	ND .		0.0063	ND		0.0076	ND	 	0.035	ND	 	0.0012	ND		0.0012	ND		0.0016
Tetrachloroethene	1.4	ND		0.0063	ND	 	0.0076	ND		0.035	NĎ	<u> </u>	0.0061	ND ND		0.0061	ND		0.0079
Toluene	1.5	ND		0.0013	ND	 	0.0015	ND -	 - -	0.0069	ND	 -	0.0012	ND		0.0001	0.0017	 -	
Trans-1,2-Dichloroethene	0.3	ND		0.0063	ND		0.0076	ND		0.035	ND	 	0.0012	ND ND		0.0012			0.0016
Trans-1,3-Dichloropropene	NS	ND		0.0063	ND	 -	0.0076	ND	 	0.035	ND	-	0.0061	ND ND		0.0061	ND ND		0.0079
Trichloroethene	0.7	ND	·	0.0063	ND		0.0076	ND	 -	0.035	ND ND	├	0.0061	ND ND		0.0061	ND	<u> </u>	0.0079
Vinyl chloride	0.2	ND		0.0063	ND -		0.0076	ND		0.035	ND	 -	0.0061	ND ND		0.0061	ND ND		0.0079
Total VOCs Conc.	10	0.077			0.116			0.284		0.000	0.073		3.5001	0.014		0.0001	0.3577	ļ	0.0079
VOC TICs	NS	0.1599	J		1.04			8.53			0.0589			2.29			0.0077		├
Notes:		3.1003		<u> </u>	1.04			0.55		L	0.0569	J	L	2.29	J	L	3	J	

Concentrations in blold in highlighted cells exceed the New

YorkTAGM Recommended Soil Cleanup Objectives (RSCOs)

TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

1) Tihe numbers at the end of the sample ID indicate the depth intervi the sample was collected. For example, PE-A1E (5-5.5') was collecte

from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	T*	PI	E-G1N(5.5-	6')	Р	E-HB1(9-9.	5')	PI	E-H1S(6.5-	7')	Б	E-H2N(6.5-	7')		PE-I1E(6.5-7	7'\	·	DC IONYC C T	
Lab Sample No.	New York State		C25828-00			AC25828-01			C25828-01			E-M2N(6.5- AC25828-01			1E-11E(6.5-7 AC26282-00			PE-I2N(6.5-7	
Sampling Date	Recommended Soil Cleanup		9/22/2006			9/22/2006		^	9/22/2006	12	, ^	9/22/2006	3	l *		•	l '	AC26282-00	
Matrix	Objectives (mg/kg)		SOIL'			SOIL			SOIL		1	SOIL		l .	10/16/2006	•	1	10/16/2006	
Units	1 , , , , ,	•	mg/Kg			mg/Kg			mg/Kg		l	mg/Kg		l	SOIL			SOIL	
VOLATILE ORGANIC COMPOUND	S (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	Conc	mg/Kg	1 1151
1,1,1,2-Tetrachloroethane	I NS	ND		0.034	ND	1	0.0068	ND	Qua.	0.8	ND	Qual	0.8	ND	Quai	0.032	ND	Qual	MDL
1,1,1-Trichloroethane	0.8	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND ND		0.032	ND		0.03
1,1,2,2-Tetrachioroethane	0.6	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND				ļ	0.03
1,1,2-Trichloroethane	NS	ND		0.034	ND	 	0.0068	ND		0.8	ND		0.8	ND ND		0.032	ND ND	· -	0.03
1,1-Dichloroethane	0.2	ND		0.034	ND	 	0.0068	ND		0.8	ND		0.8	ND ND	 	0.032			0.03
1,1-Dichloroethene	0.4	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND ND	ļ	0.032	ND		0.03
1,2-Dichloroethane	0.1	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND ND	ļ	0.032	ND		0.03
1,2-Dichloropropane	NS	ND		0.034	ND		0.0068	ND		0.8	ND ND		0.8			0.032	ND		0.03
2-Butanone	0.3	ND		0.034	ND		0.0068	ND ND		0.8	ND			ND		0.032	ND		0.03
2-Chloroethylvinylether	NS NS	ND	·	0.034	ND	 	0.0068	ND ND		0.8	ND QN		0.8	ND	 	0.032	ND	<u> </u>	0.061
2-Hexanone	NS	ND		0.034	ND ND		0.0068	ND ND		0.8	ND ND	l	0.8	ND		0.032	ND	ļ	0.03
4-Methyl-2-Pentanone	1 1	ND		0.034	DIND	ļ	0.0068	ND ND		0.8	ND ND			ND ND		0.032	ND		0.03
Acetone	0.2	1.9		0.17	0.37		0.000	5.1		4			0.8	ND		0.032	ND		0.03
Acrolein	NS NS	ND		0.17	ND		0.034	ND		4	1.1 ND	· · ·	4	0.3	ļ	0.16	2.7		0.15
Acrylonitrile	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND	ļ	0.16	ND		0.15
Benzene	0.06	ND		0.0068	ND		0.0004	ND		0.16	ND	<u> </u>	0.16	ND		0.032	ND.		0.03
Bromodichloromethane	NS	ND		0.034	ND		0.0068	ND		0.18	ND		0.16	ND		0.0063	ND		0.0061
Bromoform	NS	ND	ļ — —	0.034	ND		0.0068	ND		0.8	ND ND		0.8	ND		0.032	ND		0.03
Bromomethane	NS	ND		0.034	ND	 -	0.0068	ND		0.8	ND		0.8	ND	ļ	0.006	ND		0.03
Carbon disulfide	2.7	ND		0.034	ND	 	0.0068	ND		0.8	ND		0.8	ND ND		0.006	ND		0.061
Carbon tetrachloride	0.6	ND		0.034	ND		0.0068	ND		0.8	ND	<u> </u>	0.8	ND ND		0.006	ND		0.03
Chlorobenzene	1.7	ND		0.034	ND	——	0.0068	ND		0.8	ND		0.8	ND D		0.006	ND		0.03
Chloroethane	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND ND	ļ ————		ND		0.03
Chloroform	0.3	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND		0.006	ND ND		0.03
Chloromethane	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND ND		0.006	ND		0.03
Cis-1,2-Dichloroethene	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND		0.006	ND ND		0.03
Cis-1,3-Dichloropropene	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND		0.006	ND		0.03
Dibromochloromethane	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND	 -	0.006	ND		0.03
Ethylbenzene	5.5	ND		0.0068	ND		0.0014	ND		0.16	ND		0.16	ND		0.0063	ND		0.03
M&p-Xylenes	1.2 (Total)	ND		0.014	ND		0.0027	ND		0.32	ND		0.32	ND		0.0063	ND	<u> </u>	
Methylene chloride	0.1	0.12	В	0.034	0.017	В	0.0068	0.38	J. B	0.8	0.54	В	0.32	0.15	В	0.032	0.14	В	0.012
O-Xylene	1.2 (Total)	ND		0.0068	ND		0.0014	ND		0.16	ND		0.16	ND ND		0.0063	ND	<u>B</u>	0.0061
Styrene	NS	ND		0.034	ND	1	0.0068	ND		0.8	ND	l	0.8	ND		0.032	ND		0.0061
Tetrachloroethene	1.4	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND		0.032	ND		0.03
Toluene	1.5	ND		0.0068	ND		0.0014	ND		0.16	ND		0.16	ND	·	0.032	ND		0.0061
Trans-1,2-Dichloroethene	0.3	ND		0.034	ND		0.0068	ND		0.8	ND	<u> </u>	0.8	ND		0.032	ND		0.0061
Trans-1,3-Dichloropropene	NS	ND		0.034	ND		0.0068	ND		0.8	ND		0.8	ND		0.032	ND D		0.03
Trichloroethene	0.7	ND		0.034	ND		0.0068	ND.		0.8	ND	 	0.8	ND		0.032	ND ND		0.03
Vinyl chloride	0.2	ND		0.034	ND	1	0.0068	ND		0.8	ND		0.8	ND		0.032	ND ND		
Total VOCs Conc.	10	2.02			0.387			5.48			1.64			0.045		0.002	2.84		0.03
VOC TICs	NS	52.5	J		14.2			312			4,46			13.7		 	68.5		
Notes:				·		<u> </u>					1.70			10.7			00.5		<u> </u>

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs)

TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth intervithe sample was collected. For example, PE-A1E (5-5.5') was collecte from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID			E-13NW(6.5-		P	E-I4W(6.5-	7")		PE-I5S(6.5-7	<u>'')</u>	F	PE-I6S(6.5-7	')	F	PE-IB1(7.5-8	')		E-IB2(9-9.5	5")
Lab Sample No.	New York State	<i> </i>	C26282-00	3		C26282-00	4	/	AC26282-00	5		C26282-006			C26282-00	,		C26282-00	
Sampling Date	Recommended Soil Cleanup		10/16/2006		Ì	10/16/2006			10/16/2006	i	l	10/16/2006			10/16/2006			10/16/2006	
Matrix	Objectives (mg/kg)		SOIL		i	SOIL	,		SOIL		1	SOIL			SOIL			SOIL	
Units			mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg	
VOLATILE ORGANIC COMPOUNDS		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
1,1,1-Trichloroethane	0.8	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND	ļ	0.031
1,1,2,2-Tetrachloroethane	0.6	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ÜИ		0.031
1,1,2-Trichloroethane	NS	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
1,1-Dichloroethane	0.2	ND		0.0078	ND	<u> </u>	0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
1,1-Dichloroethene	0.4	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
1,2-Dichloroethane	0.1	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
1,2-Dichloropropane	NS .	ND		0.0078	ND		0.044	ND	L	0.03	ND		0.037	ND		0.03	ND		0.031
2-Butanone	0.3	ND	-	0.016	ND	L	0.088	ND	ļ	0.06	ND		0.075	ND		0.06	ND	7	0.062
2-Chloroethylvinylether 2-Hexanone	NS NS	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
4-Methyl-2-Pentanone	NS	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
	1	ND	ļ	0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Acetone Acrolein	0.2	0.053		0.039	0.23		0.22	0.3		0.15	1.3		0.19	ND		0.15	0.21		0.15
Acrylonitrile	NS	ND		0.039	ND		0.22	ND		0.15	ND		0.19	ND		0.15	ND		0.15
Benzene	NS NS	ND		0.0078	ND		0.044	DN		0.03	ND	l	0.037	ND		0.03	ND		0.031
Bromodichloromethane	0.06	ND		0.0016	ND		0.0088	ND		0.006	ND		0.0075	ND		0.006	ND		0.0062
Bromoform	NS NS	ND		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Bromomethane	NS NS	ND		0.0078	ND	<u> </u>	0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Carbon disulfide	NS 2.7	ND		0.016	ND		0.088	ND		0.06	DN		0.075	ND		0.06	ND		0.062
Carbon tetrachloride	0.6	0.0016		0.0078	ND		0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Chlorobenzene	1.7	ND		0.0078	ND		0.044	ND		0.03	ND	<u> </u>	0.037	ND		0.03	ND	-	0.031
Chloroethane	NS	ND	ļ	0.0078	ND	 	0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Chloroform	0.3	ND ND		0.0078	ND	· · · · · · · · · · · · · · · · · · ·	0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Chloromethane	NS	ND		0.0078 0.0078	ND ND		0.044	ND	 	0.03	ND.		0.037	ND		0.03	ND		0.031
Cis-1.2-Dichloroethene	NS NS	ND		0.0078	ND	 -	0.044	ND		0.03	ND		0.037	ND		0.03	ND		0.031
Cis-1,3-Dichloropropene	NS NS	ND		0.0078		 	0.044	ND	<u> </u>	0.03	ND		0.037	ND		0.03	ND		0.031
Dibromochloromethane	NS	ND ND		0.0078	ND ND		0.044	ND ND		0.03	ND		0.037	ND		0.03	ND		0.031
Ethylbenzene	5.5	ND		0.0076	ND ND		0.0088	ND		0.03	ND		0.037	ND		0.03	ND		0.031
M&p-Xylenes	1.2 (Total)	ND		0.0018	ND		0.0088	ND		0.006	ND ND		0.0075	ND		0.006	ND		0.0062
Methylene chloride	0.1	0.026	В	0.0031	0.25	В	0.018	0.2	- B	0.012	0.22	B	0.015	ND		0.012	ND		0.012
O-Xylene	1.2 (Total)	ND		0.0016	ND		0.0088	ND	В	0.006	ND	8	0.037 0.0075	ND ND		0.03	0.19	В	0.031
Styrene	NS	ND		0.0078	ND		0.0088	ND ND	 -	0.008	ND		0.0075			0.006	ND	·	0.0062
Tetrachloroethene	1.4	ND		0.0078	ND		0.044	ND	 	0.03	ND ND			ND		0.03	ND		0.031
Toluene	1.5	ND		0.0016	ND	 -	0.0088	ND	 	0.006	ND		0.037 0.0075	ND ND	L	0.03	ND		0.03,1
Trans-1,2-Dichloroethene	0.3	ND		0.0078	ND	·	0.0000	ND		0.008	ND	 	0.0075	ND	ļ	0.006	ND		0.0062
Trans-1,3-Dichloropropene	NS	ND		0.0078	ND	 	0.044	ND	 	0.03	ND	<u> </u>	0.037	ND		0.03	ND		0.031
Trichloroethene	0.7	ND		0.0078	ND	 -	0.044	ND ND	 	0.03	ND ND		0.037	ND		0.03	ND		0.031
Vinyl chloride	0.2	ND	i	0.0078	ND		0.044	ND	 	0.03	ND	 	0.037	ND		0.03	ND ND		0.031
Total VOCs Conc.	10	0.0806			0.48			0.5		0.00	1.52		0.037	ND		0.03	0.4		0.031
VOC TICs	NS	5.47			17.4	 		47.1	 	 	50.7			229					
Notes:											50.7			223			15.18	J	

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs) TAGM=Technical and Administrative Guidance Memorandum #4046 NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth interval the sample was collected. For example, PE-A1E (5-5.5') was collecte from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID			PE-IB3(9-9.5	<u> </u>		PE-J1 (6.5-7	·1		E-J2 (6-6.	="	т — .	DE 10 (C.C.)	-		E 17145 E		·		
Lab Sample No.	New York State		AC26282-00			AC25252-00			C25252-00			PE-J3 (6-6.) AC25252-00			E-J4N(5.54			E-J5N(5.5-	
Sampling Date	Recommended Soil Cleanup		10/16/2006	•	· '	8/24/2006	2	l '	8/24/2006		1 1			i '	AC25828-00	01	,	AC25828-0	
Matrix	Objectives (mg/kg)		SOIL			SOIL			SOIL			8/24/2006	•	•	9/22/2006		1	9/22/2006	1
Units	, , , , , ,		mg/Kg			ma/Ka		!	mg/Kg			SOIL			SOIL		,	SOIL	
VOLATILE ORGANIC COMPOUND	S (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	C	mg/Kg	LAADI	 	mg/Kg	T
1,1,1,2-Tetrachloroethane	NS NS	ND		0.0063	NA	- diddi	0.006	NA NA	Quai	0.026	NA NA	Quai		Conc	Qual	MDL	Conc	Qual	MDL
1,1,1-Trichloroethane	0.8	ND		0.0063	ND		0.006	ND NA		0.026	NA ND		0.0051	ND		0.74	ND		0.77
1,1,2,2-Tetrachloroethane	0.6	ND		0.0063	ND		0.006	ND		0.026	ND ND		0.0051	ND		0.74	ND		0.77
1,1,2-Trichloroethane	NS	ND		0.0063	ND		0.006	ND		0.026	ND	ļ	0.0051	ND		0.74	ND		0.77
1,1-Dichloroethane	0.2	ND		0.0063	ND		0.006	ND		0.026	ND		0.0051	ND ND		0.74	ND	ļ	0.77
1,1-Dichloroethene	0.4	ND		0.0063	ND	 -	0.006	ND		0.026	ND		0.0051	ND	<u> </u>	0.74	ND	ļ	0.77
1,2-Dichloroethane	0.1	ND		0.0063	ND	·	0.006	ND		0.026	ND	<u> </u>	0.0051	ND		0.74	ND		0.77
1,2-Dichloropropane	NS	ND		0.0063	ND	 	0.006	ND ND		0.026	ND ND		0.0051	ND	 _	0.74	ND		0.77
2-Butanone	0.3	ND	 	0.0003	ND		0.006	ND				 	0.0051	ND	 	0.74	ND	L	0.77
2-Chloroethylvinylether	NS NS	ND		0.0063	NA NA		0.006	NA NA		0.026	· ND	<u> </u>	0.0051	ND	<u> </u>	0.74	ND		0.77
2-Hexanone	NS	ND		0.0063	ND ND		0.006	ND ND		0.026	NA NA	<u> </u>	0.0051	ND		0.74	ND		0.77
4-Methyl-2-Pentanone	1	ND		0.0063	ND ND		0.006	ND		0.026	ND	!	0.0051	ND	.	0.74	ND		0.77
Acetone	0.2	ND	· -	0.0032	0.033					0.026	ND		0.0051	ND		0.74	ND		0.77
Acrolein	NS NS	ND		0.032	NA		0.03	0.13		0.13	0.018		0.026	ND		3.7	ND		3.9
Acrylonitrile	NS NS	ND		0.032	NA NA		0.03	NA NA		0.13	NA NA		0.026	ND	L	3.7	ND		3.9
Benzene	0.06	ND	ļ—-				0.006	NA		0.026	NA		0.0051	ND		0.74	ND		0.77
Bromodichloromethane	NS NS	ND		0.0013	ND ND		0.0012	ND		0.0052	ND		0.001	ND		0.15	ND		0.15
Bromoform	NS NS	ND	ļ	0.0063			0.006	ND		0.026	ND ND		0.0051	ND	l	0.74	ND		0.77
Bromomethane	NS NS	ND		0.0063	ND ND		0.006	ND		0.026	ND		0.0051	ND	<u> </u>	0.74	ND		0,77
Carbon disulfide	2.7	ND ND		0.0063			0.006	ND	L	0.026	ND		0.0051	ND		0.74	ND		0.77
Carbon tetrachloride	0.6	ND		0.0063	ND ND		0.006	0.0094	J	0.026	0.0011	J	0.0051	ND		0.74	ND		0.77
Chlorobenzene	1.7	ND		0.0063	ND ND		0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Chloroethane	NS NS	ND		0.0063	ND ND		0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Chloroform	0.3	ND		0.0063	ND		0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Chloromethane	NS NS	ND		0.0063	- ND		0.006	ND		0.026	ND		0.0051	ND _		0.74	ND		0.77
Cis-1,2-Dichloroethene	NS NS	ND		0.0063	ND		0.006	ND		0.026	ND	L	0.0051	ND		0.74	ND		0.77
Cis-1,3-Dichloropropene	NS NS	ND ND		0.0063	ND ND		0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Dibromochloromethane	NS NS	ND		0.0063	ND	L	0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Ethylbenzene	5.5	ND		0.0003	ND	 -	0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
M&p-Xylenes	1.2 (Total)	ND		0.0013	ND ND	<u></u>	0.0012	ND		0.0052	0.0012		0.001	ND		0.15	ND		0.15
Methylene chloride	0.1	0.043	В	0.0025			0.0024	0.011		0.01	0.004	<u> </u>	0.002	ND		0.3	ND		0.31
O-Xylene	1.2 (Total)	ND		0.0063	0.02 ND	В	0.006	0.11	В	0.026	0.018	B	0.0051	0.38	J, B	0.74	0.42	J, B	0.77
Styrene	NS NS	ND		0.0013	ND ND	L	0.0012	ND		0.0052	0.002	ļ	0.001	ND		0.15	ND		0.15
Tetrachloroethene	1.4	ND		0.0063	ND		0.006	ND		0.026	ND	ļ <u> </u>	0.0051	ND		0.74	ND		0.77
Toluene	1.5	ND		0.0063	ND ND		0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Trans-1,2-Dichloroethene	0.3	ND ND		0.0013	ND ND		0.0012	0.015		0.0052	0.0034		0.001	ND		0.15	ND		0.15
Trans-1,3-Dichloropropene	NS NS	ND		0.0063			0.006	ND		0.026	DN		0.0051	ND	L	0.74	ND		0.77
Trichloroethene	0.7	ND ND			ND	L	0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
Vinyl chloride	0.7	ND ND		0.0063	ND ND		0.006	ND		0.026	ND	L	0.0051	ND		0.74	ND		0.77
Total VOCs Conc.	10	0.043		0.0063			0.006	ND		0.026	ND		0.0051	ND		0.74	ND		0.77
VOC TICs	NS NS	0.164			0.053		L	0.2754			0.0477			0.38			0.42		
Notes:	140	U, 104	J	L	0.0041	J		5.74	_ J		1	J		125	J		118.3	J	

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs) TAGM=Technical and Administrative Guidance Memorandum #4046 NS= No standard has been established for this compound Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits MDL=Method detection limit

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth intervi-

the sample was collected. For example, PE-A1E (5-5.5') was collected from 5-5.5 feet bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVE N SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID		P	E-JB1 (8-8.	5')		E-K1 (5.5-	5')		PE-K2 (5.5-	5"\		E V2 (E E (515		E 144 /E E				
Lab Sample No.	New York State		C25828-00			AC25169-00			C25169-0			PE-K3 (5.5-6 AC25169-00			E-K4 (5.5-4 C25252-00			E-KB1 (7-7	
Sampling Date	Recommended Soil Cleanup		9/1/2006	~_	l '	8/22/2006		l '	8/22/2006		1 ′	9/22/2006		<i>^</i>	9/22/2006	ונ	,	C25169-00	
Matrix	Objectives (mg/kg)		SOIL		l	SOIL		ļ	SOIL		t .	SOIL	1				S	8/22/2006	
Units			mg/Kg		l	mg/Kg			mg/Kg			mg/Kg			SOIL]	SOIL	
VOLATILE ORGANIC COMPOUN	IDS (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	-	mg/Kg Qual	1 1101
1,1,1,2-Tetrachloroethane	NS NS	ND		0.0059	ND	1	0.032	ND	- Quan	0.028	ND	Quai	0.028	ND	Qual	0.006	Conc ND	Quai	MDL
1,1,1-Trichloroethane	0.8	ND		0.0059	ND		0.032	ND		0.028	ND	l	0.028	ND ND		0.006	ND ND		0.029
1,1,2,2-Tetrachloroethane	0.6	ND		0.0059	ND		0.032	ND	 	0.028	ND	 -	0.028	ND ND					0.029
1,1,2-Trichloroethane	NS	ND		0.0059	ND		0.032	ND		0.028	ND		0.028	ND		0.006	ND		0.029
1,1-Dichloroethane	0.2	ND		0.0059	ND	 	0.032	ND		0.028	ND	 		ND		0.006	ND		0.029
1,1-Dichloroethene	0.4	ND		0.0059	ND		0.032	ND		0.028	ND -	 	0.028 1		ļ	0.006	ND		0.029
1,2-Dichloroethane	0.1	ND		0.0059	ND ND	 -	0.032	ND ND	 -	0.028	ND ND		0.028	ND		0.006	ND		0.029
1,2-Dichloropropane	NS	ND	·	0.0059	ND		0:032	ND					0.028	ND	ļ	0.006	ND		0.029
2-Butanone	0.3	ND ND	 	0.0059	ND		0.032	ND ND	<u> </u>	0.028	ND ND	 	0.028	ND	 	0.006	ND		0.029
2-Chloroethylvinylether	NS	ND		0.0059	ND	 	0.032	ND ND	 -	0.028	ND		0.028	ND		0.006	ND	L	0.029
2-Hexanone	NS NS	ND		0.0059	ND		0.032		 	0.028	ND		0.028	ND		0.006	ND		0.029
4-Methyl-2-Pentanone	1	ND		0.0059	ND ND			ND		0.028	ND	<u> </u>	0.028	ND		0.006	ND	L	0.029
Acetone	0.2	ND		0.0039	0.12		0.032	ND		0.028	ND		0.028	ND	l	0.006	ND		0.029
Acrolein	NS NS	ND		0.029	ND	_ J	0.16	0.11	J	0.14	ND		0.14	ND	L.,	0.03	ND		0.14
Acrylonitrile	NS NS	ND		0.0059	ND ND		0.16	ND		0.14	ND		0.14	ND		0.03	ND		0.14
Benzene	0.06	ND ND					0.032	ND		0.028	ND		0.028	ND		0.006	ND	L	0.029
Bromodichloromethane	NS	ND ND	· · · · · ·	0.0012	ND ND	ļ	0.0063	ND		0.0057	ND_	·	0.0056	ND		0.0012	ND		0.0057
Bromoform	NS NS	ND		0.0059	ND ND		0.032	ND	ļ	0.028	ND_	l	0.028	ND	L	0.006	ND		0.029
Bromomethane	NS NS	ND ND		0.0059	ND ND		0.032	ND		0.028	ND		0.028	ND	l	0.006	ND		0.029
Carbon disulfide	2.7	ND		0.0059	ND ND	ł	0.032	ND		0.028	ND		0.028	ND	ļ	0.006	ND		0.029
Carbon tetrachloride	0.6	ND		0.0059	ND ND		0.032	ND ND		0.028	ND	ļ	0.028	ND		0.006	ND		0.029
Chlorobenzene	1.7	ND	 	0.0059	ND -				 	0.028	ND		0.028	ND		0.006	ND	L	0.029
Chloroethane	NS NS	ND ND	<u> </u>	0.0059	ND ND		0.032	ND		0.028	ND_		0.028	ND		0.006	ND		0.029
Chloroform	0.3	ND		0.0059	ND ND		0.032	ND		0.028	ND	L	0.028	ND		0.006	ND	L	0.029
Chloromethane	NS	ND		0.0059	ND		0.032	ND		0.028	ND		0.028	ND		0.006	ND	L	0.029
Cis-1,2-Dichloroethene	NS NS	ND -		0.0059	ND ND		0.032	ND		0.028	ND.	ļ	0.028	ND	L	0.006	ND		0.029
Cis-1,3-Dichloropropene	NS NS	ND		0.0059	ND ND		0.032	ND	<u> </u>	0.028	ND	 	0.028	ND		0.006	ND		0.029
Dibromochloromethane	NS	ND		0.0059	ND		0.032	ND ND		0.028	ND		0.028	ND		0.006	ND	L	0.029
Ethylbenzene	5,5	ND ND		0.0012	ND	 	0.032			0.028	ND	ļ	0.028	ND	l	0.006	ND		0.029
M&p-Xylenes	1.2 (Total)	ND		0.0012	ND ND			ND	<u> </u>	0.0057	ND	 	0.0056	ND		0.0012	ND	i	0.006
Methylene chloride	0.1	ND		0.0059	0.11	В	0.013	ND		0.011	ND	!	0.011	ND		0.0024	ND		0.011
O-Xylene	1.2 (Total)	ND ND	 -	0.0039	ND	В	0.032	0.067	В	0.028	0.053	В	0.028	0.019	B	0.006	0.06	B	0.029
Styrene	NS NS	ND ND		0.0012	ND ND	<u> </u>	0.0063	ND ND		0.0057	ND ND	<u> </u>	0.0056	ND	L	0.0012	ND	l	0.0057
Tetrachloroethene	1.4	ND ND		0.0059	ND ND			ND	 	0.028	ND	<u> </u>	0.028	ND		0.006	ND		0.029
Toluene	1.5	ND -	⊢——	0.0039	ND	 	0.032	ND ND	 _	0.028	ND		0.028	ND		0.006	ND		0.029
Trans-1.2-Dichloroethene	0.3	ND	\vdash	0.0012	ND ND	 	0.0063	ND	 	0.0057	ND		0.0056	ND		0.0012	ND		0.006
Trans-1,3-Dichloropropene	NS	ND	<u> </u>	0.0059	ND ND		0.032	ND	<u> </u>	0.028	ND	 	0.028	ND		0.006	ND		0.029
Trichloroethene	0.7	ND	 	0.0059	ND ND		0.032	ND	L	0.028	ND		0.028	ND		0.006	ND		0.029
Vinyl chloride	0.7	ND -		0.0059	ND ND	<u> </u>	0.032	ND	<u> </u>	0.028	ND		0.028	ND		0.006	ND		0.029
Total VOCs Conc.	10	110	 	0.0039	0.23		0.032	ND		0.028	ND		0.028	ND		0.006	ND		0.029
VOC TICs	NS NS	0.01				<u> </u>	 	0.177	L		0.053			0.019			0.06		
Notes:	No No	0.01		L	33.2	<u> </u>		38.05	J	L	11.21	J		0.434	J		22.98	J	

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs) TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

Ö

B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below

the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds mg/kg= miligrams per kilogram

1) The numbers at the end of the sample ID indicate the depth intervithe sample was collected. For example, PE-A1E (5-5.5') was collected from 5-5 and et bgs depth interval at Removal Area/Trench A.

SUMMARY OF POST EXCAVATION SOIL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID			E-L1 (5.5-6			E-L2 (5.5-6			-LB1 (7.5-	
Lab Sample No.	New York State		C25169-00	3	A	C25169-00	14		C25169-00	
Sampling Date	Recommended Soil Cleanup		8/22/2006			8/22/2006			8/22/2006	
Matrix	Objectives (mg/kg)		SOIL			SOIL	- 1		SOIL	
Units	L		mg/Kg			mg/Kg			mg/Kg	
VOLATILE ORGANIC COMPOUN	NDS (GC/MS)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.032	ND		0.0062	ND		0.0067
1,1,1-Trichloroethane	0.8	ND		0.032	ND		0.0062	ND		0.0067
1,1,2,2-Tetrachloroethane	0.6	ND		0.032	ND		0.0062	ND		0.0067
1,1,2-Trichloroethane	NS	ND		0.032	ND		0.0062	ND		0.0067
1,1-Dichloroethane	0.2	ND		0.032	ND		0.0062	ND		0.0067
1,1-Dichloroethene	0.4	ND		0.032	ND		0.0062	ND		0.0067
1,2-Dichloroethane	0.1	ND		0.032	ND		0.0062	ND		0.0067
1,2-Dichloropropane	NS	ND		0.032	ND		0.0062	ND		0.0067
2-Butanone	0.3	ND		0.032	ND		0.0062	ND		0.0067
2-Chloroethylvinylether	NS	ND		0.032	ND		0.0062	ND		0.0067
2-Hexanone	NS	ND		0.032	ND		0.0062	ND		0.0067
4-Methyl-2-Pentanone	1	ND		0.032	ND		0.0062	ND		0.0067
Acetone	0.2	ND		0.16	0.018	J	0.031	0.025	J	0.033
Acrolein	NS	ND		0.16	ND		0.031	ND		0.033
Acrylonitrile	NS	ND		0.032	ND		0.0062	ND		0.0067
Benzene	0.06	ND		0.0064	ND		0.0012	ND		0.0013
Bromodichloromethane	NS	ИD		0.032	ND		0.0062	ND.		0.0067
Bromoform	NS	ND		0.032	ND		0.0062	ND		0.0067
Bromomethane	NS	ND		0.032	ND		0.0062	ND		0.0067
Carbon disulfide	2.7	0.0089	J	0.032	ND		0.0062	ND		0.0067
Carbon tetrachloride	0.6	ND		0.032	ND		0.0062	ND		0.0067
Chlorobenzene	1.7	ND		0.032	ND		0.0062	ND		0.0067
Chloroethane	NS	ND		0.032	ND		0.0062	ND		0.0067
Chloroform	0.3	ND	!	0.032	ND	· ·	0.0062	ND		0.0067
Chloromethane	NS	ND		0.032	ND		0.0062	ND		0.0067
Cis-1,2-Dichloroethene	NS	ND		0.032	ND		0.0062	ND		0.0067
Cis-1,3-Dichloropropene	NS	ND		0.032	ND		0.0062	ND		0.0067
Dibromochloromethane	NS	ND		0.032	ND		0.0062	ND	·	0.0067
Ethylbenzene	5.5	ND		0.0064	ND		0.0012	ND		0.0013
M&p-Xylenes	1.2 (Total)	ND		0.013	ND		0.0025	ND		0.0027
Methylene chloride	0.1	80.0	В	0.032	0.016	В	0.0062	0.042	В	0.0067
O-Xylene	1.2 (Total)	ND		0.0064	ND		0.0012	ND		0.0013
Styrene	NS	ND		0.032	ND	ļ	0.0062	ND		0.0067
Tetrachioroethene	1.4	ND		0.032	ND		0.0062	ND		0.0067
Toluene	1.5	ND		0.0064	ND		0.0012	ND		0.0013
Trans-1,2-Dichloroethene	0.3	ND		0.032	ND		0.0062	ND		0.0067
Trans-1,3-Dichloropropene	NS	ND		0.032	ND		0.0062	ND		0.0067
Trichloroethene	0.7	ND		0.032	ND		0.0062	ND		0.0067
Vinyl chloride	0.2	ND		0.032	ND		0.0062	ND		0.0067
Total VOCs Conc.	10	0.0889			0.034			0.067		
VOC TICs	NS	51.4	J		0.0093	J		0.0102	J	

Notes:

Concentrations in blold in highlighted cells exceed the New YorkTAGM Recommended Soil Cleanup Objectives (RSCOs)

TAGM=Technical and Administrative Guidance Memorandum #4046

NS= No standard has been established for this compound

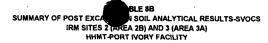
Conc.= Detected concentration

ND=Not detected above the laboratory's reporting limits

MDL=Method detection limit

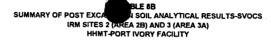
B= Analyte was detected in the laboratory analyzed blank

J- The estimated value was detected at a concentration below


the MDL, but above the laboratory's reporting limits.

TICs=Tentatively Identified compounds

mg/kg= miligrams per kilogram

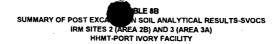

1) The numbers at the end of the sample ID indicate the depth intervithe sample was collected. For example, PE-A1E (5-5.5') was collected.

from 5-5.5 by bgs depth interval at Removal Area/Trench A.

Sample ID Lab Sample No. Sampling Date Matrix	New York S Recr mmende Cleanup Obje (mg/kg)	d Soil ctives	PE-AB1(6 AC25828 9/22/20 SOIL	-004 06		E-A4N(3.5-4 C25828-00 9/22/2006 SOIL			E-A3W(5-5. AC25828-00 9/22/2006 SOIL		'	PE-A2S(5-5. AC25828-00 9/22/2006 SOIL	05		PE-A1E(5-5.9 AC25828-00 9/22/2006 SOIL	5')	l a	E-BB1 (6.5-7') \C25433-006 8/31/2006 SOIL		PE-B1E (4.5 AC25433-0 8/31/2006 SOIL	07		E-B2N (4.5- AC25433-00 8/31/2006 SOIL	8	Pi	E-B3S (4.5-5') C25433-009 8/31/2006 SOIL
Units			mg/K		<u> </u>	mg/Kg		<u> </u>	mg/Kg		<u> </u>	mg/Kg			mg/Kg			mg/Kg	1	mg/Kg		i	mg/Kg		İ	mg/Kg
SEMIVOLATILE COMPOUNDS (G 1,2,4-Trichlorobenzene		Con			Canc	Quat	MDL	Conc	Qual	MDL	Conc	Qual	_MDL	Conc	Qual	MDL	Conc	Qual MDL	Canc	Qual	MDL	Conc	Qual	MDL	Conc	Qual MDL
1,2-Oichlorobenzene	7.9	ND ND		0.42	ND ND		0.43 0.43	ND ND	ļ	0.51	ND ND	 	0.48	ND ND		0.48	ND	0.51	ND		0.48	ND		0.45	ND	5.4
1,2-Diphenylhydrazine	NS	ND		0.42	ND		0.43	ND		0.51	ND ND		0.48	ND		0.48	ND	0.51			0.48	ND		0.45	ND	5.4
1,3-Dichlorabenzene	1.6	ND		0.42	dN dN		0.43	ND		0.51	ND ND	 	0.48	ND ND		0.48	ND	0.51	ND		0.48	ND		0.45	ND	5.4
1,4-Dichlorobenzene	8.5	ND		0.42	ND ND		0.43	ND		0.51	ND.		0.48	ND D		0.48	ND ND	0.51	ND	 	0.48	ND		0.45	ND	5.4
2,4,5-Trichlorophenol	0.1	ND		0.42	ND .		0.43	ND	 	0.51	ND ND	 	0.48	ND D	 	0.48	ND	0.51	ND	 	0.48	ND	L	0.45	ND	5.4
2,4,6-Trichlorophenol	NS	ND		0.42	ND		0.43	ND	\vdash	0.51	ND	t	0.48	ND	 	0.48	ND ND	0.51	ND		0.48	, ND ND		0.45	ND	5.4
2,4-Dichlorophenol	0.4	ND		0.42	ND		0.43	ND	T	0.51	ND	 	0.48	ND		0.48	ND	0.51	ND	 -	0.48	ND -		0.45	ND	5.4 5.4
2,4-Dimethylphenol	NS	ND		0.42	ND		0.43	ND	1	0.51	ND		0.48	ND	1	0.48	ND	0.51	ND	 	0.48	ND		0.45	ND	5.4
2,4-Dinitrophenal 2,4-Dinitrotaluene	0.2	ND ND		1.1	ND		2.2	ND		2.6	ND		2.4 0.48	ND		2.4	ND	1.3		1	1.2	ND		1.1	ND	1.3
2.4-Dinitrotoluene	NS			0.42	ND		0.43	ND		0.51	ND			ND		0.48	ND	0.51	ND	1	0.48	ND		0.45	ND	5.4
2-Chloronaphthalene	NS	ND ND		0.42	ND ND		0.43	ND		0.51	ND	<u> </u>	0.48	ND		0.48	ND	0.51	ND		0.48	ND		0.45	ND	5.4
2-Chlorophenol	0.8	ND ND		0.42	1 ND		0.43	ND ON		0.51 0.51	ND ND	-	0.48	ND ND	-	0.48	ND	0.51	NO	I	0.48	ND		0.45	ND	5.4
2-Methylnaphthalene	36.4	ND.		0.42	ND		0.43	ND		0.51	ND	ļ	0.48	0.2		0.48	ND 1.3	0.51			0.48	ND		0.45	ND	5.4
2-Methylphenol	0.1	ND		0.42	ND		0.43	ND	 	0.51	ND		0.48	ND	 '-	0.48	ND ND	0.51 0.51			0.48	0.42	J	0.45	2.7	J 5.4
2-Nitroaniline	0.43	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51		· 	0.48	ND ND		0.45	ND	5.4
2-Nitrophenol	0.33	ND		0.42	ND		0.43	ND	1	0.51	ND		0.48	ND		0.48	NO	0.51		 	0.48	ND		0.45 0.45	ND GN	5.4 5.4
3&4-Methylphenol	0.9	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51	ND ON	+	0.48	ND ND		0.45	ND ND	5.4
3,3'-Dichlorobenzidine	NS	ND		0.42	ND		1,1	ND		1.3	ND		1.2	ND		1.2	DN	0.51	ND	1	0.48	ND ND		0.45	ND	5.4
3-Nitroaniline 4,6-Dinitro-2-methylphenol	0.5	ND ND		0.42	ND		0.43	ND	L	0.51	ND		0.48	ND		0.48	ND	0.51	ND	T	0.48	ND		0.45	ND	5.4
4.Bromophenyi-phenylether	NS NS	ND ND		0.42	ND ND		1.1	ND	——	1.3	ND		1.2	ND		1.2	ND	0.51			0.48	ND		0.45	ND	5.4
4-Chloro-3-methylphenol	0.24	ND ND		0.42	ND ON		0.43	ND	 _	0.51	ND	 -	0.48	ND	├	0.48	ND	0.51			0.48	ND		0.45	ND	5.4
4-Chloroaniline	0.24	ND ND		0.42	ND		0.43	ND ND		0.51 0.51	ND ND	<u> </u>	0.48	ND ND	ļ	0.48	ND ND	0.51	ND		0.48	ND		0.45	ND	5.4
4-Chlorophenyl-phenylether	NS	ND ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND ND				0.51	ND	 -	0.48	ND		0.45	ND	5.4
4-Nitroaniline	NS	ND		0.42	ND		0.43	GN	-	0.51	ND	 	0.48	ND	 	0.48	ND ND	0.51 0.51	ND ND	+	0.48	ND DD		0.45	ND	5.4
4-Nitrophenol	0.1	ND		0.42	ND		0.43	ND		0.51	ND	 	0.48	ND NO	 	0.48	ND	0.51	ND ON	+				0.45	ND	5.4
Acenaphthene	50	ND		0.42	ND		0.43	0.072	J -	0.51	ND	Τ	0.48	ND		0.48	- "	0.51		 -	0.48	ND 0.15	 -	0.45 0.45	ND 4.8	J 5.4
Acenaphthylene	41	ND		0.42	ND		0.43	0.063	J	0.51	ND	L	0.48	ND		0.48	ND	0.51	0.11	1	0.48	0.13		0.45	ND ND	5.4
Anthracene Benzidine	50	ND		0.42	0.048		0.43	0.077	J	0.51	ND		0.48	0.28	J	0.48	1.2	0.51	1.9		0.48	0.4	<u> </u>	0.45	3.5	J 5.4
Benzo(a)anthracene	0.224	ND ND		2.1	ND		1.1	ND		1.3	ND		1.2	ND		1.2	ND	2.6	ND	 	2.4	ND		2.3	ND	27
Benzo(a)pyrene	0.224	ND ND		0.42	0.18		0.43	0.51	ļ.,	0.51	ND	<u> </u>	0.48	0.19	J	0.48	1.2	0.51	5.3		0.48	1.2		0.45	1.7	J 5.4
Benzo(b)fluoranthene	1.1	ND		0.42	0.15	<u> </u>	0.43	0.43 0.86	J	0.51 0.51	ND	├	0.48	0.078	3	D.48	13	0.51			0.48	1.1		0.45	0.82	J 5.4
Benzo(g,h,i)perylene	50	ND		0.42	0.17		0.43	0.80	 _, _	0.51	ND	├	0.48 0.48	0.052		0.48	21	0.51	7.7		0.48	2 1		0.45	ND	5.4
Benzo(k)fluoranthene	1,1	ND		0.42	0.094		0.43	0.23	ا ز	0.51	ND ND	·	0.48	0.062 ND		0.48	0.93	0.51	3.1	 	0.48	0.74		0.45	0.58	J 5.4
Benzyl alcohol	NS	ND		0.42	ND		0.43	ND	├	0.51	ND		0.48	ND		0.48	ND ND	J 0.51 0.51	1.8 ND	1	0.48	0.56		0.45	ND	5.4
Bis(2-Chloroethoxy)methane	NS	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND	t	0.48	ND ND	0.51	ND	 	0.48 0.48	ND NO		0.45 0.45	ND ND	5.4
Bis(2-Chloroethyl)Ether	NS	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51	ND	 	0.48	ND ON		0.45	ND .	5.4 5.4
Bis(2-Chloroisopropyl)ether	NS	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0,51	ND	 	0.48	ND		0.45	ND	5.4
Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	50 50	0.04 NO		0.42	0.096 ND	JB	0.43	0.11 ND	JB	0.51	0.11	JB	0.48	ND		0.48	ND	0.51		J	0.48	0.37	JB	0.45	ND	5.4
Carbazole	NS	ND		0.42	ND NO		0.43	ND		0.51 0.51	ND ND	 -	0.48	ND	L	0.48	ND	0.51	ND		0.48	ND		0.45	МD	5.4
Chrysene	0.4	ND		0.42	0.23		0.43	0.48	— —	0.51	ND ND	-	0.48	ND	<u> </u>	0.48	0.18	J 0.51			0.48	0.17	J	0.45	ND	5.4
Dibenzo[a,h]Anthracene	0.014	ND	\dashv	0.42	0.052		0.43	0.093	- ;-	0.51	ND	 	0.48	0.086 ND		0.48	1.9 0.32	J 0.51	1.1		0.48 0.48	0.25		0.45	2.8	J 5.4
Dibenzofuran	6.2	ND		0.42	ND		0.43	ND	1	0.51	ND	 	0.48	ND		0.48	0.47	J 0.51		·	0.48	0.19		0.45 0.45	ND 0.95	J 5.4
Diethylphthalate	7.1	ND		0.42	ND		0.43	NO		0.51	ND	1	0.48	ND	1 -	0.48	ND	0.51	ND		0.48	ND		0.45	ND ND	5.4
Dimethylphthalate	2	ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51			0.48	ND		0.45	ND I	5.4
Di-n-buty/phthalate Di-n-octy/phthalate	8.1 50	ND ND		0.42	0.11	JB	0.43	ND		0.51	0.05	JB	0.48	ND		0.48	0.16	JB 0.51	0.18	JB	0.48	0.069		0.45	ND	5.4
Fluoranthene	50	ND ND		0.42	ND 0.32		0.43	ND	-	0.51	ND	<u> </u>	0.48	ND		0.48	МĎ	0.51	ND		0.48	ND '		0.45	ND	5.4
Fluorene	50	ND		0.42	ND ND		0.43	0.56		0.51	ND	 	0.48	0.074	J	0.48	1.8	0.51	8.6		0.48	1.8		0.45	1.7	J 5.4
Hexachlorobenzene	0.41	ND		0.42	ND ND		0.43	0,053 ND	J	0.51	ND ND		0.48	0.37	J	0.48	1.5	0.51	1.2	 	0.48	0.19	J	0.45	6.1	5.4
Hexachlorobutadiene	NS	ON		3.42	ND		0.43	ND	-	0.51	ND	 -	0.48	ND ND		0.48 0.48	ND ND	0.51 0.51		 	0.48	ND		0.45	ND	5.4
Hexachlorocyclopentadiene	NS	ND.		2.1	ND		0.43	ND	1	0.51	ND	-	0.48	ND ND	 	0.48	ND ND	0.51	ND ND		1.2	ND ND		0.45	ND	5.4
Hexachloroethane	NS	ND		0.42	ND		0.43	ND		0.51	ND	†	0.48	ND		0.48	ND	0.51	ND	 -	0.48	ND ND		1.1 0.45	ND ND	13 5,4
Indeno(1,2,3-cd)pyrene	3.2	ND		0.42	0.1	J	0.43	0.28	J	0.51	ND	I	0.48	ND		0.48	0.78	0.51	3	1	0.48	0.72		0.45	ND ND	5.4
Sophorone N-Nitroso Di M. Promilamino	4.4	ND ND		0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51		 	0.48	ND ND		0.45	ND	5.4
N-Nitroso-Di-N-Propylamine N-Nitrosodimethylamine	NS NS	ND ND	-	0.42	ND		0.43	ND		0.51	ND		0.48	ND		0.48	ND	0.51			0.48	ND		0.45	ND	5.4
N-Nitrosodimetrylamine	NS NS	- ND		0.42	ND		1.1	ND		1.3	ND	ļ	1.2	ND		1.2	ND	0.51	ND		0.48	ND		0.45	ND	5.4
Naphthalene	13	ND		0.42	ND 0.17		0.43 0.43	ND 0.062		0.51	ND	 	0.48	ND		0.48	ND	0.51	ND		0.48	ND		0.45	ND	5.4
Nitrobenzene	NS	ND ND		0.42	ND ND		0.43	0,062 ND	— '—	0.51	ND NO	 	0.48	ND		0.48	1.2	0.51			0.48	0.29	J	0.45	2.4	J 5.4
Pentachlorophenol	1	ND		1.1	ND I	+	1.1	ND	 	1.3	ND ND		1.2	ND ND	 	0.48	ND ND	0.51	NO		0.48	ND		0.45	ND	5.4
Phenanthrene	50	ND		0.42	0.16	-	0.43	0.14	J	0.51	ND		0.48	0.72	-	0.48	1.2	1.3 0.51	ND 7.1	 	1.2	ND		1.1	ND	13
Phenol	0.03	ND ND		0.42	ND		0.43	ND		0.51	ND	-		ND	 	0.48	ND ND	0.51			0.48	1.2 ND		0.45 0.45	4.4	J 5.4
Pyrene	50	ND		0.42	0.3	J	0.43	0.6		0.51	ND		0.48 0.48	0.19	 	0.48	2.7	0.51	1 8	 	0.48	1.8		0.45	ND 6.5	5.4 5.4
Total SVOC Conc.	500	0.04			2.48			4.94			0.05			2.302			21.74		64.83	 		15.149		0.75	38.95	3.4
Total SVOC TICs	NS	6.49	J		13.57	J		23.01	J		23.54	J		66.4	J		158.3	 	91.63	1 - 1		136.88		\vdash	847	
Notes: Concentrations in blold and shaded New York State TAGM Recomment Objectives (RSCOs).	cells exceed to ded Soil Clean	ne up																		<u> </u>		344,35			975_1	
NS= No standard has been establis	hed for this co	mpound																								
Conc.≈ Detected concentration		•																								
mg/kg= miligrams per kilograms																										
NS=No standard has been establish	ned.																									
ND=Not detected above the laborat MDL=Method detection limit	ory's reporting	limits																								
MUL=Method detection limit B= Analyte was detected in the labo	ratani anab	d blank														•										
J- The estimated concentration was	natury analyze	u piank																								
but above the laboratory's reporting	a limits.	- ,																								•
TICs=Tentatively identified compou																										
1) Sample depth intervals are indica	ated at the end	of the																								
sample ID -																										

1) Sample deput inter-sour in Sample (D Puzzes) Semedial Paroleum Issues Block 1338Rem

Sample (D Lab Sample No. Sampling Date Matrix Units	New York State Recommended Soil Cleanup Objectives (mg/kg)		PE-B4W (4.5-5 AC25433-010 8/31/2006 SQIL			-0EXBB1(5- AC25847-00 9/25/2006 SOIL	12		-0EXB3N(2. AC25847-00 9/25/2006 SOIL	14	PE	-0EXB2E(2- AC25847-00 9/25/2006 SOIL	03		-0EXB1S(2- AC25847-00 9/25/2006 SOIL			C1S (5.5- C25433-00 8/31/2006 SOIL		PI	E-C2E (5.5- C25433-00 8/31/2006 SOIL	6') 2		E-C3N (5.5 AC25433-0 8/31/2006 SOIL	03	Α	-C4N (5.5- C25433-00 8/31/2006 SOIL	14
SEMIVOLATILE COMPOUNDS (G		Conc	mg/Kg	MÓL	Conc	mg/Kg	MDI	<u> </u>	mg/Kg			mg/Kg		<u> </u>	mg/Kg			mg/Kg			mg/Kg		i	mg/Kg		1	mg/Kg	
1,2,4-Trichlorobenzene	34	ND	Qual	0.44	ND	Qual	0.56	Conc	Qual	MDL 0.41	Conc	Qual	MDL 1.2	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL
1,2-Dichlorobenzene	7.9	ND		0.44	ND	 	0.56	ND		0.41	ND	┪	1.2	ND		0.37 0.37	ND		0.88	ND ND	ļ	0.69	ND ND		0.62	ND DD		1.2
1,2-Diphenylhydrazine	NS	ND		0.44	ND		0.56	ND		0.41	ND	 	1.2	ND		0.37	ND		0.88	ND_		0.69	ND ND		0.62	- ND		1.2
1.3-Dichlorobenzene	1.6	ND	1	0.44	ND		0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND	 	0.62	ND ON		1.2
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	8.5 0.1	ND	 	0.44	ND		0,56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND	 	0.62	ND		1.2
2.4,6-Trichlorophenol	NS NS	ND ND		0.44	DN ON	├	0.56 0.56	ND		0.41	ND	<u> </u>	1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
2,4-Dichlorophenal	0.4	ND	+	0.44	ND	├ ──	0.56	ND ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
2,4-Dimethylphenol	NS	ND	 	0.44	ND	 	0.56	ND		0.41	ND ND	 -	1.2	ND ND		0.37	ND		0.68	ND		0.69	ND		0.62	ND		1.2
2,4-Dinitrophenal	0.2	ND		1.1	ND	 	1.4	ND		2.1	ND		5.8	ND ON		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
2,4-Dinitrotoluene	NS	ND	+	0.44	ND		0.56	ND		0.41	ND ON	 	1.2	ND		1.9 0.37	ND ND		2.2 0.88	ND ND		1.7	ND		1.5	ND		3
2,6-Dinitrotoluene	1	ND	1	0.44	ND		0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND ND		0.69	ND ND		0.62	ND		1.2
-Chloronaphthalene	NS	ND		0.44	ND		0.56	ND		0.41	ND	— —	1.2	ND		0.37	ND		0.88	ND ND		0.69	ND	 	0.62 0.62	ND ND		1.2
-Chlorophenol	0.8	ND		0.44	ND		0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND -		0.69	ND	-	0.62	ND I		1.2
-Methylnaphthalene -Methylphenol	36.4	0.72		0.44	ND	ļ	0.56	ND		0.41	0.58	_ j	1.2	ND		0.37	0.71	J	0.88	0.29	7	0.69	ND		0.62	0.59		1.2
Nitroaniline	0.1 0.43	ND ND	 	0.44	ND ND	<u> </u>	0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
-Nitrophenol	0.33	ND	 	0.44	ND ND	 	0.56	ND		0.41	ND	<u> </u>	1.2	ND		0.37	מא		0.88	ND		0.69	ND		0.62	ND		1.2
84-Methylphenol	0.9	ND	 - 	0.44	ND ND	├	0.56 1.4	ND ND		0.41	ND ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
3'-Dichlorobenzidine	NS	ND	1	0.44	ND	 	1.4	ND	 	1	ND ND		1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	0.6	J	1.2
Nitroaniline	0.5	ND	1 1	0.44	ND -		0.56	ND	 	0.41	ND ND	 	2.9	ND		0.93	ND		88.0	ND.		0.69	ND		0.62	ND		1.2
6-Dinitro-2-methylphenol	NS	ND	 	0.44	ND ND		1.4	ND	t	1	ND ND		1.2	DN DIN		0.37	ND		0.88	ND_		0.69	ND		0.62	ND		1.2
Bromophenyl-phenylether	NS	ND		0.44	ND	!	0.56	ND -	t	0.41	ND	 	1.2	ND ND	 	0.93	DU		0.88	ND ND		0.69	ND	-	0.62	ND		1.2
Chloro-3-methylphenal	0.24	ND		0.44	ND	T	0.56	ND	 	0.41	ND		1.2	ND		0.37	ND -		0.88	ND ND	├	0.69	ND ND		0.62	ND		1.2
Chloroaniline	0.22	ND		0.44	ND		0.56	ND		0.41	ND	1	1.2	ND ND	-	0.37	ND		0.88	ND ND		0.69	ND ND	 	0.62	ND ND		1.2
Chlorophenyl-phenylether	NS	ND	$ \Box$	0.44	ND	L	0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.88	ND	┝──┤	0.69	ND ND	 -	0.62	ND ND		1.2
Nitroaniline Nitrophenol	NS 0.1	ND ND	+	0.44	ND	ļ	0.56	ND		0.41	ND		1.2	ND	\Box	0.37	ND		0.88	ND	-	0.69	ND	<u> </u>	0.62	ND I		1.2
cenaphthene	50	0.7	 	0.44	ND	 	0.56	ND		0.41	ND	L	1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
cenaphthylene	41	0.7	+	0.44	ND ND	-	0.56 0.56	0.047		0.41	0.31	J	1.2	ND	-	0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
nthracene	50	0.81	+	0.44	ND	 	0.56	0.071	 	0.41	0.15	J	1.2	0.086	<u> </u>	0.37	ND		0.88	ND		0.69	ND		0.62	0.14	J	1.2
enzidine	NS	ND	†	2.2	NO	 	0.56	ND		1	ND	<u> </u>	1.2 2.9	0.083 ND	J	0.37 0.93	0.11		0.88	ND		0.69	ND		0.62	0.21	J	1.2
nzo[a]anthracene	0.224	1	1 1	0.44	ND	†	0.56	0.34		0.41	2.5		1.2	0.31	-	0.93	ND 0.25		4.4	ND		3.5	ND		3.1	_ ND		6
enzo(a)pyrene	0.061	0.9		0.44	ND		0.56	0.4		0.41	2.4	 	1.2	0.34	1 -	0.37	0.19		0.88	0.079 ND		0.69	ND ND		0.62	0.54	J	1.2 1.2 1.2
enzo[b]fluoranthene	1.1	1.4		0.44	ND	Ī	0.56	0.76		0.41	3.5		1.2	0.46	<u> </u>	0.37	0.27		0.88	0.074		0.69	ND ND	 -	0.62	0.54	<u></u>	1.2
nzo(g,h,i)perylene	50	0.64	\bot	0.44	ND		0.56	0.38	3	0.41	1.7	1	1.2	0.27	J	0.37	0.15		0.88	ND ND		0.69	ND		0.62	0.79 0.46		1.2
nzo(k)fluoranthene	1.1	0.35	- J	0.44	ND	ļ	0.56	0.18	J	0.41	1.1	J	1.2	0.18	1	0.37	ND		0.88	ND		0.69	ND		0.62	0.3		13
enzył alcohol s(2-Chloroethoxy)methane	NS NS	ND ND	1	0.44	ND ND	 	0.56 0.56	ND ND		0.41	NO		1.2	ND		0.37	. ND		0.88	ND		0.69	ND	<u> </u>	0.62	ND		1.2
s(2-Chloroethyl)Ether	NS	ND	 	0.44	ND ND	 	0.56	ND ND		0.41	ND ND		1.2	ND	l	0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
s(2-Chloroisopropyl)ether	NS	ND		0.44	ND	 	0.56	ND ND		0.41	ND	-	1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
s(2-Ethylhexyl)phthalate	50	0.24	JB I	0.44	0.15	 	0.56	0.091	JB	0.41	ND	 		0.12	JB	0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
utylbenzylphthalate	50	ND	1	0.44	ND	 	0.56	ND		0.41	ND ND	 	1.2	ND ND	JB	0.37	0,14 ND	J	0.88 0.88	0.074		0.69	0.065	J.	0.62	0.12	J	1.2
arbazole	NS	0.19	J	0.44	ND	1	0.56	ND		0.41	0.34	J	1.2	ND		0.37	- ND		0.88	ND ND		0.69	ND ND		0.62	ND		1.2
hrysene	0.4	1.5		0.44	ND		0.56	0.47		0.41	2.8	<u> </u>	1.2	0.31	<u> </u>	0.37	0.26	J	0.88	0.1		0.69	ND		0.62	ND 0.75		1.2
ibenzo(a,h Anthracene	0.014	0.24	J	0.44	ND		0.56	0.12	J	0.41	0.61	J	1.2	80.0	J	0.37	ND	<u>-</u> -	0.88	ND		0.69	ND		0.62	0.15		1.2
ibenzofuran iethylphthalate	6.2	0.5	1	0.44	ND	<u> </u>	1,4	ND		0.41	0.34	J	1.2	ND		0.37	0.16	3	0.88	ND		0.69	ND		0.62	ND ND	'-	1.2
imethylphthalate	7.1	ND ND	 	0.44	ND	ļ	0.56	ND		0.41	ND		1.2	ND	J	0.37	ND		0.88	ND		0.69	ND	 	0.62	ND		1.2
-n-butylphthalate	8.1	0.11	+	0.44	ND ND	ļ	0.56	ND		0.41	ND	ļ	1.2	ND		0.37	ND		0.88	ND		0.69	ND.		0.62	ND		1.2
-n-octylphthalate	50	ND	1	0.44	ND.	 	0.56	0.078 ND	JB	0.41	ND	 	1.2	ND		0.37	0.27	JB	0.88	0.19	JB	0.69	0.23	JB	0.62	0.49	JB	1.2
uoranthene	50	2.2	++	0.44	0.088	 	0.56	0.43		0.41	ND 4.2		1.2	ND		0.37	ND		0.88	ND		0.69	ND		0.62	NO		1.2
vorene	50	0.81	† — †	0.44 .	ND.	 	0.56	ND ND	 -	0.41	0.31	 	1.2	0.56 0.043		0.37	0.41		0.88	0.17	J	0.69	ND		0.62	1.3		1.2
exachlorobenzene	0.41	ND	1	0.44	ND	 	0.56	ND		0.41	ND		1.2	ND		0.37 0.37	0.12 ND	J	0.88	0.078	J	0.69	ND		0.62	0.16	J	1.2
exachlorobutadiene	NS	ND		0.44	ND	 	0.56	ND		0.41	ND		1.2	ND	 	0.37	ND		0.88	ND ND		0.69	ND	L	0.62	ND		1.2
exachlorocyclopentadiene	NS	ND		1.1	ND		0.56	ND		0.41	ND		1.2	ND	├ ──┤	0.37	ND		2.2	ND ON		0.69	ND ND	ļ	0.62	ND		1.2
exachioroethane	NS	ND		0.44	ND		0.56	ND		0.41	ND		1.2	ND	t	0.37	DN		0.88	ND -		1./ 0.69	ND ND	 -	1.5 0.62	ND ON		1.2
deno(1,2,3-cd)pyrene	3.2	0.53	+ $ 1$	0.44	ND		0.56	0.32	J	0.41	1.6		1.2	0.24	J	0.37	0.13	J	0.88	ND		0.69	ND		0.62	0.4		1.2
opnorone -Nitroso-Di-N-Propylamine	4.4 NS	ND ND		0.44	ND	 	0.56	ND		0.41	ND		1.2	ND		0.37	ND		0.68	ND		0.69	ND		0.62	ND ND		1.2
Nitrosodimethylamine	NS NS	ND ND	++	0.44	ND ND		0.56	ND		0.41	ND			ND		0.37	ND		0.88	ND		0.69	ND	<u> </u>	0.62	ND		1.2
Nitrosodiphenylamine	NS NS	ND ND	 	0.44	ND ND	 	1.4	ND ND		0.41	ND		2.9	ND	L	0.93	ND		0.88	, ND		0.69	ND		0.62	ND		1.2
aphthalene	13	0.58	 	0.44	ND ND	 	0.56	0.14	 	0.41	ND	 _	1.2	ND ND	<u> </u>	0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
trobenzene	NS NS	ND	1	0.44	ND	-	0.56	0.14 ND		0.41	0.43 ND	J	1,2	0.042		0.37	0.47	J	0.88	0.16	J	0.69	ND		0.62	0.47	J	1.2
entachlorophenol	1	ND	 	1.1	ND ND	 	1.4	ND	 	1 1	ND		1.2	ND ND	 	0.37	ND		0.88	ND		0.69	ND		0.62	ND		1.2
henanthrene	50	1.4	1	0.44	ND	 	0.56	0.34		0.41	1.8		2.9			0.93	ND	,	2.2	ND		1.7	ND		1.5	ND		3
henol	0.03	ND	 	0.44	ND	 	0.56	ND	 	0.41	ND	 	1.2	0.22 ND	⊢┵┤	0.37	0.48		88.0	0.3		0.69	ND		0.62	0.82	J	1.2
yrene	50	2.9		0.44	0.100	1	0.56	0.51	t	0.41	4.7	 	1.2	0.63		0.37	ND 0.41		0.88	ND 0.2		0.69	NO		0.62	ND		1.2
otal SVOC Conc.	500	17.94			0.238			4.787			30.07			3.974			4.53		0.00	1.715	_ J	0.69	ND 1.715	L	0.62	1.2	J	1.2
otal SVOC TICs	NS	108.36			41.06	J		9.84	J		41.98	J	 	7.82	 , . 		125.5			264.89	· , - l		398.2			947.3	-,-	
otes; oncentrations in blold and shaded w York State TAGM Recommen- bjectives (RSCOs). SE No standard has been establis onc. = Detected concentration g/kg= miligrams per kilograms S=No standard has been establis D=Not detected above the laborat D=Not detected above the laborat	ded Soil Cleanup hed for this compour																											
D=Not detected above the laborat DL=Method detection limit = Analyte was detected in the laboration was The estimated concentration was at above the laboratory's reporting Cs=Tentatively identified compou	pratory analyzed blan below the MDL, glimits.									•																		
Sample depth intervals are indicample ID. PUZZZSZWIMAREMEDAN	ated at the end of the	m Issues Rives	1350Pamertistus N	of District None 7	4 75:Die Owell	F																						

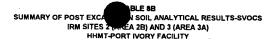

Sample ID Lab Sample No. Sampling Date Matrix	New York State Recommended Soil Cleanup Objectives (mg/kg)		E-CB1 (6.5- AC25433-00: 8/31/2006 SOIL			E-D1N (3.5- AC25440-00 9/1/2006 SOIL			E-D2E (3.4- C25440-00 9/1/2006 SOIL		P	E-D3S (3.5- C25440-00 9/1/2006 SOIL	4') 6		9/1/2006 SOIL			E-D81 (6-6. AC25440-00 9/1/2006 SOIL		PE	-E1W (4.5- C25440-00 9/1/2006 SOIL	-5'))1		PE-E2E (4.5 AC25440-0 9/1/2006 SOIL			E-EB1 (6.5- C25440-00 9/1/2006 SOIL	3
Units SEMIVOLATILE COMPOUNDS (G	1 1	Conc	mg/Kg	1401		mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg		<u>.</u>	mg/Kg	
1,2,4-Trichtorobenzene	34	ND	Quai	MDL 0.44	Conc ND	Qual	MDL 0.46	Conc	Qual	MDL 0.56	Conc	Qual	MDL 0.44	Conc	Qual	MDL 0.42	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,2-Dichlorobenzene	7.9	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND ND		0.51 0.51	ND		0.46	ND ND		0.41
1,2-Diphenylhydrazine 1,3-Dichlorobenzene	NS	ND ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND	 	0.46	ND		0.41
1,4-Dichlorobenzene	1.8 8.5	ND	├ ─┤	0.44	ND ND	\longmapsto	0.46 0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND		0.46	ND		0.41
2,4,5-Trichlorophenol	0.1	ND	1	0.44	NO		0.46	ND ND		0.56	ND		0.44	ND ND	├	0.42	ND ND		0.42	D D		0.51	ND	<u> </u>	0.46	ND		0.41
2.4,6-Trichlorophenol	NS	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51 0.51	ND ND	 	0.46	ND ND		0.41
2,4-Dichlorophenol	0.4	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		D.42	ND		0.42	ND		0.51	ND	${}^{+}$	0.46	ND -		0.41
2.4-Dimethylphenol 2.4-Dinitrophenol	NS 0.2	ND ND	├ ──	0.44 1.1	ND ND	1	0.46 2.3	ND ND		0.56 2.8	NO ND		0.44	ND		0.42	ND		0.42	CN		0.51	ND		0.46	ND		0.41
2,4-Dinitrotoluene	NS	ND	1	0.44	ND	 -	0.46	ND		0.56	ND ND		0.44	ND ND		0.42	ND ND		1.1 0.42	ND ON		2.5 0.51	ND ND		2.3	ND ND		2
2,6-Dinitrataluene	1	ND		0.44	ND		0.46	ND		0.56	ND	-	0.44	ND		0.42	ND	 	0.42	ND		0.51	ND-	+	0.46	ND ND		0.41
2-Chloronaphthalene 2-Chlorophenol	NS	ND		0.44	ND		0.46	ND		0.56	ND		0.44	МD		0.42	ND		0.42	ND		0.51	ND	 	0.46	ND		0.41
2-Methylnaphthalene	0.8 36.4	ND 0.3	 	0.44	ND 0.28	 - 	0.46 0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND		0.46	ND		0.41
2-Methylphenol	0.1	ND		0.44	ND		0.46	1.9 ND		0.56 0.56	0.9 ND	├	0.44	ND ND		0.42	ND ND	 	0.42	D D		0.51 0.51	ND		0.46	ND		0.41
2-Nitroaniline	0.43	ND		0.44	ND	tt	0.46	ND		0.56	ND.		0.44	ND		0.42	ND ND		0.42	ND		0.51	ND ND	+	0.46	ND ND		0.41
2-Nitrophenol 3&4-Methylphenol	0.33	_ ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	СИ		0.42	ND		0.51	ND	 	0.46	ND ND		0.41
3,3'-Dichlorobenzidine	0.9 NS	ND ND		0.44	ND DA	 	0.46	ND		0.56	ND		0.44	ND		0.42	ND		2.1	ND		0.51	ND		0.46	ND		0.41
3-Nitroaniline	0.5	ND		0.44	ND	 	0.46	ND ND		0.56 0.56	ND ND		0.44	_ ND ND		0.42	ND ND		0.42	ND		0.51	ND		0.46	ND		0.41
4,6-Dinitro-2-methylphenol	NS	ND		0.44	ND		2.3	ND		2.8	ND		2.2	ND ON		2.1	ND ND		0.42	ND	 	0.51 2.5	ND ND		0.46	ND ND	<u> </u>	0.41
4-Bromophenyl-phenylether	NS	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND	t	0.42	ND		0.51	ND ND	1	0.46	ND		0.41
4-Chloro-3-methylphenol 4-Chloroaniline	0.24 0.22	ND ND	\vdash	0.44	ND ND	<u> </u>	0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND	1	0.46	ND		0.41
4-Chlorophenyl-phenylether	NS NS	ND	+	0.44	ND		0.46	ND		0.56 0.56	NO ON		0.44	ND ND		0.42	ND		0.42	ND .		0.51	ND		0.46	ND		0.41
4-Nitroaniline	NS	ND		0.44	ND	1-1	0.46	ND		0.56	ND		0.44	ND		0.42	ND ND		1.1 0.42	ND ND		0.51	ND ND	┦	0.46	ND ND		0.41
4-Nitrophenal	0.1	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND	+	0.46	ND -		0.41 0.41
Acenaphthene Acenaphthylene	50 41	0.24		0.44	0.13	<u> </u>	0.46	1.9		0.56	1.1		0.44	0.43		0.42	ND		0.42	ND		0.51	0.054	J	0.46	ND		0.41
Anthracene	50	0.35	1 1	0.44	0.12		0.46	ND 1.6		0.56 0.56	ND 1.1		0.44	ND 0,38	J .	0.42	ND ND		0.42	ND		0.51	ND		0.46	_ ND		0.41
Benzidine	NS	ND		2.2	ND		2.3	ND		2.8	ND		2.2	ND		2.1	ND ND		0.42	ND		0.51 2.5	ND DN		0.46 2.3	ND ND		0.41
Benzo[a]anthracene	0.224	0.76		0.44	0.29	J	0.46	1.1		0.56	0.63		0.44	0.21	- 1	0.42	ND		0.42	ND		0.51	0.062	 ,	0.46	ON		0.41
Benzo(a)pyrene Benzo(b)fluoranthene	0.061	0.66 0.87	-	0.44	0.26 0.38		0.46 0.46	0.68 0.56		0.56 0.56	0.33	J	0.44	0.12	7	0.42	ND		0.42	ND		0.51	0.055	J	0.46	ND		0.41
Benzo(g,h,ilperylene	50	0.38	 	0.44	0.15	1-5-	0.46	0.4		0.56	0.29	- ;	0.44	ND 0.072		0.42	ND ND		1,1	ND DA		0.51	0.077		0.46	ND		0.41
Benzo[k]fluoranthene	1.1	0.34	J	0.44	0.13	j	0.46	0.11	Ĵ	0.56	0.068	J	0.44	ND	-	0.42	ND	<u> </u>	0.42	ND		0.51 0.51	0.056 ND		0.46	ND ND		0.41
Benzyl alcohol Bis(2-Chloroethoxy)methane	NS NS	ND ND	1	0.44	ND		0.46	ND		0.56	ND		0.44	NĎ		0.42	ND		0.42	ND		0.51	ND	 	0.46	ND		0.41
Bis(2-Chloroethyl)Ether	NS NS	ND ND		0.44	ND ON	 	0.46	ND ND		0.56 0.56	ND ND		0.44	ND ND		0.42	ND		0.42	ND		0.51	ND		0.46	ND		0.41
Bis(2-Chloroisopropyl)ether	NS	ND	t	0.44	ND	1	0.46	ND		0.56	ND		0.44	ND ND		0.42	ND ND		0.42	ND ND		0.51	ND	 	0.46	ND ND		0.41
Bis(2-Ethylhexyl)phthalate	50	0.059	J	0.44	0.27	J	0.46	ND		0.56	ND		0.44	0.26		0.42	0.097	J	0.42	0.072		0.51	0.14	 	0.46	0.08	- 1	0.41
Butylbenzylphthalate Carbazole	50 NS	ND 0.19	 , 	0.44	ND ND		0.46	_ ND		0.56	ND		0.44	ND		0.42	ND		0.42	0.075	J	0.51	ND		0.46	ND		0.41
Chrysene	0.4	0.77		0.44	0.27	1	0.46	ND 1.7		0.56 0.58	ND 1.1		0.44	ND 0.39		0.42	ND		0.42	ND		0.51	ND		0.46	ND		0.41
Dibenzo[a,h]Anthracene	0.014	0.13	J	0.44	ND		0.46	ND ND		0.56	ND		0.44	0.39 ND		0.42	ND ND	\vdash	0.42 1.1	ND		0.51	0.1 ND	<u> </u>	0.46	ND ND		0.41
Dibenzofuran Diethylebibalate	6.2	0.21	J	0.44	ND		0.46	0.73		0.56	0.22	J	0.44	ND		0.42	ND	[0.42	ND		0.51	ND ND	 	0.46	ND ND		0.41
Diethylphthalate Dimethylphthalate	7.1	ND ND		0.44	ND ND		0.46 0.46	ND ND		0.56 0.56	ND		0.44	ND		0.42	ND		1.1	_ ND		0.51	ND		0.46	ND		0.41
Di-n-butylphthalate	B.1	0.14	JB	0.44	0.28	<u> </u>	0.46	0.29	J	0.56	ND 0.27	,	0.44	ND 0.18		0.42	ND 0.3	H	0.42	ND 0.28	Щ, Т	0.51 0.51	ND	— —	0.46	ND		0.41
DI-n-octylphthalate	50	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND ND	- - -	0.42	ND	J	0.51	0.34 ND		0.46	0.26 ND	J	0.41
Fluoranthene Fluorene	50	1.4	I I	0.44	0.56		0.46	1.1		0.56	0.76		0.44	0.3		0.42	ND		0.42	ND		0.51	0.063	1 5	0.46	ND ND		0.41
Hexachlorobenzene	50 0.41	0.23 ND	 ' -	0.44	0.18 ND	J	0.46	2.8 ND		0.56 0.56	2.1		0.44	0.47		0.42	ND		0.42	ND		0.51	0.067	J	0.46	ND		0.41
Hexachlorobutadiene	NS	ND	 	0.44	ND		0.46	ND ON		0.56	ND	 	0.44	ND ND		0.42	ND ND	 	0.42	ND ON		0.51 0.51	ND	├ — ̄	0.46	ND		0.41
Hexachlorocyclopentadiene	NS	ND		1.1	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		1.1	- ND		0.51	ND ND	 	0.46	ND ND		0.41
Hexachloroethane Indeno(1,2,3-cd]pyrene	NS	ND 0.35	├	0.44	ND	$\perp \perp \perp$	0.46	ND		0.56	МD		0.44	ND		0.42	ND		2.1	ND		0.51	ND	t	0.46	ND		0.41
Isophorone	3.2 4.4	0.35 ND		0.44	0.15 ND	J	0.46	0.17 ND	_ J	0.56 0.56	0.097J ND		0.44	ND		0.42	ND		1.1	ND		0.51	ND		0.46	ND		0.41
N-Nitroso-Di-N-Propylamine	NS	ND	 - 	0.44	ND		0.46	- ND		0.56	ND ND		0.44	ND		0.42 0.42	ND ND	⊢	0.42 0.42	DA DA		0.51	ND ND		0.46	ND		0.41
N-Nitrosodimethylamine	NS	ND		0.44	ND		0.46	ND		0.56	ND		0.44	ND		0.42	ND		2.1	ND		0.51	ND ND	 	0.46 0.46	ND ND		0.41
N-Nitrosodipnenylamine Naphthalene	NS 13	ND 0.3	├ ─	0.44	ND	\Box	0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND	 	0.46	ND		0.41
Nitrobenzene	NS NS	ND ND	├	0.44	ND ND		0.46 0.46	2 ND		0.56	0.7		0.44	ND		0.42	ND		0.42	0.09	J	0.51	0.098	J	0.46	ND		0.41
Pentachlorophenol	1	ND	-	1.1	ND	 	1.2	ND		0.56 1.4	ND ND		0.44	ND DN		0.42 1.1	ND ND	 	0.42	ND ND		0.51	ND		0.46	ND		0.41
Phenanthrene	50	1.4		0.44	0.41	3	0.46	1.3		0.56	0.37	J	0.44	ND		0.42	ND	 	0.42	0.099	-7-1	0.51	0.1	1 3	0.46	ND ND		0.41
Phenoi .	0.03 50	ND 1.3	I T	0.44	ND	 	0.46	ND		0.56	ND		0.44	ND		0.42	ND		0.42	ND		0.51	ND	1	0.46	ND		0.41
Total SVOC Conc.	500	10.424	 	0.44	0.55 4.54		0.46	5.5 23.84		0.56	4.4 14.578		0.44	1.5		0.42	ND		0.42	0.051	J	0.51	0.17	J	0.46	ND		0.41
Total SVOC TICs	NS	224.07	 		51.5	-		117.5	-, -		50.16			4.312 68			0.397 269.55	 		0.667			1.382			0.34		
Notes:						لــــــــــــــــــــــــــــــــــــــ					30.10	-		- 06	J :		∠ 09.55	لـــــا		185.66			193,43	J. J		147.99	J	

Notes:
Concentrations in bloid and shaded cells exceed the New York State TAGM Recommended Soil Cleanup Objectives (RSCOs).
NS= No standard has been established for this compound Conc. = Detected concentration mg/kg= miligrams per kilograms
NS=No standard has been established.

NS=No standard has been established.
NS=No detected above the laboratory's reporting limits
MDL=Method detection limit
B= Analyte was detected in the laboratory analyzed blank
J- The estimated concentration was below the MDL,
but above the laboratory's reporting limits.
TICs=Tentative identified compounds
1) Sample decign intervals are indicated at the end of the
sample IDM
1222952vmdREMEDIAL ACTIONINGWINGHAIP REGISTERS

POST EXCAL SOIL ANALYTICAL RESULTS-SVOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY SUMMARY OF POST EXCA

3.4 7.9 NS 1.6	ND ND	Qual			9/22/2006 SOIL mg/Kg	9		AC25828-00 9/22/2006 SOIL mg/Kg	6') 8		PE-HB1(9-9 AC25828-01 9/22/2006 SOIL mg/Kg	11		E-H1S(6.5- AC25828-01 9/22/2006 SOIL mg/Kg	12		E-H2N(6.5- AC25828-01 9/22/2006 SOIL mg/Kg			PE-I1E(6.5-7 AC26282-001 10/16/2006 SOIL mg/Kg			PE-I2N(6.5-1 AC26282-00 10/16/2006 SOIL	2		E-I3NW(6.5-7 AC26282-003 10/16/2006 SOIL	
7.9 NS 1.6		2001	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	Conc	mg/Kg Qual	MDL	Conc	mg/Kg Qual	MDL
NS 1.6			0.41	ND ND	ļ	0.53 0.53	ND		0.46	ND		0.45	ND	L	2.1	ND		2.1	ND		0.42	ND	1	0.41			0.52
1.6	ND		0.41	ND		0.53	ND	 	0.46	ND ND		0.45	ND ND		2.1	ND ND	<u> </u>	2.1	2 2		0.42	ND	ļ	0.41	ND ND		0.52
	NO		0.41	ND		0.53	ND		0.46	ND	 	0.45	ND		2.1	ND		2.1	ND		0.42	ND NO		0.41	ND		0.52
8.5	ND		0.41	ND		0.53	ND		0.46	ND		0.45	ND		2.1	ND		2.1	ND		0.42	ND ND	+	0.41	ND ND		0.52
0.1 NS	ND ND		0.41	ND ND		0.53	ND		0.46	ND		0.45	ND		2.1	ND		2.1	ND		0.42	ND	 	0.41	ND	 	0.52
0.4	ND		0.41	ND ND		0.53	ND ND		0.46	ND		0.45	ND		2.1	ND		2.1	ND		0.42	NO		0.41	ND	1	0.52
NS	ND								0.46	ND	 	0.45	ND ND		2.1	ND		2.1	ND		0.42	ND		0.41	ND		0.52
0.2	ND		2	ND		2.6	ND		2.3	ND			ND	 													0.52
NSNS							ND		0.46	ND		0.45	ND	I	2.1	ND		2.1	ND				+				1.3 0.52
NS					li													2.1	ND		0.42	ND	1	0.41	ND		0.52
0.8	ND		0.41								 										0.42	ND		0.41	ND		0.52
36.4	ND		0.41	0.61		0.53					 			-												├	0.52
0.1	ND		0.41	ND		0.53	ND		0,46	ND		0.45	ND _	1	2.1	ND							+				0.52
	ND											0.45	ND		2.1	ND		2.1	ND		0.42	ND	 				0.52
		-																			0.42	ND		0.41	ND		0.52
NS	ND		1			1.3			1.1		 			 													0.52
			0.41	ND		0.53	ND		0.46	ND				·									╂			 	0.52
		\vdash							1.1	ND		1.1	ND		5.3	ND		5.3	ND		1.1	ND	 		ND	 	0.52
								 					ND		2.1	ND		2.1	ND		0.42	ND		0.41	ND		0.52
0.22	ND		0.41	ND		0.53		 -			 			ļ			<u> </u>				0.42	ND		0.41	ND		0.52
NS	ND		0.41	ND		0.53	ND	<u> </u>	0.46	ND	 			 										0.41	ND	-	0.52
			0.41	ND		0.53	ND.		0.46	ND		0.45	ND	1				21					+		NO	 	0.52
							ND		0.46	ND	ļ	0.45	ND		2.1	ND		2.1	ND		0.42	ND		0.41		 	0.52
41	0.041	 	0.41					 			 							2.1	1		0.42	ND		0.41	2.4		0.52
50	0.061	Ĵ	0.41	0.42	J	0.53	0.28	-	0.46		 			<u> </u>	21			2.1			0.42		 	0.41	ND		0.52
NS	ND		1	ND		1.3	ND		1.1	ND		1.1	ND ND	T	5.3	ND I				J -			 ' -				0.52 2.6
					J	0.53	0.22	J	0.46	0.31	J	0.45	ND	I	2.1	ND		2.1	0.055	J	0.42	0.081	J	0.41	0.077	 - , 	0.5
											J	0.45	ND		2.1	ND		2.1	ND		0.42	ND		0.41	ND		0.5
50	0.18	j	0.41	0.22		0.53	ND -				 						J				0.42	ND		0.41	ND		0.5
1.1	0.12	J	0.41	0.14	j	0.53	ND		0.46	0.24	1 - 1 -			\vdash									+			├ ─	0.52
NS	ND		0.41	ND		0.53	ND		0.46	ND		0.45	ND		2.1	ND		2.1	ND	-			1			├	0.52
NS NS		 			⊢—–				0.46	ND	<u> </u>	0.45	ND		2.1	ND		2.1	ND		0.42	ND	1	0.41		 	0.52
NS	ND	 - 	0.41	ND				 			 	0.45		 							0.42	ND		0.41	ND		0.52
50	1.1	8	0.41	0.15	JB	0.53	ND	 	0.46	ND	1	0.45		t									ļ	0.41			0.52
	ND		0.41	ND		0.53	ND		0.46	ND		0.45	ND		2.1	ND		2.1					 		ND	 	0.52
					<u> </u>		ND	ļ	0.46	ND	ļ	0.45	ND		2.1	ND		2.1	0.3	J	0.42	ND	1			 	0.52
		 ; 						1			 -			 		0.52	J	2.1	0.09	J	0.42	0.33	J	0.41	ND		0.52
6.2	ND		0.41	ND		0.53		 			+			1					ND		0.42	ND		0.41	ND		0.52
7.1	ND		0.41	ND		0.53	ND		D.46	ND	†	0.45	ND O	t									 				0.52
2	ND 0.11	is	0.41	ND		0.53	ΝD		0.46	ND	T	0.45	ND		2.1	ND		2.1	ND		0.42	ND	 			 	0.52
		18			 -			ļ				0.45	ND		2.1	ND		2.1	ND		0.42	ND	<u> </u>	0.41	ND		0.52
50	0.36	 			- <u>,</u> -			 			 			1		ND		2.1	ND		0.42	ND		0.41	ND		0.52
50	0.046		0.41			0.53	0.89	<u> </u>	0.46		 									J				0.41	0.1	7	0.52
0.41	ND	$\perp = 1$	0.41	ND		0.53	ND		0.46	ND		0.45	ND	t	2.1	ND							+			├─ ──┼	0.52
						0.53	ND	<u> </u>	0.46	ND		0.45	ND		2.1	ND		2.1	ND			ND	1			 	0.52
					— —			 	0.46	ND		0.45	ND		2.1	ND		2.1	ND		0.42	ND		1	ND		0.52
3.2	0.13		0.41					 			 							2.1	ND		0.42	ND		0.41	ND		0.5
4.4	ND_		0.41	ND		0.53	NO		0.46	ND	1																0.5
NS NS	ND		0.41	ND		0.53	ND		0.46	ND		0.45	ND		2.1	ND		2.1	ND				 -			 	0.5
NS NS		$\vdash \longrightarrow$							1.1	ND		1.1	ND		5.3	ND		5.3	ND		0.42	ND	 	0.41	ND		0.5
13	0.12	J -	0.41					 			 			 -					ND		1.1	ND		1	ND		1.3
NS	ND _		0.41	ND		0.53	ND	1	0.46	ND				 -	21			2,1					 		ND		0.52
1 1	ND		1	ND		1.3	ND		1.1	ND		1.1	ND	1									+				0.52
		J		1.7	L	0.53	1.2		0.46	3		0.45	6.5		2.1	1.3J	J	2.1	3.2			1.2	 -				0.52
	0.3A				ļ, <u> </u>			<u> </u>	0.46	ND 0.75		0.45	ND		2.1	ND		2.1	ND		0.42	ND		0.41	ND	-	0.52
500	3.963		0.11			0.00			0.40		 	0.45		┝╌┷╌┥	2.1		J	2.1		J	0.42		1	0.41	0.19	J	0.52
NS	41.41	J. 1		72.1				J			- 3	 		 											15.897		
NS 13 NS 1 50 0.03 50 500	ND 0.12 ND ND 0.22 ND 0.38 3.963	J	0.41 0.41 0.41	ND 0.52 ND ND 1.7 ND 0.48 7.89	J	0.53 0.53 0.53 1.3	ND ND ND ND	J	0.46 0.46 0.46 1.1 0.46	ND ND ND ND		0.45 0.45 0.45 1.1 0.45	ND ND ND ND 6.5	J	2.1 2.1 2.1 5.3 2.1	ND ND ND ND	J J	2.1 2.1 2.1 5.3 2.1	ND ND ND ND 3.2	J	1.1 0.42 0.42 1.1 0.42 0.42	ND ND ND ND	J	1 0.41 0.41 1 0.41 0.41	ND ND ND ND ND ND 3.8 ND 0.19	J	
	0.2 NS 1 1 NS 0.8 0.8 36.4 0.1 0.43 0.33 0.9 NS 0.5 NS 0.5 NS 0.22 0.22 NS 0.01 50 0.1 50 NS NS NS NS NS NS NS NS NS NS NS NS NS	0.2 ND NS ND 1 ND 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.9 ND 0.33 ND 0.9 ND NS ND 0.5 ND NS ND 0.5 ND NS ND 0.24 ND NS ND 0.21 ND 0.22 ND NS ND 0.24 ND 0.22 ND NS ND NS ND NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.1 NS ND 0.24 0.24 ND 0.61 NS ND 0.25 ND 0.1 NS ND 0.26 ND 0.1 NS ND 0.27 NS ND 0.28 ND 0.29 NS ND 0.29 NS ND 0.29 NS ND 0.20 NS ND 0.20 NS ND 0.20 NS ND 0.20 NS ND 0.20 NS ND 0.21 NS ND 0.22 NS ND 0.23 NS ND 0.24 NS ND 0.25 ND 0.26 NS ND 0.27 NS ND 0.28 ND 0.29 NS ND 0.04 0.28 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.04 NS ND 0.05 NS ND 0.07 NS ND 0.08 NS ND 0.09 NS ND 0.09 NS ND 0.09 NS ND 0.09 NS ND 0.00 NS ND	0.2 ND NS ND 1 NO 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.8 ND 0.9 ND 0.1 ND 0.9 ND NS ND 0.9 ND NS ND 0.5 NO NS ND 0.5 NO NS ND 0.7 ND NS ND NS	0.2 ND 2 NS ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 NB ND 0.41 1 NB ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 ND 0.41 1 NS ND 0.	0.2 ND 2 ND 0.41 ND 1 ND 0.41 ND 0.8 ND 0.41 ND 0.41 ND 0.8 ND 0.8 ND 0.41 ND 0.8 ND 0.8 ND 0.41 ND 0.8 ND 0.41 ND 0.8 ND 0.41 ND 0.8 ND 0.41 ND 0.8 ND 0.41 ND 0.8 ND 0.41 ND 0.9 ND 0.41 ND 0.9 ND 0.41 ND 0.9 ND 0.41 ND 0.9 ND 0.41 ND 0.5 ND 0.5 ND 0	0.2 ND 2 ND 0.41 ND 1 ND 0.41 ND 0.88 ND 0.41 ND 0.41 ND 0.41 ND 0.88 ND 0.41 ND 0.41 ND 0.88 ND 0.41	0.2	NS	0.2 ND	0.2 ND	0.2 ND 2 ND 2.41 ND 2.66 ND 2.33 ND 0.46 ND 1.1 ND 0.41 ND 0.55 ND 0.466 ND 1.1 ND 0.41 ND 0.55 ND 0.466 ND 0.8 ND 0.41 ND 0.55 ND 0.466 ND 0.8 ND 0.41 ND 0.55 ND 0.466 ND 0.8 ND 0.41 ND 0.55 ND 0.46 ND 0.8 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.41 ND 0.53 ND 0.46 ND 0.48 ND 0.41 ND 0.53 ND 0.46 ND 0.46 ND 0.53 ND 0.46 ND 0.53 ND 0.46 ND 0.53 ND 0.46 ND 0.55 ND 0.46	0.2 NO 2 NO 0.2 NO 0.41 NO 0.53 NO 0.46 NO 0.11 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.68 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.41 NO 0.55 NO 0.46 NO 0.41 NO 0.53 NO 0.46 NO 0.45 NO 0.4	NS	MS	NS	NS	NS	MS	No	No. No. O. O. O. O. O. O. O.	No. No. Oct	No. No.	No.	No.	No.	No. No.	10



Sample ID Lab Sample No. Sampling Date Matrix	New York State Recommended Soil Cleanup Objectives		PE-I4W(6.5-7') AC26282-004 10/16/2006 SOIL		-	PE-I5S(6.5-7 AC26282-006 10/16/2006 SOIL			E-I6S(6.5-7') C26282-007 10/16/2006 SOIL	•		PE-IB1(7.5-8 AC26282-008 10/16/2006 SOIL		A	E-IB2(9-9.5' C26282-008 10/16/2006 SOIL			PE-IB3(9-9.5') AC26282-009 10/16/2006)	F	PE-J1 (6.5-7 AC25252-00 8/24/2006	·) 2		PE-J2 (6-6.5') AC25252-003 8/24/2006		A	E-J3 (6-6.5') C25252-004 8/24/2006	
Units	(mg/kg)		mg/Kg			mg/Kg			mg/Kg		<u> </u>	mg/Kg			mg/Kg	1		SOIL, mg/Kg	1		SOIL mg/Kg		l	SOIL mg/Kg			SOIL mg/Kg	1
SEMIVOLATILE COMPOUNDS (G 1,2,4-Trichlorobenzene	3.4	Conc	Qual	MDL	Conc ND	Qual	MDL	Conc	Quai	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc		MDL	Conc		MDL
1,2-Dichlorobenzene	7.9	ND		2.9	ND		- 2 -	ND ND		0.5	D D		2	ND DA		4.1	ND ND		0.42	20 02		0.4	ND		1.7	ND		1.7
1,2-Diphenylhydrazine	NS	ND		2.9	ND		2	ND		0.5	ND		2	ND		41	ND		0.42	NO		0.4	ND ND		1.7	ND ND		1.7
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.6 8.5	ND ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
2,4,5-Trichlorophenol	0.1	ND	——- -	2.9	ND ND		2	ND ND		0.5	ND ND		2_	ND ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
2,4,6-Trichlorophenal	NS	ND		2.9	ND		2	ND		0.5	ND		- 2	ND		4.1	ND .		0.42	ND ND		0.4	ND ND		1.7	ND ND		1.7
2,4-Dichlorophenol	0.4	ND		2.9	ND		2	ND		0.5	ND		2_	ND		4.1	ND	 	0.42	ND		0.4	ND	 	1.7	ND ND		1,7
2,4-Dimethylphenol 2,4-Dinitrophenol	NS 0.2	ND ND	 	2.9 15	ND ND		10	D G		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
2,4-Dinitrotoluene	NS NS	ND	-	2.9	ND		2	ND ND		2.5 0.5	ND ND		9.9	ND ND		4.1	ND ND	 	1.1 0.42	ND		2	ND		4.3	1.0		4.3
2,6-Dinitrotoluene	1	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	 - 	0.42	ND ND		1	ND ND		1.7	ND ND		1.7
2-Chloronaphthalene 2-Chlorophenol	NS 0.8	ND ND		2.9	ND ND		2	ND DN		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
2-Methylnaphthalene	36.4	30		2.9	15		2	ND ND		0.5	ND 12		- 2	ND 67	—— <u>·</u>	4.1	ND		0.42	ND		0.4	ND		1.7	ND		1,7
2-Methylphenol	0.1	ND		2.9	ND		2	ND		0.5	ND			ND ND		4.1	ND	 	0.42	ND · ND		0.4	1.1 ND	J -	1.7	4.4 ND		1.7
2-Nitroaniline 2-Nitrophenol	0.43 0.33	ND ND		2.9	ND		2	ND		0.5	ND			ND		4.1	ND		0.42	ND		0.4	ND	<u> </u>	1.7	ND		1.7
38.4-Methylphenol	0.33	- ND	 -	2.9	ОИ QИ	<u> </u>	2	DA DA		0.5	ND ND		2	ND ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
3,3'-Dichlorobenzidine	NS	ND		2.9	ND		2	ND	-	0.5	ND ND		2	ND ON		4.1	ND ND	 	0.42	ND ND		0.4	ND ND	 	1.7	ND ND		1.7
3-Nitroaniline 4,6-Dinitro-2-methylphenol	0.5	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	\vdash	0.42	ND		0.4	ND	 	1.7	ND ND		1.7
4.6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	NS NS	ND ND		15 2.9	ND ND		10	ND ND		2.5	ND		9.9	ND		21	ND		1.1	ND		1	ND		4.3	ND		4.3
4-Chloro-3-methylphenol	0.24	ND	 	2.9	ND		- 2	ND D	——	0.5	NO NO		2 2	ND ND		4.1	ND	II	0.42	ND ND		0.4	ND ND		1.7	ND		1.7
4-Chloroaniline	0.22	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND ND	 	0.42	ND		0.4	ND ND		1.7	ND ND		1.7
4-Chlorophenyl-phenylether 4-Nitroaniline	NS NS	ND ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
4-Nitrophenol	0.1	מא	├ ───	2.9	ND		2	ZZ GZ	+	0.5	ND ND		2	ND DN		4.1	ND		0.42	ND		1	ND		1.7	ИD		1.7
Acenaphthene	50	7.2		2.9	2.1		2	ND		0.5	2.1			17		4.1	ND 0.068	-,	0.42	ND ND		0.4	ND ND	 	1.7	ND ND		1.7
Acenaphthylene Anthracene	41	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND		0.42	· ND		0.4	ND	i i	1.7	ND	-+	1.7
Benzidine	50 NS	1.6 ND		2.9	0.42 ND	J	2	ND ND		0.5	0.67 ND	J	2	4.3		4.1	0.045	J	0.42	ND		0.4	1.3	_ J _	1.7	0.54	J	1.7
Benzo(a)anthracene	0.224	- ND	l	2.9	0.4	- -	2	ND ND		0.5	ND		2	ND ND		4.1	ON ON		2.1 0.42	ND ND		0.4	ND 0.26	— —	1.7	ND 0.3		1.7
Benzo(a)pyrene - Benzo(b)fluoranthene	0.061	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	 	0.42	ND		0.4	0.27	3 -	1.7	ND ND		1.7
Benzo(g,h,i)perylene	1.1 50	ND DN		2.9	ND ND		2	ND ND		0.5 0.5	ND ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
Benzo[k]fluoranthene	1.1	ND		2.9	ND		2	ND ND		0.5	ND		2	ND ND		4.1	ND		0.42	ND ND		0.4	ND QN		1.7	ND		1.7
Benzyl alcohol	NS	В		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	1	0.42	ND		0.4	ND	 	1.7	ND NA	\longrightarrow	1.7
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)Ether	NS NS	ND ND	├ 	2.9	ND ND		2 2	ND ND		0.5	ND ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
Bis(2-Chloroisopropyl)ether	NS	ND	 	2.9	ND		2	ND		0.5	ND		2	ND ND		4.1	ND ND	 	0.42	ND_		0.4	ND ND		1.7	ND		1.7
Bis(2-Ethylhexyl)phthalate	50	ND		2.9	ND		2	0.43J		0.5	ND		2	NO		4.1	0.048		0.42	0.04B	J	0.4	ND ND	 	1.7	ND ND		1.7
Butylbenzylphthalate Carbazole	50 NS	ND ND		2.9	ND ND		2 2	ND		0.5	ND		2	ND		4.1	ND		0.42	QN		0.4	ND		1.7	ND		1.7
Chrysene	0.4	0.61	j -	2.9	ND			ND 0.24	.1	0.5	ND ND		2	ND ND		4.1	ND		0.42	20 02 03		0.4	ND		1.7	ND	$=$ \Box	1.7
Dibenzo[a,h]Anthracene	0.014	ND		2.9	ND		2	ND		0.5	ND		2	ND .		4.1	ND	 	0.42	NO		0.4	0.88 ND		1.7	0.9 ND	J	1.7
Dibenzofuran Diethylphthalate	6.2 7.1	_ ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		1	ND		1.7	D		1.7
Dimethylphthalate	2	ND	 	2.9	ND	 -	2 2	20 02		0.5	ND ND		2	ND ND		4.1	ND ND	 	0.42	Z D		0.4	ND ND		1.7	ND	=	1.7
Di-n-butylphthalate	8.1	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	 	0.42	ND QN		0.4	ND ND	 	1.7	ND ND		1.7
DI-n-octylphthalate Fluoranthene	50 50	ND 0.32J	I	2.9	ND -		2	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
Fluorene	50	7.3		2.9	2.4		2	ND 1.1		0.5	ND 2.6		2	0.48J 18		4.1	ND 0.095	├ ─,	0.42	3 0		0.4	ND		1.7	ND		1.7
Hexachlorobenzene	0.41	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	0.095 ND	 	0.42	ND ON		0.4	ND ND	 	1.7	1.9 ND		1.7
Hexachlorobutadiene	NS NS	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND	 -	1.7	ND		1.7
Hexachlorocyclopentadiene Hexachloroethane	NS NS	ND ND		7.3	ND NO		52	ND ND		0.5	ND		5	ND ND	-	10	ND		0.42	ND		0.4	ND		4.3	ND		4.3
Indeno[1,2,3-cd]pyrene	3.2	ND	l —	2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND ND		0.42	ND ND		0.4	ND DN		1.7	ND ND		1.7
Isophorone N-Nitroso-Di-N-Propylamine	4.4	ND		2.9	ND		2	ND		0.5	ND		2	ND		4.1	ND	1	0.42	ND ON		0.4	ND		1.7	ND	-	1.7
N-Nitrosodimethylamine	NS NS	ND ND	 	2.9	ND ND		2	ND DD		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
N-Nitrosodiphenylamine	NS	ND	-	7.3	ND	<u></u>	2	ND D		0.5 1.2	ND ND		5	ND ND		4.1	ND ND		0.42 1.1	ND ND		0.4	ND		1.7	ND		1.7
Naphthalene	13	ND		2.9	ND		2	ND		0.5	ND		2	ND ND		4.1	ND		0.42	ND ND		0.4	ND ND		1.7	ND ND		1.7
Nitrobenzene - Pentachlorophenot	NS 1	ND DN		2.9 7.3	ND ND		2 5	ND		0.5	ND		2	ND		4.1	ND		0.42	ND		0.4	ND		1.7	ND		1.7
Phenanthrene	50	16	 	2.9	4.8	<u></u>	5 2	ND 0.83		0.5	ND 5.4		5 2	ND 40		10	ND 0.23	-	1.1	ND		1	ND		4.3	ND		4.3
Phenol	0.03	_ND		2.9	ND		2	ND		0.5	ND		2-	ND ND		4.1	0.23 ND		0.42	ND GN		0.4	5.3 ND		1.7	6.3 ND	 -	1.7
Pyrene Total SVOC Conc.	50 500	1.1 63.81	J	2.9	0.59	· J	2	0.35	J	0.5	0.27	J	2	1.3J		4.1	ND		0.42	ND		0.4	0.65		1.7	0.65		1.7
Total SVOC TICs	500 NS	287	7		25.71 242.9	<u> </u>		2.52 50.3			23.04			146.3			0.486			0.048			9.76			14.99		=
Notes:					242.3			30.3			256.4	J		449	<u> </u>		26.1	J		252.06	J		396	1	\Box	386.5	J	==

Notes.

Concentrations in blold and shaded cells exceed the New York State TAGM Recommended Soil Cleanup Objectives (RSCOs).
NS= No standard has been established for this compound Conce Detected concentration


Conc. = Detected concentration mg/rg= miligrams per kilograms
NS=No standard has been established.
ND=Net detected above the laboratory's reporting limits
MDL=Method detection limit
B= Analyte was detected in the laboratory analyzed blank
J- The estimated concentration was below the MDL, but above the laboratory's reporting limits.
TICs=Tentatively identified compounds
1) Sample-septh intervals are indicated at the end of the sample.

Sample ID Lab Sample No. Sampling Date Matrix	New York State Recommended Soil Cleanup Objectives (mg/kg)		E-J4N(5.5-6 AC25828-00 9/22/2006 SOIL			PE-J5N(5.5-6 AC25828-00: 9/22/2006 SOIL			E-JB1 (8-8.: AC25440-00 9/1/2006 SOIL			E-KB1 (7-7.1 AC25169-00 8/22/2006 SOIL		F	PE-K1 (5.5-6 AC25169-00 8/22/2006 SQIL	7		PE-K2 (5.5-6 AC25169-00 8/22/2006 SOIL	8		PE-K3 (5.5-4 AC25169-00 9/22/2006 SOIL	9		PE-K4 (5.5-6 AC25252-00 9/22/2006	
Units	l I		mg/Kg		<u> </u>	mg/Kg_			mg/Kg			mg/Kg		<u>L</u>	mg/Kg		<u>L</u>	mg/Kg			mg/Kg		l	SOIL mg/Kg	
SEMIVOLATILE COMPOUNDS (G		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	3.4 7.9	ND		2	ND ND	<u> </u>	2.1	ND		0,39	ND		0.38	ND		8.4	ND		1.1	ND		1.1	ND		0,4
1,2-Diphenylhydrazine	NS NS	ND			ND		2.1	ND ND		0.39	ND ND		0.38	ND		8.4	ND		1,1	ND		1.1	ND		0.4
1,3-Dichlorobenzene	1,6	ND		- 2 -	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1,1	ND		1.1	ND		0.4
1,4-Dichtorobenzene	8.5	ND			ND		2.1	ND		0.39	ND		0.38	ND ND		8.4 8.4	ND ND		1.1	ND	├ ─	1.1	ND		0.4
2,4,5-Trichlorophenol	0.1	ND			ND		2.1	ND		0.39	ND		0.38	DND		8.4	ND		 : -	ND ND		1.1	ND		0.4
2,4.6-Trichlorophenol	NS	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1,1	ND ND	 	1.1	ND ND		0.4
2,4-Dichlorophenol	0.4	ND		2	ND		2.1	ND		0.39	NO		0.38	NO		8.4	ND		1.1	ND	ļ	1.1	ND		0.4
2,4-Dimethylphenol	NS_	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND	 	1.1	ND	 	111	ND	— —	0.4
2,4-Dinitrophenol	0.2	ND		9.9	ND		10	ND		2	ND		1.9	ND	_	21	ND		2.8	ND	 	2.8	ND	F	1 0.4
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS	ND		2	ND		2.1	ND		0.39	ND		0.96	ND		8.4	ND	·	1.1	ND		1.1	ND		0.4
2-Chloronaphthalene	1 NS	DA DA		2	NO		2.1	ND		0.39	ND		0.96	ND		8.4	ND		1.1	ND	†	1.1	ND		0.4
2-Chlorophenol	NS	ND .		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1,1	ND	1	1.1	ND		0.4
2-Methylnaphthalene	36.4	13		2	ND 4.5		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND	1	1.1	ND		0.4
2-Methylphenol	0.1	ND ND	 	- 2	ND ND		2.1	ND		0.39	5.8		0.38	99		8.4	ND		1.1	0.64	J	1.1	ND		0.4
2-Nitroanitine	0.43	ND .			ND ND	-	2.1	ND		0.39	ND ND		0.38	ND		8.4	ND	<u> </u>	1.1	ND		1.1	ND		0.4
2-Nitrophenol	0.33	ND -		<u>2</u>	ND	-	2.1	ND	L	0.39	שא	 	0.38	ND		8.4	ND		1.1	ND	I	1.1	ND	L	0.4
3&4-Methylphenol	0.9	ND		2	ND		2.1	ND		0.39	ND		0.38	- עא	-	8.4 8.4	ND ND		1.1	ND	ļ	1,1	ND	├	0.4
3,3'-Dichlorobenzidine	NS	ND		-5	ND		5.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND ND		1.1	ND	 	0.4
3-Nitroaniline	0.5	ND		2	ND		2.1	ND		0.39	ND		0.38	ND	 	8.4	· ND		1.1	ND		11	ND	 	0.4
4,6-Dinitro-2-methylphenol	NS	ND		5	ND		5,1	ND		2	ND		0.96	ND		21	ND -		2.8	ND	 	2.8	ND	ļ	0.4
4-Bromophenyl-phenylether	NS	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		1.1	ND ND	 	0.4
4-Chloro-3-methylphenol	0.24	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND	 	1.1	ND -		0.4
4-Chloroaniline	0.22	ND		22	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		1.1	ND		0.4
4-Chlorophenyl-phenylether 4-Nitroaniline	NS	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		1.1	ND		0.4
4-Nitrophenol	NS 0.1	ND ND		2	ND		2.1	ND		0.39	ND		0.96	ND		8.4	ND		1.1	ND	1	1.1	ND	l	0.4
Acenaphthene	50	1.2	J	- 2	1,6		2.1	ND		0.39	ND		0.96	ND		8.4	ND		1.1	ND		1.1	ND	i	0,4
Acenaphthylene	41	ND		-2	ND ND	J	2.1	ND		0.39	0.4	<u> </u>	0.38	7.7	J	8.4	0.59	J	1.1	0.13	J	1.1	ND		0.4
Anthracene	50	0.48	- ,	2	0.42	 j	2.1	ND ND		0.39	0.18	—-!	0.38	ND 2.9		8.4	ND		1,1	ND		1.1	ND		0.4
Benzidine	NS	ND		5	ND		5.1	ND		2	ND		0.38	ND -	J	8.4 8.4	0.31	J	1.1	ND	i	1.1	ND		0.4
Benzo(a)anthracene	0.224	0.24	J	2	0.28	3	2.1	ND		0.39	0.12		0.38	0.89	-	8.4	ND 0.15		1.1	ND	!	1.1	ND		0.4
Benzo(a)pyrene	0.061	ND		2	ND		2.1	ND		0.39	0.061	J	0.38	ND ND		8.4	ND	i	1.1	ND ND		1.1	ND		0.4
Benzo(b)fluoranthene	1.1	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND ND	 	1.1	ND		1.1	ND ND		0.4
Benzo(g,h,i)perylene	50	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		111	ND		0.4
Benzo[k]fluoranthene	1.1	ND		2	ND		2.1	ND		0.39	ND		0.38	ND	~	8.4	ND		1.1	ND		[13 	ND	 	0.4
Benzyl alcohol	NŞ	ND ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND	·	1.1	ND		1,1	ND		0.4
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)Ether	NS	ND ND		2	ND	ļ	2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		1,1	ND		0.4
Bis(2-Chloroisopropyl)ether	NS NS	ND		2	ND ND		2.1	ND		0.39	NO		0.38	ND		8.4	ND		1.1	ND		1.1	ND		0.4
Bis(2-Ethylhexyl)phthalate	50	ND		2	ND		2.1	ND ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND	I	1.1	ND		0.4
Butylbenzylphthalate	50	- ND		2	ND		2.1	ND		0.39	0.38 ND	J	0.38	ND		8.4	ND	I	1.1	ND		1.1	0.42		0.4
Carbazole	NS NS	ND			ND		2.1	D		0.39	ND		0.38	ND ND		8.4	ND	 _	1.1	ND	L—	1.1	0.074	J	0.4
Chrysene	0.4	0.43	J	$-\frac{7}{2}$	ND		2.1	ND		0.39	0,19		0.38	ND ND		8.4 8.4	ND	<u> </u>	1.1	ND	ļ	1.1	ND		0.4
Dibenzo[a,h]Anthracene	0.014	ND		2	ND		2.1	ND		0.39	ND ND		0.38	ND		8.4 8.4	0.29 ND	J	1.1	ND ND	 	1.1	ND	—— —	0.4
Dibenzofuran	6.2	1.4	J	2	1.3	J	2.1	ND		0.39	ND		0.96	ND		8.4	ND	 	1.1	ND		1.1	ND		0.4
Diethylphthalate	7,1	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND	 	1.1	ND ND	 	1.1	ND ND	 	0.4
Dimethylphthalate	2	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND	 	1.1	ND ND	<u> </u>	0.4
Di-n-butylphthalate	8.1	ND		2	ND		2.1	0.2	J	0.39	ND		0.38	ND		8.4	ND		1.1	ND	 	1.1	0.056	h	0.4
DI-n-octylphthalate Fluoranthene	50	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND	<u> </u>	1.1	ND	t	1.1	ND		0.4
Fluorantnene	50 50	ND		2	ND		2.1	ND		0.39	ND		0.38	2.7	J	8.4	0.36	J_	1.1	ND	<u> </u>	1.1	ND		0.4
Hexachlorobenzene	0.41	<u>2</u>	i	2	2	J	2.1	ND		0.39	ND	ļ <u>.</u>	0.38	8.5		8.4	0.65	J	1.1	0.19	J	1,1	ND		0.4
Hexachlorobutadiene	NS	ND		2	ND ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND		1.1	ND		0.4
Hexachlorocyclopentadiene	NS NS	ND		- 2	ND		2.1	ND DN		0.39	ND	L	0.38	ND		8.4	ND		1.1	ND		1.1	ND		0.4
Hexachloroethane	NS NS	ND		2	ND -		2.1	ND .	 	0.39	ND ND		0.38	ND	L	21	ND		2.8	8		2.8	. ND		1
Indeno[1,2,3-cd]pyrene	3.2	ND		<u>-</u> -	ND		2.1	ND		0.39	ND ND		0.38 0.38	ND ND		8.4	ND	<u> </u>	1.1	ИD		1.1	ND		0.4
Isophorone	4.4	ND		2	ND		2.1	ND		0.39	ND		0.38	ND -		8.4	ND		1.1	ND	ļ	1.1	ND		0.4
N-Nitroso-Di-N-Propylamine	NS	ND		2	ND		2.1	ND		0.39	ND D		0.38	ND		8.4	ND ND	 	1.1	ND ND	ļ	1.1	ND		0.4
N-Nitrosodimethylamine	NS	ND		5	ND		5.1	ND		0.39	ND		0.96	ND		21	ND ND	l	2.8	ND -		1.1	ND ND		0.4
N-Nitrosodiphenylamine	NS	ND		2	ND		2.1	ND		0.39	ND		0.38	ND ND		8.4	ND		1.1	ND	 	1.1	ND ND		0.4
Naphthalene	13	2.5		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND	 	1.1	ND	├	1,1	ND		0.4
Nitrobenzene	NS	ND		2	ND		2.1	ND		0.39	ND		0.38	ND		8.4	ND		1.1	ND	 	1,1	ND		0.4
Pentachlorophenol	1 1	ND 3.7		5	ND		5.1	ND		0.98	ND		0.96	ND		21	ND		2.8	ND		2.8	DN		 -
Phenanthrene Phenol	50	3.7 ND		2	3.1		2.1	ND		0.39	1.8		0.38	19		8.4	0.36		1.1	0.33	J	1.1	ND		0.4
Pyrene	0.03 50	ND 0.63		2	ND 0.35	<u> </u>	2.1	ND		0.39	ND		0.38	ND		8.4	NO		1.1	ND		1.1	ND		0.4
Total SVOC Conc.	500	25.58			0.35 13.55	J	2.1	ND		0.39	0.3	J	0.38	2.6	J	8.4	0.36	J	1.1	ND		1.1	ND		0.4
Total SVOC TICs	NS NS	336.5	├		182.6	 -		0.2			9.471			143.29			3.27			1.29		L	0.55		
Notes:		330,3			102.5		L	223.5	J		112.6		ــــــــــــــــــــــــــــــــــــــ	1404	7		262.5	J		367.4	J		113.42	J	
14144	cells exceed the																								

Notes:
Concentrations in biold and shaded cells exceed the New York State TAGM Recommended Soil Cleanup Objectives (RSCOs).
NS=No standard has been established for this compount Conc.= Detected concentration mg/kg=miligrams per kilograms.
NS=No standard has been established.
ND=Not detected above the laboratory's reporting limits MDL=Methodydetectipn limit laboratory analyzed blank.
J=The estimated concentration was below the MDL, but above the laboratory's reporting limits.
TICs=Tentinged concentration was below the MDL, but above the laboratory's reporting limits.
TICs=Tentinged concentration was below the MDL.
Sample depth intervals are indicated at the end of the sample ID.
P032952emdREMEMU. ACTIONSRemedal Personum six.

Page 6 of 7

ND 0.0. ND 0.0.	Cone ND ND ND ND ND ND ND ND ND ND ND ND ND	MOL 0.41 0.41 0.41 0.41 0.41 0.41 0.41	mg/Kg Qual	Conc ND ND ND ND ND	MDL 2.1 2.1 2.1 2.1 2.1	mg/Kg Qual	Canc ND ND ND	(mg/kg) C/MS) 3.4 7.9 NS	Units SEMIVOLATILE COMPOUNDS (G 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene
ND 0.0. ND 0.0.	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.41 0.41 0.41 0.41 0.41 0.41 0.41	Gual	ND ON OD ON	2.1 2.1 2.1 2.1	Qual	NO NO NO	3.4 7.9	,2,4-Trichlorobenzene ,2-Dichlorobenzene
ND 0.0. ND 0.4	ND ND ND NO NO ND ND ND ND ND ND ND ND ND ND ND ND ND	0.41 0.41 0.41 0.41 0.41 0.41		ND ND ND NO	2.1 2.1 2.1		ND ND	7.9	.2-Dichlorobenzene
ND 0 0.4 ND 0 0.0 ND 0 0.0 ND 0 0.4 ND	ND ND ND NO ND ND ND ND ND ND	0.41 0.41 0.41 0.41 0.41		ND QN QN	2.1		ND		
ND 0.0.0 ND	ND ND ND ND ND ND ND ND	0.41 0.41 0.41 0.41 0.41		ND ON	2.1				
ND 0.0 ND 0.0 ND 0.0 ND 0.4 ND	ND ND ND ND ND ND ND ND	0.41 0.41 0.41 0.41		ПD				1,6	,2-Diphenylhydrazine ,3-Dichlorobenzene
ND 0.4 ND 0.4 ND 0.4 ND 0.5 ND 0.5 ND 0.6 ND	ND ND ND ND ND ND ND	0.41 0.41 0.41					ND NO	8.5	,4-Dichlorobenzene
ND 0.4 ND 0.4 ND 0.7 ND	ND ND ND ND ND ND	0.41 0.41			2.1		ND	0.1	4.5-Trichlorophenal
NO	ND ND ND ND	0.41		ND	2.1		ND	NS.	4,6-Trichlorophenal
ND 0.4 ND 1. ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0	ND ND ND			ND	2.1		ND	0.4	4-Dichlorophenol
ND	ND ND ND	0.41		ND	2.1		ND	NS	,4-Dimethylphenol
ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4	ND ND			ND	5.3		ND	0.2	,4-Dinitrophenol
ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4	ND	0.41		ND	2.1		ND	NS	4-Dinitrataluene
ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4		0.41		ND ND	2.1		ND	1	6-Dinitrotoluene
ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4		0.41		ND	2.1		ND	NS	2-Chloronaphthalene
ND 0.4 ND 0.4 ND 0.4 ND 0.4	ND	0.41		ND	2.1		ND	0.8	-Chlorophenol
ND 0.4 ND 0.4	ND	0.41		ОN	2.1		6.6	36.4	-Methylnaphthalene
ND0.4	· ND	0.41		ND	2.1		ND	0.1	2-Methylphenol
	ND	0.41		ND	2.1		ND	0.43	2-Nitroaniline
NO O	ND	0.41		ND	2.1		ND	0.33	2-Nitrophenal
	ND	0.41		ND	2.1		ND	0.9	884-Methylphenol
ND 0.4	ND	0.41		ND	2.1		NO	NS	1,3'-Dichlorobenzidine
ND 0.4		0.41		ND	2.1		ND	0.5	3-Nitroaniline
ND 1.		1		ND	5.3		ND	NS	1,6-Dinitro-2-methylphenol
	ND	0.41		ND	2.1		ND	NS	I-Bromophenyl-phenylether
	ND	0.41		ND	2.1		ND	0.24	Chloro-3-methylphenol
ND 0.4		0.41		ND	2.1		ND	0.22	l-Chloroaniline
ND 0.4		0.41		. ND	2.1		ND	NS	I-Chlorophenyl-phenylether
ND 0.4		0.41		ND	2.1		ND	NS	I-Nitroaniline
ND 0.4		0.41		ND	2.1		GN	0.1	I-Nitrophenol
ND 0.4		0.41		ND	2.1	J	1.5	50	Acenaphthene
	ND	0.41		ND	2.1		ND	41	Acenaphthylene
ND 0.4		0.41		ND	2.1	J	0.77	50	Anthracene
ND 0.4	ND	0.41		ND ND	2.1		ND	NS	Benzidine
ND 0.4		0.41		ND	2.1	3	0.3	0.224	Benzo(a)anthracene
ND 0.4	ND	0.41		ND	2.1		ND	0.061	Benzo[a]pyrene
ND 0.	ND	0.41		ND	2.1		ND	1.1	Benzo(b)fluoranthene
	ND	0.41		ND	2.1		ND	50	Benzo(g,h,i)perylene
ND 0.	ND	0.41		_ ND	2.1		ND	1.1	Benzo(k)fluoranthene
ND 0.	ND	0.41		ND	2.1		ND	NS	Benzyl sicohol
ND 0.4	ND	0.41		ND	2.1		ND	NS	Bis(2-Chloroethoxy)methane
ND D.		0.41		ND	2.1		NO	NS	Bis(2-Chloroethyt)Ether
ND 0.		0.41		ND	2.1		ND	NS	Bis(2-Chloroisopropyl)ether
ND 0.	ND	0.41	J	0.042	2.1		ND	50	Bis(2-Ethylhexyl)phthalate
	ND	0.41		ND	2.1	l	ND	50	Butylbenzylphthalate
ND 0.		0.41		ND	2.1		ND	NS	Carbazole
ND 0.		0.41		ND	2.1	J	0.7	0.4	Chrysene
ND 0.		0.41		ND	2.1		ND	0.014	Dibenzo(a,h)Anthracene
ND 0.		0.41		ND	2.1		ND	6.2	Dibenzofuran
ND 0.		0.41		ND	2.1	<u> </u>	ND	7.1	Diethylphthalate
ND 0.		0.41		ND	2.1		ND	2	Dimethylphthalate
	0.082	0.41	JB	0.06	2.1		ND	8.1	Di-n-butylphthalate
ND 0.		0.41		ND.	2.1		ND	50	Di-n-octylphthalate
ND 0.		0.41		ND	2.1		ND	50	Fluoranthene
ND 0.		0.41		ND	2.1		2.6	50	Fluorene
ND 0.		0.41		ND	2.1	<u> </u>	ND.	0.41	Hexachlorobenzene
ND 0.		0.41		ND	2.1		ND_	NS	Hexachlorobutadiene
ND 1		1 1	L	ND	5.3		ND	NS_	Hexachlorocyclopentadiene
						 			
			L						
									N Missess Di N D
			 -						
			 -			-			
					4.1	 			
					4.1				
		0.41	L						
		0 44							
		0.41	 			—			
						 			
		0.41			4.1	J			
						 			
00.89 J	200.89		<u> </u>	3/19.8	<u> </u>	3	364.5	T W2	
ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND	0.41 0.41 0.41 0.41 1 0.41 1 0.41 0.41 0.41 0.41 0.41 0.41	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.3 2.1 2.1 2.1 5.3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	J	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NS 3.2 4.4 NS NS NS 13 NS 15 0.03 50 0.03 50 S00 NS d cells exceed the need Soil Cleanup	Hexachioro-dishane Indend 1,2,3-cdjpyrene Isophorone Indend 1,2,3-cdjpyrene Isophorone N-Nitrosodimethylamine N-Nitrosodimethylamine N-Nitrosodimethylamine N-Nitrosodimethylamine N-Nitrosodimethylamine Nitrobenzene Pentachiorophenol Phenacitriconenol Phenacitriconenol Phenacitriconenol Pyrene Total SVOC Tics Notes; Notes Concentrations in biold and shade New York State TAGM Recommer Objectives (RSCOs), NS= No standard has been establin mg/kg= miligrams per kilograms NS=No standard has been establin MS=No standard has been establin NS=No standard has been establin NS=No standard has been establin

The following SVOCs were detected at concentrations that exceeded their RSCOs in at least one post-excavation soil sample: 2-methylnaphthalene, acenaphthene. benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)flouoranthene, chrysene, and dibenzo(a,h)antracene. Prior soil sampling analytical results at Area 3A have contained total PAH compounds at concentrations up to 127.42 mg/kg; only two of the 54 (i.e., less than 4%) IRM post-excavation soil samples contained higher concentrations of total PAH compounds. These two samples, a bottom sample collected at Area I and a sidewall sample collected at Area K, contained concentrations of total PAH compounds of 146.3 and 143.29 mg/kg, respectively. The concentrations of total PAH compounds in the remaining soil samples were similar to those detected throughout the HHMT-Port Ivory Facility. Please note, the sidewall sample collected at Area K was collected from the east sidewall and, due to the presence of nearby structures, overexcavation of Area K to the east was and is not feasible.

7.2 Collection, Preparation, and Analysis of LNAPL Leachate Samples

Type II LNAPL was observed at Area B and Area J. During IRM activities, the Type II LNAPL was removed to the extent practical; however some of the Type II LNAPL could not be removed due to the presence of facility and public roadways, the Tidewater pipelines, and facility buildings. The Type II LNAPL located to the north and east of Area B was excavated, but the Type II LNAPL located south of Area B could not be excavated due to the presence of a facility road to the south of Area B. Type II LNAPL located beneath and adjacent to the Tidewater pipelines was removed to the north of Area J, but some Type II LNAPL remained below the Tidewater pipelines in this Removal Area/Trench because at least one of the Tidewater pipelines was located within five feet of Building No. 80. As a result, excavation of the Tidewater pipelines and adjacent soil could potentially have impacted the structural stability of the foundation of Building No. 80. In order to determine whether the Type II LNAPL could potentially impact groundwater, the Port Authority retained Meta Environmental, Inc. (META) to conduct a solubility/leachability study. The purpose of this study was to evaluate the potential for the remaining Type II LNAPL to impact groundwater at the site. The study consisted of the following tasks:

- Collection of Type II LNAPL samples;
- Collection of groundwater samples;
- Analysis of organic compounds in the groundwater samples;
- Confirmation of the suitability of the groundwater for generating the leachate;
- Preparation of leachate samples; and
- Analysis of leachate samples and associated quality assurance/quality control (QA/QC) samples.

The Type II LNAPL samples were collected from the sidewalls where the Type II LNAPL was present at Areas B and J using a plastic pond-sampling device or shovel. Samples of the groundwater at Area B and Area J were collected using dedicated Teflon bailers.

Following sample collection, the first step in the solubility study was to confirm that groundwater samples collected at Area B and Area J contained minimal concentrations of targeted organic compounds. If samples contained relatively significant concentrations of organic compounds, it would be unsuitable for the leachability analysis because the concentrations of organic compounds in the groundwater would "mask" the additional concentrations of those compounds leached from the LNAPL.

The second step in the study was the preparation of a leachate sample from Type II LNAPL samples collected at Area B and Area J. The leachate samples were prepared by contacting the LNAPL sample from each area (Areas B and J) with groundwater collected from that area, which was maintained at low pH and under zero oxygen conditions to limit microbial activity. For both leachate samples, the groundwater was maintained in contact with the LNAPL for 72 hours at 15 degrees Celsius.

The third step in the study was the analysis of the leachate samples and associated QA/QC samples. The QA/QC samples included an extraction blank, which was comprised of site-specific groundwater, and a laboratory blank, which was an analysis of DI water to confirm

whether or not the instruments were contaminated by organic compounds. Both leachate samples and the method blank were analyzed for VOCs and SVOCs. Analytical results are presented on Tables 9A and 9B, respectively. The META laboratory analytical report is included in Appendix D.

Acetone, methylene chloride, and benzene were the only compounds detected at concentrations greater than their respective AWQSGVs in either leachate sample. Methylene chloride and acetone, common laboratory solvents, were also detected in the method blank prepared and analyzed by the laboratory; therefore, the concentration of methylene chloride and acetone in the samples is considered to be attributable to laboratory contamination. Other than the laboratory contaminants identified above, no targeted VOCs were detected in the leachate sample associated with Type II LNAPL at Area B. Benzene was detected at 5 ug/L, slightly above its AWQSGV of 1 ug/L, in the leachate sample associated with Type II LNAPL at Area J. VOC TICs were detected in the leachate samples associated with the Type II LNAPL at Area B (7 ug/L) and at Area J (at 62 ug/L). Please note, the extraction blank, which consisted of site-specific groundwater, contained VOC TICs at a concentration of 15 ug/L.

Phenol and Di-n-butylphthalate were the only SVOCs detected at a concentration greater than their respective AWQSGVs in either leachate sample. These compounds were also detected in the extraction blank and the laboratory blank and therefore are suspected to be attributable to laboratory contamination. SVOC TICs were detected at 380 ug/L in the sample from Area B, 375 ug/L in the sample from Area J, and 400 ug/L in the extraction blank (site groundwater).

Based on the analytical results, Type II LNAPL is unlikely to be a source area for significant groundwater imapets. The leachate generated using Type II LNAPL from Area B did not contain any targeted organic compounds, and the presence of Type II LNAPL at Area B is not anticipated to impact groundwater. However, the Type II LNAPL remaining at Area J could potentially result in minor impacts to groundwater quality. Therefore, additional investigation of groundwater quality downgradient of Area J is warranted.

TABLE 9A SUMMARY OF LNAPL LEACHATE ANALYTICAL RESULTS VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab ID Date Collected	New York State		AREA B-0 HM060822- 08/03/06	-01		EA J-O Con HM060919- 08/02/06	-01		tion Blank (
Material	AWQSGV		Water ug/L			Water ug/L	•		8/2/06 Water ug/L	
Volatile Organic Compounds (VOCs)		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
Dichlorodifluoromethane	5 NS	ND ND	 	5	ND ND	 	5	ND	↓	5
Chloromethane Vinyl Chloride	2	ND ND	 	5	ND ND	 	5	ND ND		5 5
Bromomethane	5	ND	 	5	ND	 	5	ND		5
Chloroethane	5	ND		5	ND		5	ND		5
Trichlorofluoromethane	5	ND	ļ	5	ND		5	ND		- 5
1,1-Dichloroethene	50	ND		5_	ND		5	ND		5
Acetone	NS NS	250 ND	В	5 5	15 ND	B _	5	ND	В	5 5
Carbon Disulfide	50	ND	 	5	ND		5	ND	 	5
Methylene Chloride	5	1900	ΣВ	5	6700	В	_ 5	4800	В	5
trans-1,2-Dichloroethene	5	ND	ļ.,	5	ND		5	ND		5
Methyl tert-butyl ether 1,1-Dichloroethane	NS 5	ND ND		5	ND ND	<u> </u>	5	ND ND	↓	5
Vinyl acetate	NS	ND ND		5	ND ND	 	5	ND -	 	5 5
2-Butanone	50	ND	<u> </u>	5	ND	1	5	ND ND	 	5
cis-1,2-Dichloroethene	5	ND		5	ND		5	ND		. 5
2,2-Dichloropropane	5	ND	ļ	5	ND		_ 5	ND		5
Bromochloromethane Chloroform	50 7	ND ND	 -	5	ND ND	 	5	ND		5
1,1,1-Trichloroethane	5	ND ND		5	ND	-	5	ND	$\vdash -$	5
1,1-Dichloropropene	5	ND		5	ND		5	ND	 	5
Carbon Tetrachloride	5	ND		5	ND		5	ND		5
1,2-Dichloroethane	0.6	ND		5	ND		5	ND		5
Benzene Trichloroethene		ND ND	ļ	5	8 ND		5	ND ND	 	5
1,2-Dichloropropane	1 1	ND		5	ND		5	ND ND		5
Dibromomethane	5	ND	-	5	ND	<u> </u>	5	ND	 	5
Bromodichloromethane	50	ND		5	ND		5	ND		5
cis-1,3-Dichloropropene	NS	ND		5	ND		5	ND	L	5
4-Methyl-2-pentanone Toluene	50 5	ND ND		5	ND ND	 	5 5	ND ND		5
trans-1,3-Dichloropropene	NS	ND		5	ND ND		5	ND	 	5
1,1,2-Trichloroethane	1	ND		5	ND		5	ND		5
1,3-Dichloropropane	NS	ND		5	ND		5	ND		. 5
Tetrachloroethene	5	ND		5	ND		5	ND		5
2-Hexanone Dibromochloromethane	NS 50	ND ND		5	ND ND		5	ND ND		5
1,2-Dibromoethane	2	ND		5	ND		5	ND		5
Chlorobenzene	5	ND		5	ND		5	ND		5
1,1,1,2 shloroethane	0.9 total	ND		5	ND		5	ND		5
Ethyl m,p-X)	<u>5</u> 5	ND ND		5	ND	J	5 5	ND ND		5
o-Xylene	5	ND		5	ND		5	ND		5
Xylene (Total)	NS	ND		5	ND		5	ND		5
Styrene	5	ND ND		5	ND		5	ND		5
Bromoform Isopropylbenzene	50 5	ND ND		5	ND ND		5	ND ND		5 5
1,1,2,2-Tetrachioroethane	5	ND		5	ND		5	ND		5
Bromobenzene	5	ND		5	ND		5	ND		5
1,2,3-Trichloropropane	0.04	ND ND		5	ND ND		5	ND DN		5
n-Propyibenzene 2-Chlorotoluene	5	ND ND		5	ND ND		- 5	ND ND		- 5 5
1,3,5-Trimethylbenzene	5	ND		5	2	J	5	ND		5
4-Chlorotoluene	5	ND		5	ND		5	ND		5
ert-Butylbenzene 1,2,4-Trimethylbenzene	5 5	ND ND		5	ND ND		5 5	ND ND		<u>5</u>
sec-Butylbenzene	NS	ND ND		5	ND		5	ND		5
1-Isopropyltoluene	5	ND		5	3	J	5	ND		5
1,3-Dichlorobenzene	3	ND		5	ND		5	ND		5
1,4-Dichlorobenzene n-Butylbenzene	5	ND ND		5	ND ND		5	ND ND	——-	<u>5</u>
1,2-Dichlorobenzene	3	ND		5	ND		5	ND ND		5
1,2-Dibromo-3-chloropropane	NS	ND		5	ND		5	ND		5
1,2,4-Trichlorobenzene	5	ND		5	ND		5	ND		5
dexachlorobutadiene Naphthalene	0.5 10	ND D		5	ND ND		5	ND ND	——- <u></u>	5 5
1,2,3-Trichlorobenzene	5	ND		5	ND		5	ND		5
Dibromofluoromethane	50	ND		5	ND		5	ND		5
,2-Dichloroethane-d4	NS	ND		5	ND		5	ND		5
Toluene-d8 Bromofluorobenzene	NS NS	ND ND		5 5	ND ND		5	ND ND		- 5 - 5
	140			J		,	J			•

NS

Notes and Abbreviations:

NS

Notes and Abbreviations:

AWQSGV = Ambient Water Quality Standards and Guidance

Values

Conc. = concentration

MDL = Method detection limit

UG/L = Micrograms per Liter

TICs=Tentatively identified Compounds

GW=groundwater

NS= No standard

NA= Not analyzed

B= Analyte was also detected in laboratory analyzed blank

ND = Not Detected

J = The estimated concentration was below the MDL, but

is above the laboratory's reporting limits.

1) Concentration is exceeding the AWQSGV are provided in bold

font a cells highlighted in yellow.

TABLE 9B SUMMARY OF LNAPL LEACHATE ANALYTICAL RESULTS-SVOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

ab ID ate Collected aterial nits	New York State AWQSGV	}	AREA B-0 IM060822 08/03/06 Water ug/L	-01		N J-O Con M060919- 08/02/06 Water ug/L	-Ò1		M060919 8/2/06 Water ug/L	(Site G\ -EB
emiVolatile Organic Compounds		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MD
romobenzene	5	ND		0.200	ND		0.200	ND		0.20
Chlorotoluene	5	ND	ļ	0.200	ND.		0.200	ND		0.20
ropylbenzene	NS	ND	I	0.200	ND		0.200	ND		0.20
Chlorotoluene	5	ND		0.200	ND		0.200	ND		0.20
3,5-Trimethylbenzene	5	ND		0.200	ND		0.200	ND		0.20
rt-Butylbenzene	5	ND		0.200	ND		0.200	ND		0.20
2,4-Trimethylbenzene	5	ND		0.200	ND		0.200	ND		0.20
c-Butylbenzene	5	ND		0.200	ND		0.200	ND		0.20
henol	1 1	1.43	В	0.200	0.946	8	0.200	0.902	В	
s(2-Chloroethyl)ether	i	ND		0.200						0.20
			ļ		ND		0.200	ND		0.20
niline	5	ND.		0.200	ND		0.200	ND		0.20
Chlorophenol	5	ND		0.200	ND		0.200	ND		0.20
3-Dichlorobenzene	3	ND.		0.200	ND		0.200	DИ		0.20
4-Dichlorobenzene	3	ND		0.200	ND.		0.200	ND		0.20
Isopropyltaluene	NS	ND		0.200	1.7		0.200	ND		0.20
enzyl Alcohol	NS .	1.08		0.200	ND		0.200	ND		0.20
Methylphenol (m-cresol)	1'	0.76		0.200	ND		0.200	ND		0.20
2-Dichlorobenzene	3	ND		0.200	ND		0.200	ND		0.20
4-Methylphenol (o,p-cresol)	1.	0.752		0.200	ND		0.200	ND		0.20
s(2-chloroisopropyl)ether	NS	ND		0.200	ND		0.200	ND		0.20
Butylbenzene	'NS	ND		0.200	ND		0.200	ND		0.20
nitroso-di-n-propylamine	NS	ND		0.200	ND		0.200	ND		0.20
exachioroethane	5	ND			ND		0.200	ND		
				0.200						0.20
2-Dibromo-3-Chloropropane	NS NS	ND ND		0.200	ND		0.200	ND		0.20
Nitrophenol	1.	ND		0.200	ND		0.200	ND		0.20
4-Dimethylphenol	1	0.421		0.200	ND		0.200	ND		0.20
s(2-Chloroethoxy)methane	5	ND		0.200	ND		0.200	ND		0.20
3-Dichlorophenol	NS	ND		0.200	ND		0.200	ND		0.20
2,4-Trichlorobenzene	5	ND		0.200	ND		0.200	ND		0.20
phthalene	10	ND		0.200	ND		0.200	ND		0.20
1-Dichlorophenol	1.	ND		0.200	ND		0.200	ND		0.20
Chloroaniline	5	ND		0.200	ND		0.200	ND		0.20
exachlorobutadiene	0.5	ND		0.200	ND		0.200	ND		0.20
2,3-Trichlorobenzene	5	ND		0.200	ND		0.200	ND	_	
	NS									0.20
Chloro-3-methylphenol		ND ND		0.200	ND		0.200	ND		0.20
Methylnaphthalene	NS	ND		0.200	ND		0.200	ND		0.20
Methylnaphthalene	NS	ND		0.200	ND		0.200	ND		0.20
xachlorocyclopentadiene	5	ND		20.0	ND		20.0	ND		20.0
l,6-Trichlorophenol	1*	ND		0.200	ND		0.200	ND		0.20
,5-Trichlorophenol	1.	ND		0.200	ND		0.200	ND		0.20
Chloronaphthalene	10	ND		0.200	ND		0.200	ND		0.20
Nitroaniline	5	ND	•	0.200	ND		0.200	ND		0.20
nethylphthalate	50	ND		0.200	ND		0.200	ND		0.20
enaphthylene	20	ND		0.200	ND		0.200	ND		0.20
Vitroaniline	5	ND		0.200	ND		0.200	ND		0.20
enaphthene	20	ND		0.200	0.784		0.200	ND		0.20
I-Dinitrophenol	1.	ND		10.0	ND					
	- i						10.0	ND ND		10.0
Vitrophenol		ND		1.0	ND		1.0	ND		1.0
penzofuran	5	ND		0.200	0.29		0.200	ND		0.20
,4,6-Tetrachlorophenol	NS	ND		0.200	ND		0.200	ND		0.20
ethylphthalate	50	1.3	В	0.200	1.25	В	0.200	1.3	8	0.20
Chlorophenyl-phenylether	1*	ND		0.200	ND]		0.200	ND		0.20
orene	50	ND		0.200	ND		0.200	ND		0.20
litroaniline	5 .	ND		0.200	ND		0.200	ND		0.20
-Dinitro-2-methylphenol	NS	ND		2.0	ND	i	2.0	ND		2.0
litrosodiphenylamine	50	ND		0.200	ND		0.200	ND		0.20
xachlorobenzene	0.04	ND		0.200	ND		0.200	ND		0.20
ntachlorophenol	1°	ND		10.0	ND		10.0	ND		10.0
enanthrene	50									
		ND ND		0.200	ND		0.200	ND		0.20
hracene	50	ND ND		0.200	ND		0.200	ND		0.20
rbazole	NS	ND		0.200	ND	[0.200	ND	l	0.20
n-buty/phthalate	50	120	8	0.200	94	В	0.200	100	8	0.20
oranthene	50	ND	T	0.200	0.118	J	0.200	ND		0.20
ene	50	ND		0.200	0.137	Ĵ	0.200	ND		0.20
ylbenzytphthalate	50	6.31	В	0.200	5.07	В	0.200	5.52	В	0.20
nz[a]anthracene	0.002	ND		0.200	ND		0.200	ND		0.20
rysene	0.002	ND		0.200	ND		0.200	ND		0.20
(2-Ethylhexyl)phthalate	5	3.7	В	0.200	2.6	В	0.200	2.47	В	0.20
n-octylphthalate	50	ND		0.200	ND		0.200	ND		0.20
zoibifluoranthene	0.002	ND		0.200	ND		0.200	ND		0.20
nzo[k]fluoranthene	0.002	ND		0.200	ND	!	0.200	ND		0.20
nzo[a]pyrene	detection limit	ND		0.200	ND		0.200	ND		0.20
eno[1,2,3-cd]pyrene	0.002	ND		0.200	ND		0.200	ND	- i	0.20
enz[a,h]anthracene	50	ND		0.200	ND	\rightarrow	0.200	ND		0.20
nzo[g,h,i]perylene	5	ND		0.200	ND		0.200	ND	\rightarrow	0.20
			-			-			. , 	
DC TICS tes and Abbreviations; QSGV = Ambient Water Quality Standan Values fers to phenolic compounds (total pheno L = Method Detection Limit A. = Micrograms per Liter compound was detected in the laboratory for groundwater = Not Detected compound was detected in the laboratory The estimated concentration was below above the laboratory's reporting limits.	is) analyzed blank. analyzed blank.	380	<u>.</u> .]		375	<u> </u>		400	J	

7.3 Collection of Groundwater Samples

As noted above, the observation period for several Removal Areas/Trenches was shorter than proposed in the *Revised IRM Work Plan* in order to protect structures adjacent to those Removal Areas/Trenches. As such, the Port Authority collected groundwater samples from the Removal Areas/Trenches that were backfilled following an observation period of less than one month. This sampling effort confirmed that the LNAPL potentially present adjacent to these Removal Areas/Trenches backfilled early would not impact groundwater quality with respect to regulated organic compounds. Specifically, groundwater samples were collected at Areas C, K, and L. The groundwater samples were designated as Area-C-W2, Area K-W2, and Area L-W2.

The groundwater samples were collected by transferring groundwater directly from a dedicated Teflon bailer into the laboratory-provided sampling jars. All samples were transported to Veritech (Certification No.11408) under Chain of Custody documentation with instructions to be analyzed for TCL VOC+10 and TCL SVOC+20. The analytical results are summarized on Tables 1A and 1B, respectively. The laboratory analytical reports are included in Appendix A.

The groundwater sampling analytical results indicate that no VOCs or SVOCs were detected above the New York AWQSGV in the Removal Areas/Trenches that were closed earlier than the approved observation period (Samples Area C-W2, Area K-W2, and Area L-W2). Based on the analytical results, the potential presence of LNAPL in the vicinity of these Removal Areas/Trenches has not impacted groundwater quality.

7.4 Site Restoration

After the completion of IRM activities, the Port Authority performed site restoration activities, which included the following components: the collection of backfill soil samples; backfilling the Removal Areas/Trenches; and the removal of components of the treatment system. Backfilling activities and collection of backfill soil samples are discussed in Section 7.4.1. Dismantling of the groundwater treatment system is discussed in Section 7.4.2.

7.4.1 Backfilling and Collection of Backfill Soil Samples

The Port Authority initiated backfilling after LNAPL did not re-accumulate at a Removal Area/Trench and following the collection of post-excavation soil samples and a groundwater sample (if necessary) from that Removal Area/Trench. Each Removal Area/Trench was backfilled as these activities were completed for safety and aesthetics reasons. The Removal areas/Trenches were backfilled with either non-impacted soils originally excavated from a Removal Area/Trench or from other non-impacted on-site sources. As noted above, additional LNAPL and LNAPL-impacted soil remains in the vicinity of Area F; consequently, Area F has not yet been backfilled. Backfill materials were sampled at a frequency that is in accordance with STARS Memo #1.

In general, the sample frequency ranged from one 5-part composite and one discrete soil sample for a 50-cubic yard stockpile to six grab samples and two 5-part composite soil samples for the largest stockpile of backfill materials. Samples of the backfill material were analyzed for TCL VOC+10 and SVOC+20 in accordance with STARS Memo #1. The samples were collected directly from the loader bucket into laboratory-prepared sampling jars immediately before the backfill material was placed in the Removal Area/Trench. All backfill samples were analyzed by Veritech (Certification No. 11408). Analytical results were compared to the RSCOs (see Tables 10A and 10B).

None of the backfill samples contained any VOC at a concentration above its respective RSCO. VOC TICs ranged from not detected in samples collected from Area G and Area H to 2.33 mg/kg in a sample collected at Area B. The following SVOCs were detected at concentrations that exceeded their RSCOs in at least one backfill sample: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)flouoranthene, chrysene, dibenzo(a,h)antracene, dimethylphthalate, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene. The concentration of total PAH compounds in the backfill samples varied from 0.046 to 36.79 mg/kg with a mean of 8.85 mg/kg and a median of 7.65 mg/kg.

SUMMARY OF BACKFILL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab Sample No. Sampling Date	New York Recommended Soil Cleanup Objectives		AREA A-BF1 AC25829-006 9/22/2006			AREA A-BF2 AC25829-007 9/22/2006			AREA A-BF3 AC25829-008 9/22/2006			AREA A-BF4 AC25900-001 9/26/2006	
Matrix Units	(RSCOs) mg/Kg	l .	Soil		1	Soil			Soil			Soil	
VOLATILE ORGANIC COMP		Conc	mg/Kg Qual	MDL	Conc	mg/Kg Qual	MDL	Conc	mg/Kg Qual	MDL	Conc	mg/Kg	MDL
1.1.1.2-Tetrachloroethane	NS	ND	Quai	0.0056	ND	Qual			Qual			Qual	
1,1,1-Trichloroethane	0.8	ND ND		0.0056	ND ND		0.0011	ND ND		0.0011	ND ND		0.0054
1,1,2,2-Tetrachloroethane	0.6	ND ND		0.0056	ND		0.0056	ND ND		0.0011	ND ND		0.0054
1,1,2-Trichloroethane	NS	ND		0.0056	ND ND		0.0056	ND I		0.0056	ND		0.0054
1.1-Dichloroethane	0.2	ND		0.0056	ND		0.0011	ND		0.0030	ND		0.0054
1,1-Dichloroethene	0.4	ND ND		0.0056	ND		0.0011	ND		0.0011	ND ND		0.0054
1.2-Dichloroethane	0.1	ND		0.0056	ND		0.0011	ND ·		0.0011	ND		0.0054
1,2-Dichloropropane	NS	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0054
2-Butanone	0.3	ND		0.0056	ND ND		0.0011	ND		0.0011	ND		0.0054
2-Chloroethylvinylether	NS	ND		0.0056	ND		0.0011	ND		0.0011	ND ND	 	0.0054
2-Hexanone	NS	ND		0.0056	ND ND		0.0011	ND		0.0011	ND	t ———	0.0054
4-Methyl-2-Pentanone	1	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0054
Acetone	0.2	ND		0.028	ND		0.028	ND		0.028	ND		0.027
Acrolein	NS	ND		0.028	ND		0.0056	ND		0.0056	ND		0.027
Acrylonitrile	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0054
Benzene	0.06	ND		0.0011	ND		0.0011	ND		0.0011	ND	ļ	0.0011
Bromodichloromethane	NS	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0054
Bromoform	NS	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0054
Bromomethane	, NS	ND		0.0056	ND		0.0011	ND		0.0011	ND	1	0.0054
Carbon disulfide	2.7	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0054
Carbon tetrachloride	0.6	ND		0.0056	ND		0.0011	ND		0.0011	ND ·		0.0054
Chlorobenzene	1.7	ND		0.0056	ND		0.0056	ND		0.0056	NO		0.0054
Chloroethane	1.9	ND		0.0056	ND		0.0011	ND		0.0011	ND	ļ:	0.0054
Chloroform	0.3	ND		0.0056	ND		0.0011	ND	ļ. <u>.</u>	0.0011	ND	<u> </u>	0.0054
Chloromethane	NS	ND	ļ	0.0056	ND		0.0056	ND		0.0056	ND		0.0054
Cis-1,2-Dichloroethene	NS	ND		0.0056	ND		0.0011	. ND		0.0011	ND		0.0054
Cis-1,3-Dichloropropene Dibromochloromethane	NS NS	ND		0.0056	ND		0.0011	ND	ļ	0.0011	ND		0.0054
Ethylbenzene	5.5	ND.		0.0056	ND ND		0.0011	ND	ļ <u></u>	0.0011	ND		0.0054
M&p-Xylenes	1.2	ND ND		0.0022	ND ND	<u> </u>	0.0011	ND ND		0.0011	ND ND		0.0011
Methylene chloride	0.1	0.018	В	0.0022	0.024	B	0.0022	0.024	8	0.0022	0.021	В -	0.0022
O-Xylene	1.2	ND	<u> </u>	0.0056	ND	<u> </u>	0.0030	ND	P	0.0036	NO	<u> </u>	0.0054
Styrene	NS	ND ND		0.0056	ND ND	<u> </u>	0.0056	ND ND		0.0056	ND	}	0.0054
Tetrachloroethene	1.4	ND		0.0056	ND		0.0030	ND		0.0030	ND ND	·	0.0054
Toluene	1.5	ND		0.0030	ND ND		0.0011	ND		0.0011	ND ND		0.0034
Trans-1.2-Dichloroethene	0.3	ND	<u> </u>	0.0056	ND		0.0011	ND		0.0011	ND ND	<u> </u>	0.0054
Trans-1.3-Dichloropropene	NS	ND	 	0.0056	ND	 	0.0056	ND ND	 	0.0056	ND	 	0.0054
Trichloroethene	0.7	ND	t	0.0056	ND ND		0.0056	ND		0.0056	ND	 	0.0054
Vinyl chloride	0.2	ND		0.0056	ND		0.0011	ND ND		0.0011	ND	 	0.0054
Total VOCs Conc.	10	0.018			0.024	<u> </u>	1	0.024		 	ND	 	† · · · · ·
VOC TICs	NS	0.0103	1 - 1	NA NA	0.0038	J	1	0.0034	<u> </u>	 	0.0324		

Notes and Abbreviations:

Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS≂No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds
TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

SUMMARY OF BACKFILE L ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

						MI-PUK		AUILITI								
Sample ID	New York		AREA A-BFC2			AREA B-BF			AREA B-BF			AREA B-BF		/	REA B-BC	2
Lab Sample No.	Recommended Soil	1	AC25829-001			C25432-00		 ^	C25432-0		A	C25432-00	9		C25432-01	
Sampling Date	Cleanup Objectives		9/22/2006			8/31/2006		l	8/31/2006	i		8/31/2006	i		8/31/2006	
Matrix	(RSCOs)		Soil			Soil		i	Soil		ŀ	Soil		ł	Soit	
Units	mg/Kg		mg/Kg			mg/Kg		L	mg/Kg			mġ/Kg			mg/Kg	
VOLATILE ORGANIC COMP		Conc	Qual	MOL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,1,1-Trichloroethane	0.8	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,1,2,2-Tetrachloroethane	0.6	ND		0.0056	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,1,2-Trichloroethane	NS	ND		0.0056	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,1-Dichloroethane	0.2	ND		0.0011	ND		0.0058	ND	L	0.0057	ND		0.0052	ND		0.0057
1,1-Dichloroethene	0.4	ND		0.0011	ND	<u> </u>	0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,2-Dichloroethane	0.1	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
1,2-Dichtoropropane 2-Butanone	NS	ND		0.0011	ND	ļ	0.0058	ND		0.0057	ND		0.0052	ND		0.0057
	0.3	ND		0.0011	ND		0.0058	ND	<u> </u>	0.0057	NO		0.0052	ND		0.0057
2-Chloroethylvinylether 2-Hexanone	NS	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
4-Methyl-2-Pentanone	NS	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	_ ND		0.0057
Acetone Acetone	1	ND	ļ	0.0011	ND	L	0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Acrolein	0.2	ND		0.028	ND		0.029	ND		0.029	ND		0.026	ND		0.029
Acrylonitrile	NS	ND .		0.0056	ND		0.029	ND		0.029	ND		0.026	ND		0.029
	NS	ND		0.0056	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Benzene	0.06	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.001	ND		0.0011
Bromodichloromethane Bromoform	NS	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Bromomethane	NS	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Carbon disulfide	NS	ND		0.0011	ND		0.0058	ND	L	0.0057	ND		0.0052	ND ·		0.0057
Carbon tetrachloride	2.7	ND		0.0011	ND		0.0058	ND	L	0.0057	ND		0.0052	ND		0.0057
Chlorobenzene	0.6	ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Chioroethane	1.7 1.9	ND		0.0056	ND		0.0058	ND	L	0.0057	ND		0.0052	ND		0.0057
Chloroform	0.3	ND ND		0.0011	ND	L	0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Chloromethane		ND ND		0.0011	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Cis-1,2-Dichloroethene	NS NS	ND ND		0.0056	ND		0.0058	ND		0.0057	ND		0.0052	ND		0.0057
Cis-1,3-Dichloropropene	NS NS	ND ND	,		ND	ļ	0.0058	ND	·	0.0057	ND		0.0052	ND		0.0057
Dibromochloromethane	NS NS	ND ND		0.0011	ND ND		0.0058	ND	_	0.0057	ND		0.0052	ND		0.0057
Ethylbenzene	5.5	ND ND		0.0011	ND ON	·	0.0058	ND	ļ	0.0057	ND		0.0052	ND		0.0057
M&p-Xylenes	1.2	ND ND		0.0011	ND ND		0.0012	ND		0.0011	ND		0.001	ND		0.0011
Methylene chloride	0.1	0.034	В	0.0022	0.037	В	0.0023	ND		0.0023	_ ND		0.0021	ND		0.0023
O-Xviene	1.2	ND	<u> </u>	0.0056	0.037 ND		0.0058	0.03 ND	В	0.0057	0.023	В	0.0052	0.028	В	0.0057
Styrene	NS	ND		0.0056	ND ND		0.0012	ND ND		0.0011	ND .		0.001	ND		0.0011
Tetrachloroethene	1.4	ND		0.0030	ND-	 	0.0058	ND ND	 	0.0057	ND		0.0052	ND		0.0057
Toluene	1.5	ND		0.0011	ND ND	 	0.0058	ND ND	<u> </u>	0.0057	ND		0.0052	ND		0.0057
Trans-1,2-Dichloroethene	0.3	ND		0.0011	ND ND		0.0012	ND ND	 	0.0011	ND		0.001	ND		0.0011
Trans-1,3-Dichloropropene	. NS	ND		0.0056	ND ND		0.0058	ND		0.0057	ND ND		0.0052	ND		0.0057
Trichloroethene	0.7	ND		0.0056	ND		0.0058	ND ND	 	0.0057	ND ND		0.0052	ND		0.0057
Vinyl chloride	0.2	ND ND		0.0030	ND		0.0058	ND -	 	0.0057	ND ND		0.0052 0.0052	ND ND		0.0057
Total VOCs Conc.	10	0.034			0.037		0.0000	0.03		0.0057	0.023		0.0052			0.0057
VOC TICs	NS	0.0059	.1		0.017	- , -		0.03			0.023			0.028		
Notes and Abbreviations:		0.0000	`	<u> </u>	0.017		<u> </u>	0.0177	<u> </u>		0.0168	J	L	0.0199	J	

Notes and Abbreviations: Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

LE 10A SUMMARY OF BACKFIS L ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	New York	AR	EA B-OEXBE	1	ĀĪ	REA B-OEXBFC	1	Α	REA C-BF	1	4	REA C-BF	2	Δ	REA C-BFO	·1
Lab Sample No.	Recommended Soil		AC25846-001		• "	AC25846-002	`		C25432-00			C25432-00			C25432-00	
Sampling Date	Cleanup Objectives	•	9/25/2006	1		9/25/2006			8/31/2006	· [8/31/2006	Ĭ l	• • • • • • • • • • • • • • • • • • • •	8/31/2006	
Matrix	(RSCOs)		Soil	1		Soil		l	Soil]		Soil	ł		Soil	- 1
Units	mg/Kg		mg/Kg	ı		mg/Kg			mg/Kg	1		ma/Ka			mg/Kg	1
VOLATILE ORGANIC COMP	OUNDS (VOCs)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0057	ND		0.0058	ИD		0.0056	ND I		0.0057	ДN		0.0056
1,1,1-Trichloroethane	0.8	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,1,2,2-Tetrachloroethane	0.6	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,1,2-Trichloroethane	NS ·	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,1-Dichloroethane	0.2	ND .		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,1-Dichloroethene	0.4	ND		0.0057	ND .		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,2-Dichloroethane	0.1	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
1,2-Dichloropropane	NS	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
2-Butanone	0.3	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
2-Chloroethylvinylether	NS	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
2-Hexanone	NS	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
4-Methyl-2-Pentanone	11	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Acetone	0.2	0.033		0.028	0.074		0.029	ND		0.028	ND		0.029	ND_		0.028
Acrolein	NS	ND		0.028	ND		0.029	ND		0.028	ND		0.029	ND		0.028
Acrylonitrile	NS	ND		0.0057	ND	·	0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Benzene	0.06	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.0011	ND		0.0011
Bromodichloromethane	NS	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Bromoform	NS	ND		0.0057	ND		0.0058	ND		0.0056	NO		0.0057	МD		0.0056
Bromomethane	NS	ND		0.0057	ND		0.0058	ND	<u></u>	0.0056	ND		0.0057	ND		0.0056
Carbon disulfide	2.7	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Carbon tetrachloride	0.6	ND		0.0057	ND		0.0058	ND		0.0056	ND	L	0.0057	ND		0.0056
Chiorobenzene	1.7	סא		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Chloroethane	1.9	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND		0.0056
Chloroform	0.3	ND		0.0057	ND		0.0058	ND	ļ	0.0056	ND	ļ	0.0057	ND		0.0056
Chloromethane	NS NS	ND		0.0057	ND		0.0058	ND	ļ	0.0056	ND		0.0057	ND		0.0056
Cis-1,2-Dichloroethene	NS	ND_		0.0057	ND		0.0058	ND	<u> </u>	0.0056	ND	ļ	0.0057	ND		0.0056
Cis-1,3-Dichloropropene	NS	ND	ļ	0.0057	ND		0.0058	ND	 -	0.0056	ND		0.0057	ND		0.0056
Dibromochloromethane	NS 5.5	ND ND	<u> </u>	0.0057	ND ND		0.0058	ND ND		0.0056	ND	 	0.0057	ND		0.0056
Ethylbenzene M&p-Xylenes	1.2	ND ND		0.0011	ND ND		0.0012	ND ND	 	0.0011	ND	———	0.0011	ND		0.0011
Methylene chloride	0.1	0.0094	В	0.0023	0.011	8	0.0023	0.026	B	0.0022	ND 0.063	В	0.0023	ND 0.039	В	0.0022
O-Xylene	1.2	ND		0.0037	ND ND		0.0038	ND	<u> </u>	0.0036	ND		0.0057	ND	В	0.0056
Styrene	NS NS	ND ND		0.0011	ND ND	L	0.0012	ND	<u> </u>	0.0056	UND ON	 	0.0011	ND DN		0.0056
Tetrachioroethene	1.4	ND		0.0057	ND		0.0058	ND		0.0056	ND		0.0057	ND ND	 -	0.0056
Toluene	1.5	ND	 -	0.0037	ND		0.0038	ND ND		0.0036	ND		0.0057	ND .		0.0036
Trans-1,2-Dichloroethene	0.3	ND ND	 	0.0057	ND		0.0012	ND ND		0.0011	ND		0.0057	ND	 	0.0011
Trans-1,3-Dichloropropene	NS	ND	 	0.0057	ND		0.0058	ND		0.0056	ND	 	0.0057	ND	 	0.0056
Trichloroethene	0.7	ND	l	0.0057	ND		0.0058	ND		0.0056	ND	 	0.0057	ND	 	0.0056
Vinvl chloride	0.2	ND	t	0.0057	ND		0.0058	ND ND	 	0.0056	ND	 	0.0057	ND	 	0.0056
Total VOCs Conc.	10	0.0424	<u> </u>		0.085			0.026		0.000	0.063		0.0007	0.039		3.0000
VOC TICs	NS NS	0.0658		 	2.33			0.026			0.0129	 	 	0.039		
100 1100	1 10	0.0000	<u> </u>	L	2.33		L	1 0.0100			L 0.0128	J. J.	1	0.0100	L_J_	L

Notes and Abbreviations: Conc. = concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs≈ Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

SUMMARY OF BACKFIS IL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

						•	IDM 1-20		· · AOIL							
Sample ID	New York		REA D-BF			REA D-BF		7	AREA D-BF	3	А	REA D-BF	C1	7	AREA E-BF	-1
Lab Sample No.	Recommended Soil	A	C25441-00)3	A	C25441-00)4	ļ <i>p</i>	C25441-0	05	/	C25441-00	06	≉	C25441-0	01
Sampling Date	Cleanup Objectives	į.	9/1/2006			9/1/2006		ŀ	9/1/2006		1	9/1/2006			9/1/2006	
Matrix	(RSCOs)	i	Soil		ļ.	Soil		l	Soil			Soil -			Soil	
Units	mg/Kg		mg/Kg			mg/Kg		L	mg/Kg			√ mg/Kg			mg/Kg	
VOLATILE ORGANIC COMP		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,1,1-Trichloroethane	0.8	ND ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,1,2,2-Tetrachloroethane	0.6	ND		0.0054	ND		0.0058	ND	1	0.0055	ND		0.0055	ND		0.0056
1,1,2-Trichloroethane	NS	D		0.0054	ND_		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,1-Dichloroethane	0.2	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,1-Dichloroethene	0.4	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,2-Dichloroethane	0.1	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
1,2-Dichloropropane	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
2-Butanone	0.3	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
2-Chloroethylvinylether	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
2-Hexanone	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
4-Methyl-2-Pentanone	1	ND		0.0054	ND		0.0058	ND	l	0.0055	ND		0.0055	ND		0.0056
Acetone	0.2	ND		0.027	ND		0.029	ND		0.027	ND		0.027	ND		0.028
Acrolein	NS	ND		0.027	ND		0.029	ND		0.027	ND		0.027	ND		0.028
Acrylonitrile	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
Benzene	0.06	ND		0.0011	ND		0.0012	ND		0.0011	ND	l	0.0011	ND		0.0011
Bromodichloromethane	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
Bromoform	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND	-	0.0056
Bromomethane	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
Carbon disulfide	2.7	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
Carbon tetrachloride	0.6	ND		0.0054	ND		0.0058	ND	·	0.0055	ND	 	0.0055	ND		0.0056
Chlorobenzene	1.7	ND		0.0054	ND		0.0058	ND		0.0055	ND	 -	0.0055	ND		0.0056
Chloroethane	1.9	ND		0.0054	ND		0.0058	ND		0.0055	ND	 	0.0055	ND		0.0056
Chloroform	0.3	ND		0.0054	ND		0.0058	ND		0.0055	ND	 	0.0055	ND		0.0056
Chloromethane	NS	ND		0.0054	ND		0.0058	ND.	 -	0.0055	ND		0.0055	ND		0.0056
Cis-1,2-Dichloroethene	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND:		0.0055	ND		0.0056
Cis-1,3-Dichloropropene	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND	ļ	0.0055	ND		0.0056
Dibromochloromethane	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND		0.0056
Ethylbenzene	5.5	ND		0.0011	ND		0.0012	ND		0.0011	ND	 	0.0033	ND		0.0036
M&p-Xylenes	1.2	ND		0.0022	ND		0.0023	ND	 	0.0022	ND	 	0.0022	ND		0.0011
Methylene chloride	0.1	0.023	В	0.0054	0.014	В	0.0058	0.022	8	0.0055	0.016	В	0.0022	0.022	В	
O-Xylene	1.2	ND		0.0011	ND		0.0012	ND		0.0033	ND	<u> </u>	0.0055	ND	<u>B</u>	0.0056
Styrene	NS	ND		0.0054	ND		0.0058	ND	<u> </u>	0.0055	ND		0.0011	ND ND		0.0011
Tetrachloroethene	1.4	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND ND		0.0056
Toluene	1.5	ND		0.0011	ND		0.0012	ND -	ļ	0.0033	ND		0.0055	ND ND		0.0056
Trans-1,2-Dichloroethene	0.3	ND		0.0054	ДИ		0.0058	ND	 	0.0055	ND	 	0.0011	ND ND		0.0011
Trans-1,3-Dichloropropene	NS	ND		0.0054	ND		0.0058	ND		0.0055	ND ND	<u> </u>	0.0055	ND ND		0.0056
Trichloroethene	0.7	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055			0.0056
Vinyl chloride	0.2	ND		0.0054	ND		0.0058	ND		0.0055	ND		0.0055	ND ND		0.0056
Total VOCs Conc.	10	0.023			0.014		\$.0000	0.022		0.0055	0.016		0.0055			0.0056
VOC TICs	NS	0.0038			0.0054			0.022			0.0083			0.022		
Notes and Abbreviations:		J. 5.5000	<u> </u>		0.0004			0.0112	<u>J</u>		0.0083	<u>_</u>	L	0.0088	J	

Notes and Abbreviations:

Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL.

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

Sample ID	New York		REA E-BFC	7 -		REA G-BF 1		r	AREA G-BFC 1			AREA H-BF 1	
Lab Sample No.	Recommended Soil		C25441-00			AC25829-009		ł	AC25829-010				
Sampling Date	Cleanup Objectives	· ^	9/1/2006	'	•	9/22/2006	,		9/22/2006			AC25829-011	
Matrix	(RSCOs)	l	Soil	· •		Soil		Į.	9/22/2006 Soil	2		9/22/2006 Soil	
Units	mg/Kg	1	mg/Kg			mg/Kg			mg/Kg			mg/Kg	
VOLATILE ORGANIC COMP		Conc	Qual	MDL	Conc	Qual	MDL.	Conc	Qual	MDL	Conc	I Qual	MDL
1.1.1.2-Tetrachloroethane	NS NS	ND	Qual	0.0056	ND	- Quai	0.0011	ND	Qual	0.0011	ND	<u>Quai</u>	0.0011
1,1,1-Trichloroethane	0.8	ND		0.0056	ND		0.0011	ND ND		0.0011	ND ND		0.0011
1.1.2.2-Tetrachloroethane	0.6	ND ND		0.0056	ND		0.0056	ND ND		0.0056	ND		0.0056
1,1,2-Trichloroethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0056
1.1-Dichloroethane	0.2	ND		0.0056	ND		0.0030	ND		0.0036	ND ND		0.0056
1.1-Dichloroethene	0.4	ND		0.0056	ND		0.0011	ND ND		0.0011	ND ND		0.0011
1.2-Dichloroethane	0.1	ND ND		0.0056	ND		0.0011	ND		0.0011	ND ND		0.0011
1,2-Dichloropropane	NS	ND ND		0.0056	ND		0.0011	ND ND		0.0011	ND		0.0011
2-Butanone	0.3	ND -		0.0056	ND		0.0011	ND		0.0011	ND	 	0.0011
2-Chloroethylvinylether	NS NS	ND		0.0056	ND		0.0011	ND	·	0.0011	ND ND	 	0.0011
2-Hexanone	NS NS	ND		0.0056	ND ND		0.0011	ND ND	<u> </u>	0.0011	ND ND		0.0011
4-Methyl-2-Pentanone	4	ND		0.0056	ND		0.0011	ND ND		0.0011	ND		0.0011
Acetone	0.2	ND ND		0.0036	ND		0.028	ND		0.028	ND ND	_	0.028
Acrolein	, NS	ND ND		0.028	ND ND	:	0.0056	ND ND		0.026	ND ND		0.028
Acrylonitrile	NS	ND		0.0056	ND		0.0056	ND ND		0.0056	ND	 -	
Benzene	0.06	ND ND		0.0056	ND		0.0056	ND ND		0.0056	ND	ļ	0.0056
Bromodichloromethane	NS	ND			ND		0.0011	ND ND	ļ				0.0011
Bromoform	NS NS	ND ND		0.0056	ND ND				ļ	0.0011	ND		0.0011
Bromomethane	NS NS	ND		0.0056 0.0056	ND ND		0.0011	ND ND		0.0011 0.0011	ND ND		0.0011
Carbon disulfide	. 2.7	ND ND		0.0056	ND		0.0011	ND ND		0.0011	ND ND		0.0011
Carbon tetrachloride	0.6	ND		0.0056	ND		0.0011	ND ND		0.0011	ND		0.0011
Chlorobenzene	1,7	ND		0.0056	ND		0.0056	ND ND		0.0011	ND ND	 	0.0011
Chloroethane	1.9	ND ND		0.0056	ND		0.0030	ND		0.0036	ND ND		0.0056
Chloroform	0.3	ND		0.0056	ND		0.0011	ND ND		0.0011	ND ND	<u> </u>	0.0011
Chloromethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND	 	0.0056
Cis-1,2-Dichloroethene	NS	ND		0.0056	ND		0.0011	ND ND		0.0011	ND	 	0.0030
Cis-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0011	ND ND		0.0011	ND	 	0.0011
Dibromochloromethane	NS	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0011
Ethylbenzene	5.5	ND		0.0011	ND		0.0011	ND		0.0011	ND	 	0.0011
M&p-Xylenes	1.2	ND		0.0022	ND		0.0022	ND	· · · · · · · · · · · · · · · · · · ·	0.0022	ND	 	0.0022
Methylene chloride	0.1	0.019	В	0.0056	0.034	8	0.0056	0.03	В	0.0056	0.027	В	0.0056
O-Xylene	1.2	ND		0.0011	ND		0.0011	ND ND		0.0011	ND	 	0.0035
Styrene	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0056
Tetrachloroethene	1.4	ND		0.0056	ND		0.0011	ND		0.0011	ND	<u> </u>	0.0011
Toluene	1.5	ND		0.0011	ND		0.0011	ND	1	0.0011	ND	T	0.0011
Trans-1,2-Dichloroethene	0.3	ND		0.0056	ND		0.0011	ND		0.0011	ND		0.0011
Trans-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0056
Trichloroethene	0.7	ND		0.0056	ND		0.0056	ND		0.0056	ND	·	0.0056
Vinyl chloride	0.2	ND		0.0056	ND		0.0011	ND	t	0.0011	ND		0.0011
Total VOCs Conc.	10	0.019			0,034			ND			0.027	 	
VOC TICs	NS	0.0103	J		ND			ND .	 		ND		
Notes and Abbreviations:		4	ــــــــــــــــــــــــــــــــــــــ						<u> </u>		,,,,,		

Notes and Abbreviations:

Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

J= The estimated concentration was detected below the MDL, but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

SUMMARY OF BACKFILE IL ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	New York	Т	AREA H-BFC 1			AREA I-BF 1			10511050		·		
Lab Sample No.	Recommended Soil	1	AC25829-012			AC26323-001		Į	AREA I-BF2 AC26323-002		l '	AREA I-BF3	
Sampling Date	Cleanup Objectives	1	9/22/2006			10/16/2006		Į.			i	AC26323-003	
Matrix	(RSCOs)	1	Soil			Soil		İ	10/16/2006 Soil		ł	10/16/2006	
Units	mg/Kg	1	mg/Kg			mg/Kg			mg/Kg		l	Soil	
VOLATILE ORGANIC COMP		Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/kg Qual	1 1401		mg/Kg	
1.1.1.2-Tetrachloroethane	NS	ND		0.0011	ND	l Quai	0.0011			MDL	Canc	Qual	MDL
1,1,1-Trichloroethane	0.8	ND		0.0011	ND ND		0.0011	ND ND	1000	0.0056	ND	Ļ. <u></u>	0.0055
1,1,2,2-Tetrachloroethane	0.6	ND		0.0056	ND		0.0056	ND ND	 	0.0056	ND	 	0.0055
1,1,2-Trichloroethane	NS	ND ND		0.0056	ND	<u> </u>	0.0056	ND ND	 	0.0056	ND	ļ	0.0055
1,1-Dichloroethane	0.2	ND		0.0011	ND		0.0033	ND ND		0.0056	ND ND	 	0.0055
1,1-Dichloroethene	0.4	ND		0.0011	ND		0.0011	ND ND	 	0.0056			0.0055
1,2-Dichloroethane	0.1	ND		0.0011	ND		0.0011	ND ND		0.0056	ND	 	0.0055
1,2-Dichloropropane	NS	ND		0.0011	ND		0.0011	ND		0.0056	ND ND		0.0055
2-Butanone	0.3	ND		0.0011	ND		0.0011	ND		0.0056		<u> </u>	0.0055
2-Chloroethylvinylether	NS	ND		0.0011	ND		0.0011	ND ND			ND	ļ	0.0055
2-Hexanone	NS	ND		0.0011	ND ND		0.0011	ND ND		0.0056	ND	ļ. <u></u>	0.0055
4-Methyl-2-Pentanone	1	ND	l	0.0011	ND		0.0011	ND ND		0.0056	ND	·	0.0055
Acetone	0.2	ND		0.028	ND ND		0.0011	ND ND		0.0056	ND	ļ. <u></u>	0.0055
Acrolein	NS	ND		0.0056	ND ND		0.0056	ND ND	 	0.028	ND	ļ	0.027
Acrylonitrile	NS	ND		0.0056	ND ND		0.0056	ND ND		0.028	ND	ļ	0.027
Benzene	0.06	ND		0.0011	ND		0.0036	ND ND	 	0.0056	ND		0.0055
Bromodichloromethane	NS	ND		0.0011	ND ND		0.0011			0.0011	ND		0.0011
Bromoform	NS	ND		0.0011	ND ND		0.0011	ND		0.0056	ND	 	0.0055
Bromomethane	NS	ND		0.0011	ND		0.0011	ND		0.0056	ND	<u> </u>	0.0055
Carbon disulfide	2.7	ND		0.0011	ND		0.0011	ND ND		0.0056	ND	ļ <u> </u>	0.0055
Carbon tetrachloride	0.6	ND		0.0011	ND		0.0011	ND ND		0.0056	ND		0.0055
Chlorobenzene	1.7	ND		0.0056	ND		0.0056	ND ND		0.0056	ND	 	0.0055
Chloroethane	1.9	ND		0.0011	ND		0.0030	D		0.0056	ND	 	0.0055
Chloroform	0.3	ND	<u> </u>	0.0011	ND ND		0.0011	ND ND	 	0.0056	ND.	ļ	0.0055
Chloromethane	NS	ND		0.0056	ND		0.0056	ND ND		0.0056	ND	ļ	0.0055
Cis-1,2-Dichloroethene	NS	ND		0.0011	ND	 	0.0011	ND		0.0056	ND ND		0.0055
Cis-1,3-Dichloropropene	NS	ND		0.0011	ND		0.0011	ND	 	0.0056	ND	ļ	0.0055
Dibromochloromethane	NS	ND		0.0011	ND		0.0011	ND		0.0056	ND ND		0.0055
Ethylbenzene	5.5	ND		0.0011	ND .		0.0011	ND ND	····	0.0056	ND ND		0.0055
M&p-Xylenes	1,2	ND		0.0022	ND		0.0022	ND		0.0022	ND ND		0.0011
Methylene chloride	0.1	0.029	В	0.0056	0.018	8	0.0056	0.023	В	0.0022			0.0022
O-Xylene	1.2	ND		0.0011	ND		0.0030	0.023 ND			0.024	В	0.0055
Styrene	NS	ND		0.0056	ND		0.0056	ND		0.0011	ND ND		0.0011
Tetrachloroethene	1.4	ND		0.0011	ND		0.0011	ND ND		0:0056	ON CON		0.0055
Toluene	1.5	ND		0.0011	ND		0.0011	ND ND	 	0.0056	ND D		0.0055
Trans-1,2-Dichloroethene	0.3	ND	1	0.0011	ND		0.0011	ND ND		0.0011	ND ND	 	0.0011
Trans-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0056	ND	 	0.0056	ND ND	 	0.0055
Trichloroethene	0.7	ND		0.0056	ND		0.0056	ND ND		0.0056	ND ND	 	0.0055
Vinyl chloride	0.2	ND		0.0011	ND		0.0011	ND	 	0.0056	ND ND	 -	0.0055
Total VOCs Conc.	10	0.029			0.018		 	0.023		0.0036	0.024		0.0055
VOC TICs	NS	ND			0.0545		 	0.023	 			<u> </u>	
Notes and Abbreviations:					0.0073	L	<u> </u>	0.010			0.671	<u> </u>	L

Notes and Abbreviations: Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

SUMMARY OF BACKFIL L ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID	New York	Г	AREA I-BF4			AREA I-BF5			AREA I-BF6				
Lab Sample No.	Recommended Soil		AC26323-004			AC26323-005		i	AC27561-001		i	AREA I-BFC2	
Sampling Date	Cleanup Objectives		10/16/2006		l	10/17/2006			12/18/2006		l	AC26323-001 10/16/2006	
Matrix	(RSCOs)	l	Soil		•	Soil			Soil		į.	10/16/2006 Soil	
Units	mg/Kg	l	mg/Kg			mg/Kg			mg/Kg		ļ		
VOLATILE ORGANIC COMP	OUNDS (VOCs)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	I Qual	MDL	Conc	mg/Kg Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0056	ND	T	0.0056	I ND		0.0056	I ND	(Quai	0.0055
1,1,1-Trichloroethane	0.8	ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0055
1,1,2,2-Tetrachloroethane	0.6	ND		0.0056	ND	 	0.0056	ND		0.0056	ND	 	0.0055
1,1,2-Trichloroethane	NS	· ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0055
1,1-Dichloroethane	0.2	ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0055
1,1-Dichloroethene	0.4	ND		0.0056	ND		0.0056	ND		0.0056	ND	 	0.0055
1,2-Dichloroethane	0.1	ND		0.0056	ND		0.0056	ND		0.0056	ND	 	0.0055
1,2-Dichloropropane	NS	ND		0.0056	ND	<u> </u>	0.0056	ND		0.0056	ND		0.0055
2-Butanone	0.3	ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0055
2-Chloroethylvinylether	NS	ND		0.0056	ND	·	0.0056	ND		0.0056	ND	 	0.0055
2-Hexanone	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND	<u> </u>	0.0055
4-Methyl-2-Pentanone	1	ND		0.0056	ND		0.0056	ND		0.0056	ND ND		0.0055
Acetone	0.2	ND		0.028	ND		0.028	0.022		0.028	ND ND		0.0033
Acrolein	NS	ND		0.028	ND		0.028	ND		0.028	ND		0.027
Acrylonitrile	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND ND	 	0.0055
Benzene	0.06	ND		0.0011	ND		0.0011	ND	 	0.0011	ND		0.0033
Bromodichloromethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND	 	0.0055
Bromoform	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Bromomethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Carbon disulfide	2.7_	ND		0.0056	ND	<u> </u>	0.0056	ND		0.0056	ND ND		0.0055
Carbon tetrachloride	0.6	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Chiorobenzene	1.7	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Chloroethane	1.9	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Chloroform	0.3	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Chloromethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Cis-1,2-Dichloroethene	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Cis-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0056	ND	1	0.0056	ND		0.0055
Dibromochloromethane	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Ethylbenzene	5.5	ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0011
M&p-Xylenes	1.2	ND		0.0022	ND		0.0022	ND		0.0022	ND		0.0022
Methylene chloride O-Xylene	0.1	0.027	В	0.0056	0.022	B	0.0056	0.15	В	0.0056	0.02	В	0.0055
	1.2	ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0011
Styrene Tetrachloroethene	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Toluene	1.4	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
	1.5 0.3	ND		0.0011	ND	ļ	0.0011	ND		0.0011	ND		0.0011
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene		ND	L	0.0058	ND		0.0056	ND		0.0056	ND		0.0055
Trichloroethene	NS	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
Vinyl chloride	0.7 0.2	ND	<u> </u>	0.0056	ND	ļ	0.0056	ND		0.0056	ND		0.0055
Total VOCs Conc.	10	ND		0.0056	ND		0.0056	ND		0.0056	ND		0.0055
VOC TICs	NS	0.027		Ļ <u>.</u>	0.022	L		0.172			0.02		
Notes and Abbreviations:	NS	0.0092	J		0.0114	J		ND	[0.0104	J	

Notes and Abbreviations: Conc. = concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds
TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

Concentrations exceeding the RSCOs are shown in bold font

SUMMARY OF BACKFIL L ANALYTICAL RESULTS-VOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

0 1 10						PORTI										
Sample ID Lab Sample No.	New York		AREA I-BFC4			REA J-BF			AREA J-BF		A	REA J-BF	3	A	REA J-BF	21
Lab Sample No. Sampling Date	Recommended Soil		AC26323-001		_	C25374-00			C25374-0		_ A	C25829-0	01	[A	C25374-0	03
Matrix	Cleanup Objectives		10/16/2006		1	8/31/2006			8/31/2006	i !	1	9/22/2006	i	1 .	8/31/2006	,
Units	(RSCOs)		Soil			Soil		ı	Soil		ı	Soil		1	Soil	
VOLATILE ORGANIC COMP	mg/Kg		mg/Kg		ļ	mg/Kg			mg/Kg			mg/Kg			mg/Kg	
1.1.1.2-Tetrachioroethane		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
1,1,1-Trichloroethane	0.8	ND ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	0.6	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
1,1,2-Thorioroethane	NS NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
	0.2	ND	<u> </u>	0.0056	ND	L	0.0057	ND		0.0058	ND		0.0054	ND		0.0058
1,1-Dichloroethene 1,2-Dichloroethane	0.4	ND		0.0056	ND		0.0057	ND		0.0058	ND .		0.0054	ND		0.0058
1,2-Dichloropropane	0.1	ND		0.0056	ND		0.0057	ND	L	0.0058	ND		0.0054	ND		0.0058
2-Butanone	NS	ND	-	0.0056	ND		0.0057	ND	L	0.0058	ND		0.0054	ND .		0.0058
	0.3	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
2-Chloroethylvinytether 2-Hexanone	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
4-Methyl-2-Pentanone	1	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Acetone	0.2	ND		0.028	ND		0.028	ND		0.029	ND		0.027	ND		0.029
Acrolein	NS	ND		0.028	ND		0.028	ND	I	0.029	ND		0.027	ND		0.029
Acrylonitrile	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Benzene	0.06	ND		0.0011	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.0012
Bromodichloromethane	NS	ND		0.0056	ND		0.0057	ND	-	0.0058	ND		0.0054	ND		0.0058
Bromoform	NS	ND		0.0056	ND	[0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Bromomethane	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND	-	0.0054	ND		0.0058
Carbon disulfide	2.7	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Carbon tetrachloride	0.6	ND		0.0056	ND		0.0057	ND		0.0058	ND	<u> </u>	0.0054	ND	 	0.0058
Chlorobenzene	1.7	ND		0.0056	ND		0.0057	· ND		0.0058	ND		0.0054	ND		0.0058
Chloroethane	1.9	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Chloroform	0.3	ND		0.0056	ND		0.0057	ND	l	0.0058	ND		0.0054	ND		0.0058
Chloromethane	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Cis-1,2-Dichloroethene	NS	ND		0.0056	ND		0.0057	ND	l	0.0058	ND		0.0054	ND		0.0058
Cis-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Dibromochloromethane	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Ethylbenzene	5.5	ND		0.0011	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.0012
M&p-Xylenes	1.2	ND		0.0022	ND		0.0023	ND		0.0023	ND	·	0.0022	ND	·	0.0023
Methylene chloride	0.1	0.022	В	0.0056	0.042	В	0.0057	0.039	В	0.0058	0.018	8	0.0054	0.041	В	0.0058
O-Xylene	1.2	ND		0.0011	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.0012
Styrene	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Tetrachloroethene	1.4	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Toluene	1.5	ND .		0.0011	ND		0.0011	ND		0.0012	ND		0.0011	ND		0.0012
Trans-1,2-Dichloroethene	0.3	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Trans-1,3-Dichloropropene	NS	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Trichloroethene	0.7	ND ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Vinyl chloride	0.2	ND		0.0056	ND		0.0057	ND		0.0058	ND		0.0054	ND		0.0058
Total VOCs Conc.	10	0.022			0.042			0.039			0.018			0.041		2.5555
VOC TICs	NS	0.0139	J		0.0043	J		0.0101	J		0.0033	J		0.008		
Notes and Abbreviations:	_											- _		0.000		

Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

1) Concentrations exceeding the RSCOs are shown in bold font

Sample ID	New York	1 4	AREA K-BF	1		REA K-BF	· -		REA K-BF	2		DEA W DE	20						
Lab Sample No.	Recommended Soil		C25501-00			C25501-00			C25501-00			REA K-BF(C25501-00			AREA L-BF			REA L-BF	
Sampling Date	Cleanup Objectives	1 "	9/7/2006	~	^	9/7/2006	~	^	9/7/2006	<i>,</i> 5		9/7/2006	,,,	·	C25501-06	וט	^	C25501-00	02
Matrix	(RSCOs)	1	Soil			Soil			Soil			Soil			Soil			9/7/2006 Soil	
Units	mg/Kg	1	mg/Kg			mg/Kg			mg/Kg			mg/Kg		1	mg/Kg			mg/Kg	
VOLATILE ORGANIC COMP	OUNDS (VOCs)	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MÖL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,1,1,2-Tetrachloroethane	NS	ND		0.0055	ND		0.0054	ND I		0.0054	ND		0.0054	ND	- 404	0.0055	ND	Quai	0.0055
1,1,1-Trichloroethane	0.8	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND	·	0.0055	ND		0.0055
1,1,2,2-Tetrachloroethane	0.6	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
1,1,2-Trichloroethane	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
1,1-Dichloroethane	0.2	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
1,1-Dichloroethene	0.4	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
1,2-Dichloroethane	0.1	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
1,2-Dichloropropane	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
2-Butanone	0.3	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
2-Chloroethylvinylether	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
2-Hexanone	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
4-Methyl-2-Pentanone	1	ND		0.0055	ND		0.0054	ND		0.0054	ND	· · · · · · · · · · · · · · · · · · ·	0.0054	ND		0.0055	ND		0.0055
Acetane	0.2	ND		0.027	ND		0.027	ND		0.027	ND		0.027	ND		0.027	ND		0.027
Acrolein	NS	ND		0.027	ND		0.027	ND		0.027	ND		0.027	ND		0.027	ND		0.027
Acrylonitrile	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Benzene	0.06	ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0033
Bromodichloromethane	NS NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Bromoform	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Bromomethane	NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Carbon disulfide	2.7	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Carbon tetrachloride	0.6	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Chlorobenzene	1.7	ND	L	0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Chloroethane Chloroform	1.9	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Chloromethane	0.3	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Cis-1.2-Dichloroethene	NS NS	ND	<u> </u>	0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Cis-1,3-Dichloropropene	NS NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Dibromochloromethane	NS NS	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Ethylbenzene	5.5	ND ND	 	0.0055	ND ND		0.0054	ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
M&p-Xylenes	1.2	ND		0.0011			0.0011	ND		0.0011	ND	<u> </u>	0.0011	ND		0.0011	ND		0.0011
Methylene chloride	0.1	0.052	В	0.0022	ND 0.045	В	0.0022	ND		0.0022	ND		0.0022	ND		0.0022	ND		0.0022
O-Xylene	1.2	ND ND	<u> </u>	0.0055	ND	8	0.0054	0.049	В	0.0054	0.054	В	0.0054	0.058	В	0.0055	0.053	B	0.0055
Styrene	NS	ND ND		0.0055	ND .		0.0011	ND ND		0.0011	ND		0.0011	ND		0.0011	ND		0.0011
Tetrachloroethene	1.4	ND		0.0055	ND .		0.0054	ND D		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Toluene	1.5	ND		0.0033	ND		0.0054	ND ND		0.0054	ND		0.0054	ND		0.0055	ND		0.0055
Trans-1;2-Dichloroethene	0.3	ND ND	 	0.0055	ND		0.0011	ND ND		0.0011	ND	<u> </u>	0.0011	ND		0.0011	ND		0.0011
Trans-1,3-Dichloropropene	NS NS	ND	 	0.0055	ND	 -	0.0054	ND I		0.0054	ND		0.0054	ND.		0.0055	ND		0.0055
Trichloroethene	0.7	ND		0.0055	ND		0.0054	- UN - CIN		0.0054	ND ND		0.0054	ND		0.0055	ND		0.0055
Vinyl chloride	0.2	ND		0.0055	ND		0.0054	ND		0.0054	ND		0.0054	ND	<u> </u>	0.0055	ND		0.0055
Total VOCs Conc.	10	0.052		3.0000	0.045		0.0034	0.049		0.0054	0.054		0.0054	ND		0.0055	ND		0.0055
VOC TICs	NS	0.0115			0.0098			0.049			0.054			0.058			0.053		
Notes and Abbreviations:		0.0110			3.0030	,	L	0.0120			0.0119	J	L	0.0172	J	L	0.0118	J	ł

Notes and Abbreviations:

Conc.= concentration

mg/kg= milligrams per kilogram

MDL= method detection limit

B=Analyte was detected in laboratory blank.

ND=Not detected

NS=No standard

J= The estimated concentration was detected below the MDL,

but detected above the laboratory's reporting limits.

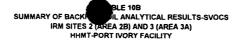
TICs= Tenatively identified compounds

TAGM=Technical and Administrative Guidance

Memorandum #4046, dated January 24, 1994

RSCOs=Recommended Soil Cleanup Objectives

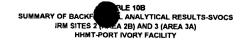
1) Concentrations exceeding the RSCOs are shown in bold font



SUMMARY OF BACKI LANALYTICAL RESULTS-SVOCS IRM SITES 24 EA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab Sample No. Sampling Date Matrix	New York Recommended Soil Cleanup Objectives (RSCOs)		AREA A-BF2 AC25829-007 9/22/2006 Soil			AREA A-BFC1 AC25829-003 9/22/2006 Soil			AREA A-BFC2 AC25829-004 9/22/2006 Soil			AREA A-BFC3 AC25829-005 9/22/2006 Soil			AREA A-BFC4 AC25900-002 9/26/2006 Soil			AREA B-BF AC25432-00 8/31/2006 Soil	07
Units	mg/Kg		mg/Kg			mg/Kg			mg/Kg			mg/Kg			mg/Kg		L	mg/Kg	l
Semi-Volatile Organic Compo 1,2,4-Trichlorobenzene	unds (SVOCs)	Conc ND	Qual	MDL 0.37	Conc ND	Qual	MDL 0.37	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL
1,2-Dichlorobenzene	7.9	ND ND	 	0.37	ND		0.37	ND ND		0.37 0.37	ND ND	ļ	0.36	ND ND		0.36	ND		0.39
1,2-Diphenylhydrazine	NS NS	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND ND	 	0.36	ND ND		0.39
1,3-Dichlorobenzene	1.6	ND		0.37	ND		0.37	ND		0.37	_ND	1	0.36	ND	1	0.36	ND		0.39
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	8.5 0.1	ND .		0.37	ND		0.37	ND.		0.37	ND		0.36	ND		0.36	ND		0.39
2,4,6-Trichlorophenol	NS	ND ND	l	0.37	ND ND		0.37	ND ND		0.37	ND		0.36	ND		0.36	ND		0.39
2,4-Dichlorophenal	0.4	ND		0.37	ND		0.37	ND ND		0.37 0.37	ND ND		0.36	ND		0.36	ND	-	0.39
2,4-Dimethylphenol	NS	ND		0.37	ND ND		0.37	ND	 	0.37	ND ND		0.36	ND ND	<u> </u>	0.36	ND		0.39
2,4-Dinitrophenol	0.2	ND		1.9	ND		1.9	ND		1.9	ND -		1.8	ND	-	1.8	ND ND		0.39 1.9
2.4-Dinitrotoluene	NS	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
2.6-Dinitrotoluene	1	ND ND		0.37	ND .		0.37	ND		0.37	ND		0.36	ND	1.	0.36	ND	-	0.39
2-Chloronaphthalene 2-Chlorophenol	NS 0.8	ND ND		0.37	ND ND	ļ	0.37	ND	_	0.37	ND		0.36	ND		0.36	ND		0.39
2-Methylnaphthalene	36,4	ND		0.37	ND	l	0.37	ND ND		0.37 0.37	ND ND	ļ	0.36	ND	 	0.36	ND		0.39
2-Methylphenol	0.1	ND		0.37	ND		0.37	ND	 	0.37	ND ND		0.36	ND ND		0.36	ND	-	0.39
2-Nitroaniline	0.43	ND		0.37	ND		0.37	ND		0.37	ND ND		0.36	ND	 	0.36	ND ND		0.39
2-Nitrophenol	0.33	ND		0.37	ND		0.37	ND		0.37	ND	T	0.36	ND	1	0.36	ND	 	0.39
3&4-Methylphenol	0.33	ND NO		0.37	ND		0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
3,3'-Dichlorobenzidine 3-Nitroaniline	0.33	ND ND		0.37	ND	I	0.37	ND		0.37	ND		0.9	ND		0.9	ND		0.39
4,6-Dinitro-2-methylphenol	0.33	ND ND	 	0.37 1.9	ND ND	<u> </u>	0.37 1.9	ND ND		0.37	ND	ļ	0.38	ND	 _	0.36	ND		0.39
4-Bromophenyl-phenylether	0.33	ND	·	0.37	ND ND		0.37	ND ND	 	0.37	ND ND	ļ- -	0.9	ND ND	 	0.9	ND ND	ļ	1.9
4-Chloro-3-methylphenol	0.33	ND		0.37	ND		0.37	ND	1	0.37	ND ND		0.36	ND ND		0.36	ND ND	<u> </u>	0.39
4-Chloroaniline	0.33	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND	 	0.36	ND	 	0.39
4-Chlorophenyl-phenylether 4-Nitroaniline	0.33	ND		0.37	ND .		0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
4-Nitrophenol	NS 0.1	ND ND	ļi	0,37	ND ND		0.37 0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
Acenaphthene	50	0.12	J	0.37	0.057		0.37	ND 0.49	 	0.37	ND ND		0.36	ND		0.36	ND		0.39
Acenaphthylene	41	0.37		0.37	0.21	- '	0.37	0.61	 	0.37	0.092		0.36	ND 0.061		0.36 0.36	0.089	-1	0.39
Anthracene	50	0.35	J	0.37	0.16	J	0.37	1.3		0.37	0.068	J	0.36	0.076	1 - 1 -	0.36	0.37		0.39
Benzidine	NA NA	ND		1.9	ND		1.9	ND		1.9	ND		0.9	ND	_ <u> </u>	0.9	ND ND		1.9
Benzola anthracene Benzola pyrene	0.224	1.4		0.37	0.6		0.37	2.6		0.37	0.28	J	0.36	0.32	7	0.36	0.88		0.39
Benzol bifluoranthene	0.061	1.5 2.1		0,37	0.7 0.92		0.37	2.5 3.1		0.37	0.38	L	0.36	0.34	J	0.36	1		0.39
Benzolg,h,ilperylene	50	1.1	 	0.37	0.57		0.37	1,6		0.37	0.5 0.28		0.36	0.48	 	0.36	1.4		0.39
Benzolkifluoranthene	1.1	0.58		0.37	0.32	J	0.37	1,1		0.37	0.15	J	0.36	0.12		0.36	0.5		0.39
Benzyl alcohol	NS	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND		0.36	ND	1	0.39
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)Ether	NS NS	ND ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
Bis(2-Chloroisopropyl)ether	NS NS	ND		0.37	ND ND	<u> </u>	0.37 0.37	ND		0.37	ND		0.36	ND		0.38	NĐ		0.39
Bis(2-Ethylhexyl)phthalate	50	0.21		0.37	0.074	 	0.37	ND 0.077	J	0.37	ND 0.067		0.36	ND	ļ	0.36	ND	l	0.39
Butylbenzylphthalate	50	ND	1	0,37	ND		0.37	ND	l	0.37	ND		0.36 0.36	0.1 ND	J	0.36	0.075 ND	-	0.39
Carbazole	NS	0.067	J	0.37	ND		0.37	0.12	J	0.37	ND		0.36	ND	 	0.36	0.055	 	0.39
Chrysene Dibenzofa,hlAnthracene	0.4	1.5	 	0.37	0.65		0.37	2.6		0.37	0.33	J	0.36	0.32	J	0.36	88.0	┟╌╌┤	0.39
Dibenzofuran	0.014 6.2	0.31 ND	J	0.37	0.16	J	0.37	0.48	 	0.37	0.08	J	0.36	0.081	J	0.36	0.16	J	0.39
Diethylphthalate	7.1	ND ND	—	0.37	ND ND	 	0.37 0.37	0.32 ND	J	0.37	ND ND	 -	0.36	ND	<u> </u>	0.36	ND		0.39
Dimethylphthalate	2	ND	t	0.37	ND ND	t	0.37	ND	 	0.37	ND -	<u> </u>	0.36	ND ND	1	0.36	ND ND	 - 	0.39
Di-n-butylphthalate	8.1	0.047	J	0.37	0.042	J	0.37	0.039	J	0.37	ND	 	0.36	ND ND	 	0.36	0.12	JB	0.39
DI-n-octylphthalate Fluoranthene	50	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND		0.36	ND		0.39
Fluorene	50 50	2.7 0.16		0.37	0.084		0.37	6		0.37	0.57		0.36	0.5		0.36	1.8		0.39
Hexachlorobenzene	0.41	ND ND	 ' 	0.37	0.084 ND		0.37	ND ND		0.37	ND		0.36	0.037	J	0.36	0.14	3	0.39
Hexachtorobutadiene	NS	ND		0.37	ND		0.37	ND ND		0.37	ND ND		0.36 0.36	ND ND	 -	0.36	ND	├	0.39
Hexachlorocyclopentadiene	NS	ND		0.37	ND		0.37	ND	<u> </u>	0.37	ND	l	0.36	ND ND	t	0.36 0.36	ND ND	 	0.39
Hexachloroethane	NS	ND		0.37	ND		0.37	ND		0.37	ND	1	0.36	ND P	 	0.36	ND ND		0.39
Indeno[1,2,3-cd]pyrene Isophorone	3.2	0.97		0.37	0.48		0.37	2		0.37	0.24	3	0.36	0.24 %	J	0.36	0.47		0.39
Naphthalene	4.4	ND 0.055	- J	0.37	0.064	 _	0.37	ND		0.37	ND	L	0.36	ND		0.36	ND		0.39
Nitrobenzene	0.2	ND	† -	0.37	ND		0.37	0.09 ND	J	0.37 0.37	ND ND	<u> </u>	0.36	0.042	J	0.36	0.081	J	0.39
N-Nitrosodimethylamine	NS	ND	I	0.37	ND		0.37	ND	1	0.37	ND ND		0.9	ND ND	ł	0.9	ND		0.39
N-Nitroso-Di-N-Propylamine	NS	ND		0.37	ND		0.37	ND		0.37	ND ND	[0.36	ND		0.36	ND		0.39
N-Nitrosodiphenylamine	NS	ND		0.37	ND		0.37	ND		0.37	ND		0.36	ND	r	0.36	ND		0.39
Pentachlorophenol Phenanthrene	50	ND OF		0.94	ND		0.93	ND		0.94	ND ·		0.9	ND		0.9	ND	\vdash	0.97
Phenol	0.03	0.5 ND	 	0.37	0.38	i	0.37	3.1	ļ	0.37	0.15	J	0.36	0.24	J	0.36	0.57		0.39
Pyrene	50	2.7		0.37	ND 1.3		0.37 0.37	ND 6	 	0.37	ND 0.55	ļ	0.36	ND		0.36	ND		0.39
Total SVOCs Conc.	500	16.739	 	<u> </u>	7.871		0.37	34		0.37	3,717	<u> </u>	0.36	0.54		0.36	2	\vdash	0.39
SVOC TICs	NS	10.9	J		8.5	- J		12.92			8.44			3.777 9.05	 		11.42 207.19	 	
Notes and Abbreviations:									<u> </u>		0.77		1	9.00	ليستسيا		201.19	ليانيا	

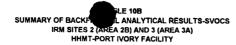
SVOC Tics NS


Notes and Abbreviations:
Conc.= concentration
makqs= milligrams per kilogram
MDL= method detection limit
B=Analyte was detected in laboratory blank.
ND=Not detected
NS=No standard
J= the estimated concentrarion was detected below MDL,
but was detected above the laboratory's reporting limits
TiCs=Tentatively identified compounds
TAGM=Technical and Administrative Guidance
Memorandum #4046, dated January 24, 1994
RSCOs=Recommended Soil Cleanup Oblicitives
1. Conc. In bold and highlighted exceed the RSCOs

Matrix Objectives (RSCOs) Soil Soil Soil Soil Soil Soil Matrix Maj/Kg mg/Kg	- 1		5846-002 5/2006	j		REA C-BF C25432-0 8/31/2006	02		REA C-BF0 AC25432-00 8/31/2006)5
	- 1		Soil ng/Kg	- 1		Soil mg/Kg		1	Sail mg/Kg	1
Semi-Volatile Organic Compounds (SVOCs) Conc Qual MDL Conc	MDL		Qual	MDL	Conc	Qual	MDL	Conc	Qual	MOL
	0.38	ND		3.9	ND		0.37	ND		0
12 Dishardhulus 100 0.37 ND 0.37 ND 0.37	0.38	ND		3.9	ND		0.37	ND		0.37
1.2 Diablershares	0.38	ND ND		3.9	ND		0.37	ND		0
1.4-Dichlorobenzene 8.5 ND 0.37 ND 0.38 ND 0.37 ND 0.37	0.38	ND ND		3.9	ND D		0.37	ND		0
2.4.5-Trichlorophenol 0.1 ND 0.37 ND 0.38 ND 0.37 ND 0.3	0.38	ND		3.9	ND		0.37	ND ND	 	0.37
	0.38	ND		3.9	ND		0.37	ND	i	0.57
	0.38	ND		3.9	ND		0.37	ND		0.37
2.4 Digityrephonel	0.38	ND		3.9	ND		0.37	ND		0.37
24 Contraction 100	0.95	ND ND		9.7 3.9	ND ND		1.9	ND		1.9
2.6-Dinitrotoluene 1 ND 0.37 ND 0.38 NO 0.37 ND 0.3	0.38	ND		3.9	ND		0.37	ND ND	-	0.37
2-Chloronaphthalene NS ND 0.37 ND 0.38 ND 0.37 ND 0.37	0.38	ND		3.9	ND		0.37	ND		0.37
2-Chiorophenoi 0.8 ND 0.37 ND 0.38 ND 0.37 ND 0.3	0.38	ND		3.9	ND		0.37	ND		0.37
	0.38	ND		3.9	0.27	J	0.37	ND		0.37
	0.38	ND .		3.9	DN		0.37	ND		0.37
2 Alfrenhood 0.37 ND 0.38 ND 0.37 ND 0.3	0.38	ND	—I	3.9	ND		0.37	ND		0.37
384 Mathylphonal 0.37 NO 0.37 NO 0.37 NO 0.37	0.38	ND ND		3.9	ND		0.37	ND	 	0.37
3,3-Dichloropenzidine 0.33 ND 0.37 ND 0.38 NO 0.37 ND 0.3	0.38	ND		3.9 3.9	ND ND		0.37	ND ND		0.37
3-Nitroaniline 0.33 ND 0.37 ND 0.38 ND 0.37 ND 0.3	0.38	ND	-	3.9	ND		0.37	ND		0.37
4.6-Dimitro-2-methylphenol 0.33 ND 1.8 ND 0.38 ND 1.9 ND 0.3	0.38	ND		9.7	ND		1.9	ND		1.9
	0.38	ND		3.9	ND		0.37	ND		0.37
A Chi-maeille	0.38	ND		3.9	ND		0.37	ND		0.37
14 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.38	ND		3.9	ND		0.37	ND		0.37
4-Nitroaniline NS ND 0.37 ND 0.38 ND 0.37 ND 0.37	0.38	ND ND		3.9	ND		0.37	ND		0.37
4-Nitrophenol 0.1 ND 0.37 ND 0.38 ND 0.37 ND 0.38	0.38	- GN		3.9	ND ON		0.37 D.37	ND ND		0.37 0.37
Acenaphthene 50 ND 0.37 ND 0.38 0.067 J 0.37 0.62 0.3	0.38	1.7	J	3.9	0.17		0.37	0,15	- $ -$	0.37
Acenaphthylene 41 0.077 J 0.37 ND 0.38 0.3 J 0.37 0.16 J 0.37 Arthracene 50 0.056 J 0.37 ND 0.38 0.3 J 0.37 0.16 J 0.3	0.38	0.44	3	3.9	0.079	J	0.37	0.59		0.37
0.50 0.51 5 0.57 0.54 0.5	0.38		J	3.9	0.2	J	0.37	0.72		0.37
Developed to the second	1,9	ND		3.9	ND		1.9	ND		1.9
0.07 1.2 0.37	0.38	1.6	<u> </u>	3.9	0.39		0.37	2.4		0.37
Benzolbifluoranthene 1.1 0.35 J 0.37 0.086 J 0.38 1.3 0.37 1.6 0.3	0.38	1.6		3.9	0.33		0.37	2.1		0.37
Benzolg, h. ilperviene 50 0.14 J 0.37 ND 0.38 0.45 0.37 0.87 0.3	0.38	1.2	-	3.9	0.23		0.37	0.85	<u> </u>	0.37 0.37
	0.38	0.6	J	3.9	0.22	J	0.37	0.88		0.37
Sig/2 Chloroethan II than 1 NO U.37 NO U.37 NO U.37	0.38	ND		3.9	ND		0.37	ND		0.37
Rist(2 Chloroothyl)Cthor	0.38	ND		3.9	ND		0.37	ND		0.37
Giera Chlorolega annual attention and the second an	0.38	ND		3.9	ND ND		0.37	ND	ļ	0.37
Bis(2-Ethylhexyl)phthalate 50 0.071 J 0.37 0.37 J 0.38 0.083 J 0.37 0.15 JB 0.3	0.38	ND I		3.9	1.1		0.37	ND 0.055		0.37
Butylbenzylphihalate 50 ND 0.37 0.042 J 0.38 ND 0.37 ND 0.3	0.38	ND		3.9	0.057	J	0.37	ND		0.37
	0.38	ND		3.9	0.051	J	0.37	0.11	J	0.37
Ditenzo(a hiAnthragene 0.31) 0.31) 0.31) 0.31) 0.31) 0.31	0.38		J	3.9	0.49		0.37	2.2		0.37
Discretives 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.38	ND		3.9	0.074	J	0.37	0.29	J	0.37
District the state 0.37 0.46 0.3	0.38	0.69 ND	J	3.9	0.2	J	0.37	0.17	J	0.37
Dimethylphthalate 2 ND 0.37 ND 0.38 ND 0.37 ND	0.38	ND ND	<u>-</u> -	3.9	ND ND		0.37	ND ND		0.37
Di-n-but/riphthalate 8.1 0.11 JB 0.37 0.12 JB 0.38 0.13 JB 0.37 ND 0.3	0.38	ND	— 	3.9	0.14	JB	0.37	0.13	JB	0.37
Din-actylphthalate	0.38	ND		3.9	ND		0.37	ND ND		0.37
Shippang 50 0.3 0.3 1.6 0.3 2.5 0.3	0.38	3.4	J	3.9	0.81		0.37	5.7		0.37
0.00 0.00 0.00 0.00 0.00 0.00	0.38		J	3.9	0.17	J	0.37	0.32	J	0.37
Havaphlershutediese NC 18 18 18 18 18 18 18 18 18 18 18 18 18	0.38	ND ND		3.9	ND		0.37	ND		0.37
Hexachlorocyclopentadiene NS ND 0.37 ND 0.96 ND 0.37 ND 0.90	0.95	ND ON		3.9	ND ND		0.37	ND	<u> </u>	0.37
Hexachloroethane NS ND 0.37 ND 0.38 ND 0.37 ND 0.3	0.38	ND ND		3.9	ND ND		0.37	ND ND		0.37
Indexed 1,2,3-cd pyrene 3.2 0.12 J 0.37 0.041 J 0.38 0.44 0.37 0.73 0.3	0.38_	0.72	7	3.9	0.21	J	0.37	0.83		0.37
	0.38_	ND		3.9	ND		0.37	ND		0.37
Nitrobenzane 0.0 100 0.00 0.00 0.00 0.00 0.00 0.00	0.38	ND		3.9	0.28	J	0.37	0.08	J	0.37
N Althoradimethylasia NG U.S. NO U.S.	0.38	ND		9.7	ND		0.37	ND		0.37
N. Nitroso O. N. Propulation	0.38	ND ND		3.9	ND		0.37	ND		0.37
N-Nitrosodiphenylamine NS ND 0.37 ND 0.38 NO 0.37 ND 0	D.38	ND ND		3.9	ND ND		0.37	ND ND		0.37
Pentachlorophenol 1 ND 0.92 ND 0.96 ND 0.94 ND 0.9	0.95	ND I		3.9	ND D		0.37	ND ND		0.37
Phenanthrene 50 0.14 J 0.37 ND 0.38 0.35 J 0.37 1.4 0.3	0.38		J	3.9	0.69		0.37	2.7		0.93
Purson CO 140 0.37 ND 0.37 ND 0.37	0.38	ND		3.9	ND		0.37	NO		0.37
T-1/2/00 0.37 2.7 0.37 2.7 0.37	0.38	4.6		3.9	0.89		0.37	5.4		0.37
SVOC T/C- 9.851 17.92		26.25			7.651			7.651		
SVOC ICS NS 180.22 J 200.45 J 195.15 J 22.98 J Notes and Abbreviations		307.3	J		209.31	J		255.94	J	

Notes and Abbreviations:

Conc. = concentration
mg/kg= milligrams per kilogram
MDL= method detection limit
B=Analyte was detected in laboratory blank.
ND=Not detected
NS=No standard
J= the estimated concentrarion was detected below MDL,
but was detected above the laboratory's reporting limits
TICs=Tentarvely identified compounds
TAGM=Technical and Administrative Guidance
Memorandum #4046, dated January 24, 1994
RSCOs=Recommended Soil Cleanup Opiectives
1. Conc. In bold and highlighted exceed the RSCOs



Sample ID ab Sample No. Sampling Date Matrix Units	New York Recommended Soil Cleanup Objectives (RSCOs)		REA C-BF0 AC25432-00 8/31/2006 Soil)6		AREA D-BF AC25441-00 9/1/2006 Soil		,	REA D-8F AC25441-0 9/1/2006 Soil	006	-	NREA D-BF0 AC25441-00 9/1/2006 Soil	C2)7	Â	REA D-BF C25441-0 9/1/2006 Soil	80		AREA E-BF AC25441-0 9/1/2006 Soil	01		AREA E-BF AC25441-0 9/1/2006 Soil	02
Semi-Volatile Organic Compo	mg/Kg	Conc	mg/Kg Qual	MDL	Conc	mg/Kg Qual	MDL		mg/Kg	1		mg/Kg		L	mg/Kg		<u> </u>	mg/Kg			mg/Kg	
,2,4-Trichlorobenzene	3.4	ND	(208)	0.37	ND	Quar	0.36	Conc ND	Quai	MDL 0.37	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MD
.2-Dichlorobenzene	7.9	ND		0.37	ND		0.36	ND -		0.37	ND ND	— —	0.38	ND ND		1,1	ND ND	 	0.37	ND		0.3
,2-Diphenylhydrazine	NS	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND				ļ	0.37	ND		0.3
,3-Dichlorobenzene	1.6	ND		0.37	ND		0.36	ND	i —	0.37	ND		0.38	ND		1,1	ND ND	 	0.37	ND ND		0.3
.4-Dichlorobenzene	8.5	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND	 	0.37	ND	├	0.3
4.5-Trichlorophenol	0.1	ND	L	0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND	 	0.3
.4.6-Trichlorophenol	NS 0.4	ND ND		0.37	ND		0.36	ND	ļ	0.37	ND		0.38	ND		1.1	ND	1	0.37	ND		0.3
2.4-Dimethylphenol	NS NS	ND ON		0.37	ND ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND		0.3
4-Dinitrophenol	0.2	ND		1.8	ND	——	0.36	ND ND		0.37	ND		0.38	ND		1,1	ND		0.37	ND		0.3
,4-Dinitrotoluene	NS NS	ND		0.37	ND		1.8 0.36	ND		1.8 0.37	ND		1.9	ND		5.5	ND		1.9	ND		1.
6-Dinitrotoluene	1	ND	-	0.37	ND		0.36	ND	 	0.37	ND	 	0.38 0.38	ND DN		1.1	ND .	ļ	0.37	ND	L	0.3
-Chloronaphthalene	NS NS	ND		0.37	ND		0.36	ND		0.37	ND	-	0.38	ND		1.1	ND ND	ļ	0.37	ND		0.3
-Chiorophenoi	0.8	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND	 -	0.37	ND ND		0.3
Methylnaphthalene	36.4	ND		0.37	ND .		0.36	ND		0.37	ND		0.38	ND		1.1	ND	 	0.37	ND	-	0.
-Methylphenol	0.1	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1,1	ND	· ·	0.37	ND		0.
Nitroaniline Nitrophenol	0.43 0.33	ND ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND	1	0.37	ND		1 0
84-Methylphenol	0.33			0.37	ND		0.36	ND		0.37	ND		0.38	ND		1,1	ДИ	T	0.37	ND		0.
3'-Dichlorobenzidine	0.33	ND ND	<u> </u>	0.37	ND ND	——	0.36	ND_	 	0.37	ND	ļ	0.38	ND		1.1	ND		0.37	ND	Γ_	0.
-Nitroaniline	0.33	ND	-	0.37	ND	<u> </u>		ND ND		0.92	ND	ļ	0.95	ND		2.7	ND	L	0.37	ND		0.
6-Dinitro-2-methylphenol	0.33	ND	— —	1.8	ND ND	——	0.36	ND ND	├ ~	0.37	ND ND	 	0.38	ND		1.1	ND	L	0.37	ND		0.
Bromophenyl-phenylether	0.33	ND		0.37	ND	——	0.36	ND ND	 			 	0.95	ND		2.7	ND	ļ	1.9	ND		1_1
Chloro-3-methylphenol	0.33	ND		0.37	ND		0.36	NO	 	0.37	ND ND		0.38	ND ND		1,1	ND		0.37	ND		0.
Chloroaniline	0.33	ND		0.37	ND		0.36	ND	——	0.37	ND	 	0.38	ND		1,1	ND ND		0.37	ND		0
Chlorophenyl-phenylether	0.33	ND		0.37	ND		0.36	ND	T	0.37	ND		0.38	ND		1.1	ND ND	 	0.37	ND ND	 	0.
Nitroaniline	NS NS	ND		0.37	ND		0.36	ND		0.37	ND	1	0.38	ND		1.1	ND		0.37	ND ND		0.
Nitrophenol	0.1	ND		0.37	ND		0.36	ND		0.37	ND		0.38	סא		1.1	ND -	 	0.37	ND	 	0.
cenaphthene	50	0.055	J	0.37	ND		0.36	0.045	J	0.37	0.087	J	0.38	0.24	j	1.1	0.098	7	0.37	0.086	- J	0.
cenaphthylene nthracene	41	0.23	J	0.37	0.065	J	0.36	0.1	J	0.37	0.2	J	0.38	0.28	J	1.1	0.2	 	0.37	0.27	i i	0.
enzidine	50	0.16		0.37	0.067	J	0.36	0.098		0.37	0.16	3	0.38	1.1		1.1	0.21	J	0.37	0.21	1-j-	0.
enzo(a)anthracene	0.224	ND 0.59		1.8 0.37	ND	— —	0.91	ND		0.92	ND		0.95	ND		2.7	ND		1.9	ND		1
enzojajpyrene	0.061	0.7		0.37	0.32	1	0.36	0.39		0.37	0.59		0.38	3.2		1.1	0.62		0.37	0.81		0.
enzo[b]fluoranthene	1.1	0.95		0.37	0.48		0.36	0.45		0.37 0.37	0.68	 	0.38	2.9		1.1	0.62		0.37	0.87		0.
enzo(g,h,ilperylene	50	0.35	J	0.37	0.24	J	0.36	0.33		0.37	0.53		0.38	3.7 1.9		1.1	0.91	<u> </u>	0.37	1.2	 	0
enzo(k)fluoranthene	1.1	0.33	J	0.37	0.15	j	0.36	0.19	J	0.37	0.33	<u> </u>	0.38	1.2		1.1	0.38		0.37	0.49	 -	0.
enzyl alcohol	NS	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1,1	ND ND	 	0.37	0.39 ND	 	0.
is(2-Chloroethoxy)methane	NS NS	ND		0.37	ND		0,36	ND		0.37	NO		0.38	ND		11	ND		0.37	ND		-6
lis(2-Chloroethyl)Ether lis(2-Chloroisopropyl)ether	NS NS	ND DN		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND	 	0.3
is(2-Ethylhexyl)phthalate	50		J	0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND	 	0.
utylbenzylphthalate	50	0.059 ND	- J	0.37	0.12 ND	J	0.36	0.093	J	0.37	0.11	J	0.38	0.18	J	1.1	0.11	J	0.37	0.12	J	0.
arbazole	NS.	0.041		0.37	ND		0.36	0.054 ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND		0.
hrysene	0.4	0.65	-	0.37	0.36		0.36	0.43		0.37	0.058	J	0.38	0.13	J	1.1	0.045	١	0.37	0.086	J	0.
libenzo[a,h]Anthracene	0.014	0.12	J	0.37	0.071		0.36	0.1	J	0.37	0.15		0.38	0.46		1.1	0.66		0.37	0.8		0.
ibenzofuran	6.2	ND		0.37	ND		0.36	ND	— <u> </u>	0.37	ND		0.38	ND	. J	1.1	ND ND	J		0.16	J	0.
iethylphthalate	7.1	ND		0.37	ND		0.36	ND		0.37	ND	1	0.38	ND		1.1	ND		0.37	ND ND		0.
imethylphthalate	2	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND	 	0.
i-n-butylphthalate	8.1 50	0.092	JB	0.37	0.08	J	0.36	0.079	J	0.37	0.091	7	0.38	ND		1.1	0.12	J	0.37	0.1		0
luoranthene	50	1.3		0.37	ND 0.52		0.36	ND		0.37	ND		0.38	ND		1,1	ND		0.37	ND		0.
luorene	50	0.085	-	0.37	0.53 ND		0.36	0.73	⊢	0.37	1.1		0.38	6.4		1.1	1.5		0.37	1.6		0.
exachlorobenzene	0.41	ND ND	<u> </u>	0.37	ND		0.36	0.053 ND	J	0.37	0.11 ND		0.38	0.4	J	1.1	0.11	j	0.37	0.12	J	0.
exachlorobutadiene	NS NS	ND		0.37	ND		0.36	ND .		0.37	ND ND		0.38	ND		1.1	ND		0.37	ND		0.
exachlorocyclopentadiene	NS	ND		0.37	ND	-	0.36	ND ND		0.37	ND		0.38	ND ND		1.1	ND	<u> </u>	0.37	ND	ļ	0.
exachloroethane	NS	ND		0.37	NO		0.36	ND		0.37	ND	 	0.38	ND ND		1,1	ND ND	 	0.37	ND	L	0.
deno[1,2,3-cd]pyrene	3.2	0.34	J	0.37	0.22	J	0.36	0.28	J	0.37	0.43	-	0.38	1.6		1,1	0.35		0.37	ND 0.45	 	ļ <u>0</u>
ophorone	4.4	ND		0.37	ND		0.36	ND		0.37	ND	-	0.38	ND ND		1.1	0.35 ND	 - '	0.37	0.46 ND		0.
aphthalene	13	0.059	J	0.37	ND		0.36	0.044	J .	0.37	0.11	J	0.38	ND		1,1	0.06		0.37	0.061	 ;	0.
Nitrosodimothydomina	0.2	ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND	_ <u> </u>	0.37	ND	-	0
-Nitrosodimethylamine -Nitroso-Di-N-Propylamine	NS NS	ND ND	L	0.37	ND		0.91	ND		0.92	ND		0.95	ND		2.7	ND		0.37	ND		0
-Nitrosodiphenylamine	NS NS	ND ND		0.37	ND		0.36	ND		0.37	ND		0.38	ND		1.1	ND		0.37	ND		o.
entachlorophenol	NS	ND		0.37	ND ND		0.36	ND.		0.37	ND		0.38	ND		1.1	ND	L	0.37	ND		0.
henanthrene	50	0.42		0.92	0.19		0.91	ND 0.28	 -	0.92	ND	 	0.95	ND		2.7	ND	L	0.94	ND		0.9
nenol	0.03	ND		0.37	ND		0.36	0.28 ND	J	0.37	0.42		0.38	3.4		1.1	0.37		0.37	0.66		0.
rene	50	1.3		0.37	0.57		0.36	0.8		0.37	ND 13	 	0.38	ND 87		1.1	ND		0.37	ND		0.
otal SVOCs Conc.	500	7,831			3.783			5.156		0.31	8.056	-	0.38	6.7 36.79		1.1	1.9		0.37	2.1		0.
OC TICS	NS	204.92	3		87.74			139,46	7	 	152.09	 		185.05	J	——	8.673 127.84	!		10.593		<u> </u>
otes and Abbreviations: onc.= concentration q/kg= milligrams per kilogram DL= method detection limit FAnalyte was detected in labor D=Not detected	ratory blank,	_										<u> </u>		100.00			127,04	<u> J</u>		111.55	<u> </u>	
S=No standard the estimated concentrarion of the astimated concentrarion of the was detected above the labo Cs=Tentatively identified comp GM=Technical and Administre emorandum #4046, dated Jan	oratory's reporting limits pounds ative Guidance																					
COs=Recommended Soil Cle Conc. In bold and highlighted	eanup Objectives																					

SUMMARY OF BACKFI CANALYTICAL RESULTS-SVOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Section Column	ample ID ab Sample No. ampling Date atrix nits	New York Recommended Soil Cleanup Obiectives (RSCOs) mg/Kg		Area G-BF1 AC25829-009 9/22/2006 Soil mg/Kg			Area G-BFC1 AC25829-010 9/22/2006 Soil mg/Kg	ı		Area H-BF1 AC25829-011 9/22/2006 Sail			Area H-BFC1 AC25829-012 9/22/2006 Soil	-		Area I-BF2 AC25374-001 10/16/2006 Sail	ı		Area I-BF4 AC25374-001 10/16/2006 Soil	
1.		nds (SVOCs)	Conc		MDL	Conc		MDI	Cone	mg/Kg	S ANDI	Conc	mg/Kg	MOI	- C	mg/Kg	1	L	mg/Kg	
1.5 Guine processor				-						Quai			Quai			Qual		Conc	Qual	MDL
1.5 General Process 1.5	2-Dichlorobenzene	7.9	ND					0.35		·		ND ND	 -		ND.	 				0.37
1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2			ND		1.1	ND						ND								0.37
1.54 1.55					1.1	ND		0.35							NO NO		0.37	ND ND		0.37
5.6.5 10.0 1.1 1.0 1.2 1.0 1.1 1.0 1.2 1.0 1.0 1.2 1.0 1		8.5			1,1	ND		0.35			0.35									
1-1-2			ND		1.1	ND		0.35	ND		0.35				ND ND	 				0.37
1	4,6-Trichtorophenal							0.35	ND								0.37			0.37
1.40-cmisters					1.1						0.35	ND		0.35						0.37
Secondarian Secondarian			ND		1.1		<u> </u>								ND	 		ND		0.37
1	4-Dinitrophenol										1.8	ND		1.8	ND					1.9
Schemenheiter March Marc								0.35									0.37	ND		0.37
Consequent								0.35				ND		0.35						0.37
Selection Sele											0.35			0.35			0.37	ND		0.37
34th paper 1		36.4					l	0.35	ND ND		0.35						0.37	ND		0.37
Statestife								0.35							ND					0.37
Affectation														0.35				ND		0.37
M. Mentheled 0.31	Nitrophenol		ND -																	0.37
31 Chiese Chies	S4-Methylphenol	0.33								 		ND		0.35						0.37
Additional Company of the Company								O RR			0.33					 	0.37	ND		0.37
4.6 Denits - Semichented			ND	1	1.1					1					- NU	 				0.37
Champing deprinative		0.33		1	2.7					 		NID -	 	0.33						0.37
6. Changa-Antimythener	Bromophenyl-phenylether	0,33			1.1						0.35		l	0.35		 				1.9
4-Chesenides 139 NO 111 NO 0.55 NO 0.55 NO 0.55 NO 0.57 NO 0.5	Chloro-3-methylphenal				1.1	ND	T	0.35	ND		0.35	ND				 				0.37
## Schemen 40					1.1	ND		0.35	ND				T			t	0.37			0.37
					1.1	ND		0.35	ND		0.35									0.37
Company Comp		NS NS			1.1							ND			ND					0.37
Additional	nurophenoi	0,1		-				0.35			0.35	ND								0.37
Commencing					1.1			0.35				ND					0.37			0.37
Second March Mo				-	1.1		 	0.35			0.35	ND		0.35	0.07	J			J	0.37
Bested plantenese				 			J			 		ND		0.35	0.053	j		0.051	j	0.37
Service Department		1NA 0.224			2.7		 	0.88		ļ						L	1.9	ND		1.9
Service 1.1				 			 	0.35		ļ			J			J		0.18	J	0.37
Servicide So NO							- ' -					0.12	J	0.35	0.26	J			J	0.37
Served Highesterheid 1.1		50		 	11					 _ !		0.13		0.35				0.28	J	0.37
Senort accord	enzofk]fluoranthene		I ND					0.35		 	0.35		⊢– ↓—			J		0.14	J	0.37
Big C Property P							-) <u> </u>			J_	0.37
Sept 2-Novembrighter					1.1	ND -		0.35		 		ND ND	 -			ļ				0.37
Sept Characteroport Sept							† 			 	0.35			0.35		 				0.37
Sept 2 Sept 2 Sept 3 1 0.056 J 0.35 0.067 J 0.35 0.067 J 0.35 0.067 0.07 No Control Cont	is(2-Chloroisopropyl)ether	NS		1				0.35	NO -	t			- ` -							0.37
Buthercypitchiable	is(2-Ethylhexyl)phthalate	50	8.3	1	1.1			0.35								 				0.37
Carbacole NS: NO 1.1 0.043 J 0.35 NO 0.35 NO 0.35 NO 0.35 NO 0.37 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0.06 NO 0			ND		1.1	ND							<u>*</u>	0.35						0.37
Ciffysine		NS .			1,1	0.043	J	0.35	ND			ND		0.35		 				0.37
Ulbertacken			ND	L			J	0.35		J	0.35		J	0.35						0.37
Dimberghamman							J	0.35			0.35		J		0.056	- J	0.37	0.043		0.37
Dimethyphalate 2				<u> </u>	1.1									0.35	ND		0.37			0.37
Din-bytyhphthalate					-1.1										ND		0.37	ND		0.37
Din-octyphthelate								0.35	NO		0.35	ND				J				0.37
Fluoranthene		50						0.35			0.35		I			L				0.37
Fluorene 50								0.35						0.35						0.37
Hezachlorobergene	uorene				11		 							0.35		J				0.37
Hexachloroptidesidene					11		-									_				0.37
Heasehorevclopentagliene				I				0.35								ļ				0.37
Hexachtorethane	exachlorocyclopentadiene	NS	ND	T			h			 		NO								0.37
Indem(1)_3-ed/pyrene 3.2		NS	ND		1.1		t		ND								0.37	ND		0.37
Sophorone		3.2	ND		1.1		J	0.35			0.35					 				0.37
Naphthalane					1.1		I			T						l				0.37
Nitrosodinethylamine					1.1		L		ND		0.35			0.35						0.37
N-Miroso-Di-N-Propylamine NS ND 1.1 ND 0.35 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND N-Mirosodiphenylamine NS ND 0.1.1 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.			ND		1.1			0.68	ND		0.68	ND		0.88						0.37
N-Nirosodipenylamine NS ND 1.1 ND 0.35 ND 0.35 ND 0.37 ND 0.37 ND 0.38 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35 ND 0.37 ND 0.35 ND 0.35 ND 0.35 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND 0.35				—	2.7		L	0.35	ND		0.35									0.37
No				 				0.35	ND		0.35	ND		0.35	ND					0.37
Pentantiropendal 1		NS	ND	 _	1,1						0.35	ND		0.35					+	0.37
Phenoi	henanthrene	<u> </u>	ND ND				<u> </u>				0.88	ND		0.88	ND					0.94
Premistric U.03 NU 1.1 ND 0.35 ND 0.35 ND 0.35 ND 0.37 ND ND ND ND ND ND ND N	henol	0.02		ļ		0.32	J	0.35					J		0.13	_ J	0.37			0.37
Total SVCs Conc. 500 8.3 2.668 0.349 1.315 2.006 0.37 0.350					1.1			0.35			0.35			0.35	ND		0.37	ND		0.37
SVOC TICS NS 3.48 J 7.94 J 5.58 J 5.95 J 9.31 J 7.27					1,1			0.35		J	0.35		J	0.35					J	0.37
Notes and Abbreviations: Conc = concertation mg/kqc milligrams per kilogram MDL= method detection limit B=Analive was detected in laboratory blank. ND=Not detected ND=Not detected □ the estimated concentrarion was detected below MDL, but was detected above the laboratory's reporting limits TICs=Tentatively identified compounds TICs=Tentatively identified compounds TICs=Tentatively identified compounds TAGM=Technical and Administrative Guidance					 _						ļ									
J= the estimated concentrarion was detected below MDL, but was detected above the laboratory's reporting limits TICs=Tentatively identified compounds TAGM=Technical and Administrative Guidance	otes and Abbreviations: onc.= concentration g/kg= milligrams per kilogram DL= method detection limit =Analyte was detected in laborat D=Not detected		,	<u> </u>		1 1.04	 	,	3.36	<u> </u>		7 2'82	<u> </u>		9.31	IJ	I .	7.27	J	
	the estimated concentration wa ut was detected above the labora ICs=Tentatively identified compo	atory's reporting limits ounds																		
RSCOs=Recommended Soil Cleanup Objectives 1. Conc. In boild and highlighted exceed the RSCOs	emorandum #4046, dated Janua SCOs=Recommended Soil Clea	ary 24, 1994 Inup Objectives							,											



Sample ID Lab Sample No. Sampling Date Matrix Units	New York Recommended Soil Cleanup Objectives (RSCOs) rng/Kg		Area I-BFC1 AC26323-006 10/16/2006 Soil mg/Kg	-		Area I-BFC2 AC26323-007 10/16/2006 Soil mg/Kg			Area I-BFC3 AC26323-008 10/16/2006 Soil mg/Kg			Area I-BFC4 AC26323-009 10/16/2006 Soil mg/Kg			Area I-BFC5 AC26323-010 10/17/2006 Soil			Area I-BFC6 AC27561-002 12/18/2006 Soil	
Semi-Volatile Organic Compo		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL	Conc	mg/Kg Qual	MDL	Cerr	mg/Kg	1401
1,2,4-Trichlorobenzene	3.4	ND		0.37	ND		0.37	ND	T T	0.38	ND	4.301	0.37	ND	i Quai	0.37	Conc	Qual	MDL 0.39
1,2-Dichlorobenzene	7.9	ND		0.37	ND	Ţ	0.37	ND		0.38	ND		0.37	ND	 	0.37	ND		0.39
1,2-Diphenylhydrazine	N\$	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND ON		0.39
1,3-Dichlorobenzene	1.6	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
1,4-Dichlorobenzene	8.5	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
2.4.5-Trichlorophenoi	0.1	ND		0.37	ND		0.37	ND		0,38	ND		0.37	ND		0.37	ND		0.39
2,4,6-Trichlorophenol 2.4-Dichlorophenol	NS 0.4	ND ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
2,4-Dimethylphenol	NS	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
2.4-Dinitrophenol	0.2	- ON		0.37 1.9	ND ND	-	0.37	ND NO		0.38	ND		0.37	DN		0.37	МD		0.39
2,4-Dinitrotaluene	NS	ND		0.37	ND		0.37	ND ND		0.95	ND		1.9	ND		1.9	ND		0.97
2,6-Dinitrotoluene	1	ND		0.37	ND		0.37	ND		0.38 0.38	ND ND		0.37	ND		0.37	ND		0.39
2-Chloronaphthalene	NS	ND		0.37	ND		0.37	ND		0.38	ND I		0.37 0.37	ND	<u> </u>	0.37	ND		0.39
2-Chlorophenol	0.8	ND		0.37	ND		0.37	ND		0.38	ND ND		0.37	ND ND		0.37	ND		0.39
2-Methylnaphthalene	36.4	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND ND		0.39
2-Methylphenoi	0.1	ND		0.37	ND		0.37	ND		0.38	ND ND		0.37	ND		0.37	ND		0.39
2-Nitroaniline	0.43	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
2-Nitrophenol	0.33	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND	 	0.37	ND		0.39
3&4-Methylphenol	0.33	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND	ļ	0.37	ND		0.39
3.3'-Dichlorobenzidine 3-Nitroaniline	0.33	ND DN		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
4.6-Dinitro-2-methylphenol	0.33	ND		0.37	ND	· ·	0.37	ND	ļ	0.38	ND		0.37	ND		0.37	ND		0.39
4-Bromophenyl-phenylether	0.33	ND		1.9 0.37	ND ND	—	1.9	ND		0.38	ND		1.9	ND		1.9	ND		0.97
4-Chloro-3-methylphenol	0.33	ND		0.37	ND ND		0.37	ND ND	 	0.38	ND		0.37	ND		0.37	ND		0.39
4-Chloroaniline	0.33	ND		0.37	ND		0.37	ND ND		0.38	ND DN		0.37	ND		0.37	ND		0.39
4-Chlorophenyl-phenylether	0.33	ND		0.37	ND		0.37	ND ND	 	0.38	ND -		0.37	ND	ļ	0.37	ND		0.39
4-Nitroaniline	NŞ	ND		0.37	ND		0.37	ND		0.38	ND ND		0.37	ND ND		0.37	ND		0.39
4-Nitrophenol	0.1	ND		0.37	ND .		0.37	ND	t	0.38	- ND		0.37	ND		0.37	ND DA		0.39
Acenaphthene	50	ND		0.37	0.049	J	0.37	0.096	j	0.38	0.095		0.37	0.044		0.37	0.067		0.39
Acenaphthylene	41	0.071	J	0.37	0.18	J	0.37	0.16	J	0.38	0.23	Ĵ	0.37	0.19	1 1	0.37	0.45		0.39
Anthracene	50	0.057	J	0.37	0.12	J	0.37	0.34	J	0.38	0.32	J	0.37	0.13	l j	0.37	0.45		0.39
Benzidine Benzolalanthracene	NA 0.224	ND 0.19		1,9	ND		1.9	ND		1.9	ND		1.9	ND		1.9	ND		0.39
Benzo(a)pyrene	0.224	0.19	J	0.37	0.53		0.37	2.9		0.38	0.88		0.37	0.57	J	0.37	1.3		0.39
Benzofbifluoranthene	1.1	0.27		0.37	0.64 0.8	_	0.37	2.9		0.38	1 1		0.37	0.75		0.37	1.6		0.39
Benzo(g,h,i)perylene	50	0.19	- J	0.37	0.8		0.37	3.4		0.38	1.3		0.37	0.85		0.37	2.1		0.39
Benzolkifluoranthene	1.1	0.13	j	0.37	0.29	<u>, , , , , , , , , , , , , , , , , , , </u>	0.37 0.37	1.8		0.38 0.38	0.65 0.42		0.37	0.47		0.37	1.2		0.39
Benzyl alcohol	NS	ND		0.37	ND		0.37	ND		0.38	ND -	•	0.37	0.28	J	0.37	0.61		0.39
Bis(2-Chloroethoxy)methane	NS	ND		0.37	ND		0.37	ND	-	0.38	ND		0.37 0.37	ND ND		0.37	ND ND	~	0.39
Bis(2-Chloroethyl)Ether	NS	ND		0.37	ND		0.37	ND		0.38	NO -		0.37	ND ND	 	0.37	ND ND		0.39
Bis(2-Chloroisopropyl)ether	NS	ND		0.37	ND		0.37	ND		0.38	ND '		0.37	ND ND		0.37	ND ND		0.39
Bis(2-Ethylhexyl)phthalate	50	0.079	J	0.37	0.09	J	0.37	0.080J		0.38	0.13	J	0.37	0.086	J	0.37	0.32		0.39
Butylbenzylphthalate Carbazole	50 NS	ND		0.37	ND		0.37	ND		0:38	ND		0.37	ND		0.37	ND		0.39
Chrysene	0.4	ND 0.2		0.37	ND		0.37	0.039J		0.38	0.048	J	0.37	0.044	J	0.37	0.054	j	0.39
Dibenzo[a,h]Anthracene	0.014	0.054		0.37	0.54	,	0.37	2.8 0.55		0.38	0.94		0.37	0.59		0.37	1.3		0.39
Dibenzofuran	6.2	ND	<u>-</u>	0.37	ND ND		0.37	ND ND		0.38 0.38	0.17 ND		0.37	0.13	J	0.37	0.34	J	0.39
Diethylphthalate	7.1	ND	j	0.37	ND		0.37	ND		0.36	ND ND		0.37	ND ND	ļ	0.37	0.11	J	0.39
Dimethylphthalate	2	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37 0.37	ND ND		0.39
Di-n-butylphthalate	8.1	0.073		0.37	0.088	J	0.37	ND		0.38	ND		0.37	0.074		0.37	ND		0.39
Di-n-octylphthalate	50	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND	<u> </u>	0.37	ND		0.39
Fluoranthene	50	0.3	J	0.37	0.85		0.37	4		0.38	1.9		0.37	0.99		0.37	2.3		0.39
Fluorene Hexachlorobenzene	50	ND		0.37	0.061	J	0.37	0.14		0.38	0.18	J	0.37	0.061	J	0.37	0.11		0.39
Hexachlorobutadiene	0.41 NS	ND ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
Hexachlorocyclopentadiene	NS NS	DN D		0.37	NO		0.37	ND		0.38	ND		0.37	ND		0.37	ND		0.39
Hexachloroethane	NS NS	ND		0.37 0.37	ND ND	-	0.37 0.37	ND ND		0.95	ND ND		0.37	ND		0.37	ND		0.39
Indeno[1,2,3-cd]pyrene	3.2	0.19	J	0.37	0.43	 	0.37	ND 1,5		0.38 0.38	ND 0.62		0.37	ND	`	0.37	ND		0.39
Isophorone	4.4	ND	I	0.37	ND ND	 	0.37	ND ND		0.38	0.62 ND		0.37	0.42		0.37	1.1		0.39
Naphthalene	13	ND		0.37	ND		0.37	ND		0.38	ND ND		0.37	ND ND		0.37	ND		0.39
Nitrobenzene	0.2	ND		0.37	ND	T	0.37	ND		0.38	ND ND		0.37	ND NO		0.37	ND ND		0.39
N-Nitrosodimethylamine	NS	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND ND		0.37	ND ND		0.39
N-Nitroso-Di-N-Propylamine	NS	ND		0.37	ND		0.37	0.039	J	0.38	0.062		0.37	0.039	J	0.37	0.11	- , -	0.39
N-Nitrosodiphenylamine	NS	ND		0.37	ND		0.37	ND		0.38	ND		0.37	ND .		0.37	ND		0.39
Pentachlorophenol Phenanthrene	50	ND		0.94	ND		0.94	ND		0.95	ND		0.94	ND	-	0.94	ND		0.97
Phenol	0.03	0.12 ND	J	0.37	0.31	J	0.37	0.98		0.38	0.98		0.37	0.34	L L	0.37	0.81		0.39
Pyrene	50	0.35	<u>, </u>	0.37	ND 0.98		0.37	ND 5	<u> </u>	0.38	ND		0.37	ND 1.2		0.37	ND		0.39
Total SVOCs Conc.	500	2.514	'	0.37	6,568		0.37	28.105		0.38	1.9		0.37			0,37	2.2		0.39
SVOC TICS	NS	14.41			8,84	,			 		11.825			7.258			16.531		
Notes and Abbreviations:		1 17.71			0.04	LJ		16.2	j	L	8.72	J		6.55	J		17.62	J	
Conc.= concentration mg/kg= militgrams per kilogram MDL= method detection limit B=Analyke was detected in labor ND=Not detected NS=No standard J= the estimated concentrarion v but was detected above the labor TLGS=Tentatively identified acom TAGM=Technical and Administra Memorandum #4046, dated Jan Memorandum #4046, dated Jan	vas detected below MDL, ratory's reporting limits nounds ative Guidance			·										द ं					
RSCOs=Recommended Soil Cle 1. Conc. In bold and highlighted	anup Objectives												4						

SUMMARY OF BACKP L ANALYTICAL RESULTS-SVOCS IRM SITES 2 (AREA 2B) AND 3 (AREA 3A) HHMT-PORT IVORY FACILITY

Sample ID Lab Sample No. Sampling Date Matrix	New York Recommended Soil Cleanup Objectives (RSCOs)		Area J-BF 1 AC25374-00 8/31/2006 Soil			Area J-BFC C25374-00 8/31/2006 Soil			Area J-BFC C25374-00 8/31/2006 Soil	34 İ		Area J-BFC AC25829-00 9/22/2006 Soil	12		Area K-BF1 AC25501-00 9/7/2006 Soil			Area K-BFC AC25501-00 9/7/2006 Soil	:1 06		Area K-BFC AC25501-00 9/7/2006 Soil	
Units Semi-Volatile Organic Compo	mg/Kg		mg/Kg		<u> </u>	mg/Kg		L	mg/Kg			mg/Kg			mg/Kg		L	∴ mg/Kg		L	mg/Kg	
1,2,4-Trichlorobenzene	unds (SVOCs)	Conc	Qual	MDL 0.38	Conc	Qual	MDL 0.39	Conc	Qual	MDL	Conc	Qual	MDL	Canc	Qual	MDL	Conc	Qual	MDL_	Conc	Qual	MDL
1,2-Dichlorobenzene	7.9	ND	 	0.38	ND		D.39	ND DN		0.38	ND ND		0.37	ND ND	 	0.37	ND ND		0.37	ND		0.36
1.2-Diphenylhydrazine	NS	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND ND		0.36
1.3-Dichlorobenzene	1.6	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND	T	0.37	ND	1	0.37	ND ND		0.36
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	8.5 0.1	ND ND	ļ	0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
2.4,6-Trichlorophenol	NS NS	ND		0.38	ND ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
2.4-Dichlorophenol	0.4	ND		0.38	ND		0.39	ND ND		0.38	ND ND		0.37	ND ND		0.37	ND		0.37	ND		0.36
2,4-Dimethylphenol	NS	ND		0.38	ND		0.39	ND		0.38	ND		. 0.37	ND	 -	0.37	ND ND		0.37	ND ND		0.36
2,4-Dinitrophenol	0.2	ND		0.95	ND		0.97	ND		0.96	ND		1.9	ND	 	0.92	ND -		1.9	ND		0.36 1.8
2.4-Dinitrotoluene	NS	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
2,6-Dinitrotoluene 2-Chloronaphthalene	NS 1	ND ND		0.38	ND ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	_ND		0.36
2-Chlorophenol	0.8	ND	1	0.38	ND		0.39	ND QN		0.38	ND	L	0.37	ND		0.37	ND		0.37	ND		0.36
2-Methylnaphthalene	36.4	ND	1	0.38	0.058		0.39	0.07		0.38	ND ND		0.37	ND ND		0.37	ND ND		0.37	ND ND		0.36
2-Methylphenol	0.1	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND	-	0.37	ND	 	0.37	מא		0.36
2-Nitroaniline	0.43	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND	1	0.37	ND		0.36
2-Nitrophenol 3&4-Methylphenol	0.33	ND		0.38	DN		0.39	ND		0.38	ND		0.37	ND		0.37	ND	L	0.37	ND		0.36
3,3'-Dichlorobenzidine	0.33 0.33	ND ND	 -	0.38	ND ND		0.39	ND ND		0.38	ND		0.37	ND_		1.8	ND		0.37	ND		0.36
3-Nitroanifine	0.33	ND	1	0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.93	ND		0.91
4,6-Dinitro-2-methylphenol	0.33	ND		0.38	ND		0.39	ND		0.38	ND		1.9	ND ND		0.37	ND ND	<u> </u>	0.37	ND ND		0.36 0.91
4-Bromophenyl-phenylether	0.33	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND ON	 	0.92	ND ND	 	0.93	ND ND		0.91
4-Chloro-3-methylphenol 4-Chloroaniline	0.33	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
4-Chlorophenyl-phenylether	0.33	ND ·	 	0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
4-Nitroaniline	NS NS	ND	1	0.38	ND		0.39	ND ND		0.38	ND ND	Li	0.37	ND		0.92	ND		0.37	ND		0.36
4-Nitrophenol	0.1	ND		0.38	ND		0.39	ND -		0.38	ND		0.37	ND_		0.37	ND		0.37	ND		0.36
Acenaphthene	50	0.19	J	0.38	0.14	7	0.39	0.1		0.38	0.12	J	0.37	ND ND	<u> </u>	0.37	ND ND	-	0.37	ND ND		0.36
Acenaphthylene	41	0.37	J	0.38	0.49		0.39	0.34	J	0.38	ND	 -	0.37	ND		0.37	ND		0.37	ND		0.36
Anthracene Benzidine	50 NA	0.41		0.38	0.39		0.39	0.28	J	0.38	0.6		0.37	ND		0.37	ND		0.37	ND		0.36
Benzofalanthracene	0.224	ND 1.2	 	1.9 0.38	ND 1.3		0.39	ND		1.9	ND		1.9	ND		0.37	ND		0.93	ND		0.91
Benzo[alpyrene	0.061	1.2	+	0.38	1.5		0.39	0.96 1.1		0.38	1.1 0.83		0.37	ND		0.37	0.042	J	0.37	ND		0.36
Benzo[b]fluoranthene	1.1	1.5		0.38	1.8		0.39	1.4		0.38	1.1		0.37	ND ND		0.37	0.044		0.37	ND		0.36
Benzo[g,h,i]perylene	50	0.81		0.38	0.98		0.39	0.78		0.38	0.51		0.37	ND		0.92	ND ND	J	0.37	ND ND		0.36 0.36
Benzolk)fluoranthene Benzyl alcohol	1.1	0.54	ļ!	0.38	0.71		0.39	0.53		0.38	0.41		0.37	ND		0.37	ND	-	0.37	ND		0.36
Bis(2-Chloroethoxy)methane	NS NS	ND ND		0.38	ND ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
Bis(2-Chloroethyl)Ether	NS NS	ND	-	0.38	ND		0.39	ND ND		0.38	ND ND		0.37	ND_		0.37	ND		0.37	ND		0.36
Bis(2-Chloroisopropyl)ether	NS NS	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND ND		0.37	ND ND		0.37	ND		0.36
Bis(2-Ethylhexyl)phthalate	50	0.1	J	0.38	0.086	J	0.39	0.074	J	0.38	ND		0.37	0.049	J	0.37	0.056	 	0.37	ND 0.063		0.36
Butyibenzyiphthalate Carbazole	50	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND	1	0.37	ND		0.36
Chrysene	NS 0.4	0.13 1.2	J	0.38 0.38	0.09	J	0.39	0.063 1.1	J	0.38	0.28	J	0.37	ND		0.37	ND		0.37	ND		0.36
Dibenzofa,h Anthracene	0.014	0.23		0.38	0.31		0.39	0.22		0.38	0.17		0.37	ND		0.37	0.043	J	0.37	ND		0.36
Dibenzofuran	6.2	0.14	J	0.38	0.15	- j	0.39	0.11		0.38	NO NO		0.37	ND		0.92	ND		0.37	ND		0.36
Diethylphthalate	7.1	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND	 	0.37	ND DA		0.36
Dimethylphthalate Di-n-butylphthalate	8.1	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
DI-n-octylphthalate	50	0.039 ND	JB	0.38	ND ND		0.39	0.071	JB	0.38	ND	ļ	0.37	ND		0.37	ND		0.37	ND		0.36
Fluoranthene	50	2.3	$\vdash \neg \vdash$	0.38	2.2		0.39	ND 1.8		0.38	ND	 	0.37	ND		0.37	ND		0.37	ND		0.36
Fluorene	50	0.27	J	0.38	0.24	J	0.39	ND		0.38	0.11		0.37	ND ND	 	0.37	0.068 ND		0.37	ND		0.36
Hexachlorobenzene	0.41	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND	 	0.37	ND	 - 	0.37 0.37	ND ND		0.36 0.36
Hexachlorobutadiene	NS NS	ND	\vdash	0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
Hexachlorocyclopentadiene Hexachloroethane	NS NS	ND ND	 	0.95	ND		0.97	ND		0.96	ND		0.37	ND		0.92	ND		0.37	ND		0.36
Indeno[1,2,3-cd]pyrene	3.2	0.73	 -	0.38	ND 0.92		0.39	ND NO		0.38	ND	L	0.37	ND		1.8	ND		0.37	ND		0.36
Isophorone	4.4	ND	—	0.38	ND		0.39	ND DN		0.38 0.38	0.48 ND	ļ	0.37	ND _		0.92	ND	\vdash	0.37	ND		0.36
Naphthalene	13	0.068	J	0.38	0.092	J	0.39	0.093		0.38	ND	 	0.37	ND ND		0.37	ND ND	├	0.37	ND		0.36
Nitrobenzene	0.2	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		0.37	ND	 	0.37	ND ND		0.36
N-Nitrosodimethylamine N-Nitroso-Di-N-Propylamine	NS NS	ND		0.38	ND		0.39	ND		0.38	ND		0.37	ND		1.8	ND		0.93	ND		0.91
N-Nitrosodiphenylamine	NS NS	ND ND	 	0.38	ND QN		0.39	ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
Pentachiorophenol	1	ND	 	0.38	UN.		0.39	ND ND		0.38	ND		0.37	ND		0.37	ND		0.37	ND		0.36
Phenanthrene	50	1.1	1 - 1	0.38	1.1		0.39	0.7		0.96	ND 1.9		0.94	ND ND		0.92	ND 0.039	\vdash \vdash \vdash \vdash	0.93	ND	7	0.91
Phenol	0.03	ND		0.38	ND		0.39	ND ND		0.38	ND ND		0.37	ND D		0.37	0.039 ND	J .	0.37 0.37	ND ND		0.36
Pyrene	50	2.6		0.38	2.7		0.39	2		0.38	2.3		0.37	ND		0.37	0.08	 , 	0.37	ND		0.36
Total SVOCs Conc. SVOC TICs	500	15.127	_		16.656			12			13.31			0.049			0.431			0.063		
Notes and Abbreviations:	NS	135.46	J		149.1	J		125.94	J		29.72	J		202.69	Ĵ		125.53	J		172.71	- , 	$\overline{}$
Dores and MonteAlgnons																						

Notes and Abbreviations:
Conc. = concentration
mg/kg= militgrams per kilogram
MDL = method detection limit
B=Analyte was detected in laboratory blank.
ND=Not detected
NS=No standard
J= the estimated concentrarion was detected below MDL,
but was detected above the laboratory's reporting limits
TICs=Tentatively identified compounds
TAGM=Technical and Administrative Guidance
Memorandum #4046, dated January 24, 1994
RSCOs=Recommended Soil Cleanup Objectives
1. Conc. In bold and highlighted exceed the RSCOs

Sample ID	New York		Area K-BFC			Area L-BF1			Area L-BFC			
Lab Sample No. Sampling Date	Recommended Soil		AC25501-00	08	, ,	AC25501-00	01	AC25501-002 9/7/2006				
Sampling Date Matrix		Cleanup 9/7/2006 9/7/2006 Objectives (RSCOs) Soil Soil										
Units	, mg/Kg	ì	mg/Kg		mg/Kg		Soil mg/Kg					
Semi-Volatile Organic Compo		Conc	Qual	MDL	Conc	Qual	MDL	Conc	Qual	MDL		
1,2,4-Trichlorobenzene	3,4	ND		0.36	ND		0.37	ND	- GILGI	0.37		
1,2-Dichlorobenzene	7.9	ND	i	0.36	ND		0.37	ND		0.37		
1,2-Diphenylhydrazine	NS	ND		0.36	ND	i ——	0.37	ND		0.37		
1,3-Dichlarabenzene	1.6	ND		0.36	ND		0.37	ND		0.37		
1,4-Dichlorobenzene	8,5	ND		0.36	ND		0.37	ND		0.37		
2,4,5-Trichlaraphenal	0.1	ND		0.36	ND		0.37	ND		0.37		
2,4,6-Trichlorophenal	NS	ND		0.36	ND		0.37	ND		0,37		
2,4-Dichlorophenol	0.4	ND		0.36	ND		0.37	ND		0.37		
2,4-Dimethylphenol 2,4-Dinitrophenol	NS	ND		0.36	ND		0.37	ND		0.37		
2,4-Dinitrotoluene	0.2 NS	ND ND		0.36	ND ND		1.8	ND		1.8		
2,6-Dinitrotoluene	1	ND		0.36	ND ND		0.37	ND ND		0.37		
2-Chloronaphthalene	NS	ND		0.36	ND		0.37	ND ND	-	0.37		
2-Chlorophenol	0.8	ND		0.36	ND		0.37	ND	 	0.37		
2-Methylnaphthalene	36.4	ND		0.36	ND		0.37	ND	 	0.37		
2-Methylphenol	0.1	ND		0.36	ND	r	0.37	ND ND		0.37		
2-Nitroaniline	0.43	ND		0.36	ND		0.37	ND	t	0.37		
2-Nitrophenol	0.33	ND		0.36_	ND		0.37	ND		0.37		
3&4-Methylphenol	0.33	ND		0.36	ND	L	0.37	ND	1	0.37		
3,3'-Dichlorobenzidine	0.33	ND		0.91	ND		0.92	ND		0.92		
3-Nitroaniline	0.33	ND		0.36	ND		0.37	ND		0.37		
4.6-Dinitro-2-methylphenol	0.33	ND		0.91	ND		0.92	ND		0.92		
4-Bromophenyl-phenylether	0.33	ND	l	0.36	ND		0.37	ND		0.37		
4-Chloro-3-methylphenol	0.33	ND		0.36	ND		0.37	ND		0.37		
4-Chloroaniline 4-Chlorophenyl-phenylether	0.33 0.33	ND		0.36	ND	<u> </u>	0.37	ND		0.37		
4-Nitroaniline	NS NS	ND ND		0.36	ND ND	 -	0.37	ND	· ·	0.37		
4-Nitrophenol	0.1	ND ND	-	0.36	ND ND	ļ.——	0.37	ND ND		0.37		
Acenaphthene	50	ND		0.36	ND	_	0.37	ND		0.37		
Acenaphthylene	41	ND	_	0.36	ND	_	0.37	ND		0.37		
Anthracene	50	ND		0.36	ND		0.37	NO	 -	0.37		
Benzidine	NA NA	ND		0.91	ND		0.92	ND		0.92		
Benzo(a)anthracene	0.224	ND		0.36	ND		0.37	ND		0.37		
Benzo[a]pyrene	0.061	ND		0.36	ND		0.37	ND		0.37		
Benzo[b]fluoranthene	1.1	0.038	J	0.36	ND		0.37	ND		0.37		
Benzo(g,h,i)perylene	50	ND		0.36	ND		0.37	ND		0.37		
Benzo(k)fluoranthene Benzyl alcohol	1.1 NS	ND ND		0.36	ND		0.37	NO	L	0.37		
Bis(2-Chloroethoxy)methane	NS NS	ND -		0.36	ND ND		0.37	ND		0.37		
Bis(2-Chloroethyl)Ether	NS NS	ND		0.36	ND ND		0.37	ND ND		0.37		
Bis(2-Chloroisopropyl)ether	NS	ND	 	0.36	ND		0.37	ND	 	0.37		
Bis(2-Ethylhexyl)phthalate	50	0.06		0.36	0.046	J	0.37	0.062	1	0.37		
Butylbenzylphthalate	50	ND		0.36	ND	<u> </u>	0.37	ND	- -	0.37		
Carbazole	NS	ND		0.36	ND		0.37	ND	 -	0.37		
Chrysene	0.4	ND		0.36	ND		0.37	ND		0.37		
Dibenzofa, hlAnthracene	0.014	ND		0.36	ND		0.37	ND		0.37		
Dibenzofuran	6.2	ND		0.36	ND		0.37	ND		0.37		
Diethylphthalate	7.1	ND		0.36	ND		0.37	ND		0.37		
Dimethylphthalate	2	ND		0.36	ND		0.37	ND		0.37		
Di-n-butylphthalate Di-n-octylphthalate	8.1	ND		0.36	ND		0.37	ND		0.37		
Fluoranthene	50 50	ND	<u> </u>	0,36	ND		0.37	ND		0.37		
Fluorene	50	0.044 ND	J	0.36	ND		0.37	ND.	<u> </u>	0.37		
Hexachlorobenzene	0.41	ND ND		0.36	ND		0.37	ND	<u> </u>	0.37		
Hexachlorobutadiene	NS NS	ND -	——	0.36	ND ND	<u> </u>	0.37	ND ND		0.37		
Hexachlorocyclopentadiene	NS NS	ND		0.36	ND		0.37	ND ND		0.37		
Hexachloroethane	NS NS	ND		0.36	ND		0.37	ND	 -	0.37		
Indeno[1,2,3-cd]pyrene	3.2	ND		0.36	ND	-	0.37	ND -	 -	0.37		
sophorone	4.4	ND		0.36	ND		0.37	ND		0.37		
Naphthalene	13	ND		0.36	ND		0.37	ND		0.37		
Nitrobenzene	0.2	ND		0.36	ND		0.37	ND		0.37		
V-Nitrosodimethylamine	NS .	ND		0.91	ND		0.92	ND		0.92		
N-Nitroso-Di-N-Propylamine	NS	ND		0.36	ND		0.37	ND		0.37		
N-Nitrosodiphenylamine	NS	ND		0.36	ND		0.37	ND		0.37		
Pentachiorophenol		ND		0.91	ND		0.92	ND		0.92		
Phenanthrene Phenol	50	ND		0.36_	ND		0.37	ND		0.37		
	0.03	ND		0.36	ND		0.37	ND	l	0.37		
		0.045										
Pyrene Total SVOCs Conc.	50 500	0.048	J	0.36	ND 0,046		0.37	ND 0.062		0.37		

SVOC TICS

Notes and Abbreviations:

Conc. = concentration
mg/Rg= milligrams per kilogram
MDL: method detection limit
B=Analyte was detected in laboratory blank.
ND=Not detected
NS=No standard
J= the estimated concentration was detected below MDL,
but was detected above the laboratory's reporting limits
TICs=Tentaitedy identified compounds
TAGM=Technical and Administrative Guidance
Memorandum #4048, dated January 24, 1996
MESCOS=Recommended Soil Cleanup Objectives
1. Conc. in bold and highlighted exceed the RSCOs

For comparison, analytical results for soil samples collected at Area 3A during the SI, RI, and SRI indicate that the concentration of total confident SVOCs, generally PAH compounds, varies from 0.041 to 11,144 mg/kg with a mean of 68.07 mg/kg. However, many of the soil samples collected during the RI and SRI were collected at locations where LNAPL-impacted soil was encountered, which could potentially bias the analytical results high. During the SI, however, soil samples were collected primarily at locations where LNAPL-impacted soil was not encountered. The range in total SVOC concentrations during the SI was 0.041 to 127.42 mg/kg with a mean of 8.5 mg/kg. The backfill material sampling analytical results indicate that the backfill contains regulated organic compounds at concentrations similar to those detected at other locations of the HHMT-Port Ivory Facility attributable to the prior placement of fill materials by P&G.

7.4.2 Removal of Components of Groundwater Treatment System

On or about October 18, 2006, the activated carbon filtration system and its associated components were demobilized from the site. Prior to demobilization, the following actions were performed: AES released all stored groundwater from the frac tanks; LPS removed a slurry of solids, water, and (possibly) LNAPL from the bottom of each frac tank; AES steam-cleaned the interior of each frac tank; and, LPS removed all residual liquids from the frac tanks. General Carbon of Paterson removed and disposed of the spent non-hazardous activated carbon stored in the carbon units. Disposal documentation is provided in Appendix C.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The following summarizes the success and scope of the IRM:

To the extent practical, all mobile Type I LNAPL was removed from Areas A through D
and G through L. All mobile LNAPL encountered at Area F was removed, although
additional LNAPL removal and soil excavation is warranted in the vicinity of Area F. In
total, more than 91,000 pounds of LNAPL/petroleum was removed from the subsurface
at Area 2B and Area 3A.

- The soil containing Type I LNAPL at the greatest saturation was removed from Areas B, F and I during the overexcavation of 1,008 tons (630 cubic yards) of soil beyond what was proposed in the *Revised IRM Work Plan*.
- All Type II LNAPL was removed at Area B except where necessary to protect structures.
 Based on the results of a leachability study, no regulated compounds are anticipated to leach from the LNAPL to groundwater at Area B.
- Some of the Type II LNAPL was removed at Area J. However, based on the results of a leachability study, the LNAPL remaining at Area J may release benzene to groundwater. Please see the recommendation section below.
- All groundwater pumped from the Removal Areas/Trenches was successfully treated prior to its discharge to surface water via an onsite retention basin.
- As characterized by analytical results associated with the backfill material samples and
 post-excavation samples, the environmental quality of soil remaining at each of the
 Removal Areas/Trenches where the IRM was completed (not including Area F, where
 additional remedial efforts are warranted) is similar to that of fill materials previously
 placed at the HHMT-Port Ivory Facility by P&G.

Based on these findings, HMM offers the following recommendations:

- Excavation and pumping of free LNAPL should continue in Area F as part of the Remedial Action for Area 3A. Redevelopment should be completed to limit the mobility of organic compounds in soil or groundwater at Area 2B and Area 3A.
- The groundwater downgradient from Area J (i.e., at Site 3) should be investigated for benzene impacts.

APPENDIX A REVISED IRM WORK PLAN

June 1, 2006

Thomas Gibbons, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233

RE: Revised Interim Remedial Action Work Plan

Procedures for LNAPL Removal along Tidewater Pipelines Howland Hook Marine Terminal – Port Ivory Facility (40 Western Avenue) Staten Island, New York 10303

Dear Mr. Gibbons:

This letter is the Revised Interim Remedial Action Work Plan for a proposed Interim Remedial Action that will consist of the removal of mobile light, non-aqueous phase liquid (LNAPL) at the Howland Hook Marine Terminal – Port Ivory Facility. The facility is located at 40 Western Avenue, Staten Island, New York.

The initial Interim Remedial Action Work Plan was dated August 17, 2006. This document has been revised based on the New York State Department of Environmental Conservation comment letter dated September 26, 2005. The following sections include information regarding the vehicle for New York State Department of Environmental Conservation oversight, the source of the LNAPL, the known extent of the LNAPL, and the scope of work for the proposed Interim Remedial Action.

1.0 INTRODUCTION

Hatch Mott MacDonald has prepared this Revised Interim Remedial Action Work Plan (IRAWP) on behalf of the Port Authority of New York and New Jersey (Port Authority). The IRAWP was prepared under the auspices of the New York State Department of Environmental Conservation (NYSDEC) Voluntary Cleanup Program (VCP). The Howland Hook Marine Terminal — Port Ivory Facility (HHMT-Port Ivory Facility) is a 124.3-acre property that is currently being redeveloped by the Port Authority. As part of the overall site redevelopment, the Port Authority entered into the VCP in July 2004. The Port Authority's objective for entering into the VCP program with NYSDEC is to address the presence of contamination due to prior site activities unrelated to the Port Authority. Based on the Port Authority's schedule for redevelopment, the HHMT-Port Ivory Facility was partitioned into four Sites for the purpose of the VCP. The proposed Interim Remedial Action will be conducted on two of the Sites, Site 2B (VCP Agreement Site V-00674-2, VCP Index Number W2-0986-02-04) and Site 3 (VCP Agreement Site V-00675-2, VCP Index Number W2-0987-02-04).

On behalf of the Port Authority, Hatch Mott MacDonald (HMM) has performed environmental assessment and investigation activities to characterize site conditions and delineate historic fill material and contaminants in environmental media at the HHMT-Port Ivory Facility, including at

Sites 2B and 3. During these assessment and investigative activities, HMM encountered LNAPL at three locations at Sites 2B and 3 (see Figure 1). For discussion purposes, these locations have been identified as the AOC-Southern Area, AOC-Central Area, and AOC-Northern Area. The goal of the proposed Interim Remedial Action is to remove as much of the mobile LNAPL as possible. Please note that this Interim Remedial Action is not the final Remedial Action; additional remedial activities in the form of engineering and institutional controls will be performed in conjunction with the redevelopment of Sites 2B and 3.

According to our best information, the inactive pipelines (for most of their length at the HHMT-Port Ivory facility) are believed to be situated within an easement at one time owned by Tidewater Pipe Co., Ltd. This information is based upon a drawing prepared by Anthony LoBianco, entitled "Map of Survey of Property in Borough of Staten Island, Richmond County, New York, N.Y.," and dated August 14, 1991 as amended September 23, 1991. During an investigation of soil and groundwater quality along the pipelines, LNAPL was observed in three distinct areas. Although the soil and groundwater data collected to date do not indicate that the LNAPL has adversely impacted soil or groundwater quality with respect to organic chemicals regulated in the state of New York, the Port Authority has determined that removal of mobile LNAPL via pumping to the extent practicable is an appropriate Interim Remedial Action.

2.0 GOAL AND OBJECTIVES

As noted above, the goal of the proposed Interim Remedial Action is to remove as much of the mobile LNAPL as possible. As per discussions with the NYSDEC and for the purposes of this Interim Remedial Action, sheen will be considered to be mobile LNAPL. Based on the results of previous environmental investigation activities, the LNAPL is viscous and has most frequently been encountered at residual concentrations (i.e., is generally immobile). HMM selected the locations where LNAPL is expected to be present in the greatest saturation levels (i.e., is most likely to be mobile) as areas where LNAPL removal via pumping from excavations may be most effective. HMM selected areas that met the following criteria: elevated levels of volatile organic vapors as determined using a photoionization detector (PID); elevated concentrations of total petroleum hydrocarbons (TPHC); areas where LNAPL has been observed in monitoring wells; and, areas where LNAPL was observe to re-accumulate in test pits following its removal.

The objectives of the Interim Remedial Action are as follows: 1) to remove as much mobile LNAPL as possible via pumping; 2) to remove soil containing LNAPL at the greatest saturation levels; and, 3) to document the removal efforts and the total volumes of LNAPL and impacted soil removed from Sites 2B and 3. The Scope of Work presented below has been developed to meet these objectives.

3.0 SCOPE OF WORK

The Scope of Work for the proposed Interim Remedial Action is presented herein. All work detailed below shall be performed in a safe and professional manner so that all existing structures that are scheduled to remain are not damaged and so that the health and safety of construction workers and on-site personnel are protected. Because there is no residential neighborhood adjacent to the HHMT-Port Ivory Facility, it is not anticipated that the public will be exposed to

vapors, except potentially to nuisance odors as they drive along Western Avenue. The contractor ultimately selected to complete the work will submit a Site-specific Health and Safety Plan (HASP) that will be reviewed by the Port Authority prior to initiating the work. At a minimum, the HASP will address potential exposure of construction workers and on-site personnel to vapors that may be released during excavation.

The Port Authority will be responsible for clearing utilities at each proposed removal area/trench (see figure 1 for the locations of each removal area/trench) prior to initiation of the proposed Interim Remedial Action. Each proposed removal area/trench will be excavated and protected as per OSHA requirements. During excavation of the removal areas/trenches, the excavated soil will be screened for the concentration of volatile organic compounds using a photoionization detector (PID) with a 10.6-electronvolt lamp. Soil deemed to be impacted based on the presence of sheen, staining or other discoloration, odors, or PID measurements greater than five parts per million will be stockpiled separately from soil that does not appear to be impacted. The stockpile composed of impacted soil will be staged on plastic that is elevated at least one foot at the edges and will be covered with plastic secured using sand bags or equivalent.

The dimensions of the removal areas/trenches are shown on Figure 1. In all cases, the removal areas/trenches will be excavated to below the depth interval where impacted soil was previously encountered or where impacted soil is observed during excavation of the removal areas/trenches, whichever is deeper. Each removal area/trench shall be excavated and sloped so that it will remain open to the target depth to the extent practical. If the sidewall(s) of a removal area/trench collapse, the collapsed soil will be excavated as soon as possible. If LNAPL or sheen is observed to flow into the removal area/trench at any time, whether during excavation or while the removal area/trench remains open, the removal area/trench will be expanded. Additional excavation will be conducted along the sidewall where the LNAPL or sheen was observed to flow into the excavation, and excavation will continue until neither LNAPL nor sheen is observed to flow into the removal area/trench.

Physical and administrative controls will be used to limit access to areas where removal areas/trenches remain open. All removal areas/trenches that have been completely excavated will be surrounded by a physical barrier at all times, and all removal areas/trenches that are being excavated will be surrounded by a physical barrier at the end of each work day. The physical barrier will be fluorescent orange hurricane fencing on metal posts. The administrative control will consist of signs posted along the barrier. The signs will read "KEEP OUT – SOIL EXCAVATION AREA."

Please note that LNAPL and/or groundwater may need to be pumped out of the removal area/trench so that soil conditions below the water table can be observed. All fluids pumped out of the removal areas/trenches will be contained until such time as they can be disposed of in accordance with all applicable, local, state, and federal laws.

The depth to the top of the LNAPL and the depth to the top of water will be measured at each removal area/trench using an oil-water interface probe. A vacuum truck will be used to remove LNAPL and water from each of the ten removal areas/trenches. The vacuum truck will remove all LNAPL from the top of the water in the removal area/trench. In addition, the vacuum truck will remove a volume of water sufficient to temporarily lower the water level in the removal

area/trench in order to induce LNAPL to flow into the removal area/trench. The vacuum truck will dispose of the purged LNAPL and water in accordance with all applicable local, state, and federal laws. The disposal facility records will be evaluated to determine the cumulative total of LNAPL and water transported to the facility.

Following the initial LNAPL removal, the removal areas/trenches will remain open, and the thickness of LNAPL (if any) in each will be recorded on a weekly basis. The vacuum truck will be remobilized to the HHMT-Port Ivory facility on a biweekly basis so long as LNAPL reaccumulates in at least one removal area/trench. LNAPL and groundwater will be evacuated, in the manner described above, from those test pits where LNAPL is observed to re-accumulate. The Interim Remedial Action will be considered complete when LNAPL does not re-accumulate in any removal area/trench for a period of one month following its most recent removal. As noted above, based on discussions with the NYSDEC and for the purposes of this Interim Remedial Action, sheen will be considered to be mobile LNAPL. Therefore, sheen will be treated in the same manner as mobile LNAPL.

The impacted soil will be sampled for waste classification purposes and will be transported off the HHMT-Port Ivory Facility property. The soil that was not deemed to be impacted will be sampled at a frequency that is in accordance with STARS Memo #1. Specifically, one composite sample and one grab sample will be collected for each 50 cubic yards of stockpiled soil. The composite sample will be prepared on a 5:1 basis, and will be composited either in the field or at the analytical laboratory. All samples will be analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) and TCL Semivolatile Organic Compounds (SVOCs). Unless one or more compounds are detected at concentrations more than an order of magnitude greater than the Recommended Soil Cleanup Objectives (RSCOs), this soil will be used as backfill material. If no compounds are detected at such high concentrations, the soil sampling analytical results will be used only to document the quality of soil being used as fill because the entire area will most likely be subject to a Deed Restriction. If one or more compounds are detected at such high concentrations, the soil will be sampled for waste classification purposes and will be transported off the HHMT-Port Ivory Facility for disposal in accordance with all applicable local, state, and federal laws. The cumulative weight of soil accepted by the disposal facility will be recorded.

Other soils used for backfilling will be certified clean or will have been characterized prior to their reuse. Backfilling and restoration of the HHMT-Port Ivory Facility will be as directed by the Port Authority except that all excavations will be backfilled so that nuisance odors are not noticed following backfilling.

Prior to backfilling, but after it is determined that neither LNAPL nor sheen are flowing into the removal area/trench (i.e., that the excavation activities at that removal area/trench are complete), post-remediation soil samples will be collected. In accordance with DER-10, the sampling frequency will be one sidewall sample per 30 linear feet of sidewall and one bottom sample per 900 feet of bottom area. Soil sampling locations and depth intervals will be biased towards the most significantly impacted soil, as determined by field observations of stained soil, immobile LNAPL, elevated concentrations of volatile organic vapors, and petroleum odors; in the absence of such conditions, soil samples will be collected at the 0.5-foot depth interval immediately above the water table every 30 feet around the removal area/trench perimeter, beginning at either an arbitrary location or the previous sampling location. The samples will be analyzed for TCL

VOCs and TCL SVOCs. Category B deliverables will be requested for all soil sampling analytical results.

This IRAWP summarizes the Scope of Work for a proposed interim remedy that is protective of human health and the environment and will reduce the mobility and volume of LNAPL at Sites 2B and 3 of the HHMT-Port Ivory Facility. The Port Authority plans to initiate this voluntary Interim Remedial Action during June or July 2006, and would appreciate NYSDEC's review and comment.

If you have questions or require further information, please contact me.

Very truly yours,

Hatch Mott MacDonald

Geoffrey K. Clark, P.G. Project Geologist T 973.912.2472 F 973.912.2400 Geoffrey.clark@hatchmott.com

Jennifer N. Kohlsaat Senior Associate T 973.912.2475 F 973.912.2400 jennifer.kohlsaat@hatchmott.com

cc:

J. Guastella (NYSDOH)

E. Aldrich (PANYNJ)

P:\232952wmd\REMEDIAL ACTIONS\Remedial Petroleum Issues Block 1338\Remediation N of Bldg Nos. 74.75\Interim RAWP Rev and Final Aldrich.doc

APPENDIX B NYSDEC CORRESPONDENCE

New York State Department of Environmental Conservation Division of Environmental Remediation

Remedial Bureau B

5 Broadway, Albany, New York 12233-7016 Phone: (518) 402-9768 • FAX: (518) 402-9773

Website: www.dec.state.ny.us

July 20, 2006

Mr. Edward Aldrich
Port Authority of New York and New Jersey
Two Gateway Center, 14th Floor
Newark, New Jersey 07102

Re:

HHMT - Port Ivory Facility

Site 3, ID # V00675

LNAPL IRM Water Discharge

Dear Mr. Aldrich:

The New York State Department of Environmental Conservation (NYSDEC) has reviewed Hatch Mott MacDonald's (HMM) July 18, 2006 request to discharge treated water from excavations within Site 3 of the HHMT - Port Ivory Facility, under the Voluntary Cleanup Program. This work is being conducted as part of the LNAPL IRM Work Plan for Site 3 which was approved by NYSDEC on June 14, 2006.

The proposed approach calls for removing all LNAPL within the excavations using a "vac" truck, and subsequent pumping and treatment of water within the excavation using a bag filter and granular activated carbon adsorption system. Water will be discharged back into the excavations or to a storm sewer system, which discharges to a permitted outfall. Influent and effluent samples will be collected on a daily basis to insure the effectiveness of the treatment system.

The Department is in agreement with the approach outlined in the July 18, 2006 request and the Port Authority of New York and New Jersey (PANYNJ) may now proceed with its implementation. Please provide NYSDEC at least 5 days notice prior to the start of fieldwork to allow adequate time to arrange field oversight.

If you have any questions, don't hesitate to call me at (518) 402-9768.

Sincerely,

Thomas Gibbons
Project Manager

Remedial Bureau B, Section D

Division of Environmental Remediation

cc:

R. Cozzy/File

T. Gibbons

G. Clark (HMM)

ec:

J. Guastella (DOH)

D. Walsh (Reg. 2)

R. Rusinko (DEE/White Plains)

New York State Department of Environmental Conservation Division of Environmental Remediation

medial Bureau B

Broadway, Albany, New York 12233-7016 **Phone:** (518) 402-9768 • **FAX**: (518) 402-9773

Website: www.dec.state.ny.us

June 14, 2006

Mr. Edward Aldrich
Port Authority of New York and New Jersey
Two Gateway Center, 14th Floor
Newark, New Jersey 07102

Re:

HHMT - Port Ivory Facility

Site 3, ID # V00675 LNAPL IRM Approval

Dear Mr. Aldrich:

The New York State Department of Environmental Conservation (NYSDEC), in cooperation with the New York State Department of Health (NYSDOH), have reviewed Hatch Mott MacDonald's (HMM) Revised Work Plan titled "Revised Interim Remedial Measure Work Plan, Procedures for LNAPL Removal Along Tidewater Pipelines, Howland Hook Marine Terminal - Port Ivory Facility (40 Western Avenue), Staten Island" dated June 1, 2006. This Revised Work Plan was issued in response to comments issued by the Department in a comment letter dated September 26, 2005 based on HMM's original Work Plan submittal dated August 17, 2005.

The Department finds this Revised Work Plan acceptable and the Port Authority of New York and New Jersey (PANYNJ) may now proceed with its implementation. Please provide NYSDEC at least 5 days notice prior to the start of fieldwork to allow adequate time to arrange field oversight.

If you have any questions, don't hesitate to call me at (518) 402-9768.

Sincerely,

Thomas Gibbons Project Manager

Remedial Bureau B, Section D

Division of Environmental Remediation

cc:

R. Cozzy/File

T. Gibbons

G. Clark (HMM)

Record of Telephone Conversation

Project

Port Authority of NY&NJ - HHMT- Port Ivory - IRM at Sites 2B & 3

Project No

226355AA01

File No.

IV.45

Between (for MMG)	Date	Time	
Geoffrey Clark	8/3/2006	14:20-14:30	
And (name)	Organisation	Phone No.	
(name)	Organisation	NO.	
Tom Gibbons	NYSDEC	518-402-9768	

Subject

Viscous LNAPL that cannot be excavated & Time excavations must be left open

Summary

I called Tom to updated him on the progress of the IRM. I noted that we have excavated all removal areas and that we have found at least five test pits to be clean relative to the reaccumulation of LNAPL. I also told him that, at two removal areas, we found a viscous and black LNAPL that has no odor and appears, based on where we observed it, to be related to the Tidewater Pipelines. At Area J, which is located to the south of Richmond Terrace and the fence line and sidewalk that parallel Richmond Terrace, to the east of an HHMT-Port Ivory building, and to the west of an active water line, we have observed some of the viscous LNAPL that cannot be excavated due to its proximity to these structures and to the Tidewater Pipelines themselves. Because this LNAPL is believed to be inert with respect to soluble compounds and because it is too viscous to flow any significant distance through the soil, I recommended that we collect a sample of the LNAPL and test it for VOCs and SVOCs via either the TCLP or SPLP methods. I asked Tom whether this approach is acceptable and whether he has a preference for either the TCLP or SPLP method.

Tom replied that, unless there is a demonstratable danger to human health or the environment, we need only remove the material to the extent practical. He does not have a preference as to whether the TCLP or SPLP testing method is used.

I also indicated that some removal areas, notably Areas B and C, are located in close proximity to existing structures or raodways. The danger is that the excavations could collapse, particularly if a rainstorm causes washout. I asked Tom whether we could leave those excavation areas open for a shorter period of time than one month, the duration stated in the plan. I indicated that the oil, even the viscous material encountered at Areas B and J, flows into the removal areas at a reasonable rate. Tom replied that we should keep most Areas open for the full month, but some areas may be closed in two weeks if necessary to protect structures.

Action

A - Notify Mike Wallace of dates when Areas B & C can be backfilled.

То	A	ı	C	Sign	Date
JNK					
GKC					
RMT					
		<u> </u>			
	L	L			
	L.				
Return to 226355AA01.IV.45					

Trepp, Jr., Robert M

From:

Clark, Geoffrey K

nt:

Tuesday, January 02, 2007 9:42 AM

Subject:

Trepp, Jr., Robert M FW: Backfill Quality

archiveTo:

p:\232952wmd\REMEDIAL ACTIONS\Remedial Petroleum Issues Block 1338\Remediation N

of Bldg Nos. 74.75\IRM Report

----Original Message----

From: Thomas Gibbons [mailto:tlgibbon@gw.dec.state.ny.us]

Sent: Wednesday, September 20, 2006 11:17 AM

To: Clark, Geoffrey K

Cc: Ed Aldrich

Subject: Re: Backfill Quality

Geoff - Based on my review of the subject backfill data, and as we discussed today, I am in agreement with this request to reuse this excavated soil at the site in areas where comparable contaminant levels are found. If you have any more questions, or need further clarification, feel free to contact me. Tom

Thomas Gibbons

NYS Department of Environmental Conservation Division of Environmental Remediation 625 Broadway - 12th Floor Albany, NY 12233-7016

Fax: (518) 402-9768 Fax: (518) 402-9773

E-mail: tlgibbon@gw.dec.state.ny.us

>>> "Clark, Geoffrey K" <Geoffrey.Clark@hatchmott.com> 9/15/2006 1:26:43 PM >>>

Tom,

As we discussed in our telephone conversation yesterday, the following is a summary of the quality of the backfill that is intended for use during the IRM. The sampling parameters, VOC and SVOC, and frequency were specified in the approved IRM Workplan. Please confirm that it is appropriate to use this soil for backfill.

Quality of Fill Materials - Site 3 - Site Investigation

The following is a summary of the total SVOC concentrations we detected in fill at Site 3 during the SI (I have not yet had a chance to analyze the RI and SRI data fully; I will send you an updated email when I do).

Total SVOC Concentrations in that Range

0-1

28

11

5-10

5

10-20

4

20-100

4

100+

1

Total

53

For the SI Samples collected at Site 3,

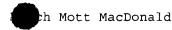
Total SVOC Concentration Range = 0.041 to 127.42 mg/kg

Arithmetic Mean (Total SVOC) Concentration = 8.5 mg/kg

Quality of Proposed Backfill Soil

We detected SVOCs at concentrations above their respective RSCOs in 15 samples of the soil the facility intends to use as backfill. I have attached a summary table to this email; sorry about the formatting, but

we just recently received the data. The detected concentrations that exceed the RSCOs are highlighted in yellow. The range in total SVOC concentration for these samples is 0.966 to 36.79 mg/kg. The arithmetic


mean concentration of total SVOCs for these samples is approximately $12.1\ mg/kg$. Given the fact that the surrounding soil contains SVOCs at

similar concentrations to the proposed backfill, the fact that the IRM is not the final remedial action at Site 3, and the fact that impervious

materials will be placed over most Site 3 soil, we would appreciate your

approval to use the proposed backfill at Site 3 for completion of the IRM.

Regards,

Geoffrey K. Clark, P.G.

Project Geologist

T 973-912-2472 F 973-912-2400

geoffrey.clark@hatchmott.com

This e-mail and any files transmitted with it from Hatch Mott MacDonald are confidential and intended solely for use of the individual or entity to whom they are addressed. If you have received this e-mail in error please immediately notify the sender.

APPENDIX C

SOIL AND LNAPL DISPOSAL MANIFESTS (UNDER SEPARATE COVER)

APPENDIX D

LABORATORY RESULTS (UNDER SEPARATE COVER)

APPENDIX E

DATA USABILITY SUMMARY REPORTS (UNDER SEPARATE COVER)